
Computational Science and Engineering

Technische Universität München
Fakultät für Informatik

Coupling TherMoS with preCICE

Master’s Thesis by Dominik Volland

1st examiner: Prof. Dr. Hans-Joachim Bungartz

2nd examiner: Prof. Dr. Ulrich Walter

1st advisor: Benjamin Rüth

2nd advisor: Matthias Killian

Submission Date: July 19th, 2019

I hereby declare that this thesis is entirely the result of my own work except where
otherwise indicated. I have only used the resources given in the list of references.

Garching, July 19th, 2019 Dominik Volland

Acknowledgements

I wish to express my deep gratitude to my supervisors, Benjamin Rüth and Matthias
Killian, for their great support.

In addition, preCICE developers Benjamin Uekermann and Gerasimos Chourdakis
also provided lots of helpful ideas and suggestions, for which I am very grateful. Special
thanks go to both of them and Benjamin Rüth for giving me the opportunity to present
my preliminary results at the COUPLED 2019 conference.

Finally, I want to thank my family and my friends for supporting me on a personal
level while I was finishing this thesis.

v

Abstract

The Thermal Moon Simulator (TherMoS) is a tool to compute transient thermal models
for planning space missions on the Moon surface. It couples a thermal solver with a ray
tracer running on GPUs to compute radiative heat fluxes.

The coupling in TherMoS was originally done in a monolithic way. In this work, we
present and discuss a new implementation which uses the preCICE library for coupling
the components. preCICE is a tool developed for black-box coupling of arbitrary physical
solvers in multiphysics simulations.

The work is beneficial for both TherMoS and preCICE. While numerical experiments
revealed that preCICE can not improve the performance of TherMoS, the tool could still
be improved from a software engineering perspective by providing a clean partitioned
interface in contrast to the previous monolithic coupling. Furthermore, preCICE gives
access to implicit coupling schemes, which may be interesting to use in TherMoS in the
future. For preCICE, the use in TherMoS is an interesting use case, as it was hitherto
mainly used in the fields of FSI and CHT.

vii

Glossary of abbreviations

MATLAB MATrix LABoratory

MEX MATLAB executable

GPU Graphics Processing Unit . 1

TherMoS Thermal Moon Simulator . 1

preCICE Precise Code Interaction Coupling Environment 2

FSI Fluid Structure Interaction. .2

CHT Conjugate Heat Transfer . 2

RHD Radiation Hydrodynamics. .5

FDM Finite Difference Methods. .10

FEM Finite Element Methods . 10

FVM Finite Volume Methods . 10

LPM Lumped Parameter Methods . 10

MPI Message Passing Interface . 11

TUM Technische Universität München . 11

CUDA Compute Unified Device Architecture . 25

PCT Parallel Computing Toolbox . 45

ix

Contents

Acknowledgements v

Abstract vii

Glossary of abbreviations ix

1. Introduction 1
1.1. Motivation and Goals . 2
1.2. Thesis structure . 3

2. Background 5
2.1. Multiphysics problems . 5

2.1.1. Overview . 5
2.1.2. Numerical approaches . 5
2.1.3. Coupling techniques . 6

2.2. Heat transfer and thermal modeling . 7
2.2.1. Foundations of heat transfer . 8
2.2.2. Heat transfer in space . 9
2.2.3. Numerical methods . 10

2.3. preCICE . 11
2.3.1. Overview . 11
2.3.2. Configuring preCICE . 12
2.3.3. A preCICE adapter . 14
2.3.4. Mapping . 14
2.3.5. Communication and process mapping 17

2.4. Ray tracing . 18
2.4.1. Reflection of rays . 19

2.5. Interfacing MATLAB with C++ . 19
2.5.1. MEX and Engine APIs . 19
2.5.2. C MEX API and C Matrix API 20
2.5.3. C++ MEX API and C DATA API 21
2.5.4. Data handling in MATLAB and in the MEX APIs 21
2.5.5. Out-of-process execution . 23

2.6. Existing implementation of TherMoS . 23
2.6.1. Overview . 23
2.6.2. Solver implementation . 24
2.6.3. Ray tracer implementation . 25

xi

Contents

2.6.4. The memory map based interface 25
2.6.5. Multi-GPU parallelization . 26

3. Implemenation 29
3.1. Matlab bindings . 29

3.1.1. Requirements discussion and API choice 29
3.1.2. Description of the implementation 30
3.1.3. Out-of-process variant . 33

3.2. Coupling Configuration . 34
3.3. MATLAB solver adapter . 35
3.4. Ray tracer adapter . 36

3.4.1. Floats in the ray tracer . 36
3.4.2. Broadcast-reduction approach in the ray tracer 37

4. Results and conclusions 41
4.1. Results . 41

4.1.1. Test system . 41
4.1.2. Validation of Results . 41
4.1.3. Performance Tests . 42

4.2. Conclusion . 44
4.3. Future work . 45

4.3.1. On the MATLAB bindings . 45
4.3.2. On TherMoS . 46

A. Full code for TherMoS coupling 49
A.1. Configuration file for TherMoS . 49
A.2. TherMoS solver adapter . 52
A.3. TherMoS ray tracer adapter . 55

A.3.1. Common function . 55
A.3.2. Original variant . 57
A.3.3. Conservatie mapping variant . 62

xii

1. Introduction

It happens that on the very day that this thesis is being submitted, exactly fifty years
have passed since the Saturn V rocket of the Apollo 11 mission entered a lunar orbit[1].
One day later, it landed on lunar surface, allowing the first human beings to set foot on
the Moon and thus marking a momentous milestone in aerospace endeavors.

In these fifty years, the world has changed incredibly. Technological advancements
have pushed the limitations to the capabilities of humanity further and further, often
beyond our own imagination. Among countless others, these advancements have, of
course, also impacted the domain of spaceflight. Nowadays, humanity is gearing itself
up for landing on Mars.

Planning a space mission poses numerous challenges: The absence of breathable air in
space and the huge distances to overcome may be the most evident examples. An aspect
no less important than these is the necessity to cope with extreme temperatures: The
Sun’s radiation heats the surface of celestial bodies with distressing rapidity, while in
the absence of sunlight, temperatures drop to barely imaginable lows. This environment
is hostile not only to astronauts, but also to the spacecrafts themselves and other equip-
ment. Consequently, thermal simulation is a vital part of preparing aerospace missions.
With the increase of computational power, the computation of transient thermal models
has become possible and gained significance.

There are several peculiarities to thermal models on the Moon as opposed to the
Earth. First of all, the aforementioned lack of an atmosphere in space means there is
no or negligible heat transfer via convection, which is often the dominant heat transfer
mechanism on Earth. Thus, especially radiative heat transfer plays a core role in lunar
thermal simulations. Secondly, the countless smaller celestial bodies that have impacted
the Moon’s surface over the eons have rendered it a very rugged and rough surface.
While some areas are exposed to full sunlight, other spots only a few meters away may
be shadowed completely, resulting in huge temperature differences. This means that
high spatial accuracy is required for lunar thermal models.

The task of simulating and computing radiative heat transfer is very complex, as it
involves determining view factors between the surfaces exchanging heat via radiation.
Computing these analytically is nigh impossible. For this reason, it has become common
to use ray tracing for this task. This is implemented, for example, in one of the leading
softwares in aerospace industry, the ESATAN-TMS thermal modeling suite[33].

Ray tracing is a task which can be performed particularly efficiently on Graphics
Processing Units (GPUs). In 2013, Philipp Hager proposed a new thermal simula-
tion tool specifically geared towards transient models for moving objects on the Moon
surface[21]. His tool, named Thermal Moon Simulator (TherMoS), was mainly developed
in the widespread MATLAB software[25], but it uses an interface to a ray tracer, which

1

1. Introduction

is based on NVIDIA’s OptiX framework[35]. This framework is based on CUDA[36],
which is NVIDIA’s language for general purpose computing on GPUs, thus allowing
TherMoS to exploit the advantages of GPUs.

The use of multiple components in a software always poses an extra challenge: How
can the components be coupled? This question is even more important in scientific
software, where good performance is naturally required. The existence of an interface
always induces overhead due to synchronization and communication, and it is desirable
to minimize this overhead. The original implementation simply used comma-separated
text files for communication, which was easy to implement, but extremely slow. In early
2018, Mohammad Alhasni improved TherMoS by extending the existing implementation
to work with multiple GPUs instead of just one. In the course of his work, he also
developed a new interface using memory mapped files, which yielded a significant speed
up.

A collaboration of scientific computing chairs at German universities develops a library
named Precise Code Interaction Coupling Environment (preCICE) allowing users to
couple scientific codes[6]. The library in mainly used in the fields of Fluid Structure
Interaction (FSI) and Conjugate Heat Transfer (CHT), but it can be used in other fields
as well. The main aim of this thesis is to delegate the coupling necessary in TherMoS
to preCICE and to discuss the results.

1.1. Motivation and Goals

A simple question arises: Why? Which benefit comes from replacing the existing inter-
face with the preCICE library?

From the perspective of TherMoS. First of all, the change may improve TherMoS
from a software engineering perspective. The current interface provides only a straight-
forward data exchange mechanism and is restricted to the existing components. In
contrast, preCICE is designed to allow black-box coupling between arbitrary solvers.
Thus, if either of the components is replaced by different implementations in the future,
or if further functionalities are extracted from the MATLAB component into separate
components, this can be performed easily, as opposed to completely restructuring the
code. Furthermore, preCICE does not only offer a simple interface for communication. It
comes with a number of built-in coupling features that can be used without writing extra
code. Among these features is a palette of parallel and implicit coupling schemes includ-
ing post-processing methods to increase the stability of the coupled algorithm and the
accuracy of solutions. This is something which may be interesting for TherMoS: While
TherMoS is not reliant on the increased stability coming with implicit coupling schemes,
it would still be interesting to try whether more sophisticated coupling techniques in-
crease the performance or the accuracy of solutions. Implementing these techniques
without preCICE would require a complete restructuring of the implementation - with
preCICE, this comes down to a simple change in the configuration.

2

1.2. Thesis structure

From the perspective of preCICE. However, beyond that, the work done in this
thesis is also interesting for the developers of preCICE. As mentioned earlier, preCICE
understands itself as general-purpose multi-physics coupling library, but up to now, it
has hardly been used outside FSI and conjugate heat transfer. The coupling for TherMoS
is thus a welcome case study to survey the usability of preCICE in a hitherto untested
physical setup.

Apart from that, the usage of preCICE for TherMoS also requires the implementation
of MATLAB bindings for preCICE. This is a feature that had been requested for a
while, since MATLAB is one of the most widespread languages1 in engineering today.

Finally, TherMoS also runs on hybrid architecture due to one component running on
the CPU and the other component running on GPUs. To the best of out knowledge,
preCICE has not been used on hybrid architectures before.

1.2. Thesis structure

The thesis is organized as follows. Chapter 2 will introduce the necessary prerequisites.
We start with the theoretical background of coupled problems and heat transfer and
move on to the tools for tackling these problems: preCICE as a library to solve coupled
problems and ray tracing to compute radiative heat fluxes. Next, we introduce the
C++ APIs provided by MATLAB, which are used in both the previous implementation
of TherMoS and the MATLAB bindings for preCICE. We close the chapter by describing
the existing implementation of TherMoS.

In Chapter 3, we move to the author’s implementation. We describe the MATLAB
bindings and the MATLAB adapter for TherMoS based on them. We also describe the
configuration of the coupling in TherMoS and the adapter for the ray tracer. We will
highlight some problems arising from our situation and mention possible solutions.

Finally, in Chapter 4, we present and discuss the results of applying preCICE to
TherMoS, with a focus on performance aspects. We also shed light on some challenges
for the future.

1While MATLAB is mainly a software, it also provides an extensive high-level programming language.
We will therefore refer to it as both language and software throughout this thesis.

3

2. Background

2.1. Multiphysics problems

This section gives a brief explanation of the terms “multiphysics” and “coupled”. It
provides a stub into solution approaches to these kinds of problem, allowing the reader
to classify the approach pursued by preCICE in a broader context.

2.1.1. Overview

The term “multiphysics” is defined differently in the literature [29]. In an attempt to
sum up, a multiphysics problem consists of two1 different components, physical models
or physical phenomena, which have to be taken into account for solving one problem.
Examples include

• Fluid Structure Interaction problems, which model the interaction between a fluid
and a flexible solid[7]. For instance, simulating the flow of blood in an artery is a
FSI problem.

• Radiation Hydrodynamics (RHD), which deals with electromagnetic radiation af-
fecting the behavior of a fluid[8].

To solve a multiphysics problem, it is necessary to treat not only the two individual
components, but also the interaction between them, which is known as coupling. Multi-
physics problems can be subdivided into two classes, depending on where the coupling
occurs[27]: The coupling may either span the whole physical domain, as it is the case
in RHD, which is termed bulk coupling or volume coupling. Or, it can occur only at an
interface of lower dimension, like for example in FSI.

2.1.2. Numerical approaches

In general, two different approaches are possible to tackle coupled problems numerically.
On the one hand, we can follow a monolithic approach. I.e., the problem is formulated
in one global system of equations and solved with a solver exclusively devoted to the
problem as a whole. Alternatively, it is possible to follow a partitioned approach: For
each component, we can use a solver which is devoted to dealing with one of the compo-
nents involved, and couple these solvers in a black-box way. To implement this, we use

1Naturally, a multiphysics problem may also consist of more than two components. However, for the
sake of simplicity, we confine ourselves with two components.

5

2. Background

a library or framework which enables communication between two solvers and provides
techniques to couple the solvers. Several such tools are available, like C-Coupler[32] or
the preCICE library we will use.

Both approaches have advantages and disadvantages. Partitioned problems often
suffer from robustness issues or require a longer run time[34]. The monolithic approach
can deal with the structure of the problem in a better way. Solving the arising equiation
system can be challenging, but a number of well-studied preconditioners can be found
in literature, see, for example, [17].

The great downside of monolithic solvers, however, is the necessity to develop a solver
from the beginning. A good reason to follow the partitioned approach is that in many
cases, well-developed solvers for the individual components of the problem already exist.
The approach enables us to reuse these solvers. This greatly reduces the amount of code
that needs to be written and maintained. In the case of interface coupling, performing
a black-box coupling furthermore does not require knowledge of or access to all internal
details of the solvers – it suffices to know about the discretization at the coupling in-
terface. Beyond that, using a flexible black-box interface also allows to modify or even
replace the solvers on either side without the need to adapt the other solver. In other
words, the partitioned approach implies low coupling of the software components, which
is desirable from a software engineering perspective[5].

There are also approaches that lie between the two extremes of fully partitioned and
fully monolithic coupling, e.g., Mortar methods[3].

2.1.3. Coupling techniques

We will now briefly discuss different coupling techniques for black-box coupling as de-
scribed above. That is, we assume that we have two solvers for our subproblems at hand.
Roughly speaking, the question we want to answer is how often and in what order we
will execute our solvers. The discussion here is based on the third chapter of [42], which
is specifically about FSI, but it applies to other multiphysics problems as well.

We formally write the two solvers as two operators F and G acting on the coupling
scheme:

F : Rn → Rm, F (x) = y, and G : Rm → Rn, G(y) = x,

where m,n ∈ N depends on the size of the coupling interface and the amount and
dimension of data communicated. The application of F resp. G corresponds to the
computation of a single time step in one of the solvers. One solver takes a certain
physical quantity x as input and returns a different quantity y, while the other takes y
as input and returns x. In FSI, for example, a structure solver computes displacements
on the structure x from the forces y acting on the structure. The fluid solver, on the
other hand, computes velocities and forces y arising from the displacements x.

We now have to choose a coupling scheme which describes how the coupling of the
components is carried out. Coupling schemes can be categorized in two ways: They can
be either explicit or implicit, and both explicit or implicit schemes can be either serial
or parallel. In the following, let x(j) and y(j) be the solutions computed in the j-th time

6

2.2. Heat transfer and thermal modeling

step. We start with explicit schemes.
Serial means that the solvers are executed in a staggered way, i.e. either solver blocks

while the other one is running, and results are exchanged between the runs. This means
that the results of the next steps are obtained as

y(j+1) = F
(
x(j)
)

, x(j+1) = G
(
y(j+1)

)
.

Parallel coupling, on the other hand, means that the solvers are applied simultaneously
to the results of the previous time step, allowing them to run in parallel. This can, for
example, be done as

y(j+1) = F
(
x(j)
)

, x(j+1) = G
(
y(j)
)

or
x(j+1) = (G ◦ F)

(
x(j)
)

, y(j+1) = (F ◦G)
(
y(j)
)

depending on the structure of the problem. Note that it is important to distinguish
between a parallel solver and parallel coupling: One or both of our solvers might already
be implemented to run in parallel on multiple cores. However, they can still be coupled
to the other solver either in a serial way or in a parallel way, if additional cores are
available.

