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Introduction

In this thesis we consider two different models of stochastic processes in discrete time. In
Chapter [I] we study the frog model and in Chapter 2] and [3] we study branching random
walks. Both models belong to the family of interacting random walks.

A random walk is one of the most basic objects in probability theory. In every step a
particle moves randomly according to some step size distribution. The simplest case is
a simple random walk on the d-dimensional lattice Z¢. The particle starts at the origin
and at every step it jumps to one of its 2d neighbours uniformly at random. Interacting
random walks consist of a (possibly infinite) set of particles moving around simultaneously
according to some rules. In particular, the set of particles is not necessarily fixed.

In Chapter 1| we study the frog model on Z?. This model was first investigated by Telcs
and Wormald [57], who, however, called it egg model. The name frog model was only later
suggested by Durett, see [53]. The model can be described as follows. At the beginning
there is one active frog at the origin and one sleeping frog at every other site of Z?¢. The
active frog performs a simple random walk. Whenever a sleeping frog is visited by an
active frog, it is activated and starts a simple random walk itself, independently of all
other active frogs. It can wake up other sleeping frogs as well. The frog model does not
describe the behaviour of real frogs, but it can be used to model the spread of information
or a disease. Active frogs have some information or an illness and pass it whenever they
meet a sleeping frog. The activated frogs then start spreading the information or illness
themselves.

One of the first questions for interacting random walks deals with recurrence and tran-
sience. The frog model is called recurrent, if the origin is visited infinitely often by active
frogs with probability one. In particular, in the recurrent case every frog will be acti-
vated. Otherwise it is called transient. In the transient case the cloud of active frogs
moves away from the origin. If the frogs perform simple random walks, i.e. they choose
every direction with the same probability, Telcs and Wormald [57] showed that the frog
model is recurrent on Z% in any dimension d > 1. In this thesis we study the frog model
with a drift in one direction. This means that there is one distinguished direction, which
is chosen by the frogs with a higher probability. In Theorem we show that
for dimension d > 2 the frog model can either be recurrent or transient, depending on
the drift. These results are joint work with Débler, Gantert, Popov and Weidner and
published in [22].

For dimension d = 1 it is shown in [3I], however, that the frog model is transient for



Introduction

any drift. In particular, the cloud of frogs moves away from the origin. Without loss of
generality, we assume that we have a drift to the right. In Theorem [I.16] we compute the
linear speed of the leftmost occupied site explicitly. Furthermore, in Theorem and
Theorem we show that the speed of the rightmost occupied site is monotone in the
drift and strictly less than 1. We also prove in Theorem that all frogs are in some
sense uniformly distributed in between the leftmost and rightmost occupied site. These
results are joint work with Weidner and published in [36].

In Chapter [2| we consider a branching random walk on R. Informally, the model can
be described in the following way. At time 0 the process starts with one particle at the
origin. At every time n € N each particle repeats the following two steps, independently of
everything else. First, it produces offspring according to some fixed offspring distribution,
and then it dies. Afterwards, the offspring particles move according to some step size
distribution. In contrast to the frog model on Z, the linear speed z* of the rightmost
particle is known explicitly. Even more precise asymptotics for the rightmost particle have
been obtained, see Section for details. In Theorem we derive a large deviation
result for the position of the rightmost particle, i.e. we determine the exponential decay
rate of the probability that the rightmost particle has speed & # z*. In the proof we
dominate the branching random walk by a random number of independent random walks,
for which we show a large deviation result in Theorem [2.1§] as well. These results are
joint work with Gantert and published in [29].

In Chapter [3] we study the same model as in Chapter [2 but we add another source
of randomness. In Chapter 2] we assume that the offspring distribution is independent
of time. However, for instance environmental conditions may influence the branching
behaviour. Therefore, in this chapter we assume that the offspring distribution is chosen
at random in every step. The sequence of (random) offspring distributions is called
random environment. The probability measure conditioned on a fixed environment is
called quenched measure, whereas the probability measure averaging over all possible
environments is called annealed measure. For the rightmost particle of the branching
random walk we show a large deviation result in Theorem and with respect
to the annealed and quenched measure, respectively. Analogous results for independent
random walks are obtained in Theorem B.9] and B.I0l The random environment leads
to additional difficulties in the proofs. Therefore, under the annealed measure we could
only prove an upper large deviation result for the rightmost particle of the branching
random walk.

Both the frog model as well as the branching random walk are interacting random walks
with a growing set of particles. Furthermore, in both models the interaction between the
particles only takes place, whenever there is a new particle added to the system, i.e. if
a sleeping frog is activated in the frog model or offspring is produced in the branching
random walk, respectively. Only the location and time when the particle enters the
system depends on the behaviour of the other particles. However, there are two main



differences between the two models. First, in contrast to the frog model, the average
number of (active) particles is known explicitly for the branching random walk. Second,
the location of each particle in the branching random walk has the same distribution,
namely the distribution of a random walk with the same step size distribution. At first,
one might think that this is also true for the frog model, since each frog moves according
to a random walk. However, since a fixed sleeping frog only gets activated by a frog that
moves away from the origin fast (it has to be the first frog reaching the sleeping frog), the
location of a fixed frog tends to be further away from the origin. These two properties
are used extensively to show results for the branching random walk.

In particular, this explains why there are much finer results for the branching random
walk. For the frog model we can only show the existence of recurrent and transient
regimes, while there is a sharp criterion separating transience from recurrence for the
branching random walk. Moreover, we can only prove qualitative results about the speed
of the rightmost frog, while there is an explicit formula for the speed of the rightmost
particle in the branching random walk.

This thesis is structured as follows. We start every chapter with a formal description
of the model before we give some known results which are interesting in the context of
our results. In Chapter [2| and [3| we need to introduce some rate functions before we can
state the main results of the chapter. We then collect some preliminary results which are
needed in the proofs of the main results.






1 The Frog Model

1.1 Description of the model

We describe the frog model in a more general setting than explained in the introduction.
Let G = (V,E) be a connected non-oriented graph such that every vertex has finite
degree. Fix a vertex o € V and call it root. Let n be a Ny-valued random variable with
P(np > 1) > 0. Let {ny: x € V\ {o}} and {(S%(i))nen: @ € N,x € V} be independent
families of i.i.d. random variables defined as follows: For all x € V \ {0} the random
variable 7, has the same distribution as n and gives the initial number of sleeping frogs
at x. If n, > 1, then for all 1 < ¢ < n(x) the sequence (S} (¢))nen is a discrete time nearest
neighbour random walk starting at x. It describes the trajectory of the ¢-th frog initially
at vertex z. The transition probabilities of the random walk are given by a transition
function 7. If the random walk is symmetric, i.e. if in every step it chooses one of its
neighbours uniformly, the transition function is denoted by mgym. For z,y € V.o # y
define the first time that a particle initially at vertex x reaches vertex y as
t(z,y) = 1;2171]1@) inf{n € N: S7(i) = y}.

Note that ¢(x,y) might be infinite. Then, the first time a vertex z is visited by an active
frog is defined as

m
T, = inf{m eNo=uzg,21,...,.2m =2 € V: Zt(%‘,%i—l)}-
i=1

If T, = oo, then the frogs initially at « will never be activated. T, is called activation
time of z. After time T, all frogs initially at x start to follow their trajectories given by
(SZ(7))nen for 1 < i < n,. The position ZZ (i) of the i-th frog initially at vertex z € V'

at time n is defined as
=(j) = x forn<Tz.
" Sp_r, (i) forn>T,

The frog model on the graph G with transition function 7 and initial configuration 7 is
denoted by FM(G, m,n).
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1.2 Some known results

1.2.1 Symmetric frogs

In this subsection we assume that the underlying random walk of the frog model is sym-
metric, i.e. the transition function is given by mgym. Moreover, except for Theorem ,
we only consider G = Z4ford >1or G =T, for d > 2, where Ty denotes the d-regular
tree, i.e. every vertex has degree d + 1.

When studying interacting random walks, one often first asks about recurrence and
transience, i.e. whether the origin is visited infinitely many times, or the cloud of particles
moves away from the origin.

Definition 1.1. The frog model FM(G, w,n) is called recurrent, if
P(the origin is visited infinitely many times) = 1.
Otherwise it is called transient.

If the frog model is recurrent, then every frog will be activated. Very recently, Kosygina
and Zerner showed that the frog model satisfies a zero-one-law.

Theorem 1.2 ([45, Theorem 1|). In FM(G, m,n) the probability that the origin is visited
infinitely many times by active frogs is either 0 or 1.

Kosygina and Zerner consider a more general model in [45]. For instance, their result
also applies to frog models, where the trajectories of the frogs are given by a transitive
and irreducible Markov chain. Note that by Theorem to show recurrence it suffices
to prove that the origin is visited infinitely often with positive probability.

If there is one sleeping frog at every vertex, i.e. if = 1, the frog model on Z% is recurrent
for any dimension d > 1. For d = 1,2 this is obviously true, since simple random walk
is recurrent in this case. Therefore, already the frog starting from the origin will return
infinitely many times. For d = 3 simple random walk on Z¢ is transient. However, on
its way to infinity the inital frog at the origin will activate a frog with euclidean distance
to the origin in (n — 1,n] for every n € N. This frog has a chance of approximately
c-n~! to ever visit the origin. Since the trajectories of these frogs are independent, the
Borel-Cantelli lemma yields that infinitely many frogs return to the origin. For d > 3
this was first proved by Telcs and Wormald in [57] and later refined by Popov in [52].
Popov considered a random initial configuration with one sleeping frog at = € Z%\ {0}
with probability p(x) and zero frogs with probability 1 — p(z), independently of all other
vertices. He found the critical decay of p(z) separating transience from recurrence.

Theorem 1.3 ([52, Theorem 1.1]). Ford > 3 let p: Z4\ {0} — [0,1] andn = (M) zez\ {0}
be a collection of independent random variables with P(n, = 1) = p(z) = 1 —P(n, = 0)
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for all z € 74\ {0} as well as no = 1. Consider the frog model FM(Z4, wgym,n). There
exists a. = ac(d) € (0,00) such that

(i) the frog model is transient if o < o and p(z) < a||z|| =2 for all x large enough,
(i3) the frog model is recurrent if a > a. and p(x) > al|z| =2 for all x large enough.

Very recently, the question of recurrence and transience was also solved on the d-regular
tree for d = 2 and d > 5 by Hoffmann et al. in [38]. It is still open for d = 3, 4.

Theorem 1.4 ([38, Theorem 1]). Consider the frog model FM(Tq, Tgym,1).
(i) For d =2 the frog model on Ty is recurrent.
(1) For d > 5 the frog model on Ty is transient.

It is conjectured in [38] that the frog model on T, remains recurrent for d = 3, while it is
transient for d = 4. In [37] the same authors also investigate recurrence and transience
of the frog model on the d-regular tree with a random initial configuration given by
i.i.d. Poisson(u) distributed random variables. They prove that for every d > 2 there is
a critical value for the parameter p separating transience from recurrence.

If the frog model is recurrent, then every frog will be activated. On Z¢ every frog at
euclidean distance at most n from the origin will be activated up to time ¢ - n for all n
large enough, where ¢ is a positive constant independent of n. More precisely, for the
frog model on Z¢ with initially one frog per site Alves et al. prove in [4] that the set of
vertices visited by active frogs, rescaled by time, converges to a convex set. This result
is generalised to an i.i.d. initial configuration in [5].

Theorem 1.5 ([5, Theorem 1.1]). Consider the frog model FM(ZY, Tsym,n) for d > 1
and P(n > 0) > 0. Let &,(n) be the set of all vertices visited by active frogs at time n and
define the set &,(n) == {x + (—3,3]%: = € &(n)}. Then, there is a non-empty convex
symmetric set A = A(d,n) C R, A # {0}, such that for almost all initial configurations

n and for any 0 < ¢ < 1 we have

(1-¢e)AC % C(1+¢A
for all n large enough almost surely.

Remark 1.6. The proof of Theorem goes through for the “lazy” version of the frog
model, where in each step a frog decides to stay where it is with probability ¢ € (0,1),
independently of all other frogs.
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1.2.2 Frogs with death

One possible generalisation of the frog model discussed in subsection is the frog
model with death. For s € [0,1] it is defined just as the usual frog model, but every
active frog dies at every step with probability 1 — s, independently of everything else.
The parameter s is called survival probability. We denote this frog model on G with initial
configuration n by FM*(G, 7, n, s) if the underlying random walk has transition function
7. In the symmetric case, i.e. if T = mgym, the frog model with death is intensively
studied in [3] and also in [27] and [47]. Note that we need some results for the frog model
with death in the proofs of our main results.

The first question for this model deals with survival of the frogs.

Definition 1.7. We say that the frog model survives, if there is at least one active frog
at any time. Otherwise it dies out.

Since the probability that the frog model FM*(G, m, 7, s) survives is increasing (not nec-
essarily strictly) in s, we can define the critical survival probability as

s¢(G,m,m) = inf{s: P(FM*(G, 7, n, s) survives) > 0}. (1.1)

Theorem 1.8 ([3, Theorem 1.1, Theorem 1.3, Theorem 1.4]). Consider the frog model
FM*(Z%, m,n, s).

(i) IfE[10g+(77)] < 00, then SC(Z77rsym>77) =1
(ii) Let d > 2. If E[(log™(n))?] < oo, then s.(Z%, msym,n) > 0.
(111) Let d > 2. If P(n > 1) > 0, then sc(Zd,ﬂ'sym,n) <1.

Under mild assumptions on 7, the frog model on Z dies out for every s < 1. Furthermore,
again under mild assumptions on 7, the frog model on Z¢ for d > 2 survives for all s
close to 1 and dies out for all s close to 0.

Theorem 1.9 (|3, Theorem 1.2, Theorem 1.6, Theorem 1.5|). Consider the frog model
FM* (Tdv ™1, 3)'

(i) Let d > 1. If there exists 0 > 0 such that E[n°] < oo, then so(Tq, Tsym,n) > 0.
(ii) Let d > 1. If E[n°] = oo for all § > 0, then sc(Tq, Tsym,n) = 0.
(iti) Let d > 2. If P(n > 1) > 0, then s.(Tq, Teym,n) < 1.

Under mild assumptions on n, for all d > 1 the frog model on Ty survives for all s close
to 1 and dies out for all s close to 0.
Alves et al. also prove asymptotics for the critical survival probability as d — oc.
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Theorem 1.10 ([3, Theorem 1.7, Theorem 1.8]). If E[n] < oo, then

1

lim se(Z9, Toym, 1) = Jim se(Ta, moym, 1) = TTER

d—o0
If the frog model survives one can again ask if the origin is visited infinitely many times.

Theorem 1.11 ([3, Theorem 1.10, Theorem 1.12]). For d > 1 consider the frog model
FM*(Z%, 7t sym, 1, 8.

(i) If E[(logt(n))%] < oo, then the probability that the origin is visited infinitely many
times is 0 for all s € [0,1).

(ii) If there exists B < d such that P(n > n) > m for all n large enough, then the

probability that the origin is visited infinitely many times is positive for all s € (0,1].

Theorem 1.12 ([3| Theorem 1.9, Theorem 1.11]). For d > 1 consider the frog model
FM*(Td,ﬂsym,r],s).

(1) If E[n°] < oo for all 0 < € < 1, then the probability that the origin 0 is visited
infinitely many times is 0 for all s € [0,1).

(1) If there exists B < 1051(5;3) such that P(n > n) > m for all n large enough,
then the probability that the origin is visited infinitely many times is positive for all

s close to 1.

Note that there are only finitely many returns to the origin if the frog model dies out.
Therefore, the probability to have infinitely many returns is less than 1 for every s < 1.

1.2.3 Frogs with drift

Let us now return to the frog model without death. So far we considered symmetric tran-
sition probabilities. From now on we only consider G = Z¢ and transition probabilities
which are balanced in all but in one direction. More precisely, let £ = {%e;: 1 < j < d},
where e; denotes the j-th standard basis vector in R? j = 1,...,d. The particles
move according to the following transition probabilities, which depend on two parame-
ters w € [0,1] and « € [0, 1]:

M for e = e
Twal€) = M for e = —e1 (1.2)
Q(Id__“i) for e € {£ea,...,teq}

The parameter w is the weight of the drift direction ey, i.e. the random walk chooses to go
in direction +e; with probability w. The parameter a describes the strength of the drift,
i.e. if the random walk has chosen to move in drift direction, it takes a step in direction
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e1 with probability HTO‘ and in direction —e; with probability 1_70‘ All other directions

are balanced and equally probable. Sometimes we need to counsider the corresponding
one-dimensional model where we have to demand w = 1, i.e. the transition probabilities
are defined by ma(e1) = 1 — mo(—e1) = 152,

In dimension d = 1 Gantert and Schmidt [31] found a sharp criterion on the distribution

of 7 separating transience from recurrence.

Theorem 1.13 ([31, Theorem 2.2|). Let o € (0,1). The frog model FM(Z, my o, n) is
recurrent if and only if E[log™ n] = oo

The recurrence part of this result was generalised to any dimension d > 1 by Débler and
Pfeifroth in [23].

Theorem 1.14 (23] Theorem 2.1]). Let d > 1 and a,w € (0,1). The frog model
FM(Z%, 0. n) is recurrent if E[(log™ n)@+D/2] = co.

Kosygina and Zerner also derived a recurrence criterion in [45] in a more genereal model.
In our set-up their result can be stated as follows.

Theorem 1.15 (|45, Theorem 5]). Let d > 1 and a,w € (0,1). There is a constant
¢ = c(d,a,w) > 0 such that the frog model FM(Z%, wy o,1n) is recurrent if

C

Plnzn)z (log )

for all n large enough.

Note that these results give criteria for recurrence and transience only depending on the
distribution of 7. In particular, there are no assumptions on the concrete value of the
drift parameters. Indeed, it was conjectured in [3I] that in higher dimensions d > 2,
there is also a sharp criterion, independent of the concrete value of the drift parameters,
separating transience from recurrence. However, in subsection we show that this is
not true.

1.3 Main results

In this section we consider the frog model with drift on Z¢ with initially one sleeping
frog at every vertex, i.e. n = 1. To abbreviate notation we write FM(d, my,q) instead
of FM(Z4, Tw,a, ) and FM*(d, 7y «, s) instead of FM* (z4, Tw,a, 1, 8), respectively. Fur-
thermore, we write (S}),cn instead of (SF(1)),en for the trajectory of the frog initially
at x. The position of this frog at time n is denoted by Z7 instead of Z*(1). In dimension
d = 1 the frog model is transient for every drift parameter o« > 0. by Theorem [I.13]
Therefore, the cloud of frogs moves away from the origin. In subsection we inves-
tigate how fast the cloud of frogs moves to the right. We therefore consider the leftmost

10
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and rightmost active frog and get some results on their speed. In subsection we
consider the frog model FM(d, my. ) in higher dimensions d > 2. We show that there
exists a recurrent and transient regime depending on the drift parameters o and w and
reveal some interesting differences between d = 2 and d > 3.

1.3.1 Frogs with drift on Z

The results in this subsection are joint work with Weidner and published in [36]. We
consider the frog model FM(1, 7y, ). Recall that m(e;) = 42 =1 — n(—e1). To state
the results we first need to introduce some more notation. Let A, denote the set of
active frogs at time n, i.e. A, = {i € Z: T; < n}. Further, we define M,, = max;c, Z_,
and m, = min;c 4, Zfl. Thus, M,, describes the maximum and m,, the minimum of the
locations of the active frogs. We refer to M,, and m,, as the maximum and the minimum.
One can show that there are constants vpax and vmi, such that

M,

Umax = lim ——  a.s. (1.3)
n—oo n

Vmin = lim Mn a.s. (1.4)
n—oo N

The existence of vmax 18 well known and stated in Lemma [1.32] and the existence of vmin
is part of Theorem below. We call vyax the speed of the maximum and vy, the
speed of the minimum. We study vpax and vpi, as functions of the drift parameter a.
First, we show that the speed of the minimum equals the speed of a single frog.

Theorem 1.16. For a > 0 the speed of the minimum ezxists and is given by
Umin = Q.

In the following two theorems we discuss some properties of the speed of the maximum.
Theorem 1.17. The speed of the mazimum is an increasing function in c.
Theorem 1.18. For o < 1 it holds that vmax < 1.

In comparison to the last result note that for branching random walk on Z with binary
branching the speed of the maximum equals 1 for every a > 0. This follows for instance
from Theorem 2.4

In addition to studying the behaviour of the minimum and the maximum we investigate
the distribution of the active frogs. In the limit they are distributed uniformly inbetween
the minimum and the maximum. To make this statement precise, we rescale the positions
of all active frogs at time n roughly to the interval [0, 1] and then consider the empirical
distribution pu,, which is defined for o < 1 by

pin(B) !

= — i
|A7’L| Zn=Ymin" GB}
i€EA, (vmax —vmin)n

11
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for every Borel set B C [0,1]. Note that u, is a random measure.

Theorem 1.19. Almost surely, the empirical distribution p, converges weakly to the
Lebesgue measure X on [0,1] as n — oc.

