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Introduction

In this thesis we consider two di�erent models of stochastic processes in discrete time. In
Chapter 1 we study the frog model and in Chapter 2 and 3 we study branching random
walks. Both models belong to the family of interacting random walks.
A random walk is one of the most basic objects in probability theory. In every step a
particle moves randomly according to some step size distribution. The simplest case is
a simple random walk on the d-dimensional lattice Zd. The particle starts at the origin
and at every step it jumps to one of its 2d neighbours uniformly at random. Interacting
random walks consist of a (possibly in�nite) set of particles moving around simultaneously
according to some rules. In particular, the set of particles is not necessarily �xed.
In Chapter 1 we study the frog model on Zd. This model was �rst investigated by Telcs
and Wormald [57], who, however, called it egg model. The name frog model was only later
suggested by Durett, see [53]. The model can be described as follows. At the beginning
there is one active frog at the origin and one sleeping frog at every other site of Zd. The
active frog performs a simple random walk. Whenever a sleeping frog is visited by an
active frog, it is activated and starts a simple random walk itself, independently of all
other active frogs. It can wake up other sleeping frogs as well. The frog model does not
describe the behaviour of real frogs, but it can be used to model the spread of information
or a disease. Active frogs have some information or an illness and pass it whenever they
meet a sleeping frog. The activated frogs then start spreading the information or illness
themselves.
One of the �rst questions for interacting random walks deals with recurrence and tran-
sience. The frog model is called recurrent, if the origin is visited in�nitely often by active
frogs with probability one. In particular, in the recurrent case every frog will be acti-
vated. Otherwise it is called transient. In the transient case the cloud of active frogs
moves away from the origin. If the frogs perform simple random walks, i.e. they choose
every direction with the same probability, Telcs and Wormald [57] showed that the frog
model is recurrent on Zd in any dimension d ≥ 1. In this thesis we study the frog model
with a drift in one direction. This means that there is one distinguished direction, which
is chosen by the frogs with a higher probability. In Theorem 1.20-1.23 we show that
for dimension d ≥ 2 the frog model can either be recurrent or transient, depending on
the drift. These results are joint work with Döbler, Gantert, Popov and Weidner and
published in [22].
For dimension d = 1 it is shown in [31], however, that the frog model is transient for
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Introduction

any drift. In particular, the cloud of frogs moves away from the origin. Without loss of
generality, we assume that we have a drift to the right. In Theorem 1.16 we compute the
linear speed of the leftmost occupied site explicitly. Furthermore, in Theorem 1.17 and
Theorem 1.18 we show that the speed of the rightmost occupied site is monotone in the
drift and strictly less than 1. We also prove in Theorem 1.19 that all frogs are in some
sense uniformly distributed in between the leftmost and rightmost occupied site. These
results are joint work with Weidner and published in [36].
In Chapter 2 we consider a branching random walk on R. Informally, the model can
be described in the following way. At time 0 the process starts with one particle at the
origin. At every time n ∈ N each particle repeats the following two steps, independently of
everything else. First, it produces o�spring according to some �xed o�spring distribution,
and then it dies. Afterwards, the o�spring particles move according to some step size
distribution. In contrast to the frog model on Z, the linear speed x∗ of the rightmost
particle is known explicitly. Even more precise asymptotics for the rightmost particle have
been obtained, see Section 2.2.3 for details. In Theorem 2.19 we derive a large deviation
result for the position of the rightmost particle, i.e. we determine the exponential decay
rate of the probability that the rightmost particle has speed x 6= x∗. In the proof we
dominate the branching random walk by a random number of independent random walks,
for which we show a large deviation result in Theorem 2.18 as well. These results are
joint work with Gantert and published in [29].
In Chapter 3 we study the same model as in Chapter 2, but we add another source
of randomness. In Chapter 2 we assume that the o�spring distribution is independent
of time. However, for instance environmental conditions may in�uence the branching
behaviour. Therefore, in this chapter we assume that the o�spring distribution is chosen
at random in every step. The sequence of (random) o�spring distributions is called
random environment. The probability measure conditioned on a �xed environment is
called quenched measure, whereas the probability measure averaging over all possible
environments is called annealed measure. For the rightmost particle of the branching
random walk we show a large deviation result in Theorem 3.11 and 3.12 with respect
to the annealed and quenched measure, respectively. Analogous results for independent
random walks are obtained in Theorem 3.9 and 3.10. The random environment leads
to additional di�culties in the proofs. Therefore, under the annealed measure we could
only prove an upper large deviation result for the rightmost particle of the branching
random walk.
Both the frog model as well as the branching random walk are interacting random walks
with a growing set of particles. Furthermore, in both models the interaction between the
particles only takes place, whenever there is a new particle added to the system, i.e. if
a sleeping frog is activated in the frog model or o�spring is produced in the branching
random walk, respectively. Only the location and time when the particle enters the
system depends on the behaviour of the other particles. However, there are two main
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di�erences between the two models. First, in contrast to the frog model, the average
number of (active) particles is known explicitly for the branching random walk. Second,
the location of each particle in the branching random walk has the same distribution,
namely the distribution of a random walk with the same step size distribution. At �rst,
one might think that this is also true for the frog model, since each frog moves according
to a random walk. However, since a �xed sleeping frog only gets activated by a frog that
moves away from the origin fast (it has to be the �rst frog reaching the sleeping frog), the
location of a �xed frog tends to be further away from the origin. These two properties
are used extensively to show results for the branching random walk.
In particular, this explains why there are much �ner results for the branching random
walk. For the frog model we can only show the existence of recurrent and transient
regimes, while there is a sharp criterion separating transience from recurrence for the
branching random walk. Moreover, we can only prove qualitative results about the speed
of the rightmost frog, while there is an explicit formula for the speed of the rightmost
particle in the branching random walk.
This thesis is structured as follows. We start every chapter with a formal description
of the model before we give some known results which are interesting in the context of
our results. In Chapter 2 and 3 we need to introduce some rate functions before we can
state the main results of the chapter. We then collect some preliminary results which are
needed in the proofs of the main results.
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1 The Frog Model

1.1 Description of the model

We describe the frog model in a more general setting than explained in the introduction.
Let G = (V,E) be a connected non-oriented graph such that every vertex has �nite
degree. Fix a vertex o ∈ V and call it root. Let η be a N0-valued random variable with
P(η ≥ 1) > 0. Let {ηx : x ∈ V \ {o}} and {(Sxn(i))n∈N : i ∈ N, x ∈ V } be independent
families of i.i.d. random variables de�ned as follows: For all x ∈ V \ {o} the random
variable ηx has the same distribution as η and gives the initial number of sleeping frogs
at x. If ηx ≥ 1, then for all 1 ≤ i ≤ η(x) the sequence (Sxn(i))n∈N is a discrete time nearest
neighbour random walk starting at x. It describes the trajectory of the i-th frog initially
at vertex x. The transition probabilities of the random walk are given by a transition
function π. If the random walk is symmetric, i.e. if in every step it chooses one of its
neighbours uniformly, the transition function is denoted by πsym. For x, y ∈ V, x 6= y

de�ne the �rst time that a particle initially at vertex x reaches vertex y as

t(x, y) = min
1≤i≤η(x)

inf{n ∈ N : Sxn(i) = y}.

Note that t(x, y) might be in�nite. Then, the �rst time a vertex x is visited by an active
frog is de�ned as

Tx = inf
{
m ∈ N, o = x0, x1, . . . , xm = x ∈ V :

m∑
i=1

t(xi, xi−1)
}
.

If Tx = ∞, then the frogs initially at x will never be activated. Tx is called activation
time of x. After time Tx all frogs initially at x start to follow their trajectories given by
(Sxn(i))n∈N for 1 ≤ i ≤ ηx. The position Zxn(i) of the i-th frog initially at vertex x ∈ V
at time n is de�ned as

Zxn(i) =

{
x for n < Tx

Sxn−Tx(i) for n ≥ Tx
.

The frog model on the graph G with transition function π and initial con�guration η is
denoted by FM(G, π, η).
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1. The Frog Model

1.2 Some known results

1.2.1 Symmetric frogs

In this subsection we assume that the underlying random walk of the frog model is sym-
metric, i.e. the transition function is given by πsym. Moreover, except for Theorem 1.2,
we only consider G = Zd for d ≥ 1 or G = Td for d ≥ 2, where Td denotes the d-regular
tree, i.e. every vertex has degree d+ 1.
When studying interacting random walks, one often �rst asks about recurrence and
transience, i.e. whether the origin is visited in�nitely many times, or the cloud of particles
moves away from the origin.

De�nition 1.1. The frog model FM(G, π, η) is called recurrent, if

P(the origin is visited in�nitely many times) = 1.

Otherwise it is called transient.

If the frog model is recurrent, then every frog will be activated. Very recently, Kosygina
and Zerner showed that the frog model satis�es a zero-one-law.

Theorem 1.2 ([45, Theorem 1]). In FM(G, π, η) the probability that the origin is visited

in�nitely many times by active frogs is either 0 or 1.

Kosygina and Zerner consider a more general model in [45]. For instance, their result
also applies to frog models, where the trajectories of the frogs are given by a transitive
and irreducible Markov chain. Note that by Theorem 1.2, to show recurrence it su�ces
to prove that the origin is visited in�nitely often with positive probability.
If there is one sleeping frog at every vertex, i.e. if η ≡ 1, the frog model on Zd is recurrent
for any dimension d ≥ 1. For d = 1, 2 this is obviously true, since simple random walk
is recurrent in this case. Therefore, already the frog starting from the origin will return
in�nitely many times. For d = 3 simple random walk on Zd is transient. However, on
its way to in�nity the inital frog at the origin will activate a frog with euclidean distance
to the origin in (n − 1, n] for every n ∈ N. This frog has a chance of approximately
c · n−1 to ever visit the origin. Since the trajectories of these frogs are independent, the
Borel-Cantelli lemma yields that in�nitely many frogs return to the origin. For d > 3

this was �rst proved by Telcs and Wormald in [57] and later re�ned by Popov in [52].
Popov considered a random initial con�guration with one sleeping frog at x ∈ Zd \ {0}
with probability p(x) and zero frogs with probability 1− p(x), independently of all other
vertices. He found the critical decay of p(x) separating transience from recurrence.

Theorem 1.3 ([52, Theorem 1.1]). For d ≥ 3 let p : Zd\{0} → [0, 1] and η = (ηx)x∈Zd\{0}
be a collection of independent random variables with P(ηx = 1) = p(x) = 1 − P(ηx = 0)

6



1.2. Some known results

for all x ∈ Zd \ {0} as well as η0 = 1. Consider the frog model FM(Zd, πsym, η). There

exists αc = αc(d) ∈ (0,∞) such that

(i) the frog model is transient if α < αc and p(x) ≤ α‖x‖−2 for all x large enough,

(ii) the frog model is recurrent if α > αc and p(x) ≥ α‖x‖−2 for all x large enough.

Very recently, the question of recurrence and transience was also solved on the d-regular
tree for d = 2 and d ≥ 5 by Ho�mann et al. in [38]. It is still open for d = 3, 4.

Theorem 1.4 ([38, Theorem 1]). Consider the frog model FM(Td, πsym, 1).

(i) For d = 2 the frog model on Td is recurrent.

(ii) For d ≥ 5 the frog model on Td is transient.

It is conjectured in [38] that the frog model on Td remains recurrent for d = 3, while it is
transient for d = 4. In [37] the same authors also investigate recurrence and transience
of the frog model on the d-regular tree with a random initial con�guration given by
i.i.d. Poisson(µ) distributed random variables. They prove that for every d ≥ 2 there is
a critical value for the parameter µ separating transience from recurrence.
If the frog model is recurrent, then every frog will be activated. On Zd every frog at
euclidean distance at most n from the origin will be activated up to time c · n for all n
large enough, where c is a positive constant independent of n. More precisely, for the
frog model on Zd with initially one frog per site Alves et al. prove in [4] that the set of
vertices visited by active frogs, rescaled by time, converges to a convex set. This result
is generalised to an i.i.d. initial con�guration in [5].

Theorem 1.5 ([5, Theorem 1.1]). Consider the frog model FM(Zd, πsym, η) for d ≥ 1

and P(η > 0) > 0. Let ξn(η) be the set of all vertices visited by active frogs at time n and

de�ne the set ξn(η) := {x + (−1
2 ,

1
2 ]
d : x ∈ ξn(η)}. Then, there is a non-empty convex

symmetric set A = A(d, η) ⊆ Rd, A 6= {0}, such that for almost all initial con�gurations

η and for any 0 < ε < 1 we have

(1− ε)A ⊆ ξn
n
⊆ (1 + ε)A

for all n large enough almost surely.

Remark 1.6. The proof of Theorem 1.5 goes through for the �lazy� version of the frog

model, where in each step a frog decides to stay where it is with probability q ∈ (0, 1),

independently of all other frogs.
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1. The Frog Model

1.2.2 Frogs with death

One possible generalisation of the frog model discussed in subsection 1.2.1 is the frog
model with death. For s ∈ [0, 1] it is de�ned just as the usual frog model, but every
active frog dies at every step with probability 1 − s, independently of everything else.
The parameter s is called survival probability. We denote this frog model on G with initial
con�guration η by FM∗(G, π, η, s) if the underlying random walk has transition function
π. In the symmetric case, i.e. if π = πsym, the frog model with death is intensively
studied in [3] and also in [27] and [47]. Note that we need some results for the frog model
with death in the proofs of our main results.
The �rst question for this model deals with survival of the frogs.

De�nition 1.7. We say that the frog model survives, if there is at least one active frog

at any time. Otherwise it dies out.

Since the probability that the frog model FM∗(G, π, η, s) survives is increasing (not nec-
essarily strictly) in s, we can de�ne the critical survival probability as

sc(G, π, η) = inf{s : P(FM∗(G, π, η, s) survives) > 0}. (1.1)

Theorem 1.8 ([3, Theorem 1.1, Theorem 1.3, Theorem 1.4]). Consider the frog model

FM∗(Zd, π, η, s).

(i) If E[log+(η)] <∞, then sc(Z, πsym, η) = 1.

(ii) Let d ≥ 2. If E[(log+(η))d] <∞, then sc(Zd, πsym, η) > 0.

(iii) Let d ≥ 2. If P(η ≥ 1) > 0, then sc(Zd, πsym, η) < 1.

Under mild assumptions on η, the frog model on Z dies out for every s < 1. Furthermore,
again under mild assumptions on η, the frog model on Zd for d ≥ 2 survives for all s
close to 1 and dies out for all s close to 0.

Theorem 1.9 ([3, Theorem 1.2, Theorem 1.6, Theorem 1.5]). Consider the frog model

FM∗(Td, π, η, s).

(i) Let d ≥ 1. If there exists δ > 0 such that E[ηδ] <∞, then sc(Td, πsym, η) > 0.

(ii) Let d ≥ 1. If E[ηδ] =∞ for all δ > 0, then sc(Td, πsym, η) = 0.

(iii) Let d ≥ 2. If P(η ≥ 1) > 0, then sc(Td, πsym, η) < 1.

Under mild assumptions on η, for all d ≥ 1 the frog model on Td survives for all s close
to 1 and dies out for all s close to 0.
Alves et al. also prove asymptotics for the critical survival probability as d→∞.
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1.2. Some known results

Theorem 1.10 ([3, Theorem 1.7, Theorem 1.8]). If E[η] <∞, then

lim
d→∞

sc(Zd, πsym, η) = lim
d→∞

sc(Td, πsym, η) =
1

1 + E[η]
.

If the frog model survives one can again ask if the origin is visited in�nitely many times.

Theorem 1.11 ([3, Theorem 1.10, Theorem 1.12]). For d ≥ 1 consider the frog model

FM∗(Zd, πsym, η, s).

(i) If E[(log+(η))d] <∞, then the probability that the origin is visited in�nitely many

times is 0 for all s ∈ [0, 1).

(ii) If there exists β < d such that P(η ≥ n) ≥ 1
(logn)β

for all n large enough, then the

probability that the origin is visited in�nitely many times is positive for all s ∈ (0, 1].

Theorem 1.12 ([3, Theorem 1.9, Theorem 1.11]). For d ≥ 1 consider the frog model

FM∗(Td, πsym, η, s).

(i) If E[ηε] < ∞ for all 0 < ε < 1, then the probability that the origin 0 is visited

in�nitely many times is 0 for all s ∈ [0, 1).

(ii) If there exists β < log(d−1)
2 log d such that P(η ≥ n) ≥ 1

(logn)β
for all n large enough,

then the probability that the origin is visited in�nitely many times is positive for all

s close to 1.

Note that there are only �nitely many returns to the origin if the frog model dies out.
Therefore, the probability to have in�nitely many returns is less than 1 for every s < 1.

1.2.3 Frogs with drift

Let us now return to the frog model without death. So far we considered symmetric tran-
sition probabilities. From now on we only consider G = Zd and transition probabilities
which are balanced in all but in one direction. More precisely, let Ed = {±ej : 1 ≤ j ≤ d},
where ej denotes the j-th standard basis vector in Rd, j = 1, . . . , d. The particles
move according to the following transition probabilities, which depend on two parame-
ters w ∈ [0, 1] and α ∈ [0, 1]:

πw,α(e) =


w(1+α)

2 for e = e1
w(1−α)

2 for e = −e1
1−w

2(d−1) for e ∈ {±e2, . . . ,±ed}
(1.2)

The parameter w is the weight of the drift direction e1, i.e. the random walk chooses to go
in direction ±e1 with probability w. The parameter α describes the strength of the drift,
i.e. if the random walk has chosen to move in drift direction, it takes a step in direction

9



1. The Frog Model

e1 with probability 1+α
2 and in direction −e1 with probability 1−α

2 . All other directions
are balanced and equally probable. Sometimes we need to consider the corresponding
one-dimensional model where we have to demand w = 1, i.e. the transition probabilities
are de�ned by πα(e1) = 1− πα(−e1) = 1+α

2 .
In dimension d = 1 Gantert and Schmidt [31] found a sharp criterion on the distribution
of η separating transience from recurrence.

Theorem 1.13 ([31, Theorem 2.2]). Let α ∈ (0, 1). The frog model FM(Z, πw,α, η) is

recurrent if and only if E[log+ η] =∞

The recurrence part of this result was generalised to any dimension d ≥ 1 by Döbler and
Pfeifroth in [23].

Theorem 1.14 ([23, Theorem 2.1]). Let d ≥ 1 and α,w ∈ (0, 1). The frog model

FM(Zd, πw,α, η) is recurrent if E
[
(log+ η)(d+1)/2

]
=∞.

Kosygina and Zerner also derived a recurrence criterion in [45] in a more genereal model.
In our set-up their result can be stated as follows.

Theorem 1.15 ([45, Theorem 5]). Let d ≥ 1 and α,w ∈ (0, 1). There is a constant

c = c(d, α,w) > 0 such that the frog model FM(Zd, πw,α, η) is recurrent if

P(η ≥ n) ≥ c

(log n)d

for all n large enough.

Note that these results give criteria for recurrence and transience only depending on the
distribution of η. In particular, there are no assumptions on the concrete value of the
drift parameters. Indeed, it was conjectured in [31] that in higher dimensions d ≥ 2,
there is also a sharp criterion, independent of the concrete value of the drift parameters,
separating transience from recurrence. However, in subsection 1.3.2 we show that this is
not true.

1.3 Main results

In this section we consider the frog model with drift on Zd with initially one sleeping
frog at every vertex, i.e. η ≡ 1. To abbreviate notation we write FM(d, πw,α) instead
of FM(Zd, πw,α, η) and FM∗(d, πw,α, s) instead of FM∗(Zd, πw,α, η, s), respectively. Fur-
thermore, we write (Sxn)n∈N instead of (Sxn(1))n∈N for the trajectory of the frog initially
at x. The position of this frog at time n is denoted by Zxn instead of Zxn(1). In dimension
d = 1 the frog model is transient for every drift parameter α > 0. by Theorem 1.13.
Therefore, the cloud of frogs moves away from the origin. In subsection 1.3.1 we inves-
tigate how fast the cloud of frogs moves to the right. We therefore consider the leftmost

10
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and rightmost active frog and get some results on their speed. In subsection 1.3.2 we
consider the frog model FM(d, πw,α) in higher dimensions d ≥ 2. We show that there
exists a recurrent and transient regime depending on the drift parameters α and w and
reveal some interesting di�erences between d = 2 and d ≥ 3.

1.3.1 Frogs with drift on Z

The results in this subsection are joint work with Weidner and published in [36]. We
consider the frog model FM(1, πw,α). Recall that π(e1) = 1+α

2 = 1 − π(−e1). To state
the results we �rst need to introduce some more notation. Let An denote the set of
active frogs at time n, i.e. An = {i ∈ Z : Ti ≤ n}. Further, we de�ne Mn = maxi∈An Z

i
n

and mn = mini∈An Z
i
n. Thus, Mn describes the maximum and mn the minimum of the

locations of the active frogs. We refer toMn and mn as the maximum and the minimum.
One can show that there are constants vmax and vmin such that

vmax = lim
n→∞

Mn

n
a.s. (1.3)

vmin = lim
n→∞

mn

n
a.s. (1.4)

The existence of vmax is well known and stated in Lemma 1.32, and the existence of vmin

is part of Theorem 1.16 below. We call vmax the speed of the maximum and vmin the
speed of the minimum. We study vmax and vmin as functions of the drift parameter α.
First, we show that the speed of the minimum equals the speed of a single frog.

Theorem 1.16. For α > 0 the speed of the minimum exists and is given by

vmin = α.

In the following two theorems we discuss some properties of the speed of the maximum.

Theorem 1.17. The speed of the maximum is an increasing function in α.

Theorem 1.18. For α < 1 it holds that vmax < 1.

In comparison to the last result note that for branching random walk on Z with binary
branching the speed of the maximum equals 1 for every α ≥ 0. This follows for instance
from Theorem 2.4.
In addition to studying the behaviour of the minimum and the maximum we investigate
the distribution of the active frogs. In the limit they are distributed uniformly inbetween
the minimum and the maximum. To make this statement precise, we rescale the positions
of all active frogs at time n roughly to the interval [0, 1] and then consider the empirical
distribution µn, which is de�ned for α < 1 by

µn(B) =
1

|An|
∑
i∈An

1{ Zin−vminn

(vmax−vmin)n
∈B
}

11



1. The Frog Model

for every Borel set B ⊆ [0, 1]. Note that µn is a random measure.

Theorem 1.19. Almost surely, the empirical distribution µn converges weakly to the

Lebesgue measure λ on [0, 1] as n→∞.

1.3.2 Frogs with drift on Zd for d ≥ 2

The results in this subsection are joint work with Döbler, Gantert, Popov and Weidner
and published in [22]. We consider the frog model FM(d, πw,α) for d ≥ 2. We show that
there exist recurrent and transient regimes depending on the drift parameters α and w.
First, let us discuss the extreme cases. For w = 1 the frog model is one-dimensional
and thus transient for any α ∈ (0, 1] by Theorem 1.13 and recurrent for α = 0. For
α = 1 it is transient for any w ∈ (0, 1]. More precisely, only frogs in the hyperplane
H0 := {x ∈ Zd : x1 = 0} can be awaked and return to the origin. However, the probability
that a frog in H0 ever visits the origin decays exponentially with its distance to the
origin. Since the trajectories of the frogs are independent, a Borel-Cantelli argument
shows that almost surely only �nitely many frogs will ever reach the origin. If w = 0,
then FM(d, π0,α) is equivalent to the symmetric frog model in d−1 dimensions and hence
recurrent. If α = 0, we are back in the balanced case and the model is recurrent. This
follows from Theorem 1.20 (i) and Theorem 1.22 below.
In dimension d = 2 the frog model is recurrent whenever α or w are su�ciently small,
i.e. if the underlying transition mechanism is almost balanced. It is transient for α or w
close to 1.

Theorem 1.20. Let d = 2 and w ∈ (0, 1).

(i) There exists αr = αr(w) > 0 such that the frog model FM(d, πw,α) is recurrent for

all 0 ≤ α ≤ αr.

(ii) There exists αt = αt(w) < 1 such that the frog model FM(d, πw,α) is transient for

all αt ≤ α ≤ 1.

Theorem 1.21. Let d = 2 and α ∈ (0, 1).

(i) There exists wr = wr(α) > 0 such that the frog model FM(d, πw,α) is recurrent for

all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1 such that the frog model FM(d, πw,α) is transient for

all wt ≤ w ≤ 1.

In dimension d ≥ 3 the frog model is also recurrent if the transition probabilities are
almost balanced. Further, for any �xed drift parameter α ∈ (0, 1] it is transient if the
weight w is close to 1. However, in contrast to d = 2, for �xed w ∈ [0, 1) there is not
always a transient regime. This follows from Theorem 1.23 (i) below.

