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Abstract

Quantitative mathematical models are widely used to describe biological processes and an-

alyze biological data. These models usually contain unknown parameters that have to be

estimated from experimental data. To estimate the model parameters, optimization prob-

lems have to be solved, which usually entails repeated model simulation. The difficulty

of model simulation and parameter estimation usually increases for problems with a large

number of unknown model parameters, a large state space or high dimensional experimen-

tal data. The project discussed in this thesis investigated how to use reduced parameter

and data spaces to facilitate robust and efficient modeling and parameter estimation.

First, we considered ordinary and partial differential equation models with the additional

constraint that the model is initially in steady state. In this setting, a pair of model

parameters and initial conditions that satisfy the steady-state constraint has to be inferred

from the data. We used the geometry of the steady-state manifold, i.e., the manifold of

model parameters and states that fulfill the steady-state constraint, to reduce the space

of optimization variables by choosing a state update on the steady-state manifold for a

given parameter update. We developed two methods for optimization, an approach based

on retraction mappings and a continuous analogue approach. Further, we proved stability

of optimal parameter-state pairs for the continuous analogue. We further investigated the

influence of a hyper parameter of the continuous analogue approach, i.e., the retraction

factor, on convergence and runtime and proposed a lower bound. Lastly, we applied

the proposed approaches to simulated and real data and compared them to established

methods for constrained optimization. Here, the new approaches demonstrated better

convergence and efficiency than the established methods.

In the second part, we consider the modeling of heterogeneous cell populations observed

using high-dimensional single-cell measurements. Instead of modeling the process dynam-

ics in the high-dimensional space, we used a reduction of the high-dimensional data space

to a one-dimensional trajectory to construct a diffusion-advection-reaction model of the

dynamics of heterogeneous cell populations. The model describes the proliferation dy-

namics, i.e., cell division and death, and the differentiation dynamics along the extracted



one dimensional cell state trajectory. To describe differentiation processes with two differ-

ent possible cell fates, we extended the diffusion-advection-reaction model to a branching

model on two branches. Further, we developed a statistical framework for parameter

estimation that combines different data types. We applied the developed model and pa-

rameter estimation framework to single-cell RNA sequencing data for T-cell maturation

in thymus and estimated proliferation and drift rates that give some unbiased indication

of the properties of the maturation process.

Overall, this thesis presents two novel approaches for high-dimensional problems: inference

problems as well as data sets. The contributions might help to facilitate the analysis of

biological processes and data that was previously limited by the problem size.

vi



Zusammenfassung

Quantitative mathematische Modelle werden häufig verwendet, um biologische Prozesse

zu beschreiben und biologische Daten zu analysieren. Diese Modelle enthalten normaler-

weise unbekannte Parameter, die aus experimentellen Daten geschätzt werden müssen.

Um die Modellparameter zu schätzen, müssen Optimierungsprobleme gelöst werden, die

in der Regel eine wiederholte Modellsimulation erfordern. Die Schwierigkeit von Modell-

simulation und Parameterschätzung steigt in der Regel mit der Anzahl unbekannter Mod-

ellparameter bzw. mit der Dimensionalität der experimentellen Daten. In dieser Arbeit

wurde untersucht, wie reduzierte Parameter- und Datenräume verwendet werden können,

um eine robuste und effiziente Modellierung und Parameterschätzung zu ermöglichen.

Im ersten Teil betrachten wir zunächst gewöhnliche und partielle Differentialgleichungsmod-

elle mit der zusätzlichen Nebenbedingung, dass der Anfangszustand ein stationärer Punkt

ist. Für diese Probleme müssen sowohl die Modellparameter als auch die Anfangsbedin-

gungen aus den Daten geschätzt werden und dabei die Stationaritätsbedingung erfüllen.

Wir verwendeten die Geometrie der Mannigfaltigkeit von Modellparametern und An-

fangszuständen, auf der die Stationaritätsbedingung erfüllt ist, um den Raum der Op-

timierungsvariablen zu verringern, indem wir für eine gegebene Parameteraktualisierung

eine Zustandsaktualisierungen auf der Mannigfaltigkeit wählen. Wir entwickelten zwei

Optimierungsmethoden, einen Ansatz, der auf Retraktionsmappings basiert und einem

Ansatz der ein kontinuierliches Analogon zu diskreten Optimierungsmethoden verwendet.

Für das kontinuierliche Analogon bewiesen wir Stabilität von optimalen Parameterzus-

tandspaaren. Wir untersuchten weiter den Einfluss eines Hyperparameters des kontinuier-

lichen Analogons, des Retraktionsfaktors, auf Konvergenz und Laufzeit und schlugen eine

Untergrenze vor. Zuletzt wendeten wir die vorgeschlagenen Methoden auf simulierte und

reale Daten an und verglichen sie mit etablierten Methoden zur eingeschränkten Opti-

mierung. Hier zeigten die neuen Ansätze eine bessere Konvergenz und Effizienz als die

etablierten Methoden.

Im zweiten Teil betrachten wir die Modellierung heterogener Zellpopulationen, die mit

hochdimensionalen Einzelzellmessungen beobachtet wurden. Anstatt die Prozessdynamik



im hochdimensionalen Raum zu modellieren, verwendeten wir eine Reduktion des hochdi-

mensionalen Datenraums auf eine eindimensionale Trajektorie, um ein Diffusions-Advekti-

ons-Reaktionsmodell der Dynamik heterogener Zellpopulationen zu erstellen. Das Modell

beschreibt die Proliferationsdynamik, d.h. Zellteilung und Tod, und die Differenzierungs-

dynamik entlang der extrahierten eindimensionalen Zellzustandstrajektorie. Um Differen-

zierungsprozesse mit zwei unterschiedlichen möglichen Endstadien zu beschreiben, erweit-

erten wir das Diffusions-Advektions-Reaktions-Modell auf zwei Zweige zu einem Verzwei-

gungsmodell. Darüber hinaus entwickelten wir einen statistischen Rahmen für die Param-

eterschätzung, das verschiedene Datentypen kombiniert. Wir wendeten das entwickelte

Modell- und Parameterschätzungsgerüst auf Einzelzell-RNA-Sequenzierungsdaten für die

T-Zell-Reifung im Thymus an und schätzen Proliferations- und Driftraten, die einen un-

voreingenommenen Hinweis auf die Eigenschaften des Reifungsprozesses geben.

Insgesamt werden in dieser Arbeit zwei neuartige Ansätze für hochdimensionale Probleme

vorgestellt: Inferenzprobleme sowie Datensätze. Die Methoden könnten dazu beitragen,

die Analyse biologischer Prozesse und Daten zu ermöglichen, die zuvor durch die Prob-

lemgröße limitiert war.
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Chapter 1.

Introduction

Mathematical models are valuable tools for studying biological processes. These math-

ematical formulations permit the incorporation of prior knowledge about the underly-

ing processes, data integration und hypothesis testing (Kitano, 2002; Klipp et al., 2005).

Mechanistic mathematical modeling facilitates a deeper understanding of the relevant

mechanisms (Kitano, 2002), the derivation of biological hypotheses, e.g., predictions of

future or unobserved states or the response to perturbations, and experimental design for

hypothesis testing. Based on the results of experiments, models can in turn be adapted

and refined (Kitano, 2002). Once a model captures the biological process of interest

in necessary detail, experiments can be performed in silico thereby saving resources (see

e.g., Fröhlich et al. (2018)). In this work, we focus on ordinary differential equation (ODE)

and partial differential equation (PDE) models, two model classes which are widely used

in mathematical and systems biology. ODEs and PDEs provide a mechanistic and quan-

titative description of the temporal evolution of the states of a biological system and are

used to model various processes (Klipp et al., 2005; Perthame, 2015).

As the descriptive power of a mathematical model depends on the accuracy of parameters,

the model parameters have to be estimated from experimental data (Isakov, 2006; Taran-

tola, 2005). The inverse problem of parameter estimation from biological experiments is

commonly challenging due to high noise, incomplete observations and nonlinearity. In

the biological context, maximum likelihood approaches are often used for the parameter

estimation. For ODE or PDE models this leads to ODE or PDE constrained optimization

problems. These optimization problems are usually non-convex, non-linear and computa-

tionally demanding, as the models usually have to be simulated in every optimization step.

Hence, efficient and robust optimization methods are required (Banga, 2008; Chou and

Voit, 2009). For ODE and PDE constrained optimization, established methods include

global optimization (Moles et al., 2003; Villaverde et al., 2015) and multi-start local opti-
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mization (Raue et al., 2013b) for ODEs and several numerical approaches for PDEs (Banks

and Kunsich, 1989; Bock et al., 2013; Carvalho et al., 2015; Hinze et al., 2009; Ito and

Kunisch, 2008; Xun et al., 2013).

Due to technical advancements related to experimental techniques in recent years, it is

possible to gather larger amounts of biological measurements at a higher resolution. The

depth and dimensionality of the resulting data is steadily increasing, requiring more de-

tailed models. Accordingly, parameter estimation is becoming increasingly time and re-

source consuming. Model size and complexity also increase to incorporate all available and

essential knowledge, e.g., in (Fröhlich et al., 2018; Hasenauer et al., 2015; Holzhütter et al.,

2012; Karr et al., 2012). The (i) large number of species and parameters considered in a

model and (ii) the high dimension of the data often impede efficient numerical simulation

and parameter estimation. A possible answer to this problem is to reduce the dimension

of the problem either on the model or the data side.

In this thesis, we investigate how to use manifolds to reduce the dimensionality of opti-

mization problems and efficiently estimate parameters. We follow two different routes:

• We consider problems with steady-state constraints and exploit geometric approaches

to reduce the dimensionality of the space of optimization variables.

• We consider high dimensional data sets and use dimension reduction to render them

accessible to dynamic modeling.

A brief introduction to the topics is provided in Section 1.1 and 1.2. In Section 1.3, we

further give an overview of the contributions of this thesis and a list of publications and

in Section 1.4 the structure of the thesis is outlined.

1.1. Steady-state constraints for ODE and PDE constrained

optimization

Models of biological processes often contain unknown parameters and initial conditions,

that need to be estimated from experimental data. The data can be quantitative infor-

mation, such as the value of an observable at different time points, or qualitative. Typical

qualitative information is that the system is initially in steady state. Steady states occur

in many biological applications. For example, due to processes happening on different

time scales, a system often remains in a pseudo steady state in relation to the time scale

considered (Klipp et al., 2005). A process might also be regulated to stay in homeosta-

2
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sis and hence naturally favor a steady state (e.g., in O’Dea et al. (2007)) or it might be

sufficient and economic to only measure the steady state before and after a perturbation

(e.g., in Molinelli et al. (2013)).

The information that the system is in steady state constrains the space of feasible parameter-

state combinations. Hence, neglecting this information might lead to wrong parameter-

ization and unreliable predictions. The steady-state constraint is incorporated into the

parameter estimation by formulating a non-linear equality constraint for the optimization

variables, i.e. parameters and state, in the corresponding optimization problem. This

additional non-linear equality constraints complicates the estimation (Rosenblatt et al.,

2016).

Solving the optimization problem with the non-linear equality constraints can be cir-

cumvented by computing steady states analytically as function of the parameters using

py-substitution, a method based on computer algebra (Rosenblatt et al., 2016). This

approach was initially developed for enzyme-catalyzed reactions (Cornish-Bowden, 1977;

King and Altman, 1956) and later extended to include more reaction kinetics (Chou, 1990;

Feliu and Wiuf, 2012; Halász et al., 2013; Loriaux et al., 2013) and to ensure positivity

of solutions (Rosenblatt et al., 2016). However, this method depends on the presence of

sufficient degrees of freedom in the system of ODE constraints and is not applicable to

PDEs.

For equality constraints that correspond to matrix manifolds, optimization on matrix

manifold techniques have been developed (Absil et al., 2008; Bertsekas, 1999). By re-

stricting the search space to the non-linear manifold of admissible states, these methods

often achieve favorable numerical properties. Optimization on matrix manifold algorithms

utilize retraction mappings to map from the tangent spaces to points on the manifold and

to efficiently construct optimizer updates on the manifold for discrete iterative optimiza-

tion (Absil et al., 2008). However, these retraction operators have to be constructed

specifically for the problems at hand which is usually a not negligible task (Absil et al.,

2008).

Apart from discrete iterative optimization algorithms, also continuous analogues are em-

ployed for optimization. Continuous analogues are dynamical systems whose stable equi-

libria are optimal points of the optimization problem. Hence, the solution of a continuous

analogue converges to the optimum of the corresponding problem. Continuous analogues

have been constructed for gradient descent methods, where they take the form of gradi-

ent flows (Wang et al., 2003), and also for Newton-Raphson and Levenberg-Marquardt

methods (Kaltenbacher et al., 2002; Tanabe, 1985). Among others, methods based on

3
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continuous analogues have been employed for unconstrained (Botsaris, 1978; Brown and

Bartholomew-Biggs, 1989) and constrained optimization (Wang et al., 2003), for solv-

ing nonlinear equations (Airapetyan et al., 2000; Tanabe, 1985) and for finding saddle

points (Dürr and Ebenbauer, 2011; Kose, 1956). For many problems these methods tend

to have larger regions of attraction and converge more robustly compared to their discrete

iterative counterparts (Tanabe, 1985).

1.2. Population dynamics based on high dimensional single-cell

measurements

The massive advances in the experimental analysis of single cells using, e.g., single-cell

RNA sequencing (Klein et al., 2015), mass cytometry (Bandura et al., 2009) and high-

dimensional flow cytometry (Saeys et al., 2016) enable the resolution of biological processes

on an unprecedented scale (Angerer et al., 2017; Linnarsson and Teichmann, 2016). By

measuring high dimensional properties like the amount of individual transcripts or proteins

for each single cell in a population of cells, these techniques provide insight into the state,

cell type and function of the cells. However, the large number of dimensions in the data

set impedes the inference of population dynamics using mathematical models.

To reduce the dimensionality of single-cell data, methods for pseudotemporal ordering can

be employed (Haghverdi et al., 2016; Trapnell et al., 2014). As cells often develop asyn-

chronously, the considered cell populations are heterogeneous and the generated snapshots

contain cells in a variety of states. Pseudotemporal orderings sort these cells with respect

to their similarity and construct a developmental trajectory of cells in the high dimen-

sional space. To obtain a broader picture of the cell state trajectory, snapshots at different

time points can be pooled. Additionally, pseudotemporal orderings are applied to identify

branching of the trajectory to different cell fates (e.g., in Haghverdi et al. (2016)).

The trajectory recovered by pseudotemporal orderings is inherently static and not linked

to the time points at which the experiments were performed. Without this link there is

no description of the population dynamics. Additionally, proliferation dynamics, i.e. cell

death and division, are not accessible from this static description.

In the literature, population dynamics, which typically consist of differentiation and pro-

liferation, are often addressed using discrete developmental stages and transitions between

them resulting in ODE models, e.g., in (Lander et al., 2009). However, discrete develop-

mental stages are usually defined in the data based on marker proteins and the sorting of

4
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cells relies on cut offs and neglects intermediate stages. For a single static snapshot a model

with continuous cell state was developed in (Weinreb et al., 2018) to infer trajectories using

a population balance analysis approach. As the authors discuss in their manuscript, the

identification of dynamics from static snapshots is limited by the ambiguity of dynamics

that can lead to the same snapshot. A different approach to model differentiation dynam-

ics is a coupled ODE-PDE model that describes the continuous differentiation between

two discrete developmental stages using a transport equation (Doumic et al., 2011). In

(Schiebinger et al., 2019) an optimal transport framework was used to model the (time)

discrete transitions of the cell density from one time point to the cell density at the next

time point by minimizing transport costs. A dynamic differentiation model based on

stochastic processes was proposed in (Hashimoto et al., 2016) and applied to relatively

low dimensional gene expression data.

1.3. Contribution of this thesis

Based on the two sections above, we formulate the main questions answered in this thesis.

How can the structure of steady-state constraints be exploited to reduce the dimension-

ality of ODE and PDE constrained optimization problems with additional steady-state

constraints and to develop robust and efficient parameter estimation algorithms? (See

Problem 3.1.1, Problem 4.1.1 and Problem 4.1.2)

How can cell population dynamics observed in high-dimensional data sets be modeled, and

how can the parameters of these processes be inferred? (See Problem 5.1.1 and Prob-

lem 5.1.2)

To address these questions, we developed the following approaches:

• We constructed novel approaches for robust and efficient parameter estimation for

ODE and PDE constrained optimization with additional steady-state constraints

that use the first order geometry of the steady-state manifold. These approaches

include ideas from retraction operators and ideas from continuous analogues.

• We proved asymptotic stability of the continuous analogue approach for both the

ODE and PDE constrained problems implying convergence to a local optimum.

• We developed an approach to model the dynamics of heterogeneous cell populations

using observations generated by high dimensional single-cell measurements.

5
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• We developed a statistical model for parameter estimation for the aforementioned

population model from sequencing data and estimated parameters for T-cell differ-

entiation data in thymus.

The aforementioned developments have been published in the following peer-reviewed

papers that constitute the basis of this thesis. Parts and results of this thesis will therefore

correspond or be identically to the publications. The corresponding paper is additionally

mentioned at the beginning of the respective chapter.

• A. Fiedler, S. Raeth, F.J. Theis, A. Hausser, J. Hasenauer, Tailored parameter

optimization methods for ordinary differential equation models with steady-state

constraints. BMC Systems Biology, 10(1):80, 2016.

• R. Boiger∗, A. Fiedler∗, J. Hasenauer, B. Kaltenbacher, Continuous analogue to

iterative optimization for PDE-constrained inverse problems. Inverse Problems in

Science and Engineering, 27:6, 710–734, 2019.

• D.S. Fischer∗, A.K. Fiedler∗, E.M. Kernfeld, R.M.J. Genga, A. Bastidas-Ponce,

M. Bakhti, H. Lickert, J. Hasenauer, R. Maehr, F.J. Theis, Inferring population

dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology,

37(4):461–468, 2019.

In addition to the publications above, I also contributed to further projects which led to

the publication of the following papers that are not part of the thesis.

• C. Loos, A. Fiedler, J. Hasenauer, Parameter estimation for reaction rate equa-

tion constrained mixture models. In E. Bartocci, P. Lio, and N. Paoletti, editors,

Proceedings of the 14th International Conference on Computational Methods in

Systems Biology, Lectures in Bioinformatics, 186–200. Springer International Pub-

lishing, 2016.

• S. Hross∗, A. Fiedler∗, F.J. Theis, J. Hasenauer, Quantitative comparison of com-

peting PDE models for Pom1p dynamics in fission yeast. In R. Findeisen, E.

Bullinger, E. Balsa-Canto, and K. Bernaerts, editors, Proceedings of 6th IFAC

Conference on Foundations of Systems Biology in Engineering, 264–269. IFAC-

PapersOnLine, 2016.

∗These authors contributed equally to the paper
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• P. Stapor, D. Weindl, B. Ballnus, S. Hug, C. Loos, A. Fiedler, S. Krause, S. Hross,

F. Fröhlich, J. Hasenauer, PESTO: Parameter EStimation TOolbox. Bioinformatics

34, 705–707, 2018.

1.4. Outline of this thesis

In Chapter 2, we discuss the mathematical concepts and preliminaries relevant to this

work. We briefly introduce dynamical systems, in particular ODEs and PDEs, and their

asymptotic behavior. We further outline maximum likelihood based parameter estimation

and uncertainty analysis. Finally, we provide a brief overview of ODE/PDE constrained

optimization and elementary optimization concepts.

In Chapter 3, we introduce ODE constrained optimization problems with steady-state

constraints and develop two estimation approaches based on the first order geometry of

the dynamical system. We use singular perturbation theory to prove asymptotic stability

for the continuous analogue approach. Lastly, we apply the newly developed approaches

to simulated and biological data.

In Chapter 4, we introduce the setting of steady-state constraints for PDE constrained

optimization problems and extend the continuous analogue approach developed in Chap-

ter 3 to this case. Further, we prove asymptotic stability of the optimum using a Lyapunov

function. Subsequently, we apply the novel approach to simulated data.

In Chapter 5, we present a PDE model for cell differentiation along a cell state axis, develop

a likelihood for parameter estimation and apply the model to data of T-cell maturation

in thymus.

Lastly, we summarize our findings in Chapter 6 and provide an outlook to possible direc-

tions for further research.
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Chapter 2.

Background

In this chapter, we briefly discuss the mathematical background of the models and ap-

proaches presented in this work. In Section 2.1, we introduce dynamical systems in general

and particularly ODEs and PDEs. We further review asymptotic behavior of dynamical

systems and methods for stability analysis. Subsequently, we introduce the basic concepts

for parameter estimation and uncertainty analysis in Section 2.2. Finally, we summarize

ODE and PDE constrained optimization (Section 2.3).

2.1. Dynamical systems

In this thesis, we consider mathematical models for biological processes. For the general

theory on dynamical systems we mainly follow (Michel et al., 2015) and (Temam, 1997)

adapting their notations for our purposes.

Dynamical systems describe the temporal evolution of a processes by mapping a time t and

an initial value u0 to a state u(t) in some state space V . We will consider deterministic dy-

namical systems, i.e., systems that yield identical outcomes for identical initial conditions.

While there are dynamical systems with discrete time, in this work we focus on systems

with continuous time, t ∈ I for some finite or infinite interval I ⊆ R. The state space,

V , is generally a Banach or Hilbert space. It might be finite dimensional as in the case

of ODEs or infinite dimensional as in the case of PDEs. Loosely following the notation

and definitions in (Michel et al., 2015), we consider temporal evolution based on motions

Φ(·, u0, t0) : [t0, T [→ V with end time point T > t0, [t0, T [∈ I and Φ(t0, u0, t0) = u0 that

map an initial condition u0 at initial time t0 to the state of the system at time t > t0. The

particular temporal evolution of a dynamical system is described by a family of motions,

i.e., a subset of all possible motions. For example, the solutions to an ODE or PDE for
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different initial conditions define a family of motions. While based on this definition, mo-

tions do not have to be unique, we consider in this work dynamical systems that map an

initial state and time to a unique motion.

In the following, we review theoretical aspects of ODEs, PDEs and the asymptotical

behavior of dynamical systems for t→∞.

2.1.1. Ordinary differential equations

ODE models describe dynamics in a finite dimensional state space and are generally given

by
dx

dt
= f(θ, t, x), x(t0) = x0(θ), (2.1)

with state x(t) ∈ Rnx , time t ∈ [t0, T ] ⊂ R, T > t0, parameter θ ∈ Rnθ , and initial

condition x0(θ) ∈ Rnx , where nx denotes the dimension of the state space and nθ denotes

the dimension of the parameter space. The temporal evolution is defined by the right

hand side f : Rnθ ×R×Rnx → Rnx . The theorem of Picard-Lindelöf guarantees existence

and uniqueness of local solutions provided the function f fulfills a Lipschitz condition for

x ∈ U ⊂ Rnx for some domain U and is continuous in t (see e.g. Walter (1993)). To ensure

local existence, it is sufficient that f is continuous. In terms of dynamical systems, the

family of motions generated by the ODE is given by the solution Φ(t, x0, t0) = x(t, x0, t0)

for all admissible pairs (t0, x0) ∈ I × Rnx .

A variety of biological processes are modeled using ODEs including biochemical reaction

networks, gene regulation, population dynamics and dynamics of infectious diseases (see,

e.g., Ingalls (2013); Klipp et al. (2005); Müller and Kuttler (2015)). In most biological

applications the system is well behaved and a unique solution exists for all times.

In biological studies, experimental conditions are often regulated by inputs to the system.

In contrast to parameters, inputs are usually known and administered to the system from

outside, e.g., known concentrations of catalyst in a chemical reaction. Sometimes these

inputs, w(t), are explicitly included in the formulation of the system,

dx

dt
= f(θ, t, x, w), x(t0) = x0(θ, w), (2.2)

to emphasize a dependence of the ODE on the inputs w(t).
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2.1.2. Partial differential equations

In addition to ODEs, also PDEs are widely used to model biological processes. Possible

uses for PDE models in biology include the description of biochemical processes, e.g.,

diffusion of molecules in a tissue (Hock et al., 2013), as well as modeling processes in more

abstract state spaces like aging in age structured population models (Metzger et al., 2012;

Sinko and Streifer, 1967). In this section, we briefly introduce theory for PDE models

following (Hinze et al., 2009) and (Zeidler, 1990).

In this work, we consider parabolic PDEs of the form

ut = C(θ, t, u) + f(θ, t) on ΩT ,

u(t0, x) = u0(θ, x) on Ω,
(2.3)

where u now denotes the state variable and x ∈ Ω denotes the space variable. Further,

Ω is an open and bounded set in Rnx usually with a Lipschitz-boundary and we set

ΩT = ]t0, T [×Ω for the time interval ]t0, T [⊂ R. The parameters are finite dimensional

and denoted by θ ∈ Rnθ and u(t) ∈ V denotes the state in some suitable space V . The

dynamics are described by C : Rnθ× ]t0, T [×V → V ∗ and f ∈ V ∗ where V ∗ is the dual

space of V , i.e., the set of linear operators from V to R (Hinze et al., 2009). The initial

condition at t = t0 is given by u0. Similarly to ODE models, the solution to (2.3) defines

a dynamical system via Φ(u, u0, t0) = u(t) provided a unique solution exists for u0.

A concrete class of PDEs that is often used for the description of biological processes are

advection-diffusion-reaction equations. The operator C then often takes the form,

C(θ, t, u) =

nx∑
i,j=1

(aij(t, x, θ)uxi)xj −
nx∑
i=1

bi(t, x, θ)uxi + d(u, θ), (2.4)

where the change of chemical species due to spatial fluxes is described by the advection

term,
∑nx

i=1 bi(t, x, θ)uxi , and the diffusion term,
∑nx

i,j=1(aij(t, x, θ)uxi)xj , while the change

due to biochemical reactions or degradation is captured in d(u, θ).

Whereas a parabolic PDE defines a time evolutionary process, stationary processes, i.e.,

ut = 0, are described by elliptic PDEs,

0 = C(θ, u) + f(θ) on Ω, (2.5)

with state u ∈ V , finite dimensional parameters θ ∈ Rnθ and dynamics described by

C(θ, u) : Rnθ × V → V ∗ and f ∈ V ∗.

11
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An example for C(θ, u) is a diffusion-reaction equation,

C(θ, u) =

nx∑
i,j=1

(aij(x, θ)uxi)xj + d(u, θ), (2.6)

with diffusion term
∑nx

i,j=1(aij(x, θ)uxi)xj and where d(u, θ) describes the change due to

biochemical reactions or degradation.

To model a particular biological process using parabolic or elliptic PDEs, the behavior

on the domain boundary ∂Ω has to be specified. We distinguish three common boundary

conditions (see e.g. Marin and Öchsner (2019)). Dirichlet boundary conditions give the

value at the boundary,

u(t, x) = g(x) on ∂Ω. (2.7)

If the flux through the boundary is prescribed, we obtain von Neumann boundary condi-

tions,
∂u(t, x)

∂ν
= g(x) on ∂Ω. (2.8)

Robin boundary conditions describe a mix of flux and value conditions on the boundary,

∂u(t, x)

∂ν
+ αu(t, x) = g(x) on ∂Ω. (2.9)

Here, g(x) is commonly a continuous function on ∂Ω. Boundary conditions are usually

incorporated in the space V , e.g., for Dirichlet conditions with g = 0 the space is V =

H1
0 (Ω), or into the domain of C (Amann, 1995).

In contrast to ODEs, there is no unifying theory for existence and uniqueness of solutions

for PDEs. For the general parabolic PDE given in (2.3), theory of monotonic operators

provides conditions for existence and uniqueness of weak solutions (Zeidler, 1990). For

this, we consider separable Hilbert spaces V and H, where V is continuously and densely

embedded in H, i.e., V ⊆ H = H∗ ⊆ V ∗ form a Gelfand triple (Hinze et al., 2009),

where H is identified with its dual. A common example for a Gelfand triple are the spaces

V = H1(Ω) and H = L2(Ω). In this setting, the initial value is in u0 ∈ H and we consider

u ∈W (t0, T ) = L2(t0, T ;V ) ∩ L2(t0, T ;V ∗) (Hinze et al., 2009). Following (Zeidler, 1990,

p.770 ff.) existence and uniqueness of a weak solution for fixed θ holds under the following

assumptions on the differential operator C:

Assumption 2.1.1.

• The operator −C(θ, t, ·) is monotone and hemicontinuous for each t ∈ ]t0, T [.

12
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• The operator −C(θ, t, ·) is coercive for each t ∈ ]t0, T [, i.e., there exist constants

c1 > 0 and c2 ≥ 0 such that

〈C(θ, t, v), v〉V ∗,V ≥ c1‖v‖2V − c2 for all v ∈ V, t ∈ ]t0, T [ .

• The operator C(θ, ·, ·) satisfies a growth condition, i.e., there exist a non-negative

function c3 ∈ L2(t0, T ) and a constant c4 > 0 such that

‖C(θ, t, v)‖V ∗ ≤ c3(t) + c4‖v‖V for all v ∈ V, t ∈ ]t0, T [ .

• The function t 7→ 〈C(θ, ·, w), v〉V ∗,V is measurable on ]t0, T [ for all v, w ∈ V .

For the elliptic PDE (2.5), the first two items in Assumption 2.1.1 are sufficient to yield

existence and uniqueness of solutions (Zeidler, 1990, p.557 ff.).

2.1.3. Asymptotic behavior

In this section, we consider the asymptotic behavior of general dynamical systems as

t → ∞, using the notation introduced in the beginning of Section 2.1 where Φ(., u0, t0)

now denotes an element of the family of unique motions that correspond to the dynamical

system. The state space V is assumed to be a Banach space with norm ‖·‖. We outline the

general definitions of trajectories, ω-limit sets and steady states. We then discuss stability

properties as well as methods for stability analysis. This section mainly follows (Michel

et al., 2015) and (Temam, 1997).

