
Fakultät für Mathematik
Technische Universität München

Technische Universität München
Professur für Analysis und ihre Anwendungen

Programmable Quantum Processors

Martina Maria Gschwendtner
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Zusammenfassung

Programmierbare Quantenprozessoren stellen ein fundamentales Modell für Quan-
tencomputing dar. Als solches implementieren sie Quantenkanäle mittels eines
Quantenzustands des Programmregisters. Diese Dissertation erforscht zunächst
die Implementierung einer Klasse von Quantenkanälen mit Symmetrieeigenschaften
hinsichtlich der Größe des Programmregisters und des Präzisionsgrades. Darüber
hinaus wird das Modell auf die Programmierbarkeit unendlich-dimensionaler Quan-
tenkanäle erweitert, wobei insbesondere Gaußsche Quantenkanäle betrachtet wer-
den.

Abstract

Programmable quantum processors represent a fundamental model for quantum
computing. As such, they implement quantum channels using a quantum state
of the program register. This dissertation first explores the implementation of a
class of quantum channels with symmetry properties regarding the program size
and the precision. Furthermore, the model is extended to the programmability of
infinite-dimensional quantum channels, considering Gaussian quantum channels in
particular.
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1 The idea of programmable
quantum processors

A quantum computer that implements any kind of quantum operation controlled by
the user through program states has been a dream since the early days of quantum
information theory. This is inspired by the functioning of classical computers which
we can program to operate on a given input by providing additional data through
the program states. Analogously, the aim of years of research was a quantum ma-
chine that takes any quantum state from an input register and outputs the state
resulting from the action of a quantum channel on the input state. This channel
is specified and at the same time varied by a program state of a finite-dimensional
program register. Such a machine is highly relevant and convenient because it can
be programmed and we can use the same machine for many operations.
However, in 1997, Nielsen and Chuang proved their No-Programming Theorem
stating that it is not possible to universally and exactly implement all unitary
operations with a finite-dimensional program register [4]. This result opened the
space for research on suitable relaxations of this model in the following years. One
option is to study special classes of channels, aiming for exact programmability in-
stead of universality (see Ref. [5]). Another option of relaxing the model is seeking
for an approximate implementation, which yields a tradeoff between the precision
of the implementation and the size of the program register [6–13]. Recently, Ku-
bicki et al. [14] and Yang et al. [15] presented new upper and lower bounds on the
dimension of the program register. The former applied tools from Banach space the-
ory while the latter used information-theoretic methods which provide the optimal
scaling of the program dimension and the precision of implementation depending
on the input dimension.
In this thesis, we seek to explore two main possibilities to study programmability in
a setting not covered by the No-Programming Theorem: the first main contribution
is considering the programmability of a class of channels with symmetries and, by
generalizing the concept to infinite dimension, we secondly contribute to the field
of continuous-variable systems.
Concerning the first possibility, we consider symmetry properties in the form of
group-covariant quantum channels. This class of channels is present in and rele-
vant for channel discrimination, capacities and communication tasks, for instance
(see Ref. [16] and the references therein). So, if we know that a system has a
certain symmetry, exact programmability can be considered because ultimately we
are leaving the setting of the No-Programming Theorem which holds for universal
programmability. In particular, we study a programmable quantum processor that
implements all quantum channels which are covariant with respect to two unitary

1



representations of a compact Lie group.
Having encountered symmetries in finite dimension, we reach the second main con-
tribution of this thesis. As continuous-variable systems are highly relevant in quan-
tum information theory and gain more and more attention in quantum computing,
we seek to generalize the concept of programmable quantum processors to infinite
dimension. For physical reasons, we assume energy constraints on the input and
output states and in particular, we first investigate the implementation of energy-
limited gauge-covariant Gaussian channels of a single Bosonic mode because these
are interesting special channels of physical relevance. Secondly, we consider the
more general class of energy-limited Gaussian unitary channels of any finite num-
ber of Bosonic modes.

1.1 Overview of methods

In the next chapter, we present all relevant definitions and results from quantum
information theory and representation theory. We start by introducing fundamen-
tal concepts from quantum information theory such as states and measurements in
Subsection 2.1.1. As certain characteristics of quantum mechanics, such as entan-
glement for instance, rely on composite systems, we continue with presenting those
in Subsection 2.1.2. Aiming for programmable quantum processors that implement
quantum channels, we study operations on quantum states in Subsection 2.1.3. A
central topic in quantum information theory is how to quantify information. This
is usually covered by the entropy which we define in Section 2.2, followed by the
Holevo information serving as a quantification of the information contained in an
ensemble of states. Furthermore, we present fundamental definitions and results
from representation theory in Section 2.3 as studying symmetries in physics is re-
lated to the action of groups.
In Chapter 3, we combine all these tools from quantum information theory and
representation theory to study symmetries in quantum information theory includ-
ing examples.
We mathematically define a programmable quantum processor in Chapter 4 and
take a closer look at the No-Programming Theorem and its proof. In Section 4.3, we
introduce the standard teleportation protocol as well as port-based teleportation,
teleportation simulation and the relation to programmable quantum processors.
As continuous-variable systems play a major role in quantum mechanics, we intro-
duce the properties of infinite-dimensional systems in Section 6.1. Starting with the
general setting, we continue with the quantification of information in this broader
context. In particular, we introduce Bosonic Gaussian systems, where we again
consider symmetries in the form of gauge-covariant Bosonic Gaussian quantum
channels to then study general Gaussian unitary channels. This is motivated by
the aim of developing a programmable quantum processor that implements all
gauge-covariant Gaussian channels and Gaussian unitary channels, respectively,
assuming input and output energy constraints. With these fundamental concepts
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and methods, we provide the tools required to investigate the aforementioned two
main contributions of this thesis expressed in the two publications [1, 2].

1.2 Overview of results

The two publications as principal author [1, 2] investigate programmable quantum
processors and especially the required dimension of the program register.

Chapter 5 is based on the article

Martina Gschwendtner, Andreas Bluhm, and Andreas Winter
Programmability of covariant quantum channels
Quantum 5:488, 2021 (24 pages)
(see Article [1] in the bibliography)

The author of this thesis is the principal author of the above publication.

Summary article 1 [1]. We consider a programmable quantum processor that
uses a state of the program register to apply a group-covariant quantum channel
to an arbitrary input state. Due to this symmetry, the No-Programming Theorem
does not apply and therefore, we consider exact programmability. To obtain the
dimension of the program register, we first consider a method which is based on
the storage of extreme points if the commutant of the tensor representation of the
group is abelian. It turns out that the program dimension equals the number of
irreducible representations occurring in the direct sum decomposition of the tensor
representation. We then look at a different construction which relies on teleporta-
tion. Concatenating this with a compression map yields a program dimension of
at most the sum of the dimensions of the blocks occurring in the structure of the
Choi-Jamio lkowski state corresponding to the covariant channels.
After studying exact programmability, we explore the possibility of approximate
versions thereof. The upper bounds on the dimension of the program register,
based on ε-nets, lack the precision of the exact result but are more generally appli-
cable. The lower bounds are based on information-theoretic tools using entropies
and reveal that the construction for the exact case is optimal.
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Chapter 7 is based on the article

Martina Gschwendtner and Andreas Winter
Infinite-Dimensional Programmable Quantum Processors
PRX Quantum 2:030308, 2021 (38 pages)
(see Article [2] in the bibliography)

The author of this thesis is the principal author of the above publication.

Summary article 2 [2]. We generalize the model of programmable quantum pro-
cessors to infinite-dimensional systems motivated by the importance of continuous-
variable systems for quantum computing. We assume energy constraints on the
input and output and aim to implement energy-limited quantum channels which
map energy-bounded states to energy-bounded states.
We establish a connection between infinite-dimensional and finite-dimensional pro-
grammable quantum processors: one of an infinite-dimensional unitary-universal
programmable quantum processor to a finite-dimensional one assuming the ex-
istence of the latter. The other one assuming an infinite-dimensional unitary-
universal programmable quantum processor and constructing a finite-dimensional
one. Due to these two constructions, we can import existing upper and lower
bounds on the program register dimension from finite dimension.
We prove a central lemma stating that if a processor approximately implements
a unitary, then the processor can be modified such that it both reuses the pro-
gram state and implements the same unitary several times. This is followed by
information-theoretic relations between the ensembles involved. Thereafter, we
focus on the implementation of gauge-covariant Gaussian channels for one mode,
using a concatenation property of this particular class of channels. Having provided
upper and lower bounds on the program register dimension using ε-net construc-
tions and information-theoretic tools based on entropies, respectively, we turn to
the implementation of the more general multimode Gaussian unitary channels.
We conclude with upper and lower bounds on the program register dimension of an
infinite-dimensional approximate programmable quantum processor implementing
multimode Gaussian unitary channels.
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2 Fundamentals of quantum
information and representation
theory

2.1 Quantum information theory

As a statistical theory, quantum mechanics predicts measurement outcomes prob-
abilistically, i.e., through repetition of an experiment, we can obtain the relative
frequencies of the outcomes. This process consists of two parts: the preparation
of the system in a particular state and the subsequent measurement of the pre-
pared quantum system. In the first step, we prepare the system in a certain state
ρ ∈ D(H) which is independent of the preparation procedure. In the second part,
an observable quantity, which is independent of the measurement procedure, is
measured.

As long as we operate in finite dimension (until Chapter 6), we consider a d-
dimensional Hilbert space (H, 〈·, ·〉) where 〈·, ·〉 denotes the inner product, which
we choose linear in the second variable. Let ‖ · ‖ =

√
〈·, ·〉 denote the associated

norm.
We use Schatten p-norms which are defined as

‖A‖p = tr
(
(A∗A)p/2

)1/p ∀ A ∈ B(H),

where B(H) is the set of bounded linear operators A : H → H. Considering the
canonical basis of H ∼= Cd, A∗ is the adjoint and AT is the transpose. Special cases
of Schatten p-norms are the operator norm

‖A‖ = max{‖Ax‖ : x ∈ H, ‖x‖ ≤ 1},

which is the Schatten ∞-norm and the trace norm

‖A‖1 = tr
√
A∗A ∀ A ∈ B(H),

which corresponds to the Schatten 1-norm. We call an operator positive semidefinite
(A ≥ 0) if and only if it is self-adjoint with non-negative eigenvalues. The d-
dimensional identity operator is denoted by 1d and the identity channel by id.
We use the bra-ket-notation where a vector ϕ ∈ H is denoted by |ϕ〉 and a dual
vector as 〈ψ| ∈ H∗. Let ψ, ϕ ∈ H, then we write |ψ〉〈ϕ| for the corresponding
rank-one operator H → H which acts on a vector |χ〉 as |ψ〉〈ϕ|χ〉.
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2.1.1 States and measurements

In the following, we present the concept of states and measurements mathemati-
cally. For further background, we refer to the textbooks [17–20].

Definition 2.1.1 (Quantum State). A d-dimensional quantum state is described
by a density matrix ρ ∈ B(H) which obeys the properties

(i) ρ ≥ 0 (positive semidefinite) and

(ii) tr(ρ) = 1 (unit trace).

In the two-dimensional case, i.e., d = 2, a state is referred to as a qubit, otherwise,
it is called a qudit.
The set of all density operators is

D(H) = {ρ ∈ B(H) | ρ ≥ 0, tr(ρ) = 1}.

This is the set of all positive semidefinite complex d × d-matrices Md satisfying
tr(ρ) = 1 because B(H) ∼= Md. The set is convex, i.e., λρ1 + (1 − λ)ρ2 ∈ D(H)
for all ρ1, ρ2 ∈ D(H) and 0 ≤ λ ≤ 1, and compact. The extreme points of this set
can, by definition, not be written as non-trivial convex-combination. These states
form a special class of states called pure states. They are exactly the rank-one
projections P = |ψ〉〈ψ| for a unit vector |ψ〉 ∈ H. The set of all pure states is
denoted by DP (H). All other states are called mixed states.

Example 2.1.2. The special state 1d
d
∈ D(H) is called maximally mixed.

Any mixed state can be expressed as convex combination of pure states via the
spectral decomposition [18, Theorem 1.65]

ρ =
d∑
i=1

λi|ψi〉〈ψi|

with some λi ∈ [0, 1] for all i ∈ {1, . . . , d} and
∑

i λi = 1, and some orthonormal
basis (ONB) {|ψi〉}di=1 of H.

Having introduced and defined the state of a quantum system, we move on to
measurements of a quantum system prepared in state ρ.

If we conduct a quantum mechanical measurement of a quantum system pre-
pared in state ρ ∈ D(H), we obtain measurement outcomes xi with i ∈ {1, . . . , n},
assuming finitely many. The measurement process can be described in two differ-
ent but related ways depending on whether we are interested in the measurement
outcomes.

Definition 2.1.3 (POVM). Let X = {xi} be the finite set of all measurement out-
comes with individual outcomes xi for i = {1, . . . , n}. A map M : X → B(H), xi 7→
Mi is called Positive Operator Valued Measure (POVM) if

(i) Mi ≥ 0 where Mi are the positive operators associated to the i-th outcome
with value xi and
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(ii)
∑n

i=1Mi = 1.

The positive operators Mi are called effect operators or for short effects.

The probability of a measurement outcome xi is obtained by

pi = tr(ρMi),

i.e., the effect operators associated to every outcome xi via the POVM assign a
probability to the quantum state ρ. A mapping M : X → B(H), xi 7→ Mi is a
POVM if and only if the mapping X → [0, 1], xi 7→ tr(ρMi) with xi ∈ X represents
a probability measure for every ρ ∈ D(H) [18]. The probability of a certain outcome
can be expressed with an effect operator. A measurement therefore serves as a
connection between quantum mechanics and classical probabilities by associating
those probabilities to quantum mechanical objects.
If, in addition, the positive operators {Mi}ni=1 satisfy M2

i = Mi, i.e., they are
projectors, we obtain the special case of a projective measurement.
This yields the description of a measurement if we also care about the measurement
outcomes. In standard quantum mechanics, a measurement is described by a self-
adjoint operator O, which by spectral decomposition is given by

O =
n∑
i=1

λiPi

with eigenvalues λi and orthogonal projections Pi onto the eigenspaces of O. The
set {Pi}ni=1 forms a POVM and if we interpret the eigenvalues as measurement
outcomes, we get

tr(Oρ) = tr

( n∑
i=1

λiPiρ

)
=

n∑
i=1

λi tr(Piρ) =
n∑
i=1

λipi,

which is equal to the expectation value
∑n

i=1 xipi of the observable O for a quantum
system prepared in the state ρ ∈ D(H).
Thus, every observable described mathematically by a self-adjoint operator induces
a projective measurement due to the spectral theorem. In general, POVMs are
not necessarily connected to an observable and are therefore more general than
projective measurements. Hence, not every general POVM can be associated to
a self-adjoint operator. However, the two are closely related because, according
to Naimark’s Theorem [19, Thm 2.42], every POVM can be seen as a projective
measurement on a larger Hilbert space.

Two technical lemmas we use in the proofs are the Gentle Measurement and
the Gentle Operator Lemma, which show that a measurement with a highly likely
outcome can be performed with little disturbance to the measured quantum state.
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Lemma 2.1.4 (Gentle Measurement [21, Lemma 9], [22, Lemma 5]). Let ρ ∈
D(H) and 0 ≤ T ≤ 1. We suppose that T has a high probability of detecting ρ,
i.e., tr(Tρ) ≥ 1− κ with κ ∈ [0, 1]. Then, the post-measurement state

ρ′ :=

√
Tρ
√
T

tr ρT

satisfies
‖ρ− ρ′‖1 ≤ 2

√
κ.

Lemma 2.1.5 (Gentle Operator [23, Lemma 9.4.2]). Let ρ ∈ D(H) and 0 ≤ T ≤ 1.
We suppose that T has a high probability of detecting ρ, i.e., tr(Tρ) ≥ 1− κ, with
κ ∈ [0, 1]. Then, ∥∥∥ρ−√Tρ√T∥∥∥

1
≤ 2
√
κ.

2.1.2 Composite systems

We defined states and measurements with respect to a single system. However,
many interesting phenomena in quantum mechanics such as entanglement, which we
define later, rely on composite quantum systems consisting of several subsystems.
Hence, we consider n ∈ N distinct quantum systems described by the Hilbert spaces
H1, . . . ,Hn with dim(H1) = d1, . . . , dim(Hn) = dn and d1, . . . , dn ∈ N. The overall
Hilbert space H is described by the tensor product of the Hilbert spaces modelling
the subsystems, i.e., H = H1⊗ . . .⊗Hn with dim(H) = d = d1 · . . . · dn. For finite-
dimensional Hilbert spaces, we can always choose H ∼= Cd and H1

∼= Cd1 , . . . ,Hn
∼=

Cdn for d1, . . . , dn ∈ N and B(H) ∼=Md. Accordingly, states and measurements are
defined on the larger Hilbert space by ρ1,...,n ∈ D(H1 ⊗ . . . ⊗ Hn) ⊂ ⊗ni=1Mdi . A
special case thereof are bipartite systems, whereH = H1⊗H2 with dim(H) = d1·d2.
Let ρ1,2 ∈ D(H1 ⊗H2) be the state describing a bipartite system. Note that each
space has an ONB {ϕ1,i}d1i=1 and {ϕ2,j}d2j=1 and an ONB of the composite system

H1 ⊗H2 is given by {ϕ1,i ⊗ ϕ2,j}d1,d2i,j=1. Analogously, measurements can be defined
w.r.t. this larger Hilbert space as well.
If we consider a composite system H1⊗H2, it is convenient to be able to study just
one of the two subsystems. Therefore, we define the partial trace over a subsystem,
where we apply the trace operation to only one of the two subsystems, i.e., tr2 :
B(H1)⊗B(H2)→ B(H1) with tr2(·) := id⊗ tr(·) is applied to the state of the joint
system ρ1,2 where tr : B(H2)→ C represents the unnormalized trace operation.

Definition 2.1.6 (Partial Trace). Let H1⊗H2 be a bipartite system with d1, d2 ∈ N.
The partial trace over system 2 is defined as the linear map tr2(·) : B(H1) ⊗
B(H2)→ B(H1) satisfying

tr[tr2(ρ1,2)A1] = tr[ρ1,2(A1 ⊗ id2)] ∀ ρ1,2 ∈ B(H1 ⊗H2), A1 ∈ B(H1).

Thus, we obtain the state of a subsystem from the state ρ1,2 of the composite
system by taking the partial trace tr2(ρ1,2) = (id ⊗ tr)(ρ1,2) =: ρ1. We call ρ1
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the reduced state on the first system. The partial trace over the first subsystem is
defined analogously.

A phenomenon that characterizes quantum mechanics and distinguishes the quan-
tum world from the classical one is entanglement. A composed system is entangled
if the subsystems are not separable. A quantum state is called separable if it can
be written as a convex combination of product states, i.e.,

ρ =
l∑

i=1

λiρ
i
1 ⊗ ρi2

with λi > 0 and
∑

i λi = 1 and {ρik}li=1 ⊂ D(Hk) for k ∈ {1, 2}.

Example 2.1.7 (Maximally entangled states). An extreme case of a state of a
bipartite system is one that has maximal entanglement. Let {|i〉}di=1 be an ONB of
H. Then, the corresponding maximally entangled state on H⊗H is defined as

|Ω〉 =
1√
d

d∑
i=1

|i〉 ⊗ |i〉 .

Note that (A⊗ 1) |Ω〉 = (1⊗ AT ) |Ω〉 for all A ∈ B(H), where the transposition is
taken in the Schmidt basis of Ω.
Computing the reduced state, we get the maximally mixed state for both marginals,
i.e., tr1(|Ω〉〈Ω|) = tr2(|Ω〉〈Ω|) = 1d

d
. Since the maximally entangled state is a pure

state, this example reveals that the maximally mixed state can appear as the reduced
state of a pure state.

In general, any mixed state can be written as a reduced state of a pure state of
a composite system (see Ref. [18, Subsection 2.4.2]).

Definition 2.1.8 (Purification [18, Definition 2.74]). Let ρ ∈ D(H1) be of dimen-
sion d1 ∈ N. We call a pure state on a composite system H1 ⊗ H2, |ψ〉〈ψ| ∈
D(H1 ⊗H2), a purification of ρ if ρ = tr2(|ψ〉〈ψ|).

Remark 2.1.9. To purify a state ρ ∈ D(H1), we can add a system with dimension
d2 = rank ρ. In particular, we can choose the additional system to be of dimension
d1. Note that purifications are non-unique and the dimension of the additional
system is not limited [18, p. 103].

2.1.3 Quantum channels

We now consider time evolution of quantum systems. Depending on whether we
interpret the evolution as part of the preparation or the measurement process, two
pictures emerge. If the state evolves in time, the evolution is part of the preparation
process. This is known as Schrödinger Picture. If the observables evolve as part
of the measurement process, we call this Heisenberg Picture. Such an evolution
process corresponds to a linear map which transforms quantum states to quantum

9



states and effects to effects. Since states are positive operators, the map should
preserve positivity. If we consider acting on one quantum subsystem of a bipartite
system with a quantum operation T , the overall operation is T ⊗ id. Since we act
with T on the first system and trivially on the second, we require the operation
T ⊗ id to preserve positivity as well.

Definition 2.1.10. Let d1, d2 ∈ N. A linear map T : B(H1)→ B(H2) is called

• positive if and only if T (A) ≥ 0 ∀ A ∈ B(H1) ≥ 0,

• completely positive (CP) if (T ⊗ id) : B(H1 ⊗ Cn) → B(H2 ⊗ Cn) is positive
for any n ∈ N,

• trace-preserving (TP) if tr(T (A)) = tr(A) ∀ A ∈ B(H1) and

• unital if T (1d1) = 1d2.

Furthermore, a map describing a quantum operation should be trace-preserving,
since a state is characterized by tr(ρ) = 1. These requirements yield the following
definition for a map that describes the evolution of a quantum system.

Definition 2.1.11 (Quantum channel [18, Definition 4.5]). Let d1, d2 ∈ N. A map
T : B(H1)→ B(H2) is called quantum channel (Schrödinger picture) if

(i) T is linear,

(ii) T is CP, i.e., T ⊗ id : B(H1)⊗ B(Cn) → B(H2)⊗ B(Cn) is positive ∀ n ∈ N
and

(iii) T is TP, i.e., tr(T (A)) = tr(A) ∀ A ∈ B(H1).

We denote the set of all channels mapping from B(H1)→ B(H2) as CPTP(H1,H2)
and CPTP(H) if dim(H) = d = d1 = d2.

Example 2.1.12. We give some examples of quantum channels.

a) The identity channel leaving the state unchanged is denoted as id. This chan-
nel describes an ideal communication channel, since it leaves the input state
invariant.

b) The measurement channel TM(·) =
∑n

i=1 tr(Mi ·)|i〉〈i| with some ONB {|i〉}ni=1

shows that every POVM can be turned into a channel.

c) The completely depolarizing channel T : B(H) → B(H) is of the form T (·) =
tr(·)1d

d
.

d) From channels a) and c), we can construct further channels such as the de-
polarizing channel, which is a mixture of the id channel and the completely
depolarizing channel: T (·) = λ(·) + (1− λ) tr(·)1d

d
with − 1

d2−1
≤ λ ≤ 1.

e) A unitary channel with unitary U ∈ Ud := U(H) has the form T (·) = U(·)U∗.

We continue with useful representations of quantum channels.

10



Stinespring Dilation. A quantum channel describes an open system evolution
which itself is not necessarily unitary. To construct a unitary evolution, we embed
the open system (described by channel T ) into a larger and closed, unitarily evolving
system, i.e., we couple the system to an environment described by the state |ϕ〉 and
let the coupled system evolve according to the unitary U . Afterwards, we trace out
the environment.

Theorem 2.1.13 (Stinespring’s dilation [18, Corollary 4.19]). A linear map T :
B(H1)→ B(H1) is a quantum channel if and only if there exists a finite-dimensional
Hilbert space HE, a unitary operator U ∈ U(H1 ⊗ HE) and a pure quantum state
|ϕ〉 ∈ D(HE) such that ∀ ρ ∈ D(H1)

T (ρ) = trE[U(ρ⊗ |ϕ〉〈ϕ|)U∗].

The environment space is called dilation space. The minimal dilation dimension,
i.e., the minimal dim(HE), is equal to dim(H1) · dim(H1) = d2

1.

Choi-Jamio lkowski Isomorphism. We now establish a correspondence between
channels and bipartite states which goes back to Choi and Jamio lkowski [24, 25].

Theorem 2.1.14 (Choi-Jamio lkowski Isomorphism [18, Theorem 4.48]). Let
B(H1,H2) = {T : B(H1)→ B(H2) | T linear}. The map

B(H1,H2)→ B(H1 ⊗H2)

with
T 7→ (id⊗ T )(|Ω〉〈Ω|) =: cT ∀ T ∈ CPTP (H1,H2)

defines an isomorphism between the spaces of linear maps from a d1- to a d2-
dimensional system and linear operators on a (d1d2)-dimensional Hilbert space
B(H1 ⊗H2), the so-called Choi-Jamio lkowski Isomorphism.
The inverse is given by

cT 7→ d1 tr1[(BT ⊗ id)cT ] = T (B)

for B ∈ B(H1). The corresponding matrix cT on the bipartite system H1 ⊗ H2 is
called Choi matrix corresponding to T .

The following correspondences can be derived from this theorem.

Proposition 2.1.15 (Properties Choi matrix). Let T : B(H1)→ B(H2) be a linear
map and cT its Choi matrix. Then, the following statements hold.

(i) T is CP if and only if cT ≥ 0 [24], [18, Theorem 4.46].

(ii) T is TP if and only if tr2(cT ) = 1d
d

[19, Theorem 2.26].

(iii) T is unital if and only if tr1(cT ) = 1d
d

[26, Corollary 2].
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Example 2.1.16 (Examples Channel-State Duality). We give some examples for
Choi-Jamio lkowski states corresponding to some of the channels in Example 2.1.12.

a) The Choi-Jamio lkowski state corresponding to the identity channel is the maxi-
mally entangled state |Ω〉〈Ω|, which can directly be seen from Definition 2.1.14.

b) The completely depolarizing channel corresponds to the maximally mixed state
1d2
d2

.

c) Using linearity and Theorem 2.1.14, we immediately obtain the Choi-
Jamio lkowski state of the depolarizing channel with a) and b) as λ|Ω〉〈Ω|+ (1−
λ)

1d2
d2

.