As stated previously, the equations above resemble explicit coupling: All solvers are
only executed once or a fixed number of times per simulation time step. In contrast
to this, implicit coupling means that the solvers are executed multiple times during a
single simulation time step to reach an equilibrium solution for this time step. In other
words, we solve the fixed-point equation

y(j+1) = F
(
x(j+1)

)
, x(j+1) = G

(
y(j+1)

)
.

Note that the x(j+1) and y(j+1) computed by the explicit schemes do in general not satisfy
this equation. To solve this equation, we apply a fixed-point iteration - i.e., the solvers
are run multiple times to compute iterative solutions x

(j)
k , y

(j)
k for k = 0, 1, 2, . . . which

converge to the equilibrium solution. Since simple fixed-point iterations may converge
very slowly or not at all[28], it is common to apply a post-processing method after each
iteration to improve the current iterate in some sense. There are multiple post-processing
methods, ranging from simple underrelaxation schemes to sophisticated Quasi-Newton
methods[42].

Clearly, explicit coupling is a lot cheaper, since the number of calls to the solver
is limited. However, implicit coupling is usually more stable and gives more accurate
results. Depending on the problem, explicit coupling is often not sufficient to give a
stable solution. A well-known example for this phenomenon is the added-mass effect in
FSI[9].

2.2. Heat transfer and thermal modeling

This section will give a brief introduction to heat transfer. Since our work focuses on
the implementation of the coupling, we will omit most details and refer the interested

7

2. Background

Figure 2.1.: Illustration of the different mechanisms of heat transfer. Figure taken from
[26]

reader to our literature references. The introduction given here is derived from the books
of Çengel [10] and Incropera [26]. The interested reader may consult these books for
further information; to the German reader, we further recommend [37].

2.2.1. Foundations of heat transfer

Heat is a form of energy that can be transferred between physical systems of different
temperature. The temperature gradient causes energy to be transferred from one system
to the other, which in turn causes the temperatures to change.

Heat is usually denoted by Q. The speed at which heat is transferred, i.e., the amount
of heat transferred per unit of time, is called heat transfer rate and denoted by Q̇. Its
unit is W. The quantity we will be concerned with most of the time is the heat flux, which
is the heat transfer rate per unit of area orthogonal to the direction of heat transfer. We
denote it by q and its unit is W ·m−2. [10, Section 1-3]

In general, there are three different types of heat transfer, which we will briefly describe
in the following paragraphs. Figure 2.1 illustrates the different mechanisms.

Conductive heat transfer occurs through solids or stationary fluids. The molecules
of each body with a temperature above 0 Kelvin are in constant movement, which
causes collisions with other molecules. Due to these collisions, energy is transferred
from molecules with higher energy to molecules with lower energy. As a consequence,
heat transfer occurs on a macroscopic scale in the direction of decreasing temperature.

Conductive heat transfer is quantified in Fourier’s law of heat conduction. This law
states that the conductive heat transfer rate Q̇cond in direction x across an area A is
given by

Q̇cond = −kAdT

dx
,

8

2.2. Heat transfer and thermal modeling

where dT
dx

is the temperature gradient in direction x and k is the thermal conductivity, a
constant depending on the material.

Convective heat transfer describes heat exchanged between a surface and a moving
fluid or gas which is in contact with the surface. This actually consists of two different
mechanisms: On the one hand, energy is exchanged on a microscopic scale through
molecular motion. On the other hand, the macroscopic motion of the fluid resp. gas
transports heat as well. Convective heat transfer is governed by Newton’s law of cooling,
which we omit since we will not need it in the following.

Radiative heat transfer is the exchange of energy by electromagnetic waves. Changes
in the electronic configuration of atoms or molecules induce the emission of radiation
at different wave lengths. In contrast to the other mechanisms, the radiation requires
no medium to travel and thus also occurs in vacuum. The Stefan-Boltzmann equation
states that the radiative heat-transfer rate Q̇rad emitted by a surface of area A in vacuum
is given by

Q̇rad = εAσT 4
s ,

where Ts is the absolute temperature of the surface, σ is a constant called Stefan-
Boltzmann constant and 0 ≤ ε ≤ 1 is, again, a constant depending a material, the
so-called emissivity2.

When radiation from a different body arrives at an opaque surface, part of it is ab-
sorbed, while the remaining part is being reflected3. The fraction of incoming radiation
absorbed by a body is termed absorptivity α. It holds 0 ≤ α ≤ 1.

For two given surfaces, the radiative flux between them can be computed as

qij = −αjεiσFi,j(T
4
j − T 4

i)

where the subscript indices are used to denote the two different surfaces. Here, Fi,j is
the view factor (or configuration factor) between the surfaces, which is obtained as

cos θi cos θj
πd2ij

Aj.

Here, dij is the length of the straight line between the centers of the surfaces, and θi is
the angle between this line and the surface normal of the respective surface.

2.2.2. Heat transfer in space

The goal of our application is to perform thermal modeling on the Moon surface. This has
a very important consequence: Since the atmosphere of the Moon is negligible and there
are no fluids on the Moon, convective heat transfer is negligible. In contrast, radiative

2In fact, emissivity and also the absorptivity discussed later depend on the material’s temperature,
but this is ignored in most applications.

3For transparent surfaces, a part of the radiation will also pass through the surface.

9

2. Background

heat transfer becomes a very important mechanism, since radiation can travel through
the vacuum unhindered, while it is attenuated in other physical media. Conductive
heat transfer also occurs in the interior of a celestial body (the Moon, in our case) or a
spacecraft.

Spacecrafts and equipment involved in a space mission are all subject to certain tem-
perature constraints. For example, electronic devices will only operate as long as their
temperature remains in certain ranges. Of course, the same applies to astronauts in
manned space missions. This gives rise to the necessity of thermal control : When plan-
ning the mission, steps must be taken to ensure that the temperatures stay within the
constraints. This can be done passively by a careful choice of materials and surface coat-
ings to impact the absorptivity and emissivity of the equipment, or actively by adding
heating or cooling devices.

To determine the requirements of thermal control, programs like TherMoS are used
to perform thermal modeling. I.e., the temperatures that the equipment will be exposed
to during its mission are computed numerically.

2.2.3. Numerical methods

For numerical computations, the physical domain in question is discretized. There are
various different numerical approaches to perform the computations. The most popular
of these are Finite Difference Methods (FDM), Finite Element Methods (FEM) and
Finite Volume Methods (FVM). While FEM have been on the rise in the last decades
due to their accuracy and low requirements on regularity, the discipline of spacecraft
thermal modeling is dominated by a special variant of FVM known as Lumped Parameter
Methods (LPM).

In LPM, the physical environment is discretized into a number of elements, mostly
triangles or quads for surfaces and cubes for three-dimensional bodies. As a simplifi-
cation, all quantities important for the simulation – temperature, heat fluxes, material
properties, and the like – are averaged across the element and assumed to be lumped at
a thermal node, hence the name of the method. The thermal node is usually placed in
the center of the element.

To compute a transient thermal model, temperatures in each time step are used to
compute conductive and radiative fluxes between the nodes. These are, in turn, used to
compute the temperatures for the next time step.

Based on Fourier’s law, the conductive heat transfer rate between to elements can be
computed as

Q̇ij = −kA
d

(Ti − Tj) ,

where A is the cross-sectional area of the interface between the elements and d is the
distance between the thermal nodes. Computing these fluxes is straightforward: Since
conductive heat transfer requires physical contact, it is sufficient to consider pairs of
elements which are adjacent to each other. Two elements without a common boundary
can not exchange energy conductively.

10

2.3. preCICE

For radiative heat fluxes, this is significantly more involved: Any two elements can
exchange heat via radiation as long as they can “see” each other. In other words, it is
necessary to compute the view factor Fij between the elements, and also to determine
whether other elements located “between” the two elements in question obstruct the
view. This is far from trivial, in fact, it is usually impossible to do analytically. As a
consequence, several numerical solvers for thermal modeling perform this task via ray
tracing.

2.3. preCICE

This section will give an introduction to preCICE, focusing on the perspective of the
users and giving small insights into the implementation where it is important for our
work.

2.3.1. Overview

preCICE is being developed jointly by the Chair of Scientific Computing at the Technische
Universität München (TUM) and the Institute for Parallel and Distributed Systems at
the University of Stuttgart. The current release and the whole source code are avail-
able on GitHub[38], along with an extensive wiki[40]. preCICE is a library mainly
implemented in C++ which allows partitioned black-box coupling for arbitrary physical
solvers. The library is geared towards surface coupling as opposed to volume coupling
described in Section 2.1. In principle, however, it could also be used for bulk coupling.
preCICE also supports the coupling of more than two solvers, but like in Section 2.1,
we will assume that we only have to deal with two solvers for the sake of simplicity.

As opposed to a framework approach, preCICE follows a more flexible library ap-
proach: It is not an application itself, rather, it provides an API which is called by the
solvers. The user needs a so-called adapter calling the library functions for each solver
he wishes to couple. For many popular both open source and commercial solvers, like
OpenFOAM, ANSYS or FEniCS, there exist ready-to-use adapters which are actively
maintained by the preCICE developers. For other solvers or in-house codes, users have
to write adapters themselves. The preCICE wiki offers a step-by-step tutorial detailing
how to do this.

preCICE is written in C++, hence, the original API is in written in C++, too. To
simplify writing adapters for solvers in different languages, preCICE offers binding for
other languages, like Python and Fortran, allowing solvers written in these languages to
access the library without writing C++ code.

One of the main ambitions of preCICE is to support massively parallel simulations.
To achieve this, preCICE allows easy integration into existing Message Passing Inter-
face (MPI) environments. A unique selling point is the use of a parallel peer-to-peer
concept: The processes on either side of the coupling communicate directly with each
other without requiring a central instance.

11

2. Background

Most of the library revolves around a class named SolverInterface. An adapter
instantiates an object of this class and configures it using an XML configuration file.
Afterwards, the coupling is initialized, and the solver blocks until a connection to the
other solver has been established. Once the solvers are successfully connected, they can
optionally set initial values for the coupling data before entering a computational loop,
which performs the actual time stepping.

For a better understanding of the capabilities of preCICE and the steps to develop
codes coupled with preCICE, we will detail the structure of configuration files and
adapters in the following subsections.

2.3.2. Configuring preCICE

An example configuration file is shown in Listing 1. We give a rough overview here, for
details we refer to the corresponding pages in the preCICE wiki[40].

We first provide the physical dimension of the solver, which defines the dimension of
vector data and the coordinates of mesh vertices. Currently, preCICE only supports two
or three dimensions. Next, we set up a nomenclature for the data to be communicated
between the solvers.

Afterwards, meshes are introduced. We specifiy the names of meshes involved in the
simulation and declare the data associated with each mesh. Usually, there will be one
mesh for each solver, but additional meshes can be specified as desired. At this point,
we do not yet declare the geometry of the solvers. This is done in the adapters instead.

Once meshes and data are defined, it is possible to declare the solvers participating in
the simulation. For each solver, we should specify which meshes they use and which data
they read and write. In this context, “writing” means that the data is made available to
other solvers, while “reading” means that data written by a different solver is obtained.
Each mesh must be provided by one solver, which means that this solver is responsible
for declaring the geometry of the mesh to preCICE. Solvers may use meshes that were
provided by other participants. In this case, the from attribute is used to specify the
participant that provided the mesh. In addition, it is necessary to define a mapping
between the meshes. Details about mapping configuration are given below.

The next thing to do is specifying the communication between the participants. This
is done in the m2n tag. preCICE supports communication either via TCP/IP sockets or
MPI Ports, a feature included in version 2.0 of the MPI standard[20]. While MPI ports
are usually faster, the preCICE developers recommend using sockets due to stability
issues of the ports[40]. If either of the solvers is parallel, a master tag has to be added to
inform preCICE about the communication inside the solver. If the solver is parallelized
using MPI, the easiest way to do this is to set <master:mpi-single>.

Finally, we can define a coupling scheme. preCICE supports the whole array of meth-
ods discussed in Section 2.1: Both explicit and implicit as well as both serial and parallel
coupling are available, along with a number of post-processing schemes for the implicit
methods.

12

2.3. preCICE

1 <precice-configuration>

2

3 <solver-interface dimensions="2" >

4

5 <data:vector name="x" />

6 <data:scalar name="y" />

7

8 <mesh name="MeshOne">

9 <use-data name="x" />

10 <use-data name="y" />

11 </mesh>

12

13 <mesh name="MeshTwo">

14 <use-data name="x" />

15 <use-data name="y" />

16 </mesh>

17

18 <participant name="SolverOne-serial">

19 <use-mesh name="MeshOne" provide="yes"/>

20 <write-data name="x" mesh="MeshOne" />

21 <read-data name="y" mesh="MeshOne" />

22 </participant>

23

24 <participant name="SolverTwo-parallel">

25 <master:mpi-single/>

26 <use-mesh name="MeshOne" from="SolverOne"/>

27 <use-mesh name="MeshTwo" provide="yes"/>

28 <mapping:nearest-neighbor direction="write" from="MeshTwo" to="MeshOne"

constraint="conservative"/>↪→

29 <mapping:nearest-projection direction="read" from="MeshOne" to="MeshTwo"

constraint="consistent" />↪→

30 <write-data name="y" mesh="MeshTwo" />

31 <read-data name="x" mesh="MeshTwo" />

32 </participant>

33

34 <m2n:sockets from="SolverOne-serial" to="SolverTwo-parallel"

distribution-type="gather-scatter"/>↪→

35

36 <coupling-scheme:serial-explicit>

37 <participants first="SolverOne-serial" second="SolverTwo-parallel" />

38 <max-timesteps value="10" />

39 <timestep-length value="1.0" />

40 <exchange data="x" mesh="MeshOne" from="SolverOne-serial"

to="SolverTwo-parallel" />↪→

41 <exchange data="y" mesh="MeshOne" from="SolverTwo-parallel"

to="SolverOne-serial"/>↪→

42 </coupling-scheme:serial-explicit>

43

44 </solver-interface>

45

46 </precice-configuration>

Listing 1: Example for a preCICE configuration file. Adapted from [38].

13

2. Background

2.3.3. A preCICE adapter

Listing 2 gives pseudo code demonstrating the structure of preCICE adapters.

As mentioned before, the API revolves around an instance of the SolverInterface

class. First of all, we call configure() to read and process the configuration file written
previously.

Afterwards, we declare the coupling mesh to preCICE by setting coordinates for all
vertices that carry data to be communicated in the coupling. The setMeshVertices

function returns IDs that preCICE internally attributes to the specified vertices. These
IDs are used to refer to the vertices in the following.

Calling initialize() launches the coupling and returns as soon as a connection to
the other solver has been established. Once this is successful, preCICE will compute the
mappings between the meshes as specified in the configuration file.

Before entering the computational loop itself, the solver may initialize data as specified
in the configuration file. After completing this, it calls initializeData(). Much like
initialize(), this function blocks until all solvers have called it.

The loop itself is controlled by the isCouplingOngoing() function. In every loop
iteration, the adapter should first read data from the other solver, then run the solver
itself, and write the data back. Afterwards, they call the advance function. This function
steers the execution based on the coupling scheme specified in the configuration file.

After both solvers exited the computational loop, finalize() is called to clean up.
The input arguments rank and size to the SolverInterface constructor allow for

initializing preCICE in an existing MPI environment. The user should call MPI Init()

before instantiating the interface. Thus, each process will call the constructor by itself.
The size of MPI COMM WORLD and the rank of the process within this communicator should
then be passed to the constructor. It is assumed that the coupling mesh has been
partitioned and distributed among the processes previously. Each process should only
declare its part of the coupling mesh to preCICE. The entire coupling mesh consists of
the parts specified individually by each process.

preCICE itself uses MPI to establish communication via MPI ports, and to determine
the master of a parallel participant if the <master:mpi-single> tag was used. For this
reason, preCICE will initialize MPI if this was not done by the solver previously. Notably,
preCICE will call MPI Init() even if sockets are used for communication. This can cause
unexpected problems. For example, the author experienced an issue when writing the
MATLAB bindings discussed in section 3.1. Certain builds of OpenMPI cause MATLAB
to crash if MPI Init() is called from the MATLAB process due to compatibility issues.
As a consequence, the bindings could not be used if MATLAB was built with OpenMPI.
If users face issues of this kind, the only remedy is to compile preCICE itself without
MPI.

