
Fakultät für Informatik
Technische Universität München

A Learning Twist on Controllers:
Synthesis via Partial Exploration and

Concise Representations

Pranav Ashok

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Helmut Seidl

Prüfende der Dissertation:
1. Prof. Dr. rer. nat. Jan Křet́ınský
2. Prof. Kim Guldstrand Larsen R,

Aalborg University, Denmark
3. Prof. Dr.-Ing. Matthias Althoff

Die Dissertation wurde am 28.09.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 10.02.2021 angenommen.

Abstract

Quantitative model checking and controller synthesis deal with the task of synthesiz-
ing dependable controllers satisfying certain specifications for probabilistic and hybrid
systems. However, commonly used techniques are susceptible to the curse of dimension-
ality. That is, when the number of state variables increase, the size of the state space
grows exponentially. Further, even if this problem is handled and controllers are syn-
thesized successfully, the resulting controllers are typically large and incomprehensible.
This thesis investigates techniques to mitigate these two problems.

State-space explosion. We present techniques based on partial exploration for ε-optimal
controller synthesis of discrete- and continuous-time Markov decision processes. Our ap-
proach makes use of simulations to identify a small part of the state space, sufficient
to synthesize a controller with the desired guarantees. For Markov decision processes
with the reachability objective, we combine the guaranteed simulation-based technique of
bounded real-time dynamic programming, and the extremely scalable game solving tech-
nique of Monte Carlo tree search. The resulting algorithm benefits from the best of both
worlds. For continuous-time Markov decision processes with the time-bounded reachab-
ility objective (TBR), we use simulations to obtain under- and over-approximating sub-
models. On them, we run existing TBR algorithms to obtain lower and upper bounds
on the optimal TBR value. The sub-model is expanded with the help of more simula-
tions until corresponding bounds sufficiently converge, allowing to extract an ε-optimal
controller.

Large and incomprehensible controllers. We propose the use of decision trees to rep-
resent controllers synthesized from probabilistic and hybrid systems. Decision tree learn-
ing can exploit internal structures of these controllers to group sets of states with the
same control action. We extend standard decision tree learning algorithms with the
ability to represent controllers with correctness guarantees without losing these guaran-
tees. Based on this, we develop two tools. First, we extend the state-of-the-art control
synthesis tool Uppaal Stratego to produce safe, near-optimal, and small controllers for
hybrid Markov decision processes. We introduce a novel safe pruning technique that
allows one to explore the size-optimality trade-off without losing safety guarantees of
the original controller. Next, we introduce the dtControl toolkit, which can convert
any non-randomized memoryless controller available in the form of a lookup table into a
decision tree. We also present a novel determinization strategy that can locally determ-
inize parts of a permissive controller in order to obtain significant reductions in the size
of the resulting decision tree. We demonstrate our results on controllers obtained from
the hybrid systems tool SCOTS as well as Uppaal Stratego.

iii

Zusammenfassung

Quantitative Modellüberprüfung und Reglersynthese beschäftigen sich mit der Aufgabe,
zuverlässige Regler zu synthetisieren, die bestimmte Spezifikationen für probabilistische
und hybride Systeme erfüllen. Häufig verwendete Techniken leiden jedoch unter dem
sogenannten Fluch der Dimensionalität. Das heißt die Größe des Zustandsraums wächst
exponentiell mit der Anzahl der Zustandsvariablen.

Außerdem, selbst wenn, trotz dieses Problems, Regler erfolgreich synthetisiert werden,
sind die resultierenden Regler normalerweise groß und unverständlich. In dieser Arbeit
werden Techniken untersucht, die diese beiden Probleme mildern.

Zustandsraumexplosion. Wir stellen Techniken vor, die auf einer partiellen Erkundung
für eine ε-optimale Reglersynthese von zeitdiskreten und zeitkontinuierlichen Markov-
Entscheidungsprozessen basieren. Unser Ansatz nutzt Simulationen, um einen kleinen
Teil des Zustandsraums zu identifizieren, der ausreicht, um einen Regler mit den ge-
wünschten Garantien zu synthetisieren. Für Markov-Entscheidungsprozesse mit dem Ziel
der Erreichbarkeit kombinieren wir die garantierte simulationsbasierte Technik der bes-
chränkten dynamischen Echtzeitprogrammierung und die extrem gut skalierbare Spiele-
Lösungstechnik der Monte-Carlo-Baumsuche. Der resultierende Algorithmus profitiert
vom Besten aus beiden Welten. Für zeitkontinuierliche Markov-Entscheidungsprozesse
mit dem zeitgebundenen Erreichbarkeitsziel (TBR, aus dem Englischen ”time-bounded
reachability”) verwenden wir Simulationen, um unter- und überapproximierende Teilm-
odelle zu erhalten. Auf diesen lassen wir existierende TBR-Algorithmen laufen, um un-
tere und obere Grenzen für den optimalen TBR-Wert zu erhalten. Das Teilmodell wird
mit Hilfe weiterer Simulationen erweitert, bis die entsprechenden Grenzen ausreichend
konvergieren, so dass ein ε-optimaler Regler extrahiert werden kann.

Kleine und erklärbare Controller. Wir schlagen vor, Entscheidungsbäume zu nutzen,
um Regler darzustellen, die aus probabilistischen und hybriden Systemen synthetisiert
wurden. Das Lernen von Entscheidungsbäumen kann interne Strukturen dieser Reg-
ler ausnutzen, um Gruppen von Zuständen mit derselben Kontrollaktion zu vereinen.
Wir erweitern die Standardalgorithmen zum Lernen von Entscheidungsbäumen um die
Fähigkeit, Regler mit Korrekheitsgarantien darzustellen, ohne dabei diese Garantien zu
verlieren. Auf dieser Grundlage entwickeln wir zwei Programme. Erstens erweitern
wir das dem Stand der Technik entsprechende Regelungssynthese-Programm Uppaal

Stratego um sichere, nahezu optimale und kleine Regler für hybride Markov-Entscheid-
ungsprozesse bereitzustellen. Wir führen eine neue Technik namens sicheres Stutzen ein,
die es erlaubt, das Spannungsfeld zwischen Größe und Optimalität zu erforschen, ohne
die Korrektheitsgarantie des ursprünglichen Reglers zu verlieren. Als nächstes stellen wir

v

Zusammenfassung

das Programm dtControl vor, das jeden nicht randomisierten, gedächtnislosen Control-
ler, der in Form einer Nachschlagetabelle verfügbar ist, in einen Entscheidungsbaum
umwandeln kann. Außerdem stellen wir eine neuartige Bestimmungsstrategie vor, mit
der Teile eines nicht deterministischen Reglers lokal bestimmt werden können, um die
Größe des resultierenden Entscheidungsbaums deutlich zu reduzieren. Wir demonstri-
eren unsere Ergebnisse an Reglern, die mit dem Programm für hybride Systeme SCOTS

sowie Uppaal Stratego gewonnen wurden.

vi

Acknowledgements

First and foremost, I would like to thank my doctoral advisor, Jan, for all the support
and guidance he has provided me. I am incredibly grateful for the belief and trust he
has placed in me that has encouraged me to take up roles of responsibility. It has always
been a pleasure to discuss with him, both work and life.

I would like to express my sincere gratitude to Prof. Kim G. Larsen, for hosting me at
Aalborg University for two wonderful research stays. I consider his infectious enthusiasm
and excitement entirely responsible for driving my work on decision trees. I always look
forward to meeting and brainstorming with Kim.

Further, I would like to thank Prof. Tomás Brázdil for inviting me to Brno for my
first research stay abroad. It was delightful working with you and Ondrej, not to forget
the great lunches!

I am thankful to all my co-authors, Adrien Le Coënt, Christoph H. Lampert, Hol-
ger Hermanns, Jakob Haahr Taankvist, Krishnendu Chatterjee, Majid Zamani, Mathias
Jackermeier, Przemyslaw Daca, Pushpak Jagtap, Stefanie Mohr, Tobias Winkler, Vahid
Hashemi, Viktor Toman, and Yuliya Butkova for the great discussions and fruitful col-
laborations.

My doctoral studies and my stay in Germany wouldn’t have been possible without the
generous scholarship provided by the IGSSE Project “10.06 PARSEC” and employment
funded by DFG Project “Statistical Unbounded Verification”. I would like to thank
the whole IGSSE team, especially Marco Barden and Jo-Anna Küster, who have been
amazingly supportive during the far too many times I approached them. I will never
forget the immense support provided by Agnieszka Slota of TUM Graduate School during
the deportation scare I had.

I would like to thank Javier Esparza, our chair, whom I look up to for his patience and
ability to calmly deal with challenging situations. Further, I would like to thank all my
I-7 colleagues for the fun Mensa lunches and discussions. I cannot sufficiently express
my words of gratitude towards Maxi, colleague and friend, for being such a great work
partner and going out of his way to help me every time I got myself into trouble. I really
enjoyed collaborating with him, both professionally and personally.

I am thankful to Bala, Christoph, Kush, Maxi, Shyamlal, and Tobi for proofreading
various parts of this thesis and for their valuable feedback. Special thanks to my sister
Cookies for pointing out all those bugs in my use of English, and not to forget, those
odd Oxford commas.

My gratitude also goes to two crucial people, Prof. Muralikrishnan and Nandu,
without whom I would not have chosen this path. I am grateful to Sri whose QATH
course at CMI led me to the beautiful area of quantitative verification. I also thank all
my teachers and mentors for making me what I am today.

vii

Acknowledgements

I cannot forget the role my friends have played in my life when living so far away from
home. Thanks to the JGM gang for making Munich a home away from home. Thanks
to Anjali, Honey, Jap, Pai, Sachin, Shaju and Vivek for being the cheerleaders they are.
Finally, my greatest thanks to my grandparents, Amma, Appa, and Cookies, for being
so understanding, encouraging, and empathizing.

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

Acronyms xv

1 Introduction 1
1.1 Computer-aided Verification . 2
1.2 Challenges . 4
1.3 Solutions to the Challenges . 4

1.3.1 Address state-space explosion with partial exploration 4
1.3.2 Taming automatically synthesized controllers with better repres-

entations . 6
1.4 Publication Summary . 6
1.5 Outline of the Thesis . 8

2 Preliminaries 9
2.1 Basic Notation . 9
2.2 Basic Probability Theory . 9
2.3 Notion of Controllers . 9

3 Controller Synthesis through Partial Exploration 11
3.1 Markov Decision Process (MDP) . 12

3.1.1 Model checking the reachability objective for MDPs 13
3.1.2 Monte Carlo tree search: the preliminaries 19
3.1.3 Contribution: MCTS + BRTDP 21

3.2 Continuous-time Markov Decision Process (CTMDP) 23
3.2.1 Model checking time-bounded reachability for CTMDPs 25
3.2.2 Contribution: A new time-bounded reachability framework 27

ix

CONTENTS

4 Controller Representation 29
4.1 Preliminaries . 30

4.1.1 Lookup tables . 30
4.1.2 Binary decision diagrams . 30
4.1.3 Decision trees . 31

4.2 State of the Art . 33
4.2.1 Lookup tables . 34
4.2.2 Binary decision diagrams and their extensions 34
4.2.3 Decision trees . 35

4.3 Contribution: Improved Decision Tree Representations 36
4.3.1 Stratego+ framework . 37
4.3.2 The dtControl toolbox . 38

5 Conclusion & Outlook 43
5.1 Solving State-Space Explosion with Partial Exploration 43
5.2 Explainable and Concise Representation of Controllers 44

Bibliography 47

I Controller Synthesis 71

A Monte Carlo Tree Search for Verifying Reachability in Markov Decision
Processes (ISoLA 2018) 73

B Continuous-time Markov Decisions Based on Partial Exploration (ATVA 2018) 89

II Controller Representation 109

C SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision Pro-
cesses (QEST 2019) 111

D dtControl: Decision Tree Learning Algorithms for Controller Representation
(HSCC 2020) 131

x

List of Figures

1.1 A schematic diagram of model checking 2

3.1 A robotic control example in a grid world 12
3.2 Illustrating the reachability objective for Markov Decision Processes (MDPs) 14
3.3 Exploration and exploitation in Monte Carlo Tree Search (MCTS) 20
3.4 The MCTS scheme . 21
3.5 An example continuous-time Markov decision process. 24
3.6 Competing actions in a CTMDP . 25
3.7 Obtaining under- and over-approximating sub-CTMDPs 28

4.1 A lookup table and its corresponding BDD 31
4.2 A decision tree example . 32
4.3 Sensitivity of BDDs to variable ordering 35
4.4 The Stratego+ framework . 38
4.5 A schematic diagram of dtControl . 39
4.6 An automatic room heating system controller represented as a DT 41

xi

List of Tables

3.1 Spectrum of algorithms ranging from pure MCTS to pure BRTDP 23

4.1 A sample dataset for motivating decision trees 32

xiii

Acronyms

ADD Algebraic Decision Diagram.

BDD Binary Decision Diagram.
BMCTS Bounded Monte Carlo Tree Search (MCTS).
BRTDP Bounded Real-time Dynamic Programming.
BVI Bounded Value Iteration.

CPS Cyber-Physical System.
CTL Computation Tree Logic.
CTMC Continuous-time Markov Chain.
CTMDP Continuous-time Markov Decision Process.

DT Decision Tree.

LP Linear Programming.
LTL Linear Temporal Logic.

MC Markov chain.
MCTS Monte Carlo Tree Search.
MDP Markov Decision Process.
ML Machine Learning.

RL Reinforcement Learning.

TBR Time-bounded Reachability.

UCB1 Upper Confidence Bound.

VI Value Iteration.

xv

1 Introduction

As long as there were no machines,
programming was no problem at all;
when we had a few weak computers,
programming became a mild problem,
and now we have gigantic computers,
programming has become an equally
gigantic problem.

Edsger W. Dijkstra

With the advent of the digital age, sophisticated systems known as Cyber-Physical
System (CPS) containing hardware-software interactions have emerged. Robots, smart
grids, intelligent signalling systems, IoT devices, digital communication networks, cli-
mate control systems, medical devices such as pacemakers, braking systems, and many
more, are prime examples of systems where mechanical/analog components work hand-
in-hand with digital components. Even daily-use home appliances such as refrigerators
and coffee machines are now controlled by embedded controllers running some ‘smart’
programs. Malfunction of safety-critical systems, a subclass of CPS, may be specially
catastrophic, leading to fatal accidents, loss of capital, or risk thereof. Unfortunately,
Dijkstra’s grand vision outlined in his 1972 Turing Award lecture [Dij72] has been far
from true:

... well before the seventies have run to completion, we shall be able to design
and implement the kind of systems that are now straining our programming
ability, at the expense of only a few percent in man-years of what they cost
us now, and that besides that, these systems will be virtually free of bugs.

Bugs in safety-critical systems have caused numerous disasters over the past decades.
Concurrency bugs in the controller of the Therac-25 radiation therapy machine caused at
least six accidents including three fatalities between 1985 and 1987 where cancer patients
were exposed to massive amounts of radiation [LT93]. An integer overflow malfunction
in the controller software of the Ariane 5 space launch vehicle caused it to self-destruct
37 seconds into launch, resulting in a loss of $500 million [Baa18]. More recently, a flaw
in the Manoeuvring Characteristics Augmentation System (MCAS) of the Boeing 737
MAX caused the crashes of Lion Air Flight 610 [Wik20b] and Ethiopian Airlines Flight
302 [Wik20a] with 189 and 157 fatalities respectively. An intriguing list of 107 software
horror stories can be found in [Der].

One may hence argue that it is highly advantageous or even necessary that the con-
trollers governing such safety-critical systems are proved to be correct. Programmers

1

1 Introduction

Controller Synthesis/
Model Checking

System
Model

Specification

Controller Counterexample

satisfied violated

Figure 1.1: A schematic depicting the automatic synthesis of controllers from a system model
and specification. In this thesis, we focus on controller synthesis as well as repres-
entation of the resulting controller.

in the ideal world painted by Dijkstra would hand-write proofs of correctness. It might
be possible to prove by hand that there exists no bugs for simple and small finite state
systems. However this task becomes intractable very quickly. Unlike the expectations
of 1970s and 80s, people no longer try to prove correctness of programs by hand us-
ing Floyd-Hoare [Hoa69] logic. Instead, they turn to automatic methods offered by
computer-aided verification.

1.1 Computer-aided Verification

There are two fundamental questions relevant in the study of safety-critical systems.
Given a system and a specification:

1. (Verification) Does the system satisfy a specification?

2. (Controller Synthesis) How must the system be controlled in order to satisfy a
specification?

Typically, these problems are equivalent and solving one easily gives the solution to
the other. In 1970s and 80s, multiple lines of research started to emerge to automate
verification of hardware and software. One line of research that focused on model-based
verification techniques, i.e., using mathematical models describing the behaviour of the
system, came to be known as model checking.

Figure 1.1 gives an overview of the model checking process. The system under analysis
is first modelled either automatically (for example, from source code) or by hand. Next,
the requirements of the system are formalized into logical specifications. The model

2

1 Introduction

checker or a controller synthesis tool takes as input the model and specification and
computes whether the system satisfies the specification. If it does, typically a witness
in the form of a controller may be produced. Informally, the controller is a set of rules
describing the actions which the system may take in each state, so that the specification
is satisfied. If the specification is violated, then a counterexample may be returned.

Model checking of finite-state discrete systems One of the first works along this
line involved the reachability analysis of finite-state protocols modelled using finite-state
machines [Boc78; BZ83]. The advent of temporal logics [Pnu77; GPS+80; Pnu81] to spe-
cify and verify temporal properties of programs ushered a new era in verification. Sub-
sequently, model checking was developed independently by Clarke and Emerson [CE81]
as well as Queille and Sifakis [QS82]. Then, in the mid-80s, came work on automata-
theoretic approach to program verification. Vardi and Wolper [VW86] introduced the
paradigm that is now ubiquitous in every model checking graduate course. Model check-
ing has been an active area of research ever since. For a comprehensive history of model
checking, an interested reader may refer to [BK08, p. 16] and [GV08].

Model checking of quantitative systems Soon, however, there was theoretical as well
as practical interest, e.g. from the side of cyber-physical systems, to explore richer
quantitative modelling formalisms. Two distinct sub-fields emerged, namely, probab-
ilistic model checking and hybrid system control. As one may observe, most physical
processes are stochastic in nature, displaying uncertainty and randomness, and hence it
was important to use modelling formalisms expressive enough to model uncertainty. In
his seminal paper [Var85], Vardi used an automata theoretic approach to check Linear
Temporal Logic (LTL) specifications on Markov chain (MC) and proposed concurrent
Markov chains (MCs) as a better modelling formalism for probabilistic systems. Con-
current MCs turned out to be a guise [Var99] of Markov Decision Processes (MDPs)
[How60; Put94], a widely studied modelling formalism in various fields such as rein-
forcement learning and operations research. A more detailed historical account on the
development of probabilistic model checking may be found in [BK08, p. 896].

Alternately, verification and control of CPS, displaying a unique combination of di-
gital and analog components, necessitated a cooperation between the fields of formal
verification and control theory. This led to the study of hybrid systems [Tab09], infinite-
state systems displaying a mixture of discrete and continuous transitions defined by
differential equations. The concept of bisimulation, introduced by [Par81] and [Mil89],
which is helpful in showing equivalence between systems, has played a key role in veri-
fication of hybrid systems. The foundations for the analysis of hybrid systems were laid
in the seminal paper of Alur and Dill [AD90], where they introduced timed automata
and showed that a bisimulation relation between the infinite-state automata and a fi-
nite symbolic model could be established. Since then, many techniques have emerged
for timed [LPY95; Yov96; DT98] as well as hybrid system verification [Tab09; BYG17].
[AHL+00] show that various classes of hybrid systems can be abstracted to purely dis-
crete systems, following which standard model checking can be applied. More recently,

3

1 Introduction

work on approximate bisimulations [GP07] have brought more classes of hybrid systems
under the purview of formal verification. See [Tab09; BYG17] for more information on
Hybrid systems, suitable for both formal methods and control theory practitioners.

1.2 Challenges

In this dissertation, we are primarily concerned with two challenges faced by the field of
quantitative model checking and controller synthesis.

State-space explosion Model checking, be it on discrete, stochastic, or hybrid systems,
comes with the inherent challenge of state-space explosion [CKN+12], which refers to
the size of the state space growing exponentially when the number of state variables
increase.

Large and incomprehensible automatically synthesized controllers Even if we suc-
cessfully tame the state-space explosion problem and synthesize controllers automatic-
ally, their large size and lack of interpretability makes them disadvantageous in multiple
ways. Firstly, a controller presented as a huge list of state-action pairs in the form
of lookup tables might not fit on the memory of embedded devices controlling cyber-
physical systems [ZVJ18]. Secondly, since synthesis tools do not optimize the controller
for interpretability, a relatively simple control sequence might be represented in an overly
complicated way, and the controller would have to be treated as a black-box. This is
potentially disadvantageous as it makes it impossible for domain experts to catch po-
tential issues in the controller, caused possibly by bugs in the model or the controller
synthesis tool.

1.3 Solutions to the Challenges

In this thesis, we make a humble attempt at solving these two challenges with learning-
based techniques.

1.3.1 Address state-space explosion with partial exploration

While the classical algorithms were developed early on (see [BK08]), a lot of research
in model checking algorithms may be attributed to the state-space explosion problem
[CKN+12]. For non-quantitative systems, various techniques such as symbolic model
checking [BCM+90], bounded model checking [BCC+99], partial-order reduction [Val89;
God90; Pel93], and counterexample guided abstraction-refinement (CEGAR) [CGJ+00]
have emerged.

In the probabilistic world, similar advances have been made to tackle the state-space
explosion problem [BHK19]. Symbolic techniques making use of efficient data structures
like Binary Decision Diagram (BDD) are typically heavily used in probabilistic model

4

1 Introduction

checking tools [KNP11; HJK+20]. There are minimization techniques based on probabil-
istic bisimulation [LS91] adapted to probabilistic systems in [SL95]. Various abstraction
techniques, where even non-bisimilar states are grouped together, have also been de-
veloped [DJJ+02; DN04; HHW+10; KKN+10]. See [DGV+12] for a comprehensive
survey of abstraction based techniques.

A dual approach to abstraction is to consider only restricted parts of the state space,
which we refer to as partial exploration. This idea has been explored in reinforcement
learning since 1990s as a means to tackle models with huge state spaces [BBS95; Ber05,
Ch. 6]. However, they do not come with strong guarantees/error bounds on the val-
ues they compute, but are best-effort algorithms. Consequently, until recently, these
techniques were not directly usable for the analysis of safety-critical systems.

Guaranteed reachability model checking using partial exploration One of the first
specifications used in model-based verification that continues to hold relevance today is
reachability, considered as early as in the late 1970s [Boc78]. In the context of Markov
Decision Process (MDP) verification, the reachability specification asks if the probability
of reaching some set of goal states maximized over all possible choices of actions is
greater than a threshold. If the specification holds, a witness in the form of a policy
or a controller is obtained that determines the action to be chosen in each state so
that the chances of reaching the target is maximized. The first partial exploration
based algorithm came from Brazdil et al. [BCC+14], who adapted the simulation-based
algorithm of [MLG05] to give convergence results with error bounds, i.e., the probability
of satisfying the specification is computed with an error of at most ε. This technique
used asynchronous value iteration, novel in the context of probabilistic verification, to
come out with a guaranteed reachability probability value. This approach turned out to
be a proof-of-concept and has led to many other works based on the partial exploration
idea [ACD+17; KKK+18; KM19; AKW19].

Contribution

Our contribution towards solving the state-space explosion problem is two-fold:

• For MDP, we introduce a novel asynchronous bounded value iteration algorithm
directed by Monte Carlo Tree Search (MCTS) [Cou06] for computing the reach-
ability value up to ε-precision. We propose three different variants interleaving
MCTS with Bounded Real-time Dynamic Programming (BRTDP) [BCC+14] to
various degrees. These algorithms learn to explore and analyse the model partially,
sufficient to answer the reachability problem with ε-guarantees.

• For the continuous-time extension of MDP, the Continuous-time Markov Decision
Process (CTMDP), we introduce an algorithm that speeds up computing the (ε-
precise) time-bounded reachability value based on partial exploration. The idea,
like in MDP, is to find a core subsystem of the original system and only analyse
this subsystem. Our technique shows potential to speed up existing time-bounded
reachability algorithms for CTMDPs.

5

1 Introduction

1.3.2 Taming automatically synthesized controllers with better
representations

There are not many works dealing with controller representation in the verification and
cyber-physical systems literature. Traditionally, controllers have been represented as
explicit state-action maps or lookup tables which are extremely large. Some control
synthesis tools, such as SCOTS [RZ16] or PESSOA [JDT10], use BDDs [Bry86] to
represent controllers. However, the size of the BDD is extremely sensitive to the variable
ordering used and finding the optimal variable ordering is NP-complete [BW96]. In
[BCC+15], Brazdil et al. introduce an approach where Decision Trees (DTs) [LL14] were
used to learn explainable counterexamples resulting from MDP model checking. In order
to tame automatically synthesized controllers, we propose the use of decision trees to
represent not only ε-optimal controllers from probabilistic systems, but also guaranteed
optimal controllers arising from control synthesis of non-probabilistic systems such as
Hybrid systems.

Our contribution

Here, our contribution is four-fold:

• We present the first results of using DT representations for controllers of CPS
and specifically, Hybrid systems, where a state comprises of multiple quantitat-
ive variables. The work differs from traditional controller representations in the
sense that it produces explainable and meaningful representations, exploiting the
inherent structures of these controllers.

• We demonstrate the effectiveness of the representation by integrating DTs into
Uppaal Stratego. We explore the trade-off between size and optimality of the
safe and near-optimal controllers synthesized by Uppaal Stratego, all the while
preserving the safety guarantees.

• Following up on that, we develop an open-source toolkit dtControl for construct-
ing and exporting decision tree representations of controllers. The toolkit is highly
extensible, allowing users to develop their own decision tree learning algorithms
easily, as well as building pipelines to their own controller synthesis tools.

• Finally, we introduce a novel determinization algorithm called MaxFreq, which can
locally determinize subsets of control rules in permissive controllers, producing
even more concise trees.

1.4 Publication Summary

This is a publication-based dissertation containing 4 papers — two on controller synthesis
and two on controller representation. The original publications may be found in the
appendix. Part I of the Appendix includes:

6

1 Introduction

A Pranav Ashok, Tomáš Brázdil, Jan Křet́ınský and Ondřej Slámečka. Monte carlo
tree search for verifying reachability in Markov decision processes. ISoLA 2018.
[ABK+18]

B Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Křet́ınský. Continuous-
time Markov decisions based on partial exploration. ATVA 2018. [ABH+18]

Part II of the Appendix contains:

C Pranav Ashok, Jan Křet́ınský, Kim Guldstrand Larsen, Adrien Le Coënt, Jakob
Haahr Taankvist, and Maximilian Weininger. SOS: Safe, Optimal and Small
strategies for hybrid Markov decision processes. QEST 2019. [AKL+19]

D Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křet́ınský, Maximilian
Weininger, and Majid Zamani. dtControl: Decision Tree Learning Algorithms for
Controller Representation. HSCC 2020. [AJJ+20]

Each paper has appeared in peer-reviewed conference proceedings. The papers are
prefaced with a summary page containing the full citation of the original publication,
a short text summarizing the paper, and a summary of the contributions of the thesis
author.

Other co-authored papers of the author

Further, the thesis author has co-authored 5 peer-reviewed conference publications not
included in this thesis:

1. Pranav Ashok and Krishnendu Chatterjee and Przemyslaw Daca and Jan Kret́ınský
and Tobias Meggendorfer. Value Iteration for Long-Run Average Reward in Markov
Decision Processes. CAV 2017. [ACD+17]

2. Pranav Ashok and Tomás Brázdil and Krishnendu Chatterjee and Jan Kret́ınský
and Christoph H. Lampert and Viktor Toman. Strategy Representation by De-
cision Trees with Linear Classifiers. QEST 2018. [ABC+19]

3. Pranav Ashok and Jan Kret́ınský and Maximilian Weininger. PAC Statistical
Model Checking for Markov Decision Processes and Stochastic Games. CAV 2019.
[AKW19]

4. Pranav Ashok and Krishnendu Chatterjee and Jan Kret́ınský and Maximilian
Weininger and Tobias Winkler. Approximating Values of Generalized-Reachability
Stochastic Games. LICS 2020. [ACK+20]

5. Pranav Ashok and Vahid Hashemi and Jan Kret́ınský and Stefanie Mohr. Deep-
Abstract: Neural Network Abstraction for Accelerating Verification. ATVA 2020.
[AHK+20]

7

1 Introduction

1.5 Outline of the Thesis

This publication-based dissertation is divided into four chapters followed by an appendix.
In Chapter 1, we give a brief history to model checking, discuss two important challenges
and give a very brief summary of the main contributions. Chapter 2 lays down founda-
tions and preliminaries necessary to understand the content of the thesis. In Chapter 3,
we discuss the state-of-the-art in model checking of MDPs and CTMDPs, and summar-
ize how we tackle the state-space explosion problem through partial exploration. This
chapter is based on the papers A and B. Chapter 4, based on papers C and D, dis-
cusses the problems in traditional controller representations and expounds on the idea
of learning decision trees to represent guaranteed controllers. In Chapter 5, we conclude
the thesis by summarizing the story so far and identifying some future directions. The
Appendix contains four publications, papers A and B on controller synthesis, as well
as papers C and D on controller representation, for which the author is the primary
contributor.

8

2 Preliminaries

In this chapter, we familiarize the reader with some background essential to the rest of
this dissertation.

2.1 Basic Notation

Let R be the set of real numbers with R≥0 denoting the set of non-negative real numbers.
We denote the set of Booleans {true, false} using B. For any given set S, we use the
notation 2S to denote the power set (set of all subsets) of S.

Given a sequence ρ of elements from some set S, prefix(ρ) is used to denote the set of
all finite prefixes of ρ. Given a set of infinite sequences Q, Q∗ denotes the set of finite
prefixes defined by Q∗ =

⋃
ρ∈Q prefix(ρ).

Given a totally ordered set S, and two elements a, b ∈ S, we use the notation [a, b]
to denote the subset X = {s ∈ S | a ≤ s ≤ b}. For any value v ∈ R, we call u ∈ R an
ε-precise approximation of v if |v − u| < ε for some ε ∈ R. We say that u is ε-optimal if
it is an ε-precise approximation of a desired optimal value v.

2.2 Basic Probability Theory

We assume a basic understanding of the concepts of a probability measure, probability
space, and random variables. The reader may refer to a standard book on probabil-
ity such as [Ros19] for more details. A discrete probability distribution over a finite
set S is a mapping d : S → [0, 1] such that

∑
s∈S d(s) = 1. Dist(S) denotes the set

of all probability distributions on S. For some continuous random variable X with
a probability density function f(x), we define the cumulative distribution function as
FX(a) = P(X ≤ a) =

∫ a
−∞ f(x)dx. An exponential distribution is a continuous distribu-

tion with the cumulative distribution function given by FX(x) := 1− eλx for x ≥ 0 and
FX(x) := 0 otherwise, where λ > 0 is called the rate parameter. We write X ∼ exp(λ)
to denote that the random variable X is distributed exponentially.

2.3 Notion of Controllers

We define a system as a tuple S = (C,A, ↪→) where C is a set of configurations of the
system, A is a set of actions, and ↪→ is some transition relation. For non-probabilistic
systems, ↪→ is a relation ↪→⊆ C×A×C and for probabilistic systems, ↪→ is a distribution
function ↪→: C × A × C → [0, 1] such that for all (c, a) ∈ C × A,

∑
c′∈C ↪→ (c, a, c′) is

9

2 Preliminaries

either 0 or 1. A finite path ρ in the system is denoted by ρ = c1
a1
↪−→ c2

a2
↪−→ . . . cn

where for every 1 ≤ i < n, ci
ai
↪−→ ci+1 is a valid transition, i.e., (ci, ai, ci+1) ∈↪→ for

non-probabilistic systems and ↪→ (ci, ai, ci+1) > 0 for probabilistic systems. The set of
all finite paths is denoted by Paths∗.

In its most general form, a controller may be defined as follows

Definition 2.3.1 (Controller). A history-dependent randomized permissive controller is
a function π : Paths∗ → Dist(A) that maps finite paths of the system to a distribution
over actions.

Controllers are important objects called by different names in different fields of re-
search. The word “strategy” is used frequently in the game-theoretic setting to denote
objects that select best actions for each of the players in each controllable state. In
control theory and hybrid systems, the term “controller” is preferred for the object that
takes in feedback from the system to decide the next control input. In timed systems,
a “scheduler” chooses both an action and a time point at which the action is to be
performed. In non-timed systems with a single player, e.g. Markov Decision Processes,
the term “policy” is used to denote the object that resolves the non-deterministic choice
in each state. Throughout this dissertation, we use the terms controller, strategy, policy,
and scheduler interchangeably to refer to the same mathematical object.

There are multiple types of controllers commonly arising in literature. Some common
aspects that are used for characterizing controllers are:

History dependence Whether the decision taken by the controller depends on the cur-
rent path (π : Paths∗ → A), called history dependent, or whether it depends only
on the current configuration (π : C→ A), called memoryless.

Randomization Whether the controller randomizes over the available actions (π : C →
Dist(A)), called randomized, or chooses actions without randomizing (π : C → A),
called pure.

Permissiveness Whether the controller allows multiple actions (π : C → 2A), called
permissive, or if it allows only a single action (π : C → A), called deterministic.

Time dependence Whether the decision depends on time in addition to the current
path/state (π : C × R≥0 → Dist(A)).

10

3 Controller Synthesis through Partial
Exploration

While dealing with the infinite state spaces typical of hybrid systems is a hard problem,
we can gain a lot of insight by solving simpler formalisms. As is standard in mathematics,
we choose to focus on simpler subclasses of the problem and leave the generalization for
future work. In this chapter, we look at two formalisms that can be used to model
systems that exhibit non-determinism and stochasticity and see how controllers can be
synthesized for them using partial exploration.

The first formalism is that of Markov Decision Processes (MDPs) [How60]. MDPs
have been around since 1950s and are a popular tool in many fields such as operations
research [Put94], reinforcement learning [SB98], and model checking [BHK19]. MDPs
are used to model discrete-time systems in which the evolution of the system is partly
stochastic and partly controlled by a decision making entity, typically called a policy or
a controller. They can also be seen as a game between the system, which tries to achieve
a certain objective, and a probabilistic environment that randomizes the outcomes.

The second formalism is that of Continuous-time Markov Decision Processes (CTM-
DPs) [Sen09; Put94]. CTMDPs allow for modelling systems where the decisions are
taken not at discrete decision epochs like in MDPs, but in continuous-time. Typical
areas of application include queuing theory [Sen09], power management and schedul-
ing [QQP01], distributed systems [GGL03; HHK00], epidemic and population processes
[Lef81] amongst others.

In this chapter, and subsequently in Papers A and B, we consider the problem of
verifying the (time-bounded) reachability specification (also known as objective) on the
two formalisms. We focus on the state-space explosion challenge and we present two
algorithms, one for MDP and one for CTMDP that uses partial exploration via sim-
ulations in order to solve the reachability objective. This chapter is divided into two
sections. In Section 3.1, we formally introduce MDPs, describe some of the basic reach-
ability algorithms and conclude with our new algorithm based on partial exploration. In
Section 3.2, we introduce the CTMDP formalism, give a brief overview of the existing
Time-bounded Reachability (TBR) algorithms and conclude with our simulation-based
framework that may be used to speed up existing TBR algorithms. All the algorithms
described in this chapter produce an ε-optimal controller that describes how to govern
the system in order to achieve the reachability objective in question.

11

3 Controller Synthesis through Partial Exploration

3.1 Markov Decision Process (MDP)

MDPs are commonly used in modelling systems that exhibit some random behaviour,
observe the Markov property, and are controllable.

Example 3.1.1. A robot, Crawl-E, is placed into a grid world as shown in Figure 3.1.
The actuators of the robot are damaged causing unintended movements. If the robot
tries to move east, it moves east 90% of the time, but ends up moving north 10% of the
time. On the other hand if the robot tries to move north, then it succeeds 80% of the
time, but moves west 20% of the time. If it encounters a wall in its intended direction
of movement, then the robot stays in the same cell and has to try again. The objective
of the robot is to avoid the impending explosion in cell (2, 1) and reach the target in
cell (3, 2). Design a controller that maximizes the probability of the robot reaching the
target.

0 1 2 3

0

1

2

Figure 3.1: A grid world with a robot in cell (0, 0), a impending explosion in cell (2, 1), and
the target in cell (3, 2).

The situation presented in this fictitious example is an extremely simplified version of
a discrete control problem. The reader may be able to quickly come up with a controller
or a strategy to reach the target as a quick mental exercise, however, if the grid is larger,
or if there are more complex actions or outcomes, the problem quickly becomes difficult.
However, this question can easily be solved using automated algorithms by modelling
the system as an MDP.

Formally, an MDP can be defined as follows.

Definition 3.1.1 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple M = (S, sinit, A,Av,∆, 1, 0) where

• S is a finite set of states

• sinit is the initial state

12

3 Controller Synthesis through Partial Exploration

• A is a finite set of actions

• Av : S → 2A assigns to every state a set of actions available in that state

• ∆ : S×A→ Dist(S) assigns to every state and action, a distribution over successor
states

• 1 ⊆ S and 0 ⊆ S are mutually exclusive sets representing the target (also called the
goal) and the sink respectively. From any sink state, it is not possible to transition
into a non-sink state.

While various specifications can be checked against an MDP, in this thesis we are
concerned only with the reachability specifications. Intuitively, we are interested in
finding a set of decisions to be taken in each state that would maximize the probability
of reaching the target set 1. In order to formalize this notion, we first define controllers.

Definition 3.1.2 (Controller). A controller, also known as a policy in the context of
MDPs, is defined as in Definition 2.3.1, instantiating configurations to the set of states,
i.e. C := S. A policy is hence a map π : (S ×A)∗ × S → Dist(A).

For an MDP M , fixing a controller π and an initial state s yields a unique probability
measure PπM,s which, for every set of paths, assigns a value in [0, 1] [BK08, p. 757].

Recall Example 3.1.1. A controller π that can maximize the probability of reaching
the target without entering the cell with the impending explosion may be defined as
follows:

π((x, y)) =

{
“move north” if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

“move east” otherwise

where (x, y) gives the coordinate of the cell. Notice that this controller does not depend
on the path taken to reach the state from which an action is chosen. Moreover, it does
not randomize over the available actions. We shall handle such controllers in the next
section, where we discuss model checking algorithms for the reachability objective.

3.1.1 Model checking the reachability objective for MDPs

One of the classic objectives, the reachability objective, is highly studied for all the
modelling formalisms we have discussed so far. It was first described and used for the
analysis of communication protocols in [Boc78]. In the classical non-probabilistic setting,
the objective asks whether it is possible to eventually reach a set of states 1 from some
initial state sinit. This is naturally extended to the purely stochastic world, e.g. discrete-
time Markov chains, where the question becomes: is it possible to eventually reach the
target set 1 from the initial state sinit with a probability greater than p?.

In the setting that allows both non-deterministic and stochastic outcomes, the prop-
erty gets an additional twist. Now, we can no longer ask for the “probability of eventu-
ally reaching 1 from sinit”, since it depends on the controller, i.e., the policy followed by
decision maker to choose from the multiple available choices in each state.

13

3 Controller Synthesis through Partial Exploration

sinit

(3, 2)

1

0

move north

0.8
0.2

move
east

0.1

0.9

Figure 3.2: Illustrating the reachability objective on systems with both non-determinism and
probabilities, using a part of the MDP modelling Example 3.1.1.

For example, consider the MDP shown in Figure 3.2. It models the decisions our
robot would have to make in cell (3, 2) of the grid world. If the decision maker chooses
the action move north in (3, 2), then the probability of reaching 1 is 0.8. However, if the
action chosen is move east, then the probability becomes 1, since repeatedly trying this
action would eventually take the robot to the target.

Therefore, the question for such systems becomes: “is the maximal (or minimal)
probability of eventually reaching 1 from sinit greater than p?”, where the max (or min)
operator quantifies over the set of controllers of the model. If a controller is fixed, the
system turns purely probabilistic (in this case, a Markov chain) on which the notion
of “probability of eventually reaching 1 from sinit” is meaningful. In Figure 3.2, the
maximal probability of reaching the target is therefore 1 and the minimal probability of
reaching the target is 0.6.

In order to formally define the reachability objective, we need a few preliminaries. If
the set of paths starting in the initial state s0 and ending in some state of the target set
1 is defined as

♦1 := {ρ | ρ = s0a0s1a1 . . . sn ∧ sn ∈ 1}
then, we can define the value of a state s under the controller π to be

Vπs (♦1) := PπM,s(♦1)

Intuitively, for each state, Vπ gives the probability of reaching the target from that state
following the controller π.

Definition 3.1.3 (Optimal Reachability Value). Given a model M , an initial state s,
and a set of target states 1, the optimal reachability value is defined as

Vopt
s (♦1) = opt

π∈Π
Vπs (♦1)

where opt ∈ {min,max} and Π is the set of all controllers of the model.

14

3 Controller Synthesis through Partial Exploration

Now we can define the problem of model checking an MDP against a reachability
specification. We call this quantitative reachability problem, as opposed to the simpler
qualitative reachability problem (whether the optimal reachability value is exactly 0 or
1) that is sometimes considered in literature.

Problem 1 (Quantitative Reachability). Given an MDP M , an initial state s, a set
of target states 1, and a threshold p ∈ [0, 1], is the optimal reachability value greater
than a threshold p? More precisely, is Vopt

s (♦1) > p?

A common variant of the reachability objective discussed above is the step-bounded
reachability objective, which asks “what is the maximal (or minimal) probability of reach-
ing 1 from sinit within n steps?”. While we do not consider this for MDP, for CTMDPs
we consider its continuous-time analogue.

The witness to the quantitative reachability problem is a controller that achieves the
threshold. Alternatively, we can also phrase the optimal controller problem as follows.

