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Abstract

This work studies several optimization problems that are defined in graphs. These
include graph cuts with novel objectives, disjoint shortest paths, and three different
processes on graphs. We give several polynomial time algorithms for restricted in-
stances and analyze boundaries of polynomial time solvability of the aforementioned
problems. Additionally, we address questions related to graph processes such as long-
term behavior. We also provide new bounds, e.g. for minimal percolating sets in
bootstrap percolation.

Zusammenfassung

In dieser Arbeit untersuchen wir verschiedene auf Graphen definierte Optimierungsprob-
leme. Dabei betrachten wir Partitionsprobleme mit neuen Zielfunktionen, disjunkte
kürzeste Wege sowie drei verschiedene Prozesse auf Graphen. Wir entwickeln poly-
nomielle Algorithmen für eingerschränkte Instanzen und analysieren jeweils die Kom-
plexität der allgemeinen Probleme. Außerdem beantworten wir extremale Fragen zum
Prozessverhalten. Zudem beweisen wir neue Schranken, beispielsweise für die Größe
perkolierender Mengen bei Bootstrap Perkolation.
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Chapter 1

Introduction

This dissertation deals with problems from two major fields of research. In Chapter 2,
we study optimization problems related to cuts and paths in graphs. The problems
studied are motivated by applications such as conflict free package routing in networks
or clustering in data science. At first, we generalize acyclic mixed graphs and give an
algorithm that solves the k disjoint paths problem in polynomial time on this restricted
set of instances for constant k. Using this result, we then give a polynomial time
algorithm for undirected two disjoint shortest paths on graphs with non-negative edge
weights. Furthermore, we analyze novel objectives for graph bipartition problems
that are degree dependent, including maximization and minimization of minimum
and maximum cut-degree, respectively. We also generalize the standard notion of
graph degeneracy and characterize boundaries of polynomial time solvability for all
introduced objectives. We also derive approximation algorithms, some with provably
best possible approximation guarantees unless P=NP .

The chapter finishes with another set of optimization problems related to graph
(multi)cuts. Again, motivated by applications, e.g. airport controls, we pose a model
of network security where a set of invaders has to be deterred from reaching their
respective destination by installing security checks on the graph. Novel objectives,
like total path length minimization for journeyers with updated edge costs for cut
edges — edges with security checks — are introduced. We study both, directed and
undirected graphs and prove the hardness of the general problems but give polynomial
time algorithms for several special cases.

In Chapter 3, the second part of the thesis, we consider three different but related
(infection) processes on graphs. All processes can be modeled as discrete time processes
with vertex states with update rules that are only governed by the vertex’s and its
neighbors’ states. First, we study bootstrap percolation, a process that corresponds to
the Ising Model and is used to describe ferromagnetism in crystals at zero temperature.
The graphs analyzed here are degenerate graphs and grid graphs. For degenerate
graphs, we derive a tight bound on the size of the infected set at the end of the
process. This bound also gives rise to a bound on the size of sets that infect the entire
graph — what is called percolating sets. For grids, we work towards an answer to an
extremal question on the maximum size of minimal percolating sets. Note, so-called

1



Chapter 1 Introduction

minimal percolating sets are sets infecting the entire graph, but no proper subset has
this property.

The second process is an infection process with three states (healthy, passive and
infected) with a process parameter governing infection rates for the different non-
infected states. The process is motivated by applications in statistical physics and has
relations to the Fredrickson-Andersen one spin facilitated model that is used to model
glassy dynamics. We prove a phase transition in that parameter of the process on the
infinite line, i.e. Z. This phase transition means, if the parameter is small, infection
dies out, if the parameter is large, the infection survives.

Finally, the third process studied resembles an opinion formation process on two
options in which, according to some order, a set of individuals with influence relations
resembled by a graph takes a vote on either of the options. Direct applications of
the studied process include many public elections such as the US presidential election.
Initial preferences of individuals are random and only revealed once the individual
takes a vote. Finding a fixed (non-adaptive) order that maximizes the number of
votes for one of the options is proved to be NP -hard. But, we give algorithms that
find non-adaptive orders as well as adaptive orders with tight performance guarantees
for certain graphs. If initial preferences were publicly known, the process agrees with
bootstrap percolation.

In the remainder of this introductory chapter, we introduce basic notation that is
used throughout all sections. Whenever notations or definitions are only needed in
very particular parts of the thesis, for convenience, we give the definitions in the respec-
tive sections. Definitions given in the introduction are non-exhaustive but are rather
needed to fix notations and conventions for which different definitions exist in litera-
ture. Still, a profound knowledge of the reader on graph theory (e.g. [17]), algorithms
and complexity theory (e.g. [73]), and probability theory (e.g. [82]) is assumed.

1.1 Sets and Functions

We use standard notation for numbers, i.e. let N := {1, 2, . . . } (and N0 := {0} ∪ N)
denote the natural numbers (including zero). The set of integers is denoted by Z, and
finally let R be the set of real numbers. We write R≥0 := {x ∈ R : x ≥ 0} for the set
of positive reals. Also, we abbreviate [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n}

For a set S we let P(S) := {S′ ⊆ S} denote the powerset of S. Furthermore, let(
S
2

)
:= {{v1, v2} : v1, v2 ∈ S, v1 6= v2} denote all subsets of S of size 2. For two sets

A,B let A4B := A ∪B \ (A ∩B) denote the symmetric difference of A and B.

Given a function f : A → B with a discrete domain A. Let a ∈ A, then, we
interchangeably use the standard and a vector representation of f , i.e. let fa := f(a).
Additionally, for a subset A′ ⊆ A we define f(A′) :=

∑
a∈A′ fa.

For our purposes, a function π : V → [n] is called weak order of V of width k if

2



1.2 Graphs

|{v ∈ V : π(v) = i}| ≤ k for all i ∈ [n]. If π is a bijection, we call it order of V . Note,
π itself is not a relation, but we make use of the order that is induced naturally by
the respective values, i.e. let x � y if f(x) < f(y) or x = y. Therefore, the (partial)
order � that is induced by π is reflexive, transitive, and also antisymmetric. Also, the
notion of width of the weak order π agrees with the notion of width of the relation �.

1.2 Graphs

Directed and Undirected Graphs:

Let G := (VG, EG) be an undirected graph with vertex set VG and edge set EG ⊆
(
VG
2

)
.

We say two vertices u, v ∈ VG are adjacent if there exists an edge e = {u, v} ∈ EG
and write u ∼ v. We also say the edge e is incident to u and v and vice versa. By
N(u) := {v ∈ VG : u ∼ v} we denote the neighbors of u. Two edges e, e′ ∈ EG are
incident if e ∩ e′ 6= ∅. For every vertex v ∈ VG we let δG(v) := {e ∈ E : v ∈ e} denote
the set of edges incident to v. Furthermore, let degG(v) := |δG(v)| be the degree of v.
Last but not least, let ∆(G) := maxv∈V degG(v) be the maximum degree of G.

If the graph G = (VG, AG) is directed, we denote the edge/arc set with AG. In that
case AG ⊆ VG × VG. For directed graphs we say a vertex v ∈ V is incident to a ∈ A if
a ∈ {(u, v), (v, u)} for some u ∈ V . Two arcs a, a′ ∈ AG are incident if a = (u, v) and
a′ = (v, w) for u, v, w ∈ VG. We let δ−G(v) := {(u, v) ∈ A} and δ+

G(v) := {(v, u) ∈ A} be
the sets of ingoing and outgoing arcs, respectively. Furthermore, deg−G(v) := |δ−G(v)|
and deg+

G(v) := |δ+
G(v)| are called in-degree and out-degree of v ∈ VG, respectively. To

simplify notation, we omit G as subscript if it is clear which graph we are referring to.

Given G = (V,E) and H = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E ∩
(
V ′
2

)
. We call

H a subgraph of G. Furthermore, we say H is an induced subgraph of G on V ′, if
E′ = {{u, v} ∈ E : u, v ∈ V ′}. The induced subgraph H = (V ′, E′) is also denoted as
G[V ′]. In some parts, subgraphs arise from a subset of edges. Instead of defining an
auxiliary subgraph, we describe the respective subgraph by its edge set in subscripts,
e.g. we write δE′(v) instead of defining G[E′] := (V,E′) and using δG[E′](v).

Paths, Trails, and Walks:

Given a graph G = (V,E). A path P is a sequence of consecutively incident edges
without vertex repetitions, e.g. e1 = {v1, v2}, e2 = {v2, v3}, . . . , ek−1 = {vk−1, vk} ∈ E
with vi 6= vj for i 6= j. We slightly abuse notation and let P := (e1, . . . , ek) but write
v ∈ P and e ∈ P if there exists i ∈ [k] such that v = vi and e = ei, respectively.

The same notation is used for directed paths, i.e. let a1 = (v1, v2), a2 = (v2, v3), . . . ,
ak−1 = (vk−1, vk) ∈ A with vi 6= vj for i 6= j. Define P := (a1, . . . , ak−1) but write
v ∈ P and a ∈ P if there exists i ∈ [k] such that v = vi and a = ai, respectively. In
both cases, directed and undirected, we refer to P as v1-vk-path of length k − 1.

3



Chapter 1 Introduction

A trail T is a sequence of consecutively incident edges/arcs without edge/arc rep-
etitions. A walk W is a sequence of consecutively incident edges/arcs allowing for
both, vertex and edge/arc repetitions. We use the same notations for containment of
vertices and edges/arcs for trails and walks as for paths. Also see Figure 1.1.

TP

W

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

Figure 1.1: A path P of length 4, a trail T of length 5, and a walk W of length 8.

Often we consider edge-weighted1 graphs represented by a triple G = (V,E,w)
with w : E → R.2 For the weighted case, we may define a notion of distance, to
be more precise, define a function dist : V × V → R. We then let dist(u, v) :=
minP is u-v-path

∑
e∈P we. Also, for graphs without edge weights we let w ≡ 1 to stay

in line with our definition of distance and the definition of the length of a path. We
call a sequence of consecutively incident edges, where additionally the first and last
edge are incident, i.e. Ck := ({v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk, v1}) with vi 6= vj
for i 6= j, a cycle of length k.

Notions of Connectivity:

We say a graph G = (V,E) is connected if there exists an u-v-path for all u, v ∈ V .
It is said to be k-edge-connected if there are k edge-disjoint u-v-paths for any pair
u, v ∈ V . If there are k vertex-disjoint u-v-paths for any pair u, v ∈ V , the graph is
called k-vertex-connected.

For directed graphs, however, there exist three different notions of connectivity that
we shall use throughout the thesis. Let G = (V,A) be a directed graph. We say G
is weakly connected if the undirected graph that is obtained by omitting directions or
all arcs is connected. The graph G is said to be connected if for every pair s, t ∈ V
there exists a directed s-t-path or a directed t-s-path. Last but not least, a graph is
strongly connected if for all pairs s, t ∈ V there exists a directed s-t-path.

1sometimes we also refer to edge weights as edge lengths. In particular, if weights are positive, we
mainly use the term length instead.

2analogous, w : A→ R, for directed graphs
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1.2 Graphs

Special Graphs:

Given a graph G = (V,E). We denote by Gc = (V,Ec) with Ec =
(
V
2

)
\ E the

complement of G.

If a graph G = (V,E) does not contain cycles, it is called a forest. If G is a forest
and is connected, we call G a tree. If G = (V,A) is directed and does not contain a
directed cycle, G is said to be acyclic.

A graph G = (V,E) is bipartite if there exists a partition A ∪· B = V such that
E ⊆ {{u, v} : u ∈ A, v ∈ B}.

The graph with V = [m] × [n] and E := {{(i, j), (i + 1, j)} : i ∈ [m − 1], j ∈
[n]} ∪ {{(i, j), (i, j + 1)} : i ∈ [m − 1]} is referred to as an m times n grid graph. For
an illustration see Figure 1.2.

(1, 1)

(1, 5) (2, 5) (7, 5)

(7, 1)

Figure 1.2: A [7]× [5] grid graph is depicted in the figure.

Complete graphs G = (V,E) (also called cliques) are graphs with E =
(
V
2

)
. We

write Kn for a clique on n vertices. A graph G, respectively its vertex set, is called
independent set if its complement graph Gc is a clique, i.e. EG = ∅ and EGc =

(
V
2

)
. The

independence number α(G) of a graph G is maximum cardinality among all induced
independent sets in G. Similarly, the clique number κ(G) of a graph G is the size of
the largest subgraph of G that is a clique.

A graph is called planar if there exists an embedding into the plane without any edge
crossings. Last but not least, a graph G = (V,E) is d-degenerate, if every subgraph
contains a vertex of degree at most d. For degenerate graphs there exists an ordering
of the vertices on a line such that every vertex is adjacent to at most d neighbors on its
left (vertices with smaller label)3. Such a sequence is called an Erdős-Hajnal sequence.

3The proof is an easy exercise.
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v

δC(v)

s

t

Partition set V1

Partition set V2

Figure 1.3: A cut on a graph with black cut edges forming the cut set C. Since, s and
t are contained in different sets, the cut is also an s-t-cut.

Cuts:

Given a graph G = (V,E). A bipartition of the vertex set V , i.e. V1 ∪· V2 = V , with
V1, V2 6= ∅, is called cut. We shall use the terms cut and bipartition interchangeably.
All edges in the cut set C := {{u, v} ∈ E : u ∈ V1, v ∈ V2} are said to cross the cut
or called cut edges. Given two vertices s, t ∈ V we call a cut with s ∈ Vs and t ∈ Vt
to be an s-t-cut. The cut-degree of a vertex v on a cut with cut set C is defined as
degC(V ) = |δC(v)|.

This notion of cuts can also be extended to directed graphs by replacing edges by
arcs in the above definition.

Colorability:

A graph G = (V,E) is said to be k-colorable, if there exists a map π : V → [k] such
that π(v) 6= π(u) for all {u, v} ∈ E. The smallest value of k, such that G is k-colorable
is called chromatic number of G.

The graph is said to be (d, k)-colorable if |{u : {u, v} ∈ E ∧ π(v) = π(u)}| ≤ d for
all v ∈ V . The smallest value k ∈ N for which G is (d, k)-colorable, is also called
d-defective chromatic number of G. Note, for d = 1 this agrees with the chromatic
number.

Matchings:

Given a graph G = (V,E) and a subset of edges E′ ⊆ E. The edge set E′ is called
a matching if degE′(v) ≤ 1 for all v ∈ V . A matching is a perfect matching if every
vertex is adjacent to exactly on edge in the matching.

6



1.3 Complexity Theory

Flows:

Given a directed graph G = (V,A, c) with c : A→ R≥0. For a ∈ A we call ca capacity
of arc a. Let s, t ∈ V , we call f : A→ R≥0 an s-t-flow if

1. fa ≤ ca for all a ∈ A (Capacity Constraints),

2.
∑

a∈δ−(v) fa =
∑

a∈δ+(v) fa for all v ∈ V \ {s, t} (Flow Conservation).

We define value(f) :=
∑

a∈δ−(s) fa −
∑

a∈δ+(s) fa to be the value of the flow.
Given an additional cost function on the arcs u : A → R, the cost of an s-t-flow f is
given by u(f) :=

∑
a∈A uafa.

Graph Processes:

Given a graph and a finite set of vertex states. A process on graph is a sequence
of changes in vertex states over time according to some predefined process rules. In
particular, all processes analyzed in this thesis share a common feature. Update
rules for vertex states only depend on the vertex’s current state and the states of its
neighbors in the graph.

An example of such a process is r-neighbor bootstrap percolation. This is a two state
process a graph with vertex states uninfected and infected. From an initially infected
set of vertices vertex states update in discrete time steps. If a vertex is adjacent to at
least r infected vertices, it becomes infected itself and remains infected for all future
time steps.

1.3 Complexity Theory

By P we denote the class of decision problems solvable in polynomial time. Let NP be
the class of decision problems solvable in non-deterministic polynomial time. We say an
optimization problem is NP -hard, if the corresponding decision problem is NP -hard.
To be more precise, given, e.g , a minimization problem with objective function f and
feasible solutions X. The corresponding decision problem is defined as follows: Given
some l ∈ Q, does there exist a feasible solution x ∈ X with f(x) ≤ l. The problem
for maximization problems is defined analogously reversing the inequality sign. A
decision problem is said to be NP -complete if it is NP -hard and in NP . The following
NP -complete decision problems are used in several parts of the thesis. We also would
like to point the reader to Garey and Johnson’s long list of NP -complete problems
that turned out very useful in many places [42].

7



Chapter 1 Introduction

1.3.1 Short List of NP-complete Problems:

Boolean Satisfiability Problem:

A truth assignment is a function w : X → {0, 1}n that assigns truth values to a set
of Boolean variables X = {x1, . . . , xn}. We say xi is assigned false if w(xi) = 0, and
assigned true else. A Boolean expression is a (syntactically correct) formula making
use of Boolean operations on Boolean variables, i.e. the three following elementary
operations:

1. Conjunction of two Boolean variables/expressions X1 ∧X2:

X1 ∧X2 ≡
{

1 if X1 = X2 = 1,

0 else

2. Disjunction of two Boolean variables/expressions X1 ∨X2:

X1 ∨X2 ≡
{

0 if X1 = X2 = 0,

1 else

3. Negation of a Boolean variable/expression ¬:

¬X1 ≡
{

0 if X1 = 1,

1 if X1 = 0.

We call l ∈ {x,¬x} literal and a Boolean expression of the form C = (y1∨y2∨ . . .∨yl)
a clause of length l. Additionally, we say a Boolean expression is satisfiable if there
exists a truth assignment such that the expression evaluates to true (resp. 1). For
literals that are negated variables, i.e. ¬x, we also write x̄.

The following decision problem is called SAT: Given a Boolean formula, does there
exist an assignment of true/false to x1, . . . , xn such that the formula evaluates to true.

A Boolean expression C1∧C2∧ . . .∧Cm with clauses C1, . . . , Cm over a variable set
X is said to be in conjunctive normal form.

Given a Boolean formula in conjunctive normal form, where every clause is of length
at most 3. The decision problem, does there exist an assignment of true/false to
x1, . . . , xn such that this expression evaluates to true, is called 3-SAT.

If every clause contains exactly 3 literals, the decision problem is called exact-3-
SAT. Slightly more restrictive, not-all-equal 3-SAT, requires at least one true and
one false literal per clause. A yet even more restrictive variant of truth assignments of
exact-3-SAT, requires exactly one literal per clause to evaluate to true. This problem
is referred to as 1-in-3-SAT. All the above variations of SAT are NP -complete [42].
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1.3 Complexity Theory

Disjoint Paths:

Given a graph G = (V,E) and k pairs of source and sink vertices (si, ti), i ∈ [k]. The
decision problem, do there exist vertex disjoint paths Pi such that Pi is an si-ti-path
for i ∈ [k], is called k disjoint paths problem (k-DPP). We refer to the directed version
as directed k disjoint paths problem (k-dDPP).

Noteworthy is the seminal result by Robertson and Seymour [79] that k-DPP is
solvable in polynomial time if k is constant. However, if k is part of the input, k-
DPP is NP -complete [58]. For directed graphs, the picture is slightly different, 2-
dDPP is already NP -complete [39].

1.3.2 Polynomial Time Solvable Problems:

In the following, we give a list of (optimization/decision) problems occurring in this
thesis, for which we make use of the existence of polynomial time algorithms solving
them.

Shortest Paths:

Given a (possibly directed) graph G = (V,E) with edge weights w : E → R≥0 and
s, t ∈ V . A shortest s-t-path, can be computed in polynomial time, if such a path
exists. This can be generalized to conservative edge weights, i.e. weights for which
there exists no (directed) negative cycle [11].

Undirected Disjoint Paths:

As mentioned before, Robertson and Seymour [79] gave a polynomial time algorithm
for k-DPP for constant k.

Matchings:

Given a graph G = (V,E) with edge weights w.

1. Find a maximum weight matching.

2. Find a minimum weight perfect4 matching.

Both variants can be solved in polynomial time using appropriate adaptions of Ed-
mond’s blossom algorithm [32].

4Of course, the algorithm finds a perfect matching only if one exists and returns non-existence
otherwise.
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Chapter 1 Introduction

Degeneracy:

Let G = (V,E) be a graph. The degeneracy of the graph, i.e. the minimum d ∈ N such
that G is d-degenerate, can be computed in polynomial time. Also, an Erdős-Hajnal
sequence can be found in polynomial time [68].

Maximum Flow:

Given a directed graph G = (V,A) with edge capacities c : E → R≥0 and s, t ∈ V .
There exists an algorithm that computes a maximum s-t-flow in polynomial time,
e.g. the Edmonds–Karp algorithm [33].

Minimum-cost Flow:

Given a graph G = (V,A) with edge capacities c : E → R≥0 and edge cost u :
E → R≥0. Furthermore, let s, t ∈ V and b ≥ 0. A minimum cost s-t-flow f with
value(f) = b can be computed in polynomial time, if it exists [44].

1.4 Outline of the Thesis

In the following paragraphs, we give an outline of the thesis.

In Chapter 2, we algorithmically study optimization problems related to shortest
paths and vertex partitions (cuts).
In Section 2.1, we give a polynomial time algorithm for non-negative two disjoint
shortest paths. The section is split into two parts, first in Section 2.1.4, an algorithm
for k-DPP on weakly acyclic mixed graphs is presented. That algorithm is then used
in Section 2.1.5 to solve 2-DSPP. This section is a joint work with Marcus Kaiser and
Clara Waldmann [49].
Section 2.2 introduces novel objectives for graph cut problems. We give a full char-
acterization of complexity for the Min-Max-, Min-Min-, Max-Min-, Max-Max-Cut-
Degree Problems in Section 2.2.4. Furthermore, in Section 2.2.5, we introduce a new
notion of degeneracy and analyze its computational complexity. For this new graph
degeneracy, we derive hardness results and an approximation algorithm.
Finally, Section 2.3 presents a work in progress with Jannik Matuschke [51]. It con-
siders yet another novel set of objectives for vertex bipartition problems, that include
path length minimization in Section 2.3.2 and flow maximization in Section 2.3.3. Be-
sides new objectives, the main feature of the studied models are increased cost of cut
edges. We present several polynomial time algorithms and also characterize bound-
aries of polynomial time solvability of the problems.
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1.4 Outline of the Thesis

Chapter 3 of the thesis studies three processes on graphs all making use of up to
three vertex states.
Section 3.1 studies an infection process (bootstrap percolation) on graph classes, such
as degenerate graphs as well as grid graphs, c.f. Section 3.1.2 and Section 3.1.3, re-
spectively. It revisits and strengthens bounds for degenerate graphs published in [45].
Also, we disprove a conjecture by Morris [71] for the maximum size of inclusion mini-
mal sets spreading the infection to all vertices on grids.
Section 3.2 proves a phase transition in a process parameter for a three-state infec-
tion process motivated by statistical physics (c.f. Section 3.2.3). This phase transition
means, depending on the process parameter, that there are regimes for survival (see
Section 3.2.4) or extinction (see Section 3.2.5) of the infection. Section 3.2 is joint
work with Markus Heydenreich, Kilian Matzke, and Cristina Toninelli and has been
published in [48].
Last but not least, the process introduced in Section 3.3 resembles an election between
two options where influences among individuals are present. Interested in the order of
votes, we study the hardness of finding an one-option-maximizing order for two vari-
ants of the problem. We characterize graphs that admit a non-adaptive order making
use of the new graph degeneracy introduced in Section 2.2.5 in Section 3.3.4. We also
give an adaptive algorithm with a tight (expected) performance guarantee for general
graphs. The algorithm for orders with one vote at a time then is generalized to weak
orders, allowing for more that one vertex to take a vote at a time in Section 3.3.5.
Also, we present some computational experiments on random graphs of all algorithms
in Section 3.3.6. This section is a work in progress with Susanne Albers [1].

In Chapter 4, we conclude the thesis and point to interesting open problems.
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Chapter 2

Cuts and Paths

In this chapter, we algorithmically study problems related to cuts and paths on graphs.
First, we address the disjoint shortest path problem. We give a polynomial time
algorithm for the k disjoint paths problem on weakly acyclic graphs. This algorithm is
then used to solve the undirected two disjoint shortest paths problem with non-negative
weights in polynomial time. In the second part, we study optimization problems
related to cuts with degree-depended objective functions, such as max-min-degree
cuts, and also introduce new notion of degeneracy. For these problems, we derive
several hardness and (in)approximability results. Finally, we analyze cut constrained
problems related to network security on weighted graphs. We study new objective
functions, such as total path length minimization and flow maximization, where cut
edges have an increased weight and reduced capacities, respectively. Polynomial time
algorithms are derived for several restricted instances.
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Chapter 2 Cuts and Paths

2.1 Disjoint Shortest Paths

This section is a reprint with adaptions of a joint work with Marcus Kaiser and Clara
Waldmann that has been published in [49].

2.1.1 Overview

Due to many practical applications, e.g., in communication networks, the k disjoint
paths problem (k-DPP) is a well studied problem in the literature. The input of the
problem is an undirected graph G = (V,E) as well as k pairs of vertices (si, ti) ∈ V 2

for i ∈ [k] and the task is to decide whether there exist k paths P1, . . . , Pk such that Pi
is an si-ti-path and all paths are pairwise disjoint. Here, disjoint can either mean
vertex-disjoint or edge-disjoint.

The k disjoint shortest path problem (k-DSPP) is a generalization of the k disjoint
paths problem. The input of the problem is an undirected graph G = (V,E) with
edge lengths ` : E → R and k pairs of vertices (si, ti) ∈ V 2 for i ∈ [k]. But here, all
paths Pi for i ∈ [k] are additionally required to be shortest si-ti-paths. Note, if ` ≡ 0,
this agrees with k-DPP.
We shall refer to the versions of the problems in directed graphs by k-dDPP and
k-dDSPP.

2.1.2 Related Work

Probably most famously, Menger’s theorem [70] deals with disjoint paths which gave
rise to one of the most fundamental results for network flows: the Max-Flow-Min-Cut
theorem [35, 38]. Using these results, an application of any flow algorithm solves the
k-dDPP if si = sj for all i, j ∈ [k] or ti = tj for all i, j ∈ [k]. Without restrictions
on the input instances, all variants of the discussed problems are NP-complete if k is
considered part of the input [36, 58].

Due to this, a lot of research focuses on the setting where k is considered fixed.
Robertson and Seymour [79] came up with an O

(
|V |3

)
algorithm for k-DPP.

In contrast to that, Fortune et al. [39] prove that k-dDPP is still NP -hard, even if
k = 2. They give an algorithm that solves k-dDPP for any fixed k on directed acyclic
graphs in polynomial time. Zhang and Nagamochi [84] then extended the work of
Fortune et al. [39] to solve the problem on acyclic mixed graphs, which are graphs
that contain arcs and edges where directing any set of edges does not close a directed
cycle.

Since k-dDSPP and k-dDPP agree for ` ≡ 0, all hardness results carry over. How-
ever, if all edge lengths are strictly positive Bèrczi and Kobayashi [13] give a polyno-
mial time algorithm for 2-dDSPP. Also, for 2-DSPP with strictly positive edge lengths
there exists a polynomial time algorithm that is due to Eilam-Tzoreff [34]. However,
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2.1 Disjoint Shortest Paths

` ≡ 0 ` non-negative
k k-DPP k-dDPP k-DSPP k-dDSPP

arb. NP-hard [36, 58] NP-hard [36] NP-hard [34] NP-hard [34]
fixed P [79] NP-hard [39] open (` > 0) open (` > 0)

open (` ≥ 0) NP-hard (` ≥ 0) [39]
2 P [79] NP-hard [39] P (` > 0) [34] P(` > 0) [13]

P(` ≥ 0) ∗ NP-hard (` ≥ 0) [39]

Table 2.1: Complexity of the disjoint paths problem and its variants.
∗ A polynomial time algorithm for the 2-DSPP on undirected graphs with
non-negative edge lengths is the main result of this section.

the complexity of k-DSPP on undirected graphs with non-negative edge lengths and
constant k ≥ 2 is unknown. We settle the case k = 2 in this section.

Other than restricting the paths to be shortest si-ti-paths, e.g., Suurballe [83] gave
a polynomial time algorithm minimizing the total length, if all arc lengths are non-
negative and si = sj , ti = tj for all i, j ∈ [k]. Björklund and Husfeldt [15] came up
with a polynomial time algebraic Monte Carlo algorithm for solving 2-DPP with unit
lengths where the total length of the paths is minimized.

2.1.3 Our Results

We give a polynomial time algorithm for 2-DSPP on undirected graphs with non-
negative edge lengths. Combining techniques from [39] and [13] enables us to deal
with edges of length zero. We consider the following problem.

Problem 1 (Undirected Two Edge-Disjoint Shortest Paths Problem).

Input: An undirected graph G = (V,E) with non-negative edge lengths ` : E → R≥0,
a tuple of sources s ∈ V 2, and a tuple of sinks t ∈ V 2

Task: Decide whether there exist two edge-disjoint paths P1 and P2 in G such that P1

is a shortest s1-t1-path and P2 is a shortest s2-t2-path w.r.t. the edge lengths `.

The remaining section is organized as follows. In Section 2.1.4, based on the ideas
of [39], we give a dynamic algorithm that solves the k-DPP in polynomial time on
weakly acyclic mixed graphs, which are a generalization of directed acyclic graphs.
These results are then used in Section 2.1.5 together with a similar approach as in [13]
to solve the undirected 2-DSPP with non-negative edge lengths in polynomial time.

The results of this section have been obtained independently by Kobayashi and Sako
[61].
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Chapter 2 Cuts and Paths

2.1.4 Disjoint Paths Problem in Weakly Acyclic Mixed Graphs

In this subsection, we give an algorithm that solves k-DPP in a generalization of
directed acyclic graphs. We first define mixed graphs, introduce some notations, and
state the problem.

A graph G = (V,A ∪· E) is a mixed graph on the vertex set V with arc set A ⊆ V 2

and edge set E ⊆
(
V
2

)
. We define Æ(G) := A ∪· E. The set of ingoing (outgoing) arcs

of a set of vertices W ⊆ V is denoted by δ−A(W )
(
δ+
A(W )

)
.

For pairwise disjoint vertex sets W1, . . . ,Wh, we denote by G/{W1, . . . ,Wh} the
graph that results from G by contracting W1, . . . ,Wh into h vertices.

A (directed) u-w-path P in G is a sequence of h arcs and edges (æ1, . . . ,æh) ∈ Æh

such that there exists a sequence of vertices (u = v1, . . . , vh+1 = w) ∈ V h+1 satisfying
either æi = (vi, vi+1) or æi = {vi, vi+1} for all i ∈ [h]. Two paths are arc/edge-disjoint
(vertex-disjoint) if they do not have a common arc or edge (vertex).

Note that a directed acyclic graph induces natural orderings of its vertices. A linear
ordering of the vertices is called a topological ordering if, for every arc (v, w), the tail
v precedes the head w in the ordering. An ordering is called a reverse topological
ordering if its reverse ordering is a topological ordering.

On a ground set U , a binary relation R is a subset of U2. For (u, v) ∈ R, we
write uRv. A relation R is called reflexive, if uRu holds for all u ∈ U . For two binary
relations R,S ⊆ U2, the composition S ◦R is defined by

{(u,w) ∈ U2 | ∃v ∈ U : u R v ∧ v S w}.

Note that ◦ is an associative operator.

We consider the following problem for fixed k.

Problem 2 (Mixed k Arc/Edge-Disjoint Paths Problem).

Input: A mixed graph G = (V,Æ), a k-tuple of sources s ∈ V k, and a k-tuple of
sinks t ∈ V k

Task: Decide whether there exist k pairwise arc/edge-disjoint paths P1, . . . , Pk in G
such that Pi is an si-ti-path, for all i ∈ [k].

We give an algorithm that solves this problem on a class of mixed graphs, that
generalize directed acyclic graphs:

Definition 1 (Weakly Acyclic Mixed Graphs). We call a mixed graph G = (V,A∪· E)
weakly acyclic if the contraction of all edges E yields a directed acyclic graph without
loops.

