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Abstract

As they are really difficult to predict, simulating tsunamis is an important task in
estimating their impact. This simulation should be well connected to a previous
earthquake simulation. For the earthquake simulation tool SeisSol and the tsunami
simulation tool sam(oa)2 this connection is currently quite poor, as SeisSols output
format doesn’t match the input requirements of sam(oa)2. This thesis aims to resolve
this issue by converting SeisSols triangular mesh to sam(oa)2s rectangular grid. This
conversion is done via integral over the original data for the rectangles area. The result
is a program with a low runtime that provides a conversion with high accuracy and
enables precise simulations of possible tsunamis.
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1 Introduction

Tsunamis are immense natural disasters and as seen in [1] have the potential to cause
billions of dollars of damage and to kill thousands of people in multiple countries
at once. According to [2] tsunamis can be caused by erupting underwater volcanoes,
calving icebergs and even meteorites but in most cases they are caused by underwater
earthquakes in the ocean. As explained in [3] if such an earthquake has an epicentre
near the earths surface, is powerful enough (at least 7,0 on the Richter-scale) and causes
a high vertical displacement of the water above its center, a wave is caused, that can
spread over large distances but is mostly underwater, meaning it is almost invisible for
most of the time and has barely any influence on ships on the open sea. But once this
wave reaches shallow areas close to the coast, water gets compressed and can pile up
to waves that are several meters high and can reach far into the inland. When tsunamis
happen, they don’t leave a lot of time to react. Depending on the distance from the land
to the epicentre, according to [3] this time is only between a few minutes and half an
hour even if the forming tsunami is recognized early. Predicting or simulating Tsunamis
is therefore an important part of finding out, whether an area is in danger of being hit
by a tsunami or not, how big the damages would be and if buildings and structures
could withstand the wave. For this we need to be able to accurately tell how the wave
of a Tsunami develops, how far and fast it spreads and how high, fast and strong the
waves will be at the coast. It is also crucial to be able to decide whether a certain
earthquake will cause a tsunami and how large it will be. Researching and simulating
earthquakes and tsunamis should therefore be combined to achieve the best results. In
this case for simulating the earthquakes the tool SeisSol is used, which according to [4]
is a "high resolution simulation of seismic wave propagation in realistic media with
complex geometry". For calculation it uses tetrahedral meshes in 3D space which then
get projected to the 2D ground level with simple up or down displacement values for
the surface area. This results in a 2D mesh of triangles as structure to represent the data.
But the tool sam(oa)2, standing for SFCs and Adaptive Meshes for Oceanic And Other
Applications, found at [5] which is used for the tsunami simulation is working on a
structured grid of triangles. The tool created at [6] ASAGI which is a pArallel Server for
Adaptive GeoInformation and is used for input reading is also not working on a mesh
but with a grid of perfect rectangles. Therefore, simulating an earthquake in SeisSol
and directly feeding it into sam(oa)2 to simulate the corresponding tsunami is currently
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1 Introduction

not possible. At the moment data for sam(oa)2 has to be created from scratch with
an extra tool developed at [7] or converted from SeisSol by hand via a cumbersome
process using multiple smaller tools. Because this is a multiple step process there are
multiple points where something in the conversion can go wrong, which makes looking
for possible errors difficult. As a result, the process as a whole is tiresome and costly
in terms of time and labour. Although there are already a number of tools to handle
geographical data like [8] or data based on triangular meshes as proposed in [9], they
either work on differently structured input or like [10] produce output of a different
format and none of them make it possible to handle the whole conversion in a single
step. Some pre- and postprocessing of the data would still be required. Therefore, the
need for a tool that is able to convert the output from SeisSol to input readable for
sam(oa)2 in a single conversion has arisen. Through this tool the conversion process
will be simplified, easier for the user, possible errors can be located quicker and overall
a lot of time can be saved. Having only one tool also makes it easier to change data or
a part of it to be able to see how much of an influence such changes have. For example,
the grid resolution can be changed without the need to run the originating simulation
in SeisSol multiple times. In short, the main goal is to fill the gap between the two
programs by developing a tool that converts the output from SeisSol into a structure
that can easily be used as an input for sam(oa)2. The second goal is to alter existing
data (e.g. to reduce or increase the resolution) and compare the corresponding results.
Designing such a tool is the goal of this thesis. After the introduction the first section
will give a brief overview of necessary information about the used libraries. The second
chapter introduces the tools that are directly connected to this thesis. In the third
chapter the detailed demands for the tool are explained and instructions for its usage
are given. This chapter also gives insight to the code and explains the implementation
of the program. The evaluation is done in the fourth chapter and different options with
which the program can be run are also compared there. The results of the application
of the tool to real data from SeisSol and the resulting simulation in sam(oa)2 is done in
the fifth chapter. The sixth chapter gives an outlook on how the program can be further
improved. The final chapter is a conclusion of the thesis.
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2 Preliminaries

This tool works with and on different data structures and ways of data representation.
As these can be and usually are huge amounts of data, we need a special format to
efficiently store and transport the data. For this project the data model Hierarchical
Data Format 5 (HDF5), the data format Network Common Data Form (NetCDF) and the
extensive data model format (XDMF) are used. This is because they are already widely
spread and well known. The programs this tool was mainly developed for (see chapter
3) also use them as main way of input or output. The following sections will briefly
explain what exactly they are and can do, how they work and how they can be used
and are used in this thesis.

2.1 HDF5

According to [11] HDF5 is a data model, library, and file format for storing and
managing data. It can be used for all the common datatypes but supports user
designed custom datatypes as well. As explained in [12] these datatypes can have
specifications regarding information such as byte order (endian), size, and floating point
representation which enables a full description about how the data is stored, insuring
portability to other platforms. HDF5 is able to deal with data of high volume and
complex data of any size. Following the description at [13] it is also almost platform
independent, because it runs on laptops as well as on massively parallel systems and
anything in between, implementing a high-level API with C, C++, Fortran 90, and Java
interfaces. Data is stored efficiently and a high I/O speed is reached. As stated in [14] it
is also designed to be very flexible in its usage so applications are enabled to evolve in
their use of HDF5 and can accommodate new models. HDF5 is even more widespread
than it seems at first glance, since it can be used as a basis for other tools like NetCDF
or XDMF.

2.1.1 Design

As described at [14], HDF5 has three main parts. The file format, the data model and
the software working with this format. While knowing the high-level of the file format is
usually necessary to work with HDF5, the low-level details do not need to be known by
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2 Preliminaries

the end user, but it can still be helpful to know the basics of how it works. According
to its specification at [15] it appears to be a directed graph on high-level view. The
nodes of this graph are higher-level HDF5 objects that can be accessed via the HDF5
APIs. It is further specified, that the lower-level of a file consists of a superblock, B-tree
nodes, heap blocks, object headers, object data and free space. As stated in [12], the
data model is "simple but versatile" as its "supports complex data relationships and
dependencies through its grouping and linking mechanisms.", and as described in [14]
a HDF5-file is basically a container (or group) that holds a variety of heterogeneous
data objects. Such an object is usually either a group which has some metadata on the
groups or datasets it contains, or it is a dataset. [14] further explains, that a dataset is a
multidimensional array of data elements that also contains supporting metadata and
can represent simple things like tables or graphs but also entire documents like a PDF
file. The software contains various libraries and APIs to use those libraries. It is written
in C, but adaptions for other programming languages also exist. There are also many
third-party programs that either use HDF5 as a basis or are extensions to the initial
format.

2.1.2 Usage

While there are tools like h5dump or HDFView to display the content of a HDF5 file,
they usually are not enough to actually work with the data. So for reading and writing
the APIs can be used. After opening or creating a file the (meta-)data can be read, new
dimensions or datasets can be created and filled and attributes can be set. For filling in
data the file must not be in define-mode as this state is only used for setting metadata.
Each of these operations has its own H5*-C-routine. In this thesis, raw HDF5 is used as
a part of reading XDMF and its wrapper NetCDF is used for everything else.

2.2 NetCDF

As described at [16] NetCDF is a set of software libraries and self-describing, machine-
independent data formats. These formats support the creation, access, and sharing of
array-oriented scientific data. NetCDF was developed and gets maintained by Unidata.
It is intended to be used to create, share and work on scientific data, that can be
represented as multidimensional arrays. The most important advantages of NetCDF
are listed at [17] and are its self-describing, portable, scalable, appendable, sharable
and archivable concept. [18] alternatively describes it as an interface to a library of data
access functions for storing and retrieving data in the form of arrays.
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2 Preliminaries

2.2.1 Design

Like HDF5, NetCDF is separated into the format, the data model and the corresponding
software. There are four basic formats. The classic format was the first one to be developed
and is also the basis for the other three. The second format is the 64-bit offset format,
which changed the size of the relative offset from 32 to 64-bit and thus allowing files
to be much larger. The NetCDF-4 format is the third format and as described in [17]
came 2008 with additional features like per-variable compression, multiple unlimited
dimensions, more complex data types and overall better performance, whereas the
fourth format the NetCDF-4 classic model format only has the performance increasements
but no additional features. There are two basic models for NetCDF. The classic model
to which the first, second and fourth file-format belong, and the enhanced model or
NetCDF-4 data model for the third format. Data of the first model can be represented by
the second but not vice-versa. The first model is more simple, needs less prerequisites
and is more widely used, while the second model allows more complex data structures,
bigger files and has additional features but can still do everything the first model can.
Similar to HDF5 the NetCDF data models are also based on multidimensional arrays of
a set datatype. The files are split into a header containing the metadata like dimensions,
variables and attributes, and a data part. The second model directly relies on the
HDF5 library and according to [19] is therefore a HDF5 file in every way. The software
belonging to NetCDF are mainly a variety of functions in C that allow working on
NetCDF files. Additional libraries for usage in other programming languages like C++
or Fortran are also provided.

