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Abstract
This thesis explores statistical testing procedures to detect whether the underlying
dependence structure between the components of a given multidimensional random
sample may be captured by an elliptical copula. First, we disregard that the univariate
marginal distribution functions of the components are usually unknown and assume
given copula data. For this scenario, we develop a simple non-parametric goodness-
of-fit test for multivariate elliptical copulas exploiting the equality of Kendall’s tau
and Blomqvist’s beta for all bivariate margins. In a next step, we derive simple
non-parametric tests for two further intrinsic properties of bivariate elliptical copulas,
namely symmetry and radial symmetry. The combination of the three proposed tests
yields a powerful testing procedure for bivariate elliptical copulas. Finally, we expand
the simple goodness-of-fit test for elliptical copulas by taking the estimation of unknown
marginal distribution functions into account. In addition, we resolve some limitation
of the simple goodness-of-fit test for copula data in higher dimensions. The finite
sample performances of all presented statistical procedures are analyzed in extensive
simulation studies and, if applicable, compared to the performance of competing ones.
The practical relevance of the proposed tests is illustrated in empirical analyses.





Zusammenfassung
In dieser Arbeit werden statistische Testverfahren untersucht, um festzustellen, ob die
zugrunde liegende Abhängigkeitsstruktur zwischen den Komponenten einer gegebe-
nen mehrdimensionalen Zufallsstichprobe durch eine elliptische Copula beschrieben
werden kann. Dabei vernachlässigen wir zunächst, dass die eindimensionalen Rand-
verteilungsfunktionen der Komponenten in der Regel unbekannt sind, und gehen von
gegebenen Copuladaten aus. Für dieses Szenario entwickeln wir einen einfachen nicht-
parametrischen Anpassungstest für multivariate elliptische Copulas, der die Gleichheit
von Kendalls Tau und Blomqvists Beta für alle bivariaten Ränder ausnutzt. Im näch-
sten Schritt leiten wir einfache nichtparametrische Tests für zwei weitere intrinsische
Eigenschaften bivariater elliptischer Copulas her, nämlich Symmetrie und Radial-
symmetrie. Die Kombination der drei vorgeschlagenen Tests ergibt ein trennscharfes
Testverfahren für zweidimensionale elliptische Copulas. Zu guter Letzt erweitern wir
den einfachen Anpassungstest für elliptische Copulas, indem wir die Schätzung der
unbekannten Randverteilungsfunktionen berücksichtigen. Darüber hinaus beheben
wir einige Einschränkungen des einfachen Anpassungsgütetests für Copuladaten in
höheren Dimensionen. Das Verhalten für endliche Stichproben (also das empirische
Niveau und die empirische Güte) aller vorgestellten statistischen Verfahren wird in
umfangreichen Simulationsstudien analysiert und gegebenenfalls mit dem Verhalten
konkurrierender Verfahren verglichen. Die praktische Relevanz der vorgeschlagenen
Tests wird in empirischen Analysen veranschaulicht.
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1
Introduction

The International Data Corporation (IDC) predicts that the “Global Datasphere” will
grow from 45 Zettabytes in 2019 to 175 Zettabytes by 2025 (see Reinsel et al. (2018)).
The world from business through society to the everyday life of each individual is
and will be increasingly driven by this inconceivable amount of data. In view of the
currently spreading SARS-CoV-2 pandemic, we become more than ever and painfully
aware of another major phenomenon of our time: the globalization which makes our
world an interconnected and interdependent place. In this light, statistical methods
for an accurate data analysis of huge amounts of data and especially for the analysis
of dependencies become indispensable.
In scientific research, the modeling of dependence structures between multivariate

random quantities has been an important field in probability theory and statistics for
many years. The monograph by Joe (1997) gives an overview of various dependence
concepts. Originally, the multivariate normal distribution and with it the correlation
coefficient were widely used to model and measure multivariate dependence. However,
this approach reveals some inadequacies as for example the correlation coefficient can
only measure the linear relationship between two random variables resulting in the
necessity for alternatives (see, e.g., Embrechts et al. (1999)).
A more general concept to model dependence structures is given by the so-called

copulas. It is based on the famous Sklar’s theorem dating back to Sklar (1959), which
claims that any multivariate distribution function F on Rd can be separated into
its marginal distribution functions F1, . . . , Fd and a copula C : [0, 1]d → [0, 1] in the
following way

F (x) = C (F1(x1), . . . , Fd(xd)) , x ∈ Rd .

Thus, the modeling of the joint behavior of random variables can be split into two
simpler sub-problems, namely the consideration of the individual behavior of the
random variables as well as their interaction that is the dependence structure, which
is grasped by the copula.

Due to their mathematical elegance, copulas have attracted an increasing attention
since the late 1990’s and are nowadays a common tool to model dependencies (see,
e.g., Nelsen (1999), Joe (2015)). The theory of copulas has been applied in various
fields such as actuarial sciences (see, e.g., Frees and Valdez (1998)), finance (see, e.g.,
Cherubini et al. (2004), Genest et al. (2009a)), hydrology (see, e.g., Genest and Favre
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Chapter 1 Introduction

(2007), Salvadori and De Michele (2007)), machine learning (see, e.g., Elidan (2013)),
and risk management (see, e.g., McNeil et al. (2005)), to name just a few.
A simple transformation of Sklar’s theorem allows to construct a copula C from

a given multivariate distribution function F and its marginal distribution functions
F1, . . . , Fd with generalized inverses F−1 , . . . , F−d in the following way

C(u) = F
(
F−1 (u1), . . . , F−d (ud)

)
, u ∈ [0, 1]d .

This gives rise to the popular class of elliptical copulas, which are simply the copulas
of elliptical distributions. Its most prominent representatives are the Gaussian and the
t copula. Elliptical copulas are fully specified through an association matrix and the
generator function of the corresponding elliptical distribution. Note that distributions
whose dependence structure is captured by an elliptical copula are called meta-elliptical
distributions and were introduced by Fang et al. (2002), Fang et al. (2005). Elliptical
copulas and meta-elliptical distributions are well investigated (see, e.g., Frahm et al.
(2003), Abdous et al. (2005), Demarta and McNeil (2005)) and applied in several areas
such as actuarial sciences (see, e.g., Oh et al. (2020)), finance (see, e.g., Fischer et al.
(2009)), hydrology (see, e.g., Song and Singh (2010)), or risk management (see, e.g., Li
(2000), Embrechts et al. (2003)).

By definition, every mathematical model suffers from limitations and so do elliptical
copulas. Not considering the limitations of the Gaussian copula approach to assess
credit risk by Li (2000) paved the way for the financial crisis of 2007 to 2009 (see
Salmon (2009)). Not only because of this example but in general it is very important
to check whether the dependence structure of given data can be represented by the
very specific dependence structure of an elliptical copula. This is where goodness-of-fit
tests for copulas come into play. For an overview of goodness-of-fit tests for copulas,
see Genest et al. (2009b), Berg (2009), or Fermanian (2013). To the best of our
knowledge, regarding elliptical copulas, so far, there only exist goodness-of-fit tests
for previously specified parametric families, like the Gaussian or the t copula. The
procedures presented in Quessy and Bellerive (2013) are based on a fixed or at least
parametric generator function. Therefore, these are also only suitable for specified
parametric families. The test by Li and Peng (2009) can be regarded as a test for
elliptical copulas as well. However, it is based on the concept of tail-dependence and
thereby excludes for example the Gaussian copula from the null hypothesis. Thus,
our search for a procedure to test the goodness-of-fit for the entire class of elliptical
copulas was not crowned by success.
The main motivation of this thesis is to develop non-parametric formal statistical

testing procedures which enable us to determine whether the dependence structure of
a multivariate random sample is well-represented by an elliptical copula. To this end,
we consider the test problem

H0 : C ∈ Cellipt vs. H1 : C /∈ Cellipt ,

where C denotes the unknown copula and Cellipt the class of elliptical copulas.
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Outline of the thesis
Parts of this thesis are based on the following two research papers:

• Chapter 3:
Jaser et al. (2017):
Jaser, M., Haug, S., and Min, A. (2017). A simple non-parametric goodness-of-fit
test for elliptical copulas. Depend. Model., 5(1):330–353

• Chapter 4:
Jaser and Min (2020):
Jaser, M. and Min, A. (2020). On tests for symmetry and radial symmetry of
bivariate copulas towards testing for ellipticity. Comput. Stat.

For this thesis, the content of the papers has been revised and where appropriate
extended by additional arguments or illustrations. Especially Chapter 4 contains some
new materials. Moreover, note that some parts of Chapter 2 are very similar to parts
of the above listed research papers as well.

In the following, we provide an outline of the thesis structure and present the main
contributions of the thesis.

In Chapter 2, we introduce the mathematical fundamentals for this thesis which
revolve around the concept of copulas.

For the next two chapters, we assume given copula data and neglect that in real-life
situations, marginal distributions would be needed to be estimated first. In Chapter
3, which is based on the research paper Jaser et al. (2017), we build a simple non-
parametric goodness-of-fit test for multivariate elliptical copulas of any dimension.
For this, we use a property which is common to all elliptical copulas: the equality
of Kendall’s tau and Blomqvist’s beta (Fang et al. (2002), Schmid and Schmidt
(2007)). We derive a Wald-type test statistic based on the equality of Kendall’s tau
and Blomqvist’s beta for all bivariate margins and establish its asymptotic chi-square
distribution. After analyzing the empirical level and the empirical power, the presented
simple goodness-of-fit test is applied to the dependence structure underlying a financial
data set.
In the next step, we take two further properties of bivariate elliptical copulas into

consideration: symmetry and radial symmetry. In Chapter 4, which is based on
the research paper Jaser and Min (2020), we build simple non-parametric tests for
symmetry and radial symmetry of bivariate copulas and incorporate them together
with the test for equality of Kendall’s tau and Blomqvist’s beta from Chapter 3 into
a powerful testing procedure for bivariate ellipticity. We establish the asymptotic
normality of the corresponding test statistics. In an extensive simulation study, we
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Chapter 1 Introduction

compare the tests to existing more advanced tests for symmetry and radial symmetry
by Genest et al. (2012) and Genest and Nešlehová (2014), respectively. In a further
simulation study, we analyze the finite-sample performance of the testing procedure for
ellipticity. We illustrate the testing procedure in practice with applications to financial
and insurance data. In the supplementary material to this chapter, we first show how
the tests for symmetry and radial symmetry can be refined utilizing variance reduction
techniques (see, e.g., Korn et al. (2010)). Secondly, we validate the choice of Kendall’s
tau for the tests for symmetry and radial symmetry by analyzing the performance of
competing alternative tests based on Spearman’s rho.

Ultimately, we waive the requirement of given copula data. In Chapter 5, we further
develop the simple non-parametric goodness-of-fit test for elliptical copulas of any
dimension to take the estimation of unknown marginals into account and to resolve the
problems of the simple test to hold its nominal level in higher dimensions. The latter
is achieved by utilizing an L2-type instead of a Wald-type test statistic. This avoids
the estimation of the covariance matrix, which becomes more and more burdensome
with increasing dimension. With the help of empirical copula theory, we derive the
limiting Gaussian field which depends on the unknown copula. To perform the test,
we make use of the subsampling approximation by Kojadinovic and Stemikovskaya
(2019). It should be mentioned that Quessy (2020) also deals with the two described
limitations of the simple test from Chapter 3 published in Jaser et al. (2017). However,
our proofs differ from Quessy (2020) and we utilize an alternative bootstrap procedure.
All results presented in Chapter 5 have been developed independently since Jaser et al.
(2017). In an extensive simulation study, we compare our advanced test to the simple
test for pseudo-observations as well as to the competing test by Quessy (2020).
Finally, note that conclusions and directions for future research are given in the

respective chapters.

4



2
Preliminaries

This chapter introduces the central terms and concepts forming the basis of the thesis.
Note that some parts of this chapter are taken from Jaser et al. (2017) and Jaser and
Min (2020). In Section 2.1, we introduce copulas. Section 2.2 presents the concept
of ordinal measures of dependence and gives two concrete examples. Moreover, two
different notions of symmetry are discussed in Section 2.3. Elliptical copulas are
presented in Section 2.4 and Archimedean copulas in Section 2.5. Finally, we close
the chapter with the definition of pseudo-observations and different versions of the
empirical copula in Section 2.6.

2.1 Copulas
A d-dimensional copula is a cumulative distribution function over the unit hypercube
[0, 1]d with uniformly distributed margins. By providing a link between copulas
and multivariate distribution functions, the following fundamental result by Sklar
(1959) makes copulas a mathematical tool for modeling the dependence structure of
multivariate distributions.

Theorem 2.1. (Sklar’s theorem)
Let F be a cumulative distribution function on Rd with continuous margins F1, . . . , Fd.
Then there exists a unique copula C : [0, 1]d → [0, 1] such that for all x ∈ Rd it holds
that

F (x) = C (F1(x1), . . . , Fd(xd)) .

In particular, Sklar’s theorem allows to treat margins and the copula separately
resulting in two independent and simpler problems. Further, Sklar’s theorem provides
a universal construction framework for copulas. Without loss of generality, let F−i
be the generalized inverses of Fi, i ∈ {1, . . . , d}. Then, the copula C(u) of F for any
u ∈ [0, 1]d is given by

C(u) = F
(
F−1 (u1), . . . , F−d (ud)

)
.

Note that for any distribution function H on [0, 1]d, Hk` denotes the bivariate
marginal distribution function of the k-th and `-th component with k, ` ∈ {1, . . . , d}.
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More precisely, it holds that Hk`(uk, u`) = H(u(k`)), where, for any vector u ∈ [0, 1]d
and A ⊂ {1, . . . , d}, the vector u(A) denotes the vector where all components of
u except the components of the index set A are replaced by 1. Furthermore, for
k, ` ∈ {1, . . . , d} with k < `, the corresponding bivariate margin of C is a bivariate
copula, which is called the marginal copula of the k-th and `-th component and denoted
by Ck` (see Nelsen (1999)).
Finally, an analog to Sklar’s theorem links multivariate survival functions to a

copula and its marginal survival functions. For any random vector X ∈ Rd defined
on a probability space (Ω,F ,P) with cumulative distribution function F , the survival
function F̄ is defined as F̄ (x) = P(X1 > x1, . . . , Xd > xd), x ∈ Rd.

Theorem 2.2. (Sklar’s theorem for survival functions)
Let F̄ be a d-dimensional survival function with continuous marginal survival functions
F̄1, . . . , F̄d. Then there exists a unique copula Ĉ : [0, 1]d → [0, 1] such that for all
x ∈ Rd it holds that

F̄ (x) = Ĉ
(
F̄1(x1), . . . , F̄d(xd)

)
.

The copula Ĉ from Theorem 2.2 is called the survival copula of a random vector
X ∈ Rd with survival function F̄ . Note that the survival function C̄ of a copula C is
not a copula itself, however, the survival copula Ĉ is indeed a copula. Furthermore, it
holds that the random vector U is distributed according to the copula C if and only if
the random vector (1− U1, . . . , 1− Ud) is distributed according to the survival copula
Ĉ. Moreover, the copula C and the survival copula Ĉ can be analytically connected
via the inclusion exclusion principle.

For a more extensive treatment of copula theory, we refer to the standard textbooks
Joe (2015) and Nelsen (1999).

2.2 Ordinal measures of dependence
In this section, we consider ordinal or concordance measures of dependence, which are
invariant with respect to monotone increasing, not necessarily linear transformations
and can also be expressed in terms of the underlying copula. Concordance measures
allow to summarize the strength of dependence of a random vector and, therefore,
inherent in its copula, by a single number. In the sequel, we introduce Kendall’s tau
and Blomqvist’s beta, which are fundamental for the tests derived in the following
chapters. These tests will be based on the dependence between all bivariate pairs of
the components of the random vector X ∈ Rd. Therefore, we will introduce these
measures in a bivariate setting. For multivariate extensions of Kendall’s tau, we refer
to Kendall and Smith (1940) and Joe (1990). A multivariate extension of Blomqvist’s
beta was introduced in Schmid and Schmidt (2007).
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2.2 Ordinal measures of dependence

2.2.1 Kendall’s tau
We start with the concordance measure Kendall’s tau, which belongs to the most
popular dependence measures and is defined as follows.

Definition 2.3. (Kendall’s tau)
Let (X ′k, X ′`) be an independent copy of the random vector (Xk, X`) of continuous
random variables Xk and X`. Then, Kendall’s tau is defined by

τk` : = E[sgn(Xk −X ′k)sgn(X` −X ′`)]
= P((Xk −X ′k)(X` −X ′`) > 0)− P((Xk −X ′k)(X` −X ′`) < 0) ,

where sgn denotes the sign function.

Hence, Kendall’s tau equals the probability of concordance minus the probability of
discordance. Furthermore, for continuous random variables Xk and Xl with copula
Ck`, Kendall’s tau is completely determined by their copula Ck` (see Theorem 5.1.3 in
Nelsen (1999)) and can be expressed as

τk` = τCk` = 4
∫ 1

0

∫ 1

0
Ck`(uk, u`) dCk`(uk, u`)− 1 . (2.1)

For the sample version of Kendall’s tau, we look at a random sample of n observations
(Xk1, X`1), . . . , (Xkn, X`n) from the random vector (Xk, X`). In total, there are(
n
2

)
= n(n−1)

2 different pairs of observations (Xki, X`i) and (Xkj, X`j) and we get

τk`,n := 2
n(n− 1)

∑
1≤i<j≤n

sgn(Xki −Xkj)sgn(X`i −X`j) (2.2)

as the minimum variance unbiased estimator for Kendall’s tau (see Denker (1985)).

2.2.2 Blomqvist’s beta
The second concordance measure, we want to consider, is Blomqvist’s beta, also
referred to as the medial correlation coefficient. The intention of Blomqvist (1950) was
to design a simple rank correlation coefficient which can be easily applied in practice.
Blomqvist’s beta is defined as follows.

Definition 2.4. (Blomqvist’s beta)
Let Xk and X` be continuous random variables. Then, Blomqvist’s beta is defined by

βk` : = E[sgn(Xk − x̃k)sgn(X` − x̃`)]
= P((Xk − x̃k)(X` − x̃`) > 0)− P((Xk − x̃k)(X` − x̃`) < 0) ,

where x̃k and x̃` denote the population medians of Xk and X`, respectively.
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Hence, Blomqvist’s beta equals the probability of X1 and X2 being both either
smaller or greater than their respective medians minus the probability of one being
smaller and the other one being greater than its median. Blomqvist’s beta can easily
be expressed in terms of the copula C12 of the distribution of (X1, X2) and is given by

βk` = βCk` = 4Ck`
(1

2 ,
1
2

)
− 1 . (2.3)

Consequently, for copulas with a closed-form analytical expression, Blomqvist’s beta
can be explicitly derived. This displays one advantage of Blomqvist’s beta over other
more complicated dependence measures.
Now, let (Xk1, X`1), . . . , (Xkn, X`n) be again a random sample of n observations

from the random vector (Xk, X`) and let X̃k,n and X̃`,n be the sample medians of the
components of the sample. Definition 2.4 trivially leads to the following sample version
of Blomqvist’s beta given by

βk`,n := 1
n

n∑
i=1

sgn
(
Xki − X̃k,n

)
sgn

(
X`i − X̃`,n

)
. (2.4)

2.3 Symmetries of copulas
Copulas can be classified with respect to their symmetry properties. In this section,
we introduce two notions of symmetry, namely exchangeability and radial symmetry.

Definition 2.5. (Exchangeability)
A copula C is called exchangeable if,

C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) , u1, . . . , ud ∈ [0, 1],

for all permutations (π(1), . . . , π(d)) of {1, . . . , d}.

We follow Nelsen (1999), and simply call a bivariate copula C symmetric if C(u, v) =
C(v, u), for all (u, v) ∈ [0, 1]2. If the bivariate copula C is symmetric and the
distribution function of a random vector (U, V ), then the dependence structure between
U and V is symmetric and, hence, we have

(U, V ) d= (V, U) . (2.5)

The scatter plots of random samples of symmetric bivariate copulas therefore show
symmetry with respect to the main diagonal {u = v}.

Definition 2.6. (Radial symmetry)
A copula C is called radially symmetric if it coincides with its survival copula, that is
if

C = Ĉ .
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Let C be a bivariate copula and the distribution function of a random vector (U, V ).
Then, the corresponding survival copula Ĉ is the distribution function of (1−U, 1−V ).
Thus, C is radially symmetric if (U, V ) d= (1− U, 1− V ) or, equivalently,

(U − 0.5, V − 0.5) d= (0.5− U, 0.5− V ) .

The scatter plots of random samples of radially symmetric bivariate copulas therefore
show symmetry with respect to the point (0.5, 0.5).

2.4 Elliptical copulas
One of the most prominent parametric classes of copulas are elliptical copulas. They
are implicit copulas, which do not possess a simple closed-form analytic expression.
More precisely, elliptical copulas are derived from multivariate elliptical distribution
functions with the help of Sklar’s theorem. Therefore, we first introduce elliptical
distributions. Our exposition follows Chapter 2 in Fang et al. (1990) and is based
on spherical distributions that stay invariant under orthogonal transformations of
the underlying random vectors. Spherical distributions are an important sub-class of
elliptical distributions.

Definition 2.7. (Elliptical distribution)
Let Sd denote the space of all symmetric d× d matrices. A random vector X ∈ Rd is
said to have an (non-degenerate) elliptical distribution with parameters µ ∈ Rd and
Σ = (σk`)k,`∈{1,...,d} ∈ Sd, if

X = µ+AY ,
where Y has a m-dimensional spherical distribution and A is a d ×m matrix such
that AA> = Σ with rank(Σ) = m.

Thus, elliptical distributions are defined as the class of affine transformations of
spherical distributions. A bivariate elliptically distributed random vector X resulting
from the application of the linear transformation A to the spherically distributed
random vector Y has elliptically contoured density level surfaces. This explains the
name of elliptical distributions. Definition 2.7 is the stochastic representation of
elliptical distributions. Note that elliptical distributions can alternatively be defined
through their generator function. For further details about elliptical distributions and
the definition of spherical distributions we refer to Fang et al. (1990).
Since Sklar’s theorem (see Theorem 2.1) determines the copula of multivariate

distributions with continuous margins in an unique way, elliptical copulas are defined
as follows.

Definition 2.8. (Elliptical copula)
Elliptical copulas are the copulas of elliptical distributions.

9
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Consequently, an elliptical copula C is defined as the copula of the underlying
elliptical distribution F and is typically not available in closed form. Distributions
with an elliptical copula are called (meta)-elliptical distributions (see Fang et al.
(2002)). These distributions are fully specified through the matrix

R = (ρk`)k,`∈{1,...,d} := (σk`/
√
σkkσ``)k,`∈{1,...,d}

the generator function and the marginal distributions.
Note that elliptical copulas are radially symmetric (see, e.g., Lemma 4.6 in Mai and

Scherer (2012)). In addition, bivariate elliptical copulas are symmetric. The two most
popular elliptical copulas are the Gaussian and the t copula.

2.4.1 Bivariate Gaussian copula
The Gaussian (also normal or just Gauss) copula CGauss

P is the copula of (X, Y ) ∼
N2(0, P ), where we denote with N2(0, P ) a bivariate normal distribution with mean
0 and correlation matrix P . In the present bivariate case, we write CGauss

ρ , where
ρ = ρXY stands for the linear correlation of X and Y . The implicit form of the
Gaussian copula is given by

CGauss
ρ (u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
, u, v ∈ [0, 1] , (2.6)

where Φρ denotes the distribution function of N2(0, P ) and Φ−1 represents the quantile
function of the univariate standard normal distribution. For ρ ∈ (0, 1), Equation (2.6)
implies the following expression for the bivariate Gaussian copula:

CGauss
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π(1− ρ2)1/2 exp

(
−(s2 − 2ρst+ t2)

2(1− ρ2)

)
ds dt .

2.4.2 Bivariate t copula
The t copula is the copula of (X, Y ) ∼ t2(ν,0, P ), where we denote with t2(ν,0, P ) a
bivariate t distribution with degrees of freedom parameter ν > 0, location parameter
0 and association matrix P having the structure of correlation matrices (see Kotz
and Nadarajah (2004)). Without loss of generality, we assume ν > 2. In this case,
the correlation matrix of (X, Y ) exists and coincides with the association matrix
P . Similarly to the Gaussian copula, Ct

ν,ρ denotes the bivariate t copula with linear
correlation parameter ρ = ρXY . The implicit form of the t copula is given by

Ct
ν,ρ(u, v) = tν,ρ

(
t−1
ν (u), t−1

ν (v)
)
, u, v ∈ [0, 1] , (2.7)

where tν,ρ denotes the distribution function of t2(ν, 0, P ) and t−1
ν represents the quantile

function of the univariate t distribution with ν degrees of freedom. For ρ ∈ (0, 1),
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Equation (2.7) implies the following expression for the bivariate t copula:

Ct
ν,ρ(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1
2π(1− ρ2)1/2

(
1 + s2 − 2ρst+ t2

ν(1− ρ2)

)−(ν+2)/2

ds dt .

2.5 Archimedean copulas
Here, we outline bivariate Archimedean copulas and follow Nelsen (1999). For d-
dimensional Archimedean copulas with d > 2, we refer to Chapter 2 of Mai and Scherer
(2012). Thus, we consider the simplest construction of multivariate Archimedean
copulas, which are exchangeable and have only one parameter.

Definition 2.9. (Bivariate Archimedean copula)
Let ϕ : [0, 1] → [0,∞] be a continuous, strictly decreasing, convex function with
ϕ(1) = 0. Then, the function Cϕ : [0, 1]2 → [0, 1] given by

Cϕ(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (2.8)

is a copula, where ϕ[−1] is a pseudo-inverse of ϕ. Copulas of this form are called
Archimedean copulas and ϕ is called a generator. If ϕ(0) =∞, the generator is called
strict, ϕ[−1] =ϕ−1 and Cϕ(u, v) = ϕ−1(ϕ(u) +ϕ(v)) is said to be a strict Archimedean
copula.

Table 2.1 summarizes generators with parameter ranges and the resulting explicit
expression for the bivariate Archimedean copulas from the Frank, Clayton and Gumbel
family.

Copula family ϕθ(t) θ ∈ Cθ(u, v)

Frank − ln e
−θt − 1
e−θ − 1 R \ {0} −1

θ
ln
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1


Clayton 1

θ

(
t−θ − 1

)
(0,∞)

(
u−θ + v−θ − 1

)−1/θ

Gumbel (− ln t)θ [1,∞) exp
(
−
[
(− ln u)θ + (− ln v)θ

]1/θ)

Table 2.1: Summary of generators, parameter ranges and explicit expressions for the
bivariate Frank, Clayton and Gumbel copula.

For a bivariate Archimedean copula C, one can compute Kendall‘s tau using its
generator ϕ. More precisely, the following relation (see Genest and MacKay (1986))
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holds,

τ = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t) dt .

Further, Equation (2.3) and Definition 2.9 imply for Blomqvist’s beta that

β = 4ϕ[−1]
(

2ϕ
(1

2

))
− 1 .

