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Abstract

In this thesis, we investigate unsteady fluid-structure interaction (FSI) problems. We prove
a new improved regularity result for the linear hyperbolic wave equation. Under the assump-
tion that this result can be adapted to the Lamé system, we show that a linear FSI problem
attains a unique solution under weaker assumptions on the geometry of the domain than in
previous works. This is also the basis for a local-in-time existence and regularity result for
a nonlinear, unsteady FSI problem that couples the Navier-Stokes equations with the Lamé
system. Furthermore, we examine shape optimization for unsteady FSI. Since the concept
of domain transformations is well-established in the monolithic FSI context due to the ne-
cessity of representing the coupled system in a uniform framework, we apply the method of
mappings. We develop a general framework for deriving continuity and differentiability for
the solution of nonlinear, unsteady, parameter-dependent partial differential equations and
apply it to show differentiability of the states of the unsteady FSI problem with respect to
domain variations. In order to show the viability of our approach for shape optimization of
unsteady FSI, we further do numerical simulations.

Zusammenfassung

Diese Arbeit befasst sich mit instationären Fluid-Struktur Interaktionsproblemen. Wir be-
weisen eine neue verbesserte Regularitätsabschätzung für die Normalenableitung der Lösung
der linearen, hyperbolischen Wellengleichung. Unter der Annahme, dass diese Regulartiät-
saussage auf das Lamé-System übertragen werden kann, zeigen wir die Existenz und Ein-
deutigkeit von Lösungen für ein lineares FSI Problem unter weniger restriktiven Vorausset-
zungen an die Geometrie des Gebietes als in bisher verfügbaren Resultaten. Ausgehend davon
lässt sich auch zeitlokale Existenz und Eindeutigkeit von Lösungen für ein nichtlineares, in-
stationäres FSI Problem, das die Navier-Stokes Gleichungen und das Lamé System koppelt,
herleiten. Desweiteren wird Formoptimierung für instationäre FSI mit Hilfe der sogenan-
nten "method of mappings" betrachtet. Dieser Ansatz arbeitet, ähnlich wie die Herleitung
der monolithischen Darstellung des FSI Modells, mit Gebietstransformationen. Es wird ein
allgemeines Konzept entwickelt, mit dem sich Stetigkeits- und Differenzierbarkeitsaussagen
für die Lösungen von nichtlinearen, instationären und parameterabhängigen Differentialgle-
ichungen herleiten lassen. Wir wenden dieses an, um Differenzierbarkeit der Zustände des
instationären FSI Problems bezüglich Gebietsvariationen zu zeigen. Numerische Simulatio-
nen demonstrieren die Praktikabilität des Formoptimierungsansatzes für instationäre FSI.
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Notation

N natural numbers (without 0)
N0 = N ∪ {0} natural numbers with 0

R real numbers
C complex numbers
d dimension d ∈ N
∅ empty set
I identity matrix I ∈ Rd×d

I time interval I = (0, T ), T > 0

Ω,Ωf ,Ωs domain/ subset of Rd, fluid part of domain Ω, solid part
of domain Ω

Γ, ∂Ω boundary of domain Ω

Γi interface between fluid and solid part of domain, one re-
quires that Ω = Ωf ∪Ωs ∪ Γi, Ωf ∩Ωs = ∅, Ωf ∩Ωs = Γi

Γf , (Γs) outer, exterior boundary part of Ωf (Ωs), Γf = ∂Ωf \ Γi,
(Γs = ∂Ωs \ Γi)

ΓfD, (ΓsD) part of Γf (Γs), where Dirichlet boundary conditions are
imposed

ΓfN , (ΓsN ) part of Γf (Γs), where Neumann boundary conditions are
imposed

·̌ superscript indicating that we are in the physical
framework

·̂ superscript indicating that we are in the ALE framework
·̃ superscript that indicates that we are in the framework

for shape optimization with the method of mappings
approach

ξ coordinates on Ω

x coordinates on Ω̌

y coordinates on Ω̂

z coordinates on Ω̃

t, s time coordinates
·f indicates that the quantity is defined on the fluid part of

the domain
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·s indicates that the quantity is defined on the solid part of
the domain

·h indicates that the discretized version of the quantity is
considered

QT∗ space-time cylinder Ω∗×(0, T ), except for physical domain
where it is defined as Q̌T∗ :=

⋃
t∈I Ω̌∗(t)× {t}

ΣT
∗ space-time cylinder Γ∗×(0, T ), except for physical domain

where it is defined as Σ̌T
∗ :=

⋃
t∈I Σ̌∗(t)× {t}

v, u, u velocity
p, q, q pressure
w, z, z displacement
div(·),
(divx(·),divy(·), divz(·))

divergence, differential operator defined by div(v) =∑d
i=1 ∂ξivi for a vector valued quantity v : Ω → Rd and

by div(A) = (
∑d

i=1 ∂ξiAj,i)j for a matrix valued quantity
A : Ω→ Rd×d, (analogue definition on Ω̌, Ω̂, Ω̃)

∇(·), (∇x(·),∇y(·),∇z(·)) gradient, differential operator defined by ∇p = (∂ξip)i for
a scalar valued quantity p : Ω→ R and by∇v = (∂ξivj)i,j
for a vector valued quantity v : Ω → Rd, (analogue defi-
nition on Ω̌, Ω̂, Ω̃)

D(·), (Dx(·), Dy(·), Dz(·)) Jacobian, differential operator defined by Dv =
(∂ξjvi)i,j = ∇v> for a vector valued quantity v : Ω→ Rd,
(analogue definition on Ω̌, Ω̂, Ω̃)

Dα differential operator of order α ∈ Nd0, Dα = ∂α1+···+αd

∂ξ
α1
1 ...∂ξ

αd
d

,

|α| = α1 + · · ·+ αd

ε(v), (εx(v), εy(v), εz(v)) differential operator defined by ε(v) = 1
2(Dv + Dv>),

(analogue definition on Ω̌, Ω̂, Ω̃)
σf (v, p), (σf,x(v̌, p̌),
σf,y(v̂, p̂), σf,z(ṽ, p̃))

fluid stress tensor, differential operator defined by
σf (v, p) = 2νε(v)− pI, (analogue definition on Ω̌, Ω̂, Ω̃)

Σs,y(ŵ) solid stress tensor, differential operator
n outer unit normal vector
χ̂ ALE transformation, maps Ω̂∗ × (0, T )→ Q̌T∗
Υ̌ inverse of χ̂
τ̃ transformation for shape optimization with method of

mappings, maps Ω̃∗ → Ω̂∗, cf., Section 2.7
ũτ control for shape optimization with method of mappings,

cf., Section 2.7
F̂χ deformation gradient F̂χ = Dyχ̂

F̂Υ inverse deformation gradient F̂Υ = F̂−1
χ

Ĵχ determinant of deformation gradient Ĵχ = det(F̂χ)

iv



σ̂f transformed fluid stress tensor σf,x(v̌f , p̌f ) ◦ χ̂
σ̂s appropriate definition to obtain an analogy to the fluid

equations, σ̂s := Ĵχ
−1

F̂χΣs,y(ŵs)F̂
T
χ

D(Ω) space that contains all ϕ such that ϕ : Ω→ R is infinitely
differentiable on Ω and has compact support in Ω

D′(Rd) space of distributions, dual space of D(Rd)
S ′(Rd) space of tempered distributions, subset of D′(Rd)
S(Rd) Schwartz space
Lp(Ω) Banach space of equivalence classes of measurable, p-

integrable (p ∈ [1,∞)) or essentially bounded (p = ∞)
functions on Ω

Fv Fourier transform of integrable function v : R→ C
Cm(Ω) space of m-times differentiable functions on Ω, endowed

with the norm ‖v‖Cm(Ω) =
∑
|α|≤m maxξ∈Ω |Dαv(ξ)|

Hs(Γ) cf., Section 2.2.1
Hs(Ω) cf., Section 2.2.2
Hs((0, T ), Hr(Ω)),
Hs((0, T ), X)

cf., Section 2.2.3

Hs,r(Q) cf., Section 2.2.3
[X,Y ]θ complex interpolation of two Hilbert spaces X, Y such

that X ⊂ Y and X dense in Y , θ ∈ [0, 1] with continuous
injection, cf., [90, p. 10, Def. 2.1]

C∞0 (Ω) C∞0 (Ω) = D(Ω)

L2((0, T ), X) L2((0, T ), X) = H0((0, T ), X)

dS(ξ) surface measure on ∂Ω

ET (H2+`,1+ `
2 (QTf ))d, cf., Section 2.2.4

ET,M0,v0 subset of ET , cf., Section 2.2.4

FT (H`, `
2 (QTf ))d, cf., Section 2.2.4

GT L2((0, T ), H1+`(Ωf )) ∩ H
`
2 ((0, T ), H1(Ωf )), cf., Section

2.2.4

GT H1+ `
2 ((0, T ), L2(Ωf )d), cf., Section 2.2.4

HT H
1
2

+`, 1
4

+ `
2 (ΣT

i ), cf., Section 2.2.4

HT (H
1
2

+`, 1
4

+ `
2 (ΣT

i ))d, cf., Section 2.2.4

PT {p ∈ L2(QTf ) : ∇p ∈ H`, `
2 (QTf ), p|ΣTi ∈ H

1
2

+`, 1
4

+ `
2 (ΣT

i )},
cf., Section 2.2.4

PT,M0,v0 subset of PT , cf., Section 2.2.4

ST H1((0, T ), H1+`(Ωf )) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )), cf., Sec-

tion 2.2.4
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ST H1((0, T ), H1+`(Ωf )d) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )d), cf., Sec-

tion 2.2.4

ST H1((0, T ), H1+`(Ωf )d×d) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )d×d), cf.,

Section 2.2.4

WT C([0, T ], H
7
4

+ `
2 (Ωs)

d)∩C1([0, T ], H
3
4

+ `
2 (Ωs)

d), cf., Section
2.2.4

B set of first order operators tangential to boundary, cf.
(2.15)

B arbitrary first order operator, B =
∑

i bi(ξ)∂ξi for bi ∈
C∞(Ω)d

Ext extension operator in time, cf., Section 2.5
ext extension operator in space, cf., Proof of Lemma 3.17
R restriction operator in time, cf., Section 2.5
P Leray projector, cf., Section 3.3.2
I identity L2(Ωf )d → L2(Ωf )d, cf., Section 3.3.2
R regularization term in optimization problem, cf., Section

5.3.2
Ôad set of admissible domains, cf., Section 2.7
T̃ ad set of admissible transformations, cf. Section 2.7
Ũad {ũτ : Rd → Rd : idz + ũτ ∈ T̃ ad}, cf. Sections 2.7, 4
{Oj , ϕj , αj} system of local maps and partition of unity, cf., Section

2.2.1
(·, ·)Ω L2(Ω) inner product of functions, cf., Section 3.1
(·, ·)Γ L2(Γ) inner product of functions, cf., Section 3.1
((·, ·))QT L2(QT ) inner product of functions, cf., Section 3.1
((·, ·))ΣT L2(ΣT ) inner product of functions, cf., Section 3.1
Th triangulation
Pk(Th)m space of continuous, piecewise polynomial functions up to

degree k on the triangulation Th
Pk0 (Th)m subspace of Pk(Th)m, contains functions that have value

0 on the boundary of
⋃
K∈Th K
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1. Introduction

Fluid-structure interaction (FSI) is a particularly important subclass of multi-physics prob-
lems that arise frequently in applications such as wind turbines, bridges, naval architecture
or biomedical applications, cf., e.g., [21, 11, 33, 42, 45, 46, 69, 70, 76, 127]. We focus on appli-
cations with incompressible flow and consider fluid modeled by the unsteady incompressible
Navier-Stokes equations. These equations are formulated in the Eulerian framework, i.e.,
on the time-dependent physical domain Ω̌f (t) ⊂ Rd for t ∈ I := (0, T ), T > 0. We divide
the fluid boundary ∂Ω̌f (t) = Γ̌fD(t) ∪ Γ̌fN (t) into two disjoint parts, on which Dirichlet
(on Γ̌fD(t)) or Neumann (on Γ̌fN (t)) boundary conditions are imposed. The corresponding
space-time cylinders shall be denoted by

Q̌Tf :=
⋃
t∈I

Ω̌f (t)× {t}, Σ̌T
fD :=

⋃
t∈I

Γ̌fD(t)× {t}, Σ̌T
fN :=

⋃
t∈I

Γ̌fN (t)× {t}.

The differential equations are given by

ρf∂tv̌f + (v̌f · ∇x)v̌f − divx(σf,x(v̌f , p̌f )) = ρf f̌f on Q̌Tf ,

divx(v̌f ) = 0 on Q̌Tf ,

v̌f = v̌fD on Σ̌T
fD,

σf,x(v̌f , p̌f )ňf = ǧf on Σ̌T
fN ,

with the initial condition
v̌f (·, 0) = v̌0f on Ω̌f (0),

where v̌f denotes the fluid velocity, p̌f the pressure and ňf the outer unit normal vector. f̌f ,
v̌fD, ǧf and v̌0f are right-hand side, boundary and intitial terms. The fluid stress tensor is
defined by

σf,x(v̌f , p̌f ) = ρfνf (Dxv̌f +Dxv̌f
T )− p̌fI,

with unit matrix I ∈ Rd×d and Jacobian Dx(·) := (∂xj (·)i)i,j . The parameters ρf and νf
denote the fluid density and viscosity, respectively. The structure equations, however, are
formulated in the Lagrangian framework, i.e., on a fixed reference domain Ω̂s with disjoint
Dirichlet and Neumann boundary parts Γ̂sD and Γ̂sN such that ∂Ω̂s = Γ̂sD ∪ Γ̂sN . The
physical domain Ω̌s(t) for any t ∈ I is obtained by the transformation χ̂s(·, t) : Ω̂s → Ω̌s(t),
χ̂s(y, t) = y + ŵs(y, t), where the deformation ŵs solves the hyperbolic equations

ρs∂ttŵs − divy(F̂χsΣs,y(ŵs)) = ρŝfs on Q̂Ts := Ω̂s × I,
ŵs = ŵsD on Σ̂T

sD := Γ̂sD × I,

1



1. Introduction

F̂χsΣs,y(ŵs)n̂s = ĝs on Σ̂T
sN := Γ̂sN × I,

ŵs(·, 0) = ŵ0s on Ω̂s,

∂tŵs(·, 0) = ŵ1 on Ω̂s,

and we define F̂χs := Dyχ̂s. Here, ρs denotes the structure density and f̂s, ŵsD, ĝs, ŵ0s and
ŵ1 denote right hand side, boundary and intial terms.

• For a linear elastic material the stress tensor Σs,y(ŵs) is given by

Σs,y(ŵs) := F̂−1
χs (µs(Dyŵs +Dyŵ

>
s ) + λstr(Dyŵs)I),

where the so-called Lamé coefficients λs and µs are chosen such that µs > 0 and
λs + µs > 0.

• For the nonlinear Saint Venant Kirchhoff type material the stress tensor Σs,y(ŵs) is
given by

Σs,y(ŵs) := λstr(Êχs)I + 2µsÊχs ,

with Êχs := 1
2(F̂>χsF̂χs − I).

The first challenge for considering the coupled problem arises from the fact that the above
canonical models for the fluid and structure equations are formulated in different frameworks.

For FSI simulations, partitioned as well as monolithic approaches have been proposed.
Partitioned methods solve the corresponding models seperately and typically apply fixed
point iterations to the coupling interface conditions, which can, e.g., be accelerated by Quasi-
Newton [30, 77]. Monolithic approaches [32, 36, 43, 44, 50, 60, 129], such as arbitrary
Lagrangian-Eulerian (ALE) [32, 36, 60] and fully Eulerian methods [36, 43, 44, 129, 130],
use the same reference frame for fluid and solid. While fully Eulerian approaches use the
spatial reference frame, the ALE framework is obtained by introducing an arbitrary but
fixed reference domain Ω̂f such that the fluid and solid reference domains are disjoint, i.e.,
Ω̂s ∩ Ω̂f = ∅, and share the same boundary at the interface Γ̂i := Ω̂s ∩ Ω̂f . Moreover, an
extension χ̂(t) : Ω̂s → Ω̂ of the solid transformation χ̂s(t) to the whole reference domain
Ω̂ := Ω̂s ∪ Ω̂f ∪ Γ̂i is introduced for any t ∈ I. It can, e.g., be obtained by choosing a fully
Lagrangian setting or an harmonic or biharmonic extension of the solid displacement to the
fluid reference domain. Transformation of the fluid equations with the help of χ̂ to the fixed
reference domain Ω̂f and coupling the fluid and structure equations across the interface Γ̂i

2



yields the system of equations

(ρf∂tv̌f + (v̌f · ∇x)v̌f − divx(σf,x(v̌f , p̌f ))) ◦ χ̂ = ρf f̂f on Ω̂f × I,
divx(v̌f ) ◦ χ̂ = 0 on Ω̂f × I,

v̌f ◦ χ̂ = v̂fD on Γ̂fD × I,
(σf,x(v̌f , p̌f )ňf ) ◦ χ̂ = ĝf on Γ̂fN × I,

v̌f ◦ χ̂(·, 0) = v̂0f on Ω̂f ,

ρs∂
2
ttŵs − divy(F̂χsΣs,y(ŵs)) = ρŝfs on Ω̂s × I,

ŵs = ŵsD on Γ̂sD × I,

F̂χsΣs,y(ŵs)n̂s = ĝs on Γ̂sN × I,
ŵs(·, 0) = ŵ0s on Ω̂s,

∂tŵs(·, 0) = ŵ1 on Ω̂s

(1.1)

with additional coupling conditions

∂tŵs = v̌f ◦ χ̂ on Γ̂i × I,

−(σf,x(v̌f , p̌f )ňf ) ◦ χ̂ = F̂χsΣs,y(ŵs)n̂s on Γ̂i × I.

Here, f̂f := f̌f ◦ χ̂ and ĝf , v̂fD, as well as, v̂0f are defined analogously. Introducing v̂f =

v̌f ◦ χ̂, p̂f = p̌f ◦ χ̂, σ̂f = σf,x(v̌f , p̌f ) ◦ χ̂, σ̂s := Ĵχ
−1

F̂χΣs,y(ŵs)F̂
>
χ , where F̂χ := Dyχ̂ and

Ĵχ := det(F̂χ), as well as, v̂s = ∂tŵs, yields the equivalent formulation

Ĵχρf∂tv̂f + Ĵχρf ((F̂−1
χ (v̂f − ∂tχ̂)) · ∇y)v̂f

−divy(Ĵχσ̂f F̂
−>
χ ) = Ĵχρf f̂f on Ω̂f × I,

divy(ĴχF̂−1
χ v̂f ) = 0 on Ω̂f × I,
v̂f = v̂fD on Γ̂fD × I,

Ĵσ̂f F̂
−>
χ n̂f = ĝf on Γ̂fN × I,

v̂f (·, 0) = v̂0f on Ω̂f ,

ρs∂tv̂s − divy(Ĵχσ̂sF̂
−>
χ ) = ρŝfs on Ω̂s × I,

ρs∂tŵs − ρsv̂s = 0 on Ω̂s × I,
ŵs = ŵsD on Γ̂sD × I,

Ĵχσ̂sF̂
−>
χ n̂s = ĝs on Γ̂sN × I,

ŵs(·, 0) = ŵ0s on Ω̂s,

v̂s(·, 0) = ŵ1 on Ω̂s

(1.2)
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1. Introduction

with additional coupling conditions

∂tŵs = v̂s = v̂f on Γ̂i × I,

−Ĵχσ̂f F̂−>χ n̂f = Ĵχσ̂sF̂
−>
χ n̂s on Γ̂i × I,

where the transformed fluid stress tensor is given by

σ̂f := ρfνf (Dyv̂f F̂
−1
χ + F̂−>χ Dyv̂

>
f )− p̂fI.

In the following, for the sake of convencience, we will omit the f, s-indices for the functions
v̂f , v̂s, ŵs and p̂f . Furthermore, we will denote coordinates on the physical domain Ω̌ by
x and on the reference domain Ω̂ by y and the subscripts of the nabla-operators indicate on
which variables they act on.

Remark 1.1. That the system (1.2) coincides with the system (1.1), that is also the basis
for the considerations in [113], can be motivated with the following considerations. It holds∫

∆Ω̂f

divy(ĴχF̂−>χ )dy =

∫
∆Ω̂f

(divy(((ĴχF̂−>χ )j,·)
>))jdy =

∫
∂∆Ω̂f

ĴχF̂−>χ n̂fdsy.

With Nanson’s formula we obtain∫
∂∆Ω̂f

ĴχF̂−>χ n̂fdsy =

∫
∂∆Ω̌f (t)

ňfdsx,

where ∆Ω̌f (t) = χ̂(∆Ω̂f , t) and ∂∆Ω̌f (t) = χ̂(∂∆Ω̂f , t). The latter term is equal to∫
∂∆Ω̌f (t)

ňfdsx =

∫
∆Ω̌f (t)

divxIdx = 0.

Thus, ∫
∆Ω̂f

divy(ĴχF̂−>χ )dy = 0.

Since the test volume ∆Ω̂f is chosen arbitrarily, we have Piola’s identity

divy(ĴχF̂−>χ ) = 0.

Therefore, we have

divy(Ĵχσ̂f F̂
−>
χ ) =

∑
i

∂yi(Ĵχσ̂f (F̂−>χ ))j,i =
∑
i,k

∂yi(Ĵχ(σ̂f )j,k(F̂
−>
χ )k,i)

=
∑
i,k

∂yi(Ĵχ(F̂−>χ )k,i)(σ̂f )j,k + ∂yi((σ̂f )j,k)Ĵχ(F̂−>χ )k,i

=
∑
k

divy(ĴχF̂−>χ )k(σ̂f )j,k +
∑
i,k

∂yi((σ̂f )j,k)Ĵχ(F̂−>χ )k,i,
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implying that

divy(Ĵχσ̂f F̂
−>
χ ) =

∑
i,k

∂yi((σ̂f )j,k)Ĵχ(F̂−>χ )k,i.

In addition, it holds that

(divx(σ̌f ))j =
∑
k

∂xk(σ̌f )j,k =
∑
k

∂xk((σ̂f )j,k ◦ χ̂−1) =
∑
i,k

(∂yi(σ̂f )j,k) ◦ χ̂−1∂xkχ̂
−1
i

=
∑
i,k

(∂yi(σ̂f )j,k) ◦ χ̂−1(F̂−1
χ )i,k ◦ χ̂−1 = (

∑
i,k

∂yi((σ̂f )j,k)(F̂
−>
χ )k,i) ◦ χ̂−1.

This shows that
divy(Ĵχσ̂f F̂

−>
χ ) = Ĵχ(divx(σ̌f )) ◦ χ̂.

Due to its nonlinearity FSI problems are a challenging problem. It can be simplified by
reduction of the introduced system to a model that is linear or steady or has a stationary
interface. Thus, we obtain an hierarchy of increasing difficulties, ranging from steady, e.g.,
[51, 132], to unsteady, e.g., [17, 27, 28, 34, 38, 72, 83, 84, 85, 113], from stationary, e.g.,
[9, 34, 38, 84, 85], to moving interfaces, e.g., [17, 27, 28, 72, 83, 113], and from linear, e.g.,
[34, 38, 132], to nonlinear models, e.g., [9, 17, 27, 28, 51, 72, 83, 84, 85, 113]. We first focus
on an unsteady, linear model with stationary interface. Since the interface is stationary (and
we assume the outer fluid boundary to be fixed) there is no distinction between Ω̌(t) and
Ω̂ for t ∈ I. For that reason and for the sake of clarity we omit the superscripts. From
an applicational point of view, the model corresponds to a physical situation in which the
displacement of the solid is one order of magnitude smaller than its velocity, i.e., the solid
oscillates rapidly with small amplitude [9]. From an analytical point of view, it can be seen as
the foundation for the analysis of a more difficult setting. In [113] an existence and regularity
result for the system with stationary interface

∂tv − ν∆v +∇p = f in QTf ,

div(v) = g = div(g) in QTf ,

v(·, 0) = v0 in Ωf ,

v = vD on ΣT
f ,

v = ∂tw on ΣT
i ,

σf (v, p)nf = σs(w)nf + h on ΣT
i ,

∂ttw − div(σs(w)) = 0 in QTs ,
w(·, 0) = 0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

w = 0 on ΣT
s ,

(1.3)

is used for the derivation of a local-in-time existence and regularity result for the unsteady,
non-linear model with moving interface that couples the Navier-Stokes equations with linear
elasticity, the ALE reformulation of which corresponds to system (1.3) if the nonhomo-

5



1. Introduction

geneities h, f , g are chosen such that they collect the appearing non-linear terms. We denote
the exterior fluid boundary by Γf = ∂Ωf \Γi and the exterior solid boundary by Γs = ∂Ωs\Γi.
The corresponding space-time cylincers are denoted by ΣT

s and ΣT
f , respectively. In the con-

sidered case we have ΓfD = Γf and ΓsD = Γs. For the sake of simplicity we set ρf = ρs = 1
and omit the subscript of νf . The fluid stress tensor is given by

σf (v, p) = 2νε(v)− pI,

where Dv denotes the Jacobian of v and

ε(v) =
1

2
(Dv + (Dv)>).

The solid stress tensor is defined by

σs(w) = λtrε(w)I + 2µε(w),

where the Lamé constants λ, µ are chosen such that µ > 0 and λ + µ > 0. In addition, v0,
w1 denote appropriate initial conditions on the fluid velocity and the time-derivative of the
solid displacement.

One of the main difficulties that arise in the analysis of FSI problems is the a-priori
mismatch between the regularity of the solutions of the Navier-Stokes equations and the
elasticity equations. Possibilities to circumvent this issue are adding a structural damping
term that regularizes the hyperbolic dynamics [72], using a finite dimensional approximation
for the elasticity [17], or to consider smooth data which yields local-in-time existence of
smooth solutions but leads to a loss of regularity, e.g., the regularity of the initial velocity
needs to be in H5(Ωf )d while it is only proven that the regularity of the velocity is in
L2((0, T ), H3(Ωf )d), cf. [27, 28]. These results were improved by [83] but still imply a slight
loss of regularity. Another approach is given by establishing improved or hidden regularity
results for the normal derivative of the hyperbolic solution [86] which allow to show existence
and regularity results without additional damping terms [9, 84, 85, 113]. The way, how these
hidden regularity results are established in [113] requires a restriction on the geometry of the
domain. Particularly, the interface between the solid and fluid region needs to be flat which
also requires periodicity in order to handle the problem analytically on a bounded domain.
In this thesis, we show that the same hidden regularity results can be obtained for the wave
equation without additional requirements on the domain.

As already mentioned before, from the existence and regularity result for the unsteady,
linear setting with stationary interface it is straightforward to derive local-in-time existence
and regularity results for the unsteady Navier-Stokes-Lamé system with moving interface
following the argumentation of [113], cf. Section 3.4. In the fully Lagrangian setting, this
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system reads as follows:

∂tv̂ − ν∆yv̂ +∇yp̂ = F̂(v̂, p̂) in Q̂Tf ,

divy(v̂) = Ĝ(v̂) = divy(ĝ(v̂)) in Q̂Tf ,

v̂(·, 0) = v̂0 in Ω̂f ,

v̂ = v̂D on Σ̂T
f ,

v̂ = ∂tŵ on Σ̂T
i ,

σf,y(v̂, p̂)nf = σs,y(ŵ)nf + Ĥ(v̂, p̂) on Σ̂T
i ,

∂ttŵ − div(σs,y(ŵ)) = 0 in Q̂Ts ,

ŵ(·, 0) = 0 in Ω̂s,

∂tŵ(·, 0) = ŵ1 in Ω̂s,

ŵ = 0 on Σ̂T
s .

Here, the fluid and solid stress tensors σf,y and σs,y are given by

σf,y(v̂, p̂) := 2νεy(v̂)− p̂I, and σs,y(ŵ) = λtrεy(ŵ)I + 2µεy(ŵ),

where εy(·) := 1
2(Dy · +(Dy·)>) and λ, µ are Lamé coefficients that are chosen such that

µ > 0 and λ + µ > 0. Dy(·) denotes the Jacobian. In the fully Lagrangian setting, the
transformation is given by

χ̂(·, t)|Ω̂f : Ω̂f → Ω̌f (t), y→ y +

∫ t

0
v̂(y, s)ds

for any t ∈ (0, T ) and its inverse Υ̌(·, t) := (χ̂(·, t))−1, which exists if T > 0 is sufficiently
small and the initial data are smooth enough, cf. [113]. Consequently, the right hand side
terms are given by:

F̂(v̂, p̂) = ν
∑
j,k

∂2

∂x2
j

Υ̌k ◦ χ̂
∂

∂yk
v̂ + ν

∑
i,j,k

∂

∂xj
Υ̌i ◦ χ̂

∂

∂xj
Υ̌k ◦ χ̂

∂2

∂yi∂yk
v̂

− ν∆yv̂ + (I− F̂>Υ)∇yp̂,

Ĥ(v̂, p̂) = −ν(Dyv̂F̂Υ + F̂>Υ(Dyv̂)>)cof(F̂χ)n̂f + p̂Icof(F̂χ)n̂f

+ ν(Dyv̂ + (Dyv̂)>)n̂f − p̂In̂f ,

Ĝ(v̂) = divyv̂ − det(ĴX)Dyv̂ : F̂>Υ = Dyv̂ : (I − det(ĴX)F̂>Υ),

where F̂χ = Dyχ̂ = (∇yχ̂)> is the Jacobian of χ̂ and F̂Υ := F̂−1
χ its inverse. Furthermore,

let ĝ be defined by ĝ(v̂) := (I − det(F̂χ)F̂Υ)v̂ such that divy(ĝ(v̂)) = Ĝ(v̂) due to Piola’s
identity.
Shape optimization can be analyzed with different, yet closely related, techniques. On

the one hand, shape calculus [31, 57, 58, 64, 104, 111, 112, 122] can be used to investigate
functionals Ĵ(Ω̂) depending on the domain Ω̂. The Eulerian derivative dĴ(Ω̂, V̂ ) admits a
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representation by the Hadamard-Zolésio shape gradient, a distribution that is supported on
the design boundary and only acts on the normal boundary variation V̂ · n̂f . If a state
equation is involved, the Eulerian derivative depends on the shape derivative of the state and
can be expressed using an adjoint state. An alternative approach is the method of mappings
[13, 20, 55, 78, 79, 89, 105, 120], also called perturbation of identity, which parametrizes
the shape by a bi-Lipschitz homeomorphism τ̃ : Rd → Rd via Ω̂ = τ̃ (Ω̃), where Ω̃ ⊂ Rd is
a nominal domain (or shape reference domain). Optimization can be performed based on
the function J̃ : τ̃ 7→ Ĵ(τ̃ (Ω̃)). An underlying state equation is then transformed to Ω̃ and
derivatives of J̃ can be obtained via sensitivities or adjoints. The Hadamard-Zolésio calculus
can be derived from this approach essentially by an integration by parts. The method of
mappings directly yields an optimal control setting in Banach spaces. Moreover, it fits well
in the theoretical setting of the FSI model that was introduced above since it also employs
the idea of domain transformations.
Optimal shape design problems for FSI have mainly been tackled by applied, engineering

approaches, see, e.g., [14, 62, 63, 68, 96, 97, 98, 99, 100, 119]. For developing a theoretical
foundation continuity and differentiability of the state with respect to domain variations are
studied, cf. Chapter 4. So far, in all conscience, differentiability results have only been
available for steady FSI models [106, 132].
Throughout the thesis the superscripts over the functions correspond to the superscripts of

the domains on which they are defined. Furthermore, the spatial coordinates on the physical
domain Ω̌ are denoted by x, on Ω̂, Ω̃ by y, z, respectively. If a result is valid for a general
domain or if it is clear in the context the notation Ω is used and the coordinates are denoted
by ξ.

In Chapter 2 the main definitions and concepts are collected, that are then used in Chapter
3 to derive existence and regularity results for a linear and a nonlinear unsteady FSI system
and in Chapter 4 to derive differentiability results of the states of an unsteady nonlinear FSI
system with respect to domain variations. Chapter 5 is devoted to the numerical realization
of shape optimization for unsteady FSI.
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2. Preliminaries

In this chapter, the basic definitions, tools and concepts are presented. We start with a short
introduction to the function spaces and a collection of useful results (Section 2.2) that will
be used in the theoretical analysis of the FSI system (Section 3). Furthermore, the method
of successive approximations (Section 2.3) which is the foundation for the considerations in
Section 2.4, the concept of extension by continuity (Section 2.5) and the method of mappings
(Section 2.7) are introduced. The main contributions are the extension of well-known results
on Ω to Γ = ∂Ω under some assumptions on Ω in Section 2.2, as well as, the framework
for deriving differentiability results in Section 2.4. Parts of this chapter have already been
published [59], including Sections 2.3, 2.4 and 2.2.3 to a great extend.

2.1. Geometric Topology

Let n be the outer unit normal vector of Ω on Γ. Then, the following holds.

Lemma 2.1. Let Ω be a bounded, smooth domain with boundary Γ of class C∞. Then,
there exists δ > 0 such that for every ξ ∈ Bδ(Γ) ∩ Ω, there exist unique α ≥ 0 and ξΓ ∈ Γ
such that ξ = ξΓ − αn(ξΓ).

Proof. This holds true due to the tubular neighborhood theorem, cf., e.g., [65, p.109, Thm.
5.1].

Definition 2.2. We say that a function b ∈ C∞(Ω)d is constant along normal directions in
a neighborhood (or locally) around Γ if there exists δ > 0 such that for every ξ ∈ Bδ(Γ)∩Ω,
there exist unique α ≥ 0 and ξΓ ∈ Γ such that ξ = ξΓ − αn(ξΓ) and b(ξ) = b(ξΓ).

Corollary 2.3. For every bΓ ∈ C∞(Γ)d, there exits b ∈ C∞(Ω)d such that b|Γ = bΓ and b
is constant along normal directions in a small neighborhood around Γ.

Proof. Let γ(α) ∈ C∞([0, δ]) with γ(α) = 1 for α ∈ [0, δ
2

2 ] and the support of γ is com-
pactly contained in [0, δ2). By Lemma 2.1 and [88, p.257, Prop. 10.20], there exists
a smooth retraction r : Bδ(Γ) → Γ, ξ 7→ ξΓ. Then the assertion follows by choosing
b(ξ) := bΓ(r(ξ))γ(‖r(ξ)− ξ‖2Rd) if ξ ∈ Bδ(Γ) ∩ Ω and 0 on Ω \Bδ(Γ).

Corollary 2.4. There exists h ∈ C∞(Ω)d such that for all b ∈ C∞(Ω)d with b · n = 0 on Γ
and b being constant along normal directions in a small neighborhood around Γ, there holds

h|Γ = n,

9



2. Preliminaries

h is constant along normal directions locally around Γ,

∇hl · h = 0,

∇bl · h = 0,

for all l ∈ {1, . . . , d} in a small neighborhood around Γ.

Proof. By Corollary 2.3, we obtain h such that h|Γ = n and h is constant along normal
directions in a small neighborhood around Γ, i.e., there exists δ > 0 such that for every
ξ ∈ Bδ(Γ) ∩Ω there exist α ∈ [0, δ) and ξΓ ∈ Γ such that ξ = ξΓ − αn(ξΓ) and h(ξ) = n(ξΓ)
for all ξ ∈ J := {ξΓ − tn(ξΓ)| t ∈ [0, δ)}. Now, for ξ ∈ Bδ(Γ) ∩ Ω,

∇h(ξ)Th(ξ) = −∂th(ξΓ − tn(ξΓ))|t=α = −∂tn(ξΓ)|t=α = 0.

Since b is constant along normal directions in a small neighborhood around Γ, there exists
0 < ε ≤ δ such that b(ξΓ− tn(ξΓ)) = b(ξΓ− th(ξΓ)) = b(ξΓ) for all t ∈ (0, ε). The derivative
wrt. t at t = α therefore yields∇bl(ξ)·h(ξ) = 0 for all ξ ∈ Bε(Γ)∩Ω and l ∈ {1, . . . , d}. Since
∇bl · h ∈ C∞(Ω) and ∇hl · h ∈ C∞(Ω) it holds that ∇bl(ξ) · h(ξ) = 0 and ∇hl(ξ) · h(ξ) = 0
for all ξ ∈ Bε(Γ) ∩ Ω.

2.2. Function Spaces

Let Ω ⊂ Rd, d ∈ N be a bounded open domain with boundary Γ = ∂Ω of class C∞. In the
following, useful properties are collected and proved. The presentation is mainly based on
Lions and Magenes [90, 91].
Let s ∈ R. The Hilbert space Hs(Rd) is defined by

Hs(Rd) = {v ∈ S ′(Rd) : ‖v‖Hs(Rd) <∞},

with norm
‖v‖Hs(Rd) := ‖(1 + |ξ|2)

s
2 Fv(ξ)‖L2(Rd),

where Fv denotes the Fourier transform of v and S ′(Rd) denotes the space of tempered
distributions.

2.2.1. On the Space Hs(Γ)

The definition of the fractional order Sobolev spaces Hs(Γ), s ∈ R is based on the definition
of Hs(Rd), cf. [90, pp. 34-35]. Under the standing assumptions on Ω a system {Oj , ϕj , αj}
can be found, which consists of

• a finite family {Oj , j ∈ {1, . . . , N}} of open, bounded sets that covers Γ.

• a finite family {ϕj , j ∈ {1, . . . , N}} of infinitely differentiable functions

ϕj : Oj → B1(0) := {y ∈ Rd : y < 1},

that
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– locally flatten the boundary, i.e.,

ϕj(Γ ∩Oj) = B1(0) ∩ {yd = 0} ⊂ Rd−1
y′ := {(y′, 0) : y′ ∈ Rd−1},

and ϕj(Ω ∩Oj) = B1(0) ∩ {yd > 0}.
– have an infinitely differentiable inverse ϕ−1

j .

– fulfill a compatibility condition for all i, j such thatOj∩Oi 6= ∅ which requires that
there exists an infinitely times differentiable homeomorphism Jij of ϕi(Oi ∩ Oj)
with positive jacobian such that ϕj(ξ) = Jij(ϕi(ξ)) for all ξ ∈ Oi ∩Oj .

{Oj , ϕj} is the system of local maps.

• a partition of unity {αj}, where αj ∈ C∞(Γ) is non-negative, has compact support on
Oj ∩ Γ and adds up to 1, i.e.

∑N
j=1 αj = 1 on Γ.

The main definitions and properties are collected in the following.

• For s ∈ R, let Hs(Γ) be defined by

Hs(Γ) := {u : ϕ∗j (αju) ∈ Hs(Rd−1
y′ ), j ∈ {1, . . . , N}},

with norm

‖u‖Hs(Γ) = (
N∑
j=1

‖ϕ∗j (αju)‖2
Hs(Rd−1

y′ )
)

1
2 ,

where ϕ∗j (αju)(y′) :=

{
(αju)(ϕ−1

j (y′)) if y′ ∈ B1(0) ∩ Rd−1
y′ ,

0 if y′ ∈ Rd−1
y′ \B1(0).

This definition depends on the choice of {Oj , ϕj , αj}, however, it can be verified that
all norms are equivalent.

• C∞(Γ) is dense in Hs(Γ) for s ≥ 0.

2.2.2. On the Space Hs(Ω), s ≥ 0

Let s ≥ 0. Then, the Hilbert space Hs(Ω) is defined as an interpolation space of integer-
valued Sobolev spaces

Hs(Ω) = [Hm(Ω), H0(Ω)]θ,

wherem ∈ N and θ ∈ (0, 1) are such that s = (1−θ)m [90, Ch. 1, Sec. 9] andH0(Ω) = L2(Ω).
The norm ‖ · ‖Hs(Ω) is defined by [90, p. 10, Def. 2.1]. Under the standing assumptions on
Ω all definitions of Hs(Ω) with respect to different choices of θ and m are equivalent and it
can be shown that

• Hs(Ω) = {u : u = rΩv, v ∈ Hs(Rd)} can be endowed with the equivalent norm

‖u‖Hs(Ω) ≡ ‖u‖s := inf{‖v‖Hs(Rd) : v ∈ Hs(Rd), u = rΩv},

where rΩ denotes the restriction on Ω.
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• D(Ω) is dense in Hs(Ω).

•
[Hs1(Ω), Hs2(Ω)]θ = H(1−θ)s1+θs2(Ω)

and there exists a constant C > 0 that generally depends on Ω such that

‖u‖H(1−θ)s1+θs2 (Ω) ≤ C‖u‖
1−θ
Hs1 (Ω)‖u‖

θ
Hs2 (Ω)

for all u ∈ Hs1(Ω), 0 < s2 < s1 and θ ∈ (0, 1).

• if s > d
2 +m, m ∈ N0 it holds that

Hs(Ω) ⊂ Cm(Ω̄)

with continuous injection.

• If the standing assumptions on Ω are fulfilled, the following trace inequality holds
true [90, p.41, Thm. 9.4]. Let s > 1

2 and u ∈ Hs(Ω). Then, u ∈ Hs− 1
2 (Γ) and

‖u‖
Hs− 1

2 (Γ)
≤ C‖u‖Hs(Ω), where C depends on Ω.

Furthermore, the following result corresponds to [54, Prop. B.1 (i)]. Even though this lemma
will only be used for fractional order Sobolev spaces with positiv order, it is stated in the
general setting, which allows for fractional Sobolev spaces with negativ order. A introduction
to these spaces can be found in [90, Ch. 1, Sec. 12].

Lemma 2.5. Let the standing assumptions on Ω ⊂ Rd be fulfilled, λ, µ, ω ∈ R. Additionally,
let f ∈ Hλ+µ(Ω) and g ∈ Hλ+ω(Ω). Then, there exists C > 0 such that

‖fg‖Hλ(Ω) ≤ C‖f‖Hλ+µ(Ω)‖g‖Hλ+ω(Ω),

1. if µ+ ω + λ ≥ d
2 , µ > 0, ω > 0, and 2λ > −µ− ω,

2. or µ+ ω + λ > d
2 , µ ≥ 0, ω ≥ 0, and 2λ ≥ −µ− ω.

From the definition of the Sobolev spaces on the boundary Γ it is straightforward to deduce
the following Lemma.

Lemma 2.6. Let the standing assumptions on Ω ⊂ Rd with boundary Γ of class C∞ be
fulfilled, λ, µ, ω ∈ R. Additionally, let f ∈ Hλ+µ(Γ) and g ∈ Hλ+ω(Γ). Then, there exists
C > 0 such that

‖fg‖Hλ(Γ) ≤ C‖f‖Hλ+µ(Γ)‖g‖Hλ+ω(Γ),

1. if µ+ ω + λ ≥ d−1
2 , µ > 0, ω > 0, and 2λ > −µ− ω,

2. or µ+ ω + λ > d−1
2 , µ ≥ 0, ω ≥ 0, and 2λ ≥ −µ− ω.

Proof. Let the extended system {Oj , ϕj , αj , Ôj , ψj} be given, which is chosen such that:
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• the family {Oj , j ∈ {1, . . . , N}} is chosen such that there exists {Ôj , j ∈ {1, . . . , N}}
that covers Γ with Ôj compactly contained in Oj for all j ∈ {1, . . . , N}.

• the partition of unity {αj} is chosen such that αj ∈ C∞(Γ) has compact support
on Ôj ∩ Γ. Additionally, we choose {ψj , j ∈ {1, . . . , N}} such that ψj ∈ C∞(Γ) has
compact support on Oj∩Γ, ψj(ξ) ≥ 0, and is identical to one on an open neighborhood
around Ôj ∩ Γ.

The existence of such a system is ensured by the following considerations. Let {Õi, ϕ̃i, i ∈
{1, . . . , Ñ}} be a system of local maps of Γ. Hence, for every ξ ∈ Γ there exists εξ > 0 and
iξ ∈ {1, . . . , Ñ} such that Bεξ(ξ) is compactly contained in Oiξ . Since the system of local
maps exists, Γ is compact and there exists a finite subcover {Ôj , j ∈ {1, . . . , N}, where
N ∈ N and Ôj = Bεξj (ξj) for ξj ∈ Γ. Furthermore, let ϕj := ϕ̃iξj , Oj := Õiξj and {αj} be
the partition of unity constructed on the finite subcover {Ôj , j ∈ {1, . . . , N}}. In addition,
{ψj , j ∈ {1, . . . , N}} is chosen such that it fulfills the requirements.
For j ∈ {1, . . . , N}, choose D̂j ⊂ Rd−1

y′ such that supp(αj) ⊂ D̂j ⊂ ϕ∗j (Γ ∩ Ôj) and D̂j is
a domain with a smooth boundary of class C∞. Then, due to [90, p.60, Thm. 11.4], there
exists C > 0 such that

‖fg‖Hλ(Γ) = (
N∑
j=1

‖ϕ∗j (αjfg)‖2
Hλ(Rd−1

y′ )
)

1
2

≤ C(
N∑
j=1

‖ϕ∗j (αjf)ϕ∗j (ψjg)‖2
Hλ(D̂j)

)
1
2 .

Now, since either 1 or 2 is fulfilled, we can apply Lemma 2.5 in order to obtain

‖fg‖Hλ(Γ) ≤ C(

N∑
j=1

‖ϕ∗j (αjf)‖2
Hλ+µ(D̂j)

‖ϕ∗j (ψjg)‖2
Hλ+ω(D̂j)

)
1
2 .

In order to estimate the second factor, we see that with

K := {k ∈ {1, . . . , N} such that Oj ∩Ok 6= ∅}

and Ψ ∈ C∞(Γ) with compact support on Oj ∩ Γ, we have

‖ϕ∗j (Ψ)‖Hm(Rd−1
y′ )

≤ C‖
∑
k∈K

ϕ∗j (αkΨ)‖Hm(Rd−1
y′ ) = C‖

∑
k∈K

(αkΨ) ◦ ϕ−1
k ◦ ϕk ◦ ϕ

−1
j ‖Hm(Rd−1

y′ )

= C‖
∑
k∈K

(αkΨ) ◦ ϕ−1
k ◦ Jjk‖Hm(Rd−1

y′ ) ≤ C
∑
k∈K
‖(αkΨ) ◦ ϕ−1

k ‖Hm(Rd−1
y′ )

= C
∑
k∈K
‖ϕ∗k(αkΨ)‖Hm(Rd−1

y′ ),

(2.1)

13
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where we used that ‖ · ◦Jjk‖Hm(Rd−1
y′ ) ≤ C‖ · ‖Hm(Rd−1

y′ ) for the infinitely differentiable home-

omorphism Jjk. Hence,
‖ϕ∗j (ψjg)‖Hλ+ω(D̂j)

≤ C‖g‖Hλ+ω(Γ)

and, therefore,
‖fg‖Hλ(Γ) ≤ C‖f‖Hλ+µ(Γ)‖g‖Hλ+ω(Γ).

