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Zusammenfassung

Viele multivariate Zeitreihenmodelle basieren auf der multivariaten Normalverteilung,
obwohl das nicht immer gerechtfertigt ist. In dieser Arbeit wird eine Reihe von copula-
basierten Ansätzen präsentiert, um Zeitreihen zu modellieren. Mit der Hilfe von Copulas
können z.B. symmetrische und asymmetrische Tailabhängigkeiten modelliert werden. Dies
wäre mit einer multivariaten Normalverteilung nicht möglich. Zum Schätzen der neu-
entwickelten Modelle verwenden wir Markov-Ketten-Monte-Carlo (MCMC) Methoden,
wie z.B. Hamiltonian Monte Carlo oder Elliptical Slice Sampling.

Zuerst wird ein Ein-Faktor Copula Modell vorgestellt. Dieses Modell ist eine Ver-
allgemeinerung von stochastischen Volatilitätsmodellen mit einem Faktor und konstan-
ten Korrelationen. Zur Parameterschätzung wird ein MCMC Verfahren entwickelt, bei
dem die Marginalmodelle und die Copula gemeinsam geschätzt werden. Im Gegensatz
zu einem zweistufigem Schätzverfahren wird die Unsicherheit in den Schätzungen der
Marginalmodelle nicht mehr ignoriert und wir erwarten präzisere Schätzwerte für die
Modellparameter.

Außerdem wird ein effizientes MCMC Verfahren entwickelt mit dem wir die Parameter
einer bestimmten Klasse von Zustandsraummodellen mit univariater autoregressiver
Zustandsgleichung schätzen können. Diese Klasse beinhaltet univariate stochastische
Volatilitätsmodelle und dynamische bivariate Copula Modelle. Unser Ansatz basiert auf
Elliptical Slice Sampling, einer adaptiven Metropolis-Hastings Methode und auf einer
Ancillarity-Sufficiency Interweaving Strategie. In einer Simulationsstudie wird mit dy-
namischen bivariaten Copula Modellen untersucht, wie effizient das neue Verfahren ist.

Mithilfe der Vine Copula Theorie, werden die dynamischen bivariaten Copula Mo-
delle zu beliebigen Dimensionen erweitert. Dadurch erhalten wir eine neue Klasse von
dynamischen Vine Copula Modellen. In dieser Modellklasse sind allgemeine reguläre Vine
Strukturen erlaubt. Wir beschränken uns also nicht nur auf C-vine oder D-vine Modelle.
Außerdem wird ein erstes Bayesianisches Schätzverfahren für solche Modelle entwickelt.

Die bis jetzt erwähnten Modelle sind Zustandsraummodelle, bei denen die Zustandsglei-
chungen durch normalverteilte autoregressive Prozesse beschrieben werden. Zusätzlich
werden auch flexiblere copula-basierte Zustandsraummodelle entwickelt, bei denen sowohl
die Beobachtungsgleichung als auch die Zustandsgleichung durch Copulas spezifiziert sind.
Wir betrachten dabei ein eindimensionales und ein mehrdimensionales Modell. Für die
Schätzung dieser Modelle verwenden wir den No-U-Turn Sampler, eine Erweiterung von
Hamiltonian Monte Carlo.

Alle entwickelten Modelle werden auf echte Daten angewandt, wie z.B. auf Finanzzeitrei-
hen und Luftverschmutzungsdaten, und mit relevanten Benchmark-Modellen verglichen.
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Abstract

Many time series models rely on the assumption of multivariate normality, although
this assumption is not always appropriate. We present a variety of Bayesian (vine) copula
based approaches to provide more flexible time series models. Relying on copulas allows
to model features which cannot be described with a multivariate normal distribution, such
as symmetric or asymmetric tail dependence. Estimation of these models is handled with
Markov Chain Monte Carlo (MCMC) methods. This includes Hamiltonian Monte Carlo
and elliptical slice sampling.

The first contribution is a single factor copula based stochastic volatility model, a
generalization of Gaussian stochastic volatility models with one factor and constant cor-
relations. For this model we develop joint Bayesian inference using Hamiltonian Monte
Carlo within Gibbs sampling, instead of relying on the popular two-step approach. In
contrast to the two-step approach, we expect more accurate estimates since uncertainty
in the estimation of the marginal distribution is no longer ignored.

Next, an efficient MCMC approach for a class of nonlinear state space models with uni-
variate autoregressive state equation is developed. This class includes stochastic volatility
models and dynamic bivariate copula models. The sampler is based on elliptical slice sam-
pling, adaptive Metropolis-Hastings and on an ancillarity-sufficiency interweaving strat-
egy. Its sampling efficiency is investigated through an extensive simulation study for
bivariate dynamic copula models.

Using the vine copula framework, we scale the dynamic bivariate copula model to
arbitrary dimensions. This yields a class of dynamic vine copula models. In contrast to
previous work on dynamic vine copulas, we develop a first Bayesian estimation procedure
and our class allows for general vine structures instead of restricting the approach to only
C-vine or D-vine copulas. The Bayesian approach is based on a novel approximation of
the posterior distribution.

While the above mentioned models can be considered as state space models, where
the state equations are described by Gaussian autoregressive processes, we also develop
a very flexible class of copula based state space models. We study an univariate and
a multivariate copula based state space model. In the multivariate model we assume
a single factor structure in the observation equation. These novel state space models
allow for great flexibility by specifying the observation as well as the state equation with
copulas. For the estimation of these models we employ STAN’s No-U-Turn sampler, an
extension of Hamiltonian Monte Carlo.

All the proposed models are illustrated with real data, including financial returns data
and atmospheric pollution measurements data, and are compared to relevant benchmark
models showing superior performance.
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1 Introduction

1.1 Motivation

In today’s world, more and more data is becoming available. Many data sets are collected
over time and can therefore be analyzed within the time series framework, such as finan-
cial returns data or air pollution measurements. The availability of this data together
with increasing computing power offers great potentials for more accurate data-driven
decision making. Therefore, it is necessary to correctly understand and analyze data sets.
Since the data sets usually consist of not only one but several variables, it is necessary
to understand the dependency among these variables in addition to the individual behav-
ior. Misspecification of the dependence structure can have severe effects. For example,
in finance, the risk associated with a portfolio is highly influenced by the dependence
structure among the assets that make up the portfolio (Embrechts et al. (2002)).

There are multivariate distributions, such as the multivariate normal distribution,
which are just not flexible enough to describe complex dependence structures. A multi-
variate normal distribution can neither accomodate symmetric nor asymmetric tail depen-
dence. Sklar (1959) provides a very useful framework to analyze dependencies. We can
separate the individual behavior, described by the marginal distributions, from the joint
behavior, characterized by the copula. The copula, a multivariate distribution function
with uniform on [0, 1] distributed margins, contains all information about the dependence
structure. There exist different classes of copulas, such as elliptical and Archimedean cop-
ulas, with different properties and limitations. For example, all bivariate margins of ex-
changeable Archimedean copulas have the same distribution. Vine copulas provide a very
rich and flexible model class. They are constructed from bivariate building blocks, which
can be chosen from potentially different bivariate copula families. Due to their flexibility,
vine copulas have been applied in many different areas, including finance (Brechmann and
Czado (2013), Aas (2016)), medicine (Killiches and Czado (2018), Barthel et al. (2018))
and environmental sciences (Erhardt et al. (2015), Möller et al. (2018)).

The main motivation of this thesis is to develop novel Bayesian time series method-
ology, utilizing flexible bivariate copula specifications as building blocks. In particular,
we investigate a generalization of single factor stochastic volatility models using the fac-
tor copula model of Krupskii and Joe (2013). Further, we study bivariate copulas and
vine copulas with dynamic parameters, and lastly, we extend Gaussian linear state space
models using copula specifications in the observation and in the state equation. To make
these models applicable, efficient estimation procedures are required. For this purpose,
we either use existing or develop our own Markov Chain Monte Carlo methods. Further,
we illustrate the novel methodology with real data and show that it is capable to describe
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1. INTRODUCTION

complex multivariate time series more appropriate than conventional approaches.

1.2 Outline of the thesis
The thesis is based on five research papers.

• Chapter 3: Kreuzer A. and Czado C. (2019a). Bayesian inference for a single factor
copula stochastic volatility model using Hamiltonian Monte Carlo. Submitted to
Econometrics and Statistics. (arXiv:1808.08624v2)

• Chapter 4: Kreuzer A. and Czado C. (2019c). Efficient Bayesian inference for nonlin-
ear state space models with univariate autoregressive state equation. Under revision
at the Journal of Computational and Graphical Statistics. (arXiv:1902.10412v3)

• Chapter 5: Kreuzer A. and Czado C. (2019b). Bayesian inference for dynamic vine
copulas in higher dimensions. Submitted to Econometrics and Statistics.
(arXiv:1911.00702v1)

• Chapter 6: Kreuzer A., Dalla Valle L. and Czado C. (2019a). A Bayesian Non-linear
State Space Copula Model to Predict Air Pollution in Beijing. Under revision at
the Annals of Applied Statistics. (arXiv:1903.08421v2)

• Chapter 7: Kreuzer A., Dalla Valle L. and Czado C. (2019b). Bayesian Multivariate
Nonlinear State Space Copula Models. Submitted to the Journal of the American
Statistical Association. (arXiv:1911.00448v1)

After the introduction we review basic concepts which are needed throughout the
thesis, such as state space models, copulas and Markov Chain Monte Carlo (MCMC)
methods. Each of the Chapters 3 to 7 is associated with one of the research papers. All
papers include novel approaches to model time series data. The presented approaches
belong to the general class of state space models, and can be characterized by an obser-
vation and a state equation, as shown in Table 1.1. Chapter 8 provides ideas for future
research and concludes the thesis.

Chapter domain observation equation dynamic state equation
3 Rd factor copula+ normal margins volatility Gauss-AR(1)
4 [0, 1]2 bivariate copula copula parameter Gauss-AR(1)
5 [0, 1]d vine copula copula parameter Gauss-AR(1)
6 [0, 1] conditional bivariate copula latent factor D-vine (1-truncated)
7 [0, 1]d factor copula latent factor D-vine (1-truncated)

Table 1.1: Overview of the different models proposed in the thesis. Each chapter is
associated with one model. The models are defined on different domains: Rd, [0, 1],
[0, 1]2 or [0, 1]d, with an arbitrary d ∈ {2, 3, 4, . . .}. Common to all models is that they
can be analyzed within the state space framework and are therefore characterized by
an observation and a state equation. In the state equation we either use a Gaussian
autoregressive process of order 1 (Gauss-AR(1)) or a D-vine truncated after the first tree
(D-vine (1-truncated)). The column ”dynamic” indicates which parameters are modeled
dynamically through the state equation.
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1.2. OUTLINE OF THE THESIS

In the following we give a more detailed outline for Chapters 3 to 7. In Chapter 3 we
propose a single factor copula based stochastic volatility model for multivariate financial
time series. The model combines stochastic volatility models for the margins with a single
factor copula for the dependence. Factor copula models, as proposed by Krupskii and Joe
(2013), provide more flexibility than Gaussian factor models by allowing for different
bivariate copulas that link observed variables to the latent factor. Instead of relying
on a two-step estimation approach, we provide full Bayesian inference and estimate all
model parameters jointly using Hamiltonian Monte Carlo within Gibbs sampling. This
approach also includes automatic pair copula family selection. Further, it is demonstrated
that the proposed approach results in more accurate value at risk forecasts than a two-step
procedure and other relevant benchmark models.

While in Chapter 3 the dependence parameters are assumed to be constant over time,
this assumption might not always be appropriate. To allow for time-varying dependence,
Almeida and Czado (2012) propose a dynamic bivariate copula model, which is a state
space model with univariate autoregressive state equation. Two problems are considered
in Chapter 4: First, we deal with the estimation of nonlinear state space models with
univariate autoregressive state equation. This is an important model class containing
established models, such as stochastic volatility models or the above mentioned dynamic
bivariate copula model. We develop a MCMC sampler, which relies on elliptical slice
sampling, adaptive Metropolis-Hastings updates and on an ancillarity-sufficiency inter-
weaving strategy. The efficiency of the proposed sampler is illustrated through simulated
data. Second, we deal with modeling time-varying asymmetric dependence structures.
Therefore, we propose a dynamic mixture copula model, which can be estimated with
our proposed approach for nonlinear state space models with univariate autoregressive
state equation. The dynamic mixture copula is used to model the volatility return rela-
tionship, the relationship between an index and the corresponding volatility index. We
demonstrate that our model yields more accurate one-day ahead predictions than conven-
tional approaches, such as dynamic or constant Student t copula models or a bivariate
DCC-GARCH model.

In Chapter 5 the vine copula framework is utilized to scale the dynamic bivariate
copula model of Almeida and Czado (2012), which has already been studied in Chapter 4,
to arbitrary dimensions, yielding the dynamic vine copula model. The bivariate dynamic
copula model was already extended to dynamic D-vine and dynamic C-vine copula models
by Almeida et al. (2016) and Goel and Mehra (2019), respectively. Our contributions are
the development of a first Bayesian estimation approach and the extension to general
vine structures. Our estimation approach is based on an approximation of the posterior
distribution and is motivated by the algorithm of Dissmann et al. (2013). The model is
employed to study the time-varying dependence among 21 exchange rates. For comparison
we also estimate a constant vine copula, a dynamic D-vine and a dynamic C-vine copula
model. This comparison shows superior performance of the proposed dynamic vine copula
model with respect to one-day ahead predictive accuracy.

While in Chapters 3, 4 and 5 we discuss state space models, where the state equations
are described by Gaussian autoregressive processes of order 1, we introduce in Chapter
6 novel state space methodology based on copulas. We propose a univariate state space
model, where we specify the observation and the state equation with copulas. This allows
for flexible modeling and generalizes linear Gaussian state space models. Our application
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1. INTRODUCTION

to air pollution measurements shows that the extension is necessary, since the linear
Gaussian state space model is not able to describe the time-dynamics of the air pollution
data appropriately. Further, our approach is illustrated with predictions of future air
pollution levels under different climate conditions.

Chapter 7 deals with the extension of the univariate copula state space model, intro-
duced in Chapter 6, to a copula state space model with multivariate observations. To
capture the dependence among different observed variables, we propose to use a single
factor copula in the observation equation. The approach is illustrated with an applica-
tion to air pollution measurements. It is shown that the structure with a single factor is
appropriate for the analyzed data set and that the proposed approach yields more accu-
rate predictions than a Gaussian state space model and than Bayesian additive regression
trees.

4



2 Preliminaries

In this chapter, basic concepts which are used in later chapters of the thesis are introduced:
State space models (Section 2.1), copulas (Section 2.2) and Markov Chain Monte Carlo
methods (Section 2.3).

2.1 State space models

State space models play a key role in this thesis, since all models we propose can be
analyzed within the state space framework. We also discuss a specific class of state space
models, namely stochastic volatility models, which are employed in Chapters 3, 4 and 5.

2.1.1 General state space model formulation
State space models provide a very general and powerful framework to analyze dynamical
systems that vary over time and have been applied in many different fields, including
ecology (Patterson et al. (2008)), neuroscience (Paninski et al. (2010)) and economics
(Harvey et al. (1994), Kim et al. (1998), Koop et al. (2010)). Within the general state
space framework, a model contains an observation and a state equation. The observation
equation describes how the observations relate to latent states through a conditional
density of the observation vector at time t, Yt ∈ Rd, given the latent states at time t,
st ∈ Rp, while the state equation describes the evolution of the latent states over time.
A general state space model (Durbin and Koopman (2012), Chapter 9) is given by

Yt|st ∼ f(yt|st) (2.1)

st|st−1 ∼ π(st|st−1) (2.2)

with initial condition s0 ∼ π(s0), for t = 1, . . . , T . Here (2.1) is called observation equa-
tion and (2.2) is the state equation. Similar to Durbin and Koopman (2012) (Chapter
9), we assume throughout the thesis that Equations (2.1) and (2.2) allow the following
density factorization

f(y1, . . . ,yT |s1, . . . sT ) =
T∏
t=1

f(yt|st)

π(s0, . . . sT ) = π(s0)
T∏
t=1

π(st|st−1).
(2.3)

5



2. PRELIMINARIES

A special class of state space models are linear Gaussian state space models (Durbin
and Koopman (2012), Chapter 3), where the observation and state equations are spec-
ified by multivariate normal distributions. In the following we denote by Nk(µ,Σ) a
k-dimensional normal distribution with mean vector µ and covariance matrix Σ. A linear
Gaussian state space model may be formulated as

Yt = M obs
t st + εt

st = M lat
t st−1 + ηt, s0 ∼ Np(0,Σlat

0 )

for t = 1, . . . , T . Here, the error terms satisfy εt ∼ Nd(0,Σobs
t ) independently, ηt ∼

Np(0,Σlat
t ) independently, and εt is independent of ηt′ for t, t′ ∈ {1, . . . , T}. Further,

M obs
t ∈ Rd×p,M lat

t ∈ Rp×p and Σobs
t and Σlat

t are d× d and p× p covariance matrices.

2.1.2 Univariate stochastic volatility models
Univariate stochastic volatility (SV) models (Kim et al. (1998)) are popular for modeling
financial time series. They are state space models, where the state equation describes the
evolution of the log variance over time, i.e. the model allows for time-varying volatility,
which is characteristic for financial data. In the following we introduce the SV model
with Gaussian errors based on Kreuzer and Czado (2019a) and the SV model with skew
Student t errors based on Kreuzer and Czado (2019c).

The stochastic volatility model with Gaussian errors

In the SV model (Kim et al. (1998)), the log variances (s1, . . . , sT ) of a conditionally
normally distributed vector (Z1, . . . , ZT ) are modeled with a latent autoregressive process
of order 1 (AR(1) process). This AR(1) process has mean parameter µ ∈ R, persistence
parameter φ ∈ (−1, 1) and standard deviation parameter σ ∈ (0,∞). More precisely, the
stochastic volatility (SV) model is given by

Zt = exp
(
st
2

)
εt,

st = µ+ φ(st−1 − µ) + σηt,
(2.4)

where s0|µ, φ, σ ∼ N
(
µ, σ2

1−φ2

)
and εt, ηt,∼ N(0, 1) independently, for t = 1, . . . , T .

Kastner and Frühwirth-Schnatter (2014) develop a MCMC approach for this model,
which uses the ancillarity-sufficiency interweaving strategy proposed by Yu and Meng
(2011). This strategy leads to an efficient MCMC procedure which is implemented in
the R package stochvol (Kastner (2016)). We discuss the prior densities proposed by
Kastner (2016), since we also utilize them later. The following priors for µ, φ and σ are
chosen

µ ∼ N(0, 1002), φ+ 1
2 ∼ Beta(5, 1.5), σ2 ∼ χ2

1. (2.5)

The prior for µ is rather uninformative, whereas the prior for φ puts more mass on
higher values for the persistence parameter. High persistence parameters are characteristic
for financial time series. The prior choice for σ2 differs from the popular inverse Gamma

6



2.1. STATE SPACE MODELS

prior. The χ2
1 prior is equivalent to a standard normal prior on±

√
σ2, which was suggested

by Frühwirth-Schnatter and Wagner (2010). Frühwirth-Schnatter and Wagner (2010)
argue that this prior is less influential than an inverse Gamma prior for true values of σ2

close to zero. In contrast to the inverse Gamma prior, the χ2
1 prior has more mass close

to zero.
The chosen prior density of (µ, φ, σ, s0, . . . , sT ) is given by

π(µ, φ, σ, s0, . . . , sT ) = π(s0, . . . , sT |µ, φ, σ)π(µ, φ, σ)

= ϕ

(
s0

∣∣∣∣µ, σ2

1− φ2

)
T∏
t=1

ϕ
(
st|µ+ φ(st−1 − µ), σ2

)
π(µ)π(φ)π(σ),

(2.6)

where ϕ (·|µnormal, σ2
normal) denotes the univariate normal density with mean µnormal and

variance σ2
normal and π(·) denotes the corresponding prior density as specified in (2.5).

The stochastic volatility model with skew Student t errors

To introduce the SV model with skew Student t errors, we first discuss the skew Student
t distribution. The density of the univariate skew Student t distribution (Azzalini and
Capitanio (2003), Frühwirth-Schnatter and Pyne (2010)) with parameters ξ ∈ R, ω ∈
(0,∞), α ∈ R and df ∈ (0,∞) is given by

st(x|ξ, ω, α, df) = 2
ω
t

(
x− ξ
ω

∣∣∣∣df
)
T

αx− ξω

√√√√√ df + 1(
x−ξ
ω

)2
+ df

∣∣∣∣∣∣∣∣∣df + 1

 ,

where t(·|df) is the density function of the univariate Student t distribution with df
degrees of freedom and T (·|df) denotes the corresponding distribution function. The
expectation and variance of a random variable X following a skew Student t distribution
with parameters ξ, ω, α as above and df > 2 are given by

E(X) = ξ + ωbdfδ, and V ar(X) = ω2
(

df

df − 2 − b
2
dfδ

2
)
,

where δ = α√
1+α2 and bdf =

√
df
π

Γ( df−1
2 )

Γ( df2 )
(Arellano-Valle and Azzalini (2013)). If we set

ω =
√√√√ 1(

df
df−2 − b

2
dfδ

2
) and ξ = −ωbdfδ = −

√√√√ 1(
df
df−2 − b

2
dfδ

2
)bdfδ,

only the parameters α and df remain unknown and the random variable has zero mean
and a variance of one. We refer to the corresponding distribution as the standardized skew
Student t distribution. Its density is denoted by sst and is obtained as

sst(x|α, df) = st

x
∣∣∣∣∣∣∣−

√√√√ 1(
df
df−2 − b

2
dfδ

2
)bdfδ,

√√√√ 1(
df
df−2 − b

2
dfδ

2
) , α, df

 . (2.7)
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The density function sst(·|α, df) is visualized in Figure 2.1 for different values of α and
df .
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Figure 2.1: Visualization of the standardized skew Student t density function. The left
plot shows density curves with df = 5 and different values for α as specified in the legend.
The right plots shows density curves with α = 2 and different values for df as specified in
the legend.

To allow for heavy tails and skewness in the SV model, the normal distribution in the
observation equation of the SV model in (2.4) is replaced by a standardized skew Student
t distribution. This yields the stochastic volaility (SV) model with skew Student t errors
as considered by Abanto-Valle et al. (2015), which is given by

Yt = exp
(
st
2

)
εt

st = µ+ φ(st−1 − µ) + σηt,
(2.8)

where εt|α, df ∼ sst(εt|α, df) independently for t = 1, . . . , T . Further, µ, φ, σ, s0 and ηt are
chosen as in (2.4). To complete a Bayesian model specification, we equip the parameters
with prior distributions. For µ, φ and σ we use the same priors as given in (2.6) for the
SV model with Gaussian errors. For the additional parameters, α and df , we choose the
following prior distributions

α ∼ N(0, 100), df ∼ N>2(5, 25), (2.9)

where N>2 denotes the normal distribution truncated to (2,∞). We need to ensure that
df > 2, since the standardized skew Student t distribution would not be well defined
otherwise.

2.2 Copulas
Copulas provide a useful tool to describe dependencies. A d-dimensional copula C :
[0, 1]d → [0, 1] is a multivariate distribution function, where the corresponding marginals
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2.2. COPULAS

are uniformly distributed on [0, 1]. Thus, different copulas have the same margins and
therefore copulas can only differ in how the different margins interact with each other. In
this section we follow Czado (2019), unless stated otherwise.

2.2.1 Sklar’s theorem
Sklar (1959) showed that every multivariate distribution can be separated into its marginal
distributions and a copula. More precisely, for a d-dimensional random vector (Y1, . . . , Yd)
with joint distribution function F and marginal distribution functions F1, . . . , Fd, it holds
that

F (y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)), (2.10)
where C is a copula. The copula C is unique for absolutely continuous distributions.

This representation allows for a very flexible modeling approach. Each marginal can
be modeled separately in a first step. In the second step the marginals are glued together
with the copula C. Estimation of such a model can follow a similar procedure. In a first
step we obtain estimates for the marginal distribution functions denoted by F̂1, . . . , F̂d.
Then the marginals of the vector (F̂1(Y1), . . . , F̂d(Yd)) are approximately uniformly dis-
tributed on [0, 1] and the copula C can be estimated as the joint distribution function
of (F̂1(Y1), . . . , F̂d(Yd)). This two-step procedure is also called inference for margins and
was proposed by Joe and Xu (1996). For data Y = (ytj)t=1,...,T,j=1,...,d ∈ RT×d contain-
ing observations of (Y1, . . . , Yd), we further call (Fj(ytj))t=1,...,T,j=1,...,d copula data and
(F̂j(ytj))t=1,...,T,j=1,...,d pseudo copula data.

2.2.2 Dependence measures
Copula models are able to describe complex dependence structures which go beyond linear
correlation. Since Pearson’s correlation coefficient can only measure linear relationships
and depends on the marginal distribution, it might not be a good choice in the copula
world. A frequently used global dependence measure in copula modeling is Kendall’s τ
(Kendall (1938)). Kendall’s τ is a rank based dependence measure, which depends only
on the copula and not on the margins of a distribution.

For a continuous bivariate random vector (Y1, Y2) we denote by (Y11, Y12) and (Y21, Y22)
two independent and identically distributed copies of (Y1, Y2). Then Kendall’s τ between
Y1 and Y2 is defined as

τ(Y1, Y2) := P ((Y11 − Y21)(Y12 − Y22) > 0)− P ((Y11 − Y21)(Y12 − Y22) < 0). (2.11)

To estimate Kendall’s τ from n observations of the bivariate random vector (Y1, Y2),
denoted by (yi)i=1,...,n with yi = (yi1, yi2), we first define concordant and discordant pairs.
For i, j ∈ {1, . . . , n}, we call the pair (yi,yj)

• concordant if yi1 < yj1 and yi2 < yj2 or if yi1 > yj1 and yi2 > yj2 holds,

• discordant if yi1 < yj1 and yi2 > yj2 or if yi1 > yj1 and yi2 < yj2 holds,

• extra y1 pair if yi1 = yj1,

• extra y2 pair if yi2 = yj2.

9
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Note that the above mentioned condition for concordance is equivalent to (yi1−yj1)(yi2−
yj2) > 0 and the condition for discordance is equivalent to (yi1 − yj1)(yi2 − yj2) < 0.
We consider all

(
n
2

)
unordered pairs (yi,yj) with i 6= j and denote by Nc the number

of concordant pairs, by Nd the number of discordant pairs, by N1 the number of extra
y1 pairs and by N2 the number of extra y2 pairs. Then Kendall’s τ of (Y1, Y2) can be
estimated by the empirical Kendall’s τ

τ̂ := Nc −Nd√
Nc +Nd +N1

√
Nc +Nd +N2

.

In addition to the overall dependency, as measured with a global dependence measure
such as Kendall’s τ , one might be interested in more specific aspects of the dependence
structure. Tail dependence coefficients allow to measure the dependency of extreme events
in the tails. The upper and lower tail dependence coefficients, λU and λL, of a bivariate
distribution with copula C are defined as

λU := lim
v→1−

1− 2v +C(v, v)
1− v and λL := lim

v→0+

C(v, v)
v

.

2.2.3 Parametric copula families
In this section we introduce several parametric copula families, which are frequently used
throughout the thesis. A more detailed overview of different parametric copula families
and their properties is provided by Joe (2014) (Chapter 4) and by Czado (2019) (Chapter
3). Restricted to two dimensions, these families form the building blocks for vine copula
models, which we introduce in the next section. We denote by (u1, . . . , ud) a vector in the
d-dimensional hypercube, i.e. (u1, . . . , ud) ∈ [0, 1]d. If the marginals are independent, the
corresponding copula is the independence copula, which is our first example.
Independence copula: The d-dimensional independence copula C is given by

C(u1, . . . , ud) =
d∏
i=1

ui.

The inversion of Sklar’s theorem (see Section 2.2.1) provides a construction method
for copulas. For a joint distribution function F with invertible marginal distribution
functions F1, . . . , Fd, the corresponding copula C is obtained as

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud)).

Applying this method to the multivariate normal and multivariate Student t distribu-
tion yields the Gaussian and the Student t copula, respectively. These two copulas are
derived from elliptical distributions and belong to the class of elliptical copulas.
Gaussian copula: We denote by Φ the univariate standard normal distribution func-
tion and by ΦR the distribution function of the d-dimensional multivariate normal dis-
tribution with zero means, unit marginal variances and correlation matrix R. Then the
d-dimensional Gaussian copula with parameter R is given by

C(u1, . . . , ud) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)).

10
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Student t copula: Let Tν be the distribution function of the univariate Student t
distribution with ν > 0 degrees of freedom. Further, we denote by TR,ν the distribution
function of the multivariate central Student t distribution with ν degrees of freedom and
scale parameter matrix equal to a correlation matrix R. The d-dimensional Student t
copula with parameters ν and R is given by

C(u1, . . . , ud) = TR,ν(T−1
ν (u1), . . . , T−1

ν (ud)).

Another class of copulas is provided by Archimedean copulas. These copulas are
constructed from generator functions. These generator functions are not discussed here,
since they are not used in the thesis. For more details about Archimedean copulas and
their generator functions we refer to Nelsen (2007) (Chapter 4). We now introduce three
Archimedean copulas: The bivariate Clayton, Gumbel and Frank copula.
Clayton copula: For θ > 0, the Clayton copula is given by

C(u1, u2) = (u−θ1 + u−θ2 − 1)− 1
θ . (2.12)

The independence copula is obtained for θ → 0.
Gumbel copula: The Gumbel copula with parameter θ ≥ 1 is given by

C(u1, u2) = exp
(
−[(− ln(u1))θ + (− ln(u2))θ] 1

θ

)
. (2.13)

Frank copula: For θ ∈ (−∞,∞) \ {0},

C(u1, u2) = −1
θ

ln
(

1
1−exp(−θ) [(1− exp(−θ))− (1− exp(−θu1))(1− exp(−θu2))]

)
is the Frank copula with parameter θ.

For the above mentioned bivariate copulas, there is a one-to-one correspondence be-
tween the copula parameter and the associated Kendall’s τ . These relationships are
summarized in Table 2.1.

Family Kendall’s τ
Gaussian 2/π arcsin(ρ)
Student t 2/π arcsin(ρ)
Frank 1 + 4(D(θ)− 1)/θ
Clayton θ/(θ + 2)
Gumbel 1− 1/θ

Table 2.1: Copula families and the corresponding Kendall’s τ as a function of the copula
parameter. Here we consider the bivariate Gaussian and Student t copula. In the bivariate
case the matrix R of these copulas can be parametrized with one scalar parameter, the
correlation parameter ρ. Further, D(θ) is given by D(θ) =

∫ θ
0

x/θ
exp(x)−1dx.

Throughout the thesis, we will parametrize the copulas in Table 2.1 in terms of
Kendall’s τ , instead of the copula parameter ρ or θ. While the copula parameters ρ
or θ might have different interpretations for different copula families, the Kendall’s τ
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parameters can easily be compared among different families. To express that a copula
C depends on the Kendall’s τ parameter τ , we write C(u1, u2; τ) and the corresponding
density is denoted by c(u1, u2; τ).

The Gumbel and the Clayton copula cannot handle negative Kendall’s τ values. To
allow for more flexibility, copula densities can be rotated. For example, we can handle
negative dependencies by rotating the density of a Gumbel copula by 90◦. For a bivariate
copula C with copula density c, we consider 90◦, 180◦ and 270◦ counterclockwise rotations.
The corresponding densities are denoted by c90, c180 and c270 and are obtained as

• c90(u1, u2) := c(1− u2, u1)

• c180(u1, u2) := c(1− u1, 1− u2)

• c270(u1, u2) := c(u2, 1− u1) for all u1, u2 ∈ [0, 1].

The copula with density c180 obtained from a 180◦ rotation is the corresponding sur-
vival copula. Further, we employ rotations to define the extended Gumbel (eGumbel)
copula, with density

c(u1, u2; τ) =

cGumbel(u1, u2; τ) if τ ≥ 0
cGumbel(1− u2, u1;−τ) if τ < 0,

where cGumbel(·, ·; τ) is the density of the bivariate Gumbel copula parametrized in terms
of Kendall’s τ . The extended Clayton (eClayton) copula is obtained similarly.

2.2.4 Vine copulas
This section is based on Kreuzer and Czado (2019b) and Czado (2019). Vine copulas
(Bedford and Cooke (2001), Aas et al. (2009)) are a popular class in dependence modeling.
They allow for great flexibility by constructing a density of arbitrary dimension from two-
dimensional densities.

For this construction vine copulas are represented as graphical models. A regular vine
(R-vine) tree sequence on d elements is a sequence of trees V = (T1, . . . , Td−1) satisfying
the following conditions

• T1 is a tree with nodes N1 = {1, . . . d} and edge set E1,

• for j = 2, . . . , d−1, it holds that Tj is a tree with nodes Nj = Ej−1 and edge set Ej,

• for j = 2, . . . , d− 1 and {a, b} ∈ Ej, it holds that the edges corresponding to a and
b in tree Tj−1 share a common node (proximity condition).

The complete union of an edge e ∈ Ei is defined as

Ae := {j ∈ N1|∃e1 ∈ E1, . . . , ei−1 ∈ Ei−1; j ∈ e1 ∈ . . . ∈ ei−1 ∈ e}.

Further, the conditioning set of edge e = {a, b} is obtained as

De := Aa ∩Ab
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and the conditioned sets are defined as

ae := Aa \De, be := Ab \De.

Note that for e = {a, b} ∈ E1, we set ae = {a}, be = {b} and De is the empty set.
So for each edge e, we have an associated conditioning set De and two associated

conditioned sets ae and be. By construction, ae and be have a single element, respectively.
For a random vector (U1, . . . , Ud) with uniform [0, 1] margins, bivariate copulas of con-
ditional distributions can be identified with the conditioning and conditioned sets. For
an edge e, we denote by Cae,be;De the copula associated with the conditional distribu-
tion (Uae , Ube)|UDe

= uDe
, where uF = (ui)i∈F for a set F . The corresponding copula

density is denoted by cae,be;De . Many researchers assume that cae,be;De does not depend
on uDe , which is called the simplifying assumption (Haff et al. (2010), Stoeber et al.
(2013)). This assumption allows for sequential estimation and selection of vine copula
models (Brechmann and Czado (2013), Dissmann et al. (2013)).

Based on these graphical definitions, Bedford and Cooke (2001) build a d-dimensional
(regular) vine copula model with joint density

c(u1, . . . ud) =
d−1∏
i=1

∏
e∈Ei

cae,be;De(uae|De , ube|De). (2.14)

It is a simplified vine copula model since cae,be;De does not depend on the condition-
ing value uDe . Here, uae|De and ube|De are called pseudo (copula) data. They are ob-
tained as uae|De = Cae|De(uae|uDe

) and ube|De = Cbe|De(ube|uDe
), where Cae|De(·|uDe

)
and Cbe|De(·|uDe

) are the conditional distribution functions of Uae |UDe
= uDe

and
Ube|UDe

= uDe
, respectively. In the first tree De is the empty set and the pseudo data of

the first tree is just u1, . . . ud. For ae = {i} and be = {j}, we also write cij or ci,j instead
of c{i},{j}, and similarly, we may omit the brackets {} for the set De.

Note that the class of simplified vine copulas is broad, including multivariate Gaussian
and Student t copulas (Joe (2014), Chapter 3).

To evaluate the conditional distribution functions and to obtain the corresponding
pseudo data, the h functions (Aas et al. (2009)) for an edge e are defined as

hae|be;De(u1|u2) := d

du2
Cae,be;De(u1, u2)

hbe|ae;De(u2|u1) := d

du1
Cae,be;De(u1, u2).

(2.15)

The h functions are conditional distribution functions. For example, for the copula C12,
h1|2(u1|u2) = C1|2(u1|u2). If the copula Cae,be;De depends on a set of parameters δ, we
write hae|be;De(u1|u2; δ) and hbe|ae;De(u2|u1; δ). Based on pseudo data uae|De and ube|De , we
obtain pseudo data for the next tree as

uae|be∪De = hae|be;De(uae|De|ube|De),
ube|ae∪De = hbe|ae;De(ube|De|uae|De)

(2.16)

(Czado (2019), Chapter 4). So, the pseudo data can be calculated recursively and for the
calculation of pseudo data at a certain tree level only bivariate copulas and pseudo data
from lower trees are involved.
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Figure 2.2 visualizes the first three trees of a six-dimensional vine copula. Assuming
that there are only independence copulas in trees higher than Tree 3, the associated
density is given by

c(u1, . . . , u6) =c1,2(u1, u2) · c2,6(u2, u6) · c3,6(u3, u6) · c4,6(u4, u6) · c5,6(u5, u6)
·c4,5;6(u4|6, u5|6) · c3,5;6(u3|6, u5|6) · c2,5;6(u2|6, u5|6) · c1,6;2(u1|2, u6|2)
·c3,4;5,6(u3|5,6, u4|5,6) · c2,4;5,6(u2|5,6, u4|5,6) · c1,5;2,6(u1|2,6, u5|2,6)

(2.17)

The pseudo data can be determined as outlined in (2.16). For example, u4|6 = h4|6(u4|u6),
u5|6 = h5|6(u5|u6) and u4|56 = h4|5;6(u4|6|u5|6) = h4|5;6(h4|6(u4|u6)|h5|6(u5|u6)).

Such vine copulas, where copulas above a certain tree level are set to the independence
copula are called truncated (Brechmann et al. (2012)). With truncation we can achieve
different levels of sparsity.

51
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Figure 2.2: Tree structure of a vine copula model.

Drawable and canonical vines are two subclasses of vine copulas that are associated
with specific tree structures. The density of a simplified drawable vine (D-vine) copula
can be written as

c(u1, . . . , ud) =
d−1∏
j=1

d−j∏
i=1

ci,i+j;{i+1,...,i+j−1}(ui|{i+1,...,i+j−1}, ui+j|{i+1,...,i+j−1}).

This results in structures where each tree is a line. This structure is often used for time
series data (Smith et al. (2010)). The density of a simplified canonical vine (C-vine)
copula can be expressed as

c(u1, . . . , ud) =
d−1∏
j=1

d−j∏
i=1

cj,j+i;{1,...,j−1}(uj|{1,...,j−1}, uj+i|{1,...,j−1})

resulting in structures where each tree forms a star, i.e. in each tree there is a central
node to which all other nodes are connected.
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2.3 Markov Chain Monte Carlo
Within this thesis, all models are analyzed within the Bayesian framework. For a thor-
ough introduction to Bayesian data analysis we refer to Gelman et al. (2014a). A Bayesian
model is fully specified by a likelihood function and a prior distribution of the correspond-
ing parameters. We denote by π(θ) the prior density or prior probability mass function
of a parameter vector θ ∈ Θ ⊂ Rp and by `(θ|Y) the likelihood function, where Y ∈ RT×d

is a data matrix. The goal is to infer properties of the posterior distribution, which is the
distribution of the parameter vector θ given the data Y. According to Bayes theorem, the
posterior density or posterior probability mass function f(θ|Y) is obtained as

f(θ|Y) = `(θ|Y)π(θ)
f(Y) ∝ `(θ|Y)π(θ), (2.18)

where the marginal likelihood f(Y) =
∫

Θ `(θ|Y)π(θ)dθ (f(Y) = ∑
θ∈Θ `(θ|Y)π(θ) for dis-

crete parameters) can be considered as a normalizing constant. It is not straightforward to
infer properties of the posterior density, which is analytically tractable only in few cases.
Especially the marginal likelihood f(Y), which involves an integral over the parameter
space, might be very expensive to evaluate.

Very popular in this context are Markov Chain Monte Carlo (MCMC) methods. The
idea is to construct a Markov Chain whose stationary distribution is the desired posterior
distribution. From simulations of the Markov Chain, quantities of interest such as the
posterior mean, mode or quantiles can easily be estimated. In the following, we briefly re-
view two basic MCMC methods, Gibbs sampling and the Metropolis-Hastings algorithm.
After that we discuss Hamiltonian Monte Carlo and elliptical slice sampling. For more
details about Markov chains and MCMC methods we refer to Meyn and Tweedie (2012)
and Robert and Casella (2013).

Gibbs sampling

In Gibbs sampling (Geman and Geman (1984)), we partition the parameter vector θ
as follows θ = (θ1, . . . ,θn), where θi can be a scalar or a vector and denote by θ−i

the parameter vector θ with the component θi removed. The distribution with density
or probability mass function f(θi|θ−i,Y) is called full conditional distribution and we
assume that we can sample from it for i = 1, . . . , n. The Gibbs sampler iteratively
samples from the full conditional distributions and to obtain R draws from a Markov
chain, with stationary distribution equal to the desired posterior distribution, we proceed
as follows

• Set initial values θ0.

• For r = 1, . . . , R:
Obtain θr

1 as a sample from f(θ1|θr−1
2 , . . . ,θr−1

n ,Y).
Obtain θr

2 as a sample from f(θ2|θr
1,θ

r−1
3 , . . . ,θr−1

n ,Y).
...

Obtain θr
n as a sample from f(θn|θr

1, . . . ,θ
r
n−1,Y).
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Metropolis-Hastings

In the Metropolis-Hastings algorithm (Metropolis et al. (1953), Hastings (1970)), we gen-
erate proposals from a density or probability mass function that is easy to sample and
then accept the proposal as a new value in the Markov chain with some probability. This
probability is chosen such that the stationary distribution of the chain is still the desired
posterior distribution. We denote the proposal density or proposal probability mass func-
tion by q(θ|θr−1). In the r-th iteration it may depend on the previous value of the chain
θr−1. To obtain R draws we proceed as follows

• Set initial values θ0.

