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FAKULTÄT FÜR MATHEMATIK
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Abstract

This thesis focuses on several related topics from two areas in the field of credit risk. On
the one hand, it is concerned with the simulation and modeling of correlation matrices
for financial applications, on the other hand, new pricing approaches for credit products
are developed.

We develop an algorithm for the simulation of Perron–Frobenius correlation matrices,
which additionally allows to control the distribution of the eigenvalues of the generated
matrices. The employed construction principle enables us to prove that the proportion
of Perron–Frobenius correlation matrices in the set of all correlation matrices is 1/2d−1

in dimension d. The generated matrices tend to exhibit (in large dimensions) all em-
pirically observed stylized facts of financial correlation matrices, thus the algorithm is a
valuable tool for risk management or for the assessment of portfolio selection strategies.
In a use case, we examine the persistent empirical relation between graph-based portfolio
selection techniques and the classical Markowitz minimum variance portfolio, showing
that this relation is due to the special structure of financial correlation matrices, not
due to a fundamental link between the two concepts.
Subsequently, we present a new approach for the joint modeling of financial assets
adapted from geostatistics. The central idea is the joint modeling of the data as a
Gaussian random field, and describing the dependence structure via a covariance resp.
correlation function depending on the distance between observations. The key benefit
of this ansatz is the possibility to easily include new data points (i.e. firms), which has
appealing benefits for covariance resp. correlation matrix estimation and missing data
imputation.

In the second part of this thesis, we first focus on the valuation of CDS options in
a structural credit model based on a jump-diffusion process. Compared to existing
approaches, this model has the advantage of providing realistic dynamics for the CDS
spread. CDS options and other European optionalities like extension risk are priced in
an efficient Monte Carlo scheme based on Brownian bridges.
Finally, sharp analytical lower bounds for the price of a convertible bond are derived
in two defaultable Markov diffusion models. The central idea is to Europeanize the
American conversion right, leading to analytical solutions and consequently to a large
computational gain. The sharpness of the lower bound is demonstrated in two real-world
examples.

3





Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit verschiedenen Themen der Kreditrisi-
komodellierung, zum einen mit der Simulation und Modellierung von realistischen Kor-
relationsmatrizen für Finanzanwendungen, zum anderen mit neuen Bewertungsansätzen
für zwei kreditrisikobehaftete Finanzprodukte, nämlich CDS-Optionen und Wandelan-
leihen.

Es wird ein Algorithmus für die Simulation von Perron–Frobenius-Korrelationsmatrizen
entwickelt, welcher es zudem erlaubt, die Verteilung der Eigenwerte der Matrizen vor-
zugeben. Das verwendete Konstruktionsprinzip ermöglicht es, den Anteil an Perron–
Frobenius-Korrelationsmatrizen in beliebiger Dimension explizit zu bestimmen. Die
erzeugten Matrizen weisen (in großen Dimensionen) näherungsweise alle empirisch be-
obachteten Eigenschaften von Finanz-Korrelationsmatrizen auf, wodurch sich der Algo-
rithmus ausgezeichnet für Aufgaben im Risikomanagement oder für die Beurteilung von
Investmentstrategien eignet. In einem Anwendungsbeispiel untersuchen wir graphen-
basierte Investmentstrategien und zeigen, dass der wiederholt empirisch beobachtete
Zusammenhang zwischen diesen und dem klassischen Minimum-Varianz-Portfolio nach
Markowitz nicht fundamental, sondern in der speziellen Struktur von Finanz-Korrela-
tionsmatrizen begründet ist.
Anschließend beschäftigen wir uns mit einem neuen, ursprünglich aus der Geostatistik
stammenden Ansatz für die gemeinsame Modellierung von Finanzdaten, welcher auf
der gemeinsamen Modellierung der Daten als Gauß’sches Zufallsfeld basiert, wobei die
Abhängigkeitsstruktur durch eine abstandsabhängige Kovarianz- bzw. Korrelationsfunk-
tion beschrieben wird. Er erlaubt es, in einfacher Weise weitere Datenpunkte (d.h. Fir-
men) in gegebene Analysen einzubeziehen, was in verschiedenen Anwendungen, wie etwa
beim Schätzen von Kovarianz- bzw. Korrelationsmatrizen und beim Einfügen fehlender
Daten in einem Datensatz, von Vorteil ist.

Im zweiten Teil der Arbeit befassen wir uns zunächst mit der Bewertung von CDS-
Optionen in einem auf einem Sprung-Diffusionsprozess basierenden strukturellen Kre-
ditrisikomodell, welches gegenüber bisherigen Ansätzen den Vorteil hat, dass es realis-
tische Pfade für CDS-Spreads erzeugt. Die Bewertung von CDS-Optionen sowie anderer
europäscher Optionalitäten wie dem ‘Extension Risk’ erfolgt über einen effizienten, auf
Brown’schen Brücken basierenden Monte-Carlo-Ansatz.
Schlussendlich werden analytische Formeln für eine untere Schranke des Preises einer
Wandelanleihe in zwei Kreditrisikomodellen hergeleitet. Hierbei wird das typischer-
weise amerikanische Recht, die Anleihe in Aktien umzutauschen, zu einem europäischen
Ausübungsrecht beschränkt, was die Berechnungszeiten für Preise erheblich verkürzt.
Anhand zweier Beispiele wird demonstriert, dass die gegebenen Formeln unter realen
Marktbedingungen eine sehr gute Annäherung an den exakten Preis liefern.
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1 Introduction

Credit risk modeling is a very diverse area in mathematical finance. This field of study
encompasses a wide variety of problems, ranging from the pricing of credit-risky products
referencing on single entities or on baskets of obligors, to the modeling of joint defaults
in baskets, as well as to models capturing a realistic evolution of credit spreads, to just
name the most prominent ones. Given this variety of modeling tasks, credit risk is often
split up into several aspects, cf. Schönbucher (2003), such as default risk, recovery risk
(referring to the amount lost in case of default), default correlation risk (the risk of
correlated defaults in a basket), or market risk (the risk of loss due to changing prices),
for example.

Previously, especially following the credit crisis, the major focus has been on the model-
ing and assessment of default risk of single assets or baskets of assets, cf. e.g. Burtschell
et al. (2009); Meissner (2008) and references therein. However, the correct assessment
of market risk (or spread risk as referred to in Cont and Kan (2011)), i.e. the risk of a
(joint) downturn of credit quality of the reference entities without any defaults, which
has received comparably less attention in the context of credit derivatives, is just as
important: In an illuminating example, Cont and Kan (2011) find that, while only 8
defaults occurred in the CDX index1 in 2003-2011, a change in credit spread levels in-
ducing the same loss as one default happens approximately twice per year. This shows
that modeling the dependence in credit spread changes should receive a similar attention
as modeling the dependence of defaults in a basket.

The present thesis revolves around several topics in the wide field of credit risk, and
decomposes naturally into two parts, one focusing on problems related to spread risk,
concretely the simulation and modeling of correlation matrices (Chapters 2 and 3),
the other focusing on new pricing approaches for two products subject to default risk
(Chapters 4 and 5).

Although the problems presented in the first part are transferable to other asset classes,
the focus of all chapters is mainly on application to credit default swaps (CDS) or related
instruments, except for Chapter 5, which is concerned with the valuation of convertible
bonds. For the convenience of the reader, we give a brief introduction to CDS and the
basic principles of their valuation in the following section.

1The CDX index contains the 125 most liquidly traded credit default swaps referencing on North-
American investment grade firms.
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1 Introduction

1.1 Basics of CDS valuation

A CDS is essentially an insurance contract between two parties, the protection buyer
and the protection seller, against a credit event of a reference entity. Depending on
the specification of the contract, such a credit event may for example be the default
of the reference entity, or a restructuring event. The mathematical modeling of CDS
(and other assets subject to credit risk) is typically restricted to default being the only
possible credit event. The protection buyer has to pay a standardized premium c up
to maturity of the contract or default, whichever comes earlier, whereas the protection
seller compensates the protection buyer for losses incurred in case of a default during
the lifetime of the contract. Premium payments are usually made quarterly in arrears
at contractually fixed dates, the premium being standardized to 100 bps or 500 bps. A
schematic of the payment streams is displayed in Figure 1.1.

Protection buyer Protection seller

premium payments

default compensation

Figure 1.1: Illustration of CDS payment streams.

Denoting the expected discounted values of the payments made by the protection buyer
and seller as the premium leg (EDPL) and the default leg (EDDL), respectively, today’s
value of a CDS with maturity T from the viewpoint of the protection buyer is then

CDS0,T (c) = EDDL0,T − c · EDPL0,T ,

with T denoting the maturity date of the contract. The value of the CDS at inception
of the contract has to be paid upfront.
CDS are often quoted in terms of the so-called running spread s0,T , which is the premium
level c at which the contract has zero value at inception:

s0,T =
EDDL0,T

EDPL0,T
.

Chapters 2 and 3 present applications focusing on CDS spread or upfront data, whereas
Chapter 4 presents a new approach for valuing options to enter into a CDS with a
prespecified spread at a future time point.

12



1 Introduction

1.2 Presented results

The results presented in this thesis decompose into two parts: Part I, consisting of
Chapters 2 and 3, is concerned with the realistic simulation and modeling of correlation
matrices for financial applications. Part II, consisting of Chapters 4 and 5, is more
practically oriented and focuses on two pricing problems in the field of credit risk.
The required mathematical concepts and considered financial products in the different
chapters are quite diverse and are therefore introduced in the respective chapters in
order to keep the presentation self-contained.

Chapter 2 builds upon joint work with Jan-Frederik Mai and Stefano Mineo, published
in the articles Hüttner and Mai (2019) and Hüttner et al. (2018). We develop a sim-
ulation algorithm for correlation matrices with the Perron–Frobenius property, one of
four stylized facts exhibited by financial correlation matrices. The algorithm is able to
generate all such matrices, and from its construction principle the volume of the set of
Perron–Frobenius correlation matrices can be deduced. Our algorithm further allows
to specify the distribution of eigenvalues, hence the presence of another stylized fact of
financial correlation matrices, namely a largest eigenvalue explaining more than 30%
of the total variance, can be explicitly controlled for. Specifying a realistic distribu-
tion for the eigenvalues, also the two remaining stylized facts, a distribution of pairwise
correlations that is significantly shifted to the positive and the scale-free property of
the associated minimum spanning tree, tend to be present in large correlation matri-
ces drawn from our algorithm. Consequently, the presented algorithm is a powerful
tool in applications where a broad class of correlation matrices possibly associated with
financial time series has to be simulated, e.g. when backtesting portfolio selection strate-
gies. In a use case, the presented algorithm is employed, together with other simulation
algorithms, to assess graph-based portfolio selection strategies: Several empirical stud-
ies have documented a strong relation between the classical Markowitz approach and
centrality in a graph deduced from the correlation matrix. We show that there is no
fundamental connection between the two portfolio selection approaches. Instead, using
different simulation algorithms for correlation matrices with certain attributes, we show
that this persistent observation originates in the special structure of financial correlation
matrices.

Chapter 3 is based on a joint project with Matthias Scherer and Benedikt Gräler, cf.
Hüttner et al. (2019), and is concerned with the joint modeling of dependent credit
spreads using an approach adapted from geostatistics. Under the assumption that
observations are jointly distributed as a Gaussian random field, which is completely
characterized by its mean and covariance function, a modeling approach for realistic
covariance resp. correlation matrices is at the core of the presented ansatz: Correlation
matrices are constructed from distance-parameterized correlation functions, following
Tobler’s first law of geography, stating that observations made at closer locations are
more related than observations made at locations further apart. As soon as the distance
of a new location to the sample locations is known, it can be incorporated easily into

13



1 Introduction

existing analyses without a possibly costly re-estimation of the model. This has appeal-
ing implications for several applications, two of which are showcased explicitly, namely
estimation and parameterization of large correlation matrices and imputation of missing
data.
Translating this approach traditionally applied in a two- or three-dimensional coordi-
nate system to the higher-dimensional framework necessary for the modeling of financial
data entails several challenges: Obviously, the key question is the design of a meaning-
ful financial distance measure, for which we propose two general approaches. Further,
we thoroughly discuss the question of model validity in higher-dimensional frameworks,
which is related not only to the choice of covariance function, but also to the metric
used in the financial distance, and to potentially necessary preliminary transformations
of the coordinate space.

In the practically oriented part, Chapter 4 introduces a new valuation approach for
single-name CDS options, developed in joint work with Matthias Scherer and published
in Hüttner and Scherer (2016). CDS options allow their holder to buy or sell a CDS
of a given reference entity at a prespecified spread at some future time point. Existing
methods primarily focus on obtaining Black-type formulas for the price, similarly as
for equity options, under the unrealistic assumption of lognormally distributed CDS
spreads, or rely on models which produce somewhat unrealistic paths for the evolving
CDS spreads. We propose the use of a structural credit risk model whose driving firm
value process is a double-exponential jump diffusion for the modeling of CDS options.
It supplies realistic CDS spread paths and admits the use of an efficient Monte Carlo
approach based on Brownian bridges for CDS options and other European optionalities
on (any analytic functional of) the firm value.

Finally, Chapter 5 presents analytical formulas for lower bounds for the price of a con-
vertible bond in selected defaultable Markov diffusion models. A convertible bond is a
regular bond which grants its holder the option to exchange the bond for a prespecified
number of shares in a given time period. Additionally, a so-called soft call right, which de
facto corresponds to enforcing conversion into shares if the stock price exceeds a certain
level in a given time period, is often present. Due to the involved American optionali-
ties, typical pricing methods are quite time-consuming PDE or tree schemes. Based on
Europeanizing the American conversion option, analytical formulas for a lower bound
are derived in two models, which turn out to be quite sharp in most realistic market
circumstances, and constitute a considerable improvement in computation time. This
makes the presented formulas highly attractive for convertible bond investors that screen
a large number of convertible bonds for their investment decisions. This chapter builds
upon and extends a joint project with Jan-Frederik Mai published in Hüttner and Mai
(2018).

14



Part I

Realistic simulation and modeling of
correlations for financial applications
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2 Simulating realistic correlation matrices

2.1 Motivation

The simulation of realistic correlation matrices is important in several financial applica-
tions, for example for backtesting portfolio selection strategies or in risk management.
However, when compared to purely random correlation matrices, those obtained from fi-
nancial data sets tend to exhibit a very special structure. Various empirical studies have
documented a battery of stylized facts of empirical correlation matrices from financial
data sets:

(S1) Large first eigenvalue:
Considering the spectrum, random matrix theory predicts a certain range [λ−, λ+]
and density fλ for the eigenvalues of a random correlation matrix constructed
from data matrices with iid entries1, which is usually violated by the eigenvalues
of market correlation matrices. The largest empirical eigenvalue lies well above
the theoretical upper bound λ+, cf. Bouchaud and Potters (2011); Laloux et al.
(1999); Plerou et al. (1999, 2002); Bun et al. (2017), and typically explains more
than 30% of the total variance.

(S2) Perron–Frobenius property:
The Perron–Frobenius Theorem states that entrywise positive matrices A ∈ Rn×n+

have a unique real largest (in absolute value) eigenvalue λ1 > 0 of multiplicity 1,
whose associated eigenvector v1 has all entries positive. Moreover, there are no
other eigenvectors of A with this property (except positive multiples of v1). There
exist matrices, although not entrywise positive, that also exhibit these proper-
ties. Research in linear algebra, cf., e.g., Johnson and Tarazaga (2004); Tarazaga
et al. (2001), is concerned with identifying the set of all matrices displaying the
properties stated in the Perron–Frobenius Theorem; however, so far only sufficient
conditions have been found.
We consider a relaxed version of the Perron–Frobenius Theorem for non-negative
matrices without additional structure. These matrices have a real largest eigen-
value λ1 ≥ 0 (not necessarily unique in absolute value and not necessarily simple)
and a corresponding eigenvector v1 with only non-negative entries and at least

1These bounds and the density are dependent on the ratio of the number of simulated time series to
their length.

17



2 Simulating realistic correlation matrices

one positive component (other non-negative eigenvectors may exist).2

Correlation matrices always have a real largest eigenvalue λ1 ≥ 1 (which is a.s.
unique). Further, our results in Section 2.3.2 imply that the sets of correlation
matrices having the Perron–Frobenius property and the strong Perron–Frobenius
property only differ by a set of measure zero. Thus, when stating that a correlation
matrix displays the (strong) Perron–Frobenius property, we refer to the property
of having a dominant eigenvector with all entries non-negative (positive).
Boyle et al. (2014) observe in a data set of S&P1500 stocks that the major per-
centage of market correlation matrices exhibits a dominant eigenvector with only
positive entries, and this percentage has been increasing up to 100% in their con-
sidered time period from 1994 to 2013.

(S3) Distribution of pairwise correlations is shifted to the positive:
The pairwise correlation entries of market correlation matrices typically display a
smooth, unimodal distribution with a positive mean, with almost no mass on large
negative correlations, e.g. Kazakov and Kalyagin (2016) find that the average of
pairwise correlations is around 0.3 in several stock markets in the period 2003-2014,
and Plerou et al. (2002) find that the distribution of pairwise correlations of US
stocks is centered around a positive value in different time intervals in 1962-1996,
illustrating the persistence of this stylized fact.

(S4) Scale-free property of the corresponding minimum spanning tree:
A d× d correlation matrix C can be viewed as the adjacency matrix of a weighted
undirected complete graph Gw(C) on d vertices. The pairwise correlation ρij is
translated to the length (weight) of the edge connecting nodes i and j in the
graph3 using a weight function w, which is strictly monotone and usually decreas-
ing.4 Thus the higher the correlation between i and j, the closer the respective
nodes are in the graph. The information in this complete graph is then reduced
to its minimum spanning tree (MST(C)), cf. Figure 2.1: This is the connected
subgraph on all vertices of the original graph without cycles having the minimal
overall length (weight). The MST is unique if all edge weights of the original graph
are different, i.e. if all entries of the correlation matrix are different, cf. Matoušek
and Nešetřil (2007, Chapter 5.4, Ex. 4), which is typically the case for observed
financial correlation matrices.
Vandewalle et al. (2001); Bonanno et al. (2003) investigate MSTs constructed on
financial correlation matrices, and find that these MSTs exhibit the special struc-
ture of a so-called scale-free graph: This scale-free property means that the degree
distribution of the MST, i.e. the distribution of the number of direct neighbors of

2For irreducible non-negative matrices the sharper statements of the original Perron–Frobenius Theo-
rem hold.

3Diagonal entries imply self-loops in Gw(C), which are not meaningful in most applications and hence
ignored.

4A popular weight function is the so-called correlation distance w(x) =
√

2(1− x) proposed by Man-
tegna (1999). Sometimes correlations are directly used as weights, i.e. w(x) = x, cf. Peralta and
Zareei (2016).
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2 Simulating realistic correlation matrices

the nodes in the graph, follows a power law5. Graphically speaking, this results in
a higher probability of observing nodes with many neighbors (i.e. a high degree)
than in ‘random’ graphs, cf. Vandewalle et al. (2001), and consequently, as the
number of edges in a tree is fixed, in a higher number of leaves (vertices with only
one neighbor) in the MST.6

A B C D


A 1 0.5 0.4 0.2
B 0.5 1 0.7 0.1
C 0.4 0.7 1 0.3
D 0.2 0.1 0.3 1

A

B C

D

0.5 0.6

0.8

0.3

0.9 0.7

A

B C

D

0.5

0.3

0.7

Figure 2.1: Procedure for obtaining the MST of a correlation matrix, illustrated here
using the weight function w(x) = 1− x.

The literature so far has focused primarily on stock data. In a data set of historical
CDS data of 395 firms, we found that the correlation matrices of randomly drawn
CDS portfolios with d ∈ {5, 10, 20, 50} constituents also display these stylized facts, cf.
Hüttner et al. (2018): The first eigenvalue explains about 40% of the variance: 47% in
d = 5, declining in d to 37% in d = 50, for n = 1, 000, 000 randomly drawn portfolios of
size d. More than 99.9% of correlation matrices of portfolios with d = 20 constituents
(n = 1, 000, 000 draws) exhibited the Perron–Frobenius property. Further, the mean
of pairwise correlations was always positive, and on average equal to 0.33, for n =
1, 000, 000 randomly drawn portfolios of different sizes from d = 5 to d = 50 constituents.
Figure 2.2 contrasts the histogram of pairwise correlations of all 395 assets to that of
a random correlation matrix of the same size drawn from the uniform distribution on
the set of correlation matrices as introduced in Section 2.2.1. And finally, comparing
the number of leaves encountered in n = 1, 000, 000 simulations of MSTs from random
correlation matrices drawn from the uniform distribution with the number of leaves
encountered in the same number of MSTs from correlation matrices of 20 randomly
drawn assets from our data pool, we find that MSTs based on market data exhibit in
general a higher number of leaves, cf. Figure 2.2.

To illustrate just how special financial correlation matrices are, we simulate d × d cor-
relation matrices from the uniform distribution on the set of correlation matrices for
various d, cf. Section 2.2.1, and find that the percentage of correlation matrices dis-
playing stylized facts (S1) or (S2) or both quickly vanishes with increasing dimension,
cf. Table 2.1.
5This means that the number of nodes having k neighbors is proportional to kE , where E is the

exponent of the power law.
6Barabási and Albert (1999) argue that this behaviour originates in a growing network with preferential

attachment, i.e. new nodes are more likely to attach to highly connected nodes in the existing network,
an interpretation that seems intuitive in a financial context. (Note that there exist other generating
mechanisms that may result in a scale-free network.)
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Figure 2.2: Left: Number of leaves encountered in uniformly simulated (black) vs. CDS
data-based (gray) MSTs. Right: Standardized frequencies of the off-diagonal
elements of a uniformly simulated (black) and our market correlation matrix
(gray). The latter is significantly shifted to the right.

d = 3 d = 4 d = 5 d = 7 d = 10 d = 15

% displaying 1. 100 99.99 99.91 93.26 26.69 0.01
% displaying 2. 24.98 12.47 6.22 1.56 0.20 0.01

% displaying 1. and 2. 24.98 12.47 6.21 1.46 0.05 0

Table 2.1: Simulation of n = 1, 000, 000 correlation matrices from the uniform distribu-
tion: Percentage of correlation matrices displaying stylized facts (S1) (as a
proxy, we check if the first eigenvalue explains at least 30% of total variance)
and (S2) declines fast with increasing dimension d.

2.1.1 Open research problem: Simulation of realistic correlation matrices
for financial applications

Surprisingly, to the best of our knowledge, to date there exists no simulation algorithm
that is able to reproduce all of the stylized facts (S1)-(S4), or even more than just one.
In Section 2.2, we review known approaches for generating correlation matrices, and
find that there is only one algorithm which is able to control for the presence of one of
the stylized facts, namely (S1). For all other algorithms, too little is known about the
distribution of the generated correlation matrices to control for the presence of any the
stylized facts (S1)-(S4).
To overcome this issue, one often opts for simulating correlation matrices from a factor
model calibrated to a specific market, which will of course exhibit very similar charac-
teristics as the correlation matrix of the market the model was calibrated to. However,
correlation matrices of other markets might display characteristics that are similar in
their general nature, but differ in size, like displaying a large first eigenvalue compared
to the rest of the spectrum, but explaining a different fraction of the total variance,
or the distribution of pairwise correlations being shifted to the positive, but centered
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around a different value. Consequently, such a procedure generates only a very narrow
subclass of realistic correlation matrices.
Some use cases, however, require to simulate randomly from the set of all correlation
matrices which might potentially be associated with some financial time series. This
is especially the case in risk management, when one seeks to take into account model
risk by assuming that the currently prevailing market conditions might change. For
these purposes, a simulation algorithm that is able to produce a broad class of realistic
correlation matrices is desirable.

Another use case that illustrates the importance of taking the special properties of
financial correlation matrices into account is the assessment of graph-based portfolio
selection techniques. Pioneered by Mantegna (1999), the application of graph-based
approaches has become increasingly popular in the finance literature, and Onnela et al.
(2003); Pozzi et al. (2013); Kaya (2015); Peralta and Zareei (2016) explore their use-
fulness for optimal investment purposes. The basic idea is to select assets according to
their centrality in a graph7 deduced from the covariance resp. correlation matrix, and
the above-mentioned studies have documented a strong connection between an asset’s
centrality in the covariance-deduced graph and its weight in the corresponding mini-
mum variance portfolio (MVP) of classical Markowitz theory for stock (return) data.
This might lure investors into believing that there is a fundamental connection between
these two concepts. However, we demonstrate in Section 2.4 that this suspicion cannot
be confirmed, and the coherence of these findings must instead originate in the special
properties of financial correlation matrices.

In a joint project with Jan-Frederik Mai, published in the article Hüttner and Mai
(2019), we developed a simulation algorithm that generates correlation matrices with
the Perron–Frobenius property (S2). It additionally allows for a specification of the
eigenvalue distribution, hence allowing to control for the presence of (S1). We prove
that our algorithm is able to generate all correlation matrices with the Perron–Frobenius
property, and the construction principle applied in the algorithm enables us to prove
that 1/2d−1 of all d × d correlation matrices exhibit this property. On the other hand,
the construction principle makes it hard to derive properties of the distribution of the
generated correlation matrices, or to adjust the algorithm for taking into account also
(S3) and (S4). Nevertheless, depending on the chosen eigenvalue distribution, a major
percentage of the correlation matrices generated from the presented algorithm exhibits
also (S3), a realistic distribution of pairwise correlations, and, for large correlation ma-
trices (d > 1000), also (S4), the power-law-like degree distribution of the MST, tends to
be fulfilled.

With this simulation algorithm for realistic correlation matrices at hand, we are able
to assess graph-based portfolio selection techniques and analyze which specific features
of empirical correlation matrices may cause the persistent observed relation between
graph centrality and MVP weights, hereby extending our earlier study based on joint

7This is typically the complete weighted undirected graph corresponding to the matrix or its MST.
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work with Jan-Frederik Mai and Stefano Mineo, published in the article Hüttner et al.
(2018).

Consequently, certain parts of this chapter will exhibit considerable conformity with the
above references.

Throughout this chapter, we will use the following notation for (the sets of) covariance
resp. correlation matrices:

Kd :=
{

Σ ∈ Rd×d : Σ symmetric and non-negative definite
}

= set of covariance matrices in dimension d,

Cd :=
{
C ∈ Kd ∩ [−1, 1]d×d : Ci,i = 1∀ i ∈ {1, . . . , d}

}
= set of correlation matrices in dimension d,

CPFd := set of correlation matrices in dimension d exhibiting the Perron–Frobenius

property,

Cd,λ := set of correlation matrices in dimension d with eigenvalues λ.

It holds that Cd ⊂ Kd, i.e. every correlation matrix is a covariance matrix. The manifold
Cd may be identified with a compact subset of Rd (d−1)/2, e.g. via the pairwise corre-
lations, while Kd may be identified with an unbounded subset of Rd (d+1)/2. For every
Σ ∈ Kd there is a unique C ∈ Cd such that

Σ = diag(
√

Σii)C diag(
√

Σii),

diag(
√

Σii) =


√

Σ11 0 . . . 0
0

√
Σ22 . . . 0

...
...

. . .
...

0 0 . . .
√

Σdd

 .

The remainder of this chapter is organized as follows: Section 2.2 reviews known
approaches for the generation of correlation matrices. Our algorithm for simulating
Perron–Frobenius correlation matrices is presented in Section 2.3.2, where we further
prove related statements and analyze the simulated matrices with respect to the pres-
ence of stylized facts (S3) and (S4). Section 2.4 studies graph-based portfolio selection
techniques and, by applying the techniques to simulated correlation matrices exhibiting
different subsets of the stylized facts (S1)-(S4), demonstrates that there is no funda-
mental connection between graph-centrality and MVP-weights. Instead, the persistent
empirical findings in favor of such a relation must originate from the special properties
of financial correlation matrices. Section 2.5 summarizes and concludes.

2.2 Previous approaches to simulating correlation matrices

Ideally, an algorithm for simulating realistic correlation matrices for financial applica-
tions would be able to reproduce all of the above-mentioned stylized facts. However,
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2 Simulating realistic correlation matrices

the choice of simulation algorithms is limited, and narrows even further if one intends to
generate correlation matrices with specific features. In the following, we review the cur-
rently available simulation procedures, and discuss whether they are able to reproduce
the stylized facts (S1)-(S4) or might be modified accordingly.

2.2.1 Simulating from the uniform distribution on Cd

Joe (2006), Lewandowski et al. (2009), and Ghosh and Henderson (2003) propose differ-
ent approaches for simulating uniformly from the set Cd of d× d correlation matrices:

• Joe (2006) proposes to parameterize C ∈ Cd via d(d − 1)/2 partial correlations
ρi,j|L, with ρi,j|L being the correlation between variables i and j, with the effects
of variables contained in the set L = {i + 1, . . . , j − 1} removed. Generating the
partial correlations ρi,i+k|i+1,...,i+k−1 independently from Beta((d+ 1− k)/2, (d+
1− k)/2) distributions on (−1, 1), k ∈ {1, . . . , d− 2} and transforming to pairwise
correlations yields a correlation matrix C drawn from the uniform distribution on
Cd, C ∼ U(Cd). Lewandowski et al. (2009) extend this to different sets of d(d−1)/2
partial correlations.

• Ghosh and Henderson (2003) follow a different approach to obtain C ∼ U(Cd),
which the call the onion method : The core principle is to extend a (d−1)× (d−1)
correlation matrix to a d×d correlation matrix by adding a suitable row / column
vector (q, 1) ∈ Rd. This procedure is linked to elliptical distributions, cf. also

Lewandowski et al. (2009), as q = C̃
1
2 ·
√
b · U , where C̃ is the (d − 1) × (d − 1)

correlation matrix to be extended, b is a Beta((d − 1)/2, (d − k)/2)-distributed
random variable, and U is a random variable drawn from the uniform distribution
on the unit sphere in dimension d− 1.

Simulating uniformly from the set of correlation matrices in dimension d produces corre-
lation matrices with no further inherent structure other than positive (semi-)definiteness.
Nothing is known about the distribution of eigenvalues of such matrices, and Table 2.1
shows that with increasing dimension it is highly unlikely that matrices generated
from this distribution exhibit the Perron–Frobenius property. Via the ansatz of Joe
(2006), one obtains that pairwise correlations are identically Beta(d/2, d/2)-distributed
on (−1, 1), thus C ∼ U(Cd) do not exhibit (S3). Finally, Figure 2.2 indicates that they
also do not exhibit (S4).

2.2.2 Simulating correlation matrices with given eigenvalues: the randcorr

algorithm

This algorithm, introduced in Bendel and Mickey (1978), subsequently improved by
Davies and Higham (2000) and implemented as gallery(’randcorr’,...) in Matlab,
is sometimes also referred to as Bendel–Mickey algorithm. The central idea is to start
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from a diagonal matrix Λ of eigenvalues, and then subsequently apply Givens rotations
that force a diagonal element to become one:

C = Gd−1 · . . . ·G1ΛG′1 · . . . ·G′d−1,

G
(i,j)
θ =


Ii−1 0 . . . . . . 0

0 cos(θ) 0 − sin(θ) 0
... 0 Ij−i−1 0

...
... sin(θ) 0 cos(θ) 0
0 . . . . . . 0 Id−j

 (2.1)

where In is the n-dimensional identity matrix, and Gk := G
(ik,jk)
θk

is a Givens rotation
with rotation angle θk in the (ik, jk)-plane that forces the ik-th diagonal entry of the
resulting matrix Gk · · ·G1ΛG′1 · · ·G′k to become 1. These operations step by step intro-
duce the unit diagonal without altering the trace and the eigenvalues, i.e. transform Λ
into a correlation matrix. As this might produce correlation matrices where some entries
are zero according to Davies and Higham (2000), and this typically never happens in
the market (or a.s. never happens when drawing from the uniform distribution), Λ is
first multiplied with a random orthogonal matrix Q ∈ O(d) drawn from the Haar dis-
tribution on the orthogonal group O(d), cf. Stewart (1980) for a simulation algorithm,
i.e.

C = Gd−1 · . . . ·G1QΛQ′G′1 · . . . ·G′d−1 = V ΛV ′.

With the eigenvalue decomposition of C in mind, the eigenvector matrix V is thus con-
structed as the product of a random orthogonal matrix and d−1 Givens rotations. Davies
and Higham (2000) identify the following efficient and numerically stable approach to
solve for ck := cos(θk), sk := sin(θk), denoting

W (k−1) := Gk−1 · · ·G1QΛQ′G′1 · · ·G′k−1,

V (k−1) := Gk−1 · · ·G1Q :

The rotation indices ik < jk of Gk are chosen such that8 either w
(k−1)
ik,ik

< 1 < w
(k−1)
jk,jk

or

w
(k−1)
jk,jk

< 1 < w
(k−1)
ik,ik

, and should force the ik-th diagonal entry of the resulting matrix

W (k) to be 1, i.e. the equation

c2
kw

(k−1)
ik,ik

− 2ckskw
(k−1)
ik,jk

+ s2
kw

(k−1)
jk,jk

= 1

must hold. This can be transformed into a quadratic equation in the tangent, from
which they recover

(w
(k−1)
jk,jk

− 1)t2k − 2tkw
(k−1)
ik,jk

+ w
(k−1)
ik,ik

− 1 = 0,

tan(θk) = tk =
w

(k−1)
ik,jk

±
√

(w
(k−1)
ik,jk

)2 − (w
(k−1)
ik,ik

− 1)(w
(k−1)
jk,jk

− 1)

w
(k−1)
jk,jk

− 1
,

ck = ±(1 + t2k)
− 1

2 , sk = cktk.

(2.2)

8This is always possible as the trace equals d and does not change.
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The conditions on the rotation indices ensure that tk is well-defined. Further, since the

value of the square root in the numerator is larger than w
(k−1)
ik,jk

in absolute value, one of
the possible solutions for the tangent is positive, the other negative. We denote the two
solutions by t+k > 0 and t−k < 0 in the remainder of this chapter.

As the eigenvalues are specified prior to forming the correlation matrix, this algorithm
deliberately allows to control for the presence of (S1). Apart from the distribution of
eigenvalues and related quantities like the determinant as discussed in Holmes (1991),
little is known about the distribution of the matrices generated by the randcorr algo-
rithm, cf. Davies and Higham (2000). Consequently, it is very hard to derive statements
about the distribution of pairwise correlations and the presence of stylized facts (S3)
and (S4). Simulation studies showed that, even when specifying a realistic distribution
for the eigenvalues, the generated correlation matrices exhibit only (S1), but not the
other stylized facts, cf. Section 2.4.3 below.

However, from the randcorr algorithm, a simulation algorithm for correlation matrices
with the Perron–Frobenius property (S2) can be developed:

Davies and Higham (2000) always opt for ck = +(1+ t2k)
− 1

2 in (2.2) and do not acknowl-

edge that ck = −(1 + t2k)
− 1

2 is also a valid solution. Being able to choose the sign of
the cosine here, however, gives us the necessary flexibility to adjust the algorithm for
the generation of Perron–Frobenius correlation matrices. Further, they only state the
tangent solutions if the ik-th diagonal entry is forced to 1. If instead the jk-th diagonal
entry should be forced to 1, the tangent solutions become

tk =
−w(k−1)

ik,jk
±
√

(w
(k−1)
ik,jk

)2 − (w
(k−1)
jk,jk

− 1)(w
(k−1)
ik,ik

− 1)

w
(k−1)
ik,ik

− 1
. (2.3)

In the remainder of this chapter, we consider the randcorr algorithm to be augmented
in this respect.

2.2.3 Random gram matrices

The basic idea of this ansatz discussed in Holmes (1991); Marsaglia and Olkin (1984) is
to construct a correlation matrix C = XX ′ from a data matrix X of linearly independent
rows of norm 1. The distributions of eigenvalues and pairwise correlations are unknown,
except for the case where the rows of X are distributed uniformly on the sphere, where
Marsaglia and Olkin (1984) derive results on the distribution of pairwise correlations.
In this case, the percentage of generated matrices with positive dominant eigenvector
vanishes quickly with increasing dimension d, like for the uniform distribution. It is
unclear, if, or under which conditions on the elements of X, this algorithm is able to
generate Perron–Frobenius correlation matrices, and if this procedure can be modified
accordingly.
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A related algorithm for the generation of covariance matrices whose diagonal resp. off-
diagonal elements follow distributions with prespecified moments is given in Hirschberger
et al. (2007), which, however, cannot be modified readily to produce correlation matrices
with pairwise correlation entries having specific moments due to the constraint that
diagonal entries have to be 1. A further constraint one should impose in the latter
method is that the generated correlation matrices should have full rank, like those
observed in the market, which is a further restriction that hinders the translation of this
approach to correlation matrices.

2.2.4 Perturbation about or adding noise to a given correlation matrix

Marsaglia and Olkin (1984) discuss how to generate correlation matrices perturbed about
a given mean C ∈ Cd. Hardin et al. (2013) provide an algorithm for adding noise to a
given correlation matrix such that the resulting matrix is still positive definite.
In both approaches, the generated matrices are centered around a given correlation ma-
trix. With a similar argument as for factor correlation matrices, correlation matrices
generated like this constitute only a narrow subclass of realistic correlation matrices.
No general statements can be made about the distribution of eigenvalues or pairwise
correlations. Further, even when starting from a mean correlation matrix C that has the
Perron–Frobenius property, due to the irregular shape of the set of Perron–Frobenius
correlation matrices9, we cannot expect that all matrices generated from these proce-
dures will display a dominant eigenvector with only positive entries.