12
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Theorem 1.22. Let d ≥ 3 and w ∈ (0, 1). There exists αr = αr(d,w) > 0 such that the

frog model FM(d, πw,α) is recurrent for all 0 ≤ α ≤ αr.

Theorem 1.23. Let d ≥ 3 and α ∈ (0, 1).

(i) There exists wr > 0, independent of d and α, such that the frog model FM(d, πw,α)

is recurrent for all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1, independent of d, such that the frog model FM(d, πw,α)

is transient for all wt ≤ w ≤ 1.

These results show that, in contrast to d = 1, recurrence and transience do depend
on the drift in every dimension d ≥ 2. This disproves the last conjecture in [31] that
some condition on the moments of η would separate transience from recurrence as in the
one-dimensional case.
The results are graphically summarised in Figure 1.1. Note that the above theorems only
make statements about the existence of recurrent, respectively transient regimes. We do
not describe their shapes, as might be suggested by the curves depicted in Figure 1.1.
However, we believe that there is a monotone curve separating the transient from the
recurrent regime.

Conjecture 1.24. For every d there exists a decreasing function fd : [0, 1]→ [0, 1] such

that the frog model FM(d, πw,α) is recurrent for all w,α ∈ [0, 1] such that w < fd(α) and

transient for all w,α ∈ [0, 1] such that w > fd(α).

Intuitively, the frog model approximates a binary branching random walk for d → ∞
from below, as each frog activates a new frog in every step if there are 'in�nitely' many
directions to choose from. This leads to the following conjecture.

Conjecture 1.25. The sequence of functions (fd)d∈N is increasing in d.

The comparison with a binary branching random walk raises another question. Let

g : [0, 1]→ [0, 1], g(α) = min
{
1, (2(1−

√
1− α2))−1

}
.

A binary branching random walk on Zd with transition probabilities as in (1.2) is recur-
rent if and only if w < g(α), see [30, Section 4].

Question 1.26. Does the sequence (fd)d∈N converge pointwise to g as d→∞?

1.4 Preliminaries

In this section we collect some preliminary results which are needed in the proofs of the
main results. First we �x some more notation. We refer to the frog that is initially at

13
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1

1

0
α

w

d = 2

1

1

0
α

w

d ≥ 3

Figure 1.1: Phase diagram for the frog model FM(d, πw,α): the recurrent regime is marked
by , the transient one by .

vertex x ∈ Zd as �frog x�. Furthermore, for the frog model on Z we often need to talk
about the frogs initially on negative sites. To keep the sentence structure simple we refer
to them as the negative frogs. Analogously we speak of non-negative and positive frogs.
Also for any k ∈ Z the frog initially on site k is called frog k. For x, y ∈ Zd we write
x → y if frog x (potentially) ever visits y, i.e. y ∈ {Sxn : n ∈ N0}. For A ⊆ Zd we say
that there exists a frog path from x to y in A and write x

A
y if there exist n ∈ N and

z1, . . . , zn ∈ A such that x → z1, zi → zi+1 for all 1 ≤ i < n and zn → y, or if x → y

directly. Note that x, y are not necessarily in A. Also the trajectories of the frogs zi,
1 ≤ i ≤ n, do not need to be in A. For x ∈ Zd we call the set

FCx =
{
y ∈ Zd : x Zd

y
}

(1.5)

the frog cluster of x. Note that, if frog x ever becomes active, then every frog y ∈ FCx
is also activated. Observe that, whenever we only deal with recurrence and transience,
the exact activation times are not important, but we are only interested in whether or
not a frog is activated.
Further, we often use (d− 1)-dimensional hyperplanes Hn in Zd de�ned by

Hn := {x ∈ Zd : x1 = n} (1.6)

for n ∈ Z.

1.4.1 Some facts about random walks

We need to deal with hitting probabilities of random walks on Zd. For x, y ∈ Zd recall
that {x→ y} denotes the event that the random walk started at x ever visits the vertex
y. Analogously, for A ⊆ Zd we write {x→ A} for the event that the random walk started

14
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at x ever visits a vertex in A.

Lemma 1.27. For d ≥ 3 and w ∈ (0, 1) consider a random walk on Zd with transition

function πw,0. There exists a constant c = c(d,w) > 0 such that for all x ∈ Zd

P(0→ x) ≥ c‖x‖−(d−2)2 ,

where ‖x‖2 =
(∑d

i=1 x
2
i

)1/2
is the Euclidean norm.

A proof of the lemma for the simple random walk, i.e. with transition function πsym, can
e.g. be found in [4, Theorem 2.4] and [3, Lemma 2.4]. The proof can immediately be
generalised to our set-up using [46, Theorem 2.1.3].

Lemma 1.28. For d ≥ 1 and α,w ∈ (0, 1) consider a random walk on Zd with transition

function πw,α. Then for each γ > 0 there is a constant c = c(d, γ, w, α) > 0 such that for

all n ∈ N and x ∈ Zd with x1 = −n and |xi| ≤ γ
√
n, 2 ≤ i ≤ d, it holds that

P(x→ 0) ≥ cn−(d−1)/2.

For a proof see e.g. [23, Lemma 3.1].

Lemma 1.29. For d ≥ 1 and α,w ∈ (0, 1] consider a random walk on Zd with transition

function πw,α. Then for every n ∈ N and H−n as de�ned in (1.6)

P(0→ H−n) =
(1− α
1 + α

)n
.

Proof. As P(0 → H−n) = P(0 → H−1)
n for n ∈ N, it su�ces to prove the lemma for

n = 1. By the Markov property

P(0→ H−1) =
1− α
2

+
1 + α

2
P(0→ H−2).

The result follows after a straightforward calculation.

1.4.2 Some facts about percolation

To prove recurrence we make use of the theory of independent site percolation on Zd and
therefore give a brief introduction here. Let p ∈ [0, 1]. Every site in Zd is independently
of the other sites declared open with probability p and closed with probability 1 − p.
An open cluster is a connected component of the subgraph induced by all open sites.
It is well known that for d ≥ 2 there is a critical parameter pc = pc(d) ∈ (0, 1) such
that for all p > pc (supercritical phase) there is a unique in�nite open cluster C almost
surely, and for p < pc (subcritical phase) there is no in�nite open cluster almost surely.
Furthermore, denoting the open cluster containing the site x ∈ Zd by Cx, it holds that

15



1. The Frog Model

P(|Cx| = ∞) > 0 for p > pc, and P(|Cx| = ∞) = 0 for p < pc and all x ∈ Zd. The
following lemma states that the critical probability pc is small for d large.

Lemma 1.30. For independent site percolation on Zd,

lim
d→∞

pc(d) = 0.

Indeed, pc(d) = O
(
d−1
)
holds. A proof of this result can e.g. be found in [13, Chapter 1,

Theorem 7]. Further, in the recurrence proofs we use the fact that an in�nite open cluster
is �dense� in Zd. The following weak version of denseness su�ces.

Lemma 1.31. Consider supercritical independent site percolation on Zd. There are

constants a, b > 0 such that

P
(
|A ∩ Cx| ≥ a|A|

)
> b

for all A ⊆ Zd and x ∈ Zd.

Proof. For a > 0, A ⊆ Zd and x ∈ Zd the FKG-inequality yields

P
(
|A ∩ Cx| ≥ a|A|

)
≥ P

(
x ∈ C, |A ∩ C| ≥ a|A|

)
≥ P(x ∈ C) · P

(
|A ∩ C| ≥ a|A|

)
.

Note that γ := P(x ∈ C) ∈ (0, 1) (and γ does not depend on x) since the percolation is
supercritical. By the Markov inequality

P
(
|A ∩ C| ≥ a|A|

)
= 1− P

(
|A ∩ Cc| ≥ (1− a)|A|

)
≥ 1−

E
[
|A ∩ Cc|

]
(1− a)|A|

= 1− 1

(1− a)|A|
∑
y∈A

P(y ∈ Cc)

= 1− 1− γ
1− a

> 0,

for a small enough, which �nishes the proof.

1.4.3 Some results about frogs

The existence of the speed of the maximum de�ned in (1.3) is proved using Liggett's
Subadditive Ergodic Theorem. Indeed, this theorem yields more information which we
use in subsection 1.5.1. We summarise it in the following lemma.

Lemma 1.32. Consider the frog model FM(1, πw,α). For each α ∈ [0, 1] there exists a

positive constant vmax such that

vmax = lim
n→∞

Mn

n
a.s.
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Furthermore,

v−1max = lim
i→∞

Ti
i

= lim
i→∞

E[Ti]
i

= inf
i∈N

E[Ti]
i

a.s. (1.7)

Proof. Let Ti,j denote the activation time of the frog at site j when initially there is one
active frog at site i and one sleeping frog at every other site. An application of Liggett's
Subadditive Ergodic Theorem (see e.g. [48]) to the times (Ti,j)i,j∈Z shows the existence
of a positive constant vmax such that (1.7) holds. For α = 0 this is proved for a more
general model by Alves et al. in [4]. In our setting their argument immediately applies
to α > 0 as well.
By a standard argument it now follows that limn→∞

Mn
n exists almost surely: There

exists a unique random sequence (kn)n∈N with values in N0 such that Tkn ≤ n < Tkn+1.
Note that limn→∞ kn =∞. Hence,

lim
n→∞

Tn
n

= lim
n→∞

Tkn
kn

= lim
n→∞

n

kn
a.s.

Obviously, kn − (n− Tkn) ≤Mn ≤ kn. This implies

kn
n
−
(
1− Tkn

kn
· kn
n

)
≤ Mn

n
≤ kn

n
.

Taking limits yields the claim.

Further, we need a result on the frog model with death FM∗(d, π, s) for s ∈ [0, 1]. We
denote frog clusters in the frog model with death by FC∗, analogous to the notation
introduced in (1.5) for the frog model without death.

Lemma 1.33. For FM(1, π1,α) with α > 0 and FM∗(1, πsym, s) with s < 1 there is c > 0

such that P(0 Z − n) ≤ e−cn for all n ∈ N.

Proof. Let p be the probability that a frog starting from 0 ever hits the vertex −1. In
both models we have p < 1. Obviously, as s < 1, this is true for FM∗(d, πsym, s). For
FM(1, π1,α) it follows from Lemma 1.29.
For n ∈ N de�ne Yn = |{m > −n : m → −n}| if −n ∈ FC0, respectively −n ∈ FC∗0 .
Otherwise set Yn = 0. If −n is visited by active frogs, then Yn counts the number of
frogs to the right of −n that potentially ever reach −n. The process (Yn)n∈N is a Markov
chain on N0 with

Yn+1 =

{
0 if Yn = 0,

Binomial(Yn + 1, p) if Yn > 0.

Note that P(0 Z − n) = P(Yn > 0) by de�nition. A straightforward calculation shows
that there is k0 ∈ N such that P(Yn+1 < Yn | Yn = k) > 2

3 for all k ≥ k0. Hence, we can
dominate the Markov chain (Yn)n∈N by the Markov chain (Ỹn)n∈N on {0, k0, k0 + 1, . . .}
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with transition probabilities

P(Ỹn+1 = l | Ỹn = k) =



1
3 if l = k + 1, k > k0,
2
3 if l = k − 1, k > k0,

(1− p)k0+1 if l = 0, k = k0,

1− (1− p)k0+1 if l = k + 1, k = k0,

1 if l = k = 0

for all n ∈ N and starting point Ỹ1 = max{Y1, k0}. Obviously, for all n ∈ N we have
P(Yn > 0) ≤ P(Ỹn > 0). Let Tk = min{n ∈ N : Ỹn = k} and Tk,l = Tl − Tk. Note that
P(Ỹn > 0) = P(T0 > n). For t > 0 the Markov inequality implies

P(T0 > n) = P
(Ỹ1−1∑
k=k0

Tk+1,k + Tk0,0 > n

)

≤ e−tnE
[
exp

(
t

Ỹ1−1∑
k=k0

Tk+1,k + tTk0,0

)]

= e−tn
∞∑
l=k0

l−1∏
k=k0

E
[
exp(tTk+1,k)

]
E
[
exp(tTk0,0)

]
P(Ỹ1 = l)

= e−tn
∞∑
l=0

E
[
exp(tTk0+1,k0)

]lE[exp(tTk0,0)]P(Ỹ1 = l + k0). (1.8)

Ỹ1 can only be equal to l+ k0 if at least one frog to the right of l− 1 reaches −1. Thus,

P(Ỹ1 = l + k0) ≤
∞∑
i=l

pi+1 = pl
p

1− p
. (1.9)

Now, we choose t > 0 small enough such that E
[
exp(tTk0+1,k0)

]
< p−1. Then (1.9) shows

that the sum in (1.8) is �nite, which yields the claim.

1.4.4 A lemma on Bernoulli random variables

We will repeatedly use the following simple lemma. Note that the random variables in
this lemma do not have to be independent.

Lemma 1.34. For i ∈ N let Xi be a Bernoulli(pi) random variable with infi∈N pi =: p.

Then for every a > 0 and n ∈ N

P

(
1

n

n∑
i=1

Xi ≥ a

)
≥ p− a.
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Proof. Since E[Xi] ≥ p and 1
n

∑n
i=1Xi ≤ 1, we have

p ≤ E

[
1

n

n∑
i=1

Xi

]
≤ P

(
1

n

n∑
i=1

Xi ≥ a

)
+ a,

which yields the claim.

1.5 Proof of the main results

1.5.1 Frogs with drift on Z

In this subsection we consider the frog model FM(1, π1,α). In order to prove Theorem 1.16
we compare the frogs initially on non-negative sites with independent random walks. The
speed of the minimum of independent random walks can be computed explicitly which is
done in the �rst of the following lemmas. Then it remains to deal with the frogs initially
on negative sites. Luckily, they can be ignored due to the transience of the frog model
for all α > 0, see Theorem 1.13.
Let {(S̃in)n∈N0 : i ∈ Z} be a family of independent random walks starting at 0.

Lemma 1.35. It holds that

lim
n→∞

1

n
min

i∈{−n,...,n}
S̃in = α a.s.

Proof. We only need to prove lim infn→∞
1
n mini∈{−n,...,n} S̃

i
n ≥ α. For all ε > 0 we have

P
(
1

n
min

i∈{−n,...,n}
S̃in ≤ α− ε

)
= P

( n⋃
i=−n

{ S̃in
n
≤ α− ε

})
≤ (2n+ 1)P

(
S0
n

n
≤ α− ε

)
.

By Cramér's Theorem the probability in the last term of this calculation decays expo-
nentially fast in n. Hence, it is summable. An application of the Borel-Cantelli Lemma
and letting ε→ 0 completes the proof.

This result now enables us to prove a formula for the speed of the minimum of the
non-negative frogs.

Lemma 1.36. Let A+
n = {i ≥ 0: Ti ≤ n}. Then

lim
n→∞

1

n
min
i∈A+

n

Zin = α a.s.
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Before proving Lemma 1.36 we make another short observation. Obviously vmax is at
least as big as the speed of a single frog, i.e. vmax ≥ α. In fact, this inequality is strict
for all α ≥ 0. For α = 0 this fact is known from [4].

Lemma 1.37. For α ∈ (0, 1) it holds that vmax > α.

Proof. Let T s1 = inf{n ∈ N : S0
n = 1} be the hitting time of the point 1 of a single

simple random walk with drift parameter α. The key point in this proof is to notice that
E[T1] < E[T s1 ]. Hence, by Lemma 1.32

v−1max = inf
i∈N

E[Ti]
i
≤ E[T1] < E[T s1 ] =

1

α
.

One can of course �nd better lower bounds for the speed of the maximum by estimating
E[Ti] for i ≥ 1, but this is not done in this thesis.

Proof of Lemma 1.36. It is enough to show lim infn→∞
1
n mini∈A+

n
Zin ≥ α almost surely.

In this proof we use a slightly di�erent but equivalent way of de�ning the movement of
the frogs. For every i ∈ Z de�ne the position of frog i at time n as

Z̃in =

{
i for n < T̃i,

i+ S̃in − S̃iT̃i for n ≥ T̃i,

where T̃i denotes the activation time of frog i. Note that (Z̃in) equals (Zin) in distribu-
tion. We now want to compare the trajectory (Z̃in)n∈N0 of each frog with the trajectory
(S̃in)n∈N0 of the corresponding random walk. From time T̃i onwards they move syn-
chronously by the above de�nition. Therefore, we only need to compare their locations
at time T̃i. Note that Z̃i

T̃i
= i and de�ne G = {i ≥ 0: Si

T̃i
≤ i} to be the set of good

frogs. Now i ∈ A+
n ∩G implies S̃in ≤ Z̃in for all n ∈ N, i.e. all good frogs stay to the right

of their corresponding random walk. Hence,

min
i∈A+

n

Z̃in ≥ min
i∈A+

n

S̃in −
∑

i∈Gc∩A+
n

(
S̃in − Z̃in

)
≥ min

i∈A+
n

S̃in −
∑
i∈Gc

(
S̃i
T̃i
− i
)
. (1.10)

We claim that the set Gc is �nite almost surely. For α = 1 this is obviously true. For
α < 1 it is enough to show that

lim
i→∞

Si
T̃i
− i

T̃i
= α− vmax a.s. (1.11)

since by Lemma 1.37 the last term is strictly negative and hence Si
T̃i
− i > 0 can occur

only for �nitely many i ≥ 0 almost surely.
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Note that (S̃in)n≤T̃i is independent of the movement of the frogs up to time T̃i. Therefore,
Si
T̃i
equals S0

T̃i
in distribution. Using a standard large deviation estimate we get for every

ε > 0

P
(Si

T̃i

T̃i
≤ α− ε

)
= P

(S0
T̃i

T̃i
≤ α− ε

)
≤ E

[
e−cT̃i

]
≤ e−ci,

where c = c(ε, α) > 0 is a constant. By symmetry also P
(Si

T̃i

T̃i
≥ α + ε

)
decays expo-

nentially fast in i. An application of the Borel-Cantelli Lemma and letting ε → 0 thus
shows

lim
n→∞

Si
T̃i

T̃i
= α a.s.

Further, we know from Lemma 1.32 that limi→∞
i
T̃i

= vmax almost surely. This proves
equation (1.11) which implies that Gc is �nite almost surely.
Therefore, the second term on the right side in inequality (1.10) is �nite almost surely.
Also note that it does not depend on n. Thus,

lim inf
n→∞

1

n
min
i∈A+

n

Z̃in ≥ lim inf
n→∞

1

n
min
i∈A+

n

S̃in a.s.

As A+
n ⊆ {−n, . . . , n} an application of Lemma 1.35 �nishes the proof.

Proof of Theorem 1.16. By Theorem 1.13 the frog model with drift FM(1, π1,α) is tran-
sient for all α > 0. This means that the origin is visited by only �nitely many frogs
almost surely. Therefore only �nitely many negative frogs are ever activated. Hence,
Theorem 1.16 follows from Lemma 1.36.

Next we prove that the speed of the maximum is an increasing function in the drift
parameter α. Though this statement might at �rst seem obvious, no direct coupling of
the frog models for di�erent drift parameters seems possible, since for smaller values of α
more negative frogs will eventually be woken up, which might help in pushing the front
forward. But we can ignore all these frogs without changing the speed of the maximum,
similar to the proof of Theorem 1.16. This is shown in the next lemma. We therefore
consider the frog model without negative frogs. It evolves in the same way as our usual
frog model, but has another initial con�guration. Here we assume that there is one
sleeping frog at every positive integer, one active frog at 0 and no frogs on negative sites.
We denote the activation time of the i-th frog in the frog model without negative frogs
by T+

i .

Lemma 1.38. It holds that

v−1max = lim
n→∞

T+
n

n
a.s.
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Proof. We only need to prove lim supn→∞
T+
n
n ≤ v

−1
max almost surely. First, we show that

the speed of the maximum of all negative frogs in the usual frog model equals α almost
surely, i.e. setting A−n = {i < 0: Ti ≤ n} we prove that

lim
n→∞

1

n
max
i∈A−n

Zin = α a.s. (1.12)

For α > 0 only �nitely many negative frogs will ever be activated almost surely as
remarked in the proof of Theorem 1.16. In this case equation (1.12) is thus obvious.
If α = 0, then by symmetry the claim follows from Lemma 1.36.
Let E be the set of all positive frogs which are activated by negative frogs, meaning that
at the time of their activation at least one negative frog is present. Since vmax > α as
proved in Lemma 1.37 and by equation (1.12) the set E is �nite almost surely.
Hence, T = supi∈E(T

+
i −Ti) is an almost surely �nite random variable. For all i ∈ E we

thus have T+
i ≤ Ti+T . Actually, this inequality is true for all i ∈ N0, which immediately

implies the claim of the lemma.
The inequality can e.g. be proven inductively. For i = 0 the inequality is obviously true
as T+

0 = T0 = 0. Now assume that i ∈ N and T+
j ≤ Tj + T holds for all 0 ≤ j ≤ i− 1. If

i ∈ E, there is nothing to show. Otherwise, let 0 ≤ k ≤ i− 1 be the (random) frog that
activates the frog i in the normal version of the model. Then we have

T+
i ≤ T

+
k + (Ti − Tk) ≤ Ti + T.

Note here that in both models the frogs follow the same paths, they might just be
activated at di�erent times.

Proof of Theorem 1.17. Using a standard coupling of the random variables (Xi
k)i∈Z,k∈N

we can achieve that T+
i (α) is monotone decreasing in α. As vmax(α) = limn→∞

n
T+
n

almost surely by Lemma 1.38 we conclude that vmax(α) is increasing in α.

In order to bound the speed of the maximum from above we prove an upper bound for
the number of frogs in the maximum. We do this for a slightly modi�ed frog model: Each
time the maximum moves to the left we put a sleeping frog at the site that has just been
left by the maximum. Hence, in this new model there is one sleeping frog at every site
to the right of the maximum at any time. Further notice that, except at time 0, there
are always at least two frogs in the maximum. We use the same notation as in the usual
frog model, but add an index �mod� when referring to the modi�ed model. Further, let
an denote the number of frogs in the maximum in the modi�ed frog model.

Lemma 1.39. For α ∈ (0, 1) and all n ∈ N it holds that

E[an] ≤
(3− α)(1 + α)

2α(1− α)
.
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Proof. To increase the readability of this proof let p := 1+α
2 be the probability that a

frog takes a step to the right. We prove bounds not only for the number of frogs in the
maximum, but for every other site as well. Therefore, let an(k) be the number of frogs
at location Mmod

n − 2k for k, n ∈ N0. We prove by induction over n that for all n, k ∈ N0

E[an(k)] ≤
(2− p)p

(1− p)(2p− 1)pk
. (1.13)

For n = 0 and n = 1 one easily checks that the claim is true. Assume that the claim
holds for some integer n ∈ N.
First we show inequality (1.13) for k = 0. Distinguishing whether all an particles in the
maximum at time n move to the left or not in the next step one calculates

E[an+1] = E
[
(1− p)an

(
an + pan(1)

)]
+ E

[(
1− (1− p)an

)( pan
1− (1− p)an

+ 1
)]

= E
[
(1− p)an

(
an + pan(1)− 1

)
+ pan + 1

]
.

Note here that the expectation of a binomial random variable with parameters p > 0 and
k ∈ N conditioned on being at least 1 is given by pk

1−(1−p)k . Using an ≥ 2 yields

E[an+1] ≤ (1− p)2E
[
an + pan(1)− 1

]
+ pE[an] + 1. (1.14)

Inserting the induction hypothesis (1.13) in (1.14) the claim follows after a straightfor-
ward calculation.
For k = 1 an analogous calculation yields

E[an+1(1)] = E
[
(1− p)an

(
pan(2) + (1− p)an(1)

)]
+ E

[(
1− (1− p)an

)(
an −

pan
1− (1− p)an

+ pan(1)
)]

= E
[
(1− p)an

(
pan(2)− (α)an(1)− an

)]
+ E

[
(1− p)an + pan(1)

]
. (1.15)

For k ≥ 2 one gets

E[an+1(k)] = E
[
(1− p)an

(
pan(k + 1) + (1− p)an(k)

)]
+ E

[
(1− (1− p)an)

(
pan(k) + (1− p)an(k − 1)

)]
= E

[
(1− p)an

(
pan(k + 1)− (α)an(k)− (1− p)an(k − 1)

)]
+ E

[
(1− p)an(k − 1) + pan(k)

]
. (1.16)
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Thus, for k ≥ 1 equations (1.15) and (1.16) imply

E[an+1(k)] ≤ p(1− p)2E[an(k + 1)] + pE[an(k)] + (1− p)E[an(k − 1)]. (1.17)

As before, inserting the induction hypothesis (1.13) into inequality (1.17) completes the
proof.