2.2.3. On the Spaces Hs((0, T ), Hr(Ω)) and Hs,r(Ω× (0, T ))

Let s, r ∈ [0,∞), θ ∈ (0, 1), X, X̃, Y, Ỹ, Z be Hilbert spaces, Ω be a bounded open subset
of Rd, d ∈ N, with smooth boundary ∂Ω = Γ of class C∞. For T > 0, QT := Ω × (0, T )
and ΣT := Γ × (0, T ) denote space-time cylinders. The analysis is carried out in fractional
order Sobolev spaces Hs((0, T ), Hr(Ω)) and in anisotropic Sobolev spaces Hr,s(QT ). The
vector-valued versions are denoted by Hs((0, T ), Hr(Ω)d) and (Hr,s(QT ))d. For more details
on these spaces the reader is referred to [90, Ch. 1, Sec. 9], [91, Ch. 4, Sec. 2] and [53, Sec.
2].

Hs((0, T ), X)

The fractional order Sobolev spaces Hs((0, T ), X) can be endowed with the norm

| · |Hs((0,T ),X) = (‖ · ‖2Hm((0,T ),X) + |∂mt · |2σ,(0,T ),X)
1
2 , (2.2)

where m,σ are chosen such that s = m + σ, m ∈ N0 and for 0 < σ < 1 the semi-norm
| · |σ,(0,T ),X is defined by

| · |2σ,(0,T ),X =

∫ T

0

∫ T

0

‖ · (t)− ·(s)‖2X
|t− s|2σ+1

dsdt.

Remark 2.7. This norm is equivalent to the norm introduced in [90, p.10, Def. 2.1], which is
equivalent to the complex interpolation norm due to [90, p. 92, Thm. 14.1 and p. 23, Remark
3.6]. In the Hilbert space setting, complex and real interpolation norms are equivalent due to
[26, Thm. 3.3 and Rem. 3.6]. [8, (3.4), (3.5) and (3.7)] concludes the argumentation. More
details, e.g., the definition of ’ .=’, can be found in [7, Sec. 5]. For the equivalence of Besov
and Sobolev-Slobodeckij spaces for σ ∈ (0, 1), the reader is also refered to [121, Prop. 2], for
the interpolation of Besov spaces to [121, Proof of Thm. 30] and the references therin, [24,
p. 194, Theo. 3.4.2].

The theoretical analysis requires knowledge about the T -dependency of appearing con-
stants since fixed point type arguments are used for small time horizons. Hence, the choice
of the norm on the spaces Hs((0, T ), X) is crucial. More precisely, for −∞ < T1 < T2 < ∞

14
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and Tf ≥ T , the spaces Hs((T1, T2), X) and the subspaces

Y s
(T1,T2) :=


{u ∈ Hs((T1, T2), X)} if s ∈ [0, 1

2),

{u ∈ Hs((T1, T2), X) : u(T1) = 0} if s ∈ (1
2 , 1],

{u ∈ Hs((T1, T2), X) : u(T1) = 0, ∂tu ∈ Y s−1
(T1,T2)} if s > 1, s+ 1

2 /∈ N,

are endowed with a norm ‖ · ‖Hs((T1,T2),X) such that

P1 for all s ≥ 1 such that s+ 1
2 /∈ N,

‖ · ‖Hs((T1,T2),X) = (‖ · ‖2L2((T1,T2),X) + ‖∂t (·)‖2Hs−1((T1,T2),X))
1
2 .

and ‖ · ‖H0((T1,T2),X) = ‖ · ‖L2((T1,T2),X), where ‖ · ‖L2((T1,T2),X) denotes the standard
L2((T1, T2), X)-norm.

P2 for all s ≥ 0 such that s + 1
2 /∈ N, there exist constants c∆T , C∆T > 0 depending on

∆T = T2 − T1 such that

c∆T | · |Hs((T1,T2),X) ≤ ‖ · ‖Hs((T1,T2),X) ≤ C∆T | · |Hs((T1,T2),X).

P3 for all s ≥ 0 such that s+ 1
2 /∈ N, the extension operator Ext defined by

Ext(u)(t) :=

{
u(t) if t ∈ (0, T ),

0 if t ∈ (T − Tf , 0),

is continuous as a mapping Y s
(0,T ) → Y s

(T−Tf ,T ) with a continuity constant that does not
depend on T .

P4 for all s ≥ 0 such that s+ 1
2 /∈ N, we have

‖u‖Hs((0,T ),X) ≤ C‖u‖Hs((T−Tf ,T ),X)

for all u ∈ Hs((T − Tf , T ), X) such that u|(T−Tf ,0) = 0 with a constant C independent
of T .

P5 for all s ≥ 0 such that s+ 1
2 /∈ N, the restriction operator R defined by

R(u)(t) := u(t)

is continuous as a mapping Hs((0, Tf ), X)→ Hs((0, T ), X) with a continuity constant
that does not depend on T .

P6 for s ∈ [0, 1) \ {1
2} and ε > 0 such that s+ ε ∈ (0, 1] \ {1

2}, we have

‖u‖Hs((0,T ),X) ≤ CT ε‖u‖Hs+ε((0,T ),X)

for all u ∈ Y s
(0,T ) with a constant C that does not depend on T .

15
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P7 for s ∈ [0, 1] \ {1
2}, real, separable Hilbert spaces X1, X2 and a linear operator K that

is continuous as a mapping from X1 to X2, we have

‖K(u)‖Hs((0,T ),X2) ≤ C‖u‖Hs((0,T ),X1)

for all u ∈ Hs((0, T ), X1) with a constant C that does not depend on T .

P8 for all s ≥ 0 such that s+ 1
2 /∈ N, T1 < T2,

‖u‖Hs((T1,T2),X) = ‖ũ‖Hs((0,T2−T1),X),

for all u ∈ Hs((T1, T2), X), where ũ(t) := u(t + T1) for (a.e.) t ∈ (0, T2 − T1).

Lemma 2.8. Let X be a separable Hilbert space, −∞ < T1 < T2 <∞. There exists a norm
‖ · ‖Hs((T1,T2),X) on Hs((T1, T2), X) that fulfills P1 - P8.

Proof. cf. Section A.1.

Let X,Y and X̃, Ỹ , respectively, be continuously embedded in a Hausdorff topological vector
space V and Ṽ , respectively. For s0, s1 ∈ [0,∞), s0 > s1, by [8, (3.5)–(3.7), Thm. 3.1, Cor.
4.3], [26, Rem. 3.6], and [16, Thm. 3.4.1], there holds

[Hs0((0, T ), X), Hs1((0, T ), Y )]θ = H(1−θ)s0+θs1((0, T ), [X,Y ]θ)

and by the interpolation inequality we know

‖ · ‖H(1−θ)s0+θs1 ((0,T ),[X,Y ]θ) ≤ C‖ · ‖
1−θ
Hs0 ((0,T ),X)‖ · ‖

θ
Hs1 ((0,T ),Y ) (2.3)

for a constant C that might depend on T , cf., e.g., [90, p.19, Prop. 2.3]. Let, in addition,
θ ∈ (0, 1) and s̃0, s̃1 ∈ [0,∞), s̃0 > s̃1. If

A ∈ L(Hs0((0, T ), X), H s̃0((0, T ), X̃)) ∩ L(Hs1((0, T ), Y ), H s̃1((0, T ), Ỹ )),

then, A ∈ L(H(1−θ)s0+θs1((0, T ), [X,Y ]θ), H
(1−θ)s̃0+θs̃1((0, T ), [X̃, Ỹ ]θ)) and

‖A‖L(H(1−θ)s0+θs1 ((0,T ),[X,Y ]θ),H(1−θ)s̃0+θs̃1 ((0,T ),[X̃,Ỹ ]θ))

≤ C‖A‖1−θL(Hs0 ((0,T ),X),H s̃0 ((0,T ),X̃))
‖A‖θL(Hs1 ((0,T ),Y ),H s̃1 ((0,T ),Ỹ ))

,

for a constant C that might depend on T , cf., e.g., [25, p.115, 4.].

Lemma 2.9. ([59, Lem. 2]) Let X,Y, Z be real, separable Hilbert spaces and m be a
bounded bilinear mapping from X × Y into Z. Furthermore, let f ∈ Hs1((0, T ), X) and
g ∈ Hs2((0, T ), Y ) with s1, s2 ≥ 0. Then the following holds.

1. If 1
2 < s1 ≤ 1, 0 ≤ s2 <

1
2 , then m(f, g) belongs to Hs2((0, T ), Z) and

‖m(f, g)‖Hs2 ((0,T ),Z) ≤ Cs1,s2(‖f‖Hs1 ((0,T ),X) + ‖f(0)‖X)‖g‖Hs2 ((0,T ),Y ),

for all 0 ≤ T ≤ Tf , where Cs1,s2 is independent of T .
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2. If 1
2 < s1 ≤ s2 ≤ 1, then m(f, g) belongs to Hs1((0, T ), Z) and

‖m(f, g)‖Hs1 ((0,T ),Z) ≤ Cs1,s2(‖f‖Hs1 ((0,T ),X) + ‖f(0)‖X)(‖g‖Hs2 ((0,T ),Y ) + ‖g(0)‖Y ),

for all 0 ≤ T ≤ Tf , where Cs1,s2 is independent of T .

Proof. We prove 2., 1. follows with similar arguments. Let f0 ∈ H1((−∞,∞), X) and
g0 ∈ H1((−∞,∞), Y ) be such that f0(0) = f(0), g0(0) = g(0) and for −∞ < a < b <∞,

‖f0‖H1((a,b),X) ≤ C0‖f(0)‖X ,
‖g0‖H1((a,b),Y ) ≤ C0‖g(0)‖Y ,

with a constant C0 independent of (b − a) (extension to H1((0,∞), X) and mirroring at
t = 0). Let C and CTf denote generic constants (CTf is used if the constant might depend
on Tf ). Using property P2 of the norm and [113, Lem. A.1] yields

‖m(f, g)‖Hs1 ((a,a+Tf ),Z) ≤ CTf ‖f‖Hs1 ((a,a+Tf ),X)‖g‖Hs2 ((a,a+Tf ),Y ), (2.4)

(use equivalence of norms with Tf -dependent constants). Now,

‖m(f, g)‖Hs1 ((0,T ),Z) ≤ (‖m(f, g)−m(f0, g0)‖Hs1 ((0,T ),Z) + ‖m(f0, g0)‖Hs1 ((0,T ),Z)).

Due to Property P5 of the norm and [113, Lem. A.1],

‖m(f0, g0)‖Hs1 ((0,T ),Z) ≤ C‖m(f0, g0)‖Hs1 ((0,Tf ),Z) ≤ CTf ‖f0‖Hs1 ((0,Tf ),X)‖g0‖Hs2 ((0,Tf ),Y )

≤ CTf ‖f(0)‖X‖g(0)‖Y .

Furthermore,

‖m(f, g)−m(f0, g0)‖Hs1 ((0,T ),Z) ≤ ‖m(f − f0, g − g0)‖Hs1 ((0,T ),Z)

+ ‖m(f − f0, g0)‖Hs1 ((0,T ),Z) + ‖m(f0, g − g0)‖Hs1 ((0,T ),Z).

We know that (f − f0)|t=0 = 0. Due to properties P3 and P4 of the norm and with (2.4),

‖m(f − f0, g − g0)‖Hs1 ((0,T ),Z)

= ‖Ext(m(f − f0, g − g0))‖Hs1 ((0,T ),Z)

≤ C‖Ext(m(f − f0, g − g0))‖Hs1 ((T−Tf ,T ),Z)

≤ C‖m(Ext(f − f0),Ext(g − g0))‖Hs1 ((T−Tf ,T ),Z)

≤ CTf ‖Ext(f − f0)‖Hs1 ((T−Tf ,T ),X)‖Ext(g − g0)‖Hs2 ((T−Tf ,T ),Y )

≤ CTf ‖f − f0‖Hs1 ((0,T ),X)‖g − g0‖Hs2 ((0,T ),Y )

≤ CTf (‖f‖Hs1 ((0,T ),X) + ‖f0‖Hs1 ((0,Tf ),X))(‖g‖Hs2 ((0,T ),Y ) + ‖g0‖Hs2 ((0,Tf ),Y ))

≤ CTf (‖f‖Hs1 ((0,T ),X) + ‖f0‖H1((0,Tf ),X))(‖g‖Hs2 ((0,T ),Y ) + ‖g0‖H1((0,Tf ),Y ))

≤ CTf (‖f‖Hs1 ((0,T ),X) + ‖f0‖H1((0,Tf ),X))(‖g‖Hs2 ((0,T ),Y ) + ‖g0‖H1((0,Tf ),Y ))
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≤ CTf (‖f‖Hs1 ((0,T ),X) + ‖f(0)‖X)(‖g‖Hs2 ((0,T ),Y ) + ‖g(0)‖Y ).

We now estimate m(f − f0, g0) using the norm properties P3, P4:

‖m(f − f0, g0)‖Hs1 ((0,T ),Z) = ‖Ext(m(f − f0, g0))‖Hs1 ((0,T ),Z)

= ‖m(Ext(f − f0), g0)‖Hs1 ((0,T ),Z)

≤ C‖m(Ext(f − f0), g0)‖Hs1 ((T−Tf ,T ),Z)

≤ CTf ‖Ext(f − f0)‖Hs1 ((T−Tf ,T ),X)‖g0‖Hs2 ((T−Tf ,T ),Y )

≤ CTf ‖f − f0‖Hs1 ((0,T ),X)‖g0‖Hs2 ((−Tf ,Tf ),Y )

≤ CTf (‖f‖Hs1 ((0,T ),X) + ‖f(0)‖X)‖g(0)‖Y .

Since m(f0, g − g0) can be estimated in the same way, this concludes the proof of 2.

Lemma 2.10. ([59, Lem. 3]) Let X be a real, separable Hilbert space and α ∈ [0, 1) \ {1
2}.

Furthermore, let β > 0 be such that α+ β ∈ (1
2 , 1], c ∈ X and g ∈ Hα+β((0, T ), X) be such

that g(0) = c. Then, there exists a constant C independent of T such that

‖g‖Hα((0,T ),X) ≤ C(T β‖g‖Hα+β((0,T ),X) + ‖c‖X).

Proof. Let C denote a generic constant independent of T , where 0 < T ≤ Tf . There exists
h ∈ H1((0, Tf ), X) such that h(0) = c and ‖h‖H1((0,Tf ),X) ≤ C‖c‖X e.g., h(t) := cT−1

f (Tf−t)
for t ∈ (0, Tf ). Set g̃ = g − h.
Properties P5, P2, the definition of h and P6 yield

‖g‖Hα((0,T ),X) ≤ ‖g̃‖Hα((0,T ),X) + ‖h‖Hα((0,T ),X) ≤ ‖g̃‖Hα((0,T ),X) + C‖h‖H1((0,Tf ),X)

≤ ‖g̃‖Hα((0,T ),X) + C‖c‖X ≤ CT β‖g̃‖Hα+β((0,T ),X) + C‖c‖X
≤ C(T β‖g‖Hα+β((0,T ),X) + ‖c‖X).

Lemma 2.11. ([59, Lem. 4]) Let X be a real, separable Hilbert space and s ≥ 0. Let
c ∈ X and g(t) = c for a.e. t ∈ (0, T ). Then, g ∈ Hs((0, T ), X) and there exists a constant
C independent of T such that ‖g‖Hs((0,T ),X) ≤ C‖c‖X .

Proof. Let Tf ≥ T and C denote a generic constant independent of T . For s ≥ 1 we have,
due to P1 and ∂tg = 0,

‖g‖Hs((0,T ),X) = ‖g‖L2((0,T ),X) ≤ T
1
2 ‖c‖X ≤ C‖c‖X . (2.5)
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For s ∈ [0, 1), Lemma 2.10 and (2.5) yield

‖g‖Hs((0,T ),X) ≤ C(T 1−s‖g‖H1((0,T ),X) + ‖c‖X) ≤ C‖c‖X .

The following Lemma is a helpful tool.

Lemma 2.12. ([59, Lem. 9]) Let T > 0, k ∈ N, k ≥ 2, X,Xj , Y,Wn, Z be real, separable
Hilbert spaces, 1 ≤ j ≤ k, 2 ≤ n ≤ k − 1, s1 ∈ [0, 1]\{1

2}, si ∈ (1
2 , 1] for 2 ≤ i ≤ k and

0 ≤ s ≤ minj sj . Let m1 : X1 ×W2 → X, ml : Xl ×Wl+1 → Wl for 2 ≤ l ≤ k − 2 and
mk−1 : Xk−1 ×Xk → Wk−1 be continuous bilinear forms, m :×k

j=1Xj → X be defined by
m(x1, . . . , xk) = m1(x1,m2(x2, . . .)) and Tj : Y × Z → Sj , where Sj := Hsj ((0, T ), Xj) is
endowed with the norm

• ‖ · ‖Sj := ‖ · ‖Hsj ((0,T ),Xj), if sj ∈ [0, 1
2),

• ‖ · ‖Sj := (‖ · ‖2
Hsj ((0,T ),Xj)

+ ‖ · (0)‖2Xj )
1
2 , if sj ∈ (1

2 , 1],

and S := Hs((0, T ), X) be endowed with the analogously defined norm ‖ · ‖S . Furthermore,
let T : Y × Z → S be defined by

T (y, z) = m(T1(y, z), . . . , Tk(y, z)).

1. Let Mj > 0, Ỹ ⊂ Y and Z̃ ⊂ Z be such that ‖Tj(y, z)‖Sj ≤Mj for all (y, z) ∈ Ỹ × Z̃,
1 ≤ j ≤ k. Then, there exists a constant C > 0 that is independent of T such that
‖T (y, z)‖S ≤ CΠjMj for all (y, z) ∈ Ỹ × Z̃.

2. Let in addition to 1. Tj : Y × Z → Sj be Lipschitz continuous on Ỹ × Z̃ for all 1 ≤
j ≤ k, i.e., there exist Mj,1,Mj,2 > 0 such that ‖Tj(y2, z2)− Tj(y1, z1)‖Sj ≤Mj,1‖y2 −
y1‖Y + Mj,2‖z2 − z1‖Z for arbitrary y1, y2 ∈ Ỹ and z1, z2 ∈ Z̃. Then, ‖T (y2, z2) −
T (y1, z1)‖Hs((0,T ),X) ≤ C(maxj(Mj,1Πn6=jMn)‖y2 − y1‖Y + maxj(Mj,2Πn6=jMn)‖z2 −
z1‖Z) with a constant C > 0 that is independent of T .

3. Let (y1, z1) be an element of the relative interior of Ỹ × Z̃ and Tj : Ỹ × Z̃ → Sj be
Fréchet differentiable in (y1, z1) for all 1 ≤ j ≤ k. Then, T : Ỹ × Z̃ → S is Fréchet
differentiable in (y1, z1).

Proof. By recursively applying Lemmas 2.5 and 2.9 it can be verified that m : ΠjSj →
Hs((0, T ), X) is a continuous multilinear form that fulfills

‖m(x1, . . . , xk)‖Hs((0,T ),X) ≤ CΠj‖xj‖Sj ,

where C is a constant independent of T . Assertion 1 follow immediately if one directly
uses the continuity properties of m in order to estimate the norms at the initial value
t = 0. Further, for y1, y2 ∈ Ỹ , z1, z2 ∈ Z̃ we have

m(T1(y2, z2), . . . , Tk(y2, z2))−m(T1(y1, z1), . . . , Tk(y1, z1))
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= m((T1(y2, z2)− T1(y1, z1)), T2(y2, z2), T3(y2, z2) . . . , Tk(y2, z2))

+m(T1(y1, z1), (T2(y2, z2)− T2(y1, z1)), T3(y2, z2), . . . , Tk(y2, z2))

+ · · ·+m(T1(y1, z1), . . . , Tk−1(y1, z1), (Tk(y2, z2)− Tk(y1, z1))),

which implies

‖m(T1(y2, z2), . . . , Tk(y2, z2))−m(T1(y1, z1), . . . , Tk(y1, z1))‖S

≤ C
k∑
j=1

((Πn<j‖Tn(y1, z1)‖Sn)(Πn>j‖Tn(y2, z2)‖Sn)‖Tj(y2, z2)− Tj(y1, z1)‖Sj )

≤ C(max
j

(Mj,1Πn6=jMn)‖y2 − y1‖Y + max
j

(Mj,2Πn 6=jMn)‖z2 − z1‖Z)

for a generic constant C independent of T and therefore assertion 2. Since a continuous
multilinear form is infinitely differentiable 3 follows with the chain rule.

Lemma 2.13. ([59, Lem. 10]) Let T > 0, k ∈ N, X1, X2, Xj,1, Xj,2, Y, Z be real, separable
Hilbert spaces, 1 ≤ j ≤ k, s1 ∈ [0, 1] \ {1

2}, si ∈ (1
2 , 1] for 2 ≤ i ≤ k. Let m be a k-

linear form that is recursively constructed via bilinear forms as in Lemma 2.12 such that
m :×k

j=1Xj,1 → X1 and m :×k
j=1Xj,1+δjl → X2 are continuous for all 1 ≤ l ≤ k, where δjl

denotes the Kronecker delta. Let 0 ≤ s ≤ minj sj and

Sj := H1((0, T ), Xj,1) ∩H1+sj ((0, T ), Xj,2)

be endowed with the norm

• ‖ · ‖Sj := (‖ · ‖2
H1((0,T ),Xj,1)∩H1+sj ((0,T ),Xj,2)

+ ‖ · (0)‖2Xj,1)
1
2 , if sj ∈ [0, 1

2).

• ‖ · ‖Sj := (‖ · ‖2
H1((0,T ),Xj,1)∩H1+sj ((0,T ),Xj,2)

+‖ · (0)‖2Xj,1 +‖∂t (·)(0)‖2Xj,2)
1
2 , if sj ∈ (1

2 , 1].

and S := H1((0, T ), X1) ∩H1+s((0, T ), X2) be endowed with the analogously defined norm
‖ · ‖S . Further, let Tj : Y × Z → Sj and T : Y × Z → S be defined by

T (y, z) = m(T1(y, z), . . . , Tk(y, z)).

Then,

1. Let Mj > 0, Ỹ ⊂ Y and Z̃ ⊂ Z be such that ‖Tj(y, z)‖Sj ≤Mj for all (y, z) ∈ Ỹ × Z̃,
1 ≤ j ≤ k. Then, there exists a constant C > 0 that is independent of T such that
‖T (y, z)‖S ≤ CΠjMj for all (y, z) ∈ Ỹ × Z̃.

2. Let in addition to 1. Tj : Y × Z → Sj be Lipschitz continuous on Ỹ × Z̃ for all
1 ≤ j ≤ k, i.e., there exist Mj,1,Mj,2 > 0 such that

‖Tj(y2, z2)− Tj(y1, z1)‖Sj ≤Mj,1‖y2 − y1‖Y +Mj,2‖z2 − z1‖Z
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for arbitrary y1, y2 ∈ Ỹ and z1, z2 ∈ Z̃. Then,

‖T (y2, z2)− T (y1, z1)‖S
≤ C(max

j
(Mj,1Πn6=jMn)‖y2 − y1‖Y + max

j
(Mj,2Πn 6=jMn)‖z2 − z1‖Z)

with a constant C > 0 that is independent of T .

3. Let (y1, z1) be an element of the relative interior of Ỹ × Z̃ and Tj : Ỹ × Z̃ → Sj be
Fréchet differentiable in (y1, z1) for all 1 ≤ j ≤ k. Then, T : Ỹ × Z̃ → S is Fréchet
differentiable in (y1, z1).

Proof. We recursively apply Lemma 2.9 in order to get continuity of

m :
k

×
j=1

Sj → L2((0, T ), X1),

∂tm :
k

×
j=1

Sj → L2((0, T ), X1), as well as,

∂tm :
k

×
j=1

Sj → Hs((0, T ), X2),

and use that

∂tm(x1, . . . , xk) = m(∂t x1, x2, . . . , xk) +m(x1, ∂t x2, . . . , xk) + · · ·+m(x1, x2, . . . , ∂t xk).

It holds
‖m(x1, . . . , xk)‖L2((0,T ),X1) ≤ C‖x1‖L2((0,T ),X1,1)Π

k
i=2‖xi‖Ŝi ,

‖m(x1, . . . , ∂t xj , . . . , xk)‖L2((0,T ),X1) ≤ C‖∂t xj‖L2((0,T ),Xj,1)Πi 6=j‖xi‖Ŝi ,

where Ŝj := H1((0, T ), Xj,1) is endowed with the norm

‖ · ‖Ŝj := (‖ · ‖2H1((0,T ),Xj,1) + ‖ · (0)‖2Xj,1)
1
2

for 1 ≤ j ≤ k. Furthermore, there holds

‖m(x1, . . . , ∂t xj , . . . , xk)‖Hs((0,T ),X2) ≤ C‖∂t xj‖S̃jΠi 6=j‖xi‖Ŝi ,

where S̃j := Hsj ((0, T ), Xj,2) is endowed with the norm

• ‖ · ‖S̃j := ‖ · ‖Hsj ((0,T ),Xj,2), if sj ∈ [0, 1
2).

• ‖ · ‖S̃j := (‖ · ‖2
Hsj ((0,T ),Xj,2)

+ ‖ · (0)‖2Xj,2)
1
2 , if sj ∈ (1

2 , 1].
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In order to show the boundedness in the norm ‖ · ‖S the initial values have to be bounded
appropriately. However, this is ensured by the continuity properties of the multilinear form
m. Moreover, property P1 of the norm is used. The assertions now follow directly as in
Lemma 2.12.

Hs,r(Ω× (0, T ))

For r, s > 0, the spaces Hr,s(QT ) are defined by

Hr,s(QT ) = L2((0, T ), Hr(Ω)) ∩Hs((0, T ), L2(Ω))

and endowed with the norm

‖ · ‖Hr,s(QT ) = (‖ · ‖2L2((0,T ),Hr(Ω)) + ‖ · ‖2Hs((0,T ),L2(Ω)))
1
2 .

For 0 ≤ r′ ≤ r, s′ = s(r − r′)/r, the inequality

‖ · ‖Hs′ ((0,T ),Hr′ (Ω)) ≤ C‖ · ‖Hr,s(QT )

holds true for a constant C > 0 that might depend on T , cf. [53, (2.9)] or [54, (2.7)], which
implies

‖ · ‖H(1−θ)s((0,T ),Hθr(Ω)) ≤ C‖ · ‖Hr,s(QT )

for θ ∈ (0, 1). Trace theorems for the Sobolev-type spaces Hr,s(QT ) imply

‖ · |ΣTi ‖Hr′,s′ (ΣTi ) ≤ C‖ · ‖Hr,s(QT ),

where C > 0 is dependent on T , r > 1
2 , s ≥ 0, r′ = r − 1

2 and s′ = (r − 1
2) sr , cf. [91, Ch. 4,

Thm. 2.1], [54, Prop. 2.2] or [39, Thm. 3].

2.2.4. Setting for the Theoretical Analysis of the FSI Problem

For ` ∈ (1
2 , 1) the analysis of the FSI problem is conducted on the function spaces

ET := L2((0, T ), H2+`(Ωf )d) ∩H1+ `
2 ((0, T ), L2(Ωf )d) = (H2+`,1+ `

2 (QTf ))d,

FT := L2((0, T ), H`(Ωf )d) ∩H
`
2 ((0, T ), L2(Ωf )d) = (H`, `

2 (QTf ))d,

GT := L2((0, T ), H1+`(Ωf )) ∩H
`
2 ((0, T ), H1(Ωf )),

GT := H1+ `
2 ((0, T ), L2(Ωf )d),

HT := L2((0, T ), H
1
2

+`(Γi)) ∩H
1
4

+ `
2 ((0, T ), L2(Γi)) = H

1
2

+`, 1
4

+ `
2 (ΣT

i ),

HT := L2((0, T ), H
1
2

+`(Γi)
d) ∩H

1
4

+ `
2 ((0, T ), L2(Γi)

d) = (H
1
2

+`, 1
4

+ `
2 (ΣT

i ))d,

NT := H1((0, T ), H
3
2

+`(Γs ∪ Γi)
d) ∩H

7
4

+ `
2 ((0, T ), L2(Γs ∪ Γi)

d),

PT := {p ∈ L2(QTf ) : ∇p ∈ H`, `
2 (QTf ), p|ΣTi ∈ H

1
2

+`, 1
4

+ `
2 (ΣT

i )},
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ST := H1((0, T ), H1+`(Ωf )) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )),

ST := H1((0, T ), H1+`(Ωf )d) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )d),

ST := H1((0, T ), H1+`(Ωf )d×d) ∩H
3
2

+ `
2 ((0, T ), L2(Ωf )d×d),

WT := C([0, T ], H
7
4

+ `
2 (Ωs)

d) ∩ C1([0, T ], H
3
4

+ `
2 (Ωs)

d),

V0 := H1+`(Ωf )d,

W1 := H
1
2

+`+β(Ωs)
d.

For v0 ∈ V0 and M0 > 0, we define the metric spaces

ET,M0,v0 := {v ∈ ET : v(·, 0) = v0, ‖v‖ET ≤M0},
PT,M0,v0 := {p ∈ PT : ‖∇p‖FT ≤M0, ‖p|ΣTi ‖H 1

2 +`, 14 + `
2 (ΣTi )

≤M0,

p|Γi×{0} = 2νε(v0)nf · nf |Γi}.

(2.6)

Moreover, let

‖ · ‖ET := (‖ · ‖2
(H2+`,1+ `

2 (QTf ))d
+ ‖ · ‖2H1((0,T ),H`(Ωf )d)) + ‖ · ‖2

H
`
2 ((0,T ),H2(Ωf )d)

+ ‖ · |ΣTi ‖
2

H
1
4 + `

2 ((0,T ),H1(Γi)d)
+ ‖ · |ΣTi ‖

2

(H
3
2 +`, 34 + `

2 (ΣTi ))d

+ ‖ · ‖2
H

1
2 + `

2 ((0,T ),H1(Ωf )d)
+ ‖ · ‖2

H
1
4 + `

4 ((0,T ),H1+`(Ωf )d)
)

1
2 ,

as well as,

‖ · ‖ST := (‖ · ‖2
H1((0,T ),H1+`(Ωf ))∩H

3
2 + `

2 ((0,T ),L2(Ωf ))
+ ‖ · (0)‖2H1+`(Ωf ) + ‖∂t · (0)‖2L2(Ωf ))

1
2 ,

(2.7)

and do an analogous definition for the spaces ST and ST . Due to trace theorems and inter-
polation theorems the modified norms on ET and ST ,ST ,ST are equivalent to the standard
norms on these function spaces. However, the appearing equivalence constant might depend
on T without further knowledge about this dependency. Since the dependency of the appear-
ing constants on T is a key point in the theoretical analysis it is therefore necessary to work
with the modified norms defined above. The other function spaces are endowed with the
canonical choice for the norm, i.e., e.g., ‖ · ‖FT = ‖ · ‖

(H`, `2 (QTf ))d
. Furthermore, the following

results is useful.

Lemma 2.14. ([59, Lem. 11]) 1. Let f̃, g̃ ∈ S̃T . Then, f̃ g̃ ∈ S̃T and

‖f̃ g̃‖S̃T ≤ C‖f̃‖S̃T ‖g̃‖S̃T

with a constant C that is independent of T .
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2. Let f̃ ∈ S̃T . If f̃ ≥ ω > 0 holds a.e. on Q̃Tf with a constant ω > 0 then f̃−1 ∈ S̃T and

‖f̃−1‖S̃T ≤ C(1 + ‖f̃‖S̃T )10‖f̃‖S̃T

for a constant C that is independent of T .

Proof. 1. The bilinear form m(x1, x2) := x1 ·x2 is by Lemma 2.5 continuous as a mapping
L2(Ω̃f )×H1+`(Ω̃f )→ L2(Ω̃f ) and as a mapping H1+`(Ω̃f )×H1+`(Ω̃f )→ H1+`(Ω̃f ).
Therefore, Lemma 2.13 implies ‖f̃ g̃‖S̃T ≤ C‖f̃‖S̃T ‖g̃‖S̃T for a constant C that is inde-
pendent of T . Here, we recall that the norm on S̃T is defined by (2.7).

2. By [113, Lem. A.7] we know that

‖f̃−1‖L2((0,T ),H1+`(Ω̃f )

≤ C(1 + ‖f̃‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃(·, 0)‖H1+`(Ω̃f ))‖f̃‖L2((0,T ),H1+`(Ω̃f )),

‖∂t f̃−1‖L2((0,T ),H1+`(Ω̃f )

≤ C(1 + ‖f̃‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃(·, 0)‖H1+`(Ω̃f ))
4‖f̃‖H1((0,T ),H1+`(Ω̃f )).

for a constant C independent of T . The proof of this Lemma also shows that

‖f̃−1(·, 0)‖H1+`(Ω̃f ) ≤ C(1 + ‖f̃(·, 0)‖H1+`(Ω̃f ))‖f̃(·, 0)‖H1+`(Ω̃f ).

Let C now denote a generic constant independent of T .
In order to bound ‖∂t f̃−1(·, 0)‖L2(Ω̃f ), we consider G ∈ C∞(R) such that G(0) = 0 and
G(x) = x−1 for all x ≥ ω. Then,

‖∂t f̃−1(·, 0)‖2
L2(Ω̃f )

= ‖∂tG(f̃)(·, 0)‖2
L2(Ω̃f )

= ‖G′(f̃)(·, 0)∂t f̃(·, 0)‖2
L2(Ω̃f )

=

∫
Ω̃f

(G′(f̃)(z, 0)∂t f̃(z, 0))2 dz

≤ sup
z∈Ω̃f

|G′(f̃)(z, 0)|‖∂t f̃(·, 0)‖2
L2(Ω̃f )

≤ C‖∂t f̃(·, 0)‖2
L2(Ω̃f )

.

These estimates imply

‖f̃−1‖H1((0,T ),H1+`(Ω̃f )

≤ C(1 + ‖f̃‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃(·, 0)‖H1+`(Ω̃f ))
4‖f̃‖H1((0,T ),H1+`(Ω̃f ))

≤ C(1 + ‖f̃‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃(·, 0)‖H1+`(Ω̃f ))
5.

Now,
‖f̃−1‖L2((0,T ),L2(Ω̃f )) ≤ C‖f̃

−1‖L2((0,T ),H1+`(Ω̃f ))

for a constant independent of T and it remains to estimate ‖∂t f̃−1‖
H

1
2 + `

2 ((0,T ),L2(Ω̃f ))
.
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We obtain with Lemma 2.9, 2.

‖∂t f̃−1‖
H

1
2 + `

2 ((0,T ),L2(Ω̃f ))
= ‖f̃−2∂t f̃‖

H
1
2 + `

2 ((0,T ),L2(Ω̃f ))

≤ C(‖f̃−2‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃−2(·, 0)‖H1+`(Ω̃f ))

× (‖∂t f̃‖
H

1
2 + `

2 ((0,T ),L2(Ω̃f ))
+ ‖∂t f̃(·, 0)‖L2(Ω̃f ))

≤ C(‖f̃−1‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃−1(·, 0)‖H1+`(Ω̃f ))
2

× (‖∂t f̃‖
H

1
2 + `

2 ((0,T ),L2(Ω̃f ))
+ ‖∂t f̃(·, 0)‖L2(Ω̃f ))

≤ C(1 + ‖f̃‖H1((0,T ),H1+`(Ω̃f )) + ‖f̃(·, 0)‖H1+`(Ω̃f ))
10

× (‖f̃‖
H

3
2 + `

2 ((0,T ),L2(Ω̃f ))
+ ‖∂t f̃(·, 0)‖L2(Ω̃f )).

Combining the estimates implies the assertion.

2.3. Method of Successive Approximations

The method of successive approximations is a well known approach for establishing existence
and uniqueness results for nonlinear equations

A(y) = 0,

where y ∈ Y and Y is a Banach space. We write this in the form By = F(y), where
F(y) := By − A(y) and B is a linear operator such that the system By = f has a unique
solution y = Sf , where S ∈ L(W,Y ) and W is a Banach space. Existence and uniqueness of
solutions is now studied via the fixed point equation

y = SF(y). (2.8)

Unique solvability of (2.8) on a closed subset Ỹ ⊂ Y is ensured if y 7→ SF(y) maps Ỹ into
itself and is a contraction on Ỹ . This is the case if, e.g., ‖S‖L(W,Y ) ≤ LS and if F : Ỹ →W

is Lipschitz continuous with a constant LF < 1
LS

.

2.4. Framework for Continuity and Differentiability Results

The considerations of Section 2.3 can be extended to parameter-dependent equations

A(y, z) = 0

with parameter or control z in a Banach space Z. Let B be chosen as in Section 2.3 and
S ∈ L(W,Y ) be the solution operator of By = f . As before, we consider solutions of the
fixed point equation

y = S F(y, z), (2.9)
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where F(y, z) := By −A(y, z).

Theorem 2.15. ([59, Thm. 1]) Let W̃,W, Y, Z be Banach spaces, W̃ continuously embedded
in W , S ∈ L(W̃, Y ), and LS > 0 a constant such that ‖Sf‖Y ≤ LS‖f‖W for all f ∈ W̃ .
Let Z̃ ⊂ Z be open, Ỹ ⊂ Y be closed and F : Ỹ × Z̃ → W̃ be an operator. Let there exist
constants LF ∈ (0, 1

LS
) and C > 0 such that, for all y, y1, y2 ∈ Ỹ , z, z1, z2 ∈ Z̃, there hold

‖F(y2, z2)− F(y1, z1)‖W ≤ LF‖y2 − y1‖Y + C‖z2 − z1‖Z , (2.10)

SF(y, z) ∈ Ỹ. (2.11)

Then, for all z ∈ Z̃, the system (2.9) has a unique solution y(z) and z 7→ y(z) is Lipschitz
continuous on Z̃:

‖y(z2)− y(z1)‖Y ≤
CLS

1− LSLF
‖z2 − z1‖Z ∀ z1, z2 ∈ Z̃. (2.12)

In addition, let y(z) lie in the relative interior of Ỹ and denote by ỸL the linear subspace
parallel to the affine hull aff(Ỹ ). Assume that F is Fréchet differentiable at (y(z), z), where
(y, z)-variations are taken in ỸL × Z.
Then y(·) is Fréchet differentiable at z. The derivative is given by y′(z)(h) = δhy(z), where
h ∈ Z and δhy(z) ∈ ỸL ⊂ Y solves the formally linearized equation

δhy(z) = SδF(y(z), z)(δhy(z), h), (2.13)

where δF(y(z), z)(δhy(z), h) := Fy(y(z), z)δhy(z) + Fz(y(z), z)h.

Proof. For any fixed z ∈ Z̃, (2.10) implies the Lipschitz continuity of the mapping F(·, z) :
Ỹ → W . Using (2.10), (2.11), and the properties of F , LF and LS shows that the map
y ∈ Ỹ 7→ SF(y, z) ∈ Ỹ is a well-defined contraction. The existence of a unique solution
y(z) ∈ Ỹ is thus ensured by the method of successive approximations. Now (2.12) follows from
‖y(z2) − y(z1)‖Y = ‖S(F(y(z2), z2) − F(y(z1), z1))‖Y ≤ LS‖F(y(z2), z2) − F(y(z1), z1)‖W
and (2.10).
For showing differentiability, we fix z ∈ Z̃ and assume that F is differentiable at (y(z), z) in
the way stated in the theorem. Let h ∈ Z be arbitrarily fixed. Since y(z) is a relative interior
point of Ỹ , we obtain from (2.10) that, for all d1, d2 ∈ ỸL, there holds:

‖δF(y(z), z)(d2, h)− δF(y(z), z)(d1, h)‖W = ‖Fy(y(z), z)(d2 − d1)‖W ≤ LF‖d2 − d1‖Y .
(2.14)

Thus, since LF < 1
LS

, the method of successive approximations applied to the fixed point
equation δhy(z) = SδF(y(z), z)(δhy(z), h) posed in ỸL, see (2.13), yields a unique solution
δhy(z) ∈ ỸL ⊂ Y which by linearity of (2.13) depends linearly on h. Let ‖h‖Z be sufficiently
small. Then z + h ∈ Z̃ and, as h→ 0,

‖F(y(z + h), z + h)− F(y(z), z)− δF(y(z), z)(δhy(z), h)‖W
≤ ‖δF(y(z), z)(y(z + h)− y(z), h)− δF(y(z), z)(δhy(z), h)‖W
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+ o(‖y(z + h)− y(z)‖Y + ‖h‖Z)

≤ LF‖y(z + h)− y(z)− δhy(z)‖Y + o(‖h‖Z),

where (2.14) is used. Now

T‖y(z + h)− y(z)− δhy(z)‖Y
= ‖SF(y(z + h), z + h)− SF(y(z), z)− SδF(y(z), z)δhy(z)‖Y
≤ LS‖F(y(z + h), z + h)− F(y(z), z)− δF(y(z), z)δhy(z)‖W
≤ LSLF‖y(z + h)− y(z)− δhy(z)(z)‖Y + LSo(‖h‖Z) (‖h‖Z → 0).

Therefore,

‖y(z + h)− y(z)− δhy(z)‖Y ≤
LS

1− LSLF
o(‖h‖Z) = o(‖h‖Z) (‖h‖Z → 0),

which proves the Fréchet differentiability of z 7→ y(z) at z with y′(z)h = δhy(z).

2.5. Extension by Continuity

One technique, that is a common tool, cf., e.g., [86], is extension by continuity that takes
advantage of the fact, that under some additional assumptions linear operators inherit con-
tinuity properties on a dense subset.

Let Z, Y be Banach spaces and S be a linear operator that is continuous as a mapping
Z → Y . Let Ẑ ⊂ Z and Ŷ ⊂ Y with continous injection and Z̃ ⊂ Ẑ be a dense subset of Ẑ.
Additionally, assume that there exists C > 0 such that

‖S(z)‖Ŷ ≤ C‖z‖Ẑ , ∀z ∈ Z̃.

Then, we know that there exists a unique continuous linear operator Ŝ : Ẑ → Ŷ such that

‖Ŝ(z)‖Ŷ ≤ C‖z‖Ẑ , ∀z ∈ Ẑ,

and Ŝ(z) = S(z) for all z ∈ Z̃. Since Z̃ is dense in Ẑ, for every z ∈ Ẑ, there exists a sequence
{zn} ⊂ Z̃ and ‖z − zn‖Ẑ → 0 for n → ∞. This implies ‖z − zn‖Z → 0 for n → ∞ and due
to the continuity of Ŝ, we additionally know that

‖Ŝ(z)− Ŝ(zn)‖Ŷ = ‖Ŝ(z)− S(zn)‖Ŷ → 0

for n→∞. Thus, since

‖Ŝ(z)− S(z)‖Y ≤ ‖Ŝ(z)− S(zn)‖Y + ‖S(zn)− S(z)‖Y
≤ ‖Ŝ(z)− S(zn)‖Y + C‖zn − z‖Z
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for all n ∈ N, we have that Ŝ(z) = S(z) in Y and therefore,

‖S(z)‖Ŷ ≤ C‖z‖Ẑ , ∀z ∈ Ẑ.

2.6. First Order Differential Operators

First order differential operators that are tangential to the boundary are one of the key tools
to derive improved regularity results for hyperbolic equations in [86]. In this section, some
properties of these operators are proven. Let Ω ⊂ Rd, d ∈ N be a bounded open domain with
boundary Γ = ∂Ω of class C∞. We define

B := {B =
d∑
i=1

bi∂ξi : b ∈ C∞(Ω)d, b · n = 0 on Γ, and

b is constant along normal directions locally around Γ}.
(2.15)

Let m ∈ N0. The operators B ∈ B are well-defined as mappings from Hm+1(Ω)→ Hm(Ω).
Using the system of local maps {Oj , ϕj , αj}, B ∈ B can also be represented as an operator
from Hm+1(Γ)→ Hm(Γ) with

BΦ =

N∑
j=1

αj

d∑
i=1

bi

d−1∑
k=1

∂ξi(ϕj)k∂y′k(Φ ◦ ϕ−1
j ) ◦ ϕj (2.16)

for Φ ∈ Hm+1(Γ). The following lemmas provide some helpful properties.

Lemma 2.16. Let w ∈ C∞(Ω) and B ∈ B. Then, B(w|Γ) = (Bw)|Γ.

Proof. Let ξ ∈ Γ and {Oj , ϕj , αj} be the system of local maps of Γ. It holds that

Bw(ξ) = ((
N∑
j=1

αj

d∑
i=1

bi∂ξiw) ◦ ϕ−1
j ◦ ϕj)(ξ)

= (
N∑
j=1

αj

d∑
i=1

bi

d∑
k=1

∂y′k(w ◦ ϕ−1
j ) ◦ ϕj∂ξi(ϕj)k)(ξ).

Since (ϕj)d is constantly zero on Γ and the gradient is perpendicular on the level sets, there
exists c ∈ R such that ∂ξk(ϕj)d = cnk for all k ∈ {1, . . . , d}, where n denotes the outer unit
normal vector. Hence,

∑d
i=1 bi∂ξi(ϕj)d = 0 and

Bw(ξ) = (

N∑
j=1

αj

d∑
i=1

bi

d−1∑
k=1

∂y′k(w ◦ ϕ−1
j ) ◦ ϕj∂ξi(ϕj)k)(ξ).
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Lemma 2.17. Let d = 3, m ∈ N0 and Ω ⊂ Rd be a bounded, open domain with boundary
Γ of class C∞. Let Φ ∈ Hm+1(Γ) and B ∈ B. Then, there exists C > 0 such that

‖BΦ‖Hm(Γ) ≤ C‖Φ‖Hm+1(Γ).

Proof. Let {Oj , ϕj , αj} be the system of local maps of Γ. With (2.16) and (2.1) we obtain

‖BΦ‖Hm(Γ) = (
N∑
j=1

‖ϕ∗j (αjBΦ)‖2
Hm(Rd−1

y′ )
)

1
2

≤ C(
N∑
j=1

‖
d∑
i=1

d−1∑
k=1

ϕ∗j (αjbi∂ξi(ϕj)k)∂y′k(Φ ◦ ϕ−1
j )‖2

Hm(Rd−1
y′ )

)
1
2

≤ C(
N∑
j=1

d−1∑
k=1

‖ϕ∗j (αj)∂y′k(Φ ◦ ϕ−1
j )‖2

Hm(Rd−1
y′ )

)
1
2

where C is a generic constant. Moreover,

ϕ∗j (αj)∂y′k(Φ ◦ ϕ−1
j ) = ∂y′kϕ

∗
j (αjΦ)− ∂y′k(ϕ∗j (αj))ϕ

∗
j (Φ).