1.3.2 Frogs with drift on Z% for d > 2

The results in this subsection are joint work with Dobler, Gantert, Popov and Weidner
and published in [22]. We consider the frog model FM(d, 7, o) for d > 2. We show that
there exist recurrent and transient regimes depending on the drift parameters a and w.
First, let us discuss the extreme cases. For w = 1 the frog model is one-dimensional
and thus transient for any « € (0,1] by Theorem and recurrent for o = 0. For
a = 1 it is transient for any w € (0,1]. More precisely, only frogs in the hyperplane
Hy:={x € 74 1, = 0} can be awaked and return to the origin. However, the probability
that a frog in Hy ever visits the origin decays exponentially with its distance to the
origin. Since the trajectories of the frogs are independent, a Borel-Cantelli argument
shows that almost surely only finitely many frogs will ever reach the origin. If w = 0,
then FM(d, 7o) is equivalent to the symmetric frog model in d —1 dimensions and hence
recurrent. If & = 0, we are back in the balanced case and the model is recurrent. This
follows from Theorem m and Theorem below.

In dimension d = 2 the frog model is recurrent whenever o or w are sufficiently small,
i.e. if the underlying transition mechanism is almost balanced. It is transient for o or w
close to 1.

Theorem 1.20. Let d =2 and w € (0,1).

(i) There ezists o = o (w) > 0 such that the frog model FM(d, my, o) is recurrent for
all 0 < a < q.

(1) There exists oy = ap(w) < 1 such that the frog model FM(d, 7y o) is transient for
all oy < <1.

Theorem 1.21. Let d =2 and o € (0,1).

(i) There exists w, = wy(a) > 0 such that the frog model FM(d, 7y o) is recurrent for
all 0 <w < w,.

(it) There exists wy = wy(a) < 1 such that the frog model FM(d, my o) is transient for
all wy <w <1.

In dimension d > 3 the frog model is also recurrent if the transition probabilities are
almost balanced. Further, for any fixed drift parameter a € (0, 1] it is transient if the
weight w is close to 1. However, in contrast to d = 2, for fixed w € [0,1) there is not
always a transient regime. This follows from Theorem below.

12
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Theorem 1.22. Let d > 3 and w € (0,1). There ezists o, = o, (d,w) > 0 such that the
frog model FM(d, o) is recurrent for all 0 < a < o

Theorem 1.23. Let d > 3 and o € (0,1).

(1) There exists w, > 0, independent of d and «, such that the frog model FM(d, my, o)
s recurrent for oll 0 < w < w,.

(11) There exists wy = wi(ar) < 1, independent of d, such that the frog model FM(d, my. o)
1s transient for all w, < w < 1.

These results show that, in contrast to d = 1, recurrence and transience do depend
on the drift in every dimension d > 2. This disproves the last conjecture in [31] that
some condition on the moments of 1 would separate transience from recurrence as in the
one-dimensional case.

The results are graphically summarised in Figure Note that the above theorems only
make statements about the existence of recurrent, respectively transient regimes. We do
not describe their shapes, as might be suggested by the curves depicted in Figure [I.1]
However, we believe that there is a monotone curve separating the transient from the
recurrent regime.

Conjecture 1.24. For every d there exists a decreasing function fg: [0,1] — [0, 1] such
that the frog model FM(d, 7y, q) is recurrent for all w, o € [0, 1] such that w < fq(a) and
transient for all w, o € [0,1] such that w > fq(a).

Intuitively, the frog model approximates a binary branching random walk for d — oo
from below, as each frog activates a new frog in every step if there are ’infinitely’ many
directions to choose from. This leads to the following conjecture.

Conjecture 1.25. The sequence of functions (fq)den s increasing in d.

The comparison with a binary branching random walk raises another question. Let
g:[0,1] = [0,1], g(e) = min{L, (2(1 — V1 —a2)) '}

A binary branching random walk on Z? with transition probabilities as in (T.2) is recur-
rent if and only if w < g(a), see [30), Section 4].

Question 1.26. Does the sequence (fg)qen converge pointwise to g as d — oo ?
1.4 Preliminaries

In this section we collect some preliminary results which are needed in the proofs of the
main results. First we fix some more notation. We refer to the frog that is initially at

13



1. The Frog Model

vertex « € Z% as “frog 2. Furthermore, for the frog model on Z we often need to talk

about the frogs initially on negative sites. To keep the sentence structure simple we refer
to them as the negative frogs. Analogously we speak of non-negative and positive frogs.
Also for any k € Z the frog initially on site k is called frog k. For x,y € Z% we write
x — y if frog = (potentially) ever visits y, i.e. y € {S%: n € Ng}. For A C Z¢ we say
that there exists a frog path from x to y in A and write x ~~ y if there exist n € N and
Z1y-+.,2n € Asuch that © — 21, 2; > zipp forall 1 <i<mnand 2z, > y,orifz -y
directly. Note that z,y are not necessarily in A. Also the trajectories of the frogs z;,
1 <i < n, do not need to be in A. For x € 7% we call the set

FCx:{yEZd:zﬂy} (1.5)

the frog cluster of z. Note that, if frog x ever becomes active, then every frog y € FC,
is also activated. Observe that, whenever we only deal with recurrence and transience,
the exact activation times are not important, but we are only interested in whether or
not a frog is activated.

Further, we often use (d — 1)-dimensional hyperplanes H, in Z¢ defined by

H,:={zx ez z =n} (1.6)
for n € Z.

1.4.1 Some facts about random walks

We need to deal with hitting probabilities of random walks on Z¢. For z,y € Z¢ recall
that {x — y} denotes the event that the random walk started at x ever visits the vertex
y. Analogously, for A C Z¢ we write {x — A} for the event that the random walk started

14
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at x ever visits a vertex in A.

Lemma 1.27. For d > 3 and w € (0,1) consider a random walk on Z¢ with transition
function m, 0. There exists a constant ¢ = c(d,w) > 0 such that for all z € 7

P(0 — x) > cl|z]5 77,

where ||z||2 = (Zle w?)l/Q is the Euclidean norm.

A proof of the lemma for the simple random walk, i.e. with transition function 7gym, can
e.g. be found in [4] Theorem 2.4| and [3, Lemma 2.4]. The proof can immediately be
generalised to our set-up using [46, Theorem 2.1.3].

Lemma 1.28. Ford > 1 and a,w € (0,1) consider a random walk on Z% with transition
function Ty o. Then for each v > 0 there is a constant ¢ = c¢(d,v,w, o) > 0 such that for
alln € N and x € Z¢ with ©1 = —n and |z;| < vy/n, 2 <i<d, it holds that

P(z — 0) > en~(@=D/2,
For a proof see e.g. [23, Lemma 3.1].

Lemma 1.29. Ford > 1 and a,w € (0,1] consider a random walk on Z® with transition
function my, . Then for every n € N and H_,, as defined in (1.6)

PO — H_,) = (1 :Lz)n

Proof. As P(0 - H_,,) = P(0 — H_;)" for n € N, it suffices to prove the lemma for
n = 1. By the Markov property

l-a 1+«
+

IP(O—)H_l) = 5

P(O — H_2>.
The result follows after a straightforward calculation. O

1.4.2 Some facts about percolation

To prove recurrence we make use of the theory of independent site percolation on Z% and
therefore give a brief introduction here. Let p € [0,1]. Every site in Z% is independently
of the other sites declared open with probability p and closed with probability 1 — p.
An open cluster is a connected component of the subgraph induced by all open sites.
It is well known that for d > 2 there is a critical parameter p. = p.(d) € (0,1) such
that for all p > p. (supercritical phase) there is a unique infinite open cluster C' almost
surely, and for p < p. (subcritical phase) there is no infinite open cluster almost surely.
Furthermore, denoting the open cluster containing the site z € Z% by C,, it holds that
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1. The Frog Model

P(|Cy| = 00) > 0 for p > p., and P(|Cy| = c0) = 0 for p < p. and all = € Z¢. The
following lemma states that the critical probability p. is small for d large.

Lemma 1.30. For independent site percolation on Z2,

lim p.(d) = 0.
d—ro0

Indeed, p.(d) = O(d_l) holds. A proof of this result can e.g. be found in [I3] Chapter 1,
Theorem 7]. Further, in the recurrence proofs we use the fact that an infinite open cluster
is “dense” in Z?. The following weak version of denseness suffices.

Lemma 1.31. Consider supercritical independent site percolation on Z*. There are
constants a,b > 0 such that
IP’(|A NCyl > a|A|) >b

for all A C Z% and z € Z°.
Proof. For a >0, A C Z% and = € Z% the FKG-inequality yields

P(|ANCy| > alA]) > P(z € C, |[ANC| > al4|)
>P(z e C)-P(IANC| > alA]).

Note that v :=P(z € C) € (0,1) (and 7 does not depend on x) since the percolation is
supercritical. By the Markov inequality

P(ANC| > al]) = 1-P(ANC| > (1 - a)| A

E[|ANnCe]
- (1—a)lA]
1
:1—7ZP(yECC)
(1= a4 2
-y
—1-
14 > 0,
for a small enough, which finishes the proof. O

1.4.3 Some results about frogs

The existence of the speed of the maximum defined in (1.3]) is proved using Liggett’s
Subadditive Ergodic Theorem. Indeed, this theorem yields more information which we
use in subsection [1.5.1] We summarise it in the following lemma.

Lemma 1.32. Consider the frog model FM(1, 7y, ). For each o € [0,1] there exists a
positive constant Vmax such that

. M,
Umax = lim —  a.s.
n—oo n
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Furthermore,
T; E[T}]

vl = lim =X = lim = inf

E[T:]

i—00 1 i—soo 1 ieN 1

(1.7)

Proof. Let T; ; denote the activation time of the frog at site j when initially there is one
active frog at site ¢ and one sleeping frog at every other site. An application of Liggett’s
Subadditive Ergodic Theorem (see e.g. [48]) to the times (T} ;); jez shows the existence
of a positive constant v,y such that holds. For o = 0 this is proved for a more
general model by Alves et al. in [4]. In our setting their argument immediately applies
to a > 0 as well.

By a standard argument it now follows that lim,_ % exists almost surely: There
exists a unique random sequence (ky,)nen with values in Ny such that Ty, <n < Tj, 41.
Note that lim,,_,o k, = co. Hence,

ko, n

. Ty . .
lim — = lim = lim — a.s.
n—o0o nN n—oo ky, n—oo ky,

Obviously, k, — (n — Ty, ) < M,, < ky,. This implies

k”_<1_1—‘k".k”>§"§kn'
n

n kn, n n
Taking limits yields the claim. O

Further, we need a result on the frog model with death FM*(d,r,s) for s € [0,1]. We
denote frog clusters in the frog model with death by FC*, analogous to the notation
introduced in (1.5)) for the frog model without death.

Lemma 1.33. For FM(1, 7 4) with a > 0 and FM*(1, wsym, s) with s < 1 there is ¢ > 0
such that IE”(OVZ»» —n) <e  foralln € N.

Proof. Let p be the probability that a frog starting from 0 ever hits the vertex —1. In
both models we have p < 1. Obviously, as s < 1, this is true for FM*(d, Tgym, s). For
FM(1,1,q) it follows from Lemma [1.29]

For n € N define Y;, = [{m > —n: m — —n}| if —n € FCy, respectively —n € FCj.
Otherwise set Y,, = 0. If —n is visited by active frogs, then Y, counts the number of
frogs to the right of —n that potentially ever reach —n. The process (Y},)nen is a Markov

0 ifY, =0,
Y1 = . . .
Binomial(Y,, +1,p) if Y, > 0.

chain on Ny with

Note that ]P’(OVZ»» —n) = P(Y,, > 0) by definition. A straightforward calculation shows
that there is kg € N such that P(Y,,41 <Y, | Y, =k) > % for all k > ko. Hence, we can
dominate the Markov chain (Y,),en by the Markov chain (Y),)nen on {0, ko, ko + 1,...}
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1. The Frog Model

with transition probabilities

: ifl=k+1, k> ko,
2 ifl=4k—1, k> ko,

P(Yni1=1|Y, =k) = (1—p)kotl if 1 =0, k= ko,
1—(1—pkott ifl=k+1, k =k,
1 ifl=k=0

\

for all n € N and starting point Vi = max{Y1, ko}. Obviously, for all n € N we have
P(Y, > 0) < P(Y,, > 0). Let Tj, = min{n € N: Y,, = k} and T}; = T; — T);. Note that
P(Y,, > 0) =P(Tp > n). For t > 0 the Markov inequality implies

Yi—1
P(Th > n) = IP’< Z Tev1 + Tho0 > n>
k=kg

Yi—1
<e I"E [exp (t Z Thr1k + tTkO,(J)]

k=ko

[e.9]

-1
—ein Z H E[exp(tTi11,) | E[exp(tThy0)] P(Y1 = 1)
l=k‘0 kaO

=e ™ Z E [exp(tTho+1,k0 )] lE[eXp(tTko,O)]P(?l =1+ ko). (18)
1=0

Yi can only be equal to [ + kg if at least one frog to the right of [ — 1 reaches —1. Thus,

P(Yi=1+k) <> p! :pll%p. (1.9)

i=l

Now, we choose ¢ > 0 small enough such that E[exp(tT ko+1,ko)] < p~ L. Then (1.9) shows
that the sum in (1.8) is finite, which yields the claim. O

1.4.4 A lemma on Bernoulli random variables

We will repeatedly use the following simple lemma. Note that the random variables in
this lemma do not have to be independent.

Lemma 1.34. For i € N let X; be a Bernoulli(p;) random variable with inf;cy p; =: p.
Then for every a >0 and n € N

1 n
Pl— X; > >p—a.

=1
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Proof. Since E[X;] > pand 23" | X; <1, we have

1< 1<
H;X §P<H;Xi2a>+a,

which yields the claim. O

p<E

1.5 Proof of the main results

1.5.1 Frogs with drift on Z

In this subsection we consider the frog model FM(1, 7 ). In order to prove Theoremm
we compare the frogs initially on non-negative sites with independent random walks. The
speed of the minimum of independent random walks can be computed explicitly which is
done in the first of the following lemmas. Then it remains to deal with the frogs initially
on negative sites. Luckily, they can be ignored due to the transience of the frog model
for all @ > 0, see Theorem

Let {(S%)nen, : @ € Z} be a family of independent random walks starting at 0.

Lemma 1.35. [t holds that

o1 . Si
lim — min S) =a as
n—oo N ie{—n,...,n}

Proof. We only need to prove liminf,,_, %minie{_n,__.7n} S';L > «. For all € > 0 we have

P(iie{n;iﬁn}ggga—s) N P<O {%Sa_€}>

it=—n

SO
< (2n—|—1)P<; §a—5>.

By Cramér’s Theorem the probability in the last term of this calculation decays expo-
nentially fast in n. Hence, it is summable. An application of the Borel-Cantelli Lemma,
and letting ¢ — 0 completes the proof. =2

This result now enables us to prove a formula for the speed of the minimum of the
non-negative frogs.

Lemma 1.36. Let A = {i > 0:T; <n}. Then

lim — min Z; = a a.s.
n—oo n iGAI

19



1. The Frog Model

Before proving Lemma we make another short observation. Obviously vpax is at
least as big as the speed of a single frog, i.e. vmax > . In fact, this inequality is strict
for all @ > 0. For a = 0 this fact is known from [4].

Lemma 1.37. For a € (0,1) it holds that vmax > .

Proof. Let T{ = inf{n € N: SY = 1} be the hitting time of the point 1 of a single
simple random walk with drift parameter .. The key point in this proof is to notice that
E[T1] < E[T}]. Hence, by Lemma

BT _ gy < mpry) = é

-1 .
= inf —
Max-eN 4

v

One can of course find better lower bounds for the speed of the maximum by estimating
E[T;] for ¢ > 1, but this is not done in this thesis.

Proof of Lemma[I.36 It is enough to show liminf,,_ %minieA:g Z! > « almost surely.
In this proof we use a slightly different but equivalent way of defining the movement of
the frogs. For every i € Z define the position of frog ¢ at time n as

Zi_ 1 for n < Tj,
" z+§;—§% for n > T,

where T, denotes the activation time of frog i. Note that (Z%) equals (Z¢) in distribu-
tion. We now want to compare the trajectory (Zi@)neNo of each frog with the trajectory
(S'fl)neNo of the corresponding random walk. From time T onwards they move syn-
chronously by the above definition. Therefore, we only need to compare their locations
at time T}. Note that Z%,Z = ¢ and define G = {i > 0: S%_ < i} to be the set of good
frogs. Now i € A;f NG implies S”}l < Z; for all n € N, i.e. all good frogs stay to the right
of their corresponding random walk. Hence,

min Zfl > min 5’; — Z (5; - val)

1€EAL 1€EAL ieGenAL
> irél/ig Sh— > (Sk —). (1.10)
n 1€G°

We claim that the set G¢ is finite almost surely. For o = 1 this is obviously true. For
a < 1 it is enough to show that
Sio—i

lim & = — Umax  a.S. (1.11)

since by Lemma the last term is strictly negative and hence SiT_ — 1 > 0 can occur
only for finitely many ¢ > 0 almost surely.
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Note that (Sﬁl)n <7, is independent of the movement of the frogs up to time T;. Therefore,
%_ equals S%_ in distribution. Using a standard large deviation estimate we get for every
e>0
Sk S ~
P(;‘ <« —5> = IP’( I <o —6) < E[e_CT"] <e 9,
i

i

where ¢ = ¢(e,a) > 0 is a constant. By symmetry also ]P’( ;z > o+ 5) decays expo-

nentially fast in ¢. An application of the Borel-Cantelli Lemma and letting € — 0 thus

shows ,
St
. T

lim =+ =a a.=s.

Further, we know from Lemma Ethat lim; a0 T% = Umax almost surely. This proves
equation which implies that G° is finite almost surely.

Therefore, the second term on the right side in inequality is finite almost surely.
Also note that it does not depend on n. Thus,

1 . 1 .
liminf — min Z}, > liminf — min 5], a.s.

n—oo N iEAfl n—oo N iEAﬁ
As Af C {-n,...,n} an application of Lemma finishes the proof.

Proof of Theorem [I.16, By Theorem the frog model with drift FM(1, 7 o) is tran-
sient for all o > 0. This means that the origin is visited by only finitely many frogs
almost surely. Therefore only finitely many negative frogs are ever activated. Hence,

Theorem follows from Lemma 8

Next we prove that the speed of the maximum is an increasing function in the drift
parameter . Though this statement might at first seem obvious, no direct coupling of
the frog models for different drift parameters seems possible, since for smaller values of «
more negative frogs will eventually be woken up, which might help in pushing the front
forward. But we can ignore all these frogs without changing the speed of the maximum,
similar to the proof of Theorem This is shown in the next lemma. We therefore
consider the frog model without negative frogs. It evolves in the same way as our usual
frog model, but has another initial configuration. Here we assume that there is one
sleeping frog at every positive integer, one active frog at 0 and no frogs on negative sites.
We denote the activation time of the i-th frog in the frog model without negative frogs
by Tf.

Lemma 1.38. It holds that

+

= lim 2 a.s.

max - p00 n

21



1. The Frog Model

-1

max almost surely. First, we show that

Proof. We ounly need to prove limsup,, . % <w
the speed of the maximum of all negative frogs in the usual frog model equals « almost

surely, i.e. setting A, = {i < 0: T; < n} we prove that

1 ,
lim —max Z, =«a a.s. (1.12)
n—,oo N ZEA;

For a > 0 only finitely many negative frogs will ever be activated almost surely as
remarked in the proof of Theorem . In this case equation is thus obvious.

If a = 0, then by symmetry the claim follows from Lemma [1.36]

Let E be the set of all positive frogs which are activated by negative frogs, meaning that
at the time of their activation at least one negative frog is present. Since vpmax > « as
proved in Lemma and by equation the set F is finite almost surely.

Hence, T = sup,c (T, —T;) is an almost surely finite random variable. For all i € E we
thus have TZ-+ < T;4T. Actually, this inequality is true for all ¢ € Ny, which immediately
implies the claim of the lemma.

The inequality can e.g. be proven inductively. For ¢ = 0 the inequality is obviously true
as TS“ =To = 0. Now assume that : € N and T;r <Tj+T holdsforall 0 <j <i—1.1If
i € E, there is nothing to show. Otherwise, let 0 < k < i — 1 be the (random) frog that
activates the frog 4 in the normal version of the model. Then we have

TH<TH+ (T, —T) < T+ T.

Note here that in both models the frogs follow the same paths, they might just be
activated at different times. =)

Proof of Theorem[I.17 Using a standard coupling of the random variables (X} )icz ken

we can achieve that T;r(oz) is monotone decreasing in «. As Upax(@) = lim, 0 %
almost surely by Lemma we conclude that vpmax (@) is increasing in . sl

In order to bound the speed of the maximum from above we prove an upper bound for
the number of frogs in the maximum. We do this for a slightly modified frog model: Each
time the maximum moves to the left we put a sleeping frog at the site that has just been
left by the maximum. Hence, in this new model there is one sleeping frog at every site
to the right of the maximum at any time. Further notice that, except at time 0, there
are always at least two frogs in the maximum. We use the same notation as in the usual
frog model, but add an index “mod” when referring to the modified model. Further, let
a,, denote the number of frogs in the maximum in the modified frog model.