2.2.2 Usage

In its use, NetCDF is very similar to HDF5 as there also exist commands like ncdump to
show a files content. For actualy working on the file the commands nc_open (or nc_create
when creating a new file), nc_put*, nc_get* and nc_close are used. A file consists of three
different types of data. Dimensions consisting of a name and size, variables (depending
on the dimensions) and attributes which are additional information about a variable or
the file as a whole. In this thesis NetCDF is used as an input-method for the ASAGI-
and GEBCO-type files as well as the single form of output. Although the program is in
C++, only functions from the C-library of NetCDF were used.

2.3 XDMF

XDMF differs from HDF5 and NetCDF as it is not working directly on the data itself but
is combining XML and HDF5 to reach a format that is understood by many widely-used
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2 Preliminaries

programs and allows a quick and easy transfer of huge amounts of data. XML is used
to store the light data, meaning it is small and can be passed between modules easily.
According to [20] it is used to transfer information about the data because regardless
of its size every dataset can be described completely using the information of number
type (float, integer, etc.), precision, location, rank, and dimensions. This allows the user
to inquire information about the size and type of the data before he accesses it so he
can do some preparations accordingly. The actual values of the data are described as
heavy data and are stored in HDF5 or binary files. The name and location of the heavy
data is also stored in the XML part. In special cases where the heavy data is relatively
small, it can also directly be written into the XDMF file, like demonstrated in [21], but
this option does not get used in this thesis.

2.3.1 Design

As HDF5 is already explained in another chapter and binary files are not used in the
tool developed in this thesis, this chapter will focus on the design of the XML part of
XDMF. Next to standard XML options like Elements, XClude, XPath and Entities that are
described in [22], there are additional XDMF Elements like the XDMF-version, that gets
specified at the beginning. Next to a Name or Reference attribute every XDMF Element
has at least one Domain containing Grid elements that themselves have one Topology
and one Geometry to specify the type of grid, its grid points, and how the points are
connected to form the grid. To specify values, their type, amount and size a DataItem
element is used. This can be:

• Uniform - this is the default. A single array of values.

• Collection - a one dimension array of DataItems

• Tree - a hierarchical structure of DataItems

• HyperSlab - contains two data items. The first selects the start, stride and count
indexes of the second DataItem.

• Coordinates - contains two DataItems. The first selects the parametric coordinates
of the second DataItem.

• Function - calculates an expression.

For this thesis, only the DataItems Uniform, Collection and HyperSlab are used.
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2 Preliminaries

2.3.2 Usage

While the XDMF document itself can be read with a variety of standard readers or
libraries, for the referenced files HDF5-reading is necessary again. While parsing the
XML-tree most of the information is stored in the XML-attributes for the nodes and
only the filenames and paths are stored as information of the nodes themselves. This
thesis uses XMDF-version 2.0 and contains one Domain with a Triangle-Topology, a
XYZ-Geometry, multiple standard DataItems for the file paths and one Collection of
Grids which contain information about the individual timestamps of the provided data.
The exact specifications are described in 4.2.2.
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3 Related Tools

The tool developed in this thesis works on earthquake and tsunami-related scientific
data and converts the ways of representation from one type to another. It is highly
adapted to the tools, that produce said data or use it as an input. Knowing what these
tools do, how they work and especially what kind of data they need and produce
is therefore useful in understanding the goals and ways of this thesis. This chapter
will give a quick overview of the three programs, that are most relevant for this tool.
For a detailed explanation of capabilitys, usage and implementation the respective
documentations should be viewed.

3.1 SeisSol

This is the program producing the data that is used as input. According to [4] SeisSol
is a software using "High resolution simulation of seismic wave propagation in rea-
listic media with complex geometry" to simulate earthquakes, wave propagation and
dynamic rupture in materials of different elasticity. Predicting an earthquake is still
quite difficult so SeisSol is working with observations from geodetic and seismological
data to simulate possible scenarios that might occur as a result of subduction. It is also
used to predict ground motion in the aftermath of an earthquake and as a predictor
for possible volcanic eruptions. As stated in [23] its software has been optimized to
reach high peak performance and strong scaling up to 90% parallel efficiency and 45%
floating point peak efficiency on simulations performed on the SuperMUC machine.
[24] and [25] further explain, that it uses the "Arbitrary high-order accurate DERivative
Discontinuous Galerkin (ADER-DG) method", meaning it solves the (elastic) wave
equation, which is a partial differential equation, by multiplying it with a test function
and then integrating it over a tetrahedral element. The tetrahedral meshes are static and
unstructured according to [26], but as explained in [4] fully adaptive through "smooth
refining and coarsening strategies". Following the explanation from [27], together with
the high-order accuracy the ADER-method allows, this allows seismic waves to be
simulated with minimal errors even over great distances and in complex geometries.
[28] further explains, that for writing output the data is reduced to first order and
projected down to 2D, meaning it will only display the up and down displacement
values on the surface and skip higher-order information. The output geometry of a
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unstructured mesh of triangles resembles the fixed but unstructured geometry of the
three dimensional mesh the simulations were done on. This grid gets stored in a HDF5
file. The format that is used to store the data is to store all the single points with their
x, y, and z-coordinates separately and then connect them with a table that stores the
corner points for each triangle. For the computation here only the first 2 matter, the
z-value is a leftover from the 3D computation and is not needed, as the relevant z-values
are the displacement values for the triangles which are stored separately into a third
table. The metadata for how to combine the data correctly and additional information
gets stored into a single XDMF file.

3.2 Sam(oa)2

This is the software that in the end simulates the actual tsunamis and therefore is the
program for which the output is produced. According to [29], its main application
are the simulation of tsunami wave propagation and the simulation of two-phase
porous media flow, but it can be used on all finite-element-type or finite-volume-type
applications that are based on matrix-free, element-oriented formulations. This is
possible, because the complexity of the underlying process is hidden from the applica-
tion. Similar to SeisSol it solves partial differential equations (in case of the tsunami
simulation these are the shallow water equations) and its framework is designed to do
so in a highly parallelized way. Although sam(oa)2 is basically a 2D simulation because
oftentimes movement along the third dimension is so small that it can be ignored, this
is not always the case so in [30] support for 2.5D grids was added to also be able to
calculate 3D applications. To be able to simulate tsunamis with maximum accuracy in
a minimal amount of time sam(oa)2 uses the Sierpinski space-filling curve as a basis for
its adaptive triangular meshes. The initial grid consists of one rectangle that consists of
two triangles which are spereated along the diagonal line. As explained in [29], these
two base triangles then get further split via newest vertex bisection until they are small
enough for accurate calculation. If a triangle is split even further or merged together
with another triangle is decided dynamically in each timestep for each triangle as stated
in [31]. Because of the Sierpinski space-filling curve an order can then be established
for the semi-structured triangles as seen in [32], which is a big difference to SeisSol,
which had an unstructured mesh. This order is then used to traverse the grid in a
fast an memory-efficient way. Sam(oa)2 can be used for small experimental examples
directly, but for bigger computations and therefore bigger and more complex input the
ASAGI tool is necessery.
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3.3 ASAGI

This tool is used by both SeisSol and Sam(oa)2 to process their input and is therefore
the program whos input format the output of the conversion tool must match. As
this tool converts from SeisSol to Sam(oa)2 input constraints for SeisSol stated at
[33] and [34] will be ignored in this section. According to [6] ASAGI is "a pArallel
Server for Adaptive GeoInformation" meaning it was designed to read NetCDF input
files for big parallel simulations that work on geographical data based on a cartesian
grid. It is an interface for large-scale geo-simulation applications that provides various
benefits without end applications noticing. As [35] explains, these programs work with
"dynamically adaptive mesh refinement", which means ASAGI can enable them to
work more efficiently, by giving each node only the data it needs, copying necessery
parts of the dataset to multiple nodes and deleting information that is no longer needed
to achieve a balanced workload across all compute nodes. ASAGI works in three steps:
The first one is to load all the input data and synchronize processes with the application.
The second is the data access while the simulation is running to ensure good workload
distribution. The last step only frees all the used ressources. Despite the different mesh
data structures the underlying application can have, ASAGI always works on its own
cartesian grid for calculations. [36] states, that of these grids there are three different
types: FULL(default), CACHE and PASS_THROUGH. FULL means the whole file is
loaded at the beginning and not touched in the simulation. With CACHE nothing
is loaded initially, but a block is put into the cache when an element is requested.
PASS_THROUGH will not load anything but access the file every single time instead.
ASAGI also makes it possible to have multiple resolutions at once, but this option is
not used here. For grid positions a cell-centered grid is chosen over the vertex-centered
grid.
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4 Conversion

This tool can convert 3 different types of earthquake- or bathymetry-data (ASAGI-
NetCDF, GEBCO-NetCDF and SeisSol-XDMF) into a NetCDF-file that can be used in
a tsunami simulation. The previous chapters have explained how the software this
program is based upon works and what some related tools are and what they do. This
chapter is split into three parts. First it will be explained what the exact demands for
the developed tool are and why these demands exist. Then instructions on how it has
to be used are given and all the different options that can be set are presented. This
includes their effect on the programs behaviour and runtime as well as their effect on
the resulting output. Lastly a detailed look into the implementation of the tool is given
and it will be explained how it works internally.