• For r = 1, . . . , R:
Generate a proposal θ′ from q(θ|θr−1).

Set α = min
(

1, f(θ′ |Y)q(θr−1|θ′ )
f(θr−1|Y)q(θ′ |θr−1)

)
.

With probability α we accept the proposal and set θr = θ
′ , otherwise we set θr =

θr−1.

2.3.1 Hamiltonian Monte Carlo

This section provides a short introduction to Hamiltonian Monte Carlo (HMC) based on
Kreuzer and Czado (2019a), where we follow Neal et al. (2011). For more details about
HMC we refer to Neal et al. (2011) and Betancourt (2017).

Hamiltonian dynamics describe the time evolution of a physical system through differ-
ential equations. In Hamiltonian Monte Carlo (HMC) the posterior density is connected
to the energy function of a physical system. This makes it possible to propose states in
the sampling process which are guided by appropriate differential equations. New states
are chosen utilizing information of the gradient of the log posterior density, which can
lead to more efficient sampling procedures. Therefore HMC has become popular. For
example, Hartmann and Ehlers (2017) demonstrate how to estimate parameters of gen-
eralized extreme value distributions with HMC, while Pakman and Paninski (2014) use
HMC to sample from truncated multivariate Gaussian distributions. Especially with the
development of the probabilistic programming language STAN by Carpenter et al. (2017),
its popularity is growing. STAN allows easy model specification and utilizes the No-U-
Turn sampler of Hoffman and Gelman (2014), an extension of HMC. A brief sketch of the
No-U-Turn sampler is provided in the end of this section. We start with the introduction
of the Hamiltonian dynamics.

Hamiltonian dynamics

We consider a position vector q = q(t) = (q1(t), . . . , qd(t))> ∈ Rd with associated mo-
mentum vector p = p(t) = (p1(t), . . . , pd(t))> ∈ Rd at time t. Their change over time
is described through the function H(q,p) (H : Rd × Rd → R), the Hamiltonian, which
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satisfies the following differential equations:
d

dt
qi(t) = d

dpi
H(q(t),p(t))

d

dt
pi(t) = − d

dqi
H(q(t),p(t)), i = 1, . . . , d.

(2.19)

Here d
dpi
H(q(t),p(t)) means that we obtain the derivative of H with respect to the com-

ponent pi and then evaluate this derivative at (q(t),p(t)). Further, H represents the total
energy of the system. In HMC, it is usually assumed that H can be expressed as

H(q,p) = U(q) +K(p) = U(q) + p>M−1p/2, (2.20)

where U(q) is called the potential energy and K(p) the kinetic energy. Further, M is a
symmetric positive definite mass matrix, which is usually assumed to be diagonal. The
Hamiltonian dynamics, specified in (2.19), can therefore be rewritten as

d

dt
qi(t) = (M−1p(t))i

d

dt
pi(t) = − d

dqi
U(q(t)), i = 1, . . . , d.

(2.21)

Leapfrog method

Since it is usually not possible to solve the system of differential equations given in (2.21)
analytically, we need to find iterative approximations. Therefore we use the Leapfrog
method. We assume that M is a diagonal matrix with diagonal entries m1, . . . ,md and
then the state one-step ahead of time t with step size ε, i.e. the state at time t + ε, is
approximated by

pi(t+ ε/2) = pi(t)−
ε

2
d

dqi
U(q(t))

qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

pi(t+ ε) = pi(t+ ε/2)− ε

2
d

dqi
U(q(t+ ε)), for i = 1, . . . d.

(2.22)

Canonical distribution

To use Hamiltonian dynamics within MCMC sampling, we need to relate the energy
function to a probability distribution. Therefore we utilize the canonical distribution
P (x) associated with a general energy function E(x) with state x defined through the
density

p(x) := 1
Z

exp(−E(x)/Temp),

where Temp is the system’s temperature and Z is the normalizing constant needed to
satisfy the density constraint. So the Hamiltonian H(q,p) specified in (2.20) defines a
probability density given by

p(q,p) = 1
Z

exp(−H(q,p)/Temp) = 1
Z

exp(−U(q)/Temp) exp(−K(p)/Temp).
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Thus, q and p are independent. In the following we assume Temp = 1.

Sampling with Hamiltonian Monte Carlo

In HMC we specify the corresponding energy function of q and p, i.e. the Hamiltonian,
and sample from the corresponding canonical distribution of q and p. In a Bayesian setup
we identify q as our parameters of interest and p are auxiliary variables. Therefore we
set

U(q) := − ln(`(q|Y)π(q)),
where π(q) is the prior density and `(q|Y) the likelihood function for the given data Y.
Therefore the canonical distribution of q corresponds to the posterior distribution of q,
when Temp = 1.

SinceK(p) = p>M−1p/2, it holds that the auxiliary parameter vector p is multivariate
normal distributed with zero mean vector and covariance matrix M . A MCMC update is
then obtained as follows.

• Sample the auxiliary parameter p from the normal distribution with zero mean
vector and covariance matrix M .

• Metropolis update: Start with the current state (q,p) and simulate L steps of
Hamiltonian dynamics with step size ε using the Leapfrog method. Obtain (q′,p′)
and accept this proposal with Metropolis acceptance probability

min(1, exp(−H(q′,p′) +H(q,p))) = min
1,

π(q′)l(q′|Y) exp
(
p>M−1p/2

)
π(q)l(q|Y) exp(p′>M−1p′/2)

 .
(2.23)

The No-U-Turn sampler

In conventional HMC, the stepsize ε and the number of Leapfrog steps L are tuning
parameters that need to be specified by the user. The choice of these tuning parameters
is usually not straightforward and optimal choices might even differ for different regions of
the state space. The No-U-Turn sampler of Hoffman and Gelman (2014) is an extension
of HMC that automatically and adaptively selects these tuning parameters.

Hoffman and Gelman (2014) first consider the choice of L for a fixed stepsize ε. Assume
we have an initial position vector at time 0, q(0). When we start evolving the Hamiltonian
differential equation with the Leapfrog scheme (see (2.22)), the obtained position vectors
q(t) with a t > 0 (for each step within the Leapfrog scheme a new position vector is
obtained) will increase the distance from the initial position q(0) until some point in
time. Then the position vector is making an U-turn and the distance decreases. Hoffman
and Gelman (2014) carefully design an updating scheme, where in each iteration Leapfrog
steps are obtained until a U-turn is reached. Instead of using the last obtained state as a
proposal, the new state is sampled from a subset of the states visited during the Leapfrog
method. This is necessary to guarantee the correct stationary distribution of the resulting
Markov Chain. The stepsize parameter ε is updated during the burn-in period. In the No-
U-Turn sampler, there is not a single acceptance-rejection step as in conventional HMC.
The idea is to adapt ε such that states visited within one iteration would have an average
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acceptance probability of δ in conventional HMC, i.e. this average acceptance probability
is calculated using a formula similar to (2.23). A typical choice is δ = 0.8. To achieve
this, Hoffman and Gelman (2014) use a stochastic optimization method, which relies on
ideas of the dual averaging scheme of Nesterov (2009). For more details and pseudo code
we refer the reader to Hoffman and Gelman (2014).

The No-U-Turn sampler is implemented within the user-friendly STAN framework
(Carpenter et al. (2017)). Within this framework, the required gradients are obtained
through automatic differentiation (Carpenter et al. (2015)).

2.3.2 Elliptical slice sampling
In this section we follow Kreuzer and Czado (2019c). Elliptical slice sampling was pro-
posed by Murray et al. (2010). It was developed for models where dependencies are
generated through a latent multivariate normal distribution.

We assume that the posterior density for a parameter vector θ ∈ Θ ⊂ Rp given data
Y is proportional to

f(θ|Y) ∝ `(θ|Y)ϕ(θ|0,Σ), (2.24)
where `(θ|Y) is the likelihood function and ϕ(θ|0,Σ) is the multivariate normal den-
sity with zero mean vector and covariance matrix Σ. Murray et al. (2010) consider the
Metropolis-Hastings sampler of Neal (1998), where a proposal θ′, given the current value
θ, is obtained as

v ∼ Np(0,Σ),
θ′ =

√
1− α2θ + αv.

(2.25)

Here α ∈ [−1, 1] is a fixed step size parameter. The proposal is accepted with probability

min
(

1, `(θ
′|Y)

`(θ|Y)

)
. (2.26)

Elliptical slice sampling adapts the step size parameter α during sampling. This eliminates
the need to select the parameter before sampling and it may be a better approach for
situations, where good choices of the step size parameter depend on the region of the
state space. Murray et al. (2010) first suggest to propose a new state by

v ∼ Np(0,Σ),
θ′ = cos(ω)θ + sin(ω)v.

(2.27)

Here the angle ω corresponds to the step size. As we move ω towards zero the proposal
gets closer to the initial value θ. Murray et al. (2010) argue that (2.27) provides a more
flexible choice for the proposals compared to (2.25), if the parameter ω is also updated,
which is here the case. In elliptical slice sampling we first draw an angle ω from the
uniform distribution on [0, 2π] and obtain a proposal as outlined in (2.27). This proposal
is accepted according to (2.26). If the proposal is not accepted, a new angle is selected
with a slice sampling approach (Neal et al. (2003)) such that the angle approaches zero as
more samples are rejected. This ensures that at some point the proposal will be accepted.
One iteration of the approach is outlined in Algorithm 1. Here, we denote by U(a, b)
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the uniform distribution on the interval (a, b) for a < b. Murray et al. (2010) show that
Algorithm 1 samples from a Markov chain, where (2.24) is the corresponding stationary
distribution.

Algorithm 1 Elliptical slice sampling
1: v ∼ Np(0,Σ)
2: u ∼ U(0, 1)
3: ω ∼ U(0, 2π)
4: ωmin = ω − 2π, ωmax = ω
5: θ′ = cos(ω)θ + sin(ω)v
6: while l(θ′|Y)

l(θ|Y) ≤ u do
7: if ω < 0 then
8: ωmin = ω
9: else

10: ωmax = ω
11: end if
12: ω ∼ U(ωmin, ωmax)
13: θ′ = cos(ω)θ + sin(w)v
14: end while
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3 A single factor copula stochastic
volatility model

This chapter is a reproduction of Kreuzer and Czado (2019a) with minor changes.

3.1 Introduction

Vine copulas (see Section 2.2.4) have proven to be a useful tool to facilitate complex
dependence structures (Nikoloulopoulos et al. (2012), Brechmann and Czado (2013), Aas
(2016), Fink et al. (2017), Nagler et al. (2019)). A vine copula model consists of d(d−1)

2
pair copulas, where d is the number of variables. So the number of parameters grows
quadratically with d. Krupskii and Joe (2013) proposed the factor copula model, where the
number of parameters grows only linearly in d. This model can be seen as a generalization
of the Gaussian factor model. The factor copula model provides much more flexibility,
compared to the Gaussian one, as it is made up of different pair copulas that can be chosen
arbitrarily. Thus it covers a broad range of dependence structures that can accommodate
symmetric as well as asymmetric tail dependence.

One way to construct multivariate time series models is to combine a univariate time
series model for the margins with a dependence model, such as the factor copula. Uni-
variate time series models for financial data need to account for typical characteristics
like time-varying volatility and volatility clustering. Popular examples of such models in-
clude generalized autoregressive conditional heteroskedasticity (GARCH) models (Boller-
slev (1986)), the more recently developed generalized autoregressive score (GAS) models
(Creal et al. (2013)) and stochastic volatility (SV) models (Kim et al. (1998)). Using
the classification of Cox et al. (1981), GARCH and GAS models are observation driven
models, whereas the SV model is a parameter driven model. In observation driven models
volatility is modeled deterministically through the observed past. Inference for these mod-
els is often easier, since evaluation of the likelihood is straightforward. Inference for SV
models is more involved, since likelihood evaluation requires high-dimensional integration.
But efficient MCMC algorithms have been developed (Kastner and Frühwirth-Schnatter
(2014)). In the SV model volatility is modeled as latent variables that follow an au-
toregressive process of order 1. This representation has compared favorably to GARCH
specifications in several data sets (Yu (2002), Chan and Grant (2016)).

We propose a copula based SV model. The marginals follow a SV model and the
dependence is modeled through a single factor copula. In contrast to other factor SV
models, as considered by Han (2005) or Kastner et al. (2017), we only allow for one
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factor and dependence parameters remain constant over time. But we do not assume
that conditional on the volatilities the observed data is multivariate normal or Student t
distributed. Here we provide more flexibility through the choice of different pair copula
families.

The single factor copula model has also been applied to financial data by Schamberger
et al. (2017) who use dynamic linear models (West and Harrison (2006)) as marginals
and by Krupskii and Joe (2013) who use GARCH models as marginals. As it is common
in copula modeling, Schamberger et al. (2017) and Krupskii and Joe (2013) both use a
two-step approach for estimation. They first estimate marginal parameters and based
on these estimates they infer the dependence parameters. Tan et al. (2019) provide full
Bayesian inference for a single factor copula based model, but their marginal models have
only few parameters and the proposals for MCMC are built using independence among
components. However, for SV margins we need to estimate all T log volatilities, where T
denotes the length of the time series. Thus, we have more than T parameters to estimate
per margin. These more sophisticated marginal models for financial data are difficult to
handle within a full Bayesian approach. Nevertheless, we are able to overcome the two-
step approach commonly used in copula modeling and provide full Bayesian inference. For
this we develop and implement a Hamiltonian Monte Carlo (HMC) (Duane et al. (1987),
Neal et al. (2011)) within Gibbs sampler. In HMC information of the gradient of the
log posterior density is used to propose new states, which leads to an efficient sampling
procedure.

The main contributions of this chapter are: joint Bayesian inference of a single factor
copula model with SV margins using HMC, automated selection of linking copula families
and improved value at risk (VaR) forecasting over benchmark models in a financial ap-
plication. More precisely, we first demonstrate how HMC can be employed for the single
factor copula model and compare the HMC approach for the copula part to the MCMC ap-
proach of Schamberger et al. (2017) who use adaptive rejection Metropolis within Gibbs
sampling (Gilks et al. (1995)). HMC shows superior performance in terms of effective
sample size, mean squared error and observed coverage probabilities. Further, the HMC
scheme is integrated within a Gibbs approach that allows for full Bayesian inference of the
proposed single factor copula based SV model, including copula family selection. Copula
families are modeled with discrete indicator variables, which can be sampled directly from
their full conditionals within our Gibbs approach. Continuous parameters are updated
with HMC. Within the Bayesian procedure, marginal and dependence parameters are
estimated jointly. We stress that the joint estimation of marginal and dependence pa-
rameters is very demanding and is therefore most commonly avoided. Instead, a two-step
approach is used where the marginal parameters are considered fixed when estimating
dependence parameters, i.e. uncertainty in the estimation of the marginal parameters
is ignored. An advantage of the full Bayesian approach is that this uncertainty is not
ignored and full uncertainty quantification is straightforward through credible intervals.
We further demonstrate the usefulness of the proposed single factor copula SV model
with one-day ahead VaR prediction for financial data involving six stocks. Within our
full Bayesian approach a VaR forecast is obtained as an empirical quantile of simulations
from the predictive distribution. In addition, we show that joint estimation leads to more
accurate VaR forecasts than VaR forecasts obtained from a two-step approach.

This chapter is organized as follows. In Sections 3.2 and 3.3 we discuss the single
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factor copula model and the single factor copula SV model, respectively. Both sections
follow a similar structure. We first specify a Bayesian model, propose a Bayesian inference
approach and evaluate the performance of the approach with simulated data. In Section
3.4 the proposed single factor copula SV model is applied to financial returns data. Section
3.5 concludes.

3.2 Bayesian inference for single factor copulas using
the HMC approach

In this section we illustrate how HMC (see Section 2.3.1) can be used to estimate the
parameters of single factor copulas. Instead of relying on STAN (see Section 2.3.1),
we provide our own implementation of HMC. This allows us to use the HMC updates
developed for single factor copulas within other samplers, as we will see in Section 3.3.

3.2.1 Model specification
To illustrate the viability of HMC for factor copula models we start with the single factor
copula model as a special case of the p factor copula model according to Krupskii and Joe
(2013). We consider d uniform on [0, 1] distributed variables U1, . . . Ud together with a
uniform on [0, 1] distributed latent factor V . In the single factor copula model we assume
that, given V , the variables U1, . . . , Ud are independent. This implies that the joint density
of (U1, . . . Ud) can be written as

c(u1, . . . , ud) =
∫ 1

0

d∏
j=1

cj|V (uj|v)dv =
∫ 1

0

d∏
j=1

cj(uj, v)dv, (3.1)

where cj is the density of Cj, the copula of (Uj, V ). The copulas C1, . . . ,Cd are called
linking copulas, since they link each of the observed copula variables Uj to the latent
factor V .

For inference we use single-parameter copula families, for which there is a one-to-one
correspondence between the copula parameter and Kendall’s τ (see Section 2.2.3). We
equip each linking copula density with a corresponding Kendall’s τ parameter τj, and
(3.1) becomes

c(u1, . . . , ud; τ ) =
∫ 1

0

d∏
j=1

cj(uj, v; τj)dv,

where τ = (τ1, . . . , τd). As it is common in Bayesian statistics, we treat the latent variable
V as a parameter v. The joint density of (U1, . . . , Ud) given the parameters τ , v is obtained
as

c(u1, . . . , ud; τ , v) =
d∏
j=1

cj(uj, v; τj).

Since the latent variable V is random for each observation vector (ut1, . . . , utd), we have
T latent parameters v = (v1, . . . , vT ) for T time points. The likelihood of the parameters
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(τ ,v) given T independent observations U = (utj)t=1,...,T,j=1,...,d ∈ [0, 1]T×d is therefore

`(τ ,v|U) =
T∏
t=1

d∏
j=1

cj(utj, vt; τj). (3.2)

3.2.2 Bayesian inference
So far, Bayesian inference for the single factor copula model was addressed by Schamberger
et al. (2017) and Tan et al. (2019). Both approaches use Gibbs sampling where one
can exploit the fact that the factors v1, . . . vT are independent given the Kendall’s τ
parameters τ1, . . . τd and vice versa. We now show how HMC can be used for the single
factor copula model. Sampling with HMC is slower, since it requires several evaluations
of the gradient of the log posterior density. However, with HMC there is no blocking
involved and we update the whole parameter vector, with well chosen proposals obtained
from the Leapfrog approximation, at once. We expect more accurate samples since this
sampler suffers less from the dependence between the latent factors and the Kendall’s τ
parameters. To support this statement, we compare HMC to adaptive rejection Metropolis
sampling within Gibbs sampling (ARMGS) (Gilks et al. (1995)). ARMGS is the sampler
that worked best among several samplers that have been investigated by Schamberger
et al. (2017) for single factor copula models.

Parametrization

Since HMC operates on unconstrained parameters, we need to provide parameter trans-
formations to remove the constraints present in our problem. Furthermore, we restrict the
Kendall’s τ values to be in (0, 1) to avoid problems that might occur due to multimodal
posterior distributions. While for this purpose it might also be enough to only restrict one
of the Kendall’s τ parameters to be positive (Tan et al. (2019)), restricting all of them is
not a severe restriction for applications, whenever the signs of the Kendall’s τ values are
clear from the context. Since τU1,U2 = −τU1,1−U2

1 we can replace U2 by 1− U2 if we want
to model negative dependence between U1 and U2. The components of the latent factors
v are also in (0, 1). To transform parameters on the (0, 1) scale to the unconstrained scale
the logit function is a common choice. Therefore, we use the following transformations
for the Kendall’s τ parameters τ and the latent factors v

δj = ln
(

τj
1− τj

)
, wt = ln

(
vt

1− vt

)
, (3.3)

and obtain unconstrained parameters δj, wt ∈ R for j = 1, . . . d, t = 1, . . . , T .

Prior densities

We specify the prior distributions for δ = (δ1, . . . , δd) and w = (w1, . . . , wT ) such that
the distributions implied for the corresponding Kendall’s τ and for vt are independently

1τU1,1−U2 = P ((U1 − Ũ1)((1 − U2) − (1 − Ũ2)) > 0) − P ((U1 − Ũ1)((1 − U2) − (1 − Ũ2)) < 0) =
P ((U1 − Ũ1)(U2 − Ũ2) < 0) − P ((U1 − Ũ1)(U2 − Ũ2) > 0) = −τU1,U2 , where (Ũ1, Ũ2) is an independent
copy of (U1, U2).
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uniform on the interval (0, 1). Applying the density transformation law, this implies that
the corresponding prior density can be expressed as

π(δ,w) =
d∏
j=1

πu(δj)
T∏
t=1

πu(wt), (3.4)

where πu(x) = (1 + exp(−x))−2 exp(−x), x ∈ R.

Posterior density

With these choices in (3.2) and (3.4), the posterior density is proportional to

f(δ,w|U) ∝ `(τ ,v|U) · π(δ,w), (3.5)

where τj and vt are functions of δj and wt respectively. Therefore the log posterior density
is given by

L(δ,w|U) =
T∑
t=1

d∑
j=1

ln(cj(utj, vt; τj)) +
T∑
t=1

ln(πu(wt)) +
d∑
j=1

ln(πu(δj)) + const,

where const ∈ R is a constant, independent of the parameters δ,w.

Sampling with HMC

Derivatives of the log posterior density with respect to all parameters are determined to
perform Leapfrog approximations (see Appendix A.1). With this at hand, HMC can be
implemented as any Metropolis-Hastings sampler (see Section 2.3.1). To run the algorithm
we need to set values to the hyper parameters: the Leapfrog stepsize ε, the number of
Leapfrog steps L and the mass matrix M . Choosing ε and L is not easy, since good choices
of these parameters can vary depending on different regions of the state space. Neal et al.
(2011) suggest to randomly select ε and L from a set of values that may be appropriate
for different regions. This is the approach that we follow. For our simulation study we
have seen that choosing ε uniformly between 0 and 0.2 and choosing L uniformly between
0 and 40 leads to reasonable mixing as measured by the effective sample size (Gelman
et al. (2014a), page 286). The mass matrix M is set equal to the identity matrix. The
MCMC procedure is implemented in R using the R package Rcpp by Eddelbuettel et al.
(2011) which allows the integration of C++. Effective sample sizes are calculated with the
R package coda of Plummer et al. (2008).

3.2.3 Simulation study
To compare our approach, we conduct the same simulation study as in Schamberger et al.
(2017). For each of three scenarios, we simulate 100 data sets from the single factor copula
model with T = 200 and d = 5. The three scenarios are characterized by the values of
Kendall’s τ of the linking copulas and are denoted by the low τ , the high τ and the
mixed τ scenario. The Kendall’s τ values are shown in Table 3.1. As linking copulas
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C1 C2 C3 C4 C5
low τ 0.10 0.12 0.15 0.18 0.20

high τ 0.50 0.57 0.65 0.73 0.80
mixed τ 0.10 0.28 0.45 0.62 0.80

Table 3.1: Kendall’s τ values for the linking copulas C1, . . .C5 in the three scenarios.

only Gumbel copulas are considered. Based on these simulated data sets, the samplers
are run for 11000 iterations, whereas the first 1000 iterations are discarded for burn-in.

τ V
ARMGS HMC ARMGS HMC

Low τ
MAD 0.1088 0.0564 0.2808 0.2158
MSE 0.0314 0.0059 0.1248 0.0716
ESS/min 6 92 26 246
90% C.I. 0.91 0.94 0.84 0.88
95% C.I. 0.96 0.98 0.91 0.94
High τ
MAD 0.0292 0.0201 0.0709 0.0502
MSE 0.0014 0.0007 0.0095 0.0046
ESS/min 24 268 44 278
90% C.I. 0.89 0.90 0.89 0.91
95% C.I. 0.95 0.94 0.95 0.95
Mixed τ
MAD 0.0509 0.0340 0.0828 0.0684
MSE 0.0043 0.0019 0.0132 0.0082
ESS/min 21 132 26 210
90% C.I. 0.87 0.89 0.79 0.85
95% C.I. 0.93 0.93 0.88 0.93

Table 3.2: Comparison of the ARMGS and HMC method in terms of estimated mean
absolute deviation (MAD), mean squared error (MSE), effective sample size per minute
(ESS/min) and observed coverage probability of the credible intervals (C.I.).

τ1 τ2 τ3 τ4 τ5 v10 v50 v100 v150 v190
Low τ
MAD 0.0500 0.0493 0.0568 0.0591 0.0666 0.2530 0.2204 0.2376 0.2190 0.2203
MSE 0.0047 0.0043 0.0049 0.0058 0.0096 0.0969 0.0719 0.0819 0.0712 0.0703
ESS/min 121 114 91 76 58 239 255 268 247 262
90% C.I. 0.94 0.94 0.91 0.92 0.98 0.85 0.88 0.83 0.88 0.90
95% C.I. 0.98 0.98 0.97 0.96 0.99 0.93 0.96 0.90 0.91 0.93
High τ
MAD 0.0253 0.0214 0.0204 0.0158 0.0174 0.0549 0.0549 0.0475 0.0474 0.0474
MSE 0.0011 0.0007 0.0007 0.0004 0.0005 0.0058 0.0049 0.0043 0.0043 0.0044
ESS/min 320 319 312 265 125 277 278 275 279 278
90% C.I. 0.84 0.91 0.88 0.92 0.94 0.86 0.86 0.88 0.95 0.90
95% C.I. 0.89 0.95 0.94 0.97 0.97 0.92 0.96 0.94 0.96 0.95
Mixed τ
MAD 0.0375 0.0358 0.0278 0.0256 0.0431 0.0690 0.0668 0.0636 0.0712 0.0663
MSE 0.0021 0.0020 0.0012 0.0010 0.0031 0.0098 0.0078 0.0080 0.0084 0.0085
ESS/min 147 250 201 50 11 212 207 224 218 221
90% C.I. 0.89 0.85 0.88 0.93 0.89 0.87 0.87 0.87 0.81 0.87
95% C.I. 0.95 0.89 0.94 0.94 0.94 0.89 0.94 0.94 0.88 0.92

Table 3.3: Detailed simulation results for the HMC method. We show the estimated mean
absolute deviation (MAD), mean squared error (MSE), effective sample size per minute
(ESS/min) and observed coverage probability of the credible intervals (C.I.) for τ1, . . . , τ5
and five selected latent variables vt, t = 10, 50, 100, 150, 190.

Table 3.2 shows the results of the simulation study and compares them to the re-
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sults obtained by Schamberger et al. (2017) using adaptive rejection Metropolis sampling
within Gibbs sampling (ARMGS). The corresponding error statistics (e.g. mean absolute
deviation (MAD), mean squared error (MSE)) for each parameter is obtained from 100
replications. Then, e.g. the MSE for τ in Table 3.2 is computed as the average of MSE for
τ1 , . . . , MSE for τ5. Since the objective is the comparison of our method to the method
of Schamberger et al. (2017), we follow their approach and calculate the error statistics
from point estimates (marginal posterior mode estimates obtained from univariate ker-
nel density estimates). Further, we calculate the error statistics for τ1, . . . , τ5, v1, . . . , v200
which are one-to-one transformations of δ1, . . . , δ5, w1, . . . , w200. We see that a more accu-
rate credible interval, a lower mean absolute deviation and a lower mean squared error is
achieved in most cases by HMC compared to ARMGS. Furthermore, the effective sample
size per minute is much higher for HMC. Table 3.3 shows the results of the simulation
study in more detail, i.e. we do not average over values of τ1, . . . , τ5 and v1, . . . v200. It is
noticable that mixing is worse for higher values of Kendall’s τ in every scenario, whereas
it is most extreme in the mixed τ scenario. This was also observed for ARMGS (see
Schamberger et al. (2017) Table 9 in the appendix).

3.3 The single factor copula stochastic volatility model
Now we combine the single factor copula with margins driven by a SV model with Gaus-
sian errors (see Section 2.1.2) and develop a Bayesian approach to jointly estimate the
parameters of the proposed model.

3.3.1 Model specification
We propose a multivariate dynamic model where each marginal follows a SV model and the
dependence between the marginals is captured by a single factor copula, the single factor
copula stochastic volatility (factor copula SV) model. In particular for t = 1, . . . , T, j =
1, . . . , d we assume that

Ztj = exp
(
stj
2

)
εtj

stj = µj + φj(st−1j − µj) + σjηtj,

where µj ∈ R, φj ∈ (−1, 1), σj ∈ (0,∞), s0j|µj, φj, σj ∼ N
(
µj,

σ2
j

1−φ2
j

)
and ηtj ∼ N(0, 1) iid

holds. The joint distribtion of the errors εtj is now considered. We model the dependence
among the marginals by employing a factor copula model on the errors. Similar to Tan
et al. (2019), we further allow for Bayesian selection of the d linking copula families of
this factor copula instead of assuming that they were known as in Section 3.2 and as in
Schamberger et al. (2017). The families are chosen from a set M of single-parameter
copula families, e.g. M = {Gaussian, Gumbel, Clayton}. Schamberger et al. (2017)
estimated one model for each specification of the linking copula families. Since there are
|M|d different specifications, they only considered factor copulas where all linking copulas
belong to the same family. With our Bayesian family selection, we can profit from the full
flexibility of the factor copula model by allowing for all |M|d specifications. In particular,
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our modeling approach allows to combine different copula families. Therefore we define d
family indicator variables mj ∈M, j = 1, . . . , d. Further, we introduce, similar to Section
3.2, Kendall’s τ parameters of the linking copulas τj ∈ (0, 1), j = 1, . . . , d. Note that
the parameter τj has the same interpretation for different copula families, since it is the
associated Kendall’s τ value. As already noted by Tan et al. (2019), this allows to share
this parameter among different copula families. More details about this argument are
given in Appendix G.

Since we model the dependence among the errors with a single factor copula, we
assume that there exists a latent factor vt ∼ U(0, 1) for each t such that the following
holds for the error vector at time t, εt = (εt1, . . . εtd),

f(εt|vt,m1, . . . ,md, τ1, . . . , τd) =
d∏
j=1

[
c
mj
j (Φ(εtj), vt; τj)ϕ(εtj)

]
, (3.6)

where ϕ and Φ denote the standard normal density and distribution function, respectively.
In particular εtj ∼ N(0, 1) for any t and j. Here cmjj (·, ·; τj) is the density of the bivariate
copula family mj with Kendall’s τ parameter τj. Integrating out the factor vt in (3.6)
yields

f(εt|m1, . . . ,md, τ1, . . . , τd) =
 ∫

(0,1)

d∏
j=1

c
mj
j (Φ(εtj), vt; τj)dvt

 d∏
j=1

ϕ(εtj). (3.7)

Furthermore, we assume that the T components of (ε1, . . ., εT ) are independent given
the family indicators m1, . . . ,md and the dependence parameters τ1, . . . , τd, v1, . . . , vT . To
shorten notation we use the following abbreviations:

• Z = (ztj)t=1,...,T,j=1,...d the matrix of observations,

• E = (εtj)t=1,...,T,j=1,...d the matrix of errors,

• µ = (µj)j=1,...d the vector of means of the marginal stochastic volatility models,

• φ = (φj)j=1,...d the vector of persistence parameters of the marginal stochastic
volatility models,

• σ = (σj)j=1,...d the vector of standard deviations of the marginal stochastic volatility
models,

• S = (stj)t=0,...,T,j=1,...d the matrix of log variances,

• s·j = (stj)t=0,...,T the vector of log variances of the j-th marginal,

• v = (vt)t=1,...,T the vector of latent factors,

• τ = (τj)j=1,...,d the vector of the Kendall’s τ parameters of the linking copulas,

• m = (mj)j=1,...,d the vector of copula family indicators.

Utilizing these abbreviations, we can summarize the parameters of our model as {µ, φ,
σ, S, v, τ , m}.
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The model with Gaussian linking copulas

For the special case where all linking copulas are Gaussian (i.e. mj = Gaussian for
j = 1, . . . , d), Krupskii and Joe (2013) show that the errors εtj specified in (3.7) allow for
the following stochastic representation

εtj = ρjwt +
√

1− ρ2
jξtj,

where wt ∼ N(0, 1) and ξtj ∼ N(0, 1) independently and ρj = sin
(
π
2 τj
)

is the correlation
parameter of the bivariate Gaussian copula (see Section 2.2.3). Therefore we obtain the
following additive structure

Ztj = ρj exp
(
stj
2

)
wt + exp

(
stj
2

)√
1− ρ2

jξtj. (3.8)

This implies a time-varying covariance matrix with elements

cov(Ztj, Ztk) = ρjρk exp
(
stj
2

)
exp

(
stk
2

)
for j 6= k.

The correlation matrix however remains constant as time evolves and its off-diagonal
elements are given by

cor(Ztj, Ztk) = ρjρk for j 6= k.

The additive structure in (3.8) shows connections to other multivariate factor stochastic
volatility models (see Chib et al. (2006), Kastner et al. (2017)). This can be seen by
considering the following reparametrization

s′tj := stj + ln
(
1− ρ2

j

)
, λj := ρj√

1− ρ2
j

,

which implies the following representation of (3.8)

Ztj = λj exp
(
s′tj
2

)
wt + exp

(
s′tj
2

)
ξtj. (3.9)

Here s′tj is an AR(1) process with mean µj + ln
(
1− ρ2

j

)
, persistence parameter φj and

standard deviation parameter σj. For comparison, the model of Kastner et al. (2017) with
one factor is given by

Ztj = λj exp
(
s′td+1

2

)
wt + exp

(
s′tj
2

)
ξtj,

with one additional latent AR(1) process s′td+1, t = 1, . . . , T . This implies time-varying
correlations given by

cor(Ztj, Ztk) =
λjλk exp

(
s′td+1

)
√
λ2
j exp

(
s′td+1

)
+ exp

(
s′tj
)√

λ2
k exp

(
s′td+1

)
+ exp(s′tk)

for j 6= k.

29



3. A SINGLE FACTOR COPULA STOCHASTIC VOLATILITY MODEL

Dividing Ztj by exp
(
s′tj
2

)
in (3.9), we recognize the structure of a standard factor model

for Z ′tj = Ztj

exp
(
s′
tj
2

) given by

Z ′tj = λjwt + ξtj, (3.10)

with factor loadings λ1, . . . , λd and factor wt. In representation (3.10) the variance of ξtj
is restricted to 1, whereas in the standard factor model (see e.g. Lopes and West (2004))
it is usually modeled through an additional variance parameter. Since the variance of
εtj is already determined (εtj ∼ N(0, 1)), we have this additional restriction compared to
factor models with flexible marginal variance. Note that Ztj still has flexible variance and
the restriction for εtj is necessary to ensure identifiability.

If all copula families are Gaussian, other multivariate factor stochastic volatility mod-
els provide generalizations by allowing for more factors and for a time-varying correlation.
We provide generalization with respect to the error distribution. The choice of different
pair copula families provides a flexible modeling approach and our model can accommo-
date features that cannot be modeled with a multivariate normal distribution, as e.g.
symmetric or asymmetric tail dependence.

Schamberger et al. (2017) also use factor copulas to model dependence among financial
assets. Their approach differs to our approach in the choice of the marginal model. They
use dynamic linear models (West and Harrison (2006)). Secondly, they assume the copula
families to be known and they perform a two-step estimation approach, whereas we provide
full Bayesian inference.

3.3.2 Bayesian inference

In the following we develop a full Bayesian approach for the proposed model. We use
a block Gibbs sampler to sample from the posterior distribution. We use d blocks for
the marginal parameters (µj, φj, σj, s·j), j = 1, . . . , d, one block for the dependence pa-
rameters (τ ,v) and d blocks for the copula family indicators m. Sampling from the full
conditionals is done with HMC for the first d + 1 blocks. Conditioning the dependence
parameters on the marginal parameters and on the copula family indicators, we are in
the single factor copula framework of Section 3.2. We have seen that HMC provides an
efficient way to sample the dependence parameters. Conditioned on the dependence pa-
rameters and on the family indicators, the marginal parameters corresponding to different
dimensions are independent. Each dimension can be considered as a generalized stochastic
volatility model, where the distribution of the errors is determined by the corresponding
linking copula. Sampling from the posterior distribution is more involved than in the
Gaussian case. In the Gaussian case one can use an approximation based on a mixture
of normal distributions and rewrite the observation equation Ztj = exp

(
stj
2

)
εtj to obtain

a linear, conditionally Gaussian state space model (Omori et al. (2007), Kastner and
Frühwirth-Schnatter (2014)). This is not possible in our case and therefore HMC, which
has already shown good performance for the copula part and only requires derivation of
the derivatives, is our method of choice. The family indicators m are discrete variables
which can be sampled directly from their full conditionals.
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Prior densities

For the copula family indicators we use independent discrete uniform priors, i.e

π(mj) = 1
|M|

(3.11)

for mj ∈ M, j = 1, . . . , d independently. The prior density of the other parameters is
chosen as the product of the prior densities used for the single factor copula model and
for the marginal stochastic volatility model in Section 2.1.2, i.e.

π(µ,φ,σ, S, τ ,v) =
d∏
j=1

π(µj, φj, σj, s·j), (3.12)

where π(·) is specified in (2.6). Note that for the components of τ and v, we utilize uniform
priors on (0, 1). Further, we assume that the family indicators are a priori independent
of the parameters in (3.12).

Likelihood

The conditional independence of the T components of (ε1, . . ., εT ) implies that the con-
ditional distribution of the errors given the dependence parameters and the copula family
indicators is

f(E|v, τ ,m) =
T∏
t=1

d∏
j=1

[
c
mj
j (Φ(εtj), vt; τj)ϕ(εtj)

]
.

Using the density transformation rule, the likelihood of parameters (µ,φ,σ, S, τ ,v,m)
given the observation matrix Z = (ztj)t=1,...,T,j=1,...,d ∈ RT×d is obtained as

`(µ,φ,σ, S, τ ,v,m|Z) =
T∏
t=1

d∏
j=1

cmjj
Φ

 ztj

exp
(
stj
2

)
 , vt; τj

ϕ
 ztj

exp
(
stj
2

)
 1

exp
(
stj
2

)
 .

Sampling the marginal parameters

The conditional density we need to sample from is given by

f(µj, φj,σj, s·j|Z,µ−j ,φ−j ,σ−j , S·−j, τ ,v,m)
∝ `(µ,φ,σ, S, τ ,v,m|Z)π(µ,φ,σ, S, τ ,v)

∝
T∏
t=1

cmjj
Φ

 ztj

exp
(
stj
2

)
, vt; τj

ϕ
 ztj

exp
(
stj
2

)
 1

exp
(
stj
2

)
π(µj, φj, σj, s·j).

Here the abbreviation x−j refers to the vector x with the j−th component removed and
X·−j is the matrix X with the j-th column removed. We sample from this density with
HMC as will be outlined below.
Parametrization As in Section 3.2, we need to provide parametrizations such that re-
sulting parameters are unconstrained. In particular we use the following transformations

ξj = FZ(φj), ψj = ln(σj),
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where FZ(x) = 1
2 ln

(
1+x
1−x

)
is Fisher’s Z transformation. Although the latent log variances

are already unconstrained, we make use of the following reparametrization

s̃0j =
(s0j − µj)

√
1− φ2

j

σj

s̃tj = stj − µj − φj(st−1j − µj)
σj

, t = 1, . . . , T.
(3.13)

The transformation for s·j was proposed by the Stan Team (2015) for the univariate
stochastic volatility model and implies that s̃·j|µj, φj, σj ∼ NT+1(0, IT+1), where IT+1
denotes the (T + 1)-dimensional identity matrix. According to Yu and Meng (2011), the
original parametrization in terms of stj is a sufficient augmentation scheme, whereas the
parametrization in terms of s̃tj is an ancillary augmentation. The performance of Markov
Chain Monte Carlo methods can vary a lot for different parametrizations (Frühwirth-
Schnatter and Sögner (2003), Strickland et al. (2008)). Betancourt and Girolami (2015)
have seen better performance for the ancillary augmentation when sampling from the pos-
terior distribution of hierarchical models with HMC. Their explanation is that within the
ancillary augmentation variables may be less correlated. Here we also rely on the ancillary
augmentation, since we have seen much better performance for this parametrization in
terms of effective sample size.

Prior densities We consider the joint prior density of the parameters µj, ξj, ψj and s̃·j .
The log of this joint prior density is given by

ln(π(µj, ξj, ψj, s̃·j)) ∝ ln(π(µj)) + ln(π(ξj)) + ln(π(ψj))−
1
2

T∑
t=0

s̃2
tj + const1,

where π(·) are the corresponding prior densities implied by (3.12) (see Appendix A.2 for
details) and const1 ∈ R is a constant.

Posterior density The log density we need to sample from is given by

L(µj, ξj,ψj, s̃·j|Z, τ ,v,m) =
T∑
t=1

ln
cmjj

Φ
 ztj

exp
(
stj
2

)
 , vt; τj

+ ln
ϕ

 ztj

exp
(
stj
2

)
− stj

2


+ ln(π(µj, ξj, ψj, s̃·j)) + const2,

where s.j is a function of s̃.j (see (3.13)) and const2 ∈ R is a constant. The necessary
derivatives of this log density are derived (see Appendix A.3) for the Leapfrog approxi-
mations and then sampling of the marginal parameters is straightforward.
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Sampling the dependence parameters

The conditional density we need to sample from for the dependence parameters is pro-
portional to

f(τ ,v|Z,µ,φ,σ, S,m) ∝ `(µ,φ,σ, S, τ ,v,m|Z)π(µ,φ,σ, S, τ ,v)
∝ `(µ,φ,σ, S, τ ,v,m|Z)

∝
T∏
t=1

d∏
j=1

c
mj
j

Φ
 ztj

exp
(
stj
2

)
 , vt; τj

 .
To sample from this density we use the same HMC approach as in Section 3.2.