Proof of Theorem 1.18. Consider the event that in the modi�ed frog model at time n
all an frogs sitting in the maximum move to the left. Using Jensen's inequality and
Lemma 1.39, we conclude that the probability of this event is bounded from below by

E
[(1− α

2

)an]
≥
(1− α

2

)E[an]
≥
(1− α

2

) (3−α)(1+α)
2α(1−α)

.

Therefore, for all n ∈ N

E
[
Tmodn+1 − Tmodn

]
≥ 1 + 2E

[(1− α
2

)an]
≥ 1 + 2

(1− α
2

) (3−α)(1+α)
2α(1−α)

.

Clearly, in the modi�ed model, frogs are activated no later than in the normal version of
the frog model. Thus,

E[Tn] ≥ E
[
Tmodn

]
=

n∑
k=1

E
[
Tmodk − Tmodk−1

]
≥
(
1 + 2

(1− α
2

) (3−α)(1+α)
2α(1−α)

)
n.

By Lemma 1.32 we conclude

v−1max = inf
n∈N

E[Tn]
n
≥ 1 + 2

(1− α
2

) (3−α)(1+α)
2α(1−α)

> 1.

It remains to prove Theorem 1.19. The idea of the proof is quite simple: From the point
of view of the minimum the front moves with a positive speed, but all the frogs only
�uctuate around their locations with

√
n, so basically they stay where they are.

First, we show that for large enough times n all active frogs do not deviate much from
their expected locations. More precisely, let Gn = {i ∈ An :

∣∣Zin − E[Zin]
∣∣ < n3/4}.

Lemma 1.40. Almost surely, Gn = An for all n large enough.
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Proof. As An ⊆ {−n, . . . , n} we have

P
(
An 6= Gn

)
= P

( ⋃
i∈An

{∣∣Zin − E[Zin]
∣∣ ≥ n3/4})

≤
n∑

i=−n
P
(∣∣Zin − E[Zin]

∣∣ ≥ n3/4)
=

n∑
i=−n

n∑
k=0

P
(∣∣Zin − E[Zin]

∣∣ ≥ n3/4∣∣Ti = k
)
· P(Ti = k). (1.18)

Further, for every i ∈ Z and 0 ≤ k ≤ n it holds that

P
(∣∣Zin − E[Zin]

∣∣ ≥ n3/4∣∣Ti = k
)
= P

(∣∣Sin−k − E[Sin−k]
∣∣ ≥ n3/4)

≤ 2 exp
(
− n3/2

4(n− k)

)
≤ 2 exp

(
−n

1/2

4

)
.

In the �rst inequality in the above estimate we use Hö�ding's inequality. Thus, (1.18)
implies

P
(
An 6= Gn

)
≤ 2 exp

(
−n

1/2

4

) n∑
i=−n

n∑
k=0

P(Ti = k) ≤ 2(2n+ 1) exp
(
−n

1/2

4

)
which is summable. An application of the Borel-Cantelli Lemma completes the proof.

For ε > 0 and x ∈ [0, 1] de�ne

Ln(x, ε) =

{{
i ∈ Z : − (vmax − ε)n ≤ i ≤

(
(2x− 1)vmax − ε

)
n
}

for α = 0,{
i ∈ Z : 0 ≤ i ≤ (xvmax − ε)n

}
for α > 0

and

Rn(x, ε) =

{{
i ∈ Z :

(
(2x− 1)vmax + ε

)
n ≤ i ≤ (vmax − ε)n

}
for α = 0,{

i ∈ Z : (xvmax + ε)n ≤ i ≤ (vmax − ε)n
}

for α > 0.

Lemma 1.41. For n large enough, i ∈ Ln(x, ε) ∩Gn implies

Zin − vminn

(vmax − vmin)n
≤ x, (1.19)
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whereas i ∈ Rn(x, ε) ∩Gn implies

Zin − vminn

(vmax − vmin)n
≥ x. (1.20)

Proof. For α = 0 note that by symmetry vmin = −vmax. Thus, (1.19) holds if and only
if Zin ≤ (2x− 1)vmaxn. Assume i ∈ Ln(x, ε) ∩Gn. A straightforward calculation shows

Zin ≤ E[Zin] + n3/4 = i+ n3/4 ≤ (2x− 1)vmaxn

for n big enough. Analogously, one shows (1.20) in this case.
For α > 0 the proof works essentially in the same way as for α = 0, but the estimation
of E[Zin] is less trivial. We have E[Zin] = i + (n − E[Ti])vmin. For i ∈ Ln(x, ε) ∩ Gn we
thus get

Zin ≤ E[Zin] + n3/4 = vminn+
i

vmax

(
vmax −

E[Ti]
i

vminvmax

)
+ n3/4.

Lemma 1.32 yields that E[Ti]
i ≥ infi∈N

E[Ti]
i = v−1max. Hence, for n big enough

Zin ≤ vminn+
i

vmax
(vmax − vmin) + n3/4

≤ vminn+ x(vmax − vmin)n,

as claimed in (1.19). On the other hand, i ∈ Rn(x, ε) ∩Gn analogously implies

Zin ≥ vminn+
i

vmax

(
vmax −

E[Ti]
i

vminvmax

)
− n3/4.

Since limi→∞
E[Ti]
i = v−1max and i tends to in�nity whenever n does by the de�nition

of Rn(x, ε), we know that E[Ti]
i ≤ v−1max + δε for n big enough and a small constant δ.

Therefore,

Zin ≥ vminn+
i

vmax
(vmax − vmin − εδvminvmax)− n3/4.

Using i ≥ (xvmax + ε)n and choosing δ small enough �nishes the proof.

Proof of Theorem 1.19. We need to show that limn→∞ µn([0, x]) = λ([0, x]) for every
x ∈ [0, 1] almost surely.
Take a realisation of the frog model such that An = Gn holds for su�ciently large n,
that limn→∞

Mn
n = vmax and limn→∞

mn
n = vmin, and �nally that An ∩Z− is �nite. This

happens with probability 1 as we have seen in Lemma 1.40, Lemma 1.32, Theorem 1.16
and previous discussions about the transience of the frog model. Now �x x ∈ [0, 1] and
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1.5. Proof of the main results

ε > 0 small. Lemma 1.41 yields that, for n large enough,

µn([0, x]) ≥
1

|An|
|Gn ∩ Ln(x, ε)| =

n

|An|
· |Ln(x, ε)|

n
. (1.21)

In (1.21) we used that Ln(x, ε) ⊆ An for su�ciently large n as limn→∞
Mn
n = vmax. The

de�nition of Ln(x, ε) implies

|Ln(x, ε)| ≥

{
2(xvmax − ε)n for p = 1

2 ,

(xvmax − ε)n for p > 1
2 .

Further, limn→∞
n
|An| =

1
2v
−1
max for α = 0, respectively limn→∞

n
|An| = v−1max for α > 0.

Thus, the limit inferior of the last term in (1.21) as n → ∞ is bounded from below by
x− εv−1max. Since ε > 0 was chosen arbitrarily we conclude

lim inf
n→∞

µn([0, x]) ≥ x.

On the other hand, Lemma 1.41 shows that, for n large enough,

µn([0, x]) ≤
1

|An|
∣∣An \ (Gn ∩Rn(x, ε))∣∣ = 1− n

|An|
· |Rn(x, ε)|

n
(1.22)

since An = Gn and Rn(x, ε) ⊆ An for n big enough. By the de�nition of Rn(x, ε) we
have

|Rn(x, ε)| ≥

{
2
(
(1− x)vmax − ε

)
n for p = 1

2 ,(
(1− x)vmax − 2ε

)
n for p > 1

2 .

Analogous to the above estimation this yields that the limit superior of the right hand
side of (1.22) is bounded from above by x + 2εv−1max. As before we get, since ε > 0 is
arbitrary,

lim sup
n→∞

µn([0, x]) ≤ x,

which �nishes the proof.

1.5.2 Frogs with drift on Zd for d ≥ 2

In this subsection we consider the frog model FM(d, πw,α)) for d ≥ 2.

Recurrence for d ≥ 2 and arbitrary weight

In this section we prove Theorem 1.20 (i) and Theorem 1.22. Throughout this section
assume that w < 1 is �xed. To illustrate the basic idea of the proof we �rst sketch it for
d = 2. We call a site x in Z2 open if the trajectory (Sxn)n∈N0 of frog x includes the four
neighbouring vertices x ± e1, x ± e2 of x, i.e. if x → x ± e1 and x → x ± e2. Note that
for this de�nition it does not matter whether frog x is ever activated or not. All sites
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are open independently of each other due to the independence of the trajectories of the
frogs. Furthermore, the probability of a site to be open is the same for all sites. Consider
the percolation cluster C0 that consists of all sites that can be reached from 0 by open
paths, i.e. paths containing only open sites. Note that all frogs in C0 are activated as
frog 0 is active in the beginning. In this sense the frog model dominates the percolation.
As we are in d = 2, the probability of a site x being open equals 1 for α = 0 and by
continuity is close to 1 if α is close to 0. Thus, if α is close enough to 0 the percolation
is supercritical. Hence, with positive probability the cluster C0 containing the origin is
in�nite. By Lemma 1.31 this in�nite cluster contains many sites close to the negative
e1-axis. This shows that many frogs that are initially close to this axis get activated.
Each of them travels in the direction of the e1-axis and has a decent chance of visiting
0 on its way. Hence, this will happen in�nitely many times. This argument shows that
the origin is visited by in�nitely many frogs with positive probability. Using the zero-one
law stated in Theorem 1.2 yields the claim.
In higher dimensions the probability of a frog to visit all its neighbours is not close to
1 however small the drift may be. We can still make the argument work by using a
renormalization type argument. To make this argument precise let K be a non-negative
integer that will be chosen later. We tessellate Zd for d ≥ 2 with cubes (Qx)x∈Zd of size
(2K + 1)d. For every x ∈ Zd we de�ne

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K},
(1.23)

where ‖x‖∞ = max1≤i≤d |xi| is the supremum norm. We call a site x ∈ Zd open if for
every e ∈ Ed there exists a frog path from qx to qx+e in Qx. Otherwise, x is said to be
closed. The probability of a site x to be open does not depend on x, but only on the drift
parameter α and the cube size K. We denote it by p(K,α). This de�nes an independent
site percolation on Zd, which, as mentioned before, is dominated by the frog model in
the following sense: For any x ∈ C0 the frog at qx will be activated in the frog model,
i.e. qx ∈ FC0 with FC0 as de�ned in (1.5).
In the next two lemmas we show that the probability p(K,α) of a site to be open is close
to 1 if the drift parameter α is small and the cube size K is large. We �rst show this
claim for the symmetric case α = 0.

Lemma 1.42. For every w < 1 in the frog model FM(d, πw,0) we have

lim
K→∞

p(K, 0) = 1.

Proof. For d = 2 we obviously have p(K, 0) = 1 for all K ∈ N0 as balanced nearest
neighbour random walk on Z2 is recurrent. Therefore, we can assume d ≥ 3. The proof
of the lemma relies on the shape theorem (Theorem 1.5) for the frog model. This theorem
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assumes equal weights on all directions. As in our model the e1-direction has a di�erent
weight, we need a workaround. We couple our model with a modi�ed frog model on
Zd−1 in which the frogs in every step stay where they are with probability w and move
according to a simple random walk otherwise. A direct coupling shows that, up to any
�xed time, in the modi�ed frog model on Zd−1 there are at most as many frogs activated
as in the frog model FM(d, πw,0). Note that Theorem 1.5 holds true for the modi�ed frog
model on Zd−1, see Remark 1.6. Let ξK , respectively ξmodK , be the set of all sites visited
by active frogs by time K in the frog model FM(d, πw,0), respectively the modi�ed frog
model on Zd−1. Further, let ξmodK := {x+ (−1

2 ,
1
2 ]
d−1 : x ∈ ξmodK }. By Theorem 1.5 there

exists a non-trivial convex symmetric set A = A(d) ⊆ Rd−1 and an almost surely �nite
random variable K such that

A ⊆
ξmodK

K

for all K ≥ K. This implies that there exists a constant c1 = c1(d) > 0 such that
|ξmodK | ≥ c1K

d−1 for all K ≥ K. By the coupling the same statement holds true for ξK .
As ξK ⊆ Q0(K) and any vertex in ξK can be reached by a frog path from 0 in Q0, this
implies ∣∣∣{y ∈ Q0 : 0

Q0
y
}∣∣∣ ≥ |ξK | ≥ c1Kd−1

for all K ≥ K. Thus we have at least c1Kd−1 vertices in the box Q0 that can be reached
by frog paths from 0. Each frog inQ0 has a chance to reach the centre qe of a neighbouring
box.More precisely, by Lemma 1.27 there is a constant c2 = c2(d) > 0 such that

P
(
y → qe

)
≥ c2
Kd−2 (1.24)

for any vertex y ∈ Q0 and e ∈ Ed. Hence, for any e ∈ Ed

P
(
(0

Q0
qe)

c | K ≥ K
)
= P

({
y 6→ qe for all y ∈ Q0 with 0

Q0
y
} ∣∣ K ≥ K)

≤
(
1− c2

Kd−2

)c1Kd−1

≤ e−c1c2K , (1.25)

where we used for the �rst inequality the fact that a frog moves independently of all
frogs in Q0 once it will never return to Q0 and the uniformity of the bound in (1.24).
Therefore,

p(K, 0) ≥ P
( ⋂
e∈Ed

{0 Q0
qe}

∣∣∣ K ≥ K)P0(K ≥ K)

≥
[
1− 2d e−c1c2K

]
P(K ≥ K). (1.26)

Since K is almost surely �nite, we have limK→∞ P0(K ≥ K) = 1. Thus, the right hand

29



1. The Frog Model

side of (1.26) tends to 1 in the limit K →∞.

Lemma 1.43. For �xed w < 1, in the frog model FM(d, πw,α) we have for all K ∈ N0

lim inf
α→0

p(K,α) ≥ p(K, 0).

Proof. Let L(a, b, c,K) be the number of possible realizations such that all qx±e, e ∈ Ed,
are visited by frogs in Q0 for the �rst time after in total (of all frogs) exactly a steps
in e1-direction, b steps in −e1-direction and c steps in all other directions. Note that
L(a, b, c,K) is independent of α. We have

p(K,α) =
∞∑

a,b,c=1

L(a, b, c,K)

(
w(1 + α)

2

)a(w(1− α)
2

)b( 1− w
2(d− 1)

)c
.

The claim now follows from Fatou's Lemma.

Proof of Theorem 1.20 (i) and Theorem 1.22. By Lemma 1.42 and Lemma 1.43 we can
assume that K is big enough and α > 0 small enough such that p(K,α) > pc(d), i.e. the
percolation with parameter p(K,α) on Zd constructed at the beginning of this section is
supercritical.
Consider boxes Bn = {−n} × [−

√
n,
√
n]d−1 for n ∈ N. By Lemma 1.31 there are

constants a, b > 0 and N ∈ N such that for all n ≥ N

P(|Bn ∩ C0| ≥ an(d−1)/2) > b.

After rescaling, the boxes Bn correspond to the boxes

FBn = {y ∈ Zd : |y1 + (2K + 1)n| ≤ K, |yi| ≤ (2K + 1)
√
n+K, 2 ≤ i ≤ d}.

Recall that FC0 consists of all vertices reachable by frog paths from 0 as de�ned in (1.5),
and note that x ∈ Bn ∩ C0 implies qx ∈ FBn ∩ FC0. This shows

P(|FBn ∩ FC0|≥ an(d−1)/2) > b (1.27)

for n large enough. Analogously to (1.24), by Lemma 1.28 and (1.27) the probability
that at least one frog in FBn is activated and reaches 0 is at least(

1− (1− cn−(d−1)/2)an(d−1)/2
)
b ≥

(
1− e−ac

)
b,
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1.5. Proof of the main results

where c = c(K, d,w) > 0 is a constant. Altogether we get by Lemma 1.34

P(0 visited in�nitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim inf
n→∞

P
( n∑
i=1

1{∃x∈FBi∩FC0 : x→0} ≥ εn
)

≥
(
1− e−ac

)
b− ε > 0

for ε su�ciently small. The claim now follows from Theorem 1.2.

Recurrence for d = 2 and arbitrary drift

In this section we prove Theorem 1.21 (i). Throughout the section let α < 1 be �xed.
We couple the frog model with independent site percolation on Z2. Let K be an integer
that will be chosen later. We tessellate Z2 with segments (Qx)x∈Z2 of size 2K + 1. For
every x = (x1, x2) ∈ Z2 we de�ne

qx = qx(K) =
(
x1, (2K + 1)x2

)
,

Qx = Qx(K) = {y ∈ Z2 : y1 = x1, |y2 − (2K + 1)x2| ≤ K}.

We call the site x ∈ Z2 open if there are frog paths from qx to qx+e in Qx for all e ∈ E2.
As before, we denote the probability of a site to be open by p(K,w). Note that this
probability does not depend on x.

Lemma 1.44. For α < 1, in the frog model FM(2, πw,α) we have

lim
K→∞

lim inf
w→0

p(K,w) = 1.

Proof. We claim that there is a constant c = c(α) > 0 such that for any K ∈ N0 and
x ∈ Q0

lim inf
w→0

P
( ⋂
e∈E2

{x→ qe}
)
≥ c. (1.28)

We can estimate the probability in (1.28) by

P
( ⋂
e∈E2

{x→ qe}
)
≥ P

(
x→ q−e2

)
P
(
q−e2 → q−e1

)
P
(
q−e1 → qe2

)
P
(
qe2 → qe1

)
. (1.29)

The probability of moving in ±e2-direction for dw−1e steps is (1−w)dw−1e. Conditioning
on moving in this way, we just deal with a simple random walk on Z. Therefore, there
exists a constant c1 > 0 such that for w close to 0

P
(
x→ q−e2

)
≥ c1(1− w)dw

−1e ≥ c1
4
.
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The probability of moving exactly once in −e1-direction and otherwise in ±e2-direction
within dw−1e+ 1 steps is

(
dw−1e+ 1

)(1− α)w
2

(1− w)dw−1e ≥ 1− α
8

for w close to 0. Therefore, there exists a constant c2 > 0 such that

P
(
q−e2 → q−e1

)
≥ c2(1− α)

8

for w su�ciently close to 0. The two remaining probabilities in (1.29) can be estimated
analogously, which implies (1.28).
If frog 0 activates all frogs in Q0 and any of these 2K frogs manages to visit the centres
of all neighbouring segments, then 0 is open. By independence of the trajectories of the
individual particles in Q0 this implies

p(K,w) ≥ P
( ⋂
x∈Q0

{0→ x}
)(

1−
(
1− P

( ⋂
1≤i≤4

{x→ qei}
))2K)

. (1.30)

As in the proof of Lemma 1.43 one can show that for w → 0 the �rst factor in (1.30)
converges to 1. Therefore, taking limits in (1.30) and using (1.30) yields the claim.

Proof of Theorem 1.21 (i). By Lemma 1.44 we can choose K big and w small enough
such that p(K,w) > pc(2), where pc(2) is the critical parameter for independent site
percolation on Z2. As in the proof of Theorem 1.20 (i) and Theorem 1.22 the coupling
with supercritical percolation now yields recurrence of the frog model. As we rescaled the
lattice Z2 slightly di�erent this time, the box Bn de�ned in the proof of Theorem 1.20 (i)
and Theorem 1.22 now corresponds to the box

FBn = {y ∈ Z2 : y1 = −n, |y2| ≤ (2K + 1)
√
n+K}.

Since only asymptotics in n matter for the proof, it otherwise works unchanged.

Recurrence for arbitrary drift and d ≥ 3

The proof of Theorem 1.23 (i) again relies on the idea of comparing the frog model with
percolation. But instead of looking at the whole space Zd as in the previous proofs, we
consider a sequence of (d−1)-dimensional hyperplanes (H−n)n∈N0 with H−n as de�ned in
(1.6). We compare the frogs in each hyperplane with supercritical percolation, ignoring
the frogs once they have left their hyperplane and all the frogs from other hyperplanes.
Within a hyperplane we now deal with a frog model without drift, but allow the frogs to
die in each step with probability w by leaving their hyperplane, i.e. we are interested in
FM∗(d− 1, πsym, 1−w). Hence, the argument does not depend on the value of the drift
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parameter α < 1.
We start with one active particle in the hyperplane H0. With positive probability this
particle initiates an in�nite frog cluster in H0 if w and therefore the probability to leave
the hyperplane is su�ciently small. Every frog eventually leaves H0 and has for every
n ∈ N a positive chance of activating a frog in the hyperplane H−n, which might start
an in�nite cluster there. This is the only time where we need α < 1 in the proof of
Theorem 1.23 (i). Using the denseness of such clusters we can then proceed as before.
We split the proof of Theorem 1.23 (i) into two parts:

Proposition 1.45. There is d0 ∈ N and wr > 0, independent of d and α, such that the

frog model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr, 0 ≤ α < 1 and d ≥ d0.

Proposition 1.46. For every d ≥ 3 there is wr = wr(d) > 0, independent of α, such

that the frog model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr and all 0 ≤ α < 1.

We �rst prove Proposition 1.45. As indicated above we need to study the frog model
with death and no drift in Zd−1. To increase the readability of the paper let us �rst
work in dimension d instead of d − 1 and with a general survival parameter s, i.e. we
investigate FM∗(d, πsym, s) for d ≥ 2.
We tessellate Zd with cubes (Q′x)x∈Zd of size 3d. More precisely, for x ∈ Zd we de�ne

Q′x = {y ∈ Zd : ‖y − 3x‖∞ ≤ 1}.

Further, for technical reasons, for a ∈ (23 , 1) we de�ne

Wx = {y ∈ Q′x : ‖y − 3x‖1 ≤ ad},

where ‖z‖1 =
∑2d

i=1|zi| is the graph distance from z ∈ Zd to 0. Informally, Wx is the set
of all vertices in Q′x which are �su�ciently close� to the centre of the cube. Consider the
box Q′x for some x ∈ Zd and let o ∈Wx. If there are frog paths in Q′x from o to vertices
close to the centres of all neighbouring boxes, i.e. if the event⋂

e∈Ed

⋃
y∈Wx+e

{o Q′x y}

occurs, we call the vertex o good. Note that this event only depends on the trajectories of
all the frogs originating in the cube Q′x and the choice of o. If o is good and is activated,
then also the neighbouring cubes are visited. We show that the probability of a vertex
being good is bounded from below uniformly in d and this bound does not depend on
the choice of o.

Lemma 1.47. Consider the frog model FM∗(d, πsym, s). There are constants β > 0 and
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d0 ∈ N such that for all d ≥ d0, s > 3
4 ,

2
3 < a < 2− 1

s , x ∈ Zd and o ∈Wx

P(o is good) > β.

To show this we �rst need to prove that many frogs in the cube are activated. In the
proof of Theorem 1.20 (i) and Theorem 1.22 this is done by means of Lemma 1.42 using
the shape theorem. Here, we use a lemma that is analogous to Lemma 2.5 in [3].

Lemma 1.48. Consider the frog model FM∗(d, πsym, s). There exist constants γ > 0,

µ > 1 and d0 ∈ N such that for all d ≥ d0, s > 3
4 ,

2
3 < a < 2− 1

s and o ∈W0 we have

P
(∣∣{y ∈W0 : o

Q′0 y
}∣∣ ≥ µ√d) ≥ γ.

Proof of Lemma 1.48. The proof consists of two parts. In the �rst part we show that
with positive probability there are exponentially many vertices in Q′0 reached from o by
frog paths in Q′0, and in the second part we prove that many of these vertices are indeed
in W0. For the �rst part we closely follow the proof of Lemma 2.5 in [3] and rewrite the
details for the convenience of the reader.
We examine the frog model with initially one active frog at o and one sleeping frog
at every other vertex in Q′0 for

√
d steps in time. Consider the sets S0 = {o} and

Sk = {x ∈ Q′0 : ‖x − o‖1 = k, ‖x − o‖∞ = 1} for k ≥ 1 and let ξk denote the set of
active frogs which are in Sk at time k. We will show that, conditioned on an event to
be de�ned later, the process (ξk)k∈N0 dominates a process (ξ̃k)k∈N0 , which again itself
dominates a supercritical branching process. The process (ξ̃k)k∈N0 is de�ned as follows.
Initially, there is one particle at o. Assume that the process has been constructed up
to time k ∈ N0. In the next step each particle in ξ̃k survives with probability s. If it
survives, it chooses one of the neighbouring vertices uniformly at random. If that vertex
belongs to Sk+1 and no other particle in ξ̃k intends to jump to this vertex, the particle
moves there, activates the sleeping particle, and both particles enter ξ̃k+1. Otherwise,
the particle is deleted. In particular, if two or more particles attempt to jump to the
same vertex, all of them will be deleted. Obviously, ξ̃k ⊆ ξk for all k ∈ N0.
First, we show that for d large it is unlikely that two particles in ξ̃k attempt to jump to
the same vertex. To make this argument precise we need to introduce some notation.
For x ∈ Sk and y ∈ Sk+1 with ‖x− y‖1 = 1 de�ne

Dx = {z ∈ Sk+1 : ‖x− z‖1 = 1},
Ay = {z ∈ Sk : ‖z − y‖1 = 1},
Ex = {z ∈ Sk : Dx ∩ Dz 6= ∅}.