2.3.4. Mapping

As stated before, preCICE is designed for interface coupling. The two solver will usually
operate on entirely different domains. As a consequence, the interface meshes of the

14

2.3. preCICE

1 turnOnSolver(); // e.g. some setup steps

2

3 precice::SolverInterface interface("SolverTwo",rank,size);

4 interface.configure("precice-config.xml"); // configuration file

5

6 // mesh declaration

7 int dim = interface.getDimensions();

8 int meshID = interface.getMeshID("MeshTwo");

9 int numVertices = getInterfaceSize();

10 double* coordinates = new double[vertexSize*dim];

11 getCoordinates(coordinates);

12 int* vertexIDs = new int[vertexSize];

13 interface.setMeshVertices(meshID, vertexSize, coords, vertexIDs);

14

15 // preparing buffers to hold coupling data

16 int xID = interface.getDataID("x", meshID);

17 int yID = interface.getDataID("y", meshID);

18 double* x = new double[vertexSize*dim];

19 double* y = new double[vertexSize];

20

21 double dt; // timestep size

22

23 dt = interface.initialize();

24

25 // Initializing coupling data

26 getInitialData(x); // initial Data is returned in x

27 if(interface.isActionRequired(actionWriteInitialData())){

28 interface.writeBlockVectorData(xID, vertexSize, vertexIDs, x); //

writes data in x to the other solver↪→

29 interface.fulfilledAction(actionWriteInitialData());

30 }

31 interface.initializeData();

32

33 while (interface.isCouplingOngoing()){ // time loop

34 endTimeStep();

35 interface.readBlockScalarData(yID, vertexSize, vertexIDs, y); //

data from the other solver is stored in y↪→

36 executeSolver(y,dt,x);

37 interface.writeBlockVectorData(xID, vertexSize, vertexIDs, x);

38 dt = interface.advance(dt);

39 endTimeStep();

40 }

41 interface.finalize(); // free memory, close communication

42 turnOffSolver();

Listing 2: Example for a preCICE adapter. Adapted from [40].

15

2. Background

two solvers will usually not match. The interface meshes might coincide, but their
vertices could still be at different positions if either mesh is coarser than the other one.
Alternatively, they may even exhibit a completely different geometry, and thus overlap.
Figure 2.2 shows examples. Hence, it is necessary to find a way of mapping data from
one mesh to the other. For this purpose, preCICE offers different mapping methods that
vary in their complexity and accuracy.

The easiest method is nearest neighbor mapping. In this case, vertices in one mesh
will simply be mapped to the closest vertex in the other mesh. This mapping is cheap
to compute and simple, but also a first-order method and thus usually very inaccurate.
In most applications, it will not give sufficiently accurate results.

For better results, preCICE provides the second order nearest projection method.
In this method, a vertex of one mesh is projected onto a face of the other mesh. Af-
terwards, interpolation is used to compute the actual mapping. Nearest neighbor and
nearest projection mapping are illustrated in Figure 2.3. Precice further offers the more
sophisticated radial basis function mapping, which we will not discuss here. We refer
the interested reader to [31].

Either of the mapping techniques may be used either for consistent or conservative
mapping. The difference between these constraints is visualized in Figure 2.4. For
exact definitions, we refer to Chapter 4 of [42]. Conservative mapping ensures that
the sum over the values at all nodes is conserved in the mapping. In contrast, the
crucial property of consistent mapping is the preservation of constant functions. This is
desirable for properties that are normalized in some sense.

If either of the solvers is parallel, then preCICE only allows consistent read mappings
and conservative write mappings, since these mappings are always unique. Consistent
write mappings resp. conservative read mappings may be ambiguous, as illustrated in
[42]. It is, therefore, good practice to always confine ourselves to these kinds of mapping.

Figure 2.2.: Examples of non-matching coupling meshes. Figure taken from [16]

16

2.3. preCICE

x1 x2 x3 x4 x5

x1 x3 x4

x1 x2 x3 x4 x5

x1
1
3
x2 + 2

3
x3

2
3
x4 + 1

3
x5

Figure 2.3.: Nearest neighbor mapping (left) versus nearest projection mapping.

x1 x2 x3 x4 x5

x1 + x2 + x3 x4 + x5

x1 x2 x3 x4 x5

x2 x4

Figure 2.4.: Conservative mapping (left) versus consistent mapping (right)

2.3.5. Communication and process mapping

As mentioned earlier, preCICE follows a peer-to-peer concept. The processes of solvers
coupled via preCICE communicate directly with processes in the other solver instead of
communicating their data via a central instance[39]. Thus, the user should not think
of preCICE as a broker between the peers. Rather, the library simply abstracts away
the explicit implementing of ports, sockets or other interprocess communication tools.
This approach prevents the creation of a bottleneck at a central instance and enables
massively parallel simulations.

This feature is reflected in the way preCICE handles data mapping for parallel solvers.
If two parallel solvers are coupled, both have distributed their mesh among their pro-
cesses. In most cases, the submesh of a certain process in one solver overlaps only
with a small subset of the submeshes of the other solver’s processes. In other words,
each process needs to communicate only with a subset of the other solver’s processes.
This is taken into account by preCICE: When computing a mapping of the meshes, it
also computes a mapping of the processes to reduce communication overhead as far as
possible.

In the current preCICE implementation (version 1.5.0), the mapping is computed only
once during the initialization phase, before entering the computational loop. Therefore,
preCICE can not directly handle adaptive mesh refinement. However, this is planned to
be supported in the future.

17

2. Background

2.4. Ray tracing

This section gives a brief introduction to the principles of ray tracing. Extensive material
on the topic is found for example in [19] and [41].

The method of ray tracing was mainly developed for rendering images, e.g. in com-
puter games. It follows a very simple and straightforward idea: First, the rendering
method sets up the geometry of the scene and an image plane representing the view
of the observer. Afterwards, the method casts rays representing photons and computes
their paths through the scene. Whenever the ray hits an object in the scene, part of its
energy is absorbed and the rest is reflected in a specular and/or diffusive way, depending
on the material properties of the object hit.

Ray tracing methods fall into two categories[19]: In forward ray tracing methods, the
rays are cast from the light sources in the scene. Rays that hits the image plane are
accounted for to compute the color value at the respective coordinate to finally render the
whole image. In contrast to that, backward ray tracing methods cast rays from the image
plane and trace them until they hit light sources. This variant is significantly cheaper,
since the number of rays cast is bounded by the size of the image plane. Therefore,
image rendering methods today almost exclusively use backward ray tracing[19] or hybrid
techniques[22]. However, backward ray tracing is only applicable if we are only interested
in the image plane. If we are interested in results on the whole scene, using forward ray
tracing is imperative.

Since radiative heat transfer is based on electromagnetic waves, the method of ray
tracing can be used to compute radiative heat transfer between the elements in thermal
modeling: Rays are launched from each element in the discrete scene. They carry a
certain amount of energy depending on the thermal energy of the element they were
launched from. They are traced until they leave the scene or hit other elements. When
hitting a surface, part of the energy is conferred to the surface hit, while the remaining
energy is reflected in the form of other rays cast from the surface. This way, we can
compute the radiative heat fluxes. For transient models, the fluxes have to be computed
in each time step. There is an alternative to this: If the elements in the scene are
stationary with respect to each other, the view factors Fij in the radiative heat transfer
equation are not time-dependent. Hence, it is possible to compute them only once, store
them and insert them into the equation whenever the fluxes are being computed. This
approach is used in ESATAN, for example[21].

Since TherMoS is geared towards simulating the movement of a spacecraft across the
Moon surface, it follows the approach mentioned first. Apart from that, storing the
view factors may be problematic anyway, as it consumes lots of memory. While some
of the entries are equal to 0, the matrix (Fij)ij is in general not sparse. This is easy to
imagine: Assume that our scene contains the surface of a concave element, e.g., a crater.
From the definition of the view factors, we can see that in this case, all view factors
corresponding to two elements of the crater are non-zero. Hence, the storage required
for the view factor will usually be quadratic in the number of elements. This can lead
to storage problems for large scenes.

18

2.5. Interfacing MATLAB with C++

2.4.1. Reflection of rays

If radiation hits an opaque surface, part of it will be absorbed, while the remaining part
will be reflected4. There are two main mechanisms of reflection: Rough surfaces reflect
radiation in a diffuse way, which means that the reflected radiation is scattered in every
direction. Mirrors reflect light in a specular way, which means that an incoming ray is
reflected into only one specific direction, the mirror direction. Most actual surfaces are
neither perfect mirrors nor perfectly diffuse [11]. Therefore, both types of reflection have
to be taken into account.

2.5. Interfacing MATLAB with C++

As stated earlier, the TherMoS ray tracer is implemented in C++, while the remaining
components are written in MATLAB. This means that, in some way, it is necessary to
interface between MATLAB and C++ for TherMoS. Fortunately, MATLAB comes with
a number of possibilities to do this.5 This chapter will introduce the two APIs offered by
MATLAB for interfacing to C++ code. It serves as preparation to explain the existing
implementation on the one hand and the MATLAB bindings on the other hand.

The contents of this chapter are to a large extent derived from the online MATLAB
documentation[24].

2.5.1. MEX and Engine APIs

Roughly speaking, there are two main options: One can either interface from MATLAB
to C++ or from C++ to MATLAB. On the one hand, users can access MATLAB from
C++ code. For this purpose, MATLAB provides so-called Engine APIs. These APIs
can start new or connect to existing MATLAB sessions, invoke MATLAB functions and
exchange data with the work spaces of the session. On the other hand, users may wish to
invoke C++ routines or libraries from MATLAB. Doing this is possible by using MEX
APIs. MEX is short for MATLAB executable. The User has to write a C++ source
file with a certain prescribed structure, called source MEX file. Afterwards, he invokes
the mex command in MATLAB, which interfaces to a C++ compiler to create a special
executable, the binary MEX file. This file can be run by the MATLAB interpreter and
thus be called just like a normal MATLAB function. mex is compatible e.g. with the
GNU compiler for Linux systems[15]6 and numerous compilers on Windows and Mac
systems[23].

4For transparent surfaces, another part of the radiation will be refracted or pass through the surface.
5MATLAB also offers interfaces to other languages, like Java or Python, and many of the things stated

here hold good for these interfaces as well. However, we will only discuss C++ interfaces in our
work.

6It should be noted that MATLAB R2019a officially only supports the GNU compiler version 6.3.x.
For later compilers, a warning is issued when calling the mex command. However, the author
encountered no problems using versions 8.x and 9.x of the GNU compiler for this work.

19

2. Background

The choice between these options mainly depends on the question which of the lan-
guages the application is based on - MATLAB based applications should use the MEX
APIs while C++ based applications should use the Engine APIs.

TherMoS is strongly based on MATLAB. For this reason, MEX functions were used
to interface to the ray tracer. In addition, the purpose of the MATLAB bindings for
preCICE we will discuss later is to provide an interface for existing MATLAB-based
applications. For these reasons, we will only discuss the MEX APIs in the following.

Recent MATLAB releases support two entirely different and non-compatible APIs
for writing C++ MEX files. The original C MEX API has been part of MATLAB for
multiple years. It is used together with the C matrix API to handle MATLAB data. In
R2018a, the new C++ MEX API was introduced alongside another new data handling
API called C Data API. In the following two subsections we will briefly introduce these
APIs.

2.5.2. C MEX API and C Matrix API

Source files written in the C MEX API must include a function named mexFunction

with the following signature:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray

*prhs[])↪→

This function is called gateway routine and essentially replaces the usual main function.
The integers nlhs and nrhs are the numbers of input resp. output arguments the
function is called with from MATLAB, while plhs and prhs are arrays of pointers to
the arguments themselves.

The mxArray data type is defined in the related C Matrix API. It serves as a wrapper
around any kind of MATLAB data.

A problem when using the C MEX API is the lack of support for embedding C++
objects into MATLAB. While it is possible to use object oriented programming inside
the MEX function, there is no support for making objects created in such a function per-
sistent between multiple calls to the function. However, this is exactly what we will need
for the bindings in preCICE: The concept of preCICE is to create a solverInterface

object and repeatedly calling this object’s member functions throughout the solver code
to steer the communication with the other solver. To port this to MATLAB, we need
a MATLAB solver interface object which wraps around an internally managed C++
solverInterface object and interfaces to its methods. Doing this, however, requires
creating an object that persists between calls to the C++ code.

It is possible to work around this problem in several ways [14]. Arguably, the best
solution known to this problem is to create the desired object using dynamically allocated
memory, cast a pointer to the object to an integer using reinterpret cast and return
this integer to MATLAB. There, the integer can be stored as a private property of a
handle object. When calling the same MEX function again, passing the integer allows
to access the object back.

20

2.5. Interfacing MATLAB with C++

This approach works fine and is also safe if the user implements a destructor for the
wrapper class that deletes the C++ object and frees the associated memory. If this is
done properly, there will be no memory leaks as soon as the wrapper object is destroyed
in MATLAB.

Nevertheless, this approach involves intentionally creating memory leaks in the MEX
functions and using reinterpret cast to cast a pointer to an integer, which must be
managed by the programmer. A cleaner solution which does not require using these
concepts is desirable.

Beyond this difficulty, the data handling of the C MEX API can be tricky to users
and cause unexpected side effects. We will detail this in Subsection 2.5.4.

2.5.3. C++ MEX API and C DATA API

The second and much younger API is geared towards a better support for object orien-
tation and modern C++ features. The calls, classes and function used in this API are
completely disjoint to those used in the C MEX API.

C++ MEX API functions are in fact classes, not functions. They inherit from a
superclass matlab::mex::Function defined in the mex.hpp header. When the user
calls the MEX function for the first time, MATLAB internally creates and stores an
instance of this class which persists after the function returns. This object remains until
clear mex is called or MATLAB is closed. Whenever the function is called again, the
previously created object is reused.

The execution flow of the MEX function is defined in the () operator of the MexFunc-
tion object. This operator must be overridden in the definition to take two arguments
of type matlab::mex::ArgumentList, which will hold pointers to the inputs and out-
puts of the function call in MATLAB, respectively. The data itself are encapsulated in
objects of type const matlab::data::array.

Beyond the restrictions on overriding the operator(), the user may add further mem-
bers to the mexFunction class as he pleases. As stated above, these members will persist
between calls to the function, unless the user intentionally removes them by issuing the
clear mex call. This allows to circumvent the problem discussed above: Objects created
in the mexFunction can be retained without any difficulty, as long as no clear call is
issued.

This advantage exhibits the C++ MEX API as a better choice for writing the preCICE
bindings. The following two subsections list two further advantages of using this API
instead of the C MEX API.

2.5.4. Data handling in MATLAB and in the MEX APIs

This subsection contains a digression to explain a further advantage of the new C++
MEX API. We refer the interested reader to [30].

MATLAB is based on copy-on-write semantics. To explain this, let us have a look at
the following example.

21

2. Background

1 >> a = [1,2,3];

2 >> b = a; % No data is copied: b and a reference the same physical

memory↪→

3 >> b(1) = 0; % Copy-on-write: data is copied, a remains unchanged

A newly created variable a internally stores a reference to a certain memory location.
If we create a second variable b and initialize it to be equal to a, then b will store a
reference to the same memory location – the data itself is not copied. Only if either of
the variables is changed, a copy of the data will be created to make sure that the other
variable remains unchanged.

1 function x = foo(x)

2 x(1) = 0; % Copy-on-write triggered

3 end

The very same thing happens in functon calls: If we call foo(a) with the function
defined above, the variable x inside the function remains shared with a. As soon as
the function reaches line 2, the data is copied, such that the input argument a remains
unchanged. As a consequence, in-place editing of variables is not possible in MATLAB
functions: Even if the function above is called via a = foo(a), a copy will always be
created in line 2 of the function.

In the C MEX API, this is different. By using the mxGetPr function, it is possible to
obtain a non-const pointer to the values of an mxArray passed as input argument. It is
now possible to write on the address this pointer points to. MATLAB does not notice
this, thus, copy-on-write is not triggered. As a consequence, it is possible to modify a
variable passed to a C MEX function in such a way that the modification affects the
original variable outside the function.

This can, on the one hand, be advantageous: Copying data always implies overhead.
So, if users willingly and intentionally performs in-place operations, they can avoid this
overhead using MEX functions. On the other hand, this behavior is extremely hazardous
as it can easily cause unexpected and confusing results. Consider, for example, the
following code snippet:

1 >> a = [1,2,3];

2 >> b = a; % Recall that b and a reference the same memory!

3 >> inPlaceEdit(a);

In this case, if inPlaceEdit is a MEX function modifying the contents of a, then it will
modify the contents of b as well ! So, even though b did not even appear in the call, its
value was changed.