4.1 Demands

This section describes all the requirements and demands to the software. In short, core
goal of this thesis is to develop a tool, that takes output from SeisSol and converts it
to a data structure readable by ASAGI and sam(oa)2. In order to do so, a XDMF-file
and its corresponding data on a triangular mesh need to be read and transformed
into a NetCDF-file, that holds a representation of the same data on a rectangular grid.
(See 4.2.1 and 4.2.2 for the exact specifications.) In addition, it needs to be possible to
freely select only a section of the input area and to choose the grids resolution of the
output file. The tool must also handle all different orientations of the three-dimensional
input grid, where east-north-up is the most common. While the XDMF-files usually
provide bathymetry data in the z-values of the single points, this data has a fixed
resolution. In order to get bathymetry data with selectable resolution for the simulation,
an additional sources is needed. Therefore, the tool must be able to read GEBCO-style
NetCDF-files and transform them into the same kind of NetCDF file it also produces
as output for XDMF. (Again see 4.2.1 and 4.2.2 for the exact specifications.) For this
a transformation from latitude and longitude coordinates on the earths sphere to a
flat 2D grid is necessary. This is because the grid of the ASAGI output defines the
location of its points with meters so the latitude and longitude coordinates have to first
be mapped onto this grid before the corresponding values can be used in a simulation.
This transformation must support two kinds of conversion methods to achieve a high
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accuracy for different resolutions in the output grid. The first method has to always
take the closest input point available as output point and is useful when the resolution
of input and output grid are about the same, because in this case taking multiple values
into account would blur the result. The second method is for output grids with a far
lower resolution than the input. In order to not loose information this method has to
take all input-points within a certain radius into account. This radius needs to be freely
selectable. As last requirement, the tool must be able to change the resolution of an
output-style NetCDF file with a single timestamp. This makes it possible to simply
scale the result of a previous transformation of a GEBCO-file to a new resolution and
the time-consuming transformation does not have to be done again.

4.2 Program Usage

In this section an explanation on how the program is used is given. It will start by
describing the output format and continue by listing the specifications of the three
possible input formats. In the last part, all the currently existing program flags are
listed with their program requirements, parameter demands, behaviour and effect on
the conversion process and the output file. Note that any form of usage or input that
doesn’t match these instructions and requirements can result in undefined behaviour
or errors and is therefore disadvised.

4.2.1 Output

There is currently only one type of output. It is a NetCDF file designed to be readable
by ASAGI and it has the following specifications:

• Two dimensions: x and y (in that order).

• Three variables: double x(x)1, double y(y) and float z(y,x) or double z(y,x) (in that
order). The precision of the variable z depends on the precision of the input. All
variable units are meters with x pointing east, y pointing north and z pointing
upwards. For XDMF-input the variable z changes its dependencies to float
z(time,y,x) or double z(time,y,x) respectively.

• Each variable has the attribute actual_range with z having the additional attribute
_FillValue.

1The x before the parenthesis is the name of the variable and the x in parenthesis is the name of the
dimension the variable depends on. y and z work the same way. This means the three variables have
no dependencies on each other and in theory are totally unrelated. A connection only occurs due to
the interpretation by the reading program.
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netcdf Standard_ASAGI_output_file {

dimensions:

x = 1000 ;

y = 1600 ;

variables:

double x(x) ;

x:actual_range = -250000., 250000. ;

double y(y) ;

y:actual_range = -400000., 400000. ;

float z(y, x) ;

z:_FillValue = NaNf ;

z:actual_range = -6.48760175704956, 16.1780223846436 ;

// global attributes:

:Conventions = "COARDS/CF-1.0" ;

:title = "Standard_ASAGI_output_file.nc" ;

:GMT_version = "5.0.0_r9703M [64-bit]" ;

:node_offset = 1 ;

}

Figure 4.1: Standard ASAGI file with float precision

• Four global attributes: Conventions (default set to "COARDS/CF-1.0"), title,
GMT_version, node_offset (always set to 1).

• If the Input was in SeisSol-XDMF format there are the additional dimension time
and the additional variable double time(time) with the attributes long_name (always
set to "time"), actual_range and units (always set to "seconds since 0000-1-1 0:0:0").

The difference in output format can be seen in Fig. 4.1 and 4.2.

4.2.2 Input

There are three different file types and corresponding formats, that can be used as
input. Depending on the input, the exact output format can differ and necessary flags
or their effect can change.

ASAGI-NetCDF

This is the simplest input type and the one with the least options. It is expected to be a
NetCDF-file and to have the same format as the standard output (see 4.2.1) without
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netcdf Modified_ASAGI_output_file {

dimensions:

x = 40 ;

y = 40 ;

time = 11 ;

variables:

double x(x) ;

x:actual_range = 2250., 21750. ;

double y(y) ;

y:actual_range = -9750., 9750. ;

double z(time, y, x) ;

z:actual_range = -0.233631199933331, 0.233631199933333 ;

z:_FillValue = NaNf ;

double time(time) ;

time:long_name = "time" ;

time:actual_range = 0., 5. ;

time:units = "seconds since 000-1-1 0:0:0:"

// global attributes:

:Conventions = "COARDS/CF-1.0" ;

:title = "Modified_ASAGI_output_file.nc" ;

:GMT_version = "none specified" ;

:node_offset = 1 ;

}

Figure 4.2: Output for XDMF input with double precision
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the time dimension. For this type, data can only get scaled but no transformations are
done.

GEBCO-NetCDF

This format is based on the "General Bathymetric Chart of the Oceans" GEBCO_2014
Grid in 30 arcsecond intervals from [37]. This grid is an aggregation of multiple
bathymetric datasets into one and represents the distance from sea-level to the earths
ground. Instead of (x,y)-coordinates it uses latitude and longitude in 30 arcsecond
intervals. One interval is approximately 926 meters for the latitude as all meridians
have the same length, but changes drastically for the longitude depending on where
you are, because the distance that is covered per degree decreases towards the poles.
At the equator, it’s also approximately 926 meters for 30 arcseconds but this gets less,
the further one is away from the equator. This input is used to get the bathymetry data
needed for a tsunami simulation. For this a projection from a spheres surface to a flat
2D grid is done (see 4.3.3 for details). It is possible to choose between two different
modes of conversion, that change how many input points are taken into account for
one output point. A minimal example is shown in fig 4.3. The GEBCO format is a
NetCDF file with the following specifications2:

• Two dimensions: lat and lon (in that order).

• Three variables: short elevation(lat,lon), double lat(lat) and double lon(lon) (in that
order). The units for lat and lon are absolute latitude and longitude coordinates
on the earths sphere, while elevation is measured in meters and points upwards.
elevation can also have the precision levels of "float" or "double", with the latter
one also producing output in "double" precision.

• Four global attributes: Conventions, title, node_offset and history (without particular
order).

SeisSol-XDMF

The XDMF input format is the most complex one of the three formats and must meet
the most requirements. In contrast to the other 2 input types, the XDMF input file
does not contain the data itself but specifies all the files where the actual data is
stored. This can be done with one or more HDF5 files. Data is represented via an
unstructured triangular-mesh, that gets stored by listing all single data-points, triangles
as point-triples and actual z-values separately. A minimal example of a XDMF file and

2Data acquired from [37] has a lot of additional information in its attributes, but these are not needed
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netcdf Minimal_GEBCO_input_file {

dimensions:

lat = 5476 ;

lon = 8156 ;

variables:

short elevation(lat, lon) ;

double lat(lat) ;

double lon(lon) ;

// global attributes:

:Conventions = "CF-1.0" ;

:title = "The GEBCO_2014 Grid" ;

:history = "This is version 20150318 of the data set." ;

:node_offset = 1 ;

}

Figure 4.3: Minimal GEBCO input file

its underlying HDF5 file are shown in Fig. 4.43 and 4.5. The HDF5 files must meet the
following requirements:

• Data is split into the three parts geometry, connect and W. These parts are usually
all inside one single file, but can also be separated into two or three files.

• geometry must be of type double. It lists all single data points with their respective
XYZ-values (in that order, all values for one point are listed before the next point
begins).

• connect must be of type uint64. It connects all triangles one after another, by listing
three corner points of each respective triangle. Corner-points are represented by
their position in geometry data, starting with index 0.

• W must either be of type float or double according to the XDMF file. It contains
z-values for the triangles in all timestamps. Triangles are ordered the same way as
in connect, but each timestamp is listed separately, meaning all data for timestamp
0 is stored, before timestamp 1 starts.

The XDMF-file has a XML structure where all relevant information is inside the

3In this example everything that is not needed by this tool was removed, so other programs that usually
can read XDMF might not be able to read this file anymore
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Xdmf.Domain-branch. This branch must contain the following subbranches and infor-
mation:

• Exactly one Topology which needs the XML-Attribute NumberOfElements to indicate
the number of existing triangles. This branch contains subbranches with further
information:

– One DataItem with the path to the location of the data connecting the triangles.
This path must end in ":/connect".

• One Geometry with the XML-Attribute NumberOfElements indicating the number
of single points in the dataset. This branch contains subbranches with further
information:

– One DataItem containing the path to the XYZ-data of the single-points. This
path must end in ":/geometry"

• One DataItem containing the path to the z values of the triangles. This path must
end in ":/W".

• This DataItem needs a XML-Attribute Precision to indicate the precision of the
datatype. Possible values are 4 (for float) or 8 (for double).

• One Grid which contains the information about the timestamps. This branch
contains subbranches with further information:

– Each timestamp has its own Grid which needs a subtree Time with the
XML-attribute Value.

– This value represent the point in time the timestamp is from.

• Any additional information is currently ignored.

4.2.3 Flags

As this tool does not only have one single function but a variety of calculations it can
perform, there are a number of flags needed to get the expected results. These flags
can influence runtime, precision, how the input is handled, which output is produced,
which calculations or projections are done and set specific values inside the calculation
or the output. This chapter will explain the effects of each flag. Fig. 4.6 shows an
example output for the tpv-16-surface.xdmf input scenario and the figures 4.7, 4.8, 4.9
and 4.10 show the impact of their respective flags.

