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Abstract

The main objective of this Ph.D. thesis is to investigate structure-preserving, tempo-
ral semi-discretizations and approximations for PDEs with gradient �ow structure with
the particular application to evolution problems in the space of probability measures
equipped with the L2-Wasserstein distance. In the spirit of De Giorgi's work on Minimiz-
ing Movements [29], we investigate the variational formulation of two particular temporal
semi-discretizations and one temporal approximation, namely: time-dependent Minimiz-
ing Movement scheme (discretization), second order Backward Di�erentiation Formula
(discretization), and Weighted Energy-Dissipation principle (approximation). The two
canonical examples of L2-Wasserstein gradient �ows where we apply these methods are
the second-order family of di�usion-aggregation equations given by the non-linear Fokker-
Planck equation and the fourth-order Derrida-Lebowitz-Speer-Spohn equation.

Zusammenfassung

Diese Doktorarbeit behandelt verschiedene strukturerhaltende und zeitliche Diskretisierun-
gen und Approximationen von Partiellen Di�erential Gleichungen mit Gradienten Fluÿ
Struktur und deren Anwendung auf Evolutions Probleme im Raum der Wahrschein-
lichkeitsmaÿe versehen mit der L2-Wasserstein Distanz. Im Sinne von De Giorgis Arbeit
über Minimizing Movements [29] untersuchen wir variationelle Formulierungen von zwei
zeitlichen Diskretisierungen und von einer zeitlichen Approximation, namentlich: das
zeit-abhängigen impliziten Euler Verfahrens (Diskretisierung), die Rückwärts Di�erenzen
Formel zweiter Ordnung (Diskretisierung), das Prinzip der gewichteten Energie Dissipa-
tion (Approximation). Die beiden Hauptbeispiele für L2-Wasserstein Gradienten Flüÿe,
an welchen wir die oben genannten Methoden anwenden, sind die Familie von Di�usions-
Aggregations Gleichungen gegeben durch die nichtlineare Fokker-Planck Gleichung und
die Derrida-Lebowitz-Speer-Spohn Gleichung von vierter Ordnung.
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1 Introduction and Main Results

The main objective of this Ph.D. thesis is to investigate structure-preserving, temporal
semi-discretizations and approximations for PDEs with gradient �ow structure like

u̇t = −∇E(ut) (1.0.1)

with particular application to evolution problems in the space of probability measures
equipped with the L2-Wasserstein distance. The overall goal was to de�ne novel numer-
ical schemes for approximating solutions of these evolution equations focusing on the
preservation of various aspects of the variational structure and the associated qualitative
properties of solutions on the approximation level, like: energy monotonicity, auxiliary
Lyapunov functionals, positivity, mass preservation, etc.

Gradient Flow Structure of PDEs. Besides the formulation of the gradient �ow
equation as an ordinary di�erential equation in the Euclidean space Rd with the metric
induced by the usual inner product of vectors, it is known that also various partial
di�erential equations possess a gradient �ow structure with respect to a corresponding
in�nite-dimensional space. In this setting we mention the well-known heat equation
particularly, given by

∂tρt = ∆ρt on Ω ⊆ Rd

with suitable initial and boundary conditions. With respect to the Hilbert space L2(Ω)
the driving free energy functional E of the heat equation is given by the Dirichlet-energy.
Other prominent examples in Hilbert spaces are the Allen-Cahn and the Cahn-Hillard
equation both driven by the Ginzburg-Landau functional where the �rst is a gradient �ow
in L2(Ω) and whereas the latter is posed in H−1(Ω), see [3, 15, 33]. More general systems
of reaction-di�usion equations in arbitrary Hilbert spaces have been also investigated,
see [49, 74].
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1 Introduction and Main Results

L2-Wasserstein Gradient Flows. In the seminal paper by Jordan, Kinderlehrer and
Otto [54] the authors exploited the fact, that the heat equation posses an additional gra-
dient �ow structure with respect to the manifold of probability measures P2(Ω) equipped
with the so-called L2-Wasserstein distance. The di�erential geometry of this dissipative
evolution equation and of the extension to porous medium type equations was physi-
cally justi�ed by Otto in [78, 79] and rigorously analyzed by McCann in [73], which
paved the way for the by now popular and ubiquitous formulation of di�usion equations
in metrics related to Optimal Transport. Lastly, this theory was extended by Carrillo,
McCann, Villani [21], Carrillo, Gualdani, Jüngel [20], Ambrosio, Gigili, Savaré [4], and
Villani [92, 93] to the general non-linear Fokker-Planck equation with con�nement and
aggregation e�ects:

∂tρt = ∆(ρmt ) + div (ρt∇V ) + div (ρt∇(W ∗ ρt)) .
This equation is our main example for this thesis and has a wide variety of applications
in statistical mechanics [40, 83], Markov di�usion processes [42, 53], and semiconductor
theory [56, 67]. In the past decades, the theory of L2-Wasserstein gradient �ows gained a
lot of popularity since it turns out that numerous PDEs posses this di�erential structure
in L2-Wasserstein like spaces. To name here only few examples: non-local Fokker-Planck
equations [19, 31, 91]; Fokker-Planck equations on manifolds [38, 89]; fourth order �uid
and quantum models [45, 47, 68]; chemotaxis systems [9, 10, 96]; Poisson-Nernst-Planck
equations [58, 95]; multi-component �uid systems [60, 61, 63]; Cahn-Hilliard equations
[34, 64]; degenerate cross-di�usion systems [72, 97].

Gradient Flow Theory in Abstract Metric Spaces. In his seminal paper [29], De
Giorgi transferred the Euclidean theory of gradient �ows to the purely metric theory of
curve of steepest descent. The key idea here was to pass from the ordinary gradient �ow
equation (1.0.1) to a scalar equation whilst preserving the information on the direction.
One considers the time derivative of t 7→ E(ut),

d

dt
E(ut) = 〈∇E(ut), u̇t〉 ≥ −‖∇E(ut)‖ ‖u̇t‖ ≥ −

1

2
‖∇E(ut)‖2 −

1

2
‖u̇t‖2 .

The �rst inequality is an equality if and only if ∇E(ut) and u̇t are anti-parallel and the
third inequality is an equality if and only if ‖∇E(ut)‖ and ‖u̇t‖ are equal. Hence, one
can equivalently rewrite the original gradient �ow equation (1.0.1) as

1

2
‖u̇t‖2 +

1

2
‖∇E(ut)‖2 = − d

dt
E(ut). (1.0.2)

For a more robust formulation, one integrates (1.0.2) in time and replaces the scalar
quantities ‖∇E(ut)‖ and ‖u̇t‖ with the metric surrogates |∂E| (ut) and |u′t| which are
de�ned in the chapter below, to end up with

1

2

ˆ t

s

∣∣u′r∣∣2 dr +
1

2

ˆ t

s
|∂E|2(ur) dr = E(us)− E(ut) for a.e. 0 ≤ s ≤ t. (1.0.3)

Then, one says a curve ut is a curve of steepest descent with respect to the free energy
functional E if and only if ut satis�es the Energy Dissipation Equality (EDE) (1.0.3).
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Alternatively, a purely metric concept of gradient �ows is the Evolution Variational In-
equality (EVI). It is only sensible for almost Hilbertian metrics and requires the convexity
of the free energy functional E . It is particularly well adapted to deal with gradient �ows
in the L2-Wasserstein space (P2(Ω),W2). The cornerstone of this ansatz is to consider
the derivative of the squared distance of ut to a �xed reference point v,

d

dt

1

2
‖ut − v‖2 = 〈u̇t, ut − v〉 = −〈∇E(ut), ut − v〉 ≤ E(v)− E(ut).

The second equality holds true due to the fact that ut is a solution to the gradient �ow
equation (1.0.1) and the inequality is due to the convexity of the free energy functional
E . Actually, it is possible to prove under the assumption of smoothness of the free energy
function E , that if the following di�erential comparison principle

d

dt

1

2
‖ut − v‖2 ≤ E(v)− E(ut) (1.0.4)

is satis�ed for each v, then (1.0.4) is actually equivalent to the original formulation of
the gradient �ow equation (1.0.1). As with the EDE, there is an integrated version of
(1.0.4) and that is su�ciently robust to be used for abstract metric gradient �ows. For
a detailed discussion of the role of the EVI in the gradient �ow theory, we refer to [4,
Chapter 4.0].

Analysis of Gradient Flows in Abstract Metric Spaces. The cornerstone of the
theoretical analysis of these gradient �ows in general abstract metric spaces (X,d) is
the variational formulation of the implicit Euler scheme introduced by De Giorgi in his
seminal papers [29, 30] on Minimizing Movements. Later, in [54] Jordan, Kinderlehrer
and Otto used this scheme � which is nowadays called JKO-scheme in this context � to
construct solutions to the heat equation. Schematically, the main idea is to apply the
following implicit induction formula:

uτk ∈ argmin
u∈X

1

2τ
d2(uτk , u) + E(u) (1.0.5)

such that � at least in the Euclidean setting � the minimizer uτk satisfy the usual implicit
Euler method. There are various �soft� conditions that guarantee well-de�nedness of
this scheme, i.e., the inductive solvability of the minimization problems. This technique
was transferred by Ambrosio, Gigli, Savaré in the monograph [4] to mainly investigate
gradient �ows in abstract metric spaces (X,d) with respect to λ-convex free energy
functionals E , see the famous hypothesis [4, Assumption 4.0.4] for more details. Note
that λ-convexity can be understood here as a sort of convexity along geodesics which
takes the curvature of the underlying space into account, see [73] for the proper notion of
convexity in the L2-Wasserstein case. One of the remarkable strengths of this method in
the abstract metric setting is its intrinsic stability properties: the unconditional energy
dissipation of the approximated solution in every time step; and the step size independent
bounds on the integrated kinetic energy. These bounds are usually su�cient to conclude
the convergence of the discrete solution to a continuous curve u∗t in the limit τ → 0.
Some additional work is needed to prove that u∗t is indeed a curve of steepest descent in
the sense of the energy dissipation equation or the evolution variational inequality.
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1 Introduction and Main Results

Numerical Aspects of L2-Wasserstein Gradient Flow Theory. Besides the theo-
retical use of the variational formulation of the implicit Euler scheme (1.0.5) to construct
a solution for the gradient �ow equation, this particular discretization provides also a
structure-preserving numerical scheme. Di�erent approaches to actually compute the
minimizers of the Minimizing Movement Scheme by means of certain spatial-temporal
full-discretization have been investigated: particle schemes [16, 23, 17, 94]; evolving dif-
feomorphisms [23, 22]; Lagrangian schemes [8, 32, 41, 55, 69, 71]; entropic regularization
[80]; primal-dual methods [18].

Aim of the Thesis. In the spirit of De Giorgi's work on Minimizing Movements [29],
we seek to exploit the variational structure of the gradient �ow equation to construct
a sequence of approximate solutions by means of temporal semi-discretizations or ap-
proximations. Following this, the key tool to design novel schemes was to cast existing
numerical schemes for the gradient �ow equation seen as ODE in an equivalent variational
formulation which are robust enough to deal with the possibly rough structure of the un-
derlying metric space and of the free energy functional. We emphasize that throughout
all of our results, a decisive role is played by functional inequalities for the approximated
solutions obtained by exactly this variational formulation. In the end, these functional
inequalities turn into the relevant a priori estimates and into the essential information
about the structural properties of the approximated solution to derive the limit behavior
as the approximation parameter tends to zero.
In the following, we give a brief overview of the di�erent discretization and approxi-

mation schemes and on the related results, we developed and analyzed in this thesis.

A Time-Dependent Minimizing Movement Scheme. Chapter 3 is designated
to study the particular temporal discretization for non-autonomous evolution prob-
lems where the free energy functional Et depends additional on time t by means of
the variational formulation of the time-dependent implicit Euler method. In the
Euclidean setting the main idea to approximate solutions u∗t to gradient �ow prob-
lems is to use the time-dependent implicit Euler scheme, given by the induction
formula

uτk − uτk−1
τk

= −∇Etτk (uτk ),

where tτk =
∑k

l=1 τl for k ≥ 1 for a given partition τ := (τ1, τ2, . . .) of step sizes
τk ∈ (0, τ∗) and for a given an initial condition uτ0 that approximates u0.

In the abstract metric case when (X,d) is just a complete, separable metric space
we propose the time-dependent version of the Minimizing Movement scheme. The
variational formulation of the time-dependent implicit Euler method reads then

uτk ∈ argmin
w∈X

1

2τk
d2(uτk−1, w) + Etτk (w).

In the Euclidean setting the minimizer uτk satis�es the implicit Euler formula. We
derive existence and convergence results for the approximate solutions (uτk )k∈N as
the discretization parameter τ = supk τk tends to zero.

4



B Time-Homogenization. In chapter 4 we investigate the high-frequency limit of
the family (uωt )ω of solutions to the non-autonomous evolution problems

u̇ωt = −∇Eωt(uωt ), uω0 = u0

with respect to the convex free energy functionals Etω = E + Ptω, where E(u) :=ffl
Et(u) dt is the time-average and Ptω = Etω − E is the periodic forcing.

A comparison principle for uωt and u∞t , i.e., the solution of gradient �ow equation
driven by the time-averaged free energy functional E , yields the convergence result.

C Variational Second Order Backward Di�erentiation Formula. Our inten-
tion in chapter 5 is to design a temporal semi-discretization, which converges at
least formally to second order, by means of the second order Backward Di�erentia-
tion Formula (BDF2). In the Euclidean setting, this temporal discretization of the
gradient �ow equation reads then

3uτk − 4uτk−1 + uτk−2
2τ

= −∇E(uτk ),

for a given time step size τ ∈ (0, τ∗) and well-prepared initial data (uτ0 , u
τ
1 ) ≈ u0.

We proposed a variational formulation of the BDF2 method to construct a discrete
approximation (uτk )k∈N for metric gradient �ows, which reads as follows:

uτk+1 ∈ argmin
w∈X

1

τ
d2(uτk , w)− 1

4τ
d2(uτk−1, w) + E(w).

In this case, we also prove the existence and convergence of the approximated solu-
tion (uτk )k∈N. Notably, in the abstract metric space case, an additional assumption
is needed, namely a sort of convexity of the BDF2-penalized free energy functional.

D Weighted Energy-Dissipation Principle. In chapter 6 we follow a di�er-
ent time-continuous approximation approach by means of the Weighted Energy-
Dissipation principle (WED). The main idea here is to perturb the gradient �ow
equation by an elliptic regularization in time

−ε∂2
t u

ε
t + ∂tu

ε
t = −∇E(uεt ).

Even though one loses the gradient �ow structure at �rst glance, the solutions uεt
satisfy another crucial variational principle. In particular, the solutions uεt are the
minimizer of a global-in-time minimization of the WED-functional Φε, given by

uεt ∈ argmin
ut

ˆ ∞
0

e−t/ε

ε

(ε
2

∣∣u′t∣∣2 + E(ut)
)
dt.

Here, the minimization is performed over a suitable class of curves ut emanating
from u0. We are able to adapt this approach to gradient �ows in the L2-Wasserstein
space and to prove the existence and convergence of the approximated solution uεt
as the approximation parameter ε tends to zero.

In advance of the detailed elaboration of our work we begin with a short summary on
notation and motivation of the theory of gradient �ows and related topics.
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2 Notation and Preliminaries

2.1 Function Spaces

In this thesis, we always denote by Ω ⊂ Rd an open, bounded, and connected domain
with Lipschitz-continuous boundary ∂Ω with normal derivative n or Ω is equal to Rd.

Space of Continuous Functions. Let us consider scalar functions ϕ : Ω → R and
vector �elds ξ : Ω → Rd. If these functions depend additionally on time we write
ϕt and ξt. For k ∈ N ∪ {∞} we de�ne by Ck(Ω) the set of all k-times continuous
di�erentiable functions. The set of all functions which have in addition compact support
is denoted by Ckc (Ω). Furthermore, we denote by Cb(Ω) all continuous functions which
are bounded on Ω. Analogously, we de�ne Ck(Ω,Rd), Ckc (Ω,Rd), and Cb(Ω,Rd) for vector
�elds. The spatial derivative of ϕ is denoted by Dϕ and we write D2ϕ for the second
order derivative. Partial derivatives with respect to one component xi or t are denoted
by ∂xi and ∂t, respectively. For higher-order partial derivatives we use a multi-index
α ∈ Nd0 of order |α| = ∑d

i=1 αi = k. Then de�ne ∂αϕ of a k-times di�erentiable function
ϕ by (∂x1)α1 · · · (∂xd)αdϕ. The gradient ∇ϕ of ϕ and the divergence div(ξ) of ξ are given
by ∇ϕ = (Dϕ)> and div(ξ) = tr(Dξ). We write ∆ϕ = div(∇ϕ) for the Laplacian of ϕ.

Lebesgue Integrable Functions. Denote by Ld the d-dimensional Lebesgue measure
on the domain Ω. We write L(Ω) for all Lebesgue-measurable sets of Ω and we call a
function ϕ Lebesgue-measurable if and only if the preimage of every Lebesgue-measurable
set of R under ϕ is a Lebesgue-measurable set of Ω. For p ∈ [1,∞) the Lp-norm of a
Lebesgue-measurable function ϕ is de�ned by

‖ϕ‖
L
p(Ω) :=

(ˆ
Ω
|ϕ(x)|p dLd(x)

)1/p
.

All Lebesgue-measurable functions with �nite Lp-norm form the set of p-integrable func-
tions Lp(Ω). The set Lp

loc
(Ω) of locally p-integrable functions is de�ned as all Lebesgue-

measurable functions ϕ with ‖ϕ‖
L
p(K) <∞ for all compact subsets K b Ω. For p =∞

we introduce the set of essentially bounded functions L∞(Ω) with the norm

‖ϕ‖
L
∞(Ω) := ess sup

x∈Ω
|ϕ(x)| .

For any p ∈ [1,∞) the space Lp(Ω) is a Banach space with dual (Lp(Ω))∗ ∼= Lq(Ω)
for the Hölder-conjugated exponent q which is given through the formula 1

p + 1
q = 1.

Analogously, de�ne the corresponding spaces of p-integrable vector �elds Lp(Ω,Rd).
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2 Notation and Preliminaries

Functions of Bounded Variation. We recall the basic de�nitions and properties of
functions of bounded variation, following [48]. For a given open domain Ω a function
ϕ ∈ L1(Ω) is called a function of bounded variation if and only if

V (ϕ,Ω) := sup
{ˆ

Ω
ϕ(x) div ξ(x) dLd(x) | ξ ∈ C∞c (Ω,Rd), ‖ξ‖∞ ≤ 1

}
<∞.

The set of all functions of bounded variation is denoted by BV(Ω) with the norm:

‖ϕ‖
BV(Ω) = ‖ϕ‖

L
1(Ω) + V (ϕ,Ω).

For open sets Ω ⊂ Rd the set BV(Ω) is a Banach space and the norm is lower semi-
continuous with respect to the weak convergence in L1(Ω).

Sobolev Spaces. We say a Lebesgue-measurable scalar function ϕ is k-times weakly
di�erentiable if for each multi-index α of order k there exists a function v ∈ L1

loc(Ω) withˆ
Ω
ϕ∂αψ(x) dLd(x) = (−1)|α|

ˆ
Ω
vψ(x) dLd(x) ∀ψ ∈ C∞c (Ω).

In this case v is denoted by ∂αϕ. Then for k ∈ N and p ∈ [1,∞) the Sobolev space
Wk,p(Ω) is de�ned as the set of all Lebesgue-measurable functions ϕ such that the
Wk,p(Ω)-norm is �nite, i.e.,

‖ϕ‖
W
k,p(Ω) :=

(
‖ϕ‖p

L
p(Ω) +

∑
|α|≤k

‖∂αϕ‖p
L
p(Ω)

)1/p
<∞.

For any k ∈ N and any p ∈ [1, p) the Sobolev space Wk,p(Ω) is a Banach space. Further-
more, for p = 2 the spaces Wk,2(Ω) are Hilbert spaces and are denoted by Hk(Ω).

Bochner Spaces. Let us consider time-dependent functions ut : [0,∞) → X with
values in a complete, separable metric space (X,d). We de�ne the setM(0, T ; (X,d)) as
all X-valued functions ϕt which are measurable with respect to B(X), the Borel-sigma
algebra on X generated by topology with respect to d. We say a sequence (unt )n∈N of
measurable X-valued functions converges in M(0, T ; (X,d)) � in words, converges in
measure � to a limit function u∗t if and only if

lim
n→∞

L1({t ∈ (0, T ) | d(unt , u
∗
t ) ≥ ε}) = 0 for all ε > 0.

If (X,d) is a vector space V, we de�ne the Bochner spaces Lp(0, T ;V) as the set of all
B(V)-measurable functions ut such that the Lp(0, T ;V)-norm is �nite, i.e,

‖ut‖Lp(0,T ;V) :=
( ˆ T

0
‖ut‖pV dt

)1/p
<∞

Remark 2.1.1. If (X,d) is a Banach space V with d induced by the intrinsic norm, we
write onlyM(0, T ;V) instead ofM(0, T ; (X,d)). In this case the topology of Lp(0, T ;V)
and ofM(0, T ;V) coincide on p-uniformly integrable sets, see [85, Proposition 1.10].
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2.2 L2-Wasserstein Spaces (P2(Ω),W2)

2.2 L
2-Wasserstein Spaces (P2(Ω),W2)

In this section, we brie�y review the basic de�nitions and facts concerning the analysis
in the metric space of probability measures. For more details on optimal transport and
the connection to the gradient �ow theory, we refer to the monographs by Ambrosio et
al. [4], Santambrogio [87], and Villani [92, 93].

Space of Probability Measures P2(Ω). Given a domain Ω ⊆ Rd as before. By
P2(Ω) we denote the set of probability measures on Ω with �nite second moment M2,
i.e. M2(µ) :=

´
Ω ‖x‖

2 dµ(x) < ∞. The subset of probability measures µ which are
absolutely continuous with respect to the Lebesgue measure Ld, i.e., µ = ρ dLd, is
denoted by Pac2 (Ω). By abuse of notation, we identify an absolutely continuous measure
µ with its Lebesgue density ρ and visa versa. De�ne ϕ#µ by the pushforward of the
measure µ with respect to the measurable function ϕ, i.e., ϕ#µ(B) := µ(ϕ−1(B)) for all
measurable sets B. Given the product space Ω1 × Ω2, we de�ne the projections π1 and
π2 by πi(x1, x2) = xi for all (x1, x2) ∈ Ω1×Ω2. Hence, given a measure p ∈ P2(Ω1×Ω2)
the marginal distributions are given by (π1)#p ∈ P2(Ω1) and (π2)#p ∈ P2(Ω2).

We equip P2(Ω) with the topology induced by the narrow-convergence of measures,
denoted by µn ⇀

∗ µ, if and only if

lim
n→∞

ˆ
Ω
ψ dµn(x) =

ˆ
Ω
ψ dµ(x) ψ ∈ Cb(Ω).

I.e., narrow convergence is equal to the weak*-convergence of measures, which is induced
by the pairing of the continuous and bounded functions Cb(Ω) with the corresponding
dual space of �nitely additive signed Borel measuresMf (Ω).

L2-Wasserstein Space (P2(Ω),W2). The main object in the theory of Optimal Trans-
port is the space of probability measures P2(Ω) equipped with the L2-Wasserstein dis-
tance W2, de�ned by the Kantorovich problem:

W2
2(µ, ν) := inf

p∈Γ(µ,ν)

ˆ
Ω2

‖x− y‖2 dp(x, y) (2.2.1)

where Γ(µ, ν) := {p ∈P(Ω×Ω) : (π1)#p = µ, (π2)#p = ν} is the set of all probability
measures p whose marginals are µ and ν. If either µ ∈ Pac2 (Ω) or ν ∈ Pac2 (Ω), then
by [92, Theorem 2.12] the minimizer popt ∈ Γ(µ, ν) of the Kantorovich problem (2.2.1)
exists and is called the optimal transport plan. Furthermore, if µ ∈ Pac2 (Ω) the optimal
transport plan popt is uniquely determined by popt = (1Ω × Topt)#µ, where the optimal
transport map Topt is the unique solution of the Monge Problem, i.e.,

W2
2(µ, ν) =

ˆ
Ω
‖x− Topt(x)‖2 dµ(x) = inf

T#µ=ν

ˆ
Ω
‖x− T(x)‖2 dµ(x). (2.2.2)

9



2 Notation and Preliminaries

Figure 2.1: Two one-dimensional measures µ and ν plotted on the x and y axes, and one
possible joint distribution that de�nes a transport plan between them [24].

µ
ρt ν

vt

Figure 2.2: Two two-dimensional measures µ and ν are connected by a density-velocity
pair (ρt,vt) which solves the continuity equation in the sense of distributions.

Dynamic Properties of (P2(Ω),W2). Another equivalent characterization of the L2-
Wasserstein distance W2 is given by Benamou and Brenier in [7]: De�ne the set C(µ, ν)
of density-velocity pairs connecting two measures µ and ν via the continuity equation by

C(µ, ν) := {(ρt,vt) ∈ P2(Ω)× V(Ω) | ∂tρt + div(ρtvt) = 0, ρ0 = µ, ρ1 = ν},
where V(Ω) is the set of all measurable vector �elds on Ω. Note, the continuity equation
is meant to be satis�ed in the weak sense with no-�ux boundary condition, i.e., the
density-velocity pair (ρt,vt) with vt ∈ L1(0, 1;L1(Ω, dρt)) satis�es for each test function
ϕt ∈ C∞c ((0, 1)× Ω): ˆ 1

0

ˆ
Ω
∂tϕt(x) + 〈∇ϕt(x),vt(x)〉 dρt(x) dt = 0.

Then, the dynamic formulation of the L2-Wasserstein distance is given by

W2
2(µ, ν) := inf

(ρt,vt)∈C(µ,ν)

ˆ 1

0

ˆ
Ω
|vt(x)|2 dρt(x) dt. (2.2.3)

Note, if µ, ν ∈ Pac2 (Ω) then also the connecting measure ρt is absolutely continuous with
respect to the Lebesgue measure for each t ∈ [0, 1], see [92, Theorem 8.1].
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2.2 L2-Wasserstein Spaces (P2(Ω),W2)

Equivalent Reformulation of the Dynamic Properties. The for this thesis more
convenient version of the Benamou-Brenier Formula (2.2.3) is written in terms of density-
�ux pairs (ρt,wt) instead of density-velocity pairs (ρt,vt). Similarly, de�ne the set

C(µ, ν) := {(ρt,wt) ∈ P2(Ω)×W(Ω) | ∂tρt + div(wt) = 0, ρ0 = µ, ρ1 = ν},
where W(Ω) is the set of Rd-valued signed Borel measures. Here, the continuity equation
with no-�ux boundary condition is understand to hold as follows: the density-�ux pair
(ρt,wt) with t 7→ |wt|(Ω) ∈ L1(0, 1) satis�es for each test function ϕt ∈ C∞c ((0, 1)× Ω):ˆ 1

0

ˆ
Ω
∂tϕt(x) dρt(x) dt+

ˆ 1

0

ˆ
Ω
∇ϕt(x) dwt(x) dt = 0.

Using the representation vt dρt = dwt, the Benamou-Brenier formula (2.2.3) rewrites to

W2
2(µ, ν) := inf

(ρt,wt)∈C(µ,ν)

ˆ 1

0
K(ρt,wt) dt (2.2.4)

where the kinetic energy K of a density-�ux pair (ρt,wt) is de�ned by

K(ρ,w) :=

ˆ
Ω
K(1,v) dρ(x) where K(t, z)


‖z‖2 t−1 if t > 0,

0 if (t, z) = (0, 0),

+∞ if either t < 0 or t = 0 ∧ z 6= 0,

if the vectorial measure w is absolutely continuous with respect to ρ with density v,
i.e., v dρ = dw otherwise we set K(ρ,w) =∞. Note, with this convention the integral-
functional K is lower semi-continuous with respect to narrow convergence, jointly convex
and 1-homogenous. Also, if ρ ∈ Pac2 (Ω), then the feasible class of �uxes w is given
by the absolutely continuous Rd-valued signed Borel measures. In this case, one has
K(ρ,w) =

´
ΩK(ρ,w) dx. As before, if µ, ν ∈ Pac2 (Ω) then also ρt ∈ Pac2 (Ω) for each t.

L2-Absolutely Continuous Curves and the Continuity Equation. Lastly, we
de�ne the set C(µ) as all density-�ux pairs (ρt,wt) which solve the free end problem

∂tρt + div(wt) = 0, ρ0 = µ (2.2.5)

in a weak sense with no-�ux boundary condition, as before. Then, the link between
L2-absolutely continuous curves ρt ∈ AC2(0,∞; (P2(Ω),W2)) and the density-�ux pairs
(ρ̂t, ŵt) ∈ C(ρ0) is given by the following characterization, cf. [4, Thm. 8.3.1]:

Theorem 2.2.1 (Absolutely Continuous Curves and the Continuity Equation). If ρt is
a L2-absolutely continuous curve with a locally integrable metric slope |ρ′t| ∈ L1

loc
(0,∞),

then there exits a �ux wt such that (ρt,wt) ∈ C(ρ0) and

K(ρt,wt) ≤
∣∣ρ′t∣∣2 for a.e. t. (2.2.6)

Conversely, if a narrowly-continuous curve ρt satis�es the continuity equation (2.2.5)
for some �ux function wt with t 7→

√
K(ρt,wt) ∈ L1

loc
(0,∞), then ρt is L2-absolutely

continuous and ∣∣ρ′t∣∣2 ≤ K(ρt,wt) for a.e. t. (2.2.7)
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2 Notation and Preliminaries

2.3 Gradient Flow Theory in Abstract Metric Spaces

In this section, we give a brief overview on the theory of gradient �ows in abstract metric
spaces (X,d), which is the foundation of the novel discretization and approximation
techniques developed in this thesis. For a comprehensive introduction to the theory of
gradient �ows in metric spaces we refer to the monograph of Ambrosio et al. [4].

Topology. Here and below, (X,d) is separable, complete metric space with a weaker
Hausdor� topology σ on X, that is compatible with d, i.e.,

un
d→ u =⇒ un

σ
⇀ u, (un, vn)

σ
⇀ (u, v) =⇒ d(u, v) ≤ lim inf

n→∞
d(un, vn).

From now on we use the convention to write

un
d→ u for the convergence w.r.t. d, un

σ
⇀ u for the convergence w.r.t. σ.

Note, this additional weaker topology on X allows us more �exibility to derive compact-
ness results.

Analysis in Metric Spaces. Given the free energy functional E : X→ R ∪ {∞}, we
say E is proper if the domain D(E) := {u | E(u) <∞} where the free energy functional is
�nite is not empty. The metric surrogates for the norm of the gradient of the free energy
functional ‖∇E‖ and of the time derivative ‖u̇t‖ in (1.0.3) are de�ned as follows, see [4,
De�nition 1.1.1&1.2.4] for further details.

De�nition 2.3.1 (Local Slope). Given a functional E : X → R ∪ {∞} de�ned on a
metric space (X,d). Then the local slope |∂E| : X→ R ∪ {∞} of E at u ∈ X is de�ned
via

|∂E|(u) := lim sup
v→u

(E(u)− E(v)

d(u, v)

)+
.

De�nition 2.3.2 (AC Curves). A curve ut : [0,∞) → X is said to be L2-absolutely
continuous, written as ut ∈ AC2 (0,∞; (X,d)), if there exists a function m ∈ L2

loc(0,∞)
such that

d(ut, us) ≤
ˆ t

s
m(r) dr for all 0 ≤ s ≤ t.

It can be shown [4, Theorem 1.1.2] that among all possible choices for m, there is a
minimal one, called the metric derivative |u′t| ∈ L2

loc(0,∞), given by

|u′t| := lim
s→t

d(us, ut)

|s− t| for a.e. t.
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2.3 Gradient Flow Theory in Abstract Metric Spaces

Metric Formulation of the EDE and the EVI. The main de�nition is that of a
gradient �ow in the energy landscape of a functional Et : [0,∞) ×X → R ∪ {∞} with
respect to the metric d. Here we adopt the notions of the energy dissipation equality
(EDE) from (1.0.3) and of the evolution variational inequality (EVI) from (1.0.4) to
non-autonomous versions.

De�nition 2.3.3. Given a proper free energy functional Et : [0,∞) × X → R ∪ {∞}
and some initial datum u0 ∈ D(E0).
We say that ut ∈ AC2 (0,∞; (X,d)) is a curve of steepest descent with respect to Et

emanating from u0 ∈ D(E0) if and only if one of the following holds.

a) Energy Dissipation Equality. The following energy balance holds for all T > 0:

ET (uT ) +
1

2

ˆ T

0

∣∣u′t∣∣2 dt+
1

2

ˆ T

0
|∂Et|2(ut) dt = E0(u0) +

ˆ T

0
∂tEt(ut) dt. (2.3.1)

b) Evolution Variational Inequality. For arbitrary 0 ≤ s ≤ t and for every
reference point w ∈ D(Er) at each r ∈ [0,∞) the following holds:

1

2
d2(w, ut)−

1

2
d2(w, us) ≤

ˆ t

s

[
Er(w)− Er(ur)−

λ

2
d2(ur, w)

]
dr. (2.3.2)

In this case we say that the free energy functional Et generates a time-dependent
λ-contractive gradient �ow on (X,d).

Remark 2.3.4. The EVI is a more restrictive characterization of gradient �ows than
the EDE. Most notably, the validity of the EVI implies that the gradient �ow is λ-
contractive on (X,d), so in particular, solutions are uniquely determined by their initial
datum. Moreover, if the metric space (X,d) is �almost Euclidean� � for instance, X
is a Hilbert space, or X is the space P2(Ω) of probability measures endowed with the
Wasserstein metric W2 � then if E generates a λ-contractive gradient �ow then E is
uniformly semi-convex see [28]. Thus, (2.3.2) is not available for gradient �ows of non-
semi-convex functionals Et.
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2 Notation and Preliminaries

2.4 Gradient Flow Theory in the L2-Wasserstein Space

As our main application of the temporal discretization and approximations in the general
framework of abstract metric spaces, we consider two particular classes of L2-Wasserstein
gradient �ows, namely: the non-autonomous and non-linear drift-di�usion equation, also
called Fokker-Planck (FP) equation,

∂tρt = ∆ρmt + div(ρt∇Vt) + div(ρt(∇Wt ∗ ρt)), (2.4.1)

with no-�ux boundary condition in a domain Ω, as before; and the Derrida-Lebowitz-
Speer-Spohn (DLSS) equation

∂tρt = −div
(
ρt∇

(
2

∆
√
ρt√
ρt

))
, (2.4.2)

with no-�ux boundary condition in a domain Ω, which is additionally convex. In both
cases, the sought-for solution ρt : [0,∞)×Ω→ [0,∞] should be non-negative and preserve
mass.

Gradient Flow Structure. In the seminal work of Jordan et al. [54], it has been
used that (2.4.1) possesses a gradient �ow structure in the L2-Wasserstein space, see
the monographs [4, 87, 92] for a comprehensive introduction to this theory. To be more
precise, de�ne the free energy functional Et : [0,∞)× P2(Ω)→ R ∪ {∞} via

Et(µ) :=

{´
Ω ρ log(ρ) + Vtρ+ 1

2(Wt ∗ ρ)ρ dx if m = 1,´
Ω

1
m−1ρ

m + Vtρ+ 1
2(Wt ∗ ρ)ρ dx if m > 1,

(2.4.3)

if the measure µ = ρ dLd ∈ Pac2 (Ω) and otherwise we set Et(µ) := ∞. Then, (2.4.1) is
equivalent to the coupling of the continuity equation with Darcy's law where the pressure
is given by the variational derivative of free energy functional E :

∂tρt + div(ρtvt) = 0, vt = −DδE(ρt)

δρ
. (2.4.4)

To shorten notion, we introduce the following abbreviation for the di�erent parts of the
free energy functional Et from (2.4.3), namely: the Boltzman entropy H, the internal
energy Um, the con�nement energy Vt, and the interaction energy Wt, all de�ned by:

H(µ) := U1(µ) :=

ˆ
Ω
ρ(x) log(ρ(x)) dx, Um(ρ) :=

1

m− 1

ˆ
Ω

(ρ(x))m dx,

Vt(ρ) :=

ˆ
Ω
Vt(x) dρ(x), Wt(ρ) :=

1

2

ˆ
Ω

ˆ
Ω
Wt(x− y) dρ(y) dρ(x),

given a con�nement potential Vt : [0,∞)×Ω→ R and a symmetric interaction potential
Wt : [0,∞)× Rd → R and if everything is well-de�ned, otherwise set the value to +∞.
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2.4 Gradient Flow Theory in the L2-Wasserstein Space

Similarly, fourth order equations like the Derrida-Lebowitz-Speer-Spohn equation (2.4.2)
or the Hele-Shaw �ow (or general interpolations of these two equations) possess this
variational structure, see [46, 47, 68, 78]. The corresponding free energy functional E for
the DLSS equation (2.4.2) is given by the Fisher information:

E(µ) := I(µ) =

ˆ
Ω
‖∇√ρ‖2 dx (2.4.5)

provided that µ = ρ dLd ∈ Pac2 (Ω) and
√
ρ ∈ H1(Ω), otherwise we set E(ρ) =∞.

Variations in the L2-Wasserstein Space. A key tool introduced by Jordan et al.
[54] and Otto [78] was that the natural notion of variation in the L2-Wasserstein space
is to perturb measures ρ∗ ∈ P2(Ω) along solutions of the transport equation (2.4.6).
Especially having the dynamic formulation (2.2.3) of the L2-Wasserstein distance in mind,
this perturbation is clearly evident.

De�nition 2.4.1 (Variation Along the Transport Equation). Given an initial datum
ρ∗ ∈ Pac2 (Ω) and a vector �eld ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on ∂Ω. We de�ne the
perturbation ρs along the vector �eld ξ in the auxiliary time s as the solution to the
transport equation

∂sρ
s + div(ρs ξ) = 0, ρ0 = ρ∗. (2.4.6)

The solution ρs is explicitly given by the push-forward of ρ∗ under the �ow map Xs, i.e.,
ρs = (Xs)#ρ∗, such that the �ow map Xs satis�es the initial value problem:

d

ds
Xs(x) = ξ (Xs(x)) , X0(x) = x.

Note that the �ow map Xs exists and for each s the �ow map Xs is a di�eomorphism
on Ω, cf. [14, 47, 77] . Additionally, we have an explicit representation of the perturbed
density ρs and we can calculate the derivative of det(DXs), i.e.,

det(DXs)ρs ◦Xs = ρ∗, and
d

ds
[det(DXs(x))]s=0 = tr(Dξ ◦X0) = div(ξ). (2.4.7)

To calculate the �rst variation of the di�erent energies is a by now standard calculation,
see [4, 92, 93] for more details. The �rst result concerns the di�erentiability of the
L2-Wasserstein distance if all measures are absolutely continuous.

Lemma 2.4.2. Let η, ρ∗ ∈ Pac
2 (Ω) and consider the perturbation ρs with respect to the

transport equation (2.4.6) for some given vector �eld ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on
∂Ω. Then, the map s 7→W2

2(η, ρs) is di�erentiable at s = 0 with derivative

d

ds

[
W2

2(η, ρs)
]
s=0

= 2

ˆ
Ω2

〈ξ(x), x− y〉 dp(x, y),

where p ∈ Γ(ρ∗, η) is an optimal transport plan from ρ∗ to η.
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The �rst variation of the functionals in the de�nition of the free energy functional Et
corresponding to the Fokker-Planck equation (2.4.1) is given as follows.

Lemma 2.4.3. Let ρ∗ ∈ P2(Ω) and consider the perturbation ρs with respect to the
transport equation (2.4.6) for some given vector �eld ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on
∂Ω. Then, the �rst variations of the con�nement energy Vt and the interaction energy
Wt are given by:

d

ds
[Vt(ρs)]s=0 =

ˆ
Ω
〈ξ,∇V 〉 dρ∗(x),

d

ds
[Wt(ρs)]s=0 =

ˆ
Ω

ˆ
Ω
〈ξ(x),∇Wt(x− y)〉 dρ∗(x) dρ∗(y).

If additionally ρ ∈ Pac
2 (Ω) ∩ Lm(Ω), then the �rst derivatives at s = 0 of the Boltzman

entropy H and the internal energy Um energy are given by:

d

ds
[H(ρs)]s=0 = −

ˆ
Ω

div(ξ) ρ∗ dx,

d

ds
[Um(ρs)]s=0 = −

ˆ
Ω

div(ξ) ρm∗ dx,

For example, to actually compute the �rst variation of the heat energy H we can simplify
the di�erence quotient with the explicit representation of the perturbed density ρs and
the change of variables x = Xs(y) as follows

1

s
(H(ρs)−H(ρ∗)) =

1

s

(ˆ
Ω
ρs ◦Xs log(ρs ◦Xs) det(DXs) dy −

ˆ
Ω
ρ∗ log(ρ∗) dx

)
= −1

s

ˆ
Ω

log(det(DXs)) ρ∗ dx.

The pointwise limit of the integrand is given by (2.4.7) and we can conclude by a domi-
nated convergence argument

d

ds
[H(ρs)]s=0 = −

ˆ
Ω

div(ξ) ρ∗ dx.

The di�erentiability of the Fisher information along solutions to the transport equation
has been proven by Gianazza et al. [47, Theorem 4.2] for Ω open, bounded, and convex
and by Matthes et al. [68, Lemma 2.5] for Ω = Rd.

Lemma 2.4.4. Let ρ∗ ∈ D(I) and consider the perturbation ρs with respect to the
transport equation (2.4.6) for some given vector �eld ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on
∂Ω. Then, the �rst derivative at s = 0 of the Fisher information is given by

d

ds
[I(ρs)]s=0 = −

ˆ
Ω

1

2
〈∇(div ξ),∇ρ∗〉+ 2〈Dξ∇√ρ∗,∇

√
ρ∗〉 dx.
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Variations Along the Heat Flow. To derive more information on the L2-Wasserstein
subdi�erential of the free energy functionals E corresponding to the FP equation (2.4.1) or
the DLSS equation (2.4.2) we evaluate its derivative along the �ow generated by the heat
equation starting from a given initial con�guration ρ∗ with E(ρ∗) < +∞, see Gianazza et
al. [47]. These results have inspired Matthes et al. in [68] to develop the �ow interchange
technique which allows deducing better a priori bounds for the JKO minimizers. This
variation plays a major role in the Weighted Energy-Dissipation principle chapter 6 of
this thesis.

De�nition 2.4.5 (Variations Along the Heat Flow). Given an open, bounded, and
convex domain Ω with Lipschitz-continuous boundary ∂Ω or let Ω = Rd. De�ne ρs as
perturbation of ρ∗ ∈ Pac2 (Ω) as the solution to the heat equation

∂sρ
s = η∆(ρs), ρ0 = ρ∗ (2.4.8)

with no-�ux boundary condition and for some given di�usivity parameter η ≥ 0.

By the parabolic regularity theory, it is clear, that there exists a smooth and non-negative
solution ρs. Further, one has an explicit representation of the solutions ρs with respect
to some Greens function Gs

η : [0,∞)×Ω×Ω→ [0,∞], i.e., ρs(x) =
´

Ω Gs
η(x, y)ρ∗(y) dy.

Remark 2.4.6. It is also well known, that the heat equation is a 0-contractive gradient
�ow with respect to the Boltzmann entropy H in the L2-Wasserstein space, since by a
formal calculation ρs solves the continuity equation with velocity �eld vs = η∇ log(ρs).
Hence, the map s 7→ W2

2(ν, ρs) is absolutely continuous and ρs solves the evolution
variational inequality

1

2
W2

2(ν, ρt)− 1

2
W2

2(ν, ρs) ≤ η
ˆ t

s
H(ν)−H(ρr) dr.

One can even quantify the derivative of s 7→W2
2(η, ρs) since by the regularizing e�ects

of the heat equation the velocity η∇ log(ρs) is su�ciently regular to apply the formulas
given in [87, Corollary5.25], [4, Corollary 10.2.7], or [92, Theorem 8.13]. Then, one has
for all almost every s > 0

d

ds
W2

2(ν, ρs) = η

ˆ
Ω
〈x− Tsopt(x),∇ log(ρs)〉 dρs(x) (2.4.9)

where Tsopt is the optimal transport map from ρs to ν.

The di�erentiability of the L2-Wasserstein distance at regular measures ρ∗, ν ∈ Pac2 (Ω)
with �nite Fisher information along the heat �ow is a consequence of (2.4.9).

Lemma 2.4.7. Let ρ∗, ν ∈ Pac
2 (Ω) with ρ∗ ∈ D(I) and let ρs be the associated solution

to the heat �ow (2.4.8). Then

lim sup
s→0

1

s

∣∣W2
2(ν, ρs)−W2

2(ν, ρ∗)
∣∣ ≤ η

2
W2(η, ρ∗)

√
I(ρ∗).
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2 Notation and Preliminaries

Proof. By the previous remark 2.4.6 the map s 7→ W2
2(η, ρs) is absolutely continuous

and the derivative of this map at s > 0 is given by (2.4.9). Therefore, we obtain for the
di�erence quotient

1

s

[
W2

2(ν, ρs)−W2
2(ν, ρ∗)

]
= η

1

s

ˆ s

0

ˆ
Ω
〈x− Tsopt(x),∇ log(ρs)〉 dρs(x) ds

where Tsopt is the optimal transport map from ρs to ν. Applying the Cauchy-Schwarz
inequality to the weighted integral over Ω with weight ρs yields

1

s

∣∣W2
2(ν, ρs)−W2

2(ν, ρ∗)
∣∣

≤η1

s

ˆ s

0

(ˆ
Ω

∥∥x− Tsopt(x)
∥∥2

dρs(x)
)1/2(ˆ

Ω
‖∇ log(ρs)‖2 dρs(x)

)1/2
ds.

By the de�nition of Tsopt, the �rst inner integral is equals to W2(ν, ρs) whereas the second

inner integral is equals to 1
2

√
I(ρs). Note, the Fisher information is decreasing along the

heat �ow ρs, i.e., I(ρs) ≤ I(ρ∗) <∞. In conclusion, we obtain

lim sup
s→0

1

s

∣∣W2
2(ν, ρs)−W2

2(ν, ρ∗)
∣∣ ≤ lim sup

s→0

η

2

1

s

ˆ s

0
W2(ν, ρs)

√
I(ρ∗) ds

=
η

2
W2(ν, ρ∗)

√
I(ρ∗)

where we used in the last equality the continuity of s 7→W2
2(ν, ρs).

The derivative of the free energy functional E with respect to the Fokker-Planck equation
is given as follows.

Lemma 2.4.8. Let ρ∗ ∈ Pac
2 (Ω) and let ρs be the perturbation of ρ∗ according to the

heat �ow (2.4.8). If the right derivative lim sups→0
1
s [Um(ρs)− Um(ρ∗)] is �nite, then

ρ
m/2
∗ ∈ H1(Ω) and

lim sup
s→0

1

s
[Um(ρs)− Um(ρ∗)] = −4η

m

ˆ
Ω

∥∥∇(ρ
m/2
∗ )

∥∥2
dx.

The derivatives at s = 0 of the V and the interaction energy W are given by

d

ds
[V(ρs)]s=0 = η

ˆ
Ω
∆V (x) dρ∗(x),

d

ds
[W(ρs)]s=0 = η

ˆ
Ω

ˆ
Ω
∆W (x− y) dρ∗(y) dρ∗(x).

Likewise, one can compute the �rst variation of the Fisher information along the heat
�ow, see Theorem 5.1 [47] for Ω open, bounded, and convex and Lemma 4.4 [68] for
Ω = Rd.

Lemma 2.4.9. Let ρ∗ ∈ D(I) and let ρs be the associated solution to the heat �ow
(2.4.8). If the right derivative lim sups→0

1
s [I(ρs)− I(ρ∗)] is �nite, then

√
ρ∗ ∈ H2(Ω)

and

lim sup
s→0

1

s
[I(ρs)− I(ρ∗)] ≤ −Cη

ˆ
Ω

∥∥D2√ρ∗
∥∥2

dx

where C > 0 is some universal constant depending only on d and Ω.
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2.5 Auxiliary Theorems

2.5 Auxiliary Theorems

Extension of the Aubin-Lions Theorem. We state the main tool to derive conver-
gence of discretizations or approximations of gradient �ows. This auxiliary theorem is an
extension of the Aubin-Lions compactness Theorem to metric spaces, cf. [85, Theorem 2].
So given a complete, separable metric space (X,d) we de�ne suitable surrogates for tigh-
ness and integral equi-continuity which ensures that a sequence (unt )n∈N of measurable
X-valued functions converges inM(0, T ; (X,d)).

De�nition 2.5.1 (Normal Coercive Integrand&Pseudo-distance). Given an auxiliary
functional At : (0, T ) ×X → R ∪ {∞} and a positive function g : X ×X → R ∪ {∞}.
Then, At is called normal coercive integrand if:

a) At is L(0, T )⊗ B(X)-measurable;

b) the map u 7→ At(u) is lower semi-d-continuous with for each t ∈ [0, T ];

c) the map u 7→ At(u) has compact sublevels in X with respect to the topology
induced by the distance d for each t ∈ [0, T ].

We call g a pseudo-distance on X with respect to the auxiliary functional At if:

a) g(u, v) = 0 for u, v ∈ D(At) implies u = v;

b) the map (u, v) 7→ g(u, v) is lower semi-d-continuous.

The two main examples of normal coercive integrands and pseudo-distances which will
be used in this thesis are as follows:

Lemma 2.5.2. Let Ω ⊂ Rd be an open, bounded and connected domain with Lipschitz-
continuous boundary ∂Ω and consider X = Lm(Ω) with the strong topology. Then, the
following auxiliary functional A : Lm(Ω) → [0,∞] and positive function g : Lm(Ω) ×
Lm(Ω)→ [0,∞] de�ned via

A(ϕ) :=

{
‖ϕm‖

BV(Ω) if ϕm ∈ BV(Ω) and ϕ ∈ Pac
2 (Ω),

+∞ else,

g(ϕ,ψ) :=

{
W2(ϕ,ψ) if ϕ,ψ ∈ Pac

2 (Ω),

+∞ else,

are a normal coercive integrand and a pseudo-distance in the sense of de�nition 2.5.1.

Proof. The auxiliary functional A is clearly B(Lm(Ω))-measurable. The lower semi-
continuity can be derived as follows. Given a sequence (ϕn)n∈N ⊂ Lm(Ω) converging in
the strong Lm(Ω)-topology to a limit function ϕ∗ ∈ Lm(Ω). Since the BV(Ω)-norm is
lower semi-continuous with respect to strong L1(Ω)-convergence the map ϕ 7→ ‖ϕm‖

BV(Ω)

is lower semi-continuous in the strong Lm(Ω)-topology. Next, we derive the compactness
of the sublevels of A by Rellich's compactness theorem. I.e., for any sequence (ϕn)n∈N ⊂
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2 Notation and Preliminaries

Lm(Ω) with supn ‖ϕmn ‖BV(Ω) < ∞ we can extract a (non-relabeled) subsequence such
that (ϕn)n∈N converges in the strong Lm(Ω)-topology to a limit function ϕ∗ ∈ Lm(Ω).

Lastly, we prove that g is indeed a pseudo-distance on Lm(Ω). Given two functions
ϕ,ψ ∈ Lm(Ω) ∩ Pac2 (Ω), then it follows from 0 = g(ϕ,ψ) = W2(ϕ,ψ) that ϕ = ψ in
the sense of measures and clearly also ϕ = ψ almost every where since ϕ,ψ ∈ Pac2 (Ω).
Hence ϕ = ψ in Lm(Ω). The joint lower semi-continuity of g follows also from the fact,
that the Lm(Ω)-topology is �ner than the topology induced by the weak*-convergence
of measures if Ω is bounded, i.e., if ϕn → ϕ∗ in Lm(Ω) then also ϕn ⇀

∗ ϕ∗. Since the
L2-Wasserstein distance is lower semi-continuous with respect to the weak*-convergence
of measures, we obtain the desired result.

Lemma 2.5.3. Let Ω ⊂ Rd be an open, bounded and connected domain with Lipschitz-
continuous boundary ∂Ω or let Ω = Rd and consider X = L1(Ω). Then, the following
auxiliary functional A : L1(Ω) → [0,∞] and a positive function g : L1(Ω) × L1(Ω) →
[0,∞] de�ned via

A(ϕ) :=

{∥∥√ϕ∥∥
H

1(Ω)
+M2(ϕ) if

√
ϕ ∈ H1(Ω) and ϕ ∈ Pac

2 (Ω),

+∞ else,

g(ϕ,ψ) :=

{
W2(ϕ,ψ) if ϕ,ψ ∈ Pac

2 (Ω),

+∞ else,

are a normal coercive integrand and a pseudo-distance in the sense of de�nition 2.5.1.

