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Abstract
This dissertation studies the performance of convex and non-convex algorithms for
randomized bilinear inverse problems. In particular, we examine algorithmic approaches
based on convex relaxation for certain models of the blind deconvolution problem.
These models are especially relevant for wireless communications. Moreover, this thesis
analyses whether the required number of measurements can be reduced when additional
information about the signals is available such as sparsity.

Zusammenfassung
Diese Dissertation untersucht die Leistungsfähigkeit von konvexen und nicht-konvexen
Algorithmen für randomisierte bilineare inverse Probleme. Insbesondere werden algo-
rithmische Ansätze für bestimmte Modelle des Problems der blinden Entfaltung be-
trachtet, welche auf konvexer Relaxation basieren. Diese Modelle sind insbesondere
für die Nachrichtentechnik von Bedeutung. Des Weiteren wird in dieser Arbeit unter-
sucht, ob die Anzahl der benötigten Messungen reduziert werden kann, falls zusätzliche
Informationen über die Signale vorhanden sind wie etwa deren Dünnbesetztheit.
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1. Introduction

There are many problems in signal processing, which can be formulated as the task of
reconstructing an unknown signal x0 ∈ Cn from measurements of the form

yi = 〈ai, x0〉 for i ∈ [m] := {1; . . . ;m} ,

where ai ∈ Cn represents a known measurement vector. In many of these tasks one
would like to keep the number of measurements m as small as possible, as obtaining
these measurements is either expensive or time-consuming. One way to reduce the
number of measurements is to make use of some a-priori knownledge of the signal such
as sparsity, i.e., only few entries are non-zero. For example, already in [83] the author
leveraged the sparsity of the signal by `1-minimization. The foundational papers [16]
and [32] could then prove that x0 can be recovered via practical optimization algorithms
using only a small amount of measurements, if the sparsity assumption on the signal x0
is combined with the assumption that the measurements {ai}mi=1 are random. Arguably,
these two papers initiated a whole new research field, which is now often referred as
compressed sensing. Compressed sensing has, for example, been applied to medical
magnetic resonance imaging, where the scanning time could be significantly reduced
[84, 114]. As pointed out in [113] most work in the field of compressed sensing is built
on the assumptions that the following three requirements are fulfilled simultaneously.

• Sparsity: the signal x0 is sparse in a known basis, i.e., only very few coefficient
in this basis representation are non-zero

• Linear measurements: the measurements yi depend linearly on the unknown
signal x0

• Randomness: the measurement vectors ai are not completely deterministic, but
possess at least some degree of randomness

However, there are many scenarios in which not all of these three assumptions are
fulfilled at once. Consider, for example, the problem of phase retrieval, which is ubiqui-
tuous in many areas of science and engineering such as X-ray crystallography [50, 90],
astronomical imaging [36], ptychography [102], and quantum tomography [70]. In this
signal processing problem one is only able to measure the modulus and not the phase,
i.e., the measurements are given by

yi = |〈ai, x0〉|2 for i ∈ [m] .
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1. Introduction

Note that the measurements are no longer linear, which makes the problem much more
difficult, even if one makes no structural assumptions such as sparsity and one wants to
recover the ground truth vector x0 with approximately as many measurements as the
degrees of freedom of x0. In [17] it was shown that if one assumes that the measurement
vectors ai are random, then one can prove recovery guarantees for a convex relaxation
of this problem. As in compressed sensing, this has triggered a large number of follow-
up works, which study more efficient algorithms (see, e.g., [12, 116, 95, 115, 7]), more
realistic measurement scenarios (see, e.g., [11, 47, 48]), or which try to incorporate
structural assumptions about x0, (see, e.g., [7, 104]).

The problem of blind deconvolution, which arises in many different areas of science and
engineering such as astronomy [54], neuroscience [34], medical imaging [89], and wireless
communications [45], is another signal processing problem, where the measurements are
nonlinear. In blind deconvolution, one observes the convolution

y = w ∗ x,

and one wants to reconstruct w and x. As blind deconvolution is important for so
many different subject, several algorithms for this problem have been proposed in the
last decades (see, e.g., [72, 62, 20]), often with no provable performance guarantees.
However, due to the success of randomization in compressed sensing and phase re-
trieval, a new viewpoint has been introduced in [1]. Namely, one assumes that w and x
are contained in known, but random subspaces. Such a scenario is especially relevant
for wireless communications. As for phase retrieval this caused a lot of follow-up work
on blind deconvolution (see, e.g., [80, 75, 81, 58]) and related bilinar inverse problems
such as self-calibration and passive imaging (see, e.g., [79, 82, 76, 74]). Due to the bilin-
ear structure of these problems Friedlander and Strohmer came up with the expression
"bilinear compressed sensing" [41].

As we have seen there has been a lot of work on bilinear inverse problems with ran-
domness in the last few years. However, many questions remain open. In this thesis we
will provide near-optimal recovery guarantees for a generalization of the blind deconvo-
lution problem. Moreover, we will study the noise robustness of convex relaxations for
blind deconvolution problem. We will see that are many similarities with the matrix
completion problem [15], a seemingly rather different problem. Moreover, we will dis-
cuss, how and to which extent structural assumptions such as sparsity can be exploited
in these bilinear inverse problems.

Outline of this dissertation
This dissertation is structured as follows. In Chapter 2 we will introduce the random-
ized blind deconvolution model with known subspaces as in [1]. We will show how it can
be modeled as a low-rank matrix recovery problem and how it can be solved via nuclear
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norm minimization. We will review theoretical results and relevant literature. More-
over, we will discuss the matrix completion problem. Although this is not a bilinear
inverse problem we will see that it shares some similarity with the blind deconvolution
problem, most prominently the necessity of coherence terms in recovery guarantees and
the appearance of seemingly suboptimal noise factors in the error bounds, when con-
vex relaxation is used. Furthermore, we will discuss some related literature on matrix
completion.
In Chapter 3 we will review basic techniques in establishing recovery guarantees for
low-rank matrix recovery problems via nuclear norm minimization. In particular, we
will discuss the notion of an approximate dual certificate. We will try to elucidate what
gives rise to the suboptimal noise factors in the noise bounds for blind deconvolution
and matrix completion in Chapter 2.
In Chapter 4 we will discuss the extension of blind deconvolution to the blind demixing
model. That is one tries to recover signals wi and xi from the superposition of their
convolutions

∑r
i=1wi ∗ xi. We will show for the first time that this signal processing

problem can be solved by a tractable algorithm at a near-optimal rate in terms of the
number of observations, thus improving upon results by Ling and Strohmer [80].
In Chapter 5 we will be concerned with the noise robustness of the nuclear norm min-
imization approach for blind deconvolution and matrix completion problem. We will
show that these problems are intrinsically badly conditioned. Despite this fact we will
be able to show that near-optimal error bounds can be achieved for blind deconvolution,
if the noise level is not too small.
In Chapter 6 we will consider the general bilinear inverse problem y = B (u, v) under
the assumption that additional prior information about u and v such as sparsity as
available. We will give an overview about the literature. Furthermore, we will discuss
an extension of the results of [75], see our results in Appendix B.

Notation
Throughout this thesis we will use the following notation. For n ∈ N we denote by
[n] the set {1; . . . ;n}. For a complex number z ∈ C we will denote its real part by
Re (z). By log (·) we will denote the logarithm to the base e. By EX we will denote the
expectation of a random variable X and by P (A) we denote the probability of an event
A. For a vector v ∈ Cn its `2-norm will be denoted by ‖v‖. For vectors u, v ∈ Cn the
Euclidean inner product will be denoted by 〈u, v〉 := u∗v. Furthermore, for a matrix
Z ∈ Cn1×n2 we denote its spectral norm by ‖Z‖ and by ‖Z‖∗ we denote its nuclear
norm, i.e., the sum of the singular values of Z. Moreover, the Frobenius norm of Z is
defined by ‖Z‖F . The corresponding inner product is given by 〈Z,W 〉F := Tr (Z∗W ),
where W ∈ Cn1×n2 . In those parts of the thesis which deal with matrix completion,
real-valued matrices Z ∈ Rn1×n2 will be considered and the previous quantities will be
defined analogously.
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2. Important measurement models for
low-rank matrix recovery

2.1. Blind deconvolution
As already discussed in Chapter 1 blind deconvolution refers to the problem of recov-
ering a signal x from the convolution w ∗ x + e, where w is an unknown kernel and e
refers to additive noise. In this thesis we will consider for technical reasons the circular
convolution, which for w ∈ CL and x ∈ CL is defined by

w ∗ x :=

 L∑
j=1

wjxk−j

L
k=1

.

Here the difference k − j is considered modulo L. Of course, this is a highly under-
determined inverse problem. For this reason, additional assumptions on w and x are
needed. In this dissertation we will follow the model proposed by Ahmed, Recht, and
Romberg [1], which is especially relevant for wireless communication as we will explain
below. We will assume that w as well as x are contained in some known subspaces.
More precisely, we will assume that w = Bh0, where B ∈ CL×K such that B∗B = Id.
Furthermore, we assume that x = Cm0, where C is a random matrix with i.i.d entries
with distribution CN

(
0, 1√

L

)
.

The choice of the random matrix C is motivated by the success of randomization in
compressed sensing as well as by applications in wireless communications. Here m is
a message to be transmitted and C is a coding matrix. The signal x = Cm0 gets
transmitted through a channel w, which can be modeled as a convolution. In many
applications it is reasonable to assume that only the first few entries of w are non-zero
as the path delays are often much shorten than the length of the signals x. In this case
B would be the matrix which extends h0 ∈ CK by zeros. Hence, the receiver observes
w∗x+e, where e represents additive noise, and the goal is be to reconstruct the original
message m0.

Now let F ∈ CL×L be the unitary discrete Fourier transformation matrix. It is
well-known that F diagonalizes the convolution, i.e.,

ŵ ∗ x := F (w ∗ x) =
√
Ldiag (FBh0)FCm0.

Let b` denote the `th row of FB and let c` denote the `th row of
√
LFC. Note that

this implies that all the entries of {c`}L`=1 are jointly independent and have distribution
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2. Important measurement models for low-rank matrix recovery

CN (0, 1). Moreover, we obtain that(
ŵ ∗ x

)
` = b∗`h0m

∗
0c` = 〈b`c∗` , h0m

∗
0〉F .

We observe that ŵ ∗ x is linear in h0m
∗
0. This motivates the definition of the linear

operator A : CK×N → CL by

(A (X)) (`) := 〈b`c∗` , X〉F where ` ∈ [L] . (2.1)

Hence, we obtain the model

y := ŵ ∗ x+ e = A (X0) + e,

where X0 = h0m
∗
0 and e ∈ CL represents noise with ‖e‖ ≤ τ . Note that X0 is a rank-one

matrix. Hence, in order to estimate X0 one might choose the solution of the following
minimization problem.

minimize rank (X)
subject to ‖A (X)− y‖ ≤ τ

Unfortunately, problems of this type are NP-hard in general, as vector cardinality min-
imization can be considered as a special case [93]. For this reason, in [35] it was
proposed to use the nuclear norm ‖ · ‖∗ as a proxy for the rank. This leads to the
following semidefinite program (SDP), as proposed in [1].

minimize ‖X‖∗
subject to ‖A (X)− y‖ ≤ τ.

(2.2)

Of course, it is crucial to understand under which conditions the solution X̃ to the
SDP (2.2) is close to the ground truth X0 = h0m

∗
0. In particular, one is interested in

knowing how large one has to choose L in comparison to K and N such that recovery
is possible. Ahmed, Recht, and Romberg established the following result.

Theorem 2.1 ([1]). Consider measurements of the form y = A (h0m
∗
0)+e for h0 ∈ CK ,

m0 ∈ CN , e ∈ CL, and A as defined in (2.1). Assume that ‖e‖ ≤ τ and

L/ log3 L & Kµ2
max +N max

{
µ2
h0 ; µ̃2

h0

}
.

Then with probability at least 1−O
(
L−1) every minimizer X̂ of the SDP (2.2) satisfies

‖X̂ − h0m
∗
0‖F . µ2

max
µ2

min

√
min {K;N}τ. (2.3)

The coherence parameters µ2
max, µ2

min, and µ2
h0

are defined by

µ2
max := L

K
max
`∈[L]

‖b`‖2

µ2
min := L

K
min
`∈[L]

‖b`‖2
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2.2. Matrix completion

and
µ2
h0 := L

‖h0‖2
max
`∈[L]

|〈b`, h0〉|2.

The parameter µ̃2
h0

is a rather technical term and stems from the proof technique, which
is the Golfing Scheme (see [80, Remark 2.1] and [56, Remark 2.4] for a discussion of this
parameter). It is an open problem, whether this this additional coherence parameter is
truly necessary or not.

Note that since the number degrees of this problem is K + N − 1 the requirement
on the number of measurements L is optimal up to logarithmic factors. Moreover, note
that this results ensures exact recovery in the important special case τ = 0. However,
note that the appearance of the factor

√
min {K;N}. Such a dimension factor does not

appear in other low-rank matrix recovery problems like matrix sensing [91] or phase
retrieval [10]. This raises the question, whether nuclear norm minimization is less stable
with respect to noise for blind deconvolution than for these other problems. We will
provide an answer to this question in Section 5.

It is clear that for many applications solving the SDP (2.2) will be impractical due to
its high computational complexity. For this reason several works [78, 51, 81] proposed
gradient-based algorithms which operate in the natural parameter domain (instead of
the lifted one) and have a much lower computational complexity than the SDP for
this reason. Similar performance guarantees have been established for these algorithms
in terms of the number of required measurements. In terms of noise these articles
considered a random noise model and they could derive guarantees for the estimation
error without the additional dimension factor which appears in (2.3). However, since
we focus here on deterministic noise instead of random noise those two results are not
comparable.

2.2. Matrix completion
Suppose we observe only a few entries of a low-rank matrix X0 ∈ Rn1×n2 . Can one
recover the complete matrix from only knowing these few entries? This problem is
commonly referred to as matrix completion. Since it arises in many different applica-
tions such as multiclass learning [4] and collaborative filtering [100] it has become very
popular in the last decade and has been studied intensively in the statistics, machine
learning, and signal processing literature.
Let us specify the model, which we will study in this dissertation. In the following we
will assume with no loss of generality that n1 ≥ n2. We assume that we observe [m]
entries of the matrix X0, which are sampled with replacement. This means that the
linear measurement operator A : Rn1×n2 → Rn2 is given by

A (X) (i) :=
√
n1n2
m
〈X, eaie

∗
bi
〉F , (2.4)
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2. Important measurement models for low-rank matrix recovery

where (ai, bi) are i.i.d. random variables with uniform distribution in [n1] × [n2] and
ei denotes the vector, which is equal to 1 in the ith component and equal to zero else-
where.1

We are interested in the setting, where the number of observations is much smaller
than the number of total entries of the matrix X0, i.e., the setting m� n1n2. However,
note that if X0 = e1e

∗
1 we will with high probability obtain that A (X0) = 0 and

it is impossible to reconstruct the ground truth matrix X0 from these observations.
For this reason, in [15] the following two coherence parameter were introduced, where
X0 = UΣV ∗ with U ∈ Rn1×r and V ∈ Rn2×r denotes the singular value decomposition.

µ (U) :=
√
n1
r

max
i∈[n1]

‖U∗ei‖

µ (V ) :=
√
n2
r

max
i∈[n2]

‖V ∗ei‖

Indeed, it was shown in [18] that m & n1 logn1 max
{
µ2 (U) ;µ2 (V )

}
observations are

necessary for an rank-r matrix X0 to be uniquely determined from the revealed entries.

Now assume that we are given noisy observations y = A (X0)+e with ‖e‖ ≤ τ . As X0
has low-rank one could try estimate X0 by solving the following minimization problem

minimize rank (X0)
subject to ‖A (X)− y‖ ≤ τ.

However, as already discussed for blind deconvolution, such problems are in general
NP-hard. For this reason, on [15] the following approach was proposed for matrix
completion.

minimize ‖X‖∗
subject to ‖A (X)− y‖ ≤ τ.

(2.5)

In a series of papers the nuclear norm minimization approach has been studied [15, 18,
46, 98, 22] in the noiseless scenario, which led to the following result

Theorem 2.2 ([22]). Consider measurements of the form y = A (X0), where X0 ∈
Rn1×n2 is a rank-r matrix and A is given by (2.4). Assume that

m ≥ C max
{
µ2 (U) ;µ2 (V )

}
rn1 log2 n1.

Then with probability at least 1 − O
(
n−1

1

)
the matrix X0 is the unique minimizer of

the SDP (2.5) with τ = 0.
1The normalization of A with the factor

√
n1n2

m
is different to most other works in the literature. We

have decided to use this normalization factor in this thesis, because it implies E [A∗A] = Id, which
makes the results from blind deconvolution and matrix completion more comparable.
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2.2. Matrix completion

In [30] the result was refined even a bit further. Namely the second log-factor can be
removed at the cost of an r3-dependence in the rank.

All these papers mentioned above, which establish exact recovery. Now assume that
we are in the noisy scenario with deterministic noise. Then, in [13] it was shown that
with high probability the minimizer X̂ of (2.5) satisfies

‖X̂ −X0‖F . τ
√
n2, (2.6)

whenever m & n1polylog n1. Similarly, as for the randomized blind deconvolution
framework we observe the appearance of an additional dimension factor √n2. In Chap-
ter 5 we will see that these dimension factors reflect in a certain sense the true behavior
of the problem.

Let us comment on some related literature. In [63, 61] similar nuclear-norm based
estimators as presented in this chapter have been studied under the assumption that
the noise is random. It was shown that if the noise follows a subexponential distribution
and the noise level is not too small, then near-optimal recovery guarantees are possible.
In [27] the authors derived near-optimal rates for an estimator based on nuclear-norm
minimization for subgaussian noise, if the rank of the ground truth matrixX0 is assumed
to be constant. For adversarial noise, the strongest result we are aware of, has been
shown in [60] for a non-convex algorithm based on Riemannian optimization. However,
in contrast to nuclear-norm minimization, their algorithm requires precise knowledge
of the rank of the ground truth matrix X0. Let us also mention that many faster, non-
convex algorithms have been proposed and studied for matrix completion (see, e.g.,
[38, 71, 59, 53, 110, 85, 42]).
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3. Sufficient conditions for recovery via
nuclear norm minimization

3.1. Outline of this chapter
In the last chapter, we have seen that both randomized blind deconvolution and matrix
completion can be formulated as a low-rank matrix recovery problem. LetA : Cn1×n2 →
Cm be a linear map and assume that y = A (X0) + e, where X0 ∈ Cn1×n2 is a low-rank
matrix and let X̂ be the minimizer of

minimize ‖X‖∗
subject to ‖y −A (X) ‖ ≤ τ.

(3.1)

In this chapter, we will study sufficient conditions for recovery in this very general
framework, i.e., when ‖X̂ − X0‖F is small compared to the noise level τ . We will
assume throughout this chapter that the noise vector e fulfills ‖e‖ ≤ τ . Moreover, we
assume that e may be adversarial noise. By this we mean that (depending on A) e is
chosen as the vector, for which the reconstruction error ‖X̂ −X0‖F is maximal.
This chapter has two goals. The first one is to provide mathematical foundations for
the following chapters by introducing fundamental notions and reviewing previous proof
techniques such as the notion of an approximate dual certificate and the tangent space
of a low-rank matrix. The second goal is to understand what gives rise to dimension
factors such as

√
min {K,N} or

√
n2 in the error bounds for blind deconvolution and

matrix completion (see Chapter 2).
Throughout this chapter we will analyse this general framework and, consequently,
it is applicable to other low-rank matrix recovery problems such as robust spectral
compressed sensing [25].
The methods, which are presented in this chapter, have been developed in several
articles [15, 13, 46]. Meanwhile, they have been adapted by many researchers and they
are already included in textbooks [92]. What distinguishes our presentation in this
chapter to most other literature, is that we aim to understand the noisy scenario and
the sharpness of these estimates.

3.2. Exact and approximate dual certificates
In order to formulate sufficient conditions, we first need a characterization of the subd-
ifferential for which we need to introduce some additional notation. Let X ∈ Cn1×n2 be

21



3. Sufficient conditions for recovery via nuclear norm minimization

a rank-r matrix. Its singular value decomposition will be denoted by X = UΣV ∗, where
Σ ∈ Rr×r is a diagonal matrix with nonnegative entries and U ∈ Cn1×r and V ∈ Cn2×r

are unitary matrices, i.e., U∗U = V ∗V = Idr. We define for the matrix X ∈ Cn1×n2

the tangent space of rank-r manifolds at the point X by

TX :=
{
UA∗ +BV ∗ : A ∈ Cn2×r, B ∈ Cn1×r} . (3.2)

We will denote the orthogonal projection onto TX by PTX
and the orthogonal projection

onto T⊥X , the orthogonal complement of TX , by PT⊥X .

The subdifferential of the nuclear norm at point X will be denoted by ∂‖ · ‖∗ (X). In
[118] the subdifferential of the nuclear norm has been characterized by

∂‖ · ‖∗ (X) =
{
W ∈ Cn1×n2 : PTX

W = UV ∗, ‖PT⊥XW‖ ≤ 1
}
. (3.3)

Now that we have introduced the necessary background we can formulate the following
lemma, which gives a sufficient condition for X0 being the minimizer of (3.1).

Lemma 3.1 ([15]). Assume that we are in the noiseless scenario, i.e., τ = 0. Let
X0 ∈ Cn1×n2 such that y = A (X0). Suppose that the following two conditions hold:

1. There exists z ∈ Cm such that Y = A∗ (z) satisfies

PTX0
Y = UV ∗ and ‖PT⊥X0

Y ‖ < 1

2. the linear operator A is injective when restricted to the subspace TX0.

Then X0 is the unique minimizer of (3.1).

Lemma 3.1 was first formulated in [15] in the context of low-rank matrix completion,
where it was also shown that such a dual certificate exists with high probability given
that the amount of measurements is high enough. In [18] it was even shown that for
the matrix completion problem such a dual matrix Y can be constructed if the amount
of measurements is up to logarithmic factors at the order of the information-theoretic
limit. However, a difficulty in constructing such an exact dual certificate is that the
dual matrix Y has to fulfill the condition PTX0

Y = UV ∗. In [46] David Gross observed
that this condition can be relaxed, if the operator A fulfills some additional properties,
which allowed him to simplify the proofs in [15, 18] and to strengthen the results. One
of these additional conditions required by Gross is that A is an approximate isometry
when restricted to the subspace TX .

Definition 3.2. Let X ∈ Cn1×n2. We say that A fulfills the δ-restricted isometry
property (δ-RIP) on TX , if for all matrices Z ∈ TX it holds that

(1− δ) ‖Z‖2F ≤ ‖A (Z) ‖2 ≤ (1 + δ) ‖Z‖2F .
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3.2. Exact and approximate dual certificates

This allows us to state the following proposition,

Proposition 3.3. [46, 13] Let X0 ∈ Cn1×n2 with corresponding singular value decom-
position X0 = UΣV ∗ and suppose that y = A (X0) + e with ‖e‖ ≤ τ . Suppose that the
following two conditions hold.

1. There exists a vector z ∈ Cn1×n2 with ‖z‖ ≤ 2 such that the matrix Y = A∗ (z)
satisfies

α := ‖UV ∗ − PT⊥X0
Y ‖F <

1
8‖A‖ and ‖PT⊥X0

Y ‖ < 1
2 (3.4)

2. the measurement operator A satisfies the δ-restricted isometry property on TX0

with constant δ = 3
4 .

Then every minimizer X̂ of (3.1) satisfies

‖X0 − X̂‖F . ‖A‖τ.

As already mentioned, in the noiseless scenario, i.e., τ = 0, a first version this result
has been stated in [46]. In [13] dual certificates have first been used to obtain error
bounds in the noisy case.1
Note that in the important special case τ = 0 Proposition 3.3 states that the existence
of a dual matrix Y guarantees exact recovery. Such a matrix Y is typically called
approximate dual matrix Y . The numerical constants in Proposition 3.3 such as 1

8 ,
δ = 3

4 , or ‖z‖ ≤ 2 are rather arbitrary and can be replaced by different numbers.

Remark 3.4. For blind deconvolution it can be shown that (see [56, Lemma 5.3])

‖A‖ .
√

L

KNµ2
max

log (L+KN).

Hence, if a dual certificate in the form of Proposition 3.3 exists, we obtain that

‖X0 − X̂‖F .
√

L

KNµ2
max

log (L+KN)τ.

Note that this bound is slightly sharper than the one presented in [1], see also Theorem
2.1. This is because the authors used slightly different proof techniques to establish the
noise bounds than those presented here.

1[13] used an exact rather than an approximate dual certicate to establish error bounds. However,
it is straightforward to adopt the proof to the situation where an approximate dual certificate is
available.
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3. Sufficient conditions for recovery via nuclear norm minimization

Proof of Proposition 3.3

This section aims to present a proof of Proposition 3.3. A focus of our presentation will
be to explore what gives rise to the factor ‖A‖ in the noise bound. We will start by
proving the following auxiliary lemma.

Lemma 3.5. Assume that y = A (X0) + e with ‖e‖ ≤ τ . Let X̂ be a minimizer of
(3.1). Set Z := X̂ − X0. Assume that there exists a vector z ∈ Cn1×n2 with ‖z‖ ≤ 2
such that the matrix Y = A∗ (z) satisfies (3.4). Then it holds that∥∥∥PT⊥X0

Z
∥∥∥
∗
≤ 8τ + 2α‖PTX0

Z‖F ,

where α := ‖UV ∗ − PT⊥X0
Y ‖F .

Proof. We start by noticing that

‖A (Z) ‖ ≤ ‖A
(
X̂
)
− y‖+ ‖y −A (X0) ‖

≤ 2τ,
(3.5)

where in the first line we used the triangle inequality and in the second line we used
that X̂ is feasible, i.e., ‖A

(
X̂
)
− y‖ ≤ τ , and that ‖y − A (X0) ‖ = ‖e‖ ≤ τ . Next,

choose W̃ ∈ T⊥X0
such that ‖PT⊥X0

W̃‖ = 1
2 and Re

(
〈W̃ , Z〉

)
= 1

2‖PT⊥X0
Z‖∗ holds. This

is possible by the duality of the spectral norm and the nuclear norm. Moreover, by
the characterization of the subdifferential (3.3) it follows that UV ∗ + PT⊥X0

Y + W̃ ∈
∂‖ · ‖∗ (X0). Hence, we obtain that

‖X0‖∗
(a)
≥ ‖X0 + Z‖∗
(b)
≥ ‖X0‖∗ + Re

(
〈UV ∗ + PT⊥X0

Y + W̃ , Z〉F
)

(c)= ‖X0‖∗ + Re
(
〈UV ∗ − PTX0

Y,Z〉F
)

+ Re (〈Y, Z〉F ) + 1
2‖PT⊥X0

Z‖∗
(d)= ‖X0‖∗ + Re

(
〈UV ∗ − PTX0

Y,Z〉F
)

+ Re (〈A∗ (z) , Z〉F ) + 1
2‖PT⊥X0

Z‖∗

= ‖X0‖∗ + Re
(
〈UV ∗ − PTX0

Y,PTX0
Z〉F

)
+ Re (〈z,A (Z)〉) + 1

2‖PT⊥X0
Z‖∗

(e)
≥ ‖X0‖∗ − ‖UV ∗ − PTX0

Y ‖F ‖PTX0
Z‖F − ‖z‖‖A (Z) ‖+ 1

2‖PT⊥X0
Z‖∗

(f)
≥ ‖X0‖∗ − α‖PTX0

Z‖F − 2‖A (Z) ‖+ 1
2‖PT⊥X0

Z‖∗

In (a) we used that X0 + Z is a minimizer of (3.1) and in (b) we used that UV ∗ +
PT⊥X0

Y + W̃ ∈ ∂‖ · ‖∗ (X0) by construction. Equality (c) follows from our choice of W̃
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3.2. Exact and approximate dual certificates

and in (d) we used that Y = A∗ (z) by assumption. In (e) we applied the Cauchy-
Schwarz inequality several times. Inequality (f) follows from the definition of α and
from our assumption on ‖z‖. Rearranging terms combined with inequality (3.5) yields
the result.

Note that if α is sufficiently small, then Lemma 3.5 says that
∥∥∥PT⊥X0

Z
∥∥∥
F
is (up to a

constant) bounded by the noise level. Recall that in order to prove Proposition 3.3 one
needs to find an upper bound for ‖Z‖F = ‖X̂ −X0‖F . Hence, if we can show that for
Z the quantity

∥∥PT⊥X0
Z
∥∥
F
is always sufficiently large compared to

∥∥PTX0
Z
∥∥
F
we would

obtain a bound for ‖X̂ −X0‖F . This is achieved by the following lemma.
Lemma 3.6. Let A : Cn1×n2 → Cm be a linear operator, which satisfies the δ-restricted
isometry property on TX0 for some δ > 0 for some X0 ∈ Cn1×n2. Assume that y =
A (X0)+e, where ‖e‖ ≤ τ . Let X̂ be a feasible point for the SDP, i.e. ‖A

(
X̂
)
−y‖ ≤ τ .

Then for Z = X̂ −X0 it holds that∥∥∥PTX0
Z
∥∥∥
F
≤ 2τ√

1− δ
+ ‖A‖√

1− δ
∥∥PT⊥X0

Z
∥∥
F
.

Proof. Note that∥∥∥PTX0
Z
∥∥∥
F
≤ 1√

1− δ

∥∥∥A (PTX0
Z
) ∥∥∥

≤ 1√
1− δ

∥∥∥A (Z)
∥∥∥+ 1√

1− δ

∥∥∥A(PT⊥X0
Z

)∥∥∥
≤ 2τ√

1− δ
+ ‖A‖√

1− δ
∥∥PT⊥X0

Z
∥∥
F
.

In the first line we used the δ-restricted isometry property and in the second line we
used the triangle inequality. In the third line we used that ‖A (Z) ‖ ≤ 2τ , where one
can argument in exactly the same way as for (3.5). This completes the proof.

Having gathered all the necessary ingredients we can prove Proposition 3.3.

Proof of Proposition 3.3. Let X̂ be the minimizer of (3.1) and set Z = X̂ − X0. We
note that

‖PT⊥X0
Z‖F

(a)
≤ ‖PT⊥X0

Z‖∗
(b)
≤ 8τ + 2α‖PTX0

Z‖F
(c)
≤ 8τ + 2α

(
4τ + 2‖A‖

∥∥PT⊥X0
Z
∥∥
F

)
= 8 (1 + α) τ + 4α‖A‖

∥∥PT⊥X0
Z
∥∥
F

(d)
≤ 20τ + 1

2
∥∥PT⊥X0

Z
∥∥
F
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3. Sufficient conditions for recovery via nuclear norm minimization

In (a) we used that the Frobenius norm is always upper bounded by the nuclear norm.
In (b) we used Lemma 3.5 and in (c) we applied Lemma 3.6 as well as the assumption
δ = 3

4 . In (d) we used that α ≤ 1
8‖A‖ ≤

1
4 due to ‖A‖ ≥ 1

2 , which follows from the local
isometry property on TX0 .
Rearranging terms it follows that

‖PT⊥X0
Z‖F ≤ 40τ.

Moreover, from Lemma 3.6 combined with the last estimate it follows that

‖PTX0
Z‖F ≤

2τ√
1− δ

+ ‖A‖√
1− δ

∥∥PT⊥X0
Z
∥∥
F

. ‖A‖τ.

The triangle inequality combined with the last two estimates yields that

‖Z‖F ≤ ‖PTX0
Z‖F + ‖PT⊥X0

Z‖F

. ‖A‖τ.

This completes the proof.

Remark 3.7. Let us comment on what determines the estimation error. Lemma 3.5
states that the dual certificate yields for Z = X̂ −X the upper bound ‖PT⊥X0

Z‖∗ ≤ τ , if
one neglects the second term (and, indeed, α is often chosen to be rather small). Then
the strength of the noise bound depends on what one can say about the relationship
between ‖PT⊥X0

Z‖∗ and ‖Z‖F . Note that the bound becomes stronger, if one can knows
that not too much ‖ · ‖F -mass of Z is concentrated on TX0. Lemma 3.6 gives a bound
for how much mass can be concentrated at most on TX0 compared to T⊥X0

. However,
recall that by Remark 3.4 the norm ‖A‖ may be rather large. This is the reason why
the additional dimension factors enter.

3.3. The golfing scheme
In order to be able to use Proposition 3.3 one needs to show that such an approximate
dual certificate exists with high probability. In this section we will describe the con-
struction of David Gross [46], often referred to as the golfing scheme. Recall that we
have to find z ∈ Cm and Y = A∗ (z) which satisfy the following three properties.

(a)
‖z‖ ≤ 2,

(b)
α = ‖UV ∗ − PTX0

Y ‖F ≤
1

8‖A‖ , and
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3.3. The golfing scheme

(c) ∥∥∥PT⊥X0
(A∗ (z))

∥∥∥ < 1
2

In randomized blind deconvolution (and also in some other low-rank matrix recovery
problems as matrix completion) it can be shown that E [A∗A] = Id. This motivates the
choice z̃1 = A (UV ∗) and Ỹ1 = A∗ (z) = A∗A (UV ∗) for z and Y . Indeed, this would
imply that E [A∗(z̃1)] = UV ∗. Consequently, one could then hope to show properties (a),
(b), and (c) by applying appropriate concentration inequalities. However, as already
mentioned before, for some problems the operator norm ‖A‖ can be quite large (as
mentioned before, for blind deconvolution ‖A‖ it is at the order of

√
KN
L ). In particular,

this means that the quantity
∥∥∥UV ∗−PTX0

A∗ (z)
∥∥∥
F
needs often to be smaller than what

can be guaranteed by concentration inequalities. The idea behind the golfing scheme
is to iteratively refine this initial guess until condition (b) is satisfied. It is set up as
follows.

• Step 1: Choose a partition of [m] into P sets {Γp}Pp=1 of roughly the same size,
i.e., |Γp| ≈ m

P for all p ∈ [P ], such that PE [(Ap)∗Ap] ≈ Id, where Ap := PΓpA.
(Here, PΓp : Cm → Cm denotes the coordinate projection onto Γp.)

• Step 2: Set

Y0 = 0 and

Yp = Yp−1 + P (Ap)∗Ap
(
UV ∗ − PTX0

Yp−1
)

where p ∈ [P ] .

The corresponding z ∈ Cm is then given by

z := P
P∑
p=1
Ap
(
UV ∗ − PTX0

Yp−1
)
.

Note that a consequence of the sample splitting in Step 1 is that the golfing scheme is
set up in a such a way that Ap is stochastically independent of Yp−1, which simplifies
the analysis or makes it even possible.
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4. Blind demixing at near-optimal rate

4.1. Problem framework and main result
Assume that we are given observations of the form

y =
r∑
i=1

wi ∗ xi + e ∈ CL, (4.1)

where e ∈ CL is additive noise and our goal is to reconstruct all individual signals wi
and xi from only knowing y. This problem is often referred to as blind demixing and
deconvolution and it can be seen as a generalization of the blind deconvolution problem.
As in blind deconvolution one needs to make further assumptions on wi and xi to enable
recovery. As for randomized blind deconvolution we will assume that the wi and xi are
contained in some known subspaces. More precisely, we will assume that wi = Bimi

and xi = Cimi for all i ∈ [r], where Bi ∈ CL×Ki and Ci ∈ CL×Ni . In analogy to the
randomized blind deconvolution setting, we will assume that B∗iBi = Id and that the
entries of the matrix Ci are independent and identically distributed with distribution
CN (0, 1). This framework has been proposed in [80]. It is particularly relevant for
applications in wireless communications [117].

As for blind deconvolution we observe that there is unique linear operator Ai :
CKi×Ni → CL such that for all u ∈ CKi and v ∈ CNi it holds that

Ai (uv∗) = Bu ∗ Cv.

With this definition at hand equation 4.1 reads as

y =
r∑
i=1
Ai (him∗i ) + e.

Hence, we have noticed that (4.1) can be recasted as a low-rank matrix recovery prob-
lem, where the low-rank matrix to recover is given as

X0 = (h1m
∗
1, h2m

∗
2, . . . , hrm

∗
r) .

This observation motivated Ling and Strohmer to propose the following SDP in [80].

minimize
r∑
i=1
‖Xi‖∗

subject to ‖y −
r∑
i=1
Ai (Xi) ‖ ≤ τ,

(4.2)
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4. Blind demixing at near-optimal rate

They could show that if

L & r2
(
Kµ2

max +Nµ2
h

)
log3 L (4.3)

holds, where K := max
i∈[r]

Ki and N := max
i∈[r]

Ni, then in the noiseless scenario, i.e., τ = 0,

exact recovery is possible. Here, µ2
max and µ2

h are coherence parameters, which are sim-
ilar to the ones defined in Section 2.1. In the case of noise they could derive estimation
errors with additional dimension factors as in (2.3). However, note that the number
of degrees of freedom in this problem is

∑r
i=1 (Ki +Ni)− r, which raises the question,

whether the second r-factor in (4.3) is necessary. Indeed, numerical experiments in [80]
indicate that this additional r-factor seems to be an artifact of the proof.

Our main result in [56] states that nuclear norm minimization indeed is able to recover
X0 at near-optimal sampling rate and, hence, this additional r-factor is not necessary.
In order to state it we set N := max

i∈[r]
Ni and µi,max and by µh,ω we denote coherence

parameters which are similar to the coherence parameters introduced in Section 2.1.
(For the precise definition of these quantities we refer to [56].)

Theorem 4.1. [56] Let ω ≥ 1 and let y ∈ CL be given by (4.1) with ‖e‖ ≤ τ . Assume
that

L ≥ Cωr
(

max
i∈[r]

(
Kiµ

2
i,max log

(
Kiµ

2
i,max

))
+Nµ2

h,ω

)
log3 L, (4.4)

where Cω is a universal constant only depending on ω. Then, with probability at least
1−O (L−ω) every minimizer X̂ =

(
X̂1, . . . , X̂r

)
of the SDP (4.2) satisfies

√√√√ r∑
i=1

∥∥∥X̂i − him∗i
∥∥∥2

F
. τ

√√√√rmax
{

1; max
i∈[r]

rKiµ2
i,maxN

L

}
logL. (4.5)

Note that in the important, noiseless scenario with τ = 0 our result states that exact
recovery is possible at a near-optimal sampling rate.

To summarize our findings, we have established that there is a tractable, i.e., polynomial-
time algorithm, which is able to recover the ground truth X0 = (h1m

∗
1, h2m

∗
2, . . . , hrm

∗
r)

at a near-optimal sampling rate.
However, as lifting increases the number of variables it is clear that the SDP (4.2) will
be too slow for many practical purposes. For this reason, in [81] Ling and Strohmer
proposed a (non-convex) gradient-based algorithm for this problem, which operates in
the original parameter space and, hence, is considerably faster. They were able to es-
tablish that their algorithm is able to recover the ground truth if L scales as in (4.3).
This means that again their recovery guarantees depend quadratically on r. As in the
convex case numerical experiments seem to indicate that the true scaling seems to be
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4.2. Outline of the proof

rather linear in r. We believe that our theoretical analysis in [56], which we will out-
line in the following, might also provide tools to overcome the r2-dependence for the
non-convex approach.

4.2. Outline of the proof
The overall proof strategy of Theorem 4.1 resembles the one provided in Chapter 3.
In the first step one shows that stable recovery is guaranteed, if sufficient conditions
are fulfilled, among them the existence of an appropriate dual certificate. (Note that
Proposition 3.3 is not directly applicable here since we have the sum of operators Ai
rather than a single operator A.) In the second step we construct the dual certificate
via an appropriately modified golfing scheme.

This proof strategy of constructing an approximate dual certificate was used by Ling
and Strohmer as well as by us. In the following we want to describe the main differences
and, in particular, how we were able to remove the second r-factor. Recall that one
assumption in Proposition 3.3, which gave sufficient conditions for recovery, was that the
operator A fulfills an approximate isometry property on the tangent space T . Similar
properties are needed in [80] as well as by us in [56]. In order to state the assumption
used by us, we define for i ∈ [r] the tangent space of rank-1-matrices at him∗i by

Ti =
{
hiu
∗
i + vim

∗
i : ui ∈ CKi , vi ∈ CNi

}
Moreover, we set

T̃ := {(X1, . . . , Xr) : Xi ∈ Ti for all i ∈ [r]} .

This allows us to give the following definition of a δ-local isometry, which is analogous
to Definition 3.2.

Definition 4.2 (Local isometry property). The operators {Ai}ri=1 fulfill the δ-local
isometry property on T̃ for some δ > 0, if

(1− δ) ‖X‖2F ≤
∥∥∥ r∑
i=1
Ai (Xi)

∥∥∥2
≤ (1 + δ) ‖X‖2F (4.6)

for all X = (X1, . . . , Xr) ∈ T̃ .

The main difference between [80] and our work [56] is that in [80] the restricted isome-
try property is not established on T directly, but individually on each Ti and it is shown
that the images of the subspaces Ti under the operator Ai are near-orthogonal to each
other. This is responsible for the appearance of the r2 in their analysis. In contrast,
our more global analysis allows us to establish that the local isometry property holds
on T , if L scales linearly with r.
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4. Blind demixing at near-optimal rate

Setting

T̂ := T̃
⋂{

(X1, . . . , Xr) ∈ CK1×N1 × . . .× CKr×Nr :
r∑
i=1
‖Xi‖2F = 1

}

we observe that by its definition the δ-local isometry property is equivalent to the
inequality

δ ≥ sup
(X1,...,Xr)∈T̂

∣∣∣∥∥∥ r∑
i=1
Ai (Xi)

∥∥∥2
−

r∑
i=1
‖Xi‖2F

∣∣∣
= sup

(X1,...,Xr)∈T̂

∣∣∣∥∥∥ r∑
i=1
Ai (Xi)

∥∥∥2
−

r∑
i=1

E
[∥∥∥Ai (Xi)

∥∥∥2] ∣∣∣.
= sup

(X1,...,Xr)∈T̂

∣∣∣∥∥∥ r∑
i=1
Ai (Xi)

∥∥∥2
− E

[∥∥∥ r∑
i=1
Ai (Xi)

∥∥∥2
] ∣∣∣.

