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Abstract

The main objective of this Ph.D. thesis is to investigate structure-preserving, tempo-
ral semi-discretizations and approximations for PDEs with gradient flow structure with
the particular application to evolution problems in the space of probability measures
equipped with the L.2-Wasserstein distance. In the spirit of De Giorgi’s work on Minimiz-
ing Movements [29], we investigate the variational formulation of two particular temporal
semi-discretizations and one temporal approximation, namely: time-dependent Minimiz-
ing Movement scheme (discretization), second order Backward Differentiation Formula
(discretization), and Weighted Energy-Dissipation principle (approximation). The two
canonical examples of L2-Wasserstein gradient flows where we apply these methods are
the second-order family of diffusion-aggregation equations given by the non-linear Fokker-
Planck equation and the fourth-order Derrida-Lebowitz-Speer-Spohn equation.

Zusammenfassung

Diese Doktorarbeit behandelt verschiedene strukturerhaltende und zeitliche Diskretisierun-
gen und Approximationen von Partiellen Differential Gleichungen mit Gradienten Fluf
Struktur und deren Anwendung auf Evolutions Probleme im Raum der Wahrschein-
lichkeitsmaRe versehen mit der I2-Wasserstein Distanz. Im Sinne von De Giorgis Arbeit
iber Minimizing Movements [29] untersuchen wir variationelle Formulierungen von zwei
zeitlichen Digkretisierungen und von einer zeitlichen Approximation, namentlich: das
zeit-abhéngigen impliziten Euler Verfahrens (Diskretisierung), die Riickwérts Differenzen
Formel zweiter Ordnung (Diskretisierung), das Prinzip der gewichteten Energie Dissipa-
tion (Approximation). Die beiden Hauptbeispiele fiir L2-Wasserstein Gradienten FliiRe,
an welchen wir die oben genannten Methoden anwenden, sind die Familie von Diffusions-
Aggregations Gleichungen gegeben durch die nichtlineare Fokker-Planck Gleichung und
die Derrida-Lebowitz-Speer-Spohn Gleichung von vierter Ordnung.
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(X. )

1 Introduction and Main Results

The main objective of this Ph.D. thesis is to investigate structure-preserving, temporal
semi-discretizations and approximations for PDEs with gradient flow structure like

with particular application to evolution problems in the space of probability measures
equipped with the L2-Wasserstein distance. The overall goal was to define novel numer-
ical schemes for approximating solutions of these evolution equations focusing on the
preservation of various aspects of the variational structure and the associated qualitative
properties of solutions on the approximation level, like: energy monotonicity, auxiliary
Lyapunov functionals, positivity, mass preservation, etc.

Gradient Flow Structure of PDEs. Besides the formulation of the gradient flow
equation as an ordinary differential equation in the Euclidean space RY with the metric
induced by the usual inner product of vectors, it is known that also various partial
differential equations possess a gradient flow structure with respect to a corresponding
infinite-dimensional space. In this setting we mention the well-known heat equation
particularly, given by

Oipr = Apy on Q C RY

with suitable initial and boundary conditions. With respect to the Hilbert space L?(€2)
the driving free energy functional £ of the heat equation is given by the Dirichlet-energy.
Other prominent examples in Hilbert spaces are the Allen-Cahn and the Cahn-Hillard
equation both driven by the Ginzburg-Landau functional where the first is a gradient flow
in L2(Q) and whereas the latter is posed in H™(Q), see [3, 15} 33]. More general systems
of reaction-diffusion equations in arbitrary Hilbert spaces have been also investigated,
see [49, [74].



1 Introduction and Main Results

L?-Wasserstein Gradient Flows. In the seminal paper by Jordan, Kinderlehrer and
Otto [54] the authors exploited the fact, that the heat equation posses an additional gra-
dient flow structure with respect to the manifold of probability measures Py (2) equipped
with the so-called L2-Wasserstein distance. The differential geometry of this dissipative
evolution equation and of the extension to porous medium type equations was physi-
cally justified by Otto in [78] [79] and rigorously analyzed by McCann in [73], which
paved the way for the by now popular and ubiquitous formulation of diffusion equations
in metrics related to Optimal Transport. Lastly, this theory was extended by Carrillo,
McCann, Villani [2I], Carrillo, Gualdani, Jiingel [20], Ambrosio, Gigili, Savaré [4], and
Villani [92, B3] to the general non-linear Fokker-Planck equation with confinement and
aggregation effects:

epe = A(p}") + div (p:VV) + div (0 V(W % py)) -

This equation is our main example for this thesis and has a wide variety of applications
in statistical mechanics [40], 83], Markov diffusion processes [42] 53], and semiconductor
theory [56l 67]. In the past decades, the theory of I.2-Wasserstein gradient flows gained a
lot of popularity since it turns out that numerous PDEs posses this differential structure
in L.2-Wasserstein like spaces. To name here only few examples: non-local Fokker-Planck
equations [19, [3T], O1]; Fokker-Planck equations on manifolds [38, [89]; fourth order fluid
and quantum models [45] [47] [68]; chemotaxis systems [9, [10, [96]; Poisson-Nernst-Planck
equations [58] [05]; multi-component fluid systems [60], [61], [63]; Cahn-Hilliard equations
[34] [64]; degenerate cross-diffusion systems [72] [97].

Gradient Flow Theory in Abstract Metric Spaces. In his seminal paper [29], De
Giorgi transferred the Fuclidean theory of gradient flows to the purely metric theory of
curve of steepest descent. The key idea here was to pass from the ordinary gradient flow
equation to a scalar equation whilst preserving the information on the direction.
One considers the time derivative of t — E(uy),

d . . 1 1.

7w = (VE(w), i) = = [IVE Q|| [l = =5 IVEun)|* = 5l

The first inequality is an equality if and only if VE(u;) and u; are anti-parallel and the
third inequality is an equality if and only if |VE(u;)| and ||4|| are equal. Hence, one

can equivalently rewrite the original gradient flow equation ([1.0.1) as

1.5 1 ) d

= — V€ = ——E&(uy). 1.0.2

il 5 IV =~ ) (102
For a more robust formulation, one integrates (1.0.2) in time and replaces the scalar
quantities |[VE(uy)|| and |[i|| with the metric surrogates |0&| (u) and |uj| which are

defined in the chapter below, to end up with
1/t 1 [t
2/3 ’u;f dr + 2/3 |0 1% (uy) drr = E(us) — & (uy) fora.e. 0 <s <t (1.0.3)

Then, one says a curve u; is a curve of steepest descent with respect to the free energy
functional £ if and only if u; satisfies the Energy Dissipation Equality (EDE) ((1.0.3)).



Alternatively, a purely metric concept of gradient flows is the Evolution Variational In-
equality (EVT). It is only sensible for almost Hilbertian metrics and requires the convexity
of the free energy functional £. It is particularly well adapted to deal with gradient flows
in the L2-Wasserstein space (P2(Q2), W3). The cornerstone of this ansatz is to consider
the derivative of the squared distance of u; to a fixed reference point v,

— |lue — v||2 = (g, up — v) = —(VE(ur),up — v) < E(v) — E(uy).

The second equality holds true due to the fact that u; is a solution to the gradient flow
equation and the inequality is due to the convexity of the free energy functional
E. Actually, it is possible to prove under the assumption of smoothness of the free energy
function &, that if the following differential comparison principle

d1

dt2
is satisfied for each v, then is actually equivalent to the original formulation of
the gradient flow equation ([1.0.1)). As with the EDE, there is an integrated version of
and that is sufficiently robust to be used for abstract metric gradient flows. For
a detailed discussion of the role of the EVI in the gradient flow theory, we refer to [4]
Chapter 4.0].

lue — v||* < EW) — E(uy) (1.0.4)

Analysis of Gradient Flows in Abstract Metric Spaces. The cornerstone of the
theoretical analysis of these gradient flows in general abstract metric spaces (X,d) is
the variational formulation of the implicit Euler scheme introduced by De Giorgi in his
seminal papers [29] 30] on Minimizing Movements. Later, in [54] Jordan, Kinderlehrer
and Otto used this scheme — which is nowadays called JKO-scheme in this context — to
construct solutions to the heat equation. Schematically, the main idea is to apply the
following implicit induction formula:

uj, € argmin id2(u7{:,u) + E(u) (1.0.5)
wex 2T

such that — at least in the Euclidean setting — the minimizer u satisfy the usual implicit
Euler method. There are various “soft” conditions that guarantee well-definedness of
this scheme, i.e., the inductive solvability of the minimization problems. This technique
was transferred by Ambrosio, Gigli, Savaré in the monograph [4] to mainly investigate
gradient flows in abstract metric spaces (X, d) with respect to A-convex free energy
functionals &, see the famous hypothesis [4, Assumption 4.0.4] for more details. Note
that A-convexity can be understood here as a sort of convexity along geodesics which
takes the curvature of the underlying space into account, see [73] for the proper notion of
convexity in the L2-Wasserstein case. One of the remarkable strengths of this method in
the abstract metric setting is its intrinsic stability properties: the unconditional energy
dissipation of the approximated solution in every time step; and the step size independent
bounds on the integrated kinetic energy. These bounds are usually sufficient to conclude
the convergence of the discrete solution to a continuous curve u; in the limit 7 — 0.
Some additional work is needed to prove that u; is indeed a curve of steepest descent in
the sense of the energy dissipation equation or the evolution variational inequality.



1 Introduction and Main Results

Numerical Aspects of L2-Wasserstein Gradient Flow Theory. Besides the theo-
retical use of the variational formulation of the implicit Euler scheme (1.0.5) to construct
a solution for the gradient flow equation, this particular discretization provides also a
structure-preserving numerical scheme. Different approaches to actually compute the
minimizers of the Minimizing Movement Scheme by means of certain spatial-temporal
full-discretization have been investigated: particle schemes [16, 23], [17) 94]; evolving dif-
feomorphisms [23, 22]; Lagrangian schemes [8, 32}, 41}, 55|, [69] [71]; entropic regularization
[80]; primal-dual methods [18].

Aim of the Thesis. In the spirit of De Giorgi’s work on Minimizing Movements [29],
we seek to exploit the variational structure of the gradient flow equation to construct
a sequence of approximate solutions by means of temporal semi-discretizations or ap-
proximations. Following this, the key tool to design novel schemes was to cast existing
numerical schemes for the gradient flow equation seen as ODE in an equivalent variational
formulation which are robust enough to deal with the possibly rough structure of the un-
derlying metric space and of the free energy functional. We emphasize that throughout
all of our results, a decisive role is played by functional inequalities for the approximated
solutions obtained by exactly this variational formulation. In the end, these functional
inequalities turn into the relevant a priori estimates and into the essential information
about the structural properties of the approximated solution to derive the limit behavior
as the approximation parameter tends to zero.

In the following, we give a brief overview of the different discretization and approxi-
mation schemes and on the related results, we developed and analyzed in this thesis.

A Time-Dependent Minimizing Movement Scheme. Chapter [3|is designated
to study the particular temporal discretization for non-autonomous evolution prob-
lems where the free energy functional & depends additional on time ¢ by means of
the variational formulation of the time-dependent implicit Euler method. In the
Euclidean setting the main idea to approximate solutions u; to gradient flow prob-
lems is to use the time-dependent implicit Euler scheme, given by the induction
formula

uy —uy
U e ),
where t] = Zle 7; for k > 1 for a given partition 7 := (71, 72,...) of step sizes

Tk € (0,7) and for a given an initial condition uJ that approximates ug.

In the abstract metric case when (X, d) is just a complete, separable metric space
we propose the time-dependent version of the Minimizing Movement scheme. The
variational formulation of the time-dependent implicit Euler method reads then
uy, € argminidZ(u',g_l, w) + Er (w).
weX 4Tk
In the Euclidean setting the minimizer uj satisfies the implicit Euler formula. We

derive existence and convergence results for the approximate solutions (u} )yen as
the discretization parameter 7 = sup,, 75 tends to zero.



B Time-Homogenization. In chapter 4] we investigate the high-frequency limit of
the family (u$’), of solutions to the non-autonomous evolution problems

U = =VEu(uf),  ug =uo

with respect to the convex free energy functionals &, = &€ + P, where z(u) =
f &(u)dt is the time-average and Py, = &, — & is the periodic forcing.

A comparison principle for uy and ug®, i.e., the solution of gradient flow equation
driven by the time-averaged free energy functional &, yields the convergence result.

C Variational Second Order Backward Differentiation Formula. Our inten-
tion in chapter [5| is to design a temporal semi-discretization, which converges at
least formally to second order, by means of the second order Backward Differentia-
tion Formula (BDF2). In the Euclidean setting, this temporal discretization of the
gradient flow equation reads then

uy —4uy_ ;| +uj_,
2T
for a given time step size 7 € (0, 7,) and well-prepared initial data (u,u]) ~ uo.

— —VE]),

We proposed a variational formulation of the BDF2 method to construct a discrete
approximation (uf)gen for metric gradient flows, which reads as follows:

1 1
W € argmin —d(uf, w) — —d2(uf.,w) + E(w).
wexX T 4T
In this case, we also prove the existence and convergence of the approximated solu-
tion (u] )ken. Notably, in the abstract metric space case, an additional assumption
is needed, namely a sort of convexity of the BDF2-penalized free energy functional.

D Weighted Energy-Dissipation Principle. In chapter [6] we follow a differ-
ent time-continuous approximation approach by means of the Weighted Energy-
Dissipation principle (WED). The main idea here is to perturb the gradient flow
equation by an elliptic regularization in time

—e0%uE + Opus = —VE(ul).
Even though one loses the gradient flow structure at first glance, the solutions ujf

satisfy another crucial variational principle. In particular, the solutions uf are the
minimizer of a global-in-time minimization of the WED-functional ®., given by

00 eft/e
e .
Uy € argmln/
ut 0

Here, the minimization is performed over a suitable class of curves u; emanating
from wy. We are able to adapt this approach to gradient flows in the L2-Wasserstein
space and to prove the existence and convergence of the approximated solution uf
as the approximation parameter € tends to zero.

(% IUHQ + 5(Ut)) dt.

In advance of the detailed elaboration of our work we begin with a short summary on
notation and motivation of the theory of gradient flows and related topics.






2 Notation and Preliminaries

2.1 Function Spaces

In this thesis, we always denote by © C RY an open, bounded, and connected domain
with Lipschitz-continuous boundary 99 with normal derivative n or € is equal to RY.

Space of Continuous Functions. Let us consider scalar functions ¢ :  — R and
vector fields € : Q@ — RY. If these functions depend additionally on time we write
¢r and &. TFor k € N U {oo} we define by C¥(2) the set of all k-times continuous
differentiable functions. The set of all functions which have in addition compact support
is denoted by C¥(Q2). Furthermore, we denote by Cy(f2) all continuous functions which
are bounded on . Analogously, we define C¥(Q, RY), C¥(©2, RY), and Cp (2, RY) for vector
fields. The spatial derivative of ¢ is denoted by D¢ and we write D?¢ for the second
order derivative. Partial derivatives with respect to one component x; or ¢t are denoted
by 0y, and 0O, respectively. For higher-order partial derivatives we use a multi-index
a € Nd of order |a| = Z‘ijzl a; = k. Then define 9%p of a k-times differentiable function
@ by (0z,)" -+ (On,) . The gradient Vi of ¢ and the divergence div(§) of £ are given
by Vi = (Dp)" and div(¢) = tr(DE). We write Ap = div(V) for the Laplacian of .

Lebesgue Integrable Functions. Denote by £9 the d-dimensional Lebesgue measure
on the domain 2. We write £(Q2) for all Lebesgue-measurable sets of {2 and we call a
function ¢ Lebesgue-measurable if and only if the preimage of every Lebesgue-measurable
set of R under ¢ is a Lebesgue-measurable set of Q. For p € [1,00) the LP-norm of a
Lebesgue-measurable function ¢ is defined by

el i= ([ le@P acti@) "

All Lebesgue-measurable functions with finite L”-norm form the set of p-integrable func-
tions LP(2). The set LY () of locally p-integrable functions is defined as all Lebesgue-
measurable functions ¢ with [|¢|y»g) < oo for all compact subsets K € Q. For p = oo
we introduce the set of essentially bounded functions L*°(§2) with the norm

[[ll1,0 () = ess sup ()]
e

For any p € [1,00) the space LP(2) is a Banach space with dual (LP(2))*
for the Hélder-conjugated exponent ¢ which is given through the formula

~ L1(Q)
1 1 _
l+l=1

d

Analogously, define the corresponding spaces of p-integrable vector fields LP(£2, R?).



2 Notation and Preliminaries

Functions of Bounded Variation. We recall the basic definitions and properties of
functions of bounded variation, following [48]. For a given open domain € a function
¢ € LY(Q) is called a function of bounded variation if and only if

V(g Q) = sup | /Q olr) dive(e) dL(x) | € € C(QRY, [, <1} < oo
The set of all functions of bounded variation is denoted by BV(Q2) with the norm:

gy = llellLi@) + Ve, Q).

For open sets 2 C RY the set BV(Q) is a Banach space and the norm is lower semi-
continuous with respect to the weak convergence in L!(€2).

Sobolev Spaces. We say a Lebesgue-measurable scalar function ¢ is k-times weakly
differentiable if for each multi-index « of order k there exists a function v € L () with

/¢aa¢( )dLd(z) a'/ z)dLY(z) Yy e ().
Q

In this case v is denoted by 9%p. Then for k € N and p € [1,00) the Sobolev space
WEP(Q) is defined as the set of all Lebesgue-measurable functions ¢ such that the
WEP(Q)-norm is finite, i.e.,

lellwkoy = (IelEoay + 3 1% ag ) " <

|| <K

For any k € N and any p € [1, p) the Sobolev space W*P(Q) is a Banach space. Further-
more, for p = 2 the spaces W*2(Q) are Hilbert spaces and are denoted by HF ().

Bochner Spaces. Let us consider time-dependent functions w; : [0,00) — X with
values in a complete, separable metric space (X, d). We define the set M(0,7’; (X, d)) as
all X-valued functions ¢; which are measurable with respect to B(X), the Borel-sigma
algebra on X generated by topology with respect to d. We say a sequence (uy)nen of
measurable X-valued functions converges in M(0,T;(X,d)) — in words, converges in
measure — to a limit function u; if and only if

lim LY{te(0,T)|du,uf) >e})=0  foralle>0.

If (X,d) is a vector space V, we define the Bochner spaces L(0,7;V) as the set of all
B(V)-measurable functions u; such that the L”(0,7; V)-norm is finite, i.e,

T p 1/p
ooy = ( Il de) " < oo

Remark 2.1.1. If (X, d) is a Banach space V with d induced by the intrinsic norm, we
write only M(0, T'; V) instead of M(0,T’; (X, d)). In this case the topology of L”(0,T; V)
and of M(0,T;V) coincide on p-uniformly integrable sets, see [85, Proposition 1.10].



2.2 1.2-Wasserstein Spaces (P2(Q), W)

2.2 L2-Wasserstein Spaces (P5(2), Wy)

In this section, we briefly review the basic definitions and facts concerning the analysis
in the metric space of probability measures. For more details on optimal transport and
the connection to the gradient flow theory, we refer to the monographs by Ambrosio et
al. [4], Santambrogio [87], and Villani [92, O3].

Space of Probability Measures P5(f2). Given a domain  C RY as before. By
Pa(Q2) we denote the set of probability measures on ) with finite second moment Mo,
Le. My(p) := [ |)|* du(z) < co. The subset of probability measures p which are
absolutely contmuous with respect to the Lebesgue measure £9, ie., u = pdLd, is
denoted by P2¢(€2). By abuse of notation, we identify an absolutely continuous measure
p with its Lebesgue density p and visa versa. Define pxu by the pushforward of the
measure y with respect to the measurable function ¢, i.e., xu(B) := p(p~1(B)) for all
measurable sets B. Given the product space €1 x 9, we define the projections 7 and
79 by (21, x2) = x; for all (z1,z2) € Q1 X Q. Hence, given a measure p € P2(; X Q)
the marginal distributions are given by (m1)xp € P2(Q1) and (m2)xp € Pa(Q2).

We equip P2(2) with the topology induced by the narrow-convergence of measures,
denoted by p, —* u, if and only if

tim [ vdp(a / bdu() e Q).
n— o0

L.e., narrow convergence is equal to the weak*-convergence of measures, which is induced
by the pairing of the continuous and bounded functions Cp(£2) with the corresponding
dual space of finitely additive signed Borel measures M ¢(€2).

L2-Wasserstein Space (P3(2), W3). The main object in the theory of Optimal Trans-
port is the space of probability measures Po(£2) equipped with the L2-Wasserstein dis-
tance Wy, defined by the Kantorovich problem:

W) = nt [ eyl dpla,y) (221)
pel () JQ2

where I'(u, v) :={p € (A x Q) : (m1)xp = p, (m2)4p = v} is the set of all probability
measures p whose marginals are p and v. If either p € PE(Q) or v € P3°(Q2), then
by [92] Theorem 2.12| the minimizer poy € I'(p, v) of the Kantorovich problem
exists and is called the optimal transport plan. Furthermore, if p € P3°(Q) the optimal
transport plan poy; is uniquely determined by poyr = (Lo X Tope) 41, where the optimal
transport map T,y is the unique solution of the Monge Problem, i.e.,

0= [ o= Tol@ dute) = it [ o= T@ dute).  222)

Tup=v
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Figure 2.1: Two one-dimensional measures p and v plotted on the x and y axes, and one
possible joint distribution that defines a transport plan between them [24].

Pt

Figure 2.2: Two two-dimensional measures p and v are connected by a density-velocity
pair (p¢, v¢) which solves the continuity equation in the sense of distributions.

Dynamic Properties of (Py(Q2), W5). Another equivalent characterization of the L2
Wasserstein distance Wy is given by Benamou and Brenier in [7]: Define the set €(u,v)
of density-velocity pairs connecting two measures p and v via the continuity equation by

E(p,v) = {(pr; vi) € Pa() x H(Q) | Oepr + div(peve) = 0, po = p, pr = v},
where #(€) is the set of all measurable vector fields on €. Note, the continuity equation
is meant to be satisfied in the weak sense with no-flux boundary condition, i.e., the

density-velocity pair (pt, ve) with v € LY0,1; 11(Q, dp;)) satisfies for each test function
¢ € C2((0,1) x Q):

/ / Dupr(w) + (Vou(), vo(w) dpy() dt = 0.

Then, the dynamic formulation of the L?-Wasserstein distance is given by

Wi(u,v) = inf //|Vt  dpe(z) dt. (2.2.3)

(pt,ve)eC(p,v

Note, if i, v € P3°(Q) then also the connecting measure p; is absolutely continuous with
respect to the Lebesgue measure for each ¢ € [0, 1], see [92, Theorem 8.1].

10



2.2 1.2-Wasserstein Spaces (P2(Q), W)

Equivalent Reformulation of the Dynamic Properties. The for this thesis more
convenient version of the Benamou-Brenier Formula (2.2.3)) is written in terms of density-
flux pairs (p¢, wy) instead of density-velocity pairs (p¢, v¢). Similarly, define the set

Clu,v) = {(pt,wt) € Pa(2) x #(Q) | Opr + div(wy) =0, po = p, p1 = v},

where #(9Q) is the set of R4-valued signed Borel measures. Here, the continuity equation
with no-flux boundary condition is understand to hold as follows: the density-flux pair
(pe, W) with ¢ — |w|(Q) € L1(0, 1) satisfies for each test function ¢, € C2°((0,1) x Q):

/Ol/gatw(x) dpt(m)dt—i—/ol/ng(x) dw,(z) dt = 0.

Using the representation v, dp; = dwy, the Benamou-Brenier formula (2.2.3) rewrites to
W2 (u,v) = inf / K(pt, we)d (2.2.4)
(pt,wi)eC(1,v)

where the kinetic energy K of a density-flux pair (p;, wy) is defined by

|22t if ¢ >0,
—/ K(1,v)dp(x) where K(t,2)<0 if (¢,2) = (0,0),
“ +o0 if eithert <Oort=0A2#0,
if the vectorial measure w is absolutely continuous with respect to p with density v,
i.e., vdp = dw otherwise we set K(p, w) = co. Note, with this convention the integral-
functional K is lower semi-continuous with respect to narrow convergence, jointly convex
and l-homogenous. Also, if p € P3°(Q), then the feasible class of fluxes w is given

by the absolutely continuous R9-valued signed Borel measures. In this case, one has
= [ K(p,w)dz. As before, if p, v € P3¢(Q2) then also p; € P3°(Q2) for each t.

I2-Absolutely Continuous Curves and the Continuity Equation. Lastly, we
define the set C(u) as all density-flux pairs (p;, wy) which solve the free end problem
Opr + div(wy) = 0, po = [ (2.2.5)

in a weak sense with no-flux boundary condition, as before. Then, the link between
L2-absolutely continuous curves p; € AC?(0, 00; (P2(Q), W) and the density-flux pairs
(P, W) € C(po) is given by the following characterization, cf. [4, Thm. 8.3.1]:

Theorem 2.2.1 (Absolutely Continuous Curves and the Continuity Equation) If py is
a L2-absolutely continuous curve with a locally integrable metric slope |p;| € L},.(0, 00),
then there exits a flur w; such that (pi, wy) € C(po) and

K(pt, we) < ’p”Q for a.e. t. (2.2.6)

Conversely, if a narrowly-continuous curve py satisfies the continuity equation (12.2.5))
for some flur function wy with t — /K(ps, w¢) € Li,.(0,00), then p; is L2-absolutely

continuous and

‘pﬂz < K(pt, we) for a.e. t. (2.2.7)

11
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2.3 Gradient Flow Theory in Abstract Metric Spaces

In this section, we give a brief overview on the theory of gradient flows in abstract metric
spaces (X,d), which is the foundation of the novel discretization and approximation
techniques developed in this thesis. For a comprehensive introduction to the theory of
gradient flows in metric spaces we refer to the monograph of Ambrosio et al. [4].

Topology. Here and below, (X, d) is separable, complete metric space with a weaker
Hausdorff topology o on X, that is compatible with d, i.e.,

d .
Up = U = U, > u, (tn,vp) 2 (u,v) = d(u,v) < liminf d(un, vy,).
n—oo
From now on we use the convention to write

d o
uy, — u for the convergence w.r.t. d, Uy, — u for the convergence w.r.t. o.

Note, this additional weaker topology on X allows us more flexibility to derive compact-
ness results.

Analysis in Metric Spaces. Given the free energy functional £ : X — R U {oc}, we
say & is proper if the domain D(E) := {u | £(u) < oo} where the free energy functional is
finite is not empty. The metric surrogates for the norm of the gradient of the free energy
functional ||[VE| and of the time derivative ||d|| in are defined as follows, see [4]
Definition 1.1.1&1.2.4] for further details.

Definition 2.3.1 (Local Slope). Given a functional £ : X — RU {oo} defined on a
metric space (X, d). Then the local slope [0€] : X — R U {oo} of £ at u € X is defined

- |0€|(u) := lim sup <M>+

v—u d(U, 'U)

Definition 2.3.2 (AC Curves). A curve u; : [0,00) — X is said to be L?-absolutely
continuous, written as uy € AC? (0, 00; (X, d)), if there exists a function m € L2 (0, co)
such that

t
d(ug,ug) < / m(r)dr forall 0<s<t.

It can be shown [4] Theorem 1.1.2] that among all possible choices for m, there is a
minimal one, called the metric derivative |u}| € L (0, 00), given by

for a.e. t.

12



2.3 Gradient Flow Theory in Abstract Metric Spaces

Metric Formulation of the EDE and the EVI. The main definition is that of a
gradient flow in the energy landscape of a functional & : [0,00) x X — RU {oo} with
respect to the metric d. Here we adopt the notions of the energy dissipation equality
(EDE) from and of the evolution variational inequality (EVI) from to

non-autonomous versions.

Definition 2.3.3. Given a proper free energy functional & : [0,00) x X — RU {co}
and some initial datum ug € D(&).

We say that u; € AC? (0, 00; (X, d)) is a curve of steepest descent with respect to &
emanating from ug € D(&) if and only if one of the following holds.

a) Energy Dissipation Equality. The following energy balance holds for all ' > 0:
1 (T, 1 (T ) T
ET(UT) T 5 ‘Ut‘ dt aF 5 ]85t| (Ut) dt = go(’u,()) aF 8t5t(ut) dt. (231)
0 0 0

b) Evolution Variational Inequality. For arbitrary 0 < s < t and for every
reference point w € D(E,) at each r € [0, 00) the following holds:

%dz(w,ut)—%dz(w,us) < / [5r(w)—g,,(ur)—%d2(umw)} dr.  (2.3.2)

In this case we say that the free energy functional & generates a time-dependent
A-contractive gradient flow on (X, d).

Remark 2.3.4. The EVI is a more restrictive characterization of gradient flows than
the EDE. Most notably, the validity of the EVI implies that the gradient flow is -
contractive on (X, d), so in particular, solutions are uniquely determined by their initial
datum. Moreover, if the metric space (X, d) is “almost Euclidean” — for instance, X
is a Hilbert space, or X is the space P2(Q2) of probability measures endowed with the
Wasserstein metric Wo — then if £ generates a A-contractive gradient flow then £ is
uniformly semi-convex see [28]. Thus, is not available for gradient flows of non-
semi-convex functionals &;.

13



2 Notation and Preliminaries

2.4 Gradient Flow Theory in the L?-Wasserstein Space

As our main application of the temporal discretization and approximations in the general
framework of abstract metric spaces, we consider two particular classes of L2-Wasserstein
gradient flows, namely: the non-autonomous and non-linear drift-diffusion equation, also
called Fokker-Planck (FP) equation,

8tpt = Ap:ﬂ + le(ptV‘/t) + diV(pt(VWt * pt)), (241)

with no-flux boundary condition in a domain €2, as before; and the Derrida-Lebowitz-
Speer-Spohn (DLSS) equation

Bipy = — div <ptv(2A\/?)), (2.4.2)

with no-flux boundary condition in a domain €2, which is additionally convex. In both
cases, the sought-for solution p; : [0,00)xQ — [0, co] should be non-negative and preserve

mass.

Gradient Flow Structure. In the seminal work of Jordan et al. [54], it has been
used that possesses a gradient flow structure in the L?-Wasserstein space, see
the monographs [4], 87, [02] for a comprehensive introduction to this theory. To be more
precise, define the free energy functional & : [0, 00) X P2(2) = R U {oo} via

1 Vip+ 1 dz ifm=1
E1(11) = {fgp og(p) + Vip+ (Wi p)pda  if m =1, (2.4.3)

Joms o™+ Vip+ (Wi s p)pda ifm > 1,

if the measure u = pdLd € P3¢(Q) and otherwise we set &(u) := co. Then, (2.4.1)) is
equivalent to the coupling of the continuity equation with Darcy’s law where the pressure
is given by the variational derivative of free energy functional &:

6&(pt)
ép

8tpt + diV(ptVt) = 0, Vi = -D (244)

To shorten notion, we introduce the following abbreviation for the different parts of the
free energy functional & from (2.4.3), namely: the Boltzman entropy H, the internal
energy Uy, the confinement energy V;, and the interaction energy W;, all defined by:

Hp) = Uy () = / p(z) log(p(x)) dz,  Un(p) = —— /ﬂ (plz))™ da,

Q m—1
1
Vo) = [ Vitw)dp(a), Wilp)i=3 [ [ Wite = 9)dota) doo)
given a confinement potential V; : [0, 00) x 2 — R and a symmetric interaction potential

W; : [0,00) x RY — R and if everything is well-defined, otherwise set the value to +oc.

14



2.4 Gradient Flow Theory in the L?-Wasserstein Space

Similarly, fourth order equations like the Derrida-Lebowitz-Speer-Spohn equation ([2.4.2))
or the Hele-Shaw flow (or general interpolations of these two equations) possess this
variational structure, see [46l 47, 68 [78]. The corresponding free energy functional & for
the DLSS equation is given by the Fisher information:

&)= Z(0) = [ IVV7I* da (2.4.5)
provided that p = pdLd € P3¢(Q) and /p € H' (), otherwise we set £(p) = oo.

Variations in the L?-Wasserstein Space. A key tool introduced by Jordan et al.
[54] and Otto [78] was that the natural notion of variation in the L2-Wasserstein space
is to perturb measures p, € P2(Q) along solutions of the transport equation (2.4.6).
Especially having the dynamic formulation (2.2.3) of the L2-Wasserstein distance in mind,
this perturbation is clearly evident.

Definition 2.4.1 (Variation Along the Transport Equation). Given an initial datum
ps € P3(Q) and a vector field & € CX(Q,RY) with € -n = 0 on 9. We define the
perturbation p°® along the vector field ¢ in the auxiliary time s as the solution to the
transport equation

0sp° + div(p® &) =0, % = ps. (2.4.6)
The solution p* is explicitly given by the push-forward of p, under the flow map X° i.e.,
p® = (X%)xps«, such that the flow map X* satisfies the initial value problem:

d
L3 (@) =8(X(2)), X(z) = .
s
Note that the flow map X° exists and for each s the flow map X° is a diffeomorphism
on Q, cf. [14, 47, [77] . Additionally, we have an explicit representation of the perturbed

density p® and we can calculate the derivative of det(DX?), i.e.,
d
det(DX*)p® 0o X* = p,, and P [det(DX*(x))],_o = tr(D€ 0 Xo) = div(§). (2.4.7)
s

To calculate the first variation of the different energies is a by now standard calculation,
see [4, 92, O3] for more details. The first result concerns the differentiability of the
L2 Wasserstein distance if all measures are absolutely continuous.

Lemma 2.4.2. Let n, p. € P§S(Q) and consider the perturbation p® with respect to the
transport equation ([2.4.6) for some given vector field & € C°(Q,RY) with £ -m = 0 on
0Q. Then, the map s — W3(n, p°) is differentiable at s = 0 with derivative

& W3] g =2 [ (@) = ) dpa.n),

where p € T'(ps«,n) is an optimal transport plan from p. to n.
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The first variation of the functionals in the definition of the free energy functional &
corresponding to the Fokker-Planck equation (2.4.1)) is given as follows.

Lemma 2.4.3. Let p. € P2(Q) and consider the perturbation p® with respect to the
transport equation for some given vector field & € C*(Q,RY) with € -m =0 on
0R). Then, the first variations of the confinement energy V; and the interaction energy
Wk are given by:

d

3 Vielio = [ (€ TV dp o)

Wil / / ), VWi(z — ) dp. () dpu(y).

If additionally p € P§¢(2) N L™(Q), then the first derivatives at s = 0 of the Boltzman
entropy H and the internal energy Uy, energy are given by:
d .
di [%(Ps)]s:o = = le(g) P dl‘,
S Q
d m
5 Unplomg = = | div(e) iz,

For example, to actually compute the first variation of the heat energy H we can simplify
the difference quotient with the explicit representation of the perturbed density p°® and
the change of variables x = X*(y) as follows

1 S 1 S S S S S

~ (") = Hip-) = —( | 70X log(p" 0 X det(DX?) dy — | p. log(p.) de)

S

1
= —/ log(det(DX?)) p, dz.
sJa

The pointwise limit of the integrand is given by (2.4.7) and we can conclude by a domi-
nated convergence argument

L M) o= - [ div(©)p.da.

Q
The differentiability of the Fisher information along solutions to the transport equation
has been proven by Gianazza et al. [47, Theorem 4.2] for Q2 open, bounded, and convex
and by Matthes et al. [68, Lemma 2.5] for Q = R,

Lemma 2.4.4. Let p. € D(Z) and consider the perturbation p°® with respect to the
transport equation ([2.4.6) for some given vector field &€ € C°(Q,RY) with € -m = 0 on
0N). Then, the first derivative at s = 0 of the Fisher information is given by

di ()] = _/ %<V(div§),vp*> + 2(DEV\/ps, Vo) dz
S Q
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2.4 Gradient Flow Theory in the L?-Wasserstein Space

Variations Along the Heat Flow. To derive more information on the L2 Wasserstein
subdifferential of the free energy functionals £ corresponding to the FP equation (2 or
the DLSS equation (2 we evaluate its derivative along the flow generated by the heat
equation starting from a given initial configuration p, with £(p«) < 400, see Gianazza et
al. [47]. These results have inspired Matthes et al. in [68] to develop the flow interchange
technique which allows deducing better a priori bounds for the JKO minimizers. This
variation plays a major role in the Weighted Energy-Dissipation principle chapter [6] of
this thesis.

Definition 2.4.5 (Variations Along the Heat Flow). Given an open, bounded, and
convex domain © with Lipschitz-continuous boundary 99 or let Q = RY. Define p® as
perturbation of p, € P3°(Q2) as the solution to the heat equation

dsp® = nA(p®), =5k (2.4.8)
with no-flux boundary condition and for some given diffusivity parameter n > 0.

By the parabolic regularity theory, it is clear, that there exists a smooth and non-negative
solution p®. Further, one has an explicit representation of the solutions p with respect
to some Greens function & : [0,00) x Q x Q — [0,00], i.e., p°(x) = [, &5 (x,y)p«(y) dy.

Remark 2.4.6. It is also well known, that the heat equation is a 0-contractive gradient
flow with respect to the Boltzmann entropy # in the L2-Wasserstein space, since by a
formal calculation p® solves the continuity equation with velocity field v* = nV log(p®).
Hence, the map s — W3(v, p*) is absolutely continuous and p® solves the evolution
variational inequality

1 1 S ! T
S WHw )~ W) <1 [ M) = Ml

One can even quantify the derivative of s — W3(n, p°) since by the regularizing effects
of the heat equation the velocity nV log(p®) is sufficiently regular to apply the formulas
given in |87, Corollary5.25|, [4, Corollary 10.2.7|, or [92, Theorem 8.13]. Then, one has
for all almost every s > 0

LW ) =1 [ (o= Toula), Voglp") 4o’ @) (2.4.9)

where Tj , is the optimal transport map from p* to v.

The differentiability of the L>-Wasserstein distance at regular measures ps, v € P3¢(Q)
with finite Fisher information along the heat flow is a consequence of (2.4.9)).

Lemma 2.4.7. Let p,,v € P$(Q) with p. € D(Z) and let p° be the associated solution
to the heat flow (2.4.8)). Then

hmsupf ‘WQ v,p’) — W%(u,p*)‘ <

s—0

N3

W2(777 p*) I(p*).
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Proof. By the previous remark the map s — W3(n, p®) is absolutely continuous
and the derivative of this map at s > 0 is given by (2.4.9). Therefore, we obtain for the
difference quotient

L (W30, p%) ~ W30 p)] = / S / (& — T5,,(2), Vlog(p")) dp®(z) ds

where T7,, is the optimal transport map from p® to v. Applying the Cauchy-Schwarz
mequahty to the weighted integral over €2 with weight p°® yields

1
- ‘W2 Va ps) - Wg(yv p*)’

<o [ ([ e =Tl a@) ([ 19108017 (@) .

By the definition of T?

inner integral is equals to 5 L/Z(p*). Note, the Fisher information is decreasing along the
heat flow p°, i.e., Z(p®) < Z(p«) < co. In conclusion, we obtain

hmsupf ‘WQ (v, p°) — W%(y,p*)‘ <hmsup/ Wy (v, p°) V/Z(ps)ds

s—0 s—0

opt> the first inner integral is equals to Wa(v, p) whereas the second

n
=5 Wa(v, p) VI(ps)
where we used in the last equality the continuity of s — W3(v, p®). O

The derivative of the free energy functional £ with respect to the Fokker-Planck equation
is given as follows.

Lemma 2.4.8. Let p, € P§¢(Q) and let p® be the perturbation of p. according to the

heat flow ([2.4.8). If the right derivative limsup, o1 [Un(p®) — U (ps)] is finite, then
m/2 € HY(Q) and

1 4 m
lim sup — [Up, (p%) — Um(ps)] = _nZ/Q HV<P* /Q)Hde'

s—0 S
The derivatives at s = 0 of the V and the interaction energy W are given by
d S d S
S Vo =1 [AV@ @), 5 Vg =1 | [ AW (=) dpa(w) dp.(o).
ds Q ds QJO

Likewise, one can compute the first variation of the Fisher information along the heat
flow, see Theorem 5.1 [47] for © open, bounded, and convex and Lemma 4.4 [68] for
Q=R

Lemma 2.4.9. Let p. € D(Z) and let p® be the associated solution to the heat flow
(2.4.8). If the right derivative limsup,_, % [Z(p*) — Z(ps)] is finite, then \/px € H*(Q)

and

s—=0 S

1
timsup  (£(s") = Z(p)] < ~C | [D2/5]” da

where C' > 0 4s some universal constant depending only on d and Q.
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2.5 Auxiliary Theorems

2.5 Auxiliary Theorems

Extension of the Aubin-Lions Theorem. We state the main tool to derive conver-
gence of discretizations or approximations of gradient flows. This auxiliary theorem is an
extension of the Aubin-Lions compactness Theorem to metric spaces, cf. [85, Theorem 2].
So given a complete, separable metric space (X, d) we define suitable surrogates for tigh-
ness and integral equi-continuity which ensures that a sequence (u}'),en of measurable
X-valued functions converges in M(0,T; (X, d)).

Definition 2.5.1 (Normal Coercive Integrand&Pseudo-distance). Given an auxiliary
functional A; : (0,7) x X — RU {oco} and a positive function g : X x X — R U {oo}.
Then, A; is called normal coercive integrand if:

a) A is £(0,T) ® B(X)-measurable;
b) the map u +— Ai(u) is lower semi-d-continuous with for each ¢ € [0,77;

c) the map u — A;(u) has compact sublevels in X with respect to the topology
induced by the distance d for each t € [0, T].

We call g a pseudo-distance on X with respect to the auxiliary functional A; if:
a) g(u,v) =0 for u,v € D(A;) implies u = v;

b) the map (u,v) — g(u,v) is lower semi-d-continuous.

