
Fakultät für Mathematik
Technische Universität München

Disjoint Paths, Dynamic Equilibria, and
the Design of Networks

Marcus Raphael Kaiser

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr. Silke Rolles

Prüfende der Dissertation: 1. Prof. Dr. Andreas S. Schulz
2. Prof. José R. Correa, Ph.D.

(Universidad de Chile)

Die Dissertation wurde am 20.10.2021 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 02.03.2022 angenommen.

Abstract

We study three network flow models that are governed by the interaction of the flow
on links. Besides two models that exhibit negative effects of congestion, we investigate
a third case that benefits from sharing links. The computational complexity of finding
solutions to the resulting problems is addressed. Moreover, we look into the efficiency of
solutions.
In the first problem that we examine, congestion needs to be avoided completely. The

disjoint shortest paths problem asks for disjoint paths between given pairs of sources
and sinks that are respectively shortest for given lengths. We deal with the case of two
paths in an undirected network. A suitable decomposition allows us to devise a first
polynomial-time algorithm for this setting that can handle zero-length edges in addition
to positive lengths.
In flows over time under the fluid queuing model, the congestion of links is allowed

and leads to the formation of queues. Waiting induces delay on flow traversing a link
additional to a constant given transit time. Assuming selfish agents, we focus on the
computational problem of finding dynamic equilibria in networks with a single source and
a single sink. Our insights into the structure of the associated thin flows with resetting
allow us to devise a first constructive algorithm for right-monotone inflow rate. Further,
we use our findings to provide a polynomial-time algorithm for the computation of thin
flows with resetting in series-parallel networks.
In contrast to both these settings, the collective usage of links is encouraged in the

third discussed model. In a network cost-sharing game, a number of selfish agents selects
paths between their respective sources and sinks. We deal with undirected networks.
The players incur a cost for the usage of an edge that is nonincreasing in the number
of players that are using it. We extend several results for constant edge costs to a large
class of concave cost functions. On the one hand, we obtain extensive hardness results
for the computation of Nash equilibria. On the other hand, we make progress in the
determination of the price of stability, particularly, for the class of broadcast games.

iii

Zusammenfassung

Diese Arbeit behandelt drei Netzwerkflussmodelle, welche sich durch die Interaktion von
Fluss auf den Kanten auszeichnen. Neben zwei Modellen, in denen die Überlastung
von Kanten zu negativen Effekten führt, wird ein drittes Szenario betrachtet, in dem
es sich lohnt Kanten gemeinsam zu nutzen. Alle drei werden hinsichtlich der Komplex-
ität untersucht, eine Lösung algorithmisch zu berechnen. Darüberhinaus wird auf den
Wirkungsgrad der Lösungen eingegangen.
Die erste untersuchte Problemstellung schließt eine Überlastung von Kanten von Grund

auf aus. Beim Problem der disjunkten kürzesten Wege gilt es, disjunkte Wege zwischen
gegebenen Paaren von Quellen und Senken zu finden, welche bezüglich der gegebenen
Kantenlängen jeweils kürzeste Wege sind. Im Mittelpunkt dieser Arbeit stehen zwei
disjunkte Wege in einem ungerichteten Netzwerk. Eine geeignete Zerlegung ermöglicht
deren Berechnung in polynomieller Zeit, wobei neben positiven Längen auch Kanten der
Länge Null erlaubt sind.
Das Fluid Queuing Model lässt die Überlastung von Kanten durch dynamischen Fluss

zu. Überschüssiger Fluss sammelt sich in Warteschlangen. Das Warten in diesen führt zur
Verzögerung des Flusses beim Überqueren von Kanten, welche die gegebenen konstan-
ten Durchflusszeiten erhöhen. Unter der Annahme, dass jeder Flusspartikel egoistisch
handelt, wird im Speziellen die algorithmische Berechnung eines dynamischen Equilibir-
iums in einem Netzwerk mit nur einer Quelle und einer Senke betrachtet. Erkenntnisse
zur Struktur der zu Grunde liegenden Thin Flows with Resetting erzielen einen ersten
Algorithmus für eine rechtsmonotone Einflussrate. Gleichzeitig führen sie zu einem poly-
nomiellen Algorithmus zur Berechnung von Thin Flows with Resetting in serienparallelen
Netzwerken.
Im Gegensatz zu den beiden ersten, bietet im dritten Modell die gemeinsame Nutzung

von Kanten einen Vorteil. In einem Network Cost-Sharing Game wählt jeder Spieler einen
Weg, um seine Quelle mit seiner Senke zu verbinden. Für die Verwendung einer Kante
fallen dabei Kosten für jeden Spieler an, welche monoton in der Anzahl der sie verwen-
denden Spieler fällt. Zahlreiche Ergebnisse für konstante Kantenkosten werden auf eine
ganze Klasse von konkaven Kostenfunktionen erweitert. Einerseits werden weitreichende
Resultate zur Schwere der Berechnung von Nash Equilibrien vorgestellt. Andererseits
wird die Bestimmung des Price of Stability vor allem für die Klasse der Broadcast Games
vorangetrieben.

v

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Basic Notation and Terminology . 5

2.2 Graphs . 7

2.3 Network Flows . 11

2.4 Game Theory . 12

2.5 Computational Problems and Complexity Theory 15

2.6 Linear Programming . 18

2.7 Linear Complementarity Problems . 21

3 Two Disjoint Shortest Paths 23

3.1 Introduction . 24
3.1.1 Related Literature . 24
3.1.2 Our Contribution . 27

3.2 A Decomposition of Disjoint Paths . 27

3.3 Disjoint Paths in Weakly Acyclic Mixed Graphs 30

3.4 Undirected Disjoint Shortest Paths . 32
3.4.1 Orienting Shortest Paths . 32
3.4.2 Disjoint Paths in the Partial Orientation . 35

3.5 Closing Remarks . 38

4 Dynamic Equilibria under the Fluid Queuing Network 39

4.1 Introduction . 40
4.1.1 Related Literature . 40
4.1.2 Our Contribution . 43

4.2 The Fluid Queuing Model and Dynamic Equilibria 43

4.3 Normalized Thin Flows with Resetting . 48
4.3.1 A Linear Complementarity Problem . 49
4.3.2 Parametric Normalized Thin Flows with Resetting 57

vii

Contents

4.4 Evolution of Dynamic Equilibria . 60
4.4.1 A Differential Equation . 60
4.4.2 Dynamic Equilibria for Right-Monotone Inflow 64

4.5 Thin Flows with Resetting in Series-Parallel Graphs 70

4.6 Closing Remarks . 74

5 Nash Equilibria in Network Cost-Sharing Games 75

5.1 Introduction . 76
5.1.1 Related Literature . 79
5.1.2 Our Contribution . 83

5.2 Structure of Nash equilibria . 84

5.3 Computational Complexity of Nash Equilibria 89
5.3.1 Formulations . 89
5.3.2 Intractability Results . 94
5.3.2.1 PLS-Hardness of Computing Nash Equilibria 95
5.3.2.2 NP-Hardness of Computing a Minimum-Cost Nash Equilibrium 100
5.3.2.3 NP-Hardness of Computing a Global Potential Minimizer 101
5.3.2.4 Slowly Improving Dynamics . 103

5.4 Efficiency of Nash Equilibria . 105
5.4.1 The Price of Anarchy . 105
5.4.2 Upper Bounds on the Price of Stability . 107
5.4.2.1 The Potential Function Method . 107
5.4.2.2 The Homogenization-Absorption Framework 112
5.4.3 Lower Bounds on the Price of Stability . 131
5.4.3.1 The Fan Graph . 132
5.4.3.2 A Lower Bound for Constant Total Edge Cost 141
5.4.3.3 A Lower Bound for Affine Total Edge Cost 146
5.4.3.4 A Lower Bound for Polynomial Total Edge Cost 150

5.5 Closing Remarks . 151

Notation 155

Index 159

Bibliography 163

viii

Chapter 1

Introduction

Network flows are ubiquitous. Be it traffic that is routed through a road or rail network,
data which is transmitted via a communication network, or current that runs through an
electrical network. All these applications have a common abstraction: one or more com-
modities flow through a network of nodes interconnected by links. Different assumptions
on the network and the commodities are required in different applications. Cumulatively,
they try to capture the fundamental behavior of the examined system. In this thesis, we
examine three models which are determined to a large extent by the interaction between
flows in a single network. The common usage of a link by multiple commodities leads
to congestion which can result in various effects. A typical negative effect that comes to
mind is delay, for example, caused by traffic jams. In this scenario, it is evident that a
suitable widespread distribution of the flow over the whole network has the potential of
reducing the congestion and, therefore, benefiting the whole system. In other settings,
the negative effect might be even more severe to the point where congestion results in
disaster. In an application, such a devastating interaction is represented, for example, by
collision in the routing of automated machines. In this case, the primary goal is to send
flow along disjoint routes. On the other hand, the collective usage of a link does not
always imply impairment. Positive effects arise, for example, in the context of network
design. If the construction of links exhibits economies of scale, multiple parties benefit
from sharing the cost of commonly created infrastructure. Here, it is advantageous to
route flow on overlapping routes.
The balance between a model’s level of detail and its resulting complexity is necessary

to keep it meaningful and its analysis tractable at the same time. We discuss basic
assumptions and typical simplifications which are relevant in the scope of this thesis.
The maybe most basic property of a network is its directionality. An undirected link
represents a symmetric relation between its endpoints. Flow can traverse it in both
directions. Directed links on the other hand can only be traversed in a single direction.
An example are one-way roads. Typically, directed networks exhibit a higher complexity
than undirected ones. Finding a path through a city center with narrow one-way streets is
often more challenging than routing without having to worry about the allowed directions.
Another fundamental characteristic of networks is the capacity of its links. Physical

networks often possess a natural limit to the amount of flow that a single link can
carry. Virtual commodities, like currencies, on the other hand are not subject to such a
restriction. If the links are uncapacitated, every flow particle with the same origin and

1

Chapter 1 Introduction

destination can take the same route through the network. By imposing capacities on a
flow, a potentially much larger number of different routes is necessary.
While most physical commodities have an atomic size they can be split into, indi-

visibility is more crucial in some models than in others. Requiring the quantities to be
integral generally can increase the intricacy of mathematical models immensely. Hence,
the simplifying assumption of being nonatomic, that is, arbitrarily divisible is made
if possible. This is more easily accepted when it comes to divisible goods like fluids,
data, or currencies. For indivisible goods, for instance cars, this assumption can still
be justified on a macroscopic level. Then an individual unit of flow only contributes a
negligible amount. On a microscopic level with only a small amount of atomic units of
flow, however, the requirement of integral quantities often is indispensable.
The complexity of network flows also highly depends on the number of commodities

that share a single network. Here, multiple commodities are not necessarily of a
different sort, but typically differ in the location of their sources and sinks in the network.
The number of commodities in the model not necessarily has to match the number in
its application. Multiple commodities that share a common source or sink, for example,
can typically captured by a single commodity of flow in the model.
Another major feature of flow models, we want to highlight, is whether they include

the dimension of time or not. In static flow models, capacity for a flow particle is
reserved simultaneously on every link on its route. This model is suitable if timing does
not play a role or the supply and demand structure stays constant over a long period of
time. If this is not the case, however, dynamic flows or flows over time likely give
a more appropriate model. Therein, flow spreads at a finite speed through the network.
Further, they allow to capture temporal fluctuations in the supplies and demands.
For flow over time, additional choices in the model can be made. A central one is the

possibility of flow to pause along its route. Depending on the application, there might
be capacity for flow to collect at junctions or on links. In traffic models for instance, one
could assume that flow clears junctions immediately. On links, however, there might be
space for queues.
Maybe the most critical part of a model in terms of capturing the behavior and poten-

tial of a system is the objective. The most categorical question one can ask is whether
a certain situation or structure can occur. This could be the existence of a flow with a
given throughput. Such solutions demonstrate feasibility but often lack practicality. In
an endeavor for efficiency, one is often interested in a solution that is particularly good.
Quantifying a measure of quality by a single objective function allows to search for a
best solution. This goal is pursued by the field of optimization. The implementation of
such an optimal solution in practice, however, is not always realizable. In particular, it
requires a central authority that can enforce all necessary decisions. Some scenarios, as
for example individual transport, do not allow such an intervention. Here, the angle that
game theory takes is more applicable. Under the assumption that the involved parties
act selfishly, it asks for stable configurations called equilibria. Those are examined in
terms of efficiency and the impact of centrally controllable parameters, like the charging
of tolls.

2

This thesis covers three computational problems from different domains. Each high-
lights different properties of network flows and requires different solution techniques.
The disjoint shortest paths problem deals with completely avoiding congestion. It

asks for the existence of disjoint paths in a network between given pairs of nodes which
are respective shortest paths. Here, the length of a path is the sum of the given lengths
of its links. The quality of a solution is ensured by the requirement of the paths being
as short as they could be if no other commodities were present. We specifically treat
two paths in an undirected network. In terms of network flows, we obtain two indivisible
commodities. Every link provides the capacity for a single unit of flow only. We devise
a first polynomial-time algorithm that is capable of deciding on the existence of two
disjoint shortest paths under the presence of zero-length edges.
In flows over time under the fluid queuing model, a nonatomic flow of selfish particles

travels through a directed network. The transit of a link takes flow a given constant
amount of time. If the given capacity of a link is exceeded, a queue is formed at its
entrance. Waiting in a queue adds additional delay for flow to traverse a link. Hence,
congestion affects the system disadvantageously. We examine the case of flow traveling
from a common source to a common sink, which makes a single commodity sufficient to
describe all particles. We focus on the computational problem of equilibria in this model.
Structural insights for a special type of static flows allows us to handle a large class of
inflow rates. This provides the theoretic foundation for time-dependent supplies in this
model.
Finally, we examine a model that exhibits positive impact of the common usage of

links. In a network cost-sharing game a number of players connects their respective
source and sink by a path in a network. The cost a player incurs for the usage of a link
is nonincreasing in the number of users. We analyze these games in undirected networks.
In the language of flows, every player constitutes a commodity a single indivisible unit
of which needs to be routed through the network. We extend hardness results on the
computation of equilibria. Moreover, we compare the quality of equilibria with optimal
solutions which could be achieved by a centralized routing decision.

3

Chapter 2

Preliminaries

This chapter provides an overview of the notation and the terminology that is used
throughout this thesis. Further, fundamental results that our findings build upon are
stated. A listing of notation and an index of terminology can be found in the back
matter.

2.1 Basic Notation and Terminology

Numbers. We denote the set of natural numbers (including zero) by N. For the first
n ∈ N positive natural numbers, we write [n] := {1, . . . , n}. To the set of real numbers,
we refer as R. The negative, nonpositive, nonnegative, and positive reals are denoted
by R<0,R≤0,R≥0,R>0. The positive and negative parts of a real number x ∈ R are
defined as [x]+ := max{x, 0} and [x]− := max{−x, 0}, respectively. The n-th harmonic
number is denoted by H(n) :=

∑
k∈[n] 1/k.

Sets. We write |X| for the size or cardinality of a finite set X. The family of all
subsets of X with a given size k ∈ N is given by

(
X
k

)
:= {Y ⊆ X | |Y | = k}. The power

set of a finite set X is given by 2X := {Y | Y ⊆ X}. To emphasize that the union of
two sets X and Y is disjoint, we write X ·∪ Y . The symmetric difference of two sets
X and Y is defined as X 4 Y := (X \ Y) ∪ (Y \X).

Relations. A binary relation R on a ground set U is a subset of U×U . For (u, v) ∈ R,
we write u R v. The composition S ◦R of two binary relations S,R on U is defined as{

(u,w) ∈ U × U
∣∣ ∃v ∈ U : u R v ∧ v S w

}
.

Note that ◦ is an associative operator; that is, (Q ◦ R) ◦ S = Q ◦ (R ◦ S) holds for all
binary relations Q, R, and S on U .

Vectors and matrices. We use 1 for the all-one vector of appropriate dimension. For
a set of indices I, the vector 1I denotes the characteristic vector of the set I of
appropriate dimension. For an index i, we write the unit vector of component i as
1i. We us Id for the identity matrix of appropriate dimension. The transposed of a
matrix M ∈ Rm×n is denoted as M> ∈ Rn×m. The submatrix determined by the rows
I ⊆ [m] and the columns J ⊆ [n] is written as MI,J . If I = [m] or J = [n], we write

5

Chapter 2 Preliminaries

M•,J and MI,•, respectively. Similarly, the subvector of a vector x ∈ Rn restricted to
the components I ⊆ [n] is denoted by xI . We write the uniform norm of a vector x as
‖x‖∞. Also, we use the short hand x(I) :=

∑
i∈I xi for the sum of the components I of

a vector x.

Functions. A function f : R → R is locally Lebesgue-integrable if its Lebesgue-
integral over any compact set of R is finite. We denote the set of all locally Lebesgue-
integrable functions on R by L1

loc(R). As usual we turn to the equivalence classes of
functions that are equal almost everywhere (a.e.). The essential infimum and essential
supremum of f ∈ L1

loc(R) are defined as

ess inf(f) := sup{x ∈ R | f ≥ x a.e.} and ess sup(f) := inf{x ∈ R | f ≤ x a.e.}.

Mediant. Let k ∈ N numerators and denominators be given by xi ∈ R≥0, i ∈ [k] and
yi ∈ R>0, i ∈ [k], respectively. The mediant of the fractions xi/yi, i ∈ [k] is defined by∑

i∈[k] xi∑
i∈[k] yi

.

It fulfills the mediant inequality

min
i∈[k]

xi
yi
≤
∑

i∈[k] xi∑
i∈[k] yi

≤ max
i∈[k]

xi
yi
.

The bounds hold with equality if and only if the values of the fractions xi/yi are all the
same.

Weighted harmonic mean. The weighted harmonic mean of k ∈ N nonnegative
real numbers xi ∈ R≥0, i ∈ [k] with respect to nonnegative weights wi ∈ R≥0 is defined
by ∑

i∈[k]wi∑
i∈[k]

wi
xi

.

If there is an xi which is zero, the weighted harmonic mean is set to zero. In the case,
that the total weight

∑
i∈[k]wi is zero, it is not defined. Similarly to the mediant, the

weighted harmonic mean satisfies

min
i∈[k]

xi ≤
∑

i∈[k]wi∑
i∈[k]

wi
xi

≤ max
i∈[k]

xi.

Further, it has the following monotonicities. The weighted harmonic mean of x1 and x2

with respect to nonnegative weights w1, w2 is nondecreasing in x1 and x2 (strictly if the
respective weight is positive). If x1 ≤ x2, it is nonincreasing in w1 and nondecreasing in
w2 (strictly if x1 < x2 and respectively w2 > 0 or w1 > 0). Note that these monotonicities

6

2.2 Graphs

extend to more than two elements, because the harmonic mean is associative in the sense
that, for ∅ 6= I ([k], we have∑

i∈[k]wi∑
i∈[k]

wi
xi

=

∑
i∈I wi +

∑
i∈[k]\I wi∑

i∈I wi

(∑
i∈I wi∑
i∈I

wi
xi

)−1

+
∑

i∈[k]\I wi

(∑
i∈[k]\I wi∑
i∈[k]\I

wi
xi

)−1 .

This means that the weighted harmonic mean of k elements can be viewed as the weighted
harmonic mean of the weighted harmonic means in any partition.

2.2 Graphs

Many problems in operations research and related fields involve some kind of network, be
it traffic networks, broadcast networks, social networks, or others. Networks are usually
modeled using graphs. Entities in the network, like routing points or junctions, are
represented by vertices. Pairwise relations between them, like connections or links, are
modeled via arcs or edges. Arcs are used if the relation exhibits directionality, like
links which can only be used in one way. Edges on the other hand represent symmetric
relations. Due to this fundamental difference of arcs and edges, graphs are usually
categorized by their directionality into undirected, directed, and mixed graphs.

Undirected graphs. An undirected graph is given by a tuple G = (V,E) where V is a
finite set of vertices and E ⊆

(
V
2

)
is a set of edges. We also write V (G) and E(G) for the

vertices and edges of the graph G, respectively (if these sets are not explicitly named).
The set of vertices which share an edge with a vertex v ∈ V are called its neighbors
and denoted by

NE(v) :=
{
w ∈ V

∣∣ {v, w} ∈ E}.
For a subset of vertices ∅ 6= U (V , the set

δE(U) :=
{
e ∈ E

∣∣ |e ∩ U | = 1
}

denotes the set of edges in E that have exactly one of their vertices in U . In this context,
the term cut is used to refer to U and sometimes also to δE(U). If U contains only a
single vertex u, we write δE(u) instead of δE

(
{u}
)
to denote the set of edges in E that

are incident to u.
For two vertices v, w ∈ V , a v-w path in G is a subset P ⊆ E of edges along a sequence
of vertices v = v0, v1, . . . , vl = w, that is,

P =
{
{vi−1, vi} ∈ E

∣∣ i ∈ [l]
}
.

A path is called simple if the vertices v0, . . . , vl are pairwise different. In the case v = w,
a v-w path is called cycle. A cycle is still called simple if the vertices v1, . . . , vl = v0 are
pairwise different. If there exists a v-w path, we also say that v and w are connected.
The connected components of G are given by the partition of its vertices into subsets

7

Chapter 2 Preliminaries

such that two vertices are in the same subset if and only if they are connected in G. If
there is only one connected component, the graph G is called connected.