The second line is due to the assumption that B∗iBi = Id for all i ∈ [r] and the third
line follows from the fact that the random operators Ai are independent with zero mean
(see [56, Proof of Proposition 5.8] for a more detailed calculation).
Now let vec([C1, . . . , Cr]) denote the vectorization of the random matrices C1, . . . , Cr,
i.e., the vector which contains all the entries of the matrices (C1, . . . , Cr). We observe
that the expression

∑r
i=1Ai (Xi) is linear in vec([C1, . . . , Cr]), which means that we can

find for each X = (X1, . . . , Xr) ∈ T̂ a matrix VX such that the equation
r∑
i=1
Ai (Xi) = VX vec([C1, . . . , Cr])

always holds. Hence, in order to show the δ-local isometry property it is sufficient to
prove that

δ ≥ sup
X∈T̂

∣∣∣∥∥∥VX vec([C1, . . . , Cr])
∥∥∥2
− E

[∥∥∥VX vec([C1, . . . , Cr])
∥∥∥2] ∣∣∣. (4.7)

To obtain upper bounds suprema of this type recently developed results can be used
[65]. In order to state them we will first need to introduce the notion of Talagrand’s
γ2-functional (see, e.g., [111]). In a certain sense Talagrand’s γ2-functional measures
the complexity of a set with respect to a given metric.

Definition 4.3. Let (X, |||·|||) be a Banach space and suppose that S ⊂ X. We say that
a sequence (Sn)n≥0 of subsets of S is admissible, if |S0| = 1 and |Sn| ≤ 22n for all
n ≥ 1. Then we set

γ2 (S, |||·|||) = inf
(Sn)n≥0

sup
s∈S

∞∑
n=0

2n/2 inf
s∈Sn

|||s− sn|||,

where the infimum is taken over all admissible sequences (Sn)n≥0.
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4.2. Outline of the proof

Moreover, for a set X of matrices we define

dF (X ) := sup {‖X‖F : X ∈ X} ,
d2→2 (X ) := sup {‖X‖ : X ∈ X} .

This allows us to state the following theorem by Krahmer, Mendelson, and Rauhut,
which will allow us to show (4.7).

Theorem 4.4. [66, Theorem 1.4] Let X be a symmetric set of matrices, i.e., X = −X
and let ξ be a random vector whose entries ξi are independent circular-symmetric stan-
dard normal random variables with mean 0 and variance 1. Set

E = γ2 (X , ‖ · ‖) (γ2 (X , ‖ · ‖) + dF (X ))
V = d2→2 (X ) (γ2 (X , ‖ · ‖) + dF (X ))
U = d2

2→2 (X )

Then, for t > 0,

P
(

sup
A∈X

∣∣‖Aξ‖2 − E‖Aξ‖2
∣∣ ≥ c1E + t

)
≤ 2 exp

(
−c2 min

(
t2

V 2 ,
t

U

))
.

The constants c1 and c2 are universal.

Our goal is to apply this theorem to X :=
{
VX : X ∈ T̂

}
, which is possible as the

entries of vec([C1, . . . , Cr]) have independent circular-symmetric standard distribution
with mean 0 and variance 1. Note that in order to make the bounds in Theorem 4.4
effective we need to get appropriate upper bounds for γ2 (X ). However, in many cases
it is rather difficult to deal with the γ2-functional directly. The following inequality by
Dudley states the γ2-functional can be bounded from above by an integral involving
covering numbers.

Lemma 4.5. Let (V, |||·|||) be a normed vector space and let X ⊂ V . It holds that

γ2 (X , |||·|||) .
∫ d|||·|||(S)

0

√
logN (S, |||·|||, ε)dε,

where N (S, |||·|||, ε) denotes the covering number of S with respect to the metric induced
by |||·|||, i.e., the minimum number of open |||·|||-balls with radius ε, whose midpoint is in
S, which are necessary in order to cover S.

Hence, we can apply Dudley’s inequality to X (with respect to the operator norm)
and are left with estimating the arising covering numbers. This is rather involved and
requires different tools as Maurey’s lemma [19] and a theorem by Artstein, Milman,
and Szarek [5], which solved a special case of a conjecture by Pietsch [97] concerning
the duality of covering numbers. For details we refer the interested reader to [56].
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5. Noise robustness of blind deconvolution
and matrix completion

5.1. Descent cone analysis
We have seen that in problems like blind deconvolution (see inequality (2.3)), blind
demixing (see inequality (4.5)), and matrix completion (see inequality (2.6)) noise
bounds of the form

‖X̂ −X0‖F .
√

min {K;N}τ,

appear, when they are solved via nuclear norm minimization. Here X0 denotes the
ground truth and X̂ denotes the minimizer of the SDP to be solved. The appearance
of additional dimension factors such as

√
min {K;N} is rather suprising as it does not

appear in other problems as matrix sensing [99], phase retrieval [11, 10], and compressed
sensing (see, e.g., [14, 40]). The goal of this chapter is to examine this phenomenon more
closely and to examine whether the dimension factors are truly necessary or whether
they are a mere proof artifact of the golfing scheme. Our analysis will be based on
the understanding of the minimum conic singular value of the descent cone. This ap-
proach has been first studied for `1-minimization by Rudelson and Vershynin in [103]
and for more general atomic norms in [21]. In recent years many new results and in-
sights for sparse and low-rank matrix recovery have been obtained in this way (see, e.g.,
[2, 70, 57, 73, 31, 88]).

Let us shortly describe the main ideas of this geometric analysis. The descent cone of
the nuclear norm is the set of all directions where the nuclear norm does not increase.

Definition 5.1. For any matrix X0 ∈ CK×N define its descent cone K∗ (X0) by

K∗ (X0) :=
{
Z ∈ CK×N : ‖X0 + εZ‖∗ ≤ ‖X0‖∗ for some ε > 0

}
.

In order to understand why the descent cone is relevant assume first that y = A (X0)
and τ = 0, i.e., we are in the noiseless scenario. Then we observe that X0 is the unique
solution of the SDP ((3.1)), if and only if the descent cone K∗ (X0) intersects with the
null space of the linear map A only at 0.
To understand the noisy scenario assume that y = A (X0)+e, where ‖e‖ ≤ τ . Let X̂ be
a minimizer of (3.1). As X0 is a feasible point of the SDP (3.1), i.e., ‖y−A (X0) ‖ ≤ τ , it
follows that ‖X̂‖∗ ≤ ‖X0‖∗. Moreover, note that the constraint ‖A (X)−y‖ ≤ τ defines
a region around the point X0. Hence, the minimizer X̂ must lie in the intersection of
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5. Noise robustness of blind deconvolution and matrix completion

this region with the set X0 + K∗ (X0), i.e., the shifted descent cone. The size of this
region can be quantified using by the minimum conic singular value, which is defined
as follows.

λmin (A,K∗ (X0)) := inf
Z∈K∗(X0)\{0}

‖A (Z) ‖
‖Z‖F

.

The size of this intersection should become smaller if the minimum conic singular value
increases and, consequently, better noise estimates should be available. The following
result by Chandrasekaran et al. confirms this intuition.

Theorem 5.2. [21, Proposition 2.2] Let A : Cn1×n2 → Cm be a linear operator and
assume that y = A (X0) + e with ‖e‖ ≤ τ . Then any minimizer X̂ of the SDP (3.1)
satisfies

‖X̂ −X0‖F ≤
2τ

λmin (A,K∗ (X0)) .

5.2. Bad conditioning of blind deconvolution
In problems like matrix sensing (if suitably normalized) it can be shown that with high
probability it holds that λmin (A,K∗ (X0)) & 1 [21], which leads to (order-wise) optimal
noise bounds via Theorem 5.2. For this reason one might expect that such a result can
also be shown for blind deconvolution. This is not the case for all matrices B ∈ CK×N
as shown by the following proposition.

Proposition 5.3. [68] Let K,N ∈ N \ {1}. Assume that L is an integer multiple of K
and that

C1K ≤ L ≤
KN

9 . (5.1)

Then there exists B ∈ CL×K satisfying B∗B = IdK and µ2
max = 1, whose corresponding

measurement operator A satisfies the following.

Let h0 ∈ CK \ {0}, m0 ∈ CN \ {0} and set µ2 := µh0 = L
max
`∈[L]

|〈b`,h0〉|2

‖h0‖2 . Then with
probability at least 1−O

(
exp

(
−C2K/µ

2)) it holds that

λmin (A,K∗ (h0m
∗
0)) ≤ C3

√
L

KN
. (5.2)

Here C1, C2, and C3 are absolute constants.

As we are interested in the scenario that L � KN this proposition says that the
minimum conic singular value is indeed very small and, consequently, Theorem 5.2 will
not be able to yield strong noise bounds.
One might ask whether whether the result holds true for any matrix B ∈ CK×N such
that B∗B = Id and µ2

max is small. We think that such a result does not hold true in
general. Indeed, one might choose B as a random embedding. Using a similar analysis
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5.2. Bad conditioning of blind deconvolution

as in [70] we think that one should be able to show that λmin (A,K∗ (X0)) & 1 in this
scenario.
Note that inequality (5.2) is equivalent to the statement that there is Z ∈ K∗ (X0) such
that

‖A (Z) ‖
‖Z‖F

.
√

L

KN
. (5.3)

holds. In order to find such a Z we make use of the observation that with high probabil-
ity there is a rank-one matrix W ∈ CK×N , which is an element in the null-space of A,
but whose distance, measured in ‖ · ‖F -norm, to the descent cone K∗ (X0) is relatively
small. Setting Z := W−βh0m

∗
0 and choosing β appropriately, one can show that Z pos-

sesses is an element of the descent cone of the nuclear norm at X0. In order to show the
latter, we have established the following lemma in [68], which gives a characterization
of the descent cone of the nuclear norm.

Lemma 5.4. [68] Let X ∈ CK×N\ {0} be a matrix of rank r with corresponding singular
value decomposition X = UΣV ∗. Then

K∗ (X) =
{
Z ∈ CK×N : −Re (〈UV ∗, Z〉F ) ≥ ‖PT⊥X (Z) ‖∗

}
,

where K∗ (X) denotes the topological closure of K∗ (X).

A consequence of Proposition 5.3 is the following statement, which shows that blind
deconvolution is unstable in the following sense.

Theorem 5.5. [68] Let K,N ∈ N \ {1}. Assume that L is an integer multiple of K
and that

C1K ≤ L ≤
KN

9 .

Then there exists a matrix B ∈ CL×K satisfying B∗B = IdK and with FB having rows
of equal norm, i.e., µ2

max = 1, such that for all h0 ∈ CK \ {0} and m0 ∈ CN \ {0} the
following holds:
With probability at least 1−O

(
exp

(
− K
C2µ2

))
, where µ2 = µ2

h0
= L
‖h0‖2 max

`∈[L]
|〈b`, h0〉|2,

there is τ0 > 0 such that for all τ ≤ τ0 there exists an adversarial noise vector e ∈ CL
with ‖e‖ ≤ τ that admits an alternative solution X̃ with the following properties.

• X̃ is feasible, i.e., ‖A
(
X̃
)
− y‖ = τ for y = A (h0m

∗
0) + e the noisy measurement

vector

• X̃ is preferred to X0 = h0m
∗
0 by the SDP (2.2), i.e., ‖X̃‖∗ ≤ ‖X0‖∗, but

• X̃ is far from the true solution in Frobenius norm, i.e.,

‖X̃ −X0‖F ≥
τ

C3

√
KN

L
. (5.4)
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5. Noise robustness of blind deconvolution and matrix completion

The constants C1, C2, and C3 are universal.

Note that the inequality dimension factor in inequality (5.4) matches with the one
in (4.5) (up to a log-factor), when applied with r = 1. Hence, the additional dimension
factors in (2.3) are no proof artifacts in the sense that there is an alternative solution,
which is preferred to the ground truth, but is far from the ground truth in ‖·‖F -distance.

However, note that the matrix X̃ in Theorem 5.5 might, in general, not be the
minimizer of the SDP (2.2). Indeed, if the matrix X̃ as constructed as in [68], it will
never by the minimizer of this SDP (see the discussion in [68, Remark 3,4]).

Remark 5.6. It might be interesting to go back to the approach using dual certificates
with these insights. Note that the stability proof using approximate dual certificates in
Chapter 3 does not distinguish between X̂ and X̃. However, from Proposition 5.8 we
know that any proof, which does not make this distinction, cannot yield error estimates
below the barriers set by inequality (5.4).
A closer look into the proof of Proposition 5.3 reveals that for the matrix Z, which
we constructed in order to show (5.3), ‖PT⊥X0

Z‖∗ is rather small compared to ‖Z‖F .
This makes Lemma 3.5 ineffective for such Z. Hence, a potential strategy to improve
previous noise bounds would be to show that for Z = X̂ − X0, where X̂ is the actual
minimizer, the concentration of the mass with respect to ‖ · ‖F on TX0 cannot occur.

5.3. Noise robustness of blind deconvolution
In the last section we have seen that blind deconvolution is intrinsically badly con-
ditioned. Nevertheless, in the situation, where the noise-level is not too small, near-
optimal recovery guarantees are possible as our next result shows.

Theorem 5.7. [68] Let α > 0 and B ∈ CL×K such that B∗B = Id. Assume that

L ≥ C1
µ2

α2 (K +N) log2 L.

Then with probability at least 1−O
(

exp
(
− Lα4/3

C2 log4/3(eL)µ4/3

))
the following statement

holds for all h0 ∈ Hµ \ {0}, all m0 ∈ CN \ {0}, all τ > 0, and all e ∈ CL with ‖e‖ ≤ τ :
Any minimizer X̂ of (2.2) satisfies

‖X̂ − h0m
∗
0‖F ≤

C3µ
2/3 log2/3 L

α2/3 max {τ ;α‖h0m
∗
0‖F } .

Here C1, C2, and C3 are absolute constants.

The crucial insight for the proof of Theorem 5.7 is that the bad conditioning, i.e.,
‖A(Z)‖
‖Z‖F

is small, arises only for descent directions Z, which are near-orthogonal to the
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5.4. Bad conditioning of matrix completion

ground truth. Due to this we partition the descent cone K∗ (h0m0) into two cones K1
and K2, where K1 contains all the directions, which are almost orthogonal to the ground
truth h0m

∗
0. On the one hand one can show that due to the curvature of the nuclear

norm ball, only a small error can occur from these near-orthogonal directions Z ∈ K1.
On the other hand one can show that λmin (A,K2) is with high probability at the order
of a constant (up to log-factors and ignoring the µ-dependence), which allows on to
controll the error which can arise from the directions contained in K2. In order to show
the latter we have used Mendelson’s small ball method [64, 87], a tool which allows one
to bound nonnegative empirical processes from below.

5.4. Bad conditioning of matrix completion
In this section we want to discuss briefly the noise robustness of matrix completion.
It turns out that similarly as randomized blind deconvolution the matrix completion
problem is badly conditioned in the sense of the following proposition.

Proposition 5.8. [68] Let X0 ∈ Rn1×n2 \ {0} be a rank-r matrix with corresponding
singular value decomposition X0 = UΣV ∗. Moreover, assume that

C1rn1µ
2 (V ) log(2r) ≤ m ≤ n1n2

32 . (5.5)

Then with probability at least 1−O
(
exp

(
− m
C2rµ2(U)µ2(V )

))
it holds that

λmin (A,K∗ (X0)) ≤ C3

√
m

n1n2r
. (5.6)

The constants C1, C2, and C3 are universal.

The proof of Proposition 5.8 follows the same strategy as the correspoding proposi-
tion for blind deconvolution. One tries to construct a matrix Z ∈ K∗ (X0) such that
‖A(Z)‖
‖Z‖F

is small enough. For that one finds a rank-one matrix W in the null space of A,
which is close to the tangent space TX0 in ‖ · ‖F -distance. By an appropriate perturba-
tion one can then construct a matrix Z ∈ K∗ (X0) with the required properties.

Proposition also leads to the following theorem, which is analogous to Theorem 5.5
in the randomized blind deconvolution framework.

Theorem 5.9. [68] Let n1 ≥ n2 and let A : Rn1×n2 → Rm be defined as in (2.4).
Assume that X0 ∈ Rn1×n2 \ {0} is a rank r matrix with singular value decomposition
X0 = UΣV ∗. Moreover, assume that

C1rn1µ
2 (V ) log(2r) ≤ m ≤ n1n2

32 .

Then with probability at least 1 − O
(
exp

(
− m
C2rµ2(U)µ2(V )

))
there is τ0 > 0 such that

for all τ ≤ τ0 there exists an adversarial noise vector e ∈ Rm with ‖e‖ ≤ τ that admits
an alternative solution X̃ ∈ Rn1×n2 with the following properties.
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5. Noise robustness of blind deconvolution and matrix completion

• X̃ is feasible, i.e.,
∥∥∥A (X̃) − y∥∥∥ = τ for y = A (X0) + e the noisy measurement

vector

• X̃ is preferred to X0 by the SDP (2.5), i.e., ‖X̃‖∗ ≤ ‖X0‖∗ , but

• X̃ is far from the true solution in Frobenius norm, i.e.,

‖X̃ −X0‖F ≥
τ

C3

√
rn1n2
m

.

Here the constants C1, C2, and C3 are universal.
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6. Bilinear inverse problems with sparsity
constraints

6.1. Overview
In the previous chapters we have discussed blind deconvolution, which is a bilinear
inverse problem. In such problems one tries to recover vectors u ∈ Cn1 and v ∈ Cn2

simultanously from measurements of the form

y = B (u, v) ,

where B : Cn1 ×Cn2 → Cm is a bilinear map. We note that not only randomized blind
deconvolution falls under this framework but also other signal processing problems like
self-calibration [79]. In the previous chapters we have seen that blind deconvolution,
can be solved via a convex relaxation in an average-case sense, if the number of measure-
ments m is up to log-factors at the order of the number of degrees of freedom n1 + n2.
However, in many applications additional information about the structure of u and v is
available. For example, in blind deconvolution the channel w might be sparse. Another
example would be blind sensor calibration (see, e.g., [9, 79]). Here u is an unknown tun-
ing parameters of the sensor and v represents the signal to be measured, which might
be sparse. In order to keep the amount of needed measurements as small as possible it
would be desirable to develop algorithms, which take this additional information about
the structure into account. Throughout this chapter we will assume that u ∈ Cn1 is
s1-sparse and v ∈ Cn2 is s2-sparse. (We say that a vector x is s-sparse, if it contains
at most s nonzero entries.) Ideally, we would like to be able to recover u and v from y,
when the number of measurements m is up to log-factors at the order of s1 + s2, i.e.,
the number of degrees of freedom.

As in the previous chapters we denote by A : Cn1×n2 → Cm the unique linear
operator, which fulfills

A (uv∗) = B (u, v)
for all u ∈ Cn1 and v ∈ Cn2 . In the following we will assume that the linear operator
A can be represented as

(A (X)) (`) := 1√
m
〈Ai, X〉F for all ` ∈ [m] , (6.1)

where {Ai}mi=1 ⊂ Cn1×n2 are random matrices, whose entries are i.i.d. with distribution
CN (0, 1). While such a model is rather unrealistic in most practical scenarios, we will
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6. Bilinear inverse problems with sparsity constraints

focus on this model in the following because it often allows for an easier analysis and
as we will discuss in the following even for this simplified scenario basic questions are
not yet understood.

In [96, Theorem 3] it was shown that uv∗ is the minimizer of a certain non-convex
program with high probability whenever m & (s1 + s2) max

{
n1
s1

; n2
s2

}
. However, it is

not clear whether this minimizer can be found in polynomial time. While such a result
says that in principle enough information is contained in the measurements to uniquely
specify the signal uv∗ it is also clear that for practical purposes one needs algorithms,
which determine uv∗ in a reasonable amount of time. For this reason our focus here
will be on tractable, i.e., polynomial-time algorithms.
Note that uv∗ is a rank-one matrix, whose factors u and v are s1- and s2-sparse. In
particular, this means that uv∗ has at most s1s2 non-zero entries. As the `1-norm
has been successful in recovering sparse vectors and the nuclear norm ‖ · ‖∗ has been
successful in recovering low-rank matrices one might try to combine these two norms,
which leads to the following tractable minimization problem

minimize ‖X‖∗ + λ‖X‖`1
subject to y = A (uv∗) .

However, in [96] it was shown that this approach will not perform better than just one
of the two relaxations. More precisely, this means that in order to achieve recovery
still m & min

{
n1 + n2; s1s2 log

(
max

(
n1
s1

; n2
s2

))}
measurements are necessary. In [101]

a much tighter, norm-based convex relaxation was presented. While it was shown that,
whenever m & (s1 + s2) log (max (n1, n2)), the matrix uv∗ will be the unique minimizer
of this convex relaxation, it is not clear whether the minimizer can be computed in
polynomial time.

In [52, 6] it was shown that recovery at near-optimal sampling rate can be achieved
with tractable algorithms, if the measurement model (6.1) is replaced by a cleverly
constructed nested measurement model. However, as such a measurement model is
unrealistic for most practical purposes it is clear that one still would like to understand
the more generic measurement model (6.1).

6.2. Non-convex approaches
We have seen that it is an open question whether there exists a convex method, which
achieves recovery at near-optimal sample complexity and enjoys polynomial computa-
tional complexity at the same time. For this reason one might resort to non-convex
algorithms based on variants of gradient descent. Indeed, in the last few years there
have been huge advances in the study of such non-convex gradient based algorithms.
In particular, it has been shown that for low-rank matrix recovery problems like ma-
trix completion, blind deconvolution, or phase retrieval (without sparsity assumptions)
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6.3. Sparse Power Factorization

these algorithms often perform equally well in terms of sample complexity as convex
programs but enjoy significantly reduced computational complexity (see the overview
article [28]).
However, it is often difficult to analyse gradient descent based algorithms if one starts
from an arbitrary initialization as saddle-points or local minima may exist. For this
reason these algorithms often follow a two-stage approach: One uses a starting point
obtained via spectral initialization, which is then subsequently refined by a gradient-
descent based approach. Such a two-stage approach has been pioneered by Keshavan
et al. in [59] for the matrix completion problem and since then it became very popular
in the literature. It has then been adopted to study efficient non-convex algorithms
for phase retrieval [94, 12, 23], matrix completion [53, 49, 110, 42, 38, 71, 85], blind
deconvolution [78, 81, 51] and other problems [24].1
Following this line of work Lee et al. [77] proposed such a two-stage algorithm for
bilinear inverse problem with sparsity constraints, which they dubbed Sparse Power
Factorization. In the case of full Gaussian measurements as in (6.1) they could show
that a certain, rather restricted restricted class of sparse vectors can be recovery with
a sample complexity at the order of (s1 + s2) log

(
max

{
n1
s1

; n2
s2

})
.

We will describe the precise formulation of the algorithm and their result below. Before
that let us comment on some related work. One algorithm, which is closely related to
the one by Lee et. al, has been proposed by Fornasier et al. [37]. However, comparable
global performance guarantees seem not to be available at this point.
Furthermore, some papers tried to replace full Gaussian measurement matrices by a
more realistic measurement matrices. In [75] Lee et al. studied performance guarantees
of a variation of the Sparse Power Factorization for blind deconvolution with two ran-
dom subspaces. The analysis of this problem becomes significantly more challenging
than the one of full Gaussian measurements as one has to deal with coherence issues.
In order to establish theoretical results, the authors of [75] had to add a projection step
to the algorithm, which cannot be guaranteed to be computed in polynomial time.
In [104, 7] two different tractable approaches were proposed for the related problem
of sparse phase retrieval. In both cases it was shown that if a good initialization is
available, then at the order of s1 + s2 measurements (up to log-factors) are enough to
recover the ground truth. As we will see finding a good initialization will also be the
bottleneck in the Sparse Power Factorization algorithm below.

6.3. Sparse Power Factorization

Let us describe the main idea behind the spectral initialization step, which aims to give
a good first guess for the ground truth. In the case of full Gaussian measurements (as in
(6.1)) it can be shown that E [A∗A] = Id. In particular, this implies that E [A∗(y)] = uv∗

1In the last few years it has been more and more understood that one can expect convergence to
the ground truth for such problems in many cases even from a random initialization as the loss
landscape often enjoys favorable properties [42, 109, 26].
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due to y = A (uv∗). Hence, if the number of measurement is high enough one could
hope that A∗A (uv∗) ≈ uv∗ holds and one might choose the leading singular vectors of
A∗ (y) as a first guess for u and v. However, this approach requires m & n1 +n2 samples
and recall that we assume that we are in the underdetermined case where m� n1 +n2.
This motivates the following approach which takes the structure of the problem into
account.

max Re (ũ∗A∗ (y) ṽ)
subject to ‖ũ‖0 ≤ s1, ‖ũ‖ = 1

‖ṽ‖0 ≤ s2, ‖ṽ‖ = 1,
(6.2)

This problem is often referred to as sparse principal component analysis (SparsePCA).
However, solving (6.2) is in general NP-hard [112]. Sparse PCA has been studied rather
intensly the last decade. Several computationally tractable algorithms have been pro-
posed [33, 55, 86], where the theoretical analysis was in particular focused on the single-
spike model [69, 3, 29].
In [8, 117] it was shown that, under a certain model, a tractable algorithm, which solves
the sparse PCA problem, would lead to an algorithm, which solves the k-clique problem
in polynomial time. The existence of such an algorithm is an open problem in theoret-
ical computer science and it is widely believed that such an algorithm does not exist.
This indicates that an approach based on a spectral initialization might not be able
yield an algorithm, which recovers sparse vectors in a bilinear model at near-optimal
sampling rate.

In [77] the following algorithm was proposed as a tractable substitute for (6.2).

Algorithm 1 (Algorithm 3 in [77]).
Input: Operator A, Measurement b, Sparsity Constraints s1, s2,
Output: Initial guess v0 for v ∈ Cn2 .

1: For all i ∈ [n1] let ξi be the `2-norm of the best s2-sparse approximation of the ith row of the
matrix A∗ (b) ∈ Cn1×n2 .

2: Let Ĵ1 ⊂ [n1] be the set of the s2 largest elements in {ξ1; ξ2; . . . ; ξn1}
3: Choose Ĵ2 to contain the indices of the s2 columns of Π

Ĵ1
A∗ (b) largest in `2 norm, i.e.,

Ĵ2 := arg max
J⊂[n2], |J|=s2

∥∥Π
Ĵ1

[A∗(b)]ΠJ

∥∥
F. (6.3)

4: return v0, the leading right singular vector of Π
Ĵ1

[A∗(b)]Π
Ĵ2

.

Having obtained such an initial guess v0, the Sparse Power Factorization algorithm
iteratively proceeds by keeping v0 fixed. Note that this results in an underdetermined
linear system for u. In order to solve this system one uses the Hard Thresholding
Pursuit algorithm [39]. Having obtained a guess u1 for the ground truth u one keeps ũ
fixed and solves the resulting underdetermined system for v by the Hard Thresholding
Pursuit. In this way one alternates several times between ũ and ṽ until a stopping
criterion is met.
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Theoretical results
Lee et al. established the following result in [77] for the Sparse Power Factorization
algorithm.

Theorem 6.1 ([77, see Theorem 1 and 4]). Assume that A : Cn1×n2 −→ Cm is a
Gaussian linear operator as described above. Let b = A (uv∗) + z, where u is s1-sparse
and v is s2-sparse. Suppose that ‖u‖∞ ≥ 0.78‖u‖, ‖v‖∞ ≥ 0.78‖v‖, and that the noise
level satisfies ν (z) ≤ 0.04. Then, with probability exceeding 1− exp (−c1m), the output
of the Sparse Power Factorization algorithm (with initialization given by Algorithm 1)
converges linearly to uv∗ provided that

m ≥ c2 (s1 + s2) log
(

max
{
n1
s1
,
n2
s2

})
,

where c1, c2 > 0 are absolute constants.

Note that the requirement ‖u‖∞ ≥ 0.78‖u‖ and ‖v‖∞ ≥ 0.78‖v‖ means that most of
the mass in `2-norm of the vectors u and v is concentrated on one singly entry each.
Hence, this result covers only a rather restricted class of signals. The main reason why
this restriction appears in [77] is that only with this restriction the initialization can
be guaranteed to be in the basin of attraction, i.e. a region to ground truth, where
convergence of the Sparse Power Factorization algorithm can be established. Our main
result in [44], Theorem 2, states that this class of possible vectors can be enlargened, if
one is willing to increase the number of measurements slightly. Our results allows for
replacing the number 0.78 by a smaller number. Furthermore, instead of having one
peaky entry it allows for having several entries, on which most of the `2-mass of u is
concentrated.
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A. Core article: Blind Demixing and
Deconvolution at Near-Optimal Rate

Summary
Suppose one is given the vector

y =
r∑
i=1

wi ∗ xi + e ∈ CL.

How can one reconstruct {wi}ri and {xi}
r
i ? This ill-posed inverse problem is commonly

referred to as blind demixing and deconvolution. In order to make this problem more
well-posed one typically imposes further structural constraints on wi and xi. In this
paper we assume that wi = Bhi and xi = Cmi for all i ∈ [r], where {Bi}ri=1 ⊂ CL×K
are deterministic matrices and {Ci}ri=1 ⊂ CL×N are random matrices.

This model was first studied by Ling and Strohmer in [80]. They proposed to solve
the following convex relaxation to estimate {hi}ri=1 and {mi}ri=1.

min
r∑
i=1

∥∥∥Xi

∥∥∥
∗

s.t.
∥∥∥ r∑
i=1
Ai(Xi)− y

∥∥∥
`2
≤ τ. (A.1)

(See also [56, Section I.B] where this optimization problem is stated.) In [80] it was
shown that this algorithm recovers the ground truth with high probability, whenever

L & r2
(
Kµ2

max +Nµ2
h

)
,

where we have set K = max
i∈[r]

Ki and N = max
i∈[r]

Ni. and µ2
max and µ2

h are coherence pa-

rameters. Note that the number of degrees of freedom is
∑r
i=1Ki +

∑r
i=1Ni− r, which

means that the result above is suboptimal by a factor of r. Indeed, numerical experi-
ments in [80] suggested that this additional factor of r might be an artifact of their proof.

Our main result in [56] confirms this observation: If

L & r
(
Kµ2

max +Nµ2
h

)
the SDP (A.1) recovers the ground truth with high probability. (For a precise statement
of our main result we refer to [56, Theorem 1]). The proof of this result relies on recently
developed tools for bounding the suprema of chaos processes [65].
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A. Core article: Blind Demixing and Deconvolution at Near-Optimal Rate

Statement of individual contribution
Felix Krahmer assigned me with the task of applying the results in [65] to the blind
deconvolution framework as in [1] to proof a recovery result based on the restricted
isometry property rather than on the Golfing Scheme. While we were not successful,
I observed that this approach can be used to overcome some of the difficulties, which
Ling and Strohmer encountered in their work.
I was responsible for working out the technical details, where I was stimulated from
discussions with Peter Jung and Felix Krahmer. I was fully responsible for writing and
preparing this manuscript except for the numerical simulations in Section III, which
were performed by Peter Jung. Peter Jung, Felix Krahmer, and I proofread and polished
the article together.

Conference proceedings
The results of this paper have been presented in part at the 2016 International Workshop
on CoSeRa 2016 [106], in part at the 2017 21st International ITG Workshop on Smart
Antenna [108], and in part at the Conference Wavelets and Sparsity XVII [107].
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Blind Demixing and Deconvolution
at Near-Optimal Rate

Peter Jung , Member, IEEE, Felix Krahmer , and Dominik Stöger

Abstract— We consider simultaneous blind deconvolution
of r source signals from their noisy superposition, a problem
also referred to blind demixing and deconvolution. This signal
processing problem occurs in the context of the Internet of Things
where a massive number of sensors sporadically communicate
only short messages over unknown channels. We show that robust
recovery of message and channel vectors can be achieved via
convex optimization when random linear encoding using i.i.d.
complex Gaussian matrices is used at the devices and the number
of required measurements at the receiver scales with the degrees
of freedom of the overall estimation problem. Since the scaling
is linear in r our result significantly improves over recent works.

Index Terms— Blind deconvolution, channel estimation,
demixing, compressed sensing, semidefinite programming.

I. INTRODUCTION

RECENT progress regarding recovery problems for low-
complexity structures in high-dimensional data have

shown that a substantial reduction in sampling and storage
complexity can be achieved in many relevant non–adaptive
linear signal separation and estimation problems, in partic-
ular in the case of randomized strategies. This includes the
recovery of sparse and compressible vectors (often referred
to as compressed sensing) [4], [5], low–rank matrices [6],
and higher–order tensors from subsampled linear measure-
ments [7], as well as compressive demixing of multiple
source signals [8]. An important step in many of such vector
and matrix recovery problems is to establish computational
tractability in the sense of complexity theory; a common
strategy to achieve this is to show that, under appropriate
assumptions on the measurement map, the reconstruction
problem can be recast as a tractable convex program.
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In practice, however, one faces additional difficulties.
Namely, the data acquisition process has to cope with uncali-
brated measurement devices depending on further unknown
parameters. In many such scenarios one can only sample
the output of an unknown or partially known linear system.
In such cases the object/signal s to recover is coupled with the
unknown or partially known environment w in a multiplicative
way giving rise to a bilinear inverse problem, i.e., solve
for s and w given a bilinear combination B(w, s). Relevant
examples are when the effective sensing matrix might be
subject to uncertainties [9]–[12], or signals might have been
transmitted through individual channels whose properties are
not completely known [13]. Our current understanding of these
blind information retrieval tasks is at the very beginning and
usually it forces one therefore to operate at sub-optimal sens-
ing rates, or else incur significant reconstruction errors due to
model mismatch. The situation is all the more unsatisfactory,
as such blind sampling problems are often much closer to
practical applications than the original linear models.

A. Blind Deconvolution

The prototypical bilinear mapping, practically relevant in
many applications, is the convolution

w ∗ s := (

L∑

j=1

w j sk− j )
L
k=1.

For technical reasons we will consider the circular convolution,
where the index difference k− j is considered modulo L. The
classical convolution can be reduced to this setup by appropri-
ate zero padding or cyclic extensions. Then the corresponding
inverse problem, that is, the problem of recovering s and w
from their convolution up to inherent ambiguities, is known as
blind deconvolution [14]. The precise role of s and w depends
on the underlying application. In imaging, for example, the
signal vector s typically represents the image and w is an
unknown blurring kernel [15]. In communication engineering,
w represents the channel parameters and the task is to demod-
ulate and decode the signal information s only having access
to the channel output w ∗ s, and the important question is
how much overhead is required for coping with the unknown
impulse response w of the communication channel [16].

Obviously, without further constraining s and w the convo-
lution (s, w) → w ∗ s has many more degrees of freedom
than measurements and is hence far from being injective,
exhibiting various kinds of ambiguities. The goal must then

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



JUNG et al.: BLIND DEMIXING AND DECONVOLUTION AT NEAR-OPTIMAL RATE 705

be to eliminate these ambiguities as much as possible by
imposing structural constraints on the signal and the channel
paramters. It should be noted that a scaling ambiguity will
always remain, as any bilinear mapping B satisfies B(s, w) =
B(λs, w/λ) for any 0 ̸= λ ∈ C and can hence be injective
only up to a multiplicative factor. Specific scenarios can give
rise to additional ambiguities, as it has been investigated
in [17]. For more detailed discussions of ambiguities in the
one-dimensional case such as shifts or reflections, see [18]
and [19]. In any case, additional constraints like sparsity and
subspace priors, depending on the specific application, are
necessary to make blind deconvolution feasible. It has been
shown that sparsity in the canonical basis alone is not sufficient
for these purposes [20], and for generic bases, the subspace
dimensions and sparsity levels that yield injectivity have been
exactly classified [21]–[23].

Even when injectivity can be established, this does not
directly yield a tractable reconstruction scheme. While a
number of works have studied algorithms for recovery (see,
e.g., [24]–[26]), the focus has mostly been on algorithmic per-
formance rather than on recoverability guarantees. The search
for algorithms allowing for guaranteed recovery has recently
shown significant progress by taking a compressed sensing
viewpoint, namely aiming to choose remaining degrees of
freedom to reduce the degree of ill-posedness. The first near-
optimal rigourous recovery guarantees in a randomized setting
have been established in [27] with high probability under the
assumption that both the signal and the channel parameters lie
in subspaces of small dimension, and one of them is chosen
at random. The main idea was to exploit that any bilinear map
B(w, s) can be represented as a linear map in the outer product
wsT of the two input vectors (this approach is often referred to
as lifting) and hence analyzed using methods from the theory
of low rank matrix recovery. More precisely, exploiting the fact
that the (normalized, unitary) L × L discrete Fourier matrix
F diagonalizes the circular convolution one can establish the
representation

w ∗ s :=
√

L · F∗diag(Fw)Fs, (I.1)

with diag(v) denoting the diagonal matrix with the entries of
v on its diagonal.

Under the subspace model, where both the signal s and the
vector of channel parameters are assumed to lie in a known
low-dimensional subspace and hence can be represented as
w = F∗Bh and s = F∗Cx/

√
L , for given B ∈ CL×K and

C ∈ CL×N , this translates to

y := F(w ∗ s) = diag(Bh)Cx =: A(hx∗), (I.2)

where A is a linear map and M∗ denotes the adjoint of a
matrix M , that is, its conjugate transpose. This formulation
yields a low rank recovery problem, as of all potential matrices
giving rise to measurements y, the rank one matrix hx∗ is the
one of the lowest rank. Even though recovering a low rank
matrix from linear measurements is known to be, in general,
NP-hard [28], it has been shown that under appropriate random
measurement models, one can establish recovery guarantees
for tractable algorithms with high probability [29], [30]. While
the results in these works require more randomness than what

is available in the convolution setup due to the structure
imposed by (I.2) and hence do not apply directly, Ahmed
et al. [27] derived recovery guarantees for blind decon-
volution. Their result assumes that (i) C has independent
standard Gaussian entries and that (ii) B∗B = 1 and B is
incoherent in two ways, namely that µ2

max := L
K maxℓ ∥bℓ∥2ℓ2

and µ2
h = L ·max1≤ℓ≤L |b∗ℓh|2 are sufficiently small (bℓ are the

columns of B∗). Under these assumptions, they showed that
an unknown real K × N–matrix hx∗ can be recovered with
overwhelming probability by nuclear norm minimization, that
is, via the semidefinite program

min∥X∥∗ s.t. A(X) = y. (I.3)

Here, ∥X∥∗ denotes the nuclear norm of the matrix X , which
is defined to be the sum of its singular values.

Although nuclear norm minimization is computational
tractable, the lifted representation drastically increases the size
of the signal to be recovered. Consequently, the resulting
algorithm will be too slow for most practical applications.
The theoretical analysis of nuclear norm minimization has,
however, paved the way for more efficient algorithms with
similar guarantees. Namely, the recent work [31] demon-
strates that a gradient-based algorithm with a suitable ini-
tialization can be used without lifting and in the regime
µ2

h max(K , N) ! L/ log2(L) which comes with considerably
reduced complexity.

Finally, typical channel impulse responses h exhibit further
structural properties such as sparsity, which should be used
as well. However, the challenging extension of these works
to sparsity models seems to be much more involved. The
difficulty with such models is that the lifted representation is
both sparse and of low rank, and no straightforward tractable
convex relaxation is known. In particular, minimizing con-
vex combinations of nuclear and ℓ1-norm regularizers has
been shown to yield provably suboptimal recovery perfor-
mance [32]. Research regarding alternative convex surrogates
as for example in [33] is only in its beginnings. For this reason,
some recent approaches ignore the rank constraint, just aiming
for sparsity, as investigated for the ℓ1–approach in [34] and
for the mixed ℓ1/ℓ2-case in [35] and [36].

On the other hand, the search for non-convex alternatives
to overcome this obstacle is an active area of research.
In particular, local convergence guarantees as well as global
convergence guarantees for peaky signals have been derived
in [37] for the sparse power factorization method, an alter-
nating minimization approach originally introduced in [38],
for the context of deconvolution. The near-optimal recovery
guarantees build on some property similar to the restricted
isometry property, which has been derived in [39] (for both
inputs lying in random subspaces). The search for global
recovery guarantees in the sparsity model without peakiness
assumptions, however, remains open.

B. Simultaneous Demixing and Blind Deconvolution

The extension of the model we shall consider here is
blind deconvolution and simultaneously demixing of multiple
source signals. This setting is motivated by recent challenges
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in future wireless multi–terminal communication scenarios
for uncoordinated sporadic communication [40], [41]. We
consider the prototypical case of R transmitters each having an
individual information message encoded into the vector xi ∈
CNi for i = 1, . . . , R using, for example, classical modulation
alphabets and error–correcting codes. In fact, such data could
be independent user data payloads or even correlated sensor
readings on a common source. For reasons of simplicity, we
focus on the case of independent data sources. Each transmitter
generates its transmit signal si = F∗Ci x i/

√
L ∈ CL by mul-

tiplying (linearly encoding) its complex–valued (conjugated)
message vector xi by an L × Ni matrix F∗Ci/

√
L which

is then transmitted into the shared channel. Note that, from
the perspective of communication engineering, this procedure
has been simplified to facilitate the analysis. In a more
advanced setting one could consider a directly randomized
mapping from bits to sequences in CL . Now consider a single
receiver, for example a base station. Each transmitter i has
its individual impulse response wi describing the channel
propagation conditions to this base station. For simplicity we
consider a low–mobility scenario where, for appropriate block
length L, the channel is time–invariant and can be modeled
by a convolution of the transmit signal with a channel impulse
response wi . Furthermore, with cyclic extensions and/or zero-
padding at the transmitter such a signal propagation can then
be modeled as a circular convolution. To incorporate further
structure for the channel impulse response we write it as
wi = F∗Bihi where Bi ∈ CL×Ki . A reasonable assumption
for our application is that the unknown coefficients hi are
located on the first samples since the path delays in the channel
are usually much shorter than the frame length L. In this case
F∗Bi is a truncated identity, i.e., B∗i Bi = Id.