The two main examples of normal coercive integrands and pseudo-distances which will
be used in this thesis are as follows:

Lemma 2.5.2. Let Q C RY be an open, bounded and connected domain with Lipschitz-
continuous boundary 02 and consider X = L™ () with the strong topology. Then, the
Jollowing auziliary functional A : L™(Q) — [0,00] and positive function g : L™ () x
L™(Q) — [0, 00] defined via

Alg) = {WHBV@ if ™ € BV() and € P§(Q),

400 else,

W2(¢7 w) Zf 2 d) € Péw(Q)>

400 else,

g(p, ) = {

are a normal coercive integrand and a pseudo-distance in the sense of definition [2.5.1)

Proof. The auxiliary functional A is clearly B(L™(2))-measurable. The lower semi-
continuity can be derived as follows. Given a sequence (p,)neny C L™(€2) converging in
the strong L™ (Q)-topology to a limit function ¢, € L™(£). Since the BV(2)-norm is
lower semi-continuous with respect to strong L (Q)-convergence the map ¢ o™ lBv (@)
is lower semi-continuous in the strong L™ (€)-topology. Next, we derive the compactness
of the sublevels of A by Rellich’s compactness theorem. I.e., for any sequence (¢, )nen C
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L™(Q2) with sup, [|¢}'[[gy(q) < oo we can extract a (non-relabeled) subsequence such
that (¢n)nen converges in the strong L (2)-topology to a limit function ¢, € L™ ().
Lastly, we prove that g is indeed a pseudo-distance on L™(Q2). Given two functions
w, 9 € L™(Q) NP3E(N), then it follows from 0 = g(p,v) = Wa(p, ) that ¢ = 9 in
the sense of measures and clearly also ¢ = 1 almost every where since p, 1) € P5(Q).
Hence ¢ = 9 in L™(Q2). The joint lower semi-continuity of g follows also from the fact,
that the L™ (€Q)-topology is finer than the topology induced by the weak*-convergence
of measures if Q is bounded, i.e., if ¢, = @, in L™(Q) then also ¢, —=* ¢,. Since the
L2-Wasserstein distance is lower semi-continuous with respect to the weak*-convergence
of measures, we obtain the desired result. ]

Lemma 2.5.3. Let Q C RY be an open, bounded and connected domain with Lipschitz-
continuous boundary 0Q or let Q@ = R and consider X = L1(Q). Then, the following
auziliary functional A : LY(Q) — [0,00] and a positive function g : L1(Q) x LY(Q) —
[0, 00] defined via

400 else,

Aly) = {H\/@IIHI(Q) + My(p) if /7 € H(Q) and p € PE(D),

WZ((pa ¢) Zf ®, 1/} € PQ(ZC(Q)a

400 else,

g(p, ) == {

are a normal coercive integrand and a pseudo-distance in the sense of definition [2.5.1]

Proof. Also in this case, A is B(L!(2))-measurable. To prove the lower semi-continuity
of A consider a sequence (¢,)nen C L1(Q) converging in the strong L!(Q)-topology to
a limit function ¢, € LY(Q). Since the map ¢ l[ll1(q) is lower semi-continuous
with respect to the strong L2(Q)—convergence and since the mapping ¢ — /¢ is Ll(Q)—
L2(Q)-continuous, we obtain the lower semi-continuity with respect to the strong L(Q)-
topology of the map ¢ — ||\/@||y1(q)- The lower semi-continuity of the map ¢ — Ma(¢p)

with respect to the strong L1(Q)-topology follows by the fact that convergence in the
strong L'(Q) convergence implies weak*-convergence in the sense of measures. Since
M is lower semi-continuous with respect to the weak*-convergence, My is also lower
semi-continuous with respect to the L'(Q)-topology. Hence, the auxiliary functional A
is lower semi-continuous with respect to the strong L!(€)-topology. The compactness
of the sublevels of A is split into two parts. Firstly, consider an open, bounded and
connected subset Q C RY. Fix some C and consider a sequence (¢ )neny C LY(Q) with
sup,, A(p,) < 0o. Define the auxiliary sequence (un)nen C L2() by up, := /@n. With
this definition we clearly have sup,, ||un (1) < oo and hence we can conclude with
Rellich’s compactness theorem that (u,)pen converges strongly in the L2(Q)-topology
to a limit u, € L%(Q). Clearly, we also have ¢, — (u.)? strongly in L'(Q). The case
Q = R9 is already considered in [68, Lemma 2.2]. By the same arguments as before, we
can extract for every sequence (¢, )nen C LY(Q) a (non-relabeled) subsequence such that
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2.5 Auxiliary Theorems

there is a limit function ¢, € L'(RY) with
On =" Y« and ©n — s strongly in L*(K) for each compact subset K € R,

Since [l¢nll1ray = 1 = [[¢sll1(gay one can conclude the strong convergence in the
LY(RY)-topology.

That g is a pseudo-distance on L*(Q) can be derived as follows. Clearly 0 = g(y, ) =
Wa(p, 1) implies ¢ = 9 in the sense of measures and almost everywhere. By the same
argument as in the previous case, the pseudo-distance ¢ is lower semi-continuous with
respect to the L(Q)-convergence. O

Having defined normal coercive integrands A and pseudo-distances g we can state the
extension of Aubin-Lions compactness Theorem to metric spaces, cf. [85] Theorem 2].

Theorem 2.5.4 (Extension of the Aubin-Lions Theorem). Let (X, d) be a complete,
separable metric space, let Ay : (0,T) x X — RU {00} be a normal coercive integrand,
and let g : X x X — R U {oo} be a pseudo-distance on X. Let (uy), . be a sequence of
measurable functions uy : (0,T) — X such that

T T—h
sup/ Ay(ul) dt < oo, lim sup/ g (ufpp,up) dt = 0. (2.5.1)
neNJo h\O neN

Then, (uf), ey possesses a subsequence converging in M (0,T; (X, d)).

Remark 2.5.5. Note, one can replace the usual weak integral equi-continuity condition
in (2.5.1) given in the original version of the theorem by the relaxed averaged weak
integral equi-continuity

T—s
hin inf lim sup— / / g(uy g, ui')dtds = 0. (2.5.2)

n—00

This condition is sufficient in the proof of Theorem

Monotonicity of the Kinetic Energy. It is worthwhile to point out that the kinetic
energy K shares also a monotonicity property with respect to non-negative integral ker-
nels &. Define the integral transform 7g[p] with respect to the measurable integral kernel
& for a scalar measure p: 2 — R by

Tolol(x) = /Q &(x.y) dp(y).

For a RY-valued measure w € #/(Q) we define the vector integral transform %[W] com-
ponentwise, i.e., Tg[w] := (Ta[W;]);-
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2 Notation and Preliminaries

Lemma 2.5.6. Let p € P§°(Q) and let w € #(Q) be a R*-valued signed Borel-measure.
Then,

K(Tslpl, To[w]) < K(p, w) (2.5.3)

Jor any non-negative measurable integral kernel & : QxQ — [0, oo] with [, &(x,y) dz =1
for each y € Q2.

The proof of this lemma is almost identical to the proof in of Lemma 8.1.10 in [4] where
one replaces 0 = p(x — -)u by 0 = &(x,-)p. For the sake of completeness, we shall give
the proof in the following.

Proof. We use Jensen inequality in the following form: if ® : R™*! — [0, o0] is convex,
lower semi-continuous and positively 1-homogenous, then

o [ v(@)a0) < [ o) o

for any Borel map ¢ : RY — R™*! and any positive and finite measure § in RY (by
rescaling 0 to a probability measure and looking at the image measure 140 the formula
reduces to the standard Jensen inequality).

Without loss of generality, we can assume w is absolutely continuous. Fix x €
and apply the inequality above with ¥(p,w) := (1,w/p), df = &(z,-)dp and P(p, w) =
K(ﬁ, w) from the definition of the kinetic energy K. Expanding a fraction in the definition
of Te[w] with p(y) allows us to apply the Jensen inequality to obtain

o 2
W = K(/Qlﬁ(w,y) dp(y)y/gv:((s))-@(w,y) dp(y))

</K( ((y))) &(z,y) dp(y)

/”W DI (2, y) dot)

An integration with respect to x leads to

K (Tslo /H pz da <// Iw )i H &(z,y) dp(y) dz = K(p, w)

Where we canceled in the last step p(y) and used Fubini’s theorem with the fact that
fQ x,y)dx = 1 for each y € Q. Hence, this is the desired monotonicity property of the
kinetic energy. O
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3 Time-Dependent Minimizing Movement
Scheme

This part of the thesis is based on the first part of the joint work with Jonathan Zinsl
[82]. The aim of this chapter is to study a time-dependent formulation of the Minimizing
Movement scheme for non-autonomous evolution problems where the sought-for solution
ug is a curve of steepest descent with respect to the time-dependent free energy functional
& in the complete, separable metric space (X, d). As a particular example, we apply
this theory also to the non-autonomous Fokker-Planck equation with non-flux boundary
condition in a domain Q C RY seen as L2-Wasserstein gradient flow.

Main Idea in Short. In the simplest setting, when X = RY, d is the Euclidean
metric, and & € C*°(]0, 00) x R?), the main idea to approximate solutions u} to evolution
problems with gradient flow structure as

’llt = —Vgt (ut)

is to use the time-dependent version of the implicit Fuler scheme. This method is given
as follows. Given a partition 7 := (71,72, ...) of step sizes 73, € (0, 7) and given an initial
condition uf that approximates ug, define inductively a discrete solution (u})ren by the
implicit formula

uj —uj,
£ FL = Ve (u]), (3.0.1)

Tk

where t] = Zle 7; for kK > 1. Under these strong hypothesis on the free energy func-
tional &, the time-dependent implicit Euler method is well-defined, i.e., the initial
datum u{ determines an entire sequence (uf)ren. It is further well-know that this is a
first order approximation of a true solution uy, i.e., one has uj = u;fz +O(7) as 7 — 0.

In the abstract case when (X, d) is just a complete, separable metric space we cast
in a variational way, i.e., we propose the time-dependent version of the so-called
Minimizing Movement scheme, cf. [29] 30, b4]. The variational formulation of the time-
dependent implicit Euler formula reads then

1
uj, € argmin2—d2(uz_1,w) + &z (w). (3.0.2)
weX 4Tk

In the Euclidean setting the minimizer uj satisfies the implicit Euler formula (3.0.1)).
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3 Time-Dependent Minimizing Movement Scheme

Contribution&Method. Most of our results follow from a careful generalization of
the autonomous theory on metric gradient flows by Ambrosio, Gigli and Savaré [4],
also in view of the theory by Rossi, Mielke, and Savaré [84] for the non-autonomous case
under stricter assumptions. Similar results for non-autonomous gradient flows in abstract
metric spaces have been obtained — independently at the same time — by Ferreira and
Guevara [39]. Therein the main tool to prove the existence and convergence of the scheme
is the assumption of convexity of the free energy functional &. In the end, their
approach yields that the approximation converges to a solution uy in the sense of the EVI
(2.3.2). In contrast, we follow a different approach where we exploit the compactness
of the free energy functional &. However, with this slightly weaker assumption, we are
only, but canonically, able to prove the convergence of the scheme to a solution uf in the
sense of the EDE.

Additionally, we seek to construct a solution p; for the particular example of the T2
Wasserstein gradient flow, given by the Fokker-Planck equation. However, we investigate
this problem under weak assumption on V; and Wy, such that & does not posses con-
vexity properties along geodesics in the space (P2(£2), Wy), cf. [73]. Hence, the results
on contractive gradient flows by Ambrosio et al. [4] (in the autonomous case) and Fer-
reira and Guevara [39] (in the non-autonomous case) are not immediately applicable.
Nevertheless, the variational formulation of the time-dependent implicit Euler method is
robust enough to prove also in this particular case the existence and convergence of the
approximation p; to a limit curve p;. We want to emphasize, that in this framework we
are able to prove additional regularity properties of the discrete solution which imply a
stronger notion of convergence. This strong convergence results in combination with the
discrete Euler-Lagrange equations yields that the limit curve pf is indeed a weak solution
of the non-autonomous and non-linear Fokker-Planck equation (3.2.1)).

Main Results. Our main result concerning the limit behavior as 7 — 0 of the piecewise
constant interpolation uj of the discrete solution uj reads as follows:

Theorem 3.0.1 (Curves of Steepest Descent for Abstract Metric Gradient Flows).
Assume (X, d) is a complete, separable metric space, & satisfies (E0)—(E5) specified in
Assumptions |3.1.1643.1.9695.1.5, and given a partition T = (11, 7T2,...) which satisfies
(11) from Assumption[3.1.6, Then,

a) Exzistence of Discrete Solutions. For each approzimation u] of the initial
datum ug € D(Ey) which satisfies (12) from Assumption[3.1.6there ezists a discrete

solution (u] )ren of (3.1.2).

b) Step Size Independent Estimates. For fized time horizon T > 0 there is a
constant C, independent of T, such that the corresponding discrete solution (u})xen
satisfies for all N with t3, < T':
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Furthermore, given a sequence of partitions (7, )nen with supy, 7, — 0 and a sequence
of approximations (u{")nen of the initial datum wug which satisfy (I1)&(I2). Then,

¢) Convergence in the o-topology. There exists uj € AC?(0,00;(X,d)) such
that for a (non-relabelled) subsequence of (73, )neN

a5 ouf Vtel0,00).

d) Solution of the Non-autonomous Gradient Flow. The limit curve u} from
c) is a solution to the time dependent gradient flow (3.1.1) in the sense of the
energy dissipation equality, see definition [2.3.3]

Our main results concerning the well-posedness and the limit behavior as 7\ 0 of the
interpolated solution p] is stated in the following theorem.

Theorem 3.0.2 (Existence of Solutions for the Non-linear Fokker-Planck Equation).
Let Q C RY be either an open, bounded, and connected domain with Lipschitz continuous
boundary OQ or let Q@ = RY. Further, assume m > 1 and that V; and W; satisfy (F1)-
(F3) defined in Assumption[3.2.1) and let a partition T be given that satisfy (I1) specified
in Assumption[3.1.6. Then, we have additionally to the results of theorem [3.0.1):

a) Step Size Independent L2(0,T; BV (Q))-estimate. For cach T > 0 there exists
a non-negative constant C, independent of T such that for each T € (0,74):

H(ﬁ?)m”LQ(o,T;BV(Q)) =C

Furthermore, given a sequence of partitions (T, )nen with supy, 7, — 0 and an approxi-

mation (p{" )nen of the initial datum py which satisfies (11)€(12) defined in Assumption
3. 1.6

b) Strong Convergence in LP(0,T;L"™(2)). There exists a further (non-relabelled)
subsequence (Ty)nen such that for all T > 0, any p € [1,00),

1) if Q bounded:
Pt — pp strongly in LP(0,T;L™(Q)) as n — oo.
2) if @ =RY: for any bounded set © C R%:

D" — pi strongly in LP(0,T;L™(0)) as n — oc.

¢) Solution of the Non-linear Fokker-Planck Equation. The limil curve pf
from b) satisfies the non-linear Fokker-Planck equation with no-flur boundary con-

dition (3.2.1)) in the weak sense of (3.2.11)).
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3 Time-Dependent Minimizing Movement Scheme

3.1 Application to Gradient Flows in Abstract Metric Spaces

This section is devoted to study the temporal discretization of non-autonomous evolution
problems of the form

’L.Lt = —foft(ut), (311)

where the sought-for solution u; : [0,00) — X is a curve of steepest descent with respect
to the time-dependent free energy functional & emanating from ug € D(&) in a complete,
separable metric space (X, d). More precisely, we seek to construct with the variational
formulation of the time-dependent Implicit Euler method, given by

Uy — Uy
k E-1 -
T = —Vgt; (uk),
an approximation u7 which converges in the discrete-to-continuous limit to a solution
u; to the non-autonomous gradient flow equation (3.1.1) in the sense of the EDE, see
definition 2.3.3

Method. We adapt the variational formulation of the time-independent Implicit Euler
method, known as the Minimizing Movement scheme, to the time-dependent case. Our
scheme to approximate the true solution u; reads than as follows:

Scheme. For a partition 7 := (11, 72, . ..) of step sizes 7, € (0, 7%) let an initial condition
uf be given that approximates ug. Then define inductively a discrete solution (u})ren
such that each u] with £ = 1,2,... is a minimizer of the Moreau-Yosida-penalized
energy functional

1

w— (7,17, up_;w) = Hd2(u7€',1,w) + gtg(w), (3.1.2)

where t] = Zle 7 for k> 1.

Define the corresponding piecewise constant interpolation in time uy : [0,00) — X of the
discrete solution via

uf = uf, u; =uj forte (tf4,tf] and k € N.

Strategy of the Proof. We begin with deriving some basic properties of the penal-
ization in section [3.1.2] namely: lower bounds, a priori estimates, the existence of min-
imizer, continuity and approximation properties, and differentiability properties. Next,
in section we deduce from the variational formulation of the scheme the necessary
structural properties, like estimates on the kinetic energy and on the internal energy and
the derivation of the discrete Euler-Lagrange equations. Finally, we prove in section
the main theorem i.e., the convergence as 7 tends to zero of the approximation uj
to a curve of steepest descent u; by means of an Arzela-Ascoli type argument.
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3.1 Application to Gradient Flows in Abstract Metric Spaces

3.1.1 Setup and Assumptions

Given a separable, complete metric space (X, d), we shall introduce a weaker Hausdorff
topology o on X, which is compatible with d, which allows us more flexibility to derive
compactness results. From now on we propose the convention to write

d o
u, — u for the convergence w.r.t. d, u, — u for the convergence w.r.t. o.

Compatibility of o with d means in this context

Up S u = u, > u, (U, vn) 2 (u,v) = d(u,v) < liminf d(uy, vy).

n—oo

Additionally, we shall work throughout the rest of this chapter with the following as-
sumptions to the functional &;.

Assumption 3.1.1 (Chain Rule Inequality). The free energy functional & : [0,00) x
X — R U {oo} satisfies the following chain rule condition.

(E0) The local slope |0&] of & at time ¢ is lower semi-o-continuous and for any curve
up € AC? (0, 00; (X, d)) with |0&|(us)|u;| € Li. (0,00) and supyeqo,r) Ex(ut) < oo,
the map t — & (u;) is absolutely continuous, and for all 0 < s < ¢:

¢ t
Es(us) —i—/ HEr(uy) dr < E(uy) —l—/ |0&,|(uy)|ul.| dr. (3.1.3)

Assumption 3.1.2 (Space-Regularity of &). The free-energy functional & : [0,00) x
X — RU{oo} is proper and satisfies the following regularity conditions in space:

(E1) Lower Semi-continuity. & is sequentially lower semi-o-continuous on d-bounded
sets for each t € [0, 00):

sup d(tn, Um) < 00, Up > u — Er(u) < liminf & (uy).

n,m n—00

(E2) Coercivity. There exist 7 > 0 and u, € X such that:

1
« = inf inf d? (us, & —00.
¢ tel[g,oo) ul;relx DT (104, w) + E(w) > —o00

(E3) Compactness. For each t > 0, every d-bounded set contained in a sublevel of &
is relatively sequentially o-compact, i.e.:

if (un),eny € X with sup & (un) < oo, and  sup d(un, um) < 0o, then
n n,m

(tn),en contains a o—convergent subsequence.
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3 Time-Dependent Minimizing Movement Scheme

Assumption 3.1.3 (Time-Regularity of &). The free-energy functional & : [0,00) x
X — R U {oo} satisfies the following regularity conditions in time:

(E4) Absolute Continuity in Time. There exists a non-negative function o, €
Llloc (0, 00) such that for all u € X and for all 0 < s < ¢, it holds that:

Eu) — Es(w)] < (1 —|—d2(u*,u))/ o dr.

Moreover, a; has at most countable many points which are not Lebesgue points.

(E5) Differentiability in Time. For all v € X, the partial derivative 9;&(u) of the
map t — & (u) exists and is o-continuous on d-bounded sets:

sup d(up, Up,) < 00, Uy Xu, b, —t = lim 0.&, (un) = 0:&(u).
n,m n—00
Remark 3.1.4. The Chain Rule Inequality (EO) is the reversed version of the time-
dependent EDE ([1.0.3) in the definition of the energy dissipation equality. This as-
sumption is not restrictive since one has
d .
e lt(ue) = 0ibe(ue) + (VE(ur), ue) = 0u&y(ue) — [|€(ue)|| l1ae]
by the chain rule and the Cauchy-Schwarz inequality. Integrating this inequality with
respect to ¢ yields exactly the Chain Rule Inequality (3.1.3]).

Remark 3.1.5. (E1)—(E3) are the time-dependent versions of the known lower semi-
continuity, compactness, and coercivity conditions (LSCC) which are standard in the
gradient flow theory in abstract metric spaces. (E4) and (E5) are then the necessary
additional time-dependent assumption on &;.

Later, we have to specify further assumptions on the partition 7 and the approximation
ug of the initial datum ug. For sake of completeness, these are given now.

Assumption 3.1.6. The partition 7 = (71, 7,...) and the approximation uj of the
initial datum wuq satisfies:

(I1) Given a4 from (E4), then

- . - Ty 2%} Tk
sup4day, <1 with af = (— oy dr + —) (3.1.4)
k 2 tz; T*

(I2) There exists a a constant d; such that the discrete initial datum uj satisfy:

Eo(ul) < dy, d(uf,up) <div/7, and limsup&(uf) < Eo(uo)-

T7—0
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3.1 Application to Gradient Flows in Abstract Metric Spaces

3.1.2 Time-Dependent Moreau-Yosida Approximation and Resolvent
Assume in the sequel that (E1)—(E5) holds. Define the Moreau- Yosida functional
O(1,t,u;-) : X = RU{oo}; O(1,t,u;w) := %dQ(u,w) + & (w) (3.1.5)
and furthermore define the Moreau- Yosida approzimation of & by
o(7,t,u) = in§( O(7,t,u;w) = inf %Cﬁ(u,w) + & (w). (3.1.6)

The well-posedness of the Minimizing Movement scheme (3.1.2) is equivalent to the
existence of a minimizer of ®. The set of all minimizers is called the resolvent J; and is
given by

Jl(uw) ={w e X | ®(1,t,u;w) = o(1,t,u)}. (3.1.7)

Remark 3.1.7. By the construction of the Moreau-Yosida approximation, we have the
following monotonicity

oo, t,u) < o(r,t,u) < E(u) foro > 7> 0. (3.1.8)

Before we prove the existence of minimizers of the Moreau-Yosida approximation, we
state an auxiliary inequality which will be used several times in the rest of this section.

Lemma 3.1.8 (Bounds). Let cs, Ty, us be the constants from (E1)-(ES3). Then, for all
7€ (0,7), t €[0,00) and all u,w € X, we have that:
1
Te — T
477y

o(T,t,u) > ¢ — d*(us, u), (3.1.9)

1

d*(w,u) <

*

*

(@(T,t,u; w) — cx + d?(us, u)) (3.1.10)

Proof. We use the Cauchy-type inequality
1
(@a+b)2<(1+e)a+ <1+7)b2 Va,b>0, >0,
€
with a = d(w,u), b =d(us,u) and e = 2L | to get:

Ts+T
1
d?(u,, w) < d?(w, u) +
2Ty Te + T Te — T

d? (uy, ).

This yields for every u,w € X and 7 < 7y:

Te — T 1
P . — * 2 2
(1, t,u;w) ) T)d (u,w) + p— Td (u, w) + &(w)

Te =T ;9 1 5 1 9
> -~ ES) - * 9 L
Z Ty d*(u,w) + 27—*d (Us, w) - _Td (us, u) + E(w)

x 1

> T TdQ(U,lU)— d2(u*,u)—|—c*,

41T Te — T

from which (3.1.10)) and, after taking the infimum with respect to w € X, (3.1.9)) follows.

O]
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3 Time-Dependent Minimizing Movement Scheme

In the following we show that indeed the time-dependent Minimizing Movement scheme
(3.1.2) is well-defined in the abstract metric setting for sufficiently small 7.

Theorem 3.1.9 (Existence of Minimizers). For all 7 € (0,74), for all t € [0,00) and
for all w € X, there exists a minimizer w, € D(&) of the map w — (7, t,u;w), i.e.,

J7 () # 0.

Proof. Fix 7 € (0,74),t € [0,00),u € X and note that by Lemma the Moreau-
Yosida functional is bounded from below for each u € X. Since & is proper, the infimum
is not equal to infinity. So choose a minimizing sequence (wy), oy in X of the map
w +— @(7,t,u;w) and without loss of generality sup,, ®(7,t,u;w,) < 0o. So, we can
deduce from ([3.1.10)

4rT,
d2(wn,u)§ Lk

((I)(T,t, w;wy) — G + d2(u*,u)) < o0.

Te — T Te — T

Thus the sequence (wp),cy is d-bounded. Furthermore, the o-compactness of the se-
quence w,, follows by the upper estimate on &

1
Er(wy) < 2—d2(u,wn) + E(wy) = O(7,t, u;wy) < ¢ < oo.
T

Hence, we can extract a o-convergent subsequence, which converges to some w, € D(&)
with respect to the weak topology o. By lower semi-o-continuity of &, we conclude that
indeed w, is a minimizer of the map w — ®(7,t, u; w) and thus J7 (u) # 0. O

Further facts about the time-dependent Moreau-Yosida approximation and of the resol-
vent [4], for instance, a priori estimates, continuity results and differentiability properties
are proven in the sequel.

Lemma 3.1.10 (Apriori Estimate). Let u € X and define ug € J?(u) and u] € J7 (u)
with o < 7 and s < t, then it holds that

2
d?(u,uZ) < d2(u,u]) + ——

¢
(2 + d*(us, ud) + d?(us, uf)) / ay dr.

T —O0

Proof. Fix u? € JZ(u) and u] € J](u) with 0 < 7,5 < t and exploit once again the
variational definition of the resolvent and of the Moreau-Yosida approximation to get

O(o,s,u;ul) < (o, s,u;uf)

1 1 r T
— (5—E>d2(u,ut)+®(7787u;ut)
]. 1 2 T e T T — T
= (57 = 52) 2w u]) + Ot ws ) + E(uf) = Eluy)
1 1y,
< (2 _ 1 T -7 ™ — 7).
- (20 27'>d (u, uf) + @(7 t, us ug) + Es(up) — Ex(ug)
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Subtract ®(7,t, u;u?) from both sides to obtain

1 1 2 o o\ __ a i_i 2 0 ) — T
(55— 57) 2 (wud) + () = E(ud) < (55 — 52 ) dwup) + Es(uf) = E(u).

Since o < 7, we can multiply with % to get

2
d?(u,ul) < dP(u,uf) + — (Es(u]) — Ex(u]) + Ex(u?) — E(uD))
2 t
< @] + 0 (2 ) + i) [ and,
T—0 s
where in the last step, we used (E4) twice. O

Lemma 3.1.11 (Continuity of the Resolvent). Let u € D(&;) and 7 € (0,7.). Given

the convergent sequences 7, \ 0, t, — t and uy, L u, define a sequence of minimizers
wy, € J{"(uy). If in addition &, (u,) < C, then we have

d
Wy, — U as n — oo.

Proof. We can assume without loss of generality that 7, < 7. Use the monotonicity of
the Moreau-Yosida approximation (3.1.8) and the estimate (3.1.10) with w = w,, and
U = Uy, to obtain:

47,7y
d2(wmun) < TnT (é(Tnatnaun;wn) — Cy + dz(u*aun)>
Tw — Tn Te — Tn
47, T
< T <5tn (up) — cx + d?(us, un)>

By assumption &, (uy,) is bounded from above, so we can further estimate to obtain

AT T
d2(wn,un) < T (C’ — Cx + d2(u*,un)>.
Te — Tn Te — Tn
Taking the limit n — oo yields the desired convergence w,, L% O

Lemma 3.1.12 (Continuity of the Moreau-Yosida Approximation). The map (7,t,u) —
o(7,t,u) is d-continuous on (0,7,) X [0,00) x D (&).

Proof. Choose a sequence (T, tn, Un)nen in (0,74) x [0,00) x D(&,) with 7, — 7 €
(0,7%) ,tp, — t € [0,00) and u, 4 ue D(&). Then, it follows for an arbitrary w € X
that
: : L o L
lim sup ¢(Tnatna Un) < limsup ~—d (un,w) + &, (w) = 27d (’LL, w) + gt(w)
T

n—00 n—oo &Tp
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3 Time-Dependent Minimizing Movement Scheme

thanks to (E4). Taking the infimum over w on the r.h.s. yields the upper semi-d-
continuity of ¢.

To prove the lower semi-continuity, choose w;,, € J{"(uy) and first of all notice that
this sequence is bounded, since by the the upper estimate for the Moreau-Yosida approx-
imation (3.1.10]

47, Ty
d2(wn>un) < T (@(Tn,tn, Un;wn) —Cx + dQ(U*,Un))
Te — Tn T — T,
47, T.
= b <¢(T’I’L7 t’l’L; Un) — Cx + d2(u*,un))
T« — Tn Tx — Tn

Since every term on the r.h.s. is bounded the sequence (wy), oy is d-bounded and by
the continuity of the resolvent (Lemma|3.1.11)) we also have that w,, converges to u in d.
Now, the variational definition of w,, yields

1
lim inf ¢(7,, ty, up,) = lim inf (2—d2(un, wy) + &, (wn))

n—00 n—o0 Tn

> lim inf <L (d®(up, w) +d* (u, wp) —2d(up, w)d(u, wy)) + Etn(wn))

n—00 27,

1
= liminf (o=d?(u, wn) + E(wn) = Exlwa) + &, (w) ).

n—oo

Lastly, the absolute continuity of & and the d-boundedness of w, yields

lim inf ¢(7y,, tp, uy) > lim inf (%dQ(u, wyp) + E(wy,) — E(wy) + &, (wn))

n—00 n—00 T
t"L
> liminf ¢(7, ¢, u) — limsup(1 + d?(u*, wn))/ o dr
n—o0 n—00 t
= ¢(7,t,u).

Hence, lower semi-continuity and upper semi-continuity of the Moreau-Yosida approxi-
mation ¢ yields the desired result. O

Lemma 3.1.13 (Approximation Property of the Moreau-Yosida Approximation). For
all w € D(&) and all sequences (Tp,ty) C (0,7x) x [0,00) with 7, \( 0 and t,, — t, we
have that

lm (7, tn, u) = E(u).

n—o0

Proof. Given u € D(&;), choose an element w, € J/"(u). Thus, by the continuity of

the resolvent (Lemma [3.1.11)), w, i) u as n — o0o. The lower semi-o-continuity of & for
each fixed ¢t and (E4) yields a lower bound for the limit, i.e.:

1
liminf ¢(7p, tn, u) = liminf —d?(wy, u) + &, (w,) > liminf &, (w,) > &(u).

n—oo n—oco 2Ty, n—
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3.1 Application to Gradient Flows in Abstract Metric Spaces

The reverse inequality follows from the monotonicity of the Moreau-Yosida approximation

(3.1.8), and with (E4):

lim sup ¢(7y, t, u) < limsup &, (u) = E(u). O

n—o0 n—oo

Lemma 3.1.14 (Joint Differentiability of the Moreau-Yosida Approximation). For every
u € D(&) and t € [0,00), the map T — ¢(7,t + 7,u) is locally Lipschitz continuous on
(0, 7) and differentiable except on a countable set Sp*. For every T € (0,74) \S}* we have:

d 1
E¢<T,t +7,u) = —ﬁdQ(u,w) + 0r&ttr (W) Vwe J (u). (3.1.11)

Proof. Fix t > 0 and ¢ < 7 in (0,7,) and choose u™ € J7, (u) and u” € J{,,(u) and
exploit the variational definition of the Moreau-Yosida approximation to obtain

¢(Tat+ T,U) - ¢(Uat+ g, U) < (I)(T,t—l—T,u;UU) - q)(o,t+a,u; UU)
1 1 2 o o
B <2T za)d (") + Euer (u7) = £t (07)

o—T t+1

d?(u,u’) + (14 d?(ux, u’)) / ay-dr.
t+o

IA

210

Analogously, a lower bound can be established by reversing the role of ©™ and u?:

o(r,t+71,u) — Plo, t+o,u) > O(r,t + 1,u,u”) — (o, t + o,u,u’)

. 1 1 2 T\ T

- (E B %)d (u,u”) + Eppr(u”) = Etgo(u”)
o= d2( ) — (1 +d*( T))/HT d
210 o ot t+o e

Note that by estimate (3.1.10)) and by the monotonicity of the Moreau-Yosida approxi-
mation we have

& (u",u) < - 7%

(1t +1yu,u”) — e +

— T

(o
e, (
(

T — TdQ(u*,u)>
— d2(u*,u))

d?(us, u))

O(T,t+T,u) — cx +

\]

47‘7‘
S *

gt+7' —

— T T*

47'7'*

IN

(a( )+ (1+ d2(u, ))/tt+7ardr—c*+ d2(u*,u)>.

Tse — T Te — T

Thus, d?(u”,u), d*(u”, us), d*(u’,u), and d?(u’,u,) are locally bounded by some con-
stant independent of 7 and o and therefore 7 — ¢(7,t+ 7, u) is locally absolutely contin-
uous. To calculate the derivative for a point 7 € (0, 7.) \S}* in the set of differentiability,
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3 Time-Dependent Minimizing Movement Scheme

divide the previous inequalities by 7 — o such that we have for o < 7:

_idQ(u’uT) + gt'i'T(uT) - gt-‘ro'(uT) < ¢(T7t + 7, U) - (b(U?t + O',U) ]

210 T—0 T—0

The left-sided limit o 7 7 yields a lower bound for the derivative 7 +— ¢(7,t + 7,u) and
analogously we gain from the inequality for 7 < o and the right-sided limit o \, 7 an
upper bound. Since u” was arbitrarily chosen in the resolvent, the value of the derivative
is independent of the u™ and therefore the desired formula is true. O

Lemma 3.1.15 (Local Slope Estimate). Given u € X,7 > 0,t € [0,00) and w € J] (u),
we have

08| (w) < %d(u,w). (3.1.12)

Proof. Given v € X and w € J/ (u). Since w is the minimizer of w — ®(7,t, u;w) we
have for an arbitrary v € X

E(w) — E(v) < %dz(u,v) — %dz(u,w) < %d(v,w)(d(u,v) + d(u,w)).

T T

Dividing the equation by d(v,w) we get

+
— 1 d
limdsup (gt(wcz(v, i)(v)) < limdsup g(d(u, v) + d(u,w)) = (u; w)
v — w v — w
which is the desired local slope estimate (3.1.12)). O

3.1.3 Properties of the Time-Dependent MMS

By the previous section, the sequence (u}) given by the time-dependent Minimizing
Movement scheme is well defined for every partition 7 = (71, 72,...) with 7, € (0, 7).
Next, we derive the classical estimates on energy and distance and the discrete energy
dissipation inequality. These additionally require (I1) and (I2) to hold for the partition
7 and the approximation ([ of the initial datum uq.

Theorem 3.1.16 (Classical Estimates). Fiz a time horizon T > 0. Then, there is a
constant C, independent of the partition T, such that the corresponding discrete solution

(uf )ren satisfies
Noq
> HdQ(uz,u;_l) <C,  &r(uf)<C,  d*(us,ufy) <C (3.1.13)

k=1

Jor all N € N with t3, <T.
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Proof. For a given partition 7 = (71, 72,...) with 73 € (0, 7%) consider the discrete solu-
tion (uf) keN obtained by the Minimizing Movement scheme. Since v, is a minimizer for
®(7,t],u]_;-) it satisfies the discrete variational inequality:

1
H(ﬂ(@-p ur,) + &g (uf) < EdQ(ULp uj1) + Ep (ugy)-

Rearrange and sum these inequalities from & = 1 to k = N and exploit the telescopic
sum to obtain

Ny N
> o Pl ud) 3 (87 (ufl) - & (u])]
k=1 k=1
N—1
= &uf) — &, (ul) + > [Er, (uf) = &7 (uf)] -
k=0
Since & is absolutely continuous in time, we get with (E4), (I1), and (I2)
Y
> 5@l uf)
= (3.1.14)
1 = ) T
<+ 5 d ) o+ ’;0 (14 d(us, u]) /t-,; o dr.

Furthermore, using Young’s inequality with € = we get

2 9

1 1 iy 1
§d2<u*7u}rV) - §d2(u*, ug) = ; §d2(u*7ug) - §d2(u*’ u;’;,l)

M= T

d(uf, u ;) d(uf us)

£
Il

1

T 1 1 &
522— (ufq,uf) T—Zrde(u*,uZ).
k=1 * k=1

Inserting the auxiliary inequality (3.1.14]) from above yields

IN

S8 (%) — 52w, u)
N—-1

(d1 + L (s, U) — Cx +Z (1+ d2(u*,u;))/
k=0

2T i

thrt

ardr> ~ Zde (s, uf;)
T
g%(dl —cy + (1+d2(u*,u2))/0 ardr)

N T
1 "« k+1
+1d2(u*,u}'\,)+g (;/tT oy dr + >d2(u*,uk)
k=1 k
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3 Time-Dependent Minimizing Movement Scheme

Rearrange the inequality to obtain

T
d? (s, uly) <2d* (us, ul) + 27 <d1 -+ (1+ d2(u*,u6))/ Q dr)
0

N tT
Tx k+1 Tk
1y <2/t; ort T8

Tx

> d?(u, uf)

N
=:C(T,7,) + 4 Z ad? (uy, ul).
k=1

Since by assumption sup;, 4o < 1 one can apply the discrete version of Gronwall’s lemma
[4, Lemma 3.2.4] to conclude

d?(u,, %) <C(T,7.) exp [E(T, Tx) ak]

T
<O(T 7. exp [2(T,7.) <T2/ ardr+f>]
0 *

Hence, we have proven the d-boundedness of the discrete solution. With this result and
with the first chain of inequalities we can deduce the estimate on the kinetic energy, i.e.,

Mo 1 N-1 T
Y —d(upy,uf) < dy+ s—d(uuf) — e+ Y (14 d* (e, uf)) / a, dr
27, Tk o
k=1 k=0 k
1 T
<d; + 5 C(T,T*)—C*+(1+C(T,T*))/ o, dr.
Tk 0
Again, using this inequality yields the upper bound for & (u};), since
S}
&y, (uy) < &g (uy) + ; ﬁdg(%p ur,)
N— 1
< go(uO) gt"' U’N + 7@-4—1 Et‘" (Uk ):|
k:O
1 Nl i
< E(uf) + 5 d* (s, uly) — ¢ + Z (1+ d?( u*,u}’;))/ o dr
* k=0 t;
1 T
<di+—C(T, 1) —ce + (1 + C(T, T*))/ o dr.
27_* 0
Hence, we have the three desired 7-independent estimates. O
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Next, we define the so called De Giorgi interpolation u] : [0,00) — X, via
ug = ug, Upr = uj, Ufr 45 € Jir o (uf) for o € (0, 7%+1), k € No,

which satisfies the following discrete energy inequality.

Theorem 3.1.17 (Discrete Energy Inequality). The De Giorgi interpolation u] satisfies:

N tT
g @)+ Y gl ) + 5 [ 08T di
N 2Tk 2 0
k=1 (3.1.15)
t
SEO (Ua-) 4 8#%(6:) dt.
0

Proof. From Lemma [3.1.14 we know that the map o — ¢(o,t+ o, u) is locally absolutely
continuous and we can compute the derivative at almost all o, which is given by

d 1 i
%¢(07t + o, U) - _ﬁdQ(uv 'IU) + atgt-i-U(w) Vwe Jt-‘ra(u)'

Choose t = t], u = uj and use ﬂz;@ra € J‘T}Ho(ug) when integrating the equation with

respect to o from € > 0 to 7y:

Tk 1 ~ ~
(b(T? tgﬂa u;) - (23(6, t; +&, UZ) = / _ﬁdz(u;’c—v U%Jra) + 8t8t;+0'(uz—7;+g) do.
€

Use ﬂg'-]gﬂ € t%ﬂ(u;) and Lemma [3.1.13| to perform the limit € N\, 0 to obtain

1 Tk 1 - -
—dX(uf ) + 7, () — Ep(u]) = /0 o LT ) + O 0 () o

27 o

Apply Lemma [3.1.15| with ¢t = ] + o, u = uj, to obtain

1 1 7 N N
ﬁdQ(uz;lauZ) + &, () — & (ug) = 5 /tT —|0&|*(uf ) + & (] ) dt.
k
Summation from k£ =0 to NV — 1 yields the desired discrete energy inequality. O

3.1.4 Convergence

In this section we complete the proof of the Main Theorem i.e., firstly, we prove the
convergence in the weak o-topology of the piecewise constant interpolation uf to a limit
curve uj; secondly, we prove that the De Giorgi interpolation uf converges also in the
o-topology to the same limit curve uy; thirdly, we pass in the discrete energy inequality
to the limit 7 — 0 to show that the limit curve u; is indeed a curve of steepest
descent for & emanating from wug.
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3 Time-Dependent Minimizing Movement Scheme

Theorem 3.1.18 (Convergence of the Piecewise Constant Interpolation). Given a se-
quence of partitions (Ty)nen with supy, 7, — 0 and satisfying (11), and let (u)")nen
be an approzimation for ug € D(Ey) satisfying (I2). Then, there exists an L2-absolutely
continuous limit curve uf € AC?(0,00;(X,d)) such for a (non-relabelled) subsequence
of (@ Jnen

a2 ol Vtel0,00).