Hence, with (2.1) and a generic constant C,

‖BΦ‖Hm(Γ) ≤ C(

N∑
j=1

d−1∑
k=1

(‖∂y′kϕ
∗
j (αjΦ)‖2

Hm(Rd−1
y′ )

+ ‖∂y′k(ϕ∗j (αj))ϕ
∗
j (Φ)‖2

Hm(Rd−1
y′ )

))
1
2

≤ C(

N∑
j=1

d−1∑
k=1

(‖∂y′kϕ
∗
j (αjΦ)‖2

Hm(Rd−1
y′ )

+ ‖ϕ∗j (αjΦ)‖2
Hm(Rd−1

y′ )
))

1
2

≤ C(
N∑
j=1

‖ϕ∗j (αjΦ)‖2
Hm+1(Rd−1

y′ )
)

1
2 = C‖Φ‖Hm+1(Γ).

Lemma 2.18. Let d = 3, m ∈ N0 and Ω ⊂ Rd a bounded, open domain with boundary Γ
of class C∞. Let Φ ∈ Hm(Γ) such that BΦ ∈ Hm(Γ) for all B ∈ B. Then, Φ ∈ Hm+1(Γ)
and there exists a set of finitely many first-order operators B ⊂ B such that

‖Φ‖Hm+1(Γ) ≤ C(‖Φ‖Hm(Γ) + sup
B∈B
‖BΦ‖Hm(Γ))

for a constant C > 0.

Proof. Let the system {Oj , ϕj , αj} be given. We know that C∞(Γ) is dense in Hm(Γ) for
m ∈ N0 and therefore consider Φ ∈ C∞(Γ) and then extend by continuity, see Section 2.5.
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We have

‖Φ‖Hm+1(Γ) = (

N∑
j=1

‖ϕ∗j (αjΦ)‖2
Hm+1(Rd−1

y′ )
)

1
2 . (2.17)

Furthermore,

‖ϕ∗j (αjΦ)‖2
Hm+1(Rd−1

y′ )
= ‖ϕ∗j (αjΦ)‖2

L2(Rd−1
y′ )

+
d−1∑
k=1

‖∂y′kϕ
∗
j (αjΦ)‖2

Hm(Rd−1
y′ )

(2.18)

and, on B1(0) ∩ Rd−1
y′ ,

∂y′kϕ
∗
j (αjΦ) = ∂y′k((αjΦ) ◦ ϕ−1

j ) =
d∑

m=1

(∂ξm(αjΦ)) ◦ ϕ−1
j ∂y′k(ϕ−1

j )m

= ϕ∗j ((

d∑
m=1

aj,k,m)Φ) + ϕ∗j (αj(

d∑
m=1

bj,k,m∂ξmΦ)),

where aj,k,m = ∂ξmαj∂y′k(ϕ−1
j )m ◦ ϕj and bj,k,m = ∂y′k(ϕ−1

j )m ◦ ϕj .
Since (ϕj)d is constant on Γ and the gradient is perpendicular on the level sets, there exists
c ∈ R such that ∂ξm(ϕj)d = cnm for all m ∈ {1, 2, 3}, where n denotes the outer unit normal
vector. Thus, on B1(0) ∩ Rd−1

y′ , we have

0 = (∇y′ϕ
∗
j (ϕj))k,d = ∂y′k(ϕ∗j (ϕj))d

=
d∑

m=1

∂ξm(ϕj)d ◦ ϕ−1
j ∂y′k(ϕ−1

j )m = cϕ∗j (
d∑

m=1

bj,k,mnm).

since (ϕj)d = 0. By the choice of αj and ϕj we know that aj,k,m ∈ C∞(Γ) and bj,k,m ∈ C∞(Γ).
Due to Corollary 2.3, there exists a C∞(Ω)-extension b̃j,k,m of bj,k,m such that b̃j,k,m is
constant along normal directions locally around Γ and let

B := {B =
d∑

m=1

b̃j,k,m(ξ)∂ξm , k ∈ {1, 2}, j ∈ {1, . . . , N}}.

It holds

‖∂y′kϕ
∗
j (αjΦ)‖Hm(Rd−1

y′ ) ≤ ‖ϕ
∗
j ((

d∑
m=1

aj,k,m)Φ)‖Hm(Rd−1
y′ )

+ ‖ϕ∗j (αj(
d∑

m=1

bj,k,m∂ξmΦ))‖Hm(Rd−1
y′ ).

(2.19)
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With (2.1) we obtain

‖ϕ∗j ((
d∑

m=1

aj,k,m)Φ)‖Hm(Rd−1
y′ ) ≤ C

∑
k∈K
‖ϕ∗k(αk(

d∑
m=1

aj,k,m)Φ)‖Hm(Rd−1
y′ )

≤ C‖(
d∑

m=1

aj,k,m)Φ‖Hm(Γ) ≤ C‖Φ‖Hm(Γ),

(2.20)

where the last inequality holds due to the fact that (
∑d

m=1 aj,k,m) ∈ C∞(Γ). Additionally,
we have

‖ϕ∗j (αj(
d∑

m=1

bj,k,m∂ξmΦ))‖Hm(Rd−1
y′ ) ≤ sup

B∈B
‖BΦ‖Hm(Γ). (2.21)

Combination of (2.17), (2.18), (2.19), (2.20) and (2.21) yields

‖Φ‖Hm+1(Γ) ≤ C(‖Φ‖Hm(Γ) + sup
B∈B
‖BΦ‖Hm(Γ)).

Corollary 2.19. Let d = 3, m ∈ N0, Ω be an open, bounded domain with boundary Γ of
class C∞. Let v ∈ L2((0, T ), Hm(Γ)) and Bv ∈ L2((0, T ), Hm(Γ)) for all B ∈ B. Then,
v ∈ L2((0, T ), Hm+1(Γ)) and there exists a set of finitely many first-order operators B ⊂ B
such that

‖v‖L2((0,T ),Hm+1(Γ)) ≤ C(‖v‖L2((0,T ),Hm(Γ)) + sup
B∈B
‖Bv‖L2((0,T ),Hm(Γ))).

Proof. Follows from Lemma 2.18.

2.7. Method of Mappings

A detailed and general discussion of the method of mappings can, e.g., be found in [20, 41,
105]. Here, a short comprehensive motivation of the method is given. We start at observing
that a general, abstract and intuitive formulation for shape optimization problems is given
by

min
Ω̂∈Ôad

ĵ(Ω̂),

where Ôad denotes an appropriate set of admissible domains and ĵ : Ôad → R a shape
functional [31, Def. 4.3.1].
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Remark 2.20. In the case of PDE constrained optimization ĵ(Ω̂) usually denotes a reduced
cost functional defined by ĵ(Ω̂) = Ĵ(ŷ, Ω̂), where

Ĵ : {(ŷ, Ω̂) : ŷ ∈ Y (Ω̂), Ω̂ ∈ Ôad} → R

and ŷ denotes the solution of a partial differential equation given by Ê(ŷ, Ω̂) = 0 with

Ê : {(ŷ, Ω̂) : ŷ ∈ Y (Ω̂), Ω̂ ∈ Ôad} → {ẑ : ẑ ∈ Z(Ω̂), Ω̂ ∈ Ôad}.

Here, Y (Ω̂) and Z(Ω̂) denote Banach spaces.

One of the main challenges in considering this optimization problem addresses the topo-
logical structure , more precisely, the definition of an appropriate metric on Ôad. Besides
the consideration of characteristic functions (which motivates, e.g., phase field approaches,
cf., e.g., [47, 48]) or distance functions [31], Ôad can be endowed with a metric that is de-
fined via transformations [102, 31]. Similarly to the FSI problem the Lagrangian or Eulerian
perspective can be chosen to work with transformations. The latter leads to the notion of
shape derivatives, cf., e.g., [1, 31, 122], and to level set methods, cf., e.g., [1, 22, 23, 110].
The Lagrangian perspective is known as method of mappings or perturbation of the identity
[20, 105]. The main idea is the introduction of a reference domain Ω̃ and the choice

Ôad = {τ̃ (Ω̃) : τ̃ ∈ T̃ ad}

as the set of shapes that can be obtained by transforming a nominal or shape reference
domain Ω̃ with τ̃ ∈ T̃ ad ⊂ T (Ω̃), where T (Ω̃) denotes the Banach space of bicontinuous
transformation of Ω̃. This allows for a reformulation of the shape optimization problem in
an optimal control setting defined on Ω̃ with control τ̃ ∈ T̃ ad which is given by

min
τ̃∈T̃ ad

j̃(τ̃ ),

where j̃(τ̃ ) := ĵ(τ̃ (Ω̃)) for all τ̃ ∈ T̃ ad. In order for the optimization problem to be equivalend
to the original problem we have to ensure a one-to-one correspondance between transforma-
tions and shapes.

Remark 2.21. Any bi-Lipschitz transformation τ̃ 0 that just transforms the interior of Ω̃ can
be added to τ̃ and it holds τ̃ (Ω̃) = (τ̃ + τ̃ 0)(Ω̃). The reformulation of the shape optimization
problem has to take care of these kernel spaces, which motivates the consideration of shape
optimization problems on appropriate linear subspaces or manifolds.

Remark 2.22. In the case of PDE constrained optimization, it holds

j̃(τ̃ ) = ĵ(ŷ, τ̃ (Ω̃)) = Ĵ(ŷ, τ̃ (Ω̃)),

where ŷ solves Ê(ŷ, τ̃ (Ω̃)) = 0. Under the assumption that τ̃ is smooth enough such that for
ŷ ∈ Y (τ̃ (Ω)) it holds that ŷ ◦ τ̃ ∈ Y (Ω̃) for all τ̃ ∈ T̃ ad and such that for ỹ ∈ Y (Ω̃) it holds
that ỹ ◦ τ̃−1 ∈ Y (τ̃−1(Ω̃)) for all τ̃ ∈ T̃ ad, we have

Ĵ(ŷ, τ̃ (Ω̃)) = Ĵ(ŷ ◦ τ̃ , Ω̃)
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and
Ê(ŷ, τ̃ (Ω̃)) = Ê(ŷ ◦ τ̃ , Ω̃),

which yields an reformulation of the shape optimization problem on the reference domain Ω̃.
The assumption is fulfilled, if Y (Ω̃) = {ŷ ◦ τ̃ : ŷ ∈ Y (τ̃ (Ω̃))} and the mapping

ŷ ∈ Y (τ̃ (Ω̃))→ ỹ := ŷ ◦ τ̃ ∈ Y (Ω̃)

is a homeomorphism for all τ̃ ∈ T̃ ad. In that case, there are two possibilities to compute
the gradient of the reduced cost functional. For the iterate τ̃ one either solves the with
τ̃ transformed state and adjoint equations on Ω̃ or one solves the untransformed state and
adjoint equations on the transformed domain τ̃ (Ω̃).

It is convenient to define ũτ := τ̃ − idz to ensure that 0 is admissible in the optimization
process, as well as,

Ũad := {ũτ : Rd → Rd : idz + ũτ ∈ T̃ ad},

and optimize over ũτ ∈ Ũad instead of τ ∈ T̃ ad. Thus, we arrive at the optimization problem

min
ũτ∈Ũad

j(ũτ ),

where j(ũτ ) := j̃(idz + ũτ ).
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3. Fluid-Structure Interaction

This chapter collects theoretical results for FSI problems under simplifying assumptions. In
Section 3.1 it is shown for an unsteady, linear FSI model that the adjoint equation has the
same structure as the forward model but reverses the temporal flow of information. A new
improved regularity result for linear hyperbolic equations is derived in Section 3.2, which is
the basis for a regularity result for an unsteady, linear FSI problem (Section 3.3). These
considerations are the foundation for a local-in-time regularity result for an unsteady, non-
linear FSI problem in Section 3.4. The main contribution is the new improved regulartiy
results for linear hyperbolic equations in Section 3.2.

3.1. Adjoint Considerations for a Linear Unsteady FSI
Problem with Stationary Interface

For computing the gradients in optimal control settings, the adjoint equations have to be
solved. Especially in cases, where no automatic differentiation can be applied, it is crucial to
derive an explicit formula for the adjoint equations. Even though the FSI model is modified
for performing shape optimization, the adjoint equations to the unmodified model can be
used to drive the optimization (Section 2.7), basically when every iteration is performed on
the current ALE reference domain instead of the nominal domain, cf. [20, Sec. 2.2.2].
We consider the adjoint of a linear version of the fluid-structure interaction model (1.2).

More precisely, we consider Stokes flow for the fluid and linear elasticity for the solid equation.
Additionally, we restrict ourselves to the case with a stationary interface Γ̂i and homogeneous
Dirichlet boundary conditions, i.e., Ω̂ = Ω̌(t) = Ω and ∂Ω(t) = Γ̂fD ∪ Γ̂sD for any t ∈ I.
This also implies that χ̂ = idy, Ĵχ = 1 and F̂χ = I. The resulting fluid-structure interaction
problem (for the sake of clarity without superscripts) reads as follows

ρf∂tv − div(σf ) = ρf ff in Ωf × I,
div(v) = 0 in Ωf × I,

v = 0 on Γf × I,
v(·, 0) = v0 in Ωf ,

ρs∂tv − div(σs) = ρsfs in Ωs × I,
ρs(∂tw − v) = 0 in Ωs × I,

w = 0 on Γs × I,
w(·, 0) = w0 in Ωs,

v(·, 0) = v0 in Ωs,

(3.1)
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with the additional coupling conditions

∂tw = v on Γi × I,
−σfnf = σsns on Γi × I,

where σf = µf (Dv + Dv>) − pI, µf = ρfνf , σs = µs(Dw + Dw>) + λstr(Dw)I and, for
the sake of convenience, we introduced v0 defined by v0|Ωf = v0f and v0|Ωs = w1. For
compatibility reasons there holds w0|Γs = 0. This corresponds to the setting considered in
[34].
We are interested in the adjoint equations and therefore do calculations on a formal level

in order to derive a formulation for the adjoint system. In particular, we do not analyze
the regularity of solutions but only assume that all functions are smooth enough such that
the appearing terms and operations are well-defined. For the analysis of (3.1) we refer to
[34, 35, 38]. Since we consider a linear unsteady partial differential equation, we aim for
a weak formulation for which the adjoint attains the same structure as the forward model
but reverses the temporal flow of information. In [38], it is shown that an unsophisticated
straightforward weak formulation does not have the desired property, basically due to the
term ∂tw − v = 0. As a remedy, it is proposed to work with ∇∂tw − ∇v = 0 instead. In
the following, we apply ideas from [34] to reformulate the weak formulation and obtain an
analogous result.
Since ∂tw = v on Ωs it follows that w(·, t) = w0 +

∫ t
0 v(s)ds on Ωs.

Let W(v)(·, t) = w0 +
∫ t

0 v(·, s)ds, then the problem reads as follows:

ρf∂tv − µfdiv(Dv +Dv>) +∇p = ρf ff in QTf ,

div(v) = 0 in QTf ,

v = 0 on ΣT
f ,

ρs∂tv − µsdiv(DW(v) +DW(v)>)− λs∇(div(W(v))) = ρsfs in QTs ,

v = 0 on ΣT
s ,

v(·, 0) = w1 in Ω,

with the additional coupling condition

pnf − µf (Dv +Dv>)nf = µs(DW(v) +DW(v)>)ns + λsdiv(W(v))ns on ΣT
i .

One can check that this formulation is equivalent to the previous one since ρs(∂tW(v)−v) = 0
on QTs , W(v) = 0 on ΣT

s and W(v)(·, 0) = w0 are satisfied by the definition of W(v) as
well as ∂tW(v) = v on ΣT

i is satisfied if we require v ∈ H1
0 (Ω) for almost all t ∈ I, which

implies uniqueness of the trace.
The following notation is used:

• (p, q)Ω :=
∫

Ω pqdξ for all p, q ∈ L2(Ω), (v,u)Ω :=
∫

Ω v · udξ for all v,u ∈ L2(Ω)d and
(A,B)Ω :=

∫
Ω A : Bdξ for all A,B ∈ L2(Ω)d×d.

• (v,u)Γ :=
∫

Γ v ·udS(ξ) for all v,u ∈ L2(Ω)d, where dS(ξ) denotes the surface measure
on Γ.
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• ((p, q))QT :=
∫ T

0 (p(·, t), q(·, t))Ωdt for all p, q ∈ L2((0, T ), L2(Ω)),
((v,u))QT :=

∫ T
0 (v(·, t),u(·, t))Ωdt for all v,u ∈ L2((0, T ), L2(Ω)d) and

((A,B))QT :=
∫ T

0 (A,B)Ωdt for all A,B ∈ L2((0, T ), L2(Ω)d×d).

• af (v, z) =
µf
2 (Dv +Dv>, Dz +Dz>)Ωf ,

as(v, z) = µs
2 (Dv +Dv>, Dz +Dz>〉Ωs + λs(div(v),div(z))Ωs , for v, z ∈ H1

0 (Ω)d.

The corresponding weak formulation reads as follows:

ρf ((∂tv,ψ
v))QTf

− µf ((div(Dv +Dv>),ψv))QTf

+ ((∇p,ψv))QTf − ((ρf ff ,ψ
v))QTf

+ ρs((∂tv,ψ
v))QTs

− ((ρsfs,ψ
v))QTs − ((div(v), ψp))QTf

+ (v(·, 0)− v0,ψ
v(·, 0))Ω

− µs((div(DW(v) +DW(v)>),ψv))QTs − λs((∇(div(W(v))),ψv))QTs = 0.

Integration by parts yields the formulas

af (v, z) = µf
∑
j,k

∫
Ωf

(∂kvj∂kzj + ∂kvj∂jzk)dξ

= −µf
∑
j,k

∫
Ωf

(∂k∂kvjzj + ∂j∂kvjzk)dξ + µf
∑
j,k

∫
∂Ωf

(∂kvjzjnf,k + ∂kvjzknf,i)dS(ξ)

= −µf
∑
j,k

∫
Ωf

(∂k∂kvjzj + ∂j∂kvjzk)dξ + µf
∑
j,k

∫
Γi

(∂kvjzjnf,k + ∂kvjzknf,i)dS(ξ)

= −µf (div(Dv +Dv>), z)Ωf + µf ((Dv +Dv>)nf , z)Γi ,

(∇p, z)Ωf = −(p,div(z))Ωf + (pnf , z)∂Ωf = −(p,div(z))Ωf + (pnf , z)Γi ,

and

as(v, z) =
µs
2

(Dv +Dv>, Dz +Dz>)Ωs + λs
∑
j,k

∫
Ωs

∂jvj∂kzkdx

=
µs
2

(Dv +Dv>, Dz +Dz>)Ωs − λs
∑
j,k

∫
Ωs

∂k∂jvjzkdx + λs
∑
j,k

∫
∂Ωs

∂jvjzkns,kdS(x)

=
µs
2

(Dv +Dv>, Dz +Dz>)Ωs − λs
∑
j,k

∫
Ωs

∂k∂jvjzkdx + λs
∑
j,k

∫
Γi

∂jvjzkns,kdS(x)

=
µs
2

(Dv +Dv>, Dz +Dz>)Ωs − λs(∇(div(v)), z)Ωs + λs((div(v))ns, z)Γi

= −µs(div(Dv +Dv>), z)Ωs + µs((Dv +Dv>)nf , z)Γi

− λs(∇(div(v)), z)Ωs + λs((div(v))ns, z)Γi .
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Thus, the weak formulation can be reformulated as

ρf ((∂tv,ψ
v))QTf

+

∫ T

0
af (v,ψv)dt− ((p,∇ ·ψv))QTf

+ ρs((∂tv,ψ
v))QTs +

∫ T

0
as(W(v),ψv)dt− ((∇ · v, ψp))QTf

− ((ρf ff ,ψ
v))QTf

− ((ρsfs,ψ
v))QTs + (v(·, 0)− v0,ψ

v(·, 0))Ω

−
∫ T

0
(µf (∇v +∇v>)nf − pnf + µs(∇W(v) +∇W(v)>)ns

+ λs(∇ ·W(v))ns,ψ
v)Γidt = 0,

which can be simplified by using the interface condition:

ρf ((∂tv,ψ
v))QTf

+

∫ T

0
af (v,ψv)dt− ((p,∇ ·ψv))QTf

+ ρs((∂tv,ψ
v))QTs +

∫ T

0
as(W(v),ψv)dt− ((∇ · v, ψp))QTf

− ((ρf ff ,ψ
v))QTf

− ((ρsfs,ψ
v))QTs + (v(·, 0)− v0,ψ

v(·, 0))Ω = 0.

Linearization of this equation yields an operator A, which is defined by

〈A(ηv, ηp), (ψv, ψp)〉 = ρf ((∂tη
v,ψv))QTf

+

∫ T

0
af (ηv,ψv)dt− ((ηp,∇ ·ψv))QTf

+ ρs((∂tη
v,ψv))QTs +

∫ T

0
as(

∫ t

0
ηv(·, s)ds,ψv)dt− ((∇ · ηv, ψp))QTf

+ (ηv(·, 0),ψv(·, 0))Ω.

The term which destroys the symmetry of the operator is given by as. Closer consideration
of this term yields (under the assumption that we are on spaces where Fubini’s theorem is
valid) yields:∫ T

0
as(

∫ t

0
ηv(·, s)ds,ψv)dt =

∫ T

0
as(

∫ t

0
ηv(·, s)ds,ψv(·, t))dt

=

∫ T

0

∫ t

0
as(η

v(·, s),ψv(·, t))dsdt =

∫ T

0

∫ T

s
as(η

v(·, s),ψv(·, t))dtds

=

∫ T

0
as(η

v(·, s),
∫ T

s
ψv(·, t)dt)ds =

∫ T

0
as(η

v(·, s),
∫ T−s

0
ψv(·, T − t)dt)ds

=

∫ T

0
as(η

v(·, T − s),

∫ s

0
ψv(·, T − t)dt)ds

Introducing ηv(ξ, t) = ηv(ξ, T − t), ηp(ξ, t) = ηp(ξ, T − t), ψv(ξ, t) = ψv(ξ, T − t),
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ψ
p
(ξ, t) = ψp(ξ, T − t) yields∫ T

0
as(

∫ t

0
ηv(·, s)ds,ψv)dt =

∫ T

0
as(

∫ t

0
ψ
v
(·, s)ds,ηv)dt.

We have ∂tψv(·, t) = −∂sψ
v
(·, s) for s = T − t and the following equation holds true:

((ηv, ∂tψ
v))QTf

=

∫ T

0
(ηv(·, t), ∂tψv(·, t))Ωfdt

=

∫ T

0
(ηv(·, T − t),−∂sψ

v
(·, T − t))Ωfdt

= −
∫ 0

T
(ηv(·, s),−∂sψ

v
(·, s))Ωfds = −

∫ T

0
(ηv(·, s), ∂sψ

v
(·, s))Ωfds

= −
∫ T

0
(ηv(·, t), ∂tψ

v
(·, t))Ωfdt = −((ηv, ∂tψ

v
))QTf

.

This is the reason why partial integration yields

((∂tη
v,ψv))QTf

=

∫ T

0
∂t(η

v,ψv)Ωfdt− ((ηv, ∂tψ
v))QTf

= (ηv(·, T ),ψv(·, T ))Ωf − (ηv(·, 0),ψv(·, 0))Ωf + ((ηv, ∂tψ
v
))QTf

.

Analogoulsy,

((∂tη
v,ψv))QTs =

∫ T

0
∂t(η

v,ψv)Ωsdt− ((ηv, ∂tψ
v))QTs

= (ηv(·, T ),ψv(·, T ))Ωs − (ηv(·, 0),ψv(·, 0))Ωs + ((ηv, ∂tψ
v
))QTs .

Combining these results, rewriting the terms in ηv, ηp, ψv, ψp and using that
(ηv(·, T ),ψv(·, T ))Ω = (ηv(·, 0),ψ

v
(·, 0))Ω yields:

〈A(ηv, ηp), (ψv, ψp)〉 = ρf ((∂tψ
v
,ηv))QTf

+

∫ T

0
af (ψ

v
,ηv)dt− ((∇ ·ψv, ηp))QTf

+ ρs((∂tψ
v
,ηv))QTs +

∫ T

0
as(

∫ t

0
ψ
v
(·, s)ds,ηv)dt− ((ψ

p
,∇ · ηv))QTf

+ (ψ
v
(·, 0),ηv(·, 0))Ω = 〈A(ψ

v
, ψ

p
), (ηv, ηp)〉.

Thus, the adjoint has the same structure as the forward model, but reverses the temporal
flow of information.
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3.2. Improved Regularity Result for Linear Hyperbolic
Equations

In order to motivate improved regularity results for the Lamé system, we first consider the
classical hyperbolic system

∂ttw −∆w = f in QTs ,

w = G on ΣT
s ,

w(·, 0) = w0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

(3.2)

and derive improved regularity results for this system.

3.2.1. Available Existence and Regularity Results

The theory is built on the following existence and regularity result, that already contains
an improved regularity result for the normal derivative on the boundary. Defining lifting
operators as in [113] and using [86, Rem. 2.2, Thm. 2.2, Rem. 2.10] yields in an analogous
way to [113, p. 560, Thm. 3.2]. For the time-independency of the constants compare also
Theorem 3.12.

Theorem 3.1. 1. Let f ∈ L1((0, T ), L2(Ωs)), G ∈ H1(ΣT
s ), w0 ∈ H1(Ωs) and

w1 ∈ L2(Ωs) be such that
G|t=0 = w0|Γs .

Then the solution w of system (3.2) satisfies

w ∈ C([0, T ], H1(Ωs)) ∩ C1([0, T ], L2(Ωs))

and
∇w · ns ∈ L2(ΣT

s ) = L2((0, T ), L2(Γs)).

In addition,

‖w‖C([0,T ],H1(Ωs))∩C1([0,T ],L2(Ωs)) + ‖∇w · ns‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),L2(Ωs)) + ‖w0‖H1(Ωs) + ‖w1‖L2(Ωs) + ‖G‖H1(ΣTs )),

where the constant C is independent of T .

2. Let f ∈ L1((0, T ), H1(Ωs)), ∂tf ∈ L1((0, T ), L2(Ωs)), G ∈ H2(ΣT
s ), w0 ∈ H2(Ωs) and

w1 ∈ H1(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then the solution w of system (3.2) satisfies

w ∈ C([0, T ], H2(Ωs)) ∩ C1([0, T ], H1(Ωs)) ∩ C2([0, T ], L2(Ωs))
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and
∇w · ns ∈ H1(ΣT

s ) = L2((0, T ), H1(Γs)) ∩H1((0, T ), L2(Γs)).

Furthermore,

‖w‖C([0,T ],H2(Ωs))∩C1([0,T ],H1(Ωs))∩C2([0,T ],L2(Ωs)) + ‖∇w · ns‖H1(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖∂tf‖L1((0,T ),L2(Ωs))

+ ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs) + ‖G‖H2(ΣTs )),

where the constant C is independent of T .

3. Let f ∈ L1((0, T ), H2(Ωs)), ∂tf ∈ L1((0, T ), H1(Ωs)), ∂ttf ∈ L1((0, T ), L2(Ωs)),
G ∈ H3(ΣT

s ), w0 ∈ H3(Ωs) and w1 ∈ H2(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs , ∂ttG|t=0 = (∆w0 + f(·, 0))|Γs .

Then the solution w of system (3.2) satisfies

w ∈ C([0, T ], H3(Ωs)) ∩ C1([0, T ], H2(Ωs)) ∩ C2([0, T ], H1(Ωs))

and
∇w · ns ∈ H2(ΣT

s ) = L2((0, T ), H2(Γs)) ∩H2((0, T ), L2(Γs)).

Moreover,

‖w‖C([0,T ],H3(Ωs))∩C1([0,T ],H2(Ωs))∩C2([0,T ],H1(Ωs)) + ‖∇w · ns‖H2(ΣTs )

≤ C(‖f‖L1((0,T ),H2(Ωs)) + ‖∂tf‖L1((0,T ),H1(Ωs)) + ‖∂ttf‖L1((0,T ),L2(Ωs))

+ ‖w0‖H3(Ωs) + ‖w1‖H2(Ωs) + ‖f(·, 0)‖H1(Ωs) + ‖G‖H3(ΣTs )),

where the constant C is independent of T .

3.2.2. Local-in-Time Results

Applying the above results directly in the FSI setting results in a loss of information due
to the anisotropic regularity of the solution of the fluid equations in space and time, cf.
[59, Assumption 1]. Using a fixed point argument on the coupling conditions motivates to
work with boundary conditions G ∈ L2((0, T ), Hr+1(Γs)) ∩ Hr((0, T ), H1(Γs)), r ∈ {1, 2}.
The starting point for our considerations is a technique of [86] which allows to consider a
modified linear hyperbolic equation, where the regularity of the boundary term is compatible
to the regularity results in Theorem 3.1 without losing information as it is the case when we
embed the space with higher regularity into a space with lower regularity. More precisely, we
consider a first order operator B ∈ B that is tangential to the boundary in order to obtain
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the system

∂tt(Bw)−∆(Bw) = (B∆−∆B)w +Bf in QTs ,

Bw = BG on ΣT
s ,

Bw(·, 0) = Bw0 in Ωs,

∂tBw(·, 0) = Bw1 in Ωs.

Now, BG ∈ L2((0, T ), Hr(Γs)) ∩ Hr((0, T ), L2(Γs)). However, the regularity of the right
hand side of the hyperbolic equation, more precisely the term (B∆ − ∆B)w prevents us
from directly applying Theorem 3.1, since (B∆−∆B) is, in general, a differential operator
of order two. Thus, no bootstrapping argument can be used except for geometries where
(B∆−∆B) is a differential operator of order strictly less than two, which is, e.g., the case if
ΣT
s is flat as in [113]. In that special case it holds that B∆−∆B = 0 and Theorem 3.1 can

directly be applied. From the regularity of Bw we can then improve the estimates on the
regularity of the normal derivative of w on the boundary, cf. Corollary 2.19. The following
interchangeability property is useful.

Lemma 3.2. Let d ∈ {2, 3}, Ωs be a domain with smooth boundary Γs, B =
∑

i bi(ξ)∂ξi
be a time-independent first order operator with smooth coefficients bi(ξ) such that

d∑
i=1

bi(ξ)(ns)i(ξ) = 0 on Γs,

and
∇bi · ns = 0 on Γs,

for all i ∈ {1, . . . , d}, where ns denotes the outer normal unit vector of Ωs on Γs. Then,

B(∇Φ · ns) = ∇BΦ · ns +∇Φ · (Bns)

on Γs and for any smooth Φ.

Proof. Follows from the following two identities:

∇BΦ · ns = ∇(
∑
i

bi∂ξiΦ)ns =
∑
i,j

(bi∂ξj∂ξiΦ(ns)j + ∂ξjbi∂ξiΦ(ns)j)

=
∑
i,j

bi∂ξj∂ξiΦ(ns)j ,

B(∇Φ · ns) =
∑
i,j

(bi∂ξj∂ξiΦ(ns)j + bi∂ξjΦ∂ξi(ns)j)

=
∑
i,j

bi∂ξj∂ξiΦ(ns)j +∇Φ · (Bns).
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The main idea to extend these considerations to smooth domains is inspired by techniques
in [113]. We consider local-in-time solutions and use the fact that the constants of the
estimates for right hand side terms that depend on w show well-behaved T -dependencies.
Therefore, choosing T sufficiently small allows us to eliminate these terms. Then, globaliza-
tion strategies as in [113] can be applied.

Lemma 3.3. Let T ∗ > 0,

G ∈ L2((0, T ∗), H2(Γs)) ∩H1((0, T ∗), H1(Γs)),

f ∈ L2((0, T ∗), H1(Ωs)), w0 ∈ H2(Ωs) and w1 ∈ H1(Ωs) be such that

G|t=0 = w0|Γs .

Then, there exists T̂ ∈ (0, T ∗] such that for all T ∈ (0, T̂ ] the solution w of system (3.2)
satisfies

∇w · ns ∈ L2((0, T ), H1(Γs))

and

‖∇w · ns‖L2((0,T ),H1(Γs)) ≤ C(T
1
2 ‖f‖L2((0,T ),H1(Ωs)) + ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)),

with a constant C independent of T .

Proof. We first assume the data to be smooth, i.e.,

w0, w1 ∈ C∞(Ω) and f, G ∈ C∞(Ω× [0, T ∗]),

and use extension by continuity, see Section 2.5, to conclude the argumentation.
By Theorem 3.1.1 we know that

‖w‖C([0,T ],H1(Ωs))∩C1([0,T ],L2(Ωs)) + ‖∇w · ns‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),L2(Ωs)) + ‖w0‖H1(Ωs) + ‖w1‖L2(Ωs) + ‖G‖H1(ΣTs )),
(3.3)

with a constant C independent of T . Let CB ∈ (0,∞) be chosen such that

B ⊂ BCB := {B ∈ B : B =
∑
i

bi∂ξi , s.t. b · ns = 0 on Γs, sup
1≤i≤d

‖bi‖C∞(Ωs)
≤ CB and

b is constant along normal directions locally around Γs},

where B is the set of finitely many first-order operators defined in Corollary 2.19. Due to
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Corollary 2.4, there exists h ∈ C∞(Ωs,Rd) such that for all B ∈ BCB there holds

h|Γs = ns,

h is constant along normal directions locally around Γs,

∇hl · h = 0,

∇bl · h = 0,

(3.4)

in a small neighborhood of Γs for all l ∈ {1, . . . , d}. Consider the system

∂tt(Bw)−∆(Bw) = (B∆−∆B)w +Bf in QTs ,

Bw = BG on ΣT
s ,

Bw(·, 0) = Bw0 in Ωs,

∂tBw(·, 0) = Bw1 in Ωs.

Standard estimates, Lemma 2.17 and ‖Bf‖L1((0,T ),L2(Ωs)) ≤ T
1
2 ‖Bf‖L2((0,T ),L2(Ωs)) yield

‖Bf‖L1((0,T ),L2(Ωs)) ≤ CT
1
2 ‖f‖L2((0,T ),H1(Ωs)),

‖Bw0‖H1(Ωs) ≤ C‖w0‖H2(Ωs),

‖Bw1‖L2(Ωs) ≤ C‖w1‖H1(Ωs),

‖BG‖H1(ΣTs ) ≤ C‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs)),

with constants C that depend on CB but not on T . We have

(B∆−∆B)w =
∑
i,j

bj∂ξj∂ξi∂ξiw −
∑
i

∂ξi∂ξi(
∑
j

bj∂ξjw)

= −2
∑
i,j

∂ξibj∂ξj∂ξiw −
∑
i,j

∂ξi∂ξibj∂ξjw. (3.5)

We aim at proving the following estimate

‖(B∆−∆B)w‖L1((0,T ),L2(Ωs))

≤ C‖w‖L1((0,T ),H1(Ωs)) + CT
1
2 sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs)),
(3.6)

for a constant C independent of T where we use that

‖B̃w‖L1((0,T ),H1(Ωs)) ≤ T
1
2 ‖B̃w‖L2((0,T ),H1(Ωs)).

It holds that

‖
∑
i,j

∂ξi∂ξibj∂ξjw‖L1((0,T ),L2(Ωs)) ≤ C‖w‖L1((0,T ),H1(Ωs)) (3.7)

for a constant C independent of T .
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However, for the first term of (3.5) we have
∑

i ∂ξibj∂ξj /∈ BCB . The idea is to split the
operator ∂ξi on w into a normal and tangential part. Therefore, we define

h̃i := (h · ei)h, b̃i := ei − h̃i,

where ei denotes the ith unit vector. We obtain∑
i,j

∂ξibj∂ξj∂ξiw =
∑
i,j,k

∂ξibj∂ξj ((h̃i)k∂ξkw) +
∑
i,j,k

∂ξibj∂ξj ((b̃i)k∂ξkw). (3.8)

By definition of b̃i we have b̃i · h|Γs = 0 and due to (3.4) we know that (b̃i)k are constant
along normal directions in a small neighborhood around Γs for all k ∈ {1, . . . , d}. Therefore,∑

k(b̃i)k∂ξk ∈ BCB and the second term of the right hand side of (3.8) can be estimated

‖
∑
i,j,k

∂ξibj∂ξj ((b̃i)k∂ξkw)‖L1((0,T ),L2(Ωs)) ≤
∑
i,j

CB‖∂ξj (
∑
k

(b̃i)k∂ξkw)‖L1((0,T ),L2(Ωs))

≤ CT
1
2 sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs)). (3.9)

The first summand of the right hand side of (3.8) splits into∑
i,j,k

∂ξibj∂ξj ((h̃i)k∂ξkw) =
∑
i,j,k

∂ξibj(h̃i)k∂ξj∂ξkw +
∑
i,j,k

∂ξibj∂ξj (h̃i)k∂ξkw. (3.10)

The second summand of the right hand side of (3.10) is easy to handle and we obtain

‖
∑
i,j,k

∂ξibj∂ξj (h̃i)k∂ξkw‖L1((0,T ),L2(Ωs)) ≤ C‖w‖L1((0,T ),H1(Ωs)). (3.11)

The first term of the right hand side of (3.10) reads as∑
i,j,k

∂ξibj(h̃i)k∂ξj∂ξkw =
∑
i,j,k

∂ξibjhihk∂ξj∂ξkw.

By (3.4),
∑

i ∂ξibjhihk = (∇bj ·h)hk is 0 in a small neighborhood around Γs. Consequently,
γ
∑

i,j ∂ξibjhihk∂ξj ∈ BBC for γ = 1
d‖h‖2C∞(Ω))

and

‖
∑
i,j,k

∂ξibj(h̃i)k∂ξj∂ξkw‖L1((0,T ),L2(Ω))

≤
∑
k

(‖
∑
i,j

∂ξk(∂ξibj(h̃i)k)∂ξjw‖L1((0,T ),L2(Ω)) + ‖∂ξk(
∑
i,j

∂ξibj(h̃i)k∂ξjw)‖L1((0,T ),L2(Ω)))

≤ C(‖w‖L1((0,T ),H1(Ω)) + T
1
2 sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs))). (3.12)

(3.5), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) yield estimate (3.6). Due to Theorem 3.1.1
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there exists a constant C > 0 such that

‖Bw‖C([0,T ],H1(Ωs))∩C1([0,T ],L2(Ωs)) + ‖∇Bw · ns‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs) + ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ ‖w‖L1((0,T ),H1(Ωs)) + T
1
2 sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs))).

Using that B ∈ BCB yields

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖∇Bw · ns‖L2(ΣTs )

≤ 2C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs)) + ‖w‖L1((0,T ),H1(Ωs))

+ T
1
2 sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs))).

(3.13)

To apply Corollary 2.19, we need an estimate for ‖B(∇w · ns)‖L2(ΣTs ). By Lemma 3.2, we
know that

‖B(∇w · ns)‖L2(ΣTs ) ≤ ‖∇Bw · ns‖L2(ΣTs ) + ‖∇w ·Bns‖L2(ΣTs ). (3.14)

The first summand can be bounded with (3.13). The second term can be written as

∇w ·Bns =
∑
i

∂ξiw
∑
j

bj∂ξj (ns)i =
∑
i

b̂i∂ξiw,

where b̂i :=
∑

j bj∂ξjhi. We split b̂ := (̂b1, . . . , b̂d) in a normal part b̂n := (̂b · h)h and a
tangential part b̂t := b̂ − b̂n with ‖̂bn‖C∞(Ωs,Rd) ≤ αCB and ‖̂bt‖C∞(Ωs,Rd) ≤ βCB, where
the constants α := d2‖h‖3C∞(Ω)

and β := d(1 + d‖h‖2C∞(Ω)
)‖h‖C∞(Ω) do not depend on B.

Therefore, B̃ :=
∑

i β
−1(̂bt)i∂ξi ∈ BCB and there exists a constant C independent of T and

B such that

‖∇w ·Bns‖L2(ΣTs ) ≤ ‖∇w · b̂n‖L2(ΣTs ) + β‖B̃w‖L2(ΣTs )

≤ C(‖∇w · ns‖L2(ΣTs ) + sup
B̃∈BCB

‖B̃w‖L2(ΣTs ))

≤ C(‖∇w · ns‖L2(ΣTs ) + sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs))),

where we use the trace inequality in space. Combining this result with (3.3), (3.13) and
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(3.14) yields a constant C independent of T such that

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs))).

(3.15)

We have

sup
B̃∈BCB

‖B̃w‖L2((0,T ),H1(Ωs)) ≤ CT
1
2 sup
B̃∈BCB

‖B̃w‖C([0,T ],H1(Ωs)), (3.16)

which implies for T > 0 sufficiently small

sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs ) ≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs)

+ ‖w1‖H1(Ωs) + ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))).

(3.3) and Corollary 2.19 and using extension by continuity yields the assertion.

Likewise we can show the following lemma.

Lemma 3.4. Let T ∗ > 0,

G ∈ L2((0, T ∗), H3(Γs)) ∩H2((0, T ∗), H1(Γs)),

f ∈ L2((0, T ∗), H2(Ωs)) ∩H1((0, T ), H1(Ωs)), w0 ∈ H3(Ωs) and w1 ∈ H2(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then, there exists T̂ ∈ (0, T ∗] such that for all T ∈ (0, T̂ ] the solution w of system (3.2)
satisfies

∇w · ns ∈ L2((0, T ), H2(Γs)) ∩H1((0, T ), H1(Γs)).

‖∇w · ns‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

≤ C(T
1
2 ‖f‖L2((0,T ),H2(Ωs))∩H1((0,T ),H1(Ωs)) + ‖G‖L2((0,T ),H3(Γs))∩H2((0,T ),H1(Γs))

+ ‖w0‖H3(Ωs) + ‖w1‖H2(Ωs)),

with a constant C independent of T .

Proof. This is obtained with the same arguments as in Lemma 3.3, but on the basis of Lemma
3.1.2 instead of 3.1.1.
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3.2.3. Global-in-Time Results

Since the local-in-time improved regularity results are shown for linear operators, a global-
ization is straightforward using ideas of [107, Prop. 2.7].

Lemma 3.5. Let T ∗ > 0 and 0 < T ≤ T ∗,

G ∈ L2((0, T ∗), H2(Γs)) ∩H1((0, T ∗), H1(Γs)),

f ∈ L2((0, T ∗), H1(Ωs)), w0 ∈ H2(Ωs) and w1 ∈ H1(Ωs) be such that

G|t=0 = w0|Γs .

Then, the solution w of system (3.2) satisfies

∇w · ns ∈ L2((0, T ), H1(Γs))

and

‖∇w · ns‖L2((0,T ),H1(Γs)) ≤ C(T
1
2 ‖f‖L2((0,T ),H1(Ωs)) + ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)),

with a constant C independent of T .

Proof. Let the data f , G, w0 and w1 be smooth and conclude the argumentation with
extension by continuity. Combination of (3.15) and (3.16) yields a constant C independent
of T such that

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ T
1
2 sup
B̃∈BCB

‖B̃w‖C([0,T ],H1(Ωs)))

(3.17)

for all T ∈ (0, T ∗]. Let 0 ≤ T0 < T1 < T2, then,

sup
B∈BCB

‖Bw‖C([0,T2],H1(Ωs)) ≥ sup
B∈BCB

‖Bw‖C([T1,T2],H1(Ωs)),

sup
B∈BCB

‖Bw‖L2((0,T2),H1(Ωs)) ≤ sup
B∈BCB

‖Bw‖L2((0,T1),H1(Ωs)) + sup
B∈BCB

‖Bw‖L2((T1,T2),H1(Ωs)),

sup
B∈BCB

‖Bw‖L2((T0,T2),H1(Ωs)) ≤ (T2 − T0)
1
2 sup
B∈BCB

‖Bw‖C([T0,T2],H1(Ωs)),

(3.18)

if supB∈BCB
‖Bw‖C([0,T2],H1(Ωs)) < ∞. Let T̄ > 0 be chosen such that CT̄

1
2 ≤ 1

2 . Then,
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(3.17) implies

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs )

≤ 2C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs)

+ ‖w1‖H1(Ωs) + ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs)))

(3.19)

for all T ∈ (0, T̄ ]. Choose T̂ = T̄ and ∆T = min(T̂ + T̄, T ∗). Then, for T ∈ (T̂, T̂ + ∆T ],
(3.17) and (3.18) imply

sup
B∈BCB

‖Bw‖C([T̂,T ],H1(Ωs))
) + sup

B∈BCB
‖B(∇w · ns)‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

+ T̂
1
2 sup
B̃∈BCB

‖B̃w‖C([0,T̂ ],H1(Ωs))
+ (T − T̂ )

1
2 sup
B̃∈BCB

‖B̃w‖C([T̂,T ],H1(Ωs))
).

Since CT̄
1
2 ≤ 1

2 , and T − T̂ ≤ T̄ for T ∈ (T̂, T̂ + ∆T ], there exists a constant C > 0
independent of T such that

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs)) + T̂
1
2 sup
B̃∈BCB

‖B̃w‖C([0,T̂ ],H1(Ωs))
)

for T ∈ (T̂, T̂ + ∆T ]. Due to (3.19) there exists a constant C > 0 independent of T such that

sup
B∈BCB

‖Bw‖C([0,T ],H1(Ωs)) + sup
B∈BCB

‖B(∇w · ns)‖L2(ΣTs )

≤ C(‖f‖L1((0,T ),H1(Ωs)) + ‖w0‖H2(Ωs) + ‖w1‖H1(Ωs)

+ ‖G‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs)))

for T ∈ (0, T̂ + ∆T ]. Replacing T̂ with T̂ + ∆T and recursively applying this argumentation,
(3.3), Corollary 2.19 and extension by continuity yield the result.

With the same arguments we obtain the globalized version of Lemma 3.4.

Lemma 3.6. Let T ∗ > 0 and 0 < T ≤ T ∗,

G ∈ L2((0, T ∗), H3(Γs)) ∩H2((0, T ∗), H1(Γs)),

f ∈ L2((0, T ∗), H2(Ωs)) ∩H1((0, T ), H1(Ωs)), w0 ∈ H3(Ωs) and w1 ∈ H2(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .
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Then, the solution w of system (3.2) satisfies

∇w · ns ∈ L2((0, T ), H2(Γs)) ∩H1((0, T ), H1(Γs)).

Furthermore,

‖∇w · ns‖L2((0,T ),H2(Γs))∩H1((0,T ),H1(Γs))

≤ C(T
1
2 ‖f‖L2((0,T ),H2(Ωs))∩H1((0,T ),H1(Ωs)) + ‖G‖L2((0,T ),H3(Γs))∩H2((0,T ),H1(Γs))

+ ‖w0‖H3(Ωs) + ‖w1‖H2(Ωs)),

with a constant C independent of T .

Let, for the sake of convenience, f = 0 and consider the system

∂ttw −∆w = 0 in QTs ,

w = G on ΣT
s ,

w(·, 0) = w0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

(3.20)

The argumentation for obtaining an estimate that is compatible to the fluid equations is
motivated by [113] and presented in a slightly modified manner.

Lemma 3.7. Let T ∗ > 0 and 0 < T ≤ T ∗, ` ∈ (1
2 , 1),

G ∈ L2((0, T ∗), H
3
2

+`(Γs)) ∩H
1
2

+`((0, T ∗), H1(Γs)),

w0 ∈ H
3
2

+`(Ωs) and w1 ∈ H
1
2

+`(Ωs) be such that

G|t=0 = w0|Γs .

