|

Technische Universitat Minchen
Fakultat fiir Mathematik
Lehrstuhl fiir Mathematische Optimierung

Shape Optimization
for Fluid-Structure Interaction

Johannes Willibald Haubner

Vollstandiger Abdruck der von der Fakultét fiir Mathematik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr.rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Gero Friesecke

Prufer der Dissertation: 1. Prof. Dr. Michael Ulbrich

2. Prof. Dr. Boris Vexler
Prof. Dr. Jean-Pierre Raymond

Université Paul Sabatier, Toulouse, France

Die Dissertation wurde am 09.10.2019 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultét fiir Mathematik am 04.03.2020 angenommen.






Abstract

In this thesis, we investigate unsteady fluid-structure interaction (FSI) problems. We prove
a new improved regularity result for the linear hyperbolic wave equation. Under the assump-
tion that this result can be adapted to the Lamé system, we show that a linear FSI problem
attains a unique solution under weaker assumptions on the geometry of the domain than in
previous works. This is also the basis for a local-in-time existence and regularity result for
a nonlinear, unsteady FSI problem that couples the Navier-Stokes equations with the Lamé
system. Furthermore, we examine shape optimization for unsteady FSI. Since the concept
of domain transformations is well-established in the monolithic FSI context due to the ne-
cessity of representing the coupled system in a uniform framework, we apply the method of
mappings. We develop a general framework for deriving continuity and differentiability for
the solution of nonlinear, unsteady, parameter-dependent partial differential equations and
apply it to show differentiability of the states of the unsteady FSI problem with respect to
domain variations. In order to show the viability of our approach for shape optimization of
unsteady FSI, we further do numerical simulations.

Zusammenfassung

Diese Arbeit befasst sich mit instationdren Fluid-Struktur Interaktionsproblemen. Wir be-
weisen eine neue verbesserte Regularitétsabschitzung fiir die Normalenableitung der Lésung
der linearen, hyperbolischen Wellengleichung. Unter der Annahme, dass diese Regulartiit-
saussage auf das Lamé-System {ibertragen werden kann, zeigen wir die Existenz und Ein-
deutigkeit von Losungen fiir ein lineares FSI Problem unter weniger restriktiven Vorausset-
zungen an die Geometrie des Gebietes als in bisher verfiigharen Resultaten. Ausgehend davon
lasst sich auch zeitlokale Existenz und Eindeutigkeit von Losungen fiir ein nichtlineares, in-
stationéres FSI Problem, das die Navier-Stokes Gleichungen und das Lamé System koppelt,
herleiten. Desweiteren wird Formoptimierung fiir instationdre FSI mit Hilfe der sogenan-
nten "method of mappings" betrachtet. Dieser Ansatz arbeitet, dhnlich wie die Herleitung
der monolithischen Darstellung des FSI Modells, mit Gebietstransformationen. Es wird ein
allgemeines Konzept entwickelt, mit dem sich Stetigkeits- und Differenzierbarkeitsaussagen
fiir die Losungen von nichtlinearen, instationéren und parameterabhéngigen Differentialgle-
ichungen herleiten lassen. Wir wenden dieses an, um Differenzierbarkeit der Zusténde des
instationdren FSI Problems beziiglich Gebietsvariationen zu zeigen. Numerische Simulatio-
nen demonstrieren die Praktikabilitdt des Formoptimierungsansatzes fiir instationare FSI.
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natural numbers (without 0)
natural numbers with 0

real numbers
complex numbers
dimension d € N
empty set

identity matrix I € R#x4

time interval I = (0,7), T > 0

domain/ subset of R?, fluid part of domain €, solid part
of domain 2

boundary of domain (2

interface between fluid and solid part of domain, one re-
quires that Q =QrUQ,UT;, QrNQ =0, QrNQ =T
outer, exterior boundary part of Qf (Q), I'r = 0Qf \ T,
(Ps = aQs \ Fi)

part of I'y (I's), where Dirichlet boundary conditions are
imposed

part of I's (I'y), where Neumann boundary conditions are
imposed

superscript indicating that we are in the physical
framework

superscript indicating that we are in the ALE framework

superscript that indicates that we are in the framework
for shape optimization with the method of mappings
approach

coordinates on
coordinates on
coordinates on €
coordinates on
time coordinates

indicates that the quantity is defined on the fluid part of
the domain
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indicates that the quantity is defined on the solid part of
the domain

indicates that the discretized version of the quantity is
considered

space-time cylinder 2, x (0, T"), except for physical domain
where it is defined as QT 1= (J,e; Qu(t) x {t}

space-time cylinder I', x (0, T'), except for physical domain
where it is defined as X7 := (J,; S (t) x {t}

velocity

pressure

displacement

divergence, differential operator defined by div(v) =
2?21 0O¢,v; for a vector valued quantity v :  — R? and
by div(A) = (Zle O¢,Aj;i); for a matrix valued quantity
A : Q — R¥4 (analogue definition on €, Q, Q)

gradient, differential operator defined by Vp = (0¢,p); for
a scalar valued quantity p : Q — R and by Vv = (0¢,v;)i,;
for a vector valued quantity v : Q — R? (analogue defi-
nition on €2, 2, Q)

Jacobian, differential operator defined by Dv =
(Og;vi)ig = Vv for a vector valued quantity v :  — R%,
(analogue definition on €2, 2, Q)

aa1+"'+o‘d

differential operator of order a € N& D® = 9671 5g%
1 ¥5d

o =14+ aq

differential operator defined by e(v) = 3(Dv + Dv'),
(analogue definition on 2, €, )

fluid stress tensor, differential operator deﬁnefi by
of(v,p) = 2ve(v) — pl, (analogue definition on £, €2, )

solid stress tensor, differential operator

outer unit normal vector

ALE transformation, maps Q, x (0,7) — QT

inverse of x

transformation fo~r shage optimization with method of
mappings, maps Q, — €, cf., Section

control for shape optimization with method of mappings,
cf., Section

deformation gradient f‘x = Dyx

inverse deformation gradient ﬁ'r = f;l

determinant of deformation gradient .J, = det(f‘x)



Pr vy ,vo
St

transformed fluid stress tensor o, (V¢,pr) o X

appropriate definition to obtain an analogy to the fluid
equations, &, := jxilfxE&y(v“vs)f‘i
space that contains all ¢ such that ¢ : 2 — R is infinitely

differentiable on 2 and has compact support in €2
space of distributions, dual space of D(R?)

space of tempered distributions, subset of D’(R%)
Schwartz space

Banach space of equivalence classes of measurable, p-
integrable (p € [1,00)) or essentially bounded (p = o0)
functions on 2

Fourier transform of integrable function v : R — C
space of m-times differentiable functions on 2, endowed
with the norm HUHCm@) = 2 jaj<m MaXeeq [D0(E)]
cf., Section [2.2.1
cf., Section [2.2.2
cf., Section [2.2.3

cf., Section [2.2.3

complex interpolation of two Hilbert spaces X, Y such
that X C Y and X dense in Y, 6 € [0, 1] with continuous
injection, cf., [90, p. 10, Def. 2.1]

C5o (@) = D(Q)

L3((0,T),X) = H°((0,7T), X)
surface measure on 0}
(H2+€’1+§(Q?))d, cf., Section [2.2.4
subset of Er, cf., Section |2.2.4
(H%2(QT))?, cf., Section [2.2.4
L2((0,T), HY(Qp)) N H2((0,T), H'(€)), cf., Section

H™3((0,T), L2(S2)%), cf., Section [2.2.4
H2tbata(5T), of., Section [2.2.4
(H%+£’i+§(2?))d, cf., Section [2.2.4
{pe L2QF) : Vpe H'3(@Q)).plyy € HEH173(2T)),
cf., Section

subset of Pr, cf., Section

HY((0,T), H'*(Qp)) N H2F2((0,T), L2(Qf)), cf., Sec-

tion IT_HI
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HY((0,7), H'*(Q)%) 0 H2+5((0,T), LA(24)%), cf., Sec-
tion

HY((0,7), H'*(Qp)™0) 0 H3*2((0,T), L3(Q)™Y), cf,
Section

C([0, T], Hi+3(Q,)4)NC([0, T], Hi5(Q4)%), cf., Section

set of first order operators tangential to boundary, cf.
(12.15))

arbitrary first order operator, B = ), b;(§)0, for b; €
C>(Q)?

extension operator in time, cf., Section [2.5

extension operator in space, cf., Proof of Lemma
restriction operator in time, cf., Section

Leray projector, cf., Section [3.3.2
identity L2(Q)¢ — L?(Q2f)4, cf., Section [3.3.2

regularization term in optimization problem, cf., Section

set of admissible domains, cf., Section
set of admissible transformations, cf. Section |2.7]
{a, : R - R? : id, + G, € ’Tad}, cf. Sections

system of local maps and partition of unity, cf., Section

space of continuous, piecewise polynomial functions up to
degree k on the triangulation Ty

E

L#(Q) inner product of functions, cf., Section
L¥(
%(

I') inner product of functions, cf., Section

~

Q") inner product of functions, cf., Section

L2(XT) inner product of functions, cf., Section

triangulation

subspace of P¥(7,)™, contains functions that have value
0 on the boundary of Uy 7. K
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1. Introduction

Fluid-structure interaction (FSI) is a particularly important subclass of multi-physics prob-
lems that arise frequently in applications such as wind turbines, bridges, naval architecture
or biomedical applications, cf., e.g., [21], 11, B3} [42] 45} [46, 69, [70, (76, 127]. We focus on appli-
cations with incompressible flow and consider fluid modeled by the unsteady incompressible
Navier-Stokes equations. These equations are formulated in the Eulerian framework, i.e.,
on the time-dependent physical domain Q(t) C R? for t € I := (0,T), T > 0. We divide
the fluid boundary 09 (t) = I';p(t) UT n(t) into two disjoint parts, on which Dirichlet
(on T'yp(t)) or Neumann (on I'sx(t)) boundary conditions are imposed. The corresponding
space-time cylinders shall be denoted by

QF = JQr0) x {1}, Sfp:=JTsn() x {t}, fy:=JTsn () x {t}.

tel tel tel

The differential equations are given by

prOes + (Vy - Vi)V — divk(04x(Vs, D)) = psfy - on QF,
divy(vf) =0 on Q?,

\vff = ‘v’fD on E?Da

orx(Vy,Pp)iay =g; on Ty,

with the initial condition
Vy(,0) = Voy on 24(0),
where V¢ denotes the fluid velocity, ps the pressure and ny the outer unit normal vector. }'f,

V¢p, & and Vo are right-hand side, boundary and intitial terms. The fluid stress tensor is
defined by

opx(V5,D5) = ppvp(Du¥ry + Dyvs ") — gl

with unit matrix I € R%*9 and Jacobian D,(-) := (Ox;(+)i)ij- The parameters py and vy
denote the fluid density and viscosity, respectively. The structure equations, however, are
formulated in the Lagrangian framework, i.e., on a fixed reference domain Q, with disjoint
Dirichlet and Neumann boundary parts st and fsN such that 895 = st U fsN. The
physical domain €,(t) for any t € I is obtained by the transformation X(-,t) : Q, — Q. (1),
Xs(y,t) =y + Ws(y, t), where the deformation Wy solves the hyperbolic equations

PsOtWs — divy(f‘xsE&y(VAvs)) = pSAfS on QZ = Qs x I,

W, =W,p on N1, :=T,pxI,
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Fy.Ysy(Wo)hs =g, on 3L, =T,y x I,
ws(-,0) = Wos on QS,

Ows(-,0) = w1 on QS,

and we define f‘xs := Dyx. Here, ps denotes the structure density and Afs, WspD, 8s, Wos and
w1 denote right hand side, boundary and intial terms.

e For a linear elastic material the stress tensor Xy (W;) is given by
Ssy(Ws) 1= F (s (DyWs + Dy ) + Astr(Dy Wi )I),

where the so-called Lamé coefficients A\s and ug are chosen such that us > 0 and
As + ps > 0.

e For the nonlinear Saint Venant Kirchhoff type material the stress tensor ¥, (W) is
given by

Say(We) 1= Astr(Ey )T + 2u:Ey.,

The first challenge for considering the coupled problem arises from the fact that the above
canonical models for the fluid and structure equations are formulated in different frameworks.

For FSI simulations, partitioned as well as monolithic approaches have been proposed.
Partitioned methods solve the corresponding models seperately and typically apply fixed
point iterations to the coupling interface conditions, which can, e.g., be accelerated by Quasi-
Newton [30} [77]. Monolithic approaches [32, 36l [43], [44] 50, 60, 129], such as arbitrary
Lagrangian-Eulerian (ALE) [32] 36, [60] and fully Eulerian methods [36] 43| [44], 129, [130],
use the same reference frame for fluid and solid. While fully Eulerian approaches use the
spatial reference frame, the ALE framework is obtained by introducing an arbitrary but
fixed reference domain ¢ such that the fluid and solid reference domains are disjoint, i.e.,

Q. NQ 5 = 0, and share the same boundary at the interface I =0,nN0 f- Moreover, an
extension x(t) : Qs — Q of the solid transformation X(t) to the whole reference domain
Q:=Q,U Qf UT; is introduced for any t € I. It can, e.g., be obtained by choosing a fully
Lagrangian setting or an harmonic or biharmonic extension of the solid displacement to the
fluid reference domain. Transformation of the fluid equations with the help of x to the fixed
reference domain {2 ¢ and coupling the fluid and structure equations across the interface I;



yields the system of equations

(pg0cvy + (V- Vi)V = dive(o7x(V5. 7)) 0 X = psly on Qp x I,
divy(Vg)ox =0 on Qp x 1,
VioX =Vsp onffDxI,
(0p(¥ypp)ip)ox =& onTyy <1,
7 oR(,0)=Tor onfly, (1.1)
psOgWs — divy (Fy, Xsy(Ws)) = psfs  on €5 x 1,
Ws = Wgp on f‘sDxI,
Fy. Yy (Wo)hy =g, on Doy x 1,
ws(+,0) = wps on Q.,
dew,(-,0) =Wy on
with additional coupling conditions
OWs =Vyox on I x 1,
—(ox(Vp,Bp)Rp) 0 X = Fy, By (We)hs on T x I

Here, }'f = fo ox and g, Vyp, as well as, voy are defined analogously. Introducing vy =

. A A . A A S A A > —1 - =~ N
VioX,DfF =DfoX, Of =0x(Vy,Pf)OX, Os i= Jy FXES»Y(WS)FI’ where F := Dyx and

Jy = det(Fy), as well as, v, = Oy Wy, yields the equivalent formulation

jxpfat‘}f + jxpf((l‘q;({’f —0kx)) - vy)‘A’f

—divy(Jy 6 F

PsOVs — divy(jx&sf;—r) = pSAfS
psOWs — psvs =0

W5 = Wsp

JxGsFy i, = g,

W(+,0) = Wos

Vs(+,0) = Wy

on Qf x 1,
on Qf x 1,
on ffD x I,
on ffN x I,
on Qf,

on Qs x I,
on € x 1,
on st x 1,
on fsN x I,
on €,

on €
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with additional coupling conditions

—Jyo i Fy iy = Jyo,F
where the transformed fluid stress tensor is given by
61 = ppvp(DyViF + F T Dy} ) — pyl.

In the following, for the sake of convencience, we will omit the f, s-indices for the functions
Vi, Vs, Ws and py. Furthermore, we will denote coordinates on the physical domain Q by
x and on the reference domain € by y and the subscripts of the nabla-operators indicate on
which variables they act on.

Remark 1.1. That the system (1.2)) coincides with the system (1.1f), that is also the basis
for the considerations in [I13], can be motivated with the following considerations. It holds

[ By = [ (A Dy = [ L Ty,
AQy AQy 0

A

With Nanson’s formula we obtain

/ jxf‘;Tﬁfdsy = / nydsy,
YT, OAQ (1)

where AQf(t) = x(AQy, 1) and dAQ(t) = x(DAQy,t). The latter term is equal to

/ nyds, = / div,Idx = 0.
8AQf(t) AQf(t)

Thus,

/ divy (JF3 ")dy = 0.
AQy

Since the test volume AQ ¢ is chosen arbitrarily, we have Piola’s identity

~

divy(JxF3 ) = 0.
Therefore, we have
divy (Jyor;Fy " Z By, (Jx 0 p (B ))ji = > 0y, (Jx(64)j(Fx i)
ik

= Z By, (Jx (B3 ki) (G )k + Oy, (7)) I (F N
i,k



implying that

divy (S 6 5 ") =3 0y, ((64)0) I (Fy i

In addition, it holds that

(dive(@7); = > O (67)jn = D Ou, (60X ™) = D (0. (6)s0) o X O X7 !
k k

i,k

= " (0y,(65)jk) o X (F ik o X Zaz )(Fx e ox "
ik

This shows that o R
divy(Jx6(Fy ") = Jy(divk(e)) o x.

Due to its nonlinearity FSI problems are a challenging problem. It can be simplified by
reduction of the introduced system to a model that is linear or steady or has a stationary
interface. Thus, we obtain an hierarchy of increasing difficulties, ranging from steady, e.g.,
[51L [132], to unsteady, e.g., [17, 27, 28 B34, 38, [72, [83), 84], 85, 113], from stationary, e.g.,
[0 B4, 38, 84, [85], to moving interfaces, e.g., [17, 27, 28, [72], 83, 113], and from linear, e.g.,
[34, 38, 132], to nonlinear models, e.g., [9, 17, 27, 28| 511, [72, [83], 84], 85, 113]. We first focus
on an unsteady, linear model with stationary interface. Since the interface is stationary (and
we assume the outer fluid boundary to be fixed) there is no distinction between Q(t) and
Q) for t € I. For that reason and for the sake of clarity we omit the superscripts. From
an applicational point of view, the model corresponds to a physical situation in which the
displacement of the solid is one order of magnitude smaller than its velocity, i.e., the solid
oscillates rapidly with small amplitude [9]. From an analytical point of view, it can be seen as
the foundation for the analysis of a more difficult setting. In [I13] an existence and regularity
result for the system with stationary interface

Ov—vAv+Vp=f in QJ:C,
div(v) =g =div(g) in Q?,
v(-,0) =vo in Qy,
v=vp on Xk,
v=0w onX’, (1.3)
or(v,p)n; = os(w)ny +h on X7,
Ouw — div(os(w)) =0 in QT
w(,0)=0 in Q,,
ow(-,0) =wy in Q,
w=0 onXl
is used for the derivation of a local-in-time existence and regularity result for the unsteady,

non-linear model with moving interface that couples the Navier-Stokes equations with linear
elasticity, the ALE reformulation of which corresponds to system (1.3 if the nonhomo-
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geneities h, f, g are chosen such that they collect the appearing non-linear terms. We denote
the exterior fluid boundary by I'y = 024 \I'; and the exterior solid boundary by I'y = 0Q,\T';.
The corresponding space-time cylincers are denoted by Eg and E;‘C, respectively. In the con-
sidered case we have I'yp = I'y and I'sp = I's. For the sake of simplicity we set py = ps =1
and omit the subscript of v¢. The fluid stress tensor is given by

0s(v,p) = 2we(v) - I,
where Dv denotes the Jacobian of v and
e(v) = %(Dv (D)),
The solid stress tensor is defined by
os(w) = Mre(w)I + 2ue(w),

where the Lamé constants A, y are chosen such that g > 0 and A + g > 0. In addition, vy,
w1 denote appropriate initial conditions on the fluid velocity and the time-derivative of the
solid displacement.

One of the main difficulties that arise in the analysis of FSI problems is the a-priori
mismatch between the regularity of the solutions of the Navier-Stokes equations and the
elasticity equations. Possibilities to circumvent this issue are adding a structural damping
term that regularizes the hyperbolic dynamics [72], using a finite dimensional approximation
for the elasticity [1I7], or to consider smooth data which yields local-in-time existence of
smooth solutions but leads to a loss of regularity, e.g., the regularity of the initial velocity
needs to be in H 5(Qf)d while it is only proven that the regularity of the velocity is in
L2((0,7), H3(Q2)%), cf. [27,28]. These results were improved by [83] but still imply a slight
loss of regularity. Another approach is given by establishing improved or hidden regularity
results for the normal derivative of the hyperbolic solution [86] which allow to show existence
and regularity results without additional damping terms [9] 84] [85], [1T3]. The way, how these
hidden regularity results are established in [I13] requires a restriction on the geometry of the
domain. Particularly, the interface between the solid and fluid region needs to be flat which
also requires periodicity in order to handle the problem analytically on a bounded domain.
In this thesis, we show that the same hidden regularity results can be obtained for the wave
equation without additional requirements on the domain.

As already mentioned before, from the existence and regularity result for the unsteady,
linear setting with stationary interface it is straightforward to derive local-in-time existence
and regularity results for the unsteady Navier-Stokes-Lamé system with moving interface
following the argumentation of [I13], cf. Section . In the fully Lagrangian setting, this



system reads as follows:
D)
divy (V) = G(¥) = divy(§(V)) in QF,
v(,0) =vy in Qf,
V on 37T,

ST
on X ,

OV — vV + Vyp = F(¥,p) in QF,
)

vV=v
\A/ == at
ory(V.p)ng = osy(W)ny (3, ) on 37,
D W — dlv(asy( w)) =0 in Q7F,
w(-,0) =
oew(-,0) =wy in €,

w=0 onXl.

)

€>

in Q,

Here, the fluid and solid stress tensors oy, and o5, are given by
ory(V,p) :=2ve, (V) —pI,  and 0,y (W) = Atre, (W)I + 2ue, (W),

where €,(-) := (D, - +(Dy-)") and A, p are Lamé coefficients that are chosen such that
p>0and A+ p > 0. Dy(-) denotes the Jacobian. In the fully Lagrangian setting, the
transformation is given by

t
X(0la, 0 Q). vyt [ Vo

for any t € (0,7) and its inverse Y(-,t) := (x(-,t))™!, which exists if T > 0 is sufficiently
small and the initial data are smooth enough, cf. [II3]. Consequently, the right hand side
terms are given by:

5.6 d d 2
F(v,p) :VZ 'I‘kox8 v—i—yza OX8 ) o Xaylayk
H(¥,p) = —y(DyoﬁT + ﬁ}(pyo)T)cof(fx)ﬁf + plcof (Fy )iy
+v(Dyv + (Dy‘A’)T)ﬁf — plny,
G(V) = divyv — det(Jx)Dyv : By = Dyv : (I — det(Jx)F),

where f‘x = Dyx = (Vyx)" is the Jacobian of x and Fy = f‘;l its inverse. Furthermore,
let g be defined by g(v) := (I — det(f‘x)f‘r)f/ such that divy(g(v)) = G(¥) due to Piola’s
identity.

Shape optimization can be analyzed with different, yet closely related, techniques. On
the one hand, shape calculus [31} 57, 58, 64, 104} 111} 112, 122] can be used to investigate
functionals J(2) depending on the domain 2. The Eulerian derivative d.J(€, V) admits a
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representation by the Hadamard-Zolésio shape gradient, a distribution that is supported on
the design boundary and only acts on the normal boundary variation V. ny. If a state
equation is involved, the Eulerian derivative depends on the shape derivative of the state and
can be expressed using an adjoint state. An alternative approach is the method of mappings
[13] 20, [65] 78, 79, [89] 105, [120], also called perturbation of identity, which parametrizes
the shape by a bi-Lipschitz homeomorphism 7 : R — R% via () = ‘7'(@), where Q C R? is
a nominal domain (or shape reference domain). Optimization can be performed based on
the function J : ¥ — J(7(Q)). An underlying state equation is then transformed to Q and
derivatives of J can be obtained via sensitivities or adjoints. The Hadamard-Zolésio calculus
can be derived from this approach essentially by an integration by parts. The method of
mappings directly yields an optimal control setting in Banach spaces. Moreover, it fits well
in the theoretical setting of the FSI model that was introduced above since it also employs
the idea of domain transformations.

Optimal shape design problems for FSI have mainly been tackled by applied, engineering
approaches, see, e.g., [14, 62] [63] 68, [96], 97, 98| 99, 100, 119]. For developing a theoretical
foundation continuity and differentiability of the state with respect to domain variations are
studied, cf. Chapter [l So far, in all conscience, differentiability results have only been
available for steady FSI models [106] [132].

Throughout the thesis the superscripts over the functions correspond to the superscripts of
the domains on which they are defined. Furthermore, the spatial coordinates on the physical
domain € are denoted by x, on €, Q by v, z, respectively. If a result is valid for a general
domain or if it is clear in the context the notation € is used and the coordinates are denoted
by €.

In Chapter [2]the main definitions and concepts are collected, that are then used in Chapter
to derive existence and regularity results for a linear and a nonlinear unsteady FSI system
and in Chapter [4 to derive differentiability results of the states of an unsteady nonlinear FSI
system with respect to domain variations. Chapter [5]is devoted to the numerical realization
of shape optimization for unsteady FSI.



2. Preliminaries

In this chapter, the basic definitions, tools and concepts are presented. We start with a short
introduction to the function spaces and a collection of useful results (Section that will
be used in the theoretical analysis of the FSI system (Section . Furthermore, the method
of successive approximations (Section which is the foundation for the considerations in
Section the concept of extension by continuity (Section and the method of mappings
(Section are introduced. The main contributions are the extension of well-known results
on 2 to I' = 9 under some assumptions on ) in Section [2.2] as well as, the framework
for deriving differentiability results in Section [2.4] Parts of this chapter have already been

published [59], including Sections and to a great extend.

2.1. Geometric Topology

Let n be the outer unit normal vector of €2 on I'. Then, the following holds.

Lemma 2.1. Let  be a bounded, smooth domain with boundary T" of class C*°. Then,
there exists 6 > 0 such that for every ¢ € Bs(I') N Q, there exist unique o > 0 and & € T
such that £ = &p — an(ép).

Proof. This holds true due to the tubular neighborhood theorem, cf., e.g., [65, p.109, Thm.
5.1]. O

Definition 2.2. We say that a function b € C>(Q2)? is constant along normal directions in
a neighborhood (or locally) around T if there exists § > 0 such that for every £ € Bs(I') N {2,
there exist unique o > 0 and & € T such that £ = & — an(ér) and b(§) = b(&p).

Corollary 2.3. For every br € C®(T')?, there exits b € C>®(Q)¢ such that b|p = br and b
is constant along normal directions in a small neighborhood around I'.

Proof. Let v(a) € C>(]0,9]) with v(a) = 1 for a € [0, %] and the support of v is com-
pactly contained in [0,62). By Lemma and [88, p.257, Prop. 10.20], there exists
a smooth retraction r : Bs(I') — I, £ — &p. Then the assertion follows by choosing

b(€) = br(r(€))y(lIr(§) — £l1F.) if € € Bs(I) N and 0 on O\ Bs(T). H

Corollary 2.4. There exists h € C*(Q)¢ such that for all b € C*(Q)¢ withb-n=0on T
and b being constant along normal directions in a small neighborhood around I', there holds

h’r =1,
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h is constant along normal directions locally around T,
Vh; - h =0,
Vb;-h =0,

for all I € {1,...,d} in a small neighborhood around T

Proof. By Corollary we obtain h such that h|r = n and h is constant along normal
directions in a small neighborhood around T, i.e., there exists § > 0 such that for every
¢ € Bs(T') N Q there exist a € [0,6) and &p € T such that € = & — an(ér) and h(€) = n(&r)
for all £ € J := {&r — tn(ér)| t € [0,6)}. Now, for € € Bs(T) N Q,

Vh(¢)"h(§) = —0h(ér — tn(6r))i—a = —9m(ér)|e=a = 0.

Since b is constant along normal directions in a small neighborhood around I, there exists
0 < € < 0 such that b(¢r —tn(&r)) = b(ér —th(&r)) = b(&r) for all ¢ € (0,¢). The derivative
wrt. ¢t at ¢ = a therefore yields Vb;(£)-h(§) = 0forall{ € B(I')NQand ! € {1,...,d}. Since
Vb;-h € C®(Q) and Vh; - h € C*(Q) it holds that Vb;(¢) - h(¢) = 0 and Vhy(§) - h(¢) =0
for all £ € B.(T") N Q. O

2.2. Function Spaces

Let Q ¢ R%, d € N be a bounded open domain with boundary I' = 9 of class C*. In the
following, useful properties are collected and proved. The presentation is mainly based on
Lions and Magenes [90, [91].

Let s € R. The Hilbert space H*(R?) is defined by

H*(RY) = {v € S'(RY) : [[v]lgsgay < o0},

with norm
0 s ey := (1 + [€17)2 Z0(E) || L2 (ay

where .Zv denotes the Fourier transform of v and S'(R?) denotes the space of tempered
distributions.

2.2.1. On the Space H*(I")

The definition of the fractional order Sobolev spaces H*(I"), s € R is based on the definition
of H*(R%), cf. [90, pp. 34-35]. Under the standing assumptions on Q a system {0}, ¢, a;}
can be found, which consists of

e a finite family {O;, j € {1,...,N}} of open, bounded sets that covers I'.

e a finite family {¢;, j € {1,...,N}} of infinitely differentiable functions
@; : Oj = B1(0) ={yeR? : y<1},

that

10
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— locally flatten the boundary, i.e.,
p;(TN0O;) = Bi(0)N{ya =0} CRY " :={(y,0) : y eR"},

and (pj(Q N O]) = B1(0) N {yq > 0}.
— have an infinitely differentiable inverse ij_l.

— fulfill a compatibility condition for all ¢, j such that O;NO; # () which requires that
there exists an infinitely times differentiable homeomorphism J;; of ¢;(O; N Oj)
with positive jacobian such that ¢;(&) = J;;(¢:(§)) for all £ € O; N O;.

{Oj, ¢} is the system of local maps.

e a partition of unity {«;}, where a; € C*°(I") is non-negative, has compact support on
O; NI and adds up to 1, i.e. Zjvzl aj=1onT.

The main definitions and properties are collected in the following.

e For s € R, let H*(I") be defined by
H(T) :={u : ¢j(aju) € HSRY),j € {1,...,N}},

with norm

N

* 1

Jull sy = (3 5 )y, )
j=1

(aju)(e; () ity € Bi(0)nRy,

0 if y € RGN\ By (0).

This definition depends on the choice of {O;, ¢;, a;}, however, it can be verified that
all norms are equivalent.

where ¢} (aju)(y’) :=

o C>®(I") is dense in H*(I") for s > 0.

2.2.2. On the Space H*(Q2), s >0

Let s > 0. Then, the Hilbert space H*({2) is defined as an interpolation space of integer-

valued Sobolev spaces
H*(Q) = [H™ (), H ()]s,

where m € Nand 6 € (0,1) are such that s = (1—60)m [90, Ch. 1, Sec. 9] and H°(Q) = L%(Q).
The norm || - || s(q) is defined by [90, p. 10, Def. 2.1]. Under the standing assumptions on
Q2 all definitions of H*(2) with respect to different choices of § and m are equivalent and it
can be shown that

o H*(Q) ={u : u=rqu,ve H*(R?)} can be endowed with the equivalent norm
lull sy = llulls = inf{[[v]| gogay = v € H(RY), u=rauv},

where rq denotes the restriction on 2.

11
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e D(Q) is dense in H*(Q).

[HSI (Q), H*52 (Q>]9 _ H(1—0)51+952 (Q)
and there exists a constant C' > 0 that generally depends on €2 such that

—0 0
[ull gra-0ys1-4052 ) < Cllullzet @ l1ull s (@)

for all u € H**(Q2), 0 < s3 < s1 and 6 € (0, 1).
e if s> 2 +m, m e Ny it holds that
H*(Q) C C™(Q)
with continuous injection.

e If the standing assumptions on 2 are fulfilled, the following trace inequal}ty holds
true [90, p.41, Thm. 9.4]. Let s > 3 and u € H*(Q). Then, u € H* 2(I') and
HUHH“"*%(F) < COllull s (), where C' depends on (2.

Furthermore, the following result corresponds to [54, Prop. B.1 (i)]. Even though this lemma
will only be used for fractional order Sobolev spaces with positiv order, it is stated in the
general setting, which allows for fractional Sobolev spaces with negativ order. A introduction
to these spaces can be found in [90, Ch. 1, Sec. 12].

Lemma 2.5. Let the standing assumptions on Q C R? be fulfilled, A, 1, w € R. Additionally,
let f € HM#(Q) and g € HM“(Q). Then, there exists C' > 0 such that

1 f9ller ) < Cllf a9l marte )
Lifputw+r>% 1>0 w>0,and 2\ > —p — w,
2.0t pt+w+A> %, ©w>0,w>0,and 2\ > —pu — w.
From the definition of the Sobolev spaces on the boundary I it is straightforward to deduce
the following Lemma.

Lemma 2.6. Let the standing assumptions on Q C R? with boundary T' of class C™ be
fulfilled, A, 4,w € R. Additionally, let f € HM*#(T) and g € H*“(T). Then, there exists
C > 0 such that

HfQHHA(F) < CHf”H’\ﬂt(F)||g||H>\+W(F)a
1.ifut+tw+A> %,,u>0,w>0, and 2\ > —p — w,

2. or,u+w+)\>%,,u20,w20, and 2\ > —pu — w.

Proof. Let the extended system {0}, ¢;, o, @j, ;} be given, which is chosen such that:

12
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e the family {O;, j € {1,...,N}} is chosen such that there exists {O;, j € {1,...,N}}
that covers I' with O; compactly contained in O; for all j € {1,...,N}.

e the partition of unity {a;} is chosen such that a; € C°°(I') has compact support

on O; NT. Additionally, we choose {1;, j € {1,...,N}} such that ¢; € C>(I) has
compact support on O; NI, 1;(§) > 0, and is identical to one on an open neighborhood
around O; NT.

The existence of such a system is ensured by the following considerations. Let {@Z, Vi, T €
{1,..., N}} be a system of local maps of I'. Hence, for every § € I' there exists ¢ > 0 and
i¢ € {1,..., N} such that B (€) is compactly contained in O;,. Since the system of local

maps exists, ' is compact and there exists a finite subcover {(’)J, j €{L,..., N}, where
N € N and (’) = B, (&) for & € T'. Furthermore, let ¢; := Pic,» O; = (’) 6 and {oj} be

the partition of unity constructed on the finite subcover {(’)j, j€{1,...,N}}. In addition,
{¢j, 5 €{1,...,N}} is chosen such that it fulfills the requirements.