Directed graphs. A directed graph is a tuple G = (V,A) where V again is a finite
set of vertices and A ⊆ V × V is a set of arcs. The sets of vertices and arcs of G are
also referred to as V (G) and A(G), respectively. We distinguish the related vertices
of a vertex v by the direction of the corresponding arcs. The neighbors NA(v) of v
are partitioned into the sets of in-neighbors and out-neighbors which are denoted
respectively by

N−A (v) :=
{
u ∈ V

∣∣ (u, v) ∈ A
}

and N+
A (v) :=

{
w ∈ V

∣∣ (v, w) ∈ A
}
.

Similarly, the set of arcs in a cut ∅ 6= U (V is partitioned into the sets of incoming
and outgoing arcs, respectively denoted by

δ−A(U) := {(v, w) ∈ A | v 6∈ U,w ∈ U} and δ+
A(v) := {(v, w) ∈ A | v ∈ U,w 6∈ U}.

Their union is denoted by δA(U). Again, we use the shorthand δ−A(u), δ+
A(u), and δA(u)

if U consists of a single vertex u.
For two vertices v, w ∈ V , a (directed) v-w path in G is a subset P ⊆ A of arcs that
follows a sequence of vertices v = v0, v1, . . . , vl = w, that is,

P =
{

(vi−1, vi) ∈ A
∣∣ i ∈ [l]

}
.

If there exists a directed v-w path, we also say that w can be reached from v. The
notions of (directed) cycles as well as simple paths and cycles are defined analogously
to the undirected case. The weakly connected components of G are the connected
components of the undirected graph resulting from dropping the direction of all arcs. In
contrast to that, the strongly connected components of G are the partition of its
vertices into subsets such that two vertices are in the same subset if and only if they can
reach each other. If a graph G has only one weakly or strongly connected component it
is called weakly or strongly connected, respectively.

Mixed graphs. A mixed graph is a tuple G = (V,Æ) where V is the set of vertices
and Æ = A ·∪ E is the union of arcs A and edges E. For technical reasons, we assume
that never both {v, w} ∈ E and (v, w) ∈ A are present for any v, w ∈ V . We use the
notations for undirected and directed graphs in order to express the neighborhoods and
the incidence with respect to E and A. All neighbors of a vertex v ∈ V are denoted by
NÆ(v) := NE(v) ∪NA(v). Similarly, the set of its incident arcs and edges is denoted by
δÆ(v) := δE(v) ∪ δA(v). A v-w path P ⊆ Æ in G for vertices v, w ∈ V is determined
by vertices v0, . . . , vl such that either {vi−1, vi} ∈ E or (vi−1, vi) ∈ A holds for all i ∈ [l].
P then is the set of all such arcs and edges. The concepts of simplicity and cycles
generalize naturally. Also weakly and strongly connected components can be defined for
mixed graphs based on this definition of paths.

8

2.2 Graphs

Relations and operations. The following notions apply to graphs G = (V,Æ) of any
type. Two paths are vertex-disjoint or arc/edge-disjoint if their sets of vertices, or
their sets of arcs and edges are disjoint, respectively. A v-w path is internally vertex-
disjoint to a set of vertices U ⊆ V if its vertex set intersects U only in v or w. The
subgraph of G induced by a subset of vertices U ⊆ V is the graph G[U] that results
from G by deleting all vertices V \ U and the incident arcs and edges thereof. The
contraction G/U of a set of vertices U , in some sense, is a complementary operation to
that. We define G/U as the graph that results from G by joining all vertices in U into
a single new vertex, which inherits all neighbors of vertices in U . Arcs and edges within
U are removed by the contraction. For pairwise disjoint vertex sets U1, . . . , Uk ⊆ V , we
denote by G/{U1, . . . , Uk} the graph that results from G by contracting U1, . . . , Uk into
k vertices. Note that the resulting graph is independent of the order of the contraction
of U1, . . . , Uk.

Algebraic representation. We use the following two algebraic representations of a di-
rected graph G = (V,A). Similar concepts exist for undirected graphs as well. The
incidence matrix B ∈ {−1, 0, 1}V×A of G is defined by

Bv,a =

−1 if a ∈ δ+

A(v)

1 if a ∈ δ−A(v)

0 otherwise
for all v ∈ V, a ∈ A.

Its positive and negative parts are denoted by B+ and B−, respectively. In particular,
B = B+−B−. Note that the graph G is completely determined by its incidence matrix.
For arc weights ν ∈ RA, the weighted Laplacian matrix L ∈ RV×V of G is defined

by its entries

Lv,w =

ν
(
δ−(v)

)
if v = w

−νv,w if (v, w) ∈ A
0 otherwise

for all v, w ∈ V.

The graph G and the weights ν can be fully recovered from the weighted Laplacian L.
For our purposes, the weights ν are chosen to be the capacities of the arcs.
The following relation between the incidence matrix and the weighted Laplacian matrix

is straightforward to check. It holds

L = BD
(
B+
)>

where D = diag(ν) is the square matrix with diagonal ν and zero off-diagonal entries.

Trees. Let G = (V,E) be an undirected graph. A set T ⊆ E is called a tree if it is
connected and does not contain any cycles. A tree T is spanning G if V (T) = V . For
v, w ∈ V (T), we denote the unique v-w path in T by T [v, w].

9

Chapter 2 Preliminaries

A rooted tree is a tuple (T, r) such that T is a tree and r ∈ V (T). If r is clear from
the context, we identify T with (T, r). The depth of a vertex v ∈ V in T then is |T [v, r]|.
The height of T is the maximal depth of any vertex. With a vertex v ∈ V \ {r}, in a
rooted tree (T, r) we associate the edge eT (v) ∈ δ(v)∩ T [r, v] being the first edge on the
path from v to r. Note that eT (v) is uniquely determined by T , r, and v.
The set of ancestors AT (v) of a vertex v in T is the set of vertices appearing on the

path T [r, v] (including v). Similarly, the set of descendants DT (v) of a vertex v in T is
the set of vertices u that v is an ancestor of, that is,

DT (v) =
{
u ∈ V

∣∣ v ∈ V (T [u, r]
)}
.

For v, w ∈ V , the lowest common ancestor lcaT (v, w) in T is defined as the unique
vertex which is an ancestor of v and w, and has the largest depth |T [r, lcaT (v, w)]|. For
a vertex v, the subtree of T rooted at v is the induced tree T [DT (v)].
We extend the notions of ancestors and descendants to sets of verticesW ⊆ V . Denote

by DT (W) :=
⋃
w∈W DT (w) the union of the descendants of any vertex in W . For such a

descendant u ∈ DT (W), the lowest ancestor aWT (u) of u in W is the vertex of maximal
depth in W ∩ AT (u). In order to express the inverse relation of aWT , define for w ∈ W
the set of direct descendants of w with respect to W as

DW
T (w) :=

{
u ∈ DT (w)

∣∣ w = aWT (u)
}
.

Note that
⋃· w∈W DW

T (w) is a partition of the descendants DT (W) with respect to their
lowest ancestor.
There is a corresponding concept to a rooted tree in directed graphs. For a root vertex

r and a subset of vertices U ⊆ V , an arborescence is a set of arcs that contains exactly
one directed r-v path for every v ∈ U . Thus, it is a tree with every edge oriented away
from the root.

Graph classes. With trees we already have introduced a first class of graphs. We
highlight three further classes which are relevant in the context of this thesis. For more
details and further graph classes, we refer the reader to the textbook of Brandstädt, Le,
and Spinrad (1999).
The class of directed acyclic graphs—as the name suggests—is given by directed

graphs which do not contain any cycle. They induce natural orderings on their vertices.
A total ordering of the vertices is called a topological ordering with respect to a
directed acyclic graph if v precedes w in the ordering for every arc (v, w).
Another well-known class of graphs are planar graphs. Those are graphs which can

be drawn in the plane by representing its vertices and arcs or edges by points and arrows
or lines, respectively, such that no pair of arrows/lines overlap. They appear naturally
in applications that are limited to surfaces and do not allow the crossing of links.
The third relevant class for our purposes is given by series-parallel directed graphs.

A directed graph is two-terminal if it has a unique source s and a sink vertex t; that
is, s and t are the unique vertices without any incoming and outgoing arcs, respectively.

10

2.3 Network Flows

The series composition of two two-terminal graphs G1 and G2 is obtained by taking
their disjoint union and contracting the two sources and also the two sinks. We denote
it by G1 ∗G2. The parallel composition of two two-terminal graphs G1 and G2 results
from contracting the sink of G1 and the source of G2 in the disjoint union of the graphs.
We write G1 ‖ G2 for it. The class of series-parallel directed graphs then is the smallest
set of graphs which contains the graph(s) with two vertices and a single arc in between,
and which is closed under series and parallel composition. From this recursive definition,
it follows inductively that series-parallel directed graphs are acyclic and planar.

2.3 Network Flows

Typically networks are used for the conveyance of some sort of commodity. This can be
for example vehicles in traffic networks or data in the case of communication networks. A
flow describes the routing of a commodity through a network represented by a directed
graph G = (V,A). Formally, a flow is defined as a nonnegative vector x ∈ RA≥0. The
excess of x at a vertex v ∈ V is given by the difference of incoming and outgoing flow

x
(
δ−A(v)

)
− x
(
δ+
A(v)

)
.

The flow x fulfills weak flow conservation at a vertex v ∈ V if the excess at v is
nonnegative. If it is zero, we say that x fulfills strict flow conservation. Typically, the
arcs in a network have assigned capacities ν ∈ RA≥0 that limit the amount of flow they
can carry. Then the flow x satisfies the capacity constraints if xa ≤ νa holds for all
arcs a ∈ A.
In the most basic case of singlecommodity flow, we consider flow that emerges from

a source s ∈ V and needs to be routed to a sink t ∈ V . We generally assume that s 6= t.
An s-t flow is a flow x that fulfills the capacity constraints and strict flow conservation
at every nonterminal vertex V \ {s, t}. Its value |x| is defined as the excess at the sink.
In a more general setting, a vector d ∈ RV defines the demands (xv > 0) and supplies
(xv < 0) of a single commodity at the vertices in G. Then, the excess at a vertex v is
defined as

x
(
δ−A(v)

)
− x
(
δ+
A(v)

)
− dv,

and flow conservation is imposed on all vertices.

Path flows. Flows can also be defined in a more global manner. Let Pst be the set of
all simple s-t paths in G and C be the set of all simple cycles in G. Then an s-t path
flow is a nonnegative vector x ∈ RPst∪C≥0 . Every such path flow x induces an (arc) flow
in the sense of the preceding definition via the transformation

xa =
∑

P∈Pst :
a∈P

xP +
∑
C∈C :
a∈C

xC for all a ∈ A.

11

Chapter 2 Preliminaries

It can be seen that the induced arc flow (xa)a∈A satisfies strict flow conservation at every
nonterminal vertex V \ {s, t}. Its value is equal to

∑
P∈Pst xP . There is also a mapping

in the opposite direction. Every s-t flow defined on the arcs of G satisfying strict flow
conservation can be decomposed into a path flow. This decomposition, however, is not
unique.

Multicommodity flows. The preceding describes the routing of a single commodity
through a network. This can be generalized by simultaneously routing k commodities
with individual source si and sink ti for every i ∈ [k] through a common network. A
multicommodity flow is given by an si-ti flow x(i) for every i ∈ [k]. The capacity
of each arc in the network is shared by all commodities. Thus, a multicommodity flow
fulfills the capacity constraints if

∑
i∈[k] x

(i)
a ≤ νa holds for all arcs a ∈ A.

Flows over time. The definition of flow does not account for temporal aspects of con-
veyance. To emphasize this, we also speak of static flow. In contrast to that, a flow
over time describes a commodity which travels through a network at a finite speed.
The time it takes flow to traverse the arcs is specified by transit times τ ∈ RA≥0. For-
mally, a flow over time is defined as a function f : R → RA which maps a point in time
ϑ ∈ R to a flow value fa(ϑ) on every arc a ∈ A. Every component fa is required to be
locally Lebesgue-integrable. Usually, we assume that the network is initially empty and
f vanishes on R<0. The excess of the flow over time f at time ϑ ∈ R in a vertex v ∈ V
is given by ∑

a∈δ−A (v)

∫ ϑ

0
fa(θ − τa) dθ −

∑
a∈δ+

A(v)

∫ ϑ

0
fa(θ) dθ.

f fulfills weak or strict flow conservation at a time ϑ in a vertex v if the excess at ϑ
and v is nonnegative or zero, respectively. In a capacitated network, we say that f fulfills
the capacity constraints if f(ϑ) ≤ ν holds for all ϑ ∈ R (component-wise). The time
horizon of a flow over time f is determined by the last point in time of nonzero flow,
that is, the essential supremum of its support ess sup{ϑ ∈ R | f(ϑ) 6= 0}. For a source
s ∈ V and sink t ∈ V , an s-t flow over time is a flow over time f which fulfills the
capacity constraints and obeys strict flow conservation at every time ϑ ∈ R and every
nonterminal vertex v ∈ V \ {s, t}.

For more details on network flows, see the textbook of Ahuja, Magnanti, and Orlin
(1993). An introductory article on flows over time is available by Skutella (2009).

2.4 Game Theory

In many real-world systems, there is no central authority that controls all decisions.
In game theory, systems with multiple competing decision makers are examined. Each
present decision maker is called player or agent. Players are generally assumed to act
selfishly; that is, they want to optimize their individual objective function. Depending

12

2.4 Game Theory

on the application, this is phrased as the maximization of utility or the minimization
of cost. Each player is restricted to play one of their available strategies. Their cost
depends on the strategies chosen by all players.

Formally, such a system can be modeled as a normal form game. There are n ∈ N
players. For each player i ∈ [n], there is a finite set Σi of available strategies. A tuple
consisting of a strategy of each player is called strategy profile. We denote the set
of strategy profiles by Σ =×i∈[n] Σi. Every player i ∈ [n] has a player cost function
Ci : Σ → R. The goal of every player is to minimize her cost Ci(σ) in a strategy profile
σ ∈ Σ. However, she can only influence her choice of σi and not the strategies of the other
players. A unilateral deviation of a player i ∈ [n] in a strategy profile σ to a strategy
σ′i ∈ Σi is denoted by (σ−i, σ

′
i). It is called improving if Ci(σ−i, σ′i) < Ci(σ). The

strategy σ′i is a best response of player i to σ−i if it minimizes the cost Ci(σ−i, σ′i). A
strategy is called dominant if it is a best response to all strategy profiles. The prevailing
solution concept for such games in the literature is introduced by Nash (1950). A strategy
profile is considered stable if every player’s strategy is a best response. Then no player
can improve her cost by unilaterally deviating. More formally, a strategy profile σ ∈ Σ
is a (pure) Nash equilibrium if it holds

Ci(σ) ≤ Ci(σ−i, σ′i) for all i ∈ [n], σ′i ∈ Σi.

Central questions in game theory are the existence of Nash equilibria, their efficiency,
and their computational complexity. The efficiency of an equilibrium is measured by the
comparison to a social optimum in terms of the social cost. Here, the social cost of a
strategy profile is defined as

∑
i∈[n]Ci(σ). A social optimum is a minimizer of the social

cost. A standard approach to compute Nash equilibria is the improving dynamics.
Starting with an arbitrary strategy profile, a sequence of improving unilateral deviations
is performed. If this process stops, a Nash equilibrium is obtained. In general, however,
it is not clear that it terminates.

An example. A famous example for a two player game is the prisoner’s dilemma,
which is attributed to Flood, Dresher, and Tucker (1950), e.g., by Kollock (1998). Two
criminals are arrested and interrogated separately. If they keep silence, they can be
convicted only on a lesser charge and go to prison for one year each. If both testify, they
serve two years in prison each. If one criminal testifies and the other does not, they are
set free and the other serves three years. The game is depicted in Table 2.1. The social
optimum is for both to keep silence. Then they serve a total of two years. This strategy
profile, however, is not a Nash equilibrium. Both individually can reduce their sentence
by defecting and testifying. In fact, confessing is a dominant strategy. Thus, the only
(pure) Nash equilibrium is the strategy profile in which both confess. Its social cost is
a total of four years prison. Therefore, the total time in prison doubles if both crimials
testify due to the lack of coordination.

13

Chapter 2 Preliminaries

B B
keeps silence confesses

A 1 0
keeps silence 1 3

A 3 2
confesses 0 2

Table 2.1: The prisoner’s dilemma. The rows and columns correspond to the strategies of A

and B, respectively. The player costs of A and B are colored yellow and violet, respectively.

The efficiency of equilibria. The price of anarchy measures the worst-case increase
in social cost by the lack of coordination between the players. For an instance of a game,
it is defined as the ratio between the maximal social cost of a Nash equilibrium and the
social cost of a social optimum. The price of anarchy of a game then is the largest such
ratio achieved by any of its instances. This concept is put forward by Koutsoupias and
C. Papadimitriou (1999, 2009) under the original name coordination ratio. The widely
used term price of anarchy is established by C. H. Papadimitriou (2001).
In some cases, the price of anarchy is too pessimistic as it assumes no central authority

at all. A more optimistic view is represented by the price of stability. It assumes a
central authority that can suggest a strategy profile which, however, needs to be accepted
by all players. Formally, the price of stability is defined as the ratio between the minimal
social cost of a Nash equilibrium and the social cost of a social optimum. This notion
is introduced by Schulz and Stier-Moses (2003) and termed by Anshelevich, Dasgupta,
Kleinberg, Tardos, Wexler, and Roughgarden (2004, 2008).

Routing games. In routing games, a number of players control the routing of flow
through a network. There are two fundamentally different settings. In atomic routing
games, the flow controlled by the players cannot be split arbitrarily, but only down to
some integral unit. In nonatomic routing games on the other hand, every infinitesimally
small flow particle is considered a player. Hence, in the latter there is a continuum of
players. A widely studied solution concept in this setting are user equilibria based
on Wardrop’s first principle (1952). These are network flows in which flow only travels
along shortest paths from its source to its sink. We defer a more formal definition to
Chapter 4, where we deal with an extended notion.

Other notions of equilibrium. There are further variations of the concept of an equi-
librium. We give three versions of the Nash equilibrium.
A relaxation of (pure) Nash equilibria are mixed Nash equilibria. Each player

is allowed to randomize over her strategies. A strategy profile is then given by the
probability distributions over each player’s strategies. The player costs are determined
in expectation with respect to all distributions. In a mixed Nash equilibrium no player
can improve their expected cost by randomizing differently. Most remarkably, Nash

14

2.5 Computational Problems and Complexity Theory

(1950) shows that there always exists a mixed Nash equilibrium in every normal form
game.
Another relaxation of the Nash equilibrium is an α-approximate Nash equilibrium

for some α ≥ 1. It captures the players’ inertia. A player deviates only to a different
strategy if her cost decreases by at least a factor of α.
A popular refinement of the Nash equilibrium on the other hand is the strong Nash

equilibrium. In such an equilibrium no coalition of players can decrease the cost of all
involved players by cooperatively deviating.

More details on the topic of game theory with a focus on computational aspects can
be found in the textbook by Nisan, Roughgarden, Tardos, and Vazirani (2007).

2.5 Computational Problems and Complexity Theory

Complexity theory aims to quantify the amount of resources that is needed to solve
various computational problems. Such a problem is described by a specific task for a
set of possible inputs, called instances. The examined resources are typically the number
of elementary steps or time, and memory or space. The Turing machine serves as the
most common abstract computational model and is named after its inventor Alan Turing.
In this model, a head manipulates the symbols on an infinitely long tape. The sequence
of manipulations is governed by a set of rules, which make up an algorithm. Each step
merely depends on the symbol at the head’s current position and an internal state. It
results in writing a symbol at the current position and moving the head by at most one
position. The outcome of a step must be unique for deterministic Turing machines.
In contrast to that, a nondeterministic Turing machine allows multiple outcomes.
While a deterministic machine explores a single path of execution, a nondeterministic
machine simultaneously explores all possible paths resulting from multiple outcomes.
Time is measured as the number of steps a Turing machine takes and space is measured
as the number of slots of its infinitely long tape that are read or written. If not stated
explicitly, we refer to the computational model of the deterministic Turing machine.
Many relevant computational models can be shown to be equivalent to the deterministic
Turing machine. This means that the same tasks take essentially the same amount of
time and space up to constant factors. Therefore, the complexity of problems is not
measured by the exact number of steps and slots needed for solving them. The focus lies
more on their asymptotics with respect to the instance sizes. This is where the Landau
symbols (also called big O notation) come in handy. For a function f : R→ R≥0, the
set of functions O(f) is defined by

O(f) :=
{
g : R→ R≥0

∣∣ ∃N,C > 0 ∀n ≥ N : g(n) ≤ Cf(n)
}
.

In other words, O(f) is the set of functions that do not grow faster than f asymptotically.
Similarly, the set of functions growing asymptotically at least as fast as f is defined as

Ω(f) :=
{
g : R→ R≥0

∣∣ ∃N, c > 0 ∀n ≥ N : g(n) ≥ cf(n)
}
.