The C++ MEX API handles this problem in a much cleaner way: If an input to a
MEX function is accessed without the const keyword, MATLAB will understand this
as a write access and hence create a copy of the data. If we wish to use an input
argument in a read-only way, we can assign it to a const matlab::data::array. In
this case, pointers to the data in the array must be const, too. Otherwise, mex will

22

2.6. Existing implementation of TherMoS

throw a compile-time error. MATLAB will not create a copy of data accessed with the
the const keyword, preventing unnecessary overhead.

Apart from that, the C++ API even supports in-place modifications of arrays to a
degree using the std::move operator. For details, we refer to the documentation [24,
“Avoid Copies of Arrays in MEX Functions”].

2.5.5. Out-of-process execution

In general, a MATLAB instance runs as a single-process application. If a MEX function
is called in MATLAB, then it does not create a new process for the MEX function to
run. Rather, the MEX function is executed directly within the MATLAB process. As a
consequence, subsequent calls to the same MEX function might affect each other even
if the call clear mex is issued in the mean time.

This fact can have a number of unexpected implications which are counter-intuitive
at the first glance. An example for this is the use of MPI Finalize(). The MPI specifi-
cation demands that once MPI Finalize() was called, no other MPI functions may be
called. Now, if a MEX function calls MPI Finalize() either explicitly or implicitly via a
library it uses, then MPI functions can’t be called again later by the same process. Thus,
if the user calls this MEX function twice, the process will abort, causing MATLAB to
crash.

One of the features of the C++ MEX API is the fact that it allows out-of-process
execution. Recent MATLAB version come with the mexhost function. This function
spawns a separate process accessible from MATLAB via a matlab.mex.MexHost object.
MEX functions can now be executed on in this process.

This has a number of advantages: Pitfalls like the example mentioned above can be
prevented by running the MEX function on a new process, if necessary. Moreover, using
mexhost processes allows the use of debuggers and libraries which are not compatible
with MATLAB. Finally, crashes in the MEX function will not cause MATLAB itself to
crash, but merely affect the MEX host process.

On the down side, there is one big disadvantage: Using out-of-process execution causes
huge overhead which may degrade the performance severely if multiple function calls on
the mexhost process are issued.

2.6. Existing implementation of TherMoS

This section describes the original implementation of TherMoS by Philipp Hager [21]
and the changes implemented by Mohammad Alhasni [2].

2.6.1. Overview

The purpose of TherMoS is the planning of space missions that involve a moving object
on the Moon surface. This object can, for example, be a rover or an astronaut, and
is referred to as sample in the nomenclature of TherMoS. The user can define a scene

23

2. Background

representing part of the lunar surface and a path for the sample to move along over
a prescribed time. TherMoS then computes a transient thermal model for the speci-
fied time interval, returning the computed temperatures and fluxes for the time steps
requested by the user.

TherMoS consists of a number of different modules, almost all of which are imple-
mented in MATLAB. The important modules for our work are the solver module and
the ray tracer module, which are jointly responsible for performing the simulation.

TherMoS is controlled by using a graphical user interface. The user specifies the
location of interest on the Moon in terms of coordinates, along with the time span to
be simulated. From this information, TherMoS computes the position of the Sun and
generates a terrain geometry representing a patch of the lunar surface. Afterwards, the
user can create a sample object or load a previously defined one. The user can further
prescribe the path the sample will move along during the simulation.

The lunar terrain and the sample are discretized by subdividing their surface into
triangles. Each triangle corresponds to a thermal node in the sense of the LPM discussed
in Section 2.2. The patch size should usually be in the magnitude of multiple km – the
smaller it is, the less accurate the computations for the sample will be, since radiation
originating outside the patch is not computed and thus neglected. As a consequence,
the size of the sample is usually very small in comparison to the surface patch. Near the
sample, it is important to use a high resolution – in other words, small triangles – for
the terrain to achieve sufficient accuracy at the sample. To save computation time, we
use a lower resolution for the parts of the terrain that are sufficiently far away from the
sample. Thus, the terrain mesh consists of a high resolution part in the middle of the
patch and a low resolution part on the remaining patch.

Once the preparations have been made, the user calls geometric and thermal prepro-
cessing. Geometric preprocessing writes the vertices and triangles of both terrain and
sample geometry to csv files, which can be read by the ray tracer later on. Thermal pre-
processing computes the initial temperatures and writes them to csv files, along with
the material properties required for performing the simulation. Once these steps are
done, the user may run the simulation.

2.6.2. Solver implementation

Performing the simulation consists in repeatedly calling the ray tracer and the solver in
turns. The ray tracer computes the radiative heat fluxes, which is detailed below. The
matlab solver, on the other hand, computes conductive heat transfer rates. To model the
heat exchange between the surface and the interior of the Moon, TherMoS introduces 9
additional thermal nodes below the thermal node of each surface triangle. Thus, each
triangle encompasses a total of 10 thermal nodes which exchange heat by conduction,
while only one of these nodes is taken into account for radiative heat transfer.

The radiative heat fluxes computed by the ray tracer are converted into heat transfer
rates. Afterwards, the solver finally computes the new temperatures by solving the heat
balance equation arising from the lumped parameter method[18].

The original implementation communicated with the ray tracer simply by launching

24

2.6. Existing implementation of TherMoS

it in each time step. Results of both components would be written to csv files and
read in by the respective other component. Alhasni replaced this approach by using a
memory mapped file for communication and a mutex for synchronization. Details are
given below.

2.6.3. Ray tracer implementation

The ray tracer is built around NVIDIA’s OptiX framework [35]. This framework ab-
stracts away most of the Compute Unified Device Architecture (CUDA) implementation
on the GPU itself, allowing programming on a higher level.

The computation happens in a class named optixSimulator. In the original imple-
mentation, this class read the temperatures computed by the solver from csv files and
wrote the results back to csv files. Alhasni implemented two subclasses in his work,
optixSimulatorStandalone and optixSimulatorSynchronized, the former of which
contains the original first implementation and the latter of which implements a synchro-
nized execution of the ray tracer alongside the MATLAB solver.

The radiative heat fluxes computed in the ray tracer fall into two categories, namely,
solar and infrared fluxes.

Solar radiation represents the heat emitted by the Sun. Due to the enormous dis-
tance between the Sun and the Moon, the individual rays arriving on the lunar surface
patch modeled in TherMoS are nearly parallel. Therefore, the computation is done by
introducing an auxiliary parallelogram, the Sun parallelogram, which is located between
the actual position of the Sun and the lunar surface and orthogonal to the direction of
the solar radiation. Rays are then launched from this parallelogram towards the lunar
surface. Figure 2.5 visualizes the setup. A small secondary parallelogram is introduced
in the center of the main parallelogram to take into account the higher resolution in the
center of the scene.

Infrared radiation represents the heat emitted by the lunar terrain itself. Rays are
sampled in random directions from each triangle of the terrain mesh using a cosine-
weighted sampling based on Lambert’s law, which is also used for diffusive reflection.
[2].

Once any ray hits one of the triangles, part of it is absorbed and contributes to the
total energy of the triangle. The remaining part of the ray is reflected back into the scene.
Due to the rocky surface of the Moon, we only take into account diffusive reflection for
the terrain. For the sample, both diffuse and specular reflection are used.

To accelerate the computation, the ray tracer further uses bounding boxes. We will
not detail this here. The implementation is described in [2]. For further information
about acceleration structures, we refer the reader to [41].

2.6.4. The memory map based interface

The original interface suffered from two major performance drawbacks:

25

2. Background

Figure 2.5.: Visualization of the solar parallelogram. Its position is determined based
on the solar coordinates, the azimuth αs and the elevation εs. Figure taken
from [2].

• The exchange of data via csv files requires repeated accesses to the hard disk,
which comes with high latency.

• The repeated launching of the ray tracer in each time step generates additional
overhead.

Alhasni remedied both of these problems in his work by introducing the interface based
on a memory mapped file[2]. To implement this, he used the C++ boost library[4].

On the solver side, he introduced the heat synchronizer, a MEX function written
in the C MEX API. This function first creates a memory mapped file using the boost
library and initializes a mutex. Afterwards, it calls the synchronized version of the ray
tracer.

After an initial handshake between the components was successful, the function enters
a computational loop. In each step, it waits for the ray tracer to unlock the mutex.
Once the mutex is unlocked, it reads in data from the memory mapped file, performs its
computation and writes data back to the file.

On the ray tracer side, the optixSimulatorSynchronized class does not just compute
one time step, but enters a computational loop itself. The geometry of the scene and
the sample are still read from csv files, since this step happens only once during setup.
The ray tracer keeps running until it recieves a signal to terminate from the solver after
the simulation has finished.

2.6.5. Multi-GPU parallelization

Apart from enhancing the interface, Alhasni’s main work was to parallelize the ray tracer
on multiple GPUs. The parallelization is based on MPI. The meshes of the surface and

26

2.6. Existing implementation of TherMoS

the sample are distributed among the process. During the computation, each process
only launches and traces rays from its own sumbeshes.

While each processes casts rays only from its own submesh, the rays can still hit
triangles belonging to submeshes of different processes. Consequently, each process
computes flux contributions to the entire mesh, not only its own submesh. After each
time step, the resulting contributions are added using MPI Reduce.

27

3. Implemenation

This chapter describes the implementation done by the author.
Section 3.1 discusses the MATLAB bindings for preCICE written in the course of this

work. The subsequent sections describe the coupling of the TherMoS components via
preCICE.

3.1. Matlab bindings

It was mentioned in Section 2.3 that preCICE comes with bindings for various languages.
These bindings allow users to couple simulations which are not written in C++. They
internally interface to C++ to call the preCICE routines, thus relieving the user of
writing C++ code himself and allowing him to use the language of the simulation.

MATLAB is a very popular software with a large community of users in Science,
Engineering and Mathematics. Therefore, MATLAB bindings for preCICE had been
requested in an issue [13] in early 2018. However, when the author’s work on TherMoS
started, no progress on the implementation itself had been made. There were only some
theoretical considerations.

For this reason, a MATLAB API for preCICE was developed in the course of this
work. The API was developed in a fork of the preCICE repository and will be subject
to a pull request in late July.

3.1.1. Requirements discussion and API choice

The primary goal of the bindings is to provide users an interface in the native language
of their application. The reader is asked to note that this requires a different approach
than, for example, the heat synchronizer in TherMoS. The heat synchronizer in
TherMoS steers the entire application from C++ code. The MATLAB routines of the
solver are invoked using the mexCallMatlab function instead of just calling them from
MATLAB code. This is perfectly fine, but it does not agree with the philosophy of the
bindings. If a similar approach was used there, users of the bindings would have to
embed the calls to their solvers into C++ code. In most cases, this would imply a major
restructuring of their code instead of simply writing an adapter in the native language
of the code.

Hence, we wish to implement a set of routines in MATLAB that allows users to
invoke all routines in the C++ API. Due to the design of preCICE, this means that a
SolverInterface object can be created from MATLAB and persist during subsequent
calls to MATLAB functions on the one hand and calls to the preCICE routines on the

29

3. Implemenation

other hand. This gives rise to the necessity to make C++ objects persist between calls
to the bindings.

In Section 2.5, we discussed the interfaces provided by MATLAB for interfacing to
C++ code. As was already mentioned there, the modern the C++ MEX API allows
realizing persistent objects in a much cleaner way than the C MEX API. Namely, an
objects can be declared as member of the MexFunction object. As soon as the compiled
function is called for the first time, an instance of the MexFunction object is created
and stored internally by MATLAB.

So, our approach will be to encapsulate all functionalities of preCICE into a single
MEX function which holds the solver interface persisting between the calls.

3.1.2. Description of the implementation

To wrap around the C++ interface, the bindings consist of two MATLAB classes
named SolverInterface and Constants. Both classes are located in the MATLAB
style package folder +precice. This package folder itself is contained in the path
src/precice/bindings/matlab on the preCICE repository. As soon as the user adds
this folder to the MATLAB path, they are accessible in the name space precice. In
the following, we confine ourselves to describing the MATLAB SolverInterface class.
This class has private access to a MEX function named preciceGateway.

To avoid confusion in the following description, we introduce the following nomencla-
ture:

• MATLAB interface is the MATLAB SolverInterface class and its instances

• SolverInterface is the C++ SolverInterface class and its instances

• gateway object is the mexFunction object representing the preciceGateway MEX
function created and stored internally by MATLAB

• gateway routine is the operator () of the gateway object, which is invoked whenever
the MEX function is called from MATLAB

• interface is the SolverInterface instance stored inside the gateway object.

The reader is asked to become aware of the differences between these concepts before
proceeding.

Listing 3 shows the structure of the gateway object. It holds a pointer to the C++
interface. Note that the constructor of the gateway object does not initialize the interface
yet. This is not possible, since input arguments are needed for the construction, which
are not available to the constructor – they can only be passed to the gateway routine.
For this reason, the gateway object also holds a bool, which is set to true as soon as
the interface constructor was called, and to false after it was destroyed.

For the the MATLAB bindings, every member function of the SolverInterface class
is associated with a unique unsigned 8-bit integer ID. The gateway routine always expects
the function ID as first argument. Depending on the ID, the gateway routine calls the

30

3.1. Matlab bindings

using namespace precice;

using namespace matlab::data;

using matlab::mex::ArgumentList;

using matlab::engine::MATLABEngine;

class MexFunction: public matlab::mex::Function {

private:

SolverInterface* interface; // C++ solver interface

ArrayFactory factory; // responsible for creating output arrays

bool constructed; // true after interface was constructed

// gives access to the MATLAB instance, required by myMexPrint

std::shared_ptr<MATLABEngine> matlabPtr = getEngine();

// routine for printing to the MATLAB command window

void myMexPrint(const std::string text);

public:

// constructor

MexFunction(): constructed{false}, factory{}, interface{NULL} {}

// gateway routine

void operator()(ArgumentList outputs, ArgumentList inputs);

Listing 3: Basic structure of the MexFunction privately available to the MATLAB
SolverInterface class

corresponding member function of the interface. The remaining arguments are passed
to this function. The output argument of the function, if existent, is then returned by
the gateway object. Listing 4 shows an example.

The MATLAB interface class itself has exactly the same member functions as the
original class SolverInterface. Each function in the MATLAB interface simply calls
the gateway routine with the respective ID and the input arguments and returns the
output arguments to the caller. As an example, the MATLAB interface version of the
advance function is shown in Listing 5. The MATLAB interface is a handle class, i.e.,
it inherits from the MATLAB handle superclass. This means that a MATLAB variable
holding an instance of this class always only holds a reference to the actual object.
A new instance of the class can only be created by explicitly calling the constructor.
MATLAB manages a garbage collector, which deletes the objects as soon as no more
references point to it. The constructor and destructor of the MATLAB interface call the
constructor resp. denstructor of the SolverInterface class via the gateway routine.
This way, we ensure that the interface encapsulated in the gateway object lives exactly
as long as the corresponding MATLAB interface.

The syntax of the MATLAB interface class and the SolverInterface class are largely

31

3. Implemenation

void operator()(ArgumentList outputs, ArgumentList inputs) {

// determine the functionID

const TypedArray<uint8_t> functionIDArray = inputs[0];

int functionID = functionIDArray[0];

/* Abort if constructor was not called yet, or if constructor is

called a second time */↪→

/* ... */

switch (functionID) {

/* ... */

case 12: //advance

{

const TypedArray<double> dt_old = inputs[1];

double dt = interface->advance(dt_old[0]);

outputs[0] = factory.createArray<double>({1,1}, {dt});

break;

}

/* ... */

}

}

Listing 4: Exemplary structure of the gateway routine

function dt = advance(obj,dt)

dt = preciceGateway(uint8(12),dt);

end

Listing 5: Functions in the MATLAB interface

identical with a few exceptions:

• Pointers are replaced by MATLAB vectors and matrices, since MATLAB-style
vectors are the usual way to handle float data in MATLAB.

• Some SolverInterface member functions take pointers to output buffers as input
arguments. These are replaced by output arguments in MATLAB.

For example, the signature of the function setMeshVertices already seen in Section 2.3
reads

void setMeshVertices (int meshID, int size, const double *positions, int

*ids)↪→

in the SolverInterface class and becomes

32

3.1. Matlab bindings

function ids = setMeshVertices(meshID, size, positions)

in the MATLAB interface.

The reader may have noticed a drawback of our implementation: In the way described
above, only one MATLAB interface can exist at a time. The reason for this is that the
gateway object is created only once – all instances of the MATLAB interface will access
the same gateway object when invoking the gateway routine, thus all of them would also
use the same interface.