2.1.3.1. Steady states and stability properties

For a start point u0 ∈ V at t0 ∈ I, we define the trajectory as
⋃
t≥t0

Φ(t, u0, t0), and the

ω-limit set, i.e., the set of points the dynamical system approaches an infinite number of

times, as ω(u0) =
⋂
s≥t0

⋃
t≥s

Φ(t, u0, t0). A steady state, ue ∈ V , also called equilibrium or

fixed point, is defined by

Φ(t, ue, t0) = ue ∀ t > t0, t0 ∈ I. (2.10)

13
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For example, for ODEs and PDEs steady states correspond to points of vanishing time

derivatives,
dx

dt
= 0 and ut = 0. (2.11)

The stability properties of a steady state can be classified by the behavior of trajectories

in the vicinity.

Definition 2.1.1. (see e.g., (Michel et al., 2015, pp.83 f.))

a) A fixed point ue is called a stable steady state if for every ε > 0 and t0 ∈ I there exists

a δ = δ(ε, t0) > 0 such that from ‖u0− ue‖ < δ it follows that ‖Φ(t, u0, t0)− ue‖ < ε

for all t ≥ t0.

b) A steady state ue is asymptotically stable if it is stable and we can find δ = δ(t0) > 0

with limt→∞ ‖Φ(t, u0, t0)− ue‖ = 0 whenever ‖u0 − ue‖ < δ.

c) A steady state ue is uniformly stable if δ in a) is independent of t0.

d) A steady state ue is exponentially stable if there exists γ > 0 and for every ε > 0 and

every t0 ∈ I, there exists a δ = δ(ε) > 0 such that

‖Φ(t, u0, t0)− ue‖ < ε exp(−γ(t− t0)) ∀t ≥ t0 (2.12)

follows whenever ‖u0 − ue‖ < δ.

e) If an equilibrium point ue is not stable, it is called unstable.

We further define attractors and the region of attraction for a dynamical system, see

e.g., (Temam, 1997, p.21).

Definition 2.1.2. An attractor is a set A ⊂ V that is invariant (i.e., Φ(t, u0, t0) ∈ A for

all u0 ∈ A, t0 ∈ I and t ≥ t0) and that possesses an open neighborhood U with

dist(Φ(t, u0, t0),A)→ 0 as t→∞ (2.13)

for every u0 ∈ U . The neighborhood U might depend on t0. The basin of attraction at t0

is the largest open set U that fulfills this property.

Here, dist(Φ(t, u0, t0),A) is defined as the infimum of the distance of Φ(t, u0, t0) to the

points in A.
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2.1.3.2. Lyapunov functions and stability

Lyapunov functions are a useful tool to analyze stability for both ODEs and PDEs. The

theory presented here is based on (Michel et al., 2015, Chapter 9), however we limit the

explanations to time independent and differentiable Lyapunov functions.

We consider differential equations in the Banach space V ,

u̇ = F (u), u(t0) = u0, (2.14)

where F : D ⊂ V → V and (t0, x0) ∈ I×D. Without loss of generality we assume that the

steady state is at the origin, ue = 0. Further let V̇(u) = lim sup
h→0+

1
h(V(u+ hF (u))− V(u)).

Then Theorem 9.2.1 in (Michel et al., 2015) provides the following theory:

Theorem 2.1.1. If a function V ∈ C(U,R) exists for some open set U ⊂ D containing

the fixed point ue = 0 that has the following properties,

(i) V(ue) = 0 and V(u) > 0 for all u 6= ue,

(ii) V̇(u) ≤ 0, ∀u ∈ U\{ue},

ue is stable.

If (ii) holds with a strict inequality, V̇(u) < 0, ∀u ∈ U\{ue}, then ue = 0 is uniformly

asymptotically stable.

If, additionally, there exist c1, c2, c3, b > 0, with c1‖u‖b ≤ V(u) ≤ c2‖u‖b and V̇(u) ≤
−c3‖u‖b for all (u) ∈ U , then ue = 0 is exponentially stable.

The proof of the theorem can be found in (Michel et al., 2015).

2.1.3.3. Singular perturbation theory

Dynamical systems can include dynamics on different time scales, e.g., biological processes

like diffusion are often much faster than signaling (Hasenauer et al., 2015). However, it

might still be worthwhile to include both processes in a model. For systems with different

time scales, singular perturbation theory provides a useful method to investigate stability

of steady states. As we only employ singular perturbation in the case of ODE models, we

limit the discussion to ODEs and follow (Khalil, 1996).
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In singular perturbation theory, we consider the system

dx

dt
= F (t, x, z, ε)

ε
dz

dt
= G(t, x, z, ε)

(2.15)

for some small ε > 0. The states x ∈ D1 ⊂ Rnx and z ∈ D2 ⊂ Rnz and differentiable

functions F : R×D1 ×D2 × [0, ε0]→ R and G : R×D1 ×D2 × [0, ε0]→ R.

For ε = 0, we find the slow system,

dx

dt
= F (t, x, h(t, x), 0), (2.16)

assuming there is a solution z = h(t, x) to 0 = G(t, x, z, 0). Using this solution, we can

define ζ = z − h(t, x). Additionally, we introduce the fast time τ = t
ε and rewrite (2.15)

to obtain the fast system

dx

dτ
= εF (t, x, ζ + h(t, x), ε)

dζ

dτ
= G(t, x, ζ + h(t, x), ε)− ε∂h

∂t
− ε∂h

∂x
F (t, x, ζ + h(t, x), ε).

(2.17)

For ε = 0, this yields dx
dτ = 0 and the boundary layer system

dζ

dτ
= G(t, x, ζ + h(t, x), 0). (2.18)

Singular perturbation theory states that under the conditions given in (Khalil, 1996, The-

orem 9.3), in essence,

• an isolated root h(t, x) of 0 = G(t, x, z, 0) exists,

• the slow system is exponentially stable,

• the boundary layer system is exponentially stable uniformly in (t, x) and

• boundedness of F , G, h and their partial derivatives up to order 2

and for ε > 0 sufficiently small the steady state of system (2.15) is exponentially stable.

An intuitive interpretation is that the system initially follows close to the fast system

moving quickly towards the steady state of the boundary layer system for the given initial

values and then moves closely along the slow manifold defined by 0 = G(t, x, z, ε) towards

the steady state of the slow system (Müller and Kuttler, 2015).
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2.2. Statistical models and uncertainty analysis

In the previous section, we introduced ODEs and PDEs as models for biological processes.

These models are usually parameter dependent. For the model to give insights into the

underlying mechanism or to be useful for predictions and for model selection, the model

parameters have to be inferred using experimental data. In this section, we outline how

to infer parameters using maximum likelihood estimation and further discuss uncertainty

analysis using profile likelihoods. Lastly, we give a brief overview of regularization, its

connection to Bayesian inference and model selection.

2.2.1. Maximum likelihood estimation

To infer the model parameters θ ∈ Rnθ from data, we firstly point out that experiments

often do not measure the whole state of the system but only parts. Hence, observation

functions or observation operators are used to model the observation process and map the

model outputs to the observables. For an ODE the observation function h : Rnθ×R×Rnx →
Rny maps the state x and parameters θ to the observables y ∈ Rny

y(θ, t) = h(θ, t, x(θ, t)). (2.19)

For a parabolic PDE with state u and parameters θ, a mapping B : Rnθ× ]t0, T [×V → Z

is used to map to the observables y in some observation space Z, where Z is a Hilbert

space,

y(θ, t) = B(θ, t, u(θ, t)). (2.20)

For an elliptic PDE with state u and parameters θ the mapping B : Rnθ×V → Z to y ∈ Z
is used, where the observation space is again a Hilbert space,

y(θ) = B(θ, u(θ)). (2.21)

The observation function often depends on additional parameters, e.g., scalings or offsets,

that have to be likewise estimated together with the dynamic parameters contained in the

ODE/PDE.

Regarding the statistical model, we assume that experiments yield noise corrupted mea-

surements of the observables ȳ. We then consider time resolved data

D =
{(
tj , {ȳij}

ny
i=1

)}nt
j=1

, (2.22)
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where i ∈ {1, . . . , ny} indicates the component of ȳ and j ∈ {1, . . . , nt} indicates the

measurement time point. For a specific noise distribution assumption the parameters are

then estimated using a maximum likelihood approach. The likelihood is defined as the

probability of observing the data given the parameter vector θ,

L(θ) = p(D|θ). (2.23)

Assuming independent noise, we find

L(θ) =

ny∏
i=1

nt∏
j=1

p(ȳij |θ). (2.24)

In this work, we focus on two types of measurement noise: additive, normally distributed

and multiplicative, log-normally distributed noise. In the case of i.i.d. normally dis-

tributed, additive noise, ȳij = yi(tj) + εij with εij ∼ N (0, σ2
ij), the likelihood is given

by

L(θ) =

ny∏
i=1

nt∏
j=1

1√
2πσij

exp

(
−1

2

(
ȳij − yi(θ, tj)

σij

)2
)
. (2.25)

Considering multiplicative, log-normally distributed noise, i.e., ȳij = yi(tj)εij with i.i.d

εij ∼ LN (0, σ2
ij), yields

L(θ) =

ny∏
i=1

nt∏
j=1

1√
2πσij ȳij

exp

(
−1

2

(
log(ȳij)− log(yi(θ, tj))

σij

)2
)
. (2.26)

For this likelihood to map to R, ȳij > 0 and yi(tj , θ) > 0 need to hold. For both noise types,

the noise might be parameter-dependent, i.e., σij(θ). In this case, the noise parameters

have to be estimated together with the other parameters.

The maximum likelihood estimator (MLE) for θ is determined by maximizing the likeli-

hood

θ∗ = arg max
θ∈Θ

L(θ), (2.27)

where Θ ⊂ Rnθ defines the search space. For numerical reasons, usually the equivalent

problem of minimizing the negative log-likelihood is considered,

min
θ∈Θ
{j(θ) = − logL(θ)}. (2.28)
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For additive normally distributed noise this yields

j(θ) =
1

2

 ny∑
i=1

nt∑
j=1

log
(
2πσ2

ij

)
+

(
ȳij − yi(θ, tj)

σij

)2
 , (2.29)

and for multiplicative log-normally distributed noise,

j(θ) =
1

2

 ny∑
i=1

nt∑
j=1

log
(
2πσ2

ij ȳ
2
ij

)
+

(
log(ȳij)− log(yi(θ, tj))

σij

)2
 . (2.30)

2.2.2. Uncertainty analysis and confidence intervals

Maximum likelihood estimation yields a point estimator. As measurements of biological

processes can be greatly noise-corrupted and usually only part of the system is observed,

the MLE is seldom the true parameter. To evaluate the model and model predictions, it

is therefore relevant to analyze the uncertainty of parameter estimates and to consider the

identifiability of parameters.

The uncertainty is often analyzed by considering confidence intervals. In this work, we

use profile likelihood based confidence intervals (Meeker and Escobar, 1995; Raue et al.,

2009; Venzon and Moolgavkar, 1988). The profile likelihood for a parameter θi is given as

PLi(c) = max
θj 6=i∈Θ
θi=c

L(θ), (2.31)

i.e., the profile is computed by iteratively fixing parameter θi to a certain value c and

maximizing the likelihood over the remaining parameters (Murphy and van der Vaart,

2000; Raue et al., 2009).

Using the profile likelihood, we can compute confidence intervals for θi,

CIα,i =

{
c

∣∣∣∣PLi(c)L(θ∗)
≥ exp

(
−∆α

2

)}
, (2.32)

where ∆α is the αth-percentile of the χ2 distribution with one degree of freedom and θ∗ is

the MLE (Meeker and Escobar, 1995; Raue et al., 2009; Venzon and Moolgavkar, 1988).

Apart from confidence intervals, identifiability of the model parameters is of interest.

Parameter identifiability is divided in structural and practical identifiability. Structural

identifiability denotes a feature of the model together with the observation function and
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is independent of the concrete experimental measurements. It can be analyzed using

different approaches (Chis et al., 2011). Practical identifiability analysis on the other

hand investigates identifiability of a model including the observation function for a specific

incomplete and noisy data set. A parameter is practically identifiable if its confidence

interval is bounded. Otherwise, it is non-identifiable (Raue et al., 2009).

2.2.3. Regularization and Bayesian inference

Regularization is often employed in optimization to improve the ill-posedness of optimiza-

tion problems. Adding a regularization term,

j(θ) = − log(L(θ)) + ρr(θ), (2.33)

selects for solutions that possess the properties implied by r(θ). These properties are

weighted against the negative log-likelihood using the factor ρ.

This regularization can be interpreted as a prior in a Bayesian sense. In Bayesian analysis

not the likelihood but the posterior is considered. The posterior is calculated using Bayes

formula

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (2.34)

for the likelihood p(D|θ) = L(θ) and a prior p(θ). As p(D) is constant, it usually suf-

fices to consider p(D|θ)p(θ) for parameter estimation. Similarly to maximum likelihood

estimation, the maximum a posterior (MAP) estimator,

θMAP = arg max
θ∈Θ

p(D|θ)p(θ), (2.35)

is calculated by minimizing the negative logarithm of the posterior

− log (p(D|θ)p(θ)) = − log (p(D|θ))− log (p(θ)) = − log (L(θ))− log (p(θ)) . (2.36)

This formulation explains the interpretation of a prior as regularization. Considering

for example a multidimensional Gaussian prior p(θ) = N (0, σ2Id) with zero mean and

diagonal covariance, we find

− log (p(D|θ)p(θ)) = − log (L(θ)) +
1

2σ2

nθ∑
i=1

θ2
i + const, (2.37)

i.e., the Gaussian prior constitutes an l2 regularization.
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In the Bayesian setting profile likelihoods are replaced by profile posteriors (Hug et al.,

2013; Raue et al., 2013a; Vanlier et al., 2012),

PP (c) = max
θj 6=i∈Θ
θi=c

p(θ|D), (2.38)

and these profile posteriors are then applied to quantify uncertainty and compute confi-

dence intervals.

2.2.4. Model selection

Competing hypotheses for the biological mechanism can be evaluated by constructing a

mathematical model for each of them. Model selection criteria are then used to determine,

how well each model describes the data. If a model can not explain the data sufficiently,

the corresponding hypothesis is dismissed. In this work, we consider two model selection

criteria, the Akaike information criterion (AIC) (Akaike, 1978) and the Bayesian informa-

tion criterion (BIC) (Schwarz, 1978).

The AIC is evaluated based on the log-likelihood value at the optimum θ∗ and the number

of parameters nθ,

AIC = −2 log(L(θ∗)) + 2nθ. (2.39)

The BIC is computed similar to the AIC and includes additionally the number of data

points n,

BIC = −2 log(L(θ∗)) + nθ log n. (2.40)

For model selection, the chosen criterion is evaluated for all competing models. The model

with the smallest AIC or BIC has the most support. If the difference of the AIC or BIC of

a model to the smallest AIC or BIC, respectively, is larger than ten, there is no substantial

support for the model according to Burnham and Anderson (2002). If the difference is

smaller the model cannot be dismissed.

2.3. Inverse problems and ODE/PDE constrained optimization

In the preceding section, we outlined how to estimate parameters using maximum likeli-

hood estimation. For ODE and PDE models this parameter estimation approach leads to

ODE and PDE constrained optimization problems, respectively. In this section, we focus
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on the solution of these optimization problems using global optimization approaches, in

particular multi-start local optimization, and gradient based local optimization.

To find the MLE, the negative log-likelihood has to be minimized. In the case of an ODE

model this yields an ODE constrained optimization problem,

min
θ∈Θ,x∈V

J(θ, x)

s.t. ẋ = f(θ, t, x), x(t0) = x0(θ).
(2.41)

For a parabolic PDE (2.3), we find the optimization problem

min
θ∈Θ,u∈V

J(θ, u)

s.t.

ut = C(θ, t, u) + f(θ, t) on ΩT ,

u(t0, x) = u0(θ, x) on Ω,

(2.42)

and for an elliptic PDE model (2.5), we find

min
θ∈Θ,u∈V

J(θ, u)

s.t. 0 = C(θ, u) + f(θ) on Ω.
(2.43)

If a unique solution for the ODE/PDE constraints exists for all θ ∈ Θ in the optimization

problems (2.41)-(2.43), the optimization problem can be reduced by inserting the solution

into the objective function. As an analytical solution to the ODE/PDE might be hard or

impossible to compute, a numerical solution can be obtained by simulating the ODE/PDE.

For a solution of (2.1), x(θ), the reduced problem for (2.41) is

min
θ∈Θ
{j(θ) = J(θ, x(θ))}. (2.44)

Similarly, the reduced problem for (2.42) and (2.43) is

min
θ∈Θ
{j(θ) = J(θ, u(θ))} (2.45)

where u(θ) denotes the solution of (2.3) for parabolic constraints and the solution of (2.5)

for elliptic constraints. In all cases, the reduced objective function is denoted by j : Θ→ R.

In general, the afore-mentioned optimization problems are non-convex and non-linear and

therefore challenging.
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2.3.1. Global optimization

As outlined in the last section, in parameter estimation we are concerned with finding

the global minimum of non-convex and non-linear optimization problems. Finding an

appropriate optimization algorithm for this class of problems is non-trivial. Possible

solutions include, e.g., stochastic algorithms like evolutionary (Bäck, 1996) or particle

optimization (Yang, 2010), deterministic algorithms (Raue et al., 2013b) or hybrid op-

timizers (Balsa-Canto et al., 2008; Vaz and Vicente, 2007). For the type of biological

data considered in this work, multi-start local optimization has been shown to perform

well (Hross and Hasenauer, 2016; Raue et al., 2013b). Multi-start local optimization per-

forms repeated deterministic local optimizations starting from starting points spread in the

search space Θ. The distribution of start points might be uniformly random or based on a

latin hypercube scheme. To assess the quality of the multi-start optimization, the results

of the individual local optimizations are ordered by the resulting objective function value.

If sufficiently many optimizations were performed, different local optima can be found

several times and can be identified as plateaus in a plot of the ordered objective function

values. Multi-start global optimization then returns the smallest found local minimum as

the global minimum. We require a good local algorithm to find the optima consistently on

the one hand and to be time efficient on the other hand (Raue et al., 2013b). In order to

measure the performance of different local optimizers, we combine these requirements in a

metric, the average computation time per converged start, which is computed by dividing

the overall computation time for the multi-start optimization by the number of converged

starts (Villaverde et al., 2018).

2.3.2. Local optimization

In the previous section, we outlined how to find a global optimum by repeated local

optimization. We consider discrete algorithms for local optimization of unconstrained

problems based on descent methods (Boyd and Vandenberghe, 2004). For a current (k-th)

iterate θ(k) a descent method chooses the next iterate as

θ(k+1) = θ(k) + r(k)∆θ(k), (2.46)

with search direction ∆θ(k) and step length r(k). For a descent method, we require

j(θ(k+1)) < j(θ(k)). The search direction is often chosen using a steepest descent method,

∆θ(k) = argmin
||v||≤1

∇j(θ)T v (2.47)

23



Chapter 2. Background

for some norm ‖ · ‖. With the Euclidean norm, we obtain a gradient descent method

∆θ(k) = −∇j(θ(k)). (2.48)

Provided the Hessian, H(θ), is positive definite, the corresponding norm can be defined,

‖θ‖2H(θ) = θTH(θ)θ. Using this norm in (2.47), we find Newton’s method (Boyd and

Vandenberghe, 2004)

∆θ(k) = −H(θ(k))−1∇j(θ(k)). (2.49)

For a given search direction, the step length needs to be chosen. A summary of several

methods for this choice can be found in, e.g., (Boyd and Vandenberghe, 2004).

In practice, the parameters are often constraint to be in some search space θ ∈ Θ, e.g.,

using box constraints, lbi ≤ θi ≤ ubi for i = 1, . . . , nθ with some bounds lbi, ubi ∈ R. The

constrained optimization problem, minθ∈Θ j(θ), can be solved for example using interior

point methods (Byrd et al., 1999, 2000).

2.3.3. Continuous analogues

While discrete iterative local optimization methods as described in the previous section

are very prominent, also continuous schemes have been developed (Kose, 1956).

For a given discrete optimization scheme

θ(k+1) = θ(k) + r(k)g(θ(k)) (2.50)

the continuous analogue is given by

θ̇ = g(θ). (2.51)

We have g(θ) = −∇j(θ) for gradient descent and g(θ) = −H−1(θ)∇j(θ) for the Newton

method. In Tanabe (1985) it was shown that the continuous analogue tends to exhibit

larger regions of attraction and more robust convergence than discrete iterative methods.

2.3.4. Gradients and sensitivities

The local optimization methods listed above all require the computation of the gradient of

j(θ). While the gradient can be approximated using finite differences, it is more efficient
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and accurate to use the analytical derivative (Fröhlich et al., 2017a). Using the chain rule,

the analytical derivative in direction of the i-th parameter is given by

dj

dθi
=
∂J

∂θi
+
∂J

∂x

∂x

∂θi
(2.52)

for problem (2.41) and by
dj

dθi
=
∂J

∂θi
+
∂J

∂u

∂u

∂θi
. (2.53)

for problems (2.42) and (2.43). The terms ∂x
∂θi

and ∂u
∂θi

are called forward sensitivities for

θi and describe how the solution of the ODE or PDE changes with the parameter. The

sensitivity with respect to parameter θi is calculated using the sensitivity equation,

dsi
dt

=
∂

∂θi
f(θ, t, x) +

∂

∂x
f(θ, t, x)si, si(t0) =

∂

∂θi
x0(θ) (2.54)

for an ODE (2.1),

si,t =
∂

∂θi
C(θ, t, u) +

∂

∂u
C(θ, t, u)si +

∂

∂θi
f(θ, t), si(t0) =

∂

∂θi
u0(θ) (2.55)

for a parabolic PDE (2.3) and

0 =
∂

∂θi
C(θ, u) +

∂

∂u
C(θ, u)si +

∂

∂θi
f(θ), (2.56)

for an elliptic PDE (2.5).

For every parameter, these equations have to be solved together with the original ODE/PDE.

Therefore, the size of the ODE/PDE system is expanded by an additional ODE/PDE

system of the size of the number of model parameters nθ increasing the computational

complexity.
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Chapter 3.

ODE constrained problems with additional

steady-state constraints

Many biological processes are naturally regulated to be in a steady state. In this chap-

ter, we develop novel tailored approaches for parameter estimation with single or multiple

steady-state constraints for ODE models based on a reduction of the parameter space

using the geometry of the steady-state manifold. We first introduce the general biological

setting and the corresponding mathematical formulation of the steady-state constrained

problem in Section 3.1. Subsequently, we propose two novel estimation approaches in

Section 3.2, one based on a retraction operator (Absil et al., 2008) and one based on con-

tinuous analogues (Kose, 1956). In Section 3.2.4, we analyze the stability of the continuous

analogue. Lastly, in Section 3.3, the new approaches are applied to simulated data and

real biological examples to evaluate their properties and compare them with alternative

methods.

This chapter is based on and partly identical to the paper Tailored parameter optimization

methods for ordinary differential equation models with steady-state constraints by Anna

Fiedler, Sebastian Räth, Fabian J. Theis, Angelika Haußer and Jan Hasenauer published

in BMC Systems Biology, 10(1):80, 2016 (Fiedler et al., 2016), but provides additional

results and applications.

3.1. Introduction and mathematical problem formulation

ODE models are often used to describe biological processes, e.g., gene regulation, signal

transduction and metabolism (Klipp et al., 2005). In combination with experimental data,

these ODE models can give insights into underlying mechanisms. To this end, the model
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has to be calibrated to the experimental data, to determine unknown parameters like

kinetic rates of the involved reactions or initial conditions (Tarantola, 2005).

Here, we consider parameter estimation for the case that the data is collected from a system

that is initially in steady state. Steady states arise naturally in biology (Hass et al., 2019),

e.g., processes that are in homeostasis. If the initial state of the system is unknown and has

to be inferred from the data, constraining the parameter estimation to pairs of parameters

and initial states that fulfill the steady-state condition reduces the search space. These

considerations become especially relevant in the context of perturbation experiments.

Due to incomplete observations not all parameters might be inferable from one experiment.

Here, perturbation experiments are a valuable tool to acquire informative data. In pertur-

bation experiments cells that are initially in steady state are treated with different levels

of external stimuli, e.g., ligands (Bachmann et al., 2011) or small molecules (Bodenmiller

et al., 2012). Further external stimuli include knockout experiments (e.g., using CRISPR-

Cas9 (Shalem et al., 2015)), or physical stimuli like heat, cold or force. After treatment,

the response of the cells is measured (Figure 3.1 A). Depending on the biological process

and the input, the stimulus-induced changes might be transient or persistent and either

time-course or steady state data of the response are measured. The initial condition of

the system corresponds to a stable steady state of the unperturbed system. In the case

of persistent changes, the new state is a steady state of the perturbed system. Including

the steady-state constraint for the initial condition in the parameter estimation leads to

an optimization problem with nonlinear equality constraints.

Even without steady-state constraints, parameter estimation for biological systems is in

general a nonlinear and non-convex optimization problem. The additional nonlinear equal-

ity constraint increases the complexity. In the following, we will develop two tailored

approaches for the parameter estimation in this context.

3.1.1. Formulation of mathematical model

In this section, we describe the general mathematical framework for steady-state con-

straints in the context of ODE constrained optimization.

In the general case, we consider an ODE

dx

dt
= f(θ, t, x), x(0) = x0

0 = f0(θ, x0).

(3.1)
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Figure 3.1.: Schematic illustration of optimization problems with steady-state constraint.
(A) Measurement data and simulations of the system for three different pairs of parameters and

initial conditions: optimum of the unconstrained optimization problem (θ(1), x
(1)
0 ); suboptimal

point on the manifold (θ(2), x
(2)
0 = ϕ0(θ(2))); and optimum of the constrained optimization

problem (θ∗, x∗0 = ϕ0(θ∗)). The system is perturbed at time t = 0 and should be in steady state
for t < 0. (B) Objective function landscape, steady-state manifold and pairs of parameters
and initial conditions.

with states x(t) ∈ Rnx , parameters θ ∈ Rnθ and initial conditions x0 ∈ Rnx that are

given implicitly as the steady state of an ODE with right-hand side f0 : Rnθ ×Rnx → Rnx .

Hence, the initial condition depends on θ and the form of f0. The dynamics of the ODE

are given by f : Rnθ × R × Rnx → Rnx . In practice, f and f0 often share some of the

parameters θ. To ensure existence and uniqueness of the solution of (3.1), the vector

field f is assumed to be Lipschitz continuous. For x0 to be a meaningful steady state

of the biological system described by f0, it is assumed to be asymptotically stable in

the biologically reasonable parameter regime. The stability of x0 can be assessed using

Lyapunov theory (Khalil, 1996). We denote the collection of all parameter-state pairs

(θ, x0) which fulfill the steady-state constraint as the manifold of steady states. Here,

we assume that (3.1) possesses a locally isolated, exponentially stable steady state for

parameters θ (cf. Assumptions 3.2.2 and 3.2.3) and that there exists, at least locally,

a function ϕ0 : Uθ → Ux with some open subsets Uθ ⊂ Rnθ and Ux ⊂ Rnx which maps

the parameters to the corresponding steady state, i.e., x(0) = ϕ0(θ) (see Figure 3.1 B).

An analytical expression of the function ϕ0(θ) is usually not available. As an example,

perturbation experiments can be modeled using an initial input wc and a perturbation

input w(t) and considering f0(θ, x) = fw(θ, x, wc) and f(θ, t, x) = fw(θ, x, w(t)) where fw

describes the dynamics of the studied system.

29



Chapter 3. ODE constrained problems with additional steady-state constraints

To describe the measurement process, we denote the observables with y ∈ Rny and the

observation function with h : Rnθ × R× Rnx → Rny ,

y = h(θ, t, x(θ, t)). (3.2)

3.1.2. Parameter estimation problem

Measurement data is collected for different observables y indexed by i = 1, . . . , ny and

time points t indexed by j = 1, . . . , N ,

D =
{(
tj , {ȳij}

ny
i=1

)}N
j=1

, (3.3)

with number of observables, ny, and number of measurement time points, N . These mea-

surement are noise-corrupted. For example, additive normally distributed measurement

noise, εij ∼ N (0, (σij)
2), yields measurements

ȳij = yi(tj , θ, x0) + εij , (3.4)

with y(t, θ, x0) denoting the solution of (3.1) and (3.2) for parameters θ and initial condi-

tion x0 at time t.

The general optimization problem for parameter estimation from steady state data is of

the form
min
θ,x0,x

J(θ, x0, x)

s.t.


y = h(θ, t, x)

dx
dt = f(θ, t, x), x(0) = x0

0 = f0(θ, x0)

(3.5)

for some objective function J : Rnθ ×Rnx ×Rnx → R that measures the goodness-of-fit of

model and data. As an example, a maximum likelihood approach for the case of additive

normally distributed noise leads to the objective function

J(θ, x0, x) :=
1

2

nt∑
j=1

ny∑
i=1

log(2π(σij(θ))
2) +

(
ȳij − yi(tj , θ, x0)

σij(θ)

)2

(3.6)

in which the objective function denotes the negative log-likelihood function, J(θ, x0, x)

= − log p(D|θ, x0, x) and the noise parameter, σij(θ), is parameter dependent. The solu-

tion of (3.5) provides parameter-state pairs (θ̂, x̂0) on the steady-states manifold which
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maximize the likelihood. For feasible parameter-state pairs x̂0 = ϕ0(θ̂) needs to hold.

