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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Felix Krahmer
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Abstract

Mathematical models are commonly used in systems biology to gain new insight into

biological processes. In particular, ordinary differential equations (ODEs) are used to

analyze dynamic processes in cell biology. ODE models often comprise unknown param-

eters which have to be inferred from experimental data. The ever-increasing amount of

biological knowledge and diverse measurement data lead to the development of larger,

more comprehensive models. While larger models and heterogeneous datasets can enable

a holistic understanding of cellular interactions, they pose new challenges. The compu-

tational complexity of parameter estimation increases substantially with the size of the

model. Furthermore, measurement processes often provide only semi-quantitative or even

qualitative data which requires additional care when linking experimental data and model

output.

In this thesis, we develop new algorithms for parameter estimation using heterogeneous

datasets. First, we derive an approach for efficient parameter estimation of large-scale

models using semi-quantitative data, meaning, that the data is relative to the absolute

quantity. To this end, we combine the concepts of scalable adjoint sensitivity analysis and

hierarchical optimization. We show that this leads to substantial reductions in computation

time for a pan-cancer signaling model with thousands of unknown parameters and facilitates

the unbiased integration of relative molecular and phenotypic datasets.

Then, we consider measurements that only provide qualitative information on the ordering

of different datapoints. We derive improvements for the optimal scaling approach developed

for parameter estimation using qualitative data. We provide several simplifications on this

approach and develop an algorithm for computing gradients of the optimal scaling objective

function. We apply these enhancements on different application examples showing large

efficiency improvements compared to the standard optimal scaling approach.

To make parameter estimation methods, such as the ones developed in this thesis, available

to a broader community and to improve reusability, interoperability and reproducibility,

we established PEtab, a standardized format for the specification of parameter estimation

problems. PEtab is supported by several commonly used computational toolboxes and we

provide a Python library for easy manipulation and validation of PEtab problems.



The mathematical methods presented in this thesis enable the efficient integration of

semi-quantitative and qualitative datasets with larger models and expand the amount

of available data that can be used for parameter estimation which can facilitate deeper

understand of biological systems.



Zusammenfassung

Mathematische Modelle werden in der Systembiologie häufig verwendet, um neue Ein-

blicke in biologische Prozesse zu gewinnen. Insbesondere werden gewöhnliche Differen-

tialgleichungen (GDGLen) verwendet, um dynamische Prozesse in der Zellbiologie zu

analysieren. GDGL-Modelle enthalten oft unbekannte Parameter, die aus experimentellen

Daten geschätzt werden müssen. Die ständig wachsende Menge an biologischem Wis-

sen und vielfältigen Messdaten führt zur Entwicklung größerer, umfassenderer Modelle.

Größere Modelle und heterogene Datensätze können zwar ein ganzheitliches Verständnis

der zellulären Interaktionen ermöglichen, stellen aber neue Herausforderungen dar. Die

notwendige Rechenleistung der Parameterschätzung nimmt mit der Größe des Modells

erheblich zu. Darüber hinaus liefern Messverfahren oft nur semi-quantitative oder sogar

qualitative Daten, was zusätzliche Sorgfalt bei der Verknüpfung von experimentellen Daten

und Modelloutput erfordert.

In dieser Arbeit entwickeln wir neue Algorithmen zur Parameterschätzung unter Verwen-

dung heterogener Datensätze. Zunächst leiten wir einen Ansatz zur effizienten Parame-

terschätzung von groß-skaligen Modellen unter Verwendung semi-quantitativer Daten, die

relativ zur absoluten Messung sind, her. Zu diesem Zweck kombinieren wir die Konzepte

der skalierbaren adjungierten Sensitivitätsanalyse und der hierarchischen Optimierung. Wir

zeigen, dass dies bei einem Pan-Krebs-Signalmodell mit Tausenden von unbekannten Param-

etern zu erheblichen Verkürzungen der Berechnungszeit führt und die unvoreingenommene

Integration relativer molekularer und phänotypischer Datensätze erleichtert.

Dann betrachten wir Messungen, die lediglich qualitative Informationen über die Anordnung

der verschiedenen Datenpunkte liefern. Wir leiten Verbesserungen für den ”optimal scaling”

Ansatz her, der für die Parameterschätzung mit qualitativen Daten entwickelt wurde. Wir

leiten mehrere Vereinfachungen für diesen Ansatz her und entwickeln einen Algorithmus

zur Berechnung von Gradienten der optimal scaling Kostenfunktion. Wir wenden diese

Verbesserungen auf verschiedene Anwendungsbeispiele an, die große Effizienzverbesserungen

im Vergleich zum Standard optimal scaling Ansatz zeigen.

Um Parameterschätzmethoden, wie die in dieser Arbeit entwickelten, einer breiteren wis-

senschaftlichen Community zugänglich zu machen und um die Wiederverwendbarkeit, Inter-

operabilität und Reproduzierbarkeit zu verbessern, haben wir PEtab, ein standardisiertes



Format zur Spezifikation von Parameterschätzproblemen, entwickelt. PEtab wird von

mehreren häufig verwendeten Toolboxen unterstützt, und wir stellen eine Python-Bibliothek

zur einfachen Manipulation und Validierung von PEtab-Problemen zur Verfügung.

Die in dieser Arbeit vorgestellten mathematischen Methoden ermöglichen die effiziente

Integration von semi-quantitativen und qualitativen Datensätze mit größeren Modellen

und erweitern die Menge der verfügbaren Daten, die zur Parameterschätzung verwendet

werden können, was ein tieferes Verständnis biologischer Systeme erleichtern kann.
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Chapter 1

Introduction

The interplay of mathematics and biology has gained increasing attention over the last

decades. The use of mathematical models in systems biology has enabled a profound

understanding of the mechanisms underlying biological processes beyond what would have

been possible only with biological experiments (Kitano, 2002). Mechanistic models, where

the mathematical equations are based on knowledge about the underlying biochemical

process, are particularly popular as they can predict latent variables and the dynamic

behavior of the system (Adlung et al., 2017). Among the most widely used mechanistic

models are those based on differential equations (Ingalls, 2013). These models have been

used to describe, among others, cell metabolism (Smallbone & Mendes, 2013), epigenetics

(Uzkudun et al., 2015; Zheng et al., 2012) and cell signaling (Bachmann et al., 2011;

Bouhaddou et al., 2018; Fröhlich et al., 2018) and facilitated insights into diseases like

cancer (Hass et al., 2017) and HIV (Perelson et al., 1996). Mechanistic models have been

used as biomarkers (Fey et al., 2015), to model pathway cross-talk, and to predict cancer

treatment outcomes (Fröhlich et al., 2018). Overall, mechanistic models can generate new

biological knowledge and can pave the way towards more personalized medicine (Ogilvie

et al., 2015). The large range of possible applications and the unique ability of mechanistic

models to elucidate interpretable insights into cellular mechanisms explains the growing

interest in using them to study biological processes and diseases.

1.1 Parameter estimation for ODE models

In this thesis, we consider mechanistic systems biology models based on ordinary differential

equations (ODEs). These mechanistic ODE models comprise parameters such as reaction

rate constants or initial concentrations of modeled species. The exact quantities of these

parameters can often not directly be assessed by experimental procedures and are thus

unknown. In order to still make reliable model predictions, these unknown parameters have

to be inferred from experimental data. This is commonly done by optimizing an objective

function, e.g. a likelihood or least-squares function, which quantifies the discrepancy of

measurement and model output (Raue et al., 2013b). Various optimization methods exist
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(Nocedal & Wright, 2006) a lot of which are implemented in different toolboxes (Egea

et al., 2014; Hoops et al., 2006; Raue et al., 2015; Stapor et al., 2018b).

Parameter estimation for models of biological systems based on ODEs is a computationally

challenging task, even for models with few modeled species. The objective functions that

are optimized are usually non-convex and multi-modal. Furthermore, often no-closed form

solution of the ODE is available and it has to be numerically integrated repeatedly during

optimization. With increasing mechanistic knowledge on signaling pathways, larger and

more comprehensive models can be generated describing pathway cross-talk (Fröhlich et al.,

2018; Korkut et al., 2015) or even whole cells (Karr et al., 2012). This development is

further supported by advances in data generation leading to large-scale datasets (Barretina

et al., 2012; Li et al., 2017; Yang et al., 2013) and increasing computational resources

enabling parallelization on high-performance computing clusters. The increasing model size

and number of unknown parameters comes at the cost of higher computational requirements

hindering successful parameter estimation (Babtie & Stumpf, 2017; Kapfer et al., 2019;

Karr et al., 2015). This highlights the need for efficient and scalable approaches.

Usually, heterogeneous data types have to be integrated, which can further complicate

parameter estimation. As there is often no direct correspondence of the measurement to

a model state, more complex observation models are required. Different measurement

techniques provide different amounts of information ranging from absolute over semi-

quantitative data, to measurements which rather provide qualitative observations on the

ordering of the datapoints (Pargett & Umulis, 2013) (Figure 1.1). While semi-quantitative

data can generally refer to quantitative measurements whose relation to the absolute values

is known, but non-trivial, in this thesis, we will specifically consider relative data, which is

proportional to the underlying quantity.

Frequently employed techniques, like Western blotting (Renart et al., 1979) or flow cytome-

try (Herzenberg et al., 2006) measure cellular species, in most cases, relative to the absolute

values. Additionally, for large-scale databases measurements are normalized and therefore

also relative. Other experimental setups rather give information about the qualitative

behavior, for example, if a species is up- or down-regulated after stimulation. This can be

either, because the observation is inherently qualitative, like viability or inviability data

(Mitra et al., 2018; Oguz et al., 2013), or because of unknown non-linear dependencies of the

measured signal on the internal state of the system. In the latter case, only monotonicity

is preserved which also yields qualitative data. Non-linear dependencies have been shown

e.g. for Förster resonance energy transfer (FRET) (Birtwistle et al., 2011). They can
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� Absolute values

� Cell counts, volumes

� Trivial data-model mapping 

� ymeas = ysim

� Relative values

� Western blots, �ourescence intensities

� Assumed linear relation

� ymeas = s�ysim+ b 

� Relational observations

� FRET, phenotypes

� Unknown functional relations

� Ordering known: 

   y1,meas < y2,meas ⇒ y1,sim < y2,sim

Figure 1.1: Overview of different data types ranging from quantitative to qualitative
measurements. ymeas and ysim denote measurement and simulation output respectively. s
and b are scaling and offset parameters.

further occur due to detection thresholds and saturation effects, like for not properly set

up Western blots (Butler et al., 2019).

In order to infer parameters from data that are not absolute, the non-trivial mapping

between model simulation and measurement needs to be accounted for, which often

increases the complexity of the parameter estimation problem and raises the need for

tailored methods (Degasperi et al., 2017; Loos et al., 2018; Pargett et al., 2014; Weber

et al., 2011).

1.2 Recent developments

The challenges in parameter estimation have led to new methodological developments.

To cope with the increasing size of mathematical models, scalable gradient computation

using adjoint sensitivities (cf. section 2.3.5) can be employed (Fröhlich et al., 2017). For

relative data, either data-driven normalization (Degasperi et al., 2017), or scaling and

offset parameters have been applied. For the latter, hierarchical approaches to reduce the

dimensionality of the parameter search space by exploiting the problem structure were

developed (Loos et al., 2018; Weber et al., 2011). The hierarchical approach has shown to
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substantially improve optimizer efficiency. However, so far only scaling parameters, but

not offsets were considered in the hierarchical approaches. Additionally, the combination

with adjoint sensitivities remained an open issue.

For qualitative data, only a few methods exist to integrate them, and therefore they are

often neglected. Still, they can provide valuable information to optimize parameters. The

existing methods can roughly be divided into three approaches: (i) Oguz et al. (2013)

used an objective function which quantified the number of correctly captured qualitative

observations. (ii) Mitra et al. used qualitative data directly as inequality constraints

imposed on the model output (Mitra et al., 2018, 2019). However, the approach suffers

from hard to determine hyperparameters, which might influence optimization results. Mitra

& Hlavacek (2020) developed a probabilistic distance measure for qualitative data. (iii)

Pargett et al. used an optimal scaling method established in statistics (Shepard, 1962) and

applied it to biological models (Pargett & Umulis, 2013; Pargett et al., 2014). Here, the

optimal quantitative representation of the qualitative data is calculated in an hierarchical

optimization problem. Solving this hierarchical problem is computationally demanding.

Yet, the structure of this problem has not been analyzed in detail so far and it was unclear,

if it can be simplified. Several studies have shown that gradient-based optimization is often

more efficient than gradient-free optimization (Raue et al., 2013b; Schälte et al., 2018;

Stapor et al., 2018b). Still, no reliable method to compute gradient information existed for

optimization with qualitative data.

To make mathematical models and methods available to a broader community and to facil-

itate unbiased analysis, reproducibility and reusability are major concerns. Communities

like the computational modeling in biology network (COMBINE) have made immense

progress in this direction by developing standards for the description of mathematical and

computational models in biology (Stanford et al., 2019), like the systems biology markup

language (SBML) (Hucka et al., 2003). However, no standardized, widely adopted format

for the definition of parameter estimation problems exists.

1.3 Contributions of this thesis

The contributions of this thesis focus on the following open problems and challenges:

(i) For large-scale ODE models, it is necessary to use scalable algorithms for gradient

computation, like adjoint sensitivity analysis. The parameter search space for the

optimization method is further increased when relative data is used, as this can

require the introduction of scaling and offset parameters. A hierarchical method
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exists to handle scaling parameters more efficiently. However, it remains unclear how

offsets and a combination of scalings and offsets can be optimized hierarchically and

how to combine the hierarchical method with adjoint sensitivity analysis, which is

required for large-scale models.

(ii) Qualitative measurements have often been neglected even though they contain

potentially important information to constrain parameters during optimization. Few

methods exist to integrate qualitative data into the parameter estimation procedure.

One promising approach is the optimal scaling method by Pargett et al. (2014). As

for this method a constraint optimization problem has to be solved repeatedly it is

computationally challenging and more efficient and reliable algorithms are needed.

(iii) Gradient-based optimization has shown to be advantageous compared to gradient-free

methods (Schälte et al., 2018). Yet, so far no method exists to accurately compute

gradients of the objective function, when qualitative data is used.

(iv) Standardized formats have proven to be necessary for reusability and interoperabil-

ity. Henceforth, standards for the definition of computational models of biological

processes have been established and widely adopted. In contrast, for parameter

estimation problems no standard definition exists, which hinders reproducibility,

reusability and interoperability.

The aforementioned issues are addressed and in the following, the contributions are

delineated. The main contributions are:

(1) Efficient parameter estimation of large-scale models using relative mea-

surements. We developed an approach to combine scalable adjoint sensitivity

analysis with a hierarchical approach for efficient parameterization of scaling, offset

and noise parameters. We demonstrated the superior convergence of local gradient-

based optimization approaches when using the hierarchical method on a large-scale

model of cancer signaling with thousands of parameters and provide an explanation

for the impaired optimization when estimating these nuisance parameters without

the hierarchical approach.

(2) Efficient and robust parameter estimation for qualitative data using an

optimal scaling approach. We derived the theoretical foundation to reduce the

parameter space for the inner problem of the optimal scaling approach. Additionally,

we reparameterized the problem to facilitate the use of more efficient optimization

methods. We showed that the reduction of the problem substantially improved
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efficiency, while the reparameterization yielded an optimization problem that can be

solved more robustly.

(3) Gradient computation for the optimal scaling approach. We derived formulas

to calculate the gradient of the optimal scaling objective function with respect to

the model parameters. This allows the use of gradient-based optimization techniques

which, as we showed, are more efficient than gradient-free methods.

(4) Interoperable specification of parameter estimation problems in systems

biology. We developed the PEtab format for the definition of parameter estimation

problems. PEtab builds on the widely used SBML format (Hucka et al., 2003)

and additional tab-separated value files for the definition of experimental data and

an unambiguous link between measurement data and model observables. PEtab is

implemented in several computational toolboxes, which makes mathematical methods,

like the ones developed in this thesis, available to a broader scientific community.

Some of these contributions are already part of peer-reviewed publications, currently

submitted to peer-reviewed journals or in preparation. Parts of the work in this thesis thus

correspond or are to some extent similar to the following publications:

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. & Weindl, D. (2019). Effi-

cient parameterization of large-scale dynamic models based on relative measurements.

Bioinformatics, 36 (2), 594-602. (∗equal contribution)

• Schmiester, L., Weindl, D. & Hasenauer, J. (2020). Parameterization of mechanistic

models from qualitative data using an efficient optimal scaling approach. J. Math.

Biol., 81, 603–623

• Schmiester, L., Weindl, D. & Hasenauer, J. Efficient gradient-based parameter

estimation for dynamic pathway models using qualitative data, in preparation.

• Schmiester, L.∗, Schälte, Y.∗, Bergmann, F., Camba, T., Dudkin, E., Egert, J.,

Fröhlich, F., Fuhrmann, L., Hauber, A. L., Kemmer, S., Lakrisenko, P., Loos,

C., Merkt, S., Müller, W., Pathirana, D., Raimúndez, E., Refisch, L., Rosenblatt,

M., Stapor, P., Städter, P., Wang, D., Wieland, F.-G., Banga, J. R., Timmer, J.,

Villaverde, A. F., Sahle, S., Kreutz, C., Hasenauer, J., Weindl, D. (2020). PEtab–

interoperable specification of parameter estimation problems in systems biology.

arXiv, 2004.01154 [q-bio.QM]



1.3. CONTRIBUTIONS OF THIS THESIS 7

• Fröhlich, F., Kessler, T., Weindl, D., Shadrin, A., Schmiester, L., Hache, H.,

Muradyan, A., Schütte, M., Lim, J-H., Heinig, M., Theis, F., Lehrach, H., Wierling,

C., Lange, B. & Hasenauer, J. (2019). Efficient parameter estimation enables the

prediction of drug response using a mechanistic pan-cancer pathway model. Cell

Systems, 7 (6), 567-579.

Other contributions of my doctoral research which are not included in this thesis are:

• Städter, P.∗, Schälte, Y.∗, Schmiester, L.∗, Hasenauer, J. & Stapor, P. (2020).

Benchmarking of numerical integration methods for ODE models of biological systems.

bioRxiv, 10.1101/2020.09.03.268276

• Stapor, P.∗, Adlung, L.∗, Tönsing, C.∗, Schmiester, L., Schwarzmüller, L., Wang,

D., Timmer, J., Klingmüller, U., Hasenauer, J., Schilling, M. (2019). Cell-to-cell

variability in JAK2/STAT5 pathway components and cytoplasmic volumes define

survival threshold in erythroid progenitor cells. bioRxiv, 10.1101/866871

• Lines, G. T., Paszkowski,  L., Schmiester, L., Weindl, D., Stapor, P. & Hasenauer,

J. (2019). Efficient computation of steady states in large-scale ODE models of

biochemical reaction networks. IFAC-PapersOnLine, 52 (26), 32-37

• Stapor, P., Schmiester, L., Weindl, D. & Hasenauer, J. (2019). Mini-batch optimiza-

tion enables training of ODE models on large-scale datasets. bioRxiv, 10.1101/859884

Besides the contribution to these research articles, I also contributed to the development

of several toolboxes which enable the reusability of the here developed methods:

• pyPESTO Python Parameter EStimation TOolbox: A Python-based optimization

toolbox for systems biology models providing different optimization and uncertainty

quantification algorithms. Contributions (2) and (3) are implemented in pyPESTO.

• parPE parallel Parameter Estimation library: A highly scalable optimization toolbox

tailored for large-scale problems that can be used on high-performance computing

clusters. The contribution (1) is implemented in parPE.