Archimedean copulas are exchangeable by construction. Moreover, the bivariate
Frank copula is even radially symmetric, that is the survival copula coincides with
the copula itself. Being exchangeable and radially symmetric, bivariate Frank copulas
possess the same symmetry properties as bivariate elliptical copulas. Therefore, it
is very important to distinguish between them when modeling the dependence of
bivariate data. Table 2.2 reports Kendall’s tau, Blomqvist’s beta and the symmetry
properties for the bivariate Frank, Clayton and Gumbel copula.

Copula family τθ βθ exch. rad. sym.

Frank 1 + 4
θ

(D1(θ)− 1) 1 + 4
θ

ln
(1

2
(
e−θ/2 + 1

))
3 3

Clayton θ

θ + 2 4
(
2θ+1 − 1

)−1/θ
− 1 3 7

Gumbel θ − 1
θ

22−21/θ − 1 3 7

Table 2.2: Summary of Kendall’s tau, Blomqvist’s beta, and the symmetry properties
for the bivariate Frank, Clayton and Gumbel copula. Note: Dk(x) is the
Debye function, which is defined for any k ∈ N by Dk(x) = k

xk

∫ x
0

tk

et−1 dt .

2.6 Pseudo-observations and the empirical copula
Let X ∈ Rd be a d-dimensional random vector with cumulative distribution function
F and continuous univariate marginal distribution functions F1, . . . , Fd and copula
C. Further, let X1 = (X11, . . . , Xd1), . . . ,Xn = (X1n, . . . , Xdn) ∈ Rd be a random
sample of n independent observations from the random vector X. If the marginal
distribution functions F1, . . . , Fd are known, copula data can be derived by computing
Uki = Fk(Xki) for all k ∈ {1, . . . , d} and i ∈ {1, . . . , n}. The corresponding empirical
copula can be defined by

C̃n(u) = 1
n

n∑
i=1

I {U1i ≤ u1, . . . , Udi ≤ ud} , (2.9)
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where I{·, . . . , ·} denotes the indicator function.
In practice, however, the marginal distribution functions F1, . . . , Fd are usually

unknown. Dropping the assumption of known marginal distribution functions, it is a
natural approach to estimate the unknown margins by their corresponding empirical
counterparts F1,n, . . . , Fd,n, where

Fk,n(x) = 1
n

n∑
i=1

I{Xki ≤ x}, for k ∈ {1, . . . , d} and x ∈ R . (2.10)

Furthermore, let Fn denote the empirical joint cumulative distribution function of the
sample. Inspired by Sklar’s theorem (see Theorem 2.1), the empirical copula Cn of the
sample is then defined by

Cn(u) = Fn
(
F−1,n(u1), . . . , F−d,n(ud)

)
, for u ∈ [0, 1]d . (2.11)

In the case of unknown marginal distributions, pseudo-observations

Û1 = (Û11, . . . , Ûd1), . . . , Ûn = (Û1n, . . . , Ûdn) ,

can be derived from the sample by defining

Ûki := n

n+ 1Fk,n(Xki), for all k ∈ {1, . . . , d} and i ∈ {1, . . . , n} . (2.12)

The empirical copula can then be defined as the empirical cumulative distribution
function of the sample of pseudo-observations. Hence, another definition of the
empirical copula is given by

Ĉn(u) = 1
n

n∑
i=1

I{Û1i ≤ u1, . . . , Ûdi ≤ ud} . (2.13)

Note that the difference between Cn and Ĉn is small and vanishes asymptotically.
More precisely, according to Kojadinovic and Stemikovskaya (2019) it holds that

sup
u∈[0,1]d

|Cn(u)− Ĉn(u)| ≤ d

n
.

Thus, for statistical testing the two definitions can be used equivalently since using Cn
or Ĉn does not affect the asymptotic behavior.
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3
A simple non-parametric goodness-of-fit

test for elliptical copulas
This chapter is similar to Jaser et al. (2017).

3.1 Introduction
Nowadays, copulas are a standard tool for modeling multivariate dependence. There
exist many copula classes such as Archimedean, elliptical and Marshall-Olkin copulas
(see, e.g., Mai and Scherer (2012)) and the choice of the right copula class is crucial
for an accurate multivariate data analysis. Therefore, goodness-of-fit tests for copulas
have been an objective of active research in recent years, see, e.g., Genest et al. (2009b),
Berg (2009) and Fermanian (2013). In financial applications, elliptical copulas are
commonly used to capture the dependence structure.

This chapter is concerned with the construction of a simple non-parametric goodness-
of-fit test to examine whether the underlying dependence structure follows some
elliptical copula of any dimension. Therefore, the null hypothesis that the unknown
copula C of the given data belongs to the class of elliptical copulas Cellipt,

H0 : C ∈ Cellipt ,

is tested against the alternative

H1 : C /∈ Cellipt .

In case of bivariate elliptical copulas, which are symmetric and radially symmetric,
one could first use our simple non-parametric tests for symmetry and radial symmetry
presented in Chapter 4 to statistically confirm both symmetry properties. If at least
one of these statistical tests is rejected, then the bivariate copula of the underlying data
cannot be elliptical. Therefore,we propose a multiple testing procedure for ellipticity
of copula data in Chapter 4. Otherwise, a new statistical test is needed to identify
bivariate elliptical copulas within symmetric and radially symmetric copulas. In case
of multivariate elliptical copulas, one could test only for radial symmetry.
Li and Peng (2009) construct a goodness-of-fit test for the tail copula of a d-

dimensional distribution, whose dependence structure is expressed by an elliptical
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copula. Klüppelberg et al. (2008) derive, in Lemma 1, the parametric form of the
tail copula of elliptical distributions and argue, in Section 2, that it depends only
on the underlying elliptical copula and is independent of the marginal distributions.
Hence, the test in Li and Peng (2009) can also be seen as a goodness-of-fit test for
elliptical copulas. To the best of our knowledge, this was the only goodness-of-fit
test for elliptical copulas of any dimension d prior to our research. However, this test
utilizes the tail dependence concept and therefore, the class of copulas for the null
hypothesis has to be restricted to elliptical copulas with positive tail dependence. This
tail dependence assumption discards for example the Gaussian copula from the null
hypothesis and consequently shrinks the class of elliptical copulas under consideration.
Furthermore, the test is based on the upper order statistics of the data and therefore
has to deal with the difficulties of extreme value statistics. We propose a new simple
non-parametric goodness-of-fit test, which takes into account the dependence structure
of the whole data set. In particular, it is based on the equality of Kendall’s tau and
Blomqvist’s beta for all bivariate margins of meta-elliptical distributions resulting
from Fang et al. (2002) and Schmid and Schmidt (2007).
Elliptical copulas are specified by their generator function and parameters. If the

choice of the generator function is fixed, many general goodness-of-fit tests can be used
to test whether an underlying copula belongs to this specified subclass of elliptical
copulas. However, the choice of the generator function is not an obvious and simple
task. Our goodness-of-fit test does not require the knowledge of the generator function
and in this sense, it is general. Moreover, it is simple since its critical values are
directly computed from an asymptotic χ2-distribution of a test statistic.
The remainder of this chapter is organized as follows. Section 3.2 discusses the

relation of Kendall’s tau and Blomqvist’s beta under the null hypothesis. Section 3.3
presents our test statistic and its limiting χ2-distribution under the assumption that
the copula data comes from an elliptical family. Non-elliptical copula classes for the
power study are given in Section 3.4. Section 3.5 provides the simulation study with
numerical results on the nominal level of the test as well as on its power. Section 3.6
deals with an application of our goodness-of-fit test to real data, before Section 3.7
concludes. One technical proof is deferred to Section 3.8.

3.2 Relation between Kendall’s tau and Blomqvist’s
beta for elliptical distributions and copulas

Kendall’s tau and Blomqvist’s beta are fundamental for our test statistic. The test
will be based on the dependence between all bivariate pairs of the components of the
random vector X ∈ Rd. In Theorem 3.1 of Fang et al. (2002), it is proven that the
classical relation between Kendall’s tau and the linear correlation coefficient known for
bivariate normal distributions is valid within the more general class of meta-elliptical
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distributions. In particular, let (Xk, X`) be a meta-elliptically distributed random
vector with association ρk`, which coincides with the correlation between Xk and X` in
case of finite second moments of the latter two. Then, the following relation between
Kendall’s tau τk` and ρk` holds:

τk` = 2
π

arcsin(ρk`) . (3.1)

Furthermore, Proposition 8 in Schmid and Schmidt (2007) implies a similar result for
Blomqvist’s beta βk` and ρk`:

βk` = 2
π

arcsin(ρk`) . (3.2)

Equations (3.1) and (3.2) show that Kendall’s tau τk` and Blomqvist’s beta βk` are
uniquely determined by the association ρk` for bivariate meta-elliptical distributions.
Second, they coincide. The equality of Kendall’s tau and Blomqvist’s beta is an
intrinsic property of meta-elliptical distributions and therefore of elliptical copulas.
Hence, we build our goodness-of-fit test on this characteristic of elliptical copulas. To
the best of our knowledge, such a simple goodness-of-fit test has not been considered
in the literature so far.

Note that the equality of Kendall’s tau and Blomqvist’s beta is a necessary but not
sufficient condition of elliptical copulas and, therefore, does not completely characterize
them. More precisely, given an elliptical copula Kendall’s tau and Blomqvist’s beta
are equal but the converse is not true. This is shown by the following example. Let
U, V be independent random variables both uniformly distributed on [0, 1]. Then, set

(U1, U2) =


(U, V/4) , if U ≤ 1/4
(U, V/4 + 3/4), if 1/4 < U ≤ 1/2
(U, V/4 + 1/2), if 1/2 < U ≤ 3/4
(U, V/4 + 1/4), if 3/4 < U ≤ 1 .

(3.3)

Now, let the copula C be the distribution function of (U1, U2) defined in Equation
(3.3). A scatter plot of a random sample of size 1000 from the copula C is illustrated
in Figure 3.1. It is clear that C is non-elliptical. Furthermore, Kendall’s tau and
Blomqvist’s beta can be computed and we get

τ = β = 0 . (3.4)

The proof of Equation (3.4) can be found in Section 3.8.

3.3 Goodness-of-fit test for elliptical copulas
In financial applications, it is often assumed that a copula C belongs to the class
of elliptical copulas. Therefore, our aim is to provide a statistical test to verify this
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Figure 3.1: Scatter plot of a random sample of size 1000 from the copula C corre-
sponding to the random vector defined in Equation (3.3).

assumption. From now on, we assume that we are given a copula sample and neglect
unknown marginal distribution functions and their estimation. In practice, marginal
distribution functions can be estimated parametrically and non-parametrically, which
will affect the statistical inference of the test statistic. This subject is addressed in
Chapter 5.
Let U1, . . . ,Un ∈ [0, 1]d be a sample from the statistical model(

([0, 1]d)n,B([0, 1]d)⊗n, P⊗n
)
,

where P is a distribution with copula C and uniform margins. Under the hypothesis
of an elliptical copula C, also all marginal copulas have to be elliptical. We construct
our test on the equality of Kendall’s tau τCk` and Blomqvist’s beta βCk` given by

τCk` = βCk` , (3.5)

for all pairs k, ` ∈ {1, . . . , d} with k < `. By virtue of (3.5), our test statistic will be
constructed using the difference between the empirically estimated Blomqvist’s beta
and Kendall’s tau. Asymptotic distributions of the empirical estimators for Kendall’s
tau and Blomqvist’s beta are well known and reviewed below.

First, we outline the derivation of the asymptotic distribution of the Kendall’s tau
estimator. According to (2.2), an unbiased estimator of τk` is given by

τk`,n = 2
n(n− 1)

∑
1≤i<j≤n

sgn(Uki − Ukj)sgn(U`i − U`j) . (3.6)
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The estimator τk`,n is a U-statistic and Hoeffding (1948) showed that
√
n(τk`,n− τk`)

converges weakly to a centered Gaussian random variable with variance

σ2
τk`

:= Var(2h̃k`,1((Uk1, U`1))) ,

where
h̃k`,1((Uk1, U`1)) := E [sgn(Uk1 − Uk2)sgn(U`1 − U`2)|Uk1, U`1] .

If the copula Ck` is assumed to be known, then h̃k`,1 has the following representation

h̃k`,1((Uk1, U`1)) = 1− 2Uk1 − 2U`1 + 4Ck`(Uk1, U`1) (3.7)

and σ2
τk`

can be represented through the copula Ck` (see Theorem 4.3 in Dengler (2010))
as

σ2
τk`

= 64E
[
C2
k`(Uk1, U`1)

]
− 64E [Uk1Ck`(Uk1, U`1)]− 64E [U`1Ck`(Uk1, U`1)]

+ 32E [Ck`(Uk1, U`1)] + 16E
[
U2
k1

]
+ 16E

[
U2
`1

]
− 16E [Uk1]− 16E [U`1]

+ 32E [Uk1U`1] + 1− 4τ 2
k` .

(3.8)

The variance σ2
τk`

can be further simplified using the theoretical moments of uniformly
distributed random variables and Equation (2.1) for Kendall’s tau. We get

σ2
τk`

= 64E
[
C2
k`(Uk1, U`1)

]
− 64E [Uk1Ck`(Uk1, U`1)]− 64E [U`1Ck`(Uk1, U`1)]

+ 32E [Uk1U`1] + 20
3 + 8τk` − 4τ 2

k` .
(3.9)

If we do not impose any parametric assumption on the copula Ck`, the asymptotic
variance from (3.9) needs to be estimated non-parametrically. For this, each expectation
involving Ck` can be consistently estimated with the corresponding V -statistic (see
Denker (1985) or von Mises (1947)) by employing the empirical copula C̃k`,n defined
in Equation (2.9). The remaining mixed moment can be consistently estimated by
the corresponding empirical moment and τk` can be estimated by τk`,n from (3.6).
However, this framework cannot ensure a positive variance estimate, since σ2

τk`
from

(3.9) has been computed using theoretical moments of the uniform distribution as well
as Equation (2.1). If we additionally estimate the moments of the uniform distribution
in Equation (3.8) empirically, then the resulting variance estimate can still be negative
due to the direct estimation of τk`.
Below, we describe our estimation framework for σ2

τk`
, which is the variance of

2h̃k`,1((Uk1, U`1)) .

For a sample (Uk1, U`1), . . ., (Ukn, U`n), we propose to estimate h̃k`,1((Uki, U`i)) non-
parametrically by

ĥk`,1((Uki, U`i)) = 1− 2Uki − 2U`i + 4Ck`,n(Uki, U`i) , i ∈ {1, . . . , n} . (3.10)
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Now, σ2
τk`

is estimated by the sample variance of

2ĥk`,1((Uk1, U`1)) , . . . , 2ĥk`,1((Ukn, U`n)) .

This leads to a consistent and positive estimation of σ2
τk`

. Consistency follows again
from the consistency of the corresponding V -statistics resulting from the empirical
copula C̃k`,n combined with the estimation of moments. Note that our variance estimate
is equivalent to the estimate based on Equation (3.8), when τk` is estimated using the
empirical copula C̃k`,n.
For copula data (Uk1, U`1), . . . , (Ukn, U`n), the marginal medians are known to be

equal to 0.5. Resulting from (2.4), an empirical estimator for Blomqvist’s beta βk` is
given by

β?k`,n = 1
n

n∑
i=1

sgn (Uki − 0.5) sgn (U`i − 0.5) .

The asymptotic normality of the estimator β?k`,n of Blomqvist’s beta follows in the
case of known marginal distributions trivially from the central limit theorem and was
already stated in Blomqvist (1950). Thus, we have the following result

√
n
(
β?k`,n − βk`

)
d−→ N(0, σ2

βk`
) ,

where
σ2
βk`

= Var [sgn (Uk1 − 0.5) sgn (U`1 − 0.5)] = 1− β2
k`

and d−→ denotes convergence in distribution.
Now, we know how to estimate Kendall’s tau and Blomqvist’s beta for each pair

(k, `) of coordinates. The test statistic will be based on all d(d − 1)/2 differences
between the corresponding estimators for Kendall’s tau and Blomqvist’s beta. Hence,
we define the statistic Dn

Dn := vecu(βn)− vecu(τn) , (3.11)

in terms of the matrices β?n := (β?k`,n)k,`∈{1,...,d} and τn := (τk`,n)k,`∈{1,...,d}, where
β?kk,n = τkk,n := 1 and vecu(A) is the vectorization operator that extracts the elements
strictly above the main diagonal of a matrix A ∈ Sd in a row-wise manner, that is

vecu(A) := (a12, a13, . . . , a1d, a23, a24, . . . , a2d, . . . , ad−1,d).

The following theorem contains the asymptotic distribution ofDn for a sample from an
elliptical copula. Moreover, it states our test statistic Tn and its limiting distribution
under the null hypothesis C ∈ Cellipt.

Theorem 3.1.
Let U1, . . . ,Un ∈ [0, 1]d be a sample from the statistical model

(
([0, 1]d)n, B([0, 1]d)⊗n,
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3.3 Goodness-of-fit test for elliptical copulas

P⊗n
)
, where P is a distribution with elliptical copula C and uniform margins. Then,

the statistic Dn defined in (3.11) has the following asymptotic distribution
√
n ·Dn

d−→ N (0,V)

with
V =

(
Id(d−1)/2 −Id(d−1)/2

)
Σ
(
Id(d−1)/2
−Id(d−1)/2

)
,

where Σ is defined in Equation (3.15) and Id(d−1)/2 is the unit matrix of dimension
d(d− 1)/2.
Now, let Vn be a consistent estimator of V and consider the Wald-type statistic

Tn := nD>n V−1
n Dn . (3.12)

Then, it holds that
Tn

d−→ χ2
d(d−1)/2 ,

where χ2
m denotes the χ2-distribution with m degrees of freedom.

Proof. Let d ≥ 2 be the dimension of the sample U1, . . . ,Un ∈ [0, 1]d from the
statistical model (

([0, 1]d)n,B([0, 1]d)⊗n, P⊗n
)
,

where P is a distribution with copula C and uniform marginals. Next, we define the
matrices

Ui := (sgn(Uki − 0.5)sgn(U`i − 0.5))k,`∈{1,...,d} ∈ Sd
and

Hi :=
(
2h̃k`,1((Uki, U`i))

)
k,`∈{1,...,d}

∈ Sd

as well as
β := (βk`)k,`∈{1,...,d} ∈ Sd

and
τ := (τk`)k,`∈{1,...,d} ∈ Sd ,

where βkk := 1 and τkk := 1. Using the matrices Ui and Hi, we define the vectors
Zβ
i := vecu(Ui) and Zτ

i := vecu(Hi).
Now, we consider the empirical estimator

τk`,n = 2
n(n− 1)

∑
1≤i<j≤n

sgn(Uki − Ukj)sgn(U`i − U`j) (3.13)

of τk`, which is a U -statistic of degree two with kernel function h (w1,w2) := sgn(w11−
w12)sgn(w21 − w22), where wi = (w1i, w2i), for i = 1, 2. Hoeffding’s decomposition
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for U -statistics implies (see Theorem 1.2.1 in Denker (1985)) that τk`,n − τk` can be
represented as 2Uk`,n1 + Uk`,n2, where

Uk`,n1 := 1
n

n∑
i=1

(
h̃k`,1((Uki, U`i))− τk`

)
and Uk`,n2 := (τk`,n− τk`)− 2Uk`,n1. Note that Uk`,n2 is a U -statistic of degree two with
the degenerate kernel hk`,2 (w1,w2) = h (w1,w2)− h̃k`,1 (w1)− h̃k`,1 (w2) + τk`, that is

E [hk`,2 ((Uk1, U`1), (Uk2, U`2)) |(Uk1, U`1)] = E [hk`,2 (W1,W2) |W1] = 0

almost surely with independent and identically distributed (i.i.d.) W1,W2 ∼ Ck`.
From Theorem 1.2.4 in Denker (1985) it follows that

E
[
(
√
n · Uk`,n2)2

]
≤ Ak`,h

n
, (3.14)

where Ak`,h is a constant depending only on the kernel h(·, ·). Therefore,
√
n·Uk`,n2

L2−→
0 as n −→∞, and

√
n · (τk`,n − τk`) and

√
n · 2Uk`,n1 =

√
n

(
1
n

n∑
i=1

2h̃k`,1((Uki, U`i))− 2τk`
)

have the same limiting normal distribution. The multivariate central limit theorem
implies

√
n

(
Zn −

(
vecu(β)
vecu(τ )

))
d−→ N (0,Σ) ,

where Zi :=
(
Zβ
i

Zτ
i

)
, Zn = 1

n

∑n
i=1Zi and

Σ = Cov(Z1) . (3.15)

For example, the covariance matrix Σ for d = 2, k = 1 and l = 2 has the following
form

(
Var (sgn(U11 − 0.5)sgn(U21 − 0.5)) Cov

(
sgn(U11 − 0.5)sgn(U21 − 0.5), 2h̃1((U11, U21))

)
Cov
(
sgn(U11 − 0.5)sgn(U21 − 0.5), 2h̃1((U11, U21))

)
Var
(
2h̃1((U11, U21))

) )
.

For an elliptical copula C, the multivariate statistic Dn is then equal to

Zβ
n − vecu

(
(τk`,n)k,`∈{1,...,d}

)
,

which has the same limiting distribution as

Zβ
n −Zτ

n .
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By applying the Delta method (see, e.g., Proposition 6.2 in Bilodeau and Brenner
(1999)) with

φ : Rd(d−1) → Rd(d−1)/2,x 7→ (x1, . . . , xd(d−1)/2)− (xd(d−1)/2+1, . . . , xd(d−1)) ,

we obtain √
n
(
Zβ

n −Zτ
n

)
d−→ N (0,V)

under the null hypothesis C ∈ Cellipt, where

V = φ′
((

vecu(β)
vecu(τ )

))
Σφ′

((
vecu(β)
vecu(τ )

))>
and φ′ denotes the Jacobian matrix of φ. Since φ is a linear map, φ′ is independent of
β and τ . Moreover, it is given by(

Id(d−1)/2 −Id(d−1)/2
)
,

where Id(d−1)/2 is the unit matrix of dimension d(d− 1)/2.
The second statement of the theorem is obvious. The asymptotic distribution of Tn

defined in (3.12) follows from the asymptotic normality ofDn, the multivariate Slutsky
Theorem (see, e.g., Lemma 6.3 in Bilodeau and Brenner (1999)) and the continuous
mapping theorem.

The second result of Theorem 3.1 depends on a consistent estimator of the covariance
matrix V since Σ is unknown. In the following remark, we indicate the construction
of such a consistent estimator Vn.

Remark 3.2. The asymptotic covariance matrix Σ depends on the unobserved

h̃k`,1((Uk1, U`1)) ,

for k, ` ∈ {1, . . . , d} and k 6= `. However, Σ can be consistently estimated using

ĥk`,1((Uki, U`i)) ,

i = 1, . . . , n, defined in (3.10). This results in the consistent estimator Vn of the
covariance matrix V.

Based on Theorem 3.1, we propose the test function

δ(U1, . . . ,Un) = I{Tn > χ2
d(d−1)/2,1−α}

to test
H0 : C ∈ Cellipt against H1 : C /∈ Cellipt ,

where χ2
m,α denotes the α-quantile of the χ2-distribution with m degrees of freedom.
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3.4 Non-elliptical copula classes for the power study
In the following, we briefly overview copulas based on special mixtures of elliptical
copulas or elliptical distributions, which constitute two non-elliptical copula classes
used for the power study.

3.4.1 Mixture of bivariate elliptical copulas
The aim of this section is to consider another class of bivariate non-elliptical copulas,
which are symmetric (or exchangeable) and radially symmetric. For this, we mix
two bivariate elliptical copulas with different parameters. More precisely, a bivariate
Gaussian copula with correlation ρG and a bivariate t copula with ν degrees of freedom
and association parameter ρt, where ρt 6= ρG, are mixed with probabilities p ∈ [0, 1]
and 1− p, respectively. The resulting bivariate mixture copula is given by

Cmixt,cop(u, v) = pCGauss
ρG

(u, v) + (1− p)Ct
ν,ρt(u, v), (u, v) ∈ [0, 1]2 .

By choosing ρG 6= ρt, we expect this bivariate mixture copula to be non-elliptical.
However, this is not trivial to show since elliptical copulas are only implicitly defined
as the copulas of elliptical distributions. To the best of our knowledge, such mixtures
of elliptical copulas have not been investigated so far.

It should be noted that the proposed construction of such mixture copulas is general
and can be extended to any dimension. Further, it is very easy to draw a random
sample from the mixture copula. For this, the random sample is drawn from the
Gaussian copula CGauss

ρG
with probability p and with probability (1−p) from the t

copula Ct
ν,ρt . In our simulation study, we set p = 0.5, ν = 5 and varied the association

parameters ρG and ρt. By virtue of the one-to-one correspondence between Kendall’s
tau and the association parameter ρ (correlation coefficient for ν ≥ 2) given in (3.1),
this is equivalent to varying Kendall’s tau.

3.4.2 Copulas derived from the mixture of bivariate elliptical
distributions

Here, we have a closer look on bivariate copulas derived from the mixture of bivariate
elliptical distributions. Again, the framework presented below is general and can be
extended to any dimension. The idea is to mix two bivariate elliptical distributions
in such a way that the resulting bivariate distribution is not elliptical any more. We
expect that its copula is then also non-elliptical, but we have no theoretical justification.
Without loss of generality, we set µ = 0 in Definition 2.7. Now, one can easily argue
that the mixture of two bivariate elliptical distributions with different parameters Σ1
and Σ2 is not elliptical.

In the following, a bivariate Gaussian distribution N2(0,PG) with correlation ρG and
a bivariate t distribution t2(ν, 0,Pt) with correlation ρt, where ρt 6= ρG, are mixed with
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probabilities p ∈ [0, 1] and 1− p, respectively. The cumulative distribution function
Fmixt of the resulting bivariate mixture distribution is given by

Fmixt(x, y) = pΦρG(x, y) + (1− p) tν,ρt(x, y), (x, y) ∈ R2 ,

where ΦρG and tν,ρt are the cumulative distribution functions of N2(0,PG) and
t2(ν, 0,Pt), respectively. The margins Fmixt

1 and Fmixt
2 of this mixture distribution can

be determined using the margins of the underlying Gaussian and t distribution. Then,
according to Sklar’s theorem (see Theorem 2.1), the bivariate copula Cmixt,distr(u, v)
of the mixture distribution Fmixt, for any u, v ∈ [0, 1], is given by

Cmixt,distr(u, v) = Fmixt((Fmixt
1 )−(u), (Fmixt

2 )−(v)) ,

where (Fmixt
1 )− and (Fmixt

2 )− denote the generalized inverses of Fmixt
1 and Fmixt

2 ,
respectively. Since we chose ρG 6= ρt, the resulting bivariate mixture distribution Fmixt

is non-elliptical.
Just like for the mixture of elliptical copulas, it is easy to draw a random sample

from the mixture distribution. First, the random sample is drawn with probability p
from the bivariate Gaussian distribution N2(0,PG) and with probability (1−p) from
the bivariate t distribution t2(ν,0,Pt).Then, the random sample is transformed using
the margins Fmixt

1 and Fmixt
2 to get copula data. For the simulation study, we set

again p = 0.5, ν = 5 and varied the association parameters ρG and ρt. With the same
argument as before, this is equivalent to varying Kendall’s tau.