15

Chapter 2 Preliminaries

Decision problems. A decision problem is stated by a single question on its input
that can be answered with yes or no. Formally, a decision problem Π is defined by the
set of instances and the subset of instances the answer to which is yes. The inputs are
encoded as strings over some fixed alphabet. Typically, binary encoding is chosen for
numerical values in the input. The size of the input is then the length of its encoding
string.
The class P is the set of all decision problems that can be answered in a number of steps

that is polynomial in the size of the input by a deterministic Turing machine. Similarly,
the class NP is the set of decision problems which can be answered in polynomial time
by a nondeterministic Turing machine. P ⊆ NP follows. The famous question of whether
this inclusion holds with equality, that is, whether all problems in NP can be solved in
(deterministic) polynomial time, is one of the seven Millennium Prize Problems stated
by the Clay Mathematics Institue (see Jaffe 2006).
Problems can be related to each other by reductions. A reduction from a decision

problem Π to another decision problem Π′ is a mapping from instances of Π to instance
of Π′ that preserves the answer to the decision problems. If a reduction from Π to Π′ can
be computed in polynomial time, this shows that Π can be solved in polynomial time
whenever Π′ can.
This concept allows to identify the hardest problems in NP. A problem (not necessarily

in NP) is calledNP-hard if every problem in NP can be reduced to it in polynomial time.
If additionally the problem itself lies in NP, it is called NP-complete. When S. A. Cook
(1971) establishes this concept, he shows that the satisfiability problem is NP-complete.
Subsequently, Karp (1972) proves the NP-completeness of 21 further problems.
One of these 21 NP-complete problems is exact 3-set cover. An instance is given

by a ground set U and a family S ⊆
(
U
3

)
. A covering is a subfamily of S the union of

which is U . The goal is to decide whether there exists a covering of size |U |/3, that is,
a covering which partitions U . A somewhat complementary concept to a covering is the
following. A packing is a pairwise disjoint subfamily of S.

Optimization problems. An optimization problem asks for the smallest (or largest)
objective function value that is attained by a solution in a set of feasible solutions.
While these are formally no decision problems, they can easily be transformed. The
canonical question associated with a minimization problem is whether there is a feasible
solution that undercuts a given threshold on the objective function value. If we say
an optimization problem is NP-complete, we mean that its canonical decision problem
is NP-complete. If a polynomial-time agorithm for this decision variant is given, the
optimal value of combinatorial optimization problems can be recovered in polynomial
time by binary search (under some mild assumptions). Further, the optimization of
combinatorial problems is equivalent to a whole list of related problems as found by
Schulz (2009). Note that the definition of optimization problems asks for the optimal
value as opposed to a feasible solution that attains this value. It turns out, that an

16

2.5 Computational Problems and Complexity Theory

optimal solution can often be constructed with polynomial overhead if an algorithm for
the optimal value is available. This is shown, e.g., for the class of integer programs by
Orlin, Punnen, and Schulz (2009).
As many relevant optimization problems are NP-complete, the requirement of opti-

mality is often relaxed. For α ≥ 1, a feasible solution is an α-approximation to a
minimization problem if its objective function value is at most α times the objective of
an optimal solution. The complexity of computing an α-approximation for fixed α is a
central research question for NP-complete optimization problems.

More details on the complexity of decision and optimization problems can be found in
the textbook by Garey and Johnson (1990).

Total search problems. Decision problems often ask whether or not a solution exists.
Optimization problems on the other hand deal with the existence of solutions with a
certain quality measured by a central objective function. Both do not fit problems which
are guaranteed to have a solution and the goal is to find an arbitrary one. Those are
called total search problems or total function problems. The class TFNP contains
all total search problems a solution to which can be computed by a nondeterministic
Turing machine in polynomial time. In contrast to NP, the class TFNP does not seem to
have complete problems; see the work by Goldberg and C. H. Papadimitriou (2018a,b).
Therefore, several subclasses of TFNP have been established. These classes of prob-
lems are typically defined based on a specific method that proves the existence of their
solutions.
Johnson, Papadimitriou, and Yannakakis (1985, 1988) define the class PLS which

contains all problems a solution to which can be found by local search. A problem
is defined by an (implicitly defined) set of feasible solutions which are of polynomial
size and an objective function that can be evaluated in polynomial time. Further, a
set of neighboring feasible solutions is specified for each feasible solution, that can be
computed in polynomial time. The goal is to find a local optimum which is a feasible
solution that has a best objective function value within its neighborhood. This class
allows the following notion of reduction. A PLS-reduction of a problem Π ∈ PLS to
another problem Π′ ∈ PLS is a mapping from instances of Π to instances of Π′ with the
following properties. Every solution to Π′ corresponds to a solution to Π which can be
computed in polynomial time. Moreover, every solution to Π that corresponds to a local
optimum of Π′ must be a local optimum of Π. Under this notion, PLS has complete
problems that every other problem in PLS reduces to in polynomial time. One such
PLS-complete problem, that is relevant to us, is the maximum cut problem as shown
by Schäffer and Yannakakis (1991). Given an undirected graph G = (V,E) with edge
weights w ∈ RE≥0 the feasible solutions are all cuts ∅ 6= U (V . Two cuts U,U ′ are
neighbors if |U 4 U ′| = 1. The goal is to find a cut U that locally maximizes the value
w
(
δE(U)

)
with respect to this neighborhood.

Another subclass of TFNP is PPAD (short for polynomial parity arguments on di-
rected graphs). It was introduced by C. H. Papadimitriou (1994) and relates to the

17

Chapter 2 Preliminaries

proof of existence via fixed-point theorems like the ones by Brouwer (1911) and Kaku-
tani (1941). Formally, it is based on (implicitly defined) directed graphs that are the
disjoint union of paths. Given the beginning of a path in such a graph, the end of any
path is a solution to the problem. A suitable notion of a reduction can also be defined
here. Famously, the work of Daskalakis, Goldberg, and Papadimitriou (2006, 2009) and
X. Chen, Deng, and Teng (2009) shows that computing a (mixed) Nash equilibrium in
normal form games is PPAD-complete even for two players.

Conditional complexity. While it is conceptually easy to prove that a problem is in P
by providing a polynomial-time algorithm, showing the nonexistence of such an algorithm
is challenging in most cases. This is why impossibility statements are often not absolute
but relate to a condition which is likely to be true. One such condition, which is widely
accepted, is P 6= NP. It is equivalent to the nonexistence of polynomial-time algorithms
for NP-complete problems. Another impossibility statement is the exponential-time
hypothesis as introduced by Impagliazzo and Paturi (1999, 2001). It states that a
variant of the satisfiability problem cannot be solved in subexponential time (in the
worst-case).

2.6 Linear Programming

Usually, an optimization problem is formally posed as the task of finding the values for
decision variables which optimize some objective function while satisfying addi-
tional constraints. An important class of such optimization problems are those with an
objective function and (in)equality constraints which are linear in the decision variables.
These so-called linear programs are capable of modeling many real world applications
and are at the same time well-understood theoretically. They are introduced by Kan-
torovich (1939). Let n,m ∈ N. The coefficient matrix A ∈ Rm×n, the right-hand side
vector b ∈ Rm, and the cost vector c ∈ Rn define the linear program

max c>x subject to Ax ≤ b, x ≥ 0.

Here, x is a vector of n decision variables. Note that minimization is equivalent to
maximization when replacing the cost vector c with −c. A feasible solution to the
linear program is a vector x ∈ Rn which fulfills the constraints Ax ≤ b and x ≥ 0. For
index sets I ⊆ [m] and J ⊆ [n] such that |I|+ |J | = n, the vector(

AI,•
IdJ,•

)−1(
bI
0

)
is called a basic solution, if the involved matrix is invertible. The maximal value c>x
that is achieved by any feasible solution x is called the value val of the linear program.
The solution x achieving it is called optimum or optimal solution. A linear program
is bounded if its value is finite.

18

2.6 Linear Programming

Duality. There is an intriguing relation between pairs of linear programs, called duality.
The dual linear program of the preceding (primal) linear program is given by

min b>y subject to A>y ≥ c, y ≥ 0.

Note that this relation is symmetric. The primal linear program is the dual of its dual.
Every variable of the primal is associated with a constraint in the dual, every constraint
of the primal corresponds to a variable of the dual. The feasible solutions x ∈ Rn and
y ∈ Rm to the primal and dual linear program, respectively, are optimal if and only if
they fulfill complementary slackness

y>
(
Ax− b

)
= 0 and x>

(
A>y − c

)
= 0.

This immediately implies the strong duality theorem. If x∗ ∈ Rn and y∗ ∈ Rm are
optimal solutions to the primal and dual linear program, respectively, it holds

c>x∗ = (y∗)>Ax∗ = b>y∗.

In particular, the objective value of any feasible primal solution is larger than the objec-
tive value of any feasible dual solution. This is known as the weak duality theorem.

Polyhedra and polytopes. A subset P ⊆ Rn is called polyhedron if there is a matrix
A ∈ Rm×n and a vector b ∈ Rm such that P = {x ∈ Rn | Ax ≤ b}. A bounded poly-
hedron is called polytope. For I ⊆ [m], the subset {x ∈ P | AI,•x = bI} is a face of
P . The dimension of a face F 6= ∅ is the dimension of the linear subspace F − x with
x ∈ F . A face of dimension zero or one is called vertex and edge, respectively.
Clearly, the set of feasible solutions to a linear program is a polyhedron. Its set of ver-
tices corresponds to the set of basic feasible solutions. If a linear program is bounded and
its feasible set has at least one vertex, there exists a vertex which is an optimal (basic)
solution.

Computational complexity. There are several methods to solve linear programs algo-
rithmically. Khachiyan (1979) applies the ellipsoid method to linear programming and
thereby finds the first method to solve linear programs in polynomial time. Its imple-
mentation, however, poses substantial numerical issues, which is why it is rarely used in
practice. The approach which enjoys the greatest popularity is the simplex algorithm.
It was developed by Dantzig in 1947 (see Dantzig 1990) and is basically a local search
on the vertices of the feasible polyhedron. Two vertices are considered neighbors if they
are contained in a common edge of the polyhedron. Switching between two such neigh-
boring vertices is also called pivoting based on the underlying algebra. After finding an
arbitrary vertex, the algorithm follows an improving path of neighboring vertices until
no further improvement can be achieved in this way. The initial feasible vertex is found
by a similar process, called phase I. It applies a local search to a modified version of
the linear program which has a trivial feasible solution. Despite the fact that Klee and
Minty (1972) show an exponential worst-case running time, the algorithm achieves high

19

Chapter 2 Preliminaries

efficiency in practice. A theoretical explanation thereof is provided by Spielman and
Teng (2001, 2004). They essentially show that the simplex algorithm runs in polynomial
time for most inputs.

Integer linear programs. In many applications, fractional values for decision variables
do not have a meaningful interpretation. Therefore, the constraint for variables to be
integral arises naturally. A linear program with the additional constraint that all its
variables are integral is called integer linear program. If both continuous and integral
variables are present, it is called mixed-integer linear program. Both these prob-
lems are NP-complete. Some problems allow structural insights that lead to efficient
combinatorial algorithms. General algorithms are typically based on linear programming
with additional techniques to establish integrality, e.g., branch and bound or cutting
plane methods.

An example. We present a famous duality result from network flows. A formulation
for the maximum s-t flow problem on a directed graph G = (V,A) with capacities
ν ∈ RA≥0, source s ∈ V , and sink t ∈ V is given by

max
∑

a∈δ−A (t)

xa −
∑

a∈δ+
A(t)

xa (MAXFLOW)

s. t.
∑

a∈δ−A (v)

xa −
∑

a∈δ+
A(v)

xa ≥ 0 for all v ∈ V \ {s, t}

0 ≤ xa ≤ νa for all a ∈ A.

On every arc a ∈ A the amount of flow is described by the nonnegative decision variable
xa. The capacity constraints bound the flow value xa on an arc a ∈ A by its capacity νa.
Further, weak flow conservation is imposed on all nonterminal vertices. The objective
is to maximize the value of the flow. Note that by the weak flow conservation excess
at the sink t can only emerge from the source s. Requiring strong instead of weak flow
conservation for the maximum flow problem yields an equivalent linear program. This is
because flow that leaves the source but never reaches the sink can be discarded without
making the flow infeasible or changing the objective function value.
The dual linear program of (MAXFLOW) is

min
∑
a∈A

νaµa (MINCUT)

s. t. µa ≥ λw − λv for all a = (v, w) ∈ A

µa ≥ 0 for all a ∈ A

λv ≥ 0 for all v ∈ V \ {s, t}, λs = 0, λt = 1

20

2.7 Linear Complementarity Problems

We can assume that an optimal solution fulfills µa = [λw − λv]+ for all a = (v, w) ∈ A.
Further, it can be shown that there is always an optimal integral solution λ ∈ {0, 1}A
to (MINCUT). Its objective function value is exactly the capacity of the (directed) cut
δ+
A({v ∈ V | λv = 0}). Strong duality now yields that the maximum value of an s-t flow is
equal to the minimum value of an s-t cut which is a cut U ⊆ V with s ∈ U and t 6∈ U . This
is the famous max-flow min-cut theorem as found by Elias, Feinstein, and Shannon
(1956) and Ford and Fulkerson (1956). Under the assumption that the capacities ν are
integral, it can be shown that the feasible set of (MAXFLOW) has integral vertices only.
Together with the observation, that the program is always bounded if s 6= t it follows
that there always exists an optimal integral flow under this assumption.

For more on the topic of linear and integer programming, we recommend the textbook
by Schrijver (1998).

2.7 Linear Complementarity Problems

Complementarity conditions appear naturally in optimality criteria for linear program-
ming and other optimization problems, like quadratic programs. Further, they arise
from the conditions on a Nash equilibrium. This motivates the following class of feasi-
bility problems. A linear complementarity problem is defined by a square matrix
M ∈ Rn×n and a vector q ∈ Rn. The goal is to find a vector z ∈ Rn that satisfies

z>(Mz + q) = 0, Mz + q ≥ 0, z ≥ 0.

By introducing additional auxiliary variables w ∈ Rn, the problem can be restated in a
more symmetric fashion. It is equivalent to finding w and z such that

w = Mz + q, z>w = 0, w ≥ 0, z ≥ 0.

The condition z>w = 0 is called complementarity condition. Under the assumption
that w and z are nonnegative, it is equivalent to requiring wi = 0 or zi = 0 for all i ∈ [n].
In terms of the preceding formulation, Mi,•z + qi ≥ 0 or zi ≥ 0 has to be fulfilled with
equality for every i ∈ [n].

Computational complexity. The class of linear complementarity problems is quite het-
erogeneous in terms of computational complexity. Not surprisingly, the decision problem
on the existence of a solution is NP-complete. Consequently, subsets of problems are
treated which are guaranteed to have a solution. These problem classes are typically
defined by properties of the matrix M . An example of linear complementary problems
that always have a unique solution are those with symmetric positive definite matrix M .
Restricting to such a class yields a total search problem.
The known algorithms for solving linear complementary problems can be grouped in

pivoting and iterative methods. Their applicability and efficiency generally depends on
the matrix M . A popular pivoting algorithm is Lemke’s algorithm (1965). It starts

21

Chapter 2 Preliminaries

by relaxing the given linear complementary problem by the introduction of an auxiliary
variable. Pivoting steps then follow a path of solutions that fulfill all but one of the
original complementarity conditions. If the auxiliary variable can be finally eliminated, a
solution is found. We defer more specific results on Lemke’s scheme to Chapter 4 where
they are used.

An example. An important class of linear complementarity problems which contributed
to their introduction is given by two-player normal form games, also termed bimatrix
games. Let Σ = Σ1×Σ2 be the strategy profiles of such a game, and let A,B ∈ RΣ be two
matrices that describe the player costs. More specifically, Aσ1,σ2 and Bσ1,σ2 are the player
costs of player A and B under the profile (σ1, σ2) ∈ Σ, respectively. We may assume that
the entries of A and B are positive, because adding the same scalar to all entries results
in an equivalent game. Then the solutions x, y to the linear complementarity problem(

u
v

)
=

(
0 A
B> 0

)(
x
y

)
−
(
1

1

)
,

(
u
v

)>(
x
y

)
= 0, u, v ≥ 0, x, y ≥ 0 (BIMATRIX)

correspond one-to-one to the mixed Nash equilibria via (x, y) 7→
(
x/1>x, y/1>y

)
. More

precisely, xσ1/1
>x is the probability that player A plays the strategy σ1 ∈ Σ1, and simi-

larly for player B. The mapping normalizes x and y such that we indeed obtain probability
distributions. On the one hand, Ay ≥ 1 holds. On the other hand, the complementarity
constraints imply Aσ1,•y = 1 or xσ1 = 0 for every σ1 ∈ Σ1. In other words, player A
can only play a strategy σ1 with positive probability if it provides minimal expected cost
Aσ1,•y/1

>y under player B’s mixed strategy y/1>y. The analogous property is obtained
for player B. Hence, a solution to (BIMATRIX) indeed corresponds to a Nash equilib-
rium. The inverse can be seen when scaling the probability distributions of a mixed Nash
equilibrium such that the expected costs become one.
A pivoting algorithm, now known as Lemke-Howson algorithm, tailored specifically to
bimatrix games is found by Lemke and Howson (1964).

For more details on linear complementarity problems, see the textbook of Cottle, Pang,
and Stone (2009).

22

Chapter 3

Two Disjoint Shortest Paths

In this chapter, we consider a specific multicommodity integer flow problem. The edges
of the underlying undirected networks can carry at most one unit of flow, which excludes
multiple commodities using the same edge. Each commodity needs to ship exactly one
unit along a path. Additionally, this path is required to be a shortest path between the
given source and sink. For k commodities this problem is known as the (undirected) k
disjoint shortest paths problem. In other words, it asks for the existence of k pairwise
edge- or vertex-disjoint shortest si-ti paths in an undirected graph with k source-sink
pairs (si, ti), i ∈ [k]. If k is not fixed but part of the input, the problem is NP-complete.
The two disjoint shortest paths problem (k = 2) with strictly positive edge lengths
on the other hand can be solved in polynomial time. Our main contribution is the
generalization of this tractability to nonnegative edge lengths. Structural insights
allow us to deal with connected components of zero-length edges separately from edges
with strictly positive length. The resulting algorithm is based on dynamic programming
and runs in polynomial time.

Authorship. The findings of this chapter are a result of a collaboration with Marinus
Gottschau and Clara Waldmann. The presentation has similarities with the article of
Gottschau, Kaiser, and Waldmann (2019) where the results have been published previ-
ously. Our main insight has been obtained independently by Kobayashi and Sako (2019).

Outline. Section 3.1 starts out by introducing the problem. It then relates our work to
existing literature and states our main results on a high level. The body of this chapter is
organized into three major parts. Section 3.2 builds the foundation for the following two
sections. A decomposition of graphs with an acyclic structure is developed, which allows
to split the task of finding disjoint paths into smaller parts. In Section 3.3, we present
an intermediate result. More specifically, we treat k disjoint paths in weakly acyclic
mixed graphs, which generalize directed acyclic graphs. We obtain a polynomial-time
dynamic program based on the previously established decomposition. In Section 3.4,
this intermediate result is combined with another application of the decomposition. The
outcome is a first polynomial-time algorithm for the two disjoint shortest paths problem
with nonnegative edge lengths. Section 3.5 closes with some remarks on possible research
directions.

23

Chapter 3 Two Disjoint Shortest Paths

3.1 Introduction

We start by introducing the problem at hand formally. Before doing so, we define a more
basic variant, the disjoint paths problem.

Disjoint paths. The k disjoint paths problem represents a very fundamental and
well-studied problem in graph theory. For a given graph G and k source-sink pairs
(si, ti), i ∈ [k], it asks for the existence of k pairwise disjoint paths P1, . . . , Pk such that
Pi is an si-ti path for all i ∈ [k]. Versions of the problem result from considering either
disjointness of the paths with respect to vertices or edges. Further, the underlying graph
can be directed or undirected. Unless stated otherwise, we refer to an undirected graph
G = (V,E).

Disjoint shortest paths. The problem we treat in this chapter can be viewed as gen-
eralization of the disjoint paths problem. In the k disjoint shortest paths problem,
additional requirements on the paths Pi, i ∈ [k] are introduced by edge lengths ` ∈ RE≥0.
For every i ∈ [k], the path Pi needs to be a shortest si-ti path with respect to `. Note
that the k disjoint paths problem is recovered when setting ` ≡ 0. Hence, we indeed
deal with a generalization. The discussed versions of the problem generalize accordingly.
Furthermore, the variants with unit edge lengths (` ≡ 1) take a special role.

For many disjoint paths problems, there is a generic reduction from finding arc/edge-
disjoint paths to finding vertex-disjoint paths. This reduction is based on the line graph.
Given a graph G, its line graph has a vertex for every arc and edge in G. There is an arc
or edge between two vertices in the line graph if the corresponding arcs/edges are incident
to a common vertex in the original graph G (and their directions are compatible); see
Figure 3.1. Then arc/edge-disjoint paths in G correspond to vertex-disjoint paths in its
line graph. For directed graphs, there is also an opposite reduction from vertex-disjoint
to arc-disjoint variants based on splitting vertices; see Figure 3.2. This generic reduction,
however, cannot be applied to undirected or mixed graphs.
Consequently, the vertex-disjoint and arc-disjoint variants are equivalent when con-

sidering directed disjoint paths. For undirected and mixed graphs, the vertex-disjoint
variant is generally at least as hard as the corresponding arc/edge-disjoint problem. We
focus on the arc/edge-disjoint variants and discuss the vertex-disjoint equivalents subse-
quently.

3.1.1 Related Literature

We give a brief overview of the most important results related to the work presented in
this chapter. We start with the more basic disjoint paths problem and continue with the
disjoint shortest paths problem and a generalization, the shortest disjoint paths problem.
Finally, we highlight some results in the allied field of integer flow. An overview of the
complexity results on disjoint paths problems is given in Table 3.1.

24

3.1 Introduction

Figure 3.1: The construction of a line graph for mixed graphs. Every arc or edge in the original

graph (left) is associated with a vertex in the line graph (right). Vertices representing two

incident edges are connected by an edge. Vertices representing two incident arcs/edges which

form a path are connected by an arc.