This formulation can be extended to include multiple experiments and describe parameter

estimation for multiple steady states and dose response curves.

3.1.3. Established optimization approaches

Solving optimization problem (3.5) is nontrivial as it is nonlinear and possesses local min-

ima. In the following, we formulate the problem in terms of unconstrained and constrained

optimization and describe established approaches for both.

3.1.3.1. Unconstrained optimization

In the unconstrained optimization, an analytical expression of the steady state as a func-

tion of the parameter, ϕ0(θ), is used to eliminate the constraint and x0 from optimization

problem (3.5), yielding the reduced optimization problem

min
θ
{j(θ) = J (θ, ϕ0(θ), x (θ, ϕ0(θ)))} (3.7)

which does not possess any equality constraints. E.g., for optimization problem (3.6) the

reduced optimization problem is

min
θ

j(θ) :=
1

2

nt∑
j=1

ny∑
i=1

log(2π(σij(θ))
2) +

(
ȳij − yi(tj , ϕ0(θ), θ)

σij(θ)

)2
 . (3.8)

An available method to compute the steady state is py-substitution (Loriaux et al., 2013;

Rosenblatt et al., 2016). In this approach the steady-state equation is not necessarily

solved for the state but for the parameters. Using a set of rules based on graph theory, the

steady-state equation can be iteratively simplified by choosing the best possible candidate,

either a state variable or a parameter, solving the equation for this candidate and removing

corresponding equations.

3.1.3.2. Constrained optimization

Alternatively, one can use a constrained optimization method, e.g., an interior point op-

timization method, to solve the optimization problem (3.5). This is the state-of-the-art

method and mostly used in practice.
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3.1.4. Problem formulation

Solving optimization problem (3.5) is often challenging, as deterministic local optimization

methods have to move along the manifold, resulting in small step-sizes or stagnation, and

stochastic local and global optimization methods are only allowed to propose update steps

on the manifold, which is not possible in state-of-the-art toolboxes (see, e.g., Egea et al.

(2014); Vaz and Vicente (2007)).

Using the reduced formulation and only solving an unconstrained optimization problem is

the gold standard solution. However, to use this approach, we need to know the analytical

solution to the steady-state constraint, which is not always available.

As we are concerned with the special situation of steady-state constraints, exploiting the

structure of the problem might be a potential approach.

Problem 3.1.1. Given optimization problem (3.5), develop tailored approaches for param-

eter estimation that exploit the local structure of the problem and investigate the properties

of the developed approaches.

To evaluate the applicability, we want to compare the newly developed tailored approaches

to standard constrained and unconstrained local optimization (Section 3.1.3).

3.2. Tailored Algorithms

In this section, we propose tailored algorithms for ODE constrained optimization with

steady-state constraints (3.5). The algorithms use the parameter vector θ and the state

vector x0 as optimization variables. First, we consider the first order geometry of the

steady-state manifold to develop an update scheme for the state variable for a given pa-

rameter update and then present two tailored algorithms for the solution of problem (3.5).

3.2.1. Manifold of steady states

The steady-state constraint defines the steady-state manifold which can be expressed in

terms of the mapping ϕ0(θ). In the considered setting, the existence of the mapping

ϕ0(θ) is ensured but an analytical expression is in general not available. For individual

parameters θ, the steady state can however be computed by

• solving a feasibility problem (find x0 ∈ Rnx subject to 0 = f0(θ, x0)),
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• simulating the dynamical system until the steady state is reached, or

• combining the simulation of the dynamical system with fine-tuning using the Newton-

Raphson method (Shiraishi et al., 2014).

The last two methods are robust and computationally tractable. The computation of the

steady state for individual parameters is however not sufficient, as the derivative is also

required. To develop a tailored method for solving optimization problem (3.5), we will

exploit the first-order geometry of the manifold of steady states. To this end, we consider

the sensitivities of the states ϕ0 with respect to the parameters θ,

S =
(
s1, s2, . . . snθ

)
∈ Rnx×nθ with si :=

∂ϕ0

∂θi
=

(
∂ϕ0,1

∂θi
, . . . ,

∂ϕ0,nx

∂θi

)T
. (3.9)

The dynamics of S are generally governed by the forward sensitivity equation

Ṡ =
∂f0

∂x0
S +

∂f0

∂θ
. (3.10)

In steady state, Ṡ = 0, the equation simplifies to

S = −
(
∂f0

∂x0

)−1 ∂f0

∂θ
, (3.11)

evaluated at (θ, ϕ0(θ)). The invertibility of the Jacobian (∂f0/∂x0) follows from local

exponential stability of the steady state or can be obtained using the implicit function

theorem.

The sensitivity of the steady state with respect to the parameters, S, provides a first-order

approximation to ϕ0(θ),

ϕ0(θ + r∆θ) = ϕ0(θ) +∇θϕ0(θ)r∆θ + o(r). (3.12)

The perturbation direction and the step size are denoted by ∆θ and r, respectively. Fur-

ther, o denotes the Landau symbol, defined by: f : Rn → R is o(g) as x → x0 for some

g : Rn → R, g(x) 6= 0, if limx→x0
f(x)
g(x) = 0. We consider ϕ̂0(r) = ϕ0(θ+ r∆θ) and compute

the derivative with respect to r, yielding

dϕ̂0

dr
= ∇θϕ0(θ)∆θ + o(1) = S(θ + r∆θ, ϕ̂0(r))∆θ + o(1) as r → 0. (3.13)
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Chapter 3. ODE constrained problems with additional steady-state constraints

This motivates the following update rule for a state variable x0 on the manifold

dx0

dr
= S(θ, x0)∆θ. (3.14)

Given an update direction ∆θ and a step size r, (3.14) provides an update for the steady

state corresponding to the parameter θ+r∆θ. Hence, (3.14) enables moves on the steady-

state manifold, similar to results in (Absil et al., 2008) for other manifolds.

3.2.2. Hybrid optimization method

In this section, we address Problem 3.1.1 by developing an approach based on the numerical

computation of the steady state corresponding to a parameter update (Section 3.2.1) rather

than the analytical expression. This is computationally more demanding than using an

analytical expression, but also yields the reduced optimization problem (3.7).

This straightforward approach is visualized in Figure 3.2 A. As it can be employed in

any state-of-the-art optimization method, we denote it as a hybrid optimization method.

Starting at a point (θl, xl0), we employ a three-step procedure:

• Step 1: The local optimizer proposes new parameters θl+1. This yields the point

(θl+1, xl0) which is usually not on the manifold of steady states. (Represented as a

solid arrow in Figure 3.2 A.)

• Step 2: We compute the steady state xl+1
0 for the parameters θl+1 using one of

the methods discussed in Section 3.2.1 (with starting points xl0). This yields the

point (θl+1, xl+1
0 ) on the steady-state manifold. (Represented as a dotted arrow in

Figure 3.2 A.)

• Step 3: The objective function value J l+1 = J(θl+1, xl+1
0 ) is computed for parameters

θl+1 and numerically calculated steady state xl+1
0 . This objective function is provided

to the local optimizer. (Not represented in Figure 3.2 A.)

The retraction to the manifold of steady states (Step 2) reduces the problem dimension

and eliminates the constraint. To improve the performance of the local optimizer we

provide the objective function gradient for the reduced problem (3.7),

dj

dθ
=
∂J

∂θ
+
∂J

∂x0

∂ϕ0

∂θ
(3.15)

with the sensitivity, (∂ϕ0/∂θ) = S(θ, x0), as defined in (3.11).
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Figure 3.2.: Schematic illustration of (A) the hybrid optimization method and (B) the con-
tinuous analogue optimization methods. The path of the optimizers are illustrated along with
the manifold of steady states and the objective function contour.

The proposed hybrid optimization method possesses all properties and options of the

employed local optimizer. In addition, the retraction accuracy εtol of the convergence

criteria ||f(θl, xl0)||2 < εtol has to be selected.

3.2.3. Continuous analogues for optimization

Instead of using a discrete update as in local optimization, one can alternatively consider

continuous analogues (illustrated in Figure 3.2 B). The continuous analogue of a gradient

descent method is dθ/dr = −(dj/dθ|(θ,x0))
T (Tanabe, 1985). This ODE system can be

coupled with the dynamical system for the state variabel x0 evolving on the steady-state

manifold, using ∆θ = −(dj/dθ|(θ,x0))
T in (3.14). More generally, we can consider any

descent direction g(θ, x0) in which j is decreasing. We obtain the ODE system

dθ

dr
= g(θ, x0)

dx0

dr
= S(θ, x0)

dθ

dr
,

(3.16)

with the steady-state sensitivity S(θ, x0). Initialization of (3.16) in a point (θ0, x0,0) ful-

filling (3.1) yields a trajectory evolving on the steady-state manifold, along which the

objective function decreases. Formulation (3.16) avoids the repeated simulation-based

retractions used by the hybrid optimization method, however it also bears two disadvan-

tages: (i) An appropriate initial point (θ0, x0,0) has to be determined by solving (3.1);

and (ii) numerical errors can result in a divergence from the steady-state manifold. To

35



Chapter 3. ODE constrained problems with additional steady-state constraints

address these problems, we introduce the term λf0(θ, x0) which locally retracts the state

of the system to the manifold by exploiting the stability properties of the steady state.

This yields the system
dθ

dr
= g(θ, x0)

dx0

dr
= Ŝ(θ, x0)

dθ

dr
+ λf0(θ, x0).

(3.17)

As the retraction term locally draws the trajectory to the steady-state manifold, we no

longer require that the initial point (θ0, x0,0) fulfills the steady-state constraint (3.1).

Hence, the Jacobian ∇x0f0(θ, x0) might not be invertible. To address this, we define

Ŝ(θ, x0) = −
(
∂f0

∂x0

)+ ∂f0

∂θ
(3.18)

in which (∂f0/∂x0)+ denotes the Moore–Penrose pseudoinverse of (∂f0/∂x0) at (θ, x0). On

the steady-state manifold, the Jacobian is invertible and we recover the standard steady-

state sensitivity. For a large retraction factor λ� 0, the state (θ, x0) is retracted quickly

to the steady-state manifold, as illustrated in Section 3.3.1.

We consider two possible choices for the descent direction:

• Gradient descent: g(θ, x0) = − dj
dθ (θ, x0)T = −

(
∂J
∂θ (θ, x0) + ∂J

∂x0
(θ, x0)Ŝ(θ, x0)

)T
and

• Newton-type descent: g(θ, x0) = − (FIM(θ, x0) + µI)−1 dj
dθ (θ, x0)T .

In both formulations ϕ0(θ) is substituted by x0 extending the descent direction also to

states x0 not on the steady-state manifold. The Newton-type descent exploits the Fisher

Information Matrix (FIM) (Faller et al., 2003) of the reduced optimization problem (3.7).

The FIM is a positive semi-definite approximation to the Hessian of the objective function

computed from first-order sensitivities. For additive normal distributed noise we find

FIMkl(θ, x0) :=

nt∑
j=1

ny∑
i=1

− 1

(σ2
ij(θ))

2

(
1

2
− (ȳij − yi(tj , θ, x0))2

σ2
ij(θ)

)
∂σ2

ij

∂θk
(θ)

∂σ2
ij

∂θl
(θ)

+
(ȳij − yi(tj , θ, x0))

(σ2
ij(θ))

2(
∂yi
∂θk

(tj , θ, x0)
∂σ2

ij

∂θl
(θ) +

∂σ2
ij

∂θk
(θ)

∂yi
∂θl

(tj , θ, x0)

)

+
1

2σ2
ij(θ)

(
1− (ȳij − yi(tj , θ, x0))2

σ2
ij(θ)

)
∂2σ2

ij

∂θk∂θl
(θ)

+
1

σ2
ij(θ)

∂yi
∂θk

(tj , θ, x0)
∂yi
∂θl

(tj , θ, x0).

(3.19)
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For parameter independent noise, the expression simplifies to

FIMkl(θ, x0) :=

nt∑
j=1

ny∑
i=1

1

σ2
ij

∂yi
∂θk

(tj , θ, x0)
∂yi
∂θl

(tj , θ, x0). (3.20)

For local optimization of (3.5), the dynamical system (3.17) has to be simulated for r →
∞. For this, implicit methods with adaptive step-size selection and error control should

be employed as (3.17) might be stiff. Appropriate numerical methods are implemented

among others in MATLAB and the SUNDIALS package (Hindmarsh et al., 2005). These

simulations are stopped as soon as the convergence criterion max{‖dθ/dr‖, ‖dx0/dr‖} <
εtol is met.

3.2.4. Asymptotic stability of the optimal parameter-state pair

In the following, we assess the local stability and convergence of the continuous analogue

with gradient and with Newton-type descent to a local optimum (θ∗, ϕ0(θ∗)) for a single

steady-state constraint. We consider the following four conditions.

Assumption 3.2.1. The minimizer θ∗ is a root of the descent direction evaluated on the

steady-state manifold, g(θ, ϕ0(θ)), i.e., g(θ∗, ϕ0(θ∗)) = 0.

Assumption 3.2.2. There exists a locally isolated root ϕ0(θ) of the equation f0(θ, ϕ0(θ)) =

0 for all (θ − θ∗) ∈ Bc = {θ̃ ∈ Rnθ |‖θ̃‖ ≤ c} ⊆ Rnθ .

This root is a steady state of the ODE model.

Assumption 3.2.3. The steady state ϕ0(θ) is locally exponentially stable uniformly in θ,

with (θ − θ∗) ∈ Bc.

Accordingly, ∃ζ0, γ, k > 0 such that ‖x(t)− ϕ0(θ)‖ ≤ k‖x(0)− ϕ0(θ)‖ exp(−γt), ∀(x(0)−
ϕ0(θ)) ∈ Bζ0 := {∆̃0(0) ∈ Rnx |‖∆̃0(0)‖ < ζ0} and ∀(θ − θ∗) ∈ Bc. This implies that

∃ζ ≥ ζ0 such that (x(t)− ϕ0(θ)) ∈ Bζ := {∆̃0(t) ∈ Rnx |‖∆̃0(t)‖ < ζ} (Khalil, 1996).

Assumption 3.2.4. There exists a neighborhood around θ∗, (θ − θ∗) ∈ Bc, in which

the descent direction evaluated on the steady-state manifold ϕ0(θ), g(θ, ϕ0(θ)), is locally

uniformly monotonically decreasing.

Hence, there exists a γg > 0 such that

(g(θ, ϕ0(θ))− g(θ∗, ϕ0(θ∗))T (θ − θ∗) ≤ −γg||θ − θ∗||2 (3.21)

for all θ with (θ − θ∗) ∈ Bc.
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Chapter 3. ODE constrained problems with additional steady-state constraints

Assumption 3.2.5. The functions g(θ, x0), f0(θ, x0) and ϕ0(θ) and their partial deriva-

tives up to order 2 are bounded for (θ − θ∗) ∈ Bc and (x0 − ϕ0(θ)) ∈ Bζ .

Using these assumptions we find:

Theorem 3.2.1. Let Assumptions 3.2.2 - 3.2.5 be satisfied. Then there exists a λ∗ such

that for all λ > λ∗ a local minimum (θ∗, x∗0) of the optimization problem is a locally

exponentially stable steady state of the continuous analogue optimization system.

Proof. To prove Theorem 3.2.1 we use perturbation theory (Khalil, 1996). We define

ε = λ−1 and shift the optimum to the origin using the linear state transformation,

θ̃ = θ − θ∗ and x̃0 = x0 − ϕ0(θ∗).

This yields the singular perturbed system

dθ̃

dr
= g =: F̃ (θ̃, x̃0, ε)

ε
dx̃0

dr
= εŜg + f0 =: G̃(θ̃, x̃0, ε),

(3.22)

with g, f0 and Ŝ evaluated at (θ̃+θ∗, x̃0+ϕ0(θ∗)). The system (3.22) captures the dynamics

of the deviances from the optimal parameter, θ̃, and the deviances from the steady state

for the optimal parameter, x̃0. Furthermore, it possesses the following properties:

(i) F̃ (0, 0, ε) = 0 and G̃(0, 0, ε) = 0 as the descent direction vanishes, 0 = g(θ∗, ϕ0(θ∗))

at the optimum for gradient descent (Assumption 3.2.1) and as the steady-state

condition is fulfilled, 0 = f0(θ∗, ϕ0(θ∗)), which follows from Assumption 3.2.2.

(ii) The equation 0 = G̃(θ̃, x̃0, 0) has the isolated root ϕ̃0(θ̃) = ϕ0(θ̃ + θ∗) − ϕ0(θ∗)

(Assumption 3.2.2) with ϕ̃0(0) = 0.

(iii) The functions F̃ , G̃, and ϕ0 and their partial derivatives up to order 2 are bounded

for (x̃0 − ϕ0(θ̃)) ∈ Bζ (Assumption 3.2.5).

(iv) The origin of the reduced systems

dθ̃

dr
= F̃ (θ̃, ϕ̃0(θ̃), ε) = g(θ̃ + θ∗, ϕ̃0(θ̃) + ϕ0(θ∗))

for ε = 0 is locally exponentially stable, with ϕ̃0(θ̃) + ϕ0(θ∗) = ϕ0(θ̃ + θ∗) from (ii).
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This follows from (Assumption 3.2.4) by considering the Lyapunov function V (θ̃) =
1
2‖θ̃‖

2. With this definition, V (0) = 0 and V (θ̃) > 0 for θ̃ 6= 0. Further,

dV (θ̃)

dr
=

d

dr
θ̃T θ̃ = F̃ (θ̃, ϕ̃0(θ̃), 0)T θ̃ = g(θ̃ + θ∗, ϕ̃0(θ̃) + ϕ0(θ∗))T θ̃

= g(θ, ϕ0(θ))T (θ − θ∗) = (g(θ, ϕ0(θ))− g(θ∗, ϕ0(θ∗)))T (θ − θ∗)

≤ −γg‖θ̃‖2.

(3.23)

Hence, the reduced system is exponentially stable (Khalil, 1996, Corollary 3.4).

(v) The boundary-layer system is derived from (3.22) using the transformation ∆̃0 =

x̃0 − ϕ̃0(θ̃)(= x0 − ϕ0(θ)), yielding

dθ̃

dr
= g

ε
d∆̃0

dr
= ε(Ŝ − S)g + f0,

with g, f0 and Ŝ evaluated at (θ̃ + θ∗, ∆̃0 + ϕ0(θ̃ + θ∗)) and S evaluated at (θ̃ +

θ∗, ϕ0(θ̃ + θ∗)). After rescaling of the simulation time, ρ = r/ε, and setting ε = 0,

we obtain the boundary-layer system

d∆̃0

dρ
= f0(θ̃ + θ∗, ∆̃0 + ϕ0(θ̃ + θ∗)).

The origin of this boundary-layer system is locally exponentially stable, uniformly

in θ̃ as the steady state ϕ0(θ) of dx
dt = f0(x, θ) is exponentially stable uniformly in

θ = θ̃ + θ∗ (Assumption 3.2.3).

The properties (i)-(v) are the prerequisites of (Khalil, 1996, Theorem 9.3), establishing the

existence of ε∗ > 0 such that for all ε < ε∗ systems of type (3.22) are locally exponentially

stable. As stability properties are conserved under the performed transformations, we

obtain for ε = λ−1 Theorem 4.3.1.

Stability and convergence are not affected by the approximation of the steady-state sen-

sitivity via Ŝ. Besides, the theorem can be extended to several steady-state constraints.

Remark 3.2.1. If the reduced problem j is strongly convex in a neighborhood Bc of θ∗,

Assumption 3.2.4 is fulfilled for gradient descent. Strong convexity of j in a neighborhood

of θ∗ is equivalent to

j(θ1) ≥ j(θ2) +∇j(θ2)T (θ1 − θ2) +
m

2
‖θ1 − θ2‖2 (3.24)
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for m > 0 and all θ1, θ2 in the neighborhood of θ∗ (Boyd and Vandenberghe, 2004, p.

459). As this hold also conversely,

j(θ2) ≥ j(θ1) +∇j(θ1)T (θ2 − θ1) +
m

2
‖θ1 − θ2‖2, (3.25)

we find by adding the two equations and reformulating

(∇j(θ1)−∇j(θ2))T (θ1 − θ2) ≥ m‖θ1 − θ2‖2. (3.26)

With g(θ) = −∇j(θ), we find

(g(θ1)− g(θ2))T (θ1 − θ2) ≤ −m‖θ1 − θ2‖2. (3.27)

As this holds for all θ1, θ2 ∈ Bc it also holds for θ2 = θ∗.

Remark 3.2.2. For Newton-type descent, g(θ) = −(FIM(θ) + µI)−1∇j(θ), Assump-

tion 3.2.4 is equivalent to

(−(FIM(θ) + µI)−1∇j(θ) + (FIM(θ∗) + µI)−1∇j(θ∗))T (θ − θ∗) ≤ −γg‖θ − θ∗‖2. (3.28)

Using ∇j(θ∗) = 0, we reformulate

(−(FIM(θ) + µI)−1∇j(θ))T (θ − θ∗) ≤ −γg‖θ − θ∗‖2

(−∇j(θ))T (FIM(θ) + µI)−T (θ − θ∗) ≤ −γg‖θ − θ∗‖2.
(3.29)

With symmetry of (FIM(θ) + µI)−1 and ∇j(θ∗) = 0 we arrive at

− (∇j(θ)−∇j(θ∗))T (FIM(θ) + µI)−1(θ − θ∗) ≤ −γg‖θ − θ∗‖2. (3.30)

Using the equivalence of norms in finite dimensions, we can write

〈∇j(θ)−∇j(θ∗), θ − θ∗〉(FIM(θ)+µI)−1 ≥ γgC(θ)‖θ − θ∗‖2(FIM(θ)+µI)−1 , (3.31)

where the scalar product is induced by (FIM(θ)+µI)−1, ‖.‖(FIM(θ)+µI)−1, is the correspond-

ing norm and C(θ) is the equivalence constant. Hence, j has to fulfill Assumption 3.2.4

using the scalar product induced by (FIM(θ) + µI)−1 and the corresponding norm instead

of the standard scalar product for all θ ∈ Bc.
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3.3. Application and evaluation

In the following, we illustrate the behavior of the proposed parameter estimation ap-

proaches. Furthermore, the performance of the proposed methods will be compared to

standard constrained and unconstrained optimization methods. For this purpose, we con-

sider simulation examples for which the ground truth is known. Furthermore, we test the

methods in two application examples using real data.

3.3.1. Conversion process

In this section, we illustrate the proposed optimization methods by studying parameter

estimation for a conversion process from steady-state data. Conversion processes are a

common motif in biological systems and provide a simple test case.

We considered the conversion of a substance A to a substance B with rate constant θ1

that can be modified by an input w ∈ R+ and the reverse conversion with rate constant

θ2,

A
θ1w
�
θ2

B, (3.32)

with parameters θ =
(
θ1, θ2

)
∈ R2

+. Assuming mass conservation ([A]+[B] = 1) and mass

action kinetics (Ingalls, 2013), the temporal evolution of the concentration of biochemical

species A, x = [A], is governed by

dx

dt
= θ2 − (θ1w + θ2)x, x(0) = x0

y = x

(3.33)

with x0 ∈ R+ denoting the initial concentration. The unique steady state of model (3.33)

for given input w is

ϕ0(θ) =
θ2

θ1w + θ2
. (3.34)

To illustrate the properties of the hybrid and the continuous analogue methods, we consid-

ered the estimation of the parameters θ from artificial time-resolved data for y. The artifi-

cial data at the time points tj = [0, 0.1, 0.5, 1, 2] were obtained by simulation of (3.33) for

θ = (4, 1) and w = 0.4 starting from the steady state of the system with control condition

wc = 1 at t = 0. Assuming unit variance for observation errors, yielded the optimization
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problem

min
θ,x0

J(θ, x0) :=
1

2

N∑
j=1

(ȳj − y(tj , θ, x0))2


s.t. 0 = θ2 − (θ1 + θ2)x0,

(3.35)

in which ȳj denotes the measured concentration of A at time point tj and y(tj , θ, x0)

denotes the solution of (3.33) for initial conditions x(0) = x0 and input w = 0.4 at time

point tj .

Illustration of hybrid optimization method The hybrid optimization method evaluates

the steady state numerically but exploits the gradients of the objective functions (3.15).
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Figure 3.3.: Illustration of the hybrid optimization method for the conversion process (3.33).
(A) Path of the hybrid optimization method (full lines), the true optimum (red star), and the
steady-state manifold (surface, (3.34)) are shown. The objective function values are indicated
by the surface coloring where darker colors represents smaller objective function values. The
solver path is partially covered by the steady-state manifold. (B) The path of the steady state
and (C), (D) the parameters (full lines), their endpoints (stars), and optimal parameter value
respective true steady state (3.34) for the parameters (dotted lines) are depicted.
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To this end, the objective function gradient,

dJ

dθ
= −

N∑
j=1

(ȳj − y(tj , θ, x0))

(
∂y(tj , θ, x0)

∂θ
+
∂y(tj , θ, x0)

∂x0

∂ϕ0

∂θ

)
, (3.36)

and the local sensitivities of the steady state for w = 1,

S(θ, x0) =

(
∂ϕ0

∂θ1
,
∂ϕ0

∂θ2

)
=

(
−x0

θ1 + θ2
,

1− x0

θ1 + θ2

)
, (3.37)

were derived. The local sensitivities depend merely on derivatives of the vector field and

can be computed without knowledge of an analytical expression of the steady state.

The trajectory of the hybrid optimization method is illustrated in Figure 3.3. At the end

of each iteration, the simulation-based retraction ensured that the parameter-state pair

is on the steady-state manifold (Figure 3.3 A and B). On the steady-state manifold, the

optimizer reached a narrow valley for θ1 and θ2 and then moved along the valley to the

optimum (Figure 3.3 A, C and D). The behavior was similar for other starting points.

Illustration of continuous analogue optimization method For the second method the

continuous analogue of the gradient descent method was derived. This yields the dynamical

system

dθ1

dr
= −

N∑
j=1

(ȳj − y(tj , θ, x0))

(
∂y(tj , θ, x0)

∂θ1
+
∂y(tj , θ, x0)

∂x0
s1

)
dθ2

dr
= −

N∑
j=1

(ȳj − y(tj , θ, x0))

(
∂y(tj , θ, x0)

∂θ2
+
∂y(tj , θ, x0)

∂x0
s2

)
dx0

dr
=

(
−x0

θ1 + θ2
,

1− x0

θ1 + θ2

)(
dθ1

dr
,
dθ2

dr

)T
+ λ(θ2 − (θ1u+ θ2)x0),

(3.38)

with initial conditions θ1(0) = θ1,0, θ2(0) = θ2,0 and x0(0) = x0,0 and s1 and s2 given by

(3.37). It can be verified that the objective function J is locally strictly convex in θ – the

parameters are locally identifiable – and that the model (3.33) is asymptotically stable.

Accordingly, system (3.38) converges to a local optimum of the constrained optimization

problem (3.35).

To illustrate the continuous analogue optimization method, we simulated the continuous

analogue of the gradient descent method. Exemplary trajectories are depicted in Fig-

ure 3.4. We found that for retraction factors λ > 0, the states (θ1, θ2, x0)T converged to

the optimal solution. As retraction renders the steady-state manifold (3.34) attractive,

43



Chapter 3. ODE constrained problems with additional steady-state constraints

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5
1

0.5 876540 32

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80
2

3

4

5

6

7

8

0 20 40 60 80

0.6

1

1.4

1.8

Figure 3.4.: Illustration of the continuous analogue optimization method for the conversion
process (3.33). (A) Trajectory of the continuous analogue for different retraction factors λ
(full lines), the endpoints (stars), the true optimum (red star), and the steady-state manifold
(surface, (3.34)) are shown. The objective function values are indicated by the surface coloring
where darker colors represents smaller objective function values. (B) The path of the steady
state and (C), (D) the parameters (full lines), their endpoints (stars), and optimal parameter
value respective true steady state (3.34) for the parameters (dotted lines) are depicted.

also for initial conditions (θ1,0, θ2,0, x0,0)T which do not fulfill the steady-state condition,

fast convergence to the steady-state manifold could be achieved using λ� 1 (Figure 3.4 A

and D). For large retractions (λ� 1), the dynamic consisted of two phases: (Phase 1) the

state x0 converged quickly to the parameter-dependent steady state (3.34) (Figure 3.4 A

and B); and (Phase 2) the state (θ1, θ2, x0)T moved along the steady-state manifold to the

global optimum (Figure 3.4 A, C and D).

3.3.2. Behavior in the presence of bistability, bifurcations and oscillations

Biological systems often possess multiple stable steady states (Gardner et al., 2000; Ozbu-

dak et al., 2004) and non-trivial ω-limit sets, e.g., stable limit cycles (Kholodenko, 2000).
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3.3. Application and evaluation

To evaluate the continuous analogue optimization method and the hybrid optimization

method, we considered a bistable system (with hysteresis) and a system with a Hopf

bifurcation.

3.3.2.1. Bistable system

To study the performance of the proposed methods in the presence of bistability we con-

sidered the system

ẋ =
x20

1 + x20
− x+ θ, x(0) = x0. (3.39)

as described in (Müller and Kuttler, 2015, Chapter 5, p. 532). We assumed direct ob-

servation of the state and the objective function J(θ, x0) = (x̄0 − x0)2 with x̄0 ≈ 1.5.

The measurement x̄0 is the larger of the two steady states for θ = 0.5. The resulting

minimization problem is

min
θ,x0

J(θ, x0) = (x̄0 − x0)2

s.t. 0 =
x20

0

1 + x20
0

− x0 + θ.
(3.40)

The optimization was performed using the hybrid and the continuous analogue method.