Sampling the copula family indicators

The full conditional of mj is obtained as

f(mj|Z,µ,φ,σ, S, τ ,v,m−j) =

∏T
t=1 c

mj
j

(
Φ
(

ztj

exp( stj2 )

)
, vt; τj

)
∑
m′j∈M

∏T
t=1 c

m′j
j

(
Φ
(

ztj

exp( stj2 )

)
, vt; τj

) .
We can sample directly from this discrete distribution and no MCMC updates are required
here.

3.3.3 Simulation study
We conduct a simulation study to evaluate the performance of the proposed joint HMC
sampler. We consider one scenario in five dimensions and one scenario in ten dimensions,
as specified in Table 3.4. We choose rather high values for the marginal persistence
parameter φ and moderate values for the dependence parameter Kendall’s τ . These
choices roughly correspond to what we expect to see in financial data. For each scenario we
simulate 100 data sets from the model introduced in Section 3.3.1. The proposed MCMC
sampler with HMC updates is then applied to the simulated data. The sampler is run
for 2500 iterations, whereas the first 500 iterations are discarded for burn-in. For family
selection we consider the following set of single-parameter copula families {Gaussian,
Student t(df=4), Clayton, Gumbel}.

µsim = (−6,−6,−7,−7,−8)
φsim = (0.7, 0.8, 0.85, 0.9, 0.95)
σsim = (0.2, 0.2, 0.3, 0.3, 0.4)
τsim = (0.3, 0.4, 0.5, 0.6, 0.7)
msim = (Gaussian, Student t(df=4), Clayton, Gumbel, Gaussian)

(3.14)

Scenario d T µ φ σ τ m
1 5 1000 µsim φsim σsim τsim msim

2 10 1000 (µsim,µsim) (φsim,φsim) (σsim,σsim) (τsim,τsim) (msim,msim)

Table 3.4: Parameter specification for the two different scenarios in the simulation study.
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Figures 3.1 and 3.2 show estimated posterior densities and trace plots of one MCMC
run for the five-dimensional setup. The trace plots cover the true values and suggest that
we achieve proper mixing.
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Figure 3.1: Trace plots of selected parameters obtained from a single MCMC run in
Scenario 1. The trace plots show 2000 MCMC iterations after a burn-in of 500. The true
parameter value is added in red.

The simulation results are summarized in Tables 3.5 and 3.6 for the five-dimensional
scenario and in Tables A.1 and A.2 in Appendix A.4 for the ten-dimensional setup. Com-
paring these two setups, we see that the effective sample sizes are better for the five-
dimensional scenario. Besides that, the results of the five and ten-dimensional setups are
only slightly different and therefore we discuss only the five-dimensional scenario. Com-
paring the simulation results for the factor copula parameters to the results of Section
3.2.3, we see that we perform worse in terms of observed coverage probabilities and MSE.
But this is not surprising, because here we consider a much more complex model and
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also update the copula families and the marginal parameters. Further, we see that the
ESS decreases from τ1 up to τ5. This is in line with our findings in Section 3.2.3, where
we have seen that mixing is worse for higher Kendall’s τ values. We can also observe
differences with respect to the observed coverage probability of credible intervals. For a
low marginal persistence parameter (φ1), coverage probabilities are very high suggesting
a broad posterior distribution. For a high persistence parameter (φ5), the observed cov-
erage probabilities are lower. We also see from Figure 3.2 that the estimated posterior
density of φ1 is more dispersed compared to the estimated posterior density of φ5. Table
3.6 shows that the correct copula family was selected in at least 66 out of 100 cases. This
frequency is best for the first linking copula which has a low Kendall’s τ value and worst
for the linking copula with the highest Kendall’s τ value.

−9.0 −7.5 −6.0

0
2

4
6

µ1

D
en

si
ty

 o
f µ

1

−9.0 −7.5 −6.0

0
2

4
6

µ2

D
en

si
ty

 o
f µ

2

−9.0 −7.5 −6.0

0
2

4
6

µ3

D
en

si
ty

 o
f µ

3

−9.0 −7.5 −6.0
0

2
4

6
µ4

D
en

si
ty

 o
f µ

4
−9.0 −7.5 −6.0

0
2

4
6

µ5

D
en

si
ty

 o
f µ

5
0.0 0.4 0.8

0
5

10
20

φ1

D
en

si
ty

 o
f φ

1

0.0 0.4 0.8

0
5

10
20

φ2

D
en

si
ty

 o
f φ

2

0.0 0.4 0.8

0
5

10
20

φ3

D
en

si
ty

 o
f φ

3

0.0 0.4 0.8

0
5

10
20

φ4

D
en

si
ty

 o
f φ

4

0.0 0.4 0.8
0

5
10

20
φ5

D
en

si
ty

 o
f φ

5

−0.2 0.2 0.6

0
2

4
6

8

σ1

D
en

si
ty

 o
f σ

1

−0.2 0.2 0.6

0
2

4
6

8

σ2

D
en

si
ty

 o
f σ

2

−0.2 0.2 0.6

0
2

4
6

8

σ3

D
en

si
ty

 o
f σ

3

−0.2 0.2 0.6

0
2

4
6

8

σ4

D
en

si
ty

 o
f σ

4

−0.2 0.2 0.6

0
2

4
6

8

σ5

D
en

si
ty

 o
f σ

5

0.2 0.4 0.6 0.8

0
5

15
25

τ1

D
en

si
ty

 o
f τ

1

0.2 0.4 0.6 0.8

0
5

15
25

τ2

D
en

si
ty

 o
f τ

2

0.2 0.4 0.6 0.8

0
5

15
25

τ3

D
en

si
ty

 o
f τ

3

0.2 0.4 0.6 0.8

0
5

15
25

τ4

D
en

si
ty

 o
f τ

4

0.2 0.4 0.6 0.8

0
5

15
25

τ5

D
en

si
ty

 o
f τ

5

−10 −8 −6

0.
0

0.
6

1.
2

s200,1

D
en

si
ty

 o
f s

20
0,

1

−10 −8 −6

0.
0

0.
6

1.
2

s200,2

D
en

si
ty

 o
f s

20
0,

2

−10 −8 −6

0.
0

0.
6

1.
2

s200,3

D
en

si
ty

 o
f s

20
0,

3

−10 −8 −6

0.
0

0.
6

1.
2

s200,4

D
en

si
ty

 o
f s

20
0,

4

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

v200

D
en

si
ty

 o
f v

20
0

Figure 3.2: Kernel density estimates of the posterior density of selected parameters ob-
tained from a single MCMC run in Scenario 1. The estimates are based on 2000 MCMC
iterations after a burn-in of 500. The true parameter value is added in red.
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Overall, the results suggest that the method performs well. For all parameters we
obtain reasonable MSE and ESS values and our method is able to select the correct
copula family in most cases. In particular, our HMC schemes do a good job at jointly
updating more than T = 1000 parameters of one Gibbs block.

Scenario 1 µ1 µ2 µ3 µ4 µ5 φ1 φ2 φ3 φ4 φ5
MSE 0.0027 0.0038 0.0059 0.0107 0.0851 0.0362 0.0408 0.0059 0.0017 0.0003
C.I. 90% 0.91 0.86 0.92 0.92 0.82 0.97 0.86 0.89 0.90 0.83
C.I. 95% 0.95 0.90 0.96 0.94 0.87 0.99 0.94 0.94 0.93 0.89
ESS 1022 666 761 942 505 644 433 399 461 325

σ1 σ2 σ3 σ4 σ5 τ1 τ2 τ3 τ4 τ5
MSE 0.0077 0.0055 0.0037 0.0024 0.0026 0.0094 0.0164 0.0255 0.0364 0.0503
C.I. 90% 0.95 0.93 0.91 0.91 0.81 0.78 0.79 0.68 0.79 0.72
C.I. 95% 0.98 0.93 0.93 0.97 0.88 0.84 0.85 0.77 0.81 0.74
ESS 391 368 326 360 255 879 770 528 480 280

s300,1 s300,2 s300,3 s300,4 s300,5 v100 v200 v500 v800 v900
MSE 0.0564 0.0892 0.2234 0.1836 0.2132 0.0239 0.0241 0.0283 0.0222 0.0202
C.I. 90% 0.94 0.88 0.93 0.91 0.94 0.86 0.91 0.83 0.86 0.84
C.I. 95% 0.98 0.95 0.95 0.96 0.97 0.91 0.94 0.88 0.88 0.89
ESS 1448 433 1433 1343 1334 997 1104 1036 1111 1085

Table 3.5: MSE estimated using the posterior mode, observed coverage probability of the
credible intervals (C.I.) and effective sample sizes (ESS) calculated from 2000 posterior
draws for selected parameters (Scenario 1).

m1 m2 m3 m4 m5
94% 90% 87% 77% 66%

Table 3.6: Proportion of how often the correct copula family was selected. The selected
copula family is the posterior mode estimate of mj for j = 1, . . . , 5 (Scenario 1).

3.4 Application: Value at risk prediction
We illustrate our approach with one-day ahead value at risk (VaR) prediction for a portfo-
lio consisting of several stocks. These predictions can be obtained from simulations of the
predictive distribution. As before, Z is the data matrix containing T observations of the d
stocks. We need to sample from the predictive distribution of the log returns at time T+1,
ZT +1 = (ZT+1,1, . . . ZT+1,d), given Z. The parameters sT +1 = (sT+1,1, . . . , sT+1,d), vT+1
are associated with the new time point T + 1 and we obtain simulations from the joint
density

f(zT +1, sT +1, S,µ,φ,σ, τ , vT+1,v,m|Z), (3.15)
with the following steps:

• Simulate S,µ,φ,σ, τ ,v,m from the corresponding posterior distribution given the
data Z with our sampler developed in Section 3.3. We discard the first 500 samples
for burn-in and denote the remainingR = 2000 samples by Sr,µr,φr,σr, τ r,vr,mr,
r = 1, . . . , R.

We proceed as follows for r = 1, . . . , R:

• Simulate vrT+1 ∼ U(0, 1).
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• For j = 1, . . . , d simulate srT+1,j ∼ N(µrj + φrj(srT j − µrj), (σrj )2).

• To obtain the sample zrT +1 from

f(zT+1|srT +1, S
r,µr,φr,σr, τ r, vrT+1,v

r,mr, Z) =

d∏
j=1

cmrjj
 zT+1,j

exp
(
srT+1,j

2

) , vrT+1; τ rj

ϕ
 zT+1,j

exp
(
srT+1,j

2

)
 · 1

exp
(
srT+1j

2

)
,

we simulate urj from C
mrj
j

(
·|vrT+1; τ rj

)
and set zrT+1,j = Φ−1

(
urj |0, exp

(
srT+1,j

))
for

j = 1, . . . , d. Here Φ(·|µnormal, σ2
normal) is the distribution function of a normally

distributed random variable with mean µnormal and variance σ2
normal.
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Figure 3.3: Observed daily log return of the portfolio and the estimated one-day ahead
90% VaR (red) and 95% VaR (blue) plotted against time in years.

We consider an equally weighted portfolio consisting of 6 stocks from German com-
panies (BASF, Fresenius Medical Care, Fresenius SE, Linde, Merck, K+S). Since all
companies are chosen from the chemical/pharmaceutical/medical industry, we assume
that a model with one factor is suitable to capture the dependence structure. Our data,
obtained from Yahoo Finance (https://finance.yahoo.com), contains daily log returns
of these stocks from 2008 to 2017. We use 1000 days as training period, which corre-
sponds to data of approximately four years. We set T = 1000 and obtain simulations of
the one-day ahead predictive distribution as described above for the first trading day in
2012. Instead of refitting the model for each day, we fix parameters that do not change
over time (µ,φ,σ, τ ,m) at their posterior mode estimates and only update dynamic
parameters (S,v) for the remaining one-day ahead predicitve simulations (see Appendix
F). For updating only the dynamic parameters we have seen that it is enough to use the
last 100 time points and time needed for computation is reduced a lot. We obtain 2000
simulations of the one-day ahead predictive distribution for each trading day in the period
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from January 2012 to December 2017. From the simulations we calculate the portfolio
value, and take the corresponding quantile to obtain the VaR prediction. We consider the
same VaR level of 90% as in Schamberger et al. (2017) and additionally the 95% VaR.
The linking copulas are chosen from the following set of single-parameter copula fami-
lies: {Gaussian, Student t with 4 degrees of freedom, (survival) Gumbel and (survival)
Clayton}. With these choices, we cover a range of different tail dependence structures:
no tail dependence (Gauss), symmetric tail dependence (Student t) and asymmetric tail
dependence ((survival) Gumbel and (survival) Clayton). As explained above, the copula
family indicator was only updated for the first model we fitted and then kept fixed. The
linking copula families of BASF, Fresenius Medical Care, Fresenius SE, Linde, Merck and
K+S with the highest posterior probabilities are Student t, survival Gumbel, survival
Gumbel, Gaussian, survival Gumbel and Student t, respectively. In particular, we obtain
a model with asymmetric tail dependence structure. Predicting the VaR for each trading
day in six years results in 1521 VaR predictions. The portfolio log returns and corre-
sponding 90% and 95% VaR predictions are visualized in Figure 3.3. We observe that the
one-day ahead VaR forecast adapts to changes in the volatility.

To benchmark the proposed model (factor copula SV (fc SV)), we repeated the proce-
dure for VaR prediction with two other models: marginal dynamic linear models combined
with single factor copulas (fc dlm) estimated with a two-step procedure as proposed by
Schamberger et al. (2017) and a multivariate factor stochastic volatility model with dy-
namic factors (df Gauss SV) as proposed by Kastner et al. (2017). The df Gauss SV
model is here restricted to one factor. To illustrate the necessity of copula family selec-
tion, we further consider fc SV models with the restriction that all linking copulas are
chosen from the same family. We consider the three copula families that were selected as
linking copulas for the fc SV model and obtain the three restricted models fc SV (Ga),
fc SV (t) and fc SV (sGu) which have only Gaussian, Student t(df=4) and survival
Gumbel linking copulas, respectively. Additionally, we compare the proposed approach
to a two-step estimation of the factor copula SV model (fc SV (ts)). In this two-step
approach we obtain simulations from the predictive distribution of the log returns at time
T + 1, ZT +1, given Z as follows:

• Estimate a SV model for each margin separately and obtain marginal posterior mode
estimates for the latent log variances denoted by ŝtj for t = 1, . . . , T, j = 1, . . . , d.

• Use the probability integral transform to obtain pseudo copula data on the [0, 1]
scale, ûtj = Φ

(
ztj · exp

(
− ŝtj

2

))
.

• For the data ûtj, t = 1, . . . , T, j = 1, . . . , d, we fit the single factor copula model with
HMC as explained in Section 3.2, where we allow for Bayesian copula family selection
and obtain posterior mode estimates of the corresponding parameters denoted by
τ̂1, . . . τ̂d, m̂1, . . . m̂d.

• For each margin, we simulate from the predictive distribution of the log variances
at time T + 1, i.e. from sT+1,j|z1j, . . . , zTj, and obtain marginal posterior mode
estimates ŝT+1,j for j = 1, . . . , d.

For r = 1, . . . , R we proceed as follows:
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• We simulate ur1, . . . urd from the single factor copula with parameters τ̂1, . . . τ̂d, m̂1, . . . m̂d.

• We set zrT+1,j = Φ−1
(
urj |0, exp(ŝT+1,j)

)
for j = 1, . . . , d.

Standard measures to compare the predictive accuracy between different models are
the continuous ranked probability score (Gneiting and Raftery (2007)) or log predictive
scores as used in Kastner (2019). These scores evaluate the overall performance. But
we are interested in the VaR, a quantile of the predictive distribution, which is only
one specific aspect. Therefore we use the rate of VaR violations and the conditional
coverage test (Christoffersen (2012), Chapter 13), which are commonly used to compare
VaR forecasts, as in Schamberger et al. (2017) and Nagler et al. (2019). From an optimal
VaR measure at level p we would expect that there are (1 − p) · 100% VaR violations
and that violations occur independently. This constitutes the null hypotheses of the
conditional coverage test. The VaR violation rates for the different models are shown in
Table 3.7. For the 90% VaR, the violation rate of the df Gauss SV model is closest to the
optimal rate of 10%, whereas for the 95% VaR, the fc SV model performs best. According
to the p-values of the conditional coverage test in Table 3.8, only the fc SV (sGu) model
can be rejected at the 5% level with respect to 90% VaR prediction. But with respect to
95% VaR prediction, every model except the fc SV model is rejected at the 5% or 10%
level. We conclude that the preferred model in this scenario is the fc SV model.

fc SV fc SV (Gauss) fc SV (t) fc SV (sGu) fc SV (ts) fc dlm df Gauss SV
90% VaR 9.07% 8.74% 9.27% 8.68% 10.52% 8.74% 10.32%
95% VaR 4.93% 5.39% 5.26% 4.14% 6.51% 4.80% 5.85%

Table 3.7: The rate of 90% and 95% VaR violations for the seven models: fc SV, fc
SV(Gauss), fc SV(t), fc SV(sGu), fc SV(ts), fc dlm, df Gauss SV. The violation rate
closest to the optimal value of 5% or 10% is marked in bold.

fc SV fc SV (Gauss) fc SV (t) fc SV (sGu) fc SV (ts) fc dlm df Gauss SV
90% VaR 0.13 0.1 0.43 0.05 0.78 0.19 0.69
95% VaR 0.12 0.04 0.03 0 0.01 0.03 0.02

Table 3.8: The p-value of the conditional coverage test for the 90% and 95% VaR predic-
tions of seven models: fc SV, fc SV(Gauss), fc SV(t), fc SV(sGu), fc SV(ts), fc dlm, df
Gauss SV. The highest p-value per row is marked in bold.

3.5 Conclusion
We propose a single factor copula SV model, a combination of the SV model for the
margins and factor copulas for the dependence. Dependence and marginal parameters are
estimated jointly within a Bayesian approach, avoiding a two-step estimation procedure
which is commonly used for copula models. The proposed model can be seen as one
way to extend factor SV models that rely on Gaussian dependence to more complex
dependence structures. The necessity of such models was illustrated with one-day ahead
value at risk prediction. In the application our stocks were chosen such that one factor
is suitable to describe dependencies. However, this might not be appropriate for different
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portfolios and the extension of the proposed model to multiple factors will be subject to
future research. This extension to multiple factors could exploit the partition of different
stocks into sectors as in the structured factor copula model proposed by Krupskii and
Joe (2015). Another extension could allow for time-varying dependence parameters or for
copula families with two and more parameters.
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4 Bayesian inference for nonlinear state
space models with univariate au-
toregressive state equation

This chapter is a reproduction of Kreuzer and Czado (2019c) with minor changes.

4.1 Introduction
There are many situations where statistical models with static (time-constant) param-
eters are no longer sufficient to appropriately represent certain aspects of the economy.
For example, it is well known that volatility of financial assets changes over time (Schw-
ert (1989)). This is why many models that allow for variation in the parameter have
been proposed. There are time-varying vector autoregressive models (Primiceri (2005),
Nakajima et al. (2011)), stochastic volatility models (Kim et al. (1998)), GAM copula
models (Vatter and Chavez-Demoulin (2015), Vatter and Nagler (2018)) and many more.
Stochastic volatility models and the bivariate dynamic copula model of Almeida and
Czado (2012) assume that the parameter follows a latent autoregressive process of order
1 (AR(1) process). These two models belong to the class of models that we will study.

In a general time-varying parameter framework, we consider a d-dimensional random
variable at time t, Yt ∈ Rd, which is generated from a d-dimensional density f(·|st). We
are interested in models, where the density f(·|st) has a univariate dynamic parameter
st ∈ R following an AR(1) process. These models can be formulated as state space models
with observation equation

Yt|st ∼ f(yt|st) (4.1)

for t = 1, . . . , T . The state equation describes an AR(1) process with mean parameter
µ ∈ R, persistence parameter φ ∈ (−1, 1) and standard deviation parameter σ ∈ (0,∞)
and is given by

st = µ+ φ(st−1 − µ) + σεt, (4.2)

where εt ∼ N(0, 1) iid for t = 1, . . . , T and s0|µ, φ, σ ∼ N
(
µ, σ2

1−φ2

)
. In the state equation

we assume Gaussian innovations εt, but in the observation equation we do not put any
restrictions on the density f . Thus, we allow for nonlinear and non-Gaussian state space
models. Several established models can be analyzed within this framework.

By choosing f(·|st) as the univariate normal density with mean 0 and variance exp(st),
denoted by ϕ(·|0, exp(st)), we obtain the stochastic volatility model (see Section 2.1.2)

41



4. BAYESIAN INFERENCE FOR NONLINEAR STATE SPACE MODELS WITH UNIVARIATE
AUTOREGRESSIVE STATE EQUATION

given by

Yt|st ∼ ϕ(yt|0, exp(st)),
st = µ+ φ(st−1 − µ) + σεt

(4.3)

for t = 1, . . . , T . By modeling the log variance as a latent AR(1) process, this model allows
for time-varying volatility. To allow for heavy tails and skewness, other distributions have
been considered in the observation equation. One example is the stochastic volatility
model with skew Student t errors (see Section 2.1.2), which can also be analyzed within
our framework.

Dependence modeling is another research area, where models that allow for time-
varying parameters have been introduced. Vine copulas (see Section 2.2.4) are widely used
models to capture complex dependence structures. To name a few, Brechmann and Czado
(2013) and Nagler et al. (2019) employ vine copulas for forecasting the value at risk of a
protfolio, Aas (2016) gives an overview of applications of vine copulas in finance including
asset pricing, credit risk management and portfolio optimization and Barthel et al. (2018)
model the association pattern between gap times with D-vine copulas to study asthma
attacks. A vine copula model is made up of different bivariate copulas with corresponding
dependence parameters. Since dependencies may change over time, extensions that allow
for variation in the dependence parameter have been proposed. Vatter and Chavez-
Demoulin (2015) introduce a bivariate copula model, where the dependence parameter
follows a generalized additive model. Another approach is the dynamic bivariate copula
model proposed by Almeida and Czado (2012) and Hafner and Manner (2012), which
we will analyze within our state space framework. For this model, we consider single-
parameter copula families for which there is a one-to-one correspondence between the
copula parameter and Kendall’s τ . This allows to parametrize copula families in terms
of Kendall’s τ (see Section 2.2.3). The restriction of Kendall’s τ to the interval (−1, 1) is
removed by applying the Fisher’ Z transformation FZ(x) = 1

2 log
(

1+x
1−x

)
. This transformed

time-varying Kendall’s τ is then modeled by an AR(1) process. More precisely, we consider
T bivariate random vectors, (Ut1, Ut2)t=1,...,T ∈ [0, 1]T×2, corresponding to T time points.
We assume for t = 1, . . . , T that

(Ut1, Ut2)|τt ∼ c(ut1, ut2; τt),
st = µ+ φ(st−1 − µ) + σεt, with st = FZ(τt),

(4.4)

where c(ut1, ut2; τt) is a bivariate copula density with Kendall’s τ parameter τt.
Nonlinear state space models as specified with (4.1) and (4.2) are typically difficult to

estimate, since there is a large number of parameters and likelihood evaluation requires
high-dimensional integration. This often makes maximum likelihood approaches infeasi-
ble. Gibbs sampling (Geman and Geman (1984)) is a frequently used Bayesian approach
to infer parameters of such nonlinear state space models (Carlin et al. (1992)). But the
posterior samples, resulting from conventional Gibbs sampling, often suffer from high au-
tocorrelation. Furthermore, the availability of the full conditional distributions or at least
an efficient MCMC approach to sample from them is required. This is often tailored to
specific situations. We present a Gibbs sampling approach that is designed to handle mod-
els with a latent AR(1) process and general likelihood functions as specified by the state
space formulation in (4.1) and (4.2). To sample from the associated posterior distribution
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we rely on elliptical slice sampling (Murray et al. (2010)) and on an ancillarity-sufficiency
interweaving strategy (Yu and Meng (2011)). Elliptical slice sampling is used to sample
the latent states. This allows us to exploit the Gaussian dependence structure, that is
implied by the AR(1) process. But even if we provide efficient methods to sample from the
full conditionals, the sampler may still suffer from the dependence among the parameters
in the posterior distribution. Additionally, its performance may vary for different model
parametrizations (Frühwirth-Schnatter and Sögner (2003), Strickland et al. (2008)). This
problem is tackled with the ancillarity-sufficiency interweaving strategy, where the pa-
rameters of the latent AR(1) process are sampled from two different parametrizations.
The decision between two parametrizations is avoided by using both. This approach
has already shown good results for several models, including univariate and multivari-
ate stochastic volatility models (Kastner and Frühwirth-Schnatter (2014), Kastner et al.
(2017)). The efficiency of our proposed sampler is illustrated with a simulation study.

The second part of this chapter has a more applied focus and deals with modeling
the volatility return relationship, i.e. the dependence between an index and the corre-
sponding volatility index. More precisely, we investigate the American index S&P500
and its volatility index the VIX as well as the German index DAX and the VDAX. It is
important to provide appropriate models for this relationship, since it has influence on
hedging and risk management decisions (Allen et al. (2012)). For our analysis we make
use of a two-step approach commonly used in copula modeling, motivated by Sklar’s The-
orem (see Section 2.2.1). We first model the marginal distribution with a univariate skew
Student t stochastic volatility model. In the second step we model the dependence for
which we propose a dynamic copula model allowing for asymmetric tail dependence. This
model is a dynamic mixture of a Gumbel and a Student t copula and can be seen as
an alternative to the symmetrized Joe-Clayton copula of Patton (2006). Estimation is
carried out through a two-step approach, where we first estimate the marginal stochastic
volatility models, fix their parameters at point estimates and then estimate the dynamic
mixture copula. At both steps, estimation is straightforward with the proposed sampler.
Our model is able to capture several characteristics of the joint distribution of volatil-
ity and return. With respect to the marginal distribution, we observe positive skewness
for volatility indices compared to slight negative skewness for the return indices. In the
dependence structure we identify asymmetry and time-variation. Finally, we compare
the proposed model to several restricted models with static (time-constant) or symmetric
dependence and to a bivariate DCC-GARCH model (Engle (2002)). Model comparison
with respect to predictive accuracy shows the superiority of our approach.

To summarize, the main contribution of this chapter is an approach to efficiently
sample from the posterior distribution of general nonlinear state space models as specified
by (4.1) and (4.2). In addition, we propose a dynamic mixture copula for time-varying
asymmetric tail dependence. We discuss Bayesian inference for this model class and
demonstrate how it can be utilized to model the volatility return relationship.

The outline of this chapter is as follows: After the introduction, we discuss the pro-
posed MCMC approach in Section 4.2. In Section 4.3 we investigate the efficiency of the
sampler for bivariate dynamic copula models through an extensive simulation study. Sec-
tion 4.4 deals with modeling the volatility return relationship and Section 4.5 concludes.
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4.2 Bayesian inference
We consider the state space model as specified by (4.1) and (4.2). To obtain a fully
specified Bayesian model, we equip the parameters µ, φ and σ with prior distributions.
We employ the same prior distributions as for the latent AR(1) process of the stochastic
volatility model (see Section 2.1.2), i.e.

µ ∼ N(0, 1002), φ+ 1
2 ∼ Beta(5, 1.5), σ2 ∼ χ2

1. (4.5)

With these prior distributions our Bayesian model is complete. For sampling from the pos-
terior distribution of this model, we should take into account that sampling efficiency may
highly depend on the model parametrization (Frühwirth-Schnatter and Sögner (2003),
Strickland et al. (2008)). Yu and Meng (2011) differentiate between two parametriza-
tions: A sufficient augmentation and an ancillary augmentation scheme. In our case a
sufficient augmentation is characterized by an observation equation that is free of the pa-
rameters µ, φ and σ and only depends on the latent states s1:T = (s1, . . . , sT ). In this case
s1:T is a sufficient statistics for the parameters µ, φ and σ. In an ancillary augmentation
the state equation is independent of the parameters µ, φ and σ, then s1:T is an ancillary
statistics for the parameters µ, φ and σ. The standard parametrization of our model is
already a sufficient augmentation and we refer to this parametrization as given by (4.1)
and (4.2) as (SA).

(SA) :
Yt|st ∼ f(yt|st),
st = µ+ φ(st−1 − µ) + σεt.

An ancillary augmentation is obtained by the following parametrization

s̃t = st − µ− φ(st−1 − µ)
σ

, with inverse st = µ+ φ(st−1 − µ) + σs̃t, (4.6)

for t = 1, . . . , T . This reparametrization is obtained by solving Equation (4.2) for εt and
implies that the state space model is given by

(AA) :
Yt|s̃1:T , s0, µ, φ, σ ∼ f(yt|st(s̃1:T , s0, µ, φ, σ)),
s̃t ∼ N(0, 1) independently,

where st(s̃1:T , s0, µ, φ, σ) is the function that calculates st recursively according to (4.6)
and s̃1:T = (s̃1, . . . , s̃T ). We refer to this model representation as (AA). Instead of decid-
ing between (SA) and (AA), we combine them in an ancillarity-sufficiency interweaving
strategy (Yu and Meng (2011)), given by

• a) Sample s0:T in (SA) from s0:T |Y, µ, φ, σ .

• b) Sample (µ, φ, σ) in (SA) from µ, φ, σ|Y, s0:T .

• c) Move to (AA) via s̃t = st−µ−φ(st−1−µ)
σ

for t = 1, . . . , T .

• d) Sample (µ, φ, σ) in (AA) from µ, φ, σ|Y, s0, s̃1:T .

• e) Move back to (SA) via the recursion st = µ+ φ(st−1 − µ) + σs̃t for t = 1, . . . , T .
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Here Y = (y1, . . . ,yT )> is the data matrix, where yt is an observation of the ran-
dom vector Yt, for t = 1, . . . , T , and s0:T = (s0, s1:T ). Kastner and Frühwirth-Schnatter
(2014) employed interweaving for the stochastic volatility model and showed its supe-
rior performance with an extensive simulation study. For the stochastic volatility model,
Kastner and Frühwirth-Schnatter (2014) propose to move between a sufficient augmen-
tation and a reparametrization of the latent states s1:T given by sKt = st−µ

σ
. Within

this reparametrization parameters can be sampled conveniently from its full conditional
distribution by recognizing a linear regression model. This is possible for the standard
stochastic volatility model, but not in our case, since our sampler is designed to handle
more general likelihood functions. Therefore we have chosen the reparametrization of
(SA) such that it is optimal in the sense of Yu and Meng (2011), i.e. we move between a
sufficient and a ancillary augmentation.

Note that reducing the sampler to the first two steps a) and b) results in a standard
Gibbs sampler in (SA). This sampler typically suffers from the dependence among the
parameters µ, φ, σ and the latent states s1:T in the posterior distribution.

Step a: Sampling of the latent states in the sufficient augmentation

To sample the latent states s0:T from its full conditional in (SA) we make use of elliptical
slice sampling (see Section 2.3.2). In (SA), the AR(1) structure implies, that the vector
s0:T |µ, φ, σ has a (T + 1)-dimensional multivariate normal distribution with mean vector
µAR and covariance matrix ΣAR given by

µAR =


µ
µ
...
µ

 ∈ RT+1, ΣAR = σ2

1− φ2


1 φ φ2 . . . φT

φ 1 φ . . . φT−1

... ... ... ...
φT φT−1 φT−2 . . . 1

 ∈ R(T+1)×(T+1).

(4.7)
(see e.g. Brockwell et al. (2002), Chapter 2). The posterior density is proportional to(

T∏
t=1

f(yt|st)
)
ϕ(s0:T |µAR,ΣAR)π(µ)π(φ)π(σ),

where ϕ(·|µAR,ΣAR) denotes the multivariate normal density with mean vector µAR and
covariance matrix ΣAR as given in (4.7) and π(·) denotes the corresponding prior density
as specified in (4.5). The initial state can be sampled from its full conditional density
given by

f(s0|Y, s1:T , µ, φ, σ) = ϕ(s0|µ+ φ(s1 − µ), σ2).
The full conditional density of the latent states s1:T is given by

f(s1:T |Y, s0, µ, φ, σ) ∝
(

T∏
t=1

f(yt|st)
)
ϕ(s1:T |µ1:T |0,Σ1:T |0),

with a corresponding mean vector µ1:T |0 and covariance matrix Σ1:T |0. The mean vector
and the covariance matrix of the conditional distribution are derived in a more general way
in Appendix B.1. By reparametrizing the model with s′1:T = s1:T − µ1:T |0, we impose a
multivariate normal prior with zero mean. We obtain the situation elliptical slice sampling
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was designed for. However, updating the whole T -dimensional vector s1:T with elliptical
slice sampling at once will lead to high autocorrelation in the posterior draws. This is
illustrated in Section 4.3 and was also observed by Hahn et al. (2019), where elliptical slice
sampling was used for linear regression models. Hahn et al. (2019) circumvent this problem
by partitioning the vector s1:T into smaller blocks. We follow this approach and partition
the set {1, . . . , T} into m different blocks B1, . . . , Bm ⊂ {1, . . . , T}. Let ai = mins∈Bi s
denote the minimal and bi = maxs∈Bi s denote the maximal index in the i-th block. The
blocks are chosen such that Bi = {t ∈ {1, . . . , T} : ai ≤ t ≤ bi} and ai < aj for i < j
and i, j = 1, . . . ,m. The full conditional density for the i-th block can be expressed as
f(sBi

|Y, s0, s−Bi
, µ, φ, σ) ∝

(∏
t∈Bi f(yt|st)

)
f(sBi

|s0, s−Bi
, µ, φ, σ), where sA = (si)i∈A

for a set of indices A and −Bi = {1, . . . , T} \ Bi. The vector sBi
|s0, s−Bi

, µ, φ, σ is
multivariate normal distributed with mean denoted by µBi| and covariance matrix ΣBi|
(see Appendix B.1) and therefore the full conditional density can be written as

f(sBi
|Y, s0, s−Bi

, µ, φ, σ) ∝
∏
t∈Bi

f(yt|st)
ϕ(sBi

|µBi|,ΣBi|).

To sample the latent states of the i-th block, sBi
, from its full conditional, we proceed as

follows

• Set s′Bi
= sBi

− µBi|

• Draw s′Bi
from the density

f(s′Bi
|Y, s0, s−Bi

, µ, φ, σ) ∝
∏
t∈Bi

f(yt|st)
ϕ(s′Bi

|0,ΣBi|),

using elliptical slice sampling, where ϕ(s′Bi
|0,ΣBi|) is interpreted as the prior density

for s′Bi
.

• Set sBi
= s′Bi

+ µBi|

Step b: Sampling of the static parameters in the sufficient augmentation

In (SA) the observation equation only depends on s1:T and is independent of the param-
eters µ, φ and σ. The parameters µ, φ and σ only depend on s0:T . This allows to use the
same approach as in Kastner and Frühwirth-Schnatter (2014) to sample the parameters
µ, φ and σ in (SA). We reparametrize the model such that proposals can be found using
Bayesian linear regression. We define γ = µ(1− φ) and the state equation is given by

st = γ + φst−1 + σεt,

where εt ∼ N(0, 1). For fixed s0:T , this is a linear regression model with regression
parameters γ, φ and variance σ2. Proposals for (µ, φ, σ) are found and accepted or rejected
as described in Kastner and Frühwirth-Schnatter (2014), Section 2.4 (two block sampler).
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Step d: Sampling of the static parameters in the ancillary augmentation

To sample µ, φ and σ in (AA), we deploy a random walk Metropolis-Hastings scheme with
Gaussian proposal, where the proposal variance or covariance matrix is adapted during the
burn-in period. For the adaptions we use the Robbins Monro process (Robbins and Monro
(1985)) as suggested by Garthwaite et al. (2016). More details are given in Appendix B.1.

Implementation

For the implementation of the sampler we use Rcpp (Eddelbuettel et al. (2011)) which
allows to embed C++ code into R. In addition, we make use of rvinecopulib (Nagler
and Vatter (2018)) to evaluate copula densities and of RcppEigen (Bates et al. (2013)).
For sampling (µ, φ, σ) in (SA) we use corresponding parts of the implementation of the R
package stochvol (Kastner (2016)). The R package coda (Plummer et al. (2008)) is used
to compute effective sample sizes in the following section.

4.3 Illustration of the proposed sampler for bivariate
dynamic copula models

We illustrate the MCMC sampler, we proposed in the previous section, for the bivariate
dynamic copula model of Almeida and Czado (2012). Kastner and Frühwirth-Schnatter
(2014) have already shown that interweaving improves sampling efficiency a lot for the
stochastic volatility model. We investigate if this is also the case for the bivariate dynamic
copula model. Further, we study how the sampling efficiency is affected by the chosen
block size and by the data generating process (DGP). Therefore, we perform an extensive
simulation study. We consider different modifications of the sampler. A sampler is spec-
ified by a vector (b,i) which indicates its blocksize (b) and if interweaving is used (i=I)
or not (i=NI). We consider 10 different sampler specifications (b,i) ∈ {1, 5, 20, 100, T} ×
{I,NI}, where T is the length of the time series. By using blocks of size T , we obtain the
sampler which updates the parameters s1:T jointly with elliptical slice sampling. If we
turn off interweaving (i=NI), we obtain a standard Gibbs sampler updating parameters in
the sufficient augmentation. These samplers are run for different simulated data sets. A
data set is simulated from the bivariate dynamic copula model (see (4.4)) with parameters:
Family, T, µ, φ, σ. The parameters are chosen from the following grid (Family, T, µ, φ, σ)
∈ {Gauss, eClayton} ×{500, 1000, 1500}×{0, 1}×{0, 0.1, 0.5, 0.9, 0.99}×{0.05, 0.1, 0.2}.
The Gaussian copula is an elliptical copula with symmetric tails, whereas the eClayton
copula is an Archimedean copula with asymmetric tail dependence (see Section 2.2.3).
Among the different DGPs, most distinct values are considered for φ. We expect its
choice to be influential, since it controls the dependence among the latent variables. With
this grid, we obtain 180 different DGPs. For each of the different DGPs, we generate
100 simulated data sets and for each data set we run the 10 different samplers with the
correctly specified copula family for 25000 iterations and discard the first 5000 iterations
for burn-in. So, in total we obtain 18000 simulated data sets and each of the 10 samplers
is run 18000 times.

Figure 4.1 shows trace plots of different parameters (µ, φ, σ, s300) based on one sim-
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ulated data set for three different sampler specifications. We consider specification (5,I),
and the same specification with interweaving turned off, i.e. (5,NI) and the specification
(T,I). We observe that all three samplers produce posterior samples covering the true val-
ues. Further, the trace plots suggest that the (5,I) sampler achieves better mixing than
the other two considered samplers.
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Figure 4.1: Trace plots of 1000 MCMC draws based on a total of 25000 iterations,
where the first 5000 draws are discarded for burn-in and the remaining 20000 draws
are thinned with factor 20. The trace plots are shown for the parameters µ, φ, σ and
s300 for three different sampler specifications: (5,I) (top row), (5,NI) (middle row), (T,I)
(bottom row). The corresponding data was generated from the following DGP: T = 1000,
Family=eClayton, µ = 0, φ = 0.9, σ = 0.1. True values are added in red (dashed).

The runtime of the sampler is mainly affected by the choice of T and the sampler spec-
ification. From Table 4.1 we see that the runtime is increasing in T and that interweaving
adds considerable additional runtime.

(1,I) (5,I) (20,I) (100,I) (T,I) (1,NI) (5,NI) (20,NI) (100,NI) (T,NI)
T = 500 0.6 0.5 0.5 0.7 0.8 0.3 0.3 0.3 0.4 0.5
T = 1000 1.1 1.0 1.1 1.3 1.6 0.7 0.5 0.6 0.8 1.1
T = 1500 1.7 1.4 1.6 1.9 2.6 1.0 0.7 0.9 1.2 1.8

Table 4.1: Average runtime in minutes for 25000 draws. We consider averages for different
sampler specifications and different values of T . The sampler was run on a Linux cluster
with CPU Intel Xeon E5-2697 v3.

To measure efficiency of the samplers, we consider the effective sample size per minute
which we call effective sampling rate, similar to Hosszejni and Kastner (2019). We average

48



4.3. ILLUSTRATION OF THE PROPOSED SAMPLER FOR BIVARIATE DYNAMIC COPULA MODELS

the effective sampling rate of 100 runs, where the same sampler and the same DGP was
used. Then we obtain 180 average effective sampling rates (AESR) per sampler. Since
the AESR decreases for higher values of T for every sampler, we compare the 10 different
samplers among DGPs with the same value for T . For a fixed T we have 60 AESR
values per sampler. For each sampler, the minimum of these 60 values (mAESR) is given
in Table 4.2. We consider the minimum since we are interested in samplers that are
reliable for all DGPs. We see that for the parameters µ, φ and σ sampler specifications
with interweaving have higher mAESR values, while for the latent states specifications
without interweaving perform better. Although interweaving adds additional runtime, it
still increases the mAESR of µ, φ and σ considerably. Further, we observe that choosing
the blocksize too big results in very low mAESR values for the latent states. In this case
many parameters are updated jointly with elliptical slice sampling which results in high
autocorrelation among consecutive draws. The performance of samplers with blocksize T
is especially poor. For these samplers the length of the time series (T = 500, 1000, 1500)
also has strong effects. For example the mAESR for µ for specification (T,NI) decreases
by 85 % from 78 to 11 when the length of the time series is increased from 500 to 1500.
The most inefficient sampler is (T,NI), the sampler without interweaving and with the
largest blocksize. In our opinion, the best results are obtained for sampler specification
(5,I). It provides the highest mAESR values for µ, φ and σ for all choices of T and also
provides rather high mAESR values for the latent states.