• PEtab Parameter estimation problems in tabular format: A standardized, interoper-

able format to define parameter estimation problems based on SBML (Hucka et al.,

2003) and tab-separated value files, which is the basis for contribution (4). All case

studies in this thesis were implemented in the PEtab format.
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1.4 Outline

The remainder of the thesis is organized as follows: The notation and background on

ODE modeling of biological processes as well as parameter inference is introduced in

Chapter 2. Different data types, ranging from absolute over relative measurements to

qualitative observations, and potential modeling approaches of these data are explained

there. Chapters 3, 4 and 5 present the main contributions of this thesis. In Chapter

3, the combination of an efficient hierarchical approach for relative data and scalable

gradient computation by using adjoint sensitivity analysis is derived. The benefit of this

approach is then demonstrated on a large-scale model of cancer signaling. Chapter 4

starts with an introduction on parameter estimation for qualitative data using a so-called

optimal scaling approach. Afterwards, the theoretical foundations for a more efficient and

robust formulation of the optimal scaling approach are derived and a method for gradient

computation of these problems is presented. The advantage of the newly developed methods

is demonstrated on several application examples. In Chapter 5, a reusable pipeline for

parameter estimation based on the PEtab format for specification of parameter estimation

problems is introduced. The thesis is concluded in Chapter 6 with a summary of the main

contributions and an outlook on promising further developments.



Chapter 2

Background

In the following, we introduce the notation and the relevant background that is needed

throughout this thesis. In particular, we introduce the modeling of biological processes using

ODEs and how to link model simulation to different types of measured data. Furthermore,

we outline different methods for parameter inference and gradient computation. This

chapter is based on my following publications, therefore, in parts similar or even identical

to them:

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. & Weindl, D. (2019). Effi-

cient parameterization of large-scale dynamic models based on relative measurements.

Bioinformatics, 36 (2), 594-602.

• Schmiester, L., Weindl, D. & Hasenauer, J. (2020). Parameterization of mechanistic

models from qualitative data using an efficient optimal scaling approach. J. Math.

Biol., 81, 603–623

• Schmiester, L., Weindl, D. & Hasenauer, J. Efficient gradient-based parameter

estimation for dynamic pathway models using qualitative data, in preparation.

2.1 Mathematical modeling of biological systems

2.1.1 Ordinary differential equation models

Models based on ODEs are among the most widely used models for biological processes.

Under the assumption of sufficiently abundant and homogeneously distributed biochemical

species, ODE models often yield a good representation of the underlying process while

maintaining computational tractability. In this thesis, we restricted ourselves to models

based on ODEs and consider models of the form

ẋ(t, θ, u) = f(x(t, θ, u), θ, u), x(t0, θ, u) = x0(θ, u). (2.1)

Here, the state vector x(t, θ, u) ∈ Rnx describes the concentrations of the modeled species.

Examples are mRNAs, proteins or protein complexes. The derivative of x with respect
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to the time t ∈ R is given by ẋ. The vector field f : Rnx × Rnθ × Rnu → Rnx denotes the

temporal evolution of the species. Here, nx is the total number of modeled species, nθ the

number of parameters and nu the number of known inputs. Unknown model parameters,

such as reaction rate constants or initial concentrations, are described by θ ∈ Rnθ . u ∈ Rnu

are known inputs, e.g. different experimental conditions, such as drug concentrations or

genetic profiles. Here, we only consider parameters θ and inputs u that are constant over

time. We assume that the vector field f is Lipschitz continuous, which, according to the

Picard-Lindelöf Theorem, guarantees local existence and uniqueness of the solution of (2.1)

(Coddington & Levinson, 1955). As we consider ODE models of biological systems, which

usually have a finite solution in the considered time interval, the assumption is appropriate

for parameters θ in a biologically reasonable range.

2.1.2 Linking model output to measurements

To obtain predictive models, the unknown parameters have to be inferred from experimental

data. To this end, model simulations need to be linked to measurements. As measurements

often provide information not on a single species but rather on a combination of species,

this is achieved by introducing an observation function h : Rnx × Rnθ × Rnu → Rny , which

maps the states, parameters and inputs to observables y(t, θ, u) ∈ Rny via

y(t, θ, u) = h(x(t, θ, u), θ, u), (2.2)

where ny is the number of observables. The observables describe experimentally obtained

measurements ȳ. These are usually subject to noise, which needs to be accounted for. This

can be done using a noise model. Most frequently, i.i.d. additive Gaussian noise models

are considered:

ȳit,iy ,iu = yiy(tit , θ, uiu) + εit,iy ,iu , with εit,iy ,iu ∼ N (0, σ2
it,iy ,iu), (2.3)

with standard deviations σ, time index it, observable index iy and condition index iu.

While Gaussian noise is the most widely used error model, other noise models have shown

to be more robust in some cases, e.g. in the presence of outliers (Maier et al., 2017).

We denote the collection of all measurements as

D = {ȳit,iy ,iu}
it=1,...,nt
iy=1,...,ny
iu=1,...,nu

(2.4)
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Biological experiments often provide measurements that are not absolute. In some cases,

they are only proportional to the absolute concentrations of interest. In other cases, even

the assumption of a linear relation does not hold true. Generally, non-absolute data can

be modeled with an additional measurement process function g : Rny × Rnξ → Rny

y(t, θ, u, ξ) = g(h(x(t, θ, u), θ, u), ξ) (2.5)

with observable parameters ξ ∈ Rnξ . These parameters are usually not known and,

therefore, also need to be estimated. Commonly used measurement techniques provide e.g.

relative information leading to a linear transformation of the form

g(h(x(t, θ, u), θ, u), s, b) = s · h(x(t, θ, u), θ, u) + b (2.6)

with scaling and offset parameters s, b. Qualitative observations result in more complex

and usually unknown non-linear transformations (Pargett & Umulis, 2013). This will be

introduced in more detail in Chapters 3 and 4.

2.2 Maximum likelihood function

ODE models of biological processes of the form (2.1) usually comprise parameters θ, which

are difficult to determine experimentally and are therefore unknown. Modeling of non-trivial

measurement processes can introduce additional parameters ξ. These unknown parameters

need to be inferred from experimental data which is commonly done by optimizing an

objective function. Here, we consider the likelihood function, which is the probability of

observing data D, given the parameters θ, ξ:

L(θ, ξ) = p(D|θ, ξ). (2.7)

We assume i.i.d. additive Gaussian noise with standard deviation σ. In some cases, the

standard deviations σ of the measurement error can be directly obtained, e.g. when

experimental replicates are available. However, often σ is unknown and therefore also

needs to be estimated along with θ and ξ. We denote the collection of model parameters θ,

observable parameters ξ and unknown noise parameters σ as ψ = (θ, ξ, σ). The likelihood

can then be written as

L(ψ) =

nu∏
iu

ny∏
iy

nt∏
it

1√
2πσit,iy ,iu(θ, ξ)

exp

{
−1

2

(
ȳit,iy ,iu − yiy(tit , θ, uiu , ξ)

σit,iy ,iu(θ, ξ)

)2
}
. (2.8)
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We are then interested in the maximum likelihood estimate ψML, which maximizes the

likelihood function

ψML = arg max
ψ∈Ψ

L(ψ), (2.9)

with the domain Ψ indicating the range of plausible parameter values. For numerical

stability, usually the logarithm of the likelihood is considered (Raue et al., 2013a). Ad-

ditionally, as the majority of optimization algorithms is implemented to minimize the

objective function, the negative log-likelihood is used which is given by

`(ψ) = − log(L(ψ)) =
1

2

nu∑
iu

ny∑
iy

nt∑
it

`it,iy ,iu(ψ), (2.10)

with

`it,iy ,iu(ψ) = log(2πσ2
it,iy ,iu(θ, ξ)) +

(
ȳit,iy ,iu − yiy(tit , θ, uiu , ξ)

σit,iy ,iu(θ, ξ)

)2

. (2.11)

Minimizing the negative log-likelihood ` yields the same optima as maximizing the likelihood

L.

In the case of known measurement noise σit,iy ,iu , we obtain a weighted least-squares function

J(ψ) =
1

2

nu∑
iu

ny∑
iy

nt∑
it

Jit,iy ,iu(ψ) (2.12)

with

Jit,iy ,iu(ψ) = wit,iy ,iu
(
ȳit,iy ,iu − yiy(tit , θ, uiu , ξ)

)2
. (2.13)

The weights are given by wit,iy ,iu = 1/σ2
it,iy ,iu

. We neglected constant terms here, as they

do not change the optima of the function. It has been shown that it is often advantageous

to optimize log-transformed parameters (if positivity of the parameters can be assumed),

as the objective function tends to be ”more convex” in this case (Hass et al., 2019), in

the sense that more randomly drawn parameters ψ1, ψ2 fulfill J(αψ1 + (1 − α)ψ2) ≤
αJ(ψ1) + (1− α)J(ψ2), ∀α ∈ [0, 1].

2.3 ODE-constrained optimization

The unknown model parameters are estimated by solving an ODE-constrained optimization

problem. These problems are usually non-convex, multi-modal and potentially high-

dimensional. Different approaches exist to handle the ODE constraints. The multiple-

shooting approach to solve this problem, splits the time interval into sub-intervals (Bock &
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Plitt, 1984). The ODE constraints can also be relaxed by approximating the ODE, e.g.

using spline functions, and optimizing the coefficients of the approximation together with

the parameters (Chung et al., 2017). In contrast, the reduced or single-shooting approach

does not handle the ODE as constraints. Instead, the initial value problem is solved on

the whole time interval, to evaluate the objective function. In this thesis, we will focus

on the single-shooting formulation approach using implicit ODE solvers. To this end, the

numerical solution to the ODE needs to be calculated repeatedly for different parameter

vectors during optimization.

The parameter estimation approaches are often looked at either from a frequentist or a

Bayesian point-of-view (Raue et al., 2013a). The first one aims to optimize an objective

function to obtain a point estimate, while the latter estimates the posterior distribution of

the parameters using sampling-based approaches like Markov-chain Monte-Carlo methods

(Ballnus et al., 2017). Here, we will focus mainly on the frequentist perspective.

2.3.1 Optimization problems with box-constraints

Parameter estimation problems usually consist of minimizing an objective function J , here

we consider (2.10) or (2.12), i.e. J = {`, J}, given some constraints on the parameters.

In systems biology, frequently simple box-constraints are considered, as often biologically

plausible boundaries, but no further information on the relation of parameters is known.

This leads to an optimization problem of the form

min
ψ
J (ψ)

s.t. l ≤ ψ ≤ u
(2.14)

with lower and upper bounds l, u ∈ Rnψ . Under the assumption of a continuously differen-

tiable objective function, necessary optimality conditions can be derived. If ψ∗ is a local

minimizer of (2.14), then it holds that (Boyd & Vandenberghe, 2004)

∂J (ψ∗)

∂ψk
=


≥ 0, if ψ∗k = lk

≤ 0, if ψ∗k = uk

= 0, else.

(2.15)

When the bounds are sufficiently wide such that the optimum lies within them, or no

bounds are present, the optimality condition simplifies to ∂J (ψ∗)
∂ψk

= 0. In addition, a
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sufficient condition for a local minimum is given by the positive definiteness of the Hessian

∇2J (ψ∗).

2.3.2 Optimization problems with inequality constraints

In some settings, more general inequality constraints can occur, e.g. when incorporating

qualitative measurements (Mitra et al., 2018; Pargett et al., 2014). Therefore, we consider

the optimization problem

min
ψ
J (ψ)

s.t. qiq(ψ) ≤ 0, for iq = 1, . . . , nq

(2.16)

with nq inequality constraints qiq : Rnψ → R. Optimality conditions can also be derived

for (2.16). We consider the Lagrangian function for this problem which is defined as

L(ψ, µ) = J (ψ) + µT q(ψ), (2.17)

with Lagrange multipliers µ ∈ Rnq+ . With this, a necessary optimality condition is as follows

(Nocedal & Wright, 2006): If J and q are continuously differentiable functions and ψ∗ is a

local optimum of (2.16) then there exist Lagrange multipliers µ ∈ Rnq+ , such that

∇ψL(ψ∗, µ) = ∇ψJ (ψ∗, µ) + µT∇ψq(ψ∗) = 0

µiqqiq(ψ
∗) = 0

qiq(ψ
∗) ≤ 0

µiq ≥ 0,

(2.18)

for iq = 1, . . . , nq. If the objective function J is convex, the necessary optimality conditions

(2.18) are also sufficient (Boyd & Vandenberghe, 2004). Sufficient conditions for a local

optimum can also be derived in the general case (Fiacco, 1976), under the assumption of

twice continuously differentiable functions J and q in the neighborhood of ψ∗. Then ψ∗ is

a minimizing point, if µ exists such that (2.18) is satisfied and the second-order conditions

hold:

mT∇2
ψL(ψ∗, µ)m > 0 (2.19)

for all m 6= 0 such that

mT∇ψqi(ψ∗) ≥ 0,∀i, with qi(ψ
∗) = 0

mT∇ψqi(ψ∗) = 0,∀i, with µi > 0.
(2.20)
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If q reduces to box constraints or no constraints are present, the necessary and sufficient

conditions are equivalent to the ones obtained in Section 2.3.1.

2.3.3 Global optimization

To find the optimal parameters of the problems (2.14) and (2.16), numerical optimization

has to be performed. Numerous methods and algorithm were developed to this end (Nocedal

& Wright, 2006). Usually, one is interested in the globally optimal parameters. Different

strategies exist to find the global optimum of a multi-modal, non-linear objective function.

Evolutionary (Bäck, 1996; Runarsson & Yao, 2000) and swarm-based (Kennedy, 2011;

Yang, 2010) algorithms are inspired by nature and biology. Simulated annealing is another

technique based on principles from physics (Goffe et al., 1994; Kirkpatrick et al., 1983).

Hybrid approaches try to benefit both from global and local approaches by combining

them. Among the most popular methods are metaheuristics combined with local searches

as well as multi-start local optimization (Fröhlich et al., 2019; Villaverde et al., 2018).

Scatter-search algorithms (Egea et al., 2007; Penas et al., 2015; Villaverde et al., 2012) are

examples of metaheuristics. These combine a global search phase with local optimizations

at selected points. Multi-start methods aim to find the global optimum by repeatedly

performing local optimizations initialized at different randomly chosen starting points

(Raue et al., 2013b). They can be analyzed by means of the different values found from

the local optimizations, giving rise not only to the global optimum but also to different

local optima of the objective function. Hybrid methods can be further accelerated and

scaled to large problems using parallelization, e.g. over the different local searches (Penas

et al., 2015, 2017).

In the context of parameter estimation for ODE models in systems biology, there are several

case studies trying to identify well-working approaches and establish guidelines (Hass et al.,

2019; Schälte et al., 2018; Villaverde et al., 2018). These analyses only consider box-

constrained optimization problems of the form (2.14) but no general inequality constraints

as these occur less frequently.

2.3.4 Local optimization

Hybrid global-local methods like multi-start as well as metaheuristics combined with local

searches have shown to perform reasonably well in most of the common systems biology

applications (Villaverde et al., 2018). Still, the efficiency of the employed local optimization

algorithms plays a crucial role for successful parameter estimation. Various methods exist
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to find local minima (Nocedal & Wright, 2006). These incorporate different information

like the objective function value, gradients or potentially even higher-order derivatives to

iteratively update the parameter vector. Often, gradient-based optimization algorithms are

preferred (Raue et al., 2013b; Schälte et al., 2018; Stapor et al., 2018b). However, they rely

on the availability of efficient and robust ways to calculate gradients. In cases, where this

is not possible, gradient-free algorithms, which only rely on the objective function to be

evaluable, can be valuable alternatives. In the following, we briefly review some commonly

used gradient-free and gradient-based optimization methods.

Gradient-free Optimization

For gradient-free optimizers, theoretical results on convergence to an optimal value can only

sometimes be obtained (Rios & Sahinidis, 2013). Local search algorithms can be divided

into direct and model-based methods. The direct method pattern search uses exploratory

moves for local search of an improving direction and pattern moves for larger steps (Hooke

& Jeeves, 1961). Simplex based methods like the Nelder-Mead algorithm (Nelder & Mead,

1965) use trial points to form a simplex and then extrapolate the objective function to

replace the worst trial point with a new one. Model-based algorithms build a surrogate

model of the objective function which is then optimized. Linear (Powell, 1994) as well as

quadratic models (Powell, 2009) are often used in this context.

Most gradient-free methods have been developed for unconstrained or box-constrained

problems. Still, some methods exist to handle more general constraints, e.g. the model-based

approach developed by Powell (1994). Additionally, penalty and augmented Lagrangian

methods can be used which combine the objective function and the constraints into either

a penalty function of the form J + λq2 or which are based on the Lagrangian function

(2.17).

Gradient-based Optimization

Most gradient-based optimization algorithms iteratively update the parameter vector,

yielding a sequence of (monotonically) decreasing objective function values. For this, a

direction and a step length needs to be computed (Fröhlich et al., 2019). Typical directions

are steepest descent (Curry, 1944), which is only based on the gradient, or (quasi-) Newton

directions which use either explicitly computed Hessian information, or approximations

thereof, like SR1 (Byrd et al., 1996), (L-)BFGS (Fletcher & Powell, 1963; Nocedal, 1980)

or conjugate gradient methods (Branch et al., 1999). The strategies to determine the

parameters of the next iterate are often divided into line-search (Wächter & Biegler, 2006)

and trust-region methods (Sorensen, 1982; Yuan, 2015). They mainly differ in the order in
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which they determine the direction and step length. Line-search strategies first compute a

direction and then determine an appropriate step length. A common procedure for step

length calculation is the backtracking line-search scheme, where a relatively large step

size is initially chosen, which is iteratively shrunk until an improvement in the objective

function value is observed. Trust-region methods proceed conversely, by first determining

a trust region in which a model function of the objective function is constructed. The

trust region defines the maximal step length. Then an appropriate direction is calculated.

Algorithms based on combinations of trust-region and line-search steps have also been

developed (Waltz et al., 2006). For many gradient-based algorithms, theoretical results

under which convergence can be guaranteed exist (Nocedal & Wright, 2006).

Constraints can be incorporated in different ways. Again penalty and augmented Lagrangian

methods can be used (Nocedal & Wright, 2006). Sequential quadratic programming (SQP)

approaches solve a quadratic subproblem at each iterate using the Lagrangian (Schittkowski,

2011). The subproblem in SQP usually uses a linearization of the constraints. Interior point

methods use barrier functions which result in infinite function values at the boundaries

(Byrd et al., 1999).

2.3.5 Gradient calculation

Different strategies exist to calculate gradient information of the objective function. In the

following, we consider the negative log-likelihood function `, but the approaches can also be

applied to weighted least squares functions. Most frequently used are (i) finite difference

schemes, (ii) forward sensitivity analysis and (iii) adjoint sensitivity analysis (Fröhlich

et al., 2019). But also other approaches like automatic differentiation exist (Rackauckas

et al., 2018). In the following, we restrict ourselves to the trivial observable transformation

(g(h) = h), i.e. the observable function (2.2) with no observable parameters (ψ = θ).

Gradient computation for relative and qualitative data will be introduced in chapters 3

and 4 respectively.

Finite difference methods calculate an approximation of the gradient of the objective

function based on
d`(θ)

dθk
≈ `(θ + aek)− `(θ − bek)

a+ b
, (2.21)

with unit vectors ek and a, b ≥ 0. Typical choices are forward differences (b = 0), backward

differences (a = 0) or central differences (a = b 6= 0). While they are easy to implement

irrespective of the function, they rely on step sizes a and b which need to be defined a
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priori, and error control is difficult. The computational cost of finite difference methods

scales linearly with the number of parameters.