For j € {1,...,N}, choose D; C R;l,_l such that supp(a;) C D; C @;(I'N @j) and D; is
a domain with a smooth boundary of class C*°. Then, due to [90, p.60, Thm. 11.4], there
exists C' > 0 such that

1
1£gll >y Z 503 £9) 7 1))

1
Jj= N 1
< O I N (39) 2 5, ))F-
=1

Now, since either 1 or 2 is fulfilled, we can apply Lemma [2.5] in order to obtain

* 1
£ gl grry < Z 15 (3 D g, 195 WD Eprsea )2

In order to estimate the second factor, we see that with
K:={ke{l,...,N} such that O; N O # 0}
and ¥ € C*°(I") with compact support on O; NI', we have
125 COM pom et

< CH ZSOJ ak\IJ)HHm Rd h = C” Z ak\p OSOk OSDkOQOJ HHm(Rd 1
kel kel

2.1
_CHZ Oék\I/ O(pk @) ]kHHm]RdI <CZH Oék\I/ OgOk HHm(Rd 1) ( )
kel kel
=C Z o5 ( O‘k\y)HHm ]Rd 1y
kel

13
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where we used that || - oJj|| ym ®E1) S Cll - Ml gym (RO for the infinitely differentiable home-
Y’ Yy’

omorphism Jj;. Hence,
H(Pj (¢Jg)||HA+w ) < CHg’|H>\+w(F)

and, therefore,
1f9ller oy < ClFllEavny |9l mrse -

2.2.3. On the Spaces H*((0,7),H"(2)) and H*"(Q2 x (0,7))

Let s,r € [0,00), 6 € (0,1), X, X,Y,Y, Z be Hilbert spaces,  be a bounded open subset
of R? d € N, with smooth boundary 0Q = T of class C*. For T > 0, Q7 := Q x (0,T)
and T :=T x (0,T) denote space-time cylinders. The analysis is carried out in fractional
order Sobolev spaces H*((0,T), H"(2)) and in anisotropic Sobolev spaces H™*(QT). The
vector-valued versions are denoted by H*((0,T), H"(Q)¢) and (H™*(Q™))?. For more details
on these spaces the reader is referred to [90, Ch. 1, Sec. 9|, [91, Ch. 4, Sec. 2| and [53, Sec.
2].

H*((0,7),X)
The fractional order Sobolev spaces H*((0,7T), X) can be endowed with the norm

1
17 (Q,T),X)Qa (2.2)

where m, o are chosen such that s = m + o, m € Ny and for 0 < ¢ < 1 the semi-norm

‘C7(071 )7X iIlaj b’
C’( ) )7 |1 |f20' ] S t

Remark 2.7. This norm is equivalent to the norm introduced in [90, p.10, Def. 2.1], which is
equivalent to the complex interpolation norm due to [90, p. 92, Thm. 14.1 and p. 23, Remark
3.6]. In the Hilbert space setting, complex and real interpolation norms are equivalent due to
[26, Thm. 3.3 and Rem. 3.6]. [8 (3.4), (3.5) and (3.7)] concludes the argumentation. More
details, e.g., the definition of =’ can be found in [7, Sec. 5|. For the equivalence of Besov
and Sobolev-Slobodeckij spaces for o € (0, 1), the reader is also refered to [121, Prop. 2|, for
the interpolation of Besov spaces to [121 Proof of Thm. 30| and the references therin, [24,

p. 194, Theo. 3.4.2].

| s o,m),x) = (Il - HHm (o1),x) T 10"

The theoretical analysis requires knowledge about the T-dependency of appearing con-
stants since fixed point type arguments are used for small time horizons. Hence, the choice
of the norm on the spaces H*((0,7), X) is crucial. More precisely, for —oo < T1 < Ty < 00

14



2.2. Function Spaces

and Ty > T, the spaces H*((11,T), X) and the subspaces

{u e H(T1, T»), X)} if s €[0,3),

Yy my =4 {ve H((T1,T2), X) : u(Ty) =0} if s € (3,1],

{ue H((T1,T2), X) : u(Ty) =0, G € Y(S'T;}Tz)} ifs>1, s+3¢N,

are endowed with a norm || - || s (1, 73),x) such that

P1

P2

P3

P4

P5

P6

for all s > 1 such that s + 1 ¢ N,

1
[l - HHS((Tl,Tg),X) =(- H%%(TI,TZ)J() + (|0 (')‘|?¥S*1((T1,T2),X))2'

and || - || o1y, 1), x) = | - llz2((7y 1), %) where || - [|2(¢7y 1), x) denotes the standard
L?((T1,Ty), X )-norm.

for all s > 0 such that s + % ¢ N, there exist constants car, Car > 0 depending on
AT =Ty — T3 such that

ear | s ) x) < - s m),x) < Carl - Tasr m),x)-

for all s > 0 such that s + % ¢ N, the extension operator Ext defined by

u(t) ifte (0,7),

Ext(u)(t) := {0 ift e (T'—1Ty,0),

is continuous as a mapping Y(f),T) — Y(“”T_Tf’T) with a continuity constant that does not
depend on T'.

for all s > 0 such that s + 5 ¢ N, we have

lull s 0.0),x) < Cllullzs(r—1;,1),%)

for all w € H*((T' — T, T), X) such that u|(p_7, ¢y = 0 with a constant C' independent
of T

for all s > 0 such that s + % ¢ N, the restriction operator R defined by

is continuous as a mapping H*((0,7), X) — H*((0,7"), X) with a continuity constant
that does not depend on T

for s € [0,1) \ {3} and € > 0 such that s+ € € (0,1] \ {3}, we have

1wl s 0,1),x) < CT||ull frs+e(o,),x)

for all u € Y(f) ) with a constant C' that does not depend on T.

15
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P7 for s € [0,1] \ {3}, real, separable Hilbert spaces X1, X» and a linear operator K that
is continuous as a mapping from X; to Xo, we have

I ()Ml &2 ((0,7), %) < Cllull s (0,1),x1)
for all w € H*((0,T), X1) with a constant C' that does not depend on T

P8 for all s > 0 such that s—i—%gﬁN, T < Ts,

HUHHS((Tl,Tz),X) = H@HHS((O,TrTl),X),

for all uw € H*((Th,132), X), where 4(t) := u(t + 1) for (a.e.) t € (0,75 —171).

Lemma 2.8. Let X be a separable Hilbert space, —oo < T < Ts < co. There exists a norm
H . ”HS((T1,T2),X) on HS((Tl, Tg), X) that fulfills -

Proof. cf. Section[A.] m

Let X,Y and :52' .Y, respectively, be continuously embedded in a Hausdorff topological vector
space V and V, respectively. For sg,s1 € [0,00), sop > s1, by [8, (3.5)—(3.7), Thm. 3.1, Cor.
4.3, |26l Rem. 3.6], and [16, Thm. 3.4.1], there holds

[H50(<07T)7X)7 HSI((OvT)v Y)]Q = H(179)30+931((07T)7 [Xv Y]9)

and by the interpolation inequality we know

- laorosom oy i) < €l I comsoll 1m0y (2.3)

for a constant C' that might depend on T, cf., e.g., [90, p.19, Prop. 2.3|. Let, in addition,
0 e (0, 1) and g, 51 € [0,00), 59> 51. If

A€ LIH™((0,T),X), H*((0,T), X)) N LH*((0,T),Y), H**((0,T),Y)),
then, A € L(HI-D50H051((0,T),[X,Y]g), HI=D50+051((0,T),[X,Y]g)) and
1Al (U000 (0. (XY ) HO =054 (1) 5710
<C|A|IL;

E(HGO (0,17),X),H%0((0 HAHE (H51((0,T),Y),H?1((0,T),Y))’

for a constant C' that might depend on T', cf., e.g., [25] p.115, 4.].

Lemma 2.9. (|59, Lem. 2|) Let X,Y,Z be real, separable Hilbert spaces and m be a
bounded bilinear mapping from X x Y into Z. Furthermore, let f € H*1((0,7),X) and
g€ H*?((0,T),Y) with s1,s2 > 0. Then the following holds.

1. If % <8$1<1,0<s< %, then m(f, g) belongs to H*2((0,T), Z) and

||m(f>g)HHS2((O,T), Z) < CSl,Sz(HfHHSl (0,7),x) Tt (0 )||X)||g||HS2((O,T),Y)>

for all 0 < T < T, where Cs, 4, is independent of T'.

16
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2. If 2 < s1 < sp <1, then m(f, g) belongs to H*'((0,T), Z) and

lm(f, Do 0/r),2) < Corsa (I lmor 0,10, + 1O x)Ugll o2 0,7),v) + 119 (0)]y),

for all 0 <T < Ty, where Cs, s, is independent of T'.

Proof. We prove 2., 1. follows with similar arguments. Let fo € H'((—o0,00), X) and
go € H'((—00,00),Y) be such that f3(0) = f(0), go(0) = g(0) and for —0o < a < b < o0,

| foll 11 ((a0),x) < Coll f(0)]|x,
90l &1 ((a,5),y) < Collg(0)]ly,

with a constant Cj independent of (b — a) (extension to H!'((0,00),X) and mirroring at
t =0). Let C' and Cr, denote generic constants (CTf is used if the constant might depend
on T). Using property of the norm and [I13] Lem. A.1] yields

Im(f, Dl a1 (@ar1p),2) < Ol fllE1 (@00075), )19 B2 (010475) ) (2.4)

(use equivalence of norms with Ty-dependent constants). Now,

Im(f, ) a1 0,1),2) < (Im(f, 9) — m(fo, go) | 1 (0,1),2) + M fo, g0) | zr1 (0,1),2))-

Due to Property of the norm and [I13, Lem. A.1],

Im(fos 9o) |71 (0,7),2) < Cllm(fo, go)ll 1 (0,75),2) < Cry 1 foll 71 (0,75), ) | 90 52 (0,75, v)
< 7, [ £(0)[[ x][g(0)[y-

Furthermore,

Im(f,9) —m(fo, 90)lg=1 ((0.1),2) < lm(f — fo, 9 — g0)ll =1 ((0,7),2)
+[lm(f = fo, 90) | zs1 ((0,7),2) + Im(fo, 9 — g0)|l 51 ((0,7),2)-

We know that (f — fo)|t=0 = 0. Due to properties and of the norm and with ({2.4]),

lm(f = fo,9 = 90) | &1 (0,1, 2)

= |Ext(m(f — fo, 9 — 90))|lzrs1 ((0,1),2)

< C|[Ext(m(f — fo, 9 — 90)) |l =1 (v-1,.1),2)

< Clm(Ext(f — fo), Ext(g9 — g0) |l =1 (7—1,1).2)

< Oy [[Ext(f — fo)llmsr ((r—my. 1)) | Ext(g — g0) | o2 (v~ 7))

< Crellf = follasio,m),x) 19 = goll s20,7),v)

< Cry ([ fla=10,1).x) + 1ol zr1 (0,1),3)) N9l 32 (0,7, v) + (|0 E52 ((0.7). 7))
< Oy (I 0.1y, 3) + L foll a2 o, ),x) ) U9l o2 0,7y, vy + 90l 52 (0,77), 7))
< Cry ([ fla=10.1).x) + ol o.1),x)) (N9l o2 (0.1),v) + 90l 52 0,75), 7))
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< Cry (1 f 151 (0,1, %) + 1O x) (Ul gll 2752 (0,7),v) + 19(0)[[y)-
We now estimate m(f — fo, go) using the norm properties

[m(f = fo, 90)ll zr=1 (0,1, 2) = IIExt(m(f — fo, 90) | zrs1((0.1),2)
= ||m(Ext(f — fo), 90) | =1 (0,1, 2)
< Cllm(Ext(f — fo), 90)la=1 (7-1;,1),2)
< Oy [|[Ext(f — fo)llg= (r—1;. 1), 3) 190 | 252 (715 1) ¥)
< Oryllf = follasr 0.1, x) 190l 52 ((— 5 77),v)
< O, (1 |1 (0.1),3) + 1FO)1x)[1g(0)]]y-

Since m(fo, g — go) can be estimated in the same way, this concludes the proof of 2. O

Lemma 2.10. ([59, Lem. 3|) Let X be a real, separable Hilbert space and a € [0,1) \ {3}.
Furthermore, let 5 > 0 be such that o+ 3 € (%, 1], ¢ € X and g € H**A((0,T), X) be such
that g(0) = ¢. Then, there exists a constant C' independent of 7" such that

91l e ((0,7),5) < C(TPNlgll gats 0.1y x) + llellx)-

Proof. Let C denote a generic constant independent of T', where 0 < T" < T;. There exists
he Hl((O,Tf),X) such that h(0) = c and HhHHl((O,Tf),X) < Clle||lx e.g., h(t) := CT;I(Tf—t)
for t € (0,T%). Set g =g — h.

Properties the definition of h and [P6] yield
gl e 0,7),x) < gl ((0,7).%) + 1Pl Ho((0/7),%) < NGl EH2 (0,7, %) + ClIP N (0,77, 30)
< |gll s o.1),5) + Clielx < CTP|§ll grass(omy.x) + Cllellx
< C(TBHQHHO‘+5((O,T),X) + llellx)-

Lemma 2.11. (|59, Lem. 4]|) Let X be a real, separable Hilbert space and s > 0. Let
c€ X and g(t) = c for a.e. t € (0,7). Then, g € H*((0,7), X ) and there exists a constant
C independent of T" such that ||g|| zs(0,1),x) < Cllel x-

Proof. Let Ty > T and C denote a generic constant independent of T'. For s > 1 we have,
due to [P and d:g = 0,

1
91l & (0,1),x) = llgllz2¢0,7),x) < T2 |lcllx < Clleflx. (2.5)
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For s € [0,1), Lemma and ([2.5)) yield

gl a5 0.7),x) < CT gl 0.m).x) + llellx) < Cllellx-

The following Lemma is a helpful tool.

Lemma 2.12. (|59, Lem. 9]) Let "> 0, k € N, k > 2, X, X;,Y,W,,, Z be real, separable
Hilbert spaces, 1 < j <k, 2<n <k-—1,s € [0,1\{3}, si € (5,1] for 2 < i < k and
0 <s<minjsj. Let mi : Xy x Wo — X, my : Xy x Wigqy — Wy for 2 <1 < k—2and
mp_1 : Xg—1 X X — Wi_1 be continuous bilinear forms, m : Xk X; — X be defined by
m(x1,...,x5) = mi(x1,ma(xe,...)) and T; : Y X Z — Sj, where S = H%((0,T),X;) is
endowed with the norm

o [+ lls; = I ez 0.y, if 85 € [0, 3),

1.
o - lls; = Wi oy xp) 1+ OIF))Z if 55 € (3,1],

and S := H*((0,T), X) be endowed with the analogously defined norm || - ||s. Furthermore,
let 7:Y x Z — S be defined by

T(y,2) = m(Ti(y, 2), -, Te(y, 2))-

1. Let M; >0,Y CY and Z C Z be such that 175 (y, 2)lls; < Mj for all (y,z) € Y x Z,
1 < j < k. Then, there exists a con§tant~C’ > 0 that is independent of T" such that
|7 (y,2)|ls < CILjM; for all (y,2) €Y x Z.

2. Let in addition to 1. 7; : Y x Z — S; be Lipschitz continuous on Y x Z for all 1 <
j <k, ie., there exist Mj1, Mj2 > 0 such that [|T;(ye, 22) — T;(y1, 21)|ls; < M.
yilly + Mjallza — 21|z for arbitrary yi,y2 € Y and 21,22 € Z. Then, ||T (y2,22) —
T (1, 20 me 0,1y, x) < C(max; (Mo M) |ly2 — yilly + max;; (Mo M) || 22 —
z1||z) with a constant C' > 0 that is independent of 7.

3. Let (y1,21) be an element of the relative interior of Y x Z and T; - Y x 7 — S; be
Fréchet differentiable in (y1,2;) for all 1 < j < k. Then, 7 : Y x Z — S is Fréchet
differentiable in (yi, 21).

Proof. By recursively applying Lemmas [2.5)and 2.9)it can be verified that m : I1;S; —
H?*((0,T),X) is a continuous multilinear form that fulfills

[m(x1, - ) s 0,m),x) < CHjllglls;,

where C' is a constant independent of T". Assertion 1 follow immediately if one directly
uses the continuity properties of m in order to estimate the norms at the initial value
t = 0. Further, for y1,ys € Y 21,22 € Z we have

m(Ti(y2, 22), - - s Ti(y2, 22)) — m(Ti(yr, 21)s - -+, Te(y1, 21))
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= m((T1(y2, 22) — T1(y1,21)), T2(y2, 22), T3(y2, 22) - - -, Te(y2, 22))
+m(Ti(y1, 21), (T2(y2, 22) — T2(y1, 21)), Ts(y2, 22); - - -, Te(y2, 22))
+ e+ m(,Tl(yh Zl)v cee 777€—1(y17 Zl)a (E(y% 22) - E(yla Zl)))a

which implies
Im(Ti(y2, 22), - - -, Te(y2, 22)) — m(Ti(y1, 21), - - Te(yr, 21))lls

k
<O ((Mne 1 Ty, 20)l15,) @asj | T (w2, 22) s )1 T (w2, 22) = T3 (wa, 21) I, )
7j=1

IN

C(m axx(M;j 110,25 Mp)[|y2 — y1lly + m?X(szHn#jMn)HZz - z1llz)

for a generic constant C' independent of T" and therefore assertion 2. Since a continuous
multilinear form is infinitely differentiable 3 follows with the chain rule.

O]

Lemma 2.13. (|59, Lem. 10]) Let 7> 0, k € N, X1,X2,Xj,1,Xj,2,Y,Z be real, separable
Hilbert spaces, 1 < j < k, s1 € [0,1]\ {3}, s € (3,1] for 2 < i < k. Let m be a k-
linear form that is recursively constructed via blhnear forms as in Lemma [2.12] such that
m: >< i1 X1 — Xqpand m: X _1 G+, — Xo are continuous for all 1 <1 < k, where dj
denotes the Kronecker delta. Let 0 < s < min; s; and

Sj = Hl((O, T), Xj71) N H1+Sj ((0, T), ng)
be endowed with the norm

1,
o - llsy = U B oy, om0y, 1 - O ) i 55 € 0, 3).

1,
o 105y = U B oy, s, I O, + 10O )% i 55 € (3,10

and S := H'((0,T),X;) N H***((0,T), X2) be endowed with the analogously defined norm
|| - ||ls. Further,let 7; : Y x Z — S; and T : Y x Z — S be defined by

T(y,2) = m(Ti(y, 2),-- -, Te(y, 2))-
Then,

1. Let M; >0,Y CY and Z C Z be such that IT5(y, 2)lls; < Mj for all (y,2) € Y x Z,
1 < j < k. Then, there exists a constant C' > 0 that is independent of T" such that
|7 (y,2)|ls < CILjM; for all (y,2) €Y x Z.

2. Let in addition to 1. 7; : ¥ x Z — S; be Lipschitz continuous on Y x Z for all
1< j <k, ie., there exist M1, M;2 > 0 such that

175 (y2, 22) — Tj(y1, 21)lls; < Mjally2 — wlly + Mjzllze — 21z
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for arbitrary y1,y2 € Y and 21,22 € Z. Then,

HT(y27 2’2) - T(yl, Z1)HS
< C(mjf.%X(Mj,IHn;«éjMn)HZJZ —yilly + mf»X(Mj,zﬂnyéjMn)Hm — z1llz)

with a constant C' > 0 that is independent of T

3. Let (y1,21) be an element of the relative interior of Y x Z and T; :~17 X 7 — S; be
Fréchet differentiable in (y;,21) for all 1 < j < k. Then, T : Y x Z — S is Fréchet
differentiable in (y1, 21).

Proof. We recursively apply Lemma [2.9] in order to get continuity of

k
m: X S; — L*((0,T), X1),

j=1
k
dem: X S; — L*((0,T),X1), as well as,
j=1
k
Oem: X S; — H*((0,T), X2),
j=1
and use that
oem(zy,...,zr) = m(Orx1,z2,...,x5) + m(x1, 0t x2,...,x) + -+ +m(z1, T2,...,0 Tk).
It holds
lm(@1, . )l 2 o,m).x0) < Cllanllzaqor x|zl

[m(z1,. .. Oz @)l L2(0),x1) < ClOe 2l L2 0,1y, x,.0) Wiz il g,
where S; := H'((0,T), X;1) is endowed with the norm
1
11, += (- I oy, + I - O, )%
for 1 < j < k. Furthermore, there holds
Im(z, .., Oy, ) ms(0,m),x2) < CllOem;ll g Wi llwill g,

where S; := H®((0,T), X, 2) is endowed with the norm

o I-llg, = I oo oy e, 1F 55 € 10,).
1,
o 1-lls, = U s oy, oy + 1 - (O)1%,0)%, i 55 € (3.1
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In order to show the boundedness in the norm || - ||s the initial values have to be bounded
appropriately. However, this is ensured by the continuity properties of the multilinear form

m. Moreover, property of the norm is used. The assertions now follow directly as in
Lemma [2.12) 0

H>"(Q2 x (0,T))
For r, s > 0, the spaces H™*(Q") are defined by
H™(Q") = L*((0,T), H'(Q)) N H*((0,T), L*(%))

and endowed with the norm

M\»—‘

- Nars@ry = (- 20y, + 1 W oy, 22 0))

For 0 <+ <r, s = s(r —7')/r, the inequality

- ez (0,09, 17 0y < ClI - s @)
holds true for a constant C' > 0 that might depend on T, cf. [53], (2.9)] or [54, (2.7)], which
implies
1 N era-os (0.7, 710 () < ClI - lms (@)

for § € (0,1). Trace theorems for the Sobolev-type spaces H"*(QT) imply
I- ’ZZ”HTCS’(E’{) <C|- HH’“’S(QT)v

where C' > 0 is dependent on T, r > %, s>0,7=r— % and s’ = (r — %)f, cf. [91, Ch. 4,
Thm. 2.1], [54, Prop. 2.2] or [39, Thm. 3].

2.2.4. Setting for the Theoretical Analysis of the FSI Problem

For ¢ € (%, 1) the analysis of the FSI problem is conducted on the function spaces

Er = L2((0,T), H*(Q )d) N H1+%((O,T),L2(Qf)d) _ (H2+Z,1+§(Q}“))d’
Fy = L2((0,T), HY(Qp)%) N HE ((0,T), 2(2)%) = (B 5(QT))¢,

Gy = L2((0,T), H'(Q)) 0 H3((0,T), H (),

Gy = H'T5((0,T), L*(2f)?),

Hr := L*((0,T), H=*/(T:)) N H1+5((0,T), LX(Ty)) = H2+0t5(sT),

Hy = L*((0,T), H3 M (Ty)) 0 HiY3((0,T), LA(T)?) = (240t 5(x]))?,
N7 = H'((0,7), H>* (T, UT)%) N HT5((0,T), LA(T, UTy)Y),
Pri={pe L*Qf) : Vpe H"3(Q), plyr € H2*i+2(sT)},

wk\
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2.2. Function Spaces

Sp = H'((0,T), H'*!(Q)) N HET5((0,T), L3(2y)),

Sy = H'((0,T), H(Q)) N H*5((0,T), L2(y)"),

Sy = H'((0,7), H¥ (@)™ 0 H2 2 ((0,), L2(2) ™),
W = C([0,T], H%%(Qs)d) nch([o,T], H%%(Qs)d),

VO = H1+£(Qf)d,
W, = H%-ﬁ-é-ﬁ-ﬁ(Qs)d‘

For vg € Vy and My > 0, we define the metric spaces

Er Moy = {Vv E€Er : v(-,0) =vo, [[V]g; < Mo},

Protove =A{p € Pr : |[Vpller < Mo, [Iplsrll 34011t ory < Mo, (2.6)

=)

plrxfoy = 2ve(vo)ny - ny|r, }.
Moreover, let

2
£

I ez == (I 12 ) +1I- ||?{1((0,T),H5(Qf)d)) +1- HH?((O,T),H?(Qf)d)

(R QT

2 2
It o 1V Nt o

. 2 . 2 l
* ||H%+%<<0,T>,H1(ﬂf>d> +” ”H%%((o,T),Hl“(ﬂf)d))2’
as well as,
. — (|- 112 . 2 . 2 L
Il o= Ty o2y v om0z T Ollinseag 410 Olizzay)*,

(2.7)

and do an analogous definition for the spaces Sy and S;. Due to trace theorems and inter-
polation theorems the modified norms on Er and S, St, S, are equivalent to the standard
norms on these function spaces. However, the appearing equivalence constant might depend
on 1" without further knowledge about this dependency. Since the dependency of the appear-
ing constants on T is a key point in the theoretical analysis it is therefore necessary to work
with the modified norms defined above. The other function spaces are endowed with the

canonical choice for the norm, i.e., e.g., || - |lp, = || - H(He,%(QT))d' Furthermore, the following
!

results is useful.

Lemma 2.14. (J59, Lem. 11]) 1. Let f,§ € Sp. Then, f§ € St and

Ifalls, < Cllfls a5,

with a constant C that is independent of 7.
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2. Let f e Sp. If f > w > 0 holds a.e. on Q? with a constant w > 0 then ffl € Sp and

17 g, < CA+1F1l5,) 71l

for a constant C' that is independent of T'.

Proof. 1. The bilinear form m(ml, x9) 1= x1 -T2 is by Lemmaﬂ continuous as a mapping
L2(Qy) x H'(Qy) = L*(Qf) and as a mapplng HY&W(Qp) x HY(Qp) — HY(Qy).
Therefore, Lemma [2.13|implies || f§]| 5 < C £l STH gllg, for a constant C' that is inde-
pendent of 7. Here, we recall that the norm on Sy is defined by .

2. By [113| Lem. A.7| we know that

17 0,0y 140

< O+ Wl + 176 Osea Mo mseay
10 f 1HL2 ((0,1),H*£(Q2 )

<C(1+ ||f||H1((o,T),H1+é(Qf)) +I7( 0)||H1+Z(Qf))4||f||H1((07T)7H1+2(Qf))-

for a constant C' independent of T'. The proof of this Lemma also shows that

10 ey < COHIFCO) s IFC O grseqa, -

Let C now denote a generic constant independent of T'.
In order to bound ||d; f~1(-, O>”L2(Qf)7 we consider G € C*°(R) such that G(0) = 0 and

G(x) = 27! for all z > w. Then,
|0 f_l(',o)\|i2(gf) =18 G()(, )||L2 @, = IIG'(f HE 00 f(, )”LQ(Qf
~ [ (© (D@00 (@0 iz
Qy

< sup [G'(F)Z 0)10: F(-,0) 72,y < CllO:F(-,

O2sa,y
ZEQf

These estimates imply

||f_1||H1((o,T),H1+Z(Qf)
< CO+ Il oy.m+e@py + 1FC O green) 1l o). mee@y)
<C@+ HfHHl((O,T),HlJFZ(Qf)) + ”f(‘aO)HH1+4(flf))5'
Now,
HJE71HL2((0,T),L2(QJ¢)) < CHJFAHLQ((U,T),H“’Z(QH)

for a constant independent of 7" and it remains to estimate || f_IHH%*%((o T).L2())
) ) f
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We obtain with Lemma [2.9] 2.

— _ 2
Hat HH2+2( OT) Lz(Q ) Hf tf”

< CUIFllan oy, mr+e@y) + 17720 e, y)
< (o fll 4

H2+2( (0,7),L2(2))

e om ) 10760l
CUF Mg o, HI(9)) Jr||f ¢ )”Hl“(flf))2
x (10 f]] ad+ (o m)12(@, ) F( 0 2a))
C(l—i—HfHH1 ((0,1), H1+Z(Qf))+||f('7 )”H1+Z(Qf))10
< (171 5 [+ 10070l )

H2+2(0T) L2(Qy

Combining the estimates implies the assertion.

2.3. Method of Successive Approximations

The method of successive approximations is a well known approach for establishing existence
and uniqueness results for nonlinear equations

where y € Y and Y is a Banach space. We write this in the form By = F(y), where
F(y) := By — A(y) and B is a linear operator such that the system By = f has a unique
solution y = S f, where S € L(W,Y) and W is a Banach space. Existence and uniqueness of
solutions is now studied via the fixed point equation

y = SF(y). (2.8)

Unique solvability of (2.8) on a closed subset Y C Y is ensured if y — SF(y) mapsj/ into
itself and is a contraction on Y. This is the case if, e.g., [|S||;wy) < Ls and if F: Y — W
is Lipschitz continuous with a constant Lr < %

2.4. Framework for Continuity and Differentiability Results
The considerations of Section can be extended to parameter-dependent equations
Aly,z) =0

with parameter or control z in a Banach space Z. Let B be chosen as in Section and
S € LI(W,Y) be the solution operator of By = f. As before, we consider solutions of the
fixed point equation

y=SF(y,z2), (2.9)
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where F(y, z) := By — A(y, 2).

Theorem 2.15. (|59, Thm. 1]) Let W, W, Y, Z be Banach spaces, W continuously embedded
in W, S € L(W,Y), and Lg > 0 a constant such that 1Sflly < Lsl|fllw for all f € W,
Let Z C Z be open, Y C Y be closed and F : Y x Z — W be an operator. Let there exist
constants Lr € (0 ) and C' > 0 such that, for all y,y1,y2 € Y, 2, 21, 22 € Z, there hold

| F (y2, 22) — F(y1, 20)llw < Lrly2 — yilly + Cllz2 — 21|z, (2.10)
SF(y,z) €Y. (2.11)

Then, for all z € Z, the system (2.9) has a unique solution y(z) and z — y(z) is Lipschitz
continuous on Z:

CLg
[y(22) —y(z)lly < ﬁ”zz —zllz Va,meZ (2.12)

In addition, let y(z) lie in the relative interior of Y and denote by Y. the linear subspace
parallel to the affine hull aff(Y). Assume that F is Fréchet differentiable at (y(z), z), where
(y, z)-variations are taken in Y7, x Z.

Then y(-) is Fréchet differentiable at z. The derivative is given by y'(z)(h) = dpy(z), where
h e Z and d,y(z) € Y1, C Y solves the formally linearized equation

ny(2) = S6F (y(2), 2) (Ony(2), h), (2.13)

where 0F (y(2), 2)(0py(2), h) = Fy(y(2), 2)0ny(2) + F=(y(2), 2)h.

Proof. For any fixed z € Z, ED implies the Lipschitz continuity of the mapping F(-, 2) :
Yy — W. Using El @, and the properties of F, L and Lg shows that the map
yeY — SF(y,z) € Y is a well-defined contraction. The existence of a unique solution
y(z) € Y is thus ensured by the method of successive approximations. Now ([2.12)) follows from

ly(22) = y(21)lly = [[S(F(y(z2), 22) = F(y(=1), 21))lly < Ls||F(y(z2), Zz) J'"(y(zl) 21)|lw

and (210).

For showing differentiability, we fix z € Z and assume that F is differentiable at (y(z), z) in
the way stated in the theorem. Let h € Z be arbitrarily fixed. Since y(z) is a relative interior
point of Y, we obtain from ([2.10)) that, for all di,ds € Y7, there holds:

16F (y(2), 2)(d2, h) = 6F (y(2), 2)(d, h)lw = || Fy(y(2), 2)(d2 — du)llw < LFlldz — dll!(Y~ )
2.1

Thus, since Lr < L%g, the method of successive approximations applied to the fixed point

equation 6,y(2) = S0F(y(2), 2)(6ny(2), h) posed in Y7, see ([2.13), yields a unique solution
6ny(2) € Y, C Y which by linearity of (2-13) depends linearly on h. Let |||z be sufficiently
small. Then z+h € Z and, as h — 0,

[F(y(z+h),z+h) = Fly(2),2) = 0F (y(2), 2) (6ny(2), h) lw
< [16F(y(2), 2)(y(z + h) —y(2), h) = 6.F (y(2), 2)(0ny(2), h) lw
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+o(lly(z+h) —y(2)lly +[hll2)
< Lrlly(z + h) = y(2) = ony(2)lly + o([[hl]2),

where (2.14) is used. Now

Tlly(z +h) —y(z) = dny(2)lly

= [1SF(y(z + h), 2+ h) = SF(y(2), 2) = S6F(y(2), 2)ny(2)lly

< Lsl|F(y(z + h), 2+ h) = F(y(2), 2) = 0F (y(2), 2)0ny(2) | w

< LsLrlly(z+h) = y(2) = dny(2)(2)lly + Lso([[hllz)  (|[hllz — 0).

Therefore,
Ls
ly(z + 1) = y(2) = ony(2)lly < -—F—F—o(llhllz) = o(l[hllz) ([[rllz = 0),
1—LsLr
which proves the Fréchet differentiability of z — y(z) at z with y/(2)h = dpy(2). O

2.5. Extension by Continuity

One technique, that is a common tool, cf., e.g., [80], is extension by continuity that takes
advantage of the fact, that under some additional assumptions linear operators inherit con-
tinuity properties on a dense subset.

Let Z,Y be Banach spaces and S be a linear operator that is continuous as a mapping
Z =Y. Let ZC Z and Y CY with continous injection and Z C Z be a dense subset of Z.
Additionally, assume that there exists C' > 0 such that

1Sy <Clzllz Vze Z
Then, we know that there exists a unique continuous linear operator S : 7 — Y such that
1Sy < Cllzll;, Vze€ Z,

and S’(z)~: S(z) for all z € Z. Since Z is dense in Z, for every z € Z, there exists a sequence
{zn} C Z and ||z — zy||; — 0 for n — oo. This implies ||z — 2,z — 0 for n — co and due

to the continuity of S, we additionally know that
15() = 8(zn)lly = 15(2) = S(za)lly — 0
for n — oo. Thus, since

15(2) = S()lly < 15(2) = S(za)ly + 15 (z0) = S(2)lly
< 18(2) = S(zn)lly + Cliza — 2|z
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for all n € N, we have that 5(z) = S(z) in Y and therefore,

1S(2)|ly < Cllzllz, V2 € Z.

2.6. First Order Differential Operators

First order differential operators that are tangential to the boundary are one of the key tools
to derive improved regularity results for hyperbolic equations in [86]. In this section, some
properties of these operators are proven. Let Q C R%, d € N be a bounded open domain with
boundary I' = 92 of class C*°. We define

d
#:={B=) bidg, :bcC®(@)? b-n=0onT, and
=1

b is constant along normal directions locally around I'}.
(2.15)

Let m € Ng. The operators B € & are well-defined as mappings from H™1(Q) — H™(Q).
Using the system of local maps {Oj, ¢j,a;}, B € % can also be represented as an operator
from H™TY(T) — H™(T) with

N d d—1
Be =3 a;y biy O(pi)idy(®op;!) 0w, (2.16)
7j=1 1=1 k=1

for ® € H™(T'). The following lemmas provide some helpful properties.

Lemma 2.16. Let w € C*(Q) and B € %. Then, B(w|r) = (Bw)|r.