3.5 Simulation study
In order to assess the finite-sample performance of the proposed test for ellipticity
based on the test statistic Tn, a Monte Carlo study was conducted. We are interested
in the ability of the test to hold its nominal level as well as the power of the test to
detect alternatives. For ease of notation we skip all indices in the bivariate examples
and just use them when they are needed.

3.5.1 Setup
First of all, we fixed a significance level of α = 0.05 for the test throughout the study.
Furthermore, the number of Monte Carlo replications was set to N = 1000. The
simulation study was then carried out for different dimensions d, copula families, levels
of dependence (measured in terms of Kendall’s tau) and sample sizes. In particular,
we have considered samples of dimension d = 2, 3 and 6.

To investigate the level of the test, random samples from two elliptical copula
families were considered, namely the Gaussian copula and the t copula with 5 degrees
of freedom (tν=5). To study the power of the test, random samples from non-elliptical
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Chapter 3 A simple non-parametric goodness-of-fit test for elliptical copulas

copula families were examined (see Section 3.4). Here, we looked at random samples
from the Frank, Clayton and Gumbel family as well as from a mixture of two elliptical
copulas and a copula derived from the mixture of two elliptical distributions with
different association parameters, respectively. For the mixtures, we chose a Gaussian
and a t copula as well as a Gaussian and a t distribution, respectively.
In order to assess the effect of the strength of dependence, five different levels of

dependence were chosen, according to τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Each value of
τ was converted to a unique association or dependence parameter of a multivariate
copula. As a consequence, all bivariate marginal copulas of the resulting multivariate
copula are then identical. For the copulas based on mixtures, four different levels of
dependence were considered. The different levels are given by a combination of τG for
the Gaussian copula/distribution and τt for the t copula/distribution. These parameters
(τG, τt) had values in {(0.25, 0.75), (0.75, 0.25), (0.5, 0.25), (0.5, 0.75)}. Finally, for every
choice of copula family and fixed level of dependence, random samples of size n ∈
{100, 250, 500, 1000, 5000} were considered.
To get an impression of the common copula families used in the simulation study,

Figure 3.2 displays scatter plots of bivariate random samples of size n = 1000 for the
levels of dependence corresponding to τ ∈ {0.25, 0.5, 0.75}. Further, scatter plots of
the bivariate mixture copula and of the copula derived from the mixture of bivariate
elliptical distributions are illustrated for the different combinations of τG and τt in
Figure 3.3 and Figure 3.4, respectively. First, we would like to point out that the
scatter plots for the Gaussian and the Frank copula in Figure 3.2 are quite difficult to
distinguish. Moreover, the scatter plots for the mixtures in Figures 3.3 and 3.4 could
easily be assigned erroneously to data from elliptical copulas.

3.5.2 Level
Tables 3.1, 3.2 and 3.3 display the empirical level of the test for ellipticity with
significance level α = 0.05 as observed in 1000 random samples for dimension d = 2, 3
and 6, respectively, and all possible scenarios from the simulation setup. Note that for
d = 3 and d = 6, all off-diagonal elements of the correlation matrix R of the Gaussian
and tν=5 copula are identical and related to the level of dependence τ .

For dimensions d = 2 and d = 3, the test seems to hold its nominal level (see Tables
3.1 and 3.2). Only for large values of Kendall’s tau in combination with a small sample
size of n = 100 or n = 250, the test turns out to be too liberal. As the distributional
result for the test statistic holds only asymptotically, this explains why there might
occur some problems especially for small sample sizes.
Table 3.3 shows that the proposed test requires large sample sizes to hold its level

for higher dimensions. For d = 6 and medium level of dependence τ , a sample size of at
least n = 1000 is required. This can be explained by the asymptotic nature of our test.
The accuracy of the distributional approximation with the limiting χ2-distribution
is very poor for small sample sizes and gets improved significantly for larger sample
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Figure 3.2: Scatter plots of random samples of size 1000 from the bivariate Gaussian,
tν=5, Frank, Clayton, and Gumbel copula (from top to bottom) with
τ = 0.25 (left), 0.5 (middle), 0.75 (right).
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Figure 3.3: Scatter plots of random samples of size 1000 from the copula based on
the mixture of two bivariate elliptical copulas with (τG, τt) = (0.25, 0.75),
(0.75, 0.25), (0.25, 0.5), and (0.75, 0.5) (from left to right).
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Figure 3.4: Scatter plots of random samples of size 1000 from the copula based on the
mixture of two bivariate elliptical distributions with (τG, τt) = (0.25, 0.75),
(0.75, 0.25), (0.25, 0.5), and (0.75, 0.5) (from left to right).
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C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.046 0.052 0.046 0.061 0.044
0.25 0.044 0.045 0.060 0.053 0.053

Gauss 0.50 0.063 0.044 0.044 0.055 0.048
0.75 0.054 0.040 0.049 0.054 0.051
0.90 0.090 0.047 0.053 0.053 0.064

0.10 0.048 0.048 0.047 0.049 0.053
0.25 0.049 0.051 0.042 0.043 0.053

tν=5 0.50 0.047 0.042 0.034 0.051 0.047
0.75 0.072 0.052 0.049 0.050 0.046
0.90 0.077 0.046 0.035 0.054 0.059

Table 3.1: Dimension d=2: Empirical level of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.054 0.046 0.045 0.049 0.041
0.25 0.054 0.044 0.062 0.055 0.045

Gauss 0.50 0.048 0.066 0.062 0.062 0.059
0.75 0.081 0.057 0.055 0.053 0.045
0.90 0.213 0.111 0.077 0.063 0.043

0.10 0.047 0.048 0.042 0.039 0.048
0.25 0.067 0.039 0.051 0.058 0.061

tν=5 0.50 0.055 0.052 0.054 0.038 0.053
0.75 0.071 0.058 0.045 0.054 0.042
0.90 0.173 0.080 0.066 0.072 0.048

Table 3.2: Dimension d=3: Empirical level of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .
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C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.155 0.092 0.069 0.063 0.043
0.25 0.195 0.091 0.075 0.044 0.059

Gauss 0.50 0.266 0.126 0.074 0.060 0.067
0.75 0.484 0.243 0.153 0.104 0.057
0.90 0.642 0.591 0.403 0.193 0.075

0.10 0.167 0.069 0.070 0.054 0.059
0.25 0.196 0.092 0.090 0.054 0.046

tν=5 0.50 0.244 0.122 0.067 0.054 0.037
0.75 0.479 0.220 0.127 0.069 0.040
0.90 0.501 0.528 0.285 0.154 0.056

Table 3.3: Dimension d=6: Empirical level of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

sizes. This is illustrated by the QQ-plots for the tν=5 copula in Figure 3.5. Hence, the
results of our simulation study for dimension d = 6 are reliable only for large sample
sizes. Therefore, we consider only samples of size n = 1000 and n = 5000 in the power
study for dimension d = 6.
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Figure 3.5: QQ-plots of Tn for tν=5 copula, d = 6, τ = 0.75, and n = 100, 500, 1000,
and 5000.

3.5.3 Power
The results for the empirical power of the test for ellipticity with significance level
α = 0.05 based on 1000 random samples from the Frank, Clayton and Gumbel family
are presented in Tables 3.4, 3.5 and 3.6 for the different dimensions d = 2, 3 and
6. For the random samples from the mixture copula and the copula derived from
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elliptical distributions, we report the results only for d = 2 in Tables 3.7 and 3.8,
respectively. This is due to the fact that huge sample sizes are generally needed to
achieve satisfactory empirical power for the bivariate mixture copula constructions.
This lacks in practical relevance and, therefore, we do not consider these mixture
copulas in higher dimensions.

C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.063 0.072 0.063 0.074 0.243
0.25 0.074 0.097 0.179 0.298 0.903

Frank 0.50 0.145 0.256 0.492 0.743 1.000
0.75 0.157 0.341 0.567 0.854 1.000
0.90 0.181 0.232 0.379 0.620 1.000

0.10 0.049 0.052 0.052 0.056 0.058
0.25 0.062 0.061 0.047 0.053 0.066

Clayton 0.50 0.053 0.050 0.075 0.102 0.228
0.75 0.121 0.136 0.266 0.452 0.981
0.90 0.169 0.194 0.288 0.514 0.986

0.10 0.050 0.050 0.051 0.062 0.049
0.25 0.047 0.052 0.037 0.067 0.067

Gumbel 0.50 0.056 0.053 0.044 0.029 0.055
0.75 0.059 0.044 0.073 0.053 0.080
0.90 0.088 0.046 0.065 0.074 0.086

Table 3.4: Dimension d=2: Empirical power of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

First of all, when we look at Tables 3.4 - 3.8, we notice that the observed power
varies enormously across the level of dependence and the sample size as well as across
the copula families. In general, the rejection rate increases with the sample size, as
expected. In addition to that, the rejection rate increases with the level of dependence.
Since the non-ellipticity becomes more apparent for higher values of Kendall’s tau,
which can also be observed in Figure 3.2, this is also expected. The empirical power
also increases with increasing dimension as soon as the distributional approximation
with the χ2 distribution is sufficiently accurate. Some exceptions occur in connection
with the Gumbel family, which we discuss later on.

Power for Archimedean copula families

For the Frank copula, the test appears to perform well for all considered dimensions.
If Kendall’s tau has a value of at least 0.5, a sample size of n = 1000 suffices to achieve
a good power. For dimension d = 2 and d = 3 and small levels of dependence, a larger
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C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.070 0.065 0.077 0.114 0.376
0.25 0.096 0.145 0.234 0.430 0.992

Frank 0.50 0.175 0.323 0.603 0.883 1.000
0.75 0.232 0.379 0.651 0.918 1.000
0.90 0.411 0.348 0.457 0.710 1.000

0.10 0.056 0.056 0.052 0.054 0.059
0.25 0.059 0.044 0.057 0.049 0.065

Clayton 0.50 0.075 0.065 0.083 0.091 0.272
0.75 0.142 0.177 0.272 0.504 1.000
0.90 0.336 0.284 0.365 0.549 0.997

0.10 0.065 0.050 0.053 0.048 0.068
0.25 0.044 0.047 0.060 0.050 0.076

Gumbel 0.50 0.064 0.050 0.063 0.056 0.051
0.75 0.099 0.057 0.073 0.068 0.082
0.90 0.217 0.120 0.105 0.076 0.104

Table 3.5: Dimension d=3: Empirical power of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

sample size is needed. Table 3.6 shows that the empirical power for dimension d = 6
is larger than the corresponding power for lower dimensions, such that here a sample
size of n = 1000 is sufficient for small levels of dependence.
The bivariate Frank copula is the only Archimedean copula which is not only

symmetric but also radially symmetric. Since radial symmetry is an important
necessary condition for a copula to be elliptical, the fact that the test performs quite
well for this family is a very promising feature. Note that elliptical copulas of dimension
d > 3 can but do not have to be exchangeable.

In case of the Clayton family, quite similar observations can be made, though with
slightly lower rejection rates. Still, we can say that the test seems to be good in detecting
the lack of ellipticity if the level of dependence is not too close to independence.

In contrast to the previous results, the rejection rates for the Gumbel family appear
to be very low. Since the test statistic Tn is based on the difference between Kendall’s
tau and Blomqvist’s beta, we have to take a closer look at those two measures in
order to find some explanation. Figure 3.6 illustrates Kendall’s tau and Blomqvist’s
beta as functions of the copula family parameter θ for the bivariate Frank, Clayton
and Gumbel copulas. Here, the reason for the low rejection rates becomes apparent:
Kendall’s tau and Blomqvist’s beta are very close and almost not distinguishable for
the Gumbel family. Nevertheless, even in this case, the test is able to provide some
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C τ n = 1000 n = 5000

0.10 0.176 0.794
0.25 0.678 1.000

Frank 0.50 0.974 1.000
0.75 0.959 1.000
0.90 0.862 1.000

0.10 0.059 0.077
0.25 0.056 0.061

Clayton 0.50 0.122 0.260
0.75 0.532 0.996
0.90 0.745 1.000

0.10 0.062 0.080
0.25 0.055 0.057

Gumbel 0.50 0.074 0.062
0.75 0.101 0.104
0.90 0.238 0.139

Table 3.6: Dimension d=6: Empirical power of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

C τG τt n = 100 n = 250 n = 500 n = 1000 n = 5000

0.25 0.75 0.077 0.080 0.134 0.249 0.776
Mixture 0.75 0.25 0.079 0.070 0.118 0.176 0.604
(p = 0.5) 0.50 0.25 0.041 0.043 0.061 0.046 0.054

0.50 0.75 0.048 0.062 0.069 0.075 0.202

Table 3.7: Dimension d=2: Empirical power of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from a mixture C of bivariate
elliptical copulas with Kendall’s tau combinations (τG, τt).
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C τG τt n = 100 n = 250 n = 500 n = 1000 n = 5000

0.25 0.75 0.053 0.064 0.068 0.099 0.232
Mixture 0.75 0.25 0.092 0.128 0.236 0.366 0.948
(p = 0.5) 0.50 0.25 0.047 0.042 0.056 0.061 0.150

0.50 0.75 0.041 0.061 0.039 0.051 0.065

Table 3.8: Dimension d=2: Empirical power of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of size n from the copula C of a mixture
of bivariate elliptical distributions with Kendall’s tau combinations (τG, τt).

indication against the null hypothesis for huge sample sizes if the level of dependence
is high enough, meaning Kendall’s tau being equal to 0.75 or higher. To confirm this
presumption, we carried out the simulation study for the bivariate Gumbel copula
with a Kendall’s tau of 0.75 and chose a sample size of n = 105, which delivered a
quite acceptable rejection rate of 0.648.
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Figure 3.6: Comparison of Kendall’s tau and Blomqvist’s beta as functions of the
copula family parameter θ for different copula families.

Power for the bivariate mixture copula constructions

For the mixture of bivariate elliptical copulas, the test generally achieves good power
only for huge sample sizes (n = 105), which we do not consider in our simulation study.
If the absolute difference of the values of Kendall’s tau for the Gaussian and the t
copula is large enough then an acceptable empirical power can be observed already for
a sample size of n = 5000.

Similar observations on the empirical power can be made for the copula derived from
the mixture of bivariate elliptical distributions. There is only one exception. It turns
out that the empirical power depends not only on the absolute difference but also on
the sign of the difference. Thus, the empirical power of 0.948 for the combination of
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τG = 0.75 and τt = 0.25 is observed. Whereas, we get the empirical power of 0.232 if
we switch the values of the dependence levels.

Since it is not easy to graphically detect the non-ellipticity for the samples of the
mixture copulas used in the simulation study, our test is still useful.

3.5.4 Level and power for pseudo-observations
In this section, empirical level and power of the proposed test are investigated for the
more realistic situation with unknown marginal distributions. For this, we simulated
copula data from the considered copula families and transformed the uniform marginal
distributions to exponential distributions with unit rate to get observations Xi ∈ Rd

+,
i = 1, . . . , n. The test was then applied to the corresponding pseudo-observations
resulting from Equation (2.12) and denoted by Ûi, i = 1, . . . , n. Thus, we do not make
any assumptions on the marginal distributions, which is in accordance with practical
applications. Below, we present our results for the bivariate case.

Table 3.9 shows the empirical level of our test for d = 2 and unknown margins. As
one can observe, the test keeps its nominal level across all sample sizes and dependence
levels for the considered copula families. Compared to Table 3.1, the empirical levels
are similar for both situations: known and unknown margins. This supports our
testing procedure for copula data in real applications.

C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.063 0.049 0.054 0.042 0.043
0.25 0.053 0.048 0.063 0.048 0.049

Gauss 0.50 0.046 0.060 0.058 0.044 0.041
0.75 0.069 0.055 0.036 0.053 0.045
0.90 0.082 0.060 0.051 0.050 0.049

0.10 0.063 0.049 0.059 0.056 0.053
0.25 0.055 0.047 0.050 0.043 0.046

tν=5 0.50 0.058 0.055 0.043 0.060 0.048
0.75 0.058 0.053 0.044 0.058 0.057
0.90 0.075 0.067 0.048 0.045 0.050

Table 3.9: Dimension d=2: Empirical level of the test for ellipticity with significance
level α = 0.05 based on the test statistic Tn: rate of rejecting H0 as
observed in 1000 random samples of pseudo-observations of size n from
copula family C with Kendall’s tau τ .

Table 3.10 now shows the empirical power of our test for d = 2 and unknown margins.
We do not observe any significant differences in comparison to the empirical power
results from Table 3.4. Thus, it seems that the test is equally powerful for known as
well as unknown marginal distributions. Summarizing the empirical findings of this
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section, we can recommend our test also in the case of unknown marginal distributions,
although the observations are now dependent and therefore the limit results do not
hold as stated in Theorem 3.1.

C τ n = 100 n = 250 n = 500 n = 1000 n = 5000

0.10 0.052 0.082 0.060 0.093 0.251
0.25 0.092 0.101 0.176 0.310 0.910

Frank 0.50 0.125 0.258 0.475 0.753 1.000
0.75 0.169 0.336 0.534 0.851 1.000
0.90 0.166 0.224 0.372 0.609 1.000

0.10 0.047 0.055 0.051 0.063 0.049
0.25 0.041 0.050 0.038 0.072 0.065

Clayton 0.50 0.054 0.043 0.061 0.087 0.218
0.75 0.098 0.138 0.272 0.445 0.982
0.90 0.168 0.176 0.292 0.506 0.990

0.10 0.050 0.055 0.057 0.052 0.056
0.25 0.049 0.040 0.051 0.049 0.061

Gumbel 0.50 0.039 0.056 0.057 0.033 0.046
0.75 0.046 0.047 0.047 0.057 0.077
0.90 0.078 0.071 0.058 0.070 0.086

Table 3.10: Dimension d=2: Empirical power of the test for ellipticity with signifi-
cance level α = 0.05 based on the test statistic Tn: rate of rejecting H0
as observed in 1000 random samples of pseudo-observations of size n
from copula family C with Kendall’s tau τ .

3.5.5 Power under the local alternatives
The simple functional form of the test statistic allows to investigate the power of
the proposed goodness-of-fit test under local alternatives. Since the accuracy of the
distributional approximation for our test statistic Tn is not satisfactory for small
sample sizes and large dimensions, we restrict ourselves to dimension d = 2. For the
null hypothesis H0 : β = τ , local alternatives of the form β = τ + ∆/

√
n are considered

for varying ∆. It follows in lines of the proof of Theorem 3.1 that the asymptotic
distribution of the test statistic under the local alternatives is the non-central χ2-
distribution with one degree of freedom and non-centrality parameter ∆2/v2, where v2

is the asymptotic variance of Dn for d = 2. In applications, the asymptotic variance
v2 should be consistently estimated and depends on the underlying data.

For varying ∆, Figure 3.7 shows the theoretical asymptotic power of our test under
the sequence of local alternatives when the data comes from a Frank copula with
τ = 0.75 and β = 0.804. The asymptotic variance is estimated using a sample of size
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10000. This estimate is then used instead of the unknown asymptotic variance v2.
Further, the five circles in Figure 3.7 indicate the empirical power of our test from
Table 3.4 for the Frank copula and the five sample sizes n = 100, 250, 500, 1000 and
5000. For each sample size n, the position of the circles on the x-axis is computed by√
n (β − τ). Thus, the circles are located further to the right with increasing sample

size n. We see that the asymptotic local power is in good agreement with our empirical
results. Moreover, the five triangles in Figure 3.7 similarly display the empirical power
of our test applied to pseudo-observations from Section 3.5.4. For the considered
simulation scenario, Figure 3.7 shows that the empirical power of our asymptotic test
does not significantly fall in quality and agrees well with the asymptotic local power
even if marginal distributions are unknown.
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Figure 3.7: Asymptotic local power curve for the bivariate Frank copula with τ = 0.75
and β = 0.804. Circles and triangles correspond to the empirical power
for copula data and pseudo-observations, respectively, of sample sizes
n = 100, 250, 500, 1000, 5000.

3.6 Empirical analysis
We consider the daily log-returns of the DAX, the Dow Jones Industrial Average and
the Euro Stoxx 50 indices for 11 years starting from January 1, 2006 till December 31,
2016. For our test, we need i.i.d. data. Therefore, we fit a time series model to each
series of log-returns and then use the standardized residuals of these models. More
precisely, we choose ARMA(1, 1) - GARCH(1, 1) models with Student’s t innovations
to capture autocorrelation and volatility clustering in the daily log-returns. The model
fits have been validated with QQ-plots of the standardized residuals.

To get the copula data, the standardized residuals have to be transformed to achieve
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approximate i.i.d. uniform margins. This can be done non-parametrically by using the
empirical cumulative distribution functions. Apart from that, one can use a Student’s t
distribution to parametrically transform the residuals, which is due to the fact that the
considered ARMA(1, 1) - GARCH(1, 1) models have Student’s t innovations. Figure 3.8
displays the scatter plots of the standardized residuals after the non-parametric (above
the diagonal) as well as the parametric transformation with the fitted t distribution
(below the diagonal). Here, we can visually observe a high dependence between the
margins as well as symmetry and radial symmetry of the underlying data. Therefore,
an elliptical copula would be a natural choice to model the dependence structure of
the standardized residuals of the three indices.
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Figure 3.8: Pairwise scatter plots of the non-parametrically (above the diagonal)
and parametrically (below the diagonal) transformed residuals of the
ARMA-GARCH models for the DAX, Dow Jones and Euro Stoxx 50
indices.

Now, we apply our goodness-of-fit test to the underlying copula data. We get p-values
of 0.037 and 0.045 for the non-parametrically and the parametrically transformed
residuals, respectively. Hence, our test rejects the null hypothesis that the dependence
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structure of the considered data can be captured by a three-dimensional elliptical
copula at the significance level of 5%. This is a surprising statistical result and indicates
that one should be careful when choosing elliptical copulas in financial applications.
Further, we get p-values between 0.018 and 0.063, when we apply our test to

the bivariate margins of the non-parametrically and the parametrically transformed
residuals. Even if we cannot reject the null hypothesis of ellipticity for some bivariate
margins, we would not favour elliptical copulas for modeling the two-dimensional
dependence structures of the given data.

3.7 Conclusion

In this chapter, we derive a simple non-parametric goodness-of-fit test for elliptical
copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s
beta for all bivariate margins. The distinguishing property of our test is its ability to
differentiate between elliptical and non-elliptical copulas of any dimension even if the
underlying copulas are radially symmetric. In the bivariate case, our test can even
detect symmetric non-elliptical copulas. For bivariate copula data, we propose to use
the test in combination with the tests for symmetry and radial symmetry presented in
Chapter 4. This leads to a powerful non-parametric testing procedure, which is also
developed in Chapter 4.

In an intensive Monte Carlo study, we investigate the nominal level and the power
of the proposed test. Unfortunately, our test is not powerful enough to reject samples
of moderate and large sizes from the Gumbel copula. For the considered Archimedean
copulas, except the Gumbel family, our test has sufficient power for moderate dependent
data starting from sample size 1000. When considering bivariate copulas derived from
mixture constructions, the power depends on the values of the association parameters
and the distance between them. In some cases, sufficient power can already be achieved
using samples of size 5000.
Our test requires copula data, which is usually not available in empirical appli-

cations due to unknown marginal distributions. It seems that the performance of
our asymptotic test is not significantly influenced by non-parametric estimation of
unknown marginal distributions. In Chapter 5, we extend our test to the case of
unknown margins. Furthermore, the problem of the test to hold its nominal level
in higher dimensions gets addressed. In case of given bivariate data with unknown
marginal distributions, we propose to use the test in combination with the advanced
tests for symmetry and radial symmetry from Genest et al. (2012) and Genest and
Nešlehová (2014), respectively.
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3.8 Proof
Recall that the copula C is defined as the distribution function of (U1, U2) given
according to Equation (3.3) as

(U1, U2) =


(U, V/4) , if U ≤ 1/4
(U, V/4 + 3/4), if 1/4 < U ≤ 1/2
(U, V/4 + 1/2), if 1/2 < U ≤ 3/4
(U, V/4 + 1/4), if 3/4 < U ≤ 1 .

In the following, we prove that Equation (3.4) holds, that is

τ = β = 0 .

Furthermore, note that

P(U ≤ 1/4) = P(1/4 < U ≤ 1/2) = P(1/2 < U ≤ 3/4) = P(3/4 < U ≤ 1) = 1/4 .

For the computation of Blomqvist’s beta β, let ũ1 and ũ2 denote the population
medians of U1 and U2, respectively. Using Definition 2.4 together with the law of total
probability, it follows

β =P((U1 − ũ1)(U2 − ũ2) > 0)− P((U1 − ũ1)(U2 − ũ2) < 0)
=2P((U1 − ũ1)(U2 − ũ2) > 0)− 1
=2
[
P((U1 − ũ1)(U2 − ũ2) > 0 | U ≤ 1/4) · P(U ≤ 1/4)

+ P((U1 − ũ1)(U2 − ũ2) > 0 | 1/4 < U ≤ 1/2) · P(1/4 < U ≤ 1/2)
+ P((U1 − ũ1)(U2 − ũ2) > 0 | 1/2 < U ≤ 3/4) · P(1/2 < U ≤ 3/4)
+ P((U1 − ũ1)(U2 − ũ2) > 0 | 3/4 < U ≤ 1) · P(3/4 < U ≤ 1)

]
− 1

=2
[
1 · 1

4 + 0 · 1
4 + 1 · 1

4 + 0 · 1
4

]
− 1

=0 .

For the computation of Kendall’s tau, note that the random vector (U1, U2) given
that U ≤ 1/4 is uniformly distributed on the square [0, 1/4]2 and its conditional density
is given by

cU1,U2|U≤1/4(u1, u2) = 16 · I{0 ≤ u1 ≤ 1/4, 0 ≤ u2 ≤ 1/4} .

The conditional density of (U1, U2) given that 1/4 < U ≤ 1/2, 1/2 < U ≤ 3/4, or
3/4 < U ≤ 1 is given similarly. Now, let (U ′1, U ′2) be an independent copy of the
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random vector (U1, U2). According to Definition 2.3, Kendall’s tau can be computed
as

τ = E[sgn(U1 − U ′1)sgn(U2 − U ′2)]

=
∫

[0,1]2

∫
[0,1]2

sgn(u1 − u′1)sgn(u2 − u′2)dC(u1, u2)dC(u′1, u′2)

=
∫ 1/4

0

∫ 1/4

0

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) · 16 · 1

4 · 16 · 1
4 du1du2du

′
1du

′
2

+ 16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 3/4

1/2

∫ 3/4

1/2

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1/2

1/4

∫ 1

3/4

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1/4

0

∫ 1/4

0

∫ 1

3/4

∫ 1/2

1/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 1

3/4

∫ 1/2

1/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 3/4

1/2

∫ 3/4

1/2

∫ 1

3/4

∫ 1/2

1/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1/2

1/4

∫ 1

3/4

∫ 1

3/4

∫ 1/2

1/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1/4

0

∫ 1/4

0

∫ 3/4

1/2

∫ 3/4

1/2
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 3/4

1/2

∫ 3/4

1/2
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+ 16 ·
∫ 3/4

1/2

∫ 3/4

1/2

∫ 3/4

1/2

∫ 3/4

1/2
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du
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1du
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2

+ 16 ·
∫ 1/2

1/4

∫ 1

3/4

∫ 3/4

1/2

∫ 3/4

1/2
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du
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′
2

+ 16 ·
∫ 1/4

0

∫ 1/4

0
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1/4

∫ 1

3/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du
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2

+ 16 ·
∫ 1

3/4
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1/4
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1/4

∫ 1

3/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du
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2

+ 16 ·
∫ 3/4

1/2

∫ 3/4

1/2

∫ 1/2

1/4

∫ 1

3/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

+ 16 ·
∫ 1/2

1/4

∫ 1

3/4

∫ 1/2

1/4

∫ 1

3/4
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2 .