Then, the solution w of system (3.20) satisfies

∇w · ns ∈ L2((0, T ), H
1
2

+`(Γs)) ∩H`− 1
2 ((0, T ), H1(Γs)),

and

‖∇w · ns‖
L2((0,T ),H

1
2 +`(Γs))∩H`− 1

2 ((0,T ),H1(Γs))

≤ C(‖G‖
L2((0,T ),H

3
2 +`(Γs))∩H

1
2 +`((0,T ),H1(Γs))

+ ‖w0‖
H

3
2 +`(Ωs)

+ ‖w1‖
H

1
2 +`(Ωs)

),

where the constant C might depend on T .

Proof. Interpolation of Lemmas 3.6 and 3.5 with θ = 3
2 − ` yields

|||∇w · ns|||
L2((0,T ),H

1
2 +`(Γs))∩H`− 1

2 ((0,T ),H1(Γs))

≤ C(|||G|||
L2((0,T ),H

3
2 +`(Γs))∩H

1
2 +`((0,T ),H1(Γs))

+ |||w0|||
H

3
2 +`(Ωs)

+ |||w1|||
H

1
2 +`(Ωs)

),
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with a constant C > 0 independent of T . The equivalence constants between the interpolation
norms ||| · ||| and the norms ‖ · ‖ on the time interval (0, T ) might depend on T .

Lemma 3.8. Let T ∗ > 0 and 0 < T ≤ T ∗, ` ∈ (1
2 , 1),

G ∈ H1((0, T ∗), H
3
2

+`(Γs)) ∩H
3
2

+`((0, T ∗), H1(Γs)),

w0 ∈ H
5
2

+`(Ωs) and w1 ∈ H
3
2

+`(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then, the solution w of system (3.20) satisfies

∇w · ns ∈ H1((0, T ), H
1
2

+`(Γs)) ∩H`+ 1
2 ((0, T ), H1(Γs)),

and

‖∇w · ns‖
H1((0,T ),H

1
2 +`(Γs))∩H`+ 1

2 ((0,T ),H1(Γs))

≤ C(‖G‖
H1((0,T ),H

3
2 +`(Γs))∩H

3
2 +`((0,T ),H1(Γs))

+ ‖w0‖
H

5
2 +`(Ωs)

+ ‖w1‖
H

3
2 +`(Ωs)

),

where the constant C might depend of T .

Proof. Lemma 3.7 yields

‖∇w · ns‖
L2((0,T ),H

1
2 +`(Γs))∩H`− 1

2 ((0,T ),H1(Γs))

≤ C(‖G‖
L2((0,T ),H

3
2 +`(Γs))∩H

1
2 +`((0,T ),H1(Γs))

+ ‖w0‖
H

3
2 +`(Ωs)

+ ‖w1‖
H

1
2 +`(Ωs)

).
(3.21)

∂tw is a solution of the system

∂tt(∂tw)−∆(∂tw) = 0 in QTs ,

∂tw = ∂tG on ΣT
s ,

∂tw(·, 0) = w1 in Ωs,

∂t(∂tw)(·, 0) = ∆w0 in Ωs.

(3.22)

Lemma 3.7 applied to system (3.22) yields

‖∂t∇w · ns‖
L2((0,T ),H

1
2 +`(Γs))∩H`− 1

2 ((0,T ),H1(Γs))

≤ C(‖∂tG‖
L2((0,T ),H

3
2 +`(Γs))∩H

1
2 +`((0,T ),H1(Γs))

+ ‖w1‖
H

3
2 +`(Ωs)

+ ‖∆w0‖
H

1
2 +`(Ωs)

)

≤ C(‖G‖
H1((0,T ),H

3
2 +`(Γs))∩H

3
2 +`((0,T ),H1(Γs))

+ ‖w0‖
H

5
2 +`(Ωs)

+ ‖w1‖
H

3
2 +`(Ωs)

).

(3.23)
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Combination of (3.21) and (3.23) yields the assertion.

Lemma 3.9. Let T ∗ > 0 and 0 < T ≤ T ∗, ` ∈ (1
2 , 1), β ∈ (0, 1− `),

G ∈ Hβ((0, T ∗), H
3
2

+`(Γs)) ∩H
1
2

+`+β((0, T ∗), H1(Γs)),

w0 ∈ H
3
2

+`+β(Ωs) and w1 ∈ H
1
2

+`+β(Ωs) be such that

G|t=0 = w0|Γs .

Then, the solution w of system (3.20) satisfies

∇w · ns ∈ Hβ((0, T ), H
1
2

+`(Γs)) ∩H`− 1
2

+β((0, T ), H1(Γs)),

and

‖∇w · ns‖
Hβ((0,T ),H

1
2 +`(Γs))∩H`− 1

2 +β((0,T ),H1(Γs))

≤ C(‖G‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

),

where the constant C might depend on T .

Proof. Is obtained by interpolation of Lemmas 3.8 and 3.7 with θ = 1− β.

Lemma 3.10. Let T ∗ > 0 and 0 < T ≤ T ∗, ` ∈ (1
2 , 1),

G ∈ H
7
4

+ `
2 (ΣT ∗

s ),

w0 ∈ H
7
4

+ `
2 (Ωs) and w1 ∈ H

3
4

+ `
2 (Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then, the solution w of system (3.20) satisfies

w ∈ C([0, T ], H
7
4

+ `
2 (Ωs)) ∩ C1([0, T ], H

3
4

+ `
2 (Ωs)), ∇w · ns ∈ H

3
4

+ `
2 (ΣT

s ),

and

‖w‖
C([0,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))
+ ‖∇w · ns‖

H
3
4 + `

2 (ΣTs )

≤ C(‖G‖
H

7
4 + `

2 (ΣTs )
+ ‖w0‖

H
7
4 + `

2 (Ωs)
+ ‖w1‖

H
3
4 + `

2 (Ωs)
),

where the constant C might depend on T .

Proof. The assertion is obtained by interpolation of Theorem 3.1.2 and 3.1.3 with
θ = 5

4 −
`
2 .

52



3.2. Improved Regularity Result for Linear Hyperbolic Equations

Theorem 3.11. Let T > 0, ` ∈ (1
2 , 1), β ∈ (0, 1− `),

G ∈ Hβ((0, T ), H
3
2

+`(Γs)) ∩H
1
2

+`+β((0, T ), H1(Γs)) ∩H
7
4

+ `
2 ((0, T ), L2(Γs)),

w0 ∈ H
3
2

+`+β(Ωs) and w1 ∈ H
1
2

+`+β(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then, the solution w of system (3.20) satisfies

w ∈ C([0, T ], H
7
4

+ `
2 (Ωs)) ∩ C1([0, T ], H

3
4

+ `
2 (Ωs)),

∇w · ns ∈ Hβ((0, T ), H
1
2

+`(Γs)) ∩H
3
4

+ `
2 ((0, T ), L2(Γs)),

and

‖w‖
C([0,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))
+ ‖∇w · ns‖

Hβ((0,T ),H
1
2 +`(Γs))∩H

3
4 + `

2 ((0,T ),L2(Γs))

≤ C(‖G‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))∩H

7
4 + `

2 ((0,T ),L2(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

),

where the constant C might depend on T .

Proof. Combining Lemmas 3.9 and 3.10 yields the assertion using the fact that
11
8 + `

4 ≥
1
2 + `+ β for β ∈ (0, 1− `) and

[H1((0, T ), H
3
2

+`(Γs)), H
7
4

+ `
2 ((0, T ), L2(Γs))]θ = H

11
8

+ `
4 ((0, T ), H

3
4

+ `
2 (Γs))

for θ = 1
2 .

Theorem 3.12. Let T > 0, ` ∈ (1
2 , 1), β ∈ (0, 1− `),

G ∈ Hβ((0, T ), H
3
2

+`(Γs)) ∩H
1
2

+`+β((0, T ), H1(Γs)) ∩H
7
4

+ `
2 ((0, T ), L2(Γs)),

w0 ∈ H
3
2

+`+β(Ωs) and w1 ∈ H
1
2

+`+β(Ωs) be such that

G|t=0 = w0|Γs , ∂tG|t=0 = w1|Γs .

Then, the solution w of system (3.20) satisfies

w ∈ C([0, T ], H
7
4

+ `
2 (Ωs)) ∩ C1([0, T ], H

3
4

+ `
2 (Ωs)),

∇w · ns ∈ Hβ((0, T ), H
1
2

+`(Γs)) ∩H
3
4

+ `
2 ((0, T ), L2(Γs)),

and

‖w‖
C([0,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))
+ ‖∇w · ns‖

Hβ((0,T ),H
1
2 +`(Γs))∩H

3
4 + `

2 ((0,T ),L2(Γs))
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≤ C(‖G‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))∩H

7
4 + `

2 ((0,T ),L2(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

),

where the constant C is independent of T .

Proof. Due to [90, p.41, Thm. 9.4] and Remark 2.7 there exists a continuous lifting operator

H
3
2

+`+β(Ωs)×H
1
2

+`+β(Ωs)→ H
3
2

+`+β(Γs × (0,∞)),

(w0, w1) 7→ G0 such that G0(·, 0)|Γs = w0, ∂tG0(·, 0)|Γs = w1, i.e.,

|G0|
H

3
2 +`+β(Γs×(0,∞))

≤ C(‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

) (3.24)

for a constant C independent of T , where |·|
H

3
2 +`+β(Γs×(0,∞))

denotes the Sobolev-Slobodeckij

norm, see (2.2). Consider the systems

∂ttw̃ −∆w̃ = 0 in QTs ,

w̃ = G0 on ΣT
s ,

w̃(·, 0) = w0 in Ωs,

∂tw̃(·, 0) = w1 in Ωs,

(3.25)

and

∂ttŵ −∆ŵ = 0 in QTs ,

ŵ = G−G0 on ΣT
s ,

ŵ(·, 0) = 0 in Ωs,

∂tŵ(·, 0) = 0 in Ωs.

(3.26)

Due to the linearity of the hyperbolic equations, w = w̃ + ŵ. Consider the system (3.26).
We know that (G−G0)(·, 0) = 0 and ∂t(G−G0)(·, 0) = 0. Furthermore, for Tf > T ,

[H
3
2

+`+β((0, Tf ), L2(Γs)), L
2((0, Tf ), H

3
2

+`+β(Γs))] 3
2 +`

3
2 +`+β

= Hβ((0, Tf ), H
3
2

+`(Γs)),

[H
3
2

+`+β((0, Tf ), L2(Γs)), L
2((0, Tf ), H

3
2

+`+β(Γs))] 1
3
2 +`+β

= H
1
2

+`+β((0, Tf ), H1(Γs))

(3.27)

and hence with P5, P2, Remark 2.7, (3.27) and (3.24)

‖G0‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))∩H

7
4 + `

2 ((0,T ),L2(Γs))

≤ C‖G0‖
Hβ((0,Tf ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,Tf ),H1(Γs))∩H

7
4 + `

2 ((0,Tf ),L2(Γs))

≤ C|G0|
H

3
2 +`+β(Γs×(0,Tf ))

≤ C|G0|
H

3
2 +`+β(Γs×(0,∞))
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≤ C(‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

) (3.28)

with a generic constant C independent of T . Therefore, P3 and (3.28) yield

‖Ext(G−G0)‖
Hβ((T−Tf ,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((T−Tf ,T ),H1(Γs))∩H

7
4 + `

2 ((T−Tf ,T ),L2(Γs))

≤ C(‖G‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))∩H

7
4 + `

2 ((0,T ),L2(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

)

(3.29)

for a constant C independent of T . In addition, Ext(ŵ) solves

∂ttExt(ŵ)−∆Ext(ŵ) = 0 in Q(T−Tf ,T )
s ,

Ext(ŵ) = Ext(G−G0) on Σ
(T−Tf ,T )
s ,

Ext(ŵ)(·, T − Tf ) = 0 in Ωs,

∂tExt(ŵ)(·, T − Tf ) = 0 in Ωs.

Therefore, with P4, Theorem 3.11 and (3.29) we obtain

‖ŵ‖
C([0,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))
+ ‖∇ŵ · ns‖

Hβ((0,T ),H
1
2 +`(Γs))∩H

3
4 + `

2 ((0,T ),L2(Γs))

≤ ‖Ext(ŵ)‖
C([T−Tf ,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))

+ ‖∇Ext(ŵ) · ns‖
Hβ((T−Tf ,T ),H

1
2 +`(Γs))∩H

3
4 + `

2 ((T−Tf ,T ),L2(Γs))

≤ C‖Ext(G−G0)‖
Hβ((T−Tf ,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((T−Tf ,T ),H1(Γs))∩H

7
4 + `

2 ((T−Tf ,T ),L2(Γs))

≤ C(‖G‖
Hβ((0,T ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,T ),H1(Γs))∩H

7
4 + `

2 ((0,T ),L2(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

),

(3.30)

where the generic constant C is independent of T . The solution of the system

∂ttw̄ −∆w̄ = 0 in Q(0,Tf )
s ,

w̄ = G0 on Σ
(0,Tf )
s ,

w̄(·, 0) = w0 in Ωs,

∂tw̄(·, 0) = w1 in Ωs,
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fulfills R(w̄) = w̃, which is the solution of (3.25), and thus P5, Theorem 3.11 and (3.28) yield

‖w̃‖
C([0,T ],H

7
4 + `

2 (Ωs))∩C1([0,T ],H
3
4 + `

2 (Ωs))
+ ‖∇w̃ · ns‖

Hβ((0,T ),H
1
2 +`(Γs))∩H

3
4 + `

2 ((0,T ),L2(Γs))

≤ C(‖w̄‖
C([0,Tf ],H

7
4 + `

2 (Ωs))∩C1([0,Tf ],H
3
4 + `

2 (Ωs))

+ ‖∇w̄ · ns‖
Hβ((0,Tf ),H

1
2 +`(Γs))∩H

3
4 + `

2 ((0,Tf ),L2(Γs))
)

≤ C(‖G0‖
Hβ((0,Tf ),H

3
2 +`(Γs))∩H

1
2 +`+β((0,Tf ),H1(Γs))∩H

7
4 + `

2 ((0,Tf ),L2(Γs))

+ ‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

),

≤ C(‖w0‖
H

3
2 +`+β(Ωs)

+ ‖w1‖
H

1
2 +`+β(Ωs)

)

(3.31)

where the generic constant C depends on Tf but is independent of T . The assertion follows
from (3.30) and (3.31) since w = w̃ + ŵ.

3.3. Existence and Regularity for Unsteady Stokes-Lamé
System with Stationary Interface

In this section, the linear unsteady FSI problem (1.3) is considered, which is given by

∂tv − ν∆v +∇p = f in QTf ,

div(v) = g = div(g) in QTf ,

v(·, 0) = v0 in Ωf ,

v = vD on ΣT
f ,

v = ∂tw on ΣT
i ,

σf (v, p)nf = σs(w)nf + h on ΣT
i ,

∂ttw − div(σs(w)) = 0 in QTs ,
w(·, 0) = 0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

w = 0 on ΣT
s .

We require that the bounded domain Ω = Ωf ∪ Ωs ∪ Γi ⊂ Rd, d = 3 is such that

• Γi denotes the interface between Ωs and Ωf , i.e. Γi = Ωs ∩ Ωf .

• the solid domain Ωs is a domain with boundary ∂Ωs of class C∞ such that ∂Ωs = Γi∪Γs,
where Γs denotes the outer boundary solid boundary and Γi ∩ Γs = ∅.

• the fluid domain Ωf is a Lipschitz domain with boundary ∂Ωf = Γi ∪ Γf , where Γf
denotes the outer boundary fluid boundary and Γi ∩ Γf = ∅.
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3.3.1. Lamé System

Improved regularity results for hyperbolic equations play an important role in the existence
and regularity theory for FSI problems in order to overcome the a-priori mismatch between
the regularity of parabolic and hyperbolic equations. The improved regularity result in
Section 3.2 was derived with the purpose of motivating existence and regularity of solutions
of the Lamé system. We assume that the results can be adapted to the Lamé system.

Assumption 3.13. Let T > 0, ` ∈ (1
2 , 1), β ∈ (0, 1− `),

η ∈ Hβ((0, T ), H
3
2

+`(Γs))
d ∩H

1
2

+`+β((0, T ), H1(Γs))
d ∩H

7
4

+ `
2 ((0, T ), L2(Γs))

d,

w0 ∈ H
3
2

+`+β(Ωs)
d and w1 ∈ H

1
2

+`+β(Ωs)
d be such that

η|t=0 = w0|Γs , ∂tη|t=0 = w1|Γs .

Then, the solution w of system

∂ttw − div(σs(w)) = 0 in QTs ,

w = η on ΣT
s ,

w(·, 0) = w0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

satisfies w ∈WT and

σs(w)nf ∈ Hβ((0, T ), H
1
2

+`(Γs)
d) ∩H

3
4

+ `
2 ((0, T ), L2(Γs)

d).

Furthermore,

‖w‖WT
+ ‖σs(w)nf‖

Hβ((0,T ),H
1
2 +`(Γs)d)∩H

3
4 + `

2 ((0,T ),L2(Γs)d)

≤ C(‖w1‖
H

1
2 +`+β(Ωs)d

+ ‖w0‖
H

3
2 +`+β(Ωs)d

+ ‖η‖
Hβ((0,T ),H

3
2 +`(Γs))d∩H

1
2 +`+β((0,T ),H1(Γs))d∩H

7
4 + `

2 ((0,T ),L2(Γs))d
),

where the constant C is independent of T .

Remark 3.14. The theorem is analogous to Theorem 3.12. [12, Sec. 2 Thm. 1, Sec. 2
Prop.1, Comments 2.5] and [113, Sec. 3 Thm. 3.2] indicate that the Lemmas 3.5, 3.6 and
Theorem 3.1 also hold true for the Lamé system. Also the Lemmas in Section 2.2 hold true
for vector valued functions, however, a complete argumentation is beyond the scope of this
work.

57



3. Fluid-Structure Interaction

3.3.2. Stokes Equations

As parabolic system the Stokes equations are considered. Thus, we need to consider the
system

∂tv − ν∆v +∇p = f in QTf ,

div(v) = g = div(g) in QTf ,

v(·, 0) = v0 in Ωf ,

v = 0 on ΣT
f ,

σf (v, p)nf = h on ΣT
i .

(3.32)

We give a proof in a slightly modified setting compared to [113, Sec. 4]. The basis for the
theoretical analysis of that system is [54, Thm. 7.5]. The Dirichlet boundary term is kept in
this theorem since it appears in (3.34).

Theorem 3.15. Let d ∈ {2, 3}, Ωf ⊂ Rd be a domain with smooth boundary such that
∂Ωf = Γf ∪ Γi and Γf ∩ Γi = ∅. Let ` ∈ (1

2 , 1), f ∈ FT , h ∈ HT , v0 ∈ H1+`(Ωf )d and
vD ∈ (H

3
2

+`, 3
4

+ `
2 (ΣT

f ))d. Let the compatibility conditions

div(v0) = 0 in Ωf ,

v0(·) = vD(·, t) on Γf ,

h(·, 0) = 0 on Γi,

2νε(v0)nf · τ = 0 on Γi,

for any unit vector τ tangential to Γi be fulfilled. Then, the solution to system

∂tv − ν∆v +∇p = f in QTf ,

div(v) = 0 in QTf ,

v(·, 0) = v0 in Ωf ,

v = vD on ΣT
f ,

σf (v, p)nf = h on ΣT
i .

satisfies

‖v‖
(H2+`,1+ `

2 (QTf ))d
+ ‖∇p‖

(H`, `2 (QTf ))d
+ ‖p‖

H1+`, `2 (QTf )

≤ C(‖f‖FT + ‖h‖HT
+ ‖v0‖H1+`(Ωf )d + ‖vD‖

(H
3
2 +`, 34 + `

4 (ΣTf ))d
).

Proof. c.f [54, Def. 7.2, Thm. 7.5].

This theorem allows us to directly handle all inhomogeneities except for the nonhomoge-
neous divergence condition. Therefore, we split the linear system (3.32) in two subsystems
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such that (v, p) = (ṽ, p̃) + (v̂, p̂), where (v̂, p̂) solves

∂tv̂ − ν∆v̂ +∇p̂ = f in QTf ,

div(v̂) = 0 in QTf ,

v̂(·, 0) = v0 in Ωf ,

v̂ = 0 on ΣT
f ,

σf (v̂, p̂)nf = h on ΣT
i ,

and (ṽ, q̃) solves

∂tṽ − ν∆ṽ +∇p̃ = 0 in QTf ,

div(ṽ) = g = div(g) in QTf ,

ṽ(·, 0) = 0 in Ωf ,

ṽ = 0 on ΣT
f ,

σf (ṽ, p̃)nf = 0 on ΣT
i .

(3.33)

The first system can directly be treated with Theorem 3.15.
As already pointed out in [113] the main difficulty is the derivation of an similiar estimate

for the case of a non-homogeneous divergence condition as it appears in system (3.33). The
statements are slightly modified compared to [113] and included for the sake of completeness.

Leray Projector

The Leray projector P is defined as the orthogonal projector form L2(Ωf )d to

V 0
Γf

(Ωf )d := {v ∈ L2(Ωf )d : div(v) = 0 in Ωf , v · nf = 0 on Γf}.

It can be precisely defined as

P : L2(Ωf )d → V 0
Γf

(Ωf )d, v 7→ v −∇(ζ + π),

cf. [113, Sec. 4.1]. Here, ζ is the solution to the elliptic equation

∆ζ = div(v) in Ωf , ζ = 0 on Γf , ζ = 0 on Γi.

Since divv ∈ H−1(Ωf ) we know due to standard regularity theory for elliptic equations that
ζ ∈ H1(Ωf ). Moreover, π is the solution to the elliptic equation

∆π = 0 in Ωf , ∇π · nf = (v −∇ζ) · nf on Γf , π = 0 on Γi.

Due to (v −∇ζ) ∈ L2(Ωf )d and div(v −∇ζ) = 0 it follows that (v −∇ζ) · nf ∈ H−
1
2 (Γf ),

and the solution theory for elliptic equations gives π ∈ H1(Ωf ). Now, there holds

div(Pv) = div(v)−∆ζ −∆π = 0 in Ωf , Pv · nf = 0 on Γf ,
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and

v − Pv ∈ ∇H1
Γi(Ωf )d

:= {v ∈ L2(Ωf )d : ∃v ∈ H1(Ωf ) s.t. ∇v = v in Ωf , v = 0 on Γi}.

For v1 ∈ V 0
Γf

(Ωf )d and v2 ∈ ∇H1
Γi

(Ωf )d there exists v2 ∈ H1(Ωf ) such that ∇v2 = v2 in Ωf

and v2 = 0 on Γi and due to the divergence theorem, there holds

(v1,v2)L2(Ωf )d =

∫
Ωf

v1 · v2dξ =

∫
Ωf

v1 · ∇v2dξ =

∫
Ωf

div(v2v1)dξ −
∫

Ωf

v2divv1dξ

=

∫
Γi∪Γf

v2v1 · nfds−
∫

Ωf

v2divv1dξ = 0.

The above considerations imply that

L2(Ωf )d = V 0
Γf

(Ωf )d ⊕∇H1
Γi(Ωf )d.

Regularity Results for the Stokes Equations with Nonhomogeneous Divergence
Condition

Consider the system (3.33). Using the Leray projector P and the relation ṽ = P ṽ+∇(ζ+π)
with the parametrized solutions

∆ζ(·, t) = g(·, t) = div(g(·, t)) in Ωf , ζ(·, t) = 0 on Γf , ζ(·, t) = 0 on Γi,

and

∆π(·, t) = 0 in Ωf , ∇π(·, t) · nf = −∇ζ(·, t) · nf on Γf , π(·, t) = 0 on Γi,

the system (3.33) can be reformulated as

∂tP ṽ − ν∆P ṽ +∇p̃ = ν∇g −∇∂tπ −∇∂tζ in QTf ,

div(P ṽ) = 0 in QTf ,

P ṽ(·, 0) = 0 in Ωf ,

P ṽ = −∇τπ on ΣT
f ,

σf (P ṽ, p̃)nf = −2νε(∇(ζ + π))nf on ΣT
s ,

(3.34)

where ∇τπ ·nf = 0 and ∇τπ · τ = ∇π · τ for all τ that are tangential to the boundary. The
corresponding condition on ΣT

f is motivated by the fact that P ṽ·nf = ṽ·nf−∇(ζ+π)·nf = 0,
ṽ|Γf = 0 and ζ|Γf = 0 for which reason ∇ζ · τ = 0 for all τ tangential to the boundary.
Furthermore, we have the relation

(I − P)ṽ(·, t) = ∇ζ(·, t) +∇π(·, t), for all t ∈ (0, T ).

System (3.34) can be handled with Theorem 3.15 if an estimate for ∇τπ is established. For
estimating (I − P) we have to bound ∇ζ and ∇π.
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This is done in the following collection of lemmas.

Lemma 3.16. If g ∈ H1+ `
2 ((0, T ), L2(Ωf )d) and g ∈ L2((0, T ), H1+`(Ωf )), then

‖ζ‖L2((0,T ),H3+`(Ωf )) ≤ C‖g‖L2((0,T ),H1+`(Ωf ))

and
‖ζ‖

H1+ `
2 ((0,T ),H1(Ωf ))

≤ C‖g‖GT
.

In particular,

‖∇ζ · nf‖
H

3
2 +`, 34 + `

2 (ΣTf )
≤ C(‖g‖L2((0,T ),H1+`(Ωf )) + ‖g‖GT

).

Proof. cf. [113, Lem. 4.1].

Lemma 3.17. Let g ∈ H1+ `
2 ((0, T ), L2(Ωf )d) ∩H1((0, T ), H`(Ωf )d) and g|ΣTf = 0. Then,

‖∇ζ · nf‖
H

1
2 +`((0,T ),H−

1
2 (Γf ))

≤ C‖g‖GT
.

Proof. We consider the system

∆ ζ(·, t) = div (g(·, t)) in Ωf ,

ζ(·, t) = 0 on Γf ∪ Γi,
(3.35)

for a.e. t ∈ (0, T ). Testing the first equation of (3.35) with functions φ such that φ|Γi = 0
yields, since we are in a setting that allows us to use integration by parts,∫

Γf

∇ ζ(·, t) · nfφ dS(ξ)−
∫

Ωf

∇ ζ(·, t) · ∇φ dξ =

∫
Ωf

∆ ζ(·, t)φ dξ

=

∫
Ωf

div g(·, t)φ dξ =

∫
Γf

g(·, t) · nfφ dS(ξ)−
∫

Ωf

g(·, t) · ∇φ dξ

for a.e. t ∈ (0, T ). Due to the fact that there exists a bounded extension operator
ext : H

1
2 (Γf )→ H1(Ωf ) and due to

∫
Γf

g(·, t) · nfφ dS(ξ) = 0 it holds∫
Γf

∇ ζ(·, t) · nfφ dS(ξ) =

∫
Ωf

∇ ζ(·, t) · ∇φ dξ −
∫

Ωf

g(·, t) · ∇φ dξ, (3.36)

and there exists C > 0 such that

‖∇ ζ(·, t) · nf‖
H−

1
2 (Γf )

≤ C sup
φ∈H1(Ωf ),‖φ‖H1(Ωf )≤1

∫
Γf

∇ ζ(·, t) · nfφ dS(ξ)

61



3. Fluid-Structure Interaction

≤ C sup
φ∈H1(Ωf ),‖φ‖H1(Ωf )≤1

(

∫
Ωf

∇ ζ(·, t) · ∇φ dξ −
∫

Ωf

g(·, t) · ∇φ dξ)

≤ C(‖ζ(·, t)‖H1(Ωf ) + ‖g(·, t)‖L2(Ωf )d)

for a.e. t ∈ (0, T ). The proof of [113, Lem. 4.1] implies that ‖ζ(·, t)‖H1(Ωf ) ≤ C‖g‖L2(Ω)d .
Thus,

‖∇ ζ(·, t) · nf‖
H−

1
2 (Γf )

≤ C‖g(·, t)‖L2(Ωf )d

for t ∈ (0, T ). Differentiation of (3.36) with respect to t and using exactly the same argu-
mentation yields

‖∂t∇ ζ(·, t) · nf‖
H−

1
2 (Γf )

≤ C‖∂tg(·, t)‖L2(Ωf )d

t ∈ (0, T ).
Direct computations involving the explicit representation of the Sobolev-Slobodeckij semi-
norm as it is done in [113, p. 569] yield

‖∇ ζ · nf‖
H1+ `

2 ((0,T ),H−
1
2 (Γf ))

≤ C‖g‖GT
.

Lemma 3.18. Let g ∈ H1+ `
2 ((0, T ), L2(Ωf )d)∩H1((0, T ), H`(Ωf )d) such that g|ΣTf = 0 and

g ∈ L2((0, T ), H1+`(Ωf )). Then,

‖π‖
H1+ `

2 ((0,T ),H1(Ωf ))∩L2((0,T ),H3+`(Ωf ))
≤ C(‖g‖

H1+ `
2 ((0,T ),L2(Ωf )d)

+ ‖g‖L2((0,T ),H1+`(Ωf ))).

Moreover we have

‖∇π‖
H

3
2 +`, 34 + `

2 (ΣTf )
≤ C(‖g‖

H1+ `
2 ((0,T ),L2(Ωf )d)

+ ‖g‖L2((0,T ),H1+`(Ωf ))),

and
‖∇τπ‖

H
3
2 +`, 34 + `

2 (ΣTf )
≤ C(‖g‖

H1+ `
2 ((0,T ),L2(Ωf )d)

+ ‖g‖L2((0,T ),H1+`(Ωf ))).

Proof. cf. [113, Lem. 4.2].

These lemmas yield the following result.

Lemma 3.19. Let g ∈ GT ∩ H1((0, T ), H`(Ωf )d), g ∈ GT , g(·, 0) = 0, g(·, 0) = 0 and
g|ΣTf = 0. Then, ṽ ∈ ET and

‖P ṽ‖ET + ‖∇p̃‖FT ≤ C(‖g‖
H1+ `

2 ((0,T ),L2(Ωf )d))
+ ‖g‖GT ),

‖(I − P)ṽ‖ET ≤ C(‖g‖
H1+ `

2 ((0,T ),L2(Ωf )d))
+ ‖g‖L2((0,T ),H1+`(Ωf ))).
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Proof. Since π(·, 0) = 0 the compatibility conditions are satisfied and Theorem 3.15 can be
applied. The rest follows as in [113, Lem. 4.3].

Now, having estimated all subsystems, we obtain the following theorem.

Theorem 3.20. Let d ∈ {2, 3}, Ωf ⊂ Rd be a domain with smooth boundary such that
∂Ωf = Γf ∪ Γi and Γf ∩ Γi = ∅. Let ` ∈ (1

2 , 1), f ∈ FT , h ∈ HT and v0 ∈ H1+`(Ωf ,Rd).
Let g ∈ GT ∩ H1((0, T ), H`(Ωf )d), g ∈ GT , g(·, 0) = 0, g(·, 0) = 0 and g|ΣTf = 0. Let the
compatibility conditions

div(v0) = 0 in Ωf ,

v0(·) = 0 on Γf ,

h(·, 0) = 0 on Γi,

2νε(v0)nf · τ = 0 on Γi,

for any unit vector τ tangential to Γi be fulfilled. Then, the solution to system (3.32) satisfies

‖v‖ET + ‖∇p‖
(H`, `2 (QTf ))d

+ ‖p|ΣTi ‖HT ≤ C(‖f‖FT + ‖h‖HT
+ ‖v0‖H1+`(Ωf )d

+ ‖g‖GT
+ ‖g‖GT ).

Proof. This follows directly from the above considerations. The only thing that is left to be
shown is the estimate for p|ΣTi , which follows from the trace inequality

‖p|ΣTi ‖HT ≤ C‖p‖H1+`, `2 (QTf )
.

Corollary 3.21. Let d ∈ {2, 3}, Ωf ⊂ Rd be a Lipschitz domain such that ∂Ωf = Γf∪Γi and
Γf ∩ Γi = ∅. Let ` ∈ (1

2 , 1), f ∈ FT and h ∈ HT and v0 ∈ H1+`(Ωf )d. Let the compatibility
conditions

div(v0) = 0 in Ωf ,

vD(·, 0) = v0(·) on Γf ,

h(·, 0) = 0 on Γi,

2νε(v0)nf · τ = 0 on Γi,

for any unit vector τ tangential to Γi be fulfilled. Then, the solution to system (3.32) satisfies

‖v‖ET + ‖∇p‖
(H`, `2 (QTf ))d

+ ‖p|ΣTi ‖HT ≤ C(‖f‖FT + ‖h‖HT
+ ‖v0‖H1+`(Ωf )d

+ ‖g‖GT
+ ‖g‖GT ),

where the constant C is independent of T .
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Proof. Let Tf > T . Consider the systems

∂tv̂1 − ν∆v̂1 +∇p̂1 = f in QTf ,

div(v̂1) = g = div(g) in QTf ,

v̂1(·, 0) = 0 in Ωf ,

v̂1 = 0 on ΣT
f ,

σf (v̂1, p̂1)nf = h on ΣT
i ,

(3.37)

and

∂tv̂2 − ν∆v̂2 +∇p̂2 = 0 in QTf ,

div(v̂2) = 0 in QTf ,

v̂2(·, 0) = v0 in Ωf ,

v̂2 = 0 on ΣT
f ,

σf (v̂2, p̂2)nf = 0 on ΣT
i .

(3.38)

Due to the linearity of the Stokes equations, (v̂, p̂) = (v̂1, p̂1)+(v̂2, p̂2). In system (3.37), the
temporal fractional order of the right hand side terms is smaller than 1

2 or in (1
2 ,

3
2) but with

additional zero initial conditions. Note that p|Γi×{0} = 2νε(v(·, 0))nf ·nf |Γi +h(·, 0) ·nf = 0
due to [54, p. 242, (4.7)]). Property P3 of the norm yields that Ext : Y s

(0,T ) → Y s
(T−Tf ,T ) is

continuous with a continuity constant independent of T for s ∈ [0, 3
2) \ {1

2}. Furthermore,
v̄1 = Ext(v̂1) and p̄1 = Ext(p̂1) solve

∂tv̄1 − ν∆v̄1 +∇p̄1 = f̄ in Ωf × (T − Tf , T ),

div(v̄1) = ḡ = div(ḡ) in Ωf × (T − Tf , T ),

v̄1(·, T − Tf ) = 0 in Ωf ,

v̄1 = 0 on Γf × (T − Tf , T ),

σf (v̄1, p̄1)nf = h̄ on Γi × (T − Tf , T ),

where h̄ = Ext(h), f̄ = Ext(f), ḡ = Ext(g) and ḡ = Ext(g). Applying Theorem 3.20 yields

‖v̄1‖
(H2+`,1+ `

2 (Ωf×(T−Tf ,T )))d
+ ‖∇p̄1‖

(H`, `2 (Ωf×(T−Tf ,T )))d
+ ‖p̄1|ΣTi ‖H 1

2 +`, 14 + `
2 (Γi×(T−Tf ,T ))

≤ C(‖̄f‖
(H`, `2 (Ωf×(T−Tf ,T )))d

+ ‖h̄‖
(H

1
2 +`, 14 + `

2 (Γi×(T−Tf ,T )))d

+ ‖ḡ‖
L2((T−Tf ,T ),H1+`(Ωf ))∩H

`
2 ((T−Tf ,T ),H1(Ωf ))

+ ‖ḡ‖
H1+ `

2 ((T−Tf ,T ),L2(Ωf )d)
). (3.39)

C is independent of T but might depend on Tf . Using interpolation and trace inequalities
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with constants that depend on Tf , not on T , ‖ · ‖
(H2+`,1+ `

2 (Q
(T−Tf ,T )

f ))d
can be replaced by

(‖ · ‖2
L2((T−Tf ,T ),H2+`(Ωf )d)∩H1+ `

2 ((T−Tf ,T ),L2(Ωf )d)

+ ‖ · ‖2
H
`
2 ((T−Tf ,T ),H2(Ωf )d)

+ ‖ · |ΣTi ‖
2

H
1
4 + `

2 ((T−Tf ,T ),H1(Γi)d)

+ ‖ · ‖2H1((T−Tf ,T ),H`(Ωf )d) + ‖ · ‖2
H

1
2 + `

2 ((T−Tf ,T ),H1(Ωf )d)

+ ‖ · ‖2
H

1
4 + `

4 ((T−Tf ,T ),H1+`(Ωf )d)
+ ‖ · |ΣTi ‖

2

H
3
4 + `

2 ((T−Tf ,T ),L2(Γi)d)∩L2((T−Tf ,T ),H
3
2 +`(Γi)d)

)
1
2 .

(3.40)

Using properties P4 and P3, yields

‖v̂1‖ET + ‖∇p̂1‖
(H`, `2 (ΣTi ))d

+ ‖p̂1|ΣTi ‖H 1
2 +`, 14 + `

2 (QTf )

≤ C(‖f‖FT + ‖h‖HT
+ ‖g‖GT + ‖g‖GT

)

with a constant C independent of T . Consider the system

∂tv̄2 − ν∆v̄2 +∇p̄2 = 0 in Ωf × (0, Tf ),

div(v̂2) = 0 in Ωf × (0, Tf ),

v̂2(·, 0) = v0 in Ωf ,

v̂2 = 0 on Γf × (0, Tf ),

σf (v̂2, p̂2)nf = 0 on Γi × (0, Tf )

for which we know with propertyP5 that for R : Hs((0, Tf ), X)→ Hs((0, T ), X), R(v̄2) = v̂2

and R(p̄2) = p̂2, where (v̂2, p̂2) is the solution of system (3.38). Applying Theorem 3.20 yields

‖v̄2‖
(H2+`,1+ `

2 (Ωf×(0,Tf )))d
+ ‖∇p̄2‖

(H`, `2 (Ωf×(0,Tf )))d
+ ‖p̄2|ΣTi ‖H 1

2 +`, 14 + `
2 (Γi×(0,Tf ))

≤ C(‖v0‖H1+`(Ωf )d)

with a constant C independent of T . Thus, by property P5, and due to the fact that we can
replace ‖ · ‖

(H2+`,1+ `
2 (Ωf×(0,Tf )))d

analogous to (3.40),

‖v̂2‖ET + ‖∇p̂2‖
(H`, `2 (QTf ))d

+ ‖p̂2|ΣTi ‖H 1
2 +`, 14 + `

2 (ΣTi )
≤ C‖v0‖H1+`(Ωf )d . (3.41)

Combination of the estimates (3.39) and (3.41) yields the assertion, since

‖v̂‖ET ≤ ‖v̂1‖ET + ‖v̂2‖ET ,
‖p̂|ΣTi ‖H 1

2 +`, 14 + `
2 (ΣTi )

≤ ‖p̂1|ΣTi ‖H 1
2 +`, 14 + `

2 (ΣTi )
+ ‖p̂2|ΣTi ‖H 1

2 +`, 14 + `
2 (ΣTi )

,

‖∇p̂‖
(H`, `2 (QTf ))d

≤ ‖∇p̂1‖
(H`, `2 (QTf ))d

+ ‖∇p̂2‖
(H`, `2 (QTf ))d

.
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3.3.3. Coupled System

The following theorem is a generalization of [113, Thm. 5.1] to a larger class of domains.
The proof is essentially the same.

Theorem 3.22. Let d = 3, ` ∈ (1
2 , 1), β ∈ (0, 1− `), Tf > 0 and 0 < T ≤ Tf . Assume that

• Ω = Ωf ∪ Ωs ∪ Γi ⊂ Rd is bounded and such that

– Γi denotes the interface between Ωs and Ωf , i.e. Γi = Ωs ∩ Ωf .

– the solid domain Ωs is a domain with boundary ∂Ωs = Γi ∪Γs of class C∞, where
Γs denotes the outer boundary solid boundary and Γi ∩ Γs = ∅.

– the fluid domain Ωf is a Lipschitz domain with boundary ∂Ωf = Γi ∪ Γf , where
Γf denotes the outer boundary fluid boundary and Γi ∩ Γf = ∅.

The corresponding space-time-cylinders are denoted by QTf := Ωf × (0, T ),
QTs := Ωs × (0, T ), ΣT

f := Γf × (0, T ), ΣT
s := Γs × (0, T ), ΣT

i := Γi × (0, T ).

• the initial conditions

v0 ∈ H1+`(Ωf )d and w1 ∈ H
1
2

+`+β(Ωs)
d,

are chosen such that
div(v0) = 0

and the compatibility conditions

v0|Γf (·) = 0, v0|Γi = w1|Γi , 2νε(v0)nf · τ = 0 on Γi,

for any unit vector τ tangential to Γi.

• the right hand side terms

f ∈ FT , h ∈ HT , g ∈ GT , g ∈ GT ∩H1((0, T ), H`(Ωf )d)

are chosen such that the compatibility conditions

g(·, 0) = 0 and h(·, 0) = 0

and

g|ΣTf = 0

are satisfied.
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Then, the system

∂tv − ν∆v +∇p = f in QTf ,

div(v) = g = div(g) in QTf ,

v(·, 0) = v0 in Ωf ,

v = 0 on ΣT
f ,

v = ∂tw on ΣT
i ,

σf (v, p)nf = σs(w)nf + h on ΣT
i ,

∂ttw − div(σs(w)) = 0 in QTs ,
w(·, 0) = 0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

w = 0 on ΣT
s ,

admits a unique solution (v, p,w) ∈ ET × PT ×WT and the states dependent continuously
on the initial data and the right hand sides

‖v‖ET + ‖∇p‖FT + ‖σ(w)nf‖HT
+ ‖p|ΣTi ‖HT + ‖w‖WT

≤ CS(‖v0‖H1+`(Ωf )d + ‖w1‖
H

1
2 +`+β(Ωs)d

+ ‖f‖FT + ‖g‖GT

+ ‖g‖GT + ‖h‖HT
),

for all 0 < T ≤ Tf . The constant CS depends on Tf but is independent of T .

Remark 3.23. One could question the usefulness of this result for practical situations,
especially in 3D, where fixing the solid structure leads to violation of the condition Γi∩Γs = ∅.
Therefore, a next step in the analysis of this problem might be the generalization of Theorem
3.15 (and also Theorem 3.20) to a setting where this condition does not have to be fulfilled.
Further, one could also think about weakening the regularity assumptions on the domains
Ωf and Ωs. It is also desirable to work with nonlinear elasticity. Using analgous techniques
as for the fluid equations, one would consider the appearing nonlinear terms as right hand
side terms, which, in general, contain the second order derivatives of the state w. Thus,
the regularity requirements of hyperbolic equations on the right hand sides prevent us from
performing fixed point arguments. To this end, more elaborate techniques have to be used
to work with nonlinear elasticity.

Proof. The proof corresponds to [113, Proof of Thm. 5.1] and is included for the sake of
completeness. Let us denote

HT,0 = {ζ ∈ HT : ζ(·, 0) = 0 on Γi} ⊂ HT

and equip the closed subspace HT,0 with the norm of HT . Moreover,

A : HT,0 → HT,0, ζ 7→ σs(wζ)nf ,
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denotes an affine mapping, where wζ solves

∂2
ttw − div(σs(w)) = 0 in QTs ,

w =

∫ t

0
vζ(s)ds on ΣT

i ,

w = 0 on ΣT
s ,

w(·, 0) = 0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

and (vζ , pζ) is the solution of the system

∂tv − ν∆v +∇p = f in QTf ,

div(v) = g = div(g) in QTf ,

v(·, 0) = v0 in Ωf ,

v = 0 on ΣT
f ,

σf (v, p)nf = ζ + h on ΣT
i .

This mapping is well defined, i.e. A(HT,0) ⊂ HT,0. In order to see this, choose ζ ∈ HT,0.
By Corollary 3.21 we know that η(·, t) :=

∫ t
0 vζ(·, s)ds for all t ∈ (0, T ) fulfills

η ∈ H1((0, T ), H
3
2

+`(Γi)
d) ∩H

7
4

+ `
2 ((0, T ), L2(Γi)

d) ∩H
5
4

+ `
2 ((0, T ), H1(Γi)

d).

and thus,

η ∈ Hβ((0, T ), H
3
2

+`(Γi))
d ∩H

7
4

+ `
2 ((0, T ), L2(Γi))

d ∩H
1
2

+`+β((0, T ), H1(Γi))
d.

Since η|t=0 = 0 and ∂tη|t=0 = v0|Γi = w1|Γi , by Assumption 3.13, we obtain that

σs(wζ)nf ∈ Hβ((0, T ), H
1
2

+`(Γi)
d) ∩H

3
4

+ `
2 ((0, T ), L2(Γi)

d) ⊂ HT,0,

since wζ(·, 0) = 0.
In order to show the assertion via a fixed point argument, we show that there exists a constant
CA independent of T such that

‖Aζ1 −Aζ2‖H̃T
≤ CA‖ζ1 − ζ2‖HT

(3.42)

for all ζ1, ζ2 ∈ HT,0, H̃T := Hβ((0, T ), H
1
2

+`(Γi)
d) ∩H

3
4

+ `
2 ((0, T ), L2(Γi)

d). This is due to
Theorem 3.20 which implies that there exists a constant C > 0 such that

‖vζ1 − vζ2‖ET ≤ C‖ζ1 − ζ2‖HT
,

and, therefore, with ηζ1(·)− ηζ2(·) :=
∫ ·

0(vζ1(s)− vζ2(s))ds,

‖ηζ1 − ηζ2‖H1((0,T ),H
3
2 +`(Γi)d)∩H

7
4 + `

2 ((0,T ),L2(Γi)d)∩H
5
4 + `

2 ((0,T ),H1(Γi)d)
≤ C‖ζ1 − ζ2‖HT

,
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and Assumption 3.13. Property P6 of the norm implies that there exists a constant CH
independent of T such that ‖ · ‖HT

≤ CHTα‖ · ‖H̃T
for α = min(1

2 , β). Now, for small enough
T > 0 it can be seen that A is a contraction. Thus, there exists T̄ > 0 and ζ0 ∈ HT̄,0 such
that A(ζ0) = ζ0. In order to obtain the global-in-time result we use a similar argumentation
as in [107, Prop. 2.7]. Let CE denote the constant in P3 and CR denote the constant in P5.
Let w.l.o.g. 2T̄ < Tf (otherwise choose Tf instead of 2T̄ ) and CRCECHCAT̄α < 1. Consider

HT,1 := {ζ ∈ H2T̄ : ζ(·, t) = ζ0(·, t) for a.e. t ∈ (0, T̄ )}.