Dx denotes the set of possible descendants of x, Ay the set of ancestors of y and Ex
the set of enemies of x. Note that Ex =

⋃
y∈Dx(Ay \ {x}) is a disjoint union. Let
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nx =
∑d

i=1 1{oi=0, xi 6=0}. Then one can check that

|Dx| = 2(d− ‖o‖1 − nx) + ‖o‖1 − (k − nx) = 2d− ‖o‖1 − k − nx, (1.31)

|Ay| = k + 1.

For x ∈ Sk let χ(x) denote the number of particles of ξ̃k in x. Note that χ(x) ∈ {0, 2}
for any x ∈ Sk with k ∈ N.
Let ζkxy denote the indicator function of the event that there is z ∈ Ex with χ(z) ≥ 1

such that one of the particles at z intends to jump to y at time k+ 1. If ζkxy = 1, then a
particle on x cannot move to y at time k + 1.
Further, we introduce the event Ux = {χ(z) = 2 for all z ∈ Ex}. This event describes the
worst case for x, when it is most likely that particles at x will not be able to jump. For
k ≤
√
d we have

P(ζkxy = 1) ≤ P(ζkxy = 1 | Ux) ≤
∑

z∈Ay\{x}

2s

2d
=
ks

d
≤ 1√

d
.

Given σ > 0 we choose d large such that P(ζkxy = 1) < σ for all k ≤
√
d. Now, we

consider the set of all descendants y of x such that there is a particle at some vertex
z ∈ Ex that tries to jump to y at time k + 1. This set contains

∑
y∈Dx ζ

k
xy elements. Let

ζkx denote the indicator function of the event
{∑

y∈Dx ζ
k
xy > 2σd

}
. If ζkx = 1, then more

than 2σd of the 2d neighbours of x are blocked to a particle at x.
The random variables {ζkxy : y ∈ Dx} are independent with respect to P(· | Ux) since
Ex =

⋃
y∈Dx(Ay \ {x}) is a disjoint union. Using 2d − ad − 2k ≤ |Dx| ≤ 2d and a

standard large deviation estimate we get for k ≤
√
d

P(ζkx = 1) ≤ P
(∑
y∈Dx

ζkxy > 2σd
∣∣∣ Ux)

≤ P
(

1

|Dx|
∑
y∈Dx

ζkxy > σ
∣∣∣ Ux)

≤ e−c1|Dx|

≤ e−c2d

with constants c1, c2 > 0. Next, let us consider the bad event

B =

√
d⋃

k=1

⋃
x∈ξ̃k

{ζkx = 1}.
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Then with |ξ̃k| ≤ 2k ≤ 2
√
d we get

P(B) ≤
√
d · 2

√
d · e−c2d.

In particular P(B) can be made arbitrarily small for d large. Conditioned on Bc, in each
step for every particle there are at least

|Dx| − 2σd− 1 ≥ (2− a− 2σ)d− 3
√
d

available vertices in Sk+1, i.e. vertices a particle at x can jump to in the next step. Thus,
conditioned on Bc, the process ξ̃k dominates a branching process with mean o�spring at
least (

(2− a− 2σ)d− 3
√
d
)
· 2 · s

2d
.

For σ small and d large the mean o�spring is bigger than 1 as we assumed a < 2− 1
s . Since

a supercritical branching process grows exponentially with positive probability, there are
constants c3 > 1, q ∈ (0, 1) that do not depend on d such that

P
(
|ξ̃√d| ≥ c

√
d

3

)
≥ q. (1.32)

For the second part of the proof condition on the event
{
|ξ̃√d| ≥ c

√
d

3

}
and choose

0 < ε < a − 2
3 . If ‖o‖1 ≤ (a − ε)d, all particles of ξ̃√d are in W0 for d large. This

immediately implies the claim of the lemma. Otherwise, let n = |ξ̃√d|, enumerate the
particles in ξ̃√d and let S̃i, 1 ≤ i ≤ n, denote the position of the i-th particle. Further,
we de�ne for 1 ≤ i ≤ n

Xi =

{
1 if ‖S̃i‖1 ≤ ‖o‖1,
0 otherwise.

It su�ces to show that P(X1 = 1) > 0. Then Lemma 1.34 applied to the random
variables X1, . . . , Xn implies that with positive probability a positive proportion of the
particles in ξ̃√d indeed have L1-norm smaller than o, and are thus in W0. Together with
(1.32) this �nishes the proof.
For the proof of the claim let S̃1

k denote the position of the ancestor of S̃1 in Sk, where
0 ≤ k ≤

√
d. Note that S̃1

0 = o and S̃1√
d
= S̃1.

We are interested in the process (‖S̃1
k‖1)1≤k≤√d. By the construction of the process

(ξ̃k)k∈N0 it either increases or decreases by 1 in every step. The positions S̃1
k and S̃1

k+1

di�er in exactly one coordinate. If this coordinate is changed from 0 to ±1, then we have
‖S̃1

k+1‖1 = ‖S̃1
k‖1 + 1. If it is changed from ±1 to 0, then ‖S̃1

k+1‖1 = ‖S̃1
k‖1 − 1. There

are at least (a− ε)d−
√
d many ±1-coordinates in S̃1

k that can be changed to 0. As we
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also know that S̃1
k+1 ∈ DS̃1

k
, we have for all k ≤

√
d by (1.31) and the choice of ε

P
(
‖S̃1

k+1‖1 = ‖S̃1
k‖1 − 1

)
≥ (a− ε)d−

√
d

|DS̃1
k
|

≥ (a− ε)d−
√
d

2d− (a− ε)d
>

1

2

for d large. Hence, ‖S̃1
k‖1 dominates a random walk with drift on Z started in ‖o‖1.

Therefore,

P(X1 = 1) = P
(
‖S̃1√

d
‖1 ≤ ‖o‖1

)
≥ 1

2
,

which �nishes the proof.

Proof of Lemma 1.47. By Lemma 1.48, with probability at least γ there are frog paths
in Q′x from o to at least µ

√
d vertices in Wx for d large. We divide the frogs on these

vertices into 2d groups of size at least µ
√
d/2d and assign each group the task of visiting

one of the neighbouring boxes Wx+e, e ∈ Ed. Notice that this job is done if at least one
of the frogs in the group visits at least one vertex in the neighbouring box. If all groups
succeed, o is good. Any frog in any group is just three steps away from its respective
neighbouring box Wx+e, e ∈ Ed, and thus has probability at least ( s2d)

3 of achieving its
group's goal. Hence,

P(o is good) ≥
(
1−

(
1−

( s
2d

)3)µ√d/2d)2d
γ ≥ γ

2

for d large.

In the other recurrence proofs we couple the frog model with percolation by calling a
cube open if its centre is good. Here, the choice of a �starting� vertex, like the centre, is
not independent of the other cubes. Therefore, we cannot directly couple the frog model
with independent percolation. However, the following lemma allows us to compare the
distributions of a frog cluster and a percolation cluster.

Lemma 1.49. Consider the frog model FM∗(d, πsym, s). Let β > 0 and assume that

P(o is good) > β for all o ∈ Wx, x ∈ Zd. Further, consider independent site percolation

on Zd with parameter β. Then for all sets A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣⋃
x∈A

Q′x ∩ FC∗3v
∣∣∣ ≥ k).

Proof. For technical reasons we introduce a family of independent Bernoulli random
variables (Xo)o∈Zd which are also independent of the choice of all the trajectories of the
frogs and satisfy P(Xo = 1) = P(o is good)−1β. Their job will be justi�ed soon. Further,
we �x an ordering of all vertices in Zd.
Now we are ready to describe a process that explores a subset of the frog cluster FC∗3v.
Its distribution can be related to the cluster Cv in independent site percolation with
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parameter β. The process is a random sequence (Rt, Dt, Ut)t∈N0 of tripartitions of Zd.
As the letters indicate, Rt will contain all sites reached by time t, Dt all those declared
dead by time t, and Ut the unexplored sites. We construct the process in such a way
that for all t ∈ N0, x ∈ Rt and e ∈ Ed there is y ∈ Wx+e such that there is a frog path
from 3v to y in

⋃
x∈Rt Q

′
x. We start with R0 = D0 = ∅ and U0 = Zd. If 3v is good and

X3v = 1, set U1 = Zd \ {v}, R1 = {v}, and D1 = ∅. Otherwise, stop the algorithm. If
the process is stopped at time t, let Us = Ut−1, Rs = Rt−1 and Ds = Dt−1 for all s ≥ t.
Assume we have constructed the process up to time t. Consider the set of all sites in Ut
that have a neighbour in Rt. If it is empty, stop the process. Otherwise, pick the site x
in this set with the smallest number in our ordering. By the choice of x there is y ∈Wx

such that there is a frog path from 3v to y in
⋃
z∈Rt Q

′
z. Choose any vertex y with this

property. If y is good and Xy = 1, set

Rt+1 = Rt ∪ {x}, Dt+1 = Dt, Ut+1 = Ut \ {x}.

Otherwise, update the sets as follows:

Rt+1 = Rt, Dt+1 = Dt ∪ {x}, Ut+1 = Ut \ {x}

In every step t the algorithm picks an unexplored site x and declares it to be reached
or dead, i.e. added to the set Rt or Dt. The probability that x is added to Rt equals β.
This event is (stochastically) independent of everything that happened before time t in
the algorithm. Note that every unexplored neighbour of a reached site will eventually be
explored due to the �xed ordering of all sites.
In the same way we can explore independent site percolation on Zd with parameter
β. Construct a sequence (R′t, D

′
t, U

′
t)t∈N0 of tripartitions of Zd as above, but whenever

the algorithm evaluates whether a site x is declared reached or dead we toss a coin
independently of everything else. Note that

⋃
t∈N0

R′t = Cv, where Cv is the cluster
containing v. This exploration process is well known for percolation, see e.g. [13, Proof
of Theorem 4, Chapter 1].
By construction,

⋃
t∈N0

Rt equals the percolation cluster Cv in distribution. The claim
follows since for every x ∈

⋃
t∈N0

Rt there is a y ∈Wx such that there is a frog path from
3v to y, i.e. y ∈ FC∗3v.

Now we can show Proposition 1.45. Note that we are again working with the frog model
FM(d, πw,α) (without death).

Proof of Proposition 1.45. Throughout this proof we assume that d is so large that
Lemma 1.47 is applicable for d − 1 and pc(d − 1) < β, where β is the constant intro-
duced in the statement of Lemma 1.47. This is possible because of Lemma 1.30. These
assumptions in particular imply that we can use Lemma 1.49 and that the percolation
introduced there is supercritical.
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Consider the sequence of hyperplanes (H−n)n∈N0 de�ned in (1.6) and let A denote the
event that there is at least one frog vn activated in every hyperplane H−n. For technical
reasons we want vn of the form vn = (−n, 3wn) for some wn ∈ Zd−1. We �rst show
that A occurs with positive probability. To see this consider the �rst hyperplane H0 and
couple the frogs in this hyperplane with FM∗(d − 1, πsym, 1 − w) in the following way:
Whenever a frog takes a step in ±e1-direction, i.e. leaves its hyperplane, it dies instead.
By [3, Theorem 1.8] (or Lemma 1.49) this process survives with positive probability if w
is su�ciently small (independent of the dimension d). This means that in�nitely many
frogs are activated in H0. Obviously, this implies the claim.
From now on we condition on the event A. Note that FCvn ⊆ FC0 for n ∈ N. Analo-
gously to the proofs in the last sections we introduce boxes

FB′n = {−n} × [−(3
√
n+ 1), 3

√
n+ 1]d−1

for n ∈ N. We claim that analogously to Lemma 1.31 there are constants a, b > 0 and
N ∈ N such that for n ≥ N

P
(
|FB′n ∩ FC0| ≥ an(d−1)/2

)
≥ b. (1.33)

To prove this claim let a, b > 0 and N ∈ N be the constants of Lemma 1.31 for percolation
with parameter β. For n ≥ N couple the frog model with FM∗(d− 1, πsym, 1−w) in the
hyperplane Hn as above. Let B′n = [−

√
n,
√
n]d−1 and note that B′n corresponds to FB′n

restricted to Hn after rescaling. Then by Lemma 1.49 and Lemma 1.31

P
(
|FB′n ∩ FCvn | ≥ an(d−1)/2|A

)
≥ P

(
|FB′n ∩ ({−n} × FC∗3wn)| ≥ an

(d−1)/2)|A
)

≥ P
(
|B′n ∩ Cwn | ≥ an(d−1)/2)|A

)
≥ b.

Here, Cwn is the open cluster containing wn in a percolation model with parameter β in
Zd−1, independently of the frogs. As FCvn ⊆ FC0, this implies inequality (1.33).
By Lemma 1.28 and (1.33), the probability that there is at least one activated frog in
FB′n that reaches 0 is at least(

1− (1− c′n−(d−1)/2)an(d−1)/2
)
b ≥

(
1− e−ac

′)
b,
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where c′ > 0 is a constant. Altogether we get by Lemma 1.34

P(0 visited in�nitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim
n→∞

P
( n∑
i=1

1{∃x∈FB′n∩FC0 : x→0} ≥ εn
)

≥
((

1− e−ac
′)
b− ε

)
> 0

for ε su�ciently small. The claim now follows from Theorem 1.2.

To prove Proposition 1.46 we again �rst study the frog model with death FM∗(d, πsym, s)

in the hyperplanes and couple it with percolation. This time we use cubes of size (2K+1)d

for some K ∈ N0. By choosing K large we increase the number of frogs in the cubes. In
the proof of the previous proposition this was done by increasing the dimension d. For
x ∈ Zd and K ∈ N0 we de�ne

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K}.

Note that this de�nition coincides with (1.23). In analogy to Lemma 1.49 the frog cluster
dominates a percolation cluster.

Lemma 1.50. For d ≥ 2 consider the frog model FM∗(d, πsym, s) and supercritical site

percolation on Zd. There are constants sr(d) < 1 and K ∈ N0 such that for any s ≥ sr(d),
A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣⋃
x∈A

Qx ∩ FC∗qv
∣∣∣ ≥ k).

Proof. We couple the frog model with percolation as follows: A site x ∈ Zd is called open
if for every e ∈ Ed there exists a frog path from qx to qx+e in Qx. Note that x ∈ Cv now
implies qx ∈ FC∗qv for any v ∈ Zd. We denote the probability of a site x to be open by
p(K, s). By Lemma 1.42 p(K, 1) is close to 1 for K large. As in the proof of Lemma 1.43
one can show that lims→1 p(K, s) = p(K, 1). Thus, we can choose K ∈ N and sr > 0

such that p(K, s) > pc(d) for all s > sr, i.e. the percolation is supercritical.

Proof of Proposition 1.46. Using Lemma 1.50 instead of Lemma 1.49 and boxes Qx in-
stead of Q′x, the proof is analogous to the proof of Proposition 1.45.

Proof of Theorem 1.23 (i). Theorem 1.23 (i) follows from Proposition 1.45 and Proposi-
tion 1.46.
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Transience for d ≥ 2 and arbitrary drift

Proof of Theorem 1.21 (ii) and Theorem 1.23 (ii). Let the parameters α > 0 and d ≥ 2

be �xed throughout the proof. For x ∈ Zd we de�ne

Lx = {y ∈ Zd : yi = xi for all 2 ≤ i ≤ d}. (1.34)

Lx consists of all vertices which agree in all coordinates with x except the e1-coordinate.
The key observation used in the proof is that all particles mainly move along these lines
if the weight w is large.
We dominate the frog model by a branching random walk on Zd. At time n = 0 the
branching random walk starts with one particle at the origin. At every step in time every
particle produces o�spring as follows: For every particle located at x ∈ Zd consider an
independent copy of the frog model. At any vertex z ∈ Zd \ Lx the particle produces
|{y ∈ Lx : x

Lx
y, y → z}| many children. Notice that this number might be 0 or in�nite.

The particle does not produce any o�spring at a vertex in Lx. Further, note that the
particles reproduce independently of each other as we use independent copies of the frog
model to generate the o�spring.
One can couple this branching random walk with the original frog model. To explain the
coupling, let us brie�y describe how to go from the original frog model to the branching
random walk. Recall that the frog model is entirely determined by a set of trajectories
(Sxn)n∈N0,x∈Zd of random walks. We use this set of trajectories to produce the particles in
the �rst generation of the branching random walk, i.e. the children of the particle initially
at 0, as explained above. Now, assume that the �rst n generations of the branching
random walk have been created. Enumerate the particles in the n-th generation. When
generating the o�spring of the i-th particle in this generation, delete all trajectories of
the frog model used for generating the o�spring of a particle j with j < i or a particle in
an earlier generation, and replace them by independent trajectories. Otherwise, use the
original trajectories.
One can check that the branching random walk dominates the frog model in the following
sense: For every frog in Zd \ L0 that is activated and visits 0 there is a particle at 0 in
the branching random walk. Thus, the number of visits to the origin by particles in the
branching random walk is at least as big as the number of visits to 0 by frogs in the frog
model, not counting those visits to 0 made by frogs initially in L0. Note that, if the frog
model was recurrent, then almost surely there would be in�nitely many frogs in Zd \ L0

activated that return to 0. In particular, also in the branching random walk in�nitely
many particles would return to 0. Therefore, to prove transience of the frog model it
su�ces to show that in the branching random walk only �nitely many particles return
to 0 almost surely.
Let Dn denote the set of descendants in the n-th generation of the branching random
walk. Further, for i ∈ Dn let Xi

n be the e1-coordinate of the location of particle i. De�ne
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1. The Frog Model

for θ > 0 and n ∈ N0

µ = E
[∑
i∈D1

e−θX
i
1

]
and Mn =

1

µn

∑
i∈Dn

e−θX
i
n . (1.35)

We claim that µ < 1 for w close to 1 and θ small, which, in particular, implies that
(Mn)n∈N0 is well-de�ned. We show this claim in the end of the proof.
We next show that (Mn)n∈N0 is a martingale with respect to the �ltration (Fn)n∈N0 with
Fn = σ

(
D1, . . . , Dn, (X

i
1)i∈D1 , . . . , (X

i
n)i∈Dn

)
. Obviously, Mn is Fn-measurable. For a

particle i ∈ Dn denote its descendants in generation n + 1 by Di
n+1. Since particles

branch independently, we get

E[Mn+1|Fn] = E
[ 1

µn+1

∑
i∈Dn+1

e−θX
i
n+1

∣∣ Fn]
=

1

µn

∑
i∈Dn

e−θX
i
n · 1

µ
E
[ ∑
j∈Din+1

e−θ(X
j
n+1−Xi

n)
]
.

Note that the expectation on the right hand side is independent of i and n and therefore,
by the de�nition of µ, we conclude

E[Mn+1|Fn] =Mn.

This calculation also yields E[|Mn|] = E[Mn] = E[M0] = 1, and therefore Mn ∈ L1. This
in particular implies that Mn is �nite almost surely for every n ∈ N0. Thus, Xi

n = 0 can
only occur for �nitely many i ∈ Dn almost surely for every n ∈ N0, i.e. in every generation
only �nitely many particles can be at 0. By the martingale convergence theorem, there
exists an almost surely �nite random variable M∞, such that limn→∞Mn =M∞ almost
surely. Combining this with µ < 1, we get limn→∞

∑
i∈Dn e

−θXi
n = 0 almost surely.

Hence, Xi
n = 0 for some i ∈ Dn occurs only for �nitely many times n. Overall, this

shows that the branching random walk is transient.
It remains to show µ < 1. Note that the particles in D1 are at vertices in the set
{y ∈ Zd \ L0 : 0

L0
y}. Therefore, for the calculation of µ we �rst need to consider all

sites in L0 that are reached from 0 by frog paths in L0. The idea is to control the number
of frogs activated on the negative e1-axis using Lemma 1.33 and estimating the number
of frogs activated on the positive e1-axis by assuming the worst case scenario that all
of them will be activated. Then, for every k ∈ Z we have to estimate the number of
vertices with e1-coordinate k visited by each of these active frogs on the e1-axis. Due
to the de�nition of µ, the sites visited by frogs on the positive e1-axis do not contribute
much to µ. Recall that Hk denotes the hyperplane that consists of all vertices with
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1.5. Proof of the main results

e1-coordinate equal to k ∈ Z, see (1.6). For k, i ∈ Z de�ne

Nk,i = |{x ∈ Hk \ L0 : (i, 0, . . . , 0)→ x}|.

As Nk,i equals Nk−i,0 in distribution for all i, k ∈ Z, we get

µ = E
[∑
i∈D1

e−θX
i
1

]
=

∞∑
i=−∞

∞∑
k=−∞

P
(
0
L0

(i, 0, . . . , 0)
)
E[Nk,i]e

−θk

=
∞∑

k=−∞
E[Nk,0]e

−θk
∞∑

i=−∞
e−θiP

(
0
L0

(i, 0, . . . , 0)
)
. (1.36)

Note that P
(
0
L0

(i, 0, . . . , 0)
)
is smaller or equal than the probability of the event

{0 Z
i} in the frog model FM(1, 1, α). Hence, by Lemma 1.33, there is a constant c1 > 0

such that P
(
0
L0

(i, 0, . . . , 0)
)
≤ ec1i for all i ≤ 0. Thus, (1.36) implies that for θ < c1

there is a constant c2 = c2(θ) <∞ such that

µ ≤ c2
∞∑

k=−∞
E[Nk,0]e

−θk. (1.37)

Next, we estimate E[Nk,0], the expected number of vertices in Hk \L0 visited by a single
particle starting at 0. Recall that the trajectory of frog 0 is denoted by (S0

n)n∈N0 . We
de�ne Tk = min{n ∈ N0 : S

0
n ∈ Hk}, the entrance time of the hyperplane Hk, and

T ′k = max{n ∈ N0 : S
0
n ∈ Hk}, the last time frog 0 is in the hyperplane Hk. Obviously,

Nk,0 = 0 on the event {Tk =∞}. Hence, assume we are on {Tk <∞}. The particle can
only visit a vertex in Hk \ L0 at time Tk if the random walk took at least one step in
non-e1-direction up to time Tk. This happens with probability E[1−wTk ]. Furthermore,
the number of vertices visited in Hk after time Tk can be estimated by the number of
steps in non-e1-direction taken between times Tk and T ′k. This number is binomially
distributed and, thus, its expectation equals (1− w)E[T ′k − Tk]. Overall, this implies

E[Nk,0] ≤ P(Tk <∞)
(
E
[
1− wTk | Tk <∞

]
+ (1− w)E

[
T ′k − Tk | Tk <∞

])
.

For k < 0 the probability P(Tk <∞) decays exponentially in k by Lemma 1.29. There-
fore, we can choose θ small such that P(Tk <∞)e−θk ≤ e−θ|k| for all k ∈ Z. Thus, (1.37)
implies

µ ≤ c2
∞∑

k=−∞
e−θ|k|

(
E
[
1− wTk | Tk <∞

]
+ (1− w)E

[
T ′k − Tk | Tk <∞

])
. (1.38)
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1. The Frog Model

Note that the sum in (1.38) is �nite as E
[
T ′k − Tk | Tk < ∞

]
is independent of k. By

monotone convergence limw→1 µ = 0 and the right hand side of (1.38) is continuous in
w. Therefore, we can choose w close to 1 such that µ < 1, as claimed.