Figure 3.2: A reduction from directed vertex-disjoint paths to directed arc-disjoint paths. Every

vertex of the original graph (left) is split into two vertices connected by a new arc (right). The

incoming and outgoing arcs are separated by this splitting.

Disjoint paths. The general case of the k disjoint paths problem is NP-hard when k is
considered part of the input. This is obtained by Karp (1975) for vertex-disjoint paths
and by Even, Itai, and Shamir (1975, 1976) for edge-disjoint paths. It remains hard
when restricting to planar graphs as found by Lynch (1975). Therefore, a lot of research
focuses on the setting where k is considered to be fixed.
For the undirected two disjoint paths problem, polynomial-time algorithms were ob-

tained by Seymour (1980), Shiloach (1980), and Thomassen (1980). In their seminal
article, Robertson and Seymour (1995) provide an algorithm for the undirected k disjoint
paths problem with arbitrary fixed k that runs in O

(
|V |3

)
. Kawarabayashi, Kobayashi,

and Reed (2012) reduce this running time to O
(
|V |2

)
.

In contrast to that, the directed version of the problem turns out to be much harder.
Fortune, Hopcroft, and Wyllie (1980) prove that even the directed two disjoint paths
problem is NP-hard. For directed acyclic graphs and arbitrary fixed k the authors find a
polynomial-time algorithm. Zhang and Nagamochi (2012) extend this work to solve the
problem on acyclic mixed graphs. Here, a mixed graphs is called acyclic if orienting any
set of edges does not produce a directed cycle.

Disjoint shortest paths. Eilam-Tzoreff (1998) introduces the disjoint shortest paths
problem as a generalization of the disjoint paths problem. She shows that the problem
is NP-hard if k is part of the input even in planar graphs with unit-length edges (` ≡ 1).
If zero-length edges are allowed, the hardness of the k disjoint shortest paths problem
is already implied by the hardness of the k disjoint paths problem. In particular, the
directed two disjoint shortest paths problem is NP-hard. For both the undirected and

25

Chapter 3 Two Disjoint Shortest Paths

undirected directed
` ≡ 0 ` ≥ 0 ` > 0 ` ≡ 1 ` ≡ 0 ` > 0

k arbitrary NP-hard1 NP-hard1 NP-hard2 NP-hard2 NP-hard1 NP-hard2

k fixed P3 P4 NP-hard5

k = 2 P6 P7 P2 P2 NP-hard5 P8

Table 3.1: The complexity of the disjoint paths problem (` ≡ 0) and its variants.

directed setting, the problem with k = 2 becomes solvable in polynomial time when
restricting to strictly positive edge lengths. For undirected graphs, Eilam-Tzoreff (1998)
provides a dynamic program. Directed graphs are treated by Bérczi and Kobayashi
(2017). In contrast to the directed variant, the undirected variant for k = 2 can still be
solved efficiently for nonnegative edge lengths, as we see in this chapter. This result is
obtained independently by Kobayashi and Sako (2019).
Lochet (2021) shows that the undirected k disjoint shortest paths problem can be

solved in polynomial time for arbitrary fixed k if all edges have unit length (` ≡ 1). His

algorithm runs in O
(
|V |k

5k)
. Further, the author shows that the problem is W [1]-hard

with respect to the parameter k. Under the exponential time hypothesis, this implies
that there is no algorithm that runs in time O

(
f(k) · |V |n

)
for any fixed n ∈ N and

function f : N→ N. In other words, the dependency of the exponent on k is most likely
inevitable. Bentert, Nichterlein, Renken, and Zschoche (2021) reduce this dependency
to O

(
k · |V |12kk!+k+1).

For arbitrary fixed k but under the assumption that the graph is planar, Bérczi and
Kobayashi (2017) achieve polynomial-time solvability for the undirected cases and the
directed k vertex-disjoint shortest paths problem.

Shortest disjoint paths. A further generalization of the disjoint shortest paths problem
is the shortest disjoint paths problem. Instead of requiring that every single path
is shortest, a family of disjoint paths is searched which minimizes the total length. In
an early work, Suurballe (1974) uses augmentation techniques to devise a polynomial-
time algorithm minimizing the total length, if all paths share a common source and
sink. Björklund and Husfeldt (2014, 2019) find a polynomial-time algebraic Monte Carlo
algorithm for solving the shortest disjoint paths problem with unit lengths (` ≡ 1).

1Even, Itai, and Shamir (1975, 1976) and Karp (1975)
2Eilam-Tzoreff (1998)
3Robertson and Seymour (1995), improved by Kawarabayashi, Kobayashi, and Reed (2012)
4Lochet (2021), improved by Bentert, Nichterlein, Renken, and Zschoche (2021)
5Fortune, Hopcroft, and Wyllie (1980)
6independently by Seymour (1980), Shiloach (1980), and Thomassen (1980)
7our main result, independently found by Kobayashi and Sako (2019)
8Bérczi and Kobayashi (2017)

26

3.2 A Decomposition of Disjoint Paths

Multicommodity integer flow. The multicommodity integer flow problem can be viewed
as a generalization of the disjoint paths problem. Indeed, the first proofs of NP-hardness
of the disjoint paths problem by Karp (1975) and Even, Itai, and Shamir (1975, 1976)
are stated in terms of flows. The latter authors show that deciding on the existence of
multicommodity integer flows is already NP-hard for two commodities.
On the positive side, there are some results of (singlecommodity) integer flows which

transfer to special settings of disjoint paths problems. Menger’s theorem (1927) repre-
sents an early result on a special case of strong duality. For vertices s, t ∈ V , it states that
the size of a minimum s-t cut agrees with the maximum number of pairwise edge-disjoint
s-t paths. This is generalized to the famous max-flow min-cut theorem found by Elias,
Feinstein, and Shannon (1956) and Ford and Fulkerson (1956). Introducing capacities, it
shows that the minimum capacity of an s-t cut is the same as the maximum value of an
s-t flow. Consequently, known algorithms for computing a maximum s-t flow yield that
the k disjoint paths problem can be decided in polynomial time if all sources and sinks
agree, even if k is part of the input (e.g., the improved algorithms of Ford and Fulker-
son (1956) by Dinic (1970) and Edmonds and Karp (1972)). By standard techniques,
this extends to the cases where only the sources or the sinks are the same. Similarly,
the minimum-cost integer flow problem is a generalization of the shortest disjoint paths
problem if all sources or sinks are the same.

3.1.2 Our Contribution

We give a first polynomial-time algorithm for the undirected two disjoint shortest paths
problem with nonnegative edge lengths. In order to deal with zero-length edges, we
combine techniques by Fortune, Hopcroft, and Wyllie (1980) and Bérczi and Kobayashi
(2017). The two shortest paths problem is transformed into a disjoint paths problem with-
out lengths. The requirement of the paths to be shortest paths is implemented by restrict-
ing them to their respective shortest path network. We then decompose the transformed
problem into the parts where the two shortest path networks overlap and the remainder.
The overlapping parts exhibit a specific structure which we call weakly acyclic. It
allows a further decomposition separating edges with zero and positive lengths.

3.2 A Decomposition of Disjoint Paths

To express the existence of disjoint paths concisely, we introduce the following notation.

Definition 3.1 (Disjoint paths relations). Let G = (V,Æ) be a (mixed) graph with
nonnegative edge lengths ` ∈ RÆ

≥0. For k ∈ N, we define the two binary relations ⇒Æ

and `
⇒E on the set V k.

(i) For v, w ∈ V k, we set v ⇒Æ w if there exist pairwise arc/edge-disjoint paths
P1, . . . , Pk such that Pi is a vi-wi path in Æ for all i ∈ [k]. We also use ⇒G

for ⇒Æ.

27

Chapter 3 Two Disjoint Shortest Paths

(ii) For v, w ∈ V k, we set v `
⇒E w if there exist pairwise arc/edge-disjoint paths

P1, . . . , Pk such that Pi is a shortest vi-wi path with respect to ` for i ∈ [k]. We
also write `

⇒G instead of `
⇒E.

Note that for fixed k the relation ⇒Æ has polynomial size in |V |. Our algorithms
compute large parts of the disjoint paths relations. Hence, they decide the existence of
disjoint paths for multiple source and sink tuples simultaneously. For a single tuple of
sources and sinks, improvements in the running time might be achieved.
We show that the disjoint paths relation can be decomposed into smaller relations if

the underlying graph exhibits a certain acyclic structure. We start by observing basic
properties of the disjoint paths relations. The relations ⇒Æ and `

⇒E are reflexive; that
is, v⇒Æ v and v `

⇒E v hold for all v ∈ V k. This is due to the fact that a collection of
empty paths is trivially pairwise arc/edge-disjoint (and shortest). While ⇒Æ is generally
not transitive, we still observe a similar property between two disjoint paths relations
on two disjoint sets of arcs and edges. Let Æ1 and Æ2 be such two disjoint sets of arcs
and edges. Let u, v, w ∈ V k be tuples of vertices such that u⇒Æ1 v and also v⇒Æ2 w.
Then we obtain that u⇒Æ1 ·∪Æ2 w holds. This is simply based on the concatenation of
the disjoint paths from u to v in Æ1 with the respective disjoint paths from v to w in
Æ2. In other words, we have the inclusion of relations

⇒Æ2 ◦⇒Æ1 ⊆⇒Æ1 ·∪Æ2 .

The following theorem gives sufficient conditions for this inclusion to holds with equality.

Theorem 3.2 (Decomposition of the disjoint paths relation). Let G = (V,A ·∪ E)
be a mixed graph. Further, let V =

⋃· hj=1 Vj be a partition such that the contraction
G/{V1, . . . , Vh} yields a directed acyclic graph. Assume that V1, . . . , Vh are indexed in
topological order with respect to it. Then the disjoint paths relation ⇒G decomposes into

⇒G[Vh] ◦⇒δ−A (Vh) ◦⇒G[Vh−1] ◦ · · · ◦⇒δ−A (V3) ◦⇒G[V2] ◦⇒δ−A (V2) ◦⇒G[V1].

Proof. The set A ·∪ E of arcs and edges is partitioned by

Æ
(
G[V1]

)
·∪ δ−A

(
V2

)
·∪Æ
(
G[V2]

)
·∪ δ−A

(
V3

)
·∪ . . . ·∪Æ

(
G[Vh−1]

)
·∪ δ−A

(
Vh
)
·∪Æ
(
G[Vh]

)
.

Based on the discussion preceding the theorem, all tuples related by the composition of
the disjoint paths relations on these sets are also related by ⇒G.
For the opposite inclusion, let v, w ∈ V k such that v⇒Gw. Hence, there exist pairwise

arc/edge-disjoint paths P1, . . . , Pk in G such that Pi is a vi-wi path for all i ∈ [k]. For
every i ∈ [k], we may assume without loss generality that Pi is simple, that is, it does
not visit any vertex twice. (Otherwise, we could shortcut.) We find a suitable partition
of the paths by intermediate tuples of vertices to show v and w are also related in the
composed relation. For every j ∈ [h], define the vertex tuples p(j), q(j) ∈ V k as follows.
For i ∈ [k] and j ∈ [h], let p(j)

i be the first vertex on Pi that is in the set
⋃h
l=j Vl. If such

28

3.2 A Decomposition of Disjoint Paths

(a) A mixed graph and a partition of its vertices. (b) The directed acyclic graph resulting from con-
tracting the partition.

v2 = p
(1)
2 = q

(1)
2

v1 = p
(2)
1

q
(2)
1 p

(3)
1 = q

(3)
1 = w1

q
(3)
2

p
(3)
2

q
(4)
2 = w2

p
(4)
2

(c) The decomposition of two disjoint paths by intermediate vertices based on the graph’s partition.

Figure 3.3: A graph and a partition which allows the decomposition in the sense of Theorem 3.2.

a vertex does not exist, define p(j)
i as wi instead. Further, set q

(j)
i to be the last vertex on

Pi from Vj . If it does not exist, set q
(j)
i equal to p(j)

i . See Figure 3.3 for an illustration.

We argue that these intermediate tuples fulfill

v = p(1) ⇒G[V1] q
(1) ⇒δ−A (V2) p

(2) ⇒G[V2] q
(2) ⇒δ−A (V3) · · ·⇒δ−A (Vh) p

(h) ⇒G[Vh] q
(h) = w.

As G/{V1, . . . , Vh} is acyclic and V1, . . . , Vh are ordered topologically, we have that

vi = p
(1)
i , q

(1)
i , p

(2)
i , q

(2)
i , . . . p

(h)
i , q

(h)
i = wi

appear on Pi in that order for all i ∈ [k]. If Pi visits Vj , then the part of Pi from p
(j)
i

to q(j)
i completely lies within G[Vj]. Otherwise, p(j)

i = q
(j)
i holds. In any case, we obtain

that p(j)⇒G[Vi]q
(j) because the subpaths Pi∩G[Vi] are pairwise arc/edge-disjoint p

(j)
i -q(j)

i

paths for all i ∈ [k]. To see q(j) ⇒δ−A (Vj+1) p
(j+1) for j ∈ [h−1], we consider a similar case

distinction. If Pi visits Vj and q
(j)
i 6= wi, then q

(j)
i is the last vertex on Pi within Vj , and

p
(j+1)
i is the first vertex on Pi that lies in

⋃h
l=j+1 Vl. Thus, there must be a single arc in

Pi from q
(j)
i to p(j+1)

i . In the remaining case, we have q(j)
i = p(j) = p(j+1). In both cases,

the necessary relation holds. �

29

Chapter 3 Two Disjoint Shortest Paths

Algorithm 1:Dynamic program for the k disjoint paths problem in weakly acyclic
mixed graphs

Input: weakly acyclic mixed graph G = (V,A ·∪ E)

Output: ⇒G on V k

1 Find connected components V1, . . . , Vh of the subgraph (V,E) in topological

ordering with respect to G/{V1, . . . , Vh};

2 for j = 1, . . . , h do compute ⇒G[Vj] and ⇒δ−A (Vj)
;

3 Initialize ⇒ to be the identity relation
{

(v, v)
∣∣ v ∈ V k

}
;

4 for j = 1, . . . , h do update ⇒ to ⇒G[Vj] ◦⇒δ−A (Vj)
◦⇒;

5 return ⇒ ;

3.3 Disjoint Paths in Weakly Acyclic Mixed Graphs

This section treats an intermediate problem, which might be interesting on its own. We
examine disjoint paths in what we call weakly acyclic mixed graphs. These are mixed
graphs that are directed acyclic graphs with respect to their undirected connected com-
ponents. This structure allows to separate the treatment of the directed and undirected
parts. It appears naturally when orienting shortest path networks in the Section 3.4.

Definition 3.3 (Weakly acyclic mixed graphs). A mixed graph G = (V,A ·∪E) is weakly
acyclic if the contraction of its connected components with respect to E does not contract
any arcs in A and yields a directed acyclic graph.

It can be seen that a mixed graph is weakly acyclic if and only if it does not contain a
cycle with at least one arc from A. Note that a weakly acyclic mixed graph can indeed
have (undirected) cycles in its edge set E.
We propose Algorithm 1 to compute k disjoint paths in weakly acyclic mixed graphs.

The fundamental idea of our approach is to treat edges and arcs separately. The set
of edges is further partitioned into its connected components. Let V1, . . . , Vh be the
connected components of (V,E). By definition, their contraction yields a directed acyclic
graph G/{V1, . . . , Vh}. We assume that V1, . . . , Vh are in topological order with respect
to it. As there cannot be any directed arcs within a connected component Vi, the set of
edges is partitioned by the undirected induced subgraphs G[V1], . . . , G[Vh]. Further, we
obtain a partition of the set of arcs into δ−A(V1), . . . , δ−A(Vh). Due to Theorem 3.2, the
disjoint paths relation on G can be found by composing the relations on

G[V1], δ−A(V2), G[V2], δ−A(V3), . . . , G[Vh−1], δ−A(Vh), G[Vh].

30

3.3 Disjoint Paths in Weakly Acyclic Mixed Graphs

V1 Vj−1 Vj

v1

v2

w2

v3

⇒G[Vj−1] ◦ · · · ◦⇒δ−A (V2) ◦⇒G[V1] ⇒δ−A (Vj) ⇒G[Vj]

Figure 3.4: In iteration j of Algorithm 1, the relation⇒ is extended by concatenating previously

computed paths with pairwise different arcs from δ−A(Vj) and edge-disjoint paths in G[Vj].

For the undirected connected components, a subroutine for computing edge-disjoint paths
in undirected graphs is used to obtain the disjoint paths relation, e.g., the algorithm by
Kawarabayashi et al. (2012). Note that the directed parts between the undirected compo-
nents have a very simple structure. Therein, all paths are arc-disjoint. The composition
of these relations is obtained via dynamic programming. The disjoint paths relation ⇒ is
computed on successively larger parts of the mixed graph. Found arc/edge-disjoint paths
are extended alternately by arcs between components and edge-disjoint paths within one
component; see Figure 3.4. This approach represents an extension of the work by For-
tune et al. (1980). In the case E = ∅, the undirected connected components are all single
vertices and our algorithm agrees with theirs for directed acyclic graphs.

Theorem 3.4 (Correctness and complexity). Let k ∈ N be fixed. Given a weakly acyclic
mixed graph G = (V,A ·∪ E), Algorithm 1 computes the disjoint paths relation ⇒G on V k

in polynomial time.

Proof. Let V =
⋃· hj=1 Vj be the partition of V into the vertex sets of the h connected

components of (V,E) as computed by the algorithm.

Correctness. For all j ∈ {0, . . . , h}, let Æj be the arc and edge set of G
[⋃j

l=1 Vl
]
. In

particular, Æ0 = ∅ holds. It follows by induction from Theorem 3.2 that the computed
relation ⇒ is equal to ⇒Æj after the j-th iteration of Line 4. In particular, the returned
relation is indeed the disjoint paths relation on G.

Complexity. The connected components of Vj , j ∈ [h] and their topological ordering
with respect to G/{V1, . . . , Vh} can be computed in polynomial time, e.g., using Kahn’s
algorithm (1962). As already discussed, edge-disjoint paths in the undirected components
can also be found efficiently. Hence, the relation ⇒G[Vj] can be computed in polynomial
time by full enumeration of all possible pairs of source and sink vectors. The relations
⇒δ−A (Vj)

can be obtained by enumerating (ordered) subsets of arcs. A binary relation

on V k contains at most |V |2k elements. Therefore, the composition of polynomially many
such relations can be computed in polynomial time. In total, we see that Algorithm 1
runs in time polynomial in the size of the input if k is fixed. �

31

Chapter 3 Two Disjoint Shortest Paths

As discussed in Section 3.1, the vertex-disjoint and arc/edge-disjoint variants are gen-
erally not equivalent in mixed graphs. Still, Algorithm 1 can be adapted to compute the
relation for vertex-disjoint paths. First, the disjoint paths relations for the parts of the
decomposed graph have to be computed in a vertex-disjoint sense. Then, they are defined
on the ground set

{
v ∈ V k

∣∣ v1, . . . , vk pairwise distinct
}
. For the undirected connected

components, a suitable algorithm for undirected vertex-disjoint paths is used. For the
directed parts in between, the disjoint paths relation is given by all possible matchings
of size at most k.

3.4 Undirected Disjoint Shortest Paths

In this section, we present the main result of this chapter. We derive a polynomial-
time algorithm for the two disjoint shortest paths in undirected graphs with nonnegative
edge lengths. Our approach is an extension of the techniques introduced by Bérczi and
Kobayashi (2017). By restricting to shortest path networks, we transform the undirected
graph to a mixed graph on which we solve a disjoint paths problem. The challenge of
dealing with edges of length zero is tackled by applying the results of Section 3.3.

3.4.1 Orienting Shortest Paths

Given an instance of the two disjoint shortest paths problem, we construct an equivalent
variant of a two disjoint paths problem on a mixed graph. Essentially, the requirement
of using shortest paths is implemented by restricting to shortest path networks and
subsequently dropping the edge lengths. As the two source-sink pairs adhere to different
shortest path networks, we need to make this distinction also in the transformed graph.
Let a two disjoint shortest paths problem be given by an undirected graph G = (V,E),

source and sink vectors s, t ∈ V 2, and nonnegative edge lengths ` ∈ RE≥0. For simplicity,
we write `v,w instead of `{v,w} for {v, w} ∈ E. We consider the shortest path networks
with respect to s1 and s2. To that end, let di : V → R≥0 denote the distance function
induced by the lengths ` with respect to si for i ∈ [2]. The corresponding shortest
paths network is given by the edge set

Ei :=
{
{v, w} ∈ E

∣∣ |di(v)− di(w)| = `v,w
}
.

See Figure 3.6a for an example of the sets Ei.
For i ∈ [2], the distance function di induces a natural orientation on all edges in Ei

with strictly positive length. We orient all edges in Ei away from the source si; that
is, we replace an edge {v, w} ∈ Ei by the arc (v, w) assuming di(v) < di(w). The
orientations induced by d1 and d2 on the edges in E1∩E2, however, may differ. Replacing
a single edge with two opposite arcs interferes with the preservation of disjointness.
Therefore, we substitute edges with ambiguous orientation by a (standard) gadget which
preserves disjoint paths. It is depicted in Figure 3.5. The gadget for an edge {v, w} ∈ E
contains a unique v-w path and a unique w-v path. These correspond to the two opposite
orientations of {v, w}. Note that these two paths share a common arc in the gadget.