Proof. Also in this case, A is B(L1(Ω))-measurable. To prove the lower semi-continuity
of A consider a sequence (ϕn)n∈N ⊂ L1(Ω) converging in the strong L1(Ω)-topology to
a limit function ϕ∗ ∈ L1(Ω). Since the map ϕ 7→ ‖ϕ‖

H
1(Ω) is lower semi-continuous

with respect to the strong L2(Ω)-convergence and since the mapping ϕ 7→ √ϕ is L1(Ω)-
L2(Ω)-continuous, we obtain the lower semi-continuity with respect to the strong L1(Ω)-
topology of the map ϕ 7→ ‖√ϕ‖

H
1(Ω). The lower semi-continuity of the map ϕ 7→M2(ϕ)

with respect to the strong L1(Ω)-topology follows by the fact that convergence in the
strong L1(Ω) convergence implies weak*-convergence in the sense of measures. Since
M2 is lower semi-continuous with respect to the weak*-convergence, M2 is also lower
semi-continuous with respect to the L1(Ω)-topology. Hence, the auxiliary functional A
is lower semi-continuous with respect to the strong L1(Ω)-topology. The compactness
of the sublevels of A is split into two parts. Firstly, consider an open, bounded and
connected subset Ω ⊂ Rd. Fix some C and consider a sequence (ϕn)n∈N ⊂ L1(Ω) with
supnA(ϕn) < ∞. De�ne the auxiliary sequence (un)n∈N ⊂ L2(Ω) by un :=

√
ϕn. With

this de�nition we clearly have supn ‖un‖H1(Ω) < ∞ and hence we can conclude with

Rellich's compactness theorem that (un)n∈N converges strongly in the L2(Ω)-topology
to a limit u∗ ∈ L2(Ω). Clearly, we also have ϕn → (u∗)

2 strongly in L1(Ω). The case
Ω = Rd is already considered in [68, Lemma 2.2]. By the same arguments as before, we
can extract for every sequence (ϕn)n∈N ⊂ L1(Ω) a (non-relabeled) subsequence such that
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2.5 Auxiliary Theorems

there is a limit function ϕ∗ ∈ L1(Rd) with

ϕn ⇀
∗ ϕ∗ and ϕn → ϕ∗ strongly in L1(K) for each compact subset K b Rd.

Since ‖ϕn‖L1(Rd) = 1 = ‖ϕ∗‖L1(Rd) one can conclude the strong convergence in the

L1(Rd)-topology.

That g is a pseudo-distance on L1(Ω) can be derived as follows. Clearly 0 = g(ϕ,ψ) =
W2(ϕ,ψ) implies ϕ = ψ in the sense of measures and almost everywhere. By the same
argument as in the previous case, the pseudo-distance g is lower semi-continuous with
respect to the L1(Ω)-convergence.

Having de�ned normal coercive integrands A and pseudo-distances g we can state the
extension of Aubin-Lions compactness Theorem to metric spaces, cf. [85, Theorem 2].

Theorem 2.5.4 (Extension of the Aubin-Lions Theorem). Let (X,d) be a complete,
separable metric space, let At : (0, T ) ×X → R ∪ {∞} be a normal coercive integrand,
and let g : X×X→ R ∪ {∞} be a pseudo-distance on X. Let (unt )n∈N be a sequence of
measurable functions unt : (0, T )→ X such that

sup
n∈N

ˆ T

0
At(unt ) dt <∞, lim

h↘0
sup
n∈N

ˆ T−h

0
g
(
unt+h, u

n
t

)
dt = 0. (2.5.1)

Then, (unt )n∈N possesses a subsequence converging inM (0, T ; (X,d)).

Remark 2.5.5. Note, one can replace the usual weak integral equi-continuity condition
in (2.5.1) given in the original version of the theorem by the relaxed averaged weak
integral equi-continuity

lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0

ˆ T−s

0
g(unt+s, u

n
t ) dt ds = 0. (2.5.2)

This condition is su�cient in the proof of Theorem 2.5.4.

Monotonicity of the Kinetic Energy. It is worthwhile to point out that the kinetic
energy K shares also a monotonicity property with respect to non-negative integral ker-
nels G. De�ne the integral transform TG[ρ] with respect to the measurable integral kernel
G for a scalar measure ρ : Ω→ R by

TG[ρ](x) =

ˆ
Ω
G(x, y) dρ(y).

For a Rd-valued measure w ∈ W(Ω) we de�ne the vector integral transform
⇀

TG[w] com-

ponentwise, i.e.,
⇀

TG[w] := (TG[wi])i.

21



2 Notation and Preliminaries

Lemma 2.5.6. Let ρ ∈ Pac
2 (Ω) and let w ∈ W(Ω) be a Rd-valued signed Borel-measure.

Then,

K
(
TG[ρ],

⇀

TG[w]
)
≤ K(ρ,w) (2.5.3)

for any non-negative measurable integral kernel G : Ω×Ω→ [0,∞] with
´

Ω G(x, y) dx = 1
for each y ∈ Ω.

The proof of this lemma is almost identical to the proof in of Lemma 8.1.10 in [4] where
one replaces θ = ρ(x − ·)µ by θ = G(x, ·)ρ. For the sake of completeness, we shall give
the proof in the following.

Proof. We use Jensen inequality in the following form: if Φ : Rm+1 → [0,∞] is convex,
lower semi-continuous and positively 1-homogenous, then

Φ
(ˆ

Ω
ψ(x) dΩ(x)

)
≤
ˆ
θ

Φ(ψ(x)) dθ(x)

for any Borel map ψ : Rd → Rm+1 and any positive and �nite measure θ in Rd (by
rescaling θ to a probability measure and looking at the image measure ψ#θ the formula
reduces to the standard Jensen inequality).
Without loss of generality, we can assume w is absolutely continuous. Fix x ∈ Ω

and apply the inequality above with ψ(ρ,w) := (1,w/ρ), dθ = G(x, ·) dρ and Φ(ρ,w) =
K(ρ,w) from the de�nition of the kinetic energy K. Expanding a fraction in the de�nition
of

⇀

TG[w] with ρ(y) allows us to apply the Jensen inequality to obtain∥∥⇀TG[w](x)
∥∥2

TG[ρ](x)
= K

(ˆ
Ω

1 ·G(x, y) dρ(y),

ˆ
Ω

w(y)

ρ(y)
·G(x, y) dρ(y)

)
≤
ˆ

Ω
K
(

1,
w(y)

ρ(y)

)
·G(x, y) dρ(y)

=

ˆ
Ω

‖w(y)‖2
ρ(y)2

·G(x, y) dρ(y).

An integration with respect to x leads to

K
(
TG[ρ],

⇀

TG[w]
)

=

ˆ
Ω

∥∥∥⇀TG[w](x)
∥∥∥2

TG[ρ](x)
dx ≤

ˆ
Ω

ˆ
Ω

‖w(y)‖2
ρ(y)2

·G(x, y) dρ(y) dx = K(ρ,w)

where we canceled in the last step ρ(y) and used Fubini's theorem with the fact that´
Ω G(x, y) dx = 1 for each y ∈ Ω. Hence, this is the desired monotonicity property of the
kinetic energy.
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Scheme

This part of the thesis is based on the �rst part of the joint work with Jonathan Zinsl
[82]. The aim of this chapter is to study a time-dependent formulation of the Minimizing
Movement scheme for non-autonomous evolution problems where the sought-for solution
ut is a curve of steepest descent with respect to the time-dependent free energy functional
Et in the complete, separable metric space (X,d). As a particular example, we apply
this theory also to the non-autonomous Fokker-Planck equation with non-�ux boundary
condition in a domain Ω ⊆ Rd seen as L2-Wasserstein gradient �ow.

Main Idea in Short. In the simplest setting, when X = Rd, d is the Euclidean
metric, and Et ∈ C∞([0,∞)×Rd), the main idea to approximate solutions u∗t to evolution
problems with gradient �ow structure as

u̇t = −∇Et(ut)

is to use the time-dependent version of the implicit Euler scheme. This method is given
as follows. Given a partition τ := (τ1, τ2, . . .) of step sizes τk ∈ (0, τ∗) and given an initial
condition uτ0 that approximates u0, de�ne inductively a discrete solution (uτk )k∈N by the
implicit formula

uτk − uτk−1
τk

= −∇Etτk (uτk ), (3.0.1)

where tτk =
∑k

l=1 τl for k ≥ 1. Under these strong hypothesis on the free energy func-
tional Et, the time-dependent implicit Euler method (3.0.1) is well-de�ned, i.e., the initial
datum uτ0 determines an entire sequence (uτk )k∈N. It is further well-know that this is a
�rst order approximation of a true solution u∗t , i.e., one has u

τ
k = u∗tτk

+O(τ) as τ → 0.

In the abstract case when (X,d) is just a complete, separable metric space we cast
(3.0.1) in a variational way, i.e., we propose the time-dependent version of the so-called
Minimizing Movement scheme, cf. [29, 30, 54]. The variational formulation of the time-
dependent implicit Euler formula (3.0.1) reads then

uτk ∈ argmin
w∈X

1

2τk
d2(uτk−1, w) + Etτk (w). (3.0.2)

In the Euclidean setting the minimizer uτk satis�es the implicit Euler formula (3.0.1).
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3 Time-Dependent Minimizing Movement Scheme

Contribution&Method. Most of our results follow from a careful generalization of
the autonomous theory on metric gradient �ows by Ambrosio, Gigli and Savaré [4],
also in view of the theory by Rossi, Mielke, and Savaré [84] for the non-autonomous case
under stricter assumptions. Similar results for non-autonomous gradient �ows in abstract
metric spaces have been obtained � independently at the same time � by Ferreira and
Guevara [39]. Therein the main tool to prove the existence and convergence of the scheme
(3.1.2) is the assumption of convexity of the free energy functional Et. In the end, their
approach yields that the approximation converges to a solution u∗t in the sense of the EVI
(2.3.2). In contrast, we follow a di�erent approach where we exploit the compactness
of the free energy functional Et. However, with this slightly weaker assumption, we are
only, but canonically, able to prove the convergence of the scheme to a solution u∗t in the
sense of the EDE.

Additionally, we seek to construct a solution ρt for the particular example of the L2-
Wasserstein gradient �ow, given by the Fokker-Planck equation. However, we investigate
this problem under weak assumption on Vt and Wt, such that Et does not posses con-
vexity properties along geodesics in the space (P2(Ω),W2), cf. [73]. Hence, the results
on contractive gradient �ows by Ambrosio et al. [4] (in the autonomous case) and Fer-
reira and Guevara [39] (in the non-autonomous case) are not immediately applicable.
Nevertheless, the variational formulation of the time-dependent implicit Euler method is
robust enough to prove also in this particular case the existence and convergence of the
approximation ρτt to a limit curve ρ∗t . We want to emphasize, that in this framework we
are able to prove additional regularity properties of the discrete solution which imply a
stronger notion of convergence. This strong convergence results in combination with the
discrete Euler-Lagrange equations yields that the limit curve ρ∗t is indeed a weak solution
of the non-autonomous and non-linear Fokker-Planck equation (3.2.1).

Main Results. Our main result concerning the limit behavior as τ → 0 of the piecewise
constant interpolation uτt of the discrete solution uτk reads as follows:

Theorem 3.0.1 (Curves of Steepest Descent for Abstract Metric Gradient Flows).
Assume (X,d) is a complete, separable metric space, Et satis�es (E0)�(E5) speci�ed in
Assumptions 3.1.1&3.1.2&3.1.3, and given a partition τ = (τ1, τ2, . . .) which satis�es
(I1) from Assumption 3.1.6. Then,

a) Existence of Discrete Solutions. For each approximation uτ0 of the initial
datum u0 ∈ D(E0) which satis�es (I2) from Assumption 3.1.6 there exists a discrete
solution (uτk )k∈N of (3.1.2).

b) Step Size Independent Estimates. For �xed time horizon T > 0 there is a
constant C, independent of τ , such that the corresponding discrete solution (uτk )k∈N
satis�es for all N with tτN ≤ T :

N∑
k=1

1

2τk
d2(uτk−1, uτk ) ≤ C, EtτN (uτN ) ≤ C, d2(u∗, u

τ
N ) ≤ C.
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Furthermore, given a sequence of partitions (τn)n∈N with supk τk,n → 0 and a sequence
of approximations (uτn0 )n∈N of the initial datum u0 which satisfy (I1)&(I2). Then,

c) Convergence in the σ-topology. There exists u∗t ∈ AC2(0,∞; (X,d)) such
that for a (non-relabelled) subsequence of (τn)n∈N

uτnt
σ
⇀ u∗t ∀ t ∈ [0,∞).

d) Solution of the Non-autonomous Gradient Flow. The limit curve u∗t from
c) is a solution to the time dependent gradient �ow (3.1.1) in the sense of the
energy dissipation equality, see de�nition 2.3.3.

Our main results concerning the well-posedness and the limit behavior as τ ↘ 0 of the
interpolated solution ρτt is stated in the following theorem.

Theorem 3.0.2 (Existence of Solutions for the Non-linear Fokker-Planck Equation).
Let Ω ⊂ Rd be either an open, bounded, and connected domain with Lipschitz continuous
boundary ∂Ω or let Ω = Rd. Further, assume m ≥ 1 and that Vt and Wt satisfy (F1)�
(F3) de�ned in Assumption 3.2.1 and let a partition τ be given that satisfy (I1) speci�ed
in Assumption 3.1.6. Then, we have additionally to the results of theorem 3.0.1:

a) Step Size Independent L2(0, T ;BV(Ω))-estimate. For each T > 0 there exists
a non-negative constant C, independent of τ such that for each τ ∈ (0, τ∗):

‖(ρτt )m‖
L
2(0,T ;BV(Ω)) ≤ C.

Furthermore, given a sequence of partitions (τn)n∈N with supk τk,n → 0 and an approxi-
mation (ρτn0 )n∈N of the initial datum ρ0 which satis�es (I1)&(I2) de�ned in Assumption
3.1.6.

b) Strong Convergence in Lp(0, T ;Lm(Ω)). There exists a further (non-relabelled)
subsequence (τn)n∈N such that for all T > 0, any p ∈ [1,∞),

1) if Ω bounded:

ρτnt → ρ∗t strongly in Lp(0, T ;Lm(Ω)) as n→∞.

2) if Ω = Rd: for any bounded set Θ ⊂ Rd:

ρτnt → ρ∗t strongly in Lp(0, T ;Lm(Θ)) as n→∞.

c) Solution of the Non-linear Fokker-Planck Equation. The limit curve ρ∗t
from b) satis�es the non-linear Fokker-Planck equation with no-�ux boundary con-
dition (3.2.1) in the weak sense of (3.2.11).
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3 Time-Dependent Minimizing Movement Scheme

3.1Application to Gradient Flows in Abstract Metric Spaces

This section is devoted to study the temporal discretization of non-autonomous evolution
problems of the form

u̇t = −∇XEt(ut), (3.1.1)

where the sought-for solution ut : [0,∞)→ X is a curve of steepest descent with respect
to the time-dependent free energy functional Et emanating from u0 ∈ D(E0) in a complete,
separable metric space (X,d). More precisely, we seek to construct with the variational
formulation of the time-dependent Implicit Euler method, given by

uτk − uτk−1
τk

= −∇Etτk (uτk ),

an approximation uτt which converges in the discrete-to-continuous limit to a solution
u∗t to the non-autonomous gradient �ow equation (3.1.1) in the sense of the EDE, see
de�nition 2.3.3.

Method. We adapt the variational formulation of the time-independent Implicit Euler
method, known as the Minimizing Movement scheme, to the time-dependent case. Our
scheme to approximate the true solution u∗t reads than as follows:

Scheme. For a partition τ := (τ1, τ2, . . .) of step sizes τk ∈ (0, τ∗) let an initial condition
uτ0 be given that approximates u0. Then de�ne inductively a discrete solution (uτk )k∈N
such that each uτk with k = 1, 2, . . . is a minimizer of the Moreau-Yosida-penalized
energy functional

w 7→ Φ(τ, tτk , u
τ
k−1;w) :=

1

2τk
d2(uτk−1, w) + Etτk (w), (3.1.2)

where tτk =
∑k

l=1 τl for k ≥ 1.

De�ne the corresponding piecewise constant interpolation in time uτt : [0,∞)→ X of the
discrete solution via

uτ0 = uτ0 , uτt = uτk for t ∈ (tτk−1, tτk ] and k ∈ N.

Strategy of the Proof. We begin with deriving some basic properties of the penal-
ization in section 3.1.2, namely: lower bounds, a priori estimates, the existence of min-
imizer, continuity and approximation properties, and di�erentiability properties. Next,
in section 3.1.3 we deduce from the variational formulation of the scheme the necessary
structural properties, like estimates on the kinetic energy and on the internal energy and
the derivation of the discrete Euler-Lagrange equations. Finally, we prove in section 3.1.4
the main theorem 3.0.1, i.e., the convergence as τ tends to zero of the approximation uτt
to a curve of steepest descent u∗t by means of an Arzelá-Ascoli type argument.
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3.1 Application to Gradient Flows in Abstract Metric Spaces

3.1.1 Setup and Assumptions

Given a separable, complete metric space (X,d), we shall introduce a weaker Hausdor�
topology σ on X, which is compatible with d, which allows us more �exibility to derive
compactness results. From now on we propose the convention to write

un
d→ u for the convergence w.r.t. d, un

σ
⇀ u for the convergence w.r.t. σ.

Compatibility of σ with d means in this context

un
d→ u =⇒ un

σ
⇀ u, (un, vn)

σ
⇀ (u, v) =⇒ d(u, v) ≤ lim inf

n→∞
d(un, vn).

Additionally, we shall work throughout the rest of this chapter with the following as-
sumptions to the functional Et.
Assumption 3.1.1 (Chain Rule Inequality). The free energy functional Et : [0,∞) ×
X→ R ∪ {∞} satis�es the following chain rule condition.

(E0) The local slope |∂Et| of Et at time t is lower semi-σ-continuous and for any curve
ut ∈ AC2 (0,∞; (X,d)) with |∂Et|(ut)|u′t| ∈ L1

loc (0,∞) and supt∈[0,T ] Et(ut) < ∞,
the map t 7→ Et(ut) is absolutely continuous, and for all 0 ≤ s ≤ t:

Es(us) +

ˆ t

s
∂tEr(ur) dr ≤ Et(ut) +

ˆ t

s
|∂Er|(ur)|u′r| dr. (3.1.3)

Assumption 3.1.2 (Space-Regularity of Et). The free-energy functional Et : [0,∞) ×
X→ R ∪ {∞} is proper and satis�es the following regularity conditions in space:

(E1) Lower Semi-continuity. Et is sequentially lower semi-σ-continuous on d-bounded
sets for each t ∈ [0,∞):

sup
n,m

d(un, um) <∞, un
σ
⇀ u =⇒ Et(u) ≤ lim inf

n→∞
Et(un).

(E2) Coercivity. There exist τ∗ > 0 and u∗ ∈ X such that:

c∗ := inf
t∈[0,∞)

inf
w∈X

1

2τ∗
d2(u∗, w) + Et(w) > −∞.

(E3) Compactness. For each t > 0, every d-bounded set contained in a sublevel of Et
is relatively sequentially σ-compact, i.e.:

if (un)n∈N ⊂ X with sup
n
Et(un) <∞, and sup

n,m
d(un, um) <∞, then

(un)n∈N contains a σ−convergent subsequence.
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3 Time-Dependent Minimizing Movement Scheme

Assumption 3.1.3 (Time-Regularity of Et). The free-energy functional Et : [0,∞) ×
X→ R ∪ {∞} satis�es the following regularity conditions in time:

(E4) Absolute Continuity in Time. There exists a non-negative function αr ∈
L1

loc (0,∞) such that for all u ∈ X and for all 0 ≤ s ≤ t, it holds that:

|Et(u)− Es(u)| ≤ (1 + d2(u∗, u))

ˆ t

s
αr dr.

Moreover, αt has at most countable many points which are not Lebesgue points.

(E5) Di�erentiability in Time. For all u ∈ X, the partial derivative ∂tEt(u) of the
map t 7→ Et(u) exists and is σ-continuous on d-bounded sets:

sup
n,m

d(un, um) <∞, un
σ
⇀ u, tn → t =⇒ lim

n→∞
∂tEtn(un) = ∂tEt(u).

Remark 3.1.4. The Chain Rule Inequality (E0) is the reversed version of the time-
dependent EDE (1.0.3) in the de�nition of the energy dissipation equality. This as-
sumption is not restrictive since one has

d

dt
Et(ut) = ∂tEt(ut) + 〈∇E(ut), ut〉 ≥ ∂tEt(ut)− ‖E(ut)‖ ‖u̇t‖

by the chain rule and the Cauchy-Schwarz inequality. Integrating this inequality with
respect to t yields exactly the Chain Rule Inequality (3.1.3).

Remark 3.1.5. (E1)�(E3) are the time-dependent versions of the known lower semi-
continuity, compactness, and coercivity conditions (LSCC) which are standard in the
gradient �ow theory in abstract metric spaces. (E4) and (E5) are then the necessary
additional time-dependent assumption on Et.

Later, we have to specify further assumptions on the partition τ and the approximation
uτ0 of the initial datum u0. For sake of completeness, these are given now.

Assumption 3.1.6. The partition τ = (τ1, τ2, . . .) and the approximation uτ0 of the
initial datum u0 satis�es:

(I1) Given αt from (E4), then

sup
k

4ατk < 1 with ατk :=
(τ∗

2

ˆ tτk+1

tτk

αr dr +
τk
τ∗

)
. (3.1.4)

(I2) There exists a a constant d1 such that the discrete initial datum uτ0 satisfy:

E0(uτ0 ) ≤ d1, d(uτ0 , u0) ≤ d1

√
τ , and lim sup

τ→0
E0(uτ0 ) ≤ E0(u0).
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3.1 Application to Gradient Flows in Abstract Metric Spaces

3.1.2 Time-Dependent Moreau-Yosida Approximation and Resolvent

Assume in the sequel that (E1)�(E5) holds. De�ne the Moreau-Yosida functional

Φ(τ, t, u; ·) : X→ R ∪ {∞}; Φ(τ, t, u;w) :=
1

2τ
d2(u,w) + Et(w) (3.1.5)

and furthermore de�ne the Moreau-Yosida approximation of Et by

φ(τ, t, u) := inf
w∈X

Φ(τ, t, u;w) = inf
w∈X

1

2τ
d2(u,w) + Et(w). (3.1.6)

The well-posedness of the Minimizing Movement scheme (3.1.2) is equivalent to the
existence of a minimizer of Φ. The set of all minimizers is called the resolvent Jτt and is
given by

Jτt (u) = {w ∈ X | Φ(τ, t, u;w) = φ(τ, t, u)} . (3.1.7)

Remark 3.1.7. By the construction of the Moreau-Yosida approximation, we have the
following monotonicity

φ(σ, t, u) ≤ φ(τ, t, u) ≤ Et(u) for σ ≥ τ > 0. (3.1.8)

Before we prove the existence of minimizers of the Moreau-Yosida approximation, we
state an auxiliary inequality which will be used several times in the rest of this section.

Lemma 3.1.8 (Bounds). Let c∗, τ∗, u∗ be the constants from (E1)�(E3). Then, for all
τ ∈ (0, τ∗) , t ∈ [0,∞) and all u,w ∈ X, we have that:

φ(τ, t, u) ≥ c∗ −
1

τ∗ − τ
d2(u∗, u), (3.1.9)

d2(w, u) ≤ 4ττ∗
τ∗ − τ

(
Φ(τ, t, u;w)− c∗ +

1

τ∗ − τ
d2(u∗, u)

)
. (3.1.10)

Proof. We use the Cauchy-type inequality

(a+ b)2 ≤ (1 + ε) a2 +
(

1 +
1

ε

)
b2 ∀ a, b ≥ 0, ε > 0,

with a = d(w, u), b = d(u∗, u) and ε = τ∗−τ
τ∗+τ

, to get:

1

2τ∗
d2(u∗, w) ≤ 1

τ∗ + τ
d2(w, u) +

1

τ∗ − τ
d2(u∗, u).

This yields for every u,w ∈ X and τ < τ∗:

Φ(τ, t, u;w) =
τ∗ − τ

2τ(τ∗ + τ)
d2(u,w) +

1

τ∗ + τ
d2(u,w) + Et(w)

≥ τ∗ − τ
4τ∗τ

d2(u,w) +
1

2τ∗
d2(u∗, w)− 1

τ∗ − τ
d2(u∗, u) + Et(w)

≥ τ∗ − τ
4τ∗τ

d2(u,w)− 1

τ∗ − τ
d2(u∗, u) + c∗,

from which (3.1.10) and, after taking the in�mum with respect to w ∈ X, (3.1.9) follows.
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3 Time-Dependent Minimizing Movement Scheme

In the following we show that indeed the time-dependent Minimizing Movement scheme
(3.1.2) is well-de�ned in the abstract metric setting for su�ciently small τ .

Theorem 3.1.9 (Existence of Minimizers). For all τ ∈ (0, τ∗), for all t ∈ [0,∞) and
for all u ∈ X, there exists a minimizer w∗ ∈ D(Et) of the map w 7→ Φ(τ, t, u;w), i.e.,

Jτt (u) 6= ∅.

Proof. Fix τ ∈ (0, τ∗) , t ∈ [0,∞) , u ∈ X and note that by Lemma 3.1.8 the Moreau-
Yosida functional is bounded from below for each u ∈ X. Since Et is proper, the in�mum
is not equal to in�nity. So choose a minimizing sequence (wn)n∈N in X of the map
w 7→ Φ(τ, t, u;w) and without loss of generality supn Φ(τ, t, u;wn) < ∞. So, we can
deduce from (3.1.10)

d2(wn, u) ≤ 4ττ∗
τ∗ − τ

(
Φ(τ, t, u;wn)− c∗ +

1

τ∗ − τ
d2(u∗, u)

)
<∞.

Thus the sequence (wn)n∈N is d-bounded. Furthermore, the σ-compactness of the se-
quence wn follows by the upper estimate on Et

Et(wn) ≤ 1

2τ
d2(u,wn) + Et(wn) = Φ(τ, t, u;wn) ≤ c <∞.

Hence, we can extract a σ-convergent subsequence, which converges to some w∗ ∈ D(Et)
with respect to the weak topology σ. By lower semi-σ-continuity of Et, we conclude that
indeed w∗ is a minimizer of the map w 7→ Φ(τ, t, u;w) and thus Jτt (u) 6= ∅.

Further facts about the time-dependent Moreau-Yosida approximation and of the resol-
vent [4], for instance, a priori estimates, continuity results and di�erentiability properties
are proven in the sequel.

Lemma 3.1.10 (Apriori Estimate). Let u ∈ X and de�ne uσs ∈ Jσs (u) and uτt ∈ Jτt (u)
with σ < τ and s < t, then it holds that

d2(u, uσs ) ≤ d2(u, uτt ) +
2τσ

τ − σ
(
2 + d2(u∗, u

σ
s ) + d2(u∗, u

τ
t )
) ˆ t

s
αr dr.

Proof. Fix uσs ∈ Jσs (u) and uτt ∈ Jτt (u) with σ < τ, s < t and exploit once again the
variational de�nition of the resolvent and of the Moreau-Yosida approximation to get

Φ(σ, s, u;uσs ) ≤ Φ(σ, s, u;uτt )

=
( 1

2σ
− 1

2τ

)
d2(u, uτt ) + Φ(τ, s, u;uτt )

=
( 1

2σ
− 1

2τ

)
d2(u, uτt ) + Φ(τ, t, u;uτt ) + Es(uτt )− Et(uτt )

≤
( 1

2σ
− 1

2τ

)
d2(u, uτt ) + Φ(τ, t, u;uσs ) + Es(uτt )− Et(uτt ).
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Subtract Φ(τ, t, u;uσs ) from both sides to obtain( 1

2σ
− 1

2τ

)
d2(u, uσs ) + Es(uσs )− Et(uσs ) ≤

( 1

2σ
− 1

2τ

)
d2(u, uτt ) + Es(uτt )− Et(uτt ).

Since σ < τ , we can multiply with 2τσ
τ−σ to get

d2(u, uσs ) ≤ d2(u, uτt ) +
2τσ

τ − σ (Es(uτt )− Et(uτt ) + Et(uσs )− Es(uσs ))

≤ d2(u, uτt ) +
2τσ

τ − σ
(
2 + d2(u∗, u

σ
s ) + d2(u∗, u

τ
t )
) ˆ t

s
αr dr,

where in the last step, we used (E4) twice.

Lemma 3.1.11 (Continuity of the Resolvent). Let u ∈ D(Et) and τ ∈ (0, τ∗). Given

the convergent sequences τn ↘ 0, tn → t and un
d→ u, de�ne a sequence of minimizers

wn ∈ Jτntn (un). If in addition Etn(un) ≤ C, then we have

wn
d→ u as n→∞.

Proof. We can assume without loss of generality that τn < τ∗. Use the monotonicity of
the Moreau-Yosida approximation (3.1.8) and the estimate (3.1.10) with w = wn and
u = un, to obtain:

d2(wn, un) ≤ 4τnτ∗
τ∗ − τn

(
Φ(τn, tn, un;wn)− c∗ +

1

τ∗ − τn
d2(u∗, un)

)
≤ 4τnτ∗
τ∗ − τn

(
Etn(un)− c∗ +

1

τ∗ − τn
d2(u∗, un)

)
.

By assumption Etn(un) is bounded from above, so we can further estimate to obtain

d2(wn, un) ≤ 4τnτ∗
τ∗ − τn

(
C − c∗ +

1

τ∗ − τn
d2(u∗, un)

)
.

Taking the limit n→∞ yields the desired convergence wn
d→ u.

Lemma 3.1.12 (Continuity of the Moreau-Yosida Approximation). The map (τ, t, u) 7→
φ(τ, t, u) is d-continuous on (0, τ∗)× [0,∞)×D (Et).

Proof. Choose a sequence (τn, tn, un)n∈N in (0, τ∗) × [0,∞) × D(Etn) with τn → τ ∈
(0, τ∗) , tn → t ∈ [0,∞) and un

d→ u ∈ D(Et). Then, it follows for an arbitrary w ∈ X
that

lim sup
n→∞

φ(τn, tn, un) ≤ lim sup
n→∞

1

2τn
d2(un, w) + Etn(w) =

1

2τ
d2(u,w) + Et(w)
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3 Time-Dependent Minimizing Movement Scheme

thanks to (E4). Taking the in�mum over w on the r.h.s. yields the upper semi-d-
continuity of φ.

To prove the lower semi-continuity, choose wn ∈ Jτntn (un) and �rst of all notice that
this sequence is bounded, since by the the upper estimate for the Moreau-Yosida approx-
imation (3.1.10)

d2(wn, un) ≤ 4τnτ∗
τ∗ − τn

(
Φ(τn, tn, un;wn)− c∗ +

1

τ∗ − τn
d2(u∗, un)

)
=

4τnτ∗
τ∗ − τn

(
φ(τn, tn, un)− c∗ +

1

τ∗ − τn
d2(u∗, un)

)
.

Since every term on the r.h.s. is bounded the sequence (wn)n∈N is d-bounded and by
the continuity of the resolvent (Lemma 3.1.11) we also have that wn converges to u in d.
Now, the variational de�nition of wn yields

lim inf
n→∞

φ(τn, tn, un) = lim inf
n→∞

( 1

2τn
d2(un, wn) + Etn(wn)

)
≥ lim inf

n→∞

( 1

2τn

(
d2(un, u)+d2(u,wn)−2d(un, u)d(u,wn)

)
+ Etn(wn)

)
= lim inf

n→∞

( 1

2τ
d2(u,wn) + Et(wn)− Et(wn) + Etn(wn)

)
.

Lastly, the absolute continuity of Et and the d-boundedness of wn yields

lim inf
n→∞

φ(τn, tn, un) ≥ lim inf
n→∞

( 1

2τ
d2(u,wn) + Et(wn)− Et(wn) + Etn(wn)

)
≥ lim inf

n→∞
φ(τ, t, u)− lim sup

n→∞
(1 + d2(u∗, wn))

ˆ tn

t
αr dr

= φ(τ, t, u).

Hence, lower semi-continuity and upper semi-continuity of the Moreau-Yosida approxi-
mation φ yields the desired result.

Lemma 3.1.13 (Approximation Property of the Moreau-Yosida Approximation). For
all u ∈ D(Et) and all sequences (τn, tn) ⊂ (0, τ∗) × [0,∞) with τn ↘ 0 and tn → t, we
have that

lim
n→∞

φ(τn, tn, u) = Et(u).

Proof. Given u ∈ D(Et), choose an element wn ∈ Jτntn (u). Thus, by the continuity of

the resolvent (Lemma 3.1.11), wn
d→ u as n→∞. The lower semi-σ-continuity of Et for

each �xed t and (E4) yields a lower bound for the limit, i.e.:

lim inf
n→∞

φ(τn, tn, u) = lim inf
n→∞

1

2τn
d2(wn, u) + Etn(wn) ≥ lim inf

n→∞
Etn(wn) ≥ Et(u).
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3.1 Application to Gradient Flows in Abstract Metric Spaces

The reverse inequality follows from the monotonicity of the Moreau-Yosida approximation
(3.1.8), and with (E4):

lim sup
n→∞

φ(τn, tn, u) ≤ lim sup
n→∞

Etn(u) = Et(u).

Lemma 3.1.14 (Joint Di�erentiability of the Moreau-Yosida Approximation). For every
u ∈ D(Et) and t ∈ [0,∞), the map τ → φ(τ, t + τ, u) is locally Lipschitz continuous on
(0, τ∗) and di�erentiable except on a countable set Sut . For every τ ∈ (0, τ∗) \Sut we have:

d

dτ
φ(τ, t+ τ, u) = − 1

2τ2
d2(u,w) + ∂tEt+τ (w) ∀ w ∈ Jτt+τ (u). (3.1.11)

Proof. Fix t > 0 and σ < τ in (0, τ∗) and choose uτ ∈ Jτt+τ (u) and uσ ∈ Jσt+σ(u) and
exploit the variational de�nition of the Moreau-Yosida approximation to obtain

φ(τ, t+ τ, u)− φ(σ, t+ σ, u) ≤ Φ(τ, t+ τ, u;uσ)− Φ(σ, t+ σ, u;uσ)

=
( 1

2τ
− 1

2σ

)
d2(u, uσ) + Et+τ (uσ)− Et+σ(uσ)

≤ σ − τ
2τσ

d2(u, uσ) + (1 + d2(u∗, u
σ))

ˆ t+τ

t+σ
αr dr.

Analogously, a lower bound can be established by reversing the role of uτ and uσ:

φ(τ, t+ τ, u)− φ(σ, t+ σ, u) ≥ Φ(τ, t+ τ, u, uτ )− Φ(σ, t+ σ, u, uτ )

=
( 1

2τ
− 1

2σ

)
d2(u, uτ ) + Et+τ (uτ )− Et+σ(uτ )

≥ σ − τ
2τσ

d2(u, uτ )− (1 + d2(u∗, u
τ ))

ˆ t+τ

t+σ
αr dr.

Note that by estimate (3.1.10) and by the monotonicity of the Moreau-Yosida approxi-
mation we have

d2(uτ , u) ≤ 4ττ∗
τ∗ − τ

(
Φ(τ, t+ τ, u, uτ )− c∗ +

1

τ∗ − τ
d2(u∗, u)

)
=

4ττ∗
τ∗ − τ

(
φ(τ, t+ τ, u)− c∗ +

1

τ∗ − τ
d2(u∗, u)

)
≤ 4ττ∗
τ∗ − τ

(
Et+τ (u)− c∗ +

1

τ∗ − τ
d2(u∗, u)

)
≤ 4ττ∗
τ∗ − τ

(
Et(u) + (1 + d2(u∗, u))

ˆ t+τ

t
αr dr − c∗ +

1

τ∗ − τ
d2(u∗, u)

)
.

Thus, d2(uτ , u), d2(uτ , u∗), d
2(uσ, u), and d2(uσ, u∗) are locally bounded by some con-

stant independent of τ and σ and therefore τ 7→ φ(τ, t+ τ, u) is locally absolutely contin-
uous. To calculate the derivative for a point τ ∈ (0, τ∗) \Sut in the set of di�erentiability,
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3 Time-Dependent Minimizing Movement Scheme

divide the previous inequalities by τ − σ such that we have for σ < τ :

− 1

2τσ
d2(u, uτ ) +

Et+τ (uτ )− Et+σ(uτ )

τ − σ ≤ φ(τ, t+ τ, u)− φ(σ, t+ σ, u)

τ − σ .

The left-sided limit σ ↗ τ yields a lower bound for the derivative τ 7→ φ(τ, t+ τ, u) and
analogously we gain from the inequality for τ < σ and the right-sided limit σ ↘ τ an
upper bound. Since uτ was arbitrarily chosen in the resolvent, the value of the derivative
is independent of the uτ and therefore the desired formula is true.

Lemma 3.1.15 (Local Slope Estimate). Given u ∈ X, τ > 0, t ∈ [0,∞) and w ∈ Jτt (u),
we have

|∂Et|(w) ≤ 1

τ
d(u,w). (3.1.12)

Proof. Given u ∈ X and w ∈ Jτt (u). Since w is the minimizer of w 7→ Φ(τ, t, u;w) we
have for an arbitrary v ∈ X

Et(w)− Et(v) ≤ 1

2τ
d2(u, v)− 1

2τ
d2(u,w) ≤ 1

2τ
d(v, w)(d(u, v) + d(u,w)).

Dividing the equation by d(v, w) we get

lim sup

v
d→ w

(Et(w)− Et(v))+

d(v, w)
≤ lim sup

v
d→ w

1

2τ
(d(u, v) + d(u,w)) =

d(u,w)

τ

which is the desired local slope estimate (3.1.12).

3.1.3 Properties of the Time-Dependent MMS

By the previous section, the sequence (uτk ) given by the time-dependent Minimizing
Movement scheme is well de�ned for every partition τ = (τ1, τ2, . . .) with τk ∈ (0, τ∗).
Next, we derive the classical estimates on energy and distance and the discrete energy
dissipation inequality. These additionally require (I1) and (I2) to hold for the partition
τ and the approximation uτ0 of the initial datum u0.

Theorem 3.1.16 (Classical Estimates). Fix a time horizon T > 0. Then, there is a
constant C, independent of the partition τ , such that the corresponding discrete solution
(uτk )k∈N satis�es

N∑
k=1

1

2τk
d2(uτk , u

τ
k−1) ≤ C, EtτN (uτN ) ≤ C, d2(u∗, u

τ
N ) ≤ C (3.1.13)

for all N ∈ N with tτN ≤ T .
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Proof. For a given partition τ = (τ1, τ2, . . .) with τk ∈ (0, τ∗) consider the discrete solu-
tion (uτk )k∈N obtained by the Minimizing Movement scheme. Since uτk is a minimizer for
Φ(τ, tτk , u

τ
k−1; ·) it satis�es the discrete variational inequality:

1

2τk
d2(uτk−1, uτk ) + Etτk (uτk ) ≤ 1

2τk
d2(uτk−1, uτk−1) + Etτk (uτk−1).

Rearrange and sum these inequalities from k = 1 to k = N and exploit the telescopic
sum to obtain

N∑
k=1

1

2τk
d2(uτk−1, uτk ) ≤

N∑
k=1

[
Etτk (uτk−1)− Etτk (uτk )

]
= E0(uτ0 )− EtτN (uτN ) +

N−1∑
k=0

[
Etτk+1

(uτk )− Etτk (uτk )
]
.

Since Et is absolutely continuous in time, we get with (E4), (I1), and (I2)

N∑
k=1

1

2τk
d2(uτk−1, uτk )

≤d1 +
1

2τ∗
d2(u∗, u

τ
N )− c∗ +

N−1∑
k=0

(
1 + d2(u∗, u

τ
k )
) ˆ tτk+1

tτk

αr dr.

(3.1.14)

Furthermore, using Young's inequality with ε = τ∗
2 , we get

1

2
d2(u∗, u

τ
N )− 1

2
d2(u∗, u

τ
0 ) =

N∑
k=1

1

2
d2(u∗, u

τ
k )− 1

2
d2(u∗, u

τ
k−1)

≤
N∑
k=1

d(uτk , u
τ
k−1)d(uτk , u∗)

≤ τ∗
2

N∑
k=1

1

2τk
d2(uτk−1, uτk ) +

1

τ∗

N∑
k=1

τkd
2(u∗, u

τ
k ).

Inserting the auxiliary inequality (3.1.14) from above yields

1

2
d2(u∗, u

τ
N )− 1

2
d2(u∗, u

τ
0 )

≤τ∗
2

(
d1 +

1

2τ∗
d2(u∗, u

τ
N )− c∗ +

N−1∑
k=0

(
1 + d2(u∗, u

τ
k )
)ˆ tτk+1

tτk

αr dr
)

+
1

τ∗

N∑
k=1

τkd
2(u∗, u

τ
k )

≤τ∗
2

(
d1 − c∗ +

(
1 + d2(u∗, u

τ
k )
) ˆ T

0
αr dr

)
+

1

4
d2(u∗, u

τ
N ) +

N∑
k=1

(τ∗
2

ˆ tτk+1

tτk

αr dr +
τk
τ∗

)
d2(u∗, u

τ
k ).
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3 Time-Dependent Minimizing Movement Scheme

Rearrange the inequality to obtain

d2(u∗, u
τ
N ) ≤2d2(u∗, u

τ
0 ) + 2τ∗

(
d1 − c∗ + (1 + d2(u∗, u

τ
0 ))

ˆ T

0
αr dr

)
+ 4

N∑
k=1

(
τ∗
2

ˆ tτk+1

tτk

αr dr +
τk
τ∗

)
d2(u∗, u

τ
k )

=:C̃(T, τ∗) + 4

N∑
k=1

αkd
2(u∗, u

τ
k ).

Since by assumption supk 4αk < 1 one can apply the discrete version of Gronwall's lemma
[4, Lemma 3.2.4] to conclude

d2(u∗, u
τ
N ) ≤Ĉ(T, τ∗) exp

[
ĉ(T, τ∗)

N−1∑
k=1

αk

]
≤Ĉ(T, τ∗) exp

[
ĉ(T, τ∗)

(
τ∗
2

ˆ T

0
αr dr +

T

τ∗

)]
.

Hence, we have proven the d-boundedness of the discrete solution. With this result and
with the �rst chain of inequalities we can deduce the estimate on the kinetic energy, i.e.,

N∑
k=1

1

2τk
d2(uτk−1, uτk ) ≤ d1 +

1

2τ∗
d2(u∗, u

τ
N )− c∗ +

N−1∑
k=0

(
1 + d2(u∗, u

τ
k )
) ˆ tτk+1

tτk

αr dr

≤ d1 +
1

2τ∗
C(T, τ∗)− c∗ + (1 + C(T, τ∗))

ˆ T

0
αr dr.

Again, using this inequality yields the upper bound for EtτN (uτN ), since

EtτN (uτN ) ≤ EtτN (uτN ) +
N∑
k=1

1

2τk
d2(uτk−1, uτk )

≤ E0(uτ0 )− EtτN (uτN ) +
N−1∑
k=0

[
Etτk+1

(uτk )− Etτk (uτk )
]

≤ E0(uτ0 ) +
1

2τ∗
d2(u∗, u

τ
N )− c∗ +

N−1∑
k=0

(
1 + d2(u∗, u

τ
k )
) ˆ tτk+1

tτk

αr dr

≤ d1 +
1

2τ∗
C(T, τ∗)− c∗ + (1 + C(T, τ∗))

ˆ T

0
αr dr.

Hence, we have the three desired τ -independent estimates.
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Next, we de�ne the so called De Giorgi interpolation ũτt : [0,∞)→ X, via

ũτ0 = uτ0 , ũτtτk
= uτk , ũτtτk+σ ∈ Jσtτk+σ(uτk ) for σ ∈ (0, τk+1) , k ∈ N0,

which satis�es the following discrete energy inequality.

Theorem 3.1.17 (Discrete Energy Inequality). The De Giorgi interpolation ũτt satis�es:

EtτN (ũτtτN
) +

N∑
k=1

1

2τk
d2(uτk−1, uτk ) +

1

2

ˆ tτN

0
|∂Et|2(ũτt ) dt

≤E0(uτ0 ) +

ˆ tτN

0
∂tEt(ũτt ) dt.

(3.1.15)

Proof. From Lemma 3.1.14 we know that the map σ 7→ φ(σ, t+σ, u) is locally absolutely
continuous and we can compute the derivative at almost all σ, which is given by

d

dσ
φ(σ, t+ σ, u) = − 1

2σ2
d2(u,w) + ∂tEt+σ(w) ∀ w ∈ Jσt+σ(u).

Choose t = tτk , u = uτk and use ũτtτk+σ ∈ Jσtτk+σ(uτk ) when integrating the equation with
respect to σ from ε > 0 to τk:

φ(τ, tτk+1, u
τ
k )− φ(ε, tτk + ε, uτk ) =

ˆ τk

ε
− 1

2σ2
d2(uτk , ũ

τ
tτk+σ) + ∂tEtτk+σ(ũτtτk+σ) dσ.

Use ũτtτk+1
∈ Jτtτk+1

(uτk ) and Lemma 3.1.13 to perform the limit ε↘ 0 to obtain

1

2τk
d2(uτk+1, u

τ
k ) + Etτk+1

(uτk+1)− Etτk (uτk ) =

ˆ τk

0
− 1

2σ2
d2(uτk , ũ

τ
tτk+σ) + ∂tEtτk+σ(ũτtτk+σ) dσ.

Apply Lemma 3.1.15 with t = tτk + σ, u = uτk to obtain

1

2τk
d2(uτk+1, u

τ
k ) + Etτk+1

(uτk+1)− Etτk (uτk ) ≤ 1

2

ˆ tτk+1

tτk

−|∂Et|2(ũτt ) + ∂tEt(ũτt ) dt.

Summation from k = 0 to N − 1 yields the desired discrete energy inequality.

3.1.4 Convergence

In this section we complete the proof of the Main Theorem 3.0.1, i.e., �rstly, we prove the
convergence in the weak σ-topology of the piecewise constant interpolation uτt to a limit
curve u∗t ; secondly, we prove that the De Giorgi interpolation ũτt converges also in the
σ-topology to the same limit curve u∗t ; thirdly, we pass in the discrete energy inequality
(3.1.15) to the limit τ → 0 to show that the limit curve u∗t is indeed a curve of steepest
descent for Et emanating from u0.
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3 Time-Dependent Minimizing Movement Scheme

Theorem 3.1.18 (Convergence of the Piecewise Constant Interpolation). Given a se-
quence of partitions (τn)n∈N with supk τk,n → 0 and satisfying (I1), and let (uτn0 )n∈N
be an approximation for u0 ∈ D(E0) satisfying (I2). Then, there exists an L2-absolutely
continuous limit curve u∗t ∈ AC2 (0,∞; (X,d)) such for a (non-relabelled) subsequence
of (uτnt )n∈N:

uτnt
σ
⇀ u∗t ∀ t ∈ [0,∞) .

Proof. Fix some T > 0 and de�ne the discrete derivative Ant as

Ant :=
1

τn,k
d(uτnk−1, u

τn
k ) for t ∈

[
tτnk−1, t

τn
k

)
. (3.1.16)

Using the classical estimates for the Minimizing Movement scheme of Theorem 3.1.16,
we get for all tτnN < T

ˆ tτnN

0
(Ant )2 dt =

N−1∑
k=0

ˆ tτnk

tτn
k−1

( 1

τn,k
d(uτnk−1, u

τn
k )
)2

dt =
N∑
k=1

1

τn,k
d2(uτnk−1, u

τn
k ) ≤ 2C(T ).

Thus Ant ∈ L2 (0, T ) and the L2 (0, T )-norm of Ant is uniformly bounded in τn. Therefore
Ant possesses a L2 (0, T )-weakly convergent non-relabelled subsequence with limit At ∈
L2 (0, T ). Choose 0 ≤ s ≤ t ≤ T arbitrary and de�ne knt := max

{
k | tτnk ≤ t

}
, then

d(uτns , u
τn
t ) ≤

knt∑
k=kns +1

d(uτnk−1, u
τn
k ) =

knt∑
k=kns +1

ˆ tτnk

tτn
k−1

1

τn,k
d(uτnk−1, u

τn
k ) dr =

ˆ tτn
knt

tτn
kns

Anr dr.

Taking the limit n→∞ yields now

lim sup
n→∞

d(uτns , u
τn
t ) ≤

ˆ t

s
Ar dr. (3.1.17)

On the other hand, by the classical estimates (3.1.13) for the Minimizing Movement
scheme one has for t ∈ (tτk−1, tτk ]

E0(uτnt ) = E0(uτnk ) ≤ Etτk (uτnk ) + (1 + d2(u∗, u
τn
k ))

ˆ tτk

0
αt dt ≤ C + (1 + C)

ˆ T

0
αt dt.

Hence, the piecewise constant interpolation uτnt is contained in some sublevel of E0 uni-
formly in t ∈ [0, T ]. Estimate (3.1.13) additionally ensures the uniform d-boundedness of
uτn(t) and therefore, using the σ-compactness of E0, u

τn
t is contained in some σ-compact

setK for all t ∈ [0, T ] and for all n ∈ N. Therefore, we can apply the re�ned Arzelá-Ascoli
Theorem [4, Proposition 3.3.1] yielding the existence of a non-relabelled subsequence and
a limit curve u∗t : [0, T ]→ X such that uτnt

σ
⇀ u∗t for each �xed t ∈ [0, T ]. Consequently,

by a diagonal argument we can extend u∗t on [0,∞) such that u∗t ∈ AC2(0,∞; (X,d))
and uτnt

σ
⇀ u∗t for all t ∈ [0,∞).
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Theorem 3.1.19 (Convergence of the De Giorgi Interpolation). Under the same as-
sumptions as in Theorem 3.1.18. Let ũτnt be the corresponding De Giorgi interpolation
and let u∗t be the limit curve of the piecewise constant interpolation (uτnt )n∈N. Then,
there exists a non-relabelled subsequence of (ũτnt )n∈N such that

ũτnt
σ
⇀ u∗t ∀ t ∈ [0,∞) \Nα. (3.1.18)

where Nα is the set of all non-Lebesgue points of αt.

Proof. Fix T > 0 and de�ne in the same manner knt := max{k | tτnk ≤ t}. As before, we
prove that the family of De Giorgi interpolations ũτnt is contained in some σ-compact set
K̃. The d-boundedness of ũτnt follows by (3.1.10), since for t = tτnknt

+ σ

d2(ũτnt , u
τn
t ) = d2(ũτnt , u

τn
knt

) ≤ 4στ∗
τ∗ − σ

(
Φ(σ, t, uτnknt

, ũτnt )− c∗ +
1

τ∗ − σ
d2(u∗, u

τn
knt

)
)

=
4στ∗
τ∗ − σ

(
φ(σ, t, uτnknt

)− c∗ +
1

τ∗ − σ
d2(u∗, u

τn
knt

)
)

≤ 4στ∗
τ∗ − σ

(
Et(uτnknt )− c∗ +

1

τ∗ − σ
d2(u∗, u

τn
knt

)
)
.

The �rst term on the right hand side is bounded by the constant given in theorem
3.1.16. By the computation in the proof of theorem 3.1.18 the discrete solution uτnk is
bounded by some constant independent of t ∈ [0, T ] and τ ∈ (0, τ∗). The second term
is bounded by the classical estimates (3.1.13), hence the De Giorgi interpolation ũτn is
locally d-bounded.

Next we prove the boundedness of Et(ũτnt ), to do so, we use ũτnt ∈ Jσt (uτnknt
) and the

monotonicity property (3.1.8) to obtain

Et(ũτnt ) ≤ 1

2σ
d2(uτnknt

, ũτnt ) + Et(ũτnt ) = φ(σ, t, uτnknt
) ≤ Et(uτnknt ).

Hence, we exploit (E4) twice and the d-boundedness of ũτnt to get an estimate for E0(ũτnt ):

E0(ũτnt ) ≤Et(ũτnt ) + (1 + d2(u∗, ũ
τn
t ))

ˆ t

0
αt dt

≤Et(uτnknt ) + (1 + d2(u∗, ũ
τn
t )))

ˆ t

0
αt dt

≤Etτn
knt

(uτnknt
) + (1 + d2(u∗, u

τn
knt

))

ˆ t

tτn
knt

αt dt+ (1 + d2(u∗, ũ
τn
t )))

ˆ t

0
αt dt.

