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Abstract
We study combinatorial optimization problems related to covering and scheduling
problems. The first chapter considers the Minimum Hitting Set of Bundles problem, a
natural generalization of the Hitting Set problem, that provides an abstract framework
for several scheduling problems. We present a combinatorial approximation algorithm
for the general problem, study the computational complexity of several special cases,
and present polynomial-time algorithms. The second chapter is related to matroids,
which are essential structures in combinatorial optimization. We show how to reduce
a gammoid, a particular type of matroid, efficiently to its underlying structure and
address the implications of our results on related covering and coloring problems on
the intersection of matroids.
The third chapter deals with the Generalized Min Sum Set Cover problem, which

was initially introduced as a theoretical framework for re-ranking web search results.
We study the problem on special types of hypergraphs as well as with different choices
of covering constraints, providing approximation and exact algorithms. In the fourth
chapter, we focus on the Bipartite Flow Scheduling problem, which is closely related to
Coflow Scheduling and models data transfers in processors. We explain the connection
of Bipartite Flow Scheduling to other scheduling and covering problems and give an
overview of existing results.





Zusammenfassung
Wir untersuchen kombinatorische Optimierungsprobleme, welche im Zusammenhang zu
Covering- und Schedulingproblemen stehen. Das erste Kapitel betrachtet das Minimum
Hitting Set of Bundles Problem, eine natürliche Verallgemeinerung des Hitting Set
Problems, das ein abstraktes Konzept für mehrere Schedulingprobleme bietet. Wir
stellen einen kombinatorischen Approximationsalgorithmus für das allgemeine Problem
vor, untersuchen die Komplexität einiger Spezialfälle und präsentieren polynomielle
Algorithmen. Das zweite Kapitel bezieht sich auf Matroide, die ein wichtiges Konzept
in der kombinatorischen Optimierung darstellen. Wir zeigen wie man einen Gammoid,
eine bestimmte Art Matroid, effizient auf seine zugrundeliegende Struktur reduzieren
kann und gehen auf die Bedeutung unserer Ergebnisse für verwandte Covering- und
Färbungsprobleme auf dem Schnitt von Matroiden ein.

Das dritte Kapitel beschäftigt sich mit dem Generalized Min Sum Set Cover Problem,
das ursprünglich als theoretisches Framework für das Re-Ranking von Suchergebnissen
eingeführt wurde. Wir untersuchen das Problem auf speziellen Hypergraphen und mit
verschiedenen Coveringbedingungen und präsentieren Approximationsalgorithmen und
exakte Algorithmen. Im vierten Kapitel konzentrieren wir uns auf das Bipartite Flow
Scheduling Problem, das eng mit dem Coflow Scheduling Problem verwandt ist und den
Datentransfer in Prozessoren modelliert. Wir erklären den Zusammenhang zwischen
Bipartite Flow Scheduling und anderen Scheduling- und Coveringproblemen und geben
einen Überblick über bestehende Forschungsergebnisse.
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Chapter 1

Introduction

Optimization is an essential part of our everyday lives. Nowadays, algorithms help us
to find the fastest bus connection or the shortest bike route to our desired destination.
They match us with the closest available Uber driver and rank Google search results
for us in a meaningful way. We can use them to schedule MRI and CT appointments
efficiently, optimize the route of freight transportation, and minimize the running time
of data transfers in a processor.
For most of these optimization problems, we can easily compute feasible solutions.

These could be potential bike routes or bus connections to take, possible pairs of drivers
and customers, or ways to order a list of search results. However, just obtaining any
feasible solution is often not satisfactory since we prefer some solutions over others. We
might be interested in the fastest bus connection, the one with the fewest transitions,
or maybe in one that involves the shortest walking distances. An objective function can
model these preferences by mapping solutions to values, thus making them comparable.
This gives rise to the notion of optimality - a feasible solution of maximum (or minimum)
objective value. But can we always compute an optimal solution efficiently?

Optimization problems become challenging whenever there are more feasible solutions
than a computer can test in a reasonable amount of time. However, in some of these
cases, we are still able to determine an optimal solution efficiently, using a more
sophisticated approach that takes advantage of the problem’s structure. In the 1960s,
Jack Edmonds showed that for some problems, there exist so-called polynomial-time
algorithms that solve them efficiently. A well-known example is the Matching problem.

Unfortunately, this might not be true for all combinatorial optimization problems, as
Stephen Cook and Richard Karp observed. The large majority of problems, the most
famous among them being the Traveling Salesperson problem, seem to be significantly
harder to solve. Whether polynomial-time algorithms for these so-called NP-hard
problems exist is one of the field’s big open problems.

Given an NP-hard optimization problem, we have two choices on how to proceed. We
can solve it to optimality requiring exponential running time, which is only a feasible
approach for solving very small, concrete examples. Alternatively, we can develop
algorithms to solve them in polynomial-time, but not to optimality. In this case, we
would like to have a worst-case guarantee on the quality of our solution. Polynomial-time
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Chapter 1 Introduction

algorithms that find such near-optimal solutions are called approximation algorithms.

This thesis discusses hardness results, polynomial-time algorithms, and approximation
algorithms for covering and scheduling problems. Before giving a high-level idea of the
topics considered, we briefly introduce the terms Set Cover and Scheduling.

Set Cover. In the canonical Set Cover problem we are given a set of n elements
together with a collection of subsets. The goal is to choose as few sets as possible to
cover all elements. In Figure 1.1, the elements are visualized by points, and we are
given seven sets. In this example, a cover is given by the green, yellow and red set since
their union covers all elements. It is optimal, since there exists no cover of size two.

Set Cover has many applications. For example, it can be used to model the following
problem. Assume you need to form a team for checking and refueling an airplane
between two flights. Each worker has individual skills and is trained for a specific set
of tasks. Your goal is to choose the smallest group of workers that is skilled to execute
all assignments. In this application, the points of Figure 1.1 represent the collection of
tasks, and every worker corresponds to a set containing all tasks that he is trained for.
An optimal team of size three is formed by the workers corresponding to the green, the
yellow, and the red set.

Fig. 1.1: Example of an instance of Set Cover. A cover of minimum cardinality is given by
the green, yellow and red set.

Scheduling. To get some intuition for Scheduling problems, we consider a simple
Single Machine Scheduling environment. We are given a set of n jobs that need to be
executed on a single machine. Each job j has a processing time pj , which means that
it must be executed on the machine for pj time units. Some jobs might be more urgent
than others or simply more important, which we model by non-negative weights wj .
A schedule is, in this case, given by an ordering of the jobs in which they should be
processed on the machine. A job’s completion time in a specific schedule is denoted
by Cj . Our goal is to find a schedule that minimizes the sum of weighted completion
times.

In Figure 1.2, we are given four jobs with the respective processing times and weights,
and we would like to find an ordering of the jobs that minimizes the sum of weighted
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completion times. Two exemplary schedules with corresponding objective values are
depicted on the right. A simple approach, visualized in the first schedule, is to order
the jobs with respect to increasing processing times. Job j4 completes after time 1,
job j2 after time 3, job j1 after time 6 and job j3 after time 10. The sum of weighted
completion times is, hence, given by

∑
wjCj = 1 · 1 + 4 · 3 + 1 · 6 + 5 · 10 = 69.

Ordering jobs just by their processing times completely neglects their weights. A
more advanced strategy, displayed in the second schedule, is to order the jobs with
respect to decreasing ratios wj

pj
. This leads to a strictly smaller objective value of 55. It

turns out that 55 is the optimal value of this example, because the second schedule was
constructed using a scheduling policy called Smith’s rule, which is known to always
construct an optimal schedule in this setting.

Scheduling problems arise in many applications with different settings, making it a
broad class of problems with a wide variety of distinct characteristics. For example,
when building a car, the dashboard has to be installed before the steering wheel, so not
every ordering of the jobs is feasible. This can be modeled by precedence constraints.
Furthermore, one may allow jobs to be preempted and continued later, or not all jobs
might be available at time 0, which can be modeled by release dates. Moreover, we
might have multiple machines or consider a different objective function.

j1

j2

j3

pj1 = 3 wj1 = 1

pj2 = 2 wj2 = 4

pj3 = 4 wj3 = 5

∑
j wjCj = 69

j4 pj4 = 1 wj4 = 1

∑
j wjCj = 55

Cj4 Cj2 Cj1 Cj3

Cj4

Cj4Cj2 Cj1Cj3

1 3 6 10

2 6 7 10

Fig. 1.2: Example of Single Machine Scheduling with 4 jobs. The sum of weighted completion
times of the first schedule is given by 69 and of the second schedule by 55.

This thesis deals with four different topics. In the following, we give a high-level idea of
the topics and motivate them from a practical perspective. While most of the problems
are inspired by real-world applications, we focus in this thesis exclusively on theoretical
results.
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Chapter 1 Introduction

Minimum Hitting Set of Bundles Problem

Consider a Railway Corridor that is regularly used by freight and passenger trains.
All trains follow a schedule that is adapted once a year, so in particular known far in
advance. Regular track maintenance is essential to prevent train service disruptions
due to technical failures. However, trains cannot operate on the affected section of the
track during ongoing construction work. One advantage of disruptions by maintenance
work is that, unlike unforeseeable disruptions caused by severe weather, they can be
planned well in advance. Our goal is to schedule all maintenance jobs such that the
impact on the train traffic is as small as possible.
The Minimum Hitting Set of Bundles problem (Mhsb) mathematically abstracts

this challenge. It is a generalization of the classical Set Cover problem and provides
a framework not only for railway maintenance scheduling but also for several other
scheduling problems. Chapter 2 of this thesis is dedicated to studying the Minimum
Hitting Set of Bundles problem. We give a simple combinatorial algorithm for the
general problem. Motivated by the observation that most applications have a common
underlying structure, we study Mhsb on so-called interval and 2-dimensional interval
bundles.

Reduction of Gammoids

Many combinatorial optimization problems, amongst them the famous Traveling
Salesperson problem, can be formulated as Matroid Intersection problems, making
matroids one of the field’s essential structures. A gammoid is a particular type of
matroid, defined on a directed graph.

Chapter 3 shows how to reduce a gammoid efficiently to its underlying structure. The
motivation to study reductions is based on the observation that optimization problems
on simpler structures can be solved more efficiently. If the reduction maintains certain
invariants, the obtained solution is also reasonable for the original problem. We also
address these implications by elaborating on the impact of partition reductions for the
Matroid Intersection Cover problem, which is a special case of the Set Cover problem.

Laminar Generalized Min Sum Set Cover Problem

Search engines like Google or Yahoo! have become an indispensable part of our modern
life by making information instantly available almost everywhere. The number of
search results for a particular keyword can be immense, such that we have to rely on a
good ranking by the search engine. The main challenge is that even people searching
for the exact same keyword might have very different priorities amongst the search
results. This is not only caused by the fact that some words are ambivalent but also
by our interest in different aspects of a keyword.
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Additionally, the purpose of a search can vary. In an informational search, a user is
interested in a wide range of search results, whereas, in a navigational search, one is
only interested in finding specific information as quickly as possible.
The challenge of finding a good ranking can be mathematically modeled by the

Generalized Min Sum Set Cover problem (Gmssc). In Chapter 4, we study Gmssc on
special families and provide approximation and polynomial-time algorithms for certain
choices of covering constraints.

Bipartite Flow Scheduling

As a result of the technological developments and breakthroughs of the past decades,
large and complex datasets are available to us today. In order to benefit from these big
datasets, for example when predicting natural disasters or investigating new medical
treatment methods, we face a number of challenges. Amongst them is the question
of how to store and transfer data in general. MapReduce, Spark and Dyrad are
frameworks developed for the efficient processing of such large datasets. MapReduce,
for example, does so by distributing the data to multiple systems, processing the tasks
in parallel and aggregating the results afterwards.

This problem can be mathematically modeled by the Coflow Scheduling problem. In
Chapter 5 of this thesis, we consider a special case of Coflow Scheduling that has been
studied in the field under various different names. We summarize these results and
elaborate on the connection of this problem to other optimization problems.

5



Chapter 1 Introduction

1.1 Preliminaries
We assume that the reader has profound knowledge of combinatorial optimization,
particularly of graph theory, approximation algorithms, scheduling, and complexity
theory. This section’s primary purpose is to fix basic notation and highlight concepts
used throughout this thesis. To make the individual chapters as self-contained as possi-
ble, we deferred most of the definitions that are only used locally to the corresponding
sections.

1.1.1 Basic Definitions
We denote the non-negative integers, non-negative rational numbers, real numbers
and non-negative real numbers by N, Q+, R, and R+. For some integer n ∈ N, we
use the notation [n] := {1, 2, . . . , n}. The n-th harmonic number is denoted by
H(n) := 1 + 1

2 + 1
3 + . . .+ 1

n =
∑
k∈[n]

1
k . Given a ground set Ω of elements, we denote

the power set of Ω by 2Ω := {X | X ⊆ Ω}, and the cardinality of a set X by |X|. We
write X ⊆ Y if X is a subset of Y . Strict subsets are denoted by X ⊂ Y . Two subsets
X,Y are disjoint if X ∩ Y = ∅. We write X ∪ Y for the union of two sets and X ∩ Y
for their intersection. The symmetric difference of two sets X and Y is denoted by
X 4 Y := (X ∪ Y ) \ (X ∩ Y ).
The set family X := {X1, X2, . . . , Xl} with l ∈ N is called a partition of Ω, if the

sets in X are pairwise disjoint and Ω =
⋃
i∈[l]Xi. We refer to the sets of a partition

as parts. We say that two sets X,Y ⊆ Ω overlap if, X ∩ Y 6= ∅ and neither X ⊆ Y
nor Y ⊆ X. A set family F ⊆ 2Ω is laminar if and only if it is overlap-free, that is,
no two sets in F overlap. Two sets X,Y cross, if they overlap and X ∪ Y 6= Ω. A
cross-free family is a set family in which no two sets cross.

A function f : 2Ω → R is called submodular if for all X,Y ⊆ Ω

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).

1.1.2 Complexity and Algorithms
The complexity class P denotes all decision problems that can be solved in polynomial
time. By NP we denote the complexity class of decision problems that can be solved in
non-deterministic polynomial time. We say that a decision problem is NP-complete
if it is in NP and all other problems in NP polynomially reduce to it. An optimization
problem is NP-hard if its decision version is NP-complete.

Cook [31] showed that the Boolean Satisfiability problem is NP-complete. Karp [66]
built upon this result by presenting his famous list of Karp’s 21 NP-complete problems.
Three of them play a role in this thesis, namely the Set Cover problem (Hitting Set
problem), the Vertex Cover problem, and the Graph Coloring problem. The question
of whether P=NP is one of the major open questions of the field and one of the seven
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1.1 Preliminaries

Millennium Problems by the Clay Mathematics Institute [21]. Assuming P 6=NP, there
is no hope of finding a polynomial-time algorithm that solves an NP-hard problem to
optimality. Instead, we focus on polynomial-time approximation algorithms. We say
that an algorithm is an α-approximation algorithm with α ≥ 1 for an optimization
problem P with non-negative weights if for all instances I ∈ P

1
α
OPT (I) ≤ ALG(I) ≤ α OPT (I),

where OPT (I) denotes the optimal objective value of instance I, and ALG(I) denotes
the objective value of the solution obtained by the algorithm. Hence, a polynomial-time
exact algorithm can also be seen as a 1-approximation algorithm.
The Unique Games Conjecture (UGC) was proposed by Khot [68]. If P6=NP

and the Unique Games Conjecture holds, then this has implications, for example, on
the inapproximability of Set Cover.

Conjecture 1.1 (Unique Games Conjecture [68])
For any small constants ζ, δ, there exists a constant c = c(ζ, δ) such that determining
whether a unique 2-prover game with answers from a domain of size c has value at
least 1− ζ or at most δ is NP-hard.

1.1.3 Graph Theory

We denote by G = (V,E) a graph with vertex set V and edge set E. We might also
refer to the vertex set or edge set of a graph G as V (G) or V (E), respectively. If not
explicitly mentioned otherwise, G is a simple graph, that is, a graph without loops
and parallel edges. A multigraph is a graph that may have multiple edges between
the same pair of vertices. The degree of a vertex v in G is denoted by degG(v). To
simplify notation, we omit the subscript whenever it is clear which graph we refer to.
The maximum degree of a graph G is denoted by ∆(G) := maxv∈V (G) degG(v).

A graph H = (V ′, E′) is called subgraph of G if V ′ ⊆ V and E′ ⊆ E. For some
V ′ ⊆ V , we denote the induced subgraph by G[V ′]. The union of two graphs
G = (V,E) and H = (V,E′) on the same vertex set is defined by G∪H := (V,E ∪E′).
Note that if the edge uv appears in both graphs, G ∪ H contains two copies of uv.
This implies in particular that G ∪H is not necessarily simple anymore. Whenever we
are given a graph with non-negative vertex weights, this refers to a weight function
w : V → R+. Accordingly, we define non-negative edge weights by a weight function
w : E → R+.
Throughout this thesis, we consider various well-known graph classes. A tree is

a connected graph without cycles and a forest is a collection of trees. We denote a
bipartite graph with partitions A and B by G = (A ∪B,E). A graph is bipartite if
and only if it does not contain an odd cycle. We say that a graph G is layered, if there
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Chapter 1 Introduction

exists a partition of its vertices V1, . . . , Vl such that G only contains edges between
subsequent layers Vi and Vi+1. The line graph of a graph G is denoted by L(G). The
vertex set of L(G) is given by E(G), and two vertices in L(G) are adjacent whenever
the corresponding edges in G are adjacent. See Figure 1.3 for an example. Line graphs
have the important property that a so-called matching in a graph corresponds to
an independent set in its line graph. This connection will be particularly useful in
Chapter 5.

Fig. 1.3: Example of a graph (black) and its corresponding line graph (gray).

A digraph D = (V,E) is a directed graph in which the edges are ordered pairs. The
pair (v, w) corresponds to an edge from v to w. We disinguish between the in-degree
and out-degree of a vertex. The in-degree of a vertex is denoted by deg−(v) and the
out-degree is denoted by deg+(v). An in-tree is a directed tree with a designated
sink t, such that there exists a directed path from every vertex to t. A collection of
in-trees is called in-forest. In Chapter 4, we refer to a scheduling problem whose
precedence graph is given by an in-forest. General digraphs play an important role in
Chapter 3, where we study gammoids, which are matroids defined on digraphs.

t

t′

Fig. 1.4: Visualization of an in-forest, consisting of two in-trees with sinks t and t′. Note that
deg+(v) = 1 for all vertices besides the sinks.

A hypergraph H = (V,E) is a graph defined on the vertex set V . Every edge of a
hypergraph is a subset of V , that is, E ⊆ 2V . A hypergraph is called r-uniform if every
edge has cardinality r. Note that simple graphs can also be interpreted as 2-uniform
hypergraphs. A hypergraph is d-regular if every vertex is contained in precisely d
edges. See Figure 1.5 for an example of a 3-uniform and a 2-regular hypergraph. A
r-partite hypergraph is a hypergraph whose vertex set V can be partitioned into
parts V1, . . . Vl such that every edge contains exactly one vertex from each part. Hence,

8



1.1 Preliminaries

every r-partite hypergraph is also r-uniform. A hypergraph is laminar if its edge set
forms a laminar family and cross-free if its edge set forms a cross-free family.

2-regular3-uniform

Fig. 1.5: Example of a 3-uniform and a 2-regular hypergraph.

Coloring

Given a graph G = (V,E), a feasible (vertex) coloring with k colors is a function
c : V → [k], such that no two adjacent vertices are colored with the same color, that
is, (u, v) ∈ E implies c(u) 6= c(v). A graph is k-colorable if a feasible coloring with k
colors exists. The smallest integer k such that G is k-colorable is called the chromatic
number χ(G). A subset V ′ of vertices forms an independent set if no two vertices in
V ′ are adjacent. By definition, the color classes of a feasible coloring form independent
sets. Hence, an alternative way to think about a coloring is to interpret it as a partition
of the vertex set into as few independent sets C1, . . . , Ck as possible. This interpretation
will be particularly useful in Chapter 3 when explaining the equivalence of Matroid
Covering and Matroid Coloring. Determining the chromatic number of a graph is
NP-hard. In fact, Graph Coloring is among Karp’s 21 NP-complete problems [66].

In this thesis, we consider Min Sum Coloring. In the Min Sum Coloring problem,
the goal is to find a feasible coloring, but instead of minimizing the number of colors,
the task is to minimize the sum of colors, that is, minimize

∑
v∈V c(v). Note that an

optimal solution of Min Sum Coloring may require more colors than an optimal vertex
coloring. A classic example, where an additional color decreases the sum of colors, is
given in Figure 1.6.

1

1

1

2 1
2

2

2

1

1

1

1

1

1

2 3

Fig. 1.6: Example of a 2-colorable graph. The Min Sum Coloring on the left has value 12,
whereas the coloring with an additional color on the right has value 11.
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Chapter 1 Introduction

In addition to vertex coloring, we also consider edge coloring. Given a graph
G = (V,E), a feasible edge coloring with k colors is a function c : E → [k], such that no
two adjacent edges are colored with the same color. In other words, if c(e) = c(e′), then
e∩ e′ = ∅. A graph is k-edge-colorable if a feasible edge coloring with k colors exists.
The smallest integer k such that G is k-edge-colorable is called the chromatic index
χ′(G). Note that an edge coloring of a graph G corresponds to a vertex coloring of its
line graph L(G). The Min Sum Edge Coloring problem can be defined equivalently to
the Min Sum Coloring problem above. We define the two problems in more detail in
Chapter 5 and explain their connection to the considered scheduling problem.

Matchings

A matching M is a subset of edges, such that no two edges are adjacent to the same
vertex. We say that a vertex v is covered by a matching M if there exists an edge in
M that is incident to v. A matching is maximal if it cannot be extended to a larger
matching by adding another edge. A maximum matching is the largest maximal
matching of a graph. A perfect matching is a matching that covers all vertices of the
graph. A path is called M-alternating if its edges are alternately in M and not in M .
An M -alternating path of odd length whose end vertices are uncovered is called an
M-augmenting path. Proposition 1.2 connects M -augmenting paths to the property
of M being maximum.

Proposition 1.2 ([19, 87])
Let G be a graph and let M be a matching in G. M is maximum if and only if there is
no M -augmenting path.

In this thesis, we only consider matchings in bipartite graphs. Matchings in bipartite
graphs are closely related to the Maximum Flow problem. A maximum cardinality
matching in a bipartite graph G can be found in O(mn), where n denotes the number
of vertices and m denotes the number of edges in G. For example, this can be done by
applying the Ford-Fulkerson-Algorithm to the following graph. Direct all edges in G
from A to B and add a source s and sink t to the graph. Introduce directed edges from

s t

A B

Fig. 1.7: Example to visualize the construction of the corresponding Maximum Flow problem.

10



1.1 Preliminaries

s to all vertices in A and from all vertices in B to t. All edges have unit capacities.
Now, any optimal maximum integral s-t-flow corresponds to a maximum cardinality
matching. See Figure 1.7 for an example. In the weighted case, finding a maximum
weight matching in a bipartite graph is equivalent to finding a minimum weight perfect
matching. The latter can be solved in polynomial time by solving a Minimum Cost
Flow problem on the corresponding flow graph.

Next, we consider the Vertex Cover Problem, another one of Karp’s 21 NP-complete
problems. It is defined as follows.

Definition 1.3 (Vertex Cover)
Consider a graph G = (V,E) and a weight function w : V → Q+. A vertex cover C is
a subset of vertices such that every edge in E is incident to at least one vertex in C.
The task is to find a vertex cover of minimum weight, that is, to minmize

∑
v∈C w(v).

On bipartite graphs, it is closely related to maximum matchings and can be solved in
polynomial time as the following proposition implies.

Proposition 1.4 (Kőnig’s Theorem [92])
If G is bipartite, then the cardinality of a maximum matching equals the size of a
minimum vertex cover.

1.1.4 Set Cover
Next, we formally introduce the Set Cover problem and the equivalent Hitting Set
problem, which are both among Karp’s 21 NP-complete problems [66]. We visualize why
the two problems are, indeed, equivalent and briefly discuss two standard approximation
algorithms.

Definition 1.5 (Set Cover)
Let Ω be the ground set of n elements and let X ⊆ 2Ω be a collection of subsets. A
cover is a collection of subsets C ⊆ X , whose union equals Ω. The goal is to find a
cover C of minimum cardinality.

The equivalent Hitting Set problem is defined as follows.

Definition 1.6 (Hitting Set)
Let Ω be the ground set of n elements and let X ⊆ 2Ω be a collection of subsets. A set
S ⊆ Ω is called a hitting set if it contains at least one element of every set in X . The
goal is to find a hitting set S of minimum cardinality.

Consider an instance of Set Cover on n elements, given by a collection of subsets
X . The easiest way to see that the two problems are equivalent is to consider the
following bipartite graph G = (A ∪B,E). The vertex set A contains a vertex vk for
every element of the instance, and B contains a vertex vX for every set of the family.

11
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1

2

3

4

5

X1

X2

X3

X4

1

2

3

4

5

1
2

3

4

5

Set Cover Hitting Set

Fig. 1.8: Example of an instance of Set Cover on the left, the bipartite representation in the
middle, and the equivalent instance of Hitting Set on the right.

There is an edge (vi, vS) in E whenever element i is contained in the set S. See Figure
1.8 for an example. We obtain the corresponding instance of Hitting Set by changing
sets and elements in the following way. We introduce a set for every vertex vk in A and
an element for every vertex vX in B. An element is contained in the corresponding set
whenever there exists an edge in G. Hence, sets in the Set Cover instance correspond
to elements in the Hitting Set instance and vice versa. In Figure 1.8, an instance of Set
Cover is displayed on the left, the corresponding bipartite graph in the middle, and
the equivalent instance of Hitting Set on the right. Note that the blue and the yellow
set form a minimum set cover on the left. Equivalently, a minimum hitting set on the
right is obtained by choosing the blue and the yellow element.
In the following, we present two standard approximation algorithms for Set Cover.

Let n be the number of elements of an instance and let fmax be the maximum number
of sets an element appears in. There exists a H(n)-approximation algorithm and a
fmax-approximation algorithm for Set Cover.
We start by discussing the Greedy algorithm with an approximation ratio of H(n).

In the unweighted version of Set Cover, Greedy chooses the set which covers the largest
number of uncovered elements in each round. Johnson [65] and Lovász [79] analyzed
Greedy for the unweighted version, and Chvátal [30] generalized the algorithm for
weighted instances. In the weighted Set Cover problem, we are additionally given a
non-negative weight function w : X → R+ and the task is to find a cover of minimum
weight. The generalization of the Greedy algorithm for weighted instances works as
follows. Choose the set that minimizes the ratio of weight over the number of newly
covered elements. Greedy has an approximation ratio H(n) ≈ lnn, where H(n) denotes
the n-th harmonic number. Dinur and Steurer [34] proved that the approximation ratio
of Greedy is indeed best possible, by showing that no polynomial-time (1− o(1)) ln(n)-
approximation algorithm exists unless P=NP.

An algorithm for Set Cover with approximation ratio fmax can be obtained through
rounding an optimal solution of the following natural Set Cover LP [92].

12



1.1 Preliminaries

minimize
∑

wSxS

subject to
∑

S : i∈S
xS ≥ 1 for all i ∈ Ω

xS ≥ 0 for all S ∈ X

Consider an optimal solution of the LP given above. Choose all sets whose value is
bigger or equal to 1

fmax
to be in the cover. To see that the solution obtained is indeed

a cover, note that any element is contained in at most fmax sets. Hence, at least one of
them has to be picked with a fraction of at least 1

fmax
. Since we increase the value of

the solution by at most a factor of fmax, we obtain the desired approximation ratio.
Assuming the Unique Games Conjecture holds, the approximation factor fmax is

best possible due to a result by Bansal and Khot [12]. For more detailed information
on the Set Cover problem, see for example [101].

The Min Sum Set Cover problem (Mssc) was originally introduced in [41]. In Chap-
ter 4, we study Mssc on laminar families and with more general covering constraints.

Definition 1.7 (Min Sum Set Cover)
Let H = (V,E) be a hypergraph on n vertices. For a linear ordering π : V → [n] we
define the cover time of an edge to be π(e) := minv∈e π(v). The task is to find a
linear ordering π that minimizes

∑
e∈E π(e).

Feige et al. [41] showed that a simple Greedy algorithm yields a 4-approximation for
Mssc. The Greedy algorithm chooses in every step a vertex of maximum degree. See
Figure 1.9. The hypergraph is then updated by removing the vertex and all edges that
contain the vertex. Note that it is NP-hard to approximate Mssc with a ratio better
than 4 [42].

v1 v2

v3

t = 1 t = 2 t = 3

Fig. 1.9: Example to visualize the Greedy algorithm for Min Sum Set Cover. The chosen
vertex is marked by a square and the graph is updated in every step.
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1.1.5 Scheduling

Let J be a set of n jobs and let m be the number of machines. If m = 1, we call the
scheduling problem a single-machine scheduling problem. Every job j comes together
with a processing time pj ≥ 0 and a non-negative weight wj . Additionally, we
might be given release dates rj ≥ 0 for every job j. A schedule is an assignment of
jobs to machines, such that each job is scheduled for exactly pj units on a machine,
and on every machine, there is at most one job scheduled at a time. In a non-
preemptive setting, a job has to be scheduled in subsequent time intervals on the
same machine. In the setting of arbitrary release dates, a job is only allowed to
be scheduled on a machine after its release date. Cj denotes the completion time
of a job. We consider two objective functions in this thesis. The main focus is on
minimizing the sum of weighted completion times, that is, minimizing

∑
wjCj .

The makespan Cmax is the completion time of the job that finishes the latest. In
other words, Cmax := max{C1, . . . , Cn}.

Scheduling problems are typically denoted by the three-field notation α | β | γ,
which was introduced by Graham [50]. The first entry α denotes the machine environ-
ment, such as

1 : single machine
PD : concurrent open shop.

The second entry β provides the characteristics of the scheduling problem, for example,

prec : precedence constraints
pmtn : preemption
pj = 1 : unit processing times

rj : non-trivial release times.

The final entry γ represents the objective function, such as

Cmax : minimum makespan∑
wjCj : sum of weighted completion times.

In the following, we briefly discuss two concepts for single machine scheduling. We
are given a set of jobs J together with processing times pj and weights wj for all
j ∈ J . The goal is to minimize the sum of weighted completion times. In the three-field
notation explained above, this problem is denoted by 1 ||

∑
wjCj . A well-known result

by Smith [100] states that scheduling jobs in non-increasing order of ρ(j) := wj

pj
yields

an optimal schedule. The ratio ρ(j) is often referred to as Smith’s Ratio, and the
scheduling policy described above is known as Smith’s Rule or the weighted shortest
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processing time first (WSPT) rule.

Before explaining the concept of a Sidney Decomposition, we introduce the necessary
definitions. Consider a set of jobs J and a precedence relation. A subset S ⊆ J of jobs
is called ideal with respect to the precedence relation, if for every job j ∈ J , all of its
predecessors are also in S. Next, we extend Smith’s Ratio ρ(j) of a job to a set of jobs.
That is, we define for a subset I ⊆ J

ρ(S) := w(S)
p(S) =

∑
j∈S wj∑
j∈S pj

.

A set S∗ is called ρ-maximizing ideal if S∗ is an ideal with maximum ratio ρ(S∗)
among all other ideals, that is, ρ(S∗) = maxS⊆J ρ(S). A decomposition of J into
S1∪̇S2∪̇ . . . ∪̇Sl is called a Sidney Decomposition, if every Si is a ρ-maximizing ideal
of the instance restricted to the remaining jobs J \ (

⋃i−1
k=1 Sk). Sidney [97] showed that

there always exists an optimal schedule in which all jobs in Si are scheduled before all
jobs in Sk for all i < k. Chekuri and Motwani [25], and Margot et al. [81] independently
proved that any Sidney Decomposition is a 2-approximation for 1 | prec |

∑
wjCj .