32

3.4 Undirected Disjoint Shortest Paths

v w`v,w v w

1
3`v,w

1
3`v,w

1
3`v,w

1
3`v,w

1
3`v,w

Figure 3.5: The gadget (right) for resolving the ambiguity in the orientation of an edge (left).

Hence, the gadget cannot be traversed by more than one arc/edge-disjoint path. Further,
both paths between v and w in the gadget consist of exactly three arcs. Setting the length
of all arcs the gadget to 1

3`v,w preserves the distances between v and w. Thus, the distance
functions di can be extended to the new vertices introduced with gadgets.
In the oriented graph, we distinguish between arcs the orientation of which is based

on d1 or d2. We denote these sets of arcs by A1 and A2, respectively. For i ∈ [2],
the set Ai contains all arcs that result from orienting edges in Ei. Let {v, w} ∈ Ei
with di(v) < di(w). For {v, w} ∈ Ei, the set Ai contains the arc (v, w) if and only if
either {v, w} ∈ E14E2 or the orientations induced by d1 and d2 agree. If {v, w} ∈ E1∩E2

and the orientations induced by d1 and d2 differ, A1 and A2 contain all arcs of the unique
v-w path and the unique w-v path in the gadget that replaces {v, w}, respectively.
An orientation is induced by the distances for edges with strictly positive lengths only.

Therefore, the set of edges with length zero E0 := {e ∈ E | `e = 0} is left unoriented and
dealt with separately.
This finishes the description of the graph transformation. We summarize it in the

following definition.

Definition 3.5 (Partial orientation). Let G = (V,E) be an undirected graph, s ∈ V 2

be a pair of sources and sinks, and ` ∈ RE≥0 be nonnegative edge lengths. The partial
orientation of G with respect to s and ` is the graph

−⇀
G := (W,E0∪A1∪A2) where W is

the set of vertices V augmented with additional vertices introduced with gadgets, and E0,
A1, and A2 are as defined in the preceding paragraphs.

As described above, the distance functions of the original graph G can be extended to
the augmented vertex set of

−⇀
G. For i ∈ [2] and v ∈ W \ V , we set di(v) to the length of

a shortest si-v path in
−⇀
G, respectively.

The partial orientation of the example from Figure 3.6a is depicted in Figure 3.6b. Its
decomposition is illustrated in Figure 3.6c. As we discuss the existence of two arc/edge-
disjoint paths restricted to different arc and edge sets in

−⇀
G, we introduce a variant of the

disjoint paths relation.

Definition 3.6 (Two disjoint paths relations). Let G = (V,Æ) be a mixed graph,
and Æ1,Æ2 ⊆ Æ be two subsets of arcs and edges. For v, w ∈ V 2, we write v�Æ1

Æ2
w if

there exist a v1-w1 path in Æ1 and a w2-v2 path in Æ2 which are arc/edge-disjoint. If
Æ1 and Æ2 agree, we write �Æ1

instead of �Æ1
Æ2

.

33

Chapter 3 Two Disjoint Shortest Paths

s1

s2

t1

t2
1

1

1

1

0

1

1

1

0

1

1

1

1

3

3

(a) An undirected graph with annotated edge
lengths. The shortest path networks E1 and E2

agree (solid edges).

s1

s2

t1

t2

(b) The graph’s partial orientation consisting of
the arcs A1 (yellow), the arcs A2 (violet), and the
edges E0 (black).

s1 s2

t1t2

(d1 − d2)(•) = −1 (d1 − d2)(•) = 0 (d1 − d2)(•) = 1

(c) The weakly connected components of
(
W,E0 ∪ (A1 ∩ A2)

)
ordered nondecreasingly with respect to

d1 − d2. The s1-t1 path (yellow) traverses the components in that order. The s2-t2 path (violet) visits
them in the reverse order.

Figure 3.6: Exemplary construction of a partial orientation.

With the help of this notation, we can express the equivalence of the original and
the transformed disjoint paths problems. The partial orientation does not only preserve
shortest paths but isolates them. Edges outside the shortest path networks are not
included. Note that the direction of the paths between the components of the related
pairs is opposite.

34

3.4 Undirected Disjoint Shortest Paths

Lemma 3.7 (Paths in the partial orientation). Let G = (V,E) be an undirected graph,
s ∈ V 2 be a pair of sources, and ` ∈ RE≥0 be nonnegative edge lengths. Further, let
−⇀
G = (W,E0 ∪A1 ∪A2) denote the partial orientation of G with respect to s and `. Then
for every t ∈ V 2, we have s `

⇒E t if and only if
(
s1
t2

)
�E0∪A1
E0∪A2

(
t1
s2

)
.

Proof. We transform edge-disjoint paths in G to the corresponding arc/edge-disjoint
paths in

−⇀
G by orienting edges, and vice versa.

Orienting paths. Assume there exist two edge-disjoint paths P1 and P2 such that Pi
is a shortest si-ti path with respect to ` in G for i ∈ [2]. By definition, Pi ⊆ Ei holds for
both i ∈ [2]. Every edge with nonzero length in Pi is replaced by the respective oriented
arc or path in the respective gadget. We call the resulting path

−⇀
P i. Observe that

−⇀
P i

is indeed a path in E0 ∪ Ai. This is due to Pi being a shortest path in Ei. Hence, the
orientation of Ai agrees with the direction of Pi and

−⇀
P . The two paths

−⇀
P 1 and

−⇀
P 2 are

arc/edge-disjoint as different edges are replaced by disjoint (sets of) arcs.

Disorienting paths. Assume there are arc/edge-disjoint paths
−⇀
P 1 and

−⇀
P 2 such that

−⇀
P i

is an si-ti path in E0 ∪Ai for both i ∈ [2]. For every gadget that
−⇀
P i passes through, we

replace the subpath of
−⇀
P i within the gadget by the corresponding edge in Ei. All arcs

outside of gadgets are substituted by their respective undirected edges in Ei. We call
the resulting path Pi. It is a shortest path in G, as

−⇀
P i uses only arcs and edges from

E0 ∪ Ai. Further, the two obtained paths P1 and P2 must be edge-disjoint because
−⇀
P 1

and
−⇀
P 2 are arc/edge-disjoint. �

3.4.2 Disjoint Paths in the Partial Orientation

The partial orientation uses orientation of the edges in order to enforce shortest paths
as highlighted by Lemma 3.7. The paths of the two source-sink pairs are restricted
to the two different sets of arcs and edges E0 ∪ A1 and E0 ∪ A2. In order to obtain
disjointness of the two paths, we need to pay attention to the intersection of these sets,
that is, E0 ∪ (A1 ∩A2). The following lemma sheds light on the special structure of this
intersection which we can exploit algorithmically.

Lemma 3.8 (Structure of the partial orientation). Let G = (V,E) be an undirected
graph, s ∈ V 2 be a pair of sources, and ` ∈ RE≥0 be nonnegative edge lengths. Further,
let
−⇀
G =

(
W,E0 ∪ A1 ∪ A2

)
be the partial orientation of G with respect to s and `.

If W =
⋃· hj=1Wj is the partition of the augmented vertex set W into the vertex sets of

the h weakly connected components of the subgraph
(
W,E0 ∪ (A1 ∩A2)

)
, then

(i)
−⇀
G[Wj] is weakly acyclic for all j ∈ [h],

(ii)
−⇀
G[Wj] contains no arcs from A1 4A2 for all j ∈ [h],

(iii) sorting the connected components Wj , j ∈ [h] in
−⇀
G nondecreasingly with respect to

d1 − d2 simultaneously yields a topological ordering of (W,E0 ∪A1)/{W1, . . . ,Wh}
and a reverse topological ordering of (W,E0 ∪A2)/{W1, . . . ,Wh}.

35

Chapter 3 Two Disjoint Shortest Paths

Algorithm 2: Dynamic program for the two disjoint shortest paths problem with
nonnegative edge lengths

Input: undirected graph G = (V,E), pairs of sources and sinks s, t ∈ V 2,

nonnegative edge lengths ` ∈ RE≥0

Output: s `
⇒E t

1 Construct
−⇀
G = (W,E0 ∪A1 ∪A2) for G with respect to s and `;

2 Find weakly connected components W1, . . . ,Wh of
(
W,E0 ∪ (A1 ∩A2)

)
sorted

nondecreasingly with respect to d1 − d2;

3 for j = 1, . . . , h do compute �−⇀
G[Wj]

and �
δ−A1

(Wj)

δ+
A2

(Wj)
;

4 Initialize � to the identity relation
{

(v, v)
∣∣ v ∈W 2

}
;

5 for j = 1, . . . , h do update � to �−⇀
G[Wj]

◦�
δ−A1

(Wj)

δ+
A2

(Wj)
◦�;

6 return s� t;

Proof. We deduce the statements from the monotonicity of d1 and d2 along arcs and
edges. Consider the function d1 − d2 on the vertex set of

−⇀
G. For (v, w) ∈ A1 \ A2, the

definitions of the arc sets give d1(w) = d1(v)+`v,w and d2(w) < d2(v)+`v,w. Subtracting
these (in)equalities yields that d1 − d2 is strictly increasing along arcs in A1 \ A2. By
symmetry, d1 − d2 strictly decreases along arcs in A2 \ A1. It can be shown in a similar
manner, that d1−d2 is constant along edges in E0 and arcs in A1∩A2. As an immediate
consequence, it is constant onWj for every j ∈ [h] and the statement (ii) is true. Together
these monotonicities of d1 − d2 imply (iii). The distance functions d1 and d2 are strictly
increasing along arcs in A1 ∩A2, while they are constant along edges in E0. Thus, there
cannot be a cycle within

−⇀
G[Wj] that contains an arc from A1 ∩A2. The characterization

following Definition 3.3 then implies the statement (i). �

This structural result allows to apply Theorem 3.2 to the two disjoint paths relation on
−⇀
G. Strictly speaking, the relation �E0∪A1

E0∪A2
is more specific than the disjoint paths relation

covered by the theorem. Its statement still extends as the partition and concatenation
of paths preserves them being part of E0 ∪ A1 or E0 ∪ A2. We obtain that �E0∪A1

E0∪A2
can

be decomposed into

�−⇀
G[Wh]

◦�
δ−A1

(Wh)

δ+
A2

(Wh)
◦�−⇀

G[Wh−1]
◦ · · · ◦�

δ−A1
(W3)

δ+
A2

(W3)
◦�−⇀

G[W2]
◦�

δ−A1
(W2)

δ+
A2

(W2)
◦�−⇀

G[W1]
.

Algorithm 2 therefore works in a very similar way to Algorithm 1. The arcs and edges
that both (oriented) shortest path networks have in common are treated separately from

36

3.4 Undirected Disjoint Shortest Paths

V1 Vj−1 Vj

v1

v2

w2

�G[Vj−1] ◦ · · · ◦�
δ−A1

(V2)

δ+
A2

(V2)
◦�G[V1] �

δ−A1
(Vj)

δ+
A2

(Vj) �G[Vj]

Figure 3.7: In the j-th iteration of Line 5 in Algorithm 2, the relation � is extended by

concatenating previously computed paths with arcs from the disjoint sets δ−A1
(Vj) and δ+

A2
(Vj),

and arc/edge-disjoint paths in G[Vj]. The path for the first component is extended by appending

to its end. The path for the second component is extended by prepending to is beginning.

their individual parts. Lemma 3.8 shows that the common parts are weakly acyclic
mixed graphs which are connected by a directed acyclic structure when restricting to
A1 or A2. Therefore, Algorithm 1 is applied to compute the disjoint paths relation on
the common parts. Again, the disjoint paths relation between them have a very simple
structure. Dynamic programming is applied to compose the relations on all parts to
compute �E0∪A1

E0∪A2
on successively larger parts of

−⇀
G; see Figure 3.7. Note that we do not

fully recover `
⇒E as the partial orientation

−⇀
G is constructed with respect to s.

Theorem 3.9 (Correctness and complexity). Given an undirected graph G = (V,E)
with nonnegative edge lengths ` ∈ RE≥0 and s, t ∈ V 2, Algorithm 2 decides s `

⇒E t in
polynomial time.

Proof. Let W =
⋃· hj=1Wj be the partition of W into the vertex sets of the h weakly

connected components of the subgraph (W,E0∪(A1∩A2)) as computed by the algorithm.
Lemma 3.8 (iii) shows that the Wj ’s are simultaneously sorted in topological order with
respect to (W,E0 ∪ A1)/{W1, . . . ,Wh} and in reverse topological order with respect to
(W,E0 ∪A2)/{W1, . . . ,Wh}.

Correctness. For i ∈ [2] and j ∈ {0, . . . , h}, set Æ(j)
i to be the arcs of Ai and edges

of E0 in the induced subgraph
−⇀
G
[⋃j

l=1Wl

]
. In particular, we have Æ0

i = ∅. As already
discussed Theorem 3.2 can be extended in a straightforward manner to apply to �E0∪A1

E0∪A2
.

It follows by induction that � equals �Æ(j)
1

Æ(j)
2

after the j-th iteration of Line 5. Therefore,

it is �−⇀
G

in Line 6. Lemma 3.8 now implies correctness of Algorithm 2.

Complexity. As for the running time, finding the weakly connected components and
sorting them nondecreasingly with respect to d1 − d2 can be done in polynomial time.
Computing the relations �−⇀

G[Wj]
also can be done efficiently as we have shown in The-

orem 3.4. Finally, the binary relations on V 2 have at most |V |4 elements. Therefore,
composing a polynomial number of them takes only polynomial time. In total, the run-
ning time of the algorithm is polynomial in the input size. �

37

Chapter 3 Two Disjoint Shortest Paths

Similar to Algorithm 1, also Algorithm 2 can be adapted to decide the existence of
two vertex-disjoint shortest paths in undirected graphs. The changes are the same. The
construction of the partial orientation can be even simplified. The gadget in Figure 3.5
is not necessary. It suffices to introduce two opposite arcs instead as only one of them
can be used by two vertex-disjoint paths.

3.5 Closing Remarks

In this chapter, we facilitate an acyclic decomposition of graphs in order to develop
efficient algorithms for disjoint paths problems. Applying this decomposition twice allows
us to solve the two disjoint shortest paths problem in polynomial time. Interestingly, the
known results on the undirected disjoint shortest paths problem do not show a separation
of the complexities for k = 2 and fixed k ≥ 3. The techniques used in Section 3.4,
however, do not seem to extend beyond k = 2. They heavily rely on the acyclicity of
(W,E0∪A1)/{W1, . . . ,Wh} and (W,E0∪A2)/{W1, . . . ,Wh} as established by Lemma 3.8.
It is not clear what a corresponding decomposition would look like for k = 3.
The most apparent unsolved questions on the complexity of the disjoint shortest paths

problem are represented by the gaps in Table 3.1. In terms of the treatment of zero-
length edges, a first step might be combining our techniques with those from Bentert
et al. (2021) and Lochet (2021). This might allow to tackle instances of binary edge
lengths. The case ` ≥ 0 seems to necessitate the understanding of arbitrary positive edge
lengths first for k ≥ 3. Another interesting open problem is the shortest two disjoint
paths problem beyond the case ` ≡ 1.

38

Chapter 4

Dynamic Equilibria under the Fluid
Queuing Network

In this chapter, we consider dynamic equilibria for flows over time under the fluid
queuing model. In this model, queues on the links of a network take care of flow
propagation. Flow enters the network at a single source and leaves at a single sink. In a
dynamic equilibrium, every infinitesimally small flow particle reaches the sink as early as
possible given the pattern of the rest of the flow. While this model has been examined
for many decades, progress has been relatively recent. In particular, the derivatives of
dynamic equilibria have been characterized as thin flows with resetting, which allowed
for more structural results.
Our two main results are based on the formulation of thin flows with resetting as

linear complementarity problem and its analysis. We present a constructive proof
of existence for dynamic equilibria if the inflow rate is right-monotone. The complexity
of computing thin flows with resetting, which occurs as a subproblem in this method, is
still open. We settle it for the class of series-parallel networks by giving a recursive
algorithm that solves the problem for all flow values simultaneously in polynomial time.

Authorship. This work has been previously published by the author of this thesis (2022).
The presentation in this chapter coincides largely with the article.

Outline. This chapter is organized as follows. Section 4.2 introduces the fluid queuing
model and the notion of a dynamic equilibrium in a more formal manner. The most
important known results for our purposes are stated. This is continued in Section 4.3
in which the concept of a normalized thin flows with resetting is defined, and known
characterizations are given. In Section 4.3, we further examine normalized thin flows with
resetting parametrized by the flow value, which is needed in the subsequent two sections.
Section 4.4 generalizes the known constructive proof of the existence of dynamic equilibria
to be able to cope with right-monotone, locally integrable inflow rates. In Section 4.5,
we consider the computation of normalized thin flows with resetting. We prove that this
computation can be done efficiently for two-terminal series-parallel networks. Finally,
Section 4.6 finishes with some concluding remarks.

39

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

4.1 Introduction

Systems with large temporal fluctuation, as it emerges for example in road traffic, cannot
be adequately captured by models based on static flows. This shortcoming is already
addressed by Ford and Fulkerson (1962), who look at flow that travels through a network
at a (finite) speed. In their basic model for flows over time, the network is defined
on a directed graph. Each arc represents a link with some constant delay and capacity.
Many optimization problems in this model are well-understood.
The fluid queuing model, as considered already by Vickrey (1969) in the context

of transportation investments, builds upon this model and allows to study flow which
exhibits selfish behavior. Each link in the network is equipped with a fluid queue at its
entrance. If the capacity constraint for a link is violated, the excess flow is collected in its
queue. Consequently, waiting in the queue imposes additional delay for flow to traverse
a link. For a given inflow rate at the source, each infinitesimally small flow particle
is considered a player in a routing game over time who tries to reach the sink in
the shortest possible time. Under this assumption, a dynamic equilibrium describes a
state of the system in which no player has an incentive to deviate. Each player is assumed
to have full information. Hence, they anticipate the behavior of other flow particles and
the state of the fluid queues at the respective moment they would reach the queues. As
the queues respect the first in, first out principle, there cannot be overtaking of particles
in a dynamic equilibrium. Therefore, the shortest path for a particle entering at the
source is determined by all the flow which has entered before.

4.1.1 Related Literature

We give an overview of the literature on the topic. Before summarizing the existing
findings on the fluid queuing model, we present some major results on optimization
problems dealing with flows over time.

Flow over time. Many optimization problems in the context of flow over time are well
understood. Computing the maximum amount of flow that can be sent from a source to
a sink within a given time horizon is efficiently solved by Ford and Fulkerson (1958). The
authors show that the maximum s-t flow over time problem always has an optimal
solution with a simple structure. It is based on a static path flow and is called temporally
repeated flow.
Switching the roles of the flow value and time horizon yields another problem which

is the quickest s-t flow problem. It asks for the smallest time horizon in which a given
amount of flow can be sent from a source to a sink. An optimal temporally repeated flow
to this problem can be found by a parametric search and iterative maximum s-t flow
over time computations. Burkard, Dlaska, and Klinz (1993) obtain a strongly polyno-
mial algorithm by applying the discrete Newton method of Megiddo (1978, 1979). The
fastest currently known strongly polynomial algorithm is due to Saho and Shigeno (2017).
Allowing more sources and sinks (of a single commodity) results in the quickest trans-
shipment problem. Hoppe and Tardos (1995, 2000) show that there are still optimal

40

4.1 Introduction

(generalized) temporally repeated flows for this problem when the path decomposition of
the underlying static flow allows paths in the residual network. Their algorithm exten-
sively uses parametric submodular minimization, which results in a high running time.
This is significantly improved by Schlöter, Skutella, and Van Tran (2021).
An s-t flow over time which is a maximum s-t flow over time for all time horizons (or

equivalently a quickest s-t flow for all flow values) is called an earliest arrival s-t flow.
Such flows over time are particularly interesting in the context of evacuation scenarios.
Gale (1959) shows their existence. Exact algorithms are given by Minieka (1973) and
Wilkinson (1971). The natural encoding of the output, however, can have exponential
size as illustrated by an example of Zadeh (1973). Therefore, it is unlikely that exact
polynomial-time algorithms exist. For this reason, the fully polynomial approximation
scheme by Hoppe and Tardos (1994) seems to be the most efficient possible. An exact
algorithm for the earliest transshipment problem in PSPACE is found by Schlöter
and Skutella (2017).
Computing a minimum-cost flow over time on the other hand is NP-hard even in

series-parallel networks as shown by Klinz and Woeginger (1995, 2004). Based on the
idea of condensed time expanded networks, Fleischer and Skutella (2007) devise a
fully polynomial approximation scheme.
Many of the mentioned results have been first obtained for a variant of the model

with discrete time steps. The corresponding results for the continuous time model are
due to Anderson and Philpott (1994) and Fleischer and Tardos (1998). For more details
on flows over time, see the introductory article by Skutella (2009) and the survey by
Kotnyek (2003).

Dynamic traffic assignment. Traffic planners tend to base their decisions on complex
simulations. The theory regarding the existence and computation of dynamic equilibria,
however, has not caught up on the complexity of the models in use (see the report by
Cominetti, Harks, Osorio, and Peis (2018)). The broad class of computational problems
related to traffic models is referred to as traffic assignment problems, as introduced
by Merchant and Nemhauser (1978a,b). In particular, it contains the problem at hand.
An overview of the topic is available by Peeta and Ziliaskopoulos (2001).