Transience for d = 2 and arbitrary weight

Proof of Theorem 1.20 (ii). Let w > 0 be �xed throughout the proof. As in the proof
of Theorem 1.21 (ii) and Theorem 1.23 (ii) we dominate the frog model by a branching
random walk. This time we use a one-dimensional branching random walk on Z. For the
construction of the process, let ξ be the number of activated frogs in an independent one-
dimensional frog model FM∗(1, πsym, 1− w) with two active frogs at 0 initially. At time
n = 0, the branching random walk starts with one particle in the origin. At every time
n ∈ N, the process repeats the following two steps. First, every particle produces o�spring
independently of all other particles with the number of o�spring being distributed as
ξ. Then, each particle jumps to the right with probability 1+α

2 and to the left with
probability 1−α

2 .
As an intermediate step to understand the relation between the frog model and this
branching random walk on Z, we �rst couple the frog model with a branching random
walk on Z2 with initially one particle at 0. Partition the lattice Z2 into hyperplanes
(Hn)n∈Z as de�ned in (1.6). Let the frog model FM(2, πw,α) with initially two active
frogs at 0 ∈ H0 evolve and stop every frog when it �rst enters H1 or H−1. Every frog
leaves its hyperplane in every step with probability w. Thus, the number of stopped
frogs is distributed according to ξ. A stopped frog is in H1 with probability 1+α

2 and
in H−1 with probability 1−α

2 . The stopped particles form the o�spring of the particle
at 0 in the branching random walk. We repeat this procedure to generate the o�spring
of an arbitrary particle in the branching random walk. Introduce an ordering of all
particles in the branching random walk and let the particles branch one after another.
Before generating the o�spring of the i-th particle, re�ll every vertex which is no longer
occupied by a sleeping frog with an extra independent sleeping frog. Unstop frog i and let
it continue its work as usual, ignoring all other stopped frogs. Note that there is a sleeping
frog at the starting vertex of frog i that is immediately activated. This explains our
de�nition of ξ. Again stop every frog once it enters one of the neighbouring hyperplanes.
These newly stopped frogs form the o�spring of the i-th particle. This procedure creates a
branching random walk with independent identically distributed o�spring. Every vertex
visited in the frog model is obviously also visited by the branching random walk.
Now, project all particles in the intermediate two-dimensional branching random walk
onto the �rst coordinate. This creates a branching random walk on Z distributed as
the one described above. The construction shows that transience of this one-dimensional
branching random walk implies transience of the frog model.
To prove that the one-dimensional branching random walk is transient for α close to 1,
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1.5. Proof of the main results

we proceed as in the proof of Theorem 1.21 (ii) and Theorem 1.23 (ii). The proof only
di�ers in the calculation of the parameter µ de�ned by

µ = E
[∑
i∈D1

e−θX
i
1

]
for θ > 0 with D1 denoting the set of descendants in the �rst generation of the branching
random walk and Xi

1 the e1-coordinate of the location of particle i ∈ D1. Here, we
immediately get

µ =
1

2

(
(1− α)eθ + (1 + α)e−θ

)
E[ξ].

Lemma 1.33 implies E[ξ] <∞. Thus, we can choose θ = log
(
2E[ξ]

)
. Then limα→1 µ = 1

2

and by continuity µ < 1 for α close to 1, as required.
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2 Branching Random Walks

2.1 Description of the model

We study the maximum of a branching random walk on R in discrete time. First,
we describe the branching random walk in a more formal way than explained in the
introduction and �x some notation.
Let (Zn)n∈N0 be a Galton-Watson process with one initial particle and o�spring law
given by the weights (p(k))k∈N0 , where

∑∞
k=0 p(k) = 1. More precisely, let (ξn,k)n,k∈N

be a collection of i.i.d. random variables with P(ξ1,1 = k) = p(k) for all k ∈ N0. Let
Z0 = 1. The number of particles in the n-th generation is de�ned as Zn =

∑Zn−1

k=1 ξn,k.
Let m = E[ξ1,1] =

∑∞
k=1 kp(k) be the reproduction mean.

To de�ne the movement of the particles we consider the associated Galton-Watson tree
denoted by T = (V,E), where V is the set of vertices and E is the set of edges. It has
Zn vertices at level n and for k ≤ Zn, the k-th vertex in level n has ξn+1,k children. For
n ∈ N let Dn be the set of vertices in the n-th level of the tree. Then, |Dn| = Zn. For
v ∈ Dn, the set of descendants of v in the (l + n)-th level is denoted by Dv

l . Note that
|Dv

l | equals |Dl| in distribution. The root of T is called o ∈ V . For v, w ∈ V de�ne [v, w]
as the set of edges along the unique path from v to w.
We now de�ne the locations of the particles. Let (Xe)e∈E be a collection of i.i.d. random
variables, i.e. every edge of T is labelled with a random variable. For v ∈ Dn, the position
of the particle v at time n is de�ned as Sv =

∑
w∈[o,v]Xw. For n ∈ N the position of the

rightmost particle at time n is
Mn = max

v∈Dn
Sv. (2.1)

We set Mn = −∞ if Dn = ∅. We refer to (Mn)n∈N as the maximum of the branching
random walk. For v ∈ Dn, the rightmost descendant of v at time l + n is de�ned as
Mv
l = maxw∈Dvl Sw.

We also introduce the collection of i.i.d. random variables (Xj
i )i,j∈N, where X

1
1 has the

same distribution as Xe for some e ∈ E. Moreover, for j, n ∈ N de�ne the random walk
Sjn =

∑n
i=1X

j
i and the maximum of independent random walks as

M̃n = max
1≤j≤Zn

Sjn. (2.2)

In analogy to the maximum of the branching random walk, we set M̃n = −∞ if Dn = ∅.
Furthermore, for i ∈ N, let Xi be an independent copy of X1

i and de�ne Sn =
∑n

i=1Xi.
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Note that for every time n the number of particles in the branching random walk equals
the number of random walks considered for M̃n. However, the positions of the particles
in the branching random walk are not independent. Indeed, this dependence is such that
the maximum of independent random walks stochastically dominates the maximum of
the branching random walk, see Lemma 2.27. We investigate the asymptotics of Mn and
M̃n conditioned on the event of survival of the Galton-Watson process, i.e. on the event
{Zn > 0 ∀n ∈ N}. Therefore, introduce the measure

P∗(·) = P(·|Zn > 0 ∀n ∈ N). (2.3)

The associated expectation is denoted by E∗. Let (an)n∈N be a sequence of positive
numbers and let c ∈ (0,∞] be a constant. With a slight abuse of notation for c =∞, we
write an = exp(−cn + o(n)), if limn→∞

1
n log an = −c. Note that an decays faster than

exponentially in n if c =∞.

2.2 Some known results

In the �rst subsection we state some elementary results on Galton-Watson processes. In
the remaining subsections we collect some results on the maximum of the branching ran-
dom walk and on the maximum of independent random walks. Throughout this chapter
we assume that the displacements are centred, i.e. E[X1] = 0. Note that every branching
random walk can be restricted to this case by considering the family of displacements
(Xe − E[X1])e∈E. Further note that most of the following results hold true in a more
general setting, i.e. if the branching and movement of the particles are not independent.

2.2.1 On the Galton-Watson process

The �rst theorem gives the exact value of the survival probability of the Galton-Watson
process, i.e. of P(Zn > 0 ∀n ∈ N). Moreover we get a necessary and su�cient condition
for positive survival probability. Let q = inf

{
s ∈ [0, 1] : E[sZ1 ] = s

}
.

Assumption 1. The Galton-Watson process is supercritical, i.e. m > 1.

Theorem 2.1. The Galton-Watson process has survival probability 1− q. In particular,

the survival probability is positive if and only if Assumption 1 is satis�ed, or p(1) = 1.

A proof can be found in [7, Chapter 1, Section 5, Theorem 1]. In the proof of Theo-
rem 2.18 and Theorem 2.19 we also need the asymptotics of the survival probability of a
critical Galton-Watson process.

Theorem 2.2. Let m = 1 and p(1) < 1. Then, limn→∞ nP(Zn > 0) = 2
Var(Z1)

.

A proof can be found in [7, Chapter 1, Section 9, Theorem 1].
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We often need to estimate the number of particles at time n, which has expectation
mn. Let Wn = Zn

mn and (Fn)n∈N be the natural �ltration of the Galton-Watson process,
i.e. Fn = σ(Z1, . . . , Zn). The process (Wn)n∈N is a martingale with respect to the
�ltration (Fn)n∈N. Therefore, Wn → W almost surely, where W is an almost surely
�nite random variable.

Assumption 2. The Galton-Watson process satis�es E[Z1 logZ1] <∞.

Note that Assumption 2 implies m <∞. The following well-known theorem shows that
under our assumptions, the limit W is non-trivial, i.e. P(W = 0) < 1.

Theorem 2.3 (Kesten-Stigum). If Assumption 1 and 2 are satis�ed, we have

E[W ] = 1 and P(W = 0) = q < 1.

A proof can e.g. be found in [7, Chapter 1, Section 10, Theorem 1].

2.2.2 First term of the maximum

In the remaining subsections we summarise some known results on the maximum of the
branching random walk de�ned in (2.1) and on the maximum of independent random
walks de�ned in (2.2).
For x ∈ R the rate function of the random walk (Sn)n∈N is de�ned as

I(x) = sup
λ∈R

(
λx− logE

[
eλX1

])
. (2.4)

Assumption 3. There exists ε > 0 such that E
[
eλX1

]
<∞ for all λ ∈ (−ε, ε). Further-

more, for simplicity suppose that E[X1] = 0.

If Assumption 1 and 3 are satis�ed, then Mn grows at linear speed x∗, where

x∗ = sup
{
x ≥ 0: I(x) ≤ logm

}
. (2.5)

Note that x∗ is �nite if m <∞ and Assumption 3 are satis�ed.

Theorem 2.4. Suppose that Assumption 1 and 3 are satis�ed. The maximum of the

branching random walk has linear speed x∗, i.e.

lim
n→∞

Mn

n
= x∗ P∗-a.s.

This result goes back to Biggins [11], Hammersley [35] and Kingman [44]. One can check
that the speed of (M̃n)n also equals x∗, see [60, Theorem 1] for deterministic branching.
For general branching this is a consequence of Theorem 2.18.
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Theorem 2.5. Suppose that Assumption 1 and 3 are satis�ed. The maximum of inde-

pendent random walks has linear speed x∗, i.e.

lim
n→∞

M̃n

n
= x∗ P∗-a.s.

If the displacements have no exponential moments, then the maximum moves faster than
linear in time. For stretched exponential tails the speed of the maximum of the branching
random walk was determined by Gantert in [28].

Theorem 2.6 ([28, Theorem 2]). Assume that there exists r ∈ (0, 1) and slowly varying

functions a, L such that L(t)
t1−r is non-increasing and P(X1 ≥ t) = a(t)e−L(t)t

r
for all t large

enough. Furthermore, let ψ be a positive function such that limn→∞
L(ψ(n))ψ(n)r

n = 1.

Then,

lim
n→∞

Mn

ψ(n)
= (logm)1/r P∗-a.s.

If for instance L(t) ≡ b for some b > 0 we can take ψ(n) = b−1/rn1/r.
For regularly varying tails of the displacement the speed was derived by Durrett in [24].
Recall the martingale limit W de�ned in subsection 2.2.1.

Theorem 2.7 ([24, Theorem 1]). Suppose that Assumption 2 is satis�ed. Assume that

there is a slowly varying function L and α > 0 such that P(X1 ≥ t) = t−αL(t) for all

t large enough and limt→∞ log tP(X ≤ −t) = 0. Furthermore, choose (an)n∈N such that

limn→∞m
nP(X1 > an) = 1. Let r =

∑∞
j=0m

−jP(Zj > 0). Then, for all x > 0

lim
n→∞

P
(Mn

an
≤ x

)
=

∫ ∞
0

e−yx
−α

P(rW ∈ dy).

If L(t) ≡ b for some b > 0 we can take an = b1/αmn/α for all n ∈ N.

2.2.3 Second term of the maximum

In this subsection we always assume that we are in the setting of Theorem 2.4, i.e. the
maximum of the branching random walk as well as the maximum of independent random
walks moves with linear speed x∗. Throughout this subsection we make the following
assumption.

Assumption 4. All exponential moments of the displacements exist, i.e. E[eλX1 ] < ∞
for all λ ∈ R. Furthermore, there exists ε > 0 such that E[Z1+ε

1 ] <∞.

Assumption 4 implies that I(x∗) = logm and I is in�nitely often di�erentiable on R. Note
that the following results hold true under slightly weaker (more technical) assumptions
and in a more general setting. We refer to the book of Shi [55] for more details. Moreover
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note that in most cases only critical branching random walks are considered. More
precisely, let

ψ(t) = logE
[∑
v∈D1

etSv
]
= logm+ logE

[
etX1

]
.

A critical branching random walk satis�es ψ(0) > 0 and ψ(1) = ψ′(1) = 0. In particular
it has speed 0. However, in our setup a general branching random walk can be trans-
formed to a critical branching random walk by considering the collection of displacements(
I ′(x∗)(Xe − x∗)

)
e∈E .

In the setting of Assumption 4 precise asymptotics for the maximum are known. Addario-
Berry and Reed [1] as well as Hu and Shi [41] obtain a logarithmic second term.

Theorem 2.8 ([41, Theorem 1.2]). Assume that Assumption 4 is satis�ed. The maxi-

mum of the branching random walk has a logarithmic second term. More precisely,

lim inf
n→∞

Mn − x∗n
log n

= − 3

2I ′(x∗)
P∗-a.s.

lim sup
n→∞

Mn − x∗n
log n

= − 1

2I ′(x∗)
P∗-a.s.

lim
n→∞

Mn − x∗n
log n

= − 3

2I ′(x∗)
in P∗-probability.

Addario-Berry and Reed [1] calculated E[Mn] to within O(1) assuming that the number
of o�spring and displacements are bounded.
Also the maximum of independent random walks has a logarithmic second term.

Theorem 2.9. Assume that Assumption 4 is satis�ed. The maximum of independent

random walks has a logarithmic second term. More precisely,

lim
n→∞

M̃n − x∗n
log n

= − 1

2I ′(x∗)
P∗-a.s.

For deterministic branching, i.e. if P(Z1 = k) = 1 for some k ∈ N this result follows from
[60, Theorem 1]. However, the same arguments immediately apply to our setting. Note
that Mn and M̃n have the same speed x∗, but the maximum of independent random
walks M̃n has a larger logarithmic term.
In [2] Aïdékon �nally proves that the normalised maximum of the branching random
walk converges in distribution to a random shift of a Gumbel variable.

Theorem 2.10 ([2, Theorem 1.1]). Assume that Assumption 4 is satis�ed and X1 is

non-lattice, i.e. there exists no a, b ∈ R such that P(X1 ∈ {az + b : z ∈ Z}) = 1. Then,

for all u ∈ R

lim
n→∞

P∗
(
Mn − x∗n+

3

2I ′(x∗)
log n < u

)
= E∗

[
e−De

−u
]
,
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where D is a P∗-almost surely positive and �nite random variable.

Similar results were proved for branching Brownian motion by Bramson in [14]. Even
the third term of Mn is known.

Theorem 2.11 ([39, Theorem 1.1]). Assume that Assumption 4 is satis�ed. Then,

lim sup
n→∞

Mn − x∗n+ 1
2I′(x∗) log n

log logn
=

1

I ′(x∗)
P∗-a.s.

Theorem 2.12 ([40, Theorem 1.1]). Assume that Assumption 4 is satis�ed and X1 is

non-lattice. Then,

lim inf
n→∞

Mn − x∗n+ 3
2I′(x∗) log n

log log log n
= − 1

I ′(x∗)
P∗-a.s.

2.2.4 Large deviations

As already explained in the introduction, we investigate the exponential decay rates of
the probabilities P

(
Mn
n ≥ x

)
for x ≥ x∗ and P

(
Mn
n ≤ x

)
for x ≤ x∗. Our main result

in this chapter, Theorem 2.19, characterises these exponential decay rates. We consider
the same question for M̃n and determine the exponential decay rates, see Theorem 2.18.
Interestingly, the rate functions coincide for x ≥ x∗, but in general they do not coincide
for x < x∗.
Similar questions have been studied before. Large deviation estimates for the maximum
of branching Brownian motion have �rst been investigated by Chauvin and Rouault in
[16] and very recently by Derrida and Shi in [21] and [20]. See also [19] and [56] for
extensions with coalescence and selection or immigration, respectively. Note that [20]
also treats continuous time branching random walks. The di�erence to our setup is that
in the time-continuous case, the strategies can involve the exponential waiting times,
while in our setup, they can involve the branching mechanism given by the o�spring
distribution.
Upper large deviations for the maximum of discrete time branching random walks have
been investigated by Rouault in [54] in the case where the displacemets have exponential
moments (i.e. we are in the setting of Theorem 2.4) and every particle has at least one
o�spring.

Theorem 2.13 ([54, Theorem 2.1]). Suppose that Assumption 1 and 3 is satis�ed. More-

over, assume that every particle has at least one o�spring, i.e. p(0) = 0 and there exists

ε′ > 0 such that E[Z1(logZ1)
1+ε′ ] < ∞. Then, for all x > x∗ and δ > 0 there exists

C = C(x, δ) > 0 such that

lim
n→∞

1

mnP(|Sn − xn| ≤ δ)
P
(
|Mn − xn| ≤ δ

)
= C.
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Very recently Bhattacharya proved an upper large deviation result for heavy-tailed dis-
placements (i.e. in the setting of Theorem 2.7).

Theorem 2.14 ([10, Corollary 2.6]). Suppose that Assumption 2 is satis�ed. Assume that

there is a slowly varying function L and α > 0 such that P(|X1| ≥ t) = x−αL(t) for all t

large enough. Furthermore, there is p, q > 0 with p+q = 1 such that limt→∞
P(X1≥t)
P(|X1|≥t) = p

and limt→∞
P(X1≤−t)
P(|X1|≥t) = q. Choose (an)n∈N such that limn→∞m

nP(X1 > an) = 1. Let

(γn)n∈N be an increasing sequence of positive numbers with limn→∞
an
γn

= 0.

For all x > 0

lim
n→∞

1

mnγ−αn L(γn)
P
(Mn

γn
> x

)
= Cx−α,

where C > 0 is a constant.

Recently large deviation results for the empirical distribution of the branching random
walk have been obtained in [17], [49], [50]. We also mention that in the case of a �xed
number of o�spring, much more precise results (describing not only the exponential decay
rates) for �rst passage times were derived in [15].

2.3 Rate functions and assumptions

In this section we introduce the rate functions of the Galton-Watson process, which are
needed to state our results in Section 2.4. Furthermore, we collect some large deviation
results, which are used in the proofs of the results in Section 2.6.

2.3.1 Rate function of the random walk

Recall the de�nition of the rate function of the random walk (Sn)n∈N, see (2.4). If
Assumption 3 is satis�ed, Cramér's theorem implies that the probability P(Sn ≥ xn)

decays exponentially in n with rate I(x) for x > 0.

Theorem 2.15. Suppose that Assumption 3 is satis�ed. The random walk (Sn)n∈N
satis�es a large deviation principle, i.e.

−I(x) =

{
limn→∞

1
n logP

(
Sn
n ≥ x

)
for x ≥ 0,

limn→∞
1
n logP

(
Sn
n ≤ x

)
for x ≤ 0.

A proof can e.g. be found in [18, Theorem 2.2.3 and Lemma 2.2.5]. Assumption 3 ensures
that I(x) > 0 for all x 6= 0 and I(x)→∞ as |x| → ∞.

2.3.2 Rate functions of the Galton-Watson process

Due to the well-known Kesten-Stigum Theorem, Assumption 2 implies that the Galton-
Watson process grows like its expectation, see Theorem 2.3. In particular, (Zn)n∈N0

grows exponentially with high probability.
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2. Branching Random Walks

If Assumption 1 and 2 are satis�ed, there is a large deviation result for the probability that
(Zn)n∈N0 grows at most subexponentially. A sequence (an)n∈N is called subexponential,
if ane−εn → 0 as n→∞ for all ε > 0. De�ne

ρ := − logE[Z1q
Z1−1] ∈ (0,∞]. (2.6)

Note that ρ = − log p(1) if p(0) = 0 (and therefore also q = 0).

Assumption 5. Each particle has less than two o�spring particles with positive proba-

bility, i.e. p(0) + p(1) > 0.

Assumption 5 is often referred to as Schröder case, whereas the case p(0) + p(1) = 0 is
called Böttcher case. We have ρ < ∞ if and only if Assumption 5 is satis�ed. Consider
the set

A =
{
l ∈ N : ∃n ∈ N such that P(Zn = l) > 0

}
(2.7)

containing all positive integers l such that there are l particles at some time n with
positive probability.

Theorem 2.16. Let Assumption 1 and 2 hold. Then, for every k ∈ A we have

lim
n→∞

1

n
logP∗

(
Zn = k

)
= −ρ.

Moreover, for every subexponential sequence (an)n∈N such that an →∞ as n→∞,

lim
n→∞

1

n
logP∗

(
Zn ≤ an

)
= −ρ.

A proof of the �rst statement can be found in [7, Chapter 1, Section 11, Theorem 3].
The second statement is a consequence of of [9, Theorem 3.1].
For x ∈ [0, logm] de�ne the rate function of the Galton-Watson process as

IGW(x) = ρ
(
1− x(logm)−1

)
. (2.8)

Note that IGW(x) > 0 for all x < logm.

Theorem 2.17. Under Assumption 1 and 2 we have for x ∈ [0, logm]

lim
n→∞

1

n
logP∗

(
Zn ≤ exn

)
= −IGW(x).

This theorem is a consequence of [9, Theorem 3.2]. Note that there is also an upper large
deviation result for P∗

(
Zn ≥ exn

)
, where x > logm, see e.g. [8, Theorem 1].
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2.4. Main results

2.4 Main results

After de�ning the rate functions of the random walk and the Galton-Watson process we
are now able to state our main results of this chapter. The results in this section are
joint work with Gantert and published in [29].
Note that I(x∗) = logm if I(x) <∞ for some x > x∗. On the other hand, I(x∗) < logm

already implies P(X1 > x∗) = 0. This case leads to a di�erent shape of the rate functions,
see Figure 2.1. Let

k∗ = inf{k ≥ 1: p(k) > 0}. (2.9)

Note that k = k∗ is the smallest positive integer, such that P(Zn = k) > 0 for some
n ∈ N. De�ne the rate function for the maximum of independent random walks as

I ind(x) =


I(x)− logm for x > x∗,

0 for x = x∗,

ρ
(
1− I(x)

logm

)
for 0 ≤ x < x∗,

k∗I(x) + ρ for x ≤ 0.

(2.10)

Note that ρ
(
1 − I(x)

logm

)
= IGW(I(x)) for 0 ≤ x < x∗. Recall the maximum M̃n of a

random number of independent walks, de�ned in (2.2).

Theorem 2.18. Suppose that Assumption 1, 2 and 3 are satis�ed. Then, the laws of
M̃n
n under P∗ satisfy a large deviation principle with rate function I ind. More precisely,

−I ind(x) =

{
limn→∞

1
n logP

(
M̃n
n ≥ x

)
for x ≥ x∗,

limn→∞
1
n logP

(
M̃n
n ≤ x

)
for x ≤ x∗.

In the Böttcher case (p(0) + p(1) = 0) we have ρ =∞ and therefore I ind(x) =∞ for all
x < x∗. Hence, in this case the lower deviation probabilities P∗(M̃n ≤ xn) for x < x∗

decay faster than exponentially in n.
Let us now give some intuition for the rate function I ind and describe the large deviation
event {M̃n ≥ xn} for some x > x∗, respectively {M̃n ≤ xn} for some x < x∗.
For x > x∗, the number of particles should be larger or equal than expected, i.e. Zn ≥ ent

for some t ≥ logm. The probability of such an event is of order exp(−IGW(t)n+ o(n)).
If there are ent particles at time n, the probability that at least one particle reaches xn
is of order exp(−I(x)n + tn + o(n)) for t < I(x). Therefore, we need to maximize the
product of these two probabilities, which amounts to minimize IGW(t) + I(x)− t, where
t runs over the interval [logm, I(x)). It turns out that the optimal value is t = logm.
This argument will go through for the maximum of the branching random walk.
If 0 ≤ x < x∗, the probability that one particle reaches xn is of order exp(−I(x)n+o(n)).
Hence, for every ε > 0, if there are less than e(I(x)−ε)n particles, the probability that
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2. Branching Random Walks

none of these particles reaches xn is close to 1. However, if there are more than e(I(x)+ε)n

particles, this probability decays exponentially in n.
If x < 0, already the probability that a single particle is below xn at time n decays
exponentially fast in n. Hence, if the number of particles Zn grows exponentially, the
probability that all particles are below xn at time n decays faster than exponentially.
Therefore, the number of particles needs to grow subexponentially. Since ρ does not
depend on the choice of k in Theorem 2.16, there have to be only k∗ particles at time n
(provided that ρ <∞).
Next, we consider the maximum of the branching random walk. For x < x∗ let

H(x) = inf
t∈(0,1]

{
tρ+ tI

(
t−1
(
x− (1− t)x∗

))}
. (2.11)

Note that for x > 0 it su�ces to take the in�mum over t ∈ (0, 1 − x
x∗ ]. De�ne the rate

function of the branching random walk as

IBRW(x) =


I(x)− logm for x > x∗,

0 for x = x∗,

H(x) for x < x∗.