Again, the �rst terms is bounded by (3.1.13), the second term is also bounded by (3.1.13)
and the L1(0, T )-norm of αt, and the third term is bounded by the L1(0, T )-norm of αt
and the d-boundedness of ũτnt . Hence, the De Giorgi interpolations ũτnt are contained in
some sublevel of E0, which is by assumption (E3) compact in the σ-topology.
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3 Time-Dependent Minimizing Movement Scheme

To apply the re�ned Arzelá-Ascoli theorem [4, Proposition 3.3.1], it remains to prove
an estimate in terms of the modulus of continuity. Note that by Lemma 3.1.10, one has

d2(uτnt , ũ
τn
t )

≤d2(uτnknt
, uτnknt +1) + 2τn,k

t− tτnknt
tτnknt +1 − t

ˆ tτn
knt +1

t
αt dt

(
2 + d2(u∗, ũ

τn
t ) + d2(u∗, u

τn
knt

)
)

≤τnC(T )
(

1 +
t− tτnknt
tτnknt +1 − t

ˆ tknt +1τn

t
αt dt

)
.

Here, we estimated the �rst term by (3.1.13) and the last term using the d-boundedness
of uτnt and ũτnt . By the assumption (E4), the limit behavior of the last term is given by

lim sup
n→∞

t− tτnknt
tτnknt +1 − t

ˆ tknt +1τn

t
αt dt = 0 for each t ∈ [0,∞)\Nα,

where Nα is the set of all t ∈ [0,∞) which are not Lebesgue-points for αt. Therefore, we
can deduce for s, t ∈ [0, T ] \Nα

lim sup
n→∞

d2(ũτnt , ũ
τn
s ) ≤ lim sup

n→∞
3
(
d2(ũτnt , u

τn
t ) + d2(uτnt , u

τn
s ) + d2(uτns , ũ

τn
s )
)

≤ lim sup
n→∞

6τnC(T ) + lim sup
n→∞

3d2(uτnt , u
τn
s )

≤3

ˆ t

s
At dt.

Hence, we can apply the re�ned version of the Arzelà-Ascoli theorem [4, Proposition
3.3.1], to conclude the pointwise convergence of the sequence (ũτnt )n∈N of De Giorgi in-
terpolations on [0, T ] with respect to the σ-topology to an absolutely continuous curve
ũ∗t ∈ AC2(0,∞; (X,d)) for a non-relabelled subsequence. An additional diagonal ar-
gument yields the convergence with respect to the σ-topology on [0,∞) for a further
(non-relabelled) subsequence.

In particular, the two limit curves u∗t and ũ
∗
t have to agree, since by the compatibility

assumption to the weak topology σ one has at least on the set [0,∞) \Nα

d2(ũ∗t , u
∗
t ) ≤ lim inf

n→∞
d2(ũτnt , u

τn
t )

≤ lim inf
k→∞

τnC(T )
(

1 +
t− tτnknt
tτnknt +1 − t

ˆ tknt +1τn

t
αt dt

)
= 0.

Hence, the two limit curves ũ∗t and u
∗
t have to agree for each t ≥ 0.
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Theorem 3.1.20 (Existence of a Curve of Steepest Descent). Under the same as-
sumptions as in Theorem 3.1.18 and that E satis�es (E0). The limit curve u∗t from
there is a curve of steepest descent with respect Et in the sense of de�nition 2.3.3, i.e.,
u∗t ∈ AC2(0,∞; (X,d)) and u∗t satis�es the energy balance for each T > 0:

ET (u∗T ) +
1

2

ˆ T

0

∣∣u′t∣∣2 dt+
1

2

ˆ T

0
|∂Et|2(u∗t ) dt = E0(u∗0) +

ˆ T

0
∂tEt(u∗t ) dt.

Proof. Given the limit curve u∗t ∈ AC2 (0,∞; (X,d)) obtained by the time-dependent
Minimizing Movement scheme starting at uτ0 using the sequence of partitions (τn)n∈N of
of step sizes τn,k ∈ (0, τ∗) such that supk τn,k → 0 and (I1)&(I2) are satis�ed. Without

loss of generality uτnt
σ
⇀ u∗t and ũ

τn
t

σ
⇀ u∗t on the whole sequence. We know that the De

Giorgi interpolation satis�es the discrete energy inequality (3.1.15), i.e., for N = max{k |
tτnk ≤ T}

EtτnN (ũτn
tτnN

) +

N∑
k=1

1

2τn,k
d2(uτnk−1, u

τn
k ) +

1

2

ˆ tτnN

0
|∂Et|2(ũτnt ) dt

≤E0(uτn0 ) +

ˆ tτnN

0
∂tEt(ũτnt ) dt.

Fix T ∈ [0,∞) and compute the limes inferior of the l.h.s. of the equation above. Since
ũτn
tτnN

= uτnT
σ
⇀ u∗T , we have by the lower semi-σ-continuity in space and the absolute

continuity in time of Et :

ET (u∗T ) ≤ lim inf
n→∞

[
ET (ũτn

tτnN
)− (1 + d2(u∗, ũ

τn
tτnN

))

ˆ T

tτnN

αt dt
]
≤ lim inf

n→∞
EtτN (ũτtτN

).

In the proof of Theorem 3.1.18, we have seen that the discrete derivative Ant converges
weakly to At in L2 (0, T ), with At is one possible modulus of continuity in the de�nition
of absolute continuity. Furthermore, since the metric derivative |(u∗t )′| is the smallest
modulus of continuity, one has |(u∗t )′| ≤ At almost everywhere. The weak lower semi-
continuity of the L2 (0, T )-norm implies then:

1

2

ˆ T

0
|(u∗t )′|2 dt ≤ lim inf

n→∞

1

2

ˆ tτn
kn
T

0
(Ant )2 dt = lim inf

n→∞

knT∑
k=1

1

2τn,k
d2(uτnk−1, u

τn
k ).

The sequence (ũτnt )n∈N of De Giorgi interpolations converges weakly almost everywhere
in t, so using Fatou's lemma and the lower semi-σ-continuity of the local slope |∂Et|
yields for the last term on the l.h.s.

1

2

ˆ T

0
|∂Et|2(u∗t ) dt ≤

1

2

ˆ T

0
lim inf
n→∞

|∂Et|2(ũτnt ) dt ≤ lim inf
n→∞

1

2

ˆ tτn
kn
T

0
|∂Et|2(ũτnt ) dt.
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3 Time-Dependent Minimizing Movement Scheme

At last, we compute the limit of the right-hand side by applying the dominated conver-
gence theorem. Clearly, we have pointwise convergence of ∂tEt(ũτnt ) to ∂tEt(u∗t ) almost
everywhere. Since the De Giorgi interpolation ũτnt is locally contained in a σ-compact set
and ∂tEt is σ-continuous, the integrand is uniformly bounded by some constant. Hence
we can conclude with the dominated convergence theorem that

ˆ T

0
∂tEt(u∗t ) dt = lim

n→∞

ˆ tτn
kn
T

0
∂tEt(ũτnt ) dt.

Lastly, by (I2) we have

lim
n→∞

E0(uτn0 ) = E0(u0).

Summarized, we have the following energy inequality:

ET (u∗T ) +
1

2

ˆ T

0
|(u∗t )′|2 dt+

1

2

ˆ T

0
|∂Et|2(u∗t ) dt ≤ E0(u0) +

ˆ T

0
∂tEt(u∗t ) dt.

The reversed inequality follows now by the chain rule assumption (E0), since the energy
inequality above yields an upper estimate for the L1(0, T )-norm of |∂Et|(u∗t )|(u∗t )′|, i.e.,

ˆ T

0
|∂Et|(u∗t )|(u∗t )′| dt ≤

1

2

ˆ T

0
|(u∗t )′|2 dt+

1

2

ˆ T

0
|∂Et|2(u∗t ) dt

≤ E0(u0)− ET (u∗T ) +

ˆ T

0
∂tEt(u∗t ) dt.

The right-hand-side is is always �nite and therefore |∂Et|(u∗t )|(u∗t )′| ∈ L1
loc(0,∞). The

boundedness from above of Et(u∗t ) is given by

Et(u∗t ) ≤ lim inf
n→∞

EtτnN (uτnT ) = EtτnN (uτnN ) ≤ C

thanks to the classical estimate (3.1.13). Thus, we can apply the chain rule inequality
(3.1.3) to obtain

ˆ T

0
|∂Et|(u∗t )|(u∗t )′| dt ≤

1

2

ˆ T

0
|(u∗t )′|2 dt+

1

2

ˆ T

0
|∂Et|2(u∗t ) dt

≤ E0(u0)− ET (u∗T ) +

ˆ T

0
∂tEt(u∗t ) dt

≤
ˆ T

0
|∂Et|(u∗t )|(u∗t )′| dt.

Therefore all inequalities have to be equalities and u∗t is in fact a curve of steepest descent
for the functional Et.
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3.2 Application to Non-autonomous Fokker-Planck Equation

As a particular application of the temporal discretization in the general framework of
abstract metric spaces, we consider a particular example, namely the non-autonomous
and non-linear drift-di�usion equation

∂tρt = ∆ρmt + div(ρt∇Vt) + div(ρt(∇Wt ∗ ρt)), (3.2.1)

with non-�ux boundary condition in a domain Ω, which is an open, bounded and con-
nected domain Ω with Lipschitz continuous boundary ∂Ω and normal derivative n or is
equal to the entire space Ω = Rd. The sought-for solution ρt : [0,∞)×Ω→ [0,∞] should
be nonnegative and preserves the initial mass. Here, the by now standard framework of
this equation is the L2-Wasserstein space (P2(Ω),W2) with the free energy functional

Et(µ) :=

{´
Ω ρ log(ρ) + Vtρ+ 1

2(Wt ∗ ρ)ρ dx if m = 1,´
Ω

1
m−1ρ

m + Vtρ+ 1
2(Wt ∗ ρ)ρ dx if m > 1,

(3.2.2)

if µ = ρ dLd and otherwise we set Et(µ) =∞, see section 2.4 for more details.

Method. Using the notation of the L2-Wasserstein framework, the approximation via
the time-dependent implicit Euler method reads than as:

Scheme. For a partition τ := (τ1, τ2, . . .) of step sizes τk ∈ (0, τ∗) let an initial condition
ρτ0 be given that approximates ρ0. Then de�ne inductively a discrete solution (ρτk )k∈N
such that each ρτk with k = 1, 2, . . . is a minimizer of the Moreau-Yosida-penalized
energy functional

ρ 7→ Φ(τ, tτk , ρ
τ
k−1; ρ) :=

1

2τk
W2

2(ρτk−1, ρ) + Etτk (ρ), (3.2.3)

where tτk =
∑k

l=1 τl for k ≥ 1.

De�ne the corresponding piecewise constant interpolation ρτt : [0,∞)→ P2(Ω) via

ρτ0 = ρτ0 , ρτt = ρτk for t ∈ (tτk−1, tτk ] and k ∈ N.

Strategy of the Proof. The aim of this section is to apply the variational formu-
lation of time-dependent implicit Euler method to the non-autonomous and non-linear
Fokker-Planck equation (3.2.1) and to strengthen the convergence results of the previous
section 3.1. It is clear, that under mild assumptions on Vt and Wt, the functional Et
falls into the class of feasible free energy functionals of the previous section 3.1 and we
recover the results therein. However, additional supplementary structural properties are
derived, to mention in particular the time-discrete Euler-Lagrange equations (3.2.5) and
the re�ned BV(Ω)-estimates on (ρτk )m (3.2.10), see section 3.2.2. The convergence of the
approximation ρτt is proven in section 3.2.3 by means of the extension of Aubin-Lions
Compactness Theorem 2.5.4.
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3 Time-Dependent Minimizing Movement Scheme

3.2.1 Setup and Assumptions

Throughout the rest of this section, Ω ⊆ Rd is either equal to Rd or is equal to some
open, bounded and connected domain with Lipschitz-continuous boundary ∂Ω. In this
case, the assumptions on the con�nement potential Vt and the interaction potential Wt

read as follows:

Assumption 3.2.1 (Regularity Assumptions on Vt and Wt). Let the con�nement po-
tential Vt ∈ C1([0,∞)× Ω) and the symmetric interaction kernel Wt ∈ C1([0,∞)× Rd)
be such that

(F1) There exists a non-negative constant d1 such that

|Vt(x)|, |Wt(x)|, |∇Vt(x)|, |∇Wt(x)|, |∂tVt(x)|, |∂tWt(x)| ≤ d1(1 +
∥∥x2
∥∥).

(F2) There exists a non-negative function αt ∈ L1
loc(0,∞) such that

|Vt(x)− Vs(x)| , |Wt(x)−Ws(x)| ≤ (1 + ‖x‖2)

ˆ t

s
αt dt.

(F3) There exists a non-negative function α̃t ∈ L1
loc(0,∞) such that

|∇Vt(x)−∇Vs(x)| , |∇Wt(x)−∇Ws(x)| ≤ (1 + ‖x‖2)

ˆ t

s
α̃t dt.

Remark 3.2.2. The regularity assumptions on Vt and Wt and the bounds (F1) guar-
antee, that Ft satis�es the LSCC-assumption 3.1.2. Assumption (E4) follows from
(F2) and (E5) follows from the uniform bounds on the time-derivatives ∂tVt and ∂tWt.
Lastly, the condition (F3) is necessary to perform the discrete-to-continuous limit in the
Euler-Lagrange equations. Hence, the existence of the discrete solution (ρτk )k∈N and the
classical estimates are also valid in this case.

3.2.2 Properties of the Time-Dependent MMS

Given a partition τ = (τ1, τ2, . . .) with time step sizes τn ∈ (0, τ∗) and a pair of initial
data (ρτ0 , ρ

τ
1 ) which approximates the initial datum ρ0, which satisfy (I1)&(I2). Then,

the discrete solution (ρτk )k∈N for E on (P2(Ω),W2) de�ned in (3.1.2) and equivalently
de�ned by the recursive formula

ρτk+1 ∈ argmin
ρ∈P2(Ω)

Φ(τ, tτk , ρ
τ
k ; ρ) for k ∈ N

is well-posed by theorem 3.1.9, since the energy Et satis�es the abstract assumptions
(E1)�(E5) due to (F1)�(F3). The rest of this section is devoted to deriving structural
properties of the Minimizing Movement scheme, namely: Step size independent estimates,
discrete Euler-Lagrange equations, better a priori estimates.
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3.2 Application to Non-autonomous Fokker-Planck Equation

Step Size Independent Estimates. The following two estimate is a specialization
of the classical estimate (3.1.13).

Lemma 3.2.3 (Classical Estimates II). For �xed T > 0, there exists a constant C,
independent of the partition τ , such that the corresponding discrete solutions (ρτk )k∈N
satis�es for all k with tτk < T :

M2(ρτk ) ≤ C(T, τ∗, ρ0), Um(ρτk ) ≤ C(T, τ∗, ρ0). (3.2.4)

Proof. The �rst bound of (3.2.4) follows from the fact that one can estimate the second
moment in terms of the Wasserstein distance, i.e.,

M2(ρτk ) ≤ 2W2
2(ρτk , µ∗) + 2M2(µ∗).

The �rst term is bounded by the classical estimate (3.1.13) and hence we established
the �rst bound (3.2.4). The second bound follows than straight forward by the growth
bounds (F1) of Vt and Wt, i.e.,

Um(ρτk ) ≤ Et(ρτk )−
ˆ

Ω
Vtρ

τ
k + (Wt ∗ ρτk )ρτk dx ≤ E(ρτk ) + C(1 +M2(ρτk )).

Using the �rst result and the classical estimate (3.1.13) yields the desired bound.

Discrete Euler-Lagrange Equation. In the next theorem, we derive approximate
Euler-Lagrange equations for the weak formulation of the non-autonomous and non-
linear Fokker-Planck equation (3.2.1). The key idea is the JKO-method introduced in
[54] and recalled in section 2.4.

Theorem 3.2.4 (Discrete Euler-Lagrange Equations). The discrete solution (ρτk )k∈N
obtained by the time-dependent Minimizing Movement scheme (3.1.2) satis�es for each
k ∈ N and for all vector �elds ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on ∂Ω:

0 =
1

τk

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)−
ˆ

Ω
div(ξ) (ρτk )m dx

+

ˆ
Ω
〈ξ,∇Vtτk 〉 ρ

τ
k + 〈ξ,∇Wtτk

∗ ρτk 〉 ρτk dx,
(3.2.5)

where pτk ∈ Γ(ρτk , ρ
τ
k−1) is the optimal transport plans.

Proof. Fix ρτk , ρ
τ
k−1 and ξ ∈ C∞c (Ω,Rd) with ξ·n = 0 on ∂Ω. We consider the perturbation

ρs of ρτk as the solution of the Transport equation with velocity �eld ξ starting at ρτk ,
i.e., ρs is the solution of (2.4.6) as in section 2.4. The �rst variation of the energy Etτk
along the solution to the Transport equation amounts to

d

ds

[
Etτk (ρs)

]
s=0

=

ˆ
Ω
−div(ξ) (ρτk )m + 〈ξ,∇Vtτk 〉 ρ

τ
k + 〈ξ,∇Wtτk

∗ ρτk 〉 ρτk dx. (3.2.6)

45



3 Time-Dependent Minimizing Movement Scheme

The di�erentiability of the quadratic L2-Wasserstein distance W2 along the solution ρs

of the Transport equation is more technical, for the proof we refer to [4, 92]. Since
ρτk−1, ρτk , ρs are all absolutely continuous measures, Theorem 8.13 from [92] is applicable
and we can conclude:

d

ds

[ 1

2τk
W2

2(ρτk−1, ρs)
]
s=0

=
1

τk

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y), (3.2.7)

where pkτ ∈ Γ(ρτk , ρ
τ
k−1) is the optimal transport plan. Since ρτk is a minimizer of the time-

dependent Moreau-Yosida penalization Φ(τ, tτk , ρ
τ
k−1; ·) and since s 7→ Φ(τ, tτk , ρ

τ
k−1; ρs) is

di�erentiable at s = 0,

0 =
d

ds

[
Φ(τ, tτk , ρ

τ
k−1; ρs)

]
s=0

=
1

τk

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)−
ˆ

Ω
div(ξ) (ρτk )m dx

+

ˆ
Ω
〈ξ,∇Vtτk 〉 ρ

τ
k + 〈ξ,∇Wtτk

∗ ρτk 〉 ρτk dx.

Indeed, we have the desired equality (3.2.5).

Re�ned Regularity. The already obtained regularity results for the interpolated so-
lution ρτt are not su�cient to pass to the limit in the �rst term of the discrete Euler-
Lagrange equation (3.2.5). Nevertheless, the following bounds in the BV(Ω)-norm of
(ρτk )m are su�cient to obtain the desired regularity results. These estimates can be
derived from the discrete Euler-Lagrange equation quite naturally.

Proposition 3.2.5 (Step Size Independent Local BV(Ω)-estimate). Fix a time hori-
zon T > 0. There exists a constant C, independent of the partition τ , such that the
corresponding discrete solutions (ρτk )k∈N satisfy for all k ∈ N with tτk ≤ T :

‖(ρτk )m‖
BV(Ω) ≤ C

(
1 +

W2(ρτk , ρ
τ
k−1)

τk

)
. (3.2.8)

Proof. The L1(Ω)-norm of (ρτk )m is equal to (m− 1)Um evaluated at ρτk . Hence, we can
bound the �rst term in the de�nition of the BV(Ω)-norm uniformly by (3.2.4). In order
to estimate the variation of (ρτk )m, we estimate the term inside the supremum of the
de�nition of V ((ρτk )m,Ω). Thus let ξ ∈ C∞c (Ω,Rd) with ‖ξ‖∞ ≤ 1, then we can use the
discrete Euler-Lagrange equations (3.2.5) to substitute

ˆ
Ω

(ρτk )m div(ξ) dx =

ˆ
Ω
〈ξ,∇Vtτk 〉ρ

τ
k + 〈ξ,∇Wtτk

∗ ρτk 〉ρτk dx

+
2

τk

ˆ
Ω2

〈ξ(x), x− y〉 dpτk(x, y).

(3.2.9)

By (F1) we have quadratic growth bounds for ∇Vt and ∇Wt, so using the step size
independent bounds on the second moment (3.2.4), we can estimate the �rst terms in
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3.2 Application to Non-autonomous Fokker-Planck Equation

(3.2.9) as follows:

ˆ
Ω
〈ξ,∇Vtτk +∇Wtτk

∗ ρτk 〉ρτk dx ≤ 2d1 ‖ξ‖∞ (1 +M2(ρτk )) ≤ 2d1(1 + C).

The second integral on the right-hand side of (3.2.9) can be estimated using Jensen's
inequality∣∣∣ ˆ

Ω2

〈ξ(x), x− y〉 dpkτ (x, y)
∣∣∣ ≤ ‖ξ‖∞ (ˆ

Ω2

‖x− y‖2 dpkτ (x, y)
)1/2

≤W2(ρτk , ρ
τ
k−1).

Hence, we have the following upper bound for the variation of (ρτk )m:

V ((ρτk )m,Ω) ≤ C
(

1 +
W2(ρτk , ρ

τ
k−1)

τk

)
.

In conclusion, the discrete solution (ρτk )k∈N satis�es the desired bound (3.2.8).

Theorem 3.2.6 (Step Size Independent Global L2(0, T ;BV(Ω))-estimate). Fix a time
horizon T > 0. There exists a constant C, independent of the partition τ , such that the
corresponding interpolated solution ρτt satis�es:

‖(ρτt )m‖
L
2(0,T ;BV(Ω)) ≤ C. (3.2.10)

Proof. We use the classical estimates on the kinetic energy (3.1.13) and the result from
Proposition 3.2.5 to estimate the L2(0, T ;BV(Ω))-norm of (ρτt )m. De�ne as usual NT :=
max{k ∈ N | tτk ≤ T}, then we have

‖(ρτt )m‖2
L
2(0,T ;BV(Ω)) ≤

NT+1∑
k=1

ˆ tτk

tτ
k−1
‖(ρτk )m‖2

BV(Ω) dt ≤ C
NT+1∑
k=1

τk

(
1 +

W2(ρτk , ρ
τ
k−1)

τk

)2
.

By the a Cauchy type inequality we obtain

‖(ρτt )m‖2
L
2(0,T ;BV(Ω)) ≤ C

NT+1∑
k=1

[
τk +

W2
2(ρτk , ρ

τ
k−1)

τk

]

≤ C(T + τ∗) + C

NT+1∑
k=0

W2
2(ρτk , ρ

τ
k−1)

τk
.

Finally, we can conclude with the step size independent bounds on the kinetic energy
(3.1.13) the desired estimate (3.2.10) for some universal constant C, independent of the
partition τ .
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3 Time-Dependent Minimizing Movement Scheme

3.2.3 Convergence

In this section, we prove our main theorem concerning the strong convergence of the
approximation ρτt to the solution of the non-linear Fokker-Planck equation (3.2.1). The
convergence in the strong Lp(0, T ;Lm(Ω))-topology for any p ∈ [1,∞) follows by the
improved L2(0, T ;BV(Ω))-estimates (3.2.10) and by the general version of the Aubin-
Lions Theorem 2.5.4, c.f. [85, Theorem 2].

Theorem 3.2.7 (Strong Convergence in Lp(0, T ;Lm(Ω))). There exists a further (non-
relabelled) subsequence (τn)n∈N such that for all T > 0 and any p ∈ [1,∞) and any
bounded Θ ⊆ Ω:

ρτnt → ρ∗t strongly in Lp(0, T ;Lm(Θ)) as n→∞.

Proof of Theorem 3.2.7 for Ω ( Rd. Fix T > 0. In order to prove the strong convergence
result we use the Aubin-Lions Theorem 2.5.4 with the underlying Banach space X =
Lm(Ω). We consider the functional A : Lm(Ω)→ R, de�ned via

A(ρ) :=

{
‖ρm‖2

BV(Ω) if ρ ∈ P2(Ω) and ρm ∈ BV(Ω),

+∞ else.

Using the lemma 2.5.2 in the introductory section it follows that the functional A is
measurable, lower semi-continuous with respect to the Lm(Ω)-topology, and has compact
sublevels. Next, we choose as pseudo-distance g = W2 on Lm(Ω), i.e.,

g(f, h) :=

{
W2(fLd(Ω), hLd(Ω)) if f, h ∈ Lm(Ω),

+∞ else.

Note, we have g(ρ, ν) = W2(ρ, ν) for absolutely continuous measures ρ, ν ∈ P2(Ω) ∩
Lm(Ω). The L2-Wasserstein distance is lower semi-continuous with respect to the Lm(Ω)-
topology and clearly compatible with A, see lemma 2.5.2.

Next, we verify the assumption (2.5.1) on (ρτnt )n∈N of Theorem 2.5.4. By the re�ned
L2(0, T ;BV(Ω))-estimates of Theorem 3.2.6 it is clear, that the sequence (ρτnt )n∈N is tight
with respect to A, since we have:

sup
n∈N

ˆ T

0
‖(ρτnt )m‖2

BV(Ω) dt = sup
n∈N
‖(ρτnt )m‖2

L
2(0,T ;BV(Ω)) ≤ C <∞.

For the proof of the relaxed averaged weak integral equicontinuity condition of (ρτnt )n∈N
with respect to W2, we use the auxiliary inequality (3.1.17) to obtain

lim sup
n→∞

W2(ρτns+t, ρ
τn
s ) ≤

ˆ s+t

s
Ar dr.
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3.2 Application to Non-autonomous Fokker-Planck Equation

Indeed, Fatou's Lemma and Fubini's Theorem yields

lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0

ˆ T−t

0
W2(ρτns+t, ρ

τn
s ) ds dt ≤ lim inf

h↘0
h

ˆ T

0
At dt = 0.

Therefore, we can conclude that there exists a (non-relabeled) subsequence such that
(ρτnt )n∈N converges in M(0, T ;Lm(Ω)) to some curve ρ+

t . Due to the uniform bounds
in L∞(0, T ;Lm(Ω)), the sequence ρτnt is also uniformly bounded in Lp(0, T ;Lm(Ω)) and
we get the desired convergence result with Remark 2.1.1. Moreover, the limit curves ρ+

t

and ρ∗t have to coincide, since ρτnt converges also in measure on Ω to ρ+
t and ρ∗t , so both

limits have to be equal.

In the case of Ω = Rd, we have to alter the proof given above since the embedding
of BV(Rd) into L1(Rd) is not compact anymore. So we restrict ourself to the compact
domains Θ = BR(0). The set Θ is clearly compact with Lipschitz-continuous boundary
∂Θ, so the embedding of BV (Θ) into L1(Θ) is compact again.

Proof of Theorem 3.2.7 for Ω = Rd. Fix T > 0. Without loss of generality we can as-
sume Θ = BR(0), since every compact subset Θ̃ b Rd is contained in the closure of
a ball with radius R and convergence in Lm(0, T ;Lm(BR(0))) implies convergence in
Lm(0, T ;Lm(Θ̃)).

As before, we want to use the Aubin-Lions Theorem 2.5.4 for the Banach space Lm(Θ)
equipped with the natural topology induced by the Lm(Θ)-norm applied to (ρτnt |Θ)n∈N,
the restriction of the density ρτnt to the subspace Θ. In this case we consider the functional
Ã : Lm(Θ)→ R, de�ned via

Ã(ρ) :=

{
‖ρm‖2

BV(Θ) if ρ ∈Mf (Θ) and ρm ∈ BV(Θ),

+∞ else.

Now, the functional Ã is measurable, lower semi-continuous with respect to the Lm(Θ)
topology, and has compact sublevels. Since Ã(ρ|Θ) ≤ A(ρ), we obtain by the same

calculations as above the tightness of (ρτnt |Θ)n∈N with respect to Ã.
Since the measure ρ|Θ does not have unit mass anymore, we cannot consider the L2-

Wasserstein distance W2 as pseudo-distance anymore. However, we can use the following
pseudo-distance g̃:

g̃(ρ, ν) := inf {W2(ρ̃, ν̃) | ρ̃ ∈ Σ(ρ), ν̃ ∈ Σ(ν)} ,
Σ(ρ) :=

{
ρ̃ ∈P(Rd) | ρ̃|Θ = ρLd, M2(ρ̃) ≤ C

}
,

where C is the constant from the classical estimates (3.2.4) for the speci�c T . Since Σ(ρ)
and Σ(ν) are compact sets with respect to the narrow topology, the in�mum is attained
at some pair ρ̃∗, ν̃∗. The pseudo-distance g̃ is compatible with Ã, i.e., if ρm, νm ∈ BV(Θ)
and g̃(ρ, ν) = 0 then ρ = ν a.e. on Θ. The lower semi-continuity of the pseudo-distance
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3 Time-Dependent Minimizing Movement Scheme

g̃ with respect to the Lm(Θ)-topology can be proven as follows. Choose to convergent
sequences ρn → ρ and νn → ν in Lm(Θ) with supn g̃(ρn, νn) < ∞. By the remark
from above, there exists ρ̃n, ν̃n such that g̃(ρn, νn) = W2(ρ̃n, ν̃n). Since the second
moments are by de�nition of Σ(ρ) uniformly bounded, we can extract a non-relabeled
convergent subsequence which converges narrowly to ρ̃ ∈ Σ(ρ), ν̃ ∈ Σ(ν). By the lower
semi-continuity of W2 with respect to narrow convergence, we get in the end

g̃(ρ, ν) ≤W2(ρ̃, ν̃) ≤ lim inf
n→∞

W2(ρ̃n, ν̃n) = lim inf
n→∞

W2(ρn, νn).

Therefore, the pseudo-distance g̃ is lower semi-continuous with respect to the Lm(Θ)-
topology. Thus, g̃ satis�es the assumptions of theorem 2.5.4. Further, by de�nition
one has g̃(ρ|Θ , ν|Θ) ≤ W2(ρ, ν). Thus we derive, using the same proof as above, the
equicontinuity of (ρτnt |Θ)n∈N with respect to the pseudo-distance g̃.

Hence, we can conclude that there exists a non-relabeled subsequence of ρτnt |Θ which
converges in M(0, T ;Lm(Θ)) to some limit ρ+

t . As before, we use the uniform bounds
in L∞(0, T ;Lm(Θ)), to obtain the strong convergence in Lp(0, T ;Lm(Θ)). Moreover, the
limit curves ρ+

t and ρ∗t |Θ have to coincide on Θ, since ρτnt |Θ converges also in measure
on Θ to ρ+

t and ρ∗t |Θ, so both limits have to be equal on Θ. Two diagonal arguments in
T →∞ and R→∞ yield the desired convergence result.

To complete the proof of the main theorem 3.0.2, we have to validate that ρ∗t is indeed
a solution to (3.2.1) in the sense of distributions.

Theorem 3.2.8 (Solution of the Non-autonomous and Non-linear Fokker-Planck Equa-
tion). The limit curve ρ∗t of theorem 3.2.7 is a solution to the non-autonomous and
non-linear Fokker-Planck equation with no-�ux boundary condition (3.2.1) in the weak
sense of (3.2.11).

Proof. Fix ϕt ∈ C∞c ([0,∞) × Ω) with ∇ϕt · n = 0 on ∂Ω and let be T > 0 and Θ b Ω
be compact such that supp ϕt ⊂ [0, T ]×Θ. Further, de�ne Nn

T := {k | tτnk ≤ T} and the
piecewise constant interpolation ϕτnt of ϕt by

ϕτn0 = ϕ0, ϕτnt = ϕtτnk
for t ∈ (tτnk−1, t

τn
k ] and k ∈ N.

Similarly, we de�ne V
τn
t and W

τn
t as the piecewise constant interpolation of Vt and Wt,

respectively.

For each k ∈ N insert the smooth function ϕtτnk
in the discrete Euler-Lagrange equation

(3.2.5) for the vector �eld ξ ∈ C∞c (Θ). Summing the resulting equations from k = 1 to
Nn
T + 1 and multiplying with τk,n yields:

0 =

ˆ T

0

ˆ
Θ
−∆(ϕτnt ) (ρτnt )m + 〈∇(ϕτnt ),∇V τnt 〉 ρτnt + 〈∇(ϕτnt ),∇W τn

t ∗ ρτnt 〉 ρτnt dx dt

+

Nn
T∑

k=1

ˆ
Θ2

〈∇ϕtτnk (x), x− y〉 dpτnk (x, y) =: I1 + I2 + I3 + I4.
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3.2 Application to Non-autonomous Fokker-Planck Equation

Due to the strong convergence in Lm(0, T ;Lm(Θ)) of ρτnt to ρ∗ and due to the uniform
convergence of ∆ϕτnt to ∆ϕt

lim
n→∞

I1 =

ˆ T

0

ˆ
Θ
−∆ϕt (ρ∗t )

m dx dt.

The second and third integrals I2&I3 converge to

lim
n→∞

I2 + I3 =

ˆ T

0

ˆ
Θ
〈∇(ϕτnt ),∇V τnt 〉 ρτnt + 〈∇(ϕτnt ),∇W τn

t ∗ ρτnt 〉 ρτnt dx dt

thanks to the convergence of ρτnt to ρ∗t in the strong L1(0, T ;Lm(Θ))-topology, due to
(F3) and (3.2.4) (and therefore the uniform convergence of ∇V τnt to ∇Vt and ∇W τn

t

to ∇Wt, respectively). In order to calculate the limit of I4, we can expand by Taylor's
formula the integrand as follows

I4 =

Nn
T∑

k=1

ˆ
Θ2

〈∇ϕtτnk (x), x− y〉 dpτnk (x, y)

=

Nn
T∑

k=1

ˆ
Θ2

ϕtτnk
(x)− ϕtτnk (y) +O(‖x− y‖2) dpτnk (x, y)

=

Nn
T∑

k=1

ˆ
Θ

(
ρτnk (x)− ρτnk−1(x)

)
ϕτntk (x) dx+

Nn
T∑

k=1

O(W2
2(ρτnk , ρ

τn
k−1)).

Rearrange the �rst term and use (3.1.13) to bound the second term, to obtain

I4 =−
ˆ T

0

ˆ
Θ
∂tϕt+τk,nρ

τn
t dx dt−

ˆ
Θ
ϕ0ρ

τn
0 dx+O(sup

k
τk,n).

In combination with the narrow convergence of ρτnt , the uniform convergence of ∂tϕt+τk,n
to ∂tϕt and the narrow convergence of ρτn0 to ρ0 the limit I4 and is given by

lim
n→∞

I4 = −
ˆ T

0

ˆ
Θ
∂tϕtρ

∗
t dx dt−

ˆ
Θ
ϕ0ρ

0 dx.

Finally, we can conclude that for an arbitrary test function ϕt the limit curve ρ∗t satis�es:

ˆ ∞
0

ˆ
Ω
−∆ϕt(ρ

∗
t )
m + 〈∇ϕt,∇Vt〉 ρ∗t + 〈∇ϕt,∇Wt ∗ ρ∗t 〉 ρ∗t dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

∗
t dx dt+

ˆ
Ω
ϕ0 ρ

0 dx.

(3.2.11)

This yields that ρ∗t is a solution to the non-autonomous and non-linear Fokker-Planck
equation (3.2.1) in the weak sense.
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4 Time-Homogenization of Gradient Flows

This chapter is based on the second part of the joint work with Jonathan Zinsl [82]. It is
devoted to the time-homogenization of non-autonomous evolution systems in the high-
frequency limit. I.e., we study the limit ω →∞ of the family (uωt )ω of curves of steepest
descent with respect to the time-dependent and periodic free energy functionals Eωt in
the separable, complete metric space (X,d) when the driving free energy functional Et
is periodic and λ-convex and the oscillatory part Pt of the free energy functional Et is
Lipschitz-continuous in space uniformly in time.
Further, we are interested in the high-frequency limit of the non-autonomous Fokker-

Planck equation even in situations where the con�nement potential Vt and the interaction
kernel Wt are not λ-convex.

Main Idea in Short. In the simple Euclidean setting, when X = Rd, d is induced
by the Euclidean metric, and Et ∈ C∞([0,∞) × Rd) is convex, we decompose the free
energy functional E into the time-averaged part E , de�ned by E(u) =

ffl
Et(u) dr, and the

remaining oscillatory party Pt, de�ned by Pt := Et−E . The aim of this proof is to derive
a comparison principle or uωt and u∞t , the solution of the gradient �ow equation with
respect to E . We can resort on the implicit representations of the two solutions uωt and
u∞t , which are given by

uωt = u0 −
ˆ t

0
∇Eωr(uωr ) dr and u∞t = u0 −

ˆ t

0
∇E(u∞r ) dr.

Inserting these representation into the the squared distance of uωt and u∞t yields

∥∥uωt − u∞t ∥∥2
=

ˆ t

0
〈∇Eωr(uωr ), u∞t − uωt 〉+ 〈∇E(u∞r ), uωt − u∞t 〉 dr

≤
ˆ t

0
Eωr(u∞r )− Eωr(uωr ) + E(uωr )− E(u∞r ) dr.

Note, the last inequality is due to the convexity of the free energy functional Et. Using
Et − E = Pt, we get the fundamental inequality of the this chapter

∥∥uωt − u∞t ∥∥2 ≤
ˆ t

0
Pωr(u∞r )− Pωr(uωr ) dr. (4.0.1)

Now with this inequality at hand, one is able to prove � after a tedious and technical
calculation, where one exploits the periodicity and the uniform Lipschitz-continuity in
space of Pt � the convergence of the family (uωt )ω to u∞t as ω →∞ with rate O(1/

√
ω).
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4 Time-Homogenization of Gradient Flows

Contribution&Method. The comparatively weak solution concept of curves of steep-
est descent when solutions solve the EDE is not suitable to pass to the high-frequency
limit. Hence, we can not extend our results from the previous chapter 3 in the case that
the free energy functional Et satis�es solely (E0)�(E5).
As opposed to this the stronger notion of solutions in the sense of the EVI when the

free energy functional Et is additional λ-convex is eligible. Here, it is remarkable that the
fundamental inequality (4.0.1) can be derived from the EVI (2.3.2), see (4.1.7). With this
inequality and the assumption on uniform Lipschitz-continuity of the oscillatory part Pt
we can derive the desired convergence result. The necessary ω-uniform stability results
to pass to the limit ω →∞ are retrieved by transferring the classical estimates (3.1.16)
and the better a priori bounds (3.2.10) from the discrete level of the time-dependent
Minimizing Movement scheme to the continuous level.
In the case of the non-autonomous Fokker-Planck equation, we relinquish the assump-

tion on the λ-convexity of the free energy functional Et. It is still possible to pass to the
high-frequency limit and prove that the solutions ρωt from (4.2.1) converge in a strong
topology to a limit curve ρ∞t which is the solution to the autonomous Fokker-Planck
equation with time-averaged con�nement potential V and interaction kernel W .

Main Results. Our main result of this part concerning the limit behaviour of the
family (uωt )ω with respect to the semi-convex free energy functional Eωt reads as follows:
Theorem 4.0.1 (Abstract Metric Space). Assume (E1)�(E3), (E4'), (E5), and (E6)
from Assumptions 3.1.2&3.1.3&4.1.1holds. Then, the family (uωt )ω of curves of steepest
descent with respect to the free energy Eωt converges to a solution u∞t of the gradient
�ow with respect to the averaged energy E, where one de�nes E(u) :=

ffl
Et(u) dt.

Furthermore, there exists a constant C, depending only on u0 and T such that we have
the uniform convergence

d(uωt , u
∞
t ) ≤ C√

ω
∀ t ∈ [0, T ].

Our main result concerning the limit behaviour in the high-frequency limit as ω →∞
of the family (ρωt )ω of solutions to (4.2.1) reads as follows.

Theorem 4.0.2 (Fokker-Planck Equation). Let Ω ⊂ Rd be either an open, bounded,
and connected domain with Lipschitz continuous boundary ∂Ω or let Ω = Rd. Further,
assume m ≥ 1 and that Vt,Wt satisfy additionally to (F1)�(F3) as in Assumption 3.2.1
also (F4) speci�ed in Assumption 4.2.1. Consider a sequence (ωn)n∈N with ωn →∞.
For every T > 0, there exists a (non-relabelled) subsequence of (ωn)n∈N and a curve

ρ∞t : [0,∞) × Ω → [0,∞) such that the family (ρωnt )n∈N of weak solutions to (4.2.1)
obtained from (3.0.2) converges to ρ∞t ,

ρωnt ⇀∗ ρ∞t narrowly for every t ∈ [0,∞),

ρωnt → ρ∞t strongly in Lp(0, T ;Lm(Θ)) as n→∞,
with Θ = Ω if the latter is bounded or Θ ⊂ Rd any bounded subset of Rd and any
p ∈ [1,∞).
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4.1 Application to Gradient Flows in Abstract Metric Space

This section is devoted to study the high-frequency limit ω → ∞ of solutions uωt to the
non-autonomous evolution problem of the form

u̇ωt = −∇XEωt(uωt ), uω0 = u0, (4.1.1)

where the driving free energy functional Et obeys a sort of λ-convexity. In this case, there
exists a solution uωt to (4.1.1) in the sense of the evolution variational equation which
solves the evolution variational equation

1

2
d2(uωt , w)− 1

2
d2(uωs , w) ≤

ˆ t

s

[
Eωr(w)− Eωr(uωr )− λ

2
d2(uωr , w)

]
dr (4.1.2)

for each 0 ≤ s ≤ t and any w ∈ D(E0). The aim is to prove that the family of solutions
(uωt )ω converges with convergence rate one-half to the solution u∞t to the gradient �ow
with respect to the time-averaged free energy functional E , de�ned by E(u) =

ffl
Et(u) dt

for each u ∈ X.

Convexity. In the context of abstract metric spaces one notion of convexity of the free
energy functional E , which is well-adapted to the gradient �ow theory, is the famous As-
sumption 4.0.1 in [4]. In their recent work [39], Ferreira and Valencia-Guevara extended
this notion of convexity for time-dependent free energy functionals Et: There exists a
function λt such that for every triple u, v0, v1 ∈ X, there exists a curve γt : [0, 1] → X
with γ0 = v0, γ1 = v1 and

Φ(τ, t, u; γs) ≤ (1− s)Φ(τ, t, u; v0) + sΦ(τ, t, u; v1)− 1

2

(1

τ
+ λt

)
s(1− s)d2(v0, v1)

where Φ is the Moreau-Yosida functional of the free energy functional Et. With this
assumption on the free energy functional Et it is possible to construct solutions u∗t of
the gradient �ow (4.1.1) in the sense of the EVI (4.1.2) by means of the time-dependent
Minimizing Movement scheme (3.0.2).

Strategy of Proof. The strategy of the proof for the high-frequency limit is divided
into two parts. Firstly, we derive the necessary compactness estimates with the help of
the time-dependent Minimizing Movement scheme. The key ingredient in the derivation
of these ω-independent estimates is the uniform Lipschitz-continuity in space of the os-
cillatory part Pt of the free energy functional Et, de�ned by Pt(u) := Et(u)− E(u). This
rather restrictive assumption uncouples the dependency on the frequency ω from the
classical estimates (3.1.13), see section 4.1.2. Secondly, we exploit in section 4.1.3 the
evolution variational inequalities for Eωt and E to establish the metric surrogate of the
comparison principle (4.0.1). Now, combining the ω-independent estimates and the com-
parison principle yields after a technical and tedious calculation the desired convergence
result of (uωt )ω to u∞t with explicit (sub-optimal) convergence rate one half.
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4.1.1 Setup and Assumption

Given a separable, complete metric space (X,d). Additionally to the assumptions (E1)�
(E3), and (E5) on the proper free energy functional Et from the previous section 3.1, we
shall also assume the following periodicity assumptions.

Assumption 4.1.1. Decompose the free energy functional Et = E+Pt, where E denotes
the time-mean of Et, i.e., E(u) :=

ffl
Et(u) dt, and Pt is the oscillatory part with zero mean

and period p. The oscillatory part Pt : [0,∞)×X→ R satis�es additionally:

(E4') Lipschitz-continuity in space: There exists L ≥ 0 such that for all u, v ∈ X
and t ∈ [0,∞)

|Pt(u)− Pt(v)| ≤ Ld(u, v).

(E6) Semi-Convexity: There exists a function λt such that for every u, γ0, γ1 ∈ D(Et)
and every τ ∈ [0, τ∗), there exists a continuous curve γt : [0, 1] → X joining the
given end points γ0 and γ1, along which the penalized energy Φ satis�es

Φ(τ, t, u; γs) ≤(1− s)Φ(τ, t, u; γ0) + sΦ(τ, t, u; γ1)− 1

2

(1

τ
+ λt

)
s(1− s)d2(γ0, γ1).

4.1.2 Classical Estimates Revisited

In this section we prove the stability of the classical estimate (3.1.13) in the discrete-
to-continuous limit. Note, these estimates are a priori not stable in the high-frequency
limit. However, the additional spatial Lipschitz-continuity (E4') of the oscillatory part
Pt yields the classical bounds independent of ω.
Lemma 4.1.2 (Classical Estimates Revisited). Let u0 ∈ D(E0) and let uωt be the curve
of steepest descent with respect to Eωt. For �xed T > 0, there exists a constant C,
independent of ω, such that for all t ≤ T there holds:∥∥|(uωt )′|

∥∥
L
2(0,T )

≤ C, E0(uωt ) ≤ C, d2(u∗, u
ω
t ) ≤ C. (4.1.3)

Proof. We will prove the estimates on a discrete level and then we use the lower semi-σ-
continuity of each bound to obtain the desired result. For this purpose �x a partition τ ,
with supk τk <

τ∗
2 and (I1) from Assumption 3.1.6, and let

(
uτ ,ωk

)
k∈N be the corresponding

discrete solution with uτ ,ω0 = u0. As in the proof of Theorem 3.1.16 we derive for the
discrete solutions (uτ ,ωk )k∈N the inequality

N∑
k=1

1

2τk
d2(uτ ,ωk−1 , u

τ ,ω
k ) ≤ E(u0)− E(uτ ,ωN ) +

N−1∑
k=1

[
Pωtτk (uτ ,ωk−1 )− Pωtτk (uτ ,ωk )

]
.

Exploit the Lipschitz-continuity of Pt (E4') and use Young's inequality to further estimate
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the right-hand-side to obtain

N−1∑
k=1

[
Pωtτk (uτ ,ωk−1 )− Pωtτk (uτ ,ωk )

]
≤
N−1∑
k=1

Ld(uτ ,ωk−1 , u
τ ,ω
k ) ≤

N−1∑
k=1

[
L2τk +

1

4τk
d2(uτ ,ωk−1 , u

τ ,ω
k )

]
.

A kick-back argument and the coercivity of E yields now

N∑
k=1

1

4τk
d2(uτ ,ωk−1 , u

τ ,ω
k ) ≤ E(u0) +

1

2τ∗
d2(u∗, u

τ ,ω
N )− c∗ + L2T.

Perform a calculation which is similar to the proof of theorem 3.1.16 to get

d2(u∗, u
τ ,ω
N ) ≤ 2τ∗

(
E(u0)− c∗ + TL2

)
+ 2d2(u∗, u0) +

2

τ∗

N∑
k=1

τkd
2(u∗, u

τ ,ω
k ).

Notice that every constant appearing in this equation is independent of ω. Now repeat
the remaining part of the proof with the discrete Gronwall's lemma [4, Lemma 3.2.4] to
get the desired estimates on the discrete level, which are independent of ω, i.e., we have
for all N with tNτ < T :

N∑
k=1

1

2τk
d2(uτ ,ωk−1 , u

τ ,ω
k ) ≤ C, Eωtτk (uτ ,ωN ) ≤ C, d2(u∗, u

τ ,ω
N ) ≤ C. (4.1.4)

Due to periodicity of Et we have also

E0(uτ ,ωN ) ≤ Eωtτk (uτ ,ωN ) + (1 + d2(u∗, u
τ ,ω
N ))

ˆ p

0
αt dt ≤ C.

Hence, we have proven the estimates (4.1.3) on a discrete level.

Now consider a family τn of admissible partitions satisfying (I1), then by theorem 3.1.18
the corresponding piecewise constant interpolation uτn,ωt converges with respect to the
weak σ-topology to a limit curve uωt . Since the L

2(0, T )-norm is lower semi-continuous
with respect to the weak topology, we have for the metric slope |(uωt )′|:ˆ T

0
|(uωt )′|2 dt ≤

ˆ T

0
(At)

2 dt ≤ lim inf
n→∞

ˆ T

0
(Ant )2 dt

where At is the weak limit of the discrete derivative Ant from the proof of theorem 3.1.18.
Hence, with (4.1.4) and the de�nition of Ant we get

ˆ T

0
|(uωt )′|2 dt ≤ lim inf

n→∞

ˆ T

0
(Ant )2 dt = lim inf

n→∞

kn(T )+1∑
k=1

1

2τk
d2(uτ ,ωk−1 , u

τ ,ω
k ) ≤ C.

Since E0, and d are lower semi-σ-continuous, we have

E0(uωt ) ≤ lim inf
n→∞

E0(τ τn,ωt ) ≤ C, and d2(u∗, u
ω
t ) ≤ lim inf

n→∞
d2(u∗, u

τn,ω
t ) ≤ C.

Which yields the desired uniform estimates (4.1.3) which are independent of the frequency
parameter ω.
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4.1.3 High-Frequency Limit

Theorem 4.1.3 (Convergence). The family (uωt )ω of curves of steepest descent with
respect to the free energy Eωt converges to the solution u∞t of the gradient �ow with
respect to the averaged energy E.
Furthermore, there exists a Constant C, depending only on u0, τ∗ and T such that we

have the uniform convergence

d(uωt , u
∞
t ) ≤ C√

ω
∀ t ∈ [0, T ].

Proof. Without loss of generality we assume that the period p of Pt is equal to one and
that λt from (E6) can be constant and negative, i.e., λt = λ ≤ 0. By [39, Equation
(5.15)] and [4, Thm. 4.0.4], uωt and u∞t satisfy the following two evolution variational
inequalities, respectively for all w ∈ X:

1

2
d2(uωt , w)− 1

2
d2(uωs , w) +

ˆ t

s

λ

2
d2(uωr , w) + Eωr(uωr ) dr ≤

ˆ t

s
Eωr(w) dr, (4.1.5)

1

2
d2(u∞t , w)− 1

2
d2(u∞s , w) +

ˆ t

s

λ

2
d2(u∞r , w) + E(u∞r ) dr ≤

ˆ t

s
E(w) dr. (4.1.6)

In order to prove the statement, we apply a Gronwall type argument, i.e., we di�eren-
tiate the square of the distance of uωt and u∞t . Since the solution curves are absolutely
continuous, this step is valid and we can apply [4, Lemma 4.3.4] to obtain

d

ds

1

2
d2(uωs , u

∞
s )
∣∣∣
s=t
≤ lim sup

h↘0

1
2d

2(uωt , u
∞
t )− 1

2d
2(uωt−h, u

∞
t )

h

+ lim sup
h↘0

1
2d

2(uωt , u
∞
t+h)− 1

2d
2(uωt , u

∞
t )

h
.

The �rst term on the right-hand-side can be estimated using the evolution variational
equation (4.1.5), the lower semi-σ-continuity of Et and d to get

lim sup
h↘0

1
2d

2(uωt , u
∞
t )− 1

2d
2(uωt−h, u

∞
t )

h

≤ lim sup
h↘0

1

h

ˆ t

t−h

[
Eωr(u∞t )− λ

2
d2(uωt , u

∞
t )− Eωr(uωr )

]
dr

≤Eωt(u∞t )− λ

2
d2(uωt , u

∞
t )− Eωt(uωt ).

Analogously, using the EVI (4.1.6) we obtain for the limit of the second term

lim sup
h↘0

1
2d

2(uωt , u
∞
t+h)− 1

2d
2(uωt , u

∞
t )

h
≤ E(uωt )− λ

2
d2(uωt , u

∞
t )− E(u∞t ).
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Hence, by adding these results we get the following estimate

d

ds

1

2
d2(uωs , u

∞
s )
∣∣∣
s=t
≤ Pωt(u∞t )− Pωt(uωt )− λd2(uωt , u

∞
t )

from which we conclude with the di�erential form of Gronwall's inequality that

e2λtd2(uωt , u
∞
t ) ≤

ˆ t

0
e2λr (Pωr(u∞r )− Pωr(uωr )) dr. (4.1.7)

After a rescaling of the time variable the r.h.s. can be decomposed, i.e.,

ˆ t

0
e2λr (Pωr(u∞r )− Pωr(uωr )) dr =

1

ω

ˆ ωt

0
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr

=

bωtc−1∑
k=0

1

ω

ˆ k+1

k
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr

+
1

ω

ˆ ωt

bωtc
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr.

The �rst term in this equation can be further expanded inserting two productive zeros,
such that we have

1

ω

bωtc−1∑
k=0

ˆ k+1

k
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr

=
1

ω

bωtc−1∑
k=0

ˆ k+1

k

[
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
− e2λk/ω

(
Pr(u∞k/ω)− Pr(uωk/ω)

)
+
[
e2λr/ω − e2λr/ω

](
Pr(u∞k/ω)− Pr(uωk/ω)

)]
dr.