Dynamic equilibria under the fluid queuing model. The concept of dynamic equilibria
dates back to Vickrey (1969) and Yagar (1971). Existence of dynamic equilibria for a class
of models related to the one described above was shown by Zhu and Marcotte (2000).
The work by Meunier and Wagner (2010) concerns a general framework for dynamic
congestion games. Their results regarding the existence of equilibria are the first to apply
to the model as defined above. The involved methods, however, are nonconstructive. The
basis for a constructive proof of existence of dynamic equilibria and further insights into
their nature is provided by Koch and Skutella (2009, 2011). These authors establish
a specific structure of the derivatives of dynamic equilibria which they call thin flows
with resetting. Based on this, they suggest a method to compute a dynamic equilibrium
for constant inflow rates by integrating over thin flows with resetting. The integration

41

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

is done in phases during which the derivative stays constant. One such step is called
α-extension.
Cominetti, Correa, and Larré (2011, 2015) refine the notion of thin flows with resetting

to normalized thin flows with resetting and prove their existence and the uniqueness
of the associated labels. This turns the α-extension into a constructive proof of existence
of dynamic equilibria for piecewise constant inflow rate. The authors augment this by also
showing existence for inflow rates in Lp(0, T), where 1 < p < ∞, T ≥ 0, via variational
inequalities (also for multiple origin-destination pairs). Sering and Skutella (2018) obtain
an algorithmic approach for a multiple-source multiple-sink setting, in which the inflow
rates at the sources are constant and the inflow of every source is routed to the sinks
proportionally with respect to a global pattern. Pham and Sering (2020) extend the
results to the setting of time-dependent capacities and transit times.

Behavior of dynamic equilibria. The model allows notions of a price of anarchy with
respect to various objectives for the social optimum. First results are given by Koch and
Skutella (2009, 2011). They show that the price of anarchy with respect to a maximum
flow over time is unbounded.
Bhaskar, Fleischer, and Anshelevich (2011, 2015) analyze the price of anarchy with

respect to a quickest flow over time in a Stackelberg game. By reducing the capacities of
the links, a leader can ensure that a fixed amount of flow in a dynamic equilibrium reaches
the sink within a factor of e

e−1 compared to the time it would take in a social optimum of
the original network. Further progress on this price of anarchy is made by Correa, Cristi,
and Oosterwijk (2019), who prove a bound of e

e−1 under weaker assumptions, which get
dispensable if a certain monotonicity conjecture holds.
For static routing games, Braess (1968) shows that the introduction of additional links

in a network can decrease the quality of an equilibrium. This phenomenon is since known
as Braess’s paradox. Macko, Larson, and Steskal (2010, 2013) show that the model at
hand exhibits this behavior as well even in series-parallel networks.
Cominetti, Correa, and Olver (2017) consider the long-term behavior of dynamic equi-

libria. They show that for constant inflow rates the queues stay constant after a finite
amount of time (given a necessary condition). At the same time, they give a small series-
parallel network capturing distinctive phenomena of dynamic equilibria. In particular,
the flow in a dynamic equilibrium over some cut can exceed the constant inflow rate
(within a bounded time interval).

Variants of the model. Methods similar to the ones applied to the model at hand were
successfully used on related models. Sering and Vargas Koch (2019) investigate a variant
of the fluid queuing model in which the total amount of flow on a link at any point in
time is bounded. If links fill up, congestion is propagated backwards across vertices to
their incoming links, which is called spillback. Israel and Sering (2020) examine the
impact of this model augmentation on the price of anarchy.
Graf and Harks (2019) and Graf, Harks, and Sering (2020), on the other hand, achieve

existence results for a different concept of so-called instantaneous dynamic equilibria

42

4.2 The Fluid Queuing Model and Dynamic Equilibria

in the fluid queuing model. It captures the scenario in which players do not have full
information.

4.1.2 Our Contribution

We linearize a known (nonlinear) complementarity problem by Cominetti, Correa, and
Larré (2011) and use it to examine normalized thin flows with resetting and their de-
pendency on the flow value (which is determined by the inflow rate). This enables us
to generalize the α-extension to a larger class of inflow rates, namely right-monotone,
locally integrable functions. Here, a function is right-monotone if each point is the
lower end point of a closed interval on which the function is monotone. We also use
our new insights into the properties of normalized thin flows with resetting to tackle
their computation. This subproblem in the α-extension is known to be in PPAD, and
it remains unclear whether it lies in P. We settle the computational complexity for the
class of series-parallel networks by giving a polynomial-time algorithm that solves the
problem for all flow values simultaneously.

4.2 The Fluid Queuing Model and Dynamic Equilibria

Throughout this chapter, we consider a network which is given by a directed graph
G = (V,A), positive arc capacities ν ∈ RA>0, and nonnegative delays τ ∈ RA≥0. We
assume that there is no (directed) cycle C ⊆ A in G with zero total transit time, that is,
τ(C) = 0. An exemplary network is depicted in Figure 4.2.
Let s ∈ V be the source and t ∈ V be the sink of a single commodity. We assume

that there is a (directed) s-v path in G for every vertex v ∈ V . This is without loss
of generality, as flow emanating from s can only reach these vertices. Further, the rate
at which flow enters the network at the source s at any point in time is described by a
nonnegative function ν0 ∈ L1

loc(R) that vanishes almost everywhere on R<0. LetN0 : R→
R≥0 denote the cumulative inflow, that is, N0(ϑ) =

∫ ϑ
0 ν0(θ) dθ for every ϑ ∈ R. Then,

N0 is locally absolutely continuous, that is, it is absolutely continuous on every bounded
interval.

A flow over time in the network is defined by two functions f+, f− : R→ RA≥0 which
vanish almost everywhere on R<0. For any a ∈ A, we denote by f+

a the function that
maps ϑ ∈ R to the component a of f+(ϑ), that is, f+

a (ϑ) =
(
f+(ϑ)

)
a
. An analogous

notation is used for f− and other vector-valued functions. For a ∈ A, the functions
f+
a and f−a have to be locally integrable and represent the inflow and outflow rates
of arcs, respectively, in dependency on the time. Define the cumulative flow functions
F+, F− : R→ RA≥0 by

F+
a (ϑ) :=

∫ ϑ

0
f+
a (θ) dθ and F−a (ϑ) :=

∫ ϑ

0
f−a (θ) dθ for all a ∈ A and ϑ ∈ R.

In the following, we describe the dynamics of the fluid queuing model, that is, the con-
ditions a flow over time has to satisfy in order to obey the model. Each link represented

43

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

za(ϑ)

f+
a (ϑ) f−a (ϑ)

qa(ϑ) τa

νa

qa(ϑ) τa

v w

Figure 4.1: A link (left) represented by an arc a = (v, w) ∈ A with transit time τa, capacity
νa, inflow rate f+

a , outflow rate f−a , queue length za, and queuing delay qa. We use a simplified

representation (right).

by an arc a ∈ A has a fluid queue at its entrance. The inflow and the outflow rate of
a are related by the dynamics of that queue; see Figure 4.1. Flow that enters the link
first has to pass through the queue before it may traverse it. The capacity of the arc
limits the rate at which flow can leave the queue. After leaving, it takes the flow exactly
τa units of time to traverse the link. We assume that queues initially are empty and
operate at capacity, that is, as much flow as the capacity permits leaves the queue.
Let za : R → R≥0 be the function that describes the cumulative flow which resides in
the queue of a in dependency on the time. Therefore, za is the unique locally absolutely
continuous solution (see, e.g., Filippov 1988, p. 106) to

za ≡ 0 on R≤0 and dza
dϑ (ϑ) =

{[
f+
a (ϑ)− νa

]
+

if za(ϑ) ≤ 0

f+
a (ϑ)− νa if za(ϑ) > 0

for a.e. ϑ ≥ 0. (QD)

As flow takes exactly τa units of time after leaving the queue to traverse a, we require
for all times ϑ ∈ R that za(ϑ) = F+

a (ϑ) − F−a (ϑ + τa) holds. Together with (QD) this
determines the outflow rate of a ∈ A as

f−a (ϑ+ τa) = f+
a (ϑ)− dza

dϑ (ϑ) =

{
min

{
f+
a (ϑ), νa

}
if za(ϑ) = 0

νa if za(ϑ) > 0
for a.e. ϑ ∈ R.

Finally, we impose strict flow conservation at any vertex v ∈ V \ {t} but the sink,
that is,

∑
a∈δ+(v)

f+
a (ϑ)−

∑
a∈δ−(v)

f−a (ϑ) =

{
ν0(ϑ) if v = s

0 if v ∈ V \ {s, t}
for a.e. ϑ ∈ R.

Any flow over time which obeys the queuing dynamics and strict flow conservation is
called feasible in the following.
The above defines the model from a cumulative point of view. While it describes

feasible behavior of flow in its entirety, it does not keep track of single flow particles. In
the routing game that we are about to consider, each infinitesimally small flow particle
is considered a player and, therefore, must be trackable. In order to allow that, the first
in, first out principle is imposed on the queues. By doing so, the queuing delay on

44

4.2 The Fluid Queuing Model and Dynamic Equilibria

ν0 ≡ 1

τ = 4, ν = 1
3

τ
=

1,
ν

=
3

4

τ
=

1
2 , ν

=
1
3

τ = 3
2 , ν = 1

τ = 1
2 , ν = 1

3

τ
=

32 , ν
=

1

s

u

v

w

t

Figure 4.2: An exemplary network with transit times τ and capacities ν. The line widths are

proportional to the capacities. A constant inflow of rate ν0 ≡ 1 arrives at the source s and travels

towards the sink t.

4

1
6

1 1
2

3
2

1
2

32

s

u

v

w

t

(a) The flow over time at ϑ = 0.5.

4

1
3

1 1
2

3
2

1
2

32

s

u

v

w

t

(b) The flow over time at ϑ = 1.0.

4

1
2

1

5
8

1
2

3
2

1
2

32

s

u

v

w

t

(c) The flow over time at ϑ = 1.5.

4

2
3

1 5
4

1
2

3
2

1
2

32

s

u

v

w

t

(d) The flow over time at ϑ = 2.0.

Figure 4.3: A flow over time along the path s-u-v-t through the network depicted in Figure 4.2.

Every arc a is annotated with its respective queuing delay qa(ϑ) (if it is nonzero) and its transit

time τa. The relative contributions of qa(ϑ) and τa to the total transit time qa(ϑ)+τa is indicated
by a small gap in the link.

45

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

an arc a ∈ A which is experienced by flow entering it at time ϑ ∈ R is defined as

qa(ϑ) := min
{
q ≥ 0

∣∣ F−a (ϑ+ τa + q) ≥ F+
a (ϑ)

}
.

For queues operating at capacity, this evaluates to qa(ϑ) = za(ϑ)/νa. Thus, a particle
which enters an arc a ∈ A at time ϑ leaves it exactly at time Ta(ϑ) := ϑ+qa(ϑ)+τa. Based
on strict flow conservation at the vertices, flow that enters a path P =

{
a1, . . . , a|P |

}
at time ϑ reaches its end exactly at time `P (ϑ) := Ta|P | ◦ Ta|P |−1

◦ . . . ◦ Ta1(ϑ). Let Psv
denote the set of all s-v paths in G. The earliest time that a particle, which leaves the
source at time ϑ ∈ R, can reach v is `v(ϑ) := minP∈Psv `

P (ϑ). Every path attaining the
minimum is called a dynamic shortest s-v path relative to time ϑ.
Switching from this path-based definition to an arc-based view, ` : R → RV≥0 is deter-

mined by the Bellman equations

`s(ϑ) = ϑ and `w(ϑ) = min
a∈δ−(w)
a=(v,w)

Ta
(
`v(ϑ)

)
for all w ∈ V \ {s} and ϑ ∈ R. (BE)

The arcs for which the minima in (BE) are attained are called active relative to time ϑ.
An s-v path in G that uses only active arcs relative to ϑ is also a dynamic shortest
path relative to ϑ. Another type of arcs plays an important role in the model. An
arc (v, w) ∈ A with nonzero queue length at time `v(ϑ) is called resetting relative to
time ϑ. Note that q, T , and ` depend on the flow over time (f+, f−). Further, f+ can
be recovered from f+ and vice versa.
A feasible flow over time through the network from Figure 4.2 is illustrated in Fig-

ure 4.3. All flow travels along the path s-u-v-t. As the capacity of (s, u) is strictly below
the inflow rate, a queue keeps growing with constant rate. The arc (u, v) gives another
bottleneck, which is why it also grows a queue.
Interpreting each infinitesimally small flow particle in an s-t flow over time as a player

who wants to minimize her travel time from s to t defines a routing game over time. A
dynamic equilibrium is a flow over time in which no player can strictly decrease her
travel time by deviating on her own. A flow particle that starts at s at time ϑ ∈ R only
uses active arcs relative to ϑ and, therefore, reaches every vertex v on its path from s to
t as early as possible at time `v(ϑ). That way, no particle starting at s after time ϑ can
overtake and delay it. As players travel on dynamic shortest paths only, the dynamic
equilibrium follows the first principle of Wardrop (1952) and, thus, corresponds to a user
equilibrium of flow over time under the fluid queuing model.

Definition 4.1 (Dynamic equilibrium). A feasible flow over time (f+, f−) is a dynamic
equilibrium if for each arc a = (v, w) ∈ A the inflow rate f+

a vanishes almost everywhere
on the set {`v(ϑ) | a inactive relative to ϑ ∈ R}.

The flow over time in Figure 4.3 is not a dynamic equilibrium. For small ϑ ≥ 0, both
arcs on the path P =

{
(s, u), (u, v), (v, t)

}
are active. The queues on (s, u) and (u, v) grow

arbitrarily large as ϑ tends to infinity. Thus, `P (ϑ)− `s(ϑ) = +∞ for ϑ→ +∞. Due to
the empty arc (s, t), however, the earliest arrival time at t is bounded by `t(ϑ)−`s(ϑ) ≤ 4

46

4.2 The Fluid Queuing Model and Dynamic Equilibria

4

1
3

1 1
2

3
2

1
2

32

s

u

v

w

t

(a) The flow over time at ϑ = 1.0.

2
13

4

2
13

1

5
4

1
2

3
2

1
2

32

s

u

v

w

t

(b) The flow over time at ϑ = 2.0.

1
13

4

1
13

1

2

1
2

3
2

1
2

32

s

u

v

w

t

(c) The flow over time at ϑ = 3.0.

4

1

2

1
2

3
2

1
2

32

s

u

v

w

t

(d) The flow over time at ϑ = 4.0.

4

1
2

1
2

3
2

1
2

32

s

u

v

w

t

(e) The flow over time at ϑ = 5.0.

4

1

2

1
2

3
2

1
2

32

s

u

v

w

t

(f) The flow over time at ϑ = 6.0.

Figure 4.4: A dynamic equilibrium in the network depicted in Figure 4.2. The flow is colored

with respect to its phases. Within each phase, the flow pattern is the same. Every arc a is

annotated with its respective queuing delay qa(ϑ) (if it is nonzero) and its transit time τa. The
relative contribution of qa(ϑ) to the total transit time qa(ϑ) + τa is indicated by a small white

gap in the link.

for all ϑ ≥ 0. Hence, at some time (which is at ϑ = 1) one of the arcs on P becomes
inactive. Figure 4.4 shows a dynamic equilibrium in the same network. The coloring of
the flow highlights different behavior and becomes clear in the further discussion. Flow
leaving at the source in the time interval ϑ = [0, 1) (yellow) does take the same path as
all flow in Figure 4.3. Flow particles that leave the source at times ϑ = [1, 1.4) (violet),
however, travel along the arc (s, t) additional to the path P . After time ϑ = 1.4 all arcs

47

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

of the network are active. During the phase ϑ ∈ [1.4, 4.0) (green) the queue on the arc
(s, u) depletes. In the final phase (red) all queues are constant.
Definition 4.1 agrees with the one given by Cominetti, Correa, and Larré (2015). They

show that dynamic equilibria can be characterized in terms of cumulative flows and the
earliest times function as stated in the next lemma.

Lemma 4.2 (Characterization of dynamic equilibria). A feasible flow over time (f+, f−)
is a dynamic equilibrium if and only if F+

a

(
`v(ϑ)

)
= F−a

(
`w(ϑ)

)
for all a = (v, w) ∈ A

and ϑ ∈ R.

For a flow over time with earliest times function ` and a time ϑ ∈ R, we define the two
sets of arcs

A′ϑ :=
{
a = (v, w) ∈ A

∣∣∣ `w(ϑ) ≥ `v(ϑ) + τa

}
and

A∗ϑ :=
{
a = (v, w) ∈ A

∣∣∣ `w(ϑ) > `v(ϑ) + τa

}
.

The following descriptions of these arc sets by Cominetti, Correa, and Larré (2015)
give more intuition of their meaning. If ` is the earliest times function of a dynamic
equilibrium, A′ϑ and A∗ϑ are exactly the sets of active arcs relative to ϑ and resetting arcs
relative to ϑ, respectively, that is,

A′ϑ =
{
a = (v, w) ∈ A

∣∣∣ `w(ϑ) = Ta
(
`v(ϑ)

)}
and

A∗ϑ =
{
a = (v, w) ∈ A

∣∣∣ za(`v(ϑ)
)
> 0
}
.

A′ϑ and A∗ϑ are typically defined by these characterizations. We use the definition based
on ` only as we will need these arc sets for flows over time which are not in equilibrium
and, hence, for which the characterization does not hold.
A′ϑ and A∗ϑ are acyclic, as G does not contain cycles with total transit time zero. For

dynamic equilibria, we additionally know that A′ϑ contains an s-v path for every v ∈ V .
This follows from the above characterization of A′ϑ in a dynamic equilibrium and the
Bellman equations (BE). This makes the triple G′ϑ := (V,A′ϑ, A

∗
ϑ) a shortest path

graph with resetting in the following sense.

Definition 4.3 (Shortest path graphs with resetting). A shortest path graph with
resetting is a triple (V,A′, A∗) such that A∗ ⊆ A′ ⊆ V × V holds, A′ is acyclic, and A′

contains an s-v path for all v ∈ V .

4.3 Normalized Thin Flows with Resetting

This section summarizes and extends some properties of the derivatives of dynamic equi-
libria. Assume that (f+, f−) is a dynamic equilibrium. We define x : R → RA≥0 by
xa ≡ F+

a ◦ `v for all a = (v, w) ∈ A. From the strict flow conservation and Lemma 4.2,

48

4.3 Normalized Thin Flows with Resetting

it follows that for every ϑ ∈ R, the vector x(ϑ) is a static s-t flow in G as it satisfies

∑
a∈δ+(v)

xa(ϑ)−
∑

a∈δ−(v)

xa(ϑ) =
∑

a∈δ+(v)

F+
a

(
`v(ϑ)

)
−
∑

a∈δ−(v)

F−a
(
`v(ϑ)

)
=

{
N0(ϑ) if v = s

0 if v ∈ V \ {s, t}.

The functions x and ` are locally absolutely continuous. Due to the fundamental theo-
rem of calculus for the Lebesgue integral, the families x and ` are defined by the initial
conditions given by the empty network and their derivatives, which exist almost every-
where. The derivatives fulfill the following definition, which agrees with the definition
of normalized thin flows with resetting by Cominetti, Correa, and Larré (2015) with the
only difference that we do not fix the label of s to 1.

Definition 4.4 (Normalized thin flow with resetting). For a shortest path graph with
resetting G′ = (V,A′, A∗), a static s-t flow x′ ∈ RA′≥0 in (V,A′) is called a normalized
thin s-t flow with resetting in G′ if there exist labels `′ ∈ RV≥0 such that

`′w = min
a∈δ−

A′ (w)

a=(v,w)

%a
(
`′v, x

′
a

)
for all w ∈ V \ {s}, and

`′w = %a
(
`′v, x

′
a

)
for all a = (v, w) ∈ A′ with x′a > 0,

where the behavior of the labels along an arc a = (v, w) ∈ A′ is prescribed by the function

%a : R≥0 × R≥0 → R≥0, (`′v, x
′
a) 7→

{
max

{
`′v, x

′
a/νa

}
if a ∈ A′ \A∗

x′a/νa if a ∈ A∗.

Set x′ := dx/ dϑ+ and `′ := d`/ dϑ+ to be the right-derivatives of x and ` wherever
they exist, which is almost everywhere. Differentiating the flow conservation constraints
for x(ϑ) yields flow conservation for x′(ϑ). The Bellman equations (BE) and the comple-
mentarity conditions on a dynamic equilibrium imply that the flow x′(ϑ) is a normalized
thin s-t flow of value ν0(ϑ) with resetting in G′ϑ and has corresponding labels `′(ϑ). This
characterization of the derivatives was found by Koch and Skutella (2011) for a slightly
different notion of equilibria and investigated further by Cominetti, Correa, and Larré
(2015).
The dynamic equilibrium from Figure 4.4 features four phases of different shortest path

graphs with resetting G′ϑ. They are displayed in Figure 4.5 together with corresponding
thin flows with resetting.

4.3.1 A Linear Complementarity Problem

The complementarity conditions in Definition 4.4 make complementarity problems a
natural candidate for describing normalized thin flows with resetting. Cominetti, Correa,
and Larré (2011) take this approach with a nonlinear complementarity problem. The

49

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

1

1

1

0

1

1

4
3

3

4
3

3

(a) The thin flow with resetting for ϑ ∈ [0.0, 1.0).

1

1
2

1
2

1
2

0

1
2

1

2
3

3
2

2
3

3
2

(b) The thin flow with resetting for ϑ ∈ [1.0, 1.4).

1

4
13

9
13

413

5
13

4
13

513

1

12
13

12
13

12
13

12
13

(c) The thin flow with resetting for ϑ ∈ [1.4, 4.0).