Lemma 1.39. For a € (0,1) and all n € N it holds that

B—a)(1+ )

Elan] < 20(1 — @)
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Proof. To increase the readability of this proof let p := 1‘%‘3‘ be the probability that a
frog takes a step to the right. We prove bounds not only for the number of frogs in the
maximum, but for every other site as well. Therefore, let a, (k) be the number of frogs
at location M™°d — 2k for k,n € Ng. We prove by induction over n that for all n, k € Ny

Bloa(h)] < 7 S&;’”’lw. (1.13)

For n = 0 and n = 1 one easily checks that the claim is true. Assume that the claim
holds for some integer n € N.

First we show inequality for k = 0. Distinguishing whether all a,, particles in the
maximum at time n move to the left or not in the next step one calculates

Elan+1] = E[(1 = p)* (an + pan(1))]
o pan
+E[(1-(1-p) )(—1_ o +1)]
=E[(1 - p)* (an + pan(1) — 1) + pa, + 1].

Note here that the expectation of a binomial random variable with parameters p > 0 and

k € N conditioned on being at least 1 is given by % Using a, > 2 yields

1—p)k~
Elant1] < (1 — p)°Elan + pan(1) — 1] + pE[a,] + 1. (1.14)

Inserting the induction hypothesis (1.13) in (1.14) the claim follows after a straightfor-
ward calculation.
For k =1 an analogous calculation yields

Elant1(1)] = E[(1 = p)™ (pan(2) + (1 - p)an(1))]

+E[(1- (1= p)™) (an - % +pea(1))]

=E[(1 - p)™ (pan(2) — (@)an(1) — ay)]
+E[(1 —p)an +pan(1)]' (1.15)

For k > 2 one gets

Elani1(k)] = E[(1 — p)* (pan(k + 1) + (1 — p)an(k))]
+E[(1 = (1 =p)*™)(pan(k) + (1 = p)an(k — 1))]
= E[(l —p)" (pan(k +1) = () an(k) — (1 = p)an(k — 1))]
+E[(1 = pan(k — 1) + pan(k)]. (1.16)
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Thus, for k > 1 equations and imply
Elans (0] < p(1 - p)Elan(k + 1] + pEfan(R)] + (1~ pE[en(k— 1] (L17)

As before, inserting the induction hypothesis (1.13)) into inequality (1.17)) completes the
proof. =)

Proof of Theorem[I.18 Consider the event that in the modified frog model at time n
all a, frogs sitting in the maximum move to the left. Using Jensen’s inequality and
Lemma [1.39, we conclude that the probability of this event is bounded from below by

E{(l—a)an} S <1—a)E[an} S (1—Q)W
2 =\ 2 T '

Therefore, for all n € N

n

1-— n
E[Toe - 7o) 2 1+ 2E[ (=) "]

_ (3—a)(14a)
21_'_2(1 20{) 2a(l—a)

Clearly, in the modified model, frogs are activated no later than in the normal version of
the frog model. Thus,

n (3—a)(14a)

1- o
B(r) 2 5] = S B 1] = (1+2(15) T )
k=1
By Lemma we conclude
(3-a)(1+a)
v inf [ "}>1+2(1_O‘)32a(11:)>1 )
max neN n sl 2 .

It remains to prove Theorem [I.I9] The idea of the proof is quite simple: From the point
of view of the minimum the front moves with a positive speed, but all the frogs only
fluctuate around their locations with y/n, so basically they stay where they are.

First, we show that for large enough times n all active frogs do not deviate much from
their expected locations. More precisely, let Gy, = {i € A,: | Z) — E[Z}]| < n3/4y.

Lemma 1.40. Almost surely, G, = A, for oll n large enough.
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Proof. As A,, C {—n,...,n} we have

P(4n # Gn) = P( | {|2} - BIZ]| = n*/*})

€A
< 3 (17, - Bz = Y
Z ZIP’ 2% — E[ZL]| > n*/4|T; = k) - P(T; = k). (1.18)
i=—n k=0

Further, for every ¢ € Z and 0 < k < n it holds that

P(|Z), —E[Z)]| > n**|T, = k) = P(|S}, Sh ] = nh)

n3/2

4(n — k))
< 2exp(—nz2).

< 2exp (—

In the first inequality in the above estimate we use Hoffding’s inequality. Thus, (1.18)
implies

1/2

P(A, # Gy) < 2exp(—n;/2> i iP(Ti — k) <2(2n+1) exp(—”T)

1=—n k=0

which is summable. An application of the Borel-Cantelli Lemma completes the proof.

For € > 0 and z € [0, 1] define
Lo(z,c) = {{z €EZ: — (Upax —e)n <i < ((235 — 1)Umax — E)TL} for a = 0,
{ZGZ 0 <i<(TUmax — € n} for a >0
and
Ry (2.c) = {{z €Z: ((2z — 1)vmax —i—.s) n <i < (Umax —€)n} for a =0,
{zEZ: (Vmax + €)1 < i < (Umax — €) n} for a > 0.
Lemma 1.41. For n large enough, i € L, (x,e) N G,, implies
= Umint_ (1.19)

(Umax — Umin ) n

25



1. The Frog Model

whereas i € Ry (x,e) NG, implies

7
Zn — UminN

(Umax — Umin ) n

> 1. (1.20)

Proof. For o = 0 note that by symmetry vmin = —Umax. Thus, (1.19)) holds if and only
if Z! < (20 — 1)vmaxn. Assume i € Ly, (x,€) N G,,. A straightforward calculation shows

Zi <E[Z]) + 0t =i+ n** < (22 — 1)vmaxn

for n big enough. Analogously, one shows in this case.

For a > 0 the proof works essentially in the same way as for a = 0, but the estimation
of E[Z}] is less trivial. We have E[Z!] = i + (n — E[T}])vmin. For i € L,(z,¢) N G, we
thus get

. ‘ 7 E|T;
Z;L < E[Z;L] + n3/4 = Umin" + (Umax - [Z.l]vminvmax> + n3/4-

Umax

Lemma yields that E[L] > infien @ = vyl . Hence, for n big enough

7

7
(Umax - Umin) + ’I’LS/4

ZZL < Uminn +

Umax

< UminM + w(vmax - 'Umin)na

as claimed in ((1.19). On the other hand, i € R, (z,¢) N G,, analogously implies

; i E[T;
Z’;LL 2 UpinM + —— <Umax - Mvminvmax) - ’I’L3/4.
Umax ?
Since lim; o0 ElL] — vt and 7 tends to infinity whenever n does by the definition
of Ry(z,¢e), we know that % < vl + de for n big enough and a small constant 4.
Therefore,

i 3/4
(Umax — Umin — 55Uminvmax) —n / .

Zqz—b > UminM +

Umax

Using i > (2vmax + €)n and choosing § small enough finishes the proof. &

Proof of Theorem[1.19 We need to show that lim,_,o n([0,2]) = A(]0,z]) for every
x € ]0,1] almost surely.

Take a realisation of the frog model such that A, = G, holds for sufficiently large n,
that lim, % = Umax and lim,,_ s % = Umin, and finally that A, NZ~ is finite. This
happens with probability 1 as we have seen in Lemma Lemma Theorem
and previous discussions about the transience of the frog model. Now fix € [0, 1] and
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1.5. Proof of the main results

€ > 0 small. Lemma yields that, for n large enough,

1 n  |Lp(z,¢)|
A ||GnﬂLn(:n,z—:)| = A . - . (1.21)

pn ([0, 2]) >

In (1.21)) we used that L, (z,e) C A, for sufficiently large n as lim,,_, % = Umax. The
definition of L, (x,¢) implies

2(zv e)yn  for p= 1,
|Ln(,€)| = - i
(TVmax —€)n for p > 3.
Further, lim, oo Iz‘%\ = %v;léx for a = 0, respectively lim, oo Iz‘%\ = v;l;llx for a > 0.

Thus, the limit inferior of the last term in (1.21)) as n — oo is bounded from below by

-1

T — EVp - Oince € > 0 was chosen arbitrarily we conclude

lim inf p, ([0, z]) > x.

n—

On the other hand, Lemma shows that, for n large enough,

_ n |Rn($,€)‘
| Ay n

pn ([0, 2]) < (1.22)

1
A ‘An \ (Gn N Rn(x,zs))‘ =1
since 4, = G, and R,(z,e) C A, for n big enough. By the definition of R, (x,¢) we
have
2((1 — m)vmax — €)n for p= %,
((1 — T)VUmax — 25)n for p > %

[Rn(z,)] > {

Analogous to the above estimation this yields that the limit superior of the right hand
side of (1.22)) is bounded from above by x + 2cv,l.. As before we get, since € > 0 is
arbitrary,

lim sup 1, ([0, ]) < .

n—o0

which finishes the proof. =2

1.5.2 Frogs with drift on Z¢ for d > 2

In this subsection we consider the frog model FM(d, 7, o) for d > 2.

Recurrence for d > 2 and arbitrary weight

In this section we prove Theorem m and Theorem Throughout this section
assume that w < 1 is fixed. To illustrate the basic idea of the proof we first sketch it for
d = 2. We call a site = in Z? open if the trajectory (S%),en, of frog = includes the four
neighbouring vertices x + ej,x e of z, i.e. if x - x +e; and z — x £ e3. Note that
for this definition it does not matter whether frog x is ever activated or not. All sites
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1. The Frog Model

are open independently of each other due to the independence of the trajectories of the
frogs. Furthermore, the probability of a site to be open is the same for all sites. Consider
the percolation cluster Cy that consists of all sites that can be reached from 0 by open
paths, i.e. paths containing only open sites. Note that all frogs in Cy are activated as
frog 0 is active in the beginning. In this sense the frog model dominates the percolation.
As we are in d = 2, the probability of a site x being open equals 1 for @ = 0 and by
continuity is close to 1 if « is close to 0. Thus, if « is close enough to 0 the percolation
is supercritical. Hence, with positive probability the cluster Cy containing the origin is
infinite. By Lemma this infinite cluster contains many sites close to the negative
er-axis. This shows that many frogs that are initially close to this axis get activated.
Each of them travels in the direction of the ej-axis and has a decent chance of visiting
0 on its way. Hence, this will happen infinitely many times. This argument shows that
the origin is visited by infinitely many frogs with positive probability. Using the zero-one
law stated in Theorem [I.2] yields the claim.

In higher dimensions the probability of a frog to visit all its neighbours is not close to
1 however small the drift may be. We can still make the argument work by using a
renormalization type argument. To make this argument precise let K be a non-negative
integer that will be chosen later. We tessellate Z? for d > 2 with cubes (Qz),ezq of size
(2K +1)4. For every = € Z¢ we define

dx = qyc(K) = (2K + 1)$a

1.23
Qo = Qu(K) ={y € Z%: |y — @ullo < K}, (:2%)

where ||2]|oo = max)<;<q|7;| is the supremum norm. We call a site z € Z? open if for
every e € &; there exists a frog path from ¢, to gyy. in Q.. Otherwise, x is said to be
closed. The probability of a site x to be open does not depend on z, but only on the drift
parameter « and the cube size K. We denote it by p(K, ). This defines an independent
site percolation on Z?, which, as mentioned before, is dominated by the frog model in
the following sense: For any x € Cy the frog at g, will be activated in the frog model,
i.e. gy € FCy with FCj as defined in (1.5).

In the next two lemmas we show that the probability p(K, «) of a site to be open is close
to 1 if the drift parameter « is small and the cube size K is large. We first show this

claim for the symmetric case a = 0.

Lemma 1.42. For every w < 1 in the frog model FM(d, o) we have
lim p(K,0) = 1.
Kgnoop( )

Proof. For d = 2 we obviously have p(K,0) = 1 for all K € Ny as balanced nearest
neighbour random walk on Z? is recurrent. Therefore, we can assume d > 3. The proof
of the lemma relies on the shape theorem (Theorem for the frog model. This theorem
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1.5. Proof of the main results

assumes equal weights on all directions. As in our model the ej-direction has a different
weight, we need a workaround. We couple our model with a modified frog model on
791 in which the frogs in every step stay where they are with probability w and move
according to a simple random walk otherwise. A direct coupling shows that, up to any
fixed time, in the modified frog model on Z*~! there are at most as many frogs activated
as in the frog model FM(d, my, ). Note that Theorem [L.5] holds true for the modified frog
model on Z% 1, see Remark Let £, respectively 5?0‘1, be the set of all sites visited
by active frogs by time K in the frog model FM(d, 7, ), respectively the modified frog
model on Z4~1. Further, let 104 := {z + (=3, 3]971: € ¢2°d}. By Theorem there
exists a non-trivial convex symmetric set A = A(d) C R~ and an almost surely finite

random variable K such that

mod

c SK
A‘K

for all K > K. This implies that there exists a constant ¢; = c¢;(d) > 0 such that
|¢mod| > ¢; K971 for all K > K. By the coupling the same statement holds true for {x-.
As & C Qo(K) and any vertex in £x can be reached by a frog path from 0 in @, this
implies

{ye Qo 02 y}] > jex] = e

for all K > K. Thus we have at least ¢; K91 vertices in the box Qg that can be reached
by frog paths from 0. Each frog in Qg has a chance to reach the centre ¢, of a neighbouring
box.More precisely, by Lemma there is a constant ca = c2(d) > 0 such that

C2
Py = qe) > i3 (1.24)
for any vertex y € Qo and e € &;. Hence, for any e € &;
P((0-%% .)° | K > K) :]P’<{y A ge for all y € Qo with 0%y} | K > /C)
02 C1Kd71
=t KH)
< e ek (1.25)

where we used for the first inequality the fact that a frog moves independently of all
frogs in Qg once it will never return to Q¢ and the uniformity of the bound in (1.24])).
Therefore,

p(.0) > B(( {0 g} | K > K)Bo(K > K)
ec&y

> [1 - 2de‘8102K}IP>(K > K). (1.26)

Since K is almost surely finite, we have limg oo Po(K > K) = 1. Thus, the right hand
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1. The Frog Model

side of (|1.26) tends to 1 in the limit K — oo. e

Lemma 1.43. For fized w < 1, in the frog model FM(d, 7y, o) we have for all K € Ny
liminf p(K, a) > p(K,0).
a—0

Proof. Let L(a,b,c, K) be the number of possible realizations such that all g1, € € &,
are visited by frogs in Qo for the first time after in total (of all frogs) exactly a steps
in ej-direction, b steps in —ej-direction and c steps in all other directions. Note that
L(a,b,c, K) is independent of a. We have

- $ v () (445 ()

a,b,c=1

The claim now follows from Fatou’s Lemma. 8

Proof of Theorem[1.20 (i)] and Theorem[1.24 By Lemma and Lemma we can

assume that K is big enough and a > 0 small enough such that p(K, a) > p.(d), i.e. the
percolation with parameter p(K, ) on Z¢ constructed at the beginning of this section is

supercritical.

Consider boxes B, = {-n} x [-y/n,y/n]*! for n € N. By Lemma there are
constants a,b > 0 and N € N such that for all n > N

P(|B, N Co| > an'd=1/2) >,
After rescaling, the boxes B,, correspond to the boxes
FB,={yecZ: |y + 2K+ 1)n| <K, |ys| < 2K+ 1)vn+ K, 2 <i <d}.

Recall that F'C consists of all vertices reachable by frog paths from 0 as defined in (|1.5)),
and note that x € B,, N Cy implies q, € F'B,, N F'Cy. This shows

P(|FB, N FCo|> an'=V/2) > p (1.27)

for n large enough. Analogously to (1.24), by Lemma and (1.27) the probability
that at least one frog in F'B,, is activated and reaches 0 is at least

(1 (11— cn*(dfl)/Q)an(d—l)m)b > (1—e )b,
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1.5. Proof of the main results

where ¢ = ¢(K,d,w) > 0 is a constant. Altogether we get by Lemma [1.34]

P(0 visited infinitely often) = li_>m P(0 is visited en many times )
n oo

n

> lim ianP’(Z LseerBnFCy: 2—0} = m)

n—00 ¢
=1

> (1—e*ac)b—€ >0
for € sufficiently small. The claim now follows from Theorem . =)

Recurrence for d = 2 and arbitrary drift

In this section we prove Theorem Throughout the section let a < 1 be fixed.
We couple the frog model with independent site percolation on Z2. Let K be an integer
that will be chosen later. We tessellate Z? with segments (Q,),ez2 of size 2K + 1. For
every x = (x1,22) € Z? we define

0z = qz(K) = (:Ela (2K + 1)‘T2)5
Qe = Qu(K) ={y € Z°: y1 = x1, |y — 2K + L)zo| < K}.

We call the site x € Z? open if there are frog paths from ¢, to gu4c in @, for all e € &;.
As before, we denote the probability of a site to be open by p(K,w). Note that this
probability does not depend on z.

Lemma 1.44. For o < 1, in the frog model FM(2, 7, o) we have

lim liminfp(K,w) = 1.

K—oo w—0
Proof. We claim that there is a constant ¢ = ¢(a) > 0 such that for any K € Ny and
xr € Qo
hgl_}gf]P’( ﬂ {z — qe})Z c. (1.28)
e€€sy
We can estimate the probability in (1.28) by

IP’( ({z— qe})z P(z = ¢ cy)P(q-er = Ge))P(Goe; = Q) P(Gey = Gey).  (1.29)
e€&sy

The probability of moving in +ey-direction for [w] steps is (1 —w)[* 1. Conditioning
on moving in this way, we just deal with a simple random walk on Z. Therefore, there

exists a constant ¢; > 0 such that for w close to 0

- c
P(l‘ - qfez) > Cl(l - w)l—w 'l > Zl
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1. The Frog Model

The probability of moving exactly once in —ej-direction and otherwise in teo-direction
within [w™1] + 1 steps is

(1—-a)w
2

l—«

8

([w™'] +1) (1—w) ' >

for w close to 0. Therefore, there exists a constant co > 0 such that
Cg(l — a)
8

for w sufficiently close to 0. The two remaining probabilities in (1.29) can be estimated

analogously, which implies (|1.28)).
If frog 0 activates all frogs in Q)9 and any of these 2K frogs manages to visit the centres

P(ges = q—e;) =

of all neighbouring segments, then 0 is open. By independence of the trajectories of the
individual particles in Q)¢ this implies

p(K,w) > IP’( M {0 x}) (1 . (1 —IP( N {z— qei}>)2K). (1.30)

z€Qo 1<i<4

As in the proof of Lemma one can show that for w — 0 the first factor in (|1.30)
converges to 1. Therefore, taking limits in (1.30) and using (1.30) yields the claim. %5

Proof of Theorem[1.21 (i), By Lemma we can choose K big and w small enough
such that p(K,w) > p.(2), where p.(2) is the critical parameter for independent site

percolation on Z2. As in the proof of Theorem m and Theorem the coupling
with supercritical percolation now yields recurrence of the frog model. As we rescaled the
lattice Z? slightly different this time, the box B,, defined in the proof of Theorem
and Theorem now corresponds to the box

FB, = {y €Z2: Yy = —n, ‘y2’ < (2K+1)\/E+K}

Since only asymptotics in n matter for the proof, it otherwise works unchanged. e

Recurrence for arbitrary drift and d > 3

The proof of Theorem m again relies on the idea of comparing the frog model with
percolation. But instead of looking at the whole space Z¢ as in the previous proofs, we
consider a sequence of (d—1)-dimensional hyperplanes (H_,,)nen, with H_,, as defined in
. We compare the frogs in each hyperplane with supercritical percolation, ignoring
the frogs once they have left their hyperplane and all the frogs from other hyperplanes.
Within a hyperplane we now deal with a frog model without drift, but allow the frogs to
die in each step with probability w by leaving their hyperplane, i.e. we are interested in
FM*(d — 1, mgym, 1 — w). Hence, the argument does not depend on the value of the drift
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1.5. Proof of the main results

parameter a < 1.

We start with one active particle in the hyperplane Hy. With positive probability this
particle initiates an infinite frog cluster in Hy if w and therefore the probability to leave
the hyperplane is sufficiently small. Every frog eventually leaves Hy and has for every
n € N a positive chance of activating a frog in the hyperplane H_,,, which might start
an infinite cluster there. This is the only time where we need @ < 1 in the proof of
Theorem Using the denseness of such clusters we can then proceed as before.
We split the proof of Theorem into two parts:

Proposition 1.45. There is dy € N and w, > 0, independent of d and «, such that the
frog model FM(d, 7y o) is recurrent for all 0 < w < w,, 0 < a <1 and d > dy.

Proposition 1.46. For every d > 3 there is w, = w,.(d) > 0, independent of «, such
that the frog model FM(d, my o) is recurrent for all 0 < w < w, and all 0 < a < 1.

We first prove Proposition As indicated above we need to study the frog model
with death and no drift in Z%~!. To increase the readability of the paper let us first
work in dimension d instead of d — 1 and with a general survival parameter s, i.e. we
investigate FM*(d, Tsym, s) for d > 2.