Note that a weakly acyclic mixed graph can contain (undirected) cycles in its edge
set. For a mixed graph G = (V,Æ), we use the following notation in order to discuss
the existence of disjoint paths.
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2.1 Disjoint Shortest Paths

Definition 2 (Arc/Edge-Disjoint Paths Relation). For k ∈ N, we define the binary
relation ⇒Æ on the set V k as follows. For v, w ∈ V k, we have v⇒Æ w if there exist
pairwise arc/edge-disjoint vi-wi-paths for all i ∈ [k] in Æ. We shall also write ⇒G

short for ⇒Æ(G).

Since paths of length zero are allowed, the relation ⇒Æ is reflexive. In general, it
is not transitive. When considering two relations based on two disjoint sets of arcs
and edges, however, these two act in a transitive manner. In that case, the respective
underlying arc/edge-disjoint paths from both relations can be concatenated. The
resulting arc/edge-disjoint paths correspond to an element in the composition of the
two relations.

Observation 3 (Partial Transitivity). For disjoint arc/edge sets Æ1,Æ2 ⊆ Æ and
vectors of vertices u, v, w ∈ V k, it holds

u⇒Æ1
v ∧ v⇒Æ2

w =⇒ u⇒Æ1∪·Æ2
w.

Algorithm 1: Dynamic Program for k-DPP in Weakly Acyclic Mixed

Graphs

Input: weakly acyclic mixed graph G = (V,A ∪· E)

Output: ⇒G on V k

1 Find connected components V1, . . . , Vh of the subgraph (V,E) sorted

according to a topological ordering of G/{V1, . . . , Vh};
2 for j = 1, . . . , h do

3 Compute ⇒G[Vj ] using an algorithm for k-DPP

4 end

5 Initialize ⇒ to the relation {(v, v) : v ∈ V k};
6 for j = 1, . . . , h do

7 Update ⇒ to ⇒G[Vj ] ◦⇒δ−A (Vj)
◦⇒

8 end

9 return ⇒

This observation is exploited in Algorithm 1 in order to solve Problem 2 for fixed k
for weakly acyclic mixed graphs. It computes the relation ⇒G in polynomial time by
dealing with the edges and arcs in G separately.

For the undirected components, i.e., the connected components of the subgraph
(V,E), it uses an algorithm for edge-disjoint paths in undirected graphs (e.g., [79]) to
find the relation ⇒ on each component.
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Chapter 2 Cuts and Paths

V1 Vj−1 Vj

v2

v1

v3 p3

p1

p2

q1

q2

q3 = w3

w1

w2· · ·

· · ·

v⇒j−1 p p⇒
δ−A (Vj)

q⇒G[Vj ] w

Figure 2.1: In iteration j of Algorithm 1, relation ⇒j is built by concatenating previ-
ously computed paths

(
⇒j−1

)
, pairwise different arcs to the next compo-

nent
(
⇒
δ−A (Vj)

)
, and undirected edge-disjoint paths in the next component(

⇒G[Vj ]

)
.

Afterward, dynamic programming is used to compute⇒ on successively larger parts
of the mixed graph. As G is weakly acyclic, contracting all undirected components
results in an acyclic graph. The algorithm iterates over the components in a topolog-
ical ordering. Based on Observation 3, previously found arc/edge-disjoint paths are
extended alternately by arcs between components and edge-disjoint paths within one
component. This approach is a generalization of the methods presented in [39].

Theorem 4 (Algorithm 1: Correctness and Running Time). Let k ∈ N be fixed. Given
a weakly acyclic mixed graph G = (V,A ∪· E), Algorithm 1 computes the relation ⇒G

on V k in polynomial time.

Proof. Let V =
⋃· hj=1 Vj be the partition of V into the vertex sets of the h connected

components of (V,E) as computed by the algorithm.

For all j ∈ {0, . . . , h}, let Æj be the arc and edge set of G
[⋃j

l=1 Vl
]
. In particular,

Æ0 = ∅ holds true. For each j ∈ {0, . . . , h}, let ⇒j be the relation ⇒ as computed
by Algorithm 1 after the j-th iteration of Line 4. In particular, ⇒0 is the relation
after Line 3. In the following, we prove by induction on j that ⇒j is equal to ⇒Æj

.

After the initialization, this is true for j = 0, as Æ0 contains no arcs or edges.
Consider an iteration j ∈ [h] and assume that the claim was true after the previous
iteration.

“⊆”: Let v, w ∈ V k with v⇒j w. There exist p, q ∈ V k such that v⇒j−1 p⇒
δ−A (Vj)

q⇒G[Vj ] w. Using the induction hypothesis, we know v⇒Æj−1
p. Since the arc and

edge sets in the three relations are pairwise disjoint, Observation 3 yields v⇒Æj
w.

“⊇”: Let v, w ∈ V k with v⇒Æj
w, and Pi, i ∈ [k] be arc/edge-disjoint vi-wi-paths

in Æj . Let qi ∈ V be the first vertex on Pi in Vi and pi be its predecessor if they exist,
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2.1 Disjoint Shortest Paths

otherwise set them to wi and qi, respectively. AsG is weakly acyclic, we have v⇒Æj−1
p,

p⇒
δ−A (Vj)

q, as well as q⇒G[Vj ]w. It follows from the induction hypothesis that v⇒jw.

The connected components of (G,E) and their topological ordering inG/{V1, . . . , Vh}
can be computed in polynomial time. Finding edge-disjoint paths in the undirected
components can also be done efficiently (e.g., [79]). A binary relation on V k contains
at most |V |2k elements and composing two of them can be done in time polynomial in
their sizes. Hence, Algorithm 1 runs in time polynomial in the size of the input if k is
fixed.

In many settings, the problem of finding arc/edge-disjoint paths can be reduced to
finding vertex-disjoint paths. Observe that arc/edge-disjoint paths in a graph corre-
spond to the vertex-disjoint paths in its line graph and an appropriate notion of a line
graph can be defined for mixed graphs as well.
For directed graphs, there is a reduction from vertex-disjoint to arc-disjoint instances
based on splitting vertices. This generic reduction, however, cannot be applied to
undirected or mixed graphs. Yet, Algorithm 1 can be modified slightly as follows to
compute vertex-disjoint paths. An algorithm for the undirected vertex-disjoint path
problem is used in Line 2. Only vectors with pairwise different elements are included
in the initial relation in Line 3. Finally in Line 4, tuples v, w ∈ V k are related only if
their sets of endpoints {vi, wi}, i ∈ [k] are pairwise disjoint.

2.1.5 Undirected Disjoint Shortest Paths

In this subsection, we study Problem 1 on undirected graphs with non-negative edge
lengths. We first transform the undirected graph G into a mixed graph and then use
the results of the previous subsection to solve the transformed instance.

From Shortest to Directed Paths

Let an instance of Problem 1 be given by an undirected graph G = (V,E), non-negative
edge lengths ` : E → R≥0, and s, t ∈ V 2. We are going to transform the graph G into
a mixed graph such that the shortest source-sink-paths in G correspond to directed
source-sink-paths in the resulting mixed graph.

Since we are interested in shortest s1–t1- and s2-t2-paths, we consider the shortest
path networks rooted at s1 and s2. For i ∈ [2], we define the distance function di :
V → R≥0 induced by ` w.r.t. si by di(v) := minsi-v-pathP

∑
e∈P `(e). The shortest path

network rooted at si is given by the set

Ei := {{v, w} ∈ E : `({v, w}) = |di(v)− di(w)|}.

See Figure 2.3a for an example of the sets Ei.
The distances di induce an orientation for all edges in Ei which have a strictly positive
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Chapter 2 Cuts and Paths

v w  v w

Figure 2.2: Gadget for resolving conflicts during the orientation of an edge {v, w}
induced by d1 and d2.

length. We would like to replace an edge {v, w} ∈ E with di(v) < di(w) by the
arc (v, w) (with the same length). The orientations induced by d1 and d2, however,
do not have to agree on the set E1 ∩ E2. Introducing both arcs would neglect the
fact that only one of them can be included in any set of arc/edge-disjoint paths. We
will overcome this by replacing such edges by a standard gadget of directed arcs as
depicted in Figure 2.2.
Consider the gadget for an edge {v, w} ∈ E. It contains exactly one v-w-path and one
w-v-path corresponding to the two possible orientations of {v, w}. Since both share
an arc, only one of two arc/edge-disjoint paths in the transformed graph can use the
gadget. As further both paths consist of three arcs, setting the length of all the arcs in
the gadget to 1

3`({v, w}) preserves the distances in the graph. That way, the distance
functions di can be extended to the new vertices introduced with gadgets.

For i ∈ [2], Ai denotes the set of arcs that result from orienting Ei w.r.t. di. More
precisely, for {v, w} ∈ Ei with di(v) < di(w) the arc (v, w) is included into the set Ai
if {v, w} ∈ E14E2 or the orientation induced by d1 and d2 agree. Otherwise, the arcs
of the v-w-path in the gadget replacing {v, w} are added to Ai.

The induced orientation is only well-defined for edges with strictly positive lengths.
Therefore, the set of edges with length zero E0 := {e ∈ E : `(e) = 0} are left undirected
and have to be treated in a different manner.

Definition 5 (Partially Oriented Expansion).

Let G = (V,E) be an undirected graph with non-negative edge lengths ` : E → R≥0

and s ∈ V 2.

The partially oriented expansion of G w.r.t. ` and s is the graph
−⇀
G := (W,E0∪A1∪

A2) where W is the set of vertices V augmented with additional vertices introduced
with gadgets, and E0, A1, and A2 are as defined above.

The partially oriented expansion of the example from Figure 2.3a is depicted in
Figure 2.3b.
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2.1 Disjoint Shortest Paths

s1

s2

t1

t2

v2

v1

v3

v4

0

0

3

3

(a) Example: Edges without label have length 1, solid edges are in E1 ∪ E2.
s1

s2

t1

t2

v2

v1

v3

v4

(b) Partially oriented expansion of (a): solid arcs are in A1 ∩ A2, dashed arcs are
in A1 \A2, dotted arcs are in A2 \A1.

Figure 2.3: Exemplary construction of partially oriented expansion.

As we are going to discuss the existence of shortest edge-disjoint paths in G and the
existence of arc/edge-disjoint paths restricted to different arc and edge sets in

−⇀
G, the

following notation will be useful.

Definition 6 (Two Disjoint Paths Relations).

1. Let G = (V,E) be an undirected graph with non-negative edge lengths ` : E →
R≥0.

For v, w ∈ V 2, we write v
`⇒E w if there exist edge-disjoint shortest vi-wi-paths

w.r.t. ` for i ∈ [2] in E.
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Chapter 2 Cuts and Paths

2. Let G = (V,A ∪· E) be a mixed graph and let Æ1,Æ2 be two subsets of arcs and
edges of A ∪· E.
For v, w ∈ V 2, we write v �Æ1

Æ2
w if there exist a v1-w1-path in Æ1 and a

w2-v2-path in Æ2 which are arc/edge-disjoint.

As described above, the distance functions of the original graph G extend to the
vertices of

−⇀
G. For i ∈ [2] and v ∈W , di(v) is the length of a shortest si-v-path in

−⇀
G.

Lemma 7 (Paths in the Partially Oriented Expansion). Let G = (V,E) be an undi-
rected graph with non-negative edge lengths ` : E → R≥0 and s ∈ V 2. Furthermore,
let
−⇀
G = (W,E0 ∪A1 ∪A2) be the partially oriented expansion of G w.r.t. ` and s.

Then for every t ∈ V 2, we have s
`⇒E t in G if and only if

(
s1
t2

)
�E0∪A1
E0∪A2

(
t1
s2

)
in
−⇀
G.

Proof. “⇒”: Assume there exist two edge-disjoint shortest si-ti-paths Pi in Ei for i ∈
[2]. Replace each edge with non-zero length in Pi by the respective oriented arc or
path in the respective gadget to obtain

−⇀
P i in E0∪Ai.

−⇀
P 1 and

−⇀
P 2 are arc/edge-disjoint

as different edges are replaced by disjoint (sets of) arcs.

“⇐”: Assume there are arc/edge-disjoint si-ti-paths
−⇀
P i in E0∪Ai for i ∈ [2]. Replace

the subpath of Pi within one gadget with the corresponding edge in Ei. The remaining
arcs are translated directly to the respective edges in Ei. Due to the mentioned equality
of distances in G and

−⇀
G and the fact that di is non-decreasing along arcs in

−⇀
G, Pi is a

shortest path in G. Any path that uses a gadget in
−⇀
G, uses its inner arc. Therefore,

P1 and P2 inherit being edge-disjoint from
−⇀
P 1 and

−⇀
P 2.

Disjoint Paths in the Partially Oriented Expansion

Lemma 7 shows that
−⇀
G captures the shortest paths in G by using orientation. We

will use the distances, however, to prove the main structural result. This concerns
the subgraph of

−⇀
G that is potentially used by both paths and its weakly connected

components, which are its connected components when ignoring the arcs’ directions.

Lemma 8 (Structure of Partially Oriented Expansion). Let G = (V,E) be an undi-
rected graph with non-negative edge lengths ` : E → R≥0 and s ∈ V 2. Furthermore,
let
−⇀
G = (W,E0 ∪ A1 ∪ A2) be the partially oriented expansion of G w.r.t. ` and s.

Let W =
⋃· hj=1Wj be the partition of W into the vertex sets of the h weakly connected

components of the subgraph (W,E0 ∪ (A1 ∩A2)).

Then

1.
−⇀
G[Wj ] is weakly acyclic for all j ∈ [h],

2. sorting the components Wj , j ∈ [h] in non-decreasing order w.r.t. the function
d1− d2 is a topological ordering of (W,A1)/{W1, . . . ,Wh} and a reverse topolog-
ical ordering of (W,A2)/{W1, . . . ,Wh}, and

3.
−⇀
G[Wj ] contains arcs only from A1 ∩A2 and edges only from E0 for all j ∈ [h].
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2.1 Disjoint Shortest Paths

Proof. In the following, we prove the three statements of the Lemma.

1.) By definition of A1, we know that d1 increases strictly along arcs in the set A1∩A2.
Further, d1 is constant on edges in E0. Assume there is j ∈ [h] and a (directed) cycle C
in
−⇀
G[Wj ] such that there exists a ∈ C ∩ A1 ∩ A2. Along a the distance d1 strictly

increases. However, d1 cannot decrease along C, which yields a contradiction.

2.) Consider the function on the vertex set of
−⇀
G. Based on the common underlying

lengths in G and the definitions of A1 and A2, it is strictly increasing along arcs
in A1 \ A2 and strictly decreasing along arcs in A2 \ A1. Opposed to that, it is
constant on edges in E0 as well as along arcs in A1 ∩A2.

3.) The function d1 − d2 is constant along all arcs A1 ∩A2 and edges in E0. Hence, it
is constant on each weakly connected component w.r.t. those arcs and edges. At the
same time, the function is not constant along arcs in A14A2.

Algorithm 2: Dynamic Program for 2-DSPP with Non-negative Edge

Lengths

Input: undirected graph G = (V,E), non-negative edge lengths ` : E → R≥0,

s ∈ V 2

Output: set of pairs in V 2 that succeed s w.r.t.
`⇒E

1 Construct
−⇀
G = (W,E0 ∪A1 ∪A2) for G w.r.t. ` and s;

2 Find weakly connected components W1, . . . ,Wh of the

subgraph (W,E0 ∪ (A1 ∩A2)) sorted non-decreasingly w.r.t. d1 − d2;

3 for j = 1, . . . , h do

4 Compute �
−⇀
G[Wj ]
−⇀
G[Wj ]

using Algorithm 1

5 end

6 Initialize � to the relation {(v, v) : v ∈W 2};
7 for j = 1, . . . , h do

8 Update � to �
−⇀
G[Wj ]
−⇀
G[Wj ]

◦�δ−A1
(Wj)

δ+A2
(Wj)
◦�

9 end

10 return {t ∈ V 2 :
(
s1
t2

)
�
(
t1
s2

)
}

The structural result of Lemma 8 allows to use dynamic programming described
in Algorithm 2 for solving Problem 2 on the partially oriented expansion. Simi-
lar to Section 2.1.4, the problem is split into two parts. First, the two arc/edge-
disjoint paths problem on the weakly connected components W1, . . . ,Wh of the sub-
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Chapter 2 Cuts and Paths

graph (W,E0 ∪ (A1 ∩A2)) is solved by Algorithm 1. Afterward, a dynamic program
is used to incorporate the results into arc-disjoint paths in

−⇀
G/{W1, . . . ,Wh} to get

arc/edge-disjoint paths in
−⇀
G.

We know that the two arc/edge-disjoint paths that we are looking for, if they exist,
pass through

−⇀
G/{W1, . . . ,Wh} in opposite directions. In order to accomplish simulta-

neous construction of both, one of the paths is created backward. Apart from that,
Algorithm 2 resembles Algorithm 1.

Theorem 9 (Algorithm 2: Correctness and Running Time). Given an undirected
graph G = (V,E) with non-negative edge lengths ` : E → R≥0 and s ∈ V 2, Algorithm 2

computes all successors of s w.r.t.
`⇒E in polynomial time.

Proof. Let W =
⋃· hj=1Wj be the partition of W into the vertex sets of the h weakly

connected components of the subgraph (W,E0 ∪ (A1 ∩ A2)) as computed by the
algorithm. Lemma 8.2 shows that the Wj ’s are sorted in a topological ordering
of (W,A1)/{W1, . . . ,Wh} and in a reverse topological ordering of (W,A2)/{W1, . . . ,Wh}.

For i ∈ [2] and j ∈ {0, . . . , h}, set Æj
i to be the arcs of Ai and edges of E0 in the

induced subgraph
−⇀
G
[⋃j

l=1Wl

]
. In particular, we have Æ0

i = ∅. For j ∈ [h], let �j

denote the relation� computed by Algorithm 2 after the j-th iteration. In particular,
�0 is as defined in Line 4. We will prove by induction on j = 0, . . . , h that �j is

equal to �
Æj

1

Æj
2

. The correctness of the algorithm then follows from Lemma 7.

The claim holds for j = 0, since Æ0
1 = Æ0

2 = ∅ by definition. Consider iteration j ∈ [h]
and assume that the claim holds for the preceding iteration.

“⊆”: Let v, w ∈ W 2 such that v �j w. Considering Line 5 and using induction
hypothesis, there exist p, q ∈W 2 with

v�
Æj−1

1

Æj−1
2

p�
δ−A1

(Wj)

δ+A2
(Wj)

q�
−⇀
G[Wj ]
−⇀
G[Wj ]

w.

Lemma 8.3 guarantees that the arc and edge sets of the three relations are pairwise

disjoint. As a result, v�
Æj

1

Æj
2

w follows from Observation 3.

“⊇”: Let v, w ∈W 2 such that v�
Æj

1

Æj
2

w. Thus, there have to be a simple v1-w1-path P1

in Æj
1 and a simple w2-v2-path P2 in Æj

2 that are arc/edge-disjoint. Define q1 ∈ W
to be the first vertex on P1 in Wj , if it exists, or w1. Let p1 be the predecessor of q1

on P1 or q1 if it is the first vertex of P1. Similarly, let q2 ∈W be the last vertex on P2

in Wj or w2 if it does not exist, and let p2 be the successor of q2 or q2 if q2 does not
have a successor. The topological ordering of the Wj ’s implies that the subpaths of P1

and P2 prove

v�
Æj−1

1

Æj−1
2

p�
δ−A1

(Wj)

δ+A2
(Wj)

q�
−⇀
G[Wj ]
−⇀
G[Wj ]

w.

Finally, v�j w follows by induction hypothesis.
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2.1 Disjoint Shortest Paths

W1 Wj−1 Wj

v1

v2

p2

p1

q1

q2 = w2

w1

· · ·
· · ·

v�j−1 p p�
δ−A1

(Wj)

δ+A2
(Wj)

q�
−⇀
G[Wj ]
−⇀
G[Wj ]

w

Figure 2.4: Iteration j of Algorithm 2: Relation �j is built by concatenating al-
ready computed paths, pairwise different arcs to the next component, and
arc/edge-disjoint paths in the next mixed component

As for the running time, finding the weakly connected components and sorting
them in a topological ordering can be done in polynomial time. Computing the rela-

tions �
−⇀
G[Wj ]
−⇀
G[Wj ]

also can be done efficiently by virtue of Algorithm 1. Finally, relations

on V 2 have at most |V |4 elements and can be composed efficiently. Therefore, the
total running time of the algorithm is polynomial in the input size.

Similar to Section 2.1.4, Algorithm 2 can be adapted to check for the existence of
two vertex-disjoint shortest paths. In that case, the gadget from Figure 2.2 is not
needed anymore but can be replaced by two opposite arcs.

2.1.6 Open Problems

In this section, we gave a polynomial time algorithm for 2-DSPP. The hardness of
k-DSPP follows from hardness of k-DPP for variable k. However, k-DPP is solvable
in polynomial time if k is constant. Therefore, the following natural questions remain
open and deserve further studying.

Open Problems.

1. Does there exist a polynomial time algorithm for 3-DSPP if l > 0 (l ≥ 0)?
Moreover, does there exist a polynomial time algorithm for k-DSPP for constant
k if l > 0 (l ≥ 0)?

2. What is the complexity of k-DSPP and k-dDSPP for constant k ≥ 3 and l > 0?
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Chapter 2 Cuts and Paths

2.2 Cut-Degree Problems

In this section, we turn our attention to several graph bipartition problems with novel,
degree-related objectives.

2.2.1 Overview

Graphs can be used in data analysis to find clusters with similarities on a set of data
points. Each data point is given as a vertex and is adjacent to another data point
if they share (a minimum number of) similar attributes. We are now interested in a
partition of the vertex set such that vertices with similarities are assigned to the same
cluster [37]. Standard measures of quality of clusters include the total number of edges
crossing the induced cut, the number of edges in the respective sets or connectivities
within the cluster.

However, in this section, we study graph cut problems with novel objective functions.
Particularly, objectives that are depending on the degree of vertices within the cut set
are investigated. Instead of minimizing the total number of edges in the cut set, we
constrain our bipartitions to minimize and maximize the minimum and maximum
degree of all vertices within the cut set, respectively. Additionally, we introduce a
new notion of degeneracy, which only constrains one set of the partition to follow a
size and degree bound. These kind of objectives are motivated from game theory such
as anti-coordination games but also from data analysis resembling a new measure of
quality of partitions.

2.2.2 Related Work

Probably the most famous result for maximum flow computations is the seminal Max-
Flow-Min-Cut result [38, 35]. It states that the value of a maximum s-t-flow in a
directed graph G equals the weight of a minimum s-t-cut. Here, the weight of a cut is
determined by the sum of all capacities of arcs from the set containing s to the set con-
taining t. These minimum cuts can be computed in polynomial time unlike maximum
weight cuts [58]. Maximum cut is APX -hard and proven to be inapproximable within
a factor of 16

17 if P 6= NP , as shown by Khot et al. [60]. The same paper proves that
the best known current approximation factor 0.878 by Krishnamurti and Gaur [63] is
best possible under the Unique Games Conjecture. Yet another objective of interest in
many applications are so-called sparsest cuts, where the objective measures the ratio
of edges crossing the cut divided by the number of vertices in the smallest set. Find-
ing the sparsest cut is also NP -hard, but there exists an O(

√
log |V |)-approximation

algorithm by Arora et al., c.f. [4].

Charikar et al. [24] study the Minimum Maximum Disagreements Problem and
mention Min-Max s-t cuts as a special case of this problem. The objective for these
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2.2 Cut-Degree Problems

cuts is to minimize the maximum cut-degree. Their O(
√
|V |) approximation algorithm

for the more general Minimum Disagreements Problem is also applicable to the Min-
Max-s-t Cut Problem, however, they leave the complexity of the cut problem open.

Another related problem is the Satisfactory Partition Problem. Here, one parti-
tions the vertex set into two non-empty sets such that every vertex on the respective
subgraph fulfills certain degree bounds. To be more precise, given a graph G and
function f , one needs to find a partition A ∪· B such that degG[A](v) ≥ f(v) and
degG[B](v) ≥ f(v) for v ∈ A or v ∈ B, respectively. Gerber and Kobler [43] study

the existence of such partitions for f(v) = ddeg(v)
2 e. The variant introduced by Gerber

and Kobler then is generalized by Bazgan et al. [8]. It is shown that the problem is

NP -complete if ddeg(v)
2 e + 1 ≤ f(v) ≤ deg(v) − 1. Bang-Jensen and Bessy study yet

another partitioning problem but with asymmetric degree constraints for the partition
sets A and B [8]. Their partition must satisfy degG[A](v) ≥ k1 and degG[B](v) ≥ k2 for
v ∈ A or v ∈ B, respectively. They give a complete characterization of computational
complexity for all values of k1, k2.

Furthermore, in game theory there is an interest in anti-coordination games [64]. In
these games, vertices correspond to players with two options, A or B, to choose from.
Their payoff is determined by the number of neighbors that have chosen a different
option/set. The natural question studied is the existence of pure Nash Equilibria,

corresponding to a partition such that degG[A](v) ≤ deg(v)
2 and degG[B](v) ≤ deg(v)

2 if
v ∈ A or v ∈ B, respectively. The problem of finding such a partition is also referred to
as Co-Satisfactory Partition Problem and can be solved by a simple greedy algorithm.
The complexity of the balanced partition size1 version has been studied by Bazgan et
al. in [9]. Besides providing hardness results, they give a 3-approximation algorithm
for the number of satisfied vertices in a balanced partition.

2.2.3 Our Results

By cut-degree of some vertex, we denote the number of edges in the cut set in-
cident to that specific vertex. We study computational complexity of all possible
Minimum/Maximum-Minimum/Maximum-Cut-Degree variants for graph bipartition.
That means, we prove the hardness of Max-Min-Cut-Degree and Min-Max-Cut-Degree
and prove that Min-Min-Cut-Degree and Max-Max-Cut-Degree can be computed in
polynomial time.

Furthermore, we introduce a new notion of degeneracy, i.e. (k, d)-degeneracy, and
prove hardness of the decision problem in both parameters. We also give a first simple
|V |−d
a -approximation algorithm for k when d is fixed and a may be any constant.

1A balanced partition requires equal sized sets, i.e. |A| = |B|.
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Chapter 2 Cuts and Paths

2.2.4 Symmetric Cut-Degree Problems

First, we study objectives that are symmetric w.r.t. both sets in the partition. The
objective in all four problems is determined by the maximum/minimum cut-degree
among all vertices. We denote the bipartition of the vertex set by A ∪· B = V ,
A 6= ∅, B 6= ∅, and the cut set by C = {{u, v} ∈ E : u ∈ A, v ∈ B}. The problems are
defined as follows.

Definition 10 (Max-Max-Cut-Degree Problem). Find a partition A∪· B with cut set
C, that maximizes the maximum degree over that cut, i.e. maximizes maxv∈V degC(v).

Theorem 11. Given a graph G = (V,E). A Max-Max-Cut-Degree can be computed
in polynomial time.

Proof. Find a vertex u ∈ V with deg(u) = ∆(G). Choosing the bipartition {u}, V \{u}
with cut set C = δ(u), then gives maxv∈V degC(v) = degC(u) = ∆(G).

Just like Max-Max-Cut-Degree, minimizing the minimum degree is also solvable in
polynomial time.

Definition 12 (Min-Min-Cut-Degree Problem). Find a partition A ∪· B with cut set
C that minimizes the minimum degree over that cut, i.e. minimizes minv∈V degC(v).

Theorem 13. Given a graph G = (V,E). Min-Min-Cut-Degree can be computed in
polynomial time.

Proof. Observe, if the graph is not complete, i.e., if for example {u, v} /∈ E, then
A = {u} and B = V \ {u} defines a cut with minimum cut-degree 0.

On the other hand, if the graph is complete, A = {u} and B = V \ {u} for any
u ∈ V defines a cut with minimum cut-degree 1, which is best possible.

More interesting and with applicable relevance are the following two problems.

Definition 14 (Max-Min-Cut-Degree Problem). Find a cut with cut set C that max-
imizes the maximum degree over that cut, i.e. maximizes minv∈V degC(v).

In particular in anti-coordination games, this corresponds to finding a partition
guaranteeing a maximum minimum payoff to all players.

Definition 15 (Min-Max-Cut-Degree Problem). Find a partition A ∪· B and cut set
C that minimizes the maximum degree over that cut, i.e. minimizes maxv∈V degC(v).

This second variant is motivated from data analysis, where the maximum cut-degree
of a vertex can be a measure of stability of the partition.

Unfortunately, both decision versions of the problems are NP -complete.
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2.2 Cut-Degree Problems

Theorem 16. Max-Min-Cut-Degree is NP-hard. Furthermore, there does not exist a
polynomial time α-approximation algorithm with α > 1

2 unless P = NP.

Proof. We make use of a reduction from not-all-equal-3-SAT. The graph that we con-
struct will have a maximum minimum cut-degree of 2, if and only if the instance is
satisfiable. Every clause and every variable will be represented by four vertices each.
The way the graph is constructed, it forces certain vertices to be in opposing sets of
the bipartition. Then, by construction, we ensure that clause representing vertices
need to be adjacent to at least one variable representing vertex in the other set. By
that, if in the end every clause representing vertex has at least two neighbors in the
other set, we satisfy the not-all-equal condition of the SAT instance.

Let us start with the formal construction. Given an instance of not-all-equal-3-
SAT with variables xi, i ∈ [n] and clauses Cj , j ∈ [m]. Introduce four vertices aC , a

′
C ,

bC , b
′
C for every clause C and let {aC , b′C}, {a′C , bC} ∈ E. Furthermore, for every

variable x introduce four vertices x, x′, x̄, x̄′ with {x, x̄}, {x′, x̄}, {x, x̄′}, {x′, x̄′} ∈ E.
Finally, add another four dummy vertices a, a′, b, b′ with {a, b}, {a′, b}, {a′, b}, {a′, b′} ∈
E.
Additionally to the already added edges, for every clause let {a′C , b′}, {b′C , a} ∈ E and
for every literal l ∈ C (e.g. l ∈ {x, x̄}) also let {l, aC}, {l, bC} ∈ E. Observe that a′C
and b′C have degree 2 and therefore any cut has minimum cut-degree at most 2.

The construction for the SAT instance (x∨ȳ∨z̄)∧(x̄∨ȳ∨z̄) is depicted in Figure 2.5.

aC1

Clause Split
a′ b′

a b

x Split y Split z Split

x x̄ ȳ y z z̄

a′C1
b′C1

bC1

x′ x̄′ ȳ′ y′ z′ z̄′

bC2

b′C2
a′C2

aC2

C1 C2

Clauses:

Variables:

Figure 2.5: The construction of the graph for the SAT-formula C1 ∧ C2, with C1 =
(x ∨ ȳ ∨ z̄) and C2 = (x̄ ∨ ȳ ∨ z̄).

On the bottom of the figure, a module for each variable x, y, z consisting of four
vertices. Circled, the cliques representing vertices a′Ci

, aCi and b′Ci
, bCi . Finally, a, a′
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Chapter 2 Cuts and Paths

and b, b′ that make variable representing vertices be assigned to different sets of the
partition. At the top of the figure, the module consisting of four vertices a, b, a′, b′ that
ensures that the clause vertices aC and bC for each clause cannot be contained in the
same set of the partition.

We claim that the graph admits a cut with minimum cut-degree exactly 2, if and
only if the instance of not-all-equal-3-SAT has a valid truth assignment.

One direction is rather obvious, namely, if there exists such an assignment, w.l.o.g. set-
ting all variables to true, the following partition has the desired minimum cut-degree:

A = {a, a′, aC1 , . . . , aCm , a
′
C1
, . . . , a′Cm

, x1, . . . , xn, x
′
1, . . . , x

′
n},

B = {b, b′, bC1 , . . . , bCm , b
′
C1
, . . . , b′Cm

, x̄1, . . . , x̄n, x̄
′
1, . . . , x̄

′
n}.

Note, all vertices but clause representing vertices have a cut-degree of at least two.
By the choice of our partition, also all vertices a′C and b′C have cut-degree 2. Finally,
aC is adjacent to b′C and an additional vertex x̄ (representing the respective literal)
that the clause must contain and is set to false, which exists by assumption that the
assignment was satisfying the not-all-equal condition.