1

1
4

3
4

1
3

5
12

1
3

512

1

1

1

1

1

(d) The thin flow with resetting for ϑ ∈ [4.0,+∞).

Figure 4.5: The thin flows with resetting in the four phases of the equilibrium depicted in

Figure 4.4. The nonresetting and resetting arcs in the shortest path network are drawn solid

and dashed, respectively. The vertices and arcs are annotated with the labels `′(ϑ) and the flow

x′(ϑ), respectively.

nonlinearities in it are caused by taking minima and maxima. We observe that those can
be resolved to linear complementarity conditions by introducing auxiliary variables.

Theorem 4.5 (Linear complementarity problem). Let G′ = (V,A′, A∗) be a shortest
path graph with resetting and ν ∈ RA′>0 be capacities. Further, let ν ′0 ≥ 0 be an inflow
rate and `′0 ≥ 0 a label. With the incidence matrix B of G′ and the diagonal matrix
D := diag(ν), define

M :=

1
>
s 0 0
0 BV \{s} 0

−
(
B+
)>

D−1 Id•,A′\A∗

−
(
B−•,A′\A∗

)>
D−1

A′\A∗,• Id

 .

For `′ ∈ RV , x′ ∈ RA′ , and y′ ∈ RA′\A∗ , the following two statements are equivalent.

(i) z′ := (`′, x′, y′) is a solution to the linear complementarity problem

z ≥ 0, Mz − `′01s − ν ′01t ≥ 0, z>
(
Mz − `′01s − ν ′01t

)
= 0 (LCP)

50

4.3 Normalized Thin Flows with Resetting

and additionally satisfies the normalization constraints

`′w ≥ min
v∈N−(w)

`′v for every w ∈ V \ {s} with δ−(w) ∩A∗ = ∅.

(ii) `′ are the corresponding labels of the normalized thin s-t flow x′ with resetting in G′

of value ν ′0 and label `′s = `′0, and y
′
a =

[
`′v −

x′a
νa

]
+
holds for all a = (v, w) ∈ A′\A∗.

For the index sets of the rows and columns of the matrix M , we use the slight abuse
of notation V ·∪A′ ·∪ (A′ \A∗). The disjoint union of A′ and A′ \A∗ refers to the fact that
we regard A′ \ A∗ as a copy of the respective subset of A′ in this context. To indicate
what row or column we refer to by an arc a, we explicitly distinguish between a ∈ A′ and
a ∈ A′ \ A∗. The former is associated with the variable x′a, while the latter corresponds
to y′a.

Proof. Interpreting solutions as thin flows. Let z′ = (`′, x′, y′) be a solution to
(LCP) which satisfies `′w ≥ minv∈N−(w) `

′
v for every w ∈ V \ {s} with δ−(w) ∩ A∗ = ∅.

The two complementary inequalities for `′s are `′s ≥ 0 and `′s ≥ `′0. As `′0 ≥ 0, the latter
has to be fulfilled with equality. For a = (v, w) ∈ A′ \A∗, the two inequalities associated
with y′a are y′a ≥ 0 and y′a ≥ `′v −

x′a
νa
. Together with the complementarity condition this

yields y′a =
[
`′v −

x′a
νa

]
+
.

Let w ∈ V . For a = (v, w) ∈ δ−(w), the inequality corresponding to x′a yields

`′w ≤
x′a
νa

= %a
(
`′v, x

′
a

)
if a ∈ A∗, and

`′w ≤
x′a
νa

+ y′a = max
{
`′v,

x′a
νa

}
= %a

(
`′v, x

′
a

)
if a 6∈ A∗.

In both cases, the inequality is guaranteed to be tight if x′a > 0 due to the complemen-
tarity conditions. It follows that `′w ≤ mina=(v,w)∈δ−(w) %

a
(
`′v, x

′
a

)
is valid and holds with

equality in case that δ−(w) ∩ A∗ 6= ∅ or
∑

a∈δ−(w) x
′
a > 0. Thanks to the normalization

constraints, we also obtain equality in the remaining case which is δ−(w) ∩ A∗ = ∅ and∑
a∈δ−(w) x

′
a = 0.

We are left to show strict flow conservation for w ∈ V \ {s}. If `′w > 0, it is im-
plied by the complementarity condition for `′w. Thus, we assume `′w = 0. For every
a = (v, w) ∈ δ−(w), we know from above that xa > 0 would imply 0 = `′w = %a

(
`′v, x

′
a

)
and, hence, the contradiction xa = 0. Assuming w = t and ν ′0 > 0, the inequality
corresponding to `′w yields the contradiction 0 ≤

∑
a∈δ+(t) x

′
a ≤

∑
a∈δ−(t) x

′
a − ν ′0 < 0.

Otherwise, the inequality corresponding to `′w yields
∑

a∈δ+(w) x
′
a ≤

∑
a∈δ−(w) x

′
a = 0. It

follows that x′a = 0 for all a ∈ δ(w) which fulfills strict flow conservation at w.
In total, `′ proves x′ to be a normalized thin s-t flow with resetting in G′ of value ν ′0 with
label `′s = `′0.

Interpreting thin flows as solutions. For the converse direction, let x′ be a normal-
ized thin s-t flow with resetting in G′ of value ν ′0 and corresponding labels `′ with `′s = `′0.
Set y′a :=

[
`′v −

x′a
νa

]
+

for all a = (v, w) ∈ A′ \ A∗. We will show that z′ := (`′, x′, y′) is

51

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

a solution to (LCP). z′ clearly is nonnegative. The complementarity condition for `′s is
fulfilled, as Ms,•z

′ = `′s = `′0. Also, the complementarity conditions for V \ {s} are met
since x′ is an s-t flow of value ν ′0 and, hence, MV \{s},•z

′ = BV \{s}x
′ = ν ′01t.

Let a = (v, w) ∈ A′. The inequality associated with x′a reads

`′w ≤
x′a
νa

= %a
(
`′v, x

′
a

)
if a ∈ A∗, and

`′w ≤
x′a
νa

+ y′a = max
{
`′v,

x′a
νa

}
= %a

(
`′v, x

′
a

)
if a 6∈ A∗.

In both cases, the respective inequality is valid due to the definition of normalized thin
flows with resetting. Further, equality is guaranteed if x′a > 0. This shows that the
complementarity conditions are satisfied for the variable x′a.
For a = (v, w) ∈ A′ \ A∗, the inequality corresponding to variable y′a reads y′a ≥ `′v −
x′a
νa
. This is clearly fulfilled by the above choice of y′. Further, y′a > 0 implies y′a =[

`′v −
x′a
νa

]
+

= `′v −
x′a
νa
. Therefore, the complementarity condition for y′a is satisfied as

well.
The normalization constraints in (i) hold due to the definition of normalized thin flows
with resetting. We conclude that (ii) implies (i). �

Theorem 4.5 shows that a solution (`′, x′, y′) to (LCP) is nearly a normalized thin flows
with resettings. Consulting its proof reveals that the normalization constraints in (i) are
only needed for w ∈ V \{s} such that δ−(w)∩A∗ = ∅ and

∑
a∈δ−(w) x

′
a = 0. In this case,

(LCP) allows all values 0 ≤ `′w ≤ minv∈N−(w) `
′
v while `′w = minv∈N−(w) `

′
v is necessary

for `′ to be the corresponding labels of x′. As similarly observed by Cominetti, Correa,
and Larré (2011) for their nonlinear complementarity problem, any solution to (LCP)
can be normalized to fulfill (i). For that purpose, we define a normalization function
π : RV → RV . Let `′ be the labels of a solution to (LCP). Fix an arbitrary topological
order of the vertices in G′ and successively set for w ∈ V in that order

πw(`′) =

{
max

{
`′w,minv∈N−(w) πv(`

′)
}

if w 6= s and δ−(w) ∩A∗ = ∅
`′w otherwise

.

Note that the definition is independent of the particular topological order that was chosen.

Lemma 4.6. The normalization function π : RV → RV as defined above satisfies

(i) `′ ≤ π(`′) for all `′ ∈ RV≥0, and

(ii) ‖π(`′′)− π(`′)‖∞ ≤ ‖`′′ − `′‖∞ for all `′, `′′ ∈ RV≥0.

Proof. (i) follows immediately from the definition of π. To see (ii), we prove by induction
on w ∈ V in topological order that |πw(`′′)− πw(`′)| ≤ ‖`′′ − `′‖∞. For w = s and all
w ∈ V such that δ−(w) ∩ A∗ 6= ∅, by definition πw(`′) = `′w and, hence, the statement
holds. For w ∈ V \{s} with δ−(w)∩A∗ = ∅, assume that the induction hypothesis holds

52

4.3 Normalized Thin Flows with Resetting

for all vertices v which are topologically preceding w. Then, the claim also holds for w
based on∣∣πw(`′′)− πw(`′)

∣∣ ≤ max
{∣∣`′′w − `′w∣∣, max

v∈N−(w)

∣∣πv(`′′)− πv(`′)∣∣} ≤ ∥∥`′′ − `′∥∥∞. �

Corollary 4.7 (Normalization). Let G′ = (V,A′, A∗) be a shortest path graph with reset-
ting and ν ∈ RA′>0 be capacities. Further, let ν ′0 ≥ 0 be an inflow rate and `′0 ≥ 0 a label.
If z′ = (`′, x′, y′) is a solution to (LCP), then π(`′) are the corresponding labels of the
normalized thin s-t flow x′ with resetting in G′ of value ν ′0 with label `′s = `′0.

Proof. Let z′ = (`′, x′, y′) be a solution to (LCP). Let z′′ = (`′′, x′′, y′′) be another
solution to (LCP) such that x′′ = x′, `′′ ≤ π(`′), and the set U := {v ∈ V | `′′v < πv(`

′)}
is inclusion-minimal. Note that z′′ exists since Lemma 4.6 guarantees that z′ is feasible
to the optimization problem defining z′′. As seen in the proof of Theorem 4.5 for a =
(v, w) ∈ A, the inequalities corresponding to xa for z′ and z′′ read `′w ≤ %a

(
`′v, x

′
a

)
and

`′′w ≤ %a
(
`′′v, x

′′
a

)
, respectively. Both hold with equality if a ∈ A∗ or x′a = x′′a > 0.

Assume U 6= ∅. From the definition of π, we obtain s 6∈ U . Let w ∈ U be topologically
minimal, in particular N−(w) ∩ U = ∅. Assume there is a = (v, w) ∈ δ−(w) such that
a ∈ A∗ or x′a > 0. Then

`′w = %a
(
`′v, x

′
a

)
≤ %a

(
πv(`

′), x′a
)

= %a
(
`′′v, x

′′
a

)
= `′′w < πw(`′)

shows a 6∈ A∗. But then

`′′w < πw(`′) = min
u∈N−(w)

πu(`′) = min
u∈N−(w)

`′′u ≤ `′′v = %a
(
`′′v, x

′′
a

)
contradicts the complementarity requirements.
We conclude that δ−(w)∩A∗ = ∅ and x′ vanishes on δ−(w). Since weak flow conservation
is part of (LCP), x′ vanishes on δ+(w) as well. Therefore, increasing `′′w and y′′a for all
a ∈ δ+(w) to minv∈N−(w) `

′′
v yields a solution to (LCP) with strictly smaller U and

contradicts the choice of z′′. Hence, U = ∅ and `′′ = π(`′) have to hold. Consequently,
z′′ =

(
π(`′), x′, y′′

)
also fulfills the normalization constraints in Theorem 4.5 (i) which

implies the statement. �

Corollary 4.7 allows us to use theory on linear complementarity problems to study
normalized thin flows with resetting. In the literature, results on linear complementarity
problems are typically stated in terms of the properties of their matrices. The next
theorem regards the sign of the principal minors of the matrix M from (LCP). We
need to clarify what is meant when speaking about the determinant of a square matrix
without a linear ordering of its index set. Let I be a finite index set of size k := |I|
and K ∈ RI×I be a square matrix. For an arbitrary permutation σ : [k] → I, define
det(K) := det

(
Kσ(i),σ(j)

)
i,j∈[k]

. Note that det(K) is independent of σ as the determinant
is invariant under symmetric permutation of the rows and columns.

53

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

Lemma 4.8 (Principal minors of M). Let G′ = (V,A′, A∗) be a shortest path graph
with resetting and ν ∈ RA′>0 be capacities. Further, let M be the corresponding matrix of
(LCP). Then, all principal minors of M are nonnegative.

The principal minors of M (in the algebraic sense) are closely related to the determi-
nants of the Laplacian matrix of the minors of G′ (in the graph theoretic sense). The
Laplacian matrix appears naturally due to is relation to the incidence matrix as discussed
in Section 2.2. Hence, the nonnegativity of the minors of M are ultimately based on the
same property of the minors of Laplacian matrices.

Lemma 4.9 (Principal minors of a Laplacian). All principal minors of a graph’s weighted
Laplacian matrix are nonnegative.

Proof. Let L ∈ RV×V be the weighted Laplacian of a directed graph G = (V,A′) with
weights ν ∈ RA′>0. For U ⊆ V , the principal submatrix LU,U is (weakly) column diagonally
dominant, as for every w ∈ U

Lw,w = ν
(
δ−A′(w)

)
≥

∑
v∈N−

A′ (w)∩U

νv,w =
∑

v∈U\{w}

|Lv,w|.

It follows by the Geršgorin circle theorem Geršgorin 1931 that all real eigenvalues of LU,U
are nonnegative and, hence, det

(
LU,U

)
≥ 0. �

Proof of Lemma 4.8. Let the principal submatrixMU ·∪X ·∪Y ofM be given by the index
sets U ⊆ V , X ⊆ A′, and Y ⊆ A′ \ A∗. We need to show det

(
MU ·∪X ·∪Y

)
≥ 0. If s ∈ U ,

a Laplacian expansion along the row of s shows det
(
MU ·∪X ·∪Y

)
= det

(
MU\{s} ·∪X ·∪Y

)
.

Hence, we can assume that s 6∈ U .

Carving out the Laplacian. Refining the block structure of MU ·∪X ·∪Y by partitioning
X into X \ Y and X ∩ Y yields

det
(
MU ·∪X ·∪Y

)
= det

0 BU,X\Y BU,X∩Y 0

−
(
B+
U,X\Y

)>
D−1

X\Y,X\Y 0 0

−
(
B+
U,X∩Y

)>
0 D−1

X∩Y,X∩Y IdX∩Y,Y

−
(
B−U,Y

)>
0 D−1

Y,X∩Y IdY,Y

 .

We multiply the rows in X \Y from the left by BU,X\YDX\Y,X\Y and subtract the result
from the rows corresponding to U . Further, we subtract the rows in X ∩ Y ⊆ Y from
the corresponding rows X ∩ Y ⊆ X. As these are unitary row operations under which
the determinant is invariant, it holds

det
(
MU ·∪X ·∪Y

)
= det

BU,X\YDX\Y,X\Y

(
B+
U,X\Y

)>
0 BU,X∩Y 0

−
(
B+
U,X\Y

)>
D−1

X\Y,X\Y 0 0

−
(
BU,X∩Y

)>
0 0 0

−
(
B−U,Y

)>
0 D−1

Y,X∩Y IdY,Y

 .

54

4.3 Normalized Thin Flows with Resetting

Symmetric rearranging of the rows and columns reveals the triangular block structure

det
(
MU ·∪X ·∪Y

)
= det

BU,X\YDX\Y,X\Y

(
B+
U,X\Y

)>
BU,X∩Y 0 0

−
(
BU,X∩Y

)>
0 0 0

−
(
B−U,Y

)>
D−1

Y,X∩Y IdY,Y 0

−
(
B+
U,X\Y

)>
0 0 D−1

X\Y,X\Y

 .

As discussed in Section 2.2, the matrix B•,X\YDX\Y,X\Y
(
B+
•,X\Y

)> is the weighted Lapla-
cian matrix of the graph H :=

(
V,X \Y

)
. Therefore, we will denote it by LH . Applying

the multiplicativity of the determinant for triangular block matrices results in

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
det

(
LHU,U BU,X∩Y

−
(
BU,X∩Y

)>
0

)
.

Dealing with incomplete arcs. If there exists a ∈ (X ∩Y)∩
(
(V \U)× (V \U)

)
, that

is, a ∈ X ∩ Y is not incident to any vertex in U , then BU,a = 0. Therefore, MU ·∪X ·∪Y is
singular in that case. On the other hand, assume there exists a ∈ (X ∩ Y) ∩ δ(U), that
is, there is exactly one u ∈ U which is incident to a ∈ X ∩ Y . Applying the Laplacian
expansion consecutively along the row a and column a yields

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
B2
u,a det

(
LHU\{u},U\{u} BU\{u},X∩Y

−
(
BU\{u},X∩Y

)>
0

)
.

As B2
u,a ≥ 0, we can assume that X ∩ Y ⊆ U ×U by using induction on |U |. Under this

assumption, if X ∩Y contains an undirected cycle, it follows that BU,X∩Y does not have
full column rank andMU ·∪X ·∪Y is singular. Thus, we additionally assume in the following
that X ∩ Y does not contain any undirected cycle.

Contracting the nonresetting arcs. Let U =
⋃̇
i∈[k]Ui and X ∩Y =

⋃̇
i∈[k]Yi give the

partition of (U,X∩Y) into its k ∈ N weakly connected components (U1, Y1), . . . , (Uk, Yk).
Then (Ui, Yi) is a tree when ignoring the orientation of the arcs for every i ∈ [k]. Fix
an arbitrary root vertex ri ∈ Ui for every i ∈ [k] and define the set R := {r1, . . . , rk}.
Refining the block structure of the remaining matrix by splitting U into U \ R and R
gives that

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
det

 LHU\R,U\R LHU\R,R BU\R,X∩Y
LHR,U\R LHR,R BR,X∩Y

−B>U\R,X∩Y −B>R,X∩Y 0

 .

For each i ∈ [k] and u ∈ Ui \ {ri}, we sequentially add row u to row ri and column u to
column ri. Note that the determinant is invariant under these unitary operations and the
resulting matrix does not depend on their order. The effect of the operations on LHU,U can
be interpreted as the contraction of arcs in the following sense. Let Ĥ := H/(X ∩ Y) be

55

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

the graph that results from contracting all arcs of X ∩ Y in H, and LĤ be its Laplacian
matrix. For every i ∈ [k], we identify ri with the vertex which results from contracting
Ui by Yi. As (Ui, Yi) is a weakly connected component with respect to X ∩ Y , we obtain
1
>
Ui
BU,X∩Y = 0 for all i ∈ [k]. Putting this together gives

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
det

 LHU\R,U\R ∗ BU\R,X∩Y

∗ LĤR,R 0

−B>U\R,X∩Y 0 0

 ,

where ∗ marks blocks the specific values of which are not relevant for our purposes. Since
the components (Ui, Yi) are trees, the matrix BU\R,X∩Y is square.

Concluding. By swapping the columns U \R with the columns X ∩ Y , we obtain

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
(−1)|X∩Y | det

BU\R,X∩Y ∗ LHU\R,U\R

0 LĤR,R ∗
0 0 −B>U\R,X∩Y

 .

Exploiting the triangular block structure again and applying Lemma 4.9 finally yields
the statement

det
(
MU ·∪X ·∪Y

)
= det

(
D
−1

X\Y,X\Y

)
det
(
BU\R,X∩Y

)2
det
(
LĤR,R

)
≥ 0. �

From Lemma 4.8, we obtain a proof for the existence of normalized thin s-t flows
with resetting. It is an alternative to the original proof by Cominetti, Correa, and Larré
(2015), which is based on an elegant application of Kakutani’s fixed point theorem.

Theorem 4.10 (Existence). Let G′ = (V,A′, A∗) be a shortest path graph with resetting
and let ν ∈ RA′>0 be capacities. For all given values ν ′0, `

′
0 ≥ 0, there exists a normalized

thin s-t flow with resetting of value ν ′0 in G′ and corresponding label `′0 at s.

Proof. Due to a result by Cottle et al. (2009, Theorem 3.9.22) and Corollary 4.7, it is
enough to show that z′ = 0 is the unique solution to (LCP) for ν ′0 = 0 and `′0 = 0,
and that its matrix M has only nonnegative minors. The latter is taken care of by
Lemma 4.8. For the flow rate ν ′0 = 0 and label `′0 = 0, the unique s-t flow x′ ≡ 0 is also
a normalized thin s-t flow with resetting in G′ with unique corresponding labels `′ ≡ 0.
By Theorem 4.5 and Corollary 4.7, z′ = 0 is therefore the unique solution to (LCP) for
these parameters. �

The proof of Theorem 4.10 uses the uniqueness of the solution z′ = 0 to (LCP) for
ν ′0 = 0 and `′0 = 0. Together with Lemma 4.8, it even proves the applicability of known
pivoting methods and iterative methods for linear complementarity problems to (LCP).
In particular, a result from Cottle et al. (2009, Theorems 4.4.8 and 4.4.11) shows that
Lemke’s algorithm can be used to find a normalized thin flow with resetting in finitely
many steps, when dealing with degeneracy appropriately (see Cottle et al. 2009, Section
4.9).

56

4.3 Normalized Thin Flows with Resetting

4.3.2 Parametric Normalized Thin Flows with Resetting

We want to examine the dependency of normalized thin flows with resetting on the flow
value and the label of s. The following proof for the monotonicity of the corresponding
labels in these two parameters is a refinement of the analysis that Cominetti, Correa,
and Larré (2015) use to show uniqueness of the labels (which is an immediate corollary
of the monotonicity).