We tessellate Z9 with cubes (Q),ezq of size 3¢. More precisely, for x € Z¢ we define

Q= {y € 2% |ly — 3zl < 1}.
Further, for technical reasons, for a € (%, 1) we define

We ={y € Q;: lly — 3z[1 < ad},

where ||z||; = Zfil|zz| is the graph distance from z € Z? to 0. Informally, W, is the set
of all vertices in @, which are “sufficiently close” to the centre of the cube. Consider the
box @', for some x € Z% and let o € W,. If there are frog paths in Q’, from o to vertices
close to the centres of all neighbouring boxes, i.e. if the event

N U {02y}
e€Eq yEWyte

occurs, we call the vertex o good. Note that this event only depends on the trajectories of
all the frogs originating in the cube Q. and the choice of 0. If 0 is good and is activated,
then also the neighbouring cubes are visited. We show that the probability of a vertex
being good is bounded from below uniformly in d and this bound does not depend on
the choice of o.

Lemma 1.47. Consider the frog model FM*(d, wgym, s). There are constants § > 0 and
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doeNsuchthatforalldzdo,s>%,%<a<2—%,x€Zd and o € W,
P(o is good) > 5.

To show this we first need to prove that many frogs in the cube are activated. In the
proof of Theorem [1.20 (i)]and Theorem this is done by means of Lemma using
the shape theorem. Here, we use a lemma that is analogous to Lemma 2.5 in [3].

Lemma 1.48. Consider the frog model FM*(d, Tsym,s). There exist constants v > 0,
w>1 and dy € N such that for all d > dy, s>%,%<a<2—% and o € Wy we have

P({{yGWo:OM%»y}! zu‘/a) > 7.

Proof of Lemma[I.48 The proof consists of two parts. In the first part we show that
with positive probability there are exponentially many vertices in @, reached from o by
frog paths in @, and in the second part we prove that many of these vertices are indeed
in Wy. For the first part we closely follow the proof of Lemma 2.5 in [3] and rewrite the
details for the convenience of the reader.

We examine the frog model with initially one active frog at o and one sleeping frog
at every other vertex in @ for Vd steps in time. Consider the sets Sy = {0} and
Sp={z € Q): ||z —o|i = k,||z — 0l|oc = 1} for & > 1 and let & denote the set of
active frogs which are in Sy at time k. We will show that, conditioned on an event to
be defined later, the process (£)ren, dominates a process (gk)keNo, which again itself
dominates a supercritical branching process. The process (ék) keN, is defined as follows.
Initially, there is one particle at 0. Assume that the process has been constructed up
to time k£ € Ny. In the next step each particle in é’k survives with probability s. If it
survives, it chooses one of the neighbouring vertices uniformly at random. If that vertex
belongs to Sii1 and no other particle in ék intends to jump to this vertex, the particle
moves there, activates the sleeping particle, and both particles enter ék+1~ Otherwise,
the particle is deleted. In particular, if two or more particles attempt to jump to the
same vertex, all of them will be deleted. Obviously, & C &, for all k € Nj.

First, we show that for d large it is unlikely that two particles in & attempt to jump to
the same vertex. To make this argument precise we need to introduce some notation.
For z € S and y € S41 with ||z — y|l1 = 1 define

Dy ={z¢€ Spt1: ||z — 2|1 =1},
Ay ={z € Sk: Iz —ylh = 1},
E:=1{2€8,: D, ND, # 0}

D, denotes the set of possible descendants of x, A, the set of ancestors of y and &,

the set of enemies of x. Note that & = U,cp, (Ay \ {z}) is a disjoint union. Let
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Ng = Zle 1{o,—0,2;-0}- Then one can check that

Dz| = 2(d = [lolls = nz) + llolly = (k = nz) = 2d — |Jolly — k — na, (1.31)
|Ay| =k + 1.

For z € S let x(x) denote the number of particles of & in z. Note that x(z) € {0,2}
for any =z € S with k € N.

Let Cgljy denote the indicator function of the event that there is z € &, with x(z) > 1
such that one of the particles at z intends to jump to y at time k+ 1. If Cﬁy =1, then a
particle on x cannot move to y at time k + 1.

Further, we introduce the event U, = {x(z) = 2 for all z € £,}. This event describes the
worst case for x, when it is most likely that particles at « will not be able to jump. For
k < v/d we have

2s ks 1
PG, =D SPEG,=110)S 3 =<
zeAy\{z}

Given o > 0 we choose d large such that P(Cﬁy = 1) < o for all k < Vd. Now, we
consider the set of all descendants y of x such that there is a particle at some vertex
z € &, that tries to jump to y at time k 4 1. This set contains Zyer Cg’jy elements. Let
¢ denote the indicator function of the event {zyeDz ny > 2ad}. If ¢¥ = 1, then more
than 20d of the 2d neighbours of x are blocked to a particle at x.

The random variables {¢¥ : y € D,} are independent with respect to P(- | U,) since
& = Uyep, (Ay \ {z}) is a disjoint union. Using 2d — ad — 2k < [D;| < 2d and a
standard large deviation estimate we get for k < v/d

P(Gy=1) < P( > Gy > 20d ) Uz>

YyEDy

1 k

§P<|D D> | Um>
1 yeD,

< eicl‘DfA

< e—CQd

with constants c1,co > 0. Next, let us consider the bad event

Vid
B={J UJfa =1

k=1 xefk

35



1. The Frog Model

Then with |, < 2F < 2Vd we get
P(B) < Vd-2V. e e,

In particular P(B) can be made arbitrarily small for d large. Conditioned on B¢, in each
step for every particle there are at least

Dy| —20d—1> (2—a—20)d—3Vd

available vertices in Si41, i.e. vertices a particle at  can jump to in the next step. Thus,
conditioned on B¢, the process &, dominates a branching process with mean offspring at
least
(2—a—20)d—3Vd)-2-s
2d

For o small and d large the mean offspring is bigger than 1 as we assumed a < 2— % Since

a supercritical branching process grows exponentially with positive probability, there are
constants cg > 1, ¢ € (0,1) that do not depend on d such that

P(€ 4l > %) > q. (1.32)
For the second part of the proof condition on the event {|£~\/3| > cg/a
2

0<e<a—3. If|olli < (a—e¢)d, all particles of éf are in Wy for d large. This
immediately implies the claim of the lemma. Otherwise, let n = |§ f| enumerate the

} and choose

particles in 5\[ and let S%, 1 < i < n, denote the position of the i-th particle. Further,
we define for 1 <i<n

1 if |8y < Jlo]l1,

X, — | I < llof]1

0 otherwise.
It suffices to show that P(X; = 1) > 0. Then Lemma applied to the random
variables X1,..., X, implies that with positive probability a positive proportion of the
particles in § 7 indeed have Li-norm smaller than o, and are thus in Wy. Together with
(1.32)) this finishes the proof.
For the proof of the claim let S’k, denote the position of the ancestor of S* in Sy, where
0 < k < +/d. Note that So—oande—S’l.
We are interested in the process (||SE|1 )i<k<va- By the construction of the process
(gk)keNo it either increases or decreases by 1 in every step. The positions S and Sk 11
differ in exactly one coordinate. If this coordinate is changed from 0 to £1, then we have
1S5 llt = ISkl + 1. If it is changed from +1 to 0, then 1S54 llt = [ISEllL — 1. There
are at least (a — €)d — v/d many +1-coordinates in S1 that can be changed to 0. As we
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also know that Sl};+1 € Dgé, we have for all k& < v/d by (1.31) and the choice of &

(a—s)d—\/&>

- ~ —e)d—+d 1
1 18 — 1) > (a—e¢) 2
P(HSkHHl 15k 1 1) 2d — (a—¢e)d ~ 2

= >

Dal
for d large. Hence, |S}||; dominates a random walk with drift on Z started in [|o]|;.
Therefore,

- 1
P(X1=1) =P(IS5lh < lloflx) > 2

which finishes the proof.

Proof of Lemma[1.47 By Lemma [1.48] with probability at least 7 there are frog paths
in Q) from o to at least ,u‘/a vertices in W, for d large. We divide the frogs on these
vertices into 2d groups of size at least ,u‘/8 /2d and assign each group the task of visiting
one of the neighbouring boxes Wy 4., e € ;. Notice that this job is done if at least one
of the frogs in the group visits at least one vertex in the neighbouring box. If all groups
succeed, o is good. Any frog in any group is just three steps away from its respective
neighbouring box Wye, € € £z, and thus has probability at least (55)* of achieving its
group’s goal. Hence,

P(o is good) > (1 - (1 — (%)3) uﬁ/Qd) Qdfy > %

for d large. iz

In the other recurrence proofs we couple the frog model with percolation by calling a
cube open if its centre is good. Here, the choice of a “starting” vertex, like the centre, is
not independent of the other cubes. Therefore, we cannot directly couple the frog model
with independent percolation. However, the following lemma allows us to compare the
distributions of a frog cluster and a percolation cluster.

Lemma 1.49. Consider the frog model FM*(d, Tsym,s). Let f > 0 and assume that
P(o0 is good) > 3 for all 0 € W, x € Z%. Further, consider independent site percolation
on Z% with parameter 8. Then for all sets A C Z%, v € Z% and for all k > 0

plAnc,| =k <p(|J @unFe;,
z€EA

2k>.

Proof. For technical reasons we introduce a family of independent Bernoulli random
variables (X,),cz¢ which are also independent of the choice of all the trajectories of the
frogs and satisfy P(X, = 1) = P(o is good)~!. Their job will be justified soon. Further,
we fix an ordering of all vertices in Z¢.

Now we are ready to describe a process that explores a subset of the frog cluster FC3, .
Its distribution can be related to the cluster C, in independent site percolation with
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1. The Frog Model

parameter 5. The process is a random sequence (Ry, Dy, Uy)ien, of tripartitions of Z4.
As the letters indicate, R; will contain all sites reached by time ¢, D; all those declared
dead by time ¢, and U; the unexplored sites. We construct the process in such a way
that for all t € No, € R; and e € &; there is y € Wy, such that there is a frog path
from 3v to y in U,cp, Q'.. We start with Ry = Dy = () and Uy = Z¢. If 3v is good and
X3, = 1, set Uy = Z4\ {v}, Ry = {v}, and D; = (). Otherwise, stop the algorithm. If
the process is stopped at time ¢, let Us = Uy_1, Ry = Ry—1 and Dy = Dy for all s > t.
Assume we have constructed the process up to time t. Consider the set of all sites in Uy
that have a neighbour in R;. If it is empty, stop the process. Otherwise, pick the site x
in this set with the smallest number in our ordering. By the choice of x there is y € W,
such that there is a frog path from 3v to y in U,cp, Q@’.. Choose any vertex y with this
property. If y is good and X, = 1, set

Ri1 =R U {1‘}, D1 =Dy, U1 = Uy \ {x}
Otherwise, update the sets as follows:
Riy1 = R, Dy = Dy U{a}, Uy = U\ {z}

In every step t the algorithm picks an unexplored site x and declares it to be reached
or dead, i.e. added to the set R; or D;. The probability that x is added to R; equals .
This event is (stochastically) independent of everything that happened before time ¢ in
the algorithm. Note that every unexplored neighbour of a reached site will eventually be
explored due to the fixed ordering of all sites.

In the same way we can explore independent site percolation on Z¢ with parameter
B. Construct a sequence (R}, D}, U})en, of tripartitions of Z? as above, but whenever
the algorithm evaluates whether a site x is declared reached or dead we toss a coin
independently of everything else. Note that (J;cy, R, = C,, where C, is the cluster
containing v. This exploration process is well known for percolation, see e.g. [I3, Proof
of Theorem 4, Chapter 1].

By construction, UteNo R; equals the percolation cluster C), in distribution. The claim
follows since for every x € UtENo Ry there is a y € W, such that there is a frog path from
3v to y, i.e. y € FCY,. o)

Now we can show Proposition Note that we are again working with the frog model
FM(d, my,o) (without death).

Proof of Proposition[I.45. Throughout this proof we assume that d is so large that
Lemma is applicable for d — 1 and p.(d — 1) < 3, where f is the constant intro-
duced in the statement of Lemma This is possible because of Lemma [I.30] These
assumptions in particular imply that we can use Lemma [1.49 and that the percolation
introduced there is supercritical.
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Consider the sequence of hyperplanes (H_;)nen, defined in and let A denote the
event that there is at least one frog v, activated in every hyperplane H_,,. For technical
reasons we want v, of the form v, = (—n,3w,) for some w, € Z%~!. We first show
that A occurs with positive probability. To see this consider the first hyperplane Hy and
couple the frogs in this hyperplane with FM*(d — 1, Tgym, 1 — w) in the following way:
Whenever a frog takes a step in +ej-direction, i.e. leaves its hyperplane, it dies instead.
By [3, Theorem 1.8] (or Lemma this process survives with positive probability if w
is sufficiently small (independent of the dimension d). This means that infinitely many
frogs are activated in Hg. Obviously, this implies the claim.

From now on we condition on the event A. Note that FC,, C FCj for n € N. Analo-
gously to the proofs in the last sections we introduce boxes

FBl, = {-n} x [-(3y/n +1),3y/n +1]¢!

for n € N. We claim that analogously to Lemma there are constants a,b > 0 and
N € N such that forn > N

P(|FB,, N FCp| > an'®"Y/2) >, (1.33)

To prove this claim let a,b > 0 and N € N be the constants of Lemmal[1.3I]for percolation
with parameter 8. For n > N couple the frog model with FM*(d — 1, Tgym, 1 — w) in the
hyperplane H, as above. Let B/, = [—\/n,v/n]?"! and note that B! corresponds to FB!,
restricted to H,, after rescaling. Then by Lemma [1.49|and Lemma[1.31

P(|FB,, N FCy,| > an'™V/2|A) > P(|FB}, N ({-n} x FC3,,)| > an(*"D/2)|A)
> P(|B, N Cy,| > an'd=D/2)|4)
>b.

Here, C,, is the open cluster containing w, in a percolation model with parameter g in
71, independently of the frogs. As F'C,, C FCy, this implies inequality .

By Lemma and , the probability that there is at least one activated frog in
FB], that reaches 0 is at least

(1 - (1- c’n_(d_l)/Q)a"Mil)/?)b > (1- e_acl)b,
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1. The Frog Model

where ¢ > 0 is a constant. Altogether we get by Lemma [1.34]

P(0 visited infinitely often) = h_)m P(0 is visited en many times )
n e.9]

n

> lim IP’(Z UseerB,nrcy: 2—0} = an)

n—oo
i=1
> ((1 - e_“/)b - 5) >0
for e sufficiently small. The claim now follows from Theorem . e

To prove Proposition we again first study the frog model with death FM*(d, mgym, )
in the hyperplanes and couple it with percolation. This time we use cubes of size (2K +1)?
for some K € Ny. By choosing K large we increase the number of frogs in the cubes. In

the proof of the previous proposition this was done by increasing the dimension d. For
z € Z% and K € Ny we define

¢z = ¢z(K) = (2K + 1)z,
Qo = Qu(K) ={y € Z%: ||y — qu|loo < K}

Note that this definition coincides with (1.23)). In analogy to Lemma the frog cluster
dominates a percolation cluster.

Lemma 1.50. For d > 2 consider the frog model FM*(d, Tsym, s) and supercritical site
percolation on Z2. There are constants s,(d) < 1 and K € Ny such that for any s > s,(d),
ACZ% veZ and for all k >0

P(ANG,| > k) <P(||J Q.nFC,
z€A

2k>.

Proof. We couple the frog model with percolation as follows: A site z € Z¢ is called open
if for every e € &; there exists a frog path from ¢, to gzye in Q5. Note that x € C,, now
implies ¢, € FC, for any v € 7. We denote the probability of a site  to be open by
p(K, s). By Lemma p(K, 1) is close to 1 for K large. As in the proof of Lemma [1.43]
one can show that limg_,1 p(K,s) = p(K,1). Thus, we can choose K € N and s, > 0
such that p(K,s) > p.(d) for all s > s,, i.e. the percolation is supercritical. i)

Proof of Proposition[I.46, Using Lemma instead of Lemma [I.49 and boxes @ in-
stead of @’,, the proof is analogous to the proof of Proposition m

Proof of Theorem 1.23 (i). Theorem follows from Proposition and Proposi-
tion [1.46 e
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Transience for d > 2 and arbitrary drift

Proof of Theorem |1.21 (i1)| and Theorem |1.23 (i1). Let the parameters o > 0 and d > 2

be fixed throughout the proof. For z € Z% we define
Ly ={y € Z%: y; = x; for all 2 <i < d}. (1.34)

L, consists of all vertices which agree in all coordinates with x except the e;-coordinate.
The key observation used in the proof is that all particles mainly move along these lines
if the weight w is large.

We dominate the frog model by a branching random walk on Z?. At time n = 0 the
branching random walk starts with one particle at the origin. At every step in time every
particle produces offspring as follows: For every particle located at = € Z? consider an
independent copy of the frog model. At any vertex z € Z¢ \ L, the particle produces
Hy € Ly: x oA Y,y — z}| many children. Notice that this number might be 0 or infinite.
The particle does not produce any offspring at a vertex in L,. Further, note that the
particles reproduce independently of each other as we use independent copies of the frog
model to generate the offspring.

One can couple this branching random walk with the original frog model. To explain the
coupling, let us briefly describe how to go from the original frog model to the branching
random walk. Recall that the frog model is entirely determined by a set of trajectories
(S5 ) neng.zezd of random walks. We use this set of trajectories to produce the particles in
the first generation of the branching random walk, i.e. the children of the particle initially
at 0, as explained above. Now, assume that the first n generations of the branching
random walk have been created. Enumerate the particles in the n-th generation. When
generating the offspring of the i-th particle in this generation, delete all trajectories of
the frog model used for generating the offspring of a particle j with j < ¢ or a particle in
an earlier generation, and replace them by independent trajectories. Otherwise, use the
original trajectories.

One can check that the branching random walk dominates the frog model in the following
sense: For every frog in Z¢\ Lg that is activated and visits 0 there is a particle at 0 in
the branching random walk. Thus, the number of visits to the origin by particles in the
branching random walk is at least as big as the number of visits to 0 by frogs in the frog
model, not counting those visits to 0 made by frogs initially in Ly. Note that, if the frog
model was recurrent, then almost surely there would be infinitely many frogs in Z%\ Lg
activated that return to 0. In particular, also in the branching random walk infinitely
many particles would return to 0. Therefore, to prove transience of the frog model it
suffices to show that in the branching random walk only finitely many particles return
to 0 almost surely.

Let D,, denote the set of descendants in the n-th generation of the branching random
walk. Further, for i € D,, let X! be the e;-coordinate of the location of particle i. Define
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1. The Frog Model

for 6 > 0 and n € Ny

= E[ E e_eXl} and M, = — g e 0Xn, (1.35)
ZEDl ieDn

We claim that p < 1 for w close to 1 and 6 small, which, in particular, implies that
(M) nen, is well-defined. We show this claim in the end of the proof.

We next show that (My,)nen, is @ martingale with respect to the filtration (F,,)nen, with
Fn = U(Dl, oy Doy (X)ieDys - - - (Xé)z‘eDn) Obviously, M, is F,-measurable. For a
particle i € D,, denote its descendants in generation n + 1 by D! 41- Since particles
branch independently, we get

E[My 41| :E[M}H S et | 5]

€D 11
1 i 1 j i
— — Z o 0X5 7E[ Z o 0(Xh i —X0) ]
" iep, : JED, 14

Note that the expectation on the right hand side is independent of ¢ and n and therefore,
by the definition of u, we conclude

E[Myi1|Fpn] = M,.

This calculation also yields E[|M,|] = E[M,] = E[My] = 1, and therefore M,, € £!. This
in particular implies that M, is finite almost surely for every n € Ng. Thus, X’ = 0 can
only occur for finitely many ¢ € D,, almost surely for every n € Ny, i.e. in every generation
only finitely many particles can be at 0. By the martingale convergence theorem, there
exists an almost surely finite random variable M, such that lim,_ .., M,, = My, almost

—0X5 = 0 almost surely.

surely. Combining this with p < 1, we get lim, 00 ) ;cp €
Hence, X! = 0 for some i € D,, occurs only for finitely many times n. Overall, this
shows that the branching random walk is transient.