2.2.5 Factor model correlation matrices

As mentioned above, we take the view that the simulation of factor model correlation
matrices as discussed e.g. in Fan et al. (2008); Cizeau et al. (2001) relies too strongly on
the specific characteristics of the market being analyzed to be considered a completely
random approach of sorts. The simulated matrices typically display (S1) and (S3), with
the exact characteristics of course depending on the market the model was calibrated
to. Correlation matrices generated from factor models may or may not display the
Perron–Frobenius property: Of the two factor models considered in Section 2.4.3, one
model yields correlation matrices with the Perron–Frobenius property, the other not. It
is further worth noting that, with respect to stylized fact (S4), the scale-free property,
factor models are likely not the way to go: Bonanno et al. (2003) observes that correla-
tion matrices with a one-factor structure tend to exhibit tree structures that are a lot
denser (more leaves, all nodes very close to the central one) than those obtained from
market correlation matrices. Concerning multi-factor models, the analysis of simulated

9Boyle et al. (2014) show that it is not convex in d > 3. See also Johnson and Tarazaga (2004); Tarazaga
et al. (2001) for results on the sets of (symmetric) square matrices exhibiting the Perron–Frobenius
properties.
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3-factor-model correlation matrices in Section 2.4.3 implies that similar tree structures
are to be expected.

2.2.6 Generating correlation matrices exhibiting (S1)-(S4)

To summarize, only the randcorr algorithm explicitly allows to control the distribution
of eigenvalues, hence the presence of (S1). The distribution of pairwise correlations in
the presented algorithms is either unknown or does not display the properties specified
in (S3). Concerning the generation of correlation matrices whose MSTs exhibit the
scale-free property (S4), to the best of our knowledge there is no algorithm available,
and due to the generating mechanism of the MST we expect the task of finding such
correlation matrices to be highly complex.

For the generation of correlation matrices with the Perron–Frobenius property (S2), no
algorithm is available so far, although basically all observed financial correlation matrices
are of this type nowadays. To the best of our knowledge, Boyle et al. (2014); Boyle
and N’Diaye (2018) are the only articles concerned with this subclass of correlation
matrices: Apart from a broad analysis of market correlation matrices, they give an
explicit characterization of 3× 3 Perron–Frobenius correlation matrices10, some related
results in dimensions 4 and 5, and an intuition for our Theorem 2.3.9 on the proportion
of Perron–Frobenius correlation matrices in arbitrary dimension.

Whereas Boyle et al. (2014) in their theoretical considerations start directly from an
arbitrary correlation matrix, we find it more natural to approach the problem of gener-
ating Perron–Frobenius correlation matrices starting from the eigendecomposition of a
correlation matrix:

C = V ΛV ′, C ∈ Cd,

where Λ = diag(λ) is the diagonal matrix of eigenvalues λ = (λ1, . . . , λd), λ1 ≥ . . . ≥ λd,
and the columns of V contain the corresponding eigenvectors, i.e. v1, the first column
of V , corresponds to the dominant eigenvector.

As we have noted in Section 2.2.2, the randcorr algorithm is an excellent starting point
for devising a simulation procedure for Perron–Frobenius correlation matrices.

10They show that a necessary and sufficient condition in d = 3 for a correlation matrix to have a positive
dominant eigenvector is that the sum of any two pairwise correlations is positive.
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2.3 Simulating Perron–Frobenius correlation matrices

2.3.1 Auxiliary results on correlation matrices simulated from the randcorr

algorithm

As stated above, not much is known about the distribution of matrices generated by
the randcorr algorithm. However, we are able to prove the following two lemmas,
about the support of the distribution of correlation matrices generated by the randcorr

algorithm and about the occurrence of zero entries in their dominant eigenvector, which
are required in our proof of the proportion of Perron–Frobenius correlation matrices in
Theorem 2.3.9 below.

Lemma 2.3.1 (full support of randcorr)
For fixed eigenvalues λ, the support of the distribution of d × d correlation matrices
generated by the randcorr algorithm is Cd,λ.
The eigenvalues of any C ∈ Cd are all non-negative and sum up to d. Thus, drawing the
eigenvalues λ from a distribution that has full support on the set of feasible eigenvalues
for C ∈ Cd, namely d · Sd, where Sd := {(x1, . . . , xd) ∈ [0, 1]d :

∑d
i=1 xi = 1} is the

d-dimensional unit simplex, the support of the randcorr algorithm is Cd.

Proof
This follows from the facts that

1) the Haar distribution, which is used to generate the random Q in the initializing
step of the algorithm, has full support on the orthogonal group O(d).

2) Cd,λ is a subset of the set Kd,λ of covariance matrices with these eigenvalues λ.

Then, considering the function fλ : O(d) → Kd,λ, Q 7→ QΛQ′, Λ = diag(λ), that maps
an orthogonal matrix Q ∈ O(d) to a covariance matrix with eigenvalues λ, we find
that due to 1) this has full support Kd,λ, containing the set Cd,λ, i.e. we can get every
correlation matrix already in the first step of the algorithm when multiplying with a
random orthogonal Q. Together with the full support of the eigenvalue distribution, the
second statement follows immediately. �

Lemma 2.3.2 (a.s. no zero entries in v1)
For fixed eigenvalues λ, the dominant eigenvector of a correlation matrix C generated
from the randcorr algorithm a.s. has no zero entries.

Proof
The randcorr algorithm corresponds to a sequence of functions

QΛQ′ = W (0) 7→ G1QΛQ′G′1 = W (1) 7→ G2G1QΛQ′G′1G
′
2 = W (2) 7→ . . . 7→ C = V ΛV ′,

Q = V (0) f17→ G1Q = V (1) f27→ G2G1Q = V (2) f37→ . . .
fd−17→ Gd−1 · · ·G1Q = V,

with Λ = diag(λ) fixed in advance.
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1) From the eigendecomposition of a correlation matrix, we know:

V ΛV ′ =

v1,1 . . . v1,n
... . . .

...
vn,1 . . . vn,n


λ1 . . . 0

0
. . . 0

0 . . . λn


v1,1 . . . vn,1

...
...

...
v1,n . . . vn,n



=


∑n

i=1 λiv
2
1,i

∑n
i=1 λiv1,iv2,i . . .∑n

i=1 λiv1,iv2,i
∑n

i=1 λiv
2
2,i . . .

...
...

...
. . . . . .

∑n
i=1 λiv

2
n,i

 = C.

To match the diagonal entries to 1, we need

d∑
l=1

λlv
2
i,l = 1, ∀ i = 1, . . . , d.

2) Wlog. assume that Gk sets the ik-th diagonal entry of W (k) to 1. (Similar con-
siderations apply if the jk-th diagonal entry of W (k) is set to 1.) The ik-th row
of V is not modified by later Givens rotations Gl, l > k, once the ik-th diagonal
entry is rotated to 1, as ik is not selected as a rotation index again, and the ik-
th row and column of Gl, l > k, equal the ik-th unit vector. Thus, Gk enforces∑d

l=1 λlv
2
ik,l

= 1.

3) As stated above, any d-dimensional correlation matrix can be parameterized by
(at least) d(d− 1)/2 parameters, i.e. Cd is a d(d− 1)/2-dimensional manifold, thus
can be locally identified11 with Rd(d−1)/2. Fixing the eigenvalues fixes d − 1 of
these parameters, so the remaining d(d − 1)/2 − (d − 1) can be attributed to V .
Further, O(d) is a d(d−1)/2-dimensional manifold12, cf. Absil et al. (2008, Section
3.3.2). Thus, for fixed eigenvalues it suffices to study how the functions fk reduce
the dimension of the set of feasible matrices V (k). To this end, define

V(k)
λ := {V ∈ O(d) : V = Gk · · ·G1Q generated by Algorithm 2.3.4 with fixed

eigenvalues λ}

2)
= {V ∈ O(d) :

d∑
l=1

λlv
2
i,l = 1, i ∈ {i1, . . . , ik}},

V(0)
λ := O(d),

i.e. we have fk : V(k−1)
λ → V(k)

λ , V (k−1) 7→ Gk(Q,λ)V (k−1), highlighting the de-
pendence of Gk = Gk(Q,λ) on (Q,λ). (Remember Gk depends on the eigenvalues

11This is implicitly used in Joe (2006)’s derivation of the uniform distribution on Cd, as sketched in
Section 2.2.1.

12Graphically speaking, an orthogonal matrix Q ∈ O(d) can be parameterized in terms of d(d − 1)/2
angles describing the directions of the d orthogonal column vectors.
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2 Simulating realistic correlation matrices

λ and the random orthogonal matrix Q via tk, cf. Equation (2.2).) From this

definition, we see that V(k)
λ is a (d(d− 1)/2− k)-dimensional subset of O(d).

4) From the randcorr algorithm, we have

V = V (d−1) = Gd−1 · · ·G1Q ⇔ Q = V (0) = G′1 · · ·G′d−1V.

Now consider the set of feasible eigenvector matrices having a zero entry in the
dominant eigenvector,

V(d−1)
λ,0 := {V ∈ V(d−1)

λ : vj,1 = 0 for at least one j ∈ {1, . . . , d}}

=
{
V ∈ O(d) :

d∑
l=1

λlv
2
i,l = 1, i ∈ {i1, . . . , ik}, vj,1 = 0 for at least one

j ∈ {1, . . . , d}
}
⊂ V(d−1)

λ ,

which has dimension δ < d(d − 1)/2 − (d − 1). If V = V (d−1) ∈ V(d−1)
λ,0 , then

Q = V (0) necessarily lies in the set{
G

(m1,n1)
φ1

G
(m2,n2)
φ2

· · ·G(md−1,nd−1)
φd−1

V : V ∈ V(d−1)
λ,0 , φi ∈ [−π, π],

(mi, ni) ⊂ {1, . . . , d}, i = 1, . . . , d
}
⊂ O(d),

which is a true subset whose dimension is at most δ + (d− 1) < d(d− 1)/2. This

is a set of measure zero in V(0)
λ = O(d) with respect to the Haar measure. Thus,

we a.s. never draw Q such that the algorithm produces a dominant eigenvector
having a zero entry. �

Remark 2.3.3 (Generalization of Lemma 2.3.2)
With the same logic, for an arbitrary V(d−1)

λ,∗ ⊂ V(d−1)
λ of dimension δ < d(d−1)/2−(d−1)

it holds that for V = V (d−1) ∈ V(d−1)
λ,∗ , Q was necessarily drawn from a set of measure

zero in O(d). Via the eigendecomposition13 of C, we get that the ‘pre-image’ of any
lower-dimensional subset of Cd,λ under the randcorr algorithm has measure zero in
Kd,λ. Drawing λ from an absolutely continuous distribution with full support Sd, this
statement generalizes to lower-dimensional subsets of Cd.

2.3.2 Simulation algorithm for Perron–Frobenius correlation matrices

In the following we present an algorithm that generates C ∈ CPFd for an arbitrary
dimension d. It is adapted from the randcorr algorithm outlined in Section 2.2.2. The
two key observations that ensure we can indeed generate Perron–Frobenius correlation
matrices are the following (dropping the subscript k of the rotation indices for notational
simplicity):

13The eigendecomposition of C is unique up to different signs of columns of V , thus for a fixed C there
is only finitely many V such that V ΛV ′ = C. These V constitute a set of measure zero in V(d−1)

λ .
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2 Simulating realistic correlation matrices

1. The i-th row of V is not modified by later Givens rotations once the i-th diagonal
entry is rotated to 1, as i is not selected as a rotation index again in the randcorr

algorithm, and the i-th row and column of later Givens rotations equal the i-th
unit vector.

2. In every step, we can choose one of the four possible Givens rotations14 such
that the i-th (resp. j-th) entry of v1, the first column of V (i.e. the dominant
eigenvector), is forced to have a given sign when the corresponding diagonal entry
is set to 1. Thus, we can force all entries of the dominant eigenvector v1 to have
the same sign, which is sufficient for the generation of PF correlation matrices as
−v1, too, is an eigenvector of the largest eigenvalue.

To this end, note that a multiplication with a Givens rotation G
(i,j)
θ from the left

affects only the i-th and j-th row, and specifically in the following way:

GkV
(k−1) =


Iik−1 0 . . . . . . 0

0 ck 0 −sk 0
... 0 Ijk−ik−1 0

...
... sk 0 ck 0
0 . . . . . . 0 Id−jk





... · · ·
...

v
(k−1)
ik,1

· · · v
(k−1)
ik,d

... · · ·
...

v
(k−1)
jk,1

· · · v
(k−1)
jk,d

... · · ·
...



=



... · · ·
...

ckv
(k−1)
ik,1

− skv
(k−1)
jk,1

· · · ckv
(k−1)
ik,d

− skv
(k−1)
jk,d

... · · ·
...

skv
(k−1)
ik,1

+ ckv
(k−1)
jk,1

· · · skv
(k−1)
ik,d

+ ckv
(k−1)
jk,d

... · · ·
...


.

(2.4)

Algorithm 2.3.4 (Simulation of Perron–Frobenius correlation matrices)
Input: dimension d
Output: C ∈ CPFd

(1) Draw λ uniformly on the set of feasible eigenvalues d · Sd, cf. Fang et al. (1990,
Theorem 5.2(2)):

e = (e1, . . . , ed), ei ∼ Exp(1) iid, i ∈ {1, . . . , d},
λ = (λ1, . . . , λd) = d · sort(e/e′1).

(2) Draw a random orthogonal matrix Q, cf. Stewart (1980):

X ∈ Rd×d, xi,j ∼ N(0, 1) iid, i, j ∈ {1, . . . , d},
[Q,R] = qr(X).

14Once the rotation indices i and j are chosen, and it is decided which of the two diagonal entries should
be set to 1, we have two possible solutions for the tangent, and two choices for the sign of the cosine,
cf. Equations (2.2) and (2.3).
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2 Simulating realistic correlation matrices

(3) Initialize:

Λ = diag(λ), W = QΛQ′, V = Q,

and sequentially compute the Givens rotations:
While any(diag(W ) 6= 1),

(a) Uniformly select rotation indices i < j from the sets {l ∈ {1, . . . , d} : wl,l < 1}
and {l ∈ {1, . . . , d} : wl,l > 1}.
Uniformly select one of the two indices. The algorithm then forces the diag-
onal entry [GWG′]i,i, resp. [GWG′]j,j , to 1.

(b.1) In the first iteration k = 1:
Uniformly select one of the two possible solutions for the tangent in Equa-
tion (2.2), resp. (2.3), i.e. t ∈ {t+1 , t

−
1 }.

Uniformly select the sign of the cosine c = ±
√

1 + t2
−1

. This fixes the sign
of the entries of v1.

(b.2) In iterations k = 2, . . . , d− 2:
Uniformly select one of the two possible solutions to the quadratic equation
in the tangent (2.2), resp. (2.3), i.e. t ∈ {t+k , t

−
k }.

Select the sign of c = ±
√

1 + t2
−1

such that the i-th, resp. j-th, entry of v1

has the desired sign, cf. Equation (2.4):

[GV ]i,1 = c · (vi,1 − tvj,1) ≥ 0(≤ 0) if [GWG′]i,i
!

= 1

[GV ]j,1 = c · (tvi,1 + vj,1) ≥ 0(≤ 0) if [GWG′]j,j
!

= 1

(b.3) In the last iteration k = d− 1:
Choose t = td−1 ∈ {t+d−1, t

−
d−1} such that sign(vi,1 − tvj,1) = sign(tvi,1 + vj,1).

Select the sign of c = ±
√

1 + t2
−1

such that the i-th and j-th entry of v1

have the desired sign.

(c) Construct the Givens rotation G accordingly, cf. Equation (2.1), and save for
the next iteration:

W = GWG′, V = GV.

Remark 2.3.5 (Clarifications)
• In step (1), ei ∼ Exp(1) iid means the random variables ei are independent and

identically distributed according to the exponential law with mean 1. Here, one
can instead draw λ from a desired eigenvalue distribution other than the uniform
law on d · Sd.

• In step (2), N(0, 1) denotes the standard normal distribution, and qr(·) refers to
the QR-decomposition, where the diagonal entries of R are positive, cf. Stewart
(1980).
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2 Simulating realistic correlation matrices

• In step (3), ‘uniformly select’ refers to a draw from the discrete uniform distribution
on the respective sets.

• When referring to the sign of a quantity, we only distinguish between a ≥ 0 and
a ≤ 0, i.e. a = 0 is compatible with either class, corresponding to the definition of
the (non-strong) Perron–Frobenius property. In any case, t, c 6= 0 by construction,
and Lemma 2.3.2 ensures that a.s. [GV ]i,1 6= 0, resp. [GV ]j,1 6= 0.

• In the case that [QΛQ′]l,l = 1 for some l ∈ {1, . . . , d}, which a.s. never happens15,
the number of iterations required in step (3.b) decreases by the cardinality of the
set {l ∈ {1, . . . , d} : [QΛQ′]l,l = 1}, if the corresponding entries ql,1 all have the
same sign. Otherwise, QΛQ′ has to be left- and right-multiplied with another
random orthogonal matrix before proceeding with step (3), as the algorithm will
not modify the signs of these ql,1.

Theorem 2.3.6 (Validity of Algorithm 2.3.4)
Algorithm 2.3.4 generates Perron–Frobenius correlation matrices. The generated matri-
ces a.s. exhibit a dominant eigenvector with positive entries.

To prove Theorem 2.3.6, we require the following statements:

• The algorithm a.s. produces no zero entries in v1. This ensures that the algorithm
a.s. produces correlation matrices with the strong Perron–Frobenius property, and
in step (3.b.1) the first rotation indeed fixes the sign of the entries of v1.
This follows directly from Lemma 2.3.2.

• In step (3.b.3), at least (and a.s. exactly) one of the possible rotations Gd−1 si-
multaneously fixes the sign of the remaining two entries of v1. (For the previous
rotations there is nothing to show in this respect, since they are specifically chosen
to fix the sign of one entry of v1, and the remaining entries will be affected by
later rotations.)
This is shown in the following two lemmas.

Lemma 2.3.7 (Relation of tangent solutions in step (3.b.3))
The solutions t+d−1, t−d−1 of (2.2) in step (3.b.3) of Algorithm 2.3.4 satisfy the relation

t+d−1 = −(t−d−1)−1.

Proof
As all diagonal elements in W (d−2) except i = id−1 and j = jd−1 have been set to 1, and

trace(W (d−2)) = d, we have w
(d−2)
ii +w

(d−2)
jj = 2. So the tangent equation (2.2) becomes

td−1 =
w

(d−2)
ij ±

√
(w

(d−2)
ij )2 + (w

(d−2)
jj − 1)2

w
(d−2)
jj − 1

,

15This follows from a similar argumentation as in the proof of Lemma 2.3.2, as the set {Q ∈ O(d) :
[QΛQ′]l,l = 1 for some l ∈ {1, . . . , d}} is a lower-dimensional subset of O(d).
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and we get (dropping the superscript (d− 2) of the W -entries for notational simplicity)

wij −
√
w2
ij + (wjj − 1)2

wjj − 1
= − wjj − 1

wij +
√

(wij)2 + (wjj − 1)2

⇔ −(wjj − 1)2 = −(wjj − 1)2,

a true statement. Note that in step (3.b.3) of the algorithm forcing the i-th diagonal
entry to 1 is equivalent to forcing the j-th diagonal entry to 1, as the trace is preserved
and the remaining entry is set to 1 simultaneously. Thus wlog. we can use (2.2). �

Lemma 2.3.8 (Validity of step (3.b.3))
In step (3.b.3), at least (and a.s. exactly) one of the four possible Givens rotations
Gd−1 forces the remaining two entries of v1 to simultaneously be non-negative, resp.
non-positive.

Proof
The final eigenvector matrix can be expressed as V = Gd−1V

(d−2). Let (i, j) = (id−1, jd−1)

be the remaining diagonal entries of W (d−2) that are not equal to one, i.e. we need to
force vi,1 and vj,1 simultaneously to have the sign specified in step (3.b.1) of the algo-
rithm. From Equation (2.4), with sd−1 = td−1cd−1, we know:

vi,1 = cd−1 (v
(d−2)
i,1 − td−1v

(d−2)
j,1 )︸ ︷︷ ︸

=:A

and vj,1 = cd−1 (td−1v
(d−2)
i,1 + v

(d−2)
j,1 )︸ ︷︷ ︸

=:B

.

To be able to force vi,1 and vj,1 simultaneously to have the same sign, we need to show
that for at least one of the two possible solutions for td−1, the terms A and B have the
same sign.

Denote A± = v
(d−2)
i,1 − t±d−1v

(d−2)
j,1 and B± = t±d−1v

(d−2)
i,1 + v

(d−2)
j,1 . From Lemma 2.3.7 we

know that the two possible solutions for td−1 fulfill t+d−1 = −1/t−d−1. This yields

A− = v
(d−2)
i,1 − t−d−1v

(d−2)
j,1 = v

(d−2)
i,1 +

1

t+d−1

v
(d−2)
j,1 ⇔ t+d−1A

− = B+

B− = t−d−1v
(d−2)
i,1 + v

(d−2)
j,1 = − 1

t+d−1

v
(d−2)
i,1 + v

(d−2)
j,1 ⇔ t+d−1B

− = −A+.

Thus we have for the signs of A± and B±:
A+ > 0
A+ = 0
A+ < 0

⇔


B− < 0
B− = 0
B− > 0

 ,


B+ > 0
B+ = 0
B+ < 0

⇔


A− > 0
A− = 0
A− < 0

 ,

i.e. we always have (A+, B+) non-negative (non-positive), or (A−, B−) non-negative
(non-positive). If either A+ = 0 or B+ = 0, both tangent solutions are feasible, as
either vi1 = 0 or vj1 = 0 in this case, and the sign of cd−1 can be chosen to match the
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2 Simulating realistic correlation matrices

sign of the remaining entry of v1 to the sign chosen in step (3.b.1) of the algorithm.
If both A+ = 0 and B+ = 0, vi1 = vj1 = 0, i.e. all four Givens rotations are feasible.
However, taking into account the statement of Lemma 2.3.2 that zero entries in v1 a.s.
never occur, we a.s. have either (A+, B+) or (A−, B−) of the same sign (i.e. both positive,

resp. negative). The sign of cd−1 = ±(1 + t2d−1)−
1
2 can then be chosen accordingly to

match the sign of the entries of v1 specified in step (3.b.1) of the algorithm, which means
that a.s. exactly one of the four possible rotations Gd−1 is able to force the remaining
entries of the dominant eigenvector simultaneously to have the specified sign. �

The correlation matrices our algorithm produces are not uniform on the set of Perron–
Frobenius correlation matrices, just as randcorr does not produce uniformly distributed
correlation matrices, cf. Figures 2.3 and 2.4 for a simulation in d = 3. The sim-
ulated correlation matrices are represented by the 3-dimensional vector of pairwise
correlations. Obviously, randcorr assigns most of the mass around the diagonals
±ρ12 = ±ρ13 = ±ρ23. Our algorithm inherits this behaviour. The simulations illus-
trate Boyle et al. (2014); Boyle and N’Diaye (2018)’s theoretical result that the sum of
each pair of ρij , i 6= j, i, j ∈ {1, 2, 3}, is positive for C ∈ CPF3 .

1

0.5
-0.5

1 0

0

0.5
0

0.5

-0.5-0.5

1

Figure 2.3: Distribution of pairwise correlations for correlation matrices simulated from
our algorithm in d = 3 with eigenvalues uniformly distributed on d times the
d-simplex.

As can be derived from Lemma 2.3.1, the distribution of correlation matrices generated
by Algorithm 2.3.4 has full support CPFd . Further, the following interesting fact about
the volume of the set CPFd follows directly from the construction principle used in Algo-
rithm 2.3.4. Table 2.1 and Boyle et al. (2014); Boyle and N’Diaye (2018) already give
an indication for this.
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Figure 2.4: Distribution (projections to two-dimensional space) of pairwise correlations
for correlation matrices in d = 3 simulated from the uniform distribution
(top row), the randcorr algorithm with eigenvalues uniformly distributed
on d times the d-simplex (middle row), and our algorithm with the same
eigenvalue distribution (bottom row).

Theorem 2.3.9 (Proportion of Perron–Frobenius correlation matrices)
The proportion of Perron–Frobenius correlation matrices in the set of all correlation

matrices in dimension d is 1/2d−1.

Proof
This follows from Lemmas 2.3.1 and 2.3.2, and a decomposition of the basic procedure
into random and deterministic components, wlog. assuming that we always set the ik-th
diagonal entry to 1 in each iteration k:

1. The support of the randcorr algorithm is Cd, cf. Lemma 2.3.1. Further, it a.s.
requires d − 1 Givens rotations to force all diagonal entries to 1, as all diagonal
entries of the initial matrix W (0) = QΛQ′ a.s. differ from 1.

2. Zero entries in v1 a.s. never occur, cf. Lemma 2.3.2.
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3. We can decompose the randcorr algorithm (and thus analogously also Algo-
rithm 2.3.4) into the following two steps:

a) Simulate ω := (Λ, Q, σ) ∈ Ω,

Ω = {Λ = diag(λ), λ ∈ Rd+,0 : λ′1 = d} × O(d)×
{
{(ik, jk)}k∈{1,...,d−1} :

(ik, jk) ∈ {1, . . . , d}2, ik 6= jk∀k, {i1, . . . , id−1} ⊂ {1, . . . , d}
}
.

The eigenvalues λ are drawn from an absolutely continuous distribution
with full support d · Sd, the orthogonal matrix Q is drawn from the Haar
measure, and σ denotes a particular sequence of pairs of rotation indices
{(ik, jk)}k∈{1,...,d−1}. Remembering that Algorithm 2.3.4 draws the rotation
indices sequentially, it is important to note that the sequence σ can indeed
be chosen knowing only the initial matrix W (0), i.e. Q and λ: wlog. i1 and

j1 are chosen uniformly from the sets {k : w
(0)
kk > 1} and {k : w

(0)
kk < 1},

respectively. Since multiplication with a Givens rotation Gk affects only
the ik-th and jk-th rows and columns of W (k−1) and does not alter the
trace of a matrix, we know the diagonal elements of W (1) = G1W

(0)G′1 are

{w(1)
kk }k∈{1,...,d} = {w(0)

kk }k∈{1,...,d}\{i1,j1}∪{1, w
(0)
i1,i1

+w
(0)
j1,j1
−1}, and i2 and j2

can wlog. be chosen uniformly from the sets {k : w
(1)
kk > 1} and {k : w

(1)
kk < 1},

respectively. The remaining pairs of rotation indices are chosen sequentially
in the same manner.

b) Given ω, for each Givens rotation Gk, k ∈ {1, . . . , d − 1}, there are four

potential choicesG
(lk)
k , from which the randcorr algorithm chooses uniformly,

i.e. the algorithm chooses l := l(ω) ∈ {1, 2, 3, 4}d−1, l = (l1, . . . , ld−1), where

we identify G
(1)
k with the Givens rotation obtained when taking the positive

t+k of the two tangent solutions tk and the positive sign for the cosine ck, G
(2)
k

with the one obtained when taking tk = t+k and ck negative, G
(3)
k with the one

obtained when taking tk = t−k and ck positive, and G
(4)
k with the one obtained

when taking tk = t−k and ck negative. We denote A = A(l) := G
(ld−1)
d−1 · · ·G(l1)

1

in the sequel.

4. By (1) and (3), we know:

Cd
a.s.
=
{
∪l(ω)∈{1,2,3,4}d−1A(l(ω))QΛQ′A(l(ω))′ : ω ∈ Ω

}
,

and by the construction principle employed in Algorithm 2.3.4, we have:

CPFd
a.s.
=
{
∪l(ω)∈N(ω)A(l(ω))QΛQ′A(l(ω))′ : ω ∈ Ω

}
,
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where

N(ω) = {l(ω) ∈ {1, 2, 3, 4}d−1 :

l1 ∈ {1, 2, 3, 4} arbitrary, determines the sign of the entries of v1,

lk, k = 2, . . . , d− 2 is one of those elements in {1, 2, 3, 4} that ensures

that the updated ik-th entry of the first eigenvector has the desired

sign; Lemma 2.3.2 ensures there are a.s. two of these (compare step

(3.b.2) of Algorithm 2.3.4), and

ld−1 is a.s. uniquely determined by Lemma 2.3.8}.

Therefore, |N(ω)| = 4 · 2d−3 · 1 = 2d−1, and the proportion of Perron–Frobenius
correlation matrices is |N(ω)|/4d−1 = 1/2d−1. �

Using Theorem 2.3.9 and the normalizing constant for the uniform distribution on Cd as
given in Joe (2006), we can calculate the volume16 of the set of d-dimensional Perron–
Frobenius correlation matrices CPFd , interpreted as a subset of Rd(d−1)/2:

Vol(CPFd ) = 2
1
6

(d−1)(2d2−d−6)
d−1∏
k=1

B((k + 1)/2, (k + 1)/2)k,

where B(·, ·) is the beta function.
Table 2.2 lists this volume for dimensions d ∈ {3, 4, 5, 7, 10}.

dimension d = 3 d = 4 d = 5 d = 7 d = 10

Vol(CPFd ) 0.3886 1.4622 1.4083 0.4353 0.0013

Table 2.2: Volume of CPFd for d ∈ {3, 4, 5, 7, 10, 15}.

2.3.3 Presence of other stylized facts for different eigenvalue distributions

It would be desirable to further develop the algorithm such that a generation of corre-
lation matrices exhibiting stylized facts (S1)-(S3) (or even (S1)-(S4)) described in the
introduction is possible, i.e. that additionally to the Perron–Frobenius property and a
realistic eigenvalue distribution, the generated correlation matrices’ off-diagonal entries
have a realistic distribution, and their corresponding MSTs exhibit a power law degree
distribution. Several empirical studies have found that realistic distributions for pair-
wise correlations exhibit a positive mean of about 0.3-0.5, cf. e.g. Kazakov and Kalyagin
(2016), (and are unimodal, and negative correlations typically are not large in absolute
value).

16This formula corrects a typo in the exponent made in the respective formula in our paper Hüttner
and Mai (2019).

38



2 Simulating realistic correlation matrices

Remark 2.3.10 (No relation between (S2) and (S3))
As a correlation matrix C with all entries positive has a positive dominant eigenvector by
the Perron–Frobenius Theorem, it might be tempting to think that the Perron–Frobenius
property already encompasses stylized fact (S3) (distribution of pairwise correlations is
significantly shifted to the positive) or vice versa. However, the following example in
d = 5 illustrates that correlation matrices may have several negative correlations and
still exhibit the Perron–Frobenius property, while the mean of pairwise correlations is
even slightly negative:

C =


1.0000 −0.2704 −0.1370 −0.1774 0.4315
−0.2704 1.0000 −0.2277 −0.0651 0.3619
−0.1370 −0.2277 1.0000 0.7374 0.4277
−0.1774 −0.0651 0.7374 1.0000 0.4955
0.4315 0.3619 0.4277 0.4955 1.0000

 ,

v1(C) =


0.5118
0.6162
0.5980
0.0017
0.0260

 , λ(C) =


2.1194
1.3314
1.2692
0.2470
0.0329

 ,
1

10

4∑
i=1

5∑
j=i+1

ρi,j = −0.0067.

On the other hand, the theoretical results for d = 4 in Boyle and N’Diaye (2018)
state that the number of negative correlations in Perron–Frobenius correlation matrices
is limited to at most 3, and restrictions on their relative positioning apply. A quick
simulation study using Algorithm 2.3.4 (simulation of n = 10000 d × d correlation
matrices for d ∈ {4, 5, 6}, λ/d ∼ U(Sd)) shows that these results do not generalize to
higher d: There exist Perron–Frobenius correlation matrices with more negative than
non-negative pairwise correlation entries: For 8 of the 10000 simulated 6 × 6 Perron–
Frobenius correlation matrices, 9 of the 15 pairwise correlations were negative.
Finally, the following counterexample shows that, vice versa, a positive mean of pairwise
correlations (S3) does not imply the Perron–Frobenius property (S2):

C =


1.0000 0.6551 0.6028 0.1704
0.6551 1.0000 0.6112 −0.4248
0.6028 0.6112 1.0000 0.1485
0.1704 −0.4248 0.1485 1.0000

 ,

v1(C) =


−0.5739
−0.5943
−0.5605
0.0571

 , λ(C) =


0.0999
0.4000
1.2500
2.2501

 ,
1

6

3∑
i=1

4∑
j=i+1

ρi,j = 0.2939.

In general, as stated in Section 2.2.2, it is very hard to derive statements about the
distribution of pairwise correlations simulated from the randcorr algorithm, and con-
sequently this holds true also for our Algorithm 2.3.4. It seems very hard to manipulate
the algorithm further to take the positive shift of pairwise correlations into account.
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2 Simulating realistic correlation matrices

Still, in the following we aim to provide some enlightenment about the distributions of
pairwise correlation entries for different choices of eigenvalue distributions. To this end,
we consider the following distributions for the eigenvalues λ:

1) the uniform distribution of eigenvalues, i.e. λ/d simulated uniformly on the d-
simplex Sd,

2) (a special version of) the power-law distribution suggested by Bouchaud and Pot-
ters (2011); Bun et al. (2017) that was found to capture the eigenvalue distribution
of empirical correlation matrices fairly well, where the entries of λ̃ = (λ̃1, . . . , λ̃d)
are simulated independently from the density17

f(x) =
2

(x+ 1)3
, (2.5)

and λ = d · λ̃/‖λ̃‖, and

3) a variant of the above power-law where the largest eigenvalue is fixed at 40% of
total variance, i.e. λ1 = 0.4 ·d and λ̃i, i = 2, . . . , d, are simulated from density (2.5)
and rescaled as described above such that λ2 + . . .+ λd = 0.6 · d.

Presence of (S3)

We simulate n = 10, 000 Perron–Frobenius correlation matrices, with eigenvalues sim-
ulated according to these distributions (i.e. we alter step (1) of Algorithm 2.3.4), and
study the distributions of the pairwise correlation entries.

1) When λ/d ∼ U(Sd), pairwise correlations tend to be unrealistically small for large
correlation matrices. The range of pairwise correlations shrinks with increasing
dimension d of the matrix. The mean of pairwise correlations is slightly shifted
to the positive, but approaches zero for increasing d, cf. Table 2.3, which is too
small compared to empirical observations of the average pairwise correlation in
large financial data sets. Further, in empirical financial correlation matrices, one
typically finds more positive than negative correlations, which are larger in abso-
lute value, whereas the absolute size of the observed negative correlations is small.
This is not the case for correlation matrices simulated from our algorithm with
uniform eigenvalue distribution. See Figure 2.5 for a plot of empirical densities of
pairwise correlations in d = 100.

2) Using Bouchaud and Potters (2011)’s power law distribution for the simulation of
eigenvalues as described above, one gets very diverse distributions for the pairwise
correlation entries, cf. Table 2.3 and Figure 2.5. Overall, the distributions of pair-
wise correlation entries of the simulated correlation matrices with this eigenvalue

17Bouchaud and Potters (2011); Bun et al. (2017)’s power law relies on the lower bound λ− for the
eigenvalues of a random correlation matrix in the sense of random matrix theory. We set λ− = 0
here, which conforms to the random matrix theory limit when the data matrix is N×N and N →∞.
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2 Simulating realistic correlation matrices

distribution tend to exhibit several realistic features18: Regardless of dimension,
pairwise correlations on average lie in the range [-0.4,0.6], with the mean shifted to
the positive. However, the minimum and mean pairwise correlation is on average
smaller than what is typically observed in market correlation matrices.

3) Using Bouchaud and Potters (2011)’s power law plus a fixed largest eigenvalue ex-
plaining 40% of the total variance, we find that pairwise correlation entries of the
simulated correlation matrices exhibit quite realistic distributions: Regardless of
dimension, the average pairwise correlation is approximately 0.35, fluctuating in a
range of [0.25,0.53], which is in line with the observations in empirical studies, cf.
Kazakov and Kalyagin (2016); Plerou et al. (2002) and Section 2.4. The distribu-
tion functions are smooth and unimodal, with more weight on positive correlations
than on negative ones, however, large negative correlations are on average more
likely than typically observed in correlation matrices of financial data sets, see
Figure 2.5.