In the following, we compute the first and the second summand. For the first
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summand, we get

16 ·
∫ 1/4

0

∫ 1/4

0

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

= 16 ·
∫ 1/4

0

∫ 1/4

0

∫ 1/4

0
sgn(u2 − u′2)

∫ 1/4

0
sgn(u1 − u′1) du1du2du

′
1du

′
2

= 16 ·
∫ 1/4

0

∫ 1/4

0

∫ 1/4

0
sgn(u2 − u′2)

[∫ 1/4

u′1

1du1 +
∫ u′1

0
−1du1

]
du2du

′
1du

′
2

= 16 ·
∫ 1/4

0

∫ 1/4

0

(1
4 − 2u′1

) [∫ 1/4

u′2

1du2 +
∫ u′2

0
−1du2

]
du′1du

′
2

= 16 ·
∫ 1/4

0

∫ 1/4

0

(1
4 − 2u′1

)(1
4 − 2u′2

)
du′1du

′
2

=
∫ 1/4

0

∫ 1/4

0
1− 8u′2 − 8u′1 + 64u′1u′2 du′1du′2

=
∫ 1/4

0

[
u′1 − 8u′2u′1 − 4u′ 21 + 32u′2u′ 21

]1/4
0
du′2

=
∫ 1/4

0

1
4 − 2u′2 −

1
4 + 2u′2 du′2

= 0 .

For the second summand, we get

16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 1/4

0

∫ 1/4

0
sgn(u1 − u′1)sgn(u2 − u′2) du1du2du

′
1du

′
2

= 16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 1/4

0
sgn(u2 − u′2)

∫ 1/4

0
sgn(u1 − u′1) du1du2du

′
1du

′
2

= 16 ·
∫ 1

3/4

∫ 1/2

1/4

∫ 1/4

0
sgn(u2 − u′2)

∫ 1/4

0
−1du1 du2du

′
1du

′
2

= (−4)
∫ 1

3/4

∫ 1/2

1/4

∫ 1/4

0
−1du2 du

′
1du

′
2

=
∫ 1

3/4

∫ 1/2

1/4
1 du′1du′2

= 1
16 .

Inserting these results together with the results for the remaining summands yields

τ = 0+ 1
16+ 1

16+ 1
16+ 1

16 + 0− 1
16−

1
16+ 1

16−
1
16 + 0− 1

16+ 1
16−

1
16−

1
16 + 0 = 0 .

Altogether, this proves Equation (3.4), that is τ = β = 0.
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4
On tests for symmetry and radial

symmetry of bivariate copulas towards
testing for ellipticity

This chapter is similar to Jaser and Min (2020).

4.1 Introduction
Since Embrechts et al. (2003), Frees and Valdez (1998), and Li (2000), copulas were
widely used in economics, finance, and risk management to capture the dependence
of multivariate data. Bivariate parametric copulas are usually the basis of many
multivariate copula constructions (see, e.g., Aas et al. (2009) or Fischer et al. (2009)).
Therefore, the choice of a parametric bivariate copula family is very crucial to accurately
capture the multivariate dependence. For large and huge sample sizes, carrying out
known goodness-of-fit tests is very time consuming. Graphical tools like scatter plots
can significantly reduce the amount of copulas to be considered but may lead to
erroneous decisions. In this chapter, we fill this existing gap and propose simple
statistical tests to detect symmetry or radial symmetry of the underlying bivariate
copula data. More precisely, a test for the hypothesis that the unknown copula C is
symmetric, that is

Hs
0 : C(u, v) = C(v, u) , for all (u, v) ∈ [0, 1]2 ,

against the alternative

Hs
1 : ∃(u, v) ∈ [0, 1]2 , such that C(u, v) 6= C(v, u) ,

is proposed. The null hypothesis and the alternative to test whether the unknown
copula C is radially symmetric are given by

Hr
0 : C = Ĉ versus Hr

1 : C 6= Ĉ ,

where Ĉ denotes the survival copula of C.
The existing tests for symmetry and radial symmetry of bivariate copulas by Genest

et al. (2012), Genest and Nešlehová (2014), Li and Genton (2013), and Quessy (2016)
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assume unknown marginal distributions and take into account their non-parametric
estimation. Therefore, the asymptotic distribution of their test statistics is of complex
nature and derived using the weak convergence of empirical copula processes. In
applications, bootstrap techniques are needed for the computation of p-values, and
this is computationally expensive for huge sample sizes.

Assuming given copula data, we propose simpler non-parametric tests for symmetry
and radial symmetry of bivariate copulas. We manipulate the underlying copula data
without changing its dependence structure to create two bivariate samples. Our test
statistics are then based on the difference between the empirical Kendall’s tau of both
samples. The limiting distributions of the test statistics can be derived using the
classical theory of U -statistics. Therefore, our non-parametric tests are related to
asymptotic normal distributions and are very simple at work. Our tests are based only
on a sample characteristic of the bivariate copula data. Therefore, they are easy to
implement and computationally very fast. In times of Big Data, this nice feature of
our tests is very useful in the analysis of data sets with huge sample sizes.
In Chapter 3, we proposed a goodness-of-fit test for elliptical copulas under the

assumption of given copula data. It utilizes the known equality of Kendall’s tau and
Blomqvist’s beta for elliptical copulas, that is the null hypothesis

He
0 : τ = β is tested against the alternative He

1 : τ 6= β .

This test may illustrate poor performance in finite samples if Kendall’s tau and
Blomqvist’s beta are very close for a particular copula family. In this chapter, we
propose a multiple testing procedure for ellipticity of copula data, which combines
our simple non-parametric tests for symmetry, radial symmetry, and the equality of
Kendall’s tau and Blomqvist’s beta. Thus, the proposed multiple testing procedure
utilizes the most common properties of elliptical copulas, which should make it powerful
to detect a non-elliptical dependence structure in bivariate copula data. Let C be
the unknown bivariate copula and Cellipt the class of elliptical copulas, then the null
hypothesis and the alternative of the testing procedure are given by

H0 : C ∈ Cellipt versus H1 : C /∈ Cellipt .

This chapter is organized as follows. In Section 4.2, we propose simple non-parametric
tests for symmetry and radial symmetry. Section 4.3 presents a Monte Carlo simulation
study to evaluate the finite-sample performance and compare it to the one of existing
competitors. In Section 4.4, a simple and powerful non-parametric testing procedure
is proposed to decide whether the dependence structure of underlying bivariate copula
data may be captured by an elliptical copula. Applications to financial and insurance
data are reported in Section 4.5 to illustrate the testing procedure at work. Finally,
Section 4.6 concludes. Some supplementary material is deferred to Section 4.7.
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4.2 Simple non-parametric tests for symmetry and
radial symmetry

In this section, we derive our two statistical tests for symmetry and radial symmetry for
bivariate copulas. We assume that we are given a copula sample and neglect unknown
marginal distributions and their estimation. In practical applications, one usually
estimates marginal distribution functions non-parametrically to avoid misspecification.
For the following subsections, let (U1, V1), . . ., (Un, Vn) ∈ [0, 1]2 be a sample from the
statistical model (([0, 1]2)n , B([0, 1]2)⊗n, P⊗n), where P is a distribution with copula
C and uniform margins.

4.2.1 Test for symmetry
Let (U, V ) be distributed according to the symmetric copula C, that is (U, V ) d= (V, U).
Further, we assume that P(U=V ) = 0. For a given sample realization from C, the
scatter plot displays symmetry with respect to the main diagonal. By interchanging
the coordinates, any two observations, one below and one above the diagonal, can
be mirrored to the opposite side of the diagonal. The modified data set can still be
considered as a realization from the given copula C. Therefore, a sample realization
from the copula C can be generated just using all observations either above or below
the diagonal.
The complementary events that (U, V ) is below or above the diagonal, that is

Bs := {ω : U − V > 0} and Bs := {ω : U − V < 0} , (4.1)

have equal probabilities of 0.5. Using (2.5), it follows for the events in (4.1) that

P(Bs) = P(U − V > 0) = P(U − V < 0) = P(Bs) = 0.5 . (4.2)

Using the law of total probability as well as (2.5) and (4.2), it follows that

C(u, v) = P(U ≤ u, V ≤ v)
= P(U ≤ u, V ≤ v | Bs) · P(Bs) + P(U ≤ u, V ≤ v | Bs) · P(Bs)
= 0.5 · P(U ≤ u, V ≤ v | U − V > 0) + 0.5 · P(V ≤ u, U ≤ v | V − U < 0)
= 0.5 · FU,V |Bs(u, v) + 0.5 · FV,U |Bs(u, v) . (4.3)

Here, FX,Y |A denotes the conditional distribution function of (X, Y ) given (X, Y ) ∈ A.
Thus, the symmetric copula C can be represented as a mixture of two conditional
distribution functions. Similarly, it holds that

C(u, v) = 0.5 · P(V ≤ u, U ≤ v | V − U > 0) + 0.5 · P(U ≤ u, V ≤ v | U − V < 0)
= 0.5 · FV,U |Bs(u, v) + 0.5 · FU,V |Bs(u, v) . (4.4)
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According to Equation (4.3) and (4.4), the symmetric copula C can be represented
either as a mixture of two conditional distribution functions given the event that (U, V )
is below the diagonal or as a mixture of two conditional distribution functions given
the event that (U, V ) is above the diagonal. This constitutes the key idea of our testing
procedure for symmetric copulas pursued to produce two i.i.d. random samples out of
a given i.i.d. random sample from C.

Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from the symmetric copula C.
First, we consider the sub-sample (UBs

1 , V Bs

1 ), . . . , (UBs

NBs
, V Bs

NBs
) for which UBs

. −V Bs

. >
0 holds, that is, whose realizations are below the diagonal. By virtue of Equation (4.3),
a new sample from C can be obtained by choosing either (UBs

i , V Bs

i ) with probability
0.5 or (V Bs

i , UBs

i ) also with probability 0.5, for i ∈ {1, . . . , NBs}. The resulting random
sample is denoted by

(ŨBs

1 , Ṽ Bs

1 ), . . . , (ŨBs

NBs
, Ṽ Bs

NBs
) . (4.5)

Similarly, we proceed with the sub-sample (UBs
1 , V Bs

1 ), . . . , (UBs
N
Bs
, V Bs

N
Bs

) for which
UBs
. − V Bs

. < 0 holds, that is, whose realizations are above the diagonal, and create a
second random sample

(ŨBs

1 , Ṽ Bs

1 ), . . . , (ŨBs

N
Bs
, Ṽ Bs

N
Bs

) . (4.6)

It should be mentioned that the sampling algorithm can be generalized for 0 <
P(U=V ) < 1 by discarding observations with Ui = Vi.

Note that the sample size NBs is a binomially distributed random variable with size
n and success probability 0.5. From the law of large numbers, it follows that NBs/n
converges to 0.5 in probability as n tends to infinity. The same conclusions can be
drawn for the sample size NBs since the relation NBs = n−NBs holds. Defining the
sequence of random variables N s

n := min (NBs , NBs), it follows that N s
n/n similarly

converges to 0.5 in probability as n tends to infinity. Choosing the first N s
n realizations

from (4.5) and (4.6) yields random samples of equal sample size N s
n given by

(ŨBs

1 , Ṽ Bs

1 ), . . . , (ŨBs

Ns
n
, Ṽ Bs

Ns
n

) and (ŨBs

1 , Ṽ Bs

1 ), . . . , (ŨBs

Ns
n
, Ṽ Bs

NNsn
) . (4.7)

Under the null hypothesis Hs
0 of C being symmetric, the two newly generated random

samples have the same underlying copula C and, hence, Kendall’s tau. Therefore, the
empirically estimated Kendall’s tau for both random samples should be of the same
magnitude. Now, we base our test on the difference

SNs
n

:= τB
s

Ns
n
− τBsNs

n
,

where τBsNs
n
and τBsNs

n
denote the empirically estimated Kendall’s taus based on the two

samples from (4.7). Note that the indices for the identification of the margins can be
skipped since we are dealing with bivariate data in this chapter.
It is clear that

NBs

n
P−→ 0.5 and NBs

n
P−→ 0.5 .
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For n ≥ 2 , the above sampling algorithm can be slightly modified to ensure that
NBs and NBs are positive random variables. Therefore, N s

n is a sequence of positive
integer-valued random variables with

N s
n

n
P−→ 0.5 . (4.8)

To state the asymptotic distribution of the test statistic SNs
n
in Theorem 4.1, we define

h̃1
(
(U1, V1)

)
:= E [sgn(U1 − U2) sgn(V1 − V2) | U1, V1] .

Theorem 4.1. Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate
random vector (U, V ) with P(U=V ) = 0, whose distribution function is a symmetric
copula C. Further, let (4.8) hold. Then,

√
n? · SNs

n

d−→ N
(
0, 2σ2

)
,

where n? = n/2 and σ2 = Var
(
2h̃1

(
(U1, V1)

))
.

Proof. Let (U1, V1), . . . , (Un, Vn) ∈ [0, 1]2 be a sample from the statistical model(
([0, 1]2)n,B([0, 1]2)⊗n, P⊗n

)
,

where P is a distribution with symmetric copula C and uniform margins. The samples
given in (4.7) can then be derived and the test statistic SNs

n
is given by the difference

of the corresponding empirical Kendall’s tau estimators τBsNs
n
and τBsNs

n
.

For the random sample size N s
n, it holds that N s

n/n converges to 0.5 in probability
as n tends to infinity. It follows for n→∞ that

N s
n

bn/2c
P−→ 1 ,

where bxc, x ∈ R, denotes the integer part of x. Thus, the assumption of Theorem
1 from Anscombe (1952) is satisfied, and it is sufficient to show that the difference
τB

s

n − τB
s

n satisfies the conditions (C1) and (C2) of Anscombe (1952).
To make it easier to follow this and remaining similar proofs, we state conditions

(C1) and (C2) here. A sequence of random variables {Yn} satisfies condition (C1) of
Anscombe (1952) if there exist a real number θ, a sequence of positive numbers {wn},
and a distribution function F , such that for any x with F (x) continuous it holds that

P (Yn − θ ≤ xwn)→ F (x) , as n→∞ . (4.9)

Moreover, a sequence of random variables {Yn} satisfies condition (C2) of Anscombe
(1952) if, given ε > 0 and η > 0, there exists a large νε,η and a small c > 0 such that
for all n > νε,η it holds that

P
(

sup
n′:|n′−n|<cn

|Yn′ − Yn| ≥ εwn

)
< η . (4.10)
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Finally, note that given two sequences of random variables that satisfy (C2), it can be
shown that the difference also satisfies (C2).
From the theory of U -statistics (see Hoeffding (1947)), it holds that

√
n (τn −

τ) converges in distribution to a centered normal distribution with variance σ2 =
Var

(
2h̃1

(
(U1, V1)

))
. The independence of τBsn and τBsn , and the Delta method imply

√
n
(
τB

s

n − τB
s

n

)
d−→ N

(
0, 2σ2

)
.

Thus, the difference τBsn − τB
s

n satisfies condition (C1) with wn = 1/
√
n .

Further, the proof of Theorem 6 in Sproule (1974) yields that τBsn and τBsn satisfy
condition (C2). Therefore, the difference τBsn −τB

s

n also satisfies condition (C2). Finally,
Theorem 1 of Anscombe (1952) implies the desired asymptotic convergence

√
n?
(
τB

s

Ns
n
− τBsNs

n

)
d−→ N

(
0, 2σ2

)
.

In practical applications, the unknown variance σ2 in Theorem 4.1 should be
consistently estimated. The following remark describes a possible consistent estimation
procedure for σ2.

Remark 4.2. The function h̃1 has the representation (see, e.g., Theorem 4.3 in
Dengler (2010))

h̃1
(
(U, V )

)
= 1− 2U − 2V + 4C(U, V ) .

Subsequently, the asymptotic variance of SNs
n
can be consistently estimated in the

framework of Chapter 3. Using the whole random sample (U1, V1), . . ., (Un, Vn),
h̃1
(
(Ui, Vi)

)
is estimated non-parametrically by

ĥ1
(
(Ui, Vi)

)
= 1− 2Ui − 2Vi + 4Cn(Ui, Vi), i ∈ {1, . . . , n} ,

where C̃n denotes the empirical copula defined in Equation (2.9) Now, σ2 is consistently
estimated by the sample variance σ̂2

n of

2ĥ1
(
(U1, V1)

)
, . . . , 2ĥ1

(
(Un, Vn)

)
.

For details see Chapter 3.

Based on Theorem 4.1, we propose the test function

δs(U1, . . . , Un) = I
{
|
√
n? · SNs

n
/ σ̂n| > z1−α/2

}
to test Hs

0 against Hs
1 at the significance level α, where zα denotes the α-quantile of

the standard normal distribution.
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4.2.2 Test for radial symmetry
Let (U, V ) be distributed according to the radially symmetric copula C. Hence, C
coincides with its survival copula Ĉ, and it holds that (U, V ) d= (1−U, 1−V ) . Further,
we assume that P(U+V=1) = 0. For sample realizations from C, scatter plots show
symmetry with respect to the the point (0.5, 0.5). Now, we split a given data set
with respect to the counter-diagonal into two sub-sets: one below and the other above
the counter-diagonal. By reflecting any two observations from different sub-sets with
respect to the point (0.5, 0.5), the copula of the resulting sample is not changed.
Therefore, a sample from the copula C can be generated just using all observations
either below or above the counter-diagonal.
More precisely, note that the complementary events

Br := {ω : U + V < 1} and Br := {ω : U + V > 1}

have equal probabilities of 0.5. We follow the idea of our test for symmetry and use
two mixture representations conditioned on the events that (U, V ) is below and above
the counter-diagonal, respectively, in order to generate two i.i.d. random samples of
size NBr and NBr out of one given i.i.d. random sample from C.
Similarly to Section 4.2.1, the corresponding test statistic is given by

RNr
n

:= τB
r

Nr
n
− τBrNr

n
,

where τBrNr
n
and τBrNr

n
denote the empirically estimated Kendall’s taus based on the two

samples, and N r
n := min (NBr , NBr). As before, N r

n can be assumed to be a sequence
of positive integer-valued random variables with

N r
n

n
P−→ 0.5 . (4.11)

The asymptotic distribution of the test statistic RNr
n
is given in the following theorem.

Theorem 4.3. Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate
random vector (U, V ) with P(U+V=1) = 0, whose distribution function is a radially
symmetric copula C. Further, let (4.11) hold. Then,

√
n? ·RNr

n

d−→ N
(
0, 2σ2

)
,

where n? = n/2 and σ2 = Var
(
2h̃1

(
(U1, V1)

))
.

The proof of Theorem 4.3 is similar to the proof of Theorem 4.1 and, therefore,
omitted. Note that the asymptotic variance σ2 is the same as in Theorem 4.1. Hence,
Remark 4.2 yields a consistent estimation procedure for the asymptotic variance of
RNr

n
and the test function δr is constructed similarly to δs.
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4.3 Simulation study
In order to assess the finite-sample performance of our proposed tests for symmetry
and radial symmetry, a Monte Carlo study was conducted for the test problems Hs

0 and
Hr

0 . First, we would like to point out that the tests are based on a random sampling
algorithm. Therefore, the value of the test statistic inherits some variability. The
upcoming simulation study shows that the randomness of the test statistic does not
affect the empirical level of the tests and the tests still provide good empirical power.
As a benchmark, we use the more advanced tests from Genest et al. (2012) and

Genest and Nešlehová (2014), respectively, which are available in the R-package copula
(see exchTest and radSymTest in Hofert et al. (2018)). Note that our proposed tests
rely on the assumption of known marginal distributions, while the tests from Genest
et al. (2012) and Genest and Nešlehová (2014) take into account their non-parametric
estimation. Further, their tests compare the whole copulas while our proposed tests
are based on two sample characteristics of the bivariate copula. We assume that this
fact is mainly responsible for the differences between our and their numerical results.
The mixture representations for symmetric or radial symmetric copulas may not

hold if marginal distributions are estimated. Therefore, it is not straightforward for us
to extend the proposed tests for unknown margins. Further, if marginal distributions
are estimated non-parametrically, the two newly generated samples may contain
ties. Our Monte Carlo study empirically assesses the influence of non-parametrically
estimated marginal distributions on the level and power of our proposed tests. For this,
each copula sample (U1, V1), . . . , (Un, Vn) is replaced by the corresponding bivariate
pseudo-observations (Û1, V̂1), . . ., (Ûn, V̂n) defined via Equation (2.12).

4.3.1 Setup
First of all, the number of Monte Carlo replications was set to N = 1000, and all tests
were performed at a significance level of α = 0.05. To determine the empirical level
and power of the tests, the simulation study was carried out for different sample sizes,
levels of dependence measured in terms of Kendall’s tau and types of dependence
expressed in terms of copula families.

More precisely, random samples of size n ∈ {100, 250, 500, 1000} were considered for
all tests throughout the study. In addition, the influence of the strength of dependence
was investigated by choosing five different levels of dependence in terms of Kendall’s tau
given by τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Finally, the type of dependence is determined
through the choice of a specific copula family. For this, some of the most popular
copula families and some derived special cases were considered in the simulation study.
The performance of all tests was studied for samples from the Gaussian, t (with 5
degrees of freedom, tν=5), Frank, Clayton, and Gumbel copula families. The Gaussian
and the t copula are elliptical copulas and, thus, also symmetric and radially symmetric.
Further, the Frank, Clayton, and Gumbel copula are symmetric Archimedean copulas.
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In addition, the Frank copula is also radially symmetric.
Since all listed copulas are symmetric, asymmetrized versions of the Gaussian,

Clayton, and Gumbel copula families were additionally used to assess the power of the
test for symmetry. Regarding the asymmetrization, we followed the procedure in Genest
et al. (2012) and used Khoudraji’s device (see Khoudraji (1995)). The asymmetric
copulas are given in terms of an asymmetrization parameter δ ∈ (0, 1). According to
Genest et al. (2012), maximum asymmetry is observed for δ = 0.5 and, hence, we also
chose δ ∈ {0.25, 0.5, 0.75}. Since there is only little asymmetry for small values of τ ,
we analyzed the performance of the test for symmetry for τ ∈ {0.5, 0.75, 0.9} in this
context. To illustrate the asymmetrized versions of the considered copula families used
in the simulation study, Figure 4.1 displays scatter plots of random samples of size
n = 1000 for the asymmetrization parameter δ ∈ {0.25, 0.5, 0.75}. Following Genest
and Nešlehová (2014), a Skewed-t copula with 4 degrees of freedom and skewness
parameter γ = (1, 1) (Skewed-tν=4) was chosen to study the power of the test for
radial symmetry. Figure 4.2 illustrates random samples of size n = 1000 from this
Skewed-tν=4 copula for the levels of dependence corresponding to τ ∈ {0.25, 0.5, 0.75}.
Note that the skewness can be observed to decrease with increasing level of dependence.

4.3.2 Test for symmetry
In this section, the finite-sample performance of the test of Hs

0 for symmetry based on
the test statistics SNs

n
is analyzed. To study the level of the test, random samples from

the Gaussian, t, Frank, Clayton, and Gumbel copula were considered. Table 4.1 reports
the empirical level of our test (in Column JMS), of our test for pseudo-observations
(in Column JMSP), and of the test from Genest et al. (2012) (in Column GNQ).

First, note that our test holds its nominal level across all copula models, sample sizes,
and values of Kendall’s tau. Compared to the more advanced test from Genest et al.
(2012), our test seems to hold its nominal level a little better. For pseudo-observations,
our test is generally rather conservative and its empirical level is decreasing with
increasing sample size. Surprisingly, this does not influence the empirical power
negatively.
Random samples from the asymmetrized versions of the Gaussian, Clayton, and

Gumbel copula families were used to investigate the power of the test for symmetry.
Table 4.2 displays the empirical power of our test (in Column JMS), of our test for
pseudo-observations (in Column JMSP), and of the test from Genest et al. (2012) (in
Column GNQ). Even if the results vary noticeably across the different combinations
of factors, our test generally achieves sufficient power. As expected, the rejection rates
increase with the sample size as well as with the strength of dependence. In terms of
the asymmetrization parameter δ, the largest power is mostly observed for δ = 0.5.
Since maximum asymmetry occurs near δ = 0.5, this is also expected.
Compared to the test from Genest et al. (2012), our test has slightly lower power

and needs higher sample sizes to achieve similar power. The empirical power of our test
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Figure 4.1: Scatter plots of random samples of size 1000 from the asymmetrized
versions of the Gaussian, Clayton, and Gumbel copula (from top to
bottom) with asymmetrization parameter δ = 0.25 (left), 0.5 (middle),
0.75 (right).
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Figure 4.2: Scatter plots of random samples of size 1000 from the Skewed-tν=4 copula
with τ = 0.25 (left), 0.5 (middle), 0.75 (right).