Sensitivity analysis methods are based on analytically differentiating the negative

log-likelihood function (2.10) yielding

d`(θ)

dθk
=

nu∑
iu

ny∑
iy

nt∑
it

∂`it,iy ,iu(θ)

∂θk
+
∂`it,iy ,iu(θ)

∂yiy
s
yiy
k (tit , θ, uiu), (2.22)

where s
yiy
k denotes the observable sensitivity which is the derivative of the observable yiy

with respect to θk. The gradient of ` can then be computed once the observable sensitivities

are derived.

Forward sensitivity analysis aims to calculate the observable sensitivities via their depen-

dency on the state sensitivities sxk(tit , θ, uiu)

s
yiy
k (tit , θ, uiu) =

∂hiy
∂x

(x(tit , θ, uiu), θ, uiu)·sxk(tit , θ, uiu)+
∂hiy
∂θk

(x(tit , θ, uiu), θ, uiu) (2.23)

State sensitivities can be obtained by differentiating the ODE (2.1) with respect to θ which

yields

ṡxk(t, θ, u) =
∂f

∂x
(x(t, θ, u), θ, u) · sxk(t, θ, u) +

∂f

∂θk
(x(t, θ, u), θ, u)

sxk(t0, θ, u) =
dx0

dθk
(θ, u).

(2.24)

This system of ODEs can be solved along with the original ODE leading to the augmented

system

ẋ(t, θ, u) = f(x(t, θ, u), θ, u)

ṡxk(t, θ, u) =
∂f

∂x
(x(t, θ, u), θ, u) · sxk(t, θ, u) +

∂f

∂θk
(x(t, θ, u), θ, u)

(2.25)

with initial conditions
x(t0, θ, u) = x0(θ, u)

sxk(t0, θ, u) =
dx0

dθk
(θ, u).

(2.26)

Forward sensitivities can consequently be obtained by solving a problem of dimension

nx(1 + nθ).

Adjoint sensitivity analysis is an alternative which circumvents evaluating the state sen-

sitivities (Fröhlich et al., 2017; Kokotovic & Heller, 1967). To this end, an adjoint state

p : [t0, tnt ] 7→ Rnx is introduced which is integrated backward in time. The adjoint state

is chosen such that it is zero for t > tnt and satisfies the following backward differential
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equation on (tj , tj+1]:

ṗ(t) = −∂f
∂x

(x(t, θ, u), θ, u) · p(t)

p(tj+1) = lim
t↘tj+1

p(t)−
(
∂`j+1(θ)

∂y

∂h

∂x
(x(t, θ, u), θ, u)

)T (2.27)

With this, the gradient of the objective function can be written as

d`(θ)

dθk
=

nu∑
iu

ny∑
iy

nt∑
it

[
∂`it,iy ,iu(θ)

∂θk
+
∂`it,iy ,iu(θ)

∂yiy

∂h

∂θk

]
−p(t0)T

dx0(θ, uiu)

dθk
−
∫ tnt

t0

p(t)T
∂f

∂θk
dt

(2.28)

This can be computed irrespective of the state sensitivities, except for at t = 0, which

can usually be easily calculated. Calculation of the gradient here depends on the adjoint

state p instead of the state sensitivities, whose dimension is nx and does not depend on the

number of parameters nθ. The adjoint approach yields two systems of size nx that need to

be solved. Additionally, nθ quadratures have to be solved. However, this is computationally

much less demanding than solving the ODE and therefore often negligible. For larger

ODE models, adjoint sensitivity analysis has shown to be much more efficient than finite

differences and forward sensitivity analysis (Fröhlich et al., 2017; Fröhlich et al., 2018;

Kapfer et al., 2019).

2.4 Implementation

The computational analysis in the following chapters of this thesis were performed using

different toolboxes which are listed in the following:

• AMICI (Fröhlich et al., 2017) provides efficient algorithms for numerical integration

of ODEs and sensitivity calculation by interfacing the SUNDIALS solver suite

(Hindmarsh et al., 2005).

• PESTO (Stapor et al., 2018b) is a Matlab toolbox to solve parameter estima-

tion problems. It interfaces multiple gradient-based and gradient-free optimization

algorithms.

• pyPESTO (Schälte et al., 2020) is a Python toolbox for parameter estimation

providing similar functionality to PESTO.
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• parPE (Schmiester et al., 2019) is a high performance computing library for large-

scale parameter estimation problems using massive parallelization.

• PEtab (Schmiester et al., 2020a) defines the specification of parameter estimation

problems in a standardized format and provides a Python library for validation of

problems defined in the PEtab format.

All of these tools are available under permissive licenses and are maintained on Github.

Contribution (1) is implemented in parPE and contributions (2) and (3) are part of

pyPESTO. PEtab is part of the contribution (4) of this thesis.



Chapter 3

Efficient parameter estimation for

large-scale models with relative data

Signal transduction models often only consider isolated pathways, neglecting cross-talk

between different pathways. With increasing biological knowledge and computation power,

larger and more comprehensive models have been developed including hundreds to thousands

of species and unknown parameters (Bouhaddou et al., 2018; Chen et al., 2009; Fröhlich

et al., 2018). Large models like the pan-cancer model introduced by Fröhlich et al. (2018)

have been used to accurately predict the response of cancer cell-lines to drug combination

treatments and can pave the way to more personalized medicine. However, with increasing

model size, more advanced parameter estimation methods are needed. The main challenges

for parameter estimation of large-scale models are (i) the computational complexity of

repeated model simulation and gradient calculation and (ii) the availability of large amounts

of measurement data to train the model on.

Adjoint sensitivity analysis can be employed to decrease computational complexity (see

Chapter 2.3.5) (Fröhlich et al., 2017). Furthermore, parallelization reduces the wall-time for

optimization (Fröhlich et al., 2018; Penas et al., 2015). Complementary, advances in exper-

imental measurement techniques have enabled the generation of large-scale pharmaceutical,

transcriptomic and proteomic datasets (Barretina et al., 2012; Eduati et al., 2017; Li et al.,

2017). These datasets typically contain relative measurements and unknown scaling and

offset parameters are needed to map the model output to the measured quantities which

increases the dimensionality of the optimization problem. As the measurements are noise

corrupted, additionally, noise parameters have to be introduced. If no reliable values

for the measurement noise are available, e.g. because of low numbers of experimental

replicates, these parameters also need to be estimated. For scaling and noise parameters,

a hierarchical optimization method has been developed to reduce the dimension of the

parameter search space by analytically calculating the conditionally optimal scaling and

noise parameters during optimization of the model parameters (Loos et al., 2018; Weber

et al., 2011).
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In addition to scaling parameters, offsets are frequently needed, e.g. to model background

noise or when certain normalization, such as median subtraction, is applied. Still, so far

offset parameters have not been considered in the hierarchical optimization approaches. Gra-

dient calculation using forward sensitivity analysis can easily be combined with hierarchical

optimization (Loos et al., 2018). However, the combination with adjoint sensitivity analysis

remained unclear as the adjoint state explicitly depends on the observable parameters,

hindering the application of this approach to large-scale models.

In this chapter, we (i) derive the analytical solutions of the optimal observable and noise

parameters for the combination of offset and scaling parameters for additive Gaussian

noise and (ii) extend the hierarchical optimization approach to be used in combination

with adjoint sensitivity analysis. We apply this approach to the large-scale pan-cancer

signaling model from Fröhlich et al. (2018). We first provide a conceptual explanation

of the impaired optimizer performance when scaling parameters are introduced, which

can be improved by using hierarchical optimization. We then show that the hierarchical

approach yields speedups of more than one order of magnitude and that it can facilitate

the unbiased integration of heterogeneous datasets for parameter inference. Therefore, the

method presented in this chapter addresses the open challenge (i) stated in Section 1.3.

This chapter is based on and in part identical to the following publication:

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. & Weindl, D. (2019). Effi-

cient parameterization of large-scale dynamic models based on relative measurements.

Bioinformatics, 36 (2), 594-602.

3.1 Background

Often, measurements are relative to the concentrations of the considered species (Degasperi

et al., 2017; Loos et al., 2018; Weber et al., 2011) or underwent some type of unknown

and irreversible normalization (Barretina et al., 2012; Li et al., 2017). In these cases, the

model simulation needs to be rescaled to compare it with the data. This is often either

done by data-driven normalization (Degasperi et al., 2017), where e.g. a measurement

relative to a control is modeled by dividing with the simulation of the control, or by the

introduction of scaling and offset parameters. While the first approach does not change

the dimension of the optimization problem, the statistical interpretation can be difficult as

it results in non-trivial measurement error distributions (Loos et al., 2018). Therefore the

latter approach is often preferred.
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3.1.1 Relative measurements

When measurement techniques with a non-absolute, but linear relationship to the underlying

quantities are employed, the model output can be mapped to the measurement by using

scaling s ∈ Rns and offset parameters b ∈ Rnb via the measurement process function

g(hiy(x(tit , θ, uiu), θ, uiu), ξit,iy ,iu) = sit,iy ,iu · hiy(x(tit , θ, uiu), θ, uiu) + bit,iy ,iu . (3.1)

The observable parameters are then the collection of scaling and offset parameters ξit,iy ,iu =

(sit,iy ,iu , bit,iy ,iu).

In the following, we collect w.l.o.g. the indices for observables iy, timepoints it and inputs

iu in one general index i = (it, iy, iu) ∈ I, where I is the collection of all datapoint indices.

Usually, different measurements share the same scaling, offset or noise parameters, e.g. if

the data is collected in the same experiment. We introduce the index sets

Isis , I
b
ib
, Iσiσ ⊂ I, (3.2)

for is = 1, . . . , ns, ib = 1, . . . , nb and iσ = 1, . . . , nσ, with ns, nb, nσ denoting the numbers

of scaling, offset and sigma parameters, respectively. These sets contain all indices of

datapoints which are associated with the same observable or noise parameter. Common

assumptions which we will also follow here are

{Isis}is = {Ibib}ib (3.3)

∀is∃iσ : Isis ⊂ I
σ
iσ , (3.4)

i.e. offset and scaling parameters share the same datapoints and datapoints that share a

scaling parameter also share the noise parameter. If σ is know, e.g. if it can be calculated

from experimental replicates, the second assumption can be dropped.

Notation: For ease of notation we will skip some dependencies of h and write hi(θ) =

hiy(x(tit , θ, uiu), θ, uiu) in the following.

3.1.2 Hierarchical optimization

The optimization problem of finding the maximum likelihood estimate for relative data is

given by

min
θ,s,b,σ

`(θ, s, b, σ), (3.5)
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with the negative log-likelihood function

`(θ, s, b, σ) =
1

2

∑
i∈I

log(2πσ2
i ) +

(
ȳi − si · hi(θ) + bi

σi

)2

. (3.6)

The standard optimization approach aims at numerically optimizing all parameters si-

multaneously, which results in an increased dimensionality of the optimization problem

compared to absolute data. The hierarchical approach developed by Loos et al. (2018);

Weber et al. (2011) makes use of the underlying structure of the optimization problem by

splitting it into an outer optimization, where the dynamic parameters θ are optimized, and

an inner optimization for the remaining observable and noise parameters. The existing

approaches only considered trivial offsets b = 0. The optimization problem can then be

written as

min
θ
`(θ, s(θ), σ(θ)) (3.7)

s.t. (s(θ), σ(θ)) = arg min
s,σ

`(θ, s, σ). (3.8)

This problem can be solved hierarchically by estimating the model parameters θ numerically

in the outer optimization (3.7) and at each iteration of the outer optimization, calculating

the conditionally optimal observable parameters s and noise parameters σ in the inner

optimization (3.8). While splitting the optimization problem into two subproblems seems

more involved, the inner problem does not involve numerically solving the ODE and

analytical formulas for the optimal scaling and noise parameters can be derived. This can

greatly improve computation times, as it reduces the dimensionality of the numerical opti-

mization problem. The analytical formulas are calculated using the optimality conditions

from Section 2.3.1 and are given by (see Loos et al. (2018); Weber et al. (2011) for the

derivations)

sis(θ) =

∑
i∈Isis

ȳi · hi(θ)∑
i∈Isis

hi(θ)2
(3.9)

σ2
iσ(θ) =

∑
i∈Iσiσ

(ȳi − sihi(θ))2

|Iσiσ |
, (3.10)

with |Iσiσ | denoting the cardinality of Iσiσ .
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The gradient of the outer problem can be calculated with the optimal scaling and noise

parameters conditioned on θ via (see Loos et al. (2018); Weber et al. (2011))

∂`(θ, s, b, σ)

∂θk
=
∑
i∈I

ȳi − si(θ)hi(θ)
σ2
i (θ)

· si(θ) · syik (θ), (3.11)

where here, syik denotes the observable sensitivities for the unscaled observables, i.e. with

s = 1, which can be obtained by forward sensitivity analysis.

3.2 Hierarchical optimization for large-scale models

Large-scale models require a large amount of measurement data for parameter estimation.

These measurements are usually relative and both scaling and offset parameters often need

to be introduced. Here we first derive analytical formulas for the hierarchical optimization

method when offsets are present in addition to scalings. Then we outline an approach to

combine hierarchical optimization with adjoint sensitivity analysis.

3.2.1 Analytical formulas for optimal offset and scaling parameters

We extend the approach from Weber et al. (2011) and Loos et al. (2018) to the general case

of relative data of the form (3.1) combining offset b and scaling parameters s. Including

offset parameters, the hierarchical optimization problem is given by

min
θ
`(θ, s(θ), b(θ), σ(θ))

s.t. (s(θ), b(θ), σ(θ)) = arg min
s,b,σ

`(θ, s, b, σ).
(3.12)

Similar to the derivations in Loos et al. (2018); Weber et al. (2011), analytical formulas for

the conditionally optimal scaling and offset parameters can be calculated via the necessary

optimality conditions from Section 2.3.1. By differentiating (3.6) w.r.t. s or b, we obtain

for scaling parameters

0 =
∂`(θ, s, b, σ)

∂sis
= −

∑
i∈Isis

ȳi − (sishi(θ) + bi)

σ2
i

hi(θ) (3.13)

and likewise for offset parameters

0 =
∂`(θ, s, b, σ)

∂bib
= −

∑
i∈Ibib

ȳi − (sihi(θ) + bib)

σ2
i

. (3.14)
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Solving these equations for s and b respectively yields

sis =

∑
i∈Isis

h2
i (θ)

σ2
i

−1∑
i∈Isis

(ȳi − bi)hi(θ)
σ2
i

 (3.15)

bib =

∑
i∈Ibib

1

σ2
i


−1∑

i∈Ibib

ȳi − sihi(θ)
σ2
i

 . (3.16)

If only scalings or offsets are to be estimated in the inner optimization loop, e.g. if there

are no offsets (b = 0) or no scalings (s = 1) present, these formulas can readily be used and

we are done. If both parameters have to be estimated, then formula (3.15) can be inserted

into (3.16). With assumption (3.3) we have is = ib and Isis = Ibib . This then gives

1−

(∑
i

1

σ2
i

)−1
∑i

hi(θ)
σ2
i

∑
j
hj(θ)

σ2
j∑

i
h2
i (θ)

σ2
i

 bib =

(∑
i

1

σ2
i

)−1
∑

i

ȳi
σ2
i

−

∑
i
ȳihi(θ)
σ2
i

∑
j
hj(θ)

σ2
j∑

i
h2
i (θ)

σ2
i

 ,

(3.17)

where we always sum over i or j ∈ Isis . Dividing by the factor in front of b on the left hand

side results in

b =

(∑
i

1
σ2
i

)−1

∑
i
ȳi
σ2
i
−

∑
i
ȳihi(θ)

σ2
i

∑
j

hj(θ)

σ2
j∑

i

h2
i
(θ)

σ2
i


1−

(∑
i

1
σ2
i

)−1

∑
i
hi(θ)

σ2
i

∑
j

hj(θ)

σ2
j∑

i

h2
i
(θ)

σ2
i

 . (3.18)

The scaling parameters s can then be calculated by inserting (3.18) into equation (3.15).

Analytical formulas for the standard deviations σ can similarly be derived by differentiating

` w.r.t. σ2

0 =
∂`(θ, s, b, σ)

∂σ2
iσ

=
1

2

∑
i∈Iσiσ

1

σ2
iσ

− (ȳi − (sihi(θ) + bi))
2

(σ2
iσ

)2

⇒ σ2
iσ =

∑
i∈Iσiσ

(ȳi − (sihi(θ) + bi))
2

|Iσiσ |
.

(3.19)

Here we assumed, that the factor on the left hand side of (3.17), σ and
∑

i h
2
i are all

non-zero. Otherwise, the data is not sufficient to uniquely determine the observable and

noise parameters and the data or the modeling approach should be revised. Calculation

of the second derivatives reveals that the sufficient optimality conditions are fulfilled (see
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Figure 3.1: Illustration of the proposed combination of the hierarchical approach with
adjoint sensitivity analysis. The parameters θ are optimized in an outer loop. In the inner
loop, first the unscaled observables are computed. From this the optimal inner parameters
are calculated analytically. The inner loop is then completed by simulating the adjoint
state, if gradients are to be computed. The figure is a modified version of Figure 1 in the
author’s publication (Schmiester et al., 2019).

Section 2.3.1) and s, b and σ are indeed (global) minima:

∂2`(θ, s, b, σ)

∂2sis
=
∑
i∈Isis

h2
i (θ)

σ2
i

> 0

∂2`(θ, s, b, σ)

∂2bib
=
∑
i∈Ibib

1

σ2
i

> 0

∂2`(θ, s, b, σ)

∂2σ2
iσ

=
|Iσiσ |
2σ4

iσ

> 0

(3.20)

3.2.2 Combining adjoint sensitivity analysis and hierarchical optimization

The hierarchical approach can easily be combined with forward sensitivity analysis by

(i) simulating the ODE with forward sensitivities for the unscaled observable

(ii) calculating the optimal inner parameters

(iii) computing the gradient via (3.11) (Loos et al., 2018).

Employing adjoint sensitivity analysis, we can reformulate the gradient of the objective

function to (see Section 2.3.5)

∂`(θ, s(θ), b(θ), σ(θ))

∂θk
= −

∑
i∈I

ȳi − (sihi(θ) + bi)

σ2
i

si
∂h(θ)

∂θk
− p(t0)T

∂x0(θ)

∂θk
−
∫ tnt

t0

pT
∂f(θ)

∂θk
dt.

(3.21)

For relative data, we observe that the initial condition of the adjoint state p explicitly

depends on the observable parameters. p satisfies p(t) = 0 for t > tnt and on (tj , tj+1], p
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Table 3.1: Overview of optimization approaches. Objective-based optimization refers to
methods that only rely on the full objective function in contrast to least-squares based
optimization which is based on the residuals. Scalable here refers to the scaling behavior
w.r.t. the number of parameters. This table is a modified version of Table 1 in the
supplementary data of Schmiester et al. (2019).
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fulfills the backward differential equation

ṗ = −∂f
T

∂x
p

p(tj+1, θ) = lim
t→tj+1

p(t) +
∑
i:ti=tj

ȳi − sihi(θ) + bi
σ2
i

si
∂h̃i(θ)

∂x
,

(3.22)

with the scaled observable h̃(θ) = s · h(θ) + b and the sum only taken over summands

involving ti. As the adjoint state depends on the observable and noise parameters, the

approach for forward sensitivities is not applicable in the adjoint case. Here, we propose a

new scheme that circumvents this problem (Figure 3.1). In the outer optimization loop,

the parameters θ are iteratively updated as is also done by Loos et al. (2018). In the

inner loop, we first simulate the unscaled observable without sensitivities and calculate

the conditionally optimal parameters s(θ), b(θ) and σ(θ), which can be done using the

analytical formulas derived in section 3.2.1. We then treat the optimal inner parameters as

fixed inputs and simulate the adjoint state p of the scaled observable which can be used to

calculate the gradients. This scheme enables the efficient handling of observable and noise

parameters using the hierarchical optimization while using scalable gradient calculation

via adjoint sensitivity analysis.