1) Uniform avg min range min avg mean range mean avg max range max
d = 25 -0.3946 [-0.7597,-0.0379] 0.0886 [0.0196,0.3355] 0.5262 [0.2871,0.8403]
d = 50 -0.3614 [-0.6230,-0.1723] 0.0518 [0.0124,0.2072] 0.4426 [0.2791,0.6693]
d = 75 -0.3321 [-0.5280,-0.2034] 0.0372 [0.0140,0.1362] 0.3930 [0.2608,0.5961]
d = 100 -0.3094 [-0.5547,-0.2099] 0.0295 [0.0118,0.1037] 0.3588 [0.2438,0.5367]

2) Power-law avg min range min avg mean range mean avg max range max
d = 25 -0.4228 [-0.9233,0.9319] 0.2020 [0.0223,0.9644] 0.6657 [0.3369,0.9848]
d = 50 -0.4389 [-0.8270,0.8174] 0.1502 [0.0243,0.9070] 0.6011 [0.3260,0.9654]
d = 75 -0.4293 [-0.7942,0.8619] 0.1268 [0.0187,0.9297] 0.5609 [0.3162,0.9658]
d = 100 -0.4157 [-0.8099,0.9076] 0.1131 [0.0191,0.9587] 0.5315 [0.3364,0.9779]

3) Power-law avg min range min avg mean range mean avg max range max
d = 25 -0.4509 [-0.9701,0.0979] 0.3384 [0.2585,0.5272] 0.7782 [0.5893,0.9947]
d = 50 -0.4307 [-0.9679,0.0859] 0.3603 [0.2991,0.5023] 0.7502 [0.6038,0.9819]
d = 75 -0.4128 [-0.9464,0.0879] 0.3693 [0.3036,0.4705] 0.7311 [0.6084,0.9758]
d = 100 -0.3888 [-0.9805,0.0735] 0.3750 [0.3039,0.4883] 0.7144 [0.6058,0.9872]

Table 2.3: Average values of the minimum, mean, and maximum values of pairwise cor-
relations in correlation matrices simulated from our algorithm with uniform
and power-law eigenvalue distribution; n = 10, 000 simulations in dimensions
d ∈ {25, 50, 75, 100}.

Presence of (S4)

In the following, we check whether the MSTs of the simulated correlation matrices
exhibit the scale-free property, using as diagnostics:

(i) the number of leaves,

(ii) the maximal degree, i.e. the maximal number of neighbors a node in the MST has,
and

18Extreme cases where all pairwise correlations are larger than 0.9 are possible, but occur very rarely.
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Figure 2.5: Empirical densities of pairwise correlations for several correlation matrices
simulated from our Algorithm 2.3.4 in d = 100 with eigenvalues distributed
1) uniformly, i.e. λ/d ∼ U(Sd) (top), 2) according to density (2.5) (middle),
and 3) with fixed largest eigenvalue of 40% of total variance and remaining
eigenvalues distributed according to density (2.5) (bottom).
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2 Simulating realistic correlation matrices

(iii) a log-log plot of the degree distribution, which would be approximately a straight
line in the case of a power law degree distribution.

1) Concerning the tree structure of MSTs obtained from correlation matrices simu-
lated from our algorithm, we find that when λ/d are distributed uniformly on the
d-simplex for d = 20, the MSTs exhibits fewer leaves than MSTs derived from
correlation matrices of d randomly drawn assets from our data set of 395 5Y-CDS
log return time series of constituents of the four major credit indices (ITRX, ITRX
HY, CDX, CDX XO) we use for the assessment of graph-based portfolio selection
methods in Section 2.4 below, cf. Figure 2.6. Studying the degree distribution,
i.e. the distribution of the number of neighbors, in d = 100, we find that it is
not approximated well by a power law, as the scale-free property would postulate,
but rather exhibits an exponential decay for large numbers of neighbors, which is
typically encountered for ‘random’ graphs, cf. Vandewalle et al. (2001), with the
maximal degree (i.e. the highest number of neighbors a node in the graph has)
being at most 17 in n = 10, 000 simulations. In d = 1000, the degree distribution
is still not well approximated by a power law in n = 1000 simulations, but decays
exponentially, cf. Figure 2.7.

2) When using the power law density (2.5) for the simulation of eigenvalues, we find
a similar behaviour: Also with this eigenvalue distribution, MSTs derived from
correlation matrices simulated from our algorithm exhibit fewer leaves than MSTs
derived from financial correlation matrices in d = 20, cf. Figure 2.6. Again the
degree distribution in d = 100 exhibits exponential decay, not the desired power
law-like behaviour, with the maximal degree being at most 24 in n = 10, 000 simu-
lations. In d = 1000, we find that the degree distribution still decays exponentially,
but less pronounced as in the case of uniformly distributed eigenvalues.

3) If, additionally to the power law eigenvalue distribution, we fix the largest eigen-
value at 40% of total variance, we still find fewer leaves than in market-derived
MSTs in d = 20, cf. Figure 2.6, and exponential decay of the degree distribution
in d = 100, with the maximal degree being at most 25 in n = 10, 000 simulations.
In large dimensions, however, the degree distribution approaches a power law-like
behaviour, cf. Figure 2.7 for a log-log plot of simulated degree distributions in
d = 1000.

So, whereas for eigenvalue distributions 1) and 2), the scale-free property cannot be
detected, fixing the largest eigenvalue at 40% of total variance and the remaining eigen-
values distributed according to density (2.5), we find that the MSTs of large correlation
matrices simulated from Algorithm 2.3.4 do indeed approach a power law-like degree
distribution. When fitting a line to a log-log plot of the degree distribution19, we find

19Although this is not the most reliable method for fitting a power law, we nevertheless stick with this
approach for the sake of simplicity, as we only intend to provide an intuition about the behaviour
of the degree distribution of the MSTs related to correlation matrices simulated from our Algo-
rithm 2.3.4. See Clauset et al. (2009) for more information on the drawbacks of this approach for
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Figure 2.6: Histograms of the number of leaves of MSTs derived from correlation matri-
ces simulated according to Algorithm 2.3.4 for different eigenvalue distribu-
tions, d = 20, in contrast to empirical correlation matrices. Top: Uniform
distribution of eigenvalues. Bottom: Power law distribution of eigenvalues,
once with fixed largest eigenvalue explaining 40% of total variance.

that the exponent of the fitted power law is approximately in [−2.2,−2], which is (in
absolute value) slightly below the values found in the empirical studies Vandewalle et al.
(2001) (exponent -2.2±0.1) and Bonanno et al. (2003) (exponent -2.6).

fitting power-law distributions, and viable alternatives.
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Figure 2.7: Degree distribution of MSTs derived from correlation matrices simulated
according to Algorithm 2.3.4 for different eigenvalue distributions, d = 1000.
Top: Uniform distribution of eigenvalues. Middle: Power law distribution
of eigenvalues. Bottom: Power law distribution of eigenvalues with fixed
largest eigenvalue explaining 40% of total variance. The thick black lines
represent the respective means.
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2 Simulating realistic correlation matrices

2.4 Application: Assessing graph-based portfolio selection
techniques

Several empirical studies focusing on graph-based portfolio selection techniques have
documented a strong relation between these methods and the classical Markowitz ansatz,
cf. Onnela et al. (2003); Pozzi et al. (2013); Kaya (2015); Peralta and Zareei (2016). With
different algorithms for simulating correlation matrices at hand, we are able to analyze
whether this empirical relation stems from a fundamental connection between the two
different approaches or is due to the special structure of market correlation matrices. We
consider an investment universe of d ∈ N assets. Each asset k = 1, . . . , d is associated
with its annualized log-return Rk, and investment decisions are based on the probability
distribution of the vector R := (R1, . . . , Rd).

The problem of optimal investment, central in mathematical finance, was first formalized
in the seminal work of Markowitz (1952, 1959). There, optimal investment is considered
in terms of the first two moments of the distribution of R, the covariance matrix Σ ∈
Rd×d and, if desired, an expected return estimate µ ∈ Rd. A portfolio in the d assets
is given by a vector x = (x1, . . . , xd)

′ ∈ Rd satisfying 1′ x = x1 + . . . + xd = 1, with 1
denoting a d-dimensional column vector with all entries being equal to one. Component
xi gives the portfolio weight of asset i, with negative value corresponding to shortselling
the asset. The side condition 1′ x = 1 demands that the portfolio is fully invested,
shortselling being allowed. A Markowitz-optimal portfolio is one that minimizes portfolio
variance x′Σ x for a given expected target return µ′ x = c, with c an input constant
(resp. maximizes return for a given variance), the optimal solution of this quadratic
optimization problem under linear side constraint being known in closed form. Among
all these optimal portfolios, the so-called minimum variance portfolio (MVP), denoted by
x̄ in the sequel, is the one with smallest variance, and it depends solely on Σ (independent
of µ, as the constraint µ′ x = c is omitted):

x̄ = x̄(Σ) =
Σ−1 1

1′Σ−1 1
. (2.6)

This approach has been extended in different directions, for example to the optimization
of alternative risk or return measures as in Rockafellar and Uryasev (2000), or to the
inclusion of nonnegativity or cardinality constraints, or discrete-type constraints related
to trading restrictions, which are highly relevant for practitioners as in, e.g., Jagannathan
and Ma (2003); Li et al. (2006).

Recently, a more descriptive approach to portfolio selection has emerged: Pioneered by
some remarkable works by Mantegna, e.g. Mantegna (1999), graph-based methods have
found their way into finance literature, and recent studies, for example Onnela et al.
(2003); Pozzi et al. (2013); Kaya (2015); Peralta and Zareei (2016), explore their useful-
ness for optimal investment purposes. In this context, portfolio selection is essentially
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also based on the covariance matrix of returns20 Σ, but relies on a more descriptive
approach compared to the Markowitz paradigm: The matrix Σ is reduced to essential
information in the form of a planar graph derived from it, typically the minimum span-
ning tree (MST) as introduced in the context of (S4). The resulting graph structure
is used as an easy-to-grasp visualization of the essential aspects of interconnectedness
between the assets, and investment decisions are based on the idea of choosing ‘cen-
tral’ or ‘non-central’ assets from the graph, according to certain centrality measures;
Intuitively, a variance-minimizing portfolio should consist of rather non-central vertices
in this graph because, heuristically, these should form a well-diversified portfolio. This
heuristic implies that there should be a significant relationship between centrality mea-
surements in graphs and the MVP.
Indeed, Onnela et al. (2003) find empirically that the non-central assets in an MST com-
puted from the historical stock return correlation matrix are prominently represented in
the associated MVP. Similarly, Pozzi et al. (2013) detect that portfolio performance is
improved if the constituent assets are selected among the non-central ones in an MST
(or in a maximally filtered planar graph) derived from the correlation matrix. Using the
same idea but a slightly differing technique, Kaya (2015) bases his analysis on a ma-
trix containing pairwise mutual information of the assets for a more robust dependence
measurement. He finds that more central assets yield higher returns, and concludes
that portfolio selection should favor central names with low volatility, which is slightly
opposite to the aforementioned references. Peralta and Zareei (2016) study the relation
between Markowitz-optimal portfolios and graph-centrality not only empirically, but at-
tempt at providing a heuristic algebraic connection between both concepts. Like Onnela
et al. (2003); Pozzi et al. (2013), they find evidence for Markowitz-optimal portfolios
favoring non-central assets. However, they also find that during certain time periods, in
which the correlation between individual and systemic performance is high, more central
assets gain more weight in Markowitz-optimal portfolios.

In this section we analyze whether there is a fundamental link between variance min-
imization according to the Markowitz ansatz and (different notions of) centrality in a
graph based on the covariance resp. correlation matrix. On the one hand, we investi-
gate potential algebraic links between the two approaches, as postulated in Peralta and
Zareei (2016) for example, and find that an algebraic connection cannot be proven for
more than 3 assets. On the other hand, we conduct our own study on historical CDS
data, which, in line with the previously mentioned studies on stock return data, detects
a strong connection between graph centrality and MVP weights. By means of a Monte
Carlo study using the different simulation algorithms for correlation matrices introduced
in the previous sections we are able to rule out a fundamental connection between graph
centrality and MVP weights. Instead, we find that the persistent empirical findings in
favor of such a connection must originate from the special structure of financial correla-
tion matrices, as even portfolios constructed from correlation matrices displaying only

20Graph-based methods can more generally also be based on any matrix Σ ∈ Rd×d containing pairwise
dependence measurements. To ensure comparability with the classical Markowitz approach, we
always take Σ to be the covariance matrix of asset returns.
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a subset of the stylized facts (S1)-(S4) of financial correlation matrices did not exhibit
a strong link between graph centrality and MVP weights.

In the following, we first introduce the considered centrality concepts in Section 2.4.1,
before examining potential algebraic links in Section 2.4.2, and conducting the Monte
Carlo studies in Section 2.4.3.

2.4.1 Centrality measures

We investigate the relation between ‘central’ resp. ‘peripheral’ assets in the graph associ-
ated with Σ and their weights in the corresponding MVP. An intuitive way of identifying
non-central assets in a tree is to consider its leaves, i.e. vertices with only a single neigh-
bor. We further consider the following, more sophisticated definitions of centrality:

• Eigenvector centrality of a graph: The adjacency matrix A of a finite con-
nected graph is irreducible and has entries in {0, 1} with aij = 0 (resp. aij = 1)
meaning that there is no (resp. an) edge between vertex i and vertex j. By the
Perron–Frobenius Theorem, the largest eigenvalue of A is positive and the asso-
ciated eigenvector v1 has positive components. Consequently, by normalizing v1

in such a way that v′1 1 = 1, the dominant eigenvector v1 gives a probability dis-
tribution on the vertices. These probabilities can be interpreted as measurements
of centrality in the graph, since v1 is the limit of An 1/1′An 1, i.e. the normalized
version of An 1, as n → ∞. The i-th entry of An 1 gives precisely the number
of all paths in the graph of length n starting at i (including stopovers, i.e. all
paths of length ≤ n without stopovers). Consequently, the largest entry of v1

corresponds to the vertex from which most different paths are possible, i.e. which
is most connected to other vertices.

While this centrality notion is originally based on unweighted (and interesting
only for incomplete) graphs, Peralta and Zareei (2016) heuristically extend it to
the weighted graph Gw(Σ) replacing (aij) by (w(Σij)) for increasing w, see Sec-
tion 2.4.2 for details and comments.

• Mean occupation layer of a tree: The central vertex of a tree T according to
this criterion is defined as the vertex r(T ) minimizing the so-called mean occupation
layer

`(T ) :=
1

d

d∑
v=1

L
(
r(T ), v, T

)
,

where

L(r, v, T ) := length of (unique) tree-path from r to v

in terms of edges passed through,
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cf. Onnela et al. (2003). Intuitively, `(T ) gives the average length of a path in T
from its root r(T ) to a vertex, and the root r(T ) is chosen such that this average
length is minimal. Later on, we will apply this notion to a minimum spanning
tree MST(C) derived from a correlation matrix C. In this case, we will abbreviate
r(C) = r(MST(C)) and `(C) = `(MST(C)).
This notion is closely related to the concept of closeness centrality as explained
in Newman (2008), where each vertex is assigned the average path length to all
other vertices.

For other centrality concepts the interested reader is referred to Newman (2008); Kaya
(2015).

It is important to note that the central vertex of a tree computed via the notion of
eigenvector centrality may be different from the one computed via the notion of mean
occupation layer, as Figure 2.8 shows.

Figure 2.8: Central nodes implied by eigenvector centrality (gray) and mean occupation
layer (white) may differ.

Further, Figure 2.8 shows that the central vertex according to the mean occupation layer
criterion need not be unique. However, the number of MSTs computed from correlation
matrices simulated from the uniform distribution C ∼ U(Cd) exhibiting this property
vanishes for large d, and if the central vertex was not unique, the candidates for the
central vertex were always two neighboring vertices.

2.4.2 Does an algebraic connection between centrality and MVP weights
exist?

Eigenvector centrality

We first consider a possible relation between eigenvector centrality and MVP weights,
which can be approached from the viewpoint of matrix algebra, cf. Peralta and Zareei
(2016). By means of an eigenvalue decomposition of the correlation matrix C = V ΛV ′,
the MVP (2.6) associated with the covariance matrix Σ = diag(

√
Σii)C diag(

√
Σii) can

be rewritten as follows:

x̄(Σ) =
diag(1/

√
Σii)

1′Σ−11

( d∑
k=1

1

λk
vkv

′
k

)
diag(1/

√
Σii)1, (2.7)
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where again λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of C with associated
orthonormal basis of eigenvectors v1, . . . ,vd.

In the definition of eigenvector centrality, the entries of the dominant eigenvector as-
sociated with the adjacency matrix A of an unweighted connected graph are positive
and allow to be interpreted as measurements of centrality. However, Peralta and Zareei
(2016) consider the weighted graph Gw(C) derived from a correlation matrix and relax
the notion of eigenvector centrality in an intuitive, but algebraically questionable way.
They consider the entries of the dominant eigenvector v1 of C (instead of A) as mea-
surements of centrality in Gw(C), although these entries need not be positive. Indeed,
as we have shown in Theorem 2.3.9, the percentage of such matrices is 1/2d−1 in Cd,
hence declining fast with increasing d. This renders the interpretation of the entries
of v1(C) as measurements of centrality less intuitive. However, almost all empirical
correlation matrices exhibit this stylized fact (S2), a dominant eigenvector with positive
entries, cf. also Boyle et al. (2014). We are able to confirm this finding in our data
set described in Section 2.4.3 consisting of 395 CDS time series: When considering the
correlation matrices of randomly chosen portfolios of 20 assets, over 99.9% exhibited
dominant eigenvectors with only positive entries.

Peralta and Zareei (2016) represent the minimum variance portfolio (2.7) as the sum of
three parts:

x̄(Σ) =
diag(1/

√
Σii)

1′Σ−11

(
I +N +R

)
,

I =


1√
Σ11
...
1√
Σdd

 , N =
( 1

λ1
− 1
)

(v′1 I) v1, R =
d∑

k=2

( 1

λk
− 1
)

(v′k I) vk.

The term I is interpreted as individual performance part, because its i-th entry is
decreasing in the volatility

√
Σii of asset i, while the term N is interpreted as containing

information about the location of asset i in the network, and R is a remainder part. In
their Corollary 1, from this representation Peralta and Zareei (2016) draw the conclusion
that under the conditions

λ1 > 1 and v′1 I > 0, (2.8)

non-central assets in Gw(C) receive large weights in the minimum variance portfolio.

The given conditions (2.8) are introduced purely for technical reasons, namely to ensure
that N has negative entries and the centrality measurements in v1 enter the MVP with
negative sign. However, a closer look reveals that these conditions hold true for almost
all correlation matrices:

• Since the eigenvalues of a correlation matrix are all real, non-negative, and sum up
to its dimension, λ1 > 1 holds almost surely. The only possible case of λ1 ≤ 1 is
λ1 = . . . = λd = 1, which corresponds to having the identity as correlation matrix,
and this case almost surely never happens.
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• The condition v′1 I > 0 is also fulfilled for almost all correlation matrices: If v′1 I <
0, it suffices to take −v1 instead of v1. This, too, is an eigenvector corresponding
to the largest eigenvalue, and orthogonal to all others. So the only case in which
this condition is not fulfilled is v′1 I = 0. For any given set of eigenvalues, with
a similar argument as in the proof of Lemma 2.3.2, one finds that the set of
eigenvector matrices for which this holds true is a lower-dimensional subset of the
set of feasible eigenvector matrices of correlation matrices.21 Thus, for an arbitrary
correlation matrix, the condition v′1 I 6= 0 is a.s. satisfied.

Further, Peralta and Zareei (2016) do not discuss the influence of the remainder term
R in their decomposition of the MVP, which can be quite large and indeed offset the
influence of the network centrality related part N , as we illustrate in Example 2.4.1
below. Indeed, according to Laloux et al. (1999), ‘the composition of the least risky
portfolio has a large weight on the eigenvectors with the smallest eigenvalues’, as can be
adumbrated also from the formulas for R and N , which contain the eigenvalues in the
denominator.

Example 2.4.1 (An example in d = 5)
Consider the 5-dimensional correlation matrix

Σ = C =


1 0.2 0.4 0.1 −0.3

0.2 1 0.4 0.1 −0.1
0.4 0.4 1 −0.7 −0.2
0.1 0.1 −0.7 1 0
−0.3 −0.1 −0.2 0 1

 .
It can easily be checked numerically that C is positive definite and has leading eigenvalue
λ1 = 1.9646. The corresponding eigenvector is

v1 = (0.4035, 0.3517, 0.6737, −0.4106, −0.3016)′,

and the condition v′1 I = v′1 1 > 0 is fulfilled. The MVP x̄ = x̄(Σ) is given and
decomposed as

x̄ =


−0.1466
−0.1828
0.6299
0.5548
0.1446

 = 0.0809




1
1
1
1
1


︸︷︷︸
I

+


−0.1420
−0.1238
−0.2371
0.1445
0.1062


︸ ︷︷ ︸

N

+


−2.6701
−3.1353
7.0234
5.7131
0.6816


︸ ︷︷ ︸

R


.

21As can be seen from the proof of Lemma 2.3.2, for any fixed set of eigenvalues, the set of feasible
eigenvector matrices Vλ, i.e. the set of such orthogonal matrices V with V ΛV ′ a correlation matrix,
Λ = diag(λ), can be locally identified with (a subset of) Rd(d−1)/2−(d−1). Depending on the exact
entries of I, the set of V ∈ Vλ satisfying also this additional constraint v′1 I = 0 is a lower-dimensional
subset of Vλ for almost all I. (Indeed, only for I = λ it is not.)
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It is observed that the largest weight in the MVP is assigned to asset 3, the most central
asset according to the entries of the first eigenvector, as the remainder part R offsets
the negative influence of the centrality measurements in part N .

Remark 2.4.2 (Further related work)
Many authors argue that the (normalized) dominant eigenvector, i.e. the eigenvector
corresponding to the largest eigenvalue, of the correlation matrix C of stock returns
provides a reasonable proxy for the so-called market portfolio; see the references in
Boyle et al. (2018, 2014). The i-th component of the latter by definition equals the
market share of asset i (among the d assets considered). The market portfolio plays
an important role in Markowitz theory and the capital asset pricing model (CAPM).
According to the mean-variance tautology in Roll’s critique, cf. Roll (1977), the market
portfolio lies on the efficient frontier (i.e. it is mean-variance efficient) if and only if
the CAPM holds. This means that under the assumption of the CAPM framework,
the market portfolio is mean-variance efficient in the sense of Markowitz. Apparently
the market portfolio has non-negative components, while the dominant eigenvector of
an arbitrary correlation matrix can have negative components, see Boyle et al. (2014)
for examples and a thorough investigation of this issue. This shows that the dominant
eigenvector in general is not equal to the market portfolio, and the aforementioned
findings are merely approximations that work well empirically.

Leaves and mean occupation layer

The arguments presented in the previous paragraph already raise first doubts regarding
a fundamental relation between centrality on a graph associated with the covariance ma-
trix and the corresponding MVP weights. Whereas we have just dealt with a ‘weighted’
centrality measure on the complete graph Gw(Σ), in the following we will focus on leaves
and closeness centrality on the associated MST. Empirical findings are in favor of an
existing relation between MST and MVP. Based on historical data, Onnela et al. (2003);
Pozzi et al. (2013) find that non-central assets in MST(C) dominate Markowitz-optimal
portfolios. For instance, it is claimed that ‘the companies of the minimum risk Markowitz
portfolio [MVP] are always located on the outer leaves of the [minimum spanning] tree’,
cf. (Onnela et al., 2003, p. 1).

The following lemma shows that at least in the simplest case d = 3 there is a fun-
damental relation between MVP weights and the MST, if variances are ignored and
only a correlation matrix is considered. The statement remains valid also for covariance
matrices as long as all their diagonal entries are identical.

Lemma 2.4.3 (MVP and MST for d = 3)
Consider a 3× 3 correlation matrix C ∈ C3.
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(a) The MVP associated with the matrix Σ = C is x̄ = (x̄1, x̄2, x̄3)′, where

x̄i :=
(1− Cjk)(1 + Cjk − Cij − Cik)

D
,

with (i, j, k) some permutation of (1, 2, 3),

D := 4 (1− C13) (1− C23)− (1 + C12 − C23 − C13)2.

(b) Let T be an MST associated with C, computed from Gw(C) with a decreasing
weight function w. The unique22 central vertex of T corresponds to the min-
imum weight in the MVP. More formally, letting {1, 2, 3} = {i, j, k}, if Cij =
min{C12, C13, C23}, then x̄k = min{x̄1, x̄2, x̄3}.

Proof
(a) Straightforward computation shows the claim:

C−1 =
1

det(C)

 1− C2
23 C13C23 − C12 C12C23 − C13

C13C23 − C12 1− C2
13 C12C13 − C23

C12C23 − C13 C12C13 − C23 1− C2
12

 ,

det(C) · 1′C−11 = D

x̄
(2.6)
=

C−11

1′C−11
=

1

D

(1− C23)(1 + C23 − C13 − C12

(1− C13)(1 + C13 − C23 − C12

(1− C12)(1 + C12 − C23 − C13


(b) By symmetry, it suffices to verify the statement for k = 3, i.e. we may assume

wlog. that C12 is the smallest entry of C. We also assume wlog. that C23 ≥ C13

(the opposite case is treated symmetrically). We have to show (i) x̄3 ≤ x̄2 and (ii)
x̄3 ≤ x̄1. Using part (a) and some basic algebra, the inequality (i) is seen to be
equivalent to

C13

(
C13 − (1 + C23)

)
≤ C12

(
C12 − (1 + C23)

)
. (2.9)

The function f23(u) := u (u − (1 + C23)) is a parabola with global minimum
at u23 := (1 + C23)/2. Since C12 ≤ C13 ≤ u23 by assumption, it follows that
f23(C12) ≥ f23(C13), which is equivalent to (2.9), hence to (i). Using part (a) and
some basic algebra, the inequality (ii) is seen to be equivalent to

C23

(
C23 − (1 + C13)

)
≤ C12

(
C12 − (1 + C13)

)
. (2.10)

The function f13(u) := u (u − (1 + C13)) is a parabola with global minimum at
u13 := (1 + C13)/2. In order to verify (ii), it suffices to verify (2.10), which is
equivalent to showing f13(C12) ≥ f13(C23). If C23 ≤ u13, the assertion follows
precisely as in the previous case (i). If not, then we have C12 ≤ u13 < C23. Since

22In the case d = 3 the two leaves i and j of an MST are obviously such that Cij is the minimal entry
of C. The MST is unique if this minimal entry is unique.
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f13 is a parabola, the assertion holds true if and only if C23 − u13 ≤ u13 − C12,
which is equivalent to C23 − 1 ≤ C13 − C12. This is a true statement, since the
left-hand side is non-positive and the right-hand side non-negative by assumption.
�

A statement similar to the one of Lemma 2.4.3(b), algebraically hard-coding a relation
between centrality in MST(C) and weights in MVP(C), becomes more difficult to obtain
in larger dimensions, as Example 2.4.4 shows in d = 5.

Example 2.4.4 (Non-centrality in MST 6= large weight in MVP)
Consider again the 5-dimensional correlation matrix of Example 2.4.1, whose MVP is
given by

x̄ = (−0.1466, −0.1828, 0.6299, 0.5548, 0.1446)′.

In particular, the assets 3 and 4 have by far the largest weights in the MVP. However,
it is readily checked that none of these two assets is a leaf in any MST associated with
C. There is an MST with leaves 1 and 5, and an MST with leaves 2 and 5.

2.4.3 No fundamental link between centrality and MVP weights: evidence
from Monte Carlo studies

In the previous section we have seen that a fundamental link between centrality and
MVP weights cannot be established analytically for any of the considered centrality
measurements. Instead, the presented examples raise serious doubts about a relation
between these concepts.

In the following, we analyze the weights in MVPs as well as the different notions of
centrality in graphs derived from the same correlation matrix for correlation matrices
with specific features by means of a Monte Carlo study: We simulate n = 1, 000, 000
d× d correlation matrices for d ∈ {5, 10, 20, 50, 100} from the following algorithms, and
consider their corresponding MVPs and MSTs:

1. the uniform distribution on Cd, cf. Section 2.2.1, where the simulated matrices do
not display any of the stylized facts (S1)-(S4),

2. the randcorr algorithm, cf. Section 2.2.2, with the largest eigenvalue fixed at
40% of total variance and the remaining eigenvalues distributed according to the
realistic density (2.5), which generates correlation matrices exhibiting (S1), but
none of the other stylized facts,

3. our Algorithm 2.3.4, cf. Section 2.3.2, once with uniformly distributed eigenvalues,
such that the generated matrices display only (S2), and once with the largest
eigenvalue fixed at 40% of total variance and the remaining eigenvalues distributed
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according to density (2.5), such that the generated matrices display stylized facts23

(S1) and (S2), and on average also display (S3), and

4. factor model correlation matrices, cf. Section 2.2.5.

Further, we conduct an empirical study on historical CDS data, namely 5Y-CDS mid
upfront time series of the constituents of the four major credit indices (ITRX EUR,
ITRX XO, CDX IG, and CDX HY) observed daily from July 30, 2015 to May 2, 2017,
complementing the studies in the literature which are all based on stock return data.

To assess whether peripheral assets according to the considered centrality concepts are
overweighted in the corresponding MVPs, we consider the following random variables:

ed(C) :=
portfolio weight of the 20% least C-eigenvector-central assets

0.2
,

fd(C) :=
portfolio weight of L(C) in MVP(C)

|L(C)|/d
,

hd(C) :=

∑d
v=1 x̄v(C)L

(
r(C), v, C

)
`(C)

,

where MSTs and MVPs are both constructed from the (simulated) correlation ma-
trix C, L(C) denotes the set of all leaves of MST(C) and |L(C)| its cardinality, and∑d

v=1 x̄v(C)L
(
r(C), v, C

)
refers to a MVP-weighted variant of the mean occupation

layer `(C) introduced in Section 2.4.1.

The random variable ed is designed to assess a potential link between eigenvector cen-
trality and MVP-weights: The numerator of ed is the sum of the MVP-weights assigned
to the 20% least central assets according to Peralta and Zareei (2016)’s version of eigen-
vector centrality. If the centrality measurements did not play a role in the construction
of the MVP, we would expect that these assets get assigned a total weight of about 20%
(since MVP weights sum up to 1), so the denominator is chosen in order to normalize
ed. A value of ed > 1 thus indicates an overrepresentation of the 20% least central assets
in the MVP.
The random variable fd targets a potential link between leaves in the MST24 and MVP-
weights: The numerator of fd(C) gives the MVP-weight of the leaves in MST(C), while
the denominator gives the share of leaves of MST(C) in all d assets. Intuitively, fd(C)
is > 1 (< 1) if and only if the leaves are over- (under-) represented in the MVP.
Finally, hd(C) targets a potential relation between mean occupation layer and MVP-
weights: It contrasts the MVP-weighted occupation layer in the numerator with the
mean occupation layer in the denominator25, with a value of hd(C) > 1 (< 1) indicating

23(S4) is approximately fulfilled only for d > 1000, so not present in the simulated matrices for the
considered values of d.

24For all considered simulation algorithms, and also in the empirical study, the entries of a correlation
matrix are a.s. mutually distinct, so the resulting MST is unique.

25In case the central vertex is not unique, we randomly select one of the (two neighboring) candidate
vertices.
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that the MVP overweights (underweights) assets that are non-central according to the
mean occupation layer criterion / closeness centrality.

In the empirical study, we also consider the empirical counterparts of these quantities:

ẽd(Σ) :=
portfolio weight of 20% least C-eigenvector-central assets in MVP(Σ)

0.2

f̃d(Σ) :=
portfolio weight of L(C) in MVP(Σ)

|L(C)|/d
,

h̃d(Σ) :=

∑d
v=1 x̄v(Σ)L

(
r(C), v, C

)
`(C)

,

where Σ refers to the covariance matrix of the considered CDS investment log-return
time series, C is the correlation matrix associated with Σ, and x̄ are the MVP-weights
calculated from Σ.

Uniform distribution

Considering the potential link between eigenvector centrality and MVP-weights via the
random variable ed, we find indeed that there is a large probability P (ed > 1) for
overrepresentation of the 20% least central assets for small d. This is in line with Peralta
and Zareei (2016)’s result where they regress MVP weights on centrality measurements
and find a significant negative relation. However, in all considered dimensions d there
exists a nonempty set of correlation matrices that fulfill Peralta and Zareei (2016)’s
technical conditions, and yet exhibit an underrepresentation of the 20% least central
assets in the MVP. Moreover, the probability of underweighting these assets in the
MVP increases with the dimension of the correlation matrix, cf. Table 2.6 and Figure 2.9,
which visualizes the density of ed(C) as a histogram of its law based on n = 1, 000, 000
independent simulations.

As for a potential relation between leaves and MVP-weights, Figure 2.10 visualizes the
density of fd(C) in terms of a histogram for the law of fd(C) based on n = 1, 000, 000
independent simulations. We observe that the mean of fd(C) is indeed greater than 1,
indicating that there are more correlation matrices overweighting the leaves in MVP(C)
than underweighting them. However, with increasing dimension d the mean E[fd(C)]
decreases and the probability of underweight P(fd(C) < 1) increases. This suggests that
there is not really a strong relation between MVP(C) and MST(C) for large d, unless one
knows something about the structure of the correlation matrix which rules out certain
subsets of Cd. Indeed, there exist many correlation matrices that even underweight the
leaves of MST(C) in MVP(C).

Note that, since the denominators of ed(C) and fd(C) are positive, there even exist
portfolios where the overall weight on the 20% least central assets, or leaves, respectively,
is negative, cf. Figures 2.9 and 2.10.

56



2 Simulating realistic correlation matrices

0 1 2 3 4 5

e
d
(C)

0

1

2

3

4

5

pr
ob

ab
ili

ty
 (

in
 %

)

d=5, mean=2.00, P(e
d
(C)<1)=8.45%

-1 0 1 2 3 4 5

e
d
(C)

0

0.5

1

1.5

2

2.5

3

3.5

4

pr
ob

ab
ili

ty
 (

in
 %

)

d=10, mean=1.66, P(e
d
(C)<1)=22.93%

-2 -1 0 1 2 3 4

e
d
(C)

0

0.5

1

1.5

2

2.5

3

3.5

pr
ob

ab
ili

ty
 (

in
 %

)

d=50, mean=1.23, P(e
d
(C)<1)=40.12%

-2 -1 0 1 2 3 4

e
d
(C)

0

0.5

1

1.5

2

2.5

3

3.5

pr
ob

ab
ili

ty
 (

in
 %

)

d=100, mean=1.15, P(e
d
(C)<1)=43.57%

Figure 2.9: Histogram of the probability distribution of ed(C) with C ∼ U(Cd) based on
n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}. The vertical, red line
gives the mean, and the blue line represents the border 1 between over- and
underrepresentation of the non-central assets.

We have seen that, for a huge number of correlation matrices, the associated MVP is
dominated by non-leaf assets. A related, but clearly much weaker question is, whether
there exists at least one leaf which is overweighted in the MVP. To this end, instead of
fd(C), we repeat the analysis with the random variable

gd(C) := max
B⊂L(C)

{portfolio weight of B in MVP(C)

|B|/d

}
, C ∼ U(Cd).

Figure 2.11 shows that the answer to this question is by far more affirmative, i.e. for
almost every correlation matrix there is at least one leaf prominently represented in
the MVP, and for d ≥ 50 this statement becomes practically certain. This statement
is universal, i.e. follows from the structure of Cd and has nothing to do with empirical
data.

Focusing on the more sophisticated concept of mean occupation layer introduced in
Section 2.4.1 to relate centrality in MST(C) and the associated MVP weights, Onnela
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Figure 2.10: Histogram of the probability distribution of fd(C) with C ∼ U(Cd) based
on n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}. The vertical, red
line gives the mean, and the blue line represents the border 1 between over-
and underrepresentation of the leaves.

et al. (2003) find that the MVP-weighted portfolio layer

d∑
v=1

x̄v(Σ)L
(
r(C), v, C

)
is larger than the mean occupation layer `(C). In other words, the MVP assigns more
weight to non-central assets than an equally-weighted basket does (i.e. more weight on
non-central assets than on central ones). However, studying the random variable hd(C)
for correlation matrices drawn from the uniform distribution, C ∼ U(Cd), a fundamental
relation can not be detected, as shown in Figure 2.12 and Table 2.6: While for a lower
number of assets the probability of overweighting non-central assets in the MVP is
substantial, this finding is not persistent for larger dimensions. For portfolios consisting
of 100 assets, only in about 57% of the cases non-central assets are dominating the
MVP.
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Figure 2.11: Histogram of the probability distribution of gd(C) with C ∼ U(Cd) based
on n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}. The vertical, red
line gives the mean, and the blue line represents the border 1 between over-
and underrepresentation of the leaves.

Empirical results from CDS portfolios

In the light of the analysis in the previous paragraph, focusing on completely random
correlation matrices without any special structure, we conclude that the strong relations
between non-centrality in a graph and an MVP, both associated with the correlation
matrix C, as observed by Onnela et al. (2003); Pozzi et al. (2013); Kaya (2015); Peralta
and Zareei (2016) are purely data-dependent.
Looking at historical data of credit default swaps (CDS), we are able to confirm this
suspicion: We find that large portfolios tend to exhibit a strong overweighting of non-
central assets. Portfolios underweighting non-central assets are only found for small to
moderate portfolio sizes. Our data set26 consists of 5Y-CDS mid upfront time series of
the constituents of the four major credit indices, namely ITRX EUR, ITRX XO, CDX
IG, and CDX HY, observed daily from July 30, 2015 to May 2, 2017. For each asset we
consider the trading strategy of selling 5Y CDS protection. Notice that CDS maturities

26Source: ICE Data Services.
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Figure 2.12: Histogram of the probability distribution of hd(C) with C ∼ U(Cd) based
on n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}. The vertical, red
line gives the mean, and the blue line represents the border 1 between over-
and underrepresentation of the non-central assets.

are standardized to be always on 20 June or 20 December of a year. Furthermore, the
observed market price (= upfront) of a 5Y CDS switches from the CDS with maturity
in June (December) to the one with maturity in December of the same year (June of
the next year) on 20 September (20 March). On these CDS roll dates 20 March and 20
September the trading strategy closes out the old CDS and rolls into the new one, in
order to be in accordance with the observed market prices and to keep the duration of
the CDS as constant as possible over time. If ut denotes the upfront of a CDS on day t,

we define the log-return at the next day t+ 1 by log
(

1−ut+1

1−ut

)
. This is because the value

1 − ut, sometimes called the bond-equivalent value of the CDS, can be considered the
value of the investment at time t. Clearly, −ut is the value of the CDS, but the amount
1 needs to be held in cash because it is at stake in case of a potential credit event at
t, followed by a CDS auction yielding zero recovery rate.27 After deleting series with
missing data, we are left with 395 assets.