(2.12)

Theorem 2.19. Suppose that Assumption 1, 2, 3 and 5 are satis�ed. Then, the laws of
Mn
n under P∗ satisfy a large deviation principle with rate function IBRW. More precisely,

−IBRW(x) =

{
limn→∞

1
n logP

(
Mn
n ≥ x

)
for x ≥ x∗,

limn→∞
1
n logP

(
Mn
n ≤ x

)
for x ≤ x∗.

In contrast to the case of independent random walks we only consider the Schröder case
(Assumption 5) for the branching random walk.

Remark 2.20. Assumption 5 is only needed for the lower deviations (x < x∗) in The-

orem 2.19. In the Böttcher case, i.e. if Assumption 5 is not satis�ed, the strategy for

lower deviations is di�erent.

Proposition 2.21. The rate function of the maximum of the branching random walk

IBRW is convex.

Note that the rate function of the maximum of independent random walks I ind is concave
on the interval [0, x∗].
For x > x∗ we have IBRW(x) = I ind(x). In this case the strategy is the same as for
independent random walks. The strategy in the case x < x∗ goes as follows. At time tn
there are only k∗ particles, and the position of one of those particles is smaller than its
expectation. All other k∗ − 1 particles are killed at time tn. Note that by Assumption 5
either k∗ = 1 or particles may have no o�spring with positive probability. Afterwards,
each particle moves and branches according to its usual behaviour.
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2.4. Main results

Further notice, that in contrast to the case of independent random walks, the number
of particles can also grow exponentially if x < 0. It su�ces to have a small number of
particles at time tn for some t ∈ (0, 1].

0 x∗
0

I(x∗) = logm

0 x∗
0

IGW(I(x∗))

∞

I(x∗) < logm

Figure 2.1: The �gure shows the qualitative behaviour of the rate function of the branch-
ing random walk ( ) and the rate function of independent random walks
( ).

To compare the rate functions, note that the maximum of independent random walks
stochastically dominates the maximum of the branching random walk, see Lemma 2.27.
Therefore, I ind(x) ≤ IBRW(x) for x > x∗, respectively I ind(x) ≥ IBRW(x) for x < x∗.
For x < x∗, the inequality is in general strict. For x > x∗, the rate functions coincide,
see the argument above.
Let us now comment on the shape of the rate functions. If I(x) =∞ for some x > x∗, also
I ind(x) = IBRW(x) = ∞. More precisely, I(x) = ∞ already implies P(X1 ≥ x − ε) = 0

for some ε > 0 and therefore Mn ≤ (x− ε)n, respectively M̃n ≤ (x− ε)n almost surely.
If I(x∗) = logm, then the rate functions I ind(x) and IBRW(x) are continuous from the
left at x = x∗. However, if I(x∗) < logm, the rate functions I ind(x) and IBRW(x) are
in�nite for x > x∗, since I(x) = ∞. Therefore, they are not continuous from the right
at x = x∗. The rate function IBRW(x) is continuous from the left at x = x∗, since
IBRW(x) ≤ ρ

(
1 − x

x∗

)
for x < x∗. However, I ind(x) is also not continuous from the left

at x = x∗. In particular, limx↗x∗ I
ind(x) ∈ (0,∞) if ρ <∞.

An intuitive explanation of this discontinuity is the following. If there are at least
exp
(
I(x∗)n

)
particles at time n, then M̃n = x∗n + o(n) with high probability. For a

smaller linear term there have to be less particles, hence for all x < x∗ the probability
P∗(M̃n ≤ xn) is bounded from below by the probability to have at most exp

(
I(x∗)n

)
particles at time n, which decays exponentially. Note that for the branching random
walk, in contrast, it su�ces to have a small number of particles at the beginning.
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2. Branching Random Walks

2.5 Preliminaries

Before we prove the main results, we collect some preliminaries which are needed through-
out the proofs.

Lemma 2.22. We have the following inequalities.

(i) For x ∈ [0, e−1] it holds that 1− x ≥ e−ex.

(ii) For x ∈ [0, 1] and y ≥ 0 it holds that 1− (1− x)y ≥ xy(1− xy).

Proof. Both inequalities follow after some elementary calculations.

(i) The function f(x) = 1 − x − e−ex is increasing on [0, e−1]. The claim follows, as
f(0) = 0.

(ii) We �rst show another inequality. The function g(x) = 1−e−x−x(1−x) is increasing
for x ≥ 0. As g(0) = 0, we have 1 − e−x ≥ x(1 − x). Using additionally the well
known inequality 1− x ≤ e−x, we get

1− (1− x)y ≥ 1− e−xy ≥ xy(1− xy).

Next, we need a general estimate on the sum of large deviation probabilities. For i ∈ N
let (ain)n∈N be a sequence of positive numbers and ai = lim supn→∞

1
n log a

i
n.

Lemma 2.23. For all k ∈ N it holds that

lim sup
n→∞

1

n
log

k∑
i=1

ain = max
i∈{1,...,k}

ai.

A proof can e.g. be found in [18, Lemma 1.2.15]. Theorem 2.15 gives the exponential
decay rate of the probability P(Sn ≥ xn) for x > 0. The following theorem gives the
precise asymptotics for this probability.

Theorem 2.24. Let x > 0 and I(x) <∞. There exists an explicit constant c > 0 such

that

lim
n→∞

√
neI(x)nP

(Sn
n
≥ x

)
= c.

A proof can be found in [18, Theorem 3.7.4]. Furthermore, we need some properties of
the rate function I.

Lemma 2.25. Assume that there exists x ∈ R such that I(x) < ∞ and I(x + ε) = ∞
for all ε > 0. Then P(X1 > x) = 0 and P(X1 = x) = e−I(x).
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2.6. Proof of the main results

Proof. Let x ∈ R such that I(x) < ∞ and I(x + ε) = ∞ for all ε > 0. Assume that
P(X1 > x) > 0. Then, there exists ε > 0 such that P(X1 ≥ x+ ε) > 0. However,

I(x+ ε) = sup
λ∈R

(
λ(x+ ε)− logE

[
eλX1

])
≤ sup

λ∈R

(
λ(x+ ε)− log

(
eλ(x+ε)P(X1 ≥ x+ ε)

)
= − logP(X1 ≥ x+ ε) <∞, (2.13)

which leads to a contradiction. It remains to show that P(X1 = x) = e−I(x). Analogously
to (2.13), we get

I(x) ≤ sup
λ∈R

(
λx− log

(
eλxP(X1 = x)

)
= − logP(X1 = x).

Moreover, since P(X1 > x) = 0 we have for all ε > 0

I(x) ≥ sup
λ∈R

(
λx− log

(
eλxP(X1 ∈ (x− ε, x] + eλ(x−ε)

)
.

Letting λ→∞ and ε→ 0 shows that

I(x) ≥ − logP(X1 = x),

which �nishes the proof.

2.6 Proof of the main results

The stochastic processes considered in this model are discrete time processes. However,
to increase the readability, we omit integer parts if no confusion arises.

2.6.1 Convexity of the rate function

Proof of Proposition 2.21. Since the rate function I is convex, it remains to show that
H (de�ned in (2.11)) is convex. Recall that ρ <∞ by Assumption 5. By the de�nition
of H and the convexity of I, for any x, y ∈ (−∞, x∗) and ε > 0 there exists tx, ty ∈ (0, 1]
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2. Branching Random Walks

such that for every λ ∈ [0, 1]

λH(x) + (1− λ)H(y)

≥ λ
(
txρ+ txI

(
t−1x (x− (1− tx)x∗)

))
+ (1− λ)

(
tyρ+ tyI

(
t−1y (y − (1− ty)x∗)

))
− ε

=
(
λtx + (1− λ)ty

)(
ρ+

λtx
λtx + (1− λ)ty

I
(
t−1x (x− (1− tx)x∗)

)
+

λty
λtx + (1− λ)ty

I
(
t−1y (y − (1− ty)x∗)

))
− ε

≥
(
λtx + (1− λ)ty

)(
ρ+ I

(λx+ (1− λ)y −
(
1− λtx − (1− λ)ty

)
x∗

λtx + (1− λ)ty

))
− ε

≥ H
(
λx+ (1− λ)y

)
− ε.

Letting ε→ 0 �nishes the proof.

2.6.2 Independent random walks

Proof of Theorem 2.18. 1. Case: x > x∗

Following the strategy explained in Section 2.4, independence of the random walks and
Lemma 2.22 (ii) yields

P∗
(M̃n

n
≥ x

)
= E∗

[
1−
(
1− P

(Sn
n
≥ x

))Zn]
≥ P∗

(
Zn ≥

1

2
mn
)
·
(
1−
(
1− P

(Sn
n
≥ x

)) 1
2
mn
)

≥ P∗
(
Wn ≥

1

2

)
P
(Sn
n
≥ x

)1
2
mn
(
1− P

(Sn
n
≥ x

)1
2
mn
)
. (2.14)

By Theorem 2.15, P
(
Sn
n ≥ x

)
1
2m

n → 0 as n→∞, since logm < I(x). For the �rst factor
on the right hand side of (2.14) we have lim infn→∞ P∗(Wn ≥ 1

2) ≥ P∗(W > 1
2) > 0, since

E∗[W ] ≥ E[W ] = 1 by Theorem 2.3. Together with Theorem 2.17 and Lemma 2.23 we
conclude

P∗
(M̃n

n
≥ x

)
≥ exp

(
−(I(x)− logm)n+ o(n)

)
,

which yields the lower bound. For the upper bound, the Markov inequality yields

P∗
(M̃n

n
≥ x

)
= P∗

( Zn∑
i=1

1{Sin≥nx} ≥ 1
)
≤ P

(Sn
n
≥ x

)
E∗[Zn] = P

(Sn
n
≥ x

) mn

1− q
,

(2.15)

which immediately implies the claim.
2. Case: 0 < x < x∗
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Since the rate function I is strictly increasing on the interval [0, x∗], we can choose ε > 0

such that ε < I(x) < logm − ε. We prove the upper bound �rst. Using the inequality
1− y ≤ e−y and Theorem 2.17, we have for n large enough

P∗
(M̃n

n
≤ x

)
= E∗

[(
1− P

(Sn
n
> x

))Zn]
≤ E∗

[
exp
(
−P
(Sn
n
> x

)
Zn

)]
≤ P∗

(
Zn ≤ e(I(x)+ε)n

)
+ exp

(
− eεn+o(n)

)
= exp

(
−
(
IGW(I(x) + ε

)
n+ o(n)

)
.

Letting ε → 0 yields the upper bound. Note that IGW de�ned in (2.8) is continuous.
The proof for the lower bound is similar. More precisely, since P(Snn > x) < e−1 for n
large enough, Lemma 2.22 (i) yields for n large enough

P∗
(M̃n

n
≤ x

)
= E∗

[(
1− P

(Sn
n
> x

))Zn]
≥ E∗

[
exp
(
−e · P

(Sn
n
> x

)
Zn

)]
≥ P∗

(
Zn ≤ e(I(x)−ε)n

)
· exp

(
− e−εn+o(n)

)
= exp

(
−IGW(I(x)− ε)n+ o(n)

)
.

Letting ε→ 0 yields the lower bound.
3. Case: x ≤ 0

We �rst consider x < 0. For the upper bound we have for K ∈ N

P∗
(M̃n

n
≤ x

)
= E∗

[
P
(Sn
n
≤ x

)Zn]
≤

K∑
k=1

P
(Sn
n
≤ x

)k
P∗(Zn = k) + P

(Sn
n
≤ x

)K
.

(2.16)
By Theorem 2.16, the probability P(Zn = k) is of order exp(−ρn + o(n)) for all k ∈ A
(de�ned in (2.7)) and P(Zn = k) = 0 otherwise. For all K ∈ N, Lemma 2.23 yields

lim sup
n→∞

1

n
logP∗

(M̃n

n
≤ x

)
≤ max

{
−(k∗I(x) + ρ),−KI(x)

}
.

Hence, letting K →∞ proves the upper bound. Note that I(x) > 0 for x < 0. As in the
proof of (2.16) we have

P∗
(M̃n

n
≤ x

)
= E∗

[
P
(Sn
n
≤ x

)Zn]
≥ P

(Sn
n
≤ x

)k∗
· P(Zn = k∗)

= exp
(
−(k∗I(x) + ρ)n+ o(n)

)
,

which shows the lower bound. For x = 0 the result follows from continuity of the rate
function I ind at 0.
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4. Case: x = x∗

Analogously to (2.15),

P
(M̃n

n
≤ x∗

)
= 1− P

(M̃n

n
> x∗

)
≥ 1− P

(Sn
n
> x∗

) mn

1− q
. (2.17)

Now we have to distinguish two cases. If I(x∗) = logm, then the right hand side of
(2.17) converges to 1 as n → ∞ by Theorem 2.24. If I(x∗) < logm, then I(x) = ∞ for
all x > x∗ and therefore P(X1 > x∗) = 0 by Lemma 2.25. Hence, the right hand side of
(2.17) equals 1. In both cases we get

lim
n→∞

1

n
logP

(M̃n

n
≤ x∗

)
= 0.

Since P(M̃n ≥ x∗n) ≥ P(Mn ≥ x∗n), it remains to show that P(Mn ≥ x∗n) decays slower
than exponentially in n. If I(x) < ∞ for some x > x∗, then the rate function IBRW(x)

is continuous from the right at x = x∗. Since IBRW(x) → 0 as x ↘ x∗ in this case, the
claim follows. Therefore assume that I(x) =∞ for all x > x∗. By Lemma 2.25 we have
P(X1 = x∗) = e−I(x

∗) in this case. Consider the following embedded process. Every
particle with step size smaller than x∗ at any time is killed. Therefore, the reproduction
mean in every step is P(X1 = x∗)m ≥ 1. Let qn be the extinction probability of this
process at time n. By Theorem 2.2, qn decays slower than exponentially in n. Since
P(Mn ≥ x∗n) ≥ qn, the claim follows.

2.6.3 Branching random walk

Before proving Theorem 2.19, we �rst show that the maximum of independent random
walks stochastically dominates the maximum of the branching random walk.

Lemma 2.26. Let (Xi)i∈N and (Yi)i∈N be independent sequences of (not necessarily

independent) random variables. Furthermore, assume that the random variables Yi, i ∈ N,
have the same distribution. Then we have for all k ∈ N and x ∈ R

P
(

max
i∈{1,...,k}

{Xi + Y1} ≤ x
)
≥ P

(
max

i∈{1,...,k}
{Xi + Yi} ≤ x

)
.

Proof. Let i∗ be the smallest (random) index such that Xi∗ = maxi∈{1,...,k}Xi. We have

P
(

max
i∈{1,...,k}

{Xi + Yi} ≤ x
)
≤ P

(
Xi∗ + Yi∗ ≤ x

)
= P

(
Xi∗ + Y1 ≤ x

)
.

As a consequence we can show that the maximum of independent random walks stochas-
tically dominates the maximum of the branching random walk.
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Lemma 2.27. For all n ∈ N and x ∈ R

P(Mn ≤ x) ≥ P(M̃n ≤ x).

Proof. We prove this lemma by induction over n. For n = 1 the inequality is obviously
true. Assume that the inequality holds for some n ∈ N. Let (Si,1n )n∈N, (S

i,2
n )n∈N, . . . be in-

dependent copies of (Sin)n∈N and de�ne (M̃1
n)n∈N, (M̃

2
n)n∈N, . . . and (M1

n)n∈N, (M
2
n)n∈N, . . .

in the same way. Furthermore, for i ∈ {1, . . . , Z1}, denote by Zin the number of descen-
dants of the i-th particle of the �rst generation at time n + 1. Note that Zin equals Zn
in distribution. Using the induction hypothesis and Lemma 2.26,

P(Mn+1 ≤ x) = P
(

max
i∈{1,...,Z1}

{Xi
1 +M i

n} ≤ x
)

≥ P
(

max
i∈{1,...,Z1}

{Xi
1 + M̃ i

n} ≤ x
)

≥ P
(

max
i∈{1,...,Z1}

max
j∈{1,...,Zin}

{Xi,j
1 + Si,jn+1 −X

i,j
1 } ≤ x

)
= P(M̃n+1 ≤ x).

The statement of Lemma 2.27 is also true with respect to P∗.

Proof of Theorem 2.19. 1. Case: x > x∗

Recall that IBRW(x) = I ind(x) for x ≥ x∗. Therefore, the upper bound immediately
follows from Theorem 2.18 and Lemma 2.27. It remains to prove the lower bound. Let
ε > 0 such that (1 − ε)I(x) > logm. Recall that for v ∈ Dεn the rightmost descendant
of v at time n is denoted by Mv

(1−ε)n. By Lemma 2.26,

P∗
(Mn

n
≥ x

)
= P∗

(
max
v∈Dεn

Mv
(1−ε)n − Sv
(1− ε)n

+
Sv

(1− ε)n
≥ x

1− ε

)
≥ P∗

(
max
v∈Dεn

Mv
(1−ε)n − Sv
(1− ε)n

+
Sεn

(1− ε)n
≥ x

1− ε

)
≥ P∗

(
max
v∈Dεn

Mv
(1−ε)n − Sv
(1− ε)n

≥ x
)
· P
(Sεn
εn
≥ x

)
. (2.18)

It remains to estimate the �rst probability on the right hand side of (2.18). Therefore, let
Ak be the set of in�nite subtrees in generation k, i.e. Ak = {v ∈ Dk : |Dv

l | > 0 ∀l ∈ N}.
Note that (Mv

(1−ε)n−Sv)v∈Dεn are independent under P
∗ conditioned on Aεn. We can now

use similar estimates as in the proof of Theorem 2.18. More precisely, by independence
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and Lemma 2.22 (ii) we get

P∗
(
max
v∈Dεn

Mv
(1−ε)n − Sv
(1− ε)n

≥ x
)

= E∗
[
P∗
(
max
v∈Dεn

Mv
(1−ε)n − Sv
(1− ε)n

≥ x
∣∣ Aεn)]

= E∗
[
1−

(
1− P∗

(M(1−ε)n

(1− ε)n
≥ x

))|Aεn|]
≥ P∗

(
Zεn ≥

1

2
mεn

)
· P∗
(
|Aεn| ≥

(1− q)
2

Zεn
∣∣ Zεn ≥ 1

2
mεn

)
·
(
1−

(
1− P∗

(M(1−ε)n

(1− ε)n
≥ x

)) 1−q
4
mεn
)

≥ P∗
(
Wεn ≥

1

2

)
· P∗
( 1

Zεn

∑
v∈Dεn

1{|Dvl |>0 ∀l∈N} ≥
(1− q)

2

∣∣ Zεn ≥ 1

2
mεn

)
· P∗
(M(1−ε)n

(1− ε)n
≥ x

)1− q
4

mεn ·
(
1− P∗

(M(1−ε)n

(1− ε)n
≥ x

)1− q
4

mεn
)
. (2.19)

Analogously to (2.14), for the �rst probability on the right hand side of (2.19) it holds
that lim infn→∞ P∗(Wεn ≥ 1

2) ≥ P∗(W > 1
2) > 0. The second probability is at least

1−q
2 by Lemma 1.34. Furthermore, analogously to (2.15), the Markov inequality and the

choice of ε yields

1− P∗
(M(1−ε)n

(1− ε)n
≥ x

)1− q
4

mεn ≥ 1− P
( S(1−ε)n
(1− ε)n

≥ x
)mn

4

= 1− exp
(
−n
(
(1− ε)I(x)− logm

)
+ o(n)

)
→ 1.

(2.20)

Combining (2.18), (2.19) and (2.20) shows

lim inf
n→∞

1

n
logP∗

(Mn

n
≥ x

)
≥ −ε(I(x)−logm)+(1−ε) lim inf

n→∞

1

(1− ε)n
logP∗

(M(1−ε)n

(1− ε)n
≥ x

)
.

This implies the lower bound.
2. Case: x < x∗

Following the strategy explained in Section 2.4, there are only k∗ particles at time tn
and the position of one particle is smaller than its expectation. Afterwards, all particles
move and branch as usual. For the lower bound let t ∈ (0,min{1− x

x∗ , 1}] and �x ε > 0.
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Note that t ∈ (0, 1− x
x∗ ] if x > 0 and t ∈ (0, 1] if x ≤ 0. We have

P∗
(Mn

n
≤ x

)
≥ P∗

(Mn

n
≤ x

∣∣ Ztn = k∗
)
· P∗(Ztn = k∗)

≥ qk∗−1P∗
(Stn +M(1−t)n

n
≤ x

)
· P∗(Ztn = k∗)

≥ qk∗−1P∗
(M(1−t)n

(1− t)n
≤ x∗ + ε

)
· P
(Stn
n
≤ (x− (1− t)(x∗ + ε))

)
· P∗(Ztn = k∗). (2.21)

Since the �rst probability on the right hand side of (2.21) converges to 1 almost surely
as n→∞ by Theorem 2.4, we get

P∗
(Mn

n
≤ x

)
≥ exp

(
−
[
I
(
t−1(x− (1− t)(x∗ + ε))

)
+ ρ
]
tn+ o(n)

)
.

Letting ε→ 0 and since this inequality holds for all t ∈ (0,min{1− x
x∗ , 1}], we conclude

lim inf
n→∞

1

n
logP∗

(Mn

n
≤ x

)
≥ sup

t∈(0,min{1− x
x∗ ,1}]

−H(x) = − inf
t∈(0,1]

H(x).

For the upper bound de�ne

Tn = inf
{
t ≥ 0: Ztn ≥ n3

}
and for ε1 > 0 introduce the set

F = F (ε1) =
{
ε1, 2ε1, . . . ,

⌈
min

{(
1− x

x∗

)
, 1
}
ε−11

⌉
ε1

}
.

By the de�nition of Tn we then have

P∗
(Mn

n
≤ x

)
≤ P∗

(
Tn > min

{(
1− x

x∗

)
, 1
})

+
∑
t∈F

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])P∗(Tn ∈ (t− ε1, t])
≤ P∗

(
Z(min{(1− x

x∗ ),1})n ≤ n
3
)
+
∑
t∈F

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])P∗(Z(t−ε1)n ≤ n
3).

(2.22)

Let ε2 > 0. Recall that Atn is the set of in�nite subtrees in generation tn. Using
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Lemma 2.26 and the same estimate as in (2.19),

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])
≤ P∗

(
max
v∈Dtn

Stn +Mv
(1−t)n

n
≤ x

∣∣∣ Tn ∈ (t− ε1, t])
≤ P

(Stn
n
≤ −

(
(1− t)(x∗ − ε2)− x

))
+ P∗

(M(1−t)n

(1− t)n
≤ x∗ − ε2

)n
+ P∗

(
Ztn ≤ n2

∣∣ Tn ∈ (t− ε1, t]
)
+ P∗

(
|Atn| ≤ n

∣∣ Ztn > n2, Tn ∈ (t− ε1, t]
)
. (2.23)

The second probability on the right hand side of (2.23) converges to 0 by Theorem 2.4.
Hence, the second term in (2.23) decays faster than exponentially in n. For the third
term on the right hand side of (2.23),

P∗
(
Ztn ≤ n2

∣∣ Tn ∈ (t− ε1, t]
)
≤ P∗

(
∃k ∈ N : Zk ≤ n2

∣∣ Z0 = n3
)

≤
(
n3

n2

)
qn

3−n2 ≤ exp
(
(n3 − n2) log q + 3n2 log n

)
.

(2.24)

In the second inequality we used the fact that for the event we consider, at most n2 of
the initial n3 Galton-Watson trees may survive. Note that every initial particle produces
an independent Galton-Watson tree. Analogousy to (2.24), we get for the fourth term
on the right hand side of (2.23)

P∗
(
|Atn| ≤ n

∣∣ Ztn > n2, Tn ∈ (t− ε1, t]
)
≤
(
n2

n

)
qn

2−n ≤ exp
(
(n2 − n) log q + 2n log n

)
.

(2.25)
Combining (2.22), (2.23), (2.24) and (2.25) and letting ε1, ε2 → 0, we conclude with
Lemma 2.23 after a straightforward calculation

lim sup
n→∞

1

n
logP∗

(Mn

n
≤ x

)
≤ − inf

t∈(0,min{1− x
x∗ ,1}]

{
tρ+ tI

(
−(1− t)x∗ − x

t

)}
= −H(x).