Problem 2 (Optimal Controller). Given an MDP M , initial state sinit and set of
goal states 1, what is the controller πopt that achieves the optimal reachability value?
Formally, compute

πopt = arg opt
π∈Π

Vπs (♦1)

Remark 1. An important property of the reachability specification that has spurred the
development of a multitude of algorithms is that the optimal value can be achieved
by a pure (non-randomized) memoryless deterministic controller [Put94]. These are
controllers of the form π : S → A.

State of the art

Quantitative reachability on MDPs can be solved in polynomial time using Linear Pro-
gramming (LP) [dEp63]. However, existing LP algorithms with provable polynomial time
performance perform poorly on practical MDPs of non-trivial size [LDK95]. For more
information on the complexity results for infinite horizon MDPs, see [PT87; LDK95].
Various other algorithms more practical than LP have been developed and are com-
monly used in model checking. While traditional algorithms such as Value Iteration
(VI) and Policy Iteration [Put94] are still popular, the last decade has shown numer-
ous new algorithms for solving the reachability objective with guarantees. They in-
clude Bounded Real-time Dynamic Programming (BRTDP) [BCC+14], interval itera-
tion [HM18; BKL+17; KKK+18], sound value iteration [QK18], and optimistic value
iteration [HK20]. These algorithms return an ε-optimal result for an arbitrary ε > 0.

15

3 Controller Synthesis through Partial Exploration

Now we discuss some basic MDP verification algorithms that are essential to place
our contributions in context.

Value iteration

Value Iteration (VI) [Bel57] is a fixpoint iteration method in which a value improvement
step is repeatedly applied from a starting guess in order to approximate the optimal
reachability value. Chatterjee and Henzinger [CH08] show that the optimal reachability
value is not finitely reachable using VI, however it is finitely computable. In other words,
it cannot be guaranteed that VI can find the optimal solution in a finite number of steps,
however, it is possible to find an ε such that an ε-precise solution can be obtained in a
finite number of steps, which is exponential in the number of states. See [CH08] for a
survey of VI techniques for multiple models (deterministic, probabilistic, or game graphs)
and objectives, or [BKN+19] for a recent complexity result on VI for finite horizon MDP.

The Bellman equations lie at the heart of VI. For every state s in the target set 1,
V 0(s) is initialized to 1, and for every other state s, V 0(s) is initialized to 0. The next
iteration is performed by applying the following equation

V n+1(s) =

1 if s ∈ 1

max
a∈A

∑
s′∈S

∆(s, a, s′)V n(s′) otherwise (3.1)

Intuitively, the “value” of a state s at step i, V i(s), gives the i-step probability of
reaching a goal state from s. We denote the value of the state s in the limit as V ∗(s) =
limn→∞ V

n(s). VI guarantees that the sequence (V i(s))∞i=0 converges in the limit, i.e.,
V ∗(s) = Vopt

s (♦1). Additionally, the iteration initialized as in Equation 3.1 also satisfies
the monotone property, i.e., V n(s) ≤ V n+1(s) ≤ Vopt

s (♦1), and is hence referred to as
“value iteration from below”. While the advantage of VI is that it is fast in practice at
obtaining a good approximation of the reachability value, it is not clear when to stop the
iteration. [HM14; BKL+17] show that for certain MDPs, the commonly used stopping
criteria, “stop when the difference between two consecutive approximations is less than
some small ε”, can give arbitrarily wrong approximations.

Bounded value iteration

Several approaches have been proposed in the last decade to address the lack of a prac-
tical stopping criterion in VI. A class of these approaches [HM14; BKL+17; KKK+18],
which we refer to as Bounded Value Iteration (BVI) algorithms, are based on similar
ideas. These algorithms typically terminate giving an interval in which the optimal
reachability value is guaranteed to lie.

The basic scheme used by BVI algorithms is to perform value iteration from below as
well as above, as given by the following equations. For all states s in the target set 1,
the lower value is initialized to 1, i.e. L0(s) = 1. For all other states s, the lower bounds
are initialized to 0, i.e. L0(s) = 0. For n > 0, we have

16

3 Controller Synthesis through Partial Exploration

Ln+1(s) =

1 if s ∈ 1

max
a∈A

∑
s′∈S

∆(s, a, s′)Ln(s′) otherwise (3.2)

For the iteration from above, we initialize U0(s) = 0 for all sink states s ∈ 0, and
U0(s) = 1 for all other states. For n > 0, we have

Un+1(s) =

0 if s ∈ 0

max
a∈A

∑
s′∈S

∆(s, a, s′)Un(s′) otherwise (3.3)

Ln and Un denote the n-step lower and upper bound functions respectively. While, due
to standard VI, we know that the iteration from below converges, this is not necessarily
true for the iteration from above. The trouble comes from end-components [De 97, p.
44] present in the MDP. Intuitively, end-components are a set of states and actions for
which there exists a policy that can keep the MDP from exiting the component. In order
to solve this problem, end-components need special treatment1, for which an interested
reader may refer to the original literature [BCC+14; HM14]. Once the end-components
are handled, both the lower and upper bounds converge to the real value. For any ε > 0,
BVI gives a natural stopping criterion to compute an ε-optimal result: stop when for
some n and the initial state s, Un(s) − Ln(s) ≤ ε. Moreover, BVI guarantees that the
optimal reachability value of every state s will be contained between Ln(s) and Un(s)
for all n ∈ N. Hence, it can be stopped at any time with the optimal reachability value
of reaching 1 from s lying between Lk(s) and Uk(s), where k denotes the iteration at
which BVI was stopped.

Asynchronous bounded value iteration and BRTDP

Now, instead of synchronously updating the values of every state at once in VI, we
can choose to do it asynchronously [BBS95]. As long as the algorithm is designed
in such a way that the values of every state is infinitely often updated and the end-
components are handled properly, the values would converge to the optimal [BCC+14;
KKK+18]. It is therefore beneficial to run state updates in a different order, typically
guided by simulations, as done by algorithms such as Real-Time Dynamic Programming
(RTDP) [BBS95] or even its bounded version Bounded Real-time Dynamic Programming
(BRTDP) [MLG05; BCC+14] where a lower and upper bound à la BVI are maintained
and updated for each seen state.

While the RTDP algorithm suffers the same issues as VI, such as the lack of a good
stopping criterion, a version of BRTDP with guarantees [BCC+14] emerged at the same
time as BVI [HM14]. It is important to understand the algorithm of [BCC+14], which

1Two recent works, [PTH+20] and [HK20] propose algorithms that are able to provide ε-guaranteed
results like BVI without having to explicitly handle end-components.

17

3 Controller Synthesis through Partial Exploration

Algorithm 1 Bounded Real-time Dynamic Programming (based on [BCC+14])

1: procedure BRTDP(M, ε) . M = (S, sinit, A,Av,∆, 1, 0)
2: ∀s ∈ S · L = 0, U = 1
3: ∀s ∈ 1 · L(s)← 1
4: ∀s ∈ 0 · U(s)← 0
5: while U(sinit)− L(sinit) > ε do . L and U are more than ε apart
6: ρ← sinit, s← sinit
7: while s 6∈ 1 and s is not part of a maximal end-component do
8: a← arg maxa∈Av(s) U(s)
9: s′ ← SAMPLE(s, a, L, U)

10: ρ← ρ · s
11: end while
12: Process maximal end-components
13: for each s ∈ ρ in reverse order do
14: for each a ∈ Av(s) do
15: L(s, a)←∑

s′∈S ∆(s, a, s′)L(s′)
16: U(s, a)←∑

s′∈S ∆(s, a, s′)U(s′)
17: end for
18: L(s)← maxa∈Av(s) L(s, a)
19: U(s)← maxa∈Av(s) U(s, a)
20: end for
21: end while
22: return L(sinit)
23: end procedure

from now on we refer to as BRTDP, since it forms the base of our contribution in Section
3.1.3.

The idea of BRTDP, given in Algorithm 1, is as follows. BRTDP guides state space
exploration based on the amount of “knowledge” we have about every state. A path
is sampled starting from the initial state, in which the action with the greatest upper
bound is chosen (line 8). Next, the successor state is sampled using the SAMPLE() (line
9), which may be instantiated in various ways (see [BCC+14, Remark 3]). Once the
path either reaches a target state, a maximal end-component, or a sink state, the back-
propagation phase starts, in which the Bellman update (Equations 3.2 and 3.3) is applied
on each state along the path, to propagate the information that this specific path has
gathered. Note that end-components are also processed whenever they are encountered,
details of which may be found in [BCC+14, Sec. 4]. After back-propagation, the next
path is sampled and the algorithm continues until the difference between the lower and
upper bounds in the initial state becomes less than ε. This results in BRTDP returning
an ε-precise approximation of the optimal reachability value.

18

3 Controller Synthesis through Partial Exploration

Algorithm 2 The MCTS scheme (adapted from [ABK+18])

1: Create a root x0 of the tree, labelled by sinit
2: while within computational budget do
3: xparent ← SelectNode(x0) . select a node following the tree policy
4: xchild ← ExpandAndPickRolloutNode(xparent)
5: outcome ← Rollout(xchild) . simulate following the rollout policy
6: BackupOnTree(xchild, outcome)
7: end while
8: return InducedPolicy(t0) . action with the best estimated value

3.1.2 Monte Carlo tree search: the preliminaries

In the last section, we discussed algorithms for computing optimal (or ε-optimal) reach-
ability in MDPs. While these algorithms give guarantees on their result, they typically
don’t scale beyond MDPs with more than 1010 states. But what can be done when the
underlying graphs are so huge that they don’t fit in memory? This problem has been
considered by various communities in computer science including game theory, artificial
intelligence, and formal verification. One of the most successful techniques that has
emerged in tackling extremely large games is that of Monte Carlo Tree Search (MCTS),
first introduced for the game of Go2 in [Cou06]. A variant of MCTS was used in the now
famous AlphaGo program [SHM+16], which beat the top human Go player Lee Sedol.
See [BPW+12] for a detailed survey into the first 5 years of MCTS.

The overarching idea in MCTS is to use random simulations to quickly estimate the
quality of different actions available at a given state in the game graph. This is done in a
systematic way by building a search tree that helps in identifying the states from which
further simulations are to be run. At any point of time, the MCTS tree is a partial
unfolding of the source MDP with a few added statistics. In particular, with each tree
node (corresponding to a state of the MDP), we store the number of simulations (or
rollouts) that have started from the node as well as the cumulative reward obtained by
these simulations. MCTS tries to balance exploration, looking into the unknown regions
of the state space, and exploitation, looking at those regions of the state space that seem
promising. The phases of exploration and exploitation are illustrated in Figure 3.3. In
the illustration on the left, many simulations are run from equally unexplored leaf nodes
in order to obtain some quick estimates of the rewards available from that state. In this
example, the right most leaf node turns out to be most successful. Consequently, in the
next round, MCTS picks the right most leaf node for further exploitation, as depicted
in the right illustration of Figure 3.3.

Algorithm 2 gives the pseudocode of a basic MCTS algorithm. MCTS proceeds in
four stages.

1. In the first stage (line 3), a known policy called the tree policy is used to select
the next node (corresponding to some state of the MDP) to explore. This policy

2The game of Go on a 19x19 board contains around 10170 legal configurations! [TF06]

19

3 Controller Synthesis through Partial Exploration

Figure 3.3: Two important phases of MCTS: exploration (left) and exploitation (right). In the
exploration phase, simulations are run to estimate the unknown. In the exploitation
phase, computational effort is focused on highly rewarding parts of the graph.

tries to pick the best state based on the Upper Confidence Bound (UCB1) metric
[ACF02].

2. Once a node is selected, an action is picked and the tree is expanded by adding
the successor states corresponding to the action. Following this, one of the newly
added nodes is selected to start the simulation (line 4).

3. Next, a rollout policy is used to run a simulation (line 5). Typically, the rollout
policy uniformly at random picks the next action. The outcome of the rollout is
aggregated in xchild.

4. Finally, this information is propagated up the MCTS tree (line 6) so that the tree
policy is updated.

Balancing exploration and exploitation We now give some technical details of the
UCB1 metric that drives the tree policy, which balances exploration and exploitation.
For a given node x, if n gives the total number of simulations so far, nx gives the number
of simulations starting from x, and rx

nx
gives the average reward over these simulations,

then UCB1 is given as follows:

UCB1(x) =
rx
nx

+

√
2 lnn

nx

20

3 Controller Synthesis through Partial Exploration

Tree
Policy

Rollout
Policy

Tree
Backup

Rollout
Backup

Figure 3.4: Figure illustrating various phases of exploration and update in the broader MCTS
framework.

In particular, the tree policy maps every node t to a successor node having the greatest
UCB1 value.

TreePolicy(x) = arg max
x′∈succ(x)

UCB1(x′)

The UCB1 metric balances exploration and exploitation. Since the first term of the
expression, rx

nx
, gives the average reward, successor nodes that have had a higher pro-

portion of successful simulations would be preferred by the tree policy. On the other
hand, the second term is inversely proportional to the square root of the proportion of
simulations from the node x. This means that nodes from which fewer simulations have
been executed get preference. In particular, nodes that have not had any simulations
from them (nx = 0) have UCB1(x) =∞ and are hence picked uniformly at random by
the tree policy. An interested reader may refer to the original work introducing UCB1
[ACF02] for further details and analysis.

3.1.3 Contribution: MCTS + BRTDP

The results from BRTDP show us that partial exploration is a viable technique for solving
the optimal reachability problem with ε-optimality guarantees. However, the success of
BRTDP for a particular model depends heavily on there being a small set of states that
are important in the model [KM19]. Further, BRTDP also performs badly when there
exists an action that almost surely leads to a target but requires a large number of tries
(e.g., by the virtue of requiring many rare events to occur). In such cases, BRTDP
needs a large number of simulations to find the low-probability paths and even more
backpropagation steps to convey the information back. That said, the key advantage of
BRTDP is its ability to give ε-guarantees while remaining a simulation-based algorithm.

21

3 Controller Synthesis through Partial Exploration

On the other hand, the exploitation and exploration style of value computation, as
done in MCTS, has also displayed its tremendous scalability in practice [SHM+16]. How-
ever, it does not come with the type of hard guarantees seen in BRTDP. Consequently,
we attempt to direct the BRTDP search using ideas from MCTS to obtain the best of
both worlds. Firstly, it would give us the search strategy of MCTS. Secondly, it would
also give us the guarantees given by BRTDP. Hence, in Paper A, we present three al-
gorithms forming a hybrid between BRTDP and MCTS. The common feature among
these algorithms is that they still provide ε-optimal results and are immediately extens-
ible to models in which the transition probabilities are not known, following the ideas of
[BCC+14, Section 4.2]. To the best of our knowledge, this work is the first to explore
the use of MCTS in MDP model checking while providing ε-guarantees.

In Paper A, we introduce three different techniques lying on the spectrum between
pure MCTS (which does not give guarantees) and BRTDP. Each of our techniques return
a guaranteed interval within which the actual optimal probability would lie. Now we
describe the different variants of our algorithm. For the sake of completeness, the list
also includes the MCTS algorithm without ε-optimal guarantees.

MCTS In standard MCTS, the tree policy is determined by the UCB1 values of each
state, and the rollout policy uniformly at random chooses the next state. The
reward encountered by the simulation rt is accumulated at the node t from which
simulation began in the rollout backup step. In the tree backup phase, the r and
n values of each node from t to the root are updated.

Bounded MCTS (BMCTS) In the BMCTS approach, we augment the above men-
tioned standard MCTS with lower and upper bounds like in BRTDP. In addition
to the updates described above MCTS, we maintain additional attributes – L and
U – for every state and update them in both the rollout backup as well as the
tree backup phases using the Bellman operator. Since we are concerned with the
reachability objective, the reward of a rollout is set to 1 if the simulation ends in a
goal state, or 0 if the simulation ends either in a sink state or in a end-component
not containing any goal states.

MCTS-BRTDP This approach is similar to BMCTS, except that the rollout policy now
chooses the action with the best upper bound, like in BRTDP. With this, we get
the meaningful exploration strategy of BRTDP while still balancing exploration
and exploitation like in MCTS.

BRTDP-UCB In this approach, we replace the BRTDP policy of picking the action
with the best upper bound with a policy that picks the action with the best UCB1
bound.

Table 3.1 summarizes the algorithms described above. UCB1 refers to the tree policy
selecting the next node based on the UCB1 metric discussed earlier. The rollout policy
BRTDP refers to the BRTDP style of simulations by always choosing the action with
the best upper bound.

22

3 Controller Synthesis through Partial Exploration

Table 3.1: Spectrum of algorithms ranging from pure MCTS to pure BRTDP (Adapted from
Paper A). L and U refer to the lower and upper bounds of the states as computed in
BRTDP (Algorithm 1), while r and n are respectively the reward collected through
the rollouts and the number of rollouts.

Algorithm MCTS BMCTS
MCTS-
BRTDP

BRTDP-
UCB

BRTDP

Tree Policy UCB1 UCB1 UCB1
UCB1 BRTDP

Rollout Policy Uniform Uniform BRTDP
Rollout Backup — L,U L,U

r, n;L,U L,U
Tree Backup r, n r, n;L,U r, n;L,U

Concluding Remarks Our experiments show that the best performing algorithm lies
in the middle of the spectrum between MCTS and BRTDP (see Table 2, Paper A). Our
MCTS-BRTDP approach is consistently close or better than the parent approaches.
While BRTDP always starts its simulations from a single initial state, MCTS, due to
its tree policy, ends up selecting different states to base the simulations from. This key
advantage of MCTS allows it to handle rare-events close to the initial state.

Related Work A closely related but differently aligned area of research is that of Safe
Reinforcement Learning (RL) [GF15]. As typical with RL, the base objective is to
learn a policy that optimizes the expectation of discounted rewards. There are works
that focus on optimizing the worst case expected reward [NE05], using a parameter to
balance the reward and the risk-taking tendency [GW05], or optimizing the expected
reward over the worst k-quantile [Kas07; KM18]. For a detailed survey, we refer the
reader to [GF15]. Another line of work consider approaches to shield the learner from
catastrophic damages, e.g. [COM+19; HAK20; JKJ+20].

3.2 Continuous-time Markov Decision Process (CTMDP)

CTMDPs [How60] are a class of Markov processes in which transitions may be both
non-deterministic as well as governed by random time delays modelled exponentially.
They are a popular formalism in many fields, including but not limited to Operations
Research, Queuing Theory, Scheduling and Distributed Systems.

Example 3.2.1 (Motivating time-bounded reachability). Figure 3.5 shows a CTMDP
with 4 states {s0, s1, s2, s3} out of which s0 is an initial state and s3 is a goal state. The
initial state s0 has an action a, which leads to s2 after an exponential distributed delay
with a mean of 1/2 seconds. s0 additionally has an action b that leads to either s1 (with
probability 6/12) or s2 (with probability 6/12) after an average delay of 1/12 seconds.
If the system reaches state s1 or s2, then the only available actions take the CTMDP to
the goal after average delays of 1 second and 1/7 seconds respectively.

23

3 Controller Synthesis through Partial Exploration

s0

s1

s2

s3

b, 6

a, 2

b, 6 c, 7

d, 1

Goal

Figure 3.5: An example continuous-time Markov decision process.

Now, one may ask, what is the best strategy to adopt in order to reach the goal within
1 second? In our particular example, the strategy just involves choosing between actions
a and b. Action b looks like a high risk-high reward option, since the CTMDP might
move quickly to the state s2 from where it can reach the goal on an average of 1/7
seconds. On the other hand, action a mitigates the risk of ending up in s1 from where
it takes longer on average to reach the goal.

The problem discussed in the above example can be automatically solved using a
time-bounded reachability algorithm. Before we discuss the particulars of time-bounded
reachability algorithms, let us define formally the notion of CTMDPs.

Definition 3.2.1 (Continuous-time Markov Decision Process). A Continuous-time Markov
Decision Process (CTMDP) is a tuple C = (S, sinit, A,Av,R, 1), where

• S is a finite set of states

• sinit is the initial state

• A is a finite set of actions

• R : S ×A× S → R≥0 is a rate matrix

• Av : S → A gives the set of actions available in a state and is given by Av(s) =
{α ∈ A | ∃s′ ∈ S : R(s, α, s′) > 0}.

• 1 ⊆ S is a set of target or goal states.

During a run of the CTMDP, the time spent in each state is referred to as the residence

or sojourn time. An infinite path in a CTMDP, ρ = s0
a0t0−−→ s1

a1t1−−→ s2 . . . , is identified
by a sequence of tuples comprising state, action, and residence time. The set of infinite
paths is denoted by Paths. A finite path is a finite prefix of some infinite path. The set
of all finite paths is denoted by Paths∗. We use the notation ♦≤T 1 to denote all infinite
paths that see some state in 1 within T time units, i.e,

♦≤T 1 = {s0
a0t0−−→ s1

a1t1−−→ · · · ∈ Paths | s0 = sinit ∧ ∃i ∈ N · si ∈ 1 ∧
i−1∑

j=0

tj ≤ T)}

24

3 Controller Synthesis through Partial Exploration

As with MDPs, CTMDPs can also be controlled by controllers or schedulers. The
schedulers in CTMDPs however choose actions not only based on the path so far, but
also based on time, as their name suggests.

Definition 3.2.2 (Controller). A controller, also known as a scheduler in the context of
CTMDPs, is defined as in Definition 2.3.1, instantiating configurations to the Cartesian
product of state and time, i.e. C := S×R≥0. A scheduler is hence a map π : (S×R≥0×
A)∗ × S × R≥0 → Dist(A).

We only consider the class of measurable schedulers as defined in [WJ06; Neu10].
Out of the many variants of schedulers studied in literature [WJ06; Neu10; RS11], this
variant is called a timed history-dependent randomized scheduler. In every state, the
next action is sampled from the distribution π(ρ, t) where ρ is the path taken to arrive at
this state and t is the time elapsed in the state until the decision is taken. For a CTMDP
C, fixing a controller π and an initial state s yields a unique probability measure PπC,s
which, for every set of infinite paths, assigns a value ∈ [0, 1].

3.2.1 Model checking time-bounded reachability for CTMDPs

The problem of computing the unbounded reachability objective on CTMDPs can be
reduced to the same objective on an MDP (covered in Section 3.1.1) obtained using
the well-known uniformisation technique [GHP+06]. A more interesting objective for
continuous-time models such as the CTMDP is that of time-bounded reachability, as
we had seen in Example 3.2.1. Here, the question is “is the maximum (or minimum)
probability of reaching 1 from sinit within t time units greater than a threshold p?”.

t

P(♦≤ts3)

1

0.5

0.5 1 1.5

b
a

(0.773, 0.704)

Figure 3.6: Figure denoting the probabilities of reaching the target within time t for actions a
and b, for the CTMDP given in Figure 3.5. If the time remaining is less than 0.773
seconds, it is better to play action b, whereas if the deadline is more 0.773 seconds
away, the option that maximizes the probability of reaching the target is action a.

The optimal controller in CTMDPs typically depends on the time remaining until the
time bound is reached. For example, consider the CTMDP from Example 3.2.1 where

25

3 Controller Synthesis through Partial Exploration

there is a choice between actions a and b in the initial state. In Figure 3.6, we plot the
probability of reaching the target against the remaining time t, for both the actions. It
can be seen that the optimal action changes from b to a when the deadline is farther
than 0.773 seconds.

Formally, time-bounded reachability can be defined as follows.

Definition 3.2.3 (Optimal Time-bounded Reachability Probability). Given a CTMDP
C, a state s ∈ S, and a deadline T ∈ R≥0, the optimal time-bounded reachability
probability (or value) is defined as

Vs(T) := opt
π∈Π

PπC,s(♦≤T 1)

where opt ∈ {inf, sup} and Π is the set of general measurable schedulers.

Remark 2. [Neu10; RS11] prove that there exists a timed pure (non-randomized) memory-
less controller of the form π : S × R≥0 → A that can achieve the optimal time-bounded
reachability value achieved by the optimal timed history-dependent randomized control-
ler.

The model checking problem on CTMDP is phrased as follows:

Problem 3 (Time-bounded Reachability (TBR)). Is the maximal (minimal) prob-
ability of reaching a set of goal states 1 from some initial state sinit within a deadline
T greater than a threshold p? More precisely, is Vopt

sinit(T) > p.

The witness to the above problem is, like in MDPs, a controller that achieves the
threshold. The controller synthesis problem may independently be formulated as follows.

Problem 4 (Optimal TBR Controller). Given a CTMDP C, an initial state s, a
set of goal states 1, and a deadline T , what is the controller πopt that achieves the
optimal time-bounded reachability value? More formally,

πopt = arg opt
π∈Π

PπC,s(♦≤T 1)

where opt ∈ {min,max} and Π is the set of timed pure memoryless controllers.

State of the art The decidability of the decision version of the TBR problem is still
open. However, it was recently shown to be conditionally decidable subject to Schanuel’s
conjecture [MSS20]. For Continuous-time Markov Chain (CTMC), the well-known sub-
class of CTMDPs with a single action in each state, optimal TBR is decidable [ASS+00].

26

3 Controller Synthesis through Partial Exploration

Starting from the seminal work of Miller [Mil68], various works have shown the exist-
ence of deterministic optimal TBR schedulers for more general classes of the model. A
comprehensive review can be found in [Put94, p. 574] as well as [Neu10; RS11].

Currently, all known CTMDP algorithms, at best, compute ε-optimal TBR values.
[BHK+05] gives the first TBR model checking algorithm for the restricted class of uni-
form CTMDPs, those in which the sojourn time, i.e., the distribution of time spent in
a state, is same for all states. [NZ10] develops the first algorithm for a slightly less
restrictive class of locally uniform CTMDPs, those in which the sojourn time in a state
does not depend on the chosen action. They show that late total time memoryless de-
terministic schedulers suffice to resolve non-determinism in an optimal way. Classical
algorithms for TBR work by discretizing the time horizon into intervals and approxim-
ating the value for each interval. However, such algorithms are typically inefficient. On
this matter, [But20] comments (quoted verbatim): “As we can see from [But20, Fig-
ure 1.2], it is enough to discretize the time horizon with roughly 2 intervals (. . .) The
discretization-based algorithms for CTMDPs and MA that are known to date use from
85 to 2 · 107 intervals to analyse this model with precision 10−6.” One of the directions
towards more efficient analysis of CTMDPs is that of coming up with coarser discretiz-
ations [FRS+11; FRS+16]. Other approaches [BS11; BHH+11] divide the time-horizon
into intervals of variable length, adapting to each problem. Taking an alternate approach
from discretization, [BHH+15] presents an technique for approximating both early and
late schedulers for arbitrary CTMDPs, building on uniformization and untimed analysis
[BHK+05]. The ideas presented in Paper B have been extended to a closely related
formalism of Markov automata [EHZ10] in [But20].

3.2.2 Contribution: A new time-bounded reachability framework

A common problem with the algorithms described above is that they don’t scale well
to large models. Again, like with MDPs, we make an attempt to solve the state-space
explosion problem though partial exploration. In Paper B, we introduce a novel frame-
work for time-bounded reachability analysis that can be used to identify the important
parts of the state space using simulations. Like in Paper A, the inspiration for this work
comes from BRTDP. We exploit the fact that it is not necessary to have full information
about the model in order to compute the TBR value with ε-precision. Our framework
can be instantiated with any of the existing TBR algorithms that can, for each state of
the model, provide the TBR value up to ε-precision. Hence, if the model is amenable to
partial exploration, i.e., there exists a small important subset of the model that chiefly
contributes to the TBR value, our framework can be used to speed up any existing TBR
algorithm.

The key component of our framework is the algorithm depicted in Algorithm 1 of
Paper B, which we summarize here. The algorithm consists of 5 steps, which we now
describe intuitively:

1. Obtain the relevant subset of states. In this step, we run simulations following
a simulation policy πsim that can be instantiated in various ways (see Section 3.4,

27

3 Controller Synthesis through Partial Exploration

Figure 3.7: Obtaining the under-approximating (centre) and over-approximating (right) models
using Step 2 from the partial model identified in Step 1 (left). Illustration adapted
from Fig. 4, Paper B.

Paper B). The model is restricted to the states visited in this step to obtain a
partial model M ′ (depicted in Figure 3.7, left).

2. Under- and over-approximations. Two models are constructed out of the
partial model M ′. In the first model M ′, which we call the under-approximating
model, all states at the periphery of the explored states, i.e. states whose successors
were not visited, are turned into 0 states with a self-loop if they are not already
1 states (depicted in Figure 3.7, centre). In the second model M ′, called the
over-approximating model, all states at the frontier are turned into 1 states with
self-loops (depicted in Figure 3.7, right).

3. Computing TBR value. Now, the TBR value is computed using any of the
existing algorithms, e.g. [NZ10; BS11; BHH+15].

4. Refine current partial model through more simulations using πsim. In
this step, we grow our knowledge of the system by refining the partial model using
further simulations. πsim may additionally use the previously computed TBR
values to direct the search. Steps 2, 3, and 4 are then repeated.

5. Termination and result. We terminate once the difference in TBR values of M ′

and M ′ is less than ε.

Concluding Remarks Our results show that many models have a small subset of states
that our algorithm is able to identify. If the sub-CTMDP is indeed identifiable, then
classical algorithms can be sped up using our framework (see Section 4, Paper B). At
the same time, like in the case of MDP, our techniques don’t perform too well in models
where there does not exist reasonably sized sub-CTMDP suitable for computing TBR.
In Section 4.1 of Paper B, we present some preliminary results to show that the models
on which our technique perform poorly do not contain suitable sub-CTMDPs.

28

4 Controller Representation

Controllers are objects that decide how a system should behave in every state. There
are various ways in which one can automatically synthesize controllers — reinforcement
learning [SB98], dynamic programming [Ber05], model checking [CHV+18; BK08], and
reactive synthesis [Fin16], to name a few. Controller synthesis of hybrid systems through
discretization, construction of finite abstractions or showing bisimulations with symbolic
models and solving them using formal verification is yet another approach to obtain
controllers guaranteed to satisfy certain specifications [Tab09]. However, with all such
non-trivial automatic controller synthesis approaches, the result is typically a large and
incomprehensible lookup table mapping every valid state to the allowed action or actions.
While the correctness of controllers is guaranteed by the algorithms that synthesize them,
we turn our interest to data structure used to store or represent the controller function.
We consider two aspects of controllers that have increasing importance in this day and
age.

Size While Moore’s law has held true for almost half a century, typical embedded
devices still have very small amounts of memory relative to personal or enterprise-level
computing systems. This meagre amount of memory is spent in, among other things,
storing drivers to interface with sensors, performing wired or wireless communication,
running the real-time operating system, in addition to storing controllers. Hence, it be-
comes extremely important that the controllers flashed onto such devices are conservative
in terms of memory as well as usage of computational and communication resources.

Explainability As with most complex systems, especially those run by machine learn-
ing “blackboxes”, there is a growing demand for explainability and transparency. In
the fields of machine learning and artificial intelligence, explainable AI (XAI) [DSB17;
GCH+18] has evolved into an important subfield. With the advent of sophisticated con-
trollers controlling safety-critical systems, it becomes even more important to be able to
explain how and why the system is controlled in a certain way, especially for auditing and
certification. Human-interpretability is also useful in validating the correctness of the
automatically synthesized controller. A domain expert may be able to identify oddities
or bugs that may have arisen due to the model being an inaccurate representation of the
system, or due to a bug in the formal synthesis tool.

An ideal controller would be that which is:

• perfectly explainable

• compact, fit in the memory of restrictive hardware

29

4 Controller Representation

• require minimal bandwidth to actuate controllable devices

• quick and efficient at identifying the next decision

In our work on controller representation, we try to address these points. In the
following sections, we give a brief introduction to existing controller representations
such as lookup tables and binary decision diagrams (BDDs), and introduce the reader
to the emerging line of research using decision trees (DTs) to represent controllers. We
present, to the best of our knowledge, the first results on using decision trees to represent
numeric controllers obtained from controller synthesis of hybrid MDPs as well as non-
probabilistic Hybrid systems.

Note that we restrict ourselves to pure memoryless controllers, i.e., controllers that
only depend on the current state, and do not randomize between actions, as defined in
Definition 2.3.1. More precisely, we only consider controllers of the form π : C → 2A.

4.1 Preliminaries

We now introduce three data structures, lookup tables, Binary Decision Diagrams (BDDs)
and Decision Trees (DTs), which we will be using in rest of this chapter.

4.1.1 Lookup tables

A lookup table is an explicit representation storing key-value pairs. Formally, a lookup
table is a relation T ⊆ K × V where K is a set of keys and V is a set of values. Both
the keys and the values may be high-dimensional, composed of multiple numeric, or
non-numeric components. An example of a lookup table is given in Figure 4.1a. In this
table, the first three columns together make up the key and the last column makes up
the value.

4.1.2 Binary decision diagrams

A Binary Decision Diagram (BDD) is a data structure used to represent Boolean func-
tions, or more generally to store a set of binary strings. Hence, they can also be used to
store sets and relations by encoding the variables or objects in binary. Various improve-
ments exist such as Zero-Suppressed Decision Diagrams (ZDDs), Algebraic Decision
Diagrams (ADDs) or Multi-Terminal Binary Decision Diagrams (MTBDDs), where the
constants come from arbitrary finite domains. We refer the reader to [CHV+18, Ch. 7]
or [And97] for a more gentle introduction to BDDs.

Example 4.1.1 (Looking up a BDD). Consider a function f : (K1 × K2 × K3) → V
represented in the form of the lookup table in Figure 4.1a. Using standard (reduced
ordered) BDD construction algorithms and the variable ordering k1 < k2 < k3 < v, we
get the BDD given in Figure 4.1b. Now, for instance, we can check if f(1, 0, 1) = 1 as
follows. We start at the highest level corresponding to the variable k1. Since we want
to check the case where k1 = 1, we follow the T to the node 2 in the next level. Since

30

4 Controller Representation

k1 k2 k3 v

0 0 0 1

0 0 1 1

0 1 1 1

0 1 0 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a) Lookup table

2

3

4

5 6

>

k1

k2

k3

v

T

F

T

F

T F

FT

(b) Binary Decision Diagram

Figure 4.1: A lookup table (left) and the BDD corresponding to it (right). Variable ordering of
the BDD is indicated on its left. True edges are marked with a solid line and false
edges are marked with a dashed line.

we have k2 = 0 and k3 = 1 we take the F edge to 4 followed by the T edge to 5. Finally,
since v = 1, we follow the T edge to > which indicates that f indeed maps (1, 0, 1) to
1. Notice that in the BDD, certain nodes do not have one of the outgoing edges. This
is due to the ⊥ node being removed from the BDD for conciseness. For example, if we
query the BDD for k1 = 1, k2 = 0, k3 = 1, v = 0, we realize that there is no F edge at
node 5, and hence conclude that f does not map (1, 0, 1) to 0.

4.1.3 Decision trees

Decision Trees (DTs) are a formal decision-making tool used frequently in machine
learning as models for classification and regression [LL14, Ch. 8]. Classification is the
problem of mapping an input to an output or an attribute to a label. In supervised
learning, a model such as a DT is trained using known attribute-label examples in order
to predict the labels of unseen attributes. Regression is similar to classification in that
regression also intends to map inputs to outputs, however, in the case of regression, the
attributes are mapped to a value rather than being labelled.

For a formal definition and semantics of a decision tree, we refer the reader to Section
3 of Paper D. However, intuitively, they may be naturally interpreted as a branching
program (nested if-else blocks).

Example 4.1.2 (Representing a dataset using a decision tree). Let us consider a classic
example of classification. Suppose that you are getting more e-mails that you can handle
and you want to set up a spam filter. You have come to realize that certain e-mails are
obvious spams, certain other e-mails are obvious non-spams and the rest need further

31

4 Controller Representation

Table 4.1: Sample dataset for Example 4.1.2 showing the number of occurrences of different
keywords in 5 e-mails, along with known labelling as spam, not spam, and unknown.

Number of occurrences
Label

prince inheritance casino magazine reminder discussion meeting

2 3 0 0 0 0 0 spam
0 0 3 0 0 0 0 spam
0 0 0 2 1 0 0 unknown
0 0 0 0 0 1 1 not spam
0 0 0 0 1 0 1 not spam

#prince > 1

spam #meeting > 0

not spam#casino > 2

spamunknown

true false

Figure 4.2: A decision tree classifying e-mails as spam, not spam, or unknown, constructed from
the dataset given in Table 4.1.

investigation, based on just the number of occurrences of certain keywords. Table 4.1
summarizes your observation. From the above data, can you classify a new e-mail con-
taining 1 occurrences each of “prince”, “casino” and “discussion” as “spam”, “unknown”
or “not spam”?

We represent the dataset in Table 4.1 as a decision tree in Figure 4.2. Given any tuple
consisting of the number of occurrences of the various keywords, a label may be found
as follows. Evaluation begins from the root node (top of the tree) down the tree, ending
up in a leaf node (a node without any children). The predicate in each node of the tree
is evaluated based on the input tuple and either of the true or false branches is followed
to the next node. The evaluation ends at a leaf node, thereby obtaining a label for the
input tuple.

For every tuple of keyword occurrences in the given dataset, our decision tree is able to
give the correct label. One can immediately notice that this tree does not even depend
on certain variables such as the number of occurrences of the “magazine” keyword. In

32

4 Controller Representation

fact, only three of the keywords are necessary to complete this classification task. In
contrast, if this table were to be represented using a BDD, then it would have 13 levels
(2 bits each for the keywords “prince”, “inheritance”, “casino” and “magazine”, 1 bit
each for the remaining keywords, and 2 bits for the label).

Remark 3 (Overfitting). Note that the tree we constructed is able to map every entry in
the given dataset to the correct label. In machine learning, this is termed overfitting and
is typically encountered when a practitioner discovers that a learnt classification model
fails to generalize to new data even though it gives a very high accuracy on the dataset
used for training.

The above example illustrates the use of classification models in machine learning.
By analysing the data presented in Example 4.1.2, we can manually come up with a
set of rules, that may be concisely represented diagrammatically, in the form of a DT,
as shown in Figure 4.2. However, various algorithms exist to automatically learn such
trees, notably CART [BFO+84], ID3 [Qui86] and its successor C4.5 [Qui93].

Intuition behind decision tree learning algorithms We can view a decision tree learn-
ing algorithm as one that takes a lookup table as input and produces a decision tree
representing the lookup table precisely as output. While traditional machine learning
techniques try to produce “generalized” decision trees that are able to label unseen data,
we focus on algorithms that can exactly represent the input lookup table (see Remark
3). Let the lookup table, also called the dataset in DT learning terminology, be a tuple
of input vectors with their respective labels, i.e. D = (X,Y). Intuitively, a decision tree
algorithm tries to recursively split the high-dimensional space containing X into mutu-
ally exclusive boxes (or subsets) containing identically labelled inputs. In the following
explanation, we call a box homogeneous if all inputs in the box are labelled identically.
The algorithm follows a recursive procedure with each call containing two basic steps.

1. In each step, the algorithm tries to split the space into two boxes with the help of
a predicate, which may be generated by a predicate generator.

2. The predicates output by the generator are evaluated using a predicate selector,
which selects the predicate that splits the current space into two maximally ho-
mogeneous boxes. The homogeneity is measured with the help of a measure called
the impurity measure.

These steps are recursively applied on the boxes resulting from every split, until both of
the boxes are completely homogeneous.

4.2 State of the Art

Controllers can be represented using various data structures such as BDDs, ADDs, and
DTs in addition to the most straightforward lookup tables. In this section, we discuss
the existing state-of-the-art in controller representations.

33

4 Controller Representation

4.2.1 Lookup tables

Lookup tables are one of the simplest and ubiquitous controller representations. Most
model checking and controller synthesis tools, e.g. PRISM [KNP11], Storm [HJK+20],
SCOTS [RZ16], or Uppaal Stratego [DJL+15], typically come with the ability to output
their controllers as lookup tables.

The key advantage of lookup tables is the lookup speed, especially when the table
is implemented on specialized hardware such as Field Programmable Gate Arrays (FP-
GAs). However, they are heavily disadvantaged since (i) they tend to be large due to
their verbosity; and (ii) they are not explainable or interpretable unless they contain
only a few lines.

4.2.2 Binary decision diagrams and their extensions

BDDs have been used in various areas such as formal verification of hardware, very large-
scale integration computer-aided design (VLSI CAD) [Bry95; Min12], solving combinat-
orial problems [Min93], and symbolic model checking [BCM+90] among others. Inspired
by their use in symbolic model checking, BDDs were first used to represent controllers
(referred to as universal plans) in [CRT98]. [HSH+99; SHB00] uses Algebraic Decision
Diagrams (ADDs) [BFG+97], an extension that allows non-boolean values at terminals,
to represent MDPs controllers. Similar to our work, [DIL+09] proposes an automatic
compression technique for numerical controllers, however using Ordered BDDs. [ZVJ18]
considers the problem of determinizing controllers optimally for BDD representations.

Advantages BDDs can represent Boolean functions compactly, and are amenable fast
logical manipulation [Bry92; Bry18], for e.g. operations such as union, intersection, and
negation take only polynomial time. They are also quite good at compressing control-
lers given a good variable order and, for permissive controllers, a good determinization
strategy [ZVJ18]. Moreover, the resulting BDD representation can directly be imple-
mented in hardware.

Disadvantages That said, BDDs are incomprehensible, especially when representing
sets or relations containing numbers or other non-Boolean objects such as tuples of
numbers, as common in controllers. This is mainly due to the fact that each branching
node in a BDD performs a comparison on a single bit of some object’s binary encoding.
Moreover, the size of BDDs is extremely sensitive to variable ordering.

For example, recall the lookup table and BDD of Figure 4.1. The variable ordering
chosen in the figure is s1 < s2 < s3 < a1, which results in a BDD with 8 nodes. Figure 4.3
shows the BDD that is obtained by choosing an alternate ordering: a1 < s3 < s2 < s1.
This BDD has eight nodes as opposed to six nodes in Figure 4.1b, which is a 33% increase
in size. We computed the BDDs corresponding to all 4! variable orderings for the lookup
table (Figure 4.1a). Out of the 24 BDDs, 5 have six nodes, 6 have seven nodes and 13
have eight nodes.