Proof. Let £ € I" and {Oj, ¢j, a;} be the system of local maps of I'. It holds that

N d
Buw(€) = (D ;> bidgw) o' 09)(€)
=1 =1
j\f d d
=Y b > g (wow;)opok(9)k)(€)-
j=1  i=1 k=1

Since (pj)q is constantly zero on I' and the gradient is perpendicular on the level sets, there
exists ¢ € R such that Og, (¢j)q = eny, for all k € {1,...,d}, where n denotes the outer unit

normal vector. Hence, Z?:l b;0¢, (¢j)a = 0 and

Buw(¢) = (Z o Z b; Y Oy (wo ;) o ;e (95)k)(6).
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Lemma 2.17. Let d = 3, m € Ny and Q C R? be a bounded, open domain with boundary
T of class C*®°. Let ® € H™TY(T') and B € #. Then, there exists C' > 0 such that

|1B®|| grm(ry < Cl| || gm+1(r)-

Proof. Let {Oj, p;,a;} be the system of local maps of I'. With (2.16)) and (2.1)) we obtain

N
1
1By = (O 163 (@ BN 1))
J=1
N d d-1 L
< OO 3 @5 (asbide, (2a)w)y (2 © 05 s
j=1 i=1k=1
N d-1 )
< OO D165 (@3)0y (@ 0 97 Dl )
7J=1k=1

where C' is a generic constant. Moreover,
@5 () (@ 0 i h) = By 05 (@) — Dy (5 ()5 (P).

Hence, with (2.1) and a generic constant C,

N d—-1
* 1
Bl srmry < CQ Y (18,05 (a;@ )IIHm(Rd 1+ 18y (95 ()5 (@ )HQde Nk
7=1 k=1
N d—1 1
< O > (102305 o1y + 195 (@50 1))
j=1k=1 % v
Y 1
j=1

O]

Lemma 2.18. Let d = 3, m € Ny and Q C R? a bounded, open domain with boundary I'
of class C*°. Let ® € H™(T') such that B® € H™(T) for all B € #. Then, ® € H™ ()
and there exists a set of finitely many first-order operators B C % such that

@l grmtrry < C[| @ grmry + sup [|BL|| g ry)
BeB
for a constant C' > 0.
Proof. Let the system {Oj, ¢, a;} be given. We know that C>°(I") is dense in H™(I") for

m € Ny and therefore consider ® € C*°(I") and then extend by continuity, see Section
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We have
N
[0y = (3 195052 i gty (217)
Furthermore,
d—1
15 @39 s g1y = 10350 gy + 3 1005 i® g sy (219)

d—1
and, on B1(0) N Ry,

d
By @5 (0;®) = By (@) 0 071) = > (D, (0;®)) 0 971Dy (95 im
m=1

d

((Z k) ®) + 05 (Y bjkme, ®)),
m=1

m=1

where ajkm = 8§m0zj8y;€ (@;1)711 SR and bj,k,m = ay;c (90;1)m °@j.

Since (¢;)q is constant on I' and the gradient is perpendicular on the level sets, there exists
¢ € R such that 0, (¢j)d = cny, for all m € {1,2,3}, where n denotes the outer unit normal
vector. Thus, on B1(0) N Rg‘f,_l, we have

0= (Vy¢;(@i)ka = 9y (¥](¢j))d
d d
=3 0e,.(¢)a0 95 0y (97 m = c@3 (D bjkmnm).
m=1 m=1

since (¢;)q4 = 0. By the choice of a; and ¢; we know that a; ;. ,, € C*°(T') and by g mm € C*°(T).
Due to Corollary , there exists a C*°(f2)-extension bj s, of bjy,, such that bjj ,, is
constant along normal directions locally around I' and let

d
= = ZB a&m’ k€{172}’ ]6{17’N}}
It holds
d
18y, 235 g ey S 125D i) @)l ot
m=1 . (2.19)
A CACTOY bj km e )l prm et
m=1

30
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With (2.1) we obtain

H(’O] Zaﬂkm ||Hm(]Rd 1y < CZ ”kaz Qg Zajkm ||Hm(Rd b

’“G’C m=1 (2.20)

< Zaakm )@y < ClI®@| gm(r)

m=1

where the last inequality holds due to the fact that (3¢ et @jkm) € C(I"). Additionally,
we have

d
125 (453 Dt @l < SR B sy, (2.21)

m=1

Combination of (2.17)), (2.18), (2.19), (2.20)) and (2.21) yields

||| grmt1(ry < C([| @ grm(ry + sup [| BR[| gm ry)-
BeB

Corollary 2.19. Let d = 3, m € Ny, Q2 be an open, bounded domain with boundary I' of
class C*°. Let v € L*((0,T), H™(T)) and Bv € L*((0,T), H™(T')) for all B € 4. Then,
v € L2((0,T), H™"(T')) and there exists a set of finitely many first-order operators B C %
such that

vl 20,1, 51 )y < CUVl L2((0,7),10m (1)) + sup | Bvl| L2 ((0,7), 1 (1)))-
S

Proof. Follows from Lemma [2.18] O

2.7. Method of Mappings

A detailed and general discussion of the method of mappings can, e.g., be found in |20} [4T],
105]. Here, a short comprehensive motivation of the method is given. We start at observing
that a general, abstract and intuitive formulation for shape optimization problems is given
by

min j({2),
QEOad

where @ad denotes an appropriate set of admissible domains and j : @ad — R a shape
functional [31, Def. 4.3.1].
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Remark 2.20. In the case of PDE constrained optimization j(Q) usually denotes a reduced
cost functional defined by 7(2) = J(y,(2), where

A

J:A{@,Q):5eY(Q),02e O} - R

and ¢ denotes the solution of a partial differential equation given by E (7, Q) = 0 with

N

E:{5,0):9eY(Q),Q¢e 0w} —{2:2€2(0),Q e Ou).

Here, Y (Q) and Z(€2) denote Banach spaces.

One of the main challenges in considering this optimization problem addresses the topo-
logical structure , more precisely, the definition of an appropriate metric on Ouq. Besides
the consideration of characteristic functions (which motivates, e.g., phase field approaches,
cf., e.g., [A7, 48]) or distance functions [31], Oaq can be endowed with a metric that is de-
fined via transformations [102, B31]. Similarly to the FSI problem the Lagrangian or Eulerian
perspective can be chosen to work with transformations. The latter leads to the notion of
shape derivatives, cf., e.g., [1l 31l [122], and to level set methods, cf., e.g., |1, 22, 23| 110].
The Lagrangian perspective is known as method of mappings or perturbation of the identity
[20, T05]. The main idea is the introduction of a reference domain € and the choice

@ad = {%(Q) ©TE 7~dad}

as the set of shapes that can be obtained by transforming a nominal or shape reference
domain Q with 7 € T4 C T(), where 7(Q) denotes the Banach space of bicontinuous
transformation of (. This allows for a reformulation of the shape optimization problem in
an optimal control setting defined on  with control ¥ € T wa which is given by

min j(7),
TE€T ad

where j(7) := j(#(Q)) for all # € T 44. In order for the optimization problem to be equivalend
to the original problem we have to ensure a one-to-one correspondance between transforma-
tions and shapes.

Remark 2.21. Any bi-Lipschitz transformation ¢ that just transforms the interior of { can
be added to 7 and it holds #(Q) = (¥4 7¢)(Q). The reformulation of the shape optimization
problem has to take care of these kernel spaces, which motivates the consideration of shape
optimization problems on appropriate linear subspaces or manifolds.

Remark 2.22. In the case of PDE constrained optimization, it holds
(7)== 35, 7(Q) = J (5, 7(),

where § solves E(g, 7(€)) = 0. Under the assumption that 7 is smooth enough such that for
g € Y(7(Q)) it holds t}}at goT €Y (Q) for all T € T4q and such that for 7 € V() it holds
that o771 € Y(#71(Q)) for all ¥ € T 44, we have

J(,7(Q)) = J(j o 7,9)
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2.7. Method of Mappings

and R . R 3

E(5,7(Q) = E(goT,9),
which yields an reformulation of the shape optimization problem on the reference domain Q.
The assumption is fulfilled, if Y(Q) = {go7:y € Y(7(Q))} and the mapping

JEYHFQ) = §=joreY(Q)

is a homeomorphism for all 7 € T 2a- In that case, there are two possibilities to compute
the gradient of the reduced cost functional. For the iterate 7 one either solves the with
7 transformed state and adjoint equations on €2 or one solves the untransformed state and

adjoint equations on the transformed domain 7(€2).

It is convenient to define u, := 7 — id, to ensure that 0 is admissible in the optimization
process, as well as, )
Uy :={0, :R* = R? . id, + 1, € Tagl,

and optimize over u, € fJad instead of 7 € '7'ad. Thus, we arrive at the optimization problem

min j(ur),
ur€Ugyq

where j(1;) := j(id, + @;).
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3. Fluid-Structure Interaction

This chapter collects theoretical results for FSI problems under simplifying assumptions. In
Section it is shown for an unsteady, linear FSI model that the adjoint equation has the
same structure as the forward model but reverses the temporal flow of information. A new
improved regularity result for linear hyperbolic equations is derived in Section [3.2] which is
the basis for a regularity result for an unsteady, linear FSI problem (Section . These
considerations are the foundation for a local-in-time regularity result for an unsteady, non-
linear FSI problem in Section The main contribution is the new improved regulartiy
results for linear hyperbolic equations in Section [3:2]

3.1. Adjoint Considerations for a Linear Unsteady FSI
Problem with Stationary Interface

For computing the gradients in optimal control settings, the adjoint equations have to be
solved. Especially in cases, where no automatic differentiation can be applied, it is crucial to
derive an explicit formula for the adjoint equations. Even though the FSI model is modified
for performing shape optimization, the adjoint equations to the unmodified model can be
used to drive the optimization (Section , basically when every iteration is performed on
the current ALE reference domain instead of the nominal domain, cf. [20, Sec. 2.2.2].

We consider the adjoint of a linear version of the fluid-structure interaction model .
More precisely, we consider Stokes flow for the fluid and linear elasticity for the solid equation.
Additionally, we restrict ourselves to the case with a stationary interface I; and homogeneous

Dirichlet boundary conditions, i.e., Q@ = Q(t) = Q and 9Q(t) = T'yp UTp for any t € I.
This also implies that x = idy, jx =1 and F = I. The resulting fluid-structure interaction
problem (for the sake of clarity without superscripts) reads as follows

prov —div(oy) = psfy  in Qp x I,
div(v) =0 in Qf x I,
v=0 onlyxI,
v(-,0) =vo in Qy,
psOrv —div(os) = psfs  in Qg X 1, (3.1)
ps(Ow —v) =0 in Qg x I,
w=0 onlj,xI,
w(-,0) =wp in Qq,

v(-,0) =vp in Q,
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3. Fluid-Structure Interaction

with the additional coupling conditions

ow=v onl;xI,

—omy=osng onl; xI,

where oy = py(Dv + Dv') —pI, pp = psvy, o5 = ps(Dw + Dw') + Astr(Dw)I and, for
the sake of convenience, we introduced vg defined by vo\Qf = vos and volo, = wi. For
compatibility reasons there holds wo|p, = 0. This corresponds to the setting considered in
[34].

We are interested in the adjoint equations and therefore do calculations on a formal level
in order to derive a formulation for the adjoint system. In particular, we do not analyze
the regularity of solutions but only assume that all functions are smooth enough such that
the appearing terms and operations are well-defined. For the analysis of we refer to
[34, 135, [38]. Since we consider a linear unsteady partial differential equation, we aim for
a weak formulation for which the adjoint attains the same structure as the forward model
but reverses the temporal flow of information. In [38], it is shown that an unsophisticated
straightforward weak formulation does not have the desired property, basically due to the
term Oyw — v = 0. As a remedy, it is proposed to work with Voyw — Vv = 0 instead. In
the following, we apply ideas from [34] to reformulate the weak formulation and obtain an
analogous result.

Since Oyw = v on € it follows that w(-,t) = wo + fg v(s)ds on Q.

Let W(v)(-,t) = wo + fot v(-,s)ds, then the problem reads as follows:

p;0v — ppdiv(Dv + Dv') + Vp = pef;  in Q?,

div(v) =0 in QJ:C,

v=0 onX%,

psOv — p1sdiv(DW (v) + DW(v) ") = A V(div(W(v))) = psfs  in QT
v=0 onXxT,

v(-,0)=w; in
with the additional coupling condition
pns — pp(Dv + Dv )y = ps(DW(v) + DW(v) N ng + Aediv(W(v))ns  on X7

One can check that this formulation is equivalent to the previous one since ps(;W (v)—v) = 0
on QT W(v) = 0 on XI' and W(v)(-,0) = wy are satisfied by the definition of W(v) as
well as ;W (v) = v on X7 is satisfied if we require v € H}(Q) for almost all ¢ € I, which
implies uniqueness of the trace.

The following notation is used:

o ()0 = Jopqdf for all p,q € L*(Q), (v,u)q := [, v -udf for all v,u € L*(Q)? and
(A,B)g = [, A : Bd¢ for all A, B € L*(Q)4*4.

e (v,u)r = [pv-udS(¢) for all v,u € L?(Q)?, where dS(€) denotes the surface measure
on I
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hd ((p, Q))QT = foT(p('v t)’ Q('v t))th for all Dp,q € LQ((Ov T)’ L2(Q)),
(v,u)gr := fOT(V(-,t), u(-,t))qdt for all v,u € L2((0,T), L?(2)%) and
(A, B)gr == [ (A, B)qdt for all A, B € L*((0,T), L*(Q)?*%).

(Dv+Dv'",Dz + DZT)Qf,
(Dv + Dv', Dz + Dz")q, + \s(div(v),div(z))q,, for v,z € H}(Q)4.

e af(v,z) =4
as(v,z) = %

The corresponding weak formulation reads as follows:

0V, 9" ) gr — py(div(Dv + Dv'), Y )or

+ (Vo ¥ )gr — (orfr, %7 )gr + ps(8ev, ")) gr

= ((psfs, ¥"))qr — (div(v), ¥P))gr + (v(-0) = vo,9°(-,0))e

— ps(div(DW(v) + DW(v) "), 4") gr — As(V(div(W(v))), ")) gr = 0.

Integration by parts yields the formulas
af(V,Z) = puf Z/Q (Okvjakzj + 8ijajZk)df
gk 7
= —Uf Z/ (8k6ijZj + ajaijZk)df + uy Z/ (aijZjIlf’k + 8ijanf7i)dS(f)
PRAL r 09y
= —uf Z/ (akaijZj + ajaijZk>d§ + w1y Z/ (8ijZjnf’k + 8ijanf7i)dS(§)
k7S gk I

= —py(div(Dv + Dv'), z)o, + pp((Dv + Dv')ny,z)r,,

(Vp,2)q, = —(p,div(z))q, + (pnyf,2)aq, = —(p,div(z))a, + (pnf,2)r;,

and
as(v,z) = %(Dv +Dv',Dz+ Dz")q, + ) Z/ 0,V ;O zpdx
— JQ
Jk s
= %(DV + DVT’ Dz + DZT)QS — s Z/ ﬁkajvjzkdx + A Z/ 8jvjzkns,kd5(x)
— JQ, — Jon
Jik 700 Jik s

- %(Dv +Dv',Dz+ Dz')g, — A Z/ Ok0jvjzrdx + As Z/ 03§25 115 (x)
gk Ss gk T

_ %(Dv +Dv',Dz+ Dz g, — AJ(V(div(v)), z)q, + As((div(v))n, z)r,

= —us(div(Dv + Dv '), z)q, + ps((Dv + Dv ' )ny, 2)r,
— X(V(div(v)),z)a, + As((div(v))ns, z)r, .
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Thus, the weak formulation can be reformulated as
T
PO gy + [ a9 )= (0.9 %"y
T
(0 ¥gr + [ ad(W). )= (v, 07y
— (prtr 4 )qr — (st ¥ ) gr + (v(,0) = vo,9°(-, 0))a
T
- / (1 (Vv + Vv g —pny + pus(VW(v) + VW (v) ")n,
0
+ As(V - W(v))ng, ¢")r,dt =0,
which can be simplified by using the interface condition:

T
PO gy + [ artv )= (0.5 0"

T
#0008 gr + [ (W)t = (7,07
= (st ¥ ) gr — (s ")) gr + (v(:,0) = vo,9°(-, 0))a = 0.
Linearization of this equation yields an operator A, which is defined by

T
<A(Tlv> 77p)> (¢U7 ¢p)> = pf((atnv¢ ,va))Q? + /O af(nva ¢U)dt - ((npa V- 'lnbv))Q?

T t
00" g+ [ ol [ 0 Cs)ds w )t (T w0 gy
+ (nv(VO)a'l:bU("O))Q-

The term which destroys the symmetry of the operator is given by as. Closer consideration
of this term yields (under the assumption that we are on spaces where Fubini’s theorem is
valid) yields:

[ ool ey, e = /T%(/t (., $)ds, (- )t
:/OT Otas(nv( ), 9" (-, t))dsdt = //a $¥(-,t))dtds

:/OTaS / e dt)ds-/ as(n'(-,s), OT Slbv(.’T—t)alt)ds

:/OT T —5s) /w” T — t)dt)ds

IIltI'OdllCiIlg ﬁv(g?t) = 77”(57 T — t)7 ﬁp(é?t) = Up(fa T— t)a Ev(gv t) = 17[;7)(57 T— t)7
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PP (€ t) = YP(E,T — t) yields

[Mf (mwmq/%/w )ds, 71

We have dyap¥(-,t) = —0s3p" (-,s) for s = T — t and the following equation holds true:
T
(.00 g = [ (0.0 000" ()t
T
= /0 (ﬁU(W T —1), _aSEU(W T - t))Qfdt
0 Y T —
—— [ (9 -0 Sayds = — [ (09,057 (5))oyds
T 0
T
= _/0 (ﬁU(Wt)aatEv('vt))Qfdt: _((ﬁv7atav))Q?'
This is the reason why partial integration yields
T
(@ 9"y = [ outn" %) e (" Dy
= (nv('a T)7 szv(" T))Qf - (nv(.7 0)7 wv('v 0))Qf + ((ﬁv7 atav))Q}"
Analogoulsy,
T
e R A U e
=, T), 9" T))a, — (M"(,0),9°(-,0))a, + (7", 03 )r-

Combining these results, rewriting the terms in v, 7P, ", ¢" and using that

—v

¢, 1), 4" T))a= M"(0),% (,0))q yields:
T
<A(nvv np)v (d’v? ¢p)> = pf((atavvﬁv))QT + /0 af(Evaﬁv)dt - ((V : Wﬁﬁp))Q;—f

T 050" TN gr + / s / B (. s)ds. 1)t~ (0. V -7 )gr
B 0,7, 0)) = (A", T, (7", 7).

Thus, the adjoint has the same structure as the forward model, but reverses the temporal
flow of information.
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3.2. Improved Regularity Result for Linear Hyperbolic
Equations

In order to motivate improved regularity results for the Lamé system, we first consider the
classical hyperbolic system

dww — Aw = f in QF,
w=G onXTl,

w(-,0) =wy in Qj,
Ow(-,0) = wy in s,

and derive improved regularity results for this system.

3.2.1. Available Existence and Regularity Results

The theory is built on the following existence and regularity result, that already contains
an improved regularity result for the normal derivative on the boundary. Defining lifting
operators as in [I13] and using [86, Rem. 2.2, Thm. 2.2, Rem. 2.10| yields in an analogous
way to [I13, p. 560, Thm. 3.2]. For the time-independency of the constants compare also
Theorem [3.12

Theorem 3.1. 1. Let f € L'((0,T), L?()), G € HY(ZT), wo € H'(€2) and
w1 € L?(£)) be such that
Gli=0 = wolr, .

Then the solution w of system (3.2]) satisfies
w e C([0,T], H'(24)) N ([0, T], LA(2))

and
Vw-n, € LX(3T) = L2((0,T), L*(Ty)).

In addition,

lwlle o, vt @u)net (o, 220 + Vw0l 257

< C(Ifller 0,1y, 20y + lwoll iy + llwill 2o,y + 1Gllg sT)),s
where the constant C' is independent of T

2. Let f € LY((0,T), H'(Q)), 0:f € L*((0,T), L*>(Q)), G € H*(XT), wo € H?(Q,) and
w1 € H'(£2) be such that

Gli=o = wo|r,, 0:Gli=o = wi]r,.
Then the solution w of system (3.2]) satisfies

w e C([0,T), H*()) N CY([0,T], H*(Q)) N C%([0, T], L*(Q))
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and
Vw-n, € HY(XT) = L2((0,7), HY(T',)) N HY((0,T), L*(T)).

Furthermore,

lwlle (o, 22(Q0))ne (0,70, H (2))ne2(0.7),22()) T+ |V - sl g sy
< C(fllr o),z (00)) + 110 f L1 0.1),22(024))
+ lwoll 20, + llwill gy + Gl g2 (21))s

where the constant C' is independent of T

. Let f € LY((0,T), H?(Qs)), O f € LY((0,T), H* (%)), Owf € L1((0,T), L*(Qs)),
G e H3(XT), wo € H3(Q) and wy € H?() be such that

Gli=o = wolr,, *Gl=o = wilr,, OuGli=0 = (Awo + f(-,0))|r,-
Then the solution w of system ([3.2)) satisfies
w e C([0,T), () 1 C1(0, 7], HA(2,)) 1 CX([0, T, H'(2))

and
Vw-ng € H*(XT) = L2((0,T), HX(I's)) N H*((0,T), L*(T)).

Moreover,
lwlle(o,r), 53 (Q)net (0,17, B2(Qe))nez(o,7), 5 () + VW - | g2 sy

< CUI o), m200)) + 10 f L1 (0,7), 51 (20)) + 19 fll 1 (0,7),22(20))
+ [lwoll g3 ) + lwillg2ey) + 1F ¢ 0 @) + Gl a3xTy),

where the constant C' is independent of T'.

3.2.2. Local-in-Time Results

[59, Assumption 1].

Applying the above results directly in the FSI setting results in a loss of information due
to the anisotropic regularity of the solution of the fluid equations in space and time, cf.
Using a fixed point argument on the coupling conditions motivates to
work with boundary conditions G € L?((0,T), H™*(I's)) N H"((0,T), H*(Ty)), r € {1,2}.
The starting point for our considerations is a technique of [86] which allows to consider a
modified linear hyperbolic equation, where the regularity of the boundary term is compatible
to the regularity results in Theorem without losing information as it is the case when we
embed the space with higher regularity into a space with lower regularity. More precisely, we
consider a first order operator B € % that is tangential to the boundary in order to obtain
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the system

Ow(Bw) — A(Bw) = (BA — AB)w + Bf in QT
Bw =BG on X7,

Bw(-,0) = Bwy in Q,

O¢Bw(-,0) = Bw; in Q.

Now, BG € L?((0,T),H"(Ts)) N H"((0,T), L?>(T's)). However, the regularity of the right
hand side of the hyperbolic equation, more precisely the term (BA — AB)w prevents us
from directly applying Theorem since (BA — AB) is, in general, a differential operator
of order two. Thus, no bootstrapping argument can be used except for geometries where
(BA — AB) is a differential operator of order strictly less than two, which is, e.g., the case if
YT is flat as in [I13]. In that special case it holds that BA — AB = 0 and Theorem can
directly be applied. From the regularity of Bw we can then improve the estimates on the
regularity of the normal derivative of w on the boundary, c¢f. Corollary 2.19] The following
interchangeability property is useful.

Lemma 3.2. Let d € {2,3}, Q, be a domain with smooth boundary I's, B = >, b;(§)0g,
be a time-independent first order operator with smooth coefficients b;(&) such that

d
Zbi(f)(ns)i@) =0 on I},
i=1
and
Vb;-ny; =0 on T},
for all ¢ € {1,...,d}, where ns denotes the outer normal unit vector of 25 on I's. Then,

B(V® -n,) =VB® -n, +V® - (Bn,)

on I'y and for any smooth .

Proof. Follows from the following two identities:

VB®-n, = V() bide,®)n, = > (b;d,0c,B(ny); + J,bide, (n,);)
i i,j
=Y _bid, 0, ®(ny);,
2

B(V® - n,) = Z(biaﬁja&@(HS)j + bidg; ©0g, (n5) )

2Y)
= bi0,0,®(n,); + VO - (Bny).
.3
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The main idea to extend these considerations to smooth domains is inspired by techniques
in [I13]. We consider local-in-time solutions and use the fact that the constants of the
estimates for right hand side terms that depend on w show well-behaved T-dependencies.
Therefore, choosing T" sufficiently small allows us to eliminate these terms. Then, globaliza-
tion strategies as in [I13] can be applied.

Lemma 3.3. Let T* > 0,
G e L*((0,T%), H*(Ts)) N H'((0,77), H' (L)),
f € L2(0,T%), HY(Qy)), wo € H*(Qs) and wy € H(s) be such that
Gli=0 = wolr,-

Then, there exists 7' € (0,7*] such that for all T € (0,7 the solution w of system (3.2)
satisfies
Vw-n, € L*((0,T), H'(T's))

and
1
Vw0l 2oy, ra) < CT2 L2 0m), 50 00) + G200, 520 )0 (01), ()
+ [Jwoll 2,y + w1l ar(0y))s

with a constant C independent of T

Proof. We first assume the data to be smooth, i.e.,
wo, w1 € C*°(Q) and f, G € C®(Q x [0,T]),

and use extension by continuity, see Section to conclude the argumentation.
By Theorem [3.1]1 we know that

lwlle(o,m,mr (u))net (0.77,22(20)) + IVw - 1| 257 (3.3)

< CUflrom),c2@0)) + lwoll e,y + lwillz2y) + Gl a1 sry),

with a constant C' independent of T'. Let Cp € (0, 00) be chosen such that

BCBc, ={Be% :B= Zbia&-, st. b-ng=0o0nT}, 1S<u1<)d”biHC°°(§5) < Cp and

b is constant along normal directions locally around I's},

where B is the set of finitely many first-order operators defined in Corollary [2.19] Due to

43
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Corollary there exists h € C>(Q;, R?) such that for all B € Be,, there holds

h|r, = nj,

h is constant along normal directions locally around Iy,
Vh;-h =0,

Vb;-h =0,

in a small neighborhood of I'; for all [ € {1,...,d}. Consider the system

Ou(Bw) — A(Bw) = (BA — AB)w + Bf in QT
Bw =BG on X7,

Bw(-,0) = Bwy in €,

OtBw(-,0) = Bw; in Q.

(3.4)

Standard estimates, Lemma and || Bf| 1 (0,1),02(04)) < T3 IBfllL2(0,1),L2(024)) Yield

1
IBfllzro,r),2(00)) < CT 2 fll2(0,1), 11 (20))5
| Bwoll g1 (0,) < Cllwoll g2y,
| Bwi|z2(0,) < Cllwi|lg1(a,),

|BG| sty < CGl L2 (0,1, 52(00)nH (0,1, H(Ts))»
with constants C' that depend on Cp but not on 7. We have

(BA — AB)w = Z b; ¢, O¢, Og,w — Z 8&3&(2 b0 w)

1,J i J

= -9 Z 8€ibj8§j8§iw - Z a{ia&bjagjw'

1,5 1]
We aim at proving the following estimate

[(BA — AB)wl|1((0,7),22(02.))

1 ~
< Cllwl o), 11000 + CT? sup || Bwllp2(o/r),m1 (0.))s
BGBCB

for a constant C' independent of T" where we use that
~ l ~
| Bwllpro,7),m1 (2,)) < T2l Bwl 220,751 (2,))-
It holds that

1~ 96,0, b;0,wl 11 0,1),220.)) < Cllwll Lo, 11 (00

1]

for a constant C' independent of T'.
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

However, for the first term of (3.5) we have ), 0¢,b;0¢; ¢ Bcy. The idea is to split the
operator J¢, on w into a normal and tangential part. Therefore, we define

fli = (h . ei)h, bl =€e; — hi,
where e; denotes the ith unit vector. We obtain

D 0e10c, 0w =Y 9 b0, ()0, w) + > 0,0, ((bi) kO, w). (3.8)

.3 .5,k 1,5,k

By definition of b; we have b; - h|r, = 0 and due to (3.4) we know that (b;); are constant
along normal directions in a small neighborhood around I's for all k € {1,...,d}. Therefore,
> k(bi)r0¢, € Bcy and the second term of the right hand side of (3.8)) can be estimated

1D 0e:b;de, (0o, w)l| 1 (0.1),12(20)) < ZCBH% > (bi)de, )l 11 (01),22(00))
7.7 k ,] k

1 ~
< CT>2 ~sup HBw”LQ((O,T),Hl(QS))' (39)
BEBCB

The first summand of the right hand side of (3.8) splits into

> 0,10, (h)kdg,w) = 9, bj(hi)xde, 0w + Y e, bj0e, (hi)pdg,w.  (3.10)
4,5,k 4,5,k 4,5,k

The second summand of the right hand side of (3.10]) is easy to handle and we obtain

| Za&b B¢, (h)k0e, w1 (0.1).12(90)) < Cllwlli(0.1). 11 (0))- (3.11)
7-]7
The first term of the right hand side of (3.10|) reads as
> 0, b;(h)0e, 0w = _ de,bhihygde, g, w.

1,5,k 1,5,k

By (3.4)), >, 0¢,bjhihy, = (Vb;-h)hy, is 0 in a small neighborhood around I';. Consequently,

v i O bjhihg0g; € Bp, for v = m and
Hza& kasjafkaLl ((0,T),L2(R))
5,k
< Z Hzafk 9¢,bj(hi)) 0, wl L1 ((0,7).22(0)) + 1108, ( Zaé (h:) k¢, w) | 11 0,7), 22(02)))
,J
< C(Hw||L1((o,T),H1(Q)) + T3 sup || Bwl|r2o,1),m1(90.)))- (3.12)
BeBcg

B3). 7). G3), G9), B10), B1I) and B12) yield estimate (B:6). Due to Theorem [B}1
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there exists a constant C' > 0 such that

| Bwlle(jo,m,51 (.))nct (j0,77,22(02)) T IV Bw - ng| 251y
< CUf o), Hr(020)) + HwOHHz(Q + [will g,y + 1Gll 20,1, 520 ))nE (0,1, 5 (TS))

+ [[wll L1 0., 51 (2 ))+T2 sup || Bw| 207,11 (60.)))-
BEBCB

Using that B € Bc,, yields
sup || Bwllc(o,r),m1(0,)) T sup [[VBw - ngl|p2(sr)
Cp BEBCB
<2C(Iflzr 0.1, (92)) T llwoll 2y + lwill g (ay) (313)
+ Gl L2 (0,7), 120 )" E (0,7), 1Y (1)) T 1wl L1 (0,1, 51 (24)) '
l ~
+ T2 sup ||Bwlr2o0,r),m51(0.)))-
BGBCB

To apply Corollary we need an estimate for ||B(Vw - ny)|p2(zry. By Lemma we
know that

[1B(Vw - ns)|| 251y < IVBw -0 257y + [[Vw - Bng||2s1). (3.14)

The first summand can be bounded with (3.13]). The second term can be written as
Vuw - an == Z %w Z bjagj (ns)i = ZAbia&w

where b; := 3. b;d¢ h;. We split b := (by,...,by) in a normal part by, := (b-h)h and a
tangential part b, := b — b, with |[b, oo @, rey < aCp and ||thC°<>(Q rd) < BCB, where
the constants « := d2||h||3oo — and 8 :=d(1 + dHh||2 )||h||coo do not depend on B.

Therefore, B := > 5_1(13)2-8& € B¢, and there exists a Constant C independent of 7" and
B such that
|[Vw - Bog||p2zry < [|[Vw 'i)n”m(st) + /B”BwHL?(ZST)

< C([|[Vw - ngl|p2(gry + sup HB’U}HB(st))
BGBCB

C(IVw - ngllp2sry + sup [|Bwllzzo.r),m(0.))):
BEBCB

where we use the trace inequality in space. Combining this result with (3.3)), (3.13) and
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

(3.14)) yields a constant C' independent of 7" such that

sup || Bwlleo,r, a0 + sup [[B(Vw - )| p2sr)

BeBcg BeBepy
< Ol Al o). @) + l[woll 20, + llwillm e, (3.15)
+ Gl 2 (0.1, 12 (0 )y (0,7 HL(T ) '
+ sup |[Bwlr2(0/1),m1 @.)))-
BEBCB
We have
~ 1 H
sup || Buwl|zom),m1 (. < CT2 sup [|Bwlleory.a@.)): (3.16)
BEBCB BEBCB

which implies for T" > 0 sufficiently small

sup || B(Vw - ny)|[r2sr) < O fllro,r), 51 00) + [lwoll m2(0.)

BEBC’B
+ [lwill g1y + Gl L2 0,7), 52 (0o )nE ((0,7), 5 (Ts)))-
(3.3) and Corollary and using extension by continuity yields the assertion. O

Likewise we can show the following lemma.

Lemma 3.4. Let T* > 0,
G € L*((0,T%), H*(Ts)) N H?((0,T*), H'(Ts)),
f e L2((0,T%), HX(Qy)) N HY((0,T), H'()), wo € H3(Q) and w; € H2(€2,) be such that
Gli=o = wo|r,, 0:Gli=0 = wilr,-

Then, there exists 7' € (0,7*] such that for all T € (0,7 the solution w of system (3.2)
satisfies
Vuw -ng € L*((0,T), H*(Ts)) N H'((0,T), H'(Ts)).

Vw - ngl| £2(0,7), 120, ))nH ((0,7), H(T,))
1
< C(T2 fll L2 o,m), H2 (00 ) H (0,1, H (2,)) + Gl L2((0,7), H3 (0 )82 ((0,7), H (1))

+ llwoll g () + lwill g2(0,))s

with a constant C independent of T'.

Proof. This is obtained with the same arguments as in Lemma([3.3] but on the basis of Lemma
[3.112 instead of B.111. O
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3. Fluid-Structure Interaction

3.2.3. Global-in-Time Results

Since the local-in-time improved regularity results are shown for linear operators, a global-
ization is straightforward using ideas of [107, Prop. 2.7].