27If this value was not held in cash, the investment must be considered levered, which we do not.
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Table 2.4 shows that the quantities ẽd(Σ), ẽd(C), f̃d(Σ), f̃d(C), h̃d(Σ), and h̃d(C) are
larger than 1 for all four indices, thus indicating an overweighting of leaves, respectively
non-central assets according to both the mean occupation layer criterion and Peralta and
Zareei (2016)’s eigenvector centrality. The correlation matrices of all indices fulfill both
the plausible conditions (2.8) of Peralta and Zareei (2016) and the Perron–Frobenius
property.

ẽd(Σ) ẽd(C) f̃d(Σ) f̃d(C) h̃d(Σ) h̃d(C) constituents

ITRX EUR 3.11 10.31 2.56 4.82 1.35 1.50 123
ITRX XO 1.57 6.22 1.58 2.84 1.07 1.54 64
CDX IG 3.09 6.78 1.70 3.27 1.23 1.64 123
CDX HY 1.89 4.31 1.86 2.28 1.20 1.60 85

Table 2.4: In all major credit indices we detect a systematic overweighting of leaves resp.
non-central assets in MVP(Σ) and MVP(C). The number of constituents of
these indices (after deleting series with missing data) is given in the rightmost
column.

To get a more profound impression, we further calculate ẽd(Σ), ẽd(C), f̃d(Σ), f̃d(C),
h̃d(Σ), and h̃d(C) for n = 1, 000, 000 random drawings of d = 20 assets out of our
pool comprising 395 firms. There are

(
395
d

)
≈ 2.1547 · 1033 possibilities, so enough that

the probability of choosing the same set twice is negligible. Unlike the aforementioned
references and Table 2.4, we cannot confirm a systematic overweighting of non-central
assets for arbitrary baskets of CDS when the MVP is calculated from the covariance
matrix Σ, cf. Figure 2.13. A significant number of the randomly chosen portfolios
exhibits an underweighting of leaves, respectively peripheral assets. An example is
given in Table 2.5.
However, for increasing dimension, the probability of finding an overweighting of non-
central assets in MVP(Σ) increases, cf. Figure 2.14 and Table 2.6. This aligns with the
results of Peralta and Zareei (2016); Pozzi et al. (2013); Onnela et al. (2003), who study
data sets of 200, 300, and 477 stocks, respectively, and with our previous observations
for the four major credit indices.
When the MVP is calculated from the correlation matrix C, almost all portfolios exhibit
an overweighting of non-central assets, regardless of considered centrality measure, cf.
Figure 2.13 and Table 2.6.

These findings indicate that the persistent empirical observation of a strong relation
between centrality in a graph and the weights in an MVP derived from the same cor-
relation matrix originates in the special structure of financial correlation matrices as
described by stylized facts (S1)-(S4).
Considering the influence of these stylized facts on our quantities ed, fd, and hd, it is
hard to anticipate which of these features triggers the completely different behavior of ed
in market and random correlation matrices. For fd, the scale-free graph structure of em-
pirical correlation matrices implies that the denominator is larger than in the simulated
case. However, as we typically observe fd > 1 for empirical correlation matrices, there
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Figure 2.13: Histograms of the probability distributions of ẽ20(Σ), ẽ20(C) (top), f̃20(Σ),
f̃20(C) (middle) and h̃20(Σ), h̃20(C) (bottom) with Σ, C being the covari-
ance resp. correlation matrix of 20 randomly chosen CDS upfront time series
out of the 395 considered entities. The vertical, red lines give the respective
mean, and the blue lines represent again the border 1 between over- and
underrepresentation of non-central assets.
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firm MVP(Σ)-weight MST-layer v1

Centrica 0.0796 1 0.2754
Halliburton 0.0151 3 0.1994
DISH DBS -0.0336 2 0.2361
Koninklijke Ahold Delhaize 0.2249 1 0.2568
Whirlpool 0.0453 3 0.2113
Meritor -0.0191 2 0.2069
Quest Diagnostics 0.3829 3 0.2065
BMW -0.0090 2 0.2308
AirFrance-KLM -0.0129 2 0.2044
Gas Natural -0.0971 0 0.2795
Danone 0.2307 1 0.2263
Orange 0.2481 1 0.2623
Ziggo Bond Finance -0.0389 1 0.2548
Best Buy -0.0266 4 0.2074
Lincoln National 0.0078 1 0.1809
Deutsche Lufthansa -0.0034 2 0.2314
Newmont Mining 0.0170 4 0.0387
Stena -0.0162 2 0.2620
Astaldi -0.0026 3 0.2118
Nordstrom 0.0079 5 0.1739

Table 2.5: The above portfolio exhibits a systematic underweighting of leaves, respec-
tively peripheral assets, in the covariance-deduced MVP in the considered
time period: ẽd(Σ) = 0.2392, f̃d(Σ) = 0.8847, h̃d(Σ) = 0.8777.

must be an even stronger influence on the MVP weights that counters the influence of
the higher portion of leaves. To analyze possible effects of the stylized facts on hd, we
first observe that the more leaves a tree structure on d nodes has, the smaller we expect
its mean occupation layer to be. This expectation is extrapolated from observations
of low-dimensional tree structures. Clearly a ‘chain-like’ graph has the highest mean
occupation layer (with values d(d + 1)/(2d + 1) for an odd number d of vertices, resp.
d/2 for an even number of vertices), and a ‘star-like’ graph has the lowest possible mean
occupation layer with value (d − 1)/d. Therefore, the denominator is smaller in the
empirical case, leading to a higher value of hd. As in the quantity fd, the numerator is
affected both by MVP weights and graph structure. As we observe a higher value of hd
in the empirical case, higher MVP weights on the outskirts of the network compensate
for the overall shortening of paths from the central node to the other nodes.

To analyze the effect of the observed features (S1)-(S4) on the quantities ed, fd, and
hd in more detail, we rerun the Monte Carlo studies in the following paragraphs, using
simulation algorithms that are able to produce correlation matrices that display only
a subset of these stylized facts, as opposed to completely random correlation matrices
(which display none of them) and market correlation matrices (which exhibit them all).
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2 Simulating realistic correlation matrices

Correlation matrices with a realistic eigenvalue structure

With the help of the randcorr algorithm of Davies and Higham (2000), cf. Section 2.2.2,
we are able to analyze the influence of the presence of (S1), a large first eigenvalue. For
dimensions d ∈ {5, 10, 20, 50, 100}, we generate n = 1, 000, 000 realistic simulations
of eigenvalues (λ1, . . . , λd), cf. Section 2.3.3: We fix the first eigenvalue λ1 = 0.4 · d,
according to the typical size of the first eigenvalue in random portfolios drawn from our
data set, and simulate λ2, . . . , λd according to the special form (2.5) of the power-law
type density given in Bouchaud and Potters (2011); Bun et al. (2017), which is found to
capture the distribution of the bulk of eigenvalues of market correlation matrices fairly
well, and rescale in order to cover the remaining 60% of total variance. An artificial
spectrum simulated in this way is very similar to the observed spectrum of an arbitrary
correlation matrix from our data set. In the next step, we generate for each (λ1, . . . , λd) a
random correlation matrix C having this particular spectrum according to the randcorr
algorithm, and calculate ed(C), fd(C), and hd(C). As mentioned in Section 2.2, this
procedure is able to reproduce stylized fact (S1), but not the others: Similar to U(Cd)
the percentage of simulated correlation matrices with the Perron–Frobenius property
is small and decreases fast with increasing dimension d. Pairwise correlation entries
have a bimodal distribution, symmetric about 0, with mean close to 0 for our simulated
correlation matrices. The histogram of leaves for MSTs of correlation matrices with
these realistically simulated eigenvalues looks very similar to that obtained from the
uniform distribution, so on average graphs derived from correlation matrices simulated
from this algorithm exhibit a lot fewer leaves than those derived from market correlation
matrices, which hints at stylized fact (S4) also not being present. The results show that
just the fact of displaying a realistically large first eigenvalue with a realistic distribution
of the spectrum is not enough to explain the empirically observed relation between graph
centrality and MVP weights. As for uniformly random simulated correlation matrices,
the percentage of correlation matrices simulated according to the randcorr algorithm
that exhibit a significant overweighting of central assets grows with dimension d, contrary
to market correlation matrices where this percentage declines with d, cf. Figure 2.14 and
Table 2.6.

Perron–Frobenius correlation matrices

Using our Algorithm 2.3.4 with two different eigenvalue distributions, namely the uni-
form distribution for eigenvalues, where λ/d ∼ USd , with λ being the vector of eigen-
values and Sn being the d-simplex, and the power law (2.5) with first eigenvalue fixed
at 0.4 · d, we are able to analyze the influence of stylized fact (S2). As demonstrated
in Section 2.3.3, when simulating Perron–Frobenius correlation matrices with uniformly
distributed eigenvalues, the generated matrices do not exhibit any other stylized fact
than (S2): As our algorithm is a modification of the randcorr algorithm, the gener-
ated matrices similarly exhibit a small first eigenvalue (with respect to dimension d).
Pairwise correlation entries follow a bimodal distribution with antimode at zero, which,
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however, is no longer symmetric, but the mean is still close to zero and declining in d.
Also stylized fact (S4) is absent, as the low number of leaves in the corresponding MSTs
as compared to MSTs of market correlation matrices, and the exponential decay of the
degree distribution show, cf. Section 2.3.3.

Regarding the behavior of our quantities ed(C), fd(C), and hd(C), we find that the
presence of (S2) significantly lowers the probability of underweighting non-central as-
sets for any of the considered centrality measures: Concerning eigenvector centrality,
the simulation study in ed(C) shows that the probability of underweighting peripheral
assets is low in general, with a slight decrease in d recognizable. Concerning leaves and
mean occupation layer, both fd(C) and hd(C) exhibit a low probability of underweight.
However, unlike as for empirical correlation matrices, this probability grows in d, cf.
Table 2.6 and Figure 2.14.

Combining our Algorithm 2.3.4 with the eigenvalue distribution (2.5) and a fixed first
eigenvalue explaining 40% of total variance yields correlation matrices with more realistic
properties, as described in Section 2.3.3: On average, also stylized fact (S3) is present in
the simulated matrices, and also the scale-free property (S4) tends to be present for large
matrices with d > 1000. Here, our quantities ed(C), fd(C), and hd(C) behave as follows:
Concerning ed(C), the probability of underweighting non-central assets is again low,
and decreasing in dimension as for empirical correlation matrices. For fd, probability of
underweight is low and slightly increasing in dimension. However, it is slightly higher
as for Perron–Frobenius correlation matrices with uniformly distributed eigenvalues.
Finally, for hd, the probability of underweight is lowered even further in comparison
to Perron–Frobenius correlation matrices with uniformly distributed eigenvalues, and
slightly increasing in dimension, cf. Table 2.6 and Figure 2.14.

This supports our findings of the previous sections that Algorithm 2.3.4 is a promising
step towards simulating realistic correlation matrices for financial applications.

Factor model correlation matrices

Despite our concerns that this approach will not produce completely random realizations
of correlation matrices with given properties, to gain some insight in whether such
correlation matrices may yield a relation between centrality measurements and MVP
weights, we rerun our simulation study with factor model correlation matrices:
Following a methodology similar to Fan et al. (2008, Section 4), we simulate correlation
matrices corresponding to a one-factor model. The distributional characteristics of the
parameters are obtained from a fit of a one-factor model to our CDS data set:

Xi(t) = biM(t) + εi(t),

where M denotes the market factor (as a proxy we choose an equally weighted portfolio
of all assets), Xi, i = 1, . . . , 395 is the i-th time series in our data set, bi its factor
loading, and εi the associated time series of errors. We find that the factor loadings
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bi and the standard deviations σi of the error terms εi are both approximately gamma
distributed, with parameters αb = 0.4819, βb = 1.6533, and ασ = 0.5400, βσ = 0.0052,
respectively. In the simulation, the market factor is taken to be normally distributed28,
with mean and standard deviation matching the observed values, µM = 4.7 · 10−5, and
σM = 0.0018, factor loadings and error standard deviations are simulated from the above
gamma distributions, and the error time series are simulated independently from normal
distributions with zero mean and the respective simulated standard deviations. In n =
1, 000, 000 simulations, we obtain d ∈ 5, 10, 20, 50, 100 time series from a factor model
with the above characteristics, and calculate the corresponding (sample) correlation
matrices.

The largest eigenvalue of the simulated matrices explains on average about 40% of
total variance for d ∈ {10, 20, 50, 100}, and about 45% for d = 5. Contrary to our
expectations, correlation matrices simulated from this one-factor model do not regularly
exhibit the stylized fact (S2): The proportion of simulated correlation matrices with
Perron–Frobenius property steadily declines, from 62.50% in dimension d = 5 to 0.02%
in dimension d = 100. The mean of pairwise correlations in our simulations is 0.23
on average, so stylized fact (S3) is typically present. The MSTs associated with the
one-factor correlation matrices exhibit on average more leaves than those obtained from
uniformly random correlation matrices, but fewer leaves than those associated with
empirically observed correlation matrices.

Concerning eigenvector centrality, the MVPs related to the simulated factor correlation
matrices almost certainly overweight the 20% least central assets, regardless of the num-
ber of assets considered, cf. ed 1-factor in Table 2.6. Also leaves seem to be consistently
overweighted: fd is smaller than 1 for only a low percentage of the simulated correlation
matrices, with only a slight growth in dimension. In terms of mean occupation layer, the
probability of underweighting peripheral assets, P(hd(C) < 1), grows with dimension,
from 4.11% in dimension d = 5 to 27.71% in dimension d = 100. Thus, concerning hd,
correlation matrices simulated from this one-factor model unexpectedly behave similar
to correlation matrices simulated uniformly or from the randcorr algorithm.

To shed more light on the behavior of the quantities ed(C), fd(C), and hd(C) for factor
models, we repeat our analysis with correlation matrices simulated according to the
characteristics described in Fan et al. (2008, Section 4): There, a Fama-French 3-factor
model was fit to daily data of 30 stock portfolios obtained from French’s website29.
Factor loadings were found to approximately follow a trivariate normal distribution, and
error standard deviations were found to approximately follow a gamma distribution.

In correlation matrices simulated from this model, we find that stylized facts (S1)-(S3)
are present: Regardless of dimension, over 99% of the simulated correlation matrices
exhibit the Perron–Frobenius property, the first eigenvector on average explains more

28This assumption would be questionable if one intends to describe our data set accurately. However,
since we intend to construct time series from an artificial factor model, fitting the exact distribution
of the factor returns is not crucial, and we stick with normality for the sake of simplicity.

29http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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than 60% of total variance, and the distribution of the pairwise correlation entries is
shifted to the positive with a mean of 0.61. We further find that the MSTs associated
with 3-factor correlation matrices typically exhibit more leaves than those associated
with empirically observed correlation matrices, thus hinting at a denser graph structure
than typically exhibited by scale-free trees. This is in line with Bonanno et al. (2003)’s
finding that one-factor correlation matrices tend to exhibit denser MST structures than
market correlation matrices30.

Concerning the quantities ed(C), fd(C), and hd(C), we find that regardless of dimension
d or centrality measure, peripheral assets are almost certainly overweighted in the MVPs
associated with the 3-factor correlation matrices, cf. Table 2.6 and Figure 2.14.

2.4.4 Issues of graph-based asset allocation

Having demonstrated that graph-based portfolio selection mechanisms lack a funda-
mental connection to the traditional Markowitz approach, we briefly want to address
potential problems that may arise in the context of graph-based portfolio selection.
As we remarked in Section 2.4.1, the choice of central assets in a MST for a portfolio
depends heavily on the choice of centrality measure, and central nodes may differ for
different centrality measures, cf. Figure 2.8.
A further aspect, which has not appeared in our study, as we focused on graphs de-
rived from correlation matrices, is that the choice of dependence measure may heavily
influence the graph structure, and different graphs may result from different dependence
matrices, as illustrated in the next subsection.
Another aspect, which did not appear in our study, as the considered centrality mea-
sures did not depend on edge weights, is that the chosen weight function may influence
centrality. An example for an edge-weight-dependent centrality measure is a modifica-
tion of the mean occupation layer criterion of Section 2.4.1, where the length of the tree
path is not measured in terms of passed edges, but in terms of the length of these edges.
Finally, it is important to remark that, by just taking into account correlations (or
pairwise dependence measures), one loses the information captured by the marginal
distribution of the assets or by higher-order dependence structures. An illustration of
this is provided below. This criticism, however, applies also to the classic Markowitz
approach relying only on the first two moments of the joint distribution of returns.

As a side remark, it is further worth noting that certain graphs derived from the cor-
relation matrix correspond to clustering techniques, e.g. the MST corresponds to single
linkage clustering. Issues of clustering-based portfolio selection have been documented
e.g. in Lemieux et al. (2014).

30Bonanno et al. (2003) simulate correlation matrices from a one-factor model previously fitted to a
large stock data set with the S&P500 index as market factor.
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Figure 2.14: Probability of underweight for our quantities ed (top), fd (middle), and hd
(bottom), for different types of correlation matrices: uniform, randcorr,
one-and 3-factor, and empirical.
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P(·d < 1) d = 5 d = 10 d = 20 d = 50 d = 100

ed uniform 8.45% 22.93% 32,50% 40.12% 43.57%
ed randcorr 9.08% 16.45% 22.18% 29.61% 34.45%
ed PFC+Unif 5.66% 6.61% 5.90% 5.17% 4.72%
ed PFC+Power+40 6.94% 4.14% 2.08% 1.19% 0.96%
ed 1-factor 0.07% 0.01% 0% 0% 0%
ed 3-factor 0% 0% 0% 0% 0%
ed(Σ) empirical 63.51% 48.21% 33.89% 19.47% -
ed(C) empirical 0% 0% 0% 0% -

fd uniform 11.42% 21.22% 27.31% 33.11% 36.40%
fd randcorr 5.79% 26.35% 40.89% 46.92% 48.46%
fd PFC+Unif 4.50% 8.01% 9.12% 10.18% 10.71%
fd PFC+Power+40 5.83% 9.58% 11.44% 12.08% 11.45%
fd 1-factor 1.73% 1.42% 1.68% 2.81% 4.66%
fd 3-factor 0% 0% 0% 0% 0%
fd(Σ) empirical 35.18% 28.03% 21.91% 16.10% -
fd(C) empirical 0.13% 0% 0% 0% -

hd uniform 10.26% 17.58% 27.10% 37.58% 42.58%
hd randcorr 6.64% 13.60% 20.99% 29.74% 34.55%
hd PFC+Unif 5.48% 7.44% 10.60% 15.31% 18.95%
hd PFC+Power+40 4.55% 4.94% 5.38% 6.86% 8.43%
hd 1-factor 4.11% 4.04% 7.41% 17.09% 27.71%
hd 3-factor 0.03% 0.04% 0.01% 0% 0%
hd(Σ) empirical 34.56% 33.48% 28.11% 21.78% -
hd(C) empirical 0.88% 0.38% 0.11% 0.03% -

Table 2.6: Probability of underweighting non-central assets in terms of ed/fd/hd,
P(ed/fd/hd(C) < 1), for different correlation matrices. Whereas the uniform
and randcorr algorithms produce correlation matrices whose probability of
underweighting non-central assets grows with dimension, factor models on
the other hand almost certainly overweigh non-central assets.

Graph structure depends on chosen dependence measure

For graph-based portfolio selection methods, any risk measure can be used for the con-
struction of Σ. The resulting dependence matrix will be symmetric, and, unlike in the
Markowitz setting, positive definiteness is not required31 in the selection algorithms.
However, one has to keep in mind that different dependence measures may yield differ-
ent MSTs, as can be seen from the following toy example: Consider R = (R1, R2, R3),
where Ri is lognormally distributed with parameters µi = 0 and σi > 0 for i = 1, 2, 3,
with σ1 = 0.5, σ2 = 0.5, and σ3 = 3. The dependence structure of R is characterized

31Although not required, positive definiteness is a nice-to-have, as in this case the often used correlation
distance provides a pseudometric on the set of considered assets.
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by a Gaussian copula parameterized by the matrix 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 ,

with ρ12 = 0.1, ρ13 = 0.4, and ρ23 = 0.8. Spearman’s ρ and Kendall’s τ are given as

ρS(Ri, Rj) =
6

π
arcsin

(ρij
2

)
, τ(Ri, Rj) =

2

π
arcsin(ρij).

Both are strictly increasing transformations of the ρij , so from ρ12 < ρ13 < ρ23 it follows
ρS(R1, R2) < ρS(R1, R3) < ρS(R2, R3) and τ(R1, R2) < τ(R1, R3) < τ(R2, R3). On the
other hand,

Cor(R1, R3) =
(eρ13σ1σ3 − 1)√

(eσ
2
1 − 1)(eσ

2
3 − 1)

≈ 0.017
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2
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≈ 0.048

< Cor(R1, R2) =
(eρ12σ1σ2 − 1)√

(eσ
2
1 − 1)(eσ

2
2 − 1)

≈ 0.089,

so constructing the MST from (Pearson) correlations results in a different MST than
construction from Spearman’s ρ or Kendall’s τ , as the central nodes differ, cf. Fig-
ure 2.15.

R1

R2 R3

R1

R2 R3

Figure 2.15: MSTs constructed from the different dependence measures using correlation
distance as weight function. Left: ρS , τ . Right: Cor.

In an example with just three nodes, this may seem a minor issue at first glance. In
practice, however, different tree structures for different dependence measures are often
encountered, and the differences can be dramatic, as illustrated in Figure 2.16: The
two MSTs constructed on return data of the SMI index constituents32 using correlation
resp. Spearman’s ρ matrices in combination with a decreasing weight function are fun-
damentally different. Striking differences are e.g. the position of ZURN, which is rather
central in the Spearman’s ρ MST, but is a leaf in the correlation MST, or the branch

32Data from May 2015 to May 2017; Source: Bloomberg.
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descending from BAER (UBSG, CSGN, ADEN), which is located in the center of the
correlation MST, but rather peripheral in the Spearman’s ρ MST. Table 2.7 presents the
eigenvalues of the correlation resp. Spearman’s ρ matrices, which differ only marginally,
thus indicating that the two matrices are quite similar. The different tree structure is
exclusively inferred by the marginal distributions of the return time series, which enter
the calculation of the correlation coefficient, but not the calculation of Spearman’s ρ.
Table 2.7 further shows the annualized volatilities of the time series, indicating that the
marginal distributions are diverse.
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Figure 2.16: MSTs constructed from return data of the SMI Index constituents. Striking
differences are for example the respective positions of ZURN and BAER in
the networks.
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EV corr. EV rho

0.1583 0.1461
0.1759 0.1703
0.2139 0.1900
0.238 0.2292
0.2582 0.2662
0.2756 0.2871
0.2848 0.2976
0.3105 0.3281
0.3654 0.3568
0.3763 0.3824
0.3814 0.4001
0.4133 0.4218
0.4343 0.4368
0.5092 0.4600
0.5668 0.5451
0.6174 0.5836
0.8395 0.8020
1.0862 1.0741
1.4723 1.3879
11.0227 11.2347

firm vol.

ABB (’ABBN VX’) 0.2046
Adecco Group (’ADEN VX’) 0.2696
Julius Baer Gruppe (’BAER VX’) 0.2777
Cie. Fin. Richemont (’CFR VX’) 0.2737
Credit Suisse Group (’CSGN VX’) 0.3719
Geberit (’GEBN VX’) 0.1874
Givaudan (’GIVN VX’) 0.1874
Lafargeholcim (’LHN VX’) 0.3203
Lonza Group (’LONN VX’) 0.2332
Nestle (’NESN VX’) 0.1597
Novartis (’NOVN VX’) 0.1985
Roche Holding (’ROG VX’) 0.1987
Swisscom (’SCMN VX’) 0.1741
SGS (’SGSN VX’) 0.1727
Swiss Life Holding (’SLHN VX’) 0.2073
Swiss Re (’SREN VX’) 0.1908
Sika (’SYNN VX’) 0.2825
UBS (’UBSG VX’) 0.3101
Swatch Group (’UHR VX’) 0.2769
Zurich (’ZURN VX’) 0.2381

Table 2.7: Left: The eigenvalues of the correlation (EV corr.) and Spearman’s ρ (EV
rho) matrices indicate that the two matrices are quite similar. Right: Annu-
alized volatilities of the SMI return time series.

Influence of variances and higher-order dependence structures

Generally speaking, the ‘performance’ of a portfolio return x′R should be a measurement
depending on the full distribution of R. Only taking into account a partial aspect of
the latter distribution bears the risk of overlooking better performing portfolios. The
first aspect to note is that the considered graph-based portfolio selection approaches are
based solely on the correlation matrix C, cf. Onnela et al. (2003); Pozzi et al. (2013),
whereas the MVP is derived from the covariance matrix Σ, i.e. the graph-based methods
do not take into account information about the variances of the margins. The latter
information has a massive effect on diversification when measured in terms of portfolio
variance. In particular, if some components of R have a variance that is significantly
larger than that of others, they are underweighted in the MVP irrespectively of the
correlation matrix, which only has a secondary effect, see Example 2.4.5.
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Example 2.4.5 (Influence of variances)
Consider the following covariance matrix Σ, with associated correlation matrix C:

Σ =

 100 −0.1 0
−0.1 100 0

0 0 1

 , C =

 1 −0.001 0
−0.001 1 0

0 0 1

 .

It is easily seen that MVP(Σ) assigns the highest weight to asset 3, simply because it
has by far the smallest variance. However, it is easily checked, cf. Lemma 2.4.3(b), that
asset 3 is not a leaf in any MST computed from the associated correlation matrix C.
In this artificial example, the effect of the correlation structure is clearly dominated by
the effect of the one-dimensional margins (variances). The MST-based selection process
simply overlooks the fact that assets 1 and 2 have a high variance.

Furthermore, all graph-based methods (but also Markowitz’s approach) essentially rely
on dependence information between bivariate pairs only. Consequently, they may be
prone to overlook important characteristics of the distribution of R resulting from
higher-order dependence structures beyond those observed through bivariate pair mea-
surements (such as included in Σ). Typically, these effects are of secondary importance
in practice, but there are cases in which they do matter, as the following example em-
phasizes. Consider the following two stochastic models for R, denoted R(1) and R(2),
which both have exactly the same covariance matrix.

(1) Each R
(1)
i is normally distributed with mean µ = 0.08 and standard deviation

σ = 0.3, and the survival copula of R(1) is given by

C(u1, . . . , ud) = u[1]

d∏
k=2

u21−k

[k] ,

where u[1] ≤ . . . ≤ u[d] denotes the ordered list of u1, . . . , ud, i.e.

P(R
(1)
1 > x1, . . . , R

(1)
d > xd) = C

(
1− Φ

(
x1 − µ
σ

)
, . . . , 1− Φ

(
xd − µ
σ

))
,

where Φ denotes the distribution function of a standard normally distributed ran-
dom variable.

(2) Each R
(2)
i is normally distributed with mean µ = 0.08 and standard deviation

σ = 0.3, and the survival copula of R(2) is given by

C(u1, . . . , ud) = u[1]

d∏
k=2

u
1
2

[k].

Both copulas are within the family of Lévy-frailty copulas; see Mai and Scherer (2009)
for background on the latter, and the standard textbook Nelsen (2006) for background
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on copulas in general. Both models are such that (R
(1)
i , R

(1)
j ) has the same distribution

as (R
(2)
i , R

(2)
j ), thus both models share the same covariance matrix Σ. All off-diagonal

elements of Σ are equal, as are all its diagonal entries. Consequently, the MVP x̄ is
an equally weighted portfolio in both cases. Regarding the portfolio derived from an
MST, there is complete freedom. One finds an MST with k ∈ {2, . . . , d − 1} arbitrary
leaves: The considered portfolios exhibit constant correlation matrices, i.e. all pairwise
correlations are equal. The corresponding complete graph has the same weight on all
edges, thus any of its spanning trees is minimal.
While this example shows that the MST-based portfolio selection clearly needs further
criteria, how different are the distributions of x̄′R(1) and x̄′R(2)? Figure 2.17 illustrates
that the variances and means of both portfolio returns are identical, but the shapes
of their distributions differ dramatically. In particular, the second model is negatively
skewed and has a significantly larger downside risk than the first.
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Figure 2.17: Visualization of the probability distribution of the MVP for d = 20. Left:
model R(1). Right: model R(2).

2.5 Conclusion

In this chapter, we considered the realistic simulation of correlation matrices. First,
we identified stylized facts (S1)-(S4) of financial correlation matrices, hereby unifying
the results of several empirical studies on equity data all focused on single properties
and confirming these results in our own study on CDS data. Surveying the literature
on simulation algorithms for correlation matrices, we found that the choice of available
simulation procedures able to reproduce these stylized facts is very limited: There is
only one algorithm available, the randcorr algorithm, which is able to reproduce only
stylized fact (S1), correlation matrices with a realistic eigenvalue structure. There are no
simulation algorithms available which are able to generate completely random correlation
matrices exhibiting any of the other stylized facts, or combinations thereof.

From the basis of the randcorr algorithm, we develop our Algorithm 2.3.4, which is
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able to generate correlation matrices exhibiting stylized fact (S2), the Perron–Frobenius
property. It is further able to take into account a realistic eigenvalue structure, i.e. gen-
erate correlation matrices which additionally exhibit (S1). We show that our algorithm
is able to generate all such matrices (though not uniformly), and, using the construction
principle employed in the algorithm, we prove that the proportion of Perron–Frobenius
correlation matrices in the set of all correlation matrices is 1/2d−1 for d× d correlation
matrices.

In a simulation study, we examined the matrices generated from our algorithm for the
presence of stylized facts (S3) and (S4), a realistic distribution of pairwise correlations
and the scale-free property of the associated MST. We found that a major percentage of
the simulated correlation matrices with eigenvalues distributed according to Bouchaud
and Potters (2011); Bun et al. (2017)’s power law will exhibit also a realistic distri-
bution of pairwise correlations in addition to realistically distributed eigenvalues and
the Perron–Frobenius property. Further, when additionally fixing the largest eigenvalue
at a realistic value of 40% of the total variance, large (approx. d > 1000) correlation
matrices simulated from our algorithm tend to exhibit also a power law-like degree dis-
tribution in their corresponding minimum spanning trees, as found in several empirical
investigations of financial data sets. Thus the presented algorithm is a promising step
in the direction of simulating realistic correlation matrices for financial applications.

Finally, we considered a particular use case where the simulation of correlation matrices
with these realistic properties is crucial, namely the assessment of graph-based portfolio
selection methods. We presented evidence that the persistent empirical observations of
a strong relation between Markowitz-optimality and centrality in a graph derived from
the related correlation matrix is purely data-dependent. The intuitive assumption that
peripheral assets in a graph derived from the covariance/correlation matrix should form
a well-diversified portfolio could not be confirmed for completely random correlation
matrices: There exist portfolios assigning more weight to central assets for a small to
moderate number of assets, and for increasing number of assets, the probability that
the MVP associated with the considered correlation matrix underweights peripheral as-
sets grows, seemingly approaching 50% in the limit. Simulation studies with correlation
matrices displaying different subsets of the stylized facts (S1)-(S4) indicate that the pres-
ence of all stylized facts is required in order to replicate the behavior of the probability
of underweight in empirical portfolios.
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3.1 Motivation

Whereas the previous chapter focused on the simulation of financial correlation matrices,
this chapter is dedicated to a new modeling ansatz for correlation matrices. It results
from a novel approach to the joint modeling of financial assets adapted from geostatistics.
Again, our focus lies primarily on CDS data, as the joint modeling of dependent credit
spreads is crucial in many applications, ranging from quantitative risk management to
portfolio optimization, and also to the pricing of portfolio credit derivatives. Numerous
challenges are encountered in modeling and calibration, stemming e.g. from the large
number of constituents in several credit portfolios of interest, which may additionally
change over time1, or from data availability and quality, which, unlike for equity data
that is readily available for a large number of firms, is often still an issue for credit
derivatives like CDS. Hence, desirable is a tractable and parsimonious, yet realistic
model for the dependence structure that is able to cope with changing constituents and
missing data.

So far, the main focus in the modeling of dependent credit spreads has been on the joint
modeling of default times, see Burtschell et al. (2009); Meissner (2008) (and references
therein) for an overview. However, Cont and Kan (2011) find that the main driver of
losses from credit portfolios is not default risk, but rather the risk of a (joint) downturn
of the credit spreads. They give a placative example in noting that, under common as-
sumptions on the recovery rate, the loss incurred from the default of a single constituent
in an equally weighted index of 125 CDS, like the CDX Investment Grade (IG) Index,
roughly equals the loss incurred from a change in CDS spreads corresponding to the 99th
percentile of daily changes in the period 2005-2009. To set this into perspective, they
note that in the period of 2003-2011, only 8 constituents of all on- and off-the-run CDX
IG series have defaulted, whereas a spread change corresponding to said 99th percentile
occurred more than twice per year.

Different modeling approaches focusing on spread risk have been proposed in the liter-
ature: Cont and Kan (2011), who first noted the importance of modeling spread risk in
credit derivatives, focus on accurate modeling of the stylized facts of CDS spreads resp.
spread returns via time series models for the single-name spread (return) series and a
multivariate t-distribution for the residuals. Oh and Patton (2018) measure systemic
risk via CDS spreads utilizing a factor copula model, and Brechmann et al. (2013) and

1The constituents of the major European and US CDS indices are adjusted semiannually, for example.
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Geidosch and Fischer (2016) use vine copula models for stress-testing of CDS and risk
modeling of credit portfolios, respectively.
A common issue in these approaches is the need to re-estimate the models each time a
new firm enters (or leaves) the portfolio, which may be computationally costly or even
impossible in cases where little to no information on the new firm is available, and may
change the modeling of the previously included firms. Cont and Kan (2011) resort to
quasi maximum likelihood instead of maximum likelihood estimation to circumvent this
problem. Further, a complete record of data is typically required for the estimation of
the dependence structure, i.e. in case of a missing observation in one series, the whole
data set is truncated.

In this chapter, we study an approach adapted from geostatistics that is able to over-
come these issues. The essential idea is to model the dependent credit spreads jointly as
realizations of a (Gaussian) random field, which is completely determined in terms of its
mean and covariance functions. The latter is taken to be a low-parametric function of
the distance between the observations, i.e. the underlying firms, where the exact notion
of ‘distance’ in this context remains to be defined. A key benefit of this ansatz is the
possibility to include new data points, i.e. to consider new companies in financial ap-
plications. Consequently, geostatistical modeling has appealing benefits in the contexts
of covariance resp. correlation matrix estimation and missing data imputation that will
be discussed in the application section below. The presented results are based on joint
work with Benedikt Gräler and Matthias Scherer. An abbreviated discussion focusing
primarily on financial applications of geostatistics is available in Hüttner et al. (2019).

It has already been discussed in the literature how financial modeling may benefit from
spatial approaches. Several studies applying spatial models to stock data, e.g. Asghar-
ian et al. (2013); Arnold et al. (2013); Fernandez (2011); Fernández-Avilés et al. (2012);
Kou et al. (2016), reveal that spatial dependencies between the underlying entities can
provide deeper insights about the dependence structure of stock returns. So far, the
main focus of applications lies on contagion and systemic risk. The aspect of spatial
dependence inherent in credit spreads has been considered in Blasques et al. (2016)
and Keiler and Eder (2013). Both studies, and most of the above, employ a different
approach than geostatistics, namely spatial autoregressive (SAR) models, which eventu-
ally follow a regression approach: Neighboring dependent variables are included in the
regression using a spatial weights matrix typically constructed from a distance measure
and then row standardized.
Concerning geostatistics, there are only few references applying this framework to fi-
nancial data: Fernández-Avilés et al. (2012) investigate co-movements in stock markets,
whereas Arbia and Di Marcantonio (2015) employ such techniques to forecast interest
rates.2

We find that for CDS data, geostatistics is a promising alternative for the estimation
of large covariance/correlation matrices, as it supplies a natural estimator which is
guaranteed to be positive definite and is able to provide estimators for CDS correlation

2Gaussian random fields have also been applied in interest rate modeling, see Kennedy (1994, 1997).
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coefficients of firms with a nonexistent record of CDS spreads. Further, we show that
geostatistics supplies a useful tool for missing data imputation which compares favorably
to existing approaches.

In the remainder of this chapter, we first introduce the geostatistical modeling ansatz
in Section 3.2 and discuss the necessary adjustments when applying it in the high-
dimensional framework that financial data sets entail in Section 3.3. In Section 3.4, we
demonstrate the benefits of this method in covariance resp. correlation matrix estimation
and the imputation of missing data on a data set of 98 time series of CDS par spreads.
Section 3.5 discusses benefits and drawbacks of the approach, and offers an outlook on
possible future research.