The next and last way of representing quantum channels we present here is the
Kraus-representation.

Kraus representation The Kraus representation corresponds to a spectral decom-
position of the Choi-Jamio lkowski state into rank-one operators (and is therefore
called operator sum decomposition). Kraus representations are only unique up to
unitary equivalence.

Proposition 2.1.17 (Kraus representation [18, Proposition 4.21]). Let d1, d2 ∈ N.
A linear map T : B(H1) → B(H2) is a quantum channel if and only if it can be
written as

T (ρ) =
n∑
i=1

KiρK
∗
i with

n∑
i=1

K∗iKi = 1

for all ρ ∈ D(H1) where {Ki}ni=1, n ≤ d1d2, with Ki ∈ B(H1,H2), is a set of
Kraus operators.
The channel T additionally is unital if and only if

∑n
i=1KiK

∗
i = 1.

Remark 2.1.18 (Relation Choi rank and dilation dimension [19, Corollary 2.21]).
Let rank(cT ) be the Choi rank. Then, there exists a Stinespring representation of
T where the dimension of the dilation space is equal to rank(cT ).

Finally, each of these three characterizations gives rise to a criterion for checking
whether a map T is completely positive. This is summarized in the following
theorem.

Theorem 2.1.19 (Characterization Complete Positivity [19, see Theorem 2.22]).
Let d1 ∈ N. A linear map T : B(H1) → B(H1) is CP if and only if one of the
following three statements holds.

(i) There exists a finite-dimensional Hilbert space HE with dim(HE) = rank(cT ),
an operator A ∈ B(H1 ⊗HE) and a pure quantum state |ϕ〉 ∈ HE such that
∀ ρ ∈ D(H1)

T (ρ) = trE[A(ρ⊗ |ϕ〉〈ϕ|)A∗].

(ii) The corresponding Choi matrix is positive semidefinite, i.e., cT ≥ 0.
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(iii) There exist operators {Ki}ni=1 such that

T (ρ) =
n∑
i=1

KiρK
∗
i

for all ρ ∈ D(H1) and n = rank(cT ).

2.2 Quantifying information

To quantify information, we use the Holevo information, which relies on an ensemble
of states, and the von Neumann entropy. The following definitions and results in
this section are based on the book [27] if not stated differently.
A finitely supported probability distribution p on the set of quantum states D(H)
that assigns probabilities pi to ρi is called an ensemble {ρi, pi}. We are interested
in the information content both of a single state and of an ensemble of states. For a
single state, this is quantified by the entropy. We define the von Neumann entropy
as

S(ρ) = − tr ρ log ρ = tr(f(ρ)),

where f(ρ) = −ρ log ρ. The function f(·) is a uniformly continuous function on
[0, 1].
Note that this quantity can be upper and lower bounded by

0 ≤ S(ρ) ≤ log d (2.2.1)

for any state ρ on the d-dimensional Hilbert space H. The minimum S(ρ) = 0 is
achieved for pure states and the maximum for the maximally mixed state ρ = 1d

d
[27,

Section 5.2].
The continuity of the von Neumann entropy can be estimated by the following
bound which can be found in Refs [28, Theorem 3.8] and [29, Theorem 1]. Suppose
two density matrices ρ and σ on a d-dimensional Hilbert space and let ε := 1

2
‖ρ−σ‖1.

Then,
|S(ρ)− S(σ)| ≤ ε log(d− 1) + h(ε), (2.2.2)

with h(ε) = H(ε, 1− ε) = −ε log ε− (1− ε) log(1− ε) being the binary entropy [28,
Theorem 3.8].
Quantifying the information content of an ensemble is achieved by the Holevo in-
formation defined as

χ
(
{ρi, pi}

)
:= S

(∑
i

piρi
)
−
∑
i

piS(ρi). (2.2.3)

For G being a compact group, there exists a unique left and right invariant prob-
ability measure, which we call Haar measure µ [30, Chapter VII.3]. We normalize
the measure such that ∫

G

dµ = 1.
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For more details on the Haar measure, we refer to Ref. [30, Chapter VII.3].
Furthermore, we define the notion of a t-design. Let {pi}Jj=1 be a probability

distribution over a set of pure quantum states {|ψj〉 , pj}Jj=1, |ψj〉〈ψj| ∈ DP (H) for
all j ∈ {1, . . . , J}. Given t copies of a state from this distribution, {|ψj〉 , pj}Jj=1 is
called a quantum t-design if∑

j

pj
(
|ψj〉〈ψj|

)⊗t
=

∫
DP

(
|φ〉〈φ|

)⊗t
µ(dφ), (2.2.4)

where the integral is taken over all pure states |φ〉〈φ| ∈ DP (H) with respect to
the Haar measure. In words, the probability distribution {pj}Jj=1 cannot be distin-
guished from the Haar measure µ(dφ) being the uniform probability distribution
over all pure quantum states |φ〉〈φ| ∈ DP (H) [31, Definition 1].

To be able to study symmetries in quantum information theory, we – additionally
to the basics in quantum information theory – need fundamental definitions and
results from representation theory which we review in the following section.

2.3 Basic definitions and results from representation
theory

Representation theory considers maps that associate invertible matrices to the
group elements g of a group G. Instead of dealing with the group elements them-
selves, we work with the associated matrices. This is useful if G obeys a complicated
structure because using a representation might be an easier or even the only way
to obtain information about G [32, 33]. Moreover, a representation can be seen as
an action of G on a vector space and symmetries, arising in a physical theory, for
instance, are often associated with the action of groups. Studying representations
of these groups therefore allows us to consider further symmetry properties and
those can yield a simplification of the problem [34]. To study symmetries in quan-
tum information theory, we introduce basic notations, concepts and tools from
representation theory. There are many textbooks on representation theory such
as [30, 32–35]. We closely follow Ref. [30] for the main definitions and theorems.
From now on, G always denotes a compact Lie group (short: compact group). We
start with a formal mathematical definition of a representation.

Definition 2.3.1 (Representation of a compact group). Let G be a compact group,
V ∼= H ∼= Cd a complex vector space and GL(V) the general linear group on V. A
continuous homomorphism from G to GL(V) is called representation of the group
G. The dimension dim(V) = d is called the degree of the representation [30, p. 21].

If G ⊂ GL(H) is a closed subgroup, the representation R : G → GL(H) that
maps every element to itself g 7→ g is called defining representation [32, p. 51]. In
quantum mechanics, evolutions of systems can be described by unitaries. Thus,
it is convenient to represent group elements by unitary operators. Therefore, we
define unitary representations.
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Definition 2.3.2 (Unitary representation [30, p. 156]). Let G be a compact group.
A unitary representation (short: representation) of G is a continuous homomor-
phism from G to the unitary operators U(H) on some complex, finite-dimensional
Hilbert space H.

Theorem 2.3.3 (Weyl’s unitary trick [30, Theorem VII.9.1]). Let G be a compact
Lie group and V : G → GL(H) be a representation. Suppose that g 7→ Vg is
measurable and bounded in the sense that `(Vgx) is measurable and bounded for each
fixed x ∈ H and ` ∈ H∗. Furthermore, suppose that Vgx is not almost everywhere
in g zero for all x ∈ H.
Then, there exists an inner product on H such that all Vg ∈ U(H), i.e., V is a
unitary representation.

This is why it suffices to consider unitary representations. Furthermore, we
consider finite-dimensional unitary representations such that H ∼= Cd for some
d ∈ N. In the following, we always mean unitary representation if we briefly write
representation.
We classify representations up to unitary equivalence and therefore define the notion
of unitarily equivalent.

Definition 2.3.4 (Unitarily equivalent [30, p. 156]). Let U : G → U(H) and
V : G → U(H) be two representations of the same compact group G. We call U
and V unitarily equivalent (short: equivalent) if and only if there exists a unitary
W ∈ U(H) such that Vg = WUgW

−1 ∀ g ∈ G.

We illustrate the definitions and concepts from representation theory based on
the example of the alternating group A4. The reason why we use this particular
group gets apparent later in this section.

Example 2.3.5 (Alternating group A4: Introduction [35, Section 2.3]). The al-
ternating group A4 is a subgroup of the symmetric group S4 only consisting of the
even permutations. The group consists of 12 elements which can be partitioned into
4 conjugacy classes, i.e., equivalence classes w.r.t. conjugation. Here, two group
elements g1 and g2 are called conjugate if there exists an element g ∈ G with
g2 = g−1g1g.
The simplest map that defines a representation is the map that associates the iden-
tity to every g ∈ G

ϕ : A4 → GL(R)

g 7→ 1.

Let us define the complex conjugate representation Ū [30, p. 158] of the unitary
representation U as

Ū : G→ GL(H)

g 7→ Ūg,

where Ūg is the complex conjugate, i.e., the entrywise complex conjugate unitary
matrix associated to g ∈ G through the representation Ū .
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We can build more advanced representations using the direct sum and tensor prod-
uct.

Lemma 2.3.6 (Direct sum and tensor product representation [30, p. 24, p. 29]).
Let U : G → GL(HU) and V : G → GL(HV ) be two unitary representations of G.
Then,

i) U ⊕ V : G→ GL(HU ⊕HV ) with (U ⊕ V )(g) := Ug ⊕ Vg ∀ g ∈ G and

ii) U ⊗ V : G→ GL(HU ⊗HV ) with (U ⊗ V )(g) := Ug ⊗ Vg ∀ g ∈ G

are also unitary representations.

Remark 2.3.7. The corresponding unitary matrices of the direct sum and tensor
product representation have the following special structure. Let Ug be the unitary
matrix corresponding to g ∈ G, associated to the unitary representation U and let
Vg be the unitary matrix corresponding to g ∈ G associated to the unitary represen-
tation V . Then, the matrix representation of

i) U ⊕ V is

(
Ug 0
0 Vg

)
∈MdU+dV ,dU+dV (block-structure) [30, p. 24] and of

ii) U ⊗ V is Ug ⊗ Vg ∈MdU ·dV ,dU ·dV [30, p. 29].

We seek to consider representations that cannot be decomposed non-trivially as
a direct sum. More complicated representations can be described by connecting
those basic building blocks with a direct sum operation.
To define such elementary representations, we require the notion of an U-invariant
subspace.

Definition 2.3.8 (Invariant subspace [30, p. 24]). Let U be a unitary representation
of G on H. A subspace H′ ⊆ H is called U -invariant if for all g ∈ G and y ∈ H′,
Ugy ∈ H′.

We are now ready to define the fundamental building blocks: irreducible represen-
tations.

Definition 2.3.9 (Irreducible representation [30, p. 157]). A unitary representation
U of G on a finite-dimensional vector space H is called irreducible representation
(short: irrep) if and only if the only U-invariant subspaces of {Ug | g ∈ G} are {0}
and H.

We can simplify any representation with the direct sum decomposition into irreps,
whereas irreps themselves cannot be further decomposed. This is stated in the
following corollary.

Corollary 2.3.10 (Characterization irrep [30, Corollary II.2.2]). A representation
U is an irrep if and only if it cannot be written as direct sum of non-trivial repre-
sentations.
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In the case of A4 this looks as follows.

Example 2.3.11 (Alternating group A4: Irreducible Representations [35, Sec-
tion 2.3]). The group A4 has four irreps ϕ(1), ϕ(2), ϕ(3), and ϕ(4). Three of them,
ϕ(1), ϕ(2), ϕ(3), are one dimensional and ϕ(4) is three dimensional. One of the one-
dimensional irreps, ϕ(1), is the trivial irrep which maps g 7→ 1 (see Example 2.3.5).
The irreps of the further two one-dimensional irreps are given by the second row of
Table 2.1 and the third row, respectively. This holds because one-dimensional irreps
coincide with their characters defined in Definition 2.3.21. Additionally, there is a
three-dimensional irrep which can be described by permuting four four-dimensional
basis vectors of a vector space according to the action of A4. There is one one-
dimensional subspace which results in a three-dimensional irrep.

The following fundamental theorem expresses that any unitary representation of
a compact group can be decomposed into a direct sum of irreps.

Theorem 2.3.12 (Direct sum decomposition [30, Theorem VII.9.3]). Every repre-
sentation of a compact group G is equivalent to a direct sum of irreps.

This means that the representation itself, the image of the representation and the
Hilbert space H, the representation acts on, can be decomposed as direct sum of
the corresponding maps, operators and spaces, respectively. When we decompose
a representation into a direct sum of irreps, then some of the irreps might be
equivalent. In that case, we group them together.
Let H be a d-dimensional Hilbert space and U : G → GL(H) a reducible unitary
representation, i.e., there is a non-trivial decomposition as a direct sum of irreps.
We equip every irrep with an index k ∈ {1, . . . , K} for a total number K of irreps.
Let dimH1 = b1, . . . , dimHK = bK .

H ∼= (H(1)
1 ⊕ . . .⊕H

(n1)
1 )⊕ . . .⊕ (H(1)

K ⊕ . . .⊕H
(nK)
K )

= (H1)⊕n1 ⊕ . . .⊕ (HK)⊕nK

=
K
⊕
k=1

(Hk)
⊕nk

=
K
⊕
k=1

nkHk

=
K
⊕
k=1

(Hk ⊗H′k),

where we call nk, for k ∈ {1, . . . , K}, the multiplicity of the kth representation and
H′k is the corresponding Hilbert space of dimension nk.
Analogously, for the unitary representation, we get the direct sum decomposition

U ∼=
K
⊕
k=1

U (k) ⊗ 1nk

with nk being the multiplicity. The sum runs over all irreps of U .
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For the image of the representation, i.e., the unitary matrices on U(H), we obtain
the following structure

Ug ∼=
K
⊕
k=1

U (k)
g ⊗ 1nk

for all g ∈ G.

To study symmetries in quantum information theory in the next chapter, we con-
sider representations of the form Ū ⊗V . The following remark clarifies the relation
between this tensor product representation and irreps.

Remark 2.3.13. If U, V are irreps, then Ū an V̄ are irreps as well [30, p. 30].
However, Ū ⊗ V is usually no irrep [30, p. 29] as the following example illustrates.

Example 2.3.14 (Alternating group A4: Direct sum decomposition). If we con-
sider more complicated representations, due to some particular symmetry, we can
always decompose them as direct sums of simpler irreps. As an example, we con-
sider ϕ̄(4) ⊗ ϕ(4) which can be decomposed as

ϕ̄(4) ⊗ ϕ(4) = ϕ(1) ⊕ ϕ(2) ⊕ ϕ(3) ⊕ 2ϕ(4),

where ϕ(4) appears with multiplicity 2.

One reason why we chose the group A4 as an example is that it provides a
direct sum decomposition of a tensor representation with multiplicity larger than
one. This becomes important when studying covariant programmable quantum
processors. In the special case of an abelian group G, i.e., a group with commutative
product, the following holds.

Corollary 2.3.15 (Degree irrep abelian group [30, Corollary II.4.3]). If G is
abelian, every irrep has degree 1.

Example 2.3.16 (Alternating group A4: non-abelian). The group A4 is non-
abelian. The irrep ϕ(4) is three-dimensional.

The image of the representation, i.e., the set of unitaries {Ug}g∈G, generates an
algebra. Recall that A is an algebra if A + B,AB, cA ∈ A for all A,B ∈ A and
c ∈ C. If AB = BA for all A, B ∈ A, we call A an abelian algebra. Additionally,
if there is an involution ∗ : A → A, which is the adjoint for matrix algebras, then
A is called C∗-algebra. To study symmetries in the next chapter, we define the
commutant of the algebra A as

Definition 2.3.17 (Commutant). Let A be an algebra of operators on the Hilbert
space H. Its commutant is

A′ := {B | BA = AB ∀ A ∈ A}.

If the algebra has a special structure, its commutant ultimately has a corre-
sponding structure as well, which directly follows from the structure of A and the
definition of a commutant.
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Theorem 2.3.18 (Structure of the commutant [30, Thm IX.11.2]). Let U : G →
GL(H) be a unitary representation of G, which can be written as H =

K
⊕
k=1

(Hk⊗H′k)

such that Ug =
K
⊕
k=1

(U
(k)
g ⊗ 1nk) for all g ∈ G where U (k), k ∈ {1, . . . , K}, are irreps

of G. Furthermore, let A(U) be the operator algebra generated by the {Ug}g∈G and
A′(U) the corresponding commutant. Then,

A(U) =

{
K
⊕
k=1

Ak ⊗ 1nk | Ak ∈ B(Hk)

}
,

A′(U) =

{
K
⊕
k=1

1bk ⊗Bk | Bk ∈ B(H′k)
}
.

The particular structure of elements of the commutant is illustrated in Figure 2.1.

Figure 2.1: This figure illustrates the structure of elements of A(U) on the left-hand
side and its commutant A′(U) on the right-hand side in the case of K = 3,
i.e., 3 irreps in the direct sum decomposition [1, Figure 1].

Example 2.3.19 (Alternating group A4: structure of the tensor representation).
Due to the direct sum decomposition of ϕ̄(4)⊗ϕ(4) (see Example 2.3.14) we know that
its image forms a block-diagonal matrix. There are three one-dimensional blocks on
the diagonal and two three-dimensional ones.
According to Theorem 2.3.18, the commutant consists of three one-dimensional
blocks and three two-dimensional blocks.

We use Schur’s Lemma as a tool to later prove statements concerning the covari-
ant processor.

Lemma 2.3.20 (Schur’s Lemma [30, Thm II.4.1, Thm II.4.2]). Let U , V be two
irreps of G on HU and HV , respectively. The following statements hold:

i) If T1 : HU → HU is linear with T1Ug = UgT1 for all g ∈ G. Then,

T1 = c1 for some c ∈ C.

ii) If T2 : HU → HV such that T2Ug = VgT2 for all g ∈ G. Then, either T = 0
or U and V are unitarily equivalent and T2 is unique up to a constant, i.e., if
there is a T ′2 satisfying T ′2Ug = VgT

′
2 for all g ∈ G, then T ′2 = cT2 for a constant

c.
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A convenient tool in the context of irreps is a map which associates a complex
number to every element of the group. This number is related to a unitary repre-
sentation through the trace operation and is defined as

Definition 2.3.21 (Character [30, p. 41]). Let U : G→ GL(H) be a representation
such that g 7→ Ug. The character χ : G→ C maps every element of G to a complex
number according to g 7→ tr(Ug).

In the case of a one-dimensional representation, the character is equal to the one-
dimensional representation. The irreps and corresponding multiplicites that occur
in the direct sum decomposition are determined by U and the character determines
the direct sum decomposition into irreps [30, p. 41]. Note that the multiplicities
can be obtained using the characters (see Corollary 2.3.25 below). Characters obey
special properties illustrated in the following statements

Proposition 2.3.22 (Properties of characters [30, p. 41], [35, p. 13]). Let χ : G→
C, g 7→ tr(Ug) be a character.

1. If U , V are equivalent representations, then χU = χV .

2. For the direct sum representation, χU⊕V = χU + χV holds.

3. For the tensor product representation, χU⊗V = χU · χV holds.

Characters of groups are often gathered in character tables. We consider the
alternating group again.

Example 2.3.23 (Alternating group A4: character table [35, p. 20]). In the fol-
lowing table we give the characters for the irreps of A4. The rows correspond to the
irreps, columns represent the four conjugacy classes and ω = e2πi/3.

A4 1 (123) (132) (12)(34)
ϕ(1) 1 1 1 1
ϕ(2) 1 ω ω2 1
ϕ(3) 1 ω2 ω 1
ϕ(4) 3 0 0 −1

Table 2.1: Character table of A4.

The following theorem and corollary state how characters can be used to study
representations.

Theorem 2.3.24 (Orthogonality relations for characters, [30, Theorem VII.9.5]).
For all irreps α, β with characters χα, χβ,

〈χα, χβ〉 :=

∫
G

χα(g)χβ(g)dµ(g) = δαβ,

where 〈χα, χβ〉 is the inner product on L2(G) = {χ : G→ C |
∫
G
|χ(g)|2dµ(g) <∞}

and µ denotes the Haar measure on G.

20



The multiplicities of irreps in the direct sum decomposition of a representation
can be calculated as follows:

Corollary 2.3.25 (Multiplicity and characters [30, Corollary VII.9.6]). Let U be a
representation of a compact Lie group G and χU the corresponding character. Let
χα be the character of an irrep α. Then,

nα = 〈χα, χU〉 =

∫
G

χα(g)χU(g)dµ(g)

is the multiplicity of α in the direct sum decomposition of U . Note that the nα are
uniquely determined by U .

These fundamental results of representation theory are crucial for studying sym-
metries in quantum information theory in the next chapter.
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3 Symmetries in quantum
information theory

In this chapter, we combine concepts from quantum information theory and repre-
sentation theory, i.e., we consider states and channels that obey a certain symmetry.
In Chapter 1, we have already motivated that the covariance symmetry property
for channels plays an important role. These are channels whose action ’commutes’
with the symmetry [36]. Hence, they can be defined as follows:

Definition 3.1 (UV -covariant quantum channel). Let G be a compact group and
let U and V be representations of G on Hilbert spaces H1 and H2, respectively. Let
T : B(H1)→ B(H2) be a quantum channel. We call T UV -covariant if

T (UgAU
∗
g ) = VgT (A)Vg

∗ ∀ A ∈ B(H1), ∀ g ∈ G.

Such channels were studied in Ref. [16] for the case that U is an irrep, V = U ,
and Ū ⊗ U is multiplicity-free.
The set of all UV -covariant channels is represented by

TUV := {T : B(H1)→ B(H2) | T is a UV -covariant quantum channel}.

Examples of covariant quantum channels To illustrate the above definition, we
provide examples of UV -covariant channels. For details, we refer to Ref. [37].

Example 3.2. The following two examples can be found in Ref. [37, Subsection
3.2.2].

1) A common example is UU-covariance w.r.t. the defining representation of the
unitary group U(H), i.e.,

T (UgρU
∗
g ) = UgT (ρ)U∗g ∀ Ug ∈ U(H).

T is UU-covariant w.r.t. the defining representation of the unitary group if and
only if there is an α ∈ [0, d2

d2−1
] such that

T (·) = α
tr(·)
d

1 + (1− α)id(·).

2) Another example is OO-covariance w.r.t. the defining representation of the or-
thogonal group O(H), i.e.,

T (OgρO
∗
g) = OgT (ρ)O∗g ∀ Og ∈ O(H).
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A channel T is OO-covariant w.r.t. the unitary representation O of the orthog-
onal group O(H) if and only if there are β1, β2 ≥ 0 and β1 + β2 ≤ 1 such
that

T (·) = (1− β1 − β2)id(·) +
β1

d− 1

(
tr(·)1− (·)T

)
+

2β2

d(d+ 1)− 2

(
d

2
(tr(·)1− (·)T )− id(·)

)
where (·)T is the transpose, i.e., the input state is transposed.

Due to the Choi-Jamio lkowski isomorphism (Theorem 2.1.14), there is a corre-
sponding Choi-Jamio lkowski state to each channel T ∈ TUV . Thus, we define the
set of all Choi-Jamio lkowski states corresponding to quantum channels T ∈ TUV as

JUV := {cT ∈ B(H1 ⊗H2) | cT := (id⊗ T )(|Ω〉〈Ω|)∀ T ∈ TUV }.

The following lemma establishes a property of the Choi-Jamio lkowski states corre-
sponding to UV -covariant quantum channels.

Lemma 3.3. The covariance property of a channel T ∈ TUV w.r.t. the unitary
representations U and V of a group G is equivalent to the condition that the cor-
responding Choi-Jamio lkowski state cT ∈ JUV commutes with Ūg ⊗ Vg for every
g ∈ G, i.e., [cT , Ūg ⊗ Vg] = 0.

Proof. “⇒” Using (Ūg ⊗ Ug)|Ω〉〈Ω|(Ūg ⊗ Ug)∗ = |Ω〉〈Ω|, we get the following equa-
tions

(Ūg ⊗ Vg)∗cT (Ūg ⊗ Vg) = (Ūg ⊗ Vg)∗(id⊗ T )(|Ω〉〈Ω|)(Ūg ⊗ Vg)
= (Ūg ⊗ Vg)∗(id⊗ T )((Ūg ⊗ Ug)|Ω〉〈Ω|(Ūg ⊗ Ug)∗)(Ūg ⊗ Vg)
= (Ūg ⊗ Vg)∗(Ūg ⊗ Vg)(id⊗ T )(|Ω〉〈Ω|)(Ūg ⊗ Vg)∗(Ūg ⊗ Vg)
= id⊗ T (|Ω〉〈Ω|),

where we use that T is covariant in the third equation.
“⇐” We assume that [cT , Ūg ⊗ Vg] = 0. Then,

cT = (Ūg ⊗ Vg)∗cT (Ūg ⊗ Vg)
= (Ūg ⊗ Vg)∗(id⊗ T )(|Ω〉〈Ω|)(Ūg ⊗ Vg)
= (Ūg ⊗ Vg)∗(id⊗ T )((Ūg ⊗ Ug)|Ω〉〈Ω|(Ūg ⊗ Ug)∗)(Ūg ⊗ Vg),

where we use (Ūg ⊗ Ug)|Ω〉〈Ω|(Ūg ⊗ Ug)∗ = |Ω〉〈Ω| again. Since

cT = (Ūg ⊗ Vg)∗(id⊗ T )((Ūg ⊗ Ug)|Ω〉〈Ω|(Ūg ⊗ Ug)∗)(Ūg ⊗ Vg),

cT is also the Choi-Jamio lkowski state of V ∗g T (Ug(·)U∗g )Vg. Since the Choi-Jamio lkowski
map T 7→ cT is an isomorphism (Theorem 2.1.14), the corresponding channels are
equal and therefore, the channels are UV -covariant.
Thus, we showed that the UV -covariance property of T is equivalent to the corre-
sponding Choi-Jamio lkowski state commuting with Ūg ⊗ Vg.
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Let us consider the examples we presented in Example 3.2 together with the
Examples 2.1.16 and expand them to their corresponding Choi-Jamio lkowski state
and their symmetries.

Example 3.4. We present the UU-covariant and the OO-covariant channel.

1) Recall the UU-covariant channel from Example 3.2, which is a convex combi-
nation of the completely depolarizing channel T1 = tr(·)1d

d
and the id-channel

T2(·) = (·). According to Lemma 3.3, the corresponding Choi-Jamio lkowski
states satisfy [cT , Ūg ⊗ Ug] = 0. The states corresponding to T1 and T2 can be
easily calculated

cT1 = (id⊗ T1)(|Ω〉〈Ω|) =
1

d

d∑
i,j=1

|i〉〈j| ⊗ tr(|i〉〈j|)1
d

=
1d2
d2
,

cT2 = (id⊗ id)(|Ω〉〈Ω|) = |Ω〉〈Ω|.