Various other 2-approximation algorithms for 1 | prec |
∑
wjCj are known [29, 51, 93].

Correa and Schulz [32] showed that all known 2-approximation algorithms [25, 29, 51,
81, 93] follow Sidney’s decomposition.
The concept of finding ρ-maximizing ideals can be applied to scheduling problems

with more general precedence constraints. In Chapter 4, we consider a similar approach
for the Generalized Min Sum Set Cover problem by Happach et al. [53].
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Chapter 2

Minimum Hitting Set of Bundles Problem

The Minimum Hitting Set of Bundles Problem (Mhsb) is a natural generalization
of the Hitting Set problem, where instead of hitting single elements, bundles of elements
are hit. More specifically, we are given a ground set of elements and a family of sets.
Every set in this family contains bundles of elements which are subsets of the ground
set. The task is to find a collection of elements of minimum size such that at least one
bundle of every set in the family is hit.

In this chapter, we present a combinatorial approximation algorithm for Mhsb. Its
approximation guarantee depends on the maximum number of bundles an element
appears in and on the size of the family. We show that its approximation ratio is tight
(up to constant factors) and give an improved analysis for laminar instances.

Mhsb has many applications. In particular, it provides an abstract framework
for several scheduling problems. Motivated by these applications, we consider Mhsb
restricted to interval and 2-dimensional interval bundles. We study the computational
complexity and give polynomial-time algorithms for several classes of instances with
these specially structured bundles.

This is joint work with Marinus Gottschau. Parts of this chapter correspond to or are
identical to [49].

The chapter is structured as follows. We introduce the Minimum Hitting Set of
Bundles problem formally and highlight two particular applications of Mhsb in Section
2.1. Previous work on Mhsb and related problems are summarized in Section 2.1.1. In
Section 2.1.2 we give an overview of our results on the general Minimum Hitting Set of
Bundles problem and two special classes of instances with interval and 2-dimensional
interval bundles. Section 2.2 is dedicated to an approximation algorithm for Mhsb. We
show that our analysis is tight and improve our results on laminar instances. Motivated
by the application of Mhsb to busy time minimization of processors, we study the
Minimum Hitting Set problem with interval bundles in Section 2.3. Finally, we analyze
Mhsb on 2-dimensional interval bundles in Section 2.4. This bundle structure is mainly
motivated by the application of Mhsb to railway maintenance scheduling. We conclude
the chapter by presenting future research directions and open problems.
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Chapter 2 Minimum Hitting Set of Bundles Problem

2.1 Introduction
The Minimum Hitting Set of Bundles Problem (Mhsb) was introduced by Angel
et al. [6] and is defined as follows. Let Ω be a finite set of elements and let F be a
family of sets. Every F ∈ F is a set of bundles, where a bundle U is a subset U ⊆ Ω. A
bundle U is covered by a set of elements S ⊆ Ω if U ⊆ S. We say that a set F is hit
if at least one bundle in F is covered. We want to find a collection of elements S ⊆ Ω
of minimum size such that every set F ∈ F is hit. We refer to S as a hitting set of
bundles. In the following, let U :=

⋃
F∈F F be the set of all bundles of an instance

and denote by Fmax the maximum number of bundles any set contains. To familiarize
ourselves with the definitions above, we consider an example.

Example 2.1
We are given an instance of Mhsb on 9 elements, visualized in Figure 2.1. The family
F consists of three sets F1, F2 and F3. Each of them contains bundles, more specifically,
F1 = {U1, U3}, F2 = {U2, U4, U6} and F3 = {U5, U7}. A hitting set of bundles S is
given by the three elements represented by squares in Figure 2.1. To see that S is
indeed a hitting set of bundles, note that S covers the bundles U1, U6, and U7, and,
hence, the sets F1, F2 and F3 are hit.

F

U1

U3
U2

U6

U4

U7

U5

Fig. 2.1: An instance of Mhsb with sets F1 = {U1, U3} (blue), F2 = {U2, U4, U6} (yellow)
and F3 = {U5, U7} (green). A hitting set S is given by the elements represented by
squares.

The Hitting Set problem is the special case of Mhsb, where every bundle contains exactly
one element [6]. It corresponds to the optimization version of one of Karp’s 21 NP-
complete problems, the Set Cover problem [66]. This immediately implies NP-hardness
of Mhsb. The Minimum Hitting Set of Bundles problem provides a mathematical
framework for a variety of applications, such as the positioning of geosynchronous
satellites (see Figure 2.2a), railway maintenance scheduling, and minimizing the active
time of processors (see Figure 2.2b).
In this chapter, we want to highlight two of them. The first one is scheduling jobs

(non-preemptively) on a single machine with the objective of minimizing active time.
It can be framed in the following way. Here, Ω is a set of time slots, and F represents
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2.1 Introduction

a set of jobs. The bundles of a job refer to its feasible operation times. The goal is
to schedule all jobs such that the number of occupied time slots is minimized. If the
bundles arise from possible execution times determined by job-specific release dates,
deadlines, and processing times, the problem is referred to as Busy Time Minimization
problem with unlimited capacities [23, 67].
The second application of Mhsb we want to point out is in the area of Railway

Maintenance Scheduling. Consider a railway corridor with bidirectional traffic and
maintenance jobs that need to be carried out. Here, a train path is a movement over
time along the railway track. Whenever such a train path interferes with a particular
maintenance job, the train needs to be canceled. To minimize the impact of the
mandatory maintenance on rail traffic, the goal is to schedule all maintenance jobs
such that the number of canceled trains is as small as possible. Here, Ω represents
the set of train paths, and F is the family of maintenance jobs. The bundles of a
maintenance job refer to the corresponding sets of train paths that interfere with
the feasible execution times of a job. Eskandarzadeh et al. [39] studied a variant of
this problem in which bundles are determined by job-specific release dates, deadlines,
and processing times. For unidirectional train traffic, this agrees with Busy Time
Minimization with unlimited capacities. In this chapter, we also consider the Railway
Maintenance Scheduling problem with bidirectional traffic.

(a) Positioning geosynchronous satellites.

Server backup

Add content

...

Updates

time
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

(b) Minimizing active time of processors.

Fig. 2.2: Visualization of two exemplary applications of Mhsb. In (a) the universe Ω is given
by a set of satellites. Every set in the family F corresponds to an area that has to
be covered by a collection of satellites and the goal is to minimize the total number
of satellites. In (b) the universe Ω is given by a collection of time slots. A set
corresponds to a job that has to be run on a processor and the bundles represent its
feasible time slots. The goal is to minimize the active time of the processor.

Mhsb allows more general bundle structures than those studied in the context of
Busy Time Minimization or Railway Maintenance Scheduling. Still, we often use the
scheduling terminology to give an intuition and a better understanding of the particular
cases of Mhsb that we consider in this chapter.
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2.1.1 Related Work

Set Cover/Hitting Set Problem. As mentioned before, if every bundle contains
only one element, Mhsb corresponds to the Hitting Set problem and its counterpart,
the Set Cover problem. Both problems have been studied extensively. For Hitting Set,
there exists a polynomial-time fmax-approximation algorithm, where fmax refers to the
maximum number of elements (in Mhsb this is the maximum number of bundles) a set
may contain. Assuming the Unique Games Conjecture, the approximation factor fmax
is best possible, due to a result by Bansal and Khot [12]. Additionally, there exists a
polynomial-time H(n)-approximation algorithm, where n denotes the number of sets
of the Hitting Set instance. Dinur and Steurer [34] proved that no polynomial-time
(1− o(1)) ln(n)-approximation algorithm exists for Set Cover, unless P=NP. For more
details on Hitting Set and Set Cover, see Section 1.1.4.

Minimum Hitting Set of Bundles Problem. The Minimum Hitting Set of Bundles
problem was introduced by Angel et al. [6]. They presented a polynomial-time Fmax-
factor approximation algorithm, where Fmax refers to the maximum number of bundles
a set may contain. This approximation guarantee is achieved by considering an LP
relaxation of an integer linear programming (ILP) formulation and a simple rounding
strategy. By using randomized rounding, they were able to improve the approximation
guarantee to Fmax(1− (1− 1

Fmax
)M ). Here, M denotes the maximum number of bundles

an element is contained in. Note that if the same bundle is contained in different sets,
it is accounted for several times. Angel et al. [6] highlighted two applications of Mhsb,
the Multiple-Query Optimization problem in database systems [94] and the Min k-Sat
problem [20]. Being a generalization of the Minimum Hitting Set problem, Mhsb is
W [2]-hard parameterized by the solution size |S|. Damaschke [33] proved that Mhsb,
parameterized by |F| and the solution size |S|, is W [1]-complete.

Submodular Cover Problem. Wan et al. [103] studied the Minimum Submodular
Cover problem with submodular weights. In this problem, we are given a submodular,
increasing function f : 2Ω → R. A set S ⊆ Ω is a submodular cover if f(S) = f(Ω).
The objective is to find a submodular cover of minimum weight with respect to a
submodular, increasing weight function w. Mhsb can be formulated as a submodular
cover problem with submodular weights in the following way. Choose the ground set
to be the set of bundles U . Define f to be the function that maps a collection of
bundles on the number of sets that are hit by at least one bundle of the collection. The
weight of a collection of bundles is simply the cardinality of their union. The main
result in [103] implies a H(γmax)-approximation for Mhsb, where H(n) denotes the
n-th harmonic number and γmax is the maximum number of sets a bundle U in U hits.
Iwata and Nagano [62] studied the Set Cover problem with submodular weights. They
derived a polynomial-time αmax-approximation algorithm, where αmax is the maximum
number of sets an element appears in.

20



2.1 Introduction

Busy Time Minimization Problem. The Busy Time Minimization problem with
capacity B was introduced by Chang et al. [22]. It is a scheduling problem with job-
specific release dates, deadlines, and processing times and a bound B on the number
of jobs that may be executed simultaneously. Chang et al. [22] gave a polynomial-time
algorithm for B = 2 and proved that the problem is NP-hard for B = 3. More closely
related to our problem is the version with unlimited capacity (B =∞), studied, for
example, by Fong et al. [44]. They presented a polynomial-time algorithm for agreeable
deadlines, i.e., instances where any job’s deadline is prior to every other job’s deadline
that has a later release time. Fang et al. [40] studied the problem in the context of
wireless sensoring and presented a polynomial-time 2-approximation algorithm for this
special case. Online variants of the Busy Time Minimization problem also exist and
have been studied, for example, by Koehler and Khuller in [71].

Maintenance Scheduling Problem. Eskandarzadeh et al. [39] studied the Main-
tenance Scheduling in a Railway Corridor problem, which is an application of Mhsb.
They gave a polynomial-time algorithm for Active Time Minimization with unlimited
capacities if all jobs have the same processing time. More specifically, they presented
an ILP formulation, tailored to their restricted set of instances, for which they proved
total unimodularity of the constraint matrix. In their computational experiments, they
compared different ILP formulations for the bidirectional version.

Maximum Coverage Problem with Group Budgets. Finally, Chekuri and Ku-
mar [24] introduced a maximization variant of Mhsb, the Maximum Coverage problem
with group budgets. In this setting, we are given costs on bundles and a budget per
set. The goal is to choose bundles, respecting the budget constraints, such that the
size of the union of chosen bundles is maximized. Chekuri and Kumar [24] presented a
polynomial-time constant-factor approximation algorithm.

2.1.2 Our Results

We study the general Minimum Hitting Set of Bundles problem and two special classes
of instances with interval bundles and 2-dimensional interval bundles.

Minimum Hitting Set of Bundles Problem. In Section 2.2, we present a
polynomial-time ωmaxH(|F|)-approximation algorithm for the general Mhsb, where
ωmax is the maximum number of bundles an element appears in and H(n) denotes the
n-th Harmonic number. Note that ωmax may be strictly smaller than M as defined
by Angel et al. in [6]. If the same bundle is contained in multiple sets, the constant
M accounts for it multiple times, whereas ωmax counts it just once. The algorithm is
fully combinatorial and is based on the construction of a so-called cover graph. For
laminar families of Mhsb we improve the approximation guarantee by presenting a
polynomial-time H(|F|)-approximation algorithm.
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Minimum Hitting Set of Interval Bundles Problem. The connection to the
Active Time Minimization problem leads to a number of applications that can be
modeled by Mhsb. In Section 2.3 we take advantage of the structure that many of
these applications have in common in order to obtain polynomial-time algorithms.
Assuming that jobs have to be executed without preemption, we obtain bundles of
consecutive elements. We refer to these bundles as interval bundles and call this
special case of Mhsb the Minimum Hitting Set of Interval Bundles Problem (Mhsib).
Motivated by applications, we define the following properties of special cases of Mhsib.
We say that F is convex if for every job F ∈ F the union of all possible operating
times forms an interval. We say that F is a-simple for some a ∈ N if all bundles have
size a. In the scheduling terminology, this corresponds to equal processing times. In
applications, it also seems reasonable to assume that, for example, the number of
starting times or the time horizon of feasible operating times for a job is bounded.

We present polynomial-time algorithms for several classes of interval bundle instances.
These algorithms use a graph construction and solve the problem by computing a
shortest path. However, the Minimum Hitting Set of Interval Bundles problem is
NP-hard in general. We explore the boundary of polynomial-time solvable instances
and NP-hardness that arise from the aforementioned properties and parameters.

Minimum Hitting Set of 2-dimensional Interval Bundles Problem. In Sec-
tion 2.4, motivated by the application of Mhsb to railway maintenance scheduling, we
study another special class of instances of Mhsb. In the Maintenance Scheduling in
a Railway Corridor problem presented by Eskandarzadeh et al. [39], Ω is the disjoint
union of sets of train paths in opposite directions on a single railway track. More
generally, we can think of Ω as being the disjoint union of two totally ordered sets. As-
suming that every job has to be executed without preemption implies that every bundle
is a set of consecutive elements in each of the two totally ordered sets. We call this
special structure 2-dimensional interval and denote the special case of Mhsb, where all
bundles are 2-dimensional interval, by Minimum Hitting Set of 2-dimensional Interval
Bundles Problem (2-dim Mhsib). We show that 2-dim Mhsib remains NP-hard on
convex and 1-simple instances with Fmax = 2, where Fmax refers to the maximum
number of bundles a set may contain. Furthermore, we present a polynomial-time
approximation algorithm for all 1-simple instances with Fmax = 2 using a result by
Hochbaum [58] with an approximation guarantee slightly better than 2. For another
restricted class of instances, we give a polynomial-time algorithm by making use of a
problem decomposition.

Remark 2.2
The introduction of a weight function w : Ω→ R+ on the elements may be of interest.
For the ease of presentation, we only consider the unweighted Mhsb. Techniques used
throughout the chapter also work for weighted instances, thus all of our results can be
easily transferred to weighted Mhsb. These results can either be transferred directly
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2.2 Approximation Algorithms

with minor modifications of inequalities, or by simple modifications of the constructed
graph’s edge weights.

Remark 2.3
Due to the structure of the problem, we assume, w.l.o.g., that
i) all bundles are non-trivial, that is, for all F ∈ F we have that ∅ /∈ F ;
ii) bundles of a set are not subsets of each other, that is, for U ∈ F if U ′ ⊂ U we

have that U ′ /∈ F ; and
iii) for all distinct F, F ′ ∈ F there exists a bundle U ∈ F such that for all U ′ ∈ F ′ we

have U ′ 6⊆ U . If there was no such bundle U ∈ F , any set of elements hitting F
also hits F ′.

2.2 Approximation Algorithms
In the following, we present a polynomial-time approximation algorithm for Mhsb.
Its analysis is rather straightforward and uses techniques similar to existing set cover
approximation algorithms. We use a generic graph representation, the so called cover
graph, to transform the problem into an instance of Set Cover with submodular weights.
Note that Theorem 2.4 also follows from a result in [103] on Submodular Set Cover
with submodular weights.

First, we introduce the concept of a bipartite cover graph. Given an instance (Ω,F)
of Mhsb, the corresponding bipartite cover graph GF := (VF , EF ) is given by:

VF := { vU : U ∈ U } ∪ { vF : F ∈ F },
EF := {(vU , vF ) | U ∈ U , F ∈ F : ∃ U ′ ⊆ U with U ′ ∈ F}.

An instance of Mhsb and its corresponding cover graph is visualized in Figure 2.3.

F3

F2

F1

vF3

vF2

vF1
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vU5

vU4

vU3

vU2

vU1

U7

U6

U5

U4

U3

U1

U2

F

Fig. 2.3: An instance (Ω,F) of Mhsb (left), its disjoint bundle representation (middle) and
the corresponding bipartite cover graph (right).
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Theorem 2.4
Let (Ω,F) be an instance of Mhsb. There exists a polynomial-time ωmaxH(|F|)-
approximation algorithm with

ωmax := max
ω∈Ω
{|{U ∈ U : ω ∈ U}|} .

Proof. Given an instance (Ω,F) of Mhsb, we consider the corresponding cover graph
GF = (VF , EF). This cover graph can be interpreted as an instance of the set cover
problem, where each vertex vU corresponds to a set and each vertex vF corresponds
to an element. Such an element can be covered by all sets U , for which there exists
an edge between vF and vU . Let the weight of a set corresponding to vU be |U | (see
Figure 2.3). Observe that we overestimate weights, e.g. if two overlapping bundles are
chosen in the set cover instance, we overcount the number of elements.
Any hitting set of bundles S ⊆ Ω for F is the union of bundles U ∈ U that hit all

respective sets in F . The corresponding vertex set VS := {vU | U ∈ U : U ⊆ S} then
induces a set cover C for the corresponding set cover instance. Additionally, any set
cover C for this instance gives rise to a hitting set of bundles S. Let now S∗ be a
minimum hitting set of bundles, and let C∗ be a minimum set cover for the cover graph
instance. Then

|S∗| ≤
∑
U∈C∗

|U | ≤ ωmax|S∗|, (2.1)

since elements in S∗ are accounted for once, whereas in C∗ elements count more than
once. Furthermore, every element is contained in at most ωmax sets. Therefore, a set
cover of size ωmax|S∗| always exists, from which the second inequality follows.

We next make use of the existing polynomial-time H(|F|)-approximation algorithm
for weighted set cover [101]. The algorithm greedily computes the most weight-efficient
set, i.e. the set that has a best weight-over-newly-covered elements ratio. Let C be the
solution found by the Greedy algorithm for the set cover instance. Then,∑

U∈C
|U | ≤ H(|F|)

∑
U∈C∗

|U |.

Finally, using inequalities from (2.1), we can construct a hitting set of bundles S from
C such that

|S| ≤
∑
U∈C
|U | ≤ H(|F|)

∑
U∈C∗

|U | ≤ ωmaxH(|F|)|S∗|.

This concludes the proof of the approximation guarantee. 2
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2.2 Approximation Algorithms

Furthermore, the analysis of the algorithm is tight up to a constant factor. In
the following, we construct an instance of Mhsb as on which the Greedy algorithm
described above has an approximation guarantee of at most 1

4ωmax log(|F|).
Let the set of elements Ω := (Ω′∪̇Ω′′), where Ω′ := {ω1, ω

′
1, . . . , ωd, ω

′
d}. Now, for

every U ∈ P(Ω′) that contains exactly one of the elements ωi or ω′i for all i ∈ [d], we
introduce d− 1 sets (F lU )l∈[d−1] ∈ F all of which contain this bundle. In addition to U ,
the set F lU contains a bundle of l other elements from Ω′′ all of which are only contained
in this bundle and nowhere else. Observe that by construction |F| = 2d(d− 1) and,
due to symmetry of the bundles on {ω1, ω

′
1, . . . , ωd, ω

′
d}, we have that ωmax = |F|

2(d−1) .
The Greedy algorithm always chooses the bundle of l elements in F lU over U for all

l ∈ [d− 1]. Therefore, the solution of the Greedy algorithm has size

2d ·
d−1∑
l=1

l = 2d−1(d− 1)(d− 2) = 1
2 |F|(d− 2).

In contrast, the optimal solution is of size 2d. Thus, the Greedy approximation has an
approximation factor of at most

d− 2
4d |F| =

1
2

(
1− 2

d

) 1
2 |F| =

1
2

(
1− 2

d

)
(d− 1)ωmax

=1
2

(
d+ 2

d
− 3

)
ωmax ≥

1
4ωmax log(|F|).

Here, we made use of the fact that log(|F|) = log(2d(d−1)) = d+log(d−1) ≤ 2(d+ 2
d−3)

for d ≥ 8 and that H(n) ∈ O(logn).

2.2.1 Approximation Algorithms for Laminar Instances

In the proof of Theorem 2.4, we constructed an instance of Mhsb to show that
the approximation guarantee for the algorithm is tight (up to a constant factor).
However, the bundle structure in this example is very nested, and the algorithm
itself does not consider any of the combinations of bundles that would have led to an
optimal solution for that particular example. In general, it is not clear to what extent
taking certain combinations of bundles into account can improve the approximation
guarantee. Additionally, one would have to overcome the exponential number of possible
combinations of bundles.

The question arises of how the approximation guarantee improves when we restrict
our algorithm to instances in which the nonempty intersection of bundles is always a
bundle itself. We call the family F laminar if U is laminar, i.e., if for all U,U ′ ∈ U with
U ∩ U ′ 6= ∅, we have U ⊆ U ′ or U ′ ⊆ U . We present a polynomial-time approximation
algorithm for laminar instances of Mhsb with an improved approximation guarantee.
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Chapter 2 Minimum Hitting Set of Bundles Problem

Theorem 2.5
Let (Ω,F) be an instance of Mhsb. If F is a laminar family, then there exists a
polynomial-time H(|F|)-approximation algorithm.

Proof. Due to the laminar structure, we can represent any hitting set of bundles as a
union of disjoint bundles. Thus, there is no overcounting and a minimum hitting set of
bundles gives rise to a set cover of the same weight. 2

2.3 Minimum Hitting Set of Interval Bundles
In this section, we focus on bundle structures that arise in many applications. As
mentioned in the introduction, Ω often corresponds to time slots if viewed as a scheduling
problem. In this context, one may assume that jobs have to be executed without
preemption. In the following, we make use of this particular structure and identify
polynomial-time solvable special cases of Mhsb.

Throughout this section we look at instances in which we are given an ordering ≺ of
Ω. To simplify notation, we may assume that Ω = [n] for some n ∈ N with the natural
ordering. In this context, we consider a special case of Mhsb, the Minimum Hitting
Set of Interval Bundles Problem (Mhsib), where every bundle corresponds to
an interval. More specifically, if i, j ∈ U , then k ∈ U for all i ≤ k ≤ j. In addition to
the interval property, we define two other properties that a family F may have.

Definition 2.6
Let ([n],F) be an instance of Mhsib. We call the family F

i) convex, if all F ∈ F are convex, i.e. the following holds. Let i ∈ U ′, j ∈ U ′′, for
some U ′, U ′′ ∈ F . For all k ∈ [n] with i ≤ k ≤ j there exists a bundle U in F
such that k ∈ U . In other words, the union of all interval bundles U in F is again
an interval.

ii) a-simple for some a ∈ N if all bundles are a-simple, i.e. |U | = a for all U ∈ U ,
where U :=

⋃
F∈F F .

Figure 2.4 is an example of an instance of the general Mhsb problem and visualizes
the properties we defined above. The next theorem shows that Mhsib remains NP-hard
even on restricted instances in terms of Definition 2.6.
Theorem 2.7
Let ([n],F) be an instance of Mhsib and let Fmax be the maximum number of bundles
a set may contain. The problem remains NP-hard, if F

i) is 1-simple and Fmax = 2; or
ii) is convex and Fmax = 3; or
iii) is convex and a-simple for some a, where a is some function in n.
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Fig. 2.4: Example of a family F to visualize the different sets and bundles properties: All bundles
but U9 have the property that they are interval. The sets F1, F2 and F3 are convex, and
F1 and F2 are in addition to that a-simple with a = 4. The bundle structure of the set F1
is determined by the release date 6, deadline 11 and processing time 4. This overlapping
bundle structure occurs for example in Busy Time Minimization.

Proof. i) An easy reduction from Vertex Cover1 implies the statement. Given a graph
G = (V,E), we let Ω := V and F := {{{u}, {v}} : (u, v) ∈ E}. Observe that a
minimum vertex cover is an optimal solution to Mhsib and vice versa.

ii) The statement follows again from a reduction of Vertex Cover to Mhsib. Let
G = (V,E) be a graph with an arbitrary ordering ≺V of the vertices. The main idea
is to use the same construction as in i), i.e. introducing a set for every edge (u, v) of
the graph. The challenge is to guarantee that our constructed family is convex, while
respecting the structure assumed in Remark 2.3. We do so by constructing sets that
additionally contain a large dummy bundle. Because of its size, the dummy bundle
is never entirely covered by an optimal solution. A large number of dummy elements
serves to ensure a one-to-one correspondence between a minimum hitting set of bundles
and a minimum vertex cover.
We begin by constructing the ground set of the corresponding instance of Mhsib.

We introduce d elements for each vertex of the graph, that is, Ωv := {ωvi : i ∈ [d]} for
all v ∈ V . A vertex v ∈ V is represented by the element ωv1 and we refer to the d− 1
elements ωv2 . . . ωvd as dummy elements. The ground set is now given by Ω :=

⋃
v∈V Ωv.

1For a definition of the Vertex Cover problem see Def. 1.3.
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Chapter 2 Minimum Hitting Set of Bundles Problem

We use the ordering ≺V of V to obtain an ordering ≺Ω of Ω in a natural way by

ωui ≺Ω ωvj ⇔
{
u ≺V v; or
u = v ∧ i < j.

Next, we define bundles and sets of the instance. As in the construction of i) for every
edge (u, v) ∈ E with u ≺V v we are given two bundles {ωu1} and {ωv1}. In addition, we
define a dummy bundle U(u,v) containing all elements in Ω that are between ωu1 and
ωv1 . Formally, we define

U(u,v) := Ωu \ {ωu1} ∪
⋃

u≺V w≺V v

Ωw.

Note that all constructed bundles are indeed interval with respect to the ordering of Ω
induced by ≺Ω. The sets are then formally given by

F =
{{
{ωu1}, {ωv1}, U(u,v)

}
: (u, v) ∈ E

}
.

The dummy bundle U(u,v) contains a large number of elements, i.e. at least d and, hence,
is never entirely hit in an optimal solution. Its only purpose is to ensure convexity of
the respective family.
Any vertex cover C corresponds to a solution of the Mhsib instance of the same

size. This simply follows from the fact that the vertices in C cover every edge and
therefore, all sets F ∈ F contain at least one covered bundle. Additionally, a solution
S of Mhsib of minimum size only contains elements that correspond to vertices of
the graph, i.e. S ⊆ {ωv1 : v ∈ V }. This follows from the fact that if S covers any
bundle U(u,v), this immediately implies |S| ≥ d − 1 = |V | + 1. Also, any element in
Ω \ {ωv1 : v ∈ V } can be omitted unless it was needed to cover some U(u,v).
Finally, we have that S hits all sets F ∈ F and covers the bundle {ωu1} or {ωv1}

for all (u, v) ∈ E, with either ωu1 or ωv1 . Therefore, the set of vertices represented by
elements in S form a vertex cover in the graph.

iii) Again, we prove the statement by a reduction of Vertex Cover to Mhsib. Let
G = (V,E) be a graph and let ≺V be an arbitrary ordering of the vertices. This
time we have to ensure that the constructed family is convex and a-simple. For every
edge (u, v) we construct a corresponding set F(u,v) in the family. The set contains
multiple a-simple bundles, amongst them the bundles Uu and Uv which correspond
to the vertices u and v. Instead of a single large dummy bundle as in ii), the sets
contain a collection of dummy bundles, each of size a. To ensure that the optimal
solution to Mhsib does indeed hit every set by covering a bundle corresponding to
a vertex in V , we introduce additional dummy sets Fv for every v ∈ V . The set Fv
contains a single bundle that overlaps with the bundle Uv in all but one element. Since
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2.3 Minimum Hitting Set of Interval Bundles

there is only one bundle in Fv, it has to be in every feasible solution of the instance
of Mhsib. This ensures that hitting a set F(u,v) by a bundle Uv or Uu only requires
adding one additional element to the solution, whereas hitting F(u,v) by any dummy
bundle immediately increases the solution size significantly (by at least a−1

2 ).
Again, we start by constructing the ground set of the corresponding instance of

Mhsib. Formally, let a := 4|V |+ 1 and let v0 be a dummy vertex with v0 ≺V v for all
v ∈ V . For every vertex in V and the dummy vertex v0 we introduce 3a elements, that
is, Ωv := {ωvi : i ∈ [3a]} for all v ∈ V ∪ {v0}. Intuitively, the element ωv1 corresponds
to the vertex v ∈ V and all other elements in Ωv are dummy elements. The ground set
of elements is then given by Ω :=

⋃
v∈V ∪{v0}Ωv. As in ii) we extend the ordering ≺V

of the vertices in a natural way to an ordering ≺Ω of the elements in Ω.
We continue by constructing the bundles and the sets of the family F of the

corresponding instance of Mhsib. For a vertex v ∈ V let Uv be the bundle that
contains the element ωv1 and the a− 1 previous elements with respect to ≺Ω. Formally,

Uv := {ωv′2a+2, ω
v′
2a+3, . . . , ω

v′
3a−1, ω

v′
3a, ω

v
1}

where v′ is the vertex preceding v in the natural ordering. Note that all bundles Uv
are indeed a-simple.
Next, we define a collection B of dummy bundles, which is a partition of Ω \

{ωv0
1 , ω

v0
2 , . . . , ω

v0
5a+1

2
} in a-simple, disjoint bundles. Later, B is used to ensure convexity

of the family F . More explicitly B is given by

B :=
⋃
v∈V

{
{ωv′5a+3

2
, . . . , ωv

′
3a, ω

v
1 , . . . , ω

v
a+1

2︸ ︷︷ ︸
a

}, {ωva+3
2
, . . . , ωv3a+1

2︸ ︷︷ ︸
a

}, {ωv3a+3
2
, . . . , ωv5a+1

2︸ ︷︷ ︸
a

}
}
,

where, again, v′ is the vertex preceding v in the natural ordering. Note that the
bundles in B are well-defined, since we chose a to be odd. We continue by constructing
the sets of the family F . For every edge (u, v) ∈ E the family F contains a set

F(u,v) = {Uu, Uv} ∪B.

In addition to that, for every vertex v ∈ V we add a dummy set containing a single
bundle with the a elements preceding ωv1 to F . More explicitly,

Fv := {{ωv′2a+1, ω
v′
2a−2, . . . , ω

v′
3a−1, ω

v′
3a}}

where, again, v′ is the vertex preceding v in the natural ordering. This concludes the
construction of the family. A visualization can be seen in Figure 2.5.
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Fig. 2.5: Illustration of a constructed Mhsib instance in the proof of Theorem 2.7 iii).

Let C be a minimum vertex cover in G. We obtain the corresponding hitting set of
bundles in the following way. As already mentioned, every bundle of a dummy set Fv
has to be part of a feasible solution. Next, we ensure that every F(u,v) is hit. Adding
the element ωv1 for every v ∈ C to the hitting set of bundles, we cover the bundle
Uv and, hence, hit the corresponding set F(u,v). All in all, we obtain a hitting set of
bundles of size a · |V |+ |C|. Note, every set F(u,v) is hit by one of the bundles Uu or
Uv as either u or v must be contained in C. We claim that there is no solution to
Mhsib of smaller cardinality. Observe, that an optimal solution to Mhsib has to hit
every set Fv, each containing only one bundle of size a. Since all these sets are pairwise
disjoint, a solution must be of size at least a · |V |. Any bundle from the collection B
contains at least a/2 > |V | elements not contained in the bundles of the dummy sets
Fv that are covered by the solution. Again, if such a bundle from B is covered, the
solution is of size at least a · |V |+ |V |+ 1, which cannot be optimal by the previous
argument, that there always exists a solution of size at most a · |V |+ |V |. 2

Theorem 2.7 states that Mhsib remains NP-hard for convex families F with Fmax ≤ 3
for all F ∈ F . However, the following theorem shows that the computational complexity
changes for convex instances if we reduce Fmax by one.
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Theorem 2.8
Let ([n],F) be an instance of Mhsib. If F is convex and Fmax = 2, then it is solvable
in polynomial time.