Subsequently, use Taylor's expansion for the function r 7→ e2λr/ω to get

1

ω

bωtc−1∑
k=0

ˆ k+1

k
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr

=
1

ω

bωtc−1∑
k=0

ˆ k+1

k

[
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)− Pr(u∞k/ω) + Pr(uωk/ω)

)
+ e2λζr/ω 2λ(r − k)

ω

(
Pr(u∞k/ω)− Pr(uωk/ω)

)]
dr.

for some ζr ∈ [k, r]. Exploit the Lipschitz continuity of Pt, the absolute continuity of uωt ,
respectively of u∞t , and use the estimates (4.1.3) to obtain the following upper bound for
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the modulus of the previous equation

∣∣∣ 1
ω

bωtc−1∑
k=0

ˆ k+1

k
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr
∣∣∣

≤ 1

ω

bωtc−1∑
k=0

ˆ k+1

k

[
e2λr/ω

(
Ld(u∞r/ω, u

∞
k/ω) + Ld(uωr/ω, u

ω
k/ω)

)
+ e2λζr/ω 2 |λ| (r − k)

ω
Ld(u∞k/ω, u

ω
k/ω)

]
dr

≤L
ω

bωtc−1∑
k=0

ˆ k+1

k

[ ˆ r
ω

k
ω

|(u∞s )′| ds+

ˆ r
ω

k
ω

|(uωs )′| ds+
2 |λ|
ω
d(u∞k/ω, u

ω
k/ω)

]
dr

≤L
ω

ˆ bωtc
ω

0
|(u∞s )′|+ |(uωs )′| ds+

L

ω

bωtc−1∑
k=0

2 |λ|
ω
d(u∞k/ω, u

ω
k/ω)

≤L
√
T

ω

∥∥|(u∞t )′|
∥∥
L
2(0,T )

+
L
√
T

ω

∥∥|(uωt )′|
∥∥
L
2(0,T )

+
2L |λ|T

ω
C

≤C
ω
.

We estimate the remainder term of the starting equation accordingly with a combination
of the Lipschitz continuity of Pt and estimate (4.1.3) such that we obtain∣∣∣ 1

ω

ˆ ωt

bωtc
e2λr/ω

(
Pr(u∞r/ω)− Pr(uωr/ω)

)
dr
∣∣∣ ≤ ωt− bωtc

ω
C ≤ C

ω
.

Thus, combining these results we obtain

e2λt 1

2
d2(uωt , u

∞
t ) ≤ C

ω

yielding the desired uniform convergence of uωt to u∞t for every �nite horizon T .

60



4.2 Application to Non-autonomous Fokker-Planck Equation

4.2 Application to Non-autonomous Fokker-Planck Equation

We analyze in the second part of this chapter the high-frequency limit in the special case
of the L2-Wasserstein formalism when the free energy functional Et is not λ-convex. In
particular, we investigate the high-frequency limit of the family (ρωt )ω of solutions to the
non-autonomous and non-linear Fokker-Planck equation

∂tρ
ω
t = ∆(ρωt )m + div(ρωt ∇Vωt) + div(ρωt (∇Wωt ∗ ρωt )), ρω0 = ρ0, (4.2.1)

with non-�ux boundary condition in a domain Ω ⊆ Rd, which is either an open, bounded
and connected domain Ω with Lipschitz continuous boundary ∂Ω and normal derivative
n or equal to the entire space Ω = Rd. As before, the driving free energy functional Eωt
of the L2-Wasserstein formalism is given by

Eωt(µ) :=

{´
Ω ρ log(ρ) + Vωtρ+ 1

2(Wωt ∗ ρ)ρ dx if m = 1,´
Ω

1
m−1ρ

m + Vωtρ+ 1
2(Wωt ∗ ρ)ρ dx if m > 1,

(4.2.2)

if µ = ρ dLd and otherwise we set Eωt(µ) = ∞. Here, we focus on the case when the
con�nement potential Vt and the interaction kernel Wt are not λ-convex. Thus we are in
the L2-Wasserstein framework where the driving free energy functional Et is not convex
along generalized geodesics and the theory of high-frequency limits in abstract metric
spaces is not applicable.

Strategy of Proof. Due to the lack of convexity of the free energy functional Et we
are not able to apply the theory developed in the previous section 4.1. Neither we can
establish a comparison principle for the family (ρωt )ω and the limit function ρ∞t , but
this goes in line with the L2-Wasserstein theory of the Fokker-Planck equation without
having additional regularity like the λ-convexity.

Still, your ideology behind the proof of the high-frequency limit is to derive the nec-
essary compactness estimates by means of the time-dependent Minimizing Movement
scheme and then pass in the weak formulations of the non-autonomous Fokker-Planck
equations (4.2.1) to the limit ω → ∞. Note, the classical estimates (4.1.3) are intrinsic
properties of the time-dependent Minimizing Movement scheme and solely rely on the
uniform Lipschitz-regularity in space of the oscillatory party Pt of free energy functional
Et. Hence, we recover in section 4.2.2 the classical estimates. Even for the re�ned reg-
ularity L2(0, T ;BV(Ω))-estimates for (ρτ ,ωt )m it can be proven that these bounds are
stable with respect to the discrete-to-continuous limit τ → 0 and are independent of the
frequency ω. These estimates are su�cient to pass to the high-frequency limit ω → ∞
of the family (ρωt )ω and prove the convergence in the narrow-topology and in the strong
Lp(0, T ;Lm(Ω))-topology to a solution ρ∞t to the time-averaged Fokker-Planck equation,
see section 4.2.3. Note, to pass to the limit ω → ∞ in the weak formulation of the
non-autonomous Fokker-Planck equations (4.2.1) we utilize the theory of Γ-convergence
and use the fact that the families (Vωt)ω and (Wωt)ω converges in a weak sense to the
time-averaged functions V and W , respectively.
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4 Time-Homogenization of Gradient Flows

4.2.1 Setup and Assumptions

Compared to the previous section, we solely assume the Lipschitz-continuity in space
uniformly in time and not the semi-convexity of the free-energy Et.
Assumption 4.2.1. Decompose the con�nement potential Vt := V + Pt and the in-
teraction kernel Wt : W +Rt into the time independent parts V and W , respectively,
and the oscillatory parts Pt and Rt, respectively, with zero mean and period p. The
oscillatory parts Pt and Rt satisfy additionally:

(F4) Lipschitz-continuity in space: There exists L ≥ 0 such that for all t ∈ [0,∞)

|Pt(x)− Pt(y)| , |Rt(x)−Rt(y)| ≤ L ‖x− y‖ .

4.2.2 Classical Estimates Revisited

It is clear that (E4') follows from (F4) and therefore, we can derive from this in the same
manner the classical estimates from Lemma 4.1.2, i.e.:

Lemma 4.2.2 (Classical Estimates). For �xed T > 0, there exists a constant C, inde-
pendent of ω, such that for all t ≤ T there holds:∥∥|(ρωt )′|

∥∥
L
2(0,T )

≤ C, E0(ρωt ) ≤ C, d2(ρ∗, ρ
ω
t ) ≤ C. (4.2.3)

Subsequently, also the estimate from Lemma 3.2.3 is independent of ω and therefore for
�xed T > 0 there holds for the same constant C and for all t ≤ T :

M2(ρωt ) ≤ C, Um(ρωt ) ≤ C.

Lastly, the better a priori bounds 3.2.6 are independent of ω, too. Since the L2(0, T ;BV(Ω))
is lower semi-continuous with respect to the L2(0, T ;Lm(Ω))-topology, this estimate is
preserved in the discrete-to-continuous limit, i.e.:

Lemma 4.2.3 (Step Size Independent Global L2(0, T ;BV(Ω))-estimates). For �xed T >
0, there exits a constant C, independent of ω, such that:

‖(ρωt )m‖
L
2(0,T ;BV(Ω)) ≤ C. (4.2.4)

4.2.3 High-Frequency Limit

In this section, we �nally prove the high-frequency limit ωn →∞ for the family of weak
solutions (ρωnt )n∈N to (4.2.1) obtained by the time dependent Minimizing Movement
scheme (3.0.2). In particular, we prove that this family (ρωnt )n∈N converges in the narrow-
topology and in the strong Lp(0, T ;Lm(Θ))-topology to the solution ρ∞t to the time-
averaged Fokker-Planck equation.
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4.2 Application to Non-autonomous Fokker-Planck Equation

Theorem 4.2.4 (Narrow Convergence). De�ne for a sequence (ωn)n∈N with ωn →∞ the
family of weak solutions (ρωnt )n∈N obtained by the time-dependent Minimizing Movement
scheme (3.0.2) with respect to the free energy functional Eωnt. Then, there exists a (non-
relabelled) subsequence of (ωn)n∈N such that

ρωnt ⇀∗ ρ∞t narrowly for every t ∈ [0,∞).

Proof. At �rst, we prove the existence of a narrow convergent subsequence, which con-
verges to an absolutely continuous curve. By the uniform L2(0, T )-estimate (4.2.3) on the
metric velocity |(ρωnt )′| we can extract a (non-relaballed) subsequence such that |(ρωnt )′|
converges weakly in L2(0, T ) to At ∈ L2(0, T ). To apply the Arzelá-Ascoli theorem we
estimate now

lim sup
n→∞

W2(ρωnt , ρωns ) ≤ lim sup
n→∞

ˆ t

s
|(ρωnr )′| dr =

ˆ t

s
Ar dr.

Since the entropy of ρωt is uniformly bounded by (4.2.3), the sequence (ρωnt )n∈N is con-
tained in a weak*-compact set. Therefore, by the re�ned Arzelá-Ascoli theorem [4,
Proposition 3.3.1] we obtain the existence of a limit curve ρ∞t ∈ AC2 (0,∞; (P2(Ω),W2))
such that ρωnt converges pointwise with respect to the narrow convergence.

Theorem 4.2.5 (Strong Convergence in Lp(0, T ;Lm(Ω))). Given a sequence (ωn)n∈N
with ωn → ∞, and given the limit curve ρ∞t in theorem 4.2.4. Then, there exists a
further (non-relabelled) subsequence of (ωn)n∈N such that for any T > 0, any p ≥ 1 and
any bounded subset Θ ⊆ Ω

ρωnt → ρ∞t strongly in Lp(0, T ;Lm(Θ)) as n→∞.

Proof. With our los of generality we �x Θ = Ω or Θ = BR(0). To obtain the strong
Lp(0, T ;Lm(Θ))-convergence result, we proceed as in the convergence proofs of Theorem
3.2.7 and apply the extension of the Aubin-Lions Theorem 2.5.4 to the sequence (ρωnt |Θ
)n∈N with the auxiliary functionals Ã and g̃ as in the proof of Theorem 3.2.7. As before,
due to the better a priori estimates (4.2.4) the sequence is tight with respect to Ã.
To verify the relaxed averaged weak integral equi-continuity with respect to g̃ use that
|(ρωnt )′| converges weakly in L2

loc (0,∞) to A. This yields with Fatou's Lemma

lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0

ˆ T−t

0
g̃(ρωns+t

∣∣
Θ
, ρωns |Θ)ds dt

≤ lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0

ˆ T−t

0

ˆ s+t

s
|(ρωnr )′| dr ds dt

≤ lim inf
h↘0

1

h

ˆ h

0

ˆ T−t

0

ˆ s+t

s
Ar dr ds dt = 0

By the extension of the Aubin-Lions Theorem 2.5.4 and the Remark 2.1.1 we get the
desired convergence result for every compact set Θ ⊆ Ω and for every �nite time horizon
T .
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4 Time-Homogenization of Gradient Flows

Theorem 4.2.6 (Solution to the Time-average Fokker-Planck Equation). Given a se-
quence (ωn)n∈N with ωn →∞, and given the limit curve ρ∞t in theorem 4.2.4. Then, ρ∞t
is a weak solution to the time-averaged Fokker-Planck equation in the sense of (4.2.6).

Proof. At last we prove that the limit of ρωnt solves the time averaged Fokker-Planck
equation in a weak sense. Therefore, we calculate the limit, as n → ∞, in the weak
formulations of each ρωnt , i.e., for each test function ϕt ∈ C∞c ([0,∞)× Ω) we haveˆ ∞

0

ˆ
Ω
−∆ϕt(ρ

ωn
t )m + 〈∇ϕt,∇Vt〉 ρωnt + 〈∇ϕt,∇Wt ∗ ρωnt 〉 ρωnt dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

ωn
t dx dt+

ˆ
Ω
ϕ0 ρ

0 dx.

(4.2.5)

Let T > 0 and Θ ⊂ Ω be compact such that suppϕt ⊂ [0, T ]×Θ. The limit of the �rst
integral in (4.2.5) follows from the Lm(0, T ;Lm(Θ))-convergence of ρωnt and we get

lim
n→∞

ˆ ∞
0

ˆ
Ω
−∆ϕt(ρ

ωn
t )m dx dt =

ˆ ∞
0

ˆ
Ω

∆ϕt(ρ
∞
t )m dx dt.

To deduce the limit of the second integral in (4.2.5), we utilize ∇Vωt ⇀∗ ∇V in L∞(0, T )
for every x ∈ Θ (see, for instance [12]). Thus, also ∇Vωnt ⇀∗ ∇V in L∞(0, T ;L∞(Θ)).
Since, ρωnt converges to ρ∞t in L1(0, T ;L1(Θ)) we have

∇Vωnt ρωnt ⇀∗ ∇V ρ∞t in L∞(0, T ;L∞(Θ)).

Since the e�ective domain of integration is compact we �nally have

lim
n→∞

ˆ ∞
0

ˆ
Ω
〈∇ϕt,∇Vt〉 ρωnt dx dt =

ˆ ∞
0

ˆ
Ω
〈∇ϕt,∇V 〉 ρωnt dx dt.

To compute the limit of the third integral, we proceed similar. As before, ∇Wωnt ⇀
∗ ∇W

for every x, y ∈ Rd and also ∇Wωnt(x− y) ⇀∗ ∇W (x− y) in L∞(0, T ;L∞(Θ×Θ)). So
by the strong L1(0, T ;L1(Θ))-convergence of ρωnt to ρ∞t we have

∇Wωnt(x− y) ρωnt (x)ρωnt (y) ⇀∗ ∇W (x− y) ρ∞t (x)ρ∞t (y) in L∞(0, T ;L∞(Θ×Θ)).

Since the e�ective domain of integration is compact we �nally have

lim
n→∞

ˆ ∞
0

ˆ
Ω
〈∇ϕt,∇Wt ∗ ρωnt 〉 ρωnt dx dt =

ˆ ∞
0

ˆ
Ω
〈∇ϕt,∇W ∗ ρ∞t 〉 ρ∞t dx dt.

Lastly, by the narrow convergence of ρωnt the limit of the left-hand-side of (4.2.5) equals

lim
n→∞

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

ωn
t dx dt+

ˆ
Ω
ϕ0 ρ

0 dx =

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

∞
t dx dt+

ˆ
Ω
ϕ0 ρ

0 dx.

Summarized, we obtain that ρ∞t solves for each test function ϕt ∈ C∞c ([0,∞)× Ω):ˆ ∞
0

ˆ
Ω
−∆ϕt(ρ

∞
t )m + 〈∇ϕt,∇V 〉 ρ∞t + 〈∇ϕt,∇W ∗ ρ∞t 〉 ρ∞t dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

∞
t dx dt+

ˆ
Ω
ϕ0 ρ

0 dx

(4.2.6)

yielding that ρ∞t is a weak solution of the time-averaged Fokker-Planck equation.
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5 Backward Di�erentiation Formula 2

This chapter is concerned with the novel temporal discretization by means of the second
order Backward Di�erentiation Formula for gradient �ows in metric spaces and in par-
ticular of drift-di�usion equations like the non-linear Fokker-Planck equation (5.2.1) or
the Derrida-Lebowitz-Speer-Spohn equation (5.3.1) cast in the L2-Wasserstein formal-
ism. The �rst part is based on the joint work with D. Matthes [70], the second part is
based on my own work [81], and the third part was developed during the preparation of
this thesis.

Main Idea in Short. Generally speaking, we study the approximation of curves of
steepest descent in the energy landscape of a functional E : X → R ∪ {∞} with respect
to a metric d on X. Before we elaborate on our motivation and results, we brie�y outline
the concept in the simplest setting, namely when X = Rd, d is the Euclidean metric,
and E ∈ C∞c (Rd), in which case the problem amounts to approximate solutions to

u̇ = −∇E(u). (5.0.1)

With these strong assumptions on E , it follows that the second order Backward Di�er-
entiation Formula (BDF2) method with any su�ciently small uniform time step τ > 0,

3uτk − 4uτk−1 + uτk−2
2τ

= −∇E(uτk ), (5.0.2)

is well-de�ned and convergent for well-prepared initial data (uτ0 , u
τ
1 ). It is further well-

known that this is a second order approximation of the true solution ut to (5.0.1), i.e.,
uτk = u(kτ) + O(τ2) as τ → 0, see e.g. [11]. Hence, the strength of the BDF2 method
in comparison to the implicit Euler scheme is that the former � at least in the smooth
setting at hand � converges to second order in τ .

The strategy for our own convergence analysis in the abstract metric space case is the
variational formulation of the BDF2 method (5.0.2) which is inspired by the Minimizing
Movement scheme from [4, 29, 30]. Therefore, we proposed the following scheme to
construct a discrete approximation (uτk )k∈N of a curve of steepest descent emerging from
the initial datum u0 ∈ X for metric gradient �ows: For a given pair of initial conditions
(uτ0 , u

τ
1 ) that approximate u0 de�ne inductively a discrete solution (uτk )k∈N such that

uτk+1 ∈ argmin
w∈X

1

τ
d2(uτk , w)− 1

4τ
d2(uτk−1, w) + E(w). (5.0.3)

Note, in the euclidean setting the minimizer uτk satis�es the BDF2 recursion (5.0.2).
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5 Backward Di�erentiation Formula 2

Contribution. Studies on the BDF2 scheme in the ODE setting, when X = Rd and
d is the Euclidean metric have been an active topic in the 1950's and 1960's [26, 27].
Subsequently, BDF2-based problem adapted methods for the integration of �ows on
(�nite-dimensional) submanifolds X, e.g., for ODEs with constraints, have been proposed
and analyzed, see e.g. [25, 44]. More recently, the method in the Hilbertian setup, where
X is a Hilbert space and d is induced by the norm, has attracted a lot of attention. There
is now a rich literature on convergence results, particularly for very general nonlinear
right-hand sides, see e.g. [1, 2, 5, 13, 35, 36, 37, 52, 59, 62, 90]. The analysis appears to
be more or less complete now, at least under reasonable conditions on the nonlinearity.

We are apparently the �rst to analyze (a variational formulation of) the BDF2 method
for approximation of gradient �ows in abstract metric spaces, and to prove its convergence
just under the hypothesis of semi-convexity in the abstract metric space case and just
under mild assumptions on the con�nement potential V and the interaction kernel W
in the case of displacement-λ-convex �ows in the L2-Wasserstein space. Our proof is
di�erent from the one in ODE textbooks [11, 43, 51], also from the ones typically given
in the Hilbertian setting, like in [35]. The key di�erence is that due to the possible
�roughness� of the metric space X, there is no appropriate notion of smooth solution for
the gradient �ow (in general, there does not even exist a de�nition for the di�erentiability
of a curve). Hence, we cannot invoke error estimates that rely on Taylor expansions
around the limiting solution.

Method in the Abstract Metric Space Case. These di�culties of roughness are
already present in the convergence analysis of the implicit Euler method in metric spaces,
and have been overcome in [4] by formulating all essential estimates in a robust way that
requires no smoothness. Naturally, the strategy for our own convergence analysis of the
variational BDF2 method is inspired by that from [4], and there are various similarities
also on the technical level. For instance, being unable to estimate the error between
the genuine and the approximating discrete solutions directly, we resort to a Cauchy-
type argument that compares discrete solutions with di�erent time steps as in [4, section
4.1]. Further, the basis for the control of the local error is a convexity inequality for the
variational functional, which estimates the change of distance to a �xed �observer point�
during one iteration: this is [4, Corollary 4.1.3] for the implicit Euler method, and (5.1.17)
for the BDF2 method. While the accumulation of the global error is relatively easy to
control for the one-step Euler discretization, see [4, section 4.4], this is an extremely
tedious piece of work for our two-step method.

Our approach yields a control on the global approximation error, which is not of order
two but only of order one-half. We also provide an example to show that indeed, even
for speci�c, seemingly harmless choices of (X,d) and E , convergence takes place at �rst
order only. In view of the results in [4, section 4.4] on the implicit Euler method, it seems
likely that our variational BDF2 converges to �rst order in general. Currently, we are
not able to close the apparent gap between order one-half and order one. There is little
hope to adapt the methods leading to improved convergence in [4, section 4.4], since
there, profound properties of the Yosida regularization play a pivotal role in estimating
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the local error. No comparable estimates are known for our BDF2 functional, and it
seems unlikely that an appropriate surrogate exists e.g. for the duality formula for the
slope [4, Lemma 3.1.5]. And according to our general philosophy, that we describe below,
any further investigations in the direction of improving the rate beyond one-half appear
rather pointless.

We emphasize that the proven slow convergence order one-half does not contradict our
initial intention of providing a method of faster convergence than the implicit Euler one.
Indeed, if the approximated solution is smooth enough (which, in speci�c situations,
can often be veri�ed a posteriori by considering it in a di�erent setting or in an ambient
space), then the classical convergence proofs from textbooks apply and yield the desired
rate of order two. That philosophy is justi�ed by a series of numerical experiments that
all show second order convergence. Our contribution is that � regardless of the regularity
of the limiting solution under consideration � convergence of the method is guaranteed,
even with an explicit rate. And our proof utilizes solely the variational structure of the
scheme (5.0.2) and the semi-convexity hypothesis on E.

Method in the L2-Wasserstein Case. Our main contribution of the second and third
section of this chapter is to improve the convergence result of [70] from weak to strong
convergence of the discrete solution (ρτk )k∈N when one wants to approximate solutions to
the non-linear Fokker-Planck equation (5.2.1) or to the Derrida-Lebowitz-Speer-Spohn
equation (5.3.1) by means of the variational formulation of the BDF2 method. Also
in contrast to [70], our approach is independent of the uniform semi-convexity of the
augmented energy functional on the right-hand side of (5.0.3). More in the spirit of the
original works on the linear Fokker-Planck equation of Kinderlehrer et al. [54], we solely
utilize the di�erential structure of both the L2-Wasserstein space and of the augmented
energy functional.

Note, the BDF2 method and the techniques presented here have two further possible
applications. Firstly, the formally higher-order approximation in time is expected to
improve the performance of numerical simulations due to the better resolution of the
solution with respect to a coarser time grid. Secondly, PDEs with gradient �ow structure
such that the energy function E do not possess any uniform semi-convexity property �
like the Hele-Shaw equation seen as L2-Wasserstein gradient �ows � are not covered
in [70] nor in this chapter. However, as long as the subdi�erential calculus in the L2-
Wasserstein space is applicable to E our method is feasible. With this technique at hand
one can compute from (5.0.3) the discrete Euler-Lagrange equations for the discrete
approximation by variations along solutions to the continuity equation (likewise theorem
5.2.9). Hence, having su�ciently good regularity estimates for the discrete solution,
passing to the limit as τ tends to zero could yield directly a distributional solution for
the aforementioned class of PDEs without using the abstract theory of curves of steepest
descent for λ-contractive gradient �ows.

In conclusion, the BDF2 method provides a structure-preserving numerical scheme of
formally higher-order approximation in time with a strong notion of convergence for drift-
di�usion equations like (5.2.1) or (5.3.1).

67



5 Backward Di�erentiation Formula 2

Main Results in the Abstract Metric Space Case. Our main result concerning
the well-posedness and the limit behavior is given as follows. In the abstract metric space
case de�ne the interpolated solution uτt : [0,∞)→ X, given by

uτ0 = uτ0 , uτt = uτk for t ∈ ((k − 1)τ, kτ ] and k ∈ N.

The limit-behavior as the time step size τ → 0 of the equidistant partition τ = (τ, 2τ, . . .)
is stated in the following theorem.

Theorem 5.0.1. Assume (X,d) is a complete, separable metric space, the free energy
functional E satis�es (E1)�(E3), speci�ed in Assumption 5.1.1, and given the equidistant
partition τ = (τ, 2τ, 3τ, . . .) with step size τ ∈ (0, τ∗). Then, the following statements
holds:

a) Existence of Discrete Solutions. For each approximation (uτ0 , u
τ
1 ) of the initial

datum u0 ∈ D(E) satisfying (I1) as de�ned in Assumption 5.1.3 one obtains a
unique discrete solution (uτk )k∈N.

b) Step Size Independent Estimates. For �xed time horizon T > 0, there is a
constant C, depending only on d1, d2 and T , such that the corresponding discrete
solutions (uτk )k∈N satisfy for all N ∈ N with Nτ ≤ T :

N∑
k=1

1

2τ
d2(uτk−1, uτk ) ≤ C, |E(uτN )| ≤ C, d2(u∗, u

τ
N ) ≤ C.

Furthermore, consider a sequence of equidistant partitions τn = (τn, 2τn, 3τn, . . .) with
vanishing step sizes τn ∈ (0, τ∗) which are strictly decreasing, and which are such that
the quotients τn/τn+1 are natural numbers. Let a sequence of initial data (uτn0 , uτn1 )n∈N

be given that satisfy (I1) as de�ned in Assumption 5.1.3, and such that uτn0
d→ u0. Then,

c) Convergence. There exists u∗t ∈ AC2(0,∞; (X,d)) such that the sequence of
piecewise constant interpolations (uτnt )n∈N converges locally uniformly with respect
to time to u∗t .

d) Convergence Rate. More precisely, for every time horizon T > 0, there is a
constant C that can be expressed in terms of d1, d2 and T alone, such that for all
t ∈ [0, T ]:

d
(
uτnt , u

∗
t

)
≤ C (d(uτn0 , u0) +

√
τn) . (5.0.4)

e) Solution of the Gradient Flow. The limit curve u∗t from c) is a solution of the
gradient �ow for E in the sense of the de�nition the EVI (2.3.2).
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Main Result L2-Wasserstein case. In the L2-Wasserstein case we denote by (ρτk )k∈N
the discrete solution and by ρτt the interpolated solution. Our �rst result on the approx-
imation of the solution to the non-linear Fokker-Planck equation (5.2.1) reads than as.
Note, this case the free energy functional E is given by (5.2.2).

Theorem 5.0.2 (Non-linear Fokker-Planck Equation). Let Ω ⊂ Rd be either an open,
bounded, and connected domain with Lipschitz continuous boundary ∂Ω or let Ω = Rd.
Further, assume m ≥ 1 and that V and W satisfy (F1)&(F2) as speci�ed in Assumption
5.2.1. Given an equidistant partition τ = (τ, 2τ, 3τ, . . .) with step size τ ∈ (0, τ∗) and an
approximation (ρτ0 , ρ

τ
1 ) of the initial datum ρ0 satisfying (I1)&(I2) de�ned in Assumption

5.2.2. Then, the following statements hold:

a) Existence of the Discrete Solutions. There exists a sequence (ρτk )k∈N satis-
fying the BDF2 scheme (5.0.3), which satis�es the step size independent bounds
(5.2.10) on the kinetic energy, on the internal energy, and on the second moments.

b) Step Size Independent L2(0, T ;BV(Ω))-estimate. For each �xed time horizon
T > 0 there exists a non-negative constant C, depending only on m,V,W , and T
such that for each τ ∈ (0, τ∗):

‖(ρτt )m‖
L
2(0,T ;BV(Ω)) ≤ C.

Given a vanishing sequence (τn)n∈N of step sizes τn ∈ (0, τ∗) and initial data (ρτn0 , ρτn1 )
satisfying Assumption 5.2.2, then:

c) Narrow Convergence in P2(Ω). There exists a (non-relabelled) subsequence
(τn)n∈N and a limit curve ρ∗ ∈ AC2(0,∞; (P2(Ω),W2)) such that for any t ≥ 0:

ρτnt ⇀ ρ∗(t) narrowly in the space P2(Ω) as n→∞.

d) Strong Convergence in Lm(0, T ;Lm(Ω)). With the notations from c), there
exists a further (non-relabelled) subsequence (τn)n∈N such that for all T > 0 and
any bounded subset Θ ⊆ Ω:

ρτnt → ρ∗ strongly in Lm(0, T ;Lm(Θ)) as n→∞.

e) Solution of the Non-linear Fokker-Planck Equation. The limit curve ρ∗t
from c) satis�es the non-linear Fokker-Planck equation with no-�ux boundary con-
dition (5.2.1) in the following weak sense: For each test function ϕt ∈ C∞c ([0,∞)×
Ω) with ∇ϕt · n = 0 on ∂Ω the limit function ρ∗t satis�es:

ˆ ∞
0

ˆ
Ω
−∆ϕt (ρ∗t )

m + 〈∇ϕt,∇V 〉 ρ∗t + 〈∇ϕt,∇W ∗ ρ∗t 〉 ρ∗t dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ∗ dx dt+

ˆ
Ω
ϕ0 ρ0 dx.
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5 Backward Di�erentiation Formula 2

Our second results on the approximation of solutions to the Derrida-Lebowitz-Speer-
Spohn equation (5.3.1) reads than as. Here, the free energy functional E is given by the
Fisher information I as de�ned in (2.4.5).

Theorem 5.0.3 (Derrida-Lebowitz-Speer-Spohn Equation). Let Ω ⊂ Rd be an open,
bounded, and convex domain with Lipschitz continuous boundary ∂Ω or let Ω = Rd.
Given an equidistant partition τ = (τ, 2τ, 3τ, . . .) with step size τ ∈ (0, τ∗) and an
approximation (ρτ0 , ρ

τ
1 ) of the initial datum ρ0 satisfying (I1)&(I2) de�ned in assumption

5.3.1. Then, the following statements hold:

a) Existence of the Discrete Solutions. There exists a sequence (ρτk )k∈N satis-
fying the BDF2 scheme (5.0.3), which satis�es the step size independent bounds
(5.3.3) on the kinetic energy, on the Fisher information, and on the second mo-
ments.

b) Step Size Independent L2(0, T ;H2(Ω))-estimate. For each �xed time horizon
T > 0 there exists a non-negative constant C, depending only on Ω, and T such
that for each τ ∈ (0, τ∗): ∥∥√ρτt ∥∥L2(0,T ;H2(Ω))

≤ C.

Given a vanishing sequence (τn)n∈N of step sizes τn ∈ (0, τ∗) and initial data (ρτn0 , ρτn1 )
satisfying Assumption 5.3.1, then:

c) Narrow Convergence in P2(Ω). There exists a (non-relabelled) subsequence
(τn)n∈N and a limit curve ρ∗ ∈ AC2(0,∞; (P2(Ω),W2)) such that for any t ≥ 0:

ρτnt ⇀ ρ∗(t) narrowly in the space P2(Ω) as n→∞.

d) Strong Convergence. With the notations from c), there exists a further (non-
relabelled) subsequence (τn)n∈N such that for all T > 0 and any p ≥ 1:

ρτnt → ρ∗t strongly in Lp(0, T ;L1(Ω)) as n→∞,√
ρτnt →

√
ρ∗t strongly in L2(0, T ;H1(Ω)) as n→∞,√

ρτnt ⇀
√
ρ∗t weakly in L2(0, T ;H2(Ω)) as n→∞.

e) Solution of the Derrida-Lebowitz-Speer-Spohn Equation. The limit curve
ρ∗t from c) satis�es the Derrida-Lebowitz-Speer-Spohn equation with no-�ux bound-
ary condition (5.2.1) in the following weak sense: For each test function ϕt ∈
C∞c ([0,∞)× Ω) with ∇ϕt · n = 0 on ∂Ω the limit curve ρ∗t satis�es:

−
ˆ ∞

0

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρ∗t 〉+ 2〈Hessϕt∇

√
ρ∗t ,∇

√
ρ∗t 〉 dx

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ∗ dx dt+

ˆ
Ω
ϕ0 ρ0 dx.
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Analytic (Counter-)Example. We give a simple example showing that under the
given assumptions, in general one cannot expect second order convergence of the BDF2
method, i.e., uτk = u(kτ) + O(τ2) in place of uτk = u(kτ) + O(

√
τ) in (5.1.18). Our

example is placed on the (very regular) metric space X = R with the usual distance,
with the convex but not globally di�erentiable potential E de�ned by E(u) := u1{u≥0}.
The associated gradient �ow with initial condition u0 = 1 is the continuous curve u∗t :=
(1− t) 1{0≤t≤1} that fails to be di�erentiable at t = 1.
The solution uτk+1 to the kth minimization problem in (5.0.3) is elementary to compute

� making a case distinction whether the minimizer is positive, negative or zero � and
explicitly given by

uτk+1 =


4
3u
τ
k − 1

3u
τ
k−1 − 2

3τ if that expression is positive,
4
3u
τ
k − 1

3u
τ
k−1 if that expression is negative,

0 otherwise, i.e., if 0 ≤ 4
3u
τ
k − 1

3u
τ
k−1 ≤ 2

3τ .

(5.0.5)

One easily concludes that for the initial conditions uτ0 = 1 and uτ1 = 1 − τ , the kth
approximation equals uτk+1 = 1− (k + 1)τ as long as that expression is positive. Indeed,
one has

4

3
uτk −

1

3
uτk−1 −

2

3
τ =

4

3

(
1− kτ

)
− 1

3

(
1− (k − 1)τ

)
− 2

3
τ = 1− (k + 1)τ > 0,

so the �rst case in the recursion (5.0.5) applies. Accordingly, let Nτ be the smallest index
k ≥ 1 for which kτ ≥ 1. For simplicity, we assume that uτNτ = 0, i.e., that the third case
in (5.0.5) applies:

1−Nτ τ =
4

3
uNτ−1
τ − 1

3
uNτ−2
τ − 2

3
τ ∈

[
− 2

3
τ, 0
]
. (5.0.6)

The other case, in which −τ < 1−Nττ < −2
3τ , leads to a similar result, but with more

complicated formulae. Recalling that the two-step recursion ak+1 = 4
3ak − 1

3ak−1 has the
general solution ak = p + 3−kq with real parameters p and q, one easily deduces from
(5.0.5) in combination with uτNτ = 0 and uτNτ−1 = 1 − (Nτ − 1)τ ∈ [1

3τ, τ ] because of
(5.0.6) that

uτk =
4

3
uτk−1 −

1

3
uτk−2 = −1

2

(
1− 3−(k−Nτ )

)
uNτ−1
τ ≤ −1

6

(
1− 3−(k−Nτ )

)
τ < 0

for each index k > Nτ . In conclusion, we have exact approximation for t < 1, i.e.,
uτk = u∗kτ for every k with kτ < 1, but a residual of order τ at every point t > 1: with
indices kτt chosen such that one has kτt τ → t > 1 as τ → 0, it follows that

lim
τ→0

u∗t − uτkτt
τ

≥ 1

6
lim
τ→0

(
1− 3−(kτt −Nτ )

)
=

1

6
.

This clearly excludes the possibility of second order convergence.
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5 Backward Di�erentiation Formula 2

5.1 Application to Gradient Flows in Abstract Metric Space

This section is based on the joint-work with D.Matthes [70]. For de�niteness, we are
working in this section inside the abstract framework developed in the �rst part of the
book [4]; given a separable, complete metric space (X,d) we are seeking to approximate
solutions to the gradient �ow equation

u̇t = −∇XE(ut), u0 = u0

by means of the second order Backward Di�erentiation Formula

3uτk − 4uτk−1 + uτk−2
2τ

= −∇E(uτk ).

Although our considerations are very general, we have three speci�c settings in mind.
The �rst is that of gradient �ows for smooth functions on a �nite dimensional compact
manifold, the second concerns uniformly semi-convex functionals on Hilbert spaces, and
in the third, we consider �ows for uniformly displacement semi-convex functionals on the
L2-Wasserstein space (P2(Ω),W2).

Method. We propose the following construction of a discrete approximation (ukτ )k∈N
via a variational formulation of the BDF2 method:

Scheme. For each equidistant partition τ = (τ, 2τ, 3τ, . . .) with su�ciently small time
step τ > 0, let a pair of initial conditions (uτ0 , u

τ
1 ) be given that approximate u0. Then

de�ne inductively a discrete solution (uτk )k∈N such that each uτk+1 with k ∈ N is a
minimizer of the following functional,

w 7→ Ψ(τ, uτk−1, uτk ;w) :=
1

τ
d2(uτk , w)− 1

4τ
d2(uτk−1, w) + E(w).

De�ne the corresponding piecewise constant interpolation in time uτt : [0,∞)→ X of the
discrete solution uτk in time via

uτ0 = uτ0 , uτt = uτk for t ∈ ((k − 1)τ, kτ ] and k ∈ N.

Strategy of the Proof. The main idea of our convergence analysis is to exploit the
λ-convexity of the free energy functional E and of the BDF2 penalization Ψ. The precise
de�nition and some examples satisfying this assumption are contained in section 5.1.1.
This speci�c convexity assumption of the BDF2 penalization Ψ and the variational for-
mulation of the scheme allows us to derive existence of the discrete solution (ρτk )k∈N
and further intrinsic properties like the almost energy diminishing property (5.1.11), the
classical stability estimates (5.1.14), and the time-discrete version of the EVI (5.1.17),
see section 5.1.2. The latter is the surrogate of a time-discrete Euler-Lagrange equation
and comprises a comparison principle which is the essential ingredient in the proof of
convergence of the approximation ρτt , see section 5.1.4. This comparison principle allows
us to derive the sought-for (sub-optimal) convergence rate of order one-half as τ → 0.
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5.1 Application to Gradient Flows in Abstract Metric Space

5.1.1 Setup and Assumptions

Fix a complete, separable metric space (X,d) and de�ne the BDF2 penalization Ψ :
(0, τ∗)×X×X×X→ R ∪ {∞} of E by

Ψ(τ, u, v; ·) : X→ R ∪ {∞}; Ψ(τ, u, v;w) :=
1

τ
d2(v, w)− 1

4τ
d2(u,w) + E(w).

The discrete solution (for E on (X,d)) corresponding to a time step size τ ∈ (0, τ∗)
and pair of initial data (uτ0 , u

τ
1 ) ∈ X ×X is the sequence (uτk )k∈N, which is inductively

obtained via

uτk+1 ∈ argmin
w∈X

Ψ(τ, uτk−1, uτk ;w) (5.1.1)

for k ∈ N. From now on, we shall work with the following assumptions on the free energy
functional E .
Assumption 5.1.1. The free energy functional E : X→ R ∪ {∞} is proper and satis�es
the following regularity conditions:

(E1) Semi-continuity. E is sequentially lower semi-continuous on (X,d):

un
d→ u =⇒ E(u) ≤ lim inf

n→∞
E(un).

(E2) Coercivity. There exist τ∗ > 0 and u∗ ∈ X, such that

c∗ := inf
v∈X

1

2τ∗
d2(u∗, v) + E(v) > −∞.

(E3) Semi-convexity. There exists a constant λ such that for every u, v, γ0, γ1 ∈ D(E)
and every τ ∈ [0, τ∗), there exists a continuous curve γs : [0, 1] → X joining the
given end points γ0 and γ1, along which the penalized energy Ψ satis�es

Ψ(τ, u, v; γs) ≤(1− s)Ψ(τ, u, v; γ0) + sΨ(τ, u, v; γ1)

− 1

2

( 3

2τ
+ λ

)
s(1− s)d2(γ0, γ1).

(5.1.2)

Moreover, without loss of generality, we assume that

λ ≤ 0 and (−λ)τ∗ ≤
1

2
and τ∗ ≤ 1. (5.1.3)

Note that for 0 < τ < τ∗, the last term on the right hand side of (5.1.2) is positive for
γ0 6= γ1 and 0 < s < 1, implying that s 7→ Ψ(τ, u, v; γs) is strictly convex.

Remark 5.1.2. Assumptions (E1)&(E2) are standard minimal hypotheses on the energy
in the context of metric gradient �ows. (E3) plays an analogous role for the BDF2
discretization as Assumption 4.0.1 in [4] plays for the minimizing movement scheme.
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5 Backward Di�erentiation Formula 2

Lastly, we have to specify our assumptions on the approximation (uτ0 , u
τ
1 ) of the initial

datum u0, which will be of interest in derivation of the classical estimates.

Assumption 5.1.3. The approximation (uτ0 , u
τ
1 ) of the initial datum u0 ∈ D(E) satisfy:

(I1) There are constants d1 and d2, such that for all τ ∈ (0, τ∗):

E(uτ0 ) ≤ d1, E(uτ1 ) ≤ d1, and d(uτ0 , u
τ
1 ) ≤ d2τ.

Examples

In this part we discuss three general situations in which the convexity assumption (E3) is
satis�ed, namely that of uniformly semi-convex functionals E on a Hilbert space H, that
of semi-convex C1-functions E on Riemannian manifolds of non-negative cross-curvature,
and that of functionals E on the L2-Wasserstein space (P2(Ω),W2) that are uniformly
displacement semi-convex.

Hilbert Spaces. Our �rst results concerns uniformly semi-convex functionals on Hilbert
spaces. This class provides fairly easy examples for the validity of assumption (E3),
thanks to the linear structure of the space.

Theorem 5.1.4. Assume that the metric space (X,d) is a Hilbert space X = H, with
the distance d induced by the norm ‖·‖. Assume further that E is uniformly semi-convex
with modulus λ. Then (E3) is satis�ed, with γs the straight line between γ0, γ1 and with
the same λ.

Proof. Let γ0, γ1 ∈ D(E) as well as u, v ∈ D(E) and τ > 0 be given. We verify (5.1.2) for
the particular curve γs := (1− s)γ0 + sγ1. On the one hand, by the convexity hypothesis
on E , we know that

E(γs) ≤ (1− s)E(γ0) + (1− s)E(γ1)− λ

2
s(1− s) ‖γ0 − γ1‖2 . (5.1.4)

On the other hand, a direct calculation using the property of the scalar product yields

‖γs − v‖2 −
1

4
‖γs − u‖2

=(1− s)
(
‖γ0 − v‖2 −

1

4
‖γ0 − u‖2

)
+ s
(
‖γ1 − v‖2 −

1

4
‖γ1 − u‖2

)
− 3

4
s(1− s)‖γ0 − γ1‖2.

(5.1.5)

Adding 1
τ times (5.1.5) to (5.1.4) yields (5.1.2).

Riemannian Manifolds. Another situation of interest is that of the gradient �ow
on a compact smooth Riemannian manifold (M,g), which is induced by a semi-convex
function E ∈ C1(M). Here, our very general approach is clearly not optimal: in that
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5.1 Application to Gradient Flows in Abstract Metric Space

�nite-dimensional setting, gradient �ows can be characterized in a direct way instead of
using the EVI (2.3.2). Further, there are explicit and local variants of the BDF2 method
(avoiding the global minimization of Ψ in each time step), see e.g. [50], which are simpler
to implement, and whose convergence is expected under more easily veri�able hypotheses
than (E3). Still, for the sake of completeness, we shall detail a su�cient criterion for the
applicability of our results in that situation.
To indicate why the veri�cation of (E3) indeed poses a (surprisingly hard) problem,

observe that it is in general not possible to use the geodesic γ̃s for the curve connecting
γ0 to γ1 in (5.1.2). Indeed, for s 7→ Ψ(τ, u, v; γ̃s) to be uniformly convex of modulus
3
2τ +λ, independently of u and v, one would essentially need that both s 7→ d2(v, γs) and
s 7→ −d2(u, γs) are uniformly convex of modulus d2(γ0, γ1). By Toponogov's theorem,
the �rst condition would imply that M has non-negative sectional curvature, and the
latter would imply that M has non-positive sectional curvature; hence, M would need
to be �at.
A more appropriate class of connecting curves are segments, which are de�ned with

the help of the exponential map exp(·) as follows. Fix v ∈ M, and let γ0, γ1 ∈ M lie
outside of v's cut locus cut(v). Then, there are unique ξ0, ξ1 in the injectivity domain
I(v) ⊂ TvM of the exponential map expv : TvM → M such that expv(ξ0) = γ0 and
expv(ξ1) = γ1. Further, assume that the straight line from ξ0 to ξ1 lies in I(v). The
segment [γ0, γ1; v]s : [0, 1] → M with base v connecting γ0 to γ1 is then de�ned by
[γ0, γ1; v]s = expv((1− s)ξ0 + sξ1).
Kim and McCann [57, Corollary 2.11] have established a su�cient criterion for the

convexity of

[0, 1] 3 s 7→ d2
(
v, [γ0, γ1; v]s

)
− d2

(
u, [γ0, γ1; v]s

)
, (5.1.6)

independently of u ∈M in terms of the cross curvature. Their hypotheses are as follows.

(KM0) The squared metric d2(·, ·), induced on M via g, is C4-regular outside of the
cut locus.

(KM1) For each v ∈ M, its injectivity domain I(v) is convex, so segments [γ0, γ1; v]
can be de�ned for arbitrary γ0, γ1 /∈ cut(v).

(KM2) For each segment [γ0, γ1; v], there is a dense subset U ⊂ M, such that there is
no u ∈ U and no s ∈ [0, 1] with u ∈ cut([γ0, γ1; v]s).

(KM3) (M,g) has non-negative cross curvature.

Note, a Riemannian manifold (M,g) is said to have non-negative cross curvature if and
only if for each (x, y) ∈ N and v ∈ TxM, w ∈ TyM,

− d2

dt2

∣∣∣
t=0

d2

ds2

∣∣∣
s=0

d2
(
[x0, x1; y0]t, ys

)
≥ 0. (5.1.7)

for a given curve y : (−ε, ε) → M and points x0, x1 /∈ cut(y0) where w := ẏ0 ∈ Ty0M,
v ∈ Tx0M, and the derivative of t 7→ [x0, x1; y0]t at t = 0.
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5 Backward Di�erentiation Formula 2

Apart from (KM0), each of these conditions is rather demanding. A class of examples
satisfying (KM0)�(KM3) are the round spheres Sd. For these, (KM0)�(KM2) are easily
veri�ed since cut(v) = {−v} only contains the antipodal point, and I(v) is the open
d-dimensional ball of radius π, for each v ∈ Sd. In contrast, the proof of (KM3) has
been a challenge even for spheres, that has been mastered in [57, Theorem 6.2]. It seems
that � apart from products and quotients of spheres � no further explicit examples
satisfying (KM0)�(KM3) are currently known.

Theorem 5.1.5. Assume that (X,d) is a compact Riemannian manifold (M,g) that
satis�es (KM0)�(KM3) above. Assume further that E ∈ C1(M) is semi-convex. Then
(E3) is satis�ed with some λ ∈ R, with γs := [γ0, γ1; v]s.

Proof. For given u, v ∈ M and γ0, γ1 ∈ M \ cut(v), let γs := [γ0, γ1; v]s; the result for
general γ0, γ1 ∈ M follows by continuity a forteriori. Further, we shall assume that
E ∈ C2(M) during the computations. Since E is semi-convex, andM is compact, there
is a global modulus λ′ ≤ 0 of convexity, i.e., Hess E(v) ≥ λ′ as a quadratic form on
each TvM. The �nal estimate (5.1.8) depends only on λ′, so (E3) follows for general
semi-convex E ∈ C1(M) by approximation.

We split
Ψ(τ, u, v; γs) = h1(s) + h2(s) + h3(s),

with h1, h2, h3 : [0, 1]→ R given by

h1(s) =
3

4τ
d2(v, γs), h2(s) =

1

4τ

(
d2(v, γs)− d2(u, γs)

)
, h3(s) = E(γs).

First, by de�nition of the segment γs via the exponential map, s 7→ d2(v, γs) is twice
di�erentiable with

3

4τ

d2

ds2
d2(v, γs) ≡

3

2τ
‖ξ1 − ξ0‖2v,

where ‖ξ‖2v = gv(ξ, ξ). Second, by the hypotheses (KM0)�(KM3), the result from [57,
Corollary 2.11] applies, so h2 is convex. Finally, concerning h3: in the normal coordinates
induced by expv : I(v) → M, the segment γs is the straight line connecting ξ0 to ξ1,
hence (recalling the de�nition of the Hessian, and that expv is a 1-Lipschitz map):

h′′3(s) =
d2

ds2
E(γs) = Hess E(γs)[γ̇s] + dE(γs)

[
∇γ̇s γ̇s

]
≥ λ′‖γ̇s‖2γs − ‖E‖C1

∥∥∥∑
i,j,k

Γki,j(ξ
i
1 − ξi0)(ξj1 − ξj0)

∂

∂xk

∥∥∥
γs

≥
(
λ′ −K‖E‖C1

)
‖ξ1 − ξ0‖2v.

Here K is a bound on the Christo�el symbols Γkij on the smooth and compact manifold
(M,g), and for the estimate ‖γ̇s‖ ≤ ‖ξ1 − ξ0‖v, we have used that (KM3) implies that
(M,g) is of non-negative sectional curvature.
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5.1 Application to Gradient Flows in Abstract Metric Space

In summary, we have shown that s 7→ Φ(τ, u, v; γs) is uniformly convex of modulus( 3

4τ
+ λ
)
‖ξ1 − ξ0‖2v with λ := λ′ −K‖E‖C1 . (5.1.8)

Recalling that (KM3) implies non-negative sectional curvature on (M,g), we conclude
that d2(γ0, γ1) ≤ ‖ξ1 − ξ0‖2v, so the claim (E3) follows.

L2-Wasserstein Space. In our last example, we consider the classical L2-Wasserstein
space (P2(Ω),W2) of the probability measures of �nite second moment over a convex,
possibly unbounded domain Ω ⊂ Rd. And we assume that E is uniformly displacement
semi-convex; the de�nition is recalled below. We remark that the class of gradient �ows
generated in this setting encompasses nonlinear drift-di�usion-aggregation equations of
the form

∂tρt = ∆(ρmt ) +∇ · (ρt∇V ) +∇ · (ρt ∗ ∇W ρt),

under the restrictions that m ≥ (d − 1)/d, and that V,W ∈ C2(Ω) are uniformly semi-
convex.

(P2(Ω),W2) is a complete geodesic space, which has non-negative curvature in the
sense of Alexandrov. Similarly, as in the case of (non-negatively cross-curved) Rieman-
nian manifolds discussed above, one cannot expect that hypothesis (E3) is satis�ed for the
geodesic γ̃s connecting the two given measures γ0, γ1 ∈ P2(Ω). Indeed, s 7→ W2

2(γ̃s, u)
is typically not uniformly convex of modulus W2

2(γ0, γ1), see [4, Example 7.3.3]. Again,
segments with a prescribed base point are more appropriate.
We need to recall some basic notations from the theory of optimal mass transport.
P2(Ωj ×Ωk) is the space of probability measures with �nite second moment on the cross
product Ω × Ω, and the indices j and k indicate that we use coordinates xj ∈ Ω and
xk ∈ Ω on the components, i.e., we write x = (xj , xk) ∈ Ω × Ω. We introduce the
canonical projections πj : (xj , xk) 7→ xj , and for s ∈ [0, 1], we de�ne πs : Ω0×Ω1 → Ω by
πs := (1−s)π0 +sπ1 for brevity. We write (πj)#p for the j-marginal of p ∈ P2(Ωj×Ωk),
and analogously, for p ∈ P2(Ω0 ×Ω1) and s ∈ [0, 1], the interpolating measure (πs)#p ∈
P2(Ω) is characterized by

ˆ
Ω
ϕ(y) d(πs)#p(y) =

ˆ
Ω
ϕ
(
(1− s)x0 + sx1

)
dp(x), for all ϕ ∈ C0

b (Ω).

A transport plan from µ0 ∈ P2(Ω0) to µ1 ∈ P2(Ω1) is any p ∈ P2(Ω0 × Ω1) satisfying
the marginal constraints π0#p = µ0 and (π1)#p = µ1. Such a plan p is called optimal
if it is a minimizer in the Kantorovich problem

p 7→
ˆ

Ω2

|x0 − x1|2 dp(x). (5.1.9)

For any given µ0, µ1 ∈ P2(Ω), there exists at least one optimal plan and if one of the
measures µi is absolutely continuous, the optimal plan p is unique.
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We are going to use the following two facts, which are essentially [4, Lemma 5.3.2] and
[4, Proposition 7.3.1]:

1. Glueing lemma: Given α ∈ P2(Ω0 × Ω2) and β ∈ P2(Ω1 × Ω2) with (π2)#α =
(π2)#β, there exists a µ ∈ P2(Ω0 × Ω1 × Ω2) such that (π0, π2)#µ = α and
(π1, π2)#µ = β.

2. Curve lemma: Given α ∈ P2(Ω0 × Ω1), β ∈ P2(Ω3) and t ∈ [0, 1], there exists
a µ ∈ P2(Ω0 × Ω1 × Ω3) such that (π0, π1)#µ = α, and (πt, π3)#µ is an optimal
transport plan from (πt)#α to β.