Every state of the state space JUU can be written as ρ = a1 + b|Ω〉〈Ω| with
appropriate a, b ∈ C such that tr(ρ) = 1 and ρ ≥ 1. This yields

JUU =

{
α

1d2
d2

+ (1− α)|Ω〉〈Ω| | α ∈ [0,
d2

d2 − 1
]

}
such that the elements satisfy the state properties. These states obeying the
symmetry [Ūg ⊗ Ug, cT ] = 0 are called isotropic states [38, Example 2], [37,
Subsection 3.1.3].

2) From Example 3.2, we notice that an OO-covariant channel consists of

T1(·) = d tr(·)1,
T2(·) = id(·),
T3(·) = d(·)T ,

where (·)T is the transpose. OO-covariance corresponds to [cT , Og ⊗ Og] = 0
for all g ∈ G according to Lemma 3.3. We calculate the corresponding Choi-
Jamio lkowski states again

cT1 = (id⊗ T1)(|Ω〉〈Ω|) = 1d2 ,

cT2 = (id⊗ T2)(|Ω〉〈Ω|) = |Ω〉〈Ω| and

cT3 = (id⊗ T3)(|Ω〉〈Ω|) = F,

where F =
∑d

i,j=1 |ij〉〈ji| is the flip operator. The state space is spanned by

P1 = |Ω〉〈Ω|, P2 = 1−F
2

and P3 = 1+F
2
− |Ω〉〈Ω| which yields

JOO =

{
cT : cT = (1− β1 − β2)P1 + β1

P2

tr(P2)
+ β2

(
P3

tr(P3)

)}
with 0 ≤ β1, β2 ≤ 1. These states are called Werner states [38, Example 1], [37,
Subsection 3.1.2].
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These examples illustrate that studying symmetries in Quantum Information
Theory through UV -covariant channels can be achieved by considering their cor-
responding Choi-Jamio lkowski states since UV -covariance corresponds to [cT , Ūg ⊗
Vg] = 0 (Lemma 3.3). Thus, we are interested in the struture and properties of
elements that commute with Ūg ⊗ Vg. Let us consider a representation of G of the
form Ū ⊗ V with U , V irreps of G. From Remark 2.3.13, we know that the rep-
resentation Ū ⊗ V is not necessarily irrep. By Theorem 2.3.12, this representation
can be written as direct sum of irreps

Ū ⊗ V ∼=
K
⊕
k=1

nkU
(k)

with irreps U (k) with k ∈ {1, . . . , K}. The underlying Hilbert space decomposes as

H1 ⊗H2
∼=

K
⊕
k=1

(
Hk ⊗H′k

)
,

where we sum over irreps of G. According to Remark 2.3.7, the involved direct sum
leads to a block-diagonal structure of the corresponding matrices

Ūg ⊗ Vg ∼=
K
⊕
k=1

U (k)
g ⊗ 1nk ,

where nk is the multiplicity and U
(k)
g corresponds to the dimension of the kth irrep

of G, with U
(k)
g ∈ B(Hk) being the corresponding matrices. Any Ūg ⊗ Vg, g ∈ G,

acts as the identity on the multiplicity spaces. According to Theorem 2.3.18, we
obtain the following form for (Ūg ⊗ Vg)g∈G:

A(Ū ⊗ V ) =
{ K
⊕
k=1

Ak ⊗ 1nk | Ak ∈ B(Hk)
}
,

where nk is the multiplicity and bk the dimension of the corresponding kth irrep
∀ k ∈ {1, . . . , K} and Ak are the matrices corresponding to the kth irrep. Its
commutant G ′ looks as follows

K = A′(Ū ⊗ V ) =
{ K
⊕
k=1

1bk ⊗Bk | Bk ∈ B(H′k)
}
. (3.1)

If K is an abelian C∗-algebra, every nk = 1 for all irreps k ∈ {1, . . . , K}. In
terms of matrices, we then obtain a diagonal matrix.
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4 Programmable quantum
processors

A programmable quantum processor serves as a quantum analogue of a computer
with stored programs. Classically, the processor applies a function f (some oper-
ation), which is stored as a program state inside the machine, to an input (data)
register x and outputs f(x). Thus, a processor is a device which is able to apply
different operations on the data register depending on the program state. Accord-
ingly, a universal classical processor can perform any operation on an arbitrary
input state.
The quantum analogon, a programmable quantum processor, implements a CPTP
map that acts on some input state ρ ∈ D(H) which describes the state of a quan-
tum system. The map is determined by the program state which represents the
state of a second quantum system. Hence, the information about the implemented
operation is encoded in a program quantum register and is not specified by clas-
sical parameters. Since such a processor is designed to implement a huge amount
of different channels, we do not need to build a new processor each time we want
to realize a new channel. We can simply change the program state which leads to
more flexibility.
As an example, we consider a CNOT operation, that acts on a target and a control
system which are the input and the program state in our case. If the program
state is |0〉, the identity operation is applied to the input. If its state is |1〉, the
NOT operation is performed, i.e., the input state is flipped. The device can at least
implement two different operations: the identity and the NOT gate.
We call a programmable quantum processor which is able to perform any quantum
operation on an arbitrary input state universal. Most of the literature focuses on
the two fundamental quantum operations: unitary channels [4, 5, 7, 9, 39–44] and
measurements [8,10,45–47]. The first model is supposed to implement any unitary
quantum channel whereas the latter is able to implement the effect operators of
any POVM depending on the program state.

To mathematically define the notion of a programmable quantum processor, we
introduce the diamond norm, which we use to measure the distance between two
quantum channels.
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Definition 4.1 (Diamond norm). Let T be a linear map B(H1) → B(H2). Its
diamond norm is defined as

‖T‖� = sup
k≥1

ρ∈D(H1⊗Ck)

‖T ⊗ idCk(ρ)‖1,

where ‖ · ‖1 = tr(
√
T ∗T ) and Ck is the k-dimensional complex Hilbert space.

We define a programmable quantum processor with input ρ ∈ D(H1) that imple-
ments a class of channels with program states πΦ ∈ D(HP ) of dimension dP . This
is schematically illustrated in Figure 4.1.

Figure 4.1: The figure shows a PQPC with its input, program and output register [1,
Figure 2].

The following definition can be found in Ref. [1, Definition 3.1].

Definition 4.2 (ε-PQPC). Let H1 and H2 be separable Hilbert spaces. Then, we
call P ∈ CPTP(H1 ⊗ HP ,H2), with finite-dimensional HP , an ε-programmable
quantum processor for a set C ⊂ CPTP(H1,H2) of channels (ε-PQPC), if for every
quantum channel Φ ∈ C there exists a state πΦ ∈ D(HP ) such that

1

2
‖P(· ⊗ πΦ)− Φ(·)‖� ≤ ε.

To address the Hilbert spaces H1 and H2, we refer to them as the input and out-
put registers and to HP as the program register. We say that the processor P
ε-implements the class C of channels, leaving out the reference to ε in the case of
exact programmability when ε = 0.

When C = CPTP(H1,H2), we obtain a universal processor which we denote as
ε-PQPCPTP.

Another important special case which is addressed as universal in the literature
(see for instance Refs. [14] and [15]), is that H1 = H2 = H and C = U(H), the set
of all unitary channels defined by conjugation with unitaries. However, since this
is a restriction to unitaries, we call the corresponding processor unitary-universal
and denote it as ε-PQPU instead of ε-UPQP, a universal programmable quantum
processor. In the unitary case, the program states are assumed to be pure, in
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accordance with the previous literature. If we allow a mixed program state πP ,
we can always purify it on HP ⊗ HP and modify the processor to one acting on
H1 ⊗H⊗2

P .
In its essence, the concept goes back to universal quantum gate arrays introduced

by Nielsen and Chuang [4]. In their research, they also establish and prove the well-
known No-Programming Theorem [4].

4.1 Exact programmability and the No-Programming
Theorem

In the case of ε = 0, we obtain the exact implementation of quantum channels
by the programmable quantum processor. For C = Ud, the set of d-dimensional
unitary channels, Nielsen and Chuang formulated their No-Programming Theorem
in 1997, proving that it is not possible to construct a universal machine (universal
gate array), which is able to program all unitary operations with finite-dimensional
program register [4]. The main insight is that in order to program two different uni-
taries, two orthogonal program states are required. Since there are infinitely many
unitaries the processor should be able to implement, we would need an infinite-
dimensional program register.
Crucial for this is the independence of the processed program state from the input
state, which we show first.

Let |d〉 ∈ H1 be a pure input state and |ψU〉 ∈ HP the pure program state of the
program space HP . The two registers are independent of each other and can thus
be written as |d〉 ⊗ |ψU〉. They serve as input for the programmable quantum gate
array which applies a unitary U ∈ Ud to the input state and transforms the program
state into |ψ′U〉 ∈ HP . The array is modeled by a unitary operator A ∈ U(H1⊗HP )
which acts as

A[|d〉 ⊗ |ψU〉] = (U |d〉)⊗ |ψ′U〉
for all |d〉 ∈ H1 and some state |ψU〉 of the program register. We say that the
unitary operator U is implemented by A if a state |ψU〉 exists.
To see that |ψ′U〉 is independent of |d〉, we suppose that we have two different input
states |d1〉 and |d2〉 which lead to the following equalities

A[|d1〉 ⊗ |ψU〉] = (U |d1〉)⊗ |ψ′U,1〉 ,
A[|d2〉 ⊗ |ψU〉] = (U |d2〉)⊗ |ψ′U,2〉 ,

(4.1.1)

where we suppose that |ψ′U,1〉 and |ψ′U,2〉 are two different program states after the
application of A. If we take the inner product of the two equations, we get

〈d1|d2〉 = 〈d1|d2〉 · 〈ψ′U,1|ψ′U,2〉.
If 〈d1|d2〉 6= 0, we immediately conclude that 〈ψ′U,1|ψ′U,2〉 = 1 and thus |ψ′U,1〉 =
|ψ′U2
〉. If 〈d1|d2〉 = 0, we consider |d3〉 = 1√

2
(|d1〉+|d2〉). Analogously to Eqs. (4.1.1),
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we obtain
A[|d3〉 ⊗ |ψU〉] = (U |d3〉)⊗ |ψ′U,3〉 .

Since 〈d1|d3〉 6= 0 and 〈d2|d3〉 6= 0, we get |ψ′U,1〉 = |ψ′U,3〉 and |ψ′U,2〉 = |ψ′U,3〉 and
hence,

|ψ′U,1〉 = |ψ′U,2〉 .
Therefore, the memory output |ψ′U〉 is independent of the input |d〉.

Next, we recall the proof of the following no-go theorem from Ref. [4].

Theorem 4.1.1 (No-Programming Theorem [4]). Let U1, . . . , Un be n unitary op-
erators which are distinct (up to a global phase), i.e., Uj 6= Uke

iφ for all φ ∈ [0, 2π),
k 6= j, and implemented by some programmable quantum processor. The program
register is at least n-dimensional, i.e., contains at least log2 n qubits. The corre-
sponding program states |ψU1〉 , . . . , |ψUn〉 are mutually orthogonal.

Proof. We consider two program states |ψU1〉 and |ψU2〉 which lead to U1 |d〉 and
U2 |d〉, respectively. The corresponding unitaries U1 and U2 are distinct up to a
global phase. We get the following equations for the two inputs

A[|d〉 ⊗ |ψU1〉] = U1 |d〉 ⊗ |ψ′U1
〉 ,

A[|d〉 ⊗ |ψU2〉] = U2 |d〉 ⊗ |ψ′U2
〉 .

Taking the inner product of the two equations yields

〈ψU1|ψU2〉 = 〈d|U∗1U2|d〉〈ψ′U1
|ψ′U2
〉. (4.1.2)

Assuming that 〈ψ′U1
|ψ′U2
〉 6= 0, we get

〈ψU1|ψU2〉
〈ψ′U1
|ψ′U2
〉

= 〈d|U∗1U2 |d〉 . (4.1.3)

Since merely the right-hand side of Eq. (4.1.3) depends on |d〉, this can only be
true if U∗1U2 = z1 for some z ∈ C. Thus, U1 and U2 are the same up to a phase,
i.e., U1 = eiφU2 for some real φ. This contradicts the assumption that U1 and U2

are distinct up to a global phase. Therefore, 〈ψ′U1
|ψ′U2
〉 = 0. Due to Eq. (4.1.2), we

conclude that 〈ψU1|ψU2〉 = 0 and hence, the program states are orthogonal.
Moreover, this shows that the number of program states equals the dimension of
the program register and thus the program register requires at least n dimensions
containing log2 n qubits.

The authors of Ref. [4] show that every unitary operation to be implemented
requires an additional program register dimension. Thus, a deterministic pro-
grammable quantum processor with finite-dimensional program register is not pos-
sible. However, the question arises whether we can bypass this no-go theorem. The
situation changes, if we impose certain symmetries, i.e., we are merely interested in
implementing a particular class of channels with special features such as covariant
quantum channels (see Definition 3.1) considered in Ref. [1]. Relaxing the model
and allowing for an approximation with accuracy ε is another possibility yielding
approximate programmable quantum processors (see Definition 4.2).
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4.2 Approximate unitary-universal programmable
quantum processors

Now, we consider Definition 4.2 with ε > 0 and the special case C = U(H). A
tradeoff between the input dimension, the size of the program register and the
precision of the implementation arises. Nielsen and Chuang’s No-Programming
Theorem set off the ground for extensive research seeking optimal upper and lower
bounds on the size of the program register in terms of the input (and output)
dimension d and the precision ε.

Two different approximations of this model can be found in the literature: prob-
abilistic and deterministic approximate ε-PQPUs.

Probabilistic approximate ε-PQPU . In the probabilistic setting, unitary opera-
tors are implemented exactly but only with a certain success probability [4, 6, 7].

Deterministic approximate ε-PQPU . In the deterministic case, the processor ex-
actly implements an approximate version of the output [14].

In the following, we focus on the deterministic approximation.
We are interested in upper and lower bounds on the program register size dP of

an ε-PQPU . The dimension of the program space depends on the accuracy of the
approximation, i.e., the parameter ε and the size of the input register d. There are
several bounds for the optimal program register size of ε-PQPUs in the literature.

Concerning upper bounds, Refs. [48–50] conclude dP ≤ 2
4d2 log d

ε2 . From Ref. [12,
Lemma 1], where they use port-based teleportation working with copies of Choi-

Jamio lkowski states, we can derive the upper bound d
2d2

ε . This was improved by

Kubicki et al. in 2019 to dP ≤
(
C̃
ε

)d2
for a constant C̃ [14]. Recently, Yang et al. [15]

developed upper bounds that close the gap between upper and lower bounds in the

vanishing error regime ε → 0. They deduce dP ≤
(

Θ(d2)
ε

) d2−1
2

with Θ being the

big-Θ notation for the asymptotic behavior of functions [15], i.e., f(n) = Θ(g(n)) if
f(n) = Ω(g(n)) and f(n) = O(g(n)) for functions f and g where f(n) = Ω(g(n)) if
there exists a constant c > 0 such that f(n) ≥ cg(n). Furthermore, f(n) = O(g(n))
if there is a constant c′ > 0 such that |f(n)| ≤ c′g(n) for large enough n.
An overview of the existing upper bounds on the program register dimension is
shown in Table 4.1.

Optimality of the lower bounds (the polynomial growth cannot be improved) ob-

tained in Ref. [8] is proven by Pérez-Garćıa: dP ≥ Θ
((

1
d

) d+1
2 (1

ε

) d−1
2

)
for a constant

K [10]. Lower bounds on the dimension of the program register are also obtained

by Majenz in his PhD Thesis [51]. He shows dP ≥ Θ
((

d
ε

)2
)

. Kubicki et al. improve

this bound by an exponential factor with a newly established connection between
ε-PQPUs and isometric embeddings between Banach spaces [14]. They character-
ize ε-PQPUs as an isometric embedding Φ : S1(H1) ↪→ B(HP ) with completely
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dP ≤ References

d
4d2

ε2

Ishizaka & Hiroshima [48],
Beigi & König [50],
Christandl et al. [49]

d
2d2

ε Pirandola et al. [12](
C̃

ε

)d2

Kubicki et al. [14]

(
Θ(d2)

ε

) d2−1
2

Yang et al. [15]

Table 4.1: Upper bounds on the program dimension of a finite-dimensional processor
implementing unitary quantum channels.

bounded norm ‖Φ‖cb ≤ 1, i.e., complete contractions. Instead of ε-net arguments
for the lower bounds (see Ref. [10]), Kubicki et al. [14] use type-constants, which
give essential information about the geometry of the corresponding Banach spaces.
Using properties of type constants, they manage to improve the existing lower
bounds. The main idea for the lower bound is to study ε-embeddings between
S1(H1) and the memory B(HP ). They show dP ≥ 2

1−ε
3C

d− 2
3
log(d) with constant C. A

slight arithmetic improvement of the work by Yang et al. [15] yields lower bounds

of the form dP ≥
(

1 + Θ(d−2)√
ε

)2α

for any α < d2−1
2

using information-theoretic tools

based on the Holevo information [2].
An overview of the existing lower bounds is shown in Table 4.2.

dP ≥ References

Θ

((
1

d

)d+1
2
(

1

ε

)d−1
2

)
Pérez-Garćıa [10]

Θ

((
d

ε

)2
)

Majenz [51]

2
1−ε
3C

d− 2
3

log d Kubicki et al. [14](
1 +

Θ(d−2)√
ε

)2α Yang et al. [15], with
a slight arithmetic
improvement [2]

Table 4.2: Lower bounds on the program dimension of a finite-dimensional processor
implementing unitary quantum channels. The last row holds for α < d2−1

2 .
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4.3 Quantum teleportation

In this section, we consider ways of how an approximate unitary-universal pro-
grammable quantum processor could operate using quantum teleportation. There-
fore, we introduce the standard teleportation protocol, which was originally intro-
duced by Bennett et al. in 1993 [52] and can be found in many text books such
as [17]. Thereafter, we present port-based teleportation followed by teleportation
simulation.

Standard quantum teleportation. In general, quantum teleportation [52] is a
protocol to deliver an unknown quantum state of a system C

|ϕ〉 = α |0〉+ β |1〉 ∈ C2

with |α|2 + |β|2 = 1, from a sender (A) to a receiver (B). The protocol does not
require a quantum channel but a classical communication channel and a shared
entangled state

|φAB〉 =
1√
2

(|00〉+ |11〉).

A does not know the state of the qubit, she only has one copy and therefore by
the laws of quantum mechanics, she in general cannot determine the state without
destroying it. Note that even if she did know the state, it would be out of scope to
describe it classically to B because |ϕ〉 takes continuous values. Quantum telepor-
tation is a possibility to use the shared entangled state |φAB〉 to send |ϕ〉 from A
to B with classical communication.
The three systems A, B and C are in the state

(α |0〉+ β |1〉)⊗ 1√
2

(|00〉+ |11〉).

In the standard teleportation protocol, A possesses |ϕ〉, she wants to teleport, and
one half of the shared entangled state |φAB〉. She lets the two interact, i.e., applies
a CNOT gate on CA and obtains

α√
2

(|000〉+ |011〉) +
β√
2

(|110〉+ |101〉).

Applying a Hadamard gate 1√
2

(
1 1
1 −1

)
on A, we obtain

α

2
(|0〉+ |1〉)(|00〉+ |11〉) +

β

2
(|0〉 − |1〉)(|10〉+ |01〉).

Rewriting this equation leads us to

1

2

[
|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)
]
.

(4.3.1)
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We can directly see from Eq. (4.3.1) that if A performs a measurement of her
qubits with outcome 00, then B’s system is in the state α |0〉+β |1〉. Since the output
is classical, A sends her gained information to B via the classical channel between
the two parties. Depending on the measurement outcome, B applies a unitary
transformation on his part of |φAB〉. Comparing B’s state to the initial state |ϕ〉
A wanted to teleport, we realize that in the case of measurement outcome 00, B
does not have to perform any operation because the state was already delivered
correctly, i.e., B applies the identity operation. Together with the other cases, we
obtain the following correspondence between the measurement outcomes and the
states

00 7→ α |0〉+ β |1〉 ,
01 7→ α |1〉+ β |0〉 ,
10 7→ α |0〉 − β |1〉 ,
11 7→ α |1〉 − β |0〉 .

This leads to the following transformations, B has to apply

00
∧
=

(
1 0
0 1

)
= 12,

01
∧
=

(
0 1
1 0

)
=: X,

10
∧
=

(
1 0
0 −1

)
=: Z,

11
∧
=

(
0 −1
1 0

)
= XZ.

These matrices correspond to applying 12, an X, Z or XZ gate.

This protocol can easily be turned into an ε-PQPU where the processor per-
forms the teleportation protocol. A programmable quantum processor is a machine
which transforms a state controlled by program states, i.e., the information about
the operation which should be carried out is contained in the program state. A
programmable quantum processor stores and retrieves operations just like in the
teleportation scheme, i.e., the standard teleportation scheme provides a probabilis-
tic universal processor [4]. We want the processor to apply a unitary operator
U ∈ U(H) to the input state |ϕ〉. To achieve this, we apply the unitary to B’s part
of the entangled state (id⊗U) |φAB〉. Then, A performs the joint measurement. In
the case of B applying the trivial operation because the state already is in the cor-
rect form, we get U |ϕ〉 as the output with a certain probability, i.e., the teleported
state with U applied to it. Combining the actions of A and B to the operation a
processor executes, this turns out to be a probabilistic ε-PQPU [4].

Port-based teleportation (PBT). In the port-based teleportation protocol, the
two agents A and B share a tensor product of n maximally entangled states of a
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system C

|φAB〉⊗n with |φAB〉 =
1√
2

(|00〉+ |11〉) , HAi
∼= HBi

∼= C2 , i = 1, . . . , n,

i.e., B has multiple output ports such that B’s part of the shared state consists of
states {Bi}ni=1. We consider the qubit case for Ai, Bi, Ci, i.e., the corresponding
Hilbert spaces HAi ,HBi ,HCi

∼= C2 for i = 1, . . . , n. Applying the correction opera-
tion on B’s side in the standard protocol corresponds to selecting one of the ports
of the shared entangled state.
Here again, A performs a joint POVM with the set of effect operators {(Ei)ϕAn}ni=1

(see Definition 2.1.3) the input state |ϕ〉 she wants to teleport and her part of the
resource state An. She sends the outcome i of the measurement classically to B.
Depending on the index which B receives, he selects the ith port. The rest is dis-
carded.
This protocol cannot be achieved perfectly with finite resources. There are two ap-
proximate versions: deterministic PBT [49,53] and probabilistic PBT [49,54]. For
a deterministic model, the shared state is fixed to be n maximally entangled states
of local dimension 2. The protocol is given by combining the maximally entangled
state with an optimal measurement.
In the probabilistic version, A’s measurement provides an additional outcome in-
dicating the success of the protocol with p being the success probability of the
protocol, where the state is perfectly teleported.
Note that a probabilistic PBT protocol with success probability p can be converted
into a deterministic one by sending a random port index to B in the case where A’s
measurement indicates an error [49].

To turn this into an ε-PQPU [48,55], we again encode the information about the
unitary U ∈ U(H) into the entangled resource state, i.e., apply (id⊗U⊗n) |φAB〉⊗n,
i.e., U is applied to B’s side on every port in advance. This corresponds to storing
U in the program register. Then, the teleportation protocol is executed. Thus,
A’s measurement and B’s selection can perform arbitrary unitaries since the shared
entangled state φ⊗nAB is changed into |ψU〉 = (1 ⊗ U⊗n) |φAB〉⊗n. On B’s side, the
operation U⊗n is already applied regardless of the port. This is possible because
U⊗n commutes with the selection of the port. Hence, after this process, we obtain
an approximation of the input state with the unitary applied to it. If n is finite,
the scheme must be approximate because otherwise, a deterministic universal pro-
grammable quantum processor with finite memory would exist contradicting the
No-Programming Theorem 4.1.1. This is then an ε-PQPU executing a port-based
teleportation protocol.

Teleportation simulation. Another way of how programmable quantum proces-
sors can operate is via teleportation simulation, which uses the Choi-Jamio lkowski
state of the channel, that is to be implemented, as a program.
In teleportation simulation, quantum channels are simulated by quantum telepor-
tation [56]. One choice for the shared state is the Choi-Jamio lkowski state. From a
processor’s perspective, we use the Choi-Jamio lkowski state as program state and
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the processor itself executes the standard teleportation protocol.
Details of how this works in the case of UV -covariant channels can be found in
Subsection 5.1.3.
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5 Covariant programmable quantum
processors

This chapter is based on the following article

Martina Gschwendtner, Andreas Bluhm, and Andreas Winter
Programmability of covariant quantum channels
Quantum 5:488, 2021 (24 pages)
(see Article [1] in the bibliography)

The author of this thesis is the principal author of the above publication.

In this chapter, we investigate the programmability of a special class of channels
respecting symmetry properties: UV -covariant quantum channels which we have
already introduced in Chapter 3. They appear in different contexts such as channel
discrimination, channel capacities and communication tasks (see Ref. [16] and the
references therein). Since these channels form a special set, we ultimately are
not in the setting of the No-Programming Theorem [4] anymore (see Section 4.1).
Therefore, the question arises whether exact programmability is possible.

5.1 Exact programmability

Recall the definition of a programmable quantum processor (Definition 4.2). Here,
we consider a programmable quantum processor with input ρ ∈ D(H1) that im-
plements all UV -covariant channels T ∈ TUV with program states πT ∈ B(HP ) of
dimension dP . This is schematically illustrated in Figure 4.1 in Chapter 4. In par-
ticular, when C = TUV , we write CPQPUV for the covariant programmable quantum
processor and ε-CPQPUV for the approximate version. Note that to allow for mixed
states in the program register is natural, since the set TUV is convex, whereas the
set of pure states is not.