Lemma 3.5. Let 7T* >0 and 0 < T < T,
G € L*((0,7%), H*(Ts)) N H'((0,T%), H'(T)),
f e L?((0,T*), H (), wo € H?(Q) and wy; € H () be such that
Gli=o = wo|r,.
Then, the solution w of system satisfies
Vw - n, € L*((0,T), H'(Ty))

and

1
[Vw - HSHLQ((O,T),Hl(FS)) < C(T: HfHLQ((O,T),Hl(QS)) + HGHLQ((O,T),HQ(FS))HHl((O,T),Hl(l“s))
+ [[woll a2,y + w1l ()5

with a constant C' independent of T

Proof. Let the data f, G, wy and w; be smooth and conclude the argumentation with
extension by continuity. Combination of (3.15) and (3.16) yields a constant C' independent
of T such that

sup || Bwlle(jo,r),m(.)) + sup  [[B(Vw - ng)|lp2smy
BEBCB BGBCB

< CUIf o), 590 + lwoll g2y + [will gray) (317
Gl L2 0,1), 2 (0 ) E ((0,7), H(Ty)) '

l -~
+T2 sup ||Bwllcqor),m (@.))
BEBCB

for all T € (0,7%]. Let 0 < Ty < T < T3, then,

sup [|Bwllcqom),m.) = sup  [[Bwllem m),m1 90)s
S Cp BEBC‘B

sup || Bwl|r2(0,m),m51 Q) < Sup | Bwlz2¢om),m5100)) + Sup |Bwll 2y 1), 11 (0,))5
Be Cp Be Ccp BEBC’B

1
sup || Bwl| 21y, m),m51(00)) < (T2 —T0)2 sup  |[Bwlle(my,m),m(02,))>
Be Cp BEBCB

(3.18)

if SUPpeBe, |Bwlle (o), 01 (20)) < 00 Let T > 0 be chosen such that CcT? < Then,

1
3
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

(3.17)) implies

sup || Bwlle(o,r),m1(0.)) + sup  [[B(Vw - ng)|lp2zmy
BGBCB BEBCB

S 2C(||f”L1((O7T)7H1(QS)) + HwOHHz(QS) (319)
+ HU}lHHl(QS) + ||G|’L2((07T)7H2(Fs))mHl((O,T),Hl(FS)))

for all T € (0,T]. Choose T =T and AT = min(T +T,T*). Then, for T € (T,T + AT,

(3.17) and (3.18)) imply

zllli‘p ||Bw||C([T7T]7H1(QS)))+ sup || B(Vw - ng)| r2(s1)
C

B BEBCB
< CUIfllr o), mr(920)) + lwoll g2y + Wil mr(ay)
+ |Gl 20,1, 52(T s ))nH (0,1, H (T's))

/\l ~ ~ ~
+ 12 sup || Bwlleqo gy 10, + (T =1)2 sup [[Bwlleqz oy ma,y)-
BGBCB BEBCB

[SIES

Since CT> < %, and T—T < T for T € (T,T + AT, there exists a constant C' > 0

independent of T' such that

sup || Bwlle(o,r),m1.)) + sup  [[B(Vw - ng)llp2zmy
BGBCB BGBCB

< CUIf o), mr 0 + lwoll g2y + lwill 710,

/\l ~
+ Gl 2 (o,r), 120 )nm (07,11 (0y)) + T2 sup (|Bwlleo 71 110y
BEBCB

for T € (T, T + AT). Due to (3.19) there exists a constant C' > 0 independent of T' such that

sup || Bw||¢(o,m,m1(Qy)) T sup [B(Vw - 1) || 2z

€bcg Be cp
< C([[fllrom),mr(00)) + lwoll g2,y + llwill g ay)

+ |G 20,1, 52(T ) (0,1), HL(TS)))

for T € (0, T+ AT]. Replacing T with T+ AT and recursively applying this argumentation,
(3.3), Corollary and extension by continuity yield the result. O

With the same arguments we obtain the globalized version of Lemma [3.4]
Lemma 3.6. Let 7* >0 and 0 < T < T™,
G € L*((0,T%), H*(T's)) N H*((0,T%), H'(Ts)),
f e L?((0,T*), H*(2)) N HY((0,T), H (%)), wo € H3(5) and w1 € H?(€) be such that

G’t:O = wO‘FS, 8tG’t:O = wl‘Fs-
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3. Fluid-Structure Interaction

Then, the solution w of system (3.2)) satisfies
Vw-n, € L*((0,T), H*(Ty)) N H'((0,T), H(T)).
Furthermore,

IVw - ng | 22 ((0,1), 52(T ) H ((0,7), 51 (T,))
<O(T: £l z2¢0,7), 5200 )nE (0,1, 5 (920)) + Gl L2 ((0,), 53 (0o )2 (0,7), HL(Ty))
+ [Jwoll a3 () + w1l a2(0,))s
with a constant C independent of T
Let, for the sake of convenience, f = 0 and consider the system
Opw — Aw =0 in QZ,
w=G on EZ,

w(-,0) =wp in Q,
Ow(,0) =w; in Qg,

(3.20)

The argumentation for obtaining an estimate that is compatible to the fluid equations is
motivated by [113] and presented in a slightly modified manner.

Lemma 3.7. Let T* > 0and 0 < T < T*, £ € (3,1),
G € LX(0.7%), H2 (L) N HE(0,7%), H'()),
wo € H%H(QS) and wy € H%”(QS) be such that
Gli=0 = wolr.-
Then, the solution w of system satisfies
Vw - n, € L2((0,T), H=*4(T,)) N H3((0,T), H\(T.)),
and

[Vw - ng]
< (Gl

L2((0,1),H 24T )NH ™2 ((0,T), HL(Ts))

+ [woll + [l

L2((0,T), H3 4T )N H3H4((0,T), HL(T's)) H3+(Qy) H%“(Qs))’

where the constant C' might depend on 7.

Proof. Interpolation of Lemmas and with 6 = % — { yields

[V - n|
< c(llall

L2((0,T), Hz“(r ))me" ((0,T),H(Ts))

+ [Jwoll + i

L2((0,T), H3 (T )N H3H4((0,T), H(T's)) H3+Qy) H%”(QS))’
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with a constant C' > 0 independent of T". The equivalence constants between the interpolation
norms || - || and the norms || - || on the time interval (0,7) might depend on 7' O

Lemma 3.8. Let T* > 0and 0 < T < T*, £ € (3,1),
G e H'((0,7%), H* () n Ht((0,T%), H'(T,)),
wo € H3T(Q,) and wy € H3(Q,) be such that
Gli=o = wo|r,, 0O:Glt=0 = wi|r,.

Then, the solution w of system (3.20)) satisfies

Vuw - n, € HY((0,T), Hz(T,)) n H2((0,T), HY(T,)),

and
IV nSHHI ((0.1), HZ (T ))NH" "2 ((0,T),H (T's))
S CUGH g oy st e rapnmdeomymy T 0ol ggee gy T ol g )
where the constant C' might depend of T'.
Proof. Lemma, [3.7] yields
IV 0l o o, b e apont-tom,man (3.21)
— C(HGHL2((0,T),H%+Z(Fs))QH%+£((O,T),H1(FS)) + HwOHH%vLZ(QS) + ||w1||H%+Z(QS))
Jrw is a solution of the system
att(ﬁtw) — A(@tw) = O in QZ,
(9tw = atG on Zz, (3 22)
Ow(-,0) =wy in O, .
at(Btw)(,O) == AU)O in QS.
Lemma applied to system (3.22)) yields
1969 0all .y 344w =3 oy sy
+ ||w1||H%+z(Q + ||Aw0||H +(q, )) (3.23)
< (Gl

HL((0,T),H3 (T3 ))NH3+((0,7),H(T's))
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Combination of (3.21]) and (3.23) yields the assertion.

Lemma 3.9. Let 7* > 0and 0 < T < T*, (€ (3,1), B € (0,1 —0),
G € HY((0,77), H= (L)) N HZH5((0,17), H(I')),
wop € H%Jr“ﬂ((ls) and w; € H%+E+ﬁ(§28) be such that
Gli=o = wo|r,.
Then, the solution w of system (3.20]) satisfies
Vuw-n, € HP((0,T), H3 T (T,)) n H35((0,T), H\(T,)),
and

IVw - nlf,
< c(llall

T>,H%“(Fs>>mH“%”((O,T),Hl(r )

where the constant C' might depend on T
Proof. Is obtained by interpolation of Lemmas and with 0§ =1 — §.

Lemma 3.10. Let 7* >0and 0 < T <T* ¢ € (%, 1),
G e Hits(xT"),
wo € H%Jr%(Q ) and w; € Hit g(Qs) be such that
Gli=o = wolr,, O:Glt=0 = wi|r,.

Then, the solution w of system (|3.20]) satisfies

7

w e C(0,T], HiT5(,)) N CY([0,T), Hi+5(Qy)), Vw-n, € Hi*3(2]),

s

and

+ [ Vw -

”wHC([o,T},H%*%( au)net(o,7),m i+ (9.))

< C(IG] g4 ggr, + 00l

3,0
3 (=)

y ol g );

21‘*‘7 3+5 3 (Q5)

where the constant C' might depend on T

Proof. The assertion is obtained by interpolation of Theorem [3.1]2 and [3.1]3 with
g=5_1
172
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Theorem 3.11. Let T >0, £ € (3,1), B € (0,1 —¢),

G € HP((0,T), H3 (L)) N H345((0,T), H'(Ty)) N Hi3((0,T), L*(Ty)),

wo € H%Jr“ﬁ(ﬂs) and w; € H%M‘FB(QS) be such that
Gli=0 = wolr,, Gli=0 = wi]r,.
Then, the solution w of system ([3.20)) satisfies

T3(0)),

w e C([0,T), Hi3(0,)) N CY([0,T), H
Hi*3((0,T), LA(T,)),

Vuw-n, € H?((0,T), H2T(T))

and
3

Il C([0.T),HH 2 (2,))nC ([0,T],H 12 (2,))
< C(lGl

+Vuw: nSH B((0,T),HE (T )NHIE ((0,1),L

H((0,7),1 3D+ (0,1), 1L (1)) B E 8 ((0,7),L2(1))
ol geeen gy 101l 1cra )
where the constant C' might depend on T
Proof. Combining Lemmas [3.9] and yields the assertion using the fact that
%—i—g > %—i—f—i—ﬁforﬁe (0,1 —¢) and

11 3

[H'((0,T), HF (L)), Hi*32((0,T), L3(T))g = H *5((0,T), Hi*2(T,))

forez%.

Theorem 3.12. Let T >0, £ € (3,1), B € (0,1 —¢),

G e HP((0,T), H> (L)) N H2+8((0,T), HN(Ts)) N Hi*5((0,T), L*(Ty)),

wy € H%H*ﬁ(ﬂs) and wy € H%Jr”ﬁ((ls) be such that
Gli=o = wolr,,  :Gle=0 = wr]r..
Then, the solution w of system (|3.20]) satisfies
w e C([0. 7], H*2(Q:)) N CH([0, 7], H+3(Q)),
V- n, € H((0,T), Hz (L)) N Hi*3((0,T), L*(T)),
and

[[o]]

ls
ls

C([O’T]’HZerZ( Qs))NC([0,T7], H?ﬁz( +||Vw HSH (0

1 3.7
7’)7I_I§+2(FS))|"|I{ZI+§ ((07T)’L

L2(Ts))

2(T's)
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3. Fluid-Structure Interaction

< CUGH s 0,1y, 3+ ey b 08 (01,101 ()i 6 (0,1, 22(0.)

+ HUJOHH%HW(QS) + leHH%+”5(QS))’

where the constant C' is independent of 7.

Proof. Due to |90} p.41, Thm. 9.4] and Remark there exists a continuous lifting operator
H2HHB(Q,) x HaHH8(Q,) — H2 AT, x (0, 00)),
(wo,wl) = G(] such that Go(',O)‘[‘S = wop, 8tG0('70)’F5 = wi, i.e.,

|Gol + Jwal (3.24)

C([lwoll

<
H%”*ﬁ(st(O,oo)) — H%+[+B(QS) H%+Z+B(QS))

for a constant C' independent of T'; where || denotes the Sobolev-Slobodeckij

H3HH8 (D, x(0,00))
norm, see (2.2). Consider the systems

8tt1D —Aw =0 in QZ,

=Gy onXl,

3.25

UNJ(,O) = wy in Qs, ( )
Ow(-,0) =w; in Q,

and

Oeth — A =0 in QF,

=G—-Gy onXl, (3.26)

w(-,0) =0 in €, '

0t11)(,0) = 0 in Qs~

Due to the linearity of the hyperbolic equations,

=w + w. Consider the system (|3.26]).
We know that (G — Go)(+,0) =0 and 0x(G — Go)( 0) =

0. Furthermore, for Ty > T,

[H3HE5((0,Ty), LA(TL)), L2((0.Ty), HEY (D)) 4., = HP((0,Ty), H3H(T,),

3+0+8

[H2HE8((0,Ty), LA(T4)), L2((0,Ty), H Y8 (0,)] o = H2+48((0,Ty), HY(T,))

3te+p

(3.27)

and hence with Remark , (3.27) and (3.24)

I 0” B((0,T),H 3+ (T ))NH 38 ((0,7), H (T's))NH 15 ((0,7),12(T's))

< CliGoll s, 0,T4), HE (D )NH 2P ((0,74), HY (D )N H 5+ 2 ((0,T4),L2(Ts))

< C|GU|H§+€+ﬁ(F5X(O,Tf)) - C|GO|H%”+‘3(FSX(0W))
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Cwol gm0t pecns ) (325)

with a generic constant C' independent of T'. Therefore, and ([3.28) yield
[Ext(G — Go)|

HE((T=Ty,T),H3 Y (T,))NH 2B (7T T), HY (D)) H A+ 2 (7T} T),L2(T,))
< (|G|l

HB((0.1),H 3 (L) 32 ((0.0),HY (TL)NH T8 ((0.7).L2(T)) 529
+ HWOHH%-MH;(QS) + lenH%-&-H—ﬁ(Qs))

for a constant C' independent of T'. In addition, Ext(w) solves

O Ext(w) — AExt(w) =0 in Q(T T
Ext(d) = Ext (G—Go) on 2 1)
Ext(w)(-, T —Tf) =0 in Q,

O Ext(w)(-, T —T¢) =0 in Q.

Therefore, with Theorem and (3.29) we obtain

el c(o.1), HI+5 (Qu)net(0,7], 732 (9.)) +va'nsHH (©
< [[Ext(@)]

)

(0.1), 12 )T E((0,1).2(T,))

r\

C(IT—T;, T, HI+ 5 (2.)nc (0,7],HITE (Q.))
+ I VExt(w) - nSHHﬁ((T Ty 1), HE (T ))NHITE (T—T;.T),L2(Ts)) (3.30)
< ONEX(G = Goll s oy oy s+ ey 300 (2 )10 () E S (2T ).22(00)
<c(la]

HB((0,T),H3 (D)) nH 2 H+8 (0,1, HY (D) NH T2 ((0,T),L2(T,))
+ HwOHH§+é+6(QS) + leuH%+z+ﬁ(Qs))7
where the generic constant C' is independent of T'. The solution of the system

8tt’ll_)—A’lI]:0 anOTf

w=Gy on E(O Tf)
’LI}(,O) = Wo in Qs,
Ow(-,0) =wy in g,
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fulfills R(w) = w, which is the solution of (3.25)), and thus Theorem and (3.28)) yield

+ [V - n

I ~|| c([o,1], Hit5 2 (Qs ))ﬁCl([O,T],H%Jr%(Q HA((0,T), H?“(FS))mHﬁ?((o T),L2(Ts))

Ul o.m m3+5 @upncr oz i+ )

VD nsll s o.m b+ d b 0y 22y

C(]|Goll 3 1 7. ¢

HA((0,Ty),HE T )NH 242 ((0,Ty), HYT)NH T2 ((0,Ty),L2(Ts))

(3.31)

+ HwOHH%uH&( + HwIHH%+£+,@(Q )),

< O(flwoll 3 §+£+/3( + ||w1||H7+e+/3(Q ))

where the generic constant C' depends on Ty but is independent of T'. The assertion follows

from (3.30) and (3.31]) since w = w + w. O

3.3. Existence and Regularity for Unsteady Stokes-Lamé
System with Stationary Interface

In this section, the linear unsteady FSI problem (1.3)) is considered, which is given by

ov—vAv+Vp=1f in Q?,
div(v) = g =div(g) in Q?,
v(-,0) =vp in Qy,
vVv=vp on Z;‘cp,
v=0w onX’,
of(v,p)ny = os(w)ny +h on I
duw — div(os(w)) =0 in QT
w(,0) =0 in Q,,
Ow(-,0) =wy in Qj,

w=0 onXl.

We require that the bounded domain Q2 = Q;UQ,UT; C R?, d = 3 is such that
e ['; denotes the interface between {15 and Qy, i.e. Ti=Q:n ﬁf.

e the solid domain €2 is a domain with boundary 0€2, of class C* such that 9Q, = I'; UL,
where I'y denotes the outer boundary solid boundary and I'; N Ty = .

e the fluid domain €2y is a Lipschitz domain with boundary 00y =T UTy, where I'y
denotes the outer boundary fluid boundary and I'; N Ty = 0.
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

3.3.1. Lamé System

Improved regularity results for hyperbolic equations play an important role in the existence
and regularity theory for FSI problems in order to overcome the a-priori mismatch between
the regularity of parabolic and hyperbolic equations. The improved regularity result in
Section [3.2] was derived with the purpose of motivating existence and regularity of solutions
of the Lamé system. We assume that the results can be adapted to the Lamé system.

Assumption 3.13. Let T >0, ¢ € (%, 1), € (0,1—2),
n € HP((0,7), H2H (D) 0 HE+H48((0, 1), H'(I,) N Hi*2((0,T), LA(Ty))°,
wo € HaT48(Q,)? and wy € H2+5(Q,)? be such that
Nlt=0 = Wolr,, ONlt=0 = Wi|r,.

Then, the solution w of system

0 inQf,
w=mn on Zz,

) =wp in Q,
ow(-,0) =wy in Q,

satisfies w € W and
ou(w)ng € HO((0,T), H= (L)) 0 Hi*3((0,T), L*(T.)%).
Furthermore,

[wWliwy =+ llos(w)

< O(fwl

Bl 0. 3 om0, 220
H%+Z+ﬁ(95)d + ||W0||H%+e+ﬂ(ﬂs)d

+ [Imll 2)

HB((0,1),H3 (D)) anH 28 ((0,T), HL(D,))InH 3 T2 ((0,T),L2(T',))

where the constant C' is independent of T

Remark 3.14. The theorem is analogous to Theorem [12, Sec. 2 Thm. 1, Sec. 2
Prop.1, Comments 2.5] and [I13] Sec. 3 Thm. 3.2 indicate that the Lemmas and
Theorem also hold true for the Lamé system. Also the Lemmas in Section hold true
for vector valued functions, however, a complete argumentation is beyond the scope of this
work.
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3. Fluid-Structure Interaction

3.3.2. Stokes Equations

As parabolic system the Stokes equations are considered. Thus, we need to consider the
system
ov—vAv+Vp=f in Q?,
div(v) = g =div(g) in Q?,
v(-,0) =vo in Qy, (3.32)
v=0 onX%,
or(v,p)nf=h on X!
We give a proof in a slightly modified setting compared to [I13], Sec. 4]. The basis for the

theoretical analysis of that system is [54, Thm. 7.5]. The Dirichlet boundary term is kept in
this theorem since it appears in (3.34)).

Theorem 3.15. Let d € {2,3}, Qf C R? be a domain with smooth boundary such that
8Qf = Ff UT; and ff ﬁfi =0. Let £ € (%,1), f e Fr, h € Hp, vg € HH_K(Qf)d and
Vp € (H%Jr[’%*%(E?))d. Let the compatibility conditions

div(vg) =0 in Qy,
VO(') :VD('at) on Ffa
h(-,0)=0 onTYy,

2ve(vo)ny -7 =0 onTy,
for any unit vector 7 tangential to I'; be fulfilled. Then, the solution to system
ov—vAv+Vp=f in Q?,
div(v) =0 in Q?,
v(-,0) =vo in Qy,
v=vp on Xk,

or(v,p)ny =h on X}

satisfies
||V||(H2+Z,1+%(Q’}‘))d + ”va(Hl,%(Q}‘))d + ”pHHl-&-l,%(Q’}‘)
< C(Elley + Mallaty + IVollsecape + V00 g0 oy
Proof. c.f [64, Def. 7.2, Thm. 7.5]|. O

This theorem allows us to directly handle all inhomogeneities except for the nonhomoge-
neous divergence condition. Therefore, we split the linear system (3.32)) in two subsystems
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

such that (v,p) = (v,p) + (v, p), where (v, p) solves
OV —VvAV+Vp=F inQ7,
div(v) =0 in Q7,
Vv(-,0) =vo in Qy,
v=0 on E?,
o;(v,p)ng=h on X7,
and (v, ) solves
B — VAV + V=0 inQF,
div(v) = g =div(g) in Q?
¥(,0)=0 inQy, (3.33)
v=0 on ET,

of(v,p)ny =0 on T

The first system can directly be treated with Theorem |3.15]

As already pointed out in [I13] the main difficulty is the derivation of an similiar estimate
for the case of a non-homogeneous divergence condition as it appears in system (3.33)). The
statements are slightly modified compared to [113] and included for the sake of completeness.

Leray Projector
The Leray projector P is defined as the orthogonal projector form L?(2 f)d to
Vlgf(Qf)d ={veL*Qp)? : div(v)=0in Qf, v-n; =0on I}
It can be precisely defined as
P L2(Qf)d — Vlgf(Qf)d, viev—V((+mn),
cf. [113], Sec. 4.1]. Here, ¢ is the solution to the elliptic equation
A¢=div(v)in Qf, (=0onTy, (¢(=0onT;.

Since divv € H~1(Q #) we know due to standard regularity theory for elliptic equations that
¢ € H'(Qy). Moreover, 7 is the solution to the elliptic equation

Ar=0in Qy, Vm-ny=(v—-V()-nyonly, 7m=0onT;

Due to (v — V() € L?(Qf)? and div(v — V() = 0 it follows that (v — V() -ny € Hfé(l“f),
and the solution theory for elliptic equations gives m € H'(Q 7). Now, there holds

div(Pv) =div(v) —A(—Anr=0in Qf, Pv-ny=0onTYy,
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and
v —Pv e VH} Q)"
={ve L’ (Qp)? : Fve HY Q) st. Vo=vin Qf, v=0onT;}.
For v; € Vrof Q)% and vo € VH%Z_(Qf)d there exists v € H1(Qy) such that Vg = vo in Oy

and v9 = 0 on I'; and due to the divergence theorem, there holds

(V1,V2)L2(Qf)d = / V- Vzdf = A\ V’Ugdg = diV(Ung)df — UgdiVVldf
Qf Qf Qy Qf

= / voVvy - nyds —/ vodivvidé = 0.
F-L'UFf Qf

The above considerations imply that
L2(Qp)" = Vi, (2)* © VHy, ()"

Regularity Results for the Stokes Equations with Nonhomogeneous Divergence
Condition
Consider the system (3.33)). Using the Leray projector P and the relation v = Pv+V((+)
with the parametrized solutions
AC(',t) = g("t) = le(g(,t)) in va C('vt) =0on Ff? C("t) =0on I},
and
A7n(,t) =01in Qf, Vr(,t)-ny=-V((-,t)-nfonly, 7(,t)=0o0nT}y,
the system (3.33)) can be reformulated as
PV — VAPV + Vp=vVg— Vor — Vo( in Q7,
div(P¥) =0 in QF,
Pv(-,0) =0 in Qy, (3.34)
Pv =—-V,r on XL,
of(Pv,p)ng = —2ve(V(C+m))ny; on %7,
where Vom-ny =0 and Vo7 -7 = Vr -7 for all 7 that are tangential to the boundary. The
corresponding condition on E? is motivated by the fact that Pv-ny = v-ny—V({+m)-ny = 0,

\7|pf = 0 and (|pf = 0 for which reason V({ -7 = 0 for all T tangential to the boundary.
Furthermore, we have the relation

(Z —P)v(-,t) =V((-,t) + Vr(-,t), forallte (0,7).

System (3.34)) can be handled with Theorem if an estimate for V.7 is established. For
estimating (Z — P) we have to bound V({ and V7.
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

This is done in the following collection of lemmas.

Lemma 3.16. If g € H'*2((0,T), L2()?) and g € L2((0,T), H'**(€;)), then

ICHl 20,1y, 3 +¢ ) < CllgllLz o), 1+,

and

19| < Clgllar-

HY™ 5 ((0,1),H(©)))

In particular,

IVC-ngll 310 z;+g(ET) Cllgllzzo.r),mr+e@p) + llgllar)-

Proof. cf. [I13 Lem. 4.1]. O

Lemma 3.17. Let g € H2((0,T), L*(Q)%) n H'((0,T), H(2)?) and g|2? = 0. Then,

IVC-ngl 2 <Clglar-

HEME(0,7),H7 2 (1)

Proof. We consider the system

AC("t) = div (g(‘vt» in Qf7

((~t)=0 onT,;UTy (3.35)

for a.e. t € (0,T). Testing the first equation of (3.35)) with functions ¢ such that ¢|p, =0
yields, since we are in a setting that allows us to use integration by parts,

V() npepdSE) — [ V(1) - Vode= | A((,t)pdg

Ly Qy Qf

=/Qfdwg< ) de = / ) -nyods(e) - /Qfg<'7t>-wds

for a.e. t € (0,T). Due to the fact that there exists a bounded extension operator
ext : H2(Ty) — H' () and due to [;. (- t) - ny¢dS() = 0 it holds

V(1) npedSE) = | V(L) -Vodi— | g(ht)-Vods, (3.36)

Ly Qf Qf

and there exists C' > 0 such that

IV¢C0 nll, g SC sup V(40 n0dS(E)
f ¢€H1(Qf)7||¢HH1(Qf)S1 l—‘f

61



3. Fluid-Structure Interaction

<c sup ([ Vet V¢d€/ ).V de)

¢€H1(Qf)7”¢”}11(nf)§1 Qf
< C(ICC D@,y + I8¢ Dllz2p))

for a.e. t € (0,7). The proof of [I13, Lem. 4.1] implies that [|C(-,t)[z1 (o) < CllgllL2@)e-
Thus,

IV¢(.0)- anH b,y < Cllgt Do

for t € (0,T). Differentiation of with respect to t and using exactly the same argu-
mentation yields

1969 68) gl < ClOBC D2y e

€ (0,7).
Direct computations involving the explicit representation of the Sobolev-Slobodeckij semi-
norm as it is done in [113, p. 569| yield

IV ¢-ngl < Clelar-

1
H1+2 (0,7),H™ 2 (T'y))

O

Lemma 3.18. Let g € H'"2((0,T), L2(Q5)4) N H((0, T), H (7)) such that g|2? =0and
g € L2((0,T), H**(f)). Then,

7l Clligl g, + 9l z20,1), 110 05)) )

HYS ((O,T),Hl(Qf))ﬂL2((0,T),H3+Z(Qf)) ((0,1),L2(25)%)

Moreover we have

IVl g, $ob () CUlellres o0y, r200,00) T 192y mr4e(2p):
and
IVrmll g vese ) S CUlell et o0y, r200,y0) T 192,y mrrvecp)-
Proof. cf. [113, Lem. 4.2]. O

These lemmas yield the following result.
Lemma 3.19. Let g € Gr N HY((0,7), H (Q5)9), g € Gr, g(-,0) = 0, ¢(-,0) = 0 and
g|2}r = 0. Then, v € E7 and
IPYler +VEle: < C(gll
I(Z = P)vle: <C(lel

HH'? ((0.7),L2(25)%)) + ||g||GT)7

b oy T 19l me)
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Proof. Since m(-,0) = 0 the compatibility conditions are satisfied and Theorem can be
applied. The rest follows as in [I13, Lem. 4.3]. O

Now, having estimated all subsystems, we obtain the following theorem.

Theorem 3.20. Let d € {2,3}, Q; C R? be a domain with smooth boundary such that
an = Ff UT; and ff ﬂfi =0. Let £ € (%,1)7 f e Fr, he Hr and vq € HH—E(QJC,RQ]).
Let g € Gy N HY((0,T), H(Q)), g € Gr, g(-,0) = 0, g(-,0) = 0 and g|2}r = 0. Let the
compatibility conditions

div(vg) =0 in Qy,

vo(-) =0 onTYy,
h(-,0)=0 on I},
2ve(vo)ng -7 =0 on I},

for any unit vector 7 tangential to I'; be fulfilled. Then, the solution to system (|3.32)) satisfies

Ivller +1IVel . +plsr oy < C([fllrr + [bllay + [[Vollgi+e(a,)a

3(QT))d
+ lgller + lgller)-

Proof. This follows directly from the above considerations. The only thing that is left to be
shown is the estimate for p|sr, which follows from the trace inequality

Iplsrllizr < Cll e g,

O

Corollary 3.21. Let d € {2,3}, Q; C R? be a Lipschitz domain such that Q2 = I'yUT; and
LyNT; =0. Let £ € (3,1), f € Fr and h € Hy and v € H'™(Qy)9. Let the compatibility
conditions
div(vg) =0 in Qy,
VD(-,O) = Vo(') on Ff,
h(-,0)=0 onTy,

2ve(vo)ny -7 =0 on Ty,
for any unit vector 7 tangential to I'; be fulfilled. Then, the solution to system (|3.32)) satisfies

Ivlle, + Vol +lplsr [y < C(Eler + [l + Vol gi+ea,)a

("2 (@)
+lgllar + lgller).

where the constant C' is independent of T
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Proof. Let Ty > T'. Consider the systems

Ov1 — VAV +Vpr =f in Q?,
div(¥1) = g = div(g) in Q7,
¥1(,0) =0 in Qy, (3.37)
vi=0 onX%,
of(vi,p1)nf=h on X},
and
OVo — VAVy + Vp, =0 in Q?,
div(¥2) =0 in Q7,
\72(-,0) =V in Qf, (338)
Vvo=0 on X%,
of(Vo,p2)ny =0 on T
Due to the linearity of the Stokes equations, (V,p) = (V1,p1)+ (V2,p2). In system , the
temporal fractional order of the right hand side terms is smaller than 1 or in (3, 3) but Wlth

additional zero initial conditions. Note that p[r, .0y = 2ve(v(-,0))ny ny|r, +h( 0) - ny= O
due to [64, p. 242, (4.7)]). Property . 3| of the norm yields that Ext : Y§ T) =Y 7,.7) |

contlnuous with a continuity constant independent of T' for s € [0,3) \ {3}. Furthermore,
= Ext(v1) and p; = Ext(p;) solve

o1 —VvAVI +Vpr =f in Qp x (T —Ty,T),
div(vy) = g =div(g) in Qp x (T - Ty, T),

vi(T—Ty) =0 in Qy,
vi=0 onlyx (T —-TT),

Uf(Vl,ﬁl)nf =h onljx (T—Tf,T),

where h = Ext(h), f = Ext(f), g = Ext(g) and g = Ext(g). Applying Theorem yields

H‘_’lH(H2+e,1+g(QfX(T_Tf7T) + ”Vpl”(zﬂ 3 (Qp x (T—Ty,T)))4 + Hﬁlbz‘THH%"‘Z’%I'*‘%(FZ‘X(T—Tf,T))
+ llgll g H1+%((T—Tf,T),L2(Qf)d))' (3:39)

L?((T—Tf,TLHlH(Qf))mH% (T—Ty,T),H ()

C' is independent of T" but might depend on 7. Using interpolation and trace inequalities
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with constants that depend on T, not on T', || - || (r—1;.7). , can be replaced by

(H>15(Q) )

112
( H L2((T— TfyT),HQM(Qf)d)ﬂHH%((T Ty, 1),L%(025)9)
2
Il HHQ((T oy T e 2y e
2
M=z meops 1 Wi ses o i,

2
S B =3

N|=

HAT 2 (0T 1),L2(0) )N L2 (1T, D, HdHE)
(3.40)

Using properties [P4] and yields

Viller + VD1l + (11l

(HYS (7)) H3T0ET5(QT)

< C(lfller + Ihllay +llgller + lgllar)
with a constant C independent of T. Consider the system

O0:vo —VAVy +Vpa =0 in Qy x (0,T%),
div(ve) =0 in Qy x (0,T%),
Va(-,0) = v in Qy,
V2=0 onT;x (0,T}),
of(Vo,po)ny =0 onI'; x (0,7%)

for which we know with property [P5|that for R : H*((0,7%), X) — H*((0,T),X), R(v2) = V2
and R(p2) = pa, where (Vg, p2) is the solution of system (3.38)). Applying Theorem yields

+ IVl + el

v [ 1,,1,¢
|| 2||(H2+e’1+7(QfX(0,Tf)))d H§+f»2[+?(ri><(0,Tf))

< ClIvollar+e(ayya)

2(Qyx(0,Ty)))?

with a constant C' independent of T'. Thus, by property [P5], and due to the fact that we can
replace || - H(HQH'H%(Q]«X(O,TJ«)))d analogous to ([3.40)),

+ (D257l

92115 + V521 g g+ Woelsrlpynog o < Clvollamaape (34)

Combination of the estimates (3.39)) and (3.41) yields the assertion, since

Vler < Viller + 1Valler,
WBlsrll g vetrg ey S WPrlorll pregog oy +1B2lsrll pvegig or)

\Y% \Y% Vp .
1980 gy < 11 g o 19020 g
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3.3.3. Coupled System

The following theorem is a generalization of [113] Thm. 5.1] to a larger class of domains.
The proof is essentially the same.

Theorem 3.22. Let d =3, /¢ € (%, 1), € (0,1 =4), Ty >0and 0 <T < Ty. Assume that

e O=0;,UQ,UI; C R? is bounded and such that
— I'; denotes the interface between 2, and {2y, i.e. Ii=Q.n ﬁf.

— the solid domain € is a domain with boundary 9Q; = I'; UT's of class C*°, where
I'; denotes the outer boundary solid boundary and I'; N Ty = 0.

— the fluid domain Qy is a Lipschitz domain with boundary 0Q; = I'; UT'y, where
I'; denotes the outer boundary fluid boundary and ;N ff = 0.

The corresponding space-time-cylinders are denoted by Q? =Qr x (0,7),
QY = Qs x (0,T), X7 =Ty x (0,T), I :==T, x (0,T), 8 :=Ti x (0, 7).
e the initial conditions
vo € HH(Qp)? and wy € HitHP(Q,),

are chosen such that

diV(Vo) =0

and the compatibility conditions
V0|[‘f(') =0, volr, =wi|r,, 2ve(vo)ng-T7=0 only,

for any unit vector T tangential to I';.

e the right hand side terms
fcFr, heHy, gcGr, gcGrnHY(0,T),H Q)%
are chosen such that the compatibility conditions
g(1,0)0=0 and h(-,0)=0
and
g|z? =0

are satisfied.
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Then, the system

v —vAv+Vp=1F inQ7,
div(v) = g =div(g) in Q?,
v(-,0) =vo in Qy,
v=0 onX%,
v=0w onX/,
or(v,p)n; = os(w)ny +h on X7,
Ouw — div(os(w)) =0 in QT
w(-,0)=0 in €,
Ow(-,0) =wy in Q,

w=0 onXl,

admits a unique solution (v,p,w) € Ep x Pr x Wy and the states dependent continuously
on the initial data and the right hand sides

IViler +[Voler + llo(w)ngllay + |plsr ([ +[[wlwe

< Cs(lIvoll ey + [lwall o TlIEler +lgler

H%“'[‘Fﬁ(gs
+ llgller + [hlla),

for all 0 <T < T. The constant C's depends on T but is independent of T'.