34

4 Controller Representation

2

3 4

5 6

7 8

>

a1

s3

s2

s1

TF

T

F

T

T

F

T

F

F

Figure 4.3: Sensitivity of BDD size to variable ordering. This figure depicts the BDD repres-
enting the lookup table in Figure 4.1a, however with a different variable ordering
compared to the BDD in Figure 4.1b.

While this is a toy example, similar behaviour can be observed even on very large BDDs
[ZVJ18]. The problem of finding the best variable ordering is NP-complete [BW96].

4.2.3 Decision trees

Use in Reinforcement Learning In their work on structured policy iteration, [BDG95]
use DTs for exploiting structure in policy construction in MDPs. Both value functions
(mappings from state to values) and policies are represented using decision trees while the
MDP itself is represented using a Dynamic Bayesian Network (DBN). [BDH99] surveys
the decision-theoretic planning literature covering structured/factored representation.
[PH+01; Pye03] use decision trees to represent the value functions during reinforcement
learning. [CDB07] uses first-order logical DT [Blo99] in relational reinforcement learning
to learn a relational decision tree that predicts whether an action will be executed by
the policy. [RTJ+19] is similar to the work of Pyeatt [Pye03], however, save on the size
of the decision tree by using better splitting heuristics. In all of these works, the DT
construction is tightly coupled with the respective (reinforcement) learning algorithms.
Unlike these works, our techniques can be applied out of the box to any algorithm that
produces policies or controllers in the form of lookup tables. A work quite similar to
ours is [MYA12], that post-processes policies learned through reinforcement learning to
obtain fuzzy decision trees [Jan98]. However, their algorithm cannot learn permissive
controllers and is not tailored to produce DT controllers that preserve the guarantees of
the original controllers.

Use in model checking and controller synthesis [Gir12] claims to use ADD [BFG+97]
for representing a controller, however, uses DTs without explicitly giving an algorithm

35

4 Controller Representation

to learn them. [BCC+15] makes use of decision trees to learn minimal counterexamples
in probabilistic verification, however, their method only produces ε-correct counter-
examples. [BCK+18] uses decision trees to represent guaranteed strategies from reactive
synthesis, however, our work differs from theirs in three ways. First, they use a binary
representation of the data (similar to BDDs), which means that their predicates can
only test if a Boolean combination of variables is true or false. In our work, model
variables are allowed to take values from infinite but ordered sets or finite unordered
sets. Second, the trees produced by [BCK+18] need to be queried with a state-action
(s, a) pair to figure out if action a can be played in state s. In our trees, the leaf nodes
of the trees contain playable actions so that querying a state s will immediately give the
allowed action. Third, [BCK+18] requires the positive as well as negative examples to
teach the DT allowed as well as disallowed actions. Consequently, their dataset has to
be “complete” enumerating every possible state and action pairs. On the other hand in
our work, we can directly use a synthesized controller with exclusively positive examples,
without the need of enumerating all state-action pairs.

[ABC+19], which is co-authored by the author of this dissertation but not included
here, builds upon the ideas presented in Paper C and introduces the use of linear predic-
ates in the nodes of decision trees representing controllers obtained from reactive syn-
thesis as well as model checking. The thesis [Jac20] builds upon Paper D and introduces
various improvements to our tool dtControl such as the ability to handle categorical
predicates and improved determinization strategies.

Apart from their use in representing controllers and policies, DTs are often used to
increase confidence in opaque machine learning models by bringing in comprehensibility.
For example, [ABT16; AA19; ZYM+19; WDH+20] use DTs to explain the decisions
taken by neural networks.

4.3 Contribution: Improved Decision Tree Representations

As we saw in the previous section, BDDs are extremely sensitive to variable ordering.
Even with the perfect variable order, BDDs are hardly explainable unless the domain
of our controller only contains boolean variables. DTs are highly interpretable and ex-
plainable compared to BDDs. Moreover, they can handle ordered (numeric) as well
as unordered (categorical) variables. While BDDs or ADDs may contain only boolean
comparisons in their inner nodes, DTs may contain linear, polynomial, or even gen-
eral algebraic predicates. Further, while the problem of computing the optimal DT is
NP-complete, the greedy algorithms for DT construction using various splitting heur-
istics (called impurity measures) typically perform very well in practice. The rich DT
learning literature also offers specialized algorithms for producing trees with more than
one decision in the leaf nodes. Moreover, attribute value grouping [Qui93; Jac20, Sec.
5.2.2] allows constructing trees with multi-way splits in decision nodes. As we shall see
in the following sections, these features make DTs an attractive model for representing
controllers.

36

4 Controller Representation

We now outline the contributions of Papers C and D. Both these papers tackle the
problem of representing controllers concisely and explainably while also preserving the
guarantees of the original controller. In Paper C, we build and present the Stratego+

framework, which tightly couples with Uppaal Stratego to produce safe, small, and
(nearly) optimal controllers. In Paper D, we present an open-source tool with interfaces
to multiple controller synthesis tools such as Uppaal Stratego and SCOTS. Additionally,
in both the papers, we present different adaptations of the DT learning algorithm CART
[BFO+84] to learn exact representations of the controller while offering multiple choices
to preserve or sacrifice permissiveness.

The goal of decision tree learning in machine learning is not to represent key-value
pairs as we are doing here, but to learn from key-value pairs a classifier that can predict
the value of unseen keys, or in other words, generalize to new data (recall Remark 3).
To achieve this goal, DT learning algorithms in Machine Learning (ML) additionally
feature certain peculiarities such as early stopping, pruning, and various other tricks to
reduce overfitting. These techniques typically bring down the size of the DT during the
learning phase itself or post-learning. In our case however, the data we want to learn
come from guaranteed controllers obtained through model checking or other automated
controller synthesis techniques. In order to preserve these guarantees, the controller
must be represented exactly. This necessitates special care when adapting the tree
construction algorithms.

To the best of our knowledge, our work is the first to use DTs to represent numeric CPS
controllers obtained from controller synthesis of hybrid MDPs as well as non-probabilistic
Hybrid systems, while preserving guarantees of the original controller. Naturally, the
new techniques presented here may also be extended to any pure memoryless controller.

4.3.1 Stratego+ framework

Our first contribution towards controller representation is the Stratego+ framework.
In order to grasp the idea in its entirety, it is necessary to give an overview of how
Uppaal Stratego [DJL+15] learns and optimizes controllers. In Figure 4.4, we depict
a simplified schematic diagram of Uppaal Stratego. In the first step, the model M
given to Uppaal Stratego is abstracted into a timed game G. Uppaal Tiga [BCD+07]
is used to synthesize a controller satisfying a certain specification. This controller is
stored in the form of a lookup table, π. Now, Uppaal Stratego is given an optimization
query alongside the model and the lookup table that ensures some specification. Uppaal
Stratego uses multiple reinforcement learning algorithms on the model restricted by
applying the controller produced by Uppaal Tiga on it, in order to optimize and obtain
a nearly-optimal controller πopt satisfying an optimization query.

The Stratego+ framework integrates DTs in Uppaal Stratego in two different ways
as illustrated in Fig. 2 of Paper C.

• In the first approach (part of Figure 4.4 on the right, drawn in), the controller
π output by Uppaal Tiga is converted into a DT. In the reinforcement learning
step, the simulations are run on the model restricted to the actions given by the

37

4 Controller Representation

Hybrid
MDP M

Timed
Game G

Controller
π

M � π

πopt DT(πopt)

DTk,p(π)

M �DTk,p(π)

(DTk,p(π))opt

Uppaal

TigaAbstraction

Stratego
Learning

Stratego
Learning

DT learning

k, p

DT learning

exact

Figure 4.4: A schematic diagram showing how Uppaal Stratego synthesizes near-optimal
strategies, along with the two new additions in Stratego+ (drawn in and).
The parameters k and p, described in more detail in Section 3.4 of Paper C, are
used to obtain a balance between size and optimality of the resulting DT-basec
controller.

DT-based controller. The output of the RL step is a preference over actions in
each state. We use this preference on the DT in order to obtain a deterministic,
small, guaranteed and optimal controller (DTk,p(π))opt.

• In the second approach (bottom center of Figure 4.4, drawn in), the DT learning
step after Uppaal Tiga produces a guaranteed controller is eliminated. Instead,
the RL takes place on the model restricted to the actions given by the Uppaal

Tiga controller π. The action preference obtained from RL and the Uppaal Tiga

controller are fed to DT learning algorithm, which then produces a deterministic
tree DT(πopt) that is a small, guaranteed and optimal controller.

4.3.2 The dtControl toolbox

Our second contribution under the theme of controller representations is the tool dtControl,
presented in Paper D. dtControl is a toolbox enabling researchers and practitioners to
experiment with representing controllers as DTs. Currently, dtControl can be used to
represent non-randomized memoryless controllers C : S → 2A, where S is a set of states
where each state is an n-tuple of numeric variables1, and A is a set of actions where each
action is an m-tuple of numeric or non-numeric but finite variables. dtControl contains
numerous tuneable parameters allowing users to select from a multitude of implemented
algorithms.

1dtControl was recently extended [Jac20] to handle categorical variables, i.e. variables that take a
finite set of unordered discrete values.

38

4 Controller Representation

dtControl

DT Learner

Predicate
Selector

Determinizer

Predicate
Generator

Input
Controller

SCOTS
Uppaal

CSV

Decision
Tree

Controller
DOT file
C code

Benchmarks

Figure 4.5: A schematic diagram of dtControl showing its various components and their in-
teractions.

The tool

A schematic diagram of dtControl is given in Figure 4.5. Given an input controller in
the form of a lookup table in one of the various supported formats, dtControl constructs
a decision tree representing the input controller exactly (without loss of information).
Additionally, if the input controller is permissive, then dtControl can be configured to
reduce the permissiveness and typically obtain an even smaller tree. The final decision
tree controller can be exported as a DOT file (Graphviz) or as a C file containing a
nesting of if-else blocks.

We now discuss the key components of the dtControl machinery:

• Determinizer that can resolve the non-determinism (or reduce the permissive-
ness) in the controller according to a user-chosen strategy (e.g. minimize the norm
of the control input, or randomly choose between the available actions).

• Predicate generator that generates predicates using variables and constants
from a given domain, typically derived from the loaded data.

• Predicate selector that computes the quality or effectiveness of predicates at
splitting subsets of the pre-processed data.

• Decision tree learner that takes in the processed input, queries the predicate
generator for predicates, discriminates between predicates and chooses the best
predicate with the help of the predicate selector and constructs a decision tree. The
decision tree learner uses a modified version of the CART algorithm [BFO+84].

Each of the components are modular and can be easily instantiated for different needs.
dtControl also provides a list of preset configurations that have been found to perform

39

4 Controller Representation

best in our experiments. Additionally, we also provide a user and developer manuals on
the official website dtcontrol.model.in.tum.de.

Adaptations of the learning algorithms

We make the following deviations from standard DT learning algorithms used in machine
learning:

• Do not perform any steps that prevent overfitting. This is achieved by splitting
nodes until each of them contain homogeneously labelled data points.

• Allow arbitrary predicates at nodes, not just axis-parallel (e.g., x > c). For this,
we introduce the idea of a predicate generator that may generate any predicate,
later to be evaluated by the predicate selector. Currently supported predicate
generators include logistic regression, linear support vector machines (SVMs), or
OC1 [MKS+93].

• Allow determinization of the controller from within the learning algorithm. We
allow determination of the controller both globally (pre-processing) and locally,
just before selecting predicates for a particular node.

• Allow steps that reduce the size of the tree, but maintain guarantees. Usage of the
minimum split size parameter and safe pruning (Section 3.4, Paper C) allow us to
tune the amount of permissiveness in the controller while maintaining guarantees.

Additionally, we introduce a novel determinization technique called MaxFreq (Section
4.2, Paper D) that determinizes parts of the dataset locally just before splitting a par-
ticular node in order to obtain smaller trees. Experimental results (Table 1, Paper D)
show that using MaxFreq typically gives tiny controllers.

Remarks on size and explainability Our results show that most (pure memoryless)
controllers contain some inherent structure that decision trees can exploit in order to
reduce size. The decision trees obtained using the Stratego+ framework were found to
be orders-of-magnitude smaller than the respective lookup tables (Table 1, Paper C).
Additionally, we also saw the possibility of sacrificing permissiveness and thereby room
for optimization in exchange for smaller trees. With dtControl, 5 out of 8 permissive
controllers used in our benchmarks (Table 1, Paper D) could be represented with decision
trees small enough to be drawn on paper. For most controllers, we also found that the
DTs are smaller than a best-effort2 BDD-based representation (Table 2, Paper D). We
believe that these small trees can hence be easily converted into C code and used in
embedded applications.

On the aspect of explainability, we found that it is typically easy to interpret the trees
produced due to (i) size of the tree being small; as well as (ii) the predicates used in

2We optimized the sizes of the BDDs by applying Rudell’s sifting algorithm [Rud93] to reorder variables
until no better reordering could be found.

40

https://dtcontrol.model.in.tum.de/

4 Controller Representation

Troom2 ≤ 20.625

Troom5 ≤ 20.625 Troom5 ≤ 20.625

(1, 1) (1, 0) (0, 1) (0, 0)

true false

Figure 4.6: Decision tree representation of an automatic room heating system containing 26,244
entries in the lookup table.

the nodes being explainable. For example, a decision tree produced by dtControl for
an automatic room heating system [JZ17] is depicted in Figure 4.6. While the original
lookup table consisted of 26,244 state-action pairs with each state comprising sensor
readings from 10 different rooms, dtControl discovered that only two sensors were
needed to control the system while maintaining the guarantees of the original controller.
This shows not just that decision trees can be explainable, but also a consequence of
explainability: being able to optimize the implementation after the controller is vetted
by a domain expert.

41

5 Conclusion & Outlook

This publication-based dissertation is a culmination of the author’s doctoral work in two
directions: (i) tackling the state-space explosion problem in probabilistic model checking
using partial exploration; and (ii) representing controllers obtained from quantitative
model checking or formal controller synthesis concisely and explainably. We summarize
the contributions below and discuss some possibilities for future work.

5.1 Solving State-Space Explosion with Partial Exploration

We presented two techniques to improve existing probabilistic model checking procedures
for discrete and continuous MDPs. In particular, in Paper A, we gave multiple algorithms
for reachability verification of MDPs inspired by the successes of MCTS in game solving
and Artificial Intelligence with the likes of AlphaGo. Our algorithms try to balance
exploration and exploitation using the UCB1 heuristic commonly used in MCTS. In order
to obtain ε-optimality, we interleave BRTDP-style simulations and back-propagations
with MCTS. Our best algorithm is at least as good as pure MCTS as well as pure
BRTDP, hence making it a very viable choice from among the state-of-the-art partial
exploration algorithms for reachability. Its key advantage over BRTDP is that the
MCTS part of our algorithm identifies good non-initial states from which the BRTDP-
style simulations may start. This allows our algorithm to handle rare events better than
BRTDP, as long as the MCTS tree grows to include it.

In Paper B, we introduced an algorithm to speed up a large class of traditional time-
bounded reachability (TBR) algorithms, building upon the idea underlying BRTDP of
using simulations to identify the “important” states. We compute two sub-CTMDPs
(a lower- and an upper-bound CTMDP) based on the states we have seen through
simulations and run an existing TBR algorithm on them to obtain a lower bound as
well as an upper bound on the actual TBR value. These bounds are then used in order
to improve our simulation strategy, which then allows us to grow the sub-CTMDPs,
consequently improving our TBR estimates. The iterative algorithm hence can be seen
as interleaving an existing TBR algorithm with simulations in order to speed up the
said algorithm. The simulations help in identifying the states necessary to estimate the
TBR value for the specific model-specification combination, leading to a reduction of
the amount of computation needed.

Both the presented papers are small steps into the largely unexplored area of using
partial exploration to compute reachability probabilities. While partial exploration does
not work for all model topologies, we notice that for certain model-property combina-
tions, there is typically a subset of “relevant” states [KM19] that allows these algorithms

43

5 Conclusion & Outlook

to synthesize ε-optimal controllers. Characterizing the classes of model-property com-
binations for which such relevant subsets exist could be a potential direction for future
work. With such a characterization, a meta-algorithm could be designed with the ability
to choose the best concrete reachability algorithm for the specific problem. A second,
more obvious direction of future work could be to extend these approaches to more
complex specifications such as mean-payoff (like in [ACD+17]) and LTL.

5.2 Explainable and Concise Representation of Controllers

As our second major contribution, we presented algorithms and tools for representing
controllers concisely and explainably using Decision Trees in Papers C and D. In the
former, we presented the Stratego+ framework to obtain safe, near-optimal and small
controllers with the help of Uppaal Stratego. We adapted standard DT learning al-
gorithms with the ability to construct DTs maintaining the guarantees of the original
controller. Further, we introduced some strategies to minimize the size of the DT rep-
resentation even further without losing guarantees, however, at the cost of sacrificing
permissiveness and consequently, optimality.

In Paper D, inspired by the promising results of representing controllers by DTs,
we developed an open-source toolkit called dtControl. Here, we implemented various
strategies to customize the DT construction, with the ability to instantiate the predicate
generator, predicate selector, and determinizer in different ways. Additionally, we intro-
duced a novel determinization strategy, MaxFreq, which can locally determinize parts of
the controller during the learning process in order to obtain even smaller representations.

As opposed to representations using BDDs, we do not have to encode the domain
and range of the controller in binary. Compared to previous work [BCC+15; BCK+18],
our trees are also more meaningful as our predicates do not contain inequalities with
unordered variables. Most importantly, we demonstrated that in many examples, we get
very small DTs that can be directly read and analysed by domain experts, something
that would not have been possible with BDDs and ADDs.

The potential of having explainable DTs is yet to be explored properly. In Paper C,
we were able to find a bug in the model that became evident based on the DT repres-
entation of the controller. This happens when humans with sufficient domain knowledge
are able to determine whether certain actions recommended by the controller are sens-
ible. For the room heating example (10rooms) in Paper D, we obtained a decision
tree that revealed that only two sensor readings were required to control the system —
something that would not have been possible with traditional representations. In an
ongoing work, we are using dtControl to help robot designers create better models by
constructing DT representation of not just controllers, but also reachability values of
states using dtControl. These representations identify issues such as missing recovery
actions. [FZW+17] reminds us that formally verified systems may also err, due to in-
correct assumptions made during modelling or formulating the specification. We believe
that if controllers are small and explainable, engineers, domain experts, or certification
authorities may be able to catch bugs before they materialize.

44

5 Conclusion & Outlook

Various other directions may be explored in the future:

• Currently, we use predicates such as x < c and ax + by + cz < d in the decision
nodes of the tree. However, can we design learning algorithms that can automat-
ically discover the domain knowledge embedded in the controller (e.g. equations
of motion in a cruise control controller)?

• In the similar vein as in [BCC+15] and the work of Boutilier et al. in reinforcement
learning [SHB00; HSH+99; BDH99], can we design model checking algorithms
that directly work and manipulate DTs, rather than post-processing the controller
output by them?

• A decision tree typically contains duplicate nodes across multiple branches, unlike
BDDs or ADDs, which are both decision diagrams without duplication. Can we de-
duplicate decision trees to obtain decision diagrams, or even directly learn decision
diagrams?

• Could the growing field of program synthesis [GPS17] be explored for an alternate
way to synthesize small and explainable controllers?

In summary, this thesis presented some ideas to help make quantitative model check-
ing and controller synthesis more scalable, feasible and accessible. We have identified
multiple areas for future work, both towards applying partial exploration techniques for
probabilistic verification, and in coming up with better controller representations. We
believe that these lines of research are increasingly important as the world grows ever
more dependent on cyber-physical systems.

45

Bibliography

[AA19] Stephan Alaniz and Zeynep Akata. ‘XOC: Explainable Observer-Classifier
for Explainable Binary Decisions’. In: CoRR abs/1902.01780 (2019). arXiv:
1902.01780. url: http://arxiv.org/abs/1902.01780.

[ABC+19] Pranav Ashok, Tomás Brázdil, Krishnendu Chatterjee, Jan Kret́ınský, Chris-
toph H. Lampert and Viktor Toman. ‘Strategy Representation by Decision
Trees with Linear Classifiers’. In: Quantitative Evaluation of Systems, 16th
International Conference, QEST 2019, Glasgow, UK, September 10-12,
2019, Proceedings. Ed. by David Parker and Verena Wolf. Vol. 11785. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 109–128. doi: 10.
1007/978-3-030-30281-8_7. url: https://doi.org/10.1007/978-3-
030-30281-8%5C_7.

[ABH+18] Pranav Ashok, Yuliya Butkova, Holger Hermanns and Jan Kret́ınský. ‘Continuous-
Time Markov Decisions Based on Partial Exploration’. In: Automated Tech-
nology for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings. Ed. by
Shuvendu K. Lahiri and Chao Wang. Vol. 11138. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 317–334. doi: 10.1007/978-3-030-
01090-4_19. url: https://doi.org/10.1007/978-3-030-01090-
4%5C_19.

[ABK+18] Pranav Ashok, Tomás Brázdil, Jan Kret́ınský and Ondrej Slámecka. ‘Monte
Carlo Tree Search for Verifying Reachability in Markov Decision Processes’.
In: Leveraging Applications of Formal Methods, Verification and Valida-
tion. Verification - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part II. Ed. by Tiziana Margaria
and Bernhard Steffen. Vol. 11245. Lecture Notes in Computer Science.
Springer, 2018, pp. 322–335. doi: 10.1007/978-3-030-03421-4_21.
url: https://doi.org/10.1007/978-3-030-03421-4%5C_21.

[ABT16] Karim Ahmed, Mohammad Haris Baig and Lorenzo Torresani. ‘Network
of Experts for Large-Scale Image Categorization’. In: Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VII. Ed. by Bastian Leibe, Jiri
Matas, Nicu Sebe and Max Welling. Vol. 9911. Lecture Notes in Computer
Science. Springer, 2016, pp. 516–532. doi: 10.1007/978-3-319-46478-
7_32. url: https://doi.org/10.1007/978-3-319-46478-7%5C_32.

47

https://arxiv.org/abs/1902.01780
http://arxiv.org/abs/1902.01780
https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1007/978-3-030-30281-8%5C_7
https://doi.org/10.1007/978-3-030-30281-8%5C_7
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4%5C_19
https://doi.org/10.1007/978-3-030-01090-4%5C_19
https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-030-03421-4%5C_21
https://doi.org/10.1007/978-3-319-46478-7_32
https://doi.org/10.1007/978-3-319-46478-7_32
https://doi.org/10.1007/978-3-319-46478-7%5C_32

Bibliography

[ACD+17] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kret́ınský
and Tobias Meggendorfer. ‘Value Iteration for Long-Run Average Reward
in Markov Decision Processes’. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I. Ed. by Rupak Majumdar and Viktor Kuncak.
Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 201–
221. doi: 10.1007/978-3-319-63387-9_10. url: https://doi.org/
10.1007/978-3-319-63387-9%5C_10.

[ACF02] Peter Auer, Nicolò Cesa-Bianchi and Paul Fischer. ‘Finite-time Analysis of
the Multiarmed Bandit Problem’. In: Mach. Learn. 47.2-3 (2002), pp. 235–
256. doi: 10.1023/A:1013689704352. url: https://doi.org/10.1023/
A:1013689704352.

[ACK+20] Pranav Ashok, Krishnendu Chatterjee, Jan Kret́ınský, Maximilian Wein-
inger and Tobias Winkler. ‘Approximating Values of Generalized-Reachability
Stochastic Games’. In: LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020.
Ed. by Holger Hermanns, Lijun Zhang, Naoki Kobayashi and Dale Miller.
ACM, 2020, pp. 102–115. doi: 10.1145/3373718.3394761. url: https:
//doi.org/10.1145/3373718.3394761.

[AD90] Rajeev Alur and David L. Dill. ‘Automata For Modeling Real-Time Sys-
tems’. In: Automata, Languages and Programming, 17th International Col-
loquium, ICALP90, Warwick University, England, UK, July 16-20, 1990,
Proceedings. Ed. by Mike Paterson. Vol. 443. Lecture Notes in Computer
Science. Springer, 1990, pp. 322–335. doi: 10.1007/BFb0032042. url:
https://doi.org/10.1007/BFb0032042.

[AHK+20] Pranav Ashok, Vahid Hashemi, Jan Kret́ınský and Stefanie Mohr. ‘Deep-
Abstract: Neural Network Abstraction for Accelerating Verification’. In:
CoRR abs/2006.13735 (2020). arXiv: 2006.13735. url: https://arxiv.
org/abs/2006.13735.

[AHL+00] R. Alur, T. A. Henzinger, G. Lafferriere and G. J. Pappas. ‘Discrete ab-
stractions of hybrid systems’. In: Proceedings of the IEEE 88.7 (2000),
pp. 971–984.

[AJJ+20] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Kret́ınský, Max-
imilian Weininger and Majid Zamani. ‘dtControl: decision tree learning al-
gorithms for controller representation’. In: HSCC ’20: 23rd ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, Sydney,
New South Wales, Australia, April 21-24, 2020. Ed. by Aaron Ames, Sanjit
A. Seshia and Jyotirmoy Deshmukh. ACM, 2020, 17:1–17:7. doi: 10.1145/
3365365.3382220. url: https://doi.org/10.1145/3365365.3382220.

48

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/BFb0032042
https://arxiv.org/abs/2006.13735
https://arxiv.org/abs/2006.13735
https://arxiv.org/abs/2006.13735
https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3382220

Bibliography

[AKL+19] Pranav Ashok, Jan Kret́ınský, Kim Guldstrand Larsen, Adrien Le Coënt,
Jakob Haahr Taankvist and Maximilian Weininger. ‘SOS: Safe, Optimal
and Small Strategies for Hybrid Markov Decision Processes’. In: Quantit-
ative Evaluation of Systems, 16th International Conference, QEST 2019,
Glasgow, UK, September 10-12, 2019, Proceedings. Ed. by David Parker
and Verena Wolf. Vol. 11785. Lecture Notes in Computer Science. Springer,
2019, pp. 147–164. doi: 10.1007/978-3-030-30281-8_9. url: https:
//doi.org/10.1007/978-3-030-30281-8%5C_9.

[AKW19] Pranav Ashok, Jan Kret́ınský and Maximilian Weininger. ‘PAC Statistical
Model Checking for Markov Decision Processes and Stochastic Games’. In:
Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I. Ed. by Isil
Dillig and Serdar Tasiran. Vol. 11561. Lecture Notes in Computer Science.
Springer, 2019, pp. 497–519. doi: 10.1007/978-3-030-25540-4_29.
url: https://doi.org/10.1007/978-3-030-25540-4%5C_29.

[And97] Henrik Reif Andersen. An introduction to binary decision diagrams. Tech-
nical University of Denmark. 1997. url: https://web.archive.org/web/
20200501000000*/http://www.cs.utexas.edu/~isil/cs389L/bdd.pdf

(visited on 20/09/2020).

[ASS+00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal and Robert K. Brayton.
‘Model-checking continous-time Markov chains’. In: ACM Trans. Com-
put. Log. 1.1 (2000), pp. 162–170. doi: 10.1145/343369.343402. url:
https://doi.org/10.1145/343369.343402.

[Baa18] Sara Baase. A gift of fire : social, legal, and ethical issues for computing
technology. NY, NY: Pearson, 2018. isbn: 978-0134615271.

[BBS95] Andrew G. Barto, Steven J. Bradtke and Satinder P. Singh. ‘Learning
to Act Using Real-Time Dynamic Programming’. In: Artif. Intell. 72.1-2
(1995), pp. 81–138. doi: 10.1016/0004-3702(94)00011-O. url: https:
//doi.org/10.1016/0004-3702(94)00011-O.

[BCC+14] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt,
Jan Kret́ınský, Marta Z. Kwiatkowska, David Parker and Mateusz Ujma.
‘Verification of Markov Decision Processes Using Learning Algorithms’. In:
Automated Technology for Verification and Analysis - 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,
Proceedings. Ed. by Franck Cassez and Jean-François Raskin. Vol. 8837.
Lecture Notes in Computer Science. Springer, 2014, pp. 98–114. doi: 10.
1007/978-3-319-11936-6_8. url: https://doi.org/10.1007/978-3-
319-11936-6%5C_8.

[BCC+15] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Andreas Fell-
ner and Jan Kret́ınský. ‘Counterexample Explanation by Learning Small
Strategies in Markov Decision Processes’. In: Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July

49

https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1007/978-3-030-30281-8%5C_9
https://doi.org/10.1007/978-3-030-30281-8%5C_9
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4%5C_29
https://web.archive.org/web/20200501000000*/http://www.cs.utexas.edu/~isil/cs389L/bdd.pdf
https://web.archive.org/web/20200501000000*/http://www.cs.utexas.edu/~isil/cs389L/bdd.pdf
https://doi.org/10.1145/343369.343402
https://doi.org/10.1145/343369.343402
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8

Bibliography

18-24, 2015, Proceedings, Part I. Ed. by Daniel Kroening and Corina S.
Pasareanu. Vol. 9206. Lecture Notes in Computer Science. Springer, 2015,
pp. 158–177. doi: 10.1007/978- 3- 319- 21690- 4_10. url: https:

//doi.org/10.1007/978-3-319-21690-4%5C_10.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke and Yunshan Zhu.
‘Symbolic Model Checking without BDDs’. In: Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference, TACAS
’99, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-
28, 1999, Proceedings. Ed. by Rance Cleaveland. Vol. 1579. Lecture Notes
in Computer Science. Springer, 1999, pp. 193–207. doi: 10.1007/3-540-
49059-0_14. url: https://doi.org/10.1007/3-540-49059-0%5C_14.

[BCD+07] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury,
Kim Guldstrand Larsen and Didier Lime. ‘UPPAAL-Tiga: Time for Play-
ing Games!’ In: Computer Aided Verification, 19th International Confer-
ence, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. Ed. by
Werner Damm and Holger Hermanns. Vol. 4590. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 121–125. doi: 10.1007/978-3-540-
73368-3_14. url: https://doi.org/10.1007/978-3-540-73368-
3%5C_14.

[BCK+18] Tomás Brázdil, Krishnendu Chatterjee, Jan Kret́ınský and Viktor Toman.
‘Strategy Representation by Decision Trees in Reactive Synthesis’. In: Tools
and Algorithms for the Construction and Analysis of Systems - 24th Inter-
national Conference, TACAS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thes-
saloniki, Greece, April 14-20, 2018, Proceedings, Part I. Ed. by Dirk Beyer
and Marieke Huisman. Vol. 10805. Lecture Notes in Computer Science.
Springer, 2018, pp. 385–407. doi: 10.1007/978-3-319-89960-2_21.
url: https://doi.org/10.1007/978-3-319-89960-2%5C_21.

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill
and L. J. Hwang. ‘Symbolic Model Checking: 1020 States and Beyond’. In:
Proceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Com-
puter Society, 1990, pp. 428–439. doi: 10.1109/LICS.1990.113767. url:
https://doi.org/10.1109/LICS.1990.113767.

[BDG95] Craig Boutilier, Richard Dearden and Moisés Goldszmidt. ‘Exploiting Struc-
ture in Policy Construction’. In: Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1995, pp. 1104–
1113. url: http://ijcai.org/Proceedings/95-2/Papers/012.pdf.

50

https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-21690-4%5C_10
https://doi.org/10.1007/978-3-319-21690-4%5C_10
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0%5C_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3%5C_14
https://doi.org/10.1007/978-3-540-73368-3%5C_14
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/978-3-319-89960-2%5C_21
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767
http://ijcai.org/Proceedings/95-2/Papers/012.pdf

Bibliography

[BDH99] Craig Boutilier, Thomas L. Dean and Steve Hanks. ‘Decision-Theoretic
Planning: Structural Assumptions and Computational Leverage’. In: J.
Artif. Intell. Res. 11 (1999), pp. 1–94. doi: 10.1613/jair.575. url:
https://doi.org/10.1613/jair.575.

[Bel57] Richard Bellman. ‘A Markovian Decision Process’. In: Indiana Univ. Math.
J. 6 (4 1957), pp. 679–684. issn: 0022-2518.

[Ber05] Dimitri P. Bertsekas. Dynamic programming and optimal control, 3rd Edi-
tion. Athena Scientific, 2005. isbn: 1886529264. url: https://www.worldcat.
org/oclc/314894080.

[BFG+97] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo and Fabio Somenzi. ‘Algebraic Decision Diagrams
and Their Applications’. In: Formal Methods Syst. Des. 10.2/3 (1997),
pp. 171–206. doi: 10.1023/A:1008699807402. url: https://doi.org/
10.1023/A:1008699807402.

[BFO+84] Leo Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[BHH+11] Peter Buchholz, Ernst Moritz Hahn, Holger Hermanns and Lijun Zhang.
‘Model Checking Algorithms for CTMDPs’. In: Computer Aided Verific-
ation - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 225–242. doi: 10.1007/978- 3- 642- 22110- 1_19. url: https:

//doi.org/10.1007/978-3-642-22110-1%5C_19.

[BHH+15] Yuliya Butkova, Hassan Hatefi, Holger Hermanns and Jan Krcál. ‘Optimal
Continuous Time Markov Decisions’. In: Automated Technology for Verific-
ation and Analysis - 13th International Symposium, ATVA 2015, Shanghai,
China, October 12-15, 2015, Proceedings. Ed. by Bernd Finkbeiner, Ge-
guang Pu and Lijun Zhang. Vol. 9364. Lecture Notes in Computer Science.
Springer, 2015, pp. 166–182. doi: 10.1007/978-3-319-24953-7_12.
url: https://doi.org/10.1007/978-3-319-24953-7%5C_12.

[BHK+05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen and Boudewijn R.
Haverkort. ‘Efficient computation of time-bounded reachability probabil-
ities in uniform continuous-time Markov decision processes’. In: Theor.
Comput. Sci. 345.1 (2005), pp. 2–26. doi: 10.1016/j.tcs.2005.07.022.
url: https://doi.org/10.1016/j.tcs.2005.07.022.

[BHK19] Christel Baier, Holger Hermanns and Joost-Pieter Katoen. ‘The 10,000
Facets of MDP Model Checking’. In: Computing and Software Science -
State of the Art and Perspectives. Ed. by Bernhard Steffen and Gerhard
J. Woeginger. Vol. 10000. Lecture Notes in Computer Science. Springer,
2019, pp. 420–451. doi: 10.1007/978-3-319-91908-9_21. url: https:
//doi.org/10.1007/978-3-319-91908-9%5C_21.

51

https://doi.org/10.1613/jair.575
https://doi.org/10.1613/jair.575
https://www.worldcat.org/oclc/314894080
https://www.worldcat.org/oclc/314894080
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1007/978-3-642-22110-1_19
https://doi.org/10.1007/978-3-642-22110-1%5C_19
https://doi.org/10.1007/978-3-642-22110-1%5C_19
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7%5C_12
https://doi.org/10.1016/j.tcs.2005.07.022
https://doi.org/10.1016/j.tcs.2005.07.022
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9%5C_21
https://doi.org/10.1007/978-3-319-91908-9%5C_21

Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. isbn: 978-0-262-02649-9.

[BKL+17] Christel Baier, Joachim Klein, Linda Leuschner, David Parker and Sascha
Wunderlich. ‘Ensuring the Reliability of Your Model Checker: Interval It-
eration for Markov Decision Processes’. In: Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I. Ed. by Rupak Majumdar and Viktor
Kuncak. Vol. 10426. Lecture Notes in Computer Science. Springer, 2017,
pp. 160–180. doi: 10 . 1007 / 978 - 3 - 319 - 63387 - 9 \ _8. url: https :

//doi.org/10.1007/978-3-319-63387-9%5C_8.

[BKN+19] Nikhil Balaji, Stefan Kiefer, Petr Novotný, Guillermo A. Pérez and Mahsa
Shirmohammadi. ‘On the Complexity of Value Iteration’. In: 46th In-
ternational Colloquium on Automata, Languages, and Programming, IC-
ALP 2019, July 9-12, 2019, Patras, Greece. Ed. by Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini and Stefano Leonardi. Vol. 132. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 102:1–102:15.
doi: 10.4230/LIPIcs.ICALP.2019.102. url: https://doi.org/10.
4230/LIPIcs.ICALP.2019.102.

[Blo99] Hendrik Blockeel. ‘Top-Down Induction of First Order Logical Decision
Trees’. In: AI Commun. 12.1-2 (1999), pp. 119–120. url: http://content.
iospress.com/articles/ai-communications/aic178.

[Boc78] Gregor von Bochmann. ‘Finite State Description of Communication Pro-
tocols’. In: Comput. Networks 2 (1978), pp. 361–372. doi: 10.1016/0376-
5075(78)90015-6. url: https://doi.org/10.1016/0376-5075(78)
90015-6.

[BPW+12] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lu-
cas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez
Liebana, Spyridon Samothrakis and Simon Colton. ‘A Survey of Monte
Carlo Tree Search Methods’. In: IEEE Trans. Comput. Intell. AI Games
4.1 (2012), pp. 1–43. doi: 10.1109/TCIAIG.2012.2186810. url: https:
//doi.org/10.1109/TCIAIG.2012.2186810.

[Bry18] Randal E. Bryant. ‘Binary Decision Diagrams’. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith
and Roderick Bloem. Cham: Springer International Publishing, 2018, pp. 191–
217. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8_7. url:
https://doi.org/10.1007/978-3-319-10575-8_7.

[Bry86] Randal E. Bryant. ‘Graph-Based Algorithms for Boolean Function Ma-
nipulation’. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. doi:
10.1109/TC.1986.1676819. url: https://doi.org/10.1109/TC.1986.
1676819.

52

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
http://content.iospress.com/articles/ai-communications/aic178
http://content.iospress.com/articles/ai-communications/aic178
https://doi.org/10.1016/0376-5075(78)90015-6
https://doi.org/10.1016/0376-5075(78)90015-6
https://doi.org/10.1016/0376-5075(78)90015-6
https://doi.org/10.1016/0376-5075(78)90015-6
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819

Bibliography

[Bry92] Randal E. Bryant. ‘Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams’. In: ACM Comput. Surv. 24.3 (1992), pp. 293–318.
doi: 10.1145/136035.136043. url: https://doi.org/10.1145/136035.
136043.

[Bry95] Randal E. Bryant. ‘Binary decision diagrams and beyond: enabling tech-
nologies for formal verification’. In: Proceedings of the 1995 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1995, San
Jose, California, USA, November 5-9, 1995. Ed. by Richard L. Rudell.
IEEE, 1995, pp. 236–243. doi: 10.1109/ICCAD.1995.480018. url: https:
//doi.org/10.1109/ICCAD.1995.480018.

[BS11] Peter Buchholz and Ingo Schulz. ‘Numerical analysis of continuous time
Markov decision processes over finite horizons’. In: Comput. Oper. Res.
38.3 (2011), pp. 651–659. doi: 10.1016/j.cor.2010.08.011. url: https:
//doi.org/10.1016/j.cor.2010.08.011.

[But20] Yuliya Butkova. ‘Towards Efficient Analysis of Markov Automata’. PhD
thesis. Saarland University, 2020.

[BW96] Beate Bollig and Ingo Wegener. ‘Improving the Variable Ordering of OB-
DDs Is NP-Complete’. In: IEEE Trans. Computers 45.9 (1996), pp. 993–
1002. doi: 10.1109/12.537122. url: https://doi.org/10.1109/12.
537122.

[BYG17] Calin Belta, Boyan Yordanov and Ebru Aydin Gol. Formal Methods for
Discrete-Time Dynamical Systems. Springer International Publishing, 2017.
doi: 10.1007/978-3-319-50763-7. url: https://doi.org/10.1007/
978-3-319-50763-7.

[BZ83] Daniel Brand and Pitro Zafiropulo. ‘On Communicating Finite-State Ma-
chines’. In: J. ACM 30.2 (1983), pp. 323–342. doi: 10.1145/322374.

322380. url: https://doi.org/10.1145/322374.322380.

[CDB07] Tom Croonenborghs, Kurt Driessens and Maurice Bruynooghe. ‘Learn-
ing Relational Options for Inductive Transfer in Relational Reinforcement
Learning’. In: Inductive Logic Programming, 17th International Confer-
ence, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selec-
ted Papers. Ed. by Hendrik Blockeel, Jan Ramon, Jude W. Shavlik and
Prasad Tadepalli. Vol. 4894. Lecture Notes in Computer Science. Springer,
2007, pp. 88–97. doi: 10.1007/978-3-540-78469-2_12. url: https:
//doi.org/10.1007/978-3-540-78469-2%5C_12.

[CE81] Edmund M. Clarke and E. Allen Emerson. ‘Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic’. In: Lo-
gics of Programs, Workshop, Yorktown Heights, New York, USA, May
1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer Sci-
ence. Springer, 1981, pp. 52–71. doi: 10.1007/BFb0025774. url: https:
//doi.org/10.1007/BFb0025774.

53

https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1016/j.cor.2010.08.011
https://doi.org/10.1016/j.cor.2010.08.011
https://doi.org/10.1016/j.cor.2010.08.011
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-540-78469-2_12
https://doi.org/10.1007/978-3-540-78469-2%5C_12
https://doi.org/10.1007/978-3-540-78469-2%5C_12
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Bibliography

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu and Helmut
Veith. ‘Counterexample-Guided Abstraction Refinement’. In: Computer
Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings. Ed. by E. Allen Emerson and
A. Prasad Sistla. Vol. 1855. Lecture Notes in Computer Science. Springer,
2000, pp. 154–169. doi: 10.1007/10722167_15. url: https://doi.org/
10.1007/10722167%5C_15.

[CH08] Krishnendu Chatterjee and Thomas A. Henzinger. ‘Value Iteration’. In:
25 Years of Model Checking - History, Achievements, Perspectives. Ed. by
Orna Grumberg and Helmut Veith. Vol. 5000. Lecture Notes in Computer
Science. Springer, 2008, pp. 107–138. doi: 10.1007/978-3-540-69850-
0_7. url: https://doi.org/10.1007/978-3-540-69850-0%5C_7.

[CHV+18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith and Roderick
Bloem, eds. Handbook of Model Checking. Springer, 2018. isbn: 978-3-319-
10574-1. doi: 10.1007/978-3-319-10575-8. url: https://doi.org/10.
1007/978-3-319-10575-8.