We call the CPQPUV , which implements UV -covariant channels, covariant pro-
grammable quantum processor because it can be chosen (U ⊗ 1dP )V -covariant as
well:

Proposition 5.1.1 (Covariant Processor [1, Proposition 3.2]). Let P be a CPQPUV .
Then, there exists a CPQPUV P ′ with the same program dimension dP that is
(U ⊗ 1dP )V -covariant.
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Proof. We can construct the desired processor via twirling, i.e.,

P ′(A) =

∫
G

V ∗g P [(Ug ⊗ 1dP )A(U∗g ⊗ 1dP )]Vgµ(dg) ∀ A ∈ B(H1 ⊗HP),

where µ is the Haar measure on G. We compute

P ′(ρ⊗ πT ) =

∫
G

V ∗g T
ε(UgρU

∗
g )Vgdµ(g)

for T ∈ TUV and T ε a quantum channel such that 1
2
‖T − T ε‖� ≤ ε, since P is an

ε-CPQPUV . Since ∫
G

V ∗g T (UgρU
∗
g )Vgdµ(g) = T (ρ)

for T ∈ TUV by covariance, it holds that

1

2
‖P ′(· ⊗ πT )− T‖� ≤ ε

as well. This shows that P ′ is also a CPQPUV with the same program dimension.
Using the invariance of the Haar measure (see Section 2.2), it can be verified that
for any g′ ∈ G,

Vg′P ′(A)V ∗g′ = P ′[(Ug′ ⊗ 1dP )A(U∗g′ ⊗ 1dP )] ∀ A ∈ B(H1 ⊗HP ),

which shows that P ′ is (U ⊗ 1dP )V -covariant as desired.

From Lemma 3.3, we know that T ∈ TUV is equivalent to [cT , Ūg ⊗ Vg] = 0 for
all g ∈ G. Due to this correspondence, we consider representations of the form
Ū ⊗ V (which are isomorphic to the adjoint representation of G if V = U) with
Ug ∈ U(H1), Vg ∈ U(H2), g ∈ G and the commutant (see Section 2.3 and Chapter 3)

K := A′(Ū ⊗ V ) = {X ∈ B(H1 ⊗H2) | [X, Ūg ⊗ Vg] = 0 ∀ g ∈ G}

=

{
K
⊕
k=1

1bk ⊗Bk | Bk ∈ B(H′k)
}
.

Note that only K ≤ d1d2 irreps can appear in the commutant with multiplicity
nk > 0 where nk = dim(H′k) since H1 and H2 are finite dimensional. We identify
these elements with an index k ∈ {1, . . . , K} motivated by the fact that we want to
relate the irreps occuring in the direct sum decomposition of Ū ⊗ V to the number
of extreme points of JUV , for instance.

If U is an irrep, all states inK are Choi-Jamio lkowski states of a quantum channel.
This is proven in the following lemma which aligns with results in Refs. [57, p. 6]
and [58, p. 7].

Lemma 5.1.2 ([1, Lemma 3.3]). Let K be as defined above and let U be an irrep
of a compact group G on H1. Let V be a representation of G on H2. Then K ∩
D(H1 ⊗H2) = JUV . Moreover, if V is an irrep, any T ∈ TUV is unital.
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Proof. “⊇” Let cT ∈ JUV . Since all elements of JUV are Choi-Jamio lkowski states
corresponding to UV -covariant channels, they satisfy cT ≥ 0 and tr(cT ) = 1 by
definition. Hence, cT ∈ D(H1⊗H2). According to Lemma 3.3, T ∈ TUV corresponds
to [cT , Ūg ⊗ Vg] = 0 for all g ∈ G and thus, cT ∈ K ∩ D(H1 ⊗H2).

“⊆” Let us refer to H1 as system A and to H2 as system B. If we intersect K
with the set of states D(H1 ⊗ H2), then every ρAB ∈ K ∩ D(H1 ⊗ H2) satisfies
tr(ρAB) = 1 and ρAB ≥ 0 as well as [ρAB, Ūg ⊗ Vg] = 0 for all g ∈ G. To obtain

ρAB ∈ JUV , we additionally have to show the required property trB(ρAB) =
1d1
d1

.

Using [ρAB, Ūg ⊗ Vg] = 0, we get

trB(ρAB) = trB
(
(Ūg ⊗ Vg)ρAB(Ūg ⊗ Vg)∗

)
= Ūg trB(ρAB)Ū∗g

for any g ∈ G which is equal to

trB(ρAB)Ūg = Ūg trB(ρAB).

Due to Schur’s Lemma 2.3.20, we infer:

trB(ρAB) = λ · 1d1 for some λ ∈ C.

Taking the trace on both sides results in

1 = tr
(

trB(ρAB)
)

= λ · tr(1d1) = λ · d1.

Hence, λ = 1/d1. This yields trB(ρAB) =
1d1
d1

which we aimed to show.
With the same reasoning, we can also conclude that if V is an irrep,

trA(cT ) =
1d2
d2

for all cT ∈ JUV , which implies that T is unital.

In Ref. [5], the authors derived that channels implemented by a processor that
is covariant with respect to the special unitary group SU(H1) are unital. They use
Schur’s Lemma 2.3.20 as well. In the following, we consider the construction of
covariant programmable quantum processors in the case where K is abelian.

5.1.1 Exact programmability using extreme points

In the case where the commutant K is abelian, it suffices to store the extreme
points of JUV which we show in this subsection. We present a correspondence
between the commutant and the affiliated state space (Lemma 5.1.3). Moreover,
we establish a connection between the state space and a CPQPUV (Theorem 5.1.4).
Using these statements, we prove the first main result for exact programmability
(Corollary 5.1.5).

Lemma 5.1.3 ([1, Lemma 3.4]). Let U be an irrep of a compact group G, and let V
be another representation of G. Then, K is abelian if and only if JUV is isomorphic
to a simplex.
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Proof. “⇒” This statement is mentioned in Ref. [38] without proof. Let B ∈ K and
let K be an abelian matrix algebra. This implies that nk = 1 for all k ∈ {1, . . . , K}
and let K be the number of irreps appearing in the direct sum decomposition of
Ū ⊗ V . We obtain

B =
K
⊕
k=1

1bk ⊗ xk

where xk ∈ C. Moreover, B ≥ 0 if and only if xk ≥ 0 for all k ∈ {1, . . . , K}
and tr(B) = 1 if and only if

∑
k bkxk = 1. According to Lemma 5.1.2, extreme

points of K ∩ D(H1 ⊗H2) are also extreme points of JUV . The extreme points of
K∩D(H1⊗H2) are of the form xi = 1/bi for some i ∈ {1, . . . , K} and xl = 0 for all
l 6= i. We identify the K extreme points of JUV with K points in RK . Therefore,
JUV is isomorphic to a (K − 1)-simplex.

“⇐” We prove this statement by contraposition, i.e., we show if K is non-abelian,
JUV is not isomorphic to a simplex. If K is non-abelian, there is a k ∈ {1, . . . , K},
such that the corresponding block is of dimension nk > 1. Let us consider elements
of the form

Bϕ =

(
1

bk
|ϕk〉〈ϕk| ⊗ 1bk

)
⊕ 0,

where |ϕk〉〈ϕk| ∈ D(H′k). The normalization 1
bk

yields tr(Bϕ) = 1 and furthermore,

Bϕ ≥ 0, i.e., B ∈ D(H1 ⊗ H2). These elements are extreme points of JUV by
Lemma 5.1.2. Thus, there are infinitely many extreme points of JUV . Hence, the
set cannot be isomorphic to a simplex which has finitely many extreme points by
definition.

After showing this correspondence, we show a relation between the state space
and the existence of a CPQPUV .

Theorem 5.1.4 ([1, Theorem 5.3]). Let U be an irrep of a compact group on
H1 and V a representation of the same group on H2. If JUV is isomorphic to a
(K − 1)-simplex, then there is a CPQPUV P that implements all T ∈ TUV exactly
with program dimension dP = K.

Proof. We fix a quantum channel T ∈ TUV with its corresponding Choi-
Jamio lkowski state cT ∈ JUV . Since JUV is isomorphic to a (K − 1)-simplex,
it is spanned by K extreme points cTk and can therefore be written as convex
combination of these

cT =
K∑
k=1

xkcTk ,

where xk ∈ [0, 1] and
∑K

k=1 xk = 1. By the Choi-Jamio lkowski isomorphism, there
is a channel Tk ∈ TUV corresponding to each of the extreme points cTk of JUV ,
i.e., T can be linearly decomposed:

T (·) =
K∑
k=1

xkTk(·)
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with extreme points Tk(·). We encode the {xk}k∈{1,...,K} in the program state as
follows

|ψT 〉 =
K∑
k=1

√
xk |k〉 ∈ DP (HP ),

with an arbitrary orthonormal basis {|k〉}k∈{1,...,K} on HP . The following processor
implements T ∈ TUV exactly with a program register of dimension dP = K:

P(A⊗B) = trHP

[
K∑
k=1

Tk(A)⊗ 〈k|B|k〉|k〉〈k|

]
∀ A ∈ B(H1), ∀ B ∈ B(HP )

and extended by linearity. We verify that this is indeed a CPQPUV :

P(ρ⊗ |ψT 〉〈ψT |) = trHP

[
K∑
k=1

Tk(ρ)⊗ 〈k|ψT 〉〈ψT |k〉|k〉〈k|

]
=

K∑
k=1

xkTk(ρ) = T (ρ).

Hence, we showed that if JUV is isomorphic to a simplex, there is a processor P
that implements T ∈ TUV exactly with program dimension dim(HP ) = dP = K.

The following corollary assures that if we want to know whether channels T ∈ TUV
are programmable exactly with finite-dimensional program register by their extreme
points, we can consider the specific structure of the commutant K.

Corollary 5.1.5. Let U be an irrep of a compact group G on H1 and V a rep-
resentation of G on H2. Furthermore, let K be the commutant of Ū ⊗ V . If K
is abelian, then there is a CPQPUV P that implements all T ∈ TUV exactly with
dP ≤ K, where K is the number of irreps appearing in the direct sum decomposition
of Ū ⊗ V .

Proof. The proof directly follows from Lemma 5.1.3 and Theorem 5.1.4.

We give examples of groups for which exact programmability holds.

Example 5.1.6 (Unitarily covariant and orthogonally covariant channels). We
present the implementation of UU-covariant and OO-covariant channels.

1) We consider a CPQPUU that implements all UU-covariant channels where U is
the defining representation of the group G = U(H). The tensor representation
Ū ⊗U can be decomposed into a direct sum of a one-dimensional and a (d2−1)-
dimensional irrep both with multiplicity 1. Thus, elements of the commutant
consist of a one-dimensional block with multiplicity equal to one and a one-
dimensional block with multiplicity d2− 1, i.e., in this case K = 2, n1 = b1 = 1,
n2 = 1 and b2 = d2−1. Due to Lemma 3.3, we know that the Choi-Jamio lkowski
state cT ∈ JTUU satisfies [cT , Ūg ⊗ Ug] = 0. The state space therefore has the
following form (see also Example 3.4):

K ∩D(H⊗H) =

{
α̂

1
d2

+ (1− α̂)|Ω〉〈Ω|
∣∣∣ α̂ ∈ [0, d2

d2 − 1

]}
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with extreme points |Ω〉〈Ω| and 1
d2−1

(1− |Ω〉〈Ω|). Thus, T has the form T (·) =

α tr(·)1
d

+ (1 − α)id(·) [37, 38]. Every cT can be written as convex combination
of the two extreme points and the set of all convex combinations

K ∩D(H⊗H) =

{
x|Ω〉〈Ω|+ (1− x)

1

d2 − 1
(1− |Ω〉〈Ω|)

∣∣∣ x ∈ [0, 1]

}
is isomorphic to a 1-simplex. Thus, the CPQPUU can be implemented with
program dimension dP = 2 using the construction in Theorem 5.1.4.

2) Furthermore, as a second example, we consider a CPQPOO that implements all
OO-covariant channels where O is the defining representation of the real orthog-
onal group G = O(H). Recall their structure from Example 3.2. The direct sum
decomposition of O ⊗ O yields a one-dimensional irrep with multiplicity one,
a (d − 1)-dimensional irrep with multiplicity one and a (d2 − d)-dimensional
irrep with multiplicity one. Thus, elements of the commutant consist of a one-
dimensional block with multiplicity 1, a one-dimensional block with multiplicity
d − 1 and a one-dimensional block with multiplicity d2 − d. The corresponding
Choi-matrices have already been provided in Example 3.4 for which we know that
[cT , Og⊗Og] = 0 holds according to Lemma 3.3. Let F be the flip operator. The
three minimal projections

P0 = |Ω〉〈Ω|, P1 = (1− F)/2, P2 = (1 + F)/2− |Ω〉〈Ω|

span the state space

JOO =

{
cT : cT = (1− β1 − β2)P1 + β1

P2

tr(P2)
+ β2

(
P3

tr(P3)

)}
with 0 ≤ β1, β2 ≤ 1, which is isomorphic to a 2-simplex. Hence, the CPQPOO

can be implemented with program dimension dP = 3, again using the construc-
tion in Theorem 5.1.4.

5.1.2 Structure of the commutant

In this subsection, we take a closer look at the special case where the direct sum
decomposition of Ū ⊗ V consists of at least one one-dimensional irrep with multi-
plicity nk > 1. Based on the previous subsection, one could argue that it would
not be possible to implement the corresponding UV -covariant channel exactly in
this case. However, an argument why this situation never arises is provided in the
following.

We assume d1 = d2 = d and that there is a k ∈ {1, . . . , K} such that nk > 1.
Then, there would be elements in JUV of the form

Bϕ = |ϕk〉〈ϕk| ⊕ 0 ∈ JUV

where |ϕk〉〈ϕk| ∈ D(H′k) is a rank-one projector and dim(0) = d2 − nk. By the
Choi-Jamio lkowski isomorphism 2.1.14, there is a corresponding channel T ∈ TUV .
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We consider a Kraus representation of the channel T (Proposition 2.1.17). Since
T is a completely positive map and rank(Bϕ) = 1, the channel T can be written
as T (·) = X(·)X∗ with one Kraus operator X ∈ B(H2). Since, additionally, T is
trace-preserving, we know that XX∗ = 1 = X∗X, i.e., the Kraus operator is a
unitary and T is a unitary channel

T (·) = W (·)W ∗

with W ∈ U(H2).
Since there are infinitely many pure states, the processor would have to imple-

ment infinitely many corresponding unitary channels. This contradicts the No-
Programming Theorem [4] according to which there is no processor that imple-
ments infinitely many unitary channels exactly with program dimension dP < ∞.
Hence, a processor P with dP < ∞ cannot exist if bk = 1 and nk > 1 for some
k ∈ {1, . . . , K}. Note that the above argument does not work for bk > 1, since then
there might be no rank-1 elements in K.

However, from a representation-theoretic perspective, this situation does not arise
because a one-dimensional irrep in the direct sum decomposition of Ū ⊗ V always
has multiplicity ≤ 1 as the following proposition shows.

Proposition 5.1.7 ([1, Proposition 3.8]). Let U be an irrep on H1 of a compact
group G. Let V be another representation of G on H2 with dimension d2 ≤ d1.
In a direct sum decomposition of Ū ⊗ V , the one-dimensional irreps λ appear with
multiplicity nλ ≤ 1.

Proof. Let χU be the character of the irrep U , χV the character of V , and λ the
character of the one-dimensional irrep λ. We use the following scalar product (see
Theorem 2.3.24)

〈χ, ψ〉 =

∫
G

χ(g)ψ(g)µ(dg),

where µ is the Haar measure on G. Here, ψ is the character of an arbitrary represen-
tation of G. Note that if U is an irrep, then this scalar product of the corresponding
characters gives the multiplicity of U in the representation corresponding to ψ (see
Corollary 2.3.25). We want to show that the multiplicity of λ in Ū ⊗ V is ≤ 1.
Note that the character of Ū ⊗V is χ̄U ·χV . Let Ĝ be the set of irreps of G and let

χV =
∑
α∈Ĝ

nαχα
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be the decomposition of V into irreducible representations on the level of characters.
Then,

〈λ, χ̄U · χV 〉 =

∫
G

λ(g)
(
χU(g)χV (g)

)
µ(dg)

=

∫
G

λ(g)χU(g)χV (g)µ(dg)

= 〈λ · χU , χV 〉.

=
∑
α∈Ĝ

nα〈λ · χU , χα〉.

Since λ is the character of a one-dimensional irrep, it is equal to the representation
itself and |λ(g)|2 = 1 for all g ∈ G. Thus, 〈λ · χU , λ · χU〉 = 1 and the represen-
tation corresponding to λ · χU is again irreducible. Note that the representation
corresponding to λ · χU has the same dimension as U .

The scalar product 〈λ · χU , χα〉 thus gives the multiplicity of λ · χU in χα. Let α
be such that nα > 0. If the dimension of the representation corresponding to χα is
smaller than d2, then 〈λ · χU , χα〉 = 0 by Theorem 2.3.24. Thus, 〈λ, χ̄U · χV 〉 = 0.
If the dimension is d2, then χV = χα for dimensional reasons and V is irreducible.
The multiplicity of an irrep in another irrep can be at most equal to 1 which proves
the assertion.

Having provided a method for exact programmability in the case of the com-
mutant being abelian, we give a different construction of covariant programmable
quantum processors which is more widely applicable.

5.1.3 Exact programmability using teleportation

If K is not abelian, we need a different method to show exact programmability.
This case appears for example for the finite group A4 [35, p. 20]. We state the
relevant example here again.

Example 5.1.8 ([1, Example 3.10]). The alternating group A4 is a subgroup of
the symmetric group S4 covering only the even permutations. The group has four
irreps ϕ(1), ϕ(2), ϕ(3), and ϕ(4). Three of them, ϕ(1), ϕ(2), ϕ(3), are one dimensional
and ϕ(4) is three dimensional. As an example, we consider ϕ̄(4)⊗ϕ(4) which can be
decomposed as

ϕ̄(4) ⊗ ϕ(4) = ϕ(1) ⊕ ϕ(2) ⊕ ϕ(3) ⊕ 2ϕ(4)

where ϕ(4) appears with multiplicity 2. Hence, there are three one-dimensional
blocks on the diagonal and two three-dimensional ones, i.e., the commutant consists
of one-dimensional blocks with multiplicity three and two-dimensional blocks with
multiplicity three.

The task of formulating a processor is similar to teleportation simulation, i.e., the
simulation of quantum channels by quantum teleportation (see the corresponding
paragraph in Section 4.3). In the case of the Pauli group this goes back to Refs. [52,
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59]. Important developments concerning the teleportation of covariant channels can
be found in Refs. [26,60,61] and furthermore in the very recent Ref. [62]. We know
from Refs. [56, p. 58] and [63, Proposition 2] that it is always possible to simulate
UV -covariant channels exactly using the corresponding Choi-Jamio lkowski state.

This can easily be formulated as a processor which uses the Choi-Jamio lkowski
state as program state and performs the teleportation protocol (see Section 4.3).

Therefore, the dimension of the program register is d1d2. We make this precise
in the next proposition already present in Refs. [56, 63], which we include here for
convenience.

Proposition 5.1.9 ([1, Proposition 3.11]). Let G be a compact group and let U be
an irreducible representation on H1. Let V be another representation of G on H2.
Then, there is a CPQPUV with program dimension dP ≤ d1d2.

Proof. Let ρ ∈ D(H1) be the state to be teleported. In this proof, we identify the
input space as system A, H1 ' HA, and the program as a composite system with
parts A′ and B, HP ' HA′ ⊗ HB =: HA′B, where HA′ ' HA and HB ' H2 is
isomorphic to the output space of T . We write d1 for the dimension of A. Note
that dimA = dimA′ = dimA′′ = d1. The Choi-Jamio lkowski states corresponding
to the simulated channels serve as program states of the processor running the
following protocol:

1. The processor measures according to the POVM

{Mg}g∈G :=
{
d2

1(1⊗ Ūg)|Ω〉〈Ω|AA′(1⊗ Ūg)∗µ(dg)
}

g∈G
.

Due to Schur’s Lemma 2.3.20, this is a POVM. Note that this POVM can
potentially be continuous.

2. On outcome g, apply V ∗g (·)Vg to the outcome of the protocol.

This construction of a processor implements UV -covariant channels T ∈ TUV with
the Choi-Jamio lkowski state as program state. The map is defined as

P(X ⊗ Y ) :=

∫
G

V ∗g trAA′ [(X ⊗ Y )(Mg⊗1B)]Vg ∀ X ∈ B(HA), ∀ Y ∈ B(HA′B)

(5.1.3.1)
and extended by linearity. Let us verify that indeed

P(ρA ⊗ cA′BT ) = T (ρ). (5.1.3.2)

In the following, we insert the definition of the Choi-Jamio lkowski state cA
′B

T =
(idA′ ⊗ TA

′′B)|Ω〉〈Ω|A′A′′ and we use (X ⊗ 1) |Ω〉 = (1 ⊗ XT ) |Ω〉, XT = X̄ for
Hermitian X as well as trA′ [(X ⊗ 1)|Ω〉〈Ω|AA′(Y ⊗ 1)] = 1/d1XY . Here, A′′ is
again a system isomorphic to A. We calculate

44



trAA′ [(ρ
A ⊗ cA′BT )Mg ⊗ 1B]

= d2
1 dµ(g) trAA′

[
(ρA ⊗ (idA′ ⊗ TA

′′B)|Ω〉〈Ω|A′A′′)
(1A ⊗ Ūg)|Ω〉〈Ω|AA′(1A ⊗ Ūg)∗ ⊗ 1B

]
= d2

1 dµ(g) trAA′
[(

(idA′ ⊗ TA
′′B)|Ω〉〈Ω|A′A′′

)
(1A ⊗ Ūg)(1A ⊗ ρ̄A

′
)|Ω〉〈Ω|AA′(1A ⊗ Ūg)∗ ⊗ 1B]

= d1
2 dµ(g) trA′

(
(idA′ ⊗ TA

′′B)|Ω〉〈Ω|A′A′′(Ūgρ̄Ū∗g )A′ ⊗ 1B
) 1

d1

=
d1

d1

T (UgρU
∗
g )dµ(g)

= VgT (ρ)V ∗g dµ(g).

Applying the unitary conjugation and integrating as in Eq. (5.1.3.1) yields
Eq. (5.1.3.2). This shows that P is indeed a CPQPUV with the desired program
dimension.

We can benefit from the structure of the commutant K to reduce the program
requirements further:

Theorem 5.1.10 ([1, Theorem 3.12]). Let U be an irrep on H1 of a compact group
G, V another representation of G on H2, and let K be of the form

K =

{
K
⊕
k=1

1bk ⊗Bk | Bk ∈ B(H′k)
}
.

Then, there is a CPQPUV with program dimension dP =
∑K

k=1 nk, where nk =
dim(H′k).

Proof. Since we have a programmable quantum processor P , constructed in Propo-
sition 5.1.9, available, we combine its protocol, i.e., the teleportation simulation
part, with a compression map reducing the program dimension. Instead of K, we
consider a simpler matrix algebra with all multiplicities removed. These two matrix
algebras are isomorphic. Let

D∗ : K →
K
⊕
k=1
B(H′k)

be this isomorphism and let HP =
⊕K

k=1H′k, which has dimension dP =
∑K

k=1 nk.
Thus, D∗ is a unital completely positive map with unital completely positive inverse
C∗. Let C̃, D̃ be their dual maps. Both maps can be extended to quantum channels
C : B(H1⊗H2)→ B(HP ), D : B(HP )→ B(H1⊗H2) by composing them with trace
preserving conditional expectations onto the respective subalgebras. We define

P ′ = P ◦ (id⊗D)

and it follows that P ′(ρ⊗ C(cT )) = T (ρ).
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5.2 Approximate Programmability

Since exact universal programmable quantum processors with finite-dimensional
program register are impossible due to the No-Programming Theorem [4], there
is a great interest in approximate versions thereof. After considering exact pro-
grammability of UV -covariant channels in the last section, we now approximate
the output such that the programmed output is ε-close to the ideal output. There-
fore, we consider the concept of an ε-CPQPUV with ε > 0, which is a processor that
implements a channel T ε instead of the exact result T . However, it should be ε-close
to the ideal one in diamond norm. We are interested in upper and lower bounds
on the program dimension of an ε-CPQPUV . We show that the program register
requirements for an ε-CPQPUV are not much lower than for an exact CPQPUV .
Furthermore, note that we can still benefit from the covariance property and the
corresponding structure of the commutant K.

5.2.1 Upper bounds on the program dimension

We construct generic upper bounds on the dimension of the program register dP .
We seek to establish an ε-net on the set of covariant channels TUV . Therefore, we
make use of the following result about ε-nets from Ref. [64].

Lemma 5.2.1 (ε-nets in Rn [64, Lemma 9.5]). Let ε ∈ (0, 1) and let ‖ · ‖ be any
norm on Rn. There is an ε-net S on the unit sphere Sn−1

‖·‖ of (Rn, ‖·‖) of cardinality

|S| ≤
(

1 +
2

ε

)n
.

That means, for all x ∈ Sn−1
‖·‖ , there is a y ∈ S such that ‖x− y‖ ≤ ε.

Due to the Choi-Jamio lkowski isomorphism 2.1.14, there is a cT ∈ JUV cor-
responding to each T ∈ TUV . According to Lemma 3.3, we know that JUV ⊆
K ∩ D(H1 ⊗H2). Thus, we benefit from the special block-diagonal structure of K
to establish an ε-net on the set of UV -covariant channels.

Proposition 5.2.2 ([1, Proposition 4.2]). Let

K =
{ K
⊕
k=1

1bk ⊗Bk|Bk ∈ B(H′k)
}
.

For ε ∈ (0, 1), there is a set SUV ⊆ TUV such that for all T ∈ TUV , there is a
T ε ∈ SUV such that ‖T − T ε‖� ≤ 2ε. Moreover,

|SUV | ≤
(

1 +
2

ε

)dn
,

where dn =
∑K

k=1 n
2
k.
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Proof. Since JUV ⊆ K by Lemma 3.3, the real vector space LinR JUV generated by
JUV has dimension at most dn. Using the Choi-Jamio lkowski isomorphism 2.1.14,
we infer that LinR TUV is a real subspace of B(B(H1),B(H2)) of dimension at
most dn. The restriction of the diamond norm turns (LinR TUV , ‖ · ‖�) into a real
normed space which is isometrically isomorphic to (Rdn , ‖ · ‖) with induced norm
‖ · ‖ = ‖I−1(·)‖�, where I : LinR JUV → Rdn denotes the isomorphism. Lemma
5.2.1 ensures the existence of an ε-net S on the unit sphere of (LinR TUV , ‖ · ‖�) and
the unit sphere contains TUV since ‖T‖� = 1 for all T ∈ TUV .
To obtain SUV , we repeat the following steps. Take Φ ∈ S. If Φ ∈ TUV , keep it
and proceed to the next element. If there is no T ∈ TUV such that ‖Φ − T‖� ≤ ε,
remove Φ from the set and proceed to the next element. If there is a T ∈ TUV such
that ‖Φ − T‖� ≤ ε, exchange Φ by T and continue with the next element. This
algorithm constructs SUV with the desired properties. Indeed, for any T ∈ TUV ,
there is a Φ ∈ S and a T ε ∈ SUV such that ‖T −Φ‖� ≤ ε and ‖T ε−Φ‖� ≤ ε. Thus,
‖T ε − T‖� ≤ 2ε. The upper bound on the cardinality follows since by construction
|SUV | ≤ |S|.