3.2 Introduction to geostatistics

In the following, we introduce the geostatistical modeling approach, which was origi-
nally designed to forecast data on two- or three-dimensional surfaces from few sample
observations, and then discuss the necessary adjustments for its application in higher
dimensions.
At this point, it is important to note that the notion of ‘dimension’ has a different
meaning than in the previous chapter: Whereas we have previously focused on the ‘di-
mension’ d of a correlation matrix, i.e. its size or, put differently, the number of assets
considered, here ‘dimension’ d refers to the dimension of the underlying coordinate space
on which the distance measure is defined. This parameter d is of paramount importance
for the validity of correlation functions as discussed in Section 3.3, whereas the number
of assets d, i.e. the size of the covariance resp. correlation matrix to be estimated plays
only a subordinate role.

Throughout this chapter, d denotes, consistently with the previous chapter, the number
of considered (sample) locations resp. underlying firms, d denotes the dimension of the
considered coordinate space, and N is the number of observations of the respective time
series.

3.2.1 Classical application in geosciences

For an introduction to geostatistical modeling, it is educational to consider first a typical
problem in geosciences, like the prediction of the concentration of a variable of interest at
a prespecified location, given measurements of this variable at a set of other locations, for
locations in a two- or three-dimensional coordinate space. The described techniques can
be executed using the gstat package for R, cf. Pebesma (2019) for an introduction. For a
more detailed overview and some practical examples of their application in geosciences,
see, e.g., Cressie (1993).
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The main assumption is that the observations are taken from a random field

Z = {Z(s) : s ∈ Rd}, d ≤ 3,

and dependence is commonly expressed in terms of the so-called (semi-)variogram γ, or
occasionally the covariance function k, defined as

γ(s1, s2) :=
1

2
V
[
Z(s1)− Z(s2)

]
,

k(s1, s2) := Cov
(
Z(s1), Z(s2)

)
.

The field Z is further assumed to be second-order stationary, which requires that the
field has a constant mean and that the covariance, and consequently also the variogram,
is a function of the difference between the locations:

E
[
Z(s)

]
= µ

Cov
(
Z(s + h), Z(s)

)
= k(h),

1

2
V
[
Z(s + h)− Z(s)

]
= γ(s + h, s) = γ(h), ∀ s,h ∈ Rd.

Second-order stationarity further yields the following relation between γ and k:

k(h) = k(0)− γ(h). (3.1)

If the semivariogram γ depends only on the absolute value h := ‖h‖ of the distance
vector, i.e. points on spheres around some center have the same semivariogram value,
the model is called isotropic. Isotropy is often an unrealistic assumption in real world
situations, but in many cases a linear transformation of the underlying space restores
isotropy in the model:

γ(h) = γ̃(‖Ah‖), h ∈ Rd, A ∈ Rd×d, (3.2)

where A is said linear transformation and γ̃ is some isotropic semivariogram model. This
is referred to as geometric anisotropy.

In order to obtain positive semidefinite model covariance matrices for observations made
at any set of locations, covariance functions are required to be positive (semi-)definite.
Accordingly, semivariogram functions are required to be conditionally negative definite,
i.e.

d∑
i=1

d∑
j=1

ai · k(si − sj) · aj ≥ 0, ∀d ∈ N, si, . . . , sd ∈ Rd, a1, . . . , ad ∈ R,

d∑
i=1

d∑
j=1

ai · 2γ(si − sj) · aj ≤ 0, ∀d ∈ N, si, . . . , sd ∈ Rd, a1, . . . , ad ∈ R,
d∑
i=1

ai = 0.
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The semivariogram is estimated from observations via its sample version

γ̂(h) =
1

2|N(h)|
∑

si,sj∈N(h)

(Z(si)− Z(sj))
2,

γ̂(h) =
1

2|N(h)|
∑

si,sj∈N(h)

(Z(si)− Z(sj))
2,

(3.3)

cf. Cressie (1990, p.69), where N(h) resp. N(h) is the set of all sample pairs si, sj
separated by h, resp. by the distance h = ‖h‖ in the isotropic case and |N(·)| its
cardinality. In practice, sample pairs are binned to achieve a more stable estimator.
Once estimated from data and corrected for anisotropy if necessary, a valid model,
typically a parametric one3, has to be fitted to the empirical variogram in order to
ensure conditional negative definiteness.

Most parametric isotropic semivariogram models only depend on three parameters τ ,
σ, and ρ, which define the so-called nugget τ2, (partial) sill σ2, and the range 1/ρ,
see Cressie (1993); Arbia and Di Marcantonio (2015). The nugget, named after the
mining terminology referring to a naturally formed lump of gold, captures the variation
on scales smaller than the minimum distance between sample locations, as this will not
be registered in the estimation of the empirical semivariogram. More formally, it is
defined as the limit of γ(h) for h approaching zero. The sill is the limit of γ(h) as h
grows large, i.e. the variance of the field, and the range is the value of h where the sill
is first reached. Some models reach a sill only asymptotically, in which case the range
represents the distance where a certain percentage of the sill is reached. Two examples,
the exponential and the Gaussian semivariogram, are given as follows:

γExp(h) =

{
0 h = 0,

τ2 + σ2(1− exp(−ρ h)) h > 0,

γGau(h) =

{
0 h = 0,

τ2 + σ2(1− exp(−ρ2 h2)) h > 0.

(3.4)

Like most variogram models, these are increasing in distance, i.e. the corresponding
covariances are decreasing in distance. Combined with the fact that observed covariances
between the sample locations are typically all positive, this reflects Tobler’s ‘first law of
geography’, cf. Tobler (1970), which essentially states that observations made at close
locations are related more strongly than observations made at distant locations.

The ultimate goal in geoscience applications is to predict the variable of interest at
unobserved locations snew. This is done via kriging, named after the mining engineer
D. Krige, cf. Cressie (1990), a procedure determining the best unbiased linear predictor
p(snew) minimizing the mean-squared prediction error E[(Z(snew) − p(snew))2]. The
minimized mean-squared prediction error is referred to as the kriging variance.

3Non-parametric approaches to variogram fitting exist, cf. Cherry (1996) and references therein, but
will not be considered here.
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In case the mean of the field Z is known, this is referred to as simple kriging, and the
simple kriging predictor and kriging variance are obtained as follows:

min
li,i=0,1,...,d

E
[(
Z(snew)− psimple(snew)

)2
]

⇔ min
li,i=0,1,...,d

E
[(
Z(snew)−

d∑
i=1

liZ(si)− l0
)2
]
,

⇔ p∗simple(snew) = c′Σ−1(Z− µ1) + µ,

σsimple(snew) = E
[(
Z(snew)− p∗simple(snew)

)2
]

= k(snew, snew)− c′Σ−1c,

where c = (k(snew, s1), . . . , k(snew, sd))
′ is the vector of model covariances between the

new location and the sample locations, and Σ = (k(si, sj))i,j∈{1,...,d} is the model covari-
ance matrix at the sample locations.
If the mean of the field is not known, it has to be estimated alongside the best unbiased
linear predictor, which is referred to as ordinary kriging. For more involved approaches,
e.g. more robust approaches when Z is not Gaussian, see Cressie (1993).
A popular example illustrating a typical application of geostatistics is the prediction
of concentrations of zinc (and three other pollutants) in a flood plain along the river
Meuse, cf. Pebesma (2019), the corresponding data set being supplied in the R package
sp. Figure 3.1 illustrates the simple kriging predictions for zinc (log-)concentrations
throughout the area of interest, obtained from data measured at comparatively few
sample locations.

Remark 3.2.1 (Goodness of fit check)
Checking whether the chosen variogram model is a good fit to the data is typically
done via cross-validation, cf. Cressie (1993, p.101ff). Essentially, one leaves out one
data location and re-estimates the variable of interest at this location using the fitted
variogram model via kriging for each of the d locations. Then, the following quantities

1

d

d∑
i=1

Z(si)− psimple(si)

σsimple(si)
,√√√√1

d

d∑
i=1

(
Z(si)− psimple(si)

σsimple(si)

)2

,

can be interpreted as the average and mean-square standardized prediction errors, and
should take on values of approximately 0 and 1, respectively.

3.2.2 Additional assumptions

Whereas classical geostatistics usually does not make any assumptions on the nature
of the considered field, except that inference based on mean and covariance function is
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Figure 3.1: Left: Concentrations at the sample locations. Right: Interpolated concen-
trations obtained from simple kriging throughout the whole area of interest.

‘accurate enough’, we assume that Z is a Gaussian random field, which is completely
determined by its mean and covariance function. This has the following nice implica-
tions:

• The joint distribution of the observations made at any set of locations is jointly
Gaussian, with the covariance matrix essentially being parameterized by the pair-
wise distances between these locations, i.e. the dependence structure corresponds
to a Gaussian copula4 parameterized by distances.

• For the prediction at a new location, from the fact that the observations made at
the sample locations are jointly Gaussian, one obtains that the predictive distri-
bution (in a Bayesian view) at the new location is again Gaussian, cf. Rasmussen
and Williams (2006). The simple kriging predictor and the kriging variance are
the mean and variance of this predictive distribution.

We further assume that our field Z is isotropic and that its mean is known, i.e. prediction
at unobserved locations can be done using simple kriging.

To summarize, geostatistical modeling proceeds as follows:

1. Estimate the sample variogram γ̂.

2. Fit a valid variogram model γ.

4A copula is a d-dimensional distribution function with standard uniformly distributed margins. A
Gaussian copula is the copula corresponding to a d-dimensional normal distribution.
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3. Calculate model covariances based on distances and the fitted variogram model.

4. Calculate kriging predictors.

For financial applications, we have to add the non-trivial preliminary modeling task:

0. Define/select a suitable (financial) distance measure.

3.3 Adaption to financial data

In order to apply geostatistical methods to financial data sets, several of the model-
ing steps introduced above have to be adjusted. However, the crucial modeling step in
translating geostatistical procedures to financial data is the definition of a suitable coor-
dinate system, respectively distance measure. Informally speaking, we have to provide
an answer to the question: How ‘far’ is company A from company B? In geosciences, one
works with data measured at locations on a plane or sphere, and the association among
the measurements is usually decreasing in distance. The Euclidean distance between the
measurement locations furnishes a natural measure of closeness. For financial data, no
such natural distance is available and it is a pivotal modeling step to design a meaningful
one. We review several distances proposed in the literature in Section 3.3.1, and present
two generally applicable approaches for defining a financial distance measure. Specific
financial distance measures constructed along these lines that are tailored to our data
set of CDS spreads are presented in Section 3.4.1 below.

After an appropriate distance measure has been defined, a permissible variogram resp.
covariance function needs to be fitted to the data. The estimation of the sample var-
iogram has to be adjusted slightly, as unlike in geosciences, many observations are
available at each ‘location’, i.e. firm, cf. Section 3.3.2.
Further, the validity of covariance functions is closely tied to the chosen coordinate
system resp. distance measure, and several of the parametric models considered in geo-
science applications are no longer valid in the higher-dimensional coordinate systems
d > 3 often necessary to adequately model financial distances. This issue is discussed in
greater detail in Section 3.3.3.
Finally, although we have restricted ourselves to isotropic Z, we give a few remarks
on how geometric anisotropy may be estimated in higher dimensions using techniques
known from machine learning in Section 3.3.4.

3.3.1 Designing appropriate financial distance measures

Several financial distance measures have already been proposed in previous studies. Most
of these studies employ SAR models, which incorporate spatial information differently
than geostatistics. Nevertheless they are useful for choosing appropriate covariates for
designing financial distance measures.
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Fernández-Avilés et al. (2012) construct a financial distance between two countries based
on foreign direct investments (FDI).5 Using FDI data for the construction of financial
distances seems quite promising on country level, but this approach cannot be adapted
to corporates as the relevant data is not publicly available. Asgharian et al. (2013) in-
vestigate the performance of several distance measures, namely exchange rate volatility,
interest rate volatility, bilateral trade, and geographical distances, with bilateral trade
having the highest explanatory power for spatial dependence. For data sets where the
assets are all denominated in the same currency, like our CDS data set introduced in
Section 3.4.2, it does not make sense to study exchange rate and interest rate based
distances. Similarly to FDI, data on bilateral trade between firms is not publicly avail-
able. Keiler and Eder (2013), one of the few studies concerning spatial dependence with
a focus on credit spread data, use the (row-standardized) equity correlation matrix as
spatial weights matrix in an SAR model. More generally, Fernandez (2011) proposes
financial distance measures based on correlations between several covariates, namely the
ratio of market cap to firm size, the market-to-book ratio, the ratio of total debt to total
assets, debt maturity, and dividend yield.

This ansatz can be applied for the construction of financial distances from time series of
covariates: The distance between entities i and j is taken to be their correlation distance,
cf. Mantegna and Stanley (2000, Ch.13), which is often used as a weight function in the
derivation of graphs from a correlation matrix as mentioned in Chapter 2:

d(i, j) =
√

2(1− ρ̂i,j), (3.5)

where ρ̂i,j is the sample version of Pearson’s correlation coefficient. From the deriva-
tion in Mantegna and Stanley (2000), it can bee seen that the correlation distance
corresponds to the Euclidean distance6 between the standardized historical covariate
vectors7 R̃i:

d(i, j)2 =
∥∥∥R̃i − R̃j

∥∥∥2
=

N∑
k=1

(R̃i,k − R̃j,k)
2 =

N∑
k=1

R̃2
i,k − 2

N∑
k=1

R̃i,kR̃j,k +
N∑
k=1

R̃2
j,k

= 2(1− ρ̂i,j).

Consequently, the dimension d of the coordinate system is very high, as it equals the
length of the covariate time series.

Correlation-based distances can only be constructed when covariate time series with
a sufficient number of observations are available for each underlying entity, which of-
ten excludes covariates that are only reported a few times per year, like balance sheet
data. An alternative approach for the construction of financial distance measures from

5A major weakness in their analysis is that the chosen ‘distance’ is not a metric, which may result in
model covariance matrices which are not positive definite.

6In fact, this is only a pseudometric, as d(i, j) = 0 for any two entities i and j with ρ̂i,j = 1.
7Fernandez (2011) use Spearman’s correlation coefficient instead of Pearson’s, so their distance measure

corresponds to the Euclidean distances between the rank-transformed covariate vectors.
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covariates is to directly take several covariates as coordinates and calculate the Eu-
clidean distances between these coordinate vectors. The coordinate systems resulting
from this ansatz are lower-dimensional compared to the correlation distance approach,
the dimension depending on the number of considered covariates. Like in regression
approaches, this might suffer from collinearity in the coordinates. By choosing covari-
ates with moderate correlation among underlying entities, this issue can be minimized.
Another issue, whose impact can be quite severe, is the differing scales of the chosen
coordinates: If there is one covariate which is a lot larger than the others, the Euclidean
distance between the coordinate vectors will be predominantly influenced by this largest
figure, thus distorting the spatial influence. At the very least, the coordinates have to
be normalized in scale to avoid this issue. Alternatively, one could use the Mahalanobis
distance between locations s1 and s2,

dM(s1, s2) :=
√

(s1 − s2)′Σ−1(s1 − s2) = dEucl.(Σ
− 1

2 s1,Σ
− 1

2 s2), (3.6)

where Σ is the covariance matrix of the coordinates and dEucl. refers to the Euclidean
distance. This corresponds to a ‘whitening’ of the data, cf. Kulis (2012).

The issue of different scales of the coordinates is quite similar to the issue of (geometric)
anisotropy discussed in Section 3.3.4 below.

3.3.2 Sample variogram estimation

In geosciences, one often has only one single observation of the field, or at best a short
time series. Financial data, in contrast, is available daily (or at even shorter time
intervals), thus many observations of the same field are available. These observations
are marred by temporal dependence in the single series, which has to be removed if one
wants to take only pure spatial dependence into account.
Different approaches are possible to remove temporal dependence: Our method of choice
is working with log-returns, which are often considered to be approximately free of
spatial dependence, or with the residuals of different time series models fitted to the
log-return series. This is explained in greater detail in Section 3.4.2, where our data
set is introduced. Alternatively, one could work with series of weekly averages of log-
returns.
Another, more complicated approach is to resort to space-time modeling of the field,
which will not be discussed in greater detail here. There, the variogram resp. covariance
function is a function of both spatial and temporal distance between the observations,
and a crucial question is whether/how to model a potential relation between the spatial
and temporal increments.

Having removed temporal dependence, we obtain independent observations Z(si, t) of
the field at location i and time t, and we estimate the sample variogram similar as in
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Equation (3.3):

γ̂(h) =
1

2|N(h)|N
∑

si,sj∈N(h)

N∑
t=1

(
Z(si, t)− Z(sj , t)

)2
, (3.7)

where, as in Equation (3.3), N(h) refers to the set of firm pairs with (absolute value of)
distance (vector) h = ‖h‖, and N is the number of (daily) observations for each firm.

On the technical side, as the gstat’s function for estimating the sample variogram is
tailored to coordinate system dimensions d ≤ 3 and expects only a single measurement
per location, we have implemented a variant thereof that obtains a distance matrix as
input, thus being able to deal with arbitrary coordinate system dimension, and takes
the repeated measurements into account for determining the sample variogram. In this
context, pairwise complete observations are sufficient for sample variogram estimation.
Thus, in case of missing data, we need not exclude days with missing observations
completely.

3.3.3 Fitting of a valid variogram model

When fitting a valid variogram model to the sample variogram, we have two major
issues to consider: First, compatibility of the variogram model with the metric used,
and second, compatibility of the variogram model with the dimension of the considered
coordinate space.

Validity in dependence on the metric

Christakos and Papanicolaou (2000) discuss the permissibility of isotropic variogram
resp. covariance functions in dependence on the chosen metric: Their key finding is that,
under certain conditions, an isotropic covariance function is only valid in combination
with the Euclidean norm.

Theorem 3.3.1 (Christakos and Papanicolaou (2000))
Let the covariance function k depend only on the distance between observations, i.e.

k(h) = k̃(‖h‖), for some norm ‖ · ‖, where k̃ has an even extension on R which is twice
differentiable in an open neighborhood of 0. Then, ‖ · ‖ necessarily is the Euclidean
norm on Rd, where d is the dimension of the coordinate space.

Note that the Gaussian variogram introduced in (3.4) satisfies the conditions of Theo-
rem 3.3.1. If one decides to use another metric than the Euclidean, one has to check
whether the fitted variogram resp. covariance model is indeed compatible with the chosen
distance. We circumvent this issue by focusing on Euclidean distances. The Mahalanobis
distances introduced above are Euclidean distances on a linearly transformed coordinate
space, so these do not pose an issue.
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Validity in dependence on d

The validity of variogram models in dependence on the dimension d of the underlying
coordinate space is considered, e.g., in Christakos (1984); Cressie (1993). In the case of
second-order stationary fields, like the Gaussian fields considered in this chapter, this
issue is equivalent to validating a fitted correlation function, and one may draw upon
the rich theory available on stationary (isotropic) correlation functions, cf. Schoenberg
(1938); Yaglom (1987); Abrahamsen (1997); Steerneman and van Perlo-ten Kleij (2005),
to name only a few references. In the following, we review some helpful results for
determining the validity of correlation functions in dependence on d.

Denote

Bd = {class of correlation functions on Rd},
Cd = {class of stationary correlation functions on Rd},
Dd = {class of isotropic stationary correlation functions on Rd}.

The classes of such correlation functions that are valid in any dimension are denoted by
the subscript ∞. It holds that

D∞ ⊆ . . . ⊆ D2 ⊆ D1,

i.e. valid isotropic correlation functions in dimension d2 are also valid in dimension d1

for d1 ≤ d2, but not vice versa. The statement directly translates to variogram models,
cf. Cressie (1993, Ch. 2.5.2). As a consequence, several of the parametric variogram
models typically used in geoscience applications, where d ≤ 3, are not valid in higher
dimensions.

Indeed, whereas for d ≤ 3 a whole battery of parametric variogram model families is
available, the case d > 3 is not so extensively studied. If one has chosen a large number
of coordinates, as might result from the correlation distance (3.5), it might be more con-
venient to work with correlation functions from (resp. variogram models corresponding
to) the well-studied class of correlation functions valid in any dimension D∞. Using
R’s gstat package, this means one is limited to the exponential and Gaussian semivar-
iograms introduced in (3.4). Gaussian semivariograms are shied from in geosciences, as
these imply very smooth surfaces of the corresponding field, which is often considered
unrealistic in these applications. However, a-priori there is no reason why this should
be an unrealistic behaviour for financial data. Indeed, in our use cases in Section 3.4,
Gaussian semivariograms fit the data quite well.

In some cases, however, one may want to fit a custom variogram function to the sample
variogram obtained. In this case, Bochner’s Theorem (and its equivalent for correlation
functions, the Wiener–Khinchin Theorem) provides a useful link between positive (semi-
) definite functions and measures, cf. Abrahamsen (1997):
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Theorem 3.3.2 (Bochner’s Theorem)
A function r : Rd → R is positive (semi-)definite if and only if it admits the representa-
tion

r(h) =

∫
Rd

eih
′xddF (x), (3.8)

with F a non-negative bounded measure.

In terms of correlation functions, this statement is given as follows:

Corollary 3.3.3 (Wiener–Khinchin Theorem)
A function ρ : Rd → R is a correlation function in Cd if and only if

ρ(h) =

∫
Rd

eih
′xddFX(x) = E[eih

′X], (3.9)

where FX is a d-dimensional distribution function and X ∼ FX, i.e. any stationary cor-
relation function is the characteristic function of some d-dimensional random variable X.

For stationary isotropic correlation functions ρ ∈ Dd, a transformation to Polar coordi-
nates and integration over all angles yields

ρ(h) = r(‖h‖) =

∫ ∞
0

2
d−2
2 Γ

(
d

2

) J d−2
2

(x‖h‖)

(x‖h‖)
d−2
2

dG(x) =:

∫ ∞
0

Λd(x‖h‖)dG(x),

where G(x) =
∫
‖x‖<x dFX(x) and J is the Bessel function of the first kind, cf. Yaglom

(1987) for a detailed proof.
Another representation of ρ ∈ Dd due to Schoenberg (1938) is

ρ(‖h‖) = ρ(h) =

∫ ∞
0

Γ( d2)
√
πΓ( d−1

2 )

∫ 1

−1
eihyv(1− v2)

d−3
2 dv dF‖X‖(y).

For continuous FX, the corresponding density f is called the spectral density of ρ and
can be obtained as follows for stationary and stationary isotropic correlation functions
ρ ∈ Cd resp. ρ ∈ Dd:

f(x) = (2π)−d
∫
Rd

e−ih
′xρ(h)ddh,

f(x) = (2π)−
d
2

∫ ∞
0

J d−2
2

(x‖h‖)

(x‖h‖)
d−2
2

‖h‖d−1ρ(‖h‖)d‖h‖.

So to verify if a function is indeed a valid stationary (and isotropic) correlation function
in Rd, a simple check is to verify that the corresponding spectral density is indeed the
density of some probability measure.
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3.3.4 Geometric anisotropy in higher dimensions

In this section we digress from the main thread of this chapter, where we have assumed
isotropy of the considered field Z, and present, for the sake of completeness, a few ideas
on how to identify the transformation A that corrects geometric anisotropy and restores
isotropy in higher-dimensional coordinate systems d > 3.

Typically, in d ∈ {2, 3}, data-driven approaches are employed to estimate the (geomet-
ric) anisotropy matrix A, like the estimation of directional variograms, where distance
vectors h pointing in different directions are used for sample variogram estimation along
these directions in Equation (3.3). In this context, the sill is assumed to be constant
over all directions, only the range varies.8 A plot of the ranges in their corresponding
directions then reveals the elliptic contour of the iso-variogram lines, cf. Figure 3.2 for an
illustration, and the affine transformation A that restores isotropy9 can be deduced:

A =

(
cos(φ) sin(φ)
−λ sin(φ) λ cos(φ)

)
,

where φ is the angle between the major axis of the ellipse and the x-axis and λ is the
ratio of the major to the minor axis of the ellipse.
The estimation of the directional variograms, however, requires a certain number of
data points for each directional variogram to be feasible, a requirement which is getting
increasingly hard to fulfill in higher dimensions d.

φ

Figure 3.2: Transformation of the original anisotropic plot of the ranges in the considered
directions to the isotropic case.

A potential way to overcome this issue is to employ metric learning, a different data-
driven approach borrowed from machine learning applications, cf. Kulis (2012), for the

8The case of different sills in different directions, referred to as zonal anisotropy, is much harder to
handle and will not be discussed here.

9Here, A aligns the axes of the ellipse with the coordinate axes. In case the original orientation of the
coordinate space should be kept, A has to be multiplied from the left with a rotation matrix about
−φ.
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estimation of geometric anisotropy in higher dimensions. Indeed, linear metric learning
exactly corresponds to a formal estimation of the geometric anisotropy matrix A: Given
a set of data points in a d-dimensional coordinate space and information on a more
appropriate distance than the Euclidean, typically in the form of class labels or, simply
put, information whether two data points are considered similar or not, linear metric
learning approaches infer from the data a linear transformation A of the space such
that the Euclidean distance in the transformed space is more appropriate for the task
at hand. In our setup, this means it should more appropriately reflect Tobler’s law.
Formally, one learns a Mahalanobis-type metric dA

dA(x, y) = dEucl.(Ax,Ay) =
√
x′A′Ay,

by minimizing some functional of A, subject to similarity/dissimilarity constraints (dis-
tance between similar/dissimilar points should be smaller/larger than some constant)
or relative distance constraints (dA(i, j) < dA(i, k)). Several methods exploit that A′A
is positive definite. One sees that variogram estimation under this metric exactly cor-
responds to the case of geometric anisotropy as specified in (3.2). Further note the
similarity to the classical Mahalanobis distance (3.6).
One of the most popular methods is the one proposed in Weinberger and Saul (2009),
denoted LMNN (large margin nearest neighbors), which was originally designed to im-
prove k-nearest neighbor classification. The essential idea, visualized in Figure 3.3, is
that, after applying the transformation A, any data point should belong to the same
class as its nearest neighbors.

Figure 3.3: Illustration of locations in original and learned metric in LMNN.

Of course, a crucial question in financial applications is then how to define whether two
firms are similar or not. A straightforward choice in our CDS data set of Section 3.4
below would be to define classes according to business sectors. In Figure 3.6 one sees that
typically firms operating in the same sector are more correlated than firms operating in
different sectors, which is also found in Perreault et al. (2019).
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3.4 Applications

The possible applications of geostatistical techniques to financial data are manifold.
Exemplarily, we focus on the problem of covariance resp. correlation matrix parameteri-
zation in Section 3.4.3 and on the interpolation of missing data in Section 3.4.4. Another
possible application is the prediction of multivariate credit spreads.

In contrast to previous studies, which have predominantly focused on equity data, we
carry out our analyses on a data set of liquidly traded corporate CDS, to see whether the
joint modeling of dependent credit spreads can profit from the geostatistical approach
introduced above. We propose a selection of financial distance measures for CDS data
in Section 3.4.1, before introducing our data set and the required preprocessing steps in
more detail in Section 3.4.2.

3.4.1 Financial distance measures

To design financial distance measures for CDS spread data, we first select meaningful
covariates. A manifest choice is to use equity data, which is well-known to have a strong
connection to CDS data; in structural credit models that we use in Chapter 4, this
link is particularly evident and may be exploited for the joint valuation of credit and
equity of a firm. Keiler and Eder (2013), who study spatial influences in CDS data,
albeit in an SAR framework, also use equity data to incorporate spatial information in
their model. Similarly to Fernandez (2011), we construct a distance based on equity
return correlations (dE) using the correlation distance ansatz (3.5). It corresponds to
the Euclidean distance between the equity return vectors, thus the dimension d of the
coordinate space is very high, as it equals the length of the return time series. Hence,
when fitting a valid variogram with gstat in R, it is prudent to consider only models
corresponding to correlation functions in D∞, i.e. the Gaussian and Exponential vari-
ograms (3.4).
A minor drawback is that using dE forces us to drop privately owned companies, which
are not listed on stock markets, from our data set. A possible solution to this issue could
be to use, as a substitute for each of these companies’ equity data, an equally weighted
index of equity return data of suitable peer companies. A list of peer companies for a
chosen firm is supplied, e.g., by Reuters.

CDS spreads are further strongly associated with the credit quality of their reference
entity, i.e. the underlying firm. Therefore we consider several performance figures ob-
tained from the reference entities’ balance sheets as covariates. As these are typically
reported only once per year, we resort to Euclidean resp. Mahalanobis distances between
the covariate vectors. The dimension d of the resulting coordinate systems corresponds
to the number of considered performance figures. However, as typically d > 3 the choice
of valid variogram models is again limited.
We consider distances based on balance sheet data for changes in working capital (CWC),
EBITDA, net debt, capital expenditures (CapEx), and total revenue, all divided by the
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respective firm’s market cap to minimize the influence of the firms’ sizes, as well as a
categorization by sector and country. Their correlation matrix is

CWC EBITDA net debt CapEx total revenue


CWC 1 −0.3133 −0.4027 0.0737 0.2060
EBITDA −0.3133 1 0.5873 −0.9040 0.6511
Net Debt −0.4027 0.5873 1 −0.5274 0.1809
CapEx 0.0737 −0.9040 −0.5274 1 −0.6697

Total Revenue 0.2060 0.6511 0.1809 −0.6697 1

,

with all coordinates taken as ratios to market cap as indicated above. EBITDA and
CapEx are strongly correlated, which introduces numerical problems in the computation
of the Mahalanobis distance, as the (sector-extended) covariance matrix of coordinates
is close to singular. Hence, for the Mahalanobis distance based on balance sheet data
and sector information, EBITDA/market cap is excluded from the set of coordinates.10

Sector and country information are encoded as 0-1 variables.
Due to the specific business concept of firms in the financial sector, their balance sheets
differ fundamentally from those of firms outside the financial sector. Hence, it is neces-
sary to remove all firms from the financial sector from our data set, as for a meaningful
characterization of these, different balance sheet data is required.

To summarize, the considered distance measures are:

• Correlation distance constructed from equity return data (dE),

• Euclidean distance, considering balance sheet data and sector information as co-
ordinates (dFRS,Eucl.),

• Euclidean distance, considering balance sheet data, sector, and country informa-
tion as coordinates (dFRSC,Eucl.),

• Mahalanobis distance, considering balance sheet data as coordinates (dFR,M),

• Mahalanobis distance, considering balance sheet data and sector information as
coordinates (dFRS,M).

Figure 3.4 illustrates the relation between CDS log return correlations and the considered
distance measures in our data set via hexbin plots. For a meaningful distance measure, a
decline of CDS correlation with distance is expected, which is clearly visible in the hexbin
plots for dE, dFR,M, and dFRS,M, but less pronounced for dFRS,Eucl. and dFRSC,Eucl..

Another helpful diagnostic plot is to consider a heatmap of the distance matrices corre-
sponding to dE, dFRS,Eucl., dFRSC,Eucl., dFR,M, and dFRS,M, where the rows and columns
are sorted in the same way as in the CDS correlation matrix after applying R’s internal

10For all other distances, no numerical problems arise, and sample variograms with both the EBITDA
and CapEx ratio included differ only marginally from those obtained when one of these ratios is
excluded from the set of coordinates.
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clustering approach (which essentially groups strongly correlated firms). Ideally, blocks
of highly correlated firms in the CDS correlation matrix are visible as blocks with low
distances in the distance matrices, cf. Figure 3.5.
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Figure 3.4: Hexbin plots of CDS log return correlations vs. the chosen distance measures
dE, dFRS,Eucl., dFRSC,Eucl., dFR,M and dFRS,M. The darker the respective
hexagonal field, the more observations it represents.
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sample correlation matrix CDS log returns
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dE distance matrix
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Figure 3.5: Heatmap of CDS correlation matrix (top left), grouped according to R’s in-
ternal clustering, and distance matrices for dE, dFRS,Eucl., dFRSC,Eucl., dFR,M,
and dFRS,M, with the same ordering of firms.

95



3 Geostatistical modeling for financial data

SafewayEricssonGSKCasinoOTETelecomNokiaSunriseCommunicationsPremierFoodsExperianFinanceSESSuedzuckerNestleUnileverBayerSanofiAstraZenecaVolvoValeoContinentalRenaultVolkswagenDaimlerBMWVodafoneTelekomAustriaKPNBritishTelecomDeutscheTelekomOrangeBPEniRepsolTotalShellCentricaNationalGridEDFUnitedUtilitiesVeoliaBAESystemsEONFortumOyjTelefonicaEnelNaturgyIberdrolaNextMarksSpencerTescoSainsburyThyssenkruppGlencoreArcelorMittalAngloAmericanSkySiemensSTMicroelectronicsBritAmTobaccoRollsRoyceLVMHTelenorPearsonPhilipsWPP2005SSEEquinorGKNHoldingsCarrefourRexelTUIElectroluxLufthansaKoninklijkeDSMLanxessAkzoNobelBASFFiatChryslerTelecomITPeugeotLafargeholcimAtlantiaWendelAccorVinciHeidelbergCementCieSaintGobainDanoneTateLylePernodRicardDiageoCarlsbergBrewsHeinekenKeringITVRelxVivendiPublicisGroupeWoltersKluwer

S
afew

ay
E

ricsson
G

S
K

C
asino

O
T

E
Telecom

N
okia

S
unriseC

om
m

unications
P

rem
ierF

oods
E

xperianF
inance

S
E

S
S

uedzucker
N

estle
U

nilever
B

ayer
S

anofi
A

straZ
eneca

V
olvo

V
aleo

C
ontinental

R
enault

V
olksw

agen
D

aim
ler

B
M

W
V

odafone
Telekom

A
ustria

K
P

N
B

ritishTelecom
D

eutscheTelekom
O

range
B

P
E

ni
R

epsol
Total
S

hell
C

entrica
N

ationalG
rid

E
D

F
U

nitedU
tilities

V
eolia

B
A

E
S

ystem
s

E
O

N
F

ortum
O

yj
Telefonica
E

nel
N

aturgy
Iberdrola
N

ext
M

arksS
pencer

Tesco
S

ainsbury
T

hyssenkrupp
G

lencore
A

rcelorM
ittal

A
ngloA

m
erican

S
ky

S
iem

ens
S

T
M

icroelectronics
B

ritA
m

Tobacco
R

ollsR
oyce

LV
M

H
Telenor
P

earson
P

hilips
W

P
P

2005
S

S
E

E
quinor

G
K

N
H

oldings
C

arrefour
R

exel
T

U
I

E
lectrolux

Lufthansa
K

oninklijkeD
S

M
Lanxess
A

kzoN
obel

B
A

S
F

F
iatC

hrysler
Telecom

IT
P

eugeot
Lafargeholcim
A

tlantia
W

endel
A

ccor
V

inci
H

eidelbergC
em

ent
C

ieS
aintG

obain
D

anone
TateLyle
P

ernodR
icard

D
iageo

C
arlsbergB

rew
s

H
eineken

K
ering

IT
V

R
elx

V
ivendi

P
ublicisG

roupe
W

oltersK
luw

er

sam
ple correlation m

atrix C
D

S
 log returns

−
1

−
0.5

0
0.5

1

V
alue

C
olor K

ey

F
ig

u
re

3.6:
H

eatm
a
p

o
f

C
D

S
lo

g
retu

rn
co

rrelation
m

atrix
,

grou
p

ed
accord

in
g

to
R

’s
in

tern
al

clu
sterin

g,
i.e.

accord
in

g
to

b
lo

ck
s

of
stron

gly
co

rrela
ted

assets.
T

h
ese

b
lo

ck
s

ten
d

to
corresp

on
d

to
fi

rm
s

op
eratin

g
in

th
e

sam
e

b
u

sin
ess

sectors.

96



3 Geostatistical modeling for financial data

3.4.2 Data set

We illustrate the benefits of incorporating spatial information via geostatistical modeling
for covariance matrix estimation and missing data imputation using a data set of 5-
year CDS spreads, stock prices, and macroeconomic variables referring to the reference
entities of the CDS listed in the Markit iTraxx Europe (ITRX IG; investment grade)
and iTraxx Europe Crossover (ITRX XO; sub-investment grade) Indices Series 29. The
ITRX IG (XO) indices contain the 125 (75) most liquidly traded (sub-) investment grade
CDS and exist for maturities 3, 5, 7, and 10 years, with 5 years being the most liquidly
traded maturity, similar to single-name CDS. The constituents are adjusted every year
in March and September, and a new ‘on-the-run’ series is set up. Some of the reference
entities are subsidiaries of publicly traded firms which are not traded themselves; in this
case, the stock prices and macroeconomic variables of the public parent company are
taken.

After removing firms with missing data, our data set comprises a complete record of
CDS, stock, and macroeconomic data for 98 firms11 in the time period July 25th, 2016
to July 24th, 2018. This already serves as an illustration of the data availability issue for
CDS: 57 firms had to be removed from the data set due to missing CDS quotes. Further,
private companies were excluded, as no stock price is available; apart from this, only
two firms had to be removed from the data set due to missing equity data. Finally, also
companies operating in the financial sector were excluded from the data set, as for those
different macroeconomic variables are required.

For out-of-sample performance evaluation of the proposed approach we use data of
Deutsche Post, Henkel, Merck, Air Liquide, Bouygues, Capgemini, and Sodexo.