The other direction needs a little more effort. Assume, we found a partition A ∪· B
with minimum cut-degree 2. Then, by construction of the graph, a, a′ and b, b′ may not
be contained in the same set, i.e. we may assume w.l.o.g. that a, a′ ∈ A and b, b′ ∈ B.
But then, a′C ∈ A and b′C ∈ B for all clauses C. Immediately, we derive aC ∈ A
and bC ∈ B. At the same time, again by construction, x′ and x̄′ cannot be contained
in the same set and therefore x and x̄ cannot be contained in the same set. Finally,
since every vertex must have two neighbors in the other set, every clause representing
vertex aC is adjacent to at least one variable in B different from b′C . Similarly, every
clause representing vertex bC is adjacent to at least one vertex in A different from a′C .
This implies, assigning true to all variables x such that x ∈ A, results in every clause
containing one True and one False literal. Hence, we found a valid assignment for the
instance. This concludes the hardness proof.

As mentioned in the beginning, the graph admits a maximum minimum cut-degree
of 2, if and only if the instance admits a valid truth assignment, and has maximum
minimum cut-degree at most 1 otherwise. Thus, any α-approximation algorithm with
guarantee α > 1

2 can be used to find a solution to the not-all-equal-3-SAT instance if
it exists.

Remark 17. One can find a partition with minimum cut-degree dminv∈V deg(v)
2 e in

polynomial time and every graph admits such a partition. An easy best response
algorithm2 can be used for that matter. According to Theorem 16 this algorithm

2Switch sets for one vertex that has less than half of its neighbors in the other set until no more such
vertex exists. In each step the number of cut edges increases, implying polynomial running time.
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2.2 Cut-Degree Problems

already yields the best possible performance guarantee as minv∈V deg(v) is a natural
upper bound on the cut-degree of any vertex.

Next, we study the last remaining variant, the Min-Max-Cut-Degree Problem.

Theorem 18. Min-Max-Cut-Degree is NP-hard. Unless P = NP, there exists no
polynomial time α-approximation algorithm for Min-Max-Cut-Degree with α < 3

2 .

Proof. We use a reduction from Exact-3-SAT. Given an instance of Exact-3-SAT, we
construct a graphG that admits a cutA∪·B with cut set C such that maxv∈V degC(v) =
2, if and only if the instance of Exact-3-SAT is satisfiable.

For our construction, each variable x is represented by a module consisting of 6
vertices dTx,1, d

T
x,2, d

F
x,1, d

F
x,2, x, and x̄ with edge set

{{dTx,1, x}, {dTx,1, x̄}, {dTx,2, x}, {dTx,2, x̄}, {dTx,1, dTx,2},
{dTx,1, dFx,1}, {dTx,2, dFx,2},
{dFx,1, x}, {dFx,1, x̄}, {dFx,2, x}, {dFx,2, x̄}, {dFx,1, dFx,2}}.

The module is designed in such a way that both vertices x and x̄ have to be separated
by any cut with maxv∈V degC(v) = 2.

For each variable x and clause Ci, introduce a vertex xCi and x̄Ci .

Let these vertices just introduced (for each variable and its respective negation),
i.e. {xCi}i, x, and {x̄Ci}i, x̄, form cliques, respectively 3.

Also, introduce a vertex Ci for each clause Ci and let {Ci, xCi} ∈ E or {Ci, x̄Ci} ∈ E,
if x ∈ Ci or x̄ ∈ Ci.

Finally, let DT and DF be two cliques of size 5. We let {dTx,i, dT } ∈ E for all

dT ∈ DT variables x and i ∈ {1, 2}. Furthermore, {dT , Ci} ∈ E for all dT ∈ DT and
clauses Ci.

Similarly, {dFx,i, dF } ∈ E for all dF ∈ DF variables x and i ∈ {1, 2}.
The graph is depicted in Figure 2.6. Keep in mind that any cut of a clique of size

5, i.e. K5, has a maximum degree on that cut of at least 3. Thus, for any cut A ∪· B
with cut-degree at most two, either the entire clique is contained in A or in B.

It is easy to see that the graph admits a cut with maximum cut-degree of 2 if the
instance is satisfiable. For that, consider the set B that contains DF , dFx,1, d

F
x,2. It also

contains x and xCi for all clauses Ci the literal x is contained in, if x is set to false.
Otherwise, if x is set to true, let x̄ ∈ B and x̄Ci ∈ B for all such clauses Ci. The
remainder of the vertex set forms the partition set A. Also see Figure 2.6, where x is
set to true and y, z are set to false. The dashed line describes the cut, in particular,
it intersects all cut edges.

3Introducing a literal for every clause directly implies that this clique is of size at least 5
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x x̄

xC1

dTx,1

dTx,2 dFx,2

dFx,1

ȳ y

ȳC1

dTy,1

dTy,2 dFy,2

dFy,1

DT DF

C1

z̄ z

dTz,1

dTz,2 dFz,2

dFz,1

zC1

C2

xC2

ȳC2

z̄C2

Figure 2.6: In bold black, a module for each variable x, y, z. Dotted, the cliques rep-
resenting possible literals for clauses. Finally, DT and DF dummy cliques,
to ensure a correct truth assignment. Dashed, a cut with maximum degree
2 if the instance is satisfiable. The instance described here is C1 ∧C2 with
C1 = (x ∨ ȳ ∨ z), C2 = (x ∨ ȳ ∨ z̄) and variables x, y, z.
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We claim that such a partition with cut-degree at most 2 exists, if and only if the
instance is satisfiable. Therefore, assume the instance is not satisfiable but the graph
admits a cut A ∪· B with cut-degree at most 2.

First of all, every such cut gives rise to a proper truth assignment to the variables.
The set A may only contain one of the vertices x or x̄ for each of the variables.
If it contains both, it must contain all four dTx,1, d

T
x,2, d

F
x,1, d

F
x,2 in order to fulfill the

maximum degree 2 constraint. This is because each of these four vertices together with
x and x̄ is adjacent to 4 other vertices in the set. Thus, in order to fulfill a maximum
cut-degree of two, each vertex must be in the same set as at least two of its neighbors,
but that is impossible. However, if the set A it contains all four, dTx,1, d

T
x,2, d

F
x,1, d

F
x,2, it

also must contain DT and DF and hence, all other vertices Ci representing a clause.
Consequently, it also contains all vertices dTy,1, d

T
y,2, d

F
y,1, d

F
y,2 and thus also y and ȳ, as

well as yCi , ȳCi for every variable y and clause Ci. But this implies that A = V , which
contradicts, that A ∪· B is a proper partition, i.e. that B 6= ∅.

As we have seen above, eitherDT ∈ A andDF ∈ B or vice versa. So, w.l.o.g., assume
DT ∈ A.

Next, we claim that we find a valid truth assignment by setting all literals to true
that are contained in the same set as DT , i.e. are contained in A. Therefore let x = 1
if x ∈ A and x = 0 if ∈̄A. Since DT ∈ A, additionally Ci ∈ A for all clauses Ci.
Because the cut induced by A ∪· B has maximum cut-degree two, there must exist at
least one literal for each clause that is also contained in A, which implies that the
corresponding vertex x or x̄ is also contained in A. Thus, the truth assignment indeed
satisfies all clauses, which finishes the proof.

Observe, any α-approximation algorithm with guarantee α < 3
2 would find a par-

tition with cut-degree 2. Therefore, unless P = NP , no such algorithm can have
polynomial running time.

Remark 19. Note, one cannot use the same approximation algorithm as for Max-
Min-Cut-Degree. Even if we adapted the strategy and were able to achieve ≥ ddeg(v)

2 e
neighbors in the same set, this does not yield any approximation guarantee as bdeg(v)

2 c
can be large for some vertices.

The best known approximation algorithm is due to Charikar et al. [24] and has an
approximation factor of O(

√
|V |).

2.2.5 An Asymmetric Cut-Degree Problem — A Generalization of
Degeneracy

In this subsection, we study, in the broadest sense, a cut problem with an asymmetric
objective function, constraining the maximum degree only for one set of the partition.
With this setting in mind, we introduce a generalized notion of graph degeneracy.
First, recall the definition of degeneracy.
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Chapter 2 Cuts and Paths

Definition 20. A finite graph G = (V,E) is called d-degenerate if every subgraph
contains a vertex of degree less than or equal to d.

This definition has a nice equivalent formulation:
Namely, a graph G = (V,E) is d-degenerate if and only if it has an ordering of the
vertices on a line such that each vertex has at most d neighbors to its left, that means
there exists an ordering π such that

|{j ∈ NG[i] : π(j) < π(i)}| ≤ d ∀i ∈ [n].

Such an ordering is called Erdős-Hanjal sequence. Also, this definition can be extended
to directed graphs by replacing degree by in-degree.

In the following, we generalize the definition of degeneracy, which shall be used later,
e.g. in Chapter 3.

Definition 21. A graph G is called (k, d)-degenerate if every subgraph H ⊆ G contains
a set S 6= ∅ of at most k vertices such that every vertex within S has at most d neighbors
in H\S. Furthermore, let

kd(G) := min{k : G is (k, d)-degenerate}.

Again, this notion of degeneracy can be extended to directed graphs if we require
that each vertex i ∈ S has at most d vertices in H\S that have an arc towards i. Also,
there is a nice equivalent formulation:

Equivalently, a graph G = (V,E) is called (k, d)-degenerate if there exists a weak
order π : V → [n] of the vertices such that

|{j ∈ NG[i] : π(j) < π(i)}| ≤ d ∀i ∈ [n], (2.1)

and the weak order is of width at most k4, that is, the maximal number of vertices
with the same label is at most k. Which is formally

max {|Si| : Si = {j ∈ V : π(j) = i}} ≤ k.

Definition 22. A graph G = (V,E) is called exact-(k, d)-degenerate if we can find a
weak order π : V → [n] fulfilling (2.1) together with

|{j ∈ V : π(j) = i}| ∈ {0, k} ∀i ∈ [n]\{l} and |{j ∈ V : π(j) = l}| ≤ k

for some l ∈ [n].

Naturally, every graph that is exact-(k, d)-degenerate is (k, d)-degenerate. However,
the reverse implication does not hold true.

4Also meaning that the longest antichain in the respective partial order is of length at most k.
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2.2 Cut-Degree Problems

Our notion of degeneracy falls into the framework of asymmetric partitions like
studied in [8] as mentioned earlier. But our notion of degeneracy is also somewhat
related to the notion of (k, d)-partitionable graphs, that says, there exists a partition
of the vertex set into k sets, each inducing a d-degenerate graph which was studied for
example by Simões-Pereira in [80]. A simple observation is that every (k, d)-degenerate
graph is (k, d)-partitionable.

While it is possible to decide in polynomial time whether a given graph is d-
degenerate, the following theorem states that deciding if a given graph is (k, d)-
degenerate for some variable k is a NP -complete problem.

Theorem 23. Given G and k, it is NP-complete to decide whether G is (k, d)-
degenerate for d ≥ 2.

Proof. In our proof, we stick to undirected graphs. Given a weak order π : V → [n]
of width at most k. We can check in polynomial time if condition (2.1) is fulfilled.
Hence, the problem is in NP .

We shall now prove the theorem by reducing the NP -complete problem Exact-l-
SAT to our problem. Even though our construction works for general l, we set l = 3
(else, we would have to introduce many more dummy vertices and computations would
be more complex). In the remainder of the proof, we abbreviate Exact-3-SAT by 3-
SAT. So, given an instance of 3-SAT with n variables and m clauses we construct a
graph on m+3n+1 vertices and 5n+

(
n+m

2

)
+3m edges, that is (m+2n, 2)-degenerate if

and only if the given instance is satisfiable. First of all, we assume that in each clause
there are three distinct variables. If there were clauses containing the same literal
twice, we split that clause into two clauses using one dummy variable. Also, if there
was a clause containing both, a variable and its complement, this clause would always
be fulfilled and could be neglected.

Next, we give a formal construction of our graph

1. Each of the n variables is represented by three vertices, namely xti, x
f
i and a

dummy vertex xi. Those three vertices form a triangle, i.e. xti ∼ xfi ∼ xi ∼ xti
for all i ∈ [n].

2. There is one dummy vertex d that is adjacent to all variable-representing vertices
xti, x

f
i and xi for all i ∈ [n].

3. Each clause j of the m clauses is represented by one vertex, namely cj . If clause
j contains a variable i, the vertex cj is adjacent to xti, if the clause contains

the complement of the variable i, the vertex cj is adjacent to xfi . (Hence, every
vertex cj is, by now, adjacent to exactly 3 variable-representing vertices.)

4. The union of the set of dummy vertices xi for i ∈ [n] and the set of clause-
representing vertices cj for j ∈ [m] forms a clique.
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Chapter 2 Cuts and Paths

Figure 2.7 depicts the constructed graph for a 3-SAT instance.

c3
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c1

xt
1

xf
1
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2
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2
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3

xf
3

d

x1

x2

x3

K6

C3 = (x̄1 ∨ x̄2 ∨ x̄3)

C2 = (x1 ∨ x̄2 ∨ x̄3)

C1 = (x1 ∨ x2 ∨ x3)

Figure 2.7: Graph corresponding to the instance of 3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) with three variables x1, x2, x3 and three clauses
C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x̄2 ∨ x̄3), and C3 = (x̄1 ∨ x̄2 ∨ x̄3).

An easy computation gives the vertex number and the edge number as mentioned
above.

Claim 1. The constructed graph is not (m+ 2n− 1, 2)-degenerate.

Let us assume the contrary, i.e. there exists a set S of at most m+ 2n− 1 vertices
such that each vertex has at most 2 neighbors in V \S.

First of all, observe that the dummy vertex d cannot be contained in S. If it was,
all but two variable-representing vertices would have also to be contained in S. Since
the vertices in

⋃
j cj ∪

⋃
i xi form a clique, again we have that all but two vertices

from this set must be contained in S. We get that the size of the set is at least
1 + (3n− 2) +m− 2 = 3n+m− 3 > m+ 2n− 1, since n ≥ 3.

Next, we claim that clause-representing vertices cannot be part of S.
If there was one clause-representing vertex contained in S, this, just like before, implies
that all but at most 2 vertices in

⋃
j cj ∪

⋃
i xi must also be contained in the set S.

Assume next, all but two vertices in
⋃
j cj ∪

⋃
i xi were contained in S. Then, at

least one of these vertices would have to be a clause-representing vertex. This is due
to the fact that otherwise the vertices xi ∈ S would have three neighbors outside S
(the two vertices and d). On the other hand if there were two clause-representing
vertices outside the set together with vertex d, again each vertex xi ∈ S would have 3
neighbors outside S. So assume xj , cl /∈ S. Then, again since d /∈ S all xi ∈ S would
have three neighbors outside S we derive a contradiction.

Therefore, all but at most 1 vertex in
⋃
j cj ∪

⋃
i xi must also be contained in the

set S.
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2.2 Cut-Degree Problems

If all vertices of this set were contained in S, every variable representing vertex
can have at most one neighbor not contained in S different from d. We get that
|S| ≥ m+ n+ n = m+ 2n > m+ 2n− 1. Again, this yields a contradiction.

Finally, assume that exactly one vertex in
⋃
j cj ∪

⋃
i xi is not contained in S. If this

vertex was some xj , as d is not part of S, all other variable-representing vertices xi
for i ∈ [n]\{j} would already have two neighbors outside S, and, therefore, xti, x

f
i ∈ S

for all i ∈ [n]\{j}. We get that |S| ≥ m+ n− 1 + 2(n− 1) = m+ 3n− 3 > n+ 2n− 1
since n ≥ 3. So this vertex outside S must be a clause-representing vertex cj . But
then again, as d is not part of S, all variable-representing vertices xi for i ∈ [n] would

have already two neighbors outside S, and therefore xti, x
f
i ∈ S for all i ∈ [n]. We get

that |S| ≥ m− 1 + n+ 2n = m+ 3n > n+ 2n− 1. Yet, another contradiction.

We have seen so far, cj ∈ S and d ∈ S contradict the properties of the set S.

Finally, assume a variable-representing vertex xi, x
f
i or xti for some i ∈ [n] was

contained in S, then at least one of the remaining two vertices representing variable i
is also contained in S. This is due to the fact that vertex d cannot be part of S.

As we have seen before, xi ∈ S directly implies that all but at most 2 vertices in⋃
j cj ∪

⋃
i xi are contained in S, which led to a contradiction. Therefore, xi cannot be

part of S.

All what is left is that at least one vertex xti or xfi for some i ∈ [n] is contained in

S. Then, as xi and d cannot be part of S, we immediately have that xti, x
f
i ∈ S. But

then, since there is at least one clause j containing one of the two literals, a vertex
cj , representing this clause, must also be contained in S. Otherwise the corresponding
variable-representing vertex would neighbor the vertices d, xi and cj outside the set
S. However, as we again have at least one clause representing vertex in S, we end up
with a contradiction.

So, the set S cannot contain the vertices d nor xi, x
t
i, x

f
i for any i ∈ [n] nor cj for

any j ∈ [m]. Therefore, such a set S does not exist, finally contradicting that the
graph was (m+ 2n− 1, 2)-degenerate.

Claim 2. The constructed graph is (m+ 2n, 2)-degenerate if and only if the instance
of 3-SAT is satisfiable.

Let us assume the instance of the given 3-SAT formula is satisfiable and, w.l.o.g.,
in such a truth assignment each variable is set to true. Then, we can remove the
following set from G

S =
(⋃
j

cj

)
∪
(⋃

i

(xti ∪ xi)
)
,

where each vertex in this set has at most two neighbors outside the set. Every vertex xi
or xti is adjacent to xfi and d outside the set only. Also, every clause representing vertex

is adjacent to at most two vertices xfi because we chose a truth assignment implying
that it contains at most two negative literals. Next, observe that |S| = m+2n ≥ n+1.
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Chapter 2 Cuts and Paths

Thus, we have found a weak order of the vertices, only using two labels. Given a vertex
i, we let π(i) = 1 if i ∈ S and π(i) = 0 else. The longest antichain/largest label class
is of the size of S, which is m + 2n, the graph is thus (m + 2n, 2)-degenerate. This
concludes one direction.

Assume the graph is (m+2n, 2)-degenerate. Then there is some set S of size at most
m + 2n such that each vertex has at most two neighbors in the remaining graph. As
we have seen in the proof of Claim 1, this is only possible if S contains all vertices in⋃
j cj∪

⋃
i xi. But then, d cannot be part of S, so for each variable, there exists at least

one additional variable-representing vertex that is contained in S. We now find a truth
assignment by setting the variables contained in this set S to true, i.e. the variable i is
set to true if xti ∈ S and to false otherwise. Note, both variable-representing vertices

xti and xfi cannot be contained in S at the same time. Since every vertex in S has at
most two neighbors outside the set, every clause contains at most two literals that are
set to false.

Combining Claim 1 and Claim 2, we found a polynomial time reduction from 3-
SAT to our decision problem, which proves the theorem.

For our example instance of 3-SAT, with m = 3 and n = 3, the graph is (9, 2)-
degenerate and a corresponding decomposition can be seen in Figure 2.8. In the
example we have

S =
{
c1, c2, c3, x1, x2, x3, x

f
1 , x

f
2 , x

t
3

}
,

which is of size 9 and every vertex within the set has at most 2 neighbors outside
the set S. Also, the rest of the graph has less than 9 vertices. This implies that the
instance is satisfiable and a truth assignment is given by x1 = 0, x2 = 0, x3 = 1.

c3

c2

c1

xt
1

xf
1

xt
2

xf
2

xt
3

xf
3

d

x1

x2

x3

K6

S

C3 = (x̄1 ∨ x̄2 ∨ x̄3)

C2 = (x1 ∨ x̄2 ∨ x̄3)

C1 = (x1 ∨ x2 ∨ x3)

Figure 2.8: A (9, 2)-decomposition of the graph. Labeling all vertices outside the
marked set S with label 0 and all vertices inside the set with label 1.
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2.2 Cut-Degree Problems

As we have seen in Theorem 23, the decision problem is NP -hard if d ≥ 3. However,
given d, one can use the following algorithm to compute an approximate value of k
such that the graph is (d, k)-degenerate.

Theorem 24. Algorithm 3 computes a bipartition V1 ∪· V2 with |N(v)∩V1| ≤ d for all
v ∈ V2 and runs in O(|V |a+2) time.

Proof. Observe, that the partition computed in line 1 fulfills the degree constraint and
therefore is a feasible solution. Algorithm 3 therefore always finds a solution. It takes(|V |
a

)
many loops, and each loop requires |V | degree checks. Therefore, Algorithm 3

runs in (|V |
a

)
|V |2 ≤ |V |a+2

time.

Algorithm 3: Approximation Algorithm for kd

Input: Graph G = (V,E), parameter d and a

Output: Bipartition of V = V1 ∪· V2 such that all vertices in V2 have at most

d neighbors in V1

1 Let k = |V | − d, V1 any set of size d and V2 = V \ V1;

2 for each subset S ⊂ V of size at most a do

3 if all vertices in S have at most d neighbors in V \ S and |S| ≤ k then

4 Let k = |S|, V2 = S and V1 = V \ S
5 end

6 if all vertices in V \S have at most d neighbors in S and |V \S| ≤ k then

7 Let k = |V \ S|, V1 = S and V2 = V \ S
8 end

9 end

10 return V1, V2

This algorithm can be used to obtain an approximation algorithm for the general
problem, i.e. finding a weak order of width k for given parameter d fulfilling the degree
bounds (2.1).

Theorem 25. Given a graph G and a parameter d. There exists an |V |−da -approximation
algorithm for kd(G) for every constant a.
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Proof. Iterate Algorithm 3 on the output sets V1 until no more changes occur.
It is easy to see, that if k ≤ a, we find an optimal weak order applying Algorithm 3.

Thus we may assume k ≥ a. But then, the bipartition computed by Algorithm 3 is a
weak order of width n− d, which gives the desired approximation guarantee.

The rest of this subsection contains some additional properties of the new notion of
degeneracy, some of which shall be useful later.
Next, we give some simple facts for arbitrary graphs.

Lemma 26. Given an arbitrary graph G.

1. k0(G) equals the size of the largest connected component, hence, k0(G) = n if G
is connected.

2. G is d-degenerate if and only if kd(G) = 1.

3. If G is a (k, d)-degenerate graph, i.e. kd(G) ≤ k, then G is also (k − i, d + i)-
degenerate for all i ∈ [k − 1]. This implies that G is (d+ k − 1)-degenerate.

4. If G is a D-degenerate graph but not (D − 1)-degenerate, then kd(G) ≥ D − d.

5. If G is (k, d)-degenerate, then G is (k + d)-colorable.

6. If G is (k, d)-degenerate, then G is (k − 1, d+ 1)-colorable.

Proof. 1.) It is immediate, that two connected vertices i, j must obtain the same
label. But the result also holds true for directed graphs, replacing connectivity by
strong connectivity. Given strongly connected i and j that got different labels, either
the i-j-path or the j-i-path must contain an arc in the opposite direction, that is an
arc from a vertex to another vertex that has a smaller label. On the other hand,
partitioning the set of vertices into the strongly connected components gives rise to a
weak order fulfilling the degeneracy conditions. This is due to the fact that the graph
obtained by contracting all strongly connected components is acyclic.

2.) This fact is clear by definition of both notions of degeneracy.

3.) Consider the weak order, where each label class is of size at most k and every
vertex is adjacent to at most d vertices with smaller label. Iteratively removing one
vertex at a time from each label class j of size s > k − i and assigning it the new
label j− 1/s (shift all labels at the end to obtain integer labels again). That way each
vertex which had the same label as the removed vertex now has at most one additional
neighbor. Since this is done for each label class at most i times, degrees increase by
at most i. The graph is thus (k − i, d+ i)-degenerate.
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2.2 Cut-Degree Problems

4.) This simply follows from 3. as if kd(G) ≤ D − d, the graph would be (d + (D −
d)− 1) = (d− 1)-degenerate.

5.) By 3. we have that G is (d+ k − 1)-degenerate and hence (k + d)-colorable.

6.) Recall that a graph is (l, χ)-colorable if there exists a coloring of the vertices using
at most χ colors such that each vertex is adjacent to at most l vertices that received
the vertex’s color [27]. Our weak order directly implies the existence of such a coloring
as every vertex has at most d neighbors to its left, we can iteratively color each vertex
with one unused color. Since in each antichain there are at most k − 1 vertices which
might receive the same color, each vertex has at most k−1 vertices in its neighborhood
that received the same color.

Finally, we close this subsection with another remark on computational complexity
of the parameter kd.

Remark 27. If d = 0, the least k such that the graph is (k, d)-degenerate would be
the size of the largest (strongly) connected component, and hence could be computed
in polynomial time. Also, observe that for any fixed constant k we can check in poly-
nomial time whether a given graph is (k, d)-degenerate by simply iteratively checking
all subsets of size at most k as those are polynomially many in the number of vertices.
The case d = 1 remains open as our reduction only works for d ≥ 2 since 2-SAT can
be solved in polynomial time.

2.2.6 Open Problems

For the Max-Min-Cut-Degree problem, there exists an 1
2 -approximation algorithm,

c.f. Remark 17, which is best possible if P 6= NP . For the Min-Max-Cut-Degree
Problem, however, unless P = NP , no polynomial time algorithm can have an ap-
proximation ratio of < 3

2 . The best known approximation algorithm has a guarantee

of O(
√
|V |) (see Remark 19), leaving a large gap for improvement.

Concerning our new notion of graph degeneracy, we gave a proof that kd(G) cannot
be computed in polynomial time unless P = NP for d ≥ 2. Also, we have seen that
k0(G) can be computed in polynomial time, however, the case d = 1 remains open.
Additionally, better approximation algorithms for kd might exist and would be of
practical relevance c.f. Section 3.3. Last but not least we give some open problems
deserving further research.
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Open Problems.

1. Derive better approximation algorithms for the Min-Max-Cut-Degree problem.

2. Since the instances are more restrictive, can the methods of the
√
|V |-approximation

algorithm of Charikar et al. [24] for Minimum Maximum Disagreements be adopted
to obtain better approximation algorithms for the Min-Max-Cut-Degree problem?

3. Can k1(G) be computed in polynomial time?

4. Does there exist a better approximation algorithm than Algorithm 3 for kd(G)?
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2.3 Mitigating the Impact of Security Inspections on Regular
Journeyers

We consider a weighted, possibly directed, graph with a number of invaders and jour-
neyers that both would like to travel through the network. From a security point of
view, one would like to prevent the invaders from reaching their destination by in-
stalling security checks on some of the edges without impacting the journeyers. We
pose two models that are applicable to several real-world problems, where in each
model we want to deter the invaders, i.e. install at least one security check on each
path from their starting point to their respective destination. Therefore, the set of
edges with security checks induces a (multi-terminal) cut.

The first model aims to minimize the time delay for all journeyers caused by these
security checks, namely minimize the sum of traveling times for journeyers. In this
model, security checks increase the traveling time of the respective edge they are placed
on. We prove several hardness results for this problem and present a polynomial
time algorithm for one passenger and a constant number of invaders. However, this
algorithm is only applicable to instances where traveling times only increase by some
constant or traveling times increase proportionally.

The second model aims to maximize the journeyer flow from a given set of sources
to a given set of sinks, subject to deterring all invaders. Here, security checks decrease
journeyer capacities along edges. Again, we state a hardness and an inapproximability
result for this model.

This section is based on joint work with Jannik Matuschke [51].

2.3.1 Overview

We are dealing with possibly directed graphs G = (V,A) with vertex set V and arc set
A ⊆ V 2. Throughout this section, there will be starting vertices as well as destination
vertices for both, invaders and journeyers. We shall use the terms starting vertex
and source or destination vertex and sink interchangeably. The main mission in all
studied variants of the following problems is to prevent the invaders from reaching
their destination without passing a security check. Therefore, we call an invader pair
to be deterred if every (directed) path in G, connecting the source and sink of this
invader, contains at least one security check.

Of course, one could deter all invaders by placing security checks on all arcs, but
this might cause delays to journeyers or decrease the amount of journeyers that can
travel through the network.

The impact of security checks is modeled in two different ways. In Section 2.3.2,
security checks increase travel times and we aim to minimize the sum of shortest paths
of all journeyers. In Section 2.3.3, security checks decrease capacities of arcs and the
objective is to maximize passenger flow.
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Related Literature

These two kinds of objectives for (multi-terminal) cuts have not yet been studied in
the literature. For related literature on cuts with different objectives, we refer to
Section 2.2.2. However, one can also interpret the problems introduced as a shortest
path/multi commodity flow problem with extra constraints. In particular disjoint
paths fall into this framework. Especially, computational complexity results of our
introduced problems can be related to disjoint paths. Therefore, we also refer to
Section 2.1.2.

But also very related problems like resource5 constrained shortest paths have been
studied in the past [10, 74, 69]. Here, the graph is equipped with distance and weight
function(s). The task is to find a shortest path not exceeding the resource budgets.
However, this problem is NP -hard even for one resource constraint [54].

2.3.2 Paths

In this subsection, we study the problem of placing security checks on a graph in such
a way that invaders cannot reach their destination from their respective starting point
without traveling along an edge/arc with a security check. However, security checks
increase the time needed to travel along an edge/arc for journeyers. Our objective
is to minimize the sum of traveling times for a given set of journeyer sources and
corresponding destinations. More formally, given a graph G = (V,E, τ) with edge/arc
transit times τ . Each invader and journeyer is represented by a tuple consisting of a
source and sink vertex, i.e. let I ⊆ V 2 be the set of invaders and J ⊆ V 2 be the set of
journeyers. A security check allocation C ⊆ E is said to deter an invader (si, ti) ∈ I
if every si-ti-path in G contains at least one edge/arc in C. Furthermore, let transit
times on edges/arcs increase when a security check is placed, i.e.

τ c
e =

{
τe for all e /∈ C.
τe + λe for all e ∈ C

with λe ≥ 0 for all e ∈ E.

Definition 28 (TESC). The problem of deciding whether there exists a security check
allocation C ⊆ E on the edges of G in such a way that all invaders are deterred and the
sum of distances w.r.t. τ c of the respective shortest paths for each pair of journeyers
does not exceed T , is called Time Efficient Security Checks. We denote it by (I, J)-
Tesc .

We slightly abuse notation and write (l,m)-Tesc for l,m ∈ N to denote an in-
stance with l invaders and m journeyers. An example input of (1, 1)-Tesc is given in

5Sometimes also referred to as weight constrained shortest paths
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Figure 2.9.

s1
t1

: invader’s source

: invader’s sink

: security check

u

v

w

Figure 2.9: Example on an undirected graph. The invader is formed by the vertex pair
(s1, t1). Journeyers could be e.g. J1 = (u,w), J2 = (v, w). The placement
is obviously deterring the only invader as removing all edges with security
checks disconnects s1 from t1. Assuming unit weights on edges (τ ≡ 1)
and an increase of 1 for edges with security checks (τ c ≡ 1 + 1), the cost
(sum of shortest path lengths for all journeyers) of the depicted security
check allocation is 2 + (3 + 1) = 6.

The Directed Case

Theorem 29. Given a directed graph G = (V,A, τ).

i) (I, J)-Tesc is NP-complete, even if |I| = |J | = 1, the invader and the journeyer
agree, and λa = λ > 0 for all but one a ∈ A.

ii) (I, J)-Tesc is NP-complete, even if |I| = |J | = 1, the invader and the journeyer
agree, and τ ca = ατa for all a ∈ C and α > 1.

iii) (1, J)-Tesc is NP-complete, if |J | ≥ 2 and λa = λ for all a ∈ A with λ > 0.