Proof. We describe a reduction to a shortest path computation. The high-level idea
is to construct a layered graph, such that the vertices contained in an s-t-path describe
an interval decomposition of the solution.
Before explaining the construction in more details, let us take a closer look at the

bundle structure of our instance to give some intuition. Since every set contains at most
two bundles, w.l.o.g., we may assume that for all F ∈ F , if U,U ′ ∈ F then U ∩ U ′ = ∅,
as elements in the intersection have to be contained in any feasible solution. Given some
F ∈ F , since F is convex, there exist l, i and u ∈ [n] such that F = {[l, i], [i+ 1, u]}. To
make sure that the bundle is hit, we have to guarantee that either the set of elements
{l, . . . i} or {i+ 1, . . . , u} is contained in the minimum hitting set of bundles.
Let ([n],F) be an instance of Mhsib. We define a graph, with layers V1, . . . Vn

corresponding to the elements 1, . . . n. A set Vi contains a vertex for every interval in
[1, n] containing i and, additionally, a vertex vi∅ representing the empty set. Formally,
for every i ∈ [n] we define Vi := {vi[a,b] | 1 ≤ a ≤ i ≤ b ≤ n} ∪ {v

i
∅}. Note that a, b ≤ n

and therefore, the number of vertices introduced for each i ∈ [n] is polynomial in the
size of the input. Let V0 := {s} and Vn+1 := {t}. Then the vertex set of the layered
graph is given by V :=

⋃n+1
i=0 Vi.

The graph being layered, means that there only exist edges from layer Vi to the
subsequent layer Vi+1. In particular, every shortest s-t-path contains exactly one vertex
vi from every layer Vi. Intuitively, if vi = vi∅, then the element i is not part of the
corresponding minimum hitting set of bundles. If vi = vi[a,b], we add i to the solution.
In particular, the solution contains all elements of the interval [a, b]. To ensure this, we
define the edges and edge weights of the layered graph in the following way. There are
four feasible types of edges:

(1) (vi∅, vi+1
∅ ) of weight 0,

(2) (vi∅, vi+1
[i+1,b]) of weight 1,

(3) (vi[a,b], v
i+1
[a,b′]) for some b′ ≥ b of weight 1, and

(4) (vi[a,i], v
i+1
∅ ) of weight 0.

Additionally, we add edges (s, v1) for all v1 ∈ V1 of weight 0, if v1 = v1
∅ and of weight

1 in all remaining cases. Finally, we add edges (vn, t) for all vn ∈ Vn, all of weight
0. We only have positive weights of 1 on edges of type (s, v1

[1,b]) and (vi∅, vi+1
[i+1,b]) and

(vi[a,b], v
i+1
[a,b′]). These correspond to adding the element 1 and i+ 1 to the hitting set of

bundles, respectively.
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s t

v1[1,1]

v1[1,2]

v1[1,3]
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Fig. 2.6: Illustration of the constructed graph on an instance of 3 elements Ω = {1, 2, 3} with
set family F = {F1, F2} with F1 = {{1}, {2, 3}} and F2 = {{2}, {3}}. Blue edges
have weight 1, black edges weight 0. A shortest s-t-path is highlighted in bold. It
corresponds to the minimum hitting set of bundles containing elements {1} and {3}.

In a next step, we tailor the graph to the set structure of our specific instance by
deleting certain edges. This step ensures, that every set is hit. Consider a set F ∈ F
with F = {[l, i], [i+ 1, u]}. If not all elements {l, l + 1, . . . , i} are part of the solution,
we have to make sure that all elements in {i+ 1, . . . , u} are added to the solution. To
do so, for every F ∈ F with F = {[l, i], [i+ 1, u]}, we delete all edges of the following
types:

(1) the edge (vi∅, vi+1
∅ ),

(2) edges (vi∅, vi+1
[i+1,b′]) for which b′ < u,

(3) edges (vi[a,b], v
i+1
[a,b′]) for which a > l and b′ < u, and

(4) edges (vi[a,i], v
i+1
∅ ) for which a > l.

As argued above, doing so for all sets in F , any s-t-path gives rise to a hitting set
of bundles. Additionally, any hitting set of bundles in its interval decomposition
corresponds to an s-t-path. I.e. let S ⊂ [n] be the set that contains element i if and
only if the s-t-path does not contain the vertex vi∅. The weight of the s-t-path equals
the cardinality of the corresponding set S. A depiction of the constructed graph for a
small instance can be seen in Figure 2.6.
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We now compute a shortest s-t-path in the graph. Correctness of the algorithm
follows from the one-to-one correspondence of s-t-paths and the respective interval
decomposition of a hitting set of bundles and the fact that the weight of any path
equals the sum of the cardinality of the sets (intervals). 2

Theorem 2.7 also states that Mhsib remains NP-hard if F is a-simple and convex.
The following theorem considers two different types of convex instances with an
additional property. In scheduling terminology the first type of instances corresponds
to the case where the difference of any job’s release date and deadline is bounded by k.
In ii) the processing time of every job is bounded by k and the number jobs intersection
with time slot i is bounded by c, for some c, k ∈ R+.

Theorem 2.9
Let ([n],F) be an instance of Mhsib. For any constants c, k ∈ R+ the problem is
solvable

i) in O(22kn) if |i− j| ≤ k for all i, j ∈
⋃
U∈F U and all F ∈ F ; or

ii) in O(22(k+c)n) if |U | ≤ k for all U ∈ U , F is convex and |F|i | ≤ c for all i ∈ [n],
where F|i := {F ∈ F | ∃ U ∈ F : i ∈ U}.

Proof. i) The key idea is to construct a weighted graph, whose shortest s-t-path gives
rise to a decomposition of a solution of the corresponding Mhsib instance. Here, we
make use of the fact that the size of every set is bounded by k and, thus, all subsets
of elements that intersect and hit a set F can be represented by a bounded number
of sets. Note that we say that an element i intersects a set F if there exists a bundle
U ∈ F with i ∈ U .

We start by giving a formal construction of the graph G = (V,E). First, define the
vertex set V := V0 ∪ . . . ∪ Vn+1 with Vi := {viS : S ⊆ {i−min{i, k}, . . . , i}}, V0 := {s}
and Vn+1 := {t}. Note that |Vi| ≤ 2k. In the following, for all i ∈ [n] we let Fi be
the family of sets with largest element i, i.e. i = max{j ∈

⋃
U∈F U} for all F ∈ Fi.

The set of edges E is then defined as follows. Our graph G only has edges between
subsequent layers, that is, there only exist edges from Vi to Vi+1. More specifically,
edges from a vertex viS ∈ Vi to all other vertices in Vi+1 exist if S hits all sets in Fi. If
Fi = ∅, we include all edges in Vi × Vi+1. Finally, all edges from s to V1 are contained
in the edge set. The weight of each edge (viS , v

i+1
S′ ) is given by the number of elements

in S′ \ S. Edges (s, v1
S) have weight |S|, and the exiting edges (vnS , t) have weight 0.

This concludes the construction of the graph G. For a schematic picture of such a
constructed graph see Figure 2.7.
Since the size of every set is bounded by k, i.e. |i − j| ≤ k for all i, j ∈

⋃
U∈F U ,

every subset of elements that hits all sets in Fi is a subset of {i−min{i, k}, . . . , i}}.
Observe that any shortest s-t-path P passes through exactly one vertex of every Vi.

33



Chapter 2 Minimum Hitting Set of Bundles Problem
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Fig. 2.7: Illustration of the constructed graph with exemplary edge weights.

On that path, each vertex viS represents a set of elements S. Let S∗ :=
⋃
S:vi

S∈P
S. We

claim that S∗ is an optimal solution to the corresponding Mhsib instance. Every set F
has a largest element i, and only vertices viS where S hits all sets in Fi have outgoing
edges. Thus, S∗ hits every set in F and, hence, S∗ is feasible. Observe, that by the
choice of the weight function the length of any shortest s-t-path P equals |S∗|.
On the other hand, every hitting set of bundles S∗ gives rise to a s-t-path of same

cost in the corresponding graph G. The path is obtained by traversing the respective
vertices of the sets {i−min{i, k}, . . . , i} ∩ S∗ for all i ∈ [n]. Note that the size of the
constructed graph is in O(22kn), following by the bounds on |Vi| and the fact that we
only have edges between subsequent layers Vi and Vi+1. A simple breadth-first search
(BFS) finds a shortest path in linear time of the size of the graph.

ii) Again we make use of a graph G = (V,E) defined on V := V0 ∪ . . . ∪ Vn+1. Here,

Vi := P({i−min{i, k}, . . . , i})× P({F ∈ F | ∃U ∈ F : i ∈ U}),

where P denotes the power set. V0 := {s} and Vn+1 := {t}. In other words, every
vertex in Vi for i ∈ [n] corresponds to a tuple (SΩ, SF ) with SΩ ⊆ {i−min{i, k}, . . . , i}
and SF ⊆ {F ∈ F | ∃ U ∈ F : i ∈ U}. The set SF shall be used to encode which of the
sets containing element i already have been hit. Note that by assumption the number
of vertices in each set Vi is bounded by the number of tuples, which is at most 2k · 2c.

Given the vertex set as defined above, we only allow edges between subsequent layers,
that is, between vertices in Vi and vertices in Vi+1. More specifically, there exists an
edge from (SΩ, SF ) ∈ Vi towards (S̄Ω, S̄F ) ∈ Vi+1 if the two following conditions hold:
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2.4 Minimum Hitting Set of 2-dimensional Interval Bundles

a) for all F ∈ S̄F \ SF there exists a bundle U in F such that U ⊆ S̄Ω. That is,
F ∈ S̄F \ SF if S̄Ω covers one bundle in F ; and

b) if F ∈ Fi, then F ∈ SF . This ensures that any s-t-path corresponds to a feasible
solution of the respective instance of Mhsib.

All edges in {s} × {(SΩ, SF) ∈ V1 : SF = ∅} are contained in E. Let the weight
function w : E → N be defined as

w((SΩ, SF ), (S̄Ω, S̄F )) = |S̄Ω \ SΩ|.

We claim that an optimal solution to Mhsib can be obtained by computing a shortest
s-t-path in the corresponding graph G. A solution to the Mhsib instance is, again,
obtained by taking the union of all sets SΩ of elements represented by the traversed
vertices. Feasibility of the hitting set of bundles follows directly from the construction
of the edges in b). Moreover, the size of the solution equals the length of the path.
Similarly to i) the choice of weights implies that any solution to the corresponding

instance of Mhsib gives rise to an s-t-path of same length. At this point we make use
of the fact that the family is convex, which implies that the set of elements that is
contained in a set forms an interval. Without this condition, there might exist layers
i,j with i < j− 1, and a set F such that i and j intersect F but j− 1 does not. Due to
condition b), this forces the set F to be hit by the elements from {j, . . . , n}, even though
in an optimal solution the set F might only be hit by elements from {1, . . . , j − 1}.
Note that the size of the constructed graph is in O(22(k+c)n), following by the bounds
on |Vi| and the fact that we only have edges between subsequent layers Vi and Vi+1. A
simple BFS finds a shortest path in linear time of the size of the graph. 2

2.4 Minimum Hitting Set of 2-dimensional Interval Bundles
So far, we focused on instances with a given total ordering of Ω. In this section, we
consider instances with Ω := N1∪̇N2 where we are given a total ordering ≺1 of the
elements in N1 and a total ordering ≺2 of the elements in N2. Throughout this section
we may assume, w.l.o.g., that N1 := {1, . . . , n1} as well as N2 := {n1 + 1, . . . , n} with
cardinalities ni := |Ni| for i ∈ {1, 2}.

As mentioned in the introduction, this setting is also motivated by an application to
railway maintenance ([39] and see Example 2.11). Interpret N1 and N2 as two sets of
train paths in opposite direction on a railway track and let Ω := N1∪̇N2. If we assume
that maintenance jobs are executed without preemption, we obtain bundles with a very
specific structure, so-called 2-dimensional interval bundles. More specifically, a set of
bundles is 2-dimensional interval if for all U ∈ U , if i1, i2 ∈ U with i1, i2 ∈ N1, then
for all i′ ∈ N1 with i1 ≤ i′ ≤ i2 we also have that i′ ∈ U . Analogously, if j1, j2 ∈ U
with j1, j2 ∈ N2, then for all j′ ∈ N2 with j1 ≤ j′ ≤ j2 we also have that j′ ∈ U .
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Chapter 2 Minimum Hitting Set of Bundles Problem

We refer to this problem as the Minimum Hitting Set of 2-dimensional Interval
Bundles Problem (2-dim Mhsib) and define the properties of being 2-dim-convex and
a-simple as follows.

Definition 2.10
Let (N1∪̇N2,F) be an instance of 2-dim Mhsib. For i ∈ {1, 2}, let F|Ni

be the family
of sets restricted to Ni, that is, F|Ni

:= {(
⋃
U∈F {U ∩Ni}) \ {∅} : F ∈ F}. We call the

family F

i) 2-dim-convex if F|N1 and F|N2 are convex.

ii) a-simple for some a ∈ N if |U | = a for all U ∈ U .

The following example provides a visualization of the bundle structures in the context
of railway maintenance scheduling.

Example 2.11
We are given a railway corridor between location A and location B with bidirectional
traffic. The parallel lines in Figure 2.8 represent train paths. More specifically, the paths
{1, . . . n1} correspond to trains from A to B and the paths {n1 + 1, . . . n} correspond
to trains from B to A. The maintenance jobs are represented by the dashed boxes. In
particular, the height of a box corresponds to the section of the railway corridor that
requires maintenance work and the length corresponds to the time window in which
a job has to be carried out. The length of a solid box represents the processing time
of a job. This example of Railway Maintenance Scheduling can be formulated as an

F1

F2

F3

F4

F5

1 2 3 n1

n1 + 1
location B

location A
time

n

Fig. 2.8: An example of an instance of railway maintenance scheduling to obtain some intuition.
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2.4 Minimum Hitting Set of 2-dimensional Interval Bundles

instance of 2-dim Mhsib in the following way. The ground set of elements is given
by the set of train paths. For every dashed box we introduce a set F . The bundles in
F are determined by the sets of train path that interfere with the solid box, given a
certain position within the dashed box.

To obtain some intuition, we interpret the properties of Definition 2.10 in the context
of railway maintenance scheduling. The property of F being 2-dim-convex refers to
a setting where the starting time of a job can be anywhere in a given time window.
a-simple is a natural property in a regular train schedule setting where, independently
of the starting time, a job always interferes with the same number of train paths.

In [39], it was shown that 2-dim Mhsib remains NP-hard even on 2-dim-convex families.
We are able to prove a slightly stronger result.
Theorem 2.12
The 2-dim Mhsib problem remains NP-hard if F is 2-dim-convex, 1-simple, and
Fmax = 2.

Proof. We use the following graph construction to reduce Vertex Cover to an instance
with the required properties. Given a graph G = (V,E), we subdivide every edge
e = (u, v) ∈ E into three edges (u, eu), (eu, ev), (ev, v) and denote the resulting graph
by G′ = (V ′, E′). Note that any vertex cover S in G yields a vertex cover in G′ if we
add exactly one vertex eu, ev for every edge e = (u, v) ∈ E to the cover. This new
cover S′ has size S + |E|.

Also, w.l.o.g. a minimum vertex cover S′ in G′ contains exactly one vertex eu, ev for
every edge e = (u, v) ∈ E (if not, it is either not a cover or we can add u and remove
eu from the cover without changing its cardinality). We claim that S′ ∩ V is a vertex
cover in G. Assume the contrary, i.e. there is an edge e = (u, v) that is not covered.
Then, since S′ was a cover in G′, the edges (eu, ev) must be covered by S′ by either
eu or ev. Assume it is covered by eu, then it immediately follows by assumption that
v ∈ S′. A contradiction. Note that the cover S = S′ ∩ V has cardinality |S′| − |E|.

u

v w

x u v w x

e

f

g h

eu ev fv fw hw hxgu gw

←→

S={v,w} S′ = S ∪ {gu, eu, fw, hx}

G G′ = (V ′, E′)

V

V ′ \ V

Fig. 2.9: Construction of G′ from G and corresponding vertex covers S and S′ in G and G′.
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Now, it is easy to see that F := {{{u}, {v}} : (u, v) ∈ E′} is an instance which is
1-simple, Fmax = 2 and 2-dim convex. The latter follows from the fact that we do not
have edges in V and edges (eu, ev) only. Thus, all sets are convex using an arbitrary
ordering on V and an arbitrary ordering on the set of edge-vertices V ′ \ V as long as
ev, eu follow one after another for all e ∈ E. Figure 2.9 shows the construction and
indicates the partition of elements into V and V ′ \ V . 2

In the following, we outline a polynomial-time approximation algorithm for 2-dim
Mhsib where the family F is 1-simple and |F | ≤ 2 for all F ∈ F . Since Fmax ≤ 2 in this
setting, there already exists a 2-factor approximation algorithm [6]. We improve the
approximation guarantee slightly by using techniques from approximation algorithms
for the Vertex Cover problem.

Theorem 2.13
Let (N1∪̇N2,F) be an instance of 2-dim Mhsib. If F is 1-simple and Fmax = 2, then
there exists a polynomial-time

(
2− 1

k+1
)
-factor approximation algorithm with

k := max
{
|i− j| : {{i}, {j}} ∈ F with either i, j ∈ N1 or i, j ∈ N2

}
.

Proof. The proof of the theorem is based on a result by Hochbaum [58] for which we
are going to convert our instance of 2-dim Mhsib into a Vertex Cover instance. The
theorem is stated below.

Proposition 2.14 (Hochbaum [58])
Let G be a k-colorable graph. There exists a polynomial-time algorithm that finds a
vertex cover with a size of at most (2− 2

k ) times the size of an optimal vertex cover.

Given a 1-simple instance (N1∪̇N2,F) of 2-dim Mhsib with Fmax = 2, we construct
a graph G = (V,E) with V := N1∪̇N2 and E := {(i, j) : {{i}, {j}} ∈ F}. Then, an
optimal solution of 2-dim Mhsib corresponds to a minimum vertex cover in the graph
G and vice versa.

Consider the subgraphs of G[N1] and G[N2] and observe that by the construction of
G and the definition of k it holds that ∆(G[N1]) ≤ k and ∆(G[N2]) ≤ k. Therefore,
by Brooks’ Theorem both induced subgraphs admit a (k + 1)-coloring. These colorings
can be extended to a (2k + 2)-coloring of G. Applying Proposition 2.14, a chromatic
number of at most 2k + 2 immediately guarantees a polynomial-time algorithm that
computes a vertex cover whose size is at most (2− 1

k+1) times the size of an optimal
vertex cover. 2

Finally, we present a first polynomial-time algorithm for a special case of 2-dim Mhsib.
It is based on a decomposition of the problem.
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Theorem 2.15
Let (N1∪̇N2,F) be a 2-dim-convex instance of 2-dim Mhsib with Fmax ≤ 2. The
problem is solvable in polynomial time if for all F ∈ F and U,U ′ ∈ F , the symmetric
difference only contains two elements, i.e. |U4U ′| = 2 and either

i) those elements belong to N1 or N2, i.e. U4U ′ ⊂ N1 or U4U ′ ⊂ N2; or
ii) the symmetric difference always contains one element from N1 and one element

from N2, i.e. U4U ′ ∩N1 6= ∅ and U4U ′ ∩N2 6= ∅.

Proof. First, note that for any F = {U,U ′} all elements in U∩U ′ must be contained in
any hitting set of bundles. Let (N ′1∪̇N ′2,F ′) be the instance after removing all elements
in the respective intersections. Note that there is a one-to-one correspondence between
a minimum hitting set of bundles of F ′ and a minimum hitting set of bundles of F
by adding back or removing the aforementioned elements of the intersections. Due to
2-dim-convexity and a 2-dimensional interval family F , we have that the reduced family
F ′ on the reduced set of elements N ′1∪̇N ′2 is again 2-dim-convex and 2-dimensional
interval. Furthermore, w.l.o.g., |F | = 2 for all F ∈ F ′. (If |F | = 1, all elements in
U ∈ F are contained in any hitting set of bundles and can be removed to reduce the
instance even further.) Additionally, by assumption the family F ′ is 1-simple.

Observe, the graph on N ′1∪̇N ′2 with edges corresponding to the sets in F ′ is bipartite.
This follows from the fact that on the one hand, if U4U ′ ⊂ N1 or U4U ′ ⊂ N2 for all
{U,U ′} ∈ F , due to convexity, the graph consists of a collection of paths since each
element in N ′1∪̇N ′2 can neighbor at most two others and cycles cannot occur. On the
other hand, if U4U ′∩N1 6= ∅ and U4U ′∩N2 6= ∅ for all {U,U ′} ∈ F , edges only occur
between vertices representing the sets N ′1 and N ′2, but not within the sets N ′1 and N ′2,
respectively. Now, any vertex cover in the constructed graph corresponds to a solution
of 2-dim Mhsib and vice versa. Since the graph is bipartite, we can find a vertex
cover in polynomial time, which follows from Kőnig’s theorem and any polynomial
time maximum matching algorithm (see Proposition 1.4). Finally, a solution to F ′ can
easily be lifted to a solution to F . 2

2.5 Open Problems
In this chapter, we studied the Minimum Hitting Set of Bundles problem on general set
families and restricted to interval and 2-dimensional interval bundles. In the following,
we provide an outlook on future research directions.

In Theorem 2.7, we showed that Mhsib remains NP-hard even if the family F is
convex and a-simple, where a is some function in n. It is open how the complexity
changes if we require a to be constant.
Problem 2.16
Consider an instance of Mhsib. Does the problem remain NP-hard if the family F is
convex and a-simple for constant a?
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Chapter 2 Minimum Hitting Set of Bundles Problem

The following application of Mhsb gives rise to several interesting questions for
future research. The universe is given by a collection of courses. Every set represents
a student, and the bundles of the set correspond to a feasible subset of courses the
student could take. In this case, the bundle constraints do not only express time
overlaps but can also be used to encode that some courses might only be taken in
combination (e.g., lectures and corresponding exercise classes, lab experiments).
In this setting, introducing an upper bound on the number of students per course

seems natural. This corresponds to introducing an upper bound on the number of sets
that are hit by a bundle containing a specific element. If the bundles are interval, this
problem is equivalent to Busy Time Minimization with capacity B.

Problem 2.17 (Constrained MHSB)
Consider an instance of Mhsb together with an upper bound b(ω) for all ω ∈ Ω. A
feasible solution is given by a collection of bundles C such that
(i) C contains at least one bundle from every F ∈ F , and
(ii) every element ω ∈ Ω is contained in at most b(ω) bundles in C.

The objective is to find a feasible solution that minimizes the number if distinct elements
in C, in other words, to minimize |

⋃
u∈C U |.
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Chapter 3

Partition Reductions of Gammoids

The main contribution of this chapter is a polynomial-time algorithm to reduce a
k-colorable gammoid to a (2k−2)-colorable partition matroid. Gammoids are combina-
torial matroids that generalize partition, transversal and laminar matroids. Intuitively,
this type of reduction reduces a gammoid to its simple underlying structure. It is known
that there are gammoids that cannot be reduced to any (2k − 3)-colorable partition
matroid, so this result is tight. Our motivation to study partition reductions is based
on their connection to certain covering and coloring problems on the intersection of
matroids. Parts of this chapter are dedicated to explaining the implication of our
results on these types of problems.

This is joint work with Benjamin Moseley and Kirk Pruhs. The chapter corresponds
to or is in parts identical to [76].

The chapter is structured as follows. After introducing the necessary terms
and notation, Section 3.1.1 gives an overview of the matroid classes that play a role
throughout this chapter and addresses the relation between the different classes. Next,
we highlight the connection of partition reductions to two combinatorial optimization
problems, the Matroid Intersection Cover problem (Section 3.1.2) and List Coloring of
Matroids (Section 3.1.3). An overview of related work is given in Section 3.1.4. After
this, we summarize our main results and explain their implications on related coloring
and list coloring problems in Section 3.1.5. This is followed by an overview of our
techniques in Section 3.1.6. Section 3.2 is dedicated to the description of the partition
reduction Algorithm. The analysis is deferred to Section 3.3. Finally, we restate an
example, showing that our algorithm is tight and conclude with open problems.
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3.1 Introduction
A set system is a pair M = (S, I) where S is a universe of n elements and I ⊆ 2S
is a collection of subsets of S. The set system is hereditary (or downward-closed) if
A ⊆ B ⊆ S and B ∈ I imply A ∈ I. A matroid is a downward-closed set system with
the additional properties that ∅ ∈ I and if A ∈ I, B ∈ I, and |A| < |B| then there
exists an element s ∈ B such that A ∪ {s} ∈ I. Sets in I are called independent
and the rank r is the maximum cardinality of a set in I. A partition C1, C2, . . . Ck
of S into independent sets is a k-coloring of M . The coloring number of M is the
smallest k such that a k-coloring exists.
If R ⊆ S, then the restriction of M to R, denoted by M |R, is a set system where

the universe is S ∩ R and where a set I ⊆ S is independent if and only if I ⊆ R
and I ∈ I. The intersection of matroids (S, I1) . . . (S, I`) on a common universe is a
downward-closed set system with universe S where a set I ⊆ S is independent if and
only if for all i ∈ [`] it is the case that I ∈ Ii.
A gammoid is a matroid that has a graphical representation (D = (V,E), S, Z),

where D = (V,E) is a directed graph, S ⊂ V is a collection of source vertices and
Z ⊂ V is a collection of sink vertices. In the gammoid, which is represented by D, a
set I ⊆ S is in I if and only if there exist |I| vertex-disjoint paths from the vertices
in I to some subcollection of vertices in Z. A partition matroid is a matroid that
can be represented by a partition X of S. In the matroid that is represented by the
partition a set Y ⊆ S is in I if and only if |Y ∩X| ≤ 1 for all X ∈ X . 1

A matroid N is a reduction (also called weak map) of a matroid M with the same
universe if and only if every independent set in N is also an independent set in M . If N
is a partition matroid, then we say that there exists a partition reduction from M
to N . Im et al. [60] defined the following decomposability concept, which generalizes
partition reduction.

Definition 3.1
A k-colorable matroid M = (S, I) is (b, c)-decomposable if S can be partitioned into
sets X1, X2, .., X` such that:

• For all i ∈ [`] it is the case that |Xi| ≤ c · k.

• For a set Y = {v1, . . . , v`}, consisting of one representative element vi from each
Xi, the matroid M | Y is b-colorable.

If b = 1, then X1, X2, .., X` represent a partition matroid. Thus, (1, c)-decomposability
means there exists a partition reduction, where the coloring number increases by at

1One can generalize this to let there be a separate upper bound a(X) for each X ∈ X on the
number of elements Y can obtain from X, but throughout this thesis the term partition matroid refers
to a matroid where the bound is one. We refer to the generalization as general partition matroid.
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most a factor of c. Note that if we do not require a bound on the coloring number of
the corresponding partition matroid, a partition decomposition of any matroid is trivial.
Simply, put all elements of the universe into a single partition. This corresponds to a
(1, nk )-decomposition and implies a trivial upper bound on c. A simple lower bound
on c is given by 1, since the coloring number of the corresponding partition matroid
cannot be smaller than the coloring number of the original matroid.

3.1.1 Matroid Classes

We already introduced gammoids and partition matroids. This subsection gives an
overview about the most important combinatorial matroids and addresses the connection
between the different matroid classes.

A uniform matroid is a matroid in which a set I is independent if and only if |I| ≤ a
for some a ∈ N. By definition, uniform matroids have rank a and all circuits in M have
exactly a elements. A matroid is called paving if all circuits have more than a − 1
elements. Hence, every uniform matroid is also paving.

Another family of matroids that generalizes uniform matroids are general partition
matroids. We already introduced partition matroids, where each independent set
may intersect with each part of the partition in at most one element. In a general
partition matroid, we are given in addition to the partition X positive integers a(X)
for all X ∈ X . A set Y is independent if and only if |Y ∩X| ≤ a(X) for all X ∈ X .
Given a laminar family F and positive integers a(X) for all X ∈ X , we define the

corresponding laminar matroid in the following way. A set Y is independent in the
laminar matroid if and only if |Y ∩X| ≤ a(X) for all X ∈ X . Since every partition is
in particular laminar, every general partition matroid is also a laminar matroid.

Another class of matroids that generalizes partition matroids are transversal ma-
troids. Let X1, X2, . . . , Xl be a collection of subsets of S. A set Y is independent

gammoid

laminar

general partition

partition

transversal

uniform

paving

Fig. 3.1: Connection between matroid classes. An arc from class A to B in the diagram
implies that B is a subclass of A.
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in the corresponding transversal matroid if and only if |Y ∩ Xi| ≤ 1 for all i ∈ [l].
Gammoids generalize laminar and transversal matroids. For a visualization of the
connection between the matroid classes defined above see Figure 3.1.

A graphic matroid is a matroid that can be represented by a multigraph G = (V,E).
The universe is given by the set E and a subset Y ⊆ E is independent in the graphic
matroid if and only if E induces a forest in G. An example of a uniform matroid that
is not graphic is given by the uniform matroid on 4 elements with rank 2 [86].

3.1.2 Connection to the Matroid Intersection Cover Problem

In the following, we introduce the Matroid Intersection Cover problem and explain its
connection to partition reductions. The Matroid Intersection Cover problem is the
special case of Set Cover, where the underlying set system is given by the intersection
of l matroids. Note that the intersection of l matroids is a downward-closed set
system and, hence, the coloring number and the covering number are essentially the
same. This follows from the subsequent observation. Given a cover C = C1, C2, . . . , Cr
of a downward-closed set system, we consider an element s of the universe that is
contained in multiple sets Ci1 , . . . , Cil of the covering. Simply replace these sets by
Ci1 , Ci2 \ {s}, . . . , Cil \ {s}, to ensure that s is only contained in one of them. The fact
that the set system is downward-closed guarantees that the sets Ci2 \ {s}, . . . , Cil \ {s}
are also independent. Therefore, the Matroid Intersection Cover problem is sometimes
also referred to as Matroid Intersection Coloring problem.

It is formally defined as follows.

Definition 3.2 (Matroid Intersection Cover Problem)
Given l matroids M1 = (S, I1), . . . ,Ml = (S, Il) on a common universe S, find a
collection of subsets C, such that C covers S and every set in C is independent in all l
matroids, that is, C ⊆

⋂
i∈[l] Ii. The objective is to minimize |C|.