An overview of the advantages and disadvantages of the different methods is depicted in

Table 3.1.
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3.3 Implementation

We implemented the hierarchical approach and the combination with adjoint sensitivity

analysis as part of the C++ library parPE. parPE provides functionality for parameter

estimation, exploiting parallelization of ODE simulations and multistarts. Internally, it uses

AMICI (Fröhlich et al., 2017) for ODE simulation and sensitivity calculation and interfaces

multiple optimization algorithms for parameter estimation. For ease of implementation, we

also calculated the forward simulation of the ODE in the adjoint state step (Figure 3.1).

In addition to the optimization routines provided by parPE, we also implemented a

Matlab objective function which uses hierarchical optimization that can be optimized

with the Matlab toolbox PESTO (Stapor et al., 2018b). All code used for the study in

this chapter is available via Zenodo at http://doi.org/10.5281/zenodo.3254429 and

http://doi.org/10.5281/zenodo.3254441.

3.4 Application to a large-scale pan-cancer model

Here, we consider the pan-cancer model developed by Fröhlich et al. (2018). The model

comprises 1396 biochemical species, mainly proteins and protein complexes, and 4232

unknown parameters. Seven cancer drugs are implemented enabling simulation of different

drug treatments. The model can be individualized to specific cancer cell-lines using genetic

profiles and gene expression data. Solely trained on drug response data for single-drug

treatments, the model demonstrated promising performance to predict the outcome of drug

combinations (Fröhlich et al., 2018). Recently, it was shown that the model can be used

to optimize drug combination treatments (Schmucker et al., 2020). We anticipated that

additional data on the molecular level could provide complementary information during

parameter estimation to improve predictive power even further and reduce parameter

uncertainties. Motivated by this, we set out to integrate additional measurements used for

model training.

3.4.1 Integration of heterogeneous datasets

The pan-cancer model was individualized using sequencing data from the Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012). So far, for model training, only a

subset of the viability data from CCLE was used (Dataset 1, Table 3.2). This viability

dataset contained measurements on 96 cancer cell-lines in response to 7 drugs at 8 drug

concentrations (Barretina et al., 2012). The measurements are normalized to the respective

control, and therefore, relative. To take this into account, we used cell-line specific scaling

http://doi.org/10.5281/zenodo.3254429
http://doi.org/10.5281/zenodo.3254441
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parameters (scell-lineis
). This yields the observable

yviabilityi = scell-lineis
· hviabilityi + εviabilityi , with i ∈ Isis , (3.23)

where hviability is a combination of weighted species that are assumed to determine cell

viability (Fröhlich et al., 2018).

We complemented the viability dataset with molecular measurements from the MD Ander-

son Cell Lines Project (MCLP) (Li et al., 2017) (Dataset 2, Table 3.2), which contains

reverse phase protein array (phospho-)proteomic measurements for various untreated cancer

cell-lines. We identified 32 proteins and 16 phospho-proteins measured that were also

covered by the model and in total 54 cell-lines which overlapped with the 96 cell-lines from

dataset 1. In the MCLP database, measurements are normalized across cell-lines and across

all proteins by subtracting the respective median from the log2-transformed measured

values. We modeled this using cell-line specific offsets bcell-linejb
and protein-specific offsets

bproteinib
yielding the observable

yproteini,cell-linej = log2(hproteini,cell-linej ) + bcell-linejb
+ bproteinib

+ εproteini,cell-linej . (3.24)

Here, h is the simulated absolute protein concentration

hproteini,cell-linej =
∑

l∈Iproteini

klxl. (3.25)

The index set Iproteini refers to the species that include proteini and kl is the respective

stoichiometric multiplicity.

Table 3.2: Datasets used for parameter estimation. The number of observable and noise
parameters of certain classes is indicated, followed by the number of parameters that are
computed analytically in the hierarchical setting in parentheses. The table is taken from
the author’s publication (Schmiester et al., 2019).

Dataset 1 (CCLE) Dataset 2 (MCLP)

# datapoints 5281 1799
# cell-lines 96 54
# observables 1 48
# scalings 96(96) 0
# offsets 0 102(48)
# noise parameters 1(1)* 48(48)

∗The noise parameter is set to one if dataset 1 is considered individually.
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C

Figure 3.2: Comparison of computation times for forward and adjoint sensitivity analysis.
(A): Estimated computation times when sensitivities are computed for varying numbers
of parameters for the pan-cancer model. (B): Estimated computation times per local
optimization of the full pan-cancer model based on the CPU times of previous optimizations.
(C): Computation times and speedups for a collection of 19 models taken from https:

//github.com/Benchmarking-Initiative/Benchmark-Models-PEtab. Subfigures A and
B are modified versions of the Supplementary Figure S1 of the author’s publication
(Schmiester et al., 2019).

The integration of viability and molecular measurements provides information on two

different levels, which potentially improves the reliability of the model. However, it requires

a substantial number of observable and noise parameters (Table 3.2).

3.4.2 Adjoint sensitivity analysis facilitates parameterization of large-scale models

First, we analyzed the computation times for adjoint sensitivity analysis compared to

forward sensitivities (Figure 3.2). As computation times for forward sensitivities for the pan-

cancer model were prohibitively large, we extrapolated the time needed for a full gradient

https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab
https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab
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evaluation using a randomly sampled subset of the different simulation conditions. We then

calculated forward and adjoint sensitivities for a subset of the parameters ranging from

one to all dynamic parameters. This yielded an estimated speedup for adjoint sensitivity

analysis of a factor of 2703 (Figure 3.2A). From this, we estimated the computation

times needed for a full optimization run resulting in approximately 700 years of CPU

time, if forward sensitivity analysis would be employed. The computation times were

estimated based on the number of gradient evaluations of previous optimizations with

adjoint sensitivity analysis. We also compared the computation times for a collection of 19

models derived from a benchmark collection of parameter estimation problems established in

Hass et al. (2019) ranging from small to medium-sized models (Figure 3.2, cf. Section 5.2.4

for details on the models). For this collection, we observed that adjoint sensitivities were

computationally less demanding for 16 out of the 19 models with substantial speedups in

most cases, indicating that the here derived combination of hierarchical optimization with

adjoint sensitivity analysis can benefit a broad range of models.

3.4.3 Evaluation of standard and hierarchical optimization using simulated data

It is a priori not clear how much the introduction of scaling, offset and noise parameters

influence optimizer performance. In Degasperi et al. (2017) it was observed on two

examples that scaling parameters led to inferior optimization results compared to the

data-driven normalization that was also employed in Fröhlich et al. (2018). To analyse the

influence of scaling parameters systematically, we first used simulated data for parameter

estimation. The simulated dataset we considered was a simulation of the same conditions

and observables as in dataset 1 using parameters from previous optimization runs. To

obtain a realistic setting, we added normally distributed measurement noise to the simulated

data. The noise levels were based on the estimated standard deviations obtained from the

previous optimization. We generated simulated datasets for relative (ȳrel) and absolute

(ȳabs) data via

ȳrel = ŝ · h(θ̂) + εrel, εrel ∼ N (0, σ̂2
viability)

ȳabs = h(θ̂) + εabs, εabs ∼ N

(
0,

(
σ̂viability

ŝ

)2
)
,

(3.26)

where θ̂, ŝ, σ̂ are parameters obtained from optimization with relative viability and proteomic

data (dataset 1 and dataset 2 ). Using simulated data with known true parameters θ̂, ŝ, σ̂

allowed to compare the goodness-of-fit and assess the information associated with relative

data compared to absolute data.
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ℓ
ℓ ℓ

Figure 3.3: Parameter estimation results using a simulated version of dataset 1. (A): Pear-
son correlation coefficients for relative training data using parameters obtained from 20
local optimization runs using standard and hierarchical optimization. (B): Ratio of the
average gradient contribution for scaling parameters against dynamic parameters using
the standard optimization. (C): Expected gradient for standard and hierarchical optimiza-
tion. Only parameters that were optimized numerically in the outer loop were considered.
(D): Pearson correlation coefficients for absolute data using parameters from optimization
on relative (left and middle) and absolute (right) data. This figure is a modified version of
Figure 2 of the author’s publication (Schmiester et al., 2019).

Hierarchical optimization outperforms standard optimization

We performed parameter estimation for the simulated, relative dataset with standard

and hierarchical optimization using the gradient-based Interior Point OPTimizer (Ipopt)

(Wächter & Biegler, 2006). To this end, we performed parameter estimation for 20 local

starts using up to 150 optimizer iterations and analyzed the Pearson correlation between

data and simulation for the best parameters of the 20 starts.

The correlation coefficients obtained from hierarchical optimization were substantially better

than the standard optimization for almost all runs (Figure 3.3A). Most local optimizations

using the hierarchical approach achieved similar correlations compared to the ones using

the true parameters that were used to simulate the dataset. As no optimized parameter

found much better correlations than the true parameters, overfitting could not be observed

in this analysis. In contrast to hierarchical optimization, the standard optimization resulted

in correlations far lower than the correlation with the true parameters.
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Disproportional contribution of scalings to gradient can explain improved optimizer

convergence

The substantial improvement using hierarchical optimization cannot solely be explained

by the reduced dimensionality of the parameter search space. In fact, the hierarchical

optimization decreased the number of optimization parameters by only 2%. We there-

fore hypothesized that the scaling parameters are particularly relevant. To assess this,

we evaluated the average absolute values of the gradient of the objective function for

scaling parameters (E[|∇s`|]) and dynamic parameters (E[|∇θ`|]). Investigating the ra-

tio (E[|∇s`|]/E[|∇θ`|]) revealed that in most runs the objective function is one order of

magnitude more sensitive to the scaling parameters compared to dynamic parameters

(Figure 3.3B). Consequently, removing the scalings from optimization yielded smaller total

absolute gradient values which decreased faster compared to the standard optimization

(Figure 3.3C).

Data normalization leads to loss of information

We next analyzed the information loss when using relative compared to absolute data.

We performed parameter estimation using the absolute simulated data. To guarantee

comparability, we used the same initial parameters as for the optimization with relative

data. Additionally, we predicted the absolute data using previous parameters estimated

on relative data and compared the correlation coefficients to the parameter estimation

results from absolute data (Figure 3.3D). As expected, the parameters obtained from

training on relative data yielded correlations far lower than those obtained from the true

parameters, suggesting that information is lost in the normalization process. Interestingly,

the hierarchical optimization again yielded improved correlations compared to the standard

optimization, indicating the improved convergence properties.

3.4.4 Hierarchical optimization improves efficiency for all tested optimizers

We showed that the hierarchical optimization outperformed standard optimization on a

synthetic dataset using the Ipopt optimizer. To provide a more comprehensive assessment

of this result, we performed parameter estimation on the measured viability data from

dataset 1. We considered four different, commonly used, gradient-based optimizers for this

analysis, which implement different optimization algorithms:

(i) Ipopt (Wächter & Biegler, 2006): Interior-point line-search algorithm using the

Armijo condition for acceptance of line-search steps.
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Figure 3.4: Parameter estimation results for standard and hierarchical optimization using
dataset 1. 20 local optimizations were performed each with a maximum of 150 iterations.
(A): Optimizer trajectories for all four employed optimization algorithms. (B): The final
objective function values found by the different optimizers using standard and hierarchical
optimization. (C): Speedup of the hierarchical approach compared to the standard approach.
The speedup is defined by the time the hierarchical approach needs to find the best objective
function value found by standard optimization. This figure is taken from Figure 3 of the
author’s publication (Schmiester et al., 2019).

(ii) Ceres (http://ceres-solver.org): Line-search algorithm using the strong Wolfe

condition for acceptance of line-search steps.

(iii) sumsl (Gay, 1983): Trust-region algorithm using a quadratic model.

(iv) fmincon (with the optimizer option interior-point) (https://de.mathworks.com/

help/optim/ug/fmincon.html): Interior-point trust-region method based on the

algorithm described in Byrd et al. (2000).

As Ceres and sumsl did not natively support parameter bounds, we used a naive imple-

mentation returning failed objective function evaluations, if bounds were violated, which

led to a rejection of a trial point outside of the bounds. We again performed 20 local

optimizations with a maximum of 150 iterations for all optimizers and the standard and

hierarchical approach. To be able to compare the results between the standard and hierar-

chical approach, the optimizations were started each from the same initial parameters for

all optimizers.

We investigated the trajectories of the local optimizations, which is the evolution of the

objective function over computation time. The hierarchical approach consistently achieved

better objective function values given the same computation time with a generally lower

variability between starts (Figure 3.4A). The hierarchical approach found substantially

better final objective function values than the standard approach, across all employed

http://ceres-solver.org
https://de.mathworks.com/help/optim/ug/fmincon.html
https://de.mathworks.com/help/optim/ug/fmincon.html
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simulation and measured data for standard optimization and both groups of parameters
found by hierarchical optimization. Only observables with at least 55 datapoints were
considered. The figure is a modified version of the Figure 4 of the authors publication.
Schmiester et al. (2019)

optimizers (Figure 3.4B). To quantify the computational benefit from using the hierarchical

optimization, we calculated the computation time required by the hierarchical approach to

reach the best objective function value of the standard approach (Figure 3.4C). For all but

one local optimization, the hierarchical approach was computationally more efficient with

average speedups between one and two orders of magnitude.

The performance of different optimization algorithms has so far not been assessed on models

of this size. Our results indicate that there are large differences in optimizer performance

and the choice of the optimizer is crucial for successful parameter estimation. We found

that for the considered model and dataset, Ceres stopped prematurely in most cases, sumsl

progressed slower than Ipopt and fmincon especially for standard optimization. Ipopt and

fmincon appeared to be most efficient (Figure 3.4A & B). Interestingly, sumsl showed the

largest improvement when using hierarchical optimization.

3.4.5 Hierarchical optimization enables integration of heterogeneous data

So far, the pan-cancer model was only trained on viability measurements (dataset 1 ) which

provide limited information about molecular mechanisms. To improve this we comple-

mented dataset 1 with the (phospho-)proteomic measurements from MCLP (dataset 2 ).

To guarantee an unbiased weighting of the different datasets, we introduced noise param-

eters for the newly included observables which resulted in 48 additional parameters for
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standard deviations (one per (phospho-)protein) that needed to be estimated. Additionally,

dataset 2 introduced cell-line and observable specific offset parameters. As the hierarchical

optimization method only supports optimizing one of these offsets analytically, we chose the

observable-specific offsets and estimated (i) the cell-line specific scaling parameters of the

viability observable (ii) the observable specific offset parameters of the (phospho-)proteomic

dataset (iii) the noise parameters of both datasets hierarchically, which resulted in 193

parameters that were calculated in the inner optimization loop (Table 3.2).

We only performed optimization using Ipopt, as it was among the best performing opti-

mization algorithms (Figure 3.4). Multi-start local optimization revealed again the superior

convergence behavior of the hierarchical approach compared to the standard approach (Fig-

ure 3.5A). For most local optimizations, the hierarchical approach yielded better objective

function values already after few iterations compared to the final values of the standard

approach. Inspection of the final objective function values showed that all starts of the

standard approach found similar values around 104. In contrast, the objective function

values obtained from hierarchical optimization can be split into two groups. Group 1

yielded similar values as the standard approach of ` ≈ 104. Group 2 reached much better

values with ` < 3× 103.

The two groups of parameter vectors resulted in a substantially different agreement of model

simulation with the experimental data (Figure 3.5B). The parameters in Group 1 obtained

from standard and hierarchical optimization were able to fit the viability data but failed

to describe the protein measurements with median correlation coefficients smaller than 0.2.

The parameters from Group 2, which were only reached using the hierarchical optimization,

showed a good agreement for both viability and protein measurements. Accordingly, only

the hierarchical approach was able to find parameters that balanced the fit of the two

datasets, thereby achieving a successful integration and a better overall description of the

data.

3.5 Summary and discussion

Large-scale mechanistic models can provide a comprehensive representation of the underly-

ing biological processes. To render these models predictive, they have to be trained on

large heterogeneous and often relative datasets and efficient methods for model training are

urgently needed. In this chapter, we extended the hierarchical optimization framework from

Weber et al. (2011) and Loos et al. (2018) to allow for efficient handling of offset parameters

in addition to scaling and noise parameters. To this end, we derived analytical formulas

for the conditionally optimal observable parameters when offset and scaling parameters
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are present. We then developed an approach to combine hierarchical optimization with

scalable gradient computation using adjoint sensitivity analysis, which is essential for

gradient-based optimization of large-scale models.

We evaluated the hierarchical optimization method on a large-scale pan-cancer model by

Fröhlich et al. (2018). We first compared the hierarchical optimization to the standard

optimization approach on simulated data which revealed substantially improved optimizer

convergence using the hierarchical method. Only the hierarchical approach was able

to obtain parameters which provided a similar goodness-of-fit compared to the true

parameters. We identified that the contribution of the scaling parameters to the gradient

is disproportionally large compared to the dynamic parameters, which could explain the

large benefit of the hierarchical method. The numerical stiffness which can arise from

this for numerical optimization methods is the first conceptual explanation of the vast

improvements achieved by hierarchical methods. We then used real experimental data

to analyze the optimizer behavior for the standard and hierarchical methods using four

different commonly used optimization algorithms. We obtained median speedups of more

than one order of magnitude, irrespective of the employed optimizer. Consequently, the

hierarchical method resulted in superior objective function values given the same amount

of computation time for all tested cases. We subsequently complemented the viability

dataset already used in Fröhlich et al. (2018) with measurements on the molecular level

for model training. These heterogeneous datasets could be integrated in an unbiased way

by hierarchically estimating noise parameters with almost no computational overhead.

Only the hierarchical method was able to obtain parameters which yielded a good fit of

both the viability and the (phospho-)proteomic dataset. Consequently, the hierarchical

approach is crucial for successful parameter estimation of large-scale mechanistic models

using heterogeneous relative measurements.

So far, we only considered normally distributed measurement noise and other noise models

cannot yet be handled by the here developed approach. It was shown that other noise

models can be more robust e.g. to outliers while still maintaining good optimization

convergence (Maier et al., 2017). An extension of this approach to other noise models

would therefore be of interest, even if no analytical formulas for the inner problem can be

derived. The current hierarchical framework is able to handle individual scalings, offsets or

a combination thereof per observable. Already the (phospho-)proteomic dataset considered

here for the large-scale model required two different offset parameters per observable and a

more flexible approach handling multiple parameters would be valuable and could improve

convergence even further. Also more complex observable transformations could benefit

from hierarchical optimization. Recently, we and others have combined mechanistic ODE
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models with mini-batch or stochastic gradient descent optimization, which only use a

randomly chosen subset of the full dataset in each iteration to update the parameters

(Stapor et al., 2019; Yuan et al., 2019). A combination of mini-batch and hierarchical

optimization would require a more careful choice of the mini-batches but could accelerate

optimization especially for very large datasets. We extended the training data for the pan-

cancer model to also include measurements on the molecular level. However, we consider

this study to be a proof-of-concept and the here considered datasets are not sufficient to

obtain high-quality estimates of the model parameters. For more biology-driven analyses

additional molecular data needs to be integrated to improve the predictive power of the

model. With the advance of high-throughput technologies more large-scale datasets are

being generated, like the cancer proteomic atlas (Li et al., 2013) or the datasets provided

by Frejno et al. (2017); Gholami et al. (2013). Additionally, an updated version of the

MCLP was recently published including proteomic measurements after drug treatment

(Zhao et al., 2020).

In conclusion, we developed a flexible hierarchical optimization algorithm to handle different

observable parameters for relative data and combined it with scalable adjoint sensitivity

analysis for gradient computation. This approach facilitated efficient parameterization

of large-scale mechanistic models and allowed an unbiased integration of heterogeneous

datasets with almost no computation overhead.