Proof.
i) The problem is obviously in NP , since, given a security check allocation one can check
all — at most

(
n
2

)
— invaders which must be deterred and compute the path lengths

of journeyers efficiently. For hardness, we use a reduction from the NP -complete two
vertex disjoint directed path problem (2-dDPP) [39]. That is, given two pairs of
vertices on a directed graph, find two vertex disjoint paths connecting one pair of
vertices respectively. Let G = (V,A), (s1, u) and (v, t1) be an instance of the two
disjoint path problem. We now prove that we can use (1, 1)-Tesc to decide on the
existence of these two disjoint paths. W.l.o.g assume that there is a directed arc from
u to v (none of the paths would ever use this arc), we now let G′ = (V,A, τ), where
τ = 0 and λa = 1 for all arcs a ∈ A \ {(u, v)} and λ(u,v) = 0. Finally, let (s1, t1) be
both, an invader pair as well as a journeyer pair (c.f. Figure 2.10).
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s1 u
v t1

0

00

1

1

: invader’s source

: invader’s sink

: security check

Figure 2.10: Construction of G′.

Now, we claim that there exists a security check allocation deterring the invader such
that the shortest path for the journeyer is of length 0 if and only if there exist two
disjoint paths connecting the pairs of vertices respectively.

Observe, if there are two disjoint paths connecting s1, u and v, t1 one can easily
separate s1 and t1 by placing security checks on all arcs not contained in either of the
paths as well as on the arc (u, v). Placing security checks in this way gives rise to a
path of length 0 connecting s1 and t1.

Since any path connecting s1 and t1 must cross a security check at some point, the
path of length 0 must cross a security check on the arc (u, v). Also, the path may not
cross any other security check. Therefore, and due to the fact that s1 and t1 are sepa-
rated by security checks, the path is split into two disjoint parts, the part connecting
s1 and u and the part connecting v and t1, which are two disjoint paths connecting
both pairs of vertices.

ii) The proof is analogous to i), where, using the same notation and reduction, we let
τa = 1 for all arcs a ∈ A, αa = n2 for all a ∈ A \ {(u, v)}, and α(u,v) = 1.

iii) For the proof, we again use a reduction from 2-dDPP: Given a directed unweighted
graph and two pairs of vertices (s1, t1), (s2, t2), decide whether there exist two vertex
disjoint paths connecting both pairs of vertices. We consider the same graph and let 0
be the traveling time on all arcs and let the traveling time increase constantly by λ = 1
if a security check is installed. We let (s1, t2) be one invader and let (s1, t1), (s2, t2) be
two journeyers (c.f. Figure 2.11).

s1 t1
s2 t2

0 0

1

1

1

: invader’s source

: invader’s sink

: security check

Figure 2.11: Schematic visualization of the constructed instance.
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We have that there exists a security check allocation deterring (s1, t2) with path
lengths 0 each, for a shortest s1− t1-path and shortest s2− t2-path, if and only if there
exist two vertex disjoint paths connecting both, s1 and t1 as well as s2 and t2.
If these two disjoint paths exist, simply place security checks on all arcs not contained
in either of the paths.
If there exists a security check allocation deterring s1 and t2 such that both paths,
from s1 to t1 and s2 to t2, are of length 0, none of these paths can ever cross a security
check and hence, both paths must be disjoint.

Remark 30. Note that the construction in the proof of Theorem 29i) actually proves
that there cannot exist any polynomial time approximation algorithm unless P = NP ,
as an optimum solution has value 0.

Theorem 31. Given an acyclic graph G = (V,A, τ) and τ ca = τa + λ for some λ > 0.
Then (I, 1)-Tesc is NP-complete.

Proof. We use a reduction from the well known NP -complete problem SAT to our
security check problem with one journeyer (s, t) and several pairs of invaders (si, ti) ∈
I. Given an instance of SAT with n variables and m clauses we construct an acyclic
graph in polynomial time as follows:

The vertex set is going to consist of vertices s and t and a vertex for each literal
lk,i in each clause Ck. Now s has arcs towards l1,i for all l1,i ∈ C1, and each literal
lk,i (0 < k < m) has arcs towards all literals in Ck+1, i.e. all literals lk+1,i for all i.
Finally, all literals lm,i ∈ Cm have an arc towards t.

Next, we introduce the set of invaders. Each pair of literals, where one represents the
complementary of the other, forms a pair (si, ti) ∈ I. Note, there are at most nm2 of
such pairs, assuming that each clause contains the same literal at most once. (Actually
one would only need pairs (lk,i1 , ll,i2) where k < l.) Finally, all traveling times on arcs
will be 0 and increase by 1 if a security check is installed. For a visualization of the
construction for an example see Figure 2.12

s t

x

y

z̄ z

yȳ

z̄

x x̄

: invader sources

: invader sinks

: security check

Figure 2.12: Visualization of the constructed graph for the instance (x ∨ y ∨ z̄) ∧ (x ∨
ȳ∨ z̄)∧ (x̄∨ y∨ z) with truth assignment x = y = z̄ = true. The instance
has a total of 12 invaders.
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We claim, that there exists an allocation of security checks deterring all invaders and
an s-t-path of length 0, if and only if the formula is satisfiable. First, if the formula
is satisfiable, there exists an s-t-path of length 0 by traveling through any true literal
in each clause and blocking all other arcs, which then deters all invaders as the path
may not contain complementary literals.

Second, if there exists an allocation of security checks and a path connecting s and
t of length 0, it may not contain any pair of complementary literals (those would form
an invader pair and one would have placed a security check in between, contradicting
the path length of 0). Therefore, there exists an assignment such that the formula is
satisfiable by setting the variables corresponding to the passed literals in such a way
that those literals are all true.

Theorem 32. Given a directed graph G = (V,A, τ), and let τ ca = τa+λ for all a ∈ A,
then (I, 1)-Tesc is solvable in O(n2) time if |I| is constant.

Before starting to prove the theorem, we state the following observation.

Observation 33. If there is only one journeyer (s, t), there always exists an alloca-
tion of security checks that minimizes the length of a shortest s-t-path, in which the
shortest s-t-path traverses security checks only on outgoing arcs of source vertices si
or incoming arcs of sink vertices ti for (si, ti) ∈ I.

Consider an allocation of security checks that deters all invaders and let P be the s-
t-path minimizing the distance. W.l.o.g. we can assume that there are security checks
placed on all arcs not on P . Let I ⊆ {s1, . . . , sk}∪{t1, . . . , tk} be the vertices the path
P traverses. Observe that each security check the path traverses can be moved either
to the last visited source vertex si or next visited sink vertex ti without generating
any path without a security check between a pair of invaders. This is also true for an
optimum allocation.

Proof of Theorem 32. The procedure is described in Algorithm 4. Key for the algo-
rithm is Observation 33. The high level idea is as follows. We iterate over all subsets
of vertices of s1, . . . , sk, and t1, . . . , tk an optimum path could traverse. For each such
subset, we also guess the vertices that have security checks on all outgoing/incoming
arcs (c.f. Observation 33) and update the arc weights accordingly. Then, we compute a
shortest walk from s to t traversing the vertices of the subset in the guessed order with
the updated weights. If all invaders are deterred, we store the length of the computed
s-t-walk and return the shortest of those once we have checked all possibilities.
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Algorithm 4: Solving (I, 1)-Tesc

Input: Graph G = (V,A, τ), invaders I = {(s1, t1), . . . , (sk, tk)} with

S =
⋃
i si and T =

⋃
i ti and a single journeyer J = {(s, t)}

Output: Deterring security check allocation C ⊆ A minimizing the length of

a shortest s-t-path

1 Let C = V and P be a shortest s-t-path in G = (V,A, τ + λ) for each

I ∈ P(S ∪ T ) do

2 for each bijective π : I → [|I|] do

3 for each c : I → {0, 1} do

4 C ′ := {(u, v) ∈ A : u ∈ S ∩ I and c(u) = 1} ∪ {(u, v) ∈ A : v ∈
T ∩ I and c(v) = 1},

5 C ′ = C ′ ∪ {(u, v) ∈ A : u ∈ S \ I or v ∈ T \ I}
6 let V ′ := V \ ((S ∪ T ) \ I), A′ := {(u, v) ∈ A : u, v ∈ V ′}
7 let τ ′ such that τ ′(a) := τ(a) for all a ∈ A′ \ C ′ and

τ ′(a) = τ(a) + λ for all a ∈ C ′
8 compute a shortest (s-π(1)−1- . . . -π(|I|)−1-t)-tour P ′ in

G′ := (V ′, A′, τ ′)

9 let C ′ = C ′ ∪A′ \ {a ∈ A′ : a ∈ P ′}
10 if C ′ is a deterring security check allocation and τ ′(P ′) < τ(P )

then

11 let C = C ′ and P = P ′

12 end

13 end

14 end

15 end

16 return C

As mentioned above, first of all, guess which vertices I ⊆ {s1, . . . , sk} ∪ {t1, . . . , tk}
the optimal path traverses. Now, consider all possible orderings of the guessed vertices
in I. Once we have fixed the order π : I → [|I|], choose for each vertex one of two
options. For vertices si ∈ I either secure all outgoing arcs or none whereas for vertices
ti ∈ I either secure all incoming arcs or none. Additionally, place security checks
on all arcs incident to vertices si or ti not in I. Proceed for each of these possible
placements of security checks as follows: Compute a shortest (s-π(1)−1-. . .-π(l)−1-t)-
walk by iteratively computing a shortest (π(j)−1-π(j + 1)−1-path, where π(0)−1 := s
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and π(|I| + 1)−1 := t. Then, place additional security checks on all arcs not on this
walk and check if the allocation is a deterring all invaders. Note that once security
checks are fixed on the graph, one can verify for each invader in polynomial time,
whether it has been deterred or not, by checking for connectivity after removing all
arcs from the network which carry a security check. Finally, return the security check
allocation deterring all invaders with the shortest s-t-path6.

We need to prove that we find an optimal allocation and a corresponding path in
some iteration. Let C∗ be an optimal security check allocation and let P ∗ be a shortest
s-t-path in the network with security checks according to C∗. Consider all vertices
I∗ on this path that are an invaders’ source or sink and let π∗ be the ordering of
these vertices induced by the path P ∗. Due to Observation 33 we may assume that all
security checks in C∗ on P ∗ are allocated on outgoing arcs of vertices si or incoming
arcs of vertices ti. In some iteration, the algorithm must choose I = I∗, π = π∗, and
C in such a way that we exactly match the placements of security checks on the path
P ∗. By a simple inductive argument, the computed (s-π∗(1)−1- . . . -π∗(|I∗|)−1-t)-tour
must have the same length as P ∗, since the segments, i.e. the (π∗(j)−1-π∗(j + 1)−1)-
paths, must be of the same length. The computed tour cannot use any source or sink
vertex not in I, and, using any vertex si or ti on P ∗ with π∗(si) > j or π∗(ti) > j
would imply that one could shortcut P ∗ by directly continuing from vertex si or ti.
Thus, the algorithm finds a tour of length τ(P ∗) and returns an optimal security check
allocation.

Last but not least, we need to prove that Algorithm 4 runs in polynomial time.
Observe that we have a constant number of sets, a constant number of permutations π
for each of these sets, and finally a constant number of functions c for each permutation.
Therefore, the number of iterations is constant, whereas in each iteration we need
to compute C ′, V ′, A′ and τ ′ each in O(n2) time. Additionally, we compute a tour
connecting the corresponding vertices in I in given order takingO(|I|n2) time. Finally,
check if C ′ is a deterring security check allocation, that takes O(|I|n2) time. Therefore,
Algorithm 4 runs in O(f(|I|) · n2) time, where

f(|I|) =

2|I|∑
l=0

(
2|I|
l

)
︸ ︷︷ ︸

outer loop

· l!︸︷︷︸
second loop

· 2l︸︷︷︸
third loop

· (l + |I|)︸ ︷︷ ︸
operations in third loop

,

which is constant if |I| is constant.

6It is possible to shortcut walks and trails, however, the corresponding path can be found for the
correct choice of I as well.
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The Undirected Case

Theorem 34. Given an undirected graph G = (V,E, τ).

i) If τ c
e = τe + λ for all e ∈ E, (I, J)-Tesc is NP-complete with |I|, |J | ≥ 1.

ii) If τ c
e = αeτe for all e ∈ E, (I, J)-Tesc is NP-complete with |I|, |J | ≥ 1.

Proof. For both cases, we use a reduction from k undirected disjoint paths problem
(k-DPP), where k is part of the input.

i) Given an instance of k-DPP on a graph G and k tuples (si, ti)i∈[k]. We construct
an instance of (I, J)-Tesc as follows: Let I = {(si, sj) : i, j ∈ [k] ∧ i 6= j}, J =
{(si, ti) : i ∈ [k]}, τ ≡ 0, and τ c = 1.

We claim the instance of (I, J)-Tesc has a solution of cost 0 if and only if, the
instance of k-DPP has a solution. Obviously, if there exists a set of disjoint si-ti-paths
for every i ∈ [k], placing security checks on all arcs not on any of the paths deters all
invaders. On the other hand, if we find a security check placement of cost 0, no two
paths Pi, Pj may intersect. If they do, due to (si, sj) ∈ I, they must contain at least
one security check, which implies that one path contains an edge with security check
of cost 1. This contradicts a solution of cost zero.

ii) The proof only changes slightly. We use the same construction but with τ ≡ 1
and α = n2. It is easy to see, that there exists a solution to k-DPP if and only if the
constructed instance has a solution of cost at most n.

In contrast to directed instances, one can solve general cost (1, 1)-Tesc in polyno-
mial time.

Theorem 35. Given an undirected graph G = (V,E, τ) with τ ce = τe + λe for all
e ∈ E. Then (1, 1)-Tesc is solvable in polynomial time.

Proof. The main idea underlying the algorithm: Either, the path contains exactly one
security check or none at all.

First, if the optimal solution does not need any security check, we find such a
solution by computing two shortest s-t-paths when removing s1 and t1 from the graph,
respectively.

However, if the optimum solution contains one security check, we find that edge in
the following way. Guess the edge containing a security check. From the undirected
graph then construct a directed graph and solve a min-cost-flow problem on the con-
struction. With this computation, we determine the minimum cost of a solution (if it
exists) with a security check on that edge.
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Given a specific edge {u′, v′} of the graph, we can compute two disjoint s-u′-path
and v′-t-path or two disjoint s-v′-path and u′-t-path of minimum total cost with the
following construction.

Replace each edge but the edge {u′, v′} by its bidirectional arc correspondences,
i.e. replace {u, v} ∈ E by (u, v), (v, u). Then, replace every vertex by two vertices v−

and v+, as in Figure 2.2. Direct all ingoing arcs to v towards v− and let all outgoing
arcs from v leave from v+. Additionally, add the arc (v−, v+). Let the capacity of all
arcs be 1, i.e. c ≡ 1. Let the cost of an arc (u, v) with {u, v} ∈ E be τ(u,v) = τ{u,v}
and τ(v−,v+) = 0. Finally, add a source vertex sf and arcs (s, u′−), (s, v′−) and a sink

tf vertex with arcs (s+, tf ), (t+, tf ). All these arcs have capacity 1 and cost 0. Now,
compute a minimum cost sf -tf -flow of value 2.

Due to integral capacities, if there exists a solution, there always exists an integral
minimum cost flow. This solution consists of two disjoint sf -tf -paths, which contain
two disjoint paths from sf to s and t. Either an u′-s-path and an u′-t-path or an
u′-t-path and an u′-s-path. Both paths have flow value one and therefore their cost
contribution is exactly the cost of the path in the original undirected graph.

Finally, observe that a minimum cost path solution to the original problem using
this one particular edge {u′, v′}, directly gives rise to a flow of value 2 with same
cost.

Corollary 36. Given an undirected graph G = (V,E, τ) with τ ce = τe+λ for all e ∈ E.
Then (I, 1)-Tesc is solvable in polynomial time if |I| ≥ 1 is constant.

Proof. We may use Theorem 32 with a standard gadget to transform undirected edges
into directed edges to compute a solution. This gadget is depicted in Figure 2.2. To
overcome issues arising with security check placements on arcs (u, z−uv), (v, z

−
uv), (z

+
uv, u),

and (z+
uv, v), we double the number of invaders. We replace each invader si, ti by a pair

of invaders (si, ti), (ti, si). Given a solution to the undirected case, we find a solution
of same cost by placing security checks on the corresponding directed arc (z−uv, z

+
uv).

Given a solution to the directed instance, placing security checks on all edges but the
final path, deters all invaders but invaders, that have both si, ti on the path, without
increasing the total cost. W.l.o.g., since both (si, ti), (ti, si) ∈ I, assume that the path
traverses all invader pairs in si-ti order. But then, the path has to contain at least as
many security checks on the directed arcs as a deterring placement of security checks
for that path in the undirected case. Overall, we obtain a solution of same cost for
the undirected case.

2.3.3 Flows

In this subsection, we again address the question, where to install security checks
on our graph such that invaders cannot reach their destination from their respective
starting point without traveling along an arc with a security check. But this time we
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want to maximize the flow we can send from a set of source vertices to a set of sink
vertices. Here, installing a security check will decrease the capacity of an arc. We
define the following problem:

Definition 37 (Flow efficient security checks). Given a directed graph G = (V,A, γ)
with arc capacities γ. Additionally, there is a set of invaders I and a set of journeyers
J each represented by a tuple consisting of a source and a sink. We let capacities on
arcs decrease when a security check is installed, i.e. γca ≤ γa. Let (I, J)-Fesc refer to
the problem of deciding whether there exists a security check allocation on the arcs on
G in such a way that all invaders are deterred and the sum of maximum journeyers
flows exceeds F .

Theorem 38. Given a directed graph G = (V,A, γ).

i) If γc
a = αaγa for all a ∈ A, (k, l)-Fesc is NP-hard for all k, l ≥ 1, even if k = l = 1

and the invader pair and the traveler pair agree, and αa = α for all but one a ∈ A.

ii) If γc
a = αγa for all a ∈ A, (1, 1)-Fesc is NP-hard, even if γa = 1, αa = α for all

a ∈ A, and source and sink of travelers and invaders agree.

Proof. i) We can use the same reduction as in the proof of Theorem 29 i). Let all
arc capacities be 1 and instead of setting λa = 0 we let αa = 0 for all arcs but (t1, s2)
and observe that there is a s1-t2-flow of value 1 if and only if there are two disjoint
paths connecting s1, t1 and s2, t2.

ii) We once more use a reduction from the disjoint paths problem. Let G = (V,A)
and (s1, t1), (s2, t2) be an instance of the disjoint path problem. We let the underlying
graph be the same graph as in the disjoint paths problem. Additionally, we let s = s1

and t = t2, the source and sink for both, the traveler and the invader. Furthermore,
let α = 1

n2 and finally replace the arc (t1, s2) by n2 directed paths of length 2 from
t1 to s2. We claim that there exist two disjoint paths from s1 to t1 and from s2 to
t2 if and only if there is an allocation of security checks separating s1 and t2 with a
maximum flow value greater or equal to 1.

First, if there are two disjoint paths, we can separate s1 and t2 by placing security
checks everywhere but on the paths. The flow value is at least 1 since we can route a
flow along the paths and then send a flow of value 1 from t1 to s2 along the n2 paths,
each with capacity 1

n2 connecting them.
Second, any placing of a minimal number of security checks induces a cut in the

graph. So, if there is a flow of value 1, and since the security checks induce a cut, the
value of the cut must be at least 1. This implies, since all arcs on that cut have capacity
1
n2 , that the cut must contain at least one arc of the newly added paths between t1
and s2, directly implying that it must contain an arc of each of these paths. Now there
must be a path from s1 to t1 and from s2 to t2 on two disjoint sets of vertices which
means that both paths are disjoint.
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Remark 39. There exists no polynomial time ρ-approximation algorithm for (1, 1)-
Fesc for any constant ρ, unless P = NP .

Proof. Given a constant ρ, we prove that there cannot exist a polynomial time algo-
rithm with approximation ratio ρ. The proof uses the same construction as in the
proof of Theorem 38 (ii), but instead of α = 1

n2 , we let α = ρ
n3 and n3

ρ paths between
t1 and s2.

2.3.4 Open Problems

In this section, we gave a polynomial time algorithm for both, the directed and undi-
rected version of (I, 1)-Tesc if |I| is constant. Hardness for the directed version of
(1, 2)-Tesc followed from 2-dDPP, making use of zero weight edges. The proof cannot
easily be adopted to the case if only strictly postive edge weights were allowed. Thus,
we pose the following questions for further research:

Open Problems.

1. What is the computational complexity of undirected (I, 2)-Tesc if τe = 1 for all
e ∈ E and λe = λ, or αe = α for all e ∈ E?

2. What is the computational complexity of directed (I, 2)-Tesc if τa = 1 for all
a ∈ A and λa = λ, or αa = α for all a ∈ A?

Additionally, numerous classical polynomial time solvable problems can be studied
w.r.t. this new modification of increasing cost on cut edges, e.g. the maximum weight
matching problem or the minimum spanning tree problem.

54



Chapter 3

Graph Processes

In this chapter, we study three processes on graphs. Two of the processes have ap-
plications in statistical physics, e.g. can be used to model ferromagnetism or glassy
dynamics. First, we derive bounds for special sets in bootstrap percolation on graph
classes, such as degenerate graphs and grids. Second, we analyze the limit behavior of
a three-state contact process. The three states are infected, two healthy states, active
and passive, with different infection probabilities.

The third process can be regarded as an election on two options and partly coincides
with the model of US presidential elections. We design algorithms computing an order
of votes aiming to maximize the number of votes for one option.
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3.1 Bootstrap Percolation

The first process studied in this chapter is bootstrap percolation on degenerate graphs
and grids. Note, a slightly weaker version of Theorem 41 was obtained in the au-
thor’s master’s thesis. However, with a finer proof analysis we derived a tight bound,
c.f. Lemma 43. Parts of this section are published in [45], particularly, most of Sec-
tion 3.1.1 and some parts of Section 3.1.2 coincide.

3.1.1 The Model and Related Work

Bootstrap percolation is a discrete time infection process on a graph G = (V,E). Un-
infected vertices become infected over time if the number of adjacent infected vertices
exceeds some threshold. Let this threshold be r ∈ N. We also refer to this process as
r-neighbor bootstrap percolation.

Initially, at time zero, there is some set of infected vertices. At every next time step,
any vertex that is adjacent to at least r infected neighbors becomes infected in the next
time step, too. The process was first introduced by Chalupa et al. in 1979 in [23] and
is a simple example for a cellular automaton. It is also closely related to the Glauber
dynamics, which represent the Ising model at zero-temperature (see [65]). Another
application one can think of is rumor spreading in a social network, where individuals
start spreading a rumor to all their friends once they have heard that rumor from a
number of other friends. Instead of speaking of infection, the literature also uses the
term activation, but we shall stick to the term infection.

We now shortly introduce the process formally before recalling some known results.
Call the set of initially infected vertices A0 and the vertices that are infected at the
end of the process Af . More formally, let At be the vertices which are infected at time
t, where At := At−1∪{v ∈ V : |N(v)∩At−1| ≥ r} and N(v) denotes the neighborhood
of some vertex v ∈ V and thus Af =

⋃
t>0At.

The dynamics of bootstrap percolation are be depicted on an example graph in
Figure 3.1.

infected
uninfected

t = 0 t = 1 t = 2 t = 3
A0

A1 A2 Af = A3

Figure 3.1: Dynamics of the 2-neighbor bootstrap percolation process on an example
graph where |A0| = 2 and Af = V .
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Sets A0 that infect the entire graph, i.e.
⋃
t≥0At = V , are called percolating sets. A

minimal percolating set is a percolating set where every proper subset does not infect
the entire graph. In many applications, the set A0 is a random subset of vertices,
where each vertex is initially infected independently with a given probability p.

For several graph classes, there is already much known about the behavior of this
process and there are a quite few things of interest. First of all, one can study the
probability of percolation, i.e. the probability that Af = V , depending on p, with
which each vertex is initially infected, independently of all other vertices. Several
authors surveyed the probability threshold at which percolation is more likely to occur
than not. For example, if the underlying graph is the d-dimensional cube graph [n]d,
the exact threshold function for d = r = 2 was shown by Holroyd in [56] to be
π2

18 logn+o( 1
logn). Later, Balogh et al. gave the exact threshold function for all d ≥ r ≥ 2

in [6]. Additionally, threshold functions for bootstrap percolation were intensively
studied on trees, like periodic trees in [20] and Galton-Watson trees in [18] and [7].

Some papers also study the size of sets of vertices that infect the entire graph. There
is also a special class of percolating sets, namely minimal percolating sets, which are
sets of vertices where any proper subset does not infect the entire graph. Riedl showed
in [78] that for a tree on n vertices with l vertices of degree less than r, a minimal

percolating set A0 is of size (r−1)n+1
r ≤ |A0| ≤ rn+l

r+1 . Riedl also gave an algorithm in
his paper that computes the size of a minimum percolating set for r ≥ 2 as well as the
size of a maximum minimal percolating set for r = 2 in linear time. In another paper,
he extended the studies of minimal percolating sets to hypercubes under 2-neighbor
bootstrap percolation (see [77]).

Also, other graphs like the well known Erdős-Rényi random graph have been studied,
for example in [57] by Janson et al. There, the authors give a function for the edge
probabilities when percolation occurs with high probability, depending on the size of
A0.

Another quite interesting parameter is the running time of such a process, which is
the time until no new vertex becomes infected, i.e. the least t such thatAt = At+1 = Af .
This parameter has been studied for several graphs like the grid [n]2, where Benev-
ides and Przykucki [12] showed, that for r = 2 the time of the process is bounded by
13
18n

2 +O(n). In [75], Przykucki considered bootstrap percolation on the d-dimensional

hypercube and proved the time to be at most bd23 c, again for r = 2. Bollobás et al. [19]
analyzed the time of bootstrap percolation on the discrete torus, while Janson et al. [57]
gave a time-bound for bootstrap percolation on the Erdös-Rényi random graph.

3.1.2 Degenerate Graphs

In this subsection, we focus on the size of the infected set Af at the end of the bootstrap
percolation process on degenerate graphs. We give a result for r-neighbor bootstrap
percolation when the underlying graph is a degenerate graph and the set A0 is an
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arbitrary subset of the vertices. Furthermore, our theorem implies a bound on the size
of percolating sets. Another direct consequence is an upper bound on the running time
of the process on degenerate graphs. Finally, it is noteworthy that, due to bounded
degeneracy of several known graph classes, like trees or planar graphs, our results also
covers more commonly studied graph classes.

Our main result gives a tight bound on the size of the set Af of vertices that are
infected at the end of the process on degenerate graphs. Recap the definition of
degeneracy.

Definition 40. A graph G = (V,E) is called d-degenerate if every subgraph contains
a vertex of degree at most d.

There are many graph classes that have a bounded degeneracy. For example, forests
are 1-degenerate graphs, planar graphs are 5-degenerate while outerplanar graphs are
2-degenerate. Also, scale free networks generated by the Barabási-Albert model using
a preferential attachment mechanism, have bounded degeneracy.

Let us now state our main theorem.

Theorem 41. Consider bootstrap percolation on a d-degenerate graph G with r ≥ d+ 1
and a set of initially infected vertices A0. Additionally assume |A0| ≥ d. Then the set
Af of vertices that are infected at the end of the process fulfills

|Af | ≤
(

1 +
d

r − d

)
|A0| −

d(d+ 1)

2(r − d)
.

Proof. First of all, since the process is deterministic, once A0 is fixed, we may as-
sume that Af = V (otherwise delete vertices that do not become infected from
the graph). There exists an ordering (Erdös-Hanjal sequence, c.f. Section 2.2.5)
π : V → V of the vertices, where each vertex has at most d < r neighbors to its
left, i.e. |{w ∈ δ(v) : π(w) < π(v)}| ≤ d. W.l.o.g. assume that V = [n] and π(i) = i
for all v ∈ V . Observe next, since d < r, every vertex that becomes infected at some
point must have at least one already infected vertex in its right neighborhood.

We want to make use of this observation and therefore introduce a potential Φt,
which, after each time step t of the infection process, bounds the number of vertices
that might be infected in the next step from above.

Let Φt =
∑

v∈V Φv
t , where

Φv
t :=

{
0, if v /∈ At
|{w ∈ δ(v) : π(w) < π(v)} \At|, else

is the number of uninfected vertices in the left neighborhood of vertex v if it is infected
and is 0 otherwise. Note that an uninfected vertex might be counted more than once in
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our potential if it has more than one infected vertex in its right neighborhood. Clearly,
Φ0 ≤ d|A0| since every initially infected vertex has at most d uninfected neighbors to
its left.

Lemma 42. The potential decreases for each infection at time t by at least r − d,
i.e. we have that Φt−1 − Φt ≥ (r − d)|At \At−1|.

Proof. Consider the set of vertices infected at time t and let vertex v be such a vertex,
i.e. v ∈ At \ At−1. Due to the degeneracy of the graph, v has at most d uninfected
neighbors in its left neighborhood and therefore v can increase the potential by at most
d. Observe next that for vertex v to become infected it must have at least r infected
neighbors. Now there are two kinds of such infecting vertices, namely those that lie in
the right neighborhood of v and those that lie in the left neighborhood of v as depicted
in Figure 3.2. Let λ be the number of infected vertices in the left neighborhood and ρ

v

= λ

≤ d < r

= ρ ≥ r − λ

infected
uninfected

Figure 3.2: Left and right neighborhood of v at the time of its infection.

be the number of infected vertices in the right neighborhood. For each infected vertex
w that lies in the right neighborhood, the potential decreases by one, since vertex v
was accounted for in Φw

t−1 but is no longer uninfected and therefore does not contribute
to Φw

t . Each of the λ infected vertices in the left neighborhood of v does not add to
the potential either, since it is already infected, so Φv

t ≤ (d− λ) + Φv
t−1. If v is the

only vertex infected at time i, we have that

Φt ≤ (d− λ)− ρ+ Φt−1 ≤ (d− λ)− (r − λ) + Φt−1 ≤ Φt−1 − (r − d),

which, since r > d, means that the potential decreases by r − d. Finally, note that
additional, simultaneous infections do not increase Φv

t and the above argumentation
can independently be done for each vertex that is infected at time i, and thus each
infection decreases the potential by the aforementioned amount and the claim follows.

Now consider the left most d that are infected at the end of the process. W.l.o.g. these
shall be the the vertices in [d]. There are two cases for each of these vertices:

Case 1: Vertex i ∈ [d] is an initially infected vertex, i.e., i ∈ A0, then we may
bound the contribution of i to Φ0 by i− 1 instead of d.
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Case 2: Vertex i ∈ [d] becomes infected at some point in time t, i.e. i ∈ Af \ A0.
Now, once vertex i becomes infected, it contributes at most i − 1 to the potential,
while decreasing the potential by r due to its infection. Therefore, we may bound the
decrease of the potential due to vertex i by r − (i− 1) instead of r − d.

So in total, we have that the vertices in [d] are either in A0 and decrease Φ0 or
decrease the potential at the time of their infection. Once the potential is less than 1
the process stops. This is simply due to the fact that there does not exist an uninfected
vertex that has an infected vertex in its right neighborhood and hence could be infected
next. We can now bound the number additional of infections by

Φ0 −
∑

i∈[d]∩Af\A0

(r − (i− 1))

r − d + |[d] ∩Af \A0|

≤
d|A0| −

∑
i∈[d]∩A0

(d− (i− 1))− ∑
i∈[d]∩Af\A0

(r − (i− 1))

r − d + |[d] ∩Af \A0|

=

d|A0| −
∑

i∈[d]∩A0

d+
∑
i∈[d]

(i− 1)− ∑
i∈[d]∩Af\A0

r

r − d + |[d] ∩Af \A0|

=
d|A0| − d|[d] ∩A0|+ d(d−1)

2 − r|[d] ∩Af \A0|
r − d + |[d] ∩Af \A0|

=
d|A0|
r − d +

d(d− 1)

2(r − d)
− d|[d] ∩A0|+ r|[d] ∩Af \A0| − (r − d)|[d] ∩Af \A0|

r − d

=
d|A0|
r − d +

d(d− 1)

2(r − d)
− d|[d] ∩A0|+ d|[d] ∩Af \A0|

r − d

=
d|A0|
r − d +

d(d− 1)

2(r − d)
− d2

r − d =
d|A0|
r − d −

d(d+ 1)

2(r − d)
.

Hence,

|Af | ≤ |A0|+
d|A0|
r − d −

d(d+ 1)

2(r − d)
=

(
1 +

d

r − d

)
|A0| −

d(d+ 1)

2(r − d)
.