In practice, since the desired deployment scenario is unco-
ordinated and sporadic, only a small fraction of size r of R
devices are online and transmitting data. We assume for this
work that the receiver is able to detect the activity pattern
correctly (which can be achieved through a separate control
channel, see for example [42] for a certain approach). One can
even detect activity simultaneously with data. However, algo-
rithms for blind deconvolution and demixing are usually quite
complex from practical and computational aspects and it is
desired to reduce the problem size as much as possible already
from the beginning. This means, restricted and resorting to the
active set, the receiver observes the noisy superposition

y =
r∑

i=1

F(wi ∗ si ) + e =
r∑

i=1

diag(Bi hi )Ci x i + e

=
r∑

i=1

Ai (hi x∗i ) + e (I.4)

of r signal contributions where the vector e ∈ CL denotes
additive noise.

The conventional approach is (i) to design the matrices Ci
in such a way that resources are used exclusively by O(R)
devices which requires considerable processing, resource plan-
ning and allocation algorithms and (ii) estimate the channel
from pilot signals during a calibration phase prior to data

transmission. However, in an increasing number of new appli-
cations the typical data traffic consists only of short messages
(status updates or sensor data) yielding a sporadic traffic type
and then the overall communication in a network is then
considerable dominated by control data.

In [43] it has therefore been proposed to consider the
scenario of simultaneous blind deconvolution and demixing of
multiple signals from its superposition y, which we will also
study in this paper. Demixing by convex programming meth-
ods has been intensively investigated in the fields of “sine and
spikes” (and pairs of bases) decompositions, see [44] and [45],
and in the field of sparse and low–rank decomposition, see,
e.g., the work [46]. More generally, as for example outlined
in [47] and [48], a convex approach consists of minimizing the
sum of the individual regularizers over all signal formations
which are conform with the model and consistent with the
observations. To this end, assuming a priori that ∥e∥ℓ2 ≤ τ ,
we consider the convex optimization problem

min
r∑

i=1

∥Xi∥∗ s.t. ∥
r∑

i=1

Ai (Xi )− y∥ℓ2 ≤ τ. (I.5)

According to [47], reliable convex demixing is possible when-
ever (i) the signal contributions are incoherent to each other
and (ii) the number of observations is sufficiently above the
sum of effective dimensions of the descent cones of the
individual regularizers at the unknown ground truth. Since the
rank-one matrix Xi = hi x∗i has effective dimension Ki + Ni
this amounts to O(r(K + N)) observations, where K =
maxi (Ki ) and N = maxi (Ni ). First results and guarantees,
based on the incoherence between the mappings Ai which
explicitly occur in blind deconvolution (I.4) with random Ci ’s
are worked out in [43]. The result in this paper states that if
L is in the order of r2 max(K , N) (up to logarithmic factors)
the minimizer (X̂1, . . . , X̂r ) of the program (I.5) satisfies with
high probability that

r∑

i=1

∥X̂i − X0
i ∥2F ! r2 · max {K ; N} τ 2 (I.6)

Hence, for τ = 0 the ground truth (X̂0
1, . . . , X̂0

r ) is recov-
ered exactly. However, the embedding dimension does not
quite match the effective dimension, which would suggest a
linear dependence on r . Ling and Strohmer suggested that
this mismatch is a proof artifact, observing numerically that
linear dependence on r . In this paper, we will analytically
justify these observations. In the special case of partial (low-
frequency) Fourier matrices Bi mentioned above, our main
result, Theorem 6, reads as follows.

Theorem 1: Let ω ≥ 1 and set µ2
h = L maxi,ℓ |b∗i,ℓhi |2.

Assume ∥e∥ℓ2 ≤ τ and that

L ≥ Cωr
(

K log K + Nµ2
h

)
log3 L, (I.7)

where Cω is a universal constant only depending on ω. Then
with probability at least 1−O

(
L−ω

)
the minimizer X̂ of the

recovery program (I.5) satisfies
r∑

i=1

∥X̂i − X0
i ∥2F ! r · max

{
1; r K N

L

}
log(L) τ 2. (I.8)
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The coherence parameter µ2
h ranges between 1 and K , [43].

For a detailed discussion we refer to [43, Sec II.D]. At this
point we only want to comment that in applications in Wireless
Communications this parameter is typically small.

Shortly before the completion of this manuscript Ling
and Strohmer presented recovery guarantees for (consider-
ably more efficient) nonconvex gradient (Wirtinger) based
methods [49], again with quadratic scaling in r . Again they
conjecture linear dependence, as observed in their numerical
experiments. We also include some numerical experiments in
Section III that illustrate the linear dependence. We expect that
our paper at hand will pave the way to an optimized parameter
dependence also for more efficient algorithms.

II. GENERAL FRAMEWORK AND MAIN RESULT

A. Notation

Before we describe the mathematical model we introduce
some basic notation. For complex numbers z ∈ C we denote its
conjugate by z̄ and write Re z and Im z for the real and imag-
inary part. Similarly, for a vector w = (w[1], . . . , w[n]) ∈ Cn

we use the notation Re w = (Re w[1], . . . , Re w[n]) and
Im w = (Im w[1], . . . , Im w[n]). For a matrix A ∈ Cd1×d2

we will denote its adjoint by A∗ and (for d1 = d2) its trace
by Tr (A). For matrices A, B ∈ Cd1×d2 we will define the
inner product by ⟨A, B⟩F = Tr (AB∗). The Frobenius norm
of A is ∥A∥2F = ⟨A, A⟩F and ∥A∥2→2 denotes its operator
norm. If B is a linear operator mapping matrices to vectors
or matrices, we will denote its operator norm by ∥ · ∥F→2
or ∥ · ∥F→F , respectively. The nuclear norm of the matrix A,
which is defined as the sum of its singular values, will be
denoted by ∥A∥∗. Note that the notation for ∥ · ∥∗, ∥·∥F and
⟨·, ·⟩F will be used later in a more generalized setting, as will
be pointed out in the next section. The matrix Idd will denote
the identity matrix in Cd×d . If no confusion can arise, we will
suppress d and write Id instead of Idd . For a vector v ∈ Cd

diag (v) denotes the matrix whose diagonal entries are given
by v. Furthermore, ∥v∥ℓ2 denotes the ℓ2-norm of this vector,
i.e. ∥v∥2ℓ2

= ⟨v, v⟩ = Tr (vv∗).
By P (E) we will denote the probability of an event E . For

any N ∈ N we will denote the set {1, . . . , N} by [N]. For a set
S we will denote its cardinality by |S|. The notation log (·) will
refer to the logarithm of base 2. Furthermore, during the whole
manuscript C will denote positive numerical constants, which
are independent of all other variables which appear in the text
and whose value may change from line to line. Similarly, Cω
will denote universal numerical constants, which only depend
on ω. We will write a ! b, if a ≤ Cb and a !ω b, if a ≤ Cωb.
We will write a ∼ b, if we have a ! b as well as b ! a.

B. The General Model

In this paper we will work with a more general model,
as also studied in [43], which includes the demixing-
deconvolution scenario given above as special case. Assume
that the vector y ∈ CL of L noisy measurements correspond-
ing to inputs {hi }r

i=1, hi ∈ CKi and {xi}r
i=1, xi ∈ CNi , is given

by

y =
r∑

i=1

diag (Bi hi ) Ci xi + e. (II.1)

where e is additive noise, the matrices Bi ∈ CL×Ki satisfy
B∗i Bi = IdKi for all i ∈ [r ], and all the entries of the
random matrices Ci ∈ CL×Ni are independent and follow
a standard circular-symmetric complex normal distribution
CN (0, 1) (see Appendix B for more details). The vectors hi
are assumed to be normalized, ∥hi∥ℓ2 = 1, whereas the norms
of xi are arbitrary. (This is not restrictive as there is an inherent
scaling ambiguity.) Furthermore, we set

K = max
i∈[r]

Ki and N = max
i∈[r]

Ni .

Let us denote by bi,ℓ the ℓth column of B∗i and by ci,ℓ the ℓth
column of Ci . Then, the ℓth entry of y is given by

y[ℓ] =
r∑

i=1

b∗i,ℓhi x∗i ci,ℓ + e[ℓ].

We observe that the overall vector y only depends on the outer
products hi x∗i . Thus, we may proceed by considering a lifted
representation (see, e.g., [50]). Defining for each i ∈ [r ] the
operator Ai : CKi×Ni −→ CL via

Ai (Z) :=
(
b∗i,ℓZci,ℓ

)L
ℓ=1

we obtain that

y =
r∑

i=1

Ai
(
hi x∗i

)
+ e.

In the following we will use the decomposition xi = σi mi
where σi ≥ 0 and some mi ∈ CNi such that ∥mi∥ℓ2 = 1. (If
xi = 0 we set σi = 0 and choose mi arbitrarily.) Thus, the
signal to be recovered may be written as

X0 : =
(
h1x∗1 , . . . , hr x∗r

)
=

(
σ1h1m∗1, . . . , σr hr m∗r

)

= (X1, . . . , Xr ) .

Define

M :=
{
(Z1, . . . , Zr ) : Zi ∈ CKi×Ni for all i ∈ [r ]

}

and note that M is naturally equipped with the algebraic
structure of a vector space, as it may be regarded as the
product space of the vector spaces CKi×Ni . The linear operator
A : M→ CL is defined by

A (Z) :=
r∑

i=1

Ai (Zi )

for Z = (Z1, . . . , Zr ) ∈ M. The linear space M will be
endowed with a norm and an inner product defined by

⟨W, Z⟩F :=
r∑

i=1

⟨Wi , Zi ⟩F

and

∥∥W
∥∥2

F = ⟨W, W ⟩F =
r∑

i=1

∥Wi∥2F .
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for all W, Z ∈M. The operator norms ∥·∥F→2 and ∥·∥F→F of
linear maps on M are defined analogously to the matrix case.
For the adjoint A∗ of A with respect to the inner product on
M it follows A∗ (y) =

(
A∗1 (y) , . . . ,A∗r (y)

)
for all y ∈ CL .

Note that the adjoint operations A∗i (y) itself are given by

A∗i (y) =
L∑

ℓ=1

y[ℓ]bi,ℓc∗i,ℓ for all y ∈ CL . (II.2)

We will also use the norm defined by ∥W∥∗ = ∑r
i=1 ∥Wi∥∗.

For reasons which will become clear in Section VI-A we set

sgn(X0
i ) :=

{
hi m∗i σi > 0
0 else

for i ∈ [r ] (recall that σi ≥ 0). This allows us to define

sgn(X0) :=
(

sgn(X0
1), . . . , sgn(X0

r )
)

.

C. Partition of Measurements and Incoherence Assumptions

As those of [27], [43], our results are based on two notions
of coherence. The first is captured by the coherence parameter

µ2
i = max

ℓ∈[L]
L
Ki
∥bi,ℓ∥2ℓ2

for i ∈ [r ]. (II.3)

Note that B∗i Bi = Id ∈ CKi×Ki for all i ∈ [r ] implies
that 1 ≤ µ2

i ≤ L
Ki

. In the (important) case that all matrices
Bi are partial (low-frequency) DFT matrices, which refers to
the special situation described in the introduction, we have
minimal coherence µ2

i = 1. In order to simplify notation we
introduce the quantities

Ki,µ := Kiµ
2
i , Kµ := max

i∈[r]
Ki,µ. (II.4)

We observe that Ki ≤ Ki,µ ≤ L. Again, in the special case
that the matrices Bi are partial (low-frequency) DFT matrices
we obtain that Ki,µ = Ki .

For the proof of our results we will use the Golfing
Scheme [30], see Section VI-C.1. This requires a partition{
&p

}P
p=1 of the set of the measurements [L] with associated

measurement operators Ap . The second coherence parameter
will also depend on this partition. In order to guarantee that
the Golfing Scheme is successful with high probability we will
need that Ti,p := L

Q
∑
ℓ∈&p

bi,ℓb∗i,ℓ ≈ IdKi , as it will become
clear in Remark 29. Thus, we have to assure that the partition{
&p

}P
p=1 is chosen such that for Q := L

P and ν > 0 small
enough one has

max
i∈[r], p∈[P]

∥∥∥IdKi − Ti,p

∥∥∥
2→2
≤ ν. (II.5)

Furthermore, we require that |&p| is large enough for all
p ∈ [P], i.e., each operator Ap contains enough measure-
ments, and also the partition consists of the right number
of sets, that is, P is bounded from above and below. More
precisely, we require that the partition is ω-admissible in the
sense of the following definition.

Definition 2: Let ω ≥ 1 and let
{
&p

}P
p=1 be a partition of

[L]. The set
{
&p

}P
p=1 is called ω-admissible if the following

three conditions are satisfied:

1) 1
2 Q ≤ |&p| ≤ 3

2 Q for all p ∈ [P], where Q = L
P .

2) (II.5) is fulfilled with ν = 1
32 .

3) It holds that log
(
8γ̃
√

r
)
≥ P ≥ 1

2 log
(
8γ̃
√

r
)
, where

γ̃ = 2

√
ωmax

{
1; r Kµ N

L

}
log (L + r K N).

Here the parameter ω is the same that appears in Theorem
1 and in Theorem 6.

This definition gives rise to the question whether such a
partition exists in general and how one can construct them.
This has already been discussed in [43, Sec. 2.3] for several
important special cases of matrices Bi ∈ CKi×Ni . In particular,
it is proven that in the special case that the Bi ’s are partial
(low-frequency) Fourier matrices of the same size and if
L = P Q one may find a partition such that ν = 0. In [27],
the authors discussed the construction of such a partition for
r = 1 and for a general matrix B ∈ CK×N which satisfies
B∗B = IdK . However, such a partition can be constructed
for all matrices Bi ∈ CKi×Ni simultanously via the following
lemma.

Lemma 3: Let P ∈ [L] and ν ∈ (0, 1) be fixed. Set Q = L
P .

There is a universal constant C > 0 such that if

Q ≥ C
Kµ

ν2 log (max {r; P; K }) (II.6)

then there is a partition
{
&p

}P
p=1 of [L] such that (II.5) is

satisfied and 1
2 Q ≤ |&p| ≤ 3

2 Q holds for all p ∈ [P].
A proof of this result is included in Appendix A. As P = L

Q ,
this lemma implies the existence of an ω-admissible partitions
provided that

L "
√

r log
(
8γ̃
√

r
) Kµ

ν2 log (max {r; P; K }) ,

with γ̃ as in Definition 2, which is a somewhat milder
assumption than what is required in our main theorem.

The second incoherence parameter will depend on the
choice of such an ω-admissible partition, measuring how
aligned the input hi is with the basis vectors bi,ℓ distorted
by a family of linear maps corresponding to the different sets
in the partition.

More precisely, for a fixed ω-admissible partition
{
&p

}P
p=1

we define

µ2
h := L max

{
max

ℓ∈[L],i∈[r]
|b∗i,ℓhi |2,

max
p∈[P],ℓ∈[L],i∈[r]

|b∗i,ℓSi,phi |2
}
, (II.7)

where we have set Si,p = T−1
i,p . The proof in Section VI

will yield the strongest result when µ2
h is small. Thus, we

will choose for our proof a partition, which minimizes the
quantity defined in (II.7). This motivates the introduction of
the following quantity.

µ2
h,ω = L min

{&p}P
p=1ω-admissible

max
{

max
ℓ∈[L],i∈[r]

|b∗i,ℓhi |2,

max
p∈[P],ℓ∈[L],i∈[r]

|b∗i,ℓSi,phi |2
}
. (II.8)
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Lemma 4: Let
{
&p

}P
p=1 be a ω-admissible partition of [L].

Then 1 ≤ µ2
h ≤

( 32
31

)2
Kµ.

Proof: The lower bound follows immediately from the
observation

L∑

ℓ=1

∥b∗i,ℓhi∥2ℓ2
=

L∑

ℓ=1

h∗i bi,ℓb∗i,ℓhi = ∥hi∥2ℓ2
= 1.

For the upper bound it is enough to observe that
L|b∗i,ℓhi |2 ≤ L∥bi,ℓ∥2ℓ2

∥hi∥2ℓ2
≤ Kµ and similarly

L|b∗i,ℓSi,phi |2 ≤ L∥Si,p∥22→2∥bi,ℓ∥2ℓ2
∥hi∥2ℓ2

. The result fol-
lows from the observation ∥Si,p∥2→2 ≤ 32

31 , which is due
to ∥Id− Ti,p∥2→2 ≤ 1

32 . #
Remark 5: As already pointed out in [43, Remark 2.1] the

appearance of the second term in the definition of µh is due to
the modified Golfing Scheme (cf. Remark 29). Note, however,
that our definition of µ2

h is slightly different to the definition
of µ2

h in [43]. In our definition, the second term the maximum
is over all ℓ ∈ [L], whereas in [43] the maximum is only
over all ℓ ∈ &p. The reason is that of a simpler presentation
and a less technical argument; it is possible to obtain our
result with µ2

h as defined in [43] by a slightly more involved
argument: One needs to replace the norm ∥ · ∥B, which will
be introduced in Section 22, by norms which depend on the
individual partitions &p.

One may ask whether the second term in the definition
of µ2

h can be removed. By a closer look at the proof
of Lemma 3 one infers that for fixed P , which satisfies
the third condition in Definition 2, a constant fraction of
all partitions are µ-admissible. Thus, one might conjecture
that there is at least one partitition such that the quan-
tity max

p∈[P],ℓ∈[L],i∈[r]
|b∗i,ℓSi,phi |2 is small such that it can be

neglected. We leave this problem for future work.

D. Main Result
Our main result establishes a recovery guarantee for the

general measurement model (II.1). Reconstruction proceeds
via nuclear norm minimization, the semidefinite program
formulated in (I.5).

Theorem 6: Let ω ≥ 1 and let y ∈ CL be given by (II.1)
with ∥e∥ℓ2 ≤ τ . Assume that

L ≥ Cωr
(

max
i∈[r]

(
Kiµ

2
i log

(
Kiµ

2
i

))
+ Nµ2

h,ω

)
log3 L,

(II.9)

where Cω is a universal constant only depending on ω. Then,
with probability at least 1−O

(
L−ω

)
the minimizer X̂ of the

recovery program (I.5) satisfies

∥X̂ − X0∥F ! τ

√√√√r max

{
1; max

i∈[r]
r Kiµ

2
i N

L

}
log L. (II.10)

In the important special case of noiseless measurements, i.e.,
τ = 0, Theorem 6 yields exact recovery with high probability,
if L satisfies condition (II.9), i.e., X0 is the unique minimizer
of the semidefinite program (I.5). As already mentioned in
the introduction our result significantly improves upon the
result of [43] and exhibits optimal scaling in the degrees

of freedom up to logarithmic factors. In the noisy case, the
estimation error (II.10) is improved at least by a factor of

√
r

(cf. [43, Th. 3.3]). The authors believe that this is still not
optimal as it might be possible to remove the dependence on
K , N , and r in the estimation error. However, it seems to
be likely that it is not possible to resolve this issue using
our current proof technique, which relies on the construction
of an approximate dual certificate. Also for the interesting
problem of extending our result to matrices that are only
approximately low-rank, similar to the study of compressible
signals in compressed sensing, we expect that near-optimal
guarantees need different techniques.

III. OUTLOOK

Although the convex formulation in (I.5) is important for
theoretical investigations it is also obvious that for many real-
word applications nuclear minimization is not feasible due to
its computional complexity as lifting considerably increases
the number of optimization variables. For the case r = 1 a
nonconvex approach has been proposed by [31] which has
been demonstrated not only to be considerably more efficient
but also to achieve a better empirical performance. Shortly
before the completion of our work this line of research has
been extended to r ≥ 1 with explicit guarantees [49], but again
for a number of measurements depending quadratically on r .
As in [43], the dependence observed in numerical experiments
is linear. We expect that the mathematical analysis conducted
in this paper will also be important for establishing near-
optimal performance guarantees for more efficient algorithms.
For this reason we include such a nonconvex approach similar
to the one analysed in [49] in our numerical experiments,
comparing it to nuclear norm minimization as analyzed in this
paper.

More precisely, we consider a gradient-based (Wirtinger
flow) recovery algorithm minimizing the residual

F(h, x) := ∥A(h1x∗1 , . . . , hr x∗r )− y∥2ℓ2
(III.1)

where h := (h1, . . . , hr ) and x := (x1, . . . , xr ). Observe that
in the noiseless case one has F(h, x) = 0 for the ground truth.
Note that, while minimizing F has been shown empirically
in [49] to have good recovery properties, where guarantees
only apply to a regularized variant. As F is highly non-convex
in (h, x) and may possess many local minima, it is essential
to find a good initial guess to start the minimization process
(cf. [31], [49]). Eq. (VI.5) motivates the initialization given in
the following algorithm.

To minimize F a gradient descent approach is used. Here
the gradient of a function f : Cn → C at z0 ∈ Cn is given
by ∇z f (z0) =

(
∂ f
∂z (z0)

)∗
∈ Cn where for z = u + iv ∈ C

the Wirtinger derivatives are ∂
∂z = 1

2

(
∂
∂u − i ∂∂v

)
and ∂

∂z =
1
2

(
∂
∂u + i ∂∂v

)
. Since for real-valued complex functions f :

Cn → R one has ∂ f
∂z = ∂ f

∂z , we do not need to consider ∂ f
∂z

here. Consequently, we obtain

∇hi F(h, x) = (diag (Ci xi ) B)∗
(
A(hx∗)− y

);
∇xi F(h, x) = (diag(Bihi )Ci )

T (A(hx∗)− y)

To estimate a suitable stepsize η



710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

Algorithm 1 Initialization
Input: Observation y.
(Z1, . . . , Zr )← A∗y.
for k = 1, . . . , r do

dk ← largest singular value of Zk .
Let v

(0)
k and u(0)

k be the corresponding left and right
singular vectors, respectively.

v
(0)
k ←

√
dkv

(0)
k and u(0)

k ←
√

dku(0)
k

end for
Output: Initial guesses v(0), u(0).

Algorithm 2 Wirtingers Gradient Descent With Backtracking

Input: Initial values v(0), u(0).
for i = 1, . . . do
η← LINE-SEARCH

(
v(i−1), u(i−1)

)

v(i) ← v(i−1) − η∇h F
(
v(i−1), u(i−1)

)

u(i) ← u(i−1) − η∇x F
(
v(i−1), u(i−1)

)

if ∥∇F
(
v(i), u(i)

)
∥ℓ2 < ε then

return v(i), u(i)

end if
end for
Output: Approximate solutions v(i), u(i).

Numerical Results: We have investigated both nuclear
norm minimization (I.5) and Algorithms 1 and 2 in the
noiseless case for different values of r and L with equal
channel dimensions K = K1 = . . . = Kr = 8 and signal
dimensions N = N1 = . . . = Nr = 8. The success rates per
device are estimated numerically and plotted as a function of
ρ = L/ (r (K + N)). The convex program (I.5) is solved using
the Matlab CVX toolbox. For each experiment the matrices
Ci ∈ CL×N , the signal vectors x0

i ∈ CN , and the channel
coefficients h0

i ∈ CK are generated with i.i.d. complex normal
distributed entries. Recovery is considered successful for a
device if the corresponding signal pair (hi , xi ) for i ∈ [r ]
fullfils ∥hi x∗i − h0

i x0∗
i ∥F/∥h0

i x0∗
i ∥F ≤ 1%. Furthermore, the

stopping criterion for the Wirtinger approach is chosen to be
ϵ = 10−4 and the maximal number of iterations is limited
to 1000.

Our experiments confirm the findings of [43] and [49]
that for both the convex and the non-convex approach the
scaling is linear. The results in Figure 1 show that – almost
independently of r – the phase transition for (I.5) occurs
at ρ ≈ 2.75 while the Wirtinger flow approach performs
considerably better with a phase transition (for larger r )
at ρ ≈ 1.17.

IV. PRELIMINARIES FOR THE PROOF

A. Concentration Inequalities

In our proof we will have to estimate the spectral norm of a
random matrix several times. Amongst others one tool we will
apply is a generalized version of the matrix Bernstein inequal-
ity, which may be seen as a corollorary from [51, Th. 4]. It is
based on so-called Orlicz norms ∥·∥ψα , which may be regarded
as a measure for the tail decay of random variables.

Definition 7: Let X be a complex-valued random variable.
For α ≥ 1 we define the Orlicz norm ∥ · ∥ψα by

∥X∥ψα = inf
{

t > 0 : E
[

exp
( |X |α

tα

)]
≤ 2

}
.

It is straightforward to check that ∥ · ∥ψα is a norm (on the
vector space of all complex-valued random variables X such
that ∥X∥ψα < +∞). Furthermore, as shown in [52], any two
random variables X, Y satisfy the Hoelder inequality

∥XY∥ψ1 ≤ ∥X∥ψ2∥Y∥ψ2 . (IV.1)

If ∥X∥ψ1 <∞ we will call a random variable sub-exponential.
For sub-exponential random variables we state the Bernstein
inequality in the version of [53, Proposition 5.16].

Theorem 8: Let X1, . . . , Xn be independent, mean zero
sub-exponential random variables, i.e., ∥Xi∥ψ1 < ∞ for all
i ∈ [r ]. Then with probability at least 1− 2 exp (−t)

∣∣∣
n∑

i=1

Xi

∣∣∣ ! max

⎧
⎨
⎩

√√√√t
n∑

i=1

∥Xi∥2ψ1
; t

(
max
i∈[n]
∥Xi∥ψ1

)⎫
⎬
⎭ .

There are powerful generalizations of the Bernstein inequal-
ity for the matrix-valued case. Those generalizations were
discovered first in [54] and were refined in [55]. We will state a
variant of this theorem for unbounded random matrices, which
is a reformulation of a version of Koltchinskii [51, Th. 4].

Theorem 9 (Matrix Bernstein Inequality): Let α ∈
[1,+∞) and let X1, X2, . . . , Xn ∈ Cd1×d2 be independent
random matrices that satisfy E [Xi ] = 0 for all i ∈ [n]. Set
R = max

i∈[n]

∥∥∥∥Xi∥2→2

∥∥∥
ψα

and

σ 2 = max

{∥∥∥
n∑

i=1

E
[
Xi X∗i

] ∥∥∥
2→2

;
∥∥∥

n∑

i=1

E
[
X∗i Xi

] ∥∥∥
2→2

}
.

(IV.2)

Set Z = ∑n
i=1 Xi . Then with probability at least 1− exp (−t)

∥∥Z
∥∥

2→2 ! max
{
σ
√

t + log (d1 + d2);

R
(

log
(

1 + n R2

σ 2

)) 1
α

(t + log (d1 + d2))
}
.

Indeed, when d1 = d2 and the matrices X1, X2, . . . , Xn are
self-adjoint, Theorem 9 can be deduced from [51, Th. 4] (by
choosing ψα (u) = exp (uα) − 1 and, for example, δ = 1).
In order to pass from self-adjoint matrices to general matrices
Xi ∈ Cd1×d2 one may use self-adjoint dilations and argue as
in [56, Sec. 4.6.5].

The matrix Bernstein inequality is a powerful tool, which
works in many different situations. However, for some more
specific examples of random matrices there are other tools,
which yield better estimates and which are easier to apply.
The following theorem is useful, when the matrix Z is the sum
of matrices of the type γi Xi where Xi is a fixed matrix and
γi is a circular-symmetric complex normal distributed random
variable. It is an immediate corollary of [56, Th. 4.1.1], where
matrices of this type are called Matrix Gaussian Series. For
completeness, we include a proof in the Appendix.
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Fig. 1. Phase transition of the success rates per device for (a) the convex approach (I.5) and (b) the Wirtinger approach for K = N =8 where ρ = L/ (r (K + N)).

Corollary 10 (Matrix Gaussian Series): Let X1, . . . , Xn ∈
Cd1×d2 be (fixed) matrices, and let γ1, . . . , γn be independent,
identically distributed random variables, where γi has circular
symmetric normal distribution CN (0, 1). Set Z = ∑n

i=1 γi Xi
and

σ 2 = max
{∥∥∥E

[
Z Z∗

] ∥∥∥
2→2

,
∥∥∥E

[
Z∗Z

] ∥∥∥
2→2

}

= max

{∥∥∥
n∑

i=1

Xi X∗i
∥∥∥

2→2
;
∥∥∥

n∑

i=1

X∗i Xi

∥∥∥
2→2

}
.

Then, for all t > 0, with probability at least 1− 2 exp (−t)
∥∥Z

∥∥
2→2 ≤ σ

√
2 (t + log (d1 + d2)).

B. Suprema of Chaos Processes

In addition to sums of random matrices, random variables
of the form sup

A∈X
∥Aξ∥, where ξ is a random vector and X is

a class of matrices, will play an important role in this paper.
To state a tail bound for such random variables, we need the
γ2-functional, a geometric quantity introduced by Talagrand
(see [57]).

Definition 11: Let (X, |||·|||) be a Banach space and suppose
that S ⊂ X. We say that a sequence (Sn)n≥0 of subsets of S
is admissible, if |S0| = 1 and |Sn | ≤ 22n

for all n ≥ 1. Then
we set

γ2 (S, |||·|||) = inf
(Sn)n≥0

sup
s∈S

∞∑

n=0

2n/2 inf
s∈Sn

|||s − sn |||,

where the infimum is taken over all admissible sequences
(Sn)n≥0.

The γ2-functional fulfills the following inequality.
Lemma 12 [39, Lemma 2.1]: Let (X, |||·|||) be an arbitrary

Banach space. Suppose that A, B ⊂ X. Then

γ2 (A + B, |||·|||) ! γ2 (A, |||·|||) + γ2 (B, |||·|||) .

Let X be any set of matrices and define dF (S) = sup
A∈X
∥A∥F

and d2→2 (S) = sup
A∈X
∥A∥2→2. We can now state the following

theorem, which will be crucial in Section VI-B.
Theorem 13 [58, Th. 1.4]: Let X be a symmetric set of

matrices, i.e., X = −X and let ξ be a random vector whose
entries ξi ∼ CN (0, 1) are independent. Set

E = γ2 (X , ∥ · ∥2→2) (γ2 (X , ∥ · ∥2→2) + dF (X ))

V = d2→2 (X ) (γ2 (X , ∥ · ∥2→2) + dF (X ))

U = d2
2→2 (X )

Then, for t > 0,

P
(

sup
A∈X

∣∣∥Aξ∥2ℓ2
− E∥Aξ∥2ℓ2

∣∣ ≥ c1 E + t
)

≤ 2 exp
(
−c2 min

(
t2

V 2 ,
t
U

))
.

The constants c1 and c2 are universal.
Dudley’s inequality yields a relation of the γ2-functional

to covering numbers. Recall that the covering number
N (S, |||·|||, ε) is the minimum number of open |||·|||-balls with
radius ε, whose midpoint is contained in S, which are needed
to cover S. More precisely, Dudley’s inequality (see [57,
Proposition 2.2.10], [59]) states that

γ2 (S, |||·|||) !
∫ d|||·|||(S)

0

√
log N (S, |||·|||, ε)dε, (IV.3)

where d|||·||| (S) = sup
x∈S

|||x |||. For this reason, we will need

some bounds for covering numbers, which are summarized in
the following section.

C. Covering Numbers

The following lemma is a slight modification of the Mau-
rey lemma by Carl [60]. (See also [58, Lemma 4.2] for a
formulation of this lemma using notation which is closer to
the notation in this paper.)
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Lemma 14: Let (X, |||·|||) be a normed space, consider a
finite set U ⊂ X, and assume that for every L ∈ N and
(u1, . . . , uL) ∈ U L , Eε

∣∣∣
∣∣∣
∣∣∣
∑L

j=1 ε j u j

∣∣∣
∣∣∣
∣∣∣ ≤ A

√
L, where

(
ε j

)L
j=1

denotes a Rademacher vector. Then, for every u > 0,

log N (conv (U) , |||·|||, u) ! A2

u2 log |U |,

where |U | denotes the cardinality of U .
Let V ⊂ Rn be a compact, convex, and symmetric set which

is absorbing, i.e. Rn = ⋃
t>0

tV . We will denote by ∥ · ∥V the

norm associated with V , i.e., the unique norm whose unit ball
is given by V . Furthermore, denote by V ◦ the polar body of
V , i.e.,

V ◦ = {
u ∈ Rn : ⟨u, v⟩ ≤ 1 for all v ∈ V

}
.

An elementary consequence of the definition is that the dual
norm of ∥ · ∥V is given by ∥ · ∥V ◦ . The following result about
covering numbers of polar bodies solved a special instance of
a conjecture by Pietsch [61].

Theorem 15 [62]: As above, assume V ⊂ Rn to be a
compact, convex, symmetric, and absorbing set. Then, for all
ε > 0

log N (B (0, 1) , ∥ · ∥V , ε) ! log N
(
V ◦, ∥ · ∥ℓ2, cε

)
,

where c > 0 is a universal constant and B (0, 1) :={
x ∈ Rn : ∥x∥ℓ2 ≤ 1

}
.

V. OUTLINE OF THE PROOF

In this section we give a rough outline of our
proof and highlight the main differences to previous work
([27] and [43]). In particular, we want to point out those parts,
which enabled us to overcome the suboptimal scaling in r .
The overall strategy of our proof remains similar to the one
in [43] and [27]: First, we will prove sufficient conditions for
recovery. These conditions will rely on the existence of a so-
called inexact dual certificate. In the second step this certificate
will be constructed via the Golfing Scheme, a method which
has been introduced by Gross and others (see [30]).

As already mentioned, the first part of the proof consists of
showing that the existence of the inexact dual certificate is a
sufficient condition for recovery. This will be proven in Section
VI-A. The underlying observation is that in certain cases, it
suffices that standard conditions defining minimizers are only
approximately satisfied. In [43], these perturbed conditions are
given by [43, eq. 28]. In order for them to imply that X0

is a minimizer, one needs that Ai acts approximately as an
isometry on each

Ti =
{

hi u∗i + vi m∗i : ui ∈ CKi , vi ∈ CNi
}

and that the images of these operators are almost orthogonal
to each other. The latter condition is responsible for the
appearance of the quadratic scaling in r in [43]. Our approach
will be different: We will show that the operator A acts as an
approximate isometry on the full subspace

T := {(X1, . . . , Xr ) : Xi ∈ Ti for all i ∈ [r ]} .

in the sense of the following definition.

Definition 16 (Local Isometry Property): A fulfills the
δ-local isometry property on T for some δ > 0, if

(1− δ) ∥X∥2F ≤ ∥A (X) ∥2ℓ2
≤ (1 + δ) ∥X∥2F (V.1)

for all X ∈ T .
The main novelty in our proof is that our global viewpoint

allows us to establish the local isometry property on T with
high probability if L scales linearly with r . This will be
achieved via Theorem 13, which involves a γ2-functional.
Thus a large part of Section VI-B is concerned with estimating
those γ2-functionals.

The local isometry property is not only needed in the first
part but also in the second part of the proof, where the dual
certificate is constructed via the Golfing Scheme. For that
we will assume that

{
&p

}P
p=1 is fixed ω-admissible partition

(see Definition 2) which minimizes (II.8). For this partition
we can introduce the operators Ap defined by Ap (X) =
P&p (A (X)), where P&p : CL → CL denotes the (coordinate)
projection of CL onto the coordinates contained in the set &p .
Similarly, we will define Ap

i by Ap
i (X) = P&p (Ai (X)).

We will need that each operator Ap satisfies the δ-local
isometry property on a subspace T p , which is slightly larger
than T . In order to define the space T p we need to introduce
the operators S p : M →M. For that, recall Si,p = T−1

i,p as
defined in Section II-C.

Definition 17: Let p ∈ [P]. Then the operator S p : M→
M is defined by

S p (W ) = (
S1,pW1, . . . , Sr,p Wr

)
(V.2)

for W = (W1, . . . , Wr ) ∈M.
Then T p is defined by

T p = T + S p (T ) . (V.3)

Observe that we may write T = Th + Tm and T p = Th +
TS ph + Tm , when the subspaces Tm , Th , and TS ph are given
by

Tm =
{(

v1m∗1, . . . , vr m∗r
)

: vi ∈ CKi for all i ∈ [r ]
}

,

Th =
{(

h1u∗1, . . . , hr u∗r
)

: ui ∈ CNi for all i ∈ [r ]
}

,

TS ph =
{ ((

S1,ph1
)

u∗1, . . . ,
(
Sr,phr

)
u∗r

) :

ui ∈ CNi for all i ∈ [r ]
}
. (V.4)

As already mentioned, the local isometry property on T ,
respectively T p , will be shown in Section VI-B. In Section
VI-C the approximate dual certificate will be constructed via
the Golfing Scheme. Finally, in Section VI-D we will prove
the main result, Theorem 6.

VI. PROOF OF THE MAIN THEOREM

A. Sufficient Conditions for Recovery

As already mentioned in the outline of the proof, in this
section we will show that the existence of an inexact dual
certificate implies that the signal is approximately recovered.
Therefore, we will denote in the following by PT the orthog-
onal projection onto T . Similarly, we will denote by for all
i ∈ [r ] the orthogonal projection onto Ti .
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Lemma 18: Suppose that A satisfies the δ-local isometry
property on T (V.1) and set γ = ∥A∥F→2, i.e., γ is the
operator norm of A. Furthermore, suppose that there is Y =
(Y1, . . . , Yr ) = A∗z for some z ∈ CL such that

∥PT Y − sgn
(

X0
)
∥F ≤ α (VI.1)

∥PT ⊥i Yi∥2→2 ≤ β for all i ∈ [r ], (VI.2)

where α, β ≥ 0 are constants such that 1 − β − αγ√
1−δ ≥

1
2 ,

α ≤ 1, and
√

1− δ ≥ 1
2 . Then if X̂ is a minimizer of

minimize ∥X∥∗
subject to ∥A (X)− ŷ∥ℓ2 ≤ τ

we have that

∥X̂ − X0∥F ! τ (1 + γ )
(
1 + ∥z∥ℓ2

)
. (VI.3)

Proof: Set V = (V1, . . . , Vr ) = X̂ − X0 and note that we
seek to estimate ∥V ∥F ≤ ∥PT (V ) ∥F + ∥PT ⊥ (V ) ∥F from
above. We observe that

∥A (V ) ∥ℓ2 ≤ ∥A(X̂)− ŷ∥ℓ2 + ∥ŷ −A
(

X0
)
∥ℓ2 ≤ 2τ.

(VI.4)

Together with the δ-local isometry property (V.1), the defini-
tion of γ , and the triangle inequality we obtain

∥PT (V ) ∥F ≤
1√

1− δ ∥A (PT (V )) ∥ℓ2

≤ 1√
1− δ

(∥A (
PT ⊥ (V )

) ∥ℓ2 + ∥A (V ) ∥ℓ2

)

≤ 1√
1− δ

(
γ ∥PT ⊥ (V ) ∥F + 2τ

)
.

Thus it remains to find an upper bound for ∥PT ⊥ (V ) ∥F . For
that purpose, choose Z = (Z1, . . . , Zr ) such that for all i ∈ [r ]
we have that Zi ∈ T ⊥i , ∥Zi∥2→2 ≤ 1 − β, and ⟨Zi , Vi ⟩F =
(1− β) ∥PT ⊥i Vi∥∗. This is possible by duality of the norms
∥ · ∥2→2 and ∥ · ∥∗ (see [63, Sec. 4.2]). Observe that and
∥sgn

(
X0

i

)
+PT ⊥i Yi + Zi∥2→2 ≤ 1 as both the row and column

spaces of sgn
(
X0

i

)
and PT ⊥i Yi+Zi are orthogonal. Thus, again

using the duality between ∥ · ∥2→2 and ∥ · ∥∗, we obtain

∥X0
i + Vi∥∗ = sup

W∈CKi×Ni , ∥W∥2→2≤1
|⟨W, X0

i + Vi ⟩F |

≥ Re
(
⟨sgn

(
X0

i

)
+ PT ⊥i Yi + Zi , X0

i + Vi ⟩F
)

≥ ∥X0
i ∥∗ + Re

(
⟨sgn

(
X0

i

)
+ PT ⊥i Yi , Vi ⟩F

)

+ (1− β) ∥PTi Vi∥∗

Here, in the second inequality we used that PT ⊥i Yi + Zi ∈
T ⊥i and ⟨sgn

(
X0

i

)
, X0

i ⟩F = ∥X0
i ∥∗. Thus, by definition of

∥X0 + V ∥∗ we obtain

∥X0 + V ∥∗

≥
r∑

i=1

∥X0
i ∥∗ +

r∑

i=1

Re
(
⟨sgn

(
X0

i

)
+ PT ⊥i Yi , Vi ⟩F

)

+ (1− β)

r∑

i=1

∥PTi Vi∥∗

= ∥X0∥∗ + Re
(
⟨sgn

(
X0

)
− PT Y, V ⟩F + ⟨Y, V ⟩F

)

+ (1− β) ∥PT ⊥V ∥∗.
Now observe that by Cauchy-Schwarz, (VI.1) and our upper
bound for ∥PT (V ) ∥ℓ2

Re
(
⟨sgn

(
X0

)
− PT (Y ) , V ⟩F

)

≥ −∥sgn
(

X0
)
− PT (Y ) ∥F∥PT (V ) ∥F

≥ −α√
1− δ

(
γ ∥PT ⊥V∥F + 2τ

)
.

Furthermore, we note that by Cauchy-Schwarz and (VI.4)

Re (⟨Y, V ⟩F ) = Re
(
⟨A∗z, V ⟩F

)
=

(
⟨z,A (V )⟩ℓ2

)

≥ −2∥z∥ℓ2τ.

Combining the last three calculations and using that the
nuclear norm is greater or equal than the Frobenius norm we
obtain

∥X̂∥∗ ≥ ∥X0∥∗ +
(

1− β − αγ√
1− δ

)
∥PT ⊥V∥∗

− 2τ
(
∥z∥ℓ2 + α√

1− δ

)
.

As X̂ is the nuclear norm minimizer and we have that ∥X0∥∗ ≥
∥X̂∥∗ this yields
(

1− β − αγ√
1− δ

)
∥PT ⊥ (V ) ∥∗ ≤ 2τ

(
∥z∥ℓ2 + α√

1− δ

)
.