Proof. Fix some T' > 0 and define the discrete derivative A} as

1
Af = —d(uy,u) - for te [t 1) (3.1.16)
n,k

Using the classical estimates for the Minimizing Movement scheme of Theorem [3.1.16
we get for all t37 < T

N NEboer g 2 S
AP dt = / (—d uT’},uT"> at =S ——@(u™ uT) < 20(T).
[, =3 [ (o) dt = 3o dfn g < 2000)

T
=1 n,k

Thus AP € L?(0,T) and the L? (0, T)-norm of A} is uniformly bounded in 7. Therefore
A} possesses a L2 (0, T)-weakly convergent non-relabelled subsequence with limit A; €
L?(0,T). Choose 0 < s <t < T arbitrary and define &} := max {k | ;" < ¢}, then

Ky T
d@r ) < > dlupup) Z / gy o) ar = [ avar
k=kn 41 k=kn+1 trn
Taking the limit n — oo yields now
lim sup d(u / Ay dr. (3.1.17)
n—oo

On the other hand, by the classical estimates (3.1.13) for the Minimizing Movement
scheme one has for t € (t7_,,1]]

tr T
Eo(Tl") = Eo(uf) < Er (™) + (1 + d2(u*,u‘,gn))/ apdt < O+ (1+ C)/ a dt.
0 0

Hence, the piecewise constant interpolation @™ is contained in some sublevel of & uni-
formly in ¢ € [0,T]. Estimate (3.1.13)) additionally ensures the uniform d-boundedness of
Ur, (t) and therefore, using the o-compactness of &, ;" is contained in some o-compact
set K for all ¢ € [0,7] and for all n € N. Therefore, we can apply the refined Arzela-Ascoli
Theorem [4, Proposition 3.3.1| yielding the existence of a non-relabelled subsequence and
a limit curve u} : [0,T] — X such that @/ 2 u} for each fixed ¢ € [0,T]. Consequently,
by a diagonal argument we can extend u} on [0,00) such that u} € AC?(0,00; (X, d))
and w2 wf for all t € [0, 00). O
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Theorem 3.1.19 (Convergence of the De Giorgi Interpolation). Under the same as-
sumptions as in Theorem , Let u;™ be the corresponding De Giorgi interpolation
and let uf be the limit curve of the piecewise constant interpolation (u;™)nen. Then,
there exists a non-relabelled subsequence of (4]™)nen such that

ur Zup Vite]0,00) \Wa. (3.1.18)

where N, is the set of all non-Lebesgue points of ay.

Proof. Fix T > 0 and define in the same manner kf := max{k | t;" < t}. As before, we

prove that the family of De Giorgi interpolations u;™ is contained in some o-compact set

K. The d-boundedness of ﬂz'” follows by (]3.1.10)), since for t = t;; +o

4o,
2(~Tn 7Tn 2(~Tn n * n 5Tn 2 n
&2 ) = i ) < (@(a,t,u;?,u: ) et ——d (u*,u;?)>
4o, . 9 .
-0 (gb(o,t,u;;?) et T — ad (u*,uzg))
40_7—* Tn 2 Tn
= Te — O (Et(u’f?) ToT Te — O'd (u*,uk?))

The first term on the right hand side is bounded by the constant given in theorem
By the computation in the proof of theorem the discrete solution wu;™ is
bounded by some constant independent of ¢ € [0,7] and 7 € (0,7). The second term
is bounded by the classical estimates , hence the De Giorgi interpolation ur, is
locally d-bounded.

Next we prove the boundedness of & (u;™), to do so, we use u;" € Jf(uZ;) and the

monotonicity property (3.1.8) to obtain
N 1, _
(™) < %d (u}%ﬁ,uz—”) + &) = ¢(o,t, uZﬁ) < 5t(u7;§)

Hence, we exploit (E4) twice and the d-boundedness of ;™ to get an estimate for E(u;™):

t
Eo(i) <E @) + (14 d2(u*,a;n))/ o dt
0

t
<E(uln) + (1+ d?(u*,a;n)))/ o dt
¢ 0

t
<Ep () + (1 + d2(u*,ug;)>/

tn
ki

t
apdt + (1 + d?(us, u;™))) / ay dt.
0

Again, the first terms is bounded by (3.1.13), the second term is also bounded by (3.1.13])
and the L*(0, 7)-norm of ay, and the third term is bounded by the L(0, T)-norm of ay

and the d-boundedness of u;". Hence, the De Giorgi interpolations u;" are contained in
some sublevel of &y, which is by assumption (E3) compact in the o-topology.
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3 Time-Dependent Minimizing Movement Scheme

To apply the refined Arzeld-Ascoli theorem [4, Proposition 3.3.1], it remains to prove
an estimate in terms of the modulus of continuity. Note that by Lemma [3.1.10] one has

d2 (ﬂz—n , ’,Jz'n )

t—tn [t
kn kv 41 —~
S (uff, ug ) + 2k / Tapdt (24 (T + P (un )
¢ ¢ tk?—‘rl —tJy ’
t—tn [y
STnC(T) (1 + .,-nt/ Qg dt)'
b — U e

Here, we estimated the first term by (3.1.13)) and the last term using the d-boundedness
of ;™ and u;". By the assumption (E4), the limit behavior of the last term is given by

t—10n  [tpeiTe
lim sup 7% / ardt =0 for each ¢ € [0, 00)\WN,,
t

Tn
n—o0 tk?-‘,—l -

where N, is the set of all ¢ € [0, 00) which are not Lebesgue-points for a;. Therefore, we
can deduce for s,t € [0, T] \N,

limsup d* (@], af") <limsup3 (d*(uf", uf") + d*(u;", u") + d*(ul", ul"))

n—oo n—oo
<limsup 67,,C(T) + limsup 3d? (@™, a7")
¢
<3 / Ay dt.
S

Hence, we can apply the refined version of the Arzela-Ascoli theorem [4, Proposition
3.3.1], to conclude the pointwise convergence of the sequence (u;™),en of De Giorgi in-
terpolations on [0, 7] with respect to the o-topology to an absolutely continuous curve
uf € AC%(0,00;(X,d)) for a non-relabelled subsequence. An additional diagonal ar-
gument yields the convergence with respect to the o-topology on [0,00) for a further
(non-relabelled) subsequence.

In particular, the two limit curves u; and u; have to agree, since by the compatibility
assumption to the weak topology o one has at least on the set [0, 00) \N,

2~ 3 3 2(~Tn —Tn
d”(ug, uy) < lim inf & (u;™", w™)

t— t;;ﬁ U1
< liminf 7,,C(T) (1 + ttt/ oy dt)
t

Tn

k—ro0 kP41 T
= 0.
Hence, the two limit curves u; and u; have to agree for each ¢t > 0. O
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3.1 Application to Gradient Flows in Abstract Metric Spaces

Theorem 3.1.20 (Existence of a Curve of Steepest Descent). Under the same as-
sumptions as in Theorem and that £ satisfies (E0). The limit curve uf from
there is a curve of steepest descent with respect & in the sense of definition i.e.,
uf € AC?(0,00; (X, d)) and u} satisfies the energy balance for each T > 0:

T
ST(ui})—i-;/ i it + 1/ 8wt = Eolus) + [ OuEu(ui) .

Proof. Given the limit curve uj € AC?(0,00; (X, d)) obtained by the time-dependent
Minimizing Movement scheme starting at uf using the sequence of partitions (7,)nen of
of step sizes 7, € (0,7) such that sup; 7, — 0 and (I1)&(12) are satisfied. Without
loss of generality ;" > u} and @ > u} on the whole sequence. We know that the De
Giorgi interpolation satisfies the discrete energy inequality , i.e., for N = max{k |
i< 1)

1 [V _
6 i +§j%k %%%ﬂ+2A 08 2@ dt

<(€0 / 815515 ut

Fix T € [0,00) and compute the limes inferior of the L.h.s. of the equation above. Since

o~ o . . . .
uz;"n = u;" — uh, we have by the lower semi-o-continuity in space and the absolute
N

continuity in time of & :

T
mw<mmhww<udWﬂw/mﬂ<mm&ww
N t

n—00 tN ™ n—00
N

In the proof of Theorem we have seen that the discrete derivative A} converges
weakly to A; in L? (0,T), with A; is one possible modulus of continuity in the definition
of absolute continuity. Furthermore, since the metric derivative |(u})’| is the smallest
modulus of continuity, one has |(u;)’| < A; almost everywhere. The weak lower semi-
continuity of the L? (0, T')-norm implies then:

k-

1 (T e
[ty Par < tmin s [ (a2 ac =t ns
0 0

2 n—00 n—00 Pt 2Tn k

d2(uk LU

The sequence (u;")nen of De Giorgi interpolations converges weakly almost everywhere
in ¢, so using Fatou’s lemma and the lower semi-o-continuity of the local slope |0&|
yields for the last term on the lL.h.s.

17 1 @
2/ 0&|? (u) dt < 2/ hmmf 08 (up) dt < hmlnf 2/ 0&|? (uf™) dt.
0 0
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3 Time-Dependent Minimizing Movement Scheme

At last, we compute the limit of the right-hand side by applying the dominated conver-
gence theorem. Clearly, we have pointwise convergence of 0 & (uy™) to O (uf) almost
everywhere. Since the De Giorgi interpolation u;™ is locally contained in a o-compact set
and 0,&; is o-continuous, the integrand is unlformly bounded by some constant. Hence
we can conclude with the dominated convergence theorem that

t"'"

/ 8tgt ut dt— lim 8t€t(ut )dt

n—0o0 0

Lastly, by (12) we have

lim & (ui™) = Eo(uo).

n—oo

Summarized, we have the following energy inequality:

1T 1
Ertur) + 5 | 1) P+ /agty (uf) dt < Eo(up) /@&gut)
0

The reversed inequality follows now by the chain rule assumption (E0), since the energy
inequality above yields an upper estimate for the L1(0, T)-norm of [0&](u})|(u})'], i-e.,

r / 1 T 12 1 T 2
/ 064 (uf) (uf) | dt < / (ut| dt+/ 06,2 () dt
0 2 Jo 2 Jo
T
< EQ(UO) —(‘:T(u;)-i—/ Oté't(u?[) dt.
0

The right-hand-side is is always finite and therefore |0&|(u})|(u})'| € Li..(0,00). The
boundedness from above of & (u;) is given by

(o) < limink €5 (077) = Ep () < ©

thanks to the classical estimate (3.1.13]). Thus, we can apply the chain rule inequality

(3.1.3) to obtain
T / 1 T 12 1 T 2
/ |aet|<u:>|<uz‘>|dts/ ()] dt+/ 06,2 (uf)
0 2 Jo 2 Jo
T
< Eolup) — En(ut) + / .. (u) dt
0

T
< / 084 (uf) (| .

Therefore all inequalities have to be equalities and w; is in fact a curve of steepest descent
for the functional &;. O]
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3.2 Application to Non-autonomous Fokker-Planck Equation

As a particular application of the temporal discretization in the general framework of
abstract metric spaces, we consider a particular example, namely the non-autonomous
and non-linear drift-diffusion equation

ﬁtpt = Ap;ﬂ + le(ptVV;f) + diV(pt(VWt * pt)), (321)

with non-flux boundary condition in a domain €2, which is an open, bounded and con-
nected domain 2 with Lipschitz continuous boundary 0€) and normal derivative n or is
equal to the entire space Q = RY. The sought-for solution p; : [0,00) x Q — [0, co] should
be nonnegative and preserves the initial mass. Here, the by now standard framework of
this equation is the L2-Wasserstein space (P2(), Wy) with the free energy functional
E() = {prllog(p) + Vi + 1%(Wt * p)pda %f m =1, (32.2)
Jo=50"+Vip+ Wy *p)pda ifm>1,

if 4 = pdL? and otherwise we set & (i) = oo, see section for more details.

Method. Using the notation of the L2-Wasserstein framework, the approximation via
the time-dependent implicit Euler method reads than as:

Scheme. For a partition 7 := (71, 72, .. .) of step sizes 7, € (0, 7) let an initial condition
pg be given that approximates pp. Then define inductively a discrete solution (pf)ren
such that each p7 with k = 1,2,... is a minimizer of the Moreau-Yosida-penalized
energy functional

1
—W3(pi-1, ) + Ei7 (), (3.2.3)

= O(7,t], pr_1;p) i=
P (7, th s Pk-15 P) 27

where t] = S 7 for k> 1.

Define the corresponding piecewise constant interpolation pf : [0, 00) — P2(Q) via

o5 =p%,  pr=pf forte (th,,tf] and k € N.

Strategy of the Proof. The aim of this section is to apply the variational formu-
lation of time-dependent implicit Euler method to the non-autonomous and non-linear
Fokker-Planck equation and to strengthen the convergence results of the previous
section It is clear, that under mild assumptions on V; and W;, the functional &
falls into the class of feagible free energy functionals of the previous section and we
recover the results therein. However, additional supplementary structural properties are
derived, to mention in particular the time-discrete Euler-Lagrange equations and
the refined BV(£2)-estimates on (pf)™ (8.2.10), see section[3.2.2] The convergence of the
approximation py is proven in section by means of the extension of Aubin-Lions
Compactness Theorem [2.5.4]
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3 Time-Dependent Minimizing Movement Scheme

3.2.1 Setup and Assumptions

Throughout the rest of this section, Q C RY is either equal to R? or is equal to some
open, bounded and connected domain with Lipschitz-continuous boundary 9€2. In this
case, the assumptions on the confinement potential V; and the interaction potential W}
read as follows:

Assumption 3.2.1 (Regularity Assumptions on V; and W;). Let the confinement po-
tential V; € C'([0,00) x ) and the symmetric interaction kernel W; € C*(]0, 00) x RY)
be such that

(F1) There exists a non-negative constant d; such that

Vil@)l, Wil@)l, [WVi(@)l, [VWil@)l, 10V(@)], [0We(@)] < da(1 + [|o]]).

(F2) There exists a non-negative function ay € L}, (0, 00) such that
S [t
Vi(z) = Vs(@)], [Wi(x) = Ws(z)] < (1 + []] )/ a; dt.
S
(F3) There exists a non-negative function &; € L}, (0, 00) such that

VVilz) — VVa(@)], [VWi(z) — VWa(@)| < (1 + [l2]]?) / adt.

Remark 3.2.2. The regularity assumptions on V; and W; and the bounds (F1) guar-
antee, that F; satisfies the LSCC-assumption Assumption (E4) follows from
(F2) and (E5) follows from the uniform bounds on the time-derivatives 9;V; and 0, W4.
Lastly, the condition (F3) is necessary to perform the discrete-to-continuous limit in the
BEuler-Lagrange equations. Hence, the existence of the discrete solution (pf)xen and the
classical estimates are also valid in this case.

3.2.2 Properties of the Time-Dependent MMS

Given a partition 7 = (71, 72,...) with time step sizes 7, € (0,7%) and a pair of initial
data (pf,p7) which approximates the initial datum pg, which satisfy (I1)&(12). Then,
the discrete solution (p])ren for € on (P2(Q2), Wa) defined in and equivalently
defined by the recursive formula

P € argmin ®(7,¢7, pr;p) for k€ N
PEP2(Q)

is well-posed by theorem since the energy & satisfies the abstract assumptions
(E1)-(E5) due to (F1)-(F3). The rest of this section is devoted to deriving structural
properties of the Minimizing Movement scheme, namely: Step size independent estimates,
discrete Euler-Lagrange equations, better a priori estimates.
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3.2 Application to Non-autonomous Fokker-Planck Equation

Step Size Independent Estimates. The following two estimate is a specialization
of the classical estimate (3.1.13)).

Lemma 3.2.3 (Classical Estimates II). For fized T > 0, there exists a constant C,
wndependent of the partition T, such that the corresponding discrete solutions (pg)kGN
satisfies for all k with t] < T':

M(p]) < C(T, 7, p0),  Un(ph) < C(T, 74, o). (3.2.4)

Proof. The first bound of (3.2.4)) follows from the fact that one can estimate the second

moment in terms of the Wasserstein distance, i.e.,
My (pf) < 2W3(pf, i) + 2Ma(j1.).

The first term is bounded by the classical estimate (3.1.13)) and hence we established
the first bound (3.2.4). The second bound follows than straight forward by the growth
bounds (F1) of V; and W4, i.e.,

Un (pr) < E(pr) — /QV::/)}S + (Wi pp)pr, dz < E(pf) + C(1 + Ma(pf)).
Using the first result and the classical estimate (3.1.13) yields the desired bound. 0

Discrete Euler-Lagrange Equation. In the next theorem, we derive approximate
Euler-Lagrange equations for the weak formulation of the non-autonomous and non-
linear Fokker-Planck equation . The key idea is the JKO-method introduced in
[54] and recalled in section

Theorem 3.2.4 (Discrete Euler-Lagrange Equations). The discrete solution (p}),cx
obtained by the time-dependent Minimizing Movement scheme (3.1.2) satisfies for each
k € N and for all vector fields € € C°(Q,RY) with € -n =0 on 09Q:

0== [ (€(@),z—y)dpl(z,y) /Q div(€) (o)™ dz

e (3.2.5)

4 / (6, VVir) T + (€, YWz # oT) o da,
Q

where pf, € L'(pf, pi_,) is the optimal transport plans.

Proof. Fix pf, pj_ and { € CZ° (Q,RY) with £&-n = 0 on Q. We consider the perturbation
p® of pi as the solution of the Transport equation with velocity field £ starting at p7,
i.e., p® is the solution of as in section The first variation of the energy &
along the solution to the Transport equation amounts to

d

(") = /Q — div(€) (pT)™ + (&, VVig) T + (€ VWig # o) T da.  (3.2.6)
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3 Time-Dependent Minimizing Movement Scheme

The differentiability of the quadratic L2-Wasserstein distance Wy along the solution p°
of the Transport equation is more technical, for the proof we refer to [4, 92]. Since
Pr-1s PL, p° are all absolutely continuous measures, Theorem 8.13 from [92] is applicable
and we can conclude:

dart
ds L27

1

Wi _ = [ (66w~ y) dpl () (3:27)

where p¥ € I'(p}, pf_,) is the optimal transport plan. Since pj, is a minimizer of the time-
dependent Moreau-Yosida penalization ®(7,t7, pj_;; -) and since s — ®(7,t7, p]_1; p°) is
differentiable at s = 0,
d 1 .
0= = BT i) g = [ (€)n =) dpT(ay) — [ div(€) (o)™ da
S Tk JQ2 Q

+/Q<favvtg>,07; + (&, VWir * pf) py; da.

Indeed, we have the desired equality (3.2.5)). O

Refined Regularity. The already obtained regularity results for the interpolated so-
lution pf are not sufficient to pass to the limit in the first term of the discrete Euler-
Lagrange equation (3.2.5). Nevertheless, the following bounds in the BV(Q2)-norm of
(pp)™ are sufficient to obtain the desired regularity results. These estimates can be
derived from the discrete Euler-Lagrange equation quite naturally.

Proposition 3.2.5 (Step Size Independent Local BV (Q)-estimate). Fiz a time hori-
zon T > 0. There exists a constant C, independent of the partition T, such that the
corresponding discrete solutions (pf )ken satisfy for all k € N with t] <T':

W szpzq))

T\m 2(
o) vy < C(1+ == (3.2.8)

Proof. The L' (Q)-norm of (p)™ is equal to (m — 1)Uy, evaluated at pT. Hence, we can
bound the first term in the definition of the BV(Q)-norm uniformly by (3.2.4). In order
to estimate the variation of (p])™, we estimate the term inside the supremum of the
definition of V((p])™, ). Thus let £ € C°(2, RY) with ||¢]|, < 1, then we can use the
discrete Euler-Lagrange equations to substitute

/ (PT)™ div(€) da = / (6. Vi) T+ (€, VWi # oT) o] da
Q Q

+ 2 [ (6w o—y) dpi(ey).
k JQ2

(3.2.9)

By (F1) we have quadratic growth bounds for VV; and VW, so using the step size
independent bounds on the second moment (3.2.4), we can estimate the first terms in
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3.2 Application to Non-autonomous Fokker-Planck Equation

(13.2.9) as follows:
/Q (6, VVir + Wiz 5 pT)7 d < 24y (€], (1 + Ma(pF)) < 2d1(1+ C).

The second integral on the right-hand side of (3.2.9) can be estimated using Jensen’s
inequality

2 k 1/2 T T
| v) k()| < el ([ o= ol apk(a,y)) " < WaloT, L),
QQ 02

Hence, we have the following upper bound for the variation of (p} )™
W T7 T_
V(D)) < o1y Ry,
Tk

In conclusion, the discrete solution (p] )ren satisfies the desired bound (3.2.8)). O

Theorem 3.2.6 (Step Size Independent Global L?(0, T'; BV(Q))-estimate). Fiz a time
horizon T > 0. There exists a constant C, independent of the partition T, such that the
corresponding interpolated solution p] satisfies:

1) L2 0,rv () < C- (3.2.10)

Proof. We use the classical estimates on the kinetic energy (3.1.13)) and the result from
Proposition to estimate the L2(0, T; BV(2))-norm of (57)™. Define as usual Ny :=
max{k € N | t] < T}, then we have

Np+1 Nr+1 W T

D 2 2(P7 5 PT1)N\2

1™ L2 0.mmvie)) Z / P vy A< C Y Tk(l + T—k> .
k-1 k=1

By the a Cauchy type inequality we obtain

Nr+1 2( T T
\%\% S Pr
<C Z [Tk+ Q(Pk Py, 1)}

)2
1(P7) HLQ(O,T;BV(Q)) Tk

Nr+1 2( T T

\%%  PT
<O(T+m)+C Y M.
k

k=0

Finally, we can conclude with the step size independent bounds on the kinetic energy
(13.1.13]) the desired estimate (3.2.10f) for some universal constant C, independent of the
partition 7. O
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3 Time-Dependent Minimizing Movement Scheme

3.2.3 Convergence

In this section, we prove our main theorem concerning the strong convergence of the
approximation p7 to the solution of the non-linear Fokker-Planck equation (3.2.1)). The
convergence in the strong LP(0,7; L™ (€2))-topology for any p € [1,00) follows by the
improved L2(0, T; BV(Q))-estimates and by the general version of the Aubin-
Lions Theorem [2.5.4] c.f. [85, Theorem 2|.

Theorem 3.2.7 (Strong Convergence in LP(0,7;L™(2))). There exists a further (non-
relabelled) subsequence (Tn)nen such that for all T > 0 and any p € [1,00) and any
bounded © C ):

Pt — pp strongly in LP(0,T;L™(0)) as n — oc.

Proof of Theorem for Q C R4, Fix T > 0. In order to prove the strong convergence
result we use the Aubin-Lions Theorem with the underlying Banach space X =
L™(€2). We consider the functional A : L™(Q2) — R, defined via

I v if p € P2(R) and p™ € BV(Q),
Alp) ==
+00 else.

Using the lemma in the introductory section it follows that the functional A is
measurable, lower semi-continuous with respect to the L™ (€2)-topology, and has compact
sublevels. Next, we choose as pseudo-distance g = Wy on L™(Q), i.e.,

Wi (fLI(Q), hLAQ)) i f,h € L™ (Q),

400 else.

g(f,h) = {

Note, we have g(p,v) = Wa(p,v) for absolutely continuous measures p,v € Po(2) N
L™(€2). The L2 Wasserstein distance is lower semi-continuous with respect to the L™(Q)-
topology and clearly compatible with A, see lemma

Next, we verify the assumption (2.5.1) on (p;")nen of Theorem [2.5.4] By the refined

L2(0, T; BV(R))-estimates of Theorem [3.2.6]it is clear, that the sequence (57" )nen is tight
with respect to A, since we have:

T
—Tn, 2 _ —Tn 2
sup [ 1) ey At =50 107" sy < € < o
neNJO neN

For the proof of the relaxed averaged weak integral equicontinuity condition of (p{™)nen
with respect to Wy, we use the auxiliary inequality (3.1.17)) to obtain

s+t
lim sup Wa(piy, ps") < / A, dr.
S

n—oo
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3.2 Application to Non-autonomous Fokker-Planck Equation

Indeed, Fatou’s Lemma and Fubini’s Theorem yields

h o pT—t T
lim inf lim sup 1 / Wo(pan,, pan) dsdt < liminf h/ Ay dt = 0.
A0 n—soo o Jo ANO 0
Therefore, we can conclude that there exists a (non-relabeled) subsequence such that
(BI" )nen converges in M(0,T;L™(9)) to some curve p;. Due to the uniform bounds
in L°°(0,T;L™(Q)), the sequence p;™ is also uniformly bounded in LP(0,7;L™(2)) and
we get the desired convergence result with Remark . Moreover, the limit curves p;"
and p; have to coincide, since p;™ converges also in measure on €2 to pf and pj, so both
limits have to be equal. O

In the case of Q = RY, we have to alter the proof given above since the embedding
of BV(RY) into L'(RY) is not compact anymore. So we restrict ourself to the compact
domains © = Br(0). The set © is clearly compact with Lipschitz-continuous boundary
00, so the embedding of BV (0) into L'(©) is compact again.

Proof of Theorem for Q=R4, Fix T > 0. Without loss of generality we can as-
sume © = Bx(0), since every compact subset @ € RY is contained in the closure of
a ball with radius R and convergence in L™ (0,7;L™(Br(0))) implies convergence in

L™(0,T;L™(©)).

As before, we want to use the Aubin-Lions Theorem for the Banach space L™ (O)
equipped with the natural topology induced by the L™ (©)-norm applied to (p;{"|g)neN;

the restriction of the density pi™ to the subspace O. In this case we consider the functional
A :L™(O) — R, defined via

A(p) = {upmu]%w@) if p € My(O) and p™ € BV(O),

+00 else.

Now, the functional A is measurable, lower semi-continuous with respect to the L™(©)
topology, and has compact sublevels. Since ./1( plo) < A(p), we obtain by the same
calculations as above the tightness of (/" |g)nen With respect to A

Since the measure p|g does not have unit mass anymore, we cannot consider the L%
Wasserstein distance Wy as pseudo-distance anymore. However, we can use the following
pseudo-distance g:

Gp,v) = inf {Wa(5, ) | 5 € S(p), 7 € SW)},

(p) i= {5 e PR | plo = pL?, Ma(p) < C},
where C'is the constant from the classical estimates (3.2.4)) for the specific T'. Since X(p)
and ¥(v) are compact sets with respect to the narrow topology, the infimum is attained

at some pair py, Vx. The pseudo-distance g is compatible with A, i.e., if p, v™ € BV(O)
and g(p,v) = 0 then p = v a.e. on ©. The lower semi-continuity of the pseudo-distance
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3 Time-Dependent Minimizing Movement Scheme

g with respect to the L™ (©)-topology can be proven as follows. Choose to convergent
sequences p, — p and v, — v in L™(0O) with sup, g(pn,vn) < co. By the remark
from above, there exists py, v, such that g(pn,vn) = Wa(pn, V). Since the second
moments are by definition of X(p) uniformly bounded, we can extract a non-relabeled
convergent subsequence which converges narrowly to p € ¥(p),v € X(v). By the lower
semi-continuity of Wy with respect to narrow convergence, we get in the end

9(p,v) < Wy(p,v) < liminf Wy (p,, ) = liminf Wa(pp,, vy,).

Therefore, the pseudo-distance g is lower semi-continuous with respect to the L™ (©)-
topology. Thus, g satisfies the assumptions of theorem [2.5.4 Further, by definition
one has g(plg, v|g) < Wa(p,v). Thus we derive, using the same proof as above, the
equicontinuity of (p;"|g)nen With respect to the pseudo-distance g.

Hence, we can conclude that there exists a non-relabeled subsequence of p;"|g which
converges in M(0,T;1™(0)) to some limit p. As before, we use the uniform bounds
in L*°(0,7;L™(0)), to obtain the strong convergence in L”(0,7;L"(0©)). Moreover, the
limit curves p;” and pf|g have to coincide on ©, since p;"|g converges also in measure
on O to p;” and pilg, so both limits have to be equal on ©. Two diagonal arguments in
T — oo and R — oo yield the desired convergence result. O

To complete the proof of the main theorem [3.0.2] we have to validate that pj is indeed
a solution to (3.2.1)) in the sense of distributions.

Theorem 3.2.8 (Solution of the Non-autonomous and Non-linear Fokker-Planck Equa-
tion). The limit curve p; of theorem m is a solution to the non-autonomous and
non-linear Fokker-Planck equation with no-flux boundary condition (3.2.1) in the weak

sense of (3.2.11]).

Proof. Fix ¢ € C°([0,00) x Q) with Vi; - =0 on 9Q and let be T'> 0 and © €
be compact such that supp ¢; C [0,T] x ©. Further, define N := {k | t;* < T} and the
piecewise constant interpolation @;™ of ¢; by

Pt =0, Pt =g forte (il t] and ke N

Similarly, we define V:" and WZ" as the piecewise constant interpolation of V; and W4,
respectively.
For each k£ € Ninsert the smooth function Py in the discrete Euler-Lagrange equation

(3.2.5) for the vector field £ € C°(©). Summing the resulting equations from k = 1 to
N7 + 1 and multiplying with 7y ,, yields:

T

Ny
+) | (Vo (2),x —y) dpir(z,y) =1+ I+ I3+ Iy
k—1"©? *
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3.2 Application to Non-autonomous Fokker-Planck Equation

Due to the strong convergence in L™ (0,7;L™(0)) of p;™ to p, and due to the uniform
convergence of Ap;™ to Ay,

T
lim I, — / / — Ay (o)™ da dt.

The second and third integrals I2& I3 converge to
T 7T T 779
lim Iy + I z/ /<V(so§">,wt">p? +{V(@E"), VW pp) pp dadt

thanks to the convergence of p;™ to p; in the strong L'(0,7;L™(0))-topology, due to

Tn

(F3) and (3.24) (and therefore the uniform convergence of VV;" to VV; and VW,
to VW4, respectively). In order to calculate the limit of Iy, we can expand by Taylor’s
formula the integrand as follows

N»

T
Li=), /@2<V%;n (), x — y) dpy" (w, y)
k=1

Np
=3~ [ b @ = o @) + Oz~ o) dp (2.1)
k=107

N N
-3 /@ (0 (@) — 7 (@) 9T (@) do+ S O(WE (o, pT1,)).
k=1 k=1

Rearrange the first term and use (3.1.13)) to bound the second term, to obtain

T
Iy =— / / 8t30t+rk,nﬁz-n dzdt — / popg" dz + O(Sup Tn)-
0o Je © b

In combination with the narrow convergence of p;™, the uniform convergence of 911+, ,,
to Oypr and the narrow convergence of p" to p° the limit I and is given by

T
lim I, = / / OroLp; dxdt/ wop° dz.

Finally, we can conclude that for an arbitrary test function ¢y the limit curve pf satisfies:

o0
/ / A0} + (Veor, VVi) g+ (Vepr, VIV,  g7) pi darlt
0 Q

:/ /atgotp;“dazdt+/goop0dx.
0 JQ Q

This yields that p; is a solution to the non-autonomous and non-linear Fokker-Planck
equation (3.2.1]) in the weak sense. O

(3.2.11)
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4 Time-Homogenization of Gradient Flows

This chapter is based on the second part of the joint work with Jonathan Zinsl [82]. It is
devoted to the time-homogenization of non-autonomous evolution systems in the high-
frequency limit. Le., we study the limit w — oo of the family (u$’),, of curves of steepest
descent with respect to the time-dependent and periodic free energy functionals &, in
the separable, complete metric space (X, d) when the driving free energy functional &
is periodic and A-convex and the oscillatory part P, of the free energy functional & is
Lipschitz-continuous in space uniformly in time.

Further, we are interested in the high-frequency limit of the non-autonomous Fokker-
Planck equation even in situations where the confinement potential V; and the interaction
kernel W; are not A-convex.

Main Idea in Short. In the simple Euclidean setting, when X = R4, d is induced
by the Euclidean metric, and & € C*([0,00) x RY) is convex, we decompose the free
energy functional & into the time-averaged part &, defined by £(u) = f & (u) dr, and the
remaining oscillatory party P, defined by P; := & — &. The aim of this proof is to derive
a comparison principle or uy and ug®, the solution of the gradient flow equation with

respect to £. We can resort on the implicit representations of the two solutions u% and
u®, which are given by

t t
uy = ug — / VEur(uy)dr and u” = ug — / VE(u®)dr.
0 0
Inserting these representation into the the squared distance of vy and u® yields
t
Ju? =) = [ (VE) 0 =) + (VB ), = ) e
t
< [ ) = Eur ) + Elw) ~ B(u)
0

Note, the last inequality is due to the convexity of the free energy functional &. Using
& — & = P, we get the fundamental inequality of the this chapter

t
= ) < [ Pru®) = Punl) (1.0.1)
0

Now with this inequality at hand, one is able to prove — after a tedious and technical
calculation, where one exploits the periodicity and the uniform Lipschitz-continuity in
space of P; — the convergence of the family (uf), to uf® as w — oo with rate O(1/y/w).
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4 Time-Homogenization of Gradient Flows

Contribution&Method. The comparatively weak solution concept of curves of steep-
est descent when solutions solve the EDE is not suitable to pass to the high-frequency
limit. Hence, we can not extend our results from the previous chapter [3|in the case that
the free energy functional & satisfies solely (E0)—(E5).

As opposed to this the stronger notion of solutions in the sense of the EVI when the
free energy functional &; is additional A-convex is eligible. Here, it is remarkable that the
fundamental inequality can be derived from the EVT (2.3.2)), see (4.1.7)). With this
inequality and the assumption on uniform Lipschitz-continuity of the oscillatory part P
we can derive the desired convergence result. The necessary w-uniform stability results
to pass to the limit w — oo are retrieved by transferring the classical estimates
and the better a priori bounds from the discrete level of the time-dependent
Minimizing Movement scheme to the continuous level.

In the case of the non-autonomous Fokker-Planck equation, we relinquish the assump-
tion on the A-convexity of the free energy functional &;. It is still possible to pass to the
high-frequency limit and prove that the solutions p¥ from (4.2.1) converge in a strong
topology to a limit curve pf® which is the solution to the autonomous Fokker-Planck
equation with time-averaged confinement potential V and interaction kernel W.

Main Results. Our main result of this part concerning the limit behaviour of the
family (uy),, with respect to the semi-convex free energy functional &, reads as follows:

Theorem 4.0.1 (Abstract Metric Space). Assume (E1)-(E3), (E4’), (E5), and (E6)
from Assumptions|3.1.2643.1.3644.1. Iholds. Then, the family (uy)., of curves of steepest
descent with respect to the free energy E.: converges to a solution ui® of the gradient
flow with respect to the averaged energy E, where one defines E(u) := § & (u) dt.

Furthermore, there exists a constant C, depending only on ug and T such that we have
the uniform convergence

C
Our main result concerning the limit behaviour in the high-frequency limit as w — oo
of the family (p}),, of solutions to (4.2.1)) reads as follows.

Theorem 4.0.2 (Fokker-Planck Equation). Let Q C RY be either an open, bounded,
and connected domain with Lipschitz continuous boundary 02 or let Q = RY. Further,
assume m > 1 and that Vi, Wy satisfy additionally to (F1)-(F3) as in Assumption[3.2.1]
also (F4) specified in Assumption [4.2.1. Consider a sequence (wp)nen with w, — co.
For every T > 0, there exists a (non-relabelled) subsequence of (wp)nen and a curve
pg° : [0,00) X Q — [0,00) such that the family (0™ )nen of weak solutions to (4.2.1)

obtained from (3.0.2) converges to p°,

Py = pg° narrowly for every t € [0,00),
e — pe strongly in TP(0,T;1L™(0)) as n — oo,

with © = Q if the latter is bounded or © C RY any bounded subset of R and any
p € [1,00).
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4.1 Application to Gradient Flows in Abstract Metric Space

4.1 Application to Gradient Flows in Abstract Metric Space

This section is devoted to study the high-frequency limit w — oo of solutions uy to the
non-autonomous evolution problem of the form

U = =VxEu(uy), ug = ug, (4.1.1)

where the driving free energy functional & obeys a sort of A-convexity. In this case, there
exists a solution uy to (4.1.1) in the sense of the evolution variational equation which
solves the evolution variational equation

1 1 t
SR w) — () < / [Eur () — Eur (u) — %dz(u:f,w)] & (41.2)

for each 0 < s <t and any w € D(&y). The aim is to prove that the family of solutions
(uy),, converges with convergence rate one-half to the solution u° to the gradient flow
with respect to the time-averaged free energy functional £, defined by £(u) = § & (u) dt
for each u € X.

Convexity. In the context of abstract metric spaces one notion of convexity of the free
energy functional £, which is well-adapted to the gradient flow theory, is the famous As-
sumption 4.0.1 in [4]. In their recent work [39], Ferreira and Valencia-Guevara extended
this notion of convexity for time-dependent free energy functionals &: There exists a
function A; such that for every triple u,vg,v1 € X, there exists a curve v : [0,1] — X
with v9 = vg, v1 = v1 and

1/1
O(7,t,u;7s) < (1 —s)@(7,t, usv9) + sO(7, t,u;v1) — 5 <— + )\t>s(1 — 5)d*(vp, v1)
T
where @ is the Moreau-Yosida functional of the free energy functional &. With this
assumption on the free energy functional & it is possible to construct solutions wuj of
the gradient flow (4.1.1)) in the sense of the EVI (4.1.2)) by means of the time-dependent
Minimizing Movement scheme ([3.0.2)).

Strategy of Proof. The strategy of the proof for the high-frequency limit is divided
into two parts. Firstly, we derive the necessary compactness estimates with the help of
the time-dependent Minimizing Movement scheme. The key ingredient in the derivation
of these w-independent estimates is the uniform Lipschitz-continuity in space of the os-
cillatory part Py of the free energy functional &, defined by Py (u) := & (u) — E(u). This
rather restrictive assumption uncouples the dependency on the frequency w from the
classical estimates , see section . Secondly, we exploit in section the
evolution variational inequalities for &,; and & to establish the metric surrogate of the
comparison principle . Now, combining the w-independent estimates and the com-
parison principle yields after a technical and tedious calculation the desired convergence

result of (uy), to uf® with explicit (sub-optimal) convergence rate one half.
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4 Time-Homogenization of Gradient Flows

4.1.1 Setup and Assumption

Given a separable, complete metric space (X, d). Additionally to the assumptions (E1)—
(E3), and (E5) on the proper free energy functional & from the previous section 3.1} we
shall also assume the following periodicity assumptions.

Assumption 4.1.1. Decompose the free energy functional & = € +P;, where € denotes
the time-mean of &, i.e. 5 f Et(u) dt, and Py is the oscillatory part with zero mean
and period p. The oscﬂlatory part Py [O o0) X X — R satisfies additionally:

(E4’) Lipschitz-continuity in space: There exists L > 0 such that for all u,v € X
and t € [0, oo)
|Pi(u) — Pi(v)| < Ld(u,v).

(E6) Semi-Convexity: There exists a function A; such that for every u, 9,71 € D(&)
and every 7 € [0,7,), there exists a continuous curve 7; : [0,1] — X joining the
given end points vy and 1, along which the penalized energy ® satisfies

1/1
O(7,t,u57s) <(1 = 8)®(7,t,u;7) + s®(7,t,u571) — > (; s /\t>8(1 — 8)d*(v0,m).

4.1.2 Classical Estimates Revisited

In this section we prove the stability of the classical estimate in the discrete-
to-continuous limit. Note, these estimates are a priori not stable in the high-frequency
limit. However, the additional spatial Lipschitz-continuity (E4’) of the oscillatory part
P: yields the classical bounds independent of w.

Lemma 4.1.2 (Classical Estimates Revisited). Let ug € D(&) and let uy be the curve
of steepest descent with respect to Eut. For fized T > 0, there exists a constant C,
independent of w, such that for all t < T there holds:

N lzom SC &) <O d(un,uf) < C. (4.1.3)

Proof. We will prove the estimates on a discrete level and then we use the lower semi-o-
continuity of each bound to obtain the desired result. For this purpose fix a partition 7,
with supy, 7 < % and (I1) from Assumption and let (uzw) e De the corresponding
discrete solution with uj™ = ug. As in the proof of Theorem [3.1.16| we derive for the
discrete solutions (u;)ken the inequality

N B N-1
Z 7d2(u7;-’°1j’“;7w) < Eu’) - )+ Z Poty (u7) Pwt*(uz “)]-
k=1

Exploit the Lipschitz-continuity of P; (E4’) and use Young’s inequality to further estimate
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4.1 Application to Gradient Flows in Abstract Metric Space

the right-hand-side to obtain

N-1 N-1 N-1 1

> [Pug ) = Pug ()] < 3 Lalufup®) < 37 [ L+ (s up ).
k

k=1 k=1 k=1

d2( Ui, W) — € + L*T

27:k

Perform a calculation which is similar to the proof of theorem [3.1.1¢ m to get
d2(u*,u}r\,’w) < 27, (E(UO) —cy + TLZ) + 2d2 (s, up) Zde (Ug, 1 )

Notice that every constant appearing in this equation is 1ndependent of w. Now repeat
the remaining part of the proof with the discrete Gronwall’s lemma [4, Lemma 3.2.4] to
get the desired estimates on the discrete level, which are independent of w, i.e., we have
for all N with tf <T:

N

1 T,w T,W T,W
> Hd2(uk Tup) <0 Ear(u) < C d?(u,, uy”) < C. (4.1.4)
k=1

Due to periodicity of & we have also
P
Eo(uT) < Eunr (ulp®) + (1 + d2(u*,u}r\,’w))/ apdt < C.
0

Hence, we have proven the estimates (4.1.3)) on a discrete level.

Now consider a family 7, of admissible partitions satisfying (I1), then by theorem
the corresponding piecewise constant interpolation ;" converges with respect to the
weak o-topology to a limit curve u¢. Since the L2(0,T)-norm is lower semi-continuous
with respect to the weak topology, we have for the metric slope |(uy)’|:

T T r
/ \(Uf)/\zdté/ (At)2dt§hminf/ (A})? dt
0 0 0

n—o0

where A; is the weak limit of the discrete derivative A} from the proof of theorem [3.1.18
Hence, with (4.1.4) and the definition of A} we get

T Ea(T)+1
w\/|2 < limi n — 2(, Tw <C.
/0 [(ug)| dt_hnrr_l)loréf ; (A 2dt = hrrbngf E —2de () u™) < C
Since &y, and d are lower semi-o-continuous, we have

Eo(uy) < hmlnf&)( ) < C, and d2(u*,uf) < liminfd (s, 1) < C.

Which yields the desired uniform estimates 3|) which are independent of the frequency
parameter w. O
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4 Time-Homogenization of Gradient Flows

4.1.3 High-Frequency Limit

Theorem 4.1.3 (Convergence). The family (uy), of curves of steepest descent with
respect to the free energy £, converges to the solution uy® of the gradient flow with
respect to the averaged energy E.

Furthermore, there ezists a Constant C, depending only on ug, 7 and T such that we
have the uniform convergence

w oo C
d(ut,ut )Sﬁ VtE[O,T]

Proof. Without loss of generality we assume that the period p of Py is equal to one and
that A; from (E6) can be constant and negative, i.e., Ay = A < 0. By [39, Equation
(5.15)] and [4, Thm. 4.0.4], uy and ug® satisfy the following two evolution variational
inequalities, respectively for all w € X:

1 1 !