It is obvious that |A0| ≤ |Af |, which finishes the proof of Theorem 41.

The theorem requires r ≥ d+ 1 which lets us derive a slightly simpler bound on Af ,
namely that

|Af | ≤ (d+ 1)

(
|A0| −

d

2

)
.

It is also remarkable that our bound on the size of Af in Theorem 41 is sharp in the
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following sense:

Lemma 43. For every odd d ≥ 1 and r ≥ d+ 1, such that d | r or d | (r − 1
2(d− 1)),

there exists a d-degenerate graph with an initially infected set A0, such that the set Af

at the end of the process fulfills |Af | =
(

1 + d
r−d

)
|A0| − d(d+1)

2(r−d) .

Proof. In the following, we describe the construction of such a graph. The graph is
constructed assuming a total order on the vertices that gives rise to an Erdős-Hajnal
sequence. All but the first d vertices have exactly d neighbors of smaller label and all
vertices not in A0 have exactly r neighbors with larger label.

For the construction of such a graph take three disjoint sets of vertices [d], H, and
A0, such that

|H| = r − 1

2
(d− 1), and |A0| =

r(r − 1
2(d− 1))

d
.

Now, let the vertices in [d] form a clique of size d. Additionally, let H1 ∪H2 = H such
that |H1| = r − d+ 1 and H2 = H \H1. Then, let every vertex in H1 be adjacent to
all vertices in [d]. Therefore, every vertex in H1 has d neighbors of smaller label.

Note, if all vertices in H2 have d neighbors of smaller label these are

d(|H| − (r − d+ 1)) =
1

2
d(d− 1) =

d∑
i=1

(i− 1)

many edges. Furthermore, as mentioned above, every vertex in A0 shall also have
degree d, which gives us additional d|I| = r(r− 1

2(d− 1)) edges that we have to match
to vertices in H1 ∪H2 ∪Kd.

On the other hand, every vertex in H1 needs r neighbors in H2∪A0 and every vertex
i ∈ [d] needs i − 1 neighbors in H2 ∪ A0 in order to be adjacent to exactly r vertices
with larger label. Therefore, we need in total

d∑
i=1

(i− 1) + r(r − d+ 1) =
d(d− 1)

2
+ r(r − d+ 1)

edges from H2 ∪A0 to [d] ∪H1.
First, we match all vertices in H2 to vertices missing edges in H1. Since d | r or

d | (r − 1
2(d − 1)), we have that r − d + 1 ≥ d > 1

2(d − 1), and we can easily assign
all 1

2d(d− 1) edges from vertices in H2 to vertices in H1 in this way without creating
multi edges.

Finally, there are still

d(d− 1)

2
+ r(r − d+ 1)− 1

2
d(d− 1) = r(r − d+ 1)
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not yet assigned edges from [d] ∪ H1 which all can be matched with the remaining
edges from A0.

A schematic picture of the graph can be seen in Figure 3.3.

Kd I

infected vertex
uninfected vertex

1
2(d− 1)r − d+ 1

H1 H2

Figure 3.3: Schematic picture of the constructed graph that matches the given upper
bound.

The set A0 is of size r
d(r − 1

2(d − 1)). Also, Af = V , since every vertex will be
infected at the end. We obtain

|A0|+ |H|+ d = |A0|+ (r − 1

2
(d− 1)) + d.

Hence, we have that

|Af | = |A0|+ (r − 1

2
(d− 1)) + d =

= |A0|+
d

r
|A0|+ d

=

(
1 +

d

r − d

)
|A0| −

d2

r(r − d)
|A0|+ d

=

(
1 +

d

r − d

)
|A0| −

d

r − d

(
r − 1

2
(d− 1)

)
+ d

=

(
1 +

d

r − d

)
|A0| −

d(d+ 1)

2(r − d)
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which matches the upper bound in Theorem 41.

Theorem 41 directly implies a bound on percolating sets.

Corollary 44. Consider bootstrap percolation on a d-degenerate graph with n ≥ d
vertices and let r ≥ d+ 1. Then the size of a percolating set A0 fulfills

r−d
r n+

d(d+ 1)

2r
≤ |A0|.

This bound is obtained by setting |Af | = n in Theorem 41.

Note, Riedl gave a bound for percolating sets in trees in [78]. Recall, every tree is
a 1-degenerate graph, since every subgraph of a tree is a forest and thus contains at
least one leaf, which is a vertex of degree one. As already mentioned in Section 3.1.1,
Riedl considered the size of percolating sets on trees and proved that a percolating
set is of size at least r−1

r n + 1
r . Our bound yields the same bound. Also note, the

set A0 in the proof of Lemma 43 is percolating and therefore proves that this bound
is essentially tight. In this case, the constructed graph corresponds to the r-ary tree
with r2 leaves.1

Remark 45. The proof of Theorem 41 can easily be modified to obtain an even
stronger bound for percolating sets. The idea of the missing edges of the first d
infected vertices, which gave a reduced potential increase upon infection can be used
for all vertices that do not have d left-neighbors. These missing edges make up for a
total potential decrease of d|V | − |E|. Making use of the fact that all vertices become
infected at some point (either are infected in A0 or at a later point) and with the same
case distinction, we can derive the following bound:

|Af | ≤ |A0|+
d|A0|
r − d −

d|V | − |E|
(r − d)

.

As |Af | = n, we obtain

r − d
r

n+
d|V | − |E|

r
≤ |A0|.

The construction in Lemma 43 is a percolating set and also matches the bound
given in Remark 45. This is due to the fact that in the construction we get that
d|V | − |E| = d(d+1)

2 .

Finally, we can also prove a similar bound to Corollary 44 for graphs of bounded
degree.

1The set K1 corresponds to the root.
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Theorem 46. Consider bootstrap percolation on a graph G with maximum degree ∆
and r > ∆

2 and a set of initially infected vertices A0. Then the set Af of vertices that
are infected at the end of the process fulfills

|Af | ≤
(

1 +
∆

2r −∆

)
|A0|.

Proof. Similarly to the proof of Theorem 41, we make use of a potential Φt which shall
serve as an upper bound on yet uninfected vertices in the neighborhood of all infected
vertices. We let Φt =

∑
v∈V Φv

t , with

Φv
t :=

{
0, if v /∈ At
|δ(v) \At|, else

.

With this potential, we overestimate the number of uninfected vertices that potentially
can be infected in the next time step.

Observe, if at time t a vertex becomes infected, we have Φv
t = |δ(v) \At|. Addition-

ally, each of v’s neighbors potential is updated accordingly, i.e. Φw
t ≤ Φw

t−1 − |δ(w) ∩
(At \At−1)|. Since r ≥ ∆

2 , we have that each new infection at time t of some vertex v
the global potential changes by

+|δ(v) \At| − |At−1 ∩ δ(v)| ≤ (deg(v)− r)− r ≤ ∆(G)− 2r < 0.

Thus, the total number of infections is bounded by

|A0|+
∆|A0|
2r −∆

=

(
1 +

∆

2r −∆

)
|A0|.

With Theorem 46 in mind, we work towards an answer to a question raised by
Morris regarding minimal percolating sets [71, Problem 1]. These sets are defined as
follows.

Definition 47 (Minimal percolating sets). Given a graph G = (V,E). We call a set
A ⊆ V a minimal percolating set if every proper subset of A does not percolate.

Question ([71, Problem 1]). Does there exist a sequence of n-vertex graphs (Gn)n∈N
of bounded maximum degree ∆, such that E(Gn, r) = o(n). Here,

E(G, r) = max{|A0| : A0 ⊆ VG minimal percolating in r-neighbor bootstrap percoaltion}.

The answer is twofold. If r ≥ ∆ + 1, the answer is obviously no. Even more, by
definition every minimal percolating set is a percolating set. Therefore, if the graph
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sequence not necessarily has bounded degree but bounded degeneracy d ≤ r − 1, we
may apply Corollary 44 and find that percolating sets must be of size Θ(n). Also,
due to Theorem 46, if r > ∆

2 , we obtain that percolating sets must be of size at least
(1− ∆

2r )n = Θ(n).
But, if r ≤ ∆

2 , the following graph sequence has the desired property. The construc-
tion is somewhat akin to the construction in Figure 3.3.

Let Glr consist of a sequence of l independent sets I1, . . . , Il each of size r. Let every
vertex in Ii be adjacent to every vertex in Ii+1 for i ∈ [l − 1]. The maximum degree
in this graph is 2r.2

Observe, a smallest percolating set is of size r. Additionally, every minimal perco-
lating set may not contain more than r vertices: If one vertex v ∈ Ii becomes infected
in the first time step, all other vertices in Ii become infected as well. This set Ii then
suffices to infect the remaining vertices.

3.1.3 Grids

In this subsection, we study the size of percolating sets in bootstrap percolation on an
n ×m grid3. We are interested in the maximum size of minimal percolating sets on
grids (denoted by E(m,n) or E(n) for an n×m and n×n grid graph, respectively) and
improve known bounds on their size, disproving a conjecture on the size of minimal
percolating sets by Morris [71]. Throughout the remainder of the section we assume
r = 2.

Definition 48 (Special sets on grids). Let G be an n×m grid graph. We say a subset
A ⊂ V spans a rectangle if the set of vertices infected with A0 = A forms a rectangle.
We denote this rectangle by A 4.

Additionally, given an n′ times m′ rectangle R we denote by

R q[k]×[l] := {(n′ + 1− i,m′ + 1− j) : i ∈ [k], j ∈ [l]},
R p[k]×[l] := {(i,m′ + 1− j) : i ∈ [k], j ∈ [l]},
R x[k]×[l] := {(i, j) : i ∈ [k], j ∈ [l]},
R y[k]×[l] := {(n′ + 1− i, j) : i ∈ [k], j ∈ [l]},

the four k times l sized corners of R .
We call a set A one-(k, l)-corner-avoiding if A is percolating and there exists a k times

2Filling in k = n mod r isolated vertices to account for parity, we obtain graphs for all values of n.
3We interpret the corresponding graph as a subgraph of N2 and use coordinates to describe the

vertices accordingly. Therefore, we have n columns and m rows
4Since for a percolating set A infects all vertices, we have A spans a rectangle, i.e. A = V . Also

note, any subset A ⊂ V consists of a collection of sets each spanning a rectangle.
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l sized corner, such that no proper subset of A infects one of the vertices in this corner.
To be more precise, one of the corners A q[k]×[l], A p[k]×[l], A x[k]×[l], or A y[k]×[l]

must remain completely uninfected for any proper subset A′ ⊂ A.

We call a set A two-(k, l)-(k′, l′)-corner-avoiding if A is percolating and there exist
two opposing corners, of size k times l and k′ times l′, that remain uninfected for any
proper subset of A. I.e., one of

A q[k]×[l] ∪ A x[k′]×[l′],

A p[k]×[l] ∪ A y[k′]×[l′],

A x[k]×[l] ∪ A q[k′]×[l′],

A y[k]×[l] ∪ A p[k′]×[l′]

remains completely uninfected for any proper subset A′ ⊂ A.
If A is one-(1, 1)-corner-avoiding, we refer to A simply as corner-avoiding. 5

Morris proved that limn→∞
E(n)
n2 exists and lies within the interval [ 4

33 ,
1
6 ]. How-

ever, he conjectured that limn→∞
E(n)
n2 = 4

33 [71, Conjecture 1]. We prove that

limn→∞
E(n)
n2 ≥ 2

15 , disproving Morris’ conjecture.

Theorem 49. For every 3 ≤ m,n ∈ N we have that

2

15
mn− 8

15
m− n(2 log n+

√
n log n) ≤ E(n,m)

We start working towards a proof of the lower bound and give bounds on the size of
corner-avoiding sets which use to construct larger minimal percolating sets recursively.
For that matter, let E[k]×[l](n,m) denote the maximum number of vertices in any one-
(l, k)-corner-avoiding set on an m× n grid.

Lemma 50. Let n = 2. For every 2 ≤ m ∈ N, we have that

E[1]×[1](2,m) ≥ 2

3
m.

Proof. Let

m′ :=

{
m if 0 ≡ m mod 3

m− 1 else.

5Note the difference to [71], where the definition of corner-avoiding sets matches our definition of
two-(2, 2)-(2, 2)-corner-avoiding sets
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Then, define

A =
{

(1, i) : i ∈ [m′] ∧ i ≡ 1 mod 3
}
∪
{

(1, i) : i ∈ [m′] ∧ 0 ≡ 1 mod 3
}
∪ {(2,m)}.

It is easy to see (c.f. Figure 3.4) that A is an one-corner-avoiding set with |A| ≥ 2
3m,

so the statement of the lemma follows.

Figure 3.4: Visualization of A (black vertices) for all three cases, from left to right:
0 ≡ m mod 3, 1 ≡ m mod 3, and 2 ≡ m mod 3. Note, all these sets are
one-(1, 2)-corner-avoiding.

The next lemma is key to combine two corner-avoiding sets to obtain a larger one:

Lemma 51. Let m ≥ 2 and t ≥ 1. Then

E[1]×[1](5 · 2t − 3,m) ≥ 2

15
m(5 · 2t)− (5 · 2t) 3

2 log(5 · 2t)

Proof. We prove the lemma by induction on t. For t = 1 and m = 2, Lemma 50
gives the desired result. Also, for t = 1 and m ∈ {3, 4, 5} adding to the constructions
in Lemma 50 one, two, or three empty columns and adding {(n, 1)}, {(n, 1)}, and
{(n, 1), (n− 1, 1)} to the set A respectively, gives the result.

So let now t ≥ 2 and m ≥ 6, then

E[1]×[1](5 · 2t − 3,m)
∗
≥ E[1]×[1](5 · 2t−1 − 3,m− 2) + E[1]×[1](5 · 2t−1 − 3,m− 2) + 2

≥ 4

15
(m− 2)(5 · 2t−1)− 2(5 · 2t−1)

3
2 log(5 · 2t−1) + 2

≥ 2

15
m(5 · 2t)− 4

15
(5 · 2t)− 2(5 · 2t−1)

3
2 log(5 · 2t−1)

≥ 2

15
m(5 · 2t)− (5 · 2t)

(
4

15
+ (5 · 2t−1)

1
2 log(5 · 2t−1)

)
where ∗ follows in the same vein as in [71, Lemma 4]. A visualization of the construc-
tion, combining two one-corner-avoiding sets of respective dimensions into a new one,
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can be seen in Figure 3.5.

A′ y[1]×[1]

A′′ p[1]×[1]

A y[1]×[1]

|A′′| = E[1]×[1](5 · 2t − 3,m− 2)|A′| = E[1]×[1](5 · 2t − 3,m− 2)

Figure 3.5: Combining two one-corner-avoiding sets into a new one adding two rows
and three columns. The new one-corner-avoiding set contains both sets A′

and A′′ as well as the two (black) vertices.

Finally, note that

4

15
+ (5 · 2t−1)

1
2 log(5 · 2t−1) =

4

15
+

1√
2

(5 · 2t) 1
2 log(5 · 2t−1)

=
2

15
− 1√

2
(5 · 2t) 1

2 log 2 +
1√
2

(5 · 2t) 1
2 log(5 · 2t)

t≥1
≤ (5 · 2t) 1

2 log(5 · 2t),

and thus

E[1]×[1](5 · 2t − 3,m) ≥ 2

15
m(5 · 2t)− (5 · 2t) 3

2 log(5 · 2t).

The next lemma implies the lower bound of Theorem 49.

Lemma 52. For m,n ≥ 2 we have that

E(n,m) ≥ 2

15
mn− 8

15
m− n(2 log n+

√
n log n).
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Proof. Let t1, t2, . . . tl ∈ N uniquely encode bn5 c in the following way: Let t1 be the
largest integer such that n ≥ 5 · 2t1 and for all i > 1, let ti be the largest integer
such that n −∑i−1

j=1(5 · 2tj ) ≥ 5 · 2ti . Then, iteratively using the construction from
Lemma 51, we have

E(n,m) ≥ E[1]×[1](5 · 2t1 − 3,m− 2) + E[1]×[1](n− 5 · 2t1 ,m− 2)

≥ E[1]×[1](5 · 2t1 − 3,m− 2)

+
(
E[1]×[1](5 · 2t2 − 3,m− 4) + E[1]×[1](n− 5 · 2t1 − 5 · 2t2 ,m− 4)

)
≥ . . .

∗
≥ E[1]×[1](5 · 2t − 3,m− 2)

+
(
Eoc(5 · 2t2 − 3,m− 4) + . . .+ E[1]×[1](5 · 2tl − 3,m− 2l)

)
≥ E[1]×[1](5 · 2t − 3,m− 2l)

+
(
E[1]×[1](5 · 2t2 − 3,m− 2l) + . . .+ E[1]×[1](5 · 2tl − 3,m− 2l)

)
≥

l∑
i=1

2

15
(m− 2l)(5 · 2ti)− (5 · 2ti) 3

2 log(5 · 2ti)

≥ 2

15
m(n− 4)−

l∑
i=1

5 · 2ti(2l + (5 · 2ti) 1
2 log(n))

≥ 2

15
mn− 8

15
m− n(2 log n+

√
n log n).

Note, for ∗ to hold in the last step, instead of inserting 3 empty columns, we insert
additional n −∑l

i=1 5 · 2tl ≤ 4 empty columns as shown in Figure 3.6. Furthermore,∑l
i=1 5 · 2ti ≥ n− 4.

3 + 1 3 + 2

3 + 43 + 3

Figure 3.6: Illustration of combining two corner-avoiding sets into a new one, inserting
1, 2, 3, or 4 additional columns in the last step to obtain a rectangle of width
n.
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A′

A′′

A

A′

A′′

A

A′

A′′

A

Figure 3.7: Visualization of possible partitions according to Lemma 53

Next, we work towards a new upper bound. The main idea is an inductive proof
making use of the following observation. Given a minimal percolating set, we can
partition this set into several smaller percolating sets. In particular, we can partition
it into a sequence of percolating sets that are corner avoiding as the next lemma shows.
However, we yet only provide proofs of the bound for grids of size m times n where
m ≤ 5, but we conjecture that 2

15 is the correct asymptotic constant.

Lemma 53 (Extension Lemma). Given an m times n grid graph. Let A be a minimal
percolating set.

1. Then A can be partitioned into two subsets A′ and A′′ such that A′ and A′′ both

span a rectangle with A′ ∩ A′′ = ∅ and A′ ∩A′′ = ∅.

2. Furthermore, let A∗ ⊂ A be a subset that spans a rectangle of width and height at
least 2. Then there exists a partition A′ ∪A′′ = A with the following properties.

First, A∗ ⊆ A′ and both, A′ and A′ span rectangles, A′ and A′′ , respectively.

Second, A′ ∩ A′′ = ∅ and A′ ∩A′′ = ∅. Additionally,

� A′ spans a rectangle containing two neighboring corners of A and A′′ is a
singleton, or

� A′ and A′′ each span a rectangle and contain opposing corners of A . In
this case, A′′ is a singleton or corner-avoiding.

Proof. 1.) Observe first, the trivial partition of A into singletons forms a partition of
A such that each set spans a rectangle. Trivially, the empty intersection condition is
met.

Given any partition
⋃
iA

i = A such that all Ai span a rectangle. Since A is percolat-

ing, at least two of the rectangles Ai1 , Ai2 must meet, i.e., there must exist a vertex
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v ∈ V such that dist(v, Ai1 ) = dist(v, Ai2 ) = 1, for some i1 6= i2. Then Ai1 ∪ Ai2
spans a rectangle and we obtain a partition with fewer sets. Assume that there exists

Aj and v ∈ V such that v ∈ Ai1 ∪Ai2 ∩ Aj or v ∈ Ai1 ∪ Ai2 ∩ Aj . Then, since we
have a partition of A, either v ∈ Aj and v /∈ (Ai1 ∪Ai2), or v ∈ (Ai1 ∪Ai2) and v /∈ Aj .
In either case, (Ai1 ∪Ai2) ∪Aj \ {v} = (Ai1 ∪Ai2) ∪Aj proving redundancy of v.

Since A is minimal percolating, this leads to a contradiction. Finally, proceed until
only two sets remain.

2.) For the next part, simply let A′ ⊂ A be the largest proper subset of A spanning
a rectangle with A∗ ⊆ A′. Observe that A′ together with all singletons in A \ A′
forms a partition of A meeting all requirements we used in the first part of the proof.
Therefore, we can reduce its size to two sets, again, meeting all requirements. Since
A′ is maximum, we can never join A′ with any other subset, therefore we obtain a

partition of A with A∗ ⊆ A′, A′ ∩ A′′ = ∅, and A′ ∩A′′ = ∅.

Next, we prove that A′ and A′′ fulfill one of the additional properties.

Observe, A must contain at least one vertex on every side of A , and therefore

by the way we choose to extend A′, A′ must contain at least one corner of A ,

w.l.o.g. A y[1]×[1] ∈ A′ . Note, A p[1]×[1] /∈ A′ because this would imply A′ = A .

But then, if A′ does not contain another corner, A′′ must be adjacent to the two

other sides of A and therefore contains the opposing corner.

So let |A′′| ≥ 2, then A′′ must be corner-avoiding:

If A′ and A′′ overlap we immediately have that A′ contains one corner of A′′

(and vice versa). W.l.o.g let this corner be A′′ y[1]×[1]. If A′′ was not one-(1, 1)-corner-
avoiding, A′ would not have been maximal.

Thus, assume the spanned rectangles A′ , A′′ do not overlap and assume for con-

tradiction, that A′′ is not corner-avoiding. Consider the closest corner of A′′ to A′ .

W.l.o.g. let this corner be A′′ p[1]×[1] and let A1 ⊂ A′′ be the largest subset infecting

this corner. Since A′ is maximum, dist( A′ , A′′ p[1]×[1]) ≥ 2 (see Figure 3.8). Thus,

there exists an adjacent corner of A′′ as depicted in Figure 3.8, w.l.o.g. let this corner

be A′′ x[1]×[1], for which we find another maximal set A2 ⊂ A′′ that infects the corner.

Now, A1∪A2 = A′′ with A1∩A2 = ∅, and dist( A1 , A2 ) ≥ 2, which is a contradiction

to A′′ = A1 ∪A2 .
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A1

A′

A′′

A1

A′

A′′

A1

A2

A′
A′′

≥ 2 disjoint, distance ≥ 2

dist(A′, A′′) = 2:

A1

A′

A′′

A1

A′

A′′

A1

A2

A′
A′′

≥ 2 disjoint, distance ≥ 2

dist(A′, A′′) = 1:

A1

A′

A′′

dist(A′, A′′) = 0

Figure 3.8: The three cases in the proof of Lemma 53. Note, A′ has height and width
at least 2.
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Lemma 54 ([71, Theorem 9]). We have that

� E(1,m) =
⌊

2(m+1)
3

⌋
� E(2,m) =

⌊
2(m+2)

3

⌋
� E(3,m) =

⌊
2(m+3)

3

⌋
For later purposes, we additionally need the following lemma.

Lemma 55. For all m ∈ N we have that E(4,m) ≤ 8
15m+ 4

15(m+ 4) + 20
15 = 4

5m+ 12
5 .

This implies that E(4,m) ≤ 2
15 · 4m+ 6

15(m+ 4) + 2
3 for all m ∈ N.

As we are going to need them in the following, below a table with all values of
E(m,n) for m ≤ 11, n ≤ 4. Note that the bound from Lemma 55 only gives E(4, 11) ≤
11, however, the exact value is 10 (see Remark 56).

H
HHH

HHn
m

1 2 3 4 5 6 7 8 9 10 11 . . .

1 1 2 2 3 4 4 5 6 6 7 8 . . .
 Lemma 542 2 2 3 4 4 5 6 6 7 8 8 . . .

3 2 3 4 4 5 6 6 7 8 8 9 . . .
4 3 4 4 5 6 7 8 8 9 10 10 . . . Lemma 55/Remark 56

Proof of Lemma 55. We prove the bounds by induction on m. For m ≤ 3, the state-
ment is true due to [71, Theorem 9]. So, let m ≥ 4 and A be a maximum minimal
percolating set of [4]× [m], i.e. of size E(4,m).

Assume that A does not contain a proper subset A′ such that A′ is of width 4.
Observe that in this case there exists a partition of A into two proper subsets A′ and
A′′ (possibly one of them consisting of a singleton) that span two rectangles of dimen-
sions [k′]× [m′] and [k′′]× [m′′], respectively. W.l.o.g. assume that k′ ≥ k′′. From all
these possible partitions, choose the one maximizing m′.

Then, if k′ = k′′ = 3, we have that dist( A′ , A′′) ≥ 2 (else A contains a set A′

spanning a rectangle of width 4, or we can increase the size of m′). Additionally,
A may not contain two consecutive rows that do not contain a vertex in A, thus
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m′ +m′′ = m− 1. It follows that

E(4,m) ≤ E(3,m′) + E(3,m′′) ≤
⌊

2

3
(m′ + 3)

⌋
+

⌊
2

3
(m′′ + 3)

⌋

≤



4 ≤ 4
5m+ 12

5 for m′ = 1,m′′ = 1, and m = 3,

5 ≤ 4
5m+ 12

5 for m′ = 2,m′′ = 1, and m = 4,

6 ≤ 4
5m+ 12

5 for m′ = 3,m′′ = 1, and m = 5,

6 ≤ 4
5m+ 12

5 for m′ = 2,m′′ = 2, and m = 5,

7 ≤ 4
5m+ 12

5 for m′ = 3,m′′ = 2, and m = 6,
2
3(m− 1 + 6) = 2

3(m+ 5) ≤ 4
5m+ 12

5 for m ≥ 7.

If k′ = 3 and k′′ = 2, we again have that dist( A′ , A′′) ≥ 2. Additionally, A may not
contain two consecutive rows that do not contain a vertex in A, thus again m′+m′′ =
m − 1. Note, E(k,m) ≤ E(l,m) for all k ≥ l, in particular E(2,m′′) ≤ E(3,m′′).
Thus, the claim follows by the same calculation as above.

Next, if k′ ∈ {2, 3} and k′′ = 1, this implies that m′′ = 1. Otherwise, |A′′| ≥ 2 and

thus dist( A′ , A′′) ≥ 2, which implies that dist( A′ , A′′ ) ≥ 2. But then, the union
A′ ∪ A′′ = A would not be percolating. So let k′ = 3 and k′′ = m′′ = 1, then, since
m ≥ 4, we have that

E(4,m) ≤ E(3,m′) + 1 =

⌊
2

3
(m′ + 3)

⌋
+ 1 ≤ 4

5
m+

12

5
.

The case for k′ = 2 and k′′ = 1 follows from E(2,m) ≤ E(3,m).

Finally, assume that k′ = k′′ = 2. Then, we obtain dist( A′ , A′′ ) = 1 from

dist( A′ , A′′) ≥ 2 and thus m′ +m′′ = m. Hence,

E(4,m) = E(2,m′) + E(2,m′′) =

⌊
2

3
(m′ + 2)

⌋
+

⌊
2

3
(m′′ + 2)

⌋
≤ 2

3
(m+ 4)

m≥4
≤ 4

5
m+

12

5
.

Thus, if A does not contain a proper subset A′ spanning a rectangle of width 4, the
statement is true.

Now, for the remainder of the proof, let A′ ⊂ A be such a set spanning a rectangle
of width 4, i.e. of dimensions [4] × [m′]. Among all possible choices, let A′ be such

that A′ has maximum distance to (4,m) and (4, 1) ∈ A′ (We assume that this set
A′ exists, as if it does not exist, interchange labels 1 and m).

If the rectangle spanned by A′ does not contain row (m− 1) or m, there must exist
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a set A′′ ⊂ A that spans [4]× [m− 3] or [4]× [m− 2]. In either case, by induction, we
have that

E(4,m) ≤
{
E(4,m− 3) + 2 ≤ 4

5(m− 3) + 12
5 + 2 ≤ 4

5m+ 12
5 ,

E(4,m− 2) + 1 ≤ 4
5(m− 2) + 12

5 + 1 ≤ 4
5m+ 12

5 .

Finally, in the remaining case, we have that A′ = [4] × [m − 1] and A′ does not
contain any set A′′ spanning a rectangle of width 4. Thus, just like A, the set A′

may be partitioned into two sets A′′ and A′′′ spanning two rectangles of dimensions
[k′′] × [m′′] and [k′′′] × [m′′′]. Assume that A′′ is chosen in such a way that m′′ is
maximal.

Observe that, if k′′ = k′′′ = 3, A \A′ cannot be a set spanning a rectangle of width
4, and neither can be A \ A′′. But then, either A \ A′ or A \ A′′ spans a rectangle
of dimension [k′′] × [m′′ + 1] or [k′′′] × [m′′′ + 1], respectively. In either case we have
(m′′ +m′′′ + 1) = m− 1 may apply the same calculation as above to derive that

E(4,m) ≤ E(3,m′′ + 1) + E(3,m′′′) ≤ 4

5
m+

12

5
.

If min{k′′, k′′′} ≤ 2, let w.l.o.g. k′′ ≤ 2. We have that m′′ +m′′′ ≤ m− 2 and hence,

E(4,m) ≤ E(2,m′′) + E(3,m′′′) + 1 =

⌊
2

3
(m′′ + 2)

⌋
+

⌊
2

3
(m′′′ + 3)

⌋
+ 1

≤



5 ≤ 4
5m+ 12

5 for m′′ = 1,m′′′ = 1, and m = 4,

6 ≤ 4
5m+ 12

5 for m′′ = 1,m′′′ = 2, and m = 5,

7 ≤ 4
5m+ 12

5 for m′′ = 1,m′′′ = 3, and m = 6,

6 ≤ 4
5m+ 12

5 for m′′ = 2,m′′′ = 2, and m = 6,

7 ≤ 4
5m+ 12

5 for m′′ = 2,m′′′ = 3, and m = 7,
2
3(m− 2 + 5) + 1 = 2

3m+ 3 ≤ 4
5m+ 12

5 for m ≥ 7.

This finishes the proof of Lemma 55.

Remark 56. With the same analysis, we can prove an even stronger statement for
m ≥ 5. Together with an easy construction we can actually prove that E(4,m) =

b2(m+5)
3 c for all m ≥ 5.

Lemma 57. For all m ∈ N we have that E(5,m) ≤ 10
15m+ 4

15(m+ 5) + 4
3 = 14

15m+ 8
3 .

Proof. For m ≤ 4, the statement is true due to [71, Theorem 9] together with
Lemma 55. So, let m ≥ 5 and A be a maximum minimal percolating set of [5]× [m],
i.e., of size E(5,m).
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m′′

m′ = 2

X

m′′

m′ = 1

X

Figure 3.9: If the set X contains more than 2 vertices in A′, which it would have to in
order to be spanning the rectangle [4]× [1] and [4]× [2], respectively, one
vertex would be obsolete.

We proceed with the same case distinctions as in the proof of Lemma 55. Assume
first that A does not contain a proper subset A′ spanning a rectangle of width 5.
Observe that in this case there exists a partition of A into two proper subsets A′

and A′′ (possibly consisting of a singleton) that span two rectangles of dimensions
[k′] × [m′] and [k′′] × [m′′], respectively. W.l.o.g. assume that k′ ≥ k′′. Finally, from
all such possible partitions choose the one with maximal m′.

Then, if k′ = 4 and k′′ ∈ {2, 3, 4}, we have that dist( A′ , A′′) ≥ 2 (else A contains
a set A′ spanning a rectangle of width 5, or we can increase the size of m′ — note
k′′ > 1, so |A′′| ≥ 2). Additionally, A may not contain two consecutive rows that do
not contain a vertex in A, thus we necessarily have m′+m′′ = m−1. Note once more,
E(k,m) ≤ E(l,m) for all k ≥ l, therefore, it immediately follows that

E(5,m) ≤ E(4,m′) + E(4,m′′) ≤ 4

5
m′ +

12

5
+

4

5
m′′ +

12

5
=

4

5
m+ 4.