Note that we could take the limit ε2 → 0, since I is continuous from the right on (0,∞).
3. Case: x = x∗

The proof is analogous to Theorem 2.18.
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3 Branching Random Walks In Random

Environment

3.1 Description of the model

In this chapter we consider the same model as in Chapter 2, but we add another source
of randomness. In Chapter 2 the branching mechanism, given by the weights (p(k))k∈N0 ,
was independent of time. In this chapter, at every time n the weights are chosen at
random, independently of everything else.
Other random environments have been considered before. In [25] Fang and Zeitouni
studied branching random walks with time-dependent transition probabilities. Space-
time environments (i.e. branching and movement depends on time and location of the
particles) are investigated by Yoshida [58] as well as by Hu and Yoshida [42].
We keep the notation of Chapter 2 if not stated otherwise. In our model the set of
possible o�spring distributions is de�ned as

M =
{
(p(k))k∈N0 : p(k) ≥ 0,

∞∑
k=0

p(k) = 1
}
.

Let ω1, ω2, . . . be a sequence of i.i.d. random variables with values in M and de�ne
the random environment ω = (ωn)n∈N, where ωn = (pn(k))k∈N0 . The corresponding
probability measure is denoted by P and its expectation by E. Let (Zn)n∈N0 be a Galton-
Watson process in the random environment ω with one initial particle. More precisely,
given an environment ω, for all n ∈ N let (ξn,k)k∈N be a sequence of i.i.d. random variables
with Pω(ξn,1 = k) = pn(k) for all k ∈ N and let Z0 = 1. The number of particles in the
n-th generation is de�ned as Zn =

∑Zn−1

k=1 ξn,k. Let mn = Eω[ξn,1] =
∑∞

k=1 kpn(k) be
the reproduction mean in generation n and let m be an independent copy of m1.
For a �xed environment ω, we denote by Pω and Eω the probability, respectively the
expectation of the processes in the environment ω. We refer to Pω as the quenched
probability. The annealed probability is de�ned as

P(·) =
∫
Pω(·)P(dω).

We denote the associated expectation by E. As in Chapter 2 we study large devia-
tion probabilities of the maximum of the branching random walk and the maximum of
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3. Branching Random Walks In Random Environment

independent random walks.

3.2 Some known results

3.2.1 On the branching process in random environment

Throughout this chapter we assume that each particle produces at least one o�spring.

Assumption 6. Each particle has at least one o�spring, i.e. p(0) = 0. Furthermore,

P(p(1) = 1) < 1.

The Galton-Watson process in random environment always survives if Assumption 6 is
satis�ed. Furthermore, the reproduction means satisfy mn ≥ 1 for all n ∈ N.
In analogy to the time-homogeneous Galton-Watson process, we introduce the process
(Wn)n∈N, where

Wn = Zn

( n∏
i=1

mi

)−1
.

Let (Fn)n∈N be the natural �ltration of the Galton-Watson process in random environ-
ment, i.e. Fn = σ(Z1, . . . , Zn). For P-a.e. ω the process (Wn)n∈N is a Pω-martingale with
respect to the �ltration (Fn)n∈N. Therefore, Wn → W Pω-a.s., where W is an almost
surely �nite random variable.

Assumption 7. For the Galton-Watson process in random environment suppose that

E[Z1 logZ1] <∞.

The following theorem shows that under our assumptions the limit W is non-trivial,
i.e. P(W = 0) < 1.

Theorem 3.1. Assume that

E[logm] > 0, E[log(1− p(0))] > −∞ and E
[
m−11 Eω[Z1 logZ1]

]
<∞.

Then we have Eω[W ] = 1.

A proof can be found in [6, Theorem 1]. Note that the assumptions in Theorem 3.1 are
satis�ed if Assumption 6 and 7 are ful�lled.

3.2.2 First and second term of the maximum

De�ne
x∗ = sup

{
x ≥ 0: I(x) ≤ E[logm]

}
. (3.1)

In analogy to the time-homogeneous case, Huang and Liu [43] showed that x∗ is the
speed of the maximum of the branching random walk. Note that they consider a more
general model, where branching as well as movement of particles is time-dependent.
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3.3. Rate functions and assumptions

Theorem 3.2 ([43, Theorem 3.4]). Suppose that Assumption 6 and 7 are satis�ed. Fur-

thermore, assume that E[eλX1 ] < ∞ for all λ ∈ R. The maximum of the branching

random walk has linear speed x∗, i.e.

lim
n→∞

Mn

n
= x∗ P-a.s.

The maximum of independent random walks also has linear speed x∗, see (3.8). Now
assume that I(x) is di�erentiable at x = x∗. For n ∈ N introduce the random variables

Kn = logE
[
eI
′(x∗)X1

]
n+

n∑
i=1

logmi.

In particular, one can check that Kn
n → I ′(x∗)x∗ P-almost surely as n→∞. Mallein and

Miªo± [51] proved that the maximum of the branching random walk has a logarithmic
second term.

Theorem 3.3 ([51, Corollary 1.3]). Suppose that Assumption 6 is satis�ed. Furthermore,

assume that E[eλX1 ] <∞ for all λ ∈ R, E[(logm)2] <∞ and E[Z2
1 ] <∞. Then, for an

explicit constant c ≥ 0

lim
n→∞

Mn − Kn
I′(x∗)

log n
= −

( 3

2I ′(x∗)
+ c
)

in P-probability.

In particular, c = 0 if and only if the reproduction mean m is almost surely constant.

Note that this result is in accordance with the third statement of Theorem 2.8 in the
time-homogeneous case. Moreover, Theorem 3.3 shows that the logarithmic correction
term is smaller for time-inhomogeneous branching random walks.
Furthermore, precise asymptotics on the empirical distribution are obtained in [32], [33]
and [34].

3.3 Rate functions and assumptions

In this section we introduce the rate functions of the Galton-Watson process in random
environment, which are needed to state our main results of this chapter. Throughout the
chapter we use the convention ∞ · 0 = 0.

3.3.1 Rate function of the logarithmic reproduction means

For x ≥ 0 the rate function of the logarithmic reproduction means is de�ned as

I logm(x) = sup
λ∈R

(λx− log E
[
eλ logm

]
). (3.2)
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I logm is lower semicontinuous, and therefore continuous from the right for x ≤ E[logm]

and continuous from the left for x ≥ E[logm].

Assumption 8. All moments of the reproduction mean exist, i.e. E[mλ] < ∞ for all

λ > 0.

Note that Assumption 8 is satis�ed for constant reproduction mean. Furthermore, As-
sumption 8 implies I logm(x) > 0 for all x 6= E[logm].
Since (logmn)n∈N is a sequence of i.i.d. random variables, Cramér's theorem yields a
large deviation result for the logarithmic reproduction means.

Theorem 3.4. Suppose that Assumption 8 is satis�ed. The laws of
∑n
i=1 logmi

n under P

satisfy a large deviation principle with rate function I logm, i.e.

−I logm(x) =

limn→∞
1
n log P

(∑n
i=1 logmi

n ≥ x
)

for x ≥ E[logm],

limn→∞
1
n log P

(∑n
i=1 logmi

n ≤ x
)

for 0 ≤ x ≤ E[logm].

3.3.2 Rate functions of the Galton-Watson process

We have to distinguish the behaviour of the Galton-Watson process in random environ-
ment under the annealed law and under the quenched law.
If Assumption 6, 7 and 8 are satis�ed, then there is an annealed large deviation result
for the lower deviation probabilities, i.e. for probabilities of the form P(Zn ≤ exn) for
x < E[logm], see Theorem 3.5.

Assumption 9. There exists a constant β ∈ (1,∞] such that

lim
k→∞

logP(Z1 ≥ k)
log k

= −β.

Moreover, if β < ∞, there is d1 > 0 such that P
(
Pω(Z1 ≥ k) ≤ d1m1k

−β) = 1.

Otherwise, if β = ∞, for every β′ < ∞ there exists a constant d2 > 0 such that

P
(
Pω(Z1 ≥ k) ≤ d2m1k

−β′) = 1.

Note that Assumption 9 implies Assumption 7. If β <∞, Assumption 9 ensures that the
o�spring distribution is heavy-tailed. More precisely, there are environments such that
the o�spring distribution has polynomial tails with coe�cient β, but no environment has
an o�spring distribution with heavier tail.
If Assumption 8 and 9 are satis�ed, then there is an annealed large deviation result
for the upper deviation probabilities, i.e. for probabilities of the form P(Zn ≥ exn) for
x > E[logm], see Theorem 3.5. Let

ρa = − log E[p(1)] ∈ (0,∞]. (3.3)
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3.3. Rate functions and assumptions

De�ne the annealed rate function of the Galton-Watson process in random environment
as

IGWa (x) =

{
inft∈[0,x]

{
βt+ I logm(x− t)

}
for x ≥ E[logm],

inft∈[0,1)

{
ρat+ (1− t)I logm

(
(1− t)−1x

)}
for 0 ≤ x ≤ E[logm],

(3.4)

where β is the constant of Assumption 9. Note that IGWa (x) > 0 for all x 6= E[logm].
Furthermore, also IGWa is lower semicontinuous, and therefore continuous from the right
for x ≤ E[logm] and continuous from the left for x ≥ E[logm]. Now we can state the �rst
annealed large deviation principle for the Galton-Watson process in random environment.

Theorem 3.5. Under Assumption 6, 8 and 9 the laws of logZn
n under P satisfy a large

deviation principle with rate function IGWa , i.e.

−IGWa (x) =

{
limn→∞

1
n logP

(
Zn ≥ exn

)
for x ≥ E[logm],

limn→∞
1
n logP

(
Zn ≤ exn

)
for 0 ≤ x ≤ E[logm].

A proof of the lower large deviation result can be found in [9, Theorem 3.1] and of the
upper large deviation result in [8, Theorem 1] for β ∈ (1,∞). The result immediately
follows for β =∞ by a monotonicity argument, see also [8, Corollary 1].
Furthermore, the authors of [9] also show a large deviation result for the probability that
(Zn)n∈N0 grows subexponentially. Recall that a sequence (an)n∈N is called subexponen-
tial, if ane−εn → 0 as n→∞ for all ε > 0.

Theorem 3.6. Assume that Assumption 6, 7 and 8 is satis�ed. For every subexponential

sequence (an)n∈N such that an ≥ 1 for all n ∈ N,

lim
n→∞

1

n
logP

(
Zn ≤ an

)
= −ρa.

A proof can be found in [9, Proposition 2.1] and [9, Theorem 3.1].
Next, we consider large deviation events with respect to the quenched law. Therefore,
de�ne

ρq = −E[log p(1)]. (3.5)

By Jensen's inequality ρq ≥ ρa. In analogy to Assumption 5 in the time-homogeneous
case the following assumption ensures ρq <∞.

Assumption 10. It holds that E[log p(1)] > −∞.

De�ne the quenched rate function of the Galton-Watson process in random environment
as

IGWq (x) =

{
β
(
x− E[logm]

)
for x ≥ E[logm],

ρq
(
1− xE[logm]−1

)
for 0 ≤ x ≤ E[logm].

(3.6)
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Note that IGWq (x) > 0 for all x 6= E[logm]. We have the following quenched large
deviation results.

Theorem 3.7. Under Assumption 6, 8 and 9 the laws of logZn
n under Pω for P-a.e. ω

satisfy a large deviation principle with rate function IGWq , i.e.

−IGWq (x) =

{
limn→∞

1
n logPω

(
Zn ≥ exn

)
for x ≥ E[logm],

limn→∞
1
n logPω

(
Zn ≤ exn

)
for 0 ≤ x ≤ E[logm].

A proof of the upper large deviation result can be found in [12, Theorem 4.5.1]. We
prove the lower large deviation result in Subsection 3.6.1. In analogy to the annealed
case (Theorem 3.6), there is also a large deviation result for subexponential growth of
the population size (Zn)n∈N0 .

Theorem 3.8. Suppose that Assumption 6 is satis�ed. For P-a.e. ω and for every

subexponential sequence (an)n∈N such that an ≥ 1 for all n ∈ N

lim
n→∞

1

n
logPω

(
Zn ≤ an

)
= −ρq.

This theorem follows immediately from Theorem 3.7 for x→ 0.

3.4 Main results

Recall the de�nition of the rate function of the random walk, see (2.4). After de�ning
the rate functions of the Galton-Watson process in random environment we are now able
to state the main results of this chapter.
Analogously to the time-homogeneous case, note that I(x∗) = E[logm] if I(x) < ∞ for
some x > x∗. On the other hand, I(x∗) < E[logm] already implies P(X1 > x∗) = 0.
This case leads to a di�erent shape of the rate functions. For x > x∗ let

G(x) = inf
t∈[E[logm], I(x))

{
I(x)− t+ IGWa (t)

}
. (3.7)

We exclude t = I(x) in (3.7) since I(x) might be in�nite. De�ne the annealed rate
function of independent random walks as

I inda (x) =


G(x) for x > x∗,

0 for x = x∗,

IGWa (I(x)) for 0 ≤ x < x∗,

I(x) + ρa for x ≤ 0.
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Theorem 3.9. Suppose that Assumption 3, 6, 8 and 9 are satis�ed. The laws of M̃n
n

under P satisfy a large deviation principle with rate function I inda , i.e.

−I inda (x) =

{
limn→∞

1
n logP

(
M̃n
n ≥ x

)
for x ≥ x∗,

limn→∞
1
n logP

(
M̃n
n ≤ x

)
for x ≤ x∗.

Theorem 3.9 implies in particular that the speed of the maximum of independent random
walks equals x∗, i.e.

lim
n→∞

M̃n

n
= x∗ P-a.s. (3.8)

Let us now give some intuition for the rate function I inda and describe the large deviation
event {M̃n ≥ xn} for some x > x∗, respectively {M̃n ≤ xn} for some x < x∗.
For x > x∗ the number of particles should be larger or equal than expected, i.e. Zn ≥ ent

for some t ≥ E[logm]. The probability of such an event is of order exp(−IGWa (t)n+o(n)).
If there are ent particles at time n, the probability that at least one particle reaches xn
is of order exp(−I(x)n + tn + o(n)) for t < I(x). Therefore, we need to maximize the
product of these two probabilities.
If 0 ≤ x < x∗, the probability that one particle reaches xn is of order exp(−I(x)n+o(n)).
Hence, for every ε > 0, if there are less than e(I(x)−ε)n particles, the probability that
none of these particles reaches xn is close to 1. However, if there are more than e(I(x)+ε)n

particles, this probability decays exponentially in n. Note that, in contrast to the time-
homogeneous case, I inda (x) can be �nite in the Böttcher case (p(0) + p(1) = 0), since M̃n

can be small due to a bad environment.
If x < 0, already the probability that a single particle is below xn at time n decays
exponentially fast in n. Hence, if the number of particles Zn grows exponentially, the
probability that all particles are below xn at time n decays faster than exponentially.
Therefore, the number of particles needs to grow subexponentially. Since ρa does not
depend on the subexponential sequence in Theorem 3.6, there has to be only one particle
at time n (provided that ρa <∞ and therefore P(p(1) > 0) > 0). In particular, the lower
deviation probabilities P(M̃n ≤ xn) decay faster than exponentially in n in the Böttcher
case.
Next, we state a quenched large deviation result for the independent random walks.
De�ne the quenched rate function

I indq (x) =


I(x)− E[logm] for x > x∗,

0 for x = x∗,

IGWq (I(x)) for 0 ≤ x < x∗,

I(x) + ρq for x ≤ 0.

Theorem 3.10. Suppose that Assumption 3, 6, 8 and 9 are satis�ed. The laws of M̃n
n
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under Pω for P-a.e. ω satisfy a large deviation principle with rate function I indq , i.e.

−I indq (x) =

{
limn→∞

1
n logPω

(
M̃n
n ≥ x

)
for x ≥ x∗,

limn→∞
1
n logPω

(
M̃n
n ≤ x

)
for x ≤ x∗.

Analogously to the annealed case one can show that for x > x∗ we have

I indq (x) = inf
t∈[E[logm], I(x))

{
I(x)− t+ IGWq (t)

}
. (3.9)

However, the in�mum in (3.9) is always attained at t = E[logm] by the de�nition of IGWq
and β > 1.
Next, we consider the maximum of the branching random walk. De�ne the annealed rate
function of the branching random walk for x > x∗ as

IBRWa (x) = G(x). (3.10)

Theorem 3.11. Suppose that Assumption 3, 6, 8 and 9 are satis�ed. For x > x∗

−IBRWa (x) = lim
n→∞

1

n
logP

(Mn

n
≥ x

)
.

For x > x∗ we have IBRWa (x) = I inda (x). In this case the strategy is the same as for
independent random walks. Let us now de�ne the quenched rate function. For x ≤ x∗

let

Hq(x) = inf
t∈(0,1]

{
tρq + tI

(
t−1
(
x− (1− t)x∗

))}
.

De�ne the quenched rate function of the branching random walk as

IBRWq (x) =


I(x)− E[logm] for x > x∗,

0 for x = x∗,

Hq(x) for x < x∗.

Then we have the following quenched large deviation result for the branching random
walk.

Theorem 3.12. Suppose that Assumption 3, 6, 8, 9 and 10 are satis�ed. The laws of
Mn
n under Pω for P-a.e. ω satisfy a large deviation principle with rate function IBRWq ,

i.e.

−IBRWq (x) =

{
limn→∞

1
n logPω

(
Mn
n ≥ x

)
for x ≥ x∗,

limn→∞
1
n logPω

(
Mn
n ≤ x

)
for x ≤ x∗.

Remark 3.13. As in the time-homogeneous case, one can check that the rate functions
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of the branching random walk are convex.

As in the annealed case we have IBRWq (x) = I indq (x) for x > x∗. In this case the strategy
is the same as for independent random walks. The strategy in the case x < x∗ is similar
to the time-homogeneous case. Let t ∈ (0, 1]. At time tn there is only one particle whose
position is smaller than its expectation. Afterwards, each particle moves and branches
according to its usual behaviour.
Further notice, that in contrast to the case of independent random walks, the number
of particles can also grow exponentially if x < 0. It su�ces to have a small number of
particles at time tn for some t ∈ (0, 1].
The rate functions of the branching random walk and independent random walks have
the same properties as in the time-homogeneous case discussed after Proposition 2.21.
Moreover, both annealed rate functions are smaller or equal than the quenched rate
functions, i.e. I inda ≤ I indq and IBRWa ≤ IBRWq . This is true in general, see Lemma 3.14.

3.5 Preliminaries

In the proofs of the main results we often use Lemma 2.22 and Lemma 2.23. Furthermore,
the following lemma allows us to compare annealed and quenched probabilities.

Lemma 3.14. Let (An)n∈N be a sequence of events. For P-a.e. ω

lim sup
n→∞

1

n
logP(An) ≥ lim sup

n→∞

1

n
logPω(An),

and

lim inf
n→∞

1

n
logP(An) ≥ lim inf

n→∞

1

n
logPω(An).

A proof can be found in [59, Lemma 2.3.8].

3.6 Proof of the main results

3.6.1 Galton-Watson process in random environment

We �rst need to consider the event that the population size Zn stays bounded until time
n. Recall ρq = −E[log p(1)] de�ned in (3.5) and p(0) = 0 by Assumption 6.

Lemma 3.15. Suppose that Assumption 6 is satis�ed. For all b ∈ N and for P-a.e. ω

lim
n→∞

1

n
logPω(Zn ≤ b) = −ρq.

Proof. The lower bound follows immediately, since

Pω(Zn ≤ b) ≥
n∏
i=1

pi(1),
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and therefore,

lim inf
n→∞

1

n
logPω(Zn ≤ b) ≥ lim inf

n→∞

1

n

n∑
i=1

log pi(1) = −ρq.

For the upper bound �rst assume ρq =∞. For 1 ≤ k ≤ b+ 1 de�ne the sets

Jk =
{
1 +

⌊(k − 1)n

b+ 1

⌋
, . . . ,

⌊ kn

b+ 1

⌋}
.

Note that the event {Zn ≤ b} implies that there exists 1 ≤ k ≤ b + 1, such that all
particles produce exactly one o�spring for every time step in Jk. This yields

Pω(Zn ≤ b) ≤
b+1∑
k=1

∏
j∈Jk

pj(1).

Since (pj(1))j∈N is a sequence of i.i.d. random variables with respect to P, Lemma 2.23
yields

lim
n→∞

1

n
logPω(Zn ≤ b) ≤ max

1≤k≤b+1
lim sup
n→∞

1

n

∑
j∈Jk

log pj(1) =
−ρq
b+ 1

= −∞.

Now let ρq < ∞. If Zn ≤ b, there are at least n − b generations, in which all particles
can only have one o�spring. Hence,

lim sup
n→∞

1

n
logPω(Zn ≤ b) ≤ lim sup

n→∞

1

n
log
( b∑
k=0

(
n

n−k
)(
inf
i≤n

pi(1)
)−k n∏

i=1

pi(1)
)

= −ρq − b lim inf
n→∞

1

n
log
(
inf
i≤n

pi(1)
)
.

It remains to show that P-a.s.

lim inf
n→∞

1

n
log
(
inf
i≤n

pi(1)
)
= 0.
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Since (pi(1))i∈N, are independent, we have for all ε > 0 and N ∈ N

P
( 1
n
log inf

i≤n
pi(1) ≥ −ε for all n ≥ N

)
≥

N∏
n=1

P(log pn(1) ≥ −εN) ·
∞∏

n=N+1

P(log pn(1) ≥ −εn)

= exp
(
N log

(
1− P(log p1(1) < −εN)

))
· exp

( ∞∑
n=N+1

log
(
1− P(log pn(1) < −εn)

))
.

(3.11)

Since log(1− x) ∼ −x for x→ 0 and E[log p(1)] = −ρq > −∞ by assumption, the term
in the �rst exponent on the right hand side of (3.11) converges to 0 as N →∞ and the
sum in the second exponent is �nite. Therefore, we conclude

lim
N→∞

P
( 1
n
log inf

i≤n
pi(1) ≥ −ε for all n ≥ N

)
= 1,

which �nishes the proof.

Now we are able to prove the quenched large deviation result for the Galton-Watson
process. Therefore, for l ∈ N we introduce the shift of the environment ω = (ω1, ω2, . . .)

as θlω = (ωl+1, ωl+2, . . .).

Proof of Theorem 3.7. For x ≥ E[logm] a proof can be found in [12, Theorem 4.5.1]. For
x = 0 the result follows from Lemma 3.15. Therefore, let 0 < x < E[logm] and choose
0 < ε < x

E[logm] . Furthermore, set t = 1− x
E[logm] . For the lower bound we have

Pω
(
Zn ≤ exn

)
≥ Pω

(
Z(t+ε)n = 1

)
· Pθ(t+ε)nω

(
Z(1−t−ε)n ≤ exn

)
= Pω

(
Z(t+ε)n = 1

)
· Pω

(
W(1−t−ε)n ≤

( n∏
i=(t+ε)n+1

mi

)−1
e(1−t)nE[logm]

)
.

(3.12)

The second probability on the right hand side of (3.12) converges to 1 as n→∞, since
Wn →W <∞ almost surely. Using Lemma 3.15 and letting ε→ 0 �nishes the proof of
the lower bound after a straight forward calculation.
For the upper bound let b ∈ N. We have

Pω
(
Zn ≤ exn

)
≤ Pω

(
Z(t−ε)n ≤ b

)
+ Pθ(t−ε)nω

(
Z(1−t+ε)n ≤ exn

)b
. (3.13)

The asymptotics for the �rst probability on the right hand side of (3.13) are given in
Lemma 3.15. The second probability in (3.13) decays exponentially by Theorem 3.5,
Lemma 3.14 and the choice of t. Note that the proof of Lemma 3.14 also works for the
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3. Branching Random Walks In Random Environment

shifted environment θ(t−ε)nω. Now we choose b large enough. Using Lemma 2.23 and
letting ε→ 0 �nishes the proof.

3.6.2 Independent random walks

Proof of Theorem 3.9. 1. Case: x > x∗

Let t ∈ [E[logm], I(x)) for the proof of the lower bound. Following the strategy explained
in Section 3.4, independence of the random walks and Lemma 2.22 (ii) yields

P
(M̃n

n
≥ x

)
= E

[
1−
(
1− P

(Sn
n
≥ x

))Zn]
≥ P(Zn ≥ ent) · E

[
1−
(
1− P

(Sn
n
≥ x

))ent]
≥ P(Zn ≥ ent)P

(Sn
n
≥ x

)
ent
(
1− P

(Sn
n
≥ x

)
ent
)
.