Remark 3.23. One could question the usefulness of this result for practical situations,
especially in 3D, where fixing the solid structure leads to violation of the condition I';NTy = 0.
Therefore, a next step in the analysis of this problem might be the generalization of Theorem
(and also Theorem to a setting where this condition does not have to be fulfilled.
Further, one could also think about weakening the regularity assumptions on the domains
1y and €. It is also desirable to work with nonlinear elasticity. Using analgous techniques
as for the fluid equations, one would consider the appearing nonlinear terms as right hand
side terms, which, in general, contain the second order derivatives of the state w. Thus,
the regularity requirements of hyperbolic equations on the right hand sides prevent us from
performing fixed point arguments. To this end, more elaborate techniques have to be used
to work with nonlinear elasticity.

Proof. The proof corresponds to [I13 Proof of Thm. 5.1] and is included for the sake of
completeness. Let us denote

Hro={(€Hr : ((,0)=0onl} CHr
and equip the closed subspace Hr o with the norm of Hr. Moreover,

.A : HT,O — HT70, C — O'S(Wc)nf,
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denotes an affine mapping, where w¢ solves

T

Oiw — div(o in Q;,
w = / ve(s on X7,

on X1,

w(-jo) =0 inQ;,
8tW(',0) = Wi in QS,

and (v¢,pe) is the solution of the system

ov—vAv+Vp=1f in Q?,
div(v) = g =div(g) in Q?,
v(-,0) =vo in Qy,

v=0 onX%,

or(v,p)nf=¢+h onX].

This mapping is well defined, i.e. A(HT 0) C HTO In order to see this, choose ¢ € Hryp.
By Corollary we know that n(-,t) fO ve(-,s)ds for all t € (0,7) fulfills

n € H'((0,7), H¥*(T,)") N HiV2((0,7), LA(T)") N H¥2((0,7), H' (o)),
and thus,
n € HP((0,7), H* () 0 HT5((0,T), LA(1y))? 0 H=H42((0,T), H' ().
Since N}t=o = 0 and 9n|t=0 = vo|r, = W1|r,, by Assumption we obtain that
oy(weny € H3((0,T), H2H(T))%) 0 HiT2((0,T), L*(T:)%) € Hyy,
since we¢(-,0) = 0.
In order to show the assertion via a fixed point argument, we show that there exists a constant

C4 independent of T such that

IAC — Al < Callét — Gllur (3.42)

for all 1, ¢ € Hyyg, Hy = HO((0,T), HzT(T;)4) N HiT2((0,T), L*(T;)4). This is due to
Theorem which implies that there exists a constant C' > 0 such that

HVC1 - VCQHET < Cl¢1 — ¢lluy,
and, therefore, with ¢, () — 1, (-) := [, (Ve (s) — v, (s))ds,

HTIQ — T¢ HHl((O,T),H%+Z(Fi)d)ﬂH£+%((O,T),L2(Fi)d)ﬂH%+%((O T),H(;)?) C”Cl - CQHHT)
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and Assumption [3.13] Property [P6] of the norm implies that there exists a constant Cy

independent of T" such that || - [, < CuT?| - [|g, for o = min(1, ). Now, for small enough

T > 0 it can be seen that A is a contraction. Thus, there exists T > 0 and ¢y € Hp such
that A(Co) = ¢o. In order to obtain the global-in-time result we use a similar argumentation
as in [I07], Prop. 2.7]. Let Cy denote the constant in[P3|and Cr denote the constant in [P5]
Let w.l.o.g. 2T < Ty (otherwise choose T instead of 27") and CrCpCrCAT“ < 1. Consider

Hr) :={¢ €Hyr : C(-,t) = (ol t) for ae. t € (0,7)}.
Let ¢1,¢2 € Hp be arbitrarily chosen. Due to and there holds

€1 = G2, < Crll¢ — ¢l (3.43)

L2((T.2T), H3 (T )nH T8 (T,27),L2(Ty)4)’

Due to [P5] and

A — AG|| < Cr|lAG - AGllg,,, (344)

HB(T,2T),H3 (T )nH A5 (T,2T),L2(T;)d) —
since (A¢; — AC2)(-,t) = 0 for all t € (0,7). Thus, with (3-44), (3.42) and (3.43),

1AC — AG HL2 (T.2T), H 3+ (TN H S (T,2T),L2(T';)4)

= | A¢ — Aollm, < CHT*|AG — Alallg,

= CnT"|AG — AC2HH5 (T2T), H3 () nH T+ (T,2T),L2(T))
< CrCuT*||Aé — A,

< C4CRCHT®||C1 — Coll 1,z

< CpCaCrCuT|[ G — CQHLZ (T,2T),H3 () )nH T2 (T2T),L2(T)d)’

where ~(t) = -(t + T') for all t € (0,T) and the mapping is a contraction on the metric space
Hr 1. Recursively applying this argumentation yields the global-in-time result. O

3.4. Local-in-Time Existence and Regularity for Unsteady
Navier-Stokes-Lamé System

Following the argumentation of [I13] the result for the linear unsteady FSI system with
stationary interface that was analyzed above can be used as a basis for deriving local-in-time
existence and regularity results for the nonlinear unsteady Navier-Stokes-Lamé system with
moving interface in the fully Lagrangian setting. As already motivated in the introduction
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the system is given by

Oev — VAW + Vyp = F(¥,p) in QF,
divy(¥) = G(¥) = div,(&(¥)) in QF,
v(-,0) =vo in Qy,

v=0 onX7,

Vv=0Ww on¥%],

. . o o (3.45)
O'f,y( p)nf = Us,y(w)nf + H( 7p) on Ez )
W — div(osy(W)) =0 in Q7,
w(-,0)=0 in Q,
dew(-,0) =w; in Q,
w=0 on¥T,
with right hand side terms
) 9% . 0 o - d d?
F(v,p) = —Yrox=—V —Y;ox=—T"rox v
— VAV + (I - FY)V,p,
H(V,p) = —(DyVFy + Fp(Dy¥) ")cof (Fy )i + peof (Fy )i
+v(Dyv + (Dy{’)T)ﬁf — pnay,
G(¥) = divyv — det(Jx)Dyv : Fyp = Dyv : (I — det(Jx)FY), (3.46)
and transformation
t
f((-,t)]Qf Q= Qp(t), y— y—i—/o v(y,s)ds
with inverse Y. f‘x = Dyx = (Vyx)" is the Jacobian of x and Fy = f‘;l its inverse.

Additionally, g is defined by g(v) := (I — det(fx)f‘r)ff, such that divy(g(v)) = G(¥).
Since the following theorem is not only applied on the ALE reference domain €2 but also on
the shape reference domain €2 in Theorem it is formulated without superscripts.

Theorem 3.24. Let d =3, /¢ € (%, 1), 8 € (0,1 —¢) and Ty > 0. Assume that

e 0 =0Q,UQ;UTY;, as well as, vg, wi and vp fulfill the requirements of Lemma
and let Ko := Cs(||vollgi+eopya + [[will where Cg is the constant from

Lemma [3.22

e there exists 0 < T™ < T such that for all 0 < T" < T™ and for arbitrary My > Ko,
v,vhvZ e E71 rvy.v, and p,pt,p? € Pr rryvo the right hand side terms fulfill

H%+Z+[3 (Qs)d)7

F(v,p) e Fp, H(v,p)eHr, G(v)eGr, gv)eGrnN Hl((O,T),HZ(Qf)d).
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3.4. Local-in-Time Existence and Regularity for Unsteady Navier-Stokes-Lamé System

and there exist positive constants Ky, K, K, Kg that do not depend on T" such that

IF (Vs p)ller < Kpx(Mo),
IH(v, p) ey < Knx(Mo),

(3.47)
1G(V)ller < Kgx(Mo),
lg(v)llar < Kgx(Mo),
and
IF(v?p*) = F(vL oY)y < KT (Mo)([Iv? = vY{|e, + [IVD® = VD |[Fy),
IH(V?,p?) — HV pY) [y < KpT*x(Mo)(IIV* = v e, + Ip s — pPlsr l1y),
1G(v?) = G(v)llar < KTx(Mo)([[v? — v ||&y),
lg(v?) — g(vH)llar < KgTx(Mo)([|[v* = v'[|&,),
(3.48)

for some « > 0 and some polynomial x. Furthermore, the compatibility conditions
g(V)(-,O) =0 and H(va)('vo) =0

and

g(")‘z? =0

are satisfied.

Then, there exists T > 0 and 0 < My < oo such that the system

v —VvAv+Vp=F(v,p) in Q?,
div(v) = G(v) = div(g(v)) in Q,
v(-,0) =vo in Qy,
_ T
v=0 onXy,
= r
v=0w onbj, (3.49)
o(v Py = ou(wing + H(v,p) on =,
Onw — div(os(w)) =0 in QZ?
w(-,0)=0 in Q,,
ow(-,0) =wy in Qg,

w=0 onXxl

admits a unique solution

(V,p,W) € ET,MO,VO X PT,MO,VO X WT-
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Proof. This theorem corresponds to a large extent to [113, Theorem 2.1|, where the require-
ments (3.47) and (3.48) replace [113, Proposition 6.1]. For the sake of completeness, the
proof of this theorem is repeated at this point.

As a first step the system is reformulated as a fixed point system. To this end,
(v?,p% wY) is introduced as the solution of the system

vl —vAVO +VpY =0 in Q}:,
div(v’) =0 in Q?,

v0(-,0) =vq in Qy,
v0=0 on X7,
vl =9w® on X7,
ar(v?,p")ns = os(w')n; on 7,
duw? — div(os(w?)) =0 in QT
wl(-,0) =0 in Q,

Ow'(-,0) =w; in Q,

w=0 onXl,

that due to Lemma admits for 0 < T < T a solution that fulfills

IVller + VP ler + 19 s e + 1w llwr

< Cs(IVollirseqagys + 11l g sces g, 10) < Koo

where K¢ > 0 is a constant that does not depend on 7" but on T¢. The solution (v,p,w) of
the system (3.49) then fulfills v =u+v% p = ¢+ p® and w = z + w’, where (u, ¢,z) is the
solution to
ou—vAu+Vg=Fu+v’ g+p°) in Q?,
div(u) = G(u +v%) = div(g(u +v%)) in Q?,
u(-,O) =0 in Qf,
u=0 on X7,
u=0dz onX%;,
or(n,q)ny = o5(z)ny + H(u+ v’ qg+p") on =],
Ouz — div(os(z)) =0 in QT
z(-,0) =0 in Q,
8tz(-, 0) =0 in QS,
z=0 onXTl.

To prove the existence of solutions of the system (3.49) or the equivalent system (3.4)), the
method of successive approximations is used.
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Therefore, we show that there exists some My > K such that the mapping
M Er oo X Prsyve X Wr = ET g ve X Proaigve X Wr,  (u,¢,2) = (U, ¢,2),
is well-defined and a contraction with respect to the norm
(0, ¢, 2)[[Brx Prxwr = [luller + Valler + lalsr |l + 2w,

if we choose T' < Ty small enough. Here, (u, ¢,z) is defined as the solution of

du—vAu+Vg=Fu+v' qg+p°) in Q?,
div(u) = G(u +v%) = div(g(u +v°)) in Q?,
u(-,0)=0 inQy,

u=0 on X7,

u=0oz on E;fr,

op(u,q)ny = o4(z)ny + H(u + v q+p®) on X7,
z))

Onz — div(os(z)) =0 in QT
z(-,0) =0 in Q,

a(-0) =0 in Q,

z=0 on Xl

In order to show the contraction property we consider arbitrary

(ulvqlvzl)’ (u2,q2,z2) € E7 Movo X Provyve X Wr.

Due to Lemma and the inequalities (3.48]) we know that

”M(u27q2vz2) - M(ulaquzl)HETxPTXWT

< Cs(|F(®+v°,¢% +p°) = F(u' + V%, ¢" + p°) gy + llg(u® + v°) — g(u' + V)|,
+ 16 +v°) = Gu' +vO)|lap + [H@® + %, ¢% +p°) = H(a" +v°,¢" +p°)|u,)

< CsCTx(Mo)||(0? + v, ¢* +p°,0) — (u' +v°,¢" +p°,0) | BrxPrxcw s

< CsCT*x(Mo)||(u?,¢%,0) — (u',¢", 0) B xPrx Wi

where C' is a constant independent of T'. If we define K7 > 0 as the constant that bounds
[M(0,0,0)||Epx Prxwy < K1,
and choose My > K7, than T' can be chosen such that CsCT“y(My) < 1, as well as,

||M(u7q7Z)HET><PTXWT < HM(O’O’O)HETXPTXWT + CSCTQX(MO)H(ua q, O)HETXPTXWT
< Ki+ 3CSCTQX(MQ)MO < M
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3. Fluid-Structure Interaction

for any (u,q,2) € Er v X Provyve X Wr. Thus, M is a well-defined contraction and we
can apply the fixed point theorem of Banach in order to show existence and uniqueness of the
solution to the fixed point equation M(u, ¢,z) = (u,q,2) in E7 pr vo X Provgve X Wr. O

It can be show that the requirements on the right hand side terms are indeed fulfilled for
the choice ((3.46]) of the right hand side terms. The proof of this is postponed to Section
since it is a special case of Lemma

Corollary 3.25. Let d =3, ¢ € (3,1), € (0,1 —¢), Ty > 0 and 0 < T < Ty. Assume that
) Q:QfUQsUfi C R? such that
— f‘Z denotes the interface between QS and Qf, ie. E = (ATS N fo

— the solid domain Qs is a domain with boundary aQL: fij fs of class C*>°, where

f‘s denotes the outer boundary solid boundary and fl N fs = (.
— the fluid domain 7 is a Lipschitz domain with boundary BY) F= L, ul f, Where
I + denotes the outer boundary fluid boundary and D,Ne F=0.

e the initial conditions
Yo € HH Q)Y and Wy € H2tHA(Q,)?,

are chosen such that
div(vo) =0

and the compatibility conditions
Volp, () =0, Volg, = Wilp,  2v(e(Vo)ny) -7 =0 on Iy
are satisfied for any unit vector 7 tangential to I';.

Then, there exists 0 < Ty and 0 < My < oo such that the system (3.45) admits a unique
solution .
(V(7),0(T), W(T)) € Erasy,00 X Proagyo0 X Wr

forall 0 < T < Tp.

Proof. Follows from Theorem [3.24] and Lemma [£.5| for 7 = id,, i.e., u; = 0. O
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4. Theoretical Analysis of Shape
Optimization for Unsteady FSI

In this chapter, we apply the general framework for continuity and differentiability results
that was introduced in Section [2:4] to shape optimization for unsteady FSI. The method of
mappings, cf. Section is used in order to reformulate the shape optimization problem.
The main contribution are the differentiability results of the state of the unsteady FSI system
with respect to domain variations. This chapter has already been published in [59) Sec. 4.1].

In order to maintain the structure required to apply Theorem we have to ensure that
the source term of the transformed elasiticity equation remains 0. For this purpose, the set
of admissible transformations is chosen such that 7~'|Q =id, for all 7 € Tad, ie. 1~17-|Q =0

for all i, € U,y The transformation of the Navier-Stokes-Lamé system ) from the
reference domain €2 to the shape reference domain ) via 7 yields the followmg system

(4.1)

where

- . . . . . . 1 . .
0f2(V,D) =206 (V) =PI,  05,(W) 1= Mr(e(W))I 4+ 2ue, (W), €(W) = §(DZW + (D, W)T),
Vg = Vg oT, Wi = wj o7 and the nonlinear terms .7:', G and H are defined by

F@,5,07) =1 (B, Ti 0 X ) (O, (F 7)1 0 7)0 ¥

4.k,

+ 1) (O 0T, Yi) © X ) (Byuy, (F 1)1 0 7)0, ¥
ik, j

+v ) Zé‘x Y30 i) 0 %r) By (F~ )18y, (F 7~ )m) © F)0apa, ¥ — VA, ¥
ik,l,m
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4. Theoretical Analysis of Shape Optimization for Unsteady FSI

+ (@ —-Fp((Dy7 )T 0 7))V, 5,
H(V,p,0,) = (D, V(D7) 'Fy + Fr(D, 7) T D,v") cof (Fy) cof (D, 7)iny
+ (D, + (D, %) )iy — (I — cof (Fy ) cof (D, 7))iry,
G(v,1,) = D, v : (I — det(D, 7)det(Fy )Fr (D, 7)~7) = D, ¥ : (I — cof (Fy) cof (D, 7)),

where

F=id,+1,, Xr=xo07 Fy=Fyo07, Fy=Fyor (4.2)
and thus Fy(z,t) := I+ [ D, V(z,5)(D, 7(2)) " ds.

~ T
Moreover, the function g(v,@,) = (I — cof(D, 7) "cof (Fy) )V satisfies

div, (g(v,1,)) = G(v, a,).

Assumption 4.1. Let d = 3, £ € (%,1), B e (0,1 —4), Ty >0and 0 <T < Ty. Assume
that

) Q:QfUQSUfiC]Rd such that

— f‘i denotes the interface between QS and Qf, ie. I'; = fTs N

— {Qr‘
e

s of clagss C*°, where
0.
r= I; Uf‘f, where

— the solid domain QS is a domain with boundary E)Qsj f‘i U

f‘s denotes the outer boundary solid boundary and fi N 1?3

ol

— the fluid domain ¢ is a Lipschitz domain with boundary 0

r t denotes the outer boundary fluid boundary and E nr F=0.
e the initial conditions
Yo € H(Qp)? and Wy € HatH0(Q,)4,

are chosen such that
div(vp) =0

and the compatibility conditions

Volp, () =0, Volp, = Wil 2v(e(Vo)ns) -7 =0 on I,

are satisfied for any unit vector 7 tangential to I';.

Let
U :={i, € H*"(Q)? : supp(@t;) Nsupp(¥o) = 0, u.|g =0},
which is a closed linear subspace of H*+(Q)¢, be endowed with the norm

Il = - g2 vegiya-
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Furthermore, let oy > ||I|] HI+(Q )dxd- We consider solutions of the FSI problem for trans-

formations id, + u,; induced by displacements u, € V, where

V= {u, € U :id, 4+ @, can be extended to an orientation-preserving C'-diffeomorphism
Fpa : R? — RY with 7pa —id, € H*T/(R%)?,
HDZ (1dz + ﬁT)HHlJrZ(Qf)dxd < aq, H(DZ (ldz + ﬁ7’)>_lHH1+£(Qf)d><d < Ckl},

} 3 . (4.3)
which by Lemma is an open subset of U. In particular, if U,y C V, then our results will
hold at any admissible design displacement. Alternatively, the current design of the ALE
domain could be viewed as the reference shape domain, making it correspond to i, = 0, and

our results then can be applied to study continuity and differentiability w.r.t. variations of
this domain.

Remark 4.2. (|59, Remark 3|)

1. In [67, Thm. 4.1] it is shown that C!-diffeomorphisms map bounded Lipschitz domains
to bounded Lipschitz domains. Therefore, for all a, € V, (id, + 4;)(€2) is a bounded
Lipschitz domain.

2. The requirements on the R%-extended transformations in the definition of the set on
the right hand side of allow to apply [73, Lem. B.5, B.6] showing that they map
H*(RY)-functions to H*(R%)-functions for all 0 < s < 2+ £. Furthermore, by [73, Cor.
2.1|, there exist constants M > 0 and w > 0 such that

| D, 7~'RdHLoo(Rd)dxd <M, |(D, %Rd)iluLoo(Rd)dxd < M,

inf det(D, Fza(2)) > w. (4.4)
zeR4

Lemma 4.3. ([59, Lem. 8]) For any u, € V there exists p = p(i1,) > 0 such that ¥, € V
holds for all v, € U, ||V, —u,||g < p.

Proof. Let u, € V be arbitrary and set ¥ = id, + a,. For v, € V we use the notation
Ty = id, + v,. It has to be verified that there exists p > 0 such that for all v, € V with
[V — Gr|lg < p the following holds: 7, can be extended to an orientation-preserving C-
diffeomorphism 7, ga of R? satisfying 7, ga — id, € H*T(R%)?, || D, 7-vHH1+L’(Qf)d><d < o,
and [|(D, %v)flquﬂ(Qf)dxd < 0.

The set Qg := 7(Q) is a bounded Lipschitz domain by the definition of V and Remark
. Using, e.g., [123, Thm. 5, p. 181] combined with interpolation, there exists a bounded
linear extension operator H?T¢(Qg.)? — H* (R4,

Moreover, the embeddings H>+(Qg.)¢ € W®(Qg.)? and H2T{(RY)? ¢ WHo(RY)? are
continuous.

Now @, € V implies HDz%Hle(Qf)dxd =: o) < «a;. Hence, we obtain as required
”Dz 7~'v||H1+£(Qf)d><d < ||Dz %‘|H1+Z(Qf)d><d + ||Dz (‘77— - ﬁr)”HlthZ(Qf)dxd < 0/1 +p < o for
p sufficiently small.
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4. Theoretical Analysis of Shape Optimization for Unsteady FSI

Denote by 7ga € H?T(RY)? the orientation-preserving C'-diffeomorphism that extends
7. Then, by part 2 of Remark [£.2] there exist constants M > 0 and w > 0 such that
holds. With the extension operator we obtain h, € H*t¢(R%)¢ with h:|g =V, — 1,
HhT”H2+Z(Rd)d < CH\N’T — ﬁTHH2+4(Q)d7 and HhTHWl,oo(Rd)d < C||\~/'7— — ﬁ7—||H2+g(Q)d. Setting
Ty rd = Tgd + hr, there holds 7, galg = 7o and 7, ga — id; = (Fga — id;) + h, € H*H(R?)%.
By a Sobolev embedding we obtain also that 7, ga is ct.

Since Wh*°(R%) and C%1(R?), are equal with equivalent norms, see [61, Thm. 4.1, Rem.
4.2], there there exists ¢ > 0 such that any f € W1 (R9) has a Lipschitz continuous
representative with modulus < ¢/[| f|lyy1,00 (raya-

We now show that 7, pa : R? — RY is bijective. In fact for any fixed 2/ € R%, the equation
T, rd(z) = 2 can be written as

z=7,,(Z —h(2) = A(Z;2).

For sufficiently small p, the map A(Z’;-) is a contraction since, for any z1,zo € R?, by using

(#-4)

|75 (@ — he(z1)) — F5b (2 = Be(z2))l] < ¢ (D o)™ oo retyasallbr(21) — b (22)]
< MY, [y rayallzr — 22l < CMEpllzy — 22

Hence, by the Banach fixed point theorem, if p is sufficiently small, then for any z € R¢
there exists a unique z € R? with 7, ga(z) = 7',
We show next that 7 5, is C*'. From ({4.4) and [hr[lyy1.00(aya < Cp we obtain a constant
C’ > 0 with
infd det(D, T, ga(z)) > w — ||det(D, T, ga) — det(Dz Tra)|| oo (ra)
ZER > 5
> w— C/HDZ %U,Rd - Dz ’7~'Rd||Loc(Rd)d><d
Z w — CthTHWl,oo(Rd)d Z w — Cclp.

Hence, for p > 0 small enough we obtain det(D; 7, ga(z)) > w/2 for all z € R? and thus
%;Ilw is C! by the inverse function theorem.

We have shown that for p > 0 small enough it holds that det(D, T, gs) > w/2. Now
(D, 7,)" ! = 1/det(D, 7, )cof (D, 7,) .

Since by Lemma products of functions in H'+/(Q;) are again in H'**(Q;), we have
det(D, 7), cof (D, 7,) € H'*(Q;) and since det(D, 7,) > w/2 > 0 by [I16, pp. 336 and
297] also 1/det(D, 7,) € H'**(Qy). Hence, (D, 7,)"" € H Q)™ for ||V, — - ||¢g < p-

Finally, with a constant C’ > 0 we obtain

(D, i—v)_l — (D, 7~')_1 ||H1+£(Qf)dxd
= (D2 70) M (Do T = Dy 70) (D 7)™ ey o
< Oz 7o) Meayyaxall (D F) ™ ey yasall De (77 = o)l pgrsaqy yana

< O‘IC/(H(DZ 7~'v)_l — (D, %)_IHHHE(Qf)dxd + a1)p,
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from which [|(D, %v)*lﬂHlH(Qf)dxd < aq follows if p is chosen sufficiently small.

O
Let with p = p(0) according to Lemma
V,={t, €V : |ilg < p} (4.5)

Then Vp is by Lemma an open subset of U and we will study the differentiability of the
solution of on Vp at ur = 0.

The choice of the space of admissible transformations restricts the shape optimization to
the optimal design of the fluid domain, but keeps the interface in the Lagrangian frame fixed.
The boundedness properties of V allow us to establish estimates of the right hand sides in
(4.1). The following Lemma is a helpful tool that takes the special structure of the right
hand side terms into account.

Since z = 7 1(7(2)), it follows that I = (D, ¥ ! o ¥)D, ¥ and
Dy to7 = (D, 7). (4.6)
Furthermore, for arbitrary invertible matrices A, B € R4*? one has

A7'-B'=B'(B-A)A,
A7'-B'-B!'B-AB'=B ' B-A)A'-B
=B !B-AB (B-A)AL (4.7)

Let ul ¢ V , then 7 :=id, + a’, i = 1,2, satisfy by Lemma (4.7) and the definition of

(D2 7)™ = (D2 7)Moy yaxa < CITH = 2l e e = Clag = 87l avey, oo
”(Dz %1)_1 - (Dz %2)_1 + (Dz 7~'2)_1(Dz 7~'1 - DZ 7~'2)(Dz 7-2)_1HH1+€(Qf)d><d (4.8)
< CHﬁi ﬁr”?{%é(@f)d'

We define analogously to f‘x in (4.2])

~ . ~ . . . t . .
Fl(z,t) = F(z,t;v',0;) =1 —i—/o D,v'(z,5)(D, 7%(2)) ! ds, i € {1,2}. (4.9)

Lemma 4.4. (|59, Lemma 12]) Let Assumption [4.1] be satisfied. Let My > 0, o € (0,1) and
a1 > 0. Then, there exists T, > 0 such that f‘x(-,t) is invertible, and det(f‘x(~,t)) > « for
all t € (0,T,) and for all @i, € V and ¥ € Eq g5, In addition, for each of the following
terms, there exists a constant C' > 0 independent of 1" such that for all 0 < T < T,
v, v, %2 € Erasy.00, Ur, 0k, 02 € V we have

L a) By ey, [Fyls, < C(1+ M),

79



4. Theoretical Analysis of Shape Optimization for Unsteady FSI

80

¢) The mapping ET,MO,% X \7,3 — STv (v,

b) [[F3 = Fills, < ClIV? = ¥ig, + C(1+ Mo)l[a? — 0zl ya1e(q e

¢) The mapping Er, My, 5o ¥ v, - Sy, (V,0,) — ﬁx is Fréchet differentiable on the

relative interior of Et p,,5, X V.

a) cof(f‘x) € ST, Hcof( Hs < C(1 3)
b) flcof (F2) — cof (FL)llg < C(1+ Mo) (¥~ 9|, + (1+ M) 62 — G rave(q o)

¢) The mapping E7 /.4 X V, - §T,~ (v,0a,) — cof (ﬁx) is Fréchet differentiable on

the relative interior of E7 ap v, X V.

a) det(Fy) € S, [|det(Fy)l|g, < C(1+ M§),
b) ||det(F2) — det(F1)||§

< C(1L+ M9 = ¥, + (1+ Mo)[[62 = & 2 0):

¢) The mapping E1 a4, X Vv, - STL(\NI, ;) — det(ﬁx) is Fréchet differentiable on

the relative interior of E7 ap v, X V.

a) (det(Fy)) ™ € Sz, [[(det(Fy)) |5, < C(1+ M?),

b) [[(det(F%)) ! — (det(F3) I3,

< OO+ MP(I¥ = ¥ lg, + (14 Mo) 6 = &l gaveq o)

ur) — (det(l‘NﬂX))_1 is Fréchet differentiable
on the relative interior of E7 ap v, X V.

a) Fy € Sy, [Frlg, < CO+ M),

b) [IF% — Fillg,

< C(1+ MD)(|? = g, + (L MO)[[02 = 07 y2rer, )

¢) The mapping ET,MQ,OO X Vp —>~ST, (v,u;) — F is Fréchet differentiable on the

relative interior of E1 a5, X V.

a) Fr(Fr)" € Sy, [[Fr(Fy)"|lg, < C(1+ M),

b) [IF%(FY)" — Fy(FY) s,

< C(1 + M5 (|92 — VIHE + (1 + Mo)||az - ﬁi”mw(ﬁf)d)’

¢) The mapping ET7 Mo, %o X YP — S, (v, ;) = F~ (F~)7 is Fréchet differentiable

on the relative interior of Er az, ¢, X V

a) (8Xj6XkT) oXr € Hl((OaT)ng(Qf)d)v

||(8X]axk‘r) o SCT”Hl((O,TLHZ(Qf)d) S C(l + M070)7

) S N
b) [[(Ox; 05, L™ = Oy; 04, X )OXT”Hl OT)HZ(Qf))

< C’(1+M105) HV _VIHET (1—|-M0 a2 —uTHHere(Qf)d),



¢) The mapping ET7MO7\~’0 x VP - Hl((oa 1), HE(Qf)d)7 (v, 0r) = (axjaka> oXr is
Fréchet differentiable on the relative interior of ET7 Mo, X \~/'p.

Proof. In order to show the existence of the required T, > 0 we consider

~ t

Fy —I= / D,¥(z,s)(D,7(z)) "1 ds

0
and estimate with Lemma 2.5
_ t
||Fx('>t) - I||H1+e 0, )dxd <Caq HDZ ‘7('75)HH1+Z Q,)dxd ds.
(€2) 0 ()

Thus, since H' ()44 C(ﬁf)dXd, we have

Iy — 1, < CT2ay My

(@)dxd

for a constant C' independent of T'. Since det(f‘x(', 0)) = det(I) = 1, we can find T}, such that
f‘x(-,t) is invertible and det(f‘x(‘, t)) > aforall t € [0,T,], all i, € V, and all ¥ € Er 1, 5,-

Now, let 0 < T' < T,,. Consider the multilinear form m(x1,...,z;) =x1- ... -x for k € N,
which is by Lemma continuous as a mapping

L2(Qp) x H(Qp) x - x H(Qp) = L2(Qy)
and as a mapping
H1+Z(Qf) X HH—Z(Qf) X oo X HH—E(Qf) — HH_Z(Q]@).

The terms we have to estimate are obtained by inserting operators 7; : Er xV = S’T,
(v,a,) = T;(v,0,) in the multilinear form. If they are bounded, continuous and Fréchet
differentiable for 1 < j < k and arbitrary (v, a,) € ET,MO,% X Vp, we can use Lemmamm
show the claims of the lemma. If we have to estimate vector or matrix valued quantities, we
use the argumentation for every component. In the following, C' denotes a generic constant
independent of T

1. Consider Fy, — I = m(T1(¥,1,), T2(V, @1,)) with

t
T1(¥, 1y) :/ D, v(s)ds and To(v,u,) = (D, 7)~L.
0

We have ||T1(\7,f17-)|\sT < C(1 + [[vlg,), since [[Ti(v,0:)(0)|[g1+e(qpaxa = 0 and
||8t 7’1(\7,117-)(0)”[/2((2)@@ = HDZ \70||L2(Q)d><d, as well as, with ,

~ ~ 1 ~ 1. .
| T1(v, uT)(',t)HHl—Q-Z(Qf)dxd < Tz2||D, V||L2((O,T)7H1+£(Qf)d><d) <T>2 HVHET’

10 To (¥, W)l 20,7y i@y ity = I P2 ¥l g2y, mrrveipyaxy < IV,
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82

4.

10: T1.(¥, a7 )|

S ”{’”H%+%((O,T),Hl(Qf)dXd) S ”{,”ET7

) = ||DZVHH

£ A 5 ?
HETE((0.1),12(0) 10 EE ()20 )

for almost every t € (0,7) due to the definition of || - ||z . Boundedness follows with
property [P1]of the norm. Fréchet differentiability and continuity now follow by linearity
of 71 and due to

(Ti(¥%,a2) — Ti(¥1,ab)(0) = & (Ti(¥%, &%) — Ti(¥',al))(0) = 0

for all (v,u,) € ET,MO,% x V. Note that T2(v, ;) is independent of v and depends lin-
early on (D, 7)~! with || 72(¥, ur)llg, < Cll(D, 7’)_1‘|H1+£(Qf)dxd. Hence, boundedness,

continuity and differentiability follow from the definition of V, (4.5) and (4.8)).

. Each component of the cofactor matrix cof(f‘x) can be written as a finite sum of

terms a - x1 - 9, where x1, o denote components of the matrix f‘x and a € {—1,1}.
Therefore, cof(Fy) is a sum of bilinear forms with factors 71(v,u,) := a(Fy);; and

To(Vv,0r) := (Fy)g, for 4,5, k,1 € {1,2,3}. Due to the estimates in 1.(a) we know that
1 7:(v.0r)|l5, < C(L+ M) for i € {1,2}, and, therefore, HCOf(Fx)HST < C(1+ M3).
L(b) yields [|7;(v?,02) = Ti(V!, 07) |5, < Cl¥* =¥ ||, +C(1+Mo)[[02 =0z || oy o
i € {1,2}. Therefore, the continuity estimate and Fréchet differentiability follow from
Lemma 2.13

Since det(f‘x) is a polynomial of degree 3 in the components of the matrix f‘x, the
assertions can be proved similar to 2.

a) Since det(f‘x) is a cubic polynomial in the components of f‘x and we know that

det(f‘x)(-,t) > a > 0 for all t € [0,7,], the assertion follows from Lemma m,
2., which implies

I(det(Fx)) ™M lg, < C(1 + [|det(Fy)llg,) lldet(Fy) |, -
Now, 3.(a) implies that
1(det(Fx)) g, < O+ MG)' (1 + Mg) < C(1+ MP).
b) The difference
(det(F2)) " — (det(FL)) ™! = —(det(FL)) ! (det(F2)) ' (det(F%) — det(FL))

is a 3-linear form with factors 73 (¥, -) == (det(FL)) !, T2(¥,r) == (det(F2))~!
and T3(v,0;) := —(det(ﬁi) - det(f‘%{)). Lemma [2.14] 1. now yields

(et (F5)) ™" = (det(F3)) I3,
< CJl(det(FY) g, I(det(Fy) " [15, ldet (FS) — det(F})|l3,



The estimates 3.(b) and 4.(a) now imply
I(det(F3)) ™" — (det(F3) g,
< C(1+ M)(1+ Mg®)(1+ Mg)(||[v* = ¥
+(1+ Mo)Hfﬁ - ﬁiHH%é(Qf)d)-

Er

c¢) Let (V,1,) € Erape, X V, be arbitrary. Then by 2. and 4.(a) we have
det(Fy ) s < C(1+ M23) and ||cof(Fy)||ls < C(1+ MZ). Hence, Lemma

X Sr 0 x/ g, 0
2.14) yields B
IF5 s, = I (det(Fyx )~ cof (Fx)lls,

o > i (4.10)
< [[(det(Fy)) ™ g, [lcof (Fy)llg - < C(1 + M?).