While the system exhibits saddle node bifurcations and bistability, Assumptions 3.2.2 -

3.2.5 are fulfilled locally around the optimal parameter-state pair. However, it is still

interesting to observe how the approaches behave for different start points. Figure 3.5

illustrates the convergence and 5 example trajectories. We observed a higher convergence

for the hybrid method compared to the continuous analogue, as the continuous analogue

diverges for some starting points. This occurs when the retraction term cancels the update

in the state direction.

Nevertheless both methods overall achieved good convergence to the optimal point, illus-

trating good properties in the presence of bistability.

3.3.2.2. System with Hopf bifurcation

To study the performance of the proposed methods for a system that exhibits stable

oscillations in the parameter region considered for optimization, we consider the system

ẋ1 = −x2 + x1(θ − x2
1 − x2

2), x1(0) = x1,0 (3.41)

ẋ2 = x1 + x2(θ − x2
1 − x2

2), x2(0) = x2,0. (3.42)
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Figure 3.5.: Evaluation of (A) the continuous analogue optimization method and (B) the
hybrid optimization method for bistable system. (left) 5 example optimizer trajectories and
(right) results of 100 local optimization runs.

This is the normal form for systems with Hopf bifurcation as described in (Müller and

Kuttler, 2015, Chapter 2, p. 227). Hopf bifurcations occur in biological applications for

example in the context of the cAMP oscillations (Sgro et al., 2015). For the simulated

data, the measurement for (3.41) was taken to be x0 = (0, 0)T which corresponds to the

steady state for θ ≤ 0. For θ > 0 this system exhibits stable limit cycles and no stable

steady state. We considered a least squares objective function yielding the optimization

problem

min
θ,x0

J(θ, x0) =

2∑
i=1

x2
0,i

s.t. 0 = x0,2 + x0,1(θ − x2
0,1 − x2

0,2)

0 = x0,1 + x0,2(θ − x2
0,1 − x2

0,2).

(3.43)

The optimization was performed using only the continuous analogue optimization method

as the simulation in the hybrid optimization step is not converging for θ > 0 as no stable

steady state exists. Figure 3.6 illustrates example optimizer trajectories. Even though
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Assumption 3.2.4 is violated for this example as j(θ) is only convex, but not strictly convex,

the results still illustrate a good convergence of the continuous analogue optimization

method to the set of parameters θ with steady state x0 = (0, 0)T , independent of the

starting point as long as the starting point lies outside the limit cycle. For starting points

inside the limit cycle, the system diverges. However, convergence strongly depends on the

chosen retraction factor λ. If the retraction is very strong, trajectories tend to get trapped

close to the stable limit cycle, if started in the basin of attraction of the limit cycle.

In summary, the analyses of these simple systems indicated that both methods also fa-

cilitate the analysis of models with multiple stable steady states and that the continuous

analogue can also be employed for systems exhibiting limit cycles in the considered pa-

rameter regime.
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Figure 3.6.: Evaluation of the simulation-based optimization method for the system with
Hopf-bifurcation. (left) 10 example optimizer trajectories and (right) results of 100 local
optimization runs.
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Chapter 3. ODE constrained problems with additional steady-state constraints

3.3.3. NGF-induced ERK signaling in primary sensory neurons

After applying the proposed methods on simulated data, we now consider experimental

data for biological processes. To evaluate and compare established and proposed local

optimization methods for problems with steady-state constraints, we analyze nerve growth

factor (NGF)-induced extracellular signal-regulated kinases (ERK) phosphorylation in

primary sensory neurons. The stimulus NGF binds to cellular receptors and induces

the ERK phosphorylation (Andres et al., 2010). This modulates neuronal activity by

triggering ion channel phosphorylation and protein expression (Nicol and Vasko, 2007).

Growth-factor induced ERK signaling is a potential target for novel pain therapies (Andres

et al., 2013) and therefore of high practical relevance. In addition, this application is well-

suited for the evaluation of the proposed methods as NGF dose-response curves at late

time points have been recorded where equilibration of the system can be assumed. These

data provide multiple steady-state constraints for the thorough assessment of the methods.

In the following, we will compare the performance of unconstrained, constrained, hybrid

and continuous analogue optimization in the presence of multiple steady-state constraints.

3.3.3.1. Experimental data for NGF-induced ERK phosphorylation

ERK phosphorylation in response to different concentrations of NGF was previously quan-

tified using quantitative automated microscopy (Andres et al., 2010). This technique pro-

vides single-cell data from which population average data can be derived. These population

average data are highly reproducible and quantitative but provide merely the relative ERK

phosphorylation in comparison to the control as no calibration curve is employed. The

unknown scaling constant is denoted by s.

3.3.3.2. Mathematical model of NGF-induced ERK phosphorylation

NGF induces ERK phosphorylation by binding to the NGF receptor tropomyosin receptor

kinase A (TrkA). The complex TrkA:NGF activates the protein Ras which in turn phos-

phorylates the protein Raf. Phospho-Raf (pRaf) phosphorylates the protein MEK and

phospho-MEK (pMEK) phosphorylates ERK (Figure 3.7). We use the model introduced
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Figure 3.7.: Schematic of the model considered for NGF-induced ERK phosphorylation in
primary sensory neurons.

in (Hasenauer et al., 2014), that accounts for five reactions:

R1 : TrkA + NGF→ TrkA:NGF, rate = k1[TrkA][NGF],

R2 : TrkA:NGF→ TrkA + NGF, rate = k2[TrkA:NGF],

R3 : ERK→ pERK, rate = k3[TrkA:NGF][ERK],

R4 : ERK→ pERK, rate = k4[ERK],

R5 : pERK→ ERK, rate = k5[pERK].

(3.44)

These reactions describe binding of NGF to TrkA (R1 and R2), TrkA:NGF-mediated ERK

phosphorylation (R3), basal ERK phosphorylation (R4) and ERK dephosphorylation (R5).

Brackets indicate the concentration of a biochemical species. The input is the initial NGF

concentration, u = [NGF]0, and the measured output is the relative pERK concentration,

y = s[pERK]. (3.45)

The experimental noise ε is assumed to be normally distributed with the unknown variance

σ2, ε ∼ N (0, σ2).

In accordance with previous publications, we assume conservation of mass ([NGF] +

[TrkA:NGF] = [NGF]0, [TrkA] + [TrkA:NGF] = [TrkA]0 and [ERK] + [pERK] = [ERK]0)

and excess of NGF ([NGF]0 � [TrkA]0) (see Hasenauer et al. (2014) and references
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therein). Under these assumptions the activities of the NGF receptor TrkA and ERK

are captured by
dx1

dt
= k1u (k3[TrkA]0 − x1)− k2x1,

dx2

dt
= (x1 + k4) (s[ERK]0 − x2)− k5x2,

y = x2,

(3.46)

in which x1 = k3[TrkA:NGF] and x2 = s[pERK]. This model possesses a minimal number

of parameters, θ = (k1, k2, k3[TrkA]0, k4, s[ERK]0, k5, σ
2) and is structurally identifiable.

The parameter- and input-dependent steady state of (3.46) is given by

ϕ0,1(θ, w) = k3[TrkA]0
k1[NGF]0

k1[NGF]0 + k2
,

ϕ0,2(θ, w) = s[ERK]0
ϕ0,1(θ, w) + k4

ϕ0,1(θ, w) + k4 + k5
.

(3.47)

This steady state exists for all positive parameters and is exponentially stable.

3.3.3.3. Parameter estimation problem with multiple steady-state constraints

In this study, the unknown parameters θ ∈ R7
+ and the states x0,1 and x0,2 for each con-

sidered input of NGF were inferred from published dose response data (Andres et al.,

2010) using ML estimation. The data set contains six different NGF doses, yielding an

optimization problem with 7 + 2 · 6 = 19 optimization variables and 2 · 6 = 12 nonlinear

equality constraints. This nonlinear optimization problem was solved using multi-start lo-

cal optimization. The local optimization was performed using unconstrained, constrained

and hybrid optimization as well as continuous analogue optimization using gradient and

Newton-type descent. In practice, we added the diagonal of FIM(θ, x0) and the maximal

diagonal value to the FIM, diag(FIM(θ, x0)) + maxi(FIMii(θ, x0)) instead of µI for the

Newton-type descent. This proved to be more stable, but was chosen entirely heuristically.

Bounds and properties for the parameters and initial conditions are provided in Table 3.1.

To assess the convergence properties, the constraint satisfaction/violation and the com-

putation time, the local optimization methods were initialized with the same 100 sampled

starting points. The results are summarized in Figure 3.8. Additionally, we assessed the

dependence of the convergence properties on λ (Figure 3.9).
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Figure 3.8.: Comparison of optimization methods for the NGF-induced ERK activation
model. (A) Final objective function values (darker color in steady-state, lighter color not in
steady-state), (B) comparison of convergence criteria with respect to steady-state constraint
(i.e., the difference to the analytical solution), (C) computation time for 100 runs and (D)
average computation time per converged start of unconstrained optimization method (using
the MATLAB optimization method fmincon), constrained optimization algorithm (fmincon),
the hybrid optimization method and the proposed continuous analogue optimization methods
with gradient descent and Newton-type updates are depicted. (E) The best fit to the data is
shown.
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Chapter 3. ODE constrained problems with additional steady-state constraints

Table 3.1.: Lower bounds, upper bounds and scale used for fitting of the parameters of the
model for NGF-induced ERK phosphorylation.

Parameter Lower Upper Scale used Bound used Bound used
name bound bound for for for

optimization optimization sampling

Kinetic
parameters

k1 10−5 103.5 log10 yes yes
k2 10−5 103.5 log10 yes yes

k3[TrkA]0 10−5 103.5 log10 yes yes
k4 10−5 103.5 log10 yes yes

s[ERK]0 10−5 103.5 log10 yes yes
k5 10−5 103.5 log10 yes yes

Initial
conditions

x0,1 0 3 linear no yes
x0,2 0 3 linear no yes

3.3.3.4. The convergence properties of unconstrained, hybrid optimization and

continuous analogue are comparable

To assess the convergence of the optimization methods, we sorted and visualized the

objective function values achieved in the individual optimizer starts (Figure 3.8 A). In

addition, we determined the percentage of converged starts. A start is considered to be

converged if the final point cannot be rejected compared to the ML estimate using the

likelihood ratio test with a significance level of 0.05.

As expected, we found that the gold standard – the unconstrained optimization method

– showed the best convergence properties. It converged in 75% of the starts to the global

optimum. A similar convergence was achieved by the proposed methods, hybrid optimiza-

tion and continuous analogue optimization using gradient descent. The third proposed

method – continuous analogue optimization using Newton-type descent – displayed inter-

mediate convergence properties (60% of the starts converged to the global optimum). The

state-of-the-art method – constrained optimization – exhibited the poorest convergence.

It converged in 45% of the starts. Hence, the proposed optimization methods are superior

to constrained optimization regarding convergence to the global optimum.

Beyond differences in the convergence to the global optimum, the convergence to local op-

tima differed. The results of unconstrained, constrained and hybrid optimization revealed

three local optima. The local optima with the worst objective function values are hardly

found using continuous analogue optimization, indicating altered regions of attraction.
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3.3.3.5. Hybrid optimization and continuous analogue provide reliable estimates of

the steady states

The individual optimization methods enforce the steady-state constraints differently. What

all methods have in common is that the steady-state constraint f(θ, x0, wc) = 0 is relaxed

to a constraint on the norm of the vector field, i.e., ||f(θ, x0, wc)||2 < εf . Accordingly,

parameter-state pairs returned by the optimization methods do not fulfill steady-state

constraints exactly. Different optimization methods might even achieve different accu-

racies. In addition, a bound for the difference of the estimated steady state x0 for a

parameter θ and the true steady state ϕ0(θ), ∆x0 = x0 − ϕ0(θ), is usually not available.

We studied the relation of the solver indicating convergence based on the vector field

(||f ||2 < εf ) and the difference of the estimated to the analytical steady-state being small

(||∆x0||2 < εx) for the different optimization methods. In our opinion a good optimizer

should achieve equivalence of the two criteria. This would mean that enforcing the con-

straint of the vector field ensures a good approximation of the steady state. The result is

depicted in Figure 3.8 B for a tolerance of 10−6 for both εf and εx.

The unconstrained optimization used an analytical expression of the steady state and

therefore the two criteria are identical. Hybrid and continuous analogue optimization also

achieved a good agreement of both criteria, with ∼85%. In ∼15% of the cases, the solver

indicated convergence based on the vector field constraint but the steady-state estimate is

off (||∆x0||2 > εx). The precise percentage depended heavily on the retraction factor λ for

the simulation-based optimization method. For the constrained optimization, all possible

combinations were observed and the two criteria agreed in merely 55% of the runs. In

summary, the results indicate that the proposed methods provide reliable estimates for

the steady states while constrained optimization yields many inconsistent parameter-state

pairs.

3.3.3.6. Hybrid optimization and continuous analogue are faster than constrained

optimization

Based on the computation times for individual starts and the average computation time

per converged start (Figure 3.8 C and D), unconstrained optimization using a (usually

not available) analytical expressions for steady states was most efficient. The individual

runs were fast and the percentage of converged starts was high. Hybrid and continuous

analogue methods were roughly 10 times slower but these methods can be applied if

analytical expressions for steady states are not available. Furthermore, these methods
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were 1.5 times faster than constrained optimization due to the improved convergence rate.

Additionally, the fit to the data for the optimal parameters is convincing (Figure 3.8 E).

Accordingly, we conclude that hybrid and continuous analogue optimization are promising

approaches in the presence of multiple steady-state constraints.

3.3.3.7. Retraction factor

As an example, we studied the influence of the retraction factor λ on the convergence

and computation time for NGF-induced ERK phosphorylation. To this end, we consid-

ered retraction factors varying over several orders of magnitude and performed for each of

these λ a multi-start optimization with 100 starts using continuous analogue optimization

with gradient descent and Newton-type descent directions. The results are illustrated in

Figure 3.9. In the case of gradient descent, the computation time decreased with increas-

ing λ, which also resulted in decreasing average computation time per converged start.

Choosing λ > 2000 could not decrease the average computation time further. It could also

be observed that there seems to be an upper limit on the maximal computation time. This

is caused by a restriction on the maximal possible function evaluations allowed. In the

case of a Newton-type descent, increasing λ also decreased the computation time, however,

not as drastically as when using gradient descent. Again, also the average computation

time per converged start decreased, but plateaued at much smaller values of λ than in the

gradient descent case.

3.3.4. Raf/MEK/ERK signaling in HeLa cells after release from S-phase

arrest

The analysis of published data in the previous section was complemented by teaming up

with the group of Angelika Hausser (University of Stuttgart) to study Raf/MEK/ERK

signaling in HeLa cells after release from S-phase arrest. Experimental studies revealed

that cell-cycle is, among others, controlled by Raf/MEK/ERK signaling (Chambard et al.,

2007; Zhang and Liu, 2002). The signaling dynamics in different cell-cycle phases as well

as the cell-cycle-dependent relevance of feedback mechanisms (Fritsche-Guenther et al.,

2011) are however still not completely unraveled although a more thorough understanding

could provide valuable insights into treatment resistance (Fritsche-Guenther et al., 2011).

Using the new data and model selection we studied the relevance of negative feedback

from phospho-ERK to Raf activation during G1/S phase transition.
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Figure 3.9.: Comparison of the influence of retraction factor λ on the computation time and
the average computation time per converged start for the continuous analogue optimization
method using gradient descent and Newton-type descent directions for the NGF-induced ERK
activation model.

In addition to its biological relevance, the Raf/MEK/ERK pathway is well-suited for the

evaluation of the proposed optimization methods and the comparison to state-of-the-art

methods. The pathway is nonlinear, yielding a nonlinear and non-convex optimization

problem. Furthermore, we consider a synchronized cell population which reached a steady

state before the start of the experiment. Accordingly, a steady-state constraint has to be

enforced and fitted along with time-resolved data for perturbation experiments.

3.3.4.1. Experimental data for Raf/MEK/ERK signaling after release from S-phase

arrest

To study the Raf/MEK/ERK pathway, HeLa cells were synchronized and arrested in cell

cycle between cell cycle states G1 and S. The arrest was lifted and the dynamics of phospho-

MEK and phospho-ERK were quantified using Western blotting. This experiment was

repeated after treatment with the inhibitors Sorafenib and UO126 to explore the dynamic
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range of the pathway. Sorafenib is an inhibitor of Raf kinases (Wilhelm et al., 2008) and

UO126 is a highly selective inhibitor of MEK (Favata et al., 1998).

As Western blots are merely semi-quantitive, they only provide the relative activity of

phospho-MEK and phospho-ERK at different time points and under different conditions.

The unknown scaling constants differ between blots and measured species. For a detailed

discussion of characteristics of Western blot data we refer to (Kreutz et al., 2007).

3.3.4.2. Mathematical model for Raf/MEK/ERK signaling after release from

S-phase arrest

Raf/MEK/ERK signaling is induced by myriads of intra- and extracellular signals (Cham-

bard et al., 2007; Kholodenko, 2007). These signals converge on the level of Raf kinase,

which they phosphorylate. The phosphorylated Raf kinase phosphorylates MEK, which

in turn phosphorylates ERK. Phosphorylated ERK induces downstream signaling and can

downregulate the Raf activity (Santos et al., 2007). The latter establishes a negative feed-

back loop (Fritsche-Guenther et al., 2011; Kholodenko, 2000). The activity of Raf and

MEK can be inhibited by Sorafenib and UO126, respectively. The pathway is illustrated

in Figure 3.10.

We developed a model for Raf/MEK/ERK signaling which accounts for the core proteins

as well as their inhibition with Sorafenib and UO126. The model considers six reactions:

R1 : Raf→ pRaf, rate = k1,max(t)ξ(t)[Raf],

R2 : pRaf→ Raf, rate = k2[pRaf],

R3 : MEK→ pMEK, rate =
k3K2[pRaf]

K2 + [sora]
[MEK],

R4 : pMEK→ MEK, rate = k4[pMEK],

R5 : ERK→ pERK, rate =
k5K3[pMEK]

K3 + [UO126]
[ERK],

R6 : pERK→ ERK, rate = k6[pERK].

(3.48)

The upstream signaling is summarized in the time-dependent rate constant k1,max(t) with

the flexible parameterization

k1,max(t) = k1,0 + k1,1

(
1− e−

t
τ1

)
e
− t
τ2 (3.49)
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Figure 3.10.: Schematic of the model considered for the Raf/MEK/ERK signaling after
release from S-phase arrest.

(as proposed in the Data2Dynamics toolbox (Raue et al., 2015)). The effects of Sorafenib

and UO126 are captured by a reduction in the kinase activity of pRaf and pMEK (R3 and

R5), where K2 and K3 are dissociation constants for the binding of the inhibitors (Ingalls,

2013).

Experimental studies showed an inhibition of Raf phosphorylation by pERK (Fritsche-

Guenther et al., 2011). This feedback is however context-dependent (Santos et al., 2007).

To study the importance of this feedback during the G1/S phase transition, we considered

two model hypotheses:

H1: Inhibition of Raf phosphorylation by pERK: ξ(t) = K1
K1+[pERK]

H2: No inhibition: ξ(t) = 1

We assumed that Raf, MEK and ERK are conserved ([Raf] + [pRaf] = [Raf]0, [MEK] +

[pMEK] = [MEK]0 and [ERK] + [pERK] = [ERK]0), yielding the ODE model

d[pRaf]

dt
= k1,max(t)ξ(t)([Raf]0 − [pRaf])− k2[pRaf]

d[pMEK]

dt
=
k3K2[pRaf]

K2 + [sora]
([MEK]0 − [pMEK])− k4[pMEK]

d[pERK]

dt
=

k5K3[pMEK]

K3 + [UO126]
([ERK]0 − [pERK])− k6[pERK],

(3.50)
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with experimental input w = ([sora], [UO126]). The four collected Western blots, b =

1, . . . , 4, provide time-resolved relative data for different experimental inputs,

y1,b = s1,b[pMEK]

y2,b = s2,b[pERK]
(3.51)

with unknown, blot-dependent scaling constants s1,b and s2,b. The experimental noise

for y1,b and y2,b is assumed to be normally distributed and proportional to the scaling

constant, ε1,b ∼ N (0, s2
1,bσ

2
1) and ε2 ∼ N (0, s2

2,bσ
2
2). The unknown variances are denoted

by σ2
1 and σ2

2.

For H1 and H2, model (3.50)-(3.51) possesses more than 20 parameters. Several of

these parameters are structurally non-identifiable, including the absolute abundances

of Raf, MEK and ERK. To circumvent these non-identifiablilities, we reformulate the

model in terms of the fractions of phosphorylated proteins: x1 = [pRaf]/[Raf]0, x2 =

[pMEK]/[MEK]0 and x3 = [pERK]/[ERK]0. This yields

dx1

dt
= k1,max(t)ξ(t)(1− x1)− k2x1

dx2

dt
=
k3[Raf]0K2x1

K2 + [sora]
(1− x2)− k4x2

dx3

dt
=
k5[MEK]0K3x2

K3 + [UO126]
(1− x3)− k6x3

y1,b = s1,b[MEK]0x2

y2,b = s2,b[ERK]0x3

(3.52)

with blot index b = 1, . . . , 4 and rescaled experimental noise ε̃1,b ∼ N (0, s2
1,bσ

2
1/[MEK]20)

and ε̃2,b ∼ N (0, s2
2,bσ

2
2/[ERK]20). The reformulated model does not depend explicitly on

the total abundances [Raf]0, [MEK]0 and [ERK]0 but only on products and ratios of these

parameters with other parameters, e.g., k3[Raf]0. Defining these products and ratios as

new parameters eliminates non-identifiabilities and reduces the number of parameters.

As all parameters are non-negative, a log-parameterization is used for parameter esti-

mation (Raue et al., 2013b). The states of the reformulated model are between 0 and

1. In addition to the kinetic, scaling and noise parameters, the initial conditions of the

models for H1 and H2 are unknown. However, as the cells are arrested in S-phase with

k1,max(0) = k1,0 and w = 0, the initial conditions are the corresponding steady states.

After significant manual preprocessing of the steady-state constraints, analytical expres-

sions ϕ0(θ) for the steady states as a function of the other parameters were calculated

with symbolic math toolboxes. The results for models H1 and H2 can be found in the
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3.3. Application and evaluation

Table 3.2.: Lower bounds, upper bounds and scale used for fitting of the parameters of model
for Raf/MEK/ERK signaling.

Parameter Lower Upper Scale used Bound used Bound used
name bound bound for for for

optimization optimization sampling

Kinetic
parameters

k1,1/k1,0 10−4 102 log yes yes
τ1 10−4 102 log yes yes
τ2 10−4 102 log yes yes

K1/[ERK]0 10−4 102 log yes yes
k1,1 10−4 102 log yes yes
k2 10−4 102 log yes yes
K2 10−4 102 log yes yes

k3[Raf]0 10−4 102 log yes yes
k4 10−4 102 log yes yes
K3 10−4 102 log yes yes

k5[MEK]0 10−4 102 log yes yes
k6 10−4 102 log yes yes

Scaling
parameters

s1,b[MEK]0 10−4 102 log yes yes
s2,b[ERK]0 10−4 102 log yes yes

Noise
parameters

σ2
1 10−10 102 log yes yes
σ2

2 10−10 102 log yes yes

Initial
conditions

x0,1 0 1 linear no yes
x0,2 0 1 linear no yes
x0,3 0 1 linear no yes

Appendix A. The properties of the parameters for the model of Raf/MEK/ERK signaling

after release from S-phase arrest are provided in Table 3.2.

3.3.4.3. Parameter estimation problem with multiple perturbation data sets

We inferred the model parameters and initial conditions from the Western blot data using

ML estimation. The data set provides time-resolved data for three conditions (control &

two perturbations), all starting from the same steady-state. The optimization problem

was solved using multi-start local optimization. The local optimization was performed

using unconstrained, constrained and hybrid optimization as well as continuous analogue

optimization using gradient and Newton-type descent. Each method started at the same

points. As in the previous example, we added the diagonal of FIM(θ) and the maximal

diagonal value to the FIM, diag(FIM(θ, x0)) + maxi(FIMii(θ, x0)) instead of µI.
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Figure 3.11.: Parameter estimation results for Raf/MEK/ERK signaling in HeLa cells.
(A) Convergence and (B) computational efficiency of local optimization methods for the model
with the negative feedback loop (H1). (C) Best fit of the model with the negative feedback
loop (H1) to data for three different treatment conditions. pMEK and pERK signals are
rescaled with the respective maximum activity and the light gray areas indicates 2-σ interval
of the measurement noise.

The starting points for local optimizations were obtained using Latin hypercube sampling

(see Table 3.2). The maximal number of iterations and function evaluations performed

by fmincon were increased to 2000 and 2000nθ for the unconstrained and constrained

optimization. For the hybrid optimization, the maximal number of iterations was increased

to 2000. The results for 100 starts of the local optimizations for the model of H1 are

depicted in Figure 3.11 A and B.

3.3.4.4. Hybrid and continuous analogue optimization outperforms constrained

optimization

Unconstrained optimization using the analytical expression for the steady state – the

gold standard – converged in ∼50% of the starts (Figure 3.11 A). Hybrid and continuous
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3.3. Application and evaluation

analogue optimization methods achieved a percentage of converged starts comparable to

the gold standard (40-60%), but without requiring an analytical expression for the steady

state. Constrained optimization – the state-of-the-art – converged in less than 10% of the

starts, resulting in a relatively large computation time per converged start (Figure 3.11 B).

Even though hybrid and continuous analogue optimization were slower than the gold

standard, they were more than 10 times faster than constrained optimization. Hence,

the proposed optimization methods also outperformed constrained optimization for this

problem.

A detailed comparison of the proposed methods revealed that continuous analogue op-

timization using gradient descent achieved the highest percentage of converged starts.

However, hybrid optimization required fewer simulations of the perturbation experiments

– the time-consuming step – rendering this method computationally more efficient. Con-

tinuous analogue optimization using Newton-type descent was the least efficient of the

proposed methods. This might be related to the challenges in tuning the regularization

parameters.

3.3.4.5. Model selection reveals importance of negative feedback

The model with negative feedback (H1) fitted the experimental data (Figure 3.11 C).

It captured the transient phosphorylation of MEK and ERK after release from S-phase

arrest and the reduced ERK phosphorylation in the presence of Sorafenib and UO126.

Furthermore, the increased MEK phosphorylation after UO126 treatment is explained

via a decrease in the strength of the negative feedback which is caused by the reduced

abundance of pERK. The model without the negative feedback loop (H2) was not able to

capture the difference between the control condition and the simulation with UO126. The

value of the Bayesian Information Criterion (BIC) (Schwarz, 1978) is 278.4 for the model

with negative feedback (H1) and 317.4 for the model without negative feedback (H2). The

difference of 39.0 indicates a strong preference for H1 (Burnham and Anderson, 2002). The

same conclusion was reached using the Akaike Information Criterion (AIC) (Akaike, 1978).

We conclude that Raf phosphorylation is inhibited by pERK during G1/S phase transition.

To summarize, in this section we illustrated the proposed hybrid and continuous analogue

optimization methods. The applicability of the methods was demonstrated by studying

relevant biological problems. The comparison with state-of-the-art methods revealed con-

vergence and computational efficiency. The study of Raf/MEK/ERK signaling using the

methods underlined the feedback regulation of ERK phosphorylation during cell cycle

progression.
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3.4. Discussion

Optimization problems with steady-state constraints arise in many biology applications

for a wide range of ODE models (Hass et al., 2019). For some models an analytical

expression for the steady state can be derived and used to eliminate the steady-state con-

straints (Rosenblatt et al., 2016). While this is favorable, it is not always possible. In

cases in which no analytical expressions are available, the vector of optimization variables

contains the unknown parameters as well as the corresponding steady states. The opti-

mizers have to evolve on the non-linear manifold, the set of steady states. To address

Problem 3.1.1 posed in Section 3.1.4, we proposed a hybrid optimization method and a

continuous analogue to solve optimization problems with steady-state constraints more

efficiently by exploiting the local geometry of the steady-state manifold. For the contin-

uous analogue, we established local asymptotic stability of optimal points using singular

perturbation theory. This result is however restricted to locally strictly convex objective

functions implying local practical identifiability. The properties in the presence of practi-

cal and structural non-identifiability remain to be analyzed. Preliminary results and the

applications suggest that in the presence of non-identifiabilities the continuous analogue

optimization method yields a point on the non-identifiable subspace. Furthermore, the

available proof shows the retraction factor λ has to be chosen large enough to ensure con-

vergence. However, as too large λ will result in a stiff system, an intelligent choice of λ is

necessary.

The proposed hybrid and continuous analogue optimization methods were evaluated using

five models for biological processes. Following simple illustration examples using simu-

lated data, an application with multiple steady-state constraints and an application with

time-resolved data for multiple perturbation conditions were considered. For this rich set

of scenarios we found that the hybrid and the continuous analogue optimization meth-

ods possessed improved convergence properties in comparison to standard constrained

optimization methods implemented in the MATLAB routine fmincon. We expect that

the proposed methods also outperform alternative optimization routines, e.g., IPOPT

(Wächter and Biegler, 2006). However, this remains to be analyzed. The proposed op-

timization methods yielded convergence properties comparable to those of unconstrained

optimization methods exploiting an analytical expression for the steady state. However,

if analytical expressions for the steady state can be determined using available meth-

ods (Halász et al., 2013; Loriaux et al., 2013; Rosenblatt et al., 2016), unconstrained opti-

mization should be used as the computation time is lower. The proposed methods are also

applicable to a broader class of problems for which no analytical expression for the steady
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state is available. Furthermore, the method directly allows for multiple steady-state con-

straints. Unlike methods based on sequential geometric programming (Pozo et al., 2011;

Xu, 2013), steady-state and kinetic data can be incorporated.