Chapter 4

Robust and efficient parameter es-

timation using qualitative data

In Chapter 3, we have shown that models can be calibrated efficiently on relative measure-

ments by introducing scaling and offset parameters and using adjoint sensitivity analysis

combined with a hierarchical approach to reduce the dimensionality of the optimization

problem. In some cases, however, one cannot safely assume proportionality between

measurement and the underlying quantity of interest and instead, the measurement only

provides a qualitative observation. Frequently encountered reasons for this are, that (i)

the measurement is fundamentally qualitative, such as categorical characterizations or

phenotypic observations (Chen et al., 2004) or (ii) an unknown non-linear relationship of the

measured signal on the internal state of the system exist, as can be the case, among others,

for Förster resonance energy transfer (FRET) data (Birtwistle et al., 2011) or stained

images (Brooks et al., 2012; Pargett et al., 2014). Furthermore, non-linear relationships can

occur due to detection limits and saturation effects (Butler et al., 2019). In these cases, an

exact quantitative information on the considered system is not available. Yet, monotonicity

between the measured species and the detected signal can be assumed. Therefore, if the

measurement noise is neglected, the ordering of the datapoints is still preserved, resulting in

qualitative observations. Even though qualitative data is less informative than quantitative

data, it can still be valuable to infer parameters. However, qualitative observations are

often neglected and most established parameter estimation toolboxes do not support to

integrate them.

Some exceptions exist, where a general framework for parameter estimation using qualitative

data in systems biology was developed. (i) Oguz et al. (2013) optimized the number of

qualitative observations that were correctly captured by the model. (ii) Mitra et al. used

qualitative observations as static penalty functions which were combined with a least-

squares approach for quantitative data (Mitra et al., 2018). The method was subsequently

implemented in the pyBioNetFit toolbox (Mitra et al., 2019). While the approach is

comparably easy to implement, it relies on weights, which have to be defined prior to

parameter estimation and which are hard to determine. Mitra & Hlavacek (2020) proposed

a likelihood function that was used for Bayesian uncertainty quantification. However,
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it remains unclear, if the statistical model that was used is appropriate for qualitative

measurements and if parameter estimation using this function is hindered by gradients close

to zero for parameters far away from an optimum, which is often the case when optimization

is initialized at random parameters. (iii) Pargett & Umulis (2013) and Pargett et al. (2014)

used a method termed optimal scaling established in statistics (Shepard, 1962) and applied

it to models of biological systems. Here, the optimal quantitative representation of the

qualitative observation is calculated. In this context, the quantitative representation is

termed surrogate data. This results, similar to the approach from Chapter 3, in a hierarchical

optimization problem, where the outer problem optimizes the parameters of the dynamic

model and the inner problem is constrained by the measured qualitative behavior, such that

inconsistencies of the model simulation with the qualitative measurement data are penalized

(cf. Figure 4.1). While the optimal scaling approach is deeply grounded in statistical

theory, it is computationally demanding, as a constrained optimization problem has to be

solved repeatedly. The approaches (i)-(iii) facilitate the extraction of information about

the model parameters from qualitative experimental data. Yet, the objective functions are

either intrinsically discontinuous or an analytical formulation for the objective function

gradient was unknown. Accordingly, only gradient-free optimization methods could be

employed.

In this chapter, we build upon the optimal scaling approach by Pargett et al. (2014). We

propose two reformulations of the optimal scaling problem that (i) reduce the dimensionality

of the optimization problem and (ii) simplify the constraints of the problem. While the first

reformulation improves computational efficiency, the second reformulation can be solved

more robustly using a larger set of optimization algorithms. We derive proofs that the

reformulations conserve the optimal points. These reformulations address the challenge (ii)

stated in Chapter 1. We then derive an algorithm to calculate gradient information on the

optimal scaling objective function, which facilitates the use of gradient-based optimization

algorithms and tackles challenge (iii). We show on several application examples that the

reformulations and the gradient-based approach yield more reliable results and substantially

improve computational efficiency.

This Chapter is based on and in part identical with the following publications:

• Schmiester, L., Weindl, D. & Hasenauer, J. (2020). Parameterization of mechanistic

models from qualitative data using an efficient optimal scaling approach. J. Math.

Biol., 81, 603–623

• Schmiester, L., Weindl, D. & Hasenauer, J. Efficient gradient-based parameter

estimation for dynamic pathway models using qualitative data, in preparation.
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4.1 Background

In this section, we introduce the optimal scaling approach used for parameter estimation

of biological systems with qualitative measurements (Pargett et al., 2014). We provide

the necessary notation and the optimization problem arising in this approach which is the

basis for the extensions that are developed in the following sections.

4.1.1 Qualitative measurements

Qualitative data often arises, when the underlying measurement process function g is

non-linear and unknown (Pargett & Umulis, 2013). Here, we denote qualitative readouts as

z(θ, t, u). Then, for the transformation g from the underlying quantity y to the readout z,

only monotonicity can be assumed. The qualitative measurements are potentially subject

to noise

z̄it,iy ,iu = ziy(θ, tit , uiu) + νit,iy ,iu (4.1)

with measurement errors νit,iy ,iu ∼ N (0, σ2
it,iy ,iu

), assuming normally distributed noise.

Analog to Chapter 3, we use the general index i = (it, iy, iu) ∈ I, with the number of

datapoints N = |I| in the following. Qualitative measurements can either be ordered, i.e.

z̄i{<,>}z̄j or they can be indistinguishable, z̄i ≈ z̄j . We use a similar notation as in Pargett

et al. (2014) and introduce categories Cik , with ik = 1, . . . , nk. Qualitative measurements

belonging to the same category are indistinguishable, i.e. z̄i, z̄j ∈ Cik ⇒ z̄i ≈ z̄j , and

measurements belonging to different categories are ordered with respect to the ordering

of the category. Without loss of generality, we assume that the categories are ordered as

C1 ≺ C2 · · · ≺ Cnk . We denote the index of the category to which the readout z̄i belongs as

ik(i). An example of qualitative data is illustrated in the upper left figure of Figure 4.1B.

4.1.2 Optimal scaling approach for parameter estimation with qualitative data

To estimate unknown model parameters, the optimal scaling approach considers the

weighted least-squares function (2.12). The approach addresses the issue that no quantita-

tive values for the measurements are available by introducing so-called surrogate data ỹi,

i ∈ I. A surrogate datapoint is the optimal quantitative representation of the qualitative

observation. Therefore, it provides the best agreement with the model simulation within

the constraints provided by the qualitative data which is given by the ordering of the

categories (Figure 4.1B). As a category Cik describes the set of observations that cannot

be distinguished, it can be quantitatively represented by an interval [lik , uik ], with lower

bound lik and upper bound uik . The surrogate datapoint ỹi affiliated with category Cik(i)
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Figure 4.1: Illustration of the optimal scaling approach. (A): Individual steps of an
optimization run. (B): Schematic of surrogate data calculation for a given simulation
results y(t, θ) and set of qualitative data (with three categories). The interval between
the optimized lower and upper bounds of the categories are indicated by grey areas. (C):
Schematic of residuals used in the objective function for the parameter optimization. This
figure is taken from Figure 1 of the author’s publication (Schmiester et al., 2020b).

can then be placed anywhere within the respective interval. As the surrogate data and the

interval bounds are a priori unknown, they are subject to optimization resulting in the

problem

(ỹ(θ), l(θ), u(θ)) = arg min
ỹ,l,u

∑
i∈I

wi(ỹi − yi(θ))2

s.t. lik(i) ≤ ỹi ≤ uik(i), i ∈ I

uik ≤ lik+1, ik = 1, . . . , nk − 1.

(4.2)

The first constraint here guarantees that the surrogate data is within the bounds imposed by

the category and the second constraint assures that the ordering of the categories is fulfilled.

In practice, the weights w are often chosen such that violations of the qualitative data are

penalized independently of the scale of the simulation y(θ), e.g. by using wi = 1/yi(θ). If

the simulated data matches the qualitative observations perfectly, the objective function

becomes zero. Similarly to the hierarchical approach for relative data (Chapter 3), the

model parameters θ can be estimated by nesting problem (4.2) into the optimization of θ
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(Figure 4.1). This yields the optimization problem, which minimizes the distance between

simulation and optimal surrogate data (Figure 4.1C):

min
θ

∑
i∈I

wi(ỹi − yi(θ))2

s.t. (ỹ(θ), l(θ), u(θ)) solve (4.2).

(4.3)

The observable parameters, in this case, are then the surrogate data, the lower bounds and

the upper bounds. As pointed out in Pargett et al. (2014), the surrogate data can easily

be computed from the bounds l(θ), u(θ) using the observations that

(Case 1) If the model simulation yi(θ) is smaller than the lower bound lik(i)(θ), the

surrogate data are set to the smallest feasible value to minimize the difference,

i.e. the lower bound ỹi(θ) = lik(i)(θ).

(Case 2) If the model simulation yi(θ) is larger than the upper bound uik(i)(θ), the

surrogate data are set to the largest feasible value to minimize the difference, i.e.

the upper bound ỹi(θ) = uik(i)(θ).

(Case 3) If the model simulation yi(θ) is in the interval [lik(i)(θ), uik(i)(θ)], then the

surrogate data are set to ỹi(θ) = yi(θ). In this case, the error is zero.

With this, the surrogate data can be calculated analytically using the construction rule:

ỹi(θ) =


lik(i)(θ) , if yi(θ) < lik(i)(θ)

uik(i)(θ) , if uik(i)(θ) < yi(θ)

yi(θ) , otherwise.

(4.4)

The inner optimization problem (4.2) can be simplified using this construction rule yielding

the optimization problem

(l(θ), u(θ)) = arg min
l,u

∑
i∈I

wi

(
max

{
0, lik(i) − yi(θ)

}2
+ max

{
0, yi(θ)− uik(i)

}2
)

s.t. lk ≤ uik , ik = 1, . . . , nk

uik ≤ lik+1, ik = 1, . . . , nk − 1.

(4.5)

Here, only the lower and upper bounds need to be estimated numerically reducing the

optimization parameters from N + 2nk to 2nk. In the objective function from (4.5), one

of the two terms is always zero. For Case 2 and 3, max
{

0, lik(i) − yi(θ)
}2

vanishes and

for Case 1 and 3, max
{

0, yi(θ)− uik(i)

}2
vanishes. Consequently, for Case 3 both terms
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vanish and the respective summand is zero. This problem provides the same solution for

the lower and upper bounds as (4.2). Hence, in the hierarchical optimization problem (4.3)

we can solve for (4.5) instead of (4.2).

In the optimization problems (4.2) and (4.5), the qualitative data provide only limited

information about the first lower bound l1 of category C1 and the last upper bound unk of

category Cnk . The lower bound l1 may be set to any value smaller or equal to the minimum

of yi(θ), l1 ≤ mini yi(θ), and the upper bound unk may be set to any value greater or equal

to the maximum of yi(θ), unk ≥ maxi yi(θ).

It commonly occurs, that data is collected in different experimental setups or for different

biological species, where the qualitative relationship within a group of measurements

is known, but between the different groups (e.g. different observables), the relations

are unknown. This can be described by splitting the index set I into disjoint subsets

Ig, g = 1, . . . , ng, with the number of different groups ng. The optimal scaling approach

can be easily extended to this case by solving ng optimization problems of the form

(l(θ), u(θ)) = arg min
l,u

∑
i∈Ig

wi

(
max

{
0, lik(i) − yi(θ)

}2
+ max

{
0, yi(θ)− uik(i)

}2
)

s.t. lk ≤ uik , ik = 1, . . . , nk(g)

uik ≤ lik+1, ik = 1, . . . , nk(g)− 1.

(4.6)

The overall objective function value can then be calculated by summing up over the ng

values obtained by solving (4.6). In the following, we will derive formulas for the case of

one group, i.e. ng = 1 and Ig = I, but the approaches can be trivially extended to the

case of multiple groups as described above.

4.2 Reformulation of the optimal scaling problem

Compared to parameter estimation with quantitative data, the optimal scaling approach for

qualitative data is computationally substantially more demanding as during optimization

of the model parameters θ, a constraint optimization problem has to be solved numerically

in each iteration. This is often time-consuming and efficient approaches for solving this are

needed. Here, we propose two reformulations of the optimal scaling problem to simplify

and accelerate the surrogate data optimization.
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4.2.1 Optimal scaling problem can be reduced

We first derive a reformulation of the optimal scaling problem that is based on the empirical

observation, that the gaps between lower and upper bounds lik+1 − uik of two adjacent

categories are usually estimated as small as possible. Intuitively, this can be explained by

the fact that the surrogate data can be placed anywhere within the intervals but not in the

gaps between intervals. Increasing the gap will therefore either leave the objective function

unchanged or even result in increased objective function values. This lead to the first result

Lemma 4.2.1. The optimization problem (4.5) possesses an optimal solution (l∗, u∗) with

u∗k = l∗ik+1 for ik = 1, . . . , nk − 1.

Proof. Let us assume that there is an optimal solution (l′, u′), such that the gap between

lower and upper bound of two adjacent categories is larger than zero. W.l.o.g., we assume

u′i′k
< l′i′k+1 for some i′k. For all observations belonging to category Ci′k , i.e. all indices i

with ik(i) = i′k, it has to hold that

yi(θ)− u′ik(i) = yi(θ)− u′i′k < 0. (4.7)

Otherwise, the objective function could be decreased by setting u′ik(i) = l′ik(i)+1 as then the

summand
max{0, yi(θ)− u′ik(i)}

2 = max{0, yi(θ)− u′i′k}
2

> max{0, yi(θ)− l′ik(i)+1}
2

(4.8)

of the objective function would decrease. This would be a contradiction to the assumption

that (l′, u′) is an optimal solution. As yi(θ) − u′i′k < 0, the corresponding summands of

the objective function are zero, max{0, yi(θ)− u′i′k}
2 = 0. Increasing u′i′k

to l′i′k+1 does not

change this.

An illustration of the idea behind lemma 4.2.1 is depicted in Figure 4.2. Lemma 4.2.1

implies that at least one solution of the optimization problem (4.5) exists with vanishing

gaps between adjacent categories. This result can be used to replace the optimization

problem (4.5) with a reduced problem:
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Figure 4.2: Illustration of the reduction of the optimal scaling optimization problem.
(A): Example of qualitative data. (B & C): Different category intervals and surrogate data
with non-zero gaps (B) and zero gap size (C). (D): Objective function landscape for the
optimal scaling problem for the upper bound of C1 and the lower bound of C2. The optimal
solution with zero gaps is given by the diagonal. This figure is taken from Figure 2 of the
author’s publication (Schmiester et al., 2020b).

Theorem 4.2.2. An optimal solution of the optimization problem (4.5) is given by the

solution to the problem

u(θ) = arg min
u

∑
i∈I

wi

(
max

{
0, uik(i)−1 − yi(θ)

}2
+ max

{
0, yi(θ)− uik(i)

}2
)

s.t. uik ≤ uik+1, ik = 0, . . . , nk − 1,

(4.9)

for u0 = mini yi(θ) and unk = maxi yi(θ), and setting lik+1(θ) = uik(θ) for ik = 1, . . . , nk−
1.

Proof. As a solution to (4.5) is given with minimal gaps between the category intervals, i.e.

uik = lik+1, the reduced problem (4.9) can be obtained by substituting lik+1 with uik and

removing trivially fulfilled constraints. With this substitution, the first summand of (4.5),

max
{

0, lik(i) − yi(θ)
}2

is replaced by max
{

0, uik(i)−1 − yi(θ)
}2

yielding problem (4.9).
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Here, u0 is not a bound of an additional category, but just an auxiliary variable for ease of

notation. As only the upper bounds u have to be optimized numerically, this reformulation

reduced the number of optimization variables by a factor of two.

4.2.2 Optimal scaling problem can be reformulated as box-constrained problem

The reduction introduced in the last chapter reduces the optimization variables and should

therefore improve the computation time needed to solve the optimal scaling problem. Still,

the algorithms that can be used for optimization are limited as the problem contains

linear inequality constraints. As multiple algorithms only support simple box-constraints

(see Section 2.3) and in our experience these algorithms often perform better, it could be

valuable to simplify the constraints of the optimal scaling problem. We therefore introduce

the vector of differences between adjacent upper bounds dik := uik −uik−1. For lik = uik−1,

dik is equivalent to the length of the interval belonging to category Cik . With this we can

rewrite the upper bounds of the categories as

uik = u0 +

ik∑
i′k=1

di′k . (4.10)

The auxiliary variable u0 can be set to some value lower or equal to the minimum of yi(θ),

e.g. u0 = mini yi(θ). Replacing u with the new parameters d yields the reparameterized

optimization problem

d(θ) = arg min
d

∑
i∈I

wi

max

0, u0 +

ik(i)−1∑
i′k=1

di′k − yi(θ)


2

+ max

0, yi(θ)− u0 −
ik(i)∑
i′k=1

di′k


2

s.t. dik ≥ 0, ik = 1, . . . , nk − 1.

(4.11)

The reparameterized problem (4.11) is equivalent to solving (4.9), only that the linear

inequality constraints are replaced by positivity constraints. Hence, we can use a broader

spectrum of optimization algorithms for the reparameterized problem.

4.2.3 Minimal category and gap sizes

As we have shown, an optimal solution to the optimal scaling problem is obtained with

minimal gaps between intervals, i.e. uik = lik+1. With this, a surrogate datapoint at the

upper bound of category ik has a negligible difference to a datapoint at the lower bound of
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category ik + 1. Therefore, Pargett et al. (2014) enforced minimal gaps g ∈ R+ between

intervals and minimal interval sizes s ∈ R+. With this, the optimization problem (4.5) can

be modified to the problem

(l(θ), u(θ)) = arg min
l,u

∑
i∈I

wi

(
max

{
0, lik(i) − yi(θ)

}2
+ max

{
0, yi(θ)− uik(i)

}2
)

s.t. lik + s ≤ uik , ik = 1, . . . , nk

uik + g ≤ lik+1, ik = 1, . . . , nk − 1.

(4.12)

Similar to the previous section, optimization problem (4.12) can be reduced and repa-

rameterized. In this case, an optimal solution is given for lik+1 = uik + g, which is a

straightforward extension to Lemma (4.2.1). Additionally, one can fix the auxiliary variable

u0 and the upper bound of the last category unk to u0 = mini yi(θ) − nk(g + s) and

unk = maxi yi(θ) + nk(g + s), as increasing the interval [u0, unk ] further cannot lead to

improved objective function values. The reduced optimization problem is then given by

the following result:

Theorem 4.2.3. An optimal solution of the optimization problem (4.12) is obtained by

solving

u(θ) = arg min
u

∑
i∈I

wi

(
max

{
0, uik(i)−1 + g − yi(θ)

}2
+ max

{
0, yi(θ)− uik(i)

}2
)

s.t. uik + g + s ≤ uik+1, ik = 0, . . . , nk − 1,

(4.13)

for u0 = mini yi(θ)− nk(g + s) and unk = maxi yi(θ) + nk(g + s), and setting lik+1(θ) =

uik(θ) + g for ik = 1, . . . , nk − 1.

The proof of Theorem 4.2.3 is analog to Theorem 4.2.2, which is the special case with g =

s = 0. We can again reparameterize the problem by introducing dik = uik − (uik−1 + g+ s).

This leads to the reparameterized optimization problem

d(θ) = arg min
d

∑
i∈I

wi

max

0, u0 +

ik(i)−1∑
i′k=1

(di′k + g + s)− yi(θ)


2

+ max

0, yi(θ)− u0 +

ik(i)∑
i′k=1

(di′k + g + s)


2

s.t. dik ≥ 0, ik = 1, . . . , nk − 1,

(4.14)
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with u0 = mini yi(θ)− nk(g + s).