To prevent problems like this, the gateway object holds the constructed variable.
If the user tried to create a second MATLAB interface object before destroying the
first one, gateway routine would notice that the constructor is called again, but the
constructed variable holds true. In this case, it will abort on an error. Thus, the
second MATLAB interface object will run into an error in the constructor, causing it to
be destroyed again.

Technically speaking, this is a very ill behavior. In practice however, users will hardly
run in a situation where they do need two MATLAB interface objects within the same
MATLAB instance. For this reason, the problem described here was not addressed up
to now. A simple solution of this difficulty would be to replace the SolverInterface*

interface variable in the gateway object by a list of pointers to SolverInterface

objects and adding another input argument to the gateway routine specifying the index
of the SolverInterface object to be used. This may be done in the future.

3.1.3. Out-of-process variant

As discussed in Subsection 2.5.5, the C++ MEX API further gives access to out-of-
process execution. For this reason, a subclass of the SolverInterface was created,
named SolverInterfaceOOP. Objects of this class hold a mexhost object created upon
construction and run all calls to the gateway routine on this object.

Apart from the advantages already stated in Subsection 2.5.5, this remedies the prob-
lem mentioned above: Multiple instances of SolverInterfaceOOP can exist at the same
time without interfering. It is even possible to run two MATLAB solvers from the same
MATLAB instance using SolverInterfaceOOP.

However, the overhead of out-of-process execution poses a massive drawback. Since
the preCICE bindings will call the gateway routinefrequently, they are strongly affected
by the overhead. The author noted that executing the MATLAB solverdummy out of
process can take more than 10 times as long as executing it in the main process.

Therefore, using the SolverInterfaceOOP is only advisable if the user encounters
major problems when running them in the main MATLAB process. Apart from that,
developers may find SolverInterfaceOOP useful for debugging: If crashes occur in
bindings when running out of process, they will only cause the mexhost object to crash
– the MATLAB instance will not be affected.

33

3. Implemenation

3.2. Coupling Configuration

To couple TherMoS, three steps are necessary: We have to write a configuration file for
preCICE and we have to write adapters for both components. In this section, we will
start with the configuration. Appendix A.1 contains the full configuration file for the
TherMoS coupling. In this section, we will briefly discuss and comment it.

We first define the data to be exchanged. The actual coupling data consists of tem-
peratures computed by the solver and the fluxes computed by the ray tracer. Both of
these are computed both on the terrain and on the sample, so we define separate data
sets for terrain and sample.

In addition, however, we need to exchange global data which is related to neither of
the geometric meshes:

• The solar angles, azimuth and elevation, are determined in the solver but required
by the ray tracer to compute the solar parallelogram

• A 4×4 matrix, the transformation matrix, defining a transformation of the sample,
if necessary

preCICE currently does not support exchanging global data, though. There is a GitHub
issue about this, which is still open at the time this thesis is written[12]. As a workaround,
we define an extra data set called auxiliary data which encompasses the global data.

Second, we declare the meshes. Geometrically, we have two meshes: The terrain mesh
and the sample mesh. This sheds light on one of the peculiarities of our setup: Both ray
tracer and solver use the same meshes.

In Subsection 2.3.4, we saw the challenges posed by interface coupling with non-
matching meshes. We also discussed the mapping capabilities of preCICE to deal with
these problems. For TherMoS, however, these capabilities simply have no use: There
is no need for nor advantage in defining separate meshes for both components and
computing a mapping between them.

Unfortunately, it is not possible for two preCICE solvers to share the same mesh.
Applications with two solvers operating on the same mesh are not intended preCICE.
Therefore, preCICE does not support this. For two serial solvers, the author verified
that using one mesh does in fact work. However, if either of the solvers is parallel,
preCICE will throw errors when trying to use a single mesh. The reason is that in this
case, preCICE tries to compute a process mapping as described in Subsection 2.3.5,
which does not work in the internal implementation if only one mesh is used.

As a consequence, it is not possible in our case to define only one terrain and sample
mesh for both solver and ray tracer. Instead, both need to define their own instance
of the mesh. This comes with an inconvenient disadvantage: preCICE will compute
a mapping between the two meshes even though this is not necessary. In theory, it is
sufficient to simply map data at each vertex to the corresponding vertex with the same
index. However, in the current implementation, there is no way to simply tell this to
preCICE.

34

3.3. MATLAB solver adapter

Computing the mapping causes unnecessary overhead. This problem is not critical
for the overall performance, as the mapping computation happens only once during the
initialization, but it is still a drawback.

Beyond the geometric meshes, we need a further mesh to communicate the auxiliary
data. As a result, we end up with a total of six meshes: Terrain mesh, solver mesh and
auxiliary mesh; each of them for both participants.

After defining data and meshes, we can define the participants. Since we can not
avoid the mapping, we have to define mappings in one of the participants. Here, we
must make sure that every vertex on either side is mapped exactly to the corresponding
neighbor mapping. This can be achieved by choosing nearest neighbor mapping: Since
the vertices in the two meshes are located at the exact same positions, each vertex will
be mapped to the corresponding vertex on the other mesh.

Since the mapping will identify the vertices in a bijective way, it does not matter
whether we choose conservative or consistent mapping. The two strategies differ only if
multiple vertices on either side would be mapped to the same vertex on the other side.
For reasons for that will become clear later, we declare the solver→ray-tracer-mapping
as consistent and the ray-tracer→solver-mapping as conservative. Due to the restrictions
on parallel participants, we therefore do the mappings on the ray tracer side.

The communication can be done either with sockets or ports. Both have been tested
successfully.

It remains to choose the coupling scheme. Recall that the original implementation
calls the two components in turns and blocks while the other component is running.
Each component is called once per time step. Recalling Section 2.1, we notice that this
corresponds exactly to serial-explicit coupling. Thus, we use this coupling.

3.3. MATLAB solver adapter

With the MATLAB bindings at hand, writing the adapter for the MATLAB solver
is mostly straightforward. The reulting adapter is found in the appendix A.2. The
coupling is done in a MALTAB script named precice synchronizer.m which replaces
the heat synchronizer.cpp.

In many scientific codes, discrete data is located on the vertices of a mesh. However,
recall that in our LPM, the data is in fact located on nodes that correspond to the faces
of our mesh. Hence, we need to declare the faces resp. nodes as vertices to preCICE.

It is necessary to provide vertex coordinates for defining the geometry to preCICE.
Geometrically, the correct choice for vertex coordinates would be the centers of the faces,
where the LPM nodes are located. Yet, these vertices are required by preCICE solely for
the purpose of mapping. Since we are only interested in identifying corresponding ver-
tices with each other for TherMoS, the actual geometric location of the vertices declared
to preCICE does in fact not matter – We only have to make sure that corresponding
vertices are located at the same position.

35

3. Implemenation

For this reason, we perform a simplification: Instead of using meaningful coordinates,
we simply declare the mesh vertices to be located at (0, 0, 0), (1, 0, 0), (2, 0, 0), . . . and so
forth. By doing this in both adapters and using the nearest neighbor mapping, we make
sure that the data is mapped correctly.

After calling the initialize function, the solver must write the intial temperatures.
These are passed to the adapter as function arguments.

A further thing to note is that the total duration and the time step size for the simu-
lation in TherMoS is declared in the GUI, while preCICE reads it from the simulation
file. Consequently, dummy values were used in the configuration file. Upon starting the
coupling, the TherMoS adapter reads the values from the GUI and creates a temporary
copy of the configuration file which is used afterwards.

Apart from these things, the adapter is a standard preCICE adapter in all respects
and closely follows the adapter example that was already seen in Figure 2.

To make the adapter accessible from TherMoS, the function responsible for running
the simulation was modified in such a way that it opens a dialog window asking the user
to choose between preCICE coupling and using the heat synchronizer.cpp.

3.4. Ray tracer adapter

Since the ray tracer is entirely written in C++, implementing the ray tracer adapter
was a straightforward matter. The resulting adapter is also found in the appndix A.3.

Our implementation is encapsulated into the class optixSimulatorPrecice, which is
a new, third subclass to the optixSimulator class. The SolverInterface object itself
and the IDs of meshes, data and vertices are members of this class.

Apart from hat, the structure of the new class is mostly identical to that of the
original optixSimulatorSynchronized class. The accesses of the memory mapped file
are replaced by calls to the preCICE API to communicate the data. The simulation is
carried out by the run function of the new class.

3.4.1. Floats in the ray tracer

When communicating the data from and to the ray tracer via preCICE, we encounter a
simple yet severe problem: The OptiX library used by the ray tracer is written to work
exclusively with single precision floats, i.e. the C++ float data type. Yet, the preCICE
API can only take pointers double precision floats, i.e. the C++ double data type, in
all its calls for communicating data.

The restriction to doubles is a drawback of preCICE. Even though the majority
of scientific codes today uses double precision, our example shows that there are still
cases in which support for single precision would be preferable. Beyond this, it may be
desirable in some cases to communicate completely different data types via preCICE,
e.g. integers for integer quantities. Consequently, it would be a valuable feature to
add functions for supporting different data types to the preCICE API. A completely

36

3.4. Ray tracer adapter

clean solution could be achieved by using templates, allowing the user to communicate
arbitrary data types, even custom ones.

This change is far from trivial, though, and would have a huge impact on the imple-
mentation of preCICE. Therefore, it is currently out of scope.

For TherMoS, this means that we have to confine ourselves to communicating doubles
for time being. If we are determined to use single precision, an option would be to
use reinterpret cast and simply communicate the buffers as if they consisted of n

2

doubles instead of n floats. This, however, would be a very dirty workaround resulting
in bad software design. Also, it would overthrow the concept of meshes in preCICE,
since the user would have to define a new artificial mesh with no geometric meaning. It
would further prohibit any kind of mapping, since using the reinterpret cast renders
any arithmetic operations on the data meaningless. In fact, the mapping features of
preCICE are not necessary for TherMoS as discussed above, but if it is used in a future
change, the code would become invalid.

Thus, we instead bear to convert all buffers used int the ray tracers to doubles before
writing them to the solver and back to floats after reading. For this purpose, we use
three std::vector<double>s – one for each of the meshes – to store data temporarily
as doubles. To save memory, we allocate the buffers only once when constructing the
simulator, and reuse them whenever needed. The data inside these buffers is cast to floats
using static cast<float> before using them in the ray tracer, and back to doubles
afterwards.

It should be remarked that conversion from float to double data also happened in
the existing versions of the ray tracer. While MATLAB can do most of its operations
with floats, it uses doubles by default in many built-in functions. In contrast to the
new implementation, however, floats were communicated between the components in
Alhasni’s implementation. Therefore, a smaller amount of data was communicated in
total.

3.4.2. Broadcast-reduction approach in the ray tracer

A second peculiarity of coupling TherMoS with preCICE is the parallelization approach
of the ray tracer.

Many scientific codes use what can be called a gather-scatter approach. The com-
putation domain is distributed spatially among the processes involved. Each process
computes partial results for its own subdomain and communicates with processes re-
sponsible for adjacent subdomains, if necessary. After finishing the computation, the
results are usually gathered for visualization or post processing.

As was indicated before, preCICE is designed for this kind of work sharing. If preCICE
is initialized in an existing MPI environment, the individual processes declare only their
own part of the mesh. preCICE then determines all pairs of processes that need to
communicate with each other.

What about TherMoS? Recall the description in Subsection 2.6.5. The TherMoS
ray tracer also distributes the mesh among the different GPUs. However, due to the

37

3. Implemenation

∑
k q̂1,k

∑
k q̂2,k

∑
k q̂3,k

∑
k q̂4,k

∑
k q̂5,k

q1 q2 q3 q4 q5

Rank 0

SOLVER

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 3.1.: Straightforward implemntation of broadcast-reduction approach. Rank 0
holds the mesh and communicates the sum of all flux contributions

nature of ray tracing, each process still computes contributions to the entire mesh. These
contribution can not simply be gathered, instead they must be added up – i.e., reduced
via MPI Reduce() – at the master process to obtain the total flux computed in one time
step. Before the computational step, it is necessary to broadcast the temperatures on
the entire mesh to all processes.

In summary, the ray tracer follows a broadcast-reduction approach rather than a
gather-scatter approach. This kind of work sharing is not supported by preCICE. How
can we remedy this?

The simple and evident solution is to let only the master process communicate.
I.e., we adopt the MPI communication performed in Alhasni’s version. The tem-
peratures are broadcast to the individual ray tracer processes before the computa-
tion using MPI Broadcast() and reduced at the process with rank 0 afterwards using
MPI Reduce(). In this case, only rank 0 communicates with the solver. This approach
is implemented in the code seen in Appendix A.3.

Benjamin Uekermann suggested a very elegant alternative we will discuss in the follow-
ing subsection: The reduction can also be performed by abusing the mapping techniques
implemented in preCICE.

Reducing via conservative mapping

The idea is as follows. Let n be the number of mesh vertices and p be the number
of processes. Instead of letting all processes declare only disjoint parts of the mesh
to preCICE, we let each process declare each mesh point. This means that, from the
perspective of preCICE, the ray tracer mesh does not consist of n vertices, but in fact of
nṗ vertices. For each of the n geometrical mesh vertices, there are p copies sharing the
same coordinates. The serial MATLAB solver, on the other hand, defines each vertex
only once in its mesh.

Now, if we define a nearest neighbor mapping from the ray tracer mesh to the solver
mesh, then for each vertex v in the solver mesh, all p corresponding vertices in the ray
tracer mesh v1, . . . , vn will be mapped to v. If we choose a conservative mapping, then
the flux values computed at v1, . . . , vn will be added up at v. But this is exactly what
we want! By performing the conservative nearest neighbor mapping, preCICE adds up

38

3.4. Ray tracer adapter

q̂1,1 q̂2,1 q̂3,1 q̂4,1 q̂5,1
q̂1,2 q̂2,2 q̂3,2 q̂4,2 q̂5,2
q̂1,3 q̂2,3 q̂3,3 q̂4,3 q̂5,3
q̂1,4 q̂2,4 q̂3,4 q̂4,4 q̂5,4

SOLVER

Rank 0
Rank 1
Rank 2
Rank 3

Node 1 Node 2 Node 3 Node 4 Node 5

q1 =
∑

k q̂1,k q2 =
∑

k q̂2,k q3 =
∑

k q̂3,k q4 =
∑

k q̂4,k q5 =
∑

k q̂5,k

Figure 3.2.: Alternative implementation. Each rank holds the mesh, each rank sends
its own flux contributions to the solver, where they are summed up via
conservative mapping

the contributions computed by the individual processes to obtain the correct result at
the solver. Figure 3.2 illustrates the approach.

Recall that for mapping temperatures from the ray tracer to the solver, we defined a
consistent read mapping on the ray tracer side. preCICE determines this mapping by
transposing the operator for the conservative mapping[42]. In our case, this means that
the values at each node on the solver will be mapped to all the nodes on the ray tracer
side. Thus, the consistent mapping automatically broadcasts the values to the ranks in
the ray tracer.

In summary, the approach stated here delegates the entire MPI communication in the
ray tracer to preCICE, which is very convenient from a design perspective. No more ex-
plicit broadcasting or reduction are required, all we have to do in the ray tracer is calling
the preCICE API functions and performing the computation themselves. The resulting
code for this variant is shown in Appendix A.3.3. It is, clearly, much shorter than the
code in Appendix A.3.2. Nevertheless, it comes with an important disadvantage: At
least in the current implementation of preCICE, all data will be sent separately to the
solver and the individual contributions will be summed up on the solver side, not the
ray tracer side. This increases the amount of data to be transferred and may affect the
performance.

39

4. Results and conclusions

4.1. Results

In this section, we report on results with the new implementation. We show some
visualizations of the computations done with the new implementation and compare the
run time with the original implementation.

4.1.1. Test system

The tests were run on a simulation server provided by the Chair of Astronautics at the
TUM. The server is equipped with the following hardware:

• Intel(R) Xeon(R) Silver 4110 CPU

• An NVIDIA GeForce GTX 1080 GPU

• An NVIDIA Quadro P6000 GPU

• 64 GB RAM

4.1.2. Validation of Results

Naturally, the first thing to check is whether the new implementation yields correct re-
sults. As our work consisted in replacing the existing interface by a new one, we confine
ourselves to comparing the results to those computed with the original implementa-
tion. The results computed by the original implementation were already tested against
validation data in the works of Hager and Alhasni[2][21].

The terrain used for validation consisted of a quadratic patch of lunar surface with
a side length of 8 km. An astronaut space suit was used as a sample. The suit was
positioned in the center of the patch and would not move during the simulation. The
simulation was run over a time window of 10 minutes. A single time step spanned 20
seconds, resulting in 30 steps.