Since E(5,m) must be integral, we actually have E(5,m) ≤ b4
5m + 4c. This integral

condition implies that E(5,m) ≤ 14
15m+ 8

3 for all m ≥ 6. Observe, if m = n = 5, it is
impossible to partition the set A into two sets A′, A′′ that span disjoint rectangles of
dimensions [4] × [m′] (m′ ≥ 2) and [4] × [2], respectively. If you could, one vertex in
A′′ must be obsolete. So, in case n = m = 5, it follows that k′′ ≤ 3 (c.f. Figure 3.9)
and therefore

E(5,m) ≤ E(4,m′) + E(3,m′′) ≤


3 + 4 ≤ 14

15m+ 8
3 if m′ = 1, m′′ = 3

3 + 3 ≤ 14
15m+ 8

3 if m′ = 2, m′′ = 2

4 + 2 ≤ 14
15m+ 8

3 if m′ = 3, m′′ = 1,

(3.1)

completing the case for k′ = 4, k′′ ∈ {2, 3, 4}.
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If k′ = 4 and k′′ = 1, we have |A′′| = 1 and thus,

E(5,m) ≤ E(4,m′) + 1 ≤
⌊

4

5
m+

12

5

⌋
+ 1

m≥5
≤ 14

15
m+

8

3
.

If k′ = 3 and k′′ ∈ {2, 3}, we have

E(5,m) ≤ E(3,m′) + E(3,m′′) =
2

3
(m′ + 3) +

2

3
(m′′ + 3) ≤ 2

3
(m+ 6) ≤ 2

3
m+ 4

m≥5
≤ 14

15
m+

8

3
,

while, if k′ = 3 and k′′ = 1, we have that

E(5,m) ≤ E(3,m′) + 1 ≤ 2

3
(m+ 3) + 1

m≥5
≤ 14

15
m+

8

3
.

Finally, if k′ = 2 and k′′ = 2, m′ + m′′ ≤ m + 2 (both spanned rectangles must
overlap in one and may overlap in most two rows), and thus

E(5,m) ≤ E(2,m′) + E(2,m′′) =
2

3
(m′ + 1) +

2

3
(m′′ + 1) ≤ 2

3
m+

8

3
≤ 14

15
m+

8

3
.

On the other hand, if k′ = 2 and k′′ = 1, we have that m′′ = 1, and thus

E(5,m) ≤ E(2,m′) + 1 =
2

3
(m+ 1) + 1 ≤ 14

15
m+

8

3
.

Note that k′ = k′′ = 1 is not possible.

So, assume that A contains a proper subset A′ spanning a rectangle of width 5,
i.e. of dimensions [5] × [m′]. Just like in the proof of Lemma 55 we choose the set
A′ in such a way that the spanned rectangle contains row 1 or m but maximizes the
distance to row m or 1, respectively, i.e. minimizes m′ containing row 1 or row m.
W.l.o.g. let it contain row 1.

If m′ < m− 1, we have that

E(5,m) ≤ E(5,m′) +
2

3
(m−m′ + 2)− 1

≤ 14

15
m′ +

8

3
+

2

3
(m−m′) +

1

3
=

14

15
m− 4

15
(m−m′) +

1

3

≤ 14

15
m+

8

3
.

If m′ = m− 1, we can partition A′ into two non-empty sets A′′ and A′′′, such that A′′

and A′′′ span two rectangles of dimensions [k′′]× [m′′] and [k′′′]× [m′′′] with k′′ ≥ k′′′.
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Additionally, assume that A′′ is chosen in such a way that m′′ is maximal.

Then, if k′′ = k′′′ = 4, by the choice of A′ we have that A \ A′ spans a rectangle
of width at most 4, which otherwise, contradicts the choice of A′ (because A \ A′
then forms a set spanning a rectangle of dimensions [5] × [m′′ + 1], where m′′′ + 1 <
m′′ +m′′′ + 1 = m′). So, together with the fact that m′′ +m′′′ + 1 = m− 1, we have
that

E(5,m) ≤ E(4,m′) + E(4,m′′ + 1) ≤ 4

5
m′ +

12

5
+

4

5
(m′′ + 1) +

12

5
=

4

5
m+ 4

Since E(5,m) must be integral, we actually have E(5,m) ≤ b4
5m+ 16

5 c. This integral
condition implies that E(5,m) ≤ 14

15m+ 8
3 for all m ≥ 6. Observe, if m = n = 5, it is

impossible to partition the set A into two sets that span disjoint rectangles A′, A′′ of
dimensions [4]× [m′] and [4]× [m′′], respectively. If you could, one vertex in A′′ or A′

must be obsolete (c.f. argumentation in Figure 3.9).

If k′′ = 4 and k′′′ = 3, because of dist( A′′ , A′′′) > 2, we have m′+ 1 = (m′′+m′′′+
1) + 1 = m. Thus,

E(5,m) ≤ E(4,m′′) + E(3,m′′′) + 1

≤



4 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 2,m′′′ = 2, and m = 6,

4 + 4 + 1 ≤ 14
15m+ 8

3 for m′′ = 2,m′′′ = 3, and m = 7,

4 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 3,m′′′ = 2, and m = 7,

5 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 4,m′′′ = 2, and m = 8,

5 + 4 + 1 ≤ 14
15m+ 8

3 for m′′ = 4,m′′′ = 3, and m = 9,

and for m′′,m′′′ ≥ 4, and m ≥ 10, we have that

E(5,m) ≤ E(4,m′′) + E(3,m′′′) + 1 ≤ 4

5
m′′ +

12

5
+ b2

3
(m′′′ + 3)c+ 1

≤ 14

15
m+

8

3
+

7

5
− 2

15
(m+m′′) ≤ 14

15
m+

8

3
.

If k′′ = 4 and k′′′ = 2 we may use the same calculation as above together with
E(2,m′′′) ≤ E(3,m′′′).

If k′′ = 4 and k′′′ = 1 we immediately have that m′′′ = 1 and m′′ + m′′′ + 1 = m,
and thus

E(5,m) ≤ E(4,m′′) + 1 + 1 ≤ 4

5
m′′ +

12

5
+ 2 =

4

5
(m− 2) +

22

5
≤ 14

15
m+

8

3
.

If k′′ = 3 and k′′′ = 3, again, due to dist( A′′ , A′′′) > 2, we have m′ + 1 = m′′ +
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m′′′ + 1 = m. Therefore,

E(5,m) ≤ E(3,m′′) + E(3,m′′′) + 1

≤



3 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 2,m′′′ = 2, and m = 5,

4 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 3,m′′′ = 2, and m = 6,

4 + 3 + 1 ≤ 14
15m+ 8

3 for m′′ = 4,m′′′ = 2, and m = 7,

4 + 4 + 1 ≤ 14
15m+ 8

3 for m′′ = 4,m′′′ = 3, and m = 8,

4 + 4 + 1 ≤ 14
15m+ 8

3 for m′′ = 4,m′′′ = 4, and m = 9,

5 + 4 + 1 ≤ 14
15m+ 8

3 for m′′ = 5,m′′′ = 4, and m = 10,

5 + 5 + 1 ≤ 14
15m+ 8

3 for m′′ = 5,m′′′ = 5, and m = 11,

6 + 5 + 1 ≤ 14
15m+ 8

3 for m′′ = 6,m′′′ = 5, and m = 12,

and for m′′,m′′′ ≥ 6, and m ≥ 13 we have that

E(5,m) ≤ E(3,m′′) + E(3,m′′′) + 1 ≤ 2

3
m′′ + 2 +

2

3
m′′′ + 2 + 1 ≤ 2

3
(m− 1) + 5

≤ 14

15
m+

8

3

If k′′ = 3 and k′′′ = 2, we have m′+ 1 = m′′+m′′′+ 1 = m and thus with E(2,m′′′) ≤
E(3,m′′′) the desired bound follows.

If k′′ = 3 and k′′′ = 1, m′′′ = 1 is immediate, and we get

E(5,m) ≤ E(3,m′′) + 1 + 1 ≤ 2

3
m′′ + 2 + 2 ≤ 14

15
m+

8

3
.

If k′′ = 2 and k′′′ = 2, we deduce that m′′ +m′′′ ≤ m′ + 2 = m+ 1 (c.f. Figure 3.9).
Hence, with m ≥ 5,

E(5,m) ≤ E(2,m′′) + E(2,m′′′) + 1 ≤ 2

3
(m′′ + 1) +

2

3
(m′′′ + 1) + 1 ≤ 2

3
(m+ 3) + 1

≤ 14

15
m+

8

3
.

Finally, note that k′′ ∈ {1, 2} and k′′′ = 1 are not possible. This concludes the proof
of Lemma 57.

3.1.4 Open Problems

We conjecture that the lower bound that we gave in Theorem 49 is tight for square
grids, i.e. limn→∞

E(n)
n2 = 2

15 . Even more, we think the following conjecture is true.
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Conjecture 58. Let A be an one-(k, l)-corner-avoiding set for a n by m grid graph
with m,n ≥ 2, then

|A| ≤ 2

15
mn+

2

5
(m+ n) +

2

3
− 2

15
k · l.

For minm,n ≤ 5, the statement of the conjecture is true, following the same ar-
gumentation from the proofs of Lemma 55 and Lemma 57. The reason we think this
conjecture is true is the following:

We can find a partition of any minimal percolating set into corner avoiding subsets
repeatedly applying Lemma 53. Also, one obtains larger corner-avoiding sets from
joining smaller corner-avoiding sets. If we ”properly” join them pairwise6, we can
prove that we cannot exceed the bound in Conjecture 58. However, an extremely
nested case analysis is needed to make the bound work for this decomposition.

This conjecture would imply that E(n) ≤ 2
15n

2 + 4
5n+ 2

3 .

6similarly to the construction in Lemma 51
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3.2 Phase Transition for a Non-Attractive Infection Process

This section is a joint work with Markus Heydenreich, Kilian Matzke, and Cristina
Toninelli and has been published in [48]. We consider a non-attractive three-state
contact process on Z and prove that there exists a regime of survival as well as a regime
of extinction. In more detail, the process can be regarded as an infection process in
a dynamic environment, where uninfected sites are either healthy or passive. Infected
sites can recover only if they have a healthy site nearby, whereas uninfected sites
may become infected only if there is no healthy and at least one infected site nearby.
The transition probabilities are governed by a global parameter q: for large q, the
infection dies out, and for small enough q, we observe its survival. The main result is
obtained by a coupling to a discrete time Markov chain, using its drift properties in
the respective regimes.

3.2.1 Related Work

The classical contact process, as introduced by Harris in 1974 [55], has been a central

topic of research in interacting particle systems. It is formally defined as {0, 1}Zd
-

valued spin system, where 1’s flip to 0’s at rate 1, and flips from 0 to 1 occur at rate
λ times the number of neighbors in state 1, where λ > 0 is a parameter of the model.
Commonly, the lattice sites are called ‘individuals’, which are either infected (i.e., in
state 1) or healthy (i.e., in state 0). Many fundamental questions have been settled
for this model, the results are summarized in the monographs by Liggett and Durrett
in [29, 66, 67].

Among the most important results are the existence of a phase transition for survival
of a single infected particle, the complete convergence theorem, and extinction of the
critical contact process. Much more refined results have appeared in recent years. In
view of these successes, it may seem surprising that results are considerably sparse as
soon as multitype contact processes are considered. Results have only been achieved
in very specific situations, examples are the articles by Cox and Schinazi [28], Durrett
and Neuhauser [30], Durrett and Swindle [31], Konno et al. [62], Neuhauser [72], and
Remenik [76] for various models.

Our focus here is on the contact process with three types, and this carries already
severe complications. A fair number of models considered in the literature stems from
a biological context (either evolvement of biological species or vegetation models);
typical questions that have been considered are coexistence versus extinction and phase
transitions. Examples are the work of Broman [21] and Remenik [76].

There are two features that are shared by all of these models: they are monotonic
and they are (self-)dual (we refer to [67] for a definition of these terms). These two
properties are crucial ingredients in the analysis; if they fail, then most of the known
tools fail. This might be illustrated by looking at Model A in [14], which is a certain
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3-state contact process. Even though there are positive rates for transitions between
the various states of this model and apparent monotonicity, the lack of any usable
duality relation prevented all efforts in proving convergence to equilibrium for that
model.

For the model considered in the present section, it appears that there is no duality
relation that we can exploit and monotonicity is restricted to a very particular situation
only. Yet we are able to prove the occurrence of a phase transition by means of
coupling to certain discrete-time Markov chains and analyzing drift properties of these
chains. We believe that the technique presented here is useful in greater generality.
A motivation for studying this process stems from the connection with the out of
equilibrium dynamics of kinetically constrained models, as we will explain in detail in
Section 3.2.3. We believe that the proof techniques apply in similar situations.

3.2.2 The Model

Our state space is Ω = {0, 1, 2}Z, equipped with the product topology (which makes
Ω compact). Further, q ∈ [0, 1] is a parameter and (ηt)t≥0 is a Markov process on Ω.
We say that at time t,

site x is


healthy if ηt(x) = 0,

passive if ηt(x) = 1 and

infected if ηt(x) = 2.

Informally, we can describe the process as follows. Each site x independently waits an
exponential time with intensity 1 and then updates its state according to the following
rules:

� If at least one neighboring site is healthy, then x becomes healthy with proba-
bility q and passive w.p. 1− q.

� If at least one neighbor is infected and none is healthy, then a previously healthy
x becomes infected w.p. 1 − q, a previously passive x becomes infected w.p. q
and remains in its state otherwise.

We point out several simple properties of the process. First, as long as a site has only
passive neighbors, it is blocked in the sense that it will not update. Second, if there
are no infected sites at time t, then the same holds for all t′ > t. Third, if the infected
sites form an interval on Z at time t, they also form an interval for all t′ > t; that is,
an infected strip will not exhibit holes. And fourth, if there are no healthy sites, then
infection spreads unhindered at rate q.

For a more formal description, the process can be characterized by its probability
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generator, which is the closure of the operator

Lf(η) =
∑
x∈Z

[
cx(η)q(f(ηx,0)− f(η)) + cx(η)(1− q)(f(ηx,1)− f(η))

+ c̄x(η)
[
q 1{η(x)=1} + (1− q)1{η(x)=0}

]
(f(ηx,2)− f(η))

]
,

f ∈
{
f : Ω→ R cont. :

∑
x∈Z

sup{|f(η)−f(η′)| : η, η′ ∈ Ω, η(y) = η′(y) for all y 6= x} = 0
}
.

Here, cx(η) = 1{η(x−1)·η(x+1)=0} and c̄x(η) = 1{η(x−1)·η(x+1)≥2}. Furthermore, ηx,i is
the configuration where ηx,i(y) = η(y) for all y 6= x and ηx,i(x) = i, x, y ∈ Z, i ∈
{0, 1, 2}.

Another way of constructing the process is via a graphical representation analogous
to [66, Chapter III, Section 6]. We briefly describe this representation, as we shall rely
on it on several occasions at later stages.

We start with a space-time diagram Z × [0,∞), and equip each site x ∈ Z with
four independent Poisson clocks Nx

0 , N
x
1 , N

x
20 and Nx

21 of rates q, 1 − q, 1 − q and q
respectively. These four clocks are independent of the other sites’ clocks. Suppressing
the dependence on site x, an event of N0 at time t is called an event of type H at (x, t)
in the space-time diagram. Accordingly, we have events P for N1, and events I0 and
I1 for N20 and N21.

Given a realization of the set of Poisson clocks and some initial configuration η
of {0, 1, 2}Z, we can now determine the state of ηt(x): We follow the line {(x, t) :
t ≥ 0}, starting at t = 0. If an event of type H or P takes place at time t0, and
if ηt0(x + 1) · ηt0(x − 1) = 0, then x becomes healthy or passive respectively (this is
independent of its state before time t0). If the event at time t0 is of type I0 we set x
to be infected, provided that both ηt0(x−1) ·ηt0(x+ 1) ≥ 2 and ηt−0

(x) = 0. Similarly,

if the event is of type I1 and both ηt0(x− 1) · ηt0(x+ 1) ≥ 2 and ηt−0
(x) = 1, we set x

to be infected.

Note that, depending on the environment of x, at least one of the two is true: Events
of types H,P do not change the state of x or events of type I0, I1 do not change the
state of x. So, if x is neither surrounded by passive neighbors nor infected with no
healthy neighbors, it updates at rate 1. Indeed, these are the desired dynamics and
the distribution of ηt is the one described informally above.

Without mentioning it explicitly, we shall repeatedly make use of this construction
and speak of clock rings of a site x, by which we mean any event of the four Poisson
clocks of x. In that sense, we can think of x as possessing only one clock Nx of rate 1.
On an event of Nx, if x has a healthy neighbor, we declare the event to be of type H
or P with probability q or 1− q. If x has no healthy but an infected neighbor and is
healthy (passive) itself, we declare the event of type I0 (I1). In all other cases, nothing
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happens on the event.
For an initial configuration η ∈ Ω, we denote by Pη the corresponding probability

measure. This superscript will be dropped for the sake of convenience if context
permits.

As we wrote earlier, monotonicity is an important tool in the analysis of such pro-
cesses. One monotonicity property the (ηt) process exhibits is the following.

Claim 3. For arbitrary η ∈ Ω and x ∈ Z, we have that

Pη
′
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
≥ Pη

′′
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
,

where η′ = ηx,2 and η′′ ∈ {ηx,1, ηx,0}.

In words, additional infected sites cannot decrease the chance of the infection’s
survival. However, the same is not necessarily true anymore for η′ = ηx,1 and η′′ = ηx,0.

Proof. We couple the two processes with initial configurations η′ and η′′ via their
graphical representation in the sense that both are equipped with the same realization
of Poisson clock events. It is then a simple consequence of the definition of the dy-
namics and corresponding transition rates that, almost surely, η′t(x) ∈ {η′′t (x), 2} for
all t ≥ 0 and x ∈ Z.

3.2.3 Results and Discussion

Our main result is a phase transition for (ηt) in the parameter q: if q is very close to 0,
then any number of initially infected sites survives with positive probability, whereas
if q is close to 1, then the infection dies out with probability 1.

Theorem 59. There exist values 0 < q0 < q1 < 1 such that

(i) for any initial configuration η /∈ {0, 1}Z, we have

Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
> 0 for all q ≤ q0,

(ii) and for any initial configuration η with supx∈Z infy∈Z{|x − y| : η(y) = 0} < ∞,
we have

Pη
[
ηt ∈ {0, 1}Z

]
t→∞−−−→ 1 for all q ≥ q1.

We thus prove the existence of different regimes without relying on duality proper-
ties. Since there is no monotonicity that can be exploited here, we cannot rule out
that there are more than one transitions between the regimes “the infection dies out”
and “the infection survives”.
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Note that the case q = 0 is degenerate and of little interest, as it admits traps: If
there is a site x ∈ Z and a time t ≥ 0 such that we exhibit (ηt(x), ηt(x+1), ηt(x+2)) =
(1, 0, 1), then this triple will remain fixed for all t′ ≥ t.

A very related process to the one just introduced is the simpler version for which,
informally, the second condition is altered to: “If at least one neighbor of x is infected
and none is healthy, then x becomes infected.” It is clear that the set of infected sites
in this version dominates our process. However, the same proof techniques used below
yield similar results to Theorem 59 (namely, also a phase transition).

Connections to Kinetically Constrained Models.

This model has an indirect connection with Fredrickson-Andersen 1 spin facilitated
model (FA1f) [16, 40, 41]. In this case, the configuration space is {0, 1}Z and the
dynamics are defined as follows: a site x with occupation variable 0 flips to 1 at rate
1 − q if and only if at least one among its nearest neighbors is in state zero; a site x
with occupation variable 1 flips to 0 at rate q if and only if at least one among its
nearest neighbors is in state zero. Note that the constraint for the 0 → 1 and the
1 → 0 updates are the same and the dynamics satisfies detailed balance w.r.t. the
product measure µ with µ(η(x) = 0) = q. Note also that the dynamics of our contact
process coincide with the FA1f dynamics if we start from a configuration which does
not contain infected sites.

A non-trivial problem for FA1f dynamics is to determine convergence to the equi-
librium measure µ for some reasonable initial measure, e.g. an initial product measure
with density of healthy sites different from q [16]. We will now explain how our results
provide an alternative approach to prove convergence to equilibrium in a restricted
density regime. A possible strategy to prove convergence to equilibrium for FA1f dy-
namics started from an initial configuration η0 is to couple it with some η̃0 distributed
according to µ. This gives rise to a process with 4 states {0, 1, 2↓, 2↑}. Here, 0 rep-
resent sites where both configurations are 0; 1 sites where both configurations are 1;
2↓ sites where η is 0 and η̃ is 1; and 2↑ sites where η is 1 and η̃ is 0. If we now
denote the union of sites in state 2↓ and 2↑ as ”infected sites”, then if infection dies
out, the original process started in η0 is distributed with the equilibrium measure
(since there are no more discrepancies with the process evolved from η̃ which is at
equilibrium at any time). It is not difficult to verify that the dynamics of the 4 state
contact process induced by the standard coupling among two configurations evolving
with FA1f dynamics are such that the union of sites in state 2↓ and 2↑ is dominated by
the infected sites of our 3-state contact process. Thus, when infection dies out for our
process it also dies out for the 4-state contact process and from our Theorem 59 (ii)
we get convergence to equilibrium for q ≥ q1 for the FA1f dynamics. This result was
already proven by a completely different technique in Blondel et al. [16] for parameter
q > 1/2. Notice that convergence to equilibrium is expected to hold for FA1f dynamics
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at all q > 0 starting from η satisfying the hypothesis of our Theorem 59 (ii), namely
infection should always disappear in the 4 state contact process. This is certainly not
the case for our 3 state contact process which has a survival extinction transition, as
proved by Theorem 59 (i).

3.2.4 The Small q Regime

In this subsection, we prove assertion (i) of Theorem 59. First, We define

Ω∗ = {η ∈ Ω : ∃ a ≤ b ∈ Z s.t. {x : η(x) = 2} = [a, b] ∩ Z},

the set of configurations where infected sites form a finite, nonempty interval.

Proposition 60. Consider some η ∈ Ω∗. Then there exists 0 < q0 such that

Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
> 0 for all q ≤ q0,

For the proof, we observe first that the set of sites in state 2, which we call the
infected cluster, is always connected. We would like to focus on the behavior of the
infected boundary sites and so, due to symmetry, on

I(t) := sup{x ∈ Z : ηt(x) = 2},

the position of the rightmost infected site. If there is only one infected site (thus,
leftmost and rightmost infected site coincide), both with positive probability the next
change in number of infected sites might result in zero (extinction of the infection) or
two infected sites. If the number of infected sites is at least two, only the status on the
sites to the right of the rightmost infected site have direct influence on the ‘movement’
of I(t).

In (an informal) summary, if the infection shrinks to size one, it recovers with positive
probability to size at least two. If we show that from there, infection spreads with
positive probability, we obtain our result. Therefore, we focus on this latter regime in
the following.

With this in mind, we now introduce a Markov chain, which can be interpreted
as a simplified model of the rightmost infected site and its local right neighborhood,
and prove a drift property for it. This shall turn out to be useful when coupling this
auxiliary Markov chain to our original process in Section 3.2.4.

An Auxiliary Markov Chain

We define a (discrete time) Markov chain (Yi)i≥0 living in the (countable) state space
S = Z × {0, 1}3. We denote its first coordinate as the chain’s level or state and thus
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3.2 Phase Transition for a Non-Attractive Infection Process

can partition S into its n-states

Sn := {(ω1, ω2, ω3, ω4) ∈ S : ω1 = n}

for n ∈ Z. The Markov chain is defined by its transition graph shown in Figure 3.10.
The subgraphs induced by Sn are isomorphic, and furthermore, two states from Sn
and Sm for |m − n| ≥ 2 have transition probability zero. Hence, for simplicity, we
can restrict ourselves to depicting the transition graph induced by Sn, with additional
states in Sn±1 along with their respective transition probabilities. We denote the
probability measure of this Markov chain by P = Pq (we trust that this causes no
confusion with the measure of the interacting particle system).
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Figure 3.10: Transition subgraph of Y induced by Sn and its neighboring states.

We define the stopping time τ to be the first time the Markov chain changes its
level:

τ := min{i ∈ N : ∃n ∈ Z : Y0 ∈ Sn, Yi ∈ Sn±1}.

Using Y m
i (for 1 ≤ m ≤ 4) to access the mth component of the state which Y is in

at time i, say that Yi is a progressive step (progress) if Y 1
i = Y 1

i−1 + 1 and similarly
call Yi a regressive step (regress) if Y 1

i = Y 1
i−1 − 1. We say that a natural number i is

a step time (step) if Yi is either a progressive or a regressive step. The desired drift
property is stated in
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Lemma 61. There exists 0 < q0 < 1 such that for all 0 < q < q0, we have

E
[
Y 1
τ − Y 1

0

]
> 0.

Let us start with the following observation, which is an immediate consequence of
the definition of the Markov chain dynamics.

Observation 62. Let Y0 ∈ Sn. If Yτ ∈ Sn+1, then necessarily Yτ = (n+1, 1, 0, 1). On
the other hand, conditional on Yτ ∈ Sn−1, we have Yτ ∈ {(n−1, 0, 0, 1), (n−1, 0, 0, 0)}
with probability q and Yτ ∈ {(n− 1, 1, 0, 1), (n− 1, 1, 0, 0)} with probability 1− q.

We call Gn := {(n, 1, 0, 1), (n, 1, 0, 0)} the two ‘good ’ n-states. After every step, Y
ends up in one of the two good states with probability tending to 1 for q → 0. It is
therefore of special interest to study the behavior of Y started in either of the two
good states. We do so via

Lemma 63. Let n ∈ Z and ε > 0. Then there exists 0 < q0 < 1 such that

1

2
− ε < P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 1)] <

4

7
+ ε,

2

3
− ε < P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 0)]

for all q < q0.

Proof. The proof proceeds by counting paths in the transition graph. We define

θ1 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 1, 0)],

θ2 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 0)],

θ3 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 1)].

We also set a := 1−q
2(3−q) to be the weight of the 2-cycle between states (n, 1, 0, 1) and

(n, 0, 0, 1). The weight of a cycle is the probability that the Markov chain transitions
along this cycle in the transition graph. As a path may use this cycle arbitrarily often,
we have

θ1 =
1

2
(1 + θ2) ,

θ2 ≥
1− q
2− q θ1 +

1− q
2− q θ3,

θ3 ≥
(

1

2
θ2 +

1− q
2 + q

a

)∑
k≥0

ak =
1

1− a

(
1

2
θ2 +

1− q
2 + q

a

)
.

We briefly highlight which paths constitute the lower bound on θ3: First, walk along
the 2-cycle between (n, 1, 0, 1) and (n, 0, 0, 1) an arbitrary number of times and then
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either move to (n, 1, 0, 0) (which then gets us to θ2 by the Markov property) or move
straight to Sn+1 via (n, 0, 1, 1). This leads to the explicit lower bounds

θ1 ≥
15− 2q − q3

18 + 9q − 2q2 − q3
,

θ2 ≥
12− 13q + 2q2 − q3

18 + 9q − 2q2 − q3
,

θ3 ≥
3− 3q

6 + 5q + q2
.

For small q, all of these values are strictly larger than 1
2 , except for θ3, where we have

θ3 ↗ 1
2 as q → 0. Finally set b := 1−q

2(2−q) to be the weight of a 2-cycle between states

(n, 1, 0, 1) and (n, 1, 0, 0) and observe that, by counting paths ending in Sn−1, we have

1− θ3 ≥
(

1

2(3− q) +
(1− q)(1 + q)

2(3− q)(2 + q)

)∑
n≥0

n∑
k=0

(
n

k

)
akbn−k

 =
6− q − 3q2 + q3

14 + q − 3q2
.

In the first parenthesis, the first term comes from paths ending in (n − 1, 0, 0, 0) and
(n− 1, 1, 0, 0), whereas the second terms comes from paths ending in (n− 1, 0, 0, 1) as
well as (n− 1, 1, 0, 1). The lemma follows for q sufficiently small.

Proof of Lemma 61. We start by defining

τ2 := min{i > τ : ∃n ∈ Z : Yτ ∈ Sn, Yi ∈ Sn±1}

to be time of the first level change after τ and actually prove E
[
Y 1
τ2 − Y 1

0

]
> 0. Noting

that after two level changes, Y 1 will either have increased or decreased by 2 or not
changed at all, the lemma follows from proving

P [Yτ2 ∈ Sn+2 | Y0 ∈ Sn] > P [Yτ2 ∈ Sn−2 | Y0 ∈ Sn] . (3.2)

for any integer n. Recalling Observation 62, we can restrict ourselves to proving (3.2)
for Y0 in one of the two good n-states Gn = {(n, 1, 0, 1), (n, 1, 0, 0)}, as we are allowed
to choose q0 sufficiently small. Combining Observation 62 with Lemma 63, we have

α̃ := P [Yτ2 ∈ Sn+2 | Y0 ∈ Gn] ≥ min
ω∈Gn

(P [Yτ ∈ Gn+1 | Y0 = ω])2 >

(
1

2
− ε
)2

for some ε > 0 and q appropriately small. Recalling that a := 1−q
2(3−q) was the weight of

a 2-cycle between states (n, 1, 0, 1) and (n, 0, 0, 1) and b := 1−q
2(2−q) the weight of a 2-cycle
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between states (n, 1, 0, 1) and (n, 1, 0, 0), and setting ω = (n, 1, 0, 1), ω′ = (n, 0, 0, 1)
as well as ω′′ = (n− 1, 1, 0, 0), we have

κ := P
[
Yτ ∈ Gn−1, Yτ−1 = ω′ | Y0 = ω

]
≥ 1− q

2(3− q)

∑
m≥0

m∑
k=0

(
m

k

)
akbm−k

 =
1− q

2(3− q) ·
1

1− a− b

=
2− 3q + q2

7− 3q
,

with the bound obtained simply by counting paths from ω to ω′′ which pass through ω′

in their second to last step. With ε small enough (ε < 1/100 say) and Observation 62,
we are now able to bound α := P [Yτ2 ∈ Sn−2 | Y0 = ω], the probability of double
regress from ω, as follows:

α = P [{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Sn−1} | Y0 = ω]

≤ q + (1− q) · P
[
{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Gn−1} ∩ {Yτ−1 = ω′} | Y0 = ω

]
+ q + (1− q) · P

[
{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Gn−1} ∩ {Yτ−1 6= ω′} | Y0 = ω

]
.

Rearranging by defining B = {Yτ ∈ Gn−1} ∩ {Yτ−1 = ω′} and B′ = {Yτ ∈ Gn−1} ∩
{Yτ−1 6= ω′} and observing that the event B implies that Yτ = ω′′, we continue to find
that

α ≤ 2q + (1− q)
∑

A∈{B,B′}
P [Yτ2 ∈ Sn−2 | A] · P [A | Y0 = ω]

≤ 2q + (1− q) · P
[
Yτ2 ∈ Sn−2 | Yτ = ω′′

]
· κ

+ (1− q) · P [Yτ2 ∈ Sn−2 | Yτ = ω] · (P [Yτ ∈ Gn−1 | Y0 = ω]− κ)

≤ 2q + (1− q) (κ(1− θ2) + (1− q)(1− θ3)(1− θ3 − κ))

< 2q + (1− θ3)2 + κ(θ3 − θ2)

< 2q +

(
1

2
+ ε

)2

+

(
2

7
− ε
)(

4

7
− 2

3

)

< 2q + α̃− 4

21

(
1

7
− 11ε

)
< α̃

for our chosen ε and q sufficiently small, where θi have been defined in the proof of
Lemma 63. Note that again we make heavy use of the strong Markov property as well
as the bounds from Lemma 63.
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The Coupling

We are now ready to return to our process. Recall that Y should be thought of as a
model of the right neighborhood of the rightmost infected site in the original process.
Intuitively speaking, we want to find a coupling such that Y 0 ≤ I(t) at any given
time—this, however, is ill-defined. To make it more precise, let us first formally build
towards the discrete version of the segment of the process that is of interest (i.e., the
right neighborhood of the rightmost infected site). For (ηt)t≥0 a realization of the
process in Ω∗, we define the map Φ : Ω∗ → Z× {0, 1}4 as

Φ(ηt) =
(
I(t), (ηt(I(t) + i))1≤i≤4

)
.