C n = 100 n = 250 n = 500 n = 1000
τ JMS JMSP GNQ JMS JMSP GNQ JMS JMSP GNQ JMS JMSP GNQ

Gauss
0.25 0.066 0.012 0.022 0.055 0.016 0.039 0.055 0.012 0.048 0.054 0.007 0.044
0.50 0.060 0.012 0.015 0.061 0.006 0.027 0.045 0.010 0.020 0.051 0.006 0.032
0.75 0.041 0.024 0.011 0.052 0.021 0.011 0.046 0.016 0.004 0.050 0.006 0.013

tν=5
0.25 0.059 0.014 0.033 0.043 0.016 0.046 0.052 0.023 0.035 0.059 0.013 0.035
0.50 0.047 0.018 0.014 0.058 0.016 0.035 0.049 0.009 0.031 0.062 0.006 0.046
0.75 0.034 0.027 0.022 0.055 0.019 0.014 0.057 0.010 0.013 0.051 0.008 0.019

Frank
0.25 0.054 0.014 0.031 0.052 0.014 0.038 0.051 0.010 0.043 0.045 0.009 0.032
0.50 0.057 0.024 0.015 0.060 0.013 0.025 0.052 0.005 0.038 0.061 0.007 0.035
0.75 0.036 0.017 0.016 0.032 0.009 0.011 0.042 0.010 0.006 0.048 0.009 0.016

Clayton
0.25 0.060 0.024 0.033 0.062 0.018 0.040 0.052 0.010 0.032 0.051 0.009 0.043
0.50 0.063 0.029 0.031 0.050 0.013 0.029 0.059 0.003 0.029 0.045 0.004 0.035
0.75 0.059 0.051 0.021 0.059 0.028 0.015 0.056 0.015 0.021 0.049 0.009 0.027

Gumbel
0.25 0.063 0.022 0.036 0.049 0.020 0.038 0.061 0.011 0.035 0.049 0.013 0.042
0.50 0.057 0.015 0.027 0.050 0.010 0.026 0.053 0.004 0.024 0.049 0.006 0.039
0.75 0.053 0.034 0.017 0.051 0.021 0.013 0.050 0.019 0.008 0.049 0.003 0.028

Table 4.1: Empirical level of our test for symmetry (JMS), our test for pseudo-
observations (JMSP), and the test from Genest et al. (2012) (GNQ) with
significance level α = 0.05: rate of rejecting H0 as observed in 1000 random
samples of size n from copula family C with Kendall’s tau τ .
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C n = 100 n = 250 n = 500 n = 1000
τ JMS JMSP GNQ JMS JMSP GNQ JMS JMSP GNQ JMS JMSP GNQ

Gauss
δ = 0.25
0.50 0.095 0.067 0.082 0.157 0.140 0.233 0.285 0.242 0.466 0.480 0.530 0.803
0.75 0.434 0.553 0.618 0.849 0.954 0.995 0.991 1.000 1.000 1.000 1.000 1.000
0.90 0.963 0.983 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.155 0.145 0.199 0.296 0.312 0.499 0.564 0.645 0.851 0.846 0.936 0.989
0.75 0.672 0.798 0.907 0.976 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 0.973 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.158 0.134 0.168 0.298 0.289 0.393 0.542 0.604 0.764 0.846 0.889 0.968
0.75 0.521 0.576 0.626 0.896 0.961 0.988 0.996 1.000 1.000 1.000 1.000 1.000
0.90 0.657 0.744 0.844 0.979 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Clayton
δ = 0.25
0.50 0.177 0.149 0.093 0.361 0.343 0.260 0.586 0.633 0.548 0.885 0.954 0.909
0.75 0.678 0.763 0.779 0.958 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 0.892 0.981 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.148 0.115 0.111 0.307 0.264 0.339 0.509 0.578 0.715 0.813 0.901 0.965
0.75 0.463 0.550 0.834 0.871 0.953 1.000 0.991 1.000 1.000 1.000 1.000 1.000
0.90 0.817 0.920 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.092 0.058 0.072 0.132 0.110 0.169 0.197 0.173 0.295 0.370 0.365 0.586
0.75 0.190 0.189 0.366 0.440 0.469 0.814 0.751 0.832 0.988 0.961 0.990 1.000
0.90 0.460 0.515 0.764 0.827 0.919 0.997 0.989 0.998 1.000 1.000 1.000 1.000

Gumbel
δ = 0.25
0.50 0.142 0.149 0.110 0.263 0.268 0.275 0.515 0.573 0.637 0.744 0.855 0.916
0.75 0.592 0.743 0.679 0.944 0.982 0.997 0.998 1.000 1.000 1.000 1.000 1.000
0.90 0.990 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.285 0.305 0.272 0.599 0.669 0.704 0.895 0.963 0.974 0.992 0.999 1.000
0.75 0.862 0.950 0.970 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 0.987 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.273 0.284 0.284 0.638 0.690 0.690 0.888 0.966 0.963 0.990 1.000 1.000
0.75 0.619 0.693 0.752 0.951 0.985 0.993 0.999 1.000 1.000 1.000 1.000 1.000
0.90 0.722 0.799 0.893 0.987 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.2: Empirical power of our test for symmetry (JMS), our test for pseudo-
observations (JMSP), and the test from Genest et al. (2012) (GNQ) with
significance level α = 0.05: rate of rejecting H0 as observed in 1000 random
samples of size n from copula family C asymmetrized with parameter δ
and with Kendall’s tau τ .
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for pseudo-observations is in most cases comparable to the one for the copula samples.
Moreover, across all different combinations of factors, there are several scenarios with
higher empirical power for the pseudo-observations even though the empirical level for
them is lower than for copula data.

Our test for symmetry is computationally less intensive than the more advanced test
from Genest et al. (2012), where bootstrap methods are applied. Table 4.3 illustrates
the running times of the tests (in Row JMS and GNQ, respectively) for samples of
size n = 103, 104, and 105. For one sample of size n = 104, the running time of our
test is about 2 seconds in comparison to more than 2 minutes for the corresponding
test from Genest et al. (2012). For n = 105, it was not possible to conduct the test for
symmetry of Genest et al. (2012) using the R-package copula, while our test runs in a
bit more than 3 minutes. Thus, our test for symmetry is up to 75 times faster and can
especially be recommended for huge samples.

n = 103 n = 104 n = 105

JMS 0.02 1.77 197.70
GNQ 1.34 134.03 –

JMR 0.04 3.55 399.91
GN 7.60 655.05 63982.67 (17.77 h)

Table 4.3: Running times in seconds for our tests (JMS/JMR) and the tests from
Genest et al. (2012)/Genest and Nešlehová (2014) (GNQ/GN) for samples
of size n = 103, 104, and 105.

4.3.3 Test for radial symmetry
In this section, the finite-sample performance of the test of Hr

0 for radial symmetry
based on the test statistic RNr

n
is analyzed. Random samples from the Gaussian, t,

and Frank copula were considered in order to examine the empirical level. Table
4.4 presents the empirical level of our test (in Column JMR), of our test for pseudo-
observations (in Column JMRP), and of the test from Genest and Nešlehová (2014) (in
Column GN). In general, our test and the test from Genest and Nešlehová (2014) hold
their nominal level. For pseudo-observations, our test also holds its nominal level in
most cases. One exception is the Frank copula for τ = 0.75. Further analysis showed
that increasing the sample size does not reduce the problem of inflated rejection rates
as the empirical levels oscillate around 0.119. Hence, our test for radial symmetry is
systematically too liberal in this setting.
To assess the empirical power, random samples from the Clayton, Gumbel, and

Skewed-tν=4 copula were used. Table 4.5 reports the empirical power of our test (in
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C n = 100 n = 250 n = 500 n = 1000
τ JMR JMRP GN JMR JMRP GN JMR JMRP GN JMR JMRP GN

Gauss
0.25 0.049 0.049 0.041 0.058 0.029 0.047 0.054 0.030 0.042 0.042 0.030 0.049
0.50 0.055 0.059 0.037 0.053 0.053 0.044 0.060 0.055 0.059 0.047 0.045 0.044
0.75 0.052 0.073 0.042 0.046 0.077 0.051 0.039 0.060 0.052 0.056 0.079 0.051
tν=5
0.25 0.063 0.038 0.050 0.065 0.040 0.052 0.054 0.034 0.039 0.056 0.036 0.049
0.50 0.041 0.040 0.031 0.053 0.042 0.043 0.056 0.056 0.057 0.049 0.039 0.040
0.75 0.052 0.054 0.029 0.053 0.064 0.051 0.047 0.049 0.036 0.051 0.052 0.052
Frank
0.25 0.061 0.033 0.039 0.053 0.034 0.045 0.052 0.032 0.044 0.042 0.036 0.043
0.50 0.044 0.067 0.052 0.046 0.067 0.049 0.045 0.066 0.052 0.061 0.068 0.048
0.75 0.032 0.111 0.037 0.044 0.116 0.040 0.050 0.119 0.036 0.037 0.125 0.052

Table 4.4: Empirical level of our test for radial symmetry (JMR), our test for pseudo-
observations (JMRP), and the test from Genest and Nešlehová (2014)
(GN) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .

Column JMR), of our test for pseudo-observations (in Column JMRP), and of the
test from Genest and Nešlehová (2014) (in Column GN). First, note that the results
differ considerably for the various combinations of factors. For all copulas, the power
increases with the sample size, which is expected. Further, for the Clayton and the
Gumbel copula, the power also increases with the degree of dependence, whereas for the
Skewed-tν=4 copula, the power decreases with increasing τ . This is in accordance with
our observations from Figure 4.2 in which the skewness can be observed to decrease
with increasing level of dependence in terms of Kendall’s tau. Lastly, note that the
rejection rates are slightly lower for the Gumbel copula.

Our test overall achieves satisfactory empirical power against the various alternatives.
Compared to the test from Genest and Nešlehová (2014), it is in many cases somewhat
less powerful. However, it achieves equal or even slightly higher power especially in
scenarios where the more advanced test has difficulties to detect the radial asymmetry.
Examples are given by the Gumbel copula and the Skewed-tν=4 copula for n = 100
and n = 250 in combination with τ = 0.75. The empirical power of our test for
pseudo-observations is overall slightly higher than the one for copula samples, which
might be caused by possible high empirical levels.

Table 4.3 illustrates the running times for our test (in Row JMR) and the test from
Genest and Nešlehová (2014) (in Row GN) for samples of size n = 103, 104, and 105.
For one sample of size n = 104, the running time of our test is less than 4 seconds in
comparison to almost 11 minutes for the corresponding test from Genest and Nešlehová
(2014). For one sample of size n = 105, it runs in less than 7 minutes, while the test
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C n = 100 n = 250 n = 500 n = 1000
τ JMR JMRP GN JMR JMRP GN JMR JMRP GN JMR JMRP GN

Clayton
0.25 0.256 0.229 0.377 0.517 0.506 0.730 0.851 0.858 0.959 0.983 0.993 1.000
0.50 0.625 0.640 0.811 0.955 0.965 0.997 1.000 1.000 1.000 1.000 1.000 1.000
0.75 0.775 0.884 0.921 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gumbel
0.25 0.119 0.123 0.092 0.207 0.215 0.246 0.343 0.342 0.491 0.615 0.638 0.800
0.50 0.166 0.193 0.161 0.413 0.447 0.458 0.703 0.722 0.814 0.934 0.948 0.987
0.75 0.166 0.234 0.132 0.516 0.575 0.495 0.814 0.823 0.828 0.981 0.985 0.992

S-tν=4
0.25 0.470 0.493 0.514 0.885 0.905 0.951 0.996 0.998 1.000 1.000 1.000 1.000
0.50 0.331 0.395 0.336 0.713 0.734 0.770 0.965 0.963 0.991 1.000 1.000 1.000
0.75 0.152 0.230 0.113 0.497 0.575 0.436 0.834 0.878 0.843 0.991 0.993 0.997

Table 4.5: Empirical power of our test for radial symmetry (JMR), our test for
pseudo-observations (JMRP), and the test from Genest and Nešlehová
(2014) (GN) with significance level α = 0.05: rate of rejecting H0 as
observed in 1000 random samples of size n from copula family C with
Kendall’s tau τ .

from Genest and Nešlehová (2014) requires almost 18 hours. Thus, it is up to 190
times faster and, similarly to our test for symmetry, it can especially be recommended
for huge samples.

4.4 Testing procedure for ellipticity
This section presents a powerful and simple non-parametric statistical procedure to
test whether the dependence structure of a bivariate random vector with uniform
margins is captured by an elliptical copula.

4.4.1 The testing procedure
The testing procedure consists of the following three steps. First, the hypothesis that
the unknown copula C is symmetric, that is Hs

0 is tested against the alternative Hs
1 .

If the hypothesis Hs
0 cannot be rejected, we test the hypothesis that the unknown

copula C is radially symmetric, that is Hr
0 against the alternative Hr

1 . In the third
step of our testing procedure, the equality of Kendall’s tau and Blomqvist’s beta is
tested, that is He

0 is tested against the alternative He
1 . If any of the three hypotheses

is rejected, we also reject our original null hypothesis H0 that C belongs to the class
of elliptical copulas. If none of the three hypotheses can be rejected, we cannot reject
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the null hypothesis H0 of C being elliptical. To assess the effect of non-parametrically
estimated marginal distribution functions on the proposed testing procedure, the
following simulation study is also conducted for pseudo-observations.

4.4.2 Simulation study
In this section, the finite-sample performance of the proposed testing procedure is
analyzed. The corresponding Monte Carlo study was set up similarly to Section 4.3.
Note that our testing procedure for ellipticity consists of a multiple test problem with
three sub-hypotheses. In order to maintain the global level α = 0.05, we made use of
the standard Bonferroni procedure (see, e.g., Miller (1981)). For this, the three null
hypotheses Hs

0 , Hr
0 , and He

0 were tested sequentially and separately at the significance
level α/3. Finally, the null hypothesis H0 : C ∈ Cellipt was rejected if any of the
considered sub-hypotheses was rejected.
Table 4.6 reports the empirical level of the testing procedure (in Column JMT)

and of the testing procedure for pseudo-observations (in Column JMTP) based on
random samples from the Gaussian and the t copula. The testing procedure appears
to hold its nominal level for copula data as well as for pseudo-observations across all
combinations of factors.

C n = 100 n = 250 n = 500 n = 1000

τ JMT JMTP JMT JMTP JMT JMTP JMT JMTP

Gauss
0.25 0.039 0.034 0.050 0.035 0.053 0.026 0.047 0.023
0.50 0.061 0.041 0.071 0.038 0.053 0.037 0.052 0.032
0.75 0.049 0.044 0.057 0.046 0.054 0.038 0.057 0.048
tν=5
0.25 0.062 0.036 0.054 0.032 0.051 0.035 0.047 0.031
0.50 0.046 0.037 0.052 0.037 0.051 0.034 0.052 0.029
0.75 0.039 0.038 0.056 0.046 0.062 0.043 0.055 0.040

Table 4.6: Empirical level of our testing procedure for ellipticity (JMT) and of our
testing procedure for pseudo-observations (JMTP) with significance level
α = 0.05: rate of rejecting H0 as observed in 1000 random samples of size
n from copula family C with Kendall’s tau τ .

To study the power of the testing procedure, random samples of the Frank, Clayton,
and Gumbel copula were considered. Table 4.7 shows the empirical power of the testing
procedure (in Column JMT) and of the testing procedure for pseudo-observations (in
Column JMTP). As already observed for all individual tests, the rejection rates vary
clearly across copula families, levels of dependence, and sample sizes. As expected,
the power increases with the sample size and with the level of dependence. The lowest
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rejection rates are observed for the Frank copula. However, it is still sufficiently good
in detecting the lack of ellipticity if the sample size is large enough and the level of
dependence is not too close to independence. For the Clayton copula, the testing
procedure performs best in detecting the non-ellipticity, even in very small samples of
size n = 100. The results for the Gumbel copula are only slightly worse than for the
Clayton copula and, hence, the testing procedure is still powerful. Similar observations
can be made for the empirical power of the testing procedure for pseudo-observations.
As for the individual tests, there are scenarios with higher empirical power for the
pseudo-observations than for copula data.

C n = 100 n = 250 n = 500 n = 1000

τ JMT JMTP JMT JMTP JMT JMTP JMT JMTP

Frank
0.25 0.074 0.045 0.071 0.055 0.112 0.099 0.190 0.169
0.50 0.085 0.087 0.175 0.165 0.331 0.316 0.619 0.597
0.75 0.098 0.167 0.226 0.238 0.459 0.444 0.747 0.749

Clayton
0.25 0.177 0.138 0.375 0.338 0.729 0.729 0.959 0.977
0.50 0.455 0.462 0.896 0.915 0.998 1.000 1.000 1.000
0.75 0.591 0.779 0.993 0.999 1.000 1.000 1.000 1.000

Gumbel
0.25 0.096 0.091 0.140 0.126 0.219 0.218 0.467 0.441
0.50 0.107 0.095 0.270 0.275 0.557 0.551 0.863 0.874
0.75 0.112 0.156 0.340 0.415 0.680 0.714 0.949 0.947

Table 4.7: Empirical power of our testing procedure for ellipticity (JMT) and of our
testing procedure for pseudo-observations (JMTP) with significance level
α = 0.05: rate of rejecting H0 as observed in 1000 random samples of size
n from copula family C with Kendall’s tau τ .

Compared to the results of our test based on the equality of Kendall’s tau and
Blomqvist’s beta in Chapter 3, the testing procedure performs much better for the
Clayton and the Gumbel copula. It is now possible to distinguish non-elliptical copulas
with very close Kendall’s tau and Blomqvist’s beta if they are not symmetric or not
radially symmetric. Furthermore, the testing procedure is still able to detect the
non-ellipticity of the Frank copula, which is symmetric and radially symmetric. All
in all, the idea of using the most known properties of elliptical copulas in the testing
procedure shows clear advantages.

59



Chapter 4 On tests for symmetry and radial symmetry towards testing for ellipticity

4.5 Empirical analysis
The main aim of this section is to illustrate our testing procedure for ellipticity in
practice using financial and insurance data. For this, the results of the three building
tests are reported. Since our tests for symmetry and radial symmetry are based on
a random sampling algorithm (see Section 4.2.1 and 4.2.2), we performed the tests
within the testing procedure for ellipticity 1000 times and consider the averages of the
resulting p-values.

In the sequel, the testing procedure is applied to six different data sets in total. For
the majority of these data sets, the decision resulting from the testing procedure is
the same for all 1000 replications. For two datasets, we get a different decision from 2
and 1 out of 1000 replications, respectively, than we get from the testing procedure
using the average of the p-values. Hence, the number of cases with a different decision
seems to be negligible. We recommend to perform the testing procedure more than 2
times, if the decision to accept or reject the null hypothesis is very close.

4.5.1 Financial data
As a first illustration, our testing procedure is applied to financial data from the US
stock market. Two major US stock price indices are selected: the Standard & Poor’s
500 (S&P 500), as one of the most popular indices of large-cap US equities, and the
Russell 2000, as one of the most popular small-cap US indices. In order to get data
sets of large sample sizes, daily returns of the two indices over different periods of three
years are considered. It is well known that the dependence structure of financial data
for crisis and non-crisis periods differs. Therefore, the following analysis is based on
the daily log-returns of the S&P 500 and the Russell 2000 indices for the crisis periods
from 1999 to 2001 and 2007 to 2009, as well as for the non-crisis periods from 2003 to
2005 and from 2011 to 2013. Furthermore, we are also interested in the dependence
structure between monthly returns of the two indices, which is of more interest from a
macroeconomic point of view. For this, monthly returns are considered for the period
of the last 30 years from 1988 to 2017.
To remove temporal dependencies, ARMA-GARCH time series models are fitted

to each series of log-returns. The choice of the final model is done using the BIC
(see, e.g., Schwarz (1978)). The resulting standardized residuals are transformed
non-parametrically by using the empirical cumulative distribution functions to achieve
approximate i.i.d. uniform margins. Figures 4.3 and 4.4 display the scatter plots of
the underlying copula data for the different data sets comprised of daily and monthly
returns of the S&P 500 and the Russell 2000 for the selected time periods, respectively.
In Figure 4.3, an elliptical shape is visually observable for the non-crisis periods from
2003 to 2005 and from 2011 to 2013, whereas the shape of the data for the crisis
periods from 1999 to 2001 and from 2007 to 2009 might be non-elliptical from the
visual impression. The shape of the copula data in Figure 4.4 is clearly non-elliptical.
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Figure 4.3: Daily data: Scatter plots of the non-parametrically transformed stan-
dardized residuals of the ARMA-GARCH models for the log-returns of
the S&P 500 and the Russell 2000 indices for different time periods.
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Figure 4.4: Monthly data: Scatter plot of the non-parametrically transformed stan-
dardized residuals of the ARMA-GARCH model for the log-returns of
the S&P 500 and the Russell 2000 indices for the time period from 1988
to 2017.

Table 4.8 presents p-values for the above discussed data sets. For the two non-crisis
periods, the null hypothesis H0 of the elliptical dependence structure cannot be rejected
at the considered significance level of 5%. In contrast, the testing procedure rejects H0
for the crisis period from 1999 to 2001 due to a very low p-value of the test for equality.
For the crisis period from 2007 to 2009, H0 cannot be rejected at the considered
significance level of 5%. However, the p-values of 0.042 and 0.030 for the test for
radial symmetry and the test for equality, respectively, are quite low and provide some
indication against H0. Note that the test for radial symmetry leads to a rejection of
H0 for 2 out of the 1000 replications. Hence, also for the crisis period from 2007 to
2009, elliptical copulas cannot be recommended to model the dependence structure
of the underlying data. The same applies for the data set comprised of the monthly
log-returns. Due to the very low p-value of the test for radial symmetry, the null
hypothesis of ellipticity is rejected at the considered significance level of 5%. All in all,
the results are in accordance with our expectations and the visual observations from
Figures 4.3 and 4.4.

4.5.2 Insurance data
One famous example for a bivariate data set from the insurance sector is given by losses
and corresponding allocated loss adjustment expenses (short ALAE) of insurance claims.
The US Insurance Services Office has collected data on 1500 general liability claims
randomly chosen from late settlement lags. Each claim contains an indemnity payment
(loss) and an allocated loss adjustment expense (ALAE). A detailed description of
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data time period symmetry radial symmetry equality

Daily data (crisis) 1999-2001 0.154 0.124 0.004
Daily data (non-crisis) 2003-2005 0.943 0.352 0.705
Daily data (crisis) 2007-2009 0.857 0.043 0.030
Daily data (non-crisis) 2011-2013 0.346 0.345 0.965

Monthly data 1988-2017 0.417 0.002 0.380

Table 4.8: p-values of our tests for symmetry, radial symmetry, and equality of
Kendall’s tau and Blomqvist’s beta for the dependence structure of the
financial data (S&P 500 and Russell 2000) for different time periods.

the data set can be found in Frees and Valdez (1998). The modeling of the joint
distribution of losses and ALAEs has also been analyzed in Genest et al. (1998),
Klugman and Parsa (1999), Denuit et al. (2006), Chen and Fan (2005), and Zhang
et al. (2016), among others. In Figure 4.5, scatter plots of the observations (left) and
of the logarithm of the observations (middle) are displayed.
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Figure 4.5: Scatter plots for data of loss and ALAE (left), logarithms of loss and
ALAE (middle), non-parametrically transformed data of loss and ALAE
(right). Sample size is n = 1500.

To achieve the approximate i.i.d. uniform margins, data is transformed non-
parametrically by using the marginal empirical cumulative distribution functions.
A scatter plot of the resulting transformed loss and ALAE is presented in Figure 4.5
(right). Applying our testing procedure for ellipticity then leads to p-values of 0.391 for
symmetry, 0.034 for radial symmetry, and 0.118 for the equality of Blomqvist’s beta
and Kendall’s tau. At the considered significance level of 5%, our testing procedure
cannot reject the null hypothesis H0. However, the low p-value of 0.034 for the radial
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symmetry provides some indication against H0. Note that the test for radial symmetry
leads to a rejection of H0 for 1 out of the 1000 replications. Hence, we would not
recommend elliptical copulas to model the dependence structure of the underlying loss
ALAE data.

The different parametric and semi-parametric model selection procedures in Frees
and Valdez (1998), Genest et al. (1998), Denuit et al. (2006), Chen and Fan (2005),
and Zhang et al. (2016) all resulted in the Gumbel copula as the preferred model
for the given loss ALAE data set. In the scatter plot of the copula data (Figure 4.5,
right), positive upper-tail dependence but no lower-tail dependence can be observed
between the two variables. This is expected by actuaries, since large losses are often
accompanied by large ALAEs, and in line with the tail dependence properties of the
Gumbel copula, which exhibits only upper-tail dependence. The choice of the Gumbel
copula is therefore not surprising.

4.6 Conclusion
In this chapter, we derive very simple non-parametric tests for symmetry and radial
symmetry for bivariate copula data, which are computationally very fast. An extensive
simulation study is conducted to investigate the finite-sample performance and to
compare the proposed tests to the already existing more advanced tests for symmetry
and radial symmetry from Genest et al. (2012) and Genest and Nešlehová (2014),
respectively, which do not require copula data and are applicable on the original
scale of the observations. The results of the Monte Carlo simulation show that the
proposed tests for symmetry and radial symmetry overall achieve sufficient empirical
power against the various alternatives. In comparison to the more advanced tests
with non-parametrically estimated margins, they are slightly less powerful and equally
powerful starting from a sample size of 1000. It should be mentioned that the proposed
tests are simpler and computationally less expensive and, hence, attractive for huge
samples. However, the proposed tests are not consistent and may fail to detect the
asymmetry if the two samples resulting from our algorithm have similar Kendall’s
taus.
Our next contribution is the construction of a powerful non-parametric goodness-

of-fit testing procedure for elliptical copulas by combining our proposed tests for
symmetry and radial symmetry with our test for copula data in Chapter 3. Hence,
the most common intrinsic properties of bivariate elliptical copulas, namely symmetry,
radial symmetry, and the equality of Kendall’s tau and Blomqvist’s beta are utilized.
The corresponding Monte Carlo simulation study shows that the proposed testing
procedure is more powerful than the test in Chapter 3 for samples from non-symmetric
or non-radially symmetric copula families.
Elliptical copulas are very popular in applied sciences. However, their application

should be treated with caution. To illustrate the testing procedure for ellipticity in
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practice, it is applied to financial and insurance data. The first empirical application
to data from the US stock market highlights that the dependence structure of two
major US stock price indices is not always captured by an elliptical copula. The second
application to the loss and ALAE insurance data set indicates that an elliptical copula
might not be the right choice to model the corresponding dependence structure.

Our tests for symmetry and radial symmetry can be combined with variance reduction
techniques (see, e.g., Korn et al. (2010)). The derivation of the adapted statistical
tests for symmetry and radial symmetry is carried out in Section 4.7.1. Here, we also
investigate the asymptotic distributions of the corresponding test statistics. Moreover,
note that the proposed tests can be based on any bivariate non-parametric measure of
ordinal association. Our tests based on Kendall’s tau outperform the tests based on
Blomqvist’s beta while they are comparable with the tests based on Spearman’s rho.
As an illustration, the results of the simulation study to compare our tests based on
Kendall’s tau and Spearman’s rho are portrayed in Section 4.7.2.
Finally, note that this chapter is devoted to the bivariate case. The development

of the testing procedure for ellipticity in higher dimensions is left open for future
research.

4.7 Supplementary material
In the following two sections, we give the theoretical derivation of the reflection
approach for the test for symmetry and radial symmetry, respectively, and present the
empirical results of the tests for symmetry and radial symmetry based on Spearman’s
rho.

4.7.1 Reflection approach
The proposed tests for symmetry and radial symmetry can be refined by utilizing
variance reduction techniques (see, e.g., Korn et al. (2010)). In contrast to the previous
approach (see Section 4.2), the considered sub-samples are completely reflected with
respect to the main diagonal or the point (0.5, 0.5), respectively. The empirical
estimator of Kendall’s tau is then based on the enlarged random samples with dependent
sample points. As a result, the precision of the statistical estimation is expected to be
improved. The theoretical derivations are given in the following two subsections.

Test for symmetry

Consider the sub-sample (UBs

1 , V Bs

1 ), . . ., (UBs

Ns
n
, V Bs

Ns
n

), whose realizations are below
the diagonal and expand it by the reflected counterparts (V Bs

1 , UBs

1 ), . . ., (V Bs

Ns
n
, UBs

Ns
n
).

Thus, instead of choosing either (UBs

i , V Bs

i ) or (V Bs

i , UBs

i ), both sample points are in
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the new random sample

(UBs

1 , V Bs

1 ), . . . , (UBs

Ns
n
, V Bs

Ns
n

), (V Bs

1 , UBs

1 ), . . . , (V Bs

Ns
n
, UBs

Ns
n
) . (4.12)

For the second random sample, we proceed in a similar way with the sub-sample
(UBs

1 , V Bs
1 ), . . . , (UBs

Ns
n
, V Bs

Ns
n

), whose realizations are above the diagonal. The resulting
random sample is given by

(UBs

1 , V Bs

1 ), . . . , (UBs

Ns
n
, V Bs

Ns
n

), (V Bs

1 , UBs

1 ), . . . , (V Bs

Ns
n
, UBs

Ns
n
) . (4.13)

Note that the sample points within both random samples are not independent any
more, while the random samples themselves are still independent.