Now det(]?‘x)_1 = det(f‘;‘l), thus it suffices by 1., 3. and the chain rule to show
that (Vv!, @) € Eras.90 XV, (f‘;)_l € Sy is Fréchet differentiable at (v!, al).
This follows from (4.7)), (4.10) and Lemma m, since with A = f‘%(

-1 =—1 =
[A™ —F, —F

1(1?‘94 - A)f‘;”ST = ||f‘>_(1(f‘x - A)f‘;cl(f‘x - A)A‘lllsT
< O+ MP)’||[Fx — Allg, .
St
which yields with 1. the Fréchet differentiability.

~ ~ ~ ~ T
5. Since Fy = (Fy )™t = (det(Fy)) tcof(Fy) , we can prove the result via multilinear

forms and use Lemma 1. .
6. Again, the assertions can be shown via multilinear forms.
7. From 5(.,.*1 o X+ = id,, it follows that
I=D, (X "oXr) = DuXr ' o Xr Dz Xr-
Therefore, since D, x+ = INT‘XDZ T, we have
Dyxr ' oxr = (FyD,7)"' = D, # 'Fr. (4.11)

-1

x k= (axk'fz) o X, which implies

Furthermore, we have (ﬁ“r)l,k = (f‘
(Fx)ie = (0, T1) 0 X (4.12)
Thus, (0, axk'i‘l) o X7 = Ox; (ﬁ-r ) XT_I)l,k? o X+ and with we obtain
Ox; (Fy o X+ )ik o Xr = Z(asz‘r)z,kaxj (Xr Dm0 Xr

m
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= (O Fr)i (D2 7 i(Fr)i

m,t

and each summand is the composition of a multilinear form m(x1, x2, x3) = x1 - x2 - x3,
which is by Lemma continuous as a mapping

HY(Qp) x HF(Qp) x - x H(Qp) — HY(Sy)
with an operator
Erawe x V= H'((0,7), H (Qy)) x H'((0,T), H'*(€)) x H'((0,T), H™* (%))

that by (4.8), ~and 5. is bounded and continuous on ENDT’ Mo.vo X Vp as well as Fréchet
differentiable on E7 g, v, X V,. Now, we can apply Lemma to conclude the proof.

O]

With the above Lemmas the required right hand side estimates can be established.

Lemma 4.5. (|59, Lemma 13]) Let Assumption be satisfied. Let Tr > 0 and p = p(0)
be given by Lemma Then, there exist 0 < T* < T, a1 > 0, as well as, for each of the
following terms, a constant C' > 0 independent of 7' but dependent on Tf and a polynomial
x such that forall 0 < T < T* 0 < My, v,v,v? € ETM(),V()7 p,pt,p? € PTMovo and
a,,ul,a2 ¢ V we have

F(v,p.u,) €Fr, H(V,pu,) € Hr, G(¥,4,)€Cr,
g(v,0,) € Gr N H'((0,T), H (Qy)%),

(V. 0-)|gr =0, E(F,,)(,0) =0, and H(¥,58)(-0) =0, (4.13)
as well as,
IF @585, < OxX(Mo)(T ™ +p), | HE 50 |lg, < Cx(Mo)(T' "+ p),
16, 1), < Cx(Mo)(T' " + p), IE(¥, )|, < Cx(Mo)(1 + p),
and
IFE2 5% 03) = FE 55w g,

(

<C M. Tl—é oLy v~2_v ~1 _ ~2  ~1 5

< Ox(Mo)(( +P)(HV Vg, + V2D 2D [lgp,) + 1107 =0zl i),
(

< CX(MO) (Tl_é + P)(HV - V1||ET +1P%l5r = Bllsr i) + 187 = 87l ave, o),

— G al)llg, < Ox(Mo)(T' + p)IIV? = ¥ I, + 1187 — 0pll osea, o)

—gwl a)lg, < OXMO)(TH 5+ p)I7 — ¥ lg, + 182 = @kl rare gy, ).
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and

F: ET7M0790 X PT7M07\~’0 X Vp — FT, H: ET7M07\~’0 X PT7M07\~’0 X Vp — HT,
g

ET,M@,VO X Vp — GT, g : ET,MO,VO X Vp — GT

are Fréchet differentiable on the relative interior of ET7 Mo, X ]5T7 Mo, o X \~/'p and ]:]T7 Mo, 5o X
V,, respectively.

Proof. The compatibility conditions (4.13)) are fulfilled, due to the choice of V, which ensures
that supp . Nsupp vo = @ and therefore H(v,p,u,)(-,0) = 0 and g(v,u,)(-,0) = 0. The
boundary condition on Z‘;‘C ensures that g(v, uT)|ET — 0. The right hand side terms F, H,

Q and g are sums of multilinear forms as 1ntroduced in Lemma“ and - In Lemma
boundedness, continuity and Fréchet differentiability of the corresponding factors are shown.

Thus, it suffices to establish an appropriate boundedness estimate such that the product of the
appearing Mj; in Lemma [2.12| have the structure C'(T + ||ﬁT||H2+f(Qf)d) for a suitable a > 0

and C which is independent of T. The explicit time dependency is obtained by using the
extension and restriction properties and [P5| of the norm and by using [P6] The time
dependency for the corresponding constants M;; and M; o follows with similar arguments.
The desired continuity estimates, as well as, Fréchet differentiability can be deduced from

Lemma if (4.6 and thus

(8, Dy 7)o F = (0,(Dy 77 =D) o F =Y 8, (D7) = 1)(9y, 7)) o 7,

are kept in mind, which by Lemma and the definition of V implies

H(ayiDy%_l)o%HHé Q) > < Cl(D.7)” 1”Hl+£(Q (D7)~ _IHHlJrf( RS Con(1+ ay).
(4.14)

Moreover, since for arbitrary matrices A, B € R%*? the cofactor-matrix is a polynomial of
degree d — 1 in every entry, we have that

cof (A) — cof(B) < ZX” (A,B)(A —B);;,

7]

where x; ; is a polynomial of degree d — 2 in the entries of A and B for 1 <4, < 3. Thus,
lleof (A) — cof (B) | grse(ayaxa < CUANG Y qpaxa + Bl e qpaxa) [A = Bl gisegyaxe,
and for wi,, 0!, 2 € V we have

|cof (D, 7~')HH1+£(Qf)dxd <C (4.15)
[|cof (D, 7') — cof (D, +2)\|H1+Z(Qf)dxd < Cad?| 7 - %2\|H2H(Qf)d

< Caf?||u; - 03| oo ya- (4.16)
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We show boundedness of F , 7:1, G and g. In order to obtain the estimates we have to split
the terms such that the initial values of selected factors vanish at t = 0. To this end, we
decompose

f(V,p,uT) = 1(‘7 u )+F2(V uT) +]:3(V u’T) +]:4( )+~7_—5(‘77ﬁa ﬁT) +F6(V>pa uT)v

ﬁl (‘77 ﬁT) Z(aXJXJ Tk o XT)(a (Tﬁ )l o %)821‘77
j k.l

]:_2({’7{17') = VZ((Z ax T, 8X7Tk —0; k) Xr )(a}’i)’k (7:71)1 o 7:)821{’7
ikl

<.

]:3(‘77 Z Z anYiaxj Yk‘ - 51,16) © XT)((aYk (%71)18 i(i-il)m) © 7~-)aZzZm{f’
ikl

Fa(@, ) = v Z(aykykﬁ*l)z 070V + 1Y ((By, (F 10y, (F i) 0 7 = Om) Oz, ¥

Hi(V,0,) = —vD, v(D, 7) F(cof (Fy) — I) cof (D, ¥)iy,
Ho(V,0,) = —vFr (D7)~ D, v (cof (Fy) — I) cof (D, 7)iay,
H3(V,0,) = —vD, v(D, 7) " (Fy — I)cof (D, 7)nrs,
Ha(v,0,) = —v(Fyr — 1) (D, 7)" "D, v" cof (D, 7)ny,
Hs(¥,0,) = —vD,¥(D, 7) " (cof (D, 7) — T)iay,

He(V,0,) = (D, 7)" " D, %" (cof (D, 7) — D)iay,

He(¥,8,) = —vD,¥((D, 7)' - I)nf,
Hg(V,d,) = —v((D,7)" " —1)D, v qy,
Ho(¥,p,0,) = —p(I — cof (Fy,)) cof (D, F)iy,

Hao(p, ir) = —p(I — cof (D, 7)1,
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Since the ideas for the estimates for the different summands of F, H, G and g are similar
we just present the proofs for Fo, Fs, Hi1, G and g1. Let C denote a generic constant
independent of T'. In the following argumentation we frequently use Lemma in order to
ensure that Xi,..., X} are chosen such that multilinear forms m(zy,...,z5) ;=1 ...z}
fulfill the requirements of Lemma . The notation S;, M;, M; 1, M;o, s; fori e {1,...,k}
is defined by Lemma [2.12]

e Estimation of g1 (v, a,):

To apply Lemma [2.12| we use property which implies

1A 12
|| ”G || ||L2((OT) L2( Q ) + ||at ||H%((O,T),L2(Qf)d)7

and estimate g1(v,0,) and 0:g1(V, Q) separately.
1. g1(v,0,) is a multilinear form with factors
Ti(v,0,) = v, Ta(¥,0,) = I—cof (Fy) ", T3(v,10,) = cof (D, 7).

With Lemma s=s5=0,80="_s3=1 X = L2(Qp)?, X1 = H>H(Qp)?,
Xy = HYWE(Q )™ Xy = HIT(Qp)94, we obtain

181 (%, )l 22((0,7), 220 )2) < CMo(1+ Mo)T' ",

since by (4.15) and Lemmas
IT:(v:0r)llsy < [[¥llg, < Mo,
1T2(%. ) s, < CT' |1 = cof (Fo) |l 1 0.1y x) < CT' (1 + Mg)

~ o~ ~ 1
1T, w0 s, = (leof(Dz 7) %, + lcof(Dz 7) 220,11,
< Clleot(D, #)|x, < C.

" (4.17)

i.e., My = My, My = CT' (14 M2) and M3 = C in the notation of Lemmam
Using in addition gives
IT:(3%,02) = Ti¥ )15, < 192 = Vg,
I172(3%,82) = T2(¥', 8|5, < OT'*|lcof (F3) — cof (F}) |,
< CT (1 4+ M2 = 3, + (1 Mo)[82 — & 10, 0),
17532, 07) = T5(¥", 7)1 s,
< O||cof (D, 7%) — cof (D, 71) || x, < C|02 — ﬁ7l'”H2+1f(Qf)d'

Hence, Ml,l =1, M172 = 0, M271 = CTl_é(l + Mo), M272 = CTl_g(l + MQ)2,
M3z o =C, M3; =0 and Lemma yields for a polynomial

ﬁi) HL2((0,T),L2(Qf)d)
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< Ox(Mo)T'(IIV* = ¥l + 1187 — 0z aseq, o)

and Fréchet differentiability of 1(v,1,) : Ep x V. — L*((0,T),L*()¢) on
ET1M07‘~70 X Vp.

2. 0g1(Vv,1,) = —cof (D, 7) "0, cof(f‘x)Tf/ +cof (D, 7) T (I — cof(f‘X)T)at{f is a sum
of multilinear forms. We exemplarily estimate the first term. Here, 71(v,0;) = v,
Ta(¥,8,) = —0;cof(Fy) and T3(v,@,) = cof( #)T. Choose s = s, = g,
so =12+ s5=1 X =Xy = L2(Qp)?%, X1 = HIH’(Qf) , X3 = H'™W(Q)2
With Lemmas [4.4 we obtain

1T 805, < CUTEE )0 ey o + T3 51T (980 1,.) < C(L+ M),
172(%. 6)lls, < CITa(, @) (O)l]x, + T4 Ta(v, )

<C(1+ Mp),
[T3(v,0r)lls; < C,

T”'H%*%((o,m,m(@f)d)

(4.18)

where we use for the second term that 0 = 0 (f‘xf‘r) = O f‘xﬁ-r + f‘xﬁt f‘-r and
thus with (4.9)

B:(cof(Fy) ' )(0) = & (det(Fy)Fr)(0) = (8 det (Fy)Fry + det(Fy)d: F)(0)

— (tr(cof (Fy) 0:Fy)Fy — det(Fy)Fy D, ¥(D, 7)'Fy)(0)
= tr(D, Vo(D, 7) NI — D, vo(D, 7) !

Since (7;(v2?,02) — T;(v1,al))(0) = 0 for i € {1,2,3 }, analogous to (#.18), we
obtain with (4.16)

1T 62) — T ab) s, < OTH 5| T (9%, i2) - Ti@" 0l -
|7+, @) — To(3*, ab) s,
£ ~ ~1 ~
< OTH T ) = T 8,11 1,0
I73(5%, 82) — To(# ab)lls, < Cla2 — @ graveqgy o

Continuity and Fréchet differentiability follow now by Lemmas 2.12] [£.4] Finally,
g1(v,4,) € H'((0,T), H (Qy)%), since v € HY((0,T), H (Qs)?), # € H>*(Qf)? and
(I~ cof(Fy)) € H'((0,T), H' () >4).
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e Bound for || Fs(¥, 7, ur)g,

Fo(V,p,01;) is a multilinear form with factors
T1(%.5,0r) = Vo, To(¥,p,07) =1 (Dy 771) 07 =1— (D, 7)7"

due to (4.6) and T3(v,p,u,) = f‘;

L. Hﬁ(?({’aﬁa ﬁ‘r)HL2((0,T),H£(Qf)d)Z
Choose s = 51 = 0,80 = 1,83 = £, X = X1 = H'(Q)?, Xo = X3 = H'F(Q)?*4.
|T1(v,p,0:)|s, < My follows by (2.6). With (4.8) and Lemma we obtain

||75({/)]57 ﬁ’T)HSQ S C||ﬁT||H2+£(Qf)d S Cp (419)

since u, € Vp. F~(0) = I and Lemmas imply
IT5(¥, 5, r)llsy < CL+ T Fr |l o), x) < C(L+ M), (4.20)
With (4.8) and Lemma 4.4 we have

ITi(¥, 5%, 02) = i Y ab) s, < IV25° = Vb llp,
12,5, 63) = o' 5 ap) s, < OlI6? = @bl grseq, yaxas
T332, 5%, 62) — Ta(v, 5", 0l |5y < C(1+ M{OT(|9° = g,
+ (14 My)|[aF - ﬁiHHHé(Qf)d)-

Let s = 81 = ﬁ’ 8o = 1 83 =0 X=X = L2(Qf) Xo = X3 = HH_Z(Qf)dXd

With (| , , and Lemmas n - we obtain the same bounds as

before
Thus, with Lemma | Fs(¥V, p, ur)llg,. <C(1+ M%) p and

|1 F6(¥2, 5%, 02) — Fo(v', 5", al)|Ig,
< OX(Mo)(T 92 = Vg, + pIV2D” = Vai' |, + 82 - ﬁille@f)d),

where y is a polynomial.

As seen in the previous estimates, due to Lemma [2.12] the derivation of the continu-
ity estimates and Fréchet differentiability is straightforward if one knows how to show
boundedness of the multilinear forms. We thus only address boundedness in the fol-
lowing.
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e Bound for H]}2(‘7>‘~17)HFT:
Fo(¥,11,) is a sum of multilinear forms with factors
;) = vy, 0y, (7 1)o7,
T3(v,a,) = (Z(axj('f)i@xj(?)k) —8ik) o Xr
J

for i,k,l € {1,...,d} with T3(v,qa,)(0) =0.
L IF2 (8 0,1, 0
Boundedness continuity and Fréchet differentiability are obtained with Lemma
fors—sl—O so = 1, 83 = £, and X = H(Qp), X1 = HF(Qp)Y,
X2 HY(Qyp), X3 = H'*(Qy) and Lemmau By . P6| and - we obtain

1739, @) 55 < CT* | Ta(¥, @)l a1 (0.1, x3)
<CT"(1+|[Fx(Fx) g ) < CT (1 + M), (4.21)

(4.14) and Lemma imply || 72(v,0,)||s, < C and, with [P7]

71(v, uf)”H*l ((0,7),X1) < O”V”L2 ((0,T),H2+4(€15)d) < CM,.

Chooses-sl 5, 52 —1 53—€ X = L*(Qy)4, = HY(Qy)?, HZ(Qf)
X3 = HHE(Qf and use , - . . and Lemmas u . and
L4l

We obtain || (¥, i) |5, < CT¢(1 + M),

e Bound for ||7—~l1(\7,f17-)||ﬁT:

H,(¥, ;) is a multilinear form with factors

T5(v,0;) = veof (D, T)ny,

with 74(¥,1,)(0) = 0.

Due to Lemma on I';, which can locally be mapped to bounded open domains on
RI! Lemma can be applied. and boundedness of the trace operator yield

T30 80 e oy, 3+ yaxay < CUTi (V80 a1y, 16 @ yacay

for a € [0,1]\ {3}, j € {1,...,5}.
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1. HHl({’aﬁT)HLQ(((LT),H%"'Z(f‘i)d):
L
Choose s = 51 = 0, sp = s5 = 1, s3 = s, = £, and X = X5 = H2™(T;)?, and
Xy =Xy = X3 = X, = HaT{(T,)xe.

We have with ﬁ and the definition of V

1TV, 07)ls, < C||‘~’||L2((0,T),H2+E(Qf)d) < C'My,

H,TQ({’aﬁT)HSz < CH(DZ %)_l”HLH(Qf)dxd < Cal-
Lemma [2.70] and [4.4] imply

”75({,7117)“53 < C(Tl_er‘THHl((07T)7H1+é(Qf)d><d) + Hf‘T(O)”HLM(Qf)dxd)
< C(1+ M.

Moreover, (4.15)) yields [|75(v,u;)||s; < C||cof(D, 7~')||H1+g(§lf)dxd < C. Finally,
[P6] implies
|’7Zl(‘77 ﬁT)HS4 < CHCOf(FX) - IHHZ((O’T)’leLZ(Qf)dxd)
< CT'|cof (Fy) — Ul g1 0,y mve (62, yax0y < CT' (1 + Mg).

2 % 8 g 0.1y o g . ~
Let s =81 =83 =84 = 2+ % 55 =55 =1, X = L}(I)4, Xy = L}I;)¥,
Xo = X3 = X4 = HaH([)™9, X5 = HaT(T,)".
The estimates for ||72(V,0;)|ls, and || 75(V, ;)| s, are as above.
Since || D, - ’izTHH%IJ“%((O,T),LQ(I:‘i appears in the definition of || - || = we have

)dxd
I71(v,a;)]ls, < CMy. Lemmas and [4.4] yield

~

~ ~ 3_¢, =~ ~
173(v, ar)llsy < CT3 72 [Fx || g 0,0y, 1002 yaxty + IFx (O) | fr1segy,yaxa)
< O(1+ MP).

Lemma [2.10] and [P6] imply

~ o~ 3_2¢ = 3_2¢
172985, < CT3 5 leof (Fy) — Tl go.zy sty yoeny < CT 3 (14 M),

Hence, application of Lemma in both cases yields

IH1(¥,87) g, < CT' (1 + M§®).

e Estimation of G (v, 0i,):

G1(V, 1) is a sum of multilinear forms with factors

’Tl({hﬁT) = (Dz {’)i,j, 7’2(‘77{17') = (I - COf(f‘x))i,ka 7?3(‘7’{17') = (COf(Dz 7~'))k,j
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4. Theoretical Analysis of Shape Optimization for Unsteady FSI

with i, k,j € {1,...,d}.
LG 80l 2 02,1100
Choose s = S1 = O, SS9 = E, S§3 = 1, X = X1 = XQ = X3 = HI—M(QJC).
|77 (v, ﬁT)HL?((o,T),HlH(Qf)) §~C’H\7HET < CMy due to and ([2.6)), and with
(4.17) we obtain the bound ||G; (v, ﬁT)HLQ((O’T)’HlH(Qf)) < CTY*Mo(1 + M?).

2. ||g~1(‘77ﬁT)(‘N/7ﬁT)|’H%((OT) Hl(ﬁf)):
We choose s = 81 = £, 89 =0, s3 =1, X = X1 = H'(Qy), Xo = X3 = H(Qy).

. 7 and (2.6) yield ||71(v,u-)|ls, < CHVHHg (OT),H2(E)4) < CMyp. Thus, with
(4.17) and Lemmas [2.5) E - - we obtain

1G1(¥,a7)ll, 4 < OT'"™"Mo(1 + Mg).

HE ((0,T), HY(Sy)) —

O

Theorem 4.6. (|59, Theorem 3|) Let Assumption [4.1| be fulfilled. Then, there exist ¢ > 0,
T; > 0 and M; > 0 such that for all 0 < T' < 7; and for arbitrary u, € \751 the system
(.1) admits a unique solution y(u;) := (v(ur),p(ar), w(u,)) on the relative interior of
E7 90 X PT My, X WT The mappmg U, — y(0,) is continuous and Fréchet differentiable
on the interior of V, and, for h € U the derivative y(u;)h:= 6,y = (0nV, 0pD, Op W) is given
as the solution of the system

O OV — VAL OpV + V63D = (‘F(‘N’(ﬁT)aﬁ(ﬁT)a ﬁT) vORv
HF (@), (0r), 0r))ponp + (F((1r), Ju, B in QF,
div; (0pv) = (G(V(ﬁT), ur))vonv + (C;({/ )

U,),8r))u b in QF,
5 (-,0) =0 in Qy,
opv =0 on f)?

opv = O opw  on N7
012(0nV, 0hP)iis = 05 (54 Wiy + (H(V(Tr), (i), Ur) )y OV
+HHF (), (~ ), 7))p0np + (H(¥(8r), (i), Ur))u, b on 7,
Ot 0w — div, (052(0pW)) =0 in Qz,
0 on Xl
opw(-,0) =0, 9 dpw(-,0)=0 in Q.

Proof. In the notation of Theorem choose

y:({/,ﬁ,VNV), z =,
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Furthermore, let W := FT X I:IT X GT X GT X \70 X Wl, and
W Py x {he Ay : h(0) = 0} x Gr
x{g € G H((0,7), H'(Q)") : &lgr =0, (0) =0}
X {(\70,‘7\/1) S V(] X V~V1 : \~/0|f\f = O, div, (\Nlo) = 0, ‘70|f‘i = W1|fi,
2v(ez(Vo)) - 7 = 0 on I; for any unit vector T tangential to I';},

let p = p(0) be given by Lemma Lemma m defines the operator S and yields Ty > 0
and LS—C'S>OSuChthatS€£(WET><PT><WT) for 0 <T < T} and

1SFlly < Lsl fllw

for all f € W.

Theorem [3.24] and Lemma yield constants My > 0, Ty € (0,T%) and € = min(p, Tj)'
such that, for all 0 < T < Tj and z € V there exists a unique solution

1

B

Y0(2) € Er ayvo X Provg o0 X W,

which is a subset of the relative interior of ET, M50 X Pro, vy X VVT for M; > M.

11
Furthermore, Theorem [3.24] and Lemma yield T; € (0,Tp] and ¢ < min(p,T;* *) such

that for all z € Vel there exists a unique solution

Yi(2) € Ermy 50 X Prov,v9 X Wr

and the required boundedness, continuity and Fréchet differentiability results are fulfilled for
the choices Y = Ep My, vy X PTM x Wy and Z = Vq and 0 < T <1Tj.

Moreover, the proof of Theorem ﬂl implies that SF(y,z) € Y for (y,z) € Y x Z. Since
Yo(z ) e Ep M50 X Prov, e X W and the solution is unique, we have yo(2) = yi(z) for all
z € Z. Thus, y1(2) is in the relative interior of Y and Theorem can be applied. O

93






5. Numerical Simulation of Shape
Optimization for Unsteady FSI

In order to show the applicability of the method of mappings (cf. Section for FSI
problems we present numerical results (Section for this approach applied to the FSI
benchmark 2 (Sections 5.2, 5.3), cf. [125]. Details on the numerical realization can be
found in Sections [5.4] and [£.5

5.1. FSI Model for Numerical Simulations

We consider the model (1.2]), which was introduced in Section |1| and is fully described if the
ALE transformation % : Q x I — [J,e; Q(t) x {t} is defined.

5.1.1. ALE Transformation
There are several possibilities to choose the ALE transformation, e.g., using a fully Lagrangian
approach or extending the solid displacement to the fluid domain.

Fully Lagrangian Approach

For the theoretical analysis the fully Lagrangian approach is chosen, i.e., the reference domain
() is given by the initial domain €2(0) and the transformation is induced by the velocity field
v, ie.,

x(+t) :zy—i—/o v(-,s)ds

for all t € I. This has several advantages. On the one hand, the contributions of the
nonlinear term of the Navier-Stokes equations vanish on . Additionally, no deformation
variable on the fluid domain has to be introduced. However, it has drawbacks for numerical
simulations, e.g., vortices in the flow might lead to mesh degeneration even though no solid
displacement takes place. Therefore, we do not use the fully Lagrangian approach in the
numerical implementation and dwell on other extension techniques, which are presented
below.

Harmonic Extension

An approach to construct the ALE transformation is the extension of the solid displacement
W, to the fluid reference domain, denoted by w;. We define

)A((yft) =y+ wf(ya t)
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5. Numerical Simulation of Shape Optimization for Unsteady FSI

for every t € I. One choice is given by the harmonic extension which is defined by
—AnyZO OanXI,
szo on (ffDUffN)XI,
Wy =W, on fz x 1.

Numerical tests indicate that the harmonic extension is not robust if large mesh displacements
occur [128]. Thus, smoother extensions have to be found.

Biharmonic Extension

A biharmonic extension, cf. e.g., [56], of the solid displacement to the fluid domain is given
by
A?VAVf:O OanXI,
WfIO on (ffDUffN> x I,
vny-anO on (f‘fDUf‘fN) x I,
Wy =W, on f‘z x I,
Vny'anO OnfiXI.
For the solution of the discretized equations H 2(Q r)-conforming finite elements are needed.
However, these elements are not necessarily implemented in standard finite element toolboxes.
One way to circumvent this is the weak imposition of the continuity of normal derivates ac-
cross the finite element faces using a discontinuous Galerkin approach [49]. Another approach
is the consideration of a mixed formulation of the biharmonic equation
—Any:if on QfXI,
—OéAnyZO on QfXI,
szo on(f‘fDUffN) x 1,
Wp=wWs onlyxI,
Vny-anO On@QfXI,

where a > 0 is chosen arbitrarily, see [12§].

Remark 5.1. For numerical simulations, the extension has to be chosen sophisticatedly
because of the discretization of the domain and the necessity of avoiding mesh degeneration.
Therefore, it is an area of active research how to choose extensions that preserve mesh quality,
see, e.g., |10, 37]. In general, one can also construct extension operators by hand that are
not represented by (discretized) partial differential equations.
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5.1. IFF'SI Model for Numerical Simulations

5.1.2. Strong ALE Formulation

A full description of the FSI equations with mixed biharmonic extension of the solid defor-

mation to the fluid domain is given by

Txprocvs + Jxps (B (v — 0wy)) - V) )05
—divy(jx&ff‘;T) = jxpfAff on Qf x I,
divy (S F3'¥y) =0 on Qp x I,
Vp=vp onlypxI,
Jo;Fy hy=g; onlyyxI,
V¢(-,0) =V on Qf,
PsOVs — divy(jxo“sf‘;(—r) = psi's on ), x I,
psOiWs — ps¥s =0 on Oy x T,
Wy = WD onstxI,
JxosFy Ty =g, on Ty x I,
Ws(-,0) = Wos  on Q,
Vo(-,0) =w; on €,
~AyWwy=2; onQpxI,
—Ayz; =0 on Qfo,
wr=0 on (ffDUffN)xI,
Vywy-np =0 onaﬁfxl,

with additional coupling conditions

Ows =vs=v; onlyxI,
— Iy 6 F Thy = e Fy Thy on Dy x 1,

Wp=Wws onlyxI.

5.1.3. Weak ALE Formulation
We define the function spaces

V=V(Q)c{veH AR : VI, = Voh,

Vo= Vo(Q) c {veH (R : Vg, =0},

W =W(Q) c {we HY(Q,R?) : Wle oty = 00 Wl ) = Wap},
Wy =Wy (Q) C {w e H'(Q,RY) : Wlp oue,y = 05 Wlp, ) =0},

Zp=17Z;(Q) C H'(Qf,RY),
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5. Numerical Simulation of Shape Optimization for Unsteady FSI

= Z(Q) c H'(Q,RY),

P =P c {pe 2@y + [ piy=0),
Qf
P=PQ)c{pe L) : /Qﬁdy:()}.

In addition, let Ws q(I V) :={veL*IV) : Ot € LY(I,V*)}, where ¢ > 0 and V* denotes
the dual space of V. The weak formulation of (5.1]) is given by:
Find (v,p,W,z) € Wao(I, V) x L3(I, Py) x WQ 2([ W) x L3(I,Zy) such that ¥(-,0) = ¥y,
w(-,0) = Ww¢ and

(A, D, W, 2), (4°, 47, ", %)) = (Jps 0¥, 9",
Txpg (B (V= 06%)) - V)9, 9%) e+ (In& /5T D) = (&1,9")p,,
ff71/)v)ﬁf + (psatv ’¢ )A (JXUSF;(T7Dy¢U)QS - (g&,‘/)v)f‘sN
jxpsfSawv)Q + (Ps( W — ) d’w)Qs + aw(Dyiv Dy"pw)(}f + (DyW7Dy¢Z)Qf

for all (4, P P %) € Vi x Pf x Wy x Zf and a.e. t € I. Here, ay, > 0 is a small
constant. Since we want to work with functions defined on the whole domain, we consider
the modified weak formulation:

Find (v,p,W,2) € Wao(I,V) x L2(I, P) x Waa(I,W) x L*(I,Z) such that ¥(-,0) = Vo,
w(-,0) = wo and

(Aa(¥,p,W,2), (", 407 4", 7)) = (Jxps0e9,4")g,
+ prf<<f,;1<v—atvv>>-vy>v,u$ Jo, + (x6 B D)o = (87, 9")g,

( ;

— (xpstr, 00, + (000, 9")g, + (I Fx | Dyw» — (& %")g,, (5.2)
- ( xPs &"#v)A + (ps(Orw — V)a"/’w)” (D z Dy":b ) (DyVAV»Dy"ﬁZ)Q
- (ia"ﬁz){) + ap( yDs yw ) (divy(j ) W’)QJ, =0,

for all (1,5“, @Z;p, Q,Ew, 1,52) EVoxPxWyxZandae. tel. ayp > 0 denotes a small constant.
The corresponding formulatiAon on the space-time cylipder reads as follows:
Find (¥,p,W,2) € Was(I, V) x L2(I, P) x Was(I,W) x L?(I,Z) such that v(-,0) = ¥y,
w(-,0) = wo and
(Agr (V.5 W,2), (%47, 9, 9%)) = (Jxps0e9, %) o
(T (B (8 = 0e)) - V)99 ) gr + (T8 F T Dyt Ngr — (&7 %),
— (st B gr + (009, ") gr + (T F5 T D) gr — (&os D,
— (st 5 )gr + (0% = 9),67) g1 + aul(Dy, Dy gz + (Dy¥, Dyth*) g
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5.2. FSI benchmark 2

— (@) gr + ap(Tyh, Vyd?) gr + (divy (S F9).07) gr =0,
for all (&U’d;p’,lﬁw’,(ﬁz) S W2,2(Iav0) X Lz(la p) X W2,2(I7W0) X L2(I> Z)

Remark 5.2. Since the definition of V, on vector-valued functions and divy, on matrix-
valued functions is not uniform in the literature (which is the reason why we introduced the
operator Dy in the introduction, see Chapter |1f), we verify a well-known result for our specific
choice of these operators. More precisely, we derive the weak formulation of the vector-valued
divergence term. We have

/ U6 Fy Thyds, = / divy (JyFy'of9")dy
a0y Qf
and it holds that

divy (JyFy o] ) = Za Z &) = Za ; A

Z J 7]8Yz7vb] Z(dlvy(j _T "pg +Z xo'fF )Jiayi@b;}
J ,J
= Z (divy (Jx 6 B )4 + (Jyd By 1) s Dyt
J

Therefore, we obtain that

(diVy(jx&fF;( ) ¢v) ( xa'fF nfa¢v)an. - (jx&fF;TaDyT/’U)Qf-

5.2. FSI benchmark 2

To be able to validate our numerical implementation, we work on the FSI benchmark 2, which
was proposed in [I125]. This benchmark considers the coupling of the Navier-Stokes equations
and Saint Venant-Kirchhoff type material equations in a two-dimensional rectangular domain
of length I = 2.5 and height h = 0.41, the bottom left corner of which is located at the origin
(0,0)T. On the left boundary r #pi we have a parabolic inflow given by

orp((0.22)T.1) = {(32_;11—222(;1 —25)(1 —Tcos(gt)), 07 ift< 2.0,

(6vh~*z9(h — 22),0) otherwise,
with mean inflow velocity v. Moreover, no slip condition on the bottom and top I #Do, as well
as, do-nothing boundary conditions on the right boundary ffN, ie., gr = 0, are imposed.
In this pipe, there is a circular obstacle with radius » = 0.05 centered at (0.2,0.2) to which
an elastic beam of length 0.4 and width 0.02 is attached as illustrated in Figure The
boundary I, = Fch U Tspe of the obstacle with Fch =T,;N an and Tsp, = Fd N 0
serves as design boundary. More precisely, we want to optimize its shape such that the drag
is minimized. On I, homogeneous Dirichlet boundary conditions are imposed on the fluid
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5. Numerical Simulation of Shape Optimization for Unsteady FSI

r fDO

ffDi: ( pmmmemmnsn gffN

Figure 5.1.: Shape reference domain )

velocity and solid displacement. The initial conditions are set to 0. Thus, the fluid-structure
system is completely determined by the parameters ps = 1-10% A\, = 2-10°, g = 5 - 10°,
pr=1- 103, vp=1-: 1073, 5 =1 and ap =0y =1- 1079, Figure shows snapshots of the
simulation of the FSI benchmark 2. Details on the implementation are given in the following
sections.