(1,I) (5,I) (20,I) (100,I) (T,I) (1,NI) (5,NI) (20,NI) (100,NI) (T,NI)
T = 500

µ 2829 3178 1813 642 381 437 838 780 277 78
φ 471 749 556 191 60 266 326 232 78 24
σ 272 411 263 58 33 53 74 56 23 6

s(a) 938 2982 2484 199 36 1347 4942 3908 273 49
s(m) 346 1092 441 35 5 496 1011 627 41 5

T = 1000
µ 1167 1365 840 309 180 172 330 371 121 21
φ 202 269 212 73 17 81 97 76 27 6
σ 97 175 133 25 9 18 25 21 12 1

s(a) 298 1011 1312 99 12 400 1911 1982 133 16
s(m) 115 417 200 15 1 161 559 296 17 2

T = 1500
µ 711 833 578 200 111 89 218 231 75 11
φ 120 145 107 43 9 38 49 42 14 3
σ 63 109 84 16 3 10 14 13 8 1

s(a) 162 583 879 66 7 247 1168 1359 90 10
s(m) 61 239 112 9 1 95 426 176 11 1

Table 4.2: For different lengths of the time series (T = 500, 1000, 1500), the minimum
of 60 AESR values (mAESR), corresponding to 60 different DGPs, is shown for different
parameters and 10 different sampler specifications. In the s(a) row we calculate the
mAESR based on the average of the effective sampling rates of s0, . . . , sT , while in the s(m)
row the mAESR values are calculated based on the minimum of the effective sampling
rates of s0, . . . , sT .

In addition to the previous analysis, we investigate how different DGPs affect the
samplers. Therefore we consider the best sampler according to Table 4.2, i.e. sampler
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specification (5,I). In addition, we have a look at the same sampler specification without
interweaving (5,NI) and the same sampler with joint updates of the latent states, i.e. (T,I).
We consider the AESR for σ, which is usually the parameter which causes most problems.
Table 4.3 shows for each of these three samplers the DGPs with T = 1000 which resulted
in the lowest and the highest AESR for σ. For the (5,I) specification, satisfactory AESR
values, ranging from 175 to 456, are obtained for all DGPs. In the (T,I) specification
the latent states are updated jointly. In scenarios with strong dependence among the
latent states (φ = 0.99) this sampler performs poorly, whereas the best performance of
the sampler was seen for a DGP with low dependence among the latent states (φ=0).
The (5,NI) specification is a standard Gibbs sampler in the sufficient augmentation. We
see that for this specification the AESR values vary a lot, ranging from 25 to 558. The
best performance of this sampler specification was seen for a DGP with high persistence
(φ = 0.99).

(5,I) (T,I) (5,NI)

AESR(σ) min max min max min max
175 456 9 121 25 558

DGP family Gauss eClayton eClayton eClayton Gauss eClayton
µ 0 1 0 0 0 0
φ 0.1 0.9 0.99 0 0.1 0.99
σ 0.2 0.2 0.2 0.05 0.05 0.2

Table 4.3: For three sampler specifications ((5,I), (T,I), (5,NI)) we show the DGPs with
T = 1000 which resulted in the highest and in the lowest AESR values for σ, respectively.
The corresponding AESR is also shown.

DGP AESR(µ) AESR(φ) AESR(σ)
family µ φ σ (5,I) CG (5,I) CG (5,I ) CG
Gauss 1 0.9 0.1 8187 2130 527 81 393 50
Gauss 1 0.1 0.2 1637 305 364 83 437 69
Gauss 0 0.9 0.2 9935 4150 549 150 316 85

eClayton 1 0.9 0.1 8382 2088 539 74 397 46
eClayton 1 0.1 0.2 1778 279 378 71 416 52
eClayton 0 0.9 0.2 10079 4375 574 175 323 97

Table 4.4: Comparison of sampler specification (5,I) and the coarse grid sampler (CG)
of Almeida and Czado (2012) for six different DGPs with T = 1000 with respect to the
AESR of µ, φ and σ.

Lastly, we compare our sampler to the coarse grid sampler employed by Almeida and
Czado (2012). We already covered six DGPs that were also analyzed by Almeida and
Czado (2012). Instead of running their sampler, we make the comparison with respect to
these six cases. There are several points which make the comparison slightly less reliable.
First, Almeida and Czado (2012) did not report exact computation times but they note
that 100 000 iterations of their sampler take about 15 minutes. We use this number
to calculate the AESR values from the effective sample sizes they report in their paper.
Second, their calculations were performed on a different computer and third they use
different prior distributions for φ and σ2. But we think that this comparison should still
give us a rough idea of how the sampling efficiencies compare to each other. From Table
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4.4 we see that the (5,I) specification considerably outperforms the coarse grid sampler
(CG). For every parameter (µ, φ, σ) we obtain way higher AESR values.

4.4 Application: Modeling the volatility return rela-
tionship

We investigate the volatility return relationship through the bivariate joint distribution
of a stock index and the corresponding volatility index. The joint distribution of return
and volatility incorporates all the marginal information as well as information about
the dependence, which are both relevant for hedging and risk management (Allen et al.
(2012)). Since there has already been evidence for asymmetry in the joint distribution of
volatility and return (Allen et al. (2012), Fink et al. (2017)), models which are able to
handle such characteristics are necessary.

The two-step copula modeling approach motivated by Sklar’s theorem (see Section
2.2.1) provides a very flexible method for the construction of multivariate distributions.
We can combine arbitrary marginal distributions with any copula. Here, we propose a
bivariate model that combines the skew Student t stochastic volatility model for the mar-
gins with a novel dynamic mixture copula. This model allows for asymmetry and heavy
tails in the marginal distribution as well as for time-varying asymmetric tail dependence
in the dependence structure. Both, the marginal as well as the copula model can be
estimated with the proposed sampler.

Marginal model
We utilize the stochastic volatility model with skew Student t errors (see Section 2.1.2).
The model is given by

Yt = exp
(
st
2

)
εsstt

st = µ+ φ(st−1 − µ) + σεt,
(4.8)

where εsstt |α, df ∼ sst(εsstt |α, df) independently for t = 1, . . . , T and sst(εsstt |α, df) denotes
the density of the standardized skew Student t distribution with parameters α ∈ R and
df > 2. Compared to our framework, this model has two additional parameters, α and df .
For these additional parameters we choose the following prior distributions (see Section
2.1.2)

α ∼ N(0, 100), df ∼ N>2(5, 25). (4.9)

Conditional on α and df , our sampler can be applied directly to sample (µ, φ, σ, s0:T )
from its full conditional. Another approach, which lead to better mixing, is to include
the parameters α and df in the interweaving strategy. The sampler is slightly modified
in the following way:
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• a) Sample s0:T from s0:T |Y, µ, φ, σ, α, df .

• b) Sample (µ, φ, σ, α, df) in (SA) from µ, φ, σ, α, df |Y, s0:T .

• c) Move to (AA) via s̃t = st−µ−φ(st−1−µ)
σ

, for t = 1, . . . , T .

• d) Sample (µ, φ, σ, α, df) in (AA) from µ, φ, σ, α, df |Y, s0, s̃1:T .

• e) Move back to (SA) via the recursion st = µ+ φ(st−1 − µ) + σs̃t for t = 1, . . . , T .

For step a) we proceed as described in Section 4.2. For step b) we draw α and df from
its univariate full conditional distributions using Metropolis-Hastings, similar to Step d)
in Section 4.2. The parameters (µ, φ, σ) are drawn from its full conditional as described
in Section 4.2. For step d) we investigated different blocking strategies for the parameters
(µ, φ, σ, α, df). We compared the different strategies with respect to effective sample sizes
and decided to use the following three blocks: (µ, df), (φ, σ) and α. Each block is updated
using Metropolis-Hastings as in Step d) in Section 4.2.

Dependence model

Dependence among financial assets is often modeled with a Student t copula. This cop-
ula allows for tail dependence symmetric in the upper and lower tail. Evidence against
the assumption of symmetric tail dependence has been provided and models to handle
this characteristic have become necessary (Patton (2006), Nikoloulopoulos et al. (2012),
Jondeau (2016)). Patton (2006) proposes the symmetrized Joe-Clayton copula. This is a
modification of the BB7 copula (Joe (2014), Chapter 4) that is symmetric if upper and
lower tail dependence coincide, which he describes as a desirable property. In the appli-
cation of Nikoloulopoulos et al. (2012) the Student t copula provides the best fit in terms
of the likelihood. But they argue that if the focus is on the tails, a BB1 or BB7 copula
might be more appropriate. The BB1 and BB7 copulas have two parameters which might
not be enough, if we want to model three characteristics in a flexible way: upper tail
dependence, lower tail dependence and overall dependence as measured with Kendall’s
τ . We provide another approach to relax the symmetric tail dependence assumption.
We propose a mixture of a Student t and an extended Gumbel copula with parameters
τ ∈ (−1, 1), ν > 2 and p ∈ [0, 1] given by

C
M(u1, u2; τ, ν, p) = pCt(u1, u2; τ, ν) + (1− p)CG(u1, u2; τ), (4.10)

where Ct is the bivariate Student t copula specified by Kendall’s τ and the degree of
freedom ν and CG is the bivariate extended Gumbel copula specified by Kendall’s τ (see
Section 2.2.3). Both copulas Ct and CG share the dependence parameter τ and we expect
the mixture copula to have a similar strength of dependence. We evaluated the Kendall’s τ
of the mixture copula, τM , for different values of τ , p and ν numerically and observed only
negligible difference between τ and τM . The lower and upper tail dependence coefficients
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λLM and λUM of the mixture copula can, for τ > 0, be obtained as

λLM(τ, p, ν) = lim
u→0+

C
M(u, u)
u

= lim
u→0+

pCt(u, u; τ, ν) + (1− p)CG(u, u; τ)
u

=p2Tν+1

−
√√√√√(ν + 1)(1− sin

(
π τ2

)
)

1 + sin
(
π τ2

)
+ 0,

λUM(τ, p, ν) =p2Tν+1

−
√√√√√(ν + 1)(1− sin

(
π τ2

)
)

1 + sin
(
π τ2

)
+ (1− p)(2− 21−τ ),

where we used the well known formulas for the tail dependence coefficients of the Student
t and the Gumbel copula (Joe (2014), Chapter 4) and Tν+1(·) denotes the distribution
function of the Student t distribution with ν + 1 degrees of freedom. Whereas the upper
and lower tail dependence coefficients measure dependence in the upper right and lower
left corner, we are also interested in the dependence in the upper left and the lower right
corner when τ < 0. We consider the following tail dependence coefficients in the upper
left corner λULM and in the lower right corner λLRM if τ < 0

λLRM := λLM(−τ, p, ν), λULM := λUM(−τ, p, ν)

analogous to the definition of quarter tail dependence in Fink et al. (2017).
The tail dependence coefficient of the mixture copula is a linear combination of the

tail dependence coefficients of its two components, the Student t and the Gumbel copula.
The Student t copula has symmetric tail dependence, whereas the Gumbel copula has
upper but no lower tail dependence. So we expect upper tail dependence to be higher
than lower tail dependence in the mixture copula. The amount of asymmetry in the tails
is controlled by p, whereas the copula is symmetric in the tails for p = 1 and the level
of asymmetry increases as we decrease p. So this copula allows for great flexibility: The
overall dependence can be described by Kendall’s τ , the degrees of freedom parameter
controls the upper and lower tail dependence coefficient and p controls the difference
between upper and lower tail dependence. This is visualized in Figure B.2 in Appendix
B.2. Note that the desirable property according to Patton (2006) of symmetry in case of
coinciding upper and lower tail dependence is here fulfilled. If we expected higher lower
than upper tail dependence, we can replace the Gumbel copula by a survival Gumbel
copula which has the density cSG(u1, u2) = cG(1−u1, 1−u2). To allow for time-variation,
we use the mixture copula CM of (4.10) within the dynamic bivariate copula model of
Almeida and Czado (2012). A nonlinear state space model for T bivariate random vectors
(Ut1, Ut2)t=1,...,T ∈ [0, 1]T×2, corresponding to T time points, is given by

(Ut1, Ut2) ∼ cM(ut1, ut2; τt, ν, p)
st = µ+ φ(st−1 − µ) + σεt with st = FZ(τt)

(4.11)

for t = 1, . . . , T . We assign a vague uniform prior on [0, 1] for p, a vague normal prior
with mean 5 and standard deviation 20 truncated to the interval (2,∞) for ν and the
same priors as in (4.5) for the remaining parameters. Sampling is done in the following
way:
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• Draw ln
(

p
1−p

)
and ln(ν − 2) from its univariate full conditionals with random walk

Metropolis-Hastings with Gaussian proposal (proposal standard deviation: 0.3).

• Draw µ, φ, σ, s0:T conditioned on p and ν as in Section 4.2.

Two-step estimation
We consider the S&P500 (SPX) and its volatility index the VIX as well as the DAX and
its volatility index the VDAX. The daily log returns from 2006 to 2013 of these indices
are obtained from Yahoo finance (https://finance.yahoo.com). With approximately
250 trading days per year, this results in 2063 observations, visualized in Figure B.3 in
Appendix B.3. The corresponding data matrix with 2063 rows and 4 columns is denoted
by Y = (ytj)t=1,...,2063,j=1,...,4.

Combining the marginal and the dependence model, we obtain that for T bivariate
random vectors (Yt1, Yt2)t=1,...,T ∈ RT×2 the following holds

(Yt1, Yt2)|sstt1, αst1 , df st1 , sstt2, αst2 , df st2 , s
cop
t , νcop, pcop ∼

C
M

ssT
 yt1

exp(sstt1/2)

∣∣∣∣∣∣αst1 , df st1
 , ssT

 yt2
exp(sstt2/2)

∣∣∣∣∣∣αst2 , df st2
 ;F−1

Z (scopt ), νcop, pcop


(4.12)

ssttj = µstj + φstj (sstt−1;j − µstj ) + σstj ε
st
tj ,

scopt = µcop + φcop(scopt−1 − µcop) + σcopεcopt ,

where εsttj , ε
cop
t ∼ N(0, 1) iid, αstj , df stj as in (4.9), νcop, pcop as in (4.11) and µstj , µcop, φstj , φcop,

σstj , σcop, sst0j, s
cop
0 as in (4.2) and (4.5) for j = 1, 2 and t = 1, . . . T . Here, ssT denotes

the distribution function of the standardized skew Student t distribution (see Section
2.1.2). We refer to the probability integral transforms ssT

(
yt1exp(−sstt1/2)

∣∣∣αst1 , df st1 ) and

ssT
(
yt2exp(−sstt2/2)

∣∣∣∣αst2 , df st2 ) for t = 1, . . . , T as copula data.
For inference we rely on a two-step approach. We first estimate marginal distributions

and based on the resulting estimated copula data we estimate the copula parameters.
This approach is also called inference for margins (see Section 2.2.1) and is commonly
used in (Bayesian) copula modeling (Min and Czado (2011), Almeida and Czado (2012),
Smith (2015), Gruber and Czado (2015), Loaiza-Maya et al. (2018)).

First, we fit a skew Student t stochastic volatility model for each of the indices. For
each index we run the sampler (5,I) for 31000 iterations and discard the first 1000 draws
as burn-in. As it is typical for financial data, all indices show a high persistence parameter
φ (Posterior mode estimates for φ: SPX: 0.99, VIX: 0.90, DAX: 0.99, VDAX: 0.96). A
notable difference is that for stock indices we observe negative skewness, whereas for the
volatility indices positive skewness is observed (Posterior mode estimates for α: SPX:
−0.51, VIX: 1.33, DAX: −0.48, VDAX: 0.96). Evidence for negative skewness has also
been observed for the log returns of other stock indices, as e.g., for the NASDAQ by
Abanto-Valle et al. (2015). Estimated posterior modes, posterior quantiles and effective
samples sizes for several parameters of the four marginal models are summarized in Table
B.1 in Appendix B.3. The estimated daily log variances are shown in Figure 4.2. In the
end of 2008, the estimated variances are high for all indices due to the financial crisis.

54

https://finance.yahoo.com


4.4. APPLICATION: MODELING THE VOLATILITY RETURN RELATIONSHIP

−
11

−
9

−
7

time

lo
g 

va
ria

nc
e 

S
P

X

2006 2009 2012
−

8
−

6
−

4
time

lo
g 

va
ria

nc
e 

V
IX

2006 2009 2012

−
11

−
9

−
7

time

lo
g 

va
ria

nc
e 

D
A

X

2006 2009 2012

−
7

−
6

−
5

−
4

time

lo
g 

va
ria

nc
e 

V
D

A
X

2006 2009 2012

Figure 4.2: For each of the four skew Student t stochastic volatility models for the in-
dices SPX, VIX, DAX, VDAX, posterior mode estimates (obtained from univariate kernel
density estimates) of the daily log variances are plotted against time. The 90% credible
region, added in grey, is constructed from the estimated 5% and 95% posterior quantiles.

In the next step we obtain data on the [0,1] scale by applying the probability integral
transform using the posterior mode estimates (obtained from univariate kernel density
estimates) of the marginal parameters. We refer to this data as pseudo copula data and
it is obtained as

ûtj = ssT

ytj exp
(
−
ŝsttj
2

)∣∣∣∣∣∣α̂stj , d̂f stj
 ,

where ŝsttj , α̂stj , d̂f
st

j are the posterior mode estimates of the corresponding marginal skew
Student t stochastic volatility model for t = 1, . . . , T, j = 1, . . . , 4. In the copula data
marginal characteristics are removed and what is left is information about the depen-
dence structure. Based on the pseudo copula data, two dynamic mixture copula models
are fitted, one corresponding to the pair (SPX,VIX) and one corresponding to the pair
(DAX,VDAX). For each pair we obtain 31000 iterations with the sampler specification
(5,I) and discard the first 1000 draws as burn-in. The posterior mode estimates for p are
0.29 for the model for (SPX,VIX) and 0.66 for the model for (DAX,VDAX), respectively.
(Further, posterior statistics for the model parameters µ, φ, σ, p and ν are shown in Ta-
ble B.2 in Appendix B.3). So both fitted models allow for asymmetric tail dependence,
whereas the asymmetry is stronger for the (SPX,VIX) model. For these models tail de-
pendence in the upper left corner λULM is stronger than the one in the lower right corner
λLRM . This means that joint extreme comovements, where the stock index decreases and
the volatility index increases are more likely to occur than vice versa, which agrees with
the statement that the market reacts more extreme in bad market situations (Sun and
Wu (2018)).

The time-varying estimates for Kendall’s τ and the tail dependence coefficients are
shown in Figure 4.3. The figure visualizes the asymmetry in tail dependence. We also
observe changes in tail dependence as time evolves: for (SPX,VIX), λULM ranges from 0.41
to 0.71 and λLRM from 0.004 to 0.10 . For the pair (DAX,VDAX), λULM ranges from 0.12 to
0.67 and λLRM from 0.003 to 0.35. This variation over time in tail dependence goes hand
in hand with variation in Kendall’s τ . For (SPX,VIX), Kendall’s τ ranges from −0.76 to
−0.48 and for (DAX,VDAX) from −0.80 to −0.30.
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Figure 4.3: In these plots the top row corresponds to the pair (SPX,VIX), the bottom row
to the pair (DAX,VDAX). The first column shows posterior mode estimates of Kendall’s
τ , where the Kendall’s τ obtained from rolling window estimates (Kendall’s τ at time t
is estimated as empirical Kendall’s τ based on the 50 observations before and after time
t) is added in red. The middle column shows posterior mode estimates of λULM and the
right column shows estimates of λLRM . Credible regions, constructed from the estimated
5% and 95% posterior quantiles, are added in grey.

Out-of-sample predictions
We aim to further support the findings we obtained through the dynamic copula model,
i.e. that the dependence structure is asymmetric and varies over time. Therefore we
consider several restrictions with respect to the dependence structure. Giving up time-
variation leads a static mixture copula, giving up asymmetry leads to a dynamic Student
t copula and giving up time-variation and asymmetry leads to a static Student t copula.
In addition, we compare our model to the frequently used dynamic conditional correla-
tion (DCC) GARCH model of Engle (2002). The DCC-GARCH allows for time-varying
symmetric dependence. So we take five different models into consideration. These models
are summarized in Table 4.5. The model Mmix

dyn is the model given in (4.12), which was
also used for the previous analysis.

We compare the models with respect to pseudo log predictive scores (Kastner (2019)),
which are obtained by evaluating the corresponding density at point estimates, instead
of averaging over all posterior draws. In comparison to other multivariate scoring rules,
such as the energy score or the variogram score (Scheuerer and Hamill (2015)), pseudo
log predictive scores have here the advantage that they can be computed fast, since they
require only one evaluation of the density per observation. We consider T+K observations
of dimension two, stored in the data matrix Y1:(T+K);1:2 = (ytj)t=1,...,T+k,j=1,2, where the
first T observations are used to train the model and the last K are used for testing.

The DCC-GARCH model is estimated based on T data points in the training period.
Based on this model, we obtain rolling one-day ahead forecasts of the covariance matrix
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for each day in the test set. The pseudo log predictive scores are obtained by evaluating
the corresponding multivariate normal log densities at the observations. More precisely,
we denote by ΣT+k the one-day ahead forecast of the covariance matrix for day T + k
with 1 ≤ k ≤ K and the pseudo log predictive score for day T + k is obtained as
ln
(
ϕ
(
(yT+k;1, yT+k;2)|0,ΣT+k

))
. To estimate the DCC-GARCH model and to obtain the

rolling one-day ahead forecasts of the covariance matrix we used the R package rmgarch
of Ghalanos (2012).

model specification margin dependence
asymmetric asymmetric dynamic

Mmix
dyn sstSV + dynamic mixture copula Yes Yes Yes

Mmix
static sstSV + static mixture copula Yes Yes No

Mt
dyn sstSV + dynamic Student t copula Yes No Yes

Mt
static sstSV + static Student t copula Yes No No

MDCC DCC(1,1)-GARCH(1,1) No No Yes

Table 4.5: Different models considered for comparison. Models are specified by: marginal
model + copula model. The skew Student t stochastic volatility model as given in (4.8)
is denoted by sstSV. The mixture copula is defined in (4.10). If a copula is dynamic, the
corresponding copula is considered within the dynamic bivariate copula model framework
of Almeida and Czado (2012) given in (4.4).

Similarly, the model Mmix
dyn is estimated with the training data. Instead of computing

daily updates for all model parameters, we fix the static parameters at their posterior
mode estimates to save computation time, as in Section 3.4. The dynamic parameters
(i.e. parameters with an index t) are updated daily and the one-day ahead forecasts
of the dynamic parameters are obtained by evolving the AR(1) process. To obtain the
pseudo log predictive score for time point T + k with 1 ≤ k ≤ K, we evaluate the log
density implied by (4.12) at the corresponding observation (yT+k;1, yT+k;2), using the one-
day ahead forecasts for day T + k for the dynamic parameters and the estimates from
the training period for the static parameters. Summing up the K pseudo log predictive
scores for the days T + 1, . . . , T + K yields the cumulative pseudo log predictive score.
Appendix B.3 contains a detailed description of this procedure. For the models Mmix

static,
Mt

dyn and Mt
static we proceed similarly.

This procedure for calculating the cumulative pseudo log predictive score is applied to
both data sets corresponding to the pairs (SPX,VIX) and (DAX,VDAX). Using the last
two years (2012 - 2013) of our data set as test data yields K = 517. As training period
we use T = 1000 which corresponds to a training period of approximately four years.

Table 4.6 summarizes the cumulative pseudo log predictive scores. In both cases, for
the (SPX,VIX) as well as for the (DAX,VDAX) data, the best model is provided by the
dynamic mixture copula model Mmix

dyn . Furthermore, we see that in both cases the static
mixture copula model Mmix

static is preferred over the static and dynamic Student t copula
modelsMt

static andMt
dyn. For the (DAX,VDAX) data, the second best model is provided

by the static mixture copula model Mmix
static. For this data the rolling window estimates

of Kendall’s τ in Figure 4.3 vary less than for the (SPX,VIX) data. For the (SPX,VIX)
data, the DCC-GARCH MDCC yields the second best cumulative pseudo log predictive
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score.

Mmix
dyn Mmix

static Mt
dyn Mt

static MDCC

(SPX,VIX) 2740.7 2733.5 2732.0 2725.9 2737.2
(DAX,VDAX) 2817.7 2814.1 2810.1 2809.9 2789.0

Table 4.6: Cumulative pseudo log predictive scores for the models Mmix
dyn , Mmix

static, Mt
dyn,

Mt
static and MDCC .

4.5 Conclusion
We propose a sampler, applicable to general nonlinear state space models with univariate
autoregressive state equation. Sampling efficiency is demonstrated for bivariate dynamic
copula models within a simulation study. Furthermore, we use the sampler to estimate
the parameters of a dynamic bivariate mixture copula model. This mixture copula model
turns out to be a good candidate to model the volatility return relationship, since in our
application it produces more accurate forecasts than a bivariate DCC-GARCH model or
a Student t copula model.

In this work, there are two objectives that might be extended: The sampler and the
bivariate mixture copula model. The sampler could be extended to allow for a broader
class of models. For example, we might consider autoregressive processes of higher order
in the state equation. In this case we can still rely on elliptical slice sampling and on
an interweaving strategy. Another extension could relax the assumption of a Gaussian
dependence structure in the state equation by replacing the autoregressive process by a
D-vine copula model. In this case elliptical slice sampling can no longer be applied to
sample the latent states and an alternative sampling method is required.

The bivariate dynamic mixture copula could serve as a building block for regular vine
copula models. Thus, we could extend the bivariate model to arbitrary dimensions. This
is interesting if we study not only the bivariate volatility return relationship, but for
example the dependence structure among several exchange rates.
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5 Dynamic vine copulas

This chapter is a reproduction of Kreuzer and Czado (2019b) with minor changes.

5.1 Introduction
In many applications it is assumed that the dependence does not change over time, but
this assumption is often not appropriate. For example, there is evidence that the corre-
lations between the returns of stocks and bonds change over time (Baele et al. (2010)).
Popular models for financial data that account for dynamic dependence are multivariate
GARCH models with time-varying correlations, such as the DCC-GARCH (Engle (2002))
and multivariate factor stochastic volatility models (Harvey et al. (1994), Pitt and Shep-
hard (1999), Kastner et al. (2017)). But these models rely (conditionally) on multivariate
normal distributions. New models have been proposed to overcome the shortcomings of
the multivariate normal distribution and to allow for more flexible time-varying depen-
dence structures. One example for such a model is the dynamic copula model of Oh and
Patton (2018). Another approach to construct dynamic dependence models in higher
dimensions is to extend the flexible class of vine copulas (see Section 2.2.4). Since vine
copulas are constructed from bivariate copulas, the vine copula framework allows us to
scale dynamic bivariate copula models to arbitrary dimensions. Acar et al. (2019) use
nonparametric smoothing techniques to allow for time-variation in bivariate copula mod-
els and extend this bivariate approach to higher dimensions using vine copulas. Vatter
and Chavez-Demoulin (2015) propose a bivariate copula model, where the copula param-
eters depend on covariates through generalized additive models. Using the vine copula
framework, this bivariate model is extended to higher dimensions by Vatter and Nagler
(2018). Similarly the bivariate dynamic copula model as proposed by Almeida and Czado
(2012) and Hafner and Manner (2012) is extended to dynamic D-vine copulas by Almeida
et al. (2016) and later to dynamic C-vine copulas by Goel and Mehra (2019).

The bivariate dynamic copula model of Almeida and Czado (2012) provides a flexible
building block by modeling time-varying dependencies with latent AR(1) processes. How-
ever, estimation is no longer straightforward since the likelihood involves high-dimensional
integration. Goel and Mehra (2019) follow Almeida et al. (2016), who use a frequentist
estimation approach with approximation of the likelihood utilizing efficient importance
sampling (Richard and Zhang (2007)). In this approach, parameters are estimated se-
quentially tree by tree. For estimating parameters of higher trees, the parameters of
lower trees are fixed at point estimates. Thus, uncertainty of parameters in lower trees is
ignored and therefore uncertainty quantification cannot be provided.

This chapter contains two major contributions: So far dynamic vine copula models,
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as generalization of the dynamic bivariate copula model of Almeida and Czado (2012),
were restricted to D-vine (Almeida et al. (2016)) and C-vine (Goel and Mehra (2019))
structures. First, we develop an approach to allow for general regular vine tree structures.
D-vine structures are especially suited to describe temporal dependence. But when it
comes to cross-sectional dependence structures, such as the dependence among several
stocks, the D-vine structure might be too restrictive. General regular vine tree structures
are more flexible and include C-vine and D-vine structures as special cases.

Second, we present a novel Bayesian estimation approach. To our knowledge, Bayesian
estimation of vine copula models, including structure selection, was only tackled by Gru-
ber and Czado (2015) and Gruber and Czado (2018). These approaches only allow for
static pair copulas and have not been applied in more than 10 dimensions, while our ap-
proach allows for static as well as dynamic pair copulas and can handle higher dimensions.

Our methodology is based on an approximation of the posterior distribution. Approx-
imations to the posterior are also used in variational Bayesian inference (Wainwright et al.
(2008)) and have become popular since they make estimation feasible in high-dimensional
settings. Variational Bayesian approaches assume that the posterior distribution belongs
to some family of distributions, such as the multivariate normal distribution. Our ap-
proach does not rely on such an assumption. We propose an approximation, which uses
ideas of the frequentist sequential procedure of Dissmann et al. (2013) and which allows
to estimate pair copulas of one tree independently of each other using Markov Chain
Monte Carlo (MCMC) schemes developed in Chapter 4. The posterior approximation
also enables the user to run several MCMC chains in parallel leading to faster compu-
tation and making the approach applicable to higher dimensions than the approach of
Gruber and Czado (2018). Further, our Bayesian approach includes pair copula family
selection based on a set of candidate families. Here we exploit the fact that for sev-
eral copula families, there is a one-to-one correspondence between the copula parameter
and Kendall’s τ . This allows to share the Kendall’s τ parameter among different copula
families, which reduces the parameter space and simplifies estimation. Additionally, our
approach also contributes to the selection of sparse models by assessing, whether a pair
copula term needs to be modeled dynamically or not. For this the information criteria of
Watanabe (2010) is adapted. Another advantage of our Bayesian approach is that it is
not necessary to fix pair copula parameters at point estimates although our procedure is
sequential. Uncertainty of parameter estimates and information in lower trees is no longer
ignored, but propagated as we move up to higher trees in the estimation procedure. All
ideas are investigated through simulation and illustrated with real data.

The outline of this chapter is as follows: Section 5.2 discusses the bivariate building
blocks that are needed to construct the dynamic vine copula model. We introduce dynamic
and static building blocks and show how to select among them. The selection procedure is
illustrated with a small simulation study. Section 5.3 introduces the dynamic vine copula
model and a novel algorithm for parameter estimation. The performance of the estimation
procedure is evaluated with simulated data. In Section 5.4 we model the dependence
among 21 exchange rates. Within this application, we compare the predictive accuracy
of the proposed dynamic vine copula model to competitor models: a static vine copula, a
dynamic C-vine copula and a dynamic D-vine copula. We conclude with providing ideas
for future research in Section 5.5.
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5.2 Bivariate building blocks for the dynamic vine
copula model

The dynamic vine copula model, we introduce in Section 5.3, relies on dynamic and static
bivariate copula models. These bivariate models are introduced in Sections 5.2.1 and
5.2.2. Section 5.2.3 discusses selection among different bivariate copula models.

5.2.1 Dynamic bivariate copulas

Model specification

We extend the dynamic bivariate copula model of Almeida and Czado (2012), which was
already discussed in Chapter 4, by a model indicator m to allow for Bayesian copula family
selection. We consider a set M of single-parameter copula families for which there is a
one-to-one correspondence between the copula parameter and Kendall’s τ . The extended
model for T bivariate random vectors (Ut1, Ut2)t=1,...,T ∈ [0, 1]T×2 is given by

(Ut1, Ut2)|m, st ∼ cm(ut1, ut2; τt),
st = µ+ φ(st−1 − µ) + σηt, τt = F−1

Z (st),
(5.1)

with ηt, s0, . . . , sT , µ, φ, σ similar to (4.2) in Chapter 4 and cm(·, ·; τt) is the bivariate
density of copula family m ∈M with Kendall’s τ parameter τt. The state st has the same
interpretation for different copula families as the Fisher’s Z transform of the corresponding
Kendall’s τ value. This allows us to share the parameters s0:T = (s0, . . . , sT ), µ, φ, σ
among different copula families, which keeps the parameter space smaller and simplifies
estimation. More details about parameter sharing are given in Appendix G.

A Bayesian model specification is complete by introducing priors for the model param-
eters. Let ϕ(·|µNormal, σ2

Normal) denote the univariate normal density with mean µNormal
and variance σ2

Normal. This allows us to express the prior for s0:T conditional on µ, φ and
σ, implied by the AR(1) process in (5.1), as

π(s0:T |µ, φ, σ) = ϕ(s0|µ, σ2(1− φ2)−1)
T∏
t=1

ϕ(st|µ+ φ(st−1 − µ), σ2). (5.2)

For µ, φ, and σ we use the same prior distribution as in Chapter 4 (Equation (4.5)) and
for m ∈M we assume a discrete uniform prior, i.e.

π(m) = 1
|M|

. (5.3)

We further assume prior independence among the parameters µ, φ, σ and m.

Bayesian inference

Model selection procedures often have to deal with model specific parameters. They might
have different dimensions. A popular approach in this context is reversible jump MCMC
(see Green (1995)), which requires dimension matching. Min and Czado (2011) and
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Gruber and Czado (2015) use reversible jump MCMC for selection among vine copula
models, while Tan et al. (2019) apply it for model selection among static single factor
copula models. The way we constructed our model, reversible jump MCMC is not needed,
since we share the parameters s0, . . . , sT , µ, φ and σ among different models. This allows
us to use an efficient Gibbs approach as outlined in the following.

Here the likelihood given the data U = (ut1, ut2)t=1,...,T can be expressed as

`(µ, φ, σ, s0:T ,m|U) =
T∏
t=1

`t(st,m|ut1, ut2) =
T∏
t=1

cm(ut1, ut2; τt). (5.4)

The quantity `t(st,m|ut1, ut2) = cm(ut1, ut2; τt) is the contribution to the likelihood at
time t and τt = F−1

Z (st).
We now employ a Gibbs sampler for parameter estimation. The indicator m is sampled

from its full conditional, given by

P (m|U, µ, φ, σ, s0:T ) = f(U |µ, φ, σ, s0:T ,m)π(µ, φ, σ, s0:T )π(m)∑
m′∈M f(U |µ, φ, σ, s0:T ,m′)π(µ, φ, σ, s0:T )π(m′)

= `(µ, φ, σ, s0:T ,m|U)∑
m′∈M `(µ, φ, σ, s0:T ,m′|U)

=
∏T
t=1 c

m(ut1, ut2; τt)∑
m′∈M

∏T
t=1 c

m′(ut1, ut2; τt)
,

(5.5)

where π(µ, φ, σ, s0:T ) = π(s0:T |µ, φ, σ)π(µ)π(φ)π(σ) and π(·) as specified in (5.2), (4.5)
and (5.3). To sample µ, φ, σ, s0:T conditioned on the indicator m, we use the same ap-
proach as described in Chapter 4 for multivariate state space models with a univariate
autoregressive state equation.

5.2.2 Static bivariate copulas

Model specification

To allow for static (time-constant) copulas, we consider a static state s ∈ R which is
mapped to the Kendall’s τ parameter similar to (5.1), i.e.

τ = F−1
Z (s) (5.6)

We assume that T bivariate random vectors (Ut1, Ut2)t=1,...,T are generated as follows

(Ut1, Ut2)|m, s ∼ cm(ut1, ut2; τ), independently (5.7)

with m ∈ M. The prior for the state s is chosen such that the corresponding Kendall’s
τ is uniformly distributed on (−1, 1). The prior for m is chosen as above in (5.3). The
priors reflect the fact that we do not have any prior information about the parameters.

Bayesian inference

The parameters of this reduced model are also estimated utilizing a Gibbs sampling ap-
proach. Here we sample m|U, s directly from its full conditional, which can be derived
similar to (5.5). The parameter s is updated conditional on (U,m) with random walk
Metropolis-Hastings with Gaussian proposal and adaptive proposal variance as in Garth-
waite et al. (2016).
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5.2.3 Model selection among dynamic and static pair copulas
using the widely applicable information criteria (WAIC)

One might be interested in how the dynamic copula model compares to the static copula
model and to the independence model. We refer to these model classes as dynamic, static
and zero dependence, respectively. To also allow for bivariate static and independence
copulas is especially important, if the bivariate dynamic copula is used as a building
block for vine copula models in higher dimensions. For vine copula models, independence
copulas might be useful in higher trees to avoid overfitting.

Bayes factors or the commonly used information critera AIC and BIC are here not
tractable choices for selecting the type of dependence (dynamic, static or zero), since their
evaluation would require high-dimensional integration. Instead, we rely on the widely
applicable information criteria (WAIC) (Watanabe (2010), Gelman et al. (2014b)). For
the proposed dynamic copula model it is given by

WAIC = −2
(

T∑
t=1

ln(E(`t(st,m|ut1, ut2)))−
T∑
t=1

Var (ln(`t(st,m|ut1, ut2)))
)

(5.8)

with `t as in (5.4). The expectation and variance are taken with respect to P (st,m), the
probability measure of the posterior distribution of st and m, i.e.

E(`t(st,m|ut1, ut2)) =
∫
R×M

`t(st,m|ut1, ut2)dP (st,m) (5.9)

and
Var(ln(`t(st,m|ut1, ut2))) =

=
∫
R×M

(ln(`t(st,m|ut1, ut2)))2dP (st,m)− (E(ln(`t(st,m|ut1, ut2))))2 .
(5.10)

The WAIC can be seen as a Bayesian version of the AIC, where, instead of the number
of parameters, ∑T

t=1 Var(ln(`t(st,m|ut1, ut2)) is used as a penalty.
For R observed quantities (xr)r=1,...,R, we denote by Ê((xr)r=1,...,R) = 1

R

∑R
r=1 x

r the
sample mean and by V̂ar((xr)r=1,...,R) = 1

R−1
∑R
r=1(xr − Ê((xr)r=1,...,R))2 the sample vari-

ance. Following Vehtari et al. (2017), the WAIC can be estimated from R samples of the
posterior distribution (s1

t ,m
1), . . . , (sRt ,mR) with t = 1, . . . , T , by

ŴAIC = −2
(

T∑
t=1

ln
(
Ê((`rt )r=1,...,R)

)
−

T∑
t=1

V̂ar
(

(ln(`rt ))r=1,...,R

))
, (5.11)

where `rt = `t(srt ,mr|ut1, ut2). By setting

ŴAICt = −2
(

ln
(
Ê((`rt )r=1,...,R)

)
− V̂ar

(
(ln(`rt ))r=1,...,R

))
,

we can express ŴAIC as ŴAIC = ∑T
t=1 ŴAICt.

To compare between two models with estimated WAIC values ŴAIC
A

and ŴAIC
B

,
Vehtari et al. (2017) suggest to consider the difference in the estimated WAIC given by

ŴAIC
A
− ŴAIC

B
=

T∑
t=1

(ŴAICt

A
− ŴAICt

B
) (5.12)
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with corresponding standard error estimate

ŝe(ŴAIC
A
− ŴAIC

B
) =

√
T · V̂AR

(
(ŴAICt

A
− ŴAICt

B
)t=1,...,T

)
. (5.13)

To estimate the standard error, Vehtari et al. (2017) assume independence among the
components ŴAICt, t = 1, . . . , T . For the static copula model we use `t(s,m|ut1, ut2) =
cm(ut1, ut2; τ). Further, WAIC is zero for the independence copula. In our framework, the
dynamic model is considered to be more complex than the static model. Similarly, the
static and the dynamic model are considered to be more complex than the independence
model. Here, we select the more complex model if its estimated WAIC is at least 2
estimated standard errors smaller than the estimated WAIC of the other model.

Data: U ∈ [0, 1]T×2

Dynamic model:
(dynamic dependence)

Estimate a bivariate dynamic
copula model as explained

in Section 5.2.1. This
procedure includes Bayesian

copula family selection.

Static model:
(static dependence)
Estimate a bivariate

static copula model as
explained in Section 5.2.2 .

This procedure includes
Bayesian copula family

selection.

Independence model:
(zero dependence)
Here is no estimation

required.

Select the type of dependence:
Use the WAIC as explained above to select among the dynamic,

the static and the zero dependence.

Figure 5.1: Model selection procedure for bivariate copula models.

Alternatively, we could have incorporated the independence, the static and the dy-
namic copula within one sampler. In this case we would need to move between models
with different dimensions by employing e.g. reversible jump MCMC. But proposing moves
efficiently from the parameter-free independence copula or from the static copula to dy-
namic copulas with more than T parameters is difficult and chains might take very long
to converge. Another alternative is to select among all models, including family choices,
with WAIC. But this would require to estimate a dynamic bivariate copula model for
each copula family, which is computationally expensive. So we propose to use the Gibbs
sampler to move between models with the same dimension, where the parameters can be
shared among the different models. The WAIC is used to select between models with
different parameter dimensions where parameters cannot be shared. The whole selection
procedure for the bivariate copula models is visualized in Figure 5.1.
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5.2.4 Simulation study

We conduct a small simulation study to investigate the ability of WAIC to select the type
of dependence. We consider five scenarios specified in Table 5.1. In Scenarios 1 and 2
we simulate from the dynamic model specified in (5.1), in Scenarios 3 and 4 from the
static one specified in (5.7) and in Scenario 5 from the bivariate independence copula.
For each scenario we simulate T = 1000 observations. Based on these observations we
fit the dynamic and the static model and select among different models with WAIC as
explained in Section 5.2.3. We consider the following set for copula family selectionM =
{Independence, Gaussian, Student t(df=4), eClayton, eGumbel}, with copula families as
introduced in Section 2.2.3. The degrees of freedom parameter of the Student t copula is
here considered fixed. We repeat the simulations for each scenario 100 times. From Table
5.2 we see that in each scenario, the correct type of dependence was selected in at least 84
out of 100 cases. The correct family was selected in at least 98 out of 100 cases according
to Table 5.2. We conclude that our Bayesian family selection procedure performs well
and that WAIC can be utilized to select the appropriate type of dependence.