It remains to show pu < 1. Note that the particles in D; are at vertices in the set
{y € Z4\ Ly: 0 o~ y}. Therefore, for the calculation of u we first need to consider all
sites in Lo that are reached from 0 by frog paths in Lg. The idea is to control the number
of frogs activated on the negative ej-axis using Lemma [l.33| and estimating the number
of frogs activated on the positive ej-axis by assuming the worst case scenario that all
of them will be activated. Then, for every k € Z we have to estimate the number of
vertices with ej-coordinate k visited by each of these active frogs on the ej-axis. Due
to the definition of pu, the sites visited by frogs on the positive ej-axis do not contribute
much to p. Recall that Hy denotes the hyperplane that consists of all vertices with
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e1-coordinate equal to k € Z, see (1.6)). For k,i € Z define
Nk,i = |{.’IJ € Hk\LO: (170770) — $}’

As Nj; equals Nj_; o in distribution for all i,k € Z, we get

W= }E[Z e_exi}

i€Dq

- i i P(OMLAOﬁ(i,O,...,O))E[NM]eka

i=—00 k=—00
(e o]

= i E[Nyole ™ Y~ e "P(02 (i,0, ..., 0)). (1.36)

k=—o00 1=—00

Note that IP(O«E/Q» (i,O,...,O)) is smaller or equal than the probability of the event

{0 Z i} in the frog model FM(1, 1, ). Hence, by Lemma , there is a constant ¢; > 0
such that P(0~% (i,0,...,0)) < et for all i < 0. Thus, (L.36) implies that for 6 < ¢;
there is a constant ¢y = ¢(f) < oo such that

p<cy y  E[Npgle . (1.37)

Next, we estimate E[N}, ], the expected number of vertices in Hy, \ Lo visited by a single
particle starting at 0. Recall that the trajectory of frog 0 is denoted by (S9)nen,. We
define T, = min{n € Ng: S € H;}, the entrance time of the hyperplane Hj, and
T} = max{n € No: S0 € Hy}, the last time frog 0 is in the hyperplane Hj. Obviously,
Nio =0 on the event {T}, = co}. Hence, assume we are on {7}, < co}. The particle can
only visit a vertex in Hy \ Lo at time T if the random walk took at least one step in

non-e;-direction up to time T}. This happens with probability E[1 — w’*]

. Furthermore,
the number of vertices visited in Hj after time T} can be estimated by the number of
steps in non-ej-direction taken between times T} and 7j. This number is binomially

distributed and, thus, its expectation equals (1 — w)E[T], — Ty]. Overall, this implies
E[Nyo] < P(T), < 00)(E[1 — w™ | T}, < 00] + (1 —w)E[T} — Ty | Ty < 3]).

For k < 0 the probability P(T} < co) decays exponentially in & by Lemma [1.29] There-
fore, we can choose @ small such that P(T}, < co)e % < e~0¥ for all k € Z. Thus, (T.37)

implies

p<e e—e““'(E[l—wTk |Tk<oo]+(1—w)E[T,g—Tk|Tk<oo]). (1.38)

k=—0o0
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Note that the sum in (|1.38) is finite as E[T,; — T | T < oo] is independent of k. By
monotone convergence lim,, 1 4 = 0 and the right hand side of ((1.38]) is continuous in
w. Therefore, we can choose w close to 1 such that p < 1, as claimed. ezl

Transience for d = 2 and arbitrary weight

Proof of Theorem . Let w > 0 be fixed throughout the proof. As in the proof
of Theorem and Theorem we dominate the frog model by a branching
random walk. This time we use a one-dimensional branching random walk on Z. For the
construction of the process, let £ be the number of activated frogs in an independent one-
dimensional frog model FM*(1, mgym, 1 — w) with two active frogs at 0 initially. At time
n = 0, the branching random walk starts with one particle in the origin. At every time
n € N, the process repeats the following two steps. First, every particle produces offspring
independently of all other particles with the number of offspring being distributed as
&. Then, each particle jumps to the right with probability HT"‘ and to the left with
probability 1_7"

As an intermediate step to understand the relation between the frog model and this
branching random walk on Z, we first couple the frog model with a branching random
walk on Z? with initially one particle at 0. Partition the lattice Z? into hyperplanes
(Hp)nez as defined in . Let the frog model FM(2,m, ) with initially two active
frogs at 0 € Hy evolve and stop every frog when it first enters Hy or H_;. Every frog
leaves its hyperplane in every step with probability w. Thus, the number of stopped
frogs is distributed according to £. A stopped frog is in H; with probability HTO‘ and
in H_; with probability lfTa The stopped particles form the offspring of the particle
at 0 in the branching random walk. We repeat this procedure to generate the offspring
of an arbitrary particle in the branching random walk. Introduce an ordering of all
particles in the branching random walk and let the particles branch one after another.
Before generating the offspring of the i-th particle, refill every vertex which is no longer
occupied by a sleeping frog with an extra independent sleeping frog. Unstop frog ¢ and let
it continue its work as usual, ignoring all other stopped frogs. Note that there is a sleeping
frog at the starting vertex of frog ¢ that is immediately activated. This explains our
definition of £. Again stop every frog once it enters one of the neighbouring hyperplanes.
These newly stopped frogs form the offspring of the ¢-th particle. This procedure creates a
branching random walk with independent identically distributed offspring. Every vertex
visited in the frog model is obviously also visited by the branching random walk.

Now, project all particles in the intermediate two-dimensional branching random walk
onto the first coordinate. This creates a branching random walk on 7Z distributed as
the one described above. The construction shows that transience of this one-dimensional
branching random walk implies transience of the frog model.

To prove that the one-dimensional branching random walk is transient for « close to 1,
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we proceed as in the proof of Theorem and Theorem The proof only

differs in the calculation of the parameter u defined by

W= E[Z e_qu

i€D

for § > 0 with D; denoting the set of descendants in the first generation of the branching
random walk and X! the ej-coordinate of the location of particle i € Dy. Here, we
immediately get

p=5((1— o) + (1 + a)e)ELE].

Lemma implies E[¢] < oo. Thus, we can choose 6 = log(2E[¢]). Then lima—; p = %
and by continuity pu < 1 for «a close to 1, as required. ezl
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2 Branching Random Walks

2.1 Description of the model

We study the maximum of a branching random walk on R in discrete time. First,
we describe the branching random walk in a more formal way than explained in the
introduction and fix some notation.

Let (Zn)nen, be a Galton-Watson process with one initial particle and offspring law
given by the weights (p(k))gen,, where > o2 p(k) = 1. More precisely, let (&, k)n ken
be a collection of i.i.d. random variables with P(&17 = k) = p(k) for all £ € Ny. Let
Zo = 1. The number of particles in the n-th generation is defined as Z,, = ,f;l En k-
Let m =E[& 1] = Y _po kp(k) be the reproduction mean.

To define the movement of the particles we consider the associated Galton-Watson tree
denoted by T = (V, E), where V is the set of vertices and E is the set of edges. It has
Zy vertices at level n and for k < Z,,, the k-th vertex in level n has &, children. For
n € N let D,, be the set of vertices in the n-th level of the tree. Then, |D,| = Z,. For
v € Dy, the set of descendants of v in the (I + n)-th level is denoted by D}. Note that
|Dy| equals |Dy| in distribution. The root of T is called 0 € V.. For v,w € V define [v, w]
as the set of edges along the unique path from v to w.

We now define the locations of the particles. Let (X.)ecr be a collection of i.i.d. random
variables, i.e. every edge of T is labelled with a random variable. For v € D,,, the position

of the particle v at time n is defined as S, = ) | Xw. For n € N the position of the

we[o,v
rightmost particle at time n is

M,, = max S,,. (2.1)
’UGDn

We set M,, = —oo if D,, = (. We refer to (M,)nen as the maximum of the branching
random walk. For v € D,, the rightmost descendant of v at time | + n is defined as
My = MaXye Dy Sw.

We also introduce the collection of i.i.d. random variables (Xl-j)i,jeN, where X7 has the
same distribution as X, for some e € E. Moreover, for j,n € N define the random walk

S% = Z?:l Xij and the maximum of independent random walks as

_ j
M, lérj;g)én Si. (2.2)
In analogy to the maximum of the branching random walk, we set M,, = —oco if D,, =

Furthermore, for i € N, let X; be an independent copy of X} and define S,, = S X
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Note that for every time n the number of particles in the branching random walk equals
the number of random walks considered for M,,. However, the positions of the particles
in the branching random walk are not independent. Indeed, this dependence is such that
the maximum of independent random walks stochastically dominates the maximum of
the branching random walk, see Lemma [2.27 We investigate the asymptotics of M,, and
M,, conditioned on the event of survival of the Galton-Watson process, i.e. on the event
{Z,, > 0 ¥n € N}. Therefore, introduce the measure

P*(-) = P(-|Z, > 0 ¥n € N). (2.3)

The associated expectation is denoted by E*. Let (an)nen be a sequence of positive
numbers and let ¢ € (0, 00| be a constant. With a slight abuse of notation for ¢ = oo, we
write a, = exp(—cn + o(n)), if lim,_,~ %log a, = —c. Note that a,, decays faster than
exponentially in n if ¢ = oo.

2.2 Some known results

In the first subsection we state some elementary results on Galton-Watson processes. In
the remaining subsections we collect some results on the maximum of the branching ran-
dom walk and on the maximum of independent random walks. Throughout this chapter
we assume that the displacements are centred, i.e. E[X;] = 0. Note that every branching
random walk can be restricted to this case by considering the family of displacements
(Xe — E[X1])ecr. Further note that most of the following results hold true in a more
general setting, i.e. if the branching and movement of the particles are not independent.

2.2.1 On the Galton-Watson process

The first theorem gives the exact value of the survival probability of the Galton-Watson
process, i.e. of P(Z, > 0 Vn € N). Moreover we get a necessary and sufficient condition
for positive survival probability. Let ¢ = inf{s € [0,1]: E[s?!] = s}.

Assumption 1. The Galton-Watson process is supercritical, i.e. m > 1.

Theorem 2.1. The Galton- Watson process has survival probability 1 — q. In particular,
the survival probability is positive if and only if Assumption (1] is satisfied, or p(1) = 1.

A proof can be found in [7, Chapter 1, Section 5, Theorem 1|. In the proof of Theo-

rem and Theorem we also need the asymptotics of the survival probability of a

critical Galton-Watson process.
Theorem 2.2. Let m =1 and p(1) < 1. Then, lim,_oc nP(Z, > 0) = ﬁ

A proof can be found in [7, Chapter 1, Section 9, Theorem 1].
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We often need to estimate the number of particles at time n, which has expectation
m'™. Let W,, = fﬁ and (Fp)nen be the natural filtration of the Galton-Watson process,
ie. F, = o(Z1,...,%y). The process (Wp)nen is a martingale with respect to the

filtration (Fp)nen. Therefore, W, — W almost surely, where W is an almost surely
finite random variable.

Assumption 2. The Galton-Watson process satisfies E[Z1 log Z1] < 0.

Note that Assumption [2] implies m < co. The following well-known theorem shows that
under our assumptions, the limit W is non-trivial, i.e. P(IW = 0) < 1.

Theorem 2.3 (Kesten-Stigum). If Assumption (1] and [ are satisfied, we have
EW]=1 and P(W =0)=¢<1.
A proof can e.g. be found in |7, Chapter 1, Section 10, Theorem 1].

2.2.2 First term of the maximum

In the remaining subsections we summarise some known results on the maximum of the
branching random walk defined in and on the maximum of independent random
walks defined in (2.2)).

For x € R the rate function of the random walk (S,)nen is defined as

I(z) = sup(Az — logIE[e’\Xl]). (2.4)
AeR
Assumption 3. There exists e > 0 such that E[e’1] < oo for all X € (—¢,¢). Further-
more, for simplicity suppose that E[X1] = 0.
If Assumption [1} and [3] are satisfied, then M,, grows at linear speed x*, where
z* =sup{z > 0: I(z) < logm}. (2.5)
Note that z* is finite if m < oo and Assumption [3| are satisfied.

Theorem 2.4. Suppose that Assumption [1] and [3 are satisfied. The mazimum of the
branching random walk has linear speed x*, i.e.
M,

lim — =2* P*-q.s.
n—oo n

This result goes back to Biggins [I1], Hammersley [35] and Kingman [44]. One can check

that the speed of (M,,), also equals z*, see [60], Theorem 1| for deterministic branching.
For general branching this is a consequence of Theorem
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Theorem 2.5. Suppose that Assumption [1] and [3 are satisfied. The mazimum of inde-
pendent random walks has linear speed x*, i.e.

M,
lim — =z* P*-a.s.
n—oo n
If the displacements have no exponential moments, then the maximum moves faster than
linear in time. For stretched exponential tails the speed of the maximum of the branching

random walk was determined by Gantert in [28].

Theorem 2.6 ([28, Theorem 2|). Assume that there exists r € (0,1) and slowly varying
tLl(,tZ is non-increasing and P(X, > t) = a(t)e YO for all t large
enough. Furthermore, let 1 be a positive function such that lim,_, LE@)ym)" _

n
Then,

functions a, L such that

My,
lim —= = (logm)"/" P*-a.s.

If for instance L(t) = b for some b > 0 we can take ¥(n) = b=1/"nl/".
For regularly varying tails of the displacement the speed was derived by Durrett in [24].
Recall the martingale limit W defined in subsection [2.2.1]

Theorem 2.7 ([24, Theorem 1|). Suppose that Assumption [d is satisfied. Assume that
there is a slowly varying function L and o > 0 such that P(X1 > t) = t=*L(t) for all

t large enough and lim;_,o logtP(X < —t) = 0. Furthermore, choose (ap)nen such that
limy, 0o m"P(Xy > a,) = 1. Let r = Z(;io m*j]PD(Zj > 0). Then, for all x >0

M, o —a
lim IF’(— < :U> = / e V" P(rWV e dy).
0

n—00 an

If L(t) = b for some b > 0 we can take a, = b'/*m™® for all n € N.

2.2.3 Second term of the maximum

In this subsection we always assume that we are in the setting of Theorem [2.4] i.e. the
maximum of the branching random walk as well as the maximum of independent random
walks moves with linear speed x*. Throughout this subsection we make the following
assumption.

Assumption 4. All exponential moments of the displacements exist, i.e. E[e**1] < oo
for all X € R. Furthermore, there exists € > 0 such that E[Z{T¢] < cc.

Assumption [dimplies that I(z*) = logm and [ is infinitely often differentiable on R. Note
that the following results hold true under slightly weaker (more technical) assumptions
and in a more general setting. We refer to the book of Shi [55] for more details. Moreover
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2.2. Some known results

note that in most cases only critical branching random walks are considered. More
precisely, let

P(t) = logIE[ Z ets”} = logm + log E[e'*1].

veEDq

A critical branching random walk satisfies ¢(0) > 0 and ¥(1) = ¢’(1) = 0. In particular
it has speed 0. However, in our setup a general branching random walk can be trans-
formed to a critical branching random walk by considering the collection of displacements
(I'(z*)(Xe — x*))eeE.
In the setting of Assumption [ precise asymptotics for the maximum are known. Addario-
Berry and Reed [I] as well as Hu and Shi [4I] obtain a logarithmic second term.

Theorem 2.8 (|41, Theorem 1.2]). Assume that Assumption )| is satisfied. The mazi-
mum of the branching random walk has a logarithmic second term. More precisely,

M _ *
liminf 22— 2™ _ _ 3 P*-a.s.

n—oo  logn 20" (x¥)

M, —x*n 1
li - =— P*-a.s.
lfffip logn 21 (x*) a5
. M, —x*n 3 . .
nh_)nolo ogn _21’(33*) i P -probability.

Addario-Berry and Reed [I] calculated E[M,,] to within O(1) assuming that the number
of offspring and displacements are bounded.
Also the maximum of independent random walks has a logarithmic second term.

Theorem 2.9. Assume that Assumption [] is satisfied. The mazimum of independent
random walks has a logarithmic second term. More precisely,

. Mn —x*n 1
im =—
n—oo  logn 2I'(z*)

P*-a.s.

For deterministic branching, i.e. if P(Z; = k) = 1 for some k € N this result follows from
[60, Theorem 1]. However, the same arguments immediately apply to our setting. Note
that M,, and M, have the same speed z*, but the maximum of independent random
walks M, has a larger logarithmic term.

In [2] Aidékon finally proves that the normalised maximum of the branching random
walk converges in distribution to a random shift of a Gumbel variable.

Theorem 2.10 ([2, Theorem 1.1]). Assume that Assumption |4 is satisfied and X1 is
non-lattice, i.e. there exists no a,b € R such that P(X; € {az +b: z € Z}) = 1. Then,
for allu e R

: * * 3 x| —De U
nh_)rgloIP’ (Mn—m n+mlogn<u>:ﬂ3 [e De },
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2. Branching Random Walks

where D is a P*-almost surely positive and finite random variable.

Similar results were proved for branching Brownian motion by Bramson in [I4]. Even
the third term of M, is known.

Theorem 2.11 ([39, Theorem 1.1]). Assume that Assumption[{] is satisfied. Then,

_ Mn—:zz*n—i—mlogn 1 i
lim sup =———- Pras
n—00 loglogn I'(x)

Theorem 2.12 ([40, Theorem 1.1]). Assume that Assumption |4 is satisfied and X is
non-lattice. Then,

o Mn—x*n—i—%logn 1 i
lim inf =— P*-a.s.
n—00 log loglogn I'(x*)

2.2.4 Large deviations

As already explained in the introduction, we investigate the exponential decay rates of
the probabilities P(% > ZL') for z > z* and P(% < ac) for z < z*. Our main result
in this chapter, Theorem characterises these exponential decay rates. We consider
the same question for M,, and determine the exponential decay rates, see Theorem m
Interestingly, the rate functions coincide for z > x*, but in general they do not coincide
for z < x*.

Similar questions have been studied before. Large deviation estimates for the maximum
of branching Brownian motion have first been investigated by Chauvin and Rouault in
[16] and very recently by Derrida and Shi in [2I] and [20]. See also [19] and [56] for
extensions with coalescence and selection or immigration, respectively. Note that [20]
also treats continuous time branching random walks. The difference to our setup is that
in the time-continuous case, the strategies can involve the exponential waiting times,
while in our setup, they can involve the branching mechanism given by the offspring
distribution.

Upper large deviations for the maximum of discrete time branching random walks have
been investigated by Rouault in [54] in the case where the displacemets have exponential
moments (i.e. we are in the setting of Theorem [2.4) and every particle has at least one
offspring.

Theorem 2.13 ([54, Theorem 2.1|). Suppose that Assumption[]] and|[3 is satisfied. More-
over, assume that every particle has at least one offspring, i.e. p(0) = 0 and there exists
e > 0 such that E[Z1(log Z1)'*'] < oo. Then, for all x > x* and § > 0 there exists
C =C(x,0) > 0 such thal

1

i —zn| < §) =C.
A (S, —an[ < 9) (Mn —anl £0) =C
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2.3. Rate functions and assumptions

Very recently Bhattacharya proved an upper large deviation result for heavy-tailed dis-
placements (i.e. in the setting of Theorem [2.7).

Theorem 2.14 ([10, Corollary 2.6]). Suppose that Assumption[Qis satisfied. Assume that
there is a slowly varying function L and o > 0 such that P(|X1| > t) = x=*L(t) for all t

large enough. Furthermore, there is p,q > 0 with p+q = 1 such that lim;_, % =p

and lim;_, oo % = q. Choose (ap)nen such that limy, oo m"P(X7 > a,) = 1. Let
(Yn)nen be an increasing sequence of positive numbers with lim, % =0

For allz >0 ) M
n=00 My “L(yn) N Yn

where C > 0 is a constant.

Recently large deviation results for the empirical distribution of the branching random
walk have been obtained in [17], [49], [50]. We also mention that in the case of a fixed
number of offspring, much more precise results (describing not only the exponential decay
rates) for first passage times were derived in [I5].

2.3 Rate functions and assumptions

In this section we introduce the rate functions of the Galton-Watson process, which are
needed to state our results in Section [2.4] Furthermore, we collect some large deviation
results, which are used in the proofs of the results in Section

2.3.1 Rate function of the random walk

Recall the definition of the rate function of the random walk (Sy)nen, see (2.4). If
Assumption [3| is satisfied, Cramér’s theorem implies that the probability P(S,, > xn)
decays exponentially in n with rate I(z) for z > 0.

Theorem 2.15. Suppose that Assumption @ is satisfied. The random walk (Sp)nen
satisfies a large deviation principle, i.e.

I() lim,,— 00 % log]P)(T” > x) for x > 0,
—I(z) =
lim,,— o0 % log]P’(S" < x) for x <0.

A proof can e.g. be found in [I8, Theorem 2.2.3 and Lemma 2.2.5]. Assumptionensures
that I(z) > 0 for all x # 0 and I(z) — oo as |z| — .

2.3.2 Rate functions of the Galton-Watson process

Due to the well-known Kesten-Stigum Theorem, Assumption [2] implies that the Galton-
Watson process grows like its expectation, see Theorem In particular, (Z,)nen,
grows exponentially with high probability.
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2. Branching Random Walks

If Assumption[I]and [2]are satisfied, there is a large deviation result for the probability that
(Zn)nen, grows at most subexponentially. A sequence (ap)nen is called subexponential,
if a,e ™ — 0 as n — oo for all € > 0. Define

p = —1logE[Z1¢” 1] € (0, 0] (2.6)
Note that p = —logp(1) if p(0) = 0 (and therefore also ¢ = 0).

Assumption 5. Each particle has less than two offspring particles with positive proba-
bility, i.e. p(0) +p(1) > 0.

Assumption [5| is often referred to as Schroder case, whereas the case p(0) + p(1) = 0 is
called Béttcher case. We have p < oo if and only if Assumption [5] is satisfied. Consider
the set

A = {l € N: 3n € N such that P(Z, =1) > 0} (2.7)

containing all positive integers ! such that there are [ particles at some time n with
positive probability.