§d2(u‘;’,w) - §d2(u‘§’,w) / )\d2(u yW) + Epr(uy)dr < / Eor(w)dr,  (4.1.5)
1 2(, 00 1 2, 00 t)‘ 2, 00

§d (u®,w) — §d (u’, w) + Ed (u?,w) + E(u®)dr < 5 (4.1.6)

In order to prove the statement, we apply a Gronwall type argument, i.e., we differen-
tiate the square of the distance of uf and uy°. Since the solution curves are absolutely
continuous, this step is valid and we can apply [4, Lemma 4.3.4] to obtain

ds 2 Ys 5=t p\0 h
4+ lim sup ldQ(Ut ’uHh) %dQ(u%u’ ufo).
AN h

The first term on the right-hand-side can be estimated using the evolution variational
equation (4.1.5)), the lower semi-o-continuity of & and d to get

%d2(u:tu?u;>o) - %d2(u$—h7u?o)

lim sup
N h
! [e’) A 2/, w , 00 w
<limsup — [Sw(ut ) — =d“(u, u®) — Epr(uy)| dr
N0 h 2

)\
SEn (i) — BP0 05) — Eurlu).
Analogously, using the EVI (4.1.6) we obtain for the limit of the second term

142 1,32
sd° (v, u® ) — sd°(u¥, u
Jim sup 3 (uf, t+h) 2 (ug', ug®)

N h

oW >‘ w o) c(,,00
§5(Ut)_§d2(utaut ) — E(u®).
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4.1 Application to Gradient Flows in Abstract Metric Space

Hence, by adding these results we get the following estimate

< Put(u®) = P () = AP (uf, i)

from which we conclude with the differential form of Gronwall’s inequality that

t
NG ) < [ (P () = Pun(u) d (4.1.7)
0

After a rescaling of the time variable the r.h.s. can be decomposed, i.e.,

1

. wt
/0 62>\r (,Pwr(u:o) _ ’Pwr(u;’f)) dr :; /0 62>\7‘/UJ ('Pr(ug;)w) - PT(U(:/UJ)) dr

lwt] -1 1 k+1
-y /k AN (Pr(ufS,) — Pr(u),)) dr

w
k=0

1 wt r/w w
+ /|_ 2)\ / (P'f( r/w) - pr(ur/w)) dr.

wt |

The first term in this equation can be further expanded inserting two productive zeros,
such that we have

wt|—
Z
k=0
wt|—

2)\T/w (Pr (u;??w

) = Pr(uy

r/w

)) dr

?r\

E\H

I

w\

[ /e (Pr (u;“)?w) —Pr (u;’u/w)) — P (PT (uz(/)w) —Pr (uzj/w))

€|
=
I
[en}

[P — 2 (P (uS,) Pr(u%/w))} dr.

20w

Subsequently, use Taylor’s expansion for the function r +— e to get

wt]—
l 2>\7‘/w 00\ w
> kzzj / (Pr(u,) = Pr(us),)) dr
[wt]—
1 20\ /w 00 w o] w
= /k [ [ (Pr(uS,)) — Pr(u®),)) — Prlugs,,) + Pr(uf,)

e
Il
o

w 2A(r —k oo w
TR >Yey/ (W)(Pr(uk/w) — Pr(uk/w))} dr.

for some ¢, € [k,r]. Exploit the Lipschitz continuity of P, the absolute continuity of uy,
respectively of uf°, and use the estimates (4.1.3)) to obtain the following upper bound for
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4 Time-Homogenization of Gradient Flows

the modulus of the previous equation

Lwt

k+1
1 / 2 (P (ugs,) = Pr(usy,)) dr

Lwtj -1

1 b r/w
S; / |: 2/ (Ld( r/w’uk’/w) +Ld( r/w’uk/w))
k=0 'k
2(A(r —
+€2)\<T/w | |((Z )Ld( k/w,uk/w)} dT
Lwtj k+1 r r
L « o)/ w w\/ 2|A‘ o w
<> /k [y tas+ 7 ey 1as + 2 duis, )] ar
Lot] lwt] -1
L w o w L 2|l e
<[ >’\+\<us>’\ds+; > g,
k=0
L 2L |\ T
= H| |HL20T H| |HL20T w ¢
C’
<=
w

We estimate the remainder term of the starting equation accordingly with a combination
of the Lipschitz continuity of P; and estimate (4.1.3) such that we obtain

I t— |wt
‘/ eQAT/w(PT(ufjw) — Pr(uf/w)) dr‘ < wr T v JC’ <
[wt]
Thus, combining these results we obtain

2M dz( t’ut )S

yielding the desired uniform convergence of uy to ug® for every finite horizon 7' O]
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4.2 Application to Non-autonomous Fokker-Planck Equation

4.2 Application to Non-autonomous Fokker-Planck Equation

We analyze in the second part of this chapter the high-frequency limit in the special case
of the L2-Wasserstein formalism when the free energy functional & is not A-convex. In
particular, we investigate the high-frequency limit of the family (p%)., of solutions to the
non-autonomous and non-linear Fokker-Planck equation

Oy = A(py)™ + div(py Vi) + div(pf (VW % p7)),  p§ = po, (4.2.1)

with non-flux boundary condition in a domain  C R4, which is either an open, bounded
and connected domain 2 with Lipschitz continuous boundary 02 and normal derivative
n or equal to the entire space Q = RY. As before, the driving free energy functional &,
of the L2-Wasserstein formalism is given by
Eut(p) 1= fﬂ plog(p) + Vip + %(th xp)pdr if m=1, (4.2.2)
w = . 2.
fQ ﬁpm + Votp + %(th xp)pdx ifm>1,

if p = pdL? and otherwise we set &,:(;) = co. Here, we focus on the case when the
confinement potential V; and the interaction kernel Wy are not A-convex. Thus we are in
the L2-Wasserstein framework where the driving free energy functional & is not convex
along generalized geodesics and the theory of high-frequency limits in abstract metric
spaces is not applicable.

Strategy of Proof. Due to the lack of convexity of the free energy functional & we
are not able to apply the theory developed in the previous section [f.I] Neither we can
establish a comparison principle for the family (p{), and the limit function pf°, but
this goes in line with the L2-Wasserstein theory of the Fokker-Planck equation without
having additional regularity like the A-convexity.

Still, your ideology behind the proof of the high-frequency limit is to derive the nec-
essary compactness estimates by means of the time-dependent Minimizing Movement
scheme and then pass in the weak formulations of the non-autonomous Fokker-Planck
equations to the limit w — oco. Note, the classical estimates are intrinsic
properties of the time-dependent Minimizing Movement scheme and solely rely on the
uniform Lipschitz-regularity in space of the oscillatory party P; of free energy functional
&:. Hence, we recover in section the classical estimates. Even for the refined reg-
ularity L%(0,T;BV(Q))-estimates for (p; )™ it can be proven that these bounds are
stable with respect to the discrete-to-continuous limit 7 — 0 and are independent of the
frequency w. These estimates are sufficient to pass to the high-frequency limit w — oo
of the family (p{),, and prove the convergence in the narrow-topology and in the strong
LP(0,T;L™(2))-topology to a solution pf° to the time-averaged Fokker-Planck equation,
see section Note, to pass to the limit w — oo in the weak formulation of the
non-autonomous Fokker-Planck equations we utilize the theory of I'-convergence
and use the fact that the families (V). and (W), converges in a weak sense to the
time-averaged functions V and W, respectively.
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4 Time-Homogenization of Gradient Flows

4.2.1 Setup and Assumptions

Compared to the previous section, we solely assume the Lipschitz-continuity in space
uniformly in time and not the semi-convexity of the free-energy &;.

Assumption 4.2.1. Decompose the confinement potential V; := V + P, and the in-
teraction kernel W; : W + R; into the time independent parts V and W, respectively,
and the oscillatory parts P, and R;, respectively, with zero mean and period p. The
oscillatory parts P, and R satisfy additionally:

(F4) Lipschitz-continuity in space: There exists L > 0 such that for all ¢ € [0, c0)

Pi(z) = Pe(y)l» IRe() = Re(y)| < Lz =yl

4.2.2 Classical Estimates Revisited

It is clear that (E4’) follows from (F4) and therefore, we can derive from this in the same
manner the classical estimates from Lemma ie.

Lemma 4.2.2 (Classical Estimates). For fired T > 0, there ezists a constant C, inde-
pendent of w, such that for all t <T there holds:

H’(p;})/‘HLQ(O,T) <G, &o(py) < C, dz(p*,pf) <C. (4.2.3)
Subsequently, also the estimate from Lemma is independent of w and therefore for
fixed T" > 0 there holds for the same constant C and for all t < T
Ma(pf) < C, Un(pf) < C.

Lastly, the better a priori bounds are independent of w, too. Since the L2(0,7;BV(Q))
is lower semi-continuous with respect to the L2(0,T;L™(Q))-topology, this estimate is
preserved in the discrete-to-continuous limit, i.e.:

Lemma 4.2.3 (Step Size Independent Global L?(0, T; BV(Q))-estimates). For fived T >
0, there exits o constant C, independent of w, such that:

||(P;J)m||L2(0,T;BV(Q)) <C. (4.2.4)

4.2.3 High-Frequency Limit

In this section, we finally prove the high-frequency limit w,, — oo for the family of weak
solutions (p;™)nen to obtained by the time dependent Minimizing Movement
scheme . In particular, we prove that this family (p;™)nen converges in the narrow-
topology and in the strong LP(0,7;L"™(0©))-topology to the solution p2° to the time-
averaged Fokker-Planck equation.
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4.2 Application to Non-autonomous Fokker-Planck Equation

Theorem 4.2.4 (Narrow Convergence). Define for a sequence (wy)nen with w, — oo the
family of weak solutions (p;™ )nen obtained by the time-dependent Minimizing Movement
scheme with respect to the free energy functional &,,,;. Then, there exists a (non-
relabelled) subsequence of (wn)nen such that

= pg° narrowly for every t € [0, 00).

Proof. At first, we prove the existence of a narrow convergent subsequence, which con-
verges to an absolutely continuous curve. By the uniform L2(0, T)-estimate on the
metric velocity |(p;™)’| we can extract a (non-relaballed) subsequence such that |(py™)’|
converges weakly in L2(0,T) to A; € L%(0,T). To apply the Arzeld-Ascoli theorem we
estimate now

t
lim sup Wa(pi™, p<m) <hmsup/] |dr:/ Ay dr.

n—oo n—oo

Since the entropy of p is uniformly bounded by - the sequence (p;™)nen is con-
tained in a weak*-compact set. Therefore, by the refined Arzela-Ascoli theorem [4]
Proposition 3.3.1] we obtain the existence of a limit curve pf® € AC? (0, o0; (P2(R2), W3))
such that pi™ converges pointwise with respect to the narrow convergence. O

Theorem 4.2.5 (Strong Convergence in LP(0,7;L™(2))). Given a sequence (wp)nen
with w, — oo, and giwen the limit curve p° in theorem [{.2.4] Then, there exists a
further (non-relabelled) subsequence of (wn)nen such that for any T > 0, any p > 1 and
any bounded subset © C ()

prm — pee strongly in LP(0,T;L™(0)) as n — oc.

Proof. With our los of generality we fix © = Q or © = Br(0). To obtain the strong
LP(0,T;L™(©))-convergence result, we proceed as in the convergence proofs of Theorem
- 3.2.7| and apply the extension of the Aubin-Lions Theorem [2.5.4 “ to the sequence (py™ |o
Jnen With the auxiliary functionals A and g as in the proof of Theorem | As before,
due to the better a priori estimates ) the sequence is tight w1th respect to fT
To verify the relaxed averaged weak integral equi-continuity with respect to g use that
|(p™)!| converges weakly in L2 (0,00) to A. This yields with Fatou’s Lemma

T—t
hgﬂ inf lim sup — / / ps+t’@ , P g)ds dt

n—oo h

T—t
< lim 1nf lim sup — / / / )| dr dsdt
AN\ n—00
T—t
<hm1nf/ / / A, drdsdt =0
ANO

By the extension of the Aubin-Lions Theorem [2.5.4] and the Remark [2.1.1] we get the
desired convergence result for every compact set @ Q Q) and for every finite time horizon
T. O
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4 Time-Homogenization of Gradient Flows

Theorem 4.2.6 (Solution to the Time-average Fokker-Planck Equation). Given a se-
quence (wp)neN With w, — 00, and given the limit curve p° in theorem|4.2.4. Then, p?°
is a weak solution to the time-averaged Fokker-Planck equation in the sense of (4.2.6)).

Proof. At last we prove that the limit of pi™ solves the time averaged Fokker-Planck
equation in a weak sense. Therefore, we calculate the limit, as n — oo, in the weak
formulations of each pi™, i.e., for each test function ¢; € C°([0,00) x Q) we have

/ / — A (B + (Vipr, V) g2 + (Viop, VW, g7 g daz dt
0 [9]

:/ /8tg0tp‘t"” dxdt+/g00p0dx.
0o Jo Q

Let T'> 0 and © C € be compact such that supp ¢; C [0,7] x ©. The limit of the first
integral in (4.2.5)) follows from the L™ (0,7T;L™(0))-convergence of p;™ and we get

lim/ /—Agat(pf”)mdxdt:/ /Agpt(pfo)mda:dt.
nmeeJo o Ja 0o Ja

To deduce the limit of the second integral in (4.2.5), we utilize VV,,; —* VV in L°°(0,7)
for every x € O (see, for instance [12]). Thus, also VV,, ; —* VV in L>(0,T; L>(0)).
Since, p™ converges to pf° in L1(0,T;L(0)) we have

VYVt pf" =" VV pi° in L=(0,T; L™(0)).

Since the effective domain of integration is compact we finally have

lim / / (Vi, VVi) pm de dt = / / (Vr, VV) pi da dt.
0o Jo o Jao

n—oo

(4.2.5)

To compute the limit of the third integral, we proceed similar. As before, VW, ; —* VW
for every z,y € RY and also VW, (x —y) —=* VW (z — y) in L>®(0,T; L>=(© x 0)). So
by the strong L1(0, T; 1.1 (0))-convergence of p™ to p® we have

VW, i(z —y) pi™ (2)pi™ (y) = VW (z — y) p°(x)p°(y) in L®(0,T; L>(O x 0)).

Since the effective domain of integration is compact we finally have

lim / / (Vpr, VIWe % pi™) pm de dt = / / (Vor, VW * p2°) pg° da dt.
o Jo 0o Jo

n—o0

Lastly, by the narrow convergence of p;™ the limit of the left-hand-side of (4.2.5) equals

lim/ /&gcptp‘f" dxdt+/gpop0dx:/ /atcptpfodazdt+/goop0dx.
n—=oo Jo  JO Q 0o JQ Q

Summarized, we obtain that pf® solves for each test function ¢, € C2°([0,00) x Q):

| [~ + (V0 V7) 02 4 (Vs VI ) g5 o
0 Q

z/ /Otwtpif"dwdH/%podx
0 Q Q

yielding that p° is a weak solution of the time-averaged Fokker-Planck equation. O

(4.2.6)
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5 Backward Differentiation Formula 2

This chapter is concerned with the novel temporal discretization by means of the second
order Backward Differentiation Formula for gradient flows in metric spaces and in par-
ticular of drift-diffusion equations like the non-linear Fokker-Planck equation or
the Derrida-Lebowitz-Speer-Spohn equation cast in the L?-Wasserstein formal-
ism. The first part is based on the joint work with D. Matthes [70], the second part is
based on my own work [81], and the third part was developed during the preparation of
this thesis.

Main Idea in Short. Generally speaking, we study the approximation of curves of
steepest descent in the energy landscape of a functional £ : X — R U {oo} with respect
to a metric d on X. Before we elaborate on our motivation and results, we briefly outline
the concept in the simplest setting, namely when X = R9, d is the Euclidean metric,
and € € C°(RY), in which case the problem amounts to approximate solutions to

= —VE(u). (5.0.1)

With these strong assumptions on &, it follows that the second order Backward Differ-
entiation Formula (BDF2) method with any sufficiently small uniform time step 7 > 0,

T T T
Buy, — dug_y +ug o
2T

— _VEMD), (5.0.2)

is well-defined and convergent for well-prepared initial data (uf,u]). It is further well-
known that this is a second order approximation of the true solution u; to , ie.,
ul = u(kt) + O(r%) as 7 — 0, see e.g. [I1]. Hence, the strength of the BDF2 method
in comparison to the implicit Fuler scheme is that the former — at least in the smooth
setting at hand — converges to second order in 7.

The strategy for our own convergence analysis in the abstract metric space case is the
variational formulation of the BDF2 method which is inspired by the Minimizing
Movement scheme from [4, 29, B30]. Therefore, we proposed the following scheme to
construct a discrete approximation (uf)zen of a curve of steepest descent emerging from
the initial datum ug € X for metric gradient flows: For a given pair of initial conditions
(ud,u]) that approximate ug define inductively a discrete solution (uf)gen such that

1 1
ul,; € argmin —d?(uf,w) — —d*(u]_,w) + E(w). (5.0.3)

weX T 4T

Note, in the euclidean setting the minimizer u] satisfies the BDF2 recursion ([5.0.2)).
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5 Backward Differentiation Formula 2

Contribution. Studies on the BDF2 scheme in the ODE setting, when X = RY and
d is the Euclidean metric have been an active topic in the 1950’s and 1960’s |26, 27].
Subsequently, BDF2-based problem adapted methods for the integration of flows on
(finite-dimensional) submanifolds X, e.g., for ODEs with constraints, have been proposed
and analyzed, see e.g. [25] [44]. More recently, the method in the Hilbertian setup, where
X is a Hilbert space and d is induced by the norm, has attracted a lot of attention. There
is now a rich literature on convergence results, particularly for very general nonlinear
right-hand sides, see e.g. [11, 2}, B, 13| B35 36, B7, 52, 59] 62, Q0]. The analysis appears to
be more or less complete now, at least under reasonable conditions on the nonlinearity.

We are apparently the first to analyze (a variational formulation of) the BDF2 method
for approzimation of gradient flows in abstract metric spaces, and to prove its convergence
just under the hypothesis of semi-convexity in the abstract metric space case and just
under mild assumptions on the confinement potential V' and the interaction kernel W
in the case of displacement-A-convex flows in the L2-Wasserstein space. Our proof is
different from the one in ODE textbooks |11, [43] 51], also from the ones typically given
in the Hilbertian setting, like in [35]. The key difference is that due to the possible
“roughness” of the metric space X, there is no appropriate notion of smooth solution for
the gradient flow (in general, there does not even exist a definition for the differentiability
of a curve). Hence, we cannot invoke error estimates that rely on Taylor expansions
around the limiting solution.

Method in the Abstract Metric Space Case. These difficulties of roughness are
already present in the convergence analysis of the implicit Euler method in metric spaces,
and have been overcome in [4] by formulating all essential estimates in a robust way that
requires no smoothness. Naturally, the strategy for our own convergence analysis of the
variational BDF2 method is inspired by that from [4], and there are various similarities
also on the technical level. For instance, being unable to estimate the error between
the genuine and the approximating discrete solutions directly, we resort to a Cauchy-
type argument that compares discrete solutions with different time steps as in [4], section
4.1]. Further, the basis for the control of the local error is a convexity inequality for the
variational functional, which estimates the change of distance to a fixed “observer point”
during one iteration: this is [4, Corollary 4.1.3| for the implicit Euler method, and
for the BDF2 method. While the accumulation of the global error is relatively easy to
control for the one-step Euler discretization, see [4, section 4.4|, this is an extremely
tedious piece of work for our two-step method.

Our approach yields a control on the global approximation error, which is not of order
two but only of order one-half. We also provide an example to show that indeed, even
for specific, seemingly harmless choices of (X, d) and &, convergence takes place at first
order only. In view of the results in [4] section 4.4| on the implicit Euler method, it seems
likely that our variational BDF2 converges to first order in general. Currently, we are
not able to close the apparent gap between order one-half and order one. There is little
hope to adapt the methods leading to improved convergence in [4, section 4.4|, since
there, profound properties of the Yosida regularization play a pivotal role in estimating
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the local error. No comparable estimates are known for our BDF2 functional, and it
seems unlikely that an appropriate surrogate exists e.g. for the duality formula for the
slope |4, Lemma 3.1.5]. And according to our general philosophy, that we describe below,
any further investigations in the direction of improving the rate beyond one-half appear
rather pointless.

We emphasize that the proven slow convergence order one-half does not contradict our
initial intention of providing a method of faster convergence than the implicit Euler one.
Indeed, if the approximated solution is smooth enough (which, in specific situations,
can often be verified a posteriori by considering it in a different setting or in an ambient
space), then the classical convergence proofs from textbooks apply and yield the desired
rate of order two. That philosophy is justified by a series of numerical experiments that
all show second order convergence. Qur contribution is that — regardless of the regularity
of the limiting solution under consideration — convergence of the method is guaranteed,
even with an explicit rate. And our proof utilizes solely the variational structure of the
scheme and the semi-convezity hypothesis on &.

Method in the L2-Wasserstein Case. Our main contribution of the second and third
section of this chapter is to improve the convergence result of [7(] from weak to strong
convergence of the discrete solution (p] )reny when one wants to approximate solutions to
the non-linear Fokker-Planck equation or to the Derrida-Lebowitz-Speer-Spohn
equation by means of the variational formulation of the BDF2 method. Also
in contrast to [70], our approach is independent of the uniform semi-convexity of the
augmented energy functional on the right-hand side of . More in the spirit of the
original works on the linear Fokker-Planck equation of Kinderlehrer et al. [54], we solely
utilize the differential structure of both the L2-Wasserstein space and of the augmented
energy functional.

Note, the BDF2 method and the techniques presented here have two further possible
applications. Firstly, the formally higher-order approximation in time is expected to
improve the performance of numerical simulations due to the better resolution of the
solution with respect to a coarser time grid. Secondly, PDEs with gradient flow structure
such that the energy function £ do not possess any uniform semi-convexity property —
like the Hele-Shaw equation seen as L2-Wasserstein gradient flows — are not covered
in [70] nor in this chapter. However, as long as the subdifferential calculus in the T2-
Wasserstein space is applicable to £ our method is feasible. With this technique at hand
one can compute from the discrete Euler-Lagrange equations for the discrete
approximation by variations along solutions to the continuity equation (likewise theorem
. Hence, having sufficiently good regularity estimates for the discrete solution,
passing to the limit as 7 tends to zero could yield directly a distributional solution for
the aforementioned class of PDEs without using the abstract theory of curves of steepest
descent for A-contractive gradient flows.

In conclusion, the BDF2 method provides a structure-preserving numerical scheme of
formally higher-order approzimation in time with a strong notion of convergence for drift-
diffusion equations like (5.2.1) or (5.3.1)).
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5 Backward Differentiation Formula 2

Main Results in the Abstract Metric Space Case. Our main result concerning
the well-posedness and the limit behavior is given as follows. In the abstract metric space
case define the interpolated solution u] : [0,00) — X, given by

uy =ugy, u; =up forte ((k—1)r,kr] and k € N.

The limit-behavior as the time step size 7 — 0 of the equidistant partition 7 = (7,27,...)
is stated in the following theorem.

Theorem 5.0.1. Assume (X, d) is a complete, separable metric space, the free energy
functional € satisfies (E1)-(E3), specified in Assumption and given the equidistant
partition T = (7,27,37,...) with step size T € (0,7«). Then, the following statements
holds:

a) Existence of Discrete Solutions. For each approzimation (uf,u]) of the initial
datum uy € D(E) satisfying (I1) as defined in Assumption one obtains a

unique discrete solution (uf)ren.

b) Step Size Independent Estimates. For fized time horizon T > 0, there is a
constant C, depending only on dy, do and T, such that the corresponding discrete
solutions (u] )yen satisfy for all N € N with N7 <T':

N
1

> 2*612(“%-17%) <G, JE@WRI<C,  d(unuf) <C.
-

k=1

Furthermore, consider a sequence of equidistant partitions T, = (Tn,2Tn, 3Tn, . ..) with
vanishing step sizes 1, € (0,7.) which are strictly decreasing, and which are such that
the quotients T,,/Tn41 are natural numbers. Let a sequence of initial data (uf", u{")nen

be given that satisfy (I1) as defined in Assumption and such that ui” L ug. Then,

¢) Convergence. There exists uf € AC?(0,00;(X,d)) such that the sequence of
piecewise constant interpolations (u;™ )nen converges locally uniformly with respect
to time to uj.

d) Convergence Rate. More precisely, for every time horizon T > 0, there is a
constant C that can be expressed in terms of di, do and T alone, such that for all
tel0,T):

d(@™,uf) < C(d(ul™, uo) + /) - (5.0.4)

e) Solution of the Gradient Flow. The limit curve uj from c) is a solution of the
gradient flow for € in the sense of the definition the EVI (2.3.2)).
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Main Result L2-Wasserstein case. In the L?-Wasserstein case we denote by (PF )ken
the discrete solution and by p; the interpolated solution. Our first result on the approx-
imation of the solution to the non-linear Fokker-Planck equation reads than as.
Note, this case the free energy functional £ is given by .

Theorem 5.0.2 (Non-linear Fokker-Planck Equation). Let Q C RY be either an open,
bounded, and connected domain with Lipschitz continuous boundary 0Q or let Q = RY,
Further, assume m > 1 and that V' and W satisfy (F1)&(F2) as specified in Assumption
. Given an equidistant partition T = (1,271,371, ...) with step size T € (0,7x) and an
approzimation (pf, p7) of the initial datum po satisfying (11)€(12) defined in Assumption
[5.2.3. Then, the following statements hold:

a) Existence of the Discrete Solutions. There exists a sequence (pf)ken satis-
fying the BDF2 scheme (5.0.3)), which satisfies the step size independent bounds
(5.2.10) on the kinetic energy, on the internal energy, and on the second moments.

b) Step Size Independent 1L?(0,T;BV(RQ))-estimate. For each fived time horizon
T > 0 there exists a non-negative constant C, depending only on m,V,W, and T
such that for each T € (0,7):

1PE)™ |2 0,78v(0)) < C-

Given a vanishing sequence (Tp)nen of step sizes T, € (0,7) and initial data (p{", p1™)

satisfying Assumption then:

¢) Narrow Convergence in P2(S2). There exists a (non-relabelled) subsequence
(Tn)nen and a limit curve p, € AC%(0, 00; (Pa(R), W2)) such that for any t > 0:

D" — pu(t) narrowly in the space P2(2) as n — oo.

d) Strong Convergence in L™(0,T;L™(RQ)). With the notations from c), there
exists a further (non-relabelled) subsequence (Tp)nen such that for all T > 0 and
any bounded subset © C €):

—Tn

D™ — Px strongly in L™ (0, T;L™(0©)) as n — oo.

e) Solution of the Non-linear Fokker-Planck Equation. The limil curve pf
from c) satisfies the non-linear Fokker-Planck equation with no-flur boundary con-
dition in the following weak sense: For each test function ¢, € C2°([0, 00) X
Q) with Vi -n =0 on OQ the limit function p} satisfies:

| [ =0ttt + (V0 YY) b1 + (Vi W ) pf
0 Q

=/ /atsotp*da:dH/sOopodx-
0 Q Q
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5 Backward Differentiation Formula 2

Our second results on the approximation of solutions to the Derrida-Lebowitz-Speer-
Spohn equation ([5.3.1) reads than as. Here, the free energy functional £ is given by the
Fisher information Z as defined in (2.4.5]).

Theorem 5.0.3 (Derrida-Lebowitz-Speer-Spohn Equation). Let Q C RY be an open,
bounded, and conver domain with Lipschitz continuous boundary 0Q or let Q = RY.
Given an equidistant partition T = (7,27,37,...) with step size 7 € (0,7%) and an
approzimation (pf, pT) of the initial datum py satisfying (11)€(12) defined in assumption
[5.5.1l Then, the following statements hold:

a) Ezistence of the Discrete Solutions. There exists a sequence (pf)gen satis-
fying the BDF2 scheme (5.0.3)), which satisfies the step size independent bounds
(5.3.3) on the kinetic energy, on the Fisher information, and on the second mo-

ments.

b) Step Size Independent 1.2(0,T;H2(Q))-estimate. For each fized time horizon
T > 0 there exists a non-negative constant C, depending only on 2, and T such
that for each T € (0, 7y):

H\/ﬁHL%O,T;H%Q)) <C

Given a vanishing sequence (Ty)nen of step sizes T, € (0,7y) and initial data (pg", p1™)
satisfying Assumption then:

¢) Narrow Convergence in P2(2). There exists a (non-relabelled) subsequence
(Tn)nen and a limit curve p, € AC?(0,00; (Pa(S2), Wa)) such that for any t > 0:

P — pi(t) narrowly in the space P2(2) as n — oo.

d) Strong Convergence. With the notations from c), there exists a further (non-
relabelled) subsequence (7y)nen such that for all T > 0 and any p > 1:
ot = pp strongly in TP(0, T;LY(Q)) as n — oo,
Pt =\ i strongly in L2(0, T; H(Q)) as n — oo,
Vo =\ Pf weakly in L2(0, T; H?(Q)) as n — oo.
e) Solution of the Derrida-Lebowitz-Speer-Spohn Equation. The limit curve
p; from c) Satisﬁes the Derrida- Lebowitz-Speer-Spohn equation with no-flur bound-

ary condition wn the following weak sense: For each test function p; €
C2([0,0) x Q) wzth Vi -n =0 on 99 the limit curve pf satisfies:

/ | 5980, Y57} + 2(Hess /7. /) da

=/ /8ts0tp*dxdt+/soopodx-
0 Q Q
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Analytic (Counter-)Example. We give a simple example showing that under the
given assumptions, in general one cannot expect second order convergence of the BDF2
method, i.e., u] = u(kt) + O(r?) in place of u] = u(k7) + O(y/7) in (6.1.18). Our
example is placed on the (very regular) metric space X = R with the usual distance,
with the convex but not globally differentiable potential & defined by &£(u) := u 1g,>0}-
The associated gradient flow with initial condition up = 1 is the continuous curve uf :=
(1 —1) 1o<¢<1y that fails to be differentiable at ¢ = 1.

The solution u7,, to the kth minimization problem in is elementary to compute
— making a case distinction whether the minimizer is p051t1ve, negative or zero — and
explicitly given by

4, T 1, T 2 : : : ip:
sup — zup ; — 57 if that expression is positive,
T _ 4 1 . . . .
U1 = § 3UL — 3UL4 if that expression is negatlve (5.0.5)
uT 2
0 otherwise, i.e., if 0 < % uk—gk < 3T

One easily concludes that for the initial conditions uj = 1 and u] = 1 — 7, the kth
approximation equals u},; =1 — (k4 1)7 as long as that expression is positive. Indeed,
one has

4 .1 _

guk - 3uk—1

OJM#

(1—I<:T)—%(1—(19—1)7-)—%Tzl—(k:+1)7>0,

so the first case in the recursion b)) applies. Accordingly, let N be the smallest index
k > 1 for which kT > 1. For snnphmty, we assume that u}, = 0, i.e., that the third case

in (5.0.5) applies:
4

The other case, in which —7 <1 —- N7 < —%T, leads to a similar result, but with more
complicated formulae. Recalling that the two-step recursion axi1 = %ak — %%—1 has the
general solution a;, = p + 37¥¢ with real parameters p and ¢, one easily deduces from
5.0.5) in combination with uy;, = 0 and vy ; =1— (N —1)7 € [£7,7] because of
5.0.0[) that

4 1 1 1
uf = guiy — gup, = —5(1- 3= (k=Ne) ) N1 < —s(1- 3=k=Nr <0

for each index £ > N,. In conclusion, we have exact approximation for ¢ < 1, i.e.,
uj = uy, for every k with k7 < 1, but a residual of order 7 at every point ¢ > 1: with
indices kf chosen such that one has kf 7 —t > 1 as 7 — 0, it follows that

lim ——* >

1 1
T—0 T 6

(1- 3—(kZ—Nr)) i

lim .
T 6

—0

This clearly excludes the possibility of second order convergence.
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5 Backward Differentiation Formula 2

5.1 Application to Gradient Flows in Abstract Metric Space

This section is based on the joint-work with D.Matthes [70]. For definiteness, we are
working in this section inside the abstract framework developed in the first part of the
book [4]; given a separable, complete metric space (X, d) we are seeking to approximate
solutions to the gradient flow equation

i = —VxE(uy), ug = Ug
by means of the second order Backward Differentiation Formula

T T T
Buy, — 4ug g +ug o
2T

= —VE(uf).

Although our considerations are very general, we have three specific settings in mind.
The first is that of gradient flows for smooth functions on a finite dimensional compact
manifold, the second concerns uniformly semi-convex functionals on Hilbert spaces, and
in the third, we consider flows for uniformly displacement semi-convex functionals on the
L2-Wasserstein space (P2(2), Wa).

Method. We propose the following construction of a discrete approximation (u*)gen
via a variational formulation of the BDF2 method:

Scheme. For each equidistant partition 7 = (7,27, 37,...) with sufficiently small time
step 7 > 0, let a pair of initial conditions (uj,u]) be given that approximate ug. Then
define inductively a discrete solution (uf)ren such that each wuj,, with k¥ € N is a
minimizer of the following functional,
T T. . 1 2(, T 1 2(, T
w = Y(T,u_q,ul;w) = ;d (uf, w) — Ed (uf_q,w) + E(w).

Define the corresponding piecewise constant interpolation in time @] : [0,00) — X of the
discrete solution uj in time via

uy =uj, u; =uj forte ((k—1)r,kr] and k € N.

Strategy of the Proof. The main idea of our convergence analysis is to exploit the
A-convexity of the free energy functional £ and of the BDF2 penalization W. The precise
definition and some examples satisfying this assumption are contained in section
This specific convexity assumption of the BDF2 penalization ¥ and the variational for-
mulation of the scheme allows us to derive existence of the discrete solution (p])ren
and further intrinsic properties like the almost energy diminishing property , the
classical stability estimates , and the time-discrete version of the EVI ,
see section [0.1.2] The latter is the surrogate of a time-discrete Euler-Lagrange equation
and comprises a comparison principle which is the essential ingredient in the proof of
convergence of the approximation pj , see section This comparison principle allows
us to derive the sought-for (sub-optimal) convergence rate of order one-half as 7 — 0.
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5.1 Application to Gradient Flows in Abstract Metric Space

5.1.1 Setup and Assumptions

Fix a complete, separable metric space (X,d) and define the BDF2 penalization ¥ :
(0,7%) x X x X x X - RU{oo} of £ by

1 1
U(r,u,v;-): X 5> RU{oo};  U(r,u,v;w) := —d*(v,w) — 4—d2(u,w) + E(w).
T T

The discrete solution (for € on (X, d)) corresponding to a time step size 7 € (0, 7y)
and pair of initial data (uj,u]) € X x X is the sequence (uf)ren, which is inductively
obtained via

up,, € argmin W(7,uj_q, up;w) (5.1.1)
weX

for k € N. From now on, we shall work with the following assumptions on the free energy
functional £.

Assumption 5.1.1. The free energy functional £ : X — R U {00} is proper and satisfies
the following regularity conditions:

(E1) Semi-continuity. £ is sequentially lower semi-continuous on (X, d):

T = E(u) < liminf E(uy,).

n—oo

(E2) Coercivity. There exist 7, > 0 and u, € X, such that

(E3) Semi-convexity. There exists a constant A such that for every w, v, v, 71 € D(E)
and every 7 € [0, 7y), there exists a continuous curve 7, : [0,1] — X joining the
given end points 79 and 1, along which the penalized energy W satisfies

V(7 u,v37s) <(1 = 8)¥(T, u,v;70) + sY(7, u,v;71)

1,3 ) (5.1.2)
- §<§ + )\)5(1 —5)d” (0, M)
Moreover, without loss of generality, we assume that
1
A<0 and (—A)7 < 3 and 7, <1. (5.1.3)

Note that for 0 < 7 < 7, the last term on the right hand side of (5.1.2)) is positive for
Yo # 1 and 0 < s < 1, implying that s — W(7, u, v;~s) is strictly convex.

Remark 5.1.2. Assumptions (E1)&(E2) are standard minimal hypotheses on the energy
in the context of metric gradient flows. (E3) plays an analogous role for the BDF2
discretization as Assumption 4.0.1 in [4] plays for the minimizing movement scheme.
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5 Backward Differentiation Formula 2

Lastly, we have to specify our assumptions on the approximation (uf,u]) of the initial
datum ug, which will be of interest in derivation of the classical estimates.

Assumption 5.1.3. The approximation (uf,u]) of the initial datum ug € D(E) satisfy:

(I1) There are constants dy and dg, such that for all 7 € (0, 7y):

E(ug) < d, E(u]) < du, and d(ug,ui) < dor.

Examples

In this part we discuss three general situations in which the convexity assumption (E3) is
satisfied, namely that of uniformly semi-convex functionals £ on a Hilbert space H, that
of semi-convex C'-functions £ on Riemannian manifolds of non-negative cross-curvature,
and that of functionals € on the L.2-Wasserstein space (P2(Q), W3) that are uniformly
displacement semi-convex.

Hilbert Spaces. Our first results concerns uniformly semi-convex functionals on Hilbert
spaces. This class provides fairly easy examples for the validity of assumption (E3),
thanks to the linear structure of the space.

Theorem 5.1.4. Assume that the metric space (X, d) is a Hilbert space X = H, with
the distance d induced by the norm ||-||. Assume further that £ is uniformly semi-convex
with modulus \. Then (E3) is satisfied, with s the straight line between ~o,v1 and with
the same .

Proof. Let 79,71 € D(E) as well as u,v € D(E) and 7 > 0 be given. We verify (5.1.2) for
the particular curve v5 := (1 — s)y9 + sy1. On the one hand, by the convexity hypothesis
on &, we know that

£(n) < (1 - 9)E(0) + (L= )Em) ~ Js(l—s) o —ml®.  (5.14)

On the other hand, a direct calculation using the property of the scalar product yields

1
s = oll® = 4117 = ull®

1 1
=(1 = )l — oI = o = ull?) +s(lby = oll® = 7 — ull?) (5.15)

3
- 13(1 —8) [0 — 7

Adding 1 times (5.1.5) to (5.1.4) yields (5.1.2). O

Riemannian Manifolds. Another situation of interest is that of the gradient flow
on a compact smooth Riemannian manifold (M, g), which is induced by a semi-convex
function & € C'(M). Here, our very general approach is clearly not optimal: in that
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5.1 Application to Gradient Flows in Abstract Metric Space

finite-dimensional setting, gradient flows can be characterized in a direct way instead of
using the EVI . Further, there are explicit and local variants of the BDF2 method
(avoiding the global minimization of ¥ in each time step), see e.g. [50], which are simpler
to implement, and whose convergence is expected under more easily verifiable hypotheses
than (E3). Still, for the sake of completeness, we shall detail a sufficient criterion for the
applicability of our results in that situation.

To indicate why the verification of (E3) indeed poses a (surprisingly hard) problem,
observe that it is in general not possible to use the geodesic 7, for the curve connecting
Yo to y1 in (5.1.2). Indeed, for s — W(7,u,v;7s) to be uniformly convex of modulus
% + ), independently of u and v, one would essentially need that both s — d?(v, ;) and
s + —d?(u,~s) are uniformly convex of modulus d?(vo,71). By Toponogov’s theorem,
the first condition would imply that M has non-negative sectional curvature, and the
latter would imply that M has non-positive sectional curvature; hence, M would need
to be flat.

A more appropriate class of connecting curves are segments, which are defined with
the help of the exponential map exp(.) as follows. Fix v € M, and let vy,v1 € M lie
outside of v’s cut locus cut(v). Then, there are unique &y, & in the injectivity domain
I(v) € T,M of the exponential map exp, : T, M — M such that exp,(&) = 7o and
exp,(&1) = 7. Further, assume that the straight line from &y to & lies in I(v). The
segment [yo,71;v]s : [0,1] — M with base v connecting 7 to 71 is then defined by
[v0, 715 v]s = exp, (1 — )§o + s&1)-

Kim and McCann [57, Corollary 2.11] have established a sufficient criterion for the
convexity of

[0,1] 5 5 — d? (v, [v0, 713 v]s) — d? (w, [0,71;v]s), (5.1.6)

independently of u € M in terms of the cross curvature. Their hypotheses are as follows.

(KMO) The squared metric d(-,-), induced on M via g, is C-regular outside of the
cut locus.

(KM1) For each v € M, its injectivity domain I(v) is convex, so segments [yo,V1; ]
can be defined for arbitrary o,y ¢ cut(v).

(KM2) For each segment [yo,71;v], there is a dense subset U C M, such that there is
no u € U and no s € [0, 1] with u € cut([0, 71;v]s)-

(KM3) (M, g) has non-negative cross curvature.

Note, a Riemannian manifold (M, g) is said to have non-negative cross curvature if and
only if for each (x,y) € N and v € T, M, w € TyM,

d? d?

e T - > 0. 5.1.7

dt2‘t:0 ds2 ([‘T()awhy(]]t?ys) = ( )

s=0

for a given curve y : (—e,e) — M and points xg, 1 ¢ cut(yo) where w := g € Ty, M,
v € Ty, M, and the derivative of ¢t — [z, z1; Yol at t = 0.
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5 Backward Differentiation Formula 2

Apart from (KMO0), each of these conditions is rather demanding. A class of examples
satisfying (KMO0)—(KM3) are the round spheres S%. For these, (KM0)—(KM2) are easily
verified since cut(v) = {—v} only contains the antipodal point, and I(v) is the open
d-dimensional ball of radius 7, for each v € S?. In contrast, the proof of (KM3) has
been a challenge even for spheres, that has been mastered in [57, Theorem 6.2]. It seems
that — apart from products and quotients of spheres — no further explicit examples
satisfying (KMO0)—(KM3) are currently known.