By our assumptions on α, β, and δ this implies

∥PT ⊥ (V ) ∥F ! τ
(∥z∥ℓ2 + 1

)
.

Thus, using again the upper bound for ∥PT (V ) ∥F , which was
calculated above, and again our assumptions on α, β, and δ
we obtain

∥V ∥F ≤ ∥PT (V ) ∥F + ∥PT ⊥ (V ) ∥F

! (1 + γ ) ∥PT ⊥ (V ) ∥F + τ

! τ (1 + γ )
(
1 + ∥z∥ℓ2

)
,

which finishes the proof. #
As already mentioned in the introduction, the noiseless case

is also of interest for us. Note that in this situation we may
set τ = 0 and Lemma 18 shows that the existence of a dual
certificate implies that the convex program (I.5) recovers the
signal X0 exactly.

Remark 19: Note that we still have the freedom to choose
the parameters α and β in Lemma 18. In Section VI-C we
will construct a dual certificate Y for the following choice of
parameters: We set β = 1

4 and assume that δ ≤ 1
4 . In order
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to fulfill the condition 1− β − αγ√
1−δ ≥

1
2 it is then enough to

choose α = 1
8γ .

Note that in the noisy case the error estimate in Lemma 18
depends linearly on the operator norm of A as (VI.3) states.
Thus, we need an upper bound for the operator norm of A
which holds with high probability.

Lemma 20: Let ω ≥ 1. Then with probability at least 1 −
2L−ω we have that

∥A∥F→2 ≤ 2

√
ωmax

{
1; r KµN

L

}
log (L + r K N).

Proof: The result will be proven by using Corollary
10. Indeed, we can represent each operator Ai as Ai =∑
ℓ∈L

∑Ki
j=1 Bℓ, j such that each operator Bℓ, j depends linearly

on the (ℓ, k)th entry of Ci , i.e., (Ci )ℓ,k ∼ CN (0, 1). Thus, we
need to estimate the operator norms of E

[
A∗A

]
and E

[
AA∗

]
.

Observe that

A∗A =
(

A∗1

(
r∑

i=1

Ai

)
, . . . ,A∗r

(
r∑

i=1

Ai

))
.

Note that the operators {Ai }r
i=1 are independent with expec-

tation E [Ai ] = 0 for all i ∈ [r ]. Thus E
[
A∗A

]
=(

E
[
A∗1A1

]
, . . . , E

[
A∗r Ar

])
. Let Z = (Z1, . . . , Zr ) ∈ M.

Using (II.2) we compute

E
[(

A∗i Ai
)
(Zi )

]
=

L∑

ℓ=1

E
[
(Ai (Zi ) (ℓ)) bi,ℓc∗i,ℓ

]

=
L∑

ℓ=1

E
[
bi,ℓb∗i,ℓZi ci,ℓc∗i,ℓ

]

=
L∑

ℓ=1

bi,ℓb∗i,ℓZi = Zi (VI.5)

Thus, E
[
A∗A (Z)

]
= Z for any Z ∈ M, which implies

E
[
A∗A

]
= Id. To compute E

[
AA∗

]
let y ∈ CL be arbitrary.

We compute with similar arguments as before

E
[(

AA∗y
)
(ℓ)

]
=

r∑

i=1

E
[(

AiA∗i y
)
(ℓ)

]
(VI.6)

=
r∑

i=1

E
[
b∗i,ℓ

(
A∗i y

)
ci,ℓ

]

(I I.2)=
r∑

i=1

L∑

ℓ′=1

y
(
ℓ′

)
E

[
b∗i,ℓbi,ℓ′c∗i,ℓ′ci,ℓ

]

= y (ℓ)

r∑

i=1

E
[
b∗i,ℓbi,ℓc∗i,ℓci,ℓ

]

= y (ℓ)

r∑

i=1

∥bi,ℓ∥2ℓ2
Ni . (VI.7)

This shows that AA∗ can be represented as a diagonal matrix
with entries

∑r
i=1 ∥bi,ℓ∥2ℓ2

Ni . Thus, by definition of Ki,µ

(II.4), ∥E
[
AA∗

]
∥2→2 ≤ N

∑r
i=1 Ki,µ
L , which implies, together

with (VI.5)

σ 2 = max
{∥E [

A∗A
] ∥F→F ; ∥E [

AA∗
] ∥2→2

}

≤ max
{

1; N
∑r

i=1 Ki,µ

L

}
.

Consequently, Corollary 10 with t = ω log L yields that with
probability exceeding 1− 2L−ω

∥A∥F→2 ≤ max

⎧
⎨
⎩1;

√
N

∑r
i=1 Ki,µ

L

⎫
⎬
⎭

·
√

2 (ω log L + log (L + r K N)),

which implies the result. #
Remark 21: Note that in (VI.7) and other places below,

only a weighted sum of the ∥bi,ℓ∥2ℓ2
appears. If the summands

vastly differ, this may be too crude, and one may consider
attempting an averaging argument similar to the one in [64].
This would, however, require that the proof is completely
reworked in some parts. To achieve condition (VI.2), for
example, we currently rely very much on bounding each Ki,µ
individually.

B. Local Isometry Property

In this subsection, we establish an isometry of A, respec-
tively of Ap , on T , respectively T p . More precisely, we
establish the following theorem.

Theorem 22: Fix ω ≥ 1. Suppose that

Q ≥ Cωδ−2r
(

Kµ log (L) log2 (
Kµ

)
+ Nµ2

h

)
. (VI.8)

Then with probability 1 −O
(
L−ω

)
the following is true: All

X ∈ T fulfill

(1− δ) ∥X∥2F ≤
∥∥∥A (X)

∥∥∥
2

ℓ2
≤ (1 + δ) ∥X∥2F (VI.9)

and for all p ∈ [P] every Y ∈ T p = T + S pT satisfies

(1− δ)
r∑

i=1

∥T 1/2
i,p Yi∥2F ≤

L
Q

∥∥∥Ap (Y )
∥∥∥

2

ℓ2

≤ (1 + δ)

r∑

i=1

∥T 1/2
i,p Yi∥2F , (VI.10)

where T 1/2
i,p denotes the unique positive, self-adjoint matrix

whose square is equal to Ti,p.
The proof of this theorem is divided into several steps. For

the proof we need some additional notation. Recall that the
incoherence parameter µ2

h measures the alignment between
the vectors hi ∈ CKi and bi,ℓ ∈ CKi . As the operators A and
Ai are defined on matrices, it will to be useful to generalize
the notion of incoherence from vectors to matrices. This is
achieved by the following definition.

Definition 23: For all i ∈ [r ], vectors z ∈ CKi and matrices
Zi ∈ CKi×Ni define

∥z∥Bi =
√

L max
ℓ∈[L]

|z∗bi,ℓ|
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and

∥Zi∥Bi =
√

L max
ℓ∈[L]

∥Z∗i bi,ℓ∥ℓ2 .

For Z = (Z1, . . . , Zr ) ∈M we define

∥Z∥B =

√√√√L max
ℓ∈[L]

( r∑

i=1

∥∥Z∗i bi,ℓ
∥∥2
ℓ2

)
.

All these three operations are norms as
∑L
ℓ=1 bi,ℓb∗i,ℓ = IdKi

for all i ∈ [r ]. The following lemma provides us with some
useful estimates.

Lemma 24: Let Z = (Z1, . . . , Zr ) ∈ M, i ∈ [r ] and z ∈
CKi . Then

∥z∥Bi ≤
√

Ki,µ ∥z∥ℓ2 (VI.11)

∥Zi∥Bi ≤
√

Ki,µ∥Zi∥2→2 (VI.12)

∥Z∥B ≤

√√√√
r∑

i=1

∥Zi∥2Bi
≤

√
Kµ∥Z∥F . (VI.13)

Proof: In order to prove (VI.12) note that for Zi ∈ CKi

and ℓ ∈ [L] due to the definition of Ki,µ

∥Z∗i bi,ℓ∥2ℓ2
≤ ∥Zi∥2F∥bi,ℓ∥2ℓ2

(I I.4)
≤ Ki,µ

L
∥Zi∥22→2.

Taking the maximum over all ℓ ∈ [L] shows (VI.12). Inequal-
ity (VI.11) can be proven analogously. (VI.13) follows from

∥Z∥2B ≤ L
r∑

i=1

max
ℓ∈[L]
∥Z∗i bi,ℓ∥2ℓ2

=
r∑

i=1

∥Zi∥2Bi

combined with (VI.12) and the definition of ∥Z∥F . #
The notion of ∥·∥B -norms together with Theorem 13 allows

us to state the following abstract isometry result, where we will
use the notation dB (X ) = sup

X∈X
∥X∥B .

Proposition 25: Let X = −X ⊂ M be a symmetric set
and consider

Ê = γ2 (X , ∥ · ∥B)√
Q

(
γ2 (X , ∥ · ∥B)√

Q
+ dF (X )

)

V̂ = dB (X )√
Q

(
γ2 (X , ∥ · ∥B)√

Q
+ dF (X )

)

Û = 1
Q

d2
B (X ) .

Then, for t > 0 and all p ∈ [P],

P

(
sup
X∈X

∣∣∣ L
Q
∥Ap (X) ∥2ℓ2

−
r∑

i=1

∥T 1/2
i,p Xi∥2F

∣∣∣ ≥ c̃1 Ê + t

)

≤ 2 exp
(
−c̃2 min

(
t2

V̂ 2
,

t

Û

))
(VI.14)

P
(

sup
X∈X

∣∣∣∥A (X) ∥2ℓ2
− ∥X∥2F

∣∣∣ ≥ c̃3 Ê + t
)

≤ 2 exp
(
−c̃4 min

(
t2

Ṽ 2
,

t

Û

))
, (VI.15)

provided
{
&p

}P
p=1 is a ω-admissible partition of [L]. The

constants c̃1, c̃2, c̃3, and c̃4 are universal.

Proof: We will start by proving (VI.14). Fix p ∈ [P].
For X = (X1, . . . , Xr ) ∈ X let HX ∈ CL×Q

∑r
i=1 Ni

be the block diagonal matrix, whose diagonal elements,
indexed by ℓ ∈ &p are given by row vectors of the form√

L
Q

(
b∗1,ℓX1, . . . , b∗r,ℓXr

)
. Furthermore, set HX = {HX : X ∈

X }. Observe that

∥HX∥2F = L
Q

∑

ℓ∈&p

r∑

i=1

∥X∗i bi,ℓ∥2ℓ2
=

r∑

i=1

Tr
(
Xi X∗i Ti,p

)

=
r∑

i=1

∥T 1/2
i,p Xi∥2F , (VI.16)

∥HX∥2→2 =
√

L
Q

max
ℓ∈&p
∥ (b∗1,ℓX1, . . . , b∗r,ℓXr

) ∥ℓ2

≤ 1√
Q
∥X∥B . (VI.17)

Let ξ(p) be the concatenation of all the random base vectors
ci,ℓ, where i ∈ [r ], ℓ ∈ &p . Then

L
Q
∥Ap (X) ∥2ℓ2

= L
Q

∑

ℓ∈&p

|Ap (X) (ℓ) |2

= L
Q

∑

ℓ∈&p

∣∣∣
r∑

i=1

b∗i,ℓXi ci,ℓ

∣∣∣
2

= ∥HXξ
(p)∥2ℓ2

and
r∑

i=1

∥T 1/2
i,p Xi∥2F = ∥HX∥2F = E[∥HXξ

(p)∥2ℓ2
].

Consequently

sup
X∈X

∣∣∣ L
Q
∥Ap (X) ∥2ℓ2

−
r∑

i=1

∥T 1/2
i,p Xi∥2F

∣∣∣

= sup
X∈X

∣∣∣∥HXξ
(p)∥2ℓ2

− E
[
∥HXξ

(p)∥2ℓ2

] ∣∣∣

and inequality (VI.14) follows from Theorem 13,
equation (VI.16), (VI.17) combined with the fact that
∑r

i=1 ∥T
1/2
i,p Xi∥2F

(I I.5)
≤ 2∥X∥2F . Inequality (VI.15) follows

in an analogous way by letting HX be the block diagonal
matrix, whose diagonal elements, indexed by ℓ ∈ [L],
are given by

(
b∗1,ℓX1, . . . , b∗r,ℓXr

)
. Furthermore, one uses

∑L
ℓ=1 bi,ℓb∗i,ℓ = Id instead of L

Q
∑
ℓ∈&p

bi,ℓb∗i,ℓ = Ti,p . #
Our strategy to prove Theorem 22 will now be to apply

Proposition 25 with appropriately chosen sets X . For Tm , Th ,
and TS ph as in (V.4), define

Bm = {X ∈ Tm : ∥X∥F ≤ 1}
Bh = {X ∈ Th : ∥X∥F ≤ 1}

BS ph = {X ∈ TS ph : ∥X∥F ≤ 1}
and observe that in order to prove the δ-local isometry property
on T it is enough to apply Proposition 25 to the set W defined
by

W = Bh + Bm. (VI.18)
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Similarly, in order to prove the δ-local isometry property on
T p for p ∈ [P] it is enough to apply Proposition 25 to the
set W p defined by

W p = Bh + BS ph + Bm . (VI.19)

That is, it remains to estimate the γ2-functionals of W and
W p with respect to ∥ · ∥B . By Dudley’s inequality (IV.3) one
can bound the γ2-functional by an integral involving covering
numbers. To estimate those, we need the following technical
lemmas.

Lemma 26: Let Bm be the above defined set. Then

N
(
Bm, ∥ · ∥B , ε

)
≤ N

(
B (0, 1) ⊂ Rr , ∥ · ∥ℓ2,

ε

2
√

Kµ

)

·
r∏

i=1

N
(

B (0, 1) ⊂ CKi , ∥ · ∥Bi ,
ε

2

)
.

(By B (0, 1) we always denote the closed unit ball with respect
to the ∥ · ∥ℓ2 -norm.)

This lemma is actually a slight modification of [29, Lemma
3.1]. For the convenience of the reader we have included a
proof in Appendix C.

Lemma 27: For all i ∈ [r ]

log N
(

B (0, 1) ⊂ CKi , ∥ · ∥Bi ,
ε

2

)
! Ki,µ

ε2 log (L) .

(VI.20)

Proof: Our goal is to apply Theorem 15 to
log N

(
B (0, 1) ⊂ CKi , ∥ · ∥Bi ,

ε
2

)
. However, as ∥ · ∥Bi is a

norm defined on a complex vector space we first need to
transfer this setting into an appropriate real vector space
framework. For that goal we will use the isometric embed-
ding P : CKi → R2Ki given by x =

(
x1, . . . , xKi

)
∈

CKi 6→ (
(Re x)1 , (Im x)1 , . . . , (Re x)Ki

, (Im x)Ki

)
. Fur-

thermore, note that for all x ∈ CKi

∥x∥Bi =
√

L max
ℓ∈[L]

|⟨x, bi,ℓ⟩|

=
√

L max
ℓ∈[L]

√(
Re ⟨x, bi,ℓ⟩

)2 +
(
Im ⟨x, bi,ℓ⟩

)2

≤
√

2L max
ℓ∈[L]

max
{∣∣Re ⟨x, bi,ℓ⟩

∣∣;
∣∣Im ⟨x, bi,ℓ⟩

∣∣} .

(VI.21)

Setting

uℓ =
( (

Re bi,ℓ
)

1 ,−
(
Im bi,ℓ

)
1 ,

(
Re bi,ℓ

)
2 , . . . ,

−
(
Im bi,ℓ

)
Ki−1 ,

(
Re bi,ℓ

)
Ki

,−
(
Im bi,ℓ

)
Ki

)

yields Re
(
⟨x, bi,ℓ⟩ℓ2

)
= ⟨Px, uℓ⟩ℓ2 for all x ∈ CKi and all

ℓ ∈ [L]. Similarly, setting

vℓ =
( (

Im bi,ℓ
)

1 ,
(
Re bi,ℓ

)
1 ,

(
Im bi,ℓ

)
2 , . . . ,

(
Re bi,ℓ

)
Ki−1 ,

(
Im bi,ℓ

)
Ki

,
(
Re bi,ℓ

)
Ki

)

yields Im
(
⟨x, bi,ℓ⟩

)
= ⟨Px, vℓ⟩ for all x ∈ CKi and all ℓ ∈

[L]. We define

U =
⋃

ℓ∈[L]
{uℓ; vℓ}

and observe

max
u∈U
∥u∥ℓ2 = max

ℓ∈[L]
∥bi,ℓ∥ℓ2 ≤

√
Ki,µ

L
. (VI.22)

By (VI.21) and the definition of U we obtain

∥x∥Bi ≤
√

2L max
u∈U
⟨Px, u⟩

=
√

2L max
u∈conv U

⟨Px, u⟩ =
√

2L∥Px∥(conv U)◦ .

(VI.23)

(For the definition of ∥·∥(conv U)◦ see Section IV-C.) Inequality
(VI.23) together with Theorem 15 yields

log N
(

B (0, 1) ⊂ CKi , ∥ · ∥Bi ,
ε

2

)

≤ log N
(

B (0, 1) ⊂ R2Ki , ∥ · ∥conv(U)◦,
ε

2
√

2L

)

! log N
(

conv (U) , ∥ · ∥ℓ2,
c̃ε√

L

)
,

for some numerical constant c̃ > 0, due to conv (U)◦◦ =
conv (U). In order to estimate this covering number from above
we will use Lemma 14. For that purpose let M ∈ N and
assume (u1, . . . , uM ) ∈ U M . By Jensen’s inequality

E
∥∥∥

M∑

m=1

εmum

∥∥∥
ℓ2
≤

√√√√E
∥∥∥

M∑

m=1

εmum

∥∥∥
2

ℓ2

=

√√√√
M∑

m=1

∥um∥2ℓ2
≤
√

M max
u∈U
∥u∥ℓ2 .

Thus, by Lemma 14 applied with A = max
u∈U
∥u∥ℓ2 we obtain

log N
(

conv (U) , ∥ · ∥ℓ2,
c̃ε√

L

)
! L
ε2 max

u∈U
∥u∥2ℓ2

log |U |

! Ki,µ

ε2 log L,

where in the second inequality we have used (VI.22). This
completes the proof. #

The previous two lemmas allow us to find an upper bound
for the γ2-functional, which is needed to prove Theorem 22.

Lemma 28: Suppose that X = W or X = W p for some
p ∈ [P]. (For the definition of W and W p see (VI.18) and
(VI.19).) Then

dF (X ) ≤ 3,

dB (X ) ≤ 3
√

Kµ,

γ2 (X , ∥ · ∥B) !
√

r
(
Kµ log (L) log2 (

Kµ

)
+ Nµ2

h

)
.

Proof: The first inequality follows from the triangle
inequality. For the second one note that for X ∈ X by (VI.13)
one obtains the inequality

∥X∥B ≤
√

Kµ∥X∥F ≤ 3
√

Kµ.

The last line is more involved. We will present the proof only
in the case of X = W p . If X = W the inequality can be
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proven analogously. By Lemma 12 we obtain

γ2
(
W p, ∥ · ∥B

)
! γ2

(
Bh, ∥ · ∥B

)

+ γ2

(
BSph , ∥ · ∥B

)
+ γ2

(
Bm, ∥ · ∥B

)
.

(VI.24)

We will estimate the three γ2-functionals separately.
Step 1: To bound γ2

(
Bh, ∥ · ∥B

)
, let U =(

h1u∗1, . . . , hr u∗r
)
, V =

(
h1v
∗
1 , . . . , hrv

∗
r
)
∈ Bh . Observe that

by definition

∥U − V∥B = max
ℓ∈[L]

√√√√L
r∑

i=1

∥∥∥
(
hi u∗i − hiv

∗
i

)∗ bi,ℓ

∥∥∥
2

ℓ2

= max
ℓ∈[L]

√√√√L
r∑

i=1

∥ui − vi∥2ℓ2
|h∗i bi,ℓ|2

≤ µh

√√√√
r∑

i=1

∥ui − vi∥2ℓ2
= µh∥U − V ∥F ,

where the last equality is due to ∥hi∥ℓ2 = 1 for all i ∈ [r ].
This implies

γ2

(
Bh, ∥ · ∥B

)
≤ µhγ2

(
Bh, ∥ · ∥F

)

! µh

∫ 1

0

√
log N

(
Bh, ∥ · ∥F , ε

)
dε

! µh
√

r N , (VI.25)

where the second inequality follows from the Dudley inequal-
ity (IV.3). The third inequality follows from the fact that(
Bh, ∥ · ∥F

)
is isometric to

(
B (0, 1) ⊂ R2

∑r
i=1 Ni , ∥ · ∥ℓ2

)

and from a standard volumetric estimate.
Step 2: To bound γ2

(
BSph, ∥ · ∥B

)
let U =(

S1,ph1u∗1, . . . , Sr,phr u∗r
)

and
V =

(
S1,ph1v

∗
1 , . . . , Sr,phrv

∗
r
)
∈ Bh . Then

∥U − V∥B = max
ℓ∈[L]

√√√√L
r∑

i=1

∥∥∥
(
Si,phi u∗i − Si,phiv

∗
i

)∗ bi,ℓ

∥∥∥
2

ℓ2

= max
ℓ∈[L]

√√√√L
r∑

i=1

∥ui − vi∥2ℓ2
|h∗i Si,pbi,ℓ|2

≤ µh

√√√√
r∑

i=1

∥ui − vi∥2ℓ2

= µh

√√√√
r∑

i=1

∥ui − vi∥2ℓ2
∥hi∥2ℓ2

= µh

√√√√
r∑

i=1

∥ui − vi∥2ℓ2
∥Ti,p Si,phi∥2ℓ2

≤ (1 + ν) µh

√√√√
r∑

i=1

∥ui − vi∥2ℓ2
∥Si,phi∥2ℓ2

! µh∥U − V∥F .

In the third line we used that ∥hi∥ℓ2 = 1 and in the last line
we used that ∥Ti,p∥2→2 ≤ 1 + ν and ν = 1

32 . An analogous
reasoning as in (VI.25) then yields

γ2

(
B Sph , ∥ · ∥B

)
! µh

√
r N .

Step 3: To bound γ2 (Bm, ∥ · ∥B) note that inequality (IV.3)
and the fact that dB (Bm) ≤

√
Kµ imply

γ2
(
Bm, ∥ · ∥B

)
!

∫ √Kµ

0

√
log N (Bm, ∥ · ∥B , ε)dε.

Thus, by Lemma 26

γ2
(
Bm, ∥ · ∥B

)

!
∫ √Kµ

0

√√√√log N

(
B (0, 1) ⊂ Rr , ∥ · ∥ℓ2 ,

ε

2
√

Kµ

)
dε

+
∫ √Kµ

0

√√√√
r∑

i=1

log
(

N
(

B(0, 1) ⊂ CKi , ∥ · ∥Bi ,
ε

2

))
dε.

≤
∫ √Kµ

0

√√√√log N

(
B (0, 1) ⊂ Rr , ∥ · ∥ℓ2 ,

ε

2
√

Kµ

)
dε

+√r
∫ √Kµ

0
max
i∈[r]

√
log

(
N

(
B(0, 1) ⊂ CKi , ∥ · ∥Bi ,

ε

2

))
dε.

(VI.26)

The first integral can be bounded by

∫ √Kµ

0

√√√√log N

(
B (0, 1) ⊂ Rr , ∥ · ∥ℓ2,

ε

2
√

Kµ

)
dε

≤ √r
∫ √Kµ

0

√√√√log

(
1 + 4

√
Kµ

ε

)
dε !

√
r Kµ, (VI.27)

where we have used a volumetric estimate and a change of
variables. In order to deal with the second term we will
split the integrals into two parts: For small ε we will use a
volumetric estimate and for large ε we will apply Lemma 27.
First we consider the case that ε ∈ (0, 1). Therefore, note that

B (0, 1) ⊂
√

Ki,µ B∥·∥Bi
(0, 1)

:=
{

x ∈ CKi : ∥x∥Bi ≤
√

Ki,µ

}

by inequality (VI.11). This fact combined with a volumetric
estimate yields

max
i∈[r]

N
(

B (0, 1) ⊂ CKi , ∥ · ∥Bi , ε
)

≤ max
i∈[r]

N

(
B∥·∥Bi

(0, 1) , ∥ · ∥Bi ,
ε√
Ki,µ

)

≤
(

1 + 2
√

Kµ

ε

)2K

.
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By a change of variables and an elementary integral inequality
(see [65, Lemma C.9]) this implies

∫ 1

0
max
i∈[r]

√
log N

(
B (0, 1) , ∥ · ∥Bi ,

ε

2

)
dε

≤
√

2K
∫ 1

0

√√√√log

(
1 + 2

√
Kµ

ε

)
dε

≤
√

2K log
(

e
(

1 + 2
√

Kµ

))
.

Next, we are going to deal with the case that ε ∈
(
1,

√
Kµ

)
.

Using Lemma 27 we get

∫ √Kµ

1
max
i∈[r]

√
log

(
N

(
B (0, 1) , ∥ · ∥Bi ,

ε

2

))
dε

!
∫ √Kµ

1

√
Kµ log L

ε
dε

!
√

Kµ log L log
(
Kµ

)
.

Summing up the two integral inequalities yields

√
r max

i∈[r]

∫ √Kµ

0

√
log

(
N

(
B(0, 1) ⊂ CKi , ∥ · ∥Bi ,

ε

2

))
dε

!
√

r Kµ log (L) log
(
Kµ

)
.

This inequality together with (VI.26) and (VI.27) shows that

γ2
(
Bm, ∥ · ∥B

)
!

√
r Kµ log (L) log2 (

Kµ

)
.

The result then follows from inequality (VI.24). #
Combining the upper bounds for the γ2-functionals in the

last lemma with the abstract isometry result Proposition 25 we
are able to prove the main result in this section.

Proof of Theorem 22: Fix p ∈ [P]. Using Lemma 28 and
choosing the constant Cω in (VI.8) large enough we get for
the quantities arising in Proposition 25 that Ê ≤ δ

2c̃1
, V̂ ≤

δ√
c̃2ω log L

, and Û ≤ δ
c̃2ω log L , where we have set X = W p

(see (VI.19)) and c̃i are the constants appearing in Proposition
25. Thus inequality (VI.14) of Proposition 25 for t = δ

2 shows
that (VI.10) holds with probability 1−O

(
L−ω

)
for fixed p.

In order to prove (VI.9) we may argue analogously (with
X = W and t = δ

2 ) and apply inequality (VI.15) of
Proposition 25. Thus, (VI.10) holds with probability at least
1 − O

(
L−ω

)
. Replacing ω by ω + 1 in the argument above

and using a union bound argument one observes that (VI.10)
and (VI.9) are satisfied for all p ∈ [P] with probability at
least 1 − (P + 1)O

(
L−ω−1) = 1 − O

(
L−ω

)
, which finishes

the proof. #

C. Constructing the Dual Certificate

1) The Golfing Scheme: The goal of this section is
to construct Y ∈ Range (A∗) such that the conditions
(VI.1) and (VI.2) in Lemma 18 are fulfilled with high prob-
ability. The construction itself will make use of the Golfing
Scheme, an iterative method which has been introduced in [30]

for the first time. We set

Y0 = 0

Yp = Yp−1 + L
Q

(
Ap)∗ApS p

(
sgn

(
X0

)
− PT

(
Yp−1

))

for p ∈ [P]. We will make use of the notation

Wp = sgn
(

X0
)
− PT

(
Yp

)
for 0 ≤ p ≤ P. (VI.28)

The individual components of Wp will be denoted by Wi,p for
i ∈ [r ], i.e., Wp =

(
W1,p, . . . , Wr,p

)
. Then the dual certificate

will be given by

Y = YP =
P∑

p=1

L
Q

(
Ap)∗ApS p (

Wp−1
)
.

Our Golfing Scheme is set up in the same way as in [43].
In particular, they also use the operator S p as a corrector
function as explained in the following remark.

Remark 29: The reason for the appearance of the operator
S p is the following: Observe that

E
[(

Ap)∗Ap (X)
]
= L

Q

(
Ti,p X1, . . . , Tr,p Xr

)
.

Recall that Ti,p may only be approximately equal to the
identity matrix (see (II.5)). Thus, (Ap )∗Ap is not necessarily
an unbiased estimator. However,

E
[

L
Q

(
Ap)∗ApS p (X)

]

= L
Q

(
T1,p S1,p X1, . . . , Tr,p Sr,p Xr

)

= (X1, . . . , Xr ) = X.

Thus, we get that E
[

L
Q (Ap)∗ApS p

]
= Id. Note that

S p (
Wp−1

)
is, in general, not an element of the subspace T .

However, due to definition of T p we observe that S p
(
Wp−1

)
∈

T p. This is the reason why we require the operator Ap to
satisfy the δ-local isometry property not only on T , but also
on T p.

Let us check that Y ∈ Range (A∗): Recall that the
ApS p

(
Wp−1

)
is obtained by setting the vector AS p

(
Wp−1

)

zero in those components, which do not belong to
&p (see Section II-C). In particular, this implies that
(Ap)∗ApS p

(
Wp−1

)
= A∗ApS p

(
Wp−1

)
. Thus, setting

z =
P∑

p=1

ApS p (
Wp−1

)
. (VI.29)

we get that Y = A∗z. The vector z will also be important
when we prove an upper bound for the estimation error in the
presence of noise. In the remaining part of the proof we will
verify that Y satisfies the conditions in Lemma 18 with the
constants α = 1

8γ , β = 1
4 , and δ = 1

4 (cf. Remark 19).
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2) Exponential Decay: In this section we will verify con-
dition (VI.1) in Lemma 18. In other words, we have to show
that the quantity

∥WP∥F = ∥sgn
(

X0
)
− PT (Y ) ∥F

is small enough. An important observation, which we will need
in the proof, is that W0 = sgn

(
X0) and one has the recurrence

relation

Wp = Wp−1 −
L
Q

(
PT

(
Ap)∗ApS p) (

Wp−1
)

for all p ∈ [P], (VI.30)

which is a direct of consequence of the definition of Wp (see
equation (VI.28)). In Lemma 31, we will prove that Wp decays
exponentially fast. We will need the following rather technical
inequalities.

Lemma 30: Let ν = 1
32 . For all i ∈ [r ] and for all p ∈ [P]

we have the inequalities
∥∥∥Id− T 1/2

i,p

∥∥∥
2→2
≤ 1

32
(VI.31)

∥∥∥
(
Id− S p)

X
∥∥∥

F
≤ 1

31
∥X∥F (VI.32)

∥∥∥S p X
∥∥∥

F
≤ 32

31
∥X∥F . (VI.33)

Proof: Inequality (VI.31) follows directly from (II.5) and
the observation that the square-root shifts the eigenvalues of
Ti,p closer to one. The inequalities (VI.32) and (VI.33) follow
from the observation that for all i ∈ [r ], p ∈ [P]
∥Id− Si,p∥2→2

= max
{
1− σmin

(
Si,p

)
; σmax

(
Si,p

)
− 1

}

= max
{

1− σ−1
max

(
T−1

i,p

)
; σ−1

min

(
T−1

i,p

)
− 1

}
≤ 1

31
.

#
This allows us to prove the main lemma in this section.
Lemma 31: Suppose that Ap satisfies the δ-local isometry

property on T p with δ = 1
32 for all p ∈ [P]. Then, for all

p ∈ [P],
∥Wp∥F ≤ 4−p√r (VI.34)

and, in particular, if P ≥ 1
2 log

(
8γ
√

r
)
,

∥sgn
(

X0
)
− Y∥F ≤

1
8γ

. (VI.35)

Proof: First notice that by (VI.31) and the triangle
inequality

(1− ν) ∥Xi∥F ≤
∥∥T 1/2

i,p Xi
∥∥

F ≤ (1 + ν) ∥Xi∥F

for all Xi ∈ CKi×Ni . Thus, by the local isometry property
(VI.10)

(1− ν)2 (1− δ) ∥X∥2F ≤
L
Q

∥∥∥Ap (X)
∥∥∥

2

ℓ2

≤ (1 + δ) (1 + ν)2 ∥X∥2F
for all X ∈ T p . Together with δ = ν = 1

32 this implies
∣∣∣ L

Q
∥Ap (X) ∥2ℓ2

− ∥X∥2F
∣∣∣ ≤ 1

8
∥X∥2F

for all X ∈ T p , which in turn is equivalent to
∥∥∥PT p − L

Q
PT p

(
Ap)∗ApPT p

∥∥∥
F→F

≤ 1
8
, (VI.36)

where PT p denotes the orthogonal projection onto T p . Now
note that ∥Wp−1−PT (X) ∥F ≤ ∥Wp−1−PT p (X) ∥F for all
X ∈ M due to Wp−1 ∈ T and T ⊂ T p . This fact together
with (VI.30) implies that

∥Wp∥F ≤
∥∥∥Wp−1 −

(
L
Q

PT p
(
Ap)∗ApS p

) (
Wp−1

) ∥∥∥
F

=
∥∥∥Wp−1 −

(
L
Q

PT p
(
Ap)∗ApPT pS p

) (
Wp−1

) ∥∥∥
F
,

where in the second line we use that S p Wp−1 ∈ T p by the
definition of T p (see (V.3)) and because of Wp−1 ∈ T . Using
this computation and (VI.32), (VI.33), (VI.36) we obtain

∥Wp∥F ≤
∥∥∥

(
Id− L

Q
PT p

(
Ap)∗ApPT p

) (
S pWp−1

) ∥∥∥
F

+
∥∥∥

(
Id− S p)

Wp−1

∥∥∥
F

≤ 1
8
∥S pWp−1∥F + 1

16
∥Wp−1∥F ≤

1
4
∥Wp−1∥F .

Thus, the previous estimate yields

∥Wp∥F ≤
(

1
4

)p

∥W0∥F =
(

1
4

)p√
r .

This shows (V I.34) and, in particular, we obtain ∥WP∥F ≤
4−P√r . The assumption P ≥ 1

2 log
(
8γ
√

r
)

and the definition
of WP imply (VI.35), which finishes the proof. #

3) Bounding the Operator Norm on T ⊥: To apply Lemma
18 we need in addition to controlling the share of Y in T also
a bound on T ⊥i for all i ∈ [r ]. For that, recall from [43] that
∥∥∥PT ⊥i

(
Y P

i

) ∥∥∥
2→2

≤
P∑

p=1

∥∥∥PT ⊥i

(
L
Q

((
Ap)∗ApS p) (

Wp−1
)
−Wi,p−1

) ∥∥∥
2→2

≤
P∑

p=1

∥∥∥ L
Q

((
Ap

i

)∗ApS p
) (

Wp−1
)
−Wi,p−1

∥∥∥
2→2

=
P∑

p=1

∥Wi,p∥2→2,

where one uses the fact that Wi,p−1 ∈ Ti . Thus to establish
the bound

∥∥∥PT ⊥i
(
Y P

i

) ∥∥∥
2→2

< 1
4 it remains to show that

∥∥∥ L
Q

((
Ap

i

)∗ApS p
) (

Wp−1
)
−Wi,p−1

∥∥∥
2→2
≤ 1

4p+1 .

To proceed, set for p ∈ {0; 1; . . . ; P − 1}

µp =
√

L max
ℓ∈&p+1,k∈[r]

∥∥∥W∗k,p Sk,p+1bk,ℓ

∥∥∥
2→2

. (VI.37)

This allows us to state the following lemma.
Lemma 32: Fix i ∈ [r ] and let ω ≥ 1. Assume that

µp ≤ 4−pµh and ∥Wp∥F ≤ 4−p√r . (VI.38)
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If

Q "ω r
(

Kµ + Nµ2
h

)
(log L)2 , (VI.39)

then with probability 1−O
(
L−ω

)
the inequality

∥∥∥ L
Q

(
Ap

i

)∗ApS p Wp−1 − Wi,p−1

∥∥∥
2→2
≤ 1

4p+1 (VI.40)

is true for all p ∈ [P] and for all i ∈ [r ].
Remark 33: The validity of assumption (VI.38) is assured

by Lemma 31 and Lemma 34 below.
Proof: The proof follows the same strategy as

[43, Lemma 5.12]. Fix p ∈ [P] and i ∈ [r ]. First, we will
decompose Wi,p as a sum of independent random matrices
such that the matrix Bernstein inequality can be applied. For
that purpose, observe that for all y ∈ CL and for all ℓ ∈ &p
by definition of S p (Definition 17) and Ap

(
ApS pWp−1

)
(ℓ) =

r∑

k=1

b∗k,ℓSk,p Wk,p−1ck,ℓ.

(For ℓ ∈ [L]\&p the left-hand side is equal to zero as
Ap (X) = P&p (A (X)).) Using (II.2) one obtains

((
Ap

i

)∗ApS p
)

Wp−1 =
∑

ℓ∈&p

r∑

k=1

bi,ℓb∗k,l Sk,p Wk,p−1ck,ℓc∗i,ℓ.

With Si,p = T−1
i,p and the definition of Ti,p (see equation (II.5))

this implies

Wi,p−1 = Ti,p Si,p Wi,p−1 = L
Q

∑

ℓ∈&p

bi,ℓb∗i,ℓSi,p Wi,p−1.

In order to simplify notation we introduce the vectors wk,ℓ

defined by

wk,ℓ = W∗k,p−1Sk,pbk,ℓ. (VI.41)

Using this definition we may write (as Sk,p is self-adjoint)

Wi,p = L
Q

((
Ap

i

)∗ApS p
)

Wp−1 −Wi,p−1 (VI.42)

= L
Q

∑

ℓ∈&p

r∑

k=1

bi,ℓw
∗
k,ℓck,ℓc∗i,ℓ −

L
Q

∑

ℓ∈&p

bi,ℓw
∗
i,ℓ

(VI.43)

= L
Q

∑

ℓ∈&p

bi,ℓw
∗
i,ℓ

(
ci,ℓc∗i,ℓ − Id

)

+ L
Q

∑

ℓ∈&p

∑

k ̸=i

bi,ℓw
∗
k,ℓck,l c∗i,ℓ

=
∑

ℓ∈&p

Zℓ, (VI.44)

where we have set

Zℓ = L
Q

(
L∑

k=1

bi,ℓw
∗
k,ℓ

(
ck,ℓc∗i,ℓ − E

[
ck,ℓc∗i,ℓ

])
)

.

Note that until the last step of the proof i is assumed to be fixed
which is why we refrain from indicating the i -dependence in
every step for reasons of notational simplicity. Observe that

each summand of Zℓ and hence the the cross terms in ZℓZ∗ℓ
and Z∗ℓ Zℓ have expectation zero. Thus using basic properties
of circular symmetric normal random variables, Lemma 37
and Lemma 38 we compute

E
[
ZℓZℓ∗

]
= L2

Q2

r∑

k=1

Nk
∥∥wk,ℓ

∥∥2
ℓ2

bi,ℓb∗i,ℓ. (VI.45)

E
[
Z∗ℓ Zℓ

] = L2

Q2 ∥bi,ℓ∥2ℓ2

r∑

k=1

∥∥wk,ℓ

∥∥2
ℓ2

Id. (VI.46)

We have to find an upper bound for the spectral norms of these
quantities. First, observe that

∥∥∥
∑

ℓ∈&p

E
[
ZℓZ∗ℓ

] ∥∥∥
2→2

≤ L2 N
Q2

(
max

k∈[r],ℓ∈&p
∥wk,ℓ∥22

) ∥∥∥
r∑

k=1

∑

ℓ∈&p

bi,ℓb∗i,ℓ
∥∥∥

2→2

≤ r N
Q

µ2
p−1∥Ti,p∥2→2

(VI.38)
!

16−p+1r Nµ2
h

Q
.

By a similar computation we obtain
∥∥∥

∑

ℓ∈&p

E
[
Z∗ℓ Zℓ

] ∥∥∥
2→2

≤ L2

Q2

(
max
ℓ∈&p
∥bi,ℓ∥2ℓ2

) r∑

k=1

∑

ℓ∈&p

∥wk,ℓ∥2ℓ2

! L Ki,µ

Q2

r∑

k=1

∑

ℓ∈&p

Tr
(

W∗k,p−1 Sk,pbk,ℓb∗k,ℓSk,p Wk,p−1

)

= Ki,µ

Q

r∑

k=1

∥S1/2
k,p Wk,p−1∥2F ! Ki,µ

Q
∥Wp−1∥2F

≤ 16−p+1 r Ki,µ

Q
.

Thus, we have obtained

σ 2 := max

⎧
⎨
⎩

∥∥∥
∑

ℓ∈&p

E
[
Z∗ℓ Zℓ

] ∥∥∥
2→2

,
∥∥∥

∑

ℓ∈&p

E
[
ZℓZ∗ℓ

] ∥∥∥
2→2

⎫
⎬
⎭

! 16−p r
Q

max
{

Ki,µ, Nµ2
h

}
. (VI.47)

Observe that a lower bound for σ 2 is given by

σ 2 ≥
∥∥∥

∑

ℓ∈&p

E
[
Z∗ℓ Zℓ

] ∥∥∥
2→2

= L2

Q2

r∑

k=1

∑

ℓ∈&p

∥bi,ℓ∥2ℓ2
∥wk,ℓ∥2ℓ2

.

(VI.48)

Next we have to estimate R = max
ℓ∈&p

∥∥∥∥Zℓ∥2→2

∥∥∥
ψ1

. By Lemma

39 and inequality (IV.1) we have that
∥∥∥∥Zℓ∥2→2

∥∥∥
ψ1
≤ L

Q

(∑

k ̸=i

∥bi,ℓ∥ℓ2

∥∥∥|w∗k,ℓck,ℓ|∥ci,ℓ∥ℓ2

∥∥∥
ψ1

+ ∥bi,ℓ∥ℓ2

∥∥∥∥
(
ci,ℓc∗i,ℓ − Id

)
wi,ℓ∥ℓ2

∥∥∥
ψ1

)

! L
√

Ni

Q
∥bi,ℓ∥ℓ2

r∑

k=1

∥wk,ℓ∥ℓ2 (VI.49)
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!
r
√

Ki,µ Ni µp−1

Q
! 4−p r

√
Ki,µ Ni µh

Q

! 4−p r
(
Ki,µ + Ni µ

2
h

)

Q
(VI.50)

and, consequently, R ! 4−p r
(
Ki,µ+Ni µ

2
h

)

Q . Moreover, combin-
ing (VI.48) and (VI.49) we obtain

|&p|R2

σ 2 ! QN
max
ℓ∈&p

(∑r
k=1 ∥bi,ℓ∥ℓ2∥wk,ℓ∥ℓ2

)2

max
ℓ∈&p

(∑r
k=1 ∥bi,ℓ∥2ℓ2

∥wk,ℓ∥2ℓ2

) ≤ QNr.