Theorem 2.16. Let Assumption [ and[d hold. Then, for every k € A we have

lim logP*(Z, = k) = —p.

n—oo n,

Moreover, for every subexponential sequence (an)nen such that a, — 0o as n — oo,

lim 1 log P* (Zn < an) = —p.

n—oo N

A proof of the first statement can be found in [7, Chapter 1, Section 11, Theorem 3|.
The second statement is a consequence of of [9, Theorem 3.1].
For z € [0,logm] define the rate function of the Galton-Watson process as

I9WV(2) = p(1 — z(logm) ). (2.8)
Note that %W (z) > 0 for all < logm.

Theorem 2.17. Under Assumption and@ we have for x € [0,log m|

lim 1 logP*(Z, < ™) = —I1W(z).

n—oo N

This theorem is a consequence of [9, Theorem 3.2]. Note that there is also an upper large
deviation result for P* (Zn > e”m), where z > logm, see e.g. [8, Theorem 1].
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2.4. Main results

2.4 Main results

After defining the rate functions of the random walk and the Galton-Watson process we
are now able to state our main results of this chapter. The results in this section are
joint work with Gantert and published in [29].

Note that I(z*) =logm if I(x) < oo for some x > z*. On the other hand, I(z*) < logm
already implies P(X; > 2*) = 0. This case leads to a different shape of the rate functions,

see Figure Let
kE* =inf{k > 1: p(k) > 0}. (2.9)

Note that & = k* is the smallest positive integer, such that P(Z, = k) > 0 for some
n € N. Define the rate function for the maximum of independent random walks as

I(x) —logm for z > z*,

. 0 for x = x*
I'"(z) = ’ 2.10
(@) p(1— lééxn)%) for 0 <z < z*, (210

EI(x)+p  for x <O0.

Note that p(1 — li(;gl) = ISW(I(x)) for 0 < = < z*. Recall the maximum M, of a

random number of independent walks, defined in (2.2)).

Theorem 2.18. Suppose that Assumption [1} [3 and [3 are satisfied. Then, the laws of
My,

under P* satisfy a large deviation principle with rate function I'™. More precisely,

1

1

_Iind<x) _ {hmnﬁooilogp( . ) for x > a*,

>
lim,, o0 % log IP’(%" < x) for x < x*.

In the Bottcher case (p(0) + p(1) = 0) we have p = co and therefore I'"%(z) = oo for all
x < x*. Hence, in this case the lower deviation probabilities P*(M, < zn) for z < z*
decay faster than exponentially in n.

Let us now give some intuition for the rate function 7' and describe the large deviation
event {M,, > xn} for some x > z*, respectively {M,, < an} for some z < z*.

For & > x*, the number of particles should be larger or equal than expected, i.e. Z,, > e™
for some ¢ > logm. The probability of such an event is of order exp(—ISW (t)n 4 o(n)).
If there are e™ particles at time n, the probability that at least one particle reaches xn
is of order exp(—I(z)n + tn + o(n)) for t < I(x). Therefore, we need to maximize the
product of these two probabilities, which amounts to minimize I¢W(¢) + I(z) — t, where
t runs over the interval [logm, I(x)). It turns out that the optimal value is ¢ = logm.
This argument will go through for the maximum of the branching random walk.

If 0 <z < x*, the probability that one particle reaches zn is of order exp(—I(x)n+o(n)).
Hence, for every e > 0, if there are less than eU(®)=9)" particles, the probability that
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2. Branching Random Walks

none of these particles reaches zn is close to 1. However, if there are more than e (#)+e)n

particles, this probability decays exponentially in n.
If x < 0, already the probability that a single particle is below xn at time n decays
exponentially fast in n. Hence, if the number of particles Z, grows exponentially, the
probability that all particles are below zn at time n decays faster than exponentially.
Therefore, the number of particles needs to grow subexponentially. Since p does not
depend on the choice of k£ in Theorem there have to be only £* particles at time n
(provided that p < o).
Next, we consider the maximum of the branching random walk. For x < x* let

H(z)= inf {tp (N = (1 - t)m*))}. (2.11)

te(0,1]

Note that for z > 0 it suffices to take the infimum over ¢ € (0,1 — -%]. Define the rate
function of the branching random walk as

I(xz) —logm for z > z*,
B8 () =<0 for x = a*, (2.12)
H(x) for z < x*.

Theorem 2.19. Suppose that Assumption[1], (3, [3 and [ are satisfied. Then, the laws of
% under P* satisfy a large deviation principle with rate function I8V . More precisely,

IBRW( ) hmn%oo %1ng(% Z IL’) fOT T Z LI,‘*’
_ ) = ’

In contrast to the case of independent random walks we only consider the Schroder case
(Assumption |5)) for the branching random walk.

Remark 2.20. Assumption [5] is only needed for the lower deviations (v < x*) in The-
orem [2.19, In the Bottcher case, i.e. if Assumption [J] is not satisfied, the strategy for
lower deviations is different.

Proposition 2.21. The rate function of the mazimum of the branching random walk

IBRW s conver.

Note that the rate function of the maximum of independent random walks '™ is concave
on the interval [0, z*].

For x > x* we have IPRW(z) = I'"d(z). In this case the strategy is the same as for
independent random walks. The strategy in the case x < x* goes as follows. At time tn
there are only k* particles, and the position of one of those particles is smaller than its
expectation. All other k* — 1 particles are killed at time ¢tn. Note that by Assumption
either k* = 1 or particles may have no offspring with positive probability. Afterwards,

each particle moves and branches according to its usual behaviour.
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2.4. Main results

Further notice, that in contrast to the case of independent random walks, the number
of particles can also grow exponentially if x < 0. It suffices to have a small number of
particles at time tn for some ¢ € (0, 1].

I(z*) =logm I(z*) < logm

B ISV (I(2%))

Figure 2.1: The figure shows the qualitative behaviour of the rate function of the branch-
ing random walk (—)) and the rate function of independent random walks

To compare the rate functions, note that the maximum of independent random walks
stochastically dominates the maximum of the branching random walk, see Lemma [2.27]
Therefore, I'™(z) < IBRW(z) for > ¥, respectively I"d(z) > IPRW(2) for » < 2*.
For x < x*, the inequality is in general strict. For x > z*, the rate functions coincide,
see the argument above.

Let us now comment on the shape of the rate functions. If I(z) = oo for some z > x*, also
Imd(x) = IPRW(2) = co. More precisely, I(x) = oo already implies P(X; > —¢) = 0
for some e > 0 and therefore M,, < (z — )n, respectively M,, < (x — ¢)n almost surely.
If I(xz*) = logm, then the rate functions I'™(z) and I®®W(z) are continuous from the
left at = z*. However, if I(z*) < logm, the rate functions I'"d(x) and IB*W(z) are
infinite for x > 2*, since I(x) = oo. Therefore, they are not continuous from the right

at * = 2*. The rate function IPRW(z) is continuous from the left at z = z*, since
IBRWV(2) < p(1— ) for x < z*. However, I™(z) is also not continuous from the left

at x = z*. In particular, lim, ~,+ I'™(z) € (0, 00) if p < c.

An intuitive explanation of this discontinuity is the following. If there are at least
exp([(m*)n) particles at time n, then M, = z*n + o(n) with high probability. For a
smaller linear term there have to be less particles, hence for all < x* the probability
P*(M, < zn) is bounded from below by the probability to have at most exp(I(z*)n)
particles at time n, which decays exponentially. Note that for the branching random
walk, in contrast, it suffices to have a small number of particles at the beginning.
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2. Branching Random Walks

2.5 Preliminaries

Before we prove the main results, we collect some preliminaries which are needed through-
out the proofs.

Lemma 2.22. We have the following inequalities.

(i) For x € [0,e™ 1] it holds that 1 —x > e~ °*.

(i) For x € [0,1] and y > 0 it holds that 1 — (1 — z)¥ > xy(1l — xy).
Proof. Both inequalities follow after some elementary calculations.

(i) The function f(z) = 1 — 2 — e~ is increasing on [0,e~!]. The claim follows, as

£(0) = 0.

(ii) We first show another inequality. The function g(x) = 1—e™*—z(1—2) is increasing
for x > 0. As g(0) =0, we have 1 —e™ > x(1 — z). Using additionally the well

T

known inequality 1 —z < e™*, we get

1-(1-2)>1—e™>ay(l —ay). O
Next, we need a general estimate on the sum of large deviation probabilities. For ¢ € N
let (a)nen be a sequence of positive numbers and a’ = lim sup,,_, % log af,.
Lemma 2.23. For oll k € N 4t holds that
1 k
limsup —lo al = max da.

A proof can e.g. be found in [I8 Lemma 1.2.15]. Theorem m gives the exponential
decay rate of the probability P(S,, > an) for > 0. The following theorem gives the
precise asymptotics for this probability.

Theorem 2.24. Let x > 0 and I(x) < oo. There exists an explicit constant ¢ > 0 such
that

i Vel B( 2 ) =

A proof can be found in [I8, Theorem 3.7.4|. Furthermore, we need some properties of
the rate function I.

Lemma 2.25. Assume that there exists © € R such that I(z) < co and I(x +¢&) = o
for alle >0. Then P(X1 >2) =0 and P(X; =z) = e~ (@)
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Proof. Let x € R such that I(z) < oo and I(z 4+ ¢) = oo for all € > 0. Assume that
P(X1 > x) > 0. Then, there exists ¢ > 0 such that P(X; > = +¢) > 0. However,

I(z +¢) = sup(A(z + ¢) — log E[e}1])

AER
<sup(A(z +¢) — log(e’\(HE)P(Xl >z 4¢))
AER
= —logP(X; >z +¢) < oo, (2.13)

which leads to a contradiction. It remains to show that P(X; = z) = e~ /(*). Analogously

to (@13), we get

I(z) < sup(Az — log(e/\x]P’(Xl =1x)) = —logP(X; = z).
AER

Moreover, since P(X; > z) = 0 we have for all € > 0

I(x) > sup(/\x — log(e)‘gc]ID(X1 € (x—ex]+ e/\(:c—s)).
AER

Letting A — oo and € — 0 shows that
I(z) > — log P(X; = 2),

which finishes the proof. O

2.6 Proof of the main results

The stochastic processes considered in this model are discrete time processes. However,
to increase the readability, we omit integer parts if no confusion arises.
2.6.1 Convexity of the rate function

Proof of Proposition|2.21. Since the rate function [ is convex, it remains to show that
H (defined in (2.11))) is convex. Recall that p < co by Assumption 5| By the definition
of H and the convexity of I, for any z,y € (—oo,2*) and € > 0 there exists t,,t, € (0,1]
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2. Branching Random Walks

such that for every \ € [0, 1]
AH (z) + (1 — N H(y)
> A(txp +t I (t (- (1 tx)x*))) +(1-2X) (typ +tyI(t (y— (1 - ty)x*))) —€

= (/\tac +(1- )‘)ty) </) + /\tx—l—?fx—)\)tyj(txl(x -(1- tm)x*))

+ Ml(ty—l(y - (1- ty)x*))> —¢
A4 (1 =Ny — (1= g — (1= A\ty)z*
Mz + (1— Nty )>_E

> (Mg + (1= N)ty) <p+I<
>HMz+(1-Ny) —e.

Letting € — 0 finishes the proof. O

2.6.2 Independent random walks

Proof of Theorem[2.18. 1. Case: = > z*
Following the strategy explained in Section [2.4] independence of the random walks and
Lemma [2.22 (ii)| yields

IP*(]Z”zw) ZE*[l_(l_M%Zx))Zn] 1
(2 b (1 (1 2(5 2 ) )

> p* (Wn > %)P(% > x) ém”(l - P(% > x) %m”) (2.14)

By Theorem ]P’(S—” > y:) %m” — 0 as n — oo, since logm < I(z). For the first factor

n
on the right hand side of (2.14) we have lim inf,, oo P*(W,, > 1) > P*(W > 1) > 0, since
E*[W] > E[W] = 1 by Theorem Together with Theorem and Lemma we
conclude

IP’%% 2 1‘) > exp(—(I(x) —logm)n + o(n)),

which yields the lower bound. For the upper bound, the Markov inequality yields

n

P*(% > x) =P (iﬂ{spmc} =z 1> < P(% 2 x)E*[Z”] - P(% = w) 1m ’
=1

—q
(2.15)

which immediately implies the claim.
2. Case: 0 <z < 2*
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2.6. Proof of the main results

Since the rate function I is strictly increasing on the interval [0, 2*], we can choose £ > 0
such that ¢ < I(x) < logm — . We prove the upper bound first. Using the inequality
1 —y < e ¥ and Theorem we have for n large enough

P (M <) = (1 B2 5 0)) "] < [onn(P(5 > 0) )
<P ( 7, < 6(I(z)+€)n) + exp( _ esn+o(n))
= exp(— (IWV(I(z) +e)n + 0(n)>.

Letting ¢ — 0 yields the upper bound. Note that ISV defined in ([2.8) is continuous.
The proof for the lower bound is similar. More precisely, since ]P’(S—n" >1x) <elforn
large enough, Lemma yields for n large enough

IP*(JZ” <z)=FE' [(1 - P(% - $>>Zn] - [exp(_e . p(% - :c)zn)]
> p* (Zn < eU(z)—a)n) -exp( _ e—an+o(n))
= exp(—IGW(I(JJ) —e)n+ o(n)>,

Letting € — 0 yields the lower bound.
3. Case: <0
We first consider = < 0. For the upper bound we have for K € N

P(M <o) =m[p(2 <o) < ZP(* <) Bz =0+ (P <a)"
(2.16)

By Theorem the probability P(Z, = k) is of order exp(—pn + o(n)) for all k € A
(defined in (2.7)) and P(Z,, = k) = 0 otherwise. For all K € N, Lemma yields

lim sup — log]P’* (MT < ) < max{—(k*I(z) + p), —KI(z)}.

n—o0

Hence, letting K — oo proves the upper bound. Note that I(x) > 0 for x < 0. As in the
proof of (2.16) we have

(<o) mw (S <) 20(% <) w00

= exp(—(k*I(z) + p)n + o(n)),

which shows the lower bound. For z = 0 the result follows from continuity of the rate
function 1™ at 0.
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2. Branching Random Walks

4. Case: z = z2*

Analogously to (2.15)),

P<%§x*>:1—ﬂ"<%>w*>21—P(i>x*> m_
n n n 1—gq

n

(2.17)

Now we have to distinguish two cases. If I(x*) = logm, then the right hand side of
(2.17)) converges to 1 as n — oo by Theorem If I(z*) < logm, then I(z) = oo for
all > z* and therefore P(X; > 2*) = 0 by Lemma [2.25| Hence, the right hand side of

(2.17)) equals 1. In both cases we get
1 M,
lim —logIP’(—n < x) —0.
n—oo N n

Since P(M,, > z*n) > P(M, > z*n), it remains to show that P(M,, > z*n) decays slower
than exponentially in n. If I(z) < oo for some z > x*, then the rate function IBRW (x)
is continuous from the right at = = z*. Since IBRW(2) — 0 as 2 \, 2* in this case, the
claim follows. Therefore assume that I(xz) = oo for all z > z*. By Lemma we have
P(X; = z*) = e 1) in this case. Consider the following embedded process. Every
particle with step size smaller than z* at any time is killed. Therefore, the reproduction
mean in every step is P(X; = 2*)m > 1. Let g, be the extinction probability of this
process at time n. By Theorem gn decays slower than expomnentially in n. Since
P(M,, > z*n) > gy, the claim follows. O

2.6.3 Branching random walk

Before proving Theorem [2.19] we first show that the maximum of independent random
walks stochastically dominates the maximum of the branching random walk.

Lemma 2.26. Let (X;)ien and (Yi)ien be independent sequences of (not necessarily
independent) random variables. Furthermore, assume that the random variables Y;,i € N,
have the same distribution. Then we have for all k € N and x € R

IP( max (X —|—Y1}<x>>IP>< max (X +Y}<x)
ie{1,....k ie{1,....k}

Proof. Let i* be the smallest (random) index such that X+ = max;eqy, . k) Xi- We have

P( max, (X +Yi} <) SP(Xpe + Y <2) =P(Xpe +Y1 < 2). O
1eq{1,...,

As a consequence we can show that the maximum of independent random walks stochas-
tically dominates the maximum of the branching random walk.
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Lemma 2.27. For alln € N and z € R
P(M, < z) > P(M, < x).

Proof. We prove this lemma by induction over n. For n = 1 the inequality is obviously
true. Assume that the inequality holds for some n € N. Let (Sn )neN, (SZ;Q)RGN, ... bein-
dependent copies of (S%)nen and define (M), en, (M2)nen, - - - and (MY e, (M?)pen, - . .
in the same way. Furthermore, for i € {1,..., 71}, denote by Z! the number of descen-
dants of the i-th particle of the first generation at time n + 1. Note that Z! equals Z,
in distribution. Using the induction hypothesis and Lemma, [2.26]

P(Mpsq < ) = IP( max {X1 F MY < x)
26{1, ,Zl

X —FMZ <
ze{rfaf{zl}{ i+ Mo x>

ze{?}a?czl}ye{rll}?{za 7S - X <o
P(M,

n+l < $) O
The statement of Lemma is also true with respect to P*.

Proof of Theorem[2.19. 1. Case: = > z*

Recall that IBRW(z) = [Md(z) for 2 > z*. Therefore, the upper bound immediately
follows from Theorem and Lemma It remains to prove the lower bound. Let
e > 0 such that (1 —e)I(x) > logm. Recall that for v € D., the rightmost descendant
of v at time n is denoted by M(1 ) By Lemma m

M, Moy, = So S, T
]P(n —I) P(Jél%i 1—e)mn +(1—5)n_1—5>
MY . —§ g
" (1—e)n v en x
> >
=¥ (‘?%X l-en  (1-en= 1—g>
MY . —§ g
* (1—e)n v en
> _— > . > . .
> P (Jélﬁi (I—en — :c) P( en :C) (2.18)

It remains to estimate the first probability on the right hand side of . Therefore, let
Ay, be the set of infinite subtrees in generation k, i.e. Ay, = {v € Dy: |D}| > 0Vl € N}.
Note that (M(Ul,s)n—sv)veDm are independent under P* conditioned on A.,. We can now
use similar estimates as in the proof of Theorem More precisely, by independence
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2. Branching Random Walks

and Lemma we get

M — S,
’UGDsn (1 - 8)

MY,
— E* {IP’* ( max L
'UeDen (1 - €)n

Ef1-(1- IP*(M“ on

I\/
|\/

v

~

b

m

3
| I v
—_

(I—e)n
> IP’*(ZM > fm5"> P*(|A5ny . . D)y | Zen > =m )
M oy, I
(-0-r (=) )
> B (Wen > 1) 'P*<zt S Lgopreo vie) = O 5 V) 2., )
" ¥€Den,
(e o) e (1o (P 2 ) S ). 2o

Analogously to , for the first probability on the right hand side of it holds
that liminf, . P*(W, > %) > PX(W > %) > 0. The second probability is at least
12;[1 by Lemma m Furthermore, analogously to , the Markov inequality and the
choice of ¢ yields

o (g > o) e 2 - n(GE )

=1- exp(—n((l —e)l(x) — logm) + 0(n)> — 1.
(2.20)

Combining (2.18)), (2.19) and (2.20) shows

linrgioréf % log P* (% > x) > —e(I(x)—logm)+(1—e) linrgioréf (Zl—le)n log P* (m > x)
This implies the lower bound.

2. Case: z < z*

Following the strategy explained in Section there are only k* particles at time tn
and the position of one particle is smaller than its expectation. Afterwards, all particles
move and branch as usual. For the lower bound let ¢ € (0, min{1 — 2%, 1}] and fix € > 0.
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Note that t € (0,1 — %] if > 0 and ¢ € (0,1] if z < 0. We have

Mn Mn * k *
P*(—gx)ZP*(—S:U\Zmzk)-IF’(Zm:k)
n n
Sin + M1_pn
tn T M1—¢) <

> qk*—1P* (? < > P (Zip = k)

> q’“*‘lP*(M <a e -P(St” < (@ - (11" +9))

Since the first probability on the right hand side of (2.21)) converges to 1 almost surely
as n — oo by Theorem we get

P* (% < :L') > exp(— [I(t_l(m —(1—=t)(z" + 5))) + p} tn + o(n)).

Letting £ — 0 and since this inequality holds for all £ € (0, min{1 — -%,1}], we conclude

liminfllogIP’* <% < a:) > sup —H(x)=— inf H(z).
n—oo N n te(0,min{1— = ,1}] t€(0,1]

T*0

For the upper bound define
T, = inf{t >0: Zyy > n3}

and for €1 > 0 introduce the set

F=F(e) = {51,2g1, . {min{ (1 - xi) 1}5;1]51}.