Im et al. [60] showed that given any set of l matroids that are (1, c)-decomposable,
there exists a polynomial-time algorithm to construct a (c · l)-approximate set cover
for the intersection of their set systems. The main idea is to consider the partition
reductions of the l matroids. For a matroid Mi let Xi be the partition that represents
the corresponding partition matroid. Im et al. [60] constructed an l-partite hypergraph
in the following way. The vertex set is given by V1, V2 . . . , Vl such that every Vi contains
a vertex for every part in Xi. For every element s in S, we introduce a hyperedge es
that contains the vertex from every Vi that corresponds to the part in Xi that contains
s. Figure 3.2 displays the vertex set of the hypergraph and visualizes the structure of
a single hyperedge es.
Consider a coloring of the hyperedges such that if two hyperedges e and e′ are

assigned the same color, then e ∩ e′ = ∅. Then every color class corresponds to a set C
of elements in S that contains at most one vertex from a part of any partition Xi. In
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es

X1

X2

Xl

Fig. 3.2: Vertex set of the hypergraph together with a visualization of a hyperedge es.

other words, C is independent in the partition matroids represented by X1,X2, . . . ,Xl
and, hence, C is also independent in the original matroids. A simple Greedy algorithm
is used in [60] to obtain a coloring of the hypergraph. Overall, the main algorithmic
result from [60] is:

Proposition 3.3 (Im et al. [60])
Consider matroids M1,M2, . . .M` defined over a common universe, where matroid
Mi has coloring number ki. There is a polynomial-time algorithm that, given a
(bi, ci)-decomposition of each matroid Mi, computes a coloring of the intersection
of M1,M2, . . .M` using at most

(∏
i∈[l] bi

)
·
(∑

i∈[l] ci
)
k∗ colors, where k∗ = maxi∈[l] ki.

3.1.3 Connection to List Coloring of Matroids
For graphs the concept of coloring can be extended to the concept of list coloring,
where we are given a set or so-called list of colors L(v) for every vertex of the graph. A
list coloring of a graph is a coloring that additionally has the property that each vertex
is colored with a color contained in its list. The list coloring number of the graph is
the smallest k such that if |L(v)| ≥ k for all vertices v, we can guarantee the existence
of a feasible list coloring.

In a similar way, one can extend the concept of coloring on matroids to list coloring
on matroids. If each element s ∈ S is additionally given an associated list L(s) of
allowable colors, then a list coloring is a coloring with the additional property that
every element is colored with a color from its list. The list coloring number of M is
the smallest k that guarantees that if for s ∈ S it is the case that |L(s)| ≥ k then a
list coloring exists. For a single matroid, Seymour [95] showed that the list coloring
number equals its coloring number. The following question arises in a natural way:
How about the list coloring number of the intersection of two matroids?
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Definition 3.4 (List Coloring Problem for two Matroids)
Given two matroids M1 = (S, I1) and M2 = (S, I2) on a common universe S, find
the smallest integer k, such that if |L(s)| ≥ k for all s ∈ S, there always exists a list
coloring of the intersection of the two matroids.

The type of result one would hope for is an upper bound on the list coloring number
of the intersection of two matroids in terms of the list coloring number (or equally
the coloring number) of the two single matroids. If the two matroids M1 and M2 are
partition matroids, a result by Galvin [45] implies that the list coloring number of the
intersection of M1 and M2 equals max{k1, k2}, where ki is the coloring number (or
equally the list coloring number) of Mi.
An immediate consequence of [45], which was also observed in [18], is that the

existence of partition reductions for two matroids implies an upper bound on the list
coloring number of their intersection. Formally, one has the following proposition.

Proposition 3.5 ([18, 45])
Let M1,M2 be two matroids with coloring numbers k1, k2, respectively. If each matroid
is (1, ci)-decomposable, then the list coloring number of the intersection of the two
matroids is at most max{c1k1, c2k2}.

3.1.4 Related Work
Partition Reductions. There are two prior, independent papers in the literature
that are directly relevant to our results. Bérczi et al. [18] showed that any gammoid M
admits a (1, (2− 2

k ))-decomposition. This proof is constructive and can be converted
into an algorithm. The resulting algorithm is essentially a local search algorithm that
selects a neighboring solution in the dual matroid such that an auxiliary potential
function always decreases. There seems to be little hope of obtaining a polynomial-
time algorithm using techniques from [18] since the potential can be exponentially
large. Bérczi et al. [18] showed that no better bound is achievable. Independently,
Im et al. [60] gave a polynomial-time algorithm to construct a (18, 1)-decomposition
of a gammoid. The reduction was shown by leveraging prior work on unsplittable
flows [70]. Combining Proposition 3.3 with the decompositions in [18, 60] one obtains
O(1)-approximation algorithms for problems that can be expressed as coloring problems
on the intersection of O(1) common combinatorial matroids. Several natural examples
of such problems are given in [60].
Both papers [18, 60] also observed that partition reductions are relatively easily

obtainable for other common types of combinatorial matroids. In particular, transversal
matroids are (1, 1)-decomposable [60], graphic matroids are (1, 2)-decomposable [18,
60] and paving matroids are (1, d r

r−1e)-decomposable if they are of rank r [18].

Set Cover Problem. We already highlighted the connection of partition reductions
to the Matroid Intersection Cover problem, which is essentially a special case of Set
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Cover. Set Cover has been studied extensively in the field of approximation algorithms.
See Section 1.1.4 for more information.
There is considerable interest in discovering special instances of Set Cover where

this approximation ratio can be improved. Despite the interest, there are few cases
where the approximation can be improved. One case is given by geometric covering
problems. Examples of this include covering points in the plane using discs [84] for
which a polynomial-time approximation scheme is known. Another case is given by
restricting the number of sets an element can appear in. For example, in the vertex
cover problem, each set can have a size of at most two. A 2-approximation is known
in this case [101, 106]. More generally, an fmax-approximation is known for vertex
covering hypergraphs with edges that include at most fmax vertices.

Matroid Intersection Cover Problem. Several results are known for the special
case of l = 2. Kőnig’s [72] famous line coloring theorem can be interpreted in terms of
matroid intersection covers. Given two k-colorable partition matroids, the intersection
is also k-colorable. The statement does not hold for matroids in general. For an
example see [92, Section 42.6c]. An upper bound for two general matroids was proven
by Aharoni and Berger [2]. They showed that given two matroidsM1 andM2 with color
numbers k1, k2 respectively the color number of the intersection of the two matroids is
at most 2 max{k1, k2}. Matroid Intersection Cover is NP-hard for l ≥ 3. This follows
from the fact that it is NP-hard to decide, whether a 3-partite, uniform hypergraph of
degree 3 is 3-edge colorable [85].
Im et al. [60] studied the Matroid Intersection Cover problem on a collection of l

matroids. Given a (bi, ci)-decomposition of Mi for all i ∈ [l], they present a polynomial-
time algorithm that computes a cover of the intersection of size at most

(∏
i∈[l] bi

)
·(∑

i∈[l] ci
)
k∗, where k∗ = maxi∈[l] ki. See Section 3.1.2 for more details. As already

mentioned above this implies constant-factor approximation algorithms if each of the
constant number of matroids is either a partition matroid, a transversal matroid, a
graphic matroid, a laminar matroid or a gammoid.
A related problem is the existence of a partition into common bases. Given two

matroids M1, M2, can we partition the ground set into k sets such that all of them
are bases in both matroids? Since the intersection of two matroids forms a downward
closed family, a cover and a partition of the ground set is essentially the same. The
crucial difference is the additional property that we require the sets of the partition to
be bases. Bérczi and Schwarcz [17] show that it is already NP-hard to decide whether
there exists a partition into two common bases if one matroid is a partition and the
other one a linear matroid.

Matroid Intersection Problem. In the literature, the term Matroid Intersection
problem usually refers to the special case of l = 2. That is, given two matroids
M1 = (S, I1) and M2 = (S, I2), find a set of maximum cardinality (or weight) that is
independent in M1 and M2. It is well-known that Edmond’s [38] Matroid Intersection
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Algorithm solves this problem in polynomial-time [92].
For l ≥ 3, Matroid Intersection is NP-hard by a reduction from Hamiltonian Path

on directed graphs [105]. A result by Fisher et al. [43] implies that Greedy is a 1
l -

approximation algorithm for finding an independent set of maximum cardinality in the
intersection of l matroids. Lee et al. [75] presented an 1

l+ε -approximation algorithm
using local search techniques. For the special case of l = 3 Linhares et al. [78] gave a
2-approximation algorithm.
Matroid Cover/Coloring Problem. This is the special case of Matroid Intersection
Cover for l = 1. Given a single matroidM = (S, I), find a collection C ⊆ I of minimum
size that covers S. Note that this is equivalent to partitioning S in as few independent
sets as possible. Therefore, the Matroid Cover problem is sometimes also referred to
as Matroid Coloring problem. Matroid Cover can be solved in polynomial time, since
it can be reduced to finding a maximum independent set in the intersection of two
matroids. For more details on the reduction, see for example [74, Chapter 8].

Zhou [108] studied the Minimum Partitioning problem on downward-closed systems.
In contrast to matroids, it is NP-complete to partition a downward-closed set system
into a minimum number of independent sets. This follows directly from the fact that
graph coloring is a special case. Given a graph on a vertex set V , choose V to be the
ground set of elements. Let I be the set of independent sets of the graph, then (V, I)
forms an independent set system and a minimum partition corresponds to a coloring
of G with a minimum number of colors. See [108] for an overview of connections of the
Minimum Partition problem on downward-closed set systems to other combinatorial
optimization problems and lower bounds.

3.1.5 Our Results
Our main result is a partition reduction of a k-colorable gammoid. This reduction
ensures that the coloring number of the partition matroid is at most 2k − 2. Previous
lower bounds [18] imply that this is the best reduction possible in terms of the coloring
number.
Theorem 3.6
A partition reduction from a k-colorable gammoid M to a (2k − 2)-colorable partition
matroid can be computed in polynomial time given a directed graph D that represents
M as input.

Combining our main result, Theorem 3.6, with Proposition 3.3 from [60] we obtain
significantly better approximation guarantees for Matroid Intersection Cover problems
in which one of the matroids is a gammoid.
Corollary 3.7
Given any collection of l matroids on the same ground set S where each matroid is
either a graphic matroid, paving matroid, or gammoid, let I be the intersection of their
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independent sets. There is a polynomial-time algorithm to compute a 2l-approximation
of the Set Cover of S using sets in I.

In the following, we give an example of a Matroid Intersection Cover problem in
which one of the matroids is a gammoid. Initially, assume that the input consists of
a directed graph D with a designated file server location (a sink) and a collection of
clients requesting files from the server at various locations in the networks (the sources).
Every time step, a collection of clients, for which there exist disjoint paths to the server,
can be served. The goal is to get every client, as quickly as possible, the requested file
from the server. The problem described above is a Matroid Cover problem that can be
solved to optimality in polynomial-time [37].
Now additionally assume that sets of clients are employed by different companies.

There is a Service Level Agreement (SLA) for each company that upper bounds how
many clients from a particular company can be serviced per time unit. With the
additional constraints, the problem becomes a Matroid Intersection Cover problem,
where the intersecting matroids are a gammoid and a partition matroid. Using
the (18, 1)-decomposition of a gammoid and Proposition 3.3 from [60] one obtains
a polynomial-time 36-approximation algorithm. However, combining the (1, 2 − 2

k )-
decomposition of a gammoid from Theorem 3.6 with Proposition 3.3 from [60] we now
obtain a polynomial-time 3-approximation algorithm.

Another algorithmic consequence is an efficient algorithm for list coloring the inter-
section M1 ∩M2 of a k1-colorable matroid M1 and a k2-colorable matroid M2 if the
list of allowable colors for each element has cardinality at least 2 max(k1, k2), and each
of the matroids is either a graphic matroid, paving matroid, transversal matroid, or
gammoid. Casting this into the context of our running file server example implies that,
additionally, each client has a list of allowable times when the file transfer may be
scheduled. Our partition reduction of a gammoid then yields an efficient algorithm to
find a feasible schedule as long as the cardinality of allowable times for each client is at
least 2 max(k1, k2), where k1 is the time required if the network had infinite capacity
(so only the Service Level Agreement constraints come into play), and k2 is the time
required if the SLA allowed infinitely many file transfers (so only the network capacity
constraints come into play).
Set Cover is a canonical algorithmic problem. Hence, there is considerable interest

in discovering examples of natural special types of set cover instances that allow
better approximation algorithms than the well-known H(n) and fmax-approximations
(see Section 1.1.4). Our results provide another example of such a natural special
case, namely when the sets come from the intersection of a small number of standard
combinatorial matroids.
Finally, Theorem 3.6 and its proof reveal structural properties of gammoids that

would seem likely to be of use to address future research on gammoids.
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3.1.6 Overview of Techniques

Given a graphic representation of a gammoid, an optimal coloring can be computed in
polynomial-time [37]. By superimposing the source-sink paths for the various color
classes, one can obtain a flow f from the sources to the sinks that moves at most k units
of flow over any vertex. Using standard cycle-canceling techniques [5] one can then
convert f to what we call an acyclic flow. A flow f is acyclic if for every undirected
cycle C in D at least one edge in C either has flow k or has no flow. Thus, by deleting
edges that support no flow in f , as they are unnecessary, we are left with a forest T of
edges that have flow in the range [1, k − 1] and a collection of disjoint paths, which we
call highways, that have flow k. See Figure 3.3.

Now each part X in the computed partition X will be entirely contained in one tree
T ∈ T , and the parts X in a tree T ∈ T are computed independently of other trees
in T . There can be four types of vertices in T : (1) sources s that have outflow 1, (2)
source portals s̃, which are vertices that have a highway directed into them, and which
have outflow k in T , (3) sink portals z̃, which are vertices that have a highway directed
out of them, and which have inflow k in T , and (4) normal vertices.

We give a recursive partitioning algorithm for forming the parts X in a tree T ∈ T .
In each recursive step, our algorithm first identifies a single part X of at most 2k − 2
sources and an associated sink portal that are in some sense near each other on the
edge of T . The algorithm then removes these sources and sink portal from T , and
reconnects disconnected sources back into appropriate places in T . The algorithm then
recurses on this new tree T .

Tree T3

Tree T1 Tree T2

Legend

Sink Portal

Source Portal

Edges in trees

Highways

Source

Sink

Fig. 3.3: Example of trees created. Here k = 3. Source portals are matched to sink portals
along a path not in the trees. All sink portals have k units of flow entering them
and source portals have k units leaving.
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Most of the proof that our partitioning algorithm produces a (1, 2− 2
k )-decomposition

focuses on routing individual trees in T . So let Y be a collection of sources such that
|Y ∩X| ≤ 1 holds for all X ∈ X . The first key part is proving that as the partitioning
algorithm recurses on a tree T , it is always possible to route both the flow coming into
T , and the flowing emanating within T , out of T , without routing more than k units
of flow through any vertex in T . Note that as the algorithm recurses, the tree T loses
a sink portal (which reduces the capacity of the flow that can leave T by k) and loses
up to 2k − 2 sources (which means there is less flow emanating in T that has to be
routed out).

The second key part is to prove that there is a vertex-disjoint routing from the source
portals in T and the sources in T ∩ Y to the sink portals in T . To accomplish this, we
trace our partitioning algorithm’s recursion backwards. So in each step a new collection
X of sources and a sink portal is added back into T . We then prove by induction that
no matter how the previously considered sources in Y were routed, there is always a
feasible way to route the chosen source in Y ∩X to a sink portal in T . We finish by
observing that unioning the routings constructed within the trees with the highways
gives a feasible routing for Y .

3.2 The Partition Reduction Algorithm
This section gives the Partition Reduction algorithm. First, we define a corresponding
flow graph. Using a Cycle-Canceling algorithm, we decompose the flow graph into
a collection of trees. Then we algorithmically create the partitions from the local
structure in these trees. The analysis of the algorithm is deferred to the next section.
Let D = (V,E) be a directed graph that represents a gammoid. Let S ⊆ V be a

set of sources, and Z ⊆ V be the collection of sinks. We may assume without loss of
generality that:

• Each vertex v ∈ V has either out-degree 1 or in-degree 1.

• Each source s ∈ S has in-degree 0 and out-degree 1.

• Each sink z ∈ Z has in-degree 1 and out-degree 0 and |Z| = r.

• If (u, v) is an edge in E, then (v, u) is not an edge in E.

We assume without loss of generality that all color classes have full rank, that is
|S| = rk. This can be assumed by adding dummy sources to M .

Definition 3.8
• A feasible flow in a digraph D from a collection S′ ⊂ S is a collection of paths
{ps | s ∈ S′} such that (1) ps is a simple path from s to some sink, and (2) no
vertex or edge in D has more than k such paths passing through it.
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• A feasible routing in a digraph D from a collection S′ ⊂ S is a collection of
paths {ps | s ∈ S′} such that (1) ps is a simple path from s to some sink, and (2)
no vertex or edge in D has more than one such path passing through it.

3.2.1 Defining the Flow Graph
Given the digraph D, we can compute a minimum k such that M is k-colorable
in polynomial time using a polynomial-time algorithm for Matroid Intersection [86].
Further we can compute the collection of resulting color classes C = {C1, C2, . . . , Ck}.
So C is a partition of the sources S, and for each Ci ∈ C there exist r vertex-disjoint
paths p1

i , . . . p
r
i in the digraph D from the r sources Ci to Z. We create an f where the

flow f(u, v) on each edge (u, v) is initialized to the number of paths pji that traverse
(u, v), that is

f(u, v) =
k∑
i=1

r∑
j=1

1(u,v)∈pj
i .

A flow f is acyclic if for every undirected cycle C in D at least one edge in C either
has flow k or has no flow in f . An arbitrary flow can be converted acyclic by finding
cycles in a residual network Dr. This is standard [5], but for completeness we define it
here. For every directed edge (u, v) with f(u, v) < k there exists a forward directed
edge (u, v) in Dr with capacity cr(u, v) := k − f(u, v). For every directed edge (u, v)
with f(u, v) > 0 there exists a backward directed edge (v, u) in Dr with capacity
cr(v, u) := f(u, v). An augmenting cycle in Dr is a simple directed cycle with strictly
more than two edges.

Cycle-Canceling Algorithm. While there exists an augmenting cycle C do the
following:

• Let c := min(u,v)∈C cr(u, v) be the minimum capacity of an edge in C.

• For each forward edge (u, v) ∈ C, increase f(u, v) by c.

• For each backward edge (u, v) ∈ C, decrease f(u, v) by c.

As every iteration increases the number of edges that have flow k in f or that have no
flow in f by one, the Cycle-Canceling algorithm terminates after at most |E| iterations.
The following observations are straight-forward.

Observation 3.9
The following properties hold when the Cycle-Canceling algorithm terminates:

• f is a feasible flow of kr units of flow from all the sources.
• Every undirected cycle C in D contains at least one edge with flow k in f or one
edge with no flow in f .
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• The collection of edges in D that has flow strictly between 0 and k in f forms a
forest.
• The collection of edges in D with flow k in f are a disjoint union of directed
paths, which we call highways.

3.2.2 Properties of the Acyclic Flows
We now give several definitions and straightforward observations about our acyclic flow
f that will be useful in our algorithm design and analysis.

Definition 3.10
• A vertex v is a source portal if its in-degree in D is 1, and it has k units of flow

passing through it in f .
• A vertex v is a sink portal if its out-degree in D is 1, and it has k units of flow
passing through it in f .
• Let T be the forest consisting of edges in D that have flow in f strictly between

0 and k.
• For a tree T ∈ T and a vertex v ∈ T define Tv to be the forest that results from
deleting the vertex v from T .

Observation 3.11
Each sink z ∈ Z is in a tree T ∈ T that consists solely of z.

Proof. By assumption, the sink z has in-degree 1 in D and all color classes C have
full rank. Hence, k units of flow are entering z through a unique edge. 2

As our Partition Reduction algorithm partitions each tree T ∈ T independently, it is
notationally more convenient to fix an arbitrary tree T ∈ T , and make some definitions
relative to this fixed T , and make some observations that must hold for any such T . To
a large extent these observations are intended to show that the Figure 3.4 is accurate.

Definition 3.12
• Let S̃ be the collection of source portals in tree T .
• Let Z̃ be the collection of sink portals in tree T .
• A normal vertex is a vertex that is none of a source, a sink, a source portal, nor
a sink portal.

Definition 3.13
• A feasible flow in T from a collection S′ ⊂ S is a collection of paths, one path
ps for each s ∈ S′ and k paths ps̃1, . . . ps̃k for each source portal s̃ ∈ S̃ such that
(1) ps is a simple path from s to some sink portal, (2) each ps̃i is a simple path
from s̃ to a sink portal, and (3) no vertex or edge in T has more than k such
paths passing through it.
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• A feasible routing in T from a collection S′ ⊂ S is a collection of paths, one
path ps for each s ∈ S′ and one path ps̃ for each source portal s̃ ∈ S̃ such that
(1) ps is a simple path from s to some sink portal, (2) ps̃ is a simple path from s̃
to a sink portal, and (3) no vertex or edge in T has more than one such paths
passing through it.

Legend

Sink Portal

Source Portal

Source

Edges in H

Edges in backbone B

Fig. 3.4: Backbone of a tree.

The following observation holds for trees in T initially and gives intuition for the
structure of T . We remark that this observation may not hold for all trees throughout
the execution of our algorithm.

Observation 3.14
The number of sources in T is an integer multiple of k.

Proof. This follows from the fact that each source portal s̃ ∈ T has exactly k units of
flow coming into T via s̃ in the flow f and each sink portal z̃ ∈ T has exactly k units
of flow leaving T via z̃ in f . 2

Definition 3.15
• For two vertices u, v ∈ T , let P (u, v) be the unique undirected path from u to v
in T .
• The backbone B of T is the subgraph of T consisting of the union of all paths

in between pairs of sink portals in T , that is B =
⋃
ỹ∈Z̃

⋃
z̃∈Z̃ P (ỹ, z̃).

• For the backbone B, let Bv be the induced forest that results from deleting v
from B.
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• A vertex v in a backbone B is a branching vertex if either:
– v is not a sink portal and the forest Bv contains at least two trees that each

contain exactly one sink portal, or
– v is a sink portal and the forest Bv contains at least one tree that contains

exactly one sink portal.
• Let H be the forest that results from deleting the edges in B from the tree T .
• For two vertices u, v ∈ B, let S(P (u, v)) be the sources s ∈ S such that there exists
a tree H ∈ H such that s ∈ H and such that H contains a vertex w ∈ P (u, v).
Intuitively these are the sources in trees in H hanging off vertices of the path
P (u, v).
• Let S(v) denote S(P (v, v)).

Observation 3.16
If s̃ ∈ S̃ is a source portal in T then s̃ is in the backbone B and deg+

B(s̃) ≥ 2, that is s̃
has out-degree at least 2 in B.

Proof. By definition, s̃ has a unique incoming edge which is saturated in f , and at
least one outgoing edge in T that is not saturated in f . Hence, deg+

B(s̃) ≥ 2. By flow
conservation, there have to be at least two directed paths from s̃ to two different sink
portals in T . This implies that s̃ is in the backbone B. 2

Observation 3.17
If B contains at least two sink portals, then B contains a branching vertex v.

Proof. Consider an arbitrary vertex v ∈ B. If v is not a branching vertex, then there
must be a subtree T ′ ∈ Bv that contains two sink portals. One can then recurse on T ′
to find a branching vertex. 2

Observation 3.18
If s ∈ S is a source in T then s is not in the backbone B.

Proof. Since every source s has out-degree 1 in D, it cannot be on a path between a
pair of sink portals in T . 2

Observation 3.19
For each tree H ∈ H it must be the case that all edges in H are directed towards the
unique vertex w in H that is also in B.

Proof. This follows from the fact that H \ {w} cannot contain a sink portal. 2
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Observation 3.20
Assume that T has at least two sink portals. Let v be a branching vertex. Let T ′ be a
tree in the forest Bv that contains exactly one sink portal z̃. Then the following must
hold:

• T ′ = P (v, z̃) \ {v}.

• If T ′ contains a source portal s̃, then deg+
B(s̃) = 2.

• The path T ′ contains at most one vertex y such that deg+
B(y) = 2.

Proof. The first statement follows from the definition of B and the fact that T ′ only
contains one sink portal. The second statement follows since every vertex on a path
other than its endpoints has degree two. For the last statement assume, to reach a
contradiction, that there were two such y’s, y1 and y2 with y1 being closer to v in B.
Then the flow leaving y1 toward z̃ could not be feasibly routed through y2. 2

3.2.3 Description of the Partition Reduction Algorithm

Given the collection of trees T , our Partition Reduction algorithm returns a partition
X of the sources in S. The algorithm iterates through the trees T in T and partitions
the sources in T based on their locality in T . So let us consider a particular tree T ∈ T .

The algorithm performs the first listed case below that applies, with the base cases
being checked before the other cases. In the non-base cases the tree T is modified,
and the algorithm called tail-recursively on the modified tree. After the algorithm
description, we show that the algorithm maintains the invariant that there is a feasible
flow on the tree T throughout the recursion.

Base Case A: If T contains no sources then the recursion terminates, and the algorithm
moves to the next tree in T .
Base Case B: Otherwise, if T contains at most 2k − 2 sources and no source portal
then these sources are added as a part X in X . The recursion terminates, and the
algorithm then moves to the next tree in T .

We perform the following recursively on T if neither base case holds. Let v be
an arbitrary branching vertex in B. We show the existence of such a vertex in
Observation 3.21.

Let z̃1 be a sink portal in some tree T1 in Tv that only contains one sink portal. If v
is not a sink portal, let z̃2 be a sink portal in some tree T2, where T1 6= T2, in Tv that
only contains one sink portal. If v is a sink portal let z̃2 = v.
The algorithm’s cases are broken up as follows. Case 1 is executed when there is

a source portal at v or in T1 or in T2. Case 2 is executed when there is a vertex of
out-degree 2 in T1 or T2 and there is no source portal. Case 3 is everything else.
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Recursive Case 1a: The vertex v is a source portal. In this case T is modified
as follows: (1) for each source s ∈ T1 a directed edge (s, v) is added to T , (2) v is
converted into a normal vertex, and (3) all the nonsources in T1 are deleted from T .
The algorithm then recurses on this new T .

−→

v = s̃ v

z̃1

Recursive Case 1b: In this case for some i ∈ {1, 2} the path P (v, z̃i) \ {v} contains
a source portal. In this case T is modified as follows: (1) for each source s ∈ Ti a
directed edge (s, v) is added to T , and (2) all the nonsources in Ti are deleted from T .
The algorithm then recurses on this new T .

v

s̃

v

−→

z̃i

Recursive Case 2a: In this case for some i ∈ {1, 2}, the path P (v, z̃i) \ {v} contains
a vertex y with deg+

B(y) = 2 and |S(P (y, z̃i))| ≤ 2k− 2. Add the sources in S(P (y, z̃i))
as a part X to X . The tree T is then modified as follows: (1) for each source s ∈ Ti−X
a directed edge (s, v) is added to T , and (2) the sources in X and all the nonsources in
Ti are deleted from T . The algorithm then recurses on this new T .

v v

y

z̃i

X −→

57



Chapter 3 Partition Reductions of Gammoids

Recursive Case 2b: In this case for some i ∈ {1, 2}, the path P (v, z̃i) \ {v} contains
a vertex y with deg+

B(y) = 2 and |S(y)| = k. In this case the algorithm adds the k
sources in S(y) as a part X to X . The tree T is then modified as follows: (1) for each
source s ∈ Ti−X a directed edge (s, v) is added to T , and (2) the sources in X and all
the nonsources in Ti are deleted from T . The algorithm then recurses on this new T .

k

z̃i

y

v v

−→

X

Recursive Case 2c: In this case for some i ∈ {1, 2}, the path P (v, z̃i) \ {v} contains
a vertex y with deg+

B(y) = 2 and |S(P (y, z̃i) \ {y})| = k. In this case the algorithm
adds the k sources in S(P (y, z̃i) \ {y}) as a part X to X . The tree T is then modified
as follows: (1) for each source s ∈ Ti −X a directed edge (s, v) is added to T , and (2)
the sources in X and all the nonsources in Ti are deleted from T . The algorithm then
recurses on this new T .

k

z̃i

y

v v

−→
X

Recursive Case 3a: In this case for some i ∈ {1, 2} Ti contains exactly k sources.
Add the sources in Ti as a part X to X . The tree T is modified by deleting Ti. The
algorithm then recurses on this new T .

k

z̃i

v v

−→

X
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Recursive Case 3b: The set of sources in T1 ∪ T2 are added as a part X in X . The
tree T is modified by deleting the vertices in T1 and T2. Add a new sink portal z̃
together with a directed edge (z̃, v) to T . The algorithm then recurses on this new T .

v v

z̃1 z̃2

z̃−→

X

3.3 Analysis of the Partition Reduction Algorithm
Our goal is to show that the partition matroid, represented by the partition constructed
from the trees, indeed corresponds to a feasible partition reduction from the gammoid.
The analysis has the following key components.

• Every tree T has a corresponding feasible flow throughout the algorithm.

• Every part X of the partition has size at most 2k− 2 and all sources are in some
part.

• Any collection of sources Y such that |Y ∩ X| ≤ 1 for all X ∈ X is in I and,
therefore, can each route a unit of flow to the sink in D.

3.3.1 Trees Always have a Feasible Flow
This section’s goal is to show that each tree has a feasible flow as defined in Definition
3.12 throughout the execution of the algorithm. Later, we use this property to prove
that our partition indeed represents a partition matroid that corresponds to a feasible
partition reduction in the following section.

We begin by showing various invariants hold for each tree when a feasible flow exists.
In particular, this implies that a branching vertex exists if any of the recursive cases are
executed. Moreover, arriving at Cases (3a) and (3b) ensure the existence of T1 and T2.
All together, this with the fact that each tree has a feasible flow establishes that the
algorithm always has a case to execute if T is non-empty. The following observation
shows that a branching vertex exists if neither base case holds.
Observation 3.21
Fix a tree T ∈ T during the execution of the algorithm and say T supports a feasible
flow as defined in Definition 3.12. If neither of the base cases apply, then T contains
at least two sink portals. Moreover, a branching vertex must exist in T in this case.
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Proof. This observation holds because T must contain either more than 2k− 2 source
portals or a source portal along with at least one source. In either case, we require two
sink portals to support the strictly more than k units of flow from these sources and
source portal. A branching vertex must then exist by Observation 3.17. 2

Observation 3.22
Fix a tree T ∈ T during execution of the algorithm and say T supports a feasible
flow as defined in Definition 3.12. Say that T has a branching vertex v with a tree Ti
containing exactly one sink z̃i. Moreover, say that there is no vertex with out-degree 2
in P (v, z̃i). It is the case that P (v, z̃i) is a directed path from v to z̃i.

Proof. No vertex with out-degree 2 is in P (v, z̃i). Thus, P (v, z̃i) is either a path from
v to z̃i or from z̃i to v. Sink portals always have out-degree 0, so the observation
follows. We note that, sink portals have out-degree 0 initially and are never given
outgoing edges by the algorithm. 2

The next observation shows that a branching vertex is not a sink portal when Cases
(3a) or (3b) are executed.

Observation 3.23
Fix a tree T ∈ T during execution of the algorithm and say T supports a feasible flow
as defined in Definition 3.12. Say that T has a branching vertex v and a corresponding
tree Ti with exactly one sink. If P (v, z̃i) \ {v} does not contain a vertex of out-degree 2
in B, then v is not a sink portal.

Proof. Observation 3.22 implies that P (v, z̃i) is a directed path form v to z̃i. Sink
portals always have out-degree 0, so the observation follows. We note that, sink portals
have out-degree 0 initially and are never given outgoing edges by the algorithm. 2

The previous observations guarantee the algorithm always has a case to execute if a
feasible flow exists in all trees. The next lemma guarantees the existence of a feasible
flow.
Lemma 3.24
Fix any tree T during the execution of the algorithm. There must be a feasible flow in
T as described in Definition 3.12.

Proof. The statement trivially holds at the beginning of the algorithm. In particular,
each edge of D supports at most k units of flow. Initially, every vertex in each tree T
has out-degree or in-degree 1, ensuring that no vertex supports more than k units of
flow. We remark that during the execution of the algorithm it can happen that there
are vertices with both out- and in-degree more than one in some trees.

We inductively show that it holds after a single iteration. Let T b be the tree at the
beginning of the iteration and T e the tree at the end. Let f b be the initial flow on T b
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that is feasible and we use this to construct a flow fe on T e. We break the proof into
the case that gets executed.