Let ζ1, ζ2 ∈ HT,1 be arbitrarily chosen. Due to P3 and P8 there holds

‖ζ1 − ζ2‖H2T̄
≤ CE‖ζ1 − ζ2‖

L2((T̄,2T̄ ),H
1
2 +`(Γi)d)∩H

1
4 + `

2 ((T̄,2T̄ ),L2(Γi)d)
. (3.43)

Due to P5 and P8

‖Aζ1 −Aζ2‖
Hβ((T̄,2T̄ ),H

1
2 +`(Γi)d)∩H

3
4 + `

2 ((T̄,2T̄ ),L2(Γi)d)
≤ CR‖Aζ1 −Aζ2‖H̃2T

, (3.44)

since (Aζ1 −Aζ2)(·, t) = 0 for all t ∈ (0, T̄ ). Thus, with P8, P6, (3.44), (3.42) and (3.43),

‖Aζ1 −Aζ2‖
L2((T̄,2T̄ ),H

1
2 +`(Γi)d)∩H

1
4 + `

2 ((T̄,2T̄ ),L2(Γi)d)

= ‖Ãζ1 − Ãζ2‖HT
≤ CHTα‖Ãζ1 − Ãζ2‖H̃T

= CHT
α‖Aζ1 −Aζ2‖

Hβ((T̄,2T̄ ),H
1
2 +`(Γi)d)∩H

3
4 + `

2 ((T̄,2T̄ ),L2(Γi)d)

≤ CRCH T̄α‖Aζ1 −Aζ2‖H̃2T̄

≤ CACRCH T̄α‖ζ1 − ζ2‖H2T̄

≤ CECACRCH T̄α‖ζ1 − ζ2‖
L2((T̄,2T̄ ),H

1
2 +`(Γi)d)∩H

1
4 + `

2 ((T̄,2T̄ ),L2(Γi)d)
,

where ·̃(t) = ·(t + T̄ ) for all t ∈ (0, T̄ ) and the mapping is a contraction on the metric space
HT,1. Recursively applying this argumentation yields the global-in-time result.

3.4. Local-in-Time Existence and Regularity for Unsteady
Navier-Stokes-Lamé System

Following the argumentation of [113] the result for the linear unsteady FSI system with
stationary interface that was analyzed above can be used as a basis for deriving local-in-time
existence and regularity results for the nonlinear unsteady Navier-Stokes-Lamé system with
moving interface in the fully Lagrangian setting. As already motivated in the introduction
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the system is given by

∂tv̂ − ν∆yv̂ +∇yp̂ = F̂(v̂, p̂) in Q̂Tf ,

divy(v̂) = Ĝ(v̂) = divy(ĝ(v̂)) in Q̂Tf ,

v̂(·, 0) = v̂0 in Ω̂f ,

v̂ = 0 on Σ̂T
f ,

v̂ = ∂tŵ on Σ̂T
i ,

σf,y(v̂, p̂)nf = σs,y(ŵ)nf + Ĥ(v̂, p̂) on Σ̂T
i ,

∂ttŵ − div(σs,y(ŵ)) = 0 in Q̂Ts ,

ŵ(·, 0) = 0 in Ω̂s,

∂tŵ(·, 0) = ŵ1 in Ω̂s,

ŵ = 0 on Σ̂T
s ,

(3.45)

with right hand side terms

F̂(v̂, p̂) = ν
∑
j,k

∂2

∂x2
j

Υ̌k ◦ χ̂
∂

∂yk
v̂ + ν

∑
i,j,k

∂

∂xj
Υ̌i ◦ χ̂

∂

∂xj
Υ̌k ◦ χ̂

∂2

∂yi∂yk
v̂

− ν∆yv̂ + (I− F̂>Υ)∇yp̂,

Ĥ(v̂, p̂) = −ν(Dyv̂F̂Υ + F̂>Υ(Dyv̂)>)cof(F̂χ)n̂f + p̂cof(F̂χ)n̂f

+ ν(Dyv̂ + (Dyv̂)>)n̂f − p̂n̂f ,

Ĝ(v̂) = divyv̂ − det(ĴX)Dyv̂ : F̂>Υ = Dyv̂ : (I− det(ĴX)F̂>Υ), (3.46)

and transformation

χ̂(·, t)|Ω̂f : Ω̂f → Ω̌f (t), y→ y +

∫ t

0
v̂(y, s)ds

with inverse Υ̌. F̂χ = Dyχ̂ = (∇yχ̂)> is the Jacobian of χ̂ and F̂Υ := F̂−1
χ its inverse.

Additionally, ĝ is defined by ĝ(v̂) := (I− det(F̂χ)F̂Υ)v̂, such that divy(ĝ(v̂)) = Ĝ(v̂).
Since the following theorem is not only applied on the ALE reference domain Ω̂ but also on
the shape reference domain Ω̃ in Theorem 4.6 it is formulated without superscripts.

Theorem 3.24. Let d = 3, ` ∈ (1
2 , 1), β ∈ (0, 1− `) and Tf > 0. Assume that

• Ω = Ωf ∪ Ωs ∪ Γi, as well as, v0, w1 and vD fulfill the requirements of Lemma 3.22
and let K0 := CS(‖v0‖H1+`(Ωf )d + ‖w1‖

H
1
2 +`+β(Ωs)d

), where CS is the constant from
Lemma 3.22.

• there exists 0 < T ∗ < Tf such that for all 0 < T ≤ T ∗ and for arbitrary M0 > K0,
v,v1,v2 ∈ ET,M0,v0 and p, p1, p2 ∈ PT,M0,v0 the right hand side terms fulfill

F(v, p) ∈ FT , H(v, p) ∈ HT , G(v) ∈ GT , g(v) ∈ GT ∩H1((0, T ), H`(Ωf )d).
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and there exist positive constants Kf ,Kh,Kg,Kg that do not depend on T such that

‖F(v, p)‖FT ≤ Kfχ(M0),

‖H(v, p)‖HT
≤ Khχ(M0),

‖G(v)‖GT ≤ Kgχ(M0),

‖g(v)‖GT
≤ Kgχ(M0),

(3.47)

and

‖F(v2, p2)− F(v1, p1)‖FT ≤ KfT
αχ(M0)(‖v2 − v1‖ET + ‖∇p2 −∇p1‖FT ),

‖H(v2, p2)−H(v1, p1)‖HT
≤ KhT

αχ(M0)(‖v2 − v1‖ET + ‖p1|ΣTs − p
2|ΣTs ‖HT ),

‖G(v2)− G(v1)‖GT ≤ KgT
αχ(M0)(‖v2 − v1‖ET ),

‖g(v2)− g(v1)‖GT
≤ KgT

αχ(M0)(‖v2 − v1‖ET ),

(3.48)

for some α > 0 and some polynomial χ. Furthermore, the compatibility conditions

g(v)(·, 0) = 0 and H(v, p)(·, 0) = 0

and

g(v)|ΣTf = 0

are satisfied.

Then, there exists T > 0 and 0 < M0 <∞ such that the system

∂tv − ν∆v +∇p = F(v, p) in QTf ,

div(v) = G(v) = div(g(v)) in QTf ,

v(·, 0) = v0 in Ωf ,

v = 0 on ΣT
f ,

v = ∂tw on ΣT
i ,

σf (v, p)nf = σs(w)nf +H(v, p) on ΣT
i ,

∂ttw − div(σs(w)) = 0 in QTs ,
w(·, 0) = 0 in Ωs,

∂tw(·, 0) = w1 in Ωs,

w = 0 on ΣT
s ,

(3.49)

admits a unique solution

(v, p,w) ∈ ET,M0,v0 × PT,M0,v0 ×WT .

71



3. Fluid-Structure Interaction

Proof. This theorem corresponds to a large extent to [113, Theorem 2.1], where the require-
ments (3.47) and (3.48) replace [113, Proposition 6.1]. For the sake of completeness, the
proof of this theorem is repeated at this point.
As a first step the system (3.49) is reformulated as a fixed point system. To this end,
(v0, p0,w0) is introduced as the solution of the system

∂tv
0 − ν∆v0 +∇p0 = 0 in QTf ,

div(v0) = 0 in QTf ,

v0(·, 0) = v0 in Ωf ,

v0 = 0 on ΣT
f ,

v0 = ∂tw
0 on ΣT

i ,

σf (v0, p0)nf = σs(w
0)nf on ΣT

i ,

∂ttw
0 − div(σs(w

0)) = 0 in QTs ,

w0(·, 0) = 0 in Ωs,

∂tw
0(·, 0) = w1 in Ωs,

w = 0 on ΣT
s ,

that due to Lemma 3.22 admits for 0 < T ≤ Tf a solution that fulfills

‖v0‖ET + ‖∇p0‖FT + ‖p0|ΣTi ‖HT + ‖w0‖WT

≤ CS(‖v0‖H1+`(Ωf )d + ‖w1‖
H

1
2 +`+β(Ωs)d

) ≤ K0,

where K0 > 0 is a constant that does not depend on T but on Tf . The solution (v, p,w) of
the system (3.49) then fulfills v = u + v0, p = q + p0 and w = z + w0, where (u, q, z) is the
solution to

∂tu− ν∆u +∇q = F(u + v0, q + p0) in QTf ,

div(u) = G(u + v0) = div(g(u + v0)) in QTf ,

u(·, 0) = 0 in Ωf ,

u = 0 on ΣT
f ,

u = ∂tz on ΣT
i ,

σf (u, q)nf = σs(z)nf +H(u + v0, q + p0) on ΣT
i ,

∂ttz− div(σs(z)) = 0 in QTs ,
z(·, 0) = 0 in Ωs,

∂tz(·, 0) = 0 in Ωs,

z = 0 on ΣT
s .

To prove the existence of solutions of the system (3.49) or the equivalent system (3.4), the
method of successive approximations is used.
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Therefore, we show that there exists some M0 > K0 such that the mapping

M : ET,M0,v0 × PT,M0,v0 ×WT → ET,M0,v0 × PT,M0,v0 ×WT , (u, q, z)→ (u, q, z),

is well-defined and a contraction with respect to the norm

‖(u, q, z)‖ET×PT×WT
:= ‖u‖ET + ‖∇q‖FT + ‖q|ΣTi ‖HT + ‖z‖WT

,

if we choose T ≤ Tf small enough. Here, (u, q, z) is defined as the solution of

∂tu− ν∆u +∇q = F(u + v0, q + p0) in QTf ,

div(u) = G(u + v0) = div(g(u + v0)) in QTf ,

u(·, 0) = 0 in Ωf ,

u = 0 on ΣT
f ,

u = ∂tz on ΣT
i ,

σf (u, q)nf = σs(z)nf +H(u + v0, q + p0) on ΣT
i ,

∂ttz− div(σs(z)) = 0 in QTs ,
z(·, 0) = 0 in Ωs,

∂tz(·, 0) = 0 in Ωs,

z = 0 on ΣT
s .

In order to show the contraction property we consider arbitrary

(u1, q1, z1), (u2, q2, z2) ∈ ET,M0,v0 × PT,M0,v0 ×WT .

Due to Lemma 3.22 and the inequalities (3.48) we know that

‖M(u2, q2, z2)−M(u1, q1, z1)‖ET×PT×WT

≤ CS(‖F(u2 + v0, q2 + p0)− F(u1 + v0, q1 + p0)‖FT + ‖g(u2 + v0)− g(u1 + v0)‖GT

+ ‖G(u2 + v0)− G(u1 + v0)‖GT + ‖H(u2 + v0, q2 + p0)−H(u1 + v0, q1 + p0)‖HT
)

≤ CSCTαχ(M0)‖(u2 + v0, q2 + p0, 0)− (u1 + v0, q1 + p0, 0)‖ET×PT×WT

≤ CSCTαχ(M0)‖(u2, q2, 0)− (u1, q1, 0)‖ET×PT×WT
,

where C is a constant independent of T . If we define K1 > 0 as the constant that bounds

‖M(0, 0, 0)‖ET×PT×WT
≤ K1,

and choose M0 > K1, than T can be chosen such that CSCTαχ(M0) < 1, as well as,

‖M(u, q, z)‖ET×PT×WT
≤ ‖M(0, 0, 0)‖ET×PT×WT

+ CSCT
αχ(M0)‖(u, q, 0)‖ET×PT×WT

≤ K1 + 3CSCT
αχ(M0)M0 ≤M0
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for any (u, q, z) ∈ ET,M0,v0 × PT,M0,v0 ×WT . Thus,M is a well-defined contraction and we
can apply the fixed point theorem of Banach in order to show existence and uniqueness of the
solution to the fixed point equationM(u, q, z) = (u, q, z) in ET,M0,v0 × PT,M0,v0 ×WT .

It can be show that the requirements on the right hand side terms are indeed fulfilled for
the choice (3.46) of the right hand side terms. The proof of this is postponed to Section 4
since it is a special case of Lemma 4.5.

Corollary 3.25. Let d = 3, ` ∈ (1
2 , 1), β ∈ (0, 1− `), Tf > 0 and 0 < T ≤ Tf . Assume that

• Ω̂ = Ω̂f ∪ Ω̂s ∪ Γ̂i ⊂ Rd such that

– Γ̂i denotes the interface between Ω̂s and Ω̂f , i.e. Γ̂i = Ω̂s ∩ Ω̂f .

– the solid domain Ω̂s is a domain with boundary ∂Ω̂s = Γ̂i ∪ Γ̂s of class C∞, where
Γ̂s denotes the outer boundary solid boundary and Γ̂i ∩ Γ̂s = ∅.

– the fluid domain Ω̂f is a Lipschitz domain with boundary ∂Ω̂f = Γ̂i ∪ Γ̂f , where
Γ̂f denotes the outer boundary fluid boundary and Γ̂i ∩ Γ̂f = ∅.

• the initial conditions

v̂0 ∈ H1+`(Ω̂f )d and ŵ1 ∈ H
1
2

+`+β(Ω̂s)
d,

are chosen such that
div(v̂0) = 0

and the compatibility conditions

v̂0|Γ̂f (·) = 0, v̂0|Γ̂i = ŵ1|Γ̂i , 2ν(ε(v̂0)nf ) · τ = 0 on Γ̂i,

are satisfied for any unit vector τ tangential to Γ̂i.

Then, there exists 0 < T0 and 0 < M0 < ∞ such that the system (3.45) admits a unique
solution

(v̂(τ̃ ), p̂(τ̃ ), ŵ(τ̃ )) ∈ ÊT,M0,v̂0
× P̂T,M0,v̂0

× W̃T

for all 0 < T ≤ T0.

Proof. Follows from Theorem 3.24 and Lemma 4.5 for τ̃ = idz, i.e., ũτ = 0.
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4. Theoretical Analysis of Shape
Optimization for Unsteady FSI

In this chapter, we apply the general framework for continuity and differentiability results
that was introduced in Section 2.4 to shape optimization for unsteady FSI. The method of
mappings, cf. Section 2.7, is used in order to reformulate the shape optimization problem.
The main contribution are the differentiability results of the state of the unsteady FSI system
with respect to domain variations. This chapter has already been published in [59, Sec. 4.1].
In order to maintain the structure required to apply Theorem 3.24 we have to ensure that

the source term of the transformed elasiticity equation remains 0. For this purpose, the set
of admissible transformations is chosen such that τ̃ |Ω̃s = idz for all τ̃ ∈ T̃ ad, i.e. ũτ |Ω̃s = 0

for all ũτ ∈ Ũad. The transformation of the Navier-Stokes-Lamé system (3.45) from the
reference domain Ω̂ to the shape reference domain Ω̃ via τ̃ yields the following system:

∂t ṽ − ν∆z ṽ +∇z p̃ = F̃(ṽ, p̃, ũτ ) in Q̃Tf ,

divz (ṽ) = G̃(ṽ, ũτ ) in Q̃Tf ,

ṽ(·, 0) = ṽ0 in Ω̃f ,

ṽ = 0 on Σ̃T
f ,

ṽ = ∂t w̃ on Σ̃T
i ,

σf,z(ṽ, p̃)ñf = σs,z(w̃)ñf + H̃(ṽ, p̃, ũτ ) on Σ̃T
i ,

∂tt w̃ − divz (σs,z(w̃)) = 0 in Q̃Ts ,

w̃ = 0 on Σ̃T
s ,

w̃(·, 0) = 0, ∂t w̃(·, 0) = w̃1 in Ω̃s,

(4.1)

where

σf,z(ṽ, p̃) := 2νεz(ṽ)− p̃I, σs,z(w̃) := λtr(εz(w̃))I + 2µεz(w̃), εz(w̃) :=
1

2
(Dz w̃ + (Dz w̃)>),

ṽ0 = v̂0 ◦ τ̃ , w̃1 = ŵ1 ◦ τ̃ and the nonlinear terms F̃ , G̃ and H̃ are defined by

F̃(ṽ, p̃, ũτ ) = ν
∑
j,k,l

(∂xjxjΥ̌k ◦ χ̃τ )(∂yk(τ̃−1)l ◦ τ̃ )∂zl ṽ

+ ν
∑
i,k,l

((
∑
j

∂xjΥ̌i∂xjΥ̌k) ◦ χ̃τ )(∂yiyk(τ̃−1)l ◦ τ̃ )∂zl ṽ

+ ν
∑
i,k,l,m

((
∑
j

∂xjΥ̌i∂xjΥ̌k) ◦ χ̃τ )((∂yk(τ̃−1)l∂yi(τ̃
−1)m) ◦ τ̃ )∂zlzm ṽ − ν∆z ṽ
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4. Theoretical Analysis of Shape Optimization for Unsteady FSI

+ (I− F̃>Υ((Dy τ̃
−1)> ◦ τ̃ ))∇z p̃,

H̃(ṽ, p̃, ũτ ) = −ν(Dz ṽ(Dz τ̃ )−1F̃Υ + F̃>Υ(Dz τ̃ )−TDz ṽ>) cof(F̃χ) cof(Dz τ̃ )ñf

+ ν(Dz ṽ + (Dz ṽ)>)ñf − p̃(I− cof(F̃χ) cof(Dz τ̃ ))ñf ,

G̃(ṽ, ũτ ) = Dz ṽ : (I− det(Dz τ̃ )det(F̃χ)F̃>Υ(Dz τ̃ )−T ) = Dz ṽ : (I− cof(F̃χ) cof(Dz τ̃ )),

where
τ̃ = idz + ũτ , χ̃τ = χ̂ ◦ τ̃ , F̃χ = F̂χ ◦ τ̃ , F̃Υ = F̂Υ ◦ τ̃ (4.2)

and thus F̃χ(z, t) := I +
∫ t

0 Dz ṽ(z, s)(Dz τ̃ (z))−1 ds.

Moreover, the function g̃(ṽ, ũτ ) = (I− cof(Dz τ̃ )>cof(F̃χ)
>

)ṽ satisfies

divz (g̃(ṽ, ũτ )) = G̃(ṽ, ũτ ).

Assumption 4.1. Let d = 3, ` ∈ (1
2 , 1), β ∈ (0, 1 − `), Tf > 0 and 0 < T ≤ Tf . Assume

that

• Ω̃ = Ω̃f ∪ Ω̃s ∪ Γ̃i ⊂ Rd such that

– Γ̃i denotes the interface between Ω̃s and Ω̃f , i.e. Γ̃i = Ω̃s ∩ Ω̃f .

– the solid domain Ω̃s is a domain with boundary ∂Ω̃s = Γ̃i ∪ Γ̃s of class C∞, where
Γ̃s denotes the outer boundary solid boundary and Γ̃i ∩ Γ̃s = ∅.

– the fluid domain Ω̃f is a Lipschitz domain with boundary ∂Ω̃f = Γ̃i ∪ Γ̃f , where
Γ̃f denotes the outer boundary fluid boundary and Γ̃i ∩ Γ̃f = ∅.

• the initial conditions

v̂0 ∈ H1+`(Ω̃f )d and w̃1 ∈ H
1
2

+`+β(Ω̃s)
d,

are chosen such that
div(ṽ0) = 0

and the compatibility conditions

ṽ0|Γ̃f (·) = 0, ṽ0|Γ̃i = w̃1|Γ̃i , 2ν(ε(v̂0)nf ) · τ = 0 on Γ̃i,

are satisfied for any unit vector τ tangential to Γ̃i.

Let

Ũ := {ũτ ∈ H2+`(Ω̃)d : supp(ũτ ) ∩ supp(ṽ0) = ∅, ũτ |Ω̃s = 0},

which is a closed linear subspace of H2+`(Ω̃)d, be endowed with the norm

‖ · ‖Ũ = ‖ · ‖H2+`(Ω̃)d .
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Furthermore, let α1 > ‖I‖H1+`(Ω̃f )d×d . We consider solutions of the FSI problem for trans-

formations idz + ũτ induced by displacements ũτ ∈ Ṽ, where

Ṽ := {ũτ ∈ Ũ : idz + ũτ can be extended to an orientation-preserving C1-diffeomorphism

τ̃Rd : Rd → Rd with τ̃Rd − idz ∈ H2+`(Rd)d,
‖Dz (idz + ũτ )‖H1+`(Ω̃f )d×d < α1, ‖(Dz (idz + ũτ ))−1‖H1+`(Ω̃f )d×d < α1},

(4.3)
which by Lemma 4.3 is an open subset of Ũ. In particular, if Ũad ⊂ Ṽ, then our results will
hold at any admissible design displacement. Alternatively, the current design of the ALE
domain could be viewed as the reference shape domain, making it correspond to ũτ = 0, and
our results then can be applied to study continuity and differentiability w.r.t. variations of
this domain.

Remark 4.2. ([59, Remark 3])

1. In [67, Thm. 4.1] it is shown that C1-diffeomorphisms map bounded Lipschitz domains
to bounded Lipschitz domains. Therefore, for all ũτ ∈ Ṽ, (idz + ũτ )(Ω̃) is a bounded
Lipschitz domain.

2. The requirements on the Rd-extended transformations in the definition of the set on
the right hand side of (4.3) allow to apply [73, Lem. B.5, B.6] showing that they map
Hs(Rd)-functions to Hs(Rd)-functions for all 0 ≤ s ≤ 2 + `. Furthermore, by [73, Cor.
2.1], there exist constants M > 0 and ω > 0 such that

‖Dz τ̃Rd‖L∞(Rd)d×d < M, ‖(Dz τ̃Rd)
−1‖L∞(Rd)d×d < M,

inf
z∈Rd

det(Dz τ̃Rd(z)) > ω.
(4.4)

Lemma 4.3. ([59, Lem. 8]) For any ũτ ∈ Ṽ there exists ρ = ρ(ũτ ) > 0 such that ṽτ ∈ Ṽ
holds for all ṽτ ∈ Ũ, ‖ṽτ − ũτ‖Ũ ≤ ρ.

Proof. Let ũτ ∈ Ṽ be arbitrary and set τ̃ = idz + ũτ . For ṽτ ∈ Ṽ we use the notation
τ̃ v = idz + ṽτ . It has to be verified that there exists ρ > 0 such that for all ṽτ ∈ Ṽ with
‖ṽτ − ũτ‖Ũ ≤ ρ the following holds: τ̃ v can be extended to an orientation-preserving C1-
diffeomorphism τ̃ v,Rd of Rd satisfying τ̃ v,Rd − idz ∈ H2+`(Rd)d, ‖Dz τ̃ v‖H1+`(Ω̃f )d×d < α1,
and ‖(Dz τ̃ v)

−1‖H1+`(Ω̃f )d×d < α1.

The set Ωũτ := τ̃ (Ω̃) is a bounded Lipschitz domain by the definition of Ṽ and Remark
4.2. Using, e.g., [123, Thm. 5, p. 181] combined with interpolation, there exists a bounded
linear extension operator H2+`(Ωũτ )d → H2+`(Rd)d.
Moreover, the embeddings H2+`(Ωũτ )d ⊂ W 1,∞(Ωũτ )d and H2+`(Rd)d ⊂ W 1,∞(Rd)d are
continuous.
Now ũτ ∈ Ṽ implies ‖Dz τ̃‖H1+`(Ω̃f )d×d =: α′1 < α1. Hence, we obtain as required
‖Dz τ̃ v‖H1+`(Ω̃f )d×d ≤ ‖Dz τ̃‖H1+`(Ω̃f )d×d + ‖Dz (ṽτ − ũτ )‖H1+`(Ω̃f )d×d ≤ α′1 + ρ < α1 for
ρ sufficiently small.
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Denote by τ̃Rd ∈ H2+`(Rd)d the orientation-preserving C1-diffeomorphism that extends
τ̃ . Then, by part 2 of Remark 4.2, there exist constants M > 0 and ω > 0 such that
(4.4) holds. With the extension operator we obtain hτ ∈ H2+`(Rd)d with hτ |Ω̃ = ṽτ − ũτ ,
‖hτ‖H2+`(Rd)d ≤ C‖ṽτ − ũτ‖H2+`(Ω̃)d , and ‖hτ‖W 1,∞(Rd)d ≤ C‖ṽτ − ũτ‖H2+`(Ω̃)d . Setting
τ̃ v,Rd = τ̃Rd + hτ , there holds τ̃ v,Rd |Ω̃ = τ̃ v and τ̃ v,Rd − idz = (τ̃Rd − idz) + hτ ∈ H2+`(Rd)d.
By a Sobolev embedding we obtain also that τ̃ v,Rd is C1.

Since W 1,∞(Rd) and C0,1(Rd), are equal with equivalent norms, see [61, Thm. 4.1, Rem.
4.2], there there exists c′ > 0 such that any f ∈ W 1,∞(Rd)d has a Lipschitz continuous
representative with modulus ≤ c′‖f‖W 1,∞(Rd)d .

We now show that τ̃ v,Rd : Rd → Rd is bijective. In fact for any fixed z′ ∈ Rd, the equation
τ̃ v,Rd(z) = z′ can be written as

z = τ̃−1
Rd (z′ − hτ (z)) =: A(z′; z).

For sufficiently small ρ, the map A(z′; ·) is a contraction since, for any z1, z2 ∈ Rd, by using
(4.4)

‖τ̃−1
Rd (z′ − hτ (z1))− τ̃−1

Rd (z′ − hτ (z2))‖ ≤ c′‖(Dz τ̃Rd)
−1‖L∞(Rd)d×d‖hτ (z1)− hτ (z2)‖

≤Mc′‖hτ‖W 1,∞(Rd)d‖z1 − z2‖ ≤ CMc′ρ‖z1 − z2‖.

Hence, by the Banach fixed point theorem, if ρ is sufficiently small, then for any z′ ∈ Rd
there exists a unique z ∈ Rd with τ̃ v,Rd(z) = z′.
We show next that τ̃−1

v,Rd is C1. From (4.4) and ‖hτ‖W 1,∞(Rd)d ≤ Cρ we obtain a constant
C ′ > 0 with

inf
z∈Rd

det(Dz τ̃ v,Rd(z)) ≥ ω − ‖det(Dz τ̃ v,Rd)− det(Dz τ̃Rd)‖L∞(Rd)

≥ ω − C ′‖Dz τ̃ v,Rd −Dz τ̃Rd‖L∞(Rd)d×d

≥ ω − C ′‖hτ‖W 1,∞(Rd)d ≥ ω − CC ′ρ.

Hence, for ρ > 0 small enough we obtain det(Dz τ̃ v,Rd(z)) > ω/2 for all z ∈ Rd and thus
τ̃−1
v,Rd is C1 by the inverse function theorem.
We have shown that for ρ > 0 small enough it holds that det(Dz τ̃ v,Rd) ≥ ω/2. Now

(Dz τ̃ v)
−1 = 1/det(Dz τ̃ v)cof(Dz τ̃ v)

>.
Since by Lemma 2.5 products of functions in H1+`(Ω̃f ) are again in H1+`(Ω̃f ), we have

det(Dz τ̃ v), cof(Dz τ̃ v) ∈ H1+`(Ω̃f ) and since det(Dz τ̃ v) ≥ ω/2 > 0 by [116, pp. 336 and
297] also 1/det(Dz τ̃ v) ∈ H1+`(Ω̃f ). Hence, (Dz τ̃ v)

−1 ∈ H1+`(Ω̃f )d×d for ‖ṽτ − ũτ‖Ũ ≤ ρ.
Finally, with a constant C ′ > 0 we obtain

‖(Dz τ̃ v)
−1 − (Dz τ̃ )−1‖H1+`(Ω̃f )d×d

= ‖(Dz τ̃ v)
−1(Dz τ̃ −Dz τ̃ v)(Dz τ̃ )−1‖H1+`(Ω̃f )d×d

≤ C ′‖(Dz τ̃ v)
−1‖H1+`(Ω̃f )d×d‖(Dz τ̃ )−1‖H1+`(Ω̃f )d×d‖Dz (ṽτ − ũτ )‖H1+`(Ω̃f )d×d

≤ α1C
′(‖(Dz τ̃ v)

−1 − (Dz τ̃ )−1‖H1+`(Ω̃f )d×d + α1)ρ,
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from which ‖(Dz τ̃ v)
−1‖H1+`(Ω̃f )d×d < α1 follows if ρ is chosen sufficiently small.

Let with ρ = ρ(0) according to Lemma 4.3

Ṽρ := {ũτ ∈ Ṽ : ‖ũτ‖Ũ < ρ}. (4.5)

Then Ṽρ is by Lemma 4.3 an open subset of Ũ and we will study the differentiability of the
solution of (4.1) on Ṽρ at ũτ = 0.
The choice of the space of admissible transformations restricts the shape optimization to

the optimal design of the fluid domain, but keeps the interface in the Lagrangian frame fixed.
The boundedness properties of Ṽ allow us to establish estimates of the right hand sides in
(4.1). The following Lemma is a helpful tool that takes the special structure of the right
hand side terms into account.

Since z = τ̃−1(τ̃ (z)), it follows that I = (Dy τ̃
−1 ◦ τ̃ )Dz τ̃ and

Dy τ̃
−1 ◦ τ̃ = (Dz τ̃ )−1. (4.6)

Furthermore, for arbitrary invertible matrices A,B ∈ Rd×d one has

A−1 −B−1 = B−1(B−A)A−1,

A−1 −B−1 −B−1(B−A)B−1 = B−1(B−A)(A−1 −B−1)

= B−1(B−A)B−1(B−A)A−1. (4.7)

Let ũiτ ∈ Ṽ , then τ̃ i := idz + ũiτ , i = 1, 2, satisfy by Lemma 2.5, (4.7) and the definition of
Ṽ

‖(Dz τ̃
1)−1 − (Dz τ̃

2)−1‖H1+`(Ω̃f )d×d ≤ C‖τ̃
1 − τ̃ 2‖H2+`(Ω̃f )d = C‖ũ1

τ − ũ2
τ‖H2+`(Ω̃f )d ,

‖(Dz τ̃
1)−1 − (Dz τ̃

2)−1 + (Dz τ̃
2)−1(Dz τ̃

1 −Dz τ̃
2)(Dz τ̃

2)−1‖H1+`(Ω̃f )d×d

≤ C‖ũ1
τ − ũ2

τ‖2H2+`(Ω̃f )d
.

(4.8)

We define analogously to F̃χ in (4.2)

F̃i
χ(z, t) = F̃i

χ(z, t; ṽi, ũiτ ) := I +

∫ t

0
Dz ṽi(z, s)(Dz τ̃

i(z))−1 ds, i ∈ {1, 2}. (4.9)

Lemma 4.4. ([59, Lemma 12]) Let Assumption 4.1 be satisfied. Let M0 > 0, α ∈ (0, 1) and
α1 > 0. Then, there exists Tα > 0 such that F̃χ(·, t) is invertible, and det(F̃χ(·, t)) ≥ α for
all t ∈ (0, Tα) and for all ũτ ∈ Ṽ and ṽ ∈ ẼT,M0,ṽ0 . In addition, for each of the following
terms, there exists a constant C > 0 independent of T such that for all 0 < T < Tα,
ṽ, ṽ1, ṽ2 ∈ ẼT,M0,ṽ0 , ũτ , ũ

1
τ , ũ

2
τ ∈ Ṽ we have

1. a) F̃χ ∈ S̃T , ‖F̃χ‖S̃T ≤ C(1 +M0),
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b) ‖F̃2
χ − F̃1

χ‖S̃T ≤ C‖ṽ
2 − ṽ1‖ẼT + C(1 +M0)‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d ,

c) The mapping ẼT,M0,ṽ0 × Ṽρ → S̃T , (ṽ, ũτ ) 7→ F̃χ is Fréchet differentiable on the
relative interior of ẼT,M0,ṽ0 × Ṽρ.

2. a) cof(F̃χ) ∈ S̃T , ‖cof(F̃χ)‖S̃T ≤ C(1 +M2
0 ),

b) ‖cof(F̃2
χ)− cof(F̃1

χ)‖S̃T ≤ C(1+M0)(‖ṽ2− ṽ1‖ẼT +(1+M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

c) The mapping ẼT,M0,ṽ0 × Ṽρ → S̃T , (ṽ, ũτ ) 7→ cof(F̃χ) is Fréchet differentiable on
the relative interior of ẼT,M0,ṽ0 × Ṽρ.

3. a) det(F̃χ) ∈ S̃T , ‖det(F̃χ)‖S̃T ≤ C(1 +M3
0 ),

b) ‖det(F̃2
χ)− det(F̃1

χ)‖S̃T
≤ C(1 +M2

0 )(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

c) The mapping ẼT,M0,ṽ0 × Ṽρ → S̃T , (ṽ, ũτ ) 7→ det(F̃χ) is Fréchet differentiable on
the relative interior of ẼT,M0,ṽ0 × Ṽρ.

4. a) (det(F̃χ))−1 ∈ S̃T , ‖(det(F̃χ))−1‖S̃T ≤ C(1 +M33
0 ),

b) ‖(det(F̃2
χ))−1 − (det(F̃1

χ))−1‖S̃T
≤ C(1 +M68

0 )(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

c) The mapping ẼT,M0,ṽ0×Ṽρ → S̃T , (ṽ, ũτ ) 7→ (det(F̃χ))−1 is Fréchet differentiable
on the relative interior of ẼT,M0,ṽ0 × Ṽρ.

5. a) F̃Υ ∈ S̃T , ‖F̃Υ‖S̃T ≤ C(1 +M35
0 ),

b) ‖F̃2
Υ − F̃1

Υ‖S̃T
≤ C(1 +M70

0 )(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

c) The mapping ẼT,M0,ṽ0 × Ṽρ → S̃T , (ṽ, ũτ ) 7→ F̃Υ is Fréchet differentiable on the
relative interior of ẼT,M0,ṽ0 × Ṽρ.

6. a) F̃Υ(F̃Υ)T ∈ S̃T , ‖F̃Υ(F̃Υ)T ‖S̃T ≤ C(1 +M70
0 ),

b) ‖F̃2
Υ(F̃2

Υ)T − F̃1
Υ(F̃1

Υ)T ‖S̃T
≤ C(1 +M105

0 )(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

c) The mapping ẼT,M0,ṽ0 × Ṽρ → S̃T , (ṽ, ũτ ) 7→ F̃Υ(F̃Υ)T is Fréchet differentiable
on the relative interior of ẼT,M0,ṽ0 × Ṽρ.

7. a) (∂xj∂xkΥ̌) ◦ χ̃τ ∈ H1((0, T ), H`(Ω̃f )d),
‖(∂xj∂xkΥ̌) ◦ χ̃τ‖H1((0,T ),H`(Ω̃f )d) ≤ C(1 +M70

0 ),

b) ‖(∂xj∂xkΥ̌
2 − ∂xj∂xkΥ̌

1
) ◦ χ̃τ‖H1((0,T ),H`(Ω̃f )d)

≤ C(1 +M105
0 )(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d),
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c) The mapping ẼT,M0,ṽ0 × Ṽρ → H1((0, T ), H`(Ω̃f )d), (ṽ, ũτ ) 7→ (∂xj∂xkΥ̌) ◦ χ̃τ is
Fréchet differentiable on the relative interior of ẼT,M0,ṽ0 × Ṽρ.

Proof. In order to show the existence of the required Tα > 0 we consider

F̃χ − I =

∫ t

0
Dz ṽ(z, s)(Dz τ̃ (z))−1 ds

and estimate with Lemma 2.5

‖F̃χ(·, t)− I‖H1+`(Ω̃f )d×d ≤ Cα1

∫ t

0
‖Dz ṽ(·, s)‖H1+`(Ω̃f )d×d ds.

Thus, since H1+`(Ω̃f )d×d ↪→ C(Ω̃f )d×d, we have

‖F̃χ − I‖C(Q̃Tf )d×d
≤ CT

1
2α1M0

for a constant C independent of T . Since det(F̃χ(·, 0)) = det(I) = 1, we can find Tα such that
F̃χ(·, t) is invertible and det(F̃χ(·, t)) ≥ α for all t ∈ [0, Tα], all ũτ ∈ Ṽ, and all ṽ ∈ ẼT,M0,ṽ0 .
Now, let 0 < T < Tα. Consider the multilinear form m(x1, . . . , xk) = x1 · . . . ·xk for k ∈ N,

which is by Lemma 2.5 continuous as a mapping

L2(Ω̃f )×H1+`(Ω̃f )× · · · ×H1+`(Ω̃f )→ L2(Ω̃f )

and as a mapping

H1+`(Ω̃f )×H1+`(Ω̃f )× · · · ×H1+`(Ω̃f )→ H1+`(Ω̃f ).

The terms we have to estimate are obtained by inserting operators Tj : ẼT × Ṽ → S̃T ,
(ṽ, ũτ ) 7→ Tj(ṽ, ũτ ) in the multilinear form. If they are bounded, continuous and Fréchet
differentiable for 1 ≤ j ≤ k and arbitrary (ṽ, ũτ ) ∈ ẼT,M0,ṽ0×Ṽρ, we can use Lemma 2.13 to
show the claims of the lemma. If we have to estimate vector or matrix valued quantities, we
use the argumentation for every component. In the following, C denotes a generic constant
independent of T .

1. Consider F̃χ − I = m(T1(ṽ, ũτ ), T2(ṽ, ũτ )) with

T1(ṽ, ũτ ) =

∫ t

0
Dz ṽ(s) ds and T2(ṽ, ũτ ) = (Dz τ̃ )−1.

We have ‖T1(ṽ, ũτ )‖S̃T ≤ C(1 + ‖ṽ‖ẼT ), since ‖T1(ṽ, ũτ )(0)‖H1+`(Ω)d×d = 0 and
‖∂t T1(ṽ, ũτ )(0)‖L2(Ω)d×d = ‖Dz ṽ0‖L2(Ω)d×d , as well as, with P7,

‖T1(ṽ, ũτ )(·, t)‖H1+`(Ω̃f )d×d ≤ T
1
2 ‖Dz ṽ‖L2((0,T ),H1+`(Ω̃f )d×d) ≤ T

1
2 ‖ṽ‖ẼT ,

‖∂t T1(ṽ, ũτ )‖L2((0,T ),H1+`(Ω̃f )d×d) = ‖Dz ṽ‖L2((0,T ),H1+`(Ω̃f )d×d) ≤ ‖ṽ‖ẼT ,
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‖∂t T1(ṽ, ũτ )‖
H

1
2 + `

2 ((0,T ),L2(Ω̃f )d×d)
= ‖Dz ṽ‖

H
1
2 + `

2 ((0,T ),L2(Ω̃f )d×d)

≤ ‖ṽ‖
H

1
2 + `

2 ((0,T ),H1(Ω̃f )d×d)
≤ ‖ṽ‖ẼT ,

for almost every t ∈ (0, T ) due to the definition of ‖ · ‖ẼT . Boundedness follows with
propertyP1 of the norm. Fréchet differentiability and continuity now follow by linearity
of T1 and due to

(T1(ṽ2, ũ2
τ )− T1(ṽ1, ũ1

τ ))(0) = ∂t (T1(ṽ2, ũ2
τ )− T1(ṽ1, ũ1

τ ))(0) = 0

for all (ṽ, ũτ ) ∈ ẼT,M0,ṽ0×Ṽ. Note that T2(ṽ, ũτ ) is independent of ṽ and depends lin-
early on (Dz τ̃ )−1 with ‖T2(ṽ, ũτ )‖S̃T ≤ C‖(Dz τ̃ )−1‖H1+`(Ω̃f )d×d . Hence, boundedness,

continuity and differentiability follow from the definition of Ṽ, (4.5) and (4.8).

2. Each component of the cofactor matrix cof(F̃χ) can be written as a finite sum of
terms a · x1 · x2, where x1, x2 denote components of the matrix F̃χ and a ∈ {−1, 1}.
Therefore, cof(F̃χ) is a sum of bilinear forms with factors T1(ṽ, ũτ ) := a(F̃χ)i,j and
T2(ṽ, ũτ ) := (F̃χ)k,l for i, j, k, l ∈ {1, 2, 3}. Due to the estimates in 1.(a) we know that
‖Ti(ṽ, ũτ )‖S̃T ≤ C(1 + M0) for i ∈ {1, 2}, and, therefore, ‖cof(F̃χ)‖S̃T ≤ C(1 + M2

0 ).
1.(b) yields ‖Ti(ṽ2, ũ2

τ )−Ti(ṽ1, ũ1
τ )‖S̃T ≤ C‖ṽ

2−ṽ1‖ẼT +C(1+M0)‖ũ2
τ−ũ1

τ‖H2+`(Ω̃f )d ,
i ∈ {1, 2}. Therefore, the continuity estimate and Fréchet differentiability follow from
Lemma 2.13.

3. Since det(F̃χ) is a polynomial of degree 3 in the components of the matrix F̃χ, the
assertions can be proved similar to 2.

4. a) Since det(F̃χ) is a cubic polynomial in the components of F̃χ and we know that
det(F̃χ)(·, t) ≥ α > 0 for all t ∈ [0, Tα], the assertion follows from Lemma 2.14,
2., which implies

‖(det(F̃χ))−1‖S̃T ≤ C(1 + ‖det(F̃χ)‖S̃T )10‖det(F̃χ)‖S̃T .

Now, 3.(a) implies that

‖(det(F̃χ))−1‖S̃T ≤ C(1 +M3
0 )10(1 +M3

0 ) ≤ C(1 +M33
0 ).

b) The difference

(det(F̃2
χ))−1 − (det(F̃1

χ))−1 = −(det(F̃1
χ))−1(det(F̃2

χ))−1(det(F̃2
χ)− det(F̃1

χ))

is a 3-linear form with factors T1(ṽ, ũτ ) := (det(F̃1
χ))−1, T2(ṽ, ũτ ) := (det(F̃2

χ))−1

and T3(ṽ, ũτ ) := −(det(F̃2
χ)− det(F̃1

χ)). Lemma 2.14, 1. now yields

‖(det(F̃2
χ))−1 − (det(F̃1

χ))−1‖S̃T
≤ C‖(det(F̃1

χ))−1‖S̃T ‖(det(F̃2
χ))−1‖S̃T ‖det(F̃2

χ)− det(F̃1
χ)‖S̃T .
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The estimates 3.(b) and 4.(a) now imply

‖(det(F̃2
χ))−1 − (det(F̃1

χ))−1‖S̃T
≤ C(1 +M33

0 )(1 +M33
0 )(1 +M2

0 )(‖ṽ2 − ṽ1‖ẼT
+ (1 +M0)‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d).

c) Let (ṽ, ũτ ) ∈ ẼT,M0,ṽ0 × Ṽρ be arbitrary. Then by 2. and 4.(a) we have
‖(det(F̃χ))−1‖S̃T ≤ C(1 + M33

0 ) and ‖cof(F̃χ)‖S̃T ≤ C(1 + M2
0 ). Hence, Lemma

2.14 yields

‖F̃−1
χ ‖S̃T = ‖(det(F̃χ))−1cof(F̃χ)‖S̃T

≤ ‖(det(F̃χ))−1‖S̃T ‖cof(F̃χ)‖S̃T ≤ C(1 +M35
0 ).

(4.10)

Now det(F̃χ)−1 = det(F̃−1
χ ), thus it suffices by 1., 3. and the chain rule to show

that (ṽ1, ũ1
τ ) ∈ ẼT,M0,ṽ0×Ṽρ 7→ (F̃1

χ)−1 ∈ S̃T is Fréchet differentiable at (ṽ1, ũ1
τ ).

This follows from (4.7), (4.10) and Lemma 2.14, since with A = F̃1
χ

‖A−1 − F̃−1
χ − F̃−1

χ (F̃χ −A)F̃−1
χ ‖S̃T = ‖F̃−1

χ (F̃χ −A)F̃−1
χ (F̃χ −A)A−1‖S̃T

≤ C(1 +M35
0 )3‖F̃χ −A‖2

S̃T
,

which yields with 1. the Fréchet differentiability.

5. Since F̃Υ = (F̃χ)−1 = (det(F̃χ))−1cof(F̃χ)
>
, we can prove the result via multilinear

forms and use Lemma 2.14, 1. .

6. Again, the assertions can be shown via multilinear forms.

7. From χ̃τ
−1 ◦ χ̃τ = idz, it follows that

I = Dz (χ̃τ
−1 ◦ χ̃τ ) = Dxχ̃τ

−1 ◦ χ̃τDz χ̃τ .

Therefore, since Dz χ̃τ = F̃χDz τ̃ , we have

Dxχ̃τ
−1 ◦ χ̃τ = (F̃χDz τ̃ )−1 = Dz τ̃

−1F̃Υ. (4.11)

Furthermore, we have (F̂Υ)l,k = (F̂−1
χ )l,k = (∂xkΥ̌l) ◦ χ̂, which implies

(F̃Υ)l,k = (∂xkΥ̌l) ◦ χ̃τ . (4.12)

Thus, (∂xj∂xkΥ̌l
) ◦ χ̃τ = ∂xj (F̃Υ ◦ χ̃τ−1)l,k ◦ χ̃τ and with (4.11) we obtain

∂xj (F̃Υ ◦ χ̃τ−1)l,k ◦ χ̃τ =
∑
m

(∂zmF̃Υ)l,k∂xj (χ̃τ
−1)m ◦ χ̃τ
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=
∑
m,i

(∂zmF̃Υ)l,k(Dz τ̃
−1)m,i(F̃Υ)i,j

and each summand is the composition of a multilinear form m(x1, x2, x3) = x1 ·x2 ·x3,
which is by Lemma 2.5 continuous as a mapping

H`(Ω̃f ) ×H1+`(Ω̃f )× · · · ×H1+`(Ω̃f )→ H`(Ω̃f )

with an operator

ẼT,M0,ṽ0 × Ṽ→ H1((0, T ), H`(Ω̃f )) ×H1((0, T ), H1+`(Ω̃f ))×H1((0, T ), H1+`(Ω̃f ))

that by (4.8), P7 and 5. is bounded and continuous on ẼT,M0,ṽ0×Ṽρ as well as Fréchet
differentiable on ẼT,M0,ṽ0× Ṽρ. Now, we can apply Lemma 2.12 to conclude the proof.

With the above Lemmas the required right hand side estimates can be established.