(VI.51)

As Q ≤ L by definition (VI.39) implies that
log

(
1 + |&p|R2

σ 2

)
! log L. Thus, setting t = (ω + 2) log L we

obtain from Theorem 9 applied with α = 1 and combined
with (VI.47) that with probability 1−O

(
L−ω−2)

∥∥∥
∑

ℓ∈&p

Zℓ
∥∥∥

2→2
!ω 4−p max

{
√

r
(
Ki,µ + Nµ2

h

)

Q
log L,

r
(
Ki,µ + Nµ2

h

)

Q
(log L)2

}
.

Thus, by choosing the constant in (VI.39) large enough it
holds that

∥∥∥
∑
ℓ∈&p

Zℓ
∥∥∥

2→2
≤ 4−p−1 with probability 1 −

O
(
L−ω−2) for fixed p ∈ [P] and for fixed i ∈ [r ]. By taking

the union bound over all i ∈ [r ] and over all p ∈ [P] we
obtain that with probability 1−r PO

(
L−ω−2) = 1−O

(
L−ω

)

equation (VI.40) is true for all p ∈ [P] and for all i ∈ [r ].
This finishes the proof. #

4) Proof That µp ≤ 1
4µp−1: Lemma 32 additionaly

required that µp ≤ 1
4µp−1 for all p ∈ [P − 1]. In this section

we will verify that this property holds with high probability.
Lemma 34: Let ω ≥ 1. If

Q "ω r
(

Kµ + Nµ2
h

)
log2 L , (VI.52)

then with probability at least 1−O
(
L−ω

)
it holds that µp ≤

1
4µp−1 for all p ∈ [P − 1].

A similar lemma was established in [43]. However, it was
required that L scales quadratically with r . Thus, we need to
refine the argument in order to achieve a linear scaling in r .

Proof of Lemma 34: First, we will show the claim for fixed
p ∈ {0; 1; . . . ; P − 1}. Observe that it is enough to show that
for all ℓ ∈ &p+1 and all i ∈ [r ]

√
L∥wi,ℓ∥ℓ2 ≤

1
4
µp−1 (VI.53)

with wi,ℓ := Wi,p Si,p+1bi,ℓ as in (VI.41). Furthermore,
observe that from the recurrence relation (VI.30) we obtain

Wi,p = Wi,p−1 −
L
Q

(
PTi

(
Ap

i

)∗ApS p
) (

Wp−1
)
.

Due to the definition of Ti and ∥hi∥ℓ2 = ∥mi∥ℓ2 = 1 we may
write for all Z ∈ CKi×Ni

PTi Z = hi h∗i Z +
(
Id− hi h∗i

)
Zmi m∗i .

Together with (VI.42, VI.44) this implies

Wi,p = L
Q

∑

j∈&p

[
hi h∗i bi, j w

∗
i, j

(
Id− ci, j c∗i, j

)

+
(
Id− hi h∗i

)
bi, j w

∗
i, j

(
Id− ci, j c∗i, j

)
mi m∗i

]

− L
Q

∑

k ̸=i

∑

j∈&p

[
h∗i hi bi, j w

∗
k, j ck, j c∗i, j

+ (Id− hi h∗i )bi, j w
∗
k, j ck, j c∗i, j mi m∗i

]
.

We define for all j ∈ &p

zi, j = L
Q

(
Id− ci, j c∗i, j

)
wi, j b∗i, j hi h∗i Si,p+1bi,ℓ,

zi, j = L
Q

m∗i
(

Id− ci, j c∗i, j

)
wi, j b∗i, j

(
Id− hi h∗i

)
Si,p+1bi,ℓ

and for all k ̸= i and for all j ∈ &p

zk, j = L
Q

ci, j c∗k, j wk, j b∗i, j hi h∗i Si,p+1bi,ℓ,

zk, j = L
Q

m∗i ci, j c∗k, j wk, j b∗i, j (Id− hi h∗i )Si,p+1bi,ℓ.

Hence, to establish (VI.53) by the triangle inequality it is
sufficient to prove that with high probability

∥∥∥
∑

j∈&p

zi, j

∥∥∥
ℓ2
≤ 1

16
√

L
µp−1, (VI.54)

∣∣∣
∑

j∈&p

zi, j

∣∣∣ ≤ 1

16
√

L
µp−1, (VI.55)

∥∥∥
∑

k ̸=i

∑

j∈&p

zk, j

∥∥∥
ℓ2
≤ 1

16
√

L
µp−1, (VI.56)

∣∣∣
∑

k ̸=i

∑

j∈&p

zk, j

∣∣∣ ≤ 1

16
√

L
µp−1. (VI.57)

Step 1 (Proof of (VI.54)): In order to apply Theorem 9 we
compute using Lemma 38

∥∥∥E

⎡
⎣ ∑

j∈&p

zi, j z∗i, j

⎤
⎦

∥∥∥
2→2

= L2

Q2 |h∗i Si,p+1bi,ℓ|2
∑

j∈&p

|b∗i, j hi |2∥wi, j ∥2ℓ2

≤ 1
QL

µ2
hµ2

p−1∥T 1/2
i,p hi∥2ℓ2

! 1
QL

µ2
hµ2

p−1.

Analogously, using Lemma 37

E

⎡
⎣ ∑

j∈&p

z∗i, j zi, j

⎤
⎦

= L2 Ni

Q2

∑

j∈&p

∥wi, j ∥2ℓ2
|b∗i, j hi |2|b∗i,ℓS∗i,p+1hi |2

! Ni

QL
µ2

p−1µ
2
h .
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Next, we estimate R = max
j∈&p

∥∥∥∥zi, j ∥ℓ2

∥∥∥
ψ1

. For that purpose we

apply Lemma 39 to observe that

R = max
j∈&p

∥∥∥∥zi, j ∥ℓ2

∥∥∥
ψ1

(VI.58)

= L
Q

max
j∈&p

(
|b∗i, j hi ||h∗i Si,p+1bi,ℓ|∥

(
Id−ci, j c∗i, j

)
wi, j ∥ψ1

)

! L
√

Ni

Q
max
j∈&p

(
|h∗i Si,p+1bi,ℓ||b∗i, j hi |∥wi, j ∥ℓ2

)
(VI.59)

!
√

Ni µ
2
h

Q
√

L
µp−1.

Furthermore, (VI.59) yields, analogously to the derivation of
(VI.51), that

|&p|R2

σ 2 ≤ |&p|
max
j∈&p

|h∗i Si,p+1bi,ℓ|2|b∗i, j hi |2∥wi, j ∥2ℓ2

∑
j∈&p
∥wi, j ∥2ℓ2

|b∗i, j hi |2|b∗i,ℓS∗i,p+1hi |2
! Q ≤ L . (VI.60)

Applying Theorem 9 with t = (ω + 2) log L and α = 1 we
obtain that with probability 1−O

(
L−ω−2)

∥∥∥
∑

j∈&p

zi, j

∥∥∥
ℓ2

!ω
µp−1√

L
max

{
√

Ni µ
2
h

Q
log L;

√
Niµ

2
h

Q
(log L)2

}
,

which implies (VI.54), if the numerical constant in (VI.52) is
chosen large enough.

Step 2 (Proof of (VI.55)): By Lemma 39 we obtain that
∥∥∥|zi, j |

∥∥∥
ψ1

! L
Q

|b∗i, j
(
Id− hi h∗i

)
Si,p+1bi,ℓ|∥wi, j ∥ℓ2

≤ L
Q
∥bi, j ∥ℓ2∥Id− hi h∗i ∥2→2∥Si,p+1∥2→2∥bi,ℓ∥ℓ2∥wi, j ∥ℓ2

! L
Q
∥bi, j ∥ℓ2∥bi,ℓ∥ℓ2∥wi, j ∥ℓ2 ! Ki,µ

Q
√

L
µp−1

and
∑

j∈&p

∥∥∥|zi, j |
∥∥∥

2

ψ1

! L2

Q2

(
max
j∈&p
∥wi, j ∥2ℓ2

) ∑

j∈&p

|b∗i, j
(
Id− hi h∗i

)
Si,p+1bi,ℓ|2

= L
Q

(
max
j∈&p
∥wi, j ∥2ℓ2

)
∥T

1
2

i,p

(
Id− hi h∗i

)
Si,p+1bi,ℓ∥2ℓ2

! L
Q
∥bi,ℓ∥2ℓ2

∥wi, j ∥2ℓ2
! Ki,µ

QL
µ2

p−1.

Consequently, Theorem 8 applied with t = (ω + 2) log L
yields that

∣∣∣
∑

j∈&p

zi, j

∣∣∣ !ω
µp−1√

L
max

{√
Ki,µ log L

Q
; Ki,µ

Q
log L

}

with probability 1−O
(
L−ω−2), which shows (VI.55).

Step 3 (Proof of (VI.56)): As for k1 ̸= i, k2 ̸= i the
vectors zk1, j and zk2, j are not independent, we will condition
on the random variables

{
ci, j

}
j∈&p

, use that the random

variables
{
zk, j

}
k, j are conditionally independent, and then

apply Corollary 10. For that, we bound
∣∣∣
∑

k ̸=i

∑

j∈&p

E
[
z∗k, j zk, j

∣∣∣
{
ci, j

}
j∈&p

] ∣∣∣ (VI.61)

= L2

Q2

∑

k ̸=i

∑

j∈&p

∥wk, j∥2ℓ2
∥ci, j ∥2ℓ2

|h∗i bi, j |2|h∗i Si,p+1bi,ℓ|2

≤ µ2
p−1

µ2
h

Q2

(
max
j∈&p
∥ci, j ∥2ℓ2

) ∑

k ̸=i

∑

j∈&p

|h∗i bi, j |2

≤ µ2
p−1

µ2
h

L Q

(
max
j∈&p
∥ci, j ∥2ℓ2

) ∑

k ̸=i

∥T 1/2
i,p hi∥2ℓ2

! µ2
p−1

rµ2
h

QL

(
max
j∈&p
∥ci, j ∥2ℓ2

)
. (VI.62)

Analogously, using the triangle inequality,
∥∥∥

∑

k ̸=i

∑

j∈&p

E
[
zk, j z∗k, j

∣∣∣
{
ci, j

}
j∈&p

] ∥∥∥
2→2

= L2

Q2

∥∥∥
∑

k ̸=i

∑

j∈&p

ci, j c∗i, j E
[
|c∗k, jwk, j |2

]

· |h∗i bi, j |2|h∗i Si,p+1bi,ℓ|2
∥∥∥

2→2

≤ L2

Q2

∑

k ̸=i

∑

j∈&p

∥ci, j ∥2ℓ2
∥wk, j∥2ℓ2

|h∗i bi, j |2|h∗i Si,p+1bi,ℓ|2

(V I.62)

! µ2
p−1

rµ2
h

QL

(
max
j∈&p
∥ci, j ∥2ℓ2

)
.

Conditionally on
{
ci, j

}
j∈&p

, we can now apply Corollary 10
with t = (ω + 2) log L. Together with the last two estimates
this yields that with probability 1−O

(
L−ω−2)

∥∥∥
∑

k ̸=i

∑

j∈&p

zk, j

∥∥∥
ℓ2

!ω µp−1

√√√√√rµ2
h

(
max
j∈&p
∥ci, j ∥2ℓ2

)
log L

QL
.

Then, we can truncate the random variables
{
ci, j

}
j∈&p

by
Lemma 40 and obtain that inequality (VI.56) holds with
probability 1−O

(
L−ω−2), if the constant in (VI.52) is chosen

large enough.
Step 4 (Proof of (VI.57)): Note that conditionally on{

ci, j
}

j∈&p

∑
k ̸=i

∑
j∈&p

zk, j is a circular symmetric random
variable with variance

E

⎡
⎣∑

k ̸=i

∑

j∈&p

|zk, j |2
∣∣∣
{
ci, j

}
j∈&p

⎤
⎦

= L2

Q2

∑

k ̸=i

∑

j∈&p

|b∗i,ℓSi,p+1
(
Id− hi h∗i

)
bi, j |2∥wk, j∥2ℓ2

|c∗i, j mi |2

≤ µ2
p−1

1
Q

(
max
j∈&p

|c∗i, j mi |2
)
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·
∑

k ̸=i

∥T 1/2
i,p

(
Id− hi h∗i

)
Si,p+1bi,ℓ∥2ℓ2

! µ2
p−1

r Ki,µ

QL
.

Consequently, one obtains that with probability at least 1 −
O

(
L−ω−2)

∣∣∣
∑

k ̸=i

∑

j∈&p

zk, j

∣∣∣ !ω µp−1

√√√√√

(
max
j∈&p

|c∗i, j mi |2
)

r Ki,µ log L

QL
.

Thus, by Lemma 40 inequality (VI.57) holds with probability
at least 1 − O

(
L−ω−2), if the constant in (VI.52) is chosen

large enough.
Union bound: By the previous four steps we see that for

fixed p ∈ [P], ℓ ∈ &p+1, and i ∈ [r ] the inequalities (VI.54),
(VI.55), (VI.56), (VI.57) hold with probability 1−O

(
L−ω−2).

Thus, by (VI.53) and a union bound we have µp−1 ≤ 1
4µp

with probability 1 − r Q O
(
L−ω−2) for fixed p ∈ [P − 1].

Thus, with probability at most 1−r P Q O
(
L−ω−2) we obtain

µp−1 ≤ 1
4µp for all p ∈ [P−1]. We obtain the desired result

as we find r ! Q ≤ L and P Q = L. #
5) An Upper Bound for ∥z∥ℓ2 : In the case of noise, the error

bound given by Lemma 18 is proportional to ∥z∥ℓ2 , where z is
the dual certificate as constructed in (VI.29). Thus, one needs
an upper bound for ∥z∥ℓ2 . This will be accomplished by the
following lemma.

Lemma 35: Let z ∈ CL be given by (VI.29) and assume that
∥Wp∥F ≤ 4−p√r . Furthermore, suppose that Ap satisfies the
δ-local isometry property (VI.10) with δ ≤ 1

4 on T p for all
p ∈ [P]. Then

∥z∥ℓ2 !
√

r .

Proof: Observe that

∥z∥ℓ2 ≤
P∑

p=1

∥ApS p (
Wp−1

)
∥ℓ2 !

P∑

p=1

∥Wp−1∥F

!
P−1∑

p=0

4−p√r !
√

r ,

where the first equality follows from the definition of z (VI.29)
and the triangle inequality. The second inequality is due to
the local isometry property (VI.10) and (VI.33). We derive by
(VI.34) the desired bound. #

D. Proof of Theorem 6

First of all, recall that by Lemma 20 with probability at
least 1− 2 exp (−t) it holds that

γ = ∥A∥F→2 ≤ 2

√
ωmax

{
1; r KµN

L

}
log (L + r K N).

(VI.63)

In the following, let
{
&p

}P
p=1 be an ω-admissible partition

of [L] (see Definition 2), which is a minimizer of (II.8).

From Definition 2 combined with the assumptions on L
(see (II.9)) we infer that

Q = L
P

" r
(

Kµ log
(
Kµ

) + Nµ2
h

)
(log L)2 (VI.64)

P ≥ 1
2

log
(
8γ
√

r
)
. (VI.65)

Note that due to Theorem 22 and our assumptions on L and Q
(and also log Kµ ≤ log L) we may assume that the inequalities
(VI.9) and (VI.10) hold with probability 1 − O

(
L−ω

)
and

constant δ = 1
32 . Thus, by Lemma 18 applied with α = 1

8γ ,
β = 1

4 , and δ = 1
4 it is enough to construct Y ∈ Range (A∗)

which satisfies (VI.1) and (VI.2). This is achieved by the
Golfing Scheme as explained in Section VI-C.1: Note that
the assumption of Lemma 31 is given by (VI.65) and (VI.10).
Thus, it holds that ∥Wp∥F ≤ 4−p√r for all p ≤ P and,
by (VI.28), Y = YP satisfies Condition (VI.1). Furthermore,
observe that Lemma 34 implies that with probability 1 −
O

(
L−ω

)
one has µp ≤ 1

4µp−1 for all p ∈ [P − 1]. Using
this fact and ∥Wp∥F ≤ 4−p√r it follows from Lemma 32
that Condition (VI.2) is fulfilled. Using a union bound we
conclude that with probability 1 − O

(
L−ω

)
the approximate

dual certificate Y = YP satisfies the assumptions in Lemma
18. Thus, if X̂ is a minimizer of (I.5) it satisfies the estimation
error (VI.3).
It remains to prove the upper bound for the estimation error
in order to obtain inequality (II.10). Note that by Lemma 35
we have that ∥z∥ℓ2 !

√
r . Thus, in combination with (VI.63)

we derive

∥X̂ − X0∥F ! (1 + γ )
(
1 + ∥z∥ℓ2

)
τ

!ω τ

√
r max

{
1; r Kµ N

L

}
log L.

This finishes the proof. #

APPENDIX A
CONSTRUCTION OF THE PARTITION

{
&p

}
p∈[P]

A. Proof of Lemma 3

The goal of this section is to prove Lemma 3. Our proof
will rely on the following lemma.

Lemma 36: Fix i ∈ [r ] and let Q ∈ (0, L), δ > 0 and
ν ∈ (0, 1). Assume that

Q ≥ C
Ki,µ

ν2 log
Ki

δ
, (A.1)

where C > 0 is an absolute constant and let δ̂1, . . . , δ̂L
be independent, identically distributed random variables such
that

P
(
δ̂1 = 1

)
= Q

L
and P

(
δ̂1 = 0

)
= 1− Q

L
.

Then with probability exceeding 1− δ we have that

∥∥∥ L
Q

L∑

ℓ=1

δ̂ℓbi,ℓb∗i,ℓ − Id
∥∥∥

2→2
≤ ν.

A proof of this lemma can be obtained using arguments
contained in the proof of [66, Th. 1.2]. For the sake of
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completeness we will give a proof below (relying on different
techniques). Our proof of Lemma 3 will use essentially the
same ideas as in [27], but has been slightly refined.

Proof of Lemma 3: Let δ̂1, . . . , δ̂k be independent, uni-
formly distributed random variables which take values in [P].
For p ∈ [P] we define

&p =
{
ℓ ∈ [L] : δ̂ℓ = p

}
.

Thus,
{
&p

}
p∈[P] is a partition of [L]. To finish the proof it

is enough to show that with positive probability the partition{
&p

}
p∈[P] has the required properties, i.e., for all p ∈ [P],

(II.5) holds and 1
2 Q ≤ |&p| ≤ 3

2 Q. For i ∈ [r ] and p ∈ [P]
we define the event

Ai,p = {(I I.5) fails} =

⎧
⎨
⎩

∥∥∥ L
Q

∑

ℓ∈&p

bi,ℓb∗i,ℓ − Id
∥∥∥

2→2
> ν

⎫
⎬
⎭.

Set δ = 1
3r P and note that log( K

δ ) = log (3r P K ) !
log (max {r; P; K }). Thus, by Lemma 36 we get that
P

(
Ai,p

)
≤ 1

3r P , if the constant in inequality (II.6) is chosen
large enough. By a union bound over all choices of i and p,
(II.5) follows with probability at least 1

3 . It remains to control
the size of the sets {&p}p∈[P]. By the Bernstein inequality
for bounded random variables (e.g., [65, Corollary 7.31]) we
obtain that for fixed p ∈ [P] one has Q

2 ≤ |&p| ≤ 3Q
2 with

probability at least 1− 2 exp
(
−Q
10

)
≥ 1− 1

2P , where the last
inequality follows from (II.6), if the constant C is chosen large
enough. Thus, by another union bound we observe

P
(

Q
2
≤ |&p| ≤

3Q
2

for all p ∈ [P]
)

>
1
2
.

Thus with positive probability the partition
{
&p

}
p∈[P] has the

required properties. In particular, this implies the existence of
a partition

{
&p

}
p∈[P] with the properties stated in Lemma 3.#

B. Proof of Lemma 36

As already mentioned before this lemma can be proven
using arguments from the proof [66, Th. 1.2]. The arguments
in this article are based on Talagrand’s inequality [67] and
Rudelson’s Lemma [68]. Recent technical advances (see [56])
allow us to give a simplified proof.

Proof: The goal is to use the matrix Bernstein inequality
to estimate the spectral norm of

Y = L
Q

L∑

ℓ=1

δ̂ℓbi,ℓb∗i,ℓ − Id.

We will decompose Y into a sum of independent random
matrices with mean zero. Thus, by setting

Yℓ =
(
δ̂ℓ −

Q
L

)
L
Q

bi,ℓb∗i,ℓ

we obtain Y = ∑L
ℓ=1 Yℓ and EYℓ = 0 for all ℓ ∈ [L] due to

Id = ∑L
ℓ=1 bi,ℓb∗i,ℓ. To apply the matrix Bernstein inequality

we need first to obtain an upper bound for ∥EY 2∥2→2. For
that purpose note that

EY 2 =
L∑

ℓ=1

EY 2
ℓ =

L∑

ℓ=1

E

[(
δ̂ℓ −

Q
L

)2
]

L2

Q2 ∥bi,ℓ∥2ℓ2
bi,ℓb∗i,ℓ.

Observe that E
[(
δ̂ℓ − Q

L

)2
]

= Q(L−Q)
L2 , which implies

EY 2 = L − Q
L

L∑

ℓ=1

L∥bi,ℓ∥2ℓ2

Q
bi,ℓb∗i,ℓ.

Thus, by
∑L
ℓ=1 bi,ℓb∗i,ℓ = Id and the definition of Ki,µ we get

∥EY 2∥2→2 ≤
L − Q

L

(
max
ℓ∈[L]

L∥bi,ℓ∥2ℓ2

) ∥∥∥
L∑

ℓ=1

bi,ℓb∗i,ℓ
∥∥∥

2→2

≤ Ki,µ

Q
.

Furthermore, for all ℓ ∈ [L] we have

∥Yℓ∥2→2 ≤ max
{

Q
L

; L − Q
L

}
L
Q
∥bi,ℓ∥2ℓ2

≤ L
Q
∥bi,ℓ∥2ℓ2

≤ Ki,µ

Q
almost surely.

Thus, we can apply the matrix Bernstein inequality in the
version of [56, Th. 6.6.1] to obtain

P (∥Y∥2→2 ≥ ν) ≤ K exp

(
−ν2/2(

1 + ν
3

)
Ki,µ/Q

)

(A.1)
≤ K exp

(
−C log (K/δ)

2
(
1 + ν

3

)
)

.

As we have 0 < ν < 1 this yields the claim if the constant
C > 0 in (A.1) is chosen large enough.

#

APPENDIX B
CIRCULAR-SYMMETRIC COMPLEX NORMAL

RANDOM VARIABLES

In this section we will recall some useful facts concerning
random variables which have a circular–symmetric complex
normal distribution CN (0, σ 2) with zero mean and variance
σ 2. This means that their real and imaginary parts are uncor-
related jointly Gaussian with zero mean and variance σ 2/2
(and are therefore independent). For more details concerning
this probability distribution we refer to [69, Sec. A.1.3]. The
following two well-known lemmas are concerned with two
useful identities. A proof of them can be found for example
in [27, Lemma 11 and 12].

Lemma 37: Assume that c ∈ Cn is a random vector with
independent entries ci ∼ CN (0, 1). Then we have

E
[(

Id− cc∗
)2

]
= nId.

Lemma 38: Let q ∈ Cn be any deterministic vector. Fur-
thermore, assume that c ∈ Cn is a random vector with
independent entries ci ∼ CN (0, 1). Then we have

E
[(

cc∗ − Id
)

qq∗
(
cc∗ − Id

)] = ∥q∥2ℓ2
Id.
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The following lemma summarizes well-known facts regard-
ing the tail decay of certain quantities which involve circular-
symmetric normal random variables. For the sake of complete-
ness we include a proof.

Lemma 39: Suppose that c ∈ CN is a random vector
with independent entries ci ∼ CN (0, 1). Let p, q ∈ CN be
arbitrary. Then we have the following inequalities:∥∥∥∥c∥ℓ2

∥∥∥
ψ2

!
√

N (B.1)
∥∥∥|c∗q|

∥∥∥
ψ2

! ∥q∥ℓ2 (B.2)
∥∥∥∥

(
cc∗ − Id

)
q∥ℓ2

∥∥∥
ψ1

!
√

N∥q∥ℓ2 (B.3)
∥∥∥p∗

(
cc∗ − Id

)
q
∥∥∥
ψ1

! ∥p∥ℓ2∥q∥ℓ2 (B.4)

Proof: In order to prove (B.1) note that
∥∥∥∥c∥ℓ2

∥∥∥
2

ψ2
!

∥∥∥∥c∥2ℓ2

∥∥∥
ψ1
≤

N∑

i=1

∥∥∥|ci |2
∥∥∥
ψ1

! N.

The first inequality follows from [53, Lemma 5.14] and for
the second one we used the triangle inequality. In order to
prove (B.2) it is enough to note that c∗q ∼ CN

(
0, ∥q∥2ℓ2

)
.

(B.3) follows from the inequality chain∥∥∥∥
(
cc∗ − Id

)
q∥ℓ2

∥∥∥
ψ1
≤

∥∥∥∥c∥ℓ2 |c∗q| + ∥q∥ℓ2

∥∥∥
ψ1

≤
∥∥∥∥c∥ℓ2

∥∥∥
ψ2

∥∥∥|c∗q|
∥∥∥
ψ2

+
∥∥∥∥q∥ℓ2

∥∥∥
ψ1

!
√

N∥q∥ℓ2 + ∥q∥ℓ2 !
√

N∥q∥ℓ2 .

In the second inequality we have used the Hoelder inequal-
ity (IV.1) and the second line follows directly from (B.1)
and (B.2). In a similar way one proves (B.4). #

We will also need the following standard fact, which follows
from a union bound.

Lemma 40: Let ω, L ≥ 1 and & a finite set. For all i ∈ [r ]
let mi ∈ CNi such that ∥mi∥ℓ2 = 1. Furthermore, assume
that ci, j ∈ CNi , i ∈ [r ], j ∈ &, are independent random
vectors with i.i.d. entries distributed according to CN (0, 1).
Then with probability at least 1−O

(
L−ω

)
one has

max
i∈[r], j∈&

∥ci, j ∥ℓ2 !ω max
{√

N log (r |&|);
√

N log L
}

max
i∈[r], j∈&

|c∗i, j mi | !ω max
{√

log (r |&|);
√

log L
}

.

We conclude this section with a proof of Corollary 10.
Proof of Corollary 10: Observe that

∥∥Z
∥∥

2→2 ≤
∥∥

n∑

i=1

Re (γi ) Xi
∥∥

2→2 +
∥∥

n∑

i=1

Im (γi ) Xi
∥∥

2→2.

By Theorem [70, Th. 4.1.1] we obtain that with probability at
least 1− exp (−t)

∥∥
n∑

i=1

Re (γi ) Xi
∥∥

2→2 ≤
1√
2
σ
√

t + log (d1 + d2)

and with probability at least 1− exp (−t)
∥∥

n∑

i=1

Im (γi ) Xi
∥∥

2→2 ≤
1√
2
σ
√

t + log (d1 + d2).

Combining these facts yields the result. #

APPENDIX C
PROOF OF LEMMA 26

For i ∈ [r ] let Ni be an ε
2 -cover of B (0, 1) ⊂ CKi

with respect to the ∥ · ∥Bi -norm. Furthermore, let O be an
ε

2
√

Kµ
-cover of B (0, 1) ⊂ Rr with respect to the ∥ · ∥ℓ2 -

norm. We will show that any Z =
(
u1m∗1, . . . , ur m∗r

)
∈ Bm

can be approximated by Y =
(
σ1 y1m∗1, . . . , σr yr m∗r

)
, where

σ = (σ1, . . . , σr ) ∈ O and yi ∈ Ni . This proves the claim,
as the number of such Y ’s is bounded by the right-hand side.
For that choose σ = (σ1, . . . , σr ) ∈ O such that

√√√√
r∑

i=1

(
∥ui∥ℓ2 − σi

)2 ≤ ε

2
√

Kµ
(C.1)

and yi ∈ Ni such that

∥∥∥ 1
∥ui∥ℓ2

ui − yi

∥∥∥
Bi
≤ ε

2
. (C.2)

Then one has for Ŷ = (∥u1∥ℓ2 y1m∗1, . . . , ∥ur∥ℓ2 yr m∗r
)

∥∥∥Z − Ŷ
∥∥∥

2

B
≤

r∑

i=1

∥∥∥ui m∗i − ∥ui∥ℓ2 yi m∗i
∥∥∥

2

Bi

=
r∑

i=1

∥∥∥ui − ∥ui∥ℓ2 yi

∥∥∥
2

Bi

≤ ε2

4

r∑

i=1

∥ui∥2ℓ2
= ε2

4
∥Z∥2F ≤

ε2

4
.

The first inequality follows from (VI.13) and the next equality
follows from

∥mi
(
ui − ∥ui∥ℓ2 yi

)∗ bi,ℓ∥ℓ2 = |
(
ui − ∥ui∥ℓ2 yi

)∗ bi,ℓ|

which is due to ∥mi∥ℓ2 = 1. The subsequent inequality is a
consequence of (C.2). The second equality again follows from
∥mi∥ℓ2 = 1 for all i ∈ [r ]. Similarly,

∥Ŷ − Y∥B ≤

√√√√
r∑

i=1

∥∥∥
(
∥ui∥ℓ2 − σi

)
yim∗i

∥∥∥
2

Bi

=

√√√√
r∑

i=1

(
∥ui∥ℓ2 − σi

)2 ∥yi∥2Bi

≤

√√√√Kµ

r∑

i=1

(
∥ui∥ℓ2 − σi

)2 ≤ ε

2
.

Here the second inequality follows from

∥yi∥Bi =
√

L max
ℓ∈[L]

|y∗i bi,ℓ| ≤
√

L∥yi∥ℓ2 max
ℓ∈[L]
∥bi,ℓ∥ℓ2 ≤

√
Kµ

and the last inequality is a consequence of (C.1). Combining
the two inequalities gives ∥Z − Y∥B ≤ ε which finishes the
proof. #
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Summary
Suppose one is given a signal

y = B (u, v) ,

where B : Cn1 ×Cn2 → Cm is a sesquilinear map and u ∈ Cn1 is s1-sparse and v ∈ Cn2

is s2-sparse. Our manuscript [43] deals with the question under which circumstances
one can recover u and v using a tractable (i.e., polynomial-time) algorithm.
Note that there is a unique linear map A : Cn1×n2 → Cm such that A (uv∗) = B (u, v)
for all u ∈ Cn1 and v ∈ Cn2 . In this paper we assume as in [77] thatA can be represented
as

(A (X)) (`) = Tr (A∗` , X) ,

where {A`}m`=1 are i.i.d. random Gaussian matrices.

Lee, Wu, and Bresler proposed the follow two-step approach to recover u and v.
First one uses a modified spectral initialization to obtain an initial guess v′ for v.
Having obtained this initial guess one uses an alternating minimization algorithm to
iterativey refine the initial guess. They could show the following result for a fixed
constant 0 < µ < 1. If ‖u‖∞ ≥ µ‖u‖, ‖v‖∞ ≥ µ‖v‖, and

m & (s1 + s2) log
(

max
{
n1
s1

; n2
s2

})
,

then their proposed algorithm is able to recover u and v with high probability. The
condition on u and v means that a large fraction of the `2-mass of then vector is con-
centrated on one entry, which is arguably a rather restrictive condition. The question
we examined in the article [43] was, whether we one can relaxe these conditions at the
price of a slightly increased amount of measurements.

In our main result we have shown that this is indeed the case. Namely we could
derive recovery guantees under the assumption that the parameter µ varies and under
the assumption is concentrated on a few, but possibly more than one entry. A precise
statement of our result can be found in [43, Theorem 2]
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1 Introduction

Many measurement operations in signal and image processing as well as in commu-
nication follow a bilinear model. Namely, in addition to the measurements depending
linearly on the unknown signal, also certain parameters of the measurement proce-
dure enter in a linear fashion. Hence, one cannot employ a linear model (for example,
in connection compressed sensing techniques [7]) unless one has an accurate estimate
of these parameters.

When such estimates are not available or too expensive to obtain, there are certain
asymmetric scenarios when one of the inputs can be recovered even though the other
one is out of reach (e.g., [21, 37], this scenario is sometimes referred to as passive
imaging). In most cases, however, the natural aim will be to recover both the signal
and the parameters, that is, to solve the associated bilinear inverse problem. Even
when some estimates of the parameters are available, such a unified approach will be
preferred in many situations, especially when information is limited. Consequently,
the study of bilinear inverse problems, including but not limited to the important prob-
lem of blind deconvolution, has been an active area of research for many years [13].

Observing that bilinear maps admit a representation as a linear map in the rank-one
outer product of the unknown signal and the parameter vector, one can approach such
problems using tools from the theory of low-rank recovery (see, e.g., [1, 17, 26]).
Under sparsity assumptions, that is, when the signals and/or parameter vectors admit
an approximate representation using just a small (but unknown) subset of an appro-
priate basis (for more details regarding when such assumptions appear in bilinear
inverse problems, see [25]), however, the direct applicability of these approaches is
limited, as two competing objectives arise: one aims to simultaneously minimize rank
and sparsity. As a consequence, the problem becomes considerably more difficult;
Oymak et al., for example, have demonstrated that minimizing linear combinations
of the nuclear norm (a standard convex proxy for the rank) and the �1 norm (the
corresponding quantity for sparsity) exhibits suboptimal scaling [31]. In fact, it is
not even clear if without additional assumptions efficient recovery is at all possible
for a near-linear number of measurements (as it would be predicted identifiability
considerations [18]).

Recently, a number of non-convex algorithms for bilinear inverse problems have
been proposed. For example, for such problems without sparsity constraints, several
such algorithms have been analyzed for blind deconvolution and related problems
[24, 27] with near-optimal recovery guarantees. In contrast, our understanding of
bilinear inverse problems with sparsity constraints is only in its beginning. Recently,
several algorithms have been analyzed for sparse phase retrieval [4, 33] or blind
deconvolution with sparsity constraints [32]. The recovery guarantees for these algo-
rithms, however, are either suboptimal in the number of necessary measurements or
only local convergence guarantees are available, i.e., one relies on the existence of a
good initialization. (A noteworthy exception is the two related papers [3, 14], where a
two-stage approach for (sparsity) constrained bilinear inverse problems is proposed,
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which achieves recovery at near-optimal rate. However, the algorithm relies on a spe-
cial nested structure of the measurements, which is not feasible for many practical
applications.)

In [23], Lee, Wu, and Bresler introduced the sparse power factorization (SPF)
method together with a tractable initialization procedure based on alternating min-
imization. They also provide a first performance analysis of their method for
random bilinear measurements in the sense that their lifted representation is a
matrix with independent Gaussian entries. That is, they work with linear operators
A : Cn1×n2 −→ Cm that admit a representation as

(A (X)) (�) = trace
(
A∗

�X
)

for i. i. d. Gaussian matrices A� ∈ Cn1×n2 .
For such measurements, they show that with high probability, SPF converges

locally to the right solution, i.e., one has convergence for initializations not too far
from the signal to be recovered.

For signals that have a very large entry, they also devise a tractable initializa-
tion procedure—they call it thresholding initialization—such that one has global
convergence to the right solution. Local convergence has also been shown for the
multi-penalty approach A-T-LAS1,2 [10], but to our knowledge, comparable global
recovery guarantees are not available to date. This is why we focus on SPF in this
paper, using the results of [23] as our starting point.

The precise condition for their guarantee to hold is that both (normalized) input
signals need to be larger than some c > 1

2 in supremum norm—more than one quarter
of its mass needs to be located in just one entry, that is, the signals must have a very
high peak-to-average power ratio.

In this paper, we considerably weaken this rather strong restriction in two ways.
Firstly, we show that similar results hold for smaller lower bounds c at the expense
of a moderately increased number of measurements. Secondly, we show that similar
results can be obtained when the mass of one of the signals is concentrated in more
than one, but still a small number of entries.

The SPF algorithm, the thresholding initialization, and the resulting recovery guar-
antees are reviewed in Section 2 before we discuss and prove our results in Sections 4
and 5.

1.1 Notation

Throughout the paper, we will use the following notation. By [n], we will denote
the set {1; . . . ; n}. For any set J , we will denote its cardinality by |J |. For a vector
v ∈ Cm, we will denote by ‖v‖ its �2-norm and by ‖v‖∞ the modulus of its largest
entry. If J ⊂ [n], we will by vJ denote the restriction of v to elements indexed by J .
For matrices A ∈ Cn1×n2 , we will denote by ‖A‖F its Frobenius norm and by ‖A‖
its spectral norm, i.e., the largest singular value of A.
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2 Sparse power factorization: algorithm and initialization

2.1 Problem formulation

Let b ∈ Cm be given by

b := B(u, v) + z,

where B : Cn1 ×Cn2 → Cm is a bilinear map and z ∈ Cm is noise. Recall that one can
represent the bilinear map B : Cn1 ×Cn2 → Cm by a linear map A : Cn1×n2 −→ Cm,
which satisfies

B(u, v) = A(uv∗).

for all vectors u ∈ Cn1 and all v ∈ Cn2 . Note that such a linear map A is characterized
by a (unique) set of matrices {A�}m�=1 ⊂ Cn1×n2 such that the �th entry of A (X) is
given by

(A (X)) (�) = trace
(
A∗

�X
)

. (1)

In this notation, our goal will be to reconstruct u and v from linear measurements
given by

b� = trace
(
A∗

�uv∗)

At the core of the Sparse Power Factorization Algorithm, as introduced in [23], are
the linear operators F : Cn2 −→ Cm×n1 and G : Cn1 −→ Cm×n2 defined by

F(y) :=
⎛

⎜
⎝

y∗A∗
1

...
y∗A∗

m

⎞

⎟
⎠ , G(x) :=

⎛

⎜
⎝

x∗A1
...

x∗Am

⎞

⎟
⎠ .

A direct consequence of this definition is that

A(xy∗) = [F(y)]x = [G(x)]y
for all x ∈ Cn1 and all y ∈ Cn2 .

2.2 Sparse power factorization

The idea of sparse power factorization is to iteratively update estimates ut and vt for
u and v in an alternating fashion. That is, in each iteration, one keeps one of vt and
ut fixed and updates the respective other one by solving a (underdetermined) linear
system. Solving each of these linear systems then amounts to solving a linear inverse
problem with sparsity constraints. Hence, many pursuit algorithms proposed in the
context of compressed sensing can be applied such as CoSaMP [30], Hard Thresh-
olding Pursuit [11], or Basis Pursuit. In [23], the authors used Hard Thresholding
Pursuit (HTP) for their analysis and in this paper, we will also restrict ourselves to
HTP. With this, the Sparse Power Factorization Algorithm reads as follows.
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Algorithm 1 Algorithm 1 in [23].

Input: Operator A, Measurement b, Sparsity Constraints s1, s2, Initialisation v0.
Output: Estimate X̂.
1: t ← 0
2: while stop condition not satisfied do
3: t ← t + 1
4: vt−1 ← vt−1∥

∥vt−1

∥
∥

5: if s1 < n1 then
6: ut ← HTP(F(vt−1), b, s1)

7: else
8: ut ← arg min

x

∥∥b − [F(vt−1)]x
∥∥2

9: end if
10: ut ← ut∥∥ut

∥∥
11: if s2 < n2 then
12: vt ← HTP(G(ut ), b̄, s2)

13: else
14: vt ← arg min

b

∥∥b̄ − [G(ut )]b
∥∥2

15: end if
16: end while
17: return X̂ ← utv

∗
t

The Hard Thresholding Pursuit Algorithm is defined as follows:

Algorithm 2 HTP(A, b, s).

Input: Measurement matrix A ∈ Cm×n, measurement b ∈ Cm, sparsity constraint s ∈ N.
Output: x̂ ∈ Cn.
1: t ← 0
2: while stop condition not satisfied do
3: t ← t + 1
4: w = xt−1 + A∗ (b − Axt−1)

5: J ← arg max
J⊂[n], |J |=s

‖wJ ‖
6: xt ← arg min

x:supp(x)⊂J

‖Ax − b‖
7: end while
8: return x̂ ← x

2.3 Initialization

As for many other non-convex algorithms (e.g., [6, 15]), the convergence proper-
ties of sparse power factorization depend crucially on the choice of the starting
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point. In [6, 15], the starting point is chosen via a spectral initialization. That is,
one chooses the leading left- and right-singular vectors of A∗ (b) as the starting
point, where A∗ denotes the adjoint of A. The general idea behind this approach
is that, if the map A is random, under appropriate assumptions, the leading eigen-
vectors of E

[
A∗ (y)

]
are given by u and v. Indeed, under the assumptions in

this manuscript (see Section 3), we have that E
[
A∗A

] = Id . If z = 0, this
implies that E

[
A∗ (y)

] = E
[
A∗A (uv∗)

] = uv∗. However, spectral initializa-
tion requires that the number of measurements is at the order of max {n1, n2},
as otherwise the matrix A∗ (y) will in general not concentrate around its expec-
tation. Hence, spectral initialization will in general not be optimal as it does not
take into account the sparsity of the vectors u and v. One way to incorporate
the sparsity assumption would be to solve the sparse principal component analysis
(SparsePCA) problem.

max Re (ũ∗A∗ (b) ṽ)

subject to ‖ũ‖0 ≤ s1, ‖ũ‖ = 1
‖ṽ‖0 ≤ s2, ‖ṽ‖ = 1,

(2)

where ‖ ·‖0 denotes the number of non-zero entries. As it was shown in [23, Proposi-
tion 2], Algorithm 1, if initialized by a solution of (2) is able to recover the solution u

and v from a number of measurements at the order of (s1 + s2) max
{

s1
n1

, s2
n2

}
. How-

ever, the SparsePCA problem has been shown to be NP-hard [35]. Nevertheless, in
the last 15 years, there has been a lot of research on the SparsePCA problem and, in
particular, on tractable (i.e., polynomial time) algorithms, which yield good approxi-
mations to the true solution. Several computationally tractable algorithms have been
proposed for solving (2), e.g., thresholdings algorithms [28], a general version of the
power method [16] and semidefinite programs [8]. From the statistical perspective,
a particular emphasis has been put for computationally efficient or at least tractable
algorithms on the analysis of the single spike model [2, 9, 19]. These approaches,
however, require that the number of samples scales with the square of the number
of non-zero entries of the signal to estimate (up to log-factors). This raised the ques-
tion whether there are fundamental barriers preventing the SparsePCA problem to be
solved in polynomial time at a sampling rate close to the information theoretic limit.
Indeed, it has been shown that an algorithm that achieves this would also allow for an
algorithm which solves the k-clique problem in polynomial time [5, 36]. However,
a widely believed conjecture in theoretical computer science states that this is not
the case, which indicates that this approach will not be suited for initializing bilinear
recovery problems either.