[CKN+12] Edmund M. Clarke, William Klieber, Miloš Nováček and Paolo Zuliani.
‘Model Checking and the State Explosion Problem’. In: Tools for Practical
Software Verification: LASER, International Summer School 2011, Elba
Island, Italy, Revised Tutorial Lectures. Ed. by Bertrand Meyer and Martin
Nordio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–30.
isbn: 978-3-642-35746-6. doi: 10.1007/978- 3- 642- 35746- 6_1. url:
https://doi.org/10.1007/978-3-642-35746-6_1.

[COM+19] Richard Cheng, Gábor Orosz, Richard M. Murray and Joel W. Burdick.
‘End-to-End Safe Reinforcement Learning through Barrier Functions for
Safety-Critical Continuous Control Tasks’. In: The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innov-
ative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI
Press, 2019, pp. 3387–3395. doi: 10.1609/aaai.v33i01.33013387. url:
https://doi.org/10.1609/aaai.v33i01.33013387.

[Cou06] Rémi Coulom. ‘Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search’. In: Computers and Games, 5th International Conference, CG
2006, Turin, Italy, May 29-31, 2006. Revised Papers. Ed. by H. Jaap van
den Herik, Paolo Ciancarini and H. H. L. M. Donkers. Vol. 4630. Lecture
Notes in Computer Science. Springer, 2006, pp. 72–83. doi: 10.1007/978-
3-540-75538-8_7. url: https://doi.org/10.1007/978-3-540-
75538-8%5C_7.

[CRT98] Alessandro Cimatti, Marco Roveri and Paolo Traverso. ‘Automatic OBDD-
Based Generation of Universal Plans in Non-Deterministic Domains’. In:
Proceedings of the Fifteenth National Conference on Artificial Intelligence

54

https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167%5C_15
https://doi.org/10.1007/10722167%5C_15
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0%5C_7
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1609/aaai.v33i01.33013387
https://doi.org/10.1609/aaai.v33i01.33013387
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8%5C_7
https://doi.org/10.1007/978-3-540-75538-8%5C_7

Bibliography

and Tenth Innovative Applications of Artificial Intelligence Conference,
AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA. Ed. by
Jack Mostow and Chuck Rich. AAAI Press / The MIT Press, 1998, pp. 875–
881. url: http://www.aaai.org/Library/AAAI/1998/aaai98-124.php.

[De 97] Luca De Alfaro. ‘Formal verification of probabilistic systems’. PhD thesis.
Stanford University, 1997.

[dEp63] F. d’Epenoux. ‘A Probabilistic Production and Inventory Problem’. In:
Management Science 10.1 (1963), pp. 98–108. doi: 10.1287/mnsc.10.
1.98. eprint: https://doi.org/10.1287/mnsc.10.1.98. url: https:
//doi.org/10.1287/mnsc.10.1.98.

[Der] Nachum Dershowitz. Software Horror Stories. https://web.archive.

org/web/20200527131419/http://www.cs.tau.ac.il/~nachumd/

verify/horror.html. [Online; accessed 08-September-2020].

[DGV+12] Christian Dehnert, Daniel Gebler, Michele Volpato and David N. Jansen.
‘On Abstraction of Probabilistic Systems’. In: Stochastic Model Check-
ing. Rigorous Dependability Analysis Using Model Checking Techniques for
Stochastic Systems - International Autumn School, ROCKS 2012, Vahrn,
Italy, October 22-26, 2012, Advanced Lectures. Ed. by Anne Remke and
Mariëlle Stoelinga. Vol. 8453. Lecture Notes in Computer Science. Springer,
2012, pp. 87–116. doi: 10.1007/978-3-662-45489-3_4. url: https:
//doi.org/10.1007/978-3-662-45489-3%5C_4.

[Dij72] Edsger W. Dijkstra. ‘The Humble Programmer’. In: Commun. ACM 15.10
(1972), pp. 859–866. doi: 10.1145/355604.361591. url: https://doi.
org/10.1145/355604.361591.

[DIL+09] Giuseppe Della Penna, Benedetto Intrigila, Nadia Lauri and Daniele Magazzeni.
‘Fast and Compact Encoding of Numerical Controllers Using OBDDs’. In:
Informatics in Control, Automation and Robotics: Selcted Papers from the
International Conference on Informatics in Control, Automation and Ro-
botics 2008. Ed. by Juan Andrade Cetto, Jean-Louis Ferrier and Joaquim
Filipe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 75–87.
isbn: 978-3-642-00271-7. doi: 10.1007/978- 3- 642- 00271- 7_5. url:
https://doi.org/10.1007/978-3-642-00271-7_5.

[DJJ+02] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen and Kim
Guldstrand Larsen. ‘Reduction and Refinement Strategies for Probabil-
istic Analysis’. In: Process Algebra and Probabilistic Methods, Performance
Modeling and Verification, Second Joint International Workshop PAPM-
PROBMIV 2002, Copenhagen, Denmark, July 25-26, 2002, Proceedings.
Ed. by Holger Hermanns and Roberto Segala. Vol. 2399. Lecture Notes
in Computer Science. Springer, 2002, pp. 57–76. doi: 10.1007/3-540-
45605-8_5. url: https://doi.org/10.1007/3-540-45605-8%5C_5.

55

http://www.aaai.org/Library/AAAI/1998/aaai98-124.php
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1287/mnsc.10.1.98
https://web.archive.org/web/20200527131419/http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://web.archive.org/web/20200527131419/http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://web.archive.org/web/20200527131419/http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://doi.org/10.1007/978-3-662-45489-3_4
https://doi.org/10.1007/978-3-662-45489-3%5C_4
https://doi.org/10.1007/978-3-662-45489-3%5C_4
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/978-3-642-00271-7_5
https://doi.org/10.1007/978-3-642-00271-7_5
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/3-540-45605-8%5C_5

Bibliography

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Miku-
cionis and Jakob Haahr Taankvist. ‘Uppaal Stratego’. In: Tools and Al-
gorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings. Ed. by Christel Baier and Cesare Tinelli. Vol. 9035.
Lecture Notes in Computer Science. Springer, 2015, pp. 206–211. doi: 10.
1007/978-3-662-46681-0_16. url: https://doi.org/10.1007/978-
3-662-46681-0%5C_16.

[DN04] Pedro R. D’Argenio and Peter Niebert. ‘Partial Order Reduction on Con-
current Probabilistic Programs’. In: 1st International Conference on Quant-
itative Evaluation of Systems (QEST 2004), 27-30 September 2004, En-
schede, The Netherlands. IEEE Computer Society, 2004, pp. 240–249. doi:
10.1109/QEST.2004.1348038. url: https://doi.org/10.1109/QEST.
2004.1348038.

[DSB17] Derek Doran, Sarah Schulz and Tarek R. Besold. ‘What Does Explainable
AI Really Mean? A New Conceptualization of Perspectives’. In: Proceedings
of the First International Workshop on Comprehensibility and Explanation
in AI and ML 2017 co-located with 16th International Conference of the
Italian Association for Artificial Intelligence (AI*IA 2017), Bari, Italy,
November 16th and 17th, 2017. Ed. by Tarek R. Besold and Oliver Kutz.
Vol. 2071. CEUR Workshop Proceedings. CEUR-WS.org, 2017. url: http:
//ceur-ws.org/Vol-2071/CExAIIA%5C_2017%5C_paper%5C_2.pdf.

[DT98] Conrado Daws and Stavros Tripakis. ‘Model Checking of Real-Time Reach-
ability Properties Using Abstractions’. In: Tools and Algorithms for Con-
struction and Analysis of Systems, 4th International Conference, TACAS
’98, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4,
1998, Proceedings. Ed. by Bernhard Steffen. Vol. 1384. Lecture Notes in
Computer Science. Springer, 1998, pp. 313–329. doi: 10.1007/BFb0054180.
url: https://doi.org/10.1007/BFb0054180.

[EHZ10] Christian Eisentraut, Holger Hermanns and Lijun Zhang. ‘On Probabilistic
Automata in Continuous Time’. In: Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010,
Edinburgh, United Kingdom. IEEE Computer Society, 2010, pp. 342–351.
doi: 10.1109/LICS.2010.41. url: https://doi.org/10.1109/LICS.
2010.41.

[Fin16] Bernd Finkbeiner. ‘Synthesis of Reactive Systems’. In: Dependable Soft-
ware Systems Engineering. Ed. by Javier Esparza, Orna Grumberg and
Salomon Sickert. Vol. 45. NATO Science for Peace and Security Series -
D: Information and Communication Security. IOS Press, 2016, pp. 72–98.

56

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0%5C_16
https://doi.org/10.1007/978-3-662-46681-0%5C_16
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1109/QEST.2004.1348038
http://ceur-ws.org/Vol-2071/CExAIIA%5C_2017%5C_paper%5C_2.pdf
http://ceur-ws.org/Vol-2071/CExAIIA%5C_2017%5C_paper%5C_2.pdf
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41

Bibliography

doi: 10.3233/978-1-61499-627-9-72. url: https://doi.org/10.
3233/978-1-61499-627-9-72.

[FRS+11] John Fearnley, Markus N. Rabe, Sven Schewe and Lijun Zhang. ‘Efficient
Approximation of Optimal Control for Continuous-Time Markov Games’.
In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011,
Mumbai, India. Ed. by Supratik Chakraborty and Amit Kumar. Vol. 13.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 399–
410. doi: 10.4230/LIPIcs.FSTTCS.2011.399. url: https://doi.org/
10.4230/LIPIcs.FSTTCS.2011.399.

[FRS+16] John Fearnley, Markus N. Rabe, Sven Schewe and Lijun Zhang. ‘Efficient
approximation of optimal control for continuous-time Markov games’. In:
Inf. Comput. 247 (2016), pp. 106–129. doi: 10.1016/j.ic.2015.12.002.
url: https://doi.org/10.1016/j.ic.2015.12.002.

[FZW+17] Pedro Fonseca, Kaiyuan Zhang, Xi Wang and Arvind Krishnamurthy. ‘An
Empirical Study on the Correctness of Formally Verified Distributed Sys-
tems’. In: Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017. Ed. by Gust-
avo Alonso, Ricardo Bianchini and Marko Vukolic. ACM, 2017, pp. 328–
343. doi: 10.1145/3064176.3064183. url: https://doi.org/10.1145/
3064176.3064183.

[GCH+18] Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lécué, Zeynep
Akata, Simone Stumpf, Peter Kieseberg and Andreas Holzinger. ‘Explain-
able AI: The New 42?’ In: Machine Learning and Knowledge Extraction
- Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International
Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany, August
27-30, 2018, Proceedings. Ed. by Andreas Holzinger, Peter Kieseberg, A
Min Tjoa and Edgar R. Weippl. Vol. 11015. Lecture Notes in Computer
Science. Springer, 2018, pp. 295–303. doi: 10.1007/978-3-319-99740-
7_21. url: https://doi.org/10.1007/978-3-319-99740-7%5C_21.

[GF15] Javier Garćıa and Fernando Fernández. ‘A comprehensive survey on safe
reinforcement learning’. In: J. Mach. Learn. Res. 16 (2015), pp. 1437–1480.
url: http://dl.acm.org/citation.cfm?id=2886795.

[GGL03] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. ‘The Google file
system’. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003. Ed. by Michael L. Scott and Larry L. Peterson. ACM, 2003, pp. 29–
43. doi: 10.1145/945445.945450. url: https://doi.org/10.1145/
945445.945450.

57

https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.399
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.399
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.399
https://doi.org/10.1016/j.ic.2015.12.002
https://doi.org/10.1016/j.ic.2015.12.002
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7%5C_21
http://dl.acm.org/citation.cfm?id=2886795
https://doi.org/10.1145/945445.945450
https://doi.org/10.1145/945445.945450
https://doi.org/10.1145/945445.945450

Bibliography

[GHP+06] Xianping Guo, Onésimo Hernández-Lerma, Tomás Prieto-Rumeau, Xi-Ren
Cao, Junyu Zhang, Qiying Hu, Mark E Lewis and Ricardo Vélez. ‘A survey
of recent results on continuous-time Markov decision processes’. In: Top
14.2 (2006), pp. 177–261.

[Gir12] Antoine Girard. ‘Low-Complexity Quantized Switching Controllers using
Approximate Bisimulation’. In: CoRR abs/1209.4576 (2012). arXiv: 1209.
4576. url: http://arxiv.org/abs/1209.4576.

[God90] Patrice Godefroid. ‘Using Partial Orders to Improve Automatic Verifica-
tion Methods’. In: Computer-Aided Verification, Proceedings of a DIMACS
Workshop 1990, New Brunswick, New Jersey, USA, June 18-21, 1990. Ed.
by Edmund M. Clarke and Robert P. Kurshan. Vol. 3. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. DIMACS/AMS,
1990, pp. 321–340. doi: 10.1090/dimacs/003/21. url: https://doi.
org/10.1090/dimacs/003/21.

[GP07] Antoine Girard and George J. Pappas. ‘Approximation Metrics for Discrete
and Continuous Systems’. In: IEEE Trans. Autom. Control. 52.5 (2007),
pp. 782–798. doi: 10.1109/TAC.2007.895849. url: https://doi.org/
10.1109/TAC.2007.895849.

[GPS+80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah and Jonathan Stavi. ‘On the
Temporal Basis of Fairness’. In: Conference Record of the Seventh Annual
ACM Symposium on Principles of Programming Languages, Las Vegas,
Nevada, USA, January 1980. Ed. by Paul W. Abrahams, Richard J. Lipton
and Stephen R. Bourne. ACM Press, 1980, pp. 163–173. doi: 10.1145/
567446.567462. url: https://doi.org/10.1145/567446.567462.

[GPS17] Sumit Gulwani, Oleksandr Polozov and Rishabh Singh. ‘Program Syn-
thesis’. In: Found. Trends Program. Lang. 4.1-2 (2017), pp. 1–119. doi:
10.1561/2500000010. url: https://doi.org/10.1561/2500000010.

[GV08] Orna Grumberg and Helmut Veith, eds. 25 Years of Model Checking -
History, Achievements, Perspectives. Vol. 5000. Lecture Notes in Computer
Science. Springer, 2008. isbn: 978-3-540-69849-4. doi: 10.1007/978-3-
540-69850-0. url: https://doi.org/10.1007/978-3-540-69850-0.

[GW05] Peter Geibel and Fritz Wysotzki. ‘Risk-Sensitive Reinforcement Learning
Applied to Control under Constraints’. In: J. Artif. Intell. Res. 24 (2005),
pp. 81–108. doi: 10.1613/jair.1666. url: https://doi.org/10.1613/
jair.1666.

[HAK20] Mohammadhosein Hasanbeig, Alessandro Abate and Daniel Kroening. ‘Cau-
tious Reinforcement Learning with Logical Constraints’. In: Proceedings of
the 19th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. Ed. by
Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An and Neil Yorke-
Smith. International Foundation for Autonomous Agents and Multiagent

58

https://arxiv.org/abs/1209.4576
https://arxiv.org/abs/1209.4576
http://arxiv.org/abs/1209.4576
https://doi.org/10.1090/dimacs/003/21
https://doi.org/10.1090/dimacs/003/21
https://doi.org/10.1090/dimacs/003/21
https://doi.org/10.1109/TAC.2007.895849
https://doi.org/10.1109/TAC.2007.895849
https://doi.org/10.1109/TAC.2007.895849
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1613/jair.1666
https://doi.org/10.1613/jair.1666
https://doi.org/10.1613/jair.1666

Bibliography

Systems, 2020, pp. 483–491. url: https://dl.acm.org/doi/abs/10.
5555/3398761.3398821.

[HHK00] Boudewijn R. Haverkort, Holger Hermanns and Joost-Pieter Katoen. ‘On
the Use of Model Checking Techniques for Dependability Evaluation’. In:
19th IEEE Symposium on Reliable Distributed Systems, SRDS’00, Nürn-
berg, Germany, October 16-18, 2000, Proceedings. IEEE Computer Soci-
ety, 2000, pp. 228–237. doi: 10.1109/RELDI.2000.885410. url: https:
//doi.org/10.1109/RELDI.2000.885410.

[HHW+10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter and Lijun Zhang.
‘PASS: Abstraction Refinement for Infinite Probabilistic Models’. In: Tools
and Algorithms for the Construction and Analysis of Systems, 16th Inter-
national Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings. Ed. by Javier Esparza and Rupak
Majumdar. Vol. 6015. Lecture Notes in Computer Science. Springer, 2010,
pp. 353–357. doi: 10.1007/978- 3- 642- 12002- 2_30. url: https:

//doi.org/10.1007/978-3-642-12002-2%5C_30.

[HJK+20] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann
and Matthias Volk. The Probabilistic Model Checker Storm. 2020. arXiv:
2002.07080 [cs.SE].

[HK20] Arnd Hartmanns and Benjamin Lucien Kaminski. ‘Optimistic Value Iter-
ation’. In: Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12225. Lecture Notes
in Computer Science. Springer, 2020, pp. 488–511. doi: 10.1007/978-3-
030-53291-8_26. url: https://doi.org/10.1007/978-3-030-53291-
8%5C_26.

[HM14] Serge Haddad and Benjamin Monmege. ‘Reachability in MDPs: Refining
Convergence of Value Iteration’. In: Reachability Problems - 8th Interna-
tional Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceed-
ings. Ed. by Joël Ouaknine, Igor Potapov and James Worrell. Vol. 8762.
Lecture Notes in Computer Science. Springer, 2014, pp. 125–137. doi: 10.
1007/978-3-319-11439-2_10. url: https://doi.org/10.1007/978-
3-319-11439-2%5C_10.

[HM18] Serge Haddad and Benjamin Monmege. ‘Interval iteration algorithm for
MDPs and IMDPs’. In: Theor. Comput. Sci. 735 (2018), pp. 111–131. doi:
10.1016/j.tcs.2016.12.003. url: https://doi.org/10.1016/j.tcs.
2016.12.003.

[Hoa69] C. A. R. Hoare. ‘An Axiomatic Basis for Computer Programming’. In:
Commun. ACM 12.10 (1969), pp. 576–580. doi: 10.1145/363235.363259.
url: https://doi.org/10.1145/363235.363259.

59

https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2%5C_30
https://doi.org/10.1007/978-3-642-12002-2%5C_30
https://arxiv.org/abs/2002.07080
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8%5C_26
https://doi.org/10.1007/978-3-030-53291-8%5C_26
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

Bibliography

[How60] Ronald A Howard. ‘Dynamic programming and markov processes.’ In:
(1960).

[HSH+99] Jesse Hoey, Robert St-Aubin, Alan J. Hu and Craig Boutilier. ‘SPUDD:
Stochastic Planning using Decision Diagrams’. In: UAI ’99: Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stock-
holm, Sweden, July 30 - August 1, 1999. Ed. by Kathryn B. Laskey and
Henri Prade. Morgan Kaufmann, 1999, pp. 279–288. url: https://dslpitt.
org / uai / displayArticleDetails . jsp ? mmnu = 1 % 5C & smnu = 2 % 5C &

article%5C_id=178%5C&proceeding%5C_id=15.

[Jac20] Mathias Jackermeier. ‘dtControl: Decision Tree Learning for Explainable
Controller Representation’. Bachelorarbeit. Technische Universität München,
2020.

[Jan98] Cezary Z. Janikow. ‘Fuzzy decision trees: issues and methods’. In: IEEE
Trans. Syst. Man Cybern. Part B 28.1 (1998), pp. 1–14. doi: 10.1109/
3477.658573. url: https://doi.org/10.1109/3477.658573.

[JDT10] Manuel Mazo Jr., Anna Davitian and Paulo Tabuada. ‘PESSOA: A Tool for
Embedded Controller Synthesis’. In: Computer Aided Verification, 22nd In-
ternational Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings. Ed. by Tayssir Touili, Byron Cook and Paul B. Jackson. Vol. 6174.
Lecture Notes in Computer Science. Springer, 2010, pp. 566–569. doi: 10.
1007/978-3-642-14295-6_49. url: https://doi.org/10.1007/978-
3-642-14295-6%5C_49.

[JKJ+20] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban and Rod-
erick Bloem. ‘Safe Reinforcement Learning Using Probabilistic Shields (In-
vited Paper)’. In: 31st International Conference on Concurrency Theory,
CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Confer-
ence). Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 3:1–3:16. doi: 10.4230/
LIPIcs.CONCUR.2020.3. url: https://doi.org/10.4230/LIPIcs.

CONCUR.2020.3.

[JZ17] Pushpak Jagtap and Majid Zamani. ‘QUEST: A Tool for State-Space
Quantization-Free Synthesis of Symbolic Controllers’. In: Quantitative Eval-
uation of Systems - 14th International Conference, QEST 2017, Berlin,
Germany, September 5-7, 2017, Proceedings. Ed. by Nathalie Bertrand and
Luca Bortolussi. Vol. 10503. Lecture Notes in Computer Science. Springer,
2017, pp. 309–313. doi: 10.1007/978-3-319-66335-7_21. url: https:
//doi.org/10.1007/978-3-319-66335-7%5C_21.

[Kas07] Hisashi Kashima. ‘Risk-Sensitive Learning via Minimization of Empirical
Conditional Value-at-Risk’. In: IEICE Trans. Inf. Syst. 90-D.12 (2007),
pp. 2043–2052. doi: 10.1093/ietisy/e90- d.12.2043. url: https:

//doi.org/10.1093/ietisy/e90-d.12.2043.

60

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=178%5C&proceeding%5C_id=15
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=178%5C&proceeding%5C_id=15
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=178%5C&proceeding%5C_id=15
https://doi.org/10.1109/3477.658573
https://doi.org/10.1109/3477.658573
https://doi.org/10.1109/3477.658573
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6%5C_49
https://doi.org/10.1007/978-3-642-14295-6%5C_49
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.1007/978-3-319-66335-7_21
https://doi.org/10.1007/978-3-319-66335-7%5C_21
https://doi.org/10.1007/978-3-319-66335-7%5C_21
https://doi.org/10.1093/ietisy/e90-d.12.2043
https://doi.org/10.1093/ietisy/e90-d.12.2043
https://doi.org/10.1093/ietisy/e90-d.12.2043

Bibliography

[KKK+18] Edon Kelmendi, Julia Krämer, Jan Kret́ınský and Maximilian Weininger.
‘Value Iteration for Simple Stochastic Games: Stopping Criterion and Learn-
ing Algorithm’. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. Ed. by Hana
Chockler and Georg Weissenbacher. Vol. 10981. Lecture Notes in Computer
Science. Springer, 2018, pp. 623–642. doi: 10.1007/978-3-319-96145-
3_36. url: https://doi.org/10.1007/978-3-319-96145-3%5C_36.

[KKN+10] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman and David Parker.
‘A game-based abstraction-refinement framework for Markov decision pro-
cesses’. In: Formal Methods Syst. Des. 36.3 (2010), pp. 246–280. doi: 10.
1007/s10703-010-0097-6. url: https://doi.org/10.1007/s10703-
010-0097-6.

[KM18] Jan Kret́ınský and Tobias Meggendorfer. ‘Conditional Value-at-Risk for
Reachability and Mean Payoff in Markov Decision Processes’. In: Proceed-
ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and
Erich Grädel. ACM, 2018, pp. 609–618. doi: 10.1145/3209108.3209176.
url: https://doi.org/10.1145/3209108.3209176.

[KM19] Jan Kret́ınský and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration
Framework for Markov Decision Processes’. In: 30th International Confer-
ence on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Ams-
terdam, the Netherlands. Ed. by Wan J. Fokkink and Rob van Glabbeek.
Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
5:1–5:17. doi: 10.4230/LIPIcs.CONCUR.2019.5. url: https://doi.org/
10.4230/LIPIcs.CONCUR.2019.5.

[KNP11] M. Kwiatkowska, G. Norman and D. Parker. ‘PRISM 4.0: Verification of
Probabilistic Real-time Systems’. In: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and
S. Qadeer. Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[LDK95] Michael L. Littman, Thomas L. Dean and Leslie Pack Kaelbling. ‘On the
Complexity of Solving Markov Decision Problems’. In: UAI ’95: Proceed-
ings of the Eleventh Annual Conference on Uncertainty in Artificial Intel-
ligence, Montreal, Quebec, Canada, August 18-20, 1995. Ed. by Philippe
Besnard and Steve Hanks. Morgan Kaufmann, 1995, pp. 394–402. url:
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&

smnu=2%5C&article%5C_id=457%5C&proceeding%5C_id=11.

[Lef81] Claude Lefévre. ‘Optimal control of a birth and death epidemic process’.
In: Operations Research 29.5 (1981), pp. 971–982.

[LL14] Daniel T Larose and Chantal D Larose. Discovering knowledge in data: an
introduction to data mining. Vol. 4. John Wiley & Sons, 2014.

61

https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-319-96145-3%5C_36
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=457%5C&proceeding%5C_id=11
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=457%5C&proceeding%5C_id=11

Bibliography

[LPY95] Kim Guldstrand Larsen, Paul Pettersson and Wang Yi. ‘Model-Checking
for Real-Time Systems’. In: Fundamentals of Computation Theory, 10th In-
ternational Symposium, FCT ’95, Dresden, Germany, August 22-25, 1995,
Proceedings. Ed. by Horst Reichel. Vol. 965. Lecture Notes in Computer
Science. Springer, 1995, pp. 62–88. doi: 10.1007/3-540-60249-6_41.
url: https://doi.org/10.1007/3-540-60249-6%5C_41.

[LS91] Kim Guldstrand Larsen and Arne Skou. ‘Bisimulation through Probabil-
istic Testing’. In: Inf. Comput. 94.1 (1991), pp. 1–28. doi: 10.1016/0890-
5401(91)90030-6. url: https://doi.org/10.1016/0890-5401(91)
90030-6.

[LT93] N. G. Leveson and C. S. Turner. ‘An investigation of the Therac-25 ac-
cidents’. In: Computer 26.7 (July 1993), pp. 18–41. issn: 1558-0814. doi:
10.1109/MC.1993.274940.

[Mil68] Bruce L. Miller. ‘Finite State Continuous Time Markov Decision Processes
with a Finite Planning Horizon’. In: SIAM Journal on Control 6.2 (1968),
pp. 266–280. doi: 10.1137/0306020. eprint: https://doi.org/10.1137/
0306020. url: https://doi.org/10.1137/0306020.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989. isbn: 978-0-13-115007-2.

[Min12] Shin-ichi Minato. Binary decision diagrams and applications for VLSI CAD.
Vol. 342. Springer Science & Business Media, 2012.

[Min93] Shin-ichi Minato. ‘Zero-Suppressed BDDs for Set Manipulation in Combin-
atorial Problems’. In: Proceedings of the 30th International Design Automa-
tion Conference. DAC ’93. Dallas, Texas, USA: Association for Computing
Machinery, 1993, pp. 272–277. isbn: 0897915771. doi: 10.1145/157485.
164890. url: https://doi.org/10.1145/157485.164890.

[MKS+93] Sreerama K. Murthy, Simon Kasif, Steven Salzberg and Richard Beigel.
‘OC1: A Randomized Induction of Oblique Decision Trees’. In: Proceedings
of the 11th National Conference on Artificial Intelligence. Washington, DC,
USA, July 11-15, 1993. Ed. by Richard Fikes and Wendy G. Lehnert. AAAI
Press / The MIT Press, 1993, pp. 322–327. url: http://www.aaai.org/
Library/AAAI/1993/aaai93-049.php.

[MLG05] H. Brendan McMahan, Maxim Likhachev and Geoffrey J. Gordon. ‘Bounded
real-time dynamic programming: RTDP with monotone upper bounds and
performance guarantees’. In: Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August
7-11, 2005. Ed. by Luc De Raedt and Stefan Wrobel. Vol. 119. ACM In-
ternational Conference Proceeding Series. ACM, 2005, pp. 569–576. doi:
10.1145/1102351.1102423. url: https://doi.org/10.1145/1102351.
1102423.

62

https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1007/3-540-60249-6%5C_41
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1137/0306020
https://doi.org/10.1137/0306020
https://doi.org/10.1137/0306020
https://doi.org/10.1137/0306020
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423

Bibliography

[MSS20] Rupak Majumdar, Mahmoud Salamati and Sadegh Soudjani. ‘On Decid-
ability of Time-Bounded Reachability in CTMDPs’. In: 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). Ed. by Ar-
tur Czumaj, Anuj Dawar and Emanuela Merelli. Vol. 168. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 133:1–133:19. doi: 10.
4230/LIPIcs.ICALP.2020.133. url: https://doi.org/10.4230/

LIPIcs.ICALP.2020.133.

[MYA12] Min Wu, A. Yamashita and H. Asama. ‘Rule abstraction and transfer in
reinforcement learning by decision tree’. In: 2012 IEEE/SICE International
Symposium on System Integration (SII). 2012, pp. 529–534.

[NE05] Arnab Nilim and Laurent El Ghaoui. ‘Robust Control of Markov Decision
Processes with Uncertain Transition Matrices’. In: Operations Research
53.5 (2005), pp. 780–798. doi: 10.1287/opre.1050.0216. eprint: https:
//doi.org/10.1287/opre.1050.0216. url: https://doi.org/10.1287/
opre.1050.0216.

[Neu10] Martin R. Neuhäußer. ‘Model checking nondeterministic and randomly
timed systems’. PhD thesis. RWTH Aachen University, 2010. isbn: 978-
90-365-2975-4. url: http : / / darwin . bth . rwth - aachen . de / opus3 /

volltexte/2010/3136/.

[NZ10] Martin R. Neuhäußer and Lijun Zhang. ‘Time-Bounded Reachability Prob-
abilities in Continuous-Time Markov Decision Processes’. In: QEST 2010,
Seventh International Conference on the Quantitative Evaluation of Sys-
tems, Williamsburg, Virginia, USA, 15-18 September 2010. IEEE Com-
puter Society, 2010, pp. 209–218. doi: 10.1109/QEST.2010.47. url:
https://doi.org/10.1109/QEST.2010.47.

[Par81] David Michael Ritchie Park. ‘Concurrency and Automata on Infinite Se-
quences’. In: Theoretical Computer Science, 5th GI-Conference, Karlsruhe,
Germany, March 23-25, 1981, Proceedings. Ed. by Peter Deussen. Vol. 104.
Lecture Notes in Computer Science. Springer, 1981, pp. 167–183. doi:
10.1007/BFb0017309. url: https://doi.org/10.1007/BFb0017309.

[Pel93] Doron A. Peled. ‘All from One, One for All: on Model Checking Using
Representatives’. In: Computer Aided Verification, 5th International Con-
ference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings.
Ed. by Costas Courcoubetis. Vol. 697. Lecture Notes in Computer Science.
Springer, 1993, pp. 409–423. doi: 10.1007/3-540-56922-7_34. url:
https://doi.org/10.1007/3-540-56922-7%5C_34.

[PH+01] Larry D Pyeatt, Adele E Howe et al. ‘Decision tree function approxima-
tion in reinforcement learning’. In: Proceedings of the third international
symposium on adaptive systems: evolutionary computation and probabilistic
graphical models. Vol. 2. 1/2. Cuba. 2001, pp. 70–77.

63

https://doi.org/10.4230/LIPIcs.ICALP.2020.133
https://doi.org/10.4230/LIPIcs.ICALP.2020.133
https://doi.org/10.4230/LIPIcs.ICALP.2020.133
https://doi.org/10.4230/LIPIcs.ICALP.2020.133
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.1287/opre.1050.0216
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3136/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3136/
https://doi.org/10.1109/QEST.2010.47
https://doi.org/10.1109/QEST.2010.47
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7%5C_34

Bibliography

[Pnu77] Amir Pnueli. ‘The Temporal Logic of Programs’. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977. IEEE Computer Society, 1977, pp. 46–
57. doi: 10.1109/SFCS.1977.32. url: https://doi.org/10.1109/SFCS.
1977.32.

[Pnu81] Amir Pnueli. ‘The Temporal Semantics of Concurrent Programs’. In: Theor.
Comput. Sci. 13 (1981), pp. 45–60. doi: 10.1016/0304-3975(81)90110-9.
url: https://doi.org/10.1016/0304-3975(81)90110-9.

[PT87] Christos H. Papadimitriou and John N. Tsitsiklis. ‘The Complexity of
Markov Decision Processes’. In: Math. Oper. Res. 12.3 (1987), pp. 441–
450. doi: 10.1287/moor.12.3.441. url: https://doi.org/10.1287/
moor.12.3.441.

[PTH+20] Kittiphon Phalakarn, Toru Takisaka, Thomas Haas and Ichiro Hasuo. ‘Widest
Paths and Global Propagation in Bounded Value Iteration for Stochastic
Games’. In: Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12225. Lecture Notes
in Computer Science. Springer, 2020, pp. 349–371. doi: 10.1007/978-3-
030-53291-8_19. url: https://doi.org/10.1007/978-3-030-53291-
8%5C_19.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley,
1994. isbn: 978-0-47161977-2. doi: 10.1002/9780470316887. url: https:
//doi.org/10.1002/9780470316887.

[Pye03] Larry D. Pyeatt. ‘Reinforcement Learning with Decision Trees’. In: The
21st IASTED International Multi-Conference on Applied Informatics (AI
2003), February 10-13, 2003, Innsbruck, Austria. Ed. by M. H. Hamza.
IASTED/ACTA Press, 2003, pp. 26–31.

[QK18] Tim Quatmann and Joost-Pieter Katoen. ‘Sound Value Iteration’. In: Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I. Ed. by Hana Chockler and Georg Weis-
senbacher. Vol. 10981. Lecture Notes in Computer Science. Springer, 2018,
pp. 643–661. doi: 10.1007/978- 3- 319- 96145- 3_37. url: https:

//doi.org/10.1007/978-3-319-96145-3%5C_37.

[QQP01] Qinru Qiu, Qing Qu and Massoud Pedram. ‘Stochastic modeling of a
power-managed system-construction andoptimization’. In: IEEE Trans. on
CAD of Integrated Circuits and Systems 20.10 (2001), pp. 1200–1217. doi:
10.1109/43.952737. url: https://doi.org/10.1109/43.952737.

64

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8%5C_19
https://doi.org/10.1007/978-3-030-53291-8%5C_19
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3%5C_37
https://doi.org/10.1007/978-3-319-96145-3%5C_37
https://doi.org/10.1109/43.952737
https://doi.org/10.1109/43.952737

Bibliography

[QS82] Jean-Pierre Queille and Joseph Sifakis. ‘Specification and verification of
concurrent systems in CESAR’. In: International Symposium on Program-
ming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings. Ed.
by Mariangiola Dezani-Ciancaglini and Ugo Montanari. Vol. 137. Lecture
Notes in Computer Science. Springer, 1982, pp. 337–351. doi: 10.1007/3-
540-11494-7_22. url: https://doi.org/10.1007/3-540-11494-
7%5C_22.

[Qui86] J. Ross Quinlan. ‘Induction of Decision Trees’. In: Mach. Learn. 1.1 (1986),
pp. 81–106.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[Ros19] Sheldon M. Ross. Introduction to Probability Models (Twelfth Edition).
Academic press, 2019. isbn: ”978-0-12-814346-9”. doi: "https://doi.

org/10.1016/B978- 0- 12- 814346- 9.00009- 3". url: http://www.

sciencedirect.com/science/article/pii/B9780128143469000093.

[RS11] Markus N. Rabe and Sven Schewe. ‘Finite optimal control for time-bounded
reachability in CTMDPs and continuous-time Markov games’. In: Acta
Informatica 48.5-6 (2011), pp. 291–315. doi: 10.1007/s00236-011-0140-
0. url: https://doi.org/10.1007/s00236-011-0140-0.

[RTJ+19] Aaron M. Roth, Nicholay Topin, Pooyan Jamshidi and Manuela Veloso.
‘Conservative Q-Improvement: Reinforcement Learning for an Interpretable
Decision-Tree Policy’. In: CoRR abs/1907.01180 (2019). arXiv: 1907.01180.
url: http://arxiv.org/abs/1907.01180.

[Rud93] Richard Rudell. ‘Dynamic variable ordering for ordered binary decision dia-
grams’. In: Proceedings of the 1993 IEEE/ACM International Conference
on Computer-Aided Design, 1993, Santa Clara, California, USA, Novem-
ber 7-11, 1993. Ed. by Michael R. Lightner and Jochen A. G. Jess. IEEE,
1993, pp. 42–47. doi: 10.1109/ICCAD.1993.580029. url: https://doi.
org/10.1109/ICCAD.1993.580029.

[RZ16] Matthias Rungger and Majid Zamani. ‘SCOTS: A Tool for the Synthesis of
Symbolic Controllers’. In: Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Aus-
tria, April 12-14, 2016. Ed. by Alessandro Abate and Georgios E. Fainekos.
ACM, 2016, pp. 99–104. doi: 10.1145/2883817.2883834. url: https:
//doi.org/10.1145/2883817.2883834.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an
introduction. Adaptive computation and machine learning. MIT Press,
1998. isbn: 978-0-262-19398-6. url: https://www.worldcat.org/oclc/
37293240.

[Sen09] Linn I Sennott. Stochastic dynamic programming and the control of queueing
systems. Vol. 504. John Wiley & Sons, 2009.

65

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7%5C_22
https://doi.org/10.1007/3-540-11494-7%5C_22
https://doi.org/"https://doi.org/10.1016/B978-0-12-814346-9.00009-3"
https://doi.org/"https://doi.org/10.1016/B978-0-12-814346-9.00009-3"
http://www.sciencedirect.com/science/article/pii/B9780128143469000093
http://www.sciencedirect.com/science/article/pii/B9780128143469000093
https://doi.org/10.1007/s00236-011-0140-0
https://doi.org/10.1007/s00236-011-0140-0
https://doi.org/10.1007/s00236-011-0140-0
https://arxiv.org/abs/1907.01180
http://arxiv.org/abs/1907.01180
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1145/2883817.2883834
https://doi.org/10.1145/2883817.2883834
https://doi.org/10.1145/2883817.2883834
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240

Bibliography

[SHB00] Robert St-Aubin, Jesse Hoey and Craig Boutilier. ‘APRICODD: Approx-
imate Policy Construction Using Decision Diagrams’. In: Advances in Neural
Information Processing Systems 13, Papers from Neural Information Pro-
cessing Systems (NIPS) 2000, Denver, CO, USA. Ed. by Todd K. Leen,
Thomas G. Dietterich and Volker Tresp. MIT Press, 2000, pp. 1089–1095.
url: http://papers.nips.cc/paper/1840-apricodd-approximate-
policy-construction-using-decision-diagrams.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-
davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel and Demis Hassabis. ‘Master-
ing the game of Go with deep neural networks and tree search’. In: Nat.
529.7587 (2016), pp. 484–489. doi: 10.1038/nature16961. url: https:
//doi.org/10.1038/nature16961.

[SL95] Roberto Segala and Nancy A. Lynch. ‘Probabilistic Simulations for Prob-
abilistic Processes’. In: Nord. J. Comput. 2.2 (1995), pp. 250–273.

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer, 2009. isbn: 978-1-4419-0223-8. url: http://www.

springer.com/mathematics/applications/book/978-1-4419-0223-8.

[TF06] John Tromp and Gunnar Farnebäck. ‘Combinatorics of Go’. In: Computers
and Games, 5th International Conference, CG 2006, Turin, Italy, May 29-
31, 2006. Revised Papers. Ed. by H. Jaap van den Herik, Paolo Ciancarini
and H. H. L. M. Donkers. Vol. 4630. Lecture Notes in Computer Science.
Springer, 2006, pp. 84–99. doi: 10.1007/978-3-540-75538-8_8. url:
https://doi.org/10.1007/978-3-540-75538-8%5C_8.

[Val89] Antti Valmari. ‘Stubborn sets for reduced state space generation’. In: Ad-
vances in Petri Nets 1990 [10th International Conference on Applications
and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings]. Ed.
by Grzegorz Rozenberg. Vol. 483. Lecture Notes in Computer Science.
Springer, 1989, pp. 491–515. doi: 10.1007/3-540-53863-1_36. url:
https://doi.org/10.1007/3-540-53863-1%5C_36.

[Var85] Moshe Y. Vardi. ‘Automatic Verification of Probabilistic Concurrent Finite-
State Programs’. In: 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer So-
ciety, 1985, pp. 327–338. doi: 10.1109 /SFCS.1985.12. url: https:

//doi.org/10.1109/SFCS.1985.12.

[Var99] Moshe Y. Vardi. ‘Probabilistic Linear-Time Model Checking: An Overview
of the Automata-Theoretic Approach’. In: Formal Methods for Real-Time
and Probabilistic Systems, 5th International AMAST Workshop, ARTS’99,
Bamberg, Germany, May 26-28, 1999. Proceedings. Ed. by Joost-Pieter
Katoen. Vol. 1601. Lecture Notes in Computer Science. Springer, 1999,

66

http://papers.nips.cc/paper/1840-apricodd-approximate-policy-construction-using-decision-diagrams
http://papers.nips.cc/paper/1840-apricodd-approximate-policy-construction-using-decision-diagrams
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.springer.com/mathematics/applications/book/978-1-4419-0223-8
http://www.springer.com/mathematics/applications/book/978-1-4419-0223-8
https://doi.org/10.1007/978-3-540-75538-8_8
https://doi.org/10.1007/978-3-540-75538-8%5C_8
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-53863-1%5C_36
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1109/SFCS.1985.12

Bibliography

pp. 265–276. doi: 10.1007/3-540-48778-6_16. url: https://doi.
org/10.1007/3-540-48778-6%5C_16.

[VW86] Moshe Y. Vardi and Pierre Wolper. ‘An Automata-Theoretic Approach
to Automatic Program Verification (Preliminary Report)’. In: Proceedings
of the Symposium on Logic in Computer Science (LICS ’86), Cambridge,
Massachusetts, USA, June 16-18, 1986. IEEE Computer Society, 1986,
pp. 332–344.

[WDH+20] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin,
Suzanne Petryk, Sarah Adel Bargal and Joseph E. Gonzalez. ‘NBDT:
Neural-Backed Decision Trees’. In: CoRR abs/2004.00221 (2020). arXiv:
2004.00221. url: https://arxiv.org/abs/2004.00221.