Theorem 5.1.5. Assume that (X, d) is a compact Riemannian manifold (M,g) that
satisfies (KMO)-(KM3) above. Assume further that € € CY(M) is semi-convez. Then
(E3) is satisfied with some X\ € R, with vs := [y0,71; V]s-

Proof. For given u,v € M and ~p,71 € M \ cut(v), let vs := [70,71; v]s; the result for
general 9,71 € M follows by continuity a forteriori. Further, we shall assume that
£ € C?(M) during the computations. Since £ is semi-convex, and M is compact, there
is a global modulus X' < 0 of convexity, i.e., Hess&(v) > N as a quadratic form on
each T, M. The final estimate depends only on )\, so (E3) follows for general
semi-convex £ € C''(M) by approximation.
We split
\Ij(7—7u>v§ '75) = hl(s) + h2(s) + h3(3)>

with hi, he, hs : [0,1] — R given by

M) = - (0,%), ha(s) = = (@(0,7) = w5, hals) = E0).

First, by definition of the segment ~, via the exponential map, s — d?(v,7s) is twice
differentiable with

3 d* 3 5
E@d (Ua%) = ;Hfl - §0||m

where ||€]|? = gu(&,€). Second, by the hypotheses (KMO0)—(KM3), the result from [57]
Corollary 2.11] applies, so hg is convex. Finally, concerning hg: in the normal coordinates
induced by exp, : I(v) — M, the segment ~s is the straight line connecting &y to &,
hence (recalling the definition of the Hessian, and that exp, is a 1-Lipschitz map):

2

Hi(s) = S5E0)

E(7s) = Hess E(vs)[¥s] + dE(s) [v‘ys;ys]

0
ZF — &) - fé)%

i,k k117s

> (N = K|Eller) 16 — &l

> Nl 1]l

[

Here K is a bound on the Christoffel symbols Ffj on the smooth and compact manifold
(M, g), and for the estimate ||¥s|| < ||&1 — &ollv, We have used that (KM3) implies that
(M, g) is of non-negative sectional curvature.
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5.1 Application to Gradient Flows in Abstract Metric Space

In summary, we have shown that s — ®(7, u, v;s) is uniformly convex of modulus

3 .
(E + )\> 61— &2 with A= N — K[|€]|cn. (5.1.8)
Recalling that (KM3) implies non-negative sectional curvature on (M, g), we conclude
that d?(y0,71) < €1 — &2, so the claim (E3) follows. O

L2-Wasserstein Space. In our last example, we consider the classical L2-Wasserstein
space (P2(£2), W3) of the probability measures of finite second moment over a convex,
possibly unbounded domain Q € RY. And we assume that & is uniformly displacement
semi-convex; the definition is recalled below. We remark that the class of gradient flows
generated in this setting encompasses nonlinear drift-diffusion-aggregation equations of
the form

Opr = A(p") +V - (0t VV) + V- (pr * VIV py),

under the restrictions that m > (d — 1)/d, and that V,W € C?(2) are uniformly semi-
Convex.

(P2(£2), Wy) is a complete geodesic space, which has non-negative curvature in the
sense of Alexandrov. Similarly, as in the case of (non-negatively cross-curved) Rieman-
nian manifolds discussed above, one cannot expect that hypothesis (E3) is satisfied for the
geodesic 75 connecting the two given measures 79,71 € P2(Q). Indeed, s — W2(Fs, u)
is typically not uniformly convex of modulus W3(~0,v1), see [4, Example 7.3.3]. Again,
segments with a prescribed base point are more appropriate.

We need to recall some basic notations from the theory of optimal mass transport.
P2(2; x Q) is the space of probability measures with finite second moment on the cross
product € x €, and the indices j and k indicate that we use coordinates x; € € and
xp € Q on the components, i.e., we write x = (zj,z;) € Q x Q. We introduce the
canonical projections 7; : (x, x;) — x;, and for s € [0,1], we define 75 : Qy x Q; — Q by
s := (1 —s)mo+ smy for brevity. We write (7;)4p for the j-marginal of p € Pa(Q; x ),
and analogously, for p € P2(£2g x 1) and s € [0, 1], the interpolating measure (75)4p €
P2(Q) is characterized by

/Qw(y) d(ms)4p(y) = /Q<p((1 — s)zo + sz1) dp(x), for all p € C(Q).
A transport plan from pg € Pa(Q0) to u1 € Pa(€1) is any p € Pa(Qo x Q1) satisfying

the marginal constraints mo#p = po and (m1)xp = p1. Such a plan p is called optimal
if it is a minimizer in the Kantorovich problem

p— /2 lzo — 21> dp(x). (5.1.9)
Q

For any given pg, 1 € P2(Q2), there exists at least one optimal plan and if one of the
measures p; is absolutely continuous, the optimal plan p is unique.
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5 Backward Differentiation Formula 2

We are going to use the following two facts, which are essentially [4, Lemma 5.3.2] and
[4, Proposition 7.3.1|:
1. Glueing lemma: Given a € Pa(Qp x 2) and € Pa(Q x Qo) with (m2)pa =
(m2)4 3, there exists a p € Pa(Q x 1 x Q) such that (mp,m2)xp = a and
(71, ™) g1 = B-
2. Curve lemma: Given a € Pa(Qo x 1), B € P2(Q3) and t € [0,1], there exists
a p € Pa(Qo x 1 x Q3) such that (mg,m1)xp = a, and (m, 73)»p is an optimal
transport plan from (m)xo to f.
Segments — which are referred to as generalized geodesics in [4] — are defined as follows.

Let po2 € Pa(Qo X Q3) and p12 € P2(Q1 x Q2) be optimal plans for the transport of
and 71, respectively, to v € Pao(22). By the glueing lemma, there exists a pp12 such that

(70, m2)#Po12 = po1 and (71, m2)xpoi2 = P12. Then [yo,71;v]s := (7s)#Po12. Finally, we
recall that £ being uniformly displacement semi-convex of modulus A means that

E([vo,7150]s) < (1= 8)E(v0) + sE(m) — ;\/Q\w'o — z1/? dpoia().

In the language of [4], this property is referred to as A-convexity along generalized
geodesics.

Theorem 5.1.6. Let Q@ C RY and assume that the metric space (X,d) is the L2-
Wasserstein space (P2(Q2), Wa). Assume further that € is uniformly displacement semi-
convex of modulus \. Then (E3) is satisfied, with the same X, for ~vs = [0, 71;V]s-

Proof. Let u,v,v0,71 € P2(f2) be given, and let pyi2 be as above. We are going to prove
the inequality (5.1.2) directly for a fixed value s € (0,1). Since (s, 72)4Po12 is some
transport from v, to v, and (mo, m2)#Po12, (71, T2)4#Po12 are both optimal,

W2 (v, v) < /Q |(1 = 8)xo + sz — 22> dpo12(z)
= /Q [(1 — s)|xo — $2|2 + slz1 — 952’2 —5(1 —s)|zo — 901\2] dpo12(z)
= (1 —5)W3(y0,v) + sW3(y1,v) — s(1 — s)/Q |20 — z1]? dpo12(z).
By the curve extension lemma, there exists a po13 € Pa(20 x Q1 x Q3), such that
(7m0, m1)#Po13 = (70, T1)#Po12, and (7s, m3)xpo13 is an optimal plan from v, to u. It

follows that (mp, m3)4po13 and (w1, 73)4Po13 are some transport plans from vy and 71,
respectively, to u, and so

W%(fys, u) = /Q |(1 = s)zg + sz1 — x3\2dp013(a:)

— /Q [(1 — 8)|zo — w3]2 + slz — x3\2 —s(1—s)|xo — xl\z] dpo13(x).
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5.1 Application to Gradient Flows in Abstract Metric Space

Since (7o, m3)4Ppo13 and (1, 73)4Po13 are not optimal we can conclude

W2 (ye0) > (1 — ) W20, u) + W27, ) — s(1 — s) /Q 120 — 21/ dpous (x).

In combination with the definition of A-uniform displacement convexity of £, we arrive
at

\Il(Tv u, U;’YS) S(l - 8)\:[/(7—7 U,’U;"}/()) + S‘I/(T,’Ll,7 ’U;Fyl)

1/3 2
_2<27_+)\>5(1_5)/Q]x1 —xQI dp012($)-

Clearly, the integral above is larger or equal to W3(vo,71), hence (5.1.2) for any 7 > 0
so small that % +A>0. O

5.1.2 Basic Properties of the BDF2 Penalization ¥

In this section, we study the basic properties of the BDF2 scheme. First, we prove well-
posedness in the sense that for all sufficiently small 7 > 0, and arbitrary data u,v €
D(E), the functional W (7, u,v;-) possesses a unique minimizer in D(E). Consequently,
for an arbitrary pair (uf,«]) of initial conditions, one obtains inductively a unique global
discrete solution (u} )ren by solving the corresponding sequence of minimization problems
in . Subsequently, we derive some fundamental estimates that are needed for the
convergence proof later.
Recall that Assumptions (E1)—(E3) are supposed to hold, with (5.1.3)).

Theorem 5.1.7 (Existence of a minimizer). For all 7 € (0,7%) and for all u,v € X,
there exists a unique minimizer wy, € D(E) of w — V(1,u,v;w).

Proof. Let T € (0,7) and u,v € X be fixed. For brevity, we write ¢ (w) := ¥ (7, u,v; w).
First, we show that ¢ is bounded from below. By the triangle inequality and the

binomial formula, we have that

2Ty

27
d?(w,v) + Ldz(v,u*).

d? < 2d* 2d* d? (s, w) <
(u,w) < (u,v) + (v, w), (Uy,w) < P P

Substituting these estimates into the definition of ¢(w) = ¥(7,u,v;w) and using As-
sumption (E2), we obtain for each w € D(E):

1 1
P(w) > d*(v,w) + —d*(v,w) — —d*(u,w) + E(w)
T« + T 2T 4T
L Lo L o
> — * * 9 -5 )
z - _Td (v, uy) + 27_*d (U, w) 27_d (v,u) + E(w)
L L
> ) — —d2(v, ..
> 7_*_7_d (v, uy) 27_d (v,u) +c
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5 Backward Differentiation Formula 2

The last expression, which only depends on the given quantities w and v, constitutes the
sought for lower bound on . Consequently,

;= inf > —00.

Now, choose a minimizing sequence (wy,), oy in D(E), i.e.,

Y(wn) o ¥ (5.1.10)

We are going to prove that this is a Cauchy sequence. Towards that goal, we invoke

Assumption (E3): specifically, for given indices m and n, we choose vy = wy,, 71 = W,

and we define wy, , := 71, the midpoint of the respective curve joining w,, to wy. Then,
2

by E12),

1 1 1/3
) < FV(wn) + 58(wa) — 5 (52 +A) (W, wa).
2 2 8\27
Since 7 < 7, by hypothesis, and 3 + 2A7, > 2 thanks to (5.1.3)), this yields an estimate
on the distance from w,, to wy:

8T 8T

34270 (w(wm) + w(wn) - Qw(wm,n» < 3197\

dz(wm,wn) < (w(wm) + Y (wn) — 2@) .
In view of , this verifies the Cauchy property of (wy),cy. Consequently, and by
completeness of (X, d), that sequence converges to a limit w, € X.

According to Assumption (E1), £ is lower d-semi-continuous. Since the distance to a
given point is clearly a continuous function, also v is lower d-semi-continuous. By the
usual argument

Y < Y(wy) < liminf Y (wy,) = 9,

n—o0

we conclude that 1 attains its infimum ) at wy, i.e., wy is a minimizer.

The uniqueness of the minimizer follows by Assumption (E3) as well: by the remarks
following , 1 is strictly convex along some curve that connects two potentially
different minimizers. But that would mean that 1 attains a value lower than that at the
minimizers, a contradiction. O

5.1.3 Properties of the BDF2 Scheme

In the following, we assume that discrete initial data (uJ,u]) are given for each 7 €
(0, 74), and we consider the — according to Theorem above — well-defined family
of discrete solutions (u])yen. We recall that one of the key features of the implicit Euler
method is that the energy values £(uf,;) are monotonically decreasing with k. This is
not quite the case for the BDF2 scheme at hand, but we can prove a slightly weaker

property.
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5.1 Application to Gradient Flows in Abstract Metric Space

Lemma 5.1.8 (Almost Energy Diminishing). Fach discrete solution (u])ren satisfies
1 1
E) + 5o u) < E@) + a2, ) (5.111)
at each step k=1,2,....

Proof. Since uf,, is a minimizer of w — W(7,u]_;,uf;w), it satisfies
T T. T T T.
(T, uj g, ugs uje) < V(T uf g, ug; w)

for all w € X. For the choice w = uj,, we obtain

1

1
2
;d (uza Uzn) -

1
ST ) + EE) € — AP e]) + EWD): (5.112)

By the triangle inequality and the binomial formula,

d2(u7k-*17 ’U’Lrl) < 2d2(u7k:17 u‘l’c—) + 2d2 (ug7 u;ﬂ)- (5113)
Substitute this in the left-hand side of ((5.2.9). This yields (5.1.11)) O

Next, we derive the classical estimates on energy and distance. These require (I1) to
hold for the approximation (uf,u]) of the initial datum wuq.

Theorem 5.1.9 (Classical Estimates). Fiz a time horizon T' > 0. Then there is a con-
stant C, depending only on di, do and T, such that the corresponding discrete solutions

(uf )ken satisfy

%d?(u;,l,ug) <C  EWR)<C,  d(uwul) <C (5.1.14)

M=

k=1

for all N € N with N7t <T.

Proof. The main estimate is easy to obtain: sum up the inequalities (5.1.11)) for £k =1 to
k= N — 1. After the cancellation of corresponding terms on both sides, we remain with

N
1 1 1
ER) + - > Ay uf) <€) + L (uf,u]) Sdi+ Jdin,  (5.115)
k=1

where (I1) has been used in the last inequality. Clearly, if £ would be bounded below,
then (5.1.14)) would follow immediately.

Since we only assume the weaker lower bound (E2), more work is required. First, we
show that

d? (U, ul) — d?(us, ul_) < 2d(ul_y, uf )d(us, uf). (5.1.16)
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5 Backward Differentiation Formula 2

We only need to consider the case that d(u.,uj) > d(us, uj_), since otherwise the
inequality is trivially true. But then an application of the triangle inequality yields:

2 (t,uf) — d(u. )
= (Aot ) + dts, ) (s, 0]) — (s, uf,)
< (e, uT) + s, ) (donn, uTy) + Ay, 0) — dlwa, uf,)
=2d(uf ., uf)d(u.. u).

At this point, we substitute estimate (5.1.16)) and use Assumption (E2) to obtain

1 o1 .
§d2(u*auN) - §d2(u*7u1)

1 27 &
—d(uf ) + = Y d (s, uf)

Tx T T
< (E0D) - ER) + 1 o>
<E(5(u")—c —i—id2(u uT)—i—idz(uT uT)> —|—2Tid2(u uy)
=79 1 * o, *y W AT 0> %1 . s *9 Yk ).

We rearrange terms and use (I1) to arrive at the following discrete Gronwall inequality:

N
Ty 8t
d?(u,,u¥y) < 2KZ + 27, (d1 — ) + 5013 +— > dP(ua,uf).
* k=2

One verifies by induction on N that

. 8T\ N . SN ~ 8T
dQ(u*,u}'V) < [ZKS + 27 (dy —ci) + %d%} (1 + —T) < Cexp ( T) < Cexp (—),

* Tx
proving the third estimate of (5.1.14)).

From here, we conclude the second bound from (5.1.14): the bound on &(u}) from
above follows immediately from ([5.1.15)), for the bound from below, we combine the
third estimate of ([5.1.14)) with Assumption (E2). Having the second estimate at hand,
the bound first one from (5.1.14)) follows again from (5.1.15)). O
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5.1 Application to Gradient Flows in Abstract Metric Space

As a final preparation for the convergence proof, we derive a time-discrete version of
the differential EVI (2.3.2)). That estimate does not require any further assumptions on
the discrete initial data.

Lemma 5.1.10 (Discrete EVI). The discrete solution (uf), o satisfies

3 A T 1 T 1 T
(2 + )t - S

1 1
< E(w) - E(ufy) = ~d*(uf, uf) + £

) (5.1.17)
d (Uzc-—laUZq)

for all k € N, and for all w € D(E).

Proof. This follows from Assumption (E3). Choose 79 = uj,; and v = w, and let -,
be the corresponding connecting curve such that (5.1.2)) holds. Combine (5.1.2) with the
fact that uf,, minimizes ¥(7,u]_;,u],-) to obtain, for each s € (0, 1),

0< ‘1’(7—7 uz-pu‘;g;%) - \I’(T’ UZ—DUE; UZ+1)

173
< sU(rufy, ufiw) = sU(nuy ufiul) — 5 (5 +A) s = 8)d (ufy,w).

Divide by s € (0,1) and pass to the limit s \, 0. This yields

1/3
0 < W(ru g, ufiw) = U(rufy ufiufa) = 5 (o + ) a2l w),

which, by definition of ¥, is the desired inequality (5.1.17]). O

5.1.4 Convergence

Once again, we recall that (X, d) is a separable and complete metric space, on which a
functional £ : X — R U {00} is given, that satisfies Assumptions (E1)—(E3), with (5.1.3]).
Our main result is the following.

Theorem 5.1.11 (Convergence result). Consider a sequence of equidistant partition
Tn = (Tn, 2Tn, 3T, . . .) with vanishing step sizes 7, € (0, 7,) which are strictly decreasing,
and which are such that the quotients T, /Tn+1 are natural numbers. Let further initial
data (uy™,ui™) be given that satisfy (11), and such that ui™ — ug.

Then the associated discrete solution (u;™)pen is well-defined for each n, and the
sequence of piecewise constant interpolations (U™ )nen converges locally uniformly with
respect to time to a solution uf € AC?(0,00;(X,d)) of the gradient flow for &, i.e.,
the limit uy satisfies . More precisely, for every time horizon T > 0, there is a
constant C' that can be expressed in terms of di, do and T alone, such that

d(w",uy) < C(d(ud", w) + /o) (5.1.18)

for all t € [0,T].
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5 Backward Differentiation Formula 2

Remark 5.1.12. The hypothesis that consecutive 7,’s have an integer quotient has
been made in order not to make the already quite technical proof even more technical.
Under that hypothesis, the time grid associated with some 7, is always a refinement of
the grid for 7,,, if n > m. That simplifies our calculations considerably.

Comparison Principle

The main ingredient of the proof of Theorem [5.1.11]is the following comparison principle,
which estimates the rate at which two discrete solutions with almost identical initial data
may diverge from each other.

Theorem 5.1.13 (Comparison principle). In the setting of Theorem [5.1.11), fix two
equidistant partitions T and n with time step sizes T := T, and N = T, with m > n.
Then, there is a constant C, expressible in terms of di, do and T alone, such that

d* (@7, o)) < C (d*(uf,vg) +7) (5.1.19)

for all t € [0,T.

Proof. By hypothesis, define R := 7/n € N. The basic idea is to derive bounds on the
distance between the discrete solutions (u])ren and (v))ren at comparable times, i.e.,
for (k —1)R < ¢ < Rk, by using the time-discrete EVI for each of the two
solutions and substituting the respective other solution for the “observer point” w. More
specifically, multiplication of for uf, by (47)/(3 4+ 2A7) yields

4

Pl 0) = 5 gl w) + 5 d ) o
< o (Ew) — ) — TdT o) + P o)),
For brevity, we introduce
1 1

e L 200, h=2- VI =1+0(r),
=T ioae 3o 7 ™)

where the Landau symbol O(7) is understood for the limit 7 — 0. Note, with this
definition one has A; := % = A+ O(7). Furthermore, define

af (i ;w) := hed?(ufy, w) — d?(uf}, w),
_ 1 1
b;(uz-7w) = 497’ <S(w) - 5(”;&) - ;d2<u7c—7 Uzﬂ) + Edz(u;’ﬂ:l?uﬁrl))'
With these notations, the variational inequality (5.1.20]) attains the following form:

aj, (uf ;w) < gr a4 (af ;w) + 7bf (uf ; w).
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5.1 Application to Gradient Flows in Abstract Metric Space

An iteration of this inequality yields

o (al;w) < gFal (@l ;w) + ngk " by (uf s w). (5.1.21)

Analogously, define gy, hy, Ay, as well as af (v); w), b} (v7; w), replacing u_, uf, uf,; and

T with UZl,’Ug,UZI and 7, respectively. By the same argument as above, one obtains a

corresponding estimate for ) (v7; w).

Now fix a time t € [0,7], and define the three quantities N := max{n | nt < t},
M :=max{m | mn < t}, and L := M — RN. Further more, introduce
Qg = hlﬁhf;dz(uk,v?) eARTHAnn g2 (’U,k.,.,’l)?n)
The goal is to derive an estimate on the difference
anm = qoo = bR dP (ufy, vily) — dP(ug, ).

We expand this difference into telescopic sums firstly with respect to k:

N-1
qN,M — Go0,0 = (CIN,M - QN,RN) + Z (Qk+1,R(kz+1) - ka,Rk)
k=0
and secondly in ¢ such that we get in the end
M-1 N-1 +1)—
ava —qoo= Y (qver —ane) + Y ((Qkﬂ,Rk = Qk,Rk) + Z k1,661 — Gl z))
(=RN k=0 =Rk

By definition of a and b, the differences inside the sums satisfy
Q1,6 — Qe = hERGaT (@] v]), Q41 — Qe = hERGa] (075 ).
Insert this above and use the estimates (5.1.21)) to obtain

hivhrde(UJTv’Uz@) - dQ(UOaUO) < I]"\—/n (UZ’E?)

M—1 0
= 3 R |ghad G uR) + 0 Y gy B uR)| (5.1.22)
{=RN n=1
N-1
+ Z RERSE | gkaf (@3 vl) + Tng ST ] (5.1.23)

N— 1R (k+1)—1

+> > WW[(@%&mZﬁWWMM] (5.1.24)

k=0 (=REk n=1
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The core part of the proof of Theorem [5.1.13]is to show that under the given hypotheses,
INM(ut,vt) <C'r. (5.1.25)
The proof of (5.1.25) can be found at the end of this section. In conclusion, we have
6A7t+’\"td2(u7 vy) < hivh%d%u}'v,v]@) <C'r+ d2(u0,v0),

which implies the inequality (5.1.19) with C' = e=2*(1 + C"). O

Proof of the Main Theorem

With Theorem [5.1.13| at hand, we finish the proof of Theorem [5.1.11

Proof of Theorem[5.1.11 From Theorem it follows that (a;")pen is a Cauchy
family with respect to uniform convergence on each interval [0, T]. Indeed, from estimate
(65.1.19), it follows that the values (uj")nen converge in the complete metric space (X, d)
to a hmlt uj, uniformly for ¢ € [O,T |, and that the estimate ) holds. Since this
argument holds for arbitrary 7" > 0, the limit u} is defined for all t 2 0.

To prove absolute continuity of the limit curve u,, we argue as usual: we assign time-
discrete derivatives A} to the interpolated solutions u;™ by

—Tn Tn
ap o W) AW e k).
Tn Tn

Thanks to the classical estimate (5.1.14)), A? is uniformly bounded in L?(0, 7). Hence,
AP possesses a L2(0, T)-weakly convergent subsequence (not relabelled) with limit A; €
L2(0,T). Choose arbitrary s,t with 0 < s <t < T, and define k7 := max{k | kr, < r},
then

ki Tn
d(uy Z d(ui™ , ur” —/ Ay dr.
k=kn+1 kg Tn
In the limit n — oo, this yields
ki Tn

t
d(ur,u;) = lim d(@l", ;™) < lim Ay dr:/ Ay dr.

n—00 n—00 [

Hence u, € AC?(0, 00; (X, d)).

It remains to prove that the limit curve w, satisfies the integrated form of the
EVI. Again, let 0 < s <t < T, and define k' be as above. Multiply the time-discrete
EVI for (u;")ken by 7, and sum from k = k7 to k = ki — 1. We define the
left-hand side:

kp—1
n ' ] 3 A 1 o 7 1 oo
J(1)(S,t) = Tn k—zk” [(4% )d (ugty, w) — Ed (ug",w) + Rd (UZ-UW)}-
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5.1 Application to Gradient Flows in Abstract Metric Space

Consequently, after elementary manipulations we have

Y ki Tn )
T (s, t) = 2 / (@™ w) dr
k

1 T T T Tn
+1 [(3d2(ukt¢i,w) — d2(uk£§71,w)) — (3d2(uk£{,w) - dz(ukgfl,w))}.

Thanks to the r-uniform convergence of @™ to u;, and since uf is continuous, we obtain
in the limit

A 1 1
lim J)(s,t) = 2/5 d?(uf,w) dr + §d2(u,’f,w) — §d2(u;‘,w).

n—o0

On the other hand, after summation of the right-hand side of (5.1.17)), we estimate once
again with the help of the elementary inequality (5.1.13]) and thus obtain

kr—1
n T 1 Tn Tn Tn Tn
Tiy(s,0) =1 D [E(w) = E@fy) — A ) + Hd?(uk,l,u,m)]
k=k?

kP Tn 1 1
= /k [Ew) = E(@m)] dr = 3 (ufp_y up) + 5 (s, ).

n
sTn

Again, thanks to local uniform convergence of @;" to the continuous limit ], and since
€ is lower semi-continuous thanks to Assumption (E1), Fatou’s lemma yields that

lim Jg5)(s,1) < / [E(w) = E(uy)] dr.

n—o0

Since J(nl)(s,t) < Jh

(2)(5, t) for all n by (5.1.17)), the respective inequality follows for the
limits, that is

‘ ¢
;\/ d? (uf,w) dr + %dQ(ujf,w) — %dQ(u:,w) < / [E(w) = E(uy)] dr.

This implies the integrated EVI (2.3.2). O

Proof of the Estimate (5.1.25))

This is the most technical part of the convergence proof, that uses only elementary
inequalities and the classical estimates (which, in turn, are valid thanks to (I1)).
Throughout this section, we adopt the convenient notation that C' is a generic constant,
which is in principle expressible in terms of d; and dy from (I1) and the terminal time T
alone, and whose value may change from one line to the next.

To begin with, observe that since we assumed A < 0, we have that g, < % and g, < %,
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and therefore

- 3 3
k 12
ZQT < > Zgn < > (5.1.26)
k=0 £=0
Further, we have that h; <1 and h, < 1, which means that
hEnl <1 (5.1.27)

for arbitrary k,¢ > 0. On the other hand, since h; < 1 and due to (5.1.16)), it follows
that

af (@75 w) = hed? (], w) — & (uf, w) < d(u] w) — &(uf,w) < 2d(uF, u])d(u], w).

Substituting w = vz’, we obtain by the triangle inequality, and thanks to estimate

(5.1.14)), that
af (uf;v]) < 2d(uf, ul) [d(u, uT) + d(uv, vf)] < Cd(uf,u]) < Cdor (5.1.28)
where we have used that (I2) holds with constant ds. Analogously, one derives

af (v uf) < C. (5.1.29)

With (5.1.26)), (5.1.27)), (5.1.28)) and (5.1.29) at hand, it is now straight-forward to esti-
mate the terms inside 1,7 (u7,v}) involving af or a(. For the expression in (5.1.22)),

M-1 M-1 3
> W hygped (0)iuk) < D gCn < S0,
(=RN (=RN
For (5.1.23),
N-1 N-1 3
hlthkgrao (uf aka Z 9:C 5
k=0 k=0
And finally, for (5.1.24)),
N-1R(k+1)— RN
> > h’“*lhf;g,‘;aa?(vt 1) ZQnCn <Son
k=0 =Rk

We turn to estimate the terms involving b7 and b?. First, by (5.1.13)),

1
b (a7 w) <dgr (E(w) = E(uf) + 5-d*(uf )

1
<dgr (E(w) = E(uf)) + —d*(ufy, u),
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where we have used that gT < 1/2. An analogous estimate holds for b}. Substitute this
into the expression for I, N, 1.(af,v)) in m m This gives rise to two groups of
terms: one related to the metric, the other related to £.

We begin by estimating the terms related to the metric. This is done using the classical

estimate (5.1.14): for the expression in (5.1.22)),

Npe nl’n g d*(v);, ) MldQ”elvvg)
Zh th _nzz an < CT.
(=RN ¢=RN n=1

Here we have used that M — NR < R and that Ry = 7. For (5.1.23)),

d d
S S A CU UPR ST ST R U B So
k=0 n=1 T n=1 k=n T
Finally, for (5.1.24)),
N—1R(k+1)— 1 ’U RN ¢ 1 U??)
S S S
k=0 (=Rk {=1n=1

<n3[(Sak >m’”}

The estimates on the expressions involving the differences of the energy values are a bit
more involved. To simplify calculations, we use that the b’s only contain the difference
between two values of £; hence adding a constant to £ does not change the b values.
Consequently, since £(uf) and £(v)) are bounded from below thanks to (5.1.14), we
may assume without loss of generality that all £(u}) and €(v;') are non-negative.

The contribution of the £ terms to (5.1.22]) is immediately controlled, recalling (5.1.26)),
(5.1.27), and that M < R(N + 1):

M
4n Z hNhEZ:gE'H "[E(uE) — EW)] < ARnE(u Z

{=RN /=1

l\')\w

Collecting all terms containing evaluations of € in (5.1.23) and (5.1.24)) yields:

ar Z h Rk k H [S(UZk) - S(U;l)}

n=1
N—1R(k+1)—

+ 477 Z Z hk+1h£ Z gf n+1 uk+1) - g<vg+1)]

k=0 (¢=Rk
=45 + 415,
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5 Backward Differentiation Formula 2

where I} and I, collect terms with £(u]) and £(v}), respectively,

N-1 1 R(k+1)—1 ¢ N-1
=) 0L DR S ane D
{=Rk n=1 n=~k

+7E(u]) Z gt

N—1R(k+1)—

L=t Z_: [ Uik hthngk n+1} ’72 Z thﬂhngﬁ "E(vra).
k=0

=0 (=Rk n=1
For I;, we obtain

N-1 B R+l N—k—1 N-1
LT Y S R one Y0 (0 S gn) — 00 > (hehfig)"| + 7)Y o
k=0 ) £=0 n=1 n=0 n=0
N-1 -1 R N—E
rl11 3 1-— (hTh gT)
T\ pkp Rk n
<7 Euia) ek .E§( 5) 9T T kR, } +Cr
k=0 1=0 n
M1 g gN k+1
< T hthk - T T )
_TZE(u,ﬁl) |3 1—hrh,]7%97+ 1—hTh§gT +Cr

Recalling that —1 < A7 < 0, and observing that both g, and A, are convex functions of
7, a Taylor expansion yields that

1
gr > 3< n 3AT) >0, he>14M >0, (5.1.30)

and similarly for g, and h,. Therefore, in combination with Bernoulli’s inequality,
1 1 1
hehfigr = (14 A7)(1+ RAn)g (1+ EAT) > (140
With another application of ({5.1.30]),
1 gr 1 (14 A7) 1 (14 A7)3
2 1-hshllgr =2 1—-31+Ar)3 ~ 2 3—(1+A1)3

(5.1.31)
3 1—(1+x7)3 23 (=3)Ar 9

T2 3-(1+Aam)p o2 2
This yields, in combination with the bound (5.1.14]) on &,

N-1 L R gN k+1 9
I <t kzo E(uf,1) e [71 i el Z)\T} +Or

<Tcz[ —h 9)\T]+CT§C[1+(—)\)T] T.

We turn to the estimate of Ip. In order to merge the difference of the two sums into a
single sum — similar to what we did for I; above — we are going to apply a shift of no
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5.1 Application to Gradient Flows in Abstract Metric Space

more than R to the indices inside £(v}}, ). To control the error introduced by that shift,
observe that an iteration of the energy estimate (5.1.11)) yields

1
S(vzk) < 5(1}2’) + %dQ(vZI,U?)

as soon as 0 < ¢ < Rk. Further, for such k£ and /¢, we have h’ﬁ < hﬁ/R since h, < 1. This
allows us to estimate the first sum in Iy as follows:

N-1 SNl
T [5 (VP hthkgTZg } < 3 h’ﬁh,lfkg(vzk)
k=1 k=1
v )+

1
%dQ(vZI, U?)}

A
N
M) =
™
&
=
:?T*;
=)
~3

R(N-1) . R(N-1) IO
n C/Rpl o, M ’
= hY hn&(v)) + - g —_—

= 2
=1 (=1 g

Next, use the classical estimate (5.1.14) and a lower bound for h, to obtain

N-1 RN-1

T { Uk h’“hR’“gfzgk n} < g Z hZ/hag(le) +Cn.
k=1 =0
The second sum in I5 is estimated as follows, using that h’j > hf/ R for Rk < ¢:
N—-1R(k+1)-1 RN—-1 ¢
Y Y Y EEThg W) = nhegy Y Y WY Fhig EW])
k=0 (=Rk n=1 =0 n=1
RN-1 RN-n—1 RN-1
= ngnhs Z EI )R ERy N~ (W Bhygy)" — nhegn€ (7)Y W Fhig
= /=0 £=0
RN-1 1/R RN—n
—(hh
> ngohe Y E(v 1)h"/ﬁ’w ( - 91) —Cn.
Un+ /R
n=0 1- hT hngn

Substituting these estimates into the expression for I yields a single sum,

Rgil R 1 g gRN—t+1
I, <Cn+n h iy E (v ) [f - 1 RT U = .
=0 2 1w hagy 1= h! hngn

Arguing similarly as in the derivation of (5.1.31]), we estimate

YRR > (14 AT YR (14 Ag)= <1+3)\77) Ya gy,

3
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5 Backward Differentiation Formula 2

and consequently, just as in (5.1.31)),

1 gnhr 1 %(1—1—)\7)2 < 9

2 W g, 2 TRy s A
In conclusion, we obtain with the help of that
RN-1 3 9
I < Cn+ 1) ;; E]) 305V + AT ClL+ (- N)T]

Collecting all terms, we finally obtain the desired estimate (5.1.25)).
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5.2 Application to Non-linear Fokker-Planck Equation

5.2 Application to Non-linear Fokker-Planck Equation

This section, based on my own work [81], is concerned with the proof of well-posedness
and convergence of a formally higher-order semi-discretization in time, inspired by the
Backward Differentiation Formula 2 (BDF2), applied to the non-linear Fokker-Planck
equation with no-fluxz boundary condition:

Opr = A(p]") + div (p,VV) + div (0 V(W % pyr)) in (0,00) x £,

5.2.1
n-Dp=0, on (0,00)x 08, p(0,z) = po(z) in Q. ( )

We consider as an evolutionary equation in the space of probability measures
P2(Q) with finite second moment (i.e My(u) :== [, |z)|? du(z) < o0), where 2 = RY or
Q0 c RY is an open, bounded, and connected domain with Lipschitz-continuous boundary
09 and normal derivative . Indeed, if is initialized with pg € P2(Q2) then there
exists a weak solution pj : [0,00) x  — R>¢ such that p§ = po and p; € P(2) for each
t>0.

As recalled in section the modern approach towards the theoretical analysis of
equation is the gradient flow structure in the L2-Wasserstein space (Pa(Q2), W),
see [4, 541 79, 87, 02, 93]. The corresponding free energy functional £ : P2(Q2) — R U {00}

for (5.2.1) is given by:
plog(p) +Vp+ (W s p)pdz if m =1,
E(p) == Jo Lo 2 _ (5.2.2)
fQ "+ Vp+s(Wxp)pdr ifm>1,

provided that 4 = p£¢ and the integrals on the right-hand side are well-defined otherwise
we set E(p) = oo. We want to emphasize, that we don’t assume any convexity property on
the confinement potential V nor on the interaction kernel W. Hence, the corresponding
free energy functional £ does not satisfy the convexity assumption (E3) from the previous
section and we cannot apply the theory developed therein.

Method. Using the notation of the L2-Wasserstein framework, the approximation
scheme via the variational formulation of the BDF2 method reads than as:

Scheme. For each equidistant partition 7 = (7, 27,37, ...) with sufficiently small time
step 7 > 0, let a pair of initial conditions (pf, p]) be given that approximate pg. Then
define inductively a discrete solution (pf )ren such that each p],, with £ € N is a mini-
mizer of the following functional,

1 1
p = U (T, i1, pRip) = ;Wg(pg,p) — Ewg(pﬁ-pp) +&(p).

Define the corresponding piecewise constant interpolation in time py : [0,00) — Pa(£2)
of the discrete solution pf in time via

0 =p5, p; =pp forte((k—1)r,kr] and keN.
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5 Backward Differentiation Formula 2

Strategy of the Proof. The structure of the proof is similar to the procedure from
section However, existence of a minimizer pj, is a priori not clear, since the negative
L2-Wasserstein distance is not lower semi-continuous with respect to narrow convergence.
We circumvent this problem by considering the auxiliary functional A(u) := 4W2(v, ) —
W2(n, 1) which turns out to be lower semi-continuous, see section [5.2.2] In section
we derive the intrinsic properties of the discrete solution (p})ren by the use of
the variational formulation of the BDF2 method. We want to mention here the time-
discrete Euler-Lagrange equations which are obtained by perturbing each minimizer p]
along solutions to the transport equation. These Euler-Lagrange equations comprise
enough structural information to deduce the refined a priori estimates on the regularity
of (pf)™ in the BV(Q)-norm. In section[5.2.4] we complete the proof and show the strong
convergence of the approximation to the weak solution of the non-linear Fokker-Planck
equation with respect to the narrow-topology and with respect to the strong
LP(0,T;L™(2))-topology.

5.2.1 Setup and Assumptions
Similarly to [70], the BDF2 penalization W : (0,7,) x (P2(2))* — R U {oo} of the original
energy functional £ is defined by

1 1
\I}(Tvnv v ) : PQ(Q) —RU {00}7 ‘11(7—7 n,v; p) = ;W%(l/, p) - EW%(Thp) + 8(/))7

where we assume an upper bound of the step sizes 7, i.e.,
Te < 1/(12d; + 8dy) (5.2.3)

In the sequel, the Assumptions on the external potential V' and on the interaction kernel
W reads as follows:

Assumption 5.2.1. The confinement potential V' and the interaction kernel W satisfy:
(F1) V et (Q), W €' (RY), and W is symmetric.
(F2) There exists some non-negative constant d; such that

V@), W@, IVV@)I, VW (@) < di(L+ Jlz])*).

Note, with these definition at hand, the free energy functional £ satisfies the usual LSCC-
conditions from [4].

Later, in section [5.2.3| we will need further Assumptions on the approximation (o, pT)
of the initial datum pg.

Assumption 5.2.2. There are non-negative constants ds, ds4 such that for all 7 € (0, 7):
(1) W3(pZ, pT) < d3t and W3(pT, po) < d3T.

(12) U (pF) < da, U (p]) < da, and |7 By (qy < da/T-
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5.2 Application to Non-linear Fokker-Planck Equation

5.2.2 Basic Properties of the BDF2 Penalization V¥

Before we prove the solvability of problem we establish two basic properties of
the BDF2 penalization (7,7, v; - ): Boundedness from below and lower semi-continuous
with respect to narrow convergence.

Recall that Assumptions (F1)&(F2) are supposed to hold.

Lemma 5.2.3 (Lower Bound). There exist a non-negative constant dy such that the
BDF2 penalization ¥ satisfies for each 7 > 0 and for all p,n,v € Pa(Q):

1 3 1 3 3
U(rmvip) 2 (g — 5 —d2) Ma(p) = ~Mo(v) = - Ma(n) —do = 5di (5.24)

where dy 1s the constant from the Carleman estimate, cf. [54)].

Remark 5.2.4. The upper bound for 7, is chosen in such a way, that p — ¥ (7,7, v;p)
is bounded from below by a constant.

Proof. Without loss of generality we can assume p is an absolutely continuous measure
with density p. Observe that H is not bounded from below by a constant on Pa(£2).

However, we derive from the Carleman estimate a lower bound of H in terms of the second

moment My, cf. [54], i.e., there exist non-negative constants do > 0 and v € (d%, 1)

such that
Un(p) = H(p) = —da(1+ Ma(p))” > —da(1 + Ms(p)).
By (F2) the external potential V' and the interaction kernel W grow at most quadratically

at infinity, the corresponding energies can be estimated from below in terms of the second
moment My by

Vi) + W(p) =~ di [ (1 lalP)ota) do = 5 | (14 o = yl)ola)oty) dady
= gdl(l + M;(p)).

From the elementary inequality [|z||* — 2 ||ly]|* < 2 ||z — y||* < 3||z||* + 6 ||y||* and from
the definition of Wy it follows immediately

My(p) — 2M>(v) < 2W3(p,v) < 3Ma(p) +6Ma(v)  for all p,v € Po(Q). (5.2.5)
Combining all three inequalities, we can deduce the following lower bound:
1 1
Y ip) >— M. — — M. — —M. — —DM.
(1. 1,v3) 2 5= Ma(p) = —Ma(v) = - Moalp) - —Ma(n)
3
= d2(1+ Ma(p)) — 5di(1+ Ma(p)),

which is equivalent to the desired inequality (5.2.4]). O
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Lemma 5.2.5 (Lower Semi-continuity). For each 7 > 0 and for all n,v € Py(2) the
BDF2 penalization V(T,n,v; -) is lower semi-continuous with respect to narrow conver-
gence.

Proof. Due to the lower semi-continuity with respect to narrow convergence of the inter-
nal energy U,,, the external potential V, and the interaction energy W, the free energy
functional £ is also lower semi-continuous with respect to narrow convergence as a sum
of lower semi-continuous functions.

Thus it remains to prove the lower semi-continuity of the auxiliary functional A :
P2(Q2) — R, defined via

Alp) = 4W3(v, p) = W3 (1), p).