In this manuscript, we will analyze the following initialization algorithm, which is
the one proposed in [23]. For a set J1 ⊂ [n], respectively J2 ⊂ [n2] in the following,
we will denote by �J1 , respectively �J2 the matrix, which projects a vector onto the
components which belong to J1, respectively J2.
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Algorithm 3 Algorithm 3 in [23].

Input: Operator A, Measurement b, Sparsity Constraints s1, s2,
Output: Initial guess v0 for v ∈ Cn2 .
1: For all i ∈ [n1] let ξi be the �2-norm of the best s2-sparse approximation of the ith row of

the matrix A∗ (b) ∈ Cn1×n2 .
2: Let Ĵ1 ⊂ [n1] be the set of the s2 largest elements in

{
ξ1; ξ2; . . . ; ξn1

}

3: Choose Ĵ2 to contain the indices of the s2 columns of �Ĵ1
A∗ (b) largest in �2 norm, i.e.,

Ĵ2 := arg max
J⊂[n2], |J |=s2

∥
∥�Ĵ1

[A∗(b)]�J

∥
∥

F. (3)

4: return v0, the leading right singular vector of �Ĵ1
[A∗(b)]�Ĵ2

.

3 Previous results

In the following, we will work with model (1), i.e., we observe

trace
(
A∗

�uv∗)+ z�

where u ∈ Cn1 is s1-sparse, v ∈ Cn2 is s2-sparse, and z ∈ Cm is noise. As in [23],
ν (z) will quantify the noise-to-signal ratio by

ν (z) := ‖z‖
‖A (uv∗) ‖ . (4)

In our results, we will make no assumptions on the noise z except that ν (z) needs to
be smaller than a certain threshold. (Our results will hold for adversarial noise, i.e.,
the recovery guarantees will hold uniformly for all z ∈ Cm, such that ν (z) satisfies
this threshold.) For our analysis, A will be a Gaussian linear operator, that is, all

the entries of the matrices A1, . . . , Am are independent with distribution CN
(

0, 1
m

)
.

(Here, a complex-valued random variable X has distribution CN
(

0, 1
m

)
if its real

and complex part are independent Gaussians with expectation 0 and variance
√

σ
2 .)

In [23], the authors derived that Algorithm 1, if initialized by Algorithm 3, is able
to recover both u and v (up to scale ambiguity), if both u and v belong to a certain
restricted class of signals. More precisely, they proved the following result.

Theorem 1 ([23, see Theorem 1 and 4]) Assume that A : Cn1×n2 −→ Cm is a
Gaussian linear operator as described above. Let b = A (uv∗) + z, where u is
s1-sparse and v is s2-sparse. Suppose that ‖u‖∞ ≥ 0.78‖u‖, ‖v‖∞ ≥ 0.78‖v‖,
and that the noise level satisfies ν (z) ≤ 0.04. Then, with probability exceeding
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1 − exp (−c1m), the output of the Algorithm 1, initialized by Algorithm 3, converges
linearly to uv∗ provided that

m ≥ c2 (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
,

where c1, c2 > 0 are absolute constants.

Note that in order to apply Theorem 1 to signals u and v, one needs to require that
more than half of the mass of u and v are located in one single entry, which is a severe
restriction, which can be prohibitive for many applications. Our goal in the following
will be to considerably relax this assumption by slightly increasing the amount of
required measurements. We will relax this assumption in two different ways: On the
one hand, we will show that one can replace 0.78 by an arbitrary small constant that
will then show up in the number of measurements. On the other hand, we generalize
the result to the case that a significant portion of mass of u is concentrated on a small
number of entries k, rather than just one of them.

4 Main result

In this section, we will state the main result of this article, Theorem 2. For that, we
need to define the quantity

‖x‖[k] := max
I⊂[n1], |I |=k

(
∑

i∈I

|xi |2
)1/2

=
(

k∑

i=1

(
x∗
i

)2
)1/2

,

for any x ∈ Cn1 , where
(
x∗
i

)n1
i=1 denotes the non-increasing rearrangement of

(|xi |)n1
i=1. (This is in fact a norm, cf. [29].) Our main requirement on the vector u will

be that a significant amount of its mass is located in the largest k entries, i.e., that
‖u‖[k]
‖u‖ is large enough.

Theorem 2 Let k ∈ [n1] and 0 < ξ < 1, 0 < μ < 1. Then, there are absolute
constants C1, C2, C3 > 0 such that if

m ≥ C1 max

{
1

ξ4μ4
,

k

ξ2

}
(s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (5)

then with probability at least 1 − exp (−C2m), the following holds.

For all s1-sparse u ∈ Cn1 with ‖u‖[k] ≥ ξ‖u‖, all s2-sparse v ∈ Cn2 with

‖v‖∞ ≥ μ‖v‖, and all z ∈ Cm with ν (z) ≤ C3 min
{
ξ2μ2; ξ√

k

}
, the iterates

{Xt }t∈N generated by applying Algorithm 1, initialized by Algorithm 3, satisfy

lim sup
t→∞

‖Xt − uv∗‖F

‖uv∗‖F
≤ 8.3ν.
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Furthermore, the convergence is linear, i.e., for all t � log
(

1
ε

)
, we have that

‖Xt − uv∗‖F

‖uv∗‖F
≤ 8.3ν + ε. (6)

In the following, we will discuss some important special cases of Theorem 2.

– Peaky signals: In [23], the authors discuss recovery guarantees for signals u and
v with ‖u‖∞‖u‖ and ‖v‖∞‖v‖ , both bounded below by an absolute constant μ ≈ 0.78.
The case k = 1 of our theorem yields a direct improvement of this result in the
sense that μ can be chosen arbitrarily small with the number of required measure-
ments only increasing by a factor of order μ−8. Hence, even when this constant
decays logarithmically in the dimension, the required number of measurements
will only increase by logarithmic factors.

– Signals with multiple large entries: When one of the input signals has multiple
large entries, using the ‖ · ‖[k] norm improves upon the resulting guarantee as
compared to the scenario just discussed. As an example, assume that s1 = s2 = s,
that u and v are normalized with ‖v‖∞ ≥ c1s

−1/8, and that k = c2s
1/2 of the

entries of u are of absolute value at least c3s
−1/4. Then, ‖u‖[k] ≥ √

c2c3. Using
Theorem 2, we obtain that the vectors u and v can be recovered if the number
of measurements is on the order of s3/2, thus below the order of s2 that has
been established for arbitrary sparse signals in [25] (cf. next item). In contrast,
applying Theorem 2 with k = 1 would yield that the number of measurements
would have to be on the order of s5/2, which is worse than the state-of-the-art.

– Arbitrary sparse signals: Applying Theorem 2 to non-peaky signals yields sub-
optimal results. Indeed, let u ∈ Cn1 s1-sparse and v ∈ Cn2 s2-sparse be generic
vectors. Observe that ‖v‖∞ 
 1√

s2
‖v‖. Consequently, Theorem 2 applied with

ξ = 1, k = s1, and μ = 1√
s2

yields that with high probability a generic s1-sparse

u and a generic s2-sparse v can be recovered from y = A (uv∗)+z, if the number
of measurements satisfies

m ≥ C max
{
s1; s2

2

}
(s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
,

and if the noise level ν is on the order of O
(

max
{

1
s2

; 1√
s1

})
. Previous results

(see, e.g., [25]), in contrast, require m ≥ C max
{
s2

1 ; s2
2

}
log
(

max
{

n1
s1

, n2
s2

})

samples.

Remark 1 The peakiness assumptions in Theorem 2 may seem arbitrary at first sight
but in certain applications they are reasonable. Namely, when u is the signal trans-
mitted via a wireless channel and v is the unknown vector of channel parameters, it
is natural to assume that v has a large entry, as the direct path will always carry most
of the energy. The signal u can be modified by the sender, so some large entries can
be artificially introduced. In this regard, being able to consider multiple entries of
comparable size is of advantage as adding a single very large entry will result in a
dramatic increase of the peak-to-average power ratio.
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5 Proofs

5.1 Technical tools

The goal of this section is to prove Theorem 2. We will start by recalling the following
variant of the well-known restricted isometry property.

Definition 1 (see [23]) A linear operator A has the (s1, s2, r)-restricted isometry
property with constant δ > 0 if

(1 − δ) ‖X‖2
F ≤ ‖A (X) ‖2 ≤ (1 + δ) ‖X‖2

F (7)

for all matrices X ∈ Cn1×n2 of rank at most r with at most s1 non-zero rows and at
most s2 non-zero columns.

The following lemma tells us that this property holds with high probability for a
number of measurements close to the information-theoretic limit.

Lemma 1 (See, e.g., Theorem 2 in [23]) There are absolute constants c1, c2 > 0,
such that if

m ≥ c1

δ2
r (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (8)

for some δ > 0, then with probability at least 1 − exp (−c2m) A has the (s1, s2, r)-
restricted isometry property with restricted isometry constant δ.

As in [23, Lemma 6], we will need the following quantity, which depends on δ

and ν.

ωsup := sup
{
ω ∈ [0, π

2 ) : sin (ω) ≥ Cδ[δ tan(ω) + (1 + δ)ν sec(ω)]} (9)

Here, the constant Cδ is given by the expression

Cδ = 1.01

√
2

1−δ2 + 1
1−δ

1 −
√

2
1−δ2 δ

,

as it can be seen by an inspection of the proof of Lemma 3 in [23]. The precise value
of Cδ will not be important in the following, we will only use that 2 ≤ Cδ ≤ 5 for
δ ≤ 0.04.

A simple estimate for ωsup is given by the following lemma.

Lemma 2 Assume that 0 < δ ≤ 0.04 and ν ≤ 0.04. Then, it holds that

1
2 ≤ sin(ωsup) ≤ 1.
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Proof We observe that in order to show the claim, it is enough to verify that ω =
arcsin 1

2 fulfills the inequality in (9). Indeed, using cos ω =
√

3
4 and Cδ ≤ 5, we

obtain that

Cδ

[
δ tan

(
arcsin

1

2

)
+ (1 + δ) ν sec

(
arcsin

1

2

)]
≤ Cδ

[
0.04

1/2√
3/4

+ 1.04 · 0.04√
3/4

]

≤ 1

2
.

The quantity ωsup controls the maximal angle between the initialization v0 and the
ground truth v such that the sparse power factorization is guaranteed to converge as
captured by the following theorem.

Theorem 3 (Theorem 3 in [23]) Assume that:

1) A has the (3s1, 3s2, 2)-RIP with isometry constant δ ≤ 0.08.
2) ν ≤ 0.08.
3) The initialization v0 satisfies sin(∠(v0, v)) < sin

(
ωsup

)
.

Then, the iterates {Xt }t∈N generated by Algorithm 1, initialized via Algorithm 3,
satisfy

lim sup
t→∞

‖Xt − uv∗‖F

‖uv∗‖F
≤ 8.3ν.

Furthermore, the convergence is linear in the sense of (6).

Thus, it remains to verify that the initialization satisfies sin(∠(v0, v)) <

sin
(
ωsup

)
. The following lemma gives an upper bound on sin(∠(v0, v)).

Lemma 3 (Lemma 8 in [23]) Assume that the (3s1, 3s2, 2)-restricted isometry prop-
erty holds for some constant δ > 0. Furthermore, assume that ‖u‖ = ‖v‖ = 1. Let
Ĵ1 ⊆ [n1] and Ĵ2 ⊆ [n2] denote the output resulting from Algorithm 3. Denote by v0
the leading right-singular vector of �Ĵ1

[A∗(b)]�Ĵ2
. Then, it holds that

sin(∠(v0, v)) ≤
∥
∥�Ĵ1

u
∥
∥
∥
∥�⊥̂

J2
v
∥
∥+ (δ + ν + δν)

∥
∥�Ĵ1

u
∥
∥− (δ + ν + δν)

. (10)

Furthermore, we will need the following two lemmas for our proof.

Lemma 4 (Lemma 10 in [23]) Let u and v be as in Lemma 5 and assume that
the measurement operator A satisfies the (3s1, 3s2, 2)-restricted isometry property
with constant δ. Recall that Ĵ1 ⊂ [n1] is the support estimate for v0 given by the
initialization algorithm 3. Define

J̃1 := {
j ∈ [n1] : |uj | ≥ 2 (δ + ν + δν)

}
. (11)

Then, we have that J̃1 ⊂ Ĵ1.
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Lemma 5 Assume that A has the (3s1, 3s2, 2)-restricted isometry property with
isometry constant δ > 0 and assume that u, respectively v, are s1-sparse, respectively
s2-sparse, and satisfy ‖u‖ = ‖v‖ = 1. Let J̃1 be defined as in (11). Then, it holds that

∥
∥�Ĵ1

u
∥
∥
∥
∥�Ĵ2

v
∥
∥ ≥ ∥

∥�J̃1
u
∥
∥‖v‖∞ − 2 (δ + ν + δν) .

Lemma 5 is actually a slight generalization of what has been shown in [23, p.
1685]. For completeness, we have included a proof in the Appendix, which closely
follows the proof in [23].

5.2 Proof of our main result

We will now piece together these ingredients to obtain a sufficient condition; in the
remainder of the section, we will then show that the condition holds in our mea-
surement setup. First note that in order to apply Theorem 3, we need to check that
sin(∠(v0, v)) < sin

(
ωsup

)
is satisfied. By Lemma 3, it is sufficient to show that the

right-hand side of inequality (10) is strictly smaller than sin
(
ωsup

)
. Combining this

with the equality
∥
∥�⊥̂

J2
v
∥
∥ =

√
1 − ∥

∥�Ĵ2
v
∥
∥2, we obtain the sufficient condition

∥
∥�Ĵ1

u
∥
∥
√

1 − ∥
∥�Ĵ2

v
∥
∥2

< sin
(
ωsup

) (∥∥�Ĵ1
u
∥
∥− (δ + ν + δν)

)
− (δ + ν + δν)

Further manipulations yield that this is equivalent to

∥
∥�Ĵ1

u
∥
∥2

<
(

sin
(
ωsup

) ∥∥�Ĵ1
u
∥
∥− (

1 + sin
(
ωsup

))
(δ + ν + δν)

)2

+ ∥
∥�Ĵ1

u
∥
∥2∥∥�Ĵ2

v
∥
∥2.

(12)

Hence, in the following, our goal will be to verify (12). We already noticed that
the angle ωsup measures how much the vector v0 given by the initializiation has to
be aligned with the ground truth v in order for the sparse power factorization to
converge. Consequently, it is natural to expect that the smaller the constant δ and the
noise-to-signal ratio ν, the less the initializiation vector has to be aligned with the
ground truth, i.e., the larger ωsup can be. This fact is captured by the following lemma.

Lemma 6 Let 0 < δ ≤ 0.04 and ν ≤ 0.04. Then, it holds that

sin(ωsup) ≥ 1 − C2
δ (δ + 2δν + 2ν)2 .

Proof We will first show that it holds that

sin
(
ωsup

) = Cδ

[
δ tan

(
ωsup

)+ (1 + δ) ν sec
(
ωsup

)]
. (13)

For that, we define the set

� := {ω ∈ [0, π/2) : sin (ω) ≥ Cδ[δ tan(ω) + (1 + δ)ν sec(ω)]}
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and note that ωsup = sup �. (Note that from Lemma 2 and its proof, it follows that �

is nonempty.) We observe that

lim
ω↑π/2

Cδ [δ tan (ω) + (1 + δ) ν sec (ω)] = +∞. (14)

Hence, � is a compact set. In particular, ωsup is contained in this set. Now assume by
contradiction that

sin
(
ωsup

)
> Cδ[δ tan(ωsup) + (1 + δ)ν sec(ωsup)].

Because of (14) and as the sine is bounded in [0, π/2), this implies by continuity that
there must be an ω ∈ [0, π/2) such that ω > ωsup and sin (ω) = Cδ[δ tan(ω) + (1 +
δ)ν sec(ω). Hence, ω ∈ �, which is a contradiction to the definition of ωsup. Hence,
we have proven equation (13). Using trigonometric identities, we obtain from (13)
that

sin
(
ωsup

) = Cδ

⎡

⎢
⎣δ

sin
(
ωsup

)

√
1 − sin

(
ωsup

)2
+ (1 + δ) ν

1
√

1 − sin
(
ωsup

)2

⎤

⎥
⎦ .

Lemma 2 implies that

sin
(
ωsup

) ≤ sin
(
ωsup

)

√
1 − sin

(
ωsup

)2
Cδ (δ + 2 (1 + δ) ν) .

Rearranging terms yields that

sin
(
ωsup

) ≥
√

1 − C2
δ (δ + 2δν + 2ν)2.

The claim follows then using the fact that
√

x ≥ x for all x ∈ [0, 1].

With these preliminary lemmas, we can now prove the following proposition,
which is a slightly more general form of Theorem 2.

Proposition 1 There are absolute constants c1, c2, c3 > 0 such that if

m ≥ c1δ
−2 (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (15)

for some 0 < δ < 0.01, then with probability at least 1 − exp (−c2m), the following
statement holds uniformly for all s1-sparse u ∈ Cn1 , s2-sparse v ∈ Cn2 , and z ∈ Cm

such that ‖u‖ = ‖v‖ = 1 and ν (z) ≤ 0.01:
Let the measurements be given by b = A (uv∗) + z for A Gaussian as above and let
J̃1 be defined by

J̃1 := {
j ∈ [n1] : |uj | ≥ Mδ,ν

}
, (16)

where
Mδ,ν := 2 (δ + ν + δν) .

Then, whenever ∥∥�J̃1
u
∥∥‖v‖∞ > c3

√
Mδ,ν, (17)
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the iterates {Xt }t∈N generated by Algorithm 1 initialized via Algorithm 3 satisfy

lim sup
t→∞

‖Xt − uv∗‖F ≤ 8.3ν.

Furthermore, the convergence is linear in the sense of (6).

Proof of Proposition 1 Assumption (15) and Lemma 1 yield that with probability at
least 1 − exp (−cm), the (3s1, 3s2, 2)-restricted isometry property holds with con-
stant δ. For the remainder of the proof, we will consider the event that the restricted
isometry property holds for such δ. We obtain

∥∥�J̃1
u
∥∥‖v‖∞ ≥

(√
C2

δ + 1 + 1

)√
Mδ,ν

from 2 ≤ Cδ ≤ 5 and by choosing the constant c3 in assumption (17) large enough.
Combining this with Lemma 5, we obtain that

∥
∥�Ĵ1

u
∥
∥
∥
∥�Ĵ2

v
∥
∥ ≥ ∥

∥�J̃1
u
∥
∥‖v‖∞ − Mδ,ν .

>

√(
C2

δ + 1
)
Mδ,ν,

(18)

where we used that
√

x ≥ x for all x ∈ [0, 1]. This yields a lower bound for the
second summand of the right-hand side of (12). To bound the first summand, we
estimate

sin(ωsup)‖�Ĵ1
u‖ − (

sin(ωsup) + 1
)
(δ + ν + δν)

≥ (
1 − C2

δ (δ + 2ν + 2δν)2) ‖�Ĵ1
u‖ − 2 (δ + ν + δν)

≥ ‖�Ĵ1
u‖ − C2

δ (δ + 2ν + 2δν)2 − 2 (δ + ν + δν)

≥ ‖�Ĵ1
u‖ − (

C2
δ + 1

)
Mδ,ν

≥ 0.

(19)

In the first line, we used Lemma 6 and the fact that sin(ωsup) ≤ 1. The second line is
due to ‖�Ĵ1

u‖ ≤ 1 and the third inequality is due to δ ≥ 0, ν ≥ 0. In order to verify
the last inequality, it is enough to observe that due to Lemma 4 and due to assumption
(17) with c3 large enough

‖�Ĵ1
u‖ ≥ ‖�J̃1

u‖ ≥ ‖�J̃1
u‖∥∥‖v‖∞ ≥

(
C2

δ + 1
)

Mδ,ν,

where the last inequality uses that Cδ ≤ 5 and 0 ≤ δ, ν ≤ 0.01. Hence, by squaring
(19), we obtain that

(
sin(ωsup)‖�Ĵ1

u‖ − (
sin(ωsup) + 1

)
(δ + ν + δν)

)2

≥
(
‖�Ĵ1

u‖ − 1
2

(
C2

δ + 1
)
Mδ,ν

)2

≥ ‖�Ĵ1
u‖2 − (

C2
δ + 1

)
Mδ,ν‖�Ĵ1

u‖
≥ ‖�Ĵ1

u‖2 − (
C2

δ + 1
)
Mδ,ν,

(20)

where in the last line, we again used that ‖�Ĵ1
u‖ ≤ 1. Together with (18), this yields

(12), as desired.

Finally, we will deduce Theorem 2 from Proposition 1.
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Proof of Theorem 2 We will prove this result by applying Proposition 1 with

δ = min

{
ξ

6
√

2k
; ξ2μ2

8c2
3

}

. (21)

Let u ∈ Cn1 s1-sparse, v ∈ Cn2 s2-sparse, and z ∈ Cm such that the assumptions
of Theorem 2 are satisfied. Without loss of generality, we may assume in the follow-
ing that ‖u‖ = ‖v‖ = 1. First, we note that invoking δ, ν < 0.01 and potentially
decreasing the size of C3, we have that

2 (δ + ν (z) + δν (z)) < 2 (δ + 2ν (z)) ≤ ξ√
2k

.

Hence, we obtain that

J̆1 :=
{
j ∈ [n1] : |uj | ≥ ξ√

2k

}
⊂ J̃1, (22)

where J̃1 is the set defined in (16). Note that

∑

i∈[k]\J̆1

(
u∗

i

)2
<

∑

i∈[k]\J̆1

ξ2

2k
≤ ξ2

2
,

where in the first inequality, we have used that u∗
i <

ξ√
2k

for all i ∈ [k] \J̆1. By the

assumption ‖u‖[k] ≥ ξ , this yields that
∑

i∈[k]∩J̆1

(
u∗

i

)2 ≥ ξ2

2 , which in turn implies

that ‖�
J̆1

u‖ ≥ ξ√
2
. By the inclusion (22), we obtain that ‖�J̃1

u‖ ≥ ξ√
2
. Hence,

using the assumption ‖v‖∞ ≥ μ, our choice of δ, the assumption on the noise level
ν (z) and potentially again decreasing the value of the constant C3, we obtain that

‖�J̃1
u‖‖v‖∞ ≥ ξμ√

2
≥ c3

√
Mδ,ν .

This shows that (17) is satisfied. Hence, we can apply Proposition 1 and by inserting
our choice of δ into (15), so choosing the constant C1 large enough, we obtain the
main result.

6 Outlook

We see many interesting directions for follow-up work. Most importantly, it remains
to explore whether additional constraints on the signals to be recovered are truly
necessary (cf. our discussion on to SparsePCA in Section 2.3). Even if this is the case,
there is substantial room for improvement with respect to the noise-dependence of the
recovery results. A direction to proceed could be to consider stochastic noise models
instead of adversarial noise. Also in this work, we exclusively considered operators A
constructed using Gaussian matrices. However, in many applications of interest, the
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measurement matrices possess a significantly reduced amount of randomness. For
example, in blind deconvolution, one typically encounters rank-one measurements.
That is, the restricted isometry property as used in this paper does not hold. Thus,
one needs additional insight to study whether there exists a computationally tractable
initialization procedure at a near-optimal sampling rate. First steps in this direction
were taken in [20, 22], but a lot of questions remain open.

Acknowledgements The authors want to thank Yoram Bresler and Kiryung Lee for helpful discussions.
Furthermore, we would like to thank the referees for the ir careful reading and their helpful suggestions,
which improved the manuscript.

Appendix: Proof of Lemma 5

For the proof of Lemma 5, we will use the following result.

Lemma 7 (Lemma 17 and Lemma 18 in [23]) Assume that the (3s1, 3s2, 2)-
restricted isometry property is fulfilled for some restricted isometry constant δ > 0.
Assume that the cardinality of J̃1 ⊆ [n1], respectively J̃2 ⊆ [n2] is at most 2s1,
respectively 2s2. Then, whenever u ∈ Cn1 is at most 2s1-sparse and v ∈ Cn2 is at
most 2s2-sparse, we have that

‖�J̃1
[(A∗A − I )(uv∗)]�J̃2

‖ ≤ δ‖uv∗‖F.

Furthermore for all z ∈ Cn and for all J̃1 ⊆ [n1], respectively J̃2 ⊆ [n2], with
cardinality at most s1, respectively s2, we have that

‖�J̃1
[A∗(z)]�J̃2

‖ ≤ √
1 + δ‖z‖�2 .

Proof of Lemma 5 Recall that b = A (X) + z and define k1 and k2 by

k1 := arg max
k∈[n2]

|vk|
k2 := arg max

k∈[n2]

∥
∥�Ĵ1

[A∗(b)]�{k}
∥
∥

F.
(23)

The starting point of our proof is the observation that
∥∥�Ĵ1

[A∗(b)]�{k2}
∥∥

F ≥ ∥∥�Ĵ1
[A∗(b)]�{k1}

∥∥
F ≥ ∥∥�J̃1

[A∗(b)]�{k1}
∥∥

F, (24)

where the first inequality is due to the definition of k2 and the second one follows
from J̃1 ⊂ Ĵ1, which is due to Lemma 4. The right-hand side of the inequality chain
can be estimated from below by

∥∥�J̃1
[A∗(b)]�{k1}

∥∥
F≥ ∥∥�J̃1

uv∗�{k1}
∥∥

F − ∥∥�J̃1

[
(A∗A − I ) (uv∗)

]
�{k1}

∥∥
F − ∥∥�J̃1

A∗ (z)�{k1}
∥∥

F
≥ ∥∥�J̃1

uv∗�{k1}
∥∥

F − (
δ‖uv∗‖F + √

1 + δ‖z‖)
≥ ∥∥�J̃1

u
∥∥‖v‖∞ − (δ + ν + δν) .

(25)
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In the first inequality, we used b = A (uv∗) + z and the triangle inequality. The
second inequality follows from Lemma 7. The last line follows from ‖uv∗‖F = 1
and ‖z‖ = ν. Next, we will estimate the left-hand side of (24) by

∥∥�Ĵ1
[A∗(b)]�{k2}

∥∥
F

≤ ∥
∥�Ĵ1

uv∗�{k2}
∥
∥

F + (
δ‖uv∗‖F + √

1 + δ‖z‖)
≤ ∥
∥�Ĵ1

u
∥
∥
∥
∥�{k2}v

∥
∥+ (δ + ν + δν)

≤ ∥
∥�Ĵ1

u
∥
∥
∥
∥�Ĵ2

v
∥
∥+ (δ + ν + δν) .

(26)

The first two lines are obtained by an analogous reasoning as for (25). The last line is
due to {k2} ⊂ Ĵ2, which is a consequence of the definition of Ĵ2 (3) and the definition
of {k2} (23). We finish the proof by combining the inequality chains (24), (25), and
(26).
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17. Jung, P., Krahmer, F., Stöger, D.: Blind demixing and deconvolution at near-optimal rate. IEEE Trans.
Inform. Theory 64(2), 704–727 (2018)

18. Kech, M., Krahmer, F.: Optimal injectivity conditions for bilinear inverse problems with applica-
tions to identifiability of deconvolution problems. SIAM J. Appl. Alg. Geom. 1(1), 20–37 (2017).
https://doi.org/10.1137/16M1067469

19. Krauthgamer, R., Nadler, B., Vilenchik, D.: Do semidefinite relaxations solve sparse PCA up to the
information limit. Ann. Statist. 43(3), 1300–1322 (2015)

20. Lee, K., Junge, M.: Rip-like properties in subsampled blind deconvolution. arXiv:1511.06146 (2015)
21. Lee, K., Krahmer, F., Romberg, J.: Spectral methods for passive imaging: non-asymptotic perfor-

mance and robustness. arXiv:1708.04343 (2017)
22. Lee, K., Li, Y., Junge, M., Bresler, Y.: Blind recovery of sparse signals from subsampled convolution.

IEEE Trans. Inform. Theory 63(2), 802–821 (2017)
23. Lee, K., Wu, Y., Bresler, Y.: Near optimal compressed sensing of a class of sparse low-rank matrices

via sparse power factorization. IEEE Trans. Inform Theory (2017)
24. Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex

optimization. arXiv:1606.04933 (2016)
25. Ling, S., Strohmer, T.: Self-calibration and biconvex compressive sensing. Inverse Probl 31(11),

115,002 (2015)
26. Ling, S., Strohmer, T.: Blind deconvolution meets blind demixing: algorithms and performance

bounds. IEEE Trans. Inform. Theory 63(7), 4497–4520 (2017)
27. Ling, S., Strohmer, T.: Regularized gradient descent: a nonconvex recipe for fast joint blind

deconvolution and demixing. arXiv:1703.08642 (2017)
28. Ma, Z.: Sparse principal component analysis and iterative thresholding. Ann. Statist. 41(2), 772–801

(2013)
29. Mendelson, S., Rauhut, H., Ward, R., et al.: Improved bounds for sparse recovery from subsampled

random convolutions. Ann. Appl. Probab. 28(6), 3491–3527 (2018)
30. Needell, D., Tropp, J.A.: Cosamp: iterative signal recovery from incomplete and inaccurate samples.

Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)
31. Oymak, S., Jalali, A., Fazel, M., Eldar, Y.C., Hassibi, B.: Simultaneously structured models with

application to sparse and low-rank matrices. IEEE Trans. Inform. Theory 61(5), 2886–2908 (2015)
32. Qu, Q., Zhang, Y., Eldar, Y.C., Wright, J.: Convolutional phase retrieval via gradient descent.

arXiv:1712.00716 (2017)
33. Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: breaking sample

complexity barriers via nonconvex optimization. arXiv:1702.06175 (2017)
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C. Article: On the convex geometry of
blind deconvolution and matrix
completion

Summary

We have seen in previous sections that both blind deconvolution and matrix completion
can be formulated as problems of the form

y = A (X0) + e ∈ Cm,

where X0 is a low-rank matrix, A : Cn1×n2 → Cm is a linear operator, and ‖e‖ ≤ τ is
additive, deterministic noise. A widely-studied approach is to solve this problem is the
semidefinite program

minimize ‖X‖∗
subject to ‖y −A (X) ‖ ≤ τ.

(C.1)

While previous results show that exact recovery is possible for this approach for a near-
optimal amount of measurements, the corresponding noise bounds are rather of the
type

‖X̂ −X0‖F . √n2τ,

where X̂ denotes a minimizer of (C.1). This noise bound seems to be suboptimal as
such an additional dimension factor as √n2 does not appear in other problems like
matrix sensing [99] or phase retrieval [17, 10]. The goal of the following article is to
obtain a better understanding of this phenomenon. Its two main results are as follows.

(a) Matrix completion and blind deconvolution are unstable in the following sense.
Let the ground truth matrix X0 be given. Then with high probability there is
a noise level τ0 > 0 such that for all τ ≤ τ0 there exists a noise vector e with
‖e‖ ≤ τ such that there is an alternative solution X̂ to (C.1) with the following
properties.
• X̂ is feasible, i.e., ‖A (X)− y‖ ≤ e
• X̂ is preferred to X0 by the SDP (C.1), i.e., ‖X̂‖∗ ≤ ‖X0‖∗,
• but X̂ is far from X0 in Frobenius norm, i.e., ‖X̂ −X0‖F is large.
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For a precise statement of these results we refer to [68, Theorem 3.1] and [68,
Theorem 3.5].

(b) If the noise level τ is sufficiently large near-optimal noise bounds are possible in
the blind deconvolution framework. For a precise statement of this result we refer
to [68, Theorem 3.7].

Statement of individual contribution
The project started with my observation that in blind deconvolution Mendelson’s small
method can be applied successfully to a certain subset of matrices in the descent cone
of the nuclear norm. This observation allowed me to find a proof of [68, Theorem 3.7],
where Felix Krahmer and I had several research discussions about this topic.
While we were still trying to prove that λmin (A,K∗ (h0m

∗
0)) & 1, which was our first

conjecture, my advisor Felix Krahmer suggested me to look at certain special matrices
B and to also take into account the possibility that such a result might just not be true
in general. From this discussions the proof idea for a first version of [68, Proposition
3.3] arose, which showed a special case. After I worked out the proof details, Felix
Krahmer and I found in joint discussions a way to simplify the proof. I could use this
insight to show [68, Proposition 3.3] in full generality.
I was mainly responsible for tranferring our results from the randomized blind decon-
volution setting to the matrix completion framework, where Felix Krahmer provided
technical input. Furthermore, I was fully responsible for writing and preparing this
manuscript. After that Felix Krahmer and I both proofread and polished the article
together.

Conference proceedings
The results on blind deconvolution have been presented in part at the 52nd Annual
Asilomar Conference on Signals, Systems, and Computers [67].
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On the convex geometry of blind
deconvolution and matrix completion∗

Felix Krahmer†, Dominik Stöger†

March 13, 2019

Low-rank matrix recovery from structured measurements has been a topic
of intense study in the last decade and many important problems like matrix
completion and blind deconvolution have been formulated in this framework.
An important benchmark method to solve these problems is to minimize the
nuclear norm, a convex proxy for the rank. A common approach to establish
recovery guarantees for this convex program relies on the construction of
a so-called approximate dual certificate. However, this approach provides
only limited insight in various respects. Most prominently, the noise bounds
exhibit seemingly suboptimal dimension factors. In this paper we take a
novel, more geometric viewpoint to analyze both the matrix completion and
the blind deconvolution scenario. We find that for both these applications
the dimension factors in the noise bounds are not an artifact of the proof,
but the problems are intrinsically badly conditioned. We show, however,
that bad conditioning only arises for very small noise levels: Under mild
assumptions that include many realistic noise levels we derive near-optimal
error estimates for blind deconvolution under adversarial noise.

Keywords: Convex relaxation, matrix completion, blind deconvolution, noise robust-
ness, nuclear norm minimization

1. Introduction

A number of recent works have explored the observation that various ill-posed inverse
problems in signal processing, imaging, and machine learning can be naturally formulated
as the task of recovering a low-rank matrix X0 ∈ Cn1×n2 from an underdetermined
system of structured linear measurements

y = A (X0) + e ∈ Cm,

∗The results of this paper have been presented in part at the 52nd Annual Asilomar Conference on
Signals, Systems, and Computers, October 28-31, 2018, Pacific Grove, USA [37]

†Department of Mathematics, Technische Universität München, 85748 Garching/Munich, Germany
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where A : Cn1×n2 → Cm is a linear map and e ∈ Cm, ∥e∥ ≤ τ , represents additive noise.
Such problems include, for example, matrix completion [8], phase retrieval [9], blind
deconvolution [1], robust PCA [6], and demixing [47]. In this paper, we aim to analyze
the worst case scenario, that is, we do not make any assumptions on the noise except for
the bound on its Euclidean norm (this scenario is sometimes referred to as adversarial
noise, as it allows for noise specifically designed to be most harmful in a given situation).
A natural first approach to recover X0 that remains an important benchmark is to solve
the semidefinite program

minimize ∥X∥∗
subject to ∥y − A (X) ∥ ≤ τ,

where ∥ · ∥∗ denotes the nuclear norm, i.e., the sum of the singular values. Recov-
ery guarantees have been shown under the assumption that the measurement operator
A possesses a certain degree of randomness. To establish such guarantees various proof
strategies have been proposed, including approaches via the restricted isometry property
[52, 45], descent cone analysis [11], and so-called approximate dual certificates [24, 23].
While the latter approach remains state of the art for many structured problems includ-
ing the highly relevant problems of randomized blind deconvolution and matrix com-
pletion, it seemingly has some disadvantages. Most prominently, the resulting recovery
guarantees take the form

∥X̂ − X0∥F ! √
n1τ, (1)

where X̂ denotes a minimizer of the semidefinite program above and ∥ · ∥F denotes
the Frobenius norm, whereas under comparable normalization, the first two approaches,
when applicable, give rise to superior recovery guarantees of the form

∥X̂ − X0∥F ! τ.

Before this paper it was open whether the additional dimension scaling factor in (1)
is a proof artifact. Similarly, for randomized blind deconvolution one of the coherence
terms appearing in the result was believed to arise only from the proof technique (cf. [44,
Remark 2]).

Another drawback of proceeding via an approximate dual certificate is that it gives
only limited insight into geometric properties of the problems such as the null-space
property [15], which is also an important ingredient for the study of some more efficient
non-convex algorithms [19, 40].

Approaches via descent cone analysis [11], in contrast, provide much more geometrical
insight. The underlying idea of such approaches is to study the minimum conic singular
value defined by

λmin (A,K) := inf
Z∈K\{0}

∥A (Z) ∥
∥Z∥F

for K the descent cone of the underlying atomic norm – the nuclear norm in case of low-
rank matrix recovery. For a more detailed review of this approach including a precise

2



definition of the descent cone we refer to Section 2.3 below. Through the study of the
minimum conic singular value many superior results were obtained for low-rank recovery
problems, most importantly in the context of phase retrieval [39, 38]. Furthermore, min-
imum conic singular values can also help to understand certain nonlinear measurement
models [50].

For all these reasons, it would be desirable to apply this approach also for matrix
completion and blind deconvolution. A challenge that one faces, however, is that for
both problems one cannot hope to recover all low-rank matrices; rather, only matrices
that satisfy certain coherence constraints are admissible (cf. the discussion in [57, Section
5.4]). In this article we address this challenge, providing the first geometric analysis of
these problems. We find that the dimensional factors appearing in the error bounds are
the true scaling of the minimum conic singular value and hence intrinsically relate to
the underlying geometry. Nevertheless for blind deconvolution, near-optimal recovery is
possible, if the noise level is not too small.

1.1. Organization of the paper and our contribution

In Section 2 we will review blind deconvolution, matrix completion, as well as some
techniques related to descent cone analysis. In Section 3 we will present the main
results of this paper. Theorems 3.1 and 3.5 establish that for both blind deconvolution
and matrix completion, nuclear norm minimization is intrinsically ill-conditioned. In
contrast, Theorem 3.7 provides a near-optimal error bound for blind deconvolution when
the noise level is not too small, implying that the conditioning problems only take effect
for very small noise levels. The upper bounds for the minimum conic singular value
which are the main ingredients of Theorems 3.1 and 3.5 are derived in Section 4. In
Section 5 we prove the stability results for blind deconvolution.
We believe that not only our results, but also the proof techniques and geometric insights
in this manuscript will be of general interest and help to obtain further understanding of
low-rank matrix recovery models, in particular under coherence constraints. We discuss
interesting directions for future research in Section 6.

2. Background and related work

2.1. Blind deconvolution

Blind deconvolution problems arise in a number of different areas in science and engi-
neering such as astronomy, imaging, and communications. The goal is to recover both
an unknown signal and an unknown kernel from their convolution. In this paper we
work with the circular convolution, which is defined by

w ∗ x :=

⎛
⎝

L∑

j=1

wjxk−j

⎞
⎠

L

k=1

,

3



where the index difference k − j is considered modulo L. Without further assumptions
on w and x this bilinear map is far from injective. Consequently, it is crucial to impose
structural constraints on both w and x. Arguably, the simplest such model is given by
linear constraints, that is, both w and x are constrained to known subspaces. Such a
model is reasonable in many applications. In wireless communication, for example, it
makes sense to assume that the channel behaviour is dominated by the most direct paths
and for the signal x a subspace model can be enforced by embedding the message via a
suitable coding map into a higher-dimensional space before transmission.

The first rigorous recovery guarantees for such a model were derived by Ahmed, Recht,
and Romberg [1]. More precisely, they assume that w = Bh, where B ∈ CL×K is a fixed,
deterministic matrix such that B∗B = IdK (i.e., B is an isometry) and they model
x = Cm0, where m0 denotes the complex-conjugate of m0. Here, the matrix C ∈ CL×K

is a random matrix, whose entries are independent and identically distributed with

circular symmetric normal distribution CN
(
0, 1√

L

)
. In this paper we also adopt this

model.
Using the well-known fact that the Fourier transform diagonalizes the circular convo-

lution one can rewrite
w ∗ x =

√
LF ∗diag (Fw) Fx,

where F ∈ CL×L denotes the normalized, unitary discrete Fourier matrix, and

ŵ ∗ x := F (w ∗ x) =
√

Ldiag (FBh0)FCm0.

Denoting by bℓ the ℓth row of the matrix FB, and by cℓ the ℓth row of the matrix√
LFC, one observes that

(
ŵ ∗ x

)
ℓ
= b∗

ℓh0m
∗
0cℓ = Tr (h0m

∗
0cℓb

∗
ℓ) = ⟨bℓc

∗
ℓ , h0m

∗
0⟩F .