The program is started by calling Convert.exe with its input parameters:
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-<Xdmf Version="2.0">

-<Domain>

-<Topology NumberOfElements="45164">

<DataItem>XDMF_example.h5:/connect</DataItem>

</Topology>

-<Geometry NumberOfElements="22685">

<DataItem>XDMF_example.h5:/geometry</DataItem>

</Geometry>

<DataItem Precision="8">XDMF_example.h5:/W</DataItem>

-<Grid>

-<Grid>

-<Time Value="0"/>

</Grid>

+<Grid></Grid>

+<Grid></Grid>

+<Grid></Grid>

</Grid>

</Domain>

</Xdmf>

Figure 4.4: Minimal XDMF input file

netcdf XDMF_example {

dimensions:

phony_dim_0 = UNLIMITED ; // (4 currently)

phony_dim_1 = 45164 ;

phony_dim_2 = 3 ;

phony_dim_3 = 22685 ;

variables:

double W(phony_dim_0, phony_dim_1) ;

uint64 connect(phony_dim_1, phony_dim_2) ;

double geometry(phony_dim_3, phony_dim_2) ;

}

Figure 4.5: Corresponding HDF5 file
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−−help: Dominates all other flags. No calculating is done, but a short help-
message about every single flag is written.

−−i: Name of the input file. Must be specified.

−−o: Name of the output file. Default is the name of the input file+"_copy.nc"

−−it: Type of input. There are 3 possible options: "ASAGI", "GEBCO" and
"XDMF". The input is expected to be formatted like specified in 4.2.2. Default is
"ASAGI".

−−ot: Type of the output. As there is currently only one possible output-format,
this option is ignored and set to "ASAGI" as specified in 4.2.1.

−−dx and −−dy: Difference from x to x+1 and from y to y+1 in the output grid
in meters. The smaller the value, the slower the computation, but the higher the
resolution of the output grid. Defaults to 500.

−−origin: Two parameters. The origin(0,0) of your grid where everything will be
built around in (y,x) for XDMF and in (lat,lon) for GEBCO (format 123.75 instead
of 123◦45’.). As default the (approximated) center of the grid is taken4. For XDMF
values of this point are kept, meaning for example if (0,24) is the center in the
input, it will also be the center-point of your output. For GEBCO this points
coordinates will change to (0,0). This can be changed with "−−neworigin". As a
result, the point (0,0) is not necessarily the center of the output grid. It is advised
to always also set "−−domain" when using this flag, otherwise some parts of the
output grid might not have valid input data to get their values from. (see Fig.
4.10)

−−domain: Four parameters. Absolute distance from the root-point to the
edges of the grid in kilometers. Default is half of the distance from edge to edge
(approximated)5. In this case the zero-point will also always be the (approximated)
center of the grid. Order of values are west, north, east, south. All values must
not be negative. (see Fig. 4.10)

−−ignore: After reading input a check is done, wether data is available for all
points of the requested output-grid. If not, the program aborts the conversion
and in some cases might also crash. If you want to try anyway, set this flag but

4Although it looks like it, the input is not actually rectangular. Therefore, the middle of the latitude
values and the middle of the longitude values are taken. The resulting point is the approximated center

5This distance is constant for latitude/y but changes for longitude/x depending on which latitude it is
measured on. Here the lowest latitude value is taken.
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keep in mind, that this might result in an error in the program and points without
available data as a basis might have arbitrary values.

−−fast: Must be set for XDMF but is optional for ASAGI and GEBCO. The
program will run much faster but will also need a lot of RAM. Make sure you
have enough space for the computation. Otherwise an allocation-error can occur.
More details about this can be found in 4.3.1

There are several flags specific to the single input types:

ASAGI: No special flags

GEBCO: GEBCO is converted to ASAGI via 2 different methods and therefore has
special flags.

−−converttype: Two possible values. "sphere_convert" (which is the default)
means for a single output-point the closest point in the input-grid is taken.
"sphere_convert_clouds" means for one output-point all input-points within a
certain cutoff-radius are taken and weighted depending on their distance from
the input-point (see 4.3 for the exact calculation). Behaviour for points with no
data within the cutoff-radius is undefined!

−−cutoff: The cutoff radius in meters. Default is 1000.

−−neworigin: Two parameters. As a default the new center-point will always be
at (0,0) but this can be changed with this flag. The first parameter is the y-value,
the second one is the x-value. The units are kilometers.

−−EPSG: For the special case of the center being at latitude 88.5113 and longitude
0, an alternative way of calculating the latitude and longitude for the new grids
points is provided with the PROJ.4 tool. If not set, the law of Haversines is used
as default method.

XDMF: Each output-point represents the rectangle of the grid where he is in the center.
For each of the triangles their impact on a point is based on how much they overlap
with the rectangle.

−−down: The z-values will be interpreted to point downwards. (Normally the
z-values are interpreted to point upwards.) Note: The Output will still be pointing
upwards! (see Fig. 4.7)

−−XYdirections: Eight possible options. As a default the X and Y values are
interpreted to point east and north respectively ("en"). This can be changed to
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Figure 4.6: Example output without special flags

"en","ew","nw","ne","wn","ws","sw" or "se"6. Note: The Output will still be "en"!
(see Fig. 4.9)

−−split: Prints every timestamp into its own file (without the time-dimension)
instead of everything into a single one.

−−reverse: Iterate over triangles instead of rectangles. This is faster in most
cases, as rectangles are sorted whereas triangles are not (see 4.3 for the exact
implementation).

−−check: Calculates and prints the integral over the whole input and output
for each individual timestamp. Note: If the output area was changed with
"−−domain", no useful information is produced.

−−correct: Checks if the input data contains triangles multiple times and removes
the duplicates. (see Fig. 4.8 for an uncorrected example)

−−boost: Uses the boost-library to calculate overlap between triangles and
rectangles.

6e, w, n and s are abbreviations for east, west, north and south respectively.
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Figure 4.7: Influence of –down flag

Figure 4.8: Influence of no –correct flag
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Figure 4.9: Influence of –XYdirections ne flag

Figure 4.10: Influence of –origin 0 0 –domain 20 20 20 20 flags
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4.3 Implementation

The previous two chapters explained what this program is doing and its usage. This
chapter will give detailed insight about the internal workings, what the mathematical
basis for the calculations are and how they are implemented. Together with 4.2 it is a
good starting point for subsequent developers to increase performance and/or precision
or to add new functions (see chapter 7 for suggestions). After carefully reading this
description one should have a rough idea about the structure and flow of information
in the program. Every subsection will explain a specific part of the program and the
files that are connected with it. A flow chart of the program is shown in Fig. 4.15.

4.3.1 General procedure

This chapter will describe the parts of the program, that dont have one specific task
assigned to them, but are responsible for the basic structure of it. This means they have
an impact on which functions are called and which computations are done. They dont
do any calculating themselves.

User Input

Input is gathered right at the start in Cmdline.cpp using the boost library’s program_options.
After describing all possible flags at the beginning, every single one is checked for
separately and if not present, a default value is set. If no input file is present and
"−−help" is not set, an error is thrown. An error is also thrown if a flag has the
wrong number of parameters, an unknown flag is set or the input has bad syntax. The
information gets stored in the struct info (see 4.3.6).

Program Flow

The Main.cpp file and its main function are the core of this program. No calculations are
done there, but the workflow is structured by calling necessary functions according to
the user input. It is determined which of the two available modes (described below)
gets used. Depending on which mode is used, the point in the program and the way
reading and writing is done differs, but the actual calculations stay the same. For the
input type XDMF there exist the additional option check, which prints the result of a
comparison of the integral over the complete data area of the input and output. Due to
imprecisions in the area-calculation the check is done twice for the output. First for the
area that the rectangles are supposed to have and then for the area that actually got
calculated.
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Modes of computation - Fast

The procedure of fast-mode is quite simple. First the input is read by loading all the
data into arrays. This way the computation will be done quickly as every needed value
is already available and no time is lost reading from a file during the calculations. It
has the downside, that a lot of RAM is used. This amount is impacted by the size and
resolution of the output grid as well as size of the provided input. For the output this is
at least (size_x_dimension+ size_y_dimension+ size_x_dimension · size_y_dimension) · 8
Bytes. For the input it is 8 Bytes for every provided input value7. Currently if there
is not enough RAM available, this mode crashes with a bad alloc error. After reading,
the conversion is done and at last some context information, like the dimension names
and actual_range attributes, for the output file is set and the output gets written. Every
single one of those three steps has multiple functions that get called depending on the
input type and conversion type. The used structs are sdata, cdata and file (For which
you can see a description in 4.3.6).

Modes of computation - Slow

The slow-mode requires only minimal amounts of RAM so it can also be run on local
machines. This is achieved, by reading every single value from the file exactly when it is
needed instead of storing them. Values are also immediately written to the output-file
when possible and not stored anywhere. It is likely, that many values have to be read
multiple times so this mode is quite inefficient. Reading from a file is also significantly
slower compared to reading from an array. As a result of this procedure no separate
functions for reading, calculating and writing exist. Different functions only get called
based on the input type and conversion type, meaning in contrast to fast-mode the
conversion functions also do the reading and writing. This also means that the output
file has to be created before the conversion starts. At this point not all necessary
information is available, so an additional function has to be called right before the end
to compensate for that. Only the struct file is used. Note: There is currently no support
for XDMF-input in slow-mode.

4.3.2 Input reading

The file Input.cpp and its array counterpart AInput.cpp perform the reading of input
files, context information and in case of AInput also its data.

7This includes the position values for the x and y dimension in ASAGI and GEBCO as well as the
geometry and connect values for XDMF
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ASAGI

After opening the input file the length in the x-dimension (index 0 in the NetCDF-file,
see 4.2.1) and y-dimension(index 1) are read. Then information about the three variables
is gathered and the level of precision(see 4.3.6) is set. If the z-variable is of type double
it is considered as high precision. Everything else is considered as low precision. As
next step, all important global attributes and their length are stored. At this point
Input is done, but AInput continues by reading the data. In case of low precision, the
z-variable has to be read one by one as the array used for calculation is always of type
double.