First, we simplify the auxiliary functional A. Let p' € T'(p,v) and p? € I'(p,n) be two
optimal transport plans. Further, introduce the special three-plan p € I'(p,v,n) := {p €
P xQAxQ): (m)pp = p, (m2)xp = v, (m3)4p = n} such that p has marginal with
respect to the 2- and y-components equals to p' and the marginal with respect to the
z- and z-components is equal to p?, i.e., (m1,m2)xp = p' and (71, 73)4p = p>. The
existence of such a three-plan is guaranteed by the gluing lemma, see [4, Lemma 5.3.2].
Then, we can rewrite the auxiliary functional A as

uumz/qﬁx—ywdﬁmyri/nx—agmﬂa@
02 02

(5.2.6)
:/‘MxyW”xzdeLyw)
QS

Now, let (pn)nen be a narrowly converging sequence with limit p, € Pa(€2). Since
(pn)nen is narrowly converging to ps, the sequences (pl)nen and (p2)nen are relatively
compact in P (Q?) with respect to narrow convergence and any limit point is an optimal
transport plan, see [4, Proposition 7.1.3]. Thus we can extract a non-relabelled subse-
quence such that (pl),cn and (p2),en converge narrowly to an optimal transport plan
pl € I'(ps,v) and to an optimal transport plan p? € I'(ps,n), respectively. By the same
argument, the sequence (p,)nen of three-plans is relatively compact in P5(Q3) with
respect to narrow convergence. Therefore we can extract a further non-relabelled subse-
quence such that (p,,)nen narrowly converges to some three-plan p. € I'(p., v,n). Taking
marginals is continuous with respect to narrow convergence, so we have (7, 7T2)#p* = p}k
and (71, 73)xps = p?, i.e., this limit three-plan p. is admissible in (5.2.6).

Next, we want to apply the lower semi-continuity result [4, Lemma 5.1.7] to the alterna-
tive representation of A. The uniform integrability of the negative part of the integrand
in with respect to (pn)nen in the sense of [4] follows by the elementary inequality

2 2 2 2 2 2 2
Az =yl = llz = 2" = 5 =" = 4llyll” = 3[12lI” = —4(llyll” + 1=17).

| =

Thus the lower bound on 4|z — y||* — || — z||* is independent of z. Since the second
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5.2 Application to Non-linear Fokker-Planck Equation

moments of v and n are finite that difference is uniform integrable with respect to the
family (pn)nen. Hence, we can invoke [4, Lemma 5.1.7| to conclude

/ 4e —yl* = llz — 2|* dpu(z,y,2) < liminf/ 4 =y = llz — 2|* dpu(z,y, 2).
03 n—oo 03

Therefore the auxiliary function p — A(p) = 4W3(v,p) — W2(n, p) is lower semi-
continuous with respect to narrow convergence. O

Recall that the well-posedness of a single step of the BDF2 scheme is equivalent to
the existence of a minimizer in . The augmented energy functional ¥ shares no
uniform semi-convexity as in the case of [70], so we cannot exploit the convexity to ensure
the existence of a minimizer. Nevertheless, a standard technique from the calculus of
variations yields the existence of a minimizer.

Theorem 5.2.6 (Existence of a Minimizer). For each 7 € (0,7) and for all n,v €
Pa(R2), there exists an absolutely continuous minimizer p, € D(E) of the map p —

(7, m,v;p).

Proof. Take a minimizing sequence (py,)nen for the BDF2 penalization p — U(7,n,v;p).
To extract a convergent subsequence, we use the auxiliary inequality (5.2.4)). Since
T < T«, the pre-factor of the second moment Ms(p) in is positive. Hence, the
second moment (Ma(py,))nen of the minimizing sequence (pn)nen is bounded. Also the
internal energy Uy, (pn) of the minimizing sequence is bounded, since

1
Upi(pn) <O (T, 1,3 pn) + EVV%(??, pn) — V(pn) — Wipn)

<sup [¥(7,7,v; pn) + C(1 + Ma(pn))] < oo.
neN

Due to the super-linear growth of p — plog(p) and of p — p", we can apply the Dunford-
Pettis Theorem to the densities (p,)nen and we can extract a non-relabelled subsequence
(pn)nen converging weakly in L1(Q). Since C*(Q) € L°(Q) = (L1(Q2))*, in this case we
can deduce from the weak convergence in L!(Q) of the sequence of densities the narrow
convergence of the corresponding measures. Summarized, the sequence (pp)nen also
converges narrowly to an absolutely continuous measure p, € Po(£2) with density p..
By the lower semi-continuity of the L™ (€)-norm with respect to narrow convergence it
follows ps. € D(E).

To prove that p, is indeed a minimizer we use the lower semi-continuity of the BDF2
penalization W, proven in Lemma to conclude

qj777*§1f\1’777n:f‘1’777
(7,m,v5 ps) < liminf U (7, 7, 5 pn ) . (1,m,v5p)

Indeed, the limit measure with density p. is a minimizer of the BDF2 penalization
\II(Ta nvs: ) O
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5.2.3 Intrinsic Properties of the BDF2 Scheme

Given an equidistant partition 7 = (7, 27,37, ...) of fixed time step size 7 € (0, 7) and a
pair of initial data (pf, pT) which approximates the initial datum pg. Then, the discrete
solution (p])ren for € on (P2(Q), W) defined in (5.0.3) and equivalently defined by the

recursive formula

Pre1 € argmin (7, p;_y, pr;p) for ke N (5.2.7)
PEP2(Q)
is well-posed by theorem The rest of this section is devoted to derive structural

properties of the BDF2 scheme, namely: Step size independent estimates, discrete Fuler-
Lagrange equations, better a priori estimates.

Step Size Independent Estimates. Next, we deduce the almost energy diminish-
ing property and the step size independent bounds. We want to emphasize that these
estimates are intrinsic properties of the scheme, which do not rely on any uniform semi-
convexity of the augmented energy functional ¥. The original proof of those estimates
can be found in [70] and for the sake of the completeness, we recall a proof adapted to
the L2-Wasserstein formalism.

The first result is an auxiliary inequality which will be used to derive the step size
independent bounds. Despite the auxiliary character of this inequality, we want to em-
phasize that this property is of interest by itself, since we can give a precise estimate of
the energy decay of the BDF2 scheme in every step.

Lemma 5.2.7 (Almost Energy Diminishing). For each time step size T € (0,7y) the
discrete solution (p} )ren satisfies

E(pr) + ZWg(pk—la pr) < E(pp-y) + EW%(Pk-za Pr-1) (5.2.8)

at each step k =2,3,.. ..

Proof. Since p] is a minimizer of p — (7, p]_,, pf_;; p), it satisfies
(T, Pf-2> P13 PE) < (T, Pfogs P15 P)
for all p € P2(£2). For the specific choice p = p]_;, we obtain

1

i 1
4TW§(pZ-2, pr) +E(pf) < —Ewg(pﬁ-wz_l) +&(pr)-  (5:2.9)

1
;W%(PZ—M P;) -

By the triangle inequality and the binomial formula,
W3(pFa: ) < 2W3 (05, p1) + 2W3(pF1, PF).

Substitute this in the left-hand side of ((5.2.9)). This yields (5.2.8) O
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The second result is the BDF2-equivalent of the classical estimates in the (time-
dependent) Minimizing Movement scheme. For this reason, we have to assume that
the approximation (pg,p7) of the initial datum po satisfy (11)&(I12) from assumption
622
Theorem 5.2.8 (Classical Estimates). Fiz a time horizon T > 0. There exists a con-
stant C, depending only on dy to do and T, such that the corresponding discrete solutions

(T )ken satisfy
N
Z ZW% Pr-1:P%) < C, Um (o) < C, M;(py) < C, (5.2.10)
=1

for all 7 € (0,7,) and for all N € N with N7 <T.

Proof. Sum up inequalities (5.2.8)) for £ =2 to K = N to obtain after cancellation:

N
1 1
ER) + = Y WA(T1 D) < EGD) + - WiGT, 5. (5:211)
k=2

Next, we want to prove the auxiliary inequality
M3 (pf) — M3 (pf1) < 2Wa(pf 1. pf) Ma(p]).- (5.2.12)

Without loss of generality we assume My(pf ) > Mo(p]), otherwise the equality is
always true. We use the binomial formula to obtain

M3 (pf) — M3 (pf4) = (Ma(pf) + Ma(pf1))(Ma(pf) — Ma(pf 1))
< 2M(pf; ) (Ma(pf,) — Ma(pi_y))-

Let g be the Dirac measure localized at = 0, then by the triangle inequality
M>(p) = Wa(p,do) < Wa(p,v) + Wa(v,d9) = Wa(p,v) + Ma(v).

This yields (5.2.12). Rewrite the difference of the second moments of p}; and p] by
means of a telescopic sum and use (5.2.12)) to obtain

N

N
M3 (piy) — M3 (p]) = [M3(pf) — M3 (pf1)] <2 Walpfy, pf,) Ma(pF).-
k=2 k=2

A Cauchy type inequality with (5.2.12)) yields

2 T 2 o T WEOLPD) AT o .
MQ(PN)—Mz(Pl)Ssz—i‘zzMﬂpﬁ'
k=2 k=2
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Substitute (5.2.11)) into this inequality:

N
T T 1 T 4 T
M3 (p%) <M3(o7) + 7. (E(6T) + = W3 (6T, 03) = E(0R) ) + — >_ M3 (o]).

k=2
The first term of the right-hand side is estimated by
M(p7) < 2W2(pT, po) + Ma(po) < 2d3+/T + 2M>(po)- (5.2.13)
Next, £(pT) is estimated using (I2) and estimate (5.2.13)):
3 3
E(5T) < da+ Sca (14 Mo(p])) < di+ odi (14 24577 +2Mo(p).  (5:2.14)

A lower bound of the energy & evaluated at p}; is derived by the same way as in the
prove of Lemma i.e., there exist constants ds and v € (d+1’ 1) such that

e<pmz—d2<1+Mz<pTN>>7—§d1< + Mo(0R)) = ~(da + ) 2+ ME(o5,)).

Hence, there is a universal constant C, not depending on the step size 7, such that

N
M3 (py) < C +7ulda2 + dl)Mz ZMZQ Pk)-

-
* k=2

,,u

We rearrange terms and use the upper bound for 7, to arrive at the time-discrete Gronwall
inequality

N
81
M3(p}) < 2C + — > M3(p)-
)
By induction on N we obtain

M3(p%) < C(l + 8T) < Cexp (8NT) < Cexp (f)

Tx Tx

So the second moments Mo (p7;) of the discrete solution are uniformly bounded indepen-
dent of the step size 7 € (0, 7%) and for all N € N with N7 < T.

The remaining estimates can be derived from this. An upper bound for the energy
E(pYy) follows from ([5.2.11)) and (.2.14) combined with (I2). The lower bound on E(p})
follows by the lower bounds on U,,,V, and W in terms of the second moment. Hence,
the boundedness of £(p}), V(p} ), and W(p},) yields the boundedness of U, (p};). The
upper bound for the kinetic energy follows from the lower bound for the energy £(p%,),

(5.2.11)), and (5.2.14)) combined with (12). O
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Discrete Euler-Lagrange Equations. In theorem[p.2.9] we derive the discrete Euler-
Lagrange equations for the weak formulation of the non-linear Fokker-Planck equation
(5.2.1). The key idea is the JKO-method introduced in [54] and recalled in section [2.4]

Theorem 5.2.9 (Discrete Euler-Lagrange Equations). The discrete solution (p}),cx
obtained by the BDF2 method satisfies for each k & N\{1} and for all vector fields
€€ CX(Q,RY) with £ -n =0 on 0Q

0= /Q — div(E) (oF)™ + (€, YV 5T + (6, VW # pT) pf da

2 1

(5.2.15)
+2 [ (€@)ro =) dpi@n) - 5 [ (E@)a -2 daf (),

T 2T

where pi. € I'(pf, pi_4) and qk e L(pf, pfy) are optimal transport plans.

Proof. Fix pf,pl_,,pr, and & € C(Q, RY) with ¢ -n = 0 on 9Q. We consider the
perturbation p*® of p] as the solution of the Transport equation with velocity field §
starting at pf, i.e., p° is the solution of (2.4.6) as in section 2.4 The first variation of
the energy &€ along the solution to the continuity equation amounts to

d
W= [ = A D)™+ (6 TV) AT + (€ W o) o] do
Q

The differentiability of the quadratic L2-Wasserstein distance Wy along the solution p® is
given by [92] Theorem 8.13], since p7_,, pf_y, pf, p° are all absolutely continuous measures.
Hence, we can conclude:

d - s T s
E [4W%(pk,1, 1% ) - W%(pk*Zﬂ P )]5:0

- 8/Q2<€(x),x—y) dpy, (7, y) —2/Q (€(x), 2 — ) dq] (z, 2),

2

where p € I'(p}, p7_,) and q- ¢ I'(pf, pi_o) are optimal transport plans. Since pf is a
minimizer of the BDF2 penalization W(7, p]_,,pf_;: -) and since s — Y(7, p]_5, p7_1: p%)
is differentiable at s = 0,

d

0 :E [\P(Ta ,0;-27 /)7.;;—-1; ps)] s=0

— L L W3 (o, 0%) - WL 0] oy + — [E(0°)
41 ds -1 -2 s=0 ds s=0
2 i 1 i

=2 [ (@ha ) dpfay) 5 [ (€)a - ) daf (e, 2)
T 02 27’ 02
+ [ () (D)™ + (€ V) T + (6 VW D)

Indeed, we have the desired equality (5.2.15]). O
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5 Backward Differentiation Formula 2

Refined Regularity. The already obtained regularity results for the interpolated so-
lution pf are not sufficient to pass to the limit in the first term of the discrete Euler-
Lagrange equation ([5.2.15). Nevertheless, the following bounds in the BV(€2)-norm of
(pp)™ are sufficient to obtain the desired regularity results. These estimates can be
derived from the discrete Euler-Lagrange equation quite naturally.

Proposition 5.2.10 (Step Size Independent Local BV(Q)-estimate). Fiz a time horizon
T > 0. There exists a constant C, depending only on di to dy and T, such that the
corresponding discrete solutions (pF)ren satisfy for all 7 € (0,7,) and for all k € N\{1}
with kTt < T':

W T , T W 7'7 , T
14 2(Pf-1: PF) n 2(Pf-s Pk)) (5.2.16)

(7)™ gy < € = =

Proof. The L'(Q)-norm of (p])™ is equal to (m — 1)Uy, evaluated at p]. Hence, we
can bound the first term in the definition of the BV(£2)-norm uniformly by the classical
estimates (5.2.10). In order to estimate the variation of (p[)™, we estimate the term
inside the supremum of the definition of V((p])™, ). Thus let & € C(Q,RY) with
l€]] o, < 1, then we can estimate the integral term in the definition of the variation of
(pp)™ with the discrete Euler-Lagrange equations as follows

[ div(©)de = [ (60).VV)o(a) + (€a), TW s o (a) o
Q Q

+ 2/92<£(x),x—y> dpf (z,y) — 1/92(5(;3)@—@ dq] (z, 2).

T 2T

(5.2.17)

By (I2) we have quadratic growth bounds for VV and VW, so using the step size
independent bounds on the second moment (5.2.10), we can estimate the first terms
in (5.2.17)) as follows:

/g)(&(:c), VV)pi () + (£(x), VW x pp) pp () dz < 2dy [[€]| (1 + Ma(pp)) < 2d1(1 + C).

The second integral on the right-hand side of ((5.2.17) can be estimated using Jensen’s
inequality

(€@).x — ) AL ()| < 1l ([ 1o —wl dpT (@) < WalsLr, D),
n [ <lel ([,

and similar for the third integral of the right-hand side of (5.2.17). Hence, we have the
following upper bound for the variation of (pJ)™:

(PE-1:PE) n WQ(PZ-WPE))
T T ’

W,
V()" <C(1+

In conclusion, the discrete solution (p] )ren satisfies the desired bound (5.2.16). O
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5.2 Application to Non-linear Fokker-Planck Equation

As a sort of Corollary of the previous Proposition [5.2.10| we get the main ingredient of
the convergence proof of the interpolated solution p;".

Theorem 5.2.11 (Step Size Independent Global L2(0, T; BV(Q))-estimate). Fiz a time
horizon T > 0. There exists a constant C, depending only on dy to dy and T, such that
the corresponding interpolated solution py satisfies for each T € (0,7y):

||(ﬁ:)m||L2(O7T;BV(Q)) <C. (5.2.18)

Proof. We use the classical estimates on the kinetic energy (5.2.10)) and the result from
Proposition [5.2.10| to estimate the L?(0, T; BV(Q))-norm of (p7)™. Let Ny := max{N €
N | N7 < T}, then we have with (I2) from Assumption

Nr+1 kT
1B ™ 120 rmviy < 7D Ry + > /(k o, NP v d
k=2 T

Nr+1

W T , T W ‘l'_7 T 2
chrCy T<1+ 2(PT_1, PF) N 2(P7_5 pk)> .
k=2

T T

By the triangle inequality Wa(p7, p7_s) < Wa(p] o, p5_1) + Wa(pf_4, pj.) in combination
with a Cauchy type inequality we obtain

Nr+1 2( T T 2( T T

Wi 107) Wil o, 051)

—r\m2 2\FEg-1> Mk 2\Fk-25 PE-1
D M L

N W3 (o] . o)
<ds+C(T+71)+C Z LESRALE
k=1 T

Finally, we can conclude, under the step size independent bounds on the kinetic energy

E210).

H(ﬁz)mui2(07T;BV(Q)) <dy+C(T+71)+C:=C

for some universal constant C , which only depends on d; to d4 and T, but not on the step
size 7 € (0, 7). Hence, we have proven the desired step-size independent L2(0, T; BV(Q))-
estimate (5.2.18)). O

5.2.4 Convergence

In this section we prove our main theorem, the narrow and strong convergence of the
approximation p; to the solution pj of the non-linear Fokker-Planck equation. Our first
weak convergence result follows from the step size independent bounds and the
Arzela-Ascoli theorem, which can be found in [4, Proposition 3.3.1].
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5 Backward Differentiation Formula 2

Theorem 5.2.12 (Narrow Convergence in Pa(2)). Given a sequence of equidistant par-
titions (Ty)nen of vanishing step sizes 7, € (0, 7). Then, there exists a (non-relabelled)
subsequence (T,)nen and a limit curve pf € AC?(0,00; (P2(Q), Wa)) such that for any
t>0:

Pt — py narrowly in the space Pa(2) as n — oo.

Proof. Fix T > 0 and define the auxiliary function A? € L2(0,T), also called discrete
derivative, as

W, (p?lapk )

Tn

Using the step size independent bounds (5.2.10) we obtain for Ny = max{N | N7, < T}:

kTn W , Nt W2 Tn’ Tn
/ (AT dt<Z/ ”klpk)) dt:ZMSC.
0 Tn Tn

k=1

A} = for te ((k—1)m,kr,] and keN.

Indeed, A7 € L%(0,T) and the L2(0, T)-norm of A} is uniformly bounded independently
of the step size 7,,. Therefore, the sequence A} possesses a non-relabelled subsequence
weakly convergent in L2(0,7) with limit A; € L?(0,7). To derive an uniform Holder-
estimate for p;™, choose 0 < s < ¢ < T arbitrary and define k; = max{k € N | k7,, < t},
then

. kn pk PR
W (pl", p7") Z Wa(pi,, o) Z dt.

k=ks+1 k=ks+17 (k=1)Tn
Rewriting this in terms of A} yields the auxiliary 1nequality

t
Wa(pI™, pi™) §/ Ay dr. (5.2.19)
(

s—7p)t

Taking the limit n — oo yields, together with A? — A; in L?(0,7),

lim sup Wa(pI™, p;™) / A, dr.

n—0o0

Moreover, the second moments of the discrete solutions (p;")ren are uniformly bounded
independently of the step size 7, and therefore the interpolated solutions p;™ is uniformly
contained in a set K which is compact with respect to narrow convergence. Hence, we
can apply the Arzeld-Ascoli Theorem [4, Proposition 3.3.1] yielding the existence of a
non-relabelled subsequence and a limit curve p} : [0, 7] — Pa(€2) such that p;" converges
narrowly to pj for each fixed ¢t € [0,T]. Additionally, the limit curve pj is L2 absolutely
continuous with modulus of continuity 4; € L?(0,T). A further diagonal argument in
T — oo yields the narrow convergence of the interpolated solution p;™ to the limit curve
p; on for any ¢t > 0 and p; € AC?(0, 00; (Pa(2), Wa)). O
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5.2 Application to Non-linear Fokker-Planck Equation

Theorem 5.2.13 (Strong Convergence in LP(0,T;L™(R))). Under the same assump-
tions as in Theorem [5.2.19 and given the limit curve ps therein, then there exists a
further (non-relabelled) subsequence (Ty)nen such that for all T > 0, for any p € [1,00)
and for any bounded subset © C Q:

—Tn

ot — pf strongly in LP(0,T;L™(©)) as n — oo.

Proof of Theorem for Q CRY. Fix T > 0. In order to prove the strong conver-
gence result we use the Aubin-Lions Theorem with the underlying Banach space
X =L™(£2). We consider the functional A : L™ (Q) — R, defined via

Alp) = P By if p € P2(R) and p™ € BV(Q),
+o00 else.

Using the lemma in the introductory section it follows that the functional
A is measurable, lower semi-continuous with respect to the L™(Q2)-topology, and has
compact sublevels. Next, we choose as pseudo-distance g = Wo on L™(). The L2
Wasserstein distance is lower semi-continuous with respect to the L™ (€Q)-topology and
clearly compatible with A.

Next, we verify the assumption (2.5.1) on (p;")nen of Theorem By the refined
L2(0,T; BV(Q))-estimates of Theorem it is clear, that the sequence (p;™)nen is
tight with respect to A, since we have:

T
(2 —Ta\m |2
SUP/ 17™) ™ vy dt = sup [|(27")™ L2 0,rv () < C < .
neNJo neN

For the proof of the relaxed averaged weak integral equicontinuity condition of (p;")nen
with respect to Wa, we use the auxiliary function A} and the estimate (5.2.19)) from the
proof of weak convergence results to obtain:

T—t T—t prs+t T
W (piny, par)ds < / / Ardrds < (t+7,) / AT dr.
0 0 (s—7n)t 0

Indeed, using the weak L?-convergence of A7 to some A; € L} (0, 00) it follows

1 [h [Tt
lim inf lim sup — / W (pits, par) dsdt

MNO  n—oo o Jo

1 h T
<lim inf lim sup / (t+ ) dt/ A dt =0.

ANO  n—ooco 0 0
Therefore, we can conclude that there exists a non-relabeled subsequence (7,)nen such
that p;" converges in M(0,T;L™(Q)) to some curve p;. Due to the uniform bounds
in L°°(0, T;L™(€2)), we obtain with remark also convergence in LP(0,7;L™(2)) as
desired. Moreover, the limit curves p;~ and p} have to coincide, since p;™ converges also
in measure to pf and pj, so both limits have to be equal. O
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5 Backward Differentiation Formula 2

In the case of @ = RY we have to alter the proof given above, since the embedding
of BV(RY) into L'(R?) is not compact anymore. So we restrict ourself to the open
and bounded sets © = Br(0). This subset is clearly open and bounded with Lipschitz-
continuous boundary 90, so the embedding of BV(0) into L!(©) is compact again.

Proof of Theorem for @ =R4. Fix T > 0. Without loss of generality we can as-
sume © = Br(0), since every bounded subset K C RY is contained in a ball with radius
R and convergence in L™ (0,7; L™ (Br(0))) implies convergence in L™(0,T;L™(K)).

As before, we want to use the Aubin-Lions Theorem for the Banach space L™ (0)
equipped with the natural topology induced by the L™ (©)-norm applied to (p;"|g)nen;

the restriction of the density P to the subspace O. In this case we consider the functional
A:L™(O) — R, defined via

Alp) ==

i lo™ [Bv(e) if p € Mg(©) and p™ € BV(O),
+00 else.

Now, the functional A s measurable, lower semi-continuous with respect to the L™(©)
topology, and has compact sublevels. Since A(p|g) < A(p), we obtain by the same
calculations as above the tightness of (/" |g)nen With respect to A.

Since the measure p|g does not have unit mass anymore, we cannot consider the L2
Wasserstein distance Wy as pseudo-distance anymore. However, we can use the following
pseudo-distance g:

dlp,v) == inf {Ws(5,9) | j € £(p), ¥ € ()},
S(p) = {5 € P(RY) | flg = p. Ma(p) < C}

where C'is the constant from the classical estimates for the specific T'. Since X(p)
and ¥(v) are compact sets with respect to the narrow topology, the infimum is attained
at some pair py, Vx. The pseudo-distance g is compatible with A, i.e., if p™ v™ € BV (O)
and g(p,v) = 0 then p = v a.e. on O. The lower semi-continuity of the pseudo-distance
g with respect to the L™ (0©)-topology can be proven as follows. Choose to convergent
sequences p, — p and v, — v in L"(0) with sup,, §(pn,n) < oo. By the remark
from above, there exists py, v, such that g(pn,vn) = Wa(pn, V). Since the second
moments are by definition of ¥(p) uniformly bounded, we can extract a non-relabeled
convergent subsequence which converges narrowly to p € X(p),v € X(v). By the lower
semi-continuity of W with respect to narrow convergence, we get in the end

g(p,v) < Wy(p,v) < lirginf Wo(pn, Un) = lirginf Wa(pn, vn).

Therefore, the pseudo-distance g is lower semi-continuous with respect to the L™(©)-
topology. Thus, g satisfies the assumptions of theorem [2.5.4] Further, one has by def-
inition g(plg,v|g) < Wa(p,v). Thus, we derive, using the same proof as above, the
equi-continuity of (p;"|g)nen With respect to the pseudo-distance g.
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5.2 Application to Non-linear Fokker-Planck Equation

Hence, we can conclude that there exists a non-relabeled subsequence of p;™|gy which
converges in M(0,T;1L™(0)) to some limit p;”. As before, we use the uniform bounds in
L*(0,T;L™(©)), to obtain the strong convergence in LP(0,7;L™(©)) by Remark
Moreover, the limit curves p; and p} | have to coincide on ©, since p;"|g converges also
in measure on O to pf and pjl|g, so both limits have to be equal on ©. Two diagonal
arguments in 7' — oo and R — oo yield the desired convergence result. O

To complete the proof of the main theorem [5.0.2 we have to validate that p; is indeed
a solution to (5.2.1)) in the sense of distributions.

Theorem 5.2.14 (Solution of the Non-linear Fokker-Planck Equation). Under the same
assumptions as in Theorem and given the limit curve pi from there. The limit
curve pf is a solution to the non-linear Fokker-Planck equation with no-fluz boundary
condition (5.2.1) in the following weak sense: For each test function p; € C°([0,00) x Q)
with Vi -m =0 on 0 the limit function p; satisfies:

/ /Q At ()™ + (Viou, YV pi + (Vipe, VW 5 ) pi da dt
0

=/ /&%p}*dde/sOopodx-
0 Q Q

Proof. For simplicity we drop the index n and write for the step size only 7 and 7 — 0.
Fix @1 € C°([0,00) x Q) with £ -n = 0 on 9Q and let be T > 0 and © C  be open
and bounded such that supp ¢; C [0,7] x ©. Further, define the piecewise constant
interpolation ® of ¢ by

(5.2.20)

5 =wvo, @; =@k forte ((k—1)r,kr] and k € N.
For each k € N\{1} insert the smooth function z Vop—1)r in the discrete Euler-

Lagrange equation ([5.2.15) for the vector field £. Summing the resulting equations from
k =2 to Np + 1 and multiplying with 7 yields:

0 :/ / —Ap] (pD)™ + (Vo ,VV) ol + (Vol , VW ol ) pf dz dt
T Q
N

3 [2 [ (Fewoe@)a =) f ) =5 [ (Voo o)o—2) dal(@.2)

k=2

Due to the strong convergence in L™(0,T;L™(©)) of pf to p; and due to the uniform
convergence of Ap] to Apy

T
i Ty = [ [ =D (o)™ + (V0. YY) i + (Tt VW ) i o
T 0 Q
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5 Backward Differentiation Formula 2

To rewrite I, we use, as in [54], the second order Taylor expansion for a time independent
function ¢, to obtain

‘/ Y)pT () dy — /Qcp(z)pZ(x)da:—/QQ(VCP(J")J/_@ dpj (z,y)
| / — (Ve(a),y =) dpf(a.y)
<3 |Hess<,0||oo/Q2 Iz = yl|* dp. (x, )

1 2
— IHess ell . (o, 7).
Replacing the time independent function ¢ with ¢(;_1), yields as approximation of I3

Nr

3 T T ]' T T T T T
=" | [ GoE =200 + 5pT2) et 1)r da + O(WE (o, oF)) + O(W3 (0T 0, ) |-
—t/o 2 2

We rearrange the sum of the first term in I as follows

1
Z/ 2p51 + kaz 2)P(k—1)r AT

1 - 3 - 3 -
= Z/ — 2¢pr + 5 Pk+1)r 7) Pk da — / 5¥0P1 + (580—7 — 2¢0)pg dz,
Q

where we use the convention ¢; = ¢g for all t < 0. Finally, use the fundamental theorem
of calculus and the classical estimate ) to bound the second term in I, to obtain

3
/ | Gower = 50upusr) i dadt - / S0t + e — 20005 da + (7).

Indeed, combining the narrow convergence of p; with the uniform convergence of 0y -
to Oy and with the narrow convergence of the initial data (pf, p7) to po, the limit of I
is given by:

T
lim IQ—_/ / atgotpzda:dt—/ wo po dzx.
7N\0 0o Ja 9)

Finally, we can conclude that for arbitrary test functions ¢; € C2°([0,00) x Q) with
Vi -m =0 on 02 the limit curve p; satisfies:

/ / S A 4 (Vo TV pi 4 (Vi VW % pi) pf dedt
0 0

2/ /&gptpfdxdt—l—/(popodw.
0 Q Q

This yields that p, is a solution to the non-linear Fokker-Planck equation (5.2.1]) in the

weak sense of (5.2.20f). [
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

This section is concerned with the variational formulation of the second order Backward
Differentiation Formula applied to the Derrida-Lebowitz-Speer-Spohn (DLSS) equation
with no-flux boundary condition:

= —div M
&gpt = d (ptV(Q \/E )) (531)

starting from the initial configuration py with non-flux boundary conditions in an open,
bounded, and convex domain 2 with Lipschitz-continuous boundary 92 and normal
derivative n or Q = RY. We consider as an evolutionary equation in the L%
Wasserstein space (P2(€2), Wa). The corresponding free energy functional £ : Pa(Q2) —
R U {oco} for the DLSS equation is given by the Fisher information:

E(1) == /Q IVl da

provided the measures p is absolutely continuous with respect to the Lebesgue measure
£4 with = pdL? and /p € H'(2), otherwise we set (i) = co. As in the previous
section , the free energy functional £ is (highly) not convex along generalized geodesics
in (P2(£2), W3) and hence, the theory developed in the first section [5.1]of this chapter is
also not applicable.

Method. The variational formulation of the second order Backward Differentiation
Formula applied to the DLSS equation (5.3.1]) reads than as follows:

Scheme. For each equidistant partition 7 = (7, 27,37, ...) with sufficiently small time
step 7 > 0, let a pair of initial conditions (pf, pT) be given that approximate pg. Then
define inductively a discrete solution (pf )ren such that each p],, with £ € N is a mini-
mizer of the following functional,

1 1
p = U (T, pL1, pRip) i= ;Wg(pﬁ,p) — EW§(PZ-170) +&(p).

Define the corresponding piecewise constant interpolation in time py : [0,00) — Pa(£2)
of the discrete solution p in time via

o =ps, Pt =pp forte ((k—1)r,kr] and k€ N.

Strategy of the Proof. We use the same approach as in the second section of this
chapter and apply it to this case. Accordingly, we derive in section the existence
of our approximation (p)ren and prove the classical intrinsic properties of the discrete
solution in section [5.3.3] Most notably to mention is the different approach to derive the
better a priori bounds in section by means of variations along solutions to the heat
equation. In the end, these bounds are sufficient pass to the limit 7 — 0 and prove the
convergence of p] to a weak solution p; of the DLSS equation, see section [5.3.4]
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5 Backward Differentiation Formula 2

5.3.1 Setup and Assumptions
In this case the BDF2 penalization ¥ : (0,7.) x (P2(2))® — R U {co} with the energy

energy functional &£ given by the Fisher information reads as
1

1
U(r,n,v;) : Pa() = RU{oo}; ¥(r,m,v;p) = ;Wg(% p) — pp

W3(n, p) + £(p),

where we assume an artificial upper bound of the step sizes 7. < 1. Note, the free energy
functional & satisfies the usual LSCC-conditions from [4] with respect to the topology
induced by the narrow convergence of measures.

Later, we will need further Assumptions on the approximation (pf, p7) of the initial
datum pg.

Assumption 5.3.1. There are non-negative constants ds, d4 such that for all 7 € (0, 7.):
(I1) W3(pg,p7) < ds7 and W3(pF, po) < da7.

(12) Z(p§) < da, Z(pT) < da, and [|p]|[fj2(q) < da/7-

5.3.2 Basic Properties of the BDF2 Penalization ¥

Before we prove the well-posedness of the BDF2 scheme applied to the DLSS equation
we establish two basic properties of the BDF2 penalization ¥(7,n,v;-): Boundedness
from below and lower semi-continuity with respect to narrow convergence.

Lemma 5.3.2. For all p,n,v € P2(Q) it holds:
W(r,m,:0) 2 5-Ma(p) — ~Ma(v) — - My()
7,1, 7P_8T 2(pP v p 2\1)-

Proof. The proof is similar to the proof of lemmal5.2.3] As long as the Fisher information
is non-negative one has:

1

1
v :p) > —W
(TvﬁaV,P)_T 2(1/,[)) AT

WZ(na p)

Next, to derive a lower bound for the terms comprising the L2-Wasserstein distance, we
use the elementary inequality (5.2.5)) given by

My (p) — 2M,(v) < 2W3(p,v) < 3Ms(p) + 6 My (v) for all p,v € P2(Q2).

to obtain the lower estimate

1 1
o ) > — My(p) — — My (v) — — M.
(1,m,v5p) > . 2(p) . 2(v) g 2(n)

which is the desired result. O

110



5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Lemma 5.3.3. For each 7 > 0 and for alln,v € Po(Q2) the BDF2 penalization (7, n, v;-)
18 lower semi-continuous with respect to the narrow convergence.

Proof. The Fisher information is lower semi-continuous with respect to the narrow con-
vergence, see [47]. By the previous calculations in the proof of lemma also the
auxiliary map A : P2(2) — R, defined via

A(p) = 4Wz (v, p) — Wa(n, p)

is lower semi-continuous with respect to the narrow convergence. Hence, the map p —
U(r,n,v;p) is lower semi-continuous as sum of lower semi-continuous functions. O

Theorem 5.3.4. For each 7 > 0 and for all n,v € P2(QQ), there exists an absolutely
continuous minimizer p € D(E) of the map p — V(7,n,v;p).

Proof. Take a minimizing sequence (py, )nen for the BDF2 penalization p — ¥(7,n,v; p).
To extract a convergent subsequence, we use the lower bound of lemma The
pre-factor of the second moment Mps(p) in this inequality is positive and therefore
(M3(ppn))nen is bounded. Also, the Fisher information of the minimizing sequence is
bounded, since

1
E(pn) < U(7,m,v;5pp) + sz(n, pn) < sup [¥(7,n,v; pn) + C(1+ Ma(pp))] < oo.

Hence, the minimizing sequence (pn)nen is contained in some sublevel of the Fisher
information £, which is compact with respect to the narrow convergence. So, we can
conclude there exists a limit density p, such that p, —* p. on a subsequence. Now since
the BDF2 penalization is lower semi-continuous with respect to the narrow convergence,
the limit density p, is indeed a minimizer. O

5.3.3 Intrinsic Properties of the BDF2 scheme

Given an equidistant partition 7 = (7,27,37,...) of fixed time step size 7 > 0 and a
pair of initial data (p, pT) which approximates the initial datum pg. Then, the discrete
solution (p})ken for € on (P2(2), W3) defined in (5.0.3)) and equivalently defined by the

recursive formula

Pr1 € argmin (T, pi_4, pr;p) for ke N (5.3.2)
PEP2(Q)

is well-posed by theorem The rest of this section is devoted to derive structural
properties of the BDF2 scheme, namely: Step size independent estimates, discrete Euler-
Lagrange equations, better a priori estimates.
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5 Backward Differentiation Formula 2

Step Size Independent Estimates. As in the previous section the discrete so-
lution (p] )ken satisfy the classical estimates on kinetic energy, free energy, and bounded-
ness. Recall, the initial data (p, pT) satisty (11)&(12) from Assumption[5.3.1]

Theorem 5.3.5 (Classical Estimates). Fiz a time horizon T > 0. There exists a con-
stant C, depending only on dy to da and T, such that the corresponding discrete solutions
(PF)ken satisfy

= 1 2/ T T T T
2 1§W2(Pk—1’ﬂk) <C, I(pn) <C, M>(py) < C, (5.3.3)
for all 7 € (0,7) and for all N € N with N7 <T.

This proof is almost identical if not simpler — since the Fisher information is non-negative
— as the proofs given in the previous two sections, so we shall skip this proof.

Discrete Euler-Lagrange Equations. In the spirit of the JKO-method [54] we derive
the discrete Euler-Lagrange equations for the weak formulation of the Derrida-Lebowitz-
Speer-Spohn equation.

Theorem 5.3.6 (Discrete Euler-Lagrange Equations). The discrete solution (p]); o
obtained by the BDF2 method satisfies for each k € N\{1} and for all vector fields
€€ CX(Q,RY) with € -m = on 0N

0=- / %(V(divﬁ), Vi) + 2(DEV/px, Vo/Pr) da
3 1 (5.3.4)
+2 [ (€@so =9 dpi@n) = 5 | (6@)a -2 daf (@),

where pf, € U'(pf, pi_,) and qlﬁ € L'(pf, pf_y) are optimal transport plans.

Proof. Fix pf,pT i, pie and £ € C(Q, RY) with € - n = on 9. We consider the
perturbation p® of pi as the solution of the transport equation with velocity field &
starting at pf, i.e., p® is the solution of (2.4.6) as in section . The first variation of
the Fisher information £ along the solution to the transport equation is equal

) = — [ 5(VINE, Vp.) + 2DEV VR, V) do
Q

The differentiability of the quadratic L.2-Wasserstein distance Wy along the solution p® is
given by [92, Theorem 8.13], since p]_,, pf_;, pi., p° are all absolutely continuous measures.
Hence, we can conclude:

d

< W31 0%) = W3 0%)]

:8/§22<5(x>,x_y> dpf (v, ) — 2 /Q (€(x), 2 — 2) dqf (x, 2),

2

where pT € (o7, pT_,) and q¥ € T'(p], pI_,) are optimal transport plans.
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Since pf is a minimizer of the BDF2 penalization W(7, pj_,, pj_;; -) and since the map
s = W(T, pl_o, pf_1: p°) is differentiable at s = 0,

0= (f (Y (7, P2 P13 %) g
%di [4W3(pF1,0°) = W3(pF0:0°)] o + % [£(P*)] =0
=2 [ @ =) dpllen) — 5= | (a)a = 2)dal@.2)
_ /Q 3 (V(divE), Vp.) +2(DEV V., V/p.) du
Indeed, we have the desired equality - -

Refined Regularity. The already obtained regularity results for the interpolated so-
lution p] are not sufficient to pass to the limit in the first integral of the discrete Euler-
Lagrange equation . Unfortunately, we are not in the situation as in the Fokker-
Planck case, where we could derive from the discrete Fuler-Lagrange equations better a
priori bounds. To circumvent this issue, we propose a different variation of the discrete
solution p7, namely along the heat flow. More precisely, we define as perturbation p* of
p;. as the solution to the heat equation

0sp® = Ap?®, p° = pl. (5.3.5)

Proposition 5.3.7 (Step Size Independent Local H(Q)-estimates). Fiz a time horizon
T > 0. There exists a constant C, depending only on di, ), and T, such that the
corresponding discrete solutions (p}, )ken satisfy for all 7 > 0 and for all k € N\{1} with
kt <T:

W T T 'W T T
IV oy < (14 "2k lh) TR By - (55

T

Proof. Fix T > 0. By definition, the H2(Q)-norm of . /pj, comprises three terms:

2 2 2 2
IV 2y = IVAE 2 + IV VATl 2 @may + ID*VAE 2 paxay
= 107 110y + Z(D) + |ID>V/0E I 2 ey -

The first term is equal to the L'-norm of p;. and hence equal to one. The second term,
i.e., the Fisher information of p7, is bounded by some constant independently of the step
size T by the classical estimates . Hence, it remains to estimate the norm of the
second order derivate.

To do so, we use the idea of the flow interchange technique developed by Matthes et
al. [68]: we define p® as the perturbation of p] along the heat flow with n = 1.
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5 Backward Differentiation Formula 2

As long as pf is the minimizer of the BDF2 penalization one has

1
0 < [W(T, pias Pl13 P°) = V(T Pl P13 PF)]
1 2/ T S 2/ T T 1 2/ T s 2/ T T
:;[Wz (Pk—pp ) — Wz(Pk—pPkﬂ - E[Wz(pk_g,p ) — W2(pk—27pk)]
1
+ ;[5(p5) —E(p)]

for sufficiently small s > 0. By passing to the limit s — 0 in each term, we will obtain
the better a priori bound for D2,/ pi. The first variation of the Wasserstein distance
along the heat Flow p® is given by lemma [2.4.7| and is equal to

) 1 1
lim sup —[W3(pf_y, p°) — W5 (k-1 pF)] — o [(W3(pi-2:0°) — W35(pi-9: 0F)]
50 ST ST

1 1
S;WQ(/)Z—D Pi)VI(pg) + gWZ(PZ—% Pi)VI(pg)-

The first variation of the Fisher information along the heat flow p°® is given by lemma

2.4.9] and is equal to

s—0 S

hminfdi[g(;f)] < —c/ ID2/o7|)? de.
Q

Putting everything together yields

1 1
0< 5= WaldLs PVI(D) + - WaloLo PV () - C / [D* Vo | d

which is — after rearranging the inequality and using the classical estimate (5.3.3)) on the
Fisher information — the desired local a priori estimate (5.3.6)). O

Theorem 5.3.8 (Step Size Independent Global H?(Q)-estiamtes). Fiz a time horizon
T > 0. There exists a constant C, depending only on ds,ds,) and T, such that the
corresponding interpolated solution py satisfies for each T € (0,7:):

”\/ﬁHIﬁ(o,T;H?(Q)) <C. (5.3.7)

Proof. We use the results from Proposition mto estimate the L2(0, T'; H*(Q))-norm of
Vpr. Let Ny :max{N € N| N7 < T}, then we have with (I2) from Assumption

Npr+1

kT
VAT oz < TIVAT I + D /(k o VP e
k=2 T

Nrtl Wo(pT T Wo(pT T\ 2
<ditC Y w1+ 2PE1 PR) | Q(pk—Q’pk)> |
k=2 T T
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

By the triangle inequality and a Cauchy type inequality we obtain

Nr+1 W 2( T T
(o}, ,p) W30} o5 P71)
H\/ptHLQOT}P <ds+C- Z( i SR LAY k: ’“)
N WEory, of)
<dy+CT+C - Z —

k=1

Finally, we can conclude with the step size independent bounds on the kinetic energy
and on the Fisher information from (5.3.3)),

H\/EHL2OTH2 <di+CT+C-C-C=C

for some universal constant 5, which depends only on ds,ds, ) and T, but not on the
step size 7 € (0,7). Hence, we have proven the desired step size independent global

L2(0,T; H*(Q))-estimate (5.3.7)
O

5.3.4 Convergence

In this section we prove our main theorem, the narrow and strong convergence of the
approximation p; to the solution pf of the Derrida-Lebowitz-Speer-Spohn Equation. Our
first weak convergence result follows from the step size independent bounds and
the Arzela-Ascoli theorem, which can be found in [4, Proposition 3.3.1].