We analyzed the properties of the different optimization problems and found

Theorem 4.2.4. The optimization problems (4.5), (4.9), (4.11), (4.12), (4.13) and (4.14)

are all convex.

Proof. The objective functions of the respective optimization problems are sums of convex

functions of the lower bounds l, the upper bounds u and/or the differences d. As the sum

of convex functions is itself convex (Boyd & Vandenberghe, 2004, Section 3.2), the overall

objective function is convex. In combination with linear inequality constraints, this implies

that the optimization problem is convex.

As convex problems only possess one optimum, local optimizations should converge to the

global optimum.

4.3 Evaluation of reformulations on application examples

To assess the performance of the standard, reduced and reparameterized formulations on

the optimization of the surrogate data, we evaluated the different formulations on several

application examples.

4.3.1 Model overview

For our analysis, we considered one smaller toy model for illustration and two realistic

application examples (Table 4.1). T1 is a model of RAF inhibition (Figure 4.3A) where we

assume active RAF (dimerized and not fully inhibited) to be measured (Mitra et al., 2018).

M1 models the hetero- and homo-dimerization of the transcription factors STAT5A and

STAT5B and was calibrated using data of phosphorylated STAT5B as well as phoshpory-

lated and total STAT5A (Boehm et al., 2014). M2 describes IL13-induced signaling of the

JAK2/STAT5 pathway in lymphoma cell-lines (Raia et al., 2011). The application examples

were taken from a benchmark collection of parameter estimation problems, based on the

collection established by (Hass et al., 2019) (cf. Chapter 5). The quantitative experimental

data that was provided in the collection was transformed to qualitative observations based

on their ordering, where we assumed datapoints to be indistinguishable if the numerical

values were equal.



52 CHAPTER 4. PARAMETER ESTIMATION FOR QUALITATIVE DATA

Table 4.1: Key numbers of the different considered models and datasets for comparison of
the reformulations.

Model T1 M1 M2

# state variables 6 8 14
# parameters 2 6 18
# observables 1 3 8
# datapoints 9 48 205
# categories 2–9 3 × 16 6–38
Description RAF inhibition STAT5 dimerization IL13-induced signaling
Reference Mitra et al. (2018) Boehm et al. (2014) Raia et al. (2011)

4.3.2 Implementation

We implemented the optimal scaling approach into the pyPESTO toolbox (Schälte et al.,

2020). This implementation allows computing category bounds of the optimal scaling

problem using

• the standard optimization problem (4.12)

• the reduced optimization problem (4.13)

• the reduced reparameterized optimization problem (4.14).

For solving the inner optimization problem we used the SLSQP algorithm implemented in

SciPy (Jones et al., 2001) for the standard and reduced optimization and the L-BFGS-B

algorithm from SciPy for the reduced reparameterized problem. The ODEs were simulated

using the AMICI toolbox (Fröhlich et al., 2017).

For the comparison of the standard formulation with the reformulations, we choose

hyperparameters based on the recommendations from Pargett et al. (2014). Minimal

gaps between categories and minimal interval sizes were set to

s = max

{
maxi yi(θ)

2nk + 1
, ε

}
g = max

{
maxi yi(θ)

4(nk − 1) + 1
, ε

}
,

(4.15)

with model-dependent lower bounds ε. As weights, Pargett et al. (2014) proposed a

combination of the sum of model simulations and the net variation of the simulations,



4.3. EVALUATION OF REFORMULATIONS ON APPLICATION EXAMPLES 53

which penalizes flat simulations:

wi =

1

2

∑
j∈I
|yj(θ)|+

∑
j∈I\{1}

|yj(θ)− yj−1(θ)|+ γ

−1

with γ = 10−10. (4.16)

The code for the evaluation of the different formulations is made available at Zenodo under

https://doi.org/10.5281/zenodo.3561952.

4.3.3 Results

Convexity and optimality of optimal scaling approach

We first verified the validity of our theoretical findings that

• the inner optimization problem is convex

• the standard, reduced and reparameterized formulations have the same optimal

objective function value.

To analyze the convexity of the inner problem, we performed multi-start local optimization

for the model T1 with 3 categories and the reduced formulation (Figure 4.3B). All local

optimizations found the same objective function value which is in line with the theoretical

finding that the problem is indeed convex. As the model only comprises two unknown

model parameters, we evaluated the objective function for a large number of parameter

combinations and inspected the objective function landscape for a dataset with 3 and 9

categories for all three formulations (Figure 4.3C & D). For all formulations the numeric

values for the objective function were identical, confirming the second theoretical finding.

Reformulations improve scalability of the optimal scaling approach

As the inner optimization problem is convex, performing one local optimization is sufficient

to find the global optimum. Still, the computational complexity increases linearly with the

number of categories (and therefore observable parameters) (Figure 4.3E). The decrease of

optimization parameters in the inner problem when using the reduced formulations resulted

in generally lower computation times. For the reduced and the reparameterized formulation,

the computation times are comparable with slight improvement using the reparameterized

formulation. One explanation for this is the different optimization algorithms that can be

employed in the reparameterized case.

https://doi.org/10.5281/zenodo.3561952
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Figure 4.3: Comparison of the standard and reduced formulations to calculate the optimal
surrogate data for model T1. (A): Illustration of the model. (B): Waterfall plot for
multi-start local optimization of the inner problem with the reduced formulation for data
with three categories. The inner problem was solved at the true model parameters with
K3 = 4000 and K5 = 0.1. (C & D): Objective function landscapes for T1 with the
dataset discretized in 3 categories (C) and 9 categories (D). (E): Median computation
times to solve the inner optimization problem for different numbers of categories and the
different formulations of the optimal scaling problem. (F): Objective function landscape for
quantitative data. This figure is taken from Figure 3 of the author’s publication (Schmiester
et al., 2020b).
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Figure 4.4: Evaluation of efficiency and robustness of the inner optimization problem
tested on 150 randomly sampled parameter vectors. (A): Computation times for the
three different formulations for models M1 and M2. (B): Objective function values for
the standard and reparameterized formulations. Failed optimizations are indicated as red
crosses. (C): Percentage of optimizations that successfully returned appropriate optimal
scaling bounds. This figure is a modified version of Figure 5 of the author’s publication
(Schmiester et al., 2020b).

Qualitative data can have similar information content as quantitative data

To assess the information contained in the qualitative data, we additionally calculated the

objective function landscape for the model T1 with quantitative measurements (Figure 4.3F).

To assure comparability, we used the same objective function as for qualitative data and

replaced the surrogate data with the measured quantitative values. While the objective

function landscape for qualitative data depends on the number of categories (Figure 4.3C &

D), for a sufficiently large number, it possesses similar characteristics as the landscape for

quantitative measurements. This corroborates the finding from Mitra & Hlavacek (2020)

that enough qualitative measurements can be similarly informative as quantitative data.

Reformulations improve efficiency and robustness of the optimal scaling approach

We proposed two reformulations of the optimal scaling approach which aim to improve

different issues of the inner optimization problem: (i) the reduced formulation only possesses

half of the optimization variables and should consequently improve the computation
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time and (ii) the reparameterized formulation facilitates the use of a broader range

of optimization algorithms. To evaluate the impact of the reformulations on realistic

application examples, we solved the inner optimization problem for the models M1 and

M2 for all three formulations. For each model and formulation, we randomly sampled 150

parameters and optimized the surrogate data.

The computation times for the parameters, for which all formulations successfully solved the

optimization problem revealed that the CPU time for the reduced and reparameterized for-

mulations were substantially decreased compared to the standard formulation (Figure 4.4A).

The reparameterized formulation was slightly faster than the reduced formulation, which

could again be due to the more efficient optimization algorithms that can be employed.

The reparameterized formulation yielded median and mean speedups of 11.5 and 18.9

respectively for the model M1 and 4.2 and 7.4 for the model M2 compared to the standard

formulation.

Although the optimization problem is convex, the different formulations sometimes resulted

in different objective function values (Figure 4.4B). Surprisingly, with the standard and

reduced formulations, the optimization problem could often not be solved successfully

(Figure 4.4C). Numerical optimization only provided appropriate category bounds for

around 50 % of the cases for M1 and only less than 40 % of the cases for M2. In contrast,

for the reparameterized formulation we observed success rates of 100 %.

Reformulations improve overall parameter estimation performance

The here developed reformulations resulted in reduced computation times and improved

robustness for solving the inner optimization problem. However, solving the inner problem

is only one step during parameter estimation of the model parameters θ. We therefore

performed parameter estimation for the different formulations again for models M1 and

M2 to assess the overall performance of the different formulations. To this end, we used

multi-start optimization with around 100 local optimizations of the gradient-free optimizers

Nelder-Mead and Powell implemented in SciPy.

The optimization results yielded generally similar final objective function values between

the different formulations (Figure 4.5A). For all cases except for M1 with the Nelder-Mead

optimizer, the reparameterized formulation achieved slightly better values than the other

formulations. A possible explanation for this is the improved robustness to solve the inner

problem.

The decreased computation times for solving the inner optimization problem (Figure 4.4A)

could also be observed for the overall optimization (Figure 4.5B). Again, the reduced
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Figure 4.5: Overall optimization results for M1 and M2 using the Nelder-Mead and Powell
optimizers with around 100 local optimizations. (A): Waterfall plots for all models and
optimizers. Only the best 50 starts are shown. (B): Computation times for the different
models and optimizers. (C): Speedup defined by the computation time for the standard
optimization divided by the times for the reduced or reparameterized formulations. Above
the dashed line the use of the reformulation was computationally more efficient and below
the use of the standard formulation. This figure is a modified version of Figure 6 of the
author’s publication (Schmiester et al., 2020b).

and the reparameterized formulations yielded similar computation times. Interestingly,

the reparameterized formulation resulted in smaller variations between the different local

optimizations. Quantifying the speedups compared to the standard formulations, we

observed on average a 5-10 fold reduction in computation time with the reduced and

reparameterized formulations (Figure 4.5C).

Optimal scaling approach yields good agreement between model simulation and

measurement

It has so far not been comprehensively assessed if the optimal scaling approach applied

to systems biology models yields meaningful estimates for the parameters that achieve a

good agreement between model simulation and measured qualitative data. To investigate

this, we simulated the models for the overall best found parameters and compared the

simulation to the optimal surrogate data (Figure 4.6).

For both models, the best parameters resulted in good fits of the model with the surrogate

data (Figure 4.6A & B). For the model M1, the best 10 parameters consistently achieved

good correlations of 0.90–0.98 for the three observables (Figure 4.6C). For the model M2,

we observed larger differences between the fits of the different parameters (Figure 4.6D),
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Figure 4.6: Fits of the model simulation and the surrogate data using the overall best
found parameters. (A & B): Model simulation and optimal surrogate data for the models
M1 (A) and M2 (B). (C & D): Pearson correlation coefficients for the 10 best starts for
model M1 (C) and M2 (D). This figure is a modified version of Fig. 7 of the author’s
publication (Schmiester et al., 2020b).

indicating that among the 10 best starts not all converged to the same point in parameter

space. Still, for the best fit, a good agreement between model simulation and surrogate

data is achieved with an average correlation across observables of 0.85.
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4.4 Gradient computation for the optimal scaling objective function

The reformulations introduced in Section 4.2 accelerated the solution to the inner optimal

scaling problem and facilitated the use of a broader set of optimization algorithms for this

sub-problem. However, they did not influence the outer optimization problem. As many

optimization algorithms rely on the availability of gradient information (see Section 2.3.4),

the set of available optimization algorithms for the outer optimization problem could be

extended by computing the derivative of the optimal scaling objective function with respect

to the model parameters θ. In this section, we derive a semi-analytical algorithm for this

based on ideas from bi-level optimization theory (Fiacco, 1976).

4.4.1 Semi-analytical gradient computation scheme

To derive formulas for gradient computation, we consider the original full optimal scaling

problem (4.3) with no minimal category and gap sizes first. For ease of notation, we rewrite

the optimization problem in matrix-vector notation. For this, we denote the collection

of all inner optimization variables by ξ = (ỹ, l, u)T ∈ Rnξ and the vector of simulations

by ξ̄(θ) = (y(θ), 0, 0)T ∈ Rnξ which is filled with zeros such that ξ and ξ̄ have the same

dimensions. Here, nξ = N + 2nk is the number of inner optimization variables. With this,

we can define the objective function J as

J(θ, ξ) =
(
ξ − ξ̄(θ)

)T
W
(
ξ − ξ̄(θ)

)
. (4.17)

Here, the weight matrix W is given by

W =

(
diag(w) 0

0 0

)
∈ Rnξ×nξ .

W is augmented with zeros such that the bounds l and u do not contribute to the objective

function J . This then yields the optimization problem

min
θ
J(θ, ξ(θ)) (4.18)

s.t. ξ(θ) = arg min
ξ
J(θ, ξ)

with Cξ ≤ 0,
(4.19)

in which C ∈ Rnc×nξ encodes the inequality constraints of the inner problem, with the

total number of constraints nc. As before, the outer problem aims to optimize the model

parameter vector θ ∈ Rnθ and the inner problem optimizes, conditioned on θ, the vector
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containing the surrogate data and interval bounds ξ ∈ Rnξ . W was augmented with zeros,

such that the dimensions of W and C are consistent, which is necessary for the following

calculations. We are now interested in the derivative of the objective function J with

respect to θ, which is given via

dJ(θ, ξ(θ))

dθk
=
∂J(θ, ξ)

∂θk
+
∂J(θ, ξ)

∂ξ

∂ξ(θ)

∂θk
, (4.20)

for k = 1, . . . , nθ. The first parts, ∂J(θ,ξ)
∂θk

and ∂J(θ,ξ)
∂ξ , can be easily computed:

∂J(θ, ξ)

∂θk
= −2(ξ − ξ̄(θ))TW ∂ξ̄(θ)

∂θk
(4.21)

and
∂J(θ, ξ)

∂ξ
= 2(ξ − ξ̄(θ))TW. (4.22)

The last part that needs to be calculated is the derivative of the observable parameters

with respect to the model parameters ∂ξ(θ)
∂θk

. To obtain this, we consider the Lagrangian

function for the inner optimization problem

L(ξ, µ) = J(θ, ξ) + µTCξ. (4.23)

The necessary optimality conditions for the inner optimal scaling problem (4.19) are then

given by (see Section 2.3.2)

∇ξL(ξ, µ) = 2(ξ(θ)− ξ̄(θ))TW + µ(θ)TC = 0 (4.24)

µi(θ)Ciξ(θ) = 0 (4.25)

Ciξ(θ) ≤ 0 (4.26)

µi(θ) ≥ 0 (4.27)

for i = 1, . . . , nc, where Ci is the i-th row of the matrix C. As the inner optimal scaling

problem is convex (Theorem 4.2.4), these conditions are necessary and sufficient for a

mimimum. Given the optimal values of ξ, the Lagrange multiplier µ can be obtained by

solving this system. To obtain the derivatives of ξ w.r.t. θ, we calculate the derivatives of

equations (4.24) and (4.25) w.r.t. θk:

2

(
∂ξ(θ)

∂θk
− ∂ξ̄(θ)

∂θk

)T
W +

∂µ(θ)T

∂θk
C = 0 (4.28)

∂µi(θ)

∂θk
Ciξ(θ) + µi(θ)Ci

∂ξ(θ)

∂θk
= 0. (4.29)
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This yields a linear system of equations that needs to be solved for every parameter θk:(
2W CT

diag(µ(θ))C diag(Cξ(θ))

)(
∂ξ(θ)
∂θk
∂µ(θ)
∂θk

)
=

(
2W ∂ξ̄(θ)

∂θk

0

)
. (4.30)

This linear system can be solved to calculate ∂ξ(θ)
∂θk

. With this, an algorithm for calculating

the gradients of the objective function for given parameters θ is as follows:

(i) Simulate the ODE with sensitivities to obtain ξ̄(θ) and ∂ξ̄(θ)
∂θ .

(ii) Calculate optimal surrogate data ỹ and category bounds l, u using one of the formu-

lations introduced in Section 4.2 ((4.12), (4.14) or (4.14)).

(iii) Solve the optimality conditions (4.24) – (4.27) for the Lagrange multiplier µ(θ).

(iv) Solve the linear system of equations (4.30) to obtain ∂ξ(θ)
∂θ .

(v) Evaluate the gradient dJ(θ,ξ(θ))
dθ of the objective function via (4.20).

4.4.2 Parameter-dependent weights and category and gap sizes

As discussed in Section 4.2.3, it is often beneficial to impose minimal sizes for the category

intervals and the gaps between the intervals. These are often chosen by incorporating

the simulation y(θ), making them dependent on the model parameters. Additionally, the

weights of the least squares function are also commonly chosen such that they depend on

the simulation and therefore on the parameters θ. Assuming, that s(θ), g(θ) and W (θ) are

differentiable functions, it is again possible to derive formulas for the objective function

gradients. Collecting the minimal category and gap sizes in the vector d(θ), we can rewrite

the optimal scaling problem to

min
θ
J(θ, ξ(θ)) (4.31)

s.t. ξ(θ) = arg min
ξ
J(θ, ξ)

with Cξ + d(θ) ≤ 0,
(4.32)

with

J(ξ, θ) =
(
ξ − ξ̄(θ)

)T
W (θ)

(
ξ − ξ̄(θ)

)
. (4.33)
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With this, ∂J(θ,ξ)
∂θk

can be calculated via

∂J(θ, ξ)

∂θk
= (ξ − ξ̄(θ))T

(
∂W (θ)

∂θk
(ξ − ξ̄(θ))− 2W (θ)

∂ξ̄(θ)

∂θk

)
. (4.34)

Again, with the Lagrangian function L(ξ, µ) = J(θ, ξ) + µTCξ, the optimality conditions

for the problem (4.32) are

∇ξL(ξ, µ) = 2(ξ(θ)− ξ̄(θ))TW (θ) + µ(θ)TC = 0 (4.35)

µi(θ)(Ciξ(θ) + di(θ)) = 0 (4.36)

Ciξ(θ) + di(θ) ≤ 0 (4.37)

µi(θ) ≥ 0, (4.38)

for i = 1, . . . , nc. Again, we can calculate the derivative of the first two equations w.r.t. θk:

2

(
∂ξ(θ)

∂θk
− ∂ξ̄(θ)

∂θk

)T
W (θ) + 2(ξ(θ)− ξ̄(θ))T ∂W (θ)

∂θk
+
∂µ(θ)T

∂θk
C = 0 (4.39)

∂µi(θ)

∂θk
(Ciξ(θ) + di(θ)) + µi(θ)

(
Ci
∂ξ(θ)

∂θk
+
∂di(θ)

∂θk

)
= 0, (4.40)

which yields the linear system of equations(
2W (θ) CT

diag(µ(θ))C diag(Cξ(θ) + d(θ))

)
·

(
∂ξ(θ)
∂θ

∂µ(θ)
∂θ

)
=

(
2W (θ)∂ξ̄(θ)∂θk

− ∂W (θ)
∂θk

(ξ(θ)− ξ̄(θ))
−diag(µ(θ))∂d(θ)

∂θk

)
.

(4.41)

As (4.30) and (4.41) are sparse linear systems, they can be solved efficiently.

4.5 Evaluation of gradient-based approach on application examples

Here, we evaluate the gradient calculation framework and compare it to gradient-free

optimization on several application examples.