GEBCO

After opening the input file the length of the x/longitude-dimension(index 1 in the
NetCDF-file, see 4.2.2) and y/latitude-dimension(index 0) are read. Then information
about the three variables is gathered and missing information needed for the output
and the level of precision are set. If the z-variable elevation is of type double it is
considered as high precision. Everything else is considered as low precision. From this
point on the procedure is the same as for ASAGI. Attributes are read and AInput loads
the data.

XDMF

As XDMF is only available in the fast version, its input reading only exists in AInput.
For reading the xml-document the property-tree part from the boost-library is used. It
reads the number of triangles, the number of single-points and their respective file and
location. The location of the z-values W and the level of precision are also stored. Next
the number of timestamps and the time-values of them are read. At last the respective
files for the needed parts of the data are opened and the data is loaded into the arrays.

4.3.3 Conversion

The two files Converts.cpp and its array based counterpart AConverts.cpp are the heart
of the program, as they do the actual work in converting one type of data to another.
The main difference again is, that AConverts works on arrays which contain all the
data while Converts loads a value directly from the given file when it needs it and
immediately writes the result into the output file. Converts also does not support XDMF
as input. For all conversion types it might be necessary to slightly adjust the "dx"
and "dy" values to exactly fit into the new grid after its size is calculated. For this the
highest possible number that is smaller than the "dx"/"dy"-value and a divisor of the
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size in x or y directions is calculated. They will never be made larger so the resolution
is always at least as high as the user defined.

Simplescale

As the output is always of type ASAGI, input of type ASAGI is only changed a bit. The
grid the data is based on will be rescaled to a new resolution. It can be both higher or
lower than the original one. The algorithm deciding which value to put into the cells
for the new grid simply takes the point from the original grid, that is closest to the new
one. After calculating the new values for the attributes this function is already done.

Sphere to xy

Despite looking like a grid on first glance, input of type GEBCO is based on the
earths sphere and therefore has to be converted to an actual flat rectangular grid
first. This conversion also allows the user to clip only a part of the input by setting
a centerpoint(definded by coordinates in latitude and longitude) and the distance to
the edges in west, north, east and south direction in kilometers. If this is not the case
the whole domain is converted. In contrast to ASAGI, at this point we need to check
if the area the user wants to clip is actually available in the input. If not, an error is
thrown. This check can be ignored with "−−ignore" flag. After finishing preparations
the conversion is started. Since the input grid is on a sphere and given in degrees,
the cartesian distances "dx" or "dy" need to be converted to find the position of a
neighbouring point. To locate the corresponding point in the original grid to a point in
the new grid, we start with latitude and longitude coordinates of the bottom left corner
and calculate the new points coordinates in two nested for-loops. The explanation and
formulas for this conversions are described in 4.3.5. The outer one walks "dx" meters
east and represents the bottom edge of our output grid. The inner loop iterates over the
resulting points and walks "dy" meters north for each of them. This way every output
point gets its respective latitude and longitude coordinates. This can be seen in Fig.
4.11.
For the value assignment there are two conversion types, simple and cloud, each having
its own function. At last the new attribute values are set and the function returns.

Converttype simple: The simple method directly takes the value from the point of
the original grid which is closest to the point of the new grid by accessing its z-value
directly via its index. This method is most useful, when the resolution of the input grid
and the output grid are about the same, or if the output grids resolution is higher, as in
these cases the information gets projected most accurately.
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Figure 4.11: Visualization of GEBCO conversion

Converttype cloud: The cloud method takes every point from the original grid into
account, that is within a given cutoff radius from the from the point of the new grid.
The impact of the original grids points is based on their respective distance to the new
grids point. The value is calculated according to this formula:

z(x) =
∑xn

z(xn) ∗ (r− | x− xn |2)
∑xn

r− | x− xn |2)

with x being the new grids point, xn the points from the original grid within the cutoff
radius, z() their z-value and r the cutoff radius.
The cloud method uses the diamond-algorithm which is much more complicated than
the algorithm of simple. It uses the closest point from the original grid as starting value
(calculated like in simple). This point has an absolute index-distance of zero. If it is
already outside the cutoff radius its value is taken and the algorithm terminates. If it is
inside, all the points from the original grid with an absolute distance for the indexes of
one are checked if they are inside the cutoff radius. Next all points with an absolute
distance for the indexes of two are checked. This continues as long as there is at least
one point from the original grid with an absolute distance for the indexes of x that is
still inside the cutoff radius. If that is not the case it is guaranteed, that all points with
a larger an absolute distance for the indexes are also outside the cutoff radius. The
principle of this is shown in Fig. 4.12. Finally, all found points and their z-values are
added according to the formula, the new value is set and the algorithm terminates. The
reason this algorithm has the name diamond, is that the order it checks all points with
the same index distance x in is shaped like a diamond. From the center the algorithm
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Figure 4.12: Visualization of diamond algorithm

goes x steps (meaning indexes in the original grid) to the northernmost point and from
there the next point is one step to the east and one step to the south. This continues
until the easternmost point is reached. From there we go to the southernmost point, the
westernmost point and back to the northernmost point. With this strategy, calculating
the actual index-distance of any point is not necessary.

Check data range: This function calculates the latitude and longitude coordinates of
the 4 corners of the requested output grid and checks whether there is any provided
data within their cutoff radius. If yes, it is guaranteed, that all the other points will also
have values to work with. If not, the function returns with "false", meaning the check
for data failed.

Convert XDMF

This conversion is only available in fast mode (see 4.3.1 for reference) and therefore only
implemented in AConverts.cpp. The conversion of XDMF is the most complicated one, as
the input is neither a grid, like in ASAGI, nor similar to a grid, like GEBCO, but a mesh
of triangles. These triangles are given by a collection of points in geometry, whose points
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form triangles in connect for which the values are stored in the field W. XDMF also has
multiple timestamps that have to be taken into account in the conversion (see 4.2.2 for
the exact specification). The strategy after which the new z-values are calculated is
simple. Every new point represents a rectangle with size dx·dy and overlaps with one
or more triangles. The value of these triangles is multiplied by the percentage of the
rectangle they cover. This way the resulting value is the integral over the whole area
of the rectangle. The difficulty lies in calculating the respective overlap of a rectangle
and a triangle and doing so efficiently. One can iterate over the rectangles and check
every triangle (which is the standard way) or iterate over the triangles and check every
rectangle. The latter is usually faster, as the rectangles are sorted and therefore some
precalculations can be done which give a rough idea about the area the triangle is in.
This way not all rectangles have to be checked. After the conversion, the values for the
attributes are set and the function returns.

Precalculations: Before actually converting, a few preparations have to be done, as
the input can have some special unwanted characteristics as a result of how the data
was produced. It is possible, that connect contains some triangles multiple times. These
duplicates have to be removed. This is done by setting the connect-values of unneeded
copies to "-1", excluding them from being considered in the conversion. It is also
possible that the x-axis and y-axis do not point east and north respectively, as they are
guaranteed to do in the other two input types. This cannot be detected by the program
and has to be specified by the user, so both axis can be turned around to point in the
wanted direction. Like for GEBCO, the user can specify a certain area he wants to clip
so it has to be checked, if he actually also provided data for the requested area. If not,
an error is thrown. This check can be ignored with the "−−ignore" flag.

Convert simple: Fills the z-values for the output grid. This is done by iterating over
the output grids points. Each point representing the area of a rectangle with itself in
the center and the distance "dx/2" to the left and right as well as "dy/2" to the top
and bottom. This way all the rectangles have the same size. For every rectangle every
single triangle is checked for its overlap with the rectangle either with a calculation
based on the boost library or a self-implemented approach. The difference is explained
in 4.3.5. Next for each timestamp the respective value of the triangle is multiplied by
the percentage of the rectangles area it covers and added to the rectangles value for
this timestamp. This is possible, since the position of the triangles and rectangles don’t
change over time, meaning the overlap also stays the same for every timestep. For
each rectangle, the accumulated overlapping areas are stored. Due to precision errors
these areas will sometimes not perfectly match the exact intended rectangle area, so
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this array can later be used for calculating the absolute error for the whole conversion.
As the area for all rectangles is a constant and the overlapping percentage is calculated
by dividing the area of the overlap by the area of a rectangle, time can be saved, by
multiplying the triangles values with the overlapping area and only dividing the final
sum once, after all triangles have been traversed.

Convert reversed: The reversed conversion works in a similar way to the standard
one. The actual calculation of the overlapping areas, percentages, checksums and
z-values is the same as in 4.3.3, but this algorithm iterates over the triangles instead
of the rectangles. In contrast to the unstructured triangular grid, the rectangles are
sorted and therefore it is possible to determine an area for each triangle in which
every rectangle it overlaps with has to lie in. This area is called the boundary rectangle.
The size of this area is in most cases only a fraction of the entire grid, which means
a lot of rectangles do not have to be checked resulting in a significant performance
increasement. The boundaries of said area are determined by the highest and lowest
x and y value of the three triangles corner-points. The corresponding indexes in the
output grid to these boundaries are taken as start and ending for the rectangles that
have to be checked.

Check XDMF data range: This function checks if the northernmost, easternmost,
southernmost and westernmost requested coordinates are inside the given data range.

Check double triangles: Due to SeisSol being highly parallelized, some parts of the
data used have to be duplicated, which results in some triangles being listed multiple
times in the connect list. These duplicates need to be removed. In order to do that, this
function iterates over the connect array where three consecutive values represent one
triangle. For example the indexes 0, 1 and 2 belong together as well as the indexes 3, 4,
5 etc. Each of these triples is compared with every other triple to check if they have the
same values. As the values represent the points from the geometry this means, that
a triangle is contained multiple times, so the values of one triple are set to (-1, -1, -1).
These duplicates are later ignored in the conversion. This algorithm has a runtime of
O(n2), which is far too slow for large datasets, but an efficient way of hashing can be
used, because duplicated triangles are guaranteed to have all three values in the exact
same order. An array the size of number of single points, containing lists of pairs is
created and the connect array is traversed only once. The first value of every triangle
is used as index for the list array. The corresponding list is the checked for a pair,
containing the second and third value. If one is found, the three values of the active
triangles are set to "-1". If not, a pair containing the second and third value is added to
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the list on this index. This speeds the process up to almost O(n) runtime. The function
returns with "true" if the data was correct (meaning it has not found a duplicate) or
with "false" if there were duplicates.