By the definition of 7;, we then have

n

<P (T > min{ (1~ %)1}) +;P*(A§” <@|Toe(t—ent] )P (T (t-=1,t)
< P (Zmint—z)1pn S 0°) + ZP*<% <o | Ty € (=21 t] )P (Zcpn < 0.

n
teF
(2.22)

Let e2 > 0. Recall that A, is the set of infinite subtrees in generation tn. Using
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Lemma and the same estimate as in ([2.19)),

P*(% gx\Tne (t—el,tD

n
Stn + MP
§P*<ré1gx % <z ‘ T, € (t—sl,t]>
v tn
<B(3 < (-6 - e) ) B (< )"
- n - (1—t)n —

+ P (Zin <0* | Ty € (t—e1,t]) + P*(|Am| <1 | Zin >0, T, € (t —e1,1]). (2.23)

The second probability on the right hand side of (2.23)) converges to 0 by Theorem .
Hence, the second term in (2.23|) decays faster than exponentially in n. For the third
term on the right hand side of (2.23)),

P*(Ziy <n® | Ty € (t —e1,t]) <P*(3k €N: Z, <n? | Zy =n?)

3
n 3 . 2 .
< (n2>qn " < exp((n® — n?)logq + 3n®logn).

(2.24)

In the second inequality we used the fact that for the event we consider, at most n? of
the initial n? Galton-Watson trees may survive. Note that every initial particle produces
an independent Galton-Watson tree. Analogousy to (2.24)), we get for the fourth term

on the right hand side of (2.23)

2
P*(JAm| < n ‘ Zin > 12T, € (t — e1,t]) < <n >q”2_" < exp((n2 —n)logq+ 2nlogn).
n

(2.25)
Combining (2.22)), (2.23), (2.24) and (2.25) and letting £1,e2 — 0, we conclude with
Lemma [2.23] after a straightforward calculation

lim sup % logP*<% < x) < T inf 1}}{tp—|— t[(—(l_t)tx*_:c)} = —H(z).

n—oo Oamin{l—ﬁ»

Note that we could take the limit e9 — 0, since I is continuous from the right on (0, co).
3. Case: z =2z"
The proof is analogous to Theorem [2.18]
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3 Branching Random Walks In Random
Environment

3.1 Description of the model

In this chapter we consider the same model as in Chapter [2| but we add another source
of randomness. In Chapter [2the branching mechanism, given by the weights (p(k))ken,,
was independent of time. In this chapter, at every time n the weights are chosen at
random, independently of everything else.

Other random environments have been considered before. In [25] Fang and Zeitouni
studied branching random walks with time-dependent transition probabilities. Space-
time environments (i.e. branching and movement depends on time and location of the
particles) are investigated by Yoshida [58] as well as by Hu and Yoshida [42].

We keep the notation of Chapter 2] if not stated otherwise. In our model the set of
possible offspring distributions is defined as

Mz{@wnmwmmzagy%ﬁﬂ}

Let wq,ws,... be a sequence of i.i.d. random variables with values in M and define
the random environment w = (wy)nen, where wy, = (pn(k))ken,- The corresponding
probability measure is denoted by P and its expectation by E. Let (Z;,)nen, be a Galton-
Watson process in the random environment w with one initial particle. More precisely,
given an environment w, for all n € Nlet (&, r)ren be a sequence of i.i.d. random variables
with P, (&,1 = k) = pn(k) for all £ € N and let Zy = 1. The number of particles in the
n-th generation is defined as Z,, = Zf;f Eng- Let my = Eyléni1] = D opey kpn(k) be
the reproduction mean in generation n and let m be an independent copy of m;.

For a fixed environment w, we denote by P, and E, the probability, respectively the
expectation of the processes in the environment w. We refer to P, as the quenched
probability. The annealed probability is defined as

sz/mwmm»

We denote the associated expectation by E. As in Chapter [2] we study large devia-
tion probabilities of the maximum of the branching random walk and the maximum of
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3. Branching Random Walks In Random Environment

independent random walks.

3.2 Some known results

3.2.1 On the branching process in random environment
Throughout this chapter we assume that each particle produces at least one offspring.

Assumption 6. Each particle has at least one offspring, i.e. p(0) = 0. Furthermore,
P(p(1)=1) < 1.

The Galton-Watson process in random environment always survives if Assumption [6] is
satisfied. Furthermore, the reproduction means satisfy m,, > 1 for all n € N.
In analogy to the time-homogeneous Galton-Watson process, we introduce the process

W, — Z”Gjlmi)_l'

Let (Fn)nen be the natural filtration of the Galton-Watson process in random environ-

(Wn)neNy where

ment, i.e. F, = 0(Z1,...,Zy). For P-a.e. w the process (W), ),en is a P,-martingale with
respect to the filtration (F,)nen. Therefore, W,, — W P,-a.s., where W is an almost
surely finite random variable.

Assumption 7. For the Galton-Watson process in random environment suppose that
E[Z; log Z1] < oc.

The following theorem shows that under our assumptions the limit W is non-trivial,
ie. P(W =0) < 1.

Theorem 3.1. Assume that
Ellogm] >0, E[log(1—p(0))] > —co and E[m;'E,[Zlog Zi]] < oo.

Then we have E,[W] = 1.

A proof can be found in [6, Theorem 1|. Note that the assumptions in Theorem are
satisfied if Assumption [6] and [7] are fulfilled.

3.2.2 First and second term of the maximum

Define
z* = sup{z > 0: I(z) < E[logm]}. (3.1)

In analogy to the time-homogeneous case, Huang and Liu [43] showed that z* is the
speed of the maximum of the branching random walk. Note that they consider a more
general model, where branching as well as movement of particles is time-dependent.
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3.3. Rate functions and assumptions

Theorem 3.2 ([43] Theorem 3.4]). Suppose that Assumption @ and[]] are satisfied. Fur-

)\Xl]

thermore, assume that Ele < oo for all A € R. The mazimum of the branching

random walk has linear speed x*, i.e.
M,
lim —* =z* P-a.s.
n—oo N
The maximum of independent random walks also has linear speed z*, see (3.8). Now
assume that [(z) is differentiable at x = z*. For n € N introduce the random variables

K, = 10gE[ell(”C*)X1]n + Zlogmi.
i=1

In particular, one can check that % — I'(x*)2z* P-almost surely as n — oo. Mallein and
Mitog [51] proved that the maximum of the branching random walk has a logarithmic
second term.

Theorem 3.3 ([51], Corollary 1.3]). Suppose that Assumption[6|is satisfied. Furthermore,
assume that E[e*1] < oo for all A € R, E[(logm)?] < co and E[Z?] < co. Then, for an
explicit constant ¢ > 0

Ky
Mn - W

lim — @) —< 3
n—oo  logn  \2I'(z¥)

+ c) in P-probability.

In particular, ¢ = 0 if and only if the reproduction mean m is almost surely constant.

Note that this result is in accordance with the third statement of Theorem in the
time-homogeneous case. Moreover, Theorem shows that the logarithmic correction
term is smaller for time-inhomogeneous branching random walks.

Furthermore, precise asymptotics on the empirical distribution are obtained in [32], [33]
and [34].

3.3 Rate functions and assumptions

In this section we introduce the rate functions of the Galton-Watson process in random
environment, which are needed to state our main results of this chapter. Throughout the
chapter we use the convention oo - 0 = 0.

3.3.1 Rate function of the logarithmic reproduction means

For x > 0 the rate function of the logarithmic reproduction means is defined as

1™ (z) = sup(\z — logE[eMogm] ) (3.2)
AER
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3. Branching Random Walks In Random Environment

I'°8™ is lower semicontinuous, and therefore continuous from the right for z < E[logm)]
and continuous from the left for = > E[log m].

Assumption 8. All moments of the reproduction mean ezist, i.e. Elm] < oo for all
A>0.

Note that Assumption [§] is satisfied for constant reproduction mean. Furthermore, As-
sumption |8 implies 1'°6™(x) > 0 for all  # E[logm).

Since (log mp)nen is a sequence of i.i.d. random variables, Cramér’s theorem yields a
large deviation result for the logarithmic reproduction means.

Theorem 3.4. Suppose that Assumptionla 1s satisfied. The laws of M under P
satisfy a large deviation principle with rate function I'°8™ j.e.

Ilogm( ) hmn—>00 %IOgP M >x fOT x> E[log m]7
_ ) = . v

n

3.3.2 Rate functions of the Galton-Watson process

We have to distinguish the behaviour of the Galton-Watson process in random environ-
ment under the annealed law and under the quenched law.

If Assumption [6] [7] and [§] are satisfied, then there is an annealed large deviation result
for the lower deviation probabilities, i.e. for probabilities of the form P(Z, < e*") for
x < E[logm], see Theorem

Assumption 9. There exists a constant B € (1,00] such that

log P(Z, > k)
k—o0 log k

= —8.

Moreover, if B < oo, there is di > 0 such that P(Pw(Zl > k) < dlmlk_ﬁ) = 1.
Otherwise, if B = oo, for every ' < oo there ewists a constant do > 0 such that
P(Pw(Zl > k‘) < dzmlk_ﬂl) =1.

Note that Assumption [0]implies Assumption[7] If 5 < oo, Assumption [J]ensures that the
offspring distribution is heavy-tailed. More precisely, there are environments such that
the offspring distribution has polynomial tails with coefficient 8, but no environment has
an offspring distribution with heavier tail.

If Assumption [§] and [9] are satisfied, then there is an annealed large deviation result
for the upper deviation probabilities, i.e. for probabilities of the form P(Z,, > ™) for
x > E[logm], see Theorem Let

pa = —log E[p(1)] € (0, o0]. (3.3)
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3.3. Rate functions and assumptions

Define the annealed rate function of the Galton-Watson process in random environment
as

infyeo .1 { Bt + 1osm(z —t)} for x > Ellog m],

3.4
infte[o,1){Pat + (1 —t)rem((1— t)*la:)} for 0 <z < E[log m], (3:4)

0~
where f is the constant of Assumption o] Note that ISW(z) > 0 for all 2 # E[logm].
Furthermore, also I,SW is lower semicontinuous, and therefore continuous from the right
for x < E[log m] and continuous from the left for > E[logm]. Now we can state the first
annealed large deviation principle for the Galton-Watson process in random environment.

Theorem 3.5. Under Assumption @ @ and@ the laws of bg% under P satisfy a large
deviation principle with rate function ISW, i.e.

IGW( ) lim,, oo %log P(Zn > em) for x > E[log m],
— ) =
4 limy, 00 %log P(Zn < em) for 0 < x < E[logm].

A proof of the lower large deviation result can be found in [9, Theorem 3.1] and of the
upper large deviation result in [8, Theorem 1] for 8 € (1,00). The result immediately
follows for 5 = co by a monotonicity argument, see also [8, Corollary 1].

Furthermore, the authors of [9] also show a large deviation result for the probability that
(Zn)nen, grows subexponentially. Recall that a sequence (ay)nen is called subexponen-
tial, if ape™®™ — 0 as n — oo for all € > 0.

Theorem 3.6. Assume that Assumption[6] [] and[§ is satisfied. For every subexponential
sequence (ap)nen such that a, >1 for alln € N,

lim l log]P’(Zn < an) = —pa.

n—oo N

A proof can be found in [9, Proposition 2.1] and [9, Theorem 3.1].
Next, we consider large deviation events with respect to the quenched law. Therefore,
define

pq = —E[log p(1)]. (3.5)

By Jensen’s inequality py > pa. In analogy to Assumption [5]in the time-homogeneous
case the following assumption ensures pq < 00.

Assumption 10. [t holds that E[log p(1)] > —oc.

Define the quenched rate function of the Galton-Watson process in random environment
as

15" () =

{B(z — E[log m]) for z > Ellog m|, (3.6)

pq(1 — zE[logm]™1) for 0 < < E[logm).
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3. Branching Random Walks In Random Environment

Note that ISW(JU) > 0 for all x # E[logm]. We have the following quenched large
deviation results.

Theorem 3.7. Under Assumption @ @ and@ the laws of % under P,, for P-a.e. w
satisfy a large deviation principle with rate function ISW, i.€.

oy _ [l HI08 P (Z0 2 ) for x> Ellogm],
d lim,,—s 00 %log P, (Zn < em) for 0 <z < E[logm].

A proof of the upper large deviation result can be found in |12, Theorem 4.5.1]. We
prove the lower large deviation result in Subsection In analogy to the annealed
case (Theorem , there is also a large deviation result for subexponential growth of
the population size (Z,)nen,-

Theorem 3.8. Suppose that Assumption [0 is satisfied. For P-a.e. w and for every
subexponential sequence (an)nen such that a, > 1 for alln € N

. 1
nh—>H§o n log P (Zn < an) = —pq.

This theorem follows immediately from Theorem [3.7] for  — 0.

3.4 Main results

Recall the definition of the rate function of the random walk, see (2.4). After defining
the rate functions of the Galton-Watson process in random environment we are now able
to state the main results of this chapter.

Analogously to the time-homogeneous case, note that I(z*) = E[logm] if I(x) < oo for
some x > z*. On the other hand, I(z*) < E[logm] already implies P(X; > z*) = 0.
This case leads to a different shape of the rate functions. For x > x* let

G(z) = inf I(z) —t+ ISV (). 3.7
() te[Euofﬁn ]’M){ (z) —t+ 177 (t)} (3.7)

We exclude ¢ = I(z) in (3.7) since I(z) might be infinite. Define the annealed rate
function of independent random walks as

G(z) for z > ¥,

0 for © = x*,
ISW(I(z)) for 0 <z <a*,
I(x) 4+ pa for xz <0.

1 (z) =
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3.4. Main results

Theorem 3.9. Suppose that Assumption @ @ @ and@ are S.Qtisﬁed, The laws o %
under P satisfy a large deviation principle with rate function I;nd, i.e.

1z =

lim,,— o0 % log IF’(ZZ" > x) for x > x*,
lim, oo % logp(% < :v) for z < x*.

Theorem [3.9]implies in particular that the speed of the maximum of independent random
walks equals x*, i.e.

M,
lim — =z* P-as. (3.8)

n—oo N

Let us now give some intuition for the rate function 7" and describe the large deviation
event {M,, > xn} for some z > z*, respectively {M,, < zn} for some z < z*.

For x > z* the number of particles should be larger or equal than expected, i.e. Z, > ™
for some t > E[logm]. The probability of such an event is of order exp(—ISW (t)n+o(n)).
If there are e™ particles at time n, the probability that at least one particle reaches xn
is of order exp(—I(z)n + tn + o(n)) for t < I(x). Therefore, we need to maximize the
product of these two probabilities.

If 0 < z < x*, the probability that one particle reaches zn is of order exp(—I(x)n+o(n)).

I(z)—¢)

Hence, for every € > 0, if there are less than e " particles, the probability that

none of these particles reaches zn is close to 1. However, if there are more than e!(#)+e)n
particles, this probability decays exponentially in n. Note that, in contrast to the time-
homogeneous case, 1" (z) can be finite in the Bottcher case (p(0) + p(1) = 0), since M,
can be small due to a bad environment.

If x < 0, already the probability that a single particle is below xn at time n decays
exponentially fast in n. Hence, if the number of particles Z, grows exponentially, the
probability that all particles are below zn at time n decays faster than exponentially.
Therefore, the number of particles needs to grow subexponentially. Since p, does not
depend on the subexponential sequence in Theorem there has to be only one particle
at time n (provided that p, < oo and therefore P(p(1) > 0) > 0). In particular, the lower
deviation probabilities P(M,, < xn) decay faster than exponentially in n in the Béttcher
case.

Next, we state a quenched large deviation result for the independent random walks.
Define the quenched rate function

I(z) — E[logm] for x > x*,

L ER S (S
I (I(z)) for 0 <z <™,
I(z) + pq for = <0.

Theorem 3.10. Suppose that Assumption @ @ @ and@ are satisfied. The laws of %
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3. Branching Random Walks In Random Environment

under P, for P-a.e. w satisfy a large deviation principle with rate function I(ilnd, i.€.

My,

'3

M (g) = {hmnm Liog P(M > 2) for w2 a%,

>
lim,, o0 % log Pw(]‘i” < ac) for x < a*.

Analogously to the annealed case one can show that for x > z* we have

1(z) = inf {I(z) —t+I$V (1)} (3.9)

1
te[Ellogm], I(x))

However, the infimum in is always attained at ¢ = E[log m] by the definition of IC?W
and 8 > 1.

Next, we consider the maximum of the branching random walk. Define the annealed rate
function of the branching random walk for x > z* as

IB®W (2) = G(z). (3.10)
Theorem 3.11. Suppose that Assumption |3, [0 [§ and[9 are satisfied. For x > x*

1 My,
—IB®W(2) = lim —10gP<7 > x)

n—oo N

For x > x* we have IPRW(z) = I"d(z). In this case the strategy is the same as for
independent random walks. Let us now define the quenched rate function. For x < z*
let

Hy(x) = tei{(l){jl]{tpq +tI(t (v — (1 —t)z¥)) }

Define the quenched rate function of the branching random walk as
I(x) — E[logm] for z > x*,
I(]fRW(ﬂs) =<0 for x = x*,
Hy(z) for x < x*.

Then we have the following quenched large deviation result for the branching random
walk.

Theorem 3.12. Suppose that Assumption [3, [6] [§ [4 and [I0 are satisfied. The laws of
% under P, for P-a.e. w satisfy a large deviation principle with rate function I(]?RW,
1.¢€.

S

n

) for x > x*,

_[BRW () limy, 00 % log Pw(
q *
) for x < x*.

>x
limy, o0 2 log Py (2 < 2

JES|

Remark 3.13. As in the time-homogeneous case, one can check that the rate functions
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of the branching random walk are convez.

As in the annealed case we have I(]ERW(LU) = I(ilnd(a:) for x > x*. In this case the strategy
is the same as for independent random walks. The strategy in the case x < z* is similar
to the time-homogeneous case. Let t € (0, 1]. At time ¢n there is only one particle whose
position is smaller than its expectation. Afterwards, each particle moves and branches
according to its usual behaviour.

Further notice, that in contrast to the case of independent random walks, the number
of particles can also grow exponentially if x < 0. It suffices to have a small number of
particles at time tn for some ¢ € (0, 1].

The rate functions of the branching random walk and independent random walks have
the same properties as in the time-homogeneous case discussed after Proposition [2.21]
Moreover, both annealed rate functions are smaller or equal than the quenched rate
functions, i.e. I'"! < I(ilnd and IBRW < I(]?RW_ This is true in general, see Lemma .

3.5 Preliminaries
In the proofs of the main results we often use Lemma and Lemma[2.23] Furthermore,
the following lemma allows us to compare annealed and quenched probabilities.
Lemma 3.14. Let (An)nen be a sequence of events. For P-a.e. w

. 1 ) 1

limsup — log P(A,,) > limsup — log P,,(A,),

n—oo T n—soo N
and

1 1
lim inf —log P(A4;) > liminf — log P,(Ay).

n—oo n n—oo n

A proof can be found in [59, Lemma 2.3.8].

3.6 Proof of the main results

3.6.1 Galton-Watson process in random environment

We first need to consider the event that the population size Z,, stays bounded until time
n. Recall py = —E[log p(1)] defined in (3.5)) and p(0) = 0 by Assumption [6]

Lemma 3.15. Suppose that Assumption[6] is satisfied. For allb € N and for P-a.e. w
1
lim —log P, (Z, <b) = —pq.
n—oo n

Proof. The lower bound follows immediately, since

PuZn <) = [ (D),
i=1
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and therefore,

lim inf —logP (Zn <b) > hmmf— Zlogpl 1) = —pq.

n—00 n—oo N

For the upper bound first assume pq = oo. For 1 < k < b+ 1 define the sets

(k—1)n kn
(M R
U T bt 1
Note that the event {Z, < b} implies that there exists 1 < k < b+ 1, such that all
particles produce exactly one offspring for every time step in Jg. This yields

b+1

< <> [Tw@

k=1j€Jy,

Since (p;j(1))jen is a sequence of i.i.d. random variables with respect to P, Lemma [2.23]
yields

—Pq
li —1 P,(Z,<b) < li 1 = = —
i R P20 <) < g lnsup 5 gy (1) = 7 = —oc
J€Jk

Now let py < co. If Z, < b, there are at least n — b generations, in which all particles
can only have one offspring. Hence,
b

lim sup — logP(Z <b) < limsup — 10g(2 1nfpl sz )

n—oo N n—oo N =0

1 .
= —pq — bliminf — log(}gflpi(l)).

n—oo M

It remains to show that P-a.s.

liminf — log(mf pi(1)) =0.

n—oo N
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Since (p;i(1));en, are independent, we have for all e > 0 and N € N

1
P{ —log f11<1fpi(1) > —¢ forall n > N)
n 1<n

N
> H P(logpn(1) > —eN) H P(logp,(1) > —en)
n=1 n=N+1
:exp<Nlog(1—P(logp1(1) < —eN) ) exp( Z log 1 —P(logpn(1) < —sn))).
n=N+1
(3.11)
Since log(1l — z) ~ —x for x — 0 and E[log p(1)] = —pq > —o0 by assumption, the term

in the first exponent on the right hand side of (3.11) converges to 0 as N — oo and the
sum in the second exponent is finite. Therefore, we conclude

1
lim P(— log 11<1fpi(1) > —¢ for all n > N) =
n 1<n

N—o0

which finishes the proof. O

Now we are able to prove the quenched large deviation result for the Galton-Watson
process. Therefore, for [ € N we introduce the shift of the environment w = (w1, ws, . ..)
as 0w = (w1, wWit2, - )

Proof of Theorem [3.7. For > E[log m] a proof can be found in [I2, Theorem 4.5.1]. For
x = 0 the result follows from Lemma Therefore, let 0 < < E[logm| and choose

0<e< m. Furthermore, set t =1 — For the lower bound we have

T
E[logm]"

P, (Zn < ezn) > P, (Z(t+€)n = 1) « Pytteyny, (Z(l—t—e)n < eﬂm)

= P, (Z(t+€)n = 1) - B, (W(lftfe)n < < ﬁ mi)_le(lft)nE[logm]) )
i=(t+e)n+1
(3.12)

The second probability on the right hand side of converges to 1 as n — oo, since
W, = W < oo almost surely. Using Lemma [3 and lettlng € — 0 finigshes the proof of
the lower bound after a straight forward calculatlon.