Using the previous proposition, we construct an ε-CPQPUV .

Theorem 5.2.3 ([1, Theorem 4.3]). For a compact group G and representations U
on H1, V on H2 such that

K =
{ K
⊕
k=1

1bk ⊗Bk|Bk ∈ B(H′k)
}
,

there exists an ε-CPQPUV with program dimension

dP ≤
(

1 +
2

ε

)dn
where dn =

∑K
k=1 n

2
k and nk = dim(H′k).

Proof. Let SUV = {T ε1 , . . . , T εs} be the set from Proposition 5.2.2. Then, we can
define a processor by

P(X ⊗ Y ) =
s∑
i=1

〈i|Y |i〉T εi (X) ∀ X ∈ B(H1), ∀ Y ∈ B(HP )

and extending by linearity. Here, {|i〉}si=1 is an orthonormal basis of HP . Choosing
the program state for any T ∈ TUV to be |i〉〈i| if ‖T − T εi ‖�≤ 2ε, the map P can
be checked to be an ε-CPQPUV using Proposition 5.2.2.

5.2.2 Lower bounds on the program dimension

In addition to the upper bounds, we seek to provide lower bounds on the program
dimension of an ε-CPQPUV . The main idea is that all information about the UV -
covariant channel T ∈ TUV is contained in its corresponding Choi-Jamio lkowski
state cT . Thus, the program state πT ∈ D(HP ) has to store all information
about cT . Using the Holevo information to quantify the amount of information
(see Eq. (2.2.3)), we obtain the following lower bounds:
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Theorem 5.2.4 ([1, Theorem 4.4]). Let ε ∈ [0, 1), Pε ∈ CPTP (H1 ⊗HP ,H2) be
an ε-CPQPUV , G be a compact group with an irrep U on H1 and V be a repre-
sentation on H2. Then, the following lower bound for the program dimension dP
holds

1

22h(ε)

( K∑
k=1

nk

)(1−2ε)

with h(ε) = H(ε, 1−ε) = −ε log ε−(1−ε) log(1−ε) being the binary entropy, nk the
multiplicity of the irrep k ∈ {1, . . . , K} in the direct sum decomposition of Ū ⊗ V
and ε the approximation parameter of the ε-CPQPUV .

Proof. Every channel T ε, the processor is able to implement, corresponds to a Choi-
Jamio lkowski state cT ε ∈ D(H1⊗H2) (see Theorem 2.1.14) which can be understood
as the output state of the processor Pε ∈ CPTP (H1⊗HP ,H2) tensorized with the
d1-dimensional identity map id : B(H1)→ B(H1). The construction

[id⊗ Pε](|Ω〉〈Ω|H1⊗H1 ⊗ ·) : B(HP )→ B(H1 ⊗H2)

provides a quantum channel which maps every program state πT to a Choi-
Jamio lkowski state cT ε . This is a completely positive map because the processor
map itself and the identity map are completely positive.

Recall the definition of the Holevo information (Eq. (2.2.3))

χ({ρi, pi}) := S

(∑
i

piρi

)
−
∑
i

piS(ρi),

where S is the von Neumann entropy and {ρi, pi} is an ensemble of quantum
states. Furthermore, recall the definition of a t-design (Eq. (2.2.4)). Let p(k) :=

(p
(k)
1 , . . . , p

(k)
Nk

) be a probability distribution and let |ψ(k)
j 〉〈ψ

(k)
j | ∈ DP (H′k), j ∈

{1, . . . , Nk}, be a collection of states such that {|ψ(k)
j 〉 , p

(k)
j } is a 1-design [31, 65],

i.e., its average is the same as the uniform average over pure states with respect
to the Haar measure. Then, p = (λ1p

(1), . . . , λKp
(K)) is a probability distribu-

tion on Choi-Jamio lkowski states cT ∈ JUV , where p
(k)
j corresponds to cT(k),j :=

0 ⊕ 1bk/bk ⊗ |ψ
(k)
j 〉〈ψ

(k)
j | ⊕ 0. Here, λk = nk/dc, where dc =

∑K
k=1 nk. It can be

checked that the average state is

1

dc

K⊕
k=1

1bk
bk
⊗ 1nk .

The probability distribution also induces ensembles {cT ε
(k),j

, p
(k)
j } and {πT(k),j , p

(k)
j }.

Applying the data-processing inequality [23, Subsection 10.7.2] (since the Holevo
information is a mutual information), we get

χ({πT(k),j , p
(k)
j }) ≥ χ({cT ε

(k),j
, p

(k)
j }).
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Furthermore, note that the processor implements T up to accuracy ε, i.e.,

1

2
‖T − T ε‖� ≤ ε

which can be related to the corresponding Choi-Jamio lkowski states [19, Eq. 3.414]

1

2
‖cT − cεT‖1 ≤

1

2
‖T − T ε‖� ≤ ε.

Recall that cT has a block-diagonal structure inherited from Eq. (3.1)

K =

{
K
⊕
k=1

1bk ⊗Bk | Bk ∈ B(H′k)
}
.

Since
K
⊕
k=1
B(H′k) and K are isomorphic as matrix algebras, extending the dual

map of this isomorphism to a map C : B(H1 ⊗ H2) → B(Hdc) (as in the proof of
Theorem 5.1.10),

C :
K⊕
k=1

1bk ⊗Bk 7→
K⊕
k=1

bkBk

discards the multiplicity spaces and thus reduces the dimensions from d1d2 to dc =∑K
k=1nk. Since the trace distance is contractive under quantum channels,

1

2
‖C(cT )− C(cT ε)‖1 ≤

1

2
‖cT − cT ε‖1 ≤ ε.

With this trace-norm distance, we apply the Alicki-Fannes-Winter (AFW) inequal-
ity [28, 66], [67, Lemma 1] to bound the difference of the corresponding Holevo
informations:∣∣χ({C(cT(k),j), p

(k)
j })− χ({C(cT ε

(k),j
), p

(k)
j })

∣∣
=

∣∣∣∣∣S
(∑

kj

C(cT(k),j)p
(k)
j

)
−
∑
kj

S(C(cT(k),j))p
(k)
j

− S

(∑
kj

C(cT ε
(k),j

)p
(k)
j

)
+
∑
kj

S(C(cT ε
(k),j

))p
(k)
j

∣∣∣∣∣
≤

∣∣∣∣∣S
(∑

kj

C(cT(k),j)p
(k)
j

)
− S

(∑
kj

C(cT ε
(k),j

)p
(k)
j

)∣∣∣∣∣
+
∑
kj

∣∣S(C(cT(k),j))− S(C(cT ε
(k),j

))
∣∣p(k)
j

≤ ε log dc − h(ε) + ε log dc − h(ε) = 2ε log dc − 2h(ε)

with h(ε) = H(ε, 1− ε) = −ε log ε− (1− ε) log(1− ε) the binary entropy, where we
used the AFW inequality in the last step.
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Thus, we obtain

χ({πT(k),j , p
(k)
j }) ≥ χ({cT ε

(k),j
, p

(k)
j })

≥ χ({C(cT ε
(k),j

), p
(k)
j })

≥ χ({C(cT(k),j), p
(k)
j })− 2ε log dc − 2h(ε).

Let us consider the term χ({C(cT(k),j), p
(k)
j }). Since the C(cT(k),j) of this ensemble

are pure states, the second term of the Holevo information is zero. Moreover∑
kj

C(cT(k),j)p
(k)
j =

1dc
dc

and the von Neumann entropy of a maximally mixed state is S
(1dc
dc

)
= log dc.

Together with the inequality log dP ≥ χ({πT(k),j , p
(k)
j }) (see Eq. (2.2.1)), we obtain

log dP ≥ χ({πT(k),j , p
(k)
j })

≥ (1− 2ε) log dc − 2h(ε)

= log d(1−2ε)
c − 2h(ε).

This yields

dP ≥
1

22h(ε)
d(1−2ε)
c =

1

22h(ε)

( K∑
k=1

nk

)(1−2ε)

,

which proves the assertion.

The derived bound on dP increases with the block dimension nk.
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6 Quantum information theory in
infinite dimension

In the previous chapters, we explored quantum information theory in finite di-
mension considering merely finite-dimensional Hilbert spaces. In quantum physics,
many interesting properties, models, and phenomena require infinite-dimensional
descriptions. This is why infinite-dimensional systems (continuous-variable sys-
tems) play a major role in quantum information processing and get more and more
attention. So, let us dive into the infinite-dimensional world and generalize the
previous setting to infinite dimension.

Working in infinite-dimensional systems is accompanied by constraints. Consid-
ering quantum channels, for instance, there is an energy constraint of the input
signal for physical reasons. Also mathematically the necessity for constraints ap-
pears when dealing with infinite-dimensional Hilbert spaces. New features such as
the discontinuity and unboundedness of the entropy of a quantum state as well as
the emergence of continuous ensembles arise [27].

6.1 Infinite-dimensional setting

Let H be an infinite-dimensional and separable Hilbert space, i.e., with a countable
orthonormal basis. The Banach space of all bounded operators with the operator
norm ‖A‖ = sup

x:‖x‖=1

‖Ax‖ for x ∈ H and A ∈ B(H) [27, p. 6, p. 233] is represented

by
B(H) = {A : H → H linear | ‖A‖ <∞}.

Let T (H) be the Banach space of trace-class operators

T (H) = {A ∈ B(H) | ‖A‖1 = tr
√
A∗A <∞}

with trace norm ‖ · ‖1.
Furthermore, a quantum state (density operator) is a positive trace-class operator
with unit trace in T (H). The set of all quantum states is represented by

D(H) = {X ∈ T (H) such that X ≥ 0, tr(X) = 1}.

This state space is a closed convex subset of T (H). We also generalize the notion
of a quantum channel to infinite dimension. Therefore, we first define complete
positivity.
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Definition 6.1.1 (Complete Positivity). Let H1 and H2 be two separable Hilbert
spaces. A linear map T : T (H1)→ T (H2) is called completely positive if the map

T ⊗ id : T (H1)⊗ B(Cn)→ T (H2)⊗ B(Cn)

is positive.

A linear map which maps quantum states to quantum states is called quantum
channel.

Definition 6.1.2 (Quantum Channel). Let H1 and H2 be separable Hilbert spaces
associated with system 1 and 2, respectively. A quantum channel from a system
1 to a system 2 is a linear map T : T (H1) → T (H2) which is completely positive
(CP) and trace-preserving (TP).

The set of all quantum channels is again represented by

CPTP (H1,H2) := {T : T (H1)→ T (H2) linear, CP and TP}.

If H = H1 = H2, we shortly write CPTP(H).
In the following, we consider a positive semidefinite, self-adjoint densely-defined

energy operator (Hamiltonian) H ≥ 0 with discrete spectrum describing a quantum
system. Denoting its spectral decomposition as H =

∑∞
n=0 enPn for all n, we

additionally assume dim(Pn) <∞ (finite degeneracy of all eigenvalues).
To obtain a realistic setting while operating in infinite dimension, we assume an
energy constraint. The bounded energy allows us to recover properties which are
familiar from the finite-dimensional setting. We consider energy constraints on the
input

tr(ρH1) ≤ E1,

as well as on the output
tr(Φ(ρ)H2) ≤ E2,

where H1, H2 ≥ 0 are Hamiltonians with discrete spectrum and finite degeneracy of
all eigenvalues on H1 and H2, respectively, and Φ is a quantum channel. We define
energy-limited quantum channels as operations mapping energy-bounded states to
energy-bounded states, i.e., those channels preserve energy-boundedness.

Definition 6.1.3 ((α, β)-energy-limited quantum channel [68]). Given two positive
semidefinite Hamiltonians H1 ≥ 0 and H2 ≥ 0 on H1 and H2, respectively, a
quantum channel Φ : T (H1) → T (H2) is called (α, β)-energy-limited if for all
ρ ∈ D(H1) with tr ρH1 <∞, it holds tr Φ(ρ)H2 <∞, and in fact

tr Φ(ρ)H2 ≤ α tr ρH1 + β.

This can be expressed equivalently as Φ∗(H2) ≤ αH1 +β1, using the adjoint CPTP
map Φ∗ : B(H2)→ B(H1).
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As a metric to distinguish quantum channels, we introduced the diamond norm
in Definition 4.1. However, in infinite dimension, there are some inconvenient fea-
tures of the diamond norm. For instance, consider the attenuator channel, which
is realized by a beamsplitter with transmissivity λ. Computing the diamond norm
of two attenuator channels with parameters λ and λ′ yields ‖Φλ − Φλ′‖� = 2 for
λ 6= λ′ [68]. Since the maximal distance the diamond norm can reach, is 2, all
attenuator channels are in maximal distance from each other independent of their
parameters. This is not realistic because to obtain this distance between two atten-
uator channels, we require highly energetic input states. However, for most realistic
communication settings an energy-bound on the input is used. Thus, in the setting
of an energy limit, Shirokov [69] and Winter [68] defined an energy-constrained
diamond norm.

Definition 6.1.4 (Energy-constrained diamond norm [68, 69]). Let H1 ≥ 0 be a
positive semidefinite Hamiltonian on H1 with discrete spectrum and smallest eigen-
value 0, and E > 0. For a map Φ : T (H1)→ T (H2) that preserves self-adjointness,
we define the energy-constrained diamond norm (more precisely: E-constrained di-
amond norm) as

‖Φ‖E� = sup
HR

sup
ρ∈D(H1⊗HR)

tr(ρ(H1⊗1R))≤E

‖(Φ⊗ idR)ρ‖1 (6.1.1)

with an additional quantum system R.

Note that an alternative, slightly different definition of the energy-constrained
diamond norm was given in Refs. [70] and [56]. We can take the supremum
in Eq. (6.1.1) over pure states by purification and using that the trace norm
is contractive under the partial trace operation and without loss of generality,
HR
∼= H1 [68, 69]. Just like the diamond norm, the E-constrained version also

has an operational meaning: how well we can distinguish between two quantum
channels when we apply them to input states with bounded energy. In particular,
we use a special property concerning the relation of diamond norms w.r.t. differ-
ent energies: Let E and E ′ be two different energies with 0 < E < E ′. The
corresponding diamond norms satisfy the inequalities

‖Φ‖E� ≤ ‖Φ‖E
′

� ≤
E ′

E
‖Φ‖E� (6.1.2)

for a map Φ that preserves self-adjointness. This and further useful properties of
the E-constrained diamond norm can be found in Ref. [68].

Having specified the mathematically necessary constraints when the underlying
Hilbert spaces are infinite dimensional, we briefly focus on two emerging features:
first, the entropy of the quantum states is discontinuous and unbounded and sec-
ondly, continuous ensembles emerge.

To quantify information, we want to use the Holevo information based on the
von Neumann entropy and continuous ensembles. Recall the definition of the von
Neumann entropy

S(ρ) = − tr(ρ log ρ). (6.1.3)
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In infinite-dimensional systems, the von Neumann entropy is in general not contin-
uous anymore (see continuity of the von Neumann entropy in finite dimension in
Eq. (2.2.2)). However, if we assume an energy constraint tr ρH < E, the entropy
in Eq. (6.1.3) is continuous on this set of energy-constrained states if and only if

tr exp(−θH) <∞ (6.1.4)

for all θ > 0 [27, Lemma 11.8.]. Since we always consider Hamiltonians that satisfy
Eq. (6.1.4), we also have continuity in infinite dimension. In the case where we
work with approximate versions of energy-bounded quantum states, we have to be
careful because the entropy is then potentially discontinuous.

Furthermore, we consider a continuous generalization of ensembles which we have
already defined in Section 2.2 for finite dimension. Let X be a domain in Rk that
is locally compact with x ∈ X . Furthermore, let x 7→ ρx be a continuous mapping
with ρx ∈ D(H) and with finite von Neumann entropy S(ρx) < ∞. Considering a
probability measure µ on X , the Holevo information of the ensemble {ρx, µ(dx)} is
well-defined as

χ({ρx, µ(dx)}) = S

(∫
X
ρxµ(dx)

)
−
∫
X
S(ρx)µ(dx).

6.2 Bosonic Gaussian systems

In this chapter, we shed light on continuous-variable Bosonic systems, in particular
on those which correspond to classical multidimensional Gaussian distributions.
We mainly follow the review articles [71–73] if not stated differently.
Electromagnetic waves such as light waves are known to be the fundamental physical
carrier of information. The electromagnetic field with its M quantized radiation
modes can be described mathematically as an ensemble of oscillators. Thus, M
quantum harmonic oscillators correspond to M Bosonic modes as a prototype of
a continuous-variable system. We start by presenting the fundamentals in the
one-mode case, generalizing this to the multimode case thereafter. The one-mode
system can be either described by two quadrature operators x (position) and p
(momentum) satisfying the canonical commutation relation

[x, p] = i1,

or equivalently by the ladder operators a (annihilation) and a∗ (creation) which are
Bosonic field operators satisfying the Bosonic commutation relation

[a, a∗] = 1.

These two descriptions are connected through the following equations

a =
1√
2

(x+ ip), a∗ =
1√
2

(x− ip).
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The Hilbert space of the one-mode system is separable as well as infinite di-
mensional and is spanned by a countable basis {|n〉}∞n=0 called the Fock or num-
ber state basis. Its elements are eigenstates of the number operator N := a∗a,
i.e., N |n〉 = n |n〉.
For M modes, M ∈ N, there is a set of quadrature operators (xj, pj) corresponding
to each mode j ∈ {1, . . . ,M} satisfying the commutation relations

[xj, pk] = iδjk1 for j, k = 1, . . . ,M.

Equivalently, there are Bosonic ladder operators aj, a
∗
j per mode j ∈ {1, . . . ,M}

satisfying
[aj, a

∗
k] = δjk1 for j, k = 1, . . . ,M.

For M ∈ N modes the Hilbert space is the M -fold tensor power of the Hilbert
space of the single-mode system with basis

{|n1, . . . , nM〉 = |n1〉 ⊗ . . .⊗ |nM〉}(n1,...,nM )∈NM0
.

All the quantum operators can be written in one vector

X = (x1, p1, . . . , xM , pM)T .

The corresponding commutation relations are then of the following form

[Xj, Xk] = iΩj,k1 for j, k = 1, . . . , 2M

with Ω =
M
⊕
j=1
ω and ω :=

(
0 1
−1 0

)
.

Analogously, the ladder operators can also be condensed in one vector

A = (a1, a
∗
1, . . . , aM , a

∗
M)T

which satisfies
[Aj, Ak] = Ωj,k for j, k = 1, . . . , 2M.

Let us introduce the real symplectic space (R2M ,Ω), which is the vector space
R2M equipped with the symplectic form and is called phase space. We define the
Weyl displacement operators

D̃(ξ) := exp(iXTΩξ), (6.2.1)

where ξ ∈ R2M [73, Eq. (11)]. Those operators establish a connection between
operators and complex functions on phase space. An M -mode quantum state ρ can
be represented by its Wigner characteristic function

χ̃ρ(ξ) = tr(ρD̃(ξ)),

where ξ ∈ R2M and ρ ∈ D(H⊗M) [73, Eq. (12)].
The first and second moments are relevant quantities that characterize χ̃ρ(ξ). The

55



first moment, denoted by dj(ρ) with j = 1, . . . , 2M is called displacement vector [73,
Eq. (14)] and is defined as

dj(ρ) = tr(Xjρ) j = 1, . . . , 2M.

The second moment, the covariance matrix Γ, is defined as

Γjk(ρ) := tr
[
{Xj − dj(ρ)1, Xk − dk(ρ)1}ρ

]
for j, k = 1, . . . , 2M , where {A,B} := AB + BA is the anticommutator [73,
Eq. (15)]. The covariance matrix is a real and symmetric 2M × 2M matrix and
satisfies the uncertainty principle [73, Eq. (17)], [72, Eq. (4.67)]

Γ(ρ) + iΩ ≥ 0.

There is a class of states that is completely characterized by the displacement vector
together with the covariance matrix. These are called Gaussian states.

6.2.1 Gaussian quantum states

An M -mode Gaussian state is a quantum state with Gaussian characteristic func-
tion

χρG(d,Γ)(ξ) = exp

[
1

4
ξT (ΩΓΩT )ξ + i(Ωd)T ξ

]
for all ξ ∈ R2M .

Since d and Γ determine the Gaussian state, we write ρG(d,Γ) [73, Eq. (19)].
A special class of Gaussian states is formed by coherent states ρG(ξ, 12) of a single

mode with ξ = (ξ1, ξ2). These are pure states which can be generated by displacing
the vacuum state |0〉 [73, p. 627], [72, Eq. (4.97)], i.e.,

|ξ〉 := D(ξ) |0〉 .

All coherent states form an overcomplete basis of non-orthogonal vectors. Any pure
state can be expanded in terms of all other coherent states using Ref. [27, p. 261]

1

π

∫
|ξ〉〈ξ|d2ξ = 1.

Furthermore, coherent states are the eigenstates of the annihilation operator [73,
p. 627]

a |ξ〉 =
ξ1 + iξ2√

2
|ξ〉 .

Another special class of Gaussian states are thermal states ρG(0, (2N + 1)12) with
N = tr(ρa∗a) being the mean photon number. The von Neumann entropy of a
one-mode thermal state is known to be [72, p. 4.79]

S(ρNG,th) = g(N) := (N + 1) log(N + 1)−N logN. (6.2.1.1)

Let us now dive into transformations of quantum states, i.e., quantum operations
called Gaussian channels.
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6.2.2 Gaussian quantum channels

Definition 6.2.1 (Gaussian channel [73, p. 639]). A Gaussian channel is a quantum
channel, i.e., a CPTP map Φ : B(H⊗n)→ B(H⊗m), that maps every Gaussian state
ρG to a Gaussian state, i.e., Φ(ρG) is Gaussian as well.

Gaussianity is a property of the channel, not the state, which is why we can input
non-Gaussian states as well. The action of a Gaussian channel on a Gaussian state
is uniquely determined by the action on its first and second moments. Gaussian
channels that act on M modes are characterized by a vector η ∈ R2M and two real
2M × 2M matrices K and N which transform the displacement vector d and the
covariance matrix Γ of the input state as follows [73, Eq. (109)], [72, Eq. (4.165)]

d→ Kd+ η, Γ→ KΓKT +N . (6.2.2.1)

Since Γ is symmetric, N is required to be symmetric, i.e., N = N T . Additionally,
K and N have to satisfy the complete positivity-condition [73, Eq. (110)], [72,
Eq. (4.166)]

N + iΩ− iKΩKT ≥ 0.

We can interpret K as causing the linear transformation of the canonical phase
variables, while N introduces quantum or classical noise.

We introduce gauge-covariant channels as a special class of channels (see Ref. [27,
Subsection 12.5.2]). Those channels commute with phase rotations, which is why
they are also called phase-insensitive.

Definition 6.2.2 (Gauge-covariant channel). A channel Φ that maps a single
Bosonic mode to a single Bosonic mode is called gauge-covariant if it satisfies

Φ(eiφN1ρe−iφN1) = eiφN2Φ(ρ)e−iφN2 ,

where φ ∈ [0, 2π] and Nj = a∗jaj is the photon number operator in system j = 1, 2.

Gauge-covariant channels can be described by a concatenation of an attenuation
and an amplification channel [27, Prop. 12.42]. Being interested in additivity ques-
tions of the Holevo information, for instance, the parameter specifying the channel
is considered to be real because the Holevo information is invariant under passive
transformations. However, viewed from the perspective of a processor, phases yield
different outputs we want to distinguish. Hence, we consider complex parameters.
This results in an additional rotation in phase space. The rotation is described by
the unitary operator

R(ϕ) = exp(−iϕa∗a), (6.2.2.2)

which transforms the covariance matrix according to

R̂ϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
.

We denote the corresponding rotation channel as

Rϕ(·) = e−iϕN(·)eiϕN .
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The attenuator channel Tλ with parameter 0 ≤ λ ≤ 1, λ ∈ R, which is called
attenuation factor, is described by the two matrices K =

√
λ12 and N = (1−λ)12.

The amplifier channel Aµ is described by the transforming matrices K =
√
µ12 and

N = (µ− 1)12 for µ ∈ (1,∞) [72, p. 4-37].
The following proposition specifies the structure of one-mode gauge-covariant

channels using complex parameters. This results in a phase-rotation channel and
a real-parameter attenuation and amplification channel, respectively, which can be
found in Ref. [27]. Kok and Lovett provide a quantum optical explanation including
the complex parameters in their book [74, p. 31].

Proposition 6.2.3 (Structure gauge-covariant Gaussian channel [2, Prop. 16]).
Any one-mode Bosonic gauge-covariant Gaussian channel Φ can be understood as
a concatenation of a quantum-limited attenuator channel Tλ, a rotation channel Rϕ

and a (diagonalizable) quantum-limited amplifier channel Aµ, i.e., Φ = Aµ◦Rϕ◦Tλ.

Another class of Gaussian quantum channels are Gaussian unitary quantum chan-
nels which we introduce in the following subsection.

6.2.3 Gaussian unitary quantum channels

Special Gaussian unitary transformations are displacement operators

D(τ) := exp(τa∗ − τ ∗a),

where τ = x+ip
2

is the complex amplitude. This is the complex version of the Weyl
displacement operators introduced in Eq. (6.2.1). They act on the annihilation
operator as a shift

a→ D∗(τ)aD(τ) = a+ τ,

which yields translations in phase space. Another Gaussian unitary operator is the
rotation in phase space described by the unitary operator (Eq. (6.2.2.2)) and also
the squeezing operator

S(s) = exp
(s

2
a2 − s

2
a∗2
)

with squeezing factor s ∈ [0,∞). It has zero displacement and its covariance matrix
is

Ŝs =

(
e−s 0
0 es

)
.