4.3.4 Output writing

The two filesOutput.cpp and its array counterpart AOutput.cpp are responsible for
writing the newly calculated data to a NetCDF-file with ASAGI-like structure. The
difference between the two files is, that AOutput works on arrays that get passed to it
while Output does not fill in any data but only sets the files structure and attributes.

Output in slow mode

The slow conversion mode works directly on files. Therefore, an output file has to be
created before the conversion is started. For this the output writing is split into two
functions. The first one asagioutputcreate creates the file and sets the dimensions and
variables as well as some of the attributes. It is called in the beginning of the conversion
functions. The second function is asagioutputfinish and it sets all the attributes for which
the data was not known when creating the file.

Output in fast mode

The fast-conversion type works on arrays and has all data loaded into the RAM. Because
of this one single call of the function aasagioutput is enough to create the file with all
the dimensions, variables and attributes. This function can then also immediately fill
in all data, but its structure is more complicated than the straightforward functions of
Output.cpp due to some optional flags and characteristics the XDMF input has. These
are the time-dimension of XDMF which neither the input ASAGI nor GEBCO has and
the –split flag, which changes how this difference is handled. If it is set, every single
timestamp of XDMF gets its own file and a counting number is added to this files name.
Without this flag the standard way of output is adding the dimension time to the output
file and the dependencies of the z-variable change from (y,x) to (time,y,x). Because of
this the output file differs slightly from the standard format (see 4.2.1). So on various
points through the method it has to be checked what the input was in order to set the
correct output. AOutput.cpp also has a second function, but it is only used to set some
hardcoded values that are needed to create the output file correctly.
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4.3.5 Supporting calculations

This chapter is about the Helpers.cpp file which contains a variety of functions that are
needed by different parts of the program. They got extracted to make it easier to call
them from everywhere. While the smaller ones are mostly self-explanatory and will
therefore only be briefly summarized, the bigger ones can have a large impact and are
explained in detail.

Finding Maxima and Minima

For slow-mode no values are stored so maxima and minima need to be found from a
given variable with one dimension in dminimum and dmaximum or two dimensions in
doubleminimum, doublemaximum, floatminimum and floatmaximum) from a NetCDF file.
Getting the minimum and maximum values for the single-points from a XDMF input
is a bit more complicated since they are all stored into one single array. Here all three
coordinates for single points are stored sequentially, which is why this structure has
to be taken into account. So for XDMF axdmfxmax, axdmfxmin, axdmfymax, axdmfymin,
axdmfzmax and axdmfzmin are used to only check every third value.

Area calculation

For the conversion of XDMF areas of rectangles and triangles are needed.

Rectangles: While the area of a rectangle is easily calculated by multiplying dx and
dy which are the length of the rectangles sides, a second option is provided which
constructs a rectangle polygon with the boost library and returns its area value.

Triangles: The area of a triangle is calculated with the xy-coordinates of the corner-
points as inputs according to the following formula described at [38]:

| (Ax · (By − Cy) + Bx · (Cy − Ay) + Cy · (Ay − By)) |
2

Calculations on the earths sphere

Four functions are used only when converting GEBCO. Based one the Haversine-
formula for great-circle distances and the approach from [39], the distancelatlon function
calculates the distance of two points on a sphere. The input are two points x and y
with their respective latitude latx, laty and longitude lonx, lony values. The output is
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the distance in meters. The following formula is used:

arcsin(

√
dx · dx + dy · dy + dz · dz

2
) · 2 · 6371000

with
dz = sin(latx)− sin(laty)

dx = cos(lonz) · cos(latx)− cos(laty)

dy = sin(lonz) · cos(latx)

lonz = lonx − lony

For calculating the latitude and longitude of a point with a fixed distance and bearing
from the starting point calculatenewlat and calculatenewlon are used. They use these
formulas from [40] for latitude :

ϕ2 = arcsin(sin(ϕ1) · cos(δ) + cos(ϕ1) · sin(δ) · cos(θ))

and longitude:

λ2 = λ1 + arctan 2(sin(θ) · sin(δ) · cos(ϕ1), cos(δ)− sin(ϕ1) · sin(ϕ2))

where ϕ is latitude, λ is longitude, θ is the bearing (clockwise from north), δ is the
angular distance d/R; d is the distance travelled and R the earth’s radius.
For the special case of latitude 88.5113 and longitude 0 as a center, the convert_proj
method can be used as an alternative to the calculatenewlat and calculatenewlon methods.
It is based on the PROJ.4 tool from [41], takes the cartesian distances from the center as
an input and converts them to their respective coordinate values.

Check integral

Only gets called when "−−check" is set for XDMF. For asserting that the conversion
was accurate to a certain degree, this functions calculates the integral of z-values over
the complete input and output data. It returns 3 different values for each timestamp.
The integral over all triangles, the integral over all rectangles using the area they are
supposed to have and the integral over all rectangles using the area that actually got
calculated for them. The latter two are not identical due to precision errors when
calculating overlaps.
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Check overlap

Since XDMF is based on triangles and the output on rectangles, overlaps between those
two forms need to be calculated in the conversion process. There are two separate
functions for calculating these areas. One relies on the boost-geometry-library while the
other uses a self-implemented approach based on the Sutherland-Hodgman algorithm
as explained at [42]. Both approaches are compared in regard to runtime and accuracy
in chapter 5.

Check overlap with boost: After creating two polygons (a rectangle and a triangle)
from the input and ensuring they are set correctly, it is checked whether the triangle
completely covers the rectangle (in which case the area of the rectangle is returned) or
vice versa (then the triangle area is returned). In case of a non-complete overlap, an
intersection polygon is calculated and its area is returned.

Check overlap with self-implementation: This function has much more complicated
code in comparison to the boost approach but works much more precise and faster.
The algorithm used is an adapted version of the Sutherland-Hodgman algorithm for
clipping polygons, where the triangle is used as subject-Polygon and the rectangle
as clipping-Polygon. A pseudocode of this can be found in Fig. 4.13. The presented
Pseudocode is a simplified version from Wikipedia[43], that gives a quick and easy to
understand overview, but a more detailed explanation can be found at [42] and [44].
The code complexity and runtime can both be drastically reduced due to the adaption
of two given facts: First, the calculated intersection is always between a rectangle and
a triangle so a general approach is not necessary and the code can be optimized for
this single case. Second, the rectangle is always parallel to the coordinate-axes which
makes checking for crossing-points of two lines very easy. As illustrated in Fig. 4.14
for the left and right edge of the rectangle the slope of the triangle edge can simply be
multiplied with the distance to the rectangles edge on the x-axis. The top and bottom
edge work similarly. This way no complex calculations regarding the crossing point of
two lines are needed. The result is always either empty (in which case zero is returned)
or a convex intersection polygon. This polygon is divided into separate triangles with
one fixed corner always being the first point of the polygon. The area of these triangles
can then be calculated, added and returned.

Get indexes

In order to save time for the XDMF conversion, a boundary rectangle is calculated,
which guarantees, that all overlapping rectangles for a given triangle are inside it. For
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1 List outputList = subjectPolygon;

2 for (Edge clipEdge in clipPolygon) do

3 List inputList = outputList;

4 outputList.clear();

5 Point S = inputList.last;

6 for (Point E in inputList) do

7 if (E inside clipEdge) then

8 if (S not inside clipEdge) then

9 outputList.add(ComputeIntersection(S,E,clipEdge));

10 end if

11 outputList.add(E);

12 else if (S inside clipEdge) then

13 outputList.add(ComputeIntersection(S,E,clipEdge));

14 end if

15 S = E;

16 done

17 done

Figure 4.13: Pseudo-Code for the adapted Sutherland-Hodgman algorithm from Wiki-
pedia[43]. More detailed explanations can be found at [42] and [44].

this the three corner points of this triangle and their maximum and minimum x and
y are used. To find out with which rectangles this boundary overlaps, the edges of
the boundary are used to determine the x- and y-indexes of the rectangles that lie on
the edge of the boundary. For this we need the size of the grid, the starting values of
the grid and the dx and dy values. For one index the distance from the edge to the
starting value for the respective dimension is taken and divided by the delta-value. As
the index is an integer, for the left and bottom edge the value is rounded down, the top
and right edge are rounded up. This results in the 4 wanted indexes which are then
returned via the struct indexes.

4.3.6 h-files and level of precision

Information.h

This file contains all structs that are used in the computation. These are programinforma-
tion for the storing users input and which flags where set, fileinformation and afileinfor-
mation which contain information about the input and output files for slow-mode and
fast-mode respectively, asimpledata containing the data for ASAGI and GEBCO input
and output as well as XDMF output, acomplexdata for the XDMF input data, indexes for
the triangle boundary and point which is used for the self-implemented checkoverlap
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Y

X

A2

B2

A1 B1

C2

C1
P

Figure 4.14: Visualization of the adaption for Sutherland-Hodgman algorithm

Figure explanation: The relation of A:B:C is the same in both directions and the x value
of the point of intersection is the x value of the clipping edge and therefore known
without calculations. As a result the distance from point P to the clipping edge (A1) is
calculated by subtracting the x value of P from the x value of the point of intersection.
This is then multiplied with the slope of the triangle edge C2

C1 = A2
A1 = B2

B1 to get the
distance A2 which is added to the y value of the starting point P to get the y value of
the point of intersection.
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function.