Remark 3.4.1 ((Un-)Necessity of complete records)
Estimation of the sample variogram requires only pairwise complete observations of the
variable of interest, as positive definiteness of the covariance (resp. correlation) matrix
is ensured by fitting a valid model. Thus, missing CDS data is no knock-out criterion
for the application of this method. We only remove time series with missing values to
obtain a complete record for comparison in the missing data imputation application.
For the coordinates, however, a complete record is required.

The geostatistical modeling assumptions require stationary time series; we therefore
consider log returns of CDS par spread quotes. As we intend to focus on purely spatial
dependence, temporal dependence must be taken care of in some way. We carry out
our analyses directly on the log returns, as it is a quite common assumption among
practitioners that log returns are approximately free of temporal dependence. However,
the presence of temporal dependence in the series cannot be denied: Box tests show that
most of the return series are autocorrelated, and heteroscedasticity effects are observed
in more than half of the series. For comparison, we fit time series models to each

11Data obtained via Thomson Reuters Eikon, with CDS quotes from Markit (=MG).
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log return series and repeat the analyses on the residuals. According to Cont and Kan
(2011), an AR(1)-GARCH(1,1) model is well suited for capturing observed stylized facts
of CDS spread return time series.12 To comply with the assumption of a Gaussian field,
and to be able to directly obtain correlation functions from the fitted variograms, the
marginal distributions of each return and residual time series are transformed to the
standard normal distribution.
Further, when preprocessing the data, we have to take care of the roll dates of the CDS
contracts: As mentioned in Section 2.4.3, CDS maturities are fixed and standardized
to 20 June or 20 December, and quotation changes on the roll dates 20 March and 20
September. At these roll dates the series exhibit noticeable jumps due to the changing
maturity. We control for this by setting the log return on roll dates to zero.

Concerning the covariate data, the distance measure dE is constructed from correlations
of stock log returns observed in the same time period July 25th, 2016 to July 24th,
2018. As balance sheet data is typically reported in yearly intervals, we choose the
reported values of 2017 as supplied by Thomson Reuters Eikon for the construction of
the remaining distance measures. For firms who do not report at the end of December,
we take the figure reported at the time closest to Dec. 31st, 2017.

3.4.3 Covariance or correlation matrix estimation

The estimation of covariance or correlation matrices is a problem often encountered in
finance. It is especially challenging when the number of firms d is large, as the estimation
of d(d+ 1)/2 parameters (variances and pairwise correlations) is required.

The most natural estimator is the sample covariance matrix of the data set, but this is
problematic for several reasons: First, it is singular when the number of observations is
small compared to the number of firms considered, N < d, cf. Ledoit and Wolf (2004a).
Second, in the case of missing data, one has to make a choice between using only dates
with a complete record, which might lead to the N < d issue, or compute the sample
covariance matrix using pairwise complete observations, which may result in an esti-
mator that is not positive definite. Third, for d large, the sample covariance matrix
typically contains a lot of noise compared to the true covariance matrix of the market.
Therefore, estimators that impose more structure on the estimated covariance matrix
are desirable. At the very least, positive definiteness of the estimator is a necessary re-
quirement. There exists an abundance of literature on this topic, e.g. the series of papers
by Ledoit and Wolf (2003, 2004a,b) focusing on shrinkage, Perreault et al. (2019) who
simplify the covariance matrix by imposing an exchangeable block structure, principal
component estimators as discussed, e.g., in Alexander (2002), factor model estimators

12We also fitted ARMA(p,q)-GARCH(1,1) with p,q optimally chosen, as AR(1)-GARCH(1,1) was not
always the best-fitting model according to AIC/BIC, as well as ARMA(p,q) with p,q optimally
chosen, as for about half of the return series homoscedasticity could not be rejected. However, the
results of geostatistical model fitting obtained from the residuals of these models were very similar
to those obtained from the residuals of the AR(1)-GARCH(1,1), and are thus not presented.
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as described, e.g., in Fan et al. (2008), or Engle (2002)’s dynamic conditional correlation
(DCC) model. This list is by no means exhaustive and just intends to give an overview
of some of the proposed approaches. None of these approaches, however, is able to cope
with missing data. In this case, a popular approach in the context of CDO modeling is to
take the equity correlation matrix, cf. RiskMetrics Group (2007), which is inappropriate
in the current market conditions, as we will see in the following.

Natural covariance resp. correlation matrix estimator from geostatistics

From Section 3.2 it can be seen that the geostatistical framework naturally encompasses
an estimation procedure for large covariance resp. correlation matrices via the fitting
of a valid variogram function. The resulting estimator has various appealing features:
First, it is guaranteed to be positive definite, as the covariance resp. correlation function
associated with the fitted variogram model is positive definite. Second, it is a para-
metric function of distance requiring only few parameters (3 at most in the parametric
variogram functions considered here). Third, it can cope with missing data, i.e. given
the coordinates, one can predict covariances resp. correlations of firms for which no data
is available. Last but not least it is easy to compute, as it only requires one fit of the
variogram function, which is then used for the estimation of all covariances resp. corre-
lations.
It is worth noting that, when estimating covariances via the fitted variogram, all firms
have the same variance, which is somewhat unrealistic. This issue can be resolved by
standardizing the observations of the field to mean 0 and variance 1, thus obtaining a
correlation function from the fitted variogram via Equation (3.1), and estimating the
variances separately for each series.

The estimation procedure follows Steps 0.-3. described above: Having selected a financial
distance measure, one collects the relevant coordinate data plus CDS spreads for a
training set. In our case this is the ITRX universe, which consists of the most liquidly
traded European CDS, and can hence be considered representative for estimating the
correlation function governing the European CDS market. Then one calculates the
sample variogram using Equation (3.3) and fits a valid variogram model, e.g. using R’s
gstat package, paying attention to the issues described in Section 3.3. Finally, using
relation (3.1), one obtains the covariances as functions of the chosen distance.
In our use case, we standardize the field as indicated above, and constrain the nugget
and sill parameters of the variogram such that k(0) = 1 and we obtain correlations as
functions of distance. The fitted variogram models for our chosen distances are given in
Table 3.1 and their fit to the sample variograms with respect to our chosen distances is
displayed in Figure 3.7 for the CDS log return data set. Cross-validating the variogram
fits as described in Remark 3.2.1 confirms that the chosen models fit the data quite
well. We find that the fitted models for dFRS,Eucl. and dFRSC,Eucl., as well as the models
for dFR,M and dFRS,M are very similar for both log returns and AR(1)-GARCH(1,1)
residuals.
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Figure 3.7: Fit of the valid variogram model to the respective sample variogram for
the chosen financial distance measures dE (top), dFRS,Eucl. (middle left),
dFRSC,Eucl. (middle right), dFR,M (bottom left), and dFRS,M (bottom right).
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distance model type nugget (partial) sill range

dE, returns Gaussian 0 1 1.5350
dFRS,Eucl., returns Gaussian 0.45 0.55 31.0424
dFRSC,Eucl., returns Gaussian 0.44 0.56 31.1891
dFR,M, returns Gaussian 0.42 0.58 16.8436
dFRS,M, returns Gaussian 0.45 0.55 19.7333

dE, residuals Gaussian 0 1 1.3868
dFRS,Eucl., residuals Gaussian 0.5 0.5 27.2024
dFRSC,Eucl., residuals Gaussian 0.5 0.5 29.3347
dFR,M, residuals Gaussian 0.5 0.5 17.8945
dFRS,M, residuals Gaussian 0.48 0.52 16.2328

Table 3.1: Fitted variogram models for CDS log returns and AR(1)-GARCH(1,1) resid-
uals for each of our chosen distance measures.

Performance figures considered for the comparison of models

We compare the sample correlation matrices of our training set of 98 ITRX constituent
firms (in-sample) and our training and test set including the 7 new firms listed in Sec-
tion 3.4.2 (out-of-sample) to the model correlation matrices obtained from the fitted var-
iograms for our chosen distance measures dE, dFRS,Eucl., dFRSC,Eucl., dFR,M, and dFRS,M.
For (normal-transformed) CDS log-returns, we include the (normal-transformed) equity
correlation matrix for comparison. The corresponding results are identified by the sub-
script ‘Equity’ in the sequel. Both sample correlation matrices are well-defined here, as
our training and test sets are without missing data with N > d.
To this end, we consider the following performance figures:

1. Matrix-valued loss functions: The Frobenius loss

trace((C − Ĉ)2),

where C and Ĉ are the sample and model covariance matrix, respectively, and the
negative normal log-likelihood

trace(CĈ−1)− ln(det(CĈ−1))− d,

as Neuberg and Glasserman (2019) find this is a more suitable loss function from
a portfolio perspective.

2. Performance measures addressing the elements of the matrix: RMSE and MAPE
for all pairwise correlations and for those of the newly added firms only:

RMSEall =

√√√√ 1

d(d− 1)/2

d∑
k=1

d∑
l=k+1

[C − Ĉ]2k,l, C ∈ Rd×d,
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RMSEnew =

√√√√ 1

ddnew + dnew(dnew−1)
2

d+dnew∑
k=d+1

k−1∑
l=1

[C − Ĉ]2k,l, C ∈ R
(d+dnew)×(d+dnew),

MAPEall =
1

d(d− 1)/2

d∑
k=1

d∑
l=k+1

‖Ck,l − Ĉk,l‖
‖Ck,l‖

, C ∈ Rd×d,

MAPEnew =
1

ddnew + dnew(dnew−1)
2

d+dnew∑
k=d+1

k−1∑
l=1

‖Ck,l − Ĉk,l‖
‖Ck,l‖

, C ∈ R(d+dnew)×(d+dnew).

It is important to remark that MAPE has certain shortfalls as a measure of pre-
dictive accuracy, especially when used for model selection, cf. Gneiting (2011);
Tofallis (2015). Nevertheless it remains quite popular among practitioners, which
is why we include it in our comparison.

In-sample comparison

We find that for CDS log returns, simply taking the corresponding equity correlation
matrix is the worst choice, cf. Table 3.2 and Table 3.3. Figure 3.8, displaying the his-
tograms of the entrywise estimation errors for the different model correlation matrices,
reveals that this is due to the fact that equity correlations in our data set are system-
atically much lower than CDS correlations. Figure 3.9 additionally shows which blocks
of the CDS log return resp. residual correlation matrix are over- resp. underestimated
in the different models. Considering both matrix-valued and element-wise performance
figures, the correlation models parameterized by the equity correlation distance dE and
by the balance sheet ratios and sector-based Mahalanobis distance dFRS,M perform best
for CDS log returns. For CDS AR(1)-GARCH(1,1) residuals, the correlation model pa-
rameterized by dFRSC,Eucl. performs best according to the Frobenius loss and pairwise
correlations RMSE, whereas according to the negative normal log-likelihood and pair-
wise correlations MAPE, the models parameterized by dFRS,M and dFR,M perform best,
respectively.

distance Frobenius ret. Frobenius resid. neg. n. Llh. ret. neg. n. Llh. resid.

Equity 890.1386 - 37.9848 -
dE 73.8306 72.7075 27.5979 24.1303
dFRS,Eucl. 84.5127 67.4280 28.3136 25.3291
dFRSC,Eucl. 89.3108 67.1137 28.3793 25.3213
dFR,M 98.0467 67.2878 28.6524 25.2926
dFRS,M 79.8826 69.5488 26.5629 23.6696

Table 3.2: Results of the matrix-valued loss functions (Frobenius loss and negative nor-
mal log-likelihood) for CDS log returns and AR(1)-GARCH(1,1) residuals.
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Difference sample − model correlations
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Figure 3.8: Histograms of the distribution of the entries of Corsample−Cormodel.
Left column: Corsample is the CDS log return sample correlation matrix and
Cormodel is the respective model correlation matrix for dE and dFRS,M, and
the correlation matrix of (normal-transformed) equity correlation matrix in
the bottom plot.
Right column: Corsample is the CDS AR(1)-GARCH(1,1) residual sample
correlation matrix and Cormodel is the respective model correlation matrix
for dE, dFRSC,Eucl., and dFR,M.
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Difference sample − model: Cret−CEquity
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Difference sample − model: Cresid−CdFRSC, Eucl. 
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Difference sample − model: Cret−CdE
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Difference sample − model: Cresid−CdFR, M
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Difference sample − model: Cret−CdFRS, M
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Figure 3.9: Heatmaps of the difference between sample and model correlation matrices
for CDS log returns (left column) and residuals (right column). Blue (red)
fields indicate that the model overestimates (underestimates) the respective
pairwise correlation compared to the sample correlation matrix.
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3 Geostatistical modeling for financial data

distance RMSE returns RMSE residuals MAPE returns MAPE residuals

Equity 0.3060 - 0.5400 -
dE 0.0881 0.0875 0.1464 0.1523
dFRS,Eucl. 0.0943 0.0842 0.1620 0.1543
dFRSC,Eucl. 0.0969 0.0840 0.1683 0.1540
dFR,M 0.1016 0.0841 0.1769 0.1519
dFRS,M 0.0917 0.0855 0.1551 0.1570

Table 3.3: Results of element-wise performance measures for CDS log returns and
AR(1)-GARCH(1,1) residuals.

Out-of-sample comparison

For the CDS log returns of our new firms, surprisingly the equity correlation matrix
outperforms all distance-parameterized model correlation matrices concerning RMSE
and MAPE of pairwise correlations. Apparently, for these firms, credit and equity
correlations are more similar than for the ITRX constituents, and consequently the geo-
statistical models overestimate the CDS correlations, cf. Figure 3.10. The higher CDS
correlations of the ITRX constituents may well be caused by being part of the index.
The model based on the equity-correlation distance dE performs best among the geosta-
tistical models in both data sets, CDS log returns and AR(1)-GARCH(1,1) residuals,
cf. Table 3.5. According to both matrix-values loss functions applied to the extended
correlation matrices, the geostatistical models parameterized by dE and dFRS,M perform
best for both CDS log returns and AR(1)-GARCH(1,1) residuals, cf. Table 3.4.

Frobenius ret. Frobenius resid. neg. n. Llh. ret. neg. n. Llh. resid.

Equity 926.2568 - 44.3533 -
dE 131.9362 112.7960 33.9761 29.2042
dFRS,Eucl. 147.9159 119.4380 32.2188 28.9903
dFRSC,Eucl. 157.3199 118.9473 32.3884 28.9790
dFR,M 173.5536 117.4923 32.8869 28.9234
dFRS,M 138.3648 123.9517 30.4045 27.4572

Table 3.4: Results of the matrix-valued loss functions for CDS log returns and AR(1)-
GARCH(1,1) residuals for the extended correlation matrix.
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Figure 3.10: Histograms of the distribution of the new entries of Corsample−Cormodel.
Left column: Corsample is the CDS log return sample correlation matrix and
Cormodel is the respective model correlation matrix for dE and dFRS,M, and
the correlation matrix of (normal-transformed) equity correlation matrix in
the bottom plot.
Right column: Corsample is the CDS AR(1)-GARCH(1,1) residual sample
correlation matrix and Cormodel is the respective model correlation matrix
for dE, dFRSC,Eucl., and dFR,M.
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3 Geostatistical modeling for financial data

RMSE returns RMSE residuals MAPE returns MAPE residuals

Equity 0.1598 - 0.3483 -
dE 0.2027 0.1684 0.6289 0.5670
dFRS,Eucl. 0.2118 0.1918 0.6716 0.6692
dFRSC,Eucl. 0.2193 0.1915 0.6974 0.6682
dFR,M 0.2311 0.1884 0.7352 0.6558
dFRS,M 0.2034 0.1961 0.6424 0.6841

Table 3.5: Results of element-wise performance measures for CDS log returns and
AR(1)-GARCH(1,1) residuals for new firms only.

3.4.4 Interpolation of missing data

An issue often encountered when working with CDS data is poor data quality. Unlike
in equity markets, quotes are not freely available, and often one only obtains data sets
with either missing data or the same quote repeated over several days, which is clearly
unrealistic. In general, this might also be caused by missing liquidity, but our data set
comprises the most liquidly traded series by definition of the ITRX index family. Again,
the geostatistical framework offers a nice solution to this problem: Executing Steps 0.-4.
as described in Section 3.2, knowing the distance between firms and the covariance resp.
correlation function of the data set, i.e. the considered market, one can easily interpolate
missing values using the kriging technique.

Comparison with existing methods

We compare the performance of the kriging imputation with the performance of copula-
based imputation methods proposed by Di Lascio et al. (2015) and Käärik and Käärik
(2009, 2010).
Käärik and Käärik (2009, 2010) assume that the dependence structure of the data set is
a Gaussian copula, and they impute the expected value given the observed data. Under
the assumption of a Gaussian field, this is very similar to simple kriging as described in
Section 3.2, the only difference being that in geostatistics, the copula is parameterized
by distance among the components.
Di Lascio et al. (2015) extend this ansatz to a broader selection of copula classes, and in-
stead of imputing the expected value of the conditional distribution given the observed
values, they impute a value drawn randomly from this conditional distribution. The
corresponding code is available in the R package CoImp.
In order to test our model, we deleted observations from our data sets using CoImp’s MCAR
(missing completely at random) function and impute these missing values by simple krig-
ing from fitted variograms using the different distances established in Section 3.3.1, as
well as by using the copula-based imputation techniques introduced above. To evaluate
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the different methods, we use the following performance figures:

MAPE =
1

M

M∑
k=1

∣∣∣∣∣zimp
k − zobs

k

zobs
k

∣∣∣∣∣ , RMSE =

√√√√ 1

M

M∑
k=1

(zimp
k − zobs

k )2,

MAE =
1

M

M∑
k=1

|zimp
k − zobs

k |,

where M is the number of missing observations and the superscripts ‘imp’ and ‘obs’ refer
to imputed and observed values, respectively. As already stated, MAPE has several
shortfalls, e.g. being undefined for zobs

k = 0. However, it is a popular performance
measure among practitioners and the performance measure of choice in Di Lascio et al.
(2015). The missing values with zobs

k = 0 (being less than 0.2% of all missing values)
are excluded in the reported MAPE values in Table 3.6.

In our use case, CoImp identifies the Gaussian copula with unspecified dependence struc-
ture as the best-fitting dependence structure among the supplied models and the Gaus-
sian copula with constant correlation structure as the second-best for both data sets, log
returns and AR(1)-GARCH(1,1) residuals. Supplied copula families were Gaussian with
constant correlation matrix, Gaussian, Clayton, Gumbel, Frank, and the t-copula with
degree of freedom fixed to 4. (Imputation was performed with CoImp V. 0.3-1, which
does not yet explicitly consider Gaussian copulas other than the constant correlation
variant or t copulas, but the package’s authors confirmed that the procedure works fine
for these.)
We find that CoImp performs worst in both data sets according to all performance mea-
sures. This, however, is most likely due to the fact that the randomly drawn imputed
value is not the optimal point forecast for any of the chosen performance measures, cf.
Remark 3.4.2 below. The imputed values from the geostatistical approach slightly out-
perform the imputed values from the Gaussian copula approach of Käärik and Käärik
(2009, 2010) according to all performance figures, with the forecasts based on dFRS,M and
dE performing best for the imputation of log returns, and dE and dFRS,Eucl. performing
best for the imputation of AR(1)-GARCH(1,1) residuals, cf. Table 3.6.

Remark 3.4.2 (On point forecasts)
As illustrated in Gneiting (2011), just comparing some point forecasts by some measures
of predictive accuracy is essentially comparing apples to oranges. He argues for either
disclosing the accuracy measure, so that forecasters can give the respective optimal
point forecast from their predictive distribution (e.g. the expected value for RMSE),
or explicitly asking for a certain functional of the predictive distribution as their point
forecast (e.g. the expected value). In this spirit, comparing the performance measures
of our forecast and the one made by CoImp has exactly this problem.
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MAPE RMSE MAE MAPE RMSE MAE
(ret) (ret) (ret) (resid) (resid) (resid)

Gauss. cop. (cc) 1.603722 0.728327 0.552596 2.502895 0.781716 0.600040
Gauss. cop. (un) 1.769959 0.730541 0.556732 2.537761 0.787327 0.603779
CoImp (cc) 2.304826 1.109832 0.887970 3.172209 1.150790 0.918862
CoImp (un) 2.389993 1.115477 0.894545 3.478642 1.143631 0.915300
dE 1.646298 0.723373 0.545422 2.617390 0.774820 0.592405
dFRS,Eucl. 1.603087 0.727450 0.551777 2.493205 0.780758 0.599383
dFRSC,Eucl. 1.604094 0.727512 0.551711 2.496190 0.780921 0.599430
dFR,M 1.626555 0.727595 0.552468 2.505752 0.780601 0.599547
dFRS,M 1.600154 0.723067 0.548492 2.520846 0.775817 0.595213

Table 3.6: Performance figures for the imputed CDS log returns and AR(1)-GARCH(1,1)
residuals from the Gaussian copula approach of Käärik and Käärik (2009,
2010), from CoImp, and from simple kriging using the different distances de-
fined in Section 3.3.1. The labels (cc) and (un) refer to the constant correla-
tion and unspecified dependence structure, respectively.

Discussion

The advantage of the distance-parameterized over the conventionally estimated Gaussian
copulas is only marginal for our data set. However, this might be improved substantially
for other financial distance measures, or in more diverse data sets.
Further, the assumption of a Gaussian field for financial data could be relaxed. The
natural next step would be to apply a spatial copula approach as described in Gräler
(2014), i.e. use a copula parameterized by distance to model the dependence structure,
which can be seen as an approximation to a more complicated field by means of copulas,
and also as an extension of the copula-based imputation methods presented in Di Lascio
et al. (2015); Käärik and Käärik (2009, 2010). A related ansatz extending vine copulas13

to incorporate spatial information is described in Erhardt et al. (2015).

3.5 Conclusion and outlook

We discussed the application of geostatistical modeling to financial data sets as well
as the necessary adjustments in higher-dimensional coordinate systems. In the light of
the presented results, we find that the geostatistical approach is a promising alternative
for the joint modeling of dependent credit spreads concerning the estimation of the
correlation matrix, especially considering the appealing properties of this approach in
the presence of missing data, and the imputation of missing data.
Future research may generalize our results in several ways: In the context of other
financial data sets, different distances could be explored. Considering the question of
(geometric) anisotropy in higher dimensions, the promising metric learning approaches

13A vine copula is a d-dimensional copula constructed solely from bivariate copulas. For an introduction
to vine copulas, see, e.g. Aas et al. (2009).
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3 Geostatistical modeling for financial data

could be more thoroughly examined. Transcending the sometimes unrealistic assumption
of a Gaussian field, one may work with spatially parameterized copulas to model the
dependence structure. Finally, space-time models may be explored to be able to consider
temporal and spatial dependence simultaneously.
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4 Pricing single-name CDS options in a
structural model with jumps

4.1 Motivation

CDS options (CDSO) grant their owner the right to enter into a credit default swap
(CDS) at prespecified spread. They can provide insurance against rising or falling CDS
spreads or allow for speculation on the evolution of CDS spreads. Further, CDSO offer
the possibility to extend one’s protection on an underlying instrument whose maturity
might be extended contrary to investors’ expectations, i.e. the instrument might not
be called as expected. Although quotes for single-name CDSO, i.e. CDS options with
a single firm as reference entity, are sparse nowadays, the valuation of these optionali-
ties merits study, as they are embedded in certain structured products like cancellable
single-name protection according to Martin (2012), and considering the increasing stan-
dardization of the underlying CDS contracts, a rise in trading volume of single-name
CDSO is well possible.

CDSO exist in the form of Payer and Receiver CDSO, which grant the right to enter
the CDS contract as protection buyer (hence paying coupons in exchange for default
protection) and protection seller, respectively. Several contractual specifications are
possible with regards to strike quotation and payment upon exercise, see Martin (2012),
with a strike quotation in running spread and payment in terms of an upfront and fixed
coupon being the current market standard. However, since the standard ISDA model
furnishes a one-to-one conversion formula1 for running spread to upfront+fixed coupon,
we consider CDSO with both strike quotation and payment upon exercise in terms of
running spread. Throughout this chapter, we focus exclusively on the pricing of Payer
CDSO; Receiver CDSO prices can be derived in a similar fashion.

4.1.1 Standard approaches to CDSO valuation

The topic of CDSO valuation has already been explored in several directions: Ap-
proaches favored by practitioners are those that lead to Black-type formulas, analogously
to equity options, see for example Schönbucher (2004) and Brigo (2005), who present

1The International Swaps and Derivatives Association (ISDA) supplies a standard model for CDS
valuation, cf. http://www.cdsmodel.com/cdsmodel/. See also Mai (2014) for a short description.
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4 Pricing single-name CDS options in a structural model with jumps

different approaches that yield this formula. For an exhaustive overview of the different
possible contractual terms of CDSO and Index CDSO2 and the corresponding valuation
methods with (or related to) Black-type formulas, see Martin (2012).
The main drawback of these approaches is the assumption that CDS spreads evolve ac-
cording to a lognormal diffusion process. Market observations show that this is strongly
questionable, as documented, e.g., by Cont and Kan (2011), who provide an extensive
overview of stylized properties of market-observed CDS spreads. To further illustrate
this, Figure 4.1 contrasts the logarithmic spread differences of several firms to a normal
distribution. One observes that a normal distribution for CDS spread changes seems to
underestimate the likelihood of large moves and to overestimate the probability of mod-
erate spread changes. Nevertheless, the Black-type formula may be used for a quotation
of implied volatilities of CDSO, analogously to equity options.
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Figure 4.1: Empirical densities of observed CDS spread changes for RWE (left) and
ADM (right) vs. the corresponding fitted normal densities with same mean
and standard deviation. Clearly, the fitted normal distributions underesti-
mate the probabilities of both large and very small moves, while overesti-
mating the probability of moderate spread changes. (Source: Bloomberg.)

Apart from Black-type formulas, using intensity-based models3 for the valuation of
CDSO has dominated the academic literature so far, cf. e.g., Brigo and El-Bachir
(2010), who present a quasi-analytic formula for CDSO in a shifted square root jump
diffusion intensity model, and Bielecki et al. (2011a), who consider valuation and hedging
of CDSO in a CIR default intensity model.

2An Index CDSO grants the right to enter into an Index CDS. These options are regularly traded in
the market.

3Intensity-based models are a type of credit models where the default time is modeled as an exogenous
random variable via a stochastic hazard rate.
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4.1.2 Alternative approach via structural credit models

Choosing to model the spread evolution directly bereaves us of the opportunity to inte-
grate CDSO in the bigger picture of a firm’s capital structure. An alternative approach
for the pricing of CDSO, which has mainly been overlooked in the literature, employs
so-called structural (credit-equity) models. The class of structural models allows for uni-
fied credit and equity pricing, which as byproduct generates CDS spread dynamics and
thus allows us to price CDSO alongside with not only CDS but also equity derivatives.

In the structural framework, it is assumed that the value of a firm’s assets follows some
stochastic process. All financial instruments related to this firm are then viewed as
derivatives on the firm value. The time of default is typically defined as the first-passage
time below a prespecified barrier. Early approaches include the seminal references Mer-
ton (1974) and Black and Cox (1976), where the firm value is assumed to follow a
geometric Brownian motion. This assumption leads to predictable default times, an un-
desirable feature that results in a CDS curve that vanishes at the short end. To generate
realistic default times, credit curves, and dynamics for the securities, jumps are added
to the firm value process, see for example Zhou (2001) and Chen and Kou (2009). For
an overview of structural credit-equity models, see also Hüttner (2014).

The main advantage of structural models is their firm economic interpretation, which,
for models with realistic dynamics, typically comes at the cost of more complicated
pricing formulas and calibration routines. The fact that they can handle any type of
firm-related security makes them a powerful tool, e.g., for the pricing of hybrid securities
or for detecting capital structure arbitrage opportunities.

To date, Jönsson and Schoutens (2008) is the only reference incorporating structural
models for the valuation of CDSO. They consider firm value models driven by pure jump
Lévy processes, which result in unrealistic CDS spread dynamics following a sawtooth
trajectory, see Figure 4.2.

In the light of the drawbacks of the presented approaches, in this chapter we propose to
use the structural model introduced in Chen and Kou (2009) for the valuation of CDSO.
There, the firm value process follows a jump-diffusion process with double-exponential
jumps. The major benefits of this model are that it supplies analytic formulas for
the CDS price and spread, which facilitates CDSO pricing, and that it provides quite
realistic dynamics for the CDS spread evolution, see Figure 4.2 for a comparison with
real-world spread series and an exemplary spread series generated by one of Jönsson and
Schoutens (2008)’s pure jump models.

For the valuation of CDSO, no analytical formulas are attainable, and one has to resort
to Monte Carlo pricing, as the CDS price is a complicated function of the firm value.
However, due to the fact that usually CDSO are European-style, we can exploit an effi-
cient Monte Carlo algorithm based on Brownian bridges, see Metwally and Atiya (2002)
and Ruf and Scherer (2011), for our purposes.
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Figure 4.2: CDS spread time series of RWE (Source: Bloomberg) (top) vs exemplary
spread paths generated in the Chen–Kou model (middle) and an exem-
plary spread path of the shifted Gamma pure jump model of Jönsson and
Schoutens (2008) (bottom).

Most of the presented results are joint work with Matthias Scherer and have been pub-
lished in the article Hüttner and Scherer (2016). The remainder of this chapter aims at
a more detailed discussion and is structured as follows: Section 4.2 reviews the model-
free valuation of CDS and states model-free valuation formulas for CDSO. Section 4.3
introduces the structural model by Chen and Kou (2009) and explains our Monte Carlo
algorithm, and Section 4.4 conducts a sensitivity analysis of the CDSO price with re-
spect to the model parameters and calculates model prices for CDSO with the presented
algorithm in a real-world example.
The presented algorithm can be readily adapted to price other European optionalities
in cases where the Chen–Kou model supplies an analytical pricing formula for the un-
derlying asset. In Section 4.5 this is done for the valuation of callable bonds with one
call date, which are closely linked to the concept of extension risk as studied, e.g., in
De Spiegeleer and Schoutens (2014).
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4.2 Model-free valuation of CDS options

In the following, we consider a (European-style Payer) CDSO with maturity T̂ , evaluated
at a time t ∈ [0, T̂ ], as illustrated in Figure 4.3. At this time, one may enter into a CDS
with maturity T at a prespecified strike running spread sK .

0 t T̂ T
τ(ω)

Figure 4.3: Timeline: T̂ denotes the inception of the CDS contract, T its maturity. The
time point t illustrates the valuation date of the CDSO, and the default may
happen at a random time τ > t.

First, we review the valuation of a CDS contract as sketched in the introduction in
greater detail. A CDS is essentially an insurance contract between two parties against a
credit event of a reference entity. Whereas in the market different credit events such as
failure to pay or debt restructuring may trigger the compensation payment of a CDS, we
restrict our modeling to a default being the only possible credit event. The random time
where the reference entity defaults on its debt is denoted by τ . The protection buyer
has to pay a standardized premium c, typically 100 or 500 bps, up to maturity of the
contract or default, whichever comes earlier. In case of a default during the lifetime of the
contract, they are compensated for losses by the protection seller. Premium payments
are usually made quarterly in arrears, and the remaining difference between the two
payment streams, the so-called upfront, has to be paid at inception of the contract, cf.
Figure 4.4.

Protection buyer Protection seller

premium payments

default compensation

Figure 4.4: Schematic display of CDS payment streams. Depending on the sign of the
difference of the two payment streams, the upfront has to be paid by the
protection buyer or seller.
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To ease calculations, we consider a simplified version of these payment streams based on
continuous spread payments. The expected discounted values of the payments made by
the protection buyer, the premium leg (EDPL), and the protection seller, the default
leg (EDDL), are then given as follows:

EDPLT̂ ,T (t) = E
[∫ T

T̂
e−r(s−t)1{τ>s}ds

∣∣∣∣Ft] ,
EDDLT̂ ,T (t) = (1−R)E

[
e−r(τ−t)1{T̂<τ≤T}

∣∣∣Ft] , (4.1)

where R ∈ [0, 1] denotes the recovery rate of the reference entity4 and is assumed to
be deterministic, and r 6= 0 denotes the risk-free interest rate. Note that t ∈ [0, T̂ ], so
the forward values of the legs are included in the above definition. In case of τ ≤ T̂
the CDSO expires worthless. The value of a CDS at time T̂ from the viewpoint of the
protection buyer is then

CDST̂ ,T (t = T̂ , c) = EDDLT̂ ,T (T̂ )− c · EDPLT̂ ,T (T̂ ). (4.2)

CDS are often quoted in terms of the so-called running spread sT̂ ,T (t = T̂ ), which is the
premium level c for which the contract has zero value at inception:

sT̂ ,T (T̂ ) =
EDDLT̂ ,T (T̂ )

EDPLT̂ ,T (T̂ )
=

r(1−R)E[e−r(τ−T̂ )1{T̂<τ≤T}|FT̂ ]

1− e−r(T−T̂ )Q(τ > T |FT̂ )− E[e−r(τ−T̂ )1{T̂<τ≤T}|FT̂ ]
,

(4.3)
which is obtained from (4.1) by integration by parts.

CDSO grant the right to enter into a CDS contract at some future time point T̂ , either
as protection buyer (payer option) or as protection seller (receiver option). Single-name
products are sparsely traded nowadays, but were advancing in volume before the crisis.
Martin (2012) predicts a rising volume in these contracts in post-crisis times, considering
the fact that the credit derivatives market is more regulated nowadays. CDSO are mostly
traded European-style. As stated above, we consider options with the strike specified in
terms of a running spread sK where one exercises into a CDS with running spread sK and
no initial payment, which makes calculations easier to interpret than in the real-world
setup where the underlying CDS is traded with fixed coupon and corresponding upfront
payment5. In the risk-neutral valuation approach, the formula for a payer CDSO’s value
at time t ≤ T̂ with expiry T̂ and CDS maturity T is

CDSOt,T̂ ,T (sK) = E
[
e−r(T̂−t)1{τ>T̂}CDST̂ ,T (T̂ , sK)+

∣∣∣Ft]
= E

[
e−r(T̂−t)1{τ>T̂}EDPLT̂ ,T (T̂ )(sT̂ ,T (T̂ )− sK)+

∣∣∣Ft] , (4.4)

4The recovery rate is the remaining value at default of a bond with nominal 1. For the sake of simplicity,
we assume that every bond of a reference entity has the same recovery rate, and any bond of the
reference entity may be delivered into the CDS upon default.

5A version of the CDSO payoff which takes underlying CDS with upfront/fixed coupon into account is
(uT̂ ,T (sT̂ ,T ) − uK(sK))+, see also Martin (2012). Using the standard ISDA model, the two payoffs
can be converted into each other.
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where expectations are taken under a risk-neutral measure that is calibrated, e.g., to
CDS or bond markets.

4.3 Valuation of CDS options in the Chen–Kou model

In the structural approach to credit risk, the evolution of a firm’s value is modeled by a
stochastic process V = {Vs}s≥0. All financial instruments related to the firm are then
interpreted as derivatives on the firm value. We use the model introduced by Chen
and Kou (2009) for the valuation of CDS options, as it offers a good tradeoff between
realistic price dynamics for the CDS spread and analytical tractability.

The firm value process is modeled as follows:

Vs = V0e
Xs , Xs = µs+ σWs +

Ns∑
k=1

Yk, (4.5)

µ = r − δ − σ2

2
− λ

(
pξ1

ξ1 − 1
+

(1− p)ξ2

ξ2 + 1
− 1

)
,

where r is the risk-free interest rate (assumed to be flat in order to achieve a quasi-closed
form expression for the CDS price), δ refers to the firm’s payout rate to its investors,
σ > 0 is the volatility of the diffusion component, W = {Ws}s≥0 is a standard Brownian
motion, and N = {Ns}s≥0 is a Poisson process with intensity λ ≥ 0. The jump sizes
{Yk}k∈N, are double-exponentially distributed, i.e. with density

fY (x) = pξ1e
−ξ1x1{x≥0} + (1− p)ξ2e

ξ2x1{x<0}, p ∈ [0, 1], ξ1 > 1, ξ2 > 0,

where p and 1/ξi, i ∈ {1, 2}, control the probability of an upward jump and the average
jump sizes.
The default time τ is the first passage time below the barrier VB = κV0, 0 < κ < 1, after
the valuation date t:

τ := inf {s ≥ t : Vs ≤ VB} .

A semi-explicit formula for the spot CDS price can be obtained: From (4.3) we see
that Q(τ > s), s ≥ T̂ , and E[e−rτ1{T̂<τ≤T}] are the only expressions required for CDSO

valuation. The Laplace transforms (denoted LT hereafter) of these quantities are known
in closed form, see Kou and Wang (2003):

LT [Q(τ > s)](u) =
1

u

(
1− E

[
e−uτ

])
=

1

u

(
1− wu1κβ

u
1 − wu2κβ

u
2

)
, (4.6)

LT [E[e−rτ1{τ≤T}]](u) =
1

u

(
wr+u1 κβ

r+u
1 + wr+u2 κβ

r+u
2

)
, (4.7)

wu1 =
(ξ2 − βu1 )βu2
ξ2(βu2 − βu1 )

, wu2 = 1− wu1 .