Dynamic Static Independence
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

m Gaussian eClayton Student t(df=4) eGumbel Independence
µ 0.4 0.4
φ 0.95 0.8
σ 0.1 0.2
s 1 0.4

Table 5.1: Parameter specification for the simulation study for bivariate copula models.

Dynamic Static Independence
Scenario 1 2 3 4 5

Copula family Independence 0 0 0 0 100
Gaussian 100 2 1 0 0
Student t(df=4) 0 0 99 0 0
eClayton 0 98 0 0 0
eGumbel 0 0 0 100 0

Type of dependence Dynamic 100 100 16 0 1
Static 0 0 84 100 0
Zero 0 0 0 0 100

Table 5.2: For each scenario of the simulation study, we show how often the different
copula families were selected and how often each type of dependence (dynamic, static and
zero) was selected. The selected copula family is the marginal posterior mode estimate
of m, i.e. the family that occurs most frequently among the posterior samples for m.
The true copula family and the true type of dependence, which we used for simulation, is
marked in bold.
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5.3 Dynamic vine copulas

5.3.1 Model specification
Within the vine copula framework, we only need to specify bivariate copulas and can scale
to arbitrary dimensions. Here, we replace each bivariate copula of a vine copula model, as
introduced in Section 2.2.4, by the dynamic bivariate copula model specified in (5.1), the
static bivariate copula model specified in (5.7) or the independence copula. We denote by
Edyn
i , Estatic

i and Eind
i the set of edges in the i-th tree where the corresponding pair copulas

are dynamic, static or independence copulas, respectively, and Ei = Edyn
i ∪Estatic

i ∪Eind
i .

For each edge e ∈ Edyn
i , i = 1, . . . , d − 1, where d is the number of variables, we have a

corresponding family indicator me and a corresponding latent AR(1) process given by

st,e = µe + φe(st−1,e − µe) + σeηt,e, ηt,e ∼ N(0, 1) iid, (5.14)

with µe, φe σe and s0,e as in Section 5.2.1. For each edge e in Estatic
i we have a corresponding

family indicator me and a state se as in Section 5.2.2. The states st,e and se are mapped
to the Kendall’s τ parameter as in (5.1) and (5.6), i.e.

τt,e = F−1
Z (st,e) and τe = F−1

Z (se), respectively. (5.15)

This yields the following parameter set for a d-dimensional dynamic vine copula model

θV ={µe, φe, σe, s0,e, . . . , sT,e,me|e ∈ Edyn
i , i = 1, . . . , d− 1}∪

∪ {se,me|e ∈ Estatic
i , i = 1, . . . , d− 1}

Within the dynamic vine copula model, we assume that T random vectors of dimension
d, (Ut1, . . . , Utd)t=1,...,T , are generated as follows

(Ut1, . . . Utd)|θV ∼
d−1∏
i=1

∏
eEdyni

cmeae,be;De
(ut,ae|De , ut,be|De ; τt,e)·

·
d−1∏
i=1

∏
e∈Estatici

cmeae,be;De
(ut,ae|De , ut,be|De ; τe), independently

(5.16)

for t = 1, . . . , T . Further, we assume that parameters for different edges are a priori
independent and we use the same priors as specified in Sections 5.2.1 and 5.2.2 for the
parameters of dynamic and static pair copulas, respectively. Here, the conditioned and
conditioning sets ae, be and De (defined in Section 2.2.4) do not depend on the time, i.e.
the tree structure does not change over time.

5.3.2 Sequential estimation

Since there exist d!
2 · 2

(d−2
2 ) different regular vine tree structures in d dimensions (Morales-

Nápoles (2010)), model selection is complex and it is not possible to take all possible
structures into account as the dimension grows. Gruber and Czado (2018) estimate all
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trees and parameters jointly using a Bayesian approach, but their procedure is only suit-
able in lower dimensions and requires substantial computations. Earlier, in a frequentist
setup, Dissmann et al. (2013) proposed a sequential selection and estimation approach
for static copula parameters. This sequential approach makes model selection feasible
in higher dimensions and therefore this idea is often used for vine copula based models.
Gruber and Czado (2015) employ a Bayesian approach, where they estimate parameters
of static vine copula models tree by tree and fix parameters at point estimates before pro-
ceeding to the next tree. Vatter and Nagler (2018) sequentially estimate the parameters
of a vine copula model, where the copula parameters are modeled by generalized additive
models. We propose a Bayesian procedure, where the copula parameters do not need
to be collapsed to point estimates before proceeding to the next tree. The procedure is
based on an approximation of the posterior density inspired by the frequentist sequential
approach of Dissmann et al. (2013).

To simplify notation we denote by θTi
the parameters of a dynamic vine copula cor-

responding to tree Ti , i.e.

θTi
= {µe, φe, σe, s0,e, . . . , sT,e,me|e ∈ Edyn

i } ∪ {se,me|e ∈ Estatic
i }. (5.17)

Further, we define by U = (utj)t=1,...,T,j=1,...,d the data matrix and the likelihood contribu-
tion of the i-th tree is given by

`i(θT1 , . . . ,θTi
|U) =

T∏
t=1

 ∏
e∈Edyni

cmeae,be;De
(ut,ae|De , ut,be|De ; τt,e)·

·
∏

e∈Estatici

cmeae,be;De
(ut,ae|De , ut,be|De ; τe)

 .
(5.18)

The complete likelihood is obtained as

`(θT1 , . . . ,θTd−1|U) =
d−1∏
i=1

`i(θT1 , . . . ,θTi
|U), (5.19)

and the posterior density is proportional to

f(θT1 , . . . ,θTd−1 |U) ∝
d−1∏
i=1

`i(θT1 , . . . ,θTi
|U)π(θTi

). (5.20)

Note that the posterior density is a joint density of continuous and discrete parameters.
For discrete parameters δdisc and continuous parameters δcont, the joint density is ob-
tained as f(δcont, δdisc) = f(δcont|δdisc)f(δdisc), where f(δcont|δdisc) is a joint probability
density function and f(δdisc) is a joint probability mass function.

Four-dimensional illustration for a model with static pair copulas and known
tree structure

To illustrate our idea in four dimensions, we consider only static pair copulas and the
tree structure to be known. The tree structure contains the pair copulas as specified in
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(5.21), (5.22) and (5.23). We assume, that we observe data U = (utj)t=1,...,T,j=1,...,4. The
contributions to the likelihood corresponding to trees 1, 2 and 3 are given by

`1(θT1 |U) =
T∏
t=1

cm13
13 (ut1, ut3; τ13)cm23

23 (ut2, ut3; τ23)cm34
34 (ut3, ut4; τ34), (5.21)

`2(θT1 ,θT2 |U) =
T∏
t=1

c
m12;3
12;3 (ut1|3, ut2|3; τ12;3)cm24;3

24;3 (ut2|3, ut4|3; τ24;3), (5.22)

`3(θT1 ,θT2 ,θT3 |U) =
T∏
t=1

c
m14;23
14;23 (ut1|23, ut4|23; τ14;23). (5.23)

In a frequentist sequential procedure the parameters of the first tree are estimated by
considering the part of the likelihood corresponding to the first tree as given in (5.21),
ignoring the likelihood contributions of higher trees (5.22) and (5.23) to the parameters of
the first tree. This allows to maximize ∏T

t=1 c
m13
13 (ut1, ut3; τ13), ∏T

t=1 c
m23
23 (ut2, ut3; τ23) and∏T

t=1 c
m34
34 (ut3, ut4; τ34) independently.

In the Bayesian setup the marginal posterior density of the parameters corresponding
to the first tree is obtained by integrating out parameters of higher trees, i.e.

f(θT1 |U) ∝ `1(θT1 |U)π(θT1)
∫
domain(θT2 ,θT3 )

( 3∏
i=2

`i(θT1 , . . . ,θTi
|U)π(θTi

)
)
dθT2dθT3 ,

(5.24)
where domain(θT2 ,θT3) is the domain of the parameters θT2 ,θT3 (For the family indicator
me the integral is replaced by a sum). While in this illustrative example it might be
possible to work with the marginal posterior (5.24), its complexity grows fast if we consider
more dimensions or allow for dynamic copulas. For example, if the second and third tree
were modeled with dynamic bivariate copulas, we would need to integrate out several
thousand parameters for T = 1000. To reduce complexity, we approximate f(θT1 |U). We
make use of the following notation

g(δ) ≈ h(δ)

to denote that a density g is approximately proportional to a non negative and integrable
function h. This means that the density g is approximated by the density hnormalized given
by hnormalized(δ) = h(δ)

(∫
domain(δ) h(δ)dδ

)−1
.

Following the idea of a frequentist sequential estimation, we approximate the marginal
posterior θT1 |U by considering only the part of the likelihood corresponding to the first
tree, i.e.

f(θT1|U) ≈ `1(θT1|U)π(θT1) =
(

T∏
t=1

cm13
13 (ut1, ut3; τ13)

)
π(s13)π(m13)

(
T∏
t=1

cm23
23 (ut2, ut3; τ23)

)
π(s23)π(m23)

(
T∏
t=1

cm34
34 (ut3, ut4; τ34)

)
π(s34)π(m34).

(5.25)

This approximation simplifies sampling enormously. We do not only get rid of the in-
tegral, but in addition, the parameters corresponding to different edges are indepen-
dent. To obtain samples from the posterior approximation in (5.25), we can sample
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parameters of different static bivariate copula models independently by utilizing the
algorithm of Section 5.2.2. In particular, the parameters m13, s13 are sampled from
a static bivariate copula model with corresponding posterior density proportional to(∏T

t=1 c
m13
13 (ut1, ut3; τ13)

)
π(s13)π(m13). Approximations of the posterior distribution that

induce independence among parameters are commonly used in variational Bayesian ap-
proaches (Wainwright et al. (2008)). For example, in mean field variational inference it is
assumed that all parameters are independent in the posterior distribution. Our assump-
tions are less restrictive, since we do not assume that parameters corresponding to one
pair copula are independent. Further, these parameters are updated jointly.

When estimating parameters of higher trees in a sequential frequentist procedure, we
condition on estimates from lower trees. Therefore we consider now the following density

f(θT2 |θT1 ,U) ∝ `2(θT1 ,θT2 |U)π(θT2)
∫
domain(θT3 )

`3(θT1 ,θT2 ,θT3|U)π(θT3)dθT3 . (5.26)

We utilize a similar approximation as in (5.25) and obtain

f(θT2 |θT1 ,U) ≈ `2(θT1 ,θT2 |U)π(θT2) =
(

T∏
t=1

c
m12;3
12;3 (ut1|3, ut2|3; τ12;3)

)
π(s12;3)π(m12;3)

(
T∏
t=1

c
m24;3
24;3 (ut2|3, ut4|3; τ24;3)

)
π(s24;3)π(m24;3).

(5.27)

The pseudo data ut1|3 = h1|3(ut1|ut3; τ13,m13) = d
du3
C
m13
13 (ut1, u3; τ13)

∣∣∣∣
u3=ut3

, ut2|3 =
h2|3(ut2|ut3; τ23,m23) and ut4|3 = h4|3(ut4|ut3, τ34,m34), t = 1, . . . , T only depend on pa-
rameters of the first tree, on which we condition on (see Section 2.2.4 for the definition of
the h functions). Further, the posterior density factorizes as in (5.25) and we can sam-
ple parameters corresponding to different edges independently. In particular s12;3,m12;3
are sampled from a static bivariate copula model with posterior density proportional
to
(∏T

t=1 c
m12;3
12;3 (ut1|3, ut2|3; τ12;3)

)
π(s12;3)π(m12;3), where {ut1|3, ut2|3, t = 1, . . . , T} is inter-

preted as observed data. For the third tree we obtain

f(θT3 |θT1 ,θT2 ,U) ∝ `3(θT1 ,θT2 ,θT3 |U)π(θT3)

=
(

T∏
t=1

c
m14;23
14;23 (ut1|23, ut4|23; τ14;23)

)
π(s14;23)π(m14;23)

. (5.28)

As before, ut1|23 and ut4|23 only depend on parameters from lower trees, on which
we condition on. Interpreting {ut1|23, ut4|23, t = 1, . . . , T} as observed data, (5.28) is the
posterior density of a static bivariate copula model as introduced in Section 5.2.2.

To obtain samples from the posterior density f(θT1 ,θT2 ,θT3|U), we utilize the approxi-
mations above to first sample θT1 from f(θT1|U), then θT2 from f(θT2 |θT1 ,U) and then θT3

from f(θT3 |θT2 ,θT1 ,U), i.e. we employ a collapsed Gibbs sampler (Liu (1994)). To draw
the parameters we use the sampling procedure of Section 5.2.2. This sampler simulates a
Markov chain, where subsequent draws are autocorrelated. So, by applying this sampler
we obtain a sample of θTi

in the r-th iteration, denoted by θrTi
, which depends on the

previous value θr−1
Ti

. While this is not a problem for conventional Gibbs samplers, as in
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Metropolis-Hastings within Gibbs, this can lead to undesired samples for collapsed Gibbs
schemes as shown by Van Dyk and Jiao (2015). Following Van Dyk and Jiao (2015), we
can circumvent this problem by running the updates for θTi

with starting value θr−1
Ti

for k
iterations. We set θrTi

equal to the update obtained in the k-th step. If we choose k large
enough, θrTi

will be almost independent of θr−1
Ti

. Thus, in total, R · k draws are obtained
and R draws are stored for each parameter. We obtain the following procedure

– Set starting values θ0T1
, θ0T2

, θ0T3

– For r = 1, . . . , R do

– For i = 1, . . . , 3 do

– Use the sampler of Section 5.2.2 and the corresponding approximations to sample
from f(θT1 |U) if i = 1, from f(θT2 |θrT1

,U) if i = 2 or from f(θT3 |θrT1
,θrT2

,U) if i = 3.
The sampler is run for k iterations using θr−1

Ti
as starting value. We set θr

Ti
equal

to the sample obtained in the k-th iteration.

– The pseudo data for the next tree is constructed utilizing the h functions defined in
Section 2.2.4:

For i = 1 the pseudo data is determined as urt1|3 = h1|3(ut1|ut3; τ r13,m
r
13), urt2|3 =

h2|3(ut2|ut3; τ r23,m
r
23) and urt4|3 = h4|3(ut4|ut3; τ r34,m

r
34), t = 1, . . . , T .

For i = 2 the pseudo data is determined as urt1|23 = h1|2;3(urt1|3, urt2|3; τ r12;3,m
r
12;3) and

urt4|23 = h4|2;3(urt4|3, urt2|3; τ r24;3,m
r
24;3) , t = 1, . . . , T.

In this procedure, no point estimates of the parameters θT1 ,θT2 ,θT3 are required. We can
further extend the procedure in the following ways.

• a) The loops over i and r can be exchanged. We can first obtain R samples from
the first tree, then obtain R samples from the second tree and then all R samples
from the third tree. This is visualized in Figure 5.2. If the tree structure was not
known, we could select the tree structure of the first tree and then obtain R samples
from the parameters of the first tree. Based on these samples, we can construct the
pseudo data, which can be used to select the tree structure of the second tree and so
on. Based on the (pseudo) data of a certain tree level, the corresponding structure
can be selected as a maximum spanning tree. This is similar to the algorithm of
Dissmann et al. (2013).

• b) The parameters of different edges of a tree are sampled independently by utilizing
the sampler of Section 5.2.2 for the static copula model. If we did not know that
Kendall’s τ was static, we could in addition run the sampler of Section 5.2.1 for the
dynamic bivariate copula model. We can decide between the dynamic, the static
and the independence model as outlined in Section 5.2.3. Here it is important that
these decisions for the type of dependence can be made independently for each edge
of the tree.
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U

Tree 1 sampling:
1 · k 2 · k 3 · k . . . R · k

k iterations

Tree 2 pseudo data: U1
2 U2

2 U3
2 UR2

θ1T1
θ2T1

θ3T1 θRT1

Tree 2 sampling: 1 · k 2 · k 3 · k R · k

Tree 3 pseudo data: U1
3 U2

3 U3
3 UR3

θ1T2
θ2T2

θ3T2 θRT2

...

Tree d− 1 sampling: 1 · k 2 · k 3 · k R · k

θ1Td−1
θ2Td−1

θ3Td−1 θRTd−1

Figure 5.2: Graphical representation of the proposed sampler without selection of the
type of dependence and without structure selection. Here U ∈ [0, 1]T×d denotes the data
matrix used for fitting the model and Url denotes the pseudo data for tree l obtained from
parameter draws of the previous tree (tree l − 1) in iteration r.

The general procedure in d dimensions with vine structure selection

Based on the four-dimensional illustration, we now formulate our procedure for a d-
dimensional dynamic vine copula as introduced in Section 5.3.1, incorporating extensions
a) and b). The tree structure and the sets Edyn

i , Estatic
i , Eind

i are selected sequentially
as we move up the trees and are fixed at point estimates. In Gruber and Czado (2018)
searching among different structures within a full Bayesian procedure resulted in very
long computation times for static copula models. Here it would be even worse, since we
deal with more complex dynamic pair copulas. Note that both, the sets Edyn

i , Estatic
i , Eind

i

and the tree structure do not change over time.
We propose the following approach with iterations parameter R, burn-in parameter

burnin and thinning parameter k for structure selection and parameter estimation. Note
that, as mentioned above, R · k draws are obtained in total and R iterations are stored
for each parameter.

(i) Select the tree structure of the first tree T1: For all edges e that are allowed in
the first tree T1, i.e. for all pairs (ae, be) with 1 ≤ ae < be ≤ d, estimate τae,be by
the empirical Kendall’s τ using {ut,ae , ut,be , t = 1, . . . , T}. The structure of tree T1
is selected as the maximum spanning tree among those edges, where the absolute
value of empirical Kendall’s τ serves as the corresponding weight.

(ii) (a) For each edge e ∈ E1 in tree T1, with corresponding observations {ut,ae , ut,be , t =
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1, . . . , T}, run the samplers of Sections 5.2.1 and 5.2.2 for the bivariate dynamic
and static copula models. The samplers are run for R ·k iterations and we thin
the samples with factor k.

(b) For each edge e ∈ E1, we select among the three bivariate copula models
(dynamic, static, independence) as discussed in Section 5.2.3.

(c) For each edge e ∈ E1, the pseudo data for the next tree is obtained as
urt,ae|be = hae|be(ut,ae |ut,be ; τ rt,e,mr

e),
urt,be|ae = hbe|ae(ut,be|ut,ae ; τ rt,e,mr

e),
(5.29)

for r = 1, . . . , R, t = 1, . . . , T , if the dynamic copula was selected for edge
e. If the static copula was selected we replace τ rt,e by τ re in (5.29). For the
independence copula model we use urt,ae|be = ut,ae and urt,be|ae = ut,be .

(iii) Set l = 2.

(iv) Select the tree structure of the l-th tree Tl: For all edges that are allowed in Tl
according to the proximity condition, estimate Kendall’s τ of edge e = (ae, be;De)
denoted by τae,be;De by the empirical Kendall’s τ . Therefore we use posterior mode
estimates of the pseudo data {ût,ae|De , ût,be|De , t = 1, . . . , T}, where ût,ae|De is the
mode estimate of the univariate kernel density estimate of {urt,ae|De

, r = burnin +
1, . . . , R} and ût,be|De is obtained similarly. Here {ût,ae|De , ût,be|De , t = 1, . . . , T} are
treated as an iid sample for the estimation of τae,be;De . The structure of tree Tl
is selected as the maximum spanning tree among those edges, where the absolute
value of empirical Kendall’s τ serves as the corresponding weight.

(v) (a) For each edge e ∈ El in tree Tl, with corresponding pseudo data {urt,ae|De
,

urt,be|De
, t = 1, . . . , T, r = 1, . . . , R}, obtain R samples (based on a total of R · k

MCMC draws) for the bivariate dynamic and static copula models utilizing
the approaches of Sections 5.2.1 and 5.2.2. For the static bivariate copula we
proceed as follows for an edge e.

– Set starting values s0
e,m

0
e.

– For r = 1, . . . , R: obtain k samples of se,me for a static bivariate copula
model based on data {urt,ae|De

, urt,be|De
, t = 1, . . . , T}. We use sr−1

e ,mr−1
e as

starting value and set sre,mr
e to the sample obtained in the k-th iteration.

For the dynamic copula model we proceed similarly.
(b) We select for each edge e ∈ El among the three bivariate copula models (dy-

namic, static, independence) as explained in Section 5.2.3.
(c) For each edge e ∈ El, the pseudo data for the next tree is obtained as

urt,ae|be∪De
= hae|be;De(urt,ae|De

|urt,be|De
; τ rt,e,mr

e),
urt,be|ae∪De

= hbe|ae;De(urt,be|De
|urt,ae|De

; τ rt,e,mr
e),

(5.30)

for r = 1, . . . , R, t = 1, . . . , T , if the dynamic copula was selected for edge
e. If the static copula was selected we replace τ rt,e by τ re in (5.30). For the
independence copula model we set urt,ae|be∪De

= urt,ae|De
and urt,be|ae∪De

= urt,be|De
.

(vi) If l < d− 1, set l = l + 1 and go to 4.
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Runtime and scalability

The MCMC samplers in step (ii) (a) and the ones in step (v) (a) can be run in parallel,
respectively. The MCMC samplers are the main drivers for the runtime and therefore
parallelization speeds up computation a lot. When enough cores, i.e. at least d − 1
cores for d-dimensional data, are available, we observed that the computation time for
one tree is no more than 40 minutes for time series data of length T = 1000 with R =
1100, burnin = 100, k = 25, independently of d. For estimating a full vine (i.e. a vine
without truncation), we expect that the computation time grows roughly linearly with
the dimension d and a full vine in 11 dimension (containing 10 trees) should take no more
than 10 · 40 minutes. But in higher dimensions it is often not necessary to estimate all
trees, e.g. we expect the runtime for a 100-dimensional vine, truncated after the 10-th
tree, to be not much more than 10 · 40 minutes. Thus, in combination with truncation,
we expect our method to scale very well to higher dimensions.

5.3.3 Simulation study
With this simulation study, we aim to obtain a first impression of the ability of the
procedure proposed in Section 5.3.2 to recover trajectories of Kendall’s τ and of the
ability to select copula families and the type of dependence (dynamic, static, zero). A
more extensive simulation study to investigate the potential of the novel approach in more
detail is planned for the future.

First, we assume the tree structure to be known and the steps for the vine structure
selection in our procedure are left out. This allows to compare the true and estimated
Kendall’s τ values for each pair copula. Afterwards, we allow for vine structure selection.
In this case our procedure might select different tree structures. Thus, the true trajectories
of Kendall’s τ and the copula family for some pair copulas included in the selected vine
structure may not be directly known. We deal with this case by comparing simulations
from the true and the estimated model. In addition, we compare average log-likelihoods
of true and estimated models.

Known tree structure

We consider the tree structure presented in Section 2.2.4 in Figure 2.2. The corresponding
families are chosen from the set: {Independence, Gaussian, Student t(df=2), Student
t(df=4), Student t(df=8), eGumbel, eClayton}. For each pair copula we simulate one
trajectory of length T = 1000 for Kendall’s τ from an AR(1) process. The chosen copula
families and the parameters of the AR(1) processes are specified in Appendix C.1. We
keep the tree structure, the choice of the families and the trajectories for Kendall’s τ fixed
and simulate 100 times from this model.

For each of the 100 simulated data sets, we run the algorithm proposed in Section
5.3.2 without tree structure selection. Within our sequential procedure, we set R = 1100,
k = 25 and burnin = 100. This means that within the procedure 1100·25 draws have been
obtained for each parameter, whereas 1100 iterations are stored. Of these 1100 stored
iterations the first 100 are discarded for burn-in. From Table 5.3 we see that for each
pair copula in the first two trees the correct family was selected in at least 94 out of 100
cases. In Tree 3, the two independence copulas were detected in 69 and 100 out of 100
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cases. The static copula in Tree 3 was detected in 88 out of 100 cases. The independence
copulas in Trees 4 and 5 were detected every time. Here we count a Student t copula as
correctly detected if it was selected as a Student t copula, independently of the degrees
of freedom parameter. Table 5.3 also shows how often the correct type of dependence
(dynamic, static, zero) was selected. For one pair copula in the first tree, the correct type
was only detected in 75 out of 100 cases. The corresponding Kendall’s τ is shown in the
fifth row, third column in Figure 5.3. We see that this Kendall’s τ does not change a
lot over time. So it is difficult to distinguish between the dynamic and the static model
for this pair copula. Except for this pair copula, the correct type of dependence of pair
copulas in the first two trees was detected in at least 93 out of 100 cases. In trees, higher
than Tree 2, the correct type was selected in at least 69 out of 100 cases. We think that
these are reasonable results for the selection of the family and of the type of dependence
for the pair copulas, that make up the dynamic vine copula. In addition, Figures 5.3
and 5.4 illustrate that our procedure can recover the simulated trajectories of Kendall’s
τ . In these figures, we show marginal (univariate) posterior mode estimates of Kendall’s
τ parameters, which will be utilized later (Section 5.4) as point estimates.
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Figure 5.3: This plot corresponds to a fitted model for one simulated data set. Posterior
mode estimates of Kendall’s τ at time t are plotted against t for each pair copula (black
lines). The posterior mode estimates are obtained from marginal (univariate) kernel
density estimates of the corresponding Kendall’s τ parameter. A 90% credible region
constructed from the estimated 5% and 95% posterior quantiles is added in grey. True
values of Kendall’s τ are added in red.
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Figure 5.4: In this plot we consider 100 estimated models. The mean of 100 posterior
mode estimates of Kendall’s τ at time t is plotted against t for each pair copula (black
line). The posterior mode estimates are obtained from marginal (univariate) kernel density
estimates of the corresponding Kendall’s τ parameter. The blue region is constructed from
the empirical 5% and 95% quantiles of the 100 posterior mode estimates. True values of
Kendall’s τ are added in red.

Tree Copula family Type of dependence
5 100 100
4 100 100 100 100
3 69 88 100 69 78 100
2 100 100 94 100 100 96 97 100
1 94 100 100 99 100 100 93 75 98 97

Table 5.3: This table shows how often the correct copula family and how often the correct
type of dependence (dynamic, static, zero) was selected out of the 100 simulations for each
pair copula of the dynamic vine copula. There are 6− i pair copulas in the i-th tree. The
selected copula family for an edge e is the marginal posterior mode estimate of me, i.e.
the family that occurs most frequently among the posterior samples for me.

Unknown tree structure

We use the same 100 simulated data sets as in the case with known tree structure but
allow here for structure selection within our procedure. As already mentioned, evaluating
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our results is not straightforward in this case. Our estimated model may contain pair
copulas for which we do not know the true copula families and Kendall’s τ values di-
rectly. In this case we simulate 500 times from the true model and from the estimated
model. Then we can calculate empirical Kendall’s τ values for each of the 6·5

2 = 15 pairs
(U1, U2), (U1, U3), . . .. We compare trajectories of the empirical Kendall’s τ values in Fig-
ures 5.5 and 5.6. These trajectories look similar for the true and the estimated models.
We see that also our procedure with structure selection is able to recover the simulated
trajectories of Kendall’s τ .

For further evaluation of the proposed procedure, we compare log-likelihoods of esti-
mated and true models, as in Gruber and Czado (2015). To save computation time, we
evaluate the likelihoods of estimated models based on point estimates (marginal posterior
mode estimates) of the parameters, instead of evaluating the likelihoods for all posterior
draws. The average log-likelihood of models without structure selection was 94% of the
log-likelihood of the true model, whereas the log-likelihood of the models estimated with
structure selection was on average 89% of the log-likelihood of the true model. It is not
surprising that we perform a bit better if we assume the vine structure to be known. But
the difference is not very big and in both cases, with and without vine structure selec-
tion, we obtain reasonable results. For further comparison, we also estimated dynamic
C-vine and D-vine copulas. Therefore we just restrict our structure selection procedure
in Section 5.3.2 to C-vine and D-vine structures, respectively. The dynamic C-vine and
D-vine copulas achieved 86% and 88% of the log-likelihood of the true model, respectively.
Thus, in this scenario, allowing for general vine structures improves the fit compared to
restricting the structure to C-vines or D-vines.
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Figure 5.5: This plot corresponds to a fitted model for one simulated data set. The
empirical unconditional Kendall’s τ estimate at time t, obtained from simulations from
the fitted model, is plotted against t for each pair (Ui, Uj), i, j ∈ {1, . . . , 6}, i < j (black
line). True Kendall’s τ values determined by simulating from the true model 500 times
are added in red.
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Figure 5.6: In this plot we consider 100 fitted models. The mean of 100 empirical estimates
of the unconditional Kendall’s τ at time t, obtained from simulations from the fitted
models, is plotted against t for each pair (Ui, Uj), i, j ∈ {1, . . . , 6}, i < j (black line). The
blue region is constructed from the 5% and 95% empirical quantiles of the 100 empirical
estimates of Kendall’s τ . True Kendall’s τ values determined by simulating from the true
model 500 times are added in red.

5.4 Application: Dynamic exchange rates dependence
We employ the proposed dynamic vine copula model to model the dependence among
21 exchange rates with respect to the US Dollar (USD). For this we use data obtained
from the FRED database of the Federal Reserve Bank of St. Louis (https://fred.
stlouisfed.org/categories/94) which comprises daily log returns of 21 exchange rates
with respect to the USD from 2007 to 2018, resulting in 3130 observations. The 21
currencies and their ticker symbols are summarized in Appendix C.2. We estimate
our model based on the first 1500 observations and evaluate its predictive performance
based on the remaining 1630 observations. First, the data is demeaned based on the
first 1500 observations and we collect the demeaned log returns in the data matrix
Y = (ytj)t=1,....,3130,j=1,...,21 ∈ R3130×21.

For the marginals we use skew Student t stochastic volatility models (see Section
2.1.2), i.e. we assume that

Ytj = exp
(
ssttj
2

)
εsttj

ssttj =µstj + φstj (sstt−1j − µstj ) + σstj η
st
tj

(5.31)

with ηsttj ∼ N(0, 1) independently, µstj ∈ R, φstj ∈ (−1, 1), σstj ∈ (0,∞), sst0j|µstj , φstj , σstj ∼
N
(
µstj ,

(σstj )2

1−(φstj )2

)
, εsttj|αstj , df stj ∼ sst(εsttj|αstj , df stj ) independently, αstj ∈ R, df stj ∈ (2,∞) for

t = 1, . . . , 3130. Further, the same prior distributions as in Section 2.1.2 are utilized.
The joint distribution among the errors is modeled by the proposed dynamic vine copula
model. We follow ideas of the two-step approach, commonly used in copula modeling,
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and assume independence among the errors εsttj for estimating the margins. But instead
of collapsing parameters of the marginal skew Student t stochastic volatility models to
point estimates and obtain the copula data based on these point estimates, we follow ideas
from Section 5.3.2. For each of the 21 marginal time series y1j, . . . , y1500j, we estimate
a skew Student t stochastic volatility model as explained in Section 4.4. The sampler is
run for 1100 · 25 iterations and then we thin the samples with factor 25. The parameter
draws of the skewness parameters, of the degrees of freedom parameters and of the latent
log variances are denoted by (αstj )r, (df stj )r, (sst0j)r, . . . , (sst1500j)r, r = 1, . . . , 1100. For each
parameter draw, we obtain pseudo copula data as follows

urtj = ssT

(
ytj exp

(
−

(ssttj)r

2

)∣∣∣∣(αstj )r, (df stj )r
)

(5.32)

for t = 1, . . . , 1500, j = 1, . . . , 21, r = 1, . . . , 1100. Here ssT denotes the standardized
skew Student t distribution function (see Section 2.1.2). Based on these pseudo copula
data sets, we fit a dynamic vine copula model. The algorithm of Section 5.3.2 is slightly
modified. We start with Step (iii) and set l = 1, since we fit our model with a collection
of copula data sets instead of only one copula data set. Further, we set R = 1100, k =
25 and burnin = 100. The copula families are selected from the following set M =
{Independence, Gaussian, Student t(df=2), Student t(df=4), Student t(df=8), eGumbel,
eClayton}. The estimated dynamic vine copula model is now analyzed in more detail.

The first tree of the selected vine tree structure is shown in Figure 5.7. We see that
some currencies that are connected by an edge are from countries of the same region.
For example, the currencies GBP/USD (British Pound to USD) and DKK/USD (Danish
Krone to USD) are connected to the EUR/USD (Euro to USD). Since the vine structure
is selected as the maximum spanning tree, where the absolute value of Kendall’s τ serves
as weight, this indicates high dependence among those currencies. Further, we see that
the selected vine structure is neither a C-vine nor a D-vine structure. The generalization
of C-vine and D-vine structures to R-vine structures seems to be necessary.

Tree 1

CNY

HKD

NTD

THB

INR

KRW

BRL

JPY

CHF

DKK

GBP

EUR

NOK
MYR

MXN

CAD

SEK

ZAR

SGD

AUD

NZD

Figure 5.7: The first tree of the vine tree structure selected for the 21-dimensional ex-
change rates data set. Nodes which belong to the same region have the same color (Europe:
grey, Asia: white, America: green, Australasia: orange, Africa: yellow).
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In Table 5.4 we show the selected types of dependence per tree level. Above tree nine,
all selected copulas are equal to the independence copula, i.e. the type of dependence is
estimated to be zero. Further, we see that only few static copulas were selected. The
number of dynamic copulas selected decreases as we move up to higher tree levels. In total
20·21

2 = 210 pair copulas are estimated, of which 150 were set equal to the independence
copula. Our proposed procedure is able to detect sparse structures. Note that the level of
sparsity can be increased by adjusting the selection of the type of dependence accordingly.
As mentioned in Section 5.2.3, we decide for the more complex type of dependence if the
WAIC of the more complex model is at least 2 standard errors smaller. By increasing 2
to for example 4 standard errors, we achieve more sparsity. This might be interesting in
higher dimensional settings. Since for most pair copulas in the first trees the dynamic
type of dependence is selected, a vine copula model with static dependence might not be
appropriate for those selected pair copula terms with time-varying dependence.

Tree Dynamic Static Zero
1 18 2 0
2 16 1 2
3 7 0 11
4 6 1 10
5 2 0 14
6 3 0 12
7 2 0 12
8 1 0 12
9 1 0 11

Table 5.4: We show how often the different types of dependence (dynamic, static, zero)
were selected per tree level for the first nine trees.

Figure 5.8 shows how the dynamic Kendall’s τ values evolve over time. We see that
the dependence between the exchange rates AUD/USD (Australian Dollar to USD) and
ZAR/USD (South African Rand to USD) varies more in 2007 and 2008, during the finan-
cial crisis, and remains almost constant after that period. Further, we observe that the
Kendall’s τ between SGD/USD (Singapore Dollar to USD) and THB/USD (Thai Baht
to USD) is close to zero in 2007 and then starts to increase after 2007. The dependence
between DKK/USD (Danish Krone to USD) and CHF/USD (Swiss Franc to USD) is
rather high but decreases in 2010 and reaches its lowest point in 2011. This might be the
effect of the introduction of the cap on the Swiss Franc on 6 September 2011 by the Swiss
National Bank. The minimum exchange rate was set at 1.2 CHF (Swiss Franc) per EUR
(Euro). The second row of Figure 5.8 shows fitted conditional Kendall’s τ values. For ex-
ample, we see how the Kendall’τ of the exchange rates DKK/USD (Danish Krone to USD)
and JPY/USD (Japanese Yen to USD) conditional on CHF/USD (Swiss Franc to USD)
evolves over time. The conditional dependence mostly varies between −0.5 and 0. We also
provide quantification of uncertainty of the Kendall’s τ values through credible intervals.
This is an advantage of our Bayesian approach compared to the frequentist approach of
Almeida et al. (2016) for dynamic D-vine copulas, where uncertainty quantification was
not provided.
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Figure 5.8: Visualization of the dynamic Kendall’s τ for some chosen pair copulas of the
dynamic vine copula model estimated for the 21-dimensional exchange rates data set.
Rows 1 and 2 of this plot correspond to pair copulas in Trees 1 and 2, respectively. The
black line shows marginal posterior mode estimates of Kendall’s τ plotted against time t.
A 90% credible region constructed from the estimated 5% and 95% posterior quantiles is
added in grey.

As already mentioned, the proposed dynamic vine copula model can be seen as a
generalization of static vine copulas and as a generalization of the dynamic C-vine and
D-vine copula models of Goel and Mehra (2019) and Almeida et al. (2016). We would
like to further support the hypothesis that our proposed dynamic vine copula model is a
needed generalization and is able to describe the dependence structure more appropriate
than its competitor models: a dynamic C-vine, a dynamic D-vine and a static vine copula.
Therefore we compare these models with respect to their predictive accuracy. To estimate
the dynamic C-vine and D-vine copula model, we adjust our structure selection procedure
in Section 5.3.2 accordingly. The families are selected from the same setM that we used
for the dynamic vine copula. The static vine copula model is estimated with the algorithm
of Dissmann et al. (2013), as implemented in the R-package rvinecopulib (Nagler and
Vatter (2018)). Here we allow for all parametric copula families that are implemented in
the rvinecopulib package. For all models we use skew Student t stochastic volatility
models for the margins. For the static vine copula model the pseudo copula data is
obtained by fixing the parameters of the skew Student t stochastic volatility models at
marginal posterior mode estimates. The competitor models are also estimated based on
the first 1500 observations of our data. For all models we obtain one-day ahead predictive
scores for the other 1630 days in our data set. We proceed as in Sections 3.4 and 4.4,
i.e. instead of refitting the models 1629 times, we keep static model parameters fixed at
point estimates (marginal posterior mode estimates for the dynamic models, maximum
likelihood estimates for the static vine copula) and only update dynamic parameters (see
also Appendix F). This reduces computation time a lot. Similar to Section 4.4, we evaluate
the corresponding densities at point estimates instead of averaging over all posterior draws
and obtain pseudo log predictive scores (plps). The plps at time t > 1500 has the following
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structure

plpst = ln(ĉt(ût1, . . . , ût21)) +
21∑
j=1

ln
(
sst

(
ytj exp

(
−
ŝsttj
2

)∣∣∣∣α̂stj , d̂f stj
))
−
ŝsttj
2 , (5.33)

with ûtj = ssT
(
ytj exp

(
− ŝsttj

2

)∣∣∣∣α̂stj , d̂f stj ) for j = 1, . . . , 21. Here ĉt is the estimated copula
density of one of the four considered models obtained by fixing the corresponding pa-
rameters at point estimates (marginal posterior mode estimates for the dynamic models,
maximum likelihood estimates for the static vine copula). Note that for a dynamic pa-
rameter, we use a one-day ahead point forecast in (5.33), while for a static parameter we
use the estimate obtained from the first 1500 observations. For example ŝsttj is a one-day
ahead point forecast and α̂stj , d̂f

st

j are marginal posterior mode estimates obtained from
the first 1500 observations. The contribution ∑21

j=1 ln
(
sst

(
ytj exp

(
− ŝsttj

2

)∣∣∣∣α̂stj , d̂f stj ))− ŝsttj
2

of the margins is the same for all considered models. So we compare the models with
respect to the copula contributions ln(ĉ(ût1, . . . , ût21)) to which we refer as copula plps.
Note that a higher (copula) plps is an indication for better forecasting accuracy.

Table 5.5 shows the cumulative copula plps, i.e. the sum over all 1630 copula plps. We
see that the two vine copula models with flexible tree structure outperform the dynamic
C-vine and D-vine copulas. Further, the dynamic vine copula, for which the selected
structure deviates clearly from a C-vine and a D-vine structure and for which many pair
copulas have a dynamic type of dependence, provides the most accurate forecasts. Our
conclusion is that the dynamic vine copula model provides a useful generalization of static
vine copula models as well as of dynamic C-vine and D-vine copula models.

Dynamic vine Dynamic C-vine Dynamic D-vine Static vine
copula plps 11643 11132 11126 11267

Table 5.5: Cumulative one-day ahead copula plps for the four considered models: Dynamic
vine, dynamic C-vine, dynamic D-vine and static vine copula.

5.5 Conclusion and future research
We introduced a class of dynamic vine copula models and provided a novel Bayesian
estimation procedure based on an approximation of the posterior distribution allowing for
simplification of the sampler. Here we allowed for the selection of the pair copula family,
the selection of the type of dependence for each pair copula term and the sequential
selection of a static (time-constant) vine structure. The application showed that the
dynamic vine copula model is a useful extension of static vine copulas and of dynamic
C-vine and D-vine copulas.

Our estimation procedure propagates uncertainty of copula parameter estimation from
lower to higher trees. But the type of dependence is selected with WAIC and then fixed
before we move to the next tree. Instead of using the WAIC or any other information
criteria, shrinkage priors as proposed by Bitto and Frühwirth-Schnatter (2019) that allow
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to shrink dynamic parameters to static ones might be an interesting alternative to be
studied in future research.

One restriction of our approach is that both the vine tree structure as well as the pair
copula families are assumed not to change over time. In the future we are interested in
overcoming these restrictions.