To study and define general Gaussian unitary channels, Gaussian unitaries, re-
spectively, we introduce symplectic matrices. A 2M×2M matrix is called symplectic
if it preserves the symplectic form

SΩST = Ω.

Those matrices form the real symplectic group

Sp(2M,R) := {S ∈M2M×2M(R) | SΩST = Ω}.
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A Gaussian unitary, which we denote as UG, is equivalent to an affine symplectic
map (S, η) that transforms the first and second moments according to

d→ Sd+ η, Γ→ SΓST .

This is obtained by setting N = 0 and K = S in (6.2.2.1). We can always write

UG = D(τ)US, (6.2.3.1)

where D(τ) is the displacement operator describing a translation in phase space and
US is the Gaussian unitary associated to any S ∈ Sp(2M,R) by the map S 7→ US.
The action of US on the quadrature operators is determined by the action of S on
the quadrature operators by

U∗SXjUS =
2M∑
k=1

S(sjk)Xk.

A 2M × 2M matrix can be decomposed as

S = S1

[
M
⊕
j=1

S(sj)

]
S2,

where S1 and S2 are orthogonal, symplectic matrices. This means that every sym-
plectic matrix can be decomposed in a direct sum of squeezing operators modulo
passive transformations that are characterized by η = 0 and STS = 12M×2M . Note
that passive operations do not change the energy.
The simplest quantum channels are those that are reversible, i.e., unitary transfor-
mations U−1 = U∗, which transform

ρG → UGρGU
∗
G

or |ϕ〉 → U |ϕ〉 if pure states. Any channel can be conceived as a reduction of a
unitary transformation acting on the state ρ plus some environment state ρE

Φ(ρ) = trE(UG(ρ⊗ ρE)U∗G).

For a Gaussian channel Φ, it is always possible to find a unitary dilation of this
form with a Gaussian unitary UG and a pure Gaussian environment state ρE. Note
that this is the infinite-dimensional version of Stinespring’s dilation we have al-
ready defined in finite dimension (see Theorem 2.1.13). In infinite dimension, we
can choose an environment with ME ≤ 2M modes.

The structure of a general Gaussian unitary channel which we use for lower
bounds on the program register dimension in Ref. [2] can be described as follows:
Gaussian unitary channels can be written as a phase-rotation channel, a squeezing
unitary channel (introducing a squeezing factor) followed by another phase-rotation
channel and a displacement operation [75, 76]. The first three components can be
connected to symplectic matrices. Together with the displacement operation, we
obtain a general Gaussian unitary channel (see Eq. (6.2.3.1)).
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7 Infinite-dimensional programmable
quantum processors

This chapter is based on the following article

Martina Gschwendtner and Andreas Winter
Infinite-Dimensional Programmable Quantum Processors
PRX Quantum 2:030308, 2021 (38 pages)
(see Article [2] in the bibliography)

The author of this thesis is the principal author of the above publication.

In this chapter, we generalize approximate programmable quantum processors to
infinite dimension. We aim to approximately implement energy-limited quantum
channels (see Definition 6.1.3) using a finite-dimensional program register. First
of all, we define such a processor with an infinite-dimensional input state assum-
ing an energy constraint. In finite dimension, we measure the accuracy of the
implementation using the diamond norm whereas in infinite dimension we con-
sider the E-constrained diamond norm due to the energy constraint. We then
investigate the resource requirements, providing upper and lower bounds on the
dimension of the program register for different classes of quantum channels. We
start with energy-limited unitary quantum channels, followed by energy-limited
one-mode gauge-covariant Gaussian quantum channels (Definition 6.2.2). These
are physically important since they describe the effects of attenuation of signals
and addition of noise in communication schemes and furthermore, they preserve
thermal Gaussian states [73]. Finally, we consider the universal implementation of
energy-limited Gaussian unitary channels of any finite number of Bosonic modes.

7.1 Setting, motivation and definition

Recall Definition 4.2 for a general definition of an ε-PQPC. Until now, we merely
considered finite-dimensional Hilbert spaces. For the exact case ε = 0, Nielsen and
Chuang proved their No-Programming Theorem [4] stating that an exact and uni-
versal programmable quantum processor with finite-dimensional program register
does not exist. Every implemented unitary operation requires an extra program
space dimension which means that up to d unitary operations (distinct up to a
global phase) can be implemented using a d-dimensional program register. With
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a separable Hilbert space, however, one can choose the class C of implemented
channels as a countable, dense set of unitaries and thus approximate every unitary
channel arbitrarily well. This can concretely be done with the following construc-
tion which we call the processor-encoding technique (PET). We use this several
times in this chapter. If C = {Φi}Ki=1 is a finite set of channels, we can construct
the processor implementing those channels exactly with memory dimension equal
to the cardinality K of the set by encoding the specifying index i from the set
of channels into the program state πΦ. Picking an arbitrary orthonormal system
{|i〉}Ki=1, the processor

P(ρ⊗ πΦ) :=
K∑
i=1

Φi(ρ) 〈i| πΦ |i〉

implements the channels Φi from the set of channels C exactly

P(ρ⊗ |i〉〈i|) = Φi(ρ).

The program dimension of the processor is equal to the cardinality K of C meeting
the lower bound from the No-Programming Theorem (see Section 4.1) for unitary
channels.

Therefore, we are interested in how the program register depends on the accu-
racy ε > 0. In particular, we investigate programmable quantum processors that
approximately implement (α, β)-energy-limited quantum channels between infinite-
dimensional systems H1 and H2 with Hamiltonians H1 and H2, respectively. We
demand approximate programmability merely for (α, β)-energy-limited channels
otherwise a finite-dimensional program register is not achievable: for every eigen-
state |φn〉 with energy en there is a well-defined CPTP map Φn mapping all ofD(H1)
to |φn〉〈φn|. A processor which approximately implements any Φn, even with re-
spect to ‖ · ‖E� , can approximately prepare an arbitrary state |φn〉〈φn| from the
ground state (or any other low-energy eigenstate) of H1, which intuitively requires
an infinite-dimensional program register. In the case of energy-limited quantum
channels, we use the E-constrained diamond norm and define:

Definition 7.1.1 (ε-EPQPC). Let H1 and H2 be separable Hilbert spaces and con-
sider a class of quantum channels C ⊂ CPTP(H1,H2). A quantum operation
P ∈ CPTP(H1⊗HP ,H2) is called an ε-approximate E-constrained programmable
quantum processor for C (ε-EPQPC) if for all Φ ∈ C there exists a state πΦ ∈ D(HP )
such that

1

2
‖P(· ⊗ πΦ)− Φ‖E� ≤ ε. (7.1.1)

The dimension of the program register of an ε-EPQPC is denoted as d∞P .
We consider the following classes of quantum channels in this chapter. Let L(α, β)

be the class of all (α, β)-energy-limited quantum channels. The corresponding
processor is written as ε-EPQPL(α,β). The set of all (α, β)-energy-limited unitary
channels U(α, β) leads to the notation ε-EPQPU(α,β) for the corresponding proces-
sor. Furthermore, we consider the class of all (α, β)-energy-limited gauge-covariant
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Gaussian channels abbreviated by GCG(α, β) and the corresponding processor is
an ε-EPQPGCG(α,β). Finally, all (α, β)-energy-limited Gaussian unitary channels are
represented by GU(α, β) and are implemented by an ε-EPQPGU(α,β).

Remark 7.1.2. Note that the No-Programming Theorem [4] is not directly appli-
cable here in the infinite-dimensional case of an ε-EPQPU(α,β). However, we can
show that exact programmability with a finite-dimensional program dimension is
not possible by reducing the infinite-dimensional case to the finite-dimensional one.
If we merely consider unitaries of the form U = U0 +

∑∞
n=2 Pn, where U0 is an

arbitrary unitary on the support H1 ⊂ H of P0 +P1, i.e., U0U
∗
0 = U∗0U0 = P0 +P1,

which are (α, β)-energy-limited for all α ≥ 1, β ≥ ε1 − ε0, then a 0-EPQPU would
imply a 0-PQPU for an input register H1, and since the latter is finite dimensional,
the No-Programming Theorem applies.

7.2 Recovering program states

To obtain lower bounds on the program dimension in the case of implementing
energy-limited Gaussian channels, we make use of a lemma which is applicable to
any unitary that a given processor implements approximately. It states that in
this case the processor can be modified to another one that reuses the program
state several times to approximately implement the same unitary several times
sequentially or in parallel. For finite-dimensional unitaries, this was first shown
by Yang et al. [15] using the diamond norm. In this section, we generalize this
statement to the infinite-dimensional case and use this energy-constrained version
in the next section to give lower bounds on the program dimension of approximate
EPQP’s implementing Gaussian unitaries.

We first recall some definitions from Shirokov [77].

Definition 7.2.1 (Completely bounded energy-constrained channel fidelity [77]).
Let H1 and HR be two separable Hilbert spaces where HR is a reference system.

Furthermore, let F (ρ, σ) := tr

√
ρ

1
2σρ

1
2 for ρ, σ ∈ D(H1) denote the fidelity. The

completely bounded energy-constrained channel fidelity between two quantum chan-
nels A and B is defined as

FE
cb (A,B) := inf

|ψ〉〈ψ|
F
(
(A⊗ idR)(|ψ〉〈ψ|), (B ⊗ idR)(|ψ〉〈ψ|)

)
,

such that |ψ〉 varies over pure states on H1 ⊗HR with energy constraint
〈ψ|H1 |ψ〉 ≤ E.

Without loss of generality, we take the infimum over all pure states |ψ〉 ∈ H1⊗HR

with HR ' H1 [77].
We use the following two inequalities from Ref. [77]:

FE
cb (A,B) ≥ 1− 1

2
‖A − B‖E� (7.2.1)
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and

‖A − B‖E� ≤ 2
√

1− FE
cb (A,B)2. (7.2.2)

Since we operate on an `-partite system, we define the multiply energy-constrained
diamond norm.

Definition 7.2.2 (Multiply energy-constrained diamond norm [2]). Let H(`) =
H1 ⊗ · · · ⊗ H`, where each Hj carries its own Hamiltonian Hj ≥ 0. For
Ej > 0, we define the multiply energy-constrained diamond norm (more pre-
cisly, (E1, . . . , E`)-constrained diamond norm) for a self-adjointness- and trace-
preserving Φ : T (H(`))→ T (H′) as

‖Φ‖(E1,...,E`)
� := sup

ρ∈D(H(`)⊗HR)
tr ρjHj≤Ej
∀ j=1,...,`

‖(Φ⊗ idR)(ρ)‖1

with ρj ∈ D(Hj).

Remark 7.2.3. Note that this norm is in fact equivalent to the E-constrained
diamond norm: concretely, with Emin = minj Ej and Esum =

∑
j Ej,

‖Φ‖Emin
� ≤ ‖Φ‖(E1,...,E`)

� ≤ ‖Φ‖Esum
� ,

where we use H =
∑

j Hj as the Hamiltonian on H(`).

We now state and prove the lemma which is crucial for the information-theoretic
lower bounds on the program dimension of a programmable quantum processor
implementing energy-limited Gaussian quantum channels.

Lemma 7.2.4 ([2, Lemma 11]). Consider a processor, i.e., a quantum channel
P ∈ CPTP(H⊗HP ,H), coming with a Hamiltonian H ≥ 0, a number E > 0, and

an integer ` ≥ 1. Then, there exists another processor P̂ ∈ CPTP(H⊗`⊗HP ,H⊗`)
with the following property: for every unitary channel U(·) = U(·)U∗ whose inverse
U∗ is (α′, β′)-energy-limited and such that there exists a pure state |ψU〉 on HP with

1

2
‖P(· ⊗ ψU)− U‖E� ≤ ε,

it holds that
1

2

∥∥∥P̂(· ⊗ ψU)− U⊗`
∥∥∥(E,...,E)

�
≤ 2`ε′,

where ε′ =
(

1 + β′

E

)√
2ε.

In words, whenever P ε-implements an (α, β)-energy-limited unitary channel
U(·) = U(·)U∗ with (α′, β′)-energy-limited inverse U∗ (with respect to the E-

constrained diamond norm), using a pure program state ψU , then P̂ 2`ε′-implements
U⊗` with respect to the (E, . . . , E)-constrained diamond norm, using the same pure
program state ψU .
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Proof. Applying Eq. (7.2.1), we obtain for the energy-constrained completely bounded
fidelity between the output of the processor and the target unitary,

FE
cb

(
P(· ⊗ ψP ),U

)
≥ 1− ε.

Throughout the proof, we observe the convention to mark states for clarity with the
index of the subsystem on which they act; similarly for channels, whenever it is not
clear from the setting. Let V : B(H) ⊗ B(HP ) → B(H) ⊗ B(HQ) be a Stinespring
dilation [78, Chapter 9] of P , with HQ being a suitable environment space.

Then, by Uhlmann’s theorem for the completely bounded energy-constrained
fidelity of quantum channels, stating that any two channels have isometric dilations
with the same completely bounded energy-constrained fidelity [77, Prop. 1], there
exists a state |φQ〉 ∈ HQ such that

FE
cb

(
V ◦ (idH⊗ψP ),U ⊗ φQ

)
≥ 1− ε.

Note that here and in the following, we regard a state ρ ∈ D(HP ) as a channel
from a trivial system, represented by 1 (with one-dimensional Hilbert space C), to
HP . Using Eq. (7.2.2), we get

1

2
‖V ◦ (idH⊗ψP )− U ⊗ φQ‖E� ≤

√
1− (1− ε)2 ≤

√
2ε. (7.2.3)

We want to apply the processor several times, and for this we have to recover
the program state. So, the first step of the proof is to show that we can modify
the processor to a new map P ′ ∈ CPTP(H ⊗ HP ,H ⊗ HP ) in such a way that
apart from implementing U , it also preserves the program state ψP (all with the
appropriate approximations). For this purpose, choose a pseudoinverse of V ,

W := V∗ +R = V ∗(·)V +R,

where R is a CP map designed to makeW CPTP. Note that this is always possible
because V V ∗ is a projection, and so V∗ is CP and trace non-increasing. In fact,
denoting Π := V V ∗ the projection operator onto the image of V in H ⊗HQ, one
choice is R(ξ) = ρ0 tr ξ(1 − Π), with a fixed state ρ0 ∈ D(H ⊗ HP ). We observe
that indeed W ◦ V = idH⊗ idHP , and hence (V ◦ W) ◦ V = V . Thus, we get from
Eq. (7.2.3) that

√
2ε ≥ 1

2
‖V ◦ (idH⊗ψP )− V ◦W ◦ (U ⊗ φQ)‖E�

=
1

2
‖idH⊗ψP −W ◦ (U ⊗ φQ)‖E�

≥ 1

2

E

E + β′
‖idH⊗ψP −W ◦ (U ⊗ φQ)‖E+β′

� ,

where we obtain the second line by the invariance of the (E-constrained) diamond
norm under multiplication from the left by an isometric channel (V), and the last
line by the equivalence of the energy-constrained diamond norms for different energy
levels (see Eq. (6.1.2) and Ref. [68]).
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Since U∗ is (α′, β′)-energy-limited, we can lower bound the last expression in turn
by

1

2

E

E + β′
‖U∗ ⊗ ψP −W ◦ (idH⊗φQ)‖E/α

′

� .

Defining the memory recovery map M : T (HQ)→ T (HP ) by

M(ρ) := trHW(|0〉〈0|H ⊗ ρ),

where |0〉〈0| is a ground state (i.e., of zero energy) of the Hamiltonian H, we can
now conclude that

1

2
‖M(φQ)− ψP‖1 ≤

(
1 +

β′

E

)√
2ε =: ε′.

Note that this map depends only on the chosen Stinespring dilation V of P , and
thus we can define

P ′ := (idH⊗M) ◦ V ,
which, by the above reasoning, has the desired property that

1

2
‖P ′ ◦ (idH⊗ψP )− U ⊗ ψP‖E� ≤ 2ε′, (7.2.4)

via a simple application of the triangle inequality and the contractivity of the (E-
constrained) diamond norm under multiplication from the left by CPTP maps.

The remaining argument requires careful notation. We have isomorphic copies
Hj of H, j = 1, . . . , `, as well as the program register HP in the big tensor-product
space H(`) ⊗ HP , and we use index j or P to indicate on which tensor factor a
superoperator acts. We implicitly extend the action to the whole space by tensoring
with the identity id on the other factors. This allows us to rewrite Eq. (7.2.4) as

1

2
‖P ′jP ◦ (idj ⊗ψP )− Uj ⊗ ψP‖E� ≤ 2ε′,

for all j = 1, . . . , `. By tensoring this with Uk (for k < j) and with idk (k > j),
and observing the definition of the multiply energy-constrained diamond norm (see
Definition 7.2.2), this results in

1

2

∥∥P ′jP ◦ (U1 ⊗ · · · ⊗ Uj−1 ⊗ idj ⊗ idj+1⊗ · · · ⊗ id`⊗ψP )

−U1 ⊗ · · · ⊗ Uj−1 ⊗ Uj ⊗ idj+1⊗ · · · ⊗ id`⊗ψP
∥∥(E,...,E)

� ≤ 2ε′,

(7.2.5)

for j = 1, . . . , `. Note that we only impose energy constraints on the nontrivial
systems Hj, both in the simply and multiply constrained norm expressions.

Adding all the ` bounds to Eq. (7.2.5), and using the triangle inequality results
in

1

2

∥∥P ′`P ◦ · · · ◦ P ′2P ◦ P ′1P ◦ (id1⊗ · · · ⊗ id`⊗ψP )

−U1 ⊗ · · · ⊗ U` ⊗ ψP
∥∥(E,...,E)

� ≤ 2`ε′.

This means that we can define our desired EPQP via P̂ := trP ◦P ′`P ◦· · ·◦P ′2P ◦P ′1P ,
concluding the proof.
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7.3 Implementation of energy-limited unitary
channels

In the following, we investigate bounds on the program dimension, the processor
requires, to approximately implement all (α, β)-energy-limited unitary channels
U(α, β).

7.3.1 Upper bounds on the program dimension

To obtain upper bounds, we present a construction method which is based on
an existing ε-PQPU and can be seen as an expansion of a finite-dimensional pro-
grammable quantum processor to infinite dimension.

We construct a processor that maps any input state ρ ∈ D(H) with a certain
energy

tr ρH ≤ E

to UρU∗ with U ∈ U(H) and

trUρU∗H ≤ αE + β

approximately, using a program register HP of dimension d∞P < ∞. We express
the approximation parameter γ of our γ-EPQPU(α,β) in terms of the approximation
parameter ε of a finite-dimensional ε-PQPU . This is schematically illustrated in
Figure 7.1.

Figure 7.1: This is a schematic illustration of the construction method for an
γ-EPQPU(α,β) based on an ε-PQPU . The parts of the figure that we con-
struct in the proof are represented by dashed lines, the parts we assume to
exist by regular lines [2, Figure 1].

We use the energy constraints to approximate the input and output system by a
finite-dimensional subspace of H.
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Theorem 7.3.1 ([2, Theorem 9]). Let H be a positive semidefinite Hamiltonian
H ≥ 0 on the separable Hilbert space H with discrete spectrum, finite degener-
acy of all eigenvalues, smallest eigenvalue 0, and E > 0. Furthermore, let ε > 0
and d := rank{H ≤ E/ε4}, the dimension of the subspace of H spanned by eigen-
vectors of H with eigenvalues ≤ E

ε4
. Assume that we have an ε-PQPU Pd with

d-dimensional input register and program register HP . Then, we can construct
an infinite-dimensional γ-EPQPU(α,β) P ∈ CPTP (H ⊗ HP ,H) such that for all
(α, β)-energy-limited unitaries U ∈ U(H) there exists a unit vector |ψU〉 ∈ HP such
that

1

2
‖P(· ⊗ |ψU〉〈ψU |)− U(·)U∗‖E� ≤ γ := 4.5ε

(
α +

β

E

)
. (7.3.1.1)

Proof. The construction of the infinite-dimensional processor consists of two com-
ponents: a compression map that projects down to states on a finite-dimensional
subspace Hd of H spanned by the lowest-lying energy eigenstates, and the appli-
cation of the given finite-dimensional ε-PQPU Pd to that subspace. Define Pδ, the
projector onto the subspace Hδ spanned by all eigenstates with eigenvalue ≤ E/δ,
where δ ≤ 1. Consider Hδ2 , which has projector Pδ2 and define the compression
map K onto Hδ ⊂ Hδ2 as K(ρ) := PδρPδ + tr ρ(1−Pδ)|0〉〈0|, where |0〉 is a ground
state of the Hamiltonian H. Now we can define our infinite-dimensional processor
as P = Pd ◦ (K ⊗ idHP ). Next, we need to describe how to use the processor P to
implement an (α, β)-energy-limited unitary U ∈ U(H), namely what is the program
state |ψU〉. To do this, consider the polar decomposition of Pδ2UPδ, which we can
think of as an operator acting on Hδ, mapping to Hδ2 :

Pδ2UPδ = Vd
√
PδU∗Pδ2UPδ, (7.3.1.2)

where Vd : Hδ → Hδ2 is consequently an isometry. We obtain Ud as an extension of
Vd to a unitary on Hd := Hδ2 . By assumption, Pd can implement Ud approximately
with error ≤ ε in diamond norm, using a certain program state |φUd〉, and we let
|ψU〉 := |φUd〉. The rest of the proof is the demonstration that this construction
satisfies the claimed approximation quality in E-constrained diamond norm. To
start with, we show that

‖Vd − Pδ2UPδ‖ ≤ δ

(
α +

β

E

)
, (7.3.1.3)

both operators in the difference being understood as operators on Hd, and ‖ · ‖
denoting the operator norm. For this, thanks to Eq. (7.3.1.2) it is enough to show(

1− δ
(
α +

β

E

))
Pδ ≤ PδU

∗Pδ2UPδ ≤ Pδ, (7.3.1.4)

since the square root is operator monotonic, and thus implies∥∥∥Pδ −√PδU∗Pδ2UPδ

∥∥∥ ≤ δ

(
α +

β

E

)
.
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The right-hand inequality in Eq. (7.3.1.4) follows trivially from Pδ2 ≤ 1 by conjuga-
tion with U∗ and Pδ. The left-hand inequality amounts to showing 〈ψ|U∗Pδ2U |ψ〉 ≥
1 − δ

(
α + β

E

)
for all state vectors |ψ〉 ∈ Hδ. Indeed, |ψ〉〈ψ| is supported on

the subspace Hδ, all of whose state vectors have energy ≤ E/δ, in particular
tr
(
|ψ〉〈ψ|H

)
≤ E/δ. By our assumption that U is (α, β)-energy-limited, this im-

plies tr
(
U |ψ〉〈ψ|U∗H

)
≤ αE/δ + β, and thus by Markov’s inequality we get

tr
(
U |ψ〉〈ψ|U∗(1− Pδ2)

)
≤ αE/δ + β

E/δ2
≤ δ

(
α +

β

E

)
,

proving the claim. To prove the bound (7.3.1.1), we consider an arbitrary state
ρ ∈ D(H ⊗ Ck) with energy bounded by E, i.e., tr ρ(H ⊗ 1Ck) ≤ E. To start, by
Markov’s inequality this implies tr ρ(Pδ ⊗ 1) ≥ 1− δ, thus by the Gentle Operator
Lemma 2.1.5, and the triangle inequality,∥∥ρ− (K ⊗ idCk)(ρ)

∥∥
1
≤ 2
√
δ + δ, (7.3.1.5)

and furthermore (K ⊗ idCk)(ρ) is a state on Hd ⊗ Ck that has energy bounded by
tr(K⊗ idCk)(ρ)(H ⊗ 1) ≤ tr ρ(H ⊗ 1) ≤ E. Now, from the definition of P and the
processor property of Pd, we have

‖(P ⊗ idCk)(ρ⊗ ψU)− (Ud ⊗ 1Ck)(K ⊗ idCk)(ρ)(Ud ⊗ 1Ck)
∗‖1 ≤ 2ε. (7.3.1.6)

Noting that (Ud⊗1Ck)(K⊗idCk)(ρ)(Ud⊗1Ck)
∗ = (Vd⊗1Ck)(K⊗idCk)(ρ)(Vd⊗1Ck)

∗,
because (K ⊗ idCk)(ρ) is supported on Hδ ⊗ Ck, we furthermore have

‖(Vd ⊗ 1Ck)(K ⊗ idCk)(ρ)(Vd ⊗ 1Ck)
∗

− (Pδ2UPδ ⊗ 1Ck)(K ⊗ idCk)(ρ)(PδU
∗Pδ2 ⊗ 1Ck)‖1 ≤ 2δ

(
α +

β

E

)
,
(7.3.1.7)

where we invoke Eq. (7.3.1.3) twice. Continuing, we observe that we can drop the
projection Pδ in the second term inside the norm, because (K⊗idCk)(ρ) is supported
on Hδ ⊗ Ck. Next, by Eq. (7.3.1.5) we have

‖(Pδ2U ⊗ 1Ck)(K ⊗ idCk)(ρ)(U∗Pδ2 ⊗ 1Ck)

− (Pδ2U ⊗ 1Ck)ρ(U∗Pδ2 ⊗ 1Ck)‖1 ≤ 2
√
δ + δ.

(7.3.1.8)

Finally, since tr
(
(U⊗1Ck)ρ(U⊗1Ck)

∗H
)
≤ αE+β, another application of Markov’s

inequality and the Gentle Operator Lemma 2.1.5 yields

‖(Pδ2U ⊗ 1Ck)ρ(U∗Pδ2 ⊗ 1Ck)− (U ⊗ 1Ck)ρ(U∗ ⊗ 1Ck)‖1 ≤ 2δ

√
α +

β

E
. (7.3.1.9)

It remains to put everything together: by the triangle inequality and the bounds
from Eqs. (7.3.1.6), (7.3.1.7), (7.3.1.8) and (7.3.1.9), we obtain∥∥(P ⊗ idCk)(ρ⊗ ψU)− (U ⊗ 1Ck)ρ(U∗ ⊗ 1Ck)

∥∥
1

≤ 2ε+ 2δ

(
α +

β

E

)
+ 2
√
δ + δ + 2δ

√
α +

β

E

≤ 2ε+ 7
√
δ

(
α +

β

E

)
,
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and choosing δ = ε2 concludes the proof.

With this construction, we can now import existing upper bounds for a finite-
dimensional ε-PQPU to provide an upper bound on the dimension of the program
register of the infinite-dimensional γ-EPQPU(α,β). Upper bounds for the program
dimension of a finite-dimensional ε-PQPU were derived in previous works (see Sec-
tion 4.2), most recently in Refs. [14] and [15].