119
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Without loss of generality we stated the valuation of the Laplace transforms for T̂ = 0,
as this is just a simple time shift. The quantities βu1 , β

u
2 are the two negative roots of

the equation G(β) = u, where G(·) is defined via

E[eβXs ] = eG(β)s, G(β) = µβ +
σ2β2

2
+ λ

(
pξ1

ξ1 − β
+

(1− p)ξ2

ξ2 + β
− 1

)
.

Fast computation of these roots is possible, as this problem corresponds to computing
the roots of a quartic equation, cf. Kou and Wang (2003); Kou et al. (2005).

Assuming the model parameters σ, λ, p, ξ1, and ξ2 to be fixed at inception of the CDSO,
the only unknown variable in the calculation of CDST̂ ,T (T̂ ) in (4.4) is κ(T̂ ) = VB/VT̂ ,
i.e. VT̂ . Thus, for the pricing of CDSO required is the joint distribution of VT̂ and the
running minimum of the firm value process, mint≤s≤T̂ Vs.

Kou and Wang (2003) state a semi-explicit but numerically challenging formula for
the Laplace transform of the joint survival probability required for CDSO pricing, but
testing with various parameter sets showed that it is highly unstable in certain cases.
Hence, we opt to implement an efficient Monte Carlo simulation.

To apply a Monte Carlo pricing approach, one needs to model paths of V over the
time interval [t, T̂ ] and to check if the default barrier VB is crossed. In this case the
option expires worthless. If the firm survives up to time T̂ , the value of the CDS can be
calculated as a function of VT̂ .
As our chosen firm value process follows a lognormal diffusion between the jump times,
we can work with a log-transformed version of our problem:

Xs = ln

(
Vs
Vt

)
, d = ln

(
VB
Vt

)
,

the default time τ remains the same. Now we can exploit the fact that the probability of
a Brownian bridge between two fixed endpoints crossing some fixed barrier is explicitly
known, see Metwally and Atiya (2002):

Q
(

min
s∈[ti−1,ti]

Xs > d

∣∣∣∣Xti−1 , Xti−

)
= 1{

min
{
Xti−1 ,Xti−

}
>d

}
(

1− e
−2(X

ti
−−d)(Xti−1

−d)

σ2(ti−ti−1)

)
.

We reformulate the CDSO valuation formula (4.4) by conditioning on the number, lo-
cation, and size of jumps in [t, T̂ ], which determine the relevant quantity for the CDS
valuation VT̂ :

CDSOt,T̂ ,T (sK) = e−r(T̂−t)

· E
[
Q(τ > T̂ |NT̂ , {Yk}k=1,...,NT̂

, jump times)CDST̂ ,T (T̂ , sK ;VT̂ )+
]
,

which leaves us with the task of checking for default at the jump times and on the
Brownian bridges between two consecutive jumps. This enables us to adapt the Monte
Carlo algorithm presented in Metwally and Atiya (2002); Ruf and Scherer (2011).
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Algorithm 4.3.1 (Valuation of CDSO)
For each of the independent Monte Carlo runs j ∈ {1, . . . , n}:

1. Simulate the number of jumps in [t, T̂ ] of the firm value process, i.e.

N := NT̂ −Nt ∼ Poi
(
λ(T̂ − t)

)
,

the jump times t1, . . . , tN ∈ [t, T̂ ],

(t1, . . . , tN ) ∼ Sort
(
U([t, T̂ ], 1, N)

)
, 6

and the jump sizes Xti −Xti− ∼ DEXP(p, ξ1, ξ2).

2. Extend the jump times to {t0 = t, t1, . . . , tN , tN+1 = T̂} and simulate the Brownian
increments between two consecutive time points in this set,

Xti+1
− −Xti ∼ N

(
µ(ti+1 − ti), σ2(ti+1 − ti)

)
,

and calculate Xti+1
− , Xti+1 .

3. Check if the barrier has been crossed at any of the {Xti , Xti−}i=0,...N+1. If so, set
the payoff for this run to zero, as the CDSO expires worthless in case of default
previous to T̂ .

4. If the barrier has not been crossed, calculate the conditional survival probability
in [t, T̂ ], i.e.

CSPj =

N∏
i=0

Q
(

min
ti≤s≤ti+1

Xs > ln (VB/V0)

∣∣∣∣Xti , Xti+1
−

)
.

Further calculate VT̂ = Vt exp{XT̂ } and CDST̂ ,T (T̂ , sK ;VT̂ ), and set the payoff for

this run to CSPj · CDST̂ ,T (T̂ , sK ;VT̂ ).

Finally, CDSOt,T̂ ,T (sK) ∼= 1
n

∑n
j=1 payoffj .

The algorithm can easily be applied to other European-style optionalities, for example
to a callable bond with a single call date. This, however, is an unlikely feature of
callable bonds; most of these instruments have several call dates or whole call periods,
rendering the embedded option Bermudan- or American-style. These more complicated
optionalities require themselves a numerical pricing approach which would have to be
included within the Monte Carlo algorithm. Jönsson and Schoutens (2008) argue that,
once an efficient method of generating paths of the underlying asset is available (i.e.
CDS spreads in the context of CDSO), similar techniques as in the equity derivatives
context can be applied, and propose to use least squares Monte Carlo techniques for the
evaluation of American or Bermudan optionalities. Even though from Steps 1.-3., an

6See Sato (2007, Proposition 3.4) for a proof.
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efficient way of generating paths of the firm value process V can be deduced, translating
this to a spread path is computationally costly due to the involved Laplace inversions
(depending on the number of Monte Carlo runs and nodes per path). Jönsson and
Schoutens (2008) propose to speed up the pricing routine by precalculating the price of
the underlying for a fine grid of possible firm values, simulating firm value paths, and
interpolating on the precalculated grid to obtain paths for the underlying value.

The assessment of extension risk, however, which is closely related to the case of a
callable bond with one call date, can be tackled with a simple modification of the
presented algorithm, see Section 4.5.

4.4 Sensitivity analysis and an intuition for market prices

To better understand the behavior of CDSO prices in our model, we conduct a sensitivity
analysis of the CDSO price with respect to the model’s input parameters. The initial
parameter choice is displayed in Table4.1.

V0 κ r δ σ λ p ξ1 ξ2 R T̂ T sK

100 0.7 0.01 0 0.3 0.7 0.5 4 4 0.4 1 6 0.0233

Table 4.1: Base case model parameters for our example.

Sensitivity with respect to the diffusion parameters

As a first step, we consider the pure diffusion-based structural model, i.e. λ = 0. The
sensitivity of the CDSO price with respect to changes in interest rate, diffusion volatility,
option maturity, CDS maturity, and default barrier is displayed in Figure 4.5. Looking
at the graph of CDSO price vs. CDS lifetime, one notes that this is merely a forward
shift of the credit curve. The CDSO price is falling in the interest rate, but hump-
shaped in the diffusion volatility. Most notably, the sensitivity of the CDSO price with
respect to the option maturity depends on the values of σ and κ: For small values of the
diffusion volatility and default barrier, it increases in T̂ , as in both cases default before
T̂ is unlikely. For higher values of σ or κ, it becomes increasingly likely that the option
expires worthless, therefore the CDSO price decreases in T̂ in these cases.

Sensitivity with respect to the jump parameters

Including jumps, CDSO prices are found to react similarly to changes in diffusion volatil-
ity and interest rate as in the diffusion-based model. The sensitivity with respect to the

122



4 Pricing single-name CDS options in a structural model with jumps

0 0.05 0.1 0.15 0.2
interest rate r

0

0.05

0.1

0.15

0.2

0.25
C

D
S

O
 p

ric
e

5 = 0.7
5 = 0.5
5 = 0.2

0 0.2 0.4 0.6 0.8
di,usion volatility <

0

0.1

0.2

0.3

0.4

C
D

S
O

 p
ric

e

5 = 0.7
5 = 0.5
5 = 0.2

0 1 2 3 4 5
Option expiry T̂ (years)

0

0.1

0.2

0.3

0.4

C
D

S
O

 p
ric

e

5 = 0.7
5 = 0.5
5 = 0.2

1 2 3 4 5
CDS lifetime T ! T̂ (years)

0

0.05

0.1

0.15

0.2

0.25

C
D

S
O

 p
ric

e

5 = 0.7
5 = 0.5
5 = 0.2

0 0.05 0.1 0.15 0.2
interest rate r

0

0.05

0.1

0.15

0.2

0.25

C
D

S
O

 p
ric

e

< = 0.5
< = 0.3
< = 0.1

0 1 2 3 4 5
Option expiry T̂ (years)

0

0.1

0.2

0.3

0.4

0.5

C
D

S
O

 p
ric

e

< = 0.5
< = 0.3
< = 0.1

1 2 3 4 5
CDS lifetime T ! T̂ (years)

0

0.05

0.1

0.15

0.2

0.25

C
D

S
O

 p
ric

e

< = 0.5
< = 0.3
< = 0.1

0 0.2 0.4 0.6 0.8 1
default barrier 5

0

0.1

0.2

0.3

0.4

C
D

S
O

 p
ric

e

< = 0.5
< = 0.3
< = 0.1

Figure 4.5: Sensitivity analysis of the CDSO price in a pure diffusion model with respect
to the interest rate r, the diffusion volatility σ, the option and CDS maturity,
and the default barrier parameter κ. Base parameters are given in Table 4.1.

jump parameters is visualized in Figure 4.6. One observes that the CDSO price re-
acts non-linear to changes in the jump parameters: it displays concavity in the jump
parameters λ and p, and even changes curvature in ξ1 and ξ2.
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Figure 4.6: Sensitivity analysis of the CDSO price in the Chen–Kou model with respect
to the jump parameters. The behavior with respect to r and σ is similar as
in the pure diffusion case.

CDSO prices in a market example

In the following we briefly present an example with real-world data (source: Bloomberg),
to give an intuition for CDSO prices in the market.
The Chen–Kou model is calibrated to the values of equity and debt (for which explicit
formulas are known, see Chen and Kou (2009)) and the CDS curve, yielding the param-
eter set given in Table 4.2.

Figure 4.7 shows the fit of the model-implied credit curve to real-world CDS data.
The model explains observed CDS spreads well for maturities 0.5 to 7 years, but has
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4 Pricing single-name CDS options in a structural model with jumps

E(V0) Shares D(V0) B c R r δ

3.2962 · 109 3.0296 · 108 5.1764 · 109 5.3530 · 109 0.0732 0.4 0.01 0.0462

V0 κ σ λ p ξ1 ξ2

1.4376 · 1010 0.7124 0.095 0.1 0.25 4 4

Table 4.2: Market observed data and parameter set obtained from a calibration to the
CDS curve, debt value, and equity value. E(V0) and D(V0) denote the current
value of equity and debt as observed on valuation date, respectively, B is the
total nominal outstanding in debt, and c denotes the average coupon rate
of the firm’s bonds, weighted according to time to maturity and outstanding
nominal. The interest rate r is chosen to reflect the current market situation,
and for the payout ratio δ the proxy cB/(E(V0) + D(V0)) is taken. The
remaining parameters except V0 are calibrated to the CDS curve. Finally, V0

is set so that the model equity value matches the observed market cap E0.

difficulties in explaining the 10-year CDS spread. The debt value associated with the
calibrated parameters is about 1.01 % (52 mn $) higher than the debt value from bond
prices. This is an acceptable error, as Bloomberg quotes for the total outstanding debt
are 28 mn $ higher than the nominal of the debt issues, indicating the company has some
debt that is not traded in the market.
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Figure 4.7: Model fit to observed credit curve.

Figure 4.8 shows the prices for a CDSO with expiry in T̂ = 1 year and a lifetime of the
underlying CDS of 5 years for different strikes centered around the quote of the 5y spot
CDS.
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Figure 4.8: Model-generated CDSO prices for T̂ = 1 and T = 6.

4.5 Other optionalities and extension risk

As stated above, Algorithm 4.3.1 can easily be adapted to other European optionalities,
as long as the Chen–Kou model supplies an analytical formula for the underlying asset.

Consider, for example, a callable bond7 with maturity T and a single call date T̂ : It
is well known that the value of a callable bond can be decomposed into the value of a
similar bond without call feature minus the price of a call option on the bond. The price
of a coupon-bond with coupon rate c is given as follows:

Bt,T (c) = E
[
e−r(T−t)1{τ>T} + e−r(τ−t)R1{t<τ≤T}

+
∑

t<ti≤T
(ti −max{ti−1, t})ce−r(ti−t)1{τ>ti}

∣∣∣∣∣∣Ft


= e−r(T−t)Q(τ > T |Ft) +RE[e−r(τ−t)1{t<τ≤T}|Ft]

+
∑

t<ti≤T
(ti −max{ti−1, t})ce−r(ti−t)Q(τ > ti|Ft),

where the ti’s denote the coupon payment dates. This formula relies again on the
availability of an explicit expression for the survival probability, thus in the Chen–
Kou model a quasi-analytic formula depending on Vt and the process parameters is
available. With this quasi-analytic formula for the underlying, the embedded European
option in a callable bond with a single call date can easily be evaluated with the above
algorithm. As already stated, a single call date is a rather unrealistic feature for callable
bonds. However, related to the case of callable bonds with a single call date is the

7Note that Brigo (2005) already established a link between CDSO and callable defaultable floaters in
an intensity framework.
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problem of extension risk, which was analyzed in the context of contingent convertibles
(CoCos) by De Spiegeleer and Schoutens (2014). Basically, it refers to potential losses
of bondholders that occur if a call feature is not exercised as expected, so the problem is
not limited to contingent convertibles but is present in any callable bond. A prominent
example is the 3.875 % January 2014 bond issued by Deutsche Bank in January 2004
(DE0003933511), which was commonly expected to be called at its first call date in
2009. Due to deteriorating market conditions, Deutsche Bank decided against calling it
– a decision that inflicted a considerable loss on investors assuming a call at par to take
place. See De Spiegeleer and Schoutens (2014) for more details on this example.

Newly issued bonds with call features may display a switch from fixed to floating rate
coupons after the first call date. This is often true for aforementioned CoCos. Previously,
there has often been a coupon step-up at the beginning of a call period, thus punishing
issuers who did not redeem their bonds at the first possibility. Regulators forbade this
practice of call incentives, which gave rise to this fixed-to-float switching practice: The
floating rate coupon is some reference rate plus a fixed spread determined at contract
inception, chosen such that at inception, the floating plus fixed spread coupon equals
the fixed coupon. This way, the argument of call incentives is bypassed without actually
removing it, as due to changes in the reference rate an incentive to call could build
up until the first call date. Thus, the market still might consider the first call date
as the “actual maturity date” of the bond, likewise in the example presented in the
introduction. This illustrates the importance of assessing the probability of an extension
event. Further, it suffices to only consider the bond’s first call date, thus placing us
directly in the case of a bond with one single call date.

We consider the problem of a firm that has issued a callable bond with maturity T and
(first) call date T̂ . At T̂ , the firm can either redeem the bond and replace it with a new
bond at market conditions, or keep the original bond running. Assuming the redemption
price is par and, to completely avoid funding issues, the new bond is issued at par, the
remaining free variable in the bond price formula is the coupon. Therefore we resort
to comparing the step-up coupon rate of the original bond with the coupon rate of the

new bond determined via the root search BT̂ ,T (c)
!

= 1.

To evaluate extension risk, we calculate the joint probability of survival and extension
PSE, as the coupon of the new bond is only defined in case of survival up to T̂ .

Algorithm 4.5.1 (Joint probability of survival and extension)
For each run j ∈ {1, . . . , n}:

1. Simulate the number of jumps in [t, T̂ ] of the firm value process, i.e.

N := NT̂ −Nt ∼ Poi
(
λ(T̂ − t),

)
,

the jump times t1, . . . , tN ∈ [t, T̂ ],

(t1, . . . , tN ) ∼ Sort
(
U([t, T̂ ], 1, N)

)
,

and the jump sizes Xti −Xti− ∼ DEXP(p, ξ1, ξ2).
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2. Extend the jump times to {t0 = t, t1, . . . , tN , tN+1 = T̂} and simulate the Brownian
increments between two consecutive time points in this set,

Xti+1
− −Xti ∼ N

(
µ(ti+1 − ti), σ2(ti+1 − ti)

)
,

and calculate Xti+1
− , Xti+1 .

3. Check if the barrier has been crossed at any of the {Xti , Xti−}i=0,...,N+1. If so, set
PSEj = 0 and continue.

4. If the barrier has not been crossed, calculate the conditional survival probability
up to T̂ , i.e.

CSPj =
N∏
i=0

Q
(

min
ti≤s≤ti+1

Xs > ln (VB/V0)

∣∣∣∣Xti , Xti+1
−

)
.

Further calculate VT̂ = Vt exp{XT̂ } and cnew from BT̂ ,T (cnew) = 1.

5. Check if cnew > ccall. If so, set PSEj = CSPj , otherwise set PSEj = 0.

Finally, PSE ∼= 1
n

∑n
j=1 PSEj .

This version is simplified to consider fixed coupons. For the case of floating rate coupons
of the form rref +x, with rref a known reference interest rate and x fixed premium, just
replace c = rref + x in the above formulas and solve for x.

4.6 Conclusion and outlook

We illustrated the benefits and drawbacks of using a structural default model with jumps
for the valuation of CDSO and related optionalities. Regarding CDSO, the main benefit
of the class of structural models is that they open a door to the equity side of a firms
balance sheet, providing the possibility to consider also equity instruments for hedging
purposes, where so far only standard CDS have been considered (see Bielecki et al.
(2011a)).

Considering further the choice of model, previous literature (e.g. Brigo (2005)) already
found that structural models built only on diffusion processes might not be appropri-
ate for the valuation of optionalities in defaultable assets, as default times are pre-
dictable. We further argue against the use of pure jump processes as used in Jönsson
and Schoutens (2008), as they are not able to supply realistic dynamics for the CDS
spread evolution. The jump-diffusion structural model introduced in Chen and Kou
(2009) is identified to be an interesting choice of model in this context, as is supplies re-
alistic CDS credit curves as well as realistic dynamics for the evolution of credit spreads.
Additionally, it is to a large extent analytically tractable and offers quasi-closed formu-
las for survival probabilities and CDS prices. Unfortunately, employing the Chen–Kou
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model introduces the drawback of a flat interest rate curve, as analytical pricing formu-
las rely on a fast routine for Laplace inversion which cannot deal with deterministic or
stochastic rates.

An efficient Monte Carlo algorithm for the valuation of CDS options, adapted from
Metwally and Atiya (2002); Ruf and Scherer (2011), was presented. It can be easily
modified for European options on other assets for which the Chen–Kou model supplies
an explicit pricing formula. This includes callable bonds with only one call date, which
can also be exploited for the assessment of extension risk, where it makes sense to
consider only the next call date of the corresponding bond.

For other option types, the presented approach is computationally costly: American or
Bermudan options, as often embedded in callable bonds, require themselves numerical
pricing routines that would slow down the Monte Carlo algorithm considerably. A
closed-form pricing approach, based on the joint distribution of the process’s value at
option expiry and its running minimum, would be desirable in this context. Although
Kou and Wang (2003) state an analytical formula of the Laplace transform of this
distribution, the derivation of quasi-analytical formulas (using Laplace inversion) fails
due to numerical instabilities related to the large parameter set in the Chen–Kou model
and the complicated form of this Laplace transform.
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5 Analytical lower bound for the price of a
convertible bond

5.1 Motivation

This chapter focuses on analytical approximations for the price of a convertible bond, a
hybrid debt instrument. In addition to the features of a regular bond, i.e. a claim against
the issuing company that guarantees contractually specified coupon and redemption cash
flows, provided the issuing company is solvent, a convertible bond provides its holder
with the right to convert the bond into shares of the company in a prespecified period.
The conversion ratio, the number of shares to be received per unit of bond nominal,
is also prespecified in the bond prospectus. Typically, this ratio is increased in case
of dividend payments, to prevent a dilution of convertible bond holders. Further, a
convertible bond often includes a so-called soft call covenant, which protects the issuing
company from having to give away its shares in a scenario when it is doing extremely
well. Technically, the bond prospectus specifies a trigger level K, acting like a cap on
parity. If the parity of the convertible bond, the current share price multiplied with the
conversion ratio, breaches the trigger level, the issuer has the right to call the bond at
par. A typical trigger level in the market equals K = 1.3 units of bond nominal, thus a
rational holder of the bond will opt for conversion when parity breaches the trigger level
in order to avoid a loss of (K − 1) times the bond nominal. Hence, technically a soft
call right is a right to enforce conversion rather than a right to call the bond at par. In
rare cases, also regular put or call rights of the issuer may be present.

Both the involved American options and the necessity to simultaneously price credit-
and equity-components make the pricing of convertible bonds a challenging task. Early
approaches are based on a decomposition of the convertible bond into a regular bond and
an equity call option. The next step in developing an accurate methodology for convert-
ible bond pricing is Tsiveriotis and Fernandes (1998): Their model constitutes probably
the first pricing approach that jointly takes into account credit- and equity-components.
However, it still fails to respect important fundamental relationships between credit and
equity, such as the advent of a severe drawdown of the stock price in case the company
files for bankruptcy. The seemingly most popular approach among practitioners nowa-
days is based on so-called defaultable Markov diffusion models, also known as 1.5-factor
models. The idea is to model two stochastic driving factors, namely the stock price and
the default intensity, but express the latter as a function of the former, so that there is es-
sentially only one factor left. Mathematically, the driving stock price diffusion is sent to
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a cemetery state (representing bankruptcy) once the integrated default intensity process
breaches an exponential trigger level, which creates a feedback effect from the default in-
tensity to the stock price diffusion. Evaluation algorithms for convertible bonds in these
models, adapted from the PDE techniques known from the equity derivatives literature
to the setup of a convertible bond, are presented in Ayache et al. (2003); Andersen and
Buffum (2004). The series of papers Bielecki et al. (2008a,b, 2009, 2011b) provides a
very detailed and technical overview on these probabilistic models and provides rigor-
ous justification for the use of aforesaid PDE techniques. Prominent (semi-)parametric
examples of such models include Carr and Linetsky (2006); Linetsky (2006); Carr and
Madan (2010).

Due to the involved American optionalities, no analytical pricing formulas are avail-
able, and convertible bond pricing routines necessarily involve time-consuming numer-
ical techniques such as finite differences for the numerical solution of a pricing PDE
or tree approximations of the underlying stock price diffusion. We draw upon an idea
well-known in the context of equity derivatives, namely the decomposition of the price of
an American option into the price of a European option plus an early exercise premium
(EEP), cf. Detemple and Tian (2002); Broadie and Detemple (2004). Often, the EEP is
relatively small compared to the option price, so that the European option price serves
as a good approximation of the price. For instance, the EEP is exactly zero in cases
where early option exercise is well-known to be suboptimal, e.g. for an equity call op-
tion in case of no dividends and non-negative interest rates, or for an equity put option
in case of non-positive, risk-free interest rates. Analogously, the price of a convertible
bond can be decomposed into the sum of a convertible bond with European conversion
option at maturity and an early conversion premium (ECP), which is often quite small
for similar reasons as in the equity derivatives case. Consequently, our derivation of
a lower bound for the convertible bond price is based on the idea of ‘Europeanizing’
the American conversion option of the holder.1 We show, exemplarily in a special case
of defaultable Markov diffusion model of Carr and Linetsky (2006), that the price of
a convertible bond with such a European conversion option can be stated in closed
form in 1.5-factor models that allow for analytical expressions for survival probabilities
and European equity options in the case that the bond does not include a soft call
covenant. When a soft call right for the issuer is present, an analytical price formula for
the convertible bond with European conversion option can still be computed in a sim-
ple credit-equity model, constituting a limiting case of the considered 1.5-factor model,
where the default time of the issuing company is modeled independently from the dif-
fusion driving the stock price. This model, although lacking important properties of
the more advance defaultable Markov diffusions, may still be useful in a pre-calibration
routine of a more advanced model or when screening a large number of convertible bonds
for investment purposes, due to its computational efficiency compared to the standard
pricing routines.

1The rarely present regular call rights will be ignored hereafter due to a lack of relevance, and regular
put rights will be taken into account in a simplified manner, cf. Remark 5.2.1 below.
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The results presented in this chapter are based on joint work with Jan-Frederik Mai. A
simplified discussion, limited to convertible bonds with matching bond and stock cur-
rency and soft call right executable from the valuation day on, is published in Hüttner
and Mai (2018). This chapter builds upon these results, giving a more detailed presen-
tation as well as presenting extensions of the formulas to convertible bonds where the
stock is denominated in a different currency and the soft call may only be executed after
a contractually given future date, two cases which are not uncommon in the market, as
our real-world examples show.

The remainder of this chapter is organized as follows: We present the analytical proxy
formulas for the price of a convertible bond with and without soft call within the simple
credit-equity model, and without soft call in the more advanced defaultable Markov
diffusion model of Carr and Linetsky (2006) in Section 5.2. In Section 5.3, the sharpness
of the derived lower bounds is illustrated for real-world convertible bonds, one with and
one without soft call. Section 5.4 summarizes and concludes.

5.2 Analytical pricing formulas

In the following, we first clarify the general assumptions made concerning bond covenants
as well as the model cosmos introduced in Section 5.2.1, and derive a model-free lower
bound based on ‘Europeanizing’ the conversion option, valid under these assumptions,
in Section 5.2.2. As mentioned above, we derive the lower bound for convertible bonds
with and without soft call exemplarily in two models, a special case of the jump-to-
default-extended constant elasticity of variance (JDCEV ) 1.5-factor model of Carr and
Linetsky (2006), and a limiting case thereof, referred to as the simple credit-equity model
in the sequel. These models are introduced in Section 5.2.3, and the lower bounds for the
cases without and with soft call are derived in Sections 5.2.4 and 5.2.5, respectively.

5.2.1 General modeling assumptions

We denote by {St}t≥0 the stock price process of a company that has issued a convertible
bond with market (dirty2) price process {Bt}t≥0. Usually convert and stock price are
denominated in the same currency, but there exist some converts in the market, also
referred to as quanto-converts3, where this does not hold, and one has to include the
(stochastic) exchange rate in the model. As the influence of the exchange rate on pric-
ing is only of a secondary nature, we consider this in a simplified way by introducing
a deterministic exchange rate. Let rS(·), rB(·) denote the “risk-free” discounting rate
in the equity and bond currency, respectively, which are both assumed to be determin-
istic functions. The exchange rate between the two currencies is assumed to be the
deterministic function FX(t) = FX(0) exp{−

∫ t
0 rS(u) − rB(u)du}, with FX(0) > 0

2The dirty price of a bond includes the accumulated interest since the bond’s last coupon payment.
3For more information on quanto-converts, see e.g. Bernhart and Mai (2018).
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the currently observed exchange rate. We denote the conversion ratio of the bond at
time t by α(t), and the annualized bond coupon rate by c. We assume that α(t) is a
deterministic function4.

It is obvious that Bt ≥ α(t)FX(t)St for all time points t at which the holder of the
convertible bond is allowed to exchange into shares. In the sequel, we are going to refine
this lower bound under the following additional assumptions, denoting by τ > 0 the
random future time point at which the issuer defaults on the bond:

(A1) Recovery rate: If τ occurs before bond maturity, all holders of the convertible
bond are assumed to receive the fraction R ∈ [0, 1) of their nominal at τ , and the
recovery rate R is assumed to be a non-random constant.

(A2) Jump-to-default: The company’s equity drops to zero at τ , i.e. St = 0 for all
t ≥ τ .

(A3) Forward contracts: The marketplace offers equity forward contracts for all ma-
turities. We denote by F (t1, t2) the forward strike price for a forward contract
on the stock struck at t1 with maturity t2 ≥ t1. Ignoring discrete cash dividends,
we assume that F (t1, t2) = St1 exp{

∫ t2
t1
rS(t) − δ dt} with a constant rate δ ≥ 0

accounting for proceeds from stock possession, either through dividends or stock
lending.

We decompose the parameter δ into two non-negative components δ = δr + δd.
The part δr corresponds to proceeds from stock possession that are not shared by
convertible bond holders, while the part δd corresponds to proceeds from stock pos-
session that are passed through to convert holders by an appropriate adjustment
of the conversion ratio. Consequently, we assume α(t) = α(0) exp{δd t} with α(0)
denoting the current conversion ratio at time t = 0. The parameter δr is hence-
forth called repo rate because its typical economic interpretation is in terms of a
yield that can be consumed as stock owner by stock lending via repurchasement
agreements. It is further typical, but not always the case, that the conversion ratio
is increased when the company pays dividends in order not to dilute convertible
bond holders, so that δd typically agrees with the dividend yield. However, in
situations when parts of the dividend payments do not entail a conversion ratio
adjustment, this respective part of the dividend yield needs to be subtracted from
δd and added to the repo margin δr.

(A4) Convert covenants: We assume that the holder of the convert is allowed to
exchange one unit of bond nominal into α(t) shares within a certain conversion
period that we assume to include the maturity date T of the bond. Typically, the
conversion period ends precisely at or only a few business days before maturity,

4In reality, the conversion ratio is typically increased when the underlying share pays a dividend in
order to let convertible bond holders participate in the dividend also before conversion. Future
dividend payments are unknown today in reality, but known within our model, which implies that
also future conversion ratios are modeled deterministically. For advice on the inclusion of random
future dividend payments into pricing models see Bernhart and Mai (2015).
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so that this assumption is (at least approximately) satisfied in most practical
cases. We furthermore assume that there is a soft call right that allows the issuing
company to enforce conversion into shares at a time point when parity breaches a
level K after a specified (future) date θ ∈ [0, T ). A typical level in the marketplace
is K = 1.3, measured in units of bond nominal. The case K =∞ means that there
is no soft call right. For future reference, we denote the soft call trigger time point
by

η := inf{t > θ : α(t)FX(t)St ≥ K}, θ ∈ [0, T ).

Concerning further notation, we denote the coupon payment dates of the bond by 0 ≤
t1 < . . . < tn < tn+1 = T , i.e. tn denotes the penultimate coupon payment date and
T > tn is the last coupon date, i.e. at maturity T the bond pays its last coupon cash
payment of size c (T − tn). Further, ∆tk := tk − tk−1 denotes the year fraction between
the two coupon payment dates tk−1 and tk, for k = 1, . . . , n, with t0 denoting the last
coupon payment before the evaluation date.

Remark 5.2.1 (Regular call rights and discrete put right)
We assume that the issuer has no (regular) call right, except for the soft call right
mentioned in (A4). Regular call rights are quite uncommon in the marketplace, so
that this assumption is not a big loss of relevance, but instead simplifies our derivation
massively. A discrete put right is sometimes present in practice, although not very often.
Simply ignoring the put right yields a lower bound for the price, because it relies on
taking away an optionality from the convert holder. More accurately, but equally simple
to implement, one may assume the convert holder is forced to make the put decision right
now at t = 0, thus effectively having to decide between two different convertible bonds
without put option. For both of these fictitious convertible bonds (one is the original
bond only without the put, the other is the convertible bond under the assumption that
the put is exercised for sure) one may compute the lower bound derived below, and the
maximum of both lower bounds constitutes a typically quite sharp lower bound for the
original convertible bond (with put right). Consequently, we henceforth ignore regular
call and discrete put rights.

5.2.2 A generic lower bound

We consider the following trading strategy: at t = 0 we buy the convert at a price of
B0, and we enter an equity forward contract to sell α(T ) shares at the last conversion
time point T for the price F (0, T ). In the meantime we do not consider to exchange our
bond into shares, unless we are forced to do so by soft call in case η ≤ T . Consequently,
we purposely drop our conversion right at all time points different from T . Technically,
this intentional abstinence transforms our convertible bond with American conversion
right into another convertible bond with European conversion right at T , whose price
process we denote by {B̄t}t≥0. Obviously, Bt ≥ B̄t for all t ∈ [0, T ], and BT = B̄T ,
unless converted prior to maturity.
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The implementation of this trading strategy costs us B0 at inception t = 0. At time T
there are the following scenarios:

• η ≤ min{T, τ}:
The bond is exchanged into α(η) shares at η, which are held until T . The value
at time T of a portfolio holding these α(η) shares from η to T is given by

α(η)FX(T )ST e
(δr+δd) (T−η) = α(T )FX(T )ST e

δr (T−η),

assuming that received dividends are immediately reinvested into more shares. In
case η ≤ τ ≤ T , this position is worthless at maturity, as the stock price drops
to zero at τ according to assumption (A2). Furthermore, α(T ) shares are sold at
maturity T of the forward contract at the price FX(T )F (0, T ). Additionally, we
earn coupons from the bond until η.

• τ ≤ min{T, η}:
The bond defaults and drops to recovery value R at τ . Furthermore, the share
price drops to zero so that we can buy α(T ) shares at time T at zero cost and
deliver them into the forward contract yielding the value α(T )FX(T )F (0, T ).
Additionally, we earn coupons from the bond until τ .
Note that {τ < η} implies {η =∞} due to the definition of η and assumption (A2)
on the stock price process: In case default happens first, the stock price jumps to
zero, and conversion never happens as α(t)FX(t)St = 0 < K for all t ≥ τ .

• T < min{η, τ}:
At maturity T , the bond ends up at BT = max{1 + c (T − tn), α(T )FX(T )ST },
and the forward contract has value α(T )FX(T ) (F (0, T ) − ST ), leaving us with
the payoff (1+c(T − tn)−α(T )FX(T )ST )+ +α(T )FX(T )F (0, T ). Additionally,
we earn coupons from the bond at all tk.

Summing up, at time T the value of our portfolio (in bond currency) - if we pursue the
trading strategy outlined above - is given by∑

0<tk<min{τ,η,T}

c∆tk e
∫ T
tk
rB(s) ds

+Re
∫ T
τ rB(s) ds 1{τ≤T, τ<η} + α(T )FX(T )F (0, T )

+
(
1 + c (T − tn)− α(T )FX(T )ST

)+
1{T<min{η,τ}}

+ 1{η≤min{T,τ}} α(T )FX(T )ST

(
eδr (T−η) − 1

)
.

By replication arguments, the value B0 must be greater or equal to B̄0, which equals
the discounted expected value of the last expression. This constitutes a generic lower
bound for the convertible bond’s price.

Lemma 5.2.2 (Generic lower bound for convertible bond price)
Under the aforementioned assumptions the price of the convertible bond B0 is bounded
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from below by

B̄0 = c
∑

0<tk<T

∆tk e
−

∫ tk
0 rB(s) ds P(τ > tk, η > tk)

+RE
[
e−

∫ τ
0 rB(s) ds 1{τ≤min{T,η}}

]
+ e−

∫ T
0 rB(s) ds α(T )FX(T )F (0, T )

+ e−
∫ T
0 rB(s) ds E

[(
1 + c(T − tn)− α(T )FX(T )ST

)+
1{T<min{τ,η}}

]
+ e−

∫ T
0 rB(s) ds E

[
1{η≤T<τ} α(T )FX(T )ST

(
eδr (T−η) − 1

)]
.

(5.1)

The last summand in the formula for B̄0 in Lemma 5.2.2 equals exactly zero if δr = 0
and/or if there is no soft call. Our goal is to compute the obtained lower bound of
Lemma 5.2.2 analytically. To this end, we seek analytical evaluations of the following
expressions in specific models:

(i) the probabilities P
(
τ > tk, η > tk

)
,

(ii) the recovery term E
[
e−

∫ τ
0 rB(s) ds 1{τ≤min{T,η}}

]
,

(iii) the put-like term E
[(

1 + c(T − tn)− α(T )FX(T )ST

)+
1{T<min{τ,η}}

]
,

(iv) the expectation E
[
1{η≤T<τ} α(T )FX(T )ST

(
eδr (T−η) − 1

)]
.

In the simpler case that no soft call right is present (i.e. η =∞), closed-form evaluations
are possible in defaultable Markov diffusion models that allow for analytical solutions
of survival probabilities and European equity options, such as, e.g., the models in Carr
and Linetsky (2006); Linetsky (2006). As already mentioned, the apparently most crit-
ical term (iv) even vanishes completely in this case. Exemplarily, we demonstrate the
respective formulas in a special case of the JDCEV credit-equity model of Carr and
Linetsky (2006) in Section 5.2.4.

In the more difficult case that a soft call is present, i.e. P(η < ∞) > 0, (numerically
efficient) closed form evaluations of all four expressions can only be obtained in the
simple credit-equity model under the additional assumption of a constant interest rate
rB(t) ≡ rB, due to the complexity of the required expressions. However, we demonstrate
below in a real-world example how useful even the simple credit-equity model can be for
a ‘first-shot’ price indication. The presented proxy formulas for the simple credit-equity
model are useful for at least two applications: First, they can be used to pre-calibrate cer-
tain parameters of a more advanced model (e.g. one of the models in Carr and Linetsky
(2006); Linetsky (2006)), thus speeding up parameter calibration in the latter models.
Second, they are useful to screen the marketplace for potential bond investment ideas
based on certain quantitative criteria. Due to their computational efficiency in com-
parison with PDE pricing techniques, it is possible to compute (approximative) model
bond prices for a large set of parameters within fractions of a second, and one can use
these prices to implement quantitative criteria that help quickly narrow down a long
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list of potential investments. The remaining interesting bonds can then be analyzed
with a more advanced model by means of more time-consuming methods. For instance,
it might be reasonable for portfolio management to postulate a certain ‘admissibility
interval’ for the ratio between those model parameters in the simple credit-equity model
that can match an observed market price.