5.3. Model of Shape Optimization Problem for FSI

In this section we model the shape optimization problem (Section [5.3.4)) for the unsteady,
nonlinear FSI system (/5.2)) via the method of mappings. For this purpose, we transform the
FSI equations to the nominal domain (Section [5.3.1]), choose a set of admissible transforma-

tions (Section [5.3.3]) and an objective function (Section [5.3.2)).

5.3.1. Transformation of FSI Equations to Nominal Domain

The method of mappings, which was introduced in Section can be applied to shape
optimization problems that are governed by the FSI equations formulated on the ALE ref-
erence domain §2. This reference domain is obtained from the actual physical domain via
the homeomorphism x~!(-,t) : Q(t) — Q. For the method of mappings we have to apply
an additional transformation # : Q — Q, which is a bi-Lipschitz transformation from the
nominal domain  to the ALE reference domain €. Thus, the physical domain Q can be
obtained from the shape reference domain Q by the composition of the transformations ¥ and
X, which is visualized in Figure Since we want to optimize the shape of the domain and
not the initial conditions or boundary conditions, we assume that the considered transforma-
tions in ’fad do not change these conditions. In particular, this means that we do not have to
transform the appearing boundary integrals in the weak formulation of the monolithic ALE
formulation for the FSI problem. For the sake of convenience, and in correspondence with
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) t=0s (2) t=1s
_ =
)t=2s (4) t=3s
_ =
) t=4s (6) t=5s
_ e
) t=06s (8) t="Ts
_ ===
) t=38s ) t=9s
_ —
(11) t=10s (12) t=11s
EZNAA NS
(13) t=12s (14) t=13s
=aaas =
) t=14s (16) t=15s

Figure 5.2.: Snapshots of the simulation of FSI benchmark 2

101



5. Numerical Simulation of Shape Optimization for Unsteady FSI

Shape reference domain €2 ALE reference domain €2 Physical domain ((t)

Figure 5.3.: Schematic illustration of the method of mappings combined with an ALE trans-
formation

our numerical setting, we choose gy = 0 and g; = 0. Additionally, we have to ensure that
the transformation is equal to the identity on the support of the initial conditions.
For fixed 7 € T 44, we introduce the spaces on the shape reference domain

Vi={voF : veV(#(Q))},
Vozr={VoF : v€Vy#(Q)},
Wi ={wof : we W(HF(Q))},
Wiz ={Wwo7 : we& WyF(Q)},

The additional transformation with 7 yields the following weak formulation on the shape
reference domain Q.

For fixed 7 € T g4, find (V, 5, W, 2) € Wao(I, Vi) x L2(I, Pz) x Wao(I, W3) x L(I, Z) such
that v(-,0) =0, w(-,0) = 0 and

(Aa((¥,5,W,2), ), (", 0P, 9", %))
= (det(D7) Jxps0c, 9" )¢,
+ (det(D,7)Jxps (D ) F (V- 0uW) - V)9, 905,
+ (det(D,7)Jx6 By (D7), Dotp¥)g, — (det(Do7)Jypsty, ")g,
+ (det(D,7)ps at\j q,zﬂi) (det(DZ%)jX&SF;T(DZ%);T,DZ'(pN”)QS 53)
— (det(D,7) Jypsfs, "), + (det(D,7)ps(Bew — %), ")

oy (det( D7) D,2( D7)~ (D7) T, Do),

(det(D,7) , Dy3p*)g

— (det(D,7)z, 1) + ap(det(D, T)(Dz%)_l(Dz%)_TVzﬁ, Va)a,
(det(D,7)tr(D; (Fy ' 9) (D7) 1), 67)g,,

x
N
p
o A
P
2
S
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5.3. Model of Shape Optimization Problem for FSI

for all (1/;“,1/;1”,1/;1“,15'2) € Vo x Px Wy xZ and any t € I, where jx = det(f‘x) and
Fx = DZX(DZ%)_17

&1 = pyry(De¥y(Do7) Fy + Fi (D7) Dy¥]) — iyl

denotes the transformed fluid stress tensor and 6 the corresponding transformed solid stress
tensor. For Saint Venant-Kirchhoff type material, it is given by

&5 = Iy 'Fy(Astr(Ex)I + 2u,Ey ) F
with Ex = %(FTFX —1I). The corresponding operator is denoted by
Aoy, T) =0, (5.4)
where y = (v, p, W, z). Moreover, let

Y: = Wao(I, Vi) x L2(I, Pz) x Wao(I,W3z) x L*(I,Zz).

5.3.2. Choice of Objective Function

As objective function, we choose the mean fluid drag which is given by

_/ /o af, (V, pp)ngdS(x)dt

where I', = ffDCUf‘i, f‘ch = X(fch), I, = X(f‘l), P = (1,0)T and n; denotes the outwards
pointing normal vector, e.g., |20} (74} [75]. This can be reformulated as a volume integral given
by

_/ POV s+ Viv), ) Qp(t) — (ﬁf,div(‘i’))gf(t) + (2V€x({’f)’EX(‘i’))Qf(t))dt>

where 6,(-) = 3(Vyx - +(Vx)T), and ¥ is an arbitrary function such that | = % and
Uy \p, = 0, cf. [I8, 66, 74} [75).

Remark 5.3. Analogously to the observation in [64], where the evaluation of the shape
gradient via surface integrals is compared to the evaluation via volume integrals, using the
volume integral formulation for the drag is expected to provide better numerical results. Our
numerical tests confirm this.

The corresponding transformed formulation on the ALE domain Q ¢ reads as

~

. N R ~ 1. . L s AL Ao~
Fp(9) = - = /O (Jxp(OcV s + (B (Vs = X)) - V)5, ®))g — (Jxy, tr(DyUFLY))

+ (2w dxey (V7). 6 (¥1))g, )t
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5. Numerical Simulation of Shape Optimization for Unsteady FSI

with jx = det]/F\‘X7 and the transformation on the shape reference domain ¢ yields

T ~ ~
Fo7) == [ (Gdet(DA)p(05; + (D7 Fy (¥ = 000) - V)¥), W,

— (Jxdet(D,7)p, tr(D, ¥ D7 Fy ),
+ (2vdydet(D,7)e,(V), €z(‘i’))§zf )dt

with e, (1) = 2((Dy ) F3 +F5 (Dy)T) and e,(-) = 3((D; ) D, 7 'F ' +F5, " D, #~ (D, )7).

5.3.3. Choice of Admissible Shape Transformations

As nominal domain € we choose the domain introduced in Section . As design part of
the boundary we choose the boundary of the obstacle, i.e, I,:=T e UT'spe. The choice of
admissible transformations should be deliberate.

e As already mentioned in the previous section, it is important to choose the transfor-
mations such that they do not change initial conditions, boundary conditions or source
terms, i.e., the support of the deformation 7 —id, is disjoint from the support of the ini-
tial conditions, boundary conditions and source terms. In case that the design part Ty
is a subset of the Dirichlet boundary, the boundary conditions have to be homogeneous
on Fd.

e Since standard existence theory for PDEs requires Lipschitz regularity of the domain,
it is straightforward to require the domains to be Lipschitzian during the optimization
process. This can be ensured by choosing 2 as a Lipschitz domain and transformations
7 € Whe(Q)? close to the identity [I3, Lem. 2].

e Remark motivates another restriction on the regularity of 7. To be able to work
with the same function spaces on the shape reference domain independently of the
control 7, it is desirable that the spaces for the transformed functions are isomorphic to
the spaces on the transformed domain. This means, Yz = Y(Q) = Y can be considered
independently of 7 for T € T wa- Thus, the regularity requirement on 7 depends on the
regularity of the state of the partial differential equations and 7 ,q C Do C W1 OO(Q)d
for a function space Dg with sufficiently high regularity.

Remark 5.4. For this reason, we need ¥ € H2T(Q 7,RY) in the theoretical analysis
in Chapterto ensure that v € Ep if and only if v = Vo7~ ! € Ep, cf. [T3, Lem. B.5,
B.6|.

e Transformations that only change the interior of the domain but not the boundaries
do not change the shape of the domain. To ensure a one-to-one correspondence, shape
optimization problems are often considered as optimization problems on manifolds, see,
e.g., [103} 115 [IT7], or on appropriate subsets of linear subspaces, see, e.g., [20]. In order
to be in the latter setting, we consider a scalar valued quantitiy de Dp cwh °°(Fd)
on the design boundary Iy and identify it with a shape via a transformation of the
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5.3. Model of Shape Optimization Problem for FSI

form id, + B(d). Classical results show that the Eulerian shape derivative is a distribu-
tion that is supported on the design boundary and only acts on the normal boundary
variation, cf. [3I, Thm. 9.3.6]. In order to maintain this property we restrict to
transformations that do not transform the solid domain and the interface by requiring
ﬂﬂs = id,, in correspondence with the analytical setting (Section . This constraint

is approximated by using a penalization method and we introduce & = as > 0 on €
and 0 else, where «; is chosen sufficiently large in order to ensure ﬂfls ~ id, or by
choosing an appropriate deformation field.

Strategy 1. Let B(d) := By(d), where B; extends di to  and i denotes the outer

unit normal vector of 2. More precisely, B; is the solution operator of

~A,wl=z% inQ,
Nzl +a;wl =0 inQ,
wl=dn onTy, (5.5)
we=0 ondQ\TIy,
V,we - h=0 ondQ,
which is the mixed formulation of
A2we 4+ a,wd =0 inQ,
d n on fd,
w?=0 on 00\ Ty,
0 on 99,
cf. Section B.1.1l

Strategy 2. Let i, € Eq ¢ W1H®(Q)¢ be an arbitrary transformation vector field,
e.g. obtained by a biharmonic extension analogous to of a vector field on Ty
which points in normal direction on fch and is zero on Q, and B(ci) = B (Ci)flq— We
consider By as the solution operator of

A, =% inQ,
—Ai4+a,w =0 inQ,
w=d onTy, (5.6)
=0 ondQ\Iy,
V,0-n=20 on O9.

which corresponds to the mixed formulation of the fourth order partial differential
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equation
A2+ a0 =0 inQ,
w = d~ on f‘d,
w=0 ondQ\Ty,
V,0-n=0 on 9.

To fulfill the regularity requirements, we have to ensure that Dfd C Wl’oo(f‘ 4) and
Eq C WH(Q)¢ are chosen such that id, + B(d) € Dg for all d € Dr,.

Remark 5.5. If Dg = W1H(Q)?, the following result is helpful. [I0I, Thm. 9] implies
that for a smooth reference domain Q with disjoint boundary parts T'y and 9 \ Ly
such that 69 \ ;N T, = 0 the solution operator that maps d to the solution @ of the
biharmonic equation

A2 =0 inQ,
w=d onfd,
w=0 onﬁﬁ\fd,

V,o-n=0 ondQ,

is a continuous operator from W1 (I'y) — W1 ().

The above considerations motivate the following choice for the set of admissible transforma-
tions. We consider sets of admissible transformations

7~,ad C {7- = idz + ﬁ’rv ﬁT € I~J’ad}7
where U,y is chosen such that
Uua = {it; : G, =B(d), d € Dr,, |d|p, <c},

with a sufficiently small constant ¢ > 0.

Furthermore, it is often relevant for practical applications to have an additional constraint
on the volume of the domain, e.g., the volume of the obstacle shall not become smaller. This
motivates the restriction

Jo(ii,) = / det(I + Dyii,)dz — V < 0 (5.7)
Q

for a constant V > 0, e.g., V = [ 1dz.

106



5.4. Discretization

5.3.4. Shape Optimization Problem

The shape optimization problem is given by
min jQ(ﬁT)
deDr,
st golity) <0, (5:8)

u, :B( )7

where jo(i,) = Fp(y,id, +1,), ¥ is given as the solution to the partial differential equation
Aq(y,id, +1,) =0, see (5.4). Furthermore, B and gq are defined in Section and Fp is
defined in Section [5.3.2

5.4. Discretization

In this section, we discretize the FSI system ([5.3)) in time (Section [5.4.1]) and space (Section
5.4.2)). To obtain a discrete formulation (Section [5.4.5)) of the optimization problem ([5.8]),
the objective function (Section [5.4.3)) and the shape transformations (Section |5.4.4) have to
be discretized.

5.4.1. Temporal Discretization

In order to solve the time-dependent problem numerically we need to introduce an appropriate
time-stepping technique. We consider a One-Step-6 scheme, cf. [128], and, therefore, divide
the terms that appear in the weak formulation into different categories. The first group
Ap(y,7)(1p) collects all terms which include time derivatives:

Ap(3,7) (@) = (det(D,7)Jypy (0% — (D7) "' Fy' Oew) - Va)¥).$")a,
+ (det(DZ%)Psat‘N’a".Bv)Qs + (det(Dz%)psatVNVﬂEw)Qs'

The group A7 (¥, 7)(2)) gathers all implicit terms, i.e., all terms that should be fulfilled exactly
by the new iterate such as the incompressibility condition for the fluid:

A3, 7) (@) = (det(D7)tr (Do (L Fy ') (D7) ), 4P) g,
+ ap(det (D7) (D7) (D7) Vo5, Vaii? ) — (det(D,7)z,9%)g
+ (det(D,7) D, w(D,7) "D, 7)1, Dap*) g,

Another group Ap(y,7)(¢), which is also treated implicitly, collects the pressure terms:

Ap(y,7) (%) = (det(Do7) Sy &, Fy (D7) T, Datpt)g

where o, = —pl. This can be motivated by the fact that the pressure serves as Lagrange
multiplier for the incompressibility condition. The remaining terms are collected in the fourth
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group Ap(y,7)(4h):

Ap(3,7)(%) = (det(D;7) Txps (D7) FL'9) - V) ¥, 9Y)g,
+ au(det(D,7) D,2( D7) (D7) T, D),

+ (det(D,7) Iy, Fy | (D7), Datp¥)

Jx 0 Fy (D7), Dytp¥) g

jpr}‘fa 'd;v)fzf - (det(DZ%)jxps%57 "EU)QS

where o, = 6 — d,. The time-stepping scheme can thus be summarized as follows. Let
a transformation 7 be given, N € N, 0 = tg < t; < ... < ty = T be a discretization of
I=10,T] and 6 € [0,1]. Let, for j € {1,2,...,N}, 77! be the solution at the time #;_;
and the time step size be constant, i.e., k := kj =t; —t;_; for alln € {1,..., N}. Then, the
solution at t; is computed by:

Find y7 such that

A F) @) +0Ap( F) (@) + Ap( . F) (@) + Ar(F 7)) = —(1 - O)Ap(y’ . F) ().
for all test functions v. Here, AJT’“ (¥,7)(2) is defined as the approximation of Ar(y,7)(v)
given by

A3 7)) :=%<det<Dz+>J,fg%f<<v =) = (DA) FH (W = %) Vo)9), ),
b (et (DA)py (7 — 971, ), + 1 (det(DF)ps( — 1), )

where j,jc’e = 0Jy + (1 — 0)1;{1 and the time derivatives are approximated by backwards
different quotients.

The parameter 6 is chosen as 6 = % + O(k), which corresponds to a shifted Crank-Nicolson
scheme. By this choice one obtains second order accuracy in time and additionally recovers
global stability [114, Sec. 5.3]. The latter is is important for stable behavior for long-term
computations and not guaranteed by the standard Crank-Nicolson scheme, see [I31].

5.4.2. Spatial Discretization

For the spatial discretization, we use a triangulation 7y, of the domain Q with 4451 nodes and
8621 cells K. For the sake of clarity, and since we focus on presenting the main ideas and do
not consider variational crimes in the scope of this thesis, we denote the discretized domains
also by Q, Q ¢ and Q.. In order to have a stable discretization of the Navier-Stokes part of
the FSI equations, we choose Taylor-Hood elements (v, pn) € (P2(Tn)?, PY(Tr)), where

PUTH)™ := {¥, € C( U K)™ : Vp|k is a polynomial up to degree I, VK € T}
KeTy
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for I > 0 and m € N, i.e., vy, is continuous and element-wise quadratic and py, is continuous
and linear on every element. Since ¥y, is equal to the temporal derivative of Wy on €,
Wy, is chosen such that it has the same degrees of freedom as vy,. Therefore, we choose
(Wh,Zn) € (P2(Th)%, P2(Th)%). The boundary of the circular obstacle T'y is discretized as a
polygonal chain fd,h of 47 nodes, 6 of which are part of the boundary of the solid domain.
For the sake of clarity we simplify the notation denoting fd,h by T4.

5.4.3. Discretization of Objective Function

The spatial discretization of the objective function is determined by the discretization of the
state of the FSI problem. In order to discretize the appearing time derivative terms, we use
a finite difference scheme, more precisely, the time derivative dyvy(t;) is approximated by
(t; — tj—1) " (vh(tj) — va(tj—1)). The time integral is approximated using the trapezoidal
rule.

5.4.4. Discretization of Shape Transformations

In Section[5.3.3] it is motivated that the choice of admissible shape transformations is delicate
and requires available existence and regularity theory for the governing partial differential
equations. However, existence and regularity theory for FSI systems is only available for
special cases and under additional restrictions or assumptions. In particular, there are no
theoretical results concerning existence and regularity of solutions available for the model
(5.1). Thus, we restrict the considerations to the discretized problem. Here, the main
requirements for choosing admissible shape transformations reduces to ensure

e that the source term, the boundary and initial conditions remain untouched by admis-
sible shape transformations.

e that 7, (7p) is the discretization of a Lipschitz domain, which means that mesh degener-
ation is prevented. This is a delicate task that gained attention in several publications.
In the context of shape optimization see, e.g., [71] and the references therein, in the con-
text of ALE transformations see, e.g., [10, [37]. Mesh degeneration is not seen directly
since all computations are performed on the fixed shape reference  domain, however, it
is the main bottleneck in the performance of the optimization. In particular, it appears

— for large displacements of the design boundary Iy, in our example particularly in
the area around the fixed flap.

— for oscillatory displacements of the design boundary T'y.

— if the extension of the design boundary information to € is chosen in an unsophis-
ticated way.

To penalize oscillatory behaviour of the design boundary displacement, we add a regu-
larization term R(dy) = ||dh ||12L11 () with a factor v > 0. To prevent large displacements,
d

for z= (z1,22) ", we introduce the bounds

cu(z) = 0.004(1 + 220-21 (3015 _ 1))
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110

c(z) = —0.004(1 + %2721 (3018 — 1)),

which are more restrictive close to the fixed flap. Nodal evaluation of these bounds
yields vectors ¢, ¢; € R"d,

Remark 5.6. One could also think about incorporating the definition of Drp .- In case
=wh OO(Fd) boundedness of d in Dr , is ensured by introducing simple bound
constralnts on d and its gradient. This, however, is a topic for future research.

that Yh(’ﬁ,) o7}, is isomorphic to Yh(%h(Th)) for all 7y, € '7~‘ad7h, where Y}, denotes the
discrete state space and 7T 44 the discrete set of admissible transformations. To do so,
we choose T 4qh C PLHTh).

a one-to-one-correspondance between transformations and shapes. Analogously to the
continuous case, we choose a scalar valued variable Jh € Dp 4,h, Where ﬁp ,,h denotes
the space of piecewise linear functions on I'y, in addition, require that 7 is equal to
the identity on Q, and consider the discretized version of the operator B presented in

Section [5.3.3]
Strategy 1. Discretizing (5.5 gives us the weak form

w 5z

ext(dh’ (Whvzh) ("/’h ¥y)) =

where aéxt maps
Dr,n % (Plo(Tr, RY) x Plo(Th, RY) x (Ply(Th, RY) x Ply(Th, RY)) = R
with
Pjo(Ta,RY) := {vi, € P(Th,RY) : Valpar, = 0}
and is defined by

ext(dhv (Wh>zh) (
= (D, Wth ¢h)() (Zﬁ "lem)fz + (Dziﬁ7Dzlz’Ev)Q
— (VWi -2, )5, — (B Vy - D)5 + an(Wi, ¢p)g, (5.9)
—(Vzi -4 ﬂﬁh — (Wi, Vb - )+ an(iﬁﬂb:j)fd,
+ O‘S(wha "ph )Qs (Ozhfl, V{Pﬁ : ﬁ)fd - an(d~hﬁ, @i)fi

\/

Here, we take care of the requirement Th]Q = id, by adding a penalization term with
penalty parameter g > 0. In addition, we use Nitsche’s method [108] with o, > 0
for imposing the Dirichlet boundary conditions on Ty since on Lipschitz domains with
kinks, as it is, e.g., the case for a discretized domain, the normal is only defined almost
everywhere, especially not in kinks that correspond to vertices of our discretization.
The corresponding extension operator is denoted by B : d — wi, where w{ is
uniquely defined by the solution of al  (d, (W{,z{), (¢by ,2bp)) = 0 for all (¢, ,y) €
Pl (Tn)? x Piy(Tn)%. We choose as = 1-10% and oy, = 1 - 10%
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Strategy 2. Discretizing (/5.6 yields the weak form

a((@h, Zn), (Y ¥n)) = (Datn, Datn)g — (Zny ¥n)
+ (D22n, Doty ) + s (i0n, ¥y ), = 0.

with a penalty parameter s > 0. Here, the boundary conditions 1Dh|fd = dp, §h|fd =0
and homogeneous Dirichlet boundary conditions on the rest of the discretized boundary
are imposed. Equivalently, one could also rewrite the weak form on the subspace

PL(T) = {vn € P(T) © vnlyq =0}

of functions that vanish on the boundary of the discretized domain. To do so, a2 :

(P (Th) x Py (Tn)) x (Pg(Th) % Py (Th)) = R defined by
azxt(ghv (UN}E? gh)v (1;:]’ Q;E)) = a(<u~}2 + eXthCihv éh)v (";;07 TK)) (5'10)

is introduced, where exty, : Dp Lh — P1(7T1) is an arbitrary linear extension operator.
The biharmonic extension operator corresponding to is denoted by Boj, : d —
WY + extpdy, where @ is given as the solution of a2 (d, (), zp), (¢y, b)) = 0 for all
() € PL(TR) x PX(Tr). In order to have the discretized version of B, we have
to perform a projection Py, of whn, to the finite element space of piecewise linear

functions.

The discretization of the volume constraint can be done in different ways. A first possibility
is given by discretizing the integral formulation . This approach is advantageous if, e.g,
the explicit boundary displacement is not a-priorily given as it is the case if dy is imposed
via Nitsche’s method or as Neumann boundary condition. For the two dimensional case
and if d, is imposed as Dirichlet boundary condition for the extension equations one can
also directly compute the area via Gauss’ area formula, which is also known as shoelace
formula or surveyor’s area formula. Assume the discretized T'y to be a non-self-intersecting
polygonal chain {p1, ..., P} with nodes p; = (zi1,2i2)". Let dy(z) = 3.0, di®i(z) , where
{®;(z),i € {1,...,n}} denotes the set of nodal basis functions on the design boundary, i.e.,
dh can be identified with d = (cil, ... ,czn) € R” via an operator ¥~!, where

i=1
If one identifies p; with p,,+1 we obtain, see [19],

n

-1
A= 2 Z;(Zm +2i41,2)(Zi+1,1 — Zi1).
1=

Transformation of the polygonal chain with nodes {po, co ,Pn} vyields a polygonal chain

with nodes {po,...,Pn}, where p; = (y17i,y27i)T = P; + din;; and n; corresponds to the
evaluation of n, at p;. Here, for the sake of clarity, we write y;; instead of y; ;(d) for j € {1, 2}
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and i € {1,...,n}. The transformed volume is thus given by
- 1<
A(d) = ) ;(Yzﬂ + Vit1,2)(Yit1,1 — Yi1)-
1=

Recall that, if the volume of the circular obstacle shall not become smaller during the opti-
mization process, we are aiming at A < A. Therefore, we define

~ ~ A~

§(d) == A — A(d).

We want to enforce the nodes, which are attached to the solid, not to be transformed, i.e.,
we want to enforce cij =0for j € J, where J C {1,...,n}. This is carried out by performing
a linear transformation which is defined by A € R"*"4 with ngy = n — |J| and A is obtained
by deleting the jth columns of the n x n-identity matrix for all j € J. For d € R™ we define

g2(d) := g(Ad).

5.4.5. Discretized Version of the Shape Optimization Problem

Let ng € Nand A, U, jg, 92, 92, Bin, Bap, and Py, p be defined as in Sections
and The discretized shape optimization problem attains the form

in f(d
Juin f(d)
s.t. g(d) <0,
¢ <d<cy. (5.11)

Here, d € R™ is bounded by ¢;, ¢, € R", ¢; < ¢,. The control d can be identified with a
transformation via the following chain of compositions

A El : v idz+-

d:

=B, 5
dp 1 U, Th

where A and ¥ are defined in Section [5.4.4, The objective is defined by f(d) := jo(Tirn),
where @, = 0, h(d).

Strategy 1. By :=Bjj and g(d) := go(a-n).

Ban " Pu:h

Strategy 2. By := Py, o Bap, where dp ¢ W, + U, p, and g(d) := g2(d).

5.5. Numerical Realization Using FEniCS, dolfin-adjoint and
IPOPT

The numerical tests presented here are implemented in FEniCS [3, 92], a collection of free
software for the automated solution of partial differential equations combining the software
packages dolfin [94] 95], FFC [81] 093], 109], UFL [2, 6], FIAT [80}82], and UFC [4,[5]. For the
computation of the gradients the additional package dolfin-adjoint [40] is used, which provides
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the automated differentiation of the reduced cost functional based on adjoint computations
on the discrete system. It is based on a checkpointing strategy [62], meaning that the
forward solution is, to save memory space, not saved for every time-step but only on several
checkpoints. In order to solve the backwards equations, the forward equation is solved starting
from the checkpoints and then used to compute the adjoint. Additionally, the software
package IPOPT [126] is used for solving the constrained optimization problem on the shape
reference domain 2.

5.5.1. Computing Objective Function Value and Gradient with FEniCS
and dolfin-adjoint

This section explains how objective function values and gradients are evaluated using FEniCS
and dolfin-adjoint to obtain an optimization problem that we can pass over to IPOPT. If one
has automated differentiation available for distributed controls, e.g., by using FEniCS and
dolfin- adjoint, one can not directly compute the derivative w.r.t. d but has to apply the
chain rule.

Strategy 1

We define j1 o(dn) := jo(Bn(dp)). The derivative jiﬂ(cfh) can directly be computed using
FEniCS and dolfin-adjoint since dh appears in the weak formulation . The vector rep-
resentation j € R™ of the derivative w.r.t. the degrees of freedom on the design boundary is
formally defined by

Ji = Jia(dn)(¥(e:)
for i € {1,...,n}. Considering the mapping ji : R" — R, ji(d) := J1.0(B1a(T(Ad))), its
gradient is given by Vj; = ATj.
Strategy 2

We consider jo q(i0h) := jo(Pn, n(ih)) and compute the gradient J5.(1wn) using FEniCS and
dolfin-adjoint. In order to obtain the derivative of jo (d}) = 527Q(B2,h(czh ) the chain rule has
to be applied. We have

ja(dn) = jo.0(Ban(dn)) = Joq(extydy + wp)
= 32,Q(eXthCZh + ’lj)ﬂ) - a‘ext(dhv (wh7 Zh) ('(L:\U> &i)) = E(tha (wga éh) (15:1”7 Q;ﬁ))

where (@0}, Zn) € PE(Tn) x PE(Tr) solves

Tw Tz

ext(dhv (whv Zh) (wh 7¢h))

for all (¢by, , p) € P (Tr) X P§(Th). Testing with the solution (b}, Z};) of the adjoint equation
]2 Q(wh)(éwh) ext(dh7 (5wh7 6zh) (wm Zﬁ)) = 0 yields

75(dn)(6dn) = La(dn, (w5, Zh), (@5, 7)) (0dn)
= Jh.a(extndy + @) (extnddn) — a2y 4(dn, (0, Zh), (@5, 7)) (5dn)
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with } . o
ext d(dhv (whv Zh) (¢h 7¢h))(6dh) = a((eXthédhv 0)7 (1/);11)7 wi))v

due to (5.10)). Numerically, one can work with the linear extension exth which sets the value
of all interior nodes to 0. Let j € R™ be defined by

Ji = Ja.(dn)(¥(e:))
for i € {1,...,n}. The gradient of the mapping js : R" — R, ja(d) := j2.0(Ban(P(Ad))) is
given by Vjo = ATj.
5.5.2. Computing Function Value and Gradient of the Constraint with
FEniCS and dolfin-adjoint
Strategy 1

Here, one could either compute the gradient of jo(B1p(dp)) via automated differentiation
or use the gradient g¢,(Q, ) and apply the chain rule. Hence, we can compute the function
value and gradient of the function g1(d) := ga(B1n(¥(Ad))).

Strategy 2

The functions g( ) and go(d) are explicitely given in Section Direct calculus yields

(ﬁT)i,l(Yi—1,2 - Yi+1,2)

N

(Vg(d)); = _%(ﬁT)iQ(W-‘rl,l —Yi-1,1) —

for i € {1,...,n}, with yn41; := y1; and yo; := yyn; for j € {1,2}, where y; ; = yw(a)
depends on d. Furthermore, we obtain Vgy(d) :== ATVg(d).

5.5.3. Solving the Discretized Optimization Problem Using IPOPT

In the previous sections we have seen that the optimization problem that has to be solved
attains the form . Many existing implementations of optimization methods, such as
IPOPT, assume that the problem is posed in the Euclidean space. Therefore, handing the
discretized optimization problem directly to IPOPT leads to a loss of information since it
is no longer taken into account that d is the discretization of a function, that has H'-
regularity if the regularization term R is chosen correspondingly. We have the representation
dn(z) := > d;®;(z), where d := (dy, ...,d,) " € R" denotes the vector of degrees of freedom
and ®;(z) € H' (I‘d) are appropriate basis functions on the design part of the boundary. The
correct discrete inner product is thus given by

(Jl,ha JQ,h)Hl(fd) = aISaQ = dISdQ,
where d; = Ad; fori € {1,2}, S = (¥, (I)j)Hl(fd))i,j and S = ATSA. Working on the space

of transformed coordinates
d = Sd,
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where S is chosen such that STS = S, eg., S=83 (which is impracticle if the size of S is
large) or obtained by a (sparse) Cholesky decomposition, takes the above considerations into
account. We pass the following functions to IPOPT

where

as well as,

Vi:R%™ R, d~— S TVf(Sd).

This has several advantages in the numerical solution process of the optimization problem.
For the steepest descent method it results in

djy1 =S g1 =S Hde +STTVA(S T dy)) = di, + STV f(dy)

if dy = S~'dj. This is advantageous since in the function space setting, we have to work
with the Riesz-representation of the gradient of f, which is approximated by S™!Vf. In
[118] it is shown that this leads to mesh-independent convergence rates for some examples.
This is also expected for other optimization algorithms. Hence, we consider the optimization
problem

“min f(S71d)

deR"™d
st. g(d) <o,
¢ < g(d) < cu,

where §(d) = ¢g(S7'd) and g(d) = S1d.

Remark 5.7. This procedure is computationally justified in our setting since the degrees
of freedom of the discretized control is small compared to the size of the discretized systems
that are solved to evaluate the objective. This is due to the fact that the control is time
independent and lives on the design part of the domain’s boundary. In this case the effort
for the computation of S and the application of its inverse to dis negligible compared to the
effort for solving the FSI equations and its adjoint equations. In other situations, it might
be preferable to apply an algorithm which directly works with the correct inner product.

5.6. Numerical Results

As time horizon for the optimization of the mean drag we choose T' = 15s. Additionally, we
use the regularization parameter v = 10. For Strategy 1 IPOPT converges after 27 iterations
and for Strategy 2 after 23 iterations with an overall NLP error (cf. [126, p. 3, (5)]) smaller
than 1-1074, see Tablesand . The objective function value is reduced about 35 percent.
Figure shows the initial configuration compared to the optimized configurations for both
strategies. On the one hand, the bounds are active close to the flap, which is motivated by
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FEniCS
dUlﬁn_adeint
IPOPT i

mapping of d to transformation 7(d) = ext|1(\I/(AS’1EI)) + B|1(\I/(:AS’1(1:))

evaluate functional f evaluate constraints

(solve FSI problem) 9. 8

compute
P solve optimization problem
gradien

w.r.t. 7(d)

|

compute gradient w.r.t. d

Figure 5.4.: Numerical realization using FEniCS, dolfin-adjoint and IPOPT

compute gradient w.r.t. d

the fact that the optimal solutions aims at enclosing the flap. This, however, leads to mesh
degeneration if the normal design boundary displacement is too large, which motivates the
choice of the bound constraints. On the other hand, the bounds are active on the opposite
site of the flap. Figure [5.6|shows the time-dependence of the vertical displacement of the tip
of the flap and Figures [5.7] and [5.8] compare the corresponding snapshots for different times.
Even though the optimization is only done on the first 15 seconds, Figure illustrates that
the amplitude of the vertical displacement of the tip of the flap is also smaller for long-term
simulations.

Remark 5.8. The computation times of the forward equations and the gradients do not
significantly differ for the two strategies. However, Strategy 2 performs slightly better.
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Figure 5.6.: Comparison of vertical displacement of the tip of the flap for the initial and
optimized designs
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Figure 5.7.: Comparison of initial and optimized setting for Strategy 1
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5.6. Numerical Results

1teration
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objective
1.5998013

1.0453094

1.0347757 -
1.0281481 -
- 102
1.0208171 -
1.0197863 -
1.0193006 -
1.0191378 -
1.0190267 -
1.0190156 -
- 102
1.0189604 -
1.0189587 -
-10?

1.0231228

1.0189694

1.0189574

1.0189570 -
1.0189570 -
- 102

1.0189570

1.0189570 -
1.0189570 -
1.0189570 -
1.0189570 -

Table 5.1.: Optimization results for Strategy 1

- 102
1.4272447 -
1.2470326 -
1.1414835 -
1.1486292 -
1.0696289 -
1.0554535 -
-10?

102
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102
102
102

102
102

102
102
102
102
102
102

102
102

102
102

102
102
102
102

dual infeasibility
6.47 -
4.68 -
2.61 -
1.40 -
1.35 -
1.29 -
1.73 -
-10!