Further, it would be interesting to study in more detail how the dynamic vine copula
model performs in situations, where appropriate dependence modeling is crucial, for ex-
ample in financial risk management. The dynamic vine copula model might lead to more
accurate value at risk predictions than those obtained from static vine copula models.
Another example is pairs trading. Stübinger et al. (2018) showed that profitable trading
strategies can be constructed with static vine copula models. These strategies might be
improved by allowing for dynamic dependencies.

Lastly, we think that the ability of the vine copula framework to scale bivariate copula
models to copula models of arbitrary dimensions has not been fully exploited yet. We are
sure that there is a variety of useful extensions of static vine copula models that build
on sophisticated bivariate copula models. For example, one could allow for bivariate
dynamic copulas with more than one parameter, such as the BB1 family, or for bivariate
dynamic mixture copulas as studied in Section 4.4, where both mixture components share
the same dynamic on Kendall’s τ . Alternatively, one could also study bivariate mixture
copula models with one dynamic and one static component.
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6 A univariate copula state space model
to predict air pollution in Beijing

This chapter is a reproduction of Kreuzer et al. (2019a) with minor changes.

6.1 Introduction

Air pollution has serious effects on human health. It is related to several cardiovascular
and respiratory illnesses. It even shortens life expectancy and has severe effects on the
economy (Song et al. (2017)). The great smog of London in winter 1952 is an extreme
example for the effects of air pollution. Bell and Davis (2001) estimate that the smog
caused about 12000 excess deaths in the following year.

It is clear that accurate modeling and prediction of air pollution concentration is of
high importance. Statistical techniques have been proposed for this purpose. Several of
these approaches focus on the concentration of PM2.5, atmospheric particulate matter
with a diameter of less than 2.5 micrometers. Sahu et al. (2006) employ a hierarchical
Bayesian space-time model to predict PM2.5 concentrations in the US. Sahu and Mardia
(2005) use a Bayesian kriged Kalman filtering approach for short term prediction of PM2.5
levels in New York City. Ippoliti et al. (2012) rely on a linear Gaussian state space model
to forecast pollution concentrations in Italy.

We propose a nonlinear non-Gaussian state space model based on copulas with a dy-
namic latent smoothing effect. The state variables can be interpreted as non-measured ef-
fects, not captured by the covariates. Thus, we can identify time points with unusual high
levels of air pollution, which cannot be explained by the covariates. We will demonstrate
that the proposed methodology describes the time-dynamics of the air pollution data
more accurate than a linear Gaussian state space model. In contrast to just smoothing
observations, our approach allows to investigate the effect of changed climate conditions
on the predicted PM2.5 levels. Illustrations of such climate simulations are also given.

Linear Gaussian state space models

A linear Gaussian state space model (see Section 2.1.1) with univariate state and obser-
vation equations can be formulated as follows

Zt = ρobs,twt + σobs,tηobs,t (6.1)
wt = ρlat,twt−1 + σlat,tηlat,t (6.2)
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for t = 1, . . . , T . Here, Zt is a random variable corresponding to the observation at
time t, wt is an unobserved univariate state and ηobs,t, ηlat,t ∼ N(0, 1) independently for
t = 1, . . . , T . Further, it holds that ρobs,t ∈ (−1, 1) , ρlat,t ∈ (−1, 1), σobs,t ∈ (0,∞) and
σlat,t ∈ (0,∞). It is also assumed that w0 ∼ N(µlat,0, σ2

lat,0), where µlat,0 and σlat,0 are
generally known.

The linear Gaussian state space model can also be expressed as

Zt|wt, ρobs,t, σobs,t ∼ N
(
ρobs,twt, σ

2
obs,t

)
(6.3)

wt|wt−1, ρlat,t, σlat,t ∼ N
(
ρlat,twt−1, σ

2
lat,t

)
. (6.4)

Beijing ambient air pollution data

In this paper, we aim at accurately estimating and predicting the concentration of airborne
particulate matter using a flexible state space model. We consider a data set of hourly
PM2.5 readings (µg/m3) and meteorological measurements, such as dew point (DEWP,
degrees Celsius), temperature (TEMP, degrees Celsius), pressure (PRES, hPa), wind
direction (CBWD, taking values: northwest (NW), northeast (NE), southeast (SE) and
calm and variable (CV)), cumulated wind speed (IWS, m/s) and precipitations (PREC),
collected in Beijing in 2014, and we split the data into 12 monthly sub-sets 1 (Liang
et al. (2015)). This allows us to adjust the model over time periods. In order to consider
the effects of meteorological conditions on airborne particulate matter concentrations,
we assume a generalized additive model (GAM) (Hastie and Tibshirani (1986)). More
precisely, we suppose that, for each month, the relationship between the logarithm of
PM2.5 concentrations Yt and the covariates xt is described by a GAM, such that

Yt = f(xt) + σεt (6.5)

for t = 1, . . . , T (T is the number of monthly observations), where xt contains the me-
teorological covariates and seasonal covariates capturing within-day and -week patterns.
Further, f(·) is a smooth function of the covariates, expressing the mean of the GAM
and εt∼N(0, 1) iid. For estimation we make use of the two-step approach which is com-
monly used for copula models: we first estimate the GAM, fix the GAM parameters at
point estimates, and then estimate the copula model (see Section 2.2.1). We define the
standardized errors Zt as

Zt = Yt − f(xt)
σ

(6.6)

for t = 1, . . . , T . This step allows us to account for weather and seasonal patterns. High
values of Zt are then of interest to detect unusual high levels of pollution so far not
accounted for. Using the estimates f̂(xt) and σ̂ of the GAM, we obtain approximately
standard normal data ẑt as

ẑt = yt − f̂(xt)
σ̂

(6.7)

for t = 1, . . . , T , where yt is an observation of Yt. The empirical autocorrelation function
of (ẑt)t=1,...,T is shown for each month in Figure 6.1. We observe dependence among

1The data set used here is part of a larger data set collected in Beijing during a 5-year time period,
from January 1st, 2010 to December 31st, 2014, for a total of 43,824 observations. The data is available
at https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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succeeding observations and therefore the independence assumption for the errors εt of
the standard GAM model in (6.5) does not seem to be appropriate. We employ a state
space model, as specified in (6.1) and (6.2), to allow for time effects in the errors of the
GAM. Here ρobs,t and ρlat,t will be estimated from the data. Further, we assume that they
do not depend on time, i.e. we set ρobs,t = ρobs and ρlat,t = ρlat. In our data application
we split the data into monthly periods to make this assumption more plausible.
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Figure 6.1: Autocorrelation functions (acf) of (ẑt)t=1,...,T for all 12 monthly data sets.

We now consider a state space model for Zt, which is standardized by a GAM. We set
σobs,t =

√
1− ρ2

obs for ρobs ∈ (−1, 1) and σlat,t =
√

1− ρ2
lat for ρlat ∈ (−1, 1). For the initial

conditions we assume µlat,0 = 0 and σlat,0 = 1. This ensures that Zt has unit marginal
variance. With these assumptions, the state space model in (6.1) and (6.2) becomes

Zt = ρobswt +
√

1− ρ2
obsηobs,t

wt = ρlatwt−1 +
√

1− ρ2
latηlat,t

(6.8)

with ηobs,t, ηlat,t, w0∼N(0, 1) iid. Note that representation (6.8) induces the following
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bivariate normal distributions(
Zt
wt

)
|ρobs ∼ N2

((
0
0

)
,

(
1 ρobs
ρobs 1

))
(
wt
wt−1

)
|ρlat ∼ N2

((
0
0

)
,

(
1 ρlat
ρlat 1

))
.
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Figure 6.2: Contour plots of bivariate kernel density estimates based on pairs
(ẑt, ẑt−1)t=2,...,T , ignoring serial dependence, for each of the 12 Beijing air pollution monthly
data sets.

In order to assess the suitability of the linear Gaussian state space model to the
Beijing air pollution data, we display in Figure 6.2 contour plots of bivariate kernel density
estimates based on pairs (ẑt, ẑt−1)t=2,...,T for each month. This visualizes the dependence
structure between two successive time points in the series. More details about such contour
plots are given in Czado (2019), Chapter 3. Using (6.8), we see that Zt can be written as
a linear function of Zt−1 and independent normally distributed disturbances. Since Z1 is
normally distributed, it follows that (Zt, Zt−1) are jointly normal. In particular, we have

Zt ∼ N(0, 1) and cov(Zt, Zt−1) = ρ2
obsρlat for all t ≥ 1.
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However, Figure 6.2 reveals that the contour plots of the Beijing monthly data deviate
from the elliptical shape of a Gaussian dependence structure (which, to aid comparisons,
is depicted in the top left panel of Figure D.1 in Appendix D). For example, the contour
plots for January and October (months 1 and 10) show tail dependence and/or asymmetry
in the tails, which cannot be modeled with a Gaussian distribution. This suggests that
the linear Gaussian state space model is too restrictive for the Beijing air pollution data
and a more flexible approach needs to be adopted.

Our proposal

Extensions of the linear Gaussian state space model, relaxing the assumptions of linearity
and normality, have been studied. Chen et al. (2012) propose a state space approach
to predict measles infections, where they relax the linearity assumption but still rely on
normal errors in the state and in the observation equation. Johns and Shumway (2005)
apply a nonlinear non-Gaussian state space model to censored air pollution measurements.
Although the errors are assumed to be non-Gaussian, Johns and Shumway (2005) still
rely on conditional normality.

We propose a very flexible Bayesian nonlinear and non-Gaussian state space model,
where both the observation and the state equations are described by copulas. First, we
find an equivalent formulation of the Gaussian state space model in (6.8) in terms of
copulas. The representation is given by

(Ut, vt)|τobs ∼ CGauss
U,V ( · , ·; τobs)

(vt, vt−1)|τlat ∼ CGauss
V2,V1 ( · , ·; τlat),

(6.9)

where
Ut = Φ (Zt) , vt = Φ (wt) , (6.10)

with Φ denoting the standard normal distribution function. The variables Ut and vt
are marginally uniformly distributed on [0, 1] and Zt and wt are standard normal. Here
the Gaussian copulas CGauss

U,V and C
Gauss
V2,V1 are parametrized by Kendall’s τ , obtained as

τobs = 2
π

arcsin(ρobs) and τlat = 2
π

arcsin(ρlat). Corresponding approximately uniform
pseudo copula data, that can be used for estimating the model in (6.9), is obtained as

ût = Φ (ẑt) . (6.11)

By reformulating the state space representation in (6.8) in terms of copulas in (6.9),
it is straightforward to see how we can generalize the Gaussian linear state space model
by replacing the Gaussian copulas in (6.9) with arbitrary bivariate copulas. Typical
restrictions of the Gaussian copula, such as symmetric tails, can be circumvented. For
example, a Gumbel copula would allow for asymmetric tails. The proposed Bayesian
copula based state space model allows us to specify various types of dependence structures
to model the relationships between the observations and the underlying states, and to
describe the states evolution over time. We will show that our methodology is able to
accurately model and predict the levels of PM2.5 in Beijing.

The remainder of the paper is organized as follows. Section 6.2 introduces a copula
based state space model, Section 6.3 illustrates the Bayesian inference for the proposed
approach and Section 6.4 is devoted to the application of the copula state space model
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to the Beijing pollution data. It also includes some simulations to study the PM2.5
predictions under different climate scenarios. Concluding remarks are given in Section
6.5.

6.2 The copula state space model

The copula state space model extends the linear Gaussian state space approach, allowing
for copula specifications in place of normal distributions in the observation equation (6.3)
as well as in the state equation (6.4). In particular, we assume that the errors Zt = Φ−1(Ut)
of the GAM model introduced in (6.5), with Zt ∼ N(0, 1) and Ut ∼ U(0, 1) defined as
in (6.10), depend on the latent state wt = Φ−1(vt), with wt ∼ N(0, 1) and vt ∼ U(0, 1),
according to a bivariate copula given in the observation equation. The evolution of the
latent variable wt over time is also described by a bivariate copula, which defines the state
equation of the model. The copulas defining the observation and state equations of the
proposed state space approach do not necessarily belong to the same family, allowing for
maximum flexibility in the specification of the model. However, we restrict our model to
bivariate copula families with a single parameter. This gives still a flexible class of copula
families, including e.g. Gaussian, Gumbel, Clayton or Frank copulas. The Student t
copula can also be included if we fix the degrees of freedom parameter. Further, for the
considered copula families, we are able to express the copula parameters in the observation
and state equations in terms of Kendall’s τ . More formally, for t = 1, . . . , T , we assume
the following joint distributions for the uniformly transformed variables Ut and vt

(Ut, vt)|τobs ∼ C
obs
U,V ( · , ·; τobs)

(vt, vt−1)|τlat ∼ C
lat
V2,V1( · , ·; τlat),

where the bivariate copulas Cobs
U,V and Clat

V2,V1 are parametrized in terms of Kendall’s τ (see
Section 2.2.3). The copula state space model is defined on the uniform scale as follows

Ut|vt, τobs ∼ C
obs
U |V ( · | vt; τobs) (6.12)

vt|vt−1, τlat ∼ C
lat
V2|V1( · | vt−1; τlat) (6.13)

for t = 1, . . . , T with initial distribution v0 ∼ U(0, 1), where (6.12) is the observation
equation and (6.13) is the state equation. The copula state space model introduced in
(6.12) and (6.13) can be visualized as in Figure 6.3.

Ut−1 Ut

vt−1 vt

C
obs
U,V(·, ·; τobs) C

obs
U,V(·, ·; τobs)

C
lat
V2,V1(·, ·; τlat)

Figure 6.3: Graphical visualization of the copula state space model.
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We now derive the joint distributions for the normalized variables Zt and wt

(Zt, wt) ∼ FZt,wt (6.14)
(wt, wt−1) ∼ Fwt,wt−1 . (6.15)

By Sklar’s theorem (see Section 2.2.1), the distribution in (6.14) can be expressed as

FZt,wt(zt, wt) = C
obs
U,V( Φ(zt) , Φ(wt); τobs)

= C
obs
U,V(ut , vt; τobs).

Hence,

FZt|wt(zt|wt) = d

dvt
C
obs
U,V( Φ(zt) , vt; τobs)

∣∣∣∣∣
vt=Φ(wt)

= C
obs
U|V(ut | vt; τobs)

∣∣∣∣∣
ut=Φ(zt),vt=Φ(wt)

= C
obs
U|V( Φ(zt) |Φ(wt); τobs)

(see Czado (2019), Chapter 1, Lemma 1.15 for the first equality). Similarly, we obtain

Fwt|wt−1(wt|wt−1) = C
lat
V2|V1( Φ(wt) |Φ(wt−1); τlat).

Therefore, the model can also be expressed on the normalized scale as follows

Zt|wt, τobs ∼ C
obs
U|V( Φ(·) |Φ(wt); τobs) (6.16)

wt|wt−1, τlat ∼ C
lat
V2|V1( Φ(·) |Φ(wt−1); τlat), (6.17)

where (6.16) is the observation equation and (6.17) is the state equation. Contour plots of
the bivariate density of (Zt, Zt−1) of this model, for different choices of bivariate copulas,
are shown in Figure 6.4, illustrating different shapes that the model can deal with. The
copula state space model has the advantage of allowing flexibility in the specification of
the observation and state equations, and thus is able to accommodate a wide variety of
dependence structures in the air pollution data dynamics.

In the standard GAM, the errors are assumed to be independent. Our methodology
allows us to account for autoregressive effects in the error through the underlying latent
variable σ · wt, as defined on the original scale of the GAM residuals, or via the proxy
vt, on the uniform scale. These latent variables can be interpreted as non-measured
autoregressive effects. As we will see in Section 6.4.3, the flexibility of our model allows
us to detect extreme air pollution levels, which cannot be explained by the covariates.
Capturing unusual air pollution levels is very important, since exposure to pollution spikes
has a substantial impact on general health, such as causing severe cardiovascular and
respiratory illnesses.
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Figure 6.4: Contour plots of the density of (Zt, Zt−1) for the copula state space model for
different choices of bivariate copula families. In the state and observation equation we
choose the same copula family. The contour plots are constructed from bivariate kernel
density estimates of simulated data.

Identifiability constraints
We notice some identifiability issues related to the model. For example, if we set τobs
close to 1 and τlat = 0, the observed and latent variables become equivalent and the
latent variables (vt)t=1,...,T at different time points become (nearly) independent. The
high value of τobs will typically result in high values of the likelihood. This can make it
difficult to recover the true values of τobs and τlat. Therefore, we need to set identifiability
constraints for the copula state space model by establishing a relationship between τobs
and τlat. In order to do that, we notice that the dependence between two successive time
points Ut−1 and Ut is determined by both τlat and τobs. The form of the correlation be-
tween Zt−1 = Φ−1(Ut−1) and Zt = Φ−1(Ut) can be derived exactly when Cobs

U,V and Clat
V2,V1

are both Gaussian copulas. Since in the Gaussian case, the parameter of the observation
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equation copula is the correlation coefficient ρobs (τobs = 2
π

arcsin(ρobs)) and the parameter
of the state equation copula is the correlation coefficient ρlat (τlat = 2

π
arcsin(ρlat)), the

correlation between Zt−1 and Zt is cor(Zt−1, Zt) = ρ2
obsρlat. We now derive the identifiabil-

ity constraint for ρobs, ρlat ≥ 0 (We do not expect negative dependence in our application).
The higher the value of ρlat, the smoother the latent states are. Higher smoothness of the
latent states induces a lower prediction uncertainty for the latent states. To guarantee
a certain degree of smoothness, we need to set ρlat greater than some specific value and
therefore impose ρobs ≤ ρlat in our approach. In particular, we assume the identifiability
constraint in the Gaussian case

ρobs = ρclat for some suitable value c ≥ 1.

In this case, the correlation between Zt−1 and Zt becomes cor(Zt−1, Zt) = ρ2c+1
lat . Trans-

forming the correlation coefficients into Kendall’s τ , in the Gaussian case, we obtain the
following relationships

τobs = 2
π

arcsin(ρclat) and τlat = 2
π

arcsin(ρlat),

and therefore, τobs can be considered as a function of τlat and c. Figure 6.5 visualizes the
relationship between the parameters τobs and τlat in the Gaussian case for different values
of c = 1, 3, 6, 10. Considering that the strength of dependence between Ut−1 and Ut is
increasing in τlat and in τobs, Figure 6.5 shows that the higher the value of c the higher τlat
needs to be to achieve a fixed strength of dependence between Ut−1 and Ut. Therefore, for
higher values of c, we expect to obtain a smoother behavior of the latent states (vt)t=1,...,T .
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Figure 6.5: Graphical representation of the relationship between the parameter τobs and
τlat. Here, τobs is plotted against τlat in the Gaussian case for different values of c =
1, 3, 6, 10.

We propose to use a similar relationship between τlat, τobs and c, not only in the
Gaussian case, but also for arbitrary bivariate copula families. Therefore, in general,
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we impose the following identifiability constraint on the Kendall’s τ parameter for all
bivariate copula families

sin
(
π

2 τobs
)

=
(

sin
(
π

2 τlat
))c

for some suitable value c ≥ 1. (6.18)

6.3 Bayesian analysis of the copula state space model
The copula state space model is a nonlinear and non-Gaussian model, which provides great
flexibility by allowing for different bivariate copulas. The downside of this flexibility is that
inference for this model is not straightforward, e.g. it is not possible to rely on the Kalman
filter for linear Gaussian state space models (Durbin and Koopman (2012), Chapter 4) or
to implement a Gibbs sampler, where we can directly sample from the corresponding full
conditionals. For inference, we rely on the No-U-Turn sampler of Hoffman and Gelman
(2014) implemented within the STAN framework (see Section 2.3.1).

6.3.1 Posterior inference
As prior distribution for τlat we use a uniform prior on (0,1), which is a vague prior
restricted to positive dependence, since we do not expect negative dependence in our
application. With this prior choice, the posterior density, for a specified value of c, is
obtained as

π(τlat, v1, . . . , vT |û1, . . . , ûT ) =
T∏
t=1

cU,V (ût, vt; τobs)
T∏
t=1

cV2,V1(vt, vt−1; τlat),

where τobs is a function of τlat as given in (6.18). Note that the pseudo copula data
û1, . . . , ûT (see (6.11)) is here treated as the observed data. We run the No-U-Turn
sampler to sample from this posterior density. We obtain a posterior sample for τlat

τ rlat(c), r = 1, . . . , R

for a chosen c, and similarly for τobs, using the relationship in (6.18),

τ robs(c), r = 1, . . . , R,

where R is the number of MCMC iterations. Additionally, posterior samples for the latent
states vt, for t = 1, . . . , T , are denoted by

vrt (c), t = 1, . . . , T, r = 1, . . . , R.

6.3.2 Predictive simulation
An advantage of the Bayesian approach is that our model already specifies the predictive
distribution, which is the distribution of the response for new data points conditional on
observed data points. From this distribution, uncertainty is easy to be quantified through
credible intervals. We consider a posterior sample of the model parameters given by
the set {τ rlat(c), vrt (c), r = 1, . . . , R, t = 1, . . . , T}. Simulations for a new value at time
t ∈ {1, . . . , T} on the copula scale can be obtained by
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• simulate urt (c) from C
obs
U |V (·|vrt (c); τ robs(c)) , r = 1, . . . , R.

We refer to the corresponding distribution as the in-sample predictive distribution on the
copula scale. The out-of-sample predictive distribution refers to new values at time t > T .
Simulated values from the one-day ahead predictive distribution of UT+1 given û1, . . . , ûT
can be obtained as follows

• simulate vrT+1(c) from C
lat
V2|V1

(·|vrT (c); τ rlat(c)),

• simulate urT+1(c) from C
obs
U |V

(
·|vrT+1(c); τ robs(c)

)
for r = 1, . . . , R. In general, simulations from the i-days ahead out-of-sample predictive
distribution on the copula scale can be obtained recursively through:

• simulate vrT+i(c) from C
lat
V2|V1

(
·|vrT+i−1(c); τ rlat(c)

)
,

• simulate urT+i(c) from C
obs
U |V

(
·|vrT+i(c); τ robs(c)

)
for r = 1, . . . , R. Based on a simulation of the (in-sample or out-of-sample) predictive
distribution on the copula scale, urt (c), we further define

εrt (c) = Φ−1 (urt (c))

as a sample of the predictive distribution of the error of the GAM model specified in (6.5).
In particular, we estimate E(Yt) by f̂(xt) with estimated error variance σ̂2. So

yrt (c) = f̂(xt) + σ̂εrt (c)

gives a sample of the predictive distribution of the response. Note that, to obtain this
predictive sample, we ignore the uncertainty in the estimation of the marginal distribution.

6.4 Data analysis
Recall the hourly data set discussed in Section 6.1 divided into 12 sub data sets, one data
set for each month.

6.4.1 Marginal models
For each of the 12 monthly data sets, we fit a GAM using the R package mgcv of Wood
and Wood (2015), where the response is the logarithm of PM2.5 and the covariates are
DEWP, TEMP, PRES, IWS, PREC and CBWD, as described in Section 6.1. We define
an additional covariate PREC ind, which indicates if there is precipitation, i.e. PREC ind
= 1PREC>0. We also use the hour, denoted by H, and the weekday, denoted by D, as co-
variates. Liang et al. (2015) showed that the wind direction not only has influence on
the response itself, but might also influence the relationship between the other covariates
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DEWP, TEMP, PRES, IWS, PREC and the response. Therefore we allow for differ-
ent smooth terms corresponding to different wind directions. More precisely, we create
four indicator variables corresponding to the four wind directions 1CBWD=CV, 1CBWD=NE,
1CBWD=NW and 1CBWD=SE. Then we replicate the part of the model matrix corresponding
to a covariate x four times and multiply each of the four parts with one of the indicator
variables 1CBWD=CV, 1CBWD=NE, 1CBWD=NW and 1CBWD=SE. So, we obtain four smooth
terms for each of the covariates DEWP, TEMP, PRES and IWS. We do not allow for
these interactions with the covariate PREC, since this variable has only few values not
equal to zero. For variable selection the approach of Marra and Wood (2011) is used,
which allows terms to be penalized to zero.
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Figure 6.6: Estimated smooth components of the GAM for month 1 for the covariates
DEWP, TEMP, PRES, IWS, H and D. For each of the covariates DEWP, TEMP, PRES
and IWS we have four different smooth terms corresponding to the four wind directions:
CV, NE, NW, and SE. The dashed lines represent a pointwise 95% confidence band.
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Plots of the different estimated smooth components are shown in Figure 6.6 for the
January (month 1) data set. Plots of the estimated smooth terms in Figure 6.6 indicate
the covariate effects on PM2.5. For example, with northwestern winds (NW), PM2.5
is lower for higher temperatures (TEMP). Furthermore, we draw the same conclusion as
Liang et al. (2015), that different smooth terms are necessary for different wind directions.
For example, with northeastern winds (NE), we do not see any influence of the covariate
PRES on PM2.5, whereas with northwestern winds (NW), we observe some nonlinear
relationship between PRES and PM2.5.

6.4.2 Model selection of monthly copula family and value of c
based on the widely applicable information criterion (in-
sample)

We now consider model selection for the copula state space model. This includes the selec-
tion of the copula families and the selection of the value of c. We fit models with different
copula families and different values of c and select the model which minimizes the widely
applicable information criterion (WAIC) (Watanabe (2010), Gelman et al. (2014b)). For
our model AIC and BIC would require to integrate out all the latent variables. Therefore
we stick to the WAIC which is easy to evaluate for such Bayesian models with latent
variables. We denote by `rt = c(ût, vrt ; τ robs(c)) the likelihood contribution of iteration r at
time t. Following Vehtari et al. (2017), the WAIC can then be estimated by

ŴAIC = −2
T∑
t=1

[
ln
(
Ê((`rt )r=1,...,R)

)
− V̂ar ((ln(`rt ))r=1,...,R)

]
,

where Ê denotes the sample mean and V̂ar the sample variance.
We have one GAM specification for each month and obtain, for each month, ap-

proximately uniform pseudo copula data ût by the probability integral transform ût =
Φ
(
yt−f̂(xt)

σ̂

)
for t = 1, . . . , T as in (6.11). Here f̂ and σ̂ are the estimates of the GAM

and T denotes the number of observations in the corresponding monthly data set. To
simplify notation, we avoid indexing the models by month. In the following we study
several models that can be divided into three model classes.

• Gaussian state space model MGauss: Cobs
U,V andClat

V2,V1 are both Gaussian copulas.

• Copula based state space model MCop: Cobs
U,V and C

lat
V2,V1 are from the same

bivariate copula family.

• GAM model with independent errors MInd: Cobs
U,V and Clat

V2,V1 are both inde-
pendence copulas. This corresponds to a standard GAM model with independent
errors.

For each of the 12 monthly data sets on the copula scale, the three model classes are
fitted. To estimate model parameters, we run the No-U-Turn sampler with 2 chains, where
each chain contains 2000 iterations. The first 500 iterations are discarded for burn-in.
Preliminary analysis showed that this burn-in choice is sufficient. We fit the independence
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model MInd, the Gaussian model MGauss for every value of c = 1, 3, 6, 10 and several latent
copula models for the class MCop. The different copula state space models correspond
to all combinations of the values of c = 1, 3, 6, 10 and the following bivariate parametric
copula families: Student t (df=3), Student t (df=6), Gumbel, Clayton and Frank. This
set includes copula families that are appropriate for the observed contour plots in Figure
6.2. So, for one specific monthly data set, a model is specified by the value of c and the
copula family.

As an example, we have a closer look at the model for January with Student t copulas
with 6 degrees of freedom and c = 1. Figure 6.7 shows the trace plots of the dependence
parameter τlat and the latent state at time point 100 (v100) for the first chain. The trace
plots suggest that the chains have converged. The chain for τlat converges to values far
away from zero, thus showing dependence. Figure 6.8 illustrates the effect of the different
values of c on the posterior mode estimates of the latent states v̂t. As expected, we observe
that the size of the oscillations decreases as the value of c increases.
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Figure 6.7: Trace plots of 1500 posterior draws after a burn-in of 500 iterations for τlat
(left) and v100 (right) for the first chain of the No-U-Turn sampler for the model with
Student t copulas with 6 degrees of freedom and c = 1 using the data set for January.
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Figure 6.8: Estimated hourly posterior mode of the latent state v̂t at time t plotted
against t for the first 9 days of January for models with Student t copulas with 6 degrees
of freedom and different values of c (c = 1, 3, 6, 10). The posterior mode estimates are
obtained from univariate kernel density estimates and are based on 3000 iterations from
two chains.
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Table 6.1 shows the best model in MCop, characterized by the value of c and the
copula family, and the best model in MGauss, characterized by the value of c. In addition,
Table 6.1 shows the WAIC of the best model within the model classes MCop, MGauss and
MInd. We see that for MGauss and MCop the value of c of the best model is always equal
to 1, thus allowing for higher oscillations in the posterior of the latent states. The best
model according to the WAIC is provided by the copula based model class MCop for every
month, since this model is always associated to the smallest WAIC.

family c ŴAIC
month MCop MCop MGauss MCop MGauss MInd

1 t(6) 1 1 -926 -887 0
2 Frank 1 1 -755 -702 0
3 Frank 1 1 -1000 -898 0
4 t(3) 1 1 -1200 -1103 0
5 t(6) 1 1 -982 -945 0
6 t(3) 1 1 -672 -604 0
7 t(3) 1 1 -808 -722 0
8 t(3) 1 1 -680 -653 0
9 t(6) 1 1 -972 -873 0
10 Gumbel 1 1 -1130 -1102 0
11 t(6) 1 1 -910 -900 0
12 t(6) 1 1 -765 -758 0

Table 6.1: Family of the best model in MCop, value of c of the best model in MCop and
the best model in MGauss and the estimated WAIC of the best model within each class
MCop, MGauss and MInd. The best model is selected with respect to the WAIC.

6.4.3 Analysis of fitted models
In the previous section we selected the best copula state space models according to the
lowest WAIC. This gave the copula family choice and the value of c for MCop and the value
of c for MGauss. Figure 6.9 shows the estimated posterior densities for the dependence
parameter τlat for these models. We observe that most of the mass of the posterior density
concentrates between 0.6 and 0.8 for all monthly models. This range for τlat coincides with
positive dependence between two succeeding time points. We also see that the Kendall’s
τ values of the MCop model class are slightly higher than those of the MGauss model class
for all months.

The copula based state space model was fitted to data ût = Φ(ẑt), where ẑt is a
standardized residual of the GAM, as defined in (6.7). To further evaluate our model, we
simulate from the (in-sample) predictive distribution of the error for each t ∈ {1, . . . , T},
as explained in Section 6.3.2, and compare these simulations to the standardized residuals
of the corresponding GAM model. Figure 6.10 shows that the copula based state space
model is able to recover the dynamics of the standardized residuals. If we ignored the
latent effect (i.e. assumed independent errors), the errors εt would independently follow
standard normal distributions. Simulating from the predictive distribution of the error
can be considered as taking the latent effect into account. Therefore a concentration of
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the predictive distribution that is far away from zero indicates time points where the
latent variable has higher effects. These are time points where the level of the response is
unusually high or low for the corresponding specification of the covariates. We see from
Figure 6.10 that on January 17th/18th, the estimated mode of the predictive density of
the error is high. During the corresponding week unusual high pollution was recorded in
Beijing 2. The copula based state space model with a Student t copula has a high peak
and is able to capture unusual behavior. Since many studies have shown that high air
pollution levels may have severe effects on health and can cause economic losses (Anderson
et al. (2012), Kim et al. (2015)), capturing air pollution peaks is very important.

0.60 0.75

0
20

40
60

month 1

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 2

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 3

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 4

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 5

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 6

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 7

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 8

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 9

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 10

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 11

τlat

D
en

si
ty

 o
f τ

la
t

0.60 0.75

0
20

40
60

month 12

τlat

D
en

si
ty

 o
f τ

la
t

Figure 6.9: Kernel density estimate of the posterior density of the dependence parameter
τlat for the best model in MCop (black) and MGauss (red, dashed) for all 12 monthly data
sets.

2See http://www.takepart.com/article/2014/01/18/beijing-china-air-pollution-billboard
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Figure 6.10: Estimated mode of the predictive density of the error εt plotted against t
(black line) for every data point in January (top row) and October (bottom row) using
the best models in MCop as selected by WAIC. A 90% credible region, constructed from
the 5% and 95% empirical quantiles of simulations from the predictive distribution of the
error, is added in grey. Further, the standardized residual of the GAM, ẑt, is added in
red (dashed).

6.4.4 Out-of-sample predictions
Short term predictions of PM2.5 levels can be used to alert citizens of high pollution
periods which are dangerous to health. In this section we construct predictions several
hours up to two days ahead. More precisely, we consider the best copula state space
model for March and use it to predict the first 48 hours of April. We choose March, since
it is a month for which the non-elliptical Frank copula was selected.

We first simulate from the out-of-sample predictive distribution of the error as ex-
plained in Section 6.3.2. Figure 6.11 shows predictive densities for different time steps
ahead for this model, more precisely the estimated forecast density of εT+t for t =
1, 12, 24, 48 hours based on 3000 MCMC iterations from two chains. As we see from
Figure 6.11, we obtain non-Gaussian forecast densities. Further, the densities are more
disperse for a longer time period ahead, reflecting the fact that uncertainty increases if
we predict a longer time period ahead.

To obtain predictions for the PM2.5 levels, the simulations for the error need to be
combined with the mean prediction of the GAM, according to our model

Yt = f(xt) + σεt.

To obtain the predicted mean of the GAM, the covariate values are required. Except for
the weekday D and the hour H, future covariate levels are not known. As a proxy for an
unknown covariate vector with hour H=h, we use the covariate specifications of the last
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observed time point with the same hour H=h. We denote this covariate vector by xlt and
obtain predictive simulations of the response (the logarithm of PM2.5) at time t > T as
follows

yrt = f̂(xlt) + σ̂εrt (6.19)
for r = 1, . . . , R. These predictive simulations are visualized in Figure 6.12. We see that
the observed values are most of the time within the 90% credible interval.
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Figure 6.11: Estimated predictive density of εT+t using the best copula state space model
for March for different time steps (hours) ahead (t = 1, 12, 24, 48). The estimated predic-
tive density is the kernel density estimate of simulations from the corresponding predictive
distribution.

In addition, the simulations for the error may be combined with mean predictions
obtained from the GAM with different covariate specifications. Since the covariates several
hours ahead are random, different scenarios as specified by different covariate levels are
possible and should be taken into account. Here, we first consider two cases where the
temperature at each time point in xlt is increased and decreased by 1 degree. Second,
we also investigate more extreme scenarios for xlt, where we decrease and increase the
temperature at each time point by 4 degrees and in addition change the wind direction
at each time point to the same value. The value for the wind direction CBWD is set to
either CV or SE. This yields four different scenarios. The mode estimates of the resulting
predictive densities are visualized in Figure 6.13. It is not surprising that the first case,
where we only change the temperature by 1 degree, results in less changes in the mode
estimates compared to the more extreme case. There are many more scenarios that can
be analyzed in a similar fashion. In particular, relevant scenarios suggested by experts
could be analyzed. A conservative warning system could alert citizens if at least one of
the scenarios results in dangerous air pollution levels.
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Figure 6.12: Estimated mode of the predictive density of the response t hours ahead
plotted against t (black line). A 90% credible region, constructed from the 5% and 95%
empirical quantiles of simulations from the predictive distribution of the response, is
added in grey. Further, the observed response values are added in red (dashed). The
simulations from the predictive distribution of the response 1 up to 48 hours ahead are
obtained according to (6.19) based on the best copula state space model for March.
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Figure 6.13: We show the estimated mode of the predictive density of the response
t hours ahead plotted against t for different specifications of the covariates. For the
estimation of the mode we use simulations from the corresponding predictive distribution
of the response 1 up to 48 hours ahead, obtained according to (6.19) based on the best
copula state space model for March. We consider the predictive distribution obtained from
the unchanged covariate vector xlt (black line). In the top row, we consider additionally
predictive distributions where the temperature of xlt is changed by ±1 degree. In the
bottom row, we consider additionally predictive distributions where the temperature of
xlt is changed by ±4 degree and the covariate CBWD is set equal to SE or CV.
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6.4.5 Simulated scenarios
Instead of only considering predictions several hours or days ahead, our model allows us
to simulate typical air pollution levels that might occur in the same month in another
year with different covariate levels. We may consider a different covariate vector xnew

t

and obtain
(PMnew

t )r = exp
(
f̂(xnew

t ) + σ̂εrt
)
, (6.20)

for r = 1, . . . , R, t = 1, . . . , T , where f̂ and σ̂ are estimates from the marginal GAM
models and εrt is a simulation from the in-sample predictive distribution of the error,
based on the data for 2014. The values of (PMnew

t )r give rise to typical air pollution
levels that might occur in the same month in another year with covariate levels xnew

t .

0
20

0
60

0

day in month

P
M

2.
5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

observed
−1
+1

0
20

0
60

0

day in month

P
M

2.
5

observed
−2, CV
+2, SE

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 6.14: We show typical PM2.5 levels for January for different specifications of
the covariates. The typical PM2.5 level is estimated as the mode of the kernel density
estimate of simulations obtained as explained in (6.20). The top row shows typical air
pollution levels where the temperature was changed by ±1 degree. In the bottom row we
show one case where the temperature was decreased by 2 degree and the covariate CBWD
was set equal to CV and another case where the temperature was increased by 2 degree
and the covariate CBWD was set equal to SE. The other covariates are kept at the same
levels as they were observed in 2014. The PM2.5 level observed in 2014 is added in black.

Here we analyze different scenarios for January. First, we consider scenarios where
we only change the temperature, leaving all the other covariates as they were observed in
January 2014. We consider one case where we increase the original temperature variable
at each time point by 1 degree and one case where it is decreased by 1 degree. From
the data set analyzed by Liang et al. (2015), of which our data set is a subset, we can
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see that differences of about 1 degree in the monthly average temperature between two
different years are common. Second, we investigate more extreme scenarios where we
shift temperatures by ±2 degree and also change the wind direction. The dominant wind
direction in January 2014 was NW (northwestern). The wind direction CBWD at each
time point is now changed to the same value. The value is set equal to CV (calm and
variable), NE (northeastern) or SE (southeastern). Combining these three choices for the
wind direction with two different choices for the temperature leads to 6 different scenarios.

In Figure 6.14 we compare the mode estimates of the density of PMnew
t to the observed

PM2.5 values in 2014. We see that in January, a decrease in temperature by one degree
leads to higher pollution levels. We obtain higher peaks and the average PM2.5 level
of this month increases from 118 µg/m3, as observed in January 2014, to 127 µg/m3.
Further, we show in Figure 6.14 the two out of the six more extreme cases that lead to
the largest increase and decrease in the average PM2.5 level. Increasing the temperature
by 2 degree and setting the wind direction equal to SE, leads to the largest decrease in
the PM2.5 level. The average PM2.5 level decreases from 118 µg/m3 to 95 µg/m3. By
decreasing the temperature by 2 degrees and setting the wind direction equal to CV (calm
and variable), the average PM2.5 level increases from 118 µg/m3 to 137 µg/m3. Further,
this scenario leads to higher peaks of the air pollution level. Our analysis shows that it is
not unlikely to observe higher air pollution levels in future Januaries compared to those
of January 2014.

6.5 Summary and outlook
The aim of this chapter was to model air pollution measurements in Beijing. In a first
step meteorological and seasonal patterns were removed utilizing GAMs. However, there
was still autocorrelation in the GAM residuals. We have seen that this time dependence
among the residuals is non-Gaussian and therefore a linear Gaussian state space model is
not appropriate. To overcome the limitations of the linear Gaussian state space model,
we propose a generalization of this model. We obtain a nonlinear copula based state
space model which allows for great flexibility by specifying both, the observation and the
state equation with copulas. We showed that our model is able to capture peaks of air
pollution, such as the one observed on January 17th/18th. Further, we demonstrated how
the proposed model can be utilized to predict future PM2.5 levels under different climate
conditions.

There are several aspects of the proposed model that might be extended. The copula
parameters of the bivariate copulas could depend on covariates as in Vatter and Chavez-
Demoulin (2015). Further, we could allow for time-variation in the copula parameter as
in the bivariate dynamic copua model of Almeida and Czado (2012) . Another important
future research direction is the extension of the proposed model to higher-dimensional
observation and state equations. Here we could rely on vine copulas (Aas et al. (2009))
or on a factor copula structure (Krupskii and Joe (2013)).
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7 A multivariate copula state space
model

This chapter is a reproduction of Kreuzer et al. (2019b) with minor changes.

7.1 Introduction

Linear Gaussian state space models are widely used. For example, Ippoliti et al. (2012)
use a linear Gaussian state space approach to model pollutant measurements in Italy and
ozone levels in Mexico. Van den Brakel and Roels (2010) apply a linear Gaussian state
space model to Dutch survey data. However, the strong assumptions of linear Gaussian
state space models prevent their applicability to data showing departures from linearity
and normality. In order to overcome these limitations, extensions have been studied.
For example, Chen et al. (2012) propose a nonlinear state space model with Gaussian
errors which they use to predict measles infections. Johns and Shumway (2005) develop
a nonlinear non-Gaussian state space approach for censored air pollution data, which
assumes conditional normality for the errors.

Copula based approaches have proven to be particularly suitable for modeling data
showing departures from multivariate normality. They allow to model symmetric and
asymmetric tail dependence. Further, copulas focus entirely on the dependence structure
and can be combined with different marginal distributions.