Hence, (Φt)t≥0 = (Φ(ηt))t≥0 is the segment of the process we are interested in. Let
(si(x))i∈N be the sequence of clock rings for site x. That is, s1 ∼ Exp(1) and
(si+1(x)− si(x)) ∼ Exp(1) for all i ∈ N. This allows us to define (Ri)i∈N0 , the se-
quence of times of clock rings of the process restricted to (ηt(I(t) + i))0≤i≤4, as R0 = 0
and

Ri+1 = inf {sj(x) : sj(x) > Ri, x ∈ {I(Ri) + l : 0 ≤ l ≤ 4}, j ∈ N}

for all i ≥ 0. We are interested in the process (Xi)i∈N0 , a subset of (X)i∈N0 , where
X0 = X0 = Φ(ηR0) and

Xi = Φ(ηRi),

Xi = Φ(ηRl
), l = inf{k ≥ i : Φ(ηRk

) 6= Φ(ηRi−1)}

for all i ≥ 1. In words, (X)i is the embedded discrete time chain of (Φ)t, and X is the
chain obtained from X by removing all of the self-loops. Process X is the one which,
in certain time windows, behaves very much like Y . To make this precise, we define
(R′i)i∈N0 with R′0 = 0 and

R′i+1 = inf
{{

t > R′i : I(R′i) 6= I(t)
}
∪ {sj(I(R′i) + 4) : sj(I(R′i) + 4) > R′i, j ∈ N}

}
to be the times when either the position of the rightmost infected particle changes
or the clock at the site determining the boundary condition, I( · ) + 4, rings. We call
Wi := [R′i, R

′
i+1) the stable windows for all i ≥ 0. A stable window closes whenever the

boundary site rings or the infected site moves. We can now proceed to describe the
behavior of X in a stable window. As we did for Y , we can partition the state space
of X into its levels and, as no confusion arises this way, call them Sn as well. The
dynamics within Wi depend only on Φ(ηR′i), namely the initial state also encoding
the boundary conditions, and are therefore Markovian. Given this initial state for
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Figure 3.11: Transition subgraph of X in window W0 induced by Sn for passive initial
boundary conditions. The last component X5 = 1 was dropped in the
display of the states, as it holds the constant value 1 throughout the time
window W0. Note that entering Sn±1 closes W0.

W0, we can depict the transition graph in a very similar way as the one for Y , as the
subgraphs induced by the levels are again isomorphic, the states in neighboring levels
are terminal as they ‘close’ the window W0. Conditional on the boundary conditions,
the two transition graphs are shown in Figure 3.11 and Figure 3.12.

Proof of Proposition 60. The informal proof outline is the following: We glue together
windows until all such combined windows end in level changes. We then use a coupling
to retain the drift property of Y within any such window via domination, while making
sure to uphold this domination when progressing into the next window. As there is
an obvious bijection between states of X and Y we speak of a synchronized coupling
(within a certain time frame) if both Markov chains draw from the same source of
randomness so that the states of X and Y are the same. It is clear that we cannot
maintain such a synchronized coupling, as the transition probabilities are not exactly
the same for either boundary condition. The strategy will be to uphold a synchronized
coupling and, as soon as it fails, guarantee the right domination until the coupling re-
synchronizes.

We now give a rigorous coupling of X and Y which is maintained until X changes
its level. We therefore have to describe how X and Y are coupled within a window and
how this coupling is carried over into a new window, provided that the closed windows
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Figure 3.12: Transition subgraph of X in window W0 induced by Sn for healthy ini-
tial boundary conditions, analogous to Figure 3.11. In contrast, the last
component is of constant value 0.

did not result in a level change. For simplicity, call X̄ the Markov chain dynamics of
X under boundary conditions (X0)5 = 1 and X̊ under boundary conditions (X0)5 = 0.
Assume X ∈ {X̄, X̊} starts in state

ω ∈ H = {(n, 1, 0, 1), (n, 0, 0, 1), (n, 1, 0, 0), (n, 0, 0, 0)}.

The transition probabilities from any state in H are identical in X̄, X̊ and Y , so
we can start Y in ω and maintain a synchronized coupling. On the side, we keep a
sequence (Zj)j∈N of i.i.d. random variables which are uniform on [0, 1] and independent
of everything else, to determine what to do when we leave the n-states H.

If X finds itself in ω ∈ {(n, 0, 1, 1), (n, 0, 1, 0)} in step j, we evaluate Zj : Each
neighboring state ω′ of ω in X (the set of neighbors is different for X̄ and X̊) is
assigned an interval Jω

′
X in [0, 1] of length the respective transition probability so that

no intervals intersect. The same is done for Y so that Jω
′

Y ⊆ Jω
′

X for any ω′ ∈ Sn∪Sn+1.
This is possible as all the respective edges in Y are of less or equal weight than they
are in both X̄ and X̊.

If Zj ∈ Jω
′

Y ⊆ Jω
′

X , both Markov chains transition to ω′ and the synchronized
coupling is maintained. Otherwise, we must have Zj ∈ J ω̃Y for some ω̃ ∈ Sn−1. In this
case, we pause Y and let X run until it changes its level.

Finally, assumeX finds itself in ω ∈ {(n, 1, 1, 0), (n, 1, 1, 1)}. The case ω = (n, 1, 1, 1)
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is clear: In X̄, the next step is to Sn+1, closing the window. Similarly, in X̊, either
X progresses and closes the windows or X remains synchronized and transitions to
(n, 1, 1, 0), which is the only option for Y .

We are left to treat ω = (n, 1, 1, 0). Clearly, there is a synchronized coupling in
X̄. On the other hand, if X = X̊, we evaluate Zj again, but this time we choose the
intervals such that Jω

′
X ⊆ Jω

′
Y for all neighboring states but (n, 1, 1, 1). This way, we

either maintain a synchronized coupling, or Zj ∈ Jω′X for ω′ = (n, 1, 1, 1). In this case,
we pause Y and let X run to ω′ and according to the Zj until either X transitions
from ω′ to Sn+1 or until X is back in ω in step l and Zl ∈ Jω

′′
X ⊆ Jω

′′
Y . We then restart

Y , now synchronized with X again. Note that conditional on the last event Y goes to
both possible states with probability 1/2, which agrees with its dynamics.

It is not hard to verify that the dynamics along which both X ∈ {X̄, X̊} and
Y run is according to its given transition probabilities. If the coupling stops being
synchronized, then either Y stranded in regress or Y pauses and X is in (n, 1, 1, 1). In
either case, the closing of a window is not a problem: If Y is already in Sn−1 and X
continued to run, the domination is guaranteed. if Y is paused, then X has no option
but to either progress or re-synchronize with Y . Hence, Y 1 ≤ X1 and the drift carries
over to X.

This allows us to maintain the desired domination throughout stable windows until
a closing window changes the level of X. We now repeat an argument already made for
Y : If X regresses, it transitions to some state (n− 1, 1, x, y) with probability tending
to 1 as q → 0. We can thus restrict our attention to windows where X starts from one
of these states. Upon entering a new window via level change, we re-synchronize the
coupling by restarting Y from the same state as X. As Y has a positive drift when
started from one of these states, so does X by domination.

If X progresses, it enters the new level in some state (n+ 1, 1, x, y) by definition of
the dynamics. Again, we restart Y in the state that yields the synchronized coupling.
From these four states, Y has a positive drift, which proves the theorem.

Proof of Theorem 59 (i). The assertion is a direct consequence of Proposition 60 via
Claim 3.

3.2.5 Extinction for Large q

We import some notation from Section 3.2.4. Namely, let (Xi)i∈N ⊂ Z × {0, 1}4 be
the discrete time process describing the rightmost infected site and its neighbors and
let Sn denote all n-levels of its state space. Similar to how τ and τ2 were defined for
the Markov chain Y in that subsection, we define τi for i ≥ 0 as

τi+1 = inf{j ≥ τi : ∃n ∈ Z : Xτi ∈ Sn, Xj ∈ Sn±1},

94



3.2 Phase Transition for a Non-Attractive Infection Process

where we set τ0 = 0, to be the sequence of level changes of X. We abbreviate τ = τ1

when it is convenient. We next define two stopping times describing the length of
consecutive progressive and regressive steps, respectively. That is, we set

⇀
τ := sup{i ∈ N0 : ∃n ∈ Z : X0 ∈ Sn, Xτi ∈ Sn+i},
↼
τ := sup{i ∈ N0 : ∃n ∈ Z : X0 ∈ Sn, Xτi ∈ Sn−i}

and call
⇀
τ a progressive and

↼
τ a regressive interval, respectively. It is clear that we

can partition X into alternating progressive and regressive intervals. Our aim is to
prove that the length of a progressive interval is, in expectation, less than the length
of a regressive one. Note that if τ is a regressive step, then Xτ ∈ Gn for some integer
n, where

Gn = {(n, z2, 0, z4, z5) : zi ∈ {0, 1} for i = 2, 4, 5}.

Similarly, if τ is a progressive step, then Xτ ∈ Bn for some n, with

Bn = {(n, 1, z3, z4, z5) : zi ∈ {0, 1} for i = 3, 4, 5}.

The following lemma is the main step in the proof of Theorem 59 (ii).

Lemma 64. In the above notation, we have that

E[
⇀
τ | X0 ∈ Gn] < E[

↼
τ | X0 ∈ Bn]

for n ∈ Z and q sufficiently large.

Proof of Theorem 59 (ii). As observed above, starting at τ , any progressive interval
must start from a G state, whereas any regressive interval must start from a B state.
Hence, the conditioning in Lemma 64 is not a restriction and the rightmost infected
site is dominated by a Z-valued random walk with negative drift, which yields the
claimed result.

Turning towards the proof of Lemma 64, a key observation is the fact that, when
q is sufficiently large, healthy sites drift towards each other. More precisely, given a
connected set of passive sites with healthy boundary conditions, we expect the size of
this set to decrease with time. With this in mind we define

ξx(η) = inf{|y − x| : y ∈ Z, η(y) = 0},

for some η ∈ Ω and x ∈ Z, i.e. the distance of x to the next healthy site in η.
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Lemma 65. Let q > 1/2 and ν ∈ {0, 1}Z. Assume that κ := ξx(ν) < ∞ for x ∈ Z.
Then for the process (ηt) with η0 = ν, we have

Eν [ξx(ηt)] ≤ max{1, κ+ t(1− 2q)} ∀t ≥ 0.

Proof. Let η = η0 be state of the process at time 0. Due to translation invariance and
symmetry, we shall consider site x = 0 and assume the closest healthy site is located
at ξt = ξ0(ηt)� 1 for all times t. Since we are only interested in an upper bound, we
always assume that η(ξt + 1) = 0. In doing this, we obtain a process whose ξt-value
dominates the original one. We thus end up with the following simplification:

� If site ξt updates, then with probability 1−q, it becomes passive and ξt+ = ξt+1,

� if site ξt−1 updates, then with probability q, it becomes healthy and ξt+ = ξt−1,

and those are the only updates changing the position of ξt. Hence, the expected
change of ηt after an update is 1−2q < 0. The number of updates in [0, t] of these two
sites is 2 Poisson(t)-distributed, and with probability 1/2, an update yields a change
of position, so Nt, the number of position changes in [0, t], is Poisson(t)-distributed.
Hence, as all of this remains true for ξt ≥ 1, the statement follows by Wald’s lemma.

Note that Lemma 65 is very much in the spirit of Proposition 4.1 in [16], even though
we need a much weaker statement to prove Lemma 64, namely that Eν [ξx(ηt)] is not
increasing.

Proof of Lemma 64. We begin by considering
↼
τ and noting that, no matter the bound-

ary conditions,

P[Xτ2 ∈ Sn−1 | Xτ1 ∈ Sn, X0 ∈ Sn+1] = P[Xτ ∈ Sn−1 | X0 ∈ Gn] ≥ α(q)

= min

{
q

2− q ·
1

4− 3q
,

1

3− q (1 +
q

4− 3q
)

}
q→1−−−→ 1.

In words, following a regressive step, we witness another regressive step with proba-
bility at least α → 1. That is because from Gn, X ends up in another regressive step
within three steps or less, regardless of a change of boundary conditions during that
time. As a direct consequence, E[

↼
τ | X0 ∈ Gn] ≥ (1 − α(q))−1 gets arbitrarily large

for q → 1. On the other hand, we have that there exists β < 1 such that

P[Xτ ∈ Sn+1 | X0 ∈ Bn\{(n, 1, 1, 1, 1)}] ≤ β
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for all q not too small (q > 1/2 say), and thus

E
[
⇀
τ | X0 ∈ Bn\{(n, 1, 1, 1, 1)}

]
≤ β

(
1 + E

[
⇀
τ | X0 ∈ Bn

])
≤ β

(
1 + E

[
⇀
τ | X0 = (n, 1, 1, 1, 1)

])
.

So if we can bound the last quantity by some constant, we are done. This is where
Lemma 65 comes in. We bound this expectation by “jumping” to the closest healthy
site, infecting all passive sites on the way. More precisely, we progress the infection by
force until reaching a state in Gn.

E
[
⇀
τ | X0 = (n, 1, 1, 1, 1)

]
≤
∞∑
i=0

(
E
[
⇀
τ | X0 ∈ Gn, ξI(0)(η0) = i+ 2

]
+ i
)
P
[
ξI(0)(η0) = i+ 2

]
≤
∞∑
i=0

iP
[
ξI(0)(η0) = i

]
+ E

[
⇀
τ | X0 ∈ Gn

] ∞∑
i=0

P
[
ξI(0)(η0) = i+ 2

]
≤ E

[
ξI(0)(η0)

]
+ E

[
⇀
τ | X0 ∈ Gn

]
,

which is bounded by a constant, combining Lemma 65 with the fact that the second
term goes to 0 as q → 1.

3.2.6 Open Problems

As mentioned in Section 3.2.3, due to the lack of monotonicity, we cannot rule out
that there exist more than one phase transition. However, we conjecture the following
statement to be true.

Conjecture 66. The function q 7→ Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
is decreasing in q ∈

(0, 1].

This would imply a critical value qc such that if q < qc the infection survives with
positive probability, while if q > qc the infection dies out with probability 1.
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3.3 Opinion Formation

In this section, we study a model of opinion formation on a network given as a process
on a graph. According to some order, each vertex gets to take a binary decision. For
that, it first randomly decides to be in favor of one of the opinions. However, a vertex
only publicly votes for its favorite opinion if it is not manipulated by its neighbors,
i.e., if the number of neighboring voters for the respective opinions do not differ by
more than some constant. If the vertex is manipulated by its neighbors, it follows the
majority in its neighborhood and chooses to vote for the opinion voted for by most of
its neighbors.

As the order in which vertices should take their votes influences the total outcome,
finding to whatever means, a good order is a natural algorithmic question at hand.
In particular, finding an order that maximizes the expected number of vertices voting
for one opinion. Basically, we differentiate between two types of orders: Namely, non-
adaptive orders, where the ordering in which the vertices are voting has to be fixed in
advance, and adaptive orders, allowing for changes of the order after each vote. We
also generalize orders to weak orders, allowing more than one vertex to take a vote
simultaneously.

In the non-adaptive setting, we prove an upper bound and give a characterization
of graphs for which there exists a weak order achieving this bound. Finally, we also
present a polynomial time algorithm that computes a weak order adaptively with a
best possible performance guarantee.

This section is based on joint work with Susanne Albers [1].

3.3.1 Motivation and Related Work

The binary opinion formation process is defined on a possibly directed graph and can
informally be described as follows. According to some order, each vertex gets to take a
vote on two opinions Y and N . It decides to be in favor of opinion Y with probability
p and to be in favor of opinion N with probability 1 − p independently of all other
vertices. Then, the vertex votes for its favorite opinion if it is not manipulated by
its neighbors, i.e., if the number of voters for N and the number of voters for Y that
influence the given vertex do not differ by more than some constant c. But if they
do, the vertex chooses to vote for the opinion voted for by most of its influencing
neighbors.

In our model, we assume that the parameter/probability p and influence relations,
which are resembled by a graph, are publicly known. However, initial opinions are not.
We mainly study how to maximize the (expected) number of voters for one opinion,
here Y. Yet, we also give a result that can be used to design untampered voting
processes, i.e., an order in which manipulations cannot occur.

This process of opinion formation and the interest in finding an order has many
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applications in a variety of fields, especially in economic theory and social sciences,
e.g, in many public elections.

Since the US elections in 2016 election rigging is on everyone’s lips and our under-
lying model has similarities with the US presidential elections. The different ballot
dates for the 50 states empose a weak order that is mostly fixed. Results from previous
ballot days may affect upcoming elections, in particular the voters, in other states. In
this work, we show that the order in which states hold their elections can have a sig-
nificant impact on the outcome. More precisely, modifying the order in which states
must hold their respective election days can help to promote a candidate or party. We
also provide techniques to design an election process, in which, independent of the
preferences, influence relations do affect the outcome.

Yet, another application from economy is the advertisement of products [3]. Opin-
ions here need not to be binary, however, it is either choosing the product or choosing
a competitor’s product. Of course, customers are influenced by their friends or idols
that already have chosen/voted for or against the item. Again, most likely, such influ-
encing relations are not necessarily symmetric, motivating directed graphs. Obviously,
maximizing the number of (expected) customers in the end maximizes the profit. Also,
the model is applicable to advertisements where one would present ads to some net-
work of individuals in some order to maximize the number of customers in the end.
In social networks like Twitter, YouTube or Instagram for example, companies com-
monly use Influencer marketing, where products are presented by so-called influencers
to their followers [22]. For more direct applications and motivation of the process, we
would like to refer to the paper by Arthur [5], which introduces this process of opinion
formation on undirected graphs and names several more applications.

Algorithmically, we want to compute an order that maximizes the expected number
of vertices voting for Y. Basically, we group orders into two types. First, we study
orders where the order in which the vertices are voting is fixed in advance. Second, we
allow the order to be changed adaptively, which means we decide for the next voter
only after the previous voter made a decision. Orders of the first kind we call non-
adaptive and name orders of the second kind adaptive orders. Both kinds of orders
have already been considered, for example, by Chierichetti et al. in [25].

Needless to say that there are many variants of the opinion formation process itself.
The model where the initial acceptance probabilities and the threshold values c may
differ for each vertex was studied by Hajiaghayi et al. in [53]. In their model threshold
values for each vertex may even be drawn at random from a given probability dis-
tribution. Their main results are regarding non-adaptive orders and mainly for the
complete graph.

Other than choosing an order that maximizes the number of votes for one opinion
other concepts such as seeding exist. The idea is to place seeds in the network to
achieve a large number of voters in the end. For a short review of results and models
see, e.g.,[59]. Last but not least, it is noteworthy that the model of opinion formation
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has close relations to c-neighbor bootstrap percolation, as Y voting vertices can be
interpreted as an infection spreading over the graph. If the initial opinion of each
vertex was known publicly, the maximal achievable number of Y votes corresponds
to the size of the infected set at the end of the corresponding c-neighbor bootstrap
percolation process. We shall use bootstrap percolation as a bound for an optimal
order for our opinion formation process in the subsection on computational results.
For a short review of results, the reader is pointed to Section 3.1.1.

3.3.2 The Model

Given a directed graph G = (V,A) on n vertices. Recall, given a vertex v, δ−(v)
denotes the in-neighbors of v, more precisely

δ−(v) :=
{
u ∈ V : (u, v) ∈ A

}
.

In this section, we abuse notation and say a vertex v is adjacent to some other vertex u
if (u, v) ∈ A. Note, in this terminology, if v is adjacent to u the vertex u not necessarily
is adjacent to v.
We say a vertex u influences another vertex v if v is adjacent to u, more formally if
u ∈ δ−(v).

By P[·] we always denote a probability measure and by E[·] an expectation, where
it always should be clear from the context which probability space we are dealing
with. Usually, this space will be a product Bernoulli measure with parameter p on
Ω = {Y,N}n which is the set of all possible initial voting configurations of the vertices
V = [n]. The parameter p always refers to some Bernoulli probability. Meanwhile,
π shall always denote some (weak) order of the vertex set produced by an algorithm.
Especially as the order π must not be an order that is fixed in advance, but might
change depending on the votes, we would like to stress, that we slightly abuse notation
here. Let the two random variables Yπ and Nπ denote the number of vertices voting
for opinion Y and opinion N at the end of the voting process according to the order
π, respectively.

Having set most of our notation, following we give a formal definition of the process
of opinion formation with parameters p, σ, υI and υĪ as given for undirected graphs
in [25]. The parameter υI shall be the payoff that an individual receives if it votes for
its initial opinion I and else receives υĪ . For each influencing individual that voted
for the same opinion, an individual receives an additional payoff of σ. We lift this
definition to directed graphs.

Definition 67. On a graph G = (V,A), given parameters p, σ, υI and υĪ as well as
an order for the vertices, opinions form as follows:

a) Initial Opinion: Once a vertex is supposed to vote it chooses its initial/favorite
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opinion. This opinion is Y with probability p and else N independently of all
other vertices.

b) Value: The value of its initial opinion I ∈ {Y,N} is υI , while the value of the
opposite opinion Ī is υĪ . Note that we require υĪ < υI .

c) Voting: A vertex v ∈ V decides to vote for its favorite initial opinion I ∈ {Y,N}
if υĪ + δmĪ(v) > υI + δmI(v), where mĪ(v) is the number of vertices in δ−(v)
that already voted for Ī and mI(v) is the number vertices in δ−(v) that voted for
I.

Remark 68. Note, there exists an equivalent formulation of c):

c’) Define c := dδ−1|υI − υĪ |e, then a vertex i with initial opinion I ∈ {Y,N} votes
for I if |mI(v) −mĪ(v)| < c and else chooses the opinion voted by most of the
vertices in δ−[v].

In the rest of the section we shall make use of this equivalent formulation and stick
to directed graphs. Therefore, we replace the input parameters of the process by p
and c. For a given vertex v we denote by {v → Y} and {v → N} the event that
vertex v is manipulated, that is, the vertex is made to vote for Y or N due to its
neighbors, respectively. Also, we abbreviate the event that a vertex votes for some
opinion I ∈ {Y,N} by {v ∈ I}. Even though we do not write p(n), we allow the
process probability to be dependent on n.

3.3.3 Our Results

We close the introduction shortly presenting the structure and results of the remaining
section.

In Section 3.3.4 we consider non-adaptive orders and our results shall serve as a
motivation to consider adaptive orders. We recall some results which were recently
given by Hajiaghayi et al. [52] and state one of our main theorems: Given p < 1

2 ,
expected number of vertices voting for Y is bounded by pn from above. Additionally,
we characterize graphs that admit a non-adaptive order meeting the upper bound
using the new notion of degeneracy introduced in Section 2.2.5.

Section 3.3.5 is split into several subsections. We generalize orders to weak orders
of width at most k, allowing k vertices simultaneously and independently of each
other to take a vote. If the number of simultaneous votes is exactly k, we speak
about k-block weak orders. Note, the case of only one vertex taking a vote at a time,
i.e. k = 1, has already been studied by Chierichetti et al. in [25] and is shortly revisited
in Section 3.3.5. However, it is worth mentioning that we obtain slightly better bounds
for our presented algorithm. Additionally, our proof makes use of a generalization of
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the well known gambler’s ruin game which is introduced in Section 3.3.5. The new
bounds derived there might be an useful tool for other applications, too.

Weak orders with a fixed as well as a varying number of simultaneously voting
vertices shall both be covered in Section 3.3.5. Again, we give tight bounds for the
presented algorithms.

Finally, in Section 3.3.6 we analyze the given algorithms computationally on ran-
domized inputs and compare their quality.

3.3.4 Non-adaptive Orders

This subsection shall motivate studying adaptive orders in more detail. Therefore, let
us present one of our main results.

Theorem 69. Given an arbitrary directed n vertex graph G, 0 < p < 1, and p 6= 1
2 as

well as c ≥ 2.
Then,

E[Yπ]

{
≤ pn if p ≤ 1

2 ,

≥ pn if p ≥ 1
2

for all non-adaptive weak orders π.

Furthermore, there exists a non-adaptive weak order π of width at most k, with
E[Yπ] = pn if and only if G is (k, c− 1)-degenerate.
Similarly, there exists a non-adaptive weak order π of width at most k with E[Yπ] = pn
if and only if G is exact-(k, c− 1)-degenerate.

In order to prove Theorem 69 we state a lemma, which was given by Hajiaghayi et
al. that gave rise to the theorem.

Lemma 70 ([52, Corollary 1.2]). Given an arbitrary graph G = (V,A) and p < 1
2 ,

then for any vertex v ∈ V and a given non-adaptive order π we have that P[v ∈ Y] ≤ p.
This immediately implies that E[Yπ] ≤ pn.
Similarly, given an arbitrary graph G = (V,A) and p > 1

2 , then for any vertex v ∈ V
and a given non-adaptive order π we have that P[v ∈ Y] ≥ p. This immediately implies
that E[Yπ] ≥ pn.

Next, we prove Theorem 69.

Proof of Theorem 69. One direction is obvious. If the graph G is (k, c−1)-degenerate,
then there exists a weak order π on the vertices of width at most k. Voting according
to this weak order π gives that E[Yπ] = pn because every vertex votes independently.

For the other direction, assume first that 0 < p < 1
2 . Lemma 70 implies that we

have P[v ∈ Y] ≤ p for all v ∈ V . We require an order π with E[Yπ] = pn to exist,
and therefore, we have that P[v ∈ Y] = p for all v ∈ V . We now claim that this is
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only possible if the graph is (k, c− 1)-degenerate, and, actually, the order gives rise to
a weak order, that fulfills the conditions of (k, c − d)-degeneracy. To prove that, we
make use of the fact that each vertex must vote independently as otherwise there was
a first vertex v which could be manipulated by its neighbors. Since p < 1

2 , c ≥ 2, and,
as every vertex in the neighborhood of v must have chosen its vote independently, we
have that

P[v ∈ Y] = p (1− P[v → Y]− P[v → N ]) + P[v → Y]

= p+ (1− p)P[v → Y]− pP[v → N ].

Note,
(1− p)P[v → Y]− pP[v → N ] ≥ 0

as

P[v → Y]
(∗)
≤
( p

1− p
)c
P[v → N ] <

p

1− pP[v → N ]

where (∗) follows by mapping each configuration in the event v → Y to an unique
configuration in the event v → N by flipping each vertex’s initial opinion. Since
there are at least c more Y votes than N votes, the probability of the mapped to

configuration is at least
(

1−p
p

)c
times as large. Additionally, due to p < 1

2 and c ≥ 2,

we have that
(

p
1−p

)c
< p

1−p . This finally implies that

P[v ∈ Y] = p+ (1− p)P[v → Y]− pP[v → N ] < p (3.3)

which contradicts our assumption that P[v ∈ Y] = p.

Therefore, each vertex must vote independently, hence, the order of votes indeed
gives rise to a weak order fulfilling the conditions of (k, c− 1)-degeneracy.
This also extends, to 1

2 < p < 1, due to symmetry of Nπ and Yπ.
Furthermore, the second part of the theorem follows completely analogously.

We would like to stress that equivalence in Theorem 69 only holds for c ≥ 2 as for
c = 1 any graph admits an order π such that E[Yπ] = pn. For example, an order in a
breadth first search manner, start with any vertex and subsequently append all new
neighbors. Here, the vertex voting first in each connected component determines the
votes of the whole component. It is easy to see using linearity of expectation that this
order fulfills E[Yπ] = pn. Also, it is necessary that 0 < p < 1 and p 6= 1

2 holds true,
which is due to the fact that for p ∈ {0, 1

2 , 1}, any order π fulfills E[Yπ] = pn. Our
proof fails for p = 1

2 because p
1−p = 1, and therefore we do not have a strict inequality

in (3.3).

Next, we address computational complexity of the decision problem, i.e. deciding
whether a graph admits a non-adaptive order π such that E[Yπ] = pn. We prove this
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decision problem is NP -complete.

Lemma 71. Given an arbitrary graph G = (V,A), 0 < p < 1 and p 6= 1
2 as well as

c ≥ 3, then the decision problem whether the graph admits a non-adaptive weak order
π of width at most k, for some variable k, such that E[Yπ] = pn is NP-complete.

Proof. Theorem 23 together with Theorem 69 implies that the decision problem is
NP -complete for c ≥ 3.

But, we may use the approximation of Algorithm 3 to find a weak order π of some
width that fulfills E[Yπ] = pn. This high number, however, might not be feasible with
the underlying application. In particular, this motivates finding better approximation
algorithms for kd.

Additionally, we want to mention that a random order has the following guarantee.

Lemma 72. Given an arbitrary graph G = (V,A) with maximum in-degree ∆− ≥
c − 1 and p < 1

2 . Let π be an order drawn uniformly at random from the set of all
permutations of V . Then, E[Yπ] ≥ c−1

∆− pn.

Proof. This bound can easily be obtained by the fact that every vertex i votes inde-
pendently if not more than c− 1 neighbors have been taken a vote already. I.e. if the
number of neighbors that received a smaller label than i is less than c. If deg−(i) > 0,
the probability of this event is min{ c−1

d−(i)
, 1}. As these vertices vote independently

with probability p for Y we have that

Eπ[E[Yπ]] ≥
∑
i∈[n]

p ·min
{ c− 1

d−(i)
, 1
}
≥
∑
i∈[n]

p · c− 1

∆−
= pn · c− 1

∆−
.

The expectation is larger than the claimed value, thus there exists at least one order
exceeding the given bound. This finishes the proof.

Note, this guarantee is independent of the number of vertices voting simultaneously.
Next, we give a lemma on the structure of optimal orders. In particular, the lemma

states that optimal orders are not globally optimal, which, to some extend sounds
counter-intuitive. More precisely, orders for certain values p are not necessarily optimal
for only slightly larger p′ ≤ 1

2 .

Lemma 73. Given a graph G = (V,E). An optimal order π1 for some given probability
p∗ < 1

2 , is not necessarily optimal for p′ with p∗ < p′ < 1
2 . Formally, there exists a

graph, with an order π1 that maximizes Ep∗ [Yπ], but Ep′ [Yπ1 ] < Ep′ [Yπ2 ] for some other
order π2.

Proof. Let c = 2. A graph with such a property is for example K8 missing and edge.
Let the missing edge be {1, 2}. We now claim, if p∗ < 1

1000 , π1 = (3, 1, 2, 4, 5, 6, 7, 8)
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is an optimal order. But if p′ > 1 − 1√
2
, we have that π2 = (1, 2, 3, 5, 6, 7, 8) fulfills

Ep′ [Yπ1 ] < Ep′ [Yπ2 ]. The graph is drawn in Figure 3.13.

1

2

3 4

5

6

78

Figure 3.13: K8 missing an edge.

Let us compute Ep[Yπ1 ] and Ep[Yπ2 ] for general p. Consider π1 first and observe the
following:

1. First of all,
P[Yπ2 = 8] = p2,

since both, vertex 1 and 2 vote independently and manipulate every other vertex
to vote for Y if both of them voted Y.

2. Observe, Yπ2 = 7 implies that 1 and 2 must have opposing preferences and the
following two vertices 3, 4 must prefer Y. Thus,

P[Yπ2 = 7] = 2p(1− p)p2 = 2p3(1− p),

3. Also, Yπ2 = 6 implies that 1 and 2 must have opposing votes Y and so the
following two vertices 3, 4. Consequently, 5, 6 must prefer Y. Hence,

P[Yπ2 = 6] = 2p(1− p)2p(1− p)p2 = 4p4(1− p)2,

4. Just like before, Yπ2 = 5 implies that 1 and 2 must have preferences and so
the following pairs 3, 4 and 5, 6. The remaining vertices 7 and 8 must prefer Y.
Hence,

P[Yπ2 = 5] = 2p(1− p)2p(1− p)2p(1− p)p2 = 8p5(1− p)3,

5. Same argumentation as above gives,

P[Yπ2 = 4] = 2p(1− p)2p(1− p)2p(1− p)2p(1− p) = 16p4(1− p)4

6. Finally, using symmetry of Nπ2 and Yπ2 we obtain, interchanging p and 1− p in
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above formulas,
P[Yπ2 = 3] = 8p3(1− p)5,

P[Yπ2 = 2] = 4p2(1− p)4,

P[Yπ2 = 1] = 2p(1− p)3.