5.2.3 Considered credit-equity models

Simple credit-equity model

Possibly the simplest convertible bond pricing model which respects the jump-to-default
assumption (A2) defines (τ, {St}t≥0) as follows:

St = S0 e
Xt 1{τ>t}, Xt =

∫ t

0
rS(s)−δ + λ− σ2

2︸ ︷︷ ︸
=:γ(s)

ds+ σWt,

where {Wt}t≥0 is a Brownian motion and τ an independent exponential random vari-
able with mean 1/λ (with infinite mean in the limiting case λ = 0 being allowed and
corresponding to the Black–Scholes model). The market filtration is defined as the con-
junction of the natural filtration of the Brownian motion and of the default indicator
process {1{τ>t}}t≥0.
Calculations in this model benefit tremendously from the independence between the
default time τ and the Brownian motion W driving the stock price diffusion, making it
possible to obtain analytical formulas even in the case with soft call.

JDCEV model

We further consider a three-parametric special case of the so-called JDCEV model
(jump-to-default-extended (JD) constant elasticity of variance (CEV) model) introduced
in Carr and Linetsky (2006) that is defined as follows: The pre-default stock price is

dSt
St

= (rS(t)− δ + λt) dt+ σ
(St
S0

)β
dWt, t < τ,

where σ > 0, β < 0, and the default intensity λt is expressed as a function h of the stock
price:

λt = h(St) = λ0

(
St
S0

)2β

,

136



5 Analytical lower bound for the price of a convertible bond

i.e. the default time τ is the first time that the integral over the default intensity exceeds
the value of an exponentially distributed random variable with unit mean ε, that is
independent of the Brownian motion W = {Wt}t≥0:

τ = inf
{
t ≥ 0 :

∫ t

0
λs ds > ε

}
.

At time τ , the stock price jumps to zero and remains there for eternity in accordance
with (A2), i.e. St = 0 for all t ≥ τ . As β ↗ 0, this model converges to the simple credit-
equity model, so it constitutes a proper enhancement thereof. However, the parameter
choice β = 0 is not admissible and the limiting process β ↗ 0 is unstable in all derived
formulas, which is one reason why we treat the simple credit-equity model separately.
The parameter β < 0 in the JDCEV model introduces a reciprocal relationship between
stock price and default intensity, which is not present in the simple credit-equity model.
In particular, if the stock price process loses value massively, the convertible bond price
will do so as well, which is not the case in the simple credit-equity model.
The mathematical derivations of this model are based on relations to Bessel processes
and may be considered an enhancement of the work by Delbaen and Shirakawa (2002),
who consider the pricing of equity derivatives within the CEV model without jump to
default.

5.2.4 Lower bound in the case without soft call

We first consider the case without soft call, i.e. η =∞, where an evaluation of term (iv)
is not required. In the simple model, terms (i)-(iii) can be computed straightforward,
as can be seen in the following lemma:

Lemma 5.2.3 (Formulas without soft call, simple model)
The relevant terms are given as follows:

(i) P(τ > tk, η > tk) = P(τ > tk) = e−λ tk ,

(ii) E
[
e−

∫ τ
0 rB(s) ds 1{τ≤min{T,η}}

]
=

∫ T

0
e−

∫ t
0 rB(s) ds λ e−λ t dt,

(iii) E
[(

1 + c (T − tn)− α(T )FX(T )ST

)+
1{T<τ}

]
= e−λT

(
1 + c (T − tn)

)
Φ

(
k1 −

∫ T
0 γ̃(s) ds

σ
√
T

)

− α(0)FX(0)S0 e
∫ T
0 rB(s)−δr ds Φ

(
k1 −

∫ T
0 γ̃(s) + σ2 ds

σ
√
T

)
,

with

k1 = log
( 1 + c (T − tn)

α(0)FX(0)S0

)
, γ̃(t) := rB(t)− δr + λ− σ2

2
.

137



5 Analytical lower bound for the price of a convertible bond

Proof
Terms (i) and (ii) are computed straightforward using the exponential distribution of
τ , and term (iii) can easily be computed using standard Black–Scholes computations,
exploiting the independence of τ and W . All terms are easy to evaluate numerically. �

For our special case of the JDCEV model, the desired formulas can be extracted from
the results in Carr and Linetsky (2006):

Lemma 5.2.4 (Formulas without soft call, JDCEV model)
The relevant expressions are given by the following formulas:

(i) The survival probabilities P(τ > tk) are given by(
x2

ξ(tk)

) 1
2|β|
M
(

1

2β
, ν,

x2

ξ(tk)

)
.

(ii) The recovery term E
[
e−

∫ τ
0 rB(t) dt 1{τ≤T}

]
is given by

λ0

∫ T

0
e−

∫ t
0 rB(s)+2β(rS(s)−δ) ds

(
x2

ξ(t)

)1− 1
2β

M
(

1

2β
− 1, ν,

x2

ξ(t)

)
dt

(iii) The put-like term E
[(

1 + c(T − tn)− α(T )FX(T )ST

)+
1{T<τ}

]
equals

(1 + c(T − tn))

(
x2

ξ(T )

) 1
2|β|

Θ−
(

1

2β
,
k2

ξ(T )
, ν,

x2

ξ(T )

)
− α(T )FX(T )e

∫ T
0 rS(s)−δ dsS0Θ−

(
0,

k2

ξ(T )
, ν,

x2

ξ(T )

)
.

In these formulas, we have applied the following notations:

x =
S
|β|
0

|β|
, ξ(t) =

∫ t

0

σ2

S2β
0

e2β
∫ u
0 rS(v)−δ dvdu,

ν =
2λ0

|β|σ2
+

1

|β|
+ 2, k =

(1 + c(T − tn))|β|

(α(T )FX(T ))|β||β|
eβ

∫ T
0 rS(s)−δ ds,

and the functions M(p, ν, y) and Θ−(p, k, ν, y) refer to the p-th (truncated) moment of
a generic random variable X following a noncentral χ2-distribution with ν degrees of
freedom and noncentrality parameter y, given by

M(p, ν, y) = E[Xp], Θ−(p, k, ν, y) = E[Xp 1{X≤k}].

Proof
All formulas can directly be extracted from the results in Carr and Linetsky (2006). �

The efficient numerical evaluation of the involved (truncated) moments of a non-central
χ2-variable is explained in Carr and Linetsky (2006), the practical implementation being
based on an idea of Benton and Krishnamoorthy (2003).
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5.2.5 Lower bound in the case with soft call

When a soft call is present, the derivation of an analytical formula becomes dramatically
more difficult. In the simple model, we require the distribution of a Brownian motion
with time-dependent drift γ̃(t) and its running maximum, as well as the distribution of
its first passage time to a fixed level.
Theoretically, for piecewise constant rB(t), at least the prior distribution can be eval-
uated via the technique described in Wang and Pötzelberger (1997); Pötzelberger and
Wang (2001); Wang and Pötzelberger (2007), which is shown exemplarily5 for term (i)
in the following lemma.

Lemma 5.2.5 (Term (i), simple model, piecewise constant rB(t))
In case of a piecewise constant interest rate6, one can exploit results of Wang and
Pötzelberger (1997, 2007) to obtain

P(τ > t, η > t) = e−λt
∫ k2

−∞
E[g(Wν1 , . . . ,Wνm |d(·;x))]fN (Γ̃θ,σ2θ)(x)dx,

with νk + θ denoting the times of discontinuity of the piecewise constant interest rate in
[θ, T ], Γ̃ =

∫ θ
0 γ̃(u)du, and the time-dependent barrier d and the function g are given as

follows:

g(x1, . . . , xm|d) =
m∏
j=1

1{xj<d(νj)}

(
1− exp

{
− 2(d(νj−1)− xj−1)(d(νj)− xj)

νj − νj−1

})
,

d(t;x) =
1

σ

(
k2 − x−

∫ t

0
γ̃(u+ θ)du

)
.

Proof
By exploiting independence of τ and W , we rewrite

P(τ > t, η > t) = P(τ > t)P
(

max
θ<s≤t

∫ s

0
γ̃(u)du+ σWs < k2,

∫ θ

0
γ̃(u)du+ σWθ ≤ k2

)
= e−λt

∫ k2

−∞
P
(

max
0<s<t−θ

∫ s

0
γ̃(u+ θ)du+ σWs < k2 − x

)
fN (Γ̃θ,σ2θ)(x)dx.

By Wang and Pötzelberger (2007, Corollary 16), which relates the boundary crossing
probability of a geometric Brownian motion with time-dependent drift to the probability

5Term (ii) is calculated with the help of term (i) as in the case of a flat interest rate, cf. Lemma 5.2.7,
and term (iii) can, with slight modifications of the arguments in Wang and Pötzelberger (1997, 2007),
be computed in a similar fashion as term (i).

6It is a common approach among practitioners to obtain discount factors exp{−
∫ t
0
r·(u)du} from

market quotes of liquidly traded interest rate swaps and linearly interpolate the logarithms of these
discount factors, which corresponds to a piecewise linear interest rate, cf. ‘raw’ interpolation method
in Hagan and West (2006).
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5 Analytical lower bound for the price of a convertible bond

of a standard Brownian motion crossing a piecewise continuous (and in our case even
piecewise linear) boundary, the probability under the integral is given by

P
(

max
0<s<t−θ

∫ s

0
γ̃(u+ θ)du+ σWs < k2 − x

)
= P

(
Ws ≤

1

σ

(
k2 − x−

∫ s

0
γ̃(u+ θ)du

)
︸ ︷︷ ︸

=:d(s;x)

∀ s ≤ t− θ
)
.

Finally, by Wang and Pötzelberger (1997, Theorem 1), which states the probability of a
standard Brownian motion crossing a piecewise linear boundary, this expression equals

P(Ws ≤ d(s) ∀ s ≤ t− θ) = E[g(Wν1 , . . . ,Wνm |d)],

with with νk denoting the times of discontinuity of the piecewise linear boundary and g
given as above. �

However, as can be seen from Lemma 5.2.5, the numerical evaluation still requires in-
tegration with respect to an m-dimensional normal density, where m depends on the
number of discontinuities of rB(t) in [θ, T ], which is too high in practice to yield an
improvement over pricing the convertible bond via PDE methods right away.
Consequently, we have to assume that rB(t) ≡ rB is constant7, in which case the distribu-
tion of the maximum of a Brownian motion with drift γ̃(t) ≡ γ̃ is known in closed-form,
cf. Musiela and Rutkowski (2009, Proposition A.18.2, Corollary A.18.2):

Lemma 5.2.6 (Distribution of a Brownian motion and its running maximum)
Consider a Brownian motion {Yt}t≥0 with drift m and diffusion parameter s, i.e. Yt =
mt + sWt, where W is a standard Brownian motion. The joint distribution of YT and
its running maximum max0≤t≤T Yt is given by

P
(
YT ≤ y1, max

0≤t≤T
Yt ≤ y2

)
= Φ

(y1 −mT
s
√
T

)
− e

2my2
s2 Φ

(y1 − 2y2 −mT
s
√
T

)
.

The distribution of the running maximum immediately follows to be

P
(

max
0≤t≤T

Yt ≤ y
)

= Φ
(y −mT

s
√
T

)
− e

2my

s2 Φ
(−y −mT

s
√
T

)
.

For future reference define

F (m, s, T, y1, y2) := Φ
(min{y1, y2} −mT

s
√
T

)
− e

2my2
s2 Φ

(min{y1, y2} − 2 y2 −mT

s
√
T

)
F (m, s, T, y) = F (m, s, T, y, y).

(5.2)

7The presented formulas can easily be adjusted to consider rB(t) deterministic for t ≤ θ and rB(t) ≡ rB
constant for t > θ. One only has to pay attention that the correct drift term is considered in the
restarted Brownian motion in the proofs, similarly as in Lemma 5.2.5. We omit this discussion for
the sake of simplicity.
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5 Analytical lower bound for the price of a convertible bond

In practice, rB can be chosen as some average value of {rB(t)}t∈[0,T ] or be optimized
in order to yield the best lower bound on the observed valuation, and the resulting
convertible bond lower bound must be viewed as an approximation. The resulting
formulas are stated in the following lemma.

Lemma 5.2.7 (Formulas with soft call, simple model, case rB(t) ≡ rB)
Under the assumption that rB(t) ≡ rB, and hence γ̃(t) ≡ γ̃, the following formulas are
valid:

(i) The probabilities P(τ > tk, η > tk) are given by

P(τ > t, η > t) =

{
P(τ > t) = e−λt for 0 ≤ t ≤ θ
P (τ > t,maxθ<s≤t α(s)FX(s)Ss < K) for t > θ,

where the latter probability is given by

e−λt
∫ k2

−∞
F (γ̃, σ, t− θ, k2 − x)fN (γ̃θ,σ2θ)(x)dx,

with fN (m,s2) denoting the density of a normally distributed random variable with
mean m and variance s2, F as defined in (5.2), and

k2 = log
( K

α(0)FX(0)S0

)
.

(ii) For the recovery part E
[
e−rB τ 1{τ≤min{T,η}}

]
, we need to distinguish between the

cases where default happens before and after θ, respectively:

E
[
e−rBτ 1{τ≤T,η>τ}

]
= E

[
e−rBτ 1{τ≤θ,η>τ}

]
+ E

[
e−rBτ 1{θ<τ≤T,η>τ}

]
.

The first expectation equals the corresponding term in the case without soft call,
as by definition η > θ ≥ τ :

E
[
e−rBτ 1{τ≤θ,η>τ}

]
= E

[
e−rBτ 1{τ≤θ}

]
=

∫ θ

0
λe−(rB+λ)udu.

The second expectation is given by

E
[
e−rBτ 1{θ<τ≤T,η>τ}

]
=

∫ T

θ
λe−rBt P(τ > t, η > t)dt,

with the probability under the integral as given in part (i). This results in a double
integral.
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(iii) The put-like term E
[(

1 + c(T − tn)−α(T )FX(T )ST

)+
1{T<min{τ,η}}

]
is given by

E
[(

1 + c(T − tn)− α(T )FX(T )ST

)+
1{T<min{τ,η}}

]
= (1 + c(T − tn))e−λT

∫ k2

−∞
F (γ̃, σ, T − θ, k1 − x, k2 − x)fN (γ̃θ,σ2θ)(x)dx

− α(0)FX(0)S0e
(rB−δr)T∫ k2

−∞
F (γ̃ + σ2, σ, T − θ, k1 − x, k2 − x)fN ((γ̃+σ2)θ,σ2θ)(x)dx,

with k2 as in part (i), k1 as in Lemma 5.2.3 above, and F given by (5.2).

(iv) The expectation E
[
1{η≤T<τ} α(T )FX(T )ST

(
eδr (T−η) − 1

)]
is given by

E
[
1{η≤T<τ} α(T )FX(T )ST

(
eδr (T−η) − 1

)]
= α(0)FX(0)S0e

(rB−δr)T

(
Ẽ
[
1{η≤T}e

δr (T−η)
∣∣∣τ > T

]
︸ ︷︷ ︸

:=(B)

− P̃(η ≤ T |τ > T )︸ ︷︷ ︸
:=(A)

)
,

(A) = Φ
(−k2 + (γ̃ + σ2)θ

σ
√
θ

)
+

∫ k2

−∞
(1− F (γ̃ + σ2, σ, T − θ, k2 − x))fN ((γ̃+σ2)θ,σ2θ)(x)dx,

(B) = eδr(T−θ)

(
Φ
(−k2 + (γ̃ + σ2)θ

σ
√
θ

)
+

∫ k2

−∞

[
e
l
m
−bΦ

(
b(T − θ)− l√

l(T − θ)

)
+ e

l
m

+bΦ

(
− b(T − θ) + l√

l(T − θ)

)]
× fN ((γ̃+σ2)θ,σ2θ)(x)dx

)
,

with k2 as in part (i) above, l = (k2 − x)2/σ2, m = (k2 − x)/(γ̃ + σ2), and
b =

√
l2/m2 + 2 δr l.

Proof
The derivations of terms (i), (ii), and (iii) rely heavily on the independence of τ and
{Wt}t≥0, as well as on knowledge about the (joint) distribution of the Brownian motion
with drift and its running maximum, cf. Lemma 5.2.6, and are obtained via integrating
out the random future value of the stock price diffusion at θ and considering a Brownian
motion restarted at θ in this value.
Specifically, the derivations proceed as follows:
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(i) The probability P(τ > t, η > t) for t > θ is calculated as follows:

P
(
τ > t, max

θ<s≤t
α(s)FX(s)Ss < K

)
= P(τ > t)P

(
max
θ<s≤t

α(0)FX(0)S0e
γ̃s+σWs < K

)
= e−λt

[
P
(

max
θ<s≤t

γ̃s+ σWs < k2, γ̃θ + σWθ ≤ k2

)
+ P

(
max
θ<s≤t

γ̃s+ σWs < k2, γ̃θ + σWθ > k2

)]
,

exploiting the independence of τ and W . The second probability in the last line
equals zero: It corresponds to the probability of the running maximum of a Brow-
nian motion restarted at time θ in γ̃θ + σWθ > k2 hitting the barrier k2. Due to
continuity of the paths of a Brownian motion, this running maximum cannot be
below k2. The final expression is then obtained by integrating out the random fu-
ture value of the diffusion γ̃t+σWt at t = θ and considering a restarted Brownian
motion, i.e.

e−λt P
(

max
θ<s≤t

γ̃s+ σWs < k2, γ̃θ + σWθ ≤ k2

)
= e−λt E

[
1{γ̃θ+σWθ≤k2}P

(
max

0<u≤t−θ
γ̃u+ σW ′u < k2 − x

∣∣∣γ̃θ + σWθ = x ≤ k2

)]
= e−λt

∫ k2

−∞
F (γ̃, σ, t− θ, k2 − x)fN (γ̃θ,σ2θ)(x)dx,

where W ′ denotes an independent copy of W .

(ii) The recovery term for θ < τ ≤ T is calculated as follows:

E
[
e−rBτ 1{θ<τ≤T,η>τ}

]
= E

[
e−rBτ 1{θ<τ≤T} P

(
max
θ<s<τ

γ̃s+ σWs < k2|θ < τ ≤ T
)]

=

∫ T

θ
e−rBt P

(
max
θ<s<t

γ̃s+ σWs < k2

)
λe−λtdt =

∫ T

θ
λe−rBt P(τ > t, η > t)dt.

(iii) The put-like term is rewritten as

E
[(

1 + c(T − tn)− α(T )FX(T )ST

)+
1{T<min{τ,η}}

]
= (1 + c(T − tn))P

(
τ > T, η > T, 1 + c(T − tn) > α(T )FX(T )ST

)
− E

[
α(T )FX(T )ST 1{τ>T,η>T,1+c(T−tn)>α(T )FX(T )ST }

]
.

Reformulating the term in the probability/indicator yields

{τ > T, η > T, 1 + c(T − tn) > α(T )FX(T )ST }
= {τ > T, max

θ<s≤T
γ̃s+ σWs < k2, γ̃T + σWT < k1}

= {τ > T, max
θ<s≤T

γ̃s+ σWs < k2, γ̃T + σWT < k1, γ̃θ + σWθ ≤ k2},
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with a similar argument as in the proof of part (i). Again conditioning on the
random diffusion value at θ and considering a restarted Brownian motion, we
obtain

P
(
τ > T, η > T, 1 + c(T − tn) > α(T )FX(T )ST

)
= P(τ > T )P

(
max
θ<s≤T

γ̃s+ σWs < k2, γ̃T + σWT < k1, γ̃θ + σWθ ≤ k2

)
= e−λT

∫ k2

−∞
F (γ̃, σ, T − θ, k1 − x, k2 − x)fN (γ̃θ,σ2θ)(x)dx,

and, after a change of measure to P̃, with W̃t = Wt − σt being a P̃-Brownian
motion, the second part is calculated analogously:

E
[
α(T )FX(T )ST 1{τ>T,η>T,1+c(T−tn)>α(T )FX(T )ST }

]
= α(0)FX(0)S0e

(rB−δr+λ)T P̃
(
τ > T, η > T, 1 + c(T − tn) > α(T )FX(T )ST

)
= α(0)FX(0)S0e

(rB−δr)T

×
∫ k2

−∞
F (γ̃ + σ2, σ, T − θ, k1 − x, k2 − x)fN ((γ̃+σ2)θ,σ2θ)(x)dx.

The calculation of part (iv) additionally makes use of knowledge about the first hitting
time of a fixed level of a Brownian motion with drift. We provide a sketch of the
computation in the sequel. A change of measure to P̃, with W̃t = Wt − σt being a
P̃-Brownian motion, and exploiting the independence of τ and W yields

E
[
1{η≤T<τ} α(T )FX(T )ST

(
eδr (T−η) − 1

)]
= α(0)FX(0)S0e

(γ̃+σ2

2
)T Ẽ

[
1{η≤T,τ>T}

(
eδr (T−η) − 1

)]
= α(0)FX(0)S0e

(rB−δr+λ)T Ẽ
[
1{τ>T}Ẽ

[
1{η≤T}

(
eδr (T−η) − 1

)∣∣∣τ > T
]]

= α(0)FX(0)S0e
(rB−δr)T

(
Ẽ
[
1{η≤T}e

δr (T−η)
∣∣∣τ > T

]
︸ ︷︷ ︸

:=(B)

− P̃(η ≤ T |τ > T )︸ ︷︷ ︸
:=(A)

)
.

To calculate the probability (A), we rewrite

{η ≤ T |τ > T} =
{

max
θ<s≤T

α(s)FX(s)Ss ≥ K
∣∣∣τ > T

}
=
{

max
θ<s≤T

γ̃s+ σWs ≥ k2

}
=
{

max
θ<s≤T

γ̃s+ σWs ≥ k2, γ̃θ + σWθ > k2

}
︸ ︷︷ ︸

={γ̃θ+σWθ>k2}

∪
{

max
θ<s≤T

γ̃s+ σWs ≥ k2, γ̃θ + σWθ ≤ k2

}
,
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thus obtaining

P̃(η ≤ T |τ > T ) = P̃(γ̃θ + σWθ > k2) + P̃
(

max
θ<s≤T

γ̃s+ σWs ≥ k2, γ̃θ + σWθ ≤ k2

)
= Φ

(−k2 + (γ̃ + σ2)θ

σ
√
θ

)
+

∫ k2

−∞
(1− F (γ̃ + σ2, σ, T − θ, k2 − x))fN ((γ̃+σ2)θ,σ2θ)(x)dx,

with the latter probability calculated similarly as in part (i).
The remaining expectation term (B) is computed as follows:

Ẽ
[
1{η≤T}e

δr (T−η)
∣∣∣τ > T

]
= Ẽ

[
1{maxθ<s≤T (γ̃+σ2)s+σW̃s≥k2}e

δr (T−η)
∣∣∣τ > T

]
= Ẽ

[
1{maxθ<s≤T (γ̃+σ2)s+σW̃s≥k2}︸ ︷︷ ︸

=1 a.s., and η=θ a.s.

eδr (T−η)1{(γ̃+σ2)θ+σW̃θ>k2}

∣∣∣τ > T
]

+ Ẽ
[
1{maxθ<s≤T (γ̃+σ2)s+σW̃s≥k2}e

δr (T−η)1{(γ̃+σ2)θ+σW̃θ≤k2}

∣∣∣τ > T
]

= eδr(T−θ)Φ
(−k2 + (γ̃ + σ2)θ

σ
√
θ

)
+

∫ k2

−∞
Ẽ
[
1{max0<u≤T−θ(γ̃+σ2)u+σW̃ ′u≥k2−x}e

δr(T−θ−η̃x)
∣∣∣τ > T

]
fN ((γ̃+σ2)θ,σ2θ)(x)dx,

where η̃x|τ > T for η ≤ T corresponds to the first passage time of the restarted Brownian
motion W̃ ′ to the level k2 − x:

η|τ > T = inf{t ∈ (θ, τ) : γ̃t+ σWt ≥ k2}
η|{τ > T, γ̃θ + σWθ = x}
= inf{t ∈ (θ, τ) : γ̃(t− θ) + σ(Wt −Wθ) ≥ k2 − x}|{γ̃θ + σWθ = x}
d
= inf{u ∈ (0, τ − θ) : γ̃u+ σW ′u ≥ k2 − x} := η̃x|τ > T.

The inner expectation term can then be calculated using the fact that η̃x|τ > T has
the same distribution (under P̃) as the first passage time of the restarted Brownian
motion with drift γ̃ + σ2 and diffusion parameter σ to the level k2 − x. This is an
Inverse Gaussian distribution, cf. Musiela and Rutkowski (2009, Proposition A18.1),
with density and parameters

fη̃x|τ>T (z) =

√
l

2πz3
exp

{
− l

2m2z
(z −m)2

}
, l =

(k2 − x
σ

)2
, m =

k2 − x
γ̃ + σ2

.

Therefore,

Ẽ
[
1{max0<u≤T−θ(γ̃+σ2)u+σW̃ ′u≥k2−x}e

δr(T−θ−η̃x)
∣∣∣τ > T

]
= Ẽ

[
1{η̃x≤T−θ} e

δr (T−θ−η̃x)
∣∣∣τ > T

]
= eδr(T−θ)

∫ T−θ

0
e−δrzfη̃x|τ>T (z)dz.
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Introducing c = δr + l/(2m2) and b =
√

2lc, the integral term can then be calculated
explicitly:∫ T−θ

0
e−δrzfη̃x|τ>T (z)dz = e

l
m

∫ T−θ

0

√
l

2πz3
exp

{
− z

( l

2m2
+ δr

)
︸ ︷︷ ︸

=:c︸ ︷︷ ︸
=:y, change of variables

− l

2z

}
dz

= e
l
m

∫ c(T−θ)

0

√
lc

2πy3
e
−y− lc

2y dy = e
l
m
−b
∫ b2(T−θ)

2l

0

√
b2/2

2πy3
e
− b2/2

2·b2/4·y
(y− b

2
)2

dy

= e
l
m
−bΦ

(
b(T − θ)− l√

l(T − θ)

)
+ e

l
m

+bΦ

(
− b(T − θ) + l√

l(T − θ)

)
.

In the penultimate equality one integrates over an Inverse Gaussian density with param-
eters b2/2 and b/2, and exploits the known closed form of its distribution function. �

In the JDCEV model, the dependence between credit and equity induces a complicated
dependence structure between η and τ , which makes it impossible for us to arrive at
analytical formulas for the desired quantities. Already in the calculation of the simplest
term (i), one requires the joint distribution of a Bessel process, its running minimum,
and (a complicated function of) its running maximum, for which, to the best of our
knowledge, no closed-form results are available.

5.3 Examples

In the following, we illustrate the performance of the presented approximation formulas
by considering two real world examples where the bonds are denominated in different
currencies as their corresponding stocks, one with and one without soft call. In both
cases, the lower bound is very sharp, see Figures 5.1 and 5.3. Only in rarely encountered
market conditions, or for extreme (and unrealistic) parameter choices, the lower bound
differs significantly from the price computed via the more involved PDE method, see
Figures 5.2 and 5.4.
Similar observations are made in Hüttner and Mai (2018) for two different convertible
bonds, which are denominated in the same currency as their underlying equity, and with
θ = 0 in the case with soft call.

5.3.1 An example without soft call

We consider a convertible bond without soft call, with a (dirty) price of B0 = 105.547%.
The bond is denominated in a different currency than the underlying equity, with a
current exchange rate of FX(0) = 1.1500, and an equity value of S0 = 47.60. The
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conversion ratio is α(0) = 0.0171622555, the coupon rate is c = 0.5%, and maturity is
T = 3.8959. We furthermore assume a recovery rate of R = 0.3, cautiously lowering the
common market assumption of 0.4, cf. Cont and Kan (2011). The company currently
pays dividends of 5%, which are currently not passed on to convertible bond holders
through an adjustment of the conversion ratio. This is a very atypical feature in a
convertible bond. A reasonable assumption on the repo margin parameter is 1%, so
δr = 0.06 and δd = 0. The interest rates rB(t) and rS(t) are bootstrapped from observed
market prices for liquidly traded interest rate swaps.
This bond is convertible only in the time period t ∈ [3.6466, 3.7863], so we expect the
lower bound to be very sharp, even though the ECP should be non-negligible, as the
proceeds from stock possession which are not passed through to convertible bond holders
significantly outweigh the small earnings from coupon payments.
Since no soft call is present, we are able to use the more advanced JDCEV model to
evaluate an analytical lower bound for the price. The assumed model parameters are
β = −0.3, σ = 32.35%, and λ = 30 bps, which are chosen as a result of a calibration
to the observed market price as well as a trader’s expertise. Figure 5.1 visualizes the
sensitivities of the model price, evaluated via the PDE method of Andersen and Buffum
(2004), with respect to changes in the underlying stock price, as well as the lower bound
computed with help of the formulas in Lemma 5.2.4.
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Figure 5.1: Model price and lower bound of the convertible bond without soft call in
dependence on the underlying stock price S0.

The computational gain is huge when computing these price sensitivities: Computing
the 41 exact model prices via the PDE methods takes roughly 100 times as long as
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computing the corresponding 41 lower bounds8.
For illustration purposes, we repeat the analysis for the same bond for the case that
conversion is always possible. Using the same parameter set as above, the price of the
bond is now9 B0 = 108.16%. Indeed, we now find that the ECP has a non-negligible
value and the lower bound differs from the model price for high values of S0, see Figure
5.2.
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Figure 5.2: Model price and lower bound of the same convertible bond without soft call
as in Figure 5.1 in dependence on the underlying stock price S0, assuming
conversion is always allowed.

5.3.2 An example with soft call

We consider a convertible bond with soft call, with a (dirty) price of B0 = 87.8782%.
Again, the bond is denominated in a different currency than the underlying equity,
with a current exchange rate of FX(0) = 0.0722, and an equity value of S0 = 32.30.
The coupon rate is c = 3.25%, the conversion ratio is α(0) = 0.257023158, and ma-
turity is T = 3.5068. We furthermore assume a recovery rate of R = 0.20, lowering
the common market assumption of 0.4 to reflect the credit quality of the issuer. The
company currently pays no dividends, hence δd = 0, and a reasonable assumption on

8The code is implemented in Matlab and executed on a standard computer. The PDE prices were
computed separately for each initial stock price, to illustrate the computational gain in a situation
where one computes prices for different convertible bonds.

9The price was determined using the JDCEV model (PDE).
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the repo margin parameter is δr = 1%. There is a soft call at trigger level K = 1.3,
executable from the soft call trigger date θ = 2.5315 on, hence we must resort to the
simple credit-equity model with the additional assumption of a constant interest rate.
As in the previous example, the interest rates rB(t) and rS(t) are bootstrapped from
observed market prices for liquidly traded interest rate swaps, and we choose the con-
stant parameter rB := 1

T−θ
∫ T
θ rB(t) dt for evaluation of the lower bound. In addition,

we evaluate the price of the convertible bond numerically both with the JDCEV model
and with the simple credit-equity model, with similar parameters. The parameters are
depicted in Figure 5.3 and only differ in order for both models to exactly match the
currently observed market price. Again, the chosen parameters are a result of a trader’s
expertise as well as a calibration to the observed market price. Figure 5.3 visualizes the
sensitivities of the model prices, evaluated via the PDE method of Andersen and Buffum
(2004), with respect to changes in the underlying stock price, as well as the lower bound
computed with help of the formulas in Lemma 5.2.7.
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Figure 5.3: Model prices and lower bound of the convertible bond with soft call in de-
pendence on the underlying stock price S0.

Remark 5.3.1 (On the lower bound in the case with soft call)
1. The difference between the price of the simple model and the JDCEV model for

small stock prices stems from the fact that a decline of the share price does not
induce an increase of default likelihood in the simple credit-equity model. This
is the main weakness of the simple credit-equity model, which necessitates the
use of a more advanced model, such as the JDCEV model, for distressed bonds.
However, for higher stock prices, in particular near the current stock price, both
models imply almost identical prices and price sensitivities, in particular both
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models yield almost identical convert deltas.

2. The lower bound now depends on the assumption of a constant interest rate r,
while the PDE evaluations do not. This implies a little flaw that is probably
negligible in the present example, but in theory could lead to imprecision, e.g. it
might theoretically even occur that the lower bound turns out to be larger than
the true model price (depending on how r is chosen).

3. Again, the lower bound is very sharp, which means in economic terms that the
value of the ECP is practically zero. A possible explanation for this is that the bond
coupon of 3.25% outweighs the proceeds from stock lending that are modeled by
δr = 1% (additionally considering the low exchange rate), so that it is not optimal
to exercise the conversion right early.

As stated above, in practice a situation in which the ECP is significantly larger than
zero is hardly ever met. In order to encounter such a case, one would need a very
large parameter δr, i.e. the proceeds from stock possession not shared by convertible
bond holders, the repo rate and/or the amount of the dividend not passed though to
bond holders, should outweigh the proceeds from holding the bond. However, dividends
are typically fully passed through to bond holders, making the bond discussed in the
previous example highly exceptional, and high repo margins are only typical for highly
illiquid, or highly distressed, stock prices, and in these situations it is rather typical that
the bond coupon rates are large as well and no dividends are paid.
For the sake of completeness Figure 5.4 depicts the same convertible bond as Figure
5.3, only with two parameters changed: the coupon rate is manually lowered to 0.5%,
while the repo margin is increased to δr = 12%, so that the bond price equals now
70.50%10. These modifications lead to a highly unrealistic situation, which only suits
as an educational example to demonstrate another possible scenario where the derived
lower bound to becomes less sharp. Indeed, for high stock prices the ECP now has a
non-negligible value.

5.4 Conclusion

Based on the idea of “Europeanizing” the American conversion right in a convertible
bond, it was demonstrated how to derive sharp, analytical lower bounds for the bond’s
model price. In the absence of a soft call covenant, an analytical bound can be derived
for defaultable Markov diffusion models allowing for closed-form expressions for survival
probabilities and European equity options, as exemplarily shown within the JDCEV
model of Carr and Linetsky (2006). In presence of a soft call, an analytical bound is
only available within a simple credit-equity model under the assumption of a constant

10The bond price was determined using the JDCEV model (PDE). For the simple model to match this
price, the parameters had to be changed slightly to σ = 37.24% and λ = 1650 bps.
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Figure 5.4: Model prices and lower bound of the same convertible bond (with soft call)
as in Figure 5.3 in dependence on the underlying stock price S0, assuming a
repo margin of δr = 12% and coupon rate of c = 0.5%.

risk-free interest rate, which nevertheless performs very well in most cases of practical
interest. The sharpness of the analytical bounds depends on the value of the early
conversion premium, which itself is an increasing function in the assumed repo margin
under the realistic assumption that dividends are passed through to bond holders. This
has been demonstrated by means of two examples that were inspired by practical use
cases.
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6 Conclusion

In this thesis we contributed new results in two areas related to credit risk, namely
in the simulation and modeling of correlations and in the pricing of two credit-risky
products.

In the first part, we developed a simulation algorithm for Perron–Frobenius correla-
tion matrices, which additionally allows to manipulate the eigenvalue distribution of the
generated matrices. It was shown that this algorithm is able to generate all Perron–
Frobenius correlation matrices, and from the employed construction principle it was
shown that the proportion of such correlation matrices in the set of all correlation ma-
trices is 1/2d−1 in dimension d. Choosing a realistic eigenvalue structure, large correla-
tion matrices simulated from this algorithm tend to exhibit all observed stylized facts of
financial correlation matrices. The algorithm has been used, alongside other algorithms
generating correlation matrices with different properties, to show that the empirically
observed relation between graph-based portfolio selection techniques and the classical
Markowitz ansatz is not due to an inherent connection between the two approaches, but
instead originates in the special structure of financial correlation matrices.

We further adapted an approach from geostatistics based on Gaussian random fields
for the use with financial data. The field’s covariance is modeled via a low-parametric
function of the distance between observations, hence allowing for a parsimonious, yet
easily extendible modeling of the dependence structure. Special focus was laid on the
design of financial distance measures and on the necessary adjustments of the method
when used in the high-dimensional coordinate systems typically required for the mod-
eling of financial data sets. Further, we have showcased the benefits of this method for
the estimation and parametrization of large financial correlation matrices and for the
imputation of missing data in large data sets of financial return series.

In the second part, focused on the pricing of credit-risky products, we developed a new
approach for the valuation of CDS options based on an efficient Monte Carlo scheme in a
structural model with jumps, which furnishes realistic CDS spread paths. An indication
for market prices has been given, as well as a sensitivity analysis of prices with respect
to the parameters of the chosen model.
Finally, a sharp lower bound for the price of a convertible bond with and without soft
call right was derived in two defaultable Markov diffusion models, and its sharpness was
illustrated in two real-world examples.
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Mai, J.F. and Scherer, M., Lévy-frailty copulas. Journal of Multivariate Analysis, 2009,
100, 1567–1585.

Mantegna, R. and Stanley, H., An introduction to econophysics, 2000, Cambridge Uni-
versity Press.

Mantegna, R., Hierarchical structure in financial markets. European Physics Journal B,
1999, 11, 193–197.

Markowitz, H., Portfolio selection. Journal of Finance, 1952, 7, 77–91.

Markowitz, H., Portfolio selection: efficient diversification of investments, 1959 (Wiley:
New York).

Marsaglia, G. and Olkin, I., Generating correlation matrices. SIAM Journal on Scientific
and Statistical Computing, 1984, 5, 470–475.

Martin, R., A CDS option miscellany. Working paper, available at http://arxiv.org/
abs/1201.0111, 2012.
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