Alloc.h

A small file containing the splitdouble class which enables splitting a single double
array into multiple arrays without making it necessary to change the rest of the
implementation. The result of this is, that the RAM can be used much more efficient
since it is no longer needed to find one big continuous block.

Level of Precision

The data the program works on is always of type double, but if the input did not have
this kind of precision (e.g. float or short), the output is adjusted accordingly and gets
downgraded to type float.

Testing

Test.cpp contains some tests mainly for the Helpers functions. It is not involved in the
program itself.
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Figure 4.15: Program flowchart
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As shown in the previous chapter, this tool provides multiple options in how the input
can be handled and converted. These decisions can have a great impact on runtime
and accuracy of the program. This chapter will evaluate how the program is doing in
terms of speed and accuracy and a comparison of the most relevant flags in this regard
will be done.

5.1 Speed

5.1.1 Comparison fast and slow mode

The comparison for the runtime of fast and slow mode was done on a single node
of the dual socket Intel SandyBridge-EP Xeon E5-2670 from the MAC cluster which
according to [45] has 128 GB RAM. Two separate comparisons are done for the input
types ASAGI and GEBCO. For XDMF its flags are examined. For this the quad socket
Intel Westmere-EX Xeon E7-4830 with 512 GB RAM from the MAC cluster specified at
[45] is used.

Comparison for ASAGI

Both modes were compared on two different input files and four different output reso-
lutions. The input files were of type ASAGI and had 1.600.000 (small) and 112.000.000
(big) values respectively. The input grid resolution was 500m in both directions. The
output grids got scaled to 50000m, 5000m, 500m and 50m1 for resolution in both
directions. This means the first two outputs have a lower resolution, the third one has
the same and the fourth one a higher resolution than the original. Results are shown in
Fig. 5.1. The difference in the two modes for ASAGI type files is barely visible. This is
because the value calculation for ASAGI is one simple division to get an index and as a
result both modes spend most of their time reading and writing. The only noticeable
difference is with very small output grids compared to input grids. In those cases the

1Due to runtime restrictions this resolution got stopped early and scaled to the full runtime based on the
percentage of conversion, that was done at that point.
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Figure 5.1: Comparison of fast and slow mode regarding runtime for ASAGI

fast mode wastes time loading all input values into the RAM, since most of them are not
needed. For scaling an ASAGI file the choice of mode therefore has not much impact.

Comparison for GEBCO

The comparison for GEBCO type files was done with a single input file from [37]
centered around Sumatra and an interval of 30 arc-seconds (about 927m). Here fast and
slow mode are compared again, but also the runtime of the two different approaches
available for GEBCO are compared. These are the standard version which takes the
closest input point for its output point value and the cloud-method, which takes
everything within a given cutoff radius. For the latter method two different radiuses
are compared. The first one is 1000 meters, which is slightly more than the resolution
of the input grid. The second one is 5000 meters2. The runtime results are shown in
Fig. 5.2. In contrast to ASAGI, for GEBCO the difference between fast and slow mode is
clearly visible. For very small outputs the slow mode is still slightly better, because it
takes the values it needs. This stays true for the standard conversion method, since it
works very similar to ASAGI, but for the cloud-method fast mode is the better choice
by far. This is because for this method one input point can have an impact on multiple

2Due to runtime restrictions the slow mode for this radius got stopped early and scaled to the full runtime
based on the percentage of conversion, that was done at that point.
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Figure 5.2: Comparison of different program options for GEBCO regarding runtime

output points and is therefore also needed multiple times resulting in many more
accesses than just reading and writing once. The benefit of having the data loaded into
the RAM becomes greater, the better the resolution and the larger the cutoff radius
gets. For example for the best resolution of 500 meters 85% of the time is saved for the
cutoff radius 1000 meters and 93% for 5000 meters. So in summary choosing a mode
for the standard conversion has almost no impact, but for the cloud-method choosing
fast mode has massive runtime benefits.

5.1.2 Additional options for XDMF

Since the XDMF input type does not exist in slow mode, no comparison can be done.
But compared to ASAGI and GEBCO, XDMF has some additional flags that require
further computing and therefore also additional time. First one standard computation
is run with the –reverse flag being active. This is then compared to the same run with
one additional flag set. For the small input with 45164 triangles and 11 time steps a
resolution of 500 meters for the output grid was chosen. The large input with 7068432
triangles and 1001 time steps has an output grid with a resolution of 5000 meters. The
results can be seen in Fig. 5.3. The standard reversed conversion is the fastest for both
small and large inputs.
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The –correct only flag has negligible impact on runtime, but guarantees a correct input
with no duplicates. It should therefore always be set.
The –split flag increases the runtime slightly for small files, because additional time
is spent creating files, but this also becomes negligible for large files. Therefore, the
decision on setting this flag is only impacted by the wanted output format and not by
runtime.
While –check causes only insignificant runtime increase for small files it can cause a
big increase for large files. This gets up to 43% additional runtime for the evaluation
scenario. As this flag is only useful as long as no special domain was chosen, creates
additional runtime and has no special benefits for the calculation itself it should be
reserved for testing.
The –boost flag causes the program to use an approach based on the boost library
instead of a self-implemented one. As this approach is not specialized for the scenario
it causes a significant runtime increase for both small and large files. In this case it went
from three to 70 seconds for the small input file and from 38 to 109 minutes for the
large input file. So when prioritizing runtime, the self-implemented approach should
be chosen over the boost version.
The last option examined is not setting the –reverse flag. This causes enormous runtime
increasement for both small and large files. The runtime for the small file went up
from three seconds to one and a half hours. For the large file the evaluation had to be
stopped due to runtime restrictions, but is estimated to have gone up from about 38
minutes to several weeks. Unless the speed of the standard conversion gets increased
significantly (e.g. by parallelization or precalculation, see 7.1.3 and 7.2.2) it cannot be
considered a viable option compared to the reversed approach.

5.2 Accuracy

Even more important than a programs runtime is its accuracy in calculating results.
Because the ASAGI conversion does not calculate values, an accuracy analysis for it
doesn’t make sense. The GEBCO and XDMF conversions however do their own value
calculation and have therefore to be tested for accuracy. There exist separate methods
for both inputs.

5.2.1 GEBCO

For GEBCO objectively measuring accuracy inside the application proves to be quite
difficult, as there is no way to tell, if the calculated results correctly represent the actual
data. The only way to test the results is to do a full tsunami simulation and compare
the results with the real world data. Doing this however is not completely reliable, as
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Figure 5.3: Comparison of different flags for XDMF conversion regarding runtime
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there are other potential sources for errors in the earthquake input, the simulation itself
and the inaccuracy in measurement of real world data.

Conversion Types

As most of the output-points do not exactly lie on top of an input point, either the
closest value has to be taken or a separate value has to be calculated via interpolation.
None of those two approaches is perfectly accurate and the actual value is unknown.
The accuracy can however be improved by choosing the correct program flags. For
GEBCOs 30-arsecond interval grid, every output grid with a resolution better than
1000 meters should choose the standard conversion method or the cloud-method with
a cutoff radius of about 1000 meters at maximum. This way every input-value will
have an impact and every output point gets the value it is most likely to have. For
output grids with a resolution worse than 1000 meters, the cloud-method with a cutoff
radius about half the resolution is the best choice. For these grids, information for some
input points would get lost otherwise. This way the output points still don’t have their
perfect value, but are representing the area around them in a quite accurate way.

Conversion Methods

The results for the comparison of the two conversion methods are shown in chapter 6.
While the conversion with proj4 almost perfectly aligns with the real data, the haversine
conversion has a slight shift in timing and altitude.

5.2.2 XDMF

In contrast to GEBCO, the XDMF conversion allows a mathematical check for accuracy,
as no information gets lost in the conversion process and no interpolation is done, as
the values for the rectangles get calculated via an integral of the input values for their
area. Because of this an integral of the complete input domain and the complete output
domain are supposed to have the exact same value. This can be checked with the –check
flag. The actual accuracy differs for the self-implemented approach and the one using
the boost library. Both are compared using the small example input that was also used
for runtime measurements in 5.1.2. The conversion is done with a resolution of 50
meters in both directions.

Self-implemented approach

For this case the biggest difference in integral values appears in time step 4 with an
expected value of -3.6854463e-8 and a calculated value of -3.6867587e-8 resulting in a

45



5 Evaluation of different program options

total difference of 1.3124e-11 and a relative error of 3.5610341e-4. With a total number
of 3024000 rectangles this is an average error of 4.3399471e-18 and a relative error of
1.1775906e-10 per rectangle.

Boost library

Using the boost library, the results are far too inaccurate for further use in scientific
computing, as the same 4th time step as before has a calculated value of 3,6507379e-3
which is nowhere near the expectations. Using the boost library is therefore significantly
slower and more inaccurate than the self-implemented approach and is disadvised to
use.
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In this chapter the result of applying this tool to real data is shown. For this the
simulated earthquake data from SeisSol for the 2004 Sumatra Earthquake is taken
as input. The converted file is then fed into sam(oa)2 and the result of this tsunami
simulation is compared to measured data from the 2004 tsunami. The conversion was
done with a resolution of 5000m in both directions using the self-implemented approach
for calculating overlaps. As bathymetry data the 30-arcsecond interval data from [37]
was taken and clipped with the center at the coordinates (0, 88.5113) and 2000km
distance in all four directions. This data was converted with the haversine-method and
the proj.4 method using the standard conversion type.
The Sumatra Earthquake appeared west of the north end of sumatra. This can be seen
in Fig. 6.1 taken from [46]. The Figs. 6.2, 6.3 and 6.4 show the resulting tsunami after 5,
60 and 120 minutes respectively.
Fig. 6.5 shows the route of a satelite from [47] that measured the waterheight above
sealevel in the indian ocean during the tsunami. This data was taken from [48] and
can be compared with the simulation. The results of this are shown in Fig. 6.6 for
the Haversine-method and in Fig. 6.7 for the PROJ.4 method. The blue dots show the
measured data from the satelite and the orange line is the data from the simulation at
the same place and time. While the Haversine-method produces a shift in altitude and
timing, the PROJ.4-method matches the satelite data almost perfectly, considering that
the simulation that was run has some inaccuracies itself. The resolution of the tsunami
simulation is 7812.5 meters, which is wider than the real wave was. This results in a
lower amplitude and a different timing due to a different acceleration.
These results show, that this tool can be used to replace the current conversion process.
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Figure 6.1: The green area is where the 2004 Sumatra earthquake appeared.[46]
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Figure 6.2: The simulated tsunami after 5 minutes

Figure 6.3: The simulated tsunami after 60 minutes
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Figure 6.4: The simulated tsunami after 120 minutes

Figure 6.5: Route of the satelite with the tsunamis state after 115 minutes
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Figure 6.6: Comparison of satelite data to the simulation with bathymetry converted
via Haversine method.