The implementation of the hybrid optimization method employed in this study is a

simulation-based retraction operator. Alternatively, efficient and accurate schemes com-

bining simulation and local optimization could be employed to compute steady states and

sensitivities (Shiraishi et al., 2014). This should improve the computational efficiency

further.

Preliminary results suggested that the methods also achieve good convergence for dynami-

cal systems with multiple stable steady states and bifurcations (Müller and Kuttler, 2015)

(Section 3.3.2). The theoretical analysis of the proposed methods and a detailed perfor-

mance evaluation for dynamical systems with such properties remain to be addressed.

In summary, the proposed optimization methods are promising alternatives to constrained

optimization for optimization problems with steady-state constraints. They are applica-

ble to a wide range of ODE-constrained optimization problems (Hasenauer et al., 2014;

Zechner et al., 2012) and can – unlike methods which rely on an analytical expression for

the steady state – be extended to PDE constrained optimization problems (Hock et al.,

2013).
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Chapter 4.

PDE constrained problems with additional

steady-state constraints

In the previous chapter, we developed, among others, a continuous analogue for the opti-

mization of ODE constrained problems with an equality constraint derived from a steady-

state condition. A natural extension is to consider biological processes that are described

by PDEs. In this chapter, we introduce the mathematical formulation of the research

question (Section 4.1). Consequently, we extend the continuous analogue framework to

PDE constrained optimization problems (Section 4.2) and analyze the stability of optimal

points (Section 4.3). We illustrate the novel approach using simulated data of a model

of gradient formation in biological tissues and compare the novel approach to standard

optimization (Section 4.4). Beyond the generalization of the results of the previous chap-

ter for ODEs to function spaces, we provide rationales and constraints for the choice of

tuning parameters, in particular of the retraction factor. The properties of the continuous

analogues are studied in for a model of gradient formation in biological tissues.

The content, text, data and figures of this chapter are based on and in part identically

with the paper Continuous analogue to iterative optimization for PDE-constrained inverse

problems by Romana Boiger, Anna Fiedler, Jan Hasenauer and Barbara Kaltenbacher

published in Inverse Problems in Science and Engineering, 27:6, 710–734, 2019 (Boiger

et al., 2019).

4.1. Introduction and mathematical problem formulation

In the field of mathematical biology, PDEs are often used to describe spatio-temporal pro-

cesses (Saunders et al., 2012), population dynamics (Luzyanina et al., 2014) and stochastic
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processes (Risken and Frank, 1996). In some of these applications steady states arise natu-

rally due to fast equilibration. For example substance gradients are formed and sustained

in some tissues to provide positional information to cells sensing the substance (see also

Chapter 4.4). Further, a process might also start initially in steady state and then show

transient dynamic behavior caused by the change of some external factors. Both cases

lead to additional steady-state constraints for the parameter estimation. In the following,

we introduce steady-state constraints for PDE constrained optimization for elliptic and

parabolic PDEs and formulate the research problem.

4.1.1. Formulation of mathematical model

In this section, we describe the general setting for PDE constrained optimization with

additional steady-state constraints. To embed the PDE models in a functional analytic

setting, we consider a separable Banach space V with dual space V ∗. Further, let V be

continuously and densely embedded into a Hilbert space H, such that V ⊆ H ∼= H∗ ⊆ V ∗

forms a Gelfand triple.

We study elliptic and parabolic PDE models. In the parabolic case, the initial condition

u0 ∈ V of the parabolic PDE is defined as the solution of an elliptic PDE,

ut(t) = C(θ, t, u(t)), t ∈ ]0, T [

u(0) = u0,
(4.1)

with

0 = C0(θ, u0), (4.2)

in which u0 denotes a stable steady state of the unperturbed system, while u ∈W (0, T ) =

L2(0, T ;V )∩H1(0, T ;V ∗) denotes the transient solution of the perturbed system starting

in the steady state of the unperturbed system u0. The parameters θ are assumed to be

finite dimensional and real-valued, θ ∈ Rnθ and the dynamics are given by the operators

C : Rnθ× ]0, T [×V → V ∗ and C0 : Rnθ × V → V ∗. For this PDE, existence of a weak

solution holds, e.g., under Assumption 2.1.1 (Zeidler, 1990, p.770 ff.) for C. Here, we

assume that the assumption holds for all parameters θ in a neighborhood around the

optimal parameters θ∗, i.e., θ ∈ Bεθ(θ
∗) = {θ ∈ Rnθ | ‖θ − θ∗‖ < εθ} ⊆ Rnθ for some

εθ > 0. For the differential operator C0, the first two items in Assumption 2.1.1 are

assumed to hold, cf. Assumption 4.3.2 below.

For each t and θ the observables of the models are defined via observation operators

B : Rnθ× ]0, T [×V → Z and B0 : Rnθ × V → Z0 for some observation spaces Z,Z0 that
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are Hilbert spaces,

y(θ, t) = B(θ, t, u(t)) , y0(θ) = B0(θ, u0). (4.3)

In mathematical biology, the differential operator C is often semi-linear and describes a

reaction-diffusion-advection equation,

C(θ, t, u) = f(k, u)−∇x · (vu−D∇xu),

in which u(t) ∈ V is a concentration vector, x ∈ Ω ⊆ Rn is the spatial location, and

f : Rnk × V → V ∗ is the reaction term. The parameters θ = (k, v,D) are the velocity

vector v ∈ Rn, the diffusion matrix D ∈ Rn×n, and the kinetic parameters k ∈ Rnk . As-

sumption 2.1.1 is satisfied, if D is positive definite and f fulfills a certain growth condition.

4.1.2. Parameter estimation problem

The unknown model parameters θ are estimated from noise-corrupted measurements of

the observables y by minimizing an objective function, e.g., the negative log-likelihood or

the sum-of-squared-residuals. In the following, we distinguish two cases: Problems with

elliptic and parabolic constraints and problems with only elliptic constraints.

Elliptic and parabolic PDE constraints In the general case, observations are available for

the initial state and the transient phase. The objective function J̃ depends on the parame-

ters and the parameter-dependent solutions of the parabolic and the elliptic PDE, J̃ : Rnθ×
V ×W (0, T ) → R, e.g., J̃(θ, u0, u) = 1

2‖y0 − B0(θ, u0)‖2Z0
+ 1

2

∫ T
0 ‖y(t) − B(θ, t, u)‖2Z dt.

The optimization problem is given by

min
θ,u0,u

J̃(θ, u0, u)

s.t.

ut = C(θ, t, u), u(0) = u0

0 = C0(θ, u0)

(4.4)

Elliptic PDE constraint In many applications, only experimental data for the steady

state of a process are available, e.g., due to fast equilibration of the process. In this case,

the problem is simplified and the objective function J depends only on the parameters
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and parameter-dependent solutions of the elliptic PDE, J : Rnθ × V → R, e.g., J(θ, u0) =
1
2‖y0 −B0(θ, u0)‖2Z0

. The optimization problem is given by

min
θ,u0

J(θ, u0)

s.t. 0 = C0(θ, u0).
(4.5)

The reduced formulation of the optimization problem (4.5) is given by

min
θ
{j(θ) := J(θ, ϕ0(θ))}, (4.6)

in which ϕ0(θ) ∈ V now denotes the (infinite dimensional) parameter-dependent solution

of C0(θ, u0) = 0 and j : Rnθ → R denotes the reduced objective function.

4.1.3. Problem formulation

Most numerical methods for PDE-constrained optimization problems and literature on

parameter estimation in special applications focus on iterative methods, which generate

a discrete sequence of points along which the objective function decreases (Banks and

Kunsich (1989); Bock et al. (2013); Carvalho et al. (2015); Hinze et al. (2009); Ito and Ku-

nisch (2008); Nielsen et al. (2013); Xun et al. (2013) and references therein). However, for

many constrained and unconstrained optimization problems, continuous analogues exhibit

larger regions of attraction and more robust convergence than discrete iterative methods

(Tanabe, 1985). Based on the findings of improved convergence and run time in the pre-

vious chapter, we set out to develop a continuous analogue approach for PDE constrained

optimization problems (see Airapetyan et al. (2000); Kaltenbacher et al. (2002); Tanabe

(1979, 1980, 1985); Watson (2001) and references therein).

Problem 4.1.1. Given optimization problems (4.4) and (4.5), develop a continuous ana-

logue for parameter estimation that exploits the local structure of the problem and investi-

gate the properties of the developed approach.

As already outlined in the previous chapter, the continuous analogue depends on a tuning

parameter, the retraction factor λ. It is not clear how to choose the retraction factor a

priori. Too small choices might not guarantee convergence and too large choices increase

the stiffness of the continuous analogue. Hence, we also consider the problem:

Problem 4.1.2. Given the continuous analogue, determine the influence of the retraction

factor and derive a lower bound for it.
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4.2. Continuous analogue of descent methods for PDE

constrained problem

In this section, we develop a continuous analogue of an iterative descent method for op-

timization problems of type (4.4) and (4.5). For simplicity, we first consider elliptic PDE

constraints (4.5) and afterwards generalize the results to mixed parabolic and elliptic PDE

constraints (4.4).

4.2.1. Elliptic PDE constraints

To address Problem 4.1.1, we derive a coupled ODE-PDE system for the solution of opti-

mization problem (4.5). The trajectory of this continuous analogue evolves in parameter

and state space on the manifold defined by C0(θ, u0) = 0 towards a local minimum by

exploiting the first order geometry of the manifold, i.e., its tangent space.

Mathematically, the first order geometry of C0(θ, ϕ0(θ)) = 0 is defined by the sensitivity

equations
∂C0

∂u0
(θ, ϕ0(θ))

∂ϕ0

∂θi
(θ) +

∂C0

∂θi
(θ, ϕ0(θ)) = 0 , i ∈ {1, . . . , nθ}. (4.7)

The sensitivity equations can be reformulated to

∂ϕ0

∂θi
(θ) = −

(
∂C0

∂u0
(θ, ϕ0(θ))

)−1 ∂C0

∂θi
(θ, ϕ0(θ)) , i ∈ {1, . . . , nθ},

provided the inverse of ∂C0
∂u0

(θ, ϕ0(θ)) exists. We extend ∂ϕ0

∂θi
to points (θ, u0) not necessarily

lying on the solution manifold of C0 = 0 by defining the operator S0 : Rnθ × V → V nθ ,

that provides the solution of the sensitivity equations

∂C0

∂u0
(θ, u0)S0i(θ, u0) +

∂C0

∂θi
(θ, u0) = 0 , i ∈ {1, . . . , nθ}, (4.8)

for given θ and u0. With (4.7) it holds that

S0(θ, ϕ0(θ)) = ∇θϕ0(θ), (4.9)

provided the solutions to (4.7) and (4.8) are unique.

In order to couple changes in θ with appropriate changes in the state variable u0, we

use the fact that the function ∇θϕ0(θ) provides the first order term of the Taylor series
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expansion of the steady state with respect to the parameter vector θ,

ϕ0(θ + r∆θ) = ϕ0(θ) +∇θϕ0(θ)r∆θ + o(r) as r → 0 , r ∈ R . (4.10)

Defining ϕ̂0(r) := ϕ0(θ + r∆θ) for some ∆θ ∈ Rnθ and differentiating (4.10) with respect

to r yields

dϕ̂0

dr
(r) = ∇θϕ0(θ)∆θ + o(1) = S0(θ + r∆θ, ϕ̂0(r))∆θ + o(1) as r → 0 . (4.11)

This relation motivates the formulation of the coupled ODE-PDE model in θ and u0

dθ

dr
(r) = g(θ, u0), θ(0) = θ0

du0

dr
(r) = S0(θ, u0)

dθ

dr
(r) = S0(θ, u0)g(θ, u0), u0(0) = u0,0

(4.12)

using the artificial time parameter r. For a change in the parameters dθ
dr , the update in u0

is chosen according to (4.11). Solutions of this dynamical system evolve on the manifold

C0(θ(r), u0(r)) = 0 for arbitrary parameter update directions g : Rnθ×V → Rnθ , provided

that the initial state is on the manifold C0(θ0, u0,0) = 0. The state variables of this

coupled ODE-PDE system are θ and u0, and the path variable is r. To solve optimization

problem (4.6), g is chosen as an arbitrary descent direction satisfying

∇j(θ)T g(θ, u0) < 0 , (4.13)

more precisely satisfying Assumption 4.3.5 below. For example, g can be chosen as a

steepest descent direction

g = argmin
||v||∗≤1

∇j(θ)T v (4.14)

for some norm || · ||∗. For the Euclidian norm we obtain the gradient descent direction,

gi(θ, u0) := − ∂J
∂θi

(θ, u0)−
〈
∂J

∂u0
(θ, u0), S0i(θ, u0)

〉
V ∗,V

=: di(θ, u0) , i ∈ {1, . . . , nθ},

(4.15)

in which we substituted ϕ0(θ) by u0 extending the definition also to states u0 that are not

on the steady-state manifold. Likewise, defining ||v||2∗ := vTH(θ, u0)v with some positive

definite matrix H(θ, u0), so that

g(θ, u0) = H(θ, u0)−1d(θ, u0) (4.16)
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leads to a descent direction. Using, e.g., the Hessian of j leads to Newton, Gauss-Newton

(by excluding second order sensitivities) or quasi-Newton methods (where approximations

to the Hessian are computed via low rank updates). As the Hessian is not guaranteed to

be positive definite, regularization with a scaled identity matrix, Hµ(θ, u0) = H(θ, u0)+µI

with µ > 0, might be useful. However, how to choose µ and potential continuous update

rules are out of the scope of this work.

The coupled ODE-PDE systems (4.12) can be solved using numerical time stepping meth-

ods. These numerical methods might however accumulate errors resulting in the divergence

of the state (θ(r), u0(r)) from the steady-state manifold. Additionally, the initial state,

u0,0 might not be on the steady-state manifold. To account for this, we include the retrac-

tion term λC0(θ, u0) in the evolution equation of u0, with retraction factor λ > 0. This

yields the following continuous analogue of a descent method for optimization problems

with elliptic PDE constraints,

dθ

dr
(r) = g(θ, u0), θ(0) = θ0

du0

dr
(r) = S0(θ, u0)g(θ, u0) + λC0(θ, u0), u0(0) = u0,0.

(4.17)

As, for fixed θ, the equation C0(θ, u0) = 0 defines a stable steady state of the PDE (4.2),

the retraction term stabilizes the manifold. For λ � 1, the system should first converge

to the steady state ϕ0(θ0) for the initial parameter θ0 and then move along the manifold

to a local optimum θ∗ as illustrated in Figure 4.1.

4.2.2. Elliptic and parabolic PDE constraints

The continuous analogue for descent methods with elliptic PDE constraints can be gener-

alized to problems with parabolic and elliptic PDE constraints. One possibility for doing

so is to consider the partially reduced problem

min
θ,u0
J̃ (θ, u0) := J̃(θ, u0, ϕ(θ, u0))

s.t. 0 = C0(θ, u0).
(4.18)

in which u = ϕ(θ, u0) denotes the solution to ut = C(θ, t, u) with u(0) = u0. Given this

formulation, we can use continuous analogue (4.17) with

g̃i(θ, u0) = −∂J̃
∂θi

(θ, u0)− ∂J̃
∂u0

(θ, u0)S0i(θ, u0) , i ∈ {1, . . . , nθ}. (4.19)
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Figure 4.1.: The state of the system is illustrated along the trajectory of (4.17). In the
first phase, the equilibration phase, the system converges to the manifold. The solution is
not feasible during this phase as the equality constraint, C0(θ, u0) = 0, is violated. In the
course of the equilibration the objective function value might increase. In the second phase,
the minimization phase, the objective function is minimized along the steady-state manifold.

To avoid the need for the solution operator ϕ : Rnθ × V → W (0, T ), alternatively, a

continuous analogue of the full problem can also be formulated. This is beyond the scope

of this work and will be subject of future research.

4.3. Local stability and convergence to a local optimum

The behavior of the coupled ODE-PDE system (4.17) introduced in the previous section

depends on the properties of the objective function and the PDE model, as well as the

retraction factor λ. To prove that a solution of (4.17) with an appropriate retraction factor

λ is well defined and converges to the local minimizer (θ∗, u∗0) = (θ∗, ϕ0(θ∗)) of (4.5), we

impose the following assumptions:
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4.3. Local stability and convergence to a local optimum

Assumption 4.3.1. The descent direction vanishes at the minimizer θ∗ of the optimiza-

tion problem minθ j(θ),

g(θ∗, ϕ0(θ∗)) = 0 .

Assumption 4.3.2. There exists εθ > 0 such that for all θ ∈ Bεθ(θ∗) = {θ ∈ Rnθ | ‖θ − θ∗‖
< εθ} ⊆ Rnθ , the following holds:

• The operator −C0(θ, ·) is monotone and hemicontinuous.

• The operator −C0(θ, ·) is coercive.

Assumption 4.3.3. The function C0(θ, u0) is locally uniformly monotonically decreasing,

i.e., there exist γc > 0 and εu0 > 0 such that

〈
C0(θ, u1

0)− C0(θ, u2
0), u1

0 − u2
0

〉
V ∗,V

≤ −γc‖u1
0 − u2

0‖2V

for all θ ∈ Bεθ(θ∗) and u1
0, u

2
0 ∈ Bεu0 (ϕ0(θ∗)) := {u0 ∈ V | ‖u0 − ϕ0(θ∗)‖V < εu0}.

Assumption 4.3.4. The sensitivity S0(θ, u0) is locally Lipschitz continuous with respect

to u0, i.e., there exists LS0 ≥ 0 such that

‖S0(θ, u1
0)− S0(θ, u2

0)‖V nθ ≤ LS0‖u1
0 − u2

0‖V

for all θ ∈ Bεθ(θ∗) and u1
0, u

2
0 ∈ Bεu0 (ϕ0(θ∗)).

Assumption 4.3.5. The mapping θ 7→ g(θ, ϕ0(θ)) is uniformly monotonically decreasing

on Bεθ(θ
∗), i.e., there exists γg > 0 such that

(g(θ, ϕ0(θ))− g(θ∗, ϕ0(θ∗)))T (θ − θ∗) ≤ −γg‖θ − θ∗‖2

for all θ ∈ Bεθ(θ∗).

Assumption 4.3.6. The descent direction g is locally Lipschitz continuous with respect

to u0, i.e., there exists Lg ≥ 0 such that

‖g(θ, u1
0)− g(θ, u2

0)‖ ≤ Lg‖u1
0 − u2

0‖V

for all θ ∈ Bεθ(θ∗) and u1
0, u

2
0 ∈ Bεu0 (ϕ0(θ∗)) ⊆ V .

Moreover, g is uniformly bounded on Bεθ(θ
∗)×Bεu0 (ϕ0(θ∗)), i.e there exists Kg ≥ 0 such

that

‖g(θ, u0)‖ ≤ Kg

for all (θ, u0) ∈ Bεθ(θ∗)×Bεu0 (ϕ0(θ∗)).
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Chapter 4. PDE constrained problems with additional steady-state constraints

4.3.1. Elliptic PDE constraints

Using Assumptions 4.3.1-4.3.6 and the existence of a weak solution (Assumption 2.1.1), we

can prove the following theorem on stability and convergence for the continuous analogue

of the descent method for elliptic PDE constraints:

Theorem 4.3.1. Let Assumptions 4.3.1-4.3.6 be satisfied. Then there exists a λ∗ ≥ 0

such that for all λ > λ∗ solutions to (4.17) are well-defined for all r > 0 and the local

minimizer (θ∗, u∗0) of the optimization problem (4.5) is a locally exponentially stable steady

state of the system (4.17).

Proof. Define θ̃ := θ − θ∗ and ũ0 := u0 − ϕ0(θ), with θ ∈ Bεθ(θ∗) and u0 ∈ Bεu0 (ϕ0(θ∗)),

where ϕ0(θ∗) = u∗0 exists, because of Assumption 4.3.2. We further define a Lyapunov

function V(r) = 1
2‖θ̃(r)‖

2 + 1
2‖ũ0(r)‖2H . To prove Theorem 4.3.1, we will show that the

Lyapunov function decreases exponentially. The derivative along the trajectories is given

by
d

dr
V(r) =

d

dr

(
1

2
‖θ̃(r)‖2

)
+

d

dr

(
1

2
‖ũ0(r)‖2H

)
.

First, we bound the first summand from above, using (4.17), and Assumptions 4.3.1, 4.3.5

and 4.3.6,

d

dr

1

2
‖θ̃‖2 =

(
d

dr
θ̃

)T
θ̃

= (g(θ, u0)− g(θ, ϕ0(θ)))T θ̃ + (g(θ, ϕ0(θ))− g(θ∗, ϕ0(θ∗)))T θ̃

≤ ‖g(θ, u0)− g(θ, ϕ0(θ))‖‖θ̃‖ − γg‖θ − θ∗‖2

≤ Lg‖ũ0‖‖θ̃‖ − γg‖θ̃‖2.

Second, we bound the second summand from above, using (4.17) and C0(θ, ϕ0(θ)) = 0, as

well as the fact that by Assumption 4.3.3 we have (4.9),

d

dr

1

2
‖ũ0‖2H =

(
dũ0

dr
, ũ0

)
V ∗,V

=

(
du0

dr
−∇θϕ0(θ)

dθ

dr
, ũ0

)
V ∗,V

= ((S0(θ, u0)− S0(θ, ϕ0(θ)))g(θ, u0), ũ0)V ∗,V

+ λ (C0(θ, u0)− C0(θ, ϕ0(θ)), ũ0)V ∗,V

≤ ‖ (S0(θ, u0)− S0(θ, ϕ0(θ))) ‖V nθ ‖g(θ, u0)‖‖ũ0‖V
+ λ (C0(θ, u0)− C0(θ, ϕ0(θ)), ũ0)V ∗,V .
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4.3. Local stability and convergence to a local optimum

With Assumptions 4.3.3, 4.3.4 and 4.3.6 we get

d

dr

1

2
‖ũ0‖2H ≤ (LS0Kg − λγc)‖ũ0‖2V .

Hence, we can estimate the derivative of the Lyapunov function,

d

dr
V(r) ≤ −(−LS0Kg + λγc)‖ũ0‖2V + Lg‖ũ0‖V ‖θ̃‖ − γg‖θ̃‖2 .

To show that V decays exponentially we have to show that

d

dr
V(r) ≤ −aV(r)

for some a > 0. Based on our estimates, proving Theorem 4.3.1 reduces to finding a > 0

with

0 ≤ (−LS0Kg + λγc −
a

2
)‖ũ0‖2V − Lg‖ũ0‖V ‖θ̃‖+ (γg −

a

2
)‖θ̃‖2 (4.20)

We want this inequality to be valid without restrictions on ‖θ̃‖ or ‖ũ0‖V . Due to the last

term, we can therefore only consider values of a that are smaller than 2γg. Hence, (4.20)

is equivalent to

0 ≤

(√
γg −

a

2
‖θ̃‖ − Lg

2
√
γg − a

2

‖ũ0‖V

)2

+

(
−LS0Kg + λγc −

a

2
−

L2
g

4(γg − a
2 )

)
‖ũ0‖2V .

Since the first term in the inequality is greater or equal to 0, we have to find a > 0 such

that

λγc −
a

2
− LS0Kg −

L2
g

4(γg − a
2 )
≥ 0.

Multiplying with 4γg − 2a we obtain a quadratic inequality for a

a2 + 2(−γg − λγc + LS0Kg)a+ (4λγcγg − 4LS0Kgγg − L2
g) ≥ 0.

The roots of the quadratic polynomial are given by

a1,2 = γg + λγc − LS0Kg ±
√
d,

with discriminant

d = (γg − λγc + LS0Kg)
2 + L2

g .
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Chapter 4. PDE constrained problems with additional steady-state constraints

a2a12�ga0 a2a1 2�ga0 a a2a1 2�ga0

Figure 4.2.: The function f(a) = a2 +(−2γg−2λγc +2LS0
Kg)a+(4λγcγg−4LS0

Kgγg−L2
g)

is illustrated with the two roots a1 and a2 and the three different positions of 2γg, as well as
possible positions of a.

The discriminant is always positive, therefore, a1 = γg + λγc − LS0Kg −
√
d < a2 =

γg +λγc−LS0Kg +
√
d are real roots. In the following, we will assume that a1 > 0, which

can be achieved by choosing λ such that λ > λ∗ =
LS0Kg
γc

+
L2
g

4γgγc
≥ 0. This choice is

justified as follows. As the square root,
√
d, is always positive, γg + λγc−LS0Kg > 0, i.e.,

λ >
LS0Kg−γg

γc
needs to hold to ensure a1 > 0. Squaring both sides of the inequality

γg + λγc − LS0Kg >
√
d (4.21)

yields

(γg + λγc − LS0Kg)
2 > (γg − λγc + LS0Kg)

2 + L2
g

⇔ λ >
L2
g

4γgγc
+
LS0Kg

γc
.

Taking λ > λ∗ := max
{
LS0Kg−γg

γc
,

L2
g

4γgγc
+

LS0Kg
γc

}
=

L2
g

4γgγc
+

LS0Kg
γc

ensures a1 > 0.

Therefore, a either fulfills 0 < a < a1 with a < 2γg or a2 < a < 2γg, provided λ > λ∗.

Hence, we distinguish the following three cases

(1) 2γg < a1 < a2,

(2) a1 < a2 ≤ 2γg,

(3) a1 ≤ 2γg ≤ a2;

for the relation of 2γg, a1 and a2 as illustrated in Figure 4.2.

Case (1): 2γg < a1 is equivalent to

λγc − LS0Kg − γg >
√
d.
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4.3. Local stability and convergence to a local optimum

If the term λγc − LS0Kg − γg is negative, the inequality cannot be valid. The term

λγc−LS0Kg−γg is non-negative if λ ≥ γg+LS0Kg
γc

. In this case we can square the inequality

and get a contradiction (0 > L2
g).

Case (2): a2 ≤ 2γg is equivalent to

√
d ≤ γg + LS0Kg − λγc.

This leads to a contradiction with the same arguments as in case (1).

Case (3): a1 ≤ 2γg is equivalent to

−γg + λγc − LS0Kg ≤
√
d.

The left hand side −γg+λγc−LS0Kg is non-negative for all λ ≥ γg+LS0Kg
γc

. With squaring

we get 0 ≤ L2
g. On the other hand if the term −γg + λγc − LS0Kg is negative, that is

λ <
γg+LS0Kg

γc
, we have

√
d > 0. This is true for all λ, because d > 0. In total, we find

a1 ≤ 2γg for all λ > 0. Analogously we get for a2 that a2 ≥ 2γg is fulfilled for all λ > 0.

Hence, we know that a1 ≤ 2γg ≤ a2 holds for all λ > 0 and only case (3) is valid.

Altogether, we find that a lies in the interval [0, a1] provided λ > λ∗. In this case it also

holds that

d

dr
V(r) ≤ −a

2

(
‖ũ0(r)‖2V + ‖e(r)‖2

)
≤ − a

2K2
V→H

‖ũ0(r)‖2H −
a

2
‖e(r)‖2 ≤ −ãV(r) ,

with ã = −a
2 min

{
1

K2
V→H

, 1
}

, where KV→H is the embedding constant.

Remark 4.3.1. To tune the choice of the retraction factor λ, we now consider the fact

that the value of a determines the speed at which V(r) decreases, thus a convenient choice

of the retraction factor λ > λ∗ maximizes a to yield the fastest exponential decay. In our

case this means maximizing a(λ) = a1 = γg +λγc−LS0Kg −
√
d(λ) with respect to λ. An

elementary computation yields

da

dλ
(λ) = γc +

γgγc − λγ2
c + LS0Kgγc√
d(λ)

≥ 0

with equality iff Lg = 0, thus λ 7→ a(λ) is monotonically increasing (strictly, if Lg > 0)

and therefore

sup
λ∈(λ∗,∞)

a(λ) = lim
λ→∞

a(λ) = lim
λ→∞

γg + λγc − LS0Kg −
√

(γg − λγc + LS0Kg)2 + L2
g = 2γg.
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Chapter 4. PDE constrained problems with additional steady-state constraints

In case Lg = 0 we have a(λ) = γg + λγc − LS0Kg − |γg − λγc + LS0Kg|. Distinguishing

the two cases for the absolute value yields the maximal value a(λ) = 2γg, attained at all

λ ≥ γg−LS0Kg
γc

.

This shows that (unless Lg = 0) the exponential decay is maximized by choosing λ > λ∗

as large as possible. Nevertheless, in practice, λ should not be chosen too large in order

to avoid stiffness of system (4.17).

Remark 4.3.2. The proof provides a lower bound for the retraction factor λ, namely

λ > λ∗ =
L2
g

4γgγc
+

LS0Kg
γc

(cf. Problem 4.1.2). In specific applications it might not always

be possible to explicitly compute all involved constants. If this is the case, an alternative

Lyapunov function can be used to derive a lower bound for λ. A possible candidate for this

Lyapunov function is

V(r) = j(θ(r))− j(θ∗) +
1

2
‖u0 − ϕ0(θ(r))‖2H . (4.22)

With this choice and analogous computations as above, different lower bounds involving

different constants can be derived. The lower bound for the retraction factor can be esti-

mated as λ > λ̂∗ = L̂
γc

+
L̂2
g

4γc
with

L̂ =


((S0(θ, u0)− S0(θ, ϕ0(θ)))g(θ, u0), u0 − ϕ0(θ))V ∗,V

‖u0 − ϕ0(θ)‖2V
, if u0 6= ϕ0(θ)

0, else

(4.23)

and

L̂g =


g(θ, ϕ0(θ))T (g(θ, ϕ0(θ))− g(θ, u0))

‖u0 − ϕ0(θ)‖V ‖g(θ, ϕ0(θ))‖
, if u0 6= ϕ0(θ) and g(θ, ϕ0(θ)) 6= 0

0, else.