Lemma 4.5. ([59, Lemma 13]) Let Assumption 4.1 be satisfied. Let Tf > 0 and ρ = ρ(0)
be given by Lemma 4.3. Then, there exist 0 < T ∗ ≤ Tf , α1 > 0, as well as, for each of the
following terms, a constant C > 0 independent of T but dependent on Tf and a polynomial
χ such that for all 0 < T < T ∗, 0 < M0, ṽ, ṽ1, ṽ2 ∈ ẼT,M0,ṽ0 , p̃, p̃1, p̃2 ∈ P̃ T,M0,ṽ0 and
ũτ , ũ

1
τ , ũ

2
τ ∈ Ṽρ we have

F̃(ṽ, p̃, ũτ ) ∈ F̃T , H̃(ṽ, p̃, ũτ ) ∈ H̃T , G̃(ṽ, ũτ ) ∈ G̃T ,
g̃(ṽ, ũτ ) ∈ G̃T ∩H1((0, T ), H`(Ω̃f )d),

g̃(ṽ, ũτ )|ΣTf = 0, g̃(ṽ, ũτ )(·, 0) = 0, and H̃(ṽ, p̃, ũτ )(·, 0) = 0, (4.13)

as well as,

‖F̃(ṽ, p̃, ũτ )‖F̃T ≤ Cχ(M0)(T 1−` + ρ), ‖H̃(ṽ, p̃, ũτ )‖H̃T
≤ Cχ(M0)(T 1−` + ρ),

‖G̃(ṽ, ũτ )‖G̃T ≤ Cχ(M0)(T 1−` + ρ), ‖g̃(ṽ, ũτ )‖G̃T
≤ Cχ(M0)(1 + ρ),

and

‖F̃(ṽ2, p̃2, ũ2
τ )− F̃(ṽ1, p̃1, ũ1

τ )‖F̃T
≤ Cχ(M0)((T 1−` + ρ)(‖ṽ2 − ṽ1‖ẼT + ‖∇z p̃

2 −∇z p̃
1‖F̃T ) + ‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d),

‖H̃(ṽ2, p̃2, ũ2
τ )− H̃(ṽ1, p̃1, ũ1

τ )‖H̃T

≤ Cχ(M0)((T 1−` + ρ)(‖ṽ2 − ṽ1‖ẼT + ‖p̃2|Σ̃Ti − p̃
1|Σ̃Ti ‖HT ) + ‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d),

‖G̃(ṽ2, ũ2
τ )− G̃(ṽ1, ũ1

τ )‖G̃T ≤ Cχ(M0)((T 1−` + ρ)‖ṽ2 − ṽ1‖ẼT + ‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

‖g̃(ṽ2, ũ2
τ )− g̃(ṽ1, ũ1

τ )‖G̃T
≤ Cχ(M0)((T

1
4
− `

4 + ρ)‖ṽ2 − ṽ1‖ẼT + ‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d),

84



and

F̃ : ẼT,M0,ṽ0 × P̃ T,M0,ṽ0 × Ṽρ → F̃T , H̃ : ẼT,M0,ṽ0 × P̃ T,M0,ṽ0 × Ṽρ → H̃T ,

G̃ : ẼT,M0,ṽ0 × Ṽρ → G̃T , g̃ : ẼT,M0,ṽ0 × Ṽρ → G̃T

are Fréchet differentiable on the relative interior of ẼT,M0,ṽ0 × P̃ T,M0,ṽ0 × Ṽρ and ẼT,M0,ṽ0 ×
Ṽρ, respectively.

Proof. The compatibility conditions (4.13) are fulfilled, due to the choice of Ṽ, which ensures
that supp ũτ ∩ supp ṽ0 = ∅ and therefore H̃(ṽ, p̃, ũτ )(·, 0) = 0 and g̃(ṽ, ũτ )(·, 0) = 0. The
boundary condition on ΣT

f ensures that g̃(ṽ, ũτ )|ΣTf = 0. The right hand side terms F̃ , H̃,

G̃ and g̃ are sums of multilinear forms as introduced in Lemma 2.12 and 2.13. In Lemma 4.4
boundedness, continuity and Fréchet differentiability of the corresponding factors are shown.
Thus, it suffices to establish an appropriate boundedness estimate such that the product of the
appearing Mj in Lemma 2.12 have the structure C̃(Tα + ‖ũτ‖H2+`(Ω̃f )d) for a suitable α ≥ 0

and C̃ which is independent of T . The explicit time dependency is obtained by using the
extension and restriction properties P3, P4 and P5 of the norm and by using P6. The time
dependency for the corresponding constants Mj,1 and Mj,2 follows with similar arguments.
The desired continuity estimates, as well as, Fréchet differentiability can be deduced from
Lemma 2.12 if (4.6) and thus

(∂yiDy τ̃
−1) ◦ τ̃ = (∂yi(Dy τ̃

−1 − I)) ◦ τ̃ =
∑
m

∂zm((Dz τ̃ )−1 − I)(∂yi τ̃
−1
m ) ◦ τ̃ ,

are kept in mind, which by Lemma 2.5 and the definition of Ṽ implies

‖(∂yiDy τ̃
−1) ◦ τ̃‖H`(Ω̃f ) ≤ C‖(Dz τ̃ )−1‖H1+`(Ω̃f )‖(Dz τ̃ )−1 − I‖H1+`(Ω̃f ) ≤ Cα1(1 + α1).

(4.14)

Moreover, since for arbitrary matrices A,B ∈ Rd×d the cofactor-matrix is a polynomial of
degree d− 1 in every entry, we have that

cof(A)− cof(B) ≤
∑
i,j

χi,j(A,B)(A−B)i,j ,

where χi,j is a polynomial of degree d− 2 in the entries of A and B for 1 ≤ i, j ≤ 3. Thus,

‖cof(A)− cof(B)‖H1+`(Ω)d×d ≤ C(‖A‖d−2
H1+`(Ω)d×d

+ ‖B‖d−2
H1+`(Ω)d×d

)‖A−B‖H1+`(Ω)d×d ,

and for ũτ , ũ
1
τ , ũ

2
τ ∈ Ṽ we have

‖cof(Dz τ̃ )‖H1+`(Ω̃f )d×d ≤ C (4.15)

‖cof(Dz τ̃
1)− cof(Dz τ̃

2)‖H1+`(Ω̃f )d×d ≤ Cα
d−2
1 ‖τ̃ 1 − τ̃ 2‖H2+`(Ω̃f )d

≤ Cαd−2
1 ‖ũ1

τ − ũ2
τ‖H2+`(Ω̃f )d . (4.16)
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We show boundedness of F̃ , H̃, G̃ and g̃. In order to obtain the estimates we have to split
the terms such that the initial values of selected factors vanish at t = 0. To this end, we
decompose

F̃(ṽ, p̃, ũτ ) = F̃1(ṽ, ũτ ) + F̃2(ṽ, ũτ ) + F̃3(ṽ, ũτ ) + F̃4(ṽ, ũτ ) + F̃5(ṽ, p̃, ũτ ) + F̃6(ṽ, p̃, ũτ ),

F̃1(ṽ, ũτ ) = ν
∑
j,k,l

(∂xjxjΥ̌k ◦ χ̃τ )(∂yk(τ̃−1)l ◦ τ̃ )∂zl ṽ,

F̃2(ṽ, ũτ ) = ν
∑
i,k,l

((
∑
j

∂xjΥ̌i∂xjΥ̌k − δi,k) ◦ χ̃τ )(∂yiyk(τ̃−1)l ◦ τ̃ )∂zl ṽ,

F̃3(ṽ, ũτ ) = ν
∑
i,k,l,m

((
∑
j

∂xjΥ̌i∂xjΥ̌k − δi,k) ◦ χ̃τ )((∂yk(τ̃−1)l∂yi(τ̃
−1)m) ◦ τ̃ )∂zlzm ṽ,

F̃4(ṽ, ũτ ) = ν
∑
k,l

(∂ykyk(τ̃−1)l ◦ τ̃ )∂zl ṽ + ν
∑
k,l,m

((∂yk(τ̃−1)l∂yk(τ̃−1)m) ◦ τ̃ − δl,m)∂zlzm ṽ,

F̃5(ṽ, p̃, ũτ ) = (I− F̃>Υ)∇z p̃,

F̃6(ṽ, p̃, ũτ ) = F̃>Υ(I− (Dy τ̃
−1)> ◦ τ̃ )∇z p̃,

H̃(ṽ, p̃, ũτ ) = H̃1(ṽ, ũτ ) + H̃2(ṽ, ũτ ) + H̃3(ṽ, ũτ ) + H̃4(ṽ, ũτ ) + H̃5(ṽ, ũτ )

+ H̃6(ṽ, ũτ ) + H̃7(ṽ, ũτ ) + H̃8(ṽ, ũτ ) + H̃9(ṽ, p̃, ũτ ) + H̃10(p̃, ũτ ),

H̃1(ṽ, ũτ ) = −νDz ṽ(Dz τ̃ )−1F̃Υ(cof(F̃χ)− I) cof(Dz τ̃ )ñf ,

H̃2(ṽ, ũτ ) = −νF̃>Υ(Dz τ̃ )−>Dz ṽ>(cof(F̃χ)− I) cof(Dz τ̃ )ñf ,

H̃3(ṽ, ũτ ) = −νDz ṽ(Dz τ̃ )−1(F̃Υ − I) cof(Dz τ̃ )ñf ,

H̃4(ṽ, ũτ ) = −ν(F̃Υ − I)>(Dz τ̃ )−>Dz ṽ> cof(Dz τ̃ )ñf ,

H̃5(ṽ, ũτ ) = −νDz ṽ(Dz τ̃ )−1(cof(Dz τ̃ )− I)ñf ,

H̃6(ṽ, ũτ ) = −ν(Dz τ̃ )−>Dz ṽ>(cof(Dz τ̃ )− I)ñf ,

H̃7(ṽ, ũτ ) = −νDz ṽ((Dz τ̃ )−1 − I)ñf ,

H̃8(ṽ, ũτ ) = −ν((Dz τ̃ )−> − I)Dz ṽ>ñf ,

H̃9(ṽ, p̃, ũτ ) = −p̃(I− cof(F̃χ)) cof(Dz τ̃ )ñf ,

H̃10(p̃, ũτ ) = −p̃(I− cof(Dz τ̃ ))ñf ,

G̃(ṽ, ũτ ) = Dz ṽ : ((I− cof(F̃χ)) cof(Dz τ̃ )) +Dz ṽ : (I− cof(Dz τ̃ ))

=: G̃1(ṽ, ũτ ) + G̃2(ṽ, ũτ ),

g̃(ṽ, ũτ ) = cof(Dz τ̃ )>(I− cof(F̃χ)
>

)ṽ + (I− cof(Dz τ̃ )>)ṽ

=: g̃1(ṽ, ũτ ) + g̃2(ṽ, ũτ ).

86



Since the ideas for the estimates for the different summands of F̃ , H̃, G̃ and g̃ are similar
we just present the proofs for F̃2, F̃6, H̃1, G̃1 and g̃1. Let C denote a generic constant
independent of T . In the following argumentation we frequently use Lemma 2.5 in order to
ensure that X1, . . . , Xk are chosen such that multilinear forms m(x1, . . . , xk) := x1 · . . . · xk
fulfill the requirements of Lemma 2.12. The notation Si, Mi, Mi,1, Mi,2, si for i ∈ {1, . . . , k}
is defined by Lemma 2.12.

• Estimation of g̃1(ṽ, ũτ ):

To apply Lemma 2.12 we use property P1, which implies

‖ · ‖2
G̃T

= ‖ · ‖2
L2((0,T ),L2(Ω̃f )d)

+ ‖∂t · ‖2
H
`
2 ((0,T ),L2(Ω̃f )d)

,

and estimate g̃1(ṽ, ũτ ) and ∂tg̃1(ṽ, ũτ ) separately.

1. g̃1(ṽ, ũτ ) is a multilinear form with factors

T1(ṽ, ũτ ) = ṽ, T2(ṽ, ũτ ) = I− cof(F̃χ)>, T3(ṽ, ũτ ) = cof(Dz τ̃ )>.

With Lemma 2.12, s = s1 = 0, s2 = `, s3 = 1, X = L2(Ω̃f )d, X1 = H2+`(Ω̃f )d,
X2 = H1+`(Ω̃f )d×d, X3 = H1+`(Ω̃f )d×d, we obtain

‖g̃1(ṽ, ũτ )‖L2((0,T ),L2(Ωf )d) ≤ CM0(1 +M0)T 1−`,

since by P6, (4.15) and Lemmas 2.11, 2.5, 4.4

‖T1(ṽ, ũτ )‖S1 ≤ ‖ṽ‖ẼT ≤M0,

‖T2(ṽ, ũτ )‖S2 ≤ CT 1−`‖I− cof(F̃χ)‖H1((0,T ),X2) ≤ CT 1−`(1 +M2
0 ),

‖T3(ṽ, ũτ )‖S3 = (‖cof(Dz τ̃ )‖2X3
+ ‖cof(Dz τ̃ )‖2L2((0,T ),X3))

1
2

≤ C‖cof(Dz τ̃ )‖X3 ≤ C,

(4.17)

i.e., M1 = M0, M2 = CT 1−`(1+M2
0 ) andM3 = C in the notation of Lemma 2.12.

Using in addition (4.16) gives

‖T1(ṽ2, ũ2
τ )− T1(ṽ1, ũ1

τ )‖S1 ≤ ‖ṽ2 − ṽ1‖ẼT ,

‖T2(ṽ2, ũ2
τ )− T2(ṽ1, ũ1

τ )‖S2 ≤ CT 1−`‖cof(F̃2
χ)− cof(F̃1

χ)‖ẼT
≤ CT 1−`(1 +M0)(‖ṽ2 − ṽ1‖ẼT + (1 +M0)‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d),

‖T3(ṽ2, ũ2
τ )− T3(ṽ1, ũ1

τ )‖S3

≤ C‖cof(Dz τ̃
2)− cof(Dz τ̃

1)‖X3 ≤ C‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d .

Hence, M1,1 = 1, M1,2 = 0, M2,1 = CT 1−`(1 + M0), M2,2 = CT 1−`(1 + M0)2,
M3,2 = C, M3,1 = 0 and Lemma 2.12 yields for a polynomial χ

‖g̃1(ṽ2, ũ2
τ )− g̃1(ṽ1, ũ1

τ )‖L2((0,T ),L2(Ωf )d)
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≤ Cχ(M0)T 1−`(‖ṽ2 − ṽ1‖ẼT + ‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d)

and Fréchet differentiability of g̃1(ṽ, ũτ ) : ẼT × Ṽ → L2((0, T ), L2(Ω̃f )d) on
ẼT,M0,ṽ0 × Ṽρ.

2. ∂tg̃1(ṽ, ũτ ) = −cof(Dz τ̃ )>∂t cof(F̃χ)
>

ṽ + cof(Dz τ̃ )>(I− cof(F̃χ)
>

)∂t ṽ is a sum
of multilinear forms. We exemplarily estimate the first term. Here, T1(ṽ, ũτ ) = ṽ,
T2(ṽ, ũτ ) = −∂t cof(F̃χ)

>
and T3(ṽ, ũτ ) = cof(Dz τ̃ )>. Choose s = s1 = `

2 ,
s2 = 1

2 + `
4 , s3 = 1, X = X2 = L2(Ω̃f )d, X1 = H1+`(Ω̃f )d, X3 = H1+`(Ω̃f )d.

With Lemmas 2.10, 4.4 we obtain

‖T1(ṽ, ũτ )‖S1 ≤ C(‖T1(ṽ, ũτ )(0)‖H1+`(Ω̃f )d + T
1
4
− `

4 ‖T1(ṽ, ũτ )‖ẼT ) ≤ C(1 +M0),

‖T2(ṽ, ũτ )‖S2 ≤ C(‖T2(ṽ, ũτ )(0))‖X2 + T
`
4 ‖T2(ṽ, ũτ )‖

H
1
2 + `

2 ((0,T ),L2(Ω̃f )d)
)

≤ C(1 +M2
0 ),

‖T3(ṽ, ũτ )‖S3 ≤ C,
(4.18)

where we use for the second term that 0 = ∂t (F̃χF̃Υ) = ∂t F̃χF̃Υ + F̃χ∂t F̃Υ and
thus with (4.9)

∂t(cof(F̃χ)
>

)(0) = ∂t (det(F̃χ)F̃Υ)(0) = (∂t det(F̃χ)F̃Υ + det(F̃χ)∂t F̃Υ)(0)

= (tr(cof(F̃χ)
>
∂tF̃χ)F̃Υ − det(F̃χ)F̃ΥDz ṽ(Dz τ̃ )−1F̃Υ)(0)

= tr(Dz ṽ0(Dz τ̃ )−1)I−Dz ṽ0(Dz τ̃ )−1.

Since (Ti(ṽ2, ũ2
τ ) − Ti(ṽ1, ũ1

τ ))(0) = 0 for i ∈ {1, 2, 3 }, analogous to (4.18), we
obtain with (4.16)

‖T1(ṽ2, ũ2
τ )− T1(ṽ1, ũ1

τ )‖S1 ≤ CT
1
4
− `

4 ‖T1(ṽ2, ũ2
τ )− T1(ṽ1, ũ1

τ )‖ẼT ,
‖T2(ṽ2, ũ2

τ )− T2(ṽ1, ũ1
τ )‖S2

≤ CT
`
4 ‖T2(ṽ2, ũ2

τ )− T2(ṽ1, ũ1
τ )‖

H
1
2 + `

2 ((0,T ),L2(Ω̃f )d)
,

‖T3(ṽ2, ũ2
τ )− T3(ṽ1, ũ1

τ )‖S3 ≤ C‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d .

Continuity and Fréchet differentiability follow now by Lemmas 2.12, 4.4. Finally,
g̃1(ṽ, ũτ ) ∈ H1((0, T ), H`(Ω̃f )d), since v ∈ H1((0, T ), H`(Ω̃f )d), τ̃ ∈ H2+`(Ω̃f )d and
(I− cof(F̃χ)) ∈ H1((0, T ), H1+`(Ω̃f )d×d).
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• Bound for ‖F̃6(ṽ, p̃, ũτ )‖F̃T :

F̃6(ṽ, p̃, ũτ ) is a multilinear form with factors

T1(ṽ, p̃, ũτ ) = ∇z p̃, T2(ṽ, p̃, ũτ ) = I− (Dy τ̃
−1)> ◦ τ̃ = I− (Dz τ̃ )−>

due to (4.6) and T3(ṽ, p̃, ũτ ) = F̃>Υ.

1. ‖F̃6(ṽ, p̃, ũτ )‖L2((0,T ),H`(Ω̃f )d):

Choose s = s1 = 0, s2 = 1, s3 = `, X = X1 = H`(Ω̃f )d, X2 = X3 = H1+`(Ω̃f )d×d.
‖T1(ṽ, p̃, ũτ )‖S1 ≤M0 follows by (2.6). With (4.8) and Lemma 2.11 we obtain

‖T2(ṽ, p̃, ũτ )‖S2 ≤ C‖ũτ‖H2+`(Ω̃f )d ≤ Cρ (4.19)

since ũτ ∈ Ṽρ. F̃Υ(0) = I and Lemmas 2.10, 4.4 imply

‖T3(ṽ, p̃, ũτ )‖S3 ≤ C(1 + T 1−`‖F̃Υ‖H1((0,T ),X3)) ≤ C(1 +M35
0 ). (4.20)

With (4.8) and Lemma 4.4 we have

‖T1(ṽ2, p̃2, ũ2
τ )− T1(ṽ1, p̃1, ũ1

τ )‖S1 ≤ ‖∇z p̃
2 −∇z p̃

1‖F̃T ,
‖T2(ṽ2, p̃2, ũ2

τ )− T2(ṽ1, p̃1, ũ1
τ )‖S2 ≤ C‖ũ2

τ − ũ1
τ‖H1+`(Ω̃f )d×d ,

‖T3(ṽ2, p̃2, ũ2
τ )− T3(ṽ1, p̃1, ũ1

τ )‖S3 ≤ C(1 +M70
0 )T 1−`(‖ṽ2 − ṽ1‖ẼT

+ (1 +M0)‖ũ2
τ − ũ1

τ‖H2+`(Ω̃f )d).

2. ‖F̃6(ṽ, p̃, ũτ )‖
H
`
2 ((0,T ),L2(Ω̃f )d)

:

Let s = s1 = `
2 , s2 = 1, s3 = `, X = X1 = L2(Ω̃f )d, X2 = X3 = H1+`(Ω̃f )d×d.

With (2.6), (4.19), (4.20) and Lemmas 2.5, 4.4 we obtain the same bounds as
before.
Thus, with Lemma 2.12, ‖F̃6(ṽ, p̃, ũτ )‖F̃T ≤ C(1 +M36

0 )ρ and

‖F̃6(ṽ2, p̃2, ũ2
τ )− F̃6(ṽ1, p̃1, ũ1

τ )‖F̃T
≤ Cχ(M0)(T 1−`‖ṽ2 − ṽ1‖ẼT + ρ‖∇z p̃

2 −∇z p̃
1‖F̃T + ‖ũ2

τ − ũ1
τ‖H2+`(Ω̃f )d),

where χ is a polynomial.

As seen in the previous estimates, due to Lemma 2.12, the derivation of the continu-
ity estimates and Fréchet differentiability is straightforward if one knows how to show
boundedness of the multilinear forms. We thus only address boundedness in the fol-
lowing.
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• Bound for ‖F̃2(ṽ, ũτ )‖F̃T :

F̃2(ṽ, ũτ ) is a sum of multilinear forms with factors

T1(ṽ, ũτ ) = ∂zl ṽ, T2(ṽ, ũτ ) = ν∂yi∂yk(τ̃−1)l ◦ τ̃ ,

T3(ṽ, ũτ ) = (
∑
j

(∂xj (Υ̌)i∂xj (Υ̌)k)− δi,k) ◦ χ̃τ

for i, k, l ∈ {1, . . . , d} with T3(ṽ, ũτ )(0) = 0.

1. ‖F̃2(ṽ, ũτ )‖L2((0,T ),H`(Ω̃f )d):
Boundedness, continuity and Fréchet differentiability are obtained with Lemma
2.12 for s = s1 = 0, s2 = 1, s3 = `, and X = H`(Ω̃f )d, X1 = H1+`(Ω̃f )d,
X2 = H`(Ω̃f ), X3 = H1+`(Ω̃f ) and Lemma 4.4. By P6 and (4.12) we obtain

‖T3(ṽ, ũτ )‖S3 ≤ CT 1−`‖T3(ṽ, ũτ )‖H1((0,T ),X3)

≤ CT 1−`(1 + ‖F̃Υ(F̃Υ)>‖S̃T ) ≤ CT 1−`(1 +M70
0 ), (4.21)

(4.14) and Lemma 2.11 imply ‖T2(ṽ, ũτ )‖S2 ≤ C and, with P7,

‖T1(ṽ, ũτ )‖Hs1 ((0,T ),X1) ≤ C‖ṽ‖L2((0,T ),H2+`(Ω̃f )d) ≤ CM0.

2. ‖F̃2(ṽ, ũτ )‖
H
`
2 ((0,T ),L2(Ω̃f )d)

:

Choose s = s1 = `
2 , s2 = 1, s3 = `, X = L2(Ω̃f )d, X1 = H1(Ω̃f )d, X2 = H`(Ω̃f ),

X3 = H1+`(Ω̃f ) and use (4.14), (4.21), P6, P7 and Lemmas 2.11, 2.5, 2.12 and
4.4.

We obtain ‖F̃2(ṽ, ũτ )‖F̃T ≤ CT
1−`(1 +M71

0 ).

• Bound for ‖H̃1(ṽ, ũτ )‖H̃T
:

H̃1(ṽ, ũτ ) is a multilinear form with factors

T1(ṽ, ũτ ) = Dz ṽ, T2(ṽ, ũτ ) = (Dz τ̃ )−1,

T3(ṽ, ũτ ) = F̃Υ, T4(ṽ, ũτ ) = (cof(F̃χ)− I),

T5(ṽ, ũτ ) = νcof(Dz τ̃ )ñf ,

with T4(ṽ, ũτ )(0) = 0.

Due to Lemma 2.5 on Γi, which can locally be mapped to bounded open domains on
Rd−1, Lemma 2.12 can be applied. P7 and boundedness of the trace operator yield

‖Tj(ṽ, ũτ )‖
Hα((0,T ),H

1
2 +`(Γ̃i)d×d)

≤ C‖Tj(ṽ, ũτ )‖Hα((0,T ),H1+`(Ω̃f )d×d)

for α ∈ [0, 1] \ {1
2}, j ∈ {1, . . . , 5}.
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1. ‖H̃1(ṽ, ũτ )‖
L2((0,T ),H

1
2 +`(Γ̃i)d)

:

Choose s = s1 = 0, s2 = s5 = 1, s3 = s4 = `, and X = X5 = H
1
2

+`(Γ̃i)
d, and

X1 = X2 = X3 = X4 = H
1
2

+`(Γ̃i)
d×d.

We have with P7 and the definition of Ṽ

‖T1(ṽ, ũτ )‖S1 ≤ C‖ṽ‖L2((0,T ),H2+`(Ω̃f )d) ≤ CM0,

‖T2(ṽ, ũτ )‖S2 ≤ C‖(Dz τ̃ )−1‖H1+`(Ω̃f )d×d ≤ Cα1.

Lemma 2.10 and 4.4 imply

‖T3(ṽ, ũτ )‖S3 ≤ C(T 1−`‖F̃Υ‖H1((0,T ),H1+`(Ω̃f )d×d) + ‖F̃Υ(0)‖H1+`(Ω̃f )d×d)

≤ C(1 +M35
0 ).

Moreover, (4.15) yields ‖T5(ṽ, ũτ )‖S5 ≤ C‖cof(Dz τ̃ )‖H1+`(Ω̃f )d×d ≤ C. Finally,
P6 implies

‖T4(ṽ, ũτ )‖S4 ≤ C‖cof(F̃χ)− I‖H`((0,T ),H1+`(Ω̃f )d×d)

≤ CT 1−`‖cof(F̃χ)− I‖H1((0,T ),H1+`(Ω̃f )d×d) ≤ CT
1−`(1 +M2

0 ).

2. ‖H̃1(ṽ, ũτ )‖
H

1
4 + `

2 ((0,T ),L2(Γ̃i)d)
:

Let s = s1 = s3 = s4 = 1
4 + `

2 , s2 = s5 = 1, X = L2(Γ̃i)
d, X1 = L2(Γ̃i)

d×d,
X2 = X3 = X4 = H

1
2

+`(Γ̃i)
d×d, X5 = H

1
2

+`(Γ̃i)
d.

The estimates for ‖T2(ṽ, ũτ )‖S2 and ‖T5(ṽ, ũτ )‖S5 are as above.
Since ‖Dz · |Σ̃Ti ‖H 1

4 + `
2 ((0,T ),L2(Γ̃i)d×d)

appears in the definition of ‖ · ‖ẼT we have

‖T1(ṽ, ũτ )‖S1 ≤ CM0. Lemmas 2.10 and 4.4 yield

‖T3(ṽ, ũτ )‖S3 ≤ C(T
3
4
− `

2 ‖F̃Υ‖H1((0,T ),H1+`(Ω̃f )d×d) + ‖F̃Υ(0)‖H1+`(Ω̃f )d×d)

≤ C(1 +M35
0 ).

Lemma 2.10 and P6 imply

‖T4(ṽ, ũτ )‖S4 ≤ CT
3
4
− `

2 ‖cof(F̃χ)− I‖H1((0,T ),H1+`(Ω̃f )d×d) ≤ CT
3
4
− `

2 (1 +M2
0 ).

Hence, application of Lemma 2.12 in both cases yields

‖H̃1(ṽ, ũτ )‖H̃T
≤ CT 1−`(1 +M38

0 ).

• Estimation of G̃1(ṽ, ũτ ):

G̃1(ṽ, ũτ ) is a sum of multilinear forms with factors

T1(ṽ, ũτ ) = (Dz ṽ)i,j , T2(ṽ, ũτ ) = (I− cof(F̃χ))i,k, T3(ṽ, ũτ ) = (cof(Dz τ̃ ))k,j
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with i, k, j ∈ {1, . . . , d}.
1. ‖G̃1(ṽ, ũτ )‖L2((0,T ),H1+`(Ω̃f )):

Choose s = s1 = 0, s2 = `, s3 = 1, X = X1 = X2 = X3 = H1+`(Ω̃f ).
‖T1(ṽ, ũτ )‖L2((0,T ),H1+`(Ω̃f )) ≤ C‖ṽ‖ẼT ≤ CM0 due to P7 and (2.6), and with

(4.17) we obtain the bound ‖G̃1(ṽ, ũτ )‖L2((0,T ),H1+`(Ω̃f )) ≤ CT
1−`M0(1 +M2

0 ).

2. ‖G̃1(ṽ, ũτ )(ṽ, ũτ )‖
H
`
2 ((0,T ),H1(Ω̃f ))

:

We choose s = s1 = `
2 , s2 = `, s3 = 1, X = X1 = H1(Ω̃f ), X2 = X3 = H1+`(Ω̃f ).

P7 and (2.6) yield ‖T1(ṽ, ũτ )‖S1 ≤ C‖ṽ‖
H
`
2 ((0,T ),H2(Ω̃f )d)

≤ CM0. Thus, with

(4.17) and Lemmas 2.5, 2.12, 4.4 we obtain

‖G̃1(ṽ, ũτ )‖
H
`
2 ((0,T ),H1(Ω̃f ))

≤ CT 1−`M0(1 +M2
0 ).

Theorem 4.6. ([59, Theorem 3]) Let Assumption 4.1 be fulfilled. Then, there exist εl > 0,
Tl > 0 and Ml > 0 such that for all 0 < T ≤ Tl and for arbitrary ũτ ∈ Ṽεl the system
(4.1) admits a unique solution ỹ(ũτ ) := (ṽ(ũτ ), p̃(ũτ ), w̃(ũτ )) on the relative interior of
ẼT,Ml,ṽ0× P̃T,Ml,ṽ0×W̃T . The mapping ũτ 7→ ỹ(ũτ ) is continuous and Fréchet differentiable
on the interior of Ṽεl and, for h ∈ Ũ the derivative ỹ(ũτ )′h := δhỹ = (δhṽ, δhp̃, δhw̃) is given
as the solution of the system

∂t δhṽ − ν∆z δhṽ +∇z δhp̃ = (F̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))vδhṽ

+(F̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))pδhp̃+ (F̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))uτ h̃ in Q̃Tf ,

divz (δhṽ) = (G̃(ṽ(ũτ ), ũτ ))vδhṽ + (G̃(ṽ(ũτ ), ũτ ))uτ h̃ in Q̃Tf ,

δhṽ(·, 0) = 0 in Ω̃f ,

δhṽ = 0 on Σ̃T
f

δhṽ = ∂t δhw̃ on Σ̃T
i ,

σf,z(δhṽ, δhp̃)ñf = σs,z(δhw̃)ñf + (H̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))vδhṽ

+(H̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))pδhp̃+ (H̃(ṽ(ũτ ), p̃(ũτ ), ũτ ))uτ h̃ on Σ̃T
i ,

∂tt δhw̃ − divz (σs,z(δhw̃)) = 0 in Q̃Ts ,

δhw̃ = 0 on Σ̃T
s ,

δhw̃(·, 0) = 0, ∂t δhw̃(·, 0) = 0 in Ω̃s.

Proof. In the notation of Theorem 2.15, choose

y = (ṽ, p̃, w̃), z = ũτ ,

Y = ẼT × P̃ T × W̃T , Z = Ũ,

F(y, z) = (F̃(ṽ, p̃, ũτ ), H̃(ṽ, p̃, ũτ ), G̃(ṽ, ũτ ), g̃(ṽ, ũτ ), ṽ0, w̃1).
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Furthermore, let W := F̃T × H̃T × G̃T × G̃T × Ṽ0 × W̃1, and

W̃ := F̃T × {h̃ ∈ H̃T : h̃(0) = 0} × G̃T
× {g̃ ∈ G̃T ∩H1((0, T ), H`(Ω̃f )d) : g̃|Σ̃Tf = 0, g(0) = 0}

× {(ṽ0, w̃1) ∈ Ṽ0 × W̃1 : ṽ0|Γ̃f = 0, divz (ṽ0) = 0, ṽ0|Γ̃i = w̃1|Γ̃i ,

2ν(εz(ṽ0)) · τ = 0 on Γ̃i for any unit vector τ tangential to Γ̃i},

let ρ = ρ(0) be given by Lemma 4.3. Lemma 3.22 defines the operator S and yields Tf > 0
and LS = CS > 0 such that S ∈ L(W̃, ẼT × P̃ T × W̃T ) for 0 < T ≤ Tf and

‖Sf‖Y ≤ LS‖f‖W

for all f ∈ W̃ .

Theorem 3.24 and Lemma 4.5 yield constants M0 > 0, T0 ∈ (0, Tf ) and ε = min(ρ, T
1
4
− l

4
0 )

such that, for all 0 < T ≤ T0 and z ∈ Ṽε there exists a unique solution

y0(z) ∈ ẼT,M0,v0 × PT,M0,ṽ0 × W̃T ,

which is a subset of the relative interior of ẼT,M`,ṽ0 × PT,M`,ṽ0 × W̃T for Ml > M0.

Furthermore, Theorem 3.24 and Lemma 4.5 yield Tl ∈ (0, T0] and εl ≤ min(ρ, T
1
4
− l

4
l ) such

that for all z ∈ Ṽεl there exists a unique solution

yl(z) ∈ ẼT,M`,ṽ0 × PT,M`,ṽ0 × W̃T

and the required boundedness, continuity and Fréchet differentiability results are fulfilled for
the choices Ỹ = ẼT,M`,ṽ0 × P̃ T,M`,ṽ0 × W̃T and Z̃ = Ṽεl and 0 < T ≤ Tl.
Moreover, the proof of Theorem 3.24 implies that SF(y, z) ∈ Ỹ for (y, z) ∈ Ỹ × Z̃. Since
y0(z) ∈ ẼT,M`,ṽ0 × PT,M`,ṽ0 × W̃T and the solution is unique, we have y0(z) = yl(z) for all
z ∈ Z̃. Thus, yl(z) is in the relative interior of Ỹ and Theorem 2.15 can be applied.

93





5. Numerical Simulation of Shape
Optimization for Unsteady FSI

In order to show the applicability of the method of mappings (cf. Section 2.7) for FSI
problems we present numerical results (Section 5.6) for this approach applied to the FSI
benchmark 2 (Sections 5.1, 5.2, 5.3), cf. [125]. Details on the numerical realization can be
found in Sections 5.4 and 5.5.

5.1. FSI Model for Numerical Simulations

We consider the model (1.2), which was introduced in Section 1 and is fully described if the
ALE transformation χ̂ : Ω̂× I →

⋃
t∈I Ω̌(t)× {t} is defined.

5.1.1. ALE Transformation

There are several possibilities to choose the ALE transformation, e.g., using a fully Lagrangian
approach or extending the solid displacement to the fluid domain.

Fully Lagrangian Approach

For the theoretical analysis the fully Lagrangian approach is chosen, i.e., the reference domain
Ω̂ is given by the initial domain Ω̌(0) and the transformation is induced by the velocity field
v̂, i.e.,

χ̂(·, t) := y +

∫ t

0
v̂(·, s)ds

for all t ∈ I. This has several advantages. On the one hand, the contributions of the
nonlinear term of the Navier-Stokes equations vanish on Ω̂. Additionally, no deformation
variable on the fluid domain has to be introduced. However, it has drawbacks for numerical
simulations, e.g., vortices in the flow might lead to mesh degeneration even though no solid
displacement takes place. Therefore, we do not use the fully Lagrangian approach in the
numerical implementation and dwell on other extension techniques, which are presented
below.

Harmonic Extension

An approach to construct the ALE transformation is the extension of the solid displacement
ŵs to the fluid reference domain, denoted by ŵf . We define

χ̂(y, t) := y + ŵf (y, t)
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for every t ∈ I. One choice is given by the harmonic extension which is defined by

−∆yŵf = 0 on Ω̂f × I,
ŵf = 0 on (Γ̂fD ∪ Γ̂fN )× I,

ŵf = ŵs on Γ̂i × I.

Numerical tests indicate that the harmonic extension is not robust if large mesh displacements
occur [128]. Thus, smoother extensions have to be found.

Biharmonic Extension

A biharmonic extension, cf. e.g., [56], of the solid displacement to the fluid domain is given
by

∆2
yŵf = 0 on Ω̂f × I,

ŵf = 0 on
(

Γ̂fD ∪ Γ̂fN

)
× I,

∇yŵf · nf = 0 on
(

Γ̂fD ∪ Γ̂fN

)
× I,

ŵf = ŵs on Γ̂i × I,
∇yŵf · nf = 0 on Γ̂i × I.

For the solution of the discretized equations H2(Ω̂f )-conforming finite elements are needed.
However, these elements are not necessarily implemented in standard finite element toolboxes.
One way to circumvent this is the weak imposition of the continuity of normal derivates ac-
cross the finite element faces using a discontinuous Galerkin approach [49]. Another approach
is the consideration of a mixed formulation of the biharmonic equation

−∆yŵf = ẑf on Ω̂f × I,
−α∆yẑf = 0 on Ω̂f × I,

ŵf = 0 on
(

Γ̂fD ∪ Γ̂fN

)
× I,

ŵf = ŵs on Γ̂i × I,
∇yŵf · nf = 0 on ∂Ω̂f × I,

where α > 0 is chosen arbitrarily, see [128].

Remark 5.1. For numerical simulations, the extension has to be chosen sophisticatedly
because of the discretization of the domain and the necessity of avoiding mesh degeneration.
Therefore, it is an area of active research how to choose extensions that preserve mesh quality,
see, e.g., [10, 37]. In general, one can also construct extension operators by hand that are
not represented by (discretized) partial differential equations.
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5.1.2. Strong ALE Formulation

A full description of the FSI equations with mixed biharmonic extension of the solid defor-
mation to the fluid domain is given by

Ĵχρf∂tv̂f + Ĵχρf ((F̂−1
χ (v̂f − ∂tŵf )) · ∇y)v̂f

−divy(Ĵχσ̂f F̂
−>
χ ) = Ĵχρf f̂f on Ω̂f × I,

divy(ĴχF̂−1
χ v̂f ) = 0 on Ω̂f × I,
v̂f = v̂fD on Γ̂fD × I,

Ĵσ̂f F̂
−>
χ n̂f = ĝf on Γ̂fN × I,

v̂f (·, 0) = v̂0f on Ω̂f ,

ρs∂tv̂s − divy(Ĵχσ̂sF̂
−>
χ ) = ρŝfs on Ω̂s × I,

ρs∂tŵs − ρsv̂s = 0 on Ω̂s × I,
ŵs = ŵsD on Γ̂sD × I,

Ĵχσ̂sF̂
−>
χ n̂s = ĝs on Γ̂sN × I,

ŵs(·, 0) = ŵ0s on Ω̂s,

v̂s(·, 0) = ŵ1 on Ω̂s,

−∆yŵf = ẑf on Ω̂f × I,
−∆yẑf = 0 on Ω̂f × I,

ŵf = 0 on (Γ̂fD ∪ Γ̂fN )× I,
∇yŵf · nf = 0 on ∂Ω̂f × I,

(5.1)

with additional coupling conditions

∂tŵs = v̂s = v̂f on Γ̂i × I,

−Ĵχσ̂f F̂−>χ n̂f = Ĵχσ̂sF̂
−>
χ n̂s on Γ̂i × I,

ŵf = ŵs on Γ̂i × I.

5.1.3. Weak ALE Formulation

We define the function spaces

V̂ = V(Ω̂) ⊂ {v̂ ∈ H1(Ω̂,Rd) : v̂|Γ̂fD = v̂fD},

V̂0 = V0(Ω̂) ⊂ {v̂ ∈ H1(Ω̂,Rd) : v̂|Γ̂fD = 0},

Ŵ = W(Ω̂) ⊂ {ŵ ∈ H1(Ω̂,Rd) : ŵ|Γ̂fD∪Γ̂fN
= 0, ŵ|Γ̂sD = ŵsD},

Ŵ0 = W0(Ω̂) ⊂ {ŵ ∈ H1(Ω̂,Rd) : ŵ|Γ̂fD∪Γ̂fN
= 0, ŵ|Γ̂sD = 0},

Ẑf = Zf (Ω̂) ⊂ H1(Ω̂f ,Rd),
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Ẑ = Z(Ω̂) ⊂ H1(Ω̂,Rd),

P̂f = Pf (Ω̂) ⊂ {p̂ ∈ L2(Ω̂f ) :

∫
Ω̂f

p̂dy = 0},

P̂ = P (Ω̂) ⊂ {p̂ ∈ L2(Ω̂) :

∫
Ω̂
p̂dy = 0}.

In addition, letW2,q(I, V̂) := {v̂ ∈ L2(I, V̂) : v̂t ∈ Lq(I, V̂∗)}, where q > 0 and V̂∗ denotes
the dual space of V̂. The weak formulation of (5.1) is given by:
Find (v̂, p̂, ŵ, ẑ) ∈ W2,2(I, V̂) × L2(I, P̂f ) ×W2,2(I,Ŵ) × L2(I, Ẑf ) such that v̂(·, 0) = v̂0,
ŵ(·, 0) = ŵ0 and

〈A(v̂, p̂, ŵ, ẑ), (ψ̂v, ψ̂p, ψ̂w, ψ̂z)〉 := (Ĵχρf∂tv̂, ψ̂
v)Ω̂f

+ (Ĵχρf ((F̂−1
χ (v̂ − ∂tŵ)) · ∇y)v̂, ψ̂

v)Ω̂f
+ (Ĵχσ̂f F̂

−>
χ , Dyψ̂

v)Ω̂f
− (ĝf , ψ̂

v)Γ̂fN

− (Ĵχρf f̂f , ψ̂
v)Ω̂f

+ (ρs∂tv̂, ψ̂
v)Ω̂s

+ (Ĵχσ̂sF̂
−>
χ , Dyψ̂

v)Ω̂s
− (ĝs, ψ̂

v)Γ̂sN

− (Ĵχρŝfs, ψ̂
v)Ω̂s

+ (ρs(∂tŵ − v̂), ψ̂w)Ω̂s
+ αw(Dyẑ, Dyψ̂

w)Ω̂f
+ (Dyŵ, Dyψ̂

z)Ω̂f

− (ẑ, ψ̂z)Ω̂f
+ (divy(ĴχF̂−1

χ v̂), ψ̂p)Ω̂f
= 0,

for all (ψ̂v, ψ̂p, ψ̂w, ψ̂z) ∈ V̂0 × P̂f × Ŵ0 × Ẑf and a.e. t ∈ I. Here, αw > 0 is a small
constant. Since we want to work with functions defined on the whole domain, we consider
the modified weak formulation:
Find (v̂, p̂, ŵ, ẑ) ∈ W2,2(I, V̂) × L2(I, P̂ ) × W2,2(I,Ŵ) × L2(I, Ẑ) such that v̂(·, 0) = v̂0,
ŵ(·, 0) = ŵ0 and

〈ÂΩ(v̂, p̂, ŵ, ẑ), (ψ̂v, ψ̂p, ψ̂w, ψ̂z)〉 := (Ĵχρf∂tv̂, ψ̂
v)Ω̂f

+ (Ĵχρf ((F̂−1
χ (v̂ − ∂tŵ)) · ∇y)v̂, ψ̂

v)Ω̂f
+ (Ĵχσ̂f F̂

−>
χ , Dyψ̂

v)Ω̂f
− (ĝf , ψ̂

v)Γ̂fN

− (Ĵχρf f̂f , ψ̂
v)Ω̂f

+ (ρs∂tv̂, ψ̂
v)Ω̂s

+ (Ĵχσ̂sF̂
−>
χ , Dyψ̂

v)Ω̂s
− (ĝs, ψ̂

v)Γ̂sN

− (Ĵχρŝfs, ψ̂
v)Ω̂s

+ (ρs(∂tŵ − v̂), ψ̂w)Ω̂s
+ αw(Dyẑ, Dyψ̂

w)Ω̂f
+ (Dyŵ, Dyψ̂

z)Ω̂

− (ẑ, ψ̂z)Ω̂ + αp(∇yp̂,∇yψ̂
p)Ω̂s

+ (divy(ĴχF̂−1
χ v̂), ψ̂p)Ω̂f

= 0,

(5.2)

for all (ψ̂v, ψ̂p, ψ̂w, ψ̂z) ∈ V̂0× P̂ ×Ŵ0× Ẑ and a.e. t ∈ I. αp > 0 denotes a small constant.
The corresponding formulation on the space-time cylinder reads as follows:
Find (v̂, p̂, ŵ, ẑ) ∈ W2,2(I, V̂) × L2(I, P̂ ) × W2,2(I,Ŵ) × L2(I, Ẑ) such that v̂(·, 0) = v̂0,
ŵ(·, 0) = ŵ0 and

〈ÂQT (v̂, p̂, ŵ, ẑ), (ψ̂v, ψ̂p, ψ̂w, ψ̂z)〉 := ((Ĵχρf∂tv̂, ψ̂
v))Q̂Tf

+ ((Ĵχρf ((F̂−1
χ (v̂ − ∂tŵ)) · ∇y)v̂, ψ̂

v))Q̂Tf
+ ((Ĵχσ̂f F̂

−>
χ , Dyψ̂

v))Q̂Tf
− ((ĝf , ψ̂

v))Σ̂TfN

− ((Ĵχρf f̂f , ψ̂
v))Q̂Tf

+ ((ρs∂tv̂, ψ̂
v))Q̂Ts

+ ((Ĵχσ̂sF̂
−>
χ , Dyψ̂

v))Q̂Ts
− ((ĝs, ψ̂

v))Σ̂TsN

− ((Ĵχρŝfs, ψ̂
v))Q̂Ts

+ ((ρs(∂tŵ − v̂), ψ̂w))Q̂Ts
+ αw((Dyẑ, Dyψ̂

w))Q̂Tf
+ ((Dyŵ, Dyψ̂

z))Q̂T
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− ((ẑ, ψ̂z))Q̂T + αp((∇yp̂,∇yψ̂
p))Q̂Ts

+ ((divy(ĴχF̂−1
χ v̂), ψ̂p))Q̂Tf

= 0,

for all (ψ̂v, ψ̂p, ψ̂w, ψ̂z) ∈W2,2(I, V̂0)× L2(I, P̂ )×W2,2(I,Ŵ0)× L2(I, Ẑ).

Remark 5.2. Since the definition of ∇y on vector-valued functions and divy on matrix-
valued functions is not uniform in the literature (which is the reason why we introduced the
operator Dy in the introduction, see Chapter 1), we verify a well-known result for our specific
choice of these operators. More precisely, we derive the weak formulation of the vector-valued
divergence term. We have∫

∂Ω̂f

ψv>Ĵχσ̂f F̂
−>
χ n̂fdsy =

∫
Ω̂f

divy(ĴχF̂−1
χ σ̂

>
f ψ

v)dy

and it holds that

divy(ĴχF̂−1
χ σ̂

>
f ψ

v) =
∑
i

∂yi(ĴχF̂−1
χ σ̂

>
f ψ

v)i =
∑
i,j

∂yi(ĴχF̂−1
χ σ̂

>
f )i,jψ

v
j

+
∑
i,j

(ĴχF̂−1
χ σ̂

>
f )i,j∂yiψ

v
j =

∑
j

(divy(Ĵχσ̂f F̂
−>
χ ))jψ

v
j +

∑
i,j

(Ĵχσ̂f F̂
−>
χ )j,i∂yiψ

v
j

=
∑
j

(divy(Ĵχσ̂f F̂
−>
χ ))jψ

v
j + (Ĵχσ̂f F̂

−>
χ ) : Dyψ

v.