Theorem 5.3.9 (Narrow Convergence in Pa(Q2)). Given a sequence of equidistant par-
titions (Typ)nen of vanishing step sizes T, € (0, 7). Then, there exists a (non-relabelled)
subsequence (T,)nen and a limit curve pf € AC%(0, 00; (P2(Q), W2)) such that for any
t>0:

Pt — pp narrowly in the space P2(2) as n — oo.

The proof of this theorem is word by word identical to the proof of theorem [5.2.12
with the only difference, that we use the classical estimates (5.3.3)), therefore, we skip
this proof.

Next, we state the strong convergence results.

Theorem 5.3.10 (Strong Convergence). Under the same assumptions as in Theorem
and given the limit curve p. therein, then there exists a further (non-relabelled)
subsequence (Ty)nen such that for all T > 0, for any p € [1,00):

Pt = py strongly in LP(0, T;LY(Q)) as n — oo,
Pt =\ Pr strongly in L2(0,T; HY(Q)) as n — oo,
VPt =\ pf weakly in L*(0,T; H*(Q)) as n — oo.
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5 Backward Differentiation Formula 2

Proof. Fix T > 0. To derive the convergence results we proceed similarly as in the proof
of theorem by applying the extension of Aubin-Lions theorem [2.5.4] once. The
other results follow by the Banach-Alaoglu theorem and an interpolation argument.

We seek to apply theorem for (u})nen 1= (\/ﬁ)neN with the underlying Banach
space X = L%(Q2). We consider as normal coercive functional A : L%(Q) — [0, 0] and as
pseudo-distance g on L*(Q):

%) else,

Wo(f2 h?) if f,h >0A f2 h? € P¥(Q),

+o00 else.

g(f,h) = {

Note, with abuse of notation f? and h? are identified with the corresponding measures
f2L4 and h2L4, respectively.

To prove that A is a normal coercive integrand, we shall prove all properties. It is
clear, that A is measurable. The lower semi-continuity of the H!(©)-norm and of the
second moment M, is also trivial. For Q open, bounded and convex, the compactness
of the sublevels of A follows from the Rellich-Kondrachov theorem. For Q = RY, we use
the following observation: given a sequence of measures (i, )nen With sup,, Ma(uy,) < 0o
then we can extract by Prokhorov’s theorem a subsequence which converges in the weak*-
topology of measures to some limit measure p,. Hence, every sequence (uy,)nen C L2(Q)
contained in a sublevel of A satisfies sup,, Ma(i,) < oo and therefore (u2),en con-
verges to some limit measure u, in the weak*-topology of measures. Therefore, we
can use Lemma 2.2 from [68] which yields the strong convergence of (uj)nen in the
L2(Q)-topology. Additionally, the pseudo-distance g is indeed a lower semi-continuous
pseudo-distance, cf. [66, Proposition 7.6].

Next, we have to verify, that (u}'),en satisfies the hypothesis of theorem The
tightness of (u}'),en with respect to A; follows directly from the classical estimates
. By the same calculations as in theorem , (up)nen satisfies the weak inte-
gral equi-continuity condition, since g(uf’,ui ;) = Wa(p;",p;},). We can conclude by
theorem that (on a subsequence) (u}),en converges to some u} in M(0,T;L%(Q)).
We have also uniform L(0, T; L%(€2)) bounds. So we can use Remark to conclude
the strong convergence result of (u}),en to some u} in LP(0, T;L%(Q)).

It follows directly by the e-independent L?(0, T'; H*(Q))-estimates that uj con-
verges weakly in the L2(0,T; H*(Q))-topology. Hence, the weak convergence of (u}'),en
to uj in L?(0, T; H*(Q)) and the strong convergence in L2(0, T; L?(£2)) immediately yields
strong convergence in L2(0,T; H'(Q2)) by an interpolation argument.

Lastly, we have to verify p; = (u})? for almost every = € Q. After possibly extracting
further subsequences, we can ensure that (p;™)nen and (u})nen converge almost every-
where on [0, 7] x . Clearly, we have by continuity of the square pj = (u})? for almost
everywhere on [0,7] x . A diagonal argument in T yields the final result. O
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5.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Lastly, we have to verify that the limit function p; of theorems|5.3.9¢45.3.10 are indeed
a solution to the Derrida-Lebowitz-Speer-Spohn Equation.

Theorem 5.3.11 (Solution to the Derrida-Lebowitz-Speer-Spohn Equation). Under the
same assumptions as in Theorem and given the limit curve py from there. The
limit curve p; is a solution to the Derrida-Lebowitz-Speer-Spohn equation with no-fluz
boundary condition in the following weak sense: For each test function oy €
C([0,00) x Q) with Vi -m = on 9 the curve p} satisfies:

/ / V(Apt), Vi) + 2(Hess o V/p;, V/p;) de dt

=/ /piatsotdxdﬂr/wopodx-
0 Q Q

Proof. For simplicity, we drop the index n and write for the step size only 7 and 7 — 0.
Fix ¢ € C2°([0,00) x Q) with Vi - =0 on 09 and let T > 0 be such that supp ¢ C
[0,7] x Q. Define as in the previous section the piecewise constant interpolation @7 of
ot by

(5.3.8)

@6 =vo0, @; =k forte ((k—1)1,kr] and k€ N.
For each k € N\{1} insert the smooth function = + V(,_1), in the discrete Euler-

Lagrange equation (5.3.4) for the vector field £&. Summing the resulting equations from
k =2 to Ny + 1 and multiplying with 7 yields:

o0 1
0= [ [ SV, VAT + 2(ess 7T VAT VAT da
T 1 T
+3° [2 [ (Venorla)e =9 dpTn) =5 [ (Vegola).o =) daf(z.2)

Due to the strong convergence in L2(0, T; H(Q)) of /57 to \/pf and due to the uniform
convergence of Ap] to Apy

h{%h / / V(Ag:), Vi) + 2(Hess o:V/pf, V/ p;

The limit of I is given by the same calculations as in the proof of theorem [5.2.14] i.e.,
by the classical estimates (5.3.3) and by the assumptions in the initial data (pg, p7):

T
limIQZ—/ /8t<ptp:dxdt—/cp0poda:.
™0 0 JO Q

Finally, we can conclude that the limit curve pj satisfies the Derrida-Lebowitz-Speer-

Spohn equation ({5.3.1)) in the weak sense of (5.3.8). O
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5 Backward Differentiation Formula 2

5.4 Illustration by Numerical Experiments

In this section, we illustrate the convergence of our variational BDF2 method in com-
parison to the implicit Euler scheme in several numerical experiments. As examples, we
have chosen a flow on the two-dimensional sphere S?, a reaction-diffusion equation as
flow on the Hilbert space L?(0,1), and an aggregation-diffusion equation as a flow in the
space P () of probability measures on Q = [—1,1], equipped with the L% Wasserstein
distance Wa. We observe that the order of convergence is indeed very close to two in
each of our simulations. This underlines our philosophy that one reaches the optimal
order in “typical” problems, despite the fact that our main Theorem only provides
order one-half, and that there are specific counter-examples with sub-optimal converge
rates, as in the introduction of this chapter.

Method. In each of the examples below, we compare the numerical results for the
implicit Euler scheme and for the BDF2 method at various moderately small time steps
7 > 0 to a reference solution that is obtained by the BDF2 method with a very small
time step Tyef. The approximation with the implicit Euler method of step size 7 > 0
— see chapter [3| for details — is denoted by (@7 )™"), and the approximation with BDF2
by (ﬂ[)@), respectively. For the time-discrete initial data, we choose the original datum
ug for both schemes at ¢ = 0, and for the second initial datum (at t = 7) of the BDF2
method, we use the result of the first step of the implicit Euler scheme.

Remark 5.4.1. This choice ensures in the ODE setting the enhanced convergence rate
of order two since the startup calculation with one step of the implicit Euler scheme is of
order two, cf. [II, Theorem 7.23]. More precise, let u] be the first minimizer obtained
by the implicit Euler scheme and let uj € C2(0,T) be the solution of the gradient flow
equation uf = —VE(p;). Then, use the definition of u], Taylor’s formula applied to u;,
and the Lipschitz-continuity of the map x — VE(x) to get

g =Tl = || = = V() + S+ w0 = PG| < L 7] + S

Assume 7L < 1/2, then a kick-back argument yields

R I

Juz —uf || < 20—+-0) =7
The numerical rate of convergence is then computed as follows. In addition to the very
small reference time step Tef, we choose a moderately large time step Tcoarse that is an
integer multiple of Tref. Then, we calculate (@)™ and (@] )® for several intermediate
time steps T € (Tref, Teoarse) that are chosen such that 7 is an integer multiple of 7ef, and
Teoarse 18 an integer multiple of 7. For each such choice of 7, the respective solutions (ﬂ;")(l)
and (a])® are compared to the reference solution (@*f)(?): specifically, we calculate a
mean numerical error by taking the average of the distances d((ﬂ;"z)("), (uizf)(z)) at times

t7 = kTcoarse € [0,7] on the coarsest grid.
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5.4 Illustration by Numerical Experiments

All simulations have been performed with MATLAB. Both variational schemes are im-
plemented by solving the sequence of variational problems using the built-in method
fmincon.

Gradient Flow on the Sphere S?. The first test problem is placed on the unit 2-
sphere S? := {u € R?|u? + u3 + u3 = 1} C R? equipped with the intrinsic (great-circle)
distance dg2, defined by dg2(u,v) = arccos(ujvy + ugvg + uzvs) for u,v € S2. For the
potential £ : S> — R, we choose the restriction of

~ > 1 1,
S(U):Z(uz—i)(uz—i—i) .

=1

The corresponding gradient flow satisfies the ODE

i = —Ve&(u) =IL,[ - VE(u)],
where IT,[v] = v —uTv is the projection of a vector v to the tangent space of S? at u. Its
flow lines are sketched in Figure (left). The example falls into the class of gradient
flows on Riemannian manifolds that are covered by Theorem [5.1.5]

A series of simulations has been performed for the initial datum

1
wo = ——(1,2,5
0 \/%( )

and the reference step size 7.y = 1075. The observed numerical convergence rates are
1.00 for the implicit Euler method, and 2.06 for BDF2, see Figure (right). Further
experiments with different initial data and other potentials yield very similar results. In
this smooth, finite-dimensional setting, second-order convergence of the BDF2 method
was naturally expected, as the solution curve and Vg2& are smooth in the ambient space.

—o- O(7)
1072 [-8- O(r?)

| —o— Implicit Euler
103 |[-a— BDF2

dz-error

I I |
107 107° . 1072 107"
step size 7

Figure 5.1: Gradient flow on the Sphere S®. Left: the values of £ are color-coded by gray
scale. The white lines are sample trajectories of the gradient flow generated
by £. Right: the dge-error plot of (a])® compared with @, .
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5 Backward Differentiation Formula 2

Reaction-Diffusion Equation with Obstacle. Next, we consider the constrained
reaction-diffusion equation

du = Au~+ 60u’  subject to lul <1

on Q = [0, 1], subject to homogeneous Neumann boundary conditions. This PDE con-
stitutes a gradient flow on the Hilbert space L%(0,1) for the energy

1 2 1
E(u) = 3 Jo (Bpu(z))” dz — 15 f; u(z)*da, for u € H'(0,1), |u| <1,
400, otherwise.

The second variation of £ amounts to
1 1
2
Ee(lel? = [ (Onp(@)*do =180 [ u(@)Ppla)? e = <1800,

since 0 < u(x)? < 1. Hence & is uniformly semi-convex of modulus A = —90.

For the numerical approximation, we first perform the implicit Euler or BDF2 method
for discretization in time, then we apply a spatial discretization of the PDE, using central
finite differences. The qualitative behavior of the approximate solution for the initial
condition

1 1
up(x) = 3 sin(27z) + 1

has been plotted in Figure (left). Notice that the upper barrier is hit after a short
transient time. The reference step size iS Tper = 106, Since we are interested in the
convergence rate of the temporal discretization for the PDE, we need to estimate the
influence of the additional spatial discretization on the numerical error. For that reason,
the experiment is carried out with different choices of the spatial resolution, using K =
50, 100, 250, 500, 1000 grid points.

o 0(r)
—e- O(r2)
—eo— Implicit Euler
107°E |—=— BDF2

L2-error
s

I I I I | . | . | I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1077 10" 1077
X step size 7

Figure 5.2: Reaction-diffusion equation with obstacle. Evolution of the reference solution
TUr,., (left). The L2-error plot of (a])® compared with @, for different K
(right).
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5.4 Illustration by Numerical Experiments

Our results on the numerical error are given in Figure (right). The error curve
for the implicit Euler scheme is proportional to 7, as expected. For time steps 7 >
107, the error curve for the BDF2 scheme is almost perfectly proportional to 72, and
there is no significant dependence on the spatial discretization. For very small steps
7 < 107%, there is apparently an additional contribution to the numerical error due to the
spatial discretization, however as K is increased, the error curve extends its approximate
proportionality to 72 also into that regime. This is a strong indication that for a purely
temporal discretization by BDF2, the order of convergence is indeed quadratic in 7. We
performed further experiments with different initial data, and with variants of the energy
functional. The results remain approximately the same.

Aggregation-Diffusion Equations. In our last example, we study discretizations of
the following aggregation-diffusion equation,

tht = Apt + @;(p,gW’ * pt) (541)

on Q = [—1,1], with no-flux boundary condition, i.e., 9,pr + W' x p, = 0 at x = +1.
For the interaction kernel, we use W (z) = 22% — 22. Weak solutions to conserve
mass and positivity, so we restrict attention to solutions u that are probability densities.
Under this restriction, solutions to correspond to the gradient flow on the space
X = P([~1,1]) of probability measures u with respect to the L?-Wasserstein distance
d = W for the energy functional

E(y) = /Q plog(p)da + /Q @ = y)oly) dyda,

if 4 € P3(Q) with density p € L'(Q) and otherwise we set £(u) = +oo. For numerical
simulation, we employ the isometry of the Wasserstein space (P(2), W3) and the space X
of non-decreasing cadlag functions X : [0,1] — Q, equipped with the L%(0, 1)-norm. This
isometry is realized by assigning to each p its inverse distribution function X, : [0,1] — €,
ie., u([—l,XH(g)]) = ¢ for all £ € [0,1]. Accordingly, the Wasserstein gradient flow

transforms into an L.2(0, 1)-gradient flow on X with the energy functional

1
B0 = [ tom@ex@)ag g ff w0 - Xe)azan

Remark 5.4.2. Note that the change of coordinates has transformed the original gra-
dient flow, that had been posed on the metric Wasserstein space, into a gradient flow on
(a closed subset of) the Hilbert space L2(0,1). This example is thus rather another il-
lustration for flows on Hilbert spaces. The combination of the BDF2 time discretization
with one of the spatial discretizations for Wasserstein gradient flows in multiple space
dimensions — where a transformation into a Hilbert space flow is not possible anymore
— is currently under investigation.
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5 Backward Differentiation Formula 2

In the numerical experiments, we prescribe an initial datum wug via its inverse distri-
bution function

Xy (&) =26 — 1+ i sin(87€) - (10(&(§ — 0.5)(x — 1)) +1).

Concerning the discretization in space, we proceed as in the previous example, using cen-
tral finite differences with K = 50, 100, 250, 500, 1000 spatial grid points. The qualitative
behavior of the reference solution (in original variables with 7.y = 10, and K = 1000)
is sketched in Figure (left).

Our results on the numerical error are given in Figure (right). The error curves for
the implicit Euler and the BDF2 schemes, respectively, are almost perfectly proportional
to 7 and 72. The results are comparable to (and even better than in) the previous
example; we do not observe any significant effect of the spatial discretization, even for
very small time steps. This indicates that the purely temporal discretization of the
original PDE with BDF2 leads an approximation error of 72.

[ [-o o)
-8~ O(7%)
—o— Implicit Euler
107° ¢ |—a— BDF2

Ws-error

I I I
-1 -08 06 —04 —02 0 0.2 0.4 0.6 0.8 1 107° 1074 1073

z step size 7

Figure 5.3: Aggregation-diffusion equation. Evolution of the reference solution H:”f (left)
and the Wo-error plot of (@])® compared with @, for different K (right).
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6 Weighted Energy-Dissipation Principle

This chapter is based on the joint work with S. Lisini, D. Matthes, and G. Savaré [65]. We
are concerned with approximating by means of the Weighted Energy-Dissipation Principle
non-negative solutions of two families of diffusion equations, namely: the second-order,
linear Fokker-Planck (FP) equation:

Opr = Apy + div(p,VV) + div(p (VW * py)); (6.0.1)

and the fourth-order Derrida-Lebowitz-Speer-Spohn (DLSS) equation:

= —div L\/@
Opr = —div (0 V(2 N ). (6.0.2)

Both PDEs shall start from the initial configuration py in the domain Q = R4, Un-
fortunately, the method developed in this chapter is not applicable in the case € is an
open, bounded, and convex subset of RY. Our method fails in the derivation of the re-
fined a priori bounds and . However, we formulated as much theorems
as possible also for this case since the remaining arguments go through. It is known, if
these equations are initialized with pgdL¢ € Py(Q), then there exists a weak solution
p; : [0,00) x Q@ — RU{oo} with initial configuration p§ = po and for each ¢ > 0 the
measure p; is absolutely continuous with respect to the Lebesgue measure.

Gradient Flow Structure. As before, the guiding principle is to exploit the Gradient
Flow structure of these drift-diffusion equations, for reference see [4], 54, [87] in the second-
order case and [46] 47, 68| [78] in the fourth-order case. The underlying metric space is
the space of probability measures Py (£2) equipped with the L2-Wasserstein distance Wy
and the corresponding free energy functionals £ are defined by

£n) = [ plog(p)+ oV 4 W ep)dsor &)= [ VAT (603)

if the measure p = pdL9 is absolutely continuous and the integrals on the right-hand
side are well-defined, otherwise we set £(u) = oo, see section [2.4] for more details. Then,
in the L2-Wasserstein framework and are equivalent to the coupling of
the continuity equation with a sort of Darcy’s law where the pressure is given by the
variational derivative of the free energy functional &:

0&(pt)
dp

Ospr + diV(Wt) =0, w; = —pD (604)
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6 Weighted Energy-Dissipation Principle

Weighted Energy-Dissipation Principle. Compared to the modern approach to
PDEs with gradient flow structure, that is the well-developed time-discrete theory of
Minimizing Movements |4, 29 B0], an alternative time continuous approach has been
proposed recently in [75] [76, [86) 88]. The main idea here is to perturb the gradient flow
equation for an arbitrary free energy functional £ by a elliptic regularization in
time

—e0; pf + Oupf + div(wf) = 0, w; = —p;D

(6.0.5)

Even though one loses the gradient flow structure at first glance, the solutions p¢ satisfy
another crucial variational principle. In particular, it has been shown that solutions pf
of are the minimizer of a global-in-time minimization of the parameter-dependent
Weighted-Energy-Dissipation (WED) functional ®., given by

oo
p; = argmin /
Pt 0

Here, |p}| denotes the metric slope of the curve p; and the minimization is performed
over the class of L2-absolutely continuous curves emanating from po.

It has been proven, that for each € € (0,e4) there exists at least one minimizer pf
and in the limit ¢ — 0 the approximations p; converge to a limit function p; which
solves in the sense of the energy dissipation equality (EDE). Note, it turns out in
the analysis of this problem that this perturbed system possesses a gradient flow
structure with respect to the value functional V. which is defined as the minimal value
in for a given initial datum pg. lL.e., the WED-approximation p; satisfies

e—t/s

(g o + E(pt)) dt. (6.0.6)

d
Vi) = )P forae. .

Contribution. The disadvantage of the previously developed WED theory posed in
abstract metric spaces is the lack of a classical solution concept. To prove that the limit
function pf of the WED-approximation p; is indeed a classical distributional solution
to the corresponding PDE an adapted notion of convexity is needed. In the context of
L2-Wasserstein gradient flows, convexity along generalized geodesics is a suitable notion.
Whilst the free energy functional £ for the Fokker-Planck equation falls into this
class of A-convex functionals, the energy functional £ for the DLSS equation is
not convex along generalized geodesics. Therefore, one can not deduce that the limit
function p; of the WED-approximation p; with respect to £ is a weak solution of .

For this reason, the main objective of this part is to apply and cast the WED method
for in a hands-on way and to derive directly a distributional solution of .
Even though the case of the Fokker-Planck case is already covered in [86], we apply our
WED method also to as doability check. It turns out the analysis in this “easier”
case is of interest by itself, since the lack of regularity, compared to the analysis for £
with respect to the DLSS equation, requires finer arguments and estimates.
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Method. The key ingredient of our approach is the equivalent dynamical reformulation
of , where we utilize the characterization of L2-absolutely continuous curves as
solutions to the continuity equation, see section In particular, the solutions pj of
the elliptic regularization of the gradient flow are also minimizer of our WED
functional W,:

oo —t/e e
(pf,w;) = argmin / (JC(pt,wt) +5(pt)) dt (6.0.7)
(pewi)eClpo) Jo € \2

where C(pg) and K are as defined in section The advantage of this new variational
formulation is the additional degree of freedom in the flux variable w;. However,
in the minimization, the flux variable w; is coupled to the density p; via the continuity
equation, so this additional degree of freedom is purely virtual. Nevertheless, this for-
mulation of the WED approach encodes the behavior of the metric slope in a better way,
which allows us to derive additional properties of the approximated solutions.

A Variation Along the Transport Equation. The first perturbation p; of the
WED-approximation pj that we consider to obtain the Euler-Lagrange equation is
the continuous variation along solutions of the transport equation in the auxiliary
time s:

Ospf +div(pf - &) =0 p) = pf,

where & is a time-dependent smooth vector field. Note, in order to have a feasible
competitor for (pf, wi), we have to define also perturbations w; of the associated
flux wi due to the coupling of pf and w; through the continuity equation (2.2.5)).
The key ingredient in the calculation is that we have for both the perturbed density
pi and the perturbed flux w{ an explicit representation given by

(pf 0 X3) - det(DXF) = pi, (W0 X7) - det(DX}) = DXjw; + pj - 0,X7,
where X§ is the flow map corresponding to the vector field &, see section

B Variation Along the Heat Equation. To derive the refined regularity esti-
mates we adapt the time-discrete flow interchange technique developed by Matthes
et al. [68] and transfer it to the time-continuous setting of the Weighted Energy-
Dissipation principle. Therefore, we define continuously in the time ¢ the pertur-
bation pj as the solution to the heat equation in the auxiliary time s:

Dsp} = mA(p}), Pl = pi-
As in the case before, the key ingredient in variation along the heat flow is the
explicit representation of the perturbed WED-approximation (pf, wy)
pi = Tez [pil; wi = Te: [W;] — s0m:VTe; [pi]

in terms of the corresponding Greens function &; for the heat equation. This
allows us to exploit the monotonicity property of the kinetic energy K given by
lemma[2.5.6| and derive an estimate for the derivative of the kinetic energy K along
solutions to the heat equation.
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6 Weighted Energy-Dissipation Principle

Main Results. Our main results concerning the well-posedness and the limit behavior
as € \, 0 of the WED-approximation p; are stated in the following two theorems. First,
our convergence result for the linear Fokker-Planck equation.

Theorem 6.0.1 (Main Result: Linear Fokker-Planck Equation). Let Q = RY and let
V., W satisfy Assumption and define the corresponding free energy functional £ for
the linear Fokker-Planck equation (6.0.1)).

a) Existence. For each € € (0,e,) and each py € D(E) there exists an approrimated
solution pi with respect to £.

b) Convergence. Given a vanishing sequence (€, )nen with €, € (0,e4). Then, there
exits a (non-relabeld) subsequence €, and a limit function p; : [0,00) x Q@ — R with
pi € PIE(Q) such that for each p € [1,00) and for all T > 0 one has:

P — pf strongly in LP(0, T; L1 (Q)).

¢) Solution. The limit function pf from b) is a solution of the linear Fokker-Planck

equation (6.0.1)) in the weak sense of (6.2.22)).

Second, our main result about the existence and convergence of the Weighted Energy-
Dissipation principle applied to the Derrida-Lebowitz-Speer-Spohn equation is given as
follows.

Theorem 6.0.2 (Main Result: Derrida-Lebowitz-Speer-Spohn Equation). Let © = RY
and let € be the corresponding free energy functional for the Derrida-Lebowitz-Speer-
Spohn equation (6.0.2]).

a) Ezistence. For each € € (0,e4) and each py € D(E) there exists an approzimated
solution pf with respect to £.

b) Convergence. Given a vanishing sequence (€, )nen with €, € (0,e4). Then, there
exits a (non-relabeld) subsequence &, and a limit function p; : [0,00) X Q — R with
pi € PE(Q) such that for each p € [1,00) and for all T > 0 one has:

pim — p} strongly in LP(0, T LI(Q))7
pi = /P strongly in L?(0, T; H'(R)),
\/ﬁ —~ /i weakly in L*(0,T; H*(Q)).

¢) Solution. The limit function p; from b) is a solution of the Derrida-Lebowitz-

Speer-Spohn equation (6.0.2) in the weak sense of (/6.3.6)).
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6.1 Introduction to the WED-Principle in Metric Spaces

6.1 Introduction to the WED-Principle in Metric Spaces

In [86] Rossi et al. investigated in the framework of abstract metric gradient flows the
WED principle (6.0.6). This method focuses on the minimization of the parameter-
dependent global-in-time functional of trajectories

O (py) = /Ooo 6_;/8 @ |t +5(pt)) dt

featuring the weighted sum of energetic and dissipative terms. In particular, the theory
therein covers the case of both free energy functionals from , since these energies
satisfy the lower semicontinuity-coercivity-compactness (LSCC) conditions, cf. [4]. Con-
trary to [86], we investigate in this chapter the minimization of the parameter-dependent
global-in-time functional W, which depends additionally on the flux wy. So ¥, reads

T (pr, wi) = /0 T (ke praw) + EG0))

€ 2

But in addition, in the minimization of W, the density-flux pair (p;, w;) is coupled through
the continuity equation . The link between the two minimization problems
and is given by the characterization of L2-absolutely continuous curves via the
continuity equation, see Theorem So it is clear that ®.(p;) < WY(py, wy) for all
(pt, wy) € C(pY). Visa versa, there exists always some density-flux pair (p, w¢) € C(po)
such that ¥.(ps, wy) < ®.(p;). Hence, the minimization problems and are
equivalent and therefore, we recover the main results in [86] also for (pf, wf), namely:
lower boundedness of V., existence of minimizer p7, inner variation of the approzima-
tion pg, fundamental identity of the value function V;, and e-independent bounds of the
approzimation (pf, ws).

Setup and Assumptions. In the following, we want to briefly recap the aforemen-
tioned results, which are formulated with respect to our framework and for some arbitrary
free energy functional £ which includes (6.0.3). We emphasize, that we state the idea of
a proof rather than giving actually detailed and riguours proofs, which all can be found
in [86]. Therefore, we shall assume in the sequel the standard LSCC-conditions on the
free energy functional £.

Assumption 6.1.1. The free energy functional £ : P2(©2) — RU {oo} is proper and
satisfy the following regularity conditions:

(E1) Lower Semi-continuity. £ is sequentially lower semi-continuous with respect to
weak™ convergence of measures, i.e.,

Prn = P = E(ps) < lirginfg(pn).
(E2) Coercivity. There exists C' > 0 s.t. £(p) > —C(1 4+ My(p)) for all p € Po(Q).

(E3) Compactness. For each C' > 0 the set {p € P2(Q) | E(p) < C} is sequentially
compact in the topology induced by the weak™ convergence of measures.
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6 Weighted Energy-Dissipation Principle

Lower Bounds. Recall that assumptions (E0)-(E3) for the free energy functional &£
hold and that we assume from now on e, < 1/(32C). The first result is an auxiliary
calculation which is essential in the proof of the lower boundedness of the WED-functional
v

Lemma 6.1.2. Let p; € AC%(0,T; (P2(R2), Wa)) be an absolutely continuous curve with
integrable metric derivative |p}| € L1(0,00). Then

1 0 ,—t/e t , 2 o ,—t/e 9
— d > dt < — |pt|” dt. 6.1.1
=) ([ ) aes [T (6.1.1)

Sketch of Proof. This results follows from the binomial formula and an integration by
parts. Define the auxiliary function L; := fg |pl.| dr such that Lj = |p}|. Then, one can
compute

oo —t/e 1 2 oo —t/e 1 oo —t/e
0< (L’—L)dtz/ L2 L2dt—/ ¢ 'Lt
/0 (- L e - |

Note, the second integral can be rewritten as
o ,—t/e © ,—t/e 1 1] o ,—t/e |
— | —-LiLidt=— | ——[zL)?*]dt=— [ ——=(L)*dt
/0 g2 Tt /0 g2 dt[Z( 2 /0 g3 2( t)
thanks to the integration by parts formula and the integrability of the metric velocity

|pi| € L1(0,00). Insert this result in the first inequality and after a rearrangement this is
the desired result. O

Lemma 6.1.3 (Lower Bound). Let p; € AC?(0,T; (P2(), W2)) with integrable metric
velocity |p}| € L1(0,00). For each e € (0,¢,) one has

Ve (pt, W) = /

0

(%) e—t/a

K(pt, we) dt — C (1 +2M>(po)). (6.1.2)

Sketch of Proof. Use the notation as above, i.e., L; := fg |pi.| dr. Then, by characteri-
zation of L2-absolutely continuous curves we have K(p;, w¢) > (I})%. Using this and the
coercivity of the free energy functional £ we can estimate ¥, from below as follows
€ €
(5Kt we) + S(L02 = CO+ Ma(p)) dt. (61.3)

oo ,—t/e
Ve(pt, wi) > / 1
0
Due to the triangle inequality, we can estimate the second moment of p; as follows

M (pr) < 2M>(po) +2W3(po, pr) < 2Moa(po) + 2(Le)*.

Insert this into (6.1.3]) to obtain

o0 ,—t/e oo
‘ljg(pt, Wt) 2/ K(pt, Wt) dt — C(]. + 2M2(p0)) +/ (Z(L;)z — 2C(Lt)2) dt
0 0

Lastly, since € < e, < 1/(32C) the second integral is non-negative by (6.1.3) and hence
we obtain the desired lower bound (6.1.2)). O

(&

3

—t/e

e 9
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6.1 Introduction to the WED-Principle in Metric Spaces

Existence of Minimizers. Recall that assumptions (E0)-(E3) for the free energy
functional £ hold. Then, the existence of a minimizer of the WED-approximation follows
by the extension of the Aubin-Lions Theorem.

Theorem 6.1.4 (Existence of Minimizers). Let ¢ € (0,e4). For each po € D(E) the
minimization problem (6.0.7) has at least one minimizer (pf, w$) in the class C(p°).

Sketch of Proof. Let ((p', W{'))nen be an infimizing sequence for V. of density-flux pairs
(o, w) € C(po) and fix some T > 0. Since the density-flux pair (p°,0) is feasible in
and since the free energy functional £ is coercive (E2), we can assume that with
out loss of generality there exits a non-negative constant C' such that

T T
sup/ K(pp, wi)dt < CeT/e and sup/ E(pr)dt < Cel/e (6.1.4)
n 0 n 0

thanks to . To prove the existence of minimizers for we seek to apply the
extension of Aubin-Lions Lemma for metric spaces theorem to (p}')nen with the
underlying metric space X = Po(Q2) with d induced by the weak*-topology of measures.
We choose as normal coercive functional A; = £ + C Ms, where C is the constant from
(E2), and as pseudo distance g(u,v) = Wa(u,v).

Due to (6.1.4)), the sequence (p}")nen is tight with respect to A. The weak integral equi-
continuity condition for (p})nen follows by the Benamou-Brenier formula. The density
flux pair (p’, ,p,, hw}, ;) solves the continuity equation and connects p; and pyp and
therefore we can estimate

1 t+h
W20 o) < /0 K0 s WP ) dt = / B (o7, ™) d.

With this estimate at hand one can deduce that (p}),en satisfies the equi-continuity
condition and therefore Theorem[2.5.4]implies (on a subsequence) that (p}'),en converges
to some p; in M(0,T; (P2(R2),d)). After possibly extracting another subsequence, we
can conclude that pj* —=* pi for almost every t € [0, 00).

The compactness of (W} ),en can be derived as follows. By Holder’s inequality we have

T T 1/2 T 1/2
/ /||w?|y dadt < (/ /C(pg,wy)dt) / (/ /pgdxdt) P2 ceTrzEr2,
0 Q 0 0 Q

Hence, the sequence (W}),en is bounded in L1([0,T] x Q). Since the map t — My(p})
is uniformly integrable by , we can conclude by Hélder’s inequality that the map
(t,z) — |lz||||lwy] is also uniformly bounded. As long as the map (t,z) — ||z|| has
compact sublevels in [0, 7] x (2 the sequence (W} )nen is tight. This implies by Prokhorov’s
compactness theorem that w’ —* w for every ¢t € [0,7] and with a diagonal argument
we can extend the weak*-convergence for almost all ¢ € [0, c0).

Clearly, the continuity equation is stable with respect to weak*-convergence of mea-
sures and therefore (p;, w;) € C(po). Since K and £ are lower semi-continuous, it follows
by Fatou’s Lemma that the limit (p}, w}) of the infimizing sequence ((p’, Wi))nen is a
minimizer of the minimization problem . O
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6 Weighted Energy-Dissipation Principle

Variational Properties of the Value Function V.. By the previous part, the WED-
approximation (pf, wf) is well-defined for each € € (0, ,) and for each initial datum py €
D(E). So similar to the Moreau-Yosida approximation ¢ of the Minimizing Movement
scheme, the value function V. defined by
Ve(po) :=  inf — We(py, wy) = We(pf, wy)
(pt;wt)€C(po)
plays a crucial role in the analysis of the Weighted Energy-Dissipation approach. It
turns out that the value function V; encodes the dissipation of the WED-approximation
(i, wi), Le.,
d 5 e\/|2
an(pt) = —|(p7)'| for a.e. t. (6.1.5)
Hence, the WED principle can be understood as a perturbation of the free energy func-
tional £ by the value function V. which on the one hand destroys the physical time-
causality, but which preserves the gradient flow structure. To derive we need the
following two theorems.

Theorem 6.1.5 (Inner Variation). The map Ui := —5K(pj,wi) + E(p;) belongs to
W0, T) and it fullfills

d

Et‘lii = —K(p;,wy) in D'(0,T). (6.1.6)

Sketch of Proof. Given some arbitrary n; € C2°((0,00)), define the family of smooth
diffeomorpishms of (0,00) by S} := ¢ + sn and denote by T the inverse of the map
t — S7. Further, we define the perturbation (pj, w}) of the WED-approximation (pf, w§)
via pf := pps and wi := O;T - wis. By this definition the density-flux pair (p,wy)
satisfies for each s the continuity equation . Due to 19 = 0, we have p§ = po and
hence (pi,w;) € C(pp). With the change of variables ¢t = S¥ we can rewrite U (p;, wy)
as follows

00 =857 /e e 1
{5 0rSs
By taking the derivative with respect to s at the minimum point s = 0 one obtains

d
0 :E [‘Es(pg, Wf)] s=0

V., w}) = /

= Ko7 w5) + E(p5)0,7 ] dr.

® g e See 1 e d reSv/¢ o R
N T

€ 58,~S7§ dsL ¢ =0
ooe—t/e 1 e . c G_t/s 1 5
[ b o [ st

Note, we used in the last step the identity - S% = 7,. Lastly, choose n; = set/ggot for a

ds™r

test-function ¢, € C2°((0,00)) and simplify the right hand side of (6.1.7):

o0

0= [ (0 = 5000l w7) + Brn () dr = | = orkClpf ) + Brr i dr. O
0 0
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6.1 Introduction to the WED-Principle in Metric Spaces

Theorem 6.1.6 (Fundamental Identity). Given the WED-approzimation (p5,ws), the
value function V., and the map UV.(t) defined in theorem , Then,

Ve(pf) = U5 for a.e. t € (0,00). (6.1.8)

Sketch of Proof. Every minimizer (pi, wj) of W, satisfies

0o ,—s/e
(3 € € £ g £
Vi) = [ (5w + €00, ds (6.1.9)
since by the dynamical programming principle the value function can be also defined as
T e—t/a € T
Vi) = nt [ 5 (Sl w) + E() dt+ e TV (o)
(pe:wi)€C(po) Lo € \2

see also [6] for further reference. If we denote U3 by the absolutely continuous represen-
tation of the map ¢ — 20§, we can rewrite (6.1.9)) due to (6.1.6)) to

0 s/e
Veoh) = [ (= 5 e Wi + £ ) ds

5
o0 ,—s/e d 00 ,—s/e d
= /0 ?( %—0—5 - ea[%§+s]> ds = /0 ?( f—O—s - 5&[51]%4-5}) ds.
Applying integration by parts to the second integrand yields (6.1.8]). O

e-independent Bounds. Lastly, we prove the surrogate of the classical estimates form
the Minimizing Movement scheme. Here, we exploit the hidden gradient flow structure
(6.1.5) of the WED principle.

Theorem 6.1.7 (e-independent Bounds). There exist e-independent and a non-negative
constant C which depends on T such that

T g
/ K(p;,ws)dt < C, and / E(p7)dt < C. (6.1.10)
0 0

Sketch of Proof. Differentiate the fundamental identity (6.1.8) with respect to ¢ and in-
sert the inner variation formula (6.1.6) to get

d d
a‘/g(pf) = aﬁg(t) = —K(pf, wj) for a.e. t € (0,00).

This shows, that the map ¢ — V.(p7) is monotonically decreasing. Therefore, we have

T
/0 K wE) dt = Vi(po) — Ve(ol') < E(po) + C(1 + Ma(pn))

where the estimate follows from Vi(po) < E(po) and from (6.1.2]). Likewise it follows
from the fundamental identity (6.1.8) and the monotonicity of the map ¢ — V(pf) that

e 3
E(pF) = Va(pi) + SK (0 wE) < EG5°) + SK (5 W),

A further integration over (0,7") yields the second estimate from (6.1.10]). O
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6 Weighted Energy-Dissipation Principle

6.2 Application to Linear Fokker-Planck Equation

In this section, we want to apply the Weighted Energy-Dissipation principle to the linear
Fokker-Planck equation, given by

Opr = Ape + div(p: VV) + div(pe (VW % py)) (6.2.1)

starting from the initial configuration py on Q = RY. Recall, that most of the proofs
work also in the case of @ C RY which is open, bounded, and convex. However our
method fails in the derivation of the refined a priori bounds, see section for further
explanaition. Recall, the corresponding free energy functional £ in the L2-Wasserstein
framework is given by

Eu) = /Q plog(p) + pV + p(W % p) da

if the measure u = pdLY € Py(Q) is absolutely continuous and p € L!'log(L')(Q),
otherwise we set £(u) = oo.

Method. Our approximation of the solution to the linear Fokker-Planck equation
(6.2.1) by means of the Weighted Energy-Dissipation Principle reads as follows

Scheme. Given the free energy functional £ and an initial configuration pg, define the
WED-approximation (pf,w$) for a given perturbation ¢ € (0,e,) as the minimizer of
the WED-functional ¥, i.e.

R : e /e € ||WtH2

(pf,w;) € argmin - + pelog(pe) + piV + pe(W % py) dac dt.
(rewoeCipo)Jo € Ja2 pr

If we assume the proper assumptions the free energy functional £ satisfies (E1)—

(E3) and we can use the results from the previous section, specifically the e-independent

bounds (6.1.10)) from theorem [6.1.7]

Strategy of the Proof. The structure of the convergence prove of this scheme is done
in three steps. Firstly, we derive the time-continuous Euler-Lagrange equations in section
This is done, in the same manner as compared to the original method by Jordan
et al. [54], by defining a time-continuous perturbation p; of the WED-approximation
(pf, w$) along solutions to the Transport equation with vector field &. Secondly, we use
in section another perturbation of the WED-approximation (pf, w§) along solutions
to the heat equation to derive refined regularity bounds. Note, this perturbation is a
to the time continuous WED-setting adapted version of the flow-interchange theorem
developed in [68]. Lastly, these refined regularity bounds are then sufficient to pass in
the Euler-Lagrange equation to the limit € — 0 by means of the extension of Aubin-Lions
compactness theorem for Banach spaces[2.5.4] see therefore section
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6.2 Application to Linear Fokker-Planck Equation

6.2.1 Assumptions

Our assumption on the confinement potential V' and the interaction kernel W reads as
follows:

Assumption 6.2.1. The confinement potential V' and the interaction kernel W satisfy:
(F1) V € C?(Q), W € C?(RY), and W is symmetric.

(F2) There exists some non-negative constant d; such that

V@), W@, IVV@)I, IVW (@) < di(1+ |l2]*).

(F3) There exits some non-negative constant do such that

|AV ()], [AW (z)] < da.