Segments � which are referred to as generalized geodesics in [4] � are de�ned as follows.
Let p02 ∈ P2(Ω0 × Ω2) and p12 ∈ P2(Ω1 × Ω2) be optimal plans for the transport of γ0

and γ1, respectively, to v ∈ P2(Ω2). By the glueing lemma, there exists a p012 such that
(π0, π2)#p012 = p01 and (π1, π2)#p012 = p12. Then [γ0, γ1; v]s := (πs)#p012. Finally, we
recall that E being uniformly displacement semi-convex of modulus λ means that

E
(
[γ0, γ1; v]s

)
≤ (1− s)E(γ0) + sE(γ1)− λ

2

ˆ
Ω
|x0 − x1|2 dp012(x).

In the language of [4], this property is referred to as λ-convexity along generalized
geodesics.

Theorem 5.1.6. Let Ω ⊆ Rd and assume that the metric space (X,d) is the L2-
Wasserstein space (P2(Ω),W2). Assume further that E is uniformly displacement semi-
convex of modulus λ. Then (E3) is satis�ed, with the same λ, for γs = [γ0, γ1; v]s.

Proof. Let u, v, γ0, γ1 ∈ P2(Ω) be given, and let p012 be as above. We are going to prove
the inequality (5.1.2) directly for a �xed value s ∈ (0, 1). Since (πs, π2)#p012 is some
transport from γs to v, and (π0, π2)#p012, (π1, π2)#p012 are both optimal,

W2
2(γs, v) ≤

ˆ
Ω
|(1− s)x0 + sx1 − x2|2 dp012(x)

=

ˆ
Ω

[
(1− s)|x0 − x2|2 + s|x1 − x2|2 − s(1− s)|x0 − x1|2

]
dp012(x)

= (1− s)W2
2(γ0, v) + sW2

2(γ1, v)− s(1− s)
ˆ

Ω
|x0 − x1|2 dp012(x).

By the curve extension lemma, there exists a p013 ∈ P2(Ω0 × Ω1 × Ω3), such that
(π0, π1)#p013 = (π0, π1)#p012, and (πs, π3)#p013 is an optimal plan from γs to u. It
follows that (π0, π3)#p013 and (π1, π3)#p013 are some transport plans from γ0 and γ1,
respectively, to u, and so

W2
2(γs, u) =

ˆ
Ω
|(1− s)x0 + sx1 − x3|2 dp013(x)

=

ˆ
Ω

[
(1− s)|x0 − x3|2 + s|x1 − x3|2 − s(1− s)|x0 − x1|2

]
dp013(x).
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Since (π0, π3)#p013 and (π1, π3)#p013 are not optimal we can conclude

W2
2(γs, u) ≥ (1− s)W2

2(γ0, u) + sW2
2(γ1, u)− s(1− s)

ˆ
Ω
|x0 − x1|2 dp012(x).

In combination with the de�nition of λ-uniform displacement convexity of E , we arrive
at

Ψ(τ, u, v; γs) ≤(1− s)Ψ(τ, u, v; γ0) + sΨ(τ, u, v; γ1)

− 1

2

( 3

2τ
+ λ

)
s(1− s)

ˆ
Ω
|x1 − x0|2 dp012(x).

Clearly, the integral above is larger or equal to W2
2(γ0, γ1), hence (5.1.2) for any τ > 0

so small that 3
2τ + λ > 0.

5.1.2 Basic Properties of the BDF2 Penalization Ψ

In this section, we study the basic properties of the BDF2 scheme. First, we prove well-
posedness in the sense that for all su�ciently small τ > 0, and arbitrary data u, v ∈
D(E), the functional Ψ(τ, u, v; ·) possesses a unique minimizer in D(E). Consequently,
for an arbitrary pair (uτ0 , u

τ
1 ) of initial conditions, one obtains inductively a unique global

discrete solution (uτk )k∈N by solving the corresponding sequence of minimization problems
in (5.3.2). Subsequently, we derive some fundamental estimates that are needed for the
convergence proof later.

Recall that Assumptions (E1)�(E3) are supposed to hold, with (5.1.3).

Theorem 5.1.7 (Existence of a minimizer). For all τ ∈ (0, τ∗) and for all u, v ∈ X,
there exists a unique minimizer w∗ ∈ D(E) of w 7→ Ψ(τ, u, v;w).

Proof. Let τ ∈ (0, τ∗) and u, v ∈ X be �xed. For brevity, we write ψ(w) := Ψ(τ, u, v;w).

First, we show that ψ is bounded from below. By the triangle inequality and the
binomial formula, we have that

d2(u,w) ≤ 2d2(u, v) + 2d2(v, w), d2(u∗, w) ≤ 2τ∗
τ∗ + τ

d2(w, v) +
2τ∗
τ∗ − τ

d2(v, u∗).

Substituting these estimates into the de�nition of ψ(w) = Ψ(τ, u, v;w) and using As-
sumption (E2), we obtain for each w ∈ D(E):

ψ(w) ≥ 1

τ∗ + τ
d2(v, w) +

1

2τ
d2(v, w)− 1

4τ
d2(u,w) + E(w)

≥− 1

τ∗ − τ
d2(v, u∗) +

1

2τ∗
d2(u∗, w)− 1

2τ
d2(v, u) + E(w)

≥− 1

τ∗ − τ
d2(v, u∗)−

1

2τ
d2(v, u) + c∗.

79



5 Backward Di�erentiation Formula 2

The last expression, which only depends on the given quantities u and v, constitutes the
sought for lower bound on ψ. Consequently,

ψ := inf
w∈D(E)

ψ(w) > −∞.

Now, choose a minimizing sequence (wn)n∈N in D(E), i.e.,

ψ(wn)↘ ψ. (5.1.10)

We are going to prove that this is a Cauchy sequence. Towards that goal, we invoke
Assumption (E3): speci�cally, for given indices m and n, we choose γ0 = wm, γ1 = wn,
and we de�ne wm,n := γ 1

2
, the midpoint of the respective curve joining wm to wn. Then,

by (5.1.2),

ψ(wm,n) ≤ 1

2
ψ(wm) +

1

2
ψ(wn)− 1

8

( 3

2τ
+ λ

)
d2(wm, wn).

Since τ < τ∗ by hypothesis, and 3 + 2λτ∗ ≥ 2 thanks to (5.1.3), this yields an estimate
on the distance from wm to wn:

d2(wm, wn) ≤ 8τ

3+2τλ
(ψ(wm) + ψ(wn)− 2ψ(wm,n)) ≤ 8τ

3+2τλ

(
ψ(wm) + ψ(wn)− 2ψ

)
.

In view of (5.1.10), this veri�es the Cauchy property of (wn)n∈N. Consequently, and by
completeness of (X,d), that sequence converges to a limit w∗ ∈ X.

According to Assumption (E1), E is lower d-semi-continuous. Since the distance to a
given point is clearly a continuous function, also ψ is lower d-semi-continuous. By the
usual argument

ψ ≤ ψ(w∗) ≤ lim inf
n→∞

ψ(wn) = ψ,

we conclude that ψ attains its in�mum ψ at w∗, i.e., w∗ is a minimizer.

The uniqueness of the minimizer follows by Assumption (E3) as well: by the remarks
following (5.1.3), ψ is strictly convex along some curve that connects two potentially
di�erent minimizers. But that would mean that ψ attains a value lower than that at the
minimizers, a contradiction.

5.1.3 Properties of the BDF2 Scheme

In the following, we assume that discrete initial data (uτ0 , u
τ
1 ) are given for each τ ∈

(0, τ∗), and we consider the � according to Theorem 5.1.7 above � well-de�ned family
of discrete solutions (uτk )k∈N. We recall that one of the key features of the implicit Euler
method is that the energy values E(uτk+1) are monotonically decreasing with k. This is
not quite the case for the BDF2 scheme at hand, but we can prove a slightly weaker
property.
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Lemma 5.1.8 (Almost Energy Diminishing). Each discrete solution (uτk )k∈N satis�es

E(uτk+1) +
1

2τ
d2(uτk , u

τ
k+1) ≤ E(uτk ) +

1

4τ
d2(uτk−1, uτk ) (5.1.11)

at each step k = 1, 2, . . ..

Proof. Since uτk+1 is a minimizer of w 7→ Ψ(τ, uτk−1, uτk ;w), it satis�es

Ψ(τ, uτk−1, uτk ;uτk+1) ≤ Ψ(τ, uτk−1, uτk ;w)

for all w ∈ X. For the choice w = uτk , we obtain

1

τ
d2(uτk , u

τ
k+1)− 1

4τ
d2(uτk−1, uτk+1) + E(uτk+1) ≤ − 1

4τ
d2(uτk−1, uτk ) + E(uτk ). (5.1.12)

By the triangle inequality and the binomial formula,

d2(uτk−1, uτk+1) ≤ 2d2(uτk−1, uτk ) + 2d2(uτk , u
τ
k+1). (5.1.13)

Substitute this in the left-hand side of (5.2.9). This yields (5.1.11)

Next, we derive the classical estimates on energy and distance. These require (I1) to
hold for the approximation (uτ0 , u

τ
1 ) of the initial datum u0.

Theorem 5.1.9 (Classical Estimates). Fix a time horizon T > 0. Then there is a con-
stant C, depending only on d1, d2 and T , such that the corresponding discrete solutions
(uτk )k∈N satisfy

N∑
k=1

1

2τ
d2(uτk−1, uτk ) ≤ C, |E(uτN )| ≤ C, d2(u∗, u

τ
N ) ≤ C (5.1.14)

for all N ∈ N with Nτ ≤ T .

Proof. The main estimate is easy to obtain: sum up the inequalities (5.1.11) for k = 1 to
k = N − 1. After the cancellation of corresponding terms on both sides, we remain with

E(uτN ) +
1

4τ

N∑
k=1

d2(uτk−1, uτk ) ≤ E(uτ1 ) +
1

4τ
d2(uτ0 , u

τ
1 ) ≤ d1 +

1

4
d2

2τ∗, (5.1.15)

where (I1) has been used in the last inequality. Clearly, if E would be bounded below,
then (5.1.14) would follow immediately.

Since we only assume the weaker lower bound (E2), more work is required. First, we
show that

d2(u∗, u
τ
k )− d2(u∗, u

τ
k−1) ≤ 2d(uτk−1, uτk )d(u∗, u

τ
k ). (5.1.16)
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We only need to consider the case that d(u∗, u
τ
k ) ≥ d(u∗, u

τ
k−1), since otherwise the

inequality is trivially true. But then an application of the triangle inequality yields:

d2(u∗, u
τ
k )− d2(u∗, u

τ
k−1)

=
(
d(u∗, u

τ
k ) + d(u∗, u

τ
k−1)
)(
d(u∗, u

τ
k )− d(u∗, u

τ
k−1)
)

≤
(
d(u∗, u

τ
k ) + d(u∗, u

τ
k )
)(
d(u∗, u

τ
k−1) + d(uτk−1, uτk )− d(u∗, u

τ
k−1)
)

=2d(uτk−1, uτk )d(u∗, u
τ
k ),

which is (5.1.16). We use inequality (5.1.16) and the binomial formula to estimate

1

2
d2(u∗, u

τ
N )− 1

2
d2(u∗, u

τ
1 ) =

1

2

N∑
k=2

[
d2(u∗, u

τ
k )− d2(u∗, u

τ
k−1)
]

≤
N∑
k=2

d(uτk−1, uτk )d(u∗, u
τ
k )

≤
N∑
k=2

τ∗
8τ
d2(uτk−1, uτk ) +

N∑
k=2

2τ

τ∗
d2(u∗, u

τ
k ).

At this point, we substitute estimate (5.1.16) and use Assumption (E2) to obtain

1

2
d2(u∗, u

τ
N )− 1

2
d2(u∗, u

τ
1 )

≤τ∗
2

(
E(uτ1 )− E(uτN ) +

1

4τ
d2(uτ0 , u

τ
1 )
)

+
2τ

τ∗

N∑
k=2

d2(u∗, u
τ
k )

≤τ∗
2

(
E(uτ1 )− c∗ +

1

2τ∗
d2(u∗, u

τ
N ) +

1

4τ
d2(uτ0 , u

τ
1 )
)

+
2τ

τ∗

N∑
k=2

d2(u∗, u
τ
k ).

We rearrange terms and use (I1) to arrive at the following discrete Gronwall inequality:

d2(u∗, u
τ
N ) ≤ 2K2

0 + 2τ∗ (d1 − c∗) +
τ∗
2
d2

2 +
8τ

τ∗

N∑
k=2

d2(u∗, u
τ
k ).

One veri�es by induction on N that

d2(u∗, u
τ
N ) ≤

[
2K2

0 + 2τ∗ (d1 − c∗) +
τ∗
2
d2

2

](
1 +

8τ

τ∗

)N
≤ Ĉ exp

(8Nτ

τ∗

)
≤ Ĉ exp

(8T

τ∗

)
,

proving the third estimate of (5.1.14).

From here, we conclude the second bound from (5.1.14): the bound on E(uτN ) from
above follows immediately from (5.1.15), for the bound from below, we combine the
third estimate of (5.1.14) with Assumption (E2). Having the second estimate at hand,
the bound �rst one from (5.1.14) follows again from (5.1.15).
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As a �nal preparation for the convergence proof, we derive a time-discrete version of
the di�erential EVI (2.3.2). That estimate does not require any further assumptions on
the discrete initial data.

Lemma 5.1.10 (Discrete EVI). The discrete solution (uτk )k∈N satis�es( 3

4τ
+
λ

2

)
d2(uτk+1, w)− 1

τ
d2(uτk , w) +

1

4τ
d2(uτk−1, w)

≤ E(w)− E(uτk+1)− 1

τ
d2(uτk , u

τ
k+1) +

1

4τ
d2(uτk−1, uτk+1)

(5.1.17)

for all k ∈ N, and for all w ∈ D(E).

Proof. This follows from Assumption (E3). Choose γ0 = uτk+1 and γ1 = w, and let γs
be the corresponding connecting curve such that (5.1.2) holds. Combine (5.1.2) with the
fact that uτk+1 minimizes Ψ(τ, uτk−1, uτk , ·) to obtain, for each s ∈ (0, 1),

0 ≤ Ψ(τ, uτk−1, uτk ; γs)−Ψ(τ, uτk−1, uτk ;uτk+1)

≤ sΨ(τ, uτk−1, uτk ;w)− sΨ(τ, uτk−1, uτk ;uτk+1)− 1

2

( 3

2τ
+ λ

)
s(1− s)d2(uτk+1, w).

Divide by s ∈ (0, 1) and pass to the limit s↘ 0. This yields

0 ≤ Ψ(τ, uτk−1, uτk ;w)−Ψ(τ, uτk−1, uτk ;uτk+1)− 1

2

( 3

2τ
+ λ
)
d2(uτk+1, w),

which, by de�nition of Ψ, is the desired inequality (5.1.17).

5.1.4 Convergence

Once again, we recall that (X,d) is a separable and complete metric space, on which a
functional E : X→ R ∪ {∞} is given, that satis�es Assumptions (E1)�(E3), with (5.1.3).
Our main result is the following.

Theorem 5.1.11 (Convergence result). Consider a sequence of equidistant partition
τn = (τn, 2τn, 3τn, . . .) with vanishing step sizes τn ∈ (0, τ∗) which are strictly decreasing,
and which are such that the quotients τn/τn+1 are natural numbers. Let further initial
data (uτn0 , uτn1 ) be given that satisfy (I1), and such that uτn0 → u0.
Then the associated discrete solution (uτnk )k∈N is well-de�ned for each n, and the

sequence of piecewise constant interpolations (uτnt )n∈N converges locally uniformly with
respect to time to a solution u∗t ∈ AC2 (0,∞; (X,d)) of the gradient �ow for E, i.e.,
the limit u∗ satis�es (2.3.2). More precisely, for every time horizon T > 0, there is a
constant C that can be expressed in terms of d1, d2 and T alone, such that

d
(
uτnt , u

∗
t

)
≤ C (d(uτn0 , u0) +

√
τn) (5.1.18)

for all t ∈ [0, T ].
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Remark 5.1.12. The hypothesis that consecutive τn's have an integer quotient has
been made in order not to make the already quite technical proof even more technical.
Under that hypothesis, the time grid associated with some τn is always a re�nement of
the grid for τm if n > m. That simpli�es our calculations considerably.

Comparison Principle

The main ingredient of the proof of Theorem 5.1.11 is the following comparison principle,
which estimates the rate at which two discrete solutions with almost identical initial data
may diverge from each other.

Theorem 5.1.13 (Comparison principle). In the setting of Theorem 5.1.11, �x two
equidistant partitions τ and η with time step sizes τ := τn and η := τm with m > n.
Then, there is a constant C, expressible in terms of d1, d2 and T alone, such that

d2
(
uτt , v

η
t

)
≤ C

(
d2(uτ0 , v

η
0 ) + τ

)
(5.1.19)

for all t ∈ [0, T ].

Proof. By hypothesis, de�ne R := τ/η ∈ N. The basic idea is to derive bounds on the
distance between the discrete solutions (uτk )k∈N and (vη` )`∈N at comparable times, i.e.,
for (k − 1)R ≤ ` ≤ Rk, by using the time-discrete EVI (5.1.17) for each of the two
solutions and substituting the respective other solution for the �observer point� w. More
speci�cally, multiplication of (5.1.17) for uτk+1 by (4τ)/(3 + 2λτ) yields

d2(uτk+1, w)− 4

3 + 2λτ
d2(uτk , w) +

1

3 + 2λτ
d2(uτk−1, w)

≤ 4τ

3 + 2λτ

(
E(w)− E(uτk+1)− 1

τ
d2(uτk , u

τ
k+1) +

1

4τ
d2(uτk−1, uτk+1)

)
.

(5.1.20)

For brevity, we introduce

gτ :=
1

2 +
√

1− 2λτ
=

1

3
+O(τ), hτ := 2−

√
1− 2λτ = 1 +O(τ),

where the Landau symbol O(τ) is understood for the limit τ → 0. Note, with this

de�nition one has λτ := log(hτ )
τ = λ+O(τ). Furthermore, de�ne

aτk (uτt ;w) := hτd
2(uτk+1, w)− d2(uτk , w),

bτk (uτt ;w) := 4gτ

(
E(w)− E(uτk+1)− 1

τ
d2(uτk , u

τ
k+1) +

1

4τ
d2(uτk−1, uτk+1)

)
.

With these notations, the variational inequality (5.1.20) attains the following form:

aτk (uτt ;w) ≤ gτ aτk−1(uτt ;w) + τbτk (uτt ;w).

84



5.1 Application to Gradient Flows in Abstract Metric Space

An iteration of this inequality yields

aτk (uτt ;w) ≤ gkτ aτ0 (uτt ;w) + τ
k∑

n=1

gk−nτ bτn(uτt ;w). (5.1.21)

Analogously, de�ne gη, hη, λη, as well as a
η
` (vηt ;w), bη` (vηt ;w), replacing uτk−1, uτk , uτk+1 and

τ with vη`−1, v
η
` , v

η
`+1 and η, respectively. By the same argument as above, one obtains a

corresponding estimate for aη` (vηt ;w).

Now �x a time t ∈ [0, T ], and de�ne the three quantities N := max{n | nτ ≤ t},
M := max{m | mη ≤ t}, and L := M −RN. Further more, introduce

qk,` := hkτh
`
ηd

2(uτk , v
η
` ) = eλτkτ+λη`ηd2

(
uτkτ , v

η
`η

)
.

The goal is to derive an estimate on the di�erence

qN,M − q0,0 = hNτ h
M
η d

2(uτN , v
η
M )− d2(uτ0 , v

η
0 ).

We expand this di�erence into telescopic sums �rstly with respect to k:

qN,M − q0,0 =
(
qN,M − qN,RN

)
+

N−1∑
k=0

(
qk+1,R(k+1) − qk,Rk

)
and secondly in ` such that we get in the end

qN,M − q0,0 =
M−1∑
`=RN

(qN,`+1 − qN,`) +
N−1∑
k=0

(
(qk+1,Rk − qk,Rk) +

R(k+1)−1∑
`=Rk

(qk+1,`+1 − qk+1,`)
)
.

By de�nition of a and b, the di�erences inside the sums satisfy

qk+1,` − qk,` = hkτh
`
ηa
τ
k (uτt ; vη` ), qk,`+1 − qk,` = hkτh

`
ηa
η
` (vηt ;uτk ).

Insert this above and use the estimates (5.1.21) to obtain

hNτ h
M
η d

2(uτN , v
η
M )− d2(u0, v0) ≤ Iτ ,ηN,M (uτt , v

η
t )

:=
M−1∑
`=RN

hNτ h
`
η

[
g`ηa

η
0 (vηt ;uτN ) + η

∑̀
n=1

g`−nη bηn(vηt ;uτN )
]

(5.1.22)

+

N−1∑
k=0

hkτh
Rk
η

[
gkτ a

τ
0 (uτt ; vηRk) + τ

k∑
n=1

gk−nτ bτn(uτt ; vηRk)
]

(5.1.23)

+

N−1∑
k=0

R(k+1)−1∑
`=Rk

hk+1
τ h`η

[
g`ηa

η
0 (vηt ;uτk+1) + η

∑̀
n=1

g`−nη bηn(vηt ;uτk+1)
]
. (5.1.24)
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The core part of the proof of Theorem 5.1.13 is to show that under the given hypotheses,

Iτ ,ηN,M (uτt , v
η
t ) ≤ C ′τ. (5.1.25)

The proof of (5.1.25) can be found at the end of this section. In conclusion, we have

eλτ t+ληtd2(uτt , v
η
t ) ≤ hNτ hMη d2(uτN , v

η
M ) ≤ C ′τ + d2(u0, v0),

which implies the inequality (5.1.19) with C = e−2λT (1 + C ′).

Proof of the Main Theorem

With Theorem 5.1.13 at hand, we �nish the proof of Theorem 5.1.11.

Proof of Theorem 5.1.11. From Theorem 5.1.13 it follows that (uτnt )n∈N is a Cauchy
family with respect to uniform convergence on each interval [0, T ]. Indeed, from estimate
(5.1.19), it follows that the values (uτnt )n∈N converge in the complete metric space (X,d)
to a limit u∗t , uniformly for t ∈ [0, T ], and that the estimate (5.1.18) holds. Since this
argument holds for arbitrary T > 0, the limit u∗t is de�ned for all t ≥ 0.

To prove absolute continuity of the limit curve u∗, we argue as usual: we assign time-
discrete derivatives Ant to the interpolated solutions uτnt by

Ant :=
d(uτnt−τn , u

τn
t )

τn
=
d(uτnk−1, u

τn
k )

τn
for t ∈ ((k − 1)τn, kτn].

Thanks to the classical estimate (5.1.14), Ant is uniformly bounded in L2(0, T ). Hence,
Ant possesses a L2(0, T )-weakly convergent subsequence (not relabelled) with limit At ∈
L2(0, T ). Choose arbitrary s, t with 0 ≤ s ≤ t ≤ T , and de�ne knr := max{k | kτn ≤ r},
then

d(uτns , u
τn
t ) ≤

knt∑
k=kns +1

d(uτnk−1, u
τn
k ) =

ˆ knt τn

kns τn

Anr dr.

In the limit n→∞, this yields

d(u∗s, u
∗
t ) = lim

n→∞
d(uτns , u

τn
t ) ≤ lim

n→∞

ˆ knt τn

kns τn

Anr dr =

ˆ t

s
Ar dr.

Hence u∗ ∈ AC2(0,∞; (X,d)).

It remains to prove that the limit curve u∗ satis�es the integrated form (2.3.2) of the
EVI. Again, let 0 ≤ s ≤ t ≤ T , and de�ne knr be as above. Multiply the time-discrete
EVI (5.1.17) for (uτnk )k∈N by τn, and sum from k = kns to k = knt − 1. We de�ne the
left-hand side:

Jn(1)(s, t) := τn

knt −1∑
k=kns

[( 3

4τn
+
λ

2

)
d2(uτnk+1, w)− 1

τn
d2(uτnk , w) +

1

4τn
d2(uτnk−1, w)

]
.
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Consequently, after elementary manipulations we have

Jn(1)(s, t) =
λ

2

ˆ knt τn

kns τn

d2(uτnr , w) dr

+
1

4

[(
3d2(uτnknt

, w)− d2(uτnknt −1, w)
)
−
(
3d2(uτnkns

, w)− d2(uτnkns−1, w)
)]
.

Thanks to the r-uniform convergence of uτnr to u∗r , and since u∗t is continuous, we obtain
in the limit

lim
n→∞

Jn(1)(s, t) =
λ

2

ˆ t

s
d2
(
u∗r , w

)
dr +

1

2
d2
(
u∗t , w

)
− 1

2
d2
(
u∗s, w

)
.

On the other hand, after summation of the right-hand side of (5.1.17), we estimate once
again with the help of the elementary inequality (5.1.13) and thus obtain

Jn(2)(s, t) := τn

knt −1∑
k=kns

[
E(w)− E(uτnk+1)− 1

τn
d2(uτnk , u

τn
k+1) +

1

4τn
d2(uτnk−1, u

τn
k+1)

]
≤
ˆ knt τn

kns τn

[
E(w)− E

(
uτnr
)]
dr − 1

2
d2(uτnknt −1, u

τn
knt

) +
1

2
d2(uτnkns−1, u

τn
kns

).

Again, thanks to local uniform convergence of uτnt to the continuous limit u∗t , and since
E is lower semi-continuous thanks to Assumption (E1), Fatou's lemma yields that

lim
n→∞

Jn(2)(s, t) ≤
ˆ t

s

[
E(w)− E

(
u∗r
)]
dr.

Since Jn(1)(s, t) ≤ Jn(2)(s, t) for all n by (5.1.17), the respective inequality follows for the
limits, that is

λ

2

ˆ t

s
d2
(
u∗r , w

)
dr +

1

2
d2
(
u∗t , w

)
− 1

2
d2
(
u∗s, w

)
≤
ˆ t

s

[
E(w)− E

(
u∗r
)]
dr.

This implies the integrated EVI (2.3.2).

Proof of the Estimate (5.1.25)

This is the most technical part of the convergence proof, that uses only elementary
inequalities and the classical estimates (5.1.14) (which, in turn, are valid thanks to (I1)).
Throughout this section, we adopt the convenient notation that C is a generic constant,
which is in principle expressible in terms of d1 and d2 from (I1) and the terminal time T
alone, and whose value may change from one line to the next.

To begin with, observe that since we assumed λ ≤ 0, we have that gτ ≤ 1
3 and gη ≤ 1

3 ,
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and therefore

∞∑
k=0

gkτ ≤
3

2
,

∞∑
`=0

g`η ≤
3

2
. (5.1.26)

Further, we have that hτ ≤ 1 and hη ≤ 1, which means that

hkτh
`
η ≤ 1 (5.1.27)

for arbitrary k, ` ≥ 0. On the other hand, since hτ ≤ 1 and due to (5.1.16), it follows
that

aτ0 (uτt ;w) = hτd
2(uτ1 , w)− d2(uτ0 , w) ≤ d2(uτ1 , w)− d2(uτ0 , w) ≤ 2d(uτ0 , u

τ
1 )d(uτ1 , w).

Substituting w := vη` , we obtain by the triangle inequality, and thanks to estimate
(5.1.14), that

aτ0 (uτt ; vη` ) ≤ 2d(uτ0 , u
τ
1 )
[
d(u∗, u

τ
1 ) + d(u∗, v

η
` )
]
≤ Cd(uτ0 , u

τ
1 ) ≤ Cd2τ (5.1.28)

where we have used that (I2) holds with constant d2. Analogously, one derives

aτ0 (vηt ;uτk ) ≤ Cη. (5.1.29)

With (5.1.26), (5.1.27), (5.1.28) and (5.1.29) at hand, it is now straight-forward to esti-
mate the terms inside Iτ ,ηN,M (uτt , v

η
t ) involving aτ0 or aη0 . For the expression in (5.1.22),

M−1∑
`=RN

hNτ h
`
ηg
`
ηa
η
0 (vηt ;uτN ) ≤

M−1∑
`=RN

g`ηCη ≤
3

2
Cη.

For (5.1.23),

N−1∑
k=0

hkτh
Rk
η gkτ a

τ
0 (uτt ; vηRk) ≤

N−1∑
k=0

gkτCτ ≤
3

2
Cτ.

And �nally, for (5.1.24),

N−1∑
k=0

R(k+1)−1∑
l=Rk

hk+1
τ h`ηg

`
ηa
η
0 (vηt ;uτk+1) ≤

RN∑
`=0

g`ηCη ≤
3

2
Cη.

We turn to estimate the terms involving bτk and bη` . First, by (5.1.13),

bτk (uτt ;w) ≤4gτ

(
E(w)− E(uτk+1) +

1

2τ
d2(uτk−1, uτk )

)
≤4gτ (E(w)− E(uτk+1)) +

1

τ
d2(uτk−1, uτk ),

88



5.1 Application to Gradient Flows in Abstract Metric Space

where we have used that gτ ≤ 1/2. An analogous estimate holds for bη` . Substitute this
into the expression for Iτ ,ηN,M (uτt , v

η
t ) in (5.1.22)�(5.1.24). This gives rise to two groups of

terms: one related to the metric, the other related to E .

We begin by estimating the terms related to the metric. This is done using the classical
estimate (5.1.14): for the expression in (5.1.22),

η

M−1∑
`=RN

hNτ h
`
η

∑̀
n=1

g`−nη

d2(vηn−1, v
η
n)

η
≤ η

M−1∑
`=RN

∑̀
n=1

d2(vηn−1, v
η
n)

η
≤ Rη

M−1∑
`=1

d2(vη`−1, v
η
` )

η
≤ Cτ.

Here we have used that M −NR ≤ R and that Rη = τ . For (5.1.23),

τ

N−1∑
k=0

hkτh
Rk
η

k∑
n=1

gk−nτ

d2(uτn−1, uτN )

τ
≤ τ

N−1∑
n=1

[(N−1∑
k=n

gk−nτ

)d2(uτn−1, uτN )

τ

]
≤ 3

2
Cτ.

Finally, for (5.1.24),

η
N−1∑
k=0

R(k+1)−1∑
`=Rk

hk+1
τ h`η

∑̀
n=1

g`−nη

d2(vηn−1, v
η
n)

η
≤ η

RN∑
`=1

∑̀
n=1

g`−nη

d2(vηn−1, v
η
n)

η

≤ η
RN∑
n=1

[( RN∑
`=n

g`−nη

)d2(vηn−1, v
η
n)

η

]
≤ 3

2
Cη.

The estimates on the expressions involving the di�erences of the energy values are a bit
more involved. To simplify calculations, we use that the b's only contain the di�erence
between two values of E ; hence adding a constant to E does not change the b values.
Consequently, since E(uτk ) and E(vη` ) are bounded from below thanks to (5.1.14), we
may assume without loss of generality that all E(uτk ) and E(vη` ) are non-negative.

The contribution of the E terms to (5.1.22) is immediately controlled, recalling (5.1.26),
(5.1.27), and that M < R(N + 1):

4η
M−1∑
`=RN

hNτ h
`
η

∑̀
n=1

g`+1−n
η

[
E(uτN )− E(vηn)

]
≤ 4RηE(uτN )4

M∑
`=1

glη ≤
3

2
Cτ.

Collecting all terms containing evaluations of E in (5.1.23) and (5.1.24) yields:

4τ
N−1∑
k=0

hkτh
Rk
η

k∑
n=1

gk−n+1
τ

[
E(vηRk)− E(uτn+1)

]
+ 4η

N−1∑
k=0

R(k+1)−1∑
`=Rk

hk+1
τ h`η

∑̀
n=1

g`−n+1
η

[
E(uτk+1)− E(vηn+1)

]
= 4I1 + 4I2,
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where I1 and I2 collect terms with E(uτk ) and E(vη` ), respectively,

I1 = τ
N−1∑
k=0

E(uτk+1)
[ 1

R

R(k+1)−1∑
`=Rk

hk+1
τ h`η

∑̀
n=1

g`−n+1
η −

N−1∑
n=k

hnτh
Rn
η gn−k+1

τ

]
+ τE(uτ1 )

N−1∑
n=0

hnτh
Rn
η gn+1

τ ,

I2 = τ

N−1∑
k=0

[
E(vηRk)h

k
τh

Rk
η

k∑
n=1

gk−n+1
τ

]
− η

N−1∑
k=0

R(k+1)−1∑
`=Rk

∑̀
n=1

hk+1
τ h`ηg

`−n+1
η E(vηn+1).

For I1, we obtain

I1 ≤ τ
N−1∑
k=0

E(uτk+1)hkτh
Rk
η

[ 1

R
hτ

R−1∑
`=0

(
h`η

Rk+l∑
n=1

gnη

)
− gτ

N−k−1∑
n=0

(hτh
R
η gτ )n

]
+ τE(uτ1 )

N−1∑
n=0

gnτ

≤ τ
N−1∑
k=0

E(uτk+1)hkτh
Rk
η

[ 1

R

1

3

(R−1∑
l=0

3

2

)
− gτ

1− (hτh
R
η gτ )N−k

1− hτhRη gτ

]
+ Cτ

≤ τ
N∑
k=0

E(uτk+1)hkτh
Rk
η

[
1

2
− gτ

1− hτhRη gτ
+

gN−k+1
τ

1− hτhRη gτ

]
+ Cτ.

Recalling that −1 ≤ λτ ≤ 0, and observing that both gτ and hτ are convex functions of
τ , a Taylor expansion yields that

gτ ≥
1

3

(
1 +

1

3
λτ
)
≥ 0, hτ ≥ 1 + λτ ≥ 0, (5.1.30)

and similarly for gη and hη. Therefore, in combination with Bernoulli's inequality,

hτh
R
η gτ ≥ (1 + λτ)(1 +Rλη)

1

3

(
1 +

1

2
λτ
)
≥ 1

3
(1 + λτ)3.

With another application of (5.1.30),

1

2
− gτ

1− hτhRη gτ
≤ 1

2
−

1
3(1 + λτ)

1− 1
3(1 + λτ)3

≤ 1

2
− (1 + λτ)3

3− (1 + λτ)3

=
3

2
· 1− (1 + λτ)3

3− (1 + λτ)3
≤ 3

2
· (−3)λτ

2
=− 9

4
λτ.

(5.1.31)

This yields, in combination with the bound (5.1.14) on E ,

I1 ≤τ
N−1∑
k=0

E(uτk+1)hkτh
Rk
η

[ gN−k+1
τ

1− hτhRη gτ
− 9

4
λτ
]

+ Cτ

≤τC
N∑
k=1

[3

2
gN−k+1
τ − 9

4
λτ
]

+ Cτ ≤ C[1 + (−λ)T ] τ.

We turn to the estimate of I2. In order to merge the di�erence of the two sums into a
single sum � similar to what we did for I1 above � we are going to apply a shift of no
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more than R to the indices inside E(vηRk). To control the error introduced by that shift,
observe that an iteration of the energy estimate (5.1.11) yields

E(vηRk) ≤ E(vη` ) +
1

4η
d2(vη`−1, v

η
` )

as soon as 0 ≤ ` ≤ Rk. Further, for such k and `, we have hkτ ≤ h`/Rτ since hτ ≤ 1. This
allows us to estimate the �rst sum in I2 as follows:

τ
N−1∑
k=1

[
E(vηRk)h

k
τh

Rk
η gτ

k∑
n=1

gk−nτ

]
≤ τ

2

N−1∑
k=1

hkτh
Rk
η E(vηRk)

≤ τ

2R

N∑
k=1

Rk∑
`=R(k−1)+1

h`/Rτ h`η

[
E(vη` ) +

1

4η
d2(vη`−1, v

η
` )
]

≤ η

2

R(N−1)∑
`=1

h`/Rτ h`ηE(vη` ) +
η

4

R(N−1)∑
`=1

d2(vη`−1, v
η
` )

2η
.

Next, use the classical estimate (5.1.14) and a lower bound for hτ to obtain

τ

N−1∑
k=1

[
E(vηRk)h

k
τh

Rk
η gτ

k∑
n=1

gk−nτ

]
≤ η

2

RN−1∑
`=0

h`/Rτ h`ηE(vη`+1) + Cη.

The second sum in I2 is estimated as follows, using that hkτ ≥ h`/Rτ for Rk ≤ `:

η
N−1∑
k=0

R(k+1)−1∑
`=Rk

l∑
n=1

hk+1
τ h`ηg

`−n+1
η E(vηn+1) ≥ ηhτgη

RN−1∑
`=0

∑̀
n=1

h`/Rτ h`ηg
`−n
η E(vηn+1)

= ηgηhτ

RN−1∑
n=0

E(vηn+1)hn/Rτ hnη

RN−n−1∑
`=0

(
h1/R
τ hηgη

)n − ηhτgηE(vη1 )

RN−1∑
`=0

h`/Rτ h`ηg
`
η

≥ ηgηhτ
RN−1∑
n=0

E(vηn+1)hn/Rτ hnη
1− (h

1/R
τ hηgη)

RN−n

1− h1/R
τ hηgη

− Cη.

Substituting these estimates into the expression for I2 yields a single sum,

I2 ≤ Cη + η

RN−1∑
`=0

h`/Rτ h`ηE(vη`+1)
[1

2
− gηhτ

1− h1/R
τ hηgη

+
gRN−`+1
η

1− h1/R
τ hηgη

]
.

Arguing similarly as in the derivation of (5.1.31), we estimate

h1/R
τ hηgη ≥ (1 + λτ)1/R (1 + λη)

1

3

(
1 +

1

3
λη
)
≥ 1

3
(1 + λτ)3.
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and consequently, just as in (5.1.31),

1

2
− gηhτ

1− h1/R
τ hηgη

≤ 1

2
−

1
3(1 + λτ)2

1− 1
3(1 + λτ)3

≤ −9

4
λτ.

In conclusion, we obtain with the help of (5.1.14) that

I2 ≤ Cη + η
RN−1∑
`=0

E(vη`+1)
[3

2
gRN+1−`
η +

9

4
λτ
]
C[1 + (−λ)T ] τ.

Collecting all terms, we �nally obtain the desired estimate (5.1.25).
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5.2 Application to Non-linear Fokker-Planck Equation

This section, based on my own work [81], is concerned with the proof of well-posedness
and convergence of a formally higher-order semi-discretization in time, inspired by the
Backward Di�erentiation Formula 2 (BDF2), applied to the non-linear Fokker-Planck
equation with no-�ux boundary condition:

∂tρt = ∆(ρmt ) + div (ρt∇V ) + div (ρt∇(W ∗ ρt)) in (0,∞)× Ω,

n ·D ρ = 0, on (0,∞)× ∂Ω, ρ(0, x) = ρ0(x) in Ω.
(5.2.1)

We consider (5.2.1) as an evolutionary equation in the space of probability measures
P2(Ω) with �nite second moment (i.e M2(µ) :=

´
Ω ‖x‖

2 dµ(x) < ∞), where Ω = Rd or
Ω ⊂ Rd is an open, bounded, and connected domain with Lipschitz-continuous boundary
∂Ω and normal derivative n. Indeed, if (5.2.1) is initialized with ρ0 ∈ P2(Ω) then there
exists a weak solution ρ∗t : [0,∞)×Ω→ R≥0 such that ρ∗0 = ρ0 and ρ∗t ∈ P2(Ω) for each
t > 0.

As recalled in section 2.4, the modern approach towards the theoretical analysis of
equation (5.2.1) is the gradient �ow structure in the L2-Wasserstein space (P2(Ω),W2),
see [4, 54, 79, 87, 92, 93]. The corresponding free energy functional E : P2(Ω)→ R ∪ {∞}
for (5.2.1) is given by:

E(µ) :=

{´
Ω ρ log(ρ) + V ρ+ 1

2(W ∗ ρ)ρ dx if m = 1,´
Ω

1
m−1ρ

m + V ρ+ 1
2(W ∗ ρ)ρ dx if m > 1,

(5.2.2)

provided that µ = ρLd and the integrals on the right-hand side are well-de�ned otherwise
we set E(µ) =∞. We want to emphasize, that we don't assume any convexity property on
the con�nement potential V nor on the interaction kernel W . Hence, the corresponding
free energy functional E does not satisfy the convexity assumption (E3) from the previous
section 5.1 and we cannot apply the theory developed therein.

Method. Using the notation of the L2-Wasserstein framework, the approximation
scheme via the variational formulation of the BDF2 method reads than as:

Scheme. For each equidistant partition τ = (τ, 2τ, 3τ, . . .) with su�ciently small time
step τ > 0, let a pair of initial conditions (ρτ0 , ρ

τ
1 ) be given that approximate ρ0. Then

de�ne inductively a discrete solution (ρτk )k∈N such that each ρτk+1 with k ∈ N is a mini-
mizer of the following functional,

ρ 7→ Ψ(τ, ρτk−1, ρτk ; ρ) :=
1

τ
W2

2(ρτk , ρ)− 1

4τ
W2

2(ρτk−1, ρ) + E(ρ).

De�ne the corresponding piecewise constant interpolation in time ρτt : [0,∞) → P2(Ω)
of the discrete solution ρτk in time via

ρτ0 = ρτ0 , ρτt = ρτk for t ∈ ((k − 1)τ, kτ ] and k ∈ N.
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Strategy of the Proof. The structure of the proof is similar to the procedure from
section 3.2. However, existence of a minimizer ρτk is a priori not clear, since the negative
L2-Wasserstein distance is not lower semi-continuous with respect to narrow convergence.
We circumvent this problem by considering the auxiliary functional A(µ) := 4W2

2(ν, µ)−
W2

2(η, µ) which turns out to be lower semi-continuous, see section 5.2.2. In section
5.2.3, we derive the intrinsic properties of the discrete solution (ρτk )k∈N by the use of
the variational formulation of the BDF2 method. We want to mention here the time-
discrete Euler-Lagrange equations which are obtained by perturbing each minimizer ρτk
along solutions to the transport equation. These Euler-Lagrange equations comprise
enough structural information to deduce the re�ned a priori estimates on the regularity
of (ρτk )m in the BV(Ω)-norm. In section 5.2.4 we complete the proof and show the strong
convergence of the approximation to the weak solution of the non-linear Fokker-Planck
equation (5.2.1) with respect to the narrow-topology and with respect to the strong
Lp(0, T ;Lm(Ω))-topology.

5.2.1 Setup and Assumptions

Similarly to [70], the BDF2 penalization Ψ : (0, τ∗)×(P2(Ω))3 → R ∪ {∞} of the original
energy functional E is de�ned by

Ψ(τ, η, ν; ·) : P2(Ω)→ R ∪ {∞}; Ψ(τ, η, ν; ρ) :=
1

τ
W2

2(ν, ρ)− 1

4τ
W2

2(η, ρ) + E(ρ),

where we assume an upper bound of the step sizes τ∗, i.e.,

τ∗ < 1/(12d1 + 8d2) (5.2.3)

In the sequel, the Assumptions on the external potential V and on the interaction kernel
W reads as follows:

Assumption 5.2.1. The con�nement potential V and the interaction kernel W satisfy:

(F1) V ∈ C1 (Ω), W ∈ C1
(
Rd
)
, and W is symmetric.

(F2) There exists some non-negative constant d1 such that

|V (x)| , |W (x)| , ‖∇V (x)‖ , ‖∇W (x)‖ ≤ d1

(
1 + ‖x‖2

)
.

Note, with these de�nition at hand, the free energy functional E satis�es the usual LSCC-
conditions from [4].

Later, in section 5.2.3 we will need further Assumptions on the approximation (ρτ0 , ρ
τ
1 )

of the initial datum ρ0.

Assumption 5.2.2. There are non-negative constants d3, d4 such that for all τ ∈ (0, τ∗):

(I1) W2
2(ρτ0 , ρ

τ
1 ) ≤ d3τ and W2

2(ρτ0 , ρ0) ≤ d3τ .

(I2) Um(ρτ0 ) ≤ d4, Um(ρτ1 ) ≤ d4, and ‖ρτ1 ‖2BV(Ω) ≤ d4/τ .
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5.2.2 Basic Properties of the BDF2 Penalization Ψ

Before we prove the solvability of problem (5.3.2) we establish two basic properties of
the BDF2 penalization Ψ(τ, η, ν; · ): Boundedness from below and lower semi-continuous
with respect to narrow convergence.

Recall that Assumptions (F1)&(F2) are supposed to hold.

Lemma 5.2.3 (Lower Bound). There exist a non-negative constant d2 such that the
BDF2 penalization Ψ satis�es for each τ > 0 and for all ρ, η, ν ∈ P2(Ω):

Ψ(τ, η, ν; ρ) ≥
( 1

8τ
− 3

2
d1 − d2

)
M2(ρ)− 1

τ
M2(ν)− 3

4τ
M2(η)− d2 −

3

2
d1 (5.2.4)

where d2 is the constant from the Carleman estimate, cf. [54].

Remark 5.2.4. The upper bound for τ∗ is chosen in such a way, that ρ 7→ Ψ(τ, η, ν; ρ)
is bounded from below by a constant.

Proof. Without loss of generality we can assume ρ is an absolutely continuous measure
with density ρ. Observe that H is not bounded from below by a constant on P2(Ω).
However, we derive from the Carleman estimate a lower bound ofH in terms of the second
moment M2, cf. [54], i.e., there exist non-negative constants d2 ≥ 0 and γ ∈ ( d

d+2 , 1)
such that

Um(ρ) ≥ H(ρ) ≥ −d2(1 +M2(ρ))γ ≥ −d2(1 +M2(ρ)).

By (F2) the external potential V and the interaction kernelW grow at most quadratically
at in�nity, the corresponding energies can be estimated from below in terms of the second
moment M2 by

V(ρ) +W(ρ) ≥− d1

ˆ
Ω

(1 + ‖x‖2)ρ(x) dx− 1

2
d1

ˆ
Ω2

(1 + ‖x− y‖2)ρ(x)ρ(y) dx dy

=− 3

2
d1(1 +M2(ρ)).

From the elementary inequality ‖x‖2 − 2 ‖y‖2 ≤ 2 ‖x− y‖2 ≤ 3 ‖x‖2 + 6 ‖y‖2 and from
the de�nition of W2 it follows immediately

M2(ρ)− 2M2(ν) ≤ 2W2
2(ρ, ν) ≤ 3M2(ρ) + 6M2(ν) for all ρ, ν ∈ P2(Ω). (5.2.5)

Combining all three inequalities, we can deduce the following lower bound:

Ψ(τ, η, ν; ρ) ≥ 1

2τ
M2(ρ)− 1

τ
M2(ν)− 3

8τ
M2(ρ)− 3

4τ
M2(η)

− d2(1 +M2(ρ))− 3

2
d1(1 +M2(ρ)),

which is equivalent to the desired inequality (5.2.4).
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Lemma 5.2.5 (Lower Semi-continuity). For each τ > 0 and for all η, ν ∈ P2(Ω) the
BDF2 penalization Ψ(τ, η, ν; · ) is lower semi-continuous with respect to narrow conver-
gence.

Proof. Due to the lower semi-continuity with respect to narrow convergence of the inter-
nal energy Um, the external potential V, and the interaction energy W, the free energy
functional E is also lower semi-continuous with respect to narrow convergence as a sum
of lower semi-continuous functions.
Thus it remains to prove the lower semi-continuity of the auxiliary functional A :
P2(Ω)→ R, de�ned via

A(ρ) := 4W2
2(ν, ρ)−W2

2(η, ρ).

First, we simplify the auxiliary functional A. Let p1 ∈ Γ(ρ, ν) and p2 ∈ Γ(ρ, η) be two
optimal transport plans. Further, introduce the special three-plan p ∈ Γ(ρ, ν, η) := {p ∈
P(Ω × Ω × Ω) : (π1)#p = ρ, (π2)#p = ν, (π3)#p = η} such that p has marginal with
respect to the x- and y-components equals to p1 and the marginal with respect to the
x- and z-components is equal to p2, i.e., (π1, π2)#p = p1 and (π1, π3)#p = p2. The
existence of such a three-plan is guaranteed by the gluing lemma, see [4, Lemma 5.3.2].
Then, we can rewrite the auxiliary functional A as

A(ρ) =

ˆ
Ω2

4 ‖x− y‖2 dp1(x, y)−
ˆ

Ω2

‖x− z‖2 dp2(x, z)

=

ˆ
Ω3

4 ‖x− y‖2 − ‖x− z‖2 dp(x, y, z).

(5.2.6)

Now, let (ρn)n∈N be a narrowly converging sequence with limit ρ∗ ∈ P2(Ω). Since
(ρn)n∈N is narrowly converging to ρ∗, the sequences (p1

n)n∈N and (p2
n)n∈N are relatively

compact in P2(Ω2) with respect to narrow convergence and any limit point is an optimal
transport plan, see [4, Proposition 7.1.3]. Thus we can extract a non-relabelled subse-
quence such that (p1

n)n∈N and (p2
n)n∈N converge narrowly to an optimal transport plan

p1
∗ ∈ Γ(ρ∗, ν) and to an optimal transport plan p2

∗ ∈ Γ(ρ∗, η), respectively. By the same
argument, the sequence (pn)n∈N of three-plans is relatively compact in P2(Ω3) with
respect to narrow convergence. Therefore we can extract a further non-relabelled subse-
quence such that (pn)n∈N narrowly converges to some three-plan p∗ ∈ Γ(ρ∗, ν, η). Taking
marginals is continuous with respect to narrow convergence, so we have (π1, π2)#p∗ = p1

∗
and (π1, π3)#p∗ = p2

∗, i.e., this limit three-plan p∗ is admissible in (5.2.6).
Next, we want to apply the lower semi-continuity result [4, Lemma 5.1.7] to the alterna-

tive representation of A. The uniform integrability of the negative part of the integrand
in (5.2.6) with respect to (pn)n∈N in the sense of [4] follows by the elementary inequality

4 ‖x− y‖2 − ‖x− z‖2 ≥ 1

2
‖x‖2 − 4 ‖y‖2 − 3 ‖z‖2 ≥ −4

(
‖y‖2 + ‖z‖2

)
.

Thus the lower bound on 4 ‖x− y‖2 − ‖x− z‖2 is independent of x. Since the second
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5.2 Application to Non-linear Fokker-Planck Equation

moments of ν and η are �nite that di�erence is uniform integrable with respect to the
family (pn)n∈N. Hence, we can invoke [4, Lemma 5.1.7] to conclude

ˆ
Ω3

4 ‖x− y‖2 − ‖x− z‖2 dp∗(x, y, z) ≤ lim inf
n→∞

ˆ
Ω3

4 ‖x− y‖2 − ‖x− z‖2 dpn(x, y, z).

Therefore the auxiliary function ρ 7→ A(ρ) = 4W2
2(ν, ρ) − W2

2(η, ρ) is lower semi-
continuous with respect to narrow convergence.

Recall that the well-posedness of a single step of the BDF2 scheme is equivalent to
the existence of a minimizer in (5.3.2). The augmented energy functional Ψ shares no
uniform semi-convexity as in the case of [70], so we cannot exploit the convexity to ensure
the existence of a minimizer. Nevertheless, a standard technique from the calculus of
variations yields the existence of a minimizer.

Theorem 5.2.6 (Existence of a Minimizer). For each τ ∈ (0, τ∗) and for all η, ν ∈
P2(Ω), there exists an absolutely continuous minimizer ρ∗ ∈ D(E) of the map ρ 7→
Ψ(τ, η, ν; ρ).

Proof. Take a minimizing sequence (ρn)n∈N for the BDF2 penalization ρ 7→ Ψ(τ, η, ν; ρ).
To extract a convergent subsequence, we use the auxiliary inequality (5.2.4). Since
τ < τ∗, the pre-factor of the second moment M2(ρ) in (5.2.4) is positive. Hence, the
second moment (M2(ρn))n∈N of the minimizing sequence (ρn)n∈N is bounded. Also the
internal energy Um(ρn) of the minimizing sequence is bounded, since

Um(ρn) ≤Ψ(τ, η, ν; ρn) +
1

4τ
W2

2(η, ρn)− V(ρn)−W(ρn)

≤ sup
n∈N

[Ψ(τ, η, ν; ρn) + C(1 +M2(ρn))] <∞.

Due to the super-linear growth of ρ 7→ ρ log(ρ) and of ρ 7→ ρm, we can apply the Dunford-
Pettis Theorem to the densities (ρn)n∈N and we can extract a non-relabelled subsequence
(ρn)n∈N converging weakly in L1(Ω). Since Cb(Ω) ⊂ L∞(Ω) ∼= (L1(Ω))∗, in this case we
can deduce from the weak convergence in L1(Ω) of the sequence of densities the narrow
convergence of the corresponding measures. Summarized, the sequence (ρn)n∈N also
converges narrowly to an absolutely continuous measure ρ∗ ∈ P2(Ω) with density ρ∗.
By the lower semi-continuity of the Lm(Ω)-norm with respect to narrow convergence it
follows ρ∗ ∈ D(E).