Again, we base our test on the difference of the empirically estimated Kendall’s tau
τB

s,ref
2Ns

n
and τBs,ref2Ns

n
of the two newly generated random samples in (4.12) and (4.13),

respectively, and get
SrefNs

n
:= τB

s,ref
2Ns

n
− τBs,ref2Ns

n
.

Similarly to Section 4.2.1, N s
n can be assumed to be a sequence of positive integer-valued

random variables for which the convergence result in (4.8) holds. The asymptotic
distribution of the test statistic SrefNs

n
coincides with the one of the test statistic SNs

n

and is stated in the following theorem.

Theorem 4.4. Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate
random vector (U, V ), whose distribution function is a symmetric copula C. Further,
let (4.8) hold. Then, √

n? · SrefNs
n

d−→ N
(
0, 2σ2

)
,

where n? = n/2 and σ2 = Var
(
2h̃1

(
(U1, V1)

))
.

Proof of Theorem 4.4. Note that due to the present dependence in the underlying
random samples, the proof cannot rely on Sproule (1974) as the proof of Theorem 4.1.
Let (U1, V1), . . . , (Un, Vn) ∈ [0, 1]2 be a sample from the statistical model(

([0, 1]2)n,B([0, 1]2)⊗n, P⊗n
)
,

where P is a distribution with symmetric copula C and uniform marginals. For the
samples given in (4.12) and (4.13), the test statistic SrefNs

n
is given by the difference of

the corresponding empirical Kendall’s tau estimators τB
s,ref

2Ns
n

and τBs,ref2Ns
n

.
As a direct consequence from Equation (4.8), 2N s

n/n converges to 1 in probability
for n→∞. By virtue of Theorem 1 from Anscombe (1952), the stated asymptotic
convergence holds if the difference τB

s,ref
2n − τBs,ref2n satisfies the conditions (C1) and

(C2) of Anscombe (1952). Similarly to the proof of Theorem 4.1, it is sufficient to show
that τB

s,ref
2n satisfies (C1) and (C2) (see Equations (4.9) and (4.10) and the statement
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below). Using the sample given in (4.5) and N s
n = n, the sample given in (4.12) can

be alternatively represented by

Wi = (W1i,W2i) =
(ŨBs

i , Ṽ Bs

i ), for i ∈ {1, . . . , n}
(Ṽ Bs

i , ŨBs

i ), for i ∈ {n+ 1, . . . , 2n} .

Thus, Wi is for all i ∈ {1, . . . , 2n} a random vector distributed according to C.
Additionally, Wi1 and Wi2 are dependent for i1 < i2 only if i2 = i1 + n. Now, we
consider the empirical estimator of Kendall’s tau

τB
s,ref

2n = 2
2n(2n− 1)

∑
1≤i<j≤2n

h(Wi,Wj) , (4.14)

where
h(Wi,Wj) := sgn(W1i −W1j) sgn(W2i −W2j) .

Noting the possible dependence between Wi and Wj, the empirical estimator in
(4.14) is split up as follows

τB
s,ref

2n = 2
2n(2n− 1)

∑
1≤i<j≤2n
j 6=i+n

h(Wi,Wj) + 2
2n(2n− 1)

n∑
i=1

h(Wi,Wi+n) . (4.15)

For the second summand, it is obvious that
√
n · 2

2n(2n− 1)

n∑
i=1

h(Wi,Wi+n) a.s.−→ 0 , as n→∞ . (4.16)

Furthermore, the components of the function h in the first summand are independent
now and we define

U ind
2n (h) := 2

2n(2n− 1)
∑

1≤i<j≤2n
j 6=i+n

h(Wi,Wj) .

Let
h1(W1) := h̃1(W1)− τ

and
h2(W1,W2) := h(W1,W2)− h̃1(W1)− h̃1(W2) + τ .

Note that h2 is degenerate for independent Wi and Wj, that is

E [h2(Wi,Wj)|Wi] = 0 .

Similarly to the Hoeffding decomposition (see Theorem 1.2.1 in Denker (1985)) for
U -statistics, we obtain

U ind
2n (h) = U ind

2n,1 + U ind
2n,2 + 2n− 2

2n− 1 τ , (4.17)
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where
U ind

2n,1 := 2n− 2
n(2n− 1)

2n∑
i=1

h1(Wi)

and
U ind

2n,2 := 2
2n(2n− 1)

∑
1≤i<j≤2n
j 6=i+n

h2(Wi,Wj) .

To show that
√
nU2n,2 converges to 0 almost surely for n→∞, consider the fourth

moment E
[(√

n · U ind
2n,2

)4
]
. From the degeneracy of h2, the boundedness of h and

straightforward computations, it follows that

E
[(√

n · U ind
2n,2

)4
]

= n2
(

2
2n(2n− 1)

)4 ∑
1≤i1<j1≤2n

j 6=i+n

∑
1≤i2<j2≤2n

j 6=i+n

∑
1≤i3<j3≤2n

j 6=i+n

∑
1≤i4<j4≤2n

j 6=i+n

E [h2(Wi1 ,Wj1)h2(Wi2 ,Wj2)h2(Wi3 ,Wj3)h2(Wi4 ,Wj4)]

≤ Kn4

n2(2n− 1)4 ≤
K

n2 ,

where K > 0 is an absolute constant and Kn4 constitutes an upper limit for the
number of non-zero summands. The Markov inequality implies

∞∑
n=1

P
(
|
√
nU ind

2n,2| > ε
)
≤
∞∑
n=1

1
ε4
E
[
|
√
n · U ind

2n,2|4
]
≤ K

ε4

∞∑
n=1

1
n2 <∞

and, hence,
√
nU2n,2 converges to 0 almost surely for n→∞.

From the above considerations, it follows that
√
n
(
τB

s,ref
2n − τ

)
and

√
n · U ind

2n,1

have the same asymptotic distribution. Note that h1 is symmetric with respect to the
components of Wi under the null hypothesis and, hence,

U ind
2n,1 = 2n− 2

2n− 1 ·
2
n

n∑
i=1

h1(Wi) .

The central limit theorem now implies that
√
nU ind

2n,1 converges in distribution to a
centered normal distribution with variance σ2 = Var

(
2h̃1

(
(U1, V1)

))
. Thus, U ind

2n,1 and
therefore also τB

s,ref
2n satisfy (C1) with wn = 1/

√
n.

By Theorem 3 of Anscombe (1952), U ind
2n,1 satisfies (C2). Therefore, (4.15), (4.16),

(4.17) and the almost sure convergence of
√
nU ind

2n,2 imply that τB
s,ref

2n satisfies (C2).
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Similarly, it follows that τBs,ref2n satisfies (C1) and (C2). Following the steps in the
proof of Theorem 4.1 finally yields

√
n?
(
τB

s,ref
2Ns

n
− τBs,ref2Ns

n

)
d−→ N

(
0, 2σ2

)
.

The asymptotic variance 2σ2 is identical to the asymptotic variance in Theorem 4.1
and, therefore, Remark 4.2 provides a consistent estimation procedure for the unknown
variance of SrefNs

n
.

Test for radial symmetry

The two sub-samples with realizations below and above the counter-diagonal are
expanded by their reflected counterparts resulting in the new random samples

(UBr

1 , V Br

1 ), . . . , (UBr

Nr
n
, V Br

Nr
n

), (1− UBr

1 , 1− V Br

1 ), . . . , (1− UBr

Nr
n
, 1− V Br

Nr
n

) (4.18)

and

(UBr

1 , V Br

1 ), . . . , (UBr

Nr
n
, V Br

Nr
n

), (1− UBr

1 , 1− V Br

1 ), . . . , (1− UBr

Nr
n
, 1− V Br

Nr
n

) . (4.19)

Again, the sample points within both random samples are not independent any more,
while the random samples themselves are still independent.

The test is based on the difference

Rref
Nr
n

:= τB
r,ref

2Nr
n
− τBr,ref2Nr

n
,

where τB
r,ref

2Nr
n

and τBr,ref2Nr
n

denote the empirically estimated Kendall’s tau based on the
random samples in (4.18) and (4.19), respectively. Similarly to Section 4.2.2, N r

n can
be assumed to be a sequence of positive integer-valued random variables for which the
convergence result in (4.11) holds. Note that the asymptotic distribution of the test
statistic Rref

Nr
n

is stated in the following theorem does not coincide with the one of the
test statistic RNr

n
.

Theorem 4.5. Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate
random vector (U, V ), whose distribution function is a radially symmetric copula C.
Further, let (4.11) hold. Then,

√
n? ·Rref

Nr
n

d−→ N
(
0, 2σ2

r,ref

)
,

where n? = n/2 and

σ2
r,ref = Var

(
h̃1
(
(U1, V1)

))
+ Var

(
h̃1
(
(1− U1, 1− V1)

))
+ 2Cov

(
h̃1
(
(U1, V1)

)
, h̃1

(
(1− U1, 1− V1)

))
.
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Proof of Theorem 4.5. The proof is in line with the proof of Theorem 4.4. The
difference in the asymptotic variance emerges from the fact that the function h̃1 is not
radially symmetric with respect to the components of its argument. Note that, for
N r
n = n, the sample given in (4.18) can be alternatively represented by

Wi = (W1i,W2i) =
(ŨBr

i , Ṽ Br

i ), for i ∈ {1, . . . , n}
(1− ŨBr

i , 1− Ṽ Br

i ), for i ∈ {n+ 1, . . . , 2n} ,

where (ŨBr

i , Ṽ Br

i ) is defined similarly to (4.5) but for the case of radial symmetry.
Since h̃1 is not radially symmetric with respect to the components of Wi under the

null hypothesis, U ind
2n,1 from the proof of Theorem 4.4 becomes

U ind
2n,1 = 2n− 2

2n− 1 ·
1
n

n∑
i=1

(h1(Wi) + h1(1−Wi)) ,

where 1 −Wi = (1−W1i, 1−W2i). The central limit theorem now implies that√
n · U ind

2n,1 converges in distribution to a centered normal distribution with variance

σ2
r,ref = Var

(
h̃1
(
(U1, V1)

))
+ Var

(
h̃1
(
(1− U1, 1− V1)

))
+ 2Cov

(
h̃1
(
(U1, V1)

)
, h̃1

(
(1− U1, 1− V1)

))
.

Altogether, this results in
√
n?
(
τB

r,ref
2Nr

n
− τBr,ref2Nr

n

)
d−→ N

(
0, 2σ2

r,ref

)
.

The components of the asymptotic variance 2σ2
r,ref can be estimated consistently in

the framework of Remark 4.2.

Additional remarks

Note that the tests, as presented in Section 4.2, are based on a random sampling
algorithm. The reflection of the entire sample leads to an elimination of the inherited
variability of the test statistic. Hence, the resulting tests for symmetry and radial
symmetry based on the reflection approach do not require a repeated execution as
done in the empirical analysis in Section 4.5. This contemplates a computational
advantage due to reduced processing times for the tests.
We conducted a simulation study to compare the tests for symmetry and radial

symmetry from Section 4.2 to the ones based on the reflection approach presented
above. In accordance with the theoretical results, we got similar empirical results for
the test for symmetry with and without the reflection approach and better empirical
results for the test for radial symmetry using the reflection approach than without.
However, note that the stated reduced computation time also makes the reflection
approach beneficial for the test for symmetry.
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4.7.2 Performance of the simple tests for symmetry and radial
symmetry based on Spearman’s rho

Recall that the tests for symmetry and radial symmetry are originally based on
Kendall’s tau. However, they can be based on any bivariate non-parametric measure
of bivariate rank correlation. In this section, we illustrate the performance of the tests
for symmetry and radial symmetry when they are based on Spearman’s rho instead.
Note that these tests and the corresponding asymptotic distributions can be derived
in a similar manner to that in Section 4.2.
Spearman’s rho is an alternative rank correlation coefficient, which is defined as

follows.

Definition 4.6. (Spearman’s rho)
Let (X ′, Y ′) and (X ′′, Y ′′) be independent copies of the random vector (X, Y ) of
continuous random variables X and Y . Then, Spearman’s rho is defined by

ρ12 := 3 (P((X −X ′)(Y − Y ′′) > 0)− P((X −X ′)(Y − Y ′′) < 0)) .

Hence, Spearman’s rho equals the probability of concordance minus the probability
of discordance for the two vectors (X, Y ) and (X ′, Y ′′). Furthermore, for continuous
random variables X and Y with copula C, Spearman’s rho is completely determined
by their copula C (see Theorem 5.1.6 in Nelsen (1999)) and can be expressed as

ρXY = ρC = 12
∫ 1

0

∫ 1

0
uv dC(u, v)− 3 .

It easily follows that for copula data Spearman’s rho is equal to the linear correlation.
More, precisely, let (U, V ) be distributed according to the bivariate copula C, then it
holds that

ρC = Cor(U, V ) .

To compare the performance of the tests for symmetry and radial symmetry based
on Kendall’s tau and Spearman’s rho, respectivley, we have conducted a simulation
study. with a similar setup to the one described in Section 4.3. Tables 4.9 and 4.10
present the empirical level and power of our test for symmetry based on Kendall’s tau
(in Column JMS), the test for symmetry based on Spearman’s rho (in Column SpS),
the corresponding tests for pseudo-observations (in Column JMSP and SpSP), and
the test from Genest et al. (2012) (in Column GNQ). Tables 4.11 and 4.12 display
the empirical level and power of our test for radial symmetry based on Kendall’s tau
(in Column JMR), the test for radial symmetry based on Spearman’s rho (in Column
SpR), the corresponding tests for pseudo-observations (in Column JMRP and SpRP),
and the test from Genest and Nešlehová (2014) (in Column GN).
Regarding the empirical level in Tables 4.9 and 4.11, we observe that the test for

symmetry as well as the test for radial symmetry based on Spearman’s rho are slightly
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too liberal for small sample sizes, especially for n = 100. As a consequence, the higher
empirical power for the tests based on Spearman’s rho compared to the ones based on
Kendall’s tau for small sample sizes (see Tables 4.10 and 4.12) cannot be unequivocally
classified as a superior behavior of the former. For larger sample sizes, all tests hold
their nominal level well independently of the underlying rank correlation coefficient
(see Tables 4.9 and 4.11). For pseudo-observations, the tests based on Spearman’s rho
and Kendall’s tau show very similar behavior with respect to the empirical level.
Looking at the corresponding empirical power results in Tables 4.10 and 4.12 for

larger sample sizes, that is n = 500 and n = 1000, contradictory trends can be observed
for the tests for symmetry compared to the tests for radial symmetry. More precisely,
for the symmetry tests, the test based on Spearman’s rho performs better than the
one based on Kendall’s tau, whereas for the radial symmetry tests, the rejection rates
for the test based on Kendall’s tau tend to be higher than the ones for the test based
on Spearman’s rho. For pseudo-observations, the observations are similar to the ones
described above for copula data.
Since there is no clear winner regarding the empirical power results and the tests

based on Spearman’s rho for copula data had some problems in holding their nominal
level, we decided to base our tests for symmetry and radial symmetry on Kendall’s
tau.

C
τ JMS SpS JMSP SpSP GNQ JMS SpS JMSP SpSP GNQ

n = 100 n = 250

Gauss
0.25 0.066 0.077 0.012 0.016 0.022 0.055 0.054 0.016 0.019 0.039
0.50 0.060 0.072 0.012 0.015 0.015 0.061 0.064 0.006 0.009 0.027
0.75 0.041 0.048 0.024 0.026 0.011 0.052 0.049 0.021 0.014 0.011

tν=5
0.25 0.059 0.070 0.014 0.026 0.033 0.043 0.051 0.016 0.020 0.046
0.50 0.047 0.061 0.018 0.028 0.014 0.058 0.066 0.016 0.017 0.035
0.75 0.034 0.034 0.027 0.031 0.022 0.055 0.063 0.019 0.019 0.014

Frank
0.25 0.054 0.080 0.014 0.024 0.031 0.052 0.061 0.014 0.016 0.038
0.50 0.057 0.070 0.024 0.025 0.015 0.060 0.063 0.013 0.014 0.025
0.75 0.036 0.054 0.017 0.013 0.016 0.032 0.050 0.009 0.007 0.011

(To be continued)

Table 4.9: Empirical level of our test for symmetry (JMS), the test for symmetry based
on Spearman’s rho (SpS), the corresponding tests for pseudo-observations
(JMSP and SpSP), and the test from Genest et al. (2012) (GNQ) with
significance level α = 0.05: rate of rejecting H0 as observed in 1000 random
samples of size n from copula family C with Kendall’s tau τ .
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C
τ JMS SpS JMSP SpSP GNQ JMS SpS JMSP SpSP GNQ

Clayton
0.25 0.060 0.088 0.024 0.033 0.033 0.062 0.073 0.018 0.018 0.040
0.50 0.063 0.070 0.029 0.030 0.031 0.050 0.060 0.013 0.008 0.029
0.75 0.059 0.058 0.051 0.043 0.021 0.059 0.059 0.028 0.031 0.015

Gumbel
0.25 0.063 0.075 0.022 0.033 0.036 0.049 0.054 0.020 0.020 0.038
0.50 0.057 0.054 0.015 0.022 0.027 0.050 0.054 0.010 0.013 0.026
0.75 0.053 0.049 0.034 0.029 0.017 0.051 0.054 0.021 0.022 0.013

n = 500 n = 1000

Gauss
0.25 0.055 0.052 0.012 0.014 0.048 0.054 0.058 0.007 0.009 0.044
0.50 0.045 0.050 0.010 0.005 0.020 0.051 0.044 0.006 0.007 0.032
0.75 0.046 0.049 0.016 0.008 0.004 0.050 0.050 0.006 0.002 0.013

tν=5
0.25 0.052 0.055 0.023 0.030 0.035 0.059 0.063 0.013 0.016 0.035
0.50 0.049 0.051 0.009 0.009 0.031 0.062 0.057 0.006 0.010 0.046
0.75 0.057 0.053 0.010 0.013 0.013 0.051 0.052 0.008 0.009 0.019

Frank
0.25 0.051 0.046 0.010 0.011 0.043 0.045 0.051 0.009 0.008 0.032
0.50 0.052 0.052 0.005 0.005 0.038 0.061 0.069 0.007 0.006 0.035
0.75 0.042 0.044 0.010 0.010 0.006 0.048 0.040 0.009 0.007 0.016

Clayton
0.25 0.052 0.059 0.010 0.009 0.032 0.051 0.046 0.009 0.008 0.043
0.50 0.059 0.042 0.003 0.005 0.029 0.045 0.039 0.004 0.006 0.035
0.75 0.056 0.054 0.015 0.023 0.021 0.049 0.051 0.009 0.008 0.027

Gumbel
0.25 0.061 0.066 0.011 0.014 0.035 0.049 0.050 0.013 0.011 0.042
0.50 0.053 0.054 0.004 0.006 0.024 0.049 0.051 0.006 0.007 0.039
0.75 0.050 0.052 0.019 0.013 0.008 0.049 0.043 0.003 0.011 0.028

Table 4.9: (continued)
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C
τ JMS SpS JMSP SpSP GNQ JMS SpS JMSP SpSP GNQ

n = 100 n = 250

Gauss
δ = 0.25
0.50 0.095 0.133 0.067 0.084 0.082 0.157 0.199 0.140 0.167 0.233
0.75 0.434 0.571 0.553 0.668 0.618 0.849 0.942 0.954 0.992 0.995
0.90 0.963 0.987 0.983 0.996 0.996 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.155 0.203 0.145 0.186 0.199 0.296 0.365 0.312 0.378 0.499
0.75 0.672 0.783 0.798 0.883 0.907 0.976 0.989 0.997 1.000 1.000
0.90 0.973 0.988 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.158 0.201 0.134 0.167 0.168 0.298 0.339 0.289 0.338 0.393
0.75 0.521 0.598 0.576 0.647 0.626 0.896 0.919 0.961 0.969 0.988
0.90 0.657 0.736 0.744 0.783 0.844 0.979 0.976 0.996 0.996 0.999

Clayton
δ = 0.25
0.50 0.177 0.203 0.149 0.158 0.093 0.361 0.348 0.343 0.341 0.260
0.75 0.678 0.722 0.763 0.771 0.779 0.958 0.966 0.998 0.996 1.000
0.90 0.892 0.974 0.981 0.998 0.999 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.148 0.194 0.115 0.141 0.111 0.307 0.313 0.264 0.265 0.339
0.75 0.463 0.569 0.550 0.651 0.834 0.871 0.918 0.953 0.972 1.000
0.90 0.817 0.907 0.920 0.975 0.999 0.998 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.092 0.121 0.058 0.072 0.072 0.132 0.147 0.110 0.111 0.169
0.75 0.190 0.276 0.189 0.250 0.366 0.440 0.491 0.469 0.533 0.814
0.90 0.460 0.541 0.515 0.560 0.764 0.827 0.867 0.919 0.944 0.997

Gumbel
δ = 0.25
0.50 0.142 0.193 0.149 0.172 0.110 0.263 0.301 0.268 0.308 0.275
0.75 0.592 0.702 0.743 0.793 0.679 0.944 0.983 0.982 0.996 0.997
0.90 0.990 0.997 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.285 0.350 0.305 0.357 0.272 0.599 0.651 0.669 0.714 0.704
0.75 0.862 0.920 0.950 0.963 0.970 0.997 1.000 1.000 1.000 1.000
0.90 0.987 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(To be continued)

Table 4.10: Empirical power of our test for symmetry (JMS), the test for symmetry
based on Spearman’s rho (SpS), the corresponding tests for pseudo-
observations (JMSP and SpSP), and the test from Genest et al. (2012)
(GNQ) with significance level α = 0.05: rate of rejecting H0 as observed
in 1000 random samples of size n from copula family C asymmetrized
with parameter δ and with Kendall’s tau τ .
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C
τ JMS SpS JMSP SpSP GNQ JMS SpS JMSP SpSP GNQ

δ = 0.75
0.50 0.273 0.348 0.284 0.337 0.284 0.638 0.670 0.690 0.725 0.690
0.75 0.619 0.702 0.693 0.734 0.752 0.951 0.963 0.985 0.987 0.993
0.90 0.722 0.792 0.799 0.842 0.893 0.987 0.991 0.999 0.997 1.000

n = 500 n = 1000

Gauss
δ = 0.25
0.50 0.285 0.371 0.242 0.340 0.466 0.480 0.589 0.530 0.665 0.803
0.75 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.564 0.633 0.645 0.727 0.851 0.846 0.895 0.936 0.965 0.989
0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.542 0.581 0.604 0.645 0.764 0.846 0.859 0.889 0.917 0.968
0.75 0.996 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Clayton
δ = 0.25
0.50 0.586 0.579 0.633 0.583 0.548 0.885 0.873 0.954 0.925 0.909
0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.25 0.509 0.537 0.578 0.586 0.715 0.813 0.822 0.901 0.898 0.965
0.50 0.991 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.197 0.213 0.173 0.190 0.295 0.370 0.375 0.365 0.374 0.586
0.75 0.751 0.788 0.832 0.877 0.988 0.961 0.974 0.990 0.996 1.000
0.90 0.989 0.990 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Gumbel
δ = 0.25
0.50 0.515 0.576 0.573 0.632 0.637 0.744 0.796 0.855 0.890 0.916
0.75 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.5
0.50 0.895 0.911 0.963 0.974 0.974 0.992 0.998 0.999 0.999 1.000
0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

δ = 0.75
0.50 0.888 0.900 0.966 0.971 0.963 0.990 0.993 1.000 1.000 1.000
0.75 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.10: (continued)
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C
τ JMR SpR JMRP SpRP GN JMR SpR JMRP SpRP GN

n = 100 n = 250
Gauss
0.25 0.049 0.071 0.049 0.052 0.041 0.058 0.062 0.029 0.039 0.047
0.50 0.055 0.062 0.059 0.065 0.037 0.053 0.053 0.053 0.060 0.044
0.75 0.052 0.050 0.073 0.076 0.042 0.046 0.048 0.077 0.082 0.051
tν=5
0.25 0.063 0.076 0.038 0.057 0.050 0.065 0.071 0.040 0.043 0.052
0.50 0.041 0.058 0.040 0.045 0.031 0.053 0.054 0.042 0.052 0.043
0.75 0.052 0.059 0.054 0.056 0.029 0.053 0.054 0.064 0.067 0.051
Frank
0.25 0.061 0.084 0.033 0.043 0.039 0.053 0.061 0.034 0.037 0.045
0.50 0.044 0.068 0.067 0.071 0.052 0.046 0.058 0.067 0.066 0.049
0.75 0.032 0.062 0.111 0.095 0.037 0.044 0.047 0.116 0.098 0.040

n = 500 n = 1000
Gauss
0.25 0.054 0.057 0.030 0.029 0.042 0.042 0.049 0.030 0.025 0.049
0.50 0.060 0.060 0.055 0.056 0.059 0.047 0.053 0.045 0.044 0.044
0.75 0.039 0.041 0.060 0.066 0.052 0.056 0.057 0.079 0.079 0.051
tν=5
0.25 0.052 0.055 0.023 0.030 0.035 0.059 0.063 0.013 0.016 0.035
0.50 0.049 0.051 0.009 0.009 0.031 0.062 0.057 0.006 0.010 0.046
0.75 0.057 0.053 0.010 0.013 0.013 0.051 0.052 0.008 0.009 0.019
Frank
0.25 0.054 0.054 0.034 0.029 0.039 0.056 0.059 0.036 0.038 0.049
0.50 0.056 0.061 0.056 0.054 0.057 0.049 0.049 0.039 0.044 0.040
0.75 0.047 0.048 0.049 0.052 0.036 0.051 0.050 0.052 0.054 0.052

Table 4.11: Empirical level of our test for radial symmetry (JMR), the test for radial
symmetry based on Spearman’s rho (SpR), the corresponding tests for
pseudo-observations (JMRP and SpRP), and the test from Genest and
Nešlehová (2014) (GN) with significance level α = 0.05: rate of rejecting
H0 as observed in 1000 random samples of size n from copula family C
with Kendall’s tau τ .
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C
τ JMR SpR JMRP SpRP GN JMR SpR JMRP SpRP GN

n = 100 n = 250
Clayton
0.25 0.256 0.295 0.229 0.245 0.377 0.517 0.526 0.506 0.483 0.730
0.50 0.625 0.628 0.640 0.600 0.811 0.955 0.938 0.965 0.945 0.997
0.75 0.775 0.846 0.884 0.800 0.921 0.997 0.998 0.999 0.994 1.000

Gumbel
0.25 0.119 0.151 0.123 0.145 0.092 0.207 0.226 0.215 0.217 0.246
0.50 0.166 0.177 0.193 0.198 0.161 0.413 0.365 0.447 0.373 0.458
0.75 0.166 0.218 0.234 0.222 0.132 0.516 0.450 0.575 0.457 0.495

S-tν=4
0.25 0.470 0.494 0.493 0.501 0.514 0.885 0.853 0.905 0.867 0.951
0.50 0.331 0.338 0.395 0.358 0.336 0.713 0.661 0.734 0.640 0.770
0.75 0.152 0.218 0.230 0.231 0.113 0.497 0.472 0.575 0.479 0.436

n = 500 n = 1000
Clayton
0.25 0.851 0.826 0.858 0.824 0.959 0.983 0.978 0.993 0.984 1.000
0.50 1.000 0.998 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000
0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gumbel
0.25 0.343 0.334 0.342 0.315 0.491 0.615 0.555 0.638 0.565 0.800
0.50 0.703 0.595 0.722 0.607 0.814 0.934 0.859 0.948 0.871 0.987
0.75 0.814 0.668 0.823 0.688 0.828 0.981 0.917 0.985 0.909 0.992

S-tν=4
0.25 0.996 0.987 0.998 0.987 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.965 0.912 0.963 0.894 0.991 1.000 0.997 1.000 0.998 1.000
0.75 0.834 0.750 0.878 0.722 0.843 0.991 0.953 0.993 0.937 0.997

Table 4.12: Empirical power of our test for radial symmetry (JMR), the test for
radial symmetry based on Spearman’s rho (SpR), the corresponding tests
for pseudo-observations (JMRP and SpRP), and the test from Genest
and Nešlehová (2014) (GN) with significance level α = 0.05: rate of
rejecting H0 as observed in 1000 random samples of size n from copula
family C with Kendall’s tau τ .
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5
Further development of the simple

non-parametric goodness-of-fit test for
elliptical copulas

5.1 Introduction
For a classification of this chapters topic within the research context, we refer to the
introduction of Chapter 3 (see Section 3.1). Therein, the relevance of a statistical
testing procedure to assess whether the underlying dependence structure of a given
random sample is captured by an elliptical copula is outlined. For given copula data,
Chapter 3 then provides us with a simple goodness-of fit test for the null hypothesis
that the unknown copula C of the given data belongs to the class of elliptical copulas
Cellipt, that is for

H0 : C ∈ Cellipt ,

against the alternative
H1 : C /∈ Cellipt .