6.2.2 Time-Continuous Euler-Lagrange Equations

Next, we want to derive the corresponding Euler-Lagrange equations of the WED-
approximation (pf,w$). The idea is to exploit the differential structure of the L
Wasserstein space as in the original paper [54] where the JKO-method was developed.
For this instance, we have to transfer the method from the time-discrete setting of the
Minimizing Movement scheme to the time-continuous setting of the Weighted Energy-
Dissipation principle.

Definition and Justification of the Perturbation. To do so, we perturb our ap-
proximation pj, with pf € P3°(Q), at each time ¢ > 0 along the Transport equation in
the auxiliary time s

Ospi +div(pj &) =0 pf = pj. (6.2.2)

with time-dependent velocity field & € C°([0,00) x Q,RY) with & = 0 and & - n =
0 on 0Q. It is clear from section that the perturbed density p{ has the explicit
representation pj := (X7)xpf, where Xj is the flow map corresponding to the velocity
field &, i.e., X is the solution to of the initial value problem

AX5 = &(X5), with  X%z) =z,

The flow map Xj exists, is jointly continuous in (s,t,z), and for fixed (s,t) the flow
map X is a diffeomorphism on €. Further more, we define by X := det(DX}) > 0 the
volume distortion of the flow map X7. With this notation at hand, we can define the
corresponding perturbation (pf, w;) via

(b 0 X3) - X5 = 4}, (w'oXj) - X =DX;-wi+pf-0X;.  (623)

This representation follows from the following calculations: Assume that our perturbation
in the density variable is given by pj := (X7)4xp7. Furthermore, given an arbitrary test
function ¢; € C2°((0,00) x Q). Then, insert in the weak formulation of the continuity
equation for the density-flux pair (pf, w$) the new test function ¢f := ¢, 0X; and expand

133



6 Weighted Energy-Dissipation Principle

every term containing ¢y:
oo
0= [ [ @t Xd) - pi + (V10 X0),wi) dadl
0o Ja

- /ooo /Q [(Orpr) 0 X5) + ((Vepr) 0 X5, 0:X5) | pf + (DX5) T+ (V(ipr) 0 X5), wi) dar dt.

A change of variables x = X} (y) yields
0= / / Dripi 07+ (Vepr, [0 p5 + DX3 - wi] o (X5) ™) det(D(X]) ™) da dl.
0o Jo

Hence, if the perturbed density-flux pair (pj, wi) shall solve the continuity equation, the
perturbed flux w; shall obey the representation

wi = [0:Xpf + DX - wi] o (X) ™! det(D(X}) ™)

which is equivalent to (6.2.3)). Indeed, as long as (pf, w$) solves the continuity equation
also (pj, wf) solves the continuity equation. Since {y = 0, one has p§ = po and we can
conclude that (pf, w;) € C(po) is a feasible competitor for (pf, w;).

I2-subdifferential of the Kinetic Energy K. Before we prove the Euler-Lagrange
equation of the WED-approximation (pf, w;), we compute the first variation of the ki-
netic energy K along the solutions of the Transport equation ((6.2.2)).

Lemma 6.2.2. Given a density-flur pair (p;, w;) € C(po) such that p, € P§°(Q) for
each t and such that the map t — e "/K(ps, w) € L*(0,00). For each vector field
& € C°(]0,00) x Q) with & = 0 and & -n = 0 on 9Q define the perturbation (pi, w?)
via . Then,

oo —t/e 00 D
d [/ € /C(pf,wf)dt} ) :/ e—t/e/ Wi, DEWe) g e sy dodt. (6.2.4)
0 5=0 0 Q Pt

ds 2
Note, the integrand is well-defined for a.e. (t,z) since t — e 5K (ps, wi) € L1(0, 00).

Proof. Fix & and ¢t > 0. Using the explicit representation formula (6.2.3)) and the change
of variables x = Xj(y) we can rewrite IC(p;, w{) as follows

DXSwy |2
/C(pg,wf)—/ DX w: | : U gy 4 2DXws, X3 + pr 132 dy.
Q t

Taking into account that XY is the identity, p; € P3(2), and t — e~ /=K (pg, wy) is locally
integrable, it follows by a dominated convergence argument

d % o—t/e % o—t/e d ||DX5wy|?
—K(p],w})dt = - — == dy dt
s:o/o 5 Kot wi) /0 2 /Q ds[ 00 L:o Y

ds
0o —t/e d . .
+/0 5 /Q(LSP(Dtht,atXt>L:0dydt

0o —t/e d )
— O X3 dy dt.
+/0 . /st{ptut P ay
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6.2 Application to Linear Fokker-Planck Equation

In order to evaluate the s-derivative at s = 0, we make use of the following identities

d

DX = 1, P

d
[DX{],_, =D&  9X) =0, - [0iX5] _, =& (6.2.5)

Hence, using these identities the different derivatives are as follows: The derivative
of the first integrand is given by

d[HDXthHQ} _ 2<DXth7%[DXf]5:0Wt> . <Wt7D§tWt>
s=0

ds Pt Pt B Pt

The derivative of the second integrand is given by

d [2(DX§W,5, atxg>] —9( O?

d
P ol 78[DX§]sszt> XYY + 2(DX wy, E[atxf]s:d = (Wy, 0¢&y).

Lastly, the derivative of the third integrand is given by
d

S d S
=[P I9XGIP | = 200X, [0 o) = 0.

Inserting these pointwise derivatives yields the desired result (6.2.4).
L]

Time-continuous Euler-Lagrange Equations. Having the first variation of the ki-
netic energy K along the Transport equation at hand, we are able to proof the time-
continuous Euler-Lagrange equations

Theorem 6.2.3 (Time-continuous Euler-Lagrange Equations). Let € € (0,e.). Then,
the WED-approzimation (pi,w§) satisfies for each test function ¢, € C2°([0,00) x Q)
with Vo, -m =0 on 0S):

():/ /(Vgot,w§>d:vdt
0 Jo

o0 & H e
. / 1= tle) / (o Hess o) g,
0 Q Pe

o0
—|—6/ (l—e_t/a)/@thpt,wf) dz dt
0 Q

(6.2.6)

- /0 (1—e7?/%) /Q App; — (Vor, VV + VW x pf) pf dac dt.

Proof. Given the WED-approximation (pf, w;) define the perturbation (p§, w{) via (6.2.3)
for a smooth vector field & € C2°([0,00) x Q,RY) with & = 0 and & -m = 0 on 9. Due
to the minimality property of (pf, w?) and since (pf, wi) € C(pg), one has:

d s s d o e—t/s 3 s s s
0= [Welof W) oy = o [/O — (5K 0F. wi) + (7)) dt} . (627
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6 Weighted Energy-Dissipation Principle

The time-continuous Euler-Lagrange equation follows by evaluating the s-derivatives
on the right-hand side of (6.2.7). To actual compute the first variation of the free energy
function £ we proceed as in the time-discrete theory, cf. [4, Chapter 10.]. The difference
quotient of the part containing the Boltzman entropy can be simplified using the explicit
representation of pf and the change of variables x = Xj(y):

—t/a 1 00 e—t/a
| uton — gy e = - [ [ S tog(der(ox;)pf dw .

0 e S 0 o €
The pointwise limit of the integrand is given by . Since & has only compact support
in time and space, X;(z) = x outside this set. Hence, the effective domain of the integral
above is compact. Further, the Jacobian of the flow map DX} depends continuously on
(s,t,x) and therefore we can conclude with a dominated convergence argument

d 9) e—t/aH q 00 ,—t/e 4 drd
— 2)dt = — i t.
ds 50/0 - (rf) /0 c /Q iv(&) pe da

Similarly, one can compute the first variation of the confinement energy V and of the
interaction energy W such that the first variation of the free energy functional £ along
the flow p{ amounts to

d 0 ,—t/e e t/e
[/0 e ] = / /dw €055 — (60, YV VIV % pf) pf dar dit.

ds s=0

Due to (6.1.10)) the map ¢ — e*t/EIC(pf, w$) is locally integrable and we can apply Lemma
B22) to get

d o0 e_t/E oo . <W Df W >
qs £, Wi = —t/e [ AWt DtWE)
ds [/0 5 K(pf, w}) dt} o /0 e /Q o + (9, wy) dzdt.

Inserting these two equations in (6.2.7) yields
D
0 < / —t/e / Wt’ gtWt <8t§t, W§> dzdt

—t/e
_ / € . / div(&)p; — (&, VV + VIV % pf) pf da dt.
0 Q

Since the equation above is linear with respect to &, repeating the calculations above
for —&; in place of & yields the converse inequality and hence we have equality. Lastly,
we choose as specific test functions & = e(e!/¢ — 1)V, where ¢; € C2°([0,00) x Q) with
Vi -n = 0 on 0F) which yields the desired time-continuous Euler-Lagrange equations
(6.2.6). O
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6.2 Application to Linear Fokker-Planck Equation

6.2.3 Better A Priori Bounds by Continuous Variations

The e-independent bounds are not sufficient to pass in the Euler-Lagrange equa-
tions to the limit ¢ — 0. Inspired by the flow interchange technique [68] to deduce
better a priori bounds in the time-discrete JKO-method, we use suitable perturbations
of the minimizers to improve the e-independent bounds. In particular, we consider as
time-continuous perturbation p; of the approximated solution p§ the solution to the heat
equation

dsp} = mA(p}), P = pi (6.2.8)
with no-flux boundary condition and for some given time-dependent diffusivity parameter
ne € C°(0,00) with 79 = 0 and dynp = 0. By the parabolic regularity theory, it is clear,
that for the heat equation with diffusivity parameter 7; and no-flux boundary condition
there exists a smooth and non-negative solution p;. To have a feasible density-flux pair
(pi, w;) we define the perturbed flux w; as the solution to the inhomogeneous vectorial
heat equation

Oswi = mA(w;) — OmVpy, wi = w (6.2.9)

with Dirichlet boundary condition. Note, the vectorial heat equation is meant to
be understood componentwise. Furthermore, this equation is also well-posed for ¢ = 0
since we assumed 79 = 0 and 09 = 0. Again, it follows by the parabolic regularity the-
ory, that for the inhomogeneous vectorial heat equation (6.2.9) with Dirichlet boundary
condition there exists a smooth solution wy.

Motivation. Before we elaborate on the feasibility of the competitor (pj, w;), their
explicit representations, and the actual proof of the refined a priori bounds, we motivate
our approach with a heuristic calculation. By the regularizing effects of the heat equation,
the map s — K(pf, w}) is differentiable at each s > 0 with derivative given by

d 2(wi, Oswi)  ||wi|?

7](: S WS = 75Tl { 8 Sdl’

ds (P}, w¢) /Q P (p)2 sPt

S

w wi
= [ 2% ) - om V) |
Q Pt Pt

Write vi = wj/p; and apply Green’s identity to simplify the first integrand as follows

2
Ap; dz.

d
| 25 i) do =03 [ viiw)ida

L i), wyi)i-n)dS — v;)i, V(Wi);) dx
=2nti21[/mpf<wt>z<v< )i m)dS /Q<v< )i, V(w?)s) da].

Note, the surface integral is equal to zero if each component of the perturbed flux w}
satisfies either Dirichlet boundary conditions or no-flux boundary conditions. However,
w; has to satisfy also the boundary condition from the continuity equation, i.e. wi-nn =0
on 0f). Hence, this motivates the Dirichlet boundary conditions for (wf); in (6.2.9)).
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6 Weighted Energy-Dissipation Principle

Continuing the calculation, we simplify the right hand side further as follows

21, i | (T Vwi) ) do = - mil / Hv(vf)inpf F V()0 (1), Vi) de

2
=20 [ [Dvilfyeri +

Similarly, we can simplify the third integrand with Green’s 1dent1ty to obtain

—m/vaHQApfdx:—m/ \\V;H2<vpg.n>ds+m/
Q o0

Since pj satisfies the no-flux boundary condition, the surface integral vanishes. In con-
clusion, we get as variation of the kinetic energy K:

d S S S S S S
E’C(met) == nt/th [Dv; HIQ—IS da — 28t77t/ﬂ<wta Vlog(p7)) da. (6.2.10)

The first term is always negative and the second integral is formally equal to the time
derivative of the map t — H(p;). Integrating with respect to t and taking the
first variation of the free energy functional £ and the minimality of (pf, w§) into account,
we end up with the following estimate:

() e—t/a

th ) dx.

th ) dx.

d . d s
[— 2531&771&&7'[(%) + E[g(pt)]szo] dt.

We emphasize that this is exactly the time-continuous analogue of the time-discrete flow
interchange estimate. However, without having additional information on the regularity
of t — pf this computation and the passage to the limit s — 0 is a priori not justified.

With another approach, one could also estimate the second term in ([6.2.10) with
Hoélders inequality by

d S S
0 < [We(pf, w)omo s/o ;

d S S S S S
K wi) <210 VK (o7, wi) VI (py)-

Since the map s — Z(p§) is monotonically decreasing, information about the differentia-
bility of KL at s = 0 can be only retrieved if the Fisher-Information Z(pf) is finite. To
circumvent this issue, we exploit the following observation: Computing simultaneously
the first variation of K and the Boltzmann entropy H yields

d € S S S S S S S
— 505 wi) + #(o)| < <10 VE(oF, wi) VI (o7) — niZ())-

Optimizing over Z(pf), i.e., using the elementary inequality ay/z — bx < ‘i—i with a =

0| \/K(pf, wi), b= %nt, and z = Z(p}), yields

2

L1 ktorwi) + (0D < 27 wi) — Cnz o). (62.11)
] Nt 2

Hence, as long quotient (9y1;)2/n; is bounded from above by positive constant C' we can

derive a differentiability result for the map s — 5K(pf, wi) + H(p;) at s = 0 by means

of a Gronwall type argument. However, at this point point we have the issue of the

continuity of the map s — K(pf, w§) which is a priori not clear.
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6.2 Application to Linear Fokker-Planck Equation

Definition and Justification of the Perturbation Prior to the justification of the
feasibility of the perturbation (pi, wi), we define a specific diffusivity parameter 7; via

e(el/? —1)? for t € (0,77,
—e(e@T=0/28 _1)2 4 2¢(eT/?% —1)2 for t € [T, 2T],
ne =< —e(e21)/22 _1)2 4 2¢(eT/26 —1)2 for t € [2T, 377, (6.2.12)
g(eWT—)/2e _1)2 for t € [3T, 4T,
0 for t € [4T, o).

With this definition, the diffusivity parameter 7, is non-negative, with compact support,
continuously differentiable, with ng = 0, and with 0;n9 = 0. Further more, we have the
following growth bounds on 7, and 0yn;:

ee t/E(Omy)? < my < et Vit e0,4T). (6.2.13)

Hence, by the previous remark 7, is suitable in (6.2.11]).

The next lemma shows the feasibility of the perturbation (pf, w}).

Lemma 6.2.4 (Feasible Competitor). Given a time-dependent diffusivity parameter n, €
C°(0,00) with no = 0 and Oy = 0. Define the perturbed density-flux pair (pj, w;) viz
(6.2.8) and (6.2.9), respectively. Then, (p;,w;) € C(po) for each s > 0.

Proof. To check, that this perturbation (pf, w;) is a feasible competitor for (pi, wf) we
have to check three properties:

1. Initial condition. Due to assumption 79 = 0 and ¢y = 0 we have (pf, w§) =
(po, w§)) and therefor the density-flux pair (p;, w;) satisfies the initial condition.

2. No-flux Boundary Condition. Since wj satisfies the Dirichlet boundary con-
dition in each component, i.e., (wf); = 0 on 9 for each s > 0 and every i €
{1,...,d}, we trivially satisfy the no-flux boundary condition of the continuity
equation, i.e., wj - n = 0 on 0f2 for each s > 0.

3. Continuity Equation. To verify that the density-flux pair (pf, w;) satisfy the
continuity equation, we compute the partial s-derivative of the map (s, x) — Opf +
divwy for each fixed t:

0s(Orp; + divwy) = Oy (mAp;) + div(nAwy — 0V pi) = n:A(9¢pi + div wy).

Hence, the map (s, x) — 0;p; + div w} solves the heat equation with initial datum
Oip? + divw) = 0ypf + divw Indeed, as long as (p5,w$) solves the continuity
equation also (pj, w;) solves the continuity equation. O
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6 Weighted Energy-Dissipation Principle

Explicit Representation. If Q = R9 is the whole space there is an explicit represen-
tation for the perturbed density-flux pair (pf, w;) in terms of the corresponding Greens

function &; of the heat equation (6.2.8]) which is given by
&i(z,y) = (47|'77t$)7d/2 exp {— "T_y”Q]
’ dnys

With the Greens function &; at hand we define the perturbation pj of the density p; by
pi := Te:[pi]- The explicit representation formula for w} is given by Duhamel’s principle:

N

wi = Togwil = O | Toge [V Teg pfllar = Togwil = 0¥ [ Ty [Ty )
Thanks to the semigroup property of the heat kernel we can simplify the second term:

S S
| T Togloilar = [ To i) ar = 5Ty )
0 0
In conclusion, we end up with the explicit representation formulas

pi = Tos[pi] and  wj = ’7355 (W] — s0m:VTe: [p3]- (6.2.14)

In the case Q C RY is an open, bounded and convex set we don’t have such an
explicit representation as (6.2.14). The reason is as follows. Let ©F and 9 be the
greens functions of the heat equation on 2 with Dirichlet boundary conditions or no-flux
boundary conditions, respectively. Then, p; and wj are given by

p= Tl andwi = Tagl) = 0¥ | T[Ty lollas

In this case, we cannot invoke the semigroup property of the two different heat kernels
and therefor we cannot end up with representation formulas as @ One might
suggest to require no-flux boundary conditions in the heat equation (@ such that we
could exploit the semi-group property of the heat kernel 91} and end up with

pi == Twglpf]  and Wi = Ty [wi] — OV T [ ]-

Still, the motivating calculation holds true and one can derive the differential inequality
(6.2.10). Nevertheless, with no-flux boundary conditions for (6.2.9) it is not clear, that
the perturbed flux w; satisfy the boundary condition wj -n = 0 on 92 of the continuity
equation. Since Ty [pf] satisfies the no-flux boundary condition, a simple calculation
shows wi - n = 7?51? [wi] - m on 0. However, a priori we don’t have any information on
'7191? [Wi] - m on 0N except that D’?'mf [wi]-m =0 on 0. So this approach is not feasible
for our purpose. Another approach is to define wj directly by

wy = ’7}35 (wi] — 80V T [p7]-

The by this formula defined perturbation wy satisfies the heat equation though with no
boundary condition. Still, w} satisfies the boundary condition of the continuity equation.
However, the motivating calculation is invalid and also our method in the proof of the
refined a priori bounds does not work, since our method heavily rely on the monotonicity
of IC which requires the same integral kernel for p; and w{, see lemma [2.5.6
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6.2 Application to Linear Fokker-Planck Equation

Refined A Priori Bounds.

Theorem 6.2.5 (Better A Priori Bounds). Let € € (0,e.). There exists non-negative
constant C, which depends only on dy,ds, T and the initial datum pg such that the WED-
approzimation pi with respect to € emanating from py € D(E) satisfies

T
/ (1-— et/2)2/ IV(/A)I? dzdt < C. (6.2.15)
0 Q

Proof of Theorem[6.2.5. Fix T > 0. Given the WED-approximation (pf, w§) with re-

spect to &, let (p;, wi) be the perturbation defined by (6.2.14]) with n; given by (6.2.12)).
Due to the minimality property of (pf, w$) and due to (p;,w;) € C(po), we have

00 eft/s 1re ] s s 5
0< [ St (5K + Ha0) - (ot wi) = M) e
0 (6.2.16)

> eit/s 1 S S £ (>
[ ) W) = V(E) = W] dt = i+ I
for sufficiently small s > 0. By passing to the limit s — 0 in each term of (6.2.16), we
will obtain the better a priori bound .

First, we estimate I, i.e., the difference quotient of K 4+ H along the heat flow. With
the representation we obtain by Minkowski’s inequality for the weighted integral
with weight function (1/7e[pf]) a first estimate for V/K:

Rrowd) =( [ s twi) = soum 9 Teg )| s e)

S(/Q Hﬁjg [WﬂHQ %fl[pﬂ d"”) v + (/Q Hs@tﬂtVTQﬁf [Pﬂw %gl[pﬂ d:L‘) V2

=K (Toy o], Tos [wil) + s 00| /I (Tog o), 9 T 7))

By classic parabolic regularity theory the Greens function &j satisfies the assumption of
Lemma 2.5.6] and we can conclude

VK (i, wi) < VK, wi) + s10me] VK (05, V05) = VK (pr, wi) + 25 10| VI (p5),

where we used in the last step K (p, Vp) = 4Z(p). Taking the square yields

1
S Kot wi) = K(pr, wi)] < 4y K(pe, we) [Ocne| VI(pr) +4s O Z(p}).  (6.2.17)

The difference quotient of the entropy functional H can be estimated by using the prop-
erties of the heat flow, cf. [4, Chapter 11.]:

L [H(p0) — Hp)] = s /O “Z() dr < —niZ(s}). (6.2.18)
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6 Weighted Energy-Dissipation Principle

Combining (6.2.17)) and (6.2.18)) yields for the combined difference quotient of IC + H:
1re s s s €
=[50 W) + H(p0) = SK(prewe) + H(pr)]

<2e\/K(pr, wi) [0ume| /Z(p5) + 2s¢ |0ime|* Z(p5) — mZ(p}).

Using the elementary inequality ay/z — bz < j—z with a = 2e\/K(p, wy) |0, b = %nt,
and x = Z(p}), yields for I:

e’} 2 1
I §2/ Ee*t/EMK(pf,Wf)dt— /
0 Nt 2 Jo

00
+ 2/ e_t/E(atm)QsI(pf) dt =: Is + Iy + Is.
0

oo ,—t/e

- L (p;)dt
(6.2.19)

We pass in (6.2.19) to the limit s — 0. The first integral I3 on the right hand side of
(6.2.19) is estimated as follows by (6.2.13)) and (6.1.10))

I3:=2 - *t/fwic ¢ wi)dt <8 4T/c ¢ wi)dt < C
3 1= . ge T (pt,Wt) > 0 (pt7wt) = -

The integrand of the second integral I, of the right-hand side of (6.2.19)) is positive, so
we estimate Iy with (6.2.13]) to get

1 e} e—t/E 1 T e_t/e ]. T
Iy = —/ ——mZ(p}) dt < —/ —— e Z(p}) dt = _/ (1 — e %22 (p}) dt.
2 0 g 2 0 9 2 0

e

By Fatou’s Lemma and the lower semi-continuity of the Fisher-information 7 we get
1 oo —t/e 1 T
limsup 4 = lim sup —/ nZ(p;)dt < —/ (1 — e Y2)2Z(pf) dt.
s\0 s\0 2 0 2 0

The limit s — 0 of the third integral I5 on the right-hand side of can be derived
as follows. By the integrand is bounded from above by
< . (87:7715)2
=2 ez <2 [ e pu) - o) ar.
0 0 t

Hence, by the lower semi-continuity of H, the point-wise limit of the integrand of the
third integral in (6.2.19) is less than zero. By the Carleman estimate, the entropy H is
bounded from below in terms of the second moment Ms. Furthermore, the dissipation
of the second moment M> along the heat flow takes place with rate 2dn;. Hence,

—H(p}) < C(1+ M>(p;)) = C(1+ Ma(p;) + s2dny).

Note, due to the definition of the second moment and the dynamic formulation of the
L2-Wasserstein distance one has

3

t
M(pf) < 2M3 () + 2W3(m. ) < 2M3 o) +2¢ | K(pf )
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6.2 Application to Linear Fokker-Planck Equation

Hence, it follows with (6.2.13)) that the integrand of Ig is bounded from above by a map,
which is locally integrable due to the e-independent bounds (6.1.10]). So we can conclude
with Fatou’s Lemma

AT —t/e 2
lim sup I5 < lim sup2/ e (Gem) [H(pF) — H(p{)] dt < 0.
s\ s\0 0 € Nt

Putting everything together, yields

1 T
limsup [; <C — / (1 — e 2)22(pf) dt. (6.2.20)
s\0 2 0

Next, we estimate Is. The first variations for V and W are given by the classical theory
of the flow-interchange lemma:

3 1 S S
hm\s(l)lp S W(eE) +W(pt) = V(pk) = Wip)] = e /Q(AV + AW = pf) p; da.
So we get by Fatou’s Lemma, by the uniform bounds of AV and AW, and with (6.2.13))

S e—t/&
limsup Ir < dg/ e dt < 4dsT. (6.2.21)
s\0 0 €

Insert (6.2.20) and (6.2.21)) into (6.2.16]) to obtain the desired result (6.2.15]). O

6.2.4 Convergence

With the better a priori bounds of theorem at hand we can prove convergence. The
cornerstone of the proof is the extension of Aubin-Lions theorem for Banach spaces [85].

Theorem 6.2.6 (Convergence). Given a vanishing sequence (€n)nen with €, € (0,€4)
and let (p;™)nen be the WED-approzimation the with respect to € emanating from py €
D(E). Then, there exits a (non-relabeld) subsequence €y, and a limit function pf : [0, 00) X
Q — R with pf € P3(Q) for each t > 0 such that for all p € [1,00) and for all T > 0:

e strongly in LP(0, T; L1 (Q)).

This limit function p; is a solution of the linear Fokker-Planck equation (6.0.1) in the
weak sense of (6.2.22]).

Proof. Fix T > 0. We seek to apply Theorem for (p;")nen with the underlying
Banach space X = L'(Q). We consider as normal coercive functional A; : (0,7) x
LY(©) — [0,00] and as pseudo-distance g on L*(Q):

Alp) == {HWHHl(Q) + Ms(p) if \/p € Hl(Q)’

400 else,

o) = {Wz(f,h) if f,h € P3(Q),

+00 else.

The functional A; is normal coercive integrand and g is a lower semi-continuous pseudo-
distance in the sense of definition 2.5.T] cf. lemma 2.5.3
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6 Weighted Energy-Dissipation Principle

Due to the e-independent bounds (6.1.10]), the sequence (p;™)nen is tight with respect
to A;. To be more precise, we use

t
Ma(pi) < 2Mo(po) + 2W3(po, 557) < 2M(po) + 2t / K(per, wen) dr
0

since (pgy, tWSi')sejo,1) is @ feasible competitor in the Benamou-Brennier formula for po
and p;™. Hence, integrating this with respect to t yields the uniform integrability of
the map ¢ — Mo (p;™). The uniform mtegrablhty of t — H\/;T||H1 follows by the
integrability of the Flsher information, see . Hence, the sequence (,ot Jnen is tight
with respect to A.

The weak integral equi-continuity condition for (p;™),en follows also by (6.1.10). To be
more precise, we utilize the dynamic Benamou-Brenier formulation of the L2-Wasserstein
distance. The density-flux pair (pf,_,;,, hwi ) solves the continuity equation and con-
nects p; and ppyp and therefore we can estimate

1 t+h
WE 050 < [ KR hwitg)dt = [ WG W) ds < hCePT

where the constants B and C are independent of €. Hence, there is a e-independent
constant C such that

T—h T—h 1/9
| s an= [ Wiz ae < onre

Therefore, theorem implies that (on a subsequence) (p;™)nen converges to some p;
in M(0,T;LY(9Q)). Since pi € P2(Q) for each t and e, we have uniform L?(0,7;L*(Q))
bounds. So we can use Remark to conclude the strong convergence of (p;")nen to
p; in the LP(0, T; L' (2))-topology. A diagonal argument in T' — oo yields the result.

It remains to proof, that p; is a solution of the linear Fokker-Planck equation. There-
fore, for a given test functions ¢; € C2°([0,0) x Q) with Vi, - = 0 on 9 we pass in
the Euler-Lagrange equations to the limit €, — 0. First, define 7" > 0 such that
¢r = 0 for all ¢ > T and split up the different parts of (6.2.6)):

/ / w;", V) de dt
- / (1 — e t/en)y / pi" Apr — pi" (VV + VW % pi, V) de dit
0 Q
—i—sn/ (1 —e7t/en)y / (wi™, V) dedt
0 Q

e e} En H En
‘I’en/ (1 _e—t/En)/ <Wt ) es: PtWy >dﬂf dt
0 Q Pt

=0y — Iy + ep(I3 + 1y).
We simplify I; by using the fact that each density-flux pair (p§, w) solves the continuity
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6.2 Application to Linear Fokker-Planck Equation

equation to obtain in the limit &, — 0:

o0 [o.¢]
lim I; = lim —/ /pi"@tcpt dz dt —/ wopo dx = —/ / Py Orpr da dt —/ wopo dx

thanks to the strong L(0,T;LY(Q))-convergence of (p{")nen to pf. The limit of I is
given by

n—oo n—o0

lim Ir = lim (1-— e_t/an)/ pi" Apr — p;" (VV + VW x pi™ Vipy) da dt
0 Q

— [ [ = i (TV 4 W g7 Vi) daa
0 Q

due to the strong convergence of (5" )ney in the L'(0, T; L'(Q))-topology and the point-
wise convergence of ¢t — (1 —e~t/n). We estimate I3 using the Cauchy-Schwartz inequal-

ity, Young’s inequality, and to get
uasH@V¢mw(ATK@?nﬁwdv+ATlgﬁdxa)scé”.
We estimate Iy with such that
|I4] < ||Hess @] /0 " Kl wir) dt < 0BT,

Hence, we have shown lim,,_, €, (I3+14) = 0. In conclusion, the limit function p; solves

0:/ /Pfatsﬁtd$dt+/90opod$
0 Jo Q

[ i = iV VWi, Vi) da e
0 Q

yielding that pf is a distributional solution to the linear Fokker-Planck equation (6.0.1)).
O

(6.2.22)
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6 Weighted Energy-Dissipation Principle

6.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Lastly, we investigate the Weighted Energy-Dissipation principle applied to the Derrida-
Lebowitz-Speer-Spohn equation, given by

= —div Lm

starting from the initial configuration py on @ = R9. We use the techniques and methods
developed in the previous section[6.2)to prove the existence and convergence of the WED-
approximation. Recall, the corresponding free energy functional £ in the L2-Wasserstein
framework is given by the Fisher information, defined by

E() == /Q IV (/AP da

if the measure p = pdL? is absolutely continuous and NIRS H(Q), otherwise we set
E(p) = oo.

Method. In the case of the Derrida-Lebowitz-Speer-Spohn equation driven by the
Fisher Information our approximation of the L2-Wasserstein gradient flow reads:

Scheme. Given the free energy functional £ and an initial configuration pg, define the
WED-approximation (pf,wj) for a given perturbation ¢ € (0,e,) as the minimizer of
the WED-functional ¥, i.e.

. © e=t/e [ g ||lwyl?

Giwie arguin [TC— [ o mR asa
(pewoeClpo) Jo € Ja2 pt

Since € is bounded the free energy functional £ satisfies (E1)-(E3) and we can use the

results from the previous section.

Strategy of the Proof. We use the same techniques and results as in the previous
section to derive the convergence of the WED-approximation (p7, w§) applied to the
DLSS equation . Firstly, we derive in section in a similar way the time-
continuous Euler-Lagrange equations of the WED-approximation (pf, w§) and, secondly,
we derive in section[6.3.2)the refined regularity estimates by means of the time-continuous
flow interchange lemma. It is worthwhile to mention that due to the stronger, intrinsic
e-independent bounds of the approximation pf the calculations in the time-continuous
flow interchange lemma are easier to justify than in the previous case. Still, we cannot
extend our result to open, bounded, and convex domains 2 because of the lack of a
suitable explicit representation formula fo the WED-approximation (pf, w$). In section
6.3.3] we can prove due to the better a priori estimates the convergence of the WED-
approximation (pf, wf) to a weak solution of the Derrida-Lebowitz-Speer-Spohn equation
by means of the extension of Aubin-Lions compactness theorem [2.5.4]
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6.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

6.3.1 Time-Continuous Euler-Lagrange Equations

As before, we want to derive the Euler-Lagrange equations by means of perturbing the
WED-approximation (pf, w§) along the Transport equation. Hence, with the same no-
tation as in the previous section, we define explicitly the perturbation (pf, w;) by

(0} 0X3) - X5 = pf, (w* 0 X;) « X5 = DXjwS + pf - 01X
for a fixed velocity field & € C2°([0, 00) x Q, RY) with & = 0 and with & -n = 0 on 0.

We denote by X7 the flow map with respect to &;.

The Euler-Lagrange equation reads than as follows.

Theorem 6.3.1 (Time-Continuous Euler-Lagrange Equations). Let € € (0,e4). Then,
the WED-approzimation (p§, w$) with respect to €& emanating from p° € D(E) satisfies
for each test function ¢; € C°([0,00) x Q) with Vi - m =0 on 99

o0 o0 £ )
o:/ /<wt,w§>dxdt+s/ (1—ef/8)/ <Wf’HeSf’90twt> da dt
0 JQ 0 Q Pe

+5/ u—eﬁﬂ/]@wﬁm@dx& (6.3.2)
0 Q

& 1
- / (1—e'/%) /Q §<V(A<pt),Vp§> + 2(Hess ot VA/p5, V/p§) dz dt.
0

Proof. We proceed as in the proof of Theorem with the only difference that we
have to compute the first variation of the Fisher-information Z along solutions of the
Transport equation (6.2.2). This has already been computed in [A7, Thm 4.2] for Q
open, bounded and convex or [68, Lemma 2.5.] for Q = RY and is given by

Ll

oo —t/e 1
:_/ : / 5 (V(divE), Vif) + 2(D&V /o, Vo/pf) dedt.
0 Q

3

Combing this with the first variation of the kinetic energy K yields the desired result. [

6.3.2 Better A Priori Bounds by Continuous Variations

Also in this case of the DLSS equation, the e-independent bounds are not suffi-
cient to pass in the Euler-Lagrange equations to the limit € — 0. Analogously to
the section before, we consider as perturbation pj of the approximated solution p7 the
solution of the Heat equation

dsps = mA(pf), Py = p;
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6 Weighted Energy-Dissipation Principle

with no-flux boundary condition and for some given smooth diffusivity parameter n; €
C2°(0,00) with np = 0. If we denote by &7 the greens function for the heat equation
on = RY with diffusivity parameter 7; , the explicit representations for pj and w; are
given by

Pi=Teglpf] and  wi = Teg[wi] — s0m Ve 5]

The better a priori bounds are then given by:

Theorem 6.3.2 (Better A Priori Bounds). Let € € (0,e). Then, there exists a non-
negative constant C, which depends only on T and the initial datum p° such that the
WED-approzimation (pf, w$) with respect to & emanating from p° € D(T) satisfies

/ ERR /||D2 2 dadt < C. (6.3.3)
0

Proof. Fix T > 0. Given the WED-approximation (pf, w§) with respect to Z, let (pj, wy)
be the perturbation defined by (6.2.14) with n; given by (6.2.12). Due to the minimality
property of (pf, w$) and due to (pf, w;) € C(p°), we have

et/ e~ tle

0< [ et ) ~ KGR wE] de [T S0 ~ T dr (63.4)
0 S 0 g S

As before, by passing in to the limit s N\, 0, we obtain the better a priori bound

. For fixed t > 0 the first variation of the Fisher information Z along the heat flow

is given by, cf. [47, Theorem 5.1| or [68, Lemma 4.4.]:

) 1

limsup —(Z(p7) — Z(pf)) < —Cnt/ ID*(v/pf)II* dae (6.3.5)
s\O S Q

where C' is a given non negative constant. Note, (6.3.5) incorporates the fact that

the Fisher information is a Lyapunov function for the heat flow and therefore one has

Z(pf) <Z(p§). Applying Fatou’s lemma yields

—t/E —t/E
lim sup /0 L) - T(of)) dt < — / Cn | DI dat

s\0 g S
<-c / — ety / ID2(/p)I dart.
Q

To estimate the difference quotient of the kinetic energy K we proceed similar to the
proof of lemma [6.2.2] Le., we use (6.2.17)) given by:

1
5 Ko, wi) — K(pf, wi)] < 4K (05, wi) [0 /Z(pf) + 4s [0 ]” Z(p}).
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6.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

Applying Young’s inequality on the first part of the right-hand side yields

1 S S (> 1> & € 8 ? S
S [K(p}, wi) — Klpz, wi)] SQ%K(Ptth) +4(1+ 3)5‘ tq;it‘ Z(p})

<(2K(pi, wi) + 4(1 + 8)Z(p})) Lz<ary-

where we used the properties (6.2.13) from 7. Using the monotonicity of the Fisher

information, an integration in time yields

oo e—t/a 1 ) . 4T
/0 55 Kot wi) = K(pr, wi)] dt < ; K(p;, wi) +2(1 + s)Z(pf) dt.

Hence, the limit s — 0 is given by

) o0 e—t/s 1 4T 4T
timsup [ 55 K w) — K wil e < [ K(wiyde+2 [ 2o
s\o Jo 2 s 0 0

So we can pass to the limit s — 0 in (6.3.4]) and conclude

4T

4T T
o< [ Kiwhdtr2 [ Thde-c [ - et [ DR et
0 0 0 Q

Rearranging terms and estimating the first two integral with (6.1.10)) yields the desired
result. O

6.3.3 Convergence

With the better a priori bounds of theorem [6.3.2] at hand we can prove convergence. The
cornerstone of the proof is a version of Aubin-Lions theorem for Banach spaces, cf. [85].

Theorem 6.3.3 (Convergence). Given a vanishing sequence (€,)nen with €, € (0,4).
Let (p5" )nen be the WED-approzimation the with respect to €& emanating from p° € D(E).
Then there exils a (non-relabeled) subsequence ey, and a limil function p; : [0,00)xQ — R
with pf € P§4(Q) or each t > 0 such that for all p € [1,00) and for all T > 0:
it — Py strongly in LP(0, T; LY(Q)),
;" =\ pF strongly in L2(0, T; HY(Q)),
Vot — \/pF weakly in L2(0, T; H*()).

This limit function p; is a solution of the Derrida-Lebowitz-Speer-Spohn equation ((6.3.1))

in the weak sense of (6.3.6)).

Proof. Fix T > 0. To derive in this case the convergence result we proceed similar
as before, applying Theorem [2.5.4] once. The other convergence results follow by the
Banach-Alaoglu theorem and an interpolation argument.
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6 Weighted Energy-Dissipation Principle

We seek to apply the Aubin-Lions theorem to the sequence (p;™)neny with the
underlying Banach space X = LY(Q). We consider as normal coercive functional A :
L'(Q) — [0,00] and as pseudo-distance g on L(Q):

o0 else,

Alw) = {WHHW +Ms(p) if /p € H'(Q) and p € P3(Q),

Wal(p,n) if p,n € P3(2),
g(p,n) ::{ 210 1) 78
400 else.

The functional A; is measurable, lower semi-continuous and has compact sublevels with
respect to the L!(Q)-topology and g is a lower semi-continuous pseudo-distance, cf.

lemma

Due to the e-independent bounds(6.1.10]), the sequence (p;™),en is tight with respect
to A;. To be more precise, we use

t
My(pim) < 2Mo(po) + 2W2(po, pi™) < 2Ma(po) + Qt/ K(pym, wir)dr
0

since (o5, tWgi')sejo,1] is a feasible competitor in the Benamou-Brennier formula for po
and p;". Hence, integrating this with respect to ¢ yields the uniform integrablity and we
have the tightness of the sequence (p;")nen. The weak integral equi-continuity condition
for (pi")nen follows by the same calculations as in the proof of theorem . We
can conclude by theorem that (on a subsequence) (pi™)nen converges to some pjf
in M(0,T;L(2)). Clearly, we have also uniform L>(0,T;L!(©2)) bounds. So we can
use Remark to conclude the strong convergence result of (p;")nen to some p} in

LP(0,T;LY(Q)) for every p > 1.

The refined a priori estimates yield also by the Banach-Alaoglu theorem the
convergence of (\/p{")nen in the weak L2(0,7;H?*(Q2))-topology. An additional inter-
polation argument of this weak convergence result in L?(0,7;H?(Q)) and the strong
convergence in L2(0,T;12(Q)) yields the desired strong convergence of (1/p;" )nen in the
L2(0, T; H'(Q))-topology. An additional diagonal argument in 7 — oo yields the desired
convergence result for all 7' > 0.

It remains to prove, that pf is a solution of the DLSS-equation . Therefore,
for a given test functions ¢; € C2°([0,00) x Q) with V¢; - n = 0 on 9 we pass in the
Euler-Lagrange equations to the limit as €, \( 0. First, define T' > 0 such that
w¢ = 0 for all t > T and split up the different parts of the FEuler-Lagrange equation
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6.3 Application to Derrida-Lebowitz-Speer-Spohn Equation

6.3.2):

/ / Vi, wim) dedt

= [T ety [ 760, Vi) + 2Hess ¥ /BT VBT da i
0 Q
-l-En/ (1—6t/sn)/<8th0t,Wf">dwdt
0 Q

o0 En H En
+€n/ (1_€—t/an)/ (wi", S8 Pt Wy ) dedt
0 Q Pt

=11 — Iy +e,(I3 + 14).

As before, we simplify I; by using the fact that each density-flux pair (pf, w§) solves the
continuity equation. Then we obtain in the limit £, \, 0

lim I; :—/ /pf@tgotdxdt—/@opodx

thanks to the strong L1(0,7;1.1(Q)) convergence of (p5")nen to pi. The limit of I is
given by
[e.e]

1
lim I = lim (1-— et/E")/ §<V(A<pt),Vp§") + 2(Hess o: VA/pi™, V/p;™) de dt
Q

n—oo n—oo

// V(Apy), Vi) + 2(Hess o, V/pf, V/pf) dz dt

due to the strong convergence of (1/p")nen in the L2(0,T;H(Q))-topology and the
pointwise convergence of t — (1 — e~/*). The integrals I3 and I, are estimated as in
the previous proof such that we have lim,_ o ,(I3 + I4) = 0. In conclusion, the limit
function p} solves

/ / V(Ag:), Vi) + 2(Hess o V/pf, V/pr) de dt

:/ /pf&tgotdxdt—k/@opodx
0o Ja Q

which proves that pf is a solution of the DLSS equation (6.3.1) in the weak sense. [

(6.3.6)
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