By Theorem 2.15, P
(
Sn
n ≥ x

)
ent → 0 as n → ∞, since t < I(x). Together with

Theorem 3.5 and Lemma 2.23 we conclude

P
(M̃n

n
≥ x

)
≥ exp

(
−
(
IGWa (t) + I(x)− t

)
n+ o(n)

)
,

which yields the lower bound. For the upper bound, let 0 < ε < I(x) − E[logm] and
de�ne the set

F = F (ε) =
{
E[logm],E[logm] + ε, . . . ,E[logm] +

⌈I(x)− E[logm]

ε

⌉
ε
}
.

To prove the upper bound, we need to partition according to the number of particles at
time n. This yields

P
(M̃n

n
≥ x

)
≤ P

(
Zn ≥ eI(x)n

)
+ P

(M̃n

n
≥ x

∣∣ Zn ≤ eE[logm]n
)

+
∑
k∈F

P
(M̃n

n
≥ x

∣∣ Zn ∈ (ekn, e(k+ε)n]) · P(Zn ∈ (ekn, e(k+ε)n]).
(3.14)

For all k ∈ F the Markov inequality yields

P
(M̃n

n
≥ x

∣∣ Zn ∈ (ekn, e(k+ε)n]) = P
( Zn∑
i=1

1{Sin≥xn} ≥ 1
∣∣ Zn ∈ (ekn, e(k+ε)n])

≤ e(k+ε)nP
(Sn
n
≥ x

)
. (3.15)
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The second summand in (3.14) can be estimated analogously. Plugging (3.15) in (3.14)
and using Theorem 2.15 and Theorem 3.5, we conclude with Lemma 2.23

P
(M̃n

n
≥ x

)
≤ P

(
Zn ≥ eI(x)n

)
+ P

(Sn
n
≥ x

)
· eE[logm]n

+
∑
k∈F

e(k+ε)nP
(Sn
n
≥ x

)
P
(
Zn ∈

(
ekn, e(k+ε)n

])
= exp

(
max
k∈F

(
−IGWa (k)− I(x) + k + ε

)
n+ o(n)

)
≤ sup

t∈[E[logm],I(x)+ε)
exp
(
−
(
IGWa (t) + I(x)− t− ε

)
n+ o(n)

)
.

Letting ε→ 0 yields the upper bound.
2. Case: 0 < x < x∗

We prove the upper bound �rst. Since the rate function I is strictly increasing on the
interval [0, x∗], we can choose ε > 0 such that ε < I(x) < E[logm] − ε. Using the
inequality 1− y ≤ e−y and Theorem 3.5,

P
(M̃n

n
≤ x

)
= E

[(
1− P

(Sn
n
> x

))Zn]
≤ E

[
exp
(
−P
(Sn
n
> x

)
Zn

)]
≤ P

(
Zn ≤ e(I(x)+ε)n

)
+ exp

(
− eεn+o(n)

)
= exp

(
−IGWa (I(x) + ε)n+ o(n)

)
.

Letting ε → 0 yields the upper bound. Note that IGWa is continuous from the right on
(0, I(x∗)). The proof for the lower bound works in a similar way. More precisely, since
P(Snn > x) < e−1 for n large enough, Lemma 2.22 (i) and Theorem 2.15 yields

P
(M̃n

n
≤ x

)
= E

[(
1− P

(Sn
n
> x

))Zn]
≥ E

[
exp
(
−e · P

(Sn
n
> x

)
Zn

)]
≥ P

(
Zn ≤ eI(x)n

)
· exp(o(n)) = exp

(
−IGWa (I(x))n+ o(n)

)
.

This proves the lower bound.
3. Case: x ≤ 0

We �rst consider x < 0. For the upper bound we have for K ∈ N

P
(M̃n

n
≤ x

)
= E

[
P
(Sn
n
≤ x

)Zn]
≤

K∑
k=1

P
(Sn
n
≤ x

)k
· P(Zn = k) + P

(Sn
n
≤ x

)K
.

(3.16)
By Theorem 3.6, P(Zn = k) is at most of order exp(−ρan+ o(n)) for all k ∈ N. For all
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K ∈ N, Lemma 2.23 yields

lim sup
n→∞

1

n
logP

(M̃n

n
≤ x

)
≤ max

{
−(I(x) + ρa),−KI(x)

}
.

Hence, letting K → ∞ proves the upper bound. Note that this still holds true for
ρa =∞. As in the proof of (3.16) we have

P
(M̃n

n
≤ x

)
= E

[
P
(Sn
n
≤ x

)Zn]
≥ P

(Sn
n
≤ x

)
·P(Zn = 1) = exp

(
−(I(x)+ρa)n+o(n)

)
,

which shows the lower bound. For x = 0 the result follows from continuity of the rate
function I at 0.
4. Case: x = x∗

By Lemma 3.14 it su�ces to show that the quenched probabilities Pω(Mn ≤ x∗n) and
Pω(Mn ≥ x∗n) decay slower than exponentially in n for P-a.e. ω. Analogously to proof
of Theorem 2.18,

Pω

(M̃n

n
≤ x∗

)
= 1− Pω

(M̃n

n
> x∗

)
≥ 1− P

(Sn
n
> x∗

) n∏
i=1

mi. (3.17)

Now we have to distinguish two cases. If I(x∗) = E[logm], then the right hand side of
(3.17) converges to 1 as n → ∞ by Theorem 2.24. If I(x∗) < E[logm], then I(x) = ∞
for all x > x∗ and therefore, P(X1 > x) = 0 by Lemma 2.25. Hence, the right hand side
of (3.17) equals 1. In both cases we get

lim
n→∞

1

n
logPω

(M̃n

n
≤ x∗

)
= 0.

Since Pω(M̃n ≥ x∗n) ≥ Pω(Mn ≥ x∗n), it remains to show that Pω(Mn ≥ x∗n) decays
slower than exponentially in n. This is done in the proof of Theorem 3.12.

Proof of Theorem 3.10. 1. Case: x ≥ x∗

The proof of (3.9) is analogous to the proof of Theorem 3.9. The in�mum on the right
hand side of (3.9) is attained at t = E[logm]. More precisely, plugging the quenched
rate function of the Galton-Watson process de�ned in (3.6) in equation (3.9) and using
β > 1 shows that the function in the in�mum is increasing in t. This �nishes the proof.
2. Case: x ≤ x∗

The proof in this case works exactly as the proof of Theorem 3.9.

3.6.3 Branching random walk

Recall that IBRWa (x) = I inda (x) and IBRWq (x) = I indq (x) for x > x∗. In this case, the upper
bound in Theorem 3.11 and Theorem 3.12 now follows from Lemma 2.27.
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In order to prove Theorem 3.11 we need another preliminary result. If β < ∞ in As-
sumption 9, the initial particle should produce exp(sn) o�spring particles in the �rst
step for some s > 0. As we want to use independence of these particles, we �rst derive
a quenched estimate. Note that the branching is not independent under the measure P.
This quenched estimate is used in the proof of the annealed large deviation result.
For x ∈ R, K ∈ N and ε > 0 de�ne the process (Yn)n∈N, where

Yn = Yn(x,K, ε) = inf
l∈{0,1,...,bnK−1c}

{ lK∑
i=1

logmi − lK(I(x) + ε)
}
.

Proposition 3.16. Suppose that Assumption 3, 6, 8 and 9 are satis�ed. For all x ∈ R
and ε > 0 there exists K0 = K0(x, ε) ∈ N such that for P-a.e. ω, every n ∈ N and

K ≥ K0 there is C = C(x,K, ε) > 0 with

Pω

(Mn

n
≥ x

)
≥ C e

Yn

n
.

Note that Yn ≤ 0 for all n ∈ N. Furthermore, the constants K0 and C are independent
of the environment ω (only Yn depends on ω).

Proof. Fix 0 < ε1 < ε. By Theorem 2.15 we can choose K0 such that

P(SK ≥ Kx) ≥ e−K(I(x)+ε1) (3.18)

for all K ≥ K0. Consider the following embedded Galton-Watson process in random
environment (Ẑn)n∈N0 consisting of all particles with average displacement of at least
x in blocks of length K. More precisely, for n ∈ N0 let D̂n be the set of particles in
generation n of the embedded process. Let o ∈ D̂0 and for n ∈ N0, v ∈ D̂n we have
w ∈ D̂v

1 if w ∈ Dv
K and Sw − Sv ≥ Kx. In particular, D̂n ⊆ DKn for all n ∈ N. The

number of children of the k-th particle in generation n of the embedded process is denoted
by ξ̂n+1,k. Note that if this embedded process survives until generation bnK−1c, there is
at least one particle v in generation KbnK−1c with Sv ≥ KbnK−1cx. Therefore,

Pω

(Mn

n
≥ x

)
≥ Pω

(
ẐbnK−1c > 0

)
· P
(
Sn−KbnK−1c ≥

(
n−KbnK−1c

)
x
)

≥ Pω
(
ẐbnK−1c > 0

)
· P(X1 ≥ x)K . (3.19)

Hence, it remains to estimate the survival probability up to generation bnK−1c of the
embedded process (Ẑn)n∈N0 . For this we want to use the second moment method. Since
the variance of the number of o�spring ξn,k might be in�nite, we have to use a truncation
argument. More precisely, for B ∈ N let ξBn,k = max{ξn,k, B} for all n, k ∈ N. We use
the same notation as for the usual process, but add an index �B� when referring to the
truncated process. Note that in particular ξBn,k ≤ B and therefore, ξ̂Bn,k ≤ BK for all
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n, k ∈ N. Moreover, if the truncated embedded process survives, then also the usual
embedded process survives, i.e. Pω

(
ẐbnK−1c > 0

)
≥ Pω

(
ẐBbnK−1c > 0

)
. By the Cauchy-

Schwarz inequality,

Eω
[
ẐBbnK−1c

]2
= Eω

[
ẐBbnK−1c1

{
ẐB
bnK−1c

>0
}]2 ≤ Eω[(ẐBbnK−1c

)2] · Pω(ẐBbnK−1c > 0
)
.

This implies

Pω
(
ẐBbnK−1c > 0

)
≥

Eω
[
ẐBbnK−1c

]2
Eω

[(
ẐBbnK−1c

)2] =

(
Varω

(
ẐBbnK−1c

)
Eω
[
ẐBbnK−1c

]2 + 1

)−1
. (3.20)

This term can be estimated analogously to (2.2) in [26]. More precisely, since

Varω
(
ẐBbnK−1c

)
= Varω

(ẐB
bnK−1c−1∑
k=1

ξ̂BbnK−1c,k

)
= Eω

[
ẐBbnK−1c−1

]
Varω

(
ξ̂BbnK−1c,1

)
+ Eω

[
ξ̂BbnK−1c,1

]2
Varω

(
ẐBbnK−1c−1

)
,

we get recursively

Varω
(
ẐBbnK−1c

)
Eω
[
ẐBbnK−1c

]2 =
Varω

(
ξ̂BbnK−1c,1

)
Eω
[
ξ̂BbnK−1c,1

]
Eω
[
ẐBbnK−1c

] + Varω
(
ẐBbnK−1c−1

)
Eω
[
ẐBbnK−1c−1

]2
=

bnK−1c∑
l=1

Varω
(
ξ̂Bl,1
)

Eω
[
ξ̂Bl,1
]
Eω
[
ẐBl
] . (3.21)

For the numerator on the right hand side of (3.21) we have for all l ∈ N

Varω
(
ξ̂Bl,1
)
≤ Eω

[(
ξ̂Bl,1
)2] ≤ B2K . (3.22)

With a slight abuse of notation we write Dk(B) for the set of particles of the truncated
process in generation k. For all l ∈ N and v ∈ D(l−1)K

Eω
[
ξ̂Bl,1
]
= Eω

[ ∑
w∈DvK(B)

1{Sw−Sv≥Kx}

]
= P(SK ≥ Kx) · Eω

[
|Dv

K(B)|
]

= P(SK ≥ Kx) ·
lK∏

i=(l−1)K+1

Eω
[
ξBi,1
]
. (3.23)

In particular, since p(0) = 0, this implies Eω
[
ξ̂Bl,1
]
≥ P(SK ≥ Kx) for all l ∈ N. This

estimate will be used for the �rst term in the denominator on the right hand side of
(3.21). For the second term we also have to estimate Eω

[
ξBi,1
]
. More precisely, using
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Assumption 9, we get

Eω
[
ξBi,1
]
= Eω

[
max{ξi,1, B}

]
= Eω

[
ξi,11{ξi,1≤B}

]
+B · Pω(ξi,1 > B)

= Eω
[
ξi,1
]
− Eω

[
ξi,11{ξi,1>B}

]
+B · Pω(ξi,1 > B)

= mi −
∞∑
k=1

Pω
(
ξi,11{ξi,1>B} ≥ k

)
+B · Pω(ξi,1 > B)

= mi −
∞∑

k=B+1

Pω
(
ξi,1 ≥ k

)
≥ mi

(
1− d1

∞∑
k=B+1

k−β
)
. (3.24)

In the case β =∞ there is a similar estimate. Note that the sum on the right hand side
of (3.24) converges, since β > 1. Now let ε2 > 0 such that ε1− log(1−ε2) ≤ ε and choose
B large enough such that d1

∑∞
k=B+1 k

−β ≤ ε2. Combining (3.18), (3.23) and (3.24),

Eω
[
ẐBl
]
=

l∏
j=1

Eω
[
ξ̂Bj,1
]
=

l∏
j=1

(
P(SK ≥ Kx)(1− ε2)K

jK∏
i=(j−1)K+1

mi

)

≥ e−lK(I(x)+ε1)(1− ε2)lK
lK∏
i=1

mi

≥ exp
( lK∑
i=1

logmi − lK(I(x) + ε)
)

≥ eYn . (3.25)

Altogether, using (3.21), (3.22), (3.23) and (3.25), we get

Varω
(
ẐBbnK−1c

)
Eω
[
ẐBbnK−1c

]2 ≤ B2KbnK−1c
P(SK ≥ Kx)

e−Yn .

Since Yn ≤ 0, (3.20) implies

Pω
(
ẐBbnK−1c > 0

)
≥
(B2KbnK−1c
P(SK ≥ Kx)

+ 1
)−1

eYn ,

which yields the result together with (3.19).

To estimate the annealed probability of the event {Mn ≥ xn} it remains to investigate
the asymptotics of Yn with respect to P.
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Lemma 3.17. Let x > x∗ and 0 ≤ y ≤ I(x)− E[logm]. Then,

lim
ε→0

lim
K→∞

lim inf
n→∞

1

n
log P

(Yn
n
≥ −y

)
= lim

ε→0
lim
K→∞

lim sup
n→∞

1

n
log P

(Yn
n
≥ −y

)
= −I logm(I(x)− y).

Furthermore, for all x ∈ R, ε > 0 and K ∈ N

lim
n→∞

Yn
n

= min
{
0,−(I(x) + ε− E[logm])

}
P-a.s.

Proof. Since we have

P
(Yn
n
≥ −y

)
≤ P

(
1

bnK−1cK

bnK−1cK∑
i=1

logmi ≥ I(x) + ε− y n

bnK−1cK

)
,

taking the limsup yields

lim sup
n→∞

1

n
log P

(Yn
n
≥ −y

)
≤ −I logm(I(x) + ε− y).

Letting ε→ 0 �nishes the proof of the upper bound. Note that I logm is continuous. For
the lower bound let ε1 > 0 and take K ∈ N large enough such that

P
( K∑
i=1

logmi ≥ K(I(x) + ε− y)
)
≥ exp

(
−K(I logm(I(x) + ε− y) + ε1)

)
.

Then,

P
(Yn
n
≥ −y

)
≥ P

( lK∑
i=(l−1)K+1

logmi ≥ K(I(x) + ε− y) ∀l ∈ {1, . . . , bnK−1c}
)

= P
( K∑
i=1

logmi ≥ K(I(x) + ε− y)
)bnK−1c

≥ exp
(
−n(I logm(I(x) + ε− y) + ε1)

)
.

Taking the liminf as n→∞ yields

lim inf
n→∞

1

n
log P

(Yn
n
≥ −y

)
≥ −I logm(I(x) + ε− y) + ε1.

Letting ε1 → 0 and ε → 0 �nishes the proof of the �rst part of Lemma 3.17. For the
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second part of the lemma note that

Yn
n
≤ min

{
0,

1

n

bnK−1cK∑
i=1

logmi −
bnK−1cK

n
(I(x) + ε)

}
.

Taking limits n → ∞ and ε → 0 yields the upper bound. For the lower bound we have
to distinguish two cases. First assume that E[logm] > I(x) + ε. Then, however,

lim
k→∞

k∑
i=1

logmi − k(I(x) + ε) =∞ P-a.s.

and therefore, limn→∞ Yn > −∞ P-a.s., which implies the claim. For the second case let
E[logm] ≤ I(x) + ε and assume that there is ε1 > 0 such that

lim inf
n→∞

Yn
n
≤ −(I(x) + ε− E[logm] + 2ε1) P-a.s.

Hence, Yn ≤ −(I(x)+ε−E[logm]+ε1)n for in�nitely many n almost surely and therefore
also

∑n
i=1 logmi ≤ (E[logm]− ε1)n for in�nitely many n almost surely, which leads to a

contradiction. This implies the lower bound.

We are now able to prove the main results of this chapter.

Proof of Theorem 3.11. Let x > x∗. As already mentioned above, the upper bound
immediately follows from Theorem 3.9 and Lemma 2.27. It remains to prove the lower
bound.
First of all recall that IGWa (t) = infs∈[0,t]{βs + I logm(t − s)} for t ≥ E[logm], see (3.4).
Now �x t ∈ [E[logm], I(x)), s ∈ [0, t − E[logm]] and let ε > 0 and K ∈ N large
enough such that Proposition 3.16 is applicable. Since the particles move and branch
independently with respect to Pω, Lemma 2.26 yields

P
(Mn

n
≥ x

)
= P

(
max
v∈D1

Mv
n−1 + Sv

n
≥ x

)
≥ P

(
max
v∈D1

Mv
n−1

n− 1
≥ x

)
· P(X1 ≥ x)

= E
[
1−

(
1− Pθω

(Mn−1
n− 1

≥ x
))Z1

]
· P(X1 ≥ x)

≥ E
[
1−

(
1− Pθω

(Mn−1
n− 1

≥ x
))esn]

· P(X1 ≥ x) · P
(
Z1 ≥ esn

)
. (3.26)
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Let 0 < ε1 < I(x)− t. By Proposition 3.16 and Lemma 2.22 (ii)

E
[
1−

(
1− Pθω

(Mn−1
n− 1

≥ x
))esn]

≥ E
[
1−

(
1− C

n− 1
eYn−1

)esn]
≥ E

[ C

n− 1
eYn−1esn

(
1− C

n− 1
eYn−1esn

) ∣∣ 0 ≤ Yn−1
n− 1

+ I(x)− t+ s ≤ ε1
]

· P
(
0 ≤ Yn−1

n− 1
+ I(x)− t+ s ≤ ε1

)
≥ Ces

n− 1
e−(I(x)−t)(n−1)

(
1− Ces

n− 1
e−(I(x)−t−ε1)(n−1)

)
· P
(
0 ≤ Yn−1

n− 1
+ I(x)− t+ s ≤ ε1

)
. (3.27)

The third term on the right hand side of (3.27) converges to 1 as n→∞, since we have
I(x)− t− ε1 > 0. For the last term Lemma 3.17 yields

lim
ε→0

lim
K→∞

lim inf
n→∞

1

n
log P

(
0 ≤ Yn−1

n− 1
+ I(x)− t+ s ≤ ε1

)
= −I logm(t− s). (3.28)

Combining (3.26), (3.27), (3.28) and Assumption 9 shows

P
(Mn

n
≥ x

)
≥ exp

(
−(I(x)− t+ βs+ I logm(t− s))n+ o(n)

)
.

Since this holds for all s and t, the lower bound follows.

Proof of Theorem 3.12. 1. Case: x > x∗

The upper bound immediately follows from Theorem 3.10 and Lemma 2.27. It remains
to prove the lower bound. Since I(x) > E[logm], Proposition 3.16 and Lemma 3.17 yield

lim inf
n→∞

1

n
logPω

(Mn

n
≥ x

)
≥ lim

n→∞

Yn
n

= −(I(x) + ε− E[logm]).

Letting ε→ 0 �nishes the proof of the lower bound.
2. Case: x < x∗

Analogously to the annealed case, there is only one particle at time tn and the position
of this particle is smaller than its expectation. Afterwards, all particles move and branch
as usual. For the lower bound let t ∈

(
0,min{1 − x

x∗ , 1}
]
and �x ε > 0. Note that
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t ∈ (0, 1− x
x∗ , 1] if x > 0 and t ∈ (0, 1] if x ≤ 0. Then we have

Pω

(Mn

n
≤ x

)
≥ Pω

(Mn

n
≤ x

∣∣ Ztn = 1
)
· Pω(Ztn = 1)

= Pθtnω

(Stn +M(1−t)n

n
≤ x

)
· Pω(Ztn = 1)

≥ Pθtnω
(M(1−t)n

(1− t)n
≤ x∗ + ε

)
· Pω

(Stn
n
≤ (x− (1− t)(x∗ + ε))

)
· Pω(Ztn = 1).

(3.29)

Since the �rst probability on the right hand side in (3.29) converges to 1 Pω-a.s. as n→∞
for P-a.e. ω analogously to (3.17), we get

Pω

(Mn

n
≤ x

)
≥ exp

([
I
(
t−1(x− (1− t)(x∗ + ε))

)
+ ρq

]
tn+ o(n)

)
.

Since this inequality holds for all t ∈
(
0,min{1− x

x∗ , 1}
]
, letting ε→ 0 yields

lim inf
n→∞

1

n
logPω

(Mn

n
≤ x

)
≥ sup

t∈(0,min{1− x
x∗ ,1}]

−Hq(x) = − inf
t∈(0,1]

Hq(x).

For the upper bound, de�ne

Tn = inf
{
t ≥ 0: Ztn ≥ n3

}
and for ε1 > 0 let

F = F (ε1) =
{
ε1, 2ε1, . . . ,

⌈(
min

{
1− x

x∗
, 1
})
ε−11

⌉
ε1

}
.

Note that Tn ∈
(
t− ε1, t

]
implies Ztn ≥ n3, since p(0) = 0. Therefore, we have

Pω

(Mn

n
≤ x

)
≤ Pω

(
Tn > min

{
1− x

x∗
, 1
})

+
∑
t∈F

Pω

(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])Pω(Tn ∈ (t− ε1, t])
≤ Pω

(
Z(min{1− x

x∗ ,1})n ≤ n
3
)
+
∑
t∈F

Pω

(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])Pω(Z(t−ε1)n ≤ n
3).

(3.30)
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For ε2 > 0, Lemma 2.26 thus shows

Pω

(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])
≤ Pω

(
max
v∈Dtn

Stn +Mv
(1−t)n

n
≤ x

∣∣∣ Tn ∈ (t− ε1, t])
≤ Pω

(Stn
n

< −
(
(1− t)(x∗ − ε2)− x

))
+ Pθtnω

(M(1−t)n

(1− t)n
< x∗ − ε2

)n3

. (3.31)

To estimate the second probability in (3.31) we de�ne the shifted version of Yn. More
precisely, for x ∈ R, K ∈ N and ε > 0 let

Y ′(1−t)n = Y ′(1−t)n(x,K, ε) = inf
l∈{0,1,...,b(1−t)nK−1c}

{ tn+lK∑
i=tn+1

logmi − lK(I(x) + ε)
}
.

Analogously to Proposition 3.16 one gets

Pθtnω

(M(1−t)n

(1− t)n
≥ x∗ − ε2

)
≥ C e

Y ′
(1−t)n

n
.

Furthermore, as in the proof of Lemma 3.17 we have limn→∞ Y
′
(1−t)n > −∞ P-a.s. for ε

small enough, since E[logm] > I(x∗−ε2)+ε. Therefore, the second term in (3.31) decays
faster than exponentially in n. Combining (3.30) and (3.31) and letting ε1, ε2 → 0, we
conclude with Lemma 2.23

lim sup
n→∞

1

n
logPω

(Mn

n
≤ x

)
≤ − inf

t∈(0,1− x
x∗ ]

{
tρq + tI

(
−(1− t)x∗ − x

t

)}
= −Hq(x).

3. Case: x = x∗

The proof for Pω(Mn ≤ x∗n) is analogous to the proof of Theorem 3.9. By Proposi-
tion 3.16 and Lemma 3.17

lim inf
n→∞

1

n
logPω

(Mn

n
≥ x∗

)
≥ lim

n→∞

Yn
n

= min
{
0,−(I(x∗) + ε− E[logm])

}
.

Since I(x∗) ≤ E[logm], letting ε→ �nishes the proof.
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