Let P be an infinite-dimensional γ-EPQPU(α,β) and Pd a finite-dimensional
ε-PQPU . Since our construction of an infinite-dimensional processor relies on a
finite-dimensional one, we reformulate Eq. (7.3.1.1) as

ε :=
γ

4.5

(
α +

β

E

)−1

.

Table 7.1 gives an overview of existing bounds on the program dimension for
finite-dimensional unitary processors in the literature. The bound in the second
row of Table 7.1 was derived from Ref. [12, Lemma 1, Section II.C] which uses
port-based teleportation working with copies of Choi-states. We get upper bounds
for the infinite-dimensional γ-EPQPU(αβ) P if we insert ε into the existing bounds
which yields the third column in Table 7.1.

dP ≤ References d∞P ≤

d
4d2

ε2

Ishizaka & Hiroshima [48],
Beigi & König [50],
Christandl et al. [49]

d
81d2(α+

β
E

)2

γ2

d
2d2

ε Pirandola et al. [12] d
9d2(α+β/E)

γ(
C̃

ε

)d2

Kubicki et al. [14]

(
4.5C̃(α + β

E
)

γ

)d2

(
Θ(d2)

ε

) d2−1
2

Yang et al. [15]

(
4.5Θ(d2)(α + β

E
)

γ

) d2−1
2

Table 7.1: Upper bounds on the program dimension of an infinite-dimensional processor
implementing unitary channels. The first column shows the upper bounds on
the program dimension for the finite-dimensional case with the corresponding
references in the second column. The third column presents the upper bounds
on the program dimension for the infinite-dimensional processor. Note that
d in the third column is the dimension of the subspace of H spanned by
eigenvectors of H with eigenvalues ≤ E

ε4
(see also [2, Table I]).
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7.3.2 Lower bounds on the program dimension

Having provided upper bounds on the program dimension of an ε-EPQPU(α,β), we
investigate lower bounds on the dimension of the program register by first presenting
a method to obtain a finite-dimensional processor assuming an existing infinite-
dimensional one in the following theorem which is illustrated in Figure 7.2.

Figure 7.2: Assuming a γ-EPQPU(α,β), we can construct a finite-dimensional ε-PQPU
which is drawn in dashed lines including its input, output and program
register [2, Figure 2].

Theorem 7.3.2 ([2, Theorem 10]). Let H ≥ 0 be the Hamiltonian with discrete
spectrum describing the system on the separable Hilbert space H, E > 0, γ > 0,
and furthermore choose d > 0. Assume that we have an infinite-dimensional
γ-EPQPU(α,β) P ∈ CPTP (H ⊗ HP ,H) for all sufficiently large α and β. Then,
there exists an ε-PQPUPd ∈ CPTP (Hd ⊗ HP ,Hd) such that for all Ud ∈ U(Hd)
there is a unit vector |ψUd〉 ∈ HP with

1

2
‖Pd(· ⊗ |ψUd〉〈ψUd|)− Ud(·)U∗d‖� ≤ ε,

where ε = γ 1
E

max{E(d), E} and E(d) is the smallest energy such that the space
spanned by the eigenstates of energies between 0 and E(d) is of dimension d or
larger.

Proof. We assume that an infinite-dimensional γ-EPQPU(α,β) processor
P ∈ CPTP (H⊗HP ,H) exists as described in the theorem, and construct a finite-
dimensional one with the same program register, i.e., we aim to bound

1

2
‖Pd(· ⊗ |ψUd〉〈ψUd |)− Ud(·)U∗d‖� ≤ ε := ε(E, d, γ).

We start with fixing an isometric embedding V of the d-dimensional Hilbert space
Hd into H. Namely, with respect to the ordered spectral decomposition H =
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∑∞
n=0 enPn of the Hamiltonian, let n(d) be the smallest integer such that d ≤∑n(d)
n=0 rankPn and E(d) := en(d) the largest occurring energy. Let

V : Hd ↪→

n(d)∑
n0

Pn

H =: H′ ⊂ H,

where the first embedding is an arbitrary isometry. This defines an isometric chan-
nel

V : D(Hd)→ D(H)

ρ 7→ V ρV ∗.

Thanks to V we view Hd as a subspace of H, and denote its orthogonal complement
H⊥d .

An arbitrary Ud ∈ U(Hd) is extended to a unitary U ≡ Ud ⊕ 1H⊥d ∈ U(H). We
would like to implement this unitary using the processor P , followed by a CPTP
compression onto the subspace Hd, using its projection operator Πd:

K(ρ) := ΠdρΠd + κ0 tr ρ(1− Πd),

where κ0 is an arbitrary state with energy zero in Hd. Since we assume that there
exists a γ-EPQPU(α,β) for all sufficiently large α > 0 and β > 0, this unitary can
be γ-implemented. (In fact, we could choose α = 1 and β = E(d), the largest
occurring energy gap in H′.) The processor is a concatenation of the isometric
channel V , the infinite-dimensional γ-EPQPU(α,β) P and the compression map K,
namely P ′ := K ◦ P ◦ (V ⊗ idHP ), which leads us to

1

2
‖K ◦ P ◦ (V(·)⊗ ψUd)− Ud(·)U∗d‖�

≤ 1

2
‖P ◦ (V(·)⊗ ψUd)− U(·)U∗‖E(d)

�

≤ 1

E
max{E(d), E}1

2
‖P ◦ (V(·)⊗ ψUd)− U(·)U∗‖E�

≤ γ
1

E
max{E(d), E},

where we use the contractivity of the diamond norm under postprocessing and
that our subspace goes up to energy E(d), so restricted to it the E(d)-constrained
diamond norm equals the unconstrained diamond norm; then, that going to the E-
constrained diamond norm blows up the error by a factor of at most 1

E
max{E(d), E}.

Finally, the infinite-dimensional processor makes an error of at most γ. Hence, this
is the ε = γ 1

E
max{E(d), E} we get for the resulting finite-dimensional proces-

sor.

Thus, given an ε-EPQPU(α,β) for infinite-dimensional (α, β)-energy-limited uni-
taries, we can build a finite-dimensional ε-PQPU , whose program dimension is lower
bounded through results from the literature, as shown in Table 7.2.
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dP ≥ References d∞P ≥

Θ

((
1

d

)d+1
2
(

1

ε

)d−1
2

)
Pérez-Garćıa [10] Θ

((
1

d

) d+1
2
(

E

γmax{E(d), E}

) d−1
2

)

Θ

((
d

ε

)2
)

Majenz [51] Θ

((
dE

γmax{E(d), E}

)2
)

2
1−ε
3C

d− 2
3

log d Kubicki et al. [14] 2
E−γmax{E(d),E}

3CE
d− 2

3
log d

(
1 +

Θ(d−2)√
ε

)2α
Yang et al. [15],
with a slight
arithmetic
improvement

(
1 +

Θ(Ed−2)
√
γmax{E(d), E}

)2α

Table 7.2: Lower bounds on the program dimension of an infinite-dimensional processor
implementing unitary channels. The first column shows the lower bounds on
the program dimension for the finite-dimensional case with the corresponding
references in the second column. The third column presents the lower bounds
on the program dimension for the infinite-dimensional processor. The last
row holds for any α < d2−1

2 . The dimension d in the third column is the
chosen dimension of the finite-dimensional processor (see also [2, Table II]).

7.4 Implementation of energy-limited Gaussian
channels

In the previous section, we considered an infinite-dimensional input state with a
certain maximal energy E and showed that there is a programmable quantum pro-
cessor able to implement approximations of all (α, β)-energy-limited unitary chan-
nels with finite-dimensional program register. We provided upper and lower bounds
on the program dimension of a processor that implements all energy-limited uni-
tary channels for an infinite-dimensional input state up to a certain energy E > 0,
i.e., tr(ρH) ≤ E. In the following, the Hamiltonian is the photon-number operator
N := a∗a. We now consider a special class of channels: energy-limited Gaussian
quantum channels. As explained in the previous sections, we also assume an energy
constraint tr(ρH) ≤ E on the input. Thus, we already know from Section 7.3 that
there is a processor which implements an approximate version of all energy-limited
Gaussian channels with finite-dimensional program register. These bounds also ap-
ply here.
In particular, we study the implementation of gauge-covariant Gaussian channels
that are relevant in quantum optics, for instance, and furthermore, the implemen-
tation of energy-limited Gaussian unitary channels. Before considering these two
classes of channels, we dedicate the next subsection to the relation of relevant en-
sembles we need for deriving the lower bounds.
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7.4.1 Relating relevant ensembles of quantum states

The methodology for lower bounding the dimension of the program register, ex-
pounded in Ref. [15], relies on bounding the Holevo information of ensembles, it
does not rely on the unitarity of the target channels, though. We choose a fiducial
state ρ0 ∈ D(H) of energy ≤ E as input for the processor and the channels Φ ∈ C,
as well as a probability distribution µ(dΦ) on the class C, so that by Definition 7.1.1
(Eq. (7.1.1)) we have for all Φ ∈ C,

1

2
‖P(ρ0 ⊗ πΦ)− Φ(ρ0)‖1 ≤ ε.

We consider three ensembles of states: an ensemble on the program register HP ,
one on the output of the processor, ωΦ = P(ρ0 ⊗ πΦ), and the ideal ensemble of a
perfect processor:

{πΦ, µ(dΦ)} P(ρ0⊗·)−−−−→ {ωΦ, µ(dΦ)}
ε
≈ {Φ(ρ0), µ(dΦ)}.

The Holevo information of the ensemble on the left-hand side is upper bounded by
log d∞P (see Eq. (2.2.1)) and lower bounded by the middle one by data processing [23,
Subsection 11.9.2]. We would like to apply a continuity bound for the von Neumann
entropy to lower bound the Holevo information of the middle ensemble in terms of
the Holevo information of the ensemble on the right-hand side. In finite dimension,
this is straightforward using the Fannes inequality [79]. However, this is more
subtle in infinite dimension, where analogous bounds exist when additionally the
states obey an energy bound [67]. Assuming that C ⊂ L(α, β), this is indeed given
for the states of the ideal ensemble: tr Φ(ρ0)H ≤ αE + β. Since the approximate
programmable quantum processor’s output is not ideal, we have a priori no such
bound for the actual output states ωΦ. This issue can be solved by processing the
middle ensemble further using the following lemma.

Lemma 7.4.1 ([2, Lemma 12]). Consider two states ρ, σ ∈ D(H), where H carries
a positive semidefinite, self-adjoint densely defined energy operator (Hamiltonian)
H ≥ 0 with discrete spectrum describing a quantum system, 0 being the smallest
eigenvalue, and a number E > 0. If 1

2
‖ρ − σ‖1 ≤ η and tr ρH ≤ E, then there

exists a state σ′ with trσ′H ≤ E
η

and

1

2
‖σ − σ′‖1 ≤ 3

√
η,

1

2
‖ρ− σ′‖1 ≤ 4

√
η.

Proof. Take the subspace projector Pη onto the energy subspace of all eigenvalues
≤ E

η
, and construct the compression map

K(ξ) = PηξPη + κ0 tr ξ(1− Pη),

where κ0 is an arbitrary state with support Pη, e.g., a ground state of H. Then,
let σ′ := K(σ). This does it, as can be seen as follows: tr ρPη ≥ 1− η, hence by the
trace norm assumption, trσPη ≥ 1−2η, and now we can apply the Gentle Operator
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Lemma 2.1.5 and get 1
2
‖σ − PησPη‖1 ≤

√
2η, hence by the triangle inequality

1
2
‖σ − σ′‖1 ≤ 2η +

√
2η ≤ 3

√
η.

Using the triangle inequality once more, we get the distance from ρ bounded by
4
√
η.

We can thus process the ensemble further, letting ω′Φ = K(ωΦ) with K being the
compression map from Lemma 7.4.1:

{πΦ, µ(dΦ)} P(ρ0⊗·)−−−−→ {ωΦ, µ(dΦ)} K−→ {ω′Φ, µ(dΦ)}
4
√
ε
≈ {Φ(ρ0), µ(dΦ)}.

Now both Φ(ρ0) and ω′Φ have their energy bounded by αE+β
ε

=: Ê. Assuming not
only a positive semidefinite Hamiltonian H2, but also assuming finite degeneracy
of all eigenvalues of its spectral decomposition, with finite Gibbs entropy at all
temperatures on the output spaceH2, we then get the following chain of inequalities
which lower bounds the program dimension:

log d∞P ≥ χ
(
{πΦ, µ(dΦ)}

)
≥ χ

(
{ωΦ, µ(dΦ)}

)
≥ χ

(
{ω′Φ, µ(dΦ)}

)
≥ χ

(
{Φ(ρ0), µ(dΦ)}

)
− 16
√
εS
(
γ(Ê/4

√
ε)
)
− 2h(4

√
ε)

≥ χ
(
{Φ(ρ0), µ(dΦ)}

)
− 16
√
εS

(
γ

(
αE + β

4
√
ε

3

))
− 2,

(7.4.1.1)

where h(t) = −t log t − (1 − t) log(1 − t) is the binary entropy and we assume
that 4

√
ε ≤ 1. The first three inequalities rely on the definition of the program

ensemble and the data processing inequality [23, Section 11.9.2] (twice) and the
fourth inequality follows from applying Ref. [67, Lemma 15].

7.4.2 Energy-limited gauge-covariant Gaussian channels

We study the class of (α, β)-energy-limited gauge-covariant Gaussian channels
GCG(α, β). Recall that the corresponding programmable quantum processor is writ-
ten as ε-EPQPGCG(α,β). We provide both upper and lower bounds on the dimension
of the program register of an approximate programmable quantum processor that
implements all (α, β)-energy-limited gauge-covariant Gaussian channels with an
input and output state of a certain maximal energy.

7.4.2.1 Upper bounds gauge-covariant Gaussian channels

We establish an ε-net on GCG(α, β) to get a discrete approximation of the out-
put and thus obtain upper bounds on the program dimension d∞P . Afterwards, we
construct a processor that implements the channels of the ε-net with program di-
mension equal to the cardinality of the ε-net using the PET (see Section 7.1). With
this construction, we obtain upper bounds on the program dimension of a processor
implementing all (α, β)-energy-limited gauge-covariant Gaussian channels.
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Theorem 7.4.2 (Upper bounds [2, Theorem 17]). Let ε > 0 and E > 0. Then,
there exists an infinite-dimensional ε-EPQPGCG(α,β) P ∈ CPTP (H1 ⊗ HP ,H2)
whose program register is upper bounded as follows:

d∞P ≤
CE2(2E + 2)(β + 1)

ε6

for a constant C.

Proof. Since we consider gauge-covariant Gaussian channels, we use
Proposition 6.2.3 which states that those channels can be described as a concate-
nation of an attenuator channel Tλ, a rotation channel Rϕ and a quantum-limited
amplifier channel Aµ and thus, we construct one ε-net on the set of attenuator
channels, one on rotations and one on the amplifier channels. They are specified
by one parameter each.

Let us consider the attenuator channels first. Recall that the parameter 0 ≤
λ < 1 is the attenuation parameter. Thus, we construct an ελ-net for λ with
{λi}|Iλ|i=1 ⊂ [0, 1) such that for every λ there is an index i ∈ Iλ satisfying

|λ− λi| ≤ ελ.

The range of λ forms a compact interval. The cardinality of such a net is

|Iλ| ≤
(

1

ελ
+ 1

)
.

Analogously, we construct an εϕ-net for the parameter ϕ ∈ [0, 2π] such that for
every ϕ, there exists an index j ∈ Iϕ with

|ϕ− ϕj| ≤ εϕ

with cardinality

|Iϕ| ≤
(

2π

εϕ
+ 1

)
.

We continue with the parameter describing the amplifier channel. Note that am-
plifier channels enlarge the energy. The larger the amplification factor, the higher
the energy of the output. The (α, β)-energy-limitation of the considered channels
yields a maximal amplification factor µmax. Let us specify this parameter.
To obtain a necessary condition for the parameter µ, we consider the vacuum state
ρG(0,12) as input state with zero energy. The attenuator channel with K =

√
λ12

and N = (1−λ)12 and η = 0 maps the vacuum state to the vacuum state. The am-
plifier channel withK =

√
µ12 andN = (µ−1)12, η = 0 maps it to ρG(0, (2µ−1)12)

with mean photon number

tr(ρG(0, (2µ− 1)12)) = µ− 1

where we use tr(ρGa
∗a) = 1

2
tr(Γ) + 1

4
d2 − 1

2
for a general ρG(d,Γ) [72, Eq. (6.60)].

This yields the necessary condition

µ ≤ β + 1.
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Hence, we choose
µmax = β + 1. (7.4.2.1.1)

Due to the energy-constraint and µmax, the values µ ∈ (1, µmax] form a compact

set and we construct an εµ-net {µk}|Iµ|k=1 ⊂ (1, µmax] such that for every µ there is
an index k ∈ Iµ such that

|µ− µk| ≤ εµ.

The cardinality of this net reveals as

|Iµ| ≤
(
µmax − 1

εµ
+ 1

)
.

The overall cardinality for the parameter appears as follows

|IΦ| = |Iλ||Iϕ||Iµ| ≤
(

1

ελ
+1

)(
2π

εϕ
+1

)(
µmax − 1

εµ
+1

)
≤ 16µmax

ελεϕεµ
≤ 16(β + 1)

ελεϕεµ

where we use Eq. (7.4.2.1.1) in the last inequality. Since we are interested in the
cardinality of ε-nets in GCG(α, β), we lift the parameter nets to nets on the set of
channels. We use the E-diamond norm distance (see Definition 6.1.4).
Firstly, for the attenuator channel, we know from Ref. [80, Example 5] that

‖Tλ − Tλi‖E� ≤ 4
√

2
√
Eελ.

Secondly, concerning the rotation channel, we use the result by Becker and Datta [80,
Proposition 3.2] for the one-parameter unitary semigroup of rotations

‖Rϕ −Rϕj‖E� ≤ 4
√
E
√
|ϕ− ϕj| = 4

√
Eεϕ.

Thirdly, the norm of the distance of the amplifier channels can be bounded as [80,
Example 5]

‖Aµ −Aµk‖E� ≤ 4
√

2
√

(2E + 2)εµ.

For the (α, β)-energy-limited gauge-covariant Gaussian channels we overall obtain

‖Φ− Φi‖E� ≤ ‖Aµ ◦ Rϕ ◦ Tλ −Aµk ◦ Rϕj ◦ Tλi‖E�
≤ ‖Tλ − Tλi‖E� + ‖Rϕ −Rϕj‖E� + ‖Aµ −Aµk‖E�
≤ 4
√

2
√
E
√
ελ + 4

√
E
√
εϕ + 4

√
2
√

2E + 2
√
εµ =: ε.

We express ελ, εϕ and εµ in terms of the ε-parameter that specifies the accuracy of
the processor:

ελ =
ε2

CλE
, εϕ =

ε2

CϕE
, εµ =

ε2

Cµ(2E + 2)
.

Inserting these expressions into |IΦ| we get

|IΦ| ≤
16 (β + 1) Cλ Cϕ Cµ E(2E + 2)

ε6
=
CE2(2E + 2) (β + 1)

ε6
.
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We use the PET to construct an ε-EPQPGCG(α,β) with program dimension

d∞P = |IΦ| ≤
CE2(2E + 2)(β + 1)

ε6
,

concluding the proof.

7.4.2.2 Lower bounds gauge-covariant Gaussian channels

To obtain lower bounds on the program dimension of a processor implementing
all gauge-covariant Gaussian channels, we consider the decomposition of Proposi-
tion 6.2.3, from which we get three different building blocks for the ε-net for the
upper bounds: attenuation, amplification and phase rotation. For lower bounds,
the third part is particularly relevant because it yields ε-divergence.

Phase rotation. To lower-bound the program dimension d∞P of an ε-EPQPGCG(α,β),
we proceed in two steps. First, we apply Lemma 7.2.4 to the phase-rotation channels
Rϕ(·) = e−iϕN(·)eiϕN , which are (1, 0)-limited. This results in a modified processor
implementing the rotation ` times in parallel. The second step is motivated by the
fact that all information for the implementation of Rϕ is contained in the program
state, which has to contain almost the same information as the `-tensor-power phase
rotation. We design an ensemble on the output space to obtain lower bounds on
the program dimension by bounding the Holevo information of the ensemble. The
following theorem states the resulting lower bounds.

Theorem 7.4.3 (Lower bounds phase rotations [2, Theorem 18]). Let ε > 0 and
E > 0. Then, for every infinite-dimensional ε-EPQPGCG(α,β) P ∈ CPTP (H ⊗
HP ,H), with α ≥ 1 and β ≥ 0, its program register can be lower bounded as
follows:

d∞P ≥
1

8192e

δ2E

(
√

2E + 1)δ

(
1√
2ε

)1−δ

≥ Cδ2

(
E√
ε

)1−δ

,

for any 0 < δ < 1, and the latter for E ≥ 1 and an absolute constant C.

Proof. The gauge-covariant Gaussian channels contain the one-parameter group of
phase-rotation unitaries Rϕ. Applying Lemma 7.2.4 to these unitaries, we obtain

1

2

∥∥∥P̂(· ⊗ ψR)−R⊗`ϕ
∥∥∥(E,...,E)

�
≤ 2`
√

2ε. (7.4.2.2.1)

Next, we create a state of high total energy on which we act with R⊗`ϕ to gen-
erate an ensemble, where ϕ is uniformly distributed on [0, 2π]. The ideal output
is the phase rotation R⊗`ϕ on ` modes. Since the photon number is the sum of
those on the subsystems, the unitary is generated by the total photon number,
i.e., R⊗`ϕ = eiϕ(N1+...+N`). Since this yields a phase multiplication eiϕn on each de-
generate subspace of total photon number n, the `-fold tensor-product unitary is di-
agonal in the photon-number basis and we use only one state from each eigenspace.
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For each total number n of photons, we define a unique way of distributing them
across the ` modes in an as equilibrated way as possible. For instance, choose a
partition of n into non-negative integers, n = n1 + . . .+ n` and define |“n”〉 as the
unit norm symmetrization of |n1〉 · · · |n`〉,

|“n”〉 :∝
∑
π∈S`

|nπ(1)〉 · · · |nπ(`)〉 .

This state evidently has total photon number n, and the expected photon number
in each mode is n

`
.

As input state to the processor we choose

|ν〉 =
∞∑
n=0

cn |“n”〉 ,

with amplitudes such that 〈ν|N |ν〉 =
∑

n n|cn|2 ≤ `E. The following calculations
of the Holevo information take place on the subspace spanned by |“n”〉. Note that
on that subspace, the total number operator N = N1 + . . .+N` is isomorphic to a
number operator, hence the time evolution of R⊗`ϕ leaves this “virtual Fock space”
HV ⊂ H⊗` invariant.

Since all information about the output of the processor is contained in the pro-
gram state,

log d∞P ≥ χ

({
P̂(|ν〉〈ν| ⊗ ψϕ),

dϕ

2π

})
,

following the approach explained in Subsection 7.4.1. We compare these ensemble
states ωϕ = P̂(|ν〉〈ν| ⊗ ψϕ) with the ideal ones R⊗`ϕ (|ν〉〈ν|), which are supported
on HV with projector PV . Thus, defining the compression map onto that subspace,

KV (ξ) = PV ξPV + κ0 tr ξ(1− PV ),

and letting ω′ϕ = KV (ωϕ), we have, by Eq. (7.4.2.2.1) and the contractivity of the
trace norm, that

1

2

∥∥R⊗`ϕ (|ν〉〈ν|)− ω′ϕ
∥∥

1
≤ 1

2

∥∥R⊗`ϕ (|ν〉〈ν|)− ωϕ
∥∥

1
≤ 2`
√

2ε,

and on the other hand by data processing for the Holevo information [23, Subsection
11.9.2],

log d∞P ≥ χ

({
ω′ϕ,

dϕ

2π

})
.

As mentioned before, the Hamiltonian restricted to the virtual Fock space HV

is isomorphic to a normal number operator HV =
∑∞

n=0 n|“n”〉〈“n”|, and the ideal
ensemble states have energy trR⊗`ϕ (|ν〉〈ν|)HV = tr |ν〉〈ν|HV ≤ `E. Now we invoke

Lemma 7.4.1 with η = 2`
√

2ε, yielding the compression map K onto the subspace
with energy ≤ `E

2`
√

2ε
= E

2
√

2ε
, which gives rise to states ω′′ϕ = K(ωϕ) with

1

2

∥∥R⊗`ϕ (|ν〉〈ν|)− ω′′ϕ
∥∥

1
≤ 4

√
2`
√

2ε,
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and so finally

log d∞P ≥ χ

({
ω′′ϕ,

dϕ

2π

})
≥ χ

({
R⊗`ϕ (|ν〉〈ν|), dϕ

2π

})
− 16
√

2

√
`
√

2εg

(
E

16
√
ε
√
`
√

2ε

)
− 2,

using Eq. (7.4.1.1) in Subsection 7.4.1, where g(N) = (N + 1) log(N + 1)−N logN
is the formula for the von Neumann entropy of the thermal (Gibbs) state of mean
photon number N (see Eq. (6.2.1.1)). On the other hand, it is easily seen that

χ

({
R⊗`ϕ (|ν〉〈ν|), dϕ

2π

})
= H({|cn|2}),

which itself is maximized for the thermal distribution with mean photon number∑
n n|cn|2 = `E, and the maximum is g(`E). Using the elementary upper and lower

bounds [67, p. 10]
logN ≤ g(N) ≤ log(N + 1) + log e,

and letting
√
` = δ

16
√

2
√

2ε
, with 0 < δ < 1, we thus get

log d∞P ≥ log(`E)− δ log

(√
2E

δ
√
ε

+ 1

)
− δ log e− 2

≥ (1− δ) log
1√
2ε

+ log
δ2E

512
− δ log(

√
2E + 1)− log(16e).

The final form of the bound is hence

d∞P ≥
1

8192e

δ2E

(
√

2E + 1)δ

(
1√
2ε

)1−δ

≥ Cδ2

(
E√
ε

)1−δ

,

as claimed.

Thus, merely considering the phase-rotation part of the decomposition of gauge-
covariant Gaussian channels results in lower bounds on the program dimension that
diverge with ε. This confirms that divergence of the upper bounds is not an artifact
of the ε-net construction.

Additionally, we give lower bounds for the special case of attenuation channels.