Therefore, we obtain that

(divy(Ĵχσ̂f F̂
−>
χ ),ψv)Ω̂f

= (Ĵχσ̂f F̂
−>
χ n̂f ,ψ

v)∂Ω̂f
− (Ĵχσ̂f F̂

−>
χ , Dyψ

v)Ω̂f
.

5.2. FSI benchmark 2

To be able to validate our numerical implementation, we work on the FSI benchmark 2, which
was proposed in [125]. This benchmark considers the coupling of the Navier-Stokes equations
and Saint Venant-Kirchhoff type material equations in a two-dimensional rectangular domain
of length l = 2.5 and height h = 0.41, the bottom left corner of which is located at the origin
(0, 0)>. On the left boundary Γ̂fDi we have a parabolic inflow given by

v̂fD((0, z2)>, t) =

{
(3v̄h−2z2(h− z2)(1− cos(π2 t)), 0)> if t < 2.0,

(6v̄h−2z2(h− z2), 0)> otherwise,

with mean inflow velocity v̄. Moreover, no slip condition on the bottom and top Γ̂fD0, as well
as, do-nothing boundary conditions on the right boundary Γ̂fN , i.e., ĝf = 0, are imposed.
In this pipe, there is a circular obstacle with radius r = 0.05 centered at (0.2, 0.2) to which
an elastic beam of length 0.4 and width 0.02 is attached as illustrated in Figure 5.1. The
boundary Γ̂d = Γ̂fDc ∪ Γ̂sDc of the obstacle with Γ̂fDc = Γ̂d ∩ ∂Ω̂f and Γ̂sDc = Γ̂d ∩ ∂Ω̂s

serves as design boundary. More precisely, we want to optimize its shape such that the drag
is minimized. On Γ̂d homogeneous Dirichlet boundary conditions are imposed on the fluid
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Γ̂fD0

Γ̂fD0

Γ̂fNΓ̂fDi

Γ̂i

Γ̂sDcΓ̂fDc

Ω̂f

Ω̂s

Figure 5.1.: Shape reference domain Ω̂

velocity and solid displacement. The initial conditions are set to 0. Thus, the fluid-structure
system is completely determined by the parameters ρs = 1 · 104, λs = 2 · 106, µs = 5 · 105,
ρf = 1 · 103, νf = 1 · 10−3, v̄ = 1 and αp = αw = 1 · 10−9. Figure 5.2 shows snapshots of the
simulation of the FSI benchmark 2. Details on the implementation are given in the following
sections.

5.3. Model of Shape Optimization Problem for FSI

In this section we model the shape optimization problem (Section 5.3.4) for the unsteady,
nonlinear FSI system (5.2) via the method of mappings. For this purpose, we transform the
FSI equations to the nominal domain (Section 5.3.1), choose a set of admissible transforma-
tions (Section 5.3.3) and an objective function (Section 5.3.2).

5.3.1. Transformation of FSI Equations to Nominal Domain

The method of mappings, which was introduced in Section 2.7, can be applied to shape
optimization problems that are governed by the FSI equations formulated on the ALE ref-
erence domain Ω̂. This reference domain is obtained from the actual physical domain via
the homeomorphism χ̂−1(·, t) : Ω̌(t) → Ω̂. For the method of mappings we have to apply
an additional transformation τ̃ : Ω̃ → Ω̂, which is a bi-Lipschitz transformation from the
nominal domain Ω̃ to the ALE reference domain Ω̂. Thus, the physical domain Ω̌ can be
obtained from the shape reference domain Ω̃ by the composition of the transformations τ̃ and
χ̂, which is visualized in Figure 5.3. Since we want to optimize the shape of the domain and
not the initial conditions or boundary conditions, we assume that the considered transforma-
tions in T̃ ad do not change these conditions. In particular, this means that we do not have to
transform the appearing boundary integrals in the weak formulation of the monolithic ALE
formulation for the FSI problem. For the sake of convenience, and in correspondence with
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(1) t =0s (2) t =1s

(3) t =2s (4) t =3s

(5) t =4s (6) t =5s

(7) t =6s (8) t =7s

(9) t =8s (10) t =9s

(11) t =10s (12) t =11s

(13) t =12s (14) t =13s

(15) t =14s (16) t =15s

Figure 5.2.: Snapshots of the simulation of FSI benchmark 2
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Ω̃s

Ω̃f

Shape reference domain Ω̃

Ω̂s

Ω̂f

ALE reference domain Ω̂

Ω̌s(t)

Ω̌f (t)

Physical domain Ω̌(t)

τ̃ χ̂(·, t)

Figure 5.3.: Schematic illustration of the method of mappings combined with an ALE trans-
formation

our numerical setting, we choose ĝf = 0 and ĝs = 0. Additionally, we have to ensure that
the transformation is equal to the identity on the support of the initial conditions.
For fixed τ̃ ∈ T̃ ad, we introduce the spaces on the shape reference domain

Ṽτ̃ = {v̂ ◦ τ̃ : v̂ ∈ V(τ̃ (Ω̃))},
Ṽ0,τ̃ = {v̂ ◦ τ̃ : v̂ ∈ V0(τ̃ (Ω̃))},
W̃τ̃ = {ŵ ◦ τ̃ : ŵ ∈W(τ̃ (Ω̃))},
W̃0,τ̃ = {ŵ ◦ τ̃ : ŵ ∈W0(τ̃ (Ω̃))},
P̃τ̃ = {p̂ ◦ τ̃ : p̂ ∈ P (τ̃ (Ω̃))},
Z̃τ̃ = {ẑ ◦ τ̃ : ẑ ∈ Z(τ̃ (Ω̃))}.

The additional transformation with τ̃ yields the following weak formulation on the shape
reference domain Ω̃.
For fixed τ̃ ∈ T̃ ad, find (ṽ, p̃, w̃, z̃) ∈W2,2(I, Ṽτ̃ )×L2(I, P̃τ̃ )×W2,2(I,W̃τ̃ )×L2(I, Z̃τ̃ ) such
that ṽ(·, 0) = 0, w̃(·, 0) = 0 and

〈ÃΩ((ṽ, p̃, w̃, z̃), τ̃ ), (ψ̃v, ψ̃p, ψ̃w, ψ̃z)〉
:= (det(Dzτ̃ )J̃χρf∂tṽ, ψ̃

v)Ω̃f

+ (det(Dzτ̃ )J̃χρf (((Dzτ̃ )−1F̃−1
χ (ṽ − ∂tw̃)) · ∇z)ṽ, ψ̃

v)Ω̃f

+ (det(Dzτ̃ )J̃χσ̃f F̃
−>
χ (Dzτ̃ )−>, Dzψ̃

v)Ω̃f
− (det(Dzτ̃ )J̃χρf f̃f , ψ̃

v)Ω̃f

+ (det(Dzτ̃ )ρs∂tṽ, ψ̃
v)Ω̃s

+ (det(Dzτ̃ )J̃χσ̃sF̃
−>
χ (Dzτ̃ )−>, Dzψ̃

v)Ω̃s

− (det(Dzτ̃ )J̃χρs̃fs, ψ̃
v)Ω̃s

+ (det(Dzτ̃ )ρs(∂tw̃ − ṽ), ψ̃w)Ω̃s

+ αw(det(Dzτ̃ )Dzz̃(Dzτ̃ )−1(Dzτ̃ )−>, Dzψ̃
w)Ω̃f

+ (det(Dzτ̃ )Dyw̃(Dzτ̃ )−1(Dzτ̃ )−>, Dyψ̃
z)Ω̃

− (det(Dzτ̃ )z̃, ψ̃z)Ω̃ + αp(det(Dzτ̃ )(Dzτ̃ )−1(Dzτ̃ )−>∇zp̃,∇zψ̃
p)Ω̃s

+ (det(Dzτ̃ )tr(Dz(J̃χF̃−1
χ ṽ)(Dzτ̃ )−1), ψ̃p)Ω̃f

= 0,

(5.3)
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for all (ψ̃v, ψ̃p, ψ̃w, ψ̃z) ∈ Ṽ0 × P̃ × W̃0 × Z̃ and any t ∈ I, where J̃χ = det(F̃χ) and
F̃χ = Dzχ̂(Dzτ̃ )−1,

σ̃f := ρfνf (Dzṽf (Dzτ̃ )−1F̃−1
χ + F̃−>χ (Dzτ̃ )−>Dyṽ

>
f )− p̃fI

denotes the transformed fluid stress tensor and σ̃s the corresponding transformed solid stress
tensor. For Saint Venant-Kirchhoff type material, it is given by

σ̃s = J̃−1
χ F̃χ(λstr(Ẽχ)I + 2µsẼχ)F̃>χ

with Ẽχ := 1
2(F̃>χF̃χ − I). The corresponding operator is denoted by

ÃΩ(ỹ, τ̃ ) = 0, (5.4)

where ỹ = (ṽ, p̃, w̃, z̃). Moreover, let

Ỹτ̃ := W2,2(I, Ṽτ̃ )× L2(I, P̃τ̃ )×W2,2(I,W̃τ̃ )× L2(I, Z̃τ̃ ).

5.3.2. Choice of Objective Function

As objective function, we choose the mean fluid drag which is given by

− 1

T

∫ T

0

∫
Γ̌o(t)

ψ̌>σf,x(v̌f , p̌f )ňfdS(x)dt

where Γ̌o = Γ̌fDc∪Γ̌i, Γ̌fDc = χ̂(Γ̂fDc), Γ̌i = χ̂(Γ̂i), ψ̌ = (1, 0)> and ňf denotes the outwards
pointing normal vector, e.g., [20, 74, 75]. This can be reformulated as a volume integral given
by

− 1

T

∫ T

0
((ρ(∂tv̌f + v̌f · ∇xv̌), Ψ̌)Ω̌f (t) − (p̌f ,div(Ψ̌))Ω̌f (t) + (2νεx(v̌f ), εx(Ψ̌))Ω̌f (t))dt,

where εx(·) = 1
2(∇x · +(∇x·)>), and Ψ̌ is an arbitrary function such that Ψ̌|Γ̌o = ψ̌ and

Ψ̌|∂Ω̌f\Γ̌o = 0, cf. [18, 66, 74, 75].

Remark 5.3. Analogously to the observation in [64], where the evaluation of the shape
gradient via surface integrals is compared to the evaluation via volume integrals, using the
volume integral formulation for the drag is expected to provide better numerical results. Our
numerical tests confirm this.

The corresponding transformed formulation on the ALE domain Ω̂f reads as

F̂D(ŷ) =− 1

T

∫ T

0
((Ĵχρ(∂tv̂f + ((F̂−1

χ (v̂f − ∂tχ̂)) · ∇y)v̂f , Ψ̂))Ω̂f
− (Ĵχp̂f , tr(DyΨ̂F̂−1

χ ))Ω̂f

+ (2νĴχεy(v̂f ), εy(v̂f ))Ω̂f
)dt
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with Ĵχ = detF̂χ, and the transformation on the shape reference domain Ω̃f yields

F̃D(ỹ, τ̃ ) =− 1

T

∫ T

0
((J̃χdet(Dzτ̃ )ρ(∂tṽf + ((Dzτ̃

−1F̃−1
χ (ṽf − ∂tχ̃)) · ∇z)ṽf ), Ψ̃)Ω̃f

− (J̃χdet(Dzτ̃ )p̃, tr(DzΨ̃Dzτ̃
−1F̃−1

χ ))Ω̃f

+ (2νJ̃χdet(Dzτ̃ )εz(ṽf ), εz(Ψ̃))Ω̃f
)dt

with εy(·) = 1
2((Dy ·)F̂−1

χ +F̂−>χ (Dy ·)>) and εz(·) = 1
2((Dz ·)Dz τ̃

−1F̃−1
χ +F̃−>χ Dz τ̃

−>(Dz ·)>).

5.3.3. Choice of Admissible Shape Transformations

As nominal domain Ω̃ we choose the domain introduced in Section 5.2. As design part of
the boundary we choose the boundary of the obstacle, i.e, Γ̃d := Γ̃fDc ∪ Γ̃sDc. The choice of
admissible transformations should be deliberate.

• As already mentioned in the previous section, it is important to choose the transfor-
mations such that they do not change initial conditions, boundary conditions or source
terms, i.e., the support of the deformation τ̃− idz is disjoint from the support of the ini-
tial conditions, boundary conditions and source terms. In case that the design part Γ̃d
is a subset of the Dirichlet boundary, the boundary conditions have to be homogeneous
on Γ̃d.

• Since standard existence theory for PDEs requires Lipschitz regularity of the domain,
it is straightforward to require the domains to be Lipschitzian during the optimization
process. This can be ensured by choosing Ω̃ as a Lipschitz domain and transformations
τ̃ ∈W 1,∞(Ω̃)d close to the identity [13, Lem. 2].

• Remark 2.22 motivates another restriction on the regularity of τ̃ . To be able to work
with the same function spaces on the shape reference domain independently of the
control τ̃ , it is desirable that the spaces for the transformed functions are isomorphic to
the spaces on the transformed domain. This means, Ỹτ̃ = Ỹ(Ω̃) = Ỹ can be considered
independently of τ̃ for τ̃ ∈ T̃ ad. Thus, the regularity requirement on τ̃ depends on the
regularity of the state of the partial differential equations and T̃ ad ⊂ D̃Ω ⊂W 1,∞(Ω̃)d

for a function space D̃Ω with sufficiently high regularity.

Remark 5.4. For this reason, we need τ̃ ∈ H2+`(Ω̃f ,Rd) in the theoretical analysis
in Chapter 4 to ensure that ṽ ∈ ẼT if and only if v̂ = ṽ ◦ τ̃−1 ∈ ÊT , cf. [73, Lem. B.5,
B.6].

• Transformations that only change the interior of the domain but not the boundaries
do not change the shape of the domain. To ensure a one-to-one correspondence, shape
optimization problems are often considered as optimization problems on manifolds, see,
e.g., [103, 115, 117], or on appropriate subsets of linear subspaces, see, e.g., [20]. In order
to be in the latter setting, we consider a scalar valued quantitiy d̃ ∈ D̃Γd ⊂ W 1,∞(Γ̃d)
on the design boundary Γ̃d and identify it with a shape via a transformation of the
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form idz + B(d̃). Classical results show that the Eulerian shape derivative is a distribu-
tion that is supported on the design boundary and only acts on the normal boundary
variation, cf. [31, Thm. 9.3.6]. In order to maintain this property we restrict to
transformations that do not transform the solid domain and the interface by requiring
τ̃ |Ω̃s = idz, in correspondence with the analytical setting (Section 4). This constraint
is approximated by using a penalization method and we introduce α̃s = αs > 0 on Ω̃s

and 0 else, where αs is chosen sufficiently large in order to ensure τ̃ |Ω̃s ≈ idz or by
choosing an appropriate deformation field.

Strategy 1. Let B(d̃) := B1(d̃), where B1 extends d̃ñ to Ω̃ and ñ denotes the outer
unit normal vector of Ω̃. More precisely, B1 is the solution operator of

−∆zw̃
d = z̃d in Ω̃,

−∆zz̃
d + α̃sw̃

d = 0 in Ω̃,

w̃d = d̃ñ on Γ̃d,

w̃d = 0 on ∂Ω̃ \ Γ̃d,

∇zw̃
d · ñ = 0 on ∂Ω̃,

(5.5)

which is the mixed formulation of

∆2
zw̃

d + α̃sw̃
d = 0 in Ω̃,

w̃d = d̃ñ on Γ̃d,

w̃d = 0 on ∂Ω̃ \ Γ̃d,

∇zw̃
d · ñ = 0 on ∂Ω̃,

cf. Section 5.1.1.

Strategy 2. Let ñτ ∈ ẼΩ ⊂ W 1,∞(Ω̃)d be an arbitrary transformation vector field,
e.g. obtained by a biharmonic extension analogous to (5.5) of a vector field on Γ̃d
which points in normal direction on Γ̃fDc and is zero on Ω̃s, and B(d̃) := B2(d̃)ñτ . We
consider B2 as the solution operator of

−∆zw̃ = z̃ in Ω̃,

−∆zz̃ + α̃sw̃ = 0 in Ω̃,

w̃ = d̃ on Γ̃d,

w̃ = 0 on ∂Ω̃ \ Γ̃d,

∇zw̃ · ñ = 0 on ∂Ω̃.

(5.6)

which corresponds to the mixed formulation of the fourth order partial differential
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equation

∆2
zw̃ + α̃sw̃ = 0 in Ω̃,

w̃ = d̃ on Γ̃d,

w̃ = 0 on ∂Ω̃ \ Γ̃d,

∇zw̃ · ñ = 0 on ∂Ω̃.

To fulfill the regularity requirements, we have to ensure that D̃Γ̃d
⊂ W 1,∞(Γ̃d) and

ẼΩ ⊂W 1,∞(Ω̃)d are chosen such that idz + B(d̃) ∈ D̃Ω for all d̃ ∈ D̃Γd .

Remark 5.5. If D̃Ω = W 1,∞(Ω̃)d, the following result is helpful. [101, Thm. 9] implies
that for a smooth reference domain Ω̃ with disjoint boundary parts Γ̃d and ∂Ω̃ \ Γ̃d

such that ∂Ω̃ \ Γ̃d ∩ Γ̃d = ∅ the solution operator that maps d̃ to the solution w̃ of the
biharmonic equation

∆2
zw̃ = 0 in Ω̃,

w̃ = d̃ on Γ̃d,

w̃ = 0 on ∂Ω̃ \ Γ̃d,

∇zw̃ · ñ = 0 on ∂Ω̃,

is a continuous operator from W 1,∞(Γ̃d)→W 1,∞(Ω̃).

The above considerations motivate the following choice for the set of admissible transforma-
tions. We consider sets of admissible transformations

T̃ ad ⊂ {τ̃ = idz + ũτ , ũτ ∈ Ũad},

where Ũad is chosen such that

Ũad = {ũτ : ũτ = B(d̃), d̃ ∈ D̃Γd , ‖d̃‖D̃Γd
≤ c},

with a sufficiently small constant c > 0.

Furthermore, it is often relevant for practical applications to have an additional constraint
on the volume of the domain, e.g., the volume of the obstacle shall not become smaller. This
motivates the restriction

g̃Ω(ũτ ) =

∫
Ω̃

det(I +Dzũτ )dz− V ≤ 0 (5.7)

for a constant V > 0, e.g., V =
∫

Ω̃ 1dz.
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5.3.4. Shape Optimization Problem

The shape optimization problem is given by

min
d̃∈D̃Γd

j̃Ω(ũτ )

s.t. g̃Ω(ũτ ) ≤ 0,

ũτ = B(d̃),

(5.8)

where j̃Ω(ũτ ) = F̃D(ỹ, idz + ũτ ), ỹ is given as the solution to the partial differential equation
ÃΩ(ỹ, idz + ũτ ) = 0, see (5.4). Furthermore, B and g̃Ω are defined in Section 5.3.3 and F̃D is
defined in Section 5.3.2.

5.4. Discretization

In this section, we discretize the FSI system (5.3) in time (Section 5.4.1) and space (Section
5.4.2). To obtain a discrete formulation (Section 5.4.5) of the optimization problem (5.8),
the objective function (Section 5.4.3) and the shape transformations (Section 5.4.4) have to
be discretized.

5.4.1. Temporal Discretization

In order to solve the time-dependent problem numerically we need to introduce an appropriate
time-stepping technique. We consider a One-Step-θ scheme, cf. [128], and, therefore, divide
the terms that appear in the weak formulation into different categories. The first group
ÃT (ỹ, τ)(ψ̃) collects all terms which include time derivatives:

ÃT (ỹ, τ̃ )(ψ̃) := (det(Dzτ̃ )J̃χρf (∂tṽ − (((Dzτ̃ )−1F̃−1
χ ∂tw̃) · ∇z)ṽ), ψ̃v)Ω̃f

+ (det(Dzτ̃ )ρs∂tṽ, ψ̃
v)Ω̃s

+ (det(Dzτ̃ )ρs∂tw̃, ψ̃
w)Ω̃s

.

The group ÃI(ỹ, τ)(ψ̃) gathers all implicit terms, i.e., all terms that should be fulfilled exactly
by the new iterate such as the incompressibility condition for the fluid:

ÃI(ỹ, τ̃ )(ψ̃) := (det(Dzτ̃ )tr(Dz(J̃χF̃−1
χ ṽ)(Dzτ̃ )−1), ψ̃p)Ω̃f

+ αp(det(Dzτ̃ )(Dzτ̃ )−1(Dzτ̃ )−T∇zp̃,∇zψ̃
p)Ω̃s

− (det(Dzτ̃ )z̃, ψ̃z)Ω̃

+ (det(Dzτ̃ )Dzw̃(Dzτ̃ )−1(Dzτ̃ )−T , Dzψ̃
z)Ω̃.

Another group ÃP (ỹ, τ̃ )(ψ̃), which is also treated implicitly, collects the pressure terms:

ÃP (ỹ, τ̃ )(ψ̃) := (det(Dzτ̃ )J̃χσ̃f,pF̃
−>
χ (Dzτ̃ )−T , Dzψ̃

v)Ω̃f
,

where σ̃f,p = −p̃I. This can be motivated by the fact that the pressure serves as Lagrange
multiplier for the incompressibility condition. The remaining terms are collected in the fourth
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group ÃE(ỹ, τ̃ )(ψ̃):

ÃE(ỹ, τ̃ )(ψ̃) := (det(Dzτ̃ )J̃χρf (((Dzτ̃ )−1F̃−1
χ ṽ) · ∇z)ṽ, ψ̃

v)Ω̃f

+ αw(det(Dzτ̃ )Dzz̃(Dzτ̃ )−1(Dzτ̃ )−T , Dzψ̃
w)Ω̃f

+ (det(Dzτ̃ )J̃χσ̃f,vF̃
−>
χ (Dzτ̃ )−T , Dzψ̃

v)Ω̃f

+ (det(Dzτ̃ )J̃χσ̃sF̃
−>
χ (Dzτ̃ )−T , Dzψ̃

v)Ω̃s

− (det(Dzτ̃ )J̃χρf f̃f , ψ̃
v)Ω̃f

− (det(Dzτ̃ )J̃χρs̃fs, ψ̃
v)Ω̃s

− (det(Dzτ̃ )ρsṽ, ψ̃
w)Ω̃s

,

where σ̃f,v = σ̃f − σ̃f,p. The time-stepping scheme can thus be summarized as follows. Let
a transformation τ̃ be given, N ∈ N, 0 = t0 < t1 < . . . < tN = T be a discretization of
I = [0, T ] and θ ∈ [0, 1]. Let, for j ∈ {1, 2, . . . , N}, ỹj−1 be the solution at the time tj−1

and the time step size be constant, i.e., k := kj = tj − tj−1 for all n ∈ {1, . . . , N}. Then, the
solution at tj is computed by:
Find ỹj such that

Ãj,kT (ỹj , τ̃ )(ψ̃) + θÃE(ỹj , τ̃ )(ψ̃) + ÃP (ỹj , τ̃ )(ψ̃) + ÃI(ỹ
j , τ̃ )(ψ̃) = −(1− θ)ÃE(ỹj−1, τ̃ )(ψ̃),

for all test functions ψ̃. Here, Ãj,kT (ỹ, τ̃ )(ψ̃) is defined as the approximation of ÃT (ỹ, τ̃ )(ψ̃)
given by

Ãj,kT (ỹ, τ̃ )(ψ̃) :=
1

k
(det(Dzτ̃ )J̃ j,θχ ρf ((ṽ − ṽj−1)− (((Dzτ̃ )−1F̃−1

χ (w̃ − w̃j−1) · ∇z)ṽ), ψ̃v)Ω̃f

+
1

k
(det(Dzτ̃ )ρs(ṽ − ṽj−1), ψ̃v)Ω̃s

+
1

k
(det(Dzτ̃ )ρs(w̃ − w̃j−1), ψ̃w)Ω̃s

,

where J̃ j,θχ := θJ̃χ + (1 − θ)J̃ j−1
χ and the time derivatives are approximated by backwards

different quotients.
The parameter θ is chosen as θ = 1

2 +O(k), which corresponds to a shifted Crank-Nicolson
scheme. By this choice one obtains second order accuracy in time and additionally recovers
global stability [114, Sec. 5.3]. The latter is is important for stable behavior for long-term
computations and not guaranteed by the standard Crank-Nicolson scheme, see [131].

5.4.2. Spatial Discretization

For the spatial discretization, we use a triangulation Th of the domain Ω̃ with 4451 nodes and
8621 cells K. For the sake of clarity, and since we focus on presenting the main ideas and do
not consider variational crimes in the scope of this thesis, we denote the discretized domains
also by Ω̃, Ω̃f and Ω̃s. In order to have a stable discretization of the Navier-Stokes part of
the FSI equations, we choose Taylor-Hood elements (ṽh, p̃h) ∈ (P2(Th)d,P1(Th)), where

P l(Th)m := {ṽh ∈ C(
⋃
K∈Th

K)m : ṽh|K is a polynomial up to degree l, ∀K ∈ Th}
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for l ≥ 0 and m ∈ N, i.e., ṽh is continuous and element-wise quadratic and p̃h is continuous
and linear on every element. Since ṽh is equal to the temporal derivative of w̃h on Ω̃s,
w̃h is chosen such that it has the same degrees of freedom as ṽh. Therefore, we choose
(w̃h, z̃h) ∈ (P2(Th)d,P2(Th)d). The boundary of the circular obstacle Γ̃d is discretized as a
polygonal chain Γ̃d,h of 47 nodes, 6 of which are part of the boundary of the solid domain.
For the sake of clarity we simplify the notation denoting Γ̃d,h by Γ̃d.

5.4.3. Discretization of Objective Function

The spatial discretization of the objective function is determined by the discretization of the
state of the FSI problem. In order to discretize the appearing time derivative terms, we use
a finite difference scheme, more precisely, the time derivative ∂tvh(tj) is approximated by
(tj − tj−1)−1(vh(tj) − vh(tj−1)). The time integral is approximated using the trapezoidal
rule.

5.4.4. Discretization of Shape Transformations

In Section 5.3.3, it is motivated that the choice of admissible shape transformations is delicate
and requires available existence and regularity theory for the governing partial differential
equations. However, existence and regularity theory for FSI systems is only available for
special cases and under additional restrictions or assumptions. In particular, there are no
theoretical results concerning existence and regularity of solutions available for the model
(5.1). Thus, we restrict the considerations to the discretized problem. Here, the main
requirements for choosing admissible shape transformations reduces to ensure

• that the source term, the boundary and initial conditions remain untouched by admis-
sible shape transformations.

• that τ̃ h(Th) is the discretization of a Lipschitz domain, which means that mesh degener-
ation is prevented. This is a delicate task that gained attention in several publications.
In the context of shape optimization see, e.g., [71] and the references therein, in the con-
text of ALE transformations see, e.g., [10, 37]. Mesh degeneration is not seen directly
since all computations are performed on the fixed shape reference Ω̃ domain, however, it
is the main bottleneck in the performance of the optimization. In particular, it appears

– for large displacements of the design boundary Γ̃d, in our example particularly in
the area around the fixed flap.

– for oscillatory displacements of the design boundary Γ̃d.

– if the extension of the design boundary information to Ω̃ is chosen in an unsophis-
ticated way.

To penalize oscillatory behaviour of the design boundary displacement, we add a regu-
larization term R(d̃h) = ‖d̃h‖2H1(Γ̃d)

with a factor γ > 0. To prevent large displacements,

for z = (z1, z2)>, we introduce the bounds

cu(z) = 0.004(1 + 0.25−z1
0.1 (0.015

0.004 − 1)),
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cl(z) = −0.004(1 + 0.25−z1
0.1 (0.015

0.004 − 1)),

which are more restrictive close to the fixed flap. Nodal evaluation of these bounds
yields vectors cu, cl ∈ Rnd .

Remark 5.6. One could also think about incorporating the definition of D̃Γd . In case
D̃Γd = W 1,∞(Γ̃d), boundedness of d̃ in D̃Γd is ensured by introducing simple bound
constraints on d̃ and its gradient. This, however, is a topic for future research.

• that Ỹh(Th)◦ τ̃ h is isomorphic to Ỹh(τ̃ h(Th)) for all τ̃ h ∈ T̃ ad,h, where Ỹh denotes the
discrete state space and T̃ ad,h the discrete set of admissible transformations. To do so,
we choose T̃ ad,h ⊂ P1(Th).

• a one-to-one-correspondance between transformations and shapes. Analogously to the
continuous case, we choose a scalar valued variable d̃h ∈ D̃Γd,h, where D̃Γd,h denotes
the space of piecewise linear functions on Γd, in addition, require that τ̃ h is equal to
the identity on Ω̃s and consider the discretized version of the operator B presented in
Section 5.3.3.

Strategy 1. Discretizing (5.5) gives us the weak form

a1
ext(d̃h, (w̃

d
h, z̃

d
h), (ψ̃

w
h , ψ̃

z
h)) = 0,

where a1
ext maps

D̃Γd,h × (P 1
d0(Th,Rd)× P 1

d0(Th,Rd))× (P 1
d0(Th,Rd)× P 1

d0(Th,Rd))→ R

with
P 1
d0(Th,Rd) := {vh ∈ P 1(Th,Rd) : vh|∂Ω̃\Γ̃d = 0}

and is defined by

a1
ext(d̃h, (w̃

d
h, z̃

d
h), (ψ̃

w
h , ψ̃

z
h))

:= (Dzw̃
d
h, Dzψ̃

z
h)Ω̃ − (z̃dh, ψ̃

z
h)Ω̃ + (Dzz̃

d
h, Dzψ̃

w
h )Ω̃

− (∇w̃d
h · ñ, ψ̃

z
h)Γ̃d
− (z̃dh,∇ψ̃

w
h · ñ)Γ̃d

+ αn(w̃d
h, ψ̃

z
h)Γ̃d

− (∇z̃dh · ñ, ψ̃
w
h )Γ̃d

− (w̃d
h,∇ψ̃

z
h · ñ)Γ̃d

+ αn(z̃dh, ψ̃
w
h )Γ̃d

+ αs(w̃
d
h, ψ̃

w
h )Ω̃s

+ (d̃hñ,∇ψ̃
z
h · ñ)Γ̃d

− αn(d̃hñ, ψ̃
z
h)Γ̃d

.

(5.9)

Here, we take care of the requirement τ̃ h|Ω̃s = idz by adding a penalization term with
penalty parameter αs > 0. In addition, we use Nitsche’s method [108] with αn > 0
for imposing the Dirichlet boundary conditions on Γ̃d since on Lipschitz domains with
kinks, as it is, e.g., the case for a discretized domain, the normal is only defined almost
everywhere, especially not in kinks that correspond to vertices of our discretization.
The corresponding extension operator is denoted by B1,h : d̃ 7→ w̃d

h, where w̃d
h is

uniquely defined by the solution of a1
ext(d̃, (w̃

d
h, z̃

d
h), (ψ̃

w
h , ψ̃

z
h)) = 0 for all (ψ̃

w
h , ψ̃

z
h) ∈

P 1
d0(Th)d × P 1

d0(Th)d. We choose αs = 1 · 108 and αn = 1 · 104.
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Strategy 2. Discretizing (5.6) yields the weak form

a((w̃h, z̃h), (ψ̃
w
h , ψ̃

z
h)) = (Dzw̃h, Dzψ̃

z
h)Ω̃ − (z̃h, ψ̃

z
h)Ω̃

+ (Dzz̃h, Dzψ̃
w
h )Ω̃ + αs(w̃h, ψ̃

w
h )Ω̃s

= 0.

with a penalty parameter αs > 0. Here, the boundary conditions w̃h|Γ̃d = d̃h, z̃h|Γ̃d = 0
and homogeneous Dirichlet boundary conditions on the rest of the discretized boundary
are imposed. Equivalently, one could also rewrite the weak form on the subspace

P 1
0 (Th) := {vh ∈ P 1(Th) : vh|∂Ω̃ = 0}

of functions that vanish on the boundary of the discretized domain. To do so, a2
ext :

(P 1
0 (Th)× P 1

0 (Th))× (P 1
0 (Th)× P 1

0 (Th))→ R defined by

a2
ext(d̃h, (w̃

0
h, z̃h), (ψ̃

w
h , ψ̃

z
h)) := a((w̃0

h + exthd̃h, z̃h), (ψ̃
w
h , ψ̃

z
h)) (5.10)

is introduced, where exth : D̃Γd,h → P 1(Th) is an arbitrary linear extension operator.
The biharmonic extension operator corresponding to (5.10) is denoted by B2,h : d̃ 7→
w̃0

h + exthd̃h, where w̃0
h is given as the solution of a2

ext(d̃, (w̃
0
h, z̃h), (ψ̃

w
h , ψ̃

z
h)) = 0 for all

(ψ̃
w
h , ψ̃

z
h) ∈ P 1

0 (Th) × P 1
0 (Th). In order to have the discretized version of B, we have

to perform a projection Pnτ ,h of w̃hñτ to the finite element space of piecewise linear
functions.

The discretization of the volume constraint can be done in different ways. A first possibility
is given by discretizing the integral formulation (5.7). This approach is advantageous if, e.g,
the explicit boundary displacement is not a-priorily given as it is the case if d̃h is imposed
via Nitsche’s method or as Neumann boundary condition. For the two dimensional case
and if d̃h is imposed as Dirichlet boundary condition for the extension equations one can
also directly compute the area via Gauss’ area formula, which is also known as shoelace
formula or surveyor’s area formula. Assume the discretized Γ̃d to be a non-self-intersecting
polygonal chain {p̃1, . . . , p̃n} with nodes p̃i = (zi,1, zi,2)>. Let d̃h(z) =

∑n
i=1 d̃iΦi(z) , where

{Φi(z), i ∈ {1, . . . , n}} denotes the set of nodal basis functions on the design boundary, i.e.,
d̃h can be identified with d̃ = (d̃1, . . . , d̃n) ∈ Rn via an operator Ψ−1, where

Ψ(d̃) :=

n∑
i=1

(d̃)iΦi.

If one identifies p̃1 with p̃n+1 we obtain, see [19],

Ã =
1

2

n∑
i=1

(zi,2 + zi+1,2)(zi+1,1 − zi,1).

Transformation of the polygonal chain with nodes {p̃0, . . . , p̃n} yields a polygonal chain
with nodes {p̂0, . . . , p̂n}, where p̂i = (y1,i, y2,i)

> = p̃i + d̃iñτ,i and ñτ,i corresponds to the
evaluation of ñτ at p̃i. Here, for the sake of clarity, we write yj,i instead of yj,i(d̃) for j ∈ {1, 2}
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and i ∈ {1, . . . , n}. The transformed volume is thus given by

Â(d̃) =
1

2

n∑
i=1

(yi,2 + yi+1,2)(yi+1,1 − yi,1).

Recall that, if the volume of the circular obstacle shall not become smaller during the opti-
mization process, we are aiming at Ã ≤ Â. Therefore, we define

g̃(d̃) := Ã− Â(d̃).

We want to enforce the nodes, which are attached to the solid, not to be transformed, i.e.,
we want to enforce d̃j = 0 for j ∈ J , where J ⊂ {1, . . . , n}. This is carried out by performing
a linear transformation which is defined by A ∈ Rn×nd with nd = n− |J | and A is obtained
by deleting the jth columns of the n×n-identity matrix for all j ∈ J . For d ∈ Rnd we define
g2(d) := g̃(Ad).

5.4.5. Discretized Version of the Shape Optimization Problem

Let nd ∈ N and A, Ψ, j̃Ω, g̃Ω, g2, B1,h, B2,h, and Pnτ ,h be defined as in Sections 5.3.3, 5.3.4
and 5.4.4. The discretized shape optimization problem attains the form

min
d∈Rnd

f(d)

s.t. g(d) ≤ 0,

cl ≤ d ≤ cu. (5.11)

Here, d ∈ Rnd is bounded by cl, cu ∈ Rnd , cl ≤ cu. The control d can be identified with a
transformation via the following chain of compositions

d
A7−−−−−→ d̃

Ψ7−−−−→ d̃h
Bh7−−−−−→ ũτ,h

idz+·7−−−−−−−→ τ̃ h,

where A and Ψ are defined in Section 5.4.4. The objective is defined by f(d) := j̃Ω(ũτ,h),
where ũτ,h = ũτ,h(d).

Strategy 1. Bh := B1,h and g(d) := g̃Ω(ũτ,h).

Strategy 2. Bh := Pnτ ,h ◦ B2,h, where d̃h
B2,h7−−−−−−→ w̃h

Pnτ ,h7−−−−−−−→ ũτ,h, and g(d) := g2(d).

5.5. Numerical Realization Using FEniCS, dolfin-adjoint and
IPOPT

The numerical tests presented here are implemented in FEniCS [3, 92], a collection of free
software for the automated solution of partial differential equations combining the software
packages dolfin [94, 95], FFC [81, 93, 109], UFL [2, 6], FIAT [80, 82], and UFC [4, 5]. For the
computation of the gradients the additional package dolfin-adjoint [40] is used, which provides
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the automated differentiation of the reduced cost functional based on adjoint computations
on the discrete system. It is based on a checkpointing strategy [52], meaning that the
forward solution is, to save memory space, not saved for every time-step but only on several
checkpoints. In order to solve the backwards equations, the forward equation is solved starting
from the checkpoints and then used to compute the adjoint. Additionally, the software
package IPOPT [126] is used for solving the constrained optimization problem on the shape
reference domain Ω̃.

5.5.1. Computing Objective Function Value and Gradient with FEniCS
and dolfin-adjoint

This section explains how objective function values and gradients are evaluated using FEniCS
and dolfin-adjoint to obtain an optimization problem that we can pass over to IPOPT. If one
has automated differentiation available for distributed controls, e.g., by using FEniCS and
dolfin- adjoint, one can not directly compute the derivative w.r.t. d but has to apply the
chain rule.

Strategy 1

We define j̃1,Ω(d̃h) := j̃Ω(Bh(d̃h)). The derivative j̃′1,Ω(d̃h) can directly be computed using
FEniCS and dolfin-adjoint since d̃h appears in the weak formulation (5.9). The vector rep-
resentation j̃ ∈ Rn of the derivative w.r.t. the degrees of freedom on the design boundary is
formally defined by

j̃i := j̃′1,Ω(d̃h)(Ψ(ei))

for i ∈ {1, . . . , n}. Considering the mapping j1 : Rnd → R, j1(d) := j̃1,Ω(B1,h(Ψ(Ad))), its
gradient is given by ∇j1 = A>j̃.

Strategy 2

We consider j̃2,Ω(w̃h) := j̃Ω(Pnτ ,h(w̃h)) and compute the gradient j′2,Ω(w̃h) using FEniCS and
dolfin-adjoint. In order to obtain the derivative of j̃2(d̃h) := j̃2,Ω(B2,h(d̃h)) the chain rule has
to be applied. We have

j̃2(d̃h) = j̃2,Ω(B2,h(d̃h)) = j̃2,Ω(exthd̃h + w̃0
h)

= j̃2,Ω(exthd̃h + w̃0
h)− a2

ext(d̃h, (w̃
0
h, z̃h), (ψ̃

w
h , ψ̃

z
h)) = L(d̃h, (w̃

0
h, z̃h), (ψ̃

w
h , ψ̃

z
h)),

where (w̃0
h, z̃h) ∈ P1

0 (Th)× P1
0 (Th) solves

a2
ext(d̃h, (w̃

0
h, z̃h), (ψ̃

w
h , ψ̃

z
h)) = 0

for all (ψ̃
w
h , ψ̃

z
h) ∈ P1

0 (Th)×P1
0 (Th). Testing with the solution (w̃∗h, z̃

∗
h) of the adjoint equation

j̃′2,Ω(w̃h)(δw̃h)− a2
ext(d̃h, (δw̃h, δz̃h), (w̃∗h, z̃

∗
h)) = 0 yields

j̃′2(d̃h)(δd̃h) = Ld(d̃h, (w̃0
h, z̃h), (w̃∗h, z̃

∗
h))(δd̃h)

= j̃′2,Ω(exthd̃h + w̃0
h)(exthδd̃h)− a2

ext,d(d̃h, (w̃
0
h, z̃h), (w̃∗h, z̃

∗
h))(δd̃h)
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with
a2

ext,d(d̃h, (w̃
0
h, z̃h), (ψ̃

w
h , ψ̃

z
h))(δd̃h) = a((exthδd̃h, 0), (ψ̃

w
h , ψ̃

z
h)),

due to (5.10). Numerically, one can work with the linear extension exth which sets the value
of all interior nodes to 0. Let j̃ ∈ Rn be defined by

j̃i := j̃′2,Ω(d̃h)(Ψ(ei))

for i ∈ {1, . . . , n}. The gradient of the mapping j2 : Rnd → R, j2(d) := j̃2,Ω(B2,h(Ψ(Ad))) is
given by ∇j2 = A>j̃.

5.5.2. Computing Function Value and Gradient of the Constraint with
FEniCS and dolfin-adjoint

Strategy 1

Here, one could either compute the gradient of g̃Ω(B1,h(d̃h)) via automated differentiation
or use the gradient g̃′Ω(ũτ,h) and apply the chain rule. Hence, we can compute the function
value and gradient of the function g1(d) := g̃Ω(B1,h(Ψ(Ad))).

Strategy 2

The functions g̃(d̃) and g2(d) are explicitely given in Section 5.4.4. Direct calculus yields

(∇g̃(d̃))i = −1

2
(ñτ )i,2(yi+1,1 − yi−1,1)− 1

2
(ñτ )i,1(yi−1,2 − yi+1,2)

for i ∈ {1, . . . , n}, with yn+1,j := y1,j and y0,j := yn,j for j ∈ {1, 2}, where yi,j = yi,j(d̃)
depends on d̃. Furthermore, we obtain ∇g2(d) := A>∇g̃(d̃).

5.5.3. Solving the Discretized Optimization Problem Using IPOPT

In the previous sections we have seen that the optimization problem that has to be solved
attains the form (5.11). Many existing implementations of optimization methods, such as
IPOPT, assume that the problem is posed in the Euclidean space. Therefore, handing the
discretized optimization problem directly to IPOPT leads to a loss of information since it
is no longer taken into account that d̃h is the discretization of a function, that has H1-
regularity if the regularization term R is chosen correspondingly. We have the representation
d̃h(z) :=

∑n
i=1 d̃iΦi(z), where d̃ := (d̃1, ..., d̃n)> ∈ Rn denotes the vector of degrees of freedom

and Φi(z) ∈ H1(Γ̃d) are appropriate basis functions on the design part of the boundary. The
correct discrete inner product is thus given by

(d̃1,h, d̃2,h)H1(Γ̃d) = d̃>1 S̃d̃2 = d>1 Sd2,

where d̃i = Adi for i ∈ {1, 2}, S̃ = ((Φi,Φj)H1(Γ̃d))i,j and S = A>S̃A. Working on the space
of transformed coordinates

d̆ = S̆d,
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where S̆ is chosen such that S̆>S̆ = S, e.g., S̆ = S
1
2 (which is impracticle if the size of S is

large) or obtained by a (sparse) Cholesky decomposition, takes the above considerations into
account. We pass the following functions to IPOPT

f̆ : Rnd → R, d̆ 7→ f(S̆−1d̆),

where
f̆(d̆) = j(S̆−1d̆) + γd̆>d̆,

as well as,
∇f̆ : Rnd → Rnd , d̆ 7→ S̆−>∇f(S̆−1d̆).

This has several advantages in the numerical solution process of the optimization problem.
For the steepest descent method it results in

dk+1 = S̆−1d̆k+1 = S̆−1(d̆k + S̆−>∇f(S̆−1d̆k)) = dk + S−1∇f(dk)

if dk = S̆−1d̆k. This is advantageous since in the function space setting, we have to work
with the Riesz-representation of the gradient of f , which is approximated by S−1∇f . In
[118] it is shown that this leads to mesh-independent convergence rates for some examples.
This is also expected for other optimization algorithms. Hence, we consider the optimization
problem

min
d̆∈Rnd

f(S̆−1d̆)

s.t. ğ(d̆) ≤ 0,

cl ≤ ğ(d̆) ≤ cu,

where ğ(d̆) = g(S̆−1d̆) and ğ(d̆) = S̆−1d̆.

Remark 5.7. This procedure is computationally justified in our setting since the degrees
of freedom of the discretized control is small compared to the size of the discretized systems
that are solved to evaluate the objective. This is due to the fact that the control is time
independent and lives on the design part of the domain’s boundary. In this case the effort
for the computation of S̆ and the application of its inverse to d̆ is negligible compared to the
effort for solving the FSI equations and its adjoint equations. In other situations, it might
be preferable to apply an algorithm which directly works with the correct inner product.

5.6. Numerical Results

As time horizon for the optimization of the mean drag we choose T = 15s. Additionally, we
use the regularization parameter γ = 10. For Strategy 1 IPOPT converges after 27 iterations
and for Strategy 2 after 23 iterations with an overall NLP error (cf. [126, p. 3, (5)]) smaller
than 1·10−4, see Tables 5.1 and 5.2. The objective function value is reduced about 35 percent.
Figure 5.5 shows the initial configuration compared to the optimized configurations for both
strategies. On the one hand, the bounds are active close to the flap, which is motivated by
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FEniCS

dolfin-adjoint

IPOPT

solve optimization problem

control d̆

mapping of d̆ to transformation τ̃ (d̆) := exth(Ψ(AS̆−1d̆)) + Bh(Ψ(AS̆−1d̆))

evaluate functional f̆
(solve FSI problem)

evaluate constraints

ğ, ğ

compute

gradient

w.r.t. τ̃ (d̆)

compute gradient w.r.t. d̆ compute gradient w.r.t. d̆

Figure 5.4.: Numerical realization using FEniCS, dolfin-adjoint and IPOPT

the fact that the optimal solutions aims at enclosing the flap. This, however, leads to mesh
degeneration if the normal design boundary displacement is too large, which motivates the
choice of the bound constraints. On the other hand, the bounds are active on the opposite
site of the flap. Figure 5.6 shows the time-dependence of the vertical displacement of the tip
of the flap and Figures 5.7 and 5.8 compare the corresponding snapshots for different times.
Even though the optimization is only done on the first 15 seconds, Figure 5.6 illustrates that
the amplitude of the vertical displacement of the tip of the flap is also smaller for long-term
simulations.