Furthermore, because of the rotation invariance of the circular symmetric normal dis-
tribution all the entries of the vectors {cℓ}L

ℓ=1 are (jointly) independent and identically
distributed with distribution CN (0, 1). Noting that the expression ⟨h0m

∗
0, bℓc

∗
ℓ ⟩F is lin-

ear in h0m
∗
0, Ahmed, Recht, and Romberg [1] defined the operator A : CK×N → CL by

(A (X)) (ℓ) := ⟨bℓc
∗
ℓ ,X⟩F (2)

obtaining the measurement model

y = ŵ ∗ x + e = A (X0) + e,

where e ∈ CL is additive noise and X0 = h0m
∗
0. The goal is then to determine h0 and m0

from y ∈ CL up to the inherent scaling ambiguity, or, equivalently, to find the rank-one
matrix X0 = h0m

∗
0.

For e = 0, among all solutions of the equation y = A (X0), the matrix X0 is the one
with the smallest rank. For this reason, Ahmed, Recht, and Romberg [1] suggested to
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minimize a natural proxy for the rank, the nuclear norm ∥ · ∥∗, defined as the sum of the
singular values of a matrix.

minimize ∥X∥∗
subject to ∥A (X) − y∥ ≤ τ.

(3)

Here τ > 0 is an a priori bound for the noise level, that is, we assume that ∥e∥ ≤ τ . For
this semidefinite program, they establish the following recovery guarantee.

Theorem 2.1 ([1]). Consider measurements of the form y = A (h0m
∗
0)+e for h0 ∈ CK ,

m0 ∈ CN , e ∈ CL, and A as defined in (2). Assume that ∥e∥ ≤ τ and

L/ log3 L " Kµ2
max + N max

{
µ2

h0
; µ̃2

h0

}
.

Then with probability exceeding 1 − O
(
L−1

)
every minimizer X̂ of the SDP (3) satisfies

∥X̂ − h0m
∗
0∥F !

√
K + Nτ. (4)

Here µ2
max and µ2

h0
are coherence parameters, which are defined via

µ2
max :=

L

K
max
ℓ∈[L]

∥bℓ∥2.

and

µ2
h0

:=
L

∥h0∥2
max
ℓ∈[L]

|⟨bℓ, h0⟩|2.

The third coherence factor µ̃h0 is a technical term corresponding to a partition that is
constructed as a part of the proof of Theorem 2.1, which is based on the Golfing Scheme
[23].

To put the impact of the coherence factors into perspective, observe that if all vectors
bℓ have the same ℓ2-norm, one obtains that µmax = 1; this will be the case, for example,
when B is a low-frequency Fourier matrix, as it appears for applications in wireless com-
munication. The second coherence factor always satisfies 1 ≤ µ2

h0
≤ Kµ2

max. If µh0 is

smaller, this indicates that the mass ∥h0∥2 =
∑L

ℓ=1 |⟨bℓ, h0⟩|2 is distributed fairly evenly
among |⟨bℓ, h0⟩|. For example, if µh0 = 1, then |⟨bℓ, h0⟩| = 1√

L
∥h0∥ for all ℓ ∈ [L]. Nu-

merical simulations in [1] confirm that many h0 corresponding to large µh0 show worse
performance, indicating that this factor may be necessary.
The last coherence factor µ̃h0 , in contrast, will no longer appear in our result below,
which is why we refrain from detailed discussion. We refer the interested reader to [44,
Remark 2.1] and [28, Section 2.3] for details.
For generic h0 the parameters µh0 and µ̃h0 are reasonably small. For example, if h0 is
chosen from the uniform distribution on the sphere, one can show that with high prob-
ability µh0 = O

(√
log L

)
.

For the noiseless case, i.e., τ = 0, Theorem 2.1 yields exact recovery, and the required
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sample complexity L/ log3 L " K + N is optimal up to logarithmic factors, as the num-
ber of degrees of freedom is K +N −1 (see [30] for an exact identifiability analysis based
on algebraic geometry.) However, if there is noise, the bound for the reconstruction
error scales with

√
K + N , in contrast to other measurement scenarios such as low-rank

matrix recovery from Gaussian measurements (see, e.g., [11]).

Let us comment on some related work. The foundational paper [1] has triggered a
number of follow-up works on the problem of randomized blind deconvolution. A first line
of works extended the result to recovering signals from their superposition

∑r
i=1 wi ∗ xi,

a problem often referred to as blind demixing [44, 28]. Another line of works investigated
non-convex (gradient-descent based) algorithms [43, 46, 26], which have the advantage
that they are computationally less expensive, as they operate in the natural parameter
space. It has been shown that they require a near-optimal number of measurements for
recovery. For such an algorithm, [43] derived near-optimal noise-bounds for a Gaussian
noise model. However, as in this paper, we focus on the scenario of adversarial noise
(instead of random noise) the resulting guarantees are not comparable to ours below.

2.2. Matrix completion

The matrix completion problem of reconstructing a low-rank matrix X0 ∈ Rn1×n2 (we
assume that w.l.o.g. n1 ≥ n2) from only a part of its entries arises in many different
applications such as in collaborative filtering [53] and multiclass learning [3]. For this
reason one could observe a flurry of work on this problem in the last decade, and we will
only be able to give a very selective overview of this topic. The precise sampling model
that we consider is that m entries of X0 are sampled uniformly at random with replace-
ment. Denoting by ei the standard coordinate vectors in Rn1 and Rn2 , respectively, the
corresponding measurement operator A : Rn1×n2 → Rm can be written as

A (X) (i) :=

√
n1n2

m
⟨X, eaie

∗
bi

⟩F , (5)

where (ai, bi) ∈ [n1] × [n2] is chosen uniformly at random for each i ∈ [m] (and indepen-
dently from all other measurements). The scaling factor

√
n1n2

m in the definition of the
measurement operator A is chosen to ensure that E

[
∥A (X) ∥2

]
= ∥X∥2

F . (Some other
papers on matrix completion choose a different scaling. We have chosen this normaliza-
tion because in this way the results for the matrix completion problem can be better
compared to those for the blind deconvolution scenario.) Alternative sampling models
analyzed in other works include sampling a subset Ω uniformly from [n1] × [n2] (i.e.,
without replacement, see, e.g., [10]), or sampling using random selectors.

Again we aim to recover X0 from noisy observations y = A (X0) + e, with a noise
vector e ∈ Rm that satisfies ∥e∥ ≤ τ via the SDP

minimize ∥X∥∗
subject to ∥A (X) − y∥ ≤ τ.

(6)
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For matrix completion, this approach has first been studied in [8].

It is well known that similarly to the blind deconvolution problem, some incoherence
assumptions are necessary to allow for successful recovery. Indeed, suppose that X0 =
e1e

∗
1. Then, if m ≪ n1n2 with high probability it holds that A (X0) = 0 and one cannot

hope to recover X0. To avoid such special cases, one needs to ensure that the mass of
the Frobenius norm of X0 is spread out over all entries rather evenly. This property is
captured by the following coherence parameters [23]

µ (U) :=

√
n1

r
max
i∈[n1]

∥U∗ei∥

µ (V ) :=

√
n2

r
max
i∈[n2]

∥V ∗ei∥.

For these coherence parameters, a series of works [8, 10, 23, 51, 12] lead to the following
recovery guarantee for the noiseless scenario.

Theorem 2.2 ([12] 1). Consider measurements of the form y = A (X0), where X0 ∈
Rn1×n2 is a rank-r matrix and A is given by (5). Assume that

m ≥ C max
{
µ2 (U) ;µ2 (V )

}
rn1 log2 n1

Then with probability at least 1 − O
(
n−1

1

)
the matrix X0 is the unique minimizer of the

SDP (6) with τ = 0.

As for blind deconvolution, this result has been shown using an approximate dual
certificate. In [7] this result has been generalized to the case of adversarial noise, showing
that with high probability the minimizer X̂ of (6) satisfies

∥X̂ − X0∥F ! τ
√

n2, (7)

whenever m " n1polylog n1. As in the blind deconvolution framework, this error bound
differs from the case of full Gaussian measurements as discussed, for example, in [11],
and also from oracle estimates [6, Section III.B] by a dimensional scaling factor, which
will be addressed in this paper.

Also random noise models for matrix completion have been studied in a number of
works. In particular, we would like to mention [34, 49], which derive near-optimal rates
(both in sample size and estimation error) for matrix completion under subexponential
noise with a slightly different nuclear-norm penalized estimator than the one we consider
as long as the noise-level is not too small. Similar bounds have also been obtained in
[33] using an estimator, which is closer to the one in this work.

Apart from convex methods also many nonconvex algorithms have been proposed and
analysed, for example a number of variants of gradient descent (see, e.g., [31, 27, 25, 56,

1For the case of very small ranks this result can be refined further [17]. Namely one can remove one of
the two log-factors at the cost of an r3-dependence on the rank.
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21, 19, 40, 46]). Arguably the strongest result for matrix completion under adversarial
noise has been shown in [31, 32]. These works propose a non-convex algorithm based on
Riemannian optimization and show that if the number of measurements is larger than
r2n1polylog (n1) the true matrix can be reconstructed up to an estimation error superior
to the one in [7]. Namely for κ denoting the condition number of the matrix X0 they
show that the output X̂ of their algorithm satisfies (in our notation)

∥X̂ − X0∥ ! κ2√rm∥e∥∞, (8)

provided the noise level is below a certain, small threshold that scales with the smallest
singular value of X0. For error vectors e that are spread out evenly and matrices that
are well conditioned, one has that

√
m∥e∥∞ ≈ ∥e∥2, so this bound is superior to (7) in

the sense that the scaling factors that appear only scale with the rank r and not the
dimension. It should be noted though that in contrast to nuclear norm minimization
the underlying algorithm requires precise knowledge of the true rank of the matrix to be
recovered.

Just before completion of this manuscript, Chen et al. [14] bridged convex and noncon-
vex approaches, using nonconvex methods to analyze a convex recovery scheme. Their
results provide near optimal recovery guarantees for the matrix completion problem via
nuclear norm minimization under a subgaussian random noise model for a much larger
range of admissible noise levels than the aforementioned works. More precisely, the proof
is based on the observation that in their scenario the minimizer of the convex problem
is very close to an approximate critical point of a non-convex gradient based method.
This allows them to transfer existing stability results [46] for non-convex optimization
to the convex problem. However, the required sample complexity scales suboptimally in
the rank r of the matrix and similarly to (8), the error bound depends on the condition
number κ.

2.3. Descent cone analysis

In recent years a number of works have studied low-rank matrix recovery and compressed
sensing via a descent cone analysis. This approach has been pioneered for ℓ1-norm
minimization in [55] and for more general (atomic) norms in [11]. Here the descent cone
of a norm at a point X0 ∈ CK×N is the set of all possible directions Z ∈ CK×N such that
the norm does not increase. For the nuclear norm, this leads to the following definition.

Definition 2.3. For any matrix X0 ∈ CK×N define its descent cone K∗ (X0) by

K∗ (X0) :=
{
Z ∈ CK×N : ∥X0 + εZ∥∗ ≤ ∥X0∥∗ for some ε > 0

}
.

To understand its relevance for recovery guarantees assume for a moment that we are
in the noiseless scenario, i.e., τ = 0 and e = 0. Then the matrix X0 ∈ CK×N is the
unique minimizer the semidefinite program (3), if and only if the null space of A does not
intersect the descent cone K∗ (X0). In the case of noise, the constraint ∥y −A (X0) ∥ ≤ τ
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in the SDPs (3) and (6) defines a region around X0 + kerA, i.e., the affine subspace
consistent with the observed measurements in the noiseless scenario. The intersection of
this region with the set of all signals that have a smaller nuclear norm than the ground
truth X0 is the set of feasible solutions that are preferred to X0. The following quantity
for a matrix X0, which is often referred to as minimum conic singular value, quantifies
the size of this intersection

λmin (A,K∗ (X0)) := inf
Z∈K∗(X0)\{0}

∥A (Z) ∥
∥Z∥F

.

If λmin (A,K∗ (X0)) becomes larger, this intersection becomes smaller, which translates
into stronger recovery guarantees. The following theorem confirms this intuition.

Theorem 2.4. [11, Proposition 2.2] Let A : Cn1×n2 → Cm be a linear operator and
assume that y = A (X0) + e with ∥e∥ ≤ τ . Then any minimizer X̂ of the SDP (3)
satisfies

∥X̂ − X0∥F ≤ 2τ

λmin (A,K∗ (X0))
.

When measurement matrices of the operator A are full Gaussian matrices (in contrast
to rank-1 measurements as in this paper) and A is normalized such that E [A∗A] = Id, for
an arbitrary low-rank matrix X0 one has with high probability that λmin (A,K∗ (X0)) ≍
1. Consequently, Theorem 2.4 yields an optimal estimation error even for adversarial
noise. As we will show this is no longer the case for blind deconvolution and matrix
completion.

The geometric analysis of linear inverse problems via the descent cone and the min-
imum conic singular value has lead to many new results and insights in compressed
sensing and low-rank matrix recovery. For convex programs the phase transition of the
success rate could be precisely predicted [2]. As the proofs are specific to full Gaussian
measuements, they do not apply for a number of important structured and heavy-tailed
measurement scenarios. Stronger results [41, 18, 38, 29, 39] were subsequently obtained
using Mendelson’s small ball method [35, 48], a powerful tool for bounding a nonnegative
empirical process from below, now often refereed to as Mendelson’s small ball method.

2.4. Notation

For n ∈ N we will write [n] to denote the set {1; . . . ;n}. For any set A we will denote
its cardinality by |A|. For a complex number z we will denote its real part by Re (z)
and its imaginary part by Im (z). By log (·) we will denote the logarithm to the base
e. By EX we will denote the expectation of a random variable X and by P (A) we
denote the probability of an event A. If v ∈ Cn we will denote its ℓ2-norm by ∥v∥ and
its Hermitian transpose by v∗. For u, v ∈ Cn the (Euclidean) inner product is defined
by ⟨u, v⟩ := u∗v. Furthermore, for Z ∈ Cn1×n2 its spectral norm is given by ∥Z∥, i.e.,
the dual norm of the nuclear norm ∥Z∥∗. Moreover, the Frobenius norm of Z is defined
by ∥Z∥F with corresponding inner product ⟨Z,W ⟩F := Tr (Z∗W ), where W ∈ Cn1×n2 .
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When we study matrix completion, we will work with matrices Z ∈ Rn1×n2 and the
previous quantities will be defined analogously. Moreover, in that scenario we will use
the notation ∥Z∥ℓ∞ := max

(i,j)∈[n1]×[n2]
|Zi,j |, where {Zi,j}n1,n2

i,j=1 .

3. Our results

3.1. Instability of low-rank matrix recovery

3.1.1. Blind deconvolution

Our first main result states that randomized blind deconvolution can be unstable under
adversarial noise.

Theorem 3.1. Let K,N ∈ N \{1}. Assume that L is an integer multiple of K and that

C1K ≤ L ≤ KN

9
.

Then there exists a matrix B ∈ CL×K satisfying B∗B = IdK and with FB having rows
of equal norm, i.e., µ2

max = 1, such that for all h0 ∈ CK \ {0} and m0 ∈ CN \ {0} the
following holds:

With probability at least 1 − O
(
exp

(
− K

C2µ2

))
, where µ2 = µ2

h0
= L

∥h0∥2 max
ℓ∈[L]

|⟨bℓ, h0⟩|2,

there is τ0 > 0 such that for all τ ≤ τ0 there exists an adversarial noise vector e ∈ CL

with ∥e∥ ≤ τ that admits an alternative solution X̃ with the following properties.

• X̃ is feasible, i.e., ∥A
(
X̃
)

− y∥ = τ for y = A (h0m
∗
0) + e the noisy measurement

vector

• X̃ is preferred to X0 = h0m
∗
0 by the SDP (3), i.e., ∥X̃∥∗ ≤ ∥X0∥∗, but

• X̃ is far from the true solution in Frobenius norm, i.e.,

∥X̃ − X0∥F ≥ τ

C3

√
KN

L
.

The constants C1, C2, and C3 are universal.

Remark 3.2. The matrix B in the above result exactly fits into the framework of The-
orem 2.1, and also one can check that for our choice of B (see the proof of Proposition
3.3 for its definition) one has that µ2,h0 = µ1,h0. That is, the assumptions of Theorem
2.1 cannot be enough to deduce stability.

We do not expect, however, that this kind of instability is observed for arbitrary iso-
metric embeddings B ∈ CL×K. In particular, if B is a random embedding we expect that
a similar result as in [38] applies.
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To put our results in perspective note that for L ≍ (K + N) polylog (K + N), which
is the minimal number of measurements required for noiseless recovery, it holds that√

KN
L ≍

√
min{K,N}

polylog(K+N) . Up to logarithmic factors, this coincides with the rate pre-

dicted by (4), whenever K ≍ N .

Theorem 3.1 is a direct consequence of the following proposition, which we think is
interesting in its own right.

Proposition 3.3. Let K,N ∈ N \ {1}. Assume that L is an integer multiple of K and
that

C1K ≤ L ≤ KN

9
. (9)

Then there exists B ∈ CL×K satisfying B∗B = IdK and µ2
max = 1, whose corresponding

measurement operator A satisfies the following.

Let h0 ∈ CK \ {0}, m0 ∈ CN \ {0} and set µ2 := µh0 = L
max
ℓ∈[L]

|⟨bℓ,h0⟩|2

∥h0∥2 . Then with

probability at least 1 − O
(
exp

(
−C2K/µ2

))
it holds that

λmin (A,K∗ (h0m
∗
0)) ≤ C3

√
L

KN
. (10)

Here C1, C2, and C3 are absolute constants.

The proof of Proposition 3.3 will be provided in Section 4. Note that by definition of
the minimum conic singular value λmin (A,K∗ (h0m

∗
0)) Proposition 3.3 is equivalent to

the statement that with high probability there is Z ∈ K∗ (h0m
∗
0) \ {0} such that

∥A (Z) ∥ !
√

L

KN
∥Z∥F .

Our construction of such Z ∈ K∗ (h0m
∗
0) relies on the observation that with high prob-

ability there is a rank-one matrix W ∈ CK×N in the null-space of A which is relatively
close to the descent cone (with respect to the ∥·∥F -distance). Perturbing W by −βh0m

∗
0

for a suitable β one can then obtain a matrix Z ∈ K∗ (h0m
∗
0), which fulfills (3.1.1).

The existence of such a matrix W ∈ kerA also reveals a fact about the geometry of the
problem, which we find somewhat surprising: while the null space of A does not intersect
the descent cone (otherwise exact recovery would not be possible), the angle between
those objects is very small. This is very different from the behavior for measurement
matrices A with i.i.d. Gaussian entries (instead of bℓc

∗
ℓ ).

Remark 3.4. While X̃ is preferred to the true solution by the SDP (3) X̃ is typically
not a minimizer of (3). To see this, assume that without noise exact recovery is possible,
which is the case with high probability by Theorem 2.1. Then consider X̃ = X0 + tZ
for Z ∈ K∗ (h0m

∗
0) of the form Z = W − βh0m

∗
0 with W ∈ kerA and β > 0 such that
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∥A(Z)∥
∥Z∥F

!
√

L
KN , as in the proof of Proposition 3.3. As W /∈ K∗ (h0m

∗
0) (otherwise exact

recovery would not be possible) it follows that for t > 0

∥X̃∥∗ = ∥X0 + tZ∥∗
= ∥ (1 − tβ)X0 + tW∥∗
> ∥ (1 − tβ)X0∥∗

where the last line is due to K∗ (X0) = K∗ ((1 − tβ) X0).

On the other hand, we also have that A
(
X̂
)

= A ((1 − tβ) X0) due to A (W ) = 0

and, hence, (1 − tβ) X0 is admissible whenever X̃ is admissible. Consequently, the SDP
(3) will always prefer (1 − βt) h0m

∗
0 to X̃ and X̃ will never be a minimizer. It remains

an open problem what one can say about the minimizer X̂ of (3), see also Section 6.
Even if the minimizer of (3) X̂ is closer to the ground truth (in ∥ · ∥F -distance) than
X̃, however, the nuclear norms of X and X̃ will be very close, which can easily lead to
numerical instabilities.

3.1.2. Matrix completion

Our second main result states that for arbitrary incoherent low-rank matrices, matrix
completion is unstable with high probability. Note that in contrast to Theorem 3.1 which
is based on a specific choice of parameters the following result holds for an arbitrary
incoherent matrix X0.

Theorem 3.5. Let n1 ≥ n2 and let A : Rn1×n2 → Rm be defined as in (5). Assume that
X0 ∈ Rn1×n2 \ {0} is a rank r matrix with singular value decomposition X0 = UΣV ∗.
Moreover, assume that

C1rn1µ
2 (V ) log(2r) ≤ m ≤ n1n2

32
.

Then with probability at least 1−O
(
exp

(
− m

C2rµ2(U)µ2(V )

))
there is τ0 > 0 such that for

all τ ≤ τ0 there exists an adversarial noise vector e ∈ Rm with ∥e∥ ≤ τ that admits an
alternative solution X̃ ∈ Rn1×n2 with the following properties.

• X̃ is feasible, i.e.,
∥∥∥A
(
X̃
)

− y
∥∥∥ = τ for y = A (X0) + e the noisy measurement

vector

• X̃ is preferred to X0 by the SDP (6), i.e., ∥X̃∥∗ ≤ ∥X0∥∗ , but

• X̃ is far from the true solution in Frobenius norm, i.e.,

∥X̃ − X0∥F ≥ τ

C3

√
rn1n2

m
.

Here the constants C1, C2, and C3 are universal.
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Again, to put our results in perspective note that for m ≍ n1polylog (n1), which
is the minimal number of measurements required for noiseless recovery, it holds that√

rn1n2
m ≍

√
n2

polylog(n1)
. Up to logarithmic factors, this coincides with the rate predicted

by (7).

Theorem 3.5 is a direct consequence of the following proposition, which in our opinion
is of independent interest, as it provides a negative answer to a question by Tropp [57,
Section 5.4].

Proposition 3.6. Let X0 ∈ Rn1×n2 \{0} be a rank-r matrix with corresponding singular
value decomposition X0 = UΣV ∗. Moreover, assume that

C1rn1µ
2 (V ) log(2r) ≤ m ≤ n1n2

32
. (11)

Then with probability at least 1 − O
(
exp

(
− m

C2rµ2(U)µ2(V )

))
it holds that

λmin (A,K∗ (X0)) ≤ C3

√
m

n1n2r
. (12)

The constants C1, C2, and C3 are universal.

Proposition 3.6 corresponds to Proposition 3.3 for blind deconvolution and will be
proved analogously. We will again show that with high probability there is W ∈ Rn1×n2

such that A (W ) = 0 and W is relatively close to the descent cone of X0 in ∥·∥F -distance.
Setting Z := W − βUV ∗ for a suitable β > 0 yields an element of K∗ (X0) with

∥A (Z) ∥
∥Z∥F

≤ C3

√
m

n1n2r
.

3.2. Stable recovery

A geometric interpretation of Theorems 3.1 and 3.5 is that the nuclear norm ball is near-
tangential to both the kernels of matrix completion and randomized blind deconvolution.
Given that tangent spaces only provide local approximation, these results leave open,
what happens in some distance, i.e., for larger noise levels – this will depend on the
curvature of the nuclear norm ball.

Our third main result concerns exactly this problem for the randomized blind deconvo-
lution setup. As it turns out, the descent directions Z ∈ K∗ (h0m

∗
0) with ∥A (Z) ∥/∥Z∥F

very small correspond to directions of significant curvature. That is, only a very short
segment in this direction will have smaller nuclear norm than h0m

∗
0, and the correspond-

ing alternative solutions all correspond to very small e. For noise levels τ large enough, in
contrast, these directions can be excluded and one can obtain near-optimal error bounds.
In order to precisely formulate this observation, we denote the set of µ-incoherent vectors
h ∈ CK with respect to B ∈ CL×K for µ ≥ 1 by

Hµ :=
{

h0 ∈ CK :
√

L|⟨bℓ, h0⟩| ≤ µ∥h0∥ for all ℓ ∈ [L]
}

.

With this notation, our result reads as follows.
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Theorem 3.7. Let α > 0 and B ∈ CL×K such that B∗B = Id. Assume that

L ≥ C1
µ2

α2
(K + N) log2 L.

Then with probability at least 1 − O
(
exp

(
− Lα4/3

C2 log4/3(eL)µ4/3

))
the following statement

holds for all h0 ∈ Hµ \ {0}, all m0 ∈ CN \ {0}, all τ > 0, and all e ∈ CL with ∥e∥ ≤ τ :
Any minimizer X̂ of (3) satisfies

∥X̂ − h0m
∗
0∥F ≤ C3µ

2/3 log2/3 L

α2/3
max {τ ;α∥h0m

∗
0∥F } .

Here C1, C2, and C3 are absolute constants.

In words, this theorem establishes linear scaling in the noise level τ with only a log-
arithmic dimensional factor for τ ≥ α∥h0m

∗
0∥F , in contrast to the polynomial factor

required for small noise levels as a consequence of Theorem 3.1. Here the value of α
can be chosen arbitrarily small, at the expense of an increased number of measurements.
For example when one is interested in noise levels τ = ϵµ−2 log−2 L for some ϵ > ϵ0 (this
is the largest order to expect meaningful error bounds despite the additional logarith-
mic factors) one should choose α ≍ ϵ0µ

−2 log−2 L, and near-linear error bounds will be
guaranteed for a sample complexity of

L ≥ C1
µ6

ϵ2
0

(K + N) log6 L.

Remark 3.8. A similar approach to the proof of Theorem 3.7 also yields a corresponding
result for rank-one matrix completion. Arguably, however, matrix completion is mainly
of interest for ground truth matrices of rank higher than one, so we decided to omit the
proof details.

4. Upper bounds for the minimum conic singular values

4.1. Characterization of the descent cone of the nuclear norm

The goal of this section is to prove Proposition 3.3 and Proposition 3.6, from which we
will then be able to deduce Theorem 3.1 and Theorem 3.5. For that we first discuss
a characterization of the descent cone K∗ (X). In order to state this characterization,
Lemma 4.1, we need to introduce some additional notation. Let X ∈ Cn1×n2 be a matrix
of rank r. We will denote its corresponding singular value decomposition by X = UΣV ∗,
where Σ ∈ Rr×r is a diagonal matrix with nonnegative entries and U ∈ Cn1×r and
V ∈ Cn2×r are unitary matrices, i.e., U∗U = V ∗V = Idr. This allows us to define the
tangent space of the manifold of rank-r matrices at the point X by

TX :=
{
UA∗ + BV ∗ : A ∈ Cn2×r, B ∈ Cn1×r

}
. (13)

By PTX
we will denote the orthogonal projection onto TX , by PT ⊥

X
= Id − PTX

the
projection onto its orthogonal complement.
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Lemma 4.1. Let X ∈ Cn1×n2\ {0} be a matrix of rank r with corresponding singular
value decomposition X = UΣV ∗. Then

K∗ (X) =
{

Z ∈ Cn1×n2 : −Re (⟨UV ∗, Z⟩F ) ≥ ∥PT ⊥
X

(Z) ∥∗
}

,

where K∗ (X) denotes the topological closure of K∗ (X).

Remark 4.2. Lemma 4.1 is similar to well-known results in convex optimization and
may be known to the community. As we could not find it in the literature in this form,
we decided to include a proof for completeness.

The proof of Lemma 4.1 relies on the duality between the descent cone and the sub-
differential of a convex function. In the following we will denote by ∂∥ · ∥∗ (X) the
subdifferential of the nuclear norm at the point X ∈ Cn1×n2 . We will use that a charac-
terization of ∂∥ · ∥∗ is well-known [61]. Namely, for all X ∈ Cn1×n2 with corresponding
singular value decomposition X = UΣV ∗ it holds that

∂∥ · ∥∗ (X) =
{

W ∈ Cn1×n2 : PTX
W = UV ∗, ∥PT ⊥

X
W∥ ≤ 1

}
. (14)

Proof. Recall that for a set of matrices V ⊂ Cn1×n2 its polar cone V◦ is defined by

V◦ :=
{
Z ∈ Cn1×n2 : Re (⟨W,Z⟩F ) ≤ 0 for all W ∈ V

}
.

For all X ∈ Cn1×n2\ {0} we have the following polarity relation between the descent
cone and the subdifferential

K∗ (X)◦ = {λW : λ ≥ 0, W ∈ ∂∥ · ∥∗ (X)}.

For sets and functions defined in Rn with the usual Euclidean inner product, this is [54,
Theorem 23.7]. The complex case directly follows, as Cn1×n2 with the inner product
Re (⟨·, ·⟩F ) can be identified with an 2n1n2-dimensional real-valued vector space with
standard Euclidean inner product.

It follows from the bipolar theorem (see, e.g., [5, p. 53]) that

K∗ (X) = (∂∥ · ∥∗ (X))◦ .

Hence, in order to complete the proof it is sufficient to show that

{
Z ∈ Cn1×n2 : −Re (⟨UV ∗, Z⟩F ) ≥ ∥PT ⊥

X
(Z) ∥∗

}
= (∂∥ · ∥∗ (X))◦ = cone (∂∥ · ∥∗ (X)).

(15)
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First, suppose that Z ∈ Cn1×n2 satisfies −Re (⟨UV ∗, Z⟩F ) ≥ ∥PT ⊥
X

(Z) ∥∗. We have to

show that Re (⟨W,Z⟩F ) ≤ 0 for all W ∈ ∂∥ · ∥∗ (X). Indeed,

Re (⟨W,Z⟩F ) = Re (⟨PTX
W,Z⟩F ) + Re

(
⟨PT ⊥

X
W,Z⟩F

)

= Re (⟨UV ∗, Z⟩F ) + Re
(
⟨PT ⊥

X
W,PT ⊥

X
Z⟩F

)

≤ Re (⟨UV ∗, Z⟩F ) + ∥PT ⊥
X

W∥∥PT ⊥
X

Z∥∗

≤ Re (⟨UV ∗, Z⟩F ) + ∥PT ⊥
X

Z∥∗

≤ 0.

In the first inequality we have used that the spectral norm is the dual norm of the
nuclear norm. The second inequality follows from ∥PT ⊥

X
W∥ ≤ 1. Hence, we have shown

that Z ∈ (∂∥ · ∥∗ (X))◦. Next, let Z ∈ (∂∥ · ∥∗ (X))◦ be arbitrary. Choose W̃ ∈ T⊥
X

such that Re
(
⟨W̃ , Z⟩F

)
= ∥PT ⊥

X
(Z) ∥∗ and ∥W̃∥ ≤ 1. Then by (14) it follows that

UV ∗ + W̃ ∈ ∂∥ · ∥∗ (X) and as Z ∈ (∂∥ · ∥∗ (X))◦ we obtain that

0 ≥ Re
(
⟨UV ∗ + W̃ , Z⟩F

)

= Re (⟨UV ∗, Z⟩F ) + ∥PT ⊥
X

(Z) ∥∗.

This shows that −Re (⟨UV ∗, Z⟩F ) ≥ ∥PT ⊥
X

(Z) ∥∗. Hence, we have verified (15), which
completes the proof.

4.2. Upper bound for blind deconvolution

The goal of this section is to prove Proposition 3.3. For that we need the following lemma,
which is a consequence of the concentration of measure theorem for Lipschitz functions.
(For a proof of the real-valued case see, e.g., [60, Lemma 5.3.2]. The complex-case can
be shown analogously.)

Lemma 4.3. Let P : Cn → Cn be a random projection onto a k-dimensional subspace,
which is uniformly distributed in the Grassmannian Gr (k, Cn). Fix z ∈ Cn. Then for
all ε > 0 with probability at least 1 − 2e−c̃kε2

we have that

(1 − ε)
k

n
∥z∥2 ≤ ∥Pz∥2 ≤ (1 + ε)

k

n
∥z∥2,

where c̃ > 0 is absolute some constant.

Proof of Proposition 3.3. By assumption we may write L = ηK for some η ∈ N. Let
{ei}K

i=1 an arbitrary orthonormal basis of CK . Choose B ∈ CL×K such that the matrix

FB consists of rows {bk,i}K,η
k,i defined by bk,i = 1√

ηek for all k ∈ [K] and all i ∈ [η].

We observe that (FB)∗ (FB) = IdK , which implies B∗B = IdK . Furthermore, we have

∥bk,i∥ =
√

1
η for all k ∈ [K] and i ∈ [η], which implies that also all rows of FB have

16



equal norm.

Without loss of generality we assume that ∥h0∥ = ∥m0∥ = 1 as rescaling does not
change the descent cone K∗ (h0m

∗
0). For the proof we will condition on two events. The

first event states that
∥A (h0m

∗
0) ∥ ≤ 2∥h0m

∗
0∥F , (16)

which by the Bernstein inequality (see, e.g., [60]) is fulfilled with probability at least
1 − exp

(
−cL/µ2

)
, where c > 0 is some numerical constant. To formulate the second

event, we define for all i ∈ [K] the subspaces

Di := span {ci,1; . . . ; ci,η} ⊂ CN

and denote by m
∥
i the orthogonal projection of m0 onto Di and by m⊥

i the projection
onto D⊥

i , the orthogonal complement of Di. Note that Di ⊂ CN is a random subspace
of dimension L

K , distributed uniformly over the Grassmannian Gr
(

L
K , CN

)
due to the

rotation invariance of CN (0, 1). Hence, as ∥m0∥ = 1 Lemma 4.3 yields that for fixed
i ∈ [K] with probability at least 1 − 2 exp

(
− c̃L

4K

)
one has

L

2KN
≤
∥∥m∥

i

∥∥2 ≤ 3L

2KN
. (17)

As the matrix C is Gaussian, the different subspaces Di’s and hence also the random

vectors
{

m
∥
i

}K

i=1
are independent, so with probability at least

1 −
(

2 exp

(
− c̃L

4K

))K

= 1 − exp

(
K log 2 − c̃L

4

)

there exists at least one k ∈ [K] such that (17) holds (with k = i). Also note that

1 − exp

(
K log 2 − c̃L

4

)
≥ 1 − exp

(
−C1

2
L

)
,

which for C1 = 8 log 2
c̃ follows from assumption (9).

To summarize, we have shown that the two events E1 := {∥A (h0m
∗
0) ∥ ≤ 2∥h0m

∗
0∥F }

and

E2 :=

{
∃k ∈ [K] :

L

2KN
≤
∥∥m∥

k

∥∥2 ≤ 3L

2KN

}

happen with probability at least 1 − O
(
exp

(
−C2L/µ2

))
, where C2 > 0 is an appropri-

ately chosen constant.

Conditional on E1 and E2, we will construct Z ∈ CK×N (depending on the vectors
(ci,k)i,k) such that Z ∈ K∗ (h0m∗

0) \ {0} and such that the inequality

∥A (Z) ∥ < 8

√
L

KN
∥Z∥F (18)
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is satisfied. Note that this will complete the proof. Indeed, by definition of the closure
and the continuity of A this implies that there exists Z̃ ∈ K∗ (X0) such that

∥∥A
(
Z̃
) ∥∥

∥Z̃∥F

≤ 8

√
L

KN
,

which by the definition of λmin (A,K∗ (h0m
∗
0)) implies that (10) holds with constant

C3 = 8.

To construct Z satisfying (18), define

W := − ⟨h0, ei⟩
∥m⊥

i ∥|⟨ei, h0⟩|
ei

(
m⊥

i

)∗
,

where i ∈ [K] is chosen to satisfy (17). It follows directly from the definition of W that
∥W∥F = 1. We observe that A (W ) = 0 as for each k ∈ [K] and i ∈ [η] we either
have ⟨ek, bk,i⟩ = 0 or ⟨m⊥

k,i, ck,i⟩ = 0. Denote by T = TX0 the tangent space of the
manifold of rank-one matrices at X0 = h0m

∗
0 as defined in (13) and by PT and PT ⊥ the

corresponding orthogonal projections. It follows that

∥PT ⊥W∥∗ =
∥∥∥PT ⊥

(
ei

(
m⊥

i

∥m⊥
i ∥

)∗)∥∥∥
F

=
∥∥∥Ph⊥

0
ei

∥∥∥
∥∥∥Pm⊥

0

(
m⊥

i

∥m⊥
i ∥

)∥∥∥

=
√

1 − |⟨h0, ei⟩|2
√

1 −
∣∣∣⟨m0,

m⊥
i

∥m⊥
i ∥⟩

∣∣∣
2

≤
√

1 −
∣∣⟨m0,

m⊥
i

∥m⊥
i ∥⟩

∣∣2

=
√

1 − ∥m⊥
i ∥2

=
∥∥m∥

i

∥∥
(17)
≤
√

3L

2KN
.

(19)

Thus we have shown that W , an element of the null space of A, is close to the tangent

space T . We will now show that for β = 2
√

L
KN

Z := −βh0m
∗
0 + W,
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lies in the closure of the descent cone K∗ (h0m∗
0). For that, we observe that

−Re (⟨Z, h0m
∗
0⟩) = β − Re (⟨W,h0m

∗
0⟩F )

= β + Re

( ⟨h0, ei⟩
∥m⊥

i ∥|⟨h0, ei⟩|
⟨ei

(
m⊥

i

)∗
, h0m

∗
0⟩F
)

= β + Re

( ⟨h0, ei⟩
∥m⊥

i ∥|⟨h0, ei⟩|
⟨ei, h0⟩⟨m0,m

⊥
i ⟩
)

= β + |⟨h0, ei⟩|∥m⊥
i ∥

≥ β

(19)

≥ ∥PT ⊥W∥∗
= ∥PT ⊥Z∥∗

and hence Lemma 4.1 entails that Z ∈ K∗ (h0m∗
0). Moreover, note that by the triangle

inequality and by the assumption L ≤ 1
16KN it holds that

∥Z∥F ≥∥W∥F − β

=1 − 2

√
L

KN

>
1

2
.

(20)

These observations together with A (W ) = 0 yield that

∥A (Z) ∥ = ∥A (βh0m
∗
0) ∥

(16)

≤ 2β = 4

√
L

KN

(20)
< 8

√
L

KN
∥Z∥F .

This shows (18), as desired.

4.3. Upper bound for matrix completion

In this section, we prove Proposition 3.6. For that we introduce sets Na, a ∈ [n1], via

Na := {b ∈ [n2] : a = ai and b = bi for some i ∈ [m]} .

That is, Na contains all the indices of the ath row of the matrix X0, which are observed
by the measurements. Furthermore, define by PNa ∈ Rn2×n2 the projection onto the co-
ordinates, which are contained in Na, i.e. PNa =

∑
b∈Na

ebe
∗
b . By PN ⊥

a
=
∑

b∈[m]\Na
ebe

∗
b

we denote the coordinate projection onto [m] \ Na.

We need the following technical lemma.

Lemma 4.4. Let V ∈ Rn2×r be an isometry, i.e. V ∗V = Id. Assume that

m ≥ C1rn1µ
2 (V ) log(2r). (21)
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Then with probability at least 1 − O
(
exp

(
− m

C2rµ2(V )

))
there exists a ∈ [n1] such that

∥PNaV ∥ ≤
√

2m

n1n2
.

C1 and C2 are universal constants.

Proof. For each a ∈ [n1] we set Ia := {i ∈ [m] : ai = a} and define the event

Ea :=

{
∥PNaV ∥2 ≤ 2m

n1n2

}
.

We will first derive a lower bound for P
(
Ea

∣∣Ia

)
. For that we note that ∥PNaV ∥2 =

∥V ∗PNaV ∥. Let v1, v2, . . . , vn2 denote the rows of the matrix V . By definition of Na and
Ia it follows that for Xi := vbi

v∗
bi

V ∗PNaV =
∑

b∈Na

vbv
∗
b ≼

∑

i∈Ia

vbi
v∗
bi

=
∑

i∈Ia

Xi. (22)

Here we write A ≼ B for two symmetric matrices A and B, if and only if B − A is
positive semidefinite. By (22) it is sufficient to bound the probability of the event

{∥∥∥
∑

i∈Ia

Xi

∥∥∥ ≤ 2m

n1n2

}
⊂ Ea (23)

conditionally on Ia. To bound ∥∑i∈Ia
Xi∥ we will use the matrix Bernstein inequality

(see, e.g., [58, Theorem 6.1.1]) conditionally on Ia, which requires as ingredients

E

[∑

i∈Ia

Xi

∣∣Ia

]
=

|Ia|
n2

n2∑

b=1

vbv
∗
b =

|Ia|
n2

V ∗V =
|Ia|
n2

Id,

an upper bound for σ2 (Ia) :=
∥∥∥E
[∑

i∈Ia
(Xi − E [Xi])

2
∣∣Ia

] ∥∥∥ and a constant K > 0

such that ∥Xi − E [Xi] ∥ ≤ K almost surely. To bound σ2 (Ia) we note that

E

[∑

i∈Ia

(Xi − E [Xi])
2
∣∣Ia

]
≼ E

[∑

i∈Ia

X2
i

∣∣Ia

]

≼
(

max
b∈[n2]

∥vb∥2

)
E

[∑

i∈Ia

Xi

∣∣Ia

]

=

|Ia|
(

max
b∈[n2]

∥vb∥2

)

n2
Id

=
|Ia|µ2 (V ) r

n2
2

Id,
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where the fourth line is due to the definition of µ2 (V ). This implies that

σ2 (Ia) ≤ |Ia|µ2 (V ) r

n2
2

.

To find an appropriate K > 0 note that almost surely

∥∥Xi − EXi

∥∥ =
∥∥Xi − 1

n1n2
Id
∥∥

≤ max
i∈[n2]

∥∥viv
∗
i − 1

n1n2
Id
∥∥

≤ 1

n1n2
+ max

i∈[n2]

∥∥vi

∥∥2

≤
(

1

n1r
+ 1

)
max
i∈[n2]

∥∥vi

∥∥2

≤ 2r

n2
µ2 (V ) =: K,

where in the fourth line we used that max
i∈[n2]

∥vi∥2 ≥ r
n2

= 1
n2

∑
i∈[n2]

∥vi∥2. Finally to

apply Bernstein inequality we need that the Xi’s are independent conditionally on Ia,
which follows from the fact that the ai’s and bi’s are drawn independently. With these
ingredients the matrix Bernstein inequality yields that

P

(∥∥∥
∑

i∈Ia

Xi − |Ia|
n2

Id
∥∥∥ ≤ t

∣∣∣Ia

)
≥ 1 − 2r exp

(
−cmin

(
t2

σ2 (Ia)
;

t

K

))

≥ 1 − 2r exp

(
−cmin

{
n2

2t
2

|Ia|rµ2 (V )
;

n2t

2rµ2 (V )

})
.