[Wik20a] Wikipedia contributors. Ethiopian Airlines Flight 302 — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Ethiopian_Airlines_Flight_302&oldid=976926129. [Online; accessed
8-September-2020]. 2020.

[Wik20b] Wikipedia contributors. Lion Air Flight 610 — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Lion_
Air_Flight_610&oldid=976898113. [Online; accessed 8-September-2020].
2020.

[WJ06] Nicolás Wolovick and Sven Johr. ‘A Characterization of Meaningful Sched-
ulers for Continuous-Time Markov Decision Processes’. In: Formal Model-
ing and Analysis of Timed Systems, 4th International Conference, FORMATS
2006, Paris, France, September 25-27, 2006, Proceedings. Ed. by Eugene
Asarin and Patricia Bouyer. Vol. 4202. Lecture Notes in Computer Sci-
ence. Springer, 2006, pp. 352–367. doi: 10.1007/11867340_25. url:
https://doi.org/10.1007/11867340%5C_25.

[Yov96] Sergio Yovine. ‘Model Checking Timed Automata’. In: Lectures on Em-
bedded Systems, European Educational Forum, School on Embedded Sys-
tems, Veldhoven, The Netherlands, November 25-29, 1996. Ed. by Grzegorz
Rozenberg and Frits W. Vaandrager. Vol. 1494. Lecture Notes in Computer
Science. Springer, 1996, pp. 114–152. doi: 10.1007/3-540-65193-4_20.
url: https://doi.org/10.1007/3-540-65193-4%5C_20.

[ZVJ18] Ivan S. Zapreev, Cees Verdier and Manuel Mazo Jr. ‘Optimal Symbolic
Controllers Determinization for BDD storage’. In: 6th IFAC Conference on
Analysis and Design of Hybrid Systems, ADHS 2018, Oxford, UK, July 11-
13, 2018. Ed. by Alessandro Abate, Antoine Girard and Maurice Heemels.
Vol. 51. IFAC-PapersOnLine 16. Elsevier, 2018, pp. 1–6. doi: 10.1016/j.
ifacol.2018.08.001. url: https://doi.org/10.1016/j.ifacol.2018.
08.001.

67

https://doi.org/10.1007/3-540-48778-6_16
https://doi.org/10.1007/3-540-48778-6%5C_16
https://doi.org/10.1007/3-540-48778-6%5C_16
https://arxiv.org/abs/2004.00221
https://arxiv.org/abs/2004.00221
https://en.wikipedia.org/w/index.php?title=Ethiopian_Airlines_Flight_302&oldid=976926129
https://en.wikipedia.org/w/index.php?title=Ethiopian_Airlines_Flight_302&oldid=976926129
https://en.wikipedia.org/w/index.php?title=Lion_Air_Flight_610&oldid=976898113
https://en.wikipedia.org/w/index.php?title=Lion_Air_Flight_610&oldid=976898113
https://doi.org/10.1007/11867340_25
https://doi.org/10.1007/11867340%5C_25
https://doi.org/10.1007/3-540-65193-4_20
https://doi.org/10.1007/3-540-65193-4%5C_20
https://doi.org/10.1016/j.ifacol.2018.08.001
https://doi.org/10.1016/j.ifacol.2018.08.001
https://doi.org/10.1016/j.ifacol.2018.08.001
https://doi.org/10.1016/j.ifacol.2018.08.001

Bibliography

[ZYM+19] Quanshi Zhang, Yu Yang, Haotian Ma and Ying Nian Wu. ‘Interpreting
CNNs via Decision Trees’. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pp. 6261–6270. doi:
10.1109/CVPR.2019.00642. url: http://openaccess.thecvf.com/
content%5C_CVPR%5C_2019/html/Zhang%5C_Interpreting%5C_CNNs%

5C_via%5C_Decision%5C_Trees%5C_CVPR%5C_2019%5C_paper.html.

68

https://doi.org/10.1109/CVPR.2019.00642
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhang%5C_Interpreting%5C_CNNs%5C_via%5C_Decision%5C_Trees%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhang%5C_Interpreting%5C_CNNs%5C_via%5C_Decision%5C_Trees%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhang%5C_Interpreting%5C_CNNs%5C_via%5C_Decision%5C_Trees%5C_CVPR%5C_2019%5C_paper.html

Appendix

69

Part I

Controller Synthesis

71

A Monte Carlo Tree Search for Verifying
Reachability in Markov Decision
Processes (ISoLA 2018)

Reprinted by permission from Springer Nature Customer Service Centre GmbH (License
number 4910190430414).

This paper has been published as a peer reviewed conference paper.

Pranav Ashok, Tomás Brázdil, Jan Kret́ınský and Ondrej Slámecka. ‘Monte
Carlo Tree Search for Verifying Reachability in Markov Decision Pro-
cesses’. In: Leveraging Applications of Formal Methods, Verification and
Validation. Verification - 8th International Symposium, ISoLA 2018, Li-
massol, Cyprus, November 5-9, 2018, Proceedings, Part II. ed. by Tiziana
Margaria and Bernhard Steffen. Vol. 11245. Lecture Notes in Computer
Science. Springer, 2018, pp. 322–335. doi: 10.1007/978-3-030-03421-

4_21. url: https://doi.org/10.1007/978-3-030-03421-4%5C_21

Summary

Monte Carlo Tree Search (MCTS) has been a very successful search and exploitation
technique from reinforcement learning. In recent years, its effectiveness has been most
notably demonstrated in AlphaGo [SHM+16], a Go playing algorithm that defeated the
(human) Go world champion. On the other hand, asynchronous value iteration in the
form of BRTDP has been shown to be very good at solving reachability objectives with
hard guarantees on certain Markov Decision Processes with extremely large state spaces.

In this paper, we combine the best of the two worlds to provide asynchronous value
iteration algorithms driven by MCTS. We implement 3 algorithms with varying degrees
of mixing between MCTS and BRTDP. Results show that our algorithms perform as
good as BRTDP on most examples, and in some cases, produce a result even when
BRTDP times out.

Contribution

Composition and revision of the manuscript with significant role in writing sections 3,
4 and 5. Discussion and development of the ideas, implementation and evaluation with

73

https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-030-03421-4%5C_21

A Monte Carlo Tree Search for Verifying Reachability in Markov Decision Processes (ISoLA 2018)

the following notable individual contributions: identification of the 3 variants of the
algorithm, co-development of the implementation, evaluation.

74

Monte Carlo Tree Search for Verifying
Reachability in Markov Decision

Processes

Pranav Ashok1, Tomáš Brázdil2, Jan Křet́ınský1(B), and Ondřej Slámečka2

1 Technical University of Munich, Munich, Germany
jan.kretinsky@tum.de

2 Masaryk University, Brno, Czech Republic

Abstract. The maximum reachability probabilities in a Markov deci-
sion process can be computed using value iteration (VI). Recently,
simulation-based heuristic extensions of VI have been introduced, such as
bounded real-time dynamic programming (BRTDP), which often man-
age to avoid explicit analysis of the whole state space while preserving
guarantees on the computed result. In this paper, we introduce a new
class of such heuristics, based on Monte Carlo tree search (MCTS), a
technique celebrated in various machine-learning settings. We provide
a spectrum of algorithms ranging from MCTS to BRTDP. We evaluate
these techniques and show that for larger examples, where VI is no more
applicable, our techniques are more broadly applicable than BRTDP with
only a minor additional overhead.

1 Introduction

Markov decision processes (MDP) [Put14] are a classical formalism for modelling
systems with both non-deterministic and probabilistic behaviour. Although there
are various analysis techniques for MDP that run in polynomial time and return
precise results, such as those based on linear programming, they are rarely
used. Indeed, dynamic programming techniques, such as value iteration (VI)
or policy iteration, are usually preferred despite their exponential complexity.
The reason is that for systems of sizes appearing in practice not even polyno-
mial algorithms are useful and heuristics utilizing the structure of the human-
designed systems become a necessity. Consequently, probabilistic model checking
has adopted [BCC+14,ACD+17,KM17,KKKW18,DJKV17] techniques, which
generally come with weaker guarantees on correctness and running time, but in
practice perform better. These techniques originate from reinforcement learning,
such as delayed Q-learning [SLW+06], or probabilistic planning, such as bounded
real-time dynamic programming (BRTDP) [MLG05].

This research was supported in part by Deutsche Forschungsgemeinschaft (DFG)
through the TUM International Graduate School of Science and Engineering (IGSSE)
project 10.06 PARSEC, the Czech Science Foundation grant No. 18-11193S, and the
DFG project 383882557 Statistical Unbounded Verification.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11245, pp. 322–335, 2018.
https://doi.org/10.1007/978-3-030-03421-4_21

Monte Carlo Tree Search for Verifying Reachability 323

Since verification techniques are applied in safety-critical settings, the results
produced by the techniques are required to be correct and optimal, or at least
ε-optimal for a given precision ε. To this end, we follow the general scheme of
[BCC+14] and combine the non-guaranteed heuristics with the traditional guar-
anteed techniques such as VI. However, while pure VI analyses the whole state
space, the heuristics often allow us to focus only on a small part of it and still give
precise estimates of the induced error. This approach was applied in [BCC+14],
yielding a variant of BRTDP for MDP with reachability. Although BRTDP has
already been shown to be quite good at avoiding unimportant parts of the state
space in many cases, it struggles in many other settings, for instance where the
paths to the goal are less probable or when the degree of non-determinism is
high.

In this paper, we go one step further and bring a yet less guaranteed, but
yet more celebrated technique of Monte Carlo tree search (MCTS) [AK87,KS06,
Cou07,BPW+12] into verification. MCTS is a heuristic search algorithm which
combines exact computation using search trees with sampling methods. To find
the best actions to perform, MCTS constructs a search tree by successively
unfolding the state-space of the MDP. The value of each newly added state is
evaluated using simulations (also called roll-outs) and its value is backpropagated
through the already existing search tree.

We show that the exact construction of the search tree in MCTS mitigates
some of the pitfalls of BRTDP which relies completely on simulation. Namely, the
search tree typically reaches less probable paths much sooner than a BRTDP
simulation, e.g., in the example depicted in Fig. 1. We combine MCTS with
BRTDP in various ways, obtaining thus a spectrum of algorithms ranging from
pure BRTDP to pure MCTS along with a few hybrids in between. The aim is to
overcome the weaknesses of BRTDP, while at the same time allowing to tackle
large state spaces, which VI is unable to handle, with guaranteed (ε)-optimality
of the solution.

While usually performing comparable to BRTDP, we are able to provide
reasonable examples which can be tackled using neither BRTDP nor VI, but
with our MCTS-BRTDP hybrid algorithms. Consequently, we obtain a technique
applicable to larger systems, unlike VI, which is more broadly applicable than
BRTDP with not much additional overhead.

Our contribution can be summarized as follows:

– We provide several ways of integrating MCTS into verification approaches so
that the resulting technique is an anytime algorithm, returning the maximum
reachability probability in MDP together with the respective error bound.

– We evaluate the new techniques and compare them to the state-of-the-art
implementations based on VI and BRTDP. We conclude that for larger sys-
tems, where VI is not applicable, MCTS-based techniques are more robust
than BRTDP.

324 P. Ashok et al.

1.1 Related Work

The correctness of the error bounds in our approach is guaranteed through the
computation of the lower and upper bounds on the actual value. Such a compu-
tation has been established for MDP in [BCC+14,HM17] and the technique is
based on the classical notion of the MEC quotient [dA97].

Statistical Model Checking (SMC). [YS02] is a collection of simulation-based
techniques for verification where confidence intervals and probably approx-
imately correct results (PAC) are sufficient. While on Markov chain it is
essentially the Monte Carlo technique, on MDP it is more complex and its
use is limited [Kre16], resulting in either slow [BCC+14] or non-guaranteed
[HMZ+12,DLST15] methods. In contrast, MCTS combines Monte Carlo evalu-
ation with explicit analysis of parts of the state space and thus opens new ways
of integrating simulations into MDP verification.

Monte Carlo Tree Search (MCTS). There is a huge amount of literature on
various versions of MCTS and applications. See [BPW+12] for an extensive
survey. MCTS has been spectacularly successful in several domains, notably in
playing classical board games such as Go [SHM+16] and chess [SHS+17].

Many variants of MCTS can be distinguished based on concrete implementa-
tions of its four phases: Selection and expansion, where a search tree is extended,
roll-out, where simulations are used to evaluate newly added nodes, and back-up,
where the result of roll-out is propagated through the search tree. In the selec-
tion phase, actions can be chosen based on various heuristics such as the most
common UCT [KS06] and its extensions such as FPU and AMAF [GW06]. The
evaluation phase has also been approached from many directions. To improve
upon purely random simulation, domain specific rules have been employed to
guide the choice of actions [ST09] and (deep) reinforcement learning (RL) tech-
niques have been used to learn smart simulation strategies [SHM+16]. On the
other hand, empirical evidence shows that it is often more beneficial to make sim-
ple random roll-outs as opposed to complex simulations strategies [JKR17]. RL
has also been integrated with MCTS to generalize UCT by temporal difference
(TD) backups [SSM12,VSS17].

2 Preliminaries

2.1 Markov Decision Processes

A probability distribution on a finite set X is a mapping d : X �→ [0, 1], such that∑
x∈X d(x) = 1. We denote by D(X) the set of all probability distributions on

X. Further, the support of a probability distribution ρ is denoted by supp(d) =
{x ∈ X | d(x) > 0}.

Definition 1 (MDP). A Markov decision processes (MDP) is a tuple of the form
M = (S, sinit,Act ,Av,Δ, 1, 0), where S is a finite set of states, sinit, 1, 0 ∈ S is the

Monte Carlo Tree Search for Verifying Reachability 325

initial state, goal state, and sink state, respectively, Act is a finite set of actions,
Av : S → 2Act assigns to every state a set of available actions, and Δ : S × Act →
D(S) is a transition function that given a state s and an action a ∈ Av(s) yields a
probability distribution over successor states.

An infinite path ρ in an MDP is an infinite word ρ = s0a0s1a1 · · · ∈ (S × Act)ω,
such that for every i ∈ N, ai ∈ Av(si) and Δ(si, ai, si+1) > 0. A finite path
w = s0a0s1a1 . . . sn ∈ (S×Act)∗ ×S is a finite prefix of an infinite path. A policy
on an MDP is a function π : (S × Act)∗ × S → D(Act), which given a finite
path w = s0a0s1a1 . . . sn yields a probability distribution π(w) ∈ D(Av(sn)) on
the actions to be taken next. We denote the set of all strategies of an MDP
by Π. Fixing a policy π and an initial state s on an MDP M yields a unique
probability measure Pπ

M,s over infinite paths [Put14, Sect. 2.1.6] and thus the
probability V π(s) := Pπ

M,s[{ρ | ∃i ∈ N : ρ(i) = 1}] to reach the goal state when
following π.

Definition 2. Given a state s, the maximum reachability probability is V (s) =
supπ∈Π V π(s). A policy σ is ε-optimal if V (sinit) − V σ(sinit) ≤ ε.

Note that there always exists a 0-optimal policy of the form π : S → Act [Put14].
A pair (T,A), where ∅ �= T ⊆ S and ∅ �= A ⊆ ⋃

s∈T Av(s), is an end
component of an MDP M if

– for all s ∈ T, a ∈ A ∩ Av(s) we have supp(Δ(s, a)) ⊆ T , and
– for all s, s′ ∈ T there is a finite path w = sa0 . . . ans′ ∈ (T × A)∗ × T , i.e. w

starts in s, ends in s′, stays inside T and only uses actions in A.

An end component (T,A) is a maximal end component (MEC) if there is no
other end component (T ′, A′) such that T ⊆ T ′ and A ⊆ A′. The set of MECs of
an MDP M is denoted by MEC(M). An MDP can be turned into its MEC quo-
tient [dA97] as follows. Each MEC is merged into a single state, all the outgoing
actions are preserved, except for a possible self-loop (when all its successors are
in this MEC). Moreover, if there are no available actions left then it is merged
with the sink state 0. For a formal definition, see [ABKS18, Appendix A]. The
techniques we discuss in this paper require the MDP be turned (gradually or at
once) into its MEC-quotient in order to converge to V , as described below.

2.2 Value Iteration

Value iteration (VI) is a dynamic programming algorithm first described by
Bellman [Bel57]. The maximum reachability probability is characterized as the
least fixpoint of the following equation system for s ∈ S:

V (s) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if s = 1

0 if s = 0

max
a∈Av(s)

∑
s′∈S

Δ(s, a)(s′) · V (s′) otherwise

326 P. Ashok et al.

In order to compute the least fixpoint, an iterative method can be used as
follows. We initialize V 0(s) = 0 for all s except for V 0(1) = 1. A successive
iteration V i+1 is computed by evaluating the right-hand side of the equation
system with V i. The optimal value is achieved in the limit, i.e. limn→∞ V n = V .

In order to obtain bounds on the imprecision of V n, one can employ a bounded
variant of VI [MLG05,BCC+14] (also called interval iteration [HM17]). Here one
computes not only the lower bounds on V via the least-fixpoint approximants
V n (onwards denoted by Ln), but also upper bounds via the greatest-fixpoint
approximants, called Un. The greatest-fixpoint can be approximated in a dual
way, by initializing the values to 1 except for 0 where it is 0. On MDPs without
MECs (except for 1 and 0), we have both limn→∞ Ln = V = limn→∞ Un, giving
us an anytime algorithm with the guarantee that V ∈ [Ln, Un]. However, on
general MDPs, limn→∞ Un can be larger than V , often yielding only a trivial
bound of 1, see [ABKS18, Appendix B]. The solution suggested in [BCC+14,
HM17] is to consider the MEC quotient instead, where the guarantee is recovered.
The MEC quotient can be pre-computed [HM17] or computed gradually on-the-
fly only for a part of the state space [BCC+14].

2.3 Bounded Real-Time Dynamic Programming (BRTDP)

BRTDP [MLG05] is a heuristic built on top of (bounded) VI, which has been
adapted to the reachability objective in [BCC+14]. It belongs to a class of asyn-
chronous VI algorithms. In other words, it differs from VI in that in each itera-
tion it does not update the values for all states, but only a few. The states to be
updated are chosen as those that appear in a simulation run performed in that
iteration. This way we focus on states visited with high probability and thus
having higher impact on the value.

BRTDP thus proceeds as follows. It maintains the current lower and upper
bounds L and U on the value, like bounded VI. In each iteration, a simulation
run is generated by choosing in each state s

– the action maximizing U , i.e. arg maxa

∑
s′∈S Δ(s, a)(s′) · U(s′),

– the successor s′ of a randomly with weight Δ(s, a)(s′) or (more efficiently) in
the variant of [BCC+14] with weight Δ(s, a)(s′) · (U(s′) − L(s′)).

Then the value of each state on the simulation run is updated by the equation
system for V . This happens preferably in the backward order [BCC+14] from the
last state (1 or 0) towards sinit, thus efficiently propagating the value informa-
tion. These iterations are performed repeatedly until U(sinit) − L(sinit) < ε for
some predefined precision ε, yielding the interval [L(sinit), U(sinit)] containing
the value V (sinit).

If the only MECs are formed by 1 and 0 then the algorithm (depicted in
[ABKS18, Appendix C, Algorithm 2] terminates almost surely. But if there are
other MECs, then this is not necessarily the case. In order to ensure correct
termination, [BCC+14] modifies the algorithm in a way, which we adopt also for
our algorithms: Periodically, after a certain number of iterations, we compute the

Monte Carlo Tree Search for Verifying Reachability 327

MEC quotient, not necessarily of the whole MDP, but only of the part formed
by the states visited so far by the algorithm.

3 Monte-Carlo Tree Search

Motivation. One of the main challenges in the application of BTRDP are
the presence of events that happen after a long time (but are not necessarily
rare). For example, consider the simple MDP in Fig. 1, modelling a hypothetical
communication protocol. Let s3 be the goal state, representing a failure state.
From each of the states s0, s1 and s2, the MDP tries to send a message. If the
message sending fails, which happens with a very low probability, the MDP
moves to the next state, otherwise returning to the initial state s0. BRTDP
repeatedly samples paths and propagates (“backs-up”) the encountered values
through the paths. Even though the goal is reached in almost every simulation,
it can take very long time to finish each simulation.

The idea of MCTS is to “grow” a tree into the model rooted at the initial
state while starting new simulations from the leaves of the tree. In this example,
the tree soon expands to s1 or s2 and from then on, simulations are started there
and thus are more targeted and the back-propagation of the values is faster.

Generic Algorithm. MCTS can be visualized (see Fig. 2) as gradually building
up a tree, which describes several steps of unfolding of the system, collecting more

Fig. 1. A difficult case for BRTDP

Fig. 2. The four stages of MCTS: selection, expansion, roll-out and back-propagation

328 P. Ashok et al.

Algorithm 1. The (enriched) MCTS scheme

1: Create a root t0 of the tree, labelled by sinit

2: while within computational budget do
3: tparent ← SelectNode(t0)
4: tchild ← ExpandAndPickroll-outNode(tparent)
5: outcome ← roll-out(tchild)
6: BackupOnRoll-out(outcome) � Not in the standard MCTS
7: BackupOnTree(tchild, outcome)

8: return InducedPolicy(t0) � action with the best estimated value

and more information. Note that nodes of the tree correspond to states of the
MDP.

The MCTS procedure (see Algorithm 1) proceeds in rounds, each consisting
of several stages:

First, in the selection stage (line 3), a tree policy is followed leading from
the root of the tree to the currently most “interesting” leaf.

Second, in the expansion stage (line 4), one or more of the successors are
added to the tree. In our setting with required guarantees, it turns out sensible to
expand all successors, i.e.

⋃
a∈Av(tparent)

supp(Δ(sparent, a)). One of the successors
is picked, according to the tree policy.

Third, in the roll-out stage (line 5) a simulation run is generated, adhering
to a roll-out policy. In the classical setting, the simulation run receives a certain
reward. In our setting, the simulation run receives a reward of 1 if it encounters
the goal state, otherwise it receives 0.

Finally, in the back-propagation (or backup) stage, the information
whether a goal was reached during the roll-out is propagated up the tree (line
7). The information received through such simulations helps MCTS to decide the
direction in which the tree must be grown in the next step. On top of the standard
MCTS, we also consider possible back-propagation of this information along the
generated simulations run (line 6).

Next, we discuss a particularly popular way to implement the MCTS scheme.

UCT Implementation. Each stage of the MCTS scheme can be instantiated
in various ways. We now describe one of the most common and successful imple-
mentations, called UCT [KS06] (abbreviation of “UCB applied to Trees”). Each
node t in the tree keeps track of two numbers: nt is the number of times t has
been visited when selecting leaves; vt is the number of times it has been visited
and the roll-out from the descendant leaf hit the goal. These numbers can be
easily updated during the back-propagation: we simply increase all n’s on the
way from the leaf to the root, similarly for the v’s whenever the roll-out hit
the goal. This allows us to define the last missing piece, namely the tree policy
based on these values, which is called Upper Confidence Bound (UCB1 or simply
UCB). The UCB1 value of a node t in the MCTS tree is defined as follows:

Monte Carlo Tree Search for Verifying Reachability 329

UCB1 (t) =
vt

nt
+ C

√
lnnparent(t)

nt

where parent(t) is the parent of t in the tree and C is a fixed exploration-
exploitation constant. The tree policy choosing nodes with maximum UCB1
bound is called the UCB1 policy.

Intuitively, the first term of the expression describes the ratio of “successful”
roll-outs (i.e., hitting the goal) started from a descendant of t. In other words,
this exploitation term tries to approximate the probability to reach the goal from
t. The higher the value, the higher the chances that the tree policy would pick
t. In contrast, the second term decreases when the node t is chosen too often.
This compensates for the first term, thereby allowing for the siblings of t to be
explored. This is the exploration term and the effect of the two terms is balanced
by the constant C. The appropriate values of C vary among domains and, in
practice, are determined experimentally.

It has been proved in [KS06] that for finite-horizon MDP (or MDP with
discounted rewards), the UCT with an appropriately selected C converges in
the following sense: After n iterations of the MCTS algorithm, the difference
between the expectation of the value estimate and the true value of a given state
is bounded by O(log(n)/n). Moreover, the probability that an action with the
best upper confidence bound in the root is not optimal converges to zero at a
polynomial rate with n → ∞.

4 Augmenting MCTS with Guarantees

In this section, we present several algorithms based on MCTS. Note that the
typical uses of MCTS in practice only require the algorithm to guess a good but
not necessarily the optimal action for the current state. When adapting learning
algorithms to the verification setting, an important requirement is an ability to
give precise guarantees on the sought value or to produce an ε-optimal scheduler.
Consequently, in order to obtain the guarantees, our algorithms combine MCTS
with BRTDP, which comes with guarantees, to various degrees. The spectrum
is depicted in Table 1 and described in more detail below.

Table 1. Spectrum of algorithms ranging from pure MCTS to pure BRTDP

Algorithm MCTS BMCTS MCTS-BRTDP BRTDP-UCB BRTDP

SelectNode (Tree Policy) UCB1 UCB1 UCB1 UCB1 BRTDP

Roll-out Uniform Uniform BRTDP

BackpupOnRoll-out — L, U L, U v, n, L, U L, U

BackupOnTree v, n v, n, L, U v, n, L, U

330 P. Ashok et al.

1. Pure MCTS (the UCT variant): The tree is constructed using the UCB1 pol-
icy while roll-outs are performed using a uniform random policy, i.e. actions
are chosen uniformly, successors according to their transition probabilities.
The roll-outs are either successful or not, and this information is back-
propagated up the tree, i.e. the v- and n-values of the nodes in the tree
are updated.

2. Bounded MCTS (BMCTS): In addition to all the steps of pure MCTS, here
we also update the L- and U -values, using the transition probabilities and the
old L- and U -values. This update takes place both on all states in the tree
on the path from the root to the current leaf as well as all states of visited
during the roll-out. The updates happen backwards, starting from the last
state of the simulation run, towards the leaf and then towards the root.

3. MCTS-BRTDP: This algorithm is essentially BMCTS with the only difference
that the roll-out is performed using the BRTDP policy, i.e. action is chosen as
arg maxa∈Av(s)

∑
s′ Δ(s, a)(s′) · U(s′), and the successor of a randomly with

the weight Δ(s, a)(s′) · (U(s′) − L(s′)).
4. BRTDP-UCB: As we move towards the BRTDP side of the spectrum, there

is no difference between whether a state is captured in the tree or not: back-
propagation works the same and the policy to select the node is the same as
for the roll-out. In this method, we use the UCB1 policy to choose actions
on the whole path from the initial state all the way to the goal or the sink,
and back-propagate all information. Note that as opposed to BRTDP, the
exploitation is interleaved with some additional exploration, due to UCB1.

5. Pure BRTDP: Finally, we also consider the pure BRTDP algorithm as pre-
sented earlier in the paper. This works the same as BRTDP-UCB, but the
(selection and roll-out) policy is that of BRTDP.

While MCTS does not provide exact guarantees on the current error, all
the other methods keep track of the lower and the upper bound, yielding the
respective guarantee on the value. Note that MCTS-BRTDP is a variant of
MCTS, where BRTDP is used not only to provide these bounds, but also to
provide a more informed roll-out. Such a policy is expected to be more efficient
compared to just using a uniform policy or UCB. Since some studies [JKR17]
have counter-intuitively shown that more informed roll-outs do not necessarily
improve the runtime, we also include BMCTS and BRTDP-UCB, where the path
generation is derived from the traditional MCTS approach; the former applies
it in the MCTS setting, the latter in the BRTDP setting.

MDPs with MECs. In MDPs where the only MECs are formed by 1 and 0,
the roll-outs almost surely reach one of the two states and then stop. Since in
MDPs with MECs this is not necessarily the case, we have to collapse the MECs,
like discussed in Sect. 2.3. Therefore, a roll-out w = s0s1s2 . . . sn is stopped if
sn ∈ {1, 0} or sn = sk, for some 0 ≤ k < n. In the latter case, there is a
chance that an end component has been discovered. Hence we compute the
MEC quotient and only then continue the process. When MECs are collapsed
this way, both the lower and the upper bound converge to the value and the

Monte Carlo Tree Search for Verifying Reachability 331

resulting methods terminate in finite time almost surely, due to reasoning of
[BCC+14] and the exploration term being positive.

Example 1. We revisit the example of Fig. 1 to see how the MCTS-based algo-
rithms presented above tend to work. We focus on MCTS-BRTDP. Once the
algorithm starts it is easy to see that in 3 iterations of MCTS-BRTDP, the tar-
get state s3 will belong to the MCTS tree. From the next iteration onwards,
the selection step will always choose s3 to start the roll-out from. But since s3

is already a target, the algorithm just proceeds to update the information up
the tree to the root state. Hence, with just 3 iterations more than what value
iteration would need, the algorithm converges to the same result.

While this example is quite trivial, we show experimentally in the next section
that the MCTS-based algorithms not only run roughly as fast as BRTDP, but
in certain large models that exhibit behaviour similar to the example of Fig. 1,
it is clearly the better option.

5 Experimental Evaluation

We implemented all the algorithms outlined in Table 1 in PRISM Model Checker
[KNP11]. Table 2 presents the run-times obtained on twelve different models.
Six of the models used (coin, leader, mer, firewire, zeroconf and wlan)
were chosen from the PRISM Benchmark Suite [KNP12] and the remaining
six were constructed by modifying firewire, zeroconf and wlan in order to
demonstrate the strengths and weaknesses of VI, BRTDP, and our algorithms.
Recall the motivational example of Fig. 1 in Sect. 3, which is hard for BRTDP,
yet easy for VI. We refer to this MDP as brtdp-adversary. This hard case is
combined with one of benchmarks, firewire, zeroconf and wlan, in two ways
as follows.

Branch Models. In the first construction, we allow a branching decision at
the initial state. The resulting model is shown in Fig. 3. If action a is cho-
sen, then we enter the brtdp-adversary branch. If action b is chosen, then we
enter the standard zeroconf model. Using this schema, we create three models:
branch-zeroconf, branch-firewire and branch-wlan.

Composition Models. In the second construction, the models are constructed
by the parallel (asynchronous) composition of the brtdp-adversary and one of
firewire, zeroconf and wlan. The resulting models are named comp-firewire,
comp-zeroconf and comp-wlan.

We run the experiments on an Intel Xeon server with sufficient memory
(default PRISM settings). The implementation is single threaded and each exper-
iment is run 15 times to alleviate the effect of the probabilistic nature of the
algorithms. The median run-time for each model configuration is reported in
Table 2. Note that the measured time is the wall-clock time needed to perform
the model checking. We do not include the time needed to start PRISM and to
read and parse the input file. An execution finishes successfully once the value of

332 P. Ashok et al.

Fig. 3. Combining zeroconf model with the BRTDP adversary in a branching manner.

Table 2. Comparison of the various algorithms. All run-times are in seconds. Cells
with ‘−’ denote either running out of memory (in the case of VI) or running out of
time.

Benchmark BMCTS MCTS-BRTDP BRTDP-UCB BRTDP VI

consensus 5.55 6.48 7.47 6.15 1.13

leader 18.67 15.79 16.33 15.06 8.94

mer − 4.79 − 3.63 −
firewire 0.07 0.08 0.09 0.09 6.99

wlan 0.09 0.07 0.08 0.08 −
zeroconf 0.93 0.20 0.59 0.20 −
comp-firewire 9.36 9.55 − − 20.77

comp-wlan 2.51 2.25 − − −
comp-zeroconf − 29.55 − − −
branch-firewire 0.09 0.09 0.02 0.09 9.33

branch-wlan 0.10 0.08 0.09 0.07 −
branch-zeroconf 25.90 30.78 35.67 38.14 −

the queried maximal reachability property is known with a guaranteed absolute
precision of 10−6, except for comp-zeroconf and branch-zeroconf where it
stops once the value is known with a precision of 10−2. Timeout is set to 10 min.

Table 2 shows that in the cases where BRTDP performs well, our algorithms
perform very similarly, irrespective of the performance of VI. However, when
BRTDP struggles due to the hard case, our MCTS-based algorithms still perform
well, even in cases where VI also times out. In particular, MCTS-BRTDP shows a
consistently good performance. The less informed variants BMCTS and BRTDP-
UCB of MCTS-BRTDP and BRTDP, respectively, perform consistently at most
as well their respective more informed variants. This only confirms the intuitive
expectation which, however, has been shown invalid in other settings.

Monte Carlo Tree Search for Verifying Reachability 333

Fig. 4. Dependence of the run-time of MCTS-BRTDP on the exploration-exploitation
constant, C

In the experiments, we have used the exploration-exploitation constant C =
25, which is rather large compared to the typical usage in literature [KSW06,
BPW+12]. This significantly supports exploration. The effect of the constant
is illustrated in Fig. 4. We can see that for lower values of C, the algorithms
perform worse, due to insufficient incentive to explore.

In conclusion, we see that exploration, which is present in MCTS but not
explicitly in BRTDP, leads to a small overhead which, however, pays off dra-
matically in more complex cases. For the total number of states explored by
VI, BRTDP, and our MCTS-based algorithms, we refer the reader to [ABKS18,
Appendix D, Table 3].

6 Conclusion

We have introduced Monte Carlo tree search into verification of Markov decision
processes, ensuring hard guarantees of the resulting methods. We presented sev-
eral algorithms, covering the spectrum between MCTS and (in this context more
traditional) MDP-planning heuristic BRTDP. Our experiments suggest that the
overhead caused by additional exploration is outweighed by the ability of the
technique to handle the cases, which are more complicated for BRTDP. Further,
similarly to BRTDP, the techniques can handle larger state spaces, where the
traditional value iteration fails to deliver any result. Consequently, the method

334 P. Ashok et al.

is more robust and applicable to a larger spectrum of examples, at the cost of a
negligible overhead.

References

[ABKS18] Ashok, P., Brázdil, T., Křet́ınský, J., Slámečka, O.: Monte Carlo tree
search for verifying reachability in Markov decision processes. CoRR
abs/1809.03299 (2018)

[ACD+17] Ashok, P., Chatterjee, K., Daca, P., Křet́ınský, J., Meggendorfer, T.: Value
iteration for long-run average reward in Markov decision processes. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 201–221.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 10

[AK87] Abramson, B., Korf, R.E.: A model of two-player evaluation functions. In:
Proceedings of the 6th National Conference on Artificial Intelligence (AAAI
1987), pp. 90–94. Morgan Kaufmann (1987)

[BCC+14] Brázdil, T., et al.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11936-6 8

[Bel57] Bellman, R.: A Markovian decision process. 6:15 (1957)
[BPW+12] Browne, C., et al.: A survey of monte carlo tree search methods. IEEE

Trans. Comput. Intell. AI Games 4, 1–43 (2012)
[Cou07] Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree

search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.)
CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75538-8 7

[dA97] de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis,
Stanford University (1997)

[DJKV17] Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) Computer
Aided Verification. CAV 2017. Lecture Notes in Computer Science, vol.
10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63390-9 31

[DLST15] D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.-M.: Smart sampling
for lightweight verification of Markov decision processes. Int. J. Softw. Tools
Technol. Transf. 17(4), 469–484 (2015)

[GW06] Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo
Go. In: NIPS: Neural Information Processing Systems Conference On-line
Trading of Exploration and Exploitation Workshop, Canada, December
2006

[HM17] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. 735, 111–131 (2018)

[HMZ+12] Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: QEST, pp. 84–93 (2012)

[JKR17] James, S., Konidaris, G., Rosman, B.: An analysis of Monte Carlo tree
search. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 3576–
3582 (2017)

Monte Carlo Tree Search for Verifying Reachability 335

[KKKW18] Kelmedi, E., Krämer, J., Kret́ınský, J., Weininger, M.: Value iteration for
simple stochastic games: stopping criterion and learning algorithm. In: CAV
(1), pp. 623–642. Springer (2018)

[KM17] Křet́ınský, J., Meggendorfer, T.: Efficient strategy iteration for mean payoff
in Markov decision processes. In: ATVA, pp. 380–399 (2017)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 47

[KNP12] Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite.
In: Proceedings of 9th International Conference on Quantitative Evaluation
of SysTems (QEST 2012), pp. 203–204. IEEE CS Press (2012)

[Kre16] Křet́ınský, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 3

[KS06] Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.
org/10.1007/11871842 29

[KSW06] Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo search
(2006)

[MLG05] Brendan McMahan, H., Likhachev, M., Gordon, G.J.: Bounded real-time
dynamic programming: RTDP with monotone upper bounds and perfor-
mance guarantees. In: ICML 2005 (2005)

[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, New York (2014)

[SHM+16] Silver, D., et al.: Mastering the game of go with deep neural networks and
tree search. Nature 529(7587), 484–489 (2016)

[SHS+17] Silver, D., et al.: Mastering chess and Shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815 (2017)

[SLW+06] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-
free reinforcement learning. In: ICML, pp. 881–888 (2006)

[SSM12] Silver, D., Sutton, R.S., Mueller, M.: Temporal-difference search in com-
puter Go. Mach. Learn. 87, 183–219 (2012)

[ST09] Silver, D., Tesauro, G.: Monte-Carlo simulation balancing. In: Proceedings
of the 26th Annual International Conference on Machine Learning (ICML
2009), pp. 945–952. ACM (2009)

[VSS17] Vodopivec, T., Samothrakis, S., Ster, B.: On Monte Carlo tree search and
reinforcement learning. J. Artif. Intell. Res. 60, 881–936 (2017)

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0 17

B Continuous-time Markov Decisions
Based on Partial Exploration (ATVA
2018)

Reprinted by permission from Springer Nature Customer Service Centre GmbH (License
number 4910190629931).

This paper has been published as a peer reviewed conference paper.

Pranav Ashok, Yuliya Butkova, Holger Hermanns and Jan Kret́ınský.
‘Continuous-Time Markov Decisions Based on Partial Exploration’. In:
Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 11138.
Lecture Notes in Computer Science. Springer, 2018, pp. 317–334. doi:
10.1007/978-3-030-01090-4_19. url: https://doi.org/10.1007/

978-3-030-01090-4%5C_19

Summary

Continuous-time Markov Decision Process (CTMDP) are a continuous-time extension
of MDPs in which an exponentially distributed delay is incurred in every state before a
transition is executed. An important problem on CTMDP, called time-bounded reach-
ability, is to synthesize a scheduler (or a controller) that optimizes the probability of
reaching a set of goal states within a given deadline. While it is known that there exists
a timed non-randomized memoryless scheduler that can achieve the optimum, it is how-
ever not known how to compute it. Hence, a large body of research focuses on obtaining
ε-optimal schedulers.

In this paper, we present a framework to speed up existing time-bounded reachability
algorithms via simulations, at the same time maintaining ε-guarantees. We achieve this
by iteratively identifying sub-CTMDPs relevant for the given objective, constructing an
under- and an over-approximation of each and use existing time-bounded reachability
algorithms on it. This gives us, for every sub-CTMDP, a lower and upper bound on
the optimal time-bounded reachability value. We stop when the difference between
these bounds is ε. Our results show that for many CTMDPs in our benchmark suite,
it is sufficient to explore only a small part of the state space, which in turn speeds up
existing algorithms.

89

https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4%5C_19
https://doi.org/10.1007/978-3-030-01090-4%5C_19

B Continuous-time Markov Decisions Based on Partial Exploration (ATVA 2018)

Contribution

Composition and revision of the manuscript with significant contributions to Sections 3
and 4. Discussion and development of the ideas, experimentation and evaluation. Co-
lead role in the design and implementation of the presented tool and its integration with
the PRISM Model Checker.

90

Continuous-Time Markov Decisions
Based on Partial Exploration

Pranav Ashok1 , Yuliya Butkova2 , Holger Hermanns2 , and Jan
Křet́ınský1(B)

1 Technical University of Munich, Munich, Germany
{ashok,jan.kretinsky}@in.tum.de

2 Saarland University, Saarbrücken, Germany
{butkova,hermanns}@cs.uni-saarland.de

Abstract. We provide a framework for speeding up algorithms for time-
bounded reachability analysis of continuous-time Markov decision pro-
cesses. The principle is to find a small, but almost equivalent subsystem
of the original system and only analyse the subsystem. Candidates for
the subsystem are identified through simulations and iteratively enlarged
until runs are represented in the subsystem with high enough proba-
bility. The framework is thus dual to that of abstraction refinement.
We instantiate the framework in several ways with several traditional
algorithms and experimentally confirm orders-of-magnitude speed ups
in many cases.

1 Introduction

Continuous-time Markov decision processes (CTMDP) [Ber95,Sen99,Fei04]
are the natural real-time extension of (discrete-time) Markov decision pro-
cesses (MDP). They can likewise be viewed as non-deterministic extensions of
continuous-time Markov chains (CTMC). As such, CTMDP feature probabilis-
tic and non-deterministic behaviour as well as random time delays governed by
exponential probability distributions. Prominent application areas of CTMDP
include operations research [BDF81,Fei04], power management and schedul-
ing [QQP01], networked, distributed systems [HHK00,GGL03], as well as epi-
demic and population processes [Lef81]. Moreover, CTMDPs are the core seman-
tic model underlying formalisms such as generalised stochastic Petri nets, Marko-
vian stochastic activity networks, and interactive Markov chains [EHKZ13].

A large variety of properties can be expressed using logics such as
CSL [ASSB96]. Apart from classical techniques from the MDP context, the
analysis of such properties relies fundamentally on the problem of time-bounded

This research was supported in part by Deutsche Forschungsgemeinschaft (DFG)
through the TUM International Graduate School of Science and Engineering
(IGSSE) project 10.06 PARSEC, the ERC through Advanced Grant 695614
(POWVER), the Czech Science Foundation grant No. 18-11193S, and the DFG
project 383882557 Statistical Unbounded Verification.

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 317–334, 2018.
https://doi.org/10.1007/978-3-030-01090-4_19

318 P. Ashok et al.

reachability (TBR), i.e. what is the maximal/minimal probability to reach a given
state within a given time bound. Since this is the cornerstone of the analysis, a
manifold of algorithms have been proposed for TBR [BHHK04,BFK+09,NZ10,
FRSZ11,BS11,HH13,BHHK15]. While the algorithmic approaches are diverse,
relying on uniformisation and various forms of discretization, they are mostly
back-propagating the values computed, i.e. in the form of value iteration.