Hafner and Manner (2012) and Almeida and Czado (2012) suggest a bivariate state
space model, with a bivariate copula in the observation equation and a Gaussian autore-
gressive process of order one, which describes the time evolution of the copula parameter,
in the state equation. In Chapter 6 a univariate nonlinear non-Gaussian state space model
was proposed, where both the observation and the state equation are defined in terms
of copula specifications. However, for the application it was assumed that the copulas
describing the observation and the state equation belong to the same family.

In this chapter, we propose a multivariate nonlinear non-Gaussian state space model,
which extends the approach introduced in Chapter 6 to multivariate observations, which
we assume to be related to an underlying latent variable. This approach allows us to
capture cross-sectional as well as temporal dependence in a very flexible way, since the
copulas specifying the model can be different. For each time point, the proposed model
can be described as a C-vine truncated after the first tree, with the latent state being the
root node. The latent states are treated as parameters, with prior distribution given by
a D-vine truncated after the first tree to capture temporal dependence. An advantage of
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our approach is that missing values are handled in a natural way, since they are treated
as latent variables. But for model estimation, we cannot rely on the standard Kalman
filter approach developed for linear Gaussian state space models. Therefore, we suggest a
Bayesian approach using Hamiltonian Monte Carlo (HMC) (Neal et al. (2011), Carpenter
et al. (2017)), where we introduce an indicator variable for the copula families specifying
the state space model equations.

We demonstrate the usefulness of our method in a data set containing different air
pollutant measurements. Three different pollutants are considered, and for each pollu-
tant, measurements from a high-cost and from a low-cost sensor are utilized. In addition,
covariates such as the temperature are available. To model this data we follow a flexible
two-step modeling approach, motivated by Sklar’s Theorem (see Section 2.2.1). First we
model the marginal distributions with generalized additive models (Hastie and Tibshirani
(1986)) and in the second step we model dependencies with the novel copula state space
model. We utilize our model to reconstruct high-cost measurements from low-cost mea-
surements as in De Vito et al. (2008) and show that the copula based state space model,
in combination with marginal generalized additive models, does a good job at predicting
high-cost measurements. We show that it outperforms a Gaussian state space model and
Bayesian additive regression trees with respect to the continuous ranked probability score
(Gneiting and Raftery (2007)).

The rest of this chapter is organized as follows: Section 7.2 introduces the novel
multivariate copula state space model, Section 7.3 discusses Bayesian inference for the
novel approach, Section 7.4 is devoted to the air pollutant measurements application and
Section 7.5 concludes.

7.2 The model

Copula approaches are very flexible, since they can be combined with different marginal
distributions. For the air pollution measurements data with additional covariates, as
analyzed in Section 7.4, we propose generalized additive models (GAMs) for the margins
in combination with the novel copula state space model to capture dependencies. The
GAM explains the effect of the covariates, while the copula based state space model
handles temporal and cross-sectional dependence. In this section, we first introduce the
marginal models (Section 7.2.1), which yield data on the copula scale. Then we review
the linear Gaussian state space model (Section 7.2.2) and show an equivalent formulation
in terms of Gaussian copulas (Section 7.2.3). In Section 7.2.4 we finally introduce the
multivariate copula state space model as a generalization of the linear Gaussian state
space model. The behavior of this model is illustrated with simulated data in Section
7.2.5.

7.2.1 Marginal models

We consider random vectors Yt = (Yt1, . . . , Ytd) corresponding to d-dimensional continuous
data, observed at the time points t = 1, . . . , T , that may depend on a q-dimensional
covariate vector xt = (xt1, . . . , xtq).
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In order to allow for more flexibility, we consider Box-Cox transformations (Box and
Cox (1964)) of the response variables, i.e. we consider the transformed variables

BC(Ytj, λj) =


Y
λj
tj −1
λj

, for λj 6= 0
ln(Ytj), for λj = 0

. (7.1)

for t = 1, . . . , T, j = 1, . . . , d. The relationship between the Box-Cox transformed variables
and the covariates can be expressed in various ways using linear or nonlinear regression
models. We assume a GAM (Hastie and Tibshirani (1986)) such that

BC(Ytj, λj) = fj(xt) + σjεtj,

where fj(·) is a smooth function of the covariates, expressing the mean of the GAM, and
εtj∼N(0, 1). The standardized errors of the GAM are defined as

Ztj = BC(Ytj, λj)− fj(xt)
σj

. (7.2)

Note that Ztj∼N(0, 1) holds.
We aim at modeling the errors Zt = (Zt1, . . . , Ztd) with a multivariate nonlinear non-

Gaussian state space model based on copulas.

7.2.2 Linear Gaussian state space models
Suppose that we model the errors Zt, with t = 1, . . . , T , extracted from the GAM as
explained in Section 7.2.1, as a linear Gaussian state space model (see Section 2.1.1).
Here, we assume that the variables Ztj, j = 1, . . . , d, are connected to a common univariate
continuous state wt. Hence, the model can be formulated as

Ztj = ρobs,tj wt + σobs,tj ηobs,tj (7.3)
wt = ρlat,twt−1 + σlat,t ηlat,t, (7.4)

where ηobs,tj, ηlat,t ∼ N(0, 1) iid, ρobs,tj, ρlat,t, σobs,tj and σlat,t are model parameters and
w0 ∼ N(µlat,0, σlat,0) with µlat,0 and σlat,0 generally known. The linear Gaussian state
space model can also be expressed using conditional distributions as

Ztj|wt, ρobs,tj, σobs,tj ∼ N
(
ρobs,tj wt, σ

2
obs,tj

)
wt|wt−1, ρlat,t, σlat,t ∼ N

(
ρlat,twt−1, σ

2
lat,t

)
.

We assume time stationarity, i.e. ρobs,tj = ρobs,j, for j = 1, . . . , d, and ρlat,t = ρlat.
Since the model is applied to standardized errors with unit variance, we also set σ2

obs,tj =
1 − ρ2

obs,j and σ2
lat,t = 1 − ρ2

lat. In addition, we assume that µlat,0 = 0 and σlat,0 = 1.
These assumptions imply that Ztj ∼ N(0, 1) unconditionally. Hence, the model expressed
through conditional distributions becomes

Ztj|wt, ρobs,j ∼ N
(
ρobs,j wt, 1− ρ2

obs,j

)
wt|wt−1, ρlat ∼ N

(
ρlatwt−1, 1− ρ2

lat

)
.
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Thus, the state space model induces the following bivariate Gaussian distribution(
Ztj
wt

)
|ρobs,j ∼ N2

((
0
0

)
,

(
1 ρobs,j

ρobs,j 1

))
(7.5)

(
wt
wt−1

)
|ρlat ∼ N2

((
0
0

)
,

(
1 ρlat
ρlat 1

))
. (7.6)

Therefore, we obtain the joint distribution

(Z11, . . . , Zd1, w1;Z12, . . . , Zd2, w2; . . . , Z1T , . . . , ZdT , wT )|(ρobs,j)j=1,...,d, ρlat ∼ NdT+T (0,Σ)

with covariance matrix Σ (see Appendix E.1). Thus, the joint distribution of Ztj and
Zt−1j is given by(

Ztj
Zt−1j

)
|ρobs,j, ρlat ∼ N2

((
0
0

)
,

(
1 ρ2

obs,jρlat
ρ2
obs,jρlat 1

))
.

7.2.3 Copula formulation of a Gaussian state space model
The linear Gaussian state space model in (7.5) and (7.6) can be equivalently expressed in
the copula space using Gaussian copulas as follows

(Utj, vt)|τobs ∼ CGauss
Uj ,V

( · , ·; τobs,j)
(vt, vt−1)|τlat ∼ CGauss

V2,V1 ( · , ·; τlat),
(7.7)

where
Utj = Φ (Ztj) , vt = Φ (wt) , j = 1, . . . , d, t = 1, . . . , T, (7.8)

with Φ denoting the standard normal cumulative distribution function and τobs =
(τobs,1, . . . , τobs,d). The variables Utj and vt are uniformly distributed as Utj ∼ U(0, 1), vt ∼
U(0, 1), while the variables Ztj and wt are normally distributed as Ztj ∼ N(0, 1), wt ∼
N(0, 1). The Gaussian copulas in (7.7) are parametrized by Kendall’s τ , such that
τobs,j = 2

π
arcsin(ρobs,j), τlat = 2

π
arcsin(ρlat).

7.2.4 Multivariate nonlinear non-Gaussian copula state space
model

The multivariate nonlinear non-Gaussian copula state space model allows the copula
families in (7.7) to be different from the Gaussian, thus gaining a much greater flexibility
to accommodate a wide range of dependence structures.

More precisely, the proposed model can be expressed, in the copula scale, as follows

(Utj, vt)|τobs,mobs ∼ C
mobs,j
Uj ,V

( · , ·; τobs,j)
(vt, vt−1)|τlat,mlat ∼ Cmlat

V2,V1( · , ·; τlat),
(7.9)

where mobs = (mobs,1, . . . ,mobs,d) and the copula families mobs,j, for j = 1, . . . , d, and
mlat are not necessarily equal and belong to a setM of single-parameter copula families,
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parametrized by τobs,j and τlat (see Section 2.2.3). As in Sections 3.3.1 and 5.2.1, the
Kendall’ τ parameters are shared among different copula families.

The proposed multivariate copula state space model can also be specified in terms of
conditional distribution functions as follows

Utj|vt, τobs,mobs ∼ C
mobs,j
Uj |V ( · | vt; τobs,j)

vt|vt−1, τlat,mlat ∼ Cmlat
V2|V1

( · | vt−1; τlat)
(7.10)

for t = 1, . . . , T, j = 1, . . . , d with initial distribution v0 ∼ U(0, 1).

vt−1

Ut−1,1

C
mobs,1
U1V

Ut−1,2

C
mobs,2
U2V

. . .

Ut−1,d

C
mobs,d
UdV

Ut,1

Ut,2. . .Ut,d

vt

C
mlat
V2V1

C
mobs,1
U1V

C
mobs,2
U2V

C
mobs,d
UdV

Figure 7.1: Graphical visualization of the multivariate copula state space model as spec-
ified in (7.9).

Figure 7.1 shows a graphical representation of the multivariate copula state space
model. Each observed variable Utj is linked to the latent state vt via a copula Cmobs,j

UjV
and

the dependence between the latent states is modeled by the copula Cmlat
V2V1 . In the following

we denote by cmobs,jUj ,V
and cmlatV2,V1 the density functions of Cmobs,j

Uj ,V
and Cmlat

V2,V1 , respectively.

7.2.5 Illustration of the copula state space model with simulated
data

We visualize bivariate dependence structures that are obtained from our model with
normalized contour plots (see Czado (2019), Chapter 3). We consider three scenarios
which differ in the choice of the family mlat of the latent copula. The parameters are
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chosen as follows

T = 1000
d = 6
mobs = (Gaussian, Gaussian, Clayton, Clayton, Gumbel, Gumbel)
τobs = (0.5, 0.7, 0.5, 0.7, 0.5, 0.7)
τlat = 0.7

mlat =


Gaussian, Scenario 1
Clayton, Scenario 2
Gumbel, Scenario 3

(7.11)

We consider one symmetric bivariate copula (Gaussian) and two asymmetric bivariate
copulas (Gumbel, Clayton). We investigate two types of dependence: cross-sectional and
temporal. For the cross-sectional dependence, we consider the pairs (Utj, Utj′) with j 6= j′

and corresponding bivariate copula density

c(utj, utj′) =
∫ 1

0
c
mobs,j
UjV

(utj, vt)c
mobs,j′
Uj′V

(utj′ , vt)dvt. (7.12)

The bivariate marginal density of (Utj, Utj′) given in (7.12) is neither affected by the time
t nor by the copula Cmlat

V2V1 . So the cross-sectional dependence is not affected by the copula
C
mlat
V2V1 and the corresponding theoretical contour plots are the same for all three scenarios.

The empirical normalized contour plots for pairs (Utj, Utj′) are shown in Figure 7.2 for
Scenario 1. The contour plots are constructed from 5000 independent simulations of the
density in (7.12) for a fixed t ∈ {1, . . . , T}.

We see that if both copulas Cmobs,j
UjV

and Cmobs,j′
Uj′V

are Gaussian, the contour of (Utj, Utj′)
looks Gaussian as well (see the panel in the second row and the first column in Figure
7.2). In this case C(utj, utj′) is indeed a Gaussian copula. If we mix a Gaussian and an
asymmetric copula (see the entries below Row 2 in Columns 1 and 2 in Figure 7.2) or if
we combine two asymmetric copulas (see the lower triangular entries in Columns 3, 4 and
5 in Figure 7.2), we can obtain a variety of different asymmetric contour shapes.

For the temporal dependence, we consider the pairs (Utj, Ut−1j) with bivariate copula
density

c(utj, ut−1j) =
∫

(0,1)2
c
mobs,j
UjV

(utj, vt)cmlatV2V1(vt, vt−1)cmobs,jUjV
(ut−1j, vt−1)dvtdvt−1. (7.13)

This dependence is affected by three copulas. Figure 7.3 shows empirical normalized
contour plots of the density in (7.13) obtained from 5000 independent simulations. We
can see that if at least one of these copulas is asymmetric, we may obtain an asymmetric
dependence structure.
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Figure 7.2: This plot is based on independently simulated data (urtj)r=1,...,5000,j=1,...,6 from
Scenario 1 for a fixed t ∈ {1, . . . , T}. The lower triangular part shows contour plots of
bivariate kernel density estimates for all pairs of (zrt1, . . . , zrt6), where zrtj = Φ−1(urtj). The
upper triangular part shows corresponding scatter plots and the empirical Kendall’s τ for
each pair (urtj, urtj′). The diagonal shows the histograms of the univariate marginals. More
precisely, the plot in the i-th row and j-th column shows the contour plot of the bivariate
kernel density estimate based on the pair (zrti, zrtj) if i > j, the scatter plot of (urti, urtj) if
i < j, or the histogram of urti, if i = j, with r = 1, . . . , 5000.
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Figure 7.3: This plot is based on independently simulated data (urt−1j, u
r
tj)r=1,...,5000,j=1,...,6

from Scenarios 1–3 for a fixed t ∈ {2, . . . , T}. The data is transformed to the normalized
scale as zrt′j = Φ−1(urt′j), t′ = t− 1, t. The plot in row m and column j shows the contour
plot of the bivariate kernel density estimate based on (zrtj, zrt−1j)r=1,...,5000, simulated from
the parameter specification of Scenario m.

7.3 Bayesian inference for the multivariate copula
state space model

For the type of data we are dealing with, missing values are common. We denote the set of
time indices of observed/non-missing values for dimension j by T obsj and the set of missing
values by T missj = {1, . . . , T} \ T obsj , j = 1, . . . , d. Further, we call Uobs = (utj)t∈T obsj ,j=1,...,d

the observed and Umiss = (utj)t∈T missj ,j=1,...,d the missing values. The missing values can
be treated as latent variables. Integrating out the missing values yields the following
likelihood for the observed values Uobs

`(v, τobs,mobs|Uobs) =
∫

(0,1)|Umiss|

d∏
j=1

T∏
t=1

c
mobs,j
UjV

(utj, vt; τobs,j)dUmiss =

=
d∏
j=1

 ∏
t∈T obsj

c
mobs,j
UjV

(utj, vt; τobs,j)
∏

t∈T missj

∫
(0,1)

c
mobs,j
UjV

(utj, vt; τobs,j)dutj


=

d∏
j=1

∏
t∈T obsj

c
mobs,j
UjV

(utj, vt; τobs,j).

(7.14)

Here, v = (v0, . . . , vT ), τobs = (τobs,1, . . . , τobs,d) and mobs = (mobs,1, . . . ,mobs,d). In con-
trast to a complete case analysis, information from all observed components is utilized in
(7.14). The last equality in (7.14) uses the fact that in a copula the margins are uniform.

As mentioned above, we use a D-vine truncated after the first tree to capture temporal
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dependence among the latent states, i.e.

π(v|τlat,mlat) =
T∏
t=1

cmlatV2V1(vt, vt−1; τlat) (7.15)

with Kendall’s τ parameter τlat and copula family indicator mlat ∈ M. This is a general
Markov model of order 1 and collapses to a Gaussian AR(1) process if the Gaussian copula
is used.

We restrict τobs,1 ∈ (0, 1) to be positive to ensure identifiability. This restriction
corresponds to restricting the diagonal entries of the factor loading matrix in conventional
Gaussian factor models to be positive (see e.g. Lopes and West (2004)). For the Kendall’s
τ values of the remaining components we use a vague uniform prior on (−1, 1), reflecting
the fact that we do not have prior knowledge about these quantities. The following priors
are used

τobs,1 ∼ Beta(10, 1.5), τobs,j ∼ U(−1, 1), j = 2, . . . , d, τlat ∼ U(−1, 1). (7.16)

For the copula family indicators we use discrete uniform priors, i.e.

π(mobs,j) = π(mlat) = 1
|M|

(7.17)

for j = 1, . . . , d. Further, we assume that the Kendall’s τ values and the copula family
indicators are a priori independent such that the joint prior density is proportional to

π(τobs,mobs, τlat,mlat,v) ∝
(

T∏
t=1

cmlatV2V1(vt, vt−1; τlat)
)
π(τobs,1),

where π(τobs,1) is the prior density specified in (7.16). This prior density is a joint density
of continuous and discrete parameters. For discrete parameters δdisc and continuous
parameters δcont the joint density is defined as

f(δcont, δdisc) = f(δcont|δdisc)f(δdisc),

where f(δcont|δdisc) is a conditional probability density function and f(δdisc) is a joint
probability mass function.

The set of parameters can be summarized as P ={τlat, τobs,mlat,mobs,v}. The pos-
terior density of our model is proportional to

f(P|Uobs) ∝

 d∏
j=1

∏
t∈T obsj

c
mobs,j
UjV

(utj, vt, τobs,j)

( T∏
t=1

cmlatV2V1(vt, vt−1; τlat)
)
π(τobs,1). (7.18)

As in Chapter 6, sampling from the posterior in (7.18) is not straightforward, e.g. Kalman
filter recursions cannot be applied. Since the No-U-turn sampler of Hoffman and Gelman
(2014) has shown good performance for the univariate copula state space model, discussed
in Chapter 6, we also use it here.
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Updating continuous parameters

Since Hamiltonian Monte Carlo cannot deal with discrete variables, we integrate over the
discrete family indicators which corresponds to summing over them, i.e.

f(τlat, τobs,v|Uobs) =
∑

(mlat,mobs)∈Md+1

f(τlat, τobs,mlat,mobs,v|Uobs)

∝
d∏
j=1

 ∑
mobs,j∈M

∏
t∈T obsj

c
mobs,j
UjV

(utj, vt; τobs,j)

 ·
·

 ∑
mlat∈M

T∏
t=1

cmlatV2V1(vt, vt−1; τlat)
 π(τobs,1)

(7.19)

To sample from this density we use STAN’s No-U-Turn sampler.

Updating the (discrete) copula family indicators

In f(mobs,mlat|τlat, τobs,v, U
obs), all components of (mobs,,mlat) are independent. We

have that
f(mobs,j|τlat,τobs,v,mobs,−j ,mlat,Uobs) =

f(τlat, τobs,mlat,mobs,v|Uobs)∑
m′
obs,j
∈M f(τlat, τobs,mlat,mobs,−j ,m′obs,j,v|Uobs)

,

where mobs,−j is equal to mobs with the j-th component removed. Therefore, we obtain

f(mobs,j|τlat, τobs,v,mobs,−j ,mlat,Uobs) =
∏
t∈T obsj

c
mobs,j
UjV

(utj, vt; τobs,j)∑
m′
obs,j
∈M

∏
t∈T obsj

c
m′
obs,j

UjV
(utj, vt; τobs,j)

. (7.20)

Similarly, we obtain

f(mlat|τlat, τobs,v,mobs,Uobs) =
∏T
t=1 c

mlat
V2V1(vt, vt−1; τlat)∑

m′
lat
∈M

∏T
t=1 c

m′
lat

V2V1(vt, vt−1; τlat)
. (7.21)

Obtaining updates for the joint posterior density

To obtain R samples from the posterior density given in (7.18), we first obtain R samples
of τlat, τobs,v from the density given in (7.19) using STAN. We denote the samples by τ rlat,
τ robs, vr, r = 1, . . . , R. Then we sample mobs,j from f(mobs,j|τ rlat, τ robs,v

r,Uobs) (see (7.20))
to obtain mr

obs,j, for r = 1, . . . , R and j = 1, . . . , d. Further, mr
lat is obtained by sampling

from f(mlat|τ rlat, τ robs,v
r,Uobs) (see (7.21)) , for r = 1, . . . , R.

Predictive distribution (in-sample period)

The predictive density of a new value unewtj for margin j at time t ∈ {1, . . . , T} is the
conditional density of unewtj given Uobs, obtained as

f(unewtj |Uobs) =
∫
domain(P)

f(unewtj ,P|Uobs)dP =
∫
domain(P)

f(unewtj |P ,Uobs)f(P|Uobs)dP
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with f(unewtj |P ,Uobs) = c
mobs,j
UjV

(unewtj , vt; τobs,j) and domain(P) is the domain of the param-
eter space P . Note that for the discrete indicator variables the integral is a sum.

To obtain samples from the (in-sample period) predictive distribution, we sample from
the following density

f(unewtj ,P|Uobs) = f(unewtj |P ,Uobs)f(P|Uobs).

We proceed as follows:

• We first simulate R samples of P from f(P|Uobs) as described above.

• The r-th sample of unewtj , denoted by (unewtj )r, is simulated from C
mrobs,j
Uj |V (·|vrt ; τ robs,j),

for r = 1, . . . , R.

For t ∈ T missj , we can obtain simulated values for the missing values.

Predictive distribution (out-of-sample period)

To obtain samples from the (out-of-sample period) predictive distribution of a new value
unewtj for margin j at time t ∈ {T + 1, T + 2, . . .}, we consider the following density

f(unewtj ,P|Uobs) = f(unewtj |P ,Uobs)f(P|Uobs)

with

f(unewtj |P ,Uobs) =
∫

(0,1)t−T
c
mobs,j
UjV

(unewtj , vt; τobs,j)
t∏

t′=T+1
cmlatV2V1(vt′ , vt′−1; τlat)dvT+1 . . . , dvt.

We proceed as follows to obtain samples from this density

• We first simulate R samples of P from f(P|Uobs) as described above.

• For r = 1, . . . , R and for t′ = T + 1, . . . , t:
Sample vt′ from C

mrlat
V2V1(·|vrt′−1; τ rlat) and denote the sample by vrt′ .

• For r = 1, . . . , R: Sample unewtj from C
mrobs,j
Uj |V (·|vrt ; τ robs,j) and denote the sample by

(unewtj )r.

Note that the recursive sampling avoids the evaluation of the t− T dimensional integral.

7.4 Data analysis

7.4.1 Data description
We consider a subset of the data set available at http://archive.ics.uci.edu/ml/
datasets/Air+Quality (De Vito et al. (2008, 2009, 2012)). The data set contains hourly
averaged concentration measurements for different atmospheric pollutants obtained at a
main road in an Italian city. Here we analyze measurements from June to September 2004,
which results in 2928 observations. The measurements for the pollutants were taken from
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two different sensors, standard (high-cost) sensors and new low-cost (lc) sensors. We refer
to a value measured with the standard (high-cost) sensor as a ground truth (gt) value.
Ground truth values are available for CO (mg/m3), NOx (ppb) and NO2 (µg/m3) and the
aim is to predict these values. For each ground truth value we are given a corresponding
value obtained from a low-cost sensor, resulting in six different pollution measurements
for one time point. The measurements in July for the pollutant CO are visualized in
Figure 7.4. We see that the measurements of the ground truth sensor for CO are missing
for several days, i.e. missing observations are present in this data set. The missing values
per pollutant range from 4% to 24%, whereas ground truth values have a higher portion
of missing values. In addition to the pollution measurements, hourly measurements of
the temperature and of relative humidity are also available.
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Figure 7.4: Hourly observed values of one pollutant (CO) from the ground truth (gt) and
low-cost (lc) sensors in July 2004. When missing values are present, no observations are
drawn for the corresponding time points.

In the following, (ytj)t=1,...,T,j=1,...,6 denotes the data containing the pollutant measure-
ments, where T = 2928 is the length of the time series. As before, T obsj is the set of
time indices for which observed values are available for the j-th marginal time series. The
measurements of relative humidity and temperature are denoted by RHt and TEMPt,
respectively for t = 1, . . . , T .

7.4.2 Marginal models
We fit a generalized additive model (GAM) for each pollutant, where temperature, relative
humidity, the hour at time t, Ht ∈ {0, . . . , 23}, and the day at time t, Dt ∈ {0, . . . , 6}, are
used as covariates. We denote the covariates by xt = (TEMPt,RHt,Ht,Dt). As explained
in Section 7.2.1, we allow for Box-Cox transformations (Box and Cox (1964)) and assume
that

BC(Ytj, λj) = fj(xt) + σjεtj (7.22)
with εtj ∼ N(0, 1) for t = 1, . . . , T, j = 1, . . . , 6 and BC(Ytj, λj) as in (7.1).

For estimating the conditional mean function fj and σj, we assume that the errors
εtj are independent. Later the dependence among the errors will be modeled with the
proposed state space model. For each pollutant, associated with a j ∈ {1, . . . , 6}, we
estimate a GAM for different values of λj and then choose the model which maximizes
the likelihood for given data ytj, t ∈ T obsj . For each GAM we remove the corresponding
missing values and rely on the R package mgcv of Wood and Wood (2015) for parameter
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estimation. We obtain estimates f̂j, σ̂j and λ̂j for j = 1, . . . , 6. From Table 7.1 we see that
the estimates for λj deviate from 1, which indicates that the Box-Cox transformations are
necessary. Figure 7.5 shows the smooth components of the GAM for four different pollu-
tants. We see, for example, a nonlinear effect of the Hour on the pollution measurement.
The pollution is high at around 8 am and at around 6 pm, which may correspond to the
hours with the highest traffic due to commuting workers.
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Figure 7.5: Estimated smooth components of the GAMs for four Box-Cox transformed
pollutants: CO(gt), CO(lc), NO2(gt), NO2(lc) (top to bottom row). Each GAM has four
covariates, TEMP, RH, D and H. The dashed lines represent a pointwise 95% confidence
band.
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CO(gt) CO(lc) NOx(gt) NOx(lc) NO2(gt) NO2(lc)
λ̂j 0.15 -1.25 0.05 0.05 0.55 -0.70

Table 7.1: Estimates of λ1, . . . , λ6 for the six GAMs fitted to the six pollution measure-
ments.

7.4.3 Dependence model
Recall the standardized errors Ztj, defined in (7.2), as

Ztj = BC(Ytj, λj)− fj(xt)
σj

which are N(0, 1) distributed. Pseudo observations of Ztj can be obtained from the
estimates f̂j, σ̂j and λ̂j as

ẑtj = BC(ytj, λ̂j)− f̂j(xt)
σ̂j

(7.23)

for t = 1, . . . , T, j = 1, . . . 6. To visualize temporal dependence among the variables Ztj, we
show contour plots of bivariate kernel density estimates of pairs (ẑtj, ẑt−1j), t = 2, . . . , T for
j = 1, . . . , 6 in Figure 7.6. In addition, we examine cross-sectional dependencies through
bivariate contour plots for all pairs of (ẑt1, . . . , ẑt6), t = 1, . . . , T in Figure 7.7, whereas we
ignore serial dependence. We observe temporal and cross-sectional dependence. Further,
the dependence structures seem to be different from a Gaussian one since we observe
asymmetries in the contour plots. For example, the contour plot in the bottom left corner
of Figure 7.7 indicates stronger dependence in the upper right corner than in the bottom
left corner. Therefore, a linear Gaussian state space model might not be appropriate here,
but the proposed copula based state space model can be a good candidate for this data.
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Figure 7.6: Contour plots of bivariate kernel density estimates based on pairs
(ẑtj, ẑt−1j)t=2,...,T for j = 1, . . . , 6 ignoring serial dependence.
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Figure 7.7: The lower triangular part shows contour plots of bivariate kernel density
estimates for all pairs of (ẑt1, . . . , ẑt6), ignoring serial dependence. The upper triangular
part shows corresponding scatter plots of all pairs of (ût1, . . . , ût6) with ûtj = Φ(ẑtj)
and the empirical Kendall’s τ for each pair. The diagonal shows the histograms of the
univariate marginals. More precisely, the plot in the i-th row and j-th column shows the
contour plot of the bivariate kernel density estimate based on the pair (ẑti, ẑtj) if i > j,
the scatter plot of (ûti, ûtj) if i < j, or the histogram of ûti, if i = j with t = 1, . . . , T .
The variables are ordered as follows: 1: CO(gt), 2: CO(lc), 3: NOx(gt), 4: NOx(lc), 5:
NO2(gt), 6: NO2(lc).

Since our multivariate copula state space model operates on marginally uniform(0, 1)
distributed data, we obtain uniform on (0, 1) distributed random variables as Utj = Φ(Ztj)
with corresponding pseudo copula data

ûtj = Φ(ẑtj) (7.24)

for t ∈ T obsj , j = 1, . . . , 6. The proposed multivariate copula based state space model is
fitted to the data ûtj, t ∈ T obsj , j = 1, . . . , 6, whereas the copula families are selected from
M={Gaussian, Student t(df=4), Clayton, Gumbel}. The MCMC approach of Section
7.3 is run for 3000 iterations and the first 1000 draws are discarded for burn-in. Plots
of the estimated posterior densities and trace plots are shown in Appendix E.2. These
plots indicate proper mixing of the Markov Chain. Table 7.2 shows the selected copula
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families corresponding to the estimated posterior modes of mobs,j or mobs. We see that
four Gaussian, one Student t and two Gumbel copulas were selected. In particular,
our model features an asymmetric dependence structure, since the Gumbel copula is
included. Simulations from the in-sample period predictive distribution can be obtained
as explained in Section 7.3. Transforming these simulations with the standard normal
quantile function, we obtain predictive simulations for the standardized errors, i.e. we
obtain draws from the predictive distribution of the standardized error as

εrtj = Φ−1((unewtj )r), (7.25)

for r = 1, . . . , 3000, t = 1, . . . , T , where (unewtj )r is a draw from the in-sample period pre-
dictive distribution on the copula scale (see Section 7.3). These simulations are compared
to the observed standardized residual of the GAM, ẑtj, to assess how well our model fits
the data. In particular, we want to asses if a single factor structure is appropriate or if
it is too restrictive. According to Figure 7.8, the model seems to be appropriate. The
single factor structure is able to capture the time-dynamics of the residuals. The ground
truth values for CO are missing from day 26 to day 30. We see that within this period,
the time-dynamic is learned from other series, where data is available within this period.
While Figure 7.8 shows plots for two pollutants in July, plots for different pollutants in
different months looked similar.
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Figure 7.8: This plot is based on data for July. The first two rows show the estimated
mode of the predictive density of the standardized error εtj plotted against time t for
j = 1, 2, corresponding to CO(gt) and CO(lc) (black lines). Draws from the predictive
distribution of the standardized error, which are used to estimate the modes, are obtained
as in (7.25). The observed standardized residual from the GAM is added in red (dashed).
The third row shows the estimated posterior mode of wt = Φ−1(vt) plotted against t. To all
plots we add a 90% credible region constructed from the estimated 5% and 95% posterior
quantiles. The mode estimates are obtained from univariate kernel density estimates.
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m̂obs,1 m̂obs,2 m̂obs,3 m̂obs,4 m̂obs,5 m̂obs,6 m̂lat

Copula family Gu Gu Ga S Ga Ga Ga

Table 7.2: The marginal posterior mode estimates of the copula family indicators
mobs,mlat. (Ga: Gaussian, S: Student t(df=4), C: Clayton, Gu: Gumbel).

7.4.4 Predictions
We evaluate the proposed model’s ability to predict the ground truth values. Therefore
we compare the copula state space model to a Gaussian state space model and to Bayesian
additive regression trees (Chipman et al. (2010)), as a representative for a popular machine
learning algorithm. Compared to other machine learning techniques, Bayesian additive
regression trees have the advantage that a predictive distribution is obtained instead of
a single point estimate. Therefore we can compare models with respect to their forecast
distribution, for which we utilize the continuous ranked probability score (Gneiting and
Raftery (2007)). The continuous ranked probability score (CRPS) for an observed value
y ∈ R and a univariate forecast distribution function F is defined as

CRPS =
∫
R
(F (z)− 1y≤z)2dz. (7.26)

For each of the ground truth values we remove the observations in the last month of the
data set and treat them as missing values, which yields the training set. Further, we denote
by T testj the removed time indices for margin j. Based on the training set, we proceed
similarly to what we described above, i.e. we first estimate the GAMs, and then estimate
the state space model on the copula scale. Here two state space models are estimated:
the copula state space model where the family set M is chosen as in Section 7.4.3 and
the Gaussian state space model where we restrict the family set toM = {Gaussian}. For
each of the two state space models, we obtain 2000 simulations from the in-sample period
predictive distribution urtj, r = 1, . . . , 2000, whereas our MCMC approach of Section 7.3 is
run for 3000 iterations and the first 1000 draws are discarded for burn-in. Here t is a time
point which is among the newly selected missing values for the ground truth value that
corresponds to margin j, i.e. t ∈ T testj . Based on these simulations, we obtain simulations
from the predictive distribution of the Box-Cox transformed response as follows

(ybctj )r = f̂j(xt) + σ̂jΦ−1(urtj) (7.27)

for r = 1, . . . , 2000.
Since Bayesian additive regression trees rely on the normal distribution, we expect

that Box-Cox transformations might also improve the fit for this model. We assume that

BC(Ytj, λj) = gj(xBART
tj ) + σjεtj, (7.28)

where xBART
tj are the covariates, gj(·) is a sum of regression trees and εtj ∼ N(0, 1) iid. In

addition to the covariates used for the GAM model, all pollutant measurements except the
one corresponding to margin j are included in the covariate vector xBART

tj . For λj we use
the same value as for the previously fitted GAM. We have seen that this transformation
improves the performance of the Bayesian additive regression trees. McCulloch et al.
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(2018) implement a MCMC sampler in the R package BART which we use to obtain draws
grj , σ

r
j , r = 1, . . . , 10000 from the corresponding posterior distribution. We discard the

first 5000 of these draws and then 5000 simulations from the predictive distribution of the
Box-Cox transformed response are obtained as

(ybctj )r ∼ N(grj (xBART
tj ), (σrj )2) (7.29)

for r = 1, . . . , 5000.
Based on the simulations, (ybctj )r, r = 1, . . . , 5000, we calculate the empirical distribu-

tion function and use this to approximate the CRPS (this is implemented in the R package
scoringRules of Jordan et al. (2017)). For each of the ground truth indices, associated
with an index j, we calculate the CRPS for the time points T testj and sum them up to ob-
tain the cumulative CRPS. For each of the three methods, we obtain a cumulative CRPS
for each of the three ground truth indices. In addition, we consider reduced bivariate data
sets, where each data set consists of the ground truth value of a pollutant, the correspond-
ing low-cost value and the covariates as in Section 7.4.2. This yields three reduced data
sets, each associated with one of the three pollutants. For each of the reduced data sets
we proceed as above, i.e. we first remove ground truth observations in the last month, fit
the three different models and calculate the CRPS values.

We refer to the models fitted to the reduced data as bivariate state space models and
reduced Bayesian additive regression trees. The models estimated with the full data are
referred to as joint models. We want to investigate how the bivariate state space models
compare to the six-dimensional ones. The cumulative CRPS values are shown in Table
7.3. For the pollutant NOx, the state space approach seems not to be the best choice.
We have seen (see Appendix E.3) that for this pollutant, the dependence between the
ground truth and the low-cost values varies more over time than for the other pollutants.
Relaxing the assumption of a time-constant Kendall’s τ might improve the predictive
accuracy for this pollutant. This model extension is subject to future research. Overall,
the copula state space model is the best performing model within this comparison, since
it outperforms the Gaussian state space model and the Bayesian additive regression trees
in two out of three cases.

CO NOx NO2
joint copula state space model 74.27 594.50 569.03
bivariate copula state space model 84.92 559.22 845.95
joint Gaussian state space model 76.91 594.30 570.55
bivariate Gaussian state space model 87.90 559.18 844.64
joint Bayesian additive regression trees 183.49 379.31 1330.90
reduced Bayesian additive regression trees 89.39 520.93 1095.40

Table 7.3: Cumulative CRPS for the three ground truth values (CO, NOx, NO2) ob-
tained from six different models: joint/bivariate copula state space model, joint/bivariate
Gaussian state space model, joint/reduced Bayesian additive regression trees. The best,
i.e. the lowest, cumulative CRPS value in marked in bold.
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7.5 Concluding remarks
We proposed a multivariate nonlinear non-Gaussian copula based state space model. The
model is very flexible: the observation and the state equation are specified with copulas
and the model can be combined with different marginal distributions. We illustrated the
model with air pollution measurements data and have shown that the novel copula state
space model outperforms a Gaussian state space model and Bayesian additive regression
trees. As we have seen in Section 7.4.4, the assumption of a time-constant dependence
might not always be appropriate. A first extension of the model could allow for dynamic
dependence parameters. For this, ideas of the dynamic bivariate copula model of Almeida
and Czado (2012) might be used. Another area of future research is the extension to
higher-dimensional latent states.
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8 Conclusion and outlook

In this thesis we presented a variety of copula based time series models: A single factor
copula stochastic volatility model, a dynamic bivariate mixture copula model, dynamic
vine copula models and a univariate and a multivariate copula based state space model.
For the estimation of these models we developed our own MCMC methods or relied on
STAN’s No-U-Turn sampler. All models were illustrated with real data and comparison
to relevant benchmark models showed satisfactory performance of the proposed models.

In addition to suggestions for future research that were already given at the end of
each chapter, there are more promising ideas for future research.

To extend the single factor copula stochastic volatility model, discussed in Chapter
3, to allow for dynamic parameters, we could make use of the methodology developed in
Chapter 4. We can allow for time-variation by modeling copula parameters with latent
AR(1) processes. Instead of using Hamiltonian Monte Carlo, as in Chapter 3, we can
utilize the sampler developed in Chapter 4. The sampler could be used within a Gibbs
approach. Conditional on the latent factor, we need to sample from d independent bi-
variate dynamic copula models, where d is the number of variables. To further improve
the efficiency of this sampler, we could develop an additional interweaving strategy that
involves the latent factor. We might follow ideas of Kastner et al. (2017), who proposed
an interweaving strategy for multivariate factor stochastic volatility models. It involves
the latent factor and resulted in huge efficiency gains. Further, it might be interesting
to investigate if the methodology of Chapter 5 can be applied to allow for dynamic fac-
tor models with more than one factor. We would start with the factor copula model
of Krupskii and Joe (2013) with multiple factors and extend it by allowing for dynamic
dependence parameters. Conditional on all latent factors, we would already be in the
framework of Chapter 5, where the corresponding tree structure is a C-vine and the steps
for structure selection would not be necessary in this case.

Similarly, an extension of the multivariate copula state space model proposed in Chap-
ter 7 could benefit from the methodology developed in Chapters 4 and 5. We would employ
the factor copula model with multiple factors in the observation equation, describe the
time evolution of latent factors with independent D-vines and model the associated cop-
ula parameters with latent AR(1) processes. Conditional on the latent factors, we obtain
again a dynamic C-vine copula which fits into the framework of Chapter 5.

Since the models of Chapters 3, 4 and 5 are state space models, where the state
equations are Gaussian AR(1) processes, the methodology developed in Chapter 6 yields
straightforward generalizations of these models: We can replace the Gaussian AR(1) state
equations with latent D-vines. So a latent D-vine could describe the time evolution of the
copula parameter in the dynamic bivariate copula model discussed in Chapter 4. In this
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case, we face new challenges with respect to parameter estimation. As a first approach
we could try STAN’s No-U-Turn sampler. Alternatively, we might be able to develop
a sampling procedure that exploits the latent D-vine structure, similar to how elliptical
slice sampling exploits the latent Gaussian AR(1) structure. Instead of sampling from a
multivariate normal distribution, as in elliptical slice sampling, we would sample from a
D-vine copula to obtain proposals.
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Frühwirth-Schnatter, S. and Wagner, H. (2010). Stochastic model specification search
for Gaussian and partial non-Gaussian state space models. Journal of Econometrics,
154(1):85–100.

Garthwaite, P. H., Fan, Y., and Sisson, S. A. (2016). Adaptive optimal scaling of
Metropolis–Hastings algorithms using the Robbins–Monro process. Communications
in Statistics-Theory and Methods, 45(17):5098–5111.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2014a). Bayesian Data Analysis, volume 2. CRC press Boca Raton, FL.

Gelman, A., Hwang, J., and Vehtari, A. (2014b). Understanding predictive information
criteria for Bayesian models. Statistics and Computing, 24(6):997–1016.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):721–741.

Ghalanos, A. (2012). rmgarch: Multivariate GARCH models. R package version 0.98.

Gilks, W. R., Best, N., and Tan, K. (1995). Adaptive rejection Metropolis sampling within
Gibbs sampling. Applied Statistics, pages 455–472.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378.

Goel, A. and Mehra, A. (2019). Analyzing Contagion Effect in Markets During Financial
Crisis Using Stochastic Autoregressive Canonical Vine Model. Computational Eco-
nomics, 53(3):921–950.

130



BIBLIOGRAPHY

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82(4):711–732.

Gruber, L. F. and Czado, C. (2015). Sequential Bayesian model selection of regular vine
copulas. Bayesian Analysis, 10(4):937–963.

Gruber, L. F. and Czado, C. (2018). Bayesian model selection of regular vine copulas.
Bayesian Analysis, 13(4):1107–1131.