Figure 4.1 shows multiple different views of the test scene. The first image is colored
according to height to demonstrate the topographic structure of the terrain. The second
image shows the temperatures after 60 seconds. The third and fourth images show the
computed solar and infrared fluxes at the same time.

The results were computed in six different ways. On the one hand, three different
implementations were used:

41

4. Results and conclusions

• The original implementation based on memory mapped files

• The “simple” preCICE implementation, in which broadcasting and reduction is
done explicitly

• The alternative preCICE implementation, in which these steps are done via con-
servative mapping, called “preCICE b” in Table 4.1.

Each of the implementations was tested both on a single GPU and on both GPUs.

Averaged across the nodes, the results deviated from those results computed with the
memory mapped file by a magnitude of 10−5. This is acceptable due to the stochastic
nature of ray tracing and confirms the correctness of the new implementation.

(a) Topology of test scene (b) Temperatures in K

(c) Solar fluxes in W ·m−2 (d) Infrared fluxes in W ·m−2

Figure 4.1.: Visualization of results for a test case.

4.1.3. Performance Tests

After checking the validity of the computations, we are mainly interested in the ques-
tion how the performance of TherMoS with preCICE compares to the implementation
without preCICE. Again, we compare all three implementations with both one and two
GPUs. Our test scene consisted of a total of roughly 100000 faces. The implementation
was run for a total of 30 time steps. Table 4.1 shows a variety of run times measured
for the different implementations.

42

4.1. Results

Total Reading Writing
Type GPUs compute Temp.s Fluxes Casting Mapping Filtering

Original 1 138.02353 0.00054 0.00010
Original 2 101.22182 0.00065 0.00011
preCICE 1 147.00487 0.00964 0.02657 0.00012 84.75008
preCICE 2 111.42825 0.00973 0.02819 0.00013 89.32058 212.08111

preCICE B 1 146.93492 0.00934 0.02637 0.00012 84.57572
preCICE B 2 113.97372 0.00977 0.02782 0.00013 89.26862 213.19065

Table 4.1.: Comparison of run times for test scene

First of all, to obtain an overview over the differences in time spent by the implemen-
tations, we compare the overall run time of the computational loop. The time does not
include the time spent in setup steps, it only accounts for the computational loop itself.

However, our implementation made no changes to the ray tracer or the solver itself.
We only changed the interface. Thus, the most important thing to do is comparing
the run times of the interface. In preCICE, reading and writing data between the
solvers happens via the corresponding function. In the previous implementation, this
corresponds to reading and writing data to the memory mapped file. Therefore, we also
measure the times taken by these steps. Table 4.1 lists the average time taken in one
time step for reading temperatures and writing fluxes.

Furthermore, recall that for the preCICE interface, it is necessary to cast the data to
floats and back. We therefore also measure the wall clock time taken by the casting to
find out how much this drawback affects our performance. Like the reading and writing
times, this time was averaged over all time steps.

Finally, recall for using preCICE, it is necessary to compute a mapping between the
meshes involved. Even though this step occurs only once during initialization, it is
interesting to check how much time is consumed by this step. We therefore also measure
the time taken for the mapping and filtering by preCICE.

There is a number of interesting observations. First of all, we see that the interface
using preCICE is in general slower than the one based on the memory mapped file. The
overall simulation time is slightly longer for the preCICE example, and we see that the
communication times are higher than the times for accessing the memory mapped file.

Looking at the times consumed for casting the values to from floats to doubles in the
ray tracer, it is also evident that casting is not the problem. In fact, this takes very little
time. The additional time required in the preCICE version originates from the preCICE
API calls themselves. The communication performs overall slower.

On the other hand, the time required for communication is negligible in contrast to
the time spent with solving and ray tracing in either case. Even though the preCICE
version is no match for the memory map version, both versions are perfectly usable in
terms of the time spent in the computational loop.

43

4. Results and conclusions

Furthermore, it is noteworthy that the mapping takes quite long. The time spent in
mapping, especially the time required for filtering the meshes, is huge compared to the
time spent in a single iteration. However, we should not forget that mapping occurs
only once per simulation. For a simulation over a much higher number of time steps,
the mapping overhead will be shadowed by the total computation time.

Finally, note that using the conservative mapping for broadcasting and reduction
does not increase the computation time. In fact, the performance in both variants of
the preCICE based implementation is roughly identical.

4.2. Conclusion

In the past, the preCICE library was almost exclusively used for FSI and CHT. Albeit
its intention has always been to be used in general multiphysics applications, the library
has rarely been applied in other fields to the best of our knowledge. In this thesis, we
have seen preCICE make its way into a new physical domain, thus proving itself capable
of a broader range of applications.

It is evident from our results that using preCICE in TherMoS is not a perfect fit. We
had already encountered a number of difficulties in the implementation: The special work
sharing approach in the TherMoS ray tracer, the necessity to perform explicit type casts
and the computation of a mapping which is pointless in our application. Nevertheless,
preCICE still performs considerably well in our application.

Beyond that, just like people can learn from their mistakes, preCICE can also draw
inspiration from the peculiarities that were faced when interfacing TherMoS. We have
realized that there are applications in which communicating double precision floats is
not sufficient, and we have encountered a situation in which the extensive mapping
capabilities of preCICE pose an obstruction rather than an advantage. Regardless of the
question whether implementing corresponding modifications is in the scope of preCICE
or not, these observations are valuable for the further development of preCICE.

Furthermore, preCICE has been successfully used on hybrid architecture for TherMoS.
While our work did not include explicit CUDA programming due to using the OptiX
framework, it is still noteworthy that the coupling between CPU and GPUs succeeded
without any problem.

What about TherMoS? While we could not improve TherMoS with respect to per-
formance, we can say that the use of preCICE poses a substantial improvement for the
software design of TherMoS. On the solver side, the need to steer the communication
in a monolithic way from a MEX file – in other words, a function written in an external
language – has been eliminated. The solver is now fully written in MATLAB, making it
easier to maintain even for developers who have little or no experience with MEX func-
tions or C++ in general. Furthermore, the partitioned approach has simplified updating
or even replacing either or the components.

Finally, preCICE has opened the ability to use different coupling schemes. In the
original implementation, performing implicit coupling would have meant a complete
restructuring of the heat synchronizer. Thanks to preCICE, this now comes down to

44

4.3. Future work

changing some tags in the configuration. While explicit coupling has proven to work
fine for the purposes of thermal modeling, it will be interesting to see how the stability
and quality of the results could be improved by using the implicit coupling strategies of
preCICE. This question must be left open here and remains an exciting challenge for
the future.

4.3. Future work

Besides experimenting with other coupling schemes, there is a number of other interesting
questions that could be addressed in the future. This final section is devoted to shed
light on some of the possibilities for future work and research.

4.3.1. On the MATLAB bindings

Parallel programming in MATLAB One of the important selling points of preCICE
is its very easy integration into existing MPI implementation. The m2n communication
allows to fully exploit the advantages of existing parallel implementations and minimizes
communication overhead.

While MATLAB does not directly support MPI, there exists a number of parallel
libraries for MATLAB based on message passing. Besides several third-party implemen-
tations, like pMatlab or MatlabMPI, MathWorks offers the official Parallel Computing
Toolbox (PCT). Using this toolbox, the user can create parallel pools on a local ma-
chine or in a cluster, which internally start additional MATLAB sessions on different
processes, called MATLAB workers. To distribute workload among the workers, the
user can access a range of methods, from high level parallel programming constructs,
like parallel for loops, to explicit message passing via abstractions of the functions of the
underlying MPI implementation.

The preCICE bindings written for this work only support serial MATLAB solvers
directly, since this was sufficient for TherMoS. However, it would certainly be desirable
to extend them in such a way that they support the PCT. This way, the full potential of
parallel computing could also be used by MATLAB applications coupled with preCICE.

The clibgen package In the very newest release, R2019a, MATLAB added the new
clibgen package which allows to import C++ libraries directly into MATLAB. Since
preCICE is in fact a C++ library, this might be an extremely comfortable way to dispose
the MATLAB bindings entirely.

The usage of clibgen can be described roughly as follows. First, the user must
identify the .so library file and the corresponding header files. Using these, he can user
the function clibgen.generateLibraryDefinition, which automatically determines
the functions and classes defined in the library and defines corresponding wrappers in
MATLAB. These definitions are stored in a human readable .mlx file called the library
definition file. Now, the user must manually review this file to complement information
that could not be determined automatically by clibgen. This mostly concerns pointers:

45

4. Results and conclusions

Wherever a C++ function expects a pointer, MATLAB can not automatically determine
whether the function will only read from the memory, only write to it or do both. It also
does not know the size of the associated buffer out of the box. The user must therefore
specify the pointer as input or output (or both) and the buffer size.

After completing the definition file, the user may call clibgen.build to import the
file to MATLAB. This will create a MATLAB package in the clibgen name space from
which all the library functionality can be accessed.

Since the package was not yet released when the MATLAB bindings for this work
were implemented, it was not considered for use. However, it may be the best option to
interface preCICE to MATLAB in the long run. Importing preCICE using clibgen is
not completely trivial, there are a few things that have to be dealt with:

• Several C++ features are not supported by clibgen. The developers must care-
fully review whether this will affect preCICE.

• For several functions in the preCICE API, the size of the input buffer depends on
the problem dimension, which is accessible via a member function of the solver
interface object. However, in the definition file, MATLAB only allows hard-coded
constants or other function input arguments to specify the size of the buffer ac-
cessed by an input pointer. This does not suffice for preCICE and must be worked
around in some way.

• In the long run, the bindings should recieve a proper building process. Reviewing
the definition should be done automatically or not be necessary at all.

However, these are minor problems. Once they are solved, the clibgen import can likely
replace the existing MATLAB bindings.

4.3.2. On TherMoS

Radiosity method for fluxes Martin Schreiber from the Chair of Computer Architec-
ture and Parallel Systems at TUM has suggested to use a radiosity method instead of a
ray tracing method for computing fluxes. The information given on this method here is
derived from [11, Chapter 6].

It was stated in Section 2.4 that ray tracing methods are mostly used to render images.
For this application, it suffices to use backward ray tracing methods, which essentially
ignore parts of the scene that are not visible from the image plane. In contrast to this,
radiosity methods use different approaches to compute a complete representation of the
diffuse illumination of the scene.

The classic radiosity method is a FEM based on the radiosity integral equation. It has,
in fact, been originally used in heat transfer, and found its way into image rendering in
the 1980s. It is likely to outperform the currently used ray tracing method with respect
to performance.

The partitioned implementation with preCICE allows to replace either of the compo-
nents of TherMoS without much difficulty. Therefore, a possible use for the new interface

46

4.3. Future work

could be to replace the ray tracer by a radiosity method. It would be interesting to see
how this would affect the performance of TherMoS.

47

A. Full code for TherMoS coupling

A.1. Configuration file for TherMoS

1 <precice-configuration>

2

3 <solver-interface dimensions="3" >

4

5 <data:scalar name="TerrainTemperatures" />

6 <data:scalar name="TerrainFluxesSolar" />

7 <data:scalar name="TerrainFluxesIR" />

8 <data:scalar name="SampleTemperatures" />

9 <data:scalar name="SampleFluxesSolar" />

10 <data:scalar name="SampleFluxesIR" />

11 <data:scalar name="AuxiliaryData" />

12

13 <mesh name="TerrainMeshSolver">

14 <use-data name="TerrainTemperatures" />

15 <use-data name="TerrainFluxesSolar" />

16 <use-data name="TerrainFluxesIR" />

17 </mesh>

18

19 <mesh name="TerrainMeshRaytracer">

20 <use-data name="TerrainTemperatures" />

21 <use-data name="TerrainFluxesSolar" />

22 <use-data name="TerrainFluxesIR" />

23 </mesh>

24

25 <mesh name="SampleMeshSolver">

26 <use-data name="SampleTemperatures" />

27 <use-data name="SampleFluxesSolar" />

28 <use-data name="SampleFluxesIR" />

29 </mesh>

30

31 <mesh name="SampleMeshRaytracer">

32 <use-data name="SampleTemperatures" />

33 <use-data name="SampleFluxesSolar" />

34 <use-data name="SampleFluxesIR" />

49

A. Full code for TherMoS coupling

35 </mesh>

36

37 <mesh name="AuxiliaryMeshSolver">

38 <use-data name="AuxiliaryData" />

39 </mesh>

40

41 <mesh name="AuxiliaryMeshRaytracer">

42 <use-data name="AuxiliaryData" />

43 </mesh>

44

45 <participant name="Raytracer">

46 <use-mesh name="TerrainMeshRaytracer" provide="yes"/>

47 <use-mesh name="SampleMeshRaytracer" provide="yes"/>

48 <use-mesh name="AuxiliaryMeshRaytracer" provide="yes"/>

49 <use-mesh name="TerrainMeshSolver" from="Solver"/>

50 <use-mesh name="SampleMeshSolver" from="Solver"/>

51 <use-mesh name="AuxiliaryMeshSolver" from="Solver"/>

52 <mapping:nearest-neighbor direction="write"

from="TerrainMeshRaytracer" to="TerrainMeshSolver"

constraint="conservative" />

↪→

↪→

53 <mapping:nearest-neighbor direction="read"

from="TerrainMeshSolver" to="TerrainMeshRaytracer"

constraint="consistent" />

↪→

↪→

54 <mapping:nearest-neighbor direction="write"

from="SampleMeshRaytracer" to="SampleMeshSolver"

constraint="conservative" />

↪→

↪→

55 <mapping:nearest-neighbor direction="read" from="SampleMeshSolver"

to="SampleMeshRaytracer" constraint="consistent" />↪→

56 <mapping:nearest-neighbor direction="write"

from="AuxiliaryMeshRaytracer" to="AuxiliaryMeshSolver"

constraint="conservative" />

↪→

↪→

57 <mapping:nearest-neighbor direction="read"

from="AuxiliaryMeshSolver" to="AuxiliaryMeshRaytracer"

constraint="consistent" />

↪→

↪→

58 <write-data name="TerrainFluxesSolar" mesh="TerrainMeshRaytracer"

/>↪→

59 <write-data name="TerrainFluxesIR" mesh="TerrainMeshRaytracer" />

60 <write-data name="SampleFluxesSolar" mesh="SampleMeshRaytracer"

/>↪→

61 <write-data name="SampleFluxesIR" mesh="SampleMeshRaytracer" />

62 <read-data name="TerrainTemperatures" mesh="TerrainMeshRaytracer"

/>↪→

63 <read-data name="SampleTemperatures" mesh="SampleMeshRaytracer" />

64 <read-data name="AuxiliaryData" mesh="AuxiliaryMeshRaytracer" />

50

A.1. Configuration file for TherMoS

65 </participant>

66

67 <participant name="Solver">

68 <use-mesh name="TerrainMeshSolver" provide="yes"/>

69 <use-mesh name="SampleMeshSolver" provide="yes"/>

70 <use-mesh name="AuxiliaryMeshSolver" provide="yes"/>

71 <write-data name="TerrainTemperatures" mesh="TerrainMeshSolver" />

72 <write-data name="SampleTemperatures" mesh="SampleMeshSolver" />

73 <write-data name="AuxiliaryData" mesh="AuxiliaryMeshSolver" />

74 <read-data name="TerrainFluxesSolar" mesh="TerrainMeshSolver" />

75 <read-data name="TerrainFluxesIR" mesh="TerrainMeshSolver" />

76 <read-data name="SampleFluxesSolar" mesh="SampleMeshSolver" />

77 <read-data name="SampleFluxesIR" mesh="SampleMeshSolver" />

78 </participant>

79

80 <m2n:sockets from="Raytracer" to="Solver"

distribution-type="gather-scatter"

exchange-directory="./25_Precice_Module/"/>

↪→

↪→

81

82 <coupling-scheme:serial-explicit>

83 <participants first="Raytracer" second="Solver" />

84 <max-time value="DUMMY-DURATION" />

85 <timestep-length value="DUMMY-TIMESTEP" />

86 <exchange data="TerrainTemperatures" mesh="TerrainMeshSolver"

from="Solver" to="Raytracer" initialize="yes" />↪→

87 <exchange data="TerrainFluxesSolar" mesh="TerrainMeshSolver"

from="Raytracer" to="Solver" />↪→

88 <exchange data="TerrainFluxesIR" mesh="TerrainMeshSolver"

from="Raytracer" to="Solver" />↪→

89 <exchange data="SampleTemperatures" mesh="SampleMeshSolver"

from="Solver" to="Raytracer" initialize="yes" />↪→

90 <exchange data="SampleFluxesSolar" mesh="SampleMeshSolver"

from="Raytracer" to="Solver" />↪→

91 <exchange data="SampleFluxesIR" mesh="SampleMeshSolver"

from="Raytracer" to="Solver" />↪→

92 <exchange data="AuxiliaryData" mesh="AuxiliaryMeshSolver"

from="Solver" to="Raytracer" initialize="yes" />↪→

93 </coupling-scheme:serial-explicit>

94

95 </solver-interface>

96

97 </precice-configuration>

51

A. Full code for TherMoS coupling

A.2. TherMoS solver adapter

1 function coupleWithPrecice(azimuth, elevation, transform,

terrainTempsInit, sampleTempsInit, solverFunction,

resultsDirectoryPath, configFilePath, iDuration, iStepLength)

↪→

↪→

2

3 global oSimulation;

4

5 %% STEPS

6 %

7 % 1. Instantiate interface object and configure it.