Not surprisingly, all these algorithms naturally process the state space of
the CTMDP in its entirety. In this work we instead suggest a framework that
enables TBR analysis with guaranteed precision while often exploring only a
small, property-dependent part of the state space. Similar ideas have appeared
for (discrete-time) MDPs and unbounded reachability [BCC+14] or mean pay-
off [ACD+17]. These techniques are based on asynchronous value-iteration
approaches, originally proposed in the probabilistic planning world, such as
bounded real-time dynamic programming (BRTDP) [MLG05]. Intuitively, the
back-propagation of values (value iteration steps) are not performed on all states
in each iteration (synchronously), but always only the “interesting” ones are con-
sidered (asynchronously); in order to bound the error in this approach, one needs
to compute both an under- and an over-approximation of the actual value.

In other words, the main idea is to keep track of (under- and over-
)approximation of the value when accepting that we have no information about
the values attained in certain states. Yet if we can determine that these states
are reached with very low probability, their effect on the actual value is provably
negligible and thus the lack of knowledge only slightly increases the difference
between the under- and over-approximations. To achieve this effect, the algo-
rithm of [BCC+14] alternates between two steps: (i) simulating a run of the
MDP using a (hopefully good) scheduler, and (ii) performing the standard value
iteration steps on the states visited by this run.

It turns out that this idea cannot be transferred to the continuous-time set-
ting easily. In technical terms, the main issue is that the value iteration in this
context takes the form of synchronous back-propagation, which when imple-
mented in an asynchronous fashion results in memory requirements that tend to
dominate the memory savings expectable due to partial exploration.

Therefore, we twist the above approach and present a yet simpler algorithmic
strategy in this paper. Namely, our approach alternates between several simula-
tion steps, and a subsequent run of TBR analysis only focussed on the already
explored subsystem, instead of the entire state space. If the distance between
under- and over-approximating values is small enough, we can terminate; other-
wise, running more simulations extends the considered state subspace, thereby
improving the precision in the next round. If the underlying TBR analysis pro-
vides an optimal scheduler along with the value of time-bounded reachability,
then our solution as well provides the optimal scheduler for the TBR problem
on the given CTMDP.

There are thus two largely independent components to the framework,
namely (i) a heuristic how to explore the system via simulation, and (ii) an algo-
rithm to solve time-bounded reachability on CTMDP. The latter is here instan-

Continuous-Time Markov Decisions Based on Partial Exploration 319

tiated with some of the classic algorithms mentioned above, namely the first
discretization-based algorithm [NZ10] and the two most competitive improve-
ments over it [BS11,BHHK15], based on uniformisation and untimed analysis.
The former basically boils down to constructing a scheduler resolving the non-
determinism effectively. We instantiate this exploration heuristics in two ways.
Firstly, we consider a scheduler returned by the most recent run of the respec-
tive TBR algorithm, assuming this to yield a close-to-optimal scheduler, so as
to visit the most important parts of the state space, relative to the property in
question. Secondly, since this scheduler may not be available when working with
TBR algorithms that return only the value, we also employ a scheduler resolving
choices uniformly. Although the latter may look very straightforward, it turns
out to already speed up the original algorithm considerably in many cases. This
is rooted in the fact that that scheduler best represents the available knowledge,
since the uniform distribution is the one with maximimal entropy.

Depending on the model and the property under study, different ratios of
the state space entirety need to be explored to achieve the desired precision.
Furthermore, our approach is able to exploit that the reachability objective is of
certain forms, in stark contrast to the classic algorithm that needs to perform the
same computation irrespective of the concrete set of target states. Still, the app-
roach we propose will naturally profit from future improvements in effectiveness
of classic TBR analysis.

We summarize our contribution as follows:

– We introduce a framework to speed up TBR algorithms for CTMDP and
instantiate it in several ways. It is based on a partial, simulation-based explo-
ration of the state space spanned by a model.

– We demonstrate its effectiveness in combination with several classic algo-
rithms, obtaining orders of magnitude speed ups in many experiments. We
also illustrate the limitations of this approach on cases where the state space
needs to be explored almost in its entirety.

– We conclude that our framework is a generic add-on to arbitrary TBR algo-
rithms, often saving considerably more work than introduced by its overhead.

2 Preliminaries

In this section, we introduce some central notions. A probability distribution on
a finite set X is a mapping ρ : X → [0, 1], such that

∑
x∈X ρ(x) = 1. D(X)

denotes the set of all probability distributions on X.

Definition 1. A continuous-time Markov decision process (CTMDP) is a tuple
M = (sinit, S,Act,R, G) where S is a finite set of states, sinit is the initial state,
Act is a finite set of actions, R : S ×Act×S → R≥0 is a rate matrix and G ⊆ S
is a set of goal states.

For a state s ∈ S we define the set of enabled actions Act(s) as follows:
Act(s) = {α ∈ Act | ∃s′ ∈ S : R(s, α, s′) > 0}. States s′ for which R(s, α, s′) > 0

320 P. Ashok et al.

form the set of successor states of s via α, denoted as Succ(s, α). W. l. o. g.
we require that all sets Act(s) and Succ(s, α) are non-empty. A state s, s. t.
∀α ∈ Act(s) : Succ(s, α) = {s} is called absorbing.

For a given state s and action α ∈ Act(s), we denote by λ(s, α) =∑
s′ R(s, α, s′) the exit rate of α in s and Δ(s, α, s′) = R(s, α, s′)/λ(s, α).
An example CTMDP is depicted in Fig. 1a. Here states are depicted in circles

and are labelled with numbers from 0 to 5. The goal state G is marked with a
double circle. Dashed transitions represent available actions, e.g. state 1 has two
enabled actions α and β. A solid transition labelled with a number denotes the
rate, e.g. R(1, β,G) = 1.1, therefore there is a solid transition from state 1 via
action β to state G with rate 1.1. If there is only one enabled action for a state,
we only show the rates of the transition via this action and omit the action itself.
For example, state 0 has only 1 enabled action (lets say α) and therefore it only
has outgoing solid transition with rate 1.1 = R(0, α, 1).

Fig. 1. Example CTMDPs.

The system starts in the initial state s0 = sinit.
While being in a state s0, the system picks an action
α0 ∈ Act(s). When an action is picked the CTMDP
resides in s0 for the amount of time t0 which is sam-
pled from exponential distribution with parameter
λ(s0, α0). Later in this paper we refer to this as
residence time in a state. After t0 time units the
system transitions into one of the successor states
s1 ∈ Succ(s0, α0) selected randomly with distribu-
tion Δ(s0, α0, ·). After this transition the process
is repeated from state s1 forming an infinite path

ρ = s0
α0,t0−→ s1

α1,t1−→ s2 A finite prefix of an infi-
nite path is called a (finite) path. We will use ρ↓
to denote the last state of a finite path ρ. We will
denote the set of all finite paths in a CTMDP with
Paths∗, and the set of all infinite paths with Paths.

CTMDPs pick actions with the help of sched-
ulers. A scheduler is a measurable1 function π :
Paths∗ × R�0 → D(Act) such that π(ρ, t) ∈ Act(ρ↓). Being in a state s at
time point t the CTMDP samples an action from π(ρ, t), where ρ is the path
that the system took to arrive in s. We denote the set of all schedulers with Π.

Fixing a scheduler π in a CTMDP M, the unique probability measure PrM
π

over the space of all infinite paths can be obtained [Neu10], denoted also by Prπ

when M is clear from context.

Optimal Time-Bounded Reachability
Let M = (sinit, S,Act,R, G) be a CTMDP, s ∈ S, T ∈ R�0 a time bound, and
opt ∈ {sup, inf}. The optimal (time-bounded) reachability probability (or value)
of state s in M is defined as follows:

valsM(T) := optπ∈Π PrM
π

[
♦�T G

]
,

1 Measurable with respect to the standard σ-algebra on the set of paths [NZ10].

Continuous-Time Markov Decisions Based on Partial Exploration 321

where ♦�T G = {s0
α0,t0−→ s1

α1,t1−→ s2 . . . | s0 = s ∧ ∃i : si ∈ G ∧ ∑i−1
j=0 tj ≤ T} is

the set of paths starting from s and reaching G before T .
The optimal (time-bounded) reachability probability (or value) of M is

defined as valM(T) = valsinit

M (T). A scheduler that achieves optimum for
valM(T) is the optimal scheduler. A scheduler that achieves value v, such that
||v − valM(T)||∞ < ε is called ε-optimal.

3 Algorithm

In this work we target CTMDPs that have large state spaces, but only a small
subset of those states is actually contributing significantly to the reachability
probability.

Fig. 2. Schematic representation
of polling system

Consider, for example, the polling system
represented schematically in Fig. 2. Here two
stations store continuously arriving tasks in a
queue. Tasks are to be processed by a server. If
the task is processed successfully it is removed
from the queue, otherwise it is returned back
into the queue. State space of the CTMDP
M modelling this polling system is a tuple
(q1, q2, s), where qi is the amount of tasks in
queue i and s is a state of the server (could be
e. g. processing task, awaiting task, etc.).

One of the possible questions could be, for example, what is the maximum
probability of both queues to be full after a certain time point. This corresponds to
goal states being of the form (N,N, s), where N is the maximal queue capacity
and s – any state of the server. Given that both queues are initially empty, all
the paths reaching goal states have to visit states (q1, q2, ·), where qi = [0..N].
However, for similar questions, for example, what is the maximum probability
of the first queue to be full after a certain time point, the situation changes.
Here goal states are of the form (N, q2, s), where q2 = 0..N and s – any state
of the server. The scheduler that only extracts tasks from the second queue is
the fastest to fill the first one and is therefore the optimal one. The set of states
that are most likely visited when following this scheduler are those states where
the size of the second queue is small. This naturally depends on the rates of
task arrival and processing. Assuming that the size of the queue rarely exceeds
2 tasks, all the states (·, q2, ·), where q2 = 3..N do not affect the reachability
probability too much.

As a more concrete example, consider the CTMDP of Fig. 1a. Here all the
states in the center have exit rate 1 and form a long chain. Due to the length of
this chain the probability to reach the goal state via these states within time 2
is very small. In fact, the maximum probability to reach the target state within
2 time units in the CTMDP on the left and the one on the right are exactly the
same and equal 0.4584. Thus, on this CTMDP, 40% of the state space can be
reduced without any effect on the reachability value.

322 P. Ashok et al.

Classical model checking algorithms do not take into account any information
about the property and perform exhaustive state-space exploration. Given that
only a subset of states is relevant to the reachability value, these algorithms may
perform many unnecessary computations.

Our Solution
Throughout this section we work with a CTMDP M = (sinit, S,Act,R, G) and
a time bound T ∈ R�0.

The main contribution of this paper is a simple framework for solving the
time-bounded reachability objective in CTMDPs without considering their whole
state-space. This framework in presented in Algorithm 1. The algorithm involves
the following major steps:

Algorithm 1 SubspaceTBR

Input: CTMDP M = (sinit, S, Act,R, G), time bound T , precision ε
Output: (�, u) ∈ [0, 1]2 such that � � val(T) � u and u − � < ε and

ε− optimal scheduler π for valM(T)

1: if sinit ∈ G then return (1, 1), and an arbitrary scheduler π ∈ Π

2: � = 0, u = 1
3: πsim = πuniform

4: S′ = {sinit}
5: while u − � � ε do
6: S′ = S′ ∪ getRelevantSubset(M, T, πsim)
7: M = lower(M, S′), M = upper(M, S′)
8: � = valM(T), u = valM(T)
9: πopt ← optimal scheduler for valM(T), πopt ← optimal scheduler for valM(T)

10: πsim = ChooseScheduler(πuniform, πopt) // choose a scheduler for simulations

11: ∀t ∈ [0, T], ∀s ∈ S′ : π(s, t) = πopt(s, t)
12: ∀t ∈ [0, T], ∀s ∈ S \S′ : π(s, t) ← any α ∈ Act(s) // extend optimal scheduler to S
13: return (�, u), π

Step 1 A “relevant subset” of the state-space S′ ⊆ S is computed (line 6).
Step 2 Using this subset, CTMDPs M and M are constructed (line 7). We

define functions upper(M, S′) and lower(M, S′) later in this section.
Step 3 The reachability values of M and M are under- and over-

approximations of the reachability value valM(T). The values are computed
in line 8 along with the optimal schedulers in line 9.

Step 4 Scheduler πsim, used for obtaining the relevant subset, is selected at line
10.

Step 5 If the two approximations are sufficiently close, i. e. valM(T) −
valM(T) < ε,

[
valM(T), valM(T)

]
is the interval in which the actual reach-

ability value lies. The algorithm is stopped and this interval along with the
ε-optimal scheduler are returned. If not, the algorithm repeats from line 6,
growing the relevant subset in each iteration.

Continuous-Time Markov Decisions Based on Partial Exploration 323

Algorithm 2 getRelevantSubset(M, T, πsim)

Input: CTMDP M = (sinit, S, Act,R, G), time bound T , a scheduler πsim

Parameters: nsim ∈ N
Output: S′ ⊆ S

1: for (i = 0; i < nsim; i = i + 1) do
2: ρ = sinit, t = 0
3: while t < T and ρ↓ �∈ G do
4: s = ρ↓
5: Sample action α from distribution D(Act(s)) = πsim(ρ, 0)
6: Sample t′ from exponential distribution with parameter λ(s, α)
7: Sample a successor s′ of s with distribution Δ(s, α, ·)
8: ρ = ρ

t′
−→ s′, t = t + t′

9: add all states of ρ to S′

In the following section, we elucidate these steps and discuss several instan-
tiations and variations of this framework.

3.1 Step 1: Obtaining the Relevant Subset

The main challenge of the approach is to extract a relatively small representative
set S′ ⊆ S, for which valM(T) and valM(T) are close to the value valM(T) of
the original model. If this is possible, then instead of computing the probability
of reaching goal in M, we can compute the same in M and M to get an ε-width
interval in which the actual value is guaranteed to lie. If the sizes of M and M
are relatively small, then the computation is generally much faster.

In this work we propose a heuristics for selecting the relevant subset based
on simulations. Simulation of continuous-time Markov chains (CTMDPs with
singleton set Act(s) for all states) is a widely used approach that performs very
well in many practical cases. It is based on sampling a path of the model accord-
ing to its probability space. Namely, upon entering a state s the residence time
is sampled from the exponential distribution and then the successor state s′ is
sampled randomly from the distribution Δ(s, α, s′). Here α is the only action
available in state s. The process is repeated from state s′ until a goal state is
reached or the cumulative time over this path exceeds the time-bound.

However this approach only works for fully stochastic processes, which is
not the case for arbitrary CTMDPs due to the presence of multiple available
actions. In order to make the process fully stochastic one has to fix a scheduler
that decides which actions are to be selected during the run of a CTMDP.

Our heuristic is presented in Algorithm 2. It takes as input the CTMDP,
time bound and a scheduler πsim. The algorithms performs nsim simulations and
outputs all the states visited during the execution. Here nsim ∈ N is a parameter
of the algorithm. Each simulation run starts in the initial state. At first an action
is sampled from D(Act(s)) = πsim(ρ, 0) and then the simulation proceeds in the
same way as described above for CTMCs by sampling residence times and suc-
cessor states. Notice that even though time-point 0 is used for the scheduler, this

324 P. Ashok et al.

does not affect the correctness of the approach, since it is only used as a heuris-
tic to sample the subspace. In fact, one could instantiate getRelevantSubset
with an arbitrary heuristic (e. g. from artificial intelligence domain, or one that
is more targeted towards a specific model). Correctness of the lower and upper
bounds will not be affected by this. However, termination of the algorithm can-
not be ensured for any arbitrary heuristic. Indeed, one has to make sure that
the bounds will eventually converge to the value.

Example 1. Consider the CTMDP from Fig. 3a. Figure 3b, c show two possible
sampled paths. The path in 3c reaches the target within the given time-bound
and the path in 3b times out before reaching the goal state. The relevant subset
is thus all the states visited during the two simulations.

3.2 Step 2: Under- and Over-Approximating CTMDP

We will now explain line 7 of Algorithm 1. Here we obtain two CTMDPs, such
that the value of M is a guaranteed lower bound, and the value of M is a
guaranteed upper bound on the value of M.

Let S′ ⊆ S be the subset of states obtained in line 6. We are interested in
extracting some information regarding the reachability value of M from this
subset. In order to do this, we consider two cases. (i) A pessimistic case, where
all the unexplored states are non-goal states and absorbing (or sink states); and
(ii) an optimistic case, where all the unexplored states are indeed goals. It is
easy to see that the “pessimistic” CTMDP M will have a smaller (or equal)
value than the original CTMDP, which in turn will have a value smaller (or
equal) than the “optimistic” CTMDP M. Notice that for the reachability value
the goal states can also be made absorbing and this will not change the value2.
Before we define the two CTMDPs formally, we illustrate the construction on an
example. Note that the fringe “one-step outside” of the relevant subset is still a
part of the considered sub-CTMDPs.

Example 2. Let S′ be the state space of the CTMDP from Fig. 3a explored in
Example 1. Figure 4a depicts the sub-CTMDP obtained by restricting the state
space of the original model to S′. Figure 4b, c demonstrate how the “pessimistic”
and “optimistic” CTMDPs can be obtained. All the states that are not part of
S′ are made absorbing for the “pessimistic” CTMDP Fig. 4b and are made goal
states for the “optimistic” CTMDP Fig. 4c.

Formally, we define methods lower(M, S′) and upper(M, S′) that return
the pessimistic and optimistic CTMDP, respectively. The lower(M, S′) method

returns a CTMDP M = (sinit, S̃,Act, R̃, G), where S̃ = S′ ∪ Succ(S′), and

∀s′, s′′ ∈ S̃:

R̃[s′, α, s′′] =

⎧
⎨
⎩

R[s′, α, s′′] if s′ ∈ S′

λ if s′ �∈ S′, s′′ = s′

0 otherwise,

2 This is due to the fact that for the reachability value, only what happens before the
first arrival to the goal matters, and everything that happens afterwards is irrelevant.

Continuous-Time Markov Decisions Based on Partial Exploration 325

Fig. 3. A simple CTMDP is presented in (a) with rates and action labels ignored. (b)
shows a sampled run which ends on running out of time while exploring the left-most
branch. (c) shows a simulation which ends on discovering a target state.

Fig. 4. (a) depicts the relevant subset obtained at line 6 of Algorithm 1. (b, c) show
the addition of successors (in highlight) of the states at the fringe. In (b), the appended
states are made absorbing by adding a self-loop of rate λ. Meanwhile in (c), the newly
added states are made goals.

where λ is the maximum exit rate in M. And the method upper(M, S′) returns

CTMDP M = (sinit, S̃,Act, R̃, G), where G = G ∪ (S̃ \ S′), and state space S̃

and the rate matrix R̃ are the same as for lower(M, S′).
Since many states are absorbing now large parts of the state space may

become unreachable, namely all the states that are not in S̃.

Lemma 1. valM(T) � valM(T) � valM(T)

3.3 Step 3: Computing the Reachability Value

Algorithm 1 requires computing the reachability values for CTMDPs M and
M (line 9). This can be done by any algorithm for reachability analysis, e. g.
[BHHK15,NZ10,HH13,BS11,FRSZ11,BHHK04] which approximate the value
up to an arbitrary precision ε. These algorithms usually also compute the ε-
optimal scheduler along with the approximation of the reachability value. In

326 P. Ashok et al.

the following we will use interchangeably the notions of the value and its ε-
approximation, as well as an optimal scheduler and an ε-optimal scheduler.

Notice that some of the algorithms mentioned above compute optimal reach-
ability value only w. r. t. a subclass of schedulers, rather than the full class Π.
In this case the result of Algorithm 1 will be the optimal reachability value with
respect to this subclass and not class Π.

3.4 Step 4: The Choice of Scheduler πsim

At line 10 of Algorithm 1 the scheduler πsim is selected that is used in the
subsequent iteration for refining the relevant subset of states. We propose two
ways of instantiating the function ChooseScheduler(πuniform, πopt), one with
the uniform scheduler πuniform, and another with the scheduler πopt. Depending
on the model, its goal states and the time bound one of the options may deliver
smaller relevant subset than another:

Fig. 5. An example of a CTMDP where the uniform scheduler delivers possibly smaller
relevant subset than the optimal scheduler (a), and vice versa (b).

Example 3. Consider, the CTMDP in Fig. 5a and the time bound 3.0. Assuming
that the goal state has not yet been sampled from the right and left chains,
action α delivers higher reachability value than action β. For example, if states
a1 to a2 are sampled from the chain on the left and c1 to c2 from the chain on
the right, the reachability value of the respective over-approximating CTMDP
when choosing action β is 0.1987 and when choosing action α is 0.1911. And this
situation persists also when states b1 − b10 are sampled due to high exit rates of
the respective transitions. However if state b11 is sampled, the reachability value
when following α becomes 0.1906. Only at this moment the optimal behaviour
is to choose action β. However, when following the uniform scheduler, there is
a chance that the whole chain on the right is explored before any of the states
bi are visited. If the precision ε = 0.01, then at the moment the goal state is

Continuous-Time Markov Decisions Based on Partial Exploration 327

reached via the right chain and at least states a1 to a2 are sampled on the left,
the algorithm has converged. Thus using the uniform scheduler SubspaceTBR
may in fact explore fewer states than when using the optimal one.

Naturally, there are situation when following the optimal scheduler is the
best one can do. For example, in the CTMDP in Fig. 5b it is enough to explore
only state f1 on the right to realise that action β is sub-optimal. From this
moment on only action α is chosen for simulations, which is in fact the best way
to proceed. At the moment the goal state is reached the algorithm has converged
for precision 0.01.

One of the main advantages of the uniform scheduler is that it does not
require too much memory and is simple to implement. Moreover, since some
algorithms to compute time-bounded reachability probability do not provide an
optimal scheduler in the classical way as defined in Sect. 2 ([BHHK15]), the use
of πuniform may be the only option. In spite of its simplicity, in many cases this
scheduler generates very succinct state spaces, as we will show in Sect. 4.

Using the uniform scheduler is beneficial in those cases when, for example,
different actions of the same state have exit rates that differ drastically, e. g.
by an order of magnitude. If the goal state is reachable via actions with high
rates, choosing an action with low rate leads to higher residence times (due
to properties of the exponential distribution) and therefore fewer states will be
reachable within the time bound, compared to choosing an action with a high
exit rate. In this case using the uniform scheduler may lead to larger sub-space,
compared to using the optimal scheduler. However, the experiments show this
difference is typically negligible.

The drawback of the uniform scheduler is that the probability of it choosing
each action is positive. Thus it will choose also those actions that are clearly
suboptimal and could be omitted during the simulations. The uniform scheduler
πuniform does not take this information into account while the scheduler πopt does.
The latter is optimal on the sub-CTMDP obtained during the previous iterations.
This scheduler will thus pick only those actions that look most promising to be
optimal. Using this scheduler may induce smaller sampled state space than the
one generated by πuniform, as we also show in Sect. 4.

Notice that it is possible to alternate between using πuniform and πopt at
different iterations of Algorithm 1, for instance, when πopt is costly to obtain
or simulate. However, in our experiments, we always choose either one of the
two, with the exception for the first iteration when only the uniform scheduler
is available.

3.5 Step 5: Termination and Optimal Schedulers

The algorithm runs as long as the values of M and M, as computed in Step 3
are not sufficiently close. It terminates when the difference becomes less than ε.
The scheduler πopt obtained in line 9 is ε-optimal for M since it is obtained by
running a standard TBR algorithm on M. From this scheduler one can obtain
ε-optimal scheduler π for M itself by choosing the same actions as πopt on the

328 P. Ashok et al.

relevant subset of states (S′ in Algorithm 1) and any arbitrary action on other
states.

Lemma 2. Scheduler π computed by Algorithm 1 is ε-optimal.

Theorem 1. Algorithm 1 converges almost surely.

On any CTMDP, if πsim = πuniform, Algorithm 1 will, in the worst case,
eventually explore the whole CTMDP. In such a situation, M and M will be
the same as M. The algorithm would then terminate since the condition on line
5 would be falsified. If πsim = πopt, the system is continuously driven to the fringe
as long as the condition on line 5 holds. This is because all unexplored states
act as goal states in the upper-bound model. Such a scheduler will eventually
explore the state-space reachable by the optimal scheduler on the original model
and leave out those parts that are only reachable with suboptimal decisions.

4 Experiments

The framework described in Sect. 3 was evaluated against 5 different benchmarks
available in the MAPA3 language [TKvdPS12]:

Fault Tolerant Work Station Cluster (ftwc-n) [HHK00]: models two net-
works of n workstations each. Each network is interconnected by a switch.
The switches communicate via a backbone. All the components may fail and
can be repaired only one at a time. The system starts in a fully functioning
state and a state is goal if in both networks either all the workstations or
the switch are broken.

Google File System (gfs-n) [HCH+02,GGL03]: in this benchmark files are
split into chunks, each maintained by one of n chunk servers. We fix the
number of chunks a server may store to 5000 and the total number of chunks
to 10000. The GFS starts in the state where for one of the chunks no replica
is stored and the target is to have at least 3 copies of the chunk available.

Polling System (ps-j-k-g): We consider the variation of the polling system case
[GHH+13,TvdPS13], that consists of j stations and one server. Incoming
requests of j types are buffered in queues of size k each, until they are
processed by the server and delivered to their station. The system starts in
a state with all the queues being nearly full. We consider 2 goal conditions:
(i) all the queues are empty (g=all) and (ii) one of the queues is empty
(g=one).

Erlang Stages (erlang-k-r): this is a synthetic model with known characteris-
tics [ZN10]. It has two different paths to reach the goal state: a fast but risky
path or a slow but sure path. The slow path is an Erlang chain of length k
and rate r.

Stochastic Job Scheduling (sjs-m-j) [BDF81]: models a multiprocessor
architecture running a sequence of independent jobs. It consists of m identical
processors and j jobs. As goal we define the states with all jobs completed;

3 Translated to explicit state format by the tool Scoop [Tim11].

Continuous-Time Markov Decisions Based on Partial Exploration 329

Our algorithm is implemented as an extension to PRISM [KNP11] and we use
IMCA [GHKN12] in order to solve the sub-CTMDPs (M and M). We would like
to remark, however, that the performance of our algorithm can be improved by
using a better toolchain than our PRISM-IMCA setup (see [ABHK18, Appendix
A.2]).

In order to instantiate our framework, we need to describe how we perform
Steps 1 and 3 (Sect. 3). Recall from Sect. 3.1 that we proposed two different
schedulers to be used as the simulating scheduler πsim : the uniform scheduler
πuniform and the optimal scheduler πopt obtained by solving M.

For Step 3, we select three algorithms for time-bounded reachability analysis:
the first discretisation-based algorithm [NZ10] (D), and the two most compet-
itive algorithms according to the comparison performed in [BHHK15], namely
the adaptive version of discretization [BS11] (A) and the uniformisation-based
[BHHK15] (U). SubspaceTBR instantiated with these algorithms and with
πsim = πuniform is referred to with Duni, Auni and Uuni respectively. For πsim = πopt,
the instantiations are referred to as Dopt, Aopt and Uopt. Since U does not provide
the scheduler in a classical form as defined in Sect. 2, we omit Uopt. We also omit
experiments on Dopt as our experience with D and Duni suggested that Dopt would
also run out of time on most experiments.

We compare the performance of the instantiated algorithms with their orig-
inals, implemented in IMCA. We set the precision parameter for SubspaceTBR
and the original algorithms in IMCA to 0.01. Indicators such as the median model
checking time (excluding the time taken to load the model into memory) and
explored state-space are measured.

Table 1. An overview of the experimental results along with the state-space sizes.
Runtime (in seconds) for the various algorithms are presented. ‘-’ indicates a timeout
(1800 s). Uuni, Auni and Aopt perform quite well on erlang, gfs and ftwc while only Aopt

is better than U and A on the ps-one family of models. ps-4-8-all and sjs are hard
instances for both πuniform and πopt. D times out on all benchmarks except on sjs due
to its small state-space.

Benchmark States U Uuni A Auni Aopt D Duni

erlang-106-10 1,000k 71 1 4 1 1 - 299

gfs-120 1,479k - 2 - 2 2 - -

ftwc-128 597k 251 10 114 11 15 - -

ps-4-24-one 7,562k 507 - 171 - 105 - -

ps-4-8-all 119k 1,475 - 826 - - - -

sjs-2-9 18k 6 99 2 139 - 1,199 -

Tables 1 and 2 summarize the main results of our experiments. Table 1 reports
the runtime of the algorithms on several benchmarks, while Table 2 reports on
the state-space complexity. Here the last column refers to the smallest relevant

330 P. Ashok et al.

Table 2. For each benchmark, we report (i) the size of the state-space; (ii) total
states explored by our instantiations of SubspaceTBR; (iii) size of the final over-
approximating sub-CTMDP M; and (iv) size of the relevant subset returned by the
greedy search of Sect. 4.1. We use ps-4-4-one and sjs-2-7 instead of larger models in
their respective families as running the greedy search is a highly computation-intensive
task.

Benchmark States Explored Size of last M Post greedy reduction

by πsim %

erlang-106-10 1,000k 559 0.06 561 496

gfs-120 1,479k 105 0.01 200 85

ftwc-128 597k 296 0.05 858 253

sjs-2-7 2k 2,537 93.86 2,704 1,543

ps-4-4-one 10k 697 6.63 2,040 696

ps-4-8-all 119k - - - -

ps-4-24-one 7,562k 23,309 0.31 - -

subset of M that we can obtain with reasonable effort. This subset is computed
by running the greedy algorithm described in Sect. 4.1 on M. It attempts to
reduce more states of the explored subset without sacrificing the precision too
much. We run the greedy algorithm with a precision of ε/10, where ε is the
precision used in SubspaceTBR.

We recall that our framework is targeted towards models which contain a
small subset of valuable states. We can categorize the models into three classes:

Easy with Uniform Scheduler (πsim = πuniform). Surprisingly enough, the
uniform scheduler performs well on many instances, for example erlang,
gfs and ftwc. For erlang and gfs, it was sufficient to explore a few hun-
dred states no matter how the parameter which increased the state-space was
changed (see description of the models above). Here the running time of the
instantiations of our framework outperformed the original algorithms due to
the fact that less than 1% of the state-space is sufficient to approximate the
reachability value up to precision 0.01.

Easy with Optimal Scheduler (πsim = πopt). Predictably, there are cases in
which uniform scheduler does not provide good results. For example con-
sider the case of ps-4-24-one. Here the goal condition requires that one of
the queues be empty. An action in this benchmark determines the queue
from which the task to be processed is picked. Choosing tasks uniformly
from different queues, not surprisingly, leads to larger explored state spaces
and longer runtimes. Notice that all the instantiations that use uniform
scheduler run out of time on this instance. On the other hand, targeted
exploration with the most promising scheduler (column Aopt) performs even
better than the original algorithm A, finishing within 105 s compared to 171 s
and exploring only 0.31% of the state space.

Continuous-Time Markov Decisions Based on Partial Exploration 331

Hard Instances. Naturally there are instances where it is not possible to find
a small sub-CTMDP that preserves the properties of interest. For example
in ps-4-8-all, the system is started with all queues being nearly full and the
property queried requires all of the queues in the polling system to be empty.
As discussed in the beginning of Sect. 3, most of the states of the model
have to be explored in order to reach the goal state. In this model there is
simply no small sub-CTMDP that preserves the reachability probabilities.
As expected, all instantiations timed out and nearly all the states had to be
explored. The situation is similar with sjs. We identified (using the greedy
algorithm in Sect. 4.1) that on some small instances of this model, only 30%
to 40% of the state-space can be sacrificed.

Explored State Space and Running Time. In general, as we have men-
tioned in Sect. 3, the problem is heavily dependent not only on the structure
of the model, but also on the specified time-bound and the goal set. Increas-
ing the time-bound for erlang, for example, leads to higher probability to
explore fully the states of the Erlang chain. This in turn affects the optimal
scheduler and for some time-bounds no small sub-CTMDP preserving the
value exists.
Naturally, whenever the algorithm explored only a small fraction of the state
space, the running time was usually also smaller than the running time of the
respective original algorithm. The performance of our framework is heavily
dependent on the parameter nsim. This is due to the fact that computation
of the reachability value is an expensive operation when performed many
times even on small models. Usually in our experiments the amount of sim-
ulations was in the order of several thousands. For more details please refer
to [ABHK18, Appendix A.2].

4.1 Smallest Sub-CTMDP

In this section, we provide an argument that in the cases where our techniques
do not perform well, the reason is not a poor choice of the relevant subsets,
but rather that in such cases there are no small subsets which can be removed,
at least not such that can be easily obtained. An ideal brute-force method to
ascertain this would be to enumerate all subsets of the state space, make the
states of the subset absorbing (M) or goal (M) and then to check whether the
difference in values of M and M is ε-close only for small subsets. Unfortunately,
this is computationally infeasible. As an alternative, we now suggest a greedy
algorithm which we use to search for the largest subset of states one could remove
in reasonable time.

The idea is to systematically pick states and observe their effect on the value
when they are made absorbing (M(s)) or goal (M(s)). If a state does not influ-
ence the value of the original CTMDP too much, then δ(s) = valM(s)(T) −
valM(s)(T) would be small. We first sort all the states in ascending order accord-

ing to the value δ(s). And then iteratively build M and M by greedily picking

332 P. Ashok et al.

states in this order and making them absorbing (for M) and goal (for M). The
process is repeated until valM(T) − valM(T) exceeds ε.

The results of running this algorithm is presented in the right-most column
of Table 2. The comparison of the last two columns of the table shows that the
portion of the state space our heuristic explored is of the same order of magnitude
as what can be obtained with high computational effort. Consequently, this
suggests that the surprising choice of the simple uniform scheduler is not poor,
but typically indeed achieves the desired degree of reduction.

5 Conclusion

We have introduced a framework for time-bounded reachability analysis of
CTMDPs. This framework allows us to run arbitrary algorithms from the litera-
ture on a subspace of the original system and thus obtain the result faster, while
not compromising its precision beyond a given ε. The subspace is iteratively
identified using simulations. In contrast to the standard algorithms, the amount
of computation needed reflects not only the model, but also the property to be
checked.

The experimental results have revealed that the models often have a small
subset which is sufficient for the analysis, and thus our framework speeds up all
three considered algorithms. For the exploration, already the uninformed uni-
form scheduler proves efficient in many settings. However, the more informed
scheduler, fed back from the analysis tools, may provide yet better results. In
cases where our technique explores the whole state space, our conjecture, con-
firmed by the preliminary results using the greedy algorithm, is that these models
actually do not posses any small relevant subset of states and cannot be exploited
by this approach.

This work is agnostic of the structure of the models. Given that states are
typically given by a valuation of variables, the corresponding structure could be
further utilized in the search for the small relevant subset. A step in this direc-
tion could follow the ideas of [PBU13], where discrete-time Markov chains are
simulated, the simulations used to infer invariants for the visited states, and then
the invariants used to identify a subspace of the original system, which is finally
analyzed. An extension of this approach to a non-deterministic and continuous
setting could speed up the subspace-identification part of our approach and thus
decrease our overhead. Another way to speed up this process is to quickly obtain
good schedulers (with no guarantees), e.g. [BBB+17], use them to identify the
subspace faster and only then apply a guaranteed algorithm.

References

[ABHK18] Ashok, P., Butkova, Y., Hermanns, H., Křet́ınský, J.: Continuous-Time
Markov Decisions Based on Partial Exploration. ArXiv e-prints (2018).
https://arxiv.org/abs/1807.09641

[ACD+17] Ashok, P., Chatterjee, K., Daca, P., Kret́ınský, J., Meggendorfer, T.:
Value iteration for long-run average reward in Markov decision processes.
In: CAV (2017)

Continuous-Time Markov Decisions Based on Partial Exploration 333

[ASSB96] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous
time Markov chains. In: CAV (1996)

[BBB+17] Bartocci, E., Bortolussi, L., Brázdil, T., Milios, D., Sanguinetti, G.: Pol-
icy learning in continuous-time Markov decision processes using gaussian
processes. Perform. Eval. 116, 84–100 (2017)

[BCC+14] Brázdil, T., et al.: Verification of Markov decision processes using learning
algorithms. In: ATVA (2014)

[BDF81] Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with
exponential service times to minimize the expected flow time or
makespan. J. ACM 28(1), 100–113 (1981)

[Ber95] Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II.
Athena Scientific (1995)

[BFK+09] Brázdil, T., Forejt, V., Krčál, J., Křet́ınský, J., Kučera, A.: Continuous-
time stochastic games with time-bounded reachability. In: FSTTCS
(2009)

[BHHK04] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Efficient compu-
tation of time-bounded reachability probabilities in uniform continuous-
time Markov decision processes. In: TACAS (2004)

[BHHK15] Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous
time Markov decisions. In: ATVA (2015)

[BS11] Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov
decision processes over finite horizons. Comput. OR 38(3), 651–659
(2011)

[EHKZ13] Eisentraut, C., Hermanns, H., Katoen, J., Zhang, L.: A semantics for
every GSPN. In: Petri Nets (2013)

[Fei04] Feinberg, E.A.: Continuous time discounted jump Markov decision pro-
cesses: a discrete-event approach. Math. Oper. Res. 29(3), 492–524 (2004)

[FRSZ11] Fearnley, J., Rabe, M., Schewe, S., Zhang, L.: Efficient approximation of
optimal control for continuous-time Markov games. In: FSTTCS (2011)

[GGL03] Ghemawat, S., Gobioff, H., Leung, S.: The google file system. In: SOSP
(2003)

[GHH+13] Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Modelling,
reduction and analysis of Markov automata. In: QEST (2013)

[GHKN12] Guck, D., Han, T., Katoen, J., Neuhäußer, M.R.: Quantitative timed
analysis of interactive Markov chains. In: NFM (2012)

[HCH+02] Haverkort, B.R., Cloth, L., Hermanns, H., Katoen, J., Baier, C.: Model
checking performability properties. In: DSN (2002)

[HH13] Hatefi, H., Hermanns, H.: Improving time bounded reachability compu-
tations in interactive Markov chains. In: FSEN (2013)

[HHK00] Haverkort, B.R., Hermanns, H., Katoen, J.: On the use of model checking
techniques for dependability evaluation. In: SRDS’00 (2000)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 47

[Lef81] Lefèvre, C.: Optimal control of a birth and death epidemic process. Oper.
Res. 29(5), 971–982 (1981)

[MLG05] McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time
dynamic programming: RTDP with monotone upper bounds and per-
formance guarantees. In: ICML (2005)

334 P. Ashok et al.

[Neu10] Neuhäußer, M.R.: Model checking nondeterministic and randomly timed
systems. Ph.D. thesis, RWTH Aachen University (2010)

[NZ10] Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in
continuous-time Markov decision processes. In: QEST (2010)

[PBU13] Pavese, E., Braberman, V.A., Uchitel, S.: Automated reliability estima-
tion over partial systematic explorations. In: ICSE, pp. 602–611 (2013)

[QQP01] Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed
system-construction and optimization. IEEE Trans. CAD Integr. Circuits
Syst. 20(10), 1200–1217 (2001)

[Sen99] Sennott, L.I.: Stochastic Dynamic Programming and the Control of
Queueing Systems. Wiley-Interscience, New York (1999)

[Tim11] Timmer, M.: Scoop: a tool for symbolic optimisations of probabilistic
processes. In: QEST (2011)

[TKvdPS12] Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient
modelling and generation of Markov automata. In: Koutny, M., Ulid-
owski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 364–379. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1 26

[TvdPS13] Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for
Markov automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS
2013. LNCS, vol. 8053, pp. 243–257. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40229-6 17

[ZN10] Zhang, L., Neuhäußer, M.R.: Model checking interactive Markov chains.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
53–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12002-2 5

Part II

Controller Representation

109

C SOS: Safe, Optimal and Small Strategies
for Hybrid Markov Decision Processes
(QEST 2019)

Reprinted by permission from Springer Nature Customer Service Centre GmbH (License
number 4910190725612).

This paper has been published as a peer reviewed conference paper.

Pranav Ashok, Jan Kret́ınský, Kim Guldstrand Larsen, Adrien Le Coënt,
Jakob Haahr Taankvist and Maximilian Weininger. ‘SOS: Safe, Optimal
and Small Strategies for Hybrid Markov Decision Processes’. In: Quantit-
ative Evaluation of Systems, 16th International Conference, QEST 2019,
Glasgow, UK, September 10-12, 2019, Proceedings. Ed. by David Parker
and Verena Wolf. Vol. 11785. Lecture Notes in Computer Science. Springer,
2019, pp. 147–164. doi: 10.1007/978-3-030-30281-8_9. url: https:

//doi.org/10.1007/978-3-030-30281-8%5C_9

Summary

We consider the problem of synthesizing controllers for cyber-physical systems, modelled
using the hybrid Markov decision process formalism. Uppaal Stratego is an extension
of the popular timed-automata tool Uppaal developed at Aalborg University, Denmark,
that allows for synthesizing strategies satisfying safety and liveness specifications, as well
as optimizing them for cost.

Safe controllers produced by Uppaal Stratego come in the form of a lookup table,
which is large and incomprehensible. Moreover, the controller needs to be queried a
large number of times in the process of optimizing its cost. We introduce Stratego+, a
framework built on top of Uppaal Stratego, making use of decision trees as the data
structure of choice to represent these controllers. We use machine learning techniques
to learn the decision tree, taking special care to represent the strategy without any
loss of information. This allows us to preserve permissiveness as well as the guarantees
provided by the original controller. Decision trees already gives orders-of-magnitude
improvements in the size of the controller compared to the lookup table. Further, we
introduce two techniques to compress the decision trees even more, at the expense of
permissiveness. The pipeline also allows to use the reinforcement learning engines of
Uppaal Stratego to optimize the decision tree controller for some cost. Finally, the

111

https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1007/978-3-030-30281-8%5C_9
https://doi.org/10.1007/978-3-030-30281-8%5C_9

C SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision Processes (QEST 2019)

tree-base controller can also be exported as C-code, easily adaptable and implementable
on embedded devices.