1.32

1.04 -
8.69 -
100

2.26

2.35 -
1.57 -
1.33-
7.75 -
2.90 -
7.15-
3.47.
2.33
1.27-
-1072

2.65

6.45 -
5.21 -
-107%

7.59

4.83 -
4.92 -
1.54 -
8.74 -
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10°
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107°

linesearch-steps
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iteration objective dual infeasibility linesearch-steps

0 1.5998013 - 102 6.46 - 10 0
1 1.4293307 - 102 4.43 - 10* 2
2 1.2493011 - 102 2.70 - 10" 1
3 1.1440306 - 102 1.38 - 102 1
4 1.1183690 - 102 1.04 - 102 1
5 1.0606273 - 102 1.03 - 10! 1
6 1.0554501 - 102 3.85-10° 1
7 1.0401135 - 102 1.22- 10! 1
8 1.0330660 - 102 1.02 - 10! 1
9 1.0292723 - 10? 5.76 - 10° 1
10 1.0280065 - 102 1.15- 109 1
11 1.0270233 - 102 3.85-107" 1
12 1.0267593 - 102 1.39-107! 1
13 1.0267218 - 102 1.66 - 10° 1
14 1.0266923 - 102 1.55-1071 1
15 1.0266877 - 102 3.18 - 1072 1
16 1.0266874 - 102 5.14-1073 1
17 1.0266873 - 102 3.37-1073 1
18 1.0266873 - 10? 2.60-1073 1
19 1.0266972 - 102 4.40-1073 1
20 1.0266872 - 102 6.06 - 10~ 1
21 1.0266872 - 102 1.14-1073 1
22 1.0266872 - 10? 1.03-1074 1
23 1.0266872 - 102 6.59-107° 1

Table 5.2.: Optimization results for Strategy 2
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6. Conclusion and Outlook

In this thesis, we have extended the existence and regularity results of [I13] for a linear and
a nonlinear unsteady FSI system under the assumption that the new improved regularity for
the linear hyperbolic wave equation can be adapted to the Lamé system. More precisely,
we considered the coupling of the (Navier-)Stokes-Lamé system and obtained (local-in-time)
existence and regularity results without the geometric constraint that the interface between
the fluid and the solid is flat. Based on the method of successive approximations, which is
the foundation for the theoretical analysis in [I13], we developed a general framework for
deriving continuity and differentiability results for unsteady nonlinear systems. Applying
this framework to shape optimization of an unsteady nonlinear FSI problem via the method
of mappings approach allowed us to prove differentiability of the states with respect to shape
variations. Numerical tests showed the viability of the method of mappings for solving shape
optimization problems governed by a nonlinear unsteady FSI model that couples the Navier-
Stokes equations with nonlinear elasticity.

A remaining task is the adaption of the improved regularity result for the linear hyper-
bolic wave equation to the Lamé system. In addition, instead of considering the coupling
with linear elastic material and either using a linear model for the fluid or just guaranteeing
local-in-time results, practical applications are based on nonlinear elasticity and long-term
simulations. Closing this gap is a difficult task and closely linked to advances in the analysis
of hyperbolic equations and the Navier-Stokes equations. Another issue, which we circum-
vented by restriction to the optimiziation of the fluid part of the domain, is the extension of
the differentiability results such that optimization of the interface is covered. The regularity
requirements for the source term of the linear hyperbolic system requires more elaborate
techniques to tackle this task. Also from a numerical point of view it is interesting to realize
shape optimization of the interface, besides applying the presented methods to realistic 3D
applications. Moreover, the consideration of these shape optimization problems as optimiza-
tion problems on manifolds is left for future research.
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A. Appendix

A.1. On the Choice of the Norm on H*((0,7), X)

A.1.1. Definition via Interpolation

Based on the following statements from interpolation theory, we construct a norm that sat-
isfies properties - If Xy, X are linear subspaces of a larger vector space V', then
{Xo, X1} is said to be a compatible pair of Hilbert spaces. Let {Xo, X1} and {Yp, Y1} be
compatible pairs of Hilbert spaces. Furthermore, for s € (0,1), let [Xo, X1]s denote the
complex interpolation space, cf. [25], [124], [15, p.166], [87, Sec. 0.2.1].

I1 In the Hilbert space setting, the definition of interpolation in [90, p.10, Def. 2.1] is
equivalent to complex interpolation with equivalence of norms, cf., Remark [2.7]

I2 Interpolation theorem: Let T : Xy — Y be a bounded linear operator with norm
Ny and T : X1 — Y7 be a bounded linear operator with norm Nj.
Then, T : [Xo, X1]s — [Y0, Y1]s is a bounded linear operator with norm smaller than or
equal to N(}_SNf [25, p.115, 4.].

I3 Reiteration theorem: Let 0 < o < 3 < 1. Set Y, = [Xo, X1]o and Y3 = [Xo, X1]s
for Banach spaces Xy and X;. If Xo N X is dense in Xy, X7 and Y, N Yp, then,
Yo, Ys]s = [Xo, X1](1—s)atss, With equal norms [16, p.101, Theo. 4.6.1], [29].

Let X be a Hilbert space, —0o < a < b < oo. Let, for o € [0,1], || - [| 7o ((a,p),x) e the norm
induced by

[H1(<a7b)7X)7L2((a7b)7X)]1—U'
For s=m+o0,meN, o €[0,1)\ {3}, define

N

U sy + B Ol o) i o € 0.0\ {3},
I Wezs (o), ) = 0).%) .
I M & ((a0),x) if c =0.
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Furthermore, let for —oco < T7 < Th < —o0,

X(OTl,TZ) = {ue L*((T1, 1), X)}

be endowed with the norm || - ||X?T17T2) = M2, m),x)s
Xty = {u € H'((T1,T), X)| u(T1) = 0}
be endowed with the norm || - ||X(1T17T2) = |- |y, 1), x)> and, (A1)
{ue H*((Th,T»), X)} if s € (0,3),
Xin gy = {u € H(T1,T»),X) : u(T1) = 0} if s € (3,1),
{ue H((T1,T2),X) : u(T1) =0, dwu € X(STZ%TQ)} if s e (1,2]\ {3},
be endowed with the norm [ - || g ((7y 1), x)-

Proposition A.1. Let o € (0,1) \ {3} and —0c0 < T} < Tb < oo. Then, there exist
car, Car > 0 that depend on AT = T, — T3 such that

ear|ul go (o m),x) < Null o ((1y,m),x) < Carlulme (1 m),x)

for all w € H?((T1,T2), X).
Proof. Holds true due to Remark O

Proposition A.2. Let o € (0,1) \ {3} and —oo < T} < T» < co. Then, the extension-by-
zero operator Ext is continuous as a mapping

X0y ) = H((—00, T2), X)

with a norm that, in general, depends on AT =T, — T7.

Proof. The proof builds on [90, p. 60, Theo. 11.4]. [90, p. 60, Theo. 11.4 and p. 62,
Theo. 11.5] are formulated for the scalar valued case, however, [90, p. 47, Remark 9.5] and
the proofs of the theorems imply the validity of the assertions for X-valued spaces. C' and
Car denote generic constants, where the subscript AT indicates the dependence on AT. Let
H?((—00,T3), X) be endowed with || - || o ((=o0,12),x)- The assertion also holds true for any
equivalent norm on H?((—o00,T3), X).

e Let 0 € (0, %)
For f € X0, 1,y we know by definition that f € H?((Ty,T2),X). By [90, p. 60, Theo.
11.4], there exists a constant Car > 0 such that

I o %) < Carl e (zy,m),%): (A.2)
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for f(t) — {(J;(t) ;flste.e (Th, T2),

Since the restriction operator R : H™(R, X) — H™((—o00,T%),X), R(f) := f|(,w7T2),
is continuous with norm 1 for m € {0, 1}, 12| yields

TEXt () 20 ((—o0,1).) = IR e (—00i2).%) < WF b2 R, x) - (A.3)

Combining (A.2)) and (A.3)) yields the assertion.

Let o € (,1).
Let f € X0p, 1,y and ft) == (To — )"t = Th) f(Ty) for t € (Ty,T»). Then, we know
that f € X(lT1 1) such that f(Ty) = f(Ty) and

1A (o ), %) < Carllf(T2)llx - (A.4)

By [90, p. 62, Theo. 11.5], g := f — f € HJ((T1,T2), X) and, therefore, by [90, p. 60,
Theo. 11.4],

Igl o, x) < Carllglme (1), x)
S Car(f lae (o), x) + W lee (1), %)) (A.5)

t) for te (11,T15),
Whereg:{gﬁ for v& (5,7

Due to the interpolation inequality (2.3]), (A.4), [I1{and [90 p.41, Proof of Thm. 9.4],

we obtain

1N bre (o1 1), x) < Carll flla o m),x) < Carllf(T2)]x
< Carll fllae(r m),x)- (A.6)

Thus, using the properties of the restriction operator R, cf. (A.3), yields

VEXt() 7 (oo, = IR@) o ((sory ) < Millom ) (AT)

Additionally, we know that

NExt(F) o (—o02).x) < CNEXt ()1 (—o0,m2),x) < CNF Nl (11,1, %)
< Carllfllze (1 m),x) (A.8)

where the last inequality follows from the same considerations as in (A.6]). Combining
(A.5), (A.6), (A.7) and (A.8]) yields

WEE ()0 (—oosr2), ) < WEXEC o (00,72, 5) + IEt(9) 117 ((—o0,72),%)
< Carllf e m),x)s

from which the assertion follows.
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O]

Lemma A.3. Let o € (0,1)\{3}. Then, there exists Car > 0 that depends on AT = T, —T}
such that

|||U”|H°((T1,T2),X) < ”UH[XI ,X0 < CAT|||U|||HU((T1,T2),X) (A.9)

(T1,T2) (T1»T2)]1_U

for all v € XETTl,TQ)-

Proof. The mapping ¢ : u +— wu is continuous with norm 1 as a mapping X(lT1 )

HY((Ty,T),X) and as a mapping X?T17T2) — L?((T1, T»), X). [I2| yields that the mapping

L I:X(lThTQ)’XE)Tl,TQ)]l*U — HU((T17T2)’X)

is continuous with a constant smaller than or equal to 1 if H?((11,T2), X) is endowed with the
norm || - || g ((1y,1),x)- The extension operator Ext by 0 operator is continuous as a mapping

Xrom) — H?((—00,T2), X ) with constants that depend on AT due to Proposition .

The operator R : u — u(-) — u(2Ty — -) is continuous as a mapping
Hm<(_OO, T2)7 X) — XEZLH,TQ)’
m € {0,1} with norm 1, therefore, by also as a mapping
HJ((—OO, TQ)? X) - [X(lTl,T2)7 X?Tl,TQ)]l—fﬂ
with norm 1 if H7((—o00,T3), X) is endowed with the norm || - || go((—0o,3),x). Using the
continuity properties of Ext and R,

= [|R(Ext(w))]|x2

||UH[X1 (T1,T2)’X?T11T2>]1_0

(Tlsz)’X?TLTz)]l_”
< NExt (w) | 5o (—o0,12),x) < Carllullgo (1 m),x)

for all v € X(UTl,Tg)' O

Let, for o € (%, 1),

L: H(T1,T»),X)— H((T1, ), X),

be a linear, continuous operator such that there exists a constant C' independent of AT :=
T2 — T1 such that

L) e (71,00, %) < Cllu(T1)lx, (A.10)

and for arbitrary but fixed Ty > 0 L(u)(T1) = u(T1), more precisely,

w(T)T; Ty + T —t) forte (Ty,T1 +Ty),

(A.11)
0 for t € [T1 + Ty, 00).

L(u)(t) = {
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Let —oco < T} < Ty < co. For o € [0,1) \ {3}, define

[ - HL2 (T1,T%),X) if c =0,
1
H ’ ‘|HG((T1,T2)7X) = || H[X(T \To) (T ,TQ)]l_U ) ifoe ( 5)
(- =LOWe, | xo o+ OB st o€ Go1),
(A.12)
and fors=m+o0, meN, o € [0,1)\{%}7
1,
[ p—— {(” om0y 100 Oz, .30 30 € (D (3,
1,42 .
[ HHm (T1,T%),X) if o = 0.
(A.13)

Let, for s € [0,2]\ {3,3}, H*((T1,T2), X) be endowed with the norm || - || grs((7y 13, x) and

{u e H¥((T1,T2), X)} if s €[0,3),
Yir my) = § {u € H¥(Th, To), X)| u(T1) = 0} if s € (3,1], (A.14)
{ue H(T1,T3), X)| u(Ty) = 0, dwu € Y(;}TQ)} if s € (1,2]\ {3},

be endowed with the norm || - || s (7, 73),x) With L(-) = 0 for s € (3,1).

Lemma A.4. Let X be a Hilbert space and s € [0,2]\{3, 3}. Then, the norm ||| zrs((7y 1),x)
is equivalent to the norm || - || gs((1; 1), x) With constants depending on AT =Ty — T1.

Proof. The cases s € {0, 1,2} are trivial.

e s Byand-

lwllzs 1y, m),x) = llullx Xy gy X i = Carllull s (1, m),x)

< Carllullx = Carlullms(m 1).x)-

(ry 1) X Cry 115

e s € (3.1): By (510). (512) and (K9)

[l Frs (3 ). x) = 1w = L(U)H[QX( iy Xl g hie T L)W (73000, %)
< Carllu— L(u) |||H5((T1,T2),X) F L) e (73 00),3)
< Oar(lullFrs (o ), x) + L@ (73 000, x)
< Oar(ullpscy ), x) + 1(T0)1%)

< Carluliyrs (zy 1))

where the last inequality is due to [I1] and [90) p.41, Proof of Thm. 9.4]. The estimate
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for [|L(u)|l s ((11,1),x) is obtained by interpolation of the restriction operator

R: H™((T),00),X) — H™(T1,T2), X), R(u)(t) = u(t) vt € (T}, T»),
which, by [I2] is continuous with constant 1 for m € {0, 1}.
e s € (1,2]\{3}: Follows directly from the results obtained for s € [0,1]\ {3}. By (A.9),

el s (1.7, x) < Clw = L)W oy ) x0) + DL s (1 1) )
< O(llu— L) F I LWz ((71.,00).5))-

0
(T1,T2)’X(T11T2)h_s

O]

Corollary A.5. Let X be a Hilbert space and s € [0,2]\ {5,3}. Then, || - | sy 1),x) 18
equivalent to the norm | - |gs((7y 1), x) With constants depending on AT =T, — T1.

Proof. Follows by combining Proposition and Lemma [A-4] O

Lemma A.6. Let Ty > T and s > 0 such that s + % ¢ N. Then, the extension operator

0 for t € (T'—1Ty,0)
u(t) forte (0,7)

I

Ext(u) = {

is continuous as a mapping Y?

or) — Y(%LTJ:,T) with norm bounded by 1.

Proof. For s € Ny the assertion is trivial.

e For m € {0, 1}, Ext is continuous as a mapping XEST) — X(’E,E_Tf ) with norm 1, thus,

by [I2], continuous as a mapping

[X(IO,T) ) X(OO,T)] l—s =7 [X(IT—Tf,T) ) X?T—Tf,T)] 1-s (A.15)

with norm bounded by 1.

e Let s € (0,3). Due to (A:I5), Yor = X (with different norms), cf. (A.14) and
(A.1)), and (A.12) we obtain
1Ext (W)l s ((r—77.1),3) < wllzso.r),x)
for all u € Y(% )"
e Let s € (3,1). Foru € Yo7y, we have u(0) = 0 and Ext(u)(T — Tf) = 0. Thus, by
ETD).

”uHHS((O,T),X) = ||U||[X1 X0

0,T)’ (O’T)}l—s ’
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and
1Ext(w) || s ((r—7;.1).%) = [[Ext(w)|[x2 X0

(T—1;,T) (Tfo,T)h_S‘
Due to (A.15)), we obtain
NExt (u) || s (171, 5) < Nl ms 0,1,

e For s > 1 such that s + % ¢ N, the assertion follows from the results obtained for
s€[0,1]\ {3} and s € N.

O]

Lemma A.7. Let 0 <T < T} and s > 0 such that s+ % ¢ N. Then, the extension operator

9

E\t( ) 0 fOI‘tE(T—QTf,T—Tf)
Xt(u) =
u(t) forte (T'—1T,T)

is continuous as a mapping Y(ST—Tf,T) — Y(ST—QTf,T) with norm bounded by 1.
Proof. Completely analogous to the proof of Lemma O

Lemma A.8. Let 0 <T < Ty, X be a Hilbert space and s > 0 such that s + % ¢ N. Then,
the restriction operator

R()(t) = -(t)
is continuous as a mapping H*((0,7%),X) — H*((0,7),X) with norm bounded by 1 if
H*((0,T}),X) and H*((0,T), X) are endowed with the norm defined by (A.12) and (A.13).

Proof. For s € Ny the assertion is trivial.

e Let s € (0, %) The restriction operator R is continuous as a mapping X/° .., — X/

(Ova) (OvT)
for m € {0,1} with norm 1. Therefore, [I2|yields continuity as a mapping
1 0 1 0
X1y X0, ]1-s = X0 X1y (A.16)

and, using
H*((0,12), X) = Y*((0,T2), X) = X*((0, T2), X) = [X(lo,T2)7X?O,T2)]1—S

(with different norms) for Tp € {7, Ty}, cf. (A.1), (A.14)), Lemma and the defini-
tion of the norm ({A.12), as a mapping

H*((0,T%),X) = H*((0,T), X)

with norm bounded by 1.
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o Let 516 (3,1). It holds u — L(u) € Y(‘B’Tf), thus, by (A.16) (which holds also true for
s € (3,1)),

e = L)l ) x0, o < llu— L(U)H[X(lo’Tf),X?O,Tf)hfs.

This estimate and the definition of the norm ({A.12) yield the assertion.

e For s > 1 such that s+ % ¢ N, the assertion follows from the results for s € [0,1]\ {3}
and s € N.

O]

Lemma A.9. Let s € (0,1) \ {%}, T >0, T < —T and X be a Hilbert space. Then, the
operator

R()(t) = () —-(-t)
is continuous as a mapping Y(ST,T) — Y(%,T) with norm bounded by 1.

Proof. The operator R is continuous as a mapping X g ) — X (’6‘ Ty M€ {0,1}, with norm

at most 1. Therefore, using it is also continuous as a mapping
1 0 1 0
[X(T,T)’ X(T,T)]l_s — [X(O,T)’ X(O,T)]l—s’
with norm at most 1. Thus, by definitions (A.12)) and (A.14)), it is also continuous as a

mapping Y(fﬁT) — Y(%,T) with norm bounded by 1. O

Lemma A.10. Let T* > 2T > 0, X be a Hilbert space and s > 0 such that s + % ¢ N.
Furthermore, let w € H*((T' —T*,T), X) be such that u[_7- gy = 0. Then,
lullzs 0,7),x) < Cllullgs -7+ 1),x)

with a constant C independent of T

Proof. Tt holds [|u| gm((0,7),x) < [[wl| frm -7+ 7),x) for m € Ng. Let s be non-integer. Then,
there exist m € Ny and o € (0, 12 \ {3} such that s = mAJr o. By (A.14), 0{"u GAY(('}—TﬁT)'
Using u|(p_p+ ) = 0, we obtain R(9{"u) = d{"u| () for R in Lemma with T =T —T*
yields

108 ull e 0,7y, x) < 107wl o (77> 1), )

This implies the assertion. O

Lemma A.11. Let Ty > T > 0, X be a Hilbert space and s > 0 such that s + % ¢ N.
Furthermore, let w € H*((T' — T, T), X) be such that u[p_7, 0) = 0. Then,

lull zs0,m),x) < Cllullgs ((r—m;.1).%)
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with a constant C' independent of T

Proof. By Lemmas [A10] and [A77]

1wl s 0,1, x) = IExt(w) || s (0,7),x)

< O|Ext (W)l mrs (w21, 1), x) < Cllullirs (w171, x)-

O

Lemma A.12. Let X be a Hilbert space, s € [0,1) \ {3} and a > 0 be chosen such that
s+ a € (0,1]. Then,

1wl s 0,1, x) < T ullgs+a(0,1), %)

for all u € Y(%,T)'

Proof. The mapping ¢ defined by ¢(u) = u is continous as a mapping

v Xy = X1, (A.17)
with norm 1 and
L X(lo’T) — X?O,T) (Alg)

with norm bounded by 7. Due to [I2| interpolation of (A.17)) and (A.18) yields continuity of

L [X(107T)’ X(OO,T)]l—s — [X(IO,T)vX(()07T)]1—s (A.20)

with norm at most 1 (equal to 1 since the mapping corresponds to the identity) and inter-

polation of (A.18) and (A.19) yields continuity of

v X (o) = X0y Xom)i-s (A.21)

with norm bounded by T'~%. Interpolating (A.20)) and (A.21) yields continuity as a mapping

v (X ry Xo.)i-s—a = X1y X(o,))1-s

with norm bounded by T'%, since reiteration gives

[X(lo,Ty [X(lo,TyX?o,T)]l—s]% = [X(lo,TyX?o,T)]l—s—a

with equal norms due to [I3] O
Lemma A.13. Let X1, X be real, separable Hilbert spaces and s € (0,1) \ {3}. Let K be
a linear operator that is continuous as a mapping X1 — X9 and f € H*((0,T), X1). Then,

I () s 0,7),5x2) < Clf s 0.1),x1)
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with a constant C independent of T'.

Proof. Let —oo < Ty < Ty < oo The operator K defined by K(f)(t) = K(f(t)) for a.e.
t € (T1,Ty) is continuous as a mapping L2((T1,Ts), X1) — L*((T1,T3), X2) and as a map-
ping H'((T1,T»), X1) — H'Y((T1,T3), X2) with norms bounded by C independent of T,
since &K (f) = K(Of). For f € H'((T1,T»), X1) with f(T1) = 0 we obtain K(f)(T1) =

K(f(T1)) = 0. Therefore, K is continuous as a mapping (Xl)% ) ~ (XQ)?T1 1,) and as a

mapping (Xl)%Tl,Tg) — (X2)%T1,T2) with norms at most C. By

H*((T1,T), X1) — H*((T1, Tz), X2),

X
: 0 (A.22)
[(Xl)(Tl,TQ)a (Xl)(ThTQ)]lfs — [(XZ

K:
K : )%T17T2)’ (X2)?T1,T2)]1*57

are continuous with norms at most C. By definitions (A.1]) and (A.12)) the assertion is shown
for s € (0,%). Moreover, the definition (A-11)) of L on (0,7 implies for s € (3,1)

L(K(f)) = (K(HNO)T; Ty — 1) = K(FO)T; 1 (Ty 1)) = K(L(f)(t) = K(L(f))-

(A.23)
By and ,
IK(f) - L(f((f))H[(X2)(10’T),(X2)?07T)]1,5 = |K(f - LDy 791 (X2)% 1
< Olf = LD ix0)y 1y (X008 -0
ILC (O s (0,000, %) = I (L) s (0,000, 5%) < CILCO a2 ((0,00),%1)
with a constant C independent of 7. O

Lemma A.14. Let X be a real, separable Hilbert space, s > 0 such that s + % ¢ N and
T1 < T5. Then,

HUHHS((Tl,Tz),X) = HﬁHHs((o,TrTl),Xy
for all u € H*((Th,T5), X), where u(t) := u(t + T1) for (a.e.) t € (0,75 — T1).

Proof. For s € Ny the assertion holds true. Let s € (0,1) \ {3}. Let Ty > Ty (Ty = oo not
excluded). It holds

HuHHl((Tl,TQ),X) = HaHHl((O,TQ—Tl),X)’

el 2y ), ) = Nl 220,710 )

forallu € HY((Ty,Ty), X),and u € L?>((T1,Ty), X) respectively, and i(t) = u(t+1}) for (a.e.)
t € (0,75 — T1). Interpolation and [[2] yields continuity of the mapping u — @ as a mapping

m : 1 0
from H*((T1,1>),X) — H*((0,T7% — T1), X) and as a mapping from [X(Tl,Tg)’X(Tl,Tz)h_S —

[X (10 T2*T1)7X (00 T2*Tl)]1_ s With continuity constants bounded by 1. Analogously, we obtain

continuity of the mapping @ — u as a mapping from HS((O,TQ -T),X)— H*((11, T3), X)
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— (X! li—s with continuity

: 1 0
and as a mapping from [X (leb),X (T 5)

0
(0,To— Tl)’X(O,Tngl)]l_s
constants bounded by 1. Hence,

||“HHS (T1,1%),X) — Hﬂ”HS (0,T,—T}),X)"

= [lallx

||u”X1 X (0,79 —T1)’ (0,T2fT1)]1_s

(1y,T3) (Tlﬁ@]l

—~

Furthermore, L(u) = L(%) in case s € (3, 1), where au/)(t) := L(u)(t+T) for t € (0, To—T7).
This yields the result for s € (0,1) \ {3}. The proof for s > 1 such that s + 1 ¢ N is
straightforward. O

With these Lemmas it is straightforward to verify properties [P1] - [P8]

A.1.2. Definition via Sobolev-Slobodeckij-Norm

Alternatively, one can also construct a norm that satisfies properties [P1] - by using the
Sobolev-Slobodeckij norm. Let —oo <T1 < Ty < oc0. Let || || go(ry 1), x) = I | 22((11 /1), %)
Furthermore, let for o € (0,1) \ {3},

1 .
1 W (@ 1), x) = (| o (@m0 + 7 %(t T1)~2|| - (1)[15dt)? if o €(0,7),
MHo(1,1),%) = 9 1
1 0 Proicaron + £ 26— T2 = L)%} ifo e (3,1),
(A.24)

where, for o € (%, 1), L is chosen as a linear operator that is continuous as a mapping
L: H°(Th,T),X) — H°((Th,>), X),
and such that there exists a constant C' independent of AT := To — T3 such that
| L(w)] 1o ((71,00),%) < Cllu(T1)]|x,
and L(u)(T1) = u(T1), e.g., for fixed T} > 0,

w(T)T; (T + T —t) forte (Th,T1 +Ty),
0 for t € [Th + T, 0).

Lu)(t) = {

Lemma A.15. Let o € (0,1) \ {3}. Then, there exist Car > 0 that depends on
AT =T, — T such that
ul o (1, 10), %) < vl (u,m),x) < Carlulme (,m),x)

for all w € H((1T1,13), X).

Proof. The first inequality follows directly from the definition of || -|| go (7, 1), x)- The second
inequality is a direct consequence of [90, p. 57, Thm. 11.2 and p. 59, Thm. 11.3]. Even
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though the theorems [00, Thm. 11.2 - Thm. 11.3] are formulated in the scalar valued spaces,
the proofs of the theorems, as well as, [90} p. 47, Remark 9.5] imply the validity for X-valued
spaces. More precisely, the following holds:

138

e Let 0 € (0,3) and u € H°((T1,T3), X):

Due to [90, p. 60, Thm. 11.4] we know that

U] o (R, x) < Car|ulgo(1,,1m),%)

t) ifte (11, T
for u(t) := u(t) ifte (71, 72), Thus, for T5 > T, using [90, p.57, Thm. 11.2],
0 else.

Ty T3
t/ &—TDJWW@W§ﬁEa/ (t = 1) 2 [[a(t) %t
T1

T

< Clil}o (115 .x) < Clilho @ x) < Carlulto (o, ) x)-

Let o € (3,1) and u € H?((T1, 1), X):

Let v := u — L(u), va(t) := (To — T1) " (t — T1)v(Ty) for t € (T1,T5) and define
vy := v — vy. Due to [90, p. 62, Thm. 11.5], v; € HJ((T1,T>), X) and, by [90, p. 60,
Thm. 11.4],

01] 5o @, x) < Carlvi|ge (1, 1),x)

’Ul(t) ifte (Tl,TQ),

where 01(t) := Furthermore, for 75 > Ty, using [90, p. 59,

0 else.
Thm. 11.3],
2 2 2 s 2 2
(t—=T1) "7 |vr(t dtg/ t—T7) o1 (b)||5dt
/T1 )"l ()% . ( ) lo ()% (A.25)
< Clo1 oo (1.1, x) < Clor|Ho @ x) < Car|vi e (1y.1).5)
and
Ty Ts
/ a—ﬂr%mxm&ﬁz/'u—ﬂP*%B—Tﬁﬂwwm&ﬁ
Ty T
_ oy A.26
- (3-20) (-1 Tk
< Carlolbo 7y 1) x):
Since |va|go (1, 1) x) < Carlv(T2)|[x < Carlvlae (1 ) x) and
vl b (11,12),%) < Nule (o m),x) + LW 1o ((1y,15),%) (A.27)

< ulgo((1y,1),x) + Cllu(Th)| x < Carlulge i 1),x)s

where the last inequality follows from the equivalence of the Sobolev-Slobodeckij norm
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to interpolation norms (Remark and [90, p.41, Proof of Thm. 9.4]. (A.25), (A.26)
and (A.27) imply

™ 2 2 2
[ =1 oBede < Carlulyor, )

T

Lemma A.16. Let Ty > T and o € (0,1) \ {3}. Then, the extension operator

Bsctay 0 for t € (T'—1T%,0),
u(t) forte (0,7),

is continuous as a mapping Y(o T~ Y(‘;_Tf ) with norm bounded by 1.

Proof. Direct computations show that for u € Y(%’T),

[ull 7o (0.1),3) = [Ext ()| 5o ((—oo,1),x) = 1EX(W)|| 7o (77 .7),3) - (A.28)

This can be verified as follows: It holds that

T || Ext(u)(t) — Ext(u)(s)|3
Bt oty = / / s\2a+1 X dsdt + |[Ext(w)l|72 (oo 1y.x)-
We know that

[Ext(w) || £2((—00,1),x) = IEXt (W) L2((r—17,7),%) = [l L2((0,7),%)>

further,

[Ext(u)(t) — Ext(u)(s)[%
/ / t—s|20+1 dsdt
T Jlu(t) — u(s)ll% lu(t)]I3
dsdt + 2 X dsdt
/ / |t—s|2ff+1 ! / = i
R LORIO| L Hu( Wi [ a % tdadt
\t—sP"H x ). q

T [[u(t) HX 1 T —20 2
t— S|20+1 dsdt + — ; £ Ju(t) X dt,
and, analogously,

/ /T [Ext(u)(t) - Ext()()% .

|t _ S|20’+1

Ext(u Ext(u =1 E t(u
L[ I By [T [ OO,
-1 JT-T} |t — s[> —Ty — s[>
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T ||Ex X 2 T
/ I ek - [ (1 1) () 0.

O

Lemma A.17. Let 0 < T < Ty, 0 € (0,1) \ {3} and X be a Hilbert space. Then, the
restriction operator

R()(®) =-(t)

is continuous as a mapping H?((0,7), X) — H?((0,7T), X) with norm bounded by 1.
Proof. Follows from the definition of the norm (A.24]). O

Lemma A.18. Let Ty > T > 0, X be a Hilbert space and o € (0,1) \ {3}. Furthermore,
let we H((T —T¢,T), X) be such that ul(r_7, 0) = 0. Then,

HUHH“((D,T),X) = HUHH"((T—Tf,T),X)-

Proof. Follows due to (A.28)). O

Lemma A.19. Let X be a Hilbert space, o € [0,1) \ {3} and @ > 0 be chosen such that
o+a€(0,1)\ {i}. Then, there exists a constant C independent of T such that

1wl o 0.0),x) < CTJull ro+a(0.1),%)
for all u € Y(‘(T)}O)‘
Proof. We have

T
HUH%Q((O,T),X) < T2(0+a)/0 20 [lu(t) [frdt < T2(U+a)HUH%{U+D¢((O,T),X)' (A.29)

In addition,

T ”U’ HXd dt < T2a T ”'LL HXd dt < T2a||u||
’S _ t’20'+1 |S - t|2 Ho+a((0,T),X)

(A.30)
and
r 2 2 r 2 2 2 2 r 2 2
/0 €27 (1) | dt = /0 (20420040 (1) 3.t < T2 /0 €205 [y (1) dt. (A31)
Combining (A.29)), (A.30) and (A.31)) yields the assertion. O
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Lemma A.20. Let X be a Hilbert space, o € [0,1) \ {3}. Then, there exists a constant C
independent of T" such that

Il o ((0,7),x) < CT 7 lull 10,1y, )

for all u € Y(o )

Proof. Let u € Y(B’T). Since u(0) = 0 and due to Holders’ inequality,

T t T t
1
Jullfaom = [ 1] dulrarifae < [t [ loa(rlidrds < STl
0 0 0 0 2

(A.32)
Moreover, for o € (0, 3),
T lu(s) = u(®)|5% [u(s) — u(t)]3
dsdt = 2 2 X st
/ / \s—t\1+2" / / IS—t|1+2"
<2 / / (t—s) 2 / l|0gu(r)||% drdsdt (A.33)
o 2 —40
< 2l o, / / dsdt = s Tl o

and for o € (3,1),

T [[u(s) ”X [u(s) HX
/ / |s—t|1+20 dsdt—2/ / \s—t\HQU — 2 (sdt
<2/ / (t—s) /H@tu HXdesdt—Q/ // 827 | Byu(r) % dsdrdt

=2 / / (20 — 1) ((t— )72 — 72| 9gu(r) | drdt

(A.34)
220 —1)" / / —2otl 72000 9pu(T) || % ddT
=220 —-1)"1(2-20)" / (T — 7)27%7 = T*727 4+ 72729)| | Opu(7) | X dT
0
<2020 -1)"12— 20)_1T2_2a||U||§{1((0,T),X)~
Furthermore, for o € (0,1),
T T t
/ 727 | u(t) | X dt = / 27| / Ovu(t)dr ||k dt

0 0 0 (A35)

T t 1
< / {20 / Owu(r) | drdt <
0 0 2 —

2—2 2
oo Ll o) x)-
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(A.32), (A.33), (A.34) and (A.35) imply the assertion. O]

Lemma A.21. Let X1, Xs be real, separable Hilbert spaces and o € (0,1) \ {3}. Let K be

a linear operator that is continuous as a mapping X1 — X9 and f € H?((0,7), X;). Then,
K ()l Ee0.1),x2) < CllfIlHo((0,1),x1)
with a constant C' independent of 7.

Proof. Follows directly from the definition (A.24)) of the norm. O]

Lemma A.22. Let X be a real, separable Hilbert space, o € [0, 1]\ {%} and 71 < Tb. Then,
HUHH”((Tl,Tz),X) = HﬁHHU((o,Tz—Tl),X)a

for all w € H7((Th,T»), X), where u(t) := u(t + T1) for (a.e.) t € (0,72 — T1).

Proof. Follows from the definition (A.24) of the norm and substitution t :=t — 77. O

For s=m+o,meN, o€[0,1)\ {1}, define

N[

H : ”HS((Tl T),X) = {(” . ||?{m71((T1,T2),X) + Hatm(')||?¥cr((T17T2)7X)) if o€ (O, 1) \ {%},
o | - HH’"((Tl,Tg),X) if o =0.

and with Lemmas - it is straightforward to verify properties [P1]- [P8]of the norm.
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