To prove that ρ∗ is indeed a minimizer we use the lower semi-continuity of the BDF2
penalization Ψ, proven in Lemma 5.2.5, to conclude

Ψ(τ, η, ν; ρ∗) ≤ lim inf
n→∞

Ψ(τ, η, ν; ρn) = inf
ρ∈P2(Ω)

Ψ(τ, η, ν; ρ).

Indeed, the limit measure with density ρ∗ is a minimizer of the BDF2 penalization
Ψ(τ, η, ν; · ).

97



5 Backward Di�erentiation Formula 2

5.2.3 Intrinsic Properties of the BDF2 Scheme

Given an equidistant partition τ = (τ, 2τ, 3τ, . . .) of �xed time step size τ ∈ (0, τ∗) and a
pair of initial data (ρτ0 , ρ

τ
1 ) which approximates the initial datum ρ0. Then, the discrete

solution (ρτk )k∈N for E on (P2(Ω),W2) de�ned in (5.0.3) and equivalently de�ned by the
recursive formula

ρτk+1 ∈ argmin
ρ∈P2(Ω)

Ψ(τ, ρτk−1, ρτk ; ρ) for k ∈ N (5.2.7)

is well-posed by theorem 5.2.6. The rest of this section is devoted to derive structural
properties of the BDF2 scheme, namely: Step size independent estimates, discrete Euler-
Lagrange equations, better a priori estimates.

Step Size Independent Estimates. Next, we deduce the almost energy diminish-
ing property and the step size independent bounds. We want to emphasize that these
estimates are intrinsic properties of the scheme, which do not rely on any uniform semi-
convexity of the augmented energy functional Ψ. The original proof of those estimates
can be found in [70] and for the sake of the completeness, we recall a proof adapted to
the L2-Wasserstein formalism.

The �rst result is an auxiliary inequality which will be used to derive the step size
independent bounds. Despite the auxiliary character of this inequality, we want to em-
phasize that this property is of interest by itself, since we can give a precise estimate of
the energy decay of the BDF2 scheme in every step.

Lemma 5.2.7 (Almost Energy Diminishing). For each time step size τ ∈ (0, τ∗) the
discrete solution (ρτk )k∈N satis�es

E(ρτk ) +
1

2τ
W2

2(ρτk−1, ρτk ) ≤ E(ρτk−1) +
1

4τ
W2

2(ρτk−2, ρτk−1) (5.2.8)

at each step k = 2, 3, . . ..

Proof. Since ρτk is a minimizer of ρ 7→ Ψ(τ, ρτk−2, ρτk−1; ρ), it satis�es

Ψ(τ, ρτk−2, ρτk−1; ρτk ) ≤ Ψ(τ, ρτk−2, ρτk−1; ρ)

for all ρ ∈ P2(Ω). For the speci�c choice ρ = ρτk−1, we obtain

1

τ
W2

2(ρτk−1, ρτk )− 1

4τ
W2

2(ρτk−2, ρτk ) + E(ρτk ) ≤ − 1

4τ
W2

2(ρτk−2, ρτk−1) + E(ρτk−1). (5.2.9)

By the triangle inequality and the binomial formula,

W2
2(ρτk−2, ρτk ) ≤ 2W2

2(ρτk−2, ρτk−1) + 2W2
2(ρτk−1, ρτk ).

Substitute this in the left-hand side of (5.2.9). This yields (5.2.8)
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The second result is the BDF2-equivalent of the classical estimates in the (time-
dependent) Minimizing Movement scheme. For this reason, we have to assume that
the approximation (ρτ0 , ρ

τ
1 ) of the initial datum ρ0 satisfy (I1)&(I2) from assumption

5.2.2.

Theorem 5.2.8 (Classical Estimates). Fix a time horizon T > 0. There exists a con-
stant C, depending only on d1 to d2 and T , such that the corresponding discrete solutions
(ρτk )k∈N satisfy

N∑
k=1

1

2τ
W2

2(ρτk−1, ρτk ) ≤ C, |Um(ρτN )| ≤ C, M2(ρτN ) ≤ C, (5.2.10)

for all τ ∈ (0, τ∗) and for all N ∈ N with Nτ ≤ T .

Proof. Sum up inequalities (5.2.8) for k = 2 to K = N to obtain after cancellation:

E(ρτN ) +
1

4τ

N∑
k=2

W2
2(ρτk−1, ρτk ) ≤ E(ρτ1 ) +

1

4τ
W2

2(ρτ1 , ρ
τ
2 ). (5.2.11)

Next, we want to prove the auxiliary inequality

M2
2 (ρτk )−M2

2 (ρτk−1) ≤ 2W2(ρτk−1, ρτk )M2(ρτk ). (5.2.12)

Without loss of generality we assume M2(ρτk−1) ≥ M2(ρτk ), otherwise the equality is
always true. We use the binomial formula to obtain

M2
2 (ρτk )−M2

2 (ρτk−1) = (M2(ρτk ) +M2(ρτk−1))(M2(ρτk )−M2(ρτk−1))

≤ 2M2(ρτk )(M2(ρτk )−M2(ρτk−1)).

Let δ0 be the Dirac measure localized at x = 0, then by the triangle inequality

M2(ρ) = W2(ρ, δ0) ≤W2(ρ, ν) + W2(ν, δ0) = W2(ρ, ν) +M2(ν).

This yields (5.2.12). Rewrite the di�erence of the second moments of ρτN and ρτ1 by
means of a telescopic sum and use (5.2.12) to obtain

M2
2 (ρτN )−M2

2 (ρτ1 ) =

N∑
k=2

[
M2

2 (ρτk )−M2
2 (ρτk−1)

]
≤ 2

N∑
k=2

W2(ρτk−1, ρτk )M2(ρτk ).

A Cauchy type inequality with (5.2.12) yields

M2
2 (ρτN )−M2

2 (ρτ1 ) ≤ τ∗
4

N∑
k=2

W2
2(ρτk−1, ρτk )

τ
+

4τ

τ∗

N∑
k=2

M2
2 (ρτk ).
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Substitute (5.2.11) into this inequality:

M2
2 (ρτN ) ≤M2

2 (ρτ1 ) + τ∗

(
E(ρτ1 ) +

1

4τ
W2

2(ρτ1 , ρ
τ
2 )− E(ρτN )

)
+

4τ

τ∗

N∑
k=2

M2
2 (ρτk ).

The �rst term of the right-hand side is estimated by

M2(ρτ1 ) ≤ 2W2(ρτ1 , ρ0) +M2(ρ0) ≤ 2d3

√
τ + 2M2(ρ0). (5.2.13)

Next, E(ρτ1 ) is estimated using (I2) and estimate (5.2.13):

E(ρτ1 ) ≤ d4 +
3

2
d1(1 +M2(ρτ1 )) ≤ d4 +

3

2
d1(1 + 2d3

√
τ + 2M2(ρ0)). (5.2.14)

A lower bound of the energy E evaluated at ρτN is derived by the same way as in the
prove of Lemma 5.2.3, i.e., there exist constants d2 and γ ∈ ( d

d+1 , 1) such that

E(ρτN ) ≥ −d2(1 +M2(ρτN ))γ − 3

2
d1(1 +M2(ρτN )) ≥ −(d2 +

3

2
d1)(2 +M2

2 (ρτN )).

Hence, there is a universal constant C, not depending on the step size τ , such that

M2
2 (ρτN ) ≤ C + τ∗(d2 +

3

2
d1)M2

2 (ρτN ) +
4τ

τ∗

N∑
k=2

M2
2 (ρτk ).

We rearrange terms and use the upper bound for τ∗ to arrive at the time-discrete Gronwall
inequality

M2
2 (ρτN ) ≤ 2C +

8τ

τ∗

N∑
k=2

M2
2 (ρτk ).

By induction on N we obtain

M2
2 (ρτN ) ≤ C

(
1 +

8τ

τ∗

)N
≤ Ĉ exp

(8Nτ

τ∗

)
≤ Ĉ exp

(8T

τ∗

)
.

So the second momentsM2(ρτN ) of the discrete solution are uniformly bounded indepen-
dent of the step size τ ∈ (0, τ∗) and for all N ∈ N with Nτ < T .

The remaining estimates can be derived from this. An upper bound for the energy
E(ρτN ) follows from (5.2.11) and (5.2.14) combined with (I2). The lower bound on E(ρτN )
follows by the lower bounds on Um,V, and W in terms of the second moment. Hence,
the boundedness of E(ρτN ),V(ρτN ), and W(ρτN ) yields the boundedness of Um(ρτN ). The
upper bound for the kinetic energy follows from the lower bound for the energy E(ρτN ),
(5.2.11), and (5.2.14) combined with (I2).
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Discrete Euler-Lagrange Equations. In theorem 5.2.9, we derive the discrete Euler-
Lagrange equations for the weak formulation of the non-linear Fokker-Planck equation
(5.2.1). The key idea is the JKO-method introduced in [54] and recalled in section 2.4.

Theorem 5.2.9 (Discrete Euler-Lagrange Equations). The discrete solution (ρτk )k∈N
obtained by the BDF2 method satis�es for each k ∈ N\{1} and for all vector �elds
ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on ∂Ω

0 =

ˆ
Ω
−div(ξ) (ρτk )m + 〈ξ,∇V 〉 ρτk + 〈ξ,∇W ∗ ρτk 〉 ρτk dx

+
2

τ

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 1

2τ

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z),

(5.2.15)

where pτk ∈ Γ(ρτk , ρ
τ
k−1) and qkτ ∈ Γ(ρτk , ρ

τ
k−2) are optimal transport plans.

Proof. Fix ρτk , ρ
τ
k−1, ρτk−2 and ξ ∈ C∞c (Ω,Rd) with ξ · n = 0 on ∂Ω. We consider the

perturbation ρs of ρτk as the solution of the Transport equation with velocity �eld ξ
starting at ρτk , i.e., ρ

s is the solution of (2.4.6) as in section 2.4. The �rst variation of
the energy E along the solution to the continuity equation amounts to

d

ds
[E(ρs)]s=0 =

ˆ
Ω
−div(ξ) (ρτk )m + 〈ξ,∇V 〉 ρτk + 〈ξ,∇W ∗ ρτk 〉 ρτk dx.

The di�erentiability of the quadratic L2-Wasserstein distance W2 along the solution ρ
s is

given by [92, Theorem 8.13], since ρτk−2, ρτk−1, ρτk , ρs are all absolutely continuous measures.
Hence, we can conclude:

d

ds

[
4W2

2(ρτk−1, ρs)−W2
2(ρτk−2, ρs)

]
s=0

= 8

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 2

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z),

where pτk ∈ Γ(ρτk , ρ
τ
k−1) and qkτ ∈ Γ(ρτk , ρ

τ
k−2) are optimal transport plans. Since ρτk is a

minimizer of the BDF2 penalization Ψ(τ, ρτk−2, ρτk−1; · ) and since s 7→ Ψ(τ, ρτk−2, ρτk−1; ρs)
is di�erentiable at s = 0,

0 =
d

ds

[
Ψ(τ, ρτk−2, ρτk−1; ρs)

]
s=0

=
1

4τ

d

ds

[
4W2

2(ρτk−1, ρs)−W2
2(ρτk−2, ρs)

]
s=0

+
d

ds
[E(ρs)]s=0

=
2

τ

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 1

2τ

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z)

+

ˆ
Ω
−div(ξ) (ρτk )m + 〈ξ,∇V 〉 ρτk + 〈ξ,∇W ∗ ρτk 〉 ρτk dx.

Indeed, we have the desired equality (5.2.15).
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Re�ned Regularity. The already obtained regularity results for the interpolated so-
lution ρτt are not su�cient to pass to the limit in the �rst term of the discrete Euler-
Lagrange equation (5.2.15). Nevertheless, the following bounds in the BV(Ω)-norm of
(ρτk )m are su�cient to obtain the desired regularity results. These estimates can be
derived from the discrete Euler-Lagrange equation quite naturally.

Proposition 5.2.10 (Step Size Independent Local BV(Ω)-estimate). Fix a time horizon
T > 0. There exists a constant C, depending only on d1 to d4 and T , such that the
corresponding discrete solutions (ρkτ )k∈N satisfy for all τ ∈ (0, τ∗) and for all k ∈ N\{1}
with kτ ≤ T :

‖(ρτk )m‖
BV(Ω) ≤ C

(
1 +

W2(ρτk−1, ρτk )

τ
+

W2(ρτk−2, ρτk )

τ

)
. (5.2.16)

Proof. The L1(Ω)-norm of (ρτk )m is equal to (m − 1)Um evaluated at ρτk . Hence, we
can bound the �rst term in the de�nition of the BV(Ω)-norm uniformly by the classical
estimates (5.2.10). In order to estimate the variation of (ρτk )m, we estimate the term
inside the supremum of the de�nition of V ((ρτk )m,Ω). Thus let ξ ∈ C∞c (Ω,Rd) with
‖ξ‖∞ ≤ 1, then we can estimate the integral term in the de�nition of the variation of
(ρτk )m with the discrete Euler-Lagrange equations (5.2.15) as follows

ˆ
Ω

(ρτk )m div(ξ) dx =

ˆ
Ω
〈ξ(x),∇V 〉ρτk (x) + 〈ξ(x),∇W ∗ ρτk 〉ρτk (x) dx

+
2

τ

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 1

2τ

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z).

(5.2.17)

By (I2) we have quadratic growth bounds for ∇V and ∇W , so using the step size
independent bounds on the second moment (5.2.10), we can estimate the �rst terms
in (5.2.17) as follows:

ˆ
Ω
〈ξ(x),∇V 〉ρτk (x) + 〈ξ(x),∇W ∗ ρτk 〉ρτk (x) dx ≤ 2d1 ‖ξ‖∞ (1 +M2(ρτk )) ≤ 2d1(1 + C).

The second integral on the right-hand side of (5.2.17) can be estimated using Jensen's
inequality∣∣∣ ˆ

Ω2

〈ξ(x), x− y〉 dpτk (x, y)
∣∣∣ ≤ ‖ξ‖∞ (ˆ

Ω2

‖x− y‖2 dpτk (x, y)
)1/2

≤W2(ρτk−1, ρτk ),

and similar for the third integral of the right-hand side of (5.2.17). Hence, we have the
following upper bound for the variation of (ρτk )m:

V ((ρτk )m,Ω) ≤ C
(

1 +
W2(ρτk−1, ρτk )

τ
+

W2(ρτk−2, ρτk )

τ

)
.

In conclusion, the discrete solution (ρτk )k∈N satis�es the desired bound (5.2.16).
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As a sort of Corollary of the previous Proposition 5.2.10 we get the main ingredient of
the convergence proof of the interpolated solution ρτnt .

Theorem 5.2.11 (Step Size Independent Global L2(0, T ;BV(Ω))-estimate). Fix a time
horizon T > 0. There exists a constant C, depending only on d1 to d4 and T , such that
the corresponding interpolated solution ρτt satis�es for each τ ∈ (0, τ∗):

‖(ρτt )m‖
L
2(0,T ;BV(Ω)) ≤ C. (5.2.18)

Proof. We use the classical estimates on the kinetic energy (5.2.10) and the result from
Proposition 5.2.10 to estimate the L2(0, T ;BV(Ω))-norm of (ρτt )m. Let NT := max{N ∈
N | Nτ ≤ T}, then we have with (I2) from Assumption 5.2.2

‖(ρτt )m‖2
L
2(0,T ;BV(Ω)) ≤ τ ‖(ρτ1 )m‖2

BV(Ω) +

NT+1∑
k=2

ˆ kτ

(k−1)τ
‖(ρτk )m‖2

BV(Ω) dt

≤ d4 + C

NT+1∑
k=2

τ
(

1 +
W2(ρτk−1, ρτk )

τ
+

W2(ρτk−2, ρτk )

τ

)2
.

By the triangle inequality W2(ρτk , ρ
τ
k−2) ≤W2(ρτk−2, ρτk−1) + W2(ρτk−1, ρτk ) in combination

with a Cauchy type inequality we obtain

‖(ρτt )m‖2
L
2(0,T ;BV(Ω)) ≤ d4 + C

NT+1∑
k=2

[
τ +

W2
2(ρτk−1, ρτk )

τ
+

W2
2(ρτk−2, ρτk−1)

τ

]

≤ d4 + C(T + τ) + C

NT+1∑
k=1

W2
2(ρτk−1, ρτk )

τ
.

Finally, we can conclude, under the step size independent bounds on the kinetic energy
(5.2.10),

‖(ρτt )m‖2
L
2(0,T ;BV(Ω)) ≤ d4 + C(T + τ) + C := C̃

for some universal constant C̃, which only depends on d1 to d4 and T , but not on the step
size τ ∈ (0, τ∗). Hence, we have proven the desired step-size independent L

2(0, T ;BV(Ω))-
estimate (5.2.18).

5.2.4 Convergence

In this section we prove our main theorem, the narrow and strong convergence of the
approximation ρτt to the solution ρ∗t of the non-linear Fokker-Planck equation. Our �rst
weak convergence result follows from the step size independent bounds (5.2.10) and the
Arzelà-Ascoli theorem, which can be found in [4, Proposition 3.3.1].
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Theorem 5.2.12 (Narrow Convergence in P2(Ω)). Given a sequence of equidistant par-
titions (τn)n∈N of vanishing step sizes τn ∈ (0, τ∗). Then, there exists a (non-relabelled)
subsequence (τn)n∈N and a limit curve ρ∗t ∈ AC2(0,∞; (P2(Ω),W2)) such that for any
t ≥ 0:

ρτnt ⇀ ρ∗t narrowly in the space P2(Ω) as n→∞.

Proof. Fix T > 0 and de�ne the auxiliary function Ant ∈ L2(0, T ), also called discrete
derivative, as

Ant :=
W2(ρτnk−1, ρ

τn
k )

τn
for t ∈ ((k − 1)τn, kτn] and k ∈ N.

Using the step size independent bounds (5.2.10) we obtain for NT = max{N | Nτn ≤ T}:
ˆ T

0
(Ant )2 dt ≤

NT∑
k=1

ˆ kτn

(k−1)τn

(W2(ρτnk−1, ρ
τn
k )

τn

)2
dt =

NT∑
k=1

W2
2(ρτnk−1, ρ

τn
k )

τn
≤ C.

Indeed, Ant ∈ L2(0, T ) and the L2(0, T )-norm of Ant is uniformly bounded independently
of the step size τn. Therefore, the sequence Ant possesses a non-relabelled subsequence
weakly convergent in L2(0, T ) with limit At ∈ L2(0, T ). To derive an uniform Hölder-
estimate for ρτnt , choose 0 ≤ s ≤ t ≤ T arbitrary and de�ne kt = max{k ∈ N | kτn ≤ t},
then

W2(ρτns , ρ
τn
t ) ≤

kt∑
k=ks+1

W2(ρτnk−1, ρ
τn
k ) =

kt∑
k=ks+1

ˆ kτn

(k−1)τn

W2(ρτnk−1, ρ
τn
k )

τn
dt.

Rewriting this in terms of Ant yields the auxiliary inequality

W2(ρτns , ρ
τn
t ) ≤

ˆ t

(s−τn)+
Anr dr. (5.2.19)

Taking the limit n→∞ yields, together with Ant ⇀ At in L2(0, T ),

lim sup
n→∞

W2(ρτns , ρ
τn
t ) ≤

ˆ t

s
Ar dr.

Moreover, the second moments of the discrete solutions (ρτnk )k∈N are uniformly bounded
independently of the step size τn and therefore the interpolated solutions ρτnt is uniformly
contained in a set K which is compact with respect to narrow convergence. Hence, we
can apply the Arzelà-Ascoli Theorem [4, Proposition 3.3.1] yielding the existence of a
non-relabelled subsequence and a limit curve ρ∗t : [0, T ]→ P2(Ω) such that ρτnt converges
narrowly to ρ∗t for each �xed t ∈ [0, T ]. Additionally, the limit curve ρ∗t is L

2-absolutely
continuous with modulus of continuity At ∈ L2(0, T ). A further diagonal argument in
T →∞ yields the narrow convergence of the interpolated solution ρτnt to the limit curve
ρ∗t on for any t ≥ 0 and ρ∗t ∈ AC2(0,∞; (P2(Ω),W2)).
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5.2 Application to Non-linear Fokker-Planck Equation

Theorem 5.2.13 (Strong Convergence in Lp(0, T ;Lm(Ω))). Under the same assump-
tions as in Theorem 5.2.12 and given the limit curve ρ∗ therein, then there exists a
further (non-relabelled) subsequence (τn)n∈N such that for all T > 0, for any p ∈ [1,∞)
and for any bounded subset Θ ⊆ Ω:

ρτnt → ρ∗t strongly in Lp(0, T ;Lm(Θ)) as n→∞.

Proof of Theorem 5.2.13 for Ω ( Rd. Fix T > 0. In order to prove the strong conver-
gence result we use the Aubin-Lions Theorem 2.5.4 with the underlying Banach space
X = Lm(Ω). We consider the functional A : Lm(Ω)→ R, de�ned via

A(ρ) :=

{
‖ρm‖2

BV(Ω) if ρ ∈ P2(Ω) and ρm ∈ BV(Ω),

+∞ else.

Using the lemma 2.5.2 in the introductory section 2.5 it follows that the functional
A is measurable, lower semi-continuous with respect to the Lm(Ω)-topology, and has
compact sublevels. Next, we choose as pseudo-distance g = W2 on Lm(Ω). The L2-
Wasserstein distance is lower semi-continuous with respect to the Lm(Ω)-topology and
clearly compatible with A.
Next, we verify the assumption (2.5.1) on (ρτnt )n∈N of Theorem 2.5.4. By the re�ned

L2(0, T ;BV(Ω))-estimates of Theorem 5.2.11 it is clear, that the sequence (ρτnt )n∈N is
tight with respect to A, since we have:

sup
n∈N

ˆ T

0
‖(ρτnt )m‖2

BV(Ω) dt = sup
n∈N
‖(ρτnt )m‖2

L
2(0,T ;BV(Ω)) ≤ C <∞.

For the proof of the relaxed averaged weak integral equicontinuity condition of (ρτnt )n∈N
with respect to W2, we use the auxiliary function Ant and the estimate (5.2.19) from the
proof of weak convergence results to obtain:ˆ T−t

0
W2(ρτns+t, ρ

τn
s ) ds ≤

ˆ T−t

0

ˆ s+t

(s−τn)+
Anr dr ds ≤ (t+ τn)

ˆ T

0
Anr dr.

Indeed, using the weak L2-convergence of Ant to some At ∈ L2
loc(0,∞) it follows

lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0

ˆ T−t

0
W2(ρτns+t, ρ

τn
s ) ds dt

≤ lim inf
h↘0

lim sup
n→∞

1

h

ˆ h

0
(t+ τn) dt

ˆ T

0
Ant dt = 0.

Therefore, we can conclude that there exists a non-relabeled subsequence (τn)n∈N such
that ρτnt converges in M(0, T ;Lm(Ω)) to some curve ρ+

t . Due to the uniform bounds
in L∞(0, T ;Lm(Ω)), we obtain with remark 2.1.1 also convergence in Lp(0, T ;Lm(Ω)) as
desired. Moreover, the limit curves ρ+

t and ρ∗t have to coincide, since ρτnt converges also
in measure to ρ+

t and ρ∗t , so both limits have to be equal.
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In the case of Ω = Rd we have to alter the proof given above, since the embedding
of BV(Rd) into L1(Rd) is not compact anymore. So we restrict ourself to the open
and bounded sets Θ = BR(0). This subset is clearly open and bounded with Lipschitz-
continuous boundary ∂Θ, so the embedding of BV(Θ) into L1(Θ) is compact again.

Proof of Theorem 5.2.13 for Ω = Rd. Fix T > 0. Without loss of generality we can as-
sume Θ = BR(0), since every bounded subset K ⊂ Rd is contained in a ball with radius
R and convergence in Lm(0, T ;Lm(BR(0))) implies convergence in Lm(0, T ;Lm(K)).

As before, we want to use the Aubin-Lions Theorem 2.5.4 for the Banach space Lm(Θ)
equipped with the natural topology induced by the Lm(Θ)-norm applied to (ρτnt |Θ)n∈N,
the restriction of the density ρτnt to the subspace Θ. In this case we consider the functional
Ã : Lm(Θ)→ R, de�ned via

Ã(ρ) :=

{
‖ρm‖2

BV(Θ) if ρ ∈Mf (Θ) and ρm ∈ BV(Θ),

+∞ else.

Now, the functional Ã is measurable, lower semi-continuous with respect to the Lm(Θ)
topology, and has compact sublevels. Since Ã(ρ|Θ) ≤ A(ρ), we obtain by the same

calculations as above the tightness of (ρτnt |Θ)n∈N with respect to Ã.
Since the measure ρ|Θ does not have unit mass anymore, we cannot consider the L2-

Wasserstein distance W2 as pseudo-distance anymore. However, we can use the following
pseudo-distance g̃:

g̃(ρ, ν) := inf {W2(ρ̃, ν̃) | ρ̃ ∈ Σ(ρ), ν̃ ∈ Σ(ν)} ,
Σ(ρ) :=

{
ρ̃ ∈P(Rd) | ρ̃|Ω = ρ,M2(ρ̃) ≤ C

}
,

where C is the constant from the classical estimates (5.2.10) for the speci�c T . Since Σ(ρ)
and Σ(ν) are compact sets with respect to the narrow topology, the in�mum is attained
at some pair ρ̃∗, ν̃∗. The pseudo-distance g̃ is compatible with Ã, i.e., if ρm, νm ∈ BV (Θ)
and g̃(ρ, ν) = 0 then ρ = ν a.e. on Θ. The lower semi-continuity of the pseudo-distance
g̃ with respect to the Lm(Θ)-topology can be proven as follows. Choose to convergent
sequences ρn → ρ and νn → ν in Lm(Θ) with supn g̃(ρn, νn) < ∞. By the remark
from above, there exists ρ̃n, ν̃n such that g̃(ρn, νn) = W2(ρ̃n, ν̃n). Since the second
moments are by de�nition of Σ(ρ) uniformly bounded, we can extract a non-relabeled
convergent subsequence which converges narrowly to ρ̃ ∈ Σ(ρ), ν̃ ∈ Σ(ν). By the lower
semi-continuity of W with respect to narrow convergence, we get in the end

g̃(ρ, ν) ≤W2(ρ̃, ν̃) ≤ lim inf
n→∞

W2(ρ̃n, ν̃n) = lim inf
n→∞

W2(ρn, νn).

Therefore, the pseudo-distance g̃ is lower semi-continuous with respect to the Lm(Θ)-
topology. Thus, g̃ satis�es the assumptions of theorem 2.5.4. Further, one has by def-
inition g̃(ρ|Θ , ν|Θ) ≤ W2(ρ, ν). Thus, we derive, using the same proof as above, the
equi-continuity of (ρτnt |Θ)n∈N with respect to the pseudo-distance g̃.
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5.2 Application to Non-linear Fokker-Planck Equation

Hence, we can conclude that there exists a non-relabeled subsequence of ρτnt |Θ which
converges inM(0, T ;Lm(Θ)) to some limit ρ+

t . As before, we use the uniform bounds in
L∞(0, T ;Lm(Θ)), to obtain the strong convergence in Lp(0, T ;Lm(Θ)) by Remark 2.1.1.
Moreover, the limit curves ρ+

t and ρ∗t |Θ have to coincide on Θ, since ρτnt |Θ converges also
in measure on Θ to ρ+

t and ρ∗t |Θ, so both limits have to be equal on Θ. Two diagonal
arguments in T →∞ and R→∞ yield the desired convergence result.

To complete the proof of the main theorem 5.0.2, we have to validate that ρ∗t is indeed
a solution to (5.2.1) in the sense of distributions.

Theorem 5.2.14 (Solution of the Non-linear Fokker-Planck Equation). Under the same
assumptions as in Theorem 5.2.13 and given the limit curve ρ∗t from there. The limit
curve ρ∗t is a solution to the non-linear Fokker-Planck equation with no-�ux boundary
condition (5.2.1) in the following weak sense: For each test function ϕt ∈ C∞c ([0,∞)×Ω)
with ∇ϕt · n = 0 on ∂Ω the limit function ρ∗t satis�es:

ˆ ∞
0

ˆ
Ω
−∆ϕt (ρ∗t )

m + 〈∇ϕt,∇V 〉 ρ∗t + 〈∇ϕt,∇W ∗ ρ∗t 〉 ρ∗t dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

∗
t dx dt+

ˆ
Ω
ϕ0 ρ0 dx.

(5.2.20)

Proof. For simplicity we drop the index n and write for the step size only τ and τ → 0.
Fix ϕt ∈ C∞c ([0,∞) × Ω) with ξ · n = 0 on ∂Ω and let be T > 0 and Θ ⊂ Ω be open
and bounded such that supp ϕt ⊂ [0, T ] × Θ. Further, de�ne the piecewise constant
interpolation ϕτt of ϕt by

ϕτ0 = ϕ0, ϕτt = ϕkτ for t ∈ ((k − 1)τ, kτ ] and k ∈ N.

For each k ∈ N\{1} insert the smooth function x 7→ ∇ϕ(k−1)τ in the discrete Euler-
Lagrange equation (5.2.15) for the vector �eld ξ. Summing the resulting equations from
k = 2 to NT + 1 and multiplying with τ yields:

0 =

ˆ ∞
τ

ˆ
Ω
−∆ϕτt (ρτt )m + 〈∇ϕτt ,∇V 〉 ρτt + 〈∇ϕτt ,∇W ∗ ρτt 〉 ρτt dx dt

+

NT∑
k=2

[
2

ˆ
Ω2

〈∇ϕ(k−1)τ (x), x− y〉 dpτk (x, y)− 1

2

ˆ
Ω2

〈∇ϕ(k−1)τ (x), x− z〉 dqτk (x, z)
]

=: I1 + I2.

Due to the strong convergence in Lm(0, T ;Lm(Θ)) of ρτt to ρ∗t and due to the uniform
convergence of ∆ϕτt to ∆ϕt

lim
τ↘0

I1 =

ˆ T

0

ˆ
Ω̃
−∆ϕt (ρ∗t )

m + 〈∇ϕt,∇V 〉 ρ∗t + 〈∇ϕt,∇W ∗ ρ∗t 〉 ρ∗t dx dt.
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To rewrite I2, we use, as in [54], the second order Taylor expansion for a time independent
function ϕ, to obtain∣∣∣ ˆ

Ω
ϕ(y)ρτk−1(y) dy −

ˆ
Ω
ϕ(x)ρτk (x) dx−

ˆ
Ω2

〈∇ϕ(x), y − x〉 dpτk (x, y)
∣∣∣

=
∣∣∣ˆ

Ω2

ϕ(y)− ϕ(x)− 〈∇ϕ(x), y − x〉 dpτk (x, y)
∣∣∣

≤1

2
‖Hessϕ‖∞

ˆ
Ω2

‖x− y‖2 dpτk (x, y)

=
1

2
‖Hessϕ‖∞W2

2(ρτk−1, ρτk ).

Replacing the time independent function ϕ with ϕ(k−1)τ yields as approximation of I2

I2 =

NT∑
k=2

[ˆ
Ω

(
3

2
ρτk − 2ρτk−1 +

1

2
ρτk−2)ϕ(k−1)τ dx+O(W2

2(ρτk−1, ρτk )) +O(W2
2(ρτk−2, ρτk ))

]
.

We rearrange the sum of the �rst term in I2 as follows

NT∑
k=2

ˆ
Ω

(
3

2
ρτk − 2ρτk−1 +

1

2
ρτk−2)ϕ(k−1)τ dx

=

NT∑
k=0

ˆ
Ω

(
3

2
ϕ(k−1)τ − 2ϕkτ +

1

2
ϕ(k+1)τ ) ρτk dx−

ˆ
Ω

3

2
ϕ0ρ

τ
1 + (

3

2
ϕ−τ − 2ϕ0)ρτ0 dx,

where we use the convention ϕt ≡ ϕ0 for all t ≤ 0. Finally, use the fundamental theorem
of calculus and the classical estimate (5.2.10) to bound the second term in I2, to obtain

I2 =−
ˆ T

0

ˆ
Ω

(
3

2
∂tϕt −

1

2
∂tϕt+τ ) ρτt dx dt−

ˆ
Ω

3

2
ϕ0ρ

τ
1 + (

3

2
ϕ−τ − 2ϕ0)ρτ0 dx+O(τ).

Indeed, combining the narrow convergence of ρτt with the uniform convergence of ∂tϕt+τ
to ∂tϕt and with the narrow convergence of the initial data (ρτ0 , ρ

τ
1 ) to ρ0, the limit of I2

is given by:

lim
τ↘0

I2 =−
ˆ T

0

ˆ
Ω
∂tϕt ρ

∗
t dx dt−

ˆ
Ω
ϕ0 ρ0 dx.

Finally, we can conclude that for arbitrary test functions ϕt ∈ C∞c ([0,∞) × Ω) with
∇ϕt · n = 0 on ∂Ω the limit curve ρ∗t satis�es:ˆ ∞

0

ˆ
Ω
−∆ϕt(ρ

∗
t )
m + 〈∇ϕt,∇V 〉 ρ∗t + 〈∇ϕt,∇W ∗ ρ∗t 〉 ρ∗t dx dt

=

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

∗
t dx dt+

ˆ
Ω
ϕ0 ρ0 dx.

This yields that ρ∗ is a solution to the non-linear Fokker-Planck equation (5.2.1) in the
weak sense of (5.2.20).
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

This section is concerned with the variational formulation of the second order Backward
Di�erentiation Formula applied to the Derrida-Lebowitz-Speer-Spohn (DLSS) equation
with no-�ux boundary condition:

∂tρt = −div
(
ρt∇

(
2

∆
√
ρt√
ρt

))
(5.3.1)

starting from the initial con�guration ρ0 with non-�ux boundary conditions in an open,
bounded, and convex domain Ω with Lipschitz-continuous boundary ∂Ω and normal
derivative n or Ω = Rd. We consider (5.3.1) as an evolutionary equation in the L2-
Wasserstein space (P2(Ω),W2). The corresponding free energy functional E : P2(Ω) →
R ∪ {∞} for the DLSS equation is given by the Fisher information:

E(µ) :=

ˆ
Ω
‖√ρ‖2 dx

provided the measures µ is absolutely continuous with respect to the Lebesgue measure
Ld with µ = ρ dLd and

√
ρ ∈ H1(Ω), otherwise we set E(µ) = ∞. As in the previous

section 5.2, the free energy functional E is (highly) not convex along generalized geodesics
in (P2(Ω),W2) and hence, the theory developed in the �rst section 5.1 of this chapter is
also not applicable.

Method. The variational formulation of the second order Backward Di�erentiation
Formula applied to the DLSS equation (5.3.1) reads than as follows:

Scheme. For each equidistant partition τ = (τ, 2τ, 3τ, . . .) with su�ciently small time
step τ > 0, let a pair of initial conditions (ρτ0 , ρ

τ
1 ) be given that approximate ρ0. Then

de�ne inductively a discrete solution (ρτk )k∈N such that each ρτk+1 with k ∈ N is a mini-
mizer of the following functional,

ρ 7→ Ψ(τ, ρτk−1, ρτk ; ρ) :=
1

τ
W2

2(ρτk , ρ)− 1

4τ
W2

2(ρτk−1, ρ) + E(ρ).

De�ne the corresponding piecewise constant interpolation in time ρτt : [0,∞) → P2(Ω)
of the discrete solution ρτk in time via

ρτ0 = ρτ0 , ρτt = ρτk for t ∈ ((k − 1)τ, kτ ] and k ∈ N.

Strategy of the Proof. We use the same approach as in the second section 5.2 of this
chapter and apply it to this case. Accordingly, we derive in section 5.3.2 the existence
of our approximation (ρτk )k∈N and prove the classical intrinsic properties of the discrete
solution in section 5.3.3. Most notably to mention is the di�erent approach to derive the
better a priori bounds in section 5.3.3 by means of variations along solutions to the heat
equation. In the end, these bounds are su�cient pass to the limit τ → 0 and prove the
convergence of ρτt to a weak solution ρ∗t of the DLSS equation, see section 5.3.4.
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5.3.1 Setup and Assumptions

In this case the BDF2 penalization Ψ : (0, τ∗) × (P2(Ω))3 → R ∪ {∞} with the energy
energy functional E given by the Fisher information reads as

Ψ(τ, η, ν; ·) : P2(Ω)→ R ∪ {∞}; Ψ(τ, η, ν; ρ) :=
1

τ
W2

2(ν, ρ)− 1

4τ
W2

2(η, ρ) + E(ρ),

where we assume an arti�cial upper bound of the step sizes τ∗ < 1. Note, the free energy
functional E satis�es the usual LSCC-conditions from [4] with respect to the topology
induced by the narrow convergence of measures.

Later, we will need further Assumptions on the approximation (ρτ0 , ρ
τ
1 ) of the initial

datum ρ0.

Assumption 5.3.1. There are non-negative constants d3, d4 such that for all τ ∈ (0, τ∗):

(I1) W2
2(ρτ0 , ρ

τ
1 ) ≤ d3τ and W2

2(ρτ0 , ρ0) ≤ d3τ .

(I2) I(ρτ0 ) ≤ d4, I(ρτ1 ) ≤ d4, and ‖ρτ1 ‖2H2(Ω) ≤ d4/τ .

5.3.2 Basic Properties of the BDF2 Penalization Ψ

Before we prove the well-posedness of the BDF2 scheme applied to the DLSS equation
we establish two basic properties of the BDF2 penalization Ψ(τ, η, ν; ·): Boundedness
from below and lower semi-continuity with respect to narrow convergence.

Lemma 5.3.2. For all ρ, η, ν ∈ P2(Ω) it holds:

Ψ(τ, η, ν; ρ) ≥ 1

8τ
M2(ρ)− 1

τ
M2(ν)− 3

4τ
M2(η).

Proof. The proof is similar to the proof of lemma 5.2.3. As long as the Fisher information
is non-negative one has:

Ψ(τ, η, ν; ρ) ≥ 1

τ
W2(ν, ρ)− 1

4τ
W2(η, ρ).

Next, to derive a lower bound for the terms comprising the L2-Wasserstein distance, we
use the elementary inequality (5.2.5) given by

M2(ρ)− 2M2(ν) ≤ 2W2
2(ρ, ν) ≤ 3M2(ρ) + 6M2(ν) for all ρ, ν ∈ P2(Ω).

to obtain the lower estimate

Ψ(τ, η, ν; ρ) ≥ 1

8τ
M2(ρ)− 1

τ
M2(ν)− 3

4τ
M2(η)

which is the desired result.
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Lemma 5.3.3. For each τ > 0 and for all η, ν ∈ P2(Ω) the BDF2 penalization Ψ(τ, η, ν; ·)
is lower semi-continuous with respect to the narrow convergence.

Proof. The Fisher information is lower semi-continuous with respect to the narrow con-
vergence, see [47]. By the previous calculations in the proof of lemma 5.2.5 also the
auxiliary map A : P2(Ω)→ R, de�ned via

A(ρ) := 4W2(ν, ρ)−W2(η, ρ)

is lower semi-continuous with respect to the narrow convergence. Hence, the map ρ 7→
Ψ(τ, η, ν; ρ) is lower semi-continuous as sum of lower semi-continuous functions.

Theorem 5.3.4. For each τ > 0 and for all η, ν ∈ P2(Ω), there exists an absolutely
continuous minimizer ρ ∈ D(E) of the map ρ 7→ Ψ(τ, η, ν; ρ).

Proof. Take a minimizing sequence (ρn)n∈N for the BDF2 penalization ρ 7→ Ψ(τ, η, ν; ρ).
To extract a convergent subsequence, we use the lower bound of lemma 5.3.2. The
pre-factor of the second moment M2(ρ) in this inequality is positive and therefore
(M2(ρn))n∈N is bounded. Also, the Fisher information of the minimizing sequence is
bounded, since

E(ρn) ≤ Ψ(τ, η, ν; ρn) +
1

4τ
W2(η, ρn) ≤ sup

n

[
Ψ(τ, η, ν; ρn) + C(1 +M2(ρn))

]
<∞.

Hence, the minimizing sequence (ρn)n∈N is contained in some sublevel of the Fisher
information E , which is compact with respect to the narrow convergence. So, we can
conclude there exists a limit density ρ∗ such that ρn ⇀

∗ ρ∗ on a subsequence. Now since
the BDF2 penalization is lower semi-continuous with respect to the narrow convergence,
the limit density ρ∗ is indeed a minimizer.

5.3.3 Intrinsic Properties of the BDF2 scheme

Given an equidistant partition τ = (τ, 2τ, 3τ, . . .) of �xed time step size τ > 0 and a
pair of initial data (ρτ0 , ρ

τ
1 ) which approximates the initial datum ρ0. Then, the discrete

solution (ρτk )k∈N for E on (P2(Ω),W2) de�ned in (5.0.3) and equivalently de�ned by the
recursive formula

ρτk+1 ∈ argmin
ρ∈P2(Ω)

Ψ(τ, ρτk−1, ρτk ; ρ) for k ∈ N (5.3.2)

is well-posed by theorem 5.3.4. The rest of this section is devoted to derive structural
properties of the BDF2 scheme, namely: Step size independent estimates, discrete Euler-
Lagrange equations, better a priori estimates.
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Step Size Independent Estimates. As in the previous section 5.2 the discrete so-
lution (ρτk )k∈N satisfy the classical estimates on kinetic energy, free energy, and bounded-
ness. Recall, the initial data (ρτ0 , ρ

τ
1 ) satisfy (I1)&(I2) from Assumption 5.3.1.

Theorem 5.3.5 (Classical Estimates). Fix a time horizon T > 0. There exists a con-
stant C, depending only on d1 to d2 and T , such that the corresponding discrete solutions
(ρτk )k∈N satisfy

N∑
k=1

1

2τ
W2

2(ρτk−1, ρτk ) ≤ C, I(ρτN ) ≤ C, M2(ρτN ) ≤ C, (5.3.3)

for all τ ∈ (0, τ∗) and for all N ∈ N with Nτ ≤ T .
This proof is almost identical if not simpler � since the Fisher information is non-negative
� as the proofs given in the previous two sections, so we shall skip this proof.

Discrete Euler-Lagrange Equations. In the spirit of the JKO-method [54] we derive
the discrete Euler-Lagrange equations for the weak formulation of the Derrida-Lebowitz-
Speer-Spohn equation.

Theorem 5.3.6 (Discrete Euler-Lagrange Equations). The discrete solution (ρτk )k∈N
obtained by the BDF2 method satis�es for each k ∈ N\{1} and for all vector �elds
ξ ∈ C∞c (Ω,Rd) with ξ · n = on ∂Ω

0 =−
ˆ

Ω

1

2
〈∇(div ξ),∇ρ∗〉+ 2〈Dξ∇√ρ∗,∇

√
ρ∗〉 dx

+
2

τ

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 1

2τ

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z),

(5.3.4)

where pτk ∈ Γ(ρτk , ρ
τ
k−1) and qkτ ∈ Γ(ρτk , ρ

τ
k−2) are optimal transport plans.

Proof. Fix ρτk , ρ
τ
k−1, ρτk−2 and ξ ∈ C∞c (Ω,Rd) with ξ · n = on ∂Ω. We consider the

perturbation ρs of ρτk as the solution of the transport equation with velocity �eld ξ
starting at ρτk , i.e., ρ

s is the solution of (2.4.6) as in section 2.4. The �rst variation of
the Fisher information E along the solution to the transport equation is equal

d

ds
[E(ρs)]s=0 = −

ˆ
Ω

1

2
〈∇(div ξ),∇ρ∗〉+ 2〈Dξ∇√ρ∗,∇

√
ρ∗〉 dx.

The di�erentiability of the quadratic L2-Wasserstein distance W2 along the solution ρ
s is

given by [92, Theorem 8.13], since ρτk−2, ρτk−1, ρτk , ρs are all absolutely continuous measures.
Hence, we can conclude:

d

ds

[
4W2

2(ρτk−1, ρs)−W2
2(ρτk−2, ρs)

]
s=0

=8

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 2

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z),

where pτk ∈ Γ(ρτk , ρ
τ
k−1) and qkτ ∈ Γ(ρτk , ρ

τ
k−2) are optimal transport plans.
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Since ρτk is a minimizer of the BDF2 penalization Ψ(τ, ρτk−2, ρτk−1; · ) and since the map
s 7→ Ψ(τ, ρτk−2, ρτk−1; ρs) is di�erentiable at s = 0,

0 =
d

ds

[
Ψ(τ, ρτk−2, ρτk−1; ρs)

]
s=0

=
1

4τ

d

ds

[
4W2

2(ρτk−1, ρs)−W2
2(ρτk−2, ρs)

]
s=0

+
d

ds
[E(ρs)]s=0

=
2

τ

ˆ
Ω2

〈ξ(x), x− y〉 dpτk (x, y)− 1

2τ

ˆ
Ω2

〈ξ(x), x− z〉 dqτk (x, z)

−
ˆ

Ω

1

2
〈∇(div ξ),∇ρ∗〉+ 2〈Dξ∇√ρ∗,∇

√
ρ∗〉 dx.

Indeed, we have the desired equality (5.3.4).

Re�ned Regularity. The already obtained regularity results for the interpolated so-
lution ρτt are not su�cient to pass to the limit in the �rst integral of the discrete Euler-
Lagrange equation (5.3.4). Unfortunately, we are not in the situation as in the Fokker-
Planck case, where we could derive from the discrete Euler-Lagrange equations better a
priori bounds. To circumvent this issue, we propose a di�erent variation of the discrete
solution ρτk , namely along the heat �ow. More precisely, we de�ne as perturbation ρs of
ρτk as the solution to the heat equation

∂sρ
s = ∆ρs, ρ0 = ρτk . (5.3.5)

Proposition 5.3.7 (Step Size Independent Local H2(Ω)-estimates). Fix a time horizon
T > 0. There exists a constant C, depending only on d1, Ω, and T , such that the
corresponding discrete solutions (ρτk )k∈N satisfy for all τ > 0 and for all k ∈ N\{1} with
kτ ≤ T :

∥∥√ρτk∥∥2

H
2(Ω)
≤ C

(
1 +

W2(ρτk−1, ρτk )

τ
+

W2(ρτk−2, ρτk )

τ

)
. (5.3.6)

Proof. Fix T > 0. By de�nition, the H2(Ω)-norm of
√
ρτk comprises three terms:∥∥√ρτk∥∥2

H
2(Ω)

=
∥∥√ρτk∥∥2

L
2(Ω)

+
∥∥∇√ρτk∥∥2

L
2(Ω;Rd)

+
∥∥D2

√
ρτk
∥∥2

L
2(Ω;Rd×d)

= ‖ρτk ‖2L1(Ω) + I(ρτk ) +
∥∥D2

√
ρτk
∥∥2

L
2(Ω;Rd×d)

.

The �rst term is equal to the L1-norm of ρτk and hence equal to one. The second term,
i.e., the Fisher information of ρτk , is bounded by some constant independently of the step
size τ by the classical estimates (5.3.3). Hence, it remains to estimate the norm of the
second order derivate.

To do so, we use the idea of the �ow interchange technique developed by Matthes et
al. [68]: we de�ne ρs as the perturbation of ρτk along the heat �ow (5.3.5) with η = 1.

113



5 Backward Di�erentiation Formula 2

As long as ρτk is the minimizer of the BDF2 penalization one has

0 ≤1

s
[Ψ(τ, ρτk−2, ρτk−1; ρs)−Ψ(τ, ρτk−2, ρτk−1; ρτk )]

=
1

sτ
[W2

2(ρτk−1, ρs)−W2
2(ρτk−1, ρτk )]− 1

4sτ
[W2

2(ρτk−2, ρs)−W2
2(ρτk−2, ρτk )]

+
1

s
[E(ρs)− E(ρτk )]

for su�ciently small s > 0. By passing to the limit s → 0 in each term, we will obtain
the better a priori bound for D2

√
ρτk . The �rst variation of the Wasserstein distance

along the heat Flow ρs is given by lemma 2.4.7 and is equal to

lim sup
s→0

1

sτ
[W2

2(ρτk−1, ρs)−W2
2(ρτk−1, ρτk )]− 1

4sτ
[W2

2(ρτk−2, ρs)−W2
2(ρτk−2, ρτk )]

≤ 1

2τ
W2(ρτk−1, ρτk )

√
I(ρτk ) +

1

8τ
W2(ρτk−2, ρτk )

√
I(ρτk ).

The �rst variation of the Fisher information along the heat �ow ρs is given by lemma
2.4.9 and is equal to

lim inf
s→0

d

ds
[E(ρs)] ≤ −C

ˆ
Ω

∥∥D2
√
ρτk
∥∥2

dx.

Putting everything together yields

0 ≤ 1

2τ
W2(ρτk−1, ρτk )

√
I(ρτk ) +

1

8τ
W2(ρτk−2, ρτk )

√
I(ρτk )− C

ˆ
Ω

∥∥D2
√
ρτk
∥∥2

dx

which is � after rearranging the inequality and using the classical estimate (5.3.3) on the
Fisher information � the desired local a priori estimate (5.3.6).

Theorem 5.3.8 (Step Size Independent Global H2(Ω)-estiamtes). Fix a time horizon
T > 0. There exists a constant C, depending only on d3, d4,Ω and T , such that the
corresponding interpolated solution ρτt satis�es for each τ ∈ (0, τ∗):∥∥√ρτt ∥∥L2(0,T ;H2(Ω))

≤ C. (5.3.7)

Proof. We use the results from Proposition 5.3.7 to estimate the L2(0, T ;H2(Ω))-norm of√
ρτt . Let NT : max{N ∈ N | Nτ ≤ T}, then we have with (I2) from Assumption 5.3.1

∥∥√ρτt ∥∥L2(0,T ;H2(Ω))
≤ τ

∥∥√ρτ1 ∥∥2

H
2(Ω)

+

NT+1∑
k=2

ˆ kτ

(k−1)τ

∥∥√ρτk∥∥2

H
2(Ω)

dt

≤ d4 + C

NT+1∑
k=2

τ
(

1 +
W2(ρτk−1, ρτk )

τ
+

W2(ρτk−2, ρτk )

τ

)2
.
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

By the triangle inequality and a Cauchy type inequality we obtain

∥∥√ρτt ∥∥L2(0,T ;H2(Ω))
≤ d4 + C ·

NT+1∑
k=2

(
τ +

W2
2(ρτk−1, ρτk )

τ
+

W2
2(ρτk−2, ρτk−1)

τ

)

≤ d4 + CT + C ·
NT+1∑
k=1

W2
2(ρτk−1, ρτk )

τ
.

Finally, we can conclude with the step size independent bounds on the kinetic energy
and on the Fisher information from (5.3.3),∥∥√ρτt ∥∥L2(0,T ;H2(Ω))

≤ d4 + CT + C · C · C =: C̃

for some universal constant C̃, which depends only on d3, d4,Ω and T , but not on the
step size τ ∈ (0, τ∗). Hence, we have proven the desired step size independent global
L2(0, T ;H2(Ω))-estimate (5.3.7)

5.3.4 Convergence

In this section we prove our main theorem, the narrow and strong convergence of the
approximation ρτt to the solution ρ∗t of the Derrida-Lebowitz-Speer-Spohn Equation. Our
�rst weak convergence result follows from the step size independent bounds (5.3.3) and
the Arzelà-Ascoli theorem, which can be found in [4, Proposition 3.3.1].

Theorem 5.3.9 (Narrow Convergence in P2(Ω)). Given a sequence of equidistant par-
titions (τn)n∈N of vanishing step sizes τn ∈ (0, τ∗). Then, there exists a (non-relabelled)
subsequence (τn)n∈N and a limit curve ρ∗t ∈ AC2(0,∞; (P2(Ω),W2)) such that for any
t ≥ 0:

ρτnt ⇀ ρ∗t narrowly in the space P2(Ω) as n→∞.
The proof of this theorem is word by word identical to the proof of theorem 5.2.12

with the only di�erence, that we use the classical estimates (5.3.3), therefore, we skip
this proof.

Next, we state the strong convergence results.

Theorem 5.3.10 (Strong Convergence). Under the same assumptions as in Theorem
5.3.9 and given the limit curve ρ∗ therein, then there exists a further (non-relabelled)
subsequence (τn)n∈N such that for all T > 0, for any p ∈ [1,∞):

ρτnt → ρ∗t strongly in Lp(0, T ;L1(Ω)) as n→∞,√
ρτnt →

√
ρ∗t strongly in L2(0, T ;H1(Ω)) as n→∞,√

ρτnt ⇀
√
ρ∗t weakly in L2(0, T ;H2(Ω)) as n→∞.
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5 Backward Di�erentiation Formula 2

Proof. Fix T > 0. To derive the convergence results we proceed similarly as in the proof
of theorem 5.2.13, by applying the extension of Aubin-Lions theorem 2.5.4 once. The
other results follow by the Banach-Alaoglu theorem and an interpolation argument.