Figure 6.7: Comparison of satelite data to the simulation with bathymetry converted
via PROJ.4 method.
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7 Possible improvements

While the tool fulfills all its requirements and has a fairly fast runtime, it is still far
from optimal and can still be improved in various areas. This chapter presents the six
biggest areas where improvement is possible and gives suggestions on how they might
be realised aswell as showing problems that might occur.

7.1 Parallelization

Currently there is not a single point in this program, where parallelization is used. But
there is actually a lot of potential for runtime improvement, as almost every part of the
program can be split in multiple independent tasks.

7.1.1 Reading

The fast mode is always working on arrays of type double, but it is not guaranteed
that the input is also of type double. Because of that the reading process is already
slowed down to reading value by value and then converting every single of those values
manually to type double. Every value has its own designated place in the array, so no
writing conflicts can occur in this area and multiple threads reading from the same
file, but not writing back, also poses no problem. Therefore the reading process can
be significantly accelerated by assigning equally sized blocks of the file to different
threads.

7.1.2 Writing

Writing in fast mode has the same problem as reading. Every value has to be manually
converted back to the correct data type and is written on its own and the whole process
is therefore quite slow, but is already suited for parallelization. Accessing the values is
no problem, as they are only read from an array, but writing might prove more difficult,
as multiple threads would need to write on the same file simultaneously. This problem
does not occur, when the -split flag is set and the output is written to multiple files. In
this case assigning every file to its own thread can easily speed up the writing process.
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7.1.3 Converting

However the biggest chance for runtime improvement lies in the conversion itself.
While the slow mode faces the same problem as the writing process in having to write
to a single file with multiple processes at once, if that is appropriately solved, the same
parallelizatoin as for fast mode is possible. Currently the program calculates values
for every rectangle sequentially one after another. In regard to race condition there
would be no problem in giving every rectangle its own thread. This is because the
rectangles are independant of each other and are not changing the input values. The
only exception is the –reverse flag for XDMF, as it causes the program to iterate over the
triangles instead, which results in multiple triangles reading and writing to the same
rectangle. In this area synchronisation has to be implemented.

7.2 Optimization

Apart from parallelization there are a few parts of the program that have great potential
for performance optimization.

7.2.1 XDMF: Reversed conversion

With the boundary rectangle (see 4.3.3 and 4.3.5 for an explanation), the reversed
conversion iterating over the triangles already has optimization built in, but within this
boundary can still be a lot of rectangles that do not actually overlapp with the triangle.
Fig. 7.1 visualizes the problem. This is especially the case, if the triangle only barely
reaches one more index in one direction by a small amount. The whole row of that
index will then be added, but with one exception no rectangle is actually overlapping.
The correct rectangles can instead be found, by traversing the edges of the triangle
from the northernmost corner to the other two and for every new row that is reached,
every rectangle between the left edge and the right edge is checked. If one edges end is
reached, it is replaced by the remaining third edge. This way only rectangles that are
crossed by an edge or inside the triangle are checked and no unnecessery calculations
are done. This idea is visualized in Fig. 7.2.

7.2.2 XDMF: Standard conversion

The standard conversion traverses the rectangles and looses a lot of time by checking
for overlaps with every single triangle. This is because they are currently not ordered
in any way and therefore no precalculations can be done to determine if there is a
chance of an overlap. To improve that, the triangles have to either be ordered in a way
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Figure 7.1: Visualization of the boundary rectangle problem.
Green dots represent rectangles that are checked correctly. Red dots represent rectangles
that are checked despite not overlapping with the triangle.

A

B

C

Figure 7.2: Visualization of the traversion algorithm.
The green arrows represent the triangle edges, that get traversed. Each red arrow
represents the traversal of all rectangles in that row, who are between the triangles
edges. No non-overlapping rectangles get checked.
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their resulting index in the array represents their location in the mesh, or a sorting
structure over the triangles has to be established. For example the latter one could be
a tree that stores information about triangle location. Each node can represent a part
of the conversion area and reference subtrees which contain smaller areas or store the
triangles in that area. This way for every rectangle the tree can first be used to limit the
number of triangles, that have to manually be checked for an overlap. This way, the
major drawback of this method in comparison to the reversed version can be resolved.

7.3 Error handling

Although the program has been tested extensively with correct input and well formated
files aswell as flags set in accordance with 4.2, there currently exists almost no error
handling in the program so its behaviour is undefinded when used incorrectly. This
includes things like the setting of nonexisting flags causing a crash or the program
trying to write output although the conversion has been aborted due to no data being
available in the requested area or the cutoff radius being to small for the given input
grid. This information needs to be passed on to different parts of the program, so they
can react accordingly. Also some errors like a std::bad_alloc error due to not enough
RAM being available are currently not caught so the program crashes as a result. These
errors need to be caught so the program can safely be stopped and more helpful error
messages like how much RAM was requested in total, how much was requested already
and what request caused the error can be displayed and the user can act accordingly.
Another problem is the handling of missing or ill formated input files. In the first
case, the program crashes with an error and the second case is undefinded. Here a
mechanism needs to be implemented that ensure, that the first cause is caught and a
helpful error message is produced before the program is stopped and that the second
case is detected, before also relaying the problem to the user and stopping the program.

7.4 Extension: XDMF in slow mode

The fast mode increses performance significantly compared to the slow mode but comes
with the drawback of needing a lot of RAM, so it can only be run on bigger machines.
For GEBCO and ASAGI input files the user has the option choose between the two
modes depending on what machine the program is run on. For XDMF input files this
option currently does not exist, as its conversion is only available in fast mode. To
be able to convert XDMF on smaller machines or even local PCs too, the slow mode
has to be adapted to also contain the conversion from triangles to rectangles. The
main change for this would be the introduction of new functions in Input.cpp to handle
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reading the context information only, Output.cpp to set missing information that is not
available from the input and Converts.cpp for reading, converting and writing the data.
There also need to be small changes or additions to Helpers.cpp and Main.cpp to slightly
restructure the general process of the program to adapt the new option.

7.5 Extension: PROJ.4 tool for GEBCO conversion

For the latitude of 0 and longitude of 88.5113 an alternative for calculating the new
points coordinates in the GEBCO conversion exists. It uses the PROJ.4 tool from [41]
and changes the conversion result in a noticeable way. This is shown in 5.2 and chapter
6. As this option was added very late in the development process, its integration into
the program is quite poor from a coding point of view. If this is improved, it also opens
up the option of applying this method to other input scenarios. This is rather important,
as the PROJ.4 tool achieves more accurate results than the Haversine method.

7.6 Accuracy of Haversine-method

The Haversine-method for GEBCO assumes the earth to be a perfect sphere, but
this is not the case. As a result there is a small error in each calculation of latitude
and longitude coordinates. In the current approach presented in 4.3.3 these errors
accumulate so the result gets more inaccurate, the further one is away from the
bottom left corner. This can be improved, by calculating every point in the new grid
inpedendently from each other using only the distance from the gridcenter, as it is
already implemented for the PROJ.4 approach.
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8 Conclusion

In this thesis a tool for postprocessing of earthquake data from SeisSol was developed.
This tool is necessery for efficient coupling of the eartquake-simulation SeisSol and
the tsunami-simulation sam(oa)2, as data is currently only transfered by hand in a
long complicated process. Those two and all other relevant used tools are explained in
chapter 2 and 3. After running this tool, the data is sucessfully converted from SeisSols
triangular mesh to a perfectly rectangular grid, that can be read by ASAGI and therefore
sam(oa)2 as described in chapter 4. The second goal was to provide bathymetry data
by converting GEBCO-style files to the same ASAGI format. As explained in 4.3.1,
this part of the program can also be run on small local machines. Multiple options
for the conversion process were tested regarding runtime and precision to ensure it
is good enough to replace the current process. In this evaluation in chapter 5 the
fast mode proved to be superior compared to the slow mode regarding runtime for
the GEBCO cloud-conversion method, because here the same value needs to be read
more than once. Both modes have about the same speed for ASAGI and the standard
GEBCO conversion. For XDMF the reversed approach is faster in multiple orders of
magnitude compared to the standard version. This is because rectangles are ordered
while triangles are not and therefore a boundary rectangle can be constructed to limit
the number of rectangle-triangle combinations that have to be checked. This gets
explained in 4.3.3 and 4.3.5. In regard to precision the self-implemented adaption of
the Sutherland-Hodgman algorithm from 4.3.5 is more accurate than the usage of the
boost library. It is also faster, since it can exploit certain circumstances of the scenario.
To check for potential differences in the resulting tsunami simulation, the tool was also
applied to real data in chapter 6. While there was a slight shift in altitude and timing
for the bathymetry data converted via the Haversine-method, the simulated data with
bathymetry converted with PROJ.4 alligns almost perfectly with the real world data.
While the program can still be improved in the areas of runtime and functionality as
suggested in chapter 7, the results certainly are promising and it can be used to replace
the current process.
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