(4.24)

This bound depends on θ, the current parameter estimates during computation, and there-

fore requires a posteriori adaptation of the retraction factor. A practical implementa-

tion of such a retraction factor choice involves evaluation of functionals of the residuals

g(θ, ϕ0(θ))− g(θ, u0), u0 − ϕ0(θ) as well as sensitivities (S0(θ, u0)− S0(θ, ϕ0(θ)))g(θ, u0)

(which can be done approximately, on a coarser computational mesh, and using adjoint

techniques).

Remark 4.3.3. If the local minimum at θ∗ is not strict and we find a submanifold of

optimal parameters, i.e., the parameters are structurally unidentifiable, g(θ, ϕ0) defined

by (4.15) is not uniformly monotone, but just monotone, i.e., formally γg = 0, using a

projection P on the orthogonal complement of the null space of ∇2j(θ∗) might facilitate the
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proof of convergence on this subspace. A possible Lyapunov function in this case is given

by V(r) = 1
2‖Pg(θ, ϕ0(θ))‖2 + 1

2‖u0 − ϕ0(θ)‖2X . Denoting the smallest positive eigenvalue

of dg
dθ (θϕ0(θ)) with µ, we require that ξTP dg

dθ (θ, ϕ0(θ))ξ ≤ −µ‖Pξ‖2 for all ξ ∈ Rnθ . Then

a retraction factor λ should be chosen λ > λ∗ = L̂
γc

+
L̂2
g

4γcµ
, with

L̂ =


((S0(θ, u0)− S0(θ, ϕ0(θ)))g(θ, u0), u0 − ϕ0(θ))V ∗,V

‖u0 − ϕ0(θ)‖2V
, if u0 6= ϕ0(θ)

0, else,

(4.25)

and

L̂g =


g(θ, ϕ0(θ))T (g(θ, ϕ0(θ))− g(θ, u0))

‖u0 − ϕ0(θ)‖V ‖g(θ, ϕ0(θ))‖
, if u0 6= ϕ0(θ) and g(θ, ϕ0(θ)) 6= 0

0, else.

(4.26)

However, the null space of ∇2j(θ∗) depends on the unknown optimal parameter θ∗ and can

in general not be assessed a priori, thus leaving this approach for further investigation.

Alternatively, one can still use regularization (Engl et al., 2000), e.g., by adding a term

α(θ− θp)TΓ−1(θ− θp) with positive definite Γ and positive α to the cost function J (θ, u0)

in (4.5) for which (4.17) yields a minimizer (θ∗(α), u∗0(α)). Regularization theory provides

convergence of θ∗(α) to a parameter θ̄ that is consistent with the observations as α → 0

(Engl et al., 2000).

4.3.2. Elliptic and parabolic PDE constraints

As we consider the partially reduced form of the optimization problem with elliptic and

parabolic PDE constraints (4.18), the results established for the elliptic problem can be

easily transferred given the existence of a solution operator for the parabolic problem.

Theorem 4.3.2. Let Assumptions 2.1.1, 4.3.1-4.3.6 be satisfied with g replaced by g̃

according to (4.19). Then there exists a λ∗ > 0 such that for all λ > λ∗ solutions to

dθ

dr
(r) = g̃(θ, u0), θ(0) = θ0

du0

dr
(r) = S0(θ, u0)g̃(θ, u0) + λC0(θ, u0), u0(r) = u0,0

(4.27)

are well-defined for all r > 0 and the local minimizer (θ∗, u∗0) of the optimization prob-

lem (4.4) is a locally exponentially stable steady state of the system (4.27).
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With the setting introduced in the last paragraph of Section 4.2, the result directly follows

from Theorem 4.3.1.

4.4. Application

To illustrate the continuous analogue of the descent method, we apply it to study CC-

chemokine ligand 21 (CCL21) gradient formation in biological tissues. This process is

highly relevant in immune responses (Alvarez et al., 2008; Mellman and Steinman, 2001)

and described by a reaction-diffusion equation (Hock et al., 2013). In the following, we

outline the model, estimate its parameters using the approach proposed in this chapter

and interpret the results.

4.4.1. Model formulation

CCL21 gradients are necessary for the guidance of dendritic cells towards lymphatic ves-

sels (Schumann et al., 2010). They are formed by the combination of several biological

processes. The chemokine CCL21 is produced in the lymphatic vessels, which cover a

subset domain ΩL of the domain Ω of interest, ΩL ⊂ Ω. The source term is defined via

the function

Q(x) =

1, for x ∈ ΩL

0, otherwise.

The concentration of free CCL21 is denoted by u. Free CCL21 binds to a sugar whose

concentration is denoted by s. The binding yields immobilized CCL21 whose concentration

is denoted by c. The parameters k1, k−1, D, γ, and α denote the binding and unbinding

rates, the diffusion coefficient, the degradation rate, and the production rate of CCL21

from the lymphatic vessels, respectively. A PDE model for the process has been developed

in (Hock et al., 2013) and is given by

ut −D∆u = αQ− k1us+ k−1c− γu

ṡ = −k1us+ k−1c (4.28)

ċ = k1us− k−1c

for t ∈ ]0, T [ and x ∈ Ω, with initial conditions u(0, x) = c(0, x) = 0, s(0, x) = s0 and

no-flux boundary conditions ∂
∂νu = 0 where ν is the outer normal on Ω. The parameter

s0 denotes the initial sugar concentration.
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4.4. Application

As the formation of the gradient is fast, we consider the steady state of (4.28). With

s + c = s0, the steady state for s and c is given by c = s0u0
1+u0

and s = s0
u0+1 where

u0 := k1u
k−1

denotes the scaled CCL21 concentration. Using the additional reformulation

D̃ = D
γ , α̃ = αk1

γk−1
, the scaled steady-state concentration of CCL21, u0, has to fulfill

0 = D∆̃u0 + α̃Q− u0 and the boundary conditions ∂
∂νu0 = 0.

For the considered process, imaging data have been collected (Weber et al., 2013). These

images provide information about the localization of the lymphatic vessels (encoded in

Q) and the concentration of immobilized CCL21. As the measured intensity values are

corrupted by background fluorescence and as the data are not normalized, we model the

readout following (Hock et al., 2013) as

yi = sl

(
b+

∫
Ai

c(t, x)dx

)
,

where b denotes the intensity of the background fluorescence, sl is a scaling constant and

Ai ⊂ Ω is the domain of the pixel k. As the parameters are structurally non-identifiable,

we reformulate the models in terms of b̃ = slb and s̃0 = sls0 in the parameter estimation

to one parameter and just consider b̃ and s̃0.

The optimization problem is then given by

min
θ,u0

J(θ, u0) =
1

2

{
M∑
i=1

log(2πσ2
i ȳ

2
i ) +

(
log(ȳi)− log(yi)

σi

)2
}

s.t.


−D̃∆u0 + u0 = α̃Q , x ∈ Ω

∂
∂νu0 = 0 , x ∈ ∂Ω

yi = b̃+
∫
Ai

s̃0u0(x)
u0(x)+1 dx = b̃+ s̃0hi(u0)

(4.29)

where Ω ⊆ R2, σi is the scale parameter of the log-normally distributed measurement

error and hi(u0) =
∫
Ai

u0(x)
u0(x)+1 dx, i = 1, . . . ,M . The parameter vector θ is given by

θ = (D̃, α̃, s̃0, b̃, σ) ∈ Rnθ , with nθ = 5.

All parameters are assumed to be non-negative due to their biological meaning. The spaces

V and V ∗ for which we examine the problem are V = H1(Ω) and V ∗ = H1(Ω)∗. The

operator C0 is given by C0(θ, u0) = D̃∆u0−u0 + α̃. For these spaces and operators it can

be checked that all assumptions for applying the method (4.17) are satisfied.
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Chapter 4. PDE constrained problems with additional steady-state constraints

Figure 4.3.: (A) Geometry of a lymphoid vessel obtained from biological imaging data (Weber
et al., 2013). (B) Simulated data of the CCL21 gradient generated by simulating model (4.28).

4.4.2. Numerical implementation

For the numerical simulation of the biological process, we employed a finite element dis-

cretization of the PDE model. The discretization was obtained using the MATLAB PDE

toolbox and accounts for the topology of the model (Figure 4.3 A). The mesh consists

of 2170 elements and the concentrations in these elements are the state variables of the

discretization. For parameter optimization using the coupled ODE-PDE model (4.17), the

same mesh was employed and the states of the discretized PDE were coupled with the

ODE for the parameters. This yields a model with 2170 + 5 equations. The continuous

analogue method for parameter estimation was implemented in MATLAB extending the

routine published in (Fiedler et al., 2016). The numerical simulation was performed using

the MATLAB ODE solver ode15s, an implicit scheme applicable to stiff problems. To ac-

celerate the calculations, we implemented the Jacobian of the coupled ODE-PDE model.

The simulation of the continuous analogue was terminated, if the gradient of the right-

hand side became small, i.e., ‖C0(θ, u0)‖V ∗/‖u0‖V ≤ 10−6. Furthermore, simulations were

interrupted whenever the objective function value became complex, which can happen due

to the log-transformation of the output.

4.4.3. Simulated data

To evaluate the convergence properties of the proposed algorithm for this model, we con-

sidered published simulated data for the ground truth (Hross, 2016; Hross et al., 2018).

82



4.4. Application

Table 4.1.: True parameters, estimated parameters and parameter ranges for the latin hy-
percube sampling for the CCL21 model.

name true value estimates
lower bound

sampling
upper bound

sampling

D 8.50 101 8.51 101 1.50 10−2 2.50 104

α 2.40 10−1 2.36 10−1 4.50 10−5 2.00 101

s0 2.10 10−1 2.13 10−1 2.50 10−3 3.00 100

b 1.30 10−2 1.30 10−2 2.50 10−3 1.00 100

σ 5.00 10−2 4.99 10−2 2.50 10−3 3.00 100

The geometry of lymphatic tissue was extracted from the available imaging data (Weber

et al., 2013) using the MATLAB PDE toolbox. On this geometry the discretized PDE

was simulated using biologically plausible parameter values (Table 4.1). The simulated

data for CCL21 gradient formation process were corrupted by noise to obtain a plausible

scenario (Figure 4.3 B).

4.4.4. Optimization

The objective function for most parameter estimation problems is non-convex and can

be multi-modal. For this reason, we employed multi-start local optimization using the

continuous analogue for which we have established local convergence in this chapter. The

starting points for the local optimizations were sampled using a latin hypercube approach

with lower and upper bounds provided in Table 4.1. We used a linear parametrization

for the states and a log-parametrization ξ = log(θ) for the parameters following previous

evaluations for biochemical systems (Raue et al., 2013b). We did not implement any

bounds for values of parameter or states. The implementation of the multi-start local

optimization is based upon the MATLAB toolbox PESTO (Stapor et al., 2018b). The

implementation of the objective function and finite element schemes were adapted from

(Hock et al., 2013). For the local optimization with the continuous analogue we chose the

negative gradient as descent direction.

As a reference, we performed also multi-start local optimization using a discrete iterative

optimization method. We used the state-of-the-art optimizer fmincon.m with the starting

points sampled for the continuous analogue and the interior point algorithm implemented

in the MATLAB Optimization Toolbox. This interior point algorithm employs either

a Newton step, where the Hessian is approximated by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, or a conjugate gradient step using a trust region (Byrd et al.,
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1999, 2000; Waltz et al., 2006). The optimizer was provided with the objective function,

the nonlinear constraint, as well as the corresponding derivatives. We used the same

parametrization as for the continuous analogue and additionally constrained parameter

values for ξ = log(θ) in the optimization by the same upper and lower bounds used for

the sampling (Table 4.1). The value of u0 at the nodes of the mesh for the finite element

discretization was constrained using upper and lower bounds for the optimization to lie in

[−1, 3]. A total of 2000 iterations and 4000 function evaluations was allowed.
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Figure 4.4.: Results of parameter estimation for CCL21 model. (A) Sorted objective
function values for the multi-start optimization with continuous analogue (λ = 107) and
discrete iterative procedure. Converged runs are indicated in blue. (B) CPU time needed per
optimizer run for the optimization using the continuous analogue and the discrete iterative
procedure (lighter grey color indicates runs which stopped because the maximal number of
iterations was reached). The box covers the range between the 25th and the 75th percentile of

the distribution. The median CPU time is indicated by a line. (C) Histogram of values for λ̂∗

(Remark 4.3.2) obtained for 1000 points sampled in parameter-state space. (D) Percentage of
completed runs (top), converged runs (middle), and median as well as 25th and 75th percentile
of the runtime of completed runs (bottom) for different values of λ. For each value of λ, 100
local optimization runs were performed.
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4.4.5. Comparison of continuous analogue and discrete iterative procedure

We performed 100 local optimization runs with the continuous analogue for the retraction

factor λ = 107 and a discrete iterative method (Figure 4.4 A). Both methods found the

same best parameter value (Table 4.1) and achieved a good fit to the data. The assessment

of the results revealed a good convergence of the continuous analogue. Almost 90% of the

runs achieved an objective function value which was comparable with the best objective

function value found across all runs (relative difference < 0.001%). Overall, 96% of the

runs finished successfully, meaning that either the optimization was stopped because the

stopping criterion was fulfilled or the maximum number of iterations was reached, while

4% of the runs stopped prematurely.

The discrete iterative optimization converged for 66% of the runs to the optimal value

(Figure 4.4 A). Accordingly, the success rate was substantially lower than for the proposed

continuous analogue. Of the runs which did not converge to the global optimum 25 runs

were stopped because the maximal number of iterations was reached.

For the considered problem, the continuous analogue outperformed the discrete iterative

method regarding the CPU time (Figure 4.4 B). We found a median CPU time of 15

minutes for the continuous solver and 174 minutes for the discrete iterative procedure.

In light of the fact that the discrete iterative method uses second order information, it

is interesting to observe that a continuous analogue using the negative gradient is more

efficient. One possible explanation is that the efficiency of the continuous analogue is a

result of the application of sophisticated numerical solvers. The adaptive, implicit solver

ode15s, which is provided with the analytical Jacobian of the ODE-PDE model, might

facilitate large step-sizes and fast convergence. Indeed, the Jacobian also provides second

order information.

4.4.6. Evaluation of retraction factor influence

As an analytical calculation of the bound for the retraction factor was not possible, we

sampled 1000 points in parameter-state space and evaluated the estimate for the lower

bound λ̂∗ (Remark 4.3.2) to address Problem 4.1.2. The histogram of the resulting values

for λ̂∗ is presented in Figure 4.4 C. The values for λ̂∗ span many orders of magnitude, and

the distribution peaks at 104. This result indicated that for different starting points very

different retraction factors might be ideal.
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To investigate the convergence properties for the different values of the retraction factor

λ, we performed 100 local optimization runs for a range of different retraction factors.

For each retraction factor we assessed the number of completed runs and the number

of converged runs (Figure 4.4 D). Interestingly, as λ was increased the percentage of

completed runs decreased. Yet, for large retraction factors many of the completed runs

also converged, while for small retraction factors no runs converged as the maximum

number of iterations becomes too large. The median CPU time for the optimization of

one run decreased for increasing values of λ (Figure 4.4 D). Notably, for the small values,

the median CPU time was nearly six to seven times higher than the smallest one. The

quantiles indicate that also the variability was higher for small values of λ. These results

indicated that the retraction factor should be chosen large enough but not too large.

In summary, the analysis of the model of CCL21 gradient formation revealed that the

retraction factor λ has a substantial influence on the convergence properties as well as the

run time. For low values of λ starts did not converge while for large values of λ increasing

stiffness of the problem could be observed. In an intermediate regime, which could here

also be found by random sampling, we found the best convergence properties.

4.5. Discussion

Parameter estimation for PDE models is an important problem in a wide range of ap-

plications. Robustness and performance of the available iterative methods is however

often limited. Hence, we investigated a continuous analogue approach. To address Prob-

lem 4.1.1, we introduced continuous analogues of descent methods for optimization with

PDE constraints and proved local convergence of their solutions to the optima.

We demonstrated the applicability of continuous analogues for a model of gradient for-

mation in biological tissues and compared them with an iterative discrete procedure. The

results highlight the potential of the continuous analogues, e.g., a high convergence rate

and lower computation times than the discrete iterative procedure. For the comparison we

used the MATLAB optimization routine fmincon.m, a state-of-the-art discrete iterative

procedure. Alternatives would be IPOPT or KNITRO. As fmincon.m is a generic inte-

rior point method, there might be approaches which are efficient for the considered PDE

constrained problems (see also the no free lunch theorem (Wolpert and Macready, 1997)).

To address the second research problem (Problem 4.1.2) we evaluated the influence of the

retraction factor and revealed the importance of an appropriate choice of the retraction

factor as well as the issue of premature stopping. We provided a lower bound for λ which
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ensures local convergence. As this bound might however be conservative and can only be

assessed point-wise, the use of adaptive methods might be interesting. To address the issue

of premature stopping, bounds for parameters and state variables have to be implemented,

e.g., by including log-barrier functions (Boyd and Vandenberghe, 2004) in the objective

function or through projection into the feasible space.

In the application problem we only considered elliptic PDE constraints as for the proposed

continuous analogues parabolic constraints can be encapsulated in the objective function.

This changes the objective function landscape and indirectly influences the convergence.

Conceptually, it should also be possible to formulate continuous analogues which do not

require a solution operator for the parabolic PDE but also have the solution of the parabolic

PDE as a state variable. This mathematically more elegant approach is left for future

research.

In conclusion, in this chapter we presented continuous analogues for a new problem class.

Similar to other problem classes for which continuous analogues have been established

(Fiedler et al., 2016; Tanabe, 1985), we expect an improvement of convergence and com-

putation time.

The method and its analysis apply as they are to the case of infinite dimensional parameters

θ. However, in that situation, the inverse problem of identifying θ is often ill-posed, so

the assumption of practical identifiability (cf. Assumption 4.3.5 and Remark 4.3.3) might

not be satisfied. To restore stability, regularization can be employed.
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Chapter 5.

Modeling of population dynamics on reduced

data spaces

While we considered reduced parameter spaces in the previous chapters, in this chapter

we consider mathematical models using reduced data spaces. We investigate the dynamics

of heterogeneous cell populations using observations in the high-dimensional data space

generated by single-cell experiments. To facilitate the modeling of the population dynam-

ics, we employ a dimension reduction of the high-dimensional data to one-dimensional cell

state trajectories. Firstly, we introduce the biological background of the process we want

to model and the structure of the data that experiments typically provide (Section 5.1).

Then, we develop the mathematical model to describe the processes in the reduced data

space, a diffusion-advection-reaction equation, and discuss the numerical implementation

(Section 5.2). In Section 5.3, we describe the model parameterization and introduce an

objective function for the parameter estimation. We illustrate the mathematical model

and the parameter estimation framework using T-cell maturation data (Section 5.4).

This chapter is based on and partly identical to the manuscript Inferring population dy-

namics from single-cell RNA-sequencing time series data by David S. Fischer, Anna K.

Fiedler, Eric M. Kernfeld, Ryan M.J. Genga, Aimée Bastidas-Ponce, Mostafa Bakhti,

Heiko Lickert, Jan Hasenauer, Rene Maehr and Fabian J. Theis published in Nature

Biotechnology, 37(4):461–468, 2019 (Fischer et al., 2019).

5.1. Introduction and problem formulation

In this section, we briefly describe the biological background of cellular development and

how single-cell experiments, especially using single-cell messenger RNA (mRNA) sequenc-
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ing, are used to study this process. We sketch how the sequencing data is processed to

reduce its dimension and explain the structure of the data we consider in the remainder

of the chapter. Based on this information we conclude the section by formulating the

research problem. A schematic representation of the whole analysis process including di-

mension reduction, dynamical modeling, parameter estimation and hypothesis testing is

depicted in Figure 5.1.

5.1.1. Biological background

In this chapter, we study population dynamics consisting of differentiation and prolifera-

tion, i.e., cellular development, for heterogeneous cell-populations. During differentiation

processes a cell population moves through different stages, e.g., cells go from unspecialized

stem or progenitor cells to more specialized ones while also dividing or possibly dying (Fig-

ure 5.2 A). The described processes of cellular development occur for example prenatally

in embryogenesis but also in adult hematopoiesis. Often, a progenitor cell can give rise

to several specialized cell types. Previously, cell types were commonly assigned to cells

by measuring the expression of surface markers or marker genes (e.g. Yui and Rothenberg

(2014)). However, technical advances permit the measurement of high-dimensional cellular

features on a single-cell level and a characterization of cell types using these features. In

the following, we will focus on single-cell sequencing as an example of those experimental

techniques. In recent years, single-cell sequencing technologies have been established that

enable gene expression measurements from a mixture of cells with single-cell resolution.

This means we can measure the transcriptome, i.e., the number of mRNA molecules tran-

scribed from the genome, in single cells for hundreds to thousands of cells at the same

time (Klein et al., 2015). This technology permits to look at development as a continuous

trajectory in transcriptome space (Figure 5.2 B), i.e., the space where each gene transcript

is a dimension and a cell’s position is assigned by the amount of transcripts of the genes

it contains. As cell development is usually asynchronous, cells in different differentiation

stages can be found in a tissue sample at the same measurement time point (Figure 5.2 C).

Combining several snap shots of different time points comprises more information about

the differentiation process in transcriptome space. As the transcriptome space is very high

dimensional (104 to 106 dimensions) (Klein et al., 2015), it is helpful to reduce the dimen-

sion by extracting the main developmental trajectory using pseudo temporal orderings and

assigning a continuous cell state to the cells (Figure 5.2 D). This chapter considers diffu-

sion maps (see, e.g., Haghverdi et al. (2015)) and diffusion pseudotime (Haghverdi et al.,

2016) for dimension reduction. If the development can potentially give rise to more than

one terminal cell fate, the trajectory branches and cells are assigned to a branch. Using
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correlation of the diffusion pseudotime along trajectories, branching can be identified in

the data (Haghverdi et al., 2016). As the diffusion pseudotime is based on an ordering of

the measured single cells, it can be scaled without changing the biological interpretation.

In the following, we use diffusion pseudotime as the cell state, however this method is not

limited to this particular pseudotime.
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Figure 5.1.: Schematic illustration of analysis pipeline for single-cell experiments using re-
duced data spaces. (A) The data dimension is reduced by pooling the individual single-cell
experiment replicates at different time points, reconstructing cell state trajectories using the
pooled sample and assigning cell states along the trajectory to the individual cells. (B) The
population dynamics in the reduced data space are described using dynamical models of the
cell distribution along the cell state trajectory. (C) The dynamical model is calibrated to the
data by estimating the model parameters that optimize the fit of data and model. (D) Com-
peting hypotheses are tested by estimating the model parameters of the competing models
and using model comparison criteria to select the models with substantial support.
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5.1.2. Data structure

The measurements typically consist of single-cell sequencing snapshot data and population

size snapshot data, i.e., the data represents the state of the system at particular time points

but does not capture individual trajectories. At a number of single-cell measurement time

points t ∈ T cdf , where T cdf denotes the set of measurement time points, a subset of cells of

the total population is sequenced. The single-cell sequencing measurements at time point

t are replicated |Rt| times using independent cell populations, where Rt denotes the set

of replicates at time point t. The number of replicates might differ between time points.

The cell state s ∈ [0, 1] is computed from the mRNA content of each cell, e.g., using

diffusion pseudo time. Further, branching is identified and if there is branching a branch

membership out of the set of branches, b ∈ B, is assigned to each cell. This procedure

yields a set of cell state measurements Srb,t for a replicate r ∈ Rt at time point t and

on branch b. If the process branches, the weight of branch b, i.e., the fraction of cells

on branch b compared to the total amount of measured cells, wrb,t =
|Srb,t|∑
b∈B |Srb,t|

, at time

t is calculated. The population size data is obtained from different individuals than the

cell state measurements. Therefore, it is possible to have measurements at a different set

of measurement time points t ∈ TN and a different set of replicates Zt. The number of

replicates |Zt| can differ from time point to time point. The population size measurement

for the replicate z at time point t is denoted by N z
t .

5.1.3. Problem formulation

Previous models of cell differentiation and development were based on discrete cell types

and were therefore modeled using compartment models. Discrete cell types are assigned

to a cell using gating (Figure 5.2 E), i.e., prior knowledge of the biological process is used

to define regions in some feature space, e.g., surface marker concentration, fluorescence

or transcriptomic expression, that correspond to a cell type. The amount of cells in each

region is counted and used as observable. In this chapter, we want to use the continuous

cell state measurements to elucidate the population dynamics during development and

combine trajectory and real time information (Figure 5.2 F).

Problem 5.1.1. Develop a mathematical model to describe cell proliferation and differ-

entiation using a reduced data space.

The combination of different data types in one likelihood is usually not straight forward,

especially, if the data types differ in information content and reproducibility. The inherent
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Figure 5.2.: Illustration of development in transcriptome space and discrete and continuous
cell state models (A) Discrete view on development using cell state compartments. (B) Differ-
entiation as trajectory in the high dimensional transcriptome space. (C) Schematic illustration
of snapshots of the cell state distribution of a population in a two dimensional transcriptome
space for three time points. (D) Distribution of the combination of all snapshots together
with one-dimensional trajectory. This trajectory is equated with the continuous cell state.
(E) Illustration of gating to assign discrete cell states for the population distribution. Gates
define regions in the transcriptome space that correspond to a certain cell type. For each time
point the amount of cells in each state is determined and used as data. (F) Distribution of
cells in the population along the continuous cell state for the three measurement time points.

differences between population level measurements, like population size and single-cell

measurements, e.g., cell state, have to be taken into account. Further, a suitable error

model for the single-cell measurements has to be developed.

Problem 5.1.2. Develop a likelihood for parameter estimation using single-cell sequencing

measurements and total population size.

93



Chapter 5. Modeling of population dynamics on reduced data spaces

5.2. Mathematical model

In this section, we address Problem 5.1.1 and develop models that describe the proliferation

and differentiation dynamics of a population of cells by using the reduction to a one

dimensional cell state from the high dimensional single-cell RNA sequencing data. A

partial differential equation in time and cell state is used to describe the dynamics of

the cell state distribution of single cells in the population. We start by considering a

differentiation process that only terminates in a single fate. Afterwards, we extend the

model to differentiation processes with branching.

5.2.1. Non-branching model

To develop the non-branching model, we consider the bounded cell state interval Ω ⊂ R
as the state space and we choose the time interval I = ]0, T [ for some maximal duration

0 < T < ∞. Further, we model the dynamics of the number density, u(s, t) : Ω × I → R
of cells in a certain cell state s ∈ Ω at time t ∈ I. The integral

∫ s2
s1
u(s, t)ds of the

number density over a cell state interval [s1, s2] provides the number of cells in [s1, s2] at

time point t. Assuming directed and random movement of cells in cell state as well as cell

division and cell death, the temporal evolution of u(s, t) can be described using population

balance as a PDE. Differentiation is modeled as a deterministic process that is represented

by a drift term with parameter v(s, t) ∈ R+. We further include a diffusion term with

parameter D(s, t) ∈ R+ that describes cell intrinsic stochasticity in RNA transcription as

well as fluctuations in cell state that might arise through the projection of cells on the one

dimensional cell state. The proliferation dynamics, i.e., cell division and cell death, are

included in a functional term with proliferation rate g(s, t) ∈ R that might act as a source

or a sink depending on whether cell division or cell death dominates the proliferation

dynamics. It is further assumed that cell division does not alter the cell state, meaning

that the daughter cells possess at birth the same cell state as the mother cell. All of

the above rates depend on the cell state and the time. The combination of the outlined

mechanisms leads to a reaction diffusion advection equation,

∂

∂t
u(s, t) =

∂

∂s
(D(s, t)

∂

∂s
u(s, t))︸ ︷︷ ︸

diffusion

− ∂

∂s
(v(s, t)u(s, t))︸ ︷︷ ︸

drift

+ g(s, t)u(s, t)︸ ︷︷ ︸
population growth

in Ω× I. (5.1)

As the cell state can be rescaled, we will consider a cell state interval Ω = ]0, 1[.
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To assess the proliferation dynamics, we also have to consider the total population size,

N(t), that is calculated as the integral of u(s, t) with respect to the cell state s over the

whole state domain [0, 1],

N(t) =

∫ 1

0
u(s, t) ds. (5.2)

The boundary conditions generally depend on the biological process and the experimental

setting in consideration. Throughout this chapter, we assume no flux boundaries, i.e., no

cells enter or leave the studied cell state interval through the boundaries,(
D(s, t)

∂u

∂s
(s, t)− v(s, t)u(s, t)

)∣∣∣∣
s=0

= 0 and
∂

∂s
u(s, t)

∣∣∣∣
s=1

= 0 ∀t ∈ [0, T ]. (5.3)

At the right boundary, s = 1, we assume that the cells are differentiated and do not advance

further in the cell state leading to zero drift, v(1, t) = 0 and use the corresponding no flux

boundary condition.

The initial condition depends on the experimental setup and the biological process under

consideration. In this chapter, we consider initial conditions, u(s, 0) = u0(s), that are

derived from the data at t = 0 directly by approximating the initial density from the data

using kernel smoothing with a normally distributed kernel and scaling the resulting density

with the initial population size. To discuss the most general case, we describe the steps

we carried out for an example with repeated measurements at t = 0. First, the kernel

density estimate (kde) of the set of cell state measurements Sr0 is computed on a fixed

grid for each replicate r ∈ R0. Then we normalized the kde yielding an initial probability

distribution denoted by kde (s|Sr0) and computed the point-wise mean of the normalized

kdes on the grid,
1

|R0|
∑
r∈R0

(kde (s|Sr0)) . (5.4)

The initial number density is given as

u0(s) =
1

|R0|
∑
r∈R0

(kde (s|Sr0)) N̄0, (5.5)

with N̄0 = 1
|Z0|

∑
z∈Z0

N z
0 denoting the mean of the population size measurement repli-

cates z ∈ Z0 at time point zero. Alternatively, one could also use the normalized kde of

the pooled sample, S0 :=
⋃

r∈R0

Sr0 scaled by N̄0. This particular computation of the initial

condition from the data requires population size and single-cell measurements at t = 0.