The core element of the simple test is the known equality of Kendall’s tau and
Blomqvist’s beta for all bivariate margins under the null hypothesis H0 of an ellip-
tical copula. The test is then based on a Wald-type test statistic which, under H0,
asymptotically follows a χ2 distribution (for Details see Chapter 3).
The simple goodness-of-fit test from Chapter 3 is restrictive with respect to the

following two issues. On the one hand, it assumes given copula data and, therefore,
neglects unknown marginal distribution functions and their estimation. In practical
applications, marginal distribution functions are usually unknown and are estimated
parametrically or non-parametrically. The empirical results in Section 3.5 indicate that
the finite sample performance of the simple test is not influenced by the non-parametric
estimation of unknown marginal distributions. However, the resulting dependence of
the pseudo-observations affects the statistical inference of the test statistic. On the
other hand, from the simulation study in Section 3.5 it becomes apparent that the
simple test has problems to hold its nominal level in higher dimensions.

The main objective of this chapter is the advanced development of the simple test to
resolve the two stated restrictions. Note that these also get addressed in Quessy (2020).
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However, the results presented in the following have been developed independently over
the past few years since the publication of Jaser et al. (2017). For bivariate data with
unknown marginal distributions, the asymptotic distribution of the statistic defined
by the difference between Blomqvist’s beta and Kendall’s tau is outlined in Jaser et al.
(2017) by considering the empirical copula process and applying the functional Delta
method (see Theorem 3.9.4 in van der Vaart and Wellner (1996)). One objective of
this chapter is to formalize this derivation and generalize it for data of any dimension.
This enables us to drop the first restriction of given copula data and constitutes an
alternative to the proofs in Quessy (2020).
The second restriction is a consequence of the fact that the design of the test

statistic Tn defined in Equation (3.12) involves a consistent estimator of the covariance
matrix ν. As the dimension d increases, the number of elements to be estimated in
this d(d − 1)/2 × d(d − 1)/2-dimensional matrix gets large and huge sample sizes
are needed to reasonably estimate the covariance matrix. The slow rate of the
distributional approximation with the asymptotic χ2-distribution for increasing sample
sizes in dimension d = 6 becomes apparent from Figure 3.5. To overcome this second
restriction of the simple test, we propose an L2-type test statistic in this chapter, which
does not require an estimation of the covariance matrix. The limiting distribution
of the new test statistic still depends on the unknown copula C and, hence, some
bootstrap procedure is needed. The most popular approximation is the multiplier
bootstrap, which is also used in Quessy (2020). In the following, we present an
alternative approach by making use of the subsampling approximation introduced in
Kojadinovic and Stemikovskaya (2019). Regarding the finite sample performance, the
subsampling approximation shows significantly superior behavior compared to the
empirical bootstrap and equivalent performance compared to the multiplier bootstrap.
The remainder of this chapter is organized as follows. In Section 5.2 the empirical

copula process and its weak convergence are introduced. The test statistic and its
asymptotic behavior as well as a subsampling approximation are presented in Section
5.3. Section 5.4 describes the setup of the simulation study to analyze the finite sample
performance. Finally, Section 5.5 concludes. Some auxiliary results are deferred to
Section 5.6.

5.2 Preliminaries
Let X ∈ Rd be a d-dimensional random vector with cumulative distribution func-
tion F and continuous univariate marginal distribution functions F1, . . . , Fd and
copula C. Now, let X1 = (X11, . . . , Xd1), . . . ,Xn = (X1n, . . . , Xdn) ∈ Rd be a
random sample of n independent observations from the random vector X. If the
marginal distribution functions F1, . . . , Fd are known, copula data can be easily de-
rived. Dropping the assumption of known marginal distribution functions, it is a
natural approach to estimate the unknown margins by their corresponding empiri-
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cal counterparts F1,n, . . . , Fd,n defined in Equation (2.10) to get pseudo-observations
Û1 = (Û11, . . . , Ûd1), . . . , Ûn = (Û1n, . . . , Ûdn) defined in Equation (2.12).

Inspired by Sklar’s theorem (see Theorem 2.1), the empirical copula Cn of the sample
is defined in Equation (2.11). Alternatively, the empirical copula can also be defined
as the empirical cumulative distribution function of the sample of pseudo-observations
resulting in the definition of Ĉn in Equation (2.13). These definitions of the empirical
copula lead to the following empirical copula processes

Cn(u) =
√
n(Cn(u)− C(u)) ,

and
Ĉn(u) =

√
n(Ĉn(u)− C(u)) .

In the sequel,  denotes weak convergence in the metric space `∞([0, 1]d), which is
the space of all uniformly bounded functions on the unit hypercube [0, 1]d equipped
with the metric induced by the supremum norm. For details on weak convergence and
empirical processes, we refer to van der Vaart and Wellner (1996) and Kosorok (2008).
In the following condition, a non restrictive smoothness assumption on the copula C
is stated.

Condition 5.1. For k = 1, . . . , d, the first-order partial derivatives ∂kC(u) exist and
are continuous on the set {u ∈ [0, 1]d : uk ∈ (0, 1)}.

For completeness, we define ∂kC(u) = lim suph↓0{C(u + hek) − C(u)}/h for u ∈
[0, 1]d \ {u ∈ [0, 1]d : uk ∈ (0, 1)}, where ek denotes the kth unit vector. Based on this
condition, Segers (2012) derived the asymptotics of the empirical copula process Cn.

Proposition 5.2. (Segers (2012))
If the copula C satisfies Condition 5.1, the empirical copula process Cn converges
weakly towards the Gaussian field GC, that is

Cn =
√
n(Cn − C) GC , in `∞([0, 1]d) .

The limiting Gaussian field GC is defined, for all u ∈ [0, 1]d, by

GC(u) = BC(u)−
d∑
j=1

∂jC(u)BC(u(j)) , (5.1)

Further, BC is a d-dimensional C-Brownian bridge on [0, 1]d, that is a tight centered
Gaussian process with covariance function given, for all u,v ∈ [0, 1]d, by

Cov(BC(u),BC(v)) = C(u ∧ v)− C(u)C(v) ,

where u ∧ v = (min{u1, v1}, . . . ,min{ud, vd}).
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The main result of this paper is based on the weak convergence of the empirical
copula process Ĉn. Kojadinovic and Stemikovskaya (2019) outline that Proposition
5.2 also holds for Ĉn, that is

Ĉn =
√
n(Ĉn − C) GC , in `∞([0, 1]d) . (5.2)

Furthermore for k, ` ∈ {1, . . . , d} with k < `, the corresponding bivariate margin GCk`
of GC can be derived in the following way. Let (uk, u`) ∈ [0, 1]2, then we have

GCk`(uk, u`) = GC(u(k,`)) = BC(u(k,`))−
d∑
j=1

∂jC(u(k,`))BC(u(k,`)(j))

= BCk`(uk, u`)− ∂kCk`(uk, u`)BCk`(uk, 1)− ∂`Ck`(uk, u`)BCk`(1, u`) ,

where BCk` is a bivariate Ck`-Brownian bridge on [0, 1]2. Note that GCk` is completely
tucked, that is GCk` is pinned down to 0 on the entire boundary of the unit square
[0, 1]2 (see, e.g., Example A.2.12 in van der Vaart and Wellner (1996)).

5.3 Testing ellipticity

5.3.1 The test statistic and its asymptotic behavior
Under the hypothesis of an elliptical copula C, also all marginal copulas have to be
elliptical. The test in Chapter 3 is based on the equality of Kendall’s tau τCk` and
Blomqvist’s beta βCk` for all pairs k, ` ∈ {1, . . . , d} with k < `. By virtue of this
equality (see Equation (3.5)), the test statistic is constructed using all d(d − 1)/2
pairwise differences β?k`,n − τk`,n, k, ` ∈ {1, . . . , d} with k < `, between the empirically
estimated Blomqvist’s beta β?k`,n and Kendall’s tau τk`,n. Since the utilized estimator
of β depends on the marginal medians, the test in Chapter 3 requires copula data. In
this chapter, we discard the assumption of known marginal distribution functions.

Recall from Equations (2.1) and (2.3) that Kendall’s tau and Blomqvist’s beta are
completely determined by the bivariate marginal copula Ck` and can be expressed as

τk` = τCk` = 4
∫ 1

0

∫ 1

0
Ck`(uk, u`) dCk`(uk, u`)− 1

and
βk` = βCk` = 4Ck`(0.5, 0.5)− 1 .

A suitable non-parametric estimator of βk` can be obtained by replacing the copula Ck`
in Equation (2.3) with the empirical counterpart given by Ĉk`,n(uk, u`) = Ĉn(u(k`)),
for all (uk, u`) ∈ [0, 1]2. This yields

β̂k`,n = 4Ĉk`,n(0.5, 0.5)− 1 . (5.3)
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Similarly, a non-parametric estimator of τk` is given by

τ̂k`,n = 4
∫ 1

0

∫ 1

0
Ĉk`,n(uk, u`) dĈk`,n(uk, ul)− 1 . (5.4)

This results in the statistic D̂n defined by

D̂n = β̂n − τ̂n , (5.5)

where β̂n =
(
β̂12,n, β̂13,n, . . . , β̂d−1 d,n

)
and τ̂n = (τ̂12,n, τ̂13,n, . . . , τ̂d−1 d,n).

Note that the estimators β̂k`,n and τ̂k`,n are asymptotically equivalent to the esti-
mators βk`,n and τk`,n defined in (2.4) and (2.2), respectively. We get the following
lemma.

Lemma 5.3. Let βk`,n and τk`,n as well as β̂k`,n and τ̂k`,n be defined as in (2.4) and
(2.2) as well as (5.3) and (5.4), respectively. Then, it holds that

(i) βk`,n = β̂k`,n + oP
(

1√
n

)
,

(ii) τk`,n = τ̂k`,n + oP
(

1√
n

)
.

Proof. The proof of (i) for Blomqvist’s beta is a straightforward consequence of Lemma
1 in Genest et al. (2013). The proof of (ii) for Kendall’s tau is given in Section 5.6.1.

Now, let us consider the map

Φ : DΦ → R
d(d−1)

2 , H 7→


4H12(0.5, 0.5)− 4

∫
[0,1]2 H12(u1, u2)dH12(u1, u2)

4H13(0.5, 0.5)− 4
∫

[0,1]2 H13(u1, u2)dH13(u1, u2)
. . .

4Hd−1,d(0.5, 0.5)− 4
∫

[0,1]2 Hd−1,d(u1, u2)dHd−1,d(u1, u2)

 ,

where DΦ is the space of all distribution functions H on [0, 1]d with Hk`(u, 0) =
Hk`(0, u) = 0 for all u ∈ [0, 1] and all k, ` ∈ {1, . . . , d} and k < `. Note that under the
null hypothesis,

√
n D̂n =

√
n(β̂n − τ̂n) =

√
n
(
Φ(Ĉn)− Φ(C)

)
.

Thus, in order to derive the weak convergence of D̂n for a sample whose depen-
dence structure is captured by an elliptical copula, it is sufficient to show Hadamard-
differentiability of Φ tangentially to suitable subspaces and to apply the functional
delta method (see Theorem 3.9.4 in van der Vaart and Wellner (1996)).
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Theorem 5.4. Suppose Condition 5.1 holds. Then Φ is Hadamard-differentiable at
C tangentially to D0, the set of continuous functions on [0, 1]d. Its derivative at C in
α ∈ D0 is given by

(Φ′C(α)) (u) =


4α12(0.5, 0.5)− 4

∫
[0,1]2 C12 dα12 − 4

∫
[0,1]2 α12 dC12

4α13(0.5, 0.5)− 4
∫

[0,1]2 C13 dα13 − 4
∫

[0,1]2 α13 dC13
. . .
4αd−1,d(0.5, 0.5)− 4

∫
[0,1]2 Cd−1,d dαd−1,d − 4

∫
[0,1]2 αd−1,d dCd−1,d

 ,

where αk`(uk, ul) = α(u(k`)), for k, ` ∈ {1, . . . , d} with k < `.

Proof. Let E be the space of all distribution functions η on [0, 1]2 with η(u, 0) =
η(0, u) = 0 for all u ∈ [0, 1] and decompose Φ = Φ2 ◦ Φ1, where

Φ1 :
DΦ → E

d(d−1)
2 ,

H 7→ (H12, H13, . . . , Hd−1,d) ,

Φ2 :



E
d(d−1)

2 → R
d(d−1)

2 ,

(H12, H13, . . . , Hd−1,d) 7→
4H12(0.5, 0.5)− 4

∫
[0,1]2 H12(u1, u2)dH12(u1, u2)

4H13(0.5, 0.5)− 4
∫

[0,1]2 H13(u1, u2)dH13(u1, u2)
. . .

4Hd−1,d(0.5, 0.5)− 4
∫

[0,1]2 Hd−1,d(u1, u2)dHd−1,d(u1, u2)

 .

The first map Φ1 is Hadamard differentiable at C since it is linear and continuous. Its
derivative at C is given by Φ′1,C = Φ1.
For the second map Φ2, Hadamard differentiability in every component is shown

first. Therefore, consider the mapping

Φ(k`)
2 : E→ R, Hk` 7→ 4Hk`(0.5, 0.5)− 4

∫
[0,1]2

Hk`(u1, u2)dHk`(u1, u2) .

With Lemma 1 in Veraverbeke et al. (2011), it easily follows that Φ(k`)
2 is Hadamard

differentiable at Ck` tangentially to the set E0 of functions that are continuous on
[0, 1]2. The derivative is given by(

Φ(k`)
2

)′
Ck`

(αk`) =4αk`(0.5, 0.5)− 4
∫

[0,1]2
Ck`(u1, u2) dαk`(u1, u2)

− 4
∫

[0,1]2
αk`(u1, u2) dCk`(u1, u2) ,

where the integral
∫
Ck`dαk` is defined by Equation (5.7) if α is not of bounded

variation. For the sake of completeness, we give a more detailed proof of the result of
Lemma 1 in Veraverbeke et al. (2011) in the Appendix 5.6.2.
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As a consequence, the map Φ2 is Hadamard differentiable at (C12, C23, . . . , Cd−1,d)
tangentially to E

d(d−1)
2

0 and its derivative is given by

Φ′2,(C12,C13,...,Cd−1,d)(α12, α13, . . . , αd−1,d)

=


4α12(0.5, 0.5)− 4

∫
[0,1]2 C12 dα12 − 4

∫
[0,1]2 α12 dC12

4α13(0.5, 0.5)− 4
∫

[0,1]2 C13 dα13 − 4
∫

[0,1]2 α13 dC13
. . .
4αd−1,d(0.5, 0.5)− 4

∫
[0,1]2 Cd−1,d dαd−1,d − 4

∫
[0,1]2 αd−1,d dCd−1,d

 .

Finally, applying the chain rule (see Lemma 3.9.3 in van der Vaart and Wellner (1996))
to Φ = Φ2 ◦ Φ1 yields the Hadamard differentiability of Φ at C tangentially to the set
D0. Its derivative is then given by Φ′C = Φ′2,Φ1(C) ◦ Φ′1,C .

The following weak convergence result for D̂n now follows directly with the functional
delta method.

Theorem 5.5. Let X1, . . . ,Xn ∈ Rd be i.i.d. d-dimensional random vectors with com-
mon cumulative distribution function F , continuous univariate marginal distribution
functions F1, . . . , Fd and elliptical copula C. Under the assumption that the copula C
satisfies the first order property of Condition 5.1, it follows that

√
n D̂n  N(0,Σ) ,

where Σpq = E
[
(Φ′C(GC))p · (Φ′C(GC))q

]
, for p, q ∈ {1, . . . , d(d−1)

2 }. The map Φ′C and
the Gaussian process GC are defined in (5.6) and (5.1), respectively.

Proof. Given the weak convergence of the empirical copula process Ĉn from (5.2)
together with the Hadamard differentiability of Φ at C tangentially to the set D0 from
Theorem 5.4, the Delta method (see Theorem 3.9.4 in van der Vaart and Wellner
(1996)) immediately yields

√
n D̂n =

√
n
(
Φ(Ĉn)− Φ(C)

)
 Φ′C(GC) .

With the definition of the integral
∫
Ck` dαk` given in Equation (5.7) and the charac-

teristics of the process GCk` from (5.1), it finally follows that

Φ′C(GC) =


4GC12(0.5, 0.5)− 8

∫
[0,1]2 GC12(u1, u2) dC12(u1, u2)

4GC13(0.5, 0.5)− 8
∫

[0,1]2 GC13(u1, u2) dC13(u1, u2)
. . .
4GCd−1,d(0.5, 0.5)− 8

∫
[0,1]2 GCd−1,d(u1, u2) dCd−1,d(u1, u2)

 . (5.6)

This proves the stated weak convergence result for the statistic D̂n.
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The limiting Gaussian field Φ′C(GC) of the empirical copula process and, hence, the
covariance matrix ΣΦC depend on the unknown copula C. Furthermore, a Wald-type
test statistic involving the covariance matrix causes the corresponding test problems
to hold its nominal level in higher dimensions. To construct an asymptotic test for the
hypothesis of ellipticity, we propose the L2-type statistic

T̂n := n · D̂>n D̂n .

Theorem 5.5 and the Continuous Mapping Theorem (see Theorem 1.3.6 in van der
Vaart and Wellner (1996)) yield

T̂n  Φ′C(GC)>Φ′C(GC) .

5.3.2 A subsampling approximation
The limiting distribution of the test statistic as well as the limiting covariance matrix
depend on the unknown copula C. Therefore, we make use of the subsampling
procedure from Kojadinovic and Stemikovskaya (2019) to perform the test. For this,
subsamples of size b < n are drawn by sampling without replacement fromX1, . . . ,Xn.
The number of all possible subsamples is then given by Nb,n =

(
n
b

)
and the subsamples

are denoted by
X [m]
b = (X [m]

1 , . . . ,X
[m]
b ), m ∈ {1, . . . , Nb,n}.

Let M ∈ N denote the number of bootstrap replications. The following algorithm
defines the test:

1. Compute pseudo-observations Û1, . . . , Ûn.

2. Compute the statistic T̂n from the pseudo-observations.

3. For m = 1, . . . ,M :

• Randomly select a subsample X [Im,n]
b = (X [Im,n]

1 , . . . ,X
[Im,n]
b ) of size b by

choosing Im,n with replacement from {1, . . . , Nb,n}.

• Compute pseudo-observations Û [Im,n]
1 , . . . , Û

[Im,n]
b of the subsample.

• Compute the statistic β̂[Im,n]
b and τ̂ [Im,n]

b from the pseudo-observations of
the subsample.

• Compute the bootstrap statistic

T̂
[Im,n]
b,n = b ·

(
β̂

[Im,n]
b − τ̂ [Im,n]

b − (β̂n − τ̂n)
)> (

β̂
[Im,n]
b − τ̂ [Im,n]

b − (β̂n − τ̂n)
)

4. An approximate p-value for the test based on T̂n is then given by

p̂M,b,n = 1
M

M∑
m=1

I{T̂ [Im,n]
b,n > T̂n} .
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Kojadinovic and Stemikovskaya (2019) recommend to generally multiply the sub-
sample replicates by the so-called finite population correction, which is given by
(1− b/n)−1/2. For our choice of b in the following simulation study (see Section 5.4),
it holds that b/n → 0. It follows that (1 − b/n)−1/2 tends to 1. Hence, the weak
convergence result from Kojadinovic and Stemikovskaya (2019) holds without the
correction factor and we compute our bootstrap statistic T̂ [Im,n]

b,n without it.

5.4 Simulation study
In order to assess the finite-sample performance of the proposed test for ellipticity
based on the L2-type statistic T̂n in combination with the subsampling approximation
described in Section 5.3.2, in the following shortly L2S test, a Monte Carlo study was
conducted.

In Chapter 3, it was shown that the non-parametric estimation of unknown marginal
distribution functions does not affect the finite sample performance of the simple test
based on the Wald-type statistic Tn, in the following shortly simple test. We use the
following simulation study to compare the results for the L2S test to the results for
the simple test applied to pseudo-observations.
Furthermore, we compare the L2S test to the competing one from Quessy (2020)

based on the similar L2-type test statistic SL2
n ; in the following shortly Q test. In

contrast to our subsampling approximation, in Quessy (2020) a multiplier bootstrap
method is utilized.

5.4.1 Setup
The simulation study was carried out for different copula families C, sample sizes n,
dimensions d, and levels of dependence in terms of Kendall’s tau τ . To investigate the
empirical level of the test, random samples from the Gaussian copula and the t copula
with 5 degrees of freedom (tν=5) were considered. Random samples from the Frank
and the Clayton copula were examined, to study the empirical power of the test. In
Chapter 3, also samples of the Gumbel copula were included into the power study.
However, the rejection rates for the Gumbel family were very low. Closer analysis
showed that Kendall’s tau and Blomqvist’s beta are very close for the Gumbel family
and huge sample sizes are needed for the test to provide some indication against the
null hypothesis. Since the test statistic T̂n is also based on the equality of Kendall’s
tau and Blomqvist’s beta, the rejection rates for samples from the Gumbel copula
stayed quite low and the results are not included in the following power study.
To assess the effect of sample size, dimension and strength of dependence, the

values of n, d, and τ are chosen to vary in the sets {100, 250, 500, 1000}, {2, 3, 6}, and
{0.1, 0.25, 0.5, 0.75, 0.9}, respectively. Finally, the number of Monte replications was
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set to N = 1000, the number of subsampling replications to M = 300, and all tests
were performed at a significance level of α = 0.05.

Following the approach in Kojadinovic and Stemikovskaya (2019), we also chose
the size of the subsamples b depending on the sample size n. For samples of size
n ≤ 200, the best results in Kojadinovic and Stemikovskaya (2019) were derived
for b ∈ {b0.1cn, b0.28cn}. Our simulations for larger samples showed that with
increasing sample size, a smaller percentage of n is needed for our test to hold
its nominal level across different dimensions. Based on the results in Kojadinovic
and Stemikovskaya (2019) as well as our own simulations, we suggest to choose the
subsample size b = b2.4 · n0.54c, where bxc, with x ∈ R, denotes the integer part of
x. This leads to subsample sizes b ∈ {28, 47, 68, 100} for the considered sample sizes
n ∈ {100, 250, 500, 1000}.

5.4.2 Finite-sample performance
In this section, the finite-sample performance is analyzed. Tables 5.1 to 5.6 report the
empirical level and the empirical power of our L2S test based on the statistic T̂n and
the subsampling approach (in Column L2S), the simple test for ellipticity from Chapter
3 for pseudo-observations (in Column S), and the Q test from Quessy (2020) based on
a multiplier bootstrap (in Column Q) for dimension d = 2, 3 and 6, respectively.

C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Gauss
0.10 0.048 0.063 0.061 0.037 0.041 0.048 0.049 0.050 0.054 0.051 0.046 0.057
0.25 0.048 0.059 0.057 0.040 0.060 0.062 0.049 0.046 0.049 0.059 0.050 0.052
0.50 0.035 0.053 0.051 0.044 0.058 0.061 0.056 0.061 0.065 0.047 0.041 0.050
0.75 0.020 0.051 0.056 0.026 0.040 0.043 0.028 0.040 0.041 0.046 0.052 0.054
0.90 0.007 0.060 0.079 0.020 0.060 0.067 0.034 0.057 0.061 0.030 0.045 0.053
tν=5
0.10 0.046 0.058 0.062 0.041 0.052 0.049 0.046 0.045 0.045 0.057 0.052 0.056
0.25 0.039 0.046 0.056 0.036 0.041 0.046 0.045 0.043 0.043 0.060 0.053 0.059
0.50 0.027 0.052 0.054 0.035 0.061 0.062 0.055 0.049 0.055 0.062 0.062 0.062
0.75 0.025 0.066 0.069 0.028 0.051 0.061 0.040 0.045 0.050 0.052 0.066 0.069
0.90 0.013 0.087 0.098 0.014 0.048 0.056 0.029 0.048 0.055 0.044 0.064 0.065

Table 5.1: Dimension d=2: Empirical level of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .
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C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Gauss
0.10 0.039 0.061 0.045 0.034 0.062 0.054 0.058 0.055 0.054 0.060 0.054 0.058
0.25 0.026 0.063 0.039 0.025 0.045 0.046 0.043 0.042 0.041 0.066 0.064 0.063
0.50 0.029 0.080 0.042 0.030 0.070 0.057 0.048 0.051 0.043 0.044 0.048 0.047
0.75 0.027 0.101 0.056 0.031 0.083 0.060 0.046 0.066 0.049 0.056 0.063 0.062
0.90 0.010 0.210 0.051 0.012 0.105 0.050 0.027 0.083 0.048 0.033 0.062 0.051
tν=5
0.10 0.032 0.061 0.041 0.034 0.067 0.062 0.052 0.051 0.051 0.047 0.046 0.052
0.25 0.040 0.061 0.047 0.034 0.060 0.050 0.052 0.051 0.050 0.066 0.063 0.064
0.50 0.030 0.061 0.039 0.029 0.058 0.058 0.042 0.048 0.049 0.044 0.052 0.045
0.75 0.025 0.093 0.054 0.024 0.061 0.046 0.043 0.066 0.048 0.047 0.055 0.047
0.90 0.012 0.201 0.047 0.009 0.115 0.042 0.025 0.091 0.059 0.030 0.067 0.053

Table 5.2: Dimension d=3: Empirical level of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .

To study the empirical level of the tests, random samples from the Gaussian and
the tν=5 copula were considered. Tables 5.1, 5.2, and 5.3 present the empirical level for
dimension d = 2, 3 and 6, respectively. Our L2S test and the Q test seem to hold their
nominal level across the two copula models, all sample sizes, and all values of Kendall’s
tau for the considered dimensions. Only for small sample sizes in combination with
large values of Kendall’s tau, our L2S test turns out to be slightly too conservative.
As already discussed in Section 3.5, the simple test requires large sample sizes to hold
its level in higher dimensions (see also Tables 5.2 and 5.3).

To assess the empirical power, random samples of the Frank and the Clayton copula
were used. The corresponding empirical power results for dimension d = 2, 3 and 6 are
stated in Tables 5.4, 5.5, and 5.6, respectively. To take into account that the simple
test has problems to keep its nominal level in higher dimensions, the empirical power
results corresponding to these cases are displayed in gray. First of all, note that the
rejection rates vary clearly across the different combinations of factors. As expected,
the empirical power generally increases with increasing sample size. In addition, the
empirical power also increases with increasing level of dependence, at least up to
τ = 0.75. This is reasonable, since the deviation from the null hypothesis of ellipticity
becomes more apparent with increasing values of Kendall’s tau (see Figure 3.2). For
extremely high levels of dependence as for τ = 0.9, however, it might be harder to
distinguish the non-ellipticity of the sample. To illustrate this scenario, Figure 5.1
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C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Gauss
0.10 0.032 0.198 0.018 0.011 0.093 0.035 0.060 0.069 0.035 0.053 0.054 0.040
0.25 0.043 0.228 0.033 0.009 0.084 0.024 0.047 0.075 0.038 0.054 0.062 0.050
0.50 0.044 0.283 0.034 0.021 0.132 0.032 0.056 0.080 0.042 0.066 0.088 0.061
0.75 0.037 0.567 0.040 0.017 0.256 0.037 0.043 0.132 0.039 0.051 0.096 0.052
0.90 0.011 0.933 0.036 0.006 0.681 0.045 0.022 0.385 0.042 0.026 0.195 0.047
tν=5
0.10 0.044 0.209 0.025 0.012 0.098 0.040 0.061 0.071 0.043 0.062 0.064 0.048
0.25 0.040 0.223 0.029 0.022 0.107 0.040 0.071 0.071 0.053 0.063 0.057 0.047
0.50 0.032 0.293 0.024 0.021 0.142 0.042 0.054 0.091 0.046 0.066 0.081 0.051
0.75 0.037 0.601 0.041 0.018 0.277 0.048 0.042 0.143 0.042 0.036 0.068 0.035
0.90 0.016 0.919 0.038 0.007 0.666 0.040 0.028 0.379 0.038 0.031 0.193 0.051

Table 5.3: Dimension d=6: Empirical level of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .

presents scatter plots of bivariate random samples of size n = 500 from the Gaussian,
tν5 , Frank, and Clayton copula for the very high level of dependence corresponding to
τ = 0.9. Furthermore, the empirical power increases with the dimension. Since the
L2S test and the Q test, in contrast to the simple test, also hold their nominal level in
higher dimensions, this is an especially appealing feature of the L2S test and the Q
test when applied to high-dimensional data.
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Figure 5.1: Scatter plots of random samples of size 500 from the bivariate Gaussian,
tν=5, Frank, and Clayton copula (from left to right) with τ = 0.9.
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C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Frank
0.10 0.039 0.050 0.051 0.052 0.054 0.055 0.063 0.065 0.063 0.101 0.094 0.102
0.25 0.042 0.057 0.063 0.139 0.135 0.145 0.213 0.197 0.204 0.324 0.310 0.321
0.50 0.099 0.123 0.122 0.262 0.264 0.263 0.496 0.481 0.483 0.754 0.730 0.733
0.75 0.100 0.176 0.179 0.290 0.316 0.318 0.593 0.587 0.594 0.863 0.853 0.852
0.90 0.020 0.174 0.188 0.185 0.228 0.236 0.298 0.393 0.406 0.589 0.627 0.622

Clayton
0.10 0.032 0.053 0.053 0.038 0.054 0.058 0.066 0.063 0.065 0.063 0.060 0.063
0.25 0.043 0.053 0.057 0.036 0.052 0.053 0.054 0.051 0.050 0.053 0.051 0.056
0.50 0.044 0.061 0.064 0.052 0.056 0.048 0.073 0.055 0.064 0.105 0.085 0.095
0.75 0.039 0.091 0.099 0.132 0.124 0.126 0.255 0.246 0.253 0.476 0.436 0.444
0.90 0.018 0.131 0.138 0.128 0.199 0.198 0.233 0.308 0.307 0.483 0.499 0.515

Table 5.4: Dimension d=2: Empirical power of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .

C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Frank
0.10 0.039 0.078 0.052 0.050 0.075 0.061 0.097 0.091 0.090 0.147 0.124 0.138
0.25 0.059 0.090 0.069 0.147 0.144 0.156 0.279 0.226 0.258 0.539 0.448 0.519
0.50 0.159 0.190 0.169 0.360 0.338 0.391 0.728 0.606 0.691 0.949 0.886 0.950
0.75 0.116 0.271 0.159 0.380 0.396 0.421 0.776 0.661 0.768 0.960 0.910 0.958
0.90 0.010 0.385 0.159 0.152 0.364 0.280 0.416 0.479 0.489 0.733 0.671 0.734

Clayton
0.10 0.033 0.058 0.035 0.026 0.049 0.052 0.070 0.071 0.064 0.062 0.060 0.065
0.25 0.038 0.064 0.046 0.027 0.049 0.047 0.052 0.056 0.051 0.050 0.044 0.046
0.50 0.034 0.071 0.045 0.058 0.053 0.051 0.088 0.070 0.075 0.120 0.079 0.097
0.75 0.048 0.165 0.089 0.199 0.188 0.176 0.386 0.270 0.333 0.665 0.491 0.614
0.90 0.013 0.349 0.123 0.134 0.292 0.209 0.303 0.363 0.371 0.658 0.561 0.665

Table 5.5: Dimension d=3: Empirical power of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .
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C n = 100 n = 250 n = 500 n = 1000
τ L2S S Q L2S S Q L2S S Q L2S S Q

Frank
0.10 0.042 0.211 0.027 0.045 0.129 0.075 0.128 0.118 0.099 0.272 0.197 0.229
0.25 0.115 0.321 0.082 0.211 0.301 0.251 0.624 0.409 0.571 0.910 0.717 0.894
0.50 0.254 0.579 0.215 0.563 0.573 0.634 0.954 0.754 0.934 0.999 0.973 1.000
0.75 0.186 0.851 0.214 0.529 0.738 0.592 0.914 0.813 0.911 0.996 0.959 0.996
0.90 0.009 0.992 0.125 0.181 0.945 0.310 0.561 0.879 0.633 0.909 0.893 0.917

Clayton
0.10 0.032 0.191 0.015 0.022 0.106 0.044 0.069 0.072 0.048 0.092 0.071 0.067
0.25 0.048 0.210 0.026 0.017 0.085 0.027 0.052 0.071 0.033 0.077 0.063 0.053
0.50 0.032 0.302 0.016 0.056 0.138 0.047 0.126 0.106 0.077 0.228 0.104 0.135
0.75 0.077 0.706 0.082 0.278 0.444 0.218 0.560 0.405 0.450 0.882 0.546 0.817
0.90 0.014 0.970 0.110 0.153 0.876 0.239 0.425 0.787 0.477 0.818 0.773 0.802

Table 5.6: Dimension d=6: Empirical power of our test for ellipticity based on the
L2-type statistic T̂n and the subsampling approach (L2S), the simple test
for ellipticity from Chapter 3 for pseudo-observations (S), and the test
from Quessy (2020) based on the statistic SL2 and a multiplier bootstrap
(Q) with significance level α = 0.05: rate of rejecting H0 as observed in
1000 random samples of size n from copula family C with Kendall’s tau τ .

In general, all three tests seem to be good in detecting deviations from the null
hypothesis of ellipticity if the level of dependence is not too close to independence.
The L2S test shows an inferior performance compared to the other two tests for the
very high level of dependence given by τ = 0.9. However, the disadvantage gets
smaller with increasing sample size and increasing dimension resulting in the L2S test
being as powerful as the Q test as of n = 1000 in dimensions d = 3 and 6 and even
outperforming the simple test in the latter scenarios. Having a closer look on the power
properties in dimension d = 2 (see Table 5.4), similar rejection rates can be observed
for all three tests. In higher dimensions (see Tables 5.5 and 5.6), the simple test is less
efficient in detecting the lack of ellipticity compared to the other two tests, with some
rare exceptions as for example for n = 100 in d = 3. Comparing the performance of
the L2S and the Q test in dimensions d = 3 and 6, mixed results can be observed for
the samples from the Frank copula. For the sample size n = 100 in combination with
lower dependence, the L2S test performs better, whereas for higher dependence the
Q test is better. For the sample size n = 250, the Q test is more powerful than the
L2S test. However, with increasing sample size the L2S outperforms the Q test and
the superiority becomes larger with increasing dimension. For samples of the Clayton
copula in dimensions d = 3 and 6, the Clayton copula is systematically more powerful
than the Q test and the advantage increases again with the dimension.
Overall, the finite-sample performance of the simple test in dimension d = 2 and
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the L2S test as well as the Q test in all dimensions is very convincing. They hold
their nominal level and are reasonably powerful in detecting deviations from the null
hypothesis of ellipticity. Although the results are not completely unambiguous, the
L2S test is not only a solid competitor to the Q test but might be even preferable.
Note that further optimization of the choice of the subsample size b might also leave
space for improvement of the L2S test. Furthermore, note that the bootstrap statistic
in the subsampling approximation (see Section 5.3.2) is computed from subsamples
having a size of only 10 to at most 30 percent of the size of the original sample. Thus,
the L2S test is also computationally very attractive.

5.5 Conclusion
In this chapter, the key idea of the simple non-parametric goodness-of-fit test for
elliptical copulas from Chapter 3 is further developed to get an advanced statistical test
that resolves the two stated restrictions of the simple test. The first restriction is the
fact that the simple test assumes given copula data. Taking the estimation of unknown
marginal distribution functions into account, a weak convergence result is derived for
the statistic containing the differences between Kendall’s tau and Blomqvist’s beta
for all bivariate margins. The second restriction is the fact that the simple test has
problems to keep its level in higher dimensions. This is due to slow convergence rates
resulting from the estimation of the covariance matrix, which gets large in higher
dimensions. We propose a L2-type test statistic, which does not suffer from these
restrictions since there is no covariance matrix involved. The limiting distribution of
the test statistic depends on the unknown underlying copula. Thus, in order to perform
the test, we apply the subsampling procedure from Kojadinovic and Stemikovskaya
(2019).

Note that the objective of this chapter also gets adressed in Quessy (2020). However,
the results in this chapter have been developed independently. We present a different
proof for the main result and, with the subsampling approach, we provide an alternative
bootstrap procedure.

In the simulation study, we compare the finite sample performance of the advanced
test based on the L2 test statistic and a subsampling approximation to the one of
the competing test from Quessy (2020) based on a similar statistic and a multiplier
bootstrap. Furthermore, the empirical results of the simple test from Chapter 3 are
included into the analysis. Note that the simple test can also be recommended in
the case of unknown marginal distributions since their estimation does not affect the
finite sample performance of the test (see Chapter 3). The contradicting statement
in Quessy (2020) is based on a mistake in his Matlab code, which he generously
provided us. Thus, our empirical findings and the deduced recommendations are
correct. The simulations illustrate that the advanced tests keep their nominal level in
higher dimensions already beginning from the small sample size of n = 100. At the
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same time, the empirical power of the advanced tests increases with the dimension and
they generally outperform the simple test for dimensions larger than 2. Overall, the
advanced test developed in this chapter is able to compete with the test from Quessy
(2020) and it even narrowly beats it in many scenarios.

The derivations in this chapter are based on empirical process theory for i.i.d. data.
Using the results in Bücher and Volgushev (2013), the results can easily be extended
to strictly stationary time series. The subsampling approximation from Kojadinovic
and Stemikovskaya (2019) can also be applied in this scenario. However, note that the
choice of the subsample size b in the time series case is still subject of current research.

5.6 Auxiliary results
This section covers the proof of Lemma 5.3 and a revision of the Hadamard differen-
tiability of Kendall’s tau.

5.6.1 Proof of Lemma 5.3(ii)
Let τk`,n and τ̂k`,n be defined as in (2.2) and (5.4), respectively. The total number of
different pairs of observations in the sample of size n is given by

(
n
2

)
= n(n−1)

2 and is
equal to the number of concordant pairs plus the number of discordant pairs (given
that the sample does not contain any ties, which is the case here). This yields,

τk`,n = 2
n(n− 1)

∑
1≤i<j≤n

sgn(Xki −Xkj)sgn(Xli −Xlj)

= 2
n(n− 1)

∑
1≤i<j≤n

(
I{(Xki −Xkj)(Xli −Xlj) > 0}

− I{(Xki −Xkj)(Xli −Xlj) < 0}
)

= 2
n(n− 1)

2
 ∑

1≤i<j≤n
I{(Xki −Xkj)(Xli −Xlj) > 0}

− (n2
)

= 4
n(n− 1)

 ∑
1≤i<j≤n

I{(Xki −Xkj)(Xli −Xlj) > 0}
− 1

= 4
n(n− 1)

n∑
i,j=1

I{Xki > Xkj, Xli > Xlj} − 1

Now, using the simple equality

4
n(n− 1) = 4

n2 + 4
n2(n− 1)
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as well as the definition of pseudo-observations in Equation (2.12) and the definition
of the empirical copula from Equation (2.13), we further get

τk`,n = 4
n2

n∑
i,j=1

I{Xki > Xkj, Xli > Xlj} − 1 + oP

(
1√
n

)

= 4
n2

 n∑
i,j=1

I{Xki ≥ Xkj, Xli ≥ Xlj}

− n
− 1 + oP

(
1√
n

)

= 4
n2

n∑
i,j=1

I{Xki ≥ Xkj, Xli ≥ Xlj} − 1 + oP

(
1√
n

)

= 4
n2

n∑
i,j=1

I{Xkj ≤ Xki, Xlj ≤ Xli} − 1 + oP

(
1√
n

)

= 4
n2

n∑
i=1

n∑
j=1

I{Ûkj ≤ Ûki, Ûlj ≤ Ûli} − 1 + oP

(
1√
n

)

= 4 · 1
n

n∑
i=1

Ĉkl,n(Ûki, Ûli} − 1 + oP

(
1√
n

)

= 4
∫

[0,1]2
Ĉkl,n(uk, ul) dĈkl,n(uk, ul)− 1 + oP

(
1√
n

)
.

5.6.2 On the Hadamard differentiability of Kendall’s tau
In this section, we review Lemma 1 in Veraverbeke et al. (2011) on the Hadamard
differentiability of Kendall’s tau and its proof. Therein, a definition of the integral∫
C dα is needed if α is not of bounded variation. First, note that there exist several

definitions of bounded variation for multivariate functions (see, e.g., Clarkson and
Adams (1933) for the bivariate case or Owen (2005) for more details). Veraverbeke
et al. (2011) do not state which kind of variation they consider. In the sequel, we
choose one of these definitions in a way such that a valid bivariate integration by parts
formula is obtained. Multivariate integration by parts formulas have been proven
recently by e.g. Berghaus et al. (2017) and Radulović et al. (2017). Veraverbeke et al.
(2011) do not give any proof or reference for their integration by parts formula. We
will use the results from Berghaus et al. (2017) in the sequel.

Let f(x) be a real-valued function on [0, 1]2. Consider the set of two partitions u(0)
1 ,

u
(1)
1 , . . ., u(m(1))

1 and u(0)
2 , u(1)

2 , . . ., u(m(2))
2 of [0, 1] with

0 = u
(0)
1 < u

(1)
1 < . . . < u

(m(1))
1 = 1, and 0 = u

(0)
2 < u

(1)
2 < . . . < u

(m(2))
2 = 1 .

For u ∈ [0, 1], define the operators

∆1f(u(i)
1 , u) = f(u(i+1)

1 , u)− f(u(i)
1 , u) .
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and
∆2f(u, u(j)

2 ) = f(u, u(j+1)
2 )− f(u, u(j)

2 ) .

Further, ∆12 stands for ∆1∆2 and, hence,

∆12f(u(i)
1 , u

(j)
2 ) = ∆1(∆2f(u(i)

1 , u
(j)
2 )) = ∆1(f(u(i)

1 , u
(j+1)
2 )− f(u(i)

1 , u
(j)
2 ))

= f(u(i+1)
1 , u

(j+1)
2 )− f(u(i+1)

1 , u
(j)
2 )− f(u(i)

1 , u
(j+1)
2 ) + f(u(i)

1 , u
(j)
2 ) .

Given these operators, the variation in the sense of Hardy and Krause (HK-variation)
is defined as follows.

Definition 5.6. (HK-variation in 2 dimensions)
Let f : [0, 1]2 7→ R. The HK-variation of f on the unit hypercube [0, 1]2 anchored at
(1, 1) is given by

VHK(f) = sup
m(1)−1∑
i=0

m(2)−1∑
j=0
|∆12f(u(i)

1 , u
(j)
2 )|+ sup

m(1)−1∑
i=0
|∆1f(u(i)

1 , 1)|

+ sup
m(2)−1∑
j=0
|∆2f(1, u(j)

2 )| ,

where the supremum is taken over the corresponding set of partitions u(0)
1 , u

(1)
1 , . . .,

u
(m(1))
1 and u(0)

2 , u
(1)
2 , . . . , u

(m(2))
2 with

0 = u
(0)
1 < u

(1)
1 < . . . < u

(m(1))
1 = 1 ,

and
0 = u

(0)
2 < u

(1)
2 < . . . < u

(m(2))
2 = 1 ,

respectively.
If VHK(f) <∞, f is said to be of bounded HK-variation.

For bivariate distribution functions on the unit square, we can prove the following
result.

Lemma 5.7. Let H : [0, 1]2 7→ R be a distribution function on [0, 1]2. Then, it holds
that

VHK(H) = 3 .

Proof. Let H : [0, 1]2 7→ R be a distribution function on [0, 1]2. The result then easily
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follows from the definition of the HK-variation. In particular, we get

VHK(H) = sup
m(1)−1∑
i=0

m(2)−1∑
j=0
|∆12H(u(i)

1 , u
(j)
2 )|+ sup

m(1)−1∑
i=0
|∆1H(u(i)

1 , 1)|

+ sup
m(2)−1∑
j=0
|∆2H(1, u(j)

2 )|

= sup
m(1)−1∑
i=0

m(2)−1∑
j=0

(
H(u(i+1)

1 , u
(j+1)
2 )−H(u(i+1)

1 , u
(j)
2 )−H(u(i)

1 , u
(j+1)
2 )

+H(u(i)
1 , u

(j)
2 )
)

+ sup
m(1)−1∑
i=0

(
H(u(i+1)

1 , 1)−H(u(i)
1 , 1)

)

+ sup
m(2)−1∑
j=0

(
H(1, u(j+1)

2 )−H(1, u(j)
2 )
)

= 1 + 1 + 1 = 3 .

Aistleitner and Dick (2015) prove that any function that is of bounded HK-variation
and in addition right-continuous defines a finite signed measure on [0, 1]2 (see Theorem
3 in Aistleitner and Dick (2015)). Berghaus et al. (2017) define the corresponding
Lebesgue-Stieltjes integral (see Definition A.5 in Berghaus et al. (2017)) and then
prove the following integration by parts formula.

Proposition 5.8. (Corollary A.7 in Berghaus et al. (2017))
Let f, g : [0, 1]2 7→ R be of bounded HK-variation and right-continuous with either f or
g continuous. Then, for any (a, b] ⊂ [0, 1]2 with a < b,∫

(a,b]
fdg =

∫
(a,b]

gdf + fg(b1, b2)− fg(a1, b2)− fg(b1, a2) + fg(a1, a2)

−
∫

(a1,b1]
g(u, b2)d1f(u, b2) +

∫
(a1,b1]

g(u, a2)d1f(u, a2)

−
∫

(a2,b2]
g(b1, u)d2f(b1, u) +

∫
(a2,b2]

g(a1, u)d2f(a1, u) .

Let f and g be given as in Proposition 5.8. For Lebesgue-Stieltjes integrals one can
integrate over arbitrary measurable sets to get the following useful identity∫

[0,1]2
fdg =

∫
(0,1]2

fdg +
∫
∂1[0,1]2

fdg ,

where ∂1[0, 1]2 = [0, 1]2\(0, 1]2. Since g is of bounded HK-variation and right-continuous
it defines a signed measure (see Aistleitner and Dick (2015)). If ∂1[0, 1]2 has measure
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zero under the corresponding signed measure, then the second integral vanishes and
we get the equality ∫

[0,1]2
fdg =

∫
(0,1]2

fdg .

This transition will be needed in the proof of Lemma 5.9 before the integration by
parts formula from Proposition 5.8 can be applied.
Now, we come back to the integral

∫
C dα. Let α : [0, 1]2 7→ R be continuous and

let C be a copula on [0, 1]2. If α is not of bounded variation, the integral
∫
C dα is

defined by ∫
[0,1]2

C(u1, u2) dα(u1, u2) =
∫

[0,1]2
α(u1, u2) dC(u1, u2) + α(1, 1)

−
∫ 1

0
α(u, 1) d1u−

∫ 1

0
α(1, u) d2u .

(5.7)

After clarifying the basics, we have a closer look on Lemma 1 in Veraverbeke et al.
(2011) and adjust their proof.

Lemma 5.9. Let E be the space of all distribution functions η on [0, 1]2 with η(u, 0) =
η(0, u) = 0 for all u ∈ [0, 1] and consider the map

Ψ : E→ R, η 7→
∫

[0,1]2
η(u1, u2)dη(u1, u2) .

The map Ψ is Hadamard-differentiable at every copula C, tangentially to the set E0 of
functions that are continuous on [0, 1]2. The derivative is given by

Ψ′C : E0 → R, α 7→
∫

[0,1]2
C(u1, u2) dα(u1, u2) +

∫
[0,1]2

α(u1, u2) dC(u1, u2) ,

where
∫
C dα is defined by Equation (5.7) if α is not of bounded HK-variation.

Proof. Let αt ∈ `∞([0, 1]2) and α ∈ E0 with αt → α uniformly on [0, 1]2 such that
Ct := C + tαt ∈ E. In the following expression, plugging in the definition of Ct yields∫

[0,1]2
Ct dCt =

∫
[0,1]2

C dC + t
∫

[0,1]2
αt dC + t

∫
[0,1]2

C dαt + t
∫

[0,1]2
αt d(Ct − C) .

After transposing and extending the equation by −Ψ′C(α) = −
∫

[0,1]2 C dα−
∫

[0,1]2 α dC,
we get∫

[0,1]2 Ct dCt −
∫

[0,1]2 C dC

t
−Ψ′C(α)

=
∫

[0,1]2
(αt − α) dC +

(∫
[0,1]2

C dαt −
∫

[0,1]2
C dα

)
+
∫

[0,1]2
αt d(Ct − C) .

(5.8)
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Now, the three terms on the right-hand side of Equation (5.8) are considered
separately. Since αt → α uniformly and C is of bounded HK-variation (see Lemma
5.7), the first term converges to zero.

For the second term of Equation (5.8), first note that the signed measure correspond-
ing to αt = (Ct − C)/t puts no mass in the axes through zero. Thus, the integration
by parts formula from Proposition 5.8 with integration area (0, 1]2 can be applied.
Further, we have C(0, u) = C(u, 0) = 0, C(u, 1) = u, and C(1, u) = u , for all u ∈ [0, 1],
as well as C(1, 1) = 1. Together, this yields∫

[0,1]2
C dαt =

∫
(0,1]2

C dαt =

=
∫

(0,1]2
αtdC + Cαt(1, 1)− Cαt(0, 1)− Cαt(1, 0) + Cαt(0, 0)

−
∫

(0,1]
αt(u, 1)d1C(u, 1) +

∫
(0,1]

αt(u, 0)d1C(u, 0)

−
∫

(0,1]
αt(1, u)d2C(1, u) +

∫
(0,1]

αt(0, u)d2C(0, u)

=
∫

(0,1]2
αtdC + αt(1, 1)−

∫
(0,1]

αt(u, 1)d1u−
∫

(0,1]
αt(1, u)d2u

=
∫

[0,1]2
αtdC + αt(1, 1)−

∫
[0,1]

αt(u, 1)d1u−
∫

[0,1]
αt(1, u)d2u .

Using the definition of the integral
∫
Cdα in Equation (5.7), we get∫

[0,1]2
C dαt −

∫
[0,1]2

C dα =
∫

[0,1]2
(αt − α) dC + αt(1, 1)− α(1, 1)

−
∫

[0,1]
(αt(u, 1)− α(u, 1)) d1u

−
∫

[0,1]
(αt(1, u)− α(1, u)) d2u .

With similar arguments as for the first term of Equation (5.8), we conclude that the
second term of Equation (5.8) also converges to zero.
Expanding the third term of Equation (5.8) yields∫

[0,1]2
αt d(Ct − C) =

∫
[0,1]2

(αt − α) d(Ct − C) +
∫

[0,1]2
α d(Ct − C) . (5.9)

The class of functions of bounded HK-variation is closed under summation (see, e.g.,
Owen (2005)). Thus Ct − C is of bounded HK-variation and, using the same reasons
one more time, the first term on the right-hand side of Equation (5.9) converges to zero.
For the last term of Equation (5.9), the continuity of α is exploited. For a given ε > 0,
there exist partitions 0 = t0 < t1 < . . . < tm1 = 1 and 0 = s0 < s1 < . . . < sm2 = 1,
such that α varies less than ε on each rectangle [ti−1, ti]× [sj−1, sj], for i = 1, . . . ,m1
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and j = 1, . . . ,m2. Now, denote the function that is equal to α(ti−1, sj−1), and
therefore constant, on the rectangle [ti−1, ti]× [sj−1, sj], for all i = 1, . . . ,m1 and all
j = 1, . . . ,m2, by α̃. For the last term of Equation (5.9), the following upper bound
can then be derived∣∣∣∣∫ α d(Ct − C)

∣∣∣∣ ≤ ∣∣∣∣∫ (α− α̃) d(Ct − C)
∣∣∣∣+ ∣∣∣∣∫ α̃ d(Ct − C)

∣∣∣∣
≤ 6‖α− α̃‖∞ +

m1∑
i=1

m2∑
j=1
|α(ti−1, sj−1)| ·

∣∣∣∣∣
∫

[ti−1,ti]×[sj−1,sj ]
d(Ct − C)

∣∣∣∣∣
≤ 6ε+ ‖α‖∞

m1∑
i=1

m2∑
j=1

4‖Ct − C‖∞

≤ 6ε+ 4m1m2‖α‖∞‖Ct − C‖∞
→ 6ε .

Since ε can be chosen to be arbitrarily small,
∫
α d(Ct − C) converges to zero. Having

shown that all three terms on the right-hand side of equation (5.8) converge to zero
concludes the proof of Lemma 5.9.
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