Consider Recursive Case (1a). Let S′ be the set of sources from the tree T1 which
have newly created edges into v. There must be at least |S′| units of flow in f b departing
v that (1) do not enter T1 and (2) originate from sources in T1 or the source portal
v. This is because T1 has one sink z̃1 that can support at most k units of flow. Let
F = {f1, f2 . . .} denote these units of flow from v to sinks. Set fe to include all flow
paths in f b except those in F . Note these paths never enter the deleted vertices or
edges. Next observe that the sink z̃1 is removed and v is no longer a source portal.
Thus, we simply need to find a way to send flow for the sources in S′. These vertices
each route one unit of flow to their new edge directly to v and then choose a unique
flow path in F and add these paths to fe. Notice that no vertex or edge capacity is
violated by definition of f b and F .

Consider Recursive Cases (1b), (2b) and (2c). Again, let S′ be the set of sources
which have newly created edges into v. Let Ti be the tree that initially contained the
sources. In this case there must be exactly |S′| units of flow in f b entering v from
vertices in Ti. This is because in Case (1b) Ti contains one source portal, one sink
portal and there are |S′| sources in Ti. In Case (2b), Ti contains one sink portal,
|S(y)| = k and there are |S′| other sources in Ti. In Case (2c), Ti contains one sink
portal, |S(P (y, z̃i) \ {y})| = k and there are |S′| other sources in Ti. Where this flow
goes in f b will exactly correspond to where the flow in fe goes for the sources that now
connect to v. That is, fe has the same flow on every edge as f b for the edges shared
by T b and T e. Additionally, there is one unit of flow from each of the |S′| sources on
the new edge that connects to v.

Consider Recursive Case (2a). In this case the vertex y has out-degree two and the
sources S(P (v, y) \ {v ∪ y}) have a new direct edge into v. Notice that any vertex in
S(P (v, y) \ {v ∪ y}) cannot reach z̃i (since they can’t route through y to z̃i). Thus,
these sources route to a sink through v. In this case, fe is the same as f b except these
sources now directly send their flow to v and then follow their remaining path to a
sink as in f b.

Consider Recursive Case (3a). Let Ti be the tree with exactly k sources. There is
one sink portal in Ti. No flow in f b can enter Ti via v. This is because then v has an
outgoing edge in T to a vertex in Ti by Observation 3.22. Then all k sources in Ti and
at least one unit of flow from v must route to z̃1, contradicting that z̃1 receives at most
k units of flow in f b. Set fe to be the same as f b for all shared edges between T b and
T e, except remove any flow sent through v from sources in Ti in f b.

Consider Recursive Case (3b). We know v is not a sink portal by Observation 3.23.
Therefore, T1 and T2 exist, each with a unique sink portal. At most k units of flow
in f b can route through v by definition of f b. The flow fe is set to the same as f b on
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the shared edges between T b and T e. Further, the flow from v to sinks z̃1 and z̃2 in
f b now go directly to the new sink added that is adjacent to v in T e. This sink must
receive at most k units of flow. 2

3.3.2 Bounding the Size of the Parts in the Partition

This section shows that every source is in some part X in X and that every X ∈ X has
size at most 2k − 2. Thus, we have a valid partition with each part having the desired
size.

Lemma 3.25
It is the case that |X| ≤ 2k − 2 for all X ∈ X . Moreover, every source in S is in some
set in X .

Proof. It is easy to see that every source in S is in some set in X . This is because
sources are always contained in some tree of T until they are added to a set placed in
X and the algorithm stops once there is no tree in T .

Now we show how to bound the size of sets in X . Cases (1a) and (1b) do not add a
set to X . Cases (2b), (2c) and (3a) add a set to X of size k by definition. Case (2a)
adds a set of size 2k − 2.
Case (3b) is more interesting. Consider the execution of this case on a tree T with

branching vertex v. Let z̃1 and z̃2 be the corresponding sinks. We know v is not a sink
portal by Observation 3.23 and therefore T1 and T2 both exist. By Observation 3.22,
the paths from v to z̃1 and z̃2 are directed paths from v to z̃1 and from v to z̃2. Hence,
neither T1 nor T2 contains more than k sources. Since case (3a) does not hold, T1 and
T2 has strictly less than k sources. Thus, there are at most 2k − 2 sources in the set
added to X . 2

3.3.3 Routing Sources within a Tree

In this section, we show that the algorithm is indeed a partition reduction from a
k-colorable gammoid to a (2k − 2)-colorable partition matroid. That is, we show that
every set Y , that is independent in the partition matroid represented by X is also
independent in the gammoid. More specifically, for any set Y where |Y ∩X| ≤ 1 for
all X ∈ X it is the case that Y ∈ I or, equivalently, there is a feasible routing in the
digraph D from the sources in Y . The key to this is Lemma 3.26 which essentially
states that there exists a feasible routing in each tree T ∈ T .

Lemma 3.26
Let T be an arbitrary tree in T . Let XT be the parts in X that are also in T . For a set
Y with |Y ∩X| ≤ 1 for all X ∈ X , let YT be the subset of sources in Y that are also in
T . Then there is a feasible routing R in T from YT to a subset of Z̃.
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Proof. For convenience we consider one fixed tree T and drop T for the notation. The
proof is by reverse induction on the recursion in our partitioning algorithm. So the
base case of the induction will be the base cases of the partitioning algorithm.

Consider Base Case (A). In this case T does not contain any sources. By Lemma
3.24 there exists a feasible flow. Scaling by a factor of 1

k implies that we can route one
unit of flow from every source portal in S̃ to the collection of sink portals, such that
no more than one unit of flow is routed through any edge or vertex. Then there must
also exist an integer flow, which equals a routing in T .

Consider Base Case (B). In this case X consists of a single part X and there are no
source portals in T . Let s be the unique source in X ∩ Y . Then s can be routed in T
as s is routed in the flow f that is guaranteed to exist by Lemma 3.24.

For the recursive cases we construct a routing Rb for the state T b of the tree T before
the recursive call from the routing Re that inductively exists for the state T e after the
recursive calls.

Consider Recursive Case (1a). Let S′ be the collection of sources in T1. Every source
in S′ has a directed edge into v in T e. There can be at most one source s′ ∈ S′∩Y since
by the induction hypothesis Re is a routing and at most one path can pass through
v. If there is no s′ ∈ S′ ∩ Y then in the routing Rb, v is routed along P (v, z̃1) to z̃1.
Otherwise let s′ be the unique source in S′ ∩ Y . Let H ′ ∈ H be the tree that contains
s′ and let w′ be the unique vertex in H ′ ∩ P (v, z̃1). Then in Rb, v follows the path of
s′ in Re and s′ is routed through H ′ to w′ and from w′ along the path P (w′, z̃1) to z̃1.
We have to argue that there exists a directed path from v to z̃1 and from s′ to z̃1 in T1.
Since v is a source portal it has in-degree 0 and, hence, P (v, z̃1) does not contain a
vertex with out-degree 2. By Observation 3.22, P (v, z̃1) is a directed path from v to z̃1.
Observation 3.19 states that there also exists a directed path from s′ to w′. We also
have to argue that no vertex or edge in T b has more than one path passing through it.
This clearly holds for the edges and vertices shared by T b and T e. Since the paths in
T1 are disjoint, it also holds for the edges and vertices that are in T b and not in T e.

Consider Recursive Case (1b). Let S′ be the collection of sources in Ti. Every source
in S′ has a directed edge into v in T e. There can be at most one s′ ∈ S′ ∩ Y , since at
most one path can pass through v in Re. If there is no s′ ∈ S′ ∩ Y , then in the routing
Rb the source portal s̃ is routed through P (s̃, z̃i) to z̃i. Otherwise let s′ be the unique
source in S′ ∩ Y . Let H ′ ∈ H be the tree that contains s′ and let w′ be the unique
vertex in H ′ ∩ P (v, z̃i).

If w′ ∈ P (s̃, v) then in Rb s′ is routed through H ′ to w′ and from w′ along the path
P (w′, v) to v, where it follows the path of s′ in Re. The source portal s̃ is routed
through P (s̃, z̃i) to z̃i. If w′ ∈ P (s̃, z̃i) then in Rb s′ is routed through H ′ to w′ and
from w′ along the path P (w′, z̃i) to z̃i. The source portal s̃ is routed through P (s̃, v)
to v, where it follows the path of s′ in Re.
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By Observation 3.20, s̃ is the only vertex with out-degree 2 in Ti. Hence, the path
P (s̃, v) is a directed path from s̃ to v and the path P (s̃, z̃i) is a directed path from s̃
to z̃i. Together with Observation 3.19, which implies that there exists a directed path
from s′ to w′, it follows that the newly created paths above are directed paths from s′

and s̃ to Z̃. On the edges and vertices in T b that are also in T e the routing Rb equals
the routing Re and in both cases, the new paths in Ti are disjoint. Hence, Rb fulfills
the property that no more than one path passes through every vertex or edge in T b.
Consider Recursive Case (2a). Let H ∈ H be the tree that contains the selected

source s ∈ X and let w be the unique vertex in H ∩ P (v, z̃i). Then in Rb, s is routed
through H to w and from w along the path P (w, z̃i) to z̃i. Let S′ be the collection of
sources in S(P (v, y) \ {v ∪ y}). Every source in S′ has a directed edge into v in T e.
There can be at most one source s′ ∈ S′ ∩ Y since at most one route can pass through
v in Re.

If there is such a source s′ ∈ S′ ∩ Y , let H ′ ∈ H be the tree that contains the source
s′ and let w′ be the unique vertex in H ′ ∩ P (y, v). Then in Rb s′ is routed through H
to w, from w along P (w, v) to v where it follows the path of s′ in Re.

Consider Recursive Case (2b). Let H ∈ H be the tree that contains the unique source
in s ∈ X ∩ Y . Let S′ be the collection of sources in S(P (v, z̃i) \ {y}). Every source
in S′ has a directed edge into v in T e. There can be at most one source s′ ∈ S′ ∩ Y
since at most one route can pass through v in Re. If there is no s′ ∈ S′ ∩ Y then in
Rb s is routed through H to y and from y along the path P (y, z̃i) to z̃i. Otherwise,
let H ′ ∈ H be the tree that contains the unique source s′ ∈ S′ ∩ Y and let w′ be the
unique vertex in H ′ ∩ P (v, z̃i). If w′ ∈ P (y, v) \ {y}, then in Rb s′ is routed through
H ′ to w′, from w′ along P (w′, v) to v where it follows the path of s′ in Re. Then s is
again routed through H to y and from y along the path P (y, z̃i) to z̃i.
If w′ ∈ P (y, z̃i) \ {y}, then in Rb s is routed through H to y, from y along P (y, v)

to v where it follows the path of s′ in Re. The source s′ is routed through H ′ to w′
and from w′ along P (w′, z̃i) to z̃i.

Consider Recursive Case (2c). Let H ∈ H be the tree that contains the unique source
in s ∈ X ∩ Y and let w be the unique vertex in H ∩ P (y, z̃i). Let S′ be the collection
of sources in S(P (v, y)). Every source in S′ has a directed edge into v in T e. There
can be at most one source s′ ∈ S′ ∩ Y since at most one route can pass through v in
Re. If there is no s′ ∈ S′ ∩ Y then in Rb s is routed through H to w and from w along
the path P (w, z̃i) to z̃i. Otherwise, let H ′ ∈ H be the tree that contains the unique
source s′ ∈ S′ ∩ Y and let w′ be the unique vertex in H ′ ∩ P (v, y). Then in Rb s′ is
routed through H ′ to w′, from w′ along P (w′, v) to v where it follows the path of s′ in
Re. s is still routed to z̃i.

In the Recursive Cases (2a), (2b) and (2c), by Observation 3.20, y is the only vertex
with out-degree 2 in Ti. Hence, the path P (y, v) is a directed path from y to v and the
path P (y, z̃i) is a directed path from y to z̃i. Together with Observation 3.19, which
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implies that there exists a directed path from s to w and from s′ to w′, it follows that
the newly created paths above are directed paths leaving at s and s′. In all three cases,
the routing Rb on the edges and vertices in T b that are also in T e equals the routing
Re. In every case, the new paths in Ti are disjoint. Hence in the Recursive Cases (2a),
(2b) and (2c), Rb fulfills the property that no more than one path passes through every
vertex or edge in T b.

Consider Recursive Case (3a). Let H ∈ H be the tree that contains the selected
source s ∈ X ∩ Y and let w be the unique vertex in H ∩ P (v, z̃i). Then in Rb s is
routed through H to w and from w along the path P (w, z̃i) to z̃i. By Observation
3.22, the path P (v, z̃i) is a directed path from v to z̃i. Together with Observation 3.19,
which implies that there exists a directed path from s to w, it follows, that the path
from s to z̃i is a directed path. Since the routing Rb equals the routing of Re on all
edges and vertices shared by T e and T b and the route from s to z̃i only uses edges and
vertices in Ti, also Rb fulfills the property that no more than one path passes through
every vertex or edge in T b.

Consider Recursive Case (3b). Let H ∈ H be the tree that contains the selected
source s ∈ X ∩ Y and let w be the unique vertex in H ∩ P (v, z̃i). Then in Rb s is
routed through H to w and from w along the path P (w, z̃i) to z̃i. Let j ∈ {1, 2} \ {i}.
If there is a source s′ routed to z̃ in Re, then in Rb the route from s′ to v equals the
route from s′ to v in Re. Instead of going to z̃, we continue along the path P (v, z̃j) to
z̃j . By Observation 3.22, for i ∈ {1, 2} the paths P (v, z̃i) are directed paths from v to
z̃i. Together with Observation 3.19, which implies that there exists a directed path
from s to w, it follows that the path from s to z̃i and from v to z̃j are directed paths.
Since the routing Rb equals the routing of Re on all edges and vertices shared by T e
and T b and the paths from s to z̃i and from v to z̃j are vertex-disjoint and in T1 ∪ T2,
also Rb fulfills the property that no more than one path passes through every vertex or
edge in T b. 2

Lemma 3.27
Let Y ⊂ S such that for all X ∈ X it is the case that |X ∩ Y | ≤ 1. Then there exists a
feasible routing from Y in the digraph D.

Proof. This follows from Lemma 3.26 and the fact there is a unique highway into
each source portal in each tree and a unique highway leaving each sink portal in every
tree. 2

3.3.4 Tightness
For the sake of completeness, we present the example by Bérczi et al. [18] for which
no reduction to a (2k − 3)-colorable partition matroid exists. The layered digraph is
visualized in Figure 3.5. All edges are directed downwards. The universe S is given
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by k(k − 1) sources that can be partitioned into sets S1, S2, . . . , Sk, each of cardinality
k− 1, such that all sources in Si are connected via an outgoing edge to the vertex vi of
the next layer. The layer v1, . . . , vk is followed by a layer that consists of k − 1 sinks,
connected to the previous layer by a complete bipartite graph.
Consider a minimal partition of S. Clearly, all sources of a set Si have to be

contained in the same part of the partition, since subset of sources in Si can be routed
simultaneously in the digraph. On the other hand, we can have at most k − 1 parts in
the partition, since there are only k − 1 sinks. Hence, there exist at least two sets Si
and Sj that have to be in the same part of a partition. Which implies that |X| ≥ 2k−2
for some X ∈ X . Note that the gammoid of the example is, in fact, also a laminar
matroid.

. . .

. . .

v1 v2 v3 vk−1 vk

S1 S2 S3 Sk−1 Sk

. . .

z1 z2 zk−1

Fig. 3.5: Digraph representing a k-colorable gammoid that cannot be reduced to a (2k − 3)-
colorable partition matroid [18].

3.4 Open Problems
In this chapter, we showed that there exists a polynomial-time algorithm to compute a
(1, 2)-decomposition of a gammoid. This is also true for other standard combinatorial
matroids such as graphic matroids, paving matroids and laminar matroids. A natural
question to ask is whether representable matroids or matroids in general are (1, 2)-
decomposable.
Problem 3.28
Is every matroid M (1, O(1))-decomposable? And if yes, can we compute a (1, O(1))-
decomposition in polynomial-time?

In general, it is not easy to detect if a given partition reduction is feasible. The
challenge is that every set Y in the above description needs to be feasible and there
are exponentially many such sets. Finding a polynomial-time algorithm to check if a
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partition has the property that the partition matroid represented by it corresponds a
feasible partition reduction is an interesting open question.

Problem 3.29
Let M be a k-colorable matroid M and let X be a partition of S, where the maximum
size of any part is ck. Is there a polynomial-time algorithm to check if a given partition
is a feasible (1, c)-decomposition of the k-colorable matroid M?

67





Chapter 4

Laminar Generalized Min Sum Set Cover

The Generalized Min Sum Set Cover Problem (Gmssc) was introduced as a
theoretical framework for re-ranking search results in a web search and is defined as
follows. We are given a hypergraph and covering constraints κ(e) for every edge e in
the hypergraph. For a linear ordering of the hypergraph vertices, we define the cover
time of an edge to be the smallest t such that the first t vertices in the linear ordering
contain at least κ(e)-many vertices of the edge e. The task is to find a linear ordering
that minimizes the sum of edge cover times.
We study Gmssc on laminar and cross-free hypergraphs. For laminar Gmssc with

arbitrary covering constraints, we give a polynomial-time 2-approximation algorithm.
For special choices of covering constraints, we provide exact polynomial-time algorithms.

This is joint work with Felix Happach. Parts of this chapter correspond to or are
identical to [54].

The chapter is structured as follows. We start by introducing the Generalized
Min Sum Set Cover problem and explaining its application to re-ranking search results
in a web search. In Section 4.1.2 we summarize previous work on Gmssc and related
problems, such as Min Sum Vertex Cover, Min Latency Set Cover, and related single
machine scheduling problems. An overview of our results is given in Section 4.1.3.

Section 4.2 is dedicated to the connection of Gmssc to the Ratio problem. We show
that the Ratio problem remains NP-complete, even when restricted to a particular
choice of weights and processing times. In Section 4.3 we study Min Sum Set Cover on
laminar and cross-free families and provide polynomial-time algorithms for both cases.
This is followed by a 2-approximation for laminar Gmssc. Finally, we present another
special case of laminar Gmssc, which can be solved in polynomial-time.
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4.1 Introduction
Azar et al. [8] introduced the Generalized Min Sum Set Cover Problem (Gmssc),
which is defined in the following way. We are given a hypergraph H = (V,E) on n
vertices and covering constraints κ(e) ∈ {1, . . . , |e|} for all e ∈ E. For a linear
ordering π : V → [n] we define the cover time of an edge with respect to κ(e) as

πκ(e) := min{k ∈ [n] : |{π−1(1), π−1(2), . . . , π−1(k)} ∩ e| = κ(e)}. (4.1)

The task is to find a linear ordering π that minimizes
∑
e∈E πκ(e). Gmssc generalizes

several well-studied optimization problems. The special case of Gmssc with unit
covering constraints coincides with the Min Sum Set Cover problem (Mssc). If all
covering constraints equal the cardinality of the edge, we obtain the Minimum Latency
Set Cover problem (Mlsc). See Section 4.1.2 for more details on these two problems.
We start by giving an example of an instance of Gmssc.

Example 4.1
We are given a hypergraph H = (V,E) with vertex set V = {v1, . . . , v10} and edge set
E = {e1, . . . , e5}. The covering constraints of the edges are given by κ(e1) = 1, κ(e2) =
3, κ(e3) = 2, κ(e4) = 3, and κ(e5) = 1. The instance is displayed in Figure 4.1.

Consider a linear ordering π with π(v9) = 1, π(v1) = 2, π(v7) = 3, π(v8) = 4,
π(v6) = 5, π(v2) = 6 and π(v3) = 7. Now, the cover time of edge e5 is given by
πκ(e5) = 1, since e5 has covering constraint κ(e5) = 1 and v9 ∈ e5 with π(v9) = 1.
Similarly, we obtain the following cover times for the other edges

κ(e1) = 2, κ(e2) = 7, κ(e3) = 5, κ(e4) = 4, κ(e5) = 1.

Overall, we obtain an objective value of
∑
e∈E πκ(e) = 19.

v1

v2

v3

v4

v5

v6
v7 v8

v9

v10
κ(e1) = 1

κ(e2) = 3

κ(e5) = 1

κ(e4) = 3

κ(e3) = 2

Fig. 4.1: Example of an instance of Gmssc given by a hypergraph H = (V,E) with vertex
set V = {v1, . . . , v10} and edge set E = {e1, . . . , e5}. The cover times are given by
κ(e1) = 1, κ(e2) = 3, κ(e3) = 2, κ(e4) = 3, and κ(e5) = 1.
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Gmssc provides a theoretical framework for re-ranking search results in web searches.
Search engines like Google, Yahoo! Search, Bing, and Ecosia display their search results
for a specific keyword in an ordered list. Their aim is to meet the needs of their users
by displaying the most relevant search results first in the ranking. Since relevance is
individually characterized, different users might not necessarily be interested in the
same subset of search results. Instead, we can define user types, where all users of
the same type are interested in the same subset of search results. In addition, one
may distinguish between navigational and informational searches. In a navigational
search, a user is just interested in one of the relevant search results, whereas in an
informational search, a user is interested in all of the relevant search results.

This setting is captured by Gmssc in the following way. The vertex set corresponds
to a set of search results. Every hyperedge represents a user type, and a vertex is
contained in a hyperedge, if and only if the user of this type is interested in the
particular search result. The covering constraints represent the number of search
results each user type is interested in. The extreme case, where all covering constraints
equal 1, models a navigational search, whereas the other extreme case, where the
covering constraints equal the cardinality of an edge, model an informational search.
An optimal linear ordering corresponds to a ranking of the search results, such that
the average time of finding the desired search results is minimized.

4.1.1 Bipartite Graph Representation of GMSSC

Min Sum Set Cover and Generalized Min Sum Set Cover can be interpreted as special
instances of single machine scheduling with bipartite precedence constraints to minimize
the sum of weighted completion times. In the following, we describe the single machine
setting with bipartite precedence constraints and introduce a bipartite representation
of Gmssc and Mssc.

Let J = A∪B be a set of jobs, together with processing times pj and weights wj for
all j ∈ J . The precedence relations are given by a bipartite graph G = (A ∪B,E). By
N(b) := {a ∈ A | (a, b) ∈ E} we denote the set of predecessors of job b ∈ B. In the
classical single machine scheduling problem with bipartite precedence constraints, a
job b in B can only be scheduled after all its predecessors in N(b) have been scheduled.
Note that w.l.o.g. we may assume N(b) 6= ∅, since any job b ∈ B without predecessors
can simply be moved to A. We refer to the special case where all jobs a ∈ A have
processing time pa = 1 and all jobs b ∈ B have processing time pb = 0 as 1/0-processing
times. In line with this, 0/1-weights imply that all jobs a ∈ A have weight wa = 0 and
all jobs b ∈ B have weight wb = 1.

In addition to the classical single machine scheduling problem with bipartite prece-
dence constraints, we are given covering constraints κ(b) ∈ {1, . . . , |N(b)|} for all
b ∈ B, that is, b can only be scheduled after κ(b) of its predecessors in N(b) have been
scheduled. If we set κ(b) = |N(b)| for all b ∈ B, this agrees with the classical single
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Chapter 4 Laminar Generalized Min Sum Set Cover

machine scheduling problem with bipartite precedence constraints, which is sometimes
also referred to as AND-scheduling.
It is easy to see that Gmssc corresponds to minimizing the sum of weighted com-

pletion times on a single machine with bipartite precedence constraints, 0/1-weights,
1/0-processing times and covering constraints κ. Given an instance of Gmssc, that
is, given a hypergraph H = (V,E) and covering constraints κ, we introduce for every
vertex v ∈ V a job av in A with p(av) = 1 and w(av) = 0, and for every edge e ∈ E a
job be in B with p(be) = 0 and w(be) = 1. There exists a directed edge (av, be) in the
bipartite precedence graph, whenever v ∈ e, and the covering constraint of a vertex
be ∈ B is simply given by κ(e). An example of an instance of Gmssc together with its
bipartite representation is given in Fig. 4.2.

v1
v2

v3

v4 v5

v6

H(V,E)

av1

av2

av3

av4

av5

av6

be1

be2

be3

be4

Fig. 4.2: Example of an instance of Gmssc given by the hypergraph H = (V,E) on the left,
and its bipartite representation on the right.

At this point, we would briefly like to mention the connection to OR-scheduling. In
the setting of OR-precedence constraints, every job b ∈ B can already be scheduled
after only one of its predecessors in N(b) has been scheduled. In our setting, this
corresponds to the case where κ(b) = 1 for all b ∈ B. In particular, Mssc can be
interpreted as a single machine scheduling problem with bipartite OR-precedence
constraints to minimize the sum of weighted completion times. See e.g. [64] for more
information on OR-scheduling.

The bipartite representation of Gmssc will be useful when explaining the connection
to the Ratio problem in Section 4.2.

4.1.2 Related Work
Generalized Min Sum Set Cover Problem (GMSSC). Azar et al. [8] introduced
Gmssc as Multiple Intents Re-ranking problem, using a slightly different, yet equivalent
definition. Instead of a covering constraint κ(e), we are given a weight vector, or so-
called profile vector, w(e) :=

(
w1(e), . . . , w|e|(e)

)
for every hyperedge e. The task is
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to find a linear ordering π of the search results that minimizes
∑
e∈E

∑|e|
i=1wi(e)πi(e),

where πi(e) is the cover time of edge e with respect to i. Note that covering constraint
κ(e) = k corresponds to a profile vector of w(e) = (0, . . . , 0, 1, 0, . . . , 0) whose k-th
entry is 1 and all other entries are 0. Hence, by introducing wi(e)-many copies of e with
covering constraint κ = i, we can reformulate any instance in terms of the definition
used in this chapter.

Azar et al. [8] presented an O(log r)-approximation algorithm, where r denotes the
maximum size of a hyperedge in H(V,E). Their algorithm is based on a concept
called harmonic interpolation. Bansal et al. [10] later gave an example for which the
approximation ratio of the algorithm of Azar et al. [8] is Ω(

√
logn). For the special

case where the entries of each weight vector are monotonically non-increasing, Azar
et al. [8] presented a 4-approximation based on techniques by Feige et al. [41, 42].
Furthermore, they gave a 2-approximation algorithm for the special case where the
entries of each weight vector are non-decreasing.
The first constant-factor approximation algorithm for Gmssc was presented by

Bansal et al. [10]. More specifically, they obtained a randomized 485-approximation
algorithm by adding knapsack-cover inequalities to the standard LP relaxation. They
showed that even though the LP relaxation has exponentially many constraints, a
polynomial-time separation algorithm exists. Using randomized rounding on increasing
intervals, they obtained their final integral solution. Additionally, they proved that
the integrality gap of the standard LP relaxation can get arbitrarily large without the
additional knapsack inequalities. Skutella and Williamson [99] improved the analysis
of Bansal et al. [10]. Using α-points1 instead of the randomized rounding in O(logn)
stages as proposed in [10], Skutella and Williamson [99] obtained an approximation
ratio of 28.
Im et al. [61] studied the preemptive version of Gmssc. In the preemptive version,

vertices can be scheduled fractionally, and an edge e is covered at the first point in
time when the fractions of covered vertices of the edge sum up to at least κ(e). They
obtained a 2-approximation for preemptive Gmssc by solving a so-called configuration
LP. Additionally, they showed that any α-approximation for preemptive Gmssc can be
transformed to a solution of Gmssc loosing a factor of 6.2, which immediately implies
a 12.4-approximation for non-preemptive Gmssc. Finally, Im et al. [61] conjectured
that there exists a 4-approximation for non-preemptive Gmssc.
Happach et al. [53] presented a general framework for approximating Min Sum

Ordering problems, including Gmssc. In terms of Gmssc their main result states, that
any α-approximation for the Ratio problem2 implies a 4α-approximation for Gmssc.
Recently, Bansal et al. [9] presented a 4.642-approximation algorithm for Gmssc.

Again, their algorithm is based on solving the standard LP relaxation with additional

1For more information on α-point scheduling, see [98] and references therein.
2See Section 4.2 for a definition of the Ratio problem.
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knapsack inequalities. The crucial difference is the rounding technique. They used a
linear transformation (referred to as kernel) and α-point rounding. This Kernel α-point
Rounding framework can also be used to obtain an improved approximation ratio for
the Min Sum Vertex Cover problem, as mentioned below.

The special case of Gmssc, so-called All-But-One Min Sum Set Cover, where every
edge has covering constraint κ(e) = max{|e| − 1, 1} was introduced by Happach and
Schulz [55]. They gave a 4-approximation, which is based on a time-indexed linear
program combined with α-point scheduling.
Min Sum Set Cover (MSSC). Feige et al. [41] introduced the Min Sum Set Cover
problem, which is the special case of Gmssc when κ ≡ 1. Feige et al. [41] showed that
a simple Greedy algorithm yields a 4-approximation for Mssc. This result was already
implicitly shown by Bar-Noy et al. [13], but Feige et al. gave a simpler, histogram-based
proof. Bar-Noy et al. [13] studied the closely related Min Sum Coloring problem, where
the goal is to find a linear ordering of the independent sets of a graph G = (V,E),
or equivalently a coloring c : V → N that minimizes

∑
v∈V c(v). Mssc captures the

Min Sum Coloring problem in the following way. For a graph G = (V,E) we obtain a
hypergraph H = (VH, EH) by introducing a vertex in VH for every independent set in
G and for every vertex v in V we construct an edge e in EH that contains all vertices
that correspond to independent sets containing v in G.
In the journal version [42], Feige et al. showed that Greedy is indeed best possible

since it is NP-hard to approximate Mssc with a ratio strictly better than 4, even when
restricted to uniform hypergraphs. If an r-uniform hypergraph is in addition d-regular,
Greedy is a 2r

r+1 -approximation. They also proved that it is NP-hard to approximate
Mssc better than 2− ε on r-uniform, d-regular graphs.
Min Sum Vertex Cover Problem (MSVC). Min Sum Set Cover on graphs (re-
stricted to 2-uniform hypergraphs) is called the Min Sum Vertex Cover problem. The
result by Feige et al. [41, 42] for Mssc on r-uniform, d-regular hypergraphs men-
tioned above immediately implies that Greedy is a 4

3 -approximation for Msvc on
d-regular graphs. For graphs with arbitrary degrees, Feige et al. additionally pre-
sented a randomized 2-approximation for Msvc. Barenholz et al. [16] improved this
result slightly by combining the techniques in [42] with an improved rounding scheme.
Using a kernel α-point rounding framework, Bansal et al. [9] recently obtained a
16
9 ≈ 1.778-approximation algorithm for Min Sum Vertex Cover.
Min Latency Set Cover Problem (MLSC) and related scheduling problems.
The other extreme case of Gmssc, where the covering constraint of every edge e equals
its cardinality, is the so-called Min Latency Set Cover problem. It was introduced by
Hassin and Levin [57] as a framework for the following application. Consider a set
of tools and jobs that require specific subsets of tools to be processed. The company
can install one tool per time unit. Find an ordering of the tools that minimizes the
sum of weighted completion times of the jobs. Hassin and Levin [57] presented an
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e-approximation algorithm that is based on a framework for the Minimum Latency
problem by Archer et al. [7].

Mlsc is equivalent to single machine scheduling with bipartite precedence constraints,
0/1-weights and 1/0-processing times. Woeginger [107] showed that the latter is as hard
to approximate as 1 | prec |

∑
j wjCj , for which several 2-approximation algorithms

exist, e.g. [25, 29, 51, 81, 93]. Bansal and Khot [11] showed that assuming a stronger
variant of the Unique Games Conjecture, this approximation ratio is best possible.