We seek to apply theorem 2.5.4 for (unt )n∈N := (
√
ρτnt )n∈N with the underlying Banach

space X = L2(Ω). We consider as normal coercive functional A : L2(Ω)→ [0,∞] and as
pseudo-distance g on L2(Ω):

A(u) :=

{
‖u‖

H
1(Ω) +M2(u2) if u ∈ H1(Ω) and u2 ∈ Pac2 (Ω),

∞ else,

g(f, h) :=

{
W2(f2, h2) if f, h ≥ 0 ∧ f2, h2 ∈ Pac2 (Ω),

+∞ else.

Note, with abuse of notation f2 and h2 are identi�ed with the corresponding measures
f2Ld and h2Ld, respectively.
To prove that A is a normal coercive integrand, we shall prove all properties. It is

clear, that A is measurable. The lower semi-continuity of the H1(Ω)-norm and of the
second moment M2 is also trivial. For Ω open, bounded and convex, the compactness
of the sublevels of A follows from the Rellich-Kondrachov theorem. For Ω = Rd, we use
the following observation: given a sequence of measures (µn)n∈N with supnM2(µn) <∞
then we can extract by Prokhorov's theorem a subsequence which converges in the weak*-
topology of measures to some limit measure µ∗. Hence, every sequence (un)n∈N ⊂ L2(Ω)
contained in a sublevel of A satis�es supnM2(µn) < ∞ and therefore (u2

n)n∈N con-
verges to some limit measure µ∗ in the weak*-topology of measures. Therefore, we
can use Lemma 2.2 from [68] which yields the strong convergence of (unt )n∈N in the
L2(Ω)-topology. Additionally, the pseudo-distance g is indeed a lower semi-continuous
pseudo-distance, cf. [66, Proposition 7.6].

Next, we have to verify, that (unt )n∈N satis�es the hypothesis of theorem 2.5.4. The
tightness of (unt )n∈N with respect to At follows directly from the classical estimates
(5.3.3). By the same calculations as in theorem 5.2.13, (unt )n∈N satis�es the weak inte-
gral equi-continuity condition, since g(unt , u

n
t+h) = W2(ρτnt , ρ

τn
t+h). We can conclude by

theorem 2.5.4 that (on a subsequence) (unt )n∈N converges to some u∗t inM(0, T ;L2(Ω)).
We have also uniform L∞(0, T ;L2(Ω)) bounds. So we can use Remark 2.1.1 to conclude
the strong convergence result of (unt )n∈N to some u∗t in Lp(0, T ;L2(Ω)).

It follows directly by the ε-independent L2(0, T ;H2(Ω))-estimates (5.3.7) that unt con-
verges weakly in the L2(0, T ;H2(Ω))-topology. Hence, the weak convergence of (unt )n∈N
to u∗t in L2(0, T ;H2(Ω)) and the strong convergence in L2(0, T ;L2(Ω)) immediately yields
strong convergence in L2(0, T ;H1(Ω)) by an interpolation argument.

Lastly, we have to verify ρ∗t = (u∗t )
2 for almost every x ∈ Ω. After possibly extracting

further subsequences, we can ensure that (ρεnt )n∈N and (unt )n∈N converge almost every-
where on [0, T ] × Ω. Clearly, we have by continuity of the square ρ∗t = (u∗t )

2 for almost
everywhere on [0, T ]× Ω. A diagonal argument in T yields the �nal result.
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Lastly, we have to verify that the limit function ρ∗t of theorems 5.3.9&5.3.10 are indeed
a solution to the Derrida-Lebowitz-Speer-Spohn Equation.

Theorem 5.3.11 (Solution to the Derrida-Lebowitz-Speer-Spohn Equation). Under the
same assumptions as in Theorem 5.3.10 and given the limit curve ρ∗t from there. The
limit curve ρ∗t is a solution to the Derrida-Lebowitz-Speer-Spohn equation with no-�ux
boundary condition (5.3.1) in the following weak sense: For each test function ϕt ∈
C∞c ([0,∞)× Ω) with ∇ϕt · n = on ∂Ω the curve ρ∗t satis�es:

−
ˆ ∞

0

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρ∗t 〉+ 2〈Hessϕt∇

√
ρ∗t ,∇

√
ρ∗t 〉 dx dt

=

ˆ ∞
0

ˆ
Ω
ρ∗t∂tϕt dx dt+

ˆ
Ω
ϕ0 ρ0 dx.

(5.3.8)

Proof. For simplicity, we drop the index n and write for the step size only τ and τ → 0.
Fix ϕt ∈ C∞c ([0,∞)× Ω) with ∇ϕt · n = 0 on ∂Ω and let T > 0 be such that suppϕt ⊂
[0, T ] × Ω. De�ne as in the previous section the piecewise constant interpolation ϕτt of
ϕt by

ϕτ0 = ϕ0, ϕτt = ϕkτ for t ∈ ((k − 1)τ, kτ ] and k ∈ N.

For each k ∈ N\{1} insert the smooth function x 7→ ∇ϕ(k−1)τ in the discrete Euler-
Lagrange equation (5.3.4) for the vector �eld ξ. Summing the resulting equations from
k = 2 to NT + 1 and multiplying with τ yields:

0 =−
ˆ ∞
τ

ˆ
Ω

1

2
〈∇(∆ϕτt ),∇ρτt 〉+ 2〈Hessϕτt ∇

√
ρτt ,∇

√
ρτt 〉 dx

+

NT∑
k=2

[
2

ˆ
Ω2

〈∇ϕ(k−1)τ (x), x− y〉 dpτk (x, y)− 1

2

ˆ
Ω2

〈∇ϕ(k−1)τ (x), x− z〉 dqτk (x, z)
]

=: I1 + I2.

Due to the strong convergence in L2(0, T ;H1(Ω)) of
√
ρτt to

√
ρ∗t and due to the uniform

convergence of ∆ϕτt to ∆ϕt

lim
τ↘0

I1 =−
ˆ ∞

0

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρ∗t 〉+ 2〈Hessϕt∇

√
ρ∗t ,∇

√
ρ∗t 〉 dx.

The limit of I2 is given by the same calculations as in the proof of theorem 5.2.14, i.e.,
by the classical estimates (5.3.3) and by the assumptions in the initial data (ρτ0 , ρ

τ
1 ):

lim
τ↘0

I2 =−
ˆ T

0

ˆ
Ω
∂tϕt ρ

∗
t dx dt−

ˆ
Ω
ϕ0 ρ0 dx.

Finally, we can conclude that the limit curve ρ∗t satis�es the Derrida-Lebowitz-Speer-
Spohn equation (5.3.1) in the weak sense of (5.3.8).
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5.4 Illustration by Numerical Experiments

In this section, we illustrate the convergence of our variational BDF2 method in com-
parison to the implicit Euler scheme in several numerical experiments. As examples, we
have chosen a �ow on the two-dimensional sphere S2, a reaction-di�usion equation as
�ow on the Hilbert space L2(0, 1), and an aggregation-di�usion equation as a �ow in the
space P(Ω) of probability measures on Ω = [−1, 1], equipped with the L2-Wasserstein
distance W2. We observe that the order of convergence is indeed very close to two in
each of our simulations. This underlines our philosophy that one reaches the optimal
order in �typical� problems, despite the fact that our main Theorem 5.1.11 only provides
order one-half, and that there are speci�c counter-examples with sub-optimal converge
rates, as in the introduction of this chapter.

Method. In each of the examples below, we compare the numerical results for the
implicit Euler scheme and for the BDF2 method at various moderately small time steps
τ > 0 to a reference solution that is obtained by the BDF2 method with a very small
time step τref. The approximation with the implicit Euler method of step size τ > 0
� see chapter 3 for details � is denoted by (uτt )(1), and the approximation with BDF2
by (uτt )(2), respectively. For the time-discrete initial data, we choose the original datum
u0 for both schemes at t = 0, and for the second initial datum (at t = τ) of the BDF2
method, we use the result of the �rst step of the implicit Euler scheme.

Remark 5.4.1. This choice ensures in the ODE setting the enhanced convergence rate
of order two since the startup calculation with one step of the implicit Euler scheme is of
order two, cf. [11, Theorem 7.23]. More precise, let uτ1 be the �rst minimizer obtained
by the implicit Euler scheme and let u∗t ∈ C2(0, T ) be the solution of the gradient �ow
equation u̇∗t = −∇E(ρ∗t ). Then, use the de�nition of uτ1 , Taylor's formula applied to u∗t ,
and the Lipschitz-continuity of the map x 7→ ∇E(x) to get

‖u∗τ − uτ1 ‖ =
∥∥− u0 − τ∇E(u∗τ ) +

1

2
τ ü∗

t̃
+ u0 − τ∇E(uτ1 )

∥∥ ≤ τL∥∥u∗τ − uτ1 ∥∥+
1

2
τ2
∥∥ü∗t∥∥∞.

Assume τL < 1/2, then a kick-back argument yields

‖u∗τ − uτ1 ‖ ≤
∥∥ü∗t∥∥∞

2(1− τL)
τ2 ≤ Cτ2.

The numerical rate of convergence is then computed as follows. In addition to the very
small reference time step τref, we choose a moderately large time step τcoarse that is an
integer multiple of τref. Then, we calculate (uτt )(1) and (uτt )(2) for several intermediate
time steps τ ∈ (τref, τcoarse) that are chosen such that τ is an integer multiple of τref, and
τcoarse is an integer multiple of τ . For each such choice of τ , the respective solutions (uτt )(1)

and (uτt )(2) are compared to the reference solution (ureft )(2): speci�cally, we calculate a
mean numerical error by taking the average of the distances d((uτtτk

)(i), (ureftτk
)(2)) at times

tτk = kτcoarse ∈ [0, T ] on the coarsest grid.
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5.4 Illustration by Numerical Experiments

All simulations have been performed with MATLAB. Both variational schemes are im-
plemented by solving the sequence of variational problems using the built-in method
fmincon.

Gradient Flow on the Sphere S2. The �rst test problem is placed on the unit 2-
sphere S2 := {u ∈ R3 |u2

1 + u2
2 + u2

3 = 1} ⊂ R3 equipped with the intrinsic (great-circle)
distance dS2 , de�ned by dS2(u, v) = arccos(u1v1 + u2v2 + u3v3) for u, v ∈ S2. For the
potential E : S2 → R, we choose the restriction of

Ẽ(u) =

3∑
i=1

(
ui −

1

2

)(
ui +

1

2

)2
.

The corresponding gradient �ow satis�es the ODE

u̇ = −∇S2E(u) = Πu

[
−∇Ẽ(u)

]
,

where Πu[v] = v−uT v is the projection of a vector v to the tangent space of S2 at u. Its
�ow lines are sketched in Figure 5.1 (left). The example falls into the class of gradient
�ows on Riemannian manifolds that are covered by Theorem 5.1.5.

A series of simulations has been performed for the initial datum

u0 =
1√
30

(1, 2, 5)

and the reference step size τref = 10−5. The observed numerical convergence rates are
1.00 for the implicit Euler method, and 2.06 for BDF2, see Figure 5.1 (right). Further
experiments with di�erent initial data and other potentials yield very similar results. In
this smooth, �nite-dimensional setting, second-order convergence of the BDF2 method
was naturally expected, as the solution curve and ∇S2E are smooth in the ambient space.

10−4 10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

step size τ

d
S2
-e
rr
or

O(τ)

O(τ2)
Implicit Euler
BDF2

Figure 5.1: Gradient �ow on the Sphere S2. Left: the values of E are color-coded by gray
scale. The white lines are sample trajectories of the gradient �ow generated
by E . Right: the dS2-error plot of (uτt )(i) compared with u

τref
t .
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Reaction-Di�usion Equation with Obstacle. Next, we consider the constrained
reaction-di�usion equation

∂tu = ∆u+ 60u3 subject to |u| ≤ 1

on Ω = [0, 1], subject to homogeneous Neumann boundary conditions. This PDE con-
stitutes a gradient �ow on the Hilbert space L2(0, 1) for the energy

E(u) =

{
1
2

´ 1
0

(
∂xu(x)

)2
dx− 15

´ 1
0 u(x)4 dx, for u ∈ H1(0, 1), |u| ≤ 1,

+∞, otherwise.

The second variation of E amounts to

d2E(u)[ϕ]2 =

ˆ 1

0

(
∂xϕ(x)

)2
dx− 180

ˆ 1

0
u(x)2ϕ(x)2 dx ≥ −180‖ϕ‖2

L
2(0,1)

,

since 0 ≤ u(x)2 ≤ 1. Hence E is uniformly semi-convex of modulus λ = −90.

For the numerical approximation, we �rst perform the implicit Euler or BDF2 method
for discretization in time, then we apply a spatial discretization of the PDE, using central
�nite di�erences. The qualitative behavior of the approximate solution for the initial
condition

u0(x) =
1

2
sin(2πx) +

1

4

has been plotted in Figure 5.2 (left). Notice that the upper barrier is hit after a short
transient time. The reference step size is τref = 10−6. Since we are interested in the
convergence rate of the temporal discretization for the PDE, we need to estimate the
in�uence of the additional spatial discretization on the numerical error. For that reason,
the experiment is carried out with di�erent choices of the spatial resolution, using K =
50, 100, 250, 500, 1000 grid points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u(
x)

10−5 10−4 10−3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

step size τ

L
2
-e
rr
or

O(τ)

O(τ2)
Implicit Euler
BDF2

Figure 5.2: Reaction-di�usion equation with obstacle. Evolution of the reference solution

uτref (left). The L2-error plot of (uτt )(i) compared with u
τref
t for di�erent K

(right).
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5.4 Illustration by Numerical Experiments

Our results on the numerical error are given in Figure 5.2 (right). The error curve
for the implicit Euler scheme is proportional to τ , as expected. For time steps τ >
10−5, the error curve for the BDF2 scheme is almost perfectly proportional to τ2, and
there is no signi�cant dependence on the spatial discretization. For very small steps
τ ≤ 10−5, there is apparently an additional contribution to the numerical error due to the
spatial discretization, however as K is increased, the error curve extends its approximate
proportionality to τ2 also into that regime. This is a strong indication that for a purely
temporal discretization by BDF2, the order of convergence is indeed quadratic in τ . We
performed further experiments with di�erent initial data, and with variants of the energy
functional. The results remain approximately the same.

Aggregation-Di�usion Equations. In our last example, we study discretizations of
the following aggregation-di�usion equation,

∂tρt = ∆ρt + ∂x(ρtW
′ ∗ ρt) (5.4.1)

on Ω = [−1, 1], with no-�ux boundary condition, i.e., ∂xρt + W ′ ∗ ρt = 0 at x = ±1.
For the interaction kernel, we use W (x) = 2x4 − x2. Weak solutions to (5.4.1) conserve
mass and positivity, so we restrict attention to solutions u that are probability densities.
Under this restriction, solutions to (5.4.1) correspond to the gradient �ow on the space
X = P([−1, 1]) of probability measures µ with respect to the L2-Wasserstein distance
d = W2 for the energy functional

E(µ) :=

ˆ
Ω
ρ log(ρ) dx+

1

2

ˆ
Ω×Ω

ρ(x)W (x− y)ρ(y) dy dx,

if µ ∈ Pac2 (Ω) with density ρ ∈ L1(Ω) and otherwise we set E(µ) = +∞. For numerical

simulation, we employ the isometry of the Wasserstein space (P(Ω),W2) and the space X̃
of non-decreasing càdlàg functions X : [0, 1]→ Ω, equipped with the L2(0, 1)-norm. This
isometry is realized by assigning to each µ its inverse distribution functionXµ : [0, 1]→ Ω,
i.e., µ

(
[−1, Xµ(ξ)]

)
= ξ for all ξ ∈ [0, 1]. Accordingly, the Wasserstein gradient �ow

transforms into an L2(0, 1)-gradient �ow on X̃ with the energy functional

Ẽ(X) := −
ˆ

[0,1]
log(∂ξX(ξ)) dξ +

1

2

¨
[0,1]×[0,1]

W (X(ξ)−X(η)) dξ dη.

Remark 5.4.2. Note that the change of coordinates has transformed the original gra-
dient �ow, that had been posed on the metric Wasserstein space, into a gradient �ow on
(a closed subset of) the Hilbert space L2(0, 1). This example is thus rather another il-
lustration for �ows on Hilbert spaces. The combination of the BDF2 time discretization
with one of the spatial discretizations for Wasserstein gradient �ows in multiple space
dimensions � where a transformation into a Hilbert space �ow is not possible anymore
� is currently under investigation.
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5 Backward Di�erentiation Formula 2

In the numerical experiments, we prescribe an initial datum u0 via its inverse distri-
bution function

Xu0(ξ) := 2ξ − 1 +
1

8π
sin(8πξ) · (10(ξ(ξ − 0.5)(x− 1)) + 1) .

Concerning the discretization in space, we proceed as in the previous example, using cen-
tral �nite di�erences with K = 50, 100, 250, 500, 1000 spatial grid points. The qualitative
behavior of the reference solution (in original variables with τref = 10−6, and K = 1000)
is sketched in Figure 5.3 (left).
Our results on the numerical error are given in Figure 5.3 (right). The error curves for

the implicit Euler and the BDF2 schemes, respectively, are almost perfectly proportional
to τ and τ2. The results are comparable to (and even better than in) the previous
example; we do not observe any signi�cant e�ect of the spatial discretization, even for
very small time steps. This indicates that the purely temporal discretization of the
original PDE with BDF2 leads an approximation error of τ2.
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rr
or
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Figure 5.3: Aggregation-di�usion equation. Evolution of the reference solution u
τref
t (left)

and the W2-error plot of (uτt )(i) compared with u
τref
t for di�erent K (right).
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6 Weighted Energy-Dissipation Principle

This chapter is based on the joint work with S. Lisini, D. Matthes, and G. Savaré [65]. We
are concerned with approximating by means of theWeighted Energy-Dissipation Principle
non-negative solutions of two families of di�usion equations, namely: the second-order,
linear Fokker-Planck (FP) equation:

∂tρt = ∆ρt + div(ρt∇V ) + div(ρt(∇W ∗ ρt)); (6.0.1)

and the fourth-order Derrida-Lebowitz-Speer-Spohn (DLSS) equation:

∂tρt = −div
(
ρt∇

(
2

∆
√
ρt√
ρt

))
. (6.0.2)

Both PDEs shall start from the initial con�guration ρ0 in the domain Ω = Rd. Un-
fortunately, the method developed in this chapter is not applicable in the case Ω is an
open, bounded, and convex subset of Rd. Our method fails in the derivation of the re-
�ned a priori bounds (6.2.15) and (6.3.3). However, we formulated as much theorems
as possible also for this case since the remaining arguments go through. It is known, if
these equations are initialized with ρ0 dLd ∈ P2(Ω), then there exists a weak solution
ρ∗t : [0,∞) × Ω → R ∪ {∞} with initial con�guration ρ∗0 = ρ0 and for each t ≥ 0 the
measure ρ∗t is absolutely continuous with respect to the Lebesgue measure.

Gradient Flow Structure. As before, the guiding principle is to exploit the Gradient
Flow structure of these drift-di�usion equations, for reference see [4, 54, 87] in the second-
order case and [46, 47, 68, 78] in the fourth-order case. The underlying metric space is
the space of probability measures P2(Ω) equipped with the L2-Wasserstein distance W2

and the corresponding free energy functionals E are de�ned by

E(µ) :=

ˆ
Ω
ρ log(ρ) + ρV + ρ(W ∗ ρ) dx or E(ρ) :=

ˆ
Ω
‖∇(
√
ρ)‖2 dx (6.0.3)

if the measure µ = ρ dLd is absolutely continuous and the integrals on the right-hand
side are well-de�ned, otherwise we set E(µ) =∞, see section 2.4 for more details. Then,
in the L2-Wasserstein framework (6.0.1) and (6.0.2) are equivalent to the coupling of
the continuity equation with a sort of Darcy's law where the pressure is given by the
variational derivative of the free energy functional E :

∂tρt + div(wt) = 0, wt = −ρtD
δE(ρt)

δρ
. (6.0.4)
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6 Weighted Energy-Dissipation Principle

Weighted Energy-Dissipation Principle. Compared to the modern approach to
PDEs with gradient �ow structure, that is the well-developed time-discrete theory of
Minimizing Movements [4, 29, 30], an alternative time continuous approach has been
proposed recently in [75, 76, 86, 88]. The main idea here is to perturb the gradient �ow
equation (6.0.4) for an arbitrary free energy functional E by a elliptic regularization in
time

−ε∂2
t ρ
ε
t + ∂tρ

ε
t + div(wε

t ) = 0, wε
t = −ρεtD

δE(ρεt )

δρ
. (6.0.5)

Even though one loses the gradient �ow structure at �rst glance, the solutions ρεt satisfy
another crucial variational principle. In particular, it has been shown that solutions ρεt
of (6.0.5) are the minimizer of a global-in-time minimization of the parameter-dependent
Weighted-Energy-Dissipation (WED) functional Φε, given by

ρεt = argmin
ρt

ˆ ∞
0

e−t/ε

ε

(ε
2

∣∣ρ′t∣∣2 + E(ρt)
)
dt. (6.0.6)

Here, |ρ′t| denotes the metric slope of the curve ρt and the minimization is performed
over the class of L2-absolutely continuous curves emanating from ρ0.

It has been proven, that for each ε ∈ (0, ε∗) there exists at least one minimizer ρεt
and in the limit ε → 0 the approximations ρεt converge to a limit function ρ∗t which
solves (6.0.4) in the sense of the energy dissipation equality (EDE). Note, it turns out in
the analysis of this problem that this perturbed system (6.0.5) possesses a gradient �ow
structure with respect to the value functional Vε which is de�ned as the minimal value
in (6.0.6) for a given initial datum ρ0. I.e., the WED-approximation ρεt satis�es

d

dt
Vε(ρ

ε
t ) = −|(ρεt )′|2 for a.e. t.

Contribution. The disadvantage of the previously developed WED theory posed in
abstract metric spaces is the lack of a classical solution concept. To prove that the limit
function ρ∗t of the WED-approximation ρεt is indeed a classical distributional solution
to the corresponding PDE an adapted notion of convexity is needed. In the context of
L2-Wasserstein gradient �ows, convexity along generalized geodesics is a suitable notion.
Whilst the free energy functional E for the Fokker-Planck equation (6.0.1) falls into this
class of λ-convex functionals, the energy functional E for the DLSS equation (6.0.2) is
not convex along generalized geodesics. Therefore, one can not deduce that the limit
function ρ∗t of the WED-approximation ρεt with respect to E is a weak solution of (6.0.2).

For this reason, the main objective of this part is to apply and cast the WED method
for (6.0.2) in a hands-on way and to derive directly a distributional solution of (6.0.2).
Even though the case of the Fokker-Planck case is already covered in [86], we apply our
WED method also to (6.0.2) as doability check. It turns out the analysis in this �easier�
case is of interest by itself, since the lack of regularity, compared to the analysis for E
with respect to the DLSS equation, requires �ner arguments and estimates.
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Method. The key ingredient of our approach is the equivalent dynamical reformulation
of (6.0.6), where we utilize the characterization of L2-absolutely continuous curves as
solutions to the continuity equation, see section 2.2. In particular, the solutions ρεt of
the elliptic regularization of the gradient �ow (6.0.5) are also minimizer of our WED
functional Ψε:

(ρεt ,w
ε
t ) = argmin

(ρt,wt)∈C(ρ0)

ˆ ∞
0

e−t/ε

ε

(ε
2
K(ρt,wt) + E(ρt)

)
dt (6.0.7)

where C(ρ0) and K are as de�ned in section 2.2. The advantage of this new variational
formulation (6.0.7) is the additional degree of freedom in the �ux variable wt. However,
in the minimization, the �ux variable wt is coupled to the density ρt via the continuity
equation, so this additional degree of freedom is purely virtual. Nevertheless, this for-
mulation of the WED approach encodes the behavior of the metric slope in a better way,
which allows us to derive additional properties of the approximated solutions.

A Variation Along the Transport Equation. The �rst perturbation ρst of the
WED-approximation ρεt that we consider to obtain the Euler-Lagrange equation is
the continuous variation along solutions of the transport equation in the auxiliary
time s:

∂sρ
s
t + div(ρst · ξt) = 0 ρ0

t = ρεt ,

where ξt is a time-dependent smooth vector �eld. Note, in order to have a feasible
competitor for (ρεt ,w

ε
t ), we have to de�ne also perturbations ws

t of the associated
�ux wε

t due to the coupling of ρst and ws
t through the continuity equation (2.2.5).

The key ingredient in the calculation is that we have for both the perturbed density
ρst and the perturbed �ux ws

t an explicit representation given by

(ρst ◦Xst ) · det(DXst ) = ρεt , (ws ◦Xst ) · det(DXst ) = DXstw
ε
t + ρεt · ∂tXst ,

where Xst is the �ow map corresponding to the vector �eld ξt, see section 2.4.

B Variation Along the Heat Equation. To derive the re�ned regularity esti-
mates we adapt the time-discrete �ow interchange technique developed by Matthes
et al. [68] and transfer it to the time-continuous setting of the Weighted Energy-
Dissipation principle. Therefore, we de�ne continuously in the time t the pertur-
bation ρst as the solution to the heat equation in the auxiliary time s:

∂sρ
s
t = ηt∆(ρst ), ρ0

t = ρεt .

As in the case before, the key ingredient in variation along the heat �ow is the
explicit representation of the perturbed WED-approximation (ρst ,w

s
t )

ρst := TGst [ρ
ε
t ], ws

t :=
⇀

TGst [w
ε
t ]− s∂tηt∇TGst [ρ

ε
t ]

in terms of the corresponding Greens function Gs
t for the heat equation. This

allows us to exploit the monotonicity property of the kinetic energy K given by
lemma 2.5.6 and derive an estimate for the derivative of the kinetic energy K along
solutions to the heat equation.
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6 Weighted Energy-Dissipation Principle

Main Results. Our main results concerning the well-posedness and the limit behavior
as ε↘ 0 of the WED-approximation ρεt are stated in the following two theorems. First,
our convergence result for the linear Fokker-Planck equation.

Theorem 6.0.1 (Main Result: Linear Fokker-Planck Equation). Let Ω = Rd and let
V,W satisfy Assumption 6.2.1 and de�ne the corresponding free energy functional E for
the linear Fokker-Planck equation (6.0.1).

a) Existence. For each ε ∈ (0, ε∗) and each ρ0 ∈ D(E) there exists an approximated
solution ρεt with respect to E.

b) Convergence. Given a vanishing sequence (εn)n∈N with εn ∈ (0, ε∗). Then, there
exits a (non-relabeld) subsequence εn and a limit function ρ∗t : [0,∞)×Ω→ R with
ρ∗t ∈ Pac

2 (Ω) such that for each p ∈ [1,∞) and for all T > 0 one has:

ρεnt → ρ∗t strongly in Lp(0, T ;L1(Ω)).

c) Solution. The limit function ρ∗t from b) is a solution of the linear Fokker-Planck
equation (6.0.1) in the weak sense of (6.2.22).

Second, our main result about the existence and convergence of the Weighted Energy-
Dissipation principle applied to the Derrida-Lebowitz-Speer-Spohn equation is given as
follows.

Theorem 6.0.2 (Main Result: Derrida-Lebowitz-Speer-Spohn Equation). Let Ω = Rd

and let E be the corresponding free energy functional for the Derrida-Lebowitz-Speer-
Spohn equation (6.0.2).

a) Existence. For each ε ∈ (0, ε∗) and each ρ0 ∈ D(E) there exists an approximated
solution ρεt with respect to E.

b) Convergence. Given a vanishing sequence (εn)n∈N with εn ∈ (0, ε∗). Then, there
exits a (non-relabeld) subsequence εn and a limit function ρ∗t : [0,∞)×Ω→ R with
ρ∗t ∈ Pac

2 (Ω) such that for each p ∈ [1,∞) and for all T > 0 one has:

ρεnt → ρ∗t strongly in Lp(0, T ;L1(Ω)),√
ρεnt →

√
ρ∗t strongly in L2(0, T ;H1(Ω)),√

ρεnt ⇀
√
ρ∗t weakly in L2(0, T ;H2(Ω)).

c) Solution. The limit function ρ∗t from b) is a solution of the Derrida-Lebowitz-
Speer-Spohn equation (6.0.2) in the weak sense of (6.3.6).
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6.1 Introduction to the WED-Principle in Metric Spaces

6.1 Introduction to the WED-Principle in Metric Spaces

In [86] Rossi et al. investigated in the framework of abstract metric gradient �ows the
WED principle (6.0.6). This method focuses on the minimization of the parameter-
dependent global-in-time functional of trajectories

Φε(ρt) :=

ˆ ∞
0

e−t/ε

ε

(ε
2

∣∣ρ′t∣∣2 + E(ρt)
)
dt

featuring the weighted sum of energetic and dissipative terms. In particular, the theory
therein covers the case of both free energy functionals from (6.0.3), since these energies
satisfy the lower semicontinuity-coercivity-compactness (LSCC) conditions, cf. [4]. Con-
trary to [86], we investigate in this chapter the minimization of the parameter-dependent
global-in-time functional Ψε which depends additionally on the �ux wt. So Ψε reads

Ψε(ρt,wt) :=

ˆ ∞
0

e−t/ε

ε

(ε
2
K(ρt,wt) + E(ρt)

)
dt.

But in addition, in the minimization of Ψε the density-�ux pair (ρt,wt) is coupled through
the continuity equation (2.2.5). The link between the two minimization problems (6.0.6)
and (6.0.7) is given by the characterization of L2-absolutely continuous curves via the
continuity equation, see Theorem 2.2.1. So it is clear that Φε(ρt) ≤ Ψε(ρt,wt) for all
(ρt,wt) ∈ C(ρ0). Visa versa, there exists always some density-�ux pair (ρt,wt) ∈ C(ρ0)
such that Ψε(ρt,wt) ≤ Φε(ρt). Hence, the minimization problems (6.0.6) and (6.0.7) are
equivalent and therefore, we recover the main results in [86] also for (ρεt ,w

ε
t ), namely:

lower boundedness of Ψε, existence of minimizer ρεt , inner variation of the approxima-
tion ρεt , fundamental identity of the value function Vε, and ε-independent bounds of the
approximation (ρεt ,w

ε
t ).

Setup and Assumptions. In the following, we want to brie�y recap the aforemen-
tioned results, which are formulated with respect to our framework and for some arbitrary
free energy functional E which includes (6.0.3). We emphasize, that we state the idea of
a proof rather than giving actually detailed and riguours proofs, which all can be found
in [86]. Therefore, we shall assume in the sequel the standard LSCC -conditions on the
free energy functional E .
Assumption 6.1.1. The free energy functional E : P2(Ω) → R ∪ {∞} is proper and
satisfy the following regularity conditions:

(E1) Lower Semi-continuity. E is sequentially lower semi-continuous with respect to
weak* convergence of measures, i.e.,

ρn ⇀
∗ ρ∗ ⇒ E(ρ∗) ≤ lim inf

n→∞
E(ρn).

(E2) Coercivity. There exists C > 0 s.t. E(ρ) ≥ −C(1 +M2(ρ)) for all ρ ∈ P2(Ω).

(E3) Compactness. For each C > 0 the set {ρ ∈ P2(Ω) | E(ρ) ≤ C} is sequentially
compact in the topology induced by the weak* convergence of measures.
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6 Weighted Energy-Dissipation Principle

Lower Bounds. Recall that assumptions (E0)�(E3) for the free energy functional E
hold and that we assume from now on ε∗ < 1/(32C). The �rst result is an auxiliary
calculation which is essential in the proof of the lower boundedness of the WED-functional
Ψε.

Lemma 6.1.2. Let ρt ∈ AC2(0, T ; (P2(Ω),W2)) be an absolutely continuous curve with
integrable metric derivative |ρ′t| ∈ L1(0,∞). Then

1

4ε2

ˆ ∞
0

e−t/ε

ε

( ˆ t

0

∣∣ρ′r∣∣ dr)2
dt ≤

ˆ ∞
0

e−t/ε

ε

∣∣ρ′t∣∣2 dt. (6.1.1)

Sketch of Proof. This results follows from the binomial formula and an integration by
parts. De�ne the auxiliary function Lt :=

´ t
0 |ρ′r| dr such that L′t = |ρ′t|. Then, one can

compute

0 ≤
ˆ ∞

0

e−t/ε

ε

(
L′t −

1

2ε
Lt

)2
dt =

ˆ ∞
0

e−t/ε

ε

(
(L′t)

2 +
1

4ε2
(Lt)

2
)
dt−

ˆ ∞
0

e−t/ε

ε2
L′tLt dt.

Note, the second integral can be rewritten as

−
ˆ ∞

0

e−t/ε

ε2
L′tLt dt = −

ˆ ∞
0

e−t/ε

ε2

d

dt

[1
2

(Lt)
2
]
dt = −

ˆ ∞
0

e−t/ε

ε3

1

2
(Lt)

2 dt

thanks to the integration by parts formula and the integrability of the metric velocity
|ρ′t| ∈ L1(0,∞). Insert this result in the �rst inequality and after a rearrangement this is
the desired result.

Lemma 6.1.3 (Lower Bound). Let ρt ∈ AC2(0, T ; (P2(Ω),W2)) with integrable metric
velocity |ρ′t| ∈ L1(0,∞). For each ε ∈ (0, ε∗) one has

Ψε(ρt,wt) ≥
ˆ ∞

0

e−t/ε

4
K(ρt,wt) dt− C

(
1 + 2M2(ρ0)). (6.1.2)

Sketch of Proof. Use the notation as above, i.e., Lt :=
´ t

0 |ρ′r| dr. Then, by characteri-
zation of L2-absolutely continuous curves we have K(ρt,wt) ≥ (L′t)

2. Using this and the
coercivity of the free energy functional E we can estimate Ψε from below as follows

Ψε(ρt,wt) ≥
ˆ ∞

0

e−t/ε

ε

(ε
4
K(ρt,wt) +

ε

4
(L′t)

2 − C(1 +M2(ρt)
)
dt. (6.1.3)

Due to the triangle inequality, we can estimate the second moment of ρt as follows

M2(ρt) ≤ 2M2(ρ0) + 2W2
2(ρ0, ρt) ≤ 2M2(ρ0) + 2(Lt)

2.

Insert this into (6.1.3) to obtain

Ψε(ρt,wt)≥
ˆ ∞

0

e−t/ε

4
K(ρt,wt) dt− C

(
1 + 2M2(ρ0)) +

ˆ ∞
0

e−t/ε

ε

(ε
4

(L′t)
2 − 2C(Lt)

2
)
dt.

Lastly, since ε < ε∗ < 1/(32C) the second integral is non-negative by (6.1.3) and hence
we obtain the desired lower bound (6.1.2).
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6.1 Introduction to the WED-Principle in Metric Spaces

Existence of Minimizers. Recall that assumptions (E0)�(E3) for the free energy
functional E hold. Then, the existence of a minimizer of the WED-approximation follows
by the extension of the Aubin-Lions Theorem.

Theorem 6.1.4 (Existence of Minimizers). Let ε ∈ (0, ε∗). For each ρ0 ∈ D(E) the
minimization problem (6.0.7) has at least one minimizer (ρεt ,w

ε
t ) in the class C(ρ0).

Sketch of Proof. Let ((ρnt ,w
n
t ))n∈N be an in�mizing sequence for Ψε of density-�ux pairs

(ρnt ,w
n
t ) ∈ C(ρ0) and �x some T > 0. Since the density-�ux pair (ρ0,

⇀

0) is feasible in
(6.0.7) and since the free energy functional E is coercive (E2), we can assume that with
out loss of generality there exits a non-negative constant C such that

sup
n

ˆ T

0
K(ρnt ,w

n
t ) dt < CeT/ε and sup

n

ˆ T

0
E(ρnt ) dt < CeT/ε (6.1.4)

thanks to (6.1.2). To prove the existence of minimizers for (6.0.7) we seek to apply the
extension of Aubin-Lions Lemma for metric spaces theorem 2.5.4 to (ρnt )n∈N with the
underlying metric space X = P2(Ω) with d induced by the weak*-topology of measures.
We choose as normal coercive functional At = E + CM2, where C is the constant from
(E2), and as pseudo distance g(µ, ν) = W2(µ, ν).

Due to (6.1.4), the sequence (ρnt )n∈N is tight with respect to A. The weak integral equi-
continuity condition for (ρnt )n∈N follows by the Benamou-Brenier formula. The density
�ux pair (ρnt+sh, hwn

t+sh) solves the continuity equation and connects ρt and ρt+h and
therefore we can estimate

W2
2(ρnt , ρ

n
t+h) ≤

ˆ 1

0
K(ρnt+sh, hwn

t+sh) dt =

ˆ t+h

t
hK(ρns ,w

n
s ) ds.

With this estimate at hand one can deduce that (ρnt )n∈N satis�es the equi-continuity
condition and therefore Theorem 2.5.4 implies (on a subsequence) that (ρnt )n∈N converges
to some ρ∗t in M(0, T ; (P2(Ω),d)). After possibly extracting another subsequence, we
can conclude that ρnt ⇀

∗ ρ∗t for almost every t ∈ [0,∞).

The compactness of (wn
t )n∈N can be derived as follows. By Hölder's inequality we haveˆ T

0

ˆ
Ω
‖wn

t ‖ dx dt ≤
( ˆ T

0
K(ρnt ,w

n
t ) dt

)1/2 ( ˆ T

0

ˆ
Ω
ρnt dx dt

)1/2
≤ CeT/2εT 1/2.

Hence, the sequence (wn
t )n∈N is bounded in L1([0, T ] × Ω). Since the map t 7→M2(ρnt )

is uniformly integrable by (6.1.4), we can conclude by Hölder's inequality that the map
(t, x) 7→ ‖x‖‖wn

t ‖ is also uniformly bounded. As long as the map (t, x) 7→ ‖x‖ has
compact sublevels in [0, T ]×Ω the sequence (wn

t )n∈N is tight. This implies by Prokhorov's
compactness theorem that wn

t ⇀
∗ w∗t for every t ∈ [0, T ] and with a diagonal argument

we can extend the weak*-convergence for almost all t ∈ [0,∞).

Clearly, the continuity equation is stable with respect to weak*-convergence of mea-
sures and therefore (ρ∗t ,w

∗
t ) ∈ C(ρ0). Since K and E are lower semi-continuous, it follows

by Fatou's Lemma that the limit (ρ∗t ,w
∗
t ) of the in�mizing sequence ((ρnt ,w

n
t ))n∈N is a

minimizer of the minimization problem (6.0.7).
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6 Weighted Energy-Dissipation Principle

Variational Properties of the Value Function Vε. By the previous part, the WED-
approximation (ρεt ,w

ε
t ) is well-de�ned for each ε ∈ (0, ε∗) and for each initial datum ρ0 ∈

D(E). So similar to the Moreau-Yosida approximation φ of the Minimizing Movement
scheme, the value function Vε de�ned by

Vε(ρ0) := inf
(ρt,wt)∈C(ρ0)

Ψε(ρt,wt) = Ψε(ρ
ε
t ,w

ε
t )

plays a crucial role in the analysis of the Weighted Energy-Dissipation approach. It
turns out that the value function Vε encodes the dissipation of the WED-approximation
(ρεt ,w

ε
t ), i.e.,

d

dt
Vε(ρ

ε
t ) = −|(ρεt )′|2 for a.e. t. (6.1.5)

Hence, the WED principle can be understood as a perturbation of the free energy func-
tional E by the value function Vε which on the one hand destroys the physical time-
causality, but which preserves the gradient �ow structure. To derive (6.1.5) we need the
following two theorems.

Theorem 6.1.5 (Inner Variation). The map Vε
t := − ε

2K(ρεt ,w
ε
t ) + E(ρεt ) belongs to

W1,1(0, T ) and it full�lls

d

dt
Vε
t = −K(ρεt ,w

ε
t ) in D′(0, T ). (6.1.6)

Sketch of Proof. Given some arbitrary ηt ∈ C∞c ((0,∞)), de�ne the family of smooth
di�eomorpishms of (0,∞) by Sst := t + sηt and denote by T st the inverse of the map
t 7→ Sst . Further, we de�ne the perturbation (ρst ,w

s
t ) of the WED-approximation (ρεt ,w

ε
t )

via ρst := ρεT st
and ws

t := ∂tT
s
t · wε

T st
. By this de�nition the density-�ux pair (ρst ,w

s
t )

satis�es for each s the continuity equation (2.2.5). Due to η0 = 0, we have ρs0 = ρ0 and
hence (ρst ,w

s
t ) ∈ C(ρ0). With the change of variables t = Ssr we can rewrite Ψε(ρ

s
t ,w

s
t )

as follows

Ψε(ρ
s
t ,w

s
t ) =

ˆ ∞
0

e−S
s
r/ε

ε

[ε
2

1

∂rSsr
K(ρεr,w

ε
r) + E(ρεr)∂rS

s
r

]
dr.

By taking the derivative with respect to s at the minimum point s = 0 one obtains

0 =
d

ds

[
Ψε(ρ

s
t ,w

s
t )
]
s=0

=

ˆ ∞
0

d

ds

[e−Ssr/ε
ε

ε

2

1

∂rSsr

]
s=0
K(ρεr,w

ε
r) +

d

ds

[e−Ssr/ε
ε

∂rS
s
r

]
s=0
E(ρεr) dr

=

ˆ ∞
0

e−t/ε

ε

[
− 1

2
ηr −

ε

2
∂rηr

]
K(ρεr,w

ε
r) +

e−t/ε

ε

[
− 1

ε
ηr + ∂rηr

]
E(ρεr) dr.

(6.1.7)

Note, we used in the last step the identity d

dsS
s
r = ηr. Lastly, choose ηt = εet/εϕt for a

test-function ϕt ∈ C∞c ((0,∞)) and simplify the right hand side of (6.1.7):

0 =

ˆ ∞
0

(−ϕr −
ε

2
∂rϕr)K(ρεr,w

ε
r) + ∂rϕrE(ρεr) dr =

ˆ ∞
0
−ϕrK(ρεr,w

ε
r) + ∂rϕrV

ε
t dr.
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6.1 Introduction to the WED-Principle in Metric Spaces

Theorem 6.1.6 (Fundamental Identity). Given the WED-approximation (ρεt ,w
ε
t ), the

value function Vε, and the map Vε(t) de�ned in theorem 6.1.5. Then,

Vε(ρ
ε
t ) = Vε

t for a.e. t ∈ (0,∞). (6.1.8)

Sketch of Proof. Every minimizer (ρεt ,w
ε
t ) of Ψε satis�es

Vε(ρ
ε
t ) =

ˆ ∞
0

e−s/ε

ε

(ε
2
K(ρεt+s,w

ε
t+s) + E(ρεt+s)

)
ds (6.1.9)

since by the dynamical programming principle the value function can be also de�ned as

Vε(ρ0) = inf
(ρt,wt)∈C(ρ0)

[ ˆ T

0

e−t/ε

ε

(ε
2
K(ρt,wt) + E(ρt)

)
dt+ e−T/εVε(ρT )

]
,

see also [6] for further reference. If we denote Vε
t by the absolutely continuous represen-

tation of the map t 7→ Vε
t , we can rewrite (6.1.9) due to (6.1.6) to

Vε(ρ
ε
t ) =

ˆ ∞
0

e−s/ε

ε

([
− ε

2
+ ε
]
K2(ρεt+s,w

ε
t+s) + E(ρεt+s)

)
ds

=

ˆ ∞
0

e−s/ε

ε

(
Vε
t+s − ε

d

dt
[Vε

t+s]
)
ds =

ˆ ∞
0

e−s/ε

ε

(
Vε
t+s − ε

d

ds
[Vε

t+s]
)
ds.

Applying integration by parts to the second integrand yields (6.1.8).

ε-independent Bounds. Lastly, we prove the surrogate of the classical estimates form
the Minimizing Movement scheme. Here, we exploit the hidden gradient �ow structure
(6.1.5) of the WED principle.

Theorem 6.1.7 (ε-independent Bounds). There exist ε-independent and a non-negative
constant C which depends on T such thatˆ T

0
K(ρεt ,w

ε
t ) dt ≤ C, and

ˆ T

0
E(ρεt ) dt ≤ C. (6.1.10)

Sketch of Proof. Di�erentiate the fundamental identity (6.1.8) with respect to t and in-
sert the inner variation formula (6.1.6) to get

d

dt
Vε(ρ

ε
t ) =

d

dt
Vε(t) = −K(ρεt ,w

ε
t ) for a.e. t ∈ (0,∞).

This shows, that the map t 7→ Vε(ρ
ε
t ) is monotonically decreasing. Therefore, we haveˆ T

0
K(ρεt ,w

ε
t ) dt = Vε(ρ0)− Vε(ρTε ) ≤ E(ρ0) + C(1 +M2(ρ0))

where the estimate follows from Vε(ρ0) ≤ E(ρ0) and from (6.1.2). Likewise it follows
from the fundamental identity (6.1.8) and the monotonicity of the map t 7→ Vε(ρ

ε
t ) that

E(ρεt ) = Vε(ρ
ε
t ) +

ε

2
K(ρεt ,w

ε
t ) ≤ E(ρ0) +

ε

2
K(ρεt ,w

ε
t ).

A further integration over (0, T ) yields the second estimate from (6.1.10).
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6 Weighted Energy-Dissipation Principle

6.2 Application to Linear Fokker-Planck Equation

In this section, we want to apply the Weighted Energy-Dissipation principle to the linear
Fokker-Planck equation, given by

∂tρt = ∆ρt + div(ρt∇V ) + div(ρt(∇W ∗ ρt)) (6.2.1)

starting from the initial con�guration ρ0 on Ω = Rd. Recall, that most of the proofs
work also in the case of Ω ⊂ Rd which is open, bounded, and convex. However our
method fails in the derivation of the re�ned a priori bounds, see section 6.2.3 for further
explanaition. Recall, the corresponding free energy functional E in the L2-Wasserstein
framework is given by

E(µ) :=

ˆ
Ω
ρ log(ρ) + ρV + ρ(W ∗ ρ) dx

if the measure µ = ρ dLd ∈ P2(Ω) is absolutely continuous and ρ ∈ L1 log(L1)(Ω),
otherwise we set E(µ) =∞.

Method. Our approximation of the solution to the linear Fokker-Planck equation
(6.2.1) by means of the Weighted Energy-Dissipation Principle reads as follows

Scheme. Given the free energy functional E and an initial con�guration ρ0, de�ne the
WED-approximation (ρεt ,w

ε
t ) for a given perturbation ε ∈ (0, ε∗) as the minimizer of

the WED-functional Ψε, i.e.

(ρεt ,w
ε
t ) ∈ argmin

(ρt,wt)∈C(ρ0)

ˆ ∞
0

e−t/ε

ε

ˆ
Ω

ε

2

‖wt‖2
ρt

+ ρt log(ρt) + ρtV + ρt(W ∗ ρt) dx dt.

If we assume the proper assumptions 6.2.1 the free energy functional E satis�es (E1)�
(E3) and we can use the results from the previous section, speci�cally the ε-independent
bounds (6.1.10) from theorem 6.1.7.

Strategy of the Proof. The structure of the convergence prove of this scheme is done
in three steps. Firstly, we derive the time-continuous Euler-Lagrange equations in section
6.2.2. This is done, in the same manner as compared to the original method by Jordan
et al. [54], by de�ning a time-continuous perturbation ρst of the WED-approximation
(ρεt ,w

ε
t ) along solutions to the Transport equation with vector �eld ξt. Secondly, we use

in section 6.2.3 another perturbation of the WED-approximation (ρεt ,w
ε
t ) along solutions

to the heat equation to derive re�ned regularity bounds. Note, this perturbation is a
to the time continuous WED-setting adapted version of the �ow-interchange theorem
developed in [68]. Lastly, these re�ned regularity bounds are then su�cient to pass in
the Euler-Lagrange equation to the limit ε→ 0 by means of the extension of Aubin-Lions
compactness theorem for Banach spaces 2.5.4, see therefore section 6.2.4.
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6.2 Application to Linear Fokker-Planck Equation

6.2.1 Assumptions

Our assumption on the con�nement potential V and the interaction kernel W reads as
follows:

Assumption 6.2.1. The con�nement potential V and the interaction kernel W satisfy:

(F1) V ∈ C2(Ω), W ∈ C2(Rd), and W is symmetric.

(F2) There exists some non-negative constant d1 such that

|V (x)| , |W (x)| , ‖∇V (x)‖ , ‖∇W (x)‖ ≤ d1

(
1 + ‖x‖2

)
.

(F3) There exits some non-negative constant d2 such that

|∆V (x)| , |∆W (x)| ≤ d2.

6.2.2 Time-Continuous Euler-Lagrange Equations

Next, we want to derive the corresponding Euler-Lagrange equations of the WED-
approximation (ρεt ,w

ε
t ). The idea is to exploit the di�erential structure of the L2-

Wasserstein space as in the original paper [54] where the JKO-method was developed.
For this instance, we have to transfer the method from the time-discrete setting of the
Minimizing Movement scheme to the time-continuous setting of the Weighted Energy-
Dissipation principle.

De�nition and Justi�cation of the Perturbation. To do so, we perturb our ap-
proximation ρεt , with ρ

ε
t ∈ Pac2 (Ω), at each time t ≥ 0 along the Transport equation in

the auxiliary time s

∂sρ
s
t + div(ρst ξt) = 0 ρ0

t = ρεt . (6.2.2)

with time-dependent velocity �eld ξt ∈ C∞c ([0,∞) × Ω,Rd) with ξ0 = 0 and ξt · n =
0 on ∂Ω. It is clear from section 2.4 that the perturbed density ρst has the explicit
representation ρst := (Xst )#ρ

ε
t , where Xst is the �ow map corresponding to the velocity

�eld ξt, i.e., X
s
t is the solution to of the initial value problem

d

dsX
s
t = ξt(X

s
t ), with X0

t (x) = x,

The �ow map Xst exists, is jointly continuous in (s, t, x), and for �xed (s, t) the �ow
map Xst is a di�eomorphism on Ω. Further more, we de�ne by Xst := det(DXst ) > 0 the
volume distortion of the �ow map Xst . With this notation at hand, we can de�ne the
corresponding perturbation (ρst ,w

s
t ) via

(ρst ◦Xst ) · Xst = ρεt , (ws ◦Xst ) · Xst = DXst ·wε
t + ρεt · ∂tXst . (6.2.3)

This representation follows from the following calculations: Assume that our perturbation
in the density variable is given by ρst := (Xst )#ρ

ε
t . Furthermore, given an arbitrary test

function ϕt ∈ C∞c ((0,∞) × Ω). Then, insert in the weak formulation of the continuity
equation for the density-�ux pair (ρεt ,w

ε
t ) the new test function ψst := ϕt◦Xst and expand
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6 Weighted Energy-Dissipation Principle

every term containing ϕt:

0 =

ˆ ∞
0

ˆ
Ω
∂t(ϕt ◦Xst ) · ρεt + 〈∇(ϕt ◦Xst ),wε

t 〉 dx dt

=

ˆ ∞
0

ˆ
Ω

[
(∂tϕt) ◦Xst ) + 〈(∇ϕt) ◦Xst , ∂tXst 〉

]
ρεt + 〈(DXst )> · (∇(ϕt) ◦Xst ),wε

t 〉 dx dt.

A change of variables x = Xst (y) yields

0 =

ˆ ∞
0

ˆ
Ω
∂tϕt ρ

s
t + 〈∇ϕt,

[
∂tX

s
tρ
ε
t + DXst ·wε

t

]
◦ (Xst )

−1〉 det(D(Xst )
−1) dx dt.

Hence, if the perturbed density-�ux pair (ρst ,w
s
t ) shall solve the continuity equation, the

perturbed �ux ws
t shall obey the representation

ws
t =

[
∂tX

s
tρ
ε
t + DXst ·wε

t

]
◦ (Xst )

−1 det(D(Xst )
−1)

which is equivalent to (6.2.3). Indeed, as long as (ρεt ,w
ε
t ) solves the continuity equation

also (ρst ,w
s
t ) solves the continuity equation. Since ξ0 = 0, one has ρs0 = ρ0 and we can

conclude that (ρst ,w
s
t ) ∈ C(ρ0) is a feasible competitor for (ρεt ,w

ε
t ).

L2-subdi�erential of the Kinetic Energy K. Before we prove the Euler-Lagrange
equation of the WED-approximation (ρεt ,w

ε
t ), we compute the �rst variation of the ki-

netic energy K along the solutions of the Transport equation (6.2.2).