In total, we get that

E[Yπ2 ] = 8(p2) + 7(2p3(1− p)) + 6(4p4(1− p)2) + 5(8p5(1− p)3) + 4(16p4(1− p)4)

+ 3(8p3(1− p)5) + 2(4p2(1− p)4) + (2p(1− p)3)

= 2p+ 10p2 + 12p3 − 56p5 + 56p6 − 16p7.

In the same way we can compute E[Yπ1 ]:

1. We have that,
P[Yπ1 = 8] = p3.

Which is due to the fact that all three vertices 1, 2, 3 must prefer Y. IF they do,
all remaining vertices are manipulated to vote for Y.

2. Next,
P[Yπ1 = 7] = 3p2(1− p)p = 3p3(1− p),

due to the fact that exactly one vertex in {1, 2, 3} must vote for N . Another
vote for N by 4 suffices again to manipulated the remaining vertices.

3. Consider the event that Yπ1 = 6. With analogous arguments, within 1, 2, 3 there
must exist at least one vertex preferring Y and one vertex preferring N . The
next vertex then votes independently and must prefer the opinion of the minority.
Otherwise, the remaining vertices would all be manipulated. Thus,

P[Yπ1 = 6] = 3p2(1− p)(1− p)p2 + 3p(1− p)2p(1− p)p2 = 6p4(2− p)2.

4. Similarly,

P[Yπ1 = 5] = 3p2(1−p)(1−p)2p(1−p)p2 +3p(1−p)2p2p(1−p)p2 = 12p5(1−p)3.

5. Additionally,

P[Yπ1 = 4] = 3p2(1− p)(1− p)2p(1− p)2p(1− p) + 3p(1− p)2p2p(1− p)2p(1− p)
= 24p4(1− p)4.
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6. Finally, again interchanging p and 1− p we obtain

P[Yπ1 = 3] = 12p5(1− p)3,

P[Yπ1 = 2] = 6p2(1− p)4,

P[Yπ1 = 1] = 3p(1− p)3.

In total, we get that

E[Yπ1 ] = 8(p3) + 7(3p3(1− p)) + 6(6p4(1− p)2) + 5(12p5(1− p)3) + 4(24p4(1− p)4)

+ 3(12p3(1− p)5) + 2(6p2(1− p)4) + (3p(1− p)3)

= 3p+ 3p2 + 26p3 − 84p5 + 84p6 − 24p7.

Therefore,

E[Yπ1 ]− E[Yπ2 ] = p− 7p2 + 14p3 − 28p5 + 28p6 − 8p7,

which implies that E[Yπ1 ] < E[Yπ2 ] if 1√
2
< p < 1

2 .

Last but not least, we need to verify that π1 is indeed an optimal order for small enough
p. By linearity of expectation, it immediately follows that E[Yπ1 ] ≥ 3p. Any other
order π (non-isomorphic to π1, π2) begins with two vertices, that are both adjacent to
all other vertices. Overestimating E[Yπ], assuming that two of three votes within the
first three vertices suffices to manipulate every other vertex to Y, yields,

E[Yπ1 ] ≤ 8p2 + 7(2p(1− p))p = 22p2 − 14p3
p small
≤ 3p = E[Yπ1 ].

As we have seen in Lemma 70 there is no non-adaptive order that yields in expecta-
tion more than pn vertices voting for Y if p < 1

2 . Also, optimal orders may change with
slight increases of p. From an application point of view, especially if p is not known
exactly, this lack of knowledge might have a big impact on the order that should be
chosen. This also motivates the following subsection where we study adaptive orders
that theoretically allow obtaining an expected number of pn vertices voting for Y if
p < 1

2 .

3.3.5 Adaptive Orders

In this subsection, we address adaptive (weak) orders aiming to maximize the expected
number of vertices voting for Y. In particular, we study the case when more than
one vertex can take a vote at a time. Here, vertices that vote simultaneously vote
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independently of each other, and, are influenced by vertices that voted previously.
One might think that increasing the number of simultaneous votes should increase the
expected number of Y votes. But as it turns out, this not necessarily the case. In
particular, if the number at each time step may not vary but is fixed to k, it is easy to
see that increasing this number can result in a decreasing expected number of votes
for Y. For an easy example let r = 1, p < 1

2 and G be a graph consisting of two
disjoint edges. If k = 2, we achieve an expected number of Y votes of 4p. However, if
k = 3, an optimal order can achieve at most 3p+ (1− p) < 4p.

Warm-up: Adaptive Orders — One Vertex at a Time

First, we give an adaptive algorithm that maximizes the expected number of vertices
voting for Y if only one vertex votes at a time. As mentioned before this question has
been studied by Chierichetti et al. [25]. The authors come up with an algorithm that
computes an adaptive order on an undirected graph G, which easily can be extended
to directed graphs.
The algorithm by Chierichetti et al. in [25] is given below.

Algorithm 5: Adaptive Order [Chierichetti et al. [25]]

Input: Graph G = (V,E)
Output: Adaptive order of V

1 Let W ⊆ V be any set inducing a maximal (c− 1)-degenerate graph in G;
2 Let v1, . . . , v|W | be an Erdős-Hanjal sequence of the nodes in W ;

3 for i = 1, . . . , |W | do
4 Append vi to π;
5 while there exists v ∈ V \W with exactly c neighbors in W , all of which

have chosen Y do
6 Append v to π;
7 end

8 end
9 Append the remaining vertices to π in arbitrary order;

Given a graph on n vertices, process probability p, and threshold value c, then the
expected number E[Yπ] of vertices voting for Y using the adaptive order π produced
by Algorithm 5 fulfills E[Yπ] ≥ pcn, c.f. [25, Theorem 2.1.].

In the following, we present a simpler algorithm that performs slightly better than
Algorithm 5 in terms of the expected number of vertices voting for Y for all values
p > 0. Let us first introduce some notation. A vertex v that has not been appended
to the order and is currently not manipulated by its neighbors, i.e. currently |mI(v)−
mĪ(v)| < c, is called to be active. If such a vertex is momentarily manipulated by its
neighbors, i.e. currently |mI(v) −mĪ(v)| ≥ c, it is called to be passive. Note, every
vertex is either active, passive or has already been appended to the order. In the
beginning, every vertex is active.
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Algorithm 6: Improved Adaptive Order

Input: Graph G = (V,A)
Output: Adaptive order π of V

1 while there exists an active node v ∈ V do
2 Schedule v;
3 while there exists a passive node v ∈ V with mY(v)−mN (v) ≥ c do
4 Append v to π;
5 end

6 end
7 Append the remaining vertices to π in arbitrary order;

Just like in Algorithm 5 one could preprocess the vertex set and compute a maximal
(c − 1)-degenerate graph first. But as it turns out, this preprocessing does not give
any increases in terms of global bounds for general graphs. Also, our algorithm can
be implemented such that the algorithm runs in O(n2 log(n)) time using simple data
structures.

The following theorem gives a bound on the expected value of Y after processing
Algorithm 6 on any graph.

Theorem 74. Given an arbitrary directed n vertex graph, process probability p and
threshold c. Then, the expected number of vertices E[Yπ] that vote Y after proceeding
Algorithm 6 fulfills

E[Yπ] ≥


1

1+
(

1−p
p

)c · n for p < 1
2 ,

p · n for p ≥ 1
2 .

The bounds in both ranges of p are sharp for general graphs. On the one hand, for
Kn, the bound is best possible for p < 1

2 and asymptotically in n. On the other hand,
consider the stable set on n vertices. Then, any (even non-adaptive) order will return
in expectation p · n many Y votes.
We want to mention that Algorithm 7 presented in the next subsection is a gener-
alization of Algorithm 6 and Theorem 76 implies the aforementioned Theorem 74.
Therefore, we omit a prove of Theorem 74 at this point. Finally, observe that for all
p > 0 we have that

pcn ≤


1

1+
(

1−p
p

)c · n for p < 1
2

p · n for p ≥ 1
2 .

More than one Vertex at a Time

In this subsection, we turn our attention to weak orders where more than one vertex
may take a vote at a time. We differ between k-block weak orders where the number
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remains constant, i.e. constantly k ≥ 1, for all but one time step and weak orders,
where the number may vary but must not exceed some constant k ≥ 1. We refer to
weak orders of the second kind as variable orders.

But first, before going to positive results and presenting our algorithms, we give a
bound on the maximum number of Y’s in terms of the independence number α(G)
as well as c, k and p for both, k-block and variable blocksize weak orders. Recall, an
independent set on a directed graph is a set of vertices where no vertex has an arc
towards any other vertex in the set.

Lemma 75. Given an arbitrary graph G on n vertices, with independence number α,
and p < 1

(3c+k−3)α . Then, any adaptive order π of width at most k, fulfills

E[Yπ] ≤ n · ((3c+ k − 3)α · p)c
1− (3c+ k − 3)α · p + (c− 1).

Proof. We extend the idea of proof of [25, Lemma 4.1].
Consider any weak order π′ of the vertices, then, if at most c − 1 vertices choose Y
during the process, every vertex that is adjacent to7 at least 3c−2 vertices that already
voted, chooses deterministically N . Let S denote the set of vertices that are influenced
by at most 3c− 3 vertices that took a vote at the moment they are supposed to vote
according to π′. Then G[S] is (3c + k − 3)-colorable as by construction of the set S,
we have that G[S] is (k, 3c − 2)-degenerate, and hence, using Lemma 26 the claimed
bound on the coloring number follows. As the independence number of G is α, we can
bound the size of S by |S| ≤ (3c + k − 3)α. If at most c − 1 vertices in S choose to
vote for Y, we get that all vertices outside S deterministically choose N , and hence
we have Yπ′ ≤ c− 1. The probability that this is not the case, namely that at least c
vertices in S vote for Y, can be bounded by

|S|∑
i=c

(|S|
i

)
pi(1− p)|S|−i ≤

|S|∑
i=c

(|S| · p)i ≤
|S|∑
i=c

((3c+ k − 3)α · p)i

=
((3c+ k − 3)α · p)c − ((3c+ k − 3)α · p)(3c+k−3)α

1− (3c+ k − 3)α · p

≤ ((3c+ k − 3)α · p)c
1− (3c+ k − 3)α · p.

Here, we made use of p < 1
(3c+k−3)α and that every vertex in S votes independently

of all other vertices in S. Thus, no matter how the adaptive order π is chosen, the
probability that there are more than c−1 vertices voting for Y, is bounded from above

7is influenced by, respectively
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by
((3c+ k − 3)α · p)c

1− (3c+ k − 3)α · p.

Finally, observe that Y is always bounded from above by n. So we get that

E[Yπ] ≤ n · ((3c+ k − 3)α · p)c
1− (3c+ k − 3)α · p + (c− 1).

A Fixed Number of Vertices at a Time

Let k ≥ 1 be the fixed number of vertices that take a vote simultaneously. Note that
we would have to assume that k | n, but to keep it general if k - n we allow n mod k
vertices to vote in the last step. The first important observation is, given an optimal
order π, increasing k must not increase E[Yπ]. Even more, increasing k might decrease
the value of an optimal order π′, that is E[Yπ] > E[Yπ′ ] as we have seen at the beginning
of Section 3.3.5. Next, we present an algorithm that computes an adaptive order when
k vertices must vote simultaneously. We again use the notation as for Algorithm 6.

Algorithm 7: k-block Weak Orders

Parameter: c
Input: G = (V,A)
Output: Weak order π of V with width ≤ k

1 Let Q = V and P = ∅;
2 while there exits v ∈ Q ∪ P do
3 if |P | < k then
4 Take some set S′ ⊆ Q with |S′| = k − |P |;
5 Let S = P ∪ S′;
6 else
7 let S = P ;
8 end
9 if |S| > k then

10 Remove arbitrary vertices from S such that |S| = k;
11 end
12 if |S| < k then
13 Add arbitrary vertices from Q ∪ P to S such that |S| = k
14 end
15 Append S to π ;
16 Compute the set of active vertices Q;
17 Compute the set of passive vertices P , with mY(v)−mN (v) ≥ c;
18 end
19 Append the remaining nodes to π
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Note, this algorithm can be implemented in such a way that it has running time
Θ(n2 log(n)). The implementation follows the implementation of Algorithm 6 by set-
ting the initial difference (mY −mN ) counter for each vertex to 0. Now append the
k vertices with the largest counters and update the counters of the vertices influenced
by these. These are at most n, but as k might be some parameter in n it takes k
operations to compute the new values. After that, we have to compute a new order.
Due to the fact that each vertex votes exactly once, we have found an implementation
taking Θ((n/k) · k · n · log(n)) time.

The following theorem gives a bound on E[Yπ] when processing Algorithm 7.

Theorem 76. Given an arbitrary directed n vertex graph, process probability p, thresh-
old c and parameter k. The weak order π produced by Algorithm 7 fulfills

E[Yπ] ≥


1−
(

1−p
p

)c+k−1

1−
(

1−p
p

)2(c+k−1) · n for p < 1
2

p · n for p ≥ 1
2 .

Observe, for k = 1 the statement corresponds to Theorem 74. Moreover, it is easy
to see that for k = 1 the orders produced by Algorithm 6 and Algorithm 7 agree.

For the analysis of the algorithm and the proof of the Theorem 76 let us first consider
a slightly altered gambler’s ruin game. The game, more or less, resembles votes taking
place in the neighborhood of a single vertex before it gets to vote itself. We shall use
the analysis of winning/bankruptcy probabilities to bound manipulation probabilities
later.

Definition 77 (Generalized Gambler’s Ruin Game). Two Players start with Ak0 = a
and Bk

0 = b coins each. They repeatedly play k games simultaneously where player A
wins each game independently with probability 0 ≤ p ≤ 1 and else player B wins the
game. Let αi be the number of games player A won in the ith round of games, and
βi := k − αi be the number of games player B won, respectively. Then, we define the
amount of coins the players have after the ith round of games to be Aki = Aki−1 +αi−βi
and Bk

i = Bk
i−1 + βi − αi. Once either Aki ≤ 0 or Bk

i ≤ 0 the game stops and the
corresponding player is bankrupt. For consistency reasons, once the game stops, we
set Akj = Aki and Bk

j = Bk
i for all j > i.

Next, we prove a lemma on the probabilities of bankruptcy of the players for the
altered gambler’s ruin game. This lemma shall prove useful in the proof of Theorem 76.

Lemma 78. In the symmetric altered gambler’s ruin game, i.e. for a = b = c, the
probability that player A is bankrupt until the mth round of k simultaneous played
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games fulfills

P[∃0 < i ≤ m : Aki = 0]

P[∃0 < i ≤ m : Bk
i = 0]

≤
{(1−p

p

)c
if p ≥ 1

2 ,(1−p
p

)c+k−1
if p < 1

2 .

for all m such that mk ≥ c, and hence

P[∃i > 0 : Aki = 0]

P[∃i > 0 : Bk
i = 0]

≤
{(1−p

p

)c
if p ≥ 1

2 ,(1−p
p

)c+k−1
if p < 1

2 .

Proof. We prove the lemma by induction on the number m of rounds of games. First
observe that if k ·m ≥ c, simply due to symmetry every sequence of m · k games such
that Bk

m ≤ 0 and Bk
m−1 > 0 has an uniquely corresponding sequence of m · k games

such that Akm ≤ 0 and Bk
m−1 > 0. Dividing the two probabilities of each sequence

gives
(1− p)αpβ
pα(1− p)β = (1− p)α−βpβ−α,

where c ≤ α− β ≤ c+ k − 1, and hence

P[Akm ≤ 0, Akm−1 > 0]

P[Bk
m ≤ 0, Bk

m−1 > 0]
≤
{(1−p

p

)c
if p ≥ 1

2 ,(1−p
p

)c+k−1
if p < 1

2 .
(3.4)

So for the smallest m such that m · k ≥ c, the statement holds, since

P[∃0 < i ≤ 1 : Aki ≤ 0]

P[∃0 < i ≤ 1 : Bk
i ≤ 0]

=
P[Ak1 ≤ 0, Ak0 > 0]

P[Bk
1 ≤ 0, Bk

0 > 0]
≤
{(1−p

p

)c
if p ≥ 1

2 ,(1−p
p

)c+k−1
if p < 1

2 .

Let the statement hold for m, then if p ≥ 1
2

P[∃0 < i ≤ m+ 1 : Aki ≤ 0]

P[∃0 < i ≤ m+ 1 : Bk
i ≤ 0]

=
P[∃0 < i ≤ m : Aki ≤ 0] + P[Akm+1 ≤ 0, Akm > 0]

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

(3.4)

≤
P[∃0 < i ≤ m : Aki ≤ 0] +

(
1−p
p

)c
P[Bk

m+1 ≤ 0, Bk
m > 0]

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

Ind.
≤

(
1−p
p

)c (
P[∃0 < i ≤ m : Bk

i ≤ 0] + P[Bk
m+1 ≤ 0, Bk

m > 0]
)

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

=

(
1− p
p

)c
.
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While, if p < 1
2

P[∃0 < i ≤ m+ 1 : Aki ≤ 0]

P[∃0 < i ≤ m+ 1 : Bk
i ≤ 0]

=
P[∃0 < i ≤ m : Aki ≤ 0] + P[Akm+1 ≤ 0, Akm > 0]

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

(3.4)

≤
P[∃0 < i ≤ m : Aki ≤ 0] +

(
1−p
p

)c+k−1
P[Bk

m+1 ≤ 0, Bk
m > 0]

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

Ind.
≤

(
1−p
p

)c+k−1 (
P[∃0 < i ≤ m : Bk

i ≤ 0] + P[Bk
m+1 ≤ 0, Bk

m > 0]
)

P[∃0 < i ≤ m : Bk
i ≤ 0] + P[Bk

m+1 ≤ 0, Bk
m > 0]

=

(
1− p
p

)c+k−1

.

As this holds for all values of m, it also holds in the limit, which proves the lemma.

Corollary 79. If p ≤ 1
2 , Lemma 78 directly implies that

P[∃i > 0 : Aki = 0] ≤
(1−p

p

)c+k−1

1 +
(1−p

p

)c+k−1
.

Next, we prove Theorem 76.

Proof of Theorem 76. Similarly to the proof of Theorem 74, as long as there are more
than k vertices in A∪P , that is, there are at least k active or passive vertices that are
currently manipulated towards Y, every vertex appended to π in line 15 of Algorithm 7
votes for Y with probability at least p. We now interpret every repetition of line 15
in which k vertices vote simultaneously as a round the introduced altered gambler’s
ruin game. Even though the votes are not necessarily independent, the gambler’s ruin
problem dominates our model. We bound the expected number of vertices voting for
N in the following way. Every vertex, once it is about to vote according to the order,
is either active or passive. If it is active, it votes for N with probability (1− p). The
probability of being passive can be split into the probabilities ρi = P[mN (v)−mYv) ≥
c] and σi = P[mY(v)−mN (v) ≥ c]. Next, observe that

ρi ≤ P[∃i > 0 : Aki ≤ 0]

which is due to the fact that active vertices vote independently according to the
Bernoulli law, and, in any other case, only vertices get to take a vote if they are
manipulated towards Y due to their neighbors.
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Now, we can use Lemma 78 to bound ρi in terms of σi:

ρi ≤ P[∃0 < i ≤ m : Ai = 0]

=

{
P[∃0 < i ≤ m : Bi = 0]

(1−p
p

)c
if p ≥ 1

2 ,

P[∃0 < i ≤ m : Bi = 0]
(1−p

p

)c+k−1
if p < 1

2

≤
{
σi
(1−p

p

)c
if p ≥ 1

2 ,

σi
(1−p

p

)c+k−1
if p < 1

2

(3.5)

Next, we bound the expected value of Nπ if p ≥ 1
2 with

E[Nπ] ≤
n∑
i=1

(ρi + (1− ρi − σi)(1− p))

(3.5)

≤
n∑
i=1

(
ρi +

(
1− ρi −

( p

1− p
)c
ρi

)
(1− p)

)

=

n∑
i=1

(
1− p+

(
(1− p)c−1 − pc−1

(1− p)c−1

)
pρi

)
p≥1−p
≤ (1− p)n.

On the other hand if p < 1
2 , again using (3.5), yields

E[Nπ] ≤
n∑
i=1

(ρi + (1− ρi − σi)(1− p))

(3.5)

≤
n∑
i=1

(
ρi +

(
1− ρi −

( p

1− p
)c+k−1

ρi

)
(1− p)

)

=

n∑
i=1

(
1− p− (1− p)ρi

(
p

1− p

)c+k−1

+ pρi

)

=
n∑
i=1

1− p+

1− pc+k−2

(1− p)c+k−2︸ ︷︷ ︸
<1

 pρi

 .

As this function in ρi becomes maximal if ρi is chosen to be maximal, i.e. if we let
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ρi = P[∃i > 0 : Aki ≤ 0], we get

E[Nπ] ≤ n
(

1− p+

(
1− pc+k−2

(1− p)c+k−2

)
pP[∃i > 0 : Aki ≤ 0]

)
= n

(
1− p

(
1−

(
1− pc+k−2

(1− p)c+k−2

)
P[∃i > 0 : Aki ≤ 0]

))
.

We finish the proof with using the bound on P[∃i > 0 : Aki ≤ 0] given in Corollary 79
and the fact that Nπ + Yπ = n:

E[Yπ] ≥ np
(

1−
(

1− pc+k−2

(1− p)c+k−2

)
P[∃i > 0 : Aki ≤ 0]

)

≥ np

1−
(

1− pc+k−2

(1− p)c+k−2

) (1−p
p

)c+k−1

1 +
(1−p

p

)c+k−1


= np

1−
(1−p

p

)c+k−1 − 1−p
p

1 +
(1−p

p

)c+k−1


= np ·

1 +
(1−p

p

)c+k−1 −
(1−p

p

)c+k−1
+ 1−p

p

1 +
(1−p

p

)c+k−1

=
n

1 +
(1−p

p

)c+k−1
=

1−
(1−p

p

)c+k−1

1−
(1−p

p

)2(c+k−1)
· n.

Note, one could slightly improve the bounds if one takes into account that ρi depends
on the vertex’s degree.

A Varying Number of Vertices at a Time

We now allow the number of voting vertices to vary each time step. Here, by k we
denote the maximal number of vertices that may take a vote simultaneously. Let Yπv

be the number of Y voting vertices according to a weak order πv. Observe that the
expected number of vertices voting for Y in an optimal order is monotone in k.

Next, we present a randomized algorithm which is quite similar to Algorithm 7.
The algorithm presented below computes an adaptive weak order of width k for a
given parameter k. However, we cannot prove (better) performance guarantees, but
we included this algorithm in our experimental results in Section 3.3.6.
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Algorithm 8: Variable k-block Adaptive Weak Order

Parameter: c
Input: G = (V,E)
Output: Weak order π of V

1 Let Q1 = ∅, Q2 = V (G) and P = ∅;
2 while there exits v ∈ Q1 ∪Q2 ∪ P do
3 if P = ∅ then
4 if Q1 = ∅ then
5 Let S = {v} for an arbitrary v ∈ Q2

6 else
7 let S = Q1\Q2

8 end

9 else
10 let S = P
11 end
12 if |S| > k then
13 Remove arbitrary vertices from S such that |S| = k
14 end
15 Append S to π;
16 Compute the set of passive vertices P , with mY(v)−mN (v) ≥ c;
17 Compute the set of active vertices Q1, with

−c+ p · 2c ≥ mY(v)−mN (v) ≥ −c;
18 Compute the set of active vertices Q2, with

c > mY(v)−mN (v) > −c+ p · 2c;
19 end
20 Append the remaining vertices to π arbitrarily;

Compared to the other algorithms, Algorithm 8 prioritizes vertices that are about
to be manipulated towards N . Intuitively this is what should be done. If there are
several vertices which tend to be influenced to N , the algorithm calls as many as
possible to vote simultaneously. But if there is no such vertex, it only asks for one
active vertex to vote at a time. The concrete rule, which vertices belong to A1 or to
A2, is arbitrary but performed best in experimental testing.

3.3.6 Computational Results

As opinion formation plays an important role especially in social networks we give a
short survey on the quality of our algorithms on inhomogeneous random graphs, where
the degree of the vertices follows a power-law distribution. If the parameter of the
power-law distribution is β and 2 < β < 3 those graphs model several kinds of real
networks appropriately. See for example results by Réka and Barabási in [2]. Hence,
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we focus on that specific regime for β in our experiments. The general inhomogeneous
random graph model was introduced by Söderberg in [81], but we consider a special
case of these graphs, which was studied first by Chung and Lu in [26]. For a graph
G = G(w) on n vertices we are given a weight sequence w(n) = (w1, . . . , wn) where wi
is a random variable that follows a power-law with exponent 1 < β for all i ∈ [n], that
is, given some minimal weight x0, P[wi > x] = γx1−β for some normalizing constant γ
for all vertices independently. The probability of two vertices i and j being adjacent is,
again independently of all other vertices, pij = min{wiwj

W[n]
, 1}, where W[n] :=

∑
k∈[n]wk.

One can think of the weight wi for some vertex i ∈ [n] as the expected degree, given
we drop the minimum in the calculation of the probabilities and allow loops in the
graph, since

E[deg(i)|wi] ≤
∑
j∈[n]

wiwj
W[n]

= wi
∑
j∈[n]

wj
W[n]

= wi.

Lemma 80. In any inhomogeneous random graph with power-law distributed weights
with parameter 1 < β and x0 < c, any order π of the vertices results in E[Yπ] ≥ εpn
for some fixed ε > 0.

Proof. This is simply due to the fact that there is a constant fraction of vertices that
have degree less than c, and hence decide independently of all other vertices.
The probability that a vertex v with weight wv has degree less than c is bounded by

P[deg(v) ≥ c |wv] ≤
E[deg(v) |wv]

c
≤ wv

c
, (3.6)

which follows from Markov’s inequality. Observe, this is bounded by a constant less
than 1 if e.g. wv <

c+x0
2 . Hence, the expected number of vertices having degree less

than c is bounded by

E[
∑
i∈[n]

1deg(i)<c] =
∑
i∈[n]

E[1deg(i)<c]
(3.6)

≥
∑
i∈[n]

(
1− c+ x0

2c

)
P
[
wi ≤

c+ x0

2

]
(3.7)

=

(
1− c+ x0

2c

)(
1− γ

(
c+ x0

2

)1−β)
n =: εn. (3.8)

This gives E[Yπ] ≥ εpn.

Next, we test run our presented algorithms on several example graphs. We also
compare the given algorithms to random orders. Additionally, we plot the fraction
of vertices voting for Y under the deterministic bootstrap percolation process, which
yields as an upper bound for an optimal (also adaptive) order8.

8As mentioned above, bootstrap percolation is an optimal strategy and corresponds to complete
information of initial opinions.
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Figure 3.14: Comparison of Algorithms 6-9 on inhomogeneous random graphs with
power-law distributed weights, where n = 3000, β = 2.3, x0 = 6, c = 5
and k = 50.

First of all, we consider the algorithms on inhomogeneous random graphs where the
weights follow a power-law distribution. We choose β = 2.3, x0 = 6 and n = 3000.
For each value of

p ∈
{
q ∈ [0, 1] : q = i · 0.05 for i ∈ [20] ∪ {0}

}
=: M

we computed 500 sample graphs and executed all presented algorithms on them9. In
Figure 3.14, we plot the average fraction of Y voting vertices as a function of p after
processing the algorithms. It is not surprising that Algorithm 5 performs worse than
a random order of vertices for large values of p in our computational experiments.
Also, there seems to be no big difference in numbers between the produced orders
of Algorithm 6 and Algorithm 7, while Algorithm 8 performed best on almost all
instances.

The plot only slightly changes when altering the parameters of the graphs as well as
the process threshold c. For increasing c the curves converge to the bisection p, while
for decreasing c the functions become bulgier.

Next, we consider the algorithms on the random graph Gn,q where n = 3000 and
q = 0.01. Just like before, for each value of p ∈M we compute 500 sample graphs and

9For each of the values of p ∈M we used the same initial opinions for the respective graphs for each
of the four algorithms.
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Figure 3.15: Comparison of Algorithms 6-9 on G(n, q) with n = 3000, q = 0.01, c = 5
and k = 50.

execute all four algorithms on them. Figure 3.15 shows the fraction of Y voting vertices
as a function of p. Again, we have that Algorithm 8 performs best. Additionally, just
like before, Algorithm 5 is worse than a random order for large p. Also, note that there
naturally is a large gap between bootstrap percolation — representing an optimum
order with perfect information — and our algorithms.

3.3.7 Open Problems

We gave an adaptive algorithm (Algorithm 8) computing variable k-block weak order
not making (much) use of the underlying graph structure. In particular, since the
adaptive setting allowing for varying number of votes each round gives more flexibil-
ity for increasing k we expect better approximation guarantees. For our worst case
examples, i.e. cliques, there cannot be any improvement. However, for general graphs,
one should be able to exploit the graph structure and derive better approximation
algorithms in terms of graph parameters, e.g. the independence number. But also
particularly, with applications in social networks in mind, exploiting special structural
properties of relevant graph classes such as inhomogeneous random graphs in the al-
gorithms could be a starting point for further research and yield better performance
guarantees.
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Conclusion

In the previous chapter of the thesis, we studied processes on graphs partly motivated
from physics like ferromagnetic processes at zero temperature. All studied processes
share the property that update rules only depend on the current states of the vertex
itself and its neighboring vertices. We derived improved bounds on sizes of important
sets and resolved some open questions. More precisely, we studied sets of vertices that
infect the entire vertex set on degenerate graphs and grids in bootstrap percolation.
Potential arguments as well as recursive constructions were used to prove our bounds.

Furthermore, even though the second infection process lacks monotonicity that is
crucial in most analyses of such processes, we were able to prove existence of a phase
transition on an infinite graph. Key for the analysis was a composed auxiliary Markov
chain that allowed us to derive different drift properties for different values of the
process parameter, finally proving a phase transition.

Moreover, we analyzed a third process resembling a voting procedure on two op-
tions. For this process, we gave arguably simpler algorithms computing an order of
votes with better performance guarantees over existing algorithms from the literature.
The analysis of the adaptive algorithm relied on modeling the problem as a gener-
alization of the Gambler’s ruin game, and deriving new bounds through dominance
arguments.

Motivated from the analysis of these processes, we also studied new concepts in
algorithmic graph theory such as new classes of cut-degree problems, both in a sym-
metric as well as an asymmetric version (including a new notion of graph degeneracy).
These concepts proved to be interesting themselves and rich in applications, e.g. in
data analysis (clustering) or in game theory (anti-coordination games). We derived
APX-hardness results for all NP -hard problems and gave polynomial time algorithms
for the remaining ones. For the Max-Min-Cut-Degree Problem we actually proved
that an existing approximation algorithm for a related problem already has a best
possible approximation ratio. Additionally to cut-degree problems, we introduced and
analyzed a new class of cut-related optimization problems with updated cost on edges
in the cut set. We gave polynomial time algorithms for several special instances when
the minimization objective is the sum of path lengths.

121



Chapter 4 Conclusion

Finally, in several places of the analysis of computational complexity of some of the
cut problems, we came across disjoint path problems. We resolved an open question
on the complexity of 2 disjoint shortest paths with non-negative edge weights and gave
a polynomial time algorithm for undirected graphs. This algorithm transfers the input
to an instance of the k disjoint paths problem on weakly acyclic graphs for constant
k, for which we gave a polynomial time algorithm in the preceding subsection.

At the end of each section, we state open problems that could be the starting points
for future research direction. In particular, see Section 2.1.6 for several open questions
regarding disjoint paths, Section 2.2.6 for cut-degree related problems, Section 2.3.4
for open questions on the complexity of restricted instances, Section 3.1.4 for a con-
jecture on the maximum size of minimal percolating sets in bootstrap percolation,
Section 3.2.6 for a conjecture of the three-state contact process, and Section 3.3.7 for
suggestions on further research directions for the opinion formation process.

Additionally, the reader is pointed to the publications and preprints [50, 46, 47] that
did not fit the scope of this thesis.
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