Happach and Schulz [56] studied the problem of scheduling jobs subject to AND/OR-
precedence constraints on a single machine, which is denoted by 1 | ao− prec = A∨̇B |∑
wjCj . Here, the set of jobs can be divided into a set A and B. Within the sets, we

are given AND-precedence constraints. That is, every job in A (or B) can only be
scheduled after all of its predecessors in A (or respectively in B) have been scheduled.
Between A and B, we are additionally given OR-precedence constraints that imply
that at least one of the predecessors in A of a job in B has to be scheduled first. They
obtained a 2∆-approximation for 1 | ao− prec = A∨̇B |

∑
wjCj , where ∆ denotes the

maximum number of OR-predecessors of a job in B.

4.1.3 Our Results

Happach et al. [53] provided a general framework for approximation algorithms for
Gmssc based on the Ratio problem. We show that the Ratio problem remains NP-
complete, even when restricted to 0/1-weights and 1/0-processing times. In particular,
this result implies that there is no hope to obtain an exact 4-approximation for
Gmssc using their framework, unless P=NP.
The remaining part of the chapter focuses on the Generalized Min Sum Set Cover

problem on laminar and cross-free hypergraphs. We start by showing that the Greedy
algorithm solves weighted Mssc in polynomial-time on laminar hypergraphs and cross-
free hypergraphs. Next, we study weighted, laminar Gmssc with arbitrary covering
constraints. Our main result is that any preemptive solution of weighted, laminar
Gmssc can be transformed into a non-preemptive solution without increasing the
objective value. In combination with the result in [61], we obtain a 2-approximation
for weighted, laminar Gmssc.

Finally, we consider laminar All-But-K Mssc, which is Gmssc restriced to covering
constraints of the form κ(e) = max{|e|−K, 1} for some K ∈ N0. We show that laminar
All-But-K Mssc can be solved in polynomial-time by transforming it to an instance
of the Minimum Latency problem. An overview of our results is displayed in Table 4.1.

From an application point of view, our results imply the following. Given a naviga-
tional search, where for any two user types, the set of search results they are interested
in is either a subset of one another or their search interests are disjoint, one may
compute an optimal ordering in polynomial-time.
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Chapter 4 Laminar Generalized Min Sum Set Cover

Table 4.1: Overview of our results on laminar Gmssc and a comparison to existing
results for arbitrary set structures. The approximation ratios in the third
column display the currently best-known approximation ratios for arbitrary
set families. Our results for the corresponding problems on laminar set
families are highlighted in bold.

covering constraints min
π

∑
e∈E πκ(e)

∑
E

general laminar

κ = 1 Min Sum Set Cover 4 [41] polynomial
general κ Gen. Min Sum Set Cover 4.642 [9] 2
κ = max{|N(b)| −K, 1} All-But-K Mssc polynomial
κ = max{|N(b)| − 1, 1} All-But-one Mssc 4 [55] polynomial
κ = |N(b)| Min Latency Cover 2 (e.g.[51]) polynomial

4.2 Connection to the Ratio Problem

Happach et al. [53] introduced a framework for constructing approximation algorithms
for Min Sum Ordering problems, including Gmssc. The framework is based on the
Ratio Problem, which is defined in the following way. Let J = A ∪ B be a set of
jobs with processing times pj and weights wj for all j ∈ J . Additionally, we are given
bipartite precedence constraints and covering constraints κ(b) for all b ∈ B. A subset
S ⊆ J is an ideal if for all b ∈ S ∩ B at least κ(b) of its predecessors are also in S,
that is S ∩N(b) ≥ κ(b). For an ideal S we define

ρ(S) := w(S)
p(S) =

∑
j∈S wj∑
j∈S pj

.

A set S is called ρ-maximizing ideal, if S is an ideal with maximum ratio ρ(S), among
all other ideals, that is, ρ(S) = maxideal S′ ρ(S′). The task is to find a ρ-maximizing
ideal S ⊆ J .

The following proposition connects the Ratio problem to Gmssc.

Proposition 4.2 (Happach, Hellerstein, and Lidbetter [53])
Any polynomial-time α-approximation for the Ratio problem implies a polynomial-time
4α-approximation for Gmssc.

The algorithm in [53] is based on greedily scheduling ρ-maximizing sets and works as
follows. Consider an instance of Gmssc, with its bipartite representation as introduced
in Section 4.1.1. That is, we are given jobs J = A ∪ B with 0/1-weights and 1/0-
processing times, bipartite precedence constraints and covering constraints κ(b) for
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all b ∈ B. Use the given α-approximation for the Ratio problem to compute an
α-approximate ρ-maximizing set S, that is a subset S ⊆ J with ρ(S) ≥ 1

αρ(S∗), where
S∗ denotes a ρ-maximizing ideal. Remove S from the instance, schedule the jobs in
S at the end of the current schedule in any feasible order and recurse. Consider the
ordering of the jobs in A in the final schedule to obtain the final linear ordering π for
the instance of Gmssc.

In particular, Proposition 4.2 states that the existence of a polynomial-time algorithm
for the Ratio problem would imply a 4-approximation for Gmssc. Unfortunately, there
is no hope for a polynomial-time algorithm for the Ratio problem with 0/1-weights
and 1/0-processing times, unless P=NP, as the following theorem shows.

A simple observation that we use is the subsequent one. Let a, b, c, d ∈ N, then

a

b
<
c

d
=⇒ a

b
<
a+ c

b+ d
<

c

d.
(4.2)

The Densest k-Subgraph problem is defined as follows. Given a graph G = (V,E) on
n vertices and a constant k ≤ n, find the densest subgraph of G on k vertices, that
is a subgraph on k vertices with the largest numbers of edges. Note that the densest
k-subgraph problem is NP -hard, since it generalizes the well-know Maximum Clique
problem.
Theorem 4.3
The Ratio problem is NP-hard, even when restricted to 0/1-weights, 1/0-processing
times and two different values of κ.

Proof. We prove NP-hardness by a reduction from the Densest k-Subgraph problem.
Let G = (V,E) be a graph on n vertices and let k ≤ n be integer. We obtain an
instance of the Ratio problem in the following way. For every vertex v ∈ V we define
a job av ∈ A, and for every edge e ∈ E we define a job be in BE . Let D be a set
of dummy vertices of cardinality l > |E|k and let B := BE ∪D. The set of edges is
defined as {(av, be) | v is incident to e in G}∪ {(av, d) | av ∈ A and d ∈ D}. The cover
constraints are κ(be) = 2 for all be ∈ BE and κ(d) = k for all d ∈ D. See Figure 4.3 for
a visualization of the constructed instance of the Ratio problem.

We need to show that a ρ-maximizing ideal in the constructed instance corresponds
to a densest k-subgraph in G and vice versa. Let S be a ρ-maximizing ideal in the
constructed instance. Denote by S(A) := A∩ S the jobs in A that are contained in the
ideal. We begin by showing that S contains exactly k vertices in A, i.e. |S(A)| = k.
Since any ρ-maximizing ideal containing D has a ratio of at least

|D|
k

= l

k
>
|E| · k
k

= |E| = |BE |,

which is strictly larger than the ratio of any ideal not containing D, it follows that
D ⊆ S and, hence, |S(A)| ≥ k.
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D

BE
A

B

Fig. 4.3: Reduction from an instance of the densest k-subgraph problem to an instance of the
Ratio problem.

Now, assume that |S(A)| = k′ > k. Denote the subset of vertices in G whose
corresponding jobs are in S(A) by VS , that is, VS := {v ∈ V | av ∈ S(A)}, and let
GS := G[VS ]. Let ax ∈ S(A) be the job with the smallest number of successors in BE ,
or equivalently let x ∈ VS be a vertex of minimum degree in GS . Denote by S− the
ideal after removing ax and all successors of ax in BE . Then,

ρ(S) < |E| · k + |{be|e = uv with au, av ∈ S(A)}|
k′

= |E| · k + |E[GS ]|
k′

= |E| · k + |E[GS− ]|+ deg(x)
(k′ − 1) + 1

<
|E| · k + |E[GS− ]|

(k′ − 1) = ρ(S−),

where the last inequality follows with (4.2), since

|E| · k + |E[GS− ]|
(k′ − 1) =

k
2
∑
v∈V deg(v) + 1

2
∑
v∈VS\{x} deg(v)

(k′ − 1)

>
k
2 (k′ − 1) deg(x) + 1

2(k′ − 1) deg(x)
(k′ − 1) >

deg(x)
1 .

The fact that ρ(S) < ρ(S−) contradicts the maximality of S. Hence, |S(A)| = k. Since
S is a ρ-maximizing ideal, it contains the k jobs in A that have the largest number of
successors inBE , that is S(A) is chosen such that the set {be|e = uv with au, av ∈ S(A)}
is maximized. This is equivalent to choosing k vertices in G that maximize the number
of edges induced by them. Hence, the k vertices form a densest k-subgraph in G.
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On the other hand, every densest subgraph on k vertices corresponds to a ρ-
maximizing ideal in the following way. Simply, let S be the ideal induced by the
k jobs in A that correspond to the k vertices of the densest k-subgraph. Since all
vertices in D have covering constraint k, D is contained in S, and since the vertices
chosen in A correspond to a densest subgraph, they maximize the number of jobs in
BE ∩ S. 2

4.3 Min Sum Covering Problems on Laminar Instances
In this section, we consider min sum covering problems on special structured hyper-
graphs. A first natural restriction would be to consider uniform or regular hypergraphs.
Recall, that a hypergraph is r-uniform if every edge has cardinality r, and d-regular
if every vertex is contained in d edges. Unfortunately, one may not hope for better
approximation algorithms when restricting instances to uniform hypergraphs alone.
Feige et al. [42] showed that it still remains NP-hard to approximate Mssc with a ratio
strictly better than 4 on uniform hypergraphs.
To obtain an improvement, we additionally have to bound the number of edges

a single vertex may be contained in. If we require the r-uniform hypergraph to be
d-regular as well, Feige et al. [42] showed that a simple Greedy algorithm yields a 2r

r+1 -
approximation. They also proved that it is indeed NP-hard to approximate Mssc on
uniform, regular hypergraphs with a ratio strictly better than 2.

Motivated by the improvement for uniform, regular hypergraphs we study Mssc and
Gmssc on other classes of hypergraphs. In the following let H = (V,E) be a laminar
hypergraph. That is, the set of edges E forms a laminar family. Recall that a family
is called laminar, if for two edges e1, e2 ∈ E with e1 ∩ e2 6= ∅ either e1 ⊆ e2 or e2 ⊆ e1.
See Figure 4.4 for an example of a laminar hypergraph.

Fig. 4.4: Example of a laminar hypergraph.
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4.3.1 Laminar Min Sum Set Cover

First, we show that a simple Greedy algorithm returns an optimal solution for weighted,
laminar Mssc in polynomial-time. In the weighted version, every edge e has a positive
weight w(e) and the objective is to minimize the sum of weighted cover times. The
natural Greedy algorithm chooses in every step a vertex that maximizes the weight of
newly covered edges.

Theorem 4.4
The Greedy algorithm returns an optimal solution for weighted, laminar Mssc.

Proof. Let H = (V,E) be an instance of weighted, laminar Mssc. W.l.o.g., we may
assume that E does not contain any duplicate edges. Otherwise, we could increase the
weight we ∈ N of an edge e ∈ E correspondingly and remove its copies.

For v ∈ V , let Ev = {e ∈ E | v ∈ e} be the set of edges that contains v, and let
u ∈ V be the vertex that the Greedy algorithm picks first, i.e., w(Eu) ≥ w(Ev) for all
v ∈ V . Consider an optimal linear ordering π : V → [n], and suppose that u is not the
first vertex, i.e., π(u) > 1. We give a procedure of how to alter the optimal solution
without increasing the objective function value such that u appears first in the linear
ordering. More specifically, we find a vertex v with π(v) < π(u) such that switching
v and u in the linear ordering does not increase the objective function. This proves
the claim, as we can iteratively repeat this argument for the other vertices until the
optimal solution coincides with the Greedy solution.
Let E+

u = {e ∈ Eu |π(e) = π(u)} be the set of edges that are covered by u, and
let E−u := Eu \ E+

u be the set of edges that contain u but were already covered by
previous vertices in π (see Figure 4.5). If E−u = ∅, we choose v ∈ V to be the vertex
with π(v) = 1 and swap v and u, that is π′(u) = 1 and π′(v) = π(u). Since E−u = ∅
and w(Eu) ≥ w(Ev), we did not increase the objective function.

u

v

v1
v2

E−
u

E+
u ē

Fig. 4.5: Example to visualize the definitions of E+
u , E

−
u and ē. Assume that in the optimal

linear ordering π the vertices appear in the order v1 → v2 → v → u. Then E+
u is

given by the green edges, E−u is given by the blue edges, and the inclusion-minimal
edge ē ∈ E−u is highlighted in bold.
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Else, since E is a laminar family and the edges in E−u are covered before time π(u), we
get that f ⊇ e for all f ∈ E−u and e ∈ E+

u . In particular, there is an inclusion-minimal
edge e ∈ E−u that was covered by some vertex v ∈ V with π(v) < π(u), i.e., π(e) = π(v).
Observe that v ∈ e ⊆ f for all f ∈ E−u implies π(f) ≤ π(v) for all f ∈ E−u and, further,
E−u ⊆ Ev. That is, all edges that contain u and where already covered by previous
vertices in π, also contain v. So, v covers the last uncovered edge(s) in E−u , and we can
write Ev = E−u ∪̇E+

v . Note that in contrast to the definition of E+
u , the set E+

v might
contain sets that are covered before time π(v). Thus, w(Eu) ≥ w(Ev) is equivalent to
w(E−u ∪̇E+

u ) ≥ w(E−u ∪̇E+
v ) which implies w(E+

u ) ≥ w(E+
v ).

Let S := {v′ ∈ V | π(v) < π(v′) < π(u)} be the set of vertices that appear between
v and u in the linear ordering. We swap v and u, i.e., we consider the linear ordering
π′ : V → [n] with π′(u) = π(v), π′(v) = π(u) and π′(v′) = π(v′) for all v′ ∈ V \ {u, v}.
Compared to π, the cover times in π′ of all sets in E+

u decreases by |S|+ 1, sets in
E+
v are covered at most |S|+ 1 time steps later, and the cover times of all other edges

remain unchanged. The difference in the objective values of π and π′ is∑
e∈E

we
(
π′(e)− π(e)

)
≤ (|S|+ 1)

(
w(E+

v )− w(E+
u )
)
≤ 0.

So, swapping u and v in the linear ordering does not increase the objective function, and
u appears earlier in the new linear ordering. We can repeat this procedure iteratively
until π′(u) = 1. Note that the set of edges E+

u strictly increases in each iteration. 2

MSSC on t-laminar Hypergraphs. We just proved that Greedy solves Mssc in
polynomial-time on laminar hypergraphs. On the other hand, Feige et al. [42] showed
that Greedy approximates Mssc on general hypergraphs within a ratio of 4. So the
natural question is to ask how well Greedy performs if we allow the edges to overlap
slightly. A nice framework for a generalization of laminar set families, studied for
example in [35], is given by the following definition.
A set family E on n elements is called t-laminar, if for all sets e, f in E with

|e ∩ f | ≥ t either e ⊆ f or f ⊆ e holds. In other words, we allow sets to overlap in up
to t− 1 elements. A hypergraph H = (V,E) is called t-laminar, if E forms a t-laminar
set family. Note that this equals the definition of laminar hypergraphs for t = 1 and for
large enough t (i.e. t ≥ n) we simply obtain general hypergraphs. A natural question to
ask is how Greedy performs on 2-laminar hypergraphs and, more general, on t-laminar
hypergraphs, for increasing t. More specifically, can we show that Greedy performs
strictly better than 4 on t-laminar families for fixed t?
Unfortunately, this claim does not hold. An example, initially given by Bar-Noy

et al. [13] and slightly modified by Feige et al. [42] immediately implies that there
is no hope for a better performance of Greedy, not even on 2-laminar families. The
example presented is an instance of Msvc and, hence, all sets are of size 2. So, in
particular, the instance is 2-laminar. Feige et al. [42] used the example to show that
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the analysis of Greedy is tight. In other words, there exists a 2-laminar hypergraph on
which Greedy already performs as badly as on arbitrary set families. For an explicit
description of the instance, see Proposition 8 in [42].

4.3.2 Min Sum Set Cover on Cross-Free Hypergraphs
Cross-free set families are another generalization of laminar set families. Let E be a set
of hyperedges on the vertex set V . We say that two edges e, f ∈ E overlap if e∩f 6= ∅
and neither e ⊆ f nor f ⊆ e. Two edges e, f cross, if they overlap and e ∪ f 6= V . A
cross-free family is a set family in which no two edges cross. A hypergraph is called
a cross-free hypergraph if its edge set E forms a cross-free family. Note that this
generalizes laminar hypergraphs in the following way. A hypergraph is laminar if and
only if E is overlap-free, that is, no two edges in E overlap. In a cross-free hypergraph,
two edges are allowed to overlap if their union equals the ground set V . See Figure 4.6
for an example of a cross-free family.

Fig. 4.6: Example of a cross-free hypergraph.

In Theorem 4.4 we showed that the Greedy algorithm is optimal for weighted, laminar
Mssc. This is still the case if the instance is cross-free, as the following lemma states.

Theorem 4.5
The Greedy algorithm returns an optimal solution for weighted, cross-free Mssc.

Before preceding with the proof of Theorem 4.5, we state the following lemma on the
structure of cross-free families.
Lemma 4.6
Let E be a cross-free family over a ground set V . Then for all v ∈ V , the family
E \ {v} := E \ {e ∈ E : v ∈ e} is laminar.

Proof. Assume there exist two edges e, f in E \ {v} that overlap. Since E \ {v} ⊂ E
and E is cross-free, this implies that e ∪ f = V . Hence, v ∈ e or v ∈ f holds, which
contradicts the fact that e and f in E \ {v}. 2
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Proof (Theorem 4.5). The proof follows a similar framework as the proof of The-
orem 4.4 and uses the same notation. The main difference is the choice of v. Let
H = (V,E) be an instance of weighted, cross-free Mssc without duplicate edges. Again,
let u ∈ V be the vertex picked first by the Greedy algorithm, that is, w(Eu) ≥ w(Ev)
for all v ∈ V . Let π : V → [n] be an optimal ordering, and suppose that π(u) > 1.
If E−u = ∅, we switch u with the vertex that comes first in the optimal ordering.

That is, π′(u) = 1 and π′(v) = π(u), where v is the vertex with π(v) = 1. Since E−u = ∅
and w(Eu) ≥ w(Ev), we did not increase the objective function.

Else, we choose v in the following way. Let t := max{τ < π(u) : π(e) = τ and u ∈ e}
and let v be the vertex with π(v) = t.

If t = 1, then all edges in E−u are covered by v, that is E−u ⊆ Ev. Let E+
v := Ev \E−u .

Since u is the vertex picked first by Greedy,

w(Eu) ≥ w(Ev)⇔ w(E+
u ∪̇E−u ) ≥ w(E+

v ∪̇E−u )⇔ w(E+
u ) ≥ w(E+

v )

We have to argue that swapping v and u does not increase the objective function.
Let π′ : V → [n] be the linear ordering after swapping v and u, that is π′(u) = 1,
π′(v) = π(u) and π′(v′) = π(v′) for all v′ ∈ V \ {u, v}. Compared to π, all edges in E+

u

are covered π(u) time steps earlier, edges in E+
v are covered at most π(u) time steps

later, and the cover times of all other edges remain unchanged. The difference in the
objective values of π and π′ is∑

e∈E
we
(
π′(e)− π(e)

)
≤ π(u)

(
w(E+

v )− w(E+
u )
)
≤ 0,

where the last inequality follows from the fact that w(E+
u ) ≥ w(E+

v ).
For t > 1 the instance at time t and the following steps is laminar, by Lemma 4.6.

In this case, v is the vertex that covers the inclusion-minimal edge ē and the same
argument as in the proof of Theorem 4.5 applies. 2

4.3.3 Laminar Generalized Min Sum Set Cover

In Theorem 4.4 we showed that Greedy is optimal for laminar Mssc. This is not
necessarily the case if we consider general covering constraints, i.e. laminar Gmssc, as
the following example shows.

Example 4.7
Consider the following instance of Gmssc with two disjoint edges e and f . The edge e
contains two vertices, has weight w > 2 and covering constraint κ(e) = 2 and the edge
f contains one vertex, has weight 1 and covering constraint κ(f) = 1. Note that this is
in particular an instance of Laminar Minimum Latency Set Cover. See Figure 4.7 for a
visualization of the instance.
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An optimal solution picks the two vertices in e first and then the vertex in f , which
leads to an optimal objective value of 2w+ 3. The Greedy algorithm on the other hand
chooses the vertex in f first and then the two vertices in e. Hence, the objective value
of the Greedy solution is given by 1 + 3w, which is strictly worse than optimal for
w > 2.

e

fκ(e) = 2

w(e) = w

κ(f) = 1

w(f) = 1

Fig. 4.7: Instance of laminar Gmssc for which Greedy is not optimal. Edge e has covering
constraint κ(e) = 2 and weight w(e) = w, and the edge f has covering constraint
κ(f) = 1 and weight w(f) = 1.

A simple way to improve the Greedy algorithm seems to not only consider the edges
covered immediately by the next vertex but to consider all edges that contain the
vertex and are not covered yet. More specifically, let Ev be the set of edges that contain
v and are not covered yet. We choose the vertex v to be the vertex that maximizes∑
e∈Ev

1
κ(e)w(e) and call this variant the Look-ahead Greedy. The following example

shows that the Look-ahead Greedy is not optimal for laminar Gmssc either.
Example 4.8
The instance is given by a an edge e that consists of a single vertex with weight 2 and
two edges f1 and f2 as displayed in Figure 4.8. Edge f1 has weight 1 and edge f2 has
weight 4 and for all three edges the covering constraints are given by their cardinality,
i.e. κ(f) = |f | for all f ∈ {e, f1, f2}. An optimal solution covers e first, then f1 and
finally f2, which yields an optimal objective value of 1 · 2 + 2 · 1 + 5 · 4 = 24. For
the Look-ahead Greedy the vertex in e and the vertex in f1 have the same weight,

e
f1

f2

Fig. 4.8: Instance of Gmssc for which Look-ahead Greedy is not optimal. Edge e has covering
constraint κ(e) = 1 and weight w(e) = 2, edge f1 has covering constraint κ(f1) = 1
and weight w(f1) = 1 and the edge f2 has covering constraint κ(f2) = 4 and weight
w(f1) = 4.
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i.e. 2 = 1 + 1
4 · 4. Hence, Look-ahead Greedy might choose to cover f1 first, then e

and afterwards the three remaining vertices in f2, which yields an objective value of
1 + 2 · 2 + 5 · 4 = 25 > 24.

In the following, we present a polynomial-time 2-approximation algorithm for
Gmssc on laminar hypergraphs. The algorithm is based on a result by Im et al. [61].
They gave a 2-approximation for preemptive Gmssc and proved that any preemptive
schedule can be transformed to a non-preemptive schedule, losing a factor of 6.2. We
show that for laminar instances of Gmssc we can transform the preemptive schedule
to a non-preemptive schedule without increasing the objective function. Theorem 4.9
states the main result of this section.
Theorem 4.9
There is a 2-approximation for weighted, laminar Gmssc.

We already gave a brief summary of the results by Im et al. [61] in Section 4.1.2.
At this point, a more detailed discussion of preemptive Gmssc seems crucial for
understanding the remainder of this section. After formally defining preemptive
Gmssc and explaining the results in [61], we state and analyse our algorithm.

Recall the connection of Gmssc to single machine scheduling with bipartite precen-
dence constraints, 0/1-weights and 1/0-processing times as described in Section 4.1.1.
When introducing the preemptive version of Gmssc, this interpretation is particularly
useful. So instead of a linear ordering, we are looking for a schedule that minimizes the
sum of weighted completion times. When thinking about schedules instead of linear
orderings, preemption can be defined in a natural way. In the preemptive version of
Gmssc, vertices may be scheduled fractionally and an edge e is covered at the point in
time when the sum over its fractionally scheduled vertices sums up to κ.

We denote the fraction of vertex v ∈ V that is assigned to time t ∈ [n] by xvt ∈ [0, 1].
Certainly, each vertex needs to be completely assigned, i.e.,

∑n
t=1 xvt = 1 for all v ∈ V ,

and a total fraction of one is assigned to each point in time, i.e.,
∑
v∈V xvt = 1 for all

t ∈ [n]. The cover time of an edge e ∈ E is then defined as

π(e)κ := min
{
t ∈ [n]

∣∣∣ ∑
v∈e

t∑
τ=1

xvτ ≥ κ(e)
}
. (4.3)

Note that if xvt is binary for all v ∈ V and t ∈ [n], (4.3) defines a linear ordering, that
is, the definition coincides with the definition of cover times (4.1) for non-preemptive
Gmssc.
Im et al. [61] presented a 2-approximation algorithm for preemptive Gmssc which

is based on a so-called configuration LP. A valid configuration for an edge e, is
an assignment of the vertices contained in e to time slots in [n]. For every edge
and a corresponding configuration, one can define the completion time of e in the
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particular configuration. A feasible solution to the configuration LP is given by a
unique configuration for every edge, such that no more than one vertex is scheduled per
time slot and the configurations agree. Im et al. [61] showed that the configuration LP
is a valid relaxation for preemptive Gmssc and that, even though it has exponentially
many variables, it can be solved in polynomial-time. The solution of the configuration
LP is rounded to a feasible integer schedule using random α-points.

In the following, we describe an algorithm that, given an instance of laminar Gmssc to-
gether with a preemptive schedule, turns it into an non-preemptive schedule without
increasing the objective function.

Algorithm Description

As input, the algorithm to transform a preemptive solution for laminar Gmssc into
a non-preemptive one receives the cover times of the edges in a feasible preemptive
solution. The algorithm works as follows. The edges are processed in an earliest cover
time first manner (ties are broken arbitrarily). That is, in each iteration a vertex of an
uncovered edge with lowest cover time is scheduled.
If the edge e considered in the current iteration contains no uncovered edges in E

that are subsets of e, then the vertex is chosen arbitrarily within e (recall that the
vertices are indistinguishable).

Else, the current edge is updated to an uncovered edge e′ of E with e′ ⊂ e of lowest
cover time. In this way, the vertex scheduled next is always chosen from the most
urgent subset(s). Finally, after a vertex is scheduled, this vertex is removed from the
instance and the covering requirements are updated accordingly. The cover time of an
edge is the first point in time when its remaining covering requirement is set to zero.
If an edge is covered, it is removed from the instance and its cover time is set to t.

Else, the vertex is removed from the instance and the edge is updated accordingly. The
complete algorithm is summarized in the following (Algorithm 1).

Note that Algorithm 1 returns a feasible (non-preemptive) solution for Gmssc, since
exactly one vertex is assigned to time t (line 8) in each iteration of the outer while-loop
and that, technically, one does not need to assign the cover time of an edge in line 12,
as the cover time is already well-defined by the linear ordering π : V → [n].

Before we show that the cover times of the solution returned by Algorithm 1 satisfy
π(e) ≤ π′(e) for all e ∈ E, we illustrate the procedure in the following example.
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Algorithm 1: An algorithm to transform a feasible preemptive solution of
laminar Gmssc to a feasible non-preemptive solution.
Input: Instance (H = (V,E), κ) of laminar Gmssc and a feasible preemptive

solution with cover times π′(e)
Output: Feasible non-preemptive solution of (H = (V,E), κ) with cover

times π(e)

1 F ← E;
2 t← 1;
3 while t ≤ n do
4 Choose e ∈ arg min{π′(f) | f ∈ F};
5 while ∃ f ∈ F with f ⊂ e do
6 Set e′ ← e and choose e ∈ arg min{π′(f) | f ∈ F and f ⊂ e′};
7 end
8 Choose v ∈ f and set π(v)← t;
9 for f ∈ F with v ∈ f do

10 κ(f)← κ(f)− 1;
11 if κ(f) = 0 then
12 F ← F \ {f} and π(f)← t;
13 else
14 F ← (F \ {f}) ∪ {f \ {v}};
15 end
16 t← t+ 1;
17 end
18 end
19 return π;

Example 4.10
Consider the following instance of laminar Gmssc. The hypergraph is defined on the
vertex set V = {v1, . . . , v8} and we are given four edges e = {v1, v2, v3}, f1 = {v4, v5},
f2 = {v6, v7, v8} and f = {v4, v5, v6, v7, v8} with covering constraints κ(e) = κ(f) = 1
and κ(f1) = κ(f2) = 2. See Figure 4.9 for a visualization of the instance. Additionally,
we are given the cover times π′ of the edges in a preemptive schedule. Here, π′(e) = 1,
π′(f) = 2, π′(f1) = 4 and π′(f2) = 5 as displayed in the figure above.
Algorithm 1 considers the edges in order of increasing cover times π′. Hence, it

chooses edge e first and schedules an arbitrary vertex in e. The edge e is now covered
and removed from the list. Next, the algorithm considers the edge f . The edge
f contains two edges f1 and f2. Since π′(f1) < π′(f2), the algorithm schedules an
arbitrary vertex in f1 next. The edge f is now covered and removed from the list, the
covering constraint of f1 is updated. The uncovered edge with the smallest cover time
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1 2 3 4 5 6 7 8

e

f1

f2
f

t =

π′(e) π′(f) π′(f1) π′(f2)

π(e) π(f) π(f1) π(f2)

Fig. 4.9: Instance of laminar Gmssc. The covering constraints are given by κ(e) = κ(f) = 1
and κ(f1) = κ(f2) = 2. A feasible preemptive schedule with cover times π′ and
the corresponding non-preemptive schedule with cover times π, as constructed by
Algorithm 1, are displayed at the bottom.

π′ is now f1. Since f1 does not contain any other edges, the remaining vertex in f1 is
scheduled next. The edge f1 is now covered and removed from the list. Finally, the
algorithm chooses twice a vertex in f2 to cover the remaining edge f2. For the sake of
completeness, one may schedule the remaining vertices in an arbitrary order at the end
of the current schedule.
As visualized in the figure above, the completion times of the edges e, f and f2

remained the same and the completion time of f1 decreased. That is, we constructed a
non-preemptive schedule with smaller objective value.

Algorithm Analysis

Instead of breaking ties in lines 4 and 6 arbitrarily, we now assume that Algorithm 1
processes an edge e completely in the following iterations of the outer while-loop before
it continues with an edge disjoint from e. For convenience, we refrain from making this
explicit in the algorithm.

Theorem 4.11
Given a feasible preemptive solution for laminar Generalized Min Sum Set Cover with
cover times π′κ : E → [n], Algorithm 1 returns a feasible non-preemptive solution with
cover times πκ(e) ≤ π′κ(e) for all e ∈ E.

Before proving Theorem 4.11, we introduce the necessary notation. A vertex v is called
free in a hyperedge e if v ∈ e and v is not contained in any other edge f ∈ E with
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f ⊆ e. An edge f ∈ E with f ⊂ e is called maximal in e w.r.t. E if there is no
f ′ ∈ E with f ⊂ f ′ ⊂ e.

Proof. Without loss of generality, we assume that an edge e ∈ E with |e| > κ(e)
contains no free vertices, since no reasonable solution for laminar Gmssc chooses a
free vertex in e if there is still a vertex in some subset of e available.

Let e ∈ E be the edge chosen by Algorithm 1 after the last iteration of the inner
while-loop at time t ∈ [n]. We consider the instance reduced to the edges disjoint from e
that are covered by time π′(e) in the preemptive solution. Let E−e := {f ∈ E | π′(f) ≤
π′(e), f ∩ e = ∅} be those edges. Further, let De ⊆ E−e be the set of inclusion-maximal
edges in E−e that contain free vertices. Note that E−e and De are laminar and that the
edges in De are disjoint by construction (see Figure 4.10).

e E−
e

De

Fig. 4.10: Example to visualize the definition De and E−e . Inclusion-maximal edges are
highlighted in blue.