8 % 2. Geometric preprocesing: Mesh is written to preCICE.

9 % 3. Initialization: Raytracer is being contacted

10 % 4. Data initializazion/Thermal preprocessing: Writing initial

11 % temperatures

12 % 5. Actual coupling: Beginning to compute.

13 %

14

15 %% STEP 1

16 disp("Launching preCICE coupling for TherMoS");

17 disp("Pre-inizialization setup");

18

19 % Replace dummy value in config file by value from GUI

20 modifyConfig(configFilePath, iDuration, iStepLength);

21

22 % Setup the precice interface

23 preciceInterface = precice.SolverInterface("Solver");

24 preciceInterface.configure("__THERMOS_CONFIG_TEMP__.xml");

25

26 %% STEP 2

27 % Get terrain, sample and aux sizes.

28 terrainSize = length(oSimulation.GEOM.mfFaces);

29 sampleSize = oSimulation.GEOM_sample.n_element;

30 auxSize = 18;

31 maxSize = max([terrainSize sampleSize auxSize]);

32

33 % Get the mesh IDs

34 terrainMeshID = preciceInterface.getMeshID("TerrainMeshSolver");

35 sampleMeshID = preciceInterface.getMeshID("SampleMeshSolver");

36 auxMeshID = preciceInterface.getMeshID("AuxiliaryMeshSolver");

37

38 % Set vertex positions to [0 0 0], [1 0 0], ...

39 vertexPositions = [0:(maxSize-1);zeros(2,maxSize)];

52

A.2. TherMoS solver adapter

40 terrainVertexIDs =

preciceInterface.setMeshVertices(terrainMeshID,...↪→

41 terrainSize,vertexPositions(:,1:sampleSize));

42 sampleVertexIDs = preciceInterface.setMeshVertices(sampleMeshID,...

43 sampleSize,vertexPositions(:,1:sampleSize));

44 auxVertexIDs =

preciceInterface.setMeshVertices(auxMeshID,auxSize,...↪→

45 vertexPositions(:,1:auxSize));

46

47 %% STEP 3

48 dt = preciceInterface.initialize();

49 tInit = tic;

50

51 %% STEP 4

52 % Data IDs

53 terrainTempID = preciceInterface.getDataID

("TerrainTemperatures",terrainMeshID);↪→

54 sampleTempID = preciceInterface.getDataID

("SampleTemperatures",sampleMeshID);↪→

55 auxDataID = preciceInterface.getDataID("AuxiliaryData",auxMeshID);

56 terrainSolarID = preciceInterface.getDataID

("TerrainFluxesSolar",terrainMeshID);↪→

57 terrainIRID =

preciceInterface.getDataID("TerrainFluxesIR",terrainMeshID);↪→

58 sampleSolarID = preciceInterface.getDataID

("SampleFluxesSolar",sampleMeshID);↪→

59 sampleIRID =

preciceInterface.getDataID("SampleFluxesIR",sampleMeshID);↪→

60

61 % Prepare aux data

62 auxDataInit = [azimuth;elevation;transform(:)];

63

64 % Write initial data

65 sActionInit = precice.Constants.actionWriteInitialData();

66 if preciceInterface.isActionRequired(sActionInit)

67 preciceInterface.writeBlockScalarData c

(terrainTempID,terrainSize,terrainVertexIDs,terrainTempsInit);↪→

68 preciceInterface.writeBlockScalarData c

(sampleTempID,sampleSize,sampleVertexIDs,sampleTempsInit);↪→

69 preciceInterface.writeBlockScalarData c

(auxDataID,18,auxVertexIDs,auxDataInit);↪→

70 preciceInterface.fulfilledAction(sActionInit);

71 end

72

53

A. Full code for TherMoS coupling

73 preciceInterface.initializeData();

74

75 %% STEP 5

76 tComp = tic;

77 while(preciceInterface.isCouplingOngoing())

78 % Reading the fluxes

79 tRead = tic;

80 terrainSolar = preciceInterface.readBlockScalarData c

(terrainSolarID,terrainSize,terrainVertexIDs,true);↪→

81 terrainIR = preciceInterface.readBlockScalarData c

(terrainIRID,terrainSize,terrainVertexIDs,true);↪→

82 sampleSolar = preciceInterface.readBlockScalarData c

(sampleSolarID,sampleSize,sampleVertexIDs,true);↪→

83 sampleIR = preciceInterface.readBlockScalarData c

(sampleIRID,sampleSize,sampleVertexIDs,true);↪→

84 fprintf('READING FLUXES : %9.5f seconds.\n', toc(tRead))

85

86 % Call the solver

87 tSolve = tic;

88 [azimuth, elevation, transform, terrainTemps, sampleTemps] =

feval(solverFunction,terrainSolar, sampleSolar, terrainIR,

sampleIR);

↪→

↪→

89 fprintf('SOLVING : %9.5f seconds.\n', toc(tSolve))

90

91 % Write Data

92 tWrite = tic;

93 auxData = [azimuth;elevation;transform(:)];

94 preciceInterface.writeBlockScalarData c

(terrainTempID,terrainSize,terrainVertexIDs,terrainTemps);↪→

95 preciceInterface.writeBlockScalarData c

(sampleTempID,sampleSize,sampleVertexIDs,sampleTemps);↪→

96 preciceInterface.writeBlockScalarData c

(auxDataID,18,auxVertexIDs,auxData);↪→

97 fprintf('WRITING TEMPS : %9.5f seconds.\n', toc(tWrite))

98

99 % Advance

100 dt = preciceInterface.advance(dt);

101 end

102

103 % Print times

104 fprintf('----------------------------------');

105 fprintf('COMPUTING TIME : %9.5f seconds.\n', toc(tComp))

106 fprintf('COMPLETE TIME : %9.5f seconds.\n', toc(tInit))

107 fprintf('----------------------------------');

54

A.3. TherMoS ray tracer adapter

108

109 % Finalize preCICE

110 preciceInterface.finalize();

111

112 % Remove temporary config file

113 delete("__THERMOS_CONFIG_TEMP__.xml");

114 end

A.3. TherMoS ray tracer adapter

A.3.1. Common function

The following code is the run function of the OptixSimulator class, which is called by
the main() function and used in both variants of the ray tracer.

1 void OptixSimulatorPrecice::run()

2 {

3 int size, rank;

4 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

5 MPI_Comm_size(MPI_COMM_WORLD, &size);

6

7 // Configuration of preCICE

8 preciceInterface.configure(scene_->settings c

().precice_config_file.c_str());↪→

9

10 // Declaring geometry etc. to preCICE

11 declare_geometry_to_precice(rank);

12

13 // Initializing preCICE

14 double dt,t,t_total,t_comploop,t_cast,t_init;

15 t_init = MPI_Wtime();

16 dt = preciceInterface.initialize();

17 t_init = MPI_Wtime() - t_init;

18 printf("INITIALIZATION : %9.5f seconds.\n",t_init);

19 t = MPI_Wtime();

20 t_total = t;

21

22 // Get data IDs

23 terrainTempID = preciceInterface.getDataID c

("TerrainTemperatures",terrainMeshID);↪→

24 sampleTempID = preciceInterface.getDataID c

("SampleTemperatures",sampleMeshID);↪→

25 auxDataID =

preciceInterface.getDataID("AuxiliaryData",auxMeshID);↪→

55

A. Full code for TherMoS coupling

26 terrainSolarID = preciceInterface.getDataID c

("TerrainFluxesSolar",terrainMeshID);↪→

27 terrainIRID =

preciceInterface.getDataID("TerrainFluxesIR",terrainMeshID);↪→

28 sampleSolarID = preciceInterface.getDataID c

("SampleFluxesSolar",sampleMeshID);↪→

29 sampleIRID =

preciceInterface.getDataID("SampleFluxesIR",sampleMeshID);↪→

30

31 // Initialize data

32 preciceInterface.initializeData();

33 t = (MPI_Wtime() - t);

34 printf("INITIAL SETUP : %9.5f seconds.\n",t);

35

36 // Now the coupling can start

37 t_comploop = MPI_Wtime();

38 while (preciceInterface.isCouplingOngoing())

39 {

40 // read solver results - read_input calls the precice

functions↪→

41 t = MPI_Wtime();

42 read_input(rank);

43 t = (MPI_Wtime() - t);

44 printf("READING TEMPS : %9.5f seconds.\n",t);

45

46 // Computation step

47 t = MPI_Wtime();

48 simulate(rank, size);

49 t = (MPI_Wtime() - t);

50 printf("RAYTRACING : %9.5f seconds.\n",t);

51

52 // write raytracer results - rank 0 calls send_output,

which calls preCICEs write functions↪→

53 t = MPI_Wtime();

54 t_cast = send_output(rank);

55 t = (MPI_Wtime() - t);

56 printf("WRITING FLUXES : %9.5f seconds.\n",t);

57 printf("CASTING FLUXES : %9.5f seconds.\n",t_cast);

58

59 printf("Advancing...\n");

60 dt = preciceInterface.advance(dt);

61 }

62

63 // Finalize MPI and print final times

56

A.3. TherMoS ray tracer adapter

64 t_comploop = (MPI_Wtime() - t_comploop);

65 t_total = (MPI_Wtime() - t_total);

66 printf("----------------------------------\n");

67 printf("COMPUTING TIME : %9.5f seconds.\n",t_comploop);

68 printf("COMPLETE TIME : %9.5f seconds.\n",t_total);

69 printf("----------------------------------\n");

70 preciceInterface.finalize();

71 printf("Raytracer sync ended.\n");

72 }

A.3.2. Original variant

The following code contains the helper functions called by the run function as they are
implemented in the simple ray tracer variant with explicit broadcasting and reducing.

1 void OptixSimulatorPrecice::declare_geometry_to_precice(int mpi_rank)

2 {

3 if(mpi_rank==0) {

4 // Get the mesh IDs

5 terrainMeshID =

preciceInterface.getMeshID("TerrainMeshRaytracer");↪→

6 sampleMeshID =

preciceInterface.getMeshID("SampleMeshRaytracer");↪→

7 auxMeshID = preciceInterface.getMeshID c

("AuxiliaryMeshRaytracer");↪→

8

9 // Declare terrain geometry

10 std::vector<double> positions(3*terrainSize);

11 for (int j = 0; j < terrainSize; j++) {

12 positions[3*j] = j;

13 positions[3*j+1] = 0;

14 positions[3*j+2] = 0;

15 }

16 preciceInterface.setMeshVertices(terrainMeshID,

terrainSize, positions.data(),

terrainVertexIDs.data());

↪→

↪→

17

18 // Declare terrain geometry

19 for (int j = 0; j < sampleSize; j++) {

20 positions[3*j] = j;

21 positions[3*j+1] = 0;

22 positions[3*j+2] = 0;

23 }

57

A. Full code for TherMoS coupling

24 preciceInterface.setMeshVertices(sampleMeshID,

sampleSize, positions.data(),

sampleVertexIDs.data());

↪→

↪→

25

26 // Declare auxiliary mesh geometry

27 for (int j = 0; j < auxSize; j++) {

28 positions[3*j] = j;

29 positions[3*j+1] = 0;

30 positions[3*j+2] = 0;

31 }

32 preciceInterface.setMeshVertices(auxMeshID, auxSize,

positions.data(), auxVertexIDs.data());↪→

33 }

34 }

1 void OptixSimulatorPrecice::read_input(int mpi_rank)

2 {

3 double t = MPI_Wtime();

4

5 float azimuth;

6 float elevation;

7 float sample_transform[16];

8 float *terrain_temps =

static_cast<float*>(terrain_temp_buf_->map());↪→

9 float *sample_temps =

static_cast<float*>(sample_temp_buf_->map());↪→

10

11 // Rank 0 reads and broadcasts to the other ranks

12 MPI_Request requests[5];

13 if (mpi_rank==0) {

14 preciceInterface.readBlockScalarData(terrainTempID,

terrainSize, terrainVertexIDs.data(),

terrainDouble.data());

↪→

↪→

15 for (int j = 0; j<terrainSize; j++) {

16 terrain_temps[j] =

static_cast<float>(terrainDouble[j]);↪→

17 }

18 MPI_Ibcast(terrain_temps, terrainSize, MPI_FLOAT, 0,

MPI_COMM_WORLD, requests+3);↪→

19 preciceInterface.readBlockScalarData(sampleTempID,

sampleSize, sampleVertexIDs.data(),

sampleDouble.data());

↪→

↪→

20 for (int j = 0; j<sampleSize; j++) {

58

A.3. TherMoS ray tracer adapter

21 sample_temps[j] =

static_cast<float>(sampleDouble[j]);↪→

22 }

23 MPI_Ibcast(sample_temps, sampleSize, MPI_FLOAT, 0,

MPI_COMM_WORLD, requests+4);↪→

24 preciceInterface.readBlockScalarData(auxDataID, auxSize,

auxVertexIDs.data(), auxDouble.data());↪→

25 azimuth = static_cast<float>(auxDouble[0]);

26 elevation = static_cast<float>(auxDouble[1]);

27 for (int j = 0; j<16; j++) {

28 sample_transform[j] =

static_cast<float>(auxDouble[2+j]);↪→

29 }

30 MPI_Ibcast(&azimuth, 1, MPI_FLOAT, 0, MPI_COMM_WORLD,

requests);↪→

31 MPI_Ibcast(&elevation, 1, MPI_FLOAT, 0, MPI_COMM_WORLD,

requests+1);↪→

32 MPI_Ibcast(sample_transform, 16, MPI_FLOAT, 0,

MPI_COMM_WORLD, requests+2);↪→

33 } else {

34 MPI_Ibcast(terrain_temps, terrainSize, MPI_FLOAT, 0,

MPI_COMM_WORLD, requests+3);↪→

35 MPI_Ibcast(sample_temps, sampleSize, MPI_FLOAT, 0,

MPI_COMM_WORLD, requests+4);↪→

36 MPI_Ibcast(&azimuth, 1, MPI_FLOAT, 0, MPI_COMM_WORLD,

requests);↪→

37 MPI_Ibcast(&elevation, 1, MPI_FLOAT, 0, MPI_COMM_WORLD,

requests+1);↪→

38 MPI_Ibcast(sample_transform, 16, MPI_FLOAT,

0,MPI_COMM_WORLD, requests+2);↪→

39 }

40 MPI_Waitall(5,requests,MPI_STATUSES_IGNORE);

41

42 // unmap buffers

43 terrain_temp_buf_->unmap();

44 sample_temp_buf_->unmap();

45

46 // set sample transform

47 scene_->set_sample_transform(sample_transform);

48

49 // recalculate sun parallelograms

50 scene_->set_sun_angles(azimuth, elevation);

51 }

52

59

A. Full code for TherMoS coupling

53 void OptixSimulatorPrecice::simulate(int mpi_rank, int mpi_size)

54 {

55 ((OptixScene*)scene_)->setup_params();

56

57 std::fill(ir_sample_.begin(), ir_sample_.end(), 0.0f);

58 std::fill(ir_terrain_.begin(), ir_terrain_.end(), 0.0f);

59 std::fill(solar_sample_.begin(), solar_sample_.end(), 0.0f);

60 std::fill(solar_terrain_.begin(), solar_terrain_.end(), 0.0f);

61

62 MPI_Request requests[4];

63

64 // Infrared

65 launch_infrared_rays(mpi_rank, mpi_size);

66

67 if (mpi_rank == 0)

68 {

69 MPI_Ireduce(MPI_IN_PLACE, &ir_sample_[0],

ir_sample_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[0]);

↪→

↪→

70 MPI_Ireduce(MPI_IN_PLACE, &ir_terrain_[0],

ir_terrain_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[1]);

↪→

↪→

71 }

72 else

73 {

74 MPI_Ireduce(&ir_sample_[0], &ir_sample_[0],

ir_sample_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[0]);