Apart from estimating the initial distribution from the data, one could also add a param-

eter dependent mixture of normal distributions and estimate these parameters together
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with the other unknowns of the model. This approach is useful if there are no single-cell

measurements at t = 0 or the assumption is biologically plausible.

5.2.2. Branching model

To extend the model to a differentiation process with two terminal cell fates, we consider

coupled PDEs on two branches, a main branch and a side branch, that overlap in a

branching region. The main branch, comprises the whole interval Ω1 = ]0, 1[, while the

side branch starts at the beginning of the branching region, sa ∈ ]0, 1[ and consists of the

interval Ω2 = ]sa, 1[ (Figure 5.3 A). In the branching region cells can switch from branch

i to the other branch j with propensities δji. The number density of cells on branch

b ∈ {1, 2} is denoted by ub(sb, t) : Ωb×I → R. The dynamics on each branch consist of the

same processes as in the non-branching case and additionally the switch of cells between

branches in the branching region. The individual rates might differ between branches

indicated by a subscript b ∈ {1, 2}. The resulting PDE is given by,

∂

∂t
u1(s1, t) =

∂

∂s1
(D1(s1, t)

∂

∂s1
u1(s1, t))−

∂

∂s1
(v1(s1, t)u1(s1, t)) + g1(s1, t)u1(s1, t)

− 1[sa,se](s1) (δ12u1(s1, t)− δ21u2(s1, t)) in Ω1 × I
∂

∂t
u2(s2, t) =

∂

∂s2
(D2(s2, t)

∂

∂s2
u2(s2, t))−

∂

∂s2
(v2(s2, t)u2(s2, t)) + g2(s2, t)u2(s2, t)

+ 1[sa,se](s2) (δ12u1(s2, t)− δ21u2(s2, t)) in Ω2 × I
(5.6)

in which the indicator function 1[sa,se](sb) defines the branching interval [sa, se] ⊂ ]0, 1[,

1[sa,se](sb) =

1, if sb ∈ [sa, se]

0, else,
(5.7)

where se denotes the end of the branching region. Depending on the number and the

geometry of branches that is determined in the preprocessing step, this model can in

general be extended to a set of branches B with ‖B‖ > 2.

The boundary conditions for two branches are chosen as non-flux boundaries,(
D1(s1, t)

∂u1

∂s1
(s1, t)− v1(s1, t)u1(s1, t)

)∣∣∣∣
s1=0

= 0 and
∂

∂s1
u1(s1, t)

∣∣∣∣
s1=1

= 0, ∀t ∈ [0, T ](
D2(s2, t)

∂u2

∂s2
(s2, t)− v2(s2, t)u2(s2, t)

)∣∣∣∣
s2=sa

= 0 and
∂

∂s2
u2(s2, t)

∣∣∣∣
s2=1

= 0, ∀t ∈ [0, T ].

(5.8)
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At the right boundary, sb = 1, we assume again that the cells are differentiated and do

not advance further in the cell state leading to zero drift, vi(1, t) = 0.

The initial condition on each branch is computed as in Section 5.2.1 but is additionally

scaled with the mean of the fraction of cells measured on the respective branch in the

single-cell experiment replicates,

w̄b,0 =
1

|R0|
∑
r∈R0

wrb,0. (5.9)

This yields the initial number density,

ub,0(sb) =
1

|R0|
∑
r∈R0

(
kde

(
sb|Srb,0

))
w̄b,0N̄0. (5.10)

The total population size, N(t), is calculated as the sum of the integrals of ub(sb, t) with

respect to the cell state sb,

N(t) =

∫ 1

0
u1(s1, t) ds1 +

∫ 1

sa

u2(s2, t) ds2. (5.11)

5.2.3. Numerical scheme for simulation

To describe the growth dynamics, the spatial discretization of the PDE should conserve

mass if no growth dynamics are present g(s, t) = 0 and yield the expected dynamics

Ṅ = gcN(t) if the birth-death rate is given by a constant rate g(s, t) = gc. Hence, we

use a finite volume approach for the discretization of the PDE in space (Hundsdorfer

and Verwer, 2003). This discretization together with the method of lines (Hundsdorfer

and Verwer, 2003), i.e., considering the ODE resulting from the discretization, is used to

simulate the PDE. For the finite volume discretization of the non-branching process (5.1)

in one dimension, the cell state interval Ω is divided into nV control volumes (i.e., intervals)

of length h by nV + 1 equally spaced grid points. The nodes located at the center of an

interval are denoted with si = (i− 1
2)h, i = 1, . . . , nV and the borders of the interval are

si− 1
2

= (i−1)h on the left and si+ 1
2

= ih on the right. For each center node si, we consider

the average number density in the interval [si− 1
2
, si+ 1

2
[

ui(t) =
1

h

∫ s
i+1

2

s
i− 1

2

u(s, t) ds for i = 1, . . . , nV . (5.12)
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Figure 5.3.: (A) Sketch of the branching model with main branch, side branch and branching
region. (B) Illustration of the finite volume discretization including fluxes that contribute to
change in the control volume. (C) Visualization of the parametrization using splines. The
model parameters are the values at the spline nodes indicated in blue. The rest of the rate is
completed using cubic splines between the nodes. (D) Illustrative sketch of the areas between
cumulative densities computed for the density fit of the log-likelihoods in Equations 5.31
and 5.33. The ecdf of the pooled sample is shown as a line in both subfigures (black line).
The empirical cumulative density functions (ecdfs) of two replicates (dotted lines) and the area
between these ecdfs and the ecdf of the pooled sample (grey areas), which are used to compute
the statistics, are shown. The cumulative density functions (cdf) of the model simulation is
depicted (dashed line) and the area between this cdf and the ecdf of the pooled sample (grey
area) is compared to the statics obtained from the data.

The average number density in an interval changes in time by inflow and outflow at the

boundaries of the interval (Figure 5.3 B). For model (5.1) this is approximated by

dui
dt

=
1

h2

(
Di− 1

2
(ui−1 − ui)−Di+ 1

2
(ui − ui+1)

)
+

1

2h

(
vi− 1

2
(ui−1 + ui)− vi+ 1

2
(ui + ui+1)

)
+ giui for i ∈ {2, nV − 1},

(5.13)

for the inner intervals and

du1

dt
= − 1

h2
D1+ 1

2
(u1 − u2)− 1

2h
v1+ 1

2
(u1 + u2) + g1u1 (5.14)

at the right boundary i = 1 and

dunV
dt

=
1

h2
DnV − 1

2
(unV −1 − unV )− 1

2h
vnV − 1

2
(unV −1 + unV ) + gnV unV (5.15)
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5.2. Mathematical model

at the left boundary i = nV , with Di± 1
2

= D(si± 1
2
, t), vi± 1

2
= v(si± 1

2
, t) and gi = g(si, t)

(Hundsdorfer and Verwer, 2003).

By summing the equations (5.13)-(5.15) and setting g(s, t) = 0, one finds

∑
i

dui
dt

=
1

h

dN

dt
= 0. (5.16)

Hence, this spatial discretization conserves mass, i.e., the populations size stays constant.

No mass is created or destroyed by approximating the diffusion and advection dynamics

numerically.

For the system with branching (5.6), the finite volume approximation results in a system

of two coupled ODEs. We denote the averaged densities in an interval i corresponding to

u1 with u1,i and the ones corresponding to u2 with u2,i. On the side branch, we chose the

same interval length h as on the main branch and adapted the number of intervals. If we

denote the interval that contains the start of the branching region, sa, with the na, i.e.,

sa ∈ [sna− 1
2
, sna+ 1

2
[, the side branch contains the intervals indexed by na, . . . , nV and the

number of intervals on the side branch is nV −na+1. The intervals in the branching region

are indexed with i ∈ {na, . . . , ne} on both branches. As the equations for intervals outside

the branching region largely resemble (5.13)-(5.15), we omit them here. The complete

ODE system can be found in Appendix B. The temporal evolution of the average number

density in the intervals in the branching region on the main branch for the finite volume

discretization of (5.6) is given by,

du1,i

dt
=

1

h2

(
D1,i− 1

2
(u1,i−1 − u1,i)−D1,i+ 1

2
(u1,i − u1,i+1)

)
+

1

2h

(
v1,i− 1

2
(u1,i−1 + u1,i)− v1,i+ 1

2
(u1,i + u1,i+1)

)
+ g1,iu1,i − δ12u1,i + δ21u2,i

(5.17)

for i ∈ {na, . . . , ne}. The temporal evolution of volumes in the branching region at the

left boundary i = na on the side branch is given by

du2,na

dt
= − 1

h2
D2,na+ 1

2

(
u2,na − u1,na+1

)
− 1

2h
v2,na+ 1

2
(u2,na + u2,na+1) + g2,nau2,na + δ12u1,na − δ21u2,na

(5.18)
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and for i ∈ {na + 1, . . . , ne} by

du2,i

dt
=

1

h2

(
D2,i− 1

2
(u2,i−1 − u2,i)−D2,i+ 1

2
(u2,i − u2,i+1)

)
+

1

2h

(
v2,i− 1

2
(u2,i−1 + u2,i)− v2,i+ 1

2
(u2,i + u2,i+1)

)
+ g2,iu2,i + δ12u1,i − δ21u2,i.

(5.19)

The initial condition for the ODE is computed from the kernel density approximation

ub,0(sb) in equation 5.10 by using the trapezoidal rule,

ub,0,i = 0.5
(
ub,0

(
si− 1

2

)
+ ub,0

(
si+ 1

2

))
. (5.20)

The total population size is computed form the ub,i as

N(t) = h

(
nV∑
i=1

u1,i(t) +

nV∑
i=na

u2,i(t)

)
= N1(t) +N2(t), (5.21)

where the population size on the main branch is N1(t) = h
∑nV

i=1 u1,i(t) and the population

size on the side branch is N2(t) = h
∑nV

i=na
u2,i(t). Accordingly, we compute the probability

to observe a cell in a certain interval [si− 1
2
, si+ 1

2
] on branch b as,

pb,i(t) :=
1

Nb(t)

∫ s
i+1

2

s
i− 1

2

ub(sb, t) dsb =
h

Nb(t)
ub,i(t). (5.22)

5.3. Parameter estimation

In this section, we address Problem 5.1.2 and describe the parameter estimation for the

model with branching (5.6). This can be easily adapted to the non-branching case. Firstly,

we outline how we parameterize the infinitely dimensional rate functions. Then, we develop

a general likelihood for the branching case that includes all data types and subsequently

explain the details of each term. Lastly, we explain the need for regularization and how

the corresponding hyper parameters can be chosen.

5.3.1. Parameterization using splines

The parameters as defined in (5.1) and (5.6) are infinite dimensional. We chose to param-

eterize these infinite dimensional rates using a finite number of parameters that give the
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value of the respective rate at a certain number of equidistant points along the cell state.

These values are connected by a natural cubic spline (ncs) (Figure 5.3 C) Luzyanina et al.

(2009),

vb(sb) = exp(ncs(sb|~αvb))

Db(sb) = exp(ncs(sb|~αDb))

gb(sb) = ncs(sb|~αgb).

(5.23)

The vectors ~αvb , ~αDb and ~αgb are the values of the spline at predefined nodes. The number

of nodes might differ between branches and rates. To guarantee positivity of drift and

diffusion rates, the spline parameters of v and D are chosen in log-space, the value of the

spline at the grid points is evaluated in log-space and then the exponential of these values

is computed. The combination of all the unknowns of the model is denoted by θ ∈ Rnθ .
For the case of two branches this yields θ =

(
~αD1 , ~αD2 , ~αv1 , ~αv2 , ~αg1 , ~αg2 , δ12, δ21

)
.

5.3.2. Likelihood

We employed ML estimation, to compute the unknown model parameters from the data.

As we used the negative log-likelihood in the optimization, we directly present − log(L(θ))

in this section. Assuming independence between the different measurement types, we

constructed the negative log-likelihood by regarding each type individually. Firstly, the

fit of the simulated cell state number densities to densities obtained from the samples

of single-cell cell state measurements, Srb,t is assessed. We denote the density term by

jS,b,t (θ). This fit is evaluated for each branch b ∈ B separately and for each single-cell

measurement time point t ∈ T cdf . The second part, denoted by jN,t (θ), describes the

fit of the simulated total population size to the measured one and is evaluated for each

population size measurement time point t ∈ TN . The third part of the negative log-

likelihood is jw,b,t (θ). It compares the fit of the branch weights, i.e., the fraction of cells

on each branch for each time point t ∈ T cdf . As the branch weights sum up to one, we

only considered the fraction of cells on all branches except the last one. The resulting

negative log-likelihood consists of a sum of the three terms,

− log(L(θ)) =

∑
b∈B

∑
t∈T cdf

jS,b,t (θ)

+

∑
t∈TN

jN,t (θ)

+

 ∑
b∈B\bmax

∑
t∈T cdf

jw,b,t (θ)

 .

(5.24)

In the following sections, we explain each term in detail.
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Chapter 5. Modeling of population dynamics on reduced data spaces

5.3.2.1. Number density term of the log-likelihood

As the numerical implementation using finite volumes described in Section 5.2.3 simulates

the average concentration in a grid interval, ui(t), rather than the concentration itself,

the model can not directly provide the probability to find a cell at a cell state s, p(s, t),

but only the probability of finding a cell in an interval [si, si+1[, pi(t), defined in (5.22).

Hence, we assessed the fit to the cell state measurements based on the distance between

two cumulative density functions (cdf). To improve readability we drop the subscript of

sb in the following equations. Further, we will make the dependence on the parameters θ

explicit by including them as an argument. The cdf of the simulated density on branch b

at time t is

cdfub(θ, s, t) =

∫ s
0 ub(θ, s̄, t)ds̄∫ 1
0 ub(θ, s̄, t)ds̄

. (5.25)

Using the numerical implementation presented in Section 5.2.3, the cdf is computed by

cdfub(θ, s, t) =

bs/hc+1∑
i=1

pb,i(θ, t). (5.26)

(It is implicitly assumed, that p2,i(θ, t) = 0 for i < na.) For the set of single-cell cell state

observations, Srb,t, at time point t ∈ T cdf we computed the empirical cumulative density

function (ecdf),

ecdfSrb,t(s) =
1

|Srb,t|
∑
s′∈Srb,t

1s′≤s. (5.27)

For each branch b and time point t, we also considered the ecdf of the pooled set of cell

state samples in all replicates, Sb,t =
⋃
r∈Rt

Srb,t,

ecdfSb,t(s) =
1

|Sb,t|
∑
s′∈Sb,t

1s′≤s. (5.28)

To measure the distance between two distributions, the Kolmogorov-Smirnov (K-S) dis-

tance is often used and there also exists a statistical model for the comparison of two

samples based on this distance. However, the K-S test derived from the statistic is in

many cases too sensitive and not a useful error model for the population distribution.

One example where the K-S test was shown to be overly sensitive was in the context of

immunofluorescence histogram comparison (Lampariello, 2000). Further, the (two-sided)

K-S test tests whether two samples come from the same or different distributions. How-

ever, measurement errors, e.g., a shift of the distribution, might change the measured
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5.3. Parameter estimation

distribution. It is not easy to determine what and how measurement errors impact the

measured cell state distribution in detail and how they could be modeled statistically. We

investigate the statistics of the cell state distribution also on experimental data in the

application example (Section 5.4.3). As more fitting statistics are not yet available, we

chose a non generative error model and assume normally distributed errors on the dis-

tance between cdfs. This log-likelihood choice is also capable to incorporate replicates. As

distance between two cdfs, we studied the area between the curves,

A(cdf1(s), cdf2(s)) :=

∫ 1

0
|cdf1(s)− cdf2(s)| ds, (5.29)

i.e., the L1-norm. As this choice leads to a non-smooth optimization problem, one could

also use the L2-norm

A2(cdf1(s), cdf2(s)) =

(∫ 1

0
(cdf1(s)− cdf2(s))2 ds

) 1
2

. (5.30)

For all time points, we computed the area between the ecdf of the pooled sample, ecdfSb,t(s),

and each of the ecdfs of the individual replicates, ecdfSrb,t(s) and then determined the mean,

ȳAb,t =
1

|Rt|
∑
r∈Rt

A
(

ecdfSrb,t(s), ecdfSb,t(s)
)
, (5.31)

and the standard deviation,

(σAb,t)
2 =

1

|Rt|
∑
r∈Rt

(
A
(

ecdfSrb,t(s), ecdfSb,t(s)
)
− 1

|Rt|
∑
r∈Rt

A
(

ecdfSrb,t(s), ecdfSb,t(s)
))2

,

(5.32)

of the area between the curves for the replicates Rt. Further, we calculated the area

between the cdf generated by our model and the ecdf of the pooled sample,

yAb (θ, t) = A
(
cdfub(θ, s, t), ecdfSb,t(s)

)
=

∫ 1

0

∣∣cdfub(θ, s̄, t)− ecdfSb,t(s̄)
∣∣ ds̄. (5.33)

An illustration of the areas is provided in Figure 5.3 D. All in all, we obtained the following

negative log-likelihood for the densities,

jS,b,t(θ) =
1

2

log(2π(σAb,t)
2) +

(
ȳAb,t − yAb (θ, t)

σAb,t

)2
 . (5.34)
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5.3.2.2. Population size term of the log-likelihood

We derived the log-likelihood term for the population size, by assuming normally dis-

tributed measurement noise in the population size replicates. However, we did not con-

sider the individual observations, Nt,z, in the log-likelihood as often only the mean of the

replicated population size measurements, N̄t, is reported. Instead, we considered additive

normally distributed noise on N̄t with mean zero. The standard deviation of this noise is

the standard error of the mean of the observations at time point t ∈ TN ,

σNt =
σN,obst√
|Zt|

(5.35)

where σN,obst is the observed standard deviation of the samples at time point t and |Zt| the

number of population size measurement replicates. The part of the negative log-likelihood

term corresponding to the population size measurements is given by

jN,t(θ) =
1

2

(
log
(

2π
(
σNt
)2)

+

(
N̄t −N (θ, t)

σNt

)2
)
, (5.36)

where N(t, θ) is the population size simulated by the model for the parameters θ at time

point t across all branches,

N(θ, t) =
∑
b∈B

∫ 1

0
ub(θ, sb, t) dsb, (5.37)

or as calculated in (5.21).

5.3.2.3. Branch weight term of the log-likelihood

As a third part, we added a term to the negative log-likelihood that describes the fit

of the fraction of cells on each branch. This addition is necessary, as the information on

branch weights is not included in any of the above parts and could otherwise be completely

incorrect at the optimal point.

Statistically, if the number of cells is binomially distributed between the two branches, the

resulting fraction on a branch is approximately normally distributed. This follows from the

central limit theorem (e.g., from the central limit theorem for Bernoulli-sequences (Georgii,

2009, p. 138)). Motivated by this relation, we chose a normally distributed likelihood

for the branch weights. In general, for each replicate the fraction of cells on a branch
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is a sample from a normal distribution with the true success probability as expectation.

Depending on the sample size, the standard deviation varies. However, in the case of single-

cell experiments, other sources of measurement error than the sampling error modeled

by the binomial distribution can occur. Therefore, we decided to estimate the effective

standard deviation from the data. This also ensures consistency with the other parts of

the negative log-likelihood. To stay in agreement with the second part of the negative log-

likelihood, we consider the mean of the branch weights over the replicates for measurement

time points t ∈ T cdf ,

w̄b,t =
1

|Rt|
∑
r∈Rt

wrb,t. (5.38)

Accordingly, the standard deviation is the standard error of the mean of the observations

at time point t,

σwb,t =
σw,obsb,t√
|Rt|

(5.39)

where σw,obsb,t is the observed standard deviation of the samples at time point t and |Rt|
the number of replicates of cell state distribution observations at time point t and branch

b. The weight of branch b at time point t simulated by the model for the parameters θ is

calculated as,

wb(θ, t) =

∫ 1
0 ub(θ, s, t) ds∑

b̄∈B
∫ 1

0 ub̄(θ, s, t) ds
(5.40)

or using the numerical simulation

wb(θ, t) =
Nb(θ, t)

N(θ, t)
, (5.41)

with Nb(θ, t) and N(θ, t) as calculated in (5.21). Consequently, the negative log-likelihood

of the fraction of cells on a branch b given the model is given by

jw,b,t(θ) =
1

2

log(2π(σwb,t)
2) +

(
w̄b,t − wb(θ, t)

σwb,t

)2
 . (5.42)

5.3.3. Regularization

The parametrization of the model rates in terms of natural cubic splines is potentially very

flexible and can lead to very rapidly varying parameter values if the estimated values at

the spline nodes, e.g., ~αv, differ a lot between neighboring nodes. This variability can lead

to overfitting and identifiability problems. Hence, we used a quadratic regularization on
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Chapter 5. Modeling of population dynamics on reduced data spaces

the difference between parameters at two neighboring spline nodes, e.g., (~αD)1− (~αD)2, in

addition to the likelihood terms (5.24). The combination leads to the following objective

function for the parameter estimation,

Jρ(θ) =− log(L(θ)) + ρ

(∑
b∈B

[ nDb −1∑
i=1

((~αDb)i+1 − (~αDb)i)
2 +

nvb−1∑
i=1

((~αvb)i+1 − (~αvb)i)
2

+

ngb−1∑
i=1

((~αgb)i+1 − (~αgb)i)
2

])
,

(5.43)

where nDb , nvb and ngb are the number of spline nodes on branch b ∈ B for the splines

Db(s), vb(s) and gb(s) on each branch, respectively. The regularization hyper-parameter,

ρ, determines the strength of the regularization. How ρ was chosen is explained in the

following section.

The regularization can also be interpreted as a prior in a Bayesian sense,

− log(p(θ)) = ρ

(∑
b∈B

[ nDb −1∑
i=1

((~αDb)i+1 − (~αDb)i)
2 +

nvb−1∑
i=1

((~αvb)i+1 − (~αvb)i)
2

+

ngb−1∑
i=1

((~αgb)i+1 − (~αgb)i)
2

])
.

(5.44)

The normalization is included in ρ. In this interpretation, the negative log-likelihood with

regularization is a negative log-posterior, Jρ(θ) = − log(p(θ|D)), with p(θ|D) = L(θ)p(θ).

5.3.4. Selection of the regularization hyper-parameter

We selected the regularization hyper-parameter using leave-one-out cross-validation on a

time point basis. We removed the complete set of data points corresponding to one time

point and fitted the model on the reduced data set. Then, we evaluated the negative

log-likelihood without regularization on the data at the withheld time point. This leave-

one-out fitting was performed for each time point (except the initial time point t = 0).

Adding up the negative log-likelihood values without regularization for each withheld

time point yielded a score based on which the hyper-parameter was selected as the one

minimizing the score.
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5.4. Application to T-cell maturation data

In this section, we use the continuous cell state model with branching and the parameter

estimation approach presented above for the analysis of a data set of T-cell maturation.

Before the application to experimental data, we evaluated our approach on various cases

of simulated data. These simulation studies can be found in the manuscript (Fischer et al.,

2019).

T-cells are an important part of the adaptive immune system and play a relevant role in

many functions and diseases. During embryogenesis T-cells develop from hematopoietic

progenitors and mature in the thymus. The developmental stages are mainly characterized

by expression of CD4 and CD8. During differentiation cells have to pass check points and

selection to ensure correct biological function. In the following, we describe the experiment,

data processing and the specific details of the numerical implementation and analyze the

parameter estimation results.

5.4.1. Experiment and data processing

The experiments were performed by the biological partner, the group of Rene Maehr at the

University of Massachusetts. The analysis with diffusion maps, the cell state extraction

and the detection of the branching region together with analyses on the expression data

was mainly performed by David Fischer and is presented in detail in (Fischer et al., 2019).

In the experiment, single-cell sequencing samples were collected from mouse thymus us-

ing a Drop-seq protocol. The samples were collected daily from 12.5 to 19.5 days after

fertilization: 12.5 (3), 13.5 (3), 14.5 (2), 15.5 (2), 16.5 (3), 17.5 (2), 18.5 (2), 19.5 (2).

The number of replicates is indicated in brackets. The population size measurements were

obtained for the same time points, but from independent individuals. The measurements

for the days 12.5-17.5 after fertilization using 5 replicates each were taken from published

data (Cook, 2010) and augmented with two replicates of population size measurements

performed by the group of Maehr at days 18.5 and 19.5 after fertilization. In the mathe-

matical model, we shifted all values by 12.5 and consider the model time frame t = 0 to

t = 7 in the following.

The cell state was extracted using a diffusion map on the combination of all single-cell

sequencing data and diffusion pseudo time. The scatter plot of the first two diffusion

components is shown in Figure 5.4 A. Already looking at the first two diffusion components

branching is clearly evident. By reference to the expression profiles two distinct cell
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Figure 5.4.: T-cell maturation data. (A) Scatter plot of the first two diffusion components
of the diffusion map for the single-cell T-cell maturation data. The color denotes the cell state
assigned to the cell using diffusion pseudo time. (B) Cell state distribution for each replicate
and each day on the main and side branch, where the color indicates the respective day. The
branching region is marked in grey. (C) Mean population size and 2-times standard error of
mean interval of the population size measurements.

lineages were identified in the data, T-cells and non-conventional lymphocytes (NCLs)

which is in concordance with previous findings. Molecularly, these two lineages correspond

to the two branches in the diffusion map. We assigned the progenitor up to T-cell lineage

to the main branch and the NCL lineage to the side branch. Figure 5.4 B depicts the

cell state distribution on the main and the side branch for each day and replicates as dots

and box plots. The mean population size is displayed in Figure 5.4 C. Around the mean

population size we plotted a 2-standard error of mean interval. It stands out that during

the last three time points the distribution does not change (Figure 5.4 B) and seems to

reach a steady state. However, the overall population size is still increasing.

5.4.2. Numerical implementation

As the data processing revealed two branches in the data, we used model (5.6). For the

numerical simulation of the PDE, we chose a discretization into 299 intervals on the main

branch. The branching region extended from interval na = 20 to interval ne = 123. The

kernel density estimation in the computation of the initial condition (5.10) was performed
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5.4. Application to T-cell maturation data

Table 5.1.: Lower bounds, upper bounds and scale used for fitting of the parameters of model
for T-cell maturation.

Parameter Lower Upper Scale used
name bound bound for

optimization

Di 10−4.5 100 log
vi 10−5 100 log
gi −6 5 lin
δij 10−4.5 102 log

using the Matlab function ksdensity.m. The resulting ODE was solved numerically using

the Sundials CVODE suite and AMICI (Fröhlich et al., 2017b) as Matlab interface. We

chose nine nodes on the main branch and three nodes on the side branch for the natural

cubic spline parametrization of the rates (Db(s), vb(s) and gb(s)) (Section 5.3.1), yielding

the parameter vector

θ = ((~αD1)1 , . . . , (~αD1)9 , (~αD2)1 , . . . , (~αD2)3 , (~αv1)1 , . . . , (~αv1)9 ,

(~αv2)1 , . . . , (~αv2)3 ,
(
~αg1
)

1
, . . . ,

(
~αg1
)

9
,
(
~αg2
)

1
, . . . ,

(
~αg2
)

3
, δ12, δ21

)
.

(5.45)

To ensure no drift at the right-hand boundary, i.e., vb(1, t) = 0, without causing numerical

instabilities in the simulation as well as in the spline interpolation of vb, we linearly rescaled

the observations to the interval [0, 0.9] and ran simulations on the interval [0, 1]. On the

interval [0.9, 1] (more precisely the control intervals i = 270 to i = 299) the drift was

reduced to 0 by a smooth hermite c-spline. Values in the interval [0.9, 1] correspond to

developmental states which were not observed and simulations with considerable cell mass

in this interval are unfavorable in the optimization.

For the optimization, we used a multi-start approach with gradient information for the

optimization as implemented in the PESTO-Toolbox (Stapor et al., 2018b). Initial pa-

rameters for multi-start local optimization were sampled using latin-hypercube sampling.

The parameter bounds for sampling and optimization are presented in Table 5.1. We per-

formed up to 120 multi-starts using an interior point algorithm with BFGS. If a plateau

of 6 starts was achieved at 40 or 80 multi-starts we did not perform the full 120 starts.

The confidence intervals were computed using profile posteriors (Raue et al., 2013a) as

implemented in the PESTO-Toolbox.
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5.4.3. The K-S distance is overly sensitive for the T-cell data

In Section 5.3.2.1, we touched on how the K-S test is often overly sensitive. Hence, we

evaluated this claim for the T-cell differentiation data.

Firstly, we tested all replicates of the T-cell development data from the same time point

against each other using a two sample K-S test. Of the 14 possible combinations seven

were judged to be not coming from the same distribution at a significance level of α = 0.05.

Hence, based on a K-S test the samples for several time points would not be assumed to

come from the same distribution (Figure 5.5 A).