We claim that for every f ∈ E−e , there is an edge f ′ ∈ De such that f ⊆ f ′. Assume
there exists an edge f ∈ E−e , such that there is no edge f ′ ∈ De with f ⊆ f ′. If there
exists a set f ′ ∈ De such that f ⊇ f ′, then f does not contain any free vertices by
definition of De. Hence, e decomposes into edges that are contained in E−e . At least
one of these edges has to be disjoint from all sets in De, otherwise f ⊆ f ′. Let f̂ ∈ E−e
with f̂ ⊆ f be an inclusion-minimal such subset that is disjoint from all sets in De.
Since f̂ is inclusion-minimal, it contains free vertices. So, it is contained in De, which
is a contradiction.

We can assume that the edges in E−e (and, therefore, also in De) are covered by
Algorithm 1 in previous iterations before time π(e). Otherwise, if ties were broken in
favor of e in line 4, we can remove the corresponding edges from E−e and De. So, the
edges in E−e precede e in the non-preemptive solution, i.e., π(f) < π(e) for all f ∈ E−e .
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For the cover time of e, we obtain

π(e) = κ(e) + |{v ∈ f | f ∈ E−e , π(v) < π(e)}|
= κ(e) + |{v ∈ f | f ∈ De, π(v) < π(e)}|
= κ(e) +

∑
f∈De

κ(f). (4.4)

The first equality is by definition of the cover time and since the edges in E−e are
precisely those edges that are covered before e and are disjoint from e (i.e., any vertex
in such an edge does not contribute to the covering of e). The second equality holds
because every f ∈ E−e is contained in some f ′ ∈ De and De ⊆ E−e . The last inequality
is due to the fact that edges in De are disjoint and every edge f ∈ E is covered as soon
as κ(f) of its vertices have appeared in the linear ordering.

On the other hand, let νv(t) be the fractional amount of vertex v ∈ V that appears
before time t ∈ [n] in the preemptive solution. For the cover time of e in the preemptive
solution, we have

π′(e) =
∑
v∈V

νv(π′(e)) =
∑
v∈e

νv(π′(e)) +
∑
v/∈e

νv(π′(e))

≥ κ(e) +
∑

v:∃f∈E−e with v∈f

νv(π′(e))

= κ(e) +
∑
f∈De

∑
v∈f

νv(π′(e))

≥ κ(e) +
∑
f∈De

∑
v∈f

νv(π′(f))

≥ κ(e) +
∑
f∈De

κ(f). (4.5)

The first inequality holds, since the first sum in the second row contains fewer
summands than the last sum in the first row and

∑
v∈e νv(π′(e)) ≥ κ(e) by definition

of the cover time. The equality in the third row is similar to Eq. (4.4) and the second
inequality follows from νv(t) ≥ νv(s) for t ≥ s and all v ∈ V . Hence, when comparing
Eq. (4.4) and Eq. (4.5), we get π(e) = κ(e) +

∑
f∈De

κ(f) ≤ π′(e) for any e ∈ E that is
considered explicitly by Algorithm 1 after line 6.
Finally, let f ∈ E with f ⊆ e be an edge that is never chosen explicitly by the

algorithm, but is covered in line 12, because its covering requirement is set to zero in
the iteration where e ∈ E is considered. Since f has not yet been considered by the
algorithm in lines 4 or 6, it satisfies π′(f) ≥ π′(e). By construction, π(f) ≤ π(e). With
Eq. (4.4) and Eq. (4.5), we get π′(f) ≥ π′(e) ≥ π(e) ≥ π(f), which yields the claim.2
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Now, we prove that there is a 2-approximation for weighted, laminar Gmssc.

Proof (Theorem 4.9). First, we use the algorithm of [61] to obtain a 2-approximate
solution for preemptive laminar Gmssc. Note that the algorithm in [61] also works
for the weighted variant. Then, we apply Algorithm 1 to transform the preemptive
solution into a non-preemptive one. By Theorem 4.11, the objective value of the
solution returned by Algorithm 1 is∑

e∈E
w(e)π(e) ≤

∑
e∈E

w(e)π′(e).

Since preemptive Gmssc is a relaxation of Gmssc and the algorithm of [61] is 2-
approximate, we have ∑

e∈E
w(e)π′(e) ≤ 2

∑
e∈E

w(e)π∗(e),

where π∗(e) are the cover times of an optimum solution for the instance of laminar
Gmssc. 2

4.3.4 Laminar All-But-K Min Sum Set Cover
In the following, we provide another special case of laminar Gmssc that can be solved
in polynomial-time. In Theorem 4.4 we proved that laminar Gmssc can be solved
in polynomial-time for unit covering constraints. This is also the case for the more
general covering constraints of the form κ(e) = max{1, |e| − K} for all e ∈ E and
some K ∈ N0. We refer to Gmssc with this particular choice of covering constraints
as the Laminar All-But-K Min Sum Set Cover Problem. Our main result is
a polynomial-time algorithm for laminar All-But-K Mssc. We actually consider
the more general weighted, laminar All-But-K Mssc, where every edge e ∈ E is
associated with a positive weight we ∈ N and the objective is to minimize the sum of
weighted cover times.

Theorem 4.12
Weighted, laminar All-But-K Mssc can be solved in polynomial-time.

The high-level idea of the polynomial-time algorithm for laminar All-But-K Mssc is
the following. First, we construct an equivalent instance of laminar Min Latency Set
Cover (Algorithm 2), and in a second step we solve this instance to optimality.
To distinguish an instance of All-But-K Mssc from its correpsonding Mlsc

instance, the edges in the Mlsc instance are indicated with an overline, i.e., are
denoted by e, f , etc. Similarly, we denote the collection of edges of the Mlsc instance
by E.

Before describing the algorithm in more detail, we introduce the following notation.
Observe, that since E is laminar, there is a unique inclusion-minimal superset for every
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v ∈ V . For e ∈ E, let Ue := {v ∈ e |@ f ∈ E with v ∈ f ⊂ e} be the vertices in e that
are not contained in any subset f ∈ E of e. The vertices in Ue are called free in e. An
edge f ∈ E with f ⊂ e is called maximal in e w.r.t. E if there is no f ′ ∈ E with
f ⊂ f ′ ⊂ e.3 We can partition an edge e ∈ E into a disjoint union

e = Ue ∪
⋃

f∈E, f⊂e
max w.r.t. E

f. (4.6)

Definition 4.13 (Level of an Edge)
Let E be a laminar family, e ∈ E and Ue ⊆ e be the free vertices in e. The level of e
is recursively defined as

1. lev(e) := 0 if e = Ue, i.e., there is no f ∈ E with f ⊂ e, and

2. lev(e) := 1 + max{lev(f) | f ∈ E, f ⊂ e maximal in e w.r.t. E}.

Fig. 4.11 illustrates the definition of free vertices of an edge and the definition of a
level of an edge.

e

f

e1

e3

e2

Fig. 4.11: Instance of All-But-K Mssc. The free vertices of edge e are highlighted in gray.
The edges f, e1 and e3 are level 0 edges, the level of e2 is 1 and the level of e is 2.
As stated in (4.6) the edge e can be partitioned into a disjoint union e = Ue∪e1∪e2
of maximal edges in e.

Algorithm Description

The algorithm to transform an instance of All-But-K Mssc to an equivalent instance
of Mlsc works as follows. We iterate over the levels, i.e., we start with the edges in
E of level 0, hence, they do not contain other edges in E. Since the vertices in V are
indistinguishable, it does not matter which κ(e) of the |e| vertices cover an edge e ∈ E
of level 0. We remove |e| − κ(e) of the (free) vertices from any edge e at level 0.

3Note that f ⊂ e with f ∈ E can be maximal in e w.r.t. E, although e is not contained in E.
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Note that these vertices are not removed from the instance, but are now free in
the unique inclusion-minimal superset of e. The resulting edge, which is a subset
of e, is denoted by e. We continue in the same manner with the edges at levels
1, . . . , n, i.e., we remove |e| − κ(e) of the free vertices and add them to the minimal
superset. If there are not enough free vertices to be removed, we additionally remove
the singleton sets {v} ∈ E with {v} ⊂ e of lowest weight from e, and “place” them
into the inclusion-minimal superset of e. Lemma 4.14 states that this can be done in a
feasible way.

Thereby, we successively decrease the size of all edges in E until their cardinalities
coincide with their covering requirements. This procedure might produce duplicate
edges if we create the edge e when dealing with an edge e ∈ E, although the instance on
E already contains an edge f = e from an earlier iteration where f ∈ E was considered.
In this case, the “old edge” f ∈ E is replaced by the “new edge” e, i.e., we update E.
The weight of e is the sum of the weights of f and e. Note that this case only occurs if
e is a superset of f .

e e

e ē

f f

f̄ f̄

e1 e1

ē1 ē1

e2 e2

ē2 ē2

e3
e4

e3 ē4

ē4
ē4

1 2

3 4

Fig. 4.12: Transformation of an instance of All-But-2 Mssc with unit weights to an instance
of Mlsc. Consider edges in order of increasing level. Note that since e3 = e2, we
delete both edges from the instance and replace it by an edge e3 of weight 2.
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By updating E in this way, we ensure that f ⊂ e is maximal in e w.r.t. E if and only
if the corresponding edge f ∈ E with f ⊂ e is maximal in e w.r.t. E. Also, if e = {v} is
a singleton, then v ∈ f ⊂ e for all subsets f ∈ E of e ∈ E. See Fig. 4.12 for an example
of how to transform an instance of All-But-K Mssc to an instance of Mlsc.

Algorithm 2: An algorithm to transform an instance of laminar All-But-K
Mssc to an equivalent instance of laminar Mlsc.
Input: Instance (H = (V,E), κ) of weighted laminar All-But-K Mssc
Output: Instance (H = (V,E), κ) of weighted laminar Mlsc

1 E ← ∅;
2 for ` = 0, 1, . . . , n do
3 for e ∈ E with lev(e) = ` do
4 U ← e \

⋃
f∈E
f⊂e

f ;

5 S ←
{
{v} ∈ E

∣∣∣ {v} ⊂ e is maximal in e w.r.t. E
}
;

6 q ← |e| − κ(e);
7 if |U | ≥ q then
8 Choose U− ⊆ U of cardinality q;
9 else

10 Sort S in non-decreasing order of the weights;
11 Let S− ⊆ S be the first q − |U | vertices of S;
12 U− ← U ∪ {v | {v} ∈ S−};
13 end
14 e← e \ U−;
15 if ∃S ∈ E with f = e then
16 we ← wf + we;
17 E ← (E \ {f}) ∪ {e};
18 else
19 E ← E ∪ {e} and we ← we;
20 end
21 end
22 end
23 return instance (H = (V,E), κ) with requirements κ : E → N, κ(e) = |e|;

The algorithm is summarized in Algorithm 2. The free vertices and singleton edges
in the current edge e are defined in lines 4 and 5, respectively. The if-clause in line 7
checks whether there are “enough” free vertices to be removed. If not, the algorithm
chooses all free vertices and the singleton edges of lowest weight to be removed in
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line 12. Finally, the if-clause in line 15 checks whether an edge is duplicated, and if so,
the “old edge” is replaced by the “new edge” and the weights are updated accordingly.

Algorithm Analysis

Note that Algorithm 2 runs in polynomial-time, since every edge in E is considered
exactly once. The following lemma shows that there are always enough free vertices
and singletons to be removed, and that the output of Algorithm 2 is an instance of
weighted laminar Mlsc.

Lemma 4.14
Algorithm 2 works correctly, i.e., for every e ∈ E, we have |e| ≤ |U | + |S| + κ(e),
where U and S are the corresponding set of free vertices and the set of singletons in
the iteration of e. Further, E is laminar.

Proof. We first turn to the second part of the statement, and assume, for the moment,
that Algorithm 2 terminates correctly. For ` ∈ {0, 1, . . . , n}, let E` be the current
collection of subsets at the end of the for-loop for `. Clearly, E0 is laminar, since it
comprises of disjoint edges. Now, assume that E`−1 is laminar for some ` ∈ [n]. In the
next iteration of the outer for-loop, the set e is derived from e ∈ E with lev(e) = `
by removing free vertices and singletons. Note that e ∈ E` is a superset of all non-
singleton edges f ∈ E`−1 with f ⊂ e, f ∈ E. Also, two disjoint edges e, e′ ∈ E with
lev(e) = lev(e′) = ` do not intersect by Definition 4.13. Hence, the resulting edges
e, e′ ∈ E` do not intersect. So, E` is laminar by induction, and E = En is laminar.

We prove the first part of the statement by induction on the level. If lev(e) = 0 then
e = U , i.e., |e| ≤ |U |+ κ(e) by non-negativity of κ(e). Let ` ∈ [n] and consider an edge
with lev(e) = `. By induction hypothesis, all edges f ∈ E with lev(f) ≤ ` − 1 were
already processed by the algorithm in previous iterations. Note that |f | = κ(f) ≤ |f |
for f ∈ E and its corresponding set f ∈ E. Similar to (4.6), we get

e = U ∪
⋃

f∈E, f⊂e
max w.r.t. E

f = U ∪
⋃
{v}∈S

{v} ∪
⋃

f∈E, f⊂e
max w.r.t. E
|f |≥2

f. (4.7)

If e contains no maximal subsets w.r.t. E of cardinality ≥ 2, then |e| = |U |+ |S| ≤
|U |+ |S|+κ(e) by non-negativity of κ(e). Also, κ(e) = 1 implies κ(f) = 1 for all f ⊂ e
and f ∈ E. In that case, all edges f ∈ E with f ⊂ e are singletons. So, assume there
is at least one maximal subset w.r.t. E of cardinality ≥ 2 and κ(e) = |e| − K > 1.
With (4.7), we obtain
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|e| = |U |+ |S|+
∑

f∈E, f⊂e
max w.r.t. E
|f |≥2

|f | = |U |+ |S|+
∑

f∈E, f⊂e
max w.r.t. E
|f |≥2

κ(f)

= |U |+ |S|+
∑

f∈E, f⊂e
max w.r.t. E
|f |≥2

(|f | −K) ≤ |U |+ |S|+ |e| −K

= |U |+ |S|+ κ(e).

(4.8)

This proves the claim. 2

Lemma 4.15
Let I be an instance of weighted laminar All-But-K Mssc, and let I be the corre-
sponding instance of weighted laminar Mlsc that is returned by Algorithm 2. Then
any optimal solution for I is also optimal for I.

Proof. A feasible linear ordering for I is also feasible for I. Consider a linear ordering
π : V → [n] that is optimal for I. We show that we can alter π without increasing its
objective value such that it is feasible for I. So, any optimal solution for I has lower
total weighted covering cost than π, i.e., it is optimal for I, which proves the claim.
For e ∈ E, let Ue and Se be the free vertices and singletons in the corresponding

iterations of Algorithm 2, respectively. Let S ′e = {f ∈ E | f ⊂ e, κ(f) = 1} be the
edges that correspond to the singletons in Se or are contained in such an edge. That is,
S ′e is the set of “pre-images” of the singletons in Se. Recall that every edge e is covered
as soon as κ(e) vertices appeared in the linear ordering. In particular, π(v) ≥ π(f ′) for
all {v} ∈ Se and f ′ ∈ S ′e with v ∈ f ′. We show by induction on the level that, w.l.o.g.,
the following holds for all e ∈ E:

1. π(f) ≤ π(e) for all f ⊆ e, f ∈ E with κ(f) > 1,

2. π(v) > π(e) for all v ∈ Ue \ e, and

3. if π(u) ≤ π(e) < π(v) for u, v ∈ e with {u}, {v} ∈ Se, then w{u} ≥ w{v}.

Observe that π is feasible for the Mlsc instance I if it satisfies these three conditions.
The first condition yields that every edge is preceded by its non-singleton subsets.
Conditions 2 and 3 state that an edge is not preceded by the vertices and singletons
that are removed by Algorithm 2. It remains to be shown that we can alter the optimal
solution π such that it satisfies 1, 2 and 3.
If lev(e) = 0, then 1 and 3 are trivially true. As for 2, suppose there is v ∈ Ue \ e

with π(v) ≤ π(e). The set e is covered as soon as κ(e) vertices appeared, so there is
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u ∈ e with π(e) < π(u). Recall that lev(e) = 0 implies that E does not contain any
subsets of e. Hence, u and v are contained in the same edges in E. So, swapping u
and v does not destroy feasibility of the linear ordering nor does the objective value
increase. This establishes the base case. Now, suppose lev(e) ≥ 1, i.e., E contains at
least one subset of e.

1. For κ(e) = 1, the statement is trivially true because κ(f) = 1 holds for all f ⊂ e.
So, assume κ(e) = |e| −K and suppose that an edge f ⊂ e with κ(f) = |f | −K
is covered after e, i.e., π(f) > π(e). That is, K vertices of f appear strictly after
time π(f). Since f is covered as soon as κ(f) vertices of f appeared, there is a
vertex in f that appears at time π(f) > π(e). Hence, at least K + 1 vertices of e
appear strictly after time π(e). This is a contradiction to the feasibility of the
solution because, then, at most |e| − (K + 1) < κ(e) vertices appear before e.

2. Suppose there is a vertex v ∈ Ue \ e with π(v) ≤ π(e). Similar to the base case,
there is u ∈ e with π(e) < π(u). If there is an edge f ⊂ e, f ∈ E with v ∈ f , then
v ∈ Ue implies that v was also part of the free vertices in the iteration of f , i.e.,
v ∈ Uf \ f . By induction lev(f) < lev(e), we get that π(v) > π(f). So, v does
not contribute to any subset of e, but only to supersets e′ ⊇ e with e′ ∈ E. But
then u ∈ e ⊆ e′ implies that we can swap v and u without loosing feasibility or
increasing the objective value (some edges that contain u might be even covered
earlier).

3. Suppose there are u, v ∈ e with {v}, {u} ∈ Se and π(u) ≤ π(e) < π(v) such that
w{u} < w{v}. The edges in S ′e that contain u or v have a lower level than e.
By induction and 2, all sets in S ′e that contain v or u are covered at time π(v)
or π(u), respectively. Also, since {v}, {u} ∈ Se are maximal in e w.r.t. E, the
corresponding edges fv, fu ∈ E with fv = {v} and fu = {u} are maximal in e
w.r.t. E. Hence, there is no f ′ ⊂ e, f ′ ∈ E with fv ⊂ f ′ ⊂ e or fu ⊂ f ′ ⊂ e.
That is, v and u do not contribute to any subset of e other than the subsets
of fv and fu, respectively. Similar to 2, if we swap v and u (together with the
corresponding edges in S ′e), we do not loose feasibility and obtain solution of
better objective value, since w{u} < w{v}. This contradicts to the optimality of π.

Thus, we can, w.l.o.g., assume that the optimal solution π : V → [n] satisfies 1, 2 and 3.
That is, π is feasible for the Mlsc instance I. Hence, any optimal solution for I is
also optimal for the initial instance I of All-But-K Mssc. 2

Lemma 4.14 shows that the instance returned by Algorithm 2 is indeed an instance
of laminar Mlsc, and Lemma 4.15 states that solving this instance is equivalent to
solving the initial instance of laminar All-But-K Mssc. We are now in the position
to prove that weighted, laminar All-but-K Mssc can be solved in polynomial-time.
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Proof (Theorem 4.12). Consider an instance I of weighted laminar All-But-K
Mssc. First, we apply Algorithm 2 to obtain the corresponding instance I of weighted
laminar Mlsc. By Lemma 4.15, any optimal solution for I is also optimal for I. It
remains to be shown that we can solve weighted laminar Mlsc in polynomial-time.

Let I = (H = (V,E), κ) be an instance of weighted laminar Mlsc. We construct an
equivalent AND-scheduling instance by using the in-forest representation of I. That
is, we introduce a job jv for every vertex v ∈ V and a job je for every edge e ∈ E.
The processing times and weights of the jobs are pjv = 1, wjv = 0 for all v ∈ V and
pje = 0, wje = we for all e ∈ E. The precedence constraints are given by the graph
Gprec = (J, ~A), where J = {jv | v ∈ V }∪{je | e ∈ E}. The jobs {jv | v ∈ V } do not have
any predecessors, and, for e ∈ E, the predecessors of je are the jobs corresponding to the
maximal subsets and the free vertices in e. That is, we introduce an edge (jf , je) ∈ ~A

for all e, f ∈ E such that f ⊂ e is maximal in e w.r.t. E and an edge (jv, je) ∈ ~A for
every e ∈ E and free vertex v ∈ Ue. Clearly, there is a one-to-one correspondence
between a linear ordering of the vertices in V and a feasible single-machine schedule
of the jobs in {jv | v ∈ V }. Also, finding a linear ordering that minimizes the sum of
weighted cover times is equivalent to finding a schedule that minimizes the sum of
weighted completion times.

Since E is laminar, every edge in E is maximal in at most one edge and every vertex
is free in at most one edge. So, every job of the scheduling instance described above
has at most one successor, i.e., the constructed precedence graph Gprec = (J, ~A) is an
in-forest. Hence, we can solve weighted laminar MLSC by solving the corresponding
scheduling problem 1 | prec |

∑
wjCj with a an in-forest precedence graph, which can

be done in polynomial time [59]. 2

4.4 Open Problems

In this section, we studied the generalized Min Sum Set Cover problem on laminar
families. For special choices of covering constraints such as Mssc, All-But-K Mssc,
and Mlsc we provided polynomial-time algorithms for laminar instances. All of these
algorithms rely heavily on the specific choice of covering constraints. For arbitrary
covering constraints, the complexity remains open.

Problem 4.16
Is there a polynomial-time algorithm for laminar Gmssc?

Now consider Gmssc on general hypergraphs. Im et al. [61] showed that any solution
to preemptive Gmssc can be converted to a solution of Gmssc, loosing a factor of
at most 6.2. For laminar instances, we showed that one can convert any preemptive
schedule to a non-preemptive schedule without increasing the cover times. For general
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hypergraphs, Bansal et al. [9] gave an example, which shows that the gap between the
preemptive and non-preemptive schedule is at least 4.

Problem 4.17
Is there a polynomial-time algorithm that converts any preemptive schedule to a
non-preemptive schedule for Gmssc, loosing a factor of at most 4?

Recently, Bansal et al. [9] improved the best-known approximation ratio for Gmssc from
12.4 to 4.642. Still, new methods seem to be necessary to close the gap and obtain a
4-approximation algorithm.

Problem 4.18 ([61])
Is there a 4-approximation algorithm for Gmssc?
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Chapter 5

Bipartite Flow Scheduling

In this chapter, we consider a special case of the Coflow Scheduling problem. We
are given an m×m switch, consisting of m input and m output ports. A coflow is a
collection of flow demand, so-called tasks, between pairs of in- and output ports. Each
port can send or receive at most one unit of flow in every time step. The completion
time of a coflow is the earliest point in time when all tasks of the coflow have been
completed. The goal is to determine a schedule that minimizes the sum of weighted
completion times over all coflows.
Coflow Scheduling was introduced as a framework for data-parallel computing.

In comparison to fundamental scheduling problems, it incorporates two significant
challenges. First, the grouping constraints, that is, the requirement that each coflow
only completes after all its tasks are completed, and secondly, the conflicts, that is no
pair of tasks with the same input or output port can be scheduled at the same time.
So-called Concurrent Open Shop Scheduling can be interpreted as the special case of
Coflow Scheduling in which we neglect the conflict on the output ports. The scheduling
problem considered in this chapter is the special case of Coflow Scheduling, in which
we relax the grouping constraints. In other words, every coflow consists only of a single
task. We refer to this problem as Bipartite Flow Scheduling.

In contrast to Concurrent Open Shop, for which there exists a clear line of research,
Bipartite Flow Scheduling has been studied in the past under various names. In this
chapter, we explain the connection of Bipartite Flow Scheduling to other scheduling
and covering problems. We give an overview of existing results and propose further
research directions.

The chapter is structured as follows. In Section 5.1, we introduce Coflow Schedul-
ing formally and explain its application in the context of parallel computing. An
overview of related work is given in Section 5.1.5. The remainder of this chapter
deals with the Bipartite Flow Scheduling problem. We explain the connection of the
problem to Min Sum Edge Coloring, Min Sum (Multi-)Coloring, Min Sum Set Cover,
Data Migration, and Generalized Open Shop and summarize existing hardness results
(Section 5.2.1) and approximation algorithms (Section 5.2.2).
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5.1 Introduction

The Coflow Scheduling Problem is defined in the following way. We are given a
switch that consists of m input and m output ports. A coflow j consists of a collection
of tasks and can be described by an integer matrix Dj := (dji,o)i,o∈[m], where d

j
i,o

represents the amount of flow that needs to be transferred from input port i to output
port o in order to process coflow j. Due to capacity restrictions each input and output
port can only receive or send one unit of flow at a time. In particular, this implies
that we schedule a matching in every time step (see Section 5.1.1). Consider a set
of coflows J . For every coflow j ∈ J we are given a release time rj and a weight
wj . The completion time Cj of a coflow j is defined as the earliest point in time
when all of its tasks have been scheduled. The goal is to minimize the sum of weighted
completion times, i.e. min

∑
j∈J wjCj .

Coflow Scheduling was initially introduced in the context of distributed computing.
MapReduce, Spark, and Dyrad are frameworks developed for efficiently processing
large data sets. MapReduce, for example, does so by distributing the data to multiple
systems. The tasks are then processed in parallel, and the final results aggregated
again. Compared to classical network flow problems, we are given a collection of tasks
in this setting, and a coflow completes only after all its tasks have been scheduled.
Coflow Scheduling has also been studied extensively from an application point of view,
and various heuristics are known. However, in this chapter, we exclusively focus on
theoretical results.
The currently best-known approximation algorithms for Coflow Scheduling are a

4-approximation in case all release times are zero and a 5-approximation for the case of
arbitrary release times [4, 96]. Up until now, it is unclear whether Coflow Scheduling can
be approximated within a factor strictly smaller than 4. The best known lower bound
is 2− ε [91]. Hence, we are particularly interested in the existence of a 2-approximation
algorithm for Coflow Scheduling. To get closer to answering this question, a deep
understanding of the special cases of Coflow Scheduling may be essential.

Coflow Scheduling combines two challenges, namely the grouping constraints and the
conflicts. Concurrent Open Shop can be seen as the special case of Coflow Scheduling
that incorporates the grouping constraints but neglects conflicts. For more information
on the Concurrent Open Shop problem, see Section 5.1.4. Whereas the Concurrent
Open Shop problem has received a lot of attention and ideas have been used to generate
approximation algorithms for Coflow Scheduling, the other special case, the so-called
Bipartite Flow Scheduling Problem, has only received little attention in the context of
Coflow Scheduling.
In this chapter, we focus on the Bipartite Flow Scheduling problem, which is the

special case of Coflow Scheduling that still incorporates the conflicts but neglects the
grouping constraints. In particular, this is the special case of Coflow Scheduling, where
every coflow consists of a single edge or equivalently, the corresponding matrix Dj
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contains precisely one non-zero entry. A detailed definition of the problem is given in
Section 5.2. Bipartite Flow Scheduling is closely related to Min Sum Edge Coloring,
Min Sum (Multi-)Coloring, Min Sum Set Cover, and Generalized Open Shop Scheduling.
We explain their connection and summarize existing approximation algorithms and
hardness results for Bipartite Flow Scheduling.

5.1.1 Bipartite Graph Representation of Coflow Scheduling

Besides the matrix representation, given above, it is often convenient to represent
a coflow by a bipartite graph. Let j be a coflow defined by the integer matrix
Dj := (dji,o)i,o∈[m]. The corresponding bipartite graph is given by Gj = (I ∪ O,Ej),
where I and O represent the set of m input and output ports, respectively. The set
of edges is defined as Ej := {eji,o = (i, o) | dji,o > 0} with weights w(eji,o) := dji,o. That
is, there exists an edge from input port i to output port o of weight di,o in the graph
Gj , whenever coflow j requires di,o units of flow to be transferred from i to o. The
following example illustrates the Coflow Scheduling problem and visualizes both, the
matrix and the bipartite graph representation of a coflow.

Example 5.1
We are given the following instance of Coflow Scheduling on three input and three
output ports, displayed in Figure 5.1. The set of coflows is given by J = {j1, j2, j3}

Dj1 :=

2 0 0

0 0 1

0 0 1

Dj2 :=

0 1 0

1 0 0

0 0 1

Dj3 :=

0

0 0

0 0 0

w(j1) = 10

w(j2) := 5

w(j3) = 1

2

1

1

1
1

1

1

2

0 1

2

Fig. 5.1: Example of three coflows in matrix and bipartite graph representation.
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with corresponding weights w(j1) = 10, w(j2) = 5 and w(j3) = 1. All release times are
equal to zero. A feasible schedule is given in Figure 5.2. Note that the yellow edges
correspond to coflow j1, the green edges to coflow j2, and the blue edges to coflow
j3. Coflow j1 completes at time 2, coflow j2 completes at time 3, and the last task of
coflow j3 is scheduled at time 4. Hence, the sum of weighted completion times of the
given schedule is

∑
wjCj = 10 · 2 + 5 · 3 + 1 · 4 = 39.

t = 1 t = 2 t = 3 t = 4

Fig. 5.2: A feasible schedule of the instance displayed in Figure 5.1. Yellow edges correspond
to coflow j1, green edges to coflow j2 and blue edges to coflow j3.

5.1.2 Preemption in the Context of Coflow Scheduling

At this point, it makes sense to briefly discuss the meaning of preemption in the context
of Coflow Scheduling. The (non-preemptive) Coflow Scheduling problem is preemptive
by default since we neither require the different tasks of a coflow nor a task itself
to be scheduled in subsequent times steps (see Figure 5.2). We refer to this type of
preemption as integer preemption. Whenever we use the term preemptive Coflow
Scheduling, we refer to non-integer preemption. That is, in the preemptive Coflow
Scheduling problem, we do not necessarily schedule a matching in every time step.
Instead, we are also allowed to schedule fractional matchings.

5.1.3 Coflow Scheduling to Minimize Makespan

Scheduling Coflows with the objective of minimizing the makespan Cmax can be solved
in polynomial time. One way to observe this is the following. Given a set of coflows J ,
consider their bipartite graph representation and let GJ :=

⋃
j∈J Gj be the cumulative

multigraph that contains an edge for every task of a coflow in J . Let ∆ be the
maximum weighted degree of the graph GJ . Clearly, we need at least ∆ time steps to
schedule all coflows, so Cmax ≥ ∆. Qiu et al. [89] showed that there always exists a
so-called Birkhoff-von Neumann Decomposition of GJ into ∆ matchings. The main
idea is to replace every edge (i, o) of a coflow j by dji,o copies, add dummy edges to
GJ until all edges have degree ∆ and decompose the resulting graph into ∆ maximum
matchings. See Figure 5.3 for an example. Hence, there always exists a schedule with
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Cmax = ∆. Moreover, a Birkhoff-von Neumann Decomposition can be computed in
polynomial-time.

t = 1 t = 2 t = 3 t = 4G

Fig. 5.3: Example of a Birkhoff-von Neumann Decomposition of a graph G. Dummy edges
are displayed as dashed edges.

Another way to observe that Scheduling Coflows to minimize makespan can be
solved in polynomial-time is by reformulating it as Matroid Intersection Cover problem
on two partition matroids. This can be solved in polynomial-time using Edmond’s
Matroid Intersection algorithm [38] since it equals the Matroid Intersection problem
on two partition matroids. See Chapter 3 for more information on Matroid Covering
problems. Throughout this chapter, Coflow Scheduling will always refer to the objective
of minimizing the sum of weighted completion times.