Setting t = m
2n1n2

this implies that for fixed a ∈ [n1] it holds that

P

(∥∥∥
∑

i∈Ia

Xi

∥∥∥ ≤ m

2n1n2
+

|Ia|
n2

∣∣∣ Ia

)
≥ P

(∥∥∥
∑

i∈Ia

Xi − |Ia|
n2

Id
∥∥∥ ≤ m

2n1n2

∣∣∣ Ia

)

≥ 1 − 2r exp

(
− cm

4rn1µ2 (V )
min

{
m

|Ia|n1
; 1

})
.

(24)

To complete the proof we restrict our attention to A :=
{

a ∈ [n1] : |Ia| ≤ 4m
3n1

}
as it

follows from (23) that

{
|Ia| ≤ 4m

3n1

}
∩
{∥∥∥

∑

i∈Ia

Xi

∥∥∥ ≤ m

2n1n2
+

|Ia|
n2

}
⊂ Ea, (25)
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and, consequently, for a ∈ A we obtain that

P
(
Ea

∣∣Ia

) (25),(24),

≥ 1 − 2r exp

(
− cm

4rn1µ2 (V )
min

{
m

|Ia|n1
; 1

})

a∈A
≥ 1 − 2r exp

(
− 3cm

16rn1µ2 (V )

)
.

(26)

As the Ea’s only depend on {bi}i∈Ia
and are hence independent conditionally on Iα, this

implies that

P

(⋂

a∈A

Ec
a

∣∣∣ {Ia}n1
a=1

)
=
∏

a∈A

P
(
Ec

a

∣∣∣ {Ia}n1
a=1

)

=
∏

a∈A

P
(
Ec

a

∣∣∣Ia

)

(26)

≤
∏

a∈A

(
2r exp

(
− 3cm

16rn1µ2 (V )

))

=

(
2r exp

(
− 3cm

16rn1µ2 (V )

))|A|

=

(
exp

(
log (2r) − 3cm

16rn1µ2 (V )

))|A|

≤
(

exp

(
− m

C ′
1rn1µ2 (V )

))|A|
,

where in the last line we have used assumption (21) with C1 large enough. Furthermore,
note that

m =

n1∑

a=1

|Ia| ≥
∑

i∈[n1]\A

|Ia| ≥ 4m

3n1

∣∣ [n1] \ A
∣∣ = 4m

3n1
(n1 − |A|)

implies that |A| ≥ n1
4 almost surely. Hence, it follows that

P

(⋂

a∈A

Ec
a

∣∣∣ {Ia}n1
a=1

)
≤ exp

(
− m

C2rµ2 (V )

)
.

This shows that conditional on {Ia}n1
a=1 we have that almost surely

P

⎛
⎝ ⋃

a∈[n1]

Ea

∣∣∣ {Ia}n1
a=1

⎞
⎠ ≥ P

(⋃

a∈A

Ea

∣∣∣ {Ia}n1
a=1

)
≥ 1 − exp

(
− m

C2rµ2 (V )

)
.

Taking expectations yields the claim.
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Now we are prepared to give a proof of Proposition 3.6.

Proof of Proposition 3.6. For the proof we will condition on two events E1 and E2, which
we will define in the following. The event E1 is defined by

E1 :=
{
∥A (UV ∗) ∥2 ≤ 2∥UV ∗∥2

F = 2r
}

. (27)

Observe that

∥A (UV ∗) ∥2 =
n1n2

m

m∑

i=1

| (UV ∗)ai,bi
|2 =

m∑

i=1

Xi,

where we have set Xi := n1n2
m | (UV ∗)ai,bi

|2. Note that one has almost surely that

Xi =
n1n2

m

(
r∑

k=1

Uai,kVbi,k

)2

≤ n1n2

m

(
r∑

k=1

|Uai,k|2
)(

r∑

k=1

|Vbi,k|2
)

≤ µ2 (U)µ2 (V ) r2

m

where we have applied Cauchy-Schwarz and the definition of µ (U) and µ (V ). Hence,
one has

EXi =
∥UV ∗∥2

F

m
=

r

m
,

EX2
i ≤ µ2 (U) µ2 (V ) r2

m
EXi =

r3µ2 (U) µ2 (V )

m2

where we used ∥UV ∗∥2
F = r and the previous estimate. Hence, by the Bernstein inequal-

ity (see, e.g., [60, Theorem 2.8.4]) we obtain that

P

(∣∣∣
m∑

i=1

Xi − ∥UV ∗∥2
F

∣∣∣ ≤ t

)
≤ 2 exp

(
−cmin

{
t2m2

r3µ2 (U)µ2 (V )
;

tm

r2µ2 (U)µ2 (V )

})
.

By setting t = ∥UV ∗∥2
F = r we observe that E1 holds with probability at least 1 −

2 exp
(
− cm

rµ2(U)µ2(V )

)
.

The second event E2 is defined by

E2 :=

{
∃a ∈ [n1] such that ∥PNaV ∥ ≤

√
2m

n1n2

}
.

For C1 in assumption (11) chosen large enough Lemma 4.4 then entails that P (E2) ≥
1 − O

(
exp

(
− cm

rµ2(V )

))
. Consequently, we can find a ∈ [n1] (depending on the random
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sampling pattern) such that the condition defining E2 is satisfied.

Note that in order to prove Proposition 3.6 it is enough to find Z ∈ K∗ (X0) \ {0} such
that

∥A (Z) ∥ < 8

√
m

rn1n2
∥Z∥F , (28)

because by definition of the closure and the continuity of A this implies that there is a
matrix Z̃ ∈ K∗ (X0) \ {0} such that

∥∥∥A
(
Z̃
)∥∥∥

∥Z̃∥F

≤ 8

√
m

rn1n2
,

which implies (12) with constant C3 = 8. In the following we will construct such a
matrix Z. Let x ∈ Rr be a vector such that ∥x∥ = 1. Then for a ∈ [n1] as above we
define the vector wa ∈ Rn2 by

wa := PN ⊥
a

V x

and set

W := − ⟨eaw
∗
a, UV ∗⟩F

|⟨eaw∗
a, UV ∗⟩F |eaw

∗
a =

⟨eaw
∗
a, UV ∗⟩F

|⟨eaw∗
a, UV ∗⟩F |eax

∗V ∗PN ⊥
a

.

It follows directly from the definition of Na that A (W ) = 0. In the following let
T be the tangent space of the manifold of rank-r matrices at X0 as defined in (13).
Furthermore, denote by PU = UU∗ the orthogonal projection onto the column space of
U and, analogously, by PV = V V ∗ the orthogonal projection onto the column space of
V . Then we obtain that

∥PT ⊥W∥∗ = ∥PT ⊥ (eiw
∗
a) ∥∗

= ∥PU⊥eiw
∗
aPV ⊥∥∗

= ∥PU⊥eaw
∗
aPV ⊥∥F

= ∥PU⊥ea∥∥PV ⊥wa∥
≤ ∥PV ⊥wa∥,

where in the second equality we have used that PT ⊥M = PU⊥MPV ⊥ for all M ∈ Rn1×n2

and in the last line we used that ∥PU⊥ei∥ ≤ 1. Plugging in wa = PN ⊥
a

V m it follows that

∥PT ⊥W∥∗ ≤ ∥PV ⊥PN ⊥
a

V x∥
= ∥PV ⊥PNaV x∥,

where the last line is due to PV ⊥V x = 0. The fact that ∥PV ⊥∥ ≤ 1 then yields that

∥PT ⊥W∥∗ ≤ ∥PNaV x∥
≤ ∥PNaV ∥∥x∥

≤
√

2m

n1n2

(29)

24



where for the last line we used that a ∈ [n1] was chosen such that the condition in E2

holds. This shows that W is relatively close to T . Based on W we now aim to find
Z ∈ K∗ (X) of the form

Z := W − βUV ∗,

where β > 0 will be chosen in the following such that Z ∈ K∗ (X0), which by Lemma
4.1 is equivalent to −⟨UV ∗, Z⟩F ≥ ∥PT ⊥Z∥∗ . First, we note that

∥PT ⊥Z∥∗ = ∥PT ⊥W∥∗ ≤
√

2m

n1n2
(30)

due to PT ⊥ (UV ∗) = 0 and the inequality chain (29). Furthermore, we have that

−⟨UV ∗, Z⟩F = rβ − ⟨UV ∗,W ⟩F

= rβ + ⟨UV ∗,
⟨eaw

∗
a, UV ∗⟩F

|⟨eaw∗
a, UV ∗⟩F |eaw

∗
a⟩F

= rβ + |⟨eaw
∗
a, UV ∗⟩F |

≥ rβ.

(31)

Hence, setting β = 2
√

m
r2n1n2

and combining (30) and (31) it follows that Z ∈ K∗ (X0).

This Z also satisfies (28). To see that we observe that

∥Z∥F ≥ ∥eaw
∗
a∥F − β∥UV ∗∥F

= ∥wa∥ − β
√

r

= ∥PN ⊥
a

V x∥ − β
√

r

=
√

∥V x∥2 − ∥PNaV x∥2 − β
√

r

≥
√

1 − 2m

n1n2
− 2

√
m

rn1n2

>
1

2
,

where in the last line we used the assumption that m ≤ n1n2
32 . Furthermore, from

A (W ) = 0 it follows that

∥A (Z) ∥ = β∥A (UV ∗) ∥
(27)

≤ β
√

2r = 2

√
2m

rn1n2
< 8

√
m

rn1n2
∥Z∥F .

Combining the last two inequality chains implies (28), which completes the proof.

4.4. Proof of Theorem 3.1 and Theorem 3.5

As already mentioned Theorem 3.1 can be deduced from Proposition 3.3 and Theorem
3.5 can be deduced from Proposition 3.6. We only show how to prove Theorem 3.1, as
the proof of Theorem 3.5 is analogous.
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Proof of Theorem 3.1. By Proposition 3.6 and the definition of the minimum conic sin-

gular value λmin (A,K∗ (h0m
∗
0)) with probability at least 1 − O

(
exp

(
− K

C2µ2

))
there is

a matrix Z ∈ K∗ (h0m
∗
0) \ {0} such that

∥A (Z) ∥ ≤ C3

√
L

KN
∥Z∥F . (32)

and such that X̃t := h0m
∗
0 + tZ obeys ∥X̃t∥∗ ≤ ∥h0m

∗
0∥∗ for all 0 < t ≤ 1. Next, set

et = t
2A (Z). Then for yt = A (h0m

∗
0) + et we have that

∥A
(
X̃t

)
− ỹt∥ = ∥A (tZ) − e∥ =

t

2
∥A (Z) ∥.

Hence, by setting τ0 := ∥A(Z)∥
2 we observe that ∥A

(
X̂t

)
− yt∥ = tτ0. Furthermore, note

that

∥X̃t − X0∥F = ∥tZ∥F =
(32)

≥ t

C3

√
KN

L
∥A (Z) ∥ =

2tτ0

C3

√
KN

L

Now let 0 < τ ≤ τ0. Then by setting t = τ
τ0

, X̃ := X̃t, y := yt, and e := et the desired
claim follows.

5. Stability of blind deconvolution

5.1. Outline of the proof and main ideas

The goal of this section is to prove Theorem 3.7. We first give a proof sketch and present
the key ideas. We have seen in Proposition 3.3 that for certain isometries B ∈ CL×K with

high probability one has that λmin (A,K∗ (h0m
∗
0)) !

√
L

KN . Hence, applying Theorem

2.4 cannot lead to very strong error estimates. However, if we closely inspect the proof
of Proposition 3.3 we observe the following. Again, denote by T the tangent space
of the manifold of rank-1 matrices at point h0m

∗
0 as defined in (13) and assume that

∥h0∥ = ∥m0∥ = 1. By construction we have that Z = W − βh0m
∗
0, where W =

⟨h0,ei⟩
∥m⊥

i ∥|⟨h0,ei⟩|ei

(
m⊥

i

)∗
. This implies that

|⟨Z, h0m
∗
0⟩F | ≤

∣∣∣⟨ ⟨h0, ei⟩
∥m⊥

i ∥|⟨h0, ei⟩|
ei

(
m⊥

i

)∗
, h0m

∗
0⟩F
∣∣∣+ β∥h0m

∗
0∥2

F

= |⟨ei, h0⟩|∥m⊥
i ∥ + β∥h0m

∗
0∥2

F

≤ µ√
L

+ β ! µ√
L

+

√
L

KN
,

where we have used the triangle inequality in the first line and the definition of m⊥
i in the

second line. In the third line we used that ∥m⊥
i ∥ ≤ 1, |⟨ei, h0⟩| ≤ µ√

L
, and β =

√
L

KN .
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As ∥Z∥F " 1 this implies that
⟨Z,h0m∗

0⟩F

∥Z∥F ∥h0m∗
0∥F

is quite small, meaning that Z and h0m
∗
0

are almost orthogonal to each other. All the descent directions Z with this property,
however, have in common that the admissible descent step size

t0 := max {t > 0 : ∥h0m
∗
0 + tZ∥∗ ≤ ∥h0m

∗
0∥∗}

is necessarily very small. Geometrically this corresponds to the fact that the nuclear
norm ball is curved near X0, which is why its near-tangential behaviour only holds
locally. This will be made precise in Lemma 5.7 below. For this reason the idea of the
proof of Theorem 3.7 is to split the descent cone into two parts. One part will consist
of all the matrices aligned with h0m

∗
0. The second part will consist of all remaining

matrices, which are almost orthogonal to h0m
∗
0. As mentioned above, these matrices

must necessarily be close to T . The first part is captured by the set Eµ,δ with

Eµ,δ :=
⋃

h0∈Hµ,m0∈CN

{
Z ∈ K∗ (h0m

∗
0) : δ ≤ −Re (⟨Z, h0m

∗
0⟩F )

∥h0m
∗
0∥F

and ∥Z∥F = 1

}
,

where δ > 0. In Section 5.2 we will show that with high probability it holds that

inf
Z∈Eµ,δ

∥A (Z) ∥ " δ2

log2(L)µ2
. (33)

Hence, if we have for the minimizer X̂ of (3) that X̂ − h0m
∗
0 is an element of the conic

hull of Eµ,δ we can proceed similarly as in [11] to obtain near-optimal error bounds. Let
us briefly explain which property of Eµ,δ allows us to show (33). We define for any matrix
W ∈ CK×N its ∥ · ∥B1-norm by

∥W∥B1 :=

L∑

ℓ=1

∥W ∗bℓ∥.

In other words ∥W∥B1 is the ℓ1-norm of the vector (∥W ∗bℓ∥)L
ℓ=1. We show in Lemma 5.5

below that all Z ∈ Eµ,δ have rather large ∥ · ∥B1 -norm, which entails that the mass of the

vector (∥W ∗bℓ∥)Lℓ=1 cannot be concentrated on only very few entries. This in turn will
allow us to employ a non-i.i.d. version of Mendelson’s smalll bal method [35], allowing us
to show a lower bound for (33), see Lemma 5.6 below. To understand the behaviour on
the second part recall from Proposition 3.3 that for matrices Z/∥Z∥F ∈ K∗ (h0m

∗
0) \Eµ,δ

the quantity ∥A (Z) ∥ may be quite small, so a uniform bound is not feasible. However,
as Z is almost orthogonal to h0m

∗
0, also ∥PT ⊥Z∥∗ must be rather small because of the

characterization of the descent cone, Lemma 4.1. Hence, Z is close to the tangent space
and is almost orthogonal to h0m

∗
0. For that reason, whenever ∥h0m

∗
0 + tZ∥∗ ≤ ∥h0m

∗
0∥∗

holds, the cylindrical shape of the nuclear norm ball implies that t > 0 is small. This
fact is captured by Lemma 5.7 below. Theorem 3.3 can then be proven by combining
inequality (33) and Lemma 5.7, see Section 5.3.
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5.2. A lower bound for the minimum conic singular value

First we recall the notion of Gaussian width (see, e.g., [60]).

Definition 5.1. For a set E ⊂ CK×N its Gaussian width is defined by

ω (E) := E
[
sup
X∈E

Re (⟨X,G⟩F )

]
,

where G ∈ CK×N is a matrix, whose entries are independent and identically distributed
random variables with distribution CN (0, 1).

This definition allows us to state the following lemma, which is important for our
analysis of the conic singular value. It relies on a uniform lower bound on the number
of measurements whose magnitude is larger than a certain constant and is a variant of
Theorem 2.1 in [35].

Lemma 5.2. Let E ⊂ CK×N be a symmetric set, i.e., E = −E. For all ξ > 0 and t > 0
it holds with probability at least 1 − exp

(
−2t2

)
that

inf
X∈E

∣∣∣ {ℓ ∈ [L] : |⟨bℓc
∗
ℓ ,X⟩F | ≥ ξ}

∣∣∣ ≥ inf
X∈E

(
L∑

ℓ=1

P (|⟨bℓc
∗
ℓ ,X⟩F | ≥ 2ξ)

)
− 4ω (E)

ξ
− t

√
L.

(34)

Here ε1, . . . , εL are independent Rademacher variables, i.e., random variables which take
the two values ±1 each with probability 1

2 .

The proof of the Lemma 5.2 is based on a variant of Mendelson’s small-ball method and
proceeds in analogy to [35]. We have deferred a detailed proof to Appendix A. In order
to apply Lemma 5.2 we need to estimate the first term of the right-hand side of Lemma
5.2. Such an estimate can be derived using the Paley-Zygmund inequality as in [35]. For
the sake of completeness we have included a proof in Appendix B.

Lemma 5.3. Let X ∈ CK×N be an arbitrary matrix. Then for all ξ > 0

L∑

ℓ=1

P (|⟨bℓc
∗
ℓ ,X⟩F | ≥ 2ξ) ≥ 9

32

∣∣ {ℓ ∈ [L] : ∥X∗bℓ∥ ≥ 4ξ}
∣∣.

In order to use Lemma 5.3 we need a lower bound for | {ℓ ∈ [L] : ∥X∗bℓ∥ ≥ ξ} |. This
will be achieved by the next lemma. For the statement of this lemma and its proof we
will need to introduce the following notion. We define for any matrix W ∈ CK×N its
∥ · ∥B1,w -quasinorm by

∥W∥B1,w := sup
ξ≥0

ξ
∣∣∣ {ℓ ∈ [L] : ∥W ∗bℓ∥ ≥ ξ}

∣∣∣.

That is, ∥W∥B1,w is the weak ℓ1-norm of the vector (∥W ∗bℓ∥)L
ℓ=1. (For a more detailed

discussion of the weak ℓ1-norm see, e.g., [22].) A direct consequence of this interpretation
is the inequality (see, e.g., [20, Proposition 2.10 and Exercise 2.4])

∥W∥B1,w ≤ ∥W∥B1 ≤ log (eL) ∥W∥B1,w . (35)
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Lemma 5.4. Let Z ∈ CK×N such that ∥Z∥F = 1. Then it holds that

∣∣∣
{

ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ∥Z∥B1

L log (eL)

} ∣∣∣ ≥
∥Z∥2

B1

log2 (eL)
.

Proof of Lemma 5.4. Choose ξ∗ such that

∥Z∥B1,w = ξ∗| {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗} |. (36)

As | {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗} | ≤ L it follows that

ξ∗ ≥ ∥Z∥B1,w

L
≥ ∥Z∥B1

L log (eL)
, (37)

where we also used inequality (35). We observe that

1 = ∥Z∥2
F

=

L∑

ℓ=1

∥Z∗bℓ∥2

≥ ξ∗2| {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗} |
(36)
=

∥Z∥2
B1,w

| {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗} |
(35)

≥
∥Z∥2

B1

log2 (eL) | {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗} | ,

where for the second equality we used the identity
∑L

ℓ=1 bℓb
∗
ℓ = Id. Using inequality (37)

and rearranging terms it follows that

∣∣∣
{

ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ∥Z∥B1

L log (eL)

} ∣∣∣ ≥
∣∣ {ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ξ∗}

∣∣ ≥
∥Z∥2

B1

log2 (eL)
,

which completes the proof.

The next lemma gives a bound on inf
Z∈Eµ,δ

∥Z∥B1 .

Lemma 5.5. It holds that

inf
Z∈Eµ,δ

∥Z∥B1 ≥ δ
√

L

µ
.

Proof. Let Z ∈ Eµ,δ be arbitrary. By definition of Eµ,δ there is h0 ∈ Hµ and m0 ∈ CN

such that Z ∈ K∗ (h0m
∗
0) and such that the inequality

δ ≤ −Re (⟨Z, h0m
∗
0⟩F )

∥h0m∗
0∥F
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holds. It follows that

δ ≤ −Re (⟨Zm0, h0⟩)
∥h0m

∗
0∥F

=
−∑L

ℓ=1 Re (⟨Zm0, bℓ⟩⟨bℓ, h0⟩)
∥h0m

∗
0∥F

≤

(
max
ℓ∈[L]

|⟨h0, bℓ⟩|
)∑L

ℓ=1 |⟨Zm0, bℓ⟩|

∥h0m∗
0∥F

,

where for the second equality we have used that
∑L

ℓ=1 bℓb
∗
ℓ = Id. Note that for all ℓ ∈ [L]

it holds that
|⟨Zm0, bℓ⟩|

∥m0∥
≤ ∥Z∗bℓ∥.

Hence, by the previous inequality chain it follows that

δ ≤
max
ℓ∈[L]

|⟨h0, bℓ⟩|

∥h0∥
L∑

ℓ=1

∥Z∗bℓ∥ ≤ µ√
L

∥Z∥B1 ,

where in the last inequality we used the definition of µ and ∥Z∥B1 . Rearranging terms
and taking the infimum over all Z ∈ Eµ,δ yields the desired inequality.

Having gathered all the necessary ingredients we can state and prove the main lemma
of this section.

Lemma 5.6. Let δ > 0. Assume that

L ≥ C1

(µ

δ

)6
(K + N) log6 (eL) , (38)

Then with probability at least 1 − exp
(
− Lδ4

C2 log4(eL)µ4

)
it holds that

inf
Z∈Eµ,δ

∥A (Z) ∥ " δ2

log2 (L)µ2
. (39)

C1 and C2 are absolute constants.

Proof. Our goal is to apply Lemma 5.2. In order to apply it we first derive a lower
bound for the first term on the right-hand side of inequality (34). For that recall that
by Lemma 5.5 it holds that

inf
Z∈Eµ,δ

∥Z∥B1 ≥ δ
√

L

µ
. (40)
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Thus, for any Z ∈ Eµ,δ we obtain that

∣∣∣
{

ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ δ

µ
√

L log (eL)

} ∣∣∣ ≥
∣∣∣
{

ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ ∥Z∥B1

L log (eL)

} ∣∣∣

≥
∥Z∥2

B1

log2 (eL)

≥ δ2L

µ2 log2 (eL)
,

where the first inequality follows from (40), the second one is due to Lemma 5.4, and
the third one follows again from (40). Hence, by Lemma 5.3 applied with ξ = δ

4
√

L ln(eL)µ

we finally obtain that

inf
Z∈Eµ,δ

(
L∑

ℓ=1

P
(

|⟨bℓc
∗
ℓ , Z⟩F | ≥ δ

2
√

L ln (eL) µ

))

≥ 9

32
inf

Z∈Eµ,δ

∣∣∣
{

ℓ ∈ [L] : ∥Z∗bℓ∥ ≥ δ√
L ln (eL) µ

} ∣∣∣

≥ 9δ2L

32µ2 log2 (eL)
.

(41)

Next, we need an upper bound for the Gaussian width. For that, we first observe that

Eµ,δ ⊂

⎛
⎝ ⋃

h0∈CK ,m0∈CN

K∗ (h0m
∗
0)

⎞
⎠ ∩

{
Z ∈ CK×N : ∥Z∥F = 1

}
=: E .

The Gaussian width of E has been bounded in [29, Lemma 4.1], combined with the
monotonicity of the Gaussian width their results yields that

ω (Eµ,δ) ≤ ω (E) ≤ 2
√

(K + N). (42)

Thus for ξ = δ
4
√

L log(eL)µ
we obtain from Lemma 5.2 together with (41), (42) that with

probability at least 1 − exp
(
−2t2

)
it holds that

inf
Z∈Eµ,δ

∣∣∣ {ℓ ∈ [L] : |⟨bℓc
∗
ℓ , Z⟩F | ≥ ξ}

∣∣∣ ≥ 9Lδ2

32 log2 (eL)µ2
− 2 log (eL) µ

√
L (K + N)

δ
− t

√
L

≥ 9Lδ2

64 log2 (eL)µ2
− t

√
L,

where the second inequality follows from assumption (38), if the constant C1 > 0

is chosen large enough. Consequently, setting t = 9δ2
√

L
128 log2(eL)µ2 and recalling that

(A (Z)) (ℓ) = ⟨bℓc
∗
ℓ , Z⟩F we have that with probability at least 1 − exp

(
− Lδ4

C2 log4(eL)µ4

)

with C2 chosen appropriately

inf
Z∈Eµ,δ

∣∣∣
{

ℓ ∈ [L] : |A (Z) (ℓ) | ≥ δ

4
√

L log (eL) µ

} ∣∣∣ ≥ 9Lδ2

128 log2 (L)µ2
.
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Summing up we obtain that with probability at least 1 − exp
(
− Lδ4

C2 log4(eL)µ4

)

inf
Z∈Eµ,δ

∥A (Z) ∥ ≥ inf
Z∈Eµ,δ

δ

4
√

L log (eL)µ

√∣∣∣
{

ℓ ∈ [L] : |A (Z) (ℓ) | ≥ δ

4
√

L log (eL)µ

} ∣∣∣

" δ2

log2 (L)µ2
.

This shows the claim.

5.3. Proof of Theorem 3.7

As already mentioned in Section 4, in order to control all matrices Z ∈ K∗ (h0m
∗
0), which

are almost orthogonal to h0m
∗
0, we need the following key lemma.

Lemma 5.7. Let h0m
∗
0 ∈ Cn1×n2 be a rank-1 matrix. Assume that Z ∈ K∗ (h0m

∗
0)\{0}.

Then, whenever ∥h0m
∗
0 + Z∥∗ ≤ ∥h0m

∗
0∥∗, it holds that

∥Z∥F ≤ −2Re

(
⟨h0m

∗
0,

1

∥Z∥F
Z⟩F

)
.

Proof. We observe that

∥h0m
∗
0∥2

F = ∥h0m
∗
0∥2

∗
≥ ∥h0m

∗
0 + Z∥2

∗
≥ ∥h0m

∗
0 + Z∥2

F

= ∥h0m
∗
0∥2

F + ∥Z∥2
F + 2Re (⟨h0m

∗
0, Z⟩F ) .

Rearranging terms yields the result.

Now we have gathered all tools which are needed to prove Theorem 3.7.

Proof of Theorem 3.7. Having introduced all necessary tools in the last two sections we
can now give a proof of Theorem 3.7. We set δ := (log eL)2/3 µ2/3α1/3. Throughout
the proof we will assume that inequality (39) holds, which by Lemma 5.6 holds with
probability at least

1 − exp

(
− Lδ4

C2 log4 (eL) µ4

)
= 1 − exp

(
− Lα4/3

C2 log4/3 (eL) µ4/3

)
.

Let h0 ∈ Hµ and m0 ∈ CN . Furthermore, let X̂ be a minimizer of (3) and set Z :=
X̂ − h0m

∗
0. Note that from the minimality of X̂ it follows that ∥X̂∥∗ ≤ ∥h0m

∗
0∥∗. This

implies that Z ∈ K∗ (h0m
∗
0). To prove the lemma it remains to derive an appropriate
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upper bound on ∥Z∥F . For that we will distinguish two cases, namely Z
∥Z∥F

∈ Eµ,δ and
Z

∥Z∥F
/∈ Eµ,δ. If Z

∥Z∥F
∈ Eµ,δ, it follows from inequality (39) that

∥Z∥F ! log2 (L)µ2

δ2

∥∥∥A (Z)
∥∥∥

≤ log2 (L)µ2

δ2

(
∥A
(
X̂
)

− y∥ + ∥e∥
)

≤ 2
log2 (L) µ2

δ2
τ

= 2
log2/3 (L)µ2/3

α2/3
τ,

(43)

where in the second inequality we used the triangle inequality as well as Z = X̂ − h0m
∗
0

and y = A (h0m
∗
0)+ e. In the third inequality we used that X̂ is feasible and ∥e∥ ≤ τ . If

Z
∥Z∥F

/∈ Eµ,δ, it follows directly from the definition of Eµ,δ that −Re
(
⟨ h0m∗

0
∥h0m∗

0∥F
, Z

∥Z∥F
⟩F
)

<

δ. By Lemma 5.7 we obtain that

∥Z∥F ≤ −2Re

(
⟨h0m

∗
0,

1

∥Z∥F
Z⟩F

)

< 2δ∥h0m
∗
0∥F

< 2 (log L)2/3 µ2/3α1/3∥h0m
∗
0∥F .

(44)

Combining the estimates (43) and (44) we obtain that

∥X̂ − h0m
∗
0∥F = ∥Z∥F ! µ2/3 log2/3 L

α2/3
max {τ ;α∥h0m

∗
0∥F } .

which completes the proof.

6. Outlook

In this paper we have analyzed two important cases of structured low-rank matrix recov-
ery problems, blind deconvolution and matrix completion, through an inspection of the
descent cone of the nuclear norm and its interaction with the measurement operator A.
We have shown that the conic singular value is typically quite small and, consequently,
previous analysis approaches cannot give strong recovery guarantees. For the example
of blind deconvolution we have presented a new approach based on a refined analysis of
the descent cone, showing that the nuclear norm minimization approach is stable against
adversarial noise in certain important parameter regimes and allows for uniform recovery
guarantees in the presence of noise. In our opinion our results give rise to a number of
interesting follow-up questions.

• Stability for small noise-levels: Until now, our stability result only covers
the situation that the noise level τ is of constant order (up to logarithmic fac-
tors). For small τ , Theorem 3.1, respectively Theorem 3.5, put some barriers on
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what performance can be expected. Nevertheless, it will be interesting to exam-
ine the transitional case, that τ is rather small, even further. For example, while
the bad conditioning for small noise levels has been established, it remains open
whether one can construct a noise vector e such that the true minimizer behaves
like the alternative (but non-minimal) solutions constructed in Theorems 3.1 and
3.5. Also the transitional behavior of the minimum conic singular values between
very small noise levels (where we established bad conditioning) and larger noise
levels (where at least for randomized blind deconvolution, we proved stability) will
be an interesting question to study.

• Extension to the rank r case: Understanding nuclear norm recovery for matrix
completion under adversarial noise remains an important open problem in the
field. While our result established that recovery guarantees for arbitrary noise
levels are not feasible, our considerations for the rank one scenario give hope that
for sufficiently large noise levels, near optimal guarantees are within reach also for
matrices of arbitrary rank.

Similarly, a natural generalization of blind deconvolution is the problem of blind
demixing [44, 28], where one observes a noisy superposition of several convolutions,
that is, y =

∑r
i=1 wi ∗ xi + e. The corresponding low-rank matrix formulation can

be interpreted as a rank r version of the randomized blind deconvolution problem.

We expect that a rank r version of Theorem 3.7 will apply to both these scenarios,
which is why we consider this a very promising direction for future research.

• Extension to other low-rank matrix recovery models: Various other low-
rank matrix models also involve incoherence in some way, for example, robust PCA
([6]) and spectral compressed sensing via matrix completion [13]. Also for these
problems, recovery results are typically proven via the Golfing Scheme and lead to
a seemingly suboptimal noise bound (see, e.g., [62, Section VI]). Can these prob-
lems be analyzed with the methods developed in this paper?
Moreover, [36] provided an incoherence based analysis of the phase retrieval prob-
lem under random Bernoulli measurements. It will be interesting to analyze this
setup with similar methods as in this manuscript.
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[40] C. Kümmerle and J. Sigl. Harmonic mean iteratively reweighted least squares for
low-rank matrix recovery. J. Mach. Learn. Res., 19:49, 2018.
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A. Proof of Lemma 5.2

The proof of Lemma 5.2 will rely on the following two lemmas. The first lemma is
a version of Mendelson’s small-ball method for non-i.i.d. measurements. In order to
state it let X1, . . . ,XL be independent, matrix-valued random variables defined on a
probability space (Ω, µ). For every measurable, real-valued function f and for every
ξ > 0 we define the quantity

Qξ (f) =
L∑

ℓ=1

P (f (Xℓ) ≥ ξ) .

Lemma A.1. Let X1, . . . ,XL ∈ CK×N be independent random variables and F be a
set of real-valued functions, which are measurable with respect to (Ω, µ). Let t > 0 and
ξ > 0. Then with probability at least 1 − exp

(
−2t2

)
it holds that

inf
f∈F

∣∣∣ {ℓ ∈ [L] : f (Xℓ) ≥ ξ}
∣∣∣ ≥ inf

f∈F
Q2ξ (f) − 2

ξ
E

[
sup
f∈F

L∑

ℓ=1

εℓf (Xℓ)

]
− t

√
L,

where ε1, . . . , εL are independent Rademacher variables, i.e., random variables which
take the two values ±1 each with probability 1

2 .

The proof of Lemma A.1 is exactly analogous as the proof of the original small-ball
method [35], see Section A.1. The second auxiliary lemma, proved in Section A.2,

relates the quantity E

[
sup
f∈F

∑L
ℓ=1 εℓf (Xℓ)

]
in the blind deconvolution framework to the

Gaussian width (cf. Definition 5.1).

Lemma A.2. Let E ⊂ CK×N . Then it holds that

E

[
sup
X∈E

Re

(
L∑

ℓ=1

b∗
ℓXcℓ

)]
= ω (E) .

With these lemmas we can now prove Lemma 5.2.

Proof of Lemma 5.2. Set Xℓ := bℓc
∗
ℓ for all ℓ ∈ [L] and define

F := {|⟨M, ·⟩F | : M ∈ E} .
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Then, by a direct application of Lemma A.1 we obtain that with probability at least
1 − exp

(
−2t2

)
it holds that

inf
M∈E

∣∣∣ {ℓ ∈ [L] : |⟨M, bℓc
∗
ℓ ⟩F | ≥ ξ}

∣∣∣

≥ inf
M∈E

(
L∑

ℓ=1

P (|⟨bℓc
∗
ℓ ,M⟩F | ≥ 2ξ)

)
− 2

ξ
E

[
sup
M∈E

L∑

ℓ=1

εℓ|⟨bℓc
∗
ℓ ,M⟩F |

]
− t

√
L.

(45)

To bound the second summand, we observe that

E

[
sup
M∈E

L∑

ℓ=1

εℓ|⟨bℓc
∗
ℓ ,M⟩F |

]

≤E

[
sup
M∈E

L∑

ℓ=1

εℓ|Re (⟨bℓc
∗
ℓ ,M⟩F ) |

]
+ E

[
sup
M∈E

L∑

ℓ=1

εℓ|Im (⟨bℓc
∗
ℓ ,M⟩F ) |

]

=2 E

[
sup
M∈E

L∑

ℓ=1

εℓ|Re (⟨bℓc
∗
ℓ ,M⟩F ) |

]

=2 E

[
sup
M∈E

L∑

ℓ=1

εℓRe (⟨bℓc
∗
ℓ ,M⟩F )

]

=2ω (E)

(46)

where in the third line we used that Re (⟨bℓc
∗
ℓ ,X⟩F ) and Im (⟨bℓc

∗
ℓ ,X⟩F ) have the same

distribution. The fourth line follows from the symmetry of the set E and the last line is
due to Lemma A.2. Combining (45) and (46) finishes the proof.

A.1. Proof of Lemma A.1

We directly trace the steps of the proof of Theorem 1.5 in [35]. In the following A

denotes the indicator function, which takes the value 1, if the event A occurs and the
value 0 otherwise. Note that

ξ
∣∣∣ {ℓ ∈ [L] : f (Xℓ) ≥ ξ}

∣∣∣ = ξ
L∑

ℓ=1

{f(Xℓ)≥ξ}.

Taking the infimum we observe that by the definition of Q2ξ

ξ inf
f∈F

∣∣∣ {ℓ ∈ [L] : f (Xℓ) ≥ ξ}
∣∣∣

≥ξ inf
f∈F

Q2ξ (f) − ξ sup
f∈F

L∑

ℓ=1

(
P (f (Xℓ) ≥ 2ξ) − {f(Xℓ)≥ξ}

)
.

(47)
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The bounded difference inequality (see, for example, [4]) implies that with probability
at least 1 − exp

(
−2t2

)
it holds that

sup
f∈F

L∑

ℓ=1

(
P (f (Xℓ) ≥ 2ξ) − {f(Xℓ)≥ξ}

)

≤E

[
sup
f∈F

L∑

ℓ=1

(
P (f (Xℓ) ≥ 2ξ) − {f(Xℓ)≥ξ}

)
]

+ t
√

L

=E

[
sup
f∈F

L∑

ℓ=1

(
E
[

{f(Xℓ)≥2ξ}
]
− {f(Xℓ)≥ξ}

)
]

+ t
√

L

(48)

To deal with the expectation we will use the function Ψξ : [0,+∞) −→ R defined by

Ψξ (u) =

⎧
⎪⎨
⎪⎩

0 0 ≤ u ≤ ξ
1
ξ (u − ξ) ξ ≤ u ≤ 2ξ

1 u ≥ 2ξ

.

We observe that Ψξ is Lipschitz continuous with Lipschitz constant 1/ξ. Furthermore,
for all u ∈ [0,+∞) it holds that {u≥2ξ} ≤ Ψξ (u) ≤ {u≥ξ}. Combining this mono-
tonicity relation with Gine-Zinn symmetrization (see, e.g., [59, Lemma 2.3.1]) and the
Rademacher comparison principle for Lipschitz continuous functions (see, e.g., [42, Equa-
tion (4.20)]), we obtain that

E

[
sup
f∈F

L∑

ℓ=1

(
E
[

{f(Xℓ)≥2ξ}
]
− {f(Xℓ)≥ξ}

)
]

≤E

[
sup
f∈F

L∑

ℓ=1

(E [Ψξ (f (Xℓ))] − Ψξ (f (Xℓ)))

]

≤2 E

[
sup
f∈F

L∑

ℓ=1

εℓΨξ (f (Xℓ))

]

≤2

ξ
E

[
sup
f∈F

L∑

ℓ=1

εℓf (Xℓ)

]
.

Together with the inequality chains (47) and (48), this completes the proof.

A.2. Proof of Lemma A.2

First, we observe that

E

[
sup
X∈E

Re

(
L∑

ℓ=1

b∗
ℓXcℓ

)]
= E

[
sup
X∈E

Re

(
⟨X,

L∑

ℓ=1

bℓc
∗
ℓ ⟩F
)]
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Note that due to the definition of ω (E) in order to finish the proof it is enough to show
that the entries of the matrix X =

∑L
ℓ=1 bℓc

∗
ℓ are independent and identically distributed

with distribution CN (0, 1). For that, let (i, j) ∈ [K] × [N ] and compute that

E

[
|e∗

i

(
L∑

ℓ=1

bℓc
∗
ℓ

)
ej |2

]
=

L∑

ℓ=1

e∗
i bℓb

∗
ℓeiE

[
|c∗

ℓej |2
]2

=
L∑

ℓ=1

e∗
i bℓb

∗
ℓei = 1.

This implies that e∗
i

(∑L
ℓ=1 bℓc

∗
ℓ

)
ej ∈ CN (0, 1). It remains to show that the individual

entries of the matrix
∑m

ℓ=1 bℓc
∗
ℓ are independent. For that, we set

Xi,j :=

(
m∑

ℓ=1

bℓc
∗
ℓ

)

i,j

= e∗
i

(
L∑

ℓ=1

bℓc
∗
ℓ

)
ej .

Now let (i, j) , (i′, j′) ∈ [K] × [N ] such that (i, j) ̸= (i′, j′). Our goal is to show that
E
[
Xi,jX i′,j′

]
= 0. If j ̸= j′ this follows immediately from the observation that c∗

ℓej and
c∗
ℓej′ are independent for all ℓ ∈ [L]. Now assume that j = j′. Then we can compute

that

E
[
Xi,jXi′,j′

]
=

L∑

ℓ=1

e∗
i bℓb

∗
ℓei′ |c∗

ℓej |2 =

L∑

ℓ=1

e∗
i bℓb

∗
ℓei′ = 0.

Hence, we have shown that all entries of the matrix X are uncorrelated. As the entries
of X are jointly Gaussian this implies that they are independent, which completes the
proof.

B. Proof of Lemma 5.3

Proof of Lemma 5.3. Let ℓ ∈ [L] such that ∥X∗bℓ∥ ≥ 4ξ. Using the Paley-Zygmund
inequality (see, e.g., [16]) we obtain that

P (|⟨bℓc
∗
ℓ ,X⟩F | ≥ 2ξ) ≥ P

(
|⟨bℓc

∗
ℓ ,X⟩F | ≥ 1

2
∥X∗bℓ∥

)

≥
(
E
[
|⟨bℓc

∗
ℓ ,X⟩F |2

]
− 1

4∥X∗bℓ∥2
)2

E
[
|⟨bℓc

∗
ℓ ,X⟩F |4

]

=

(
∥X∗bℓ∥2 − 1

4∥X∗bℓ∥2
)2

2∥X∗bℓ∥4
=

9

32
.

(We used that E|⟨bℓc
∗
ℓ ,X⟩F |2 = ∥X∗bℓ∥2 and E|⟨bℓc

∗
ℓ ,X⟩F |4 = 2∥X∗bℓ∥4, which is due to

⟨bℓc
∗
ℓ ,X⟩F ∼ CN (0, ∥X∗bℓ∥).) Summing over all ℓ ∈ [L] such that ∥X∗bℓ∥ ≥ 4ξ yields

the claim.
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