Lemma 6.2.2. Given a density-�ux pair (ρt,wt) ∈ C(ρ0) such that ρt ∈ Pac
2 (Ω) for

each t and such that the map t 7→ e−t/εK(ρt,wt) ∈ L1(0,∞). For each vector �eld
ξt ∈ C∞c ([0,∞) × Ω) with ξ0 = 0 and ξt · n = 0 on ∂Ω de�ne the perturbation (ρst ,w

s
t )

via (6.2.3). Then,

d

ds

[ ˆ ∞
0

e−t/ε

2
K(ρst ,w

s
t ) dt

]
s=0

=

ˆ ∞
0

e−t/ε
ˆ

Ω

〈wt,Dξtwt〉
ρt

+ 〈∂tξt,wt〉 dx dt. (6.2.4)

Note, the integrand is well-de�ned for a.e. (t, x) since t 7→ e−t/εK(ρt,wt) ∈ L1(0,∞).

Proof. Fix ξt and t > 0. Using the explicit representation formula (6.2.3) and the change
of variables x = Xst (y) we can rewrite K(ρst ,w

s
t ) as follows

K(ρst ,w
s
t ) =

ˆ
Ω

‖DXstwt‖2
ρt

dy + 2〈DXstwt, ∂tX
s
t 〉+ ρt ‖∂tXst‖2 dy.

Taking into account that X0
t is the identity, ρt ∈ Pac2 (Ω), and t 7→ e−t/εK(ρt,wt) is locally

integrable, it follows by a dominated convergence argument

d

ds

∣∣∣
s=0

ˆ ∞
0

e−t/ε

2
K(ρst ,w

s
t ) dt =

ˆ ∞
0

e−t/ε

2

ˆ
Ω

d

ds

[‖DXstwt‖2
ρt

]
s=0

dy dt

+

ˆ ∞
0

e−t/ε

2

ˆ
Ω

d

ds

[
2〈DXstwt, ∂tX

s
t 〉
]
s=0

dy dt

+

ˆ ∞
0

e−t/ε

2

ˆ
Ω

d

ds

[
ρt ‖∂tXst‖2

]
s=0

dy dt.
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6.2 Application to Linear Fokker-Planck Equation

In order to evaluate the s-derivative at s = 0, we make use of the following identities

DX0
t = 1d,

d

ds

[
DXst

]
s=0

= Dξt, ∂tX
0
t = 0,

d

ds

[
∂tX

s
t

]
s=0

= ∂tξt. (6.2.5)

Hence, using these identities 6.2.5 the di�erent derivatives are as follows: The derivative
of the �rst integrand is given by

d

ds

[‖DXstwt‖2
ρt

]
s=0

=
2〈DX0

twt,
d

ds

[
DXst

]
s=0

wt〉
ρt

=
〈wt,Dξtwt〉

ρt
.

The derivative of the second integrand is given by

d

ds

[
2〈DXstwt, ∂tX

s
t 〉
]
s=0

=2〈 d
ds

[DXst ]s=0wt, ∂tX
0
t 〉+ 2〈DX0

twt,
d

ds
[∂tX

s
t ]s=0〉=〈wt, ∂tξt〉.

Lastly, the derivative of the third integrand is given by

d

ds

[
ρt ‖∂tXst‖2

]
s=0

= 2ρt〈∂tX0
t ,

d

ds
[∂tX

s
t ]s=0〉 = 0.

Inserting these pointwise derivatives yields the desired result (6.2.4).

Time-continuous Euler-Lagrange Equations. Having the �rst variation of the ki-
netic energy K along the Transport equation at hand, we are able to proof the time-
continuous Euler-Lagrange equations

Theorem 6.2.3 (Time-continuous Euler-Lagrange Equations). Let ε ∈ (0, ε∗). Then,
the WED-approximation (ρεt ,w

ε
t ) satis�es for each test function ϕt ∈ C∞c ([0,∞) × Ω)

with ∇ϕt · n = 0 on ∂Ω:

0 =

ˆ ∞
0

ˆ
Ω
〈∇ϕt,wε

t 〉 dx dt

+ ε

ˆ ∞
0

(1− e−t/ε)
ˆ

Ω

〈wε
t ,Hessϕtw

ε
t 〉

ρtε
dx dt

+ ε

ˆ ∞
0

(1− e−t/ε)
ˆ

Ω
〈∂t∇ϕt,wε

t 〉 dx dt

−
ˆ ∞

0
(1− e−t/ε)

ˆ
Ω

∆ϕtρ
ε
t − 〈∇ϕt,∇V +∇W ∗ ρεt 〉ρεt dx dt.

(6.2.6)

Proof. Given theWED-approximation (ρεt ,w
ε
t ) de�ne the perturbation (ρst ,w

s
t ) via (6.2.3)

for a smooth vector �eld ξt ∈ C∞c ([0,∞)×Ω,Rd) with ξ0 = 0 and ξt ·n = 0 on ∂Ω. Due
to the minimality property of (ρεt ,w

ε
t ) and since (ρst ,w

s
t ) ∈ C(ρ0), one has:

0 ≤ d

ds

[
Ψε(ρ

s
t ,w

s
t )
]
s=0

=
d

ds

[ˆ ∞
0

e−t/ε

ε

(ε
2
K(ρst ,w

s
t ) + E(ρst )

)
dt
]
s=0

. (6.2.7)
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6 Weighted Energy-Dissipation Principle

The time-continuous Euler-Lagrange equation (6.2.6) follows by evaluating the s-derivatives
on the right-hand side of (6.2.7). To actual compute the �rst variation of the free energy
function E we proceed as in the time-discrete theory, cf. [4, Chapter 10.]. The di�erence
quotient of the part containing the Boltzman entropy can be simpli�ed using the explicit
representation of ρst and the change of variables x = Xst (y):

ˆ ∞
0

e−t/ε

ε

1

s

(
H(ρst )−H(ρεt )

)
dt = −

ˆ ∞
0

ˆ
Ω

e−t/ε

ε
log(det(DXst ))ρ

ε
t dx dt.

The pointwise limit of the integrand is given by (6.2.5). Since ξt has only compact support
in time and space, Xst (x) = x outside this set. Hence, the e�ective domain of the integral
above is compact. Further, the Jacobian of the �ow map DXst depends continuously on
(s, t, x) and therefore we can conclude with a dominated convergence argument

d

ds

∣∣∣
s=0

ˆ ∞
0

e−t/ε

ε
H(ρst ) dt = −

ˆ ∞
0

e−t/ε

ε

ˆ
Ω

div(ξt) ρt dx dt.

Similarly, one can compute the �rst variation of the con�nement energy V and of the
interaction energy W such that the �rst variation of the free energy functional E along
the �ow ρst amounts to

d

ds

[ˆ ∞
0

e−t/ε

ε
E(ρst ) dt

]
s=0

= −
ˆ ∞

0

e−t/ε

ε

ˆ
Ω

div(ξt)ρ
ε
t − 〈ξt,∇V +∇W ∗ ρεt 〉ρεt dx dt.

Due to (6.1.10) the map t 7→ e−t/εK(ρεt ,w
ε
t ) is locally integrable and we can apply Lemma

6.2.2 to get

d

ds

[ˆ ∞
0

e−t/ε

2
K(ρst ,w

s
t ) dt

]
s=0

=

ˆ ∞
0

e−t/ε
ˆ

Ω

〈wt,Dξtwt〉
ρt

+ 〈∂tξt,wt〉 dx dt.

Inserting these two equations in (6.2.7) yields

0 ≤
ˆ ∞

0
e−t/ε

ˆ
Ω

〈wε
t ,Dξtw

ε
t 〉

ρεt
+ 〈∂tξt,wε

t 〉 dx dt

−
ˆ ∞

0

e−t/ε

ε

ˆ
Ω

div(ξt)ρ
ε
t − 〈ξt,∇V +∇W ∗ ρεt 〉ρεt dx dt.

Since the equation above is linear with respect to ξt, repeating the calculations above
for −ξt in place of ξt yields the converse inequality and hence we have equality. Lastly,
we choose as speci�c test functions ξt = ε(et/ε − 1)∇ϕt where ϕt ∈ C∞c ([0,∞)×Ω) with
∇ϕt · n = 0 on ∂Ω which yields the desired time-continuous Euler-Lagrange equations
(6.2.6).
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6.2 Application to Linear Fokker-Planck Equation

6.2.3 Better A Priori Bounds by Continuous Variations

The ε-independent bounds (6.1.10) are not su�cient to pass in the Euler-Lagrange equa-
tions (6.2.6) to the limit ε→ 0. Inspired by the �ow interchange technique [68] to deduce
better a priori bounds in the time-discrete JKO-method, we use suitable perturbations
of the minimizers to improve the ε-independent bounds. In particular, we consider as
time-continuous perturbation ρst of the approximated solution ρεt the solution to the heat
equation

∂sρ
s
t = ηt∆(ρst ), ρ0

t = ρεt (6.2.8)

with no-�ux boundary condition and for some given time-dependent di�usivity parameter
ηt ∈ C∞c (0,∞) with η0 = 0 and ∂tη0 = 0. By the parabolic regularity theory, it is clear,
that for the heat equation with di�usivity parameter ηt and no-�ux boundary condition
there exists a smooth and non-negative solution ρst . To have a feasible density-�ux pair
(ρst ,w

s
t ) we de�ne the perturbed �ux ws

t as the solution to the inhomogeneous vectorial
heat equation

∂sw
s
t = ηt∆(ws

t )− ∂tηt∇ρst , w0
t = wε

t (6.2.9)

with Dirichlet boundary condition. Note, the vectorial heat equation (6.2.9) is meant to
be understood componentwise. Furthermore, this equation is also well-posed for t = 0
since we assumed η0 = 0 and ∂tη0 = 0. Again, it follows by the parabolic regularity the-
ory, that for the inhomogeneous vectorial heat equation (6.2.9) with Dirichlet boundary
condition there exists a smooth solution ws

t .

Motivation. Before we elaborate on the feasibility of the competitor (ρst ,w
s
t ), their

explicit representations, and the actual proof of the re�ned a priori bounds, we motivate
our approach with a heuristic calculation. By the regularizing e�ects of the heat equation,
the map s 7→ K(ρst ,w

s
t ) is di�erentiable at each s > 0 with derivative given by

d

ds
K(ρst ,w

s
t ) =

ˆ
Ω

2〈ws
t , ∂sw

s
t 〉

ρst
− ‖w

s
t‖2

(ρst )
2
∂sρ

s
t dx

=

ˆ
Ω

2〈w
s
t

ρst
, ηt∆(ws

t )− ∂tηt∇ρst 〉 − ηt
∥∥∥ws

t

ρst

∥∥∥2
∆ρst dx.

Write vst = ws
t/ρ

s
t and apply Green's identity to simplify the �rst integrand as follows

ˆ
Ω

2〈vst , ηt∆(ws
t )〉 dx =2ηt

d∑
i=1

ˆ
Ω

(vst )i∆(ws
t )i dx

=2ηt

d∑
i=1

[ˆ
∂Ω

1

ρst
(ws

t )i(∇(ws
t )i · n) dS−

ˆ
Ω
〈∇(vst )i,∇(ws

t )i〉 dx
]
.

Note, the surface integral is equal to zero if each component of the perturbed �ux ws
t

satis�es either Dirichlet boundary conditions or no-�ux boundary conditions. However,
ws
t has to satisfy also the boundary condition from the continuity equation, i.e. ws

t ·n = 0
on ∂Ω. Hence, this motivates the Dirichlet boundary conditions for (ws

t )i in (6.2.9).
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6 Weighted Energy-Dissipation Principle

Continuing the calculation, we simplify the right hand side further as follows

−2ηt

d∑
i=1

ˆ
Ω
〈∇(vst )i,∇(ws

t )i〉 dx =− 2ηt

d∑
i=1

ˆ
Ω

∥∥∥∇(vst )i∥∥∥2
ρst + 〈∇

(
vst
)
i
,
(
vst
)
i
∇ρst 〉 dx

=− 2ηt

ˆ
Ω

∥∥Dvst
∥∥2

HS
ρst +

1

2
〈∇
∥∥vst∥∥2

,∇ρst 〉 dx.

Similarly, we can simplify the third integrand with Green's identity to obtain

−ηt
ˆ

Ω

∥∥vst∥∥2
∆ρst dx = −ηt

ˆ
∂Ω

∥∥vst∥∥2
(∇ρst · n) dS + ηt

ˆ
Ω
〈∇
∥∥vst∥∥2

,∇ρst 〉 dx.

Since ρst satis�es the no-�ux boundary condition, the surface integral vanishes. In con-
clusion, we get as variation of the kinetic energy K:

d

ds
K(ρst ,w

s
t ) =− ηt

ˆ
Ω
ρst ‖Dvst‖2HS dx− 2∂tηt

ˆ
Ω
〈ws

t ,∇ log(ρst )〉 dx. (6.2.10)

The �rst term is always negative and the second integral is formally equal to the time
derivative of the map t 7→ H(ρst ). Integrating (6.2.10) with respect to t and taking the
�rst variation of the free energy functional E and the minimality of (ρεt ,w

ε
t ) into account,

we end up with the following estimate:

0 ≤ d

ds
[Ψε(ρ

s
t ,w

s
t )]s=0 ≤

ˆ ∞
0

e−t/ε

ε

[
− 2ε∂tηt

d

dt
H(ρεt ) +

d

ds
[E(ρst )]s=0

]
dt.

We emphasize that this is exactly the time-continuous analogue of the time-discrete �ow
interchange estimate. However, without having additional information on the regularity
of t 7→ ρεt this computation and the passage to the limit s→ 0 is a priori not justi�ed.

With another approach, one could also estimate the second term in (6.2.10) with
Hölders inequality by

d

ds
K(ρst ,w

s
t ) ≤2 |∂tηt|

√
K(ρst ,w

s
t )
√
I(ρst ).

Since the map s 7→ I(ρst ) is monotonically decreasing, information about the di�erentia-
bility of K at s = 0 can be only retrieved if the Fisher-Information I(ρεt ) is �nite. To
circumvent this issue, we exploit the following observation: Computing simultaneously
the �rst variation of K and the Boltzmann entropy H yields

d

ds

[ε
2
K(ρst ,w

s
t ) +H(ρst )

]
≤ ε |∂tηt|

√
K(ρst ,w

s
t )
√
I(ρst )− ηtI(ρst ).

Optimizing over I(ρst ), i.e., using the elementary inequality a
√
x − bx ≤ a2

4b with a =

ε |∂tηt|
√
K(ρst ,w

s
t ), b = 1

2ηt, and x = I(ρst ), yields

d

ds

[ε
2
K(ρst ,w

s
t ) +H(ρst )

]
≤ ε2 |∂tηt|2

ηt
K(ρst ,w

s
t )−

1

2
ηtI(ρst ). (6.2.11)

Hence, as long quotient (∂tηt)
2/ηt is bounded from above by positive constant C we can

derive a di�erentiability result for the map s 7→ ε
2K(ρst ,w

s
t ) +H(ρst ) at s = 0 by means

of a Gronwall type argument. However, at this point point we have the issue of the
continuity of the map s 7→ K(ρst ,w

s
t ) which is a priori not clear.
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De�nition and Justi�cation of the Perturbation Prior to the justi�cation of the
feasibility of the perturbation (ρst ,w

s
t ), we de�ne a speci�c di�usivity parameter ηt via

ηt =



ε(et/2ε − 1)2 for t ∈ [0, T ],

−ε(e(2T−t)/2ε − 1)2 + 2ε(eT/2ε − 1)2 for t ∈ [T, 2T ],

−ε(e(t−2T )/2ε − 1)2 + 2ε(eT/2ε − 1)2 for t ∈ [2T, 3T ],

ε(e(4T−t)/2ε − 1)2 for t ∈ [3T, 4T ],

0 for t ∈ [4T,∞).

(6.2.12)

With this de�nition, the di�usivity parameter ηt is non-negative, with compact support,
continuously di�erentiable, with η0 = 0, and with ∂tη0 = 0. Further more, we have the
following growth bounds on ηt and ∂tηt:

εe−t/ε(∂tηt)
2 ≤ ηt ≤ εet/ε ∀t ∈ [0, 4T ]. (6.2.13)

Hence, by the previous remark ηt is suitable in (6.2.11).

The next lemma shows the feasibility of the perturbation (ρst ,w
s
t ).

Lemma 6.2.4 (Feasible Competitor). Given a time-dependent di�usivity parameter ηt ∈
C∞c (0,∞) with η0 = 0 and ∂tη0 = 0. De�ne the perturbed density-�ux pair (ρst ,w

s
t ) viz

(6.2.8) and (6.2.9), respectively. Then, (ρst ,w
s
t ) ∈ C(ρ0) for each s ≥ 0.

Proof. To check, that this perturbation (ρst ,w
s
t ) is a feasible competitor for (ρεt ,w

ε
t ) we

have to check three properties:

1. Initial condition. Due to assumption η0 = 0 and ∂tη0 = 0 we have (ρs0,w
s
0) =

(ρ0,w
ε
0) and therefor the density-�ux pair (ρst ,w

s
t ) satis�es the initial condition.

2. No-�ux Boundary Condition. Since ws
t satis�es the Dirichlet boundary con-

dition in each component, i.e., (ws
t )i = 0 on ∂Ω for each s > 0 and every i ∈

{1, . . . , d}, we trivially satisfy the no-�ux boundary condition of the continuity
equation, i.e., ws

t · n = 0 on ∂Ω for each s ≥ 0.

3. Continuity Equation. To verify that the density-�ux pair (ρst ,w
s
t ) satisfy the

continuity equation, we compute the partial s-derivative of the map (s, x) 7→ ∂tρ
s
t +

div ws
t for each �xed t:

∂s(∂tρ
s
t + div ws

t ) = ∂t(ηt∆ρ
s
t ) + div(ηt∆ws

t − ∂tηt∇ρst ) = ηt∆(∂tρ
s
t + div ws

t ).

Hence, the map (s, x) 7→ ∂tρ
s
t + div ws

t solves the heat equation with initial datum
∂tρ

0
t + div w0

t = ∂tρ
ε
t + div wε

t Indeed, as long as (ρεt ,w
ε
t ) solves the continuity

equation also (ρst ,w
s
t ) solves the continuity equation.

139
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Explicit Representation. If Ω = Rd is the whole space there is an explicit represen-
tation for the perturbed density-�ux pair (ρst ,w

s
t ) in terms of the corresponding Greens

function Gs
t of the heat equation (6.2.8) which is given by

Gs
t (x, y) = (4πηts)

−d/2 exp
[
− ‖x− y‖

2

4ηts

]
.

With the Greens function Gs
t at hand we de�ne the perturbation ρst of the density ρ

ε
t by

ρst := TGst [ρεt ]. The explicit representation formula for ws
t is given by Duhamel's principle:

ws
t =

⇀

TGst [w
ε
t ]− ∂tηt

ˆ s

0
TGs−rt

[∇TGrt [ρ
ε
t ]] dr =

⇀

TGst [w
ε
t ]− ∂tηt∇

ˆ s

0
TGs−rt

[TGrt [ρ
ε
t ]] dr.

Thanks to the semigroup property of the heat kernel we can simplify the second term:ˆ s

0
TGs−rt

[TGrt [ρ
ε
t ]] dr =

ˆ s

0
TGst [ρ

ε
t ] dr = sTGst [ρ

ε
t ].

In conclusion, we end up with the explicit representation formulas

ρst := TGst [ρ
ε
t ] and ws

t :=
⇀

TGst [w
ε
t ]− s∂tηt∇TGst [ρ

ε
t ]. (6.2.14)

In the case Ω ⊂ Rd is an open, bounded and convex set we don't have such an
explicit representation as (6.2.14). The reason is as follows. Let Ds

t and Ns
t be the

greens functions of the heat equation on Ω with Dirichlet boundary conditions or no-�ux
boundary conditions, respectively. Then, ρst and ws

t are given by

ρst = TNst [ρ
ε
t ], and ws

t = TDst [ρ
ε
t ]− ∂tηt∇

ˆ s

0
TDs−rt

[TNrt [ρ
ε
t ]] ds.

In this case, we cannot invoke the semigroup property of the two di�erent heat kernels
and therefor we cannot end up with representation formulas as (6.2.14). One might
suggest to require no-�ux boundary conditions in the heat equation (6.2.9) such that we
could exploit the semi-group property of the heat kernel Ns

t and end up with

ρst := TNst [ρ
ε
t ] and ws

t :=
⇀

TNst [w
ε
t ]− s∂tηt∇TNst [ρ

ε
t ].

Still, the motivating calculation holds true and one can derive the di�erential inequality
(6.2.10). Nevertheless, with no-�ux boundary conditions for (6.2.9) it is not clear, that
the perturbed �ux ws

t satisfy the boundary condition ws
t ·n = 0 on ∂Ω of the continuity

equation. Since TNst [ρεt ] satis�es the no-�ux boundary condition, a simple calculation

shows ws
t · n =

⇀

TNst [wε
t ] · n on ∂Ω. However, a priori we don't have any information on

⇀

TNst [wε
t ] · n on ∂Ω except that D

⇀

TNst [wε
t ] · n = 0 on ∂Ω. So this approach is not feasible

for our purpose. Another approach is to de�ne ws
t directly by

ws
t :=

⇀

TDst [w
ε
t ]− s∂tηt∇TNst [ρ

ε
t ].

The by this formula de�ned perturbation ws
t satis�es the heat equation though with no

boundary condition. Still, ws
t satis�es the boundary condition of the continuity equation.

However, the motivating calculation is invalid and also our method in the proof of the
re�ned a priori bounds does not work, since our method heavily rely on the monotonicity
of K which requires the same integral kernel for ρst and ws

t , see lemma 2.5.6.
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6.2 Application to Linear Fokker-Planck Equation

Re�ned A Priori Bounds.

Theorem 6.2.5 (Better A Priori Bounds). Let ε ∈ (0, ε∗). There exists non-negative
constant C, which depends only on d1, d2, T and the initial datum ρ0 such that the WED-
approximation ρεt with respect to E emanating from ρ0 ∈ D(E) satis�es

ˆ T

0
(1− e−t/2)2

ˆ
Ω
‖∇(

√
ρεt )‖2 dx dt ≤ C. (6.2.15)

Proof of Theorem 6.2.5. Fix T > 0. Given the WED-approximation (ρεt ,w
ε
t ) with re-

spect to E , let (ρst ,w
s
t ) be the perturbation de�ned by (6.2.14) with ηt given by (6.2.12).

Due to the minimality property of (ρεt ,w
ε
t ) and due to (ρst ,w

s
t ) ∈ C(ρ0), we have

0 ≤
ˆ ∞

0

e−t/ε

2

1

s

[ε
2
K(ρst ,w

s
t ) +H(ρst )−

ε

2
K(ρεt ,w

ε
t )−H(ρεt )

]
dt

+

ˆ ∞
0

e−t/ε

ε

1

s
[V(ρst ) +W(ρst )− V(ρεt )−W(ρεt )] dt =: I1 + I2.

(6.2.16)

for su�ciently small s > 0. By passing to the limit s → 0 in each term of (6.2.16), we
will obtain the better a priori bound (6.2.15).

First, we estimate I1, i.e., the di�erence quotient of K +H along the heat �ow. With
the representation (6.2.14) we obtain by Minkowski's inequality for the weighted integral
with weight function (1/TGst [ρεt ]) a �rst estimate for

√
K:

√
K(ρst ,w

s
t ) =

(ˆ
Ω

∥∥∥⇀TGst [wε
t ]− s∂tηt∇TGst [ρ

ε
t ]
∥∥∥2 1

TGst [ρεt ]
dx
)1/2

≤
(ˆ

Ω

∥∥∥⇀TGst [wε
t ]
∥∥∥2 1

TGst [ρεt ]
dx
)1/2

+
(ˆ

Ω

∥∥s∂tηt∇TGst [ρεt ]∥∥2 1

TGst [ρεt ]
dx
)1/2

=

√
K
(
TGst [ρt],

⇀

TGst [wt]
)

+ s |∂tηt|
√
K
(
TGst [ρεt ],∇TGst [ρεt ]

)
.

By classic parabolic regularity theory the Greens function Gs
t satis�es the assumption of

Lemma 2.5.6 and we can conclude√
K(ρst ,w

s
t ) ≤

√
K(ρt,wt) + s |∂tηt|

√
K (ρst ,∇ρst ) =

√
K(ρt,wt) + 2s |∂tηt|

√
I(ρst ),

where we used in the last step K (ρ,∇ρ) = 4I(ρ). Taking the square yields

1

s
[K(ρst ,w

s
t )−K(ρt,wt)] ≤ 4

√
K(ρt,wt) |∂tηt|

√
I(ρst ) + 4s |∂tηt|2 I(ρst ). (6.2.17)

The di�erence quotient of the entropy functional H can be estimated by using the prop-
erties of the heat �ow, cf. [4, Chapter 11.]:

1

s
[H(ρst )−H(ρt)] = −ηt

1

s

ˆ s

0
I(ρrt ) dr ≤ −ηtI(ρst ). (6.2.18)
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Combining (6.2.17) and (6.2.18) yields for the combined di�erence quotient of K +H:

1

s

[ε
2
K(ρst ,w

s
t ) +H(ρst )−

ε

2
K(ρt,wt) +H(ρt)

]
≤2ε

√
K(ρt,wt) |∂tηt|

√
I(ρst ) + 2sε |∂tηt|2 I(ρst )− ηtI(ρst ).

Using the elementary inequality a
√
x − bx ≤ a2

4b with a = 2ε
√
K(ρt,wt) |∂tηt|, b = 1

2ηt,
and x = I(ρst ), yields for I1:

I1 ≤2

ˆ ∞
0

εe−t/ε
(∂tηt)

2

ηt
K(ρεt ,w

ε
t ) dt−

1

2

ˆ ∞
0

e−t/ε

ε
ηtI(ρst ) dt

+ 2

ˆ ∞
0

e−t/ε(∂tηt)
2sI(ρst ) dt =: I3 + I4 + I5.

(6.2.19)

We pass in (6.2.19) to the limit s → 0. The �rst integral I3 on the right hand side of
(6.2.19) is estimated as follows by (6.2.13) and (6.1.10)

I3 := 2

ˆ ∞
0

εe−t/ε
(∂tηt)

2

ηt
K(ρεt ,w

ε
t ) dt ≤ 8

ˆ 4T

0
K(ρεt ,w

ε
t ) dt ≤ C.

The integrand of the second integral I4 of the right-hand side of (6.2.19) is positive, so
we estimate I4 with (6.2.13) to get

I4 := −1

2

ˆ ∞
0

e−t/ε

ε
ηtI(ρst ) dt ≤ −

1

2

ˆ T

0

e−t/ε

ε
ηtI(ρst ) dt = −1

2

ˆ T

0
(1− e−t/2ε)2I(ρst ) dt.

By Fatou's Lemma and the lower semi-continuity of the Fisher-information I we get

lim sup
s↘0

I4 = lim sup
s↘0

−1

2

ˆ ∞
0

e−t/ε

ε
ηtI(ρst ) dt ≤ −

1

2

ˆ T

0
(1− e−t/2)2I(ρεt ) dt.

The limit s→ 0 of the third integral I5 on the right-hand side of (6.2.19) can be derived
as follows. By (6.2.18) the integrand is bounded from above by

I5 := 2

ˆ ∞
0

e−t/ε(∂tηt)
2sI(ρst ) dt ≤ 2

ˆ 4T

0
e−t/ε

(∂tηt)
2

ηt
[H(ρεt )−H(ρst )] dt.

Hence, by the lower semi-continuity of H, the point-wise limit of the integrand of the
third integral in (6.2.19) is less than zero. By the Carleman estimate, the entropy H is
bounded from below in terms of the second moment M2. Furthermore, the dissipation
of the second moment M2 along the heat �ow takes place with rate 2dηt. Hence,

−H(ρst ) ≤ C(1 +M2(ρst )) = C(1 +M2(ρεt ) + s2dηt).

Note, due to the de�nition of the second moment and the dynamic formulation of the
L2-Wasserstein distance one has

M2(ρεt ) ≤ 2M2
2 (ρ0) + 2W2

2(ρ0, ρ
ε
t ) ≤ 2M2

2 (ρ0) + 2t

ˆ t

0
K(ρεr,w

ε
r) dr.
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6.2 Application to Linear Fokker-Planck Equation

Hence, it follows with (6.2.13) that the integrand of I6 is bounded from above by a map,
which is locally integrable due to the ε-independent bounds (6.1.10). So we can conclude
with Fatou's Lemma

lim sup
s↘0

I5 ≤ lim sup
s↘0

2

ˆ 4T

0

e−t/ε

ε

(∂tηt)
2

ηt
[H(ρεt )−H(ρst )] dt ≤ 0.

Putting everything together, yields

lim sup
s↘0

I1 ≤C −
1

2

ˆ T

0
(1− e−t/2)2I(ρεt ) dt. (6.2.20)

Next, we estimate I2. The �rst variations for V andW are given by the classical theory
of the �ow-interchange lemma:

lim sup
s↘0

1

s
[V(ρst ) +W(ρst )− V(ρεt )−W(ρεt )] = ηt

ˆ
Ω

(∆V + ∆W ∗ ρεt )ρεt dx.

So we get by Fatou's Lemma, by the uniform bounds of ∆V and ∆W , and with (6.2.13)

lim sup
s↘0

I2 ≤ d2

ˆ ∞
0

e−t/ε

ε
ηt dt ≤ 4d2T. (6.2.21)

Insert (6.2.20) and (6.2.21) into (6.2.16) to obtain the desired result (6.2.15).

6.2.4 Convergence

With the better a priori bounds of theorem 6.2.5 at hand we can prove convergence. The
cornerstone of the proof is the extension of Aubin-Lions theorem for Banach spaces [85].

Theorem 6.2.6 (Convergence). Given a vanishing sequence (εn)n∈N with εn ∈ (0, ε∗)
and let (ρεnt )n∈N be the WED-approximation the with respect to E emanating from ρ0 ∈
D(E). Then, there exits a (non-relabeld) subsequence εn and a limit function ρ∗t : [0,∞)×
Ω→ R with ρ∗t ∈ Pac

2 (Ω) for each t > 0 such that for all p ∈ [1,∞) and for all T > 0:

ρεnt → ρ∗t strongly in Lp(0, T ;L1(Ω)).

This limit function ρ∗t is a solution of the linear Fokker-Planck equation (6.0.1) in the
weak sense of (6.2.22).

Proof. Fix T > 0. We seek to apply Theorem 2.5.4 for (ρεnt )n∈N with the underlying
Banach space X = L1(Ω). We consider as normal coercive functional At : (0, T ) ×
L1(Ω)→ [0,∞] and as pseudo-distance g on L1(Ω):

A(ρ) :=

{∥∥√ρ∥∥
H

1(Ω)
+M2(ρ) if

√
ρ ∈ H1(Ω),

+∞ else,

g(f, h) :=

{
W2(f, h) if f, h ∈ Pac2 (Ω),

+∞ else.

The functional At is normal coercive integrand and g is a lower semi-continuous pseudo-
distance in the sense of de�nition 2.5.1, cf. lemma 2.5.3.
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Due to the ε-independent bounds (6.1.10), the sequence (ρεnt )n∈N is tight with respect
to At. To be more precise, we use

M2(ρεnt ) ≤ 2M2(ρ0) + 2W2
2(ρ0, ρ

εn
t ) ≤ 2M2(ρ0) + 2t

ˆ t

0
K(ρεnr ,w

εn
r ) dr

since (ρεnst , tw
εn
st )s∈[0,1] is a feasible competitor in the Benamou-Brennier formula for ρ0

and ρεnt . Hence, integrating this with respect to t yields the uniform integrability of
the map t 7→ M2(ρεnt ). The uniform integrability of t 7→ ‖

√
ρεnt ‖H1(Ω) follows by the

integrability of the Fisher information, see (6.1.10). Hence, the sequence (ρεnt )n∈N is tight
with respect to A.
The weak integral equi-continuity condition for (ρεnt )n∈N follows also by (6.1.10). To be

more precise, we utilize the dynamic Benamou-Brenier formulation of the L2-Wasserstein
distance. The density-�ux pair (ρεt+sh, hwε

t+sh) solves the continuity equation and con-
nects ρt and ρt+h and therefore we can estimate

W2
2(ρεnt , ρ

εn
t+h) ≤

ˆ 1

0
K(ρεnt+sh, hwεn

t+sh) dt =

ˆ t+h

t
hK(ρεns ,w

εn
s ) ds ≤ hCeBT

where the constants B and C are independent of ε. Hence, there is a ε-independent
constant C such that

ˆ T−h

0
g(ρεnt , ρ

εn
t+h) dt =

ˆ T−h

0
W2(ρεnt , ρ

εn
t+h) dt ≤ C h1/2.

Therefore, theorem 2.5.4 implies that (on a subsequence) (ρεnt )n∈N converges to some ρ∗t
in M(0, T ;L1(Ω)). Since ρεt ∈ P2(Ω) for each t and ε, we have uniform Lp(0, T ;L1(Ω))
bounds. So we can use Remark 2.1.1 to conclude the strong convergence of (ρεnt )n∈N to
ρ∗t in the Lp(0, T ;L1(Ω))-topology. A diagonal argument in T →∞ yields the result.

It remains to proof, that ρ∗t is a solution of the linear Fokker-Planck equation. There-
fore, for a given test functions ϕt ∈ C∞c ([0,∞)× Ω) with ∇ϕt · n = 0 on ∂Ω we pass in
the Euler-Lagrange equations (6.2.6) to the limit εn → 0. First, de�ne T > 0 such that
ϕt = 0 for all t ≥ T and split up the di�erent parts of (6.2.6):

0 =

ˆ ∞
0

ˆ
Ω
〈wεn

t ,∇ϕt〉 dx dt

−
ˆ ∞

0
(1− e−t/εn)

ˆ
Ω
ρεnt ∆ϕt − ρεnt 〈∇V +∇W ∗ ρεnt ,∇ϕt〉 dx dt

+ εn

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω
〈wεn

t , ∂t∇ϕt〉 dx dt

+ εn

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω

〈wεn
t ,Hessϕtw

εn
t 〉

ρεnt
dx dt

=:I1 − I2 + εn(I3 + I4).

We simplify I1 by using the fact that each density-�ux pair (ρεt ,w
ε
t ) solves the continuity
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6.2 Application to Linear Fokker-Planck Equation

equation to obtain in the limit εn → 0:

lim
n→∞

I1 = lim
n→∞

−
ˆ ∞

0

ˆ
Ω
ρεnt ∂tϕt dx dt−

ˆ
Ω
ϕ0ρ0 dx = −

ˆ ∞
0

ˆ
Ω
ρ∗t∂tϕt dx dt−

ˆ
Ω
ϕ0ρ0 dx

thanks to the strong L1(0, T ;L1(Ω))-convergence of (ρεnt )n∈N to ρ∗t . The limit of I2 is
given by

lim
n→∞

I2 = lim
n→∞

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω
ρεnt ∆ϕt − ρεnt 〈∇V +∇W ∗ ρεnt ,∇ϕt〉 dx dt

=

ˆ ∞
0

ˆ
Ω
ρ∗t∆ϕt − ρ∗t 〈∇V +∇W ∗ ρ∗t ,∇ϕt〉 dx dt

due to the strong convergence of (ρεnt )n∈N in the L1(0, T ;L1(Ω))-topology and the point-
wise convergence of t 7→ (1−e−t/εn). We estimate I3 using the Cauchy-Schwartz inequal-
ity, Young's inequality, and (6.1.10) to get

|I3| ≤ ‖∂t∇ϕt‖∞
(ˆ T

0
K(ρεnt ,w

εn
t ) dt+

ˆ T

0

ˆ
Ω
ρεnt dx dt

)
≤ CeBT .

We estimate I4 with (6.1.10) such that

|I4| ≤ ‖Hessϕt‖∞
ˆ T

0
K(ρεnt ,w

εn
t ) dt ≤ CeBT .

Hence, we have shown limn→∞ εn(I3 +I4) = 0. In conclusion, the limit function ρ∗t solves

0 =

ˆ ∞
0

ˆ
Ω
ρ∗t∂tϕt dx dt+

ˆ
Ω
ϕ0ρ0 dx

−
ˆ ∞

0

ˆ
Ω
ρ∗t∆ϕt − ρ∗t 〈∇V +∇W ∗ ρ∗t ,∇ϕt〉 dx dt

(6.2.22)

yielding that ρ∗t is a distributional solution to the linear Fokker-Planck equation (6.0.1).
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6 Weighted Energy-Dissipation Principle

6.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Lastly, we investigate the Weighted Energy-Dissipation principle applied to the Derrida-
Lebowitz-Speer-Spohn equation, given by

∂tρt = −div
(
ρt∇

(
2

∆
√
ρt√
ρt

))
(6.3.1)

starting from the initial con�guration ρ0 on Ω = Rd. We use the techniques and methods
developed in the previous section 6.2 to prove the existence and convergence of the WED-
approximation. Recall, the corresponding free energy functional E in the L2-Wasserstein
framework is given by the Fisher information, de�ned by

E(µ) :=

ˆ
Ω
‖∇(
√
ρ)‖2 dx

if the measure µ = ρ dLd is absolutely continuous and
√
ρ ∈ H1(Ω), otherwise we set

E(µ) =∞.

Method. In the case of the Derrida-Lebowitz-Speer-Spohn equation driven by the
Fisher Information our approximation of the L2-Wasserstein gradient �ow reads:

Scheme. Given the free energy functional E and an initial con�guration ρ0, de�ne the
WED-approximation (ρεt ,w

ε
t ) for a given perturbation ε ∈ (0, ε∗) as the minimizer of

the WED-functional Ψε, i.e.

(ρεt ,w
ε
t ) ∈ argmin

(ρt,wt)∈C(ρ0)

ˆ ∞
0

e−t/ε

ε

ˆ
Ω

ε

2

‖wt‖2
ρt

+ ‖∇(
√
ρt)‖2 dx dt.

Since Ω is bounded the free energy functional E satis�es (E1)�(E3) and we can use the
results from the previous section.

Strategy of the Proof. We use the same techniques and results as in the previous
section 6.2 to derive the convergence of the WED-approximation (ρεt ,w

ε
t ) applied to the

DLSS equation (6.3.1). Firstly, we derive in section 6.3.1 in a similar way the time-
continuous Euler-Lagrange equations of the WED-approximation (ρεt ,w

ε
t ) and, secondly,

we derive in section 6.3.2 the re�ned regularity estimates by means of the time-continuous
�ow interchange lemma. It is worthwhile to mention that due to the stronger, intrinsic
ε-independent bounds of the approximation ρεt the calculations in the time-continuous
�ow interchange lemma are easier to justify than in the previous case. Still, we cannot
extend our result to open, bounded, and convex domains Ω because of the lack of a
suitable explicit representation formula fo the WED-approximation (ρεt ,w

ε
t ). In section

6.3.3, we can prove due to the better a priori estimates the convergence of the WED-
approximation (ρεt ,w

ε
t ) to a weak solution of the Derrida-Lebowitz-Speer-Spohn equation

(6.3.1) by means of the extension of Aubin-Lions compactness theorem 2.5.4.
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6.3.1 Time-Continuous Euler-Lagrange Equations

As before, we want to derive the Euler-Lagrange equations by means of perturbing the
WED-approximation (ρεt ,w

ε
t ) along the Transport equation. Hence, with the same no-

tation as in the previous section, we de�ne explicitly the perturbation (ρst ,w
s
t ) by

(ρst ◦Xst ) · Xst = ρεt , (ws ◦Xst ) · Xst = DXstw
ε
t + ρεt · ∂tXst

for a �xed velocity �eld ξt ∈ C∞c ([0,∞)× Ω,Rd) with ξ0 = 0 and with ξt · n = 0 on ∂Ω.
We denote by Xst the �ow map with respect to ξt.

The Euler-Lagrange equation reads than as follows.

Theorem 6.3.1 (Time-Continuous Euler-Lagrange Equations). Let ε ∈ (0, ε∗). Then,
the WED-approximation (ρεt ,w

ε
t ) with respect to E emanating from ρ0 ∈ D(E) satis�es

for each test function ϕt ∈ C∞c ([0,∞)× Ω) with ∇ϕt · n = 0 on ∂Ω:

0 =

ˆ ∞
0

ˆ
Ω
〈∇ϕt,wε

t 〉 dx dt+ ε

ˆ ∞
0

(1− e−t/ε)
ˆ

Ω

〈wε
t ,Hessϕtw

ε
t 〉

ρtε
dx dt

+ ε

ˆ ∞
0

(1− e−t/ε)
ˆ

Ω
〈∂t∇ϕt,wε

t 〉 dx dt

−
ˆ ∞

0
(1− e−t/ε)

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρεt 〉+ 2〈Hessϕt∇

√
ρεt ,∇

√
ρεt 〉 dx dt.

(6.3.2)

Proof. We proceed as in the proof of Theorem 6.2.3 with the only di�erence that we
have to compute the �rst variation of the Fisher-information I along solutions of the
Transport equation (6.2.2). This has already been computed in [47, Thm 4.2] for Ω
open, bounded and convex or [68, Lemma 2.5.] for Ω = Rd and is given by

d

ds

[ ˆ ∞
0

e−t/ε

ε
I(ρst ) dt

]
s=0

=−
ˆ ∞

0

e−t/ε

ε

ˆ
Ω

1

2
〈∇(div ξt),∇ρεt 〉+ 2〈Dξt∇

√
ρεt ,∇

√
ρεt 〉 dx dt.

Combing this with the �rst variation of the kinetic energy K yields the desired result.

6.3.2 Better A Priori Bounds by Continuous Variations

Also in this case of the DLSS equation, the ε-independent bounds (6.1.10) are not su�-
cient to pass in the Euler-Lagrange equations (6.3.2) to the limit ε→ 0. Analogously to
the section before, we consider as perturbation ρst of the approximated solution ρεt the
solution of the Heat equation

∂sρ
s
t = ηt∆(ρst ), ρ0

t = ρεt
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6 Weighted Energy-Dissipation Principle

with no-�ux boundary condition and for some given smooth di�usivity parameter ηt ∈
C∞c (0,∞) with η0 = 0. If we denote by Gs

t the greens function for the heat equation
on Ω = Rd with di�usivity parameter ηt , the explicit representations for ρ

s
t and ws

t are
given by

ρst := TGst [ρ
ε
t ] and ws

t :=
⇀

TGst [w
ε
t ]− s∂tηt∇TGst [ρ

ε
t ].

The better a priori bounds are then given by:

Theorem 6.3.2 (Better A Priori Bounds). Let ε ∈ (0, ε∗). Then, there exists a non-
negative constant C, which depends only on T and the initial datum ρ0 such that the
WED-approximation (ρεt ,w

ε
t ) with respect to E emanating from ρ0 ∈ D(I) satis�es

ˆ T

0
(1− e−t/2)2

ˆ
Ω
‖D2(

√
ρεt )‖2 dx dt ≤ C. (6.3.3)

Proof. Fix T > 0. Given the WED-approximation (ρεt ,w
ε
t ) with respect to I, let (ρst ,w

s
t )

be the perturbation de�ned by (6.2.14) with ηt given by (6.2.12). Due to the minimality
property of (ρεt ,w

ε
t ) and due to (ρst ,w

s
t ) ∈ C(ρ0), we have

0 ≤
ˆ ∞

0

e−t/ε

2

1

s
[K(ρst ,w

s
t )−K(ρεt ,w

ε
t )] dt+

ˆ ∞
0

e−t/ε

ε

1

s
[I(ρst )− I(ρεt )] dt. (6.3.4)

As before, by passing in (6.3.4) to the limit s ↘ 0, we obtain the better a priori bound
(6.3.3). For �xed t > 0 the �rst variation of the Fisher information I along the heat �ow
is given by, cf. [47, Theorem 5.1] or [68, Lemma 4.4.]:

lim sup
s↘0

1

s
(I(ρst )− I(ρεt )) ≤ −Cηt

ˆ
Ω
‖D2(

√
ρεt )‖2 dx (6.3.5)

where C is a given non negative constant. Note, (6.3.5) incorporates the fact that
the Fisher information is a Lyapunov function for the heat �ow and therefore one has
I(ρst ) ≤ I(ρεt ). Applying Fatou's lemma yields

lim sup
s↘0

ˆ ∞
0

e−t/ε

ε

1

s
[I(ρst )− I(ρεt )] dt ≤−

ˆ ∞
0

e−t/ε

ε
Cηt

ˆ
Ω
‖D2(

√
ρεt )‖2 dx dt

≤− C
ˆ T

0
(1− e−t/2)2

ˆ
Ω
‖D2(

√
ρεt )‖2 dx dt.

To estimate the di�erence quotient of the kinetic energy K we proceed similar to the
proof of lemma 6.2.2. I.e., we use (6.2.17) given by:

1

s
[K(ρst ,w

s
t )−K(ρεt ,w

ε
t )] ≤ 4

√
K(ρεt ,w

ε
t ) |∂tηt|

√
I(ρst ) + 4s |∂tηt|2 I(ρst ).
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Applying Young's inequality on the �rst part of the right-hand side yields

1

s
[K(ρst ,w

s
t )−K(ρεt ,w

ε
t )] ≤2

ηt
ε
K(ρεt ,w

ε
t ) + 4(1 + s)ε

|∂tηt|2
ηt
I(ρst )

≤
(
2K(ρεt ,w

ε
t ) + 4(1 + s)I(ρst )

)
1{t≤4T}.

where we used the properties (6.2.13) from ηt. Using the monotonicity of the Fisher
information, an integration in time yields

ˆ ∞
0

e−t/ε

2

1

s
[K(ρst ,w

s
t )−K(ρεt ,w

ε
t )] dt ≤

ˆ 4T

0
K(ρεt ,w

ε
t ) + 2(1 + s)I(ρεt ) dt.

Hence, the limit s→ 0 is given by

lim sup
s↘0

ˆ ∞
0

e−t/ε

2

1

s
[K(ρst ,w

s
t )−K(ρεt ,w

ε
t )] dt ≤

ˆ 4T

0
K(ρεt ,w

ε
t ) dt+ 2

ˆ 4T

0
I(ρεt ) dt.

So we can pass to the limit s→ 0 in (6.3.4) and conclude

0 ≤
ˆ 4T

0
K(ρεt ,w

ε
t ) dt+ 2

ˆ 4T

0
I(ρεt ) dt− C

ˆ T

0
(1− e−t/2)2

ˆ
Ω
‖D2(

√
ρεt )‖2 dx dt.

Rearranging terms and estimating the �rst two integral with (6.1.10) yields the desired
result.

6.3.3 Convergence

With the better a priori bounds of theorem 6.3.2 at hand we can prove convergence. The
cornerstone of the proof is a version of Aubin-Lions theorem for Banach spaces, cf. [85].

Theorem 6.3.3 (Convergence). Given a vanishing sequence (εn)n∈N with εn ∈ (0, ε∗).
Let (ρεnt )n∈N be the WED-approximation the with respect to E emanating from ρ0 ∈ D(E).
Then there exits a (non-relabeled) subsequence εn and a limit function ρ∗t : [0,∞)×Ω→ R
with ρ∗t ∈ Pac

2 (Ω) or each t > 0 such that for all p ∈ [1,∞) and for all T > 0:

ρεnt → ρ∗t strongly in Lp(0, T ;L1(Ω)),√
ρεnt →

√
ρ∗t strongly in L2(0, T ;H1(Ω)),√

ρεnt ⇀
√
ρ∗t weakly in L2(0, T ;H2(Ω)).

This limit function ρ∗t is a solution of the Derrida-Lebowitz-Speer-Spohn equation (6.3.1)
in the weak sense of (6.3.6).

Proof. Fix T > 0. To derive in this case the convergence result we proceed similar
as before, applying Theorem 2.5.4 once. The other convergence results follow by the
Banach-Alaoglu theorem and an interpolation argument.

149



6 Weighted Energy-Dissipation Principle

We seek to apply the Aubin-Lions theorem 2.5.4 to the sequence (ρεnt )n∈N with the
underlying Banach space X = L1(Ω). We consider as normal coercive functional A :
L1(Ω)→ [0,∞] and as pseudo-distance g on L1(Ω):

A(u) :=

{∥∥√ρ∥∥
H

1(Ω)
+M2(ρ) if

√
ρ ∈ H1(Ω) and ρ ∈ Pac2 (Ω),

∞ else,

g(ρ, η) :=

{
W2(ρ, η) if ρ, η ∈ Pac2 (Ω),

+∞ else.

The functional At is measurable, lower semi-continuous and has compact sublevels with
respect to the L1(Ω)-topology and g is a lower semi-continuous pseudo-distance, cf.
lemma 2.5.3.

Due to the ε-independent bounds(6.1.10), the sequence (ρεnt )n∈N is tight with respect
to At. To be more precise, we use

M2(ρεnt ) ≤ 2M2(ρ0) + 2W2
2(ρ0, ρ

εn
t ) ≤ 2M2(ρ0) + 2t

ˆ t

0
K(ρεnr ,w

εn
r ) dr

since (ρεnst , tw
εn
st )s∈[0,1] is a feasible competitor in the Benamou-Brennier formula for ρ0

and ρεnt . Hence, integrating this with respect to t yields the uniform integrablity and we
have the tightness of the sequence (ρεnt )n∈N. The weak integral equi-continuity condition
for (ρεnt )n∈N follows by the same calculations as in the proof of theorem 6.2.6. We
can conclude by theorem 2.5.4 that (on a subsequence) (ρεnt )n∈N converges to some ρ∗t
in M(0, T ;L1(Ω)). Clearly, we have also uniform L∞(0, T ;L1(Ω)) bounds. So we can
use Remark 2.1.1 to conclude the strong convergence result of (ρεnt )n∈N to some ρ∗t in
Lp(0, T ;L1(Ω)) for every p ≥ 1.

The re�ned a priori estimates (6.3.3) yield also by the Banach-Alaoglu theorem the
convergence of (

√
ρεnt )n∈N in the weak L2(0, T ;H2(Ω))-topology. An additional inter-

polation argument of this weak convergence result in L2(0, T ;H2(Ω)) and the strong
convergence in L2(0, T ;L2(Ω)) yields the desired strong convergence of (

√
ρεnt )n∈N in the

L2(0, T ;H1(Ω))-topology. An additional diagonal argument in T →∞ yields the desired
convergence result for all T > 0.

It remains to prove, that ρ∗t is a solution of the DLSS-equation (6.3.1). Therefore,
for a given test functions ϕt ∈ C∞c ([0,∞) × Ω) with ∇ϕt · n = 0 on ∂Ω we pass in the
Euler-Lagrange equations (6.3.2) to the limit as εn ↘ 0. First, de�ne T > 0 such that
ϕt = 0 for all t ≥ T and split up the di�erent parts of the Euler-Lagrange equation
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(6.3.2):

0 =

ˆ ∞
0

ˆ
Ω
〈∇ϕt,wεn

t 〉 dx dt

−
ˆ ∞

0
(1− e−t/εn)

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρεnt 〉+ 2〈Hessϕt∇

√
ρεnt ,∇

√
ρεnt 〉 dx dt

+ εn

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω
〈∂t∇ϕt,wεn

t 〉 dx dt

+ εn

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω

〈wεn
t ,Hessϕt w

εn
t 〉

ρεnt
dx dt

=:I1 − I2 + εn(I3 + I4).

As before, we simplify I1 by using the fact that each density-�ux pair (ρεt ,w
ε
t ) solves the

continuity equation. Then we obtain in the limit εn ↘ 0

lim
n→∞

I1 = −
ˆ ∞

0

ˆ
Ω
ρ∗t∂tϕt dx dt−

ˆ
Ω
ϕ0ρ

0 dx

thanks to the strong L1(0, T ;L1(Ω)) convergence of (ρεnt )n∈N to ρ∗t . The limit of I2 is
given by

lim
n→∞

I2 = lim
n→∞

ˆ ∞
0

(1− e−t/εn)

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρεnt 〉+ 2〈Hessϕt∇

√
ρεnt ,∇

√
ρεnt 〉 dx dt

=

ˆ ∞
0

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρ∗t 〉+ 2〈Hessϕt∇

√
ρ∗t ,∇

√
ρ∗t 〉 dx dt

due to the strong convergence of (
√
ρεnt )n∈N in the L2(0, T ;H1(Ω))-topology and the

pointwise convergence of t 7→ (1 − e−t/εn). The integrals I3 and I4 are estimated as in
the previous proof such that we have limn→∞ εn(I3 + I4) = 0. In conclusion, the limit
function ρ∗t solves

−
ˆ ∞

0

ˆ
Ω

1

2
〈∇(∆ϕt),∇ρ∗t 〉+ 2〈Hessϕt∇

√
ρ∗t ,∇

√
ρ∗t 〉 dx dt

=

ˆ ∞
0

ˆ
Ω
ρ∗t∂tϕt dx dt+

ˆ
Ω
ϕ0ρ

0 dx

(6.3.6)

which proves that ρ∗t is a solution of the DLSS equation (6.3.1) in the weak sense.
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