4.5.1 Model overview

As the reformulations introduced in the last sections reduced the computational complexity

substantially, it was feasible to extend the set of application examples. We therefore added

three more examples. M3 models the impact of vaccination on infectious diseases dynamics

(Rahman et al., 2016). M4 describes an oscillatory network of transcriptional regulators

(Elowitz & Leibler, 2000). M5 models the RAF-MEK-ERK signaling pathway (Fiedler
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et al., 2016). Again, the additional models were taken from the benchmark collection

introduced by Hass et al. (2019). An overview of the additional models and datasets used

for parameter estimation is given in Table 4.2. To test the accuracy of the computed

gradients on a toy model resembling most realistic examples, we added data for a second

observable to the model T1.

4.5.2 Implementation

The gradient-based approach is again implemented in the pyPESTO toolbox. Gradients are

calculated using the here described approach automatically, if a gradient-based optimizer

is employed. As we have shown that the reduced and reparameterized formulation to

calculate the surrogate data was the most robust and efficient approach, we will restrict

the following analysis to this formulation. Again, the model is simulated and sensitivities

are calculated using AMICI (Fröhlich et al., 2017). In the previous chapter, we chose

the hyperparameters based on recommendations by Pargett et al. (2014). Based on the

experience from our analysis, we revised the choice made there and slightly adapted some

of the hyperparameters. As the weights are required to be differentiable w.r.t. θ, we set

them to

wi(θ) =

(∑
i∈I

yi(θ) + γ

)−1

with γ = 10−10. (4.42)

Since the application examples considered here all have non-zero simulations, this is

equivalent to the first part of the weights (4.16). The derivative of w(θ), which is needed

for gradient computation, is given by

∂w(θ)

∂θk
=
−
∑

i∈I
∂yi(θ)
∂θk(∑

i∈I yi(θ)
)2 . (4.43)

As minimal interval and gap sizes, we chose

s(θ) =
maxi yi(θ)

2nk + 1

g(θ) =
maxi yi(θ)

4(nk − 1) + 1
+ ε.

(4.44)
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Figure 4.7: Illustration of gradient-based approach using the model T1. (A): Gradients
evaluated on randomly sampled parameters using the semi-analytical approach and a central
finite differences scheme. (B): Objective function landscape and trajectory of a gradient-free
optimizer. (C): Objective function landscape and trajectory of a gradient-based optimizer.

The derivatives of s and g are given via

∂s(θ)

∂θk
=

∂yj(θ)
∂θk

2nk + 1

∂g(θ)

∂θk
=

∂yj(θ)
∂θk

4(nk − 1) + 1
,

(4.45)

with j = arg maxi yi(θ) being the index of the maximal simulation.

4.5.3 Results

Semi-analytical approach yields accurate gradients

To assess the accuracy of the derived scheme for gradient computation, we first considered

the toy model T1 and compared the computed gradients to those obtained via finite

difference calculation. We therefore evaluated the gradient of the objective function on a

large number of different parameter vectors, which revealed almost identical gradients for

the different approaches for all tested points (Figure 4.7A).

Gradient-based optimization reduces computation time

To illustrate the differences between gradient-free and gradient-based optimization, we

optimized parameters for the model T1 using a gradient-free and a gradient-based optimizer

starting from the same initial parameters. As this model only contains two parameters, we

inspected the whole objective function landscape and the respective optimizer trajectories

(Figure 4.7B & C). While the gradient-free optimizer is based on a rather naive scheme to

update the parameters (Figure 4.7B), which often moves along sub-optimal directions, the
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Figure 4.8: Optimization results for all models using gradient-free and gradient-based
optimization for 500 local optimizations. (A): Computation times until the optimizer ter-
minates per local optimization. (B): Number of function evaluations per local optimization.
(C): Converged starts per hour. A start is considered converged if the absolute difference
to the overall best value is less than 10−4. (D): Waterfall plots for all 5 considered models
using gradient-free and gradient-based optimization. Best 200 starts out of a total of 500
are shown.

gradient-based optimizer moves towards the optimal point within a few function evaluations

(Figure 4.7C).

To assess the performance of gradient-based and gradient-free optimization in a realistic

setting, we performed multi-start local optimization for the application examples M1–M5

using 500 local optimizations each. The optimization results revealed substantially reduced

computation times using gradient-based optimization (Figure 4.8A). Depending on the

considered model, we observed median speedups roughly between one and two orders

of magnitude. Especially for the larger models, one of the main stopping criteria of the
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gradient-free optimizer was a computation time limit that we implemented to guarantee

computational feasibility. As none of the gradient-based optimization runs reached this

upper bound, the improvement in computation time would have been even larger without

this limit.

As illustrated in Figure 4.7B & C, the gradient-based optimizer used a more sophisticated

scheme to update parameters during optimization which resulted in reduced numbers of

objective function evaluations required to converge to a local optimum. The substantial

reduction in function evaluations could also be observed for all here employed models

(Figure 4.8B). Even though a single evaluation is more costly when gradient information

needs to be calculated, the reduced number of evaluations outweighs this, explaining the

improved computation times.

Along with the computation times, we additionally incorporated the final objective function

values into the analysis. To this end, we considered the number of local optimization runs

which converged to the overall best objective function value (Figure 4.7C). The analysis

showed that the gradient-based optimizer yielded substantially improved efficiency for all

considered models. In particular, this was the case even for the models M1 and M5, for

which the gradient-free optimizer found the optimal objective function value more often

than the gradient-based optimizer (Figure 4.7D).

Gradient-based optimization yields improved model fits

The waterfall plots for the different considered models showed that the gradient-based

optimization consistently yielded equal (M1, M3 and M5) or even better (M2 and M4)

final objective function values compared to gradient-free optimization (Figure 4.7D). To

assess, if the different best parameters yielded substantially different fits of the model

with the qualitative data, we simulated the models for the best parameters of both

optimizations and compared the simulation to the optimal surrogate data. This revealed

large improvements of the parameters obtained from gradient-based optimization for the

model M4 (Figure 4.9A & B). In fact, only the parameters found by gradient-based

optimization captured the oscillatory behavior of the qualitative data correctly. For the

model M2, smaller improvements for some observables could be achieved using gradient-

based optimization (Figure 4.9C & D).

Gradient-based optimization enables uncertainty quantification

Qualitative data is often considered to be less informative than quantitative data. As this

can result in parameter non-identifiabilities, it is important to assess parameter uncertainties
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Figure 4.9: Model simulation and optimal surrogate data for the best parameters from
gradient-free and gradient-based optimization. (A & B): Model fits for the model M4 for
gradient-free (A) and gradient-based (B) optimization. (C & D): Model fits for the model
M2 for gradient-free (C) and gradient-based (D) optimization.
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Figure 4.10: Objective function profiles for the model M1. (A): Profiles using gradient-free
and gradient-based optimization for all six parameters. (B): Computation times for the
profiles per parameter for gradient-free and gradient-based optimization.

when using qualitative measurements. For uncertainty analysis, we used objective function

profiles analogously to profile likelihoods in the case of a likelihood function (Raue et al.,

2009). We exemplarily calculated profiles for the model M1 (Figure 4.10A). The gradient-

based approach yielded mostly smooth profiles indicating that several parameters of this

model can be identified using the qualitative dataset. In contrast, the gradient-free approach

resulted in multiple discontinuities in the profiles indicating impaired optimizer performance.

This shows that only the gradient-based approach was able to yield meaningful profiles

for this model. In addition to the improved profile results, the gradient-based approach

required on average an order of magnitude less computation time than the gradient-free

optimizer (Figure 4.10B).

4.6 Overall performance

In this chapter, we introduced several modifications and extensions to the standard optimal

scaling approach for qualitative data. First, we reformulated the inner optimization problem,

and then we developed an algorithm for gradient computation for the outer optimization

problem. To assess the combined efficiency improvement by these adaptations, we compared

the computation times for parameter estimation of the standard approach with a gradient-

free optimizer with the reparameterized and reduced approach using a gradient-based

optimizer (Figure 4.11). To this end, we ran multi-start local optimization for the models
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Figure 4.11: Computation times for multi-start local optimization using the standard
formulation and a gradient-free optimizer and the reduced and reparameterized formulation
with a gradient-based optimizer. 100 starts with a maximal wall-time of 5 hours (10 hours
for model M2) were performed. Median speedup factors of the gradient-based approach
are shown in the lower right table.

M1-M5 for 100 starts. Analysis of the computation times per local optimization revealed

speedup factors of two orders of magnitude for most models using the methods developed

in this thesis.

4.7 Summary and discussion

Qualitative measurements can be an important resource for parameter estimation of

mechanistic models. Yet, only few, computationally demanding methods exist to integrate

such data and it is therefore often neglected by modelers. In this chapter, we built upon

the already established optimal scaling approach (Pargett & Umulis, 2013; Pargett et al.,

2014; Shepard, 1962). As this approach is based on the repeated solution of a constrained

optimization problem, fast and reliable methods are required. Here, we proposed several

improvements to the optimal scaling approach to facilitate robust and efficient parameter

estimation for qualitative data. We first investigated the structure of the inner optimization

problem and exploited it to derive two reformulations. The first reformulation aimed to
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improve computation times by reducing the dimensionality of the problem. The second

proposed reformulation simplified the optimization problem by transforming the initial

linear inequality constraints into simpler box-constraints. This enabled the use of a larger

set of possible optimization algorithms. As gradient-based optimization has shown to

often outperform gradient-free algorithms, we additionally developed a framework for

semi-analytical gradient computation for the objective function arising in the optimal

scaling approach. This method was derived from the derivatives of the necessary conditions

for a local optimum (see chapter 2.3.2).

The different methods proposed in this chapter were extensively evaluated on different

application examples. These examples were taken from a collection of published models

and data to enable a realistic test setting. We first showed that the reduced formulation

yielded decreased computation times, with an average speedup factor of 5-10 compared

to the standard optimization approach. Considering success rates, we observed that

the reparameterized formulation largely improved the robustness of solving the inner

optimization problem. Both results were found consistently across multiple models and

gradient-free optimization algorithms. We next evaluated the here proposed gradient

computation algorithm. We demonstrated that this algorithm yielded accurate gradients

and that the gradient-based optimizers resulted in computation times reduced by more

than one order of magnitude for all five considered models. In addition to the reduction in

computation time, the gradient-based optimization found better objective function values

in two cases, which resulted in improved fits of the model with the measured qualitative

data. We concluded with computing objective function profiles, which indicated that only

the gradient-based approach could be reliably used. The gradient-based optimization not

only resulted in more reliable profiles compared to the gradient-free optimization but also

reduced computation times by an order of magnitude. In total, the combination of the

reformulations and the gradient calculation lead to a reduction of computation time by

two orders of magnitude for most models.

Still, open questions remain which could further improve efficiency and reliability of the

optimal scaling method. The approach includes the choice of several hyperparameters,

like the weights w and the minimal sizes for category intervals and gaps between intervals.

While these values are already chosen in an adaptive way, such that the modeler does not

need to determine them prior to parameter estimation, we observed that the literature

values were often not ideal and a more thorough analysis of these parameters would be

valuable to investigate the impact on optimization results. Several further improvements

could be made regarding efficiency. Parallelization could be exploited to speed up the

solution of the inner problem as well as the gradient computation, especially when multiple
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optimal scaling problems need to be solved. Additionally, optimization algorithms tailored

to the underlying problem could be employed. For the gradient computation, the problem

can be split into active and inactive constraints, which can be exploited to improve efficiency

(Kolstad & Lasdon, 1990). While we used the gradient-based approach to calculate objective

function profiles and investigate uncertainties, an objective function which can be easily

interpreted statistically could be beneficial. Uncertainty analysis is of great importance,

as one can expect that qualitative data is less informative than quantitative data. A

first attempt has been made by Mitra & Hlavacek (2020), where a Bayesian formulation

has been proposed. A proper statistical formulation can also benefit the combination of

quantitative and qualitative data, which is the most frequent setting and which is important

to improve parameter identifiability. While here, we only used qualitative data, it could

be combined with quantitative data using the optimal scaling approach by formulating a

similar objective function also for the quantitative measurements.

To conclude, the integration of qualitative data is a valuable extension to the existing

parameter estimation methods, as this can increase the amount of available training data,

and we contributed to the feasibility of this by substantially improving the efficiency and

robustness of the optimal scaling approach. We additionally provided easy-to-use, open-

source implementations to make this method applicable to a broader scientific community.



Chapter 5

PEtab – Interoperable specification

of parameter estimation problems

of biological systems

The reproducibility crisis has been identified as a major concern that can hinder fast and

reliable scientific advances (Casadevall & Fang, 2010; Prinz et al., 2011). In computational

sciences, a growing community aims at improving reproducibility, reusability and interoper-

ability, which resulted in various standards, tools and guidelines (Peng, 2011; Sandve et al.,

2013; Stanford et al., 2019; Waltemath & Wolkenhauer, 2016; Waltemath et al., 2011b;

Wilkinson et al., 2016). In the area of mathematical modeling in systems biology, different

standards have been developed to specify biochemical models (Stanford et al., 2019), such

as the Systems Biology Markup Language (SBML) (Hucka et al., 2003), CellML (Cuellar

et al., 2003) or the BioNetGen Language (BNGL) (Harris et al., 2016). Various software

tools, implementing diverse methods and algorithms, support these model specification

formats (Balsa-Canto & Banga, 2011; Choi et al., 2018; Fröhlich et al., 2017; Hoops et al.,

2006; Mitra et al., 2019; Raue et al., 2015; Stapor et al., 2018b). The development of

model specification standards have additionally facilitated the generation of large databases

containing hundreds of systems biology models that can be used for method benchmarking

or model development (Le Novère et al., 2006; Olivier & Snoep, 2004).

Other standards move a step beyond model definition and also include simulation results or

experimental data. The Simulation Experiment Description Markup Language (SED-ML)

builds on top of the model specifications in e.g. SBML, and allows for a machine-readable

definition of simulation experiments based on XML (Waltemath et al., 2011a). It includes

repeated simulation tasks that can be used e.g. to encode parameter scans. The phraSED-

ML format is a human-readable extension of SED-ML (Choi et al., 2016). Going into a

similar direction, the Systems Biology Results Markup Language (SBRML) was developed

to associate models with experimental data and define simulation experiments. Like

SED-ML, SBRML is based on XML and can also be used for parameter scans. The

SBTab format is a collection of table-based conventions for the definition of models and

experimental data which is human-readable and -writable (Lubitz et al., 2016).
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While these standards facilitate reusability and reproducibility of computational models,

simulation results and to some extent experimental data, parameter estimation is so far

not in the scope of any of these available formats. Necessary information, such as the

definition of a noise model is missing, hindering the unambiguous definition of parameter

estimation problems. Consequently, toolboxes for parameter estimation currently use their

custom input formats, making it difficult and error-prone for a user to switch between

toolboxes and benefit from the different methods implemented in different tools.

To improve this, we developed the PEtab format for a standardized and interoperable

description of parameter estimation problems. PEtab extends SBML for model specification

with tabular files for the definition of observables, noise models, experimental data, their

mapping to the model output as well as parameters in an unambiguous way. PEtab

support is so far implemented in eight different toolboxes. Additionally, a Python library

is provided for easy reading, writing, manipulation and validation of problems specified in

the PEtab format. Therefore, this chapter addresses challenge (iv) stated in Chapter 1.3.

This chapter is based on and in part identical to the following publication:

• Schmiester, L.∗, Schälte, Y.∗, Bergmann, F., Camba, T., Dudkin, E., Egert, J.,

Fröhlich, F., Fuhrmann, L., Hauber, A. L., Kemmer, S., Lakrisenko, P., Loos,

C., Merkt, S., Müller, W., Pathirana, D., Raimúndez, E., Refisch, L., Rosenblatt,

M., Stapor, P., Städter, P., Wang, D., Wieland, F.-G., Banga, J. R., Timmer, J.,

Villaverde, A. F., Sahle, S., Kreutz, C., Hasenauer, J., Weindl, D. (2020). PEtab–

interoperable specification of parameter estimation problems in systems biology.

arXiv, 2004.01154 [q-bio.QM]

5.1 Specification of PEtab problems

A common workflow in data-based modeling begins with a mathematical model of a

biological process and experimental data that need to be linked (Figure 5.1A and Chapter 2).

PEtab consists of multiple files that were designed to cover the typical elements of this

workflow (Figure 5.1B). To this end, measurement data and a mathematical model have

to be specified. Then the measurements are linked to the model through observation

functions. Since measurements are usually noise corrupted, an error model needs to be

defined. Data is often collected under different experimental conditions that need to be

accounted for during model simulation and a generic model has to be modified for each

condition. Finally, parameters subject to optimization have to be specified. With this,

sufficient information is available, to define e.g. a likelihood or least-squares objective
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Measurements

Experiments

...

Condition 1

Condition 2

...

Simulate

Likelihood, Residuals, ...

Parameter estimation / Uncertainty analysis
Optimize, Profile, Sample, ...

Visualize, Analyze, 
Predict, ...

Generic model 
of biological system

Condition-specific model 
of biological system

Generic 
observation model

Condition-specific 
observation model 

Generic 
noise model

y1 = sa ⋅ x1 

y2 = ca + x2

...
y1 = sb ⋅ x1 

y2 = cb + x2

...

y1 = s ⋅ x1 

y2 = c + x2

...

Condition table
conditionId  p1  p2 ...

Condition1  1.0 1.0   

Condition2  5.0 4.0   

...

Observable table
observableId observableFormula noiseDistribution noiseParameters

Observable1        s ⋅ x1           normal             1.0
Observable2       c + x2          laplace             3.0

...

Model

Measurement table
observableId simulationConditionId time measurement

Observable1        Condition1       1.0         2.0

Observable2        Condition2       1.0         3.0

...

Parameter table
parameterId  estimated nominalValue

Parameter1        1      

Parameter2        0        3.0

...

A Typical experimental and model setup and workflow

B Representation of the workflow elements in PEtab

σ1 = 0.1 ⋅ x1

σ2 = 0.5
...
σ1 = 1.0
σ2 = 2.0
...

Condition-specific 
noise model 

Figure 5.1: Illustration of a typical parameter estimation workflow in PEtab. (A): Example
of a common setting in data-based modeling. A mathematical model is usually trained
on measurement data derived from different experimental conditions, which are linked to
the model via observables. A generic model can be adapted to the different experimental
perturbations. (B): A simplified illustration of how the different workflow elements are
covered by the different PEtab files (not all table columns are shown here). This figure is
taken from Figure 1 of the author’s publication (Schmiester et al., 2020a).

function which can be used for parameter estimation and uncertainty quantification. As

we intended to develop a modular, machine- and human-readable and -writable format,

we decided on tab-separated value files (TSV) for the specifications of the parameter

estimation problems with standardized row and column identifiers. The different PEtab

files are outlined in Figure 5.2 and described in more detail in the following:
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Figure 5.2: Overview of the different PEtab files. The PEtab files aim to define different
features needed for parameter estimation. The PEtab files can be grouped in a YAML-based
problem file. A visualization file can be included optionally. This figure is taken from
Figure 2 of the author’s publication (Schmiester et al., 2020a).
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Figure 5.3: Hierarchy of parameters and pre-equilibration in the PEtab format. (A): Illus-
tration of possibilities and precedence of parameter overriding at different stages. Simulation
parameter vectors are shown for two simulation conditions. A generic model parameteriza-
tion can be overridden in a condition- and measurement-specific manner to account for
different model inputs or observational model parameters. Grey background indicates the
newly overridden parameters in each step. Individual parameters can be set to specific
values or marked to be estimated (as here p1). (B): Biological experiments often consist
of a pre-equilibration experiment, where, under some “baseline” condition, the system
is assumed to be in equilibrium (e.g., here depicted for after 24h incubation) before a
perturbation is applied. This can be modeled by simulating the ODE until a steady-state
is reached for the pre-equilibration system and then re-initializing the model states to
simulate the perturbation. This figure is taken from Figure 3 of the author’s publication
(Schmiester et al., 2020a).