Attenuation. We want to explore what kinds of lower bounds we can obtain from
looking at attenuation only, i.e., on ε-EPQPT , which denotes processors implement-
ing the attenuator channels T = {Rϕ ◦ Tλ : ϕ ∈ {0, π}, λ ∈ [0; 1]}. Note that we
allow a single phase rotation of angle π, which in itself cannot give an unbounded
lower bound. We could give the subsequent argument without it, but including it
makes the following discussion a little nicer.
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Theorem 7.4.4 (Lower bounds attenuation [2, Theorem 19]). Let 0 < ε < 1
1024

and
E ≥ 2e−1. Then, for every infinite-dimensional ε-EPQPT P ∈ CPTP(H⊗HP ,H),
its program register is lower bounded as follows:

d∞P ≥ 2−16 1√
ln log(E + 1)

(E + 1)
1
2
−16
√
ε.

Proof. As in the proof of the previous theorem, we test the processor on a concrete
input state ρχ which we choose to be a coherent state ρχ = |ζ〉〈ζ| with the highest
allowed energy (photon number) E, i.e., ζ =

√
2E. With this fixed input state, the

processor generates the output states {Φ(ρχ)}, Φ ∈ T . These output states ideally
are precisely the coherent states |ξ〉〈ξ| with −ζ ≤ ξ ≤ ζ. Rather than describing
the ensemble of program states ρλ, which through the processor lead to unique
output states ρξ = P(|ζ〉〈ζ| ⊗ ρλ) (that approximate the coherent state |ξ〉〈ξ|), we
give instead directly a distribution over the ξ. We choose the truncated Gaussian
distribution with variance σ2

pE(ξ) :=

{
1

1−η
1√
2πσ

e−
ξ2

2σ2 if |ξ| ≤
√

2E,

0 otherwise,

where

η = 1−
∫ +

√
2E

−
√

2E

dξ
1√
2πσ

e−
ξ2

2σ2 = erfc(
√
E/σ) ≤ e−E/σ

2

,

with the complementary error function erfc(x) and its well-known upper bound
erfc(x) ≤ e−x

2
, see Ref. [81]. Note furthermore that, denoting the density of the

centered normal distribution with variance σ2 by p(ξ) = 1√
2πσ

e−
ξ2

2σ2 , we have

1

2
‖p− pE‖L1 = η.

Following the method described at the end of Section 7.2, using data processing,
we start off from the inequality

log d∞P ≥ χ({ρξ, pE(ξ)dξ}) = S

(∫ √2E

−
√

2E

dξ pE(ξ)ρξ

)
−
∫ √2E

−
√

2E

dξ pE(ξ)S (ρξ) ,

(7.4.2.2.2)
recalling the definition of the Holevo information. The remaining calculation is
about controlling the Holevo information on the right-hand side, which we do by
first modifying the states from ρξ to the compressed state ρ′ξ = K(ρξ), and fi-
nally to |ξ〉〈ξ|, incurring a certain error. According to Eq. (7.4.1.1) we get from
Eq. (7.4.2.2.2)

log d∞P ≥ S

(∫ √2E

−
√

2E

dξ pE(ξ)|ξ〉〈ξ|

)
− 16
√
εS

(
γ

(
E

4
√
ε

3

))
− 2, (7.4.2.2.3)

keeping in mind that our channels are (1, 0)-energy-limited and that the attenuator
output states |ξ〉〈ξ| are pure. It remains to calculate the entropy, which however
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is challenging. To lower bound it in turn, we modify the distribution from the
truncated Gaussian pE to the full Gaussian p, incurring another certain Fannes
error, but having the benefit of leaving us with a Gaussian state. We abbreviate
the mixtures

ω :=

∫ ∞
−∞

dξ
1√
2πσ

e−
ξ2

2σ2 |ξ〉〈ξ|,

ωE :=

∫ √2E

−
√

2E

dξ pE(ξ)|ξ〉〈ξ|,

to which we can apply [67, Lemma 15], noting that both states have energy bounded
by σ2/2 and E, respectively. We choose σ2 = 1

t
E with t ≥ 1, making the energy

bound E, and η ≤ e−t, thus

|S(ω)− S(ωE)| ≤ 2ηg

(
E

η

)
+ h(η) ≤ 2η

(
log

(
E

η
+ 1

)
+ log e

)
+ 1,

where g(N) := (N+1) log(N+1)−N logN and h(η) = H(η, 1−η) = −ε log ε−(1−
ε) log(1 − ε) the binary entropy. On the other hand, ω is a Gaussian state having
a diagonal covariance matrix with eigenvalues 1 and 1 + 2σ2. From this we can
obtain its symplectic eigenvalue, which is

√
1 + 2σ2, as one can see by considering

a Gaussian squeezing unitary that transforms the state to a thermal Gaussian state.
Hence,

S(ω) = g

(√
1 + 2σ2 − 1

2

)
≥ log

(√
1 + 2σ2 + 1

2

)
,

where here and in the previous display equation we use the bounds log(x + 1) ≤
g(x) ≤ log(x+1)+log e. Putting it all together, using Eq. (7.4.2.2.3) and the above
bounds, we obtain

log d∞P ≥ g

(√
1 + 2σ2 − 1

2

)
− 2ηg

(
E

η

)
− 16
√
εg

(
E

4
√
ε

3

)
− 3

≥ log

(√
1 + 2σ2 + 1

2

)
− 2e−t log

(
Eet + 1

)
− 2e−t log e

− 16
√
ε log

(
E

4
√
ε

3 + 1

)
− 16
√
ε log e− 3

≥ 1

2
log

(
E + 1

2t

)
− 2e−t log

(
(E + 1)et

)
− 16
√
ε log

(
E + 1

4
√
ε

3

)
− 3− 2e−t log e− 16

√
ε log e

=

(
1

2
− 16
√
ε− 2e−t

)
log(E + 1)− 1

2
log t

− 1

2
− 3− 2e−t log e− 2e−t log et + 16

√
ε log

(
4

e

√
ε

3
)
.
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Now we look at the terms in the last line, showing that their sum can be lower
bounded by −14. Namely, note that the function −x log x is monotonically in-
creasing on the interval [0; 1/e], and so e−t log et ≤ log e

e
as well as −

√
ε log
√
ε ≤ 5

32
,

where we use that ε ≤ 1
1024

. Thus,

log d∞P ≥
(

1

2
− 16
√
ε

)
log(E + 1)− 1

2
log t− 14− 2e−t log(E + 1),

and letting t = ln log(E + 1) ≥ 1, recalling the assumption on E, concludes the
proof.

Amplification and attentuation. In the case of α > 1, we can also consider
amplifier channels. Thus, one could try to use attenuators as well as amplifiers to
construct an ensemble. According to Proposition 6.2.3, the output of the attenuator
channel serves as input for the amplifier channel. Heuristically, it makes sense to
input a coherent state with the highest energy. The attenuator channel maps
coherent states to coherent states which means that we input a coherent state into
the amplifier channel. The latter maps these coherent states to displaced thermal
states. However, we did not find an appropriate ensemble where the mixture of
ensemble states is still Gaussian (this is a heuristic to be able to calculate entropies
in closed form) and the Holevo information is improved compared to the coherent
states.

Possibly, such an ensemble does not exist, because the amplifier channel intro-
duces noise, which means that to obtain an advantage, the ensemble must use
different amplification strengths, otherwise data processing shows directly that the
Holveo information is only smaller. On the other hand, using a distribution over
amplifications would likely result in an ensemble mixture that is a convex combi-
nation of different thermal states, and no non-trivial convex combination of them
can lead to a thermal state again.

Hence, to obtain lower bounds for gauge-covariant Gaussian channels, we consider
the subset of attenuator channels. In other words, we obtain the same lower bounds
for a processor that is merely able to implement attenuator channels than one that
implements all Gaussian channels.

7.4.3 Energy-limited Gaussian unitary channels

In analogy to existing programmable quantum processors that implement unitary
channels, we focus on the implementation of (α, β)-energy-limited Gaussian unitary
channels. This set is denoted as GU(α, β) and the corresponding processor as
ε-EPQPGU(α,β). We again provide upper and lower bounds on the dimension of the
program register.

7.4.3.1 Upper bounds Gaussian unitary channels

We determine upper bounds for the program dimension d∞P of an ε-EPQPGU(α,β) in
three steps. Firstly, we construct an ε-net on a suitable parameter set, secondly we
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relate it to a set of channels and thirdly, we construct a processor with program
register equal to the cardinality of the ε-net. The set of all (α, β)-energy-limited
Gaussian unitary channels is represented by GU(α, β) with elements

UG(·) = UG(·)U∗G.

Theorem 7.4.5 (Upper bounds [2, Theorem 20]). Let ε > 0 and E > 0. Then, for
a system of M Bosonic modes, there exists an infinite-dimensional ε-EPQPGU(α,β)

P ∈ CPTP (H⊗HP ,H) whose program register is upper bounded as follows:

d∞P ≤
(

2352(Mα)3/2(
√
α + 1)(E + 1)

ε2

)4M2(
2
√

2(
√

2β + 1)
√
αE + β + 1

ε

)2M

for an absolute constant cS.

Proof. A general M -mode Gaussian unitary can be decomposed into a generalized
phase rotation, which is a passive operation that does not change the energy, fol-
lowed by M separate single-mode squeezing transformations, followed by another
passive generalized rotation, and finally a displacement, see Subsection 6.2.3 and
Refs. [75,76]. Thus, we construct two nets: one for the first three operations based
on the symplectic group and another one on the displacements. Note that these
sets are not compact but due to the energy constraint, we can cut the sets such
that they become compact. Where we place the cutoff depends on α and β.

For the first net, let us consider the following compact subset of Sp2M(R)

Sp
√
α+1

2M (R) := {S ∈ Sp2M(R), ‖S − 1R2M‖∞ ≤
√
α + 1}.

The cutoff yields all elements with maximal singular value r ≤
√
α. Since the

singular values of a symplectic matrix come in pairs x and 1/x, this means that
all singular values of the matrices in the above subset lie between 1√

α
and

√
α.

From the Bloch-Messiah decomposition, which shows that modulo passive Gaus-
sian transformations, every Gaussian unitary described by a symplectic matrix is
equivalent to a tensor product of single-mode squeezing operators [82], this means
that we only have to consider the (α, β)-energy-limitation of those M single-mode
squeezers. It is elementary to see that a squeezing unitary with singular values of
the symplectic matrix r ≥ 1 and 1/r is not (α, β)-energy-limited for any r2 > α and
β ≥ 0. An ε-net IS on this set is constructed and its cardinality |IS| determined
in Ref. [83, Lemma S16] as

|IS| ≤
(

3(
√
α + 1)

εS

)4M2

.

Concerning the displacement, we must have |d|2 = |d1|2 + . . . |dl|2 ≤ 2β for an
admissible displacement vector d = (d1, . . . , dM), where each dj = (dj1, dj2) is a
pair of singe-mode phase-space coordinates, otherwise the unitary channel Ud is
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not (α, β)-energy-limited, i.e., |d|2 ≤ 2β. Hence, we construct a net on the ball of
radius

√
2β in R2M with the Euclidean metric. The cardinality is known to be

|Id| ≤
(

1 +

√
2β

εd

)2M

.

Bringing these two cardinalities together results in an overall net cardinality

|IS,d| ≤ |IS||Id| ≤
(

3(
√
α + 1)

εS

)4M2(
1 +

√
2β

εd

)2M

≤
(

3(
√
α + 1)

εS

)4M2(√
2β + 1

εd

)2M

.

Having established ε-nets on the parameter level, we require an upper bound for
1
2
‖UG − UGi‖E� . So we transfer both nets on the sets of parameters to the corre-

sponding channels. The symplectic matrices correspond to the first three parts of
the decomposition, a rotation followed by a squeezing and again a rotation.

Since we assume an energy-limitation on the set of Gaussian unitary channels,
we can construct a compact subset of channels that contains these channels, as
follows. In fact, we obtain it from a compact subset of the symplectic group and a
compact subset of the displacement group.

For the former, we use Ref. [83, Eq. (4)], which states

1

2
‖US − US′‖E� ≤

√
(
√

6 +
√

10 + 5
√

2M)(E + 1)g
(
‖S−1S ′‖∞

)√
‖S−1S ′ − 1‖2,

where g(x) :=
√

π
x+1

+
√

2x. Note ‖S−1‖ ≤
√
α, ‖S ′‖ ≤ 1 +

√
α, hence the

argument x of g(x) is between 1 and α +
√
α ≤ 2α, thus g(x) ≤

√
π/2 +

√
2x ≤(

2 +
√
π/2
)√

α < 3.26
√
α. Furthermore, ‖S−1S ′ − 1‖2 = ‖S−1(S ′ − S)‖2 ≤√

2M‖S−1(S ′ − S)‖∞ ≤
√

2M‖S−1‖∞‖S ′ − S‖∞ ≤
√

2M
√
αεS. Finally,

√
6 +√

10 + 5
√

2M ≤ (
√

6 +
√

10 + 5
√

2)M < 13M . Hence, in simplified form the result
says that

1

2
‖US − USi‖E� ≤

√
13M

√
E + 1 · 3.26

√
α · 4
√

2M 4
√
α
√
εS

≤ 14(Mα)3/4
√
E + 1

√
εS.

For the latter, we consider Ref. [83, Eq. (3)], which states

1

2
‖Dz −Dw‖E� ≤ sin

(
min

{
‖z − w‖f(E),

π

2

})
≤
√

2
√
E + 1‖z − w‖,

where f(E) := 1√
2
(
√
E +

√
E + 1) ≤

√
2
√
E + 1 and as before we only use the

simplified upper bound.
Note that with the action of US on the input, the input energy of the displacement

part changes, i.e., we work with the (αE + β)-energy-constrained diamond norm

84



here. Thus, we obtain

1

2
‖Ud − Udi‖αE+β

� ≤ ‖d− di‖f(αE + β)

≤
√

2
√
αE + β + 1εd.

Overall, we obtain for the net of channels

1

2
‖UG − UGi‖E� ≤

1

2
‖Ud ◦ US − Udi ◦ USi‖E�

≤ 1

2
‖US − USi‖E� +

1

2
‖Ud − Udi‖αE+β

�

≤ 14(Mα)3/4
√
E + 1

√
εS +

√
2
√
αE + β + 1εd.

We now choose εS and εd in terms of ε, E, α, and β as follows:

εS =
ε2

784(Mα)3/2(E + 1)
, εd =

ε

2
√

2
√
αE + β + 1

which yields an ε-net with

|IS,d| ≤
(

2352(Mα)3/2(
√
α + 1)(E + 1)

ε2

)4M2(
2
√

2(
√

2β + 1)
√
αE + β + 1

ε

)2M

.

With the PET (see Section 7.1), we construct a programmable quantum processor
with d∞P = |IS,d| which proves the assertion.

7.4.3.2 Lower bounds Gaussian unitary channels

The following theorem states lower bounds on the dimension of the program register
of an ε-EPQPU(α,β).

Theorem 7.4.6 (Lower bounds generalized phase rotations [2, Theorem 21]). Let
ε > 0 and E > 0 and consider an M-mode Bosonic system with Hilbert space H.
Then, for every infinite-dimensional ε-EPQPU(α,β) P ∈ CPTP (H ⊗ HP ,H), its
program register can be lower bounded as follows:

d∞P ≥
1

4(512e)M

(
δ2E/M

(
√

2E/M + 1)δ

)M (
1√
2ε

)(1−δ)M

≥ (Cδ2)M
(
E/M√

ε

)(1−δ)M

,

for any 0 < δ < 1, and the latter for E
M
≥ 1 and an absolute constant C. �

Proof. Analogously to the proof of Theorem 7.4.3 for lower bounds in the gauge-
covariant case, we proceed in two steps: first, applying Lemma 7.2.4 and then
finding a suitable ensemble.

To obtain lower bounds on the dimension of the program register of an
ε-EPQPGU(α,β) for an M -mode Bosonic system with Hilbert space
H = H1⊗· · ·⊗HM , Lemma 7.2.4 is applicable to suitably energy-limited unitaries.
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The difficulty is mainly that of finding a good distribution over those unitaries and a
fiducial state with which to calculate a lower bound in the scope of Subsection 7.4.1.

We consider M -fold phase rotations Rϕ = Rϕ1 ⊗ · · · ⊗ RϕM with

ϕ = (ϕ1, . . . , ϕM) ∈ [0; 2π]M in Lemma 7.2.4. Note that these are a subset of
the passive linear transformations, and as such conserve energy, hence are (1, 0)-

energy-limited. We get that the modified processor P̂ approximately implements
the R⊗`ϕ :

1

2

∥∥∥P̂(· ⊗ πϕ)−R⊗`ϕ
∥∥∥(E,...,E)

�
≤ 2`
√

2ε.

In the `M -mode system H⊗` we address the modes Hjk by double indices, where
j = 1, . . . ,M are the original physical modes and k = 1, . . . , ` the repetitions. The
repetitions of the j-th mode have the Hilbert space H⊗`j = Hj1 ⊗ · · · ⊗Hj` =: Hj•.
As in the proof of Theorem 7.4.3, we choose a virtual Fock spaceHVj ⊂ Hj• spanned
by symmetric number states |“n”〉j, and let

|νj〉 :=
∞∑
n=0

cn |“n”〉j ,

where {|cn|2} is the probability distribution of the thermal state (of the virtual
mode HVj) of mean energy (i.e., photon number) `E

M
. The rotation R⊗`ϕj acts on Hj•

and leaves HVj invariant, in fact it puts phases eiϕjn in the above superposition.
Now, |ν〉 := |ν1〉 ⊗ · · · ⊗ |νM〉 is our fiducial state. It has the property that on each
copy H•k = H1k ⊗ · · · ⊗ HMk of the original M -mode system, its energy is E. We
can evaluate the Holevo information of the ideal ensemble of uniformly distributed
states R⊗`ϕ (|ν〉〈ν|) as we did in Theorem 7.4.3:

χ

({
R⊗`ϕ (|ν〉〈ν|),

dMϕ

(2π)M

})
= Mg

(
`E

M

)
≥M log

`E

M

= M (log `+ logE − logM) .

(7.4.3.2.1)

By Lemma 7.2.4, we now have for all ϕ

1

2

∥∥∥P̂(|ν〉〈ν| ⊗ πϕ)−R⊗`ϕ (|ν〉〈ν|)
∥∥∥

1
≤ 2`
√

2ε.

Now we can transform the processor outputs ωϕ = P̂(|ν〉〈ν| ⊗ πϕ) as in the proof
of Theorem 7.4.3, first by the compression maps Kj from Hj• to HVj , resulting in
ω′ϕ = (K1 ⊗ · · · ⊗ KM)ωϕ obeying the same approximation as before

1

2

∥∥∥ω′ϕ −R⊗`ϕ (|ν〉〈ν|)
∥∥∥

1
≤ 2`
√

2ε.

Second, by applying a compression map K fromHV1⊗· · ·⊗HVM to an E-constrained
subspace, according to Lemma 7.4.1, resulting in ω′′ϕ = K(ω′ϕ) such that

1

2

∥∥∥ω′′ϕ −R⊗`ϕ (|ν〉〈ν|)
∥∥∥

1
≤ 4

√
2`
√

2ε,
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while obeying an energy bound trω′′ϕH ≤ E
2
√

2ε
.

As explained in Subsection 7.4.1, we now have

log d∞P ≥ χ

({
ω′′ϕ,

dMϕ

(2π)M

})

≥ χ

({
R⊗`ϕ (|ν〉〈ν|),

dMϕ

(2π)M

})

− 16
√

2
√
`

√√
2εMg

(
E

16
√
ε
√
`
√√

2εM

)
− 2,

see the proof of Theorem 7.4.3. Inserting Eq. (7.4.3.2.1) for the Holevo information
in the last line expresses everything in terms of the g function, which we can upper
and lower bound as before. We choose

√
` = δ

16
√

2
√√

2ε
with 0 < δ < 1, and obtain

log d∞P ≥M log
`E

M
− δM log

( √
2E

Mδ
√
ε

+ 1

)
− δM log e− 2

≥M(1− δ) log
1√
2ε

+M log
δ2E

512M
− δM log

(√
2E

M
+ 1

)
−M log e− 2.

Remark 7.4.7. Note that since phase rotations are a subset of Gaussian unitaries,
the bounds from Theorem 7.4.3 directly apply here. This shows that the program
dimension diverges at least with the inverse square root of ε.
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8 Additional observations and future
perspectives

We briefly summarize important findings including some additional observations
and future research possibilities. The content is based on Refs. [1, Section 5] and [2,
Section VI]. Note that for ε = 0, Theorem 5.2.4 yields exact lower bounds. These
can be combined with the teleportation protocol and subsequent compression (see
Theorem 5.1.10) which results in the optimal program register dimension

dc =
K∑
k=1

nk = dP .

We define an ε-CPQPUV with mixed program states. However, if we insist on
pure program states, we could use a suitable purification instead of πΦ. In this
case, we would obtain dP = d2

c from Theorem 5.1.10. When the commutant K is
abelian, Corollary 5.1.5 reveals that the upper bounds match the lower bounds for
pure states as well. For a non-abelian commutant, this remains an open question.
This thesis presents two main settings for programmable quantum processors. Con-
sidering the implementation of a particular subset of all quantum channels – the
UV -covariant quantum channels – results in a very different situation than the one
for universal programming. While UV -covariant quantum channels are always ex-
actly implementable with finite-dimensional program register for an irreducible U ,
implementation of all unitary channels is only possible in an approximate manner
with a finite-dimensional program register. One could thus ask whether there are
groups and representations where exact programmability is possible if U is not ir-
reducible.
Another open aspect is the improvement of the upper bounds in the approximate
case. We give exact upper bounds, approximate ones using ε-nets, however, rely on
orthogonal program states which is not the case for the teleportation protocol using
Choi-Jamio lkowski states as program states. If we have non-orthogonal program
states, a different compression method for the program states is required.
Concerning tightness of bounds, further research could explore whether the up-
per and lower bounds we obtain for the infinite-dimensional version of the pro-
grammable quantum processor are tight. We choose Bosonic systems as a specific
setting and establish upper and lower bounds on the program register of a pro-
grammable quantum processor implementing energy-limited Gaussian channels.
For the unitary case, we provide upper bounds which scale polynomially in the
reciprocal of the approximation parameter with quadratic order in the number of
modes. Due to the energy constraint, we use ε-nets on compact sections of the
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Gaussian unitary group. To obtain lower bounds, we define the multiply energy-
constrained diamond norm which we use to generalize the method of Yang et al. [15]
such that the same program state can be recovered to implement the same unitary
several times. This finally leads to lower bounds that diverge with the reciprocal of
the approximation parameter (polynomially of a degree at least half of the number
of Bosonic modes). The recovering-trick of the program state cannot be applied if
we aim to implement all energy-constrained single-mode gauge-covariant Gaussian
quantum channels. We still obtain lower bounds which tend to a constant function
of the energy constraint whereas the upper bounds we establish diverge with the
accuracy of implementation. Further research is required to close this gap. An
infinite-dimensional program register might even be necessary.
Another future perspective is to further generalize the processor towards imple-
menting any kind of energy-limited Gaussian channel. This could potentially be
approached by considering their Gaussian unitary dilation. Therefore, a version of
Stinespring’s Theorem, which provides an energy-limited dilation for every energy-
limited Gaussian channel, would necessarily be required. Thus, the contribution
of generalizing the concept of approximate programmable quantum processors in
Chapter 7 opens up new horizons for programmable quantum processors in infinite
dimension.

89





Bibliography

[1] M. Gschwendtner, A. Bluhm, and A. Winter. Programmability of co-
variant quantum channels. Quantum, 5:488, 2021. doi:10.22331/

q-2021-06-29-488.

[2] M. Gschwendtner and A. Winter. Infinite-dimensional programmable quantum
processors. PRX Quantum, 2:030308, 2021. doi:10.1103/PRXQuantum.2.

030308.

[3] M. Gschwendtner, R. König, B. Burak Şahinoğlu, and E. Tang. Quantum
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[44] M. Hillery, M. Ziman, and V. Bužek. Improving the performance of proba-
bilistic programmable quantum processors. Physical Review A, 69(4):042311,
2004. doi:10.1103/PhysRevA.69.042311.
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[47] J. Fiurášek and M. Dušek. Probabilistic quantum multimeters. Physical Review
A, 69(3):032302, 2004. doi:10.1103/PhysRevA.69.032302.

[48] S. Ishizaka and T. Hiroshima. Asymptotic Teleportation Scheme as a Universal
Programmable Quantum Processor. Physical Review Letters, 101(24):240501,
2008. doi:10.1103/PhysRevLett.101.240501.

94

http://dx.doi.org/10.1007/s00220-009-0824-2
http://dx.doi.org/10.1016/S0370-1573(02)00266-1
http://dx.doi.org/10.1103/PhysRevA.64.062307
http://dx.doi.org/10.1103/PhysRevA.64.062307
https://arxiv.org/pdf/quant-ph/0012067.pdf
https://arxiv.org/abs/quant-ph/0205074
http://dx.doi.org/10.1109/PHYCON.2003.1237016
http://dx.doi.org/10.1109/PHYCON.2003.1237016
https://arxiv.org/pdf/quant-ph/0311196.pdf
https://arxiv.org/pdf/1006.3671.pdf
https://arxiv.org/pdf/1006.3671.pdf
http://dx.doi.org/10.1103/PhysRevA.69.042311
http://dx.doi.org/10.1103/PhysRevA.66.022112
http://dx.doi.org/10.1103/PhysRevLett.89.190401
http://dx.doi.org/10.1103/PhysRevA.69.032302
http://dx.doi.org/10.1103/PhysRevLett.101.240501


[49] M. Christandl, F. Leditzky, C. Majenz, G. Smith, F. Speelman, and
M. Walter. Asymptotic performance of port-based teleportation. Com-
munications in Mathematical Physics, 381(1):379–451, 2020. doi:10.1007/

s00220-020-03884-0.

[50] S. Beigi and R. König. Simplified instantaneous non-local quantum computa-
tion with applications to position-based cryptography. New Journal of Physics,
13(9):093036, 2011. doi:10.1088/1367-2630/13/9/093036.

[51] C. Majenz. Entropy in Quantum Information Theory – Communication and
Cryptography. PhD thesis, PhD School of The Faculty of Science, University
of Copenhagen, 2018. URL: https://arxiv.org/pdf/1810.10436.pdf.

[52] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
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