Contribution

Composition and revision of the manuscript with leading role in writing sections 3 and 4
of the manuscript [AKL+19]. Discussion and development of the ideas, implementation
and evaluation with the following notable individual contributions: development of the
idea of safe pruning, leading role in implementation of the pipeline and evaluations.

112

SOS: Safe, Optimal and Small Strategies
for Hybrid Markov Decision Processes

Pranav Ashok1, Jan Křetínský1, Kim Guldstrand Larsen2, Adrien Le Coënt2,
Jakob Haahr Taankvist2, and Maximilian Weininger1(B)

1 Technical University of Munich, Munich, Germany
maxi.weininger@tum.de

2 Aalborg University, Aalborg, Denmark

Abstract. For hybrid Markov decision processes, Uppaal Stratego can
compute strategies that are safe for a given safety property and (in the
limit) optimal for a given cost function. Unfortunately, these strategies
cannot be exported easily since they are computed as a very long list. In
this paper, we demonstrate methods to learn compact representations of
the strategies in the form of decision trees. These decision trees are much
smaller, more understandable, and can easily be exported as code that
can be loaded into embedded systems. Despite the size compression and
actual differences to the original strategy, we provide guarantees on both
safety and optimality of the decision-tree strategy. On the top, we show
how to obtain yet smaller representations, which are still guaranteed safe,
but achieve a desired trade-off between size and optimality.

1 Introduction

Cyber-physical systems often are safety-critical and hence strong guarantees
on their safety are paramount. Furthermore, resource efficiency and the qual-
ity of the delivered service are strong requirements; the behaviour needs to be
optimized with respect to these objectives, while of course staying within the
bounds of what is still safe. In order to achieve this, controllers of such systems
can be either implemented manually or automatically synthesized. In the former
case, due to the complexity of the system, coming up with a controller that is
safe is difficult, even more so with the additional optimization requirement. In
the latter case, the synthesis may succeed with significantly less effort, though
the requirement on both safety and optimality is still a challenge for current
synthesis methods. However, due to the size of the systems, the produced con-
trollers may be very complex, hard to understand, implement, modify, or even
just output. Indeed, even for moderately sized systems, we can easily end up
with gigabytes-long descriptions of their controllers (in the algorithmic context
called strategies).

This research was funded in part by TUM IGSSE project 10.06 (PARSEC), the German
Research Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”
and the ERC Advanced Grant LASSO.
c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 147–164, 2019.
https://doi.org/10.1007/978-3-030-30281-8_9

148 P. Ashok et al.

Fig. 1. The two cars, Ego and Front . We control Ego and the environment controls
Front . Both cars have an acceleration and a velocity. In addition, we know the distance
between the cars.

In this paper, we show how to provide a more compact representation,
which can yield acceptably short and simple code for resource-limited embedded
devices, and consequently can be more easily understood, maintained, modified,
debugged, and the requirements are better traceable in the final controller. To
this end, as the formalism for the compact representation we choose decision
trees [41]. This representation is typically several orders of magnitude smaller
than the classical explicit description and also is known for its interpretability
and understandability [9,41,47]. The resulting encoded strategy may differ from
the original one, but despite that and despite being smaller, it is still guaranteed
to be safe and as nearly-optimal as the original one. Moreover, we can trade
off additional decrease in size for decrease in performance (getting farther from
optimum) to a desired degree, while maintaining safety.

Example 1. As a running example and one of the case studies, we use the following
example introduced in [35] and expanded with stronger safety guarantees in [34].

We consider two cars Ego and Front , depicted in Fig. 1. We control Ego,
whereas Front is controlled by the environment. Ego is driving behind Front ,
and both cars have a discrete input (the acceleration) and a continuous state
(the velocity). The goal of the adaptive cruise control in Ego is, first, to stay safe
(by keeping the distance between the cars greater than a given safe distance),
and second, to drive as close to Front as possible, i.e. to optimize the aggregated
distance between the cars.

We use Uppaal Tiga [2] to get a safe strategy for Ego as in [34], and then
Uppaal Stratego [18] to learn a (near-)optimal strategy for a desired cost
function, given the constraints from the safe strategy. The resulting strategy is
output as a list with almost 6 million configurations. Using our new methods,
we obtain a decision tree representing the strategy, that has only about 2713
nodes. Additionally, we can trade performance to reduce the size even further,
e.g. by increasing the aggregated distance reasonably we can reduce the size to
1247 nodes.

Our Contribution:

– We design and implement a framework Stratego+ to transform safe and
(near-)optimal strategies into their decision-tree representation, preserving
safety and the same level of optimality, while being much smaller.

SOS: Safe, Optimal and Small Strategies 149

– We provide several transformations and ways to yet further decrease the size
while preserving safety, but relaxing the optimality to a desired extent.

– We test our methods on three case studies, where we show size reductions of
up to three orders of magnitude, and quantify the additional size-performance
trade-off.

Our techniques can be used to represent (finite-memory non-stochastic)
strategies for arbitrary systems exhibiting non-determinism (e.g. Markov deci-
sion processes, timed/concurrent/stochastic games). This paper demonstrates
the technique on hybrid Markov decision processes, as that is the formalism
used in Uppaal Stratego.

Related Work: The problem of computing strategies for hybrid systems has been
extensively studied in the past years. Most approaches rely on abstraction tech-
niques: the continuous and infinite state space of the system is represented with
a finite number of symbols, e.g. discrete points [24,50], sets of states [15], etc.
However, it is still hard to deal with uncontrollable components, even though
some approaches exist such as robust control [26], or contract-based design [51],
but they usually consider the uncontrollable component as a bounded pertur-
bation and do not tackle stochastic behaviour. The tool PESSOA [38,48] can
synthesize controllers for cyber-physical systems represented by a set of smooth
differential equations with a specification in a fragment of Linear Temporal Logic
(LTL). Abstraction techniques are used in [27] for synthesizing strategies for a
class of hybrid systems that involve random phenomena together with discrete
and continuous behaviours. Discrete, stochastic dynamical systems are consid-
ered in [54], where the synthesis of strategies with respect to LTL objectives
is made possible with an abstraction-refinement method. In [22] a number of
benchmarks for hybrid system verification has been proposed, including a room
heating benchmark. In [16] Uppaal SMC was applied to the performance eval-
uation of several strategies proposed in the benchmark. However, there was no
focus on safety in this approach. In our work, the safety strategy synthesis relies
on a discretization of the continuous variables, leading to a decidable problem
that can be handled by Uppaal Tiga, but we furthermore provide safety guar-
antees for the original system with the use of a Timed Game abstraction based
on a guaranteed Euler scheme [36].

In artificial intelligence, compact (factored) representations of Markov deci-
sion processes (MDPs) have been developed using dynamic Bayesian net-
works [7,31], probabilistic STRIPS [33], algebraic decision diagrams [30], and
also decision trees [7]. For a detailed survey of compact representations see [5].
Formalisms used to represent MDPs can, in principle, be used to represent
strategies as well. In particular, variants of decision trees are probably the most
used [7,13,32]. Decision trees have been also used in connection with real-time
dynamic programming and reinforcement learning [6,44].

In the context of verification, MDPs are often represented using variants
of (MT) BDDs [19,28,39], and strategies by BDDs [55]. Learning a compact
decision-tree representation of a strategy has been investigated in [37] for the case

150 P. Ashok et al.

of body sensor networks, in [9] for finite (discrete) MDPs, and in [10] for finite
games, but only with Boolean variables. Moreover, these decision trees can only
predict a single action for a state configuration whereas in this work, we allow
the trees to predict more than one action for a single configuration. In control
theory, [56] proves that the problem of computing size-optimal determinisiation
of controllers is NP-complete and hence discuss various heuristic-based determin-
isation algorithms. None of these works consider the optimization aspect, which
being a soft constraint enables the trade-offs.

Permissive strategies have been studied in e.g. [3,8,20].

2 Preliminaries

2.1 Hybrid Markov Decision Processes

We describe the mathematical modelling framework. The correspondence to the
Uppaal models is straightforward.

Definition 1 (HMDP). A hybrid Markov decision process (HMDP) M is a
tuple (C,U,X, F, δ) where:

1. the controller C is a finite set of (controllable) modes C = {c1, . . . , ck},
2. the uncontrollable environment U is a finite set of (uncontrollable) modes

U = {u1, . . . , ul},
3. X = (x1, . . . , xn) is a finite tuple of continuous (real-valued) variables,
4. for each c ∈ C and u ∈ U , Fc,u : R>0 × RX → RX is the flow-function that

describes the evolution of the continuous variables over time in the combined
mode (c, u), and

5. δ is a family of probability functions δγ : U → [0, 1], where γ = (c, u,x) is
a global configuration. More precisely, δγ(u′) is the probability that u in the
global configuration γ = (c, u,x) will change to the uncontrollable mode u′.

In the following, we denote by C the set of global configurations C × U × RX

of the HMDP M. The above notion of HMDP actually describes an infinite-
state Markov Decision Process [43], where choices of mode for the controller
is made periodically and choice of mode for the uncontrollable environment is
made probabilistically according to δ. Note that abstracting δγ to the support
δ̂γ = {u | δγ(u) > 0}, turns M into a (traditional) hybrid two-player game. The
inclusion of δ allows for a probabilistic refinement of the uncontrolled environ-
ment in this game. Such a refinement is irrelevant for the purposes of guaran-
teeing safety; however, it will be useful for optimizing the cost of operating the
system. Indeed, rather than optimizing only the worst-case performance, we wish
to optimize the overall expected behaviour.

SOS: Safe, Optimal and Small Strategies 151

Strategies. A – memoryless and possibly non-deterministic – strategy σ for
the controller C is a function σ : C → 2C , i.e. given the current configuration
γ = (c, u,x), the expression σ(γ) returns the set of allowed actions in that
configuration; in our setting, the actions are the controllable modes to be used
for the duration of the next period. Non-deterministic strategies are also called
permissive since they permit many actions instead of prescribing one.

The evolution of system over time is defined as follows. Let γ = (c, u,x) and
γ′ = (c′, u′,x′). We write γ

τ→ γ′ in case c′ = c, u′ = u and x′ = F(c,u)(τ,x).
A run is an interleaved sequence π ∈ C × (R × C × C × C)∗ of configurations

and relative time-delays of some given period P :

π = γo :: P :: α1 :: β1 :: γ1 :: P :: α2 :: β2 :: γ2 :: P :: · · ·

Then π is a run according to the strategy σ if after each period P the following
sequence of discrete (instantaneous) changes are made:

1. the value of the continuous variables are updated according to the flow of the
current mode, i.e. γi−1 = (ci−1, ui−1,xi−1)

P→ (ci−1, ui−1,xi) =: αi;
2. the environment changes to any possible new mode, i.e. βi = (ci−1, ui,xi)

where δαi
(ui) > 0;

3. the controller changes mode according to the strategy σ, i.e. γi = (ci, ui,xi)
with ci ∈ σ(βi).

Safety. A strategy σ is said to be safe with respect to a set of configuration
S ⊆ C, if for any run π according to σ all configurations encountered are within
S, i.e. αi, βi, γi ∈ S for all i and also γ′

i ∈ S whenever γi
τ→ γ′

i with τ ≤ P . Note
that the notion of safety does not depend on the actual δ, only on its supports.
Recall that almost-sure safety, i.e. with probability 1, coincides with sure safety.

We use a guaranteed set-based Euler method introduced in [34] to ensure
safety of a strategy not only at the configurations where we make decisions, but
also in the continuum in between them. We refer the reader to [1, Appendix A.2]
for a brief reminder of this method.

Optimality. Under a given deterministic (i.e. permitting one action in each
configuration) strategy σ the game M becomes a completely stochastic pro-
cess M � σ, inducing a probability measure on sets of runs. In case σ is non-
deterministic or permissive, the non-determinism in M � σ is resolved uniformly
at random. On such a process, we can evaluate a given optimization function.
Let H ∈ N be a given time-horizon, and D a random variable on runs, then
EM,γ

σ,H (D) ∈ R≥0 is the expected value of D on the space of runs of M � σ of
length1 H starting in the configuration γ. As an example of D, consider the inte-
grated deviation of a continuous variable, e.g. distance between Ego and Front ,
with respect to a given target value.
1 Note that there is a bijection between length of the run and time, as the time between

each step, P , is constant.

152 P. Ashok et al.

Consequently, given a (memoryless non-deterministic) safety strategy σsafe

with respect to a given safety set S, we want to find a deterministic sub-strategy2

σopt that optimizes (minimizes or maximizes) EM,γ
σsafe ,H(D).

2.2 Decision Trees

From the perspective of machine learning, decision trees (DT) [41] are a clas-
sification tool assigning classes to data points. A data point is a d-dimensional
vector v = (v1, v2, . . . , vd) of features with each vi drawing its value from some
set Di. If Di is an ordered set, then the feature corresponding to it is called
ordered or numerical (e.g. velocity ∈ R) and otherwise, it is called categorical
(e.g. color ∈ {red , green, blue}). A (multi-class) DT can represent a function
f :

∏d
i=1 Di → A where A is a finite set of classes.

A (single-label) DT over the domain D =
∏d

i=1 Di with labels A is a tuple
T = (T, ρ, θ), where T is a finite binary tree, ρ assigns to every inner node
predicates of the form xi ∼ c where ∼ ∈ {≤,=}, c ∈ Di, and θ assigns to every
leaf node a list of natural numbers [m1,m2, . . . ,m|A|]. For every v ∈ D, there
exists a decision path from the root node to some leaf �v . We say that v satisfies
a predicate ρ(t) if ρ(t) evaluates to true when its variables are evaluated as given
by v. Given v and an inner node t with a predicate ρ(t), the decision path selects
either the left or right child of t based on whether v satisfies ρ(t) or not. For v
from the training set, we say that the leaf node �v contains v. Then ma of a leaf
is the number of points contained in the leaf and classified a in the training set.
Further, the classes assigned by a DT to a data point v (from or outside of the
training set) are given by arg max θ(�v) = {i | ∀i, j ≤ |A|. θ(�v)i ≥ θ(�v)j}, i.e.
the most frequent classes in the respective leaf.

Decision trees may also predict sets of classes instead of a single class. Such
a generalization (representing functions of the type

∏d
i=1 Di → 2A) is called

a multi-label decision tree. In these trees, θ assigns to every leaf node a list of
tuples [(n1, y1), (n2, y2), . . . , (n|A|, y|A|)] where na, ya ∈ N are the number of data
points in the leaf not labelled by class a and labelled by class a, respectively. The
(multi-label) classification of a data point is then typically given by the majority
rule, i.e. it is classified as a if na < ya.

A DT may be constructed using decision-tree learning algorithms such as
ID3 [45], C4.5 [46] or CART [11]. These algorithms take as input a training set,
i.e. a set of vectors whose classes are already known, and output a DT classifier.
The tree constructions start with a single root node containing all the data
points of the training set. The learning algorithms explore all possible predicates
p = xi ∼ c, which split the data points of this node into two sets, Xp and X¬p.
The predicate that minimizes the sum of entropies3 of the two sets is selected.
These sets are added as child nodes to the node being split and the whole process

2 i.e. a strategy that for every configuration returns a (non-strict) subset of the actions
allowed by the safe strategy.

3 Entropy of a set X is H(X) =
∑

a∈A pa log2(pa) + (1 − pa) log2(1 − pa), where pa is
the fraction of samples in X belonging to class a. See [14] for more details.

SOS: Safe, Optimal and Small Strategies 153

is repeated, splitting each node further and further until the entropy of the node
becomes 0, i.e. all data points belong to the same class. Such nodes are called
pure nodes. This construction is extended to the multi-label setting by some of
the algorithms. A multi-label node is called pure if there is at least one class
that is endorsed by all data points in that node, i.e. ∃a ∈ A : na = 0.

If the tree is grown until all leaves have zero entropy, then the classifier
memorizes the training data exactly, leading to overfitting [41]. This might not be
desirable if the classifier is trained on noisy data or if it needs to predict classes of
unknown data. The learning algorithms hence provide some parameters, known
as hyperparameters, which may be tuned to generalize the classifier and improve
its accuracy. Overfitting is not an issue in our setup where we want to learn the
strategy function (almost) precisely. However, we can use the hyperparameters
to produce even smaller representations of the function, at the “expense” of not
being entirely precise any more. One of the hyperparameters of interest in this
paper is the minimum split size k. It can be used to stop splitting nodes once
the number of data points in them become smaller than k. By setting larger k,
the size of the tree decreases, usually at the expense of increasing the entropy
of the leaves. There also exist several pruning techniques [21,40], which remove
either leaves or entire subtrees after the construction of the DT.

2.3 Standard Uppaal Stratego Workflow

The process of obtaining an optimized safe strategy σopt using Uppaal Stratego
is depicted as the grey boxes in Fig. 2. First, the HMDP M is abstracted into
a 2-player (non-stochastic) timed game T G, ignoring any stochasticity of the
behaviour.Next, Uppaal Tiga is used to synthesize a safe strategy σsafe : C → 2C

for T G and the safety specification ϕ, which is specified using a simplified version
of timed computation tree logic (TCTL) [2]. After that, the safe strategy is applied
on M to obtain M � σsafe . It is now possible to perform reinforcement learning
on M � σsafe in order to learn a sub-strategy σopt that will optimize a given quan-
titative cost, given as any run-based expression containing e.g. discrete variables,
locations, clocks, hybrid variables. For more details, see [17,18].

3 Stratego+

In this section, we discuss the new Uppaal Stratego+ framework following
with each of its components are elucidated.

3.1 New Workflow

Uppaal Stratego+ extends the standard workflow in two ways: Firstly, in the
top row, we generate the DT Topt that exactly represents σopt , yielding a small
representation of the strategy.

The DT learning algorithm can make use of two (hyper-)parameters k and
p which may be used to prune the DT; this approach is described in Sect. 3.4.

154 P. Ashok et al.

SOS
M T G σsafe

M � σsafe σopt Topt

T k,p
σsafe

M � T k,p
σsafe σk,p

opt T k,p
opt

Uppaal

Tiga

Stratego

learning

Stratego

learning

DT learning

exact

DT learning k,p

DT learning

exact

Fig. 2. Uppaal Stratego+ workflow. The dark orange nodes are the additions to the
original workflow, which now involve DT learning, the yellow-shaded area delimits the
desired safe, optimal, and small strategy representations. (Color figure online)

While pruning reduces the size of the DT, the resultant tree no longer represents
the strategy exactly. Hence it is not possible to prune a DT representing deter-
ministic strategies, like in the case of the σopt described in the first row of the
workflow, as safety would be violated.

However, for our second extension we apply the DT learning algorithm to
the non-deterministic, permissive strategy σsafe , resulting in T k,p

σsafe
. This DT is

less permissive, thereby smaller, since the pruning disallows certain actions; yet
it still represents a safe strategy (details in Sect. 3.4). Next, as in the standard
workflow, this less permissive safe strategy is applied to the game and Stratego
is used to get a near-optimal strategy σk,p

opt for the modified game M � T k,p
σsafe

. In
the end, we again construct a DT exactly representing the optimal strategy,
namely T k,p

opt . Note that in the game restricted to T k,p
σsafe

fewer actions are allowed
than when it is restricted only to σsafe , and hence the resulting strategy could
perform worse. For example, let σsafe allow decelerating or remaining neutral for
some configuration, while T k,p

σsafe
pruned the possibility to remain neutral and only

allows decelerating. Thus, σopt remains neutral, whereas σk,p
opt has to decelerate

and thereby increase the distance that we try to minimize.
In both cases, the resulting DT is safe by construction since we allow the

DT to predict only pure actions (actions allowed by all configurations in a leaf,
see next section for the formal definition). We convert these trees into a nested
if-statements code, which can easily be loaded onto embedded systems.

3.2 Representing Strategies Using DT

A DT with domain C and labels C can learn a (non-deterministic) strategy σ: C →
2C . The strategy is provided as a list of tuples of the form (γ, {a1, . . . , ak}), where
γ is a global configuration and {a1, . . . , ak} is the set of actions permitted by σ.The
training data points are given by the integer configurations γ ∈ C (safety for non-
integer points is guaranteed by the Euler method; see Sect. 2.1) and the set of

SOS: Safe, Optimal and Small Strategies 155

distance velocity actions

2 51 {dec}
3 20 {dec}
5 30 {dec}
7 1 {dec, neu}

20 46 {dec, neu}
25 25 {dec, neu, acc}
45 70 {dec, neu}

[(0, 3),
(3, 0),
(3, 0)]

distance ≤ 6

[(0, 2),
(0, 2),
(2, 0)]

distance ≤ 22.5

[(0, 1),
(0, 1),
(0, 1)]

distance ≤ 35

[(0, 1),
(0, 1),
(1, 0)]

FalseTrue

Fig. 3. A sample dataset (left); and a (multi-label) decision tree generated from the
dataset (right). The leaf nodes contain the list of tuples assigned by θ, the inner nodes
contain the predicates assigned by ρ

classes for each γ is given by σ(γ). Consequently, a multi-label decision tree learn-
ing algorithm as described in Sect. 2.2 can be run on this dataset to obtain a tree
Tσ representing the strategy σ.

Each node of the tree contains the set of configurations that satisfy the
decision path traced from the root of the tree to the node. The leaf attribute
θ gives, for each action a, the number of configurations in the leaf where the
strategy disallows and allows a, respectively. For example, consider a node with
10 configurations with θ = [(0, 10), (2, 8), (9, 1)]. This means that the first action
is allowed by all 10 configurations in the node, the second action is disallowed
by 2 configurations and allowed by 8, and the third action is disallowed by 9
configurations and allowed only by 1.

Since we want the DT to exactly represent the strategy, we need to run
the learning algorithm until the entropy of all the leaves becomes 0, i.e. all
configurations of the leaf agree on every action. More formally, given a leaf �
with n configurations we require θ(�) = (0, n) or θ(�) = (n, 0) for every action.
We call an action that all configurations allow a pure action.

The table on the left of Fig. 3 shows a toy strategy. Based on values of dis-
tance d and velocity v, it permits a subset of the action set {dec,neu, acc}.
A corresponding DT encoding is displayed on the right of Fig. 3.

3.3 Interpreting DT as Strategy

To extract a strategy from a DT, we proceed as follows: Given a configuration
C, we pick the leaf �C associated with it by evaluating the predicates and fol-
lowing a path through the DT. Then we compute θ(�C) = [(n1, y1), (n2, y2), . . . ,
(n|A|, y|A|)] where na, ya ∈ N are the number of data points in the leaf not
labelled by class a and labelled by class a, respectively. The classes assigned to
�C are exactly its pure actions, i.e. {a | (0, ya) ∈ θ(�C)}.

156 P. Ashok et al.

Note that allowing only pure actions is necessary in order to preserve safety.
We do not follow the common (machine learning) way of assigning classes to
the nodes based on the majority criterion, i.e. the majority of the data points
in that node allow the action; because then the decision tree might prescribe
unsafe actions just because they were allowed in most of the configurations in
the node. This is also the reason why the DT-learning algorithm described in
the previous section needs to run until the entropy of all leaves becomes 0.

3.4 Learning Smaller, Yet Safe DT

We now describe how to learn a DT for a safe strategy that is smaller than the exact
representation, but still preserves safety. A tree obtained using off-the-shelf DT
learning algorithms is unlikely to exactly represent the original strategy.4 We use
two different methods to achieve the goal: firstly, we use the standard hyperparam-
eter named minimum split size, and secondly, we introduce a new post-processing
algorithm called safe pruning. Both methods rely on the given strategy being non-
deterministic/permissive, i.e. permitting several actions in a leaf.

A
(0, 7): dec
(7, 0): neu
(7, 0): acc

x ≤ 5

B
(0, 7): dec
(0, 7): neu
(3, 4): acc

FalseTrue
C

(0, 14): dec
(7, 7): neu
(10, 4): acc

Fig. 4. Illustration of safe pruning applied to a node. The pure action of leaf A is just
dec, for B it is both dec and neu. Safe pruning replaces the nodes with C, where only
dec is a pure action.

(1) Using Minimum Split Size. The splitting process can be stopped before
the entropy becomes 0. We do this by introducing a parameter k, which deter-
mines the minimum number of data points required in a node to consider split-
ting it further. During the construction of the tree, a node is usually split if its
entropy is greater than 0. When k is set to an integer greater than 2, a node is
split only if both the entropy is greater than 0 and the number of data points
(configurations) in the node is at least k. The strategy given by such a tree is
safe as long as it predicts only pure actions, i.e. a with na = 0. In order to
obtain a fully expanded tree, k may be set to 2 (in nodes with <2 configurations,

4 This is because DT learning algorithms are usually configured to avoid overfitting on
the dataset.

SOS: Safe, Optimal and Small Strategies 157

there is nothing to split). For larger k, the number of pure actions in the leaves
decreases. Ultimately, for too large k, we would obtain a tree that has some leaf
nodes not containing any pure actions. In such a case, the strategy represented
by the DT would not be well-defined, as for some data point no action could be
picked. However, this can be detected immediately during the construction.

Algorithm 1. Safe Pruning
1: procedure Safe-Pruning(DT Tσ = (T, ρ, θ), p ∈ N)
2: for i ← 1..p do
3: N ← {n ∈ T | LEFT (n) and RIGHT (n) are leaves}
4: � Candidate nodes for pruning
5: for each n ∈ N do
6: c� ← LEFT (n), cr ← RIGHT (n)
7: if θ(c�) ∩ θ(cr) �= ∅ then
8: � Prune and keep the common classification
9: Convert n to a leaf node

10: θ(n) ← θ(c�) ∩ θ(cr)
11: Remove c� and cr from T

(2) Using Safe Pruning. Another way of obtaining a smaller tree is by using a
procedure to prune the leaves of the produced tree by merging them while preserv-
ing safety. For example, consider the decision node on the left of Fig. 4 with two
children that are leaves A and B. For A, only the action dec is pure (i.e. allowed
by all configurations in the leaf), while for B both dec and neu are pure. Since the
sets of pure actions of the two leaf nodes intersect, we can safely remove both A
and B and replace the decision node with a new leaf node C that contains only
those actions that are in the intersection, in this case only dec.

Algorithm 1 describes the pruning process formally. If θ returns only safe
actions, then the tree obtained after pruning is guaranteed to represent a safe
strategy, although a less-permissive one. The algorithm may be run for multiple
(possibly 0) rounds, denoted by p, at most until we get a “fully pruned” tree
representing a safe but deterministic strategy. We denote by T k,p

σsafe
the decision

tree for σsafe constructed by only splitting nodes with k or more data points,
followed by p rounds of safe pruning. Clearly, the more permissive the original
strategy is, the more we can prune using safe pruning.

When generating T k,p
σsafe

, we use a modified implementation of the CART deci-
sion tree learning algorithm implemented in the DecisionTreeClassifier class
of the Python-based machine learning library Scikit-learn [42]. Since we construct
the DT from a safe strategy and as long as we let the DT-encoded strategy have
at least one pure action in each leaf, the strategy will remain safe. With this
in mind, we can freely change the parameters of the DecisionTreeClassifier
class. However, in our experiments, we picked only the minimum split size k from
the Scikit-parameters as a demonstrative example, as well as our newly intro-
duced p. The methods described in this paper would work with other parameters
as well.

158 P. Ashok et al.

3.5 Comparing DTs to Binary Decision Diagrams

A Binary Decision Diagram (BDD, e.g. [12]) is a popular data structure that
can be used to represent boolean functions f : Bn → B. It may also be used to
represent strategies by encoding configurations and actions into a suitable form
via bit-blasting, i.e. converting them into propositional formulae. For example,
the configuration-action pair ((x = 6, y = 2), a0) can be represented as (x2 ∧
x1 ∧ ¬x0 ∧ ¬y2 ∧ y1 ∧ ¬y0 ∧ a0), if it is known that the maximum value that x
and y can take is less than 8 (3 bits). A strategy can be seen as a disjunction∨

γ,a∈σ(γ)(γ, a) of all configuration-action pairs (γ, a) permitted by the strategy σ.
Such an encoding allows for an easy conversion into a BDD. Though theoretically
straightforward, there are some practical concerns involved when constructing
the BDD. Mainly, the ordering of the variables in the BDD can drastically change
its size. While computing the optimal ordering so as to have the smallest BDD
is an NP-complete problem [4], various heuristics exist that can be used to get
better orderings. We use the CUDD package [53] to construct the BDD, along
with Rudell’s Sifting reordering technique [49].

The main disadvantage of DTs compared to BDDs is that isomorphic sub-
graphs are not merged (DTs are trees, BDDs are directed acyclic graphs); and
even if merging was allowed, it would not save much. Indeed, since DT may
choose different predicates on the same level (which is an advantage in contrast
to BDD with a fixed variable ordering) isomorphic subgraphs occur rarely. There
are further advantages of DT, related to learning, that make them more compact
than BDD in some contexts, e.g. [9,10]. Firstly, they can be learnt fast, using
the entropy-based heuristic, compared to the graph processing and variable re-
ordering of BDDs. Secondly, a DT can ignore “don’t-care inputs”; these inputs
are encodings of things that are not valid configuration-action pairs, in the sense
that either the action is not available in the configuration or that it is not a
valid configuration at all. In contrast, a BDD has to explicitly either allow or
disallow these inputs. Thirdly, DT learning can also be used to represent the
strategy imprecisely using a smaller DT, which can be model checked for safety.
For the modifications described in Sect. 3.4, we do not even need to re-verify
safety, because this property is preserved by both our size reduction techniques.
Fourthly, DT can use much wider class of predicates, compared to single bit tests
for a bit representation in a BDD. This final point is also a reason (together with
the smaller size) why DT is a more understandable representation than a BDD
[9,10]. We also illustrate this point on a case-study in Remark 1.

4 Case Studies and Experimental Results

In this section, we evaluate the techniques discussed above on three different
case studies: (1) the adaptive cruise control model introduced in the motivation;
(2) a two tank case study introduced in [29]; and (3) the heating system of a two
room apartment adapted from [25].

Table 1 compares representations for our case studies obtained in different
ways. We discuss results for the three case studies, denoted cruise, twotanks,

SOS: Safe, Optimal and Small Strategies 159

Table 1. Sizes of the different representations: explicit list as output by
Uppaal Stratego, the relevant part of the list, BDD displaying [minimum/medi-
an/maximum] over the 40 trials, and DT according to the upper path in Fig. 2.

#Variables Stratego list List BDD[min/med/max] DT Topt Size

cruisenon-Euler 5 1,790,034 308,216 [3,718/5,066/5,890] 2,899

cruise 7 5,931,154 304,752 [3,470/4,728/4,742] 2,713

twotanks 9 23,182 23,182 [65/69/91] 1

tworooms 11 1,924,708 509,715 [16,370/20,214/25,909] 487

Table 2. Tables displaying the number |T k,p
opt | of nodes of T k,p

opt (left) and the expected
performance EM,γ

σ,H (D) (right) for various k and p, i.e. using the bottom path of Fig. 2,
for the cruise model. Higher performance corresponds to a lower number. (Color table
online)

Min split
size (k)

Rounds of pruning (p)
0 1 2

2 2,713 1,725 1,267
10 2,705 1,733 1,249
20 2,667 1,733 1,131
30 2,657 1,695 993
40 2,627 1,669 1,015
50 2,557 1,695 1,003
60 2,635 1,489 963
70 2,613 1,441 955
80 2,519 1,537 915
90 2,455 1,323 923
100 1,929 1,023 877

Min split
size (k)

Rounds of pruning (p)
0 1 2

2 2,627 3,618 4,240
10 2,696 3,596 4,210
20 2,778 3,625 14,039
30 2,778 3,589 14,108
40 2,778 3,600 14,096
50 2,825 3,614 14,037
60 2,905 3,673 14,074
70 2,898 3,714 14,095
80 2,907 3,717 14,092
90 3,006 3,741 14,077
100 3,030 14,061 14,292

and tworooms respectively. Additionally, the first line displays cruise without
the integrated Euler method, to illustrate the effect of Euler method on the
final size. All the representations are safe and as optimal as σopt produced by
Uppaal Stratego.

For each of the models we display the following information: the third column
lists the number of items in the explicit list representation of σopt output by
Uppaal Stratego. The fourth column lists the number of those items that are
actually relevant, i.e. sets of configurations where an actual decision is to be made.
The fifth and sixth column list the sizes of BDD and DT representations learnt
from σopt , i.e. the upper path in Fig. 2. For BDDs, since the initial ordering plays
a role in the size of the final result despite applying the re-ordering heuristics, we
ran 40 experiments for each model with random initial variable orderings. For
creating BDDs, we used the free Python library tulip-control/dd as an interface
to CUDD.

We conclude that both BDDs and DTs reduce the size by several order
of magnitude. DTs are slightly better in all cases, and 2 orders of magnitude
smaller in the tworooms model. Note that reliably achieving good results when

160 P. Ashok et al.

Table 3. Tables displaying the number |T k,p
opt | of nodes of T k,p

opt (left) and the expected
performance EM,γ

σ,H (D) (right) for various k and p, i.e. using the bottom path of Fig. 2,
for the tworooms model. Higher performance corresponds to a lower number. (Color
table online)

Min split
size (k)

Rounds of pruning (p)
0 1 2 3

2 543 403 283 191
10 525 387 271 185
50 497 365 251 171
125 445 317 219 151
250 387 265 179 123
500 323 211 139 97
750 277 175 111 77

Min split
size (k)

Rounds of pruning (p)
0 1 2 3

2 2,096 2,353 2,821 3,156
10 2,156 2,460 3,285 3,283
50 1,989 2,778 3,287 3,281
125 2,374 2,053 3,280 3,284
250 2,283 2,071 3,288 3,282
500 2,563 2,155 3,280 3,282
750 2,333 2,210 3,279 3,286

constructing the BDD relies on repeating the construction several times; since
already constructing a single BDD and applying the heuristics [49] already took
roughly 10 times longer than DT learning, DT can be obtained one or two
orders of magnitude faster than BDDs, depending on how many times one tries
constructing the BDD. Further, for the two tanks, only DT realizes that the
strategy is actually trivial. The main reason for BDD not to spot this is the
point of ignoring “don’t-care” inputs addressed in Sect. 3.5.

Table 2 shows how the size of the DT can be further reduced by the bottom
path of Fig. 2, when the “exact representation” criterion is relaxed. It displays
the performance, i.e. the aggregated distance to Front car, and size of T k,p

opt for
different combinations of the pruning parameters k and p. Recall that using no
pruning (k = 2, p = 0) yields the same DT as the upper path of Fig. 2, i.e.
T 2,0
opt = Topt .

We observed that for cruise, increasing the values of k and p buys a reduc-
tion in size of the DT against a reduction in performance. For instance, using
k = 80, p = 0, one can decrease the size to 2485 (by 8.4%) while deteriorating the
performance to 2907 (by 10%). Allowing for half the performance (double the
aggregated distance), one can make the DT even smaller than half of its original
size, e.g. by setting k = 10, p = 2. The shading and colouring of the table dis-
play different “trade-off zones”, each with comparable savings/losses. The same
conclusions hold for cruisenon-Euler, see the similar Table in [1, Appendix A.3].
For tworooms (Table 3), the best performance is observed not with k = 2, p = 0,
but with k = 50, p = 0. We conjecture that the less permissive safe strategy
assists Stratego in performing the optimisation faster by reducing the size of
the search space. As a result, here we get a both smaller and more performant
strategy. In the case of twotanks, already Topt has only a single node, hence no
further reductions are possible.

Remark 1. Interestingly, domain knowledge can reduce the DT size further and
make the representation more understandable. Indeed, for the cruise model we

SOS: Safe, Optimal and Small Strategies 161

were able to construct a DT with only 25 nodes, designing our predicates based
on the car kinematics. For example, the expected time until the front car reaches
minimal velocity if it only decelerates from now on (1) plays an important role
in the decision making and (2) can be easily expressed by solving the standard
kinematics equation v(t) = vcurrent − adec · t. The resulting DT (illustrated in
[1, Appendix A.4] is thus very small and easy to interpret, as each of the few
nodes has a clear kinematic interpretation. The DT thus open the possibility for
strategy representation to profit from predicate/invariant synthesis.

5 Conclusion

We have provided a framework for producing small representations of safe and
(near-)optimal strategies, without compromising safety. As to (near-)optimality,
we can choose between two options: (i) not compromising it, or (ii) finding a
suitable trade-off between compromising it (causing drops of performance) and
additional size reductions. Compared to the original sizes, we achieve orders-of-
magnitude reductions, allowing for efficient usage of the strategies in e.g. embed-
ded devices. Compared to BDD representation, the size of the DT representation
is smaller and can be computed faster; additionally trivial solutions are repre-
sented by trivial DTs. DTs are more readable as argued in [9,10].

A detailed examination of the latter point in the hybrid context remains
future work. Further, candidates for more complex predicates could be auto-
matically generated based on given domain knowledge or learnt from the data
similarly to invariants from program runs [23,52]. As illustrated in Remark 1, this
could lead to further reduction in size and improved understandability. Addition-
ally, isomorphic/similar subtrees could be merged as in decision diagrams and
further optimizations for algebraic decision diagrams [56] could be employed.
Finally, we plan to visualize the DT representation of the strategies directly in
Uppaal Stratego+ for convenience of the users.

References

1. Ashok, P. Křetínský, J., Larsen, K.G., Coënt, A.L., Taankvist, J.H., Weininger,
M.: SOS: Safe, optimal and small strategies for hybrid Markov decision processes.
Technical report (2019)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3_14

3. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. ITA 36, 261–275 (2002)

4. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

5. Boutilier, C., Dean, T.L., Hanks, S.: Decision-theoretic planning: structural
assumptions and computational leverage. J. Artif. Intell. Res. 11, 1–94 (1999)

162 P. Ashok et al.

6. Boutilier, C., Dearden, R.: Approximating value trees in structured dynamic pro-
gramming. In: ICML (1996)

7. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construc-
tion. In: IJCAI (1995)

8. Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness
in parity games: mean-payoff parity games revisited. In: Bultan, T., Hsiung, P.-
A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 135–149. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24372-1_11

9. Brázdil, T., Chatterjee, K., Chmelík, M., Fellner, A., Křetínský, J.: Counterex-
ample explanation by learning small strategies in Markov decision processes. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 158–177.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_10

10. Brázdil, T., Chatterjee, K., Křetínský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10805, pp. 385–407. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2_21

11. Breiman, L.: Classification and Regression Trees. Routledge, Abingdon (2017)
12. Bryant, R.E.: Symbolic manipulation of boolean functions using a graphical repre-

sentation. In: DAC (1985)
13. Chapman, D., Kaelbling, L.P.: Input generalization in delayed reinforcement learn-

ing: an algorithm and performance comparisons. In: IJCAI. Morgan Kaufmann
(1991)

14. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De
Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4

15. Coënt, A.L., Sandretto, J.A.D., Chapoutot, A., Fribourg, L.: An improved algo-
rithm for the control synthesis of nonlinear sampled switched systems. Formal
Methods Syst. Design 53(3), 363–383 (2018)

16. David, A., Du, D., Larsen, K.G., Mikucionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Sci. China Inform.
Sci. 55(12), 2694–2707 (2012)

17. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6_10

18. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

19. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the kronecker repre-
sentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_27

20. Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 531–546. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_44

21. Esposito, F., Malerba, D., Semeraro, G.: Decision tree pruning as a search in the
state space. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 165–184.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3_135

22. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24743-2_22

SOS: Safe, Optimal and Small Strategies 163

23. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_5

24. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. Automatica 48(5), 947–953 (2012)

25. Girard, A.: Low-complexity quantized switching controllers using approximate
bisimulation. Nonlinear Anal.: Hybrid Syst. 10, 34–44 (2013)

26. Girard, A., Martin, S.: Synthesis for constrained nonlinear systems using hybridiza-
tion and robust controllers on simplices. IEEE Trans. Automat. Control 57(4),
1046–1051 (2012)

27. Hahn, E.M., Norman, G., Parker, D., Wachter, B., Zhang, L.: Game-based abstrac-
tion and controller synthesis for probabilistic hybrid systems. In: QEST (2011)

28. Hermanns, H., Kwiatkowska, M.Z., Norman, G., Parker, D., Siegle, M.: On the use
of mtbdds for performability analysis and verification of stochastic systems. J. Log.
Algebr. Program. 56(1–2), 23–67 (2003)

29. Hiskens, I.A.: Stability of limit cycles in hybrid systems. In: HICSS (2001)
30. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: stochastic planning using

decision diagrams. In: UAI (1999)
31. Kearns, M., Koller, D.: Efficient reinforcement learning in factored MDPs. In:

IJCAI (1999)
32. Koller, D., Parr, R.: Computing factored value functions for policies in structured

MDPs. In: IJCAI (1999)
33. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic least-

commitment planning. In: AAAI (1994)
34. Larsen, K.G., Le Coënt, A., Mikučionis, M., Taankvist, J.H.: Guaranteed control

synthesis for continuous systems in Uppaal Tiga. In: Chamberlain, R., Taha, W.,
Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 113–133. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_6

35. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6_17

36. Coënt, A.L., De Vuyst, F., Chamoin, L., Fribourg, L.: Control synthesis of nonlinear
sampled switched systems using Euler’s method. In: SNR (2017)

37. Liu, S., Panangadan, A., Talukder, A., Raghavendra, C.S.: Compact representation
of coordinated sampling policies for body sensor networks. In: 2010 IEEE Globecom
Workshops (2010)

38. Majumdar, R., Render, E., Tabuada, P.: Robust discrete synthesis against unspec-
ified disturbances. In: HSCC (2011)

39. Miner, A., Parker, D.: Symbolic representations and analysis of large probabilistic
systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M.
(eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_9

40. Mingers, J.: An empirical comparison of pruning methods for decision tree induc-
tion. Mach. Learn. 4, 227–243 (1989)

41. Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., New York (1997)
42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

164 P. Ashok et al.

43. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)
44. Pyeatt, L.D.: Reinforcement learning with decision trees. Appl. Inform. 26–31

(2003)
45. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
46. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
47. Riddle, P.J., Segal, R., Etzioni, O.: Representation design and brut-force induction

in a boeingmanufacturing domain. Appl. Artif. Intell. 8, 125–147 (1994)
48. Roy, P., Tabuada, P., Majumdar, R.: Pessoa 2.0: a controller synthesis tool for

cyber-physical systems. In: HSCC (2011)
49. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:

CAD (1993)
50. Rungger, M., Zamani, M.: Scots: a tool for the synthesis of symbolic controllers.