To further study the variability in the data, we generated a distribution of K-S distances

by sampling from the same underlying distribution. We drew 1000 sub-samples from

the distribution of the pooled data corresponding to a day t, Sb,t, and evaluated the K-S

distance and the area between the sampled and the pooled cdf. As the number of measured

single cells in the T-cell data varied between replicates, we tried to recreate this in the

generated data by sampling the sizes of the 1000 sub-samples from a distribution with the

same first two moments as the measured samples. For days 1 to 8, we sampled from a

normal distribution with the same mean and variance as the single-cell sample sizes. For

day 0, the sub-sample size was sampled from a log-normal distribution with the same mean

and variance as the single-cell sample sizes. When comparing the distance of the measured

and the pooled sample to the created distribution of distances, we found that for several

days the measurements lie outside the distribution indicating that the measurements are

unlikely just samples from the pooled distribution (Figure 5.5 B). The K-S distance did

not capture the full variability between replicates.

5.4.4. Model fit and regularization

We fit the continuous model (5.6) to the T-cell maturation data and found that it can

describe the data (Figure 5.6 A and B). The statistical model we developed uses reg-

ularization to avoid overfitting. Therefore, the fit for regularization hyper-parameter

ρ = 10 depicted in the figure shows some trade off between fit and parameter consis-

tency. To select the regularization hyper-parameter ρ, we investigated the regulariza-

tions ρ = {0, 1, 10, 30, 100, 300, 1000} in a leave-one-time-point-out cross validation (Sec-

tion 5.3.4). Using the parameter estimates obtained on the reduced data sets, the log-

likelihood on the data from the left-out time point can be computed. The leave-one-

time-point-out cross validation suggested an intermediate to small regularization strength
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Figure 5.5.: Evaluation of the K-S distance as statistical model for T-cell maturation data.
(A) p-values for pairwise K-S tests of single-cell cell state measurement replicates taken at the
same time point (blue stars) and confidence level α = 0.05 (orange dotted line). If the p-value
of a comparison is smaller than α = 0.05, there is little evidence that the compared samples
were generated from the same underlying distribution. (B) For each measurement day the
distribution of K-S distances between the ecdf of the thousand generated subsamples and the
ecdf of the pooled sample is depicted as dots and box plots. The distances between the ecdf
of the measured and the pooled samples are plotted in red.

of ρ = 10, as the prediction error on the left out time point is smallest (Figure 5.6 C).

Comparing the contribution of different days to the over all prediction error, shows that

some days can consistently be predicted better than others. As an example, we visualized

the prediction for day 2 and day 3. The difference in prediction quality also implies that

temporal sampling frequency is relevant for imputation of missing time points. While the

cross validation favors ρ = 10, the best estimates using other regularizations show a similar

behavior (Figure 5.6 D). Especially, low drift rates from around s = 0.3 to s = 0.5 with

subsequent increase and regions of positive and negative proliferation rate seem to pertain

through ranges of regularization. The uncertainty analysis shows that regions of higher

diffusion are more uncertain than regions of small diffusion. Further, the confidence inter-

vals around negative and positive proliferation are still clearly negative respective positive.

This consistency and certainty reinforces the validity of biological interpretations.
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5.4.5. Parameter estimates identify checkpoints and selection in T-cell

maturation

Biologically, we identified different behaviors in the dynamics on the main branch that can

be interpreted in terms of T-cell maturation. The advection parameter fit (Figure 5.6 D)

uncovers two intervals of high drift around s = 0.2 and s = 0.6. These regions correspond

to rapid transcriptomic development and deterministic behavior of individual cells. On a

molecular level, this rapid development could be validated by looking at the regulation

and activity of transcription factors. In the cell state interval of s = 0.3 to s = 0.5, we

find a region of low drift and non-zero diffusion leading to non-deterministic development.

Molecular analysis suggests that the developmental checkpoint of β-selection lies in this

area. At s = 0.4 to s = 0.7, after the β-selection area, we find positive proliferation

that monotonically decreases with cell state and eventually, at around s = 0.7, becomes

negative. Biologically, T-cells that pass beta-selection are known to divide rapidly and

then undergo positive and negative selection (Yui and Rothenberg, 2014) which coincides

with the estimated rates.

5.5. Discussion

In this chapter, we studied estimation of population dynamics of heterogeneous cell popu-

lations from high dimensional single-cell data. To reduce the dimensionality of the mRNA

sequencing data a one dimensional cell state was extracted and assigned to the individual

cells. To address Problem 5.1.1, we developed PDE models describing the differentiation

on a population density level as well as the proliferation dynamics of the total population

for non-branching and branching processes. We further outlined the numerical simulation.

After the publication of this work on bioRxiv, Cho et al. (2018) published a diffusion-

advection-reaction model similar to the model presented here also using diffusion pseudo

time as cell state. Their work did, however, not include an approach to parameter esti-

mation. In their model, Cho et al. (2018) separated the diffusion term into fluctuations in

the cell state due to randomness in transcription and due to the projection on one dimen-

sion. In contrast, we combined both contributions into a single diffusion term. In future

work, this separation of contributions could be included into the model to investigate if

the individual effects can be identified during parameter estimation and if this level of

precision is necessary. Further, in this work we implemented a branching process with two

terminal cell fates. While not considered here, cases with more than two terminal fates are
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Figure 5.6.: Estimation and cross validation results. (A) Fit of the density simulated with the
best parameter estimate for regularization ρ = 10 (color) and superimposed histograms of the
measured cell states for all replicates (gray) resolved by time points. For day 2 and day 3 the
predicted density at this time point for the cross validation fold without this time point and
regularization ρ = 10 is depicted (broken line in dark orange and dark yellow). (B) Population
size measurement (gray) and the fit for ρ = 10 (black). As an example, also the fits for the
best parameter estimate in the cross validation folds without day 2 and day 3 (broken line in
dark orange and dark yellow) are depicted. The predicted value at day 2 and day 3 is marked
with a star on the corresponding curve. (C) The prediction error score of the regularization
strengths ρ ∈ {1, 10, 30, 100, 300, 1000} is visualized as the height of the bar. The contribution
of individual leave-one-time-point-out cross validation folds is characterized by the height of
the colored segments (color coding like (A)). Due to their minimal contribution, some folds
are not or barely visible, e.g., day 1. (D) Estimated rates on the main branch obtained by
optimization with regularization for ρ = 10 and the 99% confidence intervals at the parameters
((~αD1)1, etc.). The profile likelihood computation of the confidence interval of (~αv1)1 yielded
no upper bound inside the parameter bounds and is set to one for the illustration.

relevant in many developmental processes especially when studied for a longer time frame,

e.g., hematopoiesis. These cases could be modeled by coupling more branches. However,

we expect the discretization using finite volumes to become prohibitive, as the size of the

resulting discretized PDE increases. Developing an alternative model description of pro-
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cesses with more than two branches on the one hand and accelerating the simulation of

the PDE model on the other hand are open points for further research.

To address Problem 5.1.2, we developed a parameter estimation framework including a

parameterization of the infinitely dimensional parameters and a likelihood. We then ap-

plied the model in the study of T-cell maturation data. We found that the model could

describe the data and that leave-one-time-point-out cross validation suggested an interme-

diate regularization strength. The estimated rates and their interpretation uncover known

biological aspects without directly incorporating knowledge about the driving molecular

processes in the estimation. We chose to base the likelihood on the assumption of nor-

mally distributed measurement noise. This error model is not generated by a statistical

model of the data generation and measurement procedure as this is not available. Hence,

the underlying statistics need to be studied more in further experiments to develop such a

generative model and the likelihood can then be adapted in the light of these new findings.

We further, used an L1 distance between densities in the formulation of the likelihood de-

scribing the single-cell cell state measurements. This yields a non-smooth optimization

problem that is currently addressed using interior point optimization with BFGS. The

optimization in the current implementation is comparably slow and expensive. Choosing

the L2 distance and considering the corresponding smooth problem might accelerate the

parameter estimation. It is an interesting open question how the convergence behavior of

the smooth problem differs. A general comparison between these alternative likelihoods

is a point of future research.
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Chapter 6.

Conclusion and outlook

Increasing model size and data dimensions pose big challenges for the estimation of

model parameters for biological models. With more detailed systems biology and sys-

tems medicine applications on the one hand and with advancing experimental techniques

on the other it is likely that model and data dimensions will continue to increase. Hence,

the need to develop efficient and robust estimation techniques arises. One way to approach

this is to reduce the dimension of the problem. In this thesis, two different strategies to

reduce the dimensionality of parameter estimation problems by exploiting structures in

both, the parameter space and in the data, were investigated.

For the first dimension reduction approach developed in Chapters 3 and 4, we considered

ODE and PDE constrained estimation with additional steady-state constraints. Steady

states are common in biological applications due to, among others, fast calibration of

processes or homeostasis. Including the steady-state information into the parameter es-

timation leads to additional equality constraints for the optimization. If no analytical

solution for the steady state as function of the parameters is available, the optimization

variables include the parameter and the corresponding steady states. Hence, constraining

the search space to the steady-state manifold, i.e., the admissible parameter-state combi-

nations, reduces the dimension of the problem. The methods we developed in Chapter 3

for ODE models and in Chapter 4 for PDE models exploit the first order structure of the

steady-state manifold to choose a state update on the steady-state manifold for a given

parameter update. For ODEs we constructed two methods that incorporated ideas from

retraction mappings and continuous analogues, respectively. In Chapter 4, we extended

the continuous analogue approach to PDE models. For the continuous analogue methods,

we proved stability of optimal parameter-state pairs for both ODE and PDE constrained

optimization using singular perturbation theory in the ODE case and in Lyapunov func-

tions in the PDE case. Additionally, singular perturbation theory provided insight into
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the general behavior of the continuous analogue, i.e., first moving to the steady-state man-

ifold and then following it to the optimal parameter. In several applications to simulated

and real data, we illustrated that the new methods outperformed standard solvers for

constrained optimization in terms of robustness and time efficiency. The applications also

demonstrated that if the analytical steady state is available solving the unconstrained op-

timization problem is preferable. Both proofs for asymptotic stability show that the value

of the retraction factor λ needs to be chosen sufficiently large. Hence, we illustrated the

influence of the retractions factor on runtime and convergence and investigated possible

heuristics for the retraction factor choice.

Ideas for future work (see also Sections 3.4 and 4.5) include the extension of the proof to

settings with non-identifiable parameters – based on the application results, we assume

that the continuous analogue should usually return a point in the non-identifiable sub-

space – as well as the development and implementation of an automated and adaptive

retraction factor choice. For optimization problems with parabolic and elliptic PDE con-

straints, we addressed the possibility of including the solution of the parabolic PDE as

additional state variable thus eliminating the need for a solution operator for the PDE.

Further, we discussed the application to problems with infinite dimensional parameters.

Beyond these extensions, the acceleration of optimization achieved by the novel methods

can also be employed to increase the efficiency of practical identifiability analysis and

uncertainty quantification by speeding up the optimization steps in the profile likelihood

calculation (Raue et al., 2009). In recent studies, a dynamical systems approach to pro-

file likelihood calculation based on ideas by Chen and Jennrich (2002) was studied and

shown to perform favorably (Boiger et al., 2016; Stapor et al., 2018a). A combination

of the continuous analogue approach to steady-state constrained optimization with the

dynamical system for profile likelihood computation could potentially further increase the

efficiency of likelihood profile calculations for steady-state constrained problems. While

we did not explicitly address this in Chapter 4, considering a multi experiment setting for

PDEs similarly to the one Chapter 3 should be straight forward to implement. Lastly,

we only considered the log-likelihood for normal and log-normally distributed measure-

ment noise as objective function in our application. However, the proof did not assume a

specific objective function and an application of the methods to other objective function

types might be interesting.

The second approach for dimension reduction focused on reducing the dimension of the

data by extracting the most relevant dimensions using structure inherent in the high-

dimensional measurements (Chapter 5). In our case high-dimensional gene expression data

was reduced to a one-dimensional cell state space. On this reduced space we developed a
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dynamic PDE model that describes population dynamics of a heterogeneous population.

The model includes differentiation and proliferation dynamics and yields an advection-

diffusion-reaction equation for the evolution of the number density over the cell state. We

developed a non-branching model for differentiation into a single cell-type and a branching

model that describes the differentiation into two cell-types. For the simulation of the

PDE, we implemented a finite volume discretization together with the method of lines

to accurately account for the population growth dynamics. The cell state dependent

infinite dimensional rates of the PDE were parameterized using splines to yield a set of

finite dimensional model parameters for estimation. We further developed a statistical

likelihood framework for parameter estimation that is capable of incorporating repeated

single-cell RNA sequencing experiments and population size measurements. We applied

the model and parameter estimation framework to single-cell RNA sequencing data for

T-cell differentiation in thymus and were able to identify known biological mechanisms

without having incorporating these as prior knowledge.

In Section 5.5, we outlined some possible extensions to our approach: The branching model

is currently only implemented for two branches, however, in principle more cell fates can

be incorporated. Including more branches will likely scale up the computation time of

the current implementation. Hence, an efficient implementation would be required. We

further outlined the possibility of considering other likelihoods and possibly developing a

generative statistical model. In a further step the uncertainty in the dimension reduction

to the cell state could be incorporated into the likelihood. Beyond this, future work

might include an extension of the model to more than one cell state dimension. With

this the branching to different cell states could be modeled in a two dimensional space

and the cell fate decision would be included in the advection term. In addition to single-

cell RNA sequencing data and population size, more data types, e.g., single cell Assay

for Transposase-Accessible Chromatin using sequencing (ATAC-seq) or protein expression

measurements, could be included in the parameter estimation. While RNA sequencing

determines the cell state at the level of mRNA expression, ATAC-seq determines it at the

chromatin level and protein expression at a functional level. Hence, the additional inclusion

of these data types could provide a deeper understanding of the cell state trajectory.

Finally, including cell age into structured population models has been shown to describe

proliferation dynamics more accurately as it allows for a delay in cell division times (Hross

and Hasenauer, 2016). Hence, future work might consist of incorporating an age or cell

cycle variable into the PDE and describing cell division and cell death in dependence on

cell age or cell cycle state.
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Chapter 6. Conclusion and outlook

In conclusion, this thesis proposed two dimension reduction approaches to facilitate mod-

eling and parameter estimation in high dimensional parameter and data spaces. Further-

more, we illustrated the properties of the developed methods and their applicability using

examples of simulated and biological data. Employing these tailored methods can then

enable the analysis of biological processes using extensive models and large data sizes and

facilitate a move towards a more comprehensive understanding of the underlying biological

mechanisms.
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Appendix A.

Analytical steady state for the

Raf/MEK/ERK signaling model

In Section 3.3.4, we considered a model for Raf/MEK/ERK signaling after release from

S-phase arrest considering the following reactions,

R1 : Raf→ pRaf, rate = k1,max(t)ξ(t)[Raf],

R2 : pRaf→ Raf, rate = k2[pRaf],

R3 : MEK→ pMEK, rate =
k3K2[pRaf]

K2 + [sora]
[MEK],

R4 : pMEK→ MEK, rate = k4[pMEK],

R5 : ERK→ pERK, rate =
k5K3[pMEK]

K3 + [UO126]
[ERK],

R6 : pERK→ ERK, rate = k6[pERK],

with

k1,max(t) = k1,0 + k1,1

(
1− e−

t
τ1

)
e
− t
τ2 .

The model includes inhibition by Sorafenib and UO126 (R4 and R6) modeled by a reduc-

tion in the kinase activity of pRaf and pMEK. We considered two model hypotheses for

the effect of pERK on the phosphorylation of Raf:

H1 Inhibition of Raf phosphorylation by pERK: ξ(t) = K1
K1+[pERK]

H2 No inhibition: ξ(t) = 1

After the computations and parametrization outlined in Section 3.3.4.2, we arrived at the

following model,
dx1

dt
= k1,max(t)ξ(t)(1− x1)− k2x1
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dx2

dt
=
k3[Raf]0K2x1

K2 + [sora]
(1− x2)− k4x2

dx3

dt
=
k5[MEK]0K3x2

K3 + [UO126]
(1− x3)− k6x3

y1,b = s1,b[MEK]0x2

y2,b = s2,b[ERK]0x3

with blot index b = 1, . . . , 4. With the definitions K̃1 = K1/[ERK]0, k̃3 = k3[Raf]0 and

k̃5 = k5[MEK]0, the steady state for H1 is given by

ϕ0,1(θ) =

(
K̃1k1,0 +

(
K̃2

1k
2
1,0 +

2K̃2
1k6k

2
1,0

k̃5

+
K̃2

1k
2
6k

2
1,0

k̃2
5

+
K̃2

1k
2
4k

2
6 (k1,0 + k2)2

(k̃3k̃5)2
+

2K̃2
1k4k

2
6k1,0 (k1,0 + k2)

k̃3k̃2
5

+
2K̃2

1k4k6k1,0 (k1,0 + k2)

k̃3k̃5

+
4K̃1k2k4k6k1,0

k̃3k̃5

) 1
2

+

K̃1k6k1,0

k̃5

− K̃1k4k6 (k1,0 + k2)

k̃3k̃5

)
/(

2

(
k2 + K̃1k1,0 + K̃1k2 +

K̃1k2k6

k̃5

+
K̃1k6k1,0

k̃5

))

ϕ0,2(θ) =

((
K̃2

1k
2
1,0 +

2K̃2
1k6k

2
1,0

k̃5

+
K̃2

1k
2
6k

2
1,0

k̃2
5

+
K̃2

1k
2
4k

2
6 (k1,0 + k2)2

(k̃3k̃5)2
+

2K̃2
1k4k

2
6k1,0 (k1,0 + k2)

k̃3k̃2
5

+
2K̃2

1k4k6k1,0 (k1,0 + k2)

k̃3k̃5

+
4K̃1k2k4k6k1,0

k̃3k̃5

) 1
2

+

K̃1k1,0 +
K̃1k6k1,0

k̃5

− K̃1k2k4k6

k̃3k̃5

− K̃1k4k6k1,0

k̃3k̃5

)
/((

K̃2
1k

2
1,0 +

2K̃2
1k6k

2
1,0

k̃5

+
K̃2

1k
2
6k

2
1,0

k̃2
5

+
K̃2

1k
2
4k

2
6 (k1,0 + k2)2

(k̃3k̃5)2
+

2K̃2
1k4k

2
6k1,0 (k1,0 + k2)

k̃3k̃2
5

+
2K̃2

1k4k6k1,0 (k1,0 + k2)

k̃3k̃5

+
4K̃1k2k4k6k1,0

k̃3k̃5

) 1
2

+

K̃1k1,0 +
K̃1k6k1,0

k̃5

+
k2k4

1k̃3

(
2K̃1 +

K̃1k6

k̃5

+ 2

)
+
K̃1k4k1,0

k̃3

(
k6

k̃5

+ 2

))
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ϕ0,3(θ) =

((
K̃2

1 (k1,0)2 +
2K̃2

1k6k
2
1,0

k̃5

+
K̃2

1k
2
6k

2
1,0

k̃2
5

+
K̃2

1k
2
4k

2
6 (k1,0 + k2)2

(k̃3k̃5)2
+

2K̃2
1k4k

2
6k1,0 (k1,0 + k2)

k̃3k̃2
5

+
2K̃2

1k4k6k1,0 (k1,0 + k2)

k̃3k̃5

+
4K̃1k2k4k6k1,0

k̃3k̃5

) 1
2

+K̃1k1,0 +
K̃1k6k1,0

k̃5

− K̃1k2k4k6

1k̃3k̃5

− K̃1k4k6k1,0

k̃3k̃5

)
/

((
k6

k̃5

+ 1

)
(
K̃2

1k
2
1,0 +

2K̃2
1k6k

2
1,0

k̃5

+
K̃2

1k
2
6k

2
1,0

k̃2
5

+
K̃2

1k
2
4k

2
6 (k1,0 + k2)2

(k̃3k̃5)2
+

4K̃1k2k4k6k1,0

k̃3k̃5

+

2K̃2
1k4k

2
6k1,0 (k1,0 + k2)

k̃3k̃2
5

+
2K̃2

1k4k6k1,0 (k1,0 + k2)

k̃3k̃5

) 1
2

+ K̃1k1,0

(
k6

k̃5

+ 1

)2

+
k2k4k6

k̃3k̃5

(
K̃1 +

K̃1k6

k̃5

+ 2

)
+
K̃1k6k6k1,0

k̃3k̃5

(
k6

k̃5

+ 1

))
.

The steady state for H2 is given by

ϕ0,1(θ) =
k1,0

k1,0 + k2
, ϕ0,2(θ) =

k̃3
k1,0

k1,0+k2

k̃3
k1,0

k1,0+k2
+ k4

ϕ0,3(θ) =

k̃5

k̃3
k1,0

k1,0+k2

k̃3
k1,0

k1,0+k2
+ k4

 /

k̃5

k̃3
k1,0

k1,0+k2

k̃3
k1,0

k1,0+k2
+ k4

+ k6

 .
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Appendix B.

Finite volume discretization for the

branching model

In Section 5.2.3, we considered the finite volume discretization of the branching model on

the grid ih for i = 0, . . . , nV and interval length h. On the main branch the grid points are

denoted as si− 1
2

= (i−1)h and si+ 1
2

= ih. The center of the interval [si− 1
2
, si+ 1

2
] is denoted

with si = ih− 1
2h. If we denote the interval that contains the start of the branching region,

sa, with na, i.e., sa ∈ [sna− 1
2
, sna+ 1

2
[, the side branch contains the intervals indexed by

na, . . . , nV and the number of intervals on the side branch is nV − na + 1. The interval at

the end of the branching region is denoted with ne. The average cell density in an interval

[si− 1
2
, si+ 1

2
] at time point t is denoted by u1,i(t) for u1(s, t) and u2,i(t) for u2(s, t). We

denote the diffusion rate evaluated at si± 1
2

with Db,i± 1
2

= Db(si± 1
2
, t), the advection rate

evaluated at si± 1
2

with vb,i± 1
2

= vb(si± 1
2
, t) and the proliferation rate evaluated at si with

gb,i = gb(si, t) where b ∈ {1, 2} indicates the corresponding branch. The complete ODE

resulting from the finite volume discretization of the branching model (5.6) is given by

du1,1

dt
= − 1

h2
D1,1+ 1

2
(u1,1 − u1,2)− 1

2h
v1,1+ 1

2
(u1,1 + u1,2) + g1,1u1,1

du1,i

dt
=

1

h2

(
D1,i− 1

2
(u1,i−1 − u1,i)−D1,i+ 1

2
(u1,i − u1,i+1)

)
+

1

2h

(
v1,i− 1

2
(u1,i−1 + u1,i)− v1,i+ 1

2
(u1,i + u1,i+1)

)
+ g1,iu1,i

for i ∈ {2, . . . , nV − 1} \ {na, . . . , ne}
du1,i

dt
=

1

h2

(
D1,i− 1

2
(u1,i−1 − u1,i)−D1,i+ 1

2
(u1,i − u1,i+1)

)
+

1

2h

(
v1,i− 1

2
(u1,i−1 + u1,i)− v1,i+ 1

2
(u1,i + u1,i+1)

)
+ g1,iu1,i − δ12u1,i + δ21u2,na

for i ∈ {na, . . . , ne}
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du1,nV

dt
=

1

h2
D1,nV − 1

2
(u1,nV −1 − u1,nV )− 1

2h
v1,nV − 1

2
(u1,nV −1 + u1,nV ) + g1,nV u1,nV

du2,na

dt
= − 1

h2
D2,na+ 1

2
(u2,na − u1,na+1)− 1

2h
v2,na+ 1

2
(u2,na + u2,na+1) + g2,nau2,na

− δ12u1,na + δ21u2,na

du2,i

dt
=

1

h2

(
D2,i− 1

2
(u2,i−1 − u2,i)−D2,i+ 1

2
(u2,i − u2,i+1)

)
+

1

2h

(
v2,i− 1

2
(u2,i−1 + u2,i)− v2,i+ 1

2
(u2,i + u2,i+1)

)
+ g2,iu2,i − δ12u1,i + δ21u2,i

for i ∈ {na + 1, . . . ne}
du2,i

dt
=

1

h2

(
D2,i− 1

2
(u2,i−1 − u2,i)−D2,i+ 1

2
(u2,i − u2,i+1)

)
+

1

2h

(
v2,i− 1

2
(u2,i−1 + u2,i)− v2,i+ 1

2
(u2,i + u2,i+1)

)
+ g2,iu2,i

for i ∈ {ne + 1, nV − 1}
du2,nV

dt
=

1

h2
D2,nV − 1

2
(u2,nV −1 − u2,nV )

− 1

2h
v2,nV − 1

2
(u2,nV −1 + u2,nV ) + g2,nV u2,nV .
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J. D. Levine, S. D. Dib-Hajj, S. G. Waxman, and T. Hucho. Wound healing growth

factor, basic FGF, induces Erk1/2 dependent mechanical hyperalgesia. Pain, 154(10):

2216–2226, 2013.

P. Angerer, L. Simon, S. Tritschler, F. A. Wolf, D. Fischer, and F. J. Theis. Single cells

make big data: New challenges and opportunities in transcriptomics. Curr. Opin. Syst.

Biol., 4:85–91, 2017.

J. Bachmann, A. Raue, M. Schilling, M. E. Böhm, C. Kreutz, D. Kaschek, H. Busch,
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H. Hass, C. Loos, E. Raimúndez-Álvarez, J. Timmer, J. Hasenauer, and C. Kreutz. Bench-

mark problems for dynamic modeling of intracellular processes. Bioinformatics, 35(17):

3073–3082, 2019.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and

C. S. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation

Solvers. ACM T. Math. Software., 31(3):363–396, 2005.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints,

volume 23 of Mathematical Modelling: Theory and Applications. Springer Netherlands,

2009.

S. Hock, J. Hasenauer, and F. J. Theis. Modeling of 2D diffusion processes based on

microscopy data: Parameter estimation and practical identifiability analysis. BMC

Bioinformatics, 14(10):S7, 2013.

H. G. Holzhütter, D. Drasdo, T. Preusser, J. Lippert, and A. M. Henney. The virtual

liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip.

Rev. Syst. Biol. Med., 4(3):221–235, 2012.

S. Hroß. Parameter estimation and uncertainty quantification for image based systems

biology. PhD thesis, Technische Universität München, 2016.

S. Hross and J. Hasenauer. Analysis of CFSE time-series data using division-, age- and

label-structured population models. Bioinformatics, 32(15):2321–2329, 2016.

S. Hross, F. J. Theis, M. Sixt, and J. Hasenauer. Mechanistic description of spatial

processes using integrative modelling of noise-corrupted imaging data. J R Soc Interface,

15(149):20180600, 2018.

S. Hug, A. Raue, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer, and F. J.

Theis. High-dimensional Bayesian parameter estimation: Case study for a model of

JAK2/STAT5 signaling. Math. Biosci., 246(2):293–304, 2013.

W. Hundsdorfer and J. Verwer. Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations, volume 33 of Springer Series in Computational Math-

ematics. Springer-Verlag Berlin Heidelberg, 2003.

B. Ingalls. Mathematical modelling in systems biology: An introduction. The MIT Press.

MIT Press, 2013.

130



Bibliography

V. Isakov. Inverse Problems for Partial Differential Equations, volume 127 of Applied

Mathematical Sciences. Springer-Verlag New York, 2nd edition, 2006.

K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Ap-

plications, volume 15 of Advances in Design and Control. Society for Industrial and

Applied Mathematics, 2008.

B. Kaltenbacher, A. Neubauer, and A. G. Ramm. Convergence rates of the continuous

regularized Gauss-Newton method. J. Inv. Ill-Posed Problems, 10(3):261–280, 2002.

J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival Jr,

N. Assad-Garcia, J. I. Glass, and M. W. Covert. A whole-cell computational model

predicts phenotype from genotype. Cell, 150(2):389–401, 2012.

H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, New Jersey, 2nd

edition, 1996.

B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations

in the mitogen-activated protein kinase cascades. Eur. J. Biochem., 267(6):1583–1588,

2000.

B. N. Kholodenko. Untangling the signalling wires. Nat. Cell Biol., 9(3):247–249, 2007.

E. L. King and C. Altman. A schematic method of deriving the rate laws for enzyme-

catalyzed reactions. J. Phys. Chem., 60(10):1375–1378, 1956.

H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664, 2002.

A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D. A.

Weitz, and M. W. Kirschner. Droplet barcoding for single-cell transcriptomics applied

to embryonic stem cells. Cell, 161(5):1187–1201, 2015.

E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems biology in practice:

Concepts, implementation and application. John Wiley & Sons, Ltd, 2005.

T. Kose. Solutions of saddle value problems by differential equations. Econometrica, 24

(1):59–70, 1956.

C. Kreutz, M. M. Bartolome Rodriguez, T. Maiwald, M. Seidl, H. E. Blum, L. Mohr,

and J. Timmer. An error model for protein quantification. Bioinformatics, 23(20):

2747–2753, 2007.

131



Bibliography

F. Lampariello. On the Kolmogorov-Smirnov statistical test for immunofluorescence his-

togram comparison. Cytometry Part A, 39(3):179–188, 2000.

A. D. Lander, K. K. Gokoffski, F. Y. M. Wan, Q. Nie, and A. L. Calof. Cell lineages and

the logic of proliferative control. PLoS Biol., 7(1):e1000015, 2009.

S. Linnarsson and S. A. Teichmann. Single-cell genomics: coming of age. Genome Biol.,

17(1):97, 2016.

P. M. Loriaux, G. Tesler, and A. Hoffmann. Characterizing the relationship between

steady state and response using analytical expressions for the steady states of mass

action models. PLoS Comput. Biol., 9(2):e1002901, 2013.

T. Luzyanina, D. Roose, and G. Bocharov. Distributed parameter identification for label-

structured cell population dynamics model using CFSE histogram time-series data. J.

Math. Biol., 59(5):581–603, 2009.

T. Luzyanina, J. Cupovic, B. Ludewig, and G. Bocharov. Mathematical models for CFSE

labelled lymphocyte dynamics: Asymmetry and time-lag in division. J. Math. Biol., 69

(6–7):1547–1583, 2014.
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