↪→

↪→

75 MPI_Ireduce(&ir_terrain_[0], &ir_terrain_[0],

ir_terrain_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[1]);

↪→

↪→

76 }

77

78 // Solar

79 launch_solar_rays(mpi_rank, mpi_size);

80

81 if (mpi_rank == 0)

82 {

83 MPI_Ireduce(MPI_IN_PLACE, &solar_sample_[0],

solar_sample_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[2]);

↪→

↪→

84 MPI_Ireduce(MPI_IN_PLACE, &solar_terrain_[0],

solar_terrain_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[3]);

↪→

↪→

60

A.3. TherMoS ray tracer adapter

85 }

86 else

87 {

88 MPI_Ireduce(&solar_sample_[0], &solar_sample_[0],

solar_sample_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[2]);

↪→

↪→

89 MPI_Ireduce(&solar_terrain_[0], &solar_terrain_[0],

solar_terrain_.size(), MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD, &requests[3]);

↪→

↪→

90 }

91

92 MPI_Waitall(4, requests, MPI_STATUSES_IGNORE);

93 }

94

95 double OptixSimulatorPrecice::send_output(int mpi_rank)

96 {

97 if(mpi_rank==0) {

98 double t_cast,t_temp;

99 t_temp = MPI_Wtime();

100 for (int j = 0; j<terrainSize; j++) {

101 terrainDouble[j] =

static_cast<double>(solar_terrain_[j]);↪→

102 }

103 for (int j = 0; j<sampleSize; j++) {

104 sampleDouble[j] =

static_cast<double>(solar_sample_[j]);↪→

105 }

106 t_cast = MPI_Wtime()-t_temp;

107 preciceInterface.writeBlockScalarData c

(terrainSolarID,terrainSize,terrainVertexIDs.data c

(),terrainDouble.data());

↪→

↪→

108 preciceInterface.writeBlockScalarData c

(sampleSolarID,sampleSize,sampleVertexIDs.data c

(),sampleDouble.data());

↪→

↪→

109

110 t_temp = MPI_Wtime();

111 for (int j = 0; j<terrainSize; j++) {

112 terrainDouble[j] =

static_cast<double>(ir_terrain_[j]);↪→

113 }

114 for (int j = 0; j<sampleSize; j++) {

115 sampleDouble[j] =

static_cast<double>(ir_sample_[j]);↪→

116 }

61

A. Full code for TherMoS coupling

117 t_cast = t_cast+ MPI_Wtime()-t_temp;

118 preciceInterface.writeBlockScalarData c

(terrainIRID,terrainSize,terrainVertexIDs.data c

(),terrainDouble.data());

↪→

↪→

119 preciceInterface.writeBlockScalarData c

(sampleIRID,sampleSize,sampleVertexIDs.data c

(),sampleDouble.data());

↪→

↪→

120 return t_cast;

121 }

122 }

A.3.3. Conservatie mapping variant

This code contains the helper functions as they are implemented in the ray tracer variant
using conservative mapping.

1 void OptixSimulatorPrecice::declare_geometry_to_precice(int mpi_rank)

2 {

3 // Get the mesh IDs

4 terrainMeshID =

preciceInterface.getMeshID("TerrainMeshRaytracer");↪→

5 sampleMeshID =

preciceInterface.getMeshID("SampleMeshRaytracer");↪→

6 auxMeshID =

preciceInterface.getMeshID("AuxiliaryMeshRaytracer");↪→

7

8 // Declare terrain geometry

9 std::vector<double> positions(3*terrainSize);

10 for (int j = 0; j < terrainSize; j++) {

11 positions[3*j] = j;

12 positions[3*j+1] = 0;

13 positions[3*j+2] = 0;

14 }

15 preciceInterface.setMeshVertices(terrainMeshID, terrainSize,

positions.data(), terrainVertexIDs.data());↪→

16

17 // Declare terrain geometry

18 for (int j = 0; j < sampleSize; j++) {

19 positions[3*j] = j;

20 positions[3*j+1] = 0;

21 positions[3*j+2] = 0;

22 }

23 preciceInterface.setMeshVertices(sampleMeshID, sampleSize,

positions.data(), sampleVertexIDs.data());↪→

62

A.3. TherMoS ray tracer adapter

24

25 // Declare auxiliary mesh geometry

26 for (int j = 0; j < auxSize; j++) {

27 positions[3*j] = j;

28 positions[3*j+1] = 0;

29 positions[3*j+2] = 0;

30 }

31 preciceInterface.setMeshVertices(auxMeshID, auxSize,

positions.data(), auxVertexIDs.data());↪→

32 }

1 void OptixSimulatorMapHack::read_input(int mpi_rank)

2 {

3 double t = MPI_Wtime();

4

5 float azimuth;

6 float elevation;

7 float sample_transform[16];

8 float *terrain_temps =

static_cast<float*>(terrain_temp_buf_->map());↪→

9 float *sample_temps =

static_cast<float*>(sample_temp_buf_->map());↪→

10

11 preciceInterface.readBlockScalarData(terrainTempID, terrainSize,

terrainVertexIDs.data(), terrainDouble.data());↪→

12 for (int j = 0; j<terrainSize; j++) {

13 terrain_temps[j] = static_cast<float>(terrainDouble[j]);

14 }

15 preciceInterface.readBlockScalarData(sampleTempID, sampleSize,

sampleVertexIDs.data(), sampleDouble.data());↪→

16 for (int j = 0; j<sampleSize; j++) {

17 sample_temps[j] = static_cast<float>(sampleDouble[j]);

18 }

19 preciceInterface.readBlockScalarData(auxDataID, auxSize,

auxVertexIDs.data(), auxDouble.data());↪→

20 azimuth = static_cast<float>(auxDouble[0]);

21 elevation = static_cast<float>(auxDouble[1]);

22 for (int j = 0; j<16; j++) {

23 sample_transform[j] =

static_cast<float>(auxDouble[2+j]);↪→

24 }

25

26 // unmap buffers

27 terrain_temp_buf_->unmap();

63

A. Full code for TherMoS coupling

28 sample_temp_buf_->unmap();

29

30 // set sample transform

31 scene_->set_sample_transform(sample_transform);

32

33 // recalculate sun parallelograms

34 scene_->set_sun_angles(azimuth, elevation);

35 }

36

37 void OptixSimulatorMapHack::simulate(int mpi_rank, int mpi_size)

38 {

39 ((OptixScene*)scene_)->setup_params();

40

41 std::fill(ir_sample_.begin(), ir_sample_.end(), 0.0f);

42 std::fill(ir_terrain_.begin(), ir_terrain_.end(), 0.0f);

43 std::fill(solar_sample_.begin(), solar_sample_.end(), 0.0f);

44 std::fill(solar_terrain_.begin(), solar_terrain_.end(), 0.0f);

45

46 // Infrared

47 launch_infrared_rays(mpi_rank, mpi_size);

48

49 // Solar

50 launch_solar_rays(mpi_rank, mpi_size);

51 }

52

53 double OptixSimulatorMapHack::send_output(int mpi_rank)

54 {

55 double t_cast,t_temp;

56 t_temp = MPI_Wtime();

57 for (int j = 0; j<terrainSize; j++) {

58 terrainDouble[j] =

static_cast<double>(solar_terrain_[j]);↪→

59 }

60 for (int j = 0; j<sampleSize; j++) {

61 sampleDouble[j] = static_cast<double>(solar_sample_[j]);

62 }

63 t_cast = MPI_Wtime()-t_temp;

64 preciceInterface.writeBlockScalarData c

(terrainSolarID,terrainSize,terrainVertexIDs.data c

(),terrainDouble.data());

↪→

↪→

65 preciceInterface.writeBlockScalarData c

(sampleSolarID,sampleSize,sampleVertexIDs.data c

(),sampleDouble.data());

↪→

↪→

66

64

A.3. TherMoS ray tracer adapter

67 t_temp = MPI_Wtime();

68 for (int j = 0; j<terrainSize; j++) {

69 terrainDouble[j] = static_cast<double>(ir_terrain_[j]);

70 }

71 for (int j = 0; j<sampleSize; j++) {

72 sampleDouble[j] = static_cast<double>(ir_sample_[j]);

73 }

74 t_cast = t_cast+MPI_Wtime()-t_temp;

75 preciceInterface.writeBlockScalarData c

(terrainIRID,terrainSize,terrainVertexIDs.data c

(),terrainDouble.data());

↪→

↪→

76 preciceInterface.writeBlockScalarData c

(sampleIRID,sampleSize,sampleVertexIDs.data c

(),sampleDouble.data());

↪→

↪→

77 return t_cast;

78 }

65

Bibliography

[1] National Aeronautics and Space Administration. Apollo 11 mission report, 1969.

[2] Mohammad Alhasni. Multi-gpu parallelization of dynamic heat transfer model on
the moon. Master’s thesis, Department of Informatics, Technical University of
Munich, Munich, March 2018.

[3] C. Bernardi, Y. Maday, and A. T. Patera. Domain Decomposition by the Mortar
Element Method, pages 269–286. Springer Netherlands, Dordrecht, 1993.

[4] Boost. Boost C++ Libraries. http://www.boost.org/, 2019. Accessed 15-July-
2019.

[5] Bernd Brügge and Allen H. Dutoit. Object-Oriented Software Engineering Using
UML, Patterns, and Java. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd
edition, 2009.

[6] Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl,
Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann. preCICE –
a fully parallel library for multi-physics surface coupling. Computers and Fluids,
141:250–258, 2016. Advances in Fluid-Structure Interaction.

[7] Hans-Joachim Bungartz and Michael Schäfer, editors. Fluid-Structure Interaction
- Modelling, Simulation, Optimisation. Number 53 in Lecture Notes in Computa-
tional Science and Engineering. Springer-Verlag, Berlin, Aug 2006. editor: Bun-
gartz, Hans-Joachim; Schäfer, Michael¡br¿address: Berlin¡br¿series: Lecture Notes
in Computational Science and Engineering¡br¿.

[8] J.I. Castor. Radiation Hydrodynamics. Radiation Hydrodynamics. Cambridge Uni-
versity Press, 2004.

[9] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass effect in the
design of partitioned algorithms for fluid-structure problems. (RR-5084), 2004.

[10] Yunus A. Çengel. Heat Transfer: A Practical Approach. McGraw-Hill series in
mechanical engineering. McGraw-Hill, 2003.

[11] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global
Illumination. AK Peters Ltd, 2006.

[12] Benjamin Uekermann et al. Handling global coupling data, 2018. [Online; accessed
15-July-2019].

67

http://www.boost.org/

Bibliography

[13] Gerasimos Chourdakis et al. Implement a matlab api, 2018. [Online; accessed
15-July-2019].

[14] Oliver Woodford et al. Making c++ objects persistent between mex calls, and
robust. [Online; accessed 14-July-2019].

[15] Inc. Free Software Foundation. Gcc, the gnu compiler collection. [Online; accessed
14-July-2019].

[16] Bernhard Gatzhammer. Efficient and Flexible Partitioned Simulation of Fluid-
Structure Interactions. Dissertation, Technische Universität München, München,
2014.

[17] M. W. Gee, U. Küttler, and W. A. Wall. Truly monolithic algebraic multigrid
for fluid–structure interaction. International Journal for Numerical Methods in
Engineering, 85(8):987–1016, 2011.

[18] D.G. Gilmore. Spacecraft Thermal Control Handbook: Fundamental technologies.
Spacecraft Thermal Control Handbook. Aerospace Press, 2002.

[19] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic Press Ltd.,
London, UK, UK, 1989.

[20] William Gropp, Anthony Skjellum, and Ewing L. Lusk. Using MPI-2: Advanced
Features of the Message Passing Interface. Scientific and Engineering Computation
Series. MIT Press, Cambridge, MA, 2nd edition, 1999.

[21] Philipp Hager. Dynamic thermal modeling for moving objects on the Moon. PhD
thesis, Technische Universität München, 2013.

[22] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing.
24(4):145–154, August 1990.

[23] The MathWorks Inc. Compilers - matlab & simulink. [Online; accessed 14-July-
2019].

[24] The MathWorks Inc. Matlab documentation, 2019. [Online; accessed 18-July-2019].

[25] The MathWorks Inc. MATLAB R2019a, 2019. Software. URL http://mathworks.

com.

[26] F.P. Incropera, T.L. Bergman, D.P. DeWitt, and A.S. Lavine. Fundamentals of
Heat and Mass Transfer. Wiley, 2013.

[27] David Keyes, Lois C. McInnes, Carol Woodward, William Gropp, Eric Myra,
Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, Emil Constan-
tinescu, Donald Estep, Katherine Evans, Charbel Farhat, Ammar Hakim, Glenn

68

http://mathworks.com
http://mathworks.com

Bibliography

Hammond, Glen Hansen, Judith Hill, Tobin Isaac, and Barbara Wohlmuth. Mul-
tiphysics simulations: Challenges and opportunities. International Journal of High
Performance Computing Applications, 27, 02 2013.

[28] Ulrich Küttler and Wolfgang A. Wall. Fixed-point fluid–structure interaction solvers
with dynamic relaxation. Computational Mechanics, 43(1):61–72, Dec 2008.

[29] Zhen Leo Liu. Multiphysics in Porous Materials. 07 2018.

[30] Peter Li. Matlab mex in-place editing — undocumented matlab. [Online; accessed
14-July-2019].

[31] Florian Lindner, Miriam Mehl, and Benjamin Uekermann. Radial Basis Function
Interpolation for Black-Box Multi-Physics Simulations. 05 2017.

[32] L. Liu, C. Zhang, R. Li, B. Wang, and G. Yang. C-coupler2: a flexible and user-
friendly community coupler for model coupling and nesting. Geoscientific Model
Development, 11(9):3557–3586, 2018.

[33] ITP Engines UK Ltd. Esatan-tms, 2019. [Online; accessed 18-July-2019].

[34] Matthias Mayr. A Monolithic Solver for Fluid-Structure Interactionwith Adaptive
Time Stepping and a HybridPreconditioner. Dissertation, Fakultät für Maschinen-
wesen, Technische Universität München, 2016.

[35] NVIDIA. OptixTM ray tracing engine 6.0.0, 2018. https://developer.nvidia.

com/optix.

[36] NVIDIA. CUDA toolkit documentation v10.1.168, 2019. https://developer.

nvidia.com/cuda-toolkit.

[37] Wolfgang Polifke and Jan Kopitz. Wärmeübertragung : Grundlagen, analytische
und numerische Methoden. Pearson, München [u.a.], 2009.

[38] preCICE. precice – a coupling library for partitioned multi-physics simulations on
massively parallel systems, 2019. [Online; accessed 13-July-2019].

[39] preCICE. precice :: Home, 2019. [Online; accessed 13-July-2019].

[40] preCICE. precice/precice wiki • github, 2019. [Online; accessed 13-July-2019].

[41] Kevin Suffern. Ray Tracing from the Ground Up. A. K. Peters, Ltd., Natick, MA,
USA, 2007.

[42] Benjamin Uekermann. Partitioned Fluid-Structure Interaction on Massively Paral-
lel Systems. Dissertation, Institut für Informatik, Technische Universität München,
October 2016.

69

https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

	Acknowledgements
	Abstract
	Glossary of abbreviations
	Introduction
	Motivation and Goals
	Thesis structure

	Background
	Multiphysics problems
	Overview
	Numerical approaches
	Coupling techniques

	Heat transfer and thermal modeling
	Foundations of heat transfer
	Heat transfer in space
	Numerical methods

	preCICE
	Overview
	Configuring preCICE
	A preCICE adapter
	Mapping
	Communication and process mapping

	Ray tracing
	Reflection of rays

	Interfacing MATLAB with C++
	MEX and Engine APIs
	C MEX API and C Matrix API
	C++ MEX API and C DATA API
	Data handling in MATLAB and in the MEX APIs
	Out-of-process execution

	Existing implementation of TherMoS
	Overview
	Solver implementation
	Ray tracer implementation
	The memory map based interface
	Multi-GPU parallelization

	Implemenation
	Matlab bindings
	Requirements discussion and API choice
	Description of the implementation
	Out-of-process variant

	Coupling Configuration
	MATLAB solver adapter
	Ray tracer adapter
	Floats in the ray tracer
	Broadcast-reduction approach in the ray tracer

	Results and conclusions
	Results
	Test system
	Validation of Results
	Performance Tests

	Conclusion
	Future work
	On the MATLAB bindings
	On TherMoS

	Full code for TherMoS coupling
	Configuration file for TherMoS
	TherMoS solver adapter
	TherMoS ray tracer adapter
	Common function
	Original variant
	Conservatie mapping variant