In: HSCC (2016)
51. Saoud, A., Girard, A., Fribourg, L.: On the composition of discrete and continuous-

time assume-guarantee contracts for invariance. In: ECC (2018)
52. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-

ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9_21

53. Somenzi, F.: CUDD: CU decision diagram package-release 2.4. 2 (2009). http://
vlsi.colorado.edu/~fabio/CUDD

54. Svoreňová, M., Křetínskỳ, J., Chmelík, M., Chatterjee, K., Černá, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement
of probabilistic games. Nonlinear Anal.: Hybrid Syst. 23, 230–253 (2017)

55. Wimmer, R., et al.: Symblicit calculation of long-run averages for concurrent prob-
abilistic systems. In: QEST (2010)

56. Zapreev, I.S., Verdier, C., Mazo, M.: Optimal symbolic controllers determinization
for BDD storage. In: ADHS (2018)

D dtControl: Decision Tree Learning
Algorithms for Controller Representation
(HSCC 2020)

©2020 Copyright held by the authors

This paper has been published as a peer reviewed conference paper.

Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Kret́ınský,
Maximilian Weininger and Majid Zamani. ‘dtControl: decision tree learn-
ing algorithms for controller representation’. In: HSCC ’20: 23rd ACM
International Conference on Hybrid Systems: Computation and Control,
Sydney, New South Wales, Australia, April 21-24, 2020. Ed. by Aaron
Ames, Sanjit A. Seshia and Jyotirmoy Deshmukh. ACM, 2020, 17:1–17:7.
doi: 10.1145/3365365.3382220. url: https://doi.org/10.1145/

3365365.3382220

Summary

Inspired by the promising results of Paper C [AKL+19], in this paper, we introduce an
extensible toolkit dtControl with pipelines not only to Uppaal Stratego, but also to
the cyber-physical systems synthesis tool SCOTS. While the pipeline of [AKL+19] could
only handle certain algorithms and models, dtControl allows users to synthesize any
controller using Uppaal Stratego or SCOTS and obtain a decision tree for it. Further,
in addition to the standard decision tree learning algorithm, dtControl also allows
users to construct decision trees with linear predicates obtained via logistic regression,
linear support vector machines (SVMs), or OC1 [MKS+93]. Moreover, dtControl also
supports multiple impurity measures to choose between predicates. We also develop
a novel determinizing strategy MaxFreq, that produces deterministic controllers much
smaller than traditional determinizing strategies such as picking the action with the
minimum norm or randomly resolving the non-determinism. Experimental evaluation
show that, for many controllers, lookup tables containing millions of state-action pairs
can be reduced to trees with tens of nodes using MaxFreq.
dtControl has been made available as an open-source software along with detailed

user and developer documentation at dtcontrol.model.in.tum.de.

131

https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3382220
https://dtcontrol.model.in.tum.de/

D dtControl: Decision Tree Learning Algorithms for Controller Representation (HSCC 2020)

Contribution

Composition and revision of the manuscript. Discussion and development of the ideas,
implementation and evaluation with the following individual contributions: laying ground-
work for the concept of the tool and co-leading its development, establishing collabor-
ation with the Hybrid Control Systems group and developers of SCOTS, creation of the
repeatability evaluation artefact, user manual and website.

132

dtControl: Decision Tree Learning Algorithms
for Controller Representation

Pranav Ashok
Mathias Jackermeier

Pushpak Jagtap
Jan Křetínský

Maximilian Weininger
Technical University of Munich

Munich, Germany

Majid Zamani
University of Colorado Boulder

Boulder, USA
Ludwig Maximilian University of Munich

Munich, Germany

ABSTRACT
Decision tree learning is a popular classification technique most
commonly used in machine learning applications. Recent work
has shown that decision trees can be used to represent provably-
correct controllers concisely. Compared to representations using
lookup tables or binary decision diagrams, decision trees are smaller
and more explainable. We present dtControl, an easily extensible
tool for representing memoryless controllers as decision trees. We
give a comprehensive evaluation of various decision tree learning
algorithms applied to 10 case studies arising out of correct-by-
construction controller synthesis. These algorithms include two
new techniques, one for using arbitrary linear binary classifiers in
the decision tree learning, and one novel approach for determinizing
controllers during the decision tree construction. In particular the
latter turns out to be extremely efficient, yielding decision trees
with a single-digit number of decision nodes on 5 of the case studies.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies→ Classifica-
tion and regression trees; Control methods.

KEYWORDS
Controller representation, Decision tree, Machine learning, Sym-
bolic control, Non-uniform quantizer, Explainability, Invariance
entropy

ACM Reference Format:
Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetínský, Max-
imilian Weininger, and Majid Zamani. 2020. dtControl: Decision Tree
Learning Algorithms for Controller Representation. In 23rd ACM Interna-
tional Conference on Hybrid Systems: Computation and Control (HSCC ’20),
April 22–24, 2020, Sydney, NSW, Australia.ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3365365.3382220

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7018-9/20/04.
https://doi.org/10.1145/3365365.3382220

1 INTRODUCTION
Formal synthesis of controllers enforcing complex specifications
on cyber-physical systems has gained significant attention in the
last few years. This is mainly due to the need for obtaining formally
verified control strategies rendering some complex tasks; these are
usually represented using temporal logic specifications or (in)finite
strings over automata. There are several techniques and tools avail-
able that provide automated, correct-by-construction, controller
synthesis for cyber-physical systems by utilizing symbolic models
(a.k.a. finite abstractions) [5, 36], in which the uncountable contin-
uous states and inputs are aggregated to finite symbolic states and
inputs via quantization (a.k.a. discretization). The so-called sym-
bolic controllers are then computed by utilizing algorithmic ma-
chinery from computer science and then mapped back for use in the
original systems. The state-of-the-art tools to synthesize such con-
trollers are, e.g., SCOTS [32], pFaces [18], QUEST [15], Pessoa [16],
CoSyMA [24], or Uppaal Stratego [12]. These tools give a huge list
of state-action pairs (a.k.a. lookup tables) representing controllers.

Storing these symbolic controllers in the memory is a major
problem because they usually need to run on embedded devices
with limited memory. However, if we do not store the controllers as
lookup tables, but take advantage of decision trees (DT) [23], which
exploit their hidden structure to represent them in a more com-
pact way, we can mitigate this problem. As shown in [3], DTs can
be orders of magnitude smaller than lookup tables. Such a concise
representation opens the door for better readability, understandabil-
ity, and explainability of the controllers, while reducing memory
requirements and preserving correctness guarantees. Moreover,
human-understandable controllers may also provide insight into
the models themselves, thus aiding their validation, as we illustrate
in the example below.

Our setting is inherently different from the usual use of DT in
machine learning; there, in order to generalize well, DTs typically do
not fit the training data exactly; in contrast, in this work, DTs have
to exactly represent the given controllers in order to preserve their
correctness guarantee. Therefore, our requirements on DTs differ:
beside the size and the explainability, it is also the perfect fitting.
Consequently, it is necessary to thoroughly re-evaluate current
DT-learning algorithms and possibly also modify them.

A basic technique used to represent controllers more concisely
is to determinize them, i.e. to make them not (maximally) permis-
sive but only retain a single action for each state. To this end, one
can use, for instance, the action with the minimum norm from

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Ashok et al.

Troom2 ≤ 20.625

Troom5 ≤ 20.625 Troom5 ≤ 20.625

(1, 1) (1, 0) (0, 1) (0, 0)

true false

Figure 1: Decision tree for the temperature controller

a reference input, when least energy consuming controllers are
preferred [22], or the previously applied action (if possible), when
lazy controllers are preferred [16, 24]. Such a size reduction by
determinization can be applied as pre-processing before learning
the DT representation of the controller, typically yielding also a
smaller DT. Alternatively, one can apply other kinds of reduction
by determinization as post-processing after constructing the DT.
For instance, in “safe pruning” of [3], the DT constructed for the
maximally permissive controller is modified as follows. The leaves
of the tree are merged in a bottom-up fashion, thereby reducing
the size and partially determinizing it. In contrast, here we intro-
duce a novel approach for determinizing the controllers during the
construction of the DT, with advantages to both pre-processing
and post-processing methods. Firstly, since the choice of the action
for each state greatly affects the size and structure of the DT, it is
advantageous to guide the choice by the concrete, already built part
of the DT, compared to a-priori choices made by pre-processing ap-
proaches. Secondly, while the post-processing approaches have to
construct a large tree first, our new technique constructs an already
reduced tree, avoiding the intermediate large one, thus making it
more scalable.

Motivating Example. Consider a temperature control system run-
ning in a building with 10 rooms with the heater installed only in 2
rooms as described in [15]. The permissive controller maintaining
the temperatures of all the rooms within a certain range obtained
using SCOTS is a lookup table with 52,488 state-action pairs. By
naively determinizing, we get a lookup table with 26,244 symbolic
states (i.e. domain of the controller) and their respective actions. The
standard DT-learning, e.g. [9], applied to these two lookup tables
yields DT with 8,648 and with 2,703 decision nodes, respectively.
While this is an improvement, it is far from being explainable. With
the help of our novel determinization strategy presented in Section
4.2, we are able to obtain the decision tree with only 3 (!) decision
nodes, see Figure 1. Apart from obtaining a compact and easily im-
plementable controller representation while preserving correctness
guarantees, the result is so small that it is immediately explainable
and, moreover, allows us to improve on the implementation: one
can readily see that we only need to install temperature sensors in
two rooms instead of all 10 rooms, which will help users to reduce
the system deployment cost as well as the required bandwidth to
transfer the state information to the controller. Only 4 symbols
(leaves of the tree) need to be transferred to realize the controller.

We also obtain a controller with very few nodes for the cruise-
control model of [21]. From such a clear representation one immedi-
ately notices that the controller makes the car decelerate when the
car in front of it is far away. This counter-intuitive behaviour has

thus revealed a bug in the model, which did not actually describe
the intended behaviour of the system.

The contribution of this paper can be summarized as follows:
• We present dtControl, an open-source tool to convert formally
verified controllers to decision trees preserving their correctness
guarantees. dtControl has a simple input format and already
supports automated conversion for controllers generated by two
state-of-the-art tools – Uppaal Stratego [12] and SCOTS [32]. It
supports several output formats, most importantly the graphical
output as DOT files, useful for further analysis and visual presen-
tation, and the C source code, useful for closed-loop simulation
or for loading onto embedded devices.

• We introduce a new technique for using arbitrary binary clas-
sifiers in the DTs and a novel approach for determinizing con-
trollers during the DT learning. Our approach is tuned towards
obtaining extremely small, explainable DTs. In 5 out of 8 case
studies where it is applicable (the original controllers are non-
deterministic), it produces trees with single-digit numbers of
decision nodes.

• We present a comprehensive evaluation of 8 DT-learning algo-
rithms on 10 case studies.

Related Work. DTs [23, Chapter 3] are a well-known class of data
structures, particularly known for their interpretability, used mostly
by machine learning practitioners in classification or regression
tasks. Our work is based on well-known algorithms for decision
tree learning, namely CART [9], C4.5 [30] and OC1 [25].

There has been previous work on combining decision trees
with classifiers, namely Perceptrons [37], Logistic Regression mod-
els [19], piece-wise functions [27] or Support-Vector Machines [1,
11]. We generalize those approaches by allowing for arbitrary bi-
nary classifiers to be used in our trees. Additionally, those methods
are either restricted to only use two labels, which is not applicable
for controllers with more than two possible actions, or they only al-
low linear classifiers in leaf nodes [1, 27]. In contrast, our approach
is applicable with an arbitrary number of actions and also leverages
the power of linear classifiers in inner nodes.

An alternative to DTs are binary decision diagrams (BDD) [10].
As seen in [3, 7, 8], BDDs have several disadvantages: firstly, they
do not retain the inherent flavour of decisions of strategies as maps
from states to actions due to their bit-level representation and,
hence, are hardly explainable. Secondly, they are notoriously hard
to minimize [8], also because finding the best variable ordering is
NP-complete [10]. BDDs only allow binary classification, so the
actions have to be joined with the state space to represent a con-
troller. The recent result in [38] discusses various heuristic-based
determinization algorithms for BDDs representing controllers; how-
ever, they still suffer from those disadvantages we mentioned for
BDDs. Algebraic decision diagrams (ADD) [4] are an extension of
BDDs that allow to have more than two labels, i.e. associate every
action to a leaf node. However, they still suffer from the same draw-
backs as BDDs. In [13] ADDs are used for controller representation;
however, no concrete algorithm is provided.

The formal methods community has made use of decision trees
to represent controllers and counterexamples arising out of model
checking Markov decision processes, stochastic games and LTL
synthesis [1, 3, 7, 8]. DTs have also been used to represent learnt

dtControl: Decision Tree Learning Algorithms for Controller Representation HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

policies from reinforcement learning [29]. However, in contrast to
our paper, [29] does not preserve safety guarantees, only considers
axis-aligned splits and does not consider non-determinism. [17]
suggests the possibility of using regression trees for representing
policies, whereas we consider classification trees.

2 TOOL
dtControl is an easy-to-use open-source tool for post-processing
memoryless symbolic controllers into various compact and more in-
terpretable representations. We report the input and output formats
as well as the algorithms that are currently supported. Note that
the tool can easily be extended with new formats and algorithms.
dtControl is distributed as an easy-to-install pip package1 along
with a user and developer manual2.
Dependencies. dtControlworkswith Python version 3.6.7 or higher.
The core of the tool which runs the learning algorithms require
numpy, pandas and scikit-learn [28]. Optionally, dtControlmay
also require the C-based oblique decision tree tool OC1 [25].
Input formats. dtControl currently accepts controllers in three
formats: (i) a raw comma-separated values (CSV) format with each
row consisting of a vector of state variables concatenated with a
vector of input variables; (ii) a sparse matrix format used by SCOTS;
and (iii) the raw strategy produced by Uppaal Stratego. More
details about the various formats are described in the user manual.
Algorithms. dtControl offers a range of parameters to adjust the
DT learning algorithm, which are described in Section 4.
Output formats. dtControl outputs the decision tree in the DOT
graph representation language (for visual presentation of the tree),
as well as C code that can be directly used for implementation; see
[2, Appendix A] for the DOT and C output that dtControl produces
for the DT in Figure 1. Additionally, dtControl reports statistics
for every constructed tree, namely size, the minimum number of
bits required to represent symbols in obtained controller, and the
construction time.

3 PRELIMINARIES - DECISION TREE
LEARNING

A decision tree (DT) over the domain X with the set of labels U is
a tuple (T, λ, ρ), where T is a finite full binary tree (every node has
exactly 0 or 2 children), λ assigns to every leaf node (node with 0
children) a label u ∈ U and ρ assigns to every inner node (node
with 2 children, also called decision node) of the tree a predicate,
which is a boolean function X 7→ {0, 1}.

The semantics of a DT is as follows: given a state ®x , there is a
unique decision path through the tree T starting from the root node
(the only node with no parent) to a leaf node ℓ. This means that
the label for state ®x is λ(ℓ). The decision path is defined by starting
at the root node, and then for each decision node n evaluating the
predicate on the state, i.e. computing ρ(n)(®x), and picking the left
child if the predicate is true and the right child otherwise.

For example, consider the DT in Figure 1: T has 7 nodes, 3 of
which are decision nodes (including the root node) and 4 of which
1pip is a standard package-management system used to install and manage software
packages written in Python. See https://pypi.org/project/dtcontrol/.
2Available at https://dtcontrol.readthedocs.io/en/latest/

are leaf nodes. A state of the system is a vector of 10 temperatures,
e.g. ®x = (20.1, 20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, 20.9, 21.0). To
find the decision for this state, we first evaluate the predicate in
the root node. Since the temperature in the second room is smaller
than 20.625, the predicate is true and we go to the left child. We
evaluate the next predicate in the same fashion and arrive at the
leaf node labelled (1, 1), which gives us a safe control input, in this
case to turn on both heaters.

All DT learning algorithms implemented in dtControl follow
the same underlying structure: given a finite set C ⊆ X × U of
feature-label pairs, it returns a DT that represents C precisely; this
means that for every (®x ,u) ∈ C , the leaf node of the decision path
for ®x has the label u. In the setting of this paper, C is a controller,
features are states and labels are actions3.

To learn the DT, the algorithm tries to minimize the entropy ofC ,
denoted entr(C), by splitting it according to a predicate. Formally,
for some C ⊆ {(®x ,u) | ®x ∈ X ,u ∈ U},

entr(C) := −
∑
u ∈U

pu log(pu),

where pu := | {(®x,u)∈C } |
|C | is the empirical probability of labelu being

in C; notation | · | denotes the cardinality of a set. The underlying
algorithm works recursively as follows:
• Base case: If entr(C) = 0, i.e. all pairs (®x ,u) ∈ C have the same
labelu, then return the following DT: the tree T has only a single
node r , with λ(r) = y, and ρ has no domain in this case, as there
are no decision nodes.

• Recursive case: If entr(C) , 0, C needs to be split; for that,
we use some predicate P ∈ PREDS which splits C , where the set
PREDS to be picked here is a parameter of the algorithm that is
discussed in Section 4.1. We pick the predicate that minimizes
the entropy after the split, i.e.,

argmin
P ∈PREDS

entr({(®x ,u) ∈ C | P(®x)}) + entr({(®x ,u) ∈ C | ¬P(®x)}).

Intuitively, the best predicate is the one which is able to split
C into two parts which are as homogeneous as possible. Given
the best predicate, we recursively call the algorithm on the sub-
sets resulting from the split, getting two DTs (Tt , λt , ρt) and
(Tf , λf , ρf); the indices t and f indicate whether the predicate
was true or false, respectively. Then we return the following
DT: the tree T has the root node r , with the left child being the
root of Tt and the right child the root of Tf . λ uses λt for leaves
of the left sub-tree and λf for the right sub-tree. ρ is defined
similarly on the inner nodes of the left and right sub-trees, with
the addition that ρ(r) = P , i.e. the predicate of the root of T is
the predicate we used for the split.
The symbolic controllers designed by SCOTS and Uppaal Strat-

ego are generated by correct-by-construction synthesis procedures.
In order to use these controllers for original systems (i.e. with infi-
nite continuous states and inputs), we need to refine the controllers.
For more details on refinement procedures, we kindly refer the
interested reader to [20, 31, 36].

dtControl preserves the correctness guarantees by representing
the symbolic controllers precisely, i.e. iterating until the entropy
3We use the term actions instead of control inputs, to avoid confusion because of the
fact that the control inputs are the outputs of a DT.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Ashok et al.

in all leaf nodes is 0. In the case of determinization, dtControl
represents one of the deterministic sub-controllers precisely, which
is chosen on-the-fly during the construction.

4 METHODS
There are two parameters of dtControl: the set of predicates to
consider (PREDS) and the way in which non-determinism is han-
dled. For each of these, dtControl implements existing ideas and
introduces new ones. Here, we only report the high-level ideas; for
a more detailed description, refer to the user or developer manual.

4.1 Predicates
4.1.1 Existing idea: Axis-aligned splits. In the standard algorithms,
e.g [9, 30], only axis-aligned splits are considered; i.e. predicates
that can only have the form xi ∼ b, where xi is one of the state
variables, b ∈ R, and ∼ ∈ {≤, ≥}. In our setting, the set of possible
predicates is greatly restricted due to discretization (quantization).
The number of splits to be evaluated for each variable xi is equal
to the number of discrete values of xi .

4.1.2 Existing idea: Oblique splits. Beside the standard axis-aligned
splits, dtControl also supports predicates of the form ®wT ®x ≤ b,
where ®w, ®x ∈ Rn ,b ∈ R. These oblique predicates [25] incorporate
information from multiple state variables in a single split and thus
have the potential to greatly simplify the induced decision tree [1].
However, due to combinatorial explosion, it is too costly to simply
enumerate all possible oblique predicates even in the discretized
space, due to which different heuristics are employed [25]. In this
regard, dtControl supports the usage of predicates obtained using
(an adapted version of) the OC1 algorithm [25].

4.1.3 New technique: Using binary machine-learnt classifiers. It is
possible to find non-axis-aligned predicates splitting the controller
by using classification techniques from machine learning. As our
main goal is for the resulting tree to be explainable, we want to
avoid complex predicates, and thus we restrict the classifiers we
consider in two ways: (i) we only consider linear classifiers, and (ii)
we restrict to binary classifiers, so that the resulting tree is binary.

We use these binary linear classifiers in a way that is similar to
the classical one-vs-the-rest classification, e.g. [6, Chapter 4]: For
each action u, we train a classifier LCu that tries to separate the
states with that action from the rest. We then pick that classifier
whose predicate minimizes the entropy, i.e.

LC := argmin
u ∈U

entr({(®x ,u) ∈ C | LCu (®x) = 1})
+

entr({(®x ,u) ∈ C | LCu (®x) = 0}).

We considered various linear classification techniques includ-
ing Logistic Regression [6, Chapter 4], linear Support Vector Ma-
chines (SVM) [6, Chapter 7], Perceptrons [6, Chapter 5], and Naive
Bayes [39]. However, the latter two yielded significantly larger
DTs in all of our experiments, so dtControl does not offer these
algorithms to the end-user.

In summary, dtControl currently supports four possibilities for
the set PREDS: axis-aligned predicates, the modified oblique split
heuristic from [25] and oblique splits obtained either via logistic

regression or linear SVM classifiers. Due to the modular structure
of the code, it is easy to extend the existing approaches or add new
methods, as described in our developer manual.

4.2 Non-determinism
In the general algorithm described in Section 3, for the sake of
simplicity, we restricted our procedure to controllers that determin-
istically choose a single control input. In case of non-deterministic
(also called permissive) controllers, the tuples in the controller C
have the form (®x ,u), where u is now a set {u1,u2, . . . ,um } of ad-
missible control inputs. One approach to handle non-determinism
is to simply assign a unique label to each set, and hence reduce the
setting to the case where for every state there is only a single label.
This means that the DT algorithm can be used in exactly the same
way as described in Section 3. This method retains all information
that was initially present in the given controller.

The disadvantage of handling non-determinism like this is that
the number of unique classes may be as large as 2 |U | . In order to
avoid this blow-up and optimize memory, one can decide to de-
terminize the controller. If we have some knowledge about which
value of a control input is optimal, e.g. from domain knowledge
or since it was computed by an optimization algorithm as in Up-
paal Stratego [12], this information can be used, eliminating the
non-deterministic choice. Otherwise, one can use a standard deter-
minization approaches, e.g. picking the value with the minimum
norm. The tree can then simply be constructed from the deter-
minized labels. Additionally, we propose the following alternative
to these determinization approaches.

Novel determinization approach: Maximal frequencies. Our new
determinization techniqueMaxFreq aims to minimize the size of the
resulting DT. The underlying general idea is simple: if many of the
data points share the same label, a DT learning algorithm should
group them together under the common label. This idea naturally
gives a determinizing strategy when applied in our context.

Consider a set C of pairs of state and sets of actions. The goal is
to identify for each state a single action which can be assigned to it.
Let f be the function for action frequency, which maps actions to
their number of occurrences in C . Then, for each state ®x such that
(®x , {u1,u2, . . . ,um }) ∈ C , we re-assign to ®x the single labelu ′which
appears with the highest frequency. Formally, our determinization
procedure produces for each state ®x , an action u ′(®x), where

∀(®x , {u1, . . . ,um }) ∈ C .u ′(®x) = argmax
u ∈{u1, ...,um }

f (u).

Once we have determinizedC , we can use any method presented
in Section 4.1 to find a predicate for the current node. After the set
is split, the procedure is recursively applied to both child nodes,
recomputing the action frequency each time.

In summary, dtControl offers 3 different possibilities to handle
non-determinism: unique labels retaining the information, deter-
minizing upfront by picking the action with the minimal norm, and
using the novel heuristic MaxFreq.

5 EXPERIMENTS
All experiments were conducted on a server running on an Intel
Xeon W-2123 processor with a clock speed of 3.60GHz and 64 GB

dtControl: Decision Tree Learning Algorithms for Controller Representation HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

Table 1: Result of running the various methods on 10 different case studies. The ‘Lookup table’ column gives the size of the
domain of the original controller. For all other columns, the number of decision paths in the constructed tree is indicated.
The case studies are grouped together by the number of control inputs and methods based on whether they preserve non-
determinism.∞ indicates that the computation did not finish within 3 hours; n/a indicates that the approach is not applicable
(we cannot determinize, as the model is already deterministic).

Most permissive controller Determinized controller
Case Study Lookup table CART LinSVM LogReg OC1 MaxFreq MaxFreqLC MinNorm MinNormLC
Single-input non-deterministic
cartpole [14] 271 127 126 100 92 6 7 56 39
2D Thermal [13] 40,311 14 14 8 12 5 4 8 4
helicopter [14] 280,539 3,174 2,895 1,877 ∞ 115 134 677 526
cruise [21] 295,615 494 543 392 374 2 2 282 197
dcdc [32] 593,089 136 140 70 90 5 5 11 11
Multi-input non-deterministic
10D Thermal [15] 26,244 8,649 67 74 2,263 4 10 2,704 28
truck_trailer[18] 1,386,211 169,195 ∞ ∞ ∞ 21,598 12,611 95,417 30,888
traffic[35] 16,639,662 6,287 ∞ 4,477 ∞ 98 80 690 ∞
Multi-input deterministic
vehicle [32] 48,018 6,619 6,592 5,195 4,886 n/a n/a n/a n/a
aircraft [33] 2,135,056 456,929 ∞ 407,523 ∞ n/a n/a n/a n/a

RAM. We ran the unique-label approach with all 4 possible predi-
cate classes (see Section 4.1): axis-aligned predicates (CART) [9],
oblique predicates with linear support-vector machines (LinSVM),
logistic regression (LogReg), and the heuristic from [25], called
OC1. Note that all these resulting trees represent the maximally
permissive controller for the finite abstraction. Additionally, on all
the non-deterministic models we ran our novel determinization
approach (see Section 4.2) with axis-aligned predicates (MaxFreq),
and with oblique predicates (MaxFreqLC where LC stands for linear
classifier). For the results in Table 1, we used logistic regression as
linear classifier, because it reliably performed well. As a competitor
for our determinization approach we use a-priori determinization
with the minimum norm, again both with axis-aligned predicates
(MinNorm) and with logistic regression for linear predicates (Min-
NormLC). Additionally, we compare to the random a-priori deter-
minization, to get an impression for possible cases where MinNorm
would not be a natural choice but no better is given. However, since
the results are always worse, we only report the numbers in [2,
Appendix B]. Since some of the algorithms rely on randomization,
we ran all experiments thrice and report the median.

We run the discussed algorithms on ten case studies, five of
which are marked as multi-input, containing control inputs which
are multi-dimensional, i.e. u = (u1, . . . ,um). All our algorithms
work by giving each multi-dimensional control input a single action
label, and then working on these labels as in the case of single-
dimensional control inputs.

In order to compare the sizes of the representations of the con-
trollers fairly, we provide two different ways. Firstly, the straight-
forward way is to compare the number of nodes used in the DT and
the number of rows in the lookup table, which we do in Table 2 of
[2, Appendix B]. However, a practically more relevant comparison
should reflect the number of state symbols needed to capture the
behaviour of the controller; these can also be directly related to

memory requirements. To this end, in Table 1 for DTs we report
the number of decision paths, as these induce a partitioning of the
state space into symbolic states. For more information on this and
an example, see Figure 2 and the discussion in Section 6.

Beside comparing DTs to the lookup tables, we also compare
them to BDDs. However, BDDs do not directly correspond to the
state symbols. Hence we refrain from the state-symbols comparison
and do not report BDD sizes in Table 1, but only in [2, Appendix B].
There, we compare the number of nodes in the BDDs to the number
of nodes (not decision paths) generated by our DT algorithms. The
BDDs were generated using SCOTS for all models but the two from
Uppaal Stratego, cruise and 2D Thermal; for these two, we used
the dd and autoref Python libraries. The BDDs were minimized as
much as possible by calling reordering heuristics until convergence.
The results show that the DT algorithms which determinize or
which do not use oblique predicates are more scalable, as they
were able to compute the result for all case studies, while BDDs
timed out on dcdc and traffic. Depending on the case study, BDDs
are usually in the same order of magnitude as CART, sometimes
better, sometimes worse. On the one hand, on 10D Thermal and
truck_trailer, BDDs have an order of magnitude less nodes, but on
the other hand CART is able to produce results for dcdc and traffic.
Compared to MaxFreq, there is the exception of truck_trailer, where
the best BDD has a quarter of the size; on all other models, MaxFreq
is at least one order of magnitude better.

6 DISCUSSION
Table 1 shows that DTs are always better than lookup tables. In the
case of DTs exactly representing the most permissive controller, our
linear-classifier-based algorithm, LogReg, generally performs better
than the standard DT learning algorithm CART. An inspection of
the trees showed that oblique splits indeed aid in this reduction. In
order to save memory, however, our determinizing algorithms may

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Ashok et al.

ω ≤ −0.85

a := 2.2 ω ≤ −0.05

θ ≤ 3.72θ ≤ 2.6

a := −3.7 a := 3.6 a := −2.9ω ≤ 0.05

a := 3.9 a := −1.6

true false

(a) Decision tree representation

6

4 5
3

1 2

(θ = 2.24,ω = −2)

(θ = 4.08,ω = 2)

(b) Non-uniform quantizer as a coder on
the sensor side

Symbol Input
1 -1.6
2 -3.7
3 3.9
4 3.6
5 -2.9
6 2.2

(c) Lookup table for the DT-
based controller

Figure 2: End-to-end usage of DT-based controller: First, a DT representation is synthesized with the help of dtControl (the
result of runningMaxFreq on cartpole is shown here). Then a non-uniform quantizer is implemented at the sensor side, which
for each decision path (i.e. a region in the state-space), sends a state symbol to the controller. At the controller, this symbol
gives actual control input. In this case, the information needs to be sent over the sensor-controller channel is ⌈log2(6)⌉ = 3 bits
per time unit. The theoretical lower bound on the data rate in this example is 1 bit per time unit to achieve invariance [34].

be used. Here, MaxFreq and its linear classifier variant, MaxFreqLC,
easily outperform all other discussed algorithms, returning trees
which can be drawn on a single sheet of paper in most of our case
studies! The controller produced by MaxFreq for the case study
cartpole is depicted in Figure 2a.

Apart from the compact representation of the controllers and
efficient determinization, dtControl makes controllers more un-
derstandable. This helps to do some analysis for the systems and
corresponding controllers. A few analyses were mentioned for the
temperature control example in the introduction. Another applica-
tion is that dtControl learns how to efficiently partition the state
space. In general, the tools synthesizing symbolic controllers use
uniform partitioning, i.e. a uniform quantizer is used to discretize
the state set. Therefore, they need a large number of symbols to rep-
resent the state set. dtControl aggregates state symbols where the
same control input is admissible to reduce the number of symbols
required. In other words, dtControl provides a scheme to design
non-uniform quantizers (i.e., state encoders with non-uniform par-
titioning of state-set), illustrated in Figure 2b.

The entries in Table 1 correspond to the necessary number of
state symbols. For instance, consider the cartpole example in Ta-
ble 1. The controller obtained using SCOTS requires 271 symbols
to represent the domain of the controller, which implies that one
needs to send 9 bits per time unit over the sensor-controller chan-
nel to achieve invariance. After processing the controller using
dtControl with MaxFreq, we only need 6 symbols to represent
the controller, corresponding to only 3 bits information. One can
directly relate this idea of constructing efficient static coders to
the notion of invariance feedback entropy introduced in [34]. This
notion characterizes the necessary state information required by
any coder-controller to enforce the invariance condition in the
closed loop. For example, in the case of cartpole, the theoretical
lower-bound on average bit rate for any static coder-controller to
achieve invariance is 1 (obtained through the invariance feedback
entropy [34]), which is not far from 3, computed using dtControl.

In summary, one can utilize the results provided in this paper
for constructing efficient coder-controllers for invariance proper-
ties which is an active topic in the domain of information-based
control [26].

7 CONCLUSION
We presented dtControl, an open-source, easily extensible tool for
post-processing controllers synthesized by various tools such as
SCOTS and Uppaal Stratego into small, efficient and interpretable
representations. The tool allows for a comparison between various
representations in terms of size and performance and also allows
us to export the controller both as a graphic and as a code. We
also presented a new determinization technique, MaxFreq, which
easily converts non-deterministic controllers into extremely small
deterministic decision trees. Further algorithms for controller rep-
resentation were thoroughly evaluated and made accessible to the
end-user. We believe these small representations will not only allow
us to save memory but also help us in understanding and validating
the model. As for future work, dtControl can be extended with
• further input and output formats, to also support tools such as
pFaces[18] and QUEST[15];

• different predicates: this can be other, possibly even non-linear
or non-binary, machine-learning classifiers or richer algebraic
predicates utilizing domain knowledge;

• other impurity measures instead of entropy, which decide the
predicate used for the split

ACKNOWLEDGMENTS
This work was supported in part by the H2020 ERC Starting Grant
AutoCPS (grant agreement no 804639), the German Research Foun-
dation (DFG) through the grants ZA 873/1-1 and KR 4890/2-1 Statis-
tical Unbounded Verification, and the TUM International Graduate
School of Science and Engineering (IGSSE) grant 10.06 PARSEC.

dtControl: Decision Tree Learning Algorithms for Controller Representation HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

REFERENCES
[1] P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. H. Lampert, and V. Toman.

2019. Strategy Representation by Decision Trees with Linear Classifiers. In QEST
(1). Springer, 109–128.

[2] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetínský, Maximil-
ian Weininger, and Majid Zamani. 2020. dtControl: Decision Tree Learning
Algorithms for Controller Representation. arXiv:cs.LG/2002.04991

[3] P. Ashok, J. Křetínský, K. G. Larsen, A. Le Coënt, J. H. Taankvist, andM.Weininger.
2019. SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision
Processes. In QEST (1), D. Parker and V. Wolf (Eds.). Springer, 147–164.

[4] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. 1997. Algebraic Decision Diagrams and
Their Applications. Formal Methods in System Design 10, 2/3 (1997), 171–206.

[5] C. Belta, B. Yordanov, and E. A. Gol. 2017. Formal methods for discrete-time
dynamical systems. Vol. 89. Springer.

[6] C.M. Bishop. 2007. Pattern recognition andmachine learning, 5th Edition. Springer.
[7] T. Brázdil, K. Chatterjee, M. Chmelik, A. Fellner, and J. Kretínský. 2015. Counterex-

ample Explanation by Learning Small Strategies in Markov Decision Processes.
In CAV (1) (Lecture Notes in Computer Science), Vol. 9206. Springer, 158–177.

[8] T. Brázdil, K. Chatterjee, J. Kretínský, and V. Toman. 2018. Strategy Representation
by Decision Trees in Reactive Synthesis. In TACAS (1) (Lecture Notes in Computer
Science), Vol. 10805. Springer, 385–407.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and
Regression Trees. Wadsworth.

[10] R. E. Bryant. 1986. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput. 100, 8 (1986), 677–691.

[11] Ioannis T. Christou and Sofoklis Efremidis. 2007. An Evolving Oblique Decision
Tree Ensemble Architecture for Continuous Learning Applications. In AIAI (IFIP),
Vol. 247. Springer, 3–11.

[12] A. David, P Gjøl Jensen, K. Guldstrand Larsen, M. Mikucionis, and J. H. Taankvist.
2015. Uppaal Stratego. In TACAS (Lecture Notes in Computer Science), Vol. 9035.
Springer, 206–211.

[13] Antoine Girard. 2013. Low-complexity quantized switching controllers using
approximate bisimulation. Nonlinear Analysis: Hybrid Systems 10 (2013), 34–44.

[14] Pushpak Jagtap, Fardin Abdi, Matthias Rungger, Majid Zamani, and Marco Cac-
camo. 2018. Software Fault Tolerance for Cyber-Physical Systems via Full System
Restart. CoRR abs/1812.03546 (2018).

[15] Pushpak Jagtap and Majid Zamani. 2017. QUEST: A Tool for State-Space
Quantization-Free Synthesis of Symbolic Controllers. In QEST (Lecture Notes in
Computer Science), Vol. 10503. Springer, 309–313.

[16] Manuel Mazo Jr., Anna Davitian, and Paulo Tabuada. 2010. PESSOA: A Tool
for Embedded Controller Synthesis. In CAV (Lecture Notes in Computer Science),
Vol. 6174. Springer, 566–569.

[17] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neu-
ral Network Compression for Aircraft Collision Avoidance Systems. CoRR
abs/1810.04240 (2018).

[18] Mahmoud Khaled and Majid Zamani. 2019. pFaces: an acceleration ecosystem
for symbolic control. In HSCC. ACM, 252–257.

[19] Niels Landwehr, Mark A. Hall, and Eibe Frank. 2003. Logistic Model Trees. In
ECML (Lecture Notes in Computer Science), Vol. 2837. Springer, 241–252.

[20] Kim Guldstrand Larsen, Adrien Le Coënt, Marius Mikucionis, and Jakob Haahr
Taankvist. 2018. Guaranteed Control Synthesis for Continuous Systems in Uppaal
Tiga. In CyPhy/WESE (Lecture Notes in Computer Science), Vol. 11615. Springer,
113–133.

[21] Kim Guldstrand Larsen, Marius Mikucionis, and Jakob Haahr Taankvist. 2015.
Safe and Optimal Adaptive Cruise Control. In Correct System Design (Lecture
Notes in Computer Science), Vol. 9360. Springer, 260–277.

[22] Philipp J. Meyer, Matthias Rungger, Michael Luttenberger, Javier Esparza, andMa-
jid Zamani. 2017. Quantitative Implementation Strategies for Safety Controllers.
CoRR abs/1712.05278 (2017).

[23] T. M. Mitchell. 1997. Machine learning. McGraw-Hill.
[24] Sebti Mouelhi, Antoine Girard, and Gregor Gößler. 2013. CoSyMA: a tool for

controller synthesis using multi-scale abstractions. In HSCC. ACM, 83–88.
[25] S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel. 1993. OC1: A Randomized

Induction of Oblique Decision Trees. In AAAI. AAAI Press / The MIT Press,
322–327.

[26] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. 2007. Feedback control under
data rate constraints: An overview. Proc. of the IEEE 95, 1 (2007), 108–137.

[27] Daniel Neider, Shambwaditya Saha, and P. Madhusudan. 2016. Synthesizing Piece-
Wise Functions by Learning Classifiers. In TACAS (Lecture Notes in Computer
Science), Vol. 9636. Springer, 186–203.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] Larry D. Pyeatt and Adele E. Howe. 1998. Decision Tree Function Approximation
in Reinforcement Learning. Technical Report. Computer Science Department,

Colorado State University.
[30] J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[31] G. Reissig, A. Weber, and M. Rungger. 2016. Feedback refinement relations for

the synthesis of symbolic controllers. IEEE Trans. Automat. Control 62, 4 (2016),
1781–1796.

[32] M. Rungger and Zamani M. 2016. SCOTS: A Tool for the Synthesis of Symbolic
Controllers. In HSCC. ACM, 99–104.

[33] Matthias Rungger, Alexander Weber, and Gunther Reissig. 2015. State space grids
for low complexity abstractions. In CDC. IEEE, 6139–6146.

[34] Matthias Rungger and Majid Zamani. 2017. Invariance Feedback Entropy of
Uncertain Control Systems. CoRR abs/1706.05242 (2017).

[35] A. Swikir and M. Zamani. 2019. Compositional synthesis of symbolic models for
networks of switched systems. IEEE Control Systems Letters 3, 4 (2019), 1056–1061.

[36] P. Tabuada. 2009. Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media.

[37] Paul E. Utgoff. 1988. Perceptron Trees: A Case Study In Hybrid Concept Repre-
sentations. In AAAI. AAAI Press / The MIT Press, 601–606.

[38] Ivan S. Zapreev, Cees Verdier, and Manuel Mazo Jr. 2018. Optimal Symbolic
Controllers Determinization for BDD storage. In ADHS (IFAC-PapersOnLine),
Vol. 51. Elsevier, 1–6.

[39] Harry Zhang. 2004. The Optimality of Naive Bayes. In FLAIRS Conference. AAAI
Press, 562–567.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Computer-aided Verification
	1.2 Challenges
	1.3 Solutions to the Challenges
	1.3.1 Address state-space explosion with partial exploration
	1.3.2 Taming automatically synthesized controllers with better representations

	1.4 Publication Summary
	1.5 Outline of the Thesis

	2 Preliminaries
	2.1 Basic Notation
	2.2 Basic Probability Theory
	2.3 Notion of Controllers

	3 Controller Synthesis through Partial Exploration
	3.1 Markov Decision Process (MDP)
	3.1.1 Model checking the reachability objective for mdp
	3.1.2 Monte Carlo tree search: the preliminaries
	3.1.3 Contribution: MCTS + BRTDP

	3.2 Continuous-time Markov Decision Process (CTMDP)
	3.2.1 Model checking time-bounded reachability for ctmdp
	3.2.2 Contribution: A new time-bounded reachability framework

	4 Controller Representation
	4.1 Preliminaries
	4.1.1 Lookup tables
	4.1.2 Binary decision diagrams
	4.1.3 Decision trees

	4.2 State of the Art
	4.2.1 Lookup tables
	4.2.2 Binary decision diagrams and their extensions
	4.2.3 Decision trees

	4.3 Contribution: Improved dt Representations
	4.3.1 Stratego+ framework
	4.3.2 The dtControl toolbox

	5 Conclusion & Outlook
	5.1 Solving State-Space Explosion with Partial Exploration
	5.2 Explainable and Concise Representation of Controllers

	Bibliography
	I Controller Synthesis
	A Monte Carlo Tree Search for Verifying Reachability in Markov Decision Processes (ISoLA 2018)
	B Continuous-time Markov Decisions Based on Partial Exploration (ATVA 2018)

	II Controller Representation
	C SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision Processes (QEST 2019)
	D dtControl: Decision Tree Learning Algorithms for Controller Representation (HSCC 2020)