Remark 5.8. The computation times of the forward equations and the gradients do not
significantly differ for the two strategies. However, Strategy 2 performs slightly better.
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(1)

(2)

(3)

Figure 5.5.: (1) Initial design. (2) Optimized design with Strategy 1. (3) Optimized design
with Strategy 2.
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Figure 5.6.: Comparison of vertical displacement of the tip of the flap for the initial and
optimized designs
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t = 0s
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Figure 5.7.: Comparison of initial and optimized setting for Strategy 1
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Figure 5.8.: Comparison of initial and optimized setting for Strategy 2
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iteration objective dual infeasibility linesearch-steps
0 1.5998013 · 102 6.47 · 101 0
1 1.4272447 · 102 4.68 · 101 2
2 1.2470326 · 102 2.61 · 101 1
3 1.1414835 · 102 1.40 · 102 1
4 1.1486292 · 102 1.35 · 102 1
5 1.0696289 · 102 1.29 · 101 1
6 1.0554535 · 102 1.73 · 101 1
7 1.0453094 · 102 1.32 · 101 1
8 1.0347757 · 102 1.04 · 101 1
9 1.0281481 · 102 8.69 · 100 1
10 1.0231228 · 102 2.26 · 100 1
11 1.0208171 · 102 2.35 · 100 1
12 1.0197863 · 102 1.57 · 100 1
13 1.0193006 · 102 1.33 · 100 1
14 1.0191378 · 102 7.75 · 10−1 1
15 1.0190267 · 102 2.90 · 10−1 1
16 1.0190156 · 102 7.15 · 10−2 1
17 1.0189694 · 102 3.47 · 10−2 1
18 1.0189604 · 102 2.33 · 10−1 1
19 1.0189587 · 102 1.27 · 10−1 1
20 1.0189574 · 102 2.65 · 10−2 1
21 1.0189570 · 102 6.45 · 10−3 1
22 1.0189570 · 102 5.21 · 10−3 1
23 1.0189570 · 102 7.59 · 10−4 1
24 1.0189570 · 102 4.83 · 10−4 1
25 1.0189570 · 102 4.92 · 10−4 1
26 1.0189570 · 102 1.54 · 10−3 1
27 1.0189570 · 102 8.74 · 10−5 1

Table 5.1.: Optimization results for Strategy 1
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iteration objective dual infeasibility linesearch-steps
0 1.5998013 · 102 6.46 · 101 0

1 1.4293307 · 102 4.43 · 101 2
2 1.2493011 · 102 2.70 · 101 1
3 1.1440306 · 102 1.38 · 102 1
4 1.1183690 · 102 1.04 · 102 1
5 1.0606273 · 102 1.03 · 101 1
6 1.0554501 · 102 3.85 · 100 1
7 1.0401135 · 102 1.22 · 101 1
8 1.0330660 · 102 1.02 · 101 1
9 1.0292723 · 102 5.76 · 100 1

10 1.0280065 · 102 1.15 · 100 1
11 1.0270233 · 102 3.85 · 10−1 1
12 1.0267593 · 102 1.39 · 10−1 1
13 1.0267218 · 102 1.66 · 100 1
14 1.0266923 · 102 1.55 · 10−1 1
15 1.0266877 · 102 3.18 · 10−2 1
16 1.0266874 · 102 5.14 · 10−3 1
17 1.0266873 · 102 3.37 · 10−3 1
18 1.0266873 · 102 2.60 · 10−3 1
19 1.0266972 · 102 4.40 · 10−3 1
20 1.0266872 · 102 6.06 · 10−4 1
21 1.0266872 · 102 1.14 · 10−3 1
22 1.0266872 · 102 1.03 · 10−4 1
23 1.0266872 · 102 6.59 · 10−5 1

Table 5.2.: Optimization results for Strategy 2
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6. Conclusion and Outlook

In this thesis, we have extended the existence and regularity results of [113] for a linear and
a nonlinear unsteady FSI system under the assumption that the new improved regularity for
the linear hyperbolic wave equation can be adapted to the Lamé system. More precisely,
we considered the coupling of the (Navier-)Stokes-Lamé system and obtained (local-in-time)
existence and regularity results without the geometric constraint that the interface between
the fluid and the solid is flat. Based on the method of successive approximations, which is
the foundation for the theoretical analysis in [113], we developed a general framework for
deriving continuity and differentiability results for unsteady nonlinear systems. Applying
this framework to shape optimization of an unsteady nonlinear FSI problem via the method
of mappings approach allowed us to prove differentiability of the states with respect to shape
variations. Numerical tests showed the viability of the method of mappings for solving shape
optimization problems governed by a nonlinear unsteady FSI model that couples the Navier-
Stokes equations with nonlinear elasticity.
A remaining task is the adaption of the improved regularity result for the linear hyper-

bolic wave equation to the Lamé system. In addition, instead of considering the coupling
with linear elastic material and either using a linear model for the fluid or just guaranteeing
local-in-time results, practical applications are based on nonlinear elasticity and long-term
simulations. Closing this gap is a difficult task and closely linked to advances in the analysis
of hyperbolic equations and the Navier-Stokes equations. Another issue, which we circum-
vented by restriction to the optimiziation of the fluid part of the domain, is the extension of
the differentiability results such that optimization of the interface is covered. The regularity
requirements for the source term of the linear hyperbolic system requires more elaborate
techniques to tackle this task. Also from a numerical point of view it is interesting to realize
shape optimization of the interface, besides applying the presented methods to realistic 3D
applications. Moreover, the consideration of these shape optimization problems as optimiza-
tion problems on manifolds is left for future research.
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A. Appendix

A.1. On the Choice of the Norm on Hs((0, T ), X)

A.1.1. Definition via Interpolation

Based on the following statements from interpolation theory, we construct a norm that sat-
isfies properties P1 - P8. If X0, X1 are linear subspaces of a larger vector space V , then
{X0, X1} is said to be a compatible pair of Hilbert spaces. Let {X0, X1} and {Y0, Y1} be
compatible pairs of Hilbert spaces. Furthermore, for s ∈ (0, 1), let [X0, X1]s denote the
complex interpolation space, cf. [25], [124], [15, p.166], [87, Sec. 0.2.1].

I1 In the Hilbert space setting, the definition of interpolation in [90, p.10, Def. 2.1] is
equivalent to complex interpolation with equivalence of norms, cf., Remark 2.7.

I2 Interpolation theorem: Let T : X0 → Y0 be a bounded linear operator with norm
N0 and T : X1 → Y1 be a bounded linear operator with norm N1.
Then, T : [X0, X1]s → [Y0, Y1]s is a bounded linear operator with norm smaller than or
equal to N1−s

0 N s
1 [25, p.115, 4.].

I3 Reiteration theorem: Let 0 ≤ α < β ≤ 1. Set Yα = [X0, X1]α and Yβ = [X0, X1]β
for Banach spaces X0 and X1. If X0 ∩ X1 is dense in X0, X1 and Yα ∩ Yβ , then,
[Yα, Yβ]s = [X0, X1](1−s)α+sβ , with equal norms [16, p.101, Theo. 4.6.1], [29].

Let X be a Hilbert space, −∞ ≤ a < b ≤ ∞. Let, for σ ∈ [0, 1], ||| · |||Hσ((a,b),X) be the norm
induced by

[H1((a, b), X), L2((a, b), X)]1−σ.

For s = m+ σ, m ∈ N, σ ∈ [0, 1) \ {1
2}, define

||| · |||Hs((a,b),X) =

{
(‖ · ‖2Hm−1((a,b),X) + |||∂mt (·)|||2Hσ((a,b),X))

1
2 if σ ∈ (0, 1) \ {1

2},
‖ · ‖Hm((a,b),X) if σ = 0.
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Furthermore, let for −∞ < T1 < T2 < −∞,

X0
(T1,T2) := {u ∈ L2((T1, T2), X)}

be endowed with the norm ‖ · ‖X0
(T1,T2)

:= ‖ · ‖L2((T1,T2),X),

X1
(T1,T2) := {u ∈ H1((T1, T2), X)| u(T1) = 0}

be endowed with the norm ‖ · ‖X1
(T1,T2)

:= ‖ · ‖H1((T1,T2),X), and,

Xs
(T1,T2) :=


{u ∈ Hs((T1, T2), X)} if s ∈ (0, 1

2),

{u ∈ Hs((T1, T2), X) : u(T1) = 0} if s ∈ (1
2 , 1),

{u ∈ Hs((T1, T2), X) : u(T1) = 0, ∂tu ∈ Xs−1
(T1,T2)} if s ∈ (1, 2] \ {3

2},

be endowed with the norm ||| · |||Hs((T1,T2),X).

(A.1)

Proposition A.1. Let σ ∈ (0, 1) \ {1
2} and −∞ < T1 < T2 < ∞. Then, there exist

c∆T , C∆T > 0 that depend on ∆T = T2 − T1 such that

c∆T |u|Hσ((T1,T2),X) ≤ |||u|||Hσ((T1,T2),X) ≤ C∆T |u|Hσ((T1,T2),X)

for all u ∈ Hσ((T1, T2), X).

Proof. Holds true due to Remark 2.7.

Proposition A.2. Let σ ∈ (0, 1) \ {1
2} and −∞ < T1 < T2 < ∞. Then, the extension-by-

zero operator Ext is continuous as a mapping

Xσ
(T1,T2) → Hσ((−∞, T2), X)

with a norm that, in general, depends on ∆T = T2 − T1.

Proof. The proof builds on [90, p. 60, Theo. 11.4]. [90, p. 60, Theo. 11.4 and p. 62,
Theo. 11.5] are formulated for the scalar valued case, however, [90, p. 47, Remark 9.5] and
the proofs of the theorems imply the validity of the assertions for X-valued spaces. C and
C∆T denote generic constants, where the subscript ∆T indicates the dependence on ∆T . Let
Hσ((−∞, T2), X) be endowed with ||| · |||Hσ((−∞,T2),X). The assertion also holds true for any
equivalent norm on Hσ((−∞, T2), X).

• Let σ ∈ (0, 1
2).

For f ∈ Xσ
(T1,T2) we know by definition that f ∈ Hσ((T1, T2), X). By [90, p. 60, Theo.

11.4], there exists a constant C∆T > 0 such that

|||f̃ |||Hσ(R,X) ≤ C∆T |||f |||Hσ((T1,T2),X), (A.2)
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for f̃(t) :=

{
f(t) if t ∈ (T1, T2),

0 else.
Since the restriction operator R : Hm(R, X) → Hm((−∞, T2), X), R(f̃) := f̃ |(−∞,T2),
is continuous with norm 1 for m ∈ {0, 1}, I2 yields

|||Ext(f)|||Hσ((−∞,T2),X) = |||R(f̃)|||Hσ((−∞,T2),X) ≤ |||f̃ |||Hσ(R,X). (A.3)

Combining (A.2) and (A.3) yields the assertion.

• Let σ ∈ (1
2 , 1).

Let f ∈ Xσ
(T1,T2) and f̄(t) := (T2 − T1)−1(t− T1)f(T2) for t ∈ (T1, T2). Then, we know

that f̄ ∈ X1
(T1,T2) such that f̄(T2) = f(T2) and

‖f̄‖H1((T1,T2),X) ≤ C∆T ‖f(T2)‖X . (A.4)

By [90, p. 62, Theo. 11.5], g := f − f̄ ∈ Hσ
0 ((T1, T2), X) and, therefore, by [90, p. 60,

Theo. 11.4],

|||g̃|||Hσ(R,X) ≤ C∆T |||g|||Hσ((T1,T2),X)

≤ C∆T (|||f |||Hσ((T1,T2),X) + |||f̄ |||Hσ((T1,T2),X)), (A.5)

where g̃ =

{
g(t) for t ∈ (T1, T2),

0 else.
Due to the interpolation inequality (2.3), (A.4), I1 and [90, p.41, Proof of Thm. 9.4],
we obtain

|||f̄ |||Hσ((T1,T2),X) ≤ C∆T ‖f̄‖H1((T1,T2),X) ≤ C∆T ‖f(T2)‖X
≤ C∆T |||f |||Hσ((T1,T2),X). (A.6)

Thus, using the properties of the restriction operator R, cf. (A.3), yields

|||Ext(g)|||Hσ((−∞,T2),X) = |||R(g̃)|||Hσ((−∞,T2),X) ≤ |||g̃|||Hσ(R,X). (A.7)

Additionally, we know that

|||Ext(f̄)|||Hσ((−∞,T2),X) ≤ C‖Ext(f̄)‖H1((−∞,T2),X) ≤ C‖f̄‖H1((T1,T2),X)

≤ C∆T |||f |||Hσ((T1,T2),X), (A.8)

where the last inequality follows from the same considerations as in (A.6). Combining
(A.5), (A.6), (A.7) and (A.8) yields

|||Ext(f)|||Hσ((−∞,T2),X) ≤ |||Ext(f̄)|||Hσ((−∞,T2),X) + |||Ext(g)|||Hσ((−∞,T2),X)

≤ C∆T |||f |||Hσ((T1,T2),X),

from which the assertion follows.
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Lemma A.3. Let σ ∈ (0, 1)\{1
2}. Then, there exists C∆T > 0 that depends on ∆T = T2−T1

such that

|||u|||Hσ((T1,T2),X) ≤ ‖u‖[X1
(T1,T2)

,X0
(T1,T2)

]1−σ ≤ C∆T |||u|||Hσ((T1,T2),X) (A.9)

for all u ∈ Xσ
(T1,T2).

Proof. The mapping ι : u 7→ u is continuous with norm 1 as a mapping X1
(T1,T2) →

H1((T1, T2), X) and as a mapping X0
(T1,T2) → L2((T1, T2), X). I2 yields that the mapping

ι : [X1
(T1,T2), X

0
(T1,T2)]1−σ → Hσ((T1, T2), X)

is continuous with a constant smaller than or equal to 1 ifHσ((T1, T2), X) is endowed with the
norm ||| · |||Hσ((T1,T2),X). The extension operator Ext by 0 operator is continuous as a mapping
Xσ

(T1,T2) → Hσ((−∞, T2), X) with constants that depend on ∆T due to Proposition A.2.
The operator R̂ : u 7→ u(·)− u(2T1 − ·) is continuous as a mapping

Hm((−∞, T2), X)→ Xm
(T1,T2),

m ∈ {0, 1} with norm 1, therefore, by I2, also as a mapping

Hσ((−∞, T2), X)→ [X1
(T1,T2), X

0
(T1,T2)]1−σ,

with norm 1 if Hσ((−∞, T2), X) is endowed with the norm ||| · |||Hσ((−∞,T2),X). Using the
continuity properties of Ext and R̂,

‖u‖[X1
(T1,T2)

,X0
(T1,T2)

]1−σ = ‖R̂(Ext(u))‖[X1
(T1,T2)

,X0
(T1,T2)

]1−σ

≤ |||Ext(u)|||Hσ((−∞,T2),X) ≤ C∆T |||u|||Hσ((T1,T2),X)

for all u ∈ Xσ
(T1,T2).

Let, for σ ∈ (1
2 , 1),

L : Hσ((T1, T2), X)→ Hσ((T1,∞), X),

be a linear, continuous operator such that there exists a constant C independent of ∆T :=
T2 − T1 such that

|||L(u)|||Hσ((T1,∞),X) ≤ C‖u(T1)‖X , (A.10)

and for arbitrary but fixed Tf > 0 L(u)(T1) = u(T1), more precisely,

L(u)(t) =

{
u(T1)T−1

f (Tf + T1 − t) for t ∈ (T1, T1 + Tf ),

0 for t ∈ [T1 + Tf ,∞).
(A.11)
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Let −∞ < T1 < T2 <∞. For σ ∈ [0, 1) \ {1
2}, define

‖ · ‖Hσ((T1,T2),X) :=


‖ · ‖L2((T1,T2),X) if σ = 0,

‖ · ‖[X1
(T1,T2)

,X0
(T1,T2)

]1−σ if σ ∈ (0, 1
2),

(‖ · −L(·)‖2
[X1

(T1,T2)
,X0

(T1,T2)
]1−σ

+ |||L(·)|||2Hσ((T1,∞),X))
1
2 if σ ∈ (1

2 , 1),

(A.12)

and for s = m+ σ, m ∈ N, σ ∈ [0, 1) \ {1
2},

‖ · ‖Hs((T1,T2),X) =

{
(‖ · ‖2Hm−1((T1,T2),X) + ‖∂mt (·)‖2Hσ((T1,T2),X))

1
2 if σ ∈ (0, 1) \ {1

2},
‖ · ‖Hm((T1,T2),X) if σ = 0.

(A.13)

Let, for s ∈ [0, 2] \ {1
2 ,

3
2}, H

s((T1, T2), X) be endowed with the norm ‖ · ‖Hs((T1,T2),X) and

Y s
(T1,T2) :=


{u ∈ Hs((T1, T2), X)} if s ∈ [0, 1

2),

{u ∈ Hs((T1, T2), X)| u(T1) = 0} if s ∈ (1
2 , 1],

{u ∈ Hs((T1, T2), X)| u(T1) = 0, ∂tu ∈ Y s−1
(T1,T2)} if s ∈ (1, 2] \ {3

2},
(A.14)

be endowed with the norm ‖ · ‖Hs((T1,T2),X) with L(·) = 0 for s ∈ (1
2 , 1).

Lemma A.4. LetX be a Hilbert space and s ∈ [0, 2]\{1
2 ,

3
2}. Then, the norm ‖·‖Hs((T1,T2),X)

is equivalent to the norm ||| · |||Hs((T1,T2),X) with constants depending on ∆T = T2 − T1.

Proof. The cases s ∈ {0, 1, 2} are trivial.

• s ∈ (0, 1
2): By (A.12) and (A.9)

‖u‖Hs((T1,T2),X) = ‖u‖[X1
(T1,T2)

,X0
(T1,T2)

]1−s ≤ C∆T |||u|||Hs((T1,T2),X)

≤ C∆T ‖u‖[X1
(T1,T2)

,X0
(T1,T2)

]1−s = C∆T ‖u‖Hs((T1,T2),X).

• s ∈ (1
2 , 1): By (A.10), (A.12) and (A.9)

‖u‖2Hs((T1,T2),X) = ‖u− L(u)‖2[X1
(T1,T2)

,X0
(T1,T2)

]1−s
+ |||L(u)|||2Hs((T1,∞),X)

≤ C∆T |||u− L(u)|||2Hs((T1,T2),X) + |||L(u)|||2Hs((T1,∞),X)

≤ C∆T (|||u|||2Hs((T1,T2),X) + |||L(u)|||2Hs((T1,∞),X))

≤ C∆T (|||u|||2Hs((T1,T2),X) + ‖u(T1)‖2X)

≤ C∆T |||u|||2Hs((T1,T2),X),

where the last inequality is due to I1 and [90, p.41, Proof of Thm. 9.4]. The estimate
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for |||L(u)|||Hs((T1,T2),X) is obtained by interpolation of the restriction operator

R̃ : Hm((T1,∞), X)→ Hm((T1, T2), X), R̃(u)(t) = u(t) ∀t ∈ (T1, T2),

which, by I2, is continuous with constant 1 for m ∈ {0, 1}.

• s ∈ (1, 2]\{3
2}: Follows directly from the results obtained for s ∈ [0, 1]\{1

2}. By (A.9),

|||u|||2Hs((T1,T2),X) ≤ C(|||u− L(u)|||2Hs((T1,T2),X) + |||L(u)|||2Hs((T1,T2),X))

≤ C(‖u− L(u)‖2[X1
(T1,T2)

,X0
(T1,T2)

]1−s
+ |||L(u)|||2Hs((T1,∞),X)).

Corollary A.5. Let X be a Hilbert space and s ∈ [0, 2] \ {1
2 ,

3
2}. Then, ‖ · ‖Hs((T1,T2),X) is

equivalent to the norm | · |Hs((T1,T2),X) with constants depending on ∆T = T2 − T1.

Proof. Follows by combining Proposition A.1 and Lemma A.4.

Lemma A.6. Let Tf ≥ T and s ≥ 0 such that s+ 1
2 /∈ N. Then, the extension operator

Ext(u) :=

{
0 for t ∈ (T − Tf , 0)

u(t) for t ∈ (0, T )
,

is continuous as a mapping Y s
(0,T ) → Y s

(T−Tf ,T ) with norm bounded by 1.

Proof. For s ∈ N0 the assertion is trivial.

• For m ∈ {0, 1}, Ext is continuous as a mapping Xm
(0,T ) → Xm

(T−Tf ,T ) with norm 1, thus,
by I2, continuous as a mapping

[X1
(0,T ), X

0
(0,T )]1−s → [X1

(T−Tf ,T ), X
0
(T−Tf ,T )]1−s (A.15)

with norm bounded by 1.

• Let s ∈ (0, 1
2). Due to (A.15), Y s

(0,T ) = Xs
(0,T ) (with different norms), cf. (A.14) and

(A.1), and (A.12) we obtain

‖Ext(u)‖Hs((T−Tf ,T ),X) ≤ ‖u‖Hs((0,T ),X)

for all u ∈ Y s
(0,T ).

• Let s ∈ (1
2 , 1). For u ∈ Y s

(0,T ), we have u(0) = 0 and Ext(u)(T − Tf ) = 0. Thus, by
(A.12),

‖u‖Hs((0,T ),X) = ‖u‖[X1
(0,T )

,X0
(0,T )

]1−s ,
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and
‖Ext(u)‖Hs((T−Tf ,T ),X) = ‖Ext(u)‖[X1

(T−Tf ,T )
,X0

(T−Tf ,T )
]1−s .

Due to (A.15), we obtain

‖Ext(u)‖Hs((T−Tf ,T ),X) ≤ ‖u‖Hs((0,T ),X).

• For s ≥ 1 such that s + 1
2 /∈ N, the assertion follows from the results obtained for

s ∈ [0, 1] \ {1
2} and s ∈ N.

Lemma A.7. Let 0 < T ≤ Tf and s ≥ 0 such that s+ 1
2 /∈ N. Then, the extension operator

Êxt(u) :=

{
0 for t ∈ (T − 2Tf , T − Tf )

u(t) for t ∈ (T − Tf , T )
,

is continuous as a mapping Y s
(T−Tf ,T ) → Y s

(T−2Tf ,T ) with norm bounded by 1.

Proof. Completely analogous to the proof of Lemma A.6.

Lemma A.8. Let 0 < T ≤ Tf , X be a Hilbert space and s ≥ 0 such that s+ 1
2 /∈ N. Then,

the restriction operator
R(·)(t) = ·(t)

is continuous as a mapping Hs((0, Tf ), X) → Hs((0, T ), X) with norm bounded by 1 if
Hs((0, Tf ), X) and Hs((0, T ), X) are endowed with the norm defined by (A.12) and (A.13).

Proof. For s ∈ N0 the assertion is trivial.

• Let s ∈ (0, 1
2). The restriction operator R is continuous as a mapping Xm

(0,Tf ) → Xm
(0,T )

for m ∈ {0, 1} with norm 1. Therefore, I2 yields continuity as a mapping

[X1
(0,Tf ), X

0
(0,Tf )]1−s → [X1

(0,T ), X
0
(0,T )]1−s, (A.16)

and, using

Hs((0, T2), X) = Y s((0, T2), X) = Xs((0, T2), X) = [X1
(0,T2), X

0
(0,T2)]1−s

(with different norms) for T2 ∈ {T, Tf}, cf. (A.1), (A.14), Lemma A.3, and the defini-
tion of the norm (A.12), as a mapping

Hs((0, Tf ), X)→ Hs((0, T ), X)

with norm bounded by 1.
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• Let s ∈ (1
2 , 1). It holds u − L(u) ∈ Y s

(0,Tf ), thus, by (A.16) (which holds also true for
s ∈ (1

2 , 1)),

‖u− L(u)‖[X1
(0,T )

,X0
(0,T )

]1−s ≤ ‖u− L(u)‖[X1
(0,Tf )

,X0
(0,Tf )

]1−s .

This estimate and the definition of the norm (A.12) yield the assertion.

• For s ≥ 1 such that s+ 1
2 /∈ N, the assertion follows from the results for s ∈ [0, 1] \ {1

2}
and s ∈ N.

Lemma A.9. Let s ∈ (0, 1) \ {1
2}, T > 0, T̂ ≤ −T and X be a Hilbert space. Then, the

operator
R̂(·)(t) = ·(t)− ·(−t)

is continuous as a mapping Y s
(T̂,T )

→ Y s
(0,T ) with norm bounded by 1.

Proof. The operator R̂ is continuous as a mapping Xm
(T̂,T )

→ Xm
(0,T ), m ∈ {0, 1}, with norm

at most 1. Therefore, using I2, it is also continuous as a mapping

[X1
(T̂,T )

, X0
(T̂,T )

]1−s → [X1
(0,T ), X

0
(0,T )]1−s,

with norm at most 1. Thus, by definitions (A.12) and (A.14), it is also continuous as a
mapping Y s

(T̂,T )
→ Y s

(0,T ) with norm bounded by 1.

Lemma A.10. Let T ∗ ≥ 2T > 0, X be a Hilbert space and s ≥ 0 such that s + 1
2 /∈ N.

Furthermore, let u ∈ Hs((T − T ∗, T ), X) be such that u|(T−T ∗,0) = 0. Then,

‖u‖Hs((0,T ),X) ≤ C‖u‖Hs((T−T ∗,T ),X)

with a constant C independent of T .

Proof. It holds ‖u‖Hm((0,T ),X) ≤ ‖u‖Hm((T−T ∗,T ),X) for m ∈ N0. Let s be non-integer. Then,
there exist m ∈ N0 and σ ∈ (0, 1) \ {1

2} such that s = m + σ. By (A.14), ∂mt u ∈ Y σ
(T−T ∗,T ).

Using u|(T−T ∗,0) = 0, we obtain R̂(∂mt u) = ∂mt u|(0,T ) for R̂ in Lemma A.9 with T̂ = T − T ∗
yields

‖∂mt u‖Hσ((0,T ),X) ≤ ‖∂mt u‖Hσ((T−T ∗,T ),X)

This implies the assertion.

Lemma A.11. Let Tf ≥ T > 0, X be a Hilbert space and s ≥ 0 such that s + 1
2 /∈ N.

Furthermore, let u ∈ Hs((T − Tf , T ), X) be such that u|(T−Tf ,0) = 0. Then,

‖u‖Hs((0,T ),X) ≤ C‖u‖Hs((T−Tf ,T ),X)
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with a constant C independent of T .

Proof. By Lemmas A.10 and A.7,

‖u‖Hs((0,T ),X) = ‖Êxt(u)‖Hs((0,T ),X)

≤ C‖Êxt(u)‖Hs((T−2Tf ,T ),X) ≤ C‖u‖Hs((T−Tf ,T ),X).

Lemma A.12. Let X be a Hilbert space, s ∈ [0, 1) \ {1
2} and α > 0 be chosen such that

s+ α ∈ (0, 1]. Then,
‖u‖Hs((0,T ),X) ≤ Tα‖u‖Hs+α((0,T ),X),

for all u ∈ Y s
(0,T ).

Proof. The mapping ι defined by ι(u) = u is continous as a mapping

ι : X0
(0,T ) → X0

(0,T ), (A.17)

ι : X1
(0,T ) → X1

(0,T ), (A.18)

with norm 1 and

ι : X1
(0,T ) → X0

(0,T ) (A.19)

with norm bounded by T . Due to I2, interpolation of (A.17) and (A.18) yields continuity of

ι : [X1
(0,T ), X

0
(0,T )]1−s → [X1

(0,T ), X
0
(0,T )]1−s (A.20)

with norm at most 1 (equal to 1 since the mapping corresponds to the identity) and inter-
polation of (A.18) and (A.19) yields continuity of

ι : X1
(0,T ) → [X1

(0,T ), X
0
(0,T )]1−s (A.21)

with norm bounded by T 1−s. Interpolating (A.20) and (A.21) yields continuity as a mapping

ι : [X1
(0,T ), X

0
(0,T )]1−s−α → [X1

(0,T ), X
0
(0,T )]1−s

with norm bounded by Tα, since reiteration gives

[X1
(0,T ), [X

1
(0,T ), X

0
(0,T )]1−s] 1−s−α

1−s
= [X1

(0,T ), X
0
(0,T )]1−s−α

with equal norms due to I3.

Lemma A.13. Let X1, X2 be real, separable Hilbert spaces and s ∈ (0, 1) \ {1
2}. Let K be

a linear operator that is continuous as a mapping X1 → X2 and f ∈ Hs((0, T ), X1). Then,

‖K(f)‖Hs((0,T ),X2) ≤ C‖f‖Hs((0,T ),X1)
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with a constant C independent of T .

Proof. Let −∞ < T1 < T2 ≤ ∞ The operator K̃ defined by K̃(f)(t) = K(f(t)) for a.e.
t ∈ (T1, T2) is continuous as a mapping L2((T1, T2), X1) → L2((T1, T2), X2) and as a map-
ping H1((T1, T2), X1) → H1((T1, T2), X2) with norms bounded by C independent of T ,
since ∂tK̃(f) = K̃(∂tf). For f ∈ H1((T1, T2), X1) with f(T1) = 0 we obtain K̃(f)(T1) =
K(f(T1)) = 0. Therefore, K̃ is continuous as a mapping (X1)0

(T1,T2) → (X2)0
(T1,T2) and as a

mapping (X1)1
(T1,T2) → (X2)1

(T1,T2) with norms at most C. By I2,

K̃ : Hs((T1, T2), X1)→ Hs((T1, T2), X2),

K̃ : [(X1)1
(T1,T2), (X1)0

(T1,T2)]1−s → [(X2)1
(T1,T2), (X2)0

(T1,T2)]1−s,
(A.22)

are continuous with norms at most C. By definitions (A.1) and (A.12) the assertion is shown
for s ∈ (0, 1

2). Moreover, the definition (A.11) of L on (0, T ) implies for s ∈ (1
2 , 1)

L(K̃(f)) = (K̃(f))(0)T−1
f (Tf − t) = K(f(0)T−1

f (Tf − t)) = K(L(f)(t)) = K̃(L(f)).

(A.23)

By (A.22) and (A.23),

‖K̃(f)− L(K̃(f))‖[(X2)1
(0,T )

,(X2)0
(0,T )

]1−s = ‖K̃(f − L(f))‖[(X2)1
(0,T )

,(X2)0
(0,T )

]1−s

≤ C‖f − L(f)‖[(X1)1
(0,T )

,(X1)0
(0,T )

]1−s ,

|||L(K̃(f))|||Hs((0,∞),X2) = |||K̃(L(f))|||Hs((0,∞),X2) ≤ C|||L(f)|||Hs((0,∞),X1),

with a constant C independent of T .

Lemma A.14. Let X be a real, separable Hilbert space, s ≥ 0 such that s + 1
2 /∈ N and

T1 < T2. Then,
‖u‖Hs((T1,T2),X) = ‖ũ‖Hs((0,T2−T1),X),

for all u ∈ Hs((T1, T2), X), where ũ(t) := u(t + T1) for (a.e.) t ∈ (0, T2 − T1).

Proof. For s ∈ N0 the assertion holds true. Let s ∈ (0, 1) \ {1
2}. Let T̃2 > T1 (T̃2 = ∞ not

excluded). It holds

‖u‖H1((T1,T̃2),X) = ‖ũ‖H1((0,T̃2−T1),X),

‖u‖L2((T1,T̃2),X) = ‖ũ‖L2((0,T̃2−T1),X),

for all u ∈ H1((T1, T̃2), X), and u ∈ L2((T1, T̃2), X) respectively, and ũ(t) = u(t+T1) for (a.e.)
t ∈ (0, T̃2 − T1). Interpolation and I2 yields continuity of the mapping u 7→ ũ as a mapping
from Hs((T1, T̃2), X)→ Hs((0, T̃2− T1), X) and as a mapping from [X1

(T1,T̃2)
, X0

(T1,T̃2)
]1−s →

[X1
(0,T̃2−T1)

, X0
(0,T̃2−T1)

]1−s with continuity constants bounded by 1. Analogously, we obtain

continuity of the mapping ũ 7→ u as a mapping from Hs((0, T̃2 − T1), X)→ Hs((T1, T̃2), X)
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and as a mapping from [X1
(0,T̃2−T1)

, X0
(0,T̃2−T1)

]1−s → [X1
(T1,T̃2)

, X0
(T1,T̃2)

]1−s with continuity
constants bounded by 1. Hence,

‖u‖Hs((T1,T̃2),X) = ‖ũ‖Hs((0,T̃2−T1),X),

‖u‖[X1
(T1,T̃2)

,X0
(T1,T̃2)

]1−s = ‖ũ‖[X1
(0,T̃2−T1)

,X0
(0,T̃2−T1)

]1−s .

Furthermore, L̃(u) = L(ũ) in case s ∈ (1
2 , 1), where L̃(u)(t) := L(u)(t+T1) for t ∈ (0, T2−T1).

This yields the result for s ∈ (0, 1) \ {1
2}. The proof for s ≥ 1 such that s + 1

2 /∈ N is
straightforward.

With these Lemmas it is straightforward to verify properties P1 - P8.

A.1.2. Definition via Sobolev-Slobodeckij-Norm

Alternatively, one can also construct a norm that satisfies properties P1 - P8 by using the
Sobolev-Slobodeckij norm. Let −∞ < T1 < T2 ≤ ∞. Let ‖ · ‖H0((T1,T2),X) := ‖ · ‖L2((T1,T2),X).

Furthermore, let for σ ∈ (0, 1) \ {1
2},

‖ · ‖Hσ((T1,T2),X) :=

{
(| · |2Hσ((T1,T2),X) + 1

σ

∫ T2

T1
(t− T1)−2σ‖ · (t)‖2Xdt)

1
2 if σ ∈ (0, 1

2),

(| · |2Hσ((T1,T2),X) + 1
σ

∫ T2

T1
(t− T1)−2σ‖(· − L(·))(t)‖2Xdt)

1
2 if σ ∈ (1

2 , 1),

(A.24)

where, for σ ∈ (1
2 , 1), L is chosen as a linear operator that is continuous as a mapping

L : Hσ((T1, T2), X)→ Hσ((T1,∞), X),

and such that there exists a constant C independent of ∆T := T2 − T1 such that

|L(u)|Hσ((T1,∞),X) ≤ C‖u(T1)‖X ,

and L(u)(T1) = u(T1), e.g., for fixed Tf > 0,

L(u)(t) =

{
u(T1)T−1

f (Tf + T1 − t) for t ∈ (T1, T1 + Tf ),

0 for t ∈ [T1 + Tf ,∞).

Lemma A.15. Let σ ∈ (0, 1) \ {1
2}. Then, there exist C∆T > 0 that depends on

∆T = T2 − T1 such that

|u|Hσ((T1,T2),X) ≤ ‖u‖Hσ((T1,T2),X) ≤ C∆T |u|Hσ((T1,T2),X)

for all u ∈ Hσ((T1, T2), X).

Proof. The first inequality follows directly from the definition of ‖·‖Hσ((T1,T2),X). The second
inequality is a direct consequence of [90, p. 57, Thm. 11.2 and p. 59, Thm. 11.3]. Even
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though the theorems [90, Thm. 11.2 - Thm. 11.3] are formulated in the scalar valued spaces,
the proofs of the theorems, as well as, [90, p. 47, Remark 9.5] imply the validity for X-valued
spaces. More precisely, the following holds:

• Let σ ∈ (0, 1
2) and u ∈ Hσ((T1, T2), X):

Due to [90, p. 60, Thm. 11.4] we know that

|ũ|Hσ(R,X) ≤ C∆T |u|Hσ((T1,T2),X)

for ũ(t) :=

{
u(t) if t ∈ (T1, T2),

0 else.
Thus, for T3 > T2, using [90, p.57, Thm. 11.2],

∫ T2

T1

(t− T1)−2σ‖u(t)‖2Xdt ≤
∫ T3

T1

(t− T1)−2σ‖ũ(t)‖2Xdt

≤ C|ũ|2Hσ((T1,T3),X) ≤ C|ũ|
2
Hσ(R,X) ≤ C∆T |u|2Hσ((T1,T2),X).

• Let σ ∈ (1
2 , 1) and u ∈ Hσ((T1, T2), X):

Let v := u − L(u), v2(t) := (T2 − T1)−1(t − T1)v(T2) for t ∈ (T1, T2) and define
v1 := v − v2. Due to [90, p. 62, Thm. 11.5], v1 ∈ Hσ

0 ((T1, T2), X) and, by [90, p. 60,
Thm. 11.4],

|ṽ1|Hσ(R,X) ≤ C∆T |v1|Hσ((T1,T2),X),

where ṽ1(t) :=

{
v1(t) if t ∈ (T1, T2),

0 else.
Furthermore, for T3 > T2, using [90, p. 59,

Thm. 11.3], ∫ T2

T1

(t− T1)−2σ‖v1(t)‖2Xdt ≤
∫ T3

T1

(t− T1)−2σ‖ṽ1(t)‖2Xdt

≤ C|ṽ1|2Hσ((T1,T3),X) ≤ C|ṽ1|2Hσ(R,X) ≤ C∆T |v1|2Hσ((T1,T2),X)

(A.25)

and ∫ T2

T1

(t− T1)−2σ‖v2(t)‖2Xdt =

∫ T2

T1

(t− T1)2−2σ(T2 − T1)−2‖v(T2)‖2Xdt

= (3− 2σ)−1(T2 − T1)1−2σ‖v(T2)‖2X
≤ C∆T |v|2Hσ((T1,T2),X).

(A.26)

Since |v2|Hσ((T1,T2);X) ≤ C∆T ‖v(T2)‖X ≤ C∆T |v|Hσ((T1,T2),X) and

|v|Hσ((T1,T2),X) ≤ |u|Hσ((T1,T2),X) + |L(u)|Hσ((T1,T2),X)

≤ |u|Hσ((T1,T2),X) + C‖u(T1)‖X ≤ C∆T |u|Hσ((T1,T2),X),
(A.27)

where the last inequality follows from the equivalence of the Sobolev-Slobodeckij norm
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to interpolation norms (Remark 2.7) and [90, p.41, Proof of Thm. 9.4]. (A.25), (A.26)
and (A.27) imply ∫ T2

T1

(t− T1)−2σ‖v(t)‖2Xdt ≤ C∆T |u|2Hσ((T1,T2),X).

Lemma A.16. Let Tf ≥ T and σ ∈ (0, 1) \ {1
2}. Then, the extension operator

Extu :=

{
0 for t ∈ (T − Tf , 0),

u(t) for t ∈ (0, T ),

is continuous as a mapping Y σ
(0,T ) → Y σ

(T−Tf ,T ) with norm bounded by 1.

Proof. Direct computations show that for u ∈ Y σ
(0,T ),

‖u‖Hσ((0,T ),X) = |Ext(u)|Hσ((−∞,T ),X) = ‖Ext(u)‖Hσ((T−Tf ,T ),X). (A.28)

This can be verified as follows: It holds that

|Ext(u)|2Hσ((−∞,T ),X) =

∫ T

−∞

∫ T

−∞

‖Ext(u)(t)− Ext(u)(s)‖2X
|t− s|2σ+1

dsdt + ‖Ext(u)‖2L2((−∞,T ),X).

We know that

‖Ext(u)‖L2((−∞,T ),X) = ‖Ext(u)‖L2((T−Tf ,T ),X) = ‖u‖L2((0,T ),X),

further, ∫ T

−∞

∫ T

−∞

‖Ext(u)(t)− Ext(u)(s)‖2X
|t− s|2σ+1

dsdt

=

∫ T

0

∫ T

0

‖u(t)− u(s)‖2X
|t− s|2σ+1

dsdt + 2

∫ T

0

∫ 0

−∞

‖u(t)‖2X
|t− s|2σ+1

dsdt

=

∫ T

0

∫ T

0

‖u(t)− u(s)‖2X
|t− s|2σ+1

dsdt + 2

∫ T

0
‖u(t)‖2X

∫ ∞
t

q−2σ−1dqdt

=

∫ T

0

∫ T

0

‖u(t)− u(s)‖2X
|t− s|2σ+1

dsdt +
1

σ

∫ T

0
t−2σ‖u(t)‖2Xdt,

and, analogously,∫ T

−∞

∫ T

−∞

‖Ext(u)(t)− Ext(u)(s)‖2X
|t− s|2σ+1

dsdt

=

∫ T

T−Tf

∫ T

T−Tf

‖Ext(u)(t)− Ext(u)(s)‖2X
|t− s|2σ+1

dsdt + 2

∫ T

T−Tf

∫ T−Tf

−∞

‖Ext(u)(t)‖2X
|t− s|2σ+1

dsdt
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=

∫ T

0

∫ T

0

‖Ext(u)(t)− Ext(u)(s)‖2X
|t− s|2σ+1

dsdt +
1

σ

∫ T

0
(t− (T − Tf ))−2σ‖Ext(u)(t)‖2Xdt.

Lemma A.17. Let 0 < T ≤ Tf , σ ∈ (0, 1) \ {1
2} and X be a Hilbert space. Then, the

restriction operator
R(·)(t) = ·(t)

is continuous as a mapping Hσ((0, Tf ), X)→ Hσ((0, T ), X) with norm bounded by 1.

Proof. Follows from the definition of the norm (A.24).

Lemma A.18. Let Tf ≥ T > 0, X be a Hilbert space and σ ∈ (0, 1) \ {1
2}. Furthermore,

let u ∈ Hσ((T − Tf , T ), X) be such that u|(T−Tf ,0) = 0. Then,

‖u‖Hσ((0,T ),X) = ‖u‖Hσ((T−Tf ,T ),X).

Proof. Follows due to (A.28).

Lemma A.19. Let X be a Hilbert space, σ ∈ [0, 1) \ {1
2} and α > 0 be chosen such that

σ + α ∈ (0, 1) \ {1
2}. Then, there exists a constant C independent of T such that

‖u‖Hσ((0,T ),X) ≤ CTα‖u‖Hσ+α((0,T ),X),

for all u ∈ Y σ+α
(0,T ).

Proof. We have

‖u‖2L2((0,T ),X) ≤ T
2(σ+α)

∫ T

0
t−2(σ+α)‖u(t)‖2Xdt ≤ T 2(σ+α)‖u‖2Hσ+α((0,T ),X). (A.29)

In addition,∫ T

0

∫ T

0

‖u(s)− u(t)‖2X
|s− t|2σ+1

dsdt ≤ T 2α

∫ T

0

∫ T

0

‖u(s)− u(t)‖2X
|s− t|2(σ+α)+1

dsdt ≤ T 2α‖u‖2Hσ+α((0,T ),X)

(A.30)

and ∫ T

0
t−2σ‖u(t)‖2Xdt =

∫ T

0
t2αt−2(σ+α)‖u(t)‖2Xdt ≤ T 2α

∫ T

0
t−2(σ+α)‖u(t)‖2Xdt. (A.31)

Combining (A.29), (A.30) and (A.31) yields the assertion.
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Lemma A.20. Let X be a Hilbert space, σ ∈ [0, 1) \ {1
2}. Then, there exists a constant C

independent of T such that

‖u‖Hσ((0,T ),X) ≤ CT 1−σ‖u‖H1((0,T ),X),

for all u ∈ Y 1
(0,T ).

Proof. Let u ∈ Y 1
(0,T ). Since u(0) = 0 and due to Hölders’ inequality,

‖u‖2L2((0,T ),X) =

∫ T

0
‖
∫ t

0
∂tu(τ)dτ‖2Xdt ≤

∫ T

0
t

∫ t

0
‖∂tu(τ)‖2Xdτdt ≤

1

2
T 2‖u‖2H1((0,T ),X).

(A.32)

Moreover, for σ ∈ (0, 1
2),∫ T

0

∫ T

0

‖u(s)− u(t)‖2X
|s− t|1+2σ

dsdt = 2

∫ T

0

∫ t

0

‖u(s)− u(t)‖2X
|s− t|1+2σ

dsdt

≤ 2

∫ T

0

∫ t

0
(t− s)−2σ

∫ t

s
‖∂tu(τ)‖2Xdτdsdt

≤ 2‖u‖2H1((0,T ),X)

∫ T

0

∫ t

0
(t− s)−2σdsdt =

2

(1− 2σ)(2− 2σ)
T 2−2σ‖u‖2H1((0,T ),X).

(A.33)

and for σ ∈ (1
2 , 1),∫ T

0

∫ T

0

‖u(s)− u(t)‖2X
|s− t|1+2σ

dsdt = 2

∫ T

0

∫ t

0

‖u(s)− u(t)‖2X
|s− t|1+2σ

dsdt

≤ 2

∫ T

0

∫ t

0
(t− s)−2σ

∫ t

s
‖∂tu(τ)‖2Xdτdsdt = 2

∫ T

0

∫ t

0

∫ τ

0
(t− s)−2σ‖∂tu(τ)‖2Xdsdτdt

= 2

∫ T

0

∫ t

0
(2σ − 1)−1((t− τ)−2σ+1 − t−2σ+1)‖∂tu(τ)‖2Xdτdt

= 2(2σ − 1)−1

∫ T

0

∫ T

τ
((t− τ)−2σ+1 − t−2σ+1)‖∂tu(τ)‖2Xdtdτ

= 2(2σ − 1)−1(2− 2σ)−1

∫ T

0
((T − τ)2−2σ − T 2−2σ + τ2−2σ)‖∂tu(τ)‖2Xdτ

≤ 2(2σ − 1)−1(2− 2σ)−1T 2−2σ‖u‖2H1((0,T ),X).

(A.34)

Furthermore, for σ ∈ (0, 1),∫ T

0
t−2σ‖u(t)‖2Xdt =

∫ T

0
t−2σ‖

∫ t

0
∂tu(τ)dτ‖2Xdt

≤
∫ T

0
t1−2σ

∫ t

0
‖∂tu(τ)‖2Xdτdt ≤

1

2− 2σ
T 2−2σ‖u‖2H1((0,T ),X).

(A.35)
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(A.32), (A.33), (A.34) and (A.35) imply the assertion.

Lemma A.21. Let X1, X2 be real, separable Hilbert spaces and σ ∈ (0, 1) \ {1
2}. Let K be

a linear operator that is continuous as a mapping X1 → X2 and f ∈ Hσ((0, T ), X1). Then,

‖K(f)‖Hσ((0,T ),X2) ≤ C‖f‖Hσ((0,T ),X1)

with a constant C independent of T .

Proof. Follows directly from the definition (A.24) of the norm.

Lemma A.22. Let X be a real, separable Hilbert space, σ ∈ [0, 1]\{1
2} and T1 < T2. Then,

‖u‖Hσ((T1,T2),X) = ‖ũ‖Hσ((0,T2−T1),X),

for all u ∈ Hσ((T1, T2), X), where ũ(t) := u(t + T1) for (a.e.) t ∈ (0, T2 − T1).

Proof. Follows from the definition (A.24) of the norm and substitution t̃ := t− T1.

For s = m+ σ, m ∈ N, σ ∈ [0, 1) \ {1
2}, define

‖ · ‖Hs((T1,T2),X) =

{
(‖ · ‖2Hm−1((T1,T2),X) + ‖∂mt (·)‖2Hσ((T1,T2),X))

1
2 if σ ∈ (0, 1) \ {1

2},
‖ · ‖Hm((T1,T2),X) if σ = 0.

and with Lemmas A.15 - A.21 it is straightforward to verify properties P1 - P8 of the norm.
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