5.1.4 Connection to Concurrent Open Shop
We already mentioned the connection of Coflow Scheduling to Concurrent Open Shop
Scheduling in the introduction. In the following, we introduce the problem formally
and explain its connection to Coflow Scheduling in more detail.
The Concurrent Open Shop Scheduling Problem is defined as follows. Given a set

of m machines and jobs j that consist of tasks, every task can only be executed by a
particular machine, and the processing time of a task that belongs to job j on machine
i is pij . The completion time of a job is the first point in time when all its tasks are
completed. In contrast to the Open Shop Scheduling problem, different tasks of the
same job can be executed in parallel on different machines [88]. Additionally, every
job has a corresponding weight wj , and the goal is to minimize the sum of weighted
completion times. Following the three-field notation by Graham [50], the Concurrent
Open Shop Scheduling problem is in the literature often denoted by PD ||

∑
wjCj .

Concurrent Open Shop Scheduling has many applications in the context of maintenance
work and manufacturing and was studied extensively in both the theory and application
community. An overview of the theoretical results for Concurrent Open Shop is given
in Section 5.1.5.

Concurrent Open Shop relates to Coflow Scheduling in the following way. Concurrent
Open Shop can be seen as the special case of Coflow Scheduling, where the integer
matrices Dj of all coflows j are given by diagonal matrices. In other words, the only
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non-zero entries in Dj are on the diagonal. Figure 5.4 visualizes why Concurrent Open
Shop can be seen as Coflow Scheduling without conflicts. We only require flow to be
transferred from input port i to output port i. In particular, having no conflict between
two tasks at the input port implies that there is also no conflict at the output ports, or
in terms of the Concurrent Open Shop terminology, there is no conflict between two
tasks on different machines.

Wagneur [102] observed that there always exists an optimal permutation schedule
for Concurrent Open Shop, that is, a solution in which jobs are scheduled in the same
order on every machine. This also implies that there is no benefit in preempting jobs
in the Concurrent Open Shop setting. Note that for Coflow Scheduling, we cannot
guarantee the existence of an optimal permutation schedule [28].

2 0 0

0

0 0 1

2

Dj := 4 0
4

1

Fig. 5.4: Example of a coflow j to visualize the connection to Concurrent Open Shop. The
matrix representing coflow j is diagonal and, hence, we can interpret j as a job of a
Concurrent Open Shop instance. In the Concurrent Open Shop setting, we are given
three machines and j corresponds to a job consisting of tasks with processing times
p1j = 2, p2j = 4 and p3j = 1 on the respective machines.

5.1.5 Related Work
Coflow Scheduling. Chowdhury and Stoica [27] introduced the Coflow Scheduling
framework as an abstraction for cluster applications. In [28], Chowdhury et al. presented
a heuristic for Coflow Scheduling and discussed the complexity of the problem. In
addition, they pointed out the connection to Concurrent Open Shop Scheduling. In
contrast to the latter, the existence of an optimal permutation schedule is not necessarily
given for Coflow Scheduling. A simple counterexample was provided in [28]. The
connection to Concurrent Open Shop implies that Coflow Scheduling remains NP-hard
even for zero release times, unit weights, and all di,o ∈ {0, 1} [48].

Qiu et al. [89] presented the first constant-factor approximation algorithm for Coflow
Scheduling. It consists of two stages. First, they formulated a time-indexed linear
program with relaxed matching and load constraints. To get a formulation of polynomial-
size, they divided time into geometrically increasing intervals. The obtained interval-
indexed linear program can be solved in polynomial-time by the interior point method.
The completion times of the coflows in the optimal LP solution induce an ordering of the
coflows. This part is mainly based on ideas from Wang and Cheng [104] for Concurrent
Open Shop. In the second stage, the ordering of the coflows is converted into a feasible
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Table 5.1: Overview of approximation guarantees of known algorithms for Coflow
Scheduling with and without release times.

Deterministic Randomized

without
release times

with release
times

without
release times

with release
times

Qiu et al. [89] 64
3

76
3 [4]2 8 + 16

√
2

3 9 + 16
√

2
3

Khuller, Purohit [69] 8 12 3 +
√

2

Ahmadi et al. [4] 4 5

Ghaderi, Shafiee [96] 4 5

schedule. The coflows are grouped based on the ordering. Each group is treated as
a single coflow and then decomposed into matchings using a Birkhoff-von Neumann
Decomposition1. Overall, Qiu et al. [89] obtained a deterministic 64

3 -approximation
algorithm and a randomized 8 + 16

√
2

3 -approximation algorithm for the case where all
release times are zero. Their algorithm for arbitrary release times, as stated in the
paper, is flawed and was corrected by Ahmadi et al. [4] to a 76

3 -approximation.
Khuller and Purohit [69] improved the approximation guarantee further by presenting

a 12-approximation for Coflow Scheduling. For the special case where all release times
are equal to zero, they obtained an 8-approximation. Given an instance of Coflow
Scheduling, they solved a corresponding instance of Concurrent Open Shop and used
the LP solution to obtain an ordering of the coflows. Stage two of the algorithm is
equivalent to the grouping algorithm presented by Qiu et al. [89].
Two algorithms with the currently best-known approximation guarantee of 5 were

presented by Ahmadi et al. [4] and Shafiee and Ghaderi [96]. The algorithm by Ahmadi
et al. [4] is the first purely combinatorial algorithm. In the first stage, an ordering of
the coflows is obtained through a primal-dual algorithm. Simply scheduling coflows
according to the obtained ordering does not necessarily yield a good solution. Instead,
Ahmadi et al. [4] presented an algorithm that greedily moves edges forward, as long
as they do not increase the completion time of previous coflows. For the special case
when all release times are zero, this implies a 4-approximation. Independently, Shafiee

1See Section 5.1.3 for more information on Birkhoff-von Neumann Decompositions.
2The originally claimed deterministic 64

3 -approximation in [89] was corrected by Ahmadi et al. [4]
to a 76

3 -approximation.
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and Ghaderi [96] derived an algorithm with the same approximation guarantee, using
a completely different approach. They solved a linear program in linear ordering
variables to obtain an ordering of the coflows. A simple list scheduling algorithm is
then used to construct a feasible schedule. For zero release times, they also obtain a
4-approximation. Another 4-approximation was presented by Agarwal et al. [1]. It is
based on two stages and works as follows. First, an ordering of the coflows is obtained
through a primal-dual based Greedy algorithm. They showed that for the second
stage, any per-flow rate allocation mechanism that is work-conserving3, preemptive4

and respects the ordering can be used to receive the final schedule with the desired
approximation guarantee.
See Table 5.1 for an overview on the approximation guarantees of the currently

known algorithms for Coflow Scheduling with and without release times. Note that
besides the line of theoretical research, there is also an immense list of experimental
results and suggested heuristics for Coflow Scheduling.

Concurrent Open Shop. The special case of Coflow Scheduling, where all coflows
are represented by diagonal matrices, is called the Concurrent Open Shop Scheduling
problem. An explicit definition of Concurrent Open Shop and more information on its
connection to Coflow Scheduling is given in Section 5.1.4.

The problem was introduced by Ahmadi and Bagchi [3] and is known to be APX-hard,
even for zero release times, unit weights and processing times pij ∈ {0, 1} [48]. For
Concurrent Open Shop with zero release times there exist multiple 2-approximations
based on LP rounding [26, 48, 77] as well as a combinatorial algorithm [83]. Sachdeva
and Saket [91] showed that it is NP-hard to approximate Concurrent Open Shop
within a factor of (2− ε), which implies tightness of the approximations given above.
Concurrent Open Shop with arbitrary release times can be approximated with a factor
of 3 [4, 48, 77].

Min Sum Coloring and Scheduling with Conflicts. The Min Sum Coloring
problem was introduced by Kubicka and Schwenk [73] and is known to be NP-hard
even on bipartite graphs [15]. Several approximation algorithms for different graph
classes are know [63]. Closely related to this chapter are the results for Min Sum
Coloring on line graphs, in particular a 2-approximation by Bar-Noy et al. [13].

Another closely related problem is given by the Data Migration problem, see e.g. [47].
Note that even though the setting is similar to Bipartite Flow Scheduling, the objective
is different. Instead of minimizing the sum of weighted completion times of the jobs, the
objective in the Data Migration problem is to minimize the sum of weighted completion
times of the vertices of the graph. Scheduling with a conflict graph has been studied

3Work-conserving implies that for any task (i, o) that is scheduled at time t, at least one of the
ports i or o is busy in all previous times steps t′ < t.

4Preemption in this context refers to integer preemption.
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mainly with the objective of minimizing the makespan, see e.g. [80], which is trivial for
Coflow Scheduling (Section 5.1.3).

5.2 Bipartite Flow Scheduling

In this section, we consider the special case of Coflow Scheduling that still incorporates
conflicts but neglects the grouping constraints. This is the special case, where every
coflow consists of a single edge or, equivalently, for all coflows j, the corresponding
matrix Dj contains precisely one non-zero entry.

More specifically, the Bipartite Flow Scheduling Problem is defined as follows.
We are given a bipartite multigraph G = (I ∪O,E) with partitions I and O. Every
edge e in E corresponds to a job j, that is J := E. Additionally, for every job j ∈ J
we are given a processing time pj and a weight wj for every job j. We say that
two jobs j = (i, o), j′ = (i′, o′) have a conflict, that is conf(j, j′) = 1, if i = i′ or
o = o′. Otherwise let conf(j, j′) = 0. The total number of conflicts is denoted by
conf(J) =

∑
j 6=j′∈J conf(j, j′). In a feasible schedule, no pair of jobs that has a conflict

is scheduled during the same time interval. Integer preemption is allowed, that is a job
does not have to be scheduled in subsequent time intervals. The completion time Cj
of job j is the first point in time, when pj units of the job have been scheduled. The
goal is to minimize the sum of weighted completion times, i.e.

∑
j∈J wjCj .

In some cases, it will be useful to differentiate between conflicts at input ports and
conflicts at output ports. For two jobs j = (i, o) and j′ = (i′, o′) we define

confI(j, j′) :=
{

1 if i = i′

0 else and confO(j, j′) :=
{

1 if o = o′

0 else.

The total number of conflicts at all input and output ports is denoted by confI(J) and
confO(J), respectively. Note that since G is a multigraph, two jobs can have a conflict
at both, the input and the output port side. Hence, confI(J) + confO(J) ≥ conf(J).

5.2.1 Complexity of Bipartite Flow Scheduling

We consider the simplest class of Bipartite Flow Scheduling instances, that is, instances
with unit weights and unit processing times. Surprisingly, this case is already NP-hard,
which follows directly from a result for Min Sum Edge Coloring by Marx [82].

Connection to Min Sum Edge Coloring

The Min Sum Edge Coloring problem is defined in the following way. Given a graph
G = (V,E), find a proper edge coloring c : E → N that minimizes

∑
e∈E c(e).
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G t = 1 t = 2 t = 3G

1

1

1

1

2

2 2

2

3 3

Fig. 5.5: An example to illustrate the connection between Min Sum Edge Coloring and
Bipartite Flow Scheduling with unit weights and unit processing times. An optimal
Min Sum Edge Coloring of G is depicted in the middle. The corresponding optimal
schedule is visualized on the right.

It is easy to see that Bipartite Flow Scheduling with unit weights and unit processing
times is equivalent to Min Sum Edge Coloring on bipartite multigraphs (see Figure 5.5
for a visualization).

Proposition 5.2 (Marx [82])
Bipartite Flow Scheduling remains NP-hard, even when restricted to unit weights and
unit processing times.

Marx [82] showed that Min Sum Edge Coloring remains NP-hard on planar bipartite
graphs with maximum degree 3, by a reduction from the Edge Precoloring Extension
problem. The proposition above states the result in terms of Bipartite Flow Scheduling.
Additionally, Marx [82] proved that Min Sum Edge Coloring is APX-hard on bipartite
graphs.

5.2.2 Approximation Algorithms for Bipartite Flow Scheduling
Since the most trivial case of Bipartite Flow Scheduling is already NP-hard, we focus
on approximation algorithms. When considering Bipartite Flow Scheduling with unit
weights and unit processing times, the most natural idea is to schedule a maximal
matching in every time step. In the following, we show that this simple idea yields a
2-approximation.

Lemma 5.3
Scheduling any maximal matching in every step is a 2-approximation algorithm for
Bipartite Flow Scheduling with unit weights, unit processing times and zero release
times.

Proof. Given an instance of Bipartite Flow Scheduling problem with unit weights,
unit processing times and zero release times, let OPT be the value of an optimum
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solution and denote by ALG the value of a solution obtained by the algorithm that
schedules a maximal matching in every time step. We start by deriving a simple lower
bound on OPT.
Let w.l.o.g. the input side be the one with more conflicts, that is confI(J) ≥ confO(J).
Consider the following trivial scheduling problem. We are given a single machine for
every input port in I and a partition J1, J2, . . . , Jm of the jobs in J such that Ji is the
set of jobs incident to input port i. The goal is to minimize

∑
i∈I
∑
j∈Ji

Cj . Choose
any ordering of the jobs and schedule every set of jobs Ji on machine i, respecting the
ordering. The schedule obtained is optimal and let C̃j be the completion time of job j
in this schedule. Clearly, an optimal solution to this trivial scheduling problem is a
lower bound on OPT. Hence,

OPT ≥
∑
i∈I

∑
j∈Ji

C̃j =
∑
i∈I

∑
j∈Ji

(
1 +

∑
j′: C̃j′<C̃j

confI(j, j′)
)

= confI(J) + |J |. (5.1)

On the other hand, we can bound any solution obtained by the algorithm in the
following way. Denote by Cj the completion time of job j in the algorithm and assume
the jobs are ordered with respect to their completion times. Choosing a maximal
matching in every step implies that the solution has the following property. If a job j
is scheduled at time t, in every step t′ < t at least one job that is in conflict with j
must have been scheduled. Otherwise we could schedule j earlier which contradicts the
fact that we chose a maximal matching. Hence, we can upper bound the completion
time of job j by

∑
j′<j conf(j, j′) + 1. Overall it holds that,

ALG =
∑
j∈J

Cj =
∑
j∈J

( ∑
j′: Cj′<Cj

conf(j, j′) + 1
)

= conf(J) + |J | ≤ 2 ·OPT,

where the last inequality follows from (5.1) and the fact that conf(J) ≤ 2 · confI(J).
2

Note that an equivalent result in the context of Min Sum Coloring was already proven
by Bar-Noy et al. [13].

Connection to Min Sum Coloring

The Min Sum Coloring problem is defined as follows. Given a graph G = (V,E) on n
vertices, find a proper vertex coloring c : V → N that minimizes

∑
v∈V c(v).

Observation 5.4
Bipartite Flow Scheduling with unit weights, unit processing times and zero release
times is a special case of Min Sum Coloring on line graphs of bipartite multigraphs.
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G t = 1 t = 2 t = 3L(G)

a

b
c

d

e

f

a

bc

d

ef

Fig. 5.6: An example to illustrate the connection to Min Sum Coloring. The instance of
Bipartite Flow Scheduling is given on the left by G, and its line graph L(G) is
displayed in the middle together with an optimal Min Sum Coloring. Blue corresponds
to color class 1, green to color class 2 and yellow to color class 3. The picture on the
right illustrates the corresponding optimal schedule.

An example of an instance of Bipartite Flow Scheduling together with an optimal
Min Sum Coloring of the line graph and the corresponding schedule is given in Figure
5.6. Halldórsson et al. [52] showed that for any graph on which the maximum weight
k-colorable subgraph problem can be solved in polynomial-time, there exists a 1.796-
approximation algorithm for weighted Min Sum Coloring. In the maximum weight
k-colorable subgraph problem, we are given a graph G together with vertex weights.
The goal is to find a k-colorable subgraph of maximum total weight. Gandhi et al. [46]
observed that the k-colorable subgraph problem can be solved in polynomial-time on
line graphs of bipartite multigraphs since it equals the weighted b-matching problem on
the original bipartite multigraph. Combined with the result by Halldórsson et al. [52],
this observation implies a 1.796-algorithm for the Bipartite Flow Scheduling problem
with non-negative weights and unit processing times.

Proposition 5.5 (Halldórsson et al. [52])
There exists a 1.796-approximation algorithm for Biparite Flow Scheduling with non-
negative weights and unit processing times.

Connection to Min Sum Set Cover

Bipartite Flow Scheduling can also be formulated as Min Sum Set Cover problem5.
Consider an instance of Bipartite Flow Scheduling given by a bipartite multigraph G,
where the edges correspond to the set of jobs. We construct an instance of Mssc in
the following way. The vertex set of the hypergraph H contains a vertex for every
matching in G, that is, V (H) := {vM |M matching in G}. For every job j we define
an edge ej := {vM | j = (i, o) ∈ M}, that is, the edge ej contains all vertices that
correspond to matchings containing j. Any linear ordering of the vertices corresponds

5For more information on Min Sum Set Cover and its generalizations, see Chapter 4.
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to a schedule, in which we schedule a matching in every time step. Furthermore, the
cover time of a set corresponds to the completion time of the corresponding job.

Note that the hypergraphs that correspond to instances of Bipartite Flow Scheduling
have a particular structure. If a vertex corresponding to a matching M is contained
in some edge ej , all submatchings, including the edge j, are also contained in ej .
The hypergraphs may neither be regular nor uniform, which is why none of the
inapproximability results in [42] hold for Bipartite Flow Scheduling.

Finally, we would like to mention that the 2-approximation algorithm of Lemma 5.3
can be interpreted in terms of Mssc. Assume that we choose a maximum matching
instead of a maximal matching in every step. In terms of Mssc, this corresponds
to choosing the vertex vM that is contained in a maximum number of edges, or in
other words, choosing the vertex of maximum degree. Hence, the algorithm can also
be interpreted as Greedy algorithm for Mssc and Lemma 5.3 implies that Greedy is
a 2-approximation algorithm for instances of Mssc that arise from Bipartite Flow
Scheduling.

Connection to Data Migration

In the Data Migration problem, we are given a, not necessarily bipartite, transfer
graph G. The vertices model storage devices, and every edge corresponds to a data
transfer between two storage devices. All edges have unit processing time, and we are
given non-negative weights for all vertices of the graph. Each vertex can process only
one data transfer at a time, which implies that we schedule a matching in each time
step. Instead of minimizing the sum of weighted completion time of the edges, we are
interested in minimizing the sum of weighted completion times of the vertices.

Gandhi and Mestre [47] consider the variant of Data Migration, where G is bipartite,
and the objective is to minimize the sum of completion times of the edges. This variant
is precisely Bipartite Flow Scheduling with unit weights and unit processing times.
Before explaining their result, we briefly discuss the limitations of the 2-approximation
given above.
Example 5.6
Consider the following instance of Bipartite Flow Scheduling. Let G = (I ∪ O,E)
with I = {1, 2, 3, 4}, O = {5, 6, 7, 8} and coflows j1 = (1, 5), j2 = (1, 6), j3 = (1, 7), j4 =
(2, 5), j5 = (3, 6), j5 = (4, 7). Figure 5.7 visualizes the instance. An optimal schedule is,
for example, given by scheduling coflows j1, j5 and j6 during the first time step, coflows
j2 and j4 during the second time step and j3 during the third time step (see second
schedule in Figure 5.7). Its value is given by 1 · 3 + 2 · 2 + 3 · 1 = 10. Note that in this
example, picking any maximal matching that contains a coflow incident to vertex 1 in
the first step, leads to an optimal schedule.
Now consider a solution obtained by the 2-approximation algorithm of Lemma 5.3.

Recall, that the algorithm schedules a maximal matching in every step. Unfortunately, it
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G
t = 1 t = 2 t = 3 t = 4

Fig. 5.7: An example to illustrate the limitations of the 2-approximation presented above.
The instance is given by the cumulative graph G together with unit weights and unit
processing times. The upper schedule displays a solution of value 12, obtained by
iteratively scheduling maximal matchings. The schedule below is optimal with value
10.

might choose the maximal matching consisting of coflows j4, j5 and j6 in step one. Since
all the remaining coflows j1, j2, and j3 are adjacent to vertex 1 and, hence, in conflict,
the algorithm needs at least three more steps to schedule them (see upper schedule in
Figure 5.7). This results in a schedule with value 1 · 3 + 2 · 1 + 3 · 1 + 4 · 1 = 12, which
is strictly greater than the optimal value. Note that choosing maximum matchings
instead of maximal matchings in Example 5.6 does not lead to an improved schedule.

One way to improve the performance of the simple algorithm presented in Lemma 5.3
is to guarantee that the degree of all vertices of maximum degree is reduced by one
in every time step. This can be achieved by starting at the back of the schedule and
recursively choosing a matching that covers all vertices of maximum degree in each
time step.

Gandhi and Mestre [47] formalized this idea. A subgraph M of G is a b-matching,
if degM (v) ≤ b for all v ∈ V (G). A decomposition of G into matchingsM1,M2, . . . ,M∆
is called strongly minimal if for all b ∈ [∆] the b-matching

⋃b
i=1Mi is maximal with

respect to G. A schedule is called strongly minimal schedule, if the matchings
scheduled in every time step form a strongly minimal decomposition of the instance.
One may obtain a strongly minimal schedule in the following way. We start at the

back of the schedule at time t = ∆ and schedule a matching that covers all vertices of
degree ∆. The matching is then deleted from the graph and we continue with time
step ∆− 1, where we schedule a matching that covers all vertices of degree ∆− 1. We
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continue until all edges have been scheduled.
It was shown in [47] that any strongly minimal schedule is a

√
2-approximation for

Bipartite Flow Scheduling with unit weights and unit processing times.

Proposition 5.7 (Gandhi and Mestre [47])
The exists a

√
2-approximation for Bipartite Flow Scheduling with unit weights and

unit processing times.

In the following, we explain the weakness of strongly minimal schedules, propose a
new algorithm for Bipartite Flow Scheduling and give some intuition on its performance.
The matchings scheduled in a strongly minimal schedule might be significantly smaller
than a maximum matching. An example, where this is the case, is given in Figure 5.8.
The upper schedule is a strongly minimal schedule and the lower schedule is optimal.
Note that in the first time step, the matching scheduled in the upper schedule is
significantly smaller than the maximum matching scheduled in the optimum solution.
An extension of this example was used in [47] to show that strongly minimal schedules
are at best a 1.375-approximation.

t = 1 t = 2 t = 3 t = 4 t = 5G

Fig. 5.8: Example in which the matchings of a strongly minimal schedule are significantly
smaller than a maximum matching. The second schedule is optimal.

A first approach to solve this issue is the following algorithm that we refer to as
maxGreedy: Start at time t = 1 and schedule in each time step a maximum matching
that covers all vertices of maximum degree. Delete the matching and recurse.
The algorithm maxGreedy prioritizes maximum degree vertices and ensures that

we schedule a large matching in every time step. To explain how we can improve
maxGreedy further, we consider the example displayed in Figure 5.9. The second
schedule is optimal and consists of maximum matchings M∗1 , M∗2 and M∗3 of size
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t = 1 t = 2 t = 3G

Fig. 5.9: The instance is given by the graph G. The first schedule corresponds to a schedule
obtained by greedily choosing maximum matchings that reduce the degree of all
maximum degree vertices. The second schedule is optimal.

|M∗1 | = 3, |M∗2 | = 3 and |M∗3 | = 1. The first schedule corresponds to a solution by
maxGreedy. The displayed maximum matchings M1,M2, and M3 are of size M1 = 3,
M2 = 2 and M3 = 2. In time step t = 1, after covering the vertices of maximum degree,
maxGreedy has the choice between leaving input port 2, 3 or 4 uncovered. If input
port 2 remains uncovered, we obtain in the next time step a graph whose maximum
matching is strictly smaller than in the optimum solution. Overall this leads to a
solution whose objective value is strictly larger than the optimal value.

Note that input port 2 is the one with the largest degree among the input ports 2, 3
and 4. Even though the algorithm prioritizes covering vertices of maximum degree, it
does not prioritize large degree vertices in general. Before proposing a new algorithm
for Bipartite Flow Scheduling that takes the degrees of all vertices into account, we
share another observation.

Intuitively, instead of requiring the algorithm to prioritize vertices of large degree one
could also require it to keep the set of maximum degree vertices as small as possible.
Consider any algorithm that reduces all vertices of maximum degree in every step.
Observe that the set of maximum degree vertices increases throughout the iterations.
The simple reason is that a vertex of maximum degree remains a vertex of maximum
degree throughout the subsequent time steps. The vertices of maximum degree in
Figure 5.9 are highlighted in bold. Observe that the optimal solution keeps the set of
maximum degree vertices as small as possible.

We extend the ideas above by proposing a new algorithm for Bipartite Flow Scheduling
with unit weights and unit processing times that solves both of these issues. We
introduce edge weights w(e) := deg(x) + deg(y)− 2 for all e = (x, y) ∈ E and schedule
a maximum weight matching M of maximum cardinality. M is then deleted from
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the graph and the weights are adapted accordingly. The following lemma shows the
existence of such a matching M .

Lemma 5.8
Given a bipartite multigraph G with edge weights w(e) := deg(x) + deg(y)− 2 for all
e = (x, y) ∈ E, let Mw be a maximum weight matching and let Mc be a maximum
cardinality matching in G. There always exists a matching M in G with |M | = |Mc|
and w(M) = w(Mw).

Proof. Consider the set of maximum weight matchingsMw and choose Mw ∈Mw to
be a matching with the largest cardinality. Similarly, letMc be the set of matchings
of maximum cardinality and choose M ∈Mc to be a matching with maximal weight.
Suppose that w(M) < w(Mw). Consider the symmetric difference H of M and Mw.
H is a subgraph of G whose vertices have degree at most 2. Hence, H consists of paths
and cycles.

Observe that by definition of M , |Mw| < |M |, since otherwise we would have chosen
M to be Mw. This implies, that H must contain an Mw-augmenting path.
Let (v1, v2, v3, . . . , vn) be the vertex sequence of this path and consider the weight

difference between the edges in M and the edges in Mw. Then,

w(M ∩ C)− w(Mw ∩ C) =
n
2∑
i=1

w(v2i−1v2i)−
n
2−1∑
i=1

w(v2iv2i+1)

=
n
2∑
i=1

(
degG(v2i−1)− 1 + degG(v2i)− 1

)
−

n
2−1∑
i=1

(
degG(v2i)− 1 + degG(v2i+1)− 1

)
= degG(v1)− 1 + degG(vn)− 1 ≥ 0,

where n
2 ∈ N, since n is even. This implies that we can augment Mw along the path

without decreasing w(Mw), which contradicts the choice of Mw. 2

We conjecture that greedily scheduling maximum matchings of maximum weight
yields at least a

√
2-approximation.

So far, we only considered Bipartite Flow Scheduling with unit processing times. In
the following, we consider integer processing times.

Connection to Min Sum Multicoloring

Min Sum Multicoloring is the extension of Min Sum Coloring in which every vertex
requires a coloring with multiple colors. More specifically, let G = (V,E) be a graph
together with positive integers k(v) for all v ∈ V . Let cmax(v) be the maximum color
assigned to a vertex v, then the goal is to minimize the sum of maximum colors, that is
min

∑
v∈V cmax(v). This setting is sometimes also referred to as preemptive Min Sum
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Multicoloring (pSMC). In the non-preemptive version of the problem, the set of colors
assigned to a vertex additionally has to be contiguous.

Bipartite Flow Scheduling is a special case of preemptive Min Sum Multicoloring on
line graphs of bipartite multigraphs, where the integers k(v) correspond to processing
times. Bar-Noy et al. [14] showed that a Sorted Greedy algorithm is a 2-approximation
for pSMC on line graphs. It is based on the property of a line graph, that there exists
a partition of the edges into cliques, such that every vertex is contained in at most two
of them.

Proposition 5.9 (Bar-Noy et al. [14])
There exists a 2-approximation for Bipartite Flow Scheduling with non-negative weights
and integer processing times.

Connection to Generalized Open Shop Scheduling

A variant of the Generalized Open Shop problem, considered in [90], is defined as
follows. We are given a set of m machines and n jobs. Every job j consists of operations
oij with processing time pij on machine i, weight wij and release date rij . In every
time step, a machine can schedule at most one operation. Additionally, no pair of
operations of the same job can be scheduled in parallel. Note that this is a significant
difference between Open Shop and Concurrent Open Shop. The completion time C(oij)
of an operation oij is the earliest point in time, when oij has been scheduled for pij
time units. The objective is to minimize the sum of weighted operation completion
times, that is min

∑
wijC(oij).

This is a special case of Bipartite Flow Scheduling. Given an instance of Generalized
Open Shop to minimize the sum of weighted operation completion times, we can
construct an instance of Bipartite Flow Scheduling in the following way. For every
job j ∈ J , we create an input port vj and for every machine m ∈ M we create an
output port vm. For every operation oij we introduce a corresponding edge vjvm
with processing time pij , weight wij and release date rij . The conflicts at the input
ports assure that no two operations of the same jobs are processed simultaneously on
different machines. The conflicts at the output ports make sure that no two operations

j1

j2

j3

j4

m1

m2

m3

m4

Fig. 5.10: Example to illustrate the connection to Open Shop Scheduling.
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5.3 Open Problems

are scheduled on the same machine during the same times slot. The construction is
visualized in Figure 5.10. Note that this variant of Generalized Open Shop is only a
special case of Bipartite Flow Scheduling and that the two problems are not equivalent.
In Bipartite Flow Scheduling, the corresponding bipartite graph may have multi-edges.
This is not captured by the Generalized Open Shop setting, since a job cannot have
multiple operations on the same machine.

5.3 Open Problems

In this chapter, we studied the Bipartite Flow Scheduling problem and explained its
connection to related scheduling and coloring problems. We proposed the following
algorithm for Bipartite Flow Scheduling with unit weights and unit processing times.
Introduce edge weights w(e) := deg(x) + deg(y)− 2 for all e = (x, y) ∈ E and schedule
a maximum weight matching M of maximum cardinality in each time step, delete M
from the graph and adapt the weights accordingly.

Problem 5.10
What is the approximation ratio of the proposed algorithm for Bipartite Flow Scheduling
with unit weights and unit processing times?

Bar-Noy et al. [14] gave a 2-approximation for preemptive Min Sum Multicoloring
on line graphs. It is built on the property that the edge set of a line graph can be
partitioned into cliques, such that every vertex is contained in at most two cliques. In
the context of Bipartite Flow Scheduling, we are not interested in general line graphs
but in line graphs of bipartite multigraphs. If a graph G is the line graph of a bipartite
multigraph, then the clique graph of G is bipartite. This observation might help derive
better approximation algorithms for Bipartite Flow Scheduling with unit weights.

Problem 5.11
What is the best possible approximation ratio for Bipartite Flow Scheduling with
arbitrary processing times?

To the best of the author’s knowledge, the Bipartite Flow Scheduling problem has only
been studied with zero release times. Because of its close connection to Generalized
Open Shop Scheduling, similar techniques might help to obtain good approximation
algorithms.

Problem 5.12
How well can Bipartite Flow Scheduling with arbitrary release dates be approximated?
In particular, is there a 2-approximation for Bipartite Flow Scheduling with release
dates?
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Chapter 5 Bipartite Flow Scheduling

Our primary motivation to study Bipartite Flow Scheduling is its connection to Coflow
Scheduling. An inapproximability result from Concurrent Open Shop implies that it is
NP-hard to approximate Coflow Scheduling within 2− ε. The currently best-known
approximation algorithm for Coflow Scheduling with zero release times is 4. Hence, an
obvious open problem is the following question.

Problem 5.13
Is there a 2-approximation for Coflow Scheduling?

Many known algorithms for Coflow Scheduling are based on two stages. In the first
stage, an ordering of the coflows is obtained. In the second stage, a feasible schedule
respecting the ordering is constructed.

Problem 5.14
Given an optimal ordering of coflows, can one find an optimal schedule in polynomial-
time?
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