Haff, I. H., Aas, K., and Frigessi, A. (2010). On the simplified pair-copula construc-
tion—simply useful or too simplistic? Journal of Multivariate Analysis, 101(5):1296–
1310.

Hafner, C. M. and Manner, H. (2012). Dynamic stochastic copula models: Estimation,
inference and applications. Journal of Applied Econometrics, 27(2):269–295.

Hahn, P. R., He, J., and Lopes, H. F. (2019). Efficient sampling for Gaussian linear
regression with arbitrary priors. Journal of Computational and Graphical Statistics,
28(1):142–154.

Han, Y. (2005). Asset allocation with a high dimensional latent factor stochastic volatility
model. The Review of Financial Studies, 19(1):237–271.

Hartmann, M. and Ehlers, R. S. (2017). Bayesian inference for generalized extreme value
distributions via Hamiltonian Monte Carlo. Communications in Statistics-Simulation
and Computation, pages 1–18.

Harvey, A., Ruiz, E., and Shephard, N. (1994). Multivariate stochastic variance models.
The Review of Economic Studies, 61(2):247–264.

Hastie, T. and Tibshirani, R. (1986). Generalized additive models. Statistical Science,
1(3):297–318.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, pages 97–109.

Hoffman, M. D. and Gelman, A. (2014). The No-U-turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,
15(1):1593–1623.

Hosszejni, D. and Kastner, G. (2019). Approaches Toward the Bayesian Estimation of
the Stochastic Volatility Model with Leverage. arXiv preprint arXiv:1901.11491.

Ippoliti, L., Valentini, P., and Gamerman, D. (2012). Space–time modelling of coupled
spatiotemporal environmental variables. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 61(2):175–200.

Joe, H. (2014). Dependence Modeling with Copulas. CRC Press.

Joe, H. and Xu, J. J. (1996). The estimation method of inference functions for margins
for multivariate models. Technical Report 166, Department of Statistics, University of
British Columbia.

131



BIBLIOGRAPHY

Johns, C. J. and Shumway, R. H. (2005). A non-linear and non-Gaussian state-space
model for censored air pollution data. Environmetrics: The official journal of the
International Environmetrics Society, 16(2):167–180.

Jondeau, E. (2016). Asymmetry in tail dependence in equity portfolios. Computational
Statistics & Data Analysis, 100:351–368.
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Appendix A Supplementary material
to Chapter 3

A.1 Derivatives for HMC for the single factor copula
model

For all considered copula families there is a one-to-one correspondence between the copula
parameter and Kendall’s τ . So there is a function θj = g(τj) such that θj is the corre-
sponding copula parameter (see Section 2.2.3). We use here that the derivatives of the
copula density with respect to θj have already been derived by Schepsmeier and Stöber
(2014). There is a one-to-one correspondence between θj, τj and δj, given by

τj = (1 + exp(−δj))−1, θj = g(τj) (A.1)

The derivatives of the log posterior density with respect to the parameters δj′ and wt′ are
given by

d
dδj′
L(δ,w|U) =

d∑
j=1

T∑
t=1

d
dδj′

ln(cj(utj, vt; τj)) + d
dδj′

ln(π(δ,w))

=
T∑
t=1

d
dδj′

ln(cj(utj′ , vt; τj′)) + d
dδj′

ln(π(δ,w))

=
T∑
t=1

d
dθj′

ln(cj(utj′ , vt; τj′))
dθj′
dδj′

+ d
dδj′

ln(π(δ,w)),

and

d
dwt′
L(δ,w|U) =

d∑
j=1

T∑
t=1

d
dwt′

ln(cj(utj, vt; τj)) + d
dwt′

ln(π(δ,w))

=
d∑
j=1

d
dwt′

ln(cj(ut′j, vt′ ; τj)) + d
dwt′

ln(π(δ,w))

=
d∑
j=1

d
dvt′

ln(cj(ut′j, vt′ ; τj))
dvt′
dwt′

+ d
dwt′

ln(π(δ,w)).

The components of the derivative of the log posterior density are derived in the following.
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Derivatives of the log prior density

The derivative of the log prior density πu is given by
d

dx ln(πu(x)) = d
dx − 2 ln(1 + exp(−x))− x = 2(1 + exp(x))−1 − 1.

Derivatives of the parameter transformation

We consider derivatives of the parameter transformation, i.e. dθj′
dδj′

and dvt′
dwt′

. In this part
we suppress the indices j′ and t′. We have that

v = (1 + exp(−w))−1,

and the derivative is given by
dv
dw = (1 + exp(−w))−2 exp(−w).

Now we address the derivative dθ
dδ . The parameter δ was chosen to be the logit trans-

form of the corresponding Kendall’s τ and so τ can be written as

τ = (1 + exp(−δ))−1,

with corresponding derivative
dτ
dδ = (1 + exp(−δ))−2 exp(−δ).

The copula parameter θ is a function of Kendall’s τ and dependent on the copula family
considered we obtain the following derivatives.
• Gauss and Student t copula

θ = sin
(1

2πτ
)

dθ
dδ = dθ

dτ
dτ
dδ

= 1
2π cos

(1
2πτ

)dτ
dδ

= 1
2π cos

(1
2π(1 + exp(−δ))−1

)
(1 + exp(−δ))−2 exp(−δ)

• Clayton copula

θ = 2τ
1− τ

= 2
τ−1 − 1

= 2
1 + exp(−δ)− 1

= 2 exp(δ)
dθ
dδ = 2 exp(δ)
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• Gumbel copula

θ = (1− τ)−1

dθ
dδ = dθ

dτ
dτ
dδ

= (1− τ)−2 dτ
dδ

= {1− [1 + exp(−δ)]−1}−2[1 + exp(−δ)]−2 exp(−δ)
= [1 + exp(−δ)− 1]−2 exp(−δ)
= exp(−δ)−2 exp(−δ)
= exp(δ)

Derivatives of log copula densities

For all considered copula families Schepsmeier and Stöber (2014) calculate the derivatives
of the copula density with respect to the copula parameter θj and with respect to the
argument vt. Based on their results the derivatives of the log copula density are easily de-
rived. The derivatives are also implemented in the R package VineCopula by Schepsmeier
et al. (2018).

A.2 Prior densities for transformed parameters

The prior densities for µj, φj and σ2
j in (3.12) imply the following prior densities for µj, ξj

and ψj.

• We have that µj ∼ N(0, σ2
µ). So the prior density for µj is up to a constant given

by

π(x) ∝ exp
(
− x2

2σ2
µ

)
.

• We have that φj+1
2 ∼ Beta(a, b). So the density of φj is given by

fφ(x) = fBeta

(
x+ 1

2

) 1
2 .

This implies that the prior density of ξj is

π(x) = fφ(F−1
Z (x))

∣∣∣∣∣ d
dxF

−1
Z (x)

∣∣∣∣∣
= Γ(a+ b)

Γ(a)Γ(b)

(
F−1
Z (x) + 1

2

)a−1 (
1− F−1

Z (x) + 1
2

)b−1 1
2
(
1− (F−1

Z (x))2
)
.

• We have that σ2
j ∼ χ2

1, i.e.
fσ(x) = 2xfχ2

1
(x2).
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So the prior density for ψj is given by

π(x) = fσ(exp(x)) exp(x)

= 2 exp(x) exp(x) 1√
2Γ(1

2)
exp(−x) exp

(
−exp(2x)

2

)

= 2 1√
2Γ(1

2)
exp(x) exp

(
−exp(2x)

2

)
.

A.3 Derivatives for HMC for the stochastic volatility
model

We need to calculate derivatives of the function

L(µj, ξj, ψj, s̃·j|Z, τ ,v,m) =
T∑
t=1

ln
cmjj

Φ
 ztj

exp
(
stj
2

)
 , vt; τj

+ ln
ϕ

 ztj

exp
(
stj
2

)
− stj

2


+ ln(π(µj, ξj, ψj, s̃·j)) + const,

where const ∈ R is a constant.
To subset a vector x, we use the notation xk:n = (xk, . . . , xn). To further shorten

notation, we omit the index j in the following and consider the function

L2(µ, ξ, ψ, s̃0:T ) =
T∑
t=1

ln
cm

Φ
 zt

exp
(
st
2

)
 , vt; τ

+ ln
ϕ

 zt

exp
(
st
2

)
− st

2


+ ln(π(µ, ξ, ψ, s̃0:T )).

We define

Ω(s1:T ) =
T∑
t=1

ln
cm

Φ
 zt

exp
(
st
2

)
 , vt; τ

+ ln
ϕ

 zt

exp
(
st
2

)
− st

2

 ,
and the derivatives can be expressed as

• d
dµL2(µ, ξ, ψ, s̃0:T ) = dΩ(s1:T )

ds1:T

ds1:T
dµ + d

dµ ln(π(µ, ξ, ψ, s̃0:T ))

• d
dξL2(µ, ξ, ψ, s̃0:T ) = dΩ(s1:T )

ds1:T

ds1:T
dφ

dφ
dξ + d

dξ ln(π(µ, ξ, ψ, s̃0:T ))

• d
dψL2(µ, ξ, ψ, s̃0:T ) = dΩ(s1:T )

ds1:T

ds1:T
dσ

dσ
dψ + d

dψ ln(π(µ, ξ, ψ, s̃0:T ))

• d
ds̃0:T
L2(µ, ξ, ψ, s̃0:T ) = dΩ(s1:T )

ds0:T
J + d

ds̃0:T
ln(π(µ, ξ, ψ, s̃0:T )),

where J ∈ R(T+1)×(T+1) denotes the corresponding Jacobian matrix, i.e. Jtj = dst
ds̃j . The

derivatives are calculated in the following.
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• d
dsiΩ(s1:T ) = d

dx ln(cm(x, vi; τ))
∣∣∣∣
x=Φ

(
zi

exp( si2 )

)ϕ( zi
exp( si2 )

)
zi

exp( si2 )(−1
2)+ z2

i

2 exp(si)−
1
2 for i =

1, . . . , T

• We have that s0 = s̃0σ√
1−φ2

+ µ, st = s̃tσ + µ+ φ(st−1 − µ), t = 1, . . . , T
and obtain

ds0
dµ = 1 dst

dµ = 1− φ+ φ d
dµst−1, t = 1, . . . , T

ds0
dφ = s̃0σ(1− φ2)− 3

2φ dst
dφ = st−1 − µ+ φ d

dφst−1, t = 1, . . . , T
ds0
dσ = s̃0√

1−φ2
dst
dσ = s̃t + φ d

dσst−1, t = 1, . . . , T
dst
ds̃0

= φt σ√
1−φ2

, t = 0, . . . , T dst
ds̃j = φt−jσ1t≥j, t = 0, . . . , T, j = 1, . . . T

• dφ
dξ = 1− F−1(ξ)2, dσ

dψ = exp(ψ)

• d
dµ ln(π(µ, ξ, ψ, s̃0:T )) = − µ

σ2
µ

• d
dξ ln(π(µ, ξ, ψ, s̃0:T )) = (a − 1) (1−F−1

Z (ξ)2)
(F−1
Z (ξ)+1) − (b − 1)(1 + F−1

Z (ξ)) − 2F−1
Z (ξ) where

a = 5 and b = 1.5 are the parameters of the beta distribution.

• d
dψ ln(π(µ, ξ, ψ, s̃0:T )) = 1− exp(2ψ)

• d
ds̃0:T

ln(π(µ, ξ, ψ, s̃0:T )) = −s̃0:T

A.4 Results of the simulation study for d = 10

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
94% 89% 92% 93% 78% 91% 88% 91% 91% 81%

Table A.1: Proportion of how often the correct copula family was selected. The selected
copula family is the posterior mode estimate of mj for j = 1, . . . , 10 (Scenario 2).
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Scenario 2 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10
MSE 0.0033 0.0031 0.0050 0.0097 0.0560 0.0031 0.0036 0.0068 0.0121 0.0629
C.I. 90% 0.88 0.90 0.93 0.90 0.92 0.88 0.83 0.87 0.90 0.86
C.I. 95% 0.95 0.97 0.97 0.94 0.98 0.96 0.93 0.92 0.94 0.89
ESS 779 499 616 695 465 781 548 555 659 457

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10
MSE 0.0462 0.0239 0.0038 0.0009 0.0003 0.0321 0.0340 0.0035 0.0010 0.0003
C.I. 90% 0.98 0.95 0.83 0.90 0.81 0.98 0.96 0.90 0.92 0.82
C.I. 95% 0.98 0.98 0.89 0.96 0.92 1.00 0.99 0.92 0.97 0.92
ESS 480 385 362 402 319 478 412 369 393 325

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10
MSE 0.0082 0.0047 0.0028 0.0018 0.0026 0.0068 0.0053 0.0028 0.0018 0.0027
C.I. 90% 0.95 0.97 0.85 0.89 0.81 0.96 0.98 0.91 0.93 0.84
C.I. 95% 0.97 0.99 0.95 0.96 0.89 0.98 0.99 0.96 0.96 0.90
ESS 283 297 298 300 242 288 317 295 295 236

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
MSE 0.0112 0.0195 0.0305 0.0440 0.0590 0.0112 0.0195 0.0309 0.0435 0.0590
C.I. 90% 0.78 0.85 0.77 0.74 0.78 0.79 0.79 0.81 0.77 0.76
C.I. 95% 0.83 0.85 0.84 0.80 0.82 0.82 0.87 0.84 0.81 0.80
ESS 520 474 279 261 181 498 459 275 253 164

s300,1 s300,2 s300,3 s300,4 s300,5 s300,6 s300,7 s300,8 s300,9 s300,10
MSE 0.0815 0.0915 0.1839 0.1536 0.2546 0.0877 0.0941 0.1639 0.1711 0.2437
C.I. 90% 0.86 0.84 0.92 0.91 0.87 0.85 0.83 0.92 0.91 0.90
C.I. 95% 0.91 0.93 0.94 0.95 0.95 0.94 0.92 0.96 0.96 0.94
ESS 1073 1074 1043 1007 620 1087 1100 1010 999 628

v100 v200 v500 v800 v900
MSE 0.0269 0.0263 0.0190 0.0157 0.0146
C.I. 90% 0.82 0.91 0.82 0.90 0.85
C.I. 95% 0.88 0.93 0.85 0.95 0.90
ESS 393 406 395 405 406

Table A.2: MSE estimated using the posterior mode, observed coverage probability of the
credible intervals (C.I.) and effective sample sizes (ESS) calculated from 2000 posterior
draws for selected parameters (Scenario 2).
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Appendix B Supplementary material
to Chapter 4

In this chapter we make use of the following notation to subset vectors and matrices: For
sets of indices A and B we set xA = (xi)i∈A for a vector x and XA;B = (xij)i∈A,j∈B for
a matrix X. We use a capital letter to refer to a matrix and small letters to refer to its
components. The set {n, . . . , k} of integers will be abbreviated by n : k.

B.1 Details on the sampling procedure

Sampling of the latent states in the sufficient augmentation
Here we derive µBi| and ΣBi|. By the conditional independence assumptions of the AR(1)
process and the way we defined the blocks B1, . . . , Bm, we obtain

f(sBi
|s0, s−Bi

, µ, φ, σ) = f(sBi
|sai−1, sbi+1, µ, φ, σ), for i = 1, . . . ,m− 1, and

f(sBm
|s0, s−Bm

, µ, φ, σ) = f(sBm
|sam−1, µ, φ, σ).

Conditional on µ, φ and σ, the vector (sai−1, sBi
, sbi+1) is multivariate normal distributed

with mean vector µAR
(ai−1,Bi,bi+1) ∈ Rci+2 and covariance matrix ΣAR

(ai−1,Bi,bi+1);(ai−1,Bi,bi+1) ∈
R(ci+2)×(ci+2), where ci is the cardinality of Bi. Thus the vector sBi

|sai−1, sbi+1, µ, φ, σ fol-
lows a multivariate normal distribution with mean vector µBi| and covariance matrix ΣBi|
given by

µBi| = µAR
Bi

+ ΣAR
Bi;(ai−1,bi+1)

1− φ2

(1− φ2(ci+1))σ2

(
1 −φci+1

−φci+1 1

)(
sai−1 − µ
sbi+1 − µ

)
,

ΣBi| = ΣAR
Bi;Bi − ΣAR

Bi;(ai−1,bi+1)
1− φ2

(1− φ2(ci+1))σ2

(
1 −φci+1

−φci+1 1

)
ΣAR

(ai−1,bi+1);Bi .

(B.1)

The vector sBm
|sam−1, µ, φ, σ corresponding to the last block is multivariate normal

distributed with mean vector µBm| and covariance matrix ΣBm| obtained as

µBm| = µAR
Bm

+ ΣAR
Bm;am−1

1− φ2

σ2 (sam−1 − µ),

ΣBm| = ΣAR
Bm;Bm − ΣAR

Bm;am−1
1− φ2

σ2 ΣAR
am−1;Bm .
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We need to sample from Nci(0,ΣBi|) several times during elliptical slice sampling.
Instead of working with the ci × ci covariance matrix ΣBi| we can more efficiently sam-
ple from the ci-dimensional normal distribution by using the conditional independence
assumptions of the AR(1) process. It holds that

f(sBi
|sai−1, sbi+1, µ, φ, σ) =

ci−1∏
t=0

f(sai+t|sai−1:ai+t−1, sbi+1, µ, φ, σ)

=
ci−1∏
t=0

f(sai+t|sai+t−1, sbi+1, µ, φ, σ),

where f(sai+t|sai+t−1, sbi+1, µ, φ, σ) is the univariate normal density with mean

µai+t|ai+t−1,bi+1 =

µ+ 1
1− φ2(ci+1−t))

(
(φ− φ2ci+1−2t)(sai+t−1 − µ) + (φci−t − φci+2−t(sbi+1 − µ))

)
,

and variance

σ2
ai+t|ai+t−1,bi+1 = σ2

1− φ2

(
1− 1

1− φ2(ci+1−t)

(
φ2 − 2φ2(ci−t+1) + φ2(ci−t)

))
.

So we can sample sBi
= (sai+t)t=0,...,ci−1 conditioned on sai−1, sbi+1, µ, φ, σ recursively

by

sai+t ∼ N(µai+t|ai+t−1,bi+1, σ
2
ai+t|ai+t−1,bi+1),

for t = 0, . . . , ci − 1 and then sBi
− µBi| is a sample from Nci(0,ΣBi|).

Sampling of the constant parameters in the ancillary augmenta-
tion
To sample µ, φ and σ in (AA), we deploy an adaptive random walk Metropolis-Hastings
scheme as suggested by Garthwaite et al. (2016). For sampling, it is convenient to move
to unconstrained parameter spaces which is achieved by the following transformations

ψ = ln(σ), ξ = FZ(φ).

Here FZ(x) = 1
2 log

(
1+x
1−x

)
is Fisher’s Z transformation. The from (4.5) implied log prior

densities for ξ and ψ are given by

ln(π(ξ)) = (5− 1) ln
(
F−1
Z (ξ) + 1

)
+ (1.5− 1) ln

(
1− F−1

Z (ξ)
)

+ ln
(
1− (F−1

Z (ξ))2
)

+ c1

ln(π(ψ)) = ψ − 1
2 exp(2ψ) + c2,

,

where c1 ∈ R and c2 ∈ R are constants. The log posterior density in (AA) is obtained
as

lp(AA)(µ,ξ, ψ, s0, s̃1:T |Y) =
T∑
t=1

ln
(
f(yt|st(s̃1:T , µ, F

−1
Z (ξ), exp(ψ)))

)
− 1

2

T∑
t=1

s̃2
t

+ ln
(
ϕ

(
s0|µ,

exp(ψ)2

1− F−1
Z (ξ)2

))
+ ln(π(µ)) + ln(π(ξ)) + ln(π(ψ)) + c3,
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where c3 ∈ R is a constant. We sample (µ, φ, σ) in two blocks, one block for µ and one
block for (φ, σ).

Update for µ

To sample the mean parameter µ from its full conditional, we propose a new state µprop
in the r-th iteration of the MCMC procedure by

µprop ∼ N(µcur, σr−1
MH,µ),

where µcur is the current value for µ. The proposal µprop is accepted with probability

R = exp
(
lp(AA)(µprop, ξ, ψ, s0, s̃1:T |Y)− lp(AA)(µcur, ξ, ψ, s0, s̃1:T |Y)

)
and the scaling parameter σrMH,µ is updated according to Garthwaite et al. (2016) by

ln
(
σrMH,µ

)
= ln

(
σr−1
MH,µ

)
+ 4.058(R− 0.44)

r − 1 .

The scaling parameter is increased, if the acceptance probability is larger than 0.44 and
decreased if the acceptance probability is smaller than 0.44. We target an average accep-
tance probability of 0.44, as recommended by Roberts et al. (2001) for univariate random
walk Metropolis-Hastings. The constant 4.058 controls the step size and is chosen as
suggested by Garthwaite et al. (2016).

Joint update for φ and σ

In the r-th iteration, a two dimensional proposal (ξprop, ψprop) for (ξ, ψ) is obtained by

(ξprop, ψprop)> ∼ N2((ξcur, ψcur)>,Σr−1
MH,ξ,ψ),

where (ξcur, ψcur) are the current values. The proposal is accepted with probability

R = exp
(
lp(AA)(µ, ξprop, ψprop, s0, s̃1:T |Y)− lp(AA)(µ, ξcur, ψcur, s0, s̃1:T |Y)

)
.

For adapting the covariance matrix, we follow a suggestion of Garthwaite et al. (2016).
Let In denote the n-dimensional identity matrix. We set Σr

MH,ξ,s = I2 if r < 100 and

Σr
MH,ξ,s = (σrMH,ξ,s)2

(
Σ̂r +

(σrMH,ξ,s)2

r
I2

)
if r ≥ 100.

Here Σ̂r is the empirical covariance matrix of (ξi, ψi)i=1,...r, the first r samples for (ξ, ψ),
and

ln
(
σrMH,ξ,s

)
= ln

(
σr−1
MH,ξ,s

)
+ 6.534(R− 0.234)

r − 1 .

The matrix Σ̂r + (σrMH,ξ,ψ)2

r
I2 is a positive definite estimate of the covariance matrix.

This covariance estimate is scaled by (σrMH,ξ,ψ)2 to obtain the covariance matrix for the
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proposal in the next iteration. The scaling (σrMH,ξ,ψ)2 is tuned to achieve an average
acceptance probability of 0.234 as suggested by Roberts et al. (1997) for multivariate
random walk Metropolis-Hastings. To reduce computational cost, the empirical covariance
matrix Σ̂r can be updated in every step by the following recursion (see e.g. Bennett et al.
(2009))

Σ̂r = r − 2
r − 1Σ̂r−1 + 1

r
((ξr, ψr)> − µ̂r−1)((ξr, ψr)> − µ̂r−1)>,

where µ̂r−1 is the sample mean of (ξi, ψi)>i=1,...,r−1. We also update the sample mean
recursively by

µ̂r = 1
r

((r − 1)µ̂r−1 + (ξr, ψr)>).

We have seen that the adaptions for the µ and the (φ, σ) updates tend to be very small
after burn-in and therefore we only adapt during the burn-in period. This also ensures a
correct sampling procedure without the need to verify the validity of an adaptive MCMC
scheme.

B.2 Additional material for the bivariate dynamic
mixture copula (Section 4.4)
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Figure B.1: Normalized contour plots (see Czado (2019), Chapter 3) of the bivariate
density of the mixture copula model in (4.10) with τ = 0.4 (top row), τ = −0.8 (bottom
row), ν = 5 and p = 1, 0.75, 0.5, 0.25, 0 (from left to right).
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Figure B.2: Upper (red, dashed) and lower (black) tail dependence coefficient of the
mixture copula defined in (4.10) plotted against Kendall’s τ for different values of ν and
p.

B.3 Further results for the application in Section 4.4
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Figure B.3: Daily log returns of the four indices SPX, VIX, DAX, VDAX from 2006 to
2013 plotted against time.
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Posterior statistics

mode 5% quantile 95% quantile effective sample size
SPX

µ -9.32 -9.94 -8.70 13896.29
φ 0.99 0.98 1.00 565.10
σ 0.15 0.13 0.19 208.31
α -0.51 -0.80 -0.22 4293.41
df 6.84 5.46 10.40 1821.93

VIX
µ -5.65 -5.80 -5.50 3586.38
φ 0.90 0.84 0.93 362.48
σ 0.36 0.28 0.48 311.76
α 1.33 0.97 1.73 1376.24
df 9.30 6.50 15.14 1251.32

DAX
µ -8.89 -9.30 -8.50 19573.46
φ 0.99 0.97 0.99 598.27
σ 0.15 0.12 0.19 249.07
α -0.48 -0.80 -0.06 5662.26
df 9.74 7.31 15.11 2483.44

VDAX
µ -6.06 -6.21 -5.89 8086.52
φ 0.96 0.92 0.97 416.02
σ 0.18 0.13 0.24 293.01
α 0.96 0.66 1.27 3305.73
df 8.35 6.44 12.88 1386.65

Table B.1: Estimated posterior modes, posterior quantiles and effective sample sizes for
parameters of the univariate skew Student t stochastic volatility models for the four indices
SPX, VIX, DAX, VDAX. Posterior mode estimates are obtained from univariate kernel
density estimates.

mode 5% quantile 95% quantile effective sample size
(SPX,VIX)

µ -0.74 -0.77 -0.71 1862.77
φ 0.94 0.85 0.97 306.33
σ 0.05 0.03 0.08 215.92
p 0.29 0.13 0.44 1436.78
ν 9.03 5.29 41.14 1039.38

(DAX,VDAX)
µ -0.81 -0.84 -0.78 1785.30
φ 0.86 0.73 0.92 285.29
σ 0.10 0.06 0.13 207.29
p 0.66 0.50 0.81 1406.11
ν 8.30 5.91 34.32 756.50

Table B.2: Estimated posterior modes, posterior quantiles and effective sample sizes
for parameters of the dynamic mixture copula models for the pairs (SPX,VIX) and
(DAX,VDAX). Posterior mode estimates are obtained from univariate kernel density es-
timates.
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Plots for the marginal models
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Figure B.4: Kernel density estimates of the posterior densities based on 30000 MCMC
iterations after a burn-in of 1000 for the parameters of the univariate skew Student t
stochastic volatility models for SPX, VIX, DAX and VDAX (from top to bottom row).
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Figure B.5: Trace plots of 1000 MCMC draws based on a total of 31000 iterations, where
the first 1000 draws are discarded for burn-in and the remaining 30000 draws are thinned
with factor 30. The trace plots are shown for parameters of the univariate skew Student
t stochastic volatility models for SPX, VIX, DAX and VDAX (from top to bottom row).
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Plots for the dependence models
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Figure B.6: Kernel density estimates of the posterior densities based on 30000 MCMC
iterations after a burn-in of 1000 for parameters of the dynamic mixture copula model for
(SPX,VIX) in the top row and for (DAX,VDAX) in the bottom row.
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Figure B.7: Trace plots of 1000 MCMC draws based on a total of 31000 iterations, where
the first 1000 draws are discarded for burn-in and the remaining 30000 draws are thinned
with factor 30. The trace plots are shown for parameters of the dynamic mixture copula
model for (SPX,VIX) in the top row and for (DAX,VDAX) in the bottom row.
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Calculating the pseudo log predictive score
We describe in detail how we proceed for model Mmix

dyn . We consider T +K observations
of dimension two, stored in the data matrix Y1:(T+K);1:2 = (ytj)t=1,...,T+k,j=1,2, where the
first T observations are used to train the model and the last K are used for evaluation.

Step 1: (Model fitting based on the training period)

• We fit two marginal skew Student t stochastic volatility models to y1:T ;1 and y1:T ;2.
This yields Rtrain draws of the parameters denoted by sst,r

1:T ;j , µst,rj , φst,rj , σst,rj , αst,rj

and df st,rj , r = 1, . . . , Rtrain and corresponding posterior mode estimates ŝst
1:T ;j , µ̂stj ,

φ̂stj , σ̂stj , α̂stj and d̂f
st

j for j = 1, 2.

• We estimate the copula data

ûtj = ssT

(
ytj exp

(
−
ŝsttj
2

)∣∣∣∣α̂stj , d̂f stj
)

for t = 1, . . . , T, j = 1, 2.

• We fit the dynamic bivariate mixture copula model introduced in (4.11) based on
the pseudo copula data Û1:T ;1:2 and obtain posterior draws scop,r

1:T , µcop,r, φcop,r, σcop,r,
νcop,r, pcop,r for r = 1, . . . , Rtrain and corresponding posterior mode estimates ŝcop

1:T ,
µ̂cop, φ̂cop, σ̂cop, ν̂cop, p̂cop.

Step 2: (The one-day ahead predictive density)
Estimating the one-day ahead predictive density at time T + k, 1 ≤ k ≤ K would usually
require to fit daily models with observations up to time T + k − 1 for k = 1, . . . , K. In
order to save computational resources, we use another approach, where we only update the
dynamic parameters, i.e. the log variances and Kendall’s τ . For the constant parameters
we use the estimates from the training period 1, . . . , T . In this case we found that it is
enough to only consider a time horizon of 100 time points, i.e. to estimate a dynamic
parameter at time T + k we consider data in the period T + k − 100, . . . , T + k − 1. We
proceed as follows to obtain the one-day ahead predictive density at time point T + k
with 1 ≤ k ≤ K.

• We consider a skew Student t stochastic volatility model as in (4.8), where we
keep the parameters µ, φ, σ, α and df fixed and only update the latent log vari-
ances. Therefore we draw the latent log variances sst

(T +k−100):(T +k−1);j conditional
on y(T +k−100):(T +k−1);j , µ̂stj , φ̂stj , σ̂stj , d̂f stj and α̂stj for j = 1, 2. We denote the draws
by sst,r

(T +k−100):(T +k−1);j , r = 1, . . . , Rtest for j = 1, 2. Corresponding posterior mode
estimates are denoted by ŝst

(T +k−100):(T +k−1);j , j = 1, 2.

• We estimate the copula data via the probability integral transform, i.e. for j = 1, 2
and t = T + k − 100, . . . T + k − 1, we calculate

ûtj = ssT

ytj exp
(
−
ŝsttj
2

)∣∣∣∣∣∣α̂stj , d̂f stj
 .
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• We fit the dynamic mixture copula model to the data Û(T+k−100):(T+k−1);(1:2) where we
keep the constant parameters fixed. We only update scop

(T +k−100):(T +k−1) conditional
on Û(T+k−100):(T+k−1);(1:2), µ̂cop, φ̂cop, σ̂cop, ν̂cop, p̂cop. The corresponding draws are
denoted by scop,r

(T +k−100):(T +k−1), r = 1, . . . , Rtest and the posterior mode estimates
by ŝcop

(T +k−100):(T +k−1).

• For j = 1, 2, we obtain an estimate for the log variance at time point T + k as
ŝstT+k;j = µ̂stj + φ̂stj (ŝstT+k−1;j − µ̂stj ).

• We obtain an estimate for Fisher’s Z transform of Kendall’s τ at time point T + k
as ŝcopT+k = µ̂cop + φ̂cop(ŝcopT+k−1 − µ̂cop).

• The predictive density evaluated at (z1, z2) is given by

fpT+k(z1, z2) = cpT+k(z1, z2)gpT+k(z1, z2),

with

cpT+k(z1, z2) = cM
(
ssT

(
x1

∣∣∣∣α̂st1 , d̂f st1 ) , ssT (x2

∣∣∣∣α̂st2 , d̂f st2 ) ;F−1
Z (ŝcopT+k), ν̂cop, p̂cop

)
,

where cM is the density of the mixture copula defined in (4.10) and

gpT+k(z1, z2) = sst
(
x1

∣∣∣∣α̂st1 , d̂f st1 ) sst(x2

∣∣∣∣α̂st2 , d̂f st2 ) exp
(
−
ŝstT+k;1

2

)
exp

(
−
ŝstT+k;2

2

)
,

with xj = zjexp
(
−ŝstT+k;j/2

)
for j = 1, 2.

Step 3: (The cumulative pseudo log predictive score)
The cumulative pseudo log predictive score is obtained as

LP =
K∑
k=1

ln
(
fpT+k(yT+k;1, yT+k;2)

)
.

During the training period we run Rtrain = 31000 iterations with a burn-in of 1000,
while for updating only the dynamic parameters 11000 iterations with a burn-in of 1000
is enough, i.e. we use Rtest = 11000.
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Appendix C Supplementary material
to Chapter 5

C.1 Parameter specification for the simulation study
in Section 5.3.3

Parameters of a dynamic vine copula model are here specified through matrices. The
last row shows parameters corresponding to pair copulas in the first tree, the second last
row parameters corresponding to pair copulas in the second tree and so on. If we set the
dispersion parameter and the standard deviation parameter to zero, we obtain a static
copula model.

µ =


0.0
0.0 0.0
0.0 0.3 0.0
0.3 0.4 0.3 0.0
0.9 0.6 0.8 0.8 1.0


φ =


0.00
0.00 0.00
0.00 0.00 0.00
0.98 0.90 0.00 0.00
0.95 0.98 0.90 0.00 0.00



σ =


0.00
0.00 0.00
0.00 0.00 0.00
0.05 0.10 0.00 0.00
0.10 0.03 0.05 0.00 0.00



family =


Independence
Independence Independence
Independence eClayton Independence

Gaussian Student t(df=4) eGumbel Independence
Gaussian Student t(df=4) eClayton eGumbel Gaussian


Note that, within the dynamic bivariate copula model, the stationary distribution of the
AR(1) process is given by

s|µ, φ, σ ∼ N

(
µ,

σ2

1− φ2

)
.
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C.1. PARAMETER SPECIFICATION FOR THE SIMULATION STUDY IN SECTION 5.3.3

for a state s. Using the density transformation rule, this implies the following density for
Kendall’s τ (the inverse Fisher’s Z transform of s)

f(τ |µ, φ, σ) = ϕ

(
FZ(τ)|µ, σ2

1− φ2

)
1

1− τ 2 , τ ∈ (−1, 1). (C.1)

To obtain an understanding of what different choices of µ, φ and σ imply for τ , we
show the density given in (C.1) in Figure C.1.
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Figure C.1: We show the stationary density of τ given in (C.1) for different values of µ, φ
and σ. Each line is associated with a vector (µ, φ, σ) given in the legend.
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C.2 Exchange rates (to the US Dollar) data set

Ticker Currency
BRL Brazilian Real
CAD Canadian Dollar
CNY Chinese Yuan
DKK Danish Krone
HKD Hong Kong Dollar
INR Indian Rupees
JPY Japanese Yen
KRW South Korean Won
MYR Malaysian Ringgit
MXN Mexican New Pesos
NOK Norwegian Krone
SEK Swedish Krona
ZAR South African Rand
SGD Singapore Dollar
CHF Swiss Franc
NTD New Taiwan Dollar
THB Thai Baht
AUD Australian Dollar
EUR Euro
NZD New Zealand Dollar
GBP British Pound

Table C.1: The 21 currencies with corresponding ticker symbols used in the application
in Section 5.4.
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Contour plots of bivariate copula densities

Figure D.1: Normalized contour plots (see Czado (2019), Chapter 3) of bivariate copula
densities with Kendall’s τ = 0.5.
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Appendix E Supplementary material
to Chapter 7

E.1 Additional material for Section 7.2.2

The covariance matrix Σ of the joint distribution

(Z11, . . . , Zd1, w1;Z12, . . . , Zd2, w2; . . . , Z1T , . . . , ZdT , wT )|(ρobs,j)j=1,...,d, ρlat ∼ NdT+T (0,Σ)

takes the form

Σ =



A ρlat(A+B) ρ2
lat(A+B) . . . ρT−1

lat (A+B)

ρlat(A+B) A ρlat(A+B) . . . ρT−2
lat (A+B)

ρ2
lat(A+B) ρlat(A+B) A . . . ρj−2

lat (A+B)

ρ3
lat(A+B) ρ2

lat(A+B) ρlat(A+B) . . . ...

... ... ... ... ...

ρT−1
lat (A+B) ρT−2

lat (A+B) ρT−3
lat (A+B) . . . A



where the matrices A and B take the following forms

A =



1 ρobs,1ρobs,2 ρobs,1ρobs,3 . . . ρobs,1ρobs,d ρobs,1
ρobs,1ρobs,2 1 ρobs,2ρobs,3 . . . ρobs,2ρobs,d ρobs,2
ρobs,1ρobs,3 ρobs,2ρobs,3 1 . . . ρobs,3ρobs,d ρobs,3

... ... ... . . . ... ...
ρobs,1ρobs,d ρobs,2ρobs,d ρobs,3ρobs,d . . . 1 ρobs,d
ρobs,1 ρobs,2 ρobs,3 . . . ρobs,d 1
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B =



ρ2
obs,1 − 1 0 0 . . . 0 0

0 ρ2
obs,2 − 1 0 . . . 0 0

0 0 ρ2
obs,3 − 1 . . . 0 0

... ... ... . . . ... ...
0 0 0 . . . ρ2

obs,d − 1 0
0 0 0 . . . 0 0


.

E.2 Further results for the application in Section 7.4
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Figure E.1: Estimated posterior distribution of the copula family indicators
mobs1, . . . ,mobs,6,mlat obtained from 2000 iterations after a burn-in of 1000 (Ga: Gaussian,
S: Student t(df=4), C: Clayton, Gu: Gumbel).
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Figure E.2: Trace plots of 2000 draws after a burn-in of 1000 for selected parameters of
the copula state space model. The variables are ordered as follows: 1: CO(gt), 2: CO(lc),
3: NOx(gt), 4: NOx(lc), 5: NO2(gt), 6: NO2(lc).
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Figure E.3: Estimated posterior density for selected parameters of the copula state space
model. The posterior density is estimated as the kernel density estimate based on 2000
draws after a burn-in of 1000. For better comparability we multiplied the draws of τobs,4 by
−1. The variables are ordered as follows: 1: CO(gt), 2: CO(lc), 3: NOx(gt), 4: NOx(lc),
5: NO2(gt), 6: NO2(lc).
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E.3 Contour plots over different time periods (Sec-
tion 7.4.4)
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Figure E.4: Contour plots of bivariate kernel density estimates based on pairs (ẑtj, ẑtj′)t∈Pi ,
i = 1, 2, 3 where j corresponds to a ground truth and j′ to the corresponding low-cost
value within a time period Pi (P1 : 1, . . . , 1000, P2 : 1001, . . . , 2000, P3 : 2001, . . . , 2928).
For example, the top row shows contour plots for the (CO(gt), CO(lc)) pair for the
three different time periods. In the top left corner we added the corresponding empirical
Kendall’s τ , based on the pair (ẑtj, ẑtj′)t∈Pi .
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Appendix F Updating time-varying
parameters

For several models we consider, we require one-day ahead predictions/predictive simula-
tions (see Sections 3.4, 4.4 and 5.4). Refitting the model k times, to obtain these one-day
ahead predictions/predictive simulations for k different time points can be very expensive.
Generally, models considered here for random variables Y1, . . . ,YT ∈ Rd, observed at T
time points can be formulated as

Yt|st, δ ∼ f(yt|st, δ)
st|st−1,θ ∼ f(st|st−1,θ),

(F.1)

for t = 1, . . . , T , where st are dynamic (time-varying) parameters and δ,θ are static (time-
constant) parameters. We suggest to fit the model in (F.1) once, obtain point estimates
for the static parameters, denoted by δ̂, θ̂, and then consider the model

Yt|st ∼ f(yt|st, δ̂)
st|st−1 ∼ f(st|st−1, θ̂),

(F.2)

where the static parameters are fixed at point estimates. The model in (F.2) has only
dynamic parameters. To obtain k one-day ahead predictions/predictive simulations, the
model in (F.2) is then estimated k times. In other words: We fix the static parameters
at point estimates and only update dynamic parameters. Further, we have seen that the
model in (F.2) requires less data points for estimation than the model in (F.1). For the
model in (F.1), we typically use a sample size of 1000 or larger to estimate parameters.
But for the model in (F.2), i.e. when the static parameters are fixed at point estimates,
we have seen that it might be enough to consider only the last 100 data points before the
time point we want to predict.
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Appendix G Additional details for pa-
rameter sharing

This chapter is based on Kreuzer and Czado (2019b). Our approaches in Sections 3.3.1,
5.2.1 and 7.2.4 share parameters among different copula families. This is motivated by
the fact that the Kendall’s τ parameter is similar for different copula families. To support
this statement, we conduct the following experiment: We simulate 100 bivariate data sets,
each containing 1000 observations, from the bivariate Student t copula with 4 degrees of
freedom and copula parameter ρtrue. The corresponding Kendall’s τ is obtained as τtrue =
2
π

arcsin(ρtrue). For each data set, we estimate the copula parameter of the Gaussian,
Student t, Clayton and Gumbel copula by maximizing the likelihood and transform the
estimates to the corresponding Kendall’s τ values. We obtain 100 estimated Kendall’s τ
values for each copula family and take the average of those 100 values, which we denote
by τ̂ . This results in four different τ̂ values corresponding to four different copula families.
This procedure is repeated for different values of τtrue and the average Kendall’s τ estimate,
τ̂ , is shown in Figure G.1 for each value of τtrue. We see that the estimated Kendall’s τ
values for the Gaussian, Student t and Gumbel copula are close to each other. Although
the Kendall’s τ estimates for the Clayton copula are a bit further apart, we think that
they are still reasonable close to justify parameter sharing.

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

τtrue

τ̂

Gaussian
Student t
Clayton
Gumbel

Figure G.1: This plot shows average Kendall’s τ estimates, τ̂ , for different copula families
(Gaussian, Student t(df=4), Clayton, Gumbel) plotted against the Kendall’s τ that was
used for simulation, τtrue.
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