For the upper bound let b € N. We have

Po(Zn <€) < Po(Zis—cpn <) + Pyou-ormo(Za—t1em < ™). (3.13)

The asymptotics for the first probability on the right hand side of (3.13) are given in
Lemma The second probability in (3.13) decays exponentially by Theorem [3.5]
Lemma and the choice of t. Note that the proof of Lemma also works for the
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3. Branching Random Walks In Random Environment

shifted environment #(*~*)"w. Now we choose b large enough. Using Lemma and
letting € — 0O finishes the proof.
O

3.6.2 Independent random walks

Proof of Theorem|[3.9 1. Case: z > z*
Let ¢t € [E[logm], I(z)) for the proof of the lower bound. Following the strategy explained
in Section [3.4] independence of the random walks and Lemma [2.22 (ii)] yields

(e ze) =5 [i-(-#( 24) ]
2rz e B[ (1-#(5 2 4))]
>P(Z, > e”t)]P’<% > ac)e”t<1 — P(% > x)e"t).

By Theorem , IP’(% > z)e™ — 0 as n — oo, since t < I(z). Together with
Theorem [3.5 and Lemma we conclude

P(M7 > x) = exp(—(IFV() + I(x) — ) + o(n))

which yields the lower bound. For the upper bound, let 0 < ¢ < I(z) — E[logm] and
define the set

I(z) — E[log m]"g}.

F=F()= {E[logm],E[log m]+e,...,E[logm] + { .

To prove the upper bound, we need to partition according to the number of particles at
time n. This yields

IP(AZ” > a:) <P(Z, >e!@n) 4 IP’(]\Z" > | Z, < eE[logm]n>

M,
+ P nZ = kn7 (k+e)n ‘P(Z, € lm7 (k+e)n )
B Pz e () o)
(3.14)

For all k € F' the Markov inequality yields
i Zn
P( 20| 20 € () = P( Lisyzam 21| Zu € (1))
i=1

n

< e(k+8)"p(% > ). (3.15)
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3.6. Proof of the main results

The second summand in (3.14) can be estimated analogously. Plugging (3.15) in (3.14)
and using Theorem and Theorem [3.5 we conclude with Lemma [2.23

P(% > :c) <P(Z, > e!@m) p(% > x) . ¢Ellogm]n

+ kezFe(kﬁ)"P(S: > x)]P’(Zn € (ek”, e(k+€)"])

= exp(%leag(—lfw(k) —I(z)+k+e)n+ o(n))

< sup exp (— (ISV (@) + I(x) —t —e)n+ 0(n)).
te[Ellogm],I(z)+e)

Letting € — 0 yields the upper bound.

2. Case: 0 <z <z*

We prove the upper bound first. Since the rate function I is strictly increasing on the
interval [0,z*], we can choose ¢ > 0 such that ¢ < I(z) < E[logm] — e. Using the
inequality 1 —y < e™¥ and Theorem

P(% < $) = E[<1 - P(% > x))zn] < E{exp(—P(% > x)Znﬂ
< }p(zn < e(I(x)Jrs)n) + exp( — e=Hom)

= exp(—[SW(I(:L‘) +e)n+ 0(n)>.

Letting € — 0 yields the upper bound. Note that IaGW is continuous from the right on
(0, I(z*)). The proof for the lower bound works in a similar way. More precisely, since

IP’(%" > 1) < e~ ! for n large enough, Lemma m and Theorem yields
P(Me <o) =B[(1-2(% > 0)) ] 2 B fo( e (2 5 0) )]
> P(Zn < el(x)”> -exp(o(n)) = exp (—ISW(I(x))n + 0(n)>.

This proves the lower bound.
3. Case: <0
We first consider z < 0. For the upper bound we have for K € N

(S 20) e[e($ 20 <L) rmnr($ <o)

(3.16)
By Theorem P(Z,, = k) is at most of order exp(—pan + o(n)) for all k € N. For all
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3. Branching Random Walks In Random Environment

K € N, Lemma yields

1 M,

lim sup —logP<—n < x) < max{—(I(z) + pa), —KI(z)}.
n—00 n

Hence, letting K — oo proves the upper bound. Note that this still holds true for

pa = 00. As in the proof of (3.16]) we have

M, Sh Zn Sn
IP’(T < x) = E[P(n < x) ] > P(? < m)-IP’(Zn = 1) = exp(—(I(x)+pa)nto(n)),
which shows the lower bound. For z = 0 the result follows from continuity of the rate
function I at 0.

4. Case: x = z*

By Lemma it suffices to show that the quenched probabilities P, (M, < z*n) and
P, (M, > z*n) decay slower than exponentially in n for P-a.e. w. Analogously to proof
of Theorem [2.18]

n(Eee)si-n(Gee)zi-r () Im 0

n

Now we have to distinguish two cases. If I(z*) = E[logm], then the right hand side of
(3-17) converges to 1 as n — oo by Theorem If I(z*) < E[logm], then I(z) = oo
for all # > z* and therefore, P(X; > z) = 0 by Lemma [2.25 Hence, the right hand side
of equals 1. In both cases we get

1 M,

lim —log P, (—n < x*) =0.
n—oo N n

Since P,(M, > z*n) > P (M, > z*n), it remains to show that P, (M, > z*n) decays

slower than exponentially in n. This is done in the proof of Theorem [3.12] O

Proof of Theorem[3.10. 1. Case: z > z*

The proof of is analogous to the proof of Theorem The infimum on the right
hand side of is attained at ¢ = E[logm]. More precisely, plugging the quenched
rate function of the Galton-Watson process defined in in equation and using
B > 1 shows that the function in the infimum is increasing in ¢. This finishes the proof.
2. Case: z < z*

The proof in this case works exactly as the proof of Theorem O

3.6.3 Branching random walk

Recall that IPXWV (z) = 11" (z) and IP®W (2) = I (x) for z > 2*. In this case, the upper
bound in Theorem and Theorem now follows from Lemma
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3.6. Proof of the main results

In order to prove Theorem we need another preliminary result. If § < oo in As-
sumption [9] the initial particle should produce exp(sn) offspring particles in the first
step for some s > 0. As we want to use independence of these particles, we first derive
a quenched estimate. Note that the branching is not independent under the measure P.
This quenched estimate is used in the proof of the annealed large deviation result.

For x € R, K € N and ¢ > 0 define the process (Y},)nen, where

IK

Y, = Yy(z, K, ) {Zlog my — LK (I(z) + e)}.
i=1

= inf
1e{0,1,...,[nK—1]}

Proposition 3.16. Suppose that Assumption [, [0, [§ and[9 are satisfied. For all x € R
and ¢ > 0 there exists Ky = Ko(z,e) € N such that for P-a.e. w, every n € N and
K > Ky there is C = C(x, K,&) > 0 with

M, Y
P2y >0l
n n

Note that Y,, < 0 for all n € N. Furthermore, the constants Ky and C are independent
of the environment w (only Y,, depends on w).

Proof. Fix 0 < €1 < . By Theorem we can choose K such that
P(Sk > Kz) > e K@) (3.18)

for all K > Ky. Counsider the following embedded Galton-Watson process in random
environment (Zn)nENo consisting of all particles with average displacement of at least
x in blocks of length K. More precisely, for n € Ny let D,, be the set of particles in
generation n of the embedded process. Let o € ﬁo and for n € Ny, v € ﬁn we have
w € ﬁql’ it we Dj and Sy, — S, > Kz. In particular, D,, € Dg,, for all n € N. The
number of children of the k-th particle in generation n of the embedded process is denoted
by fn+17k. Note that if this embedded process survives until generation |nK ~!], there is

at least one particle v in generation K |nK '] with S, > K|[nK~!|x. Therefore,

Pu(2 2 2) 2 Po(Zuscy > 0) - B(Sosepuscr) = (n— K|nEK ™))
> Py(Zjpg—1] > 0) - P(X1 > 2)%. (3.19)

Hence, it remains to estimate the survival probability up to generation |nK~!| of the
embedded process (ZH)HEN()' For this we want to use the second moment method. Since
the variance of the number of offspring &, » might be infinite, we have to use a truncation
argument. More precisely, for B € N let fgk = max{§, ;, B} for all n,k € N. We use
the same notation as for the usual process, but add an index “B” when referring to the

truncated process. Note that in particular ffk < B and therefore, ffk < BE for all
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3. Branching Random Walks In Random Environment

n,k € N. Moreover, if the truncated embedded process survives, then also the usual
embedded process survives, i.e. P, (ZLnK 1 > 0) > P, (ZL k-1 > O) By the Cauchy-
Schwarz inequality,

5 2 . ) R
B[ 281 ))" = B[ 2B, L 1J>0}} < B [(Z8x)*] - PolZB ) > 0).

This implies

(3.20)

E,|ZB

A 2 A~ —
E, [ZﬁlK—lj] _ (Varw(ZﬁK_lJ) . 1) 1
5 )
LnK—IJ]

Py(Z 1 >0) >

This term can be estimated analogously to (2.2) in [26]. More precisely, since

lnK—1]-1
Varw(ZﬁKlJ):Varw< Z gﬁzKlj,k>

k=1
= Ly [ZﬁzK—ljfl] Var,, (éﬁlK—IJ,l) + Ew [éﬁK—lj,l]Qvarw (ZﬁzK_ljfl)’

we get recursively

Var, (28 K 1J) Varw(fﬁlK,lj’l) Varw(ZAﬁLK,lJ_l)
BJ[2B )] Bol€fn ) BulZlnn]  Bu[2E, ) )7

IR Van ()

> (3.21)
o BlEA]E.[2P]
For the numerator on the right hand side of we have for all [ € N
var, (67) < EL[(€5)°] < B?~. (3.22)

With a slight abuse of notation we write Dy (B) for the set of particles of the truncated
process in generation k. For all | € Nand v € D1k

EJER) = Ba] S Visu-soka] = P(Sk > Kx) - E[|IDk(B)]

weDY. (B)
IK
=P(Sk > Kz)- ] E.[¢h] (3.23)
i=(-1)K+1

In particular, since p(0) = 0, this implies E,, [élBl] > P(Skg > Kx) for all [ € N. This
estimate will be used for the first term in the denominator on the right hand side of
- For the second term we also have to estimate E,, [{l 1] More precisely, using
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3.6. Proof of the main results

Assumption [ we get

E,[€}] = Bo[max{&1, BY] = Bu[&i1lg, ,<m] + B - Pul(&i1 > B)
= Eu[&i1] — Euléinlye,,>py) + B- Pu(&i1 > B)

=mi— Y P&l >p > k) + B Pu(&i1 > B)

k=1
=m; — Z P, (&1 > k)
k=B+1
> mi<1 —d Y k*ﬁ). (3.24)
k=B+1

In the case 8 = oo there is a similar estimate. Note that the sum on the right hand side
of (3.24)) converges, since 8 > 1. Now let €2 > 0 such that £; —log(1 —e2) < € and choose

B large enough such that dy > 7% 5. k™7 < &5. Combining (3.18), (3.23) and (3.24),

l l K

E,[ZP) =[] E.[E}]) = H<P(SK >Kr)(1-2)% ] mi>

Jj=1 Jj=1 i=(—1)K+1
K
> e—lK(I(a:)—i—al)(l - 52)”{ Hml
i=1

K

> exp(z logm; —IK(I(z) + 5))

=1
> e¥n, (3.25)

Altogether, using (3.21)), (3.22)), (3.23) and (3.25)), we get

Varw(ZﬁK_lJ) . B [nK-1|

~ >~ &
Eu[28,. )] ~ B(Sk = Ka)

Since Y,, <0, (3.20) implies

B2K LnK*1J

~ B
PW(ZLnK*” > 0) 2 (P(SK > K.%')

-1
+ 1) eY",
which yields the result together with (3.19). O

To estimate the annealed probability of the event {M,, > zn} it remains to investigate
the asymptotics of Y,, with respect to P.
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Lemma 3.17. Let x > 2* and 0 <y < I(xz) — E[logm]|. Then,

1 Y, 1 Y,
lim lim liminf — logP(—n > —y) = lim lim limsup — logP<—n > —y)
n n

e=+0K—oc0 n—o0 n e20K—=00 naoo N

= 1P (1) — ).
Furthermore, for all z € R, ¢ >0 and K € N

lim In _ min{0, —(I(z) + € — E[logm])} P-a.s.

n—oo N
Proof. Since we have

v 1 InK~! K
n

P(—">—)<P7 g 1 ;> T —Yy— |,
w0 <LnK1JK i=1 e = o)+ e yL”KlJK>
taking the limsup yields

: 1 Yn logm

hmsup—logP(— > —y) < —I°8"M(I(x) + e —y).

n—oo N n

Letting ¢ — 0 finishes the proof of the upper bound. Note that I'°8™ is continuous. For
the lower bound let 1 > 0 and take K € N large enough such that

K
P(Z logm; > K(I(x) +¢ — y)) > exp(—K(I'5™(I(x) + € — y) +1)).
i=1

Then,
v IK
n i ) _ -1
P(? > y) > P(_ﬂ%ﬂllogmz >K(I(x)+e—y) Vie{l,... |[nK J}>

K _
= P(Zlogmi >K(I(z)+¢e— y))LnK E
i=1

> exp(—n([logm(l(x) +e—y)+e1)).
Taking the liminf as n — oo yields

1 Y,
liminfflogP<f" > —y> > —I'¢™(I(x) + € —y) +&1.
n

n—oo n

Letting €1 — 0 and € — 0 finishes the proof of the first part of Lemma [3.17} For the
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3.6. Proof of the main results

second part of the lemma note that

Y, KK InK—L|K
e m - oL J5 )
— {O, - ;:1 log m; - (I(z)+ E)}

Taking limits n — oo and € — 0 yields the upper bound. For the lower bound we have
to distinguish two cases. First assume that E[logm] > I(z) + €. Then, however,

li 1  — k(I = P-a.s.
kg{)loz ogm; —k(I(x) +¢) =00 a.s

and therefore, lim,,_,o, Y, > —oo P-a.s., which implies the claim. For the second case let
El[logm| < I(z) + ¢ and assume that there is €1 > 0 such that

Y,
liminf — < —(I(z) + ¢ — E[logm] + 2¢1) P-a.s.
n—oo n
Hence, Y,, < —(I(z)+e—E[log m|+¢e1)n for infinitely many n almost surely and therefore
also D7, logm; < (E[logm] —e1)n for infinitely many n almost surely, which leads to a
contradiction. This implies the lower bound. O

We are now able to prove the main results of this chapter.

Proof of Theorem[3.11 Let = > z*. As already mentioned above, the upper bound
immediately follows from Theorem and Lemma It remains to prove the lower
bound.

First of all recall that I (t) = infepo q{B8s + I'8™(t — 5)} for t > Eflogm], see (3.4).
Now fix ¢t € [Ellogm],I(x)), s € [0,t — E[logm]] and let ¢ > 0 and K € N large
enough such that Proposition is applicable. Since the particles move and branch
independently with respect to P,,, Lemma yields

’U

(T 2 0) =Py T 2 0) 2 (g T 2 0) P20
:E[l—(l—Pgw( 2 )) } P(X, > )
zE[l—(l—Pgw< - )) } P(X, > ) P(Z > ™). (3.26)
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Let 0 < e; < I(x) —t. By Proposition and Lemma

sn sn

ot (1 (2 =) T oefi (- )

n—1 n—1
C Y, C Y, Ynfl
> n—1,8N _ n—1,8N < _ <
_E[n_le e (1 e e )‘O_n—l+l(x) t—f—s_el}
Yn—l
'P<0§ p— —I—I(ﬂc)—t—i-sSel)
> ¢ 651 o~ (I@)~D(n-1) (1 _ 0768167(1@)4751)(%1))
n — n —
Yn—l
-P(Ogn_1+l(:v)—t+s§51). (3.27)

The third term on the right hand side of (3.27) converges to 1 as n — oo, since we have
I(z) —t —e; > 0. For the last term Lemma yields

Yn—l

n—1

1
lim lim liminf —logP <0 <

e+0 K—oo n—o0 N

FI(z) —t+s< 51) = Tt _ ). (3.28)

Combining (3.26), (3.27), (3-28) and Assumption [9] shows

P(% > :U) > exp(—(I(z) —t+ Bs + I'°e™(t — 5))n + o(n)).

Since this holds for all s and ¢, the lower bound follows.

Proof of Theorem[3.13 1. Case: x > z*
The upper bound immediately follows from Theorem and Lemma It remains
to prove the lower bound. Since I(z) > E[log m|, Proposition and Lemma yield

1 M Y,
lim inf — log P, (—n > x) > lim — = —(I(z) + ¢ — E[logm]).
n—oo n n

n—oo n

Letting € — 0 finishes the proof of the lower bound.

2. Case: =z < z*

Analogously to the annealed case, there is only one particle at time ¢n and the position
of this particle is smaller than its expectation. Afterwards, all particles move and branch
as usual. For the lower bound let ¢ € (0,min{l — %£,1}] and fix e > 0. Note that
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te(0,1—=%,1]ifz>0andte (0,1 if  <0. Then we have

x*)

M M
Pw(—" < 93) > Pw(—” <@ | Zin = 1) Fo(Zin = 1)
n n
Stn + Ma—t)n
= Igtn, (—

< -P,(Zy =1
Mt 1) 1=

Mg Sin *
> Py (TS <o te) - PSR < (@ = (1= )" +9))) - PulZin = 1),
(3.29)

Since the first probability on the right hand side in (3.29) converges to 1 P,-a.s. as n — 0o
for P-a.e. w analogously to (3.17), we get

Pw(% <) 2 exp([I(r7 (@~ (1 1)@ +2))) + po]tn+o(n)).

Since this inequality holds for all t € (07 min{l — %, 1}], letting € — 0 yields

1 M
lim inf — long<—n < x) > sup —Hy(x) = — inf Hgy(x).
n—oo n n t€(0,min{1— % ,1}] t€(0,1]

For the upper bound, define
T, = inf{t >0: Zy > n3}
and for 1 > 0 let
F=F(e)= {51,251, ce Kmin{l — %, 1})51_1-‘51}.
T
Note that T, € (t - sl,t] implies Z;, > n3, since p(0) = 0. Therefore, we have
M,
(<)
n
<P(To>min{1 = S 1}) 4+ Y P2 <0 | Ty (t—e0,t] ) Pu(Tn € (t—21,1])
x n
teF

M,

< Pw(Z(min{lfz%,l})n < n3) + ZPUJ<7 <z | T, € (t - Elat]>Pw(Z(t751)n < n3)'
teF

(3.30)
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For g9 > 0, Lemma thus shows

Pw<% <z|Tue(t—e11)

n
Sin + MP
SPw<maXt(1t)n§x’Tn€(t—51,t]>
vED¢n n
Sin . Ma—oyn n?
ng<%<—((1—t)(3: —52)—x))+P9mw(ﬁ<x —52) . (3.31)

To estimate the second probability in (3.31) we define the shifted version of Y,. More
precisely, for x € R, K € N and € > 0 let

tn+lK

!/ _ / _ ; .
Y/ i = Y g2, K e) = 16{071’“{1(1115%_1”{‘ 3" logmy — IK(I(x) + 5)}.
i=tn+1
Analogously to Proposition one gets
M 1-t)n 6Y</17t)"
P G L e
b (1—t)n_x ©2) = n

Furthermore, as in the proof of Lemma (3.17| we have lim,,_, Y(’l_t)n > —oo P-a.s. for e
small enough, since E[logm| > I(x* —e9)+e. Therefore, the second term in (3.31) decays
faster than exponentially in n. Combining (3.30) and (3.31) and letting e1,e2 — 0, we

conclude with Lemma

*

limsupllog P, (% < x) <-— inf {tpq + tI(—W)} = —Hy(z).

n—soo N T te(0,1-%]

3. Case: z =z*
The proof for P,(M, < z*n) is analogous to the proof of Theorem [3.9 By Proposi-
tion [3.16] and Lemma 317

1 M, .Y, : *
lim inf — log P, (— > x*) > lim — = min{0, —(I(z*) + ¢ — E[logm]) }.
n

n—oo N T n—ooo N

Since I(z*) < E[logm], letting ¢ — finishes the proof.
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