Model (SBML): The model file describes the biological process and the dynamics of the

modeled species x(t, θ, u). It has to be defined in the SBML format, which is among the
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most widely used model formats in systems biology. Any existing SBML model can be

used without further adaptation. The algorithm used for model simulation is not specified

within PEtab and can be freely chosen by the user and employed toolbox.

Observables (TSV): The observable file defines the model output y(t, θ, u) in terms of

mathematical formulas of the parameters and species and assigns a unique identifier to

them. Observable parameters, such as offsets and scalings (see Chapter 3) can be included

by specific keywords. Additionally, a noise model has to be defined. The most commonly

used noise models, normal and Laplace distributed noise, are currently supported.

Experimental conditions (TSV): The experimental condition file describes the different

setups under which the data was collected, such as different external stimuli or genetic

backgrounds. These are used as inputs u for model simulation and allow for a hierarchical

specification of model properties (Fig 5.3A). If simulation conditions are used for pre-

equilibration, i.e. that some experiment started from the equilibrium reached for another

condition, specific model states can be marked for re-initialization (Fig 5.3B).

Measurements (TSV): The measurement file specifies the experimental data and links

it to the model observables via the observable identifiers. The different experimental

conditions under which the measurements are taken are defined using condition identifiers

establishing a link to the experimental conditions file. This allows for a unique mapping of

measurement data to model output. Observable parameters, that are specific to individual

measurements can additionally be provided.

Parameters (TSV): The parameter file lists all parameters that need to be estimated

and can also include other known parameters. Additionally, lower and upper bounds as

well as parameter transformations (such as linear or logarithmic) can be specified. If

prior information is available for the parameters, it can be included and used for Bayesian

inference or sampling of initial parameters for optimization.

Visualization (TSV): The visualization file specifies the combination of simulation and

measurement for plotting purposes. The file allows for different types of figures, such as

time-course or dose-response curves and can be interpreted by the PEtab Python library

described later.

PEtab problem file (YAML): The problem file collects all other above-mentioned

files together. With this, multiple measurement or model files can be combined into one

parameter estimation problem.
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Figure 5.4: Example of the visualization routines provided in the PEtab library. Shown
are the simulations and measurements for the three observables of the model developed by
Boehm et al. (2014) using the optimal parameters provided in Hass et al. (2019). The plots
were created using the plot data and simulation function from the PEtab visualization
routines without further post-processing.

To encode additional information which is not directly covered by PEtab, it is possible to

extend the existing files. For example, the hierarchical optimization (Section 3) and the

optimal scaling approach (Section 4) can be defined by marking parameters as hierarchical

in the parameters file and assigning keywords, such as ”scaling” or ”offset”, to define, how

they are calculated during optimization.

5.2 PEtab implementation

We provided several supporting tools and information which enable easy usability of

PEtab. These implementations are maintained open-source under https://github.com/

PEtab-dev and are described in detail in the following.

5.2.1 PEtab documentation and library

We implemented a Python-based library which facilitates easy reading, writing and modi-

fying of PEtab problems. Additionally, the library can be used for validation of existing

https://github.com/PEtab-dev
https://github.com/PEtab-dev
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PEtab files and provides hints on miss-specifications. Commonly, the quality of the pa-

rameter estimation results are validated by plotting the fits of the model to the data.

Therefore, the PEtab library contains several visualization routines, which take the PEtab

visualization files as input and can be used for easy analyzes of the parameter estimation

results. An example of the visualization for the model by Boehm et al. (2014) (M4 in

Table 5.3) is given in Figure 5.4. Furthermore, the PEtab library provides functionality to

package PEtab files into COMBINE archives (Bergmann et al., 2014). We also provided a

documentation describing the details of the different files in a concise yet comprehensive

manner (https://petab.readthedocs.io/en/latest/). This includes all necessary and

optional information that can be defined in PEtab as well as the use of the library and the

visualization routines.

5.2.2 PEtab support

To render PEtab useful for a broader scientific community, it needs to be supported by

parameter estimation software tools. Together with multiple research groups focused on

toolbox and method development, we implemented PEtab support in eight commonly used

systems biology toolboxes, namely COPASI (Hoops et al., 2006), Data2Dynamics (Raue

et al., 2015), MEIGO (Egea et al., 2014), dMod (Kaschek et al., 2019), pyPESTO (Schälte

et al., 2020), pyABC (Klinger et al., 2018), parPE (Schmiester et al., 2019) and AMICI

(Fröhlich et al., 2018). These toolboxes implement a broad range of different methods

and features, including model generation, model simulation, parameter inference using

optimization and sampling and profile calculation (Table 5.1). As depicted in Table 5.1, the

different tools focus on different aspects with varying strengths and weaknesses. Profiting

from the features of different toolboxes is in practice often time-consuming and error-prone

as the parameter estimation problem has to be re-implemented in the respective input

formats. With the interoperable input format PEtab, the modelers can more easily switch

between toolboxes and benefit from a broader set of computational methods.

5.2.3 PEtab test suite

To support further toolbox developers who consider implementing PEtab import into their

tools and to validate the correctness of the existing PEtab importers, we set up a test suite

of different toy problems and reference values. Various different tests are included to verify

if a tool supports the different PEtab features, ranging from basic simulations of the model

to less common features such as pre-equilibration, transformation of observables and data

https://petab.readthedocs.io/en/latest/
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Table 5.1: Non-exhaustive overview of different features and methods implemented in
the computational toolboxes that support PEtab. Darker colors indicate more accurate,
scalable, or broader functionality compared to basic implementations. This table is taken
from the Table 1 of the author’s publication (Schmiester et al., 2020a).
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Table 5.2: Overview of supported PEtab features in different tools, based on the test cases
implemented in the PEtab test suite. The first character indicates whether computing
simulated data is supported and simulations are correct (3) or not (-). The second character
indicates whether computing χ2 values of residuals are supported and correct (3) or not
(-). The third character indicates whether computing likelihoods is supported and correct
(3) or not (-). This table is taken from the Table 2 of the author’s publication (Schmiester
et al., 2020a).

Test-case AMICI Copasi D2D dMod MEIGO parPE pyABC pyPESTO

Basic simulation 333 3- - 333 333 333 - - 3 333 333

Multiple simulation conditions 333 3- - 333 333 333 - - 3 333 333

Numeric initial compartment sizes
in condition table

- - - 3- - 333 333 333 - - - - - - - - -

Numeric initial concentration
in condition table

333 3- - 333 333 333 - - 3 333 333

Numeric noise parameter overrides
in measurement table

333 3- - 333 333 333 - - 3 333 333

Numeric observable parameter
overrides in measurement table

333 3- - 333 333 333 - - 3 333 333

Observable transformations
to log scale

3- 3 3- - 333 33- 333 - - 3 3- 3 3- 3

Observable transformations
to log10 scale

3- 3 3- - 333 33- 333 - - 3 3- 3 3- 3

Parametric initial concentrations
in condition table

333 3- - 333 333 333 - - 3 333 333

Parametric noise parameter overrides
in measurement table

333 3- - 333 333 333 - - 3 333 333

Parametric observable parameter
overrides in measurement table

333 3- - 333 333 333 - - 3 333 333

Parametric overrides
in condition table

333 3- - 333 333 333 - - 3 333 333

Partial pre-equilibration 333 - - - 333 333 333 - - 3 333 333

Pre-equilibration 333 3- - 333 333 333 - - 3 333 333

Replicate measurements 333 3- - 333 333 333 - - 3 333 333

Time-point specific overrides in
the measurement table

- - - - - - 333 333 333 - - - - - - - - -

e.g. on a log-scale, or time-point specific parameters in the measurement table (Table 5.2).

The tests include checks for correct simulations as well as χ2 and likelihood values.

5.2.4 Collection of PEtab example problems

In addition to the test suite, we implemented a set of currently 20 parameter estimation

problems in the PEtab format. These problems are largely based on a benchmark collection

of parameter estimation problems by Hass et al. (2019), which was originally provided

in another, less well supported format. The problems all include published models and

experimental data to facilitate a realistic setting for method testing and were already used
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Table 5.3: Overview of key numbers of the benchmark models that are implemented
in the PEtab format. The collection will be extended gradually and an up-to-
date version is publicly available at https://github.com/Benchmarking-Initiative/

Benchmark-Models-PEtab.

# parameters # states # datapoints Reference

M1 56 36 1873 Alkan et al. (2018)
M2 113 25 542 Bachmann et al. (2011)
M3 72 4 27132 Beer et al. (2014)
M4 6 8 48 Boehm et al. (2014)
M5 23 3 111 Borghans et al. (1997)
M6 22 9 43 Brännmark et al. (2010)
M7 13 7 77 Bruno et al. (2016)
M8 188 500 120 Chen et al. (2009)
M9 12 5 22 Crauste et al. (2017)
M10 21 8 58 Elowitz & Leibler (2000)
M11 28 6 72 Fiedler et al. (2016)
M12 19 9 144 Fujita et al. (2010)
M13 3 4 16 Perelson et al. (1996)
M14 9 7 23 Rahman et al. (2016)
M15 6 75 18 Salazar-Cavazos et al. (2020)
M16 30 11 286 Schwen et al. (2015)
M17 15 6 135 Sneyd & Dufour (2002)
M18 39 7 135 Weber et al. (2015)
M19 46 15 60 Zheng et al. (2012)
M20 9 16 289 Blasi et al. (2016)

for the method evaluations in the Chapters 3 and 4 of this thesis. Table 5.3 provides

an overview of the currently implemented parameter estimation problems, which will be

continuously extended by additional models. The existing 20 models already cover a large

spectrum of features, such as model size and number of datapoints (Table 5.3) and model

a broad range of different biological processes. In addition to method development and

testing, they can also be used as templates for the creation of new PEtab problems and to

check the validity of import functionality of toolboxes.

5.3 Summary and discussion

Reproducibility, reusability and interoperability are important aspects for the development

of computational models and mathematical algorithms. Therefore, we developed PEtab,

a standardized and interoperable specification of parameter estimation problems. PEtab

builds upon the well established SBML format for model specification and extends it with

https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab
https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab
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TSV files for the definition of measurement data, experimental conditions, observables and

parameters. Unique identifiers are used to link these entities with each other to provide a

full and unambiguous definition of the most common parameter estimation problems.

The PEtab format is described in a comprehensive documentation, including use-cases and

examples. Additionally, we provided a Python-based library to simplify the generation and

validation of PEtab problems. Along with editing and validating features, the library also

provides routines for common visualizations of model simulation and measured data to

inspect the quality of the parameter estimation results. Several well-known systems biology

toolboxes with hundreds of cumulative users already support PEtab. With PEtab, one

can benefit from the distinct model development, parameter optimization and uncertainty

quantification methods implemented in these tools. Furthermore, we provided a test suite

of PEtab toy problems that can assist the implementation and validation of PEtab support

in additional toolboxes. Next to the test suite, we established a collection of currently

20 parameter estimation problems in the PEtab format that can be used for method

benchmarking and as templates for the generation of PEtab problems. This collection

already enabled the comprehensive analysis of the mathematical methods developed in

this thesis on realistic application examples.

PEtab was designed to cover the most common features of parameter estimation problems.

Still, as a multitude of tailored parameter estimation algorithms exist, which require

different information on the underlying problem, it does not cover every aspect. Currently,

PEtab only supports model definition in the SBML format. While some other formats, such

as SBtab (Lubitz et al., 2016) or Antimony (Smith et al., 2009) can also be used indirectly

via their respective SBML converters, it would be valuable to extend PEtab support to

models defined for example in CellML (Cuellar et al., 2003) or rule-based formats (Harris

et al., 2016). PEtab is currently intended to define one parameter estimation problem.

However, it could be extended to cover the most common model selection problems, e.g.

via an additional file specifying the different models. The PEtab parameters file allows

for simple bound constraints. As in some cases, more complex inequality constraints on

the parameters can arise it would be valuable to extend the constraints in PEtab to a

more general case. The parameter estimation problem using qualitative data introduced

in the previous chapter was defined using a non-standard extension of PEtab, tailored to

the optimal scaling approach. However, a larger comparison of the approach with other

methods, such as the ones developed by Mitra et al. (2018) and Mitra & Hlavacek (2020),

would require a more general definition of qualitative observations.
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To summarize, we developed the PEtab format for the specification of parameter estimation

problems, which we anticipate will be helpful for modelers and method developers to simplify

workflows and enable less biased comparison of newly developed methods and algorithms.



Chapter 6

Summary and conclusion

Mathematical models can be used to integrate the ever-increasing amount of heterogeneous

experimental data to gain new insights into biological systems. The work of this thesis

focused on challenges that arose during parameter estimation of mathematical models

based on ODEs, when the training data is non-absolute (see Section 1.3). To address these

challenges, we first introduced the necessary mathematical background and notation in

Chapter 2. Based on this, new methods and algorithms were developed in Chapters 3, 4

and 5 to tackle the open problems.

Chapter 3 described the efficient integration of relative and heterogeneous data for parameter

estimation of large-scale models. To this end, we developed a framework to combine two

concepts: (i) scalable gradient computation using adjoint sensitivity analysis and (ii) a

hierarchical optimization method, which reduces the dimensionality of the optimization

problem by analytically calculating conditionally optimal observable and noise parameters.

To make the hierarchical approach more flexible, we extended it to the general case

of simultaneously occurring scaling and offset parameters. The combination of adjoint

sensitivity analysis and hierarchical optimization enabled the calibration of a large-scale

pan-cancer signaling model with thousands of unknown parameters with computation times

reduced by more than one order of magnitude compared to standard optimization. We

identified the large contribution of the scaling parameters to the gradient of the objective

function as a possible explanation for the substantial improvements obtained using the

hierarchical optimization approach. Subsequently, we showed how the hierarchical method

could be used for an unbiased integration of measurements on the phenotypic and molecular

level with negligible computational overhead. The method was additionally implemented

in the open-source toolbox parPE, making it freely available to other researchers.

In Chapter 4, we considered the case of integrating qualitative observations, i.e. measure-

ments, where only the ordering is known, for model calibration. For this, we built upon

the optimal scaling method established in statistics, which minimizes the distance between

model simulation and a quantitative representation of the qualitative data. Therefore, this

consists of repeatedly solving an optimization problem with linear inequality constraints.

We derived the theoretical foundation to reduce the number of optimization variables of
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this problem by a factor of two. Additionally, we provided a reparameterization of the

optimization problem yielding simpler bound constraints. We showed that the problem

could be solved more robustly and with substantially reduced computation times using

the reformulations. In addition, we developed an algorithm for semi-analytical calculation

of the gradient of the objective function arising in the optimal scaling approach. This

enabled the use of more efficient gradient-based optimization algorithms for parameter

estimation. Indeed, we found that these algorithms yielded optimal parameters in a fraction

of the computation time that was required by gradient-free optimization methods. The

combination of the here developed methods lead to a reduction of computation times by two

orders of magnitude. Both, the reformulations and the algorithm for gradient calculation

were implemented in the parameter estimation toolbox pyPESTO and comprehensively

tested on several application examples.

In Chapter 5, the problem of a lack of reproducibility, reusability and interoperability in

the area of parameter estimation in systems biology was addressed. We achieved this, in

collaboration with various other research groups, by developing PEtab, a standardized and

interoperable format for the specification of parameter estimation problems. PEtab is based

on the widely adopted SBML format for model definition and extends it with tab-separated

value files providing all necessary information for an unambiguous definition of parameter

estimation problems. We provided a Python library for using and validating PEtab

problems and implemented support for PEtab problems in several parameter estimation

toolboxes. We additionally provided a test-suite to aid the implementation of PEtab

support and a database of examples of published parameter estimation problems in the

PEtab format.

The methods derived in this thesis opened up possibilities for further developments and

extensions. These include methodological extensions such as the combination of minibatch

optimization (Stapor et al., 2019) with hierarchical optimization or the extension of the

hierarchical approach to a more general inner optimization problem and other error models.

An example of another inner optimization problem arose in the optimal scaling approach

for qualitative data and it remained an open question, whether this can be combined

with adjoint sensitivity analysis to scale it up to models of similar size as the pan-cancer

model used for the hierarchical optimization. A further possible extension of the optimal

scaling approach would be the derivation of second-order derivatives which could be used

for parameter estimation and profile calculation (Stapor et al., 2018a). As parameter

estimation using qualitative data in systems biology is a comparably young area of research,

it has so far not been assessed, which objective function is most appropriate. For example,

a formulation providing a statistical interpretation for qualitative data could be beneficial.
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First steps have been made towards this direction by Mitra & Hlavacek (2020). A thorough

assessment of different methods, such as the ones available for qualitative data, requires a

large test-suite of different parameter estimation problems. PEtab, and, in particular the

collection of problems in this format, provide a suitable framework for such benchmarks.

The full potential of this collection and the interoperability of PEtab has not yet been

fully realized. Among others, a possible use case of this would be the comparison of

different parameter estimation toolboxes developed by different research groups and the

identification of well-working optimization algorithms across platforms and programming

languages. Further developments of PEtab also depend on how it is adopted by the

community and what type of not yet supported features will be requested. Already now, an

additional toolbox, SBML2Julia (Lang et al., 2020), has implemented full PEtab support.

Complementary to the method development it is highly relevant to apply these methods in

more biology-driven research. For the pan-cancer model, it will be important to increase

the training data further to improve parameter identifiability and predictive power of the

model. Large-scale datasets have been generated providing e.g. relative measurements of

drug responses on the protein level (Zhao et al., 2020) or CRISPR-Cas9 essentiality screens

(Behan et al., 2019) which could be leveraged for this. Possible applications are in-silico

drug screens or the identification of new drug targets. Additionally, one could incorporate

prior information on the parameters from public databases such as BRENDA (Schomburg

et al., 2002). Besides integrating more data, the coverage of further relevant pathways will

also be important to improve model predictions. Qualitative data has so far only been used

in a few application examples to infer parameters. With the advance of novel methods, this

is likely to increase in the future. More often, qualitative observations have been used for

model validation, e.g. by Tan et al. (2017), and it would be interesting to include this data

also for model training. While the here developed methods were applied to mechanistic

ODE models, they are also applicable to a broader range of models.

To conclude this thesis, we developed efficient methods for parameter estimation of

mathematical models using different experimental data types, such as relative or qualitative

measurements. We showed that these methods could be used on realistic application

examples to substantially reduce computation times and enable the integration of larger

datasets with comprehensive large-scale models. This demonstrates that the methods

developed in this thesis can facilitate a deeper, holistic understanding of biological processes

on a systems level.
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Höfer, & Ursula Klingmüller. Protein abundance of AKT and ERK pathway

components governs cell type-specific regulation of proliferation. Mol. Syst. Biol., 13(1):

904, 2017. ISSN 1744-4292. doi: 10.15252/msb.20167258.

Ozan Alkan, Birgit Schoeberl, Millie Shah, Alexander Koshkaryev, Tim

Heinemann, Daryl C. Drummond, Michael B. Yaffe, & Andreas Raue. Mod-

eling chemotherapy-induced stress to identify rational combination therapies in the dna

damage response pathway. Science Signaling, 11(540), 2018. ISSN 1945-0877. doi:

10.1126/scisignal.aat0229.

Ann C. Babtie & Michael P. H. Stumpf. How to deal with parameters for whole-cell

modelling. J. R. Soc. Interface, 14(133), 2017. ISSN 1742-5689. doi: 10.1098/rsif.2017.

0237.

J. Bachmann, A. Raue, M. Schilling, M. E. Böhm, C. Kreutz, D. Kaschek,
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Doallo. Parallel metaheuristics in computational biology: An asynchronous cooperative

enhanced scatter search method. Procedia Comput. Sci., 51:630–639, 2015. doi: 10.1016/

j.procs.2015.05.331.
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