Theorem 4.11 (Monotonicity of labels). Let G′ = (V,A′, A∗) be a shortest path graph
with resetting and ν ∈ RA′>0 be capacities. Further, let x′, x′′ be two normalized thin s-t
flows with resetting in G′ and let `′, `′′ be corresponding labels, respectively. If the flow
values fulfill |x′| ≤ |x′′| and the labels fulfill `′s ≤ `′′s, then `′ ≤ `′′ holds (element-wise).

Proof. Assume that `′s ≤ `′′s and |x′| ≤ |x′′| hold. We examine the thin flow with resetting
across the cut U :=

{
v ∈ V

∣∣ `′v > `′′v
}
and conclude that it has to be empty. Assume for

a contradiction that U 6= ∅.
We claim that x′a = x′′a for all a ∈ δA′(U). Assume again this is wrong. We know s 6∈ U

and, thus,∑
a∈δ+

A′ (U)

(x′a − x′′a)−
∑

a∈δ−
A′ (U)

(x′a − x′′a) =
∑
u∈U

((∑
a∈δ+

A′ (u)

x′a −
∑

a∈δ−
A′ (u)

x′a

)
−
(∑
a∈δ+

A′ (u)

x′′a −
∑

a∈δ−
A′ (u)

x′′a

))
≥ 0.

Therefore, there has to be a = (v, w) ∈ A′ such that a ∈ δ+
A′(U) and x′a > x′′a, or

a ∈ δ−A′(U) and x′a < x′′a. If a ∈ δ+
A′(U) then `′w = %a

(
`′v, x

′
a

)
> %a

(
`′′v, x

′′
a

)
≥ `′′w

which contradicts w /∈ U . If a ∈ δ−A′(U) then `′′w = %a
(
`′′v, x

′′
a

)
≥ %a

(
`′v, x

′
a

)
≥ `′w which

contradicts w ∈ U . Thus, x′ and x′′ agree on δA′(U).
As a consequence, δ−A′(U) ∩ A∗ = ∅ and %a

(
`′v, x

′
a

)
= `′v for all a = (v, w) ∈ δ−A′(U).

Since A′ is acyclic and s 6∈ U , there is w ∈ U such that ∅ 6= δ−A′(w) ⊆ δ−A′(U). Then,
w ∈ U contradicts

`′w = min
a∈δ−

A′ (w)

a=(v,w)

%a
(
`′v, x

′
a

)
= min
v∈N−(w)

`′v ≤ min
v∈N−(w)

`′′v ≤ min
a∈δ−

A′ (w)

a=(v,w)

%a
(
`′′v, x

′′
a

)
= `′′w. �

Corollary 4.12 (Uniqueness of labels). Let G′ = (V,A′, A∗) be a shortest path graph
with resetting and ν ∈ RA′>0 be capacities. The corresponding labels `′ of a normalized
thin s-t flows x′ with resetting in G′ are uniquely determined by its flow value |x′| and
the label `′s.

Example 4.13 (Nonuniqueness of thin flows). Consider the shortest path graph with
resetting G′ = (V,A′, A∗) consisting of the source s, the sink t, and two parallel nonreset-
ting arcs a and b from s to t, that is, V = {s, t}, A′ = {a, b} and A∗ = ∅. Note that the
network can be transformed to an equivalent instance without multi-arcs by introducing
additional vertices on arcs. Let ν ≡ 1. Then for every 0 ≤ x′a ≤ 1 setting x′b = 1 − x′a
defines a normalized thin s-t flow with resetting of value 1 in G′ with corresponding
labels `′s = `′t = 1.

57

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

Corollary 4.12 shows that the corresponding labels `′ of a normalized thin s-t flow
with resetting are uniquely determined by the label `′s and the flow rate ν ′0. In contrast
to that, Example 4.13 shows that the flow itself is not necessarily uniquely determined
by those parameters. In some sense, however, its nonuniqueness is the only kind that
can occur. The flow on a subset of arcs is uniquely determined by the labels. For every
a = (v, w) ∈ A′ \ A∗ with `′v < `′w and for every a = (v, w) ∈ A∗, it holds x′a = `′wνa.
For every a = (v, w) ∈ A′ \ A∗ with `′v > `′w on the other hand, x′a = 0. Therefore,
nonuniqueness can only arise in weakly connected components with respect to A′ \A∗ of
constant label.

The proof of Corollary 4.12 is combinatorial in nature and it is not clear whether a sim-
ilar result can be obtained by the means of linear complementarity problems. There are
results on the uniqueness of the solutions to linear complementarity problems. Those,
however, do not apply to (LCP). Apart from the discussed nonuniqueness of Exam-
ple 4.13, (LCP) suffers from a different kind which is the nonnormalized labels. The
latter can be addressed as discussed at the end of this section. Yet, it would only yield
uniqueness of the labels. To the knowledge of the author, there are no results on such
partial uniqueness in the general theory on linear complementarity problems.

The flow value ν ′0 appears in a linear way in (LCP). This allows to treat it as a
variable and get a new linear complementarity problem. Its set of solutions captures the
dependency of normalized thin flows with resetting on the flow value, which is analyzed
in the following lemmas and used in Sections 4.4 and 4.5.

Proposition 4.14 (Parametric thin flows with resetting). Let G′ = (V,A′, A∗) be a
shortest path graph with resetting and ν ∈ RA′>0 be capacities. Then there are continuous,
piecewise linear functions %G′ : R≥0 → RV≥0 and χG

′
: R≥0 → RA′≥0 such that, for all

ν ′0 ≥ 0, the vector χG′(ν ′0) is a normalized thin s-t flow with resetting of value ν ′0 in G′

and %G′(ν ′0) are corresponding labels with %G′s (ν ′0) = 1.

Proof. The labels. Define the function %G′ : R≥0 → RV≥0 by setting, for every ν ′0 ≥ 0,
the vector %G′(ν ′0) to be the corresponding labels of a normalized thin s-t flow with
resetting of value ν ′0 in G′ such that the corresponding label at s is 1. By Theorem 4.10
and Corollary 4.12, this is a sound definition. According to Cottle, Pang, and Stone
(2009, Theorem 7.2.1), the set of solutions to a linear complementarity problem depends
in a locally upper Lipschitz continuous way on its right-hand side as follows. Fix ν ′0 ≥ 0.
Let z′′ = (`′′, x′′, y′′) be a solution to (LCP) with ν ′0 replaced by another flow rate ν ′′0 ≥ 0.
There exists a constant C > 0 and ε > 0 such that |ν ′′0 − ν ′0| ≤ ε implies the existence
of a solution z′ = (`′, x′, y′) to (LCP) satisfying ‖z′′ − z′‖∞ ≤ C|ν ′′0 − ν ′0|. Together with
Lemma 4.6 and Corollary 4.7, it follows∥∥%G′(ν ′′0)− %G′(ν ′0)

∥∥
∞ =

∥∥π(`′′)− π(`′)
∥∥
∞ ≤

∥∥`′′ − `′∥∥∞ ≤ ∥∥z′′ − z′∥∥∞ ≤ C∣∣ν ′′0 − ν ′0∣∣,
58

4.3 Normalized Thin Flows with Resetting

that is, %G′ is locally Lipschitz continuous. In order to see piecewise linearity, we consider
a slight variant of (LCP) where ν ′0 is regarded a variable and `′0 is fixed to one, that is,

z ≥ 0,

(
0 0

−1t M

)
z − 1s ≥ 0, z>

((
0 0

−1t M

)
z − 1s

)
= 0. (LCP′)

Its set of solutions corresponds exactly to all sets of solutions to (LCP) with arbitrary flow
rate ν ′0 ≥ 0 and `′0 = 1. Then using again Lemma 4.6 and Corollary 4.7, the hypograph
of %G′ can be written as

hyp
(
%G
′)

= graph
(
%G
′)

+
(
{0} × RV≤0

)
=
{(
ν ′0, %

G′(ν ′0)
)
∈ R× RV

∣∣∣ ν ′0 ≥ 0
}

+
(
{0} × RV≤0

)
=
{(
ν ′0, π(`′)

)
∈ R× RV

∣∣∣ (ν ′0, `
′, x′, y′) solves (LCP′)

}
+
(
{0} × RV≤0

)
=
{(
ν ′0, `

′) ∈ R× RV
∣∣∣ (ν ′0, `

′, x′, y′) solves (LCP′)
}

+
(
{0} × RV≤0

)
By Cottle, Pang, and Stone (2009, p. 646), the first (Minkowski) summand of the right-
hand side is the union of finitely many polyhedra as it is the linear projection of the set
of solutions to a linear complementarity problem. Hence, the same holds for hyp

(
%G
′)

and graph
(
%G
′). This yields that %G′ must be piecewise linear.

The flow. We would like to define χG′ : R≥0 → RA′≥0 in a similar way as %G′ such that,
for every ν ′0 ≥ 0, the vector χG′(ν ′0) is a normalized thin s-t flow with resetting of value
ν ′0 in G′ that admits the corresponding label 1 at s. As Example 4.13 shows, the flow
values on the arcs are generally not unique. χG′ can be chosen in any way such that its
graph lies within the projection of the set of solutions to (LCP′) onto the flow rate ν ′0
and flow variables x′. Reasoning as above, it follows that this can be done such that χG′

is piecewise linear and continuous as well. �

Lemma 4.15 (Homogeneity and monotonicity). Let G′ = (V,A′, A∗) be a shortest path
graph with resetting.

(i) For all ν ′0, `
′
0 ≥ 0, the vector `′0 · %G

′(
ν ′0/`

′
0

)
are the corresponding labels of the

normalized thin s-t flow `′0 · χG
′(
ν ′0/`

′
0

)
with resetting in G′ of value ν ′0.

(ii) For all v ∈ V , the function %G′v is nondecreasing and ν ′0 7→ 1/ν ′0 · %G
′

v (ν ′0) is nonin-
creasing.

Proof. Consulting Theorem 4.5, it becomes quite obvious that a normalized thin flow
with resetting with corresponding label 1 at s and flow value ν ′0/`′0 can be scaled by `′0
to yield a normalized thin flow with resetting with corresponding label `′0 at s and flow
value ν ′0. This yields the first statement.

59

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

The monotonicity of %G′ is implied directly by Theorem 4.11. By the above, the scaled
vector 1/ν ′0 · %G

′
(ν ′0) can be interpreted as the corresponding labels of a normalized thin

flow of value 1 with label 1/ν ′0 at s. Its monotonicity follows again from Theorem 4.11. �

We finish this section by arguing that the normalization constraints of Theorem 4.5
(i) can be incorporated in (LCP). The resulting linear complementarity problem is an
exact formulation for normalized thin flows with resetting. This extension, however,
requires a rather technical construction, which is why the presentation with successive
normalization was chosen. In order to model the normalization constraints for w ∈ V
with δ−(w)∩A∗ = ∅, fix an arbitrary ordering N−(w) = {v1, . . . , vn} where n = |N−(w)|.
Introduce new variables dw,i for i ∈ [n] and add the complementarity conditions

dw,1 ≥ 0, `′w − `′vn + dw,n ≥ 0, dw,1
(
`′w − `′vn + dn

)
= 0

dw,2 ≥ 0, `′v1
− `′v2

+ dw,2 ≥ 0, dw,2
(
`′v1
− `′v2

+ dw,2
)

= 0

dw,i ≥ 0, `′vi−1
− dw,i−1 − `′vi + dw,i ≥ 0, dw,i

(
`′vi−1

− dw,i−1 − `′vi + dw,i
)

= 0

for all 3 ≤ i ≤ n. It can be shown by induction that these conditions are equivalent to
`′vi−dw,i = minj∈[i] `

′
vj for all i ∈ [n] and `′w ≥ `′vn−dw,n = minj∈[n] `

′
vj = minv∈N−(w) `

′
v.

4.4 Evolution of Dynamic Equilibria

We extend the constructive method for dynamic equilibria by Koch and Skutella (2011)
to inflow rates ν0 ∈ L1

loc(R) which are right-monotone (in addition to being nonnegative
and vanishing almost everywhere on R<0). A definition of right-monotonicity follows the
next theorem, which holds for arbitrary inflow rates.

4.4.1 A Differential Equation

Consider the earliest times function ` : R→ RV≥0 of a dynamic equilibrium. For ϑ ∈ R, the
sets of active and resetting arcs agree with A′ϑ and A∗ϑ and, therefore, are determined by
`(ϑ) only. If ` is right-differentiable at ϑ ∈ R, its right-derivative d`/ dϑ+ at ϑ represents
the corresponding labels of a normalized thin flow with resetting of value ν0(ϑ) in G′ϑ.
Hence, also d`/ dϑ+(ϑ) is determined by `(ϑ). Indeed, the earliest times function of
dynamic equilibria can be characterized as the set of solutions to a differential equation,
as the next theorem states.
In the case that ` is the earliest times function of a dynamic equilibrium, we know

that G′ϑ is a shortest path graph with resetting for all ϑ ∈ R. To ensure this property
through the differential equation, we need to extend the definition of %G′ and χG

′ to
triples G′ = (V,A′, A∗) such that A∗ ⊆ A′ ⊆ A where A′ is acyclic, but there are v ∈ V
without an s-v path in A′. In that case, let U := {v ∈ V | ∃ s-v path in A′}, set %G′v ≡ 0
for v ∈ U , and %G′v ≡ 1 for v ∈ V \ U . Further, define χG′a ≡ 0 for all a ∈ A′.

60

4.4 Evolution of Dynamic Equilibria

Theorem 4.16 (Differential equation). Let `0v denote the shortest distance from s to v
in G with respect to τ for all v ∈ V . Then ` : R → RV≥0 is the earliest times function of
a dynamic equilibrium if and only if ` is a locally absolutely continuous solution to

`(ϑ) =
(
ϑ+ `0v

)
v∈V for all ϑ ≤ 0 and

d`
dϑ

(ϑ) = %G
′
ϑ
(
ν0(ϑ)

)
for a.e. ϑ ≥ 0. (DE)

Proof. Assume ` is the earliest times function of a dynamic equilibrium. Since the
network is assumed to be empty up to time zero, the initial condition on R≤0 holds due
to (BE). The components of ` are locally absolutely continuous and, hence, differentiable
almost everywhere. Cominetti, Correa, and Larré (2015) show that, if it exists, the right-
derivative of ` at time ϑ ∈ R represents the corresponding labels of a normalized thin
flow with resetting of value ν0(ϑ) in G′ϑ with label 1 at s. Hence, d`

dϑ(ϑ) = %G
′
ϑ

(
ν0(ϑ)

)
follows for almost every ϑ ≥ 0.

For the converse direction, assume ` is a locally absolutely continuous solution to the
differential equation (DE). ` defines G′ϑ = (V,A′ϑ, A

∗
ϑ) for all ϑ ∈ R. To simplify notation,

we set

% : R→ RV≥0, ϑ 7→ %G
′
ϑ
(
ν0(ϑ)

)
and χ : R→ RA≥0, ϑ 7→

{
χG
′
ϑa

(
ν0(ϑ)

)
for a ∈ A′ϑ

0 for a 6∈ A′ϑ.

Note that in both definitions the shortest path graph G′ϑ as well as the inflow rate ν0(ϑ)
depend on the parameter ϑ. Moreover, the codomain of χG′ϑ depends on ϑ. χ extends
the definition of the flows on A′ϑ onto A by zero. The fundamental theorem of calculus
yields

`(ϑ) = `0 +

∫ ϑ

0
%(θ) dθ for all ϑ ∈ R,

where integration is applied element-wise. Since %v ≥ 0 for all v ∈ V , `v is a monotoni-
cally nondecreasing function. Based on `, we define a flow over time and prove step by
step that it is feasible, has the earliest times function `, and satisfies the conditions of a
dynamic equilibrium.

The shortest path graphs with resetting. We start by showing that G′ϑ is a shortest
path graph with resetting for all ϑ ∈ R. It is clear from the initial condition that the claim
holds for ϑ ≤ 0. Assume for contradiction, that there is ϑ > 0 such that A′ϑ is not a short-
est path graph with resetting. This means that the set U := {v ∈ V | ∃ s-v path in A′ϑ}
is a proper subset of V and δ+(U) ∩ A′ϑ = ∅. Let

¯
ϑ := sup{θ ≤ ϑ | δ+(U) ∩A′θ 6= ∅}

be the last time before ϑ that an arc leaving U was active. Then, 0 ≤
¯
ϑ < ϑ due to

the initial condition and the continuity of `. In particular, it holds δ+(U) ∩ A′
¯
ϑ 6= ∅,

and δ+(U) ∩ A′θ = ∅ for all θ ∈ (
¯
ϑ, ϑ]. Then for all (v, w) ∈ δ+(U) ∩ A′

¯
ϑ, %w ≡ 1 and

%w − %v ≥ 0 on (
¯
ϑ, ϑ] yield ∅ 6= δ+(U) ∩A′

¯
ϑ ⊆ δ+(U) ∩A′ϑ = ∅, a contradiction.

As an immediate consequence, limϑ→+∞ `v(ϑ) ≥ limϑ→+∞ `s(ϑ) + `0v = +∞ holds for
all v ∈ V . On the other hand, limϑ→−∞ `v(ϑ) = limϑ→−∞ ϑ+ `0v = −∞. The continuity
of ` yields `v(R) = R for all v ∈ V .

61

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

The flow over time. For a = (v, w) ∈ A, define the flow functions f+
a : R → R≥0 and

f−a : R→ R≥0 by setting

(f+
a ◦ `v) · %v ≡ χa ≡ (f−a ◦ `w) · %w a.e. on R.

We shall see that this is a sound definition. For
¯
ϑ < ϑ̄ such that `v(

¯
ϑ) = `v(ϑ̄), the

monotonicity of `v implies `v ≡ `v(
¯
ϑ) and %v ≡ 0 almost everywhere on [

¯
ϑ, ϑ̄]. Hence,

f+
a is well-defined at almost every `v(ϑ) for ϑ ∈ R such that d`v/ dϑ(ϑ) = %v(ϑ) 6= 0. As
the set {`v(ϑ) | ϑ ∈ R and d`v/ dϑ(ϑ) = 0} has measure zero, f+

a is well-defined almost
everywhere on `v(R) = R. Reasoning in a similar way gives that f−a is also well-defined
almost everywhere on R.
Definition 4.4 yields almost everywhere f−a ≤ νa. Similarly, almost everywhere f+

a ≡
f+
a ◦ `s ≡ χa/%s ≤ ν0 if v = s and f+

a ≤ ν
(
δ−(v)

)
if v 6= s. As ν0 is locally integrable and

(νb)b∈A is constant, the functions f+
a and f−a are locally integrable as well. Further, f+

a

and f−a vanish on R≤0 as ν0 does so and `(0) = `0 ≥ 0. The flow conservation constraints
hold, since normalized thin flows with resetting obey them.

The queue lengths. For a = (v, w) ∈ A, we define the function za via its derivative
and show that it evaluates to the queue length of a as induced by f+

a . For that purpose,
we define dza/ dϑ by setting

dza
dϑ
(
`v(ϑ)

)
· %v(ϑ) =

0 if a ∈ A \A′ϑ
νa ·

[
%w(ϑ)− %v(ϑ)

]
+

if a ∈ A′ϑ \A∗ϑ
νa ·

(
%w(ϑ)− %v(ϑ)

)
if a ∈ A∗ϑ

for a.e. ϑ ∈ R.

As argued similarly for the flow functions, this determines dza/ dϑ almost everywhere
on R as the set {`v(ϑ) | ϑ ∈ R and d`v/ dϑ(ϑ) = 0} has measure zero. By using that
0 ≤ %w ≤ max

{
%v, χa/νa

}
, we can bound dza/ dϑ almost everywhere on `v(R) = R by

noting that for almost every ϑ ∈ R∣∣∣∣ dzadϑ
(
`v(ϑ)

)∣∣∣∣ · %v(ϑ) ≤ νa · |%w(ϑ)− %v(ϑ)|

≤ max
{
νa · %v(ϑ), χa(ϑ)

}
= max

{
νa, f

+
a

(
`v(ϑ)

)}
· %v(ϑ).

This shows that the local integrability of f+
a carries over to dza/ dϑ. Therefore, dza/ dϑ

is indeed the derivative of the function za : R → R≥0, ϑ 7→
∫ ϑ
`v(0) dza/ dϑ(θ) dθ. Since

`v, `w, and za are locally absolutely continuous and `v is monotone, the formula for the
change of variables applies to za ◦ `v and yields

za
(
`v(ϑ)

)
=

∫ ϑ

0

dza
dϑ
(
`v(θ)

)
· %v(θ) dθ

=

∫ ϑ

0
νa ·

d
dθ
[
`w(θ)− `v(θ)− τa

]
+
dθ = νa ·

[
`w(ϑ)− `v(ϑ)− τa

]
+
.

62

4.4 Evolution of Dynamic Equilibria

Now, we can show that za is indeed the queue length that is induced by f+
a by proving

that za is a solution to (QD). The above identity implies za ≡ 0 on R≤0 ⊆ (−∞, `0v].
Let ϑ ∈ R such that %v(ϑ) 6= 0. In the case a ∈ A \ A′ϑ, we know from the above
identity and continuity of ` that za

(
`v(ϑ)

)
= 0 and dza/ dϑ

(
`v(ϑ)

)
= 0. On the other

hand, the definition of χ yields χa(ϑ) = 0, which implies
[
f+
a

(
`v(ϑ)

)
− νa

]
+

= 0 and,
thus, (QD) holds for a at time `v(ϑ). If a ∈ A′ϑ \ A∗ϑ, we also know za

(
`v(ϑ)

)
=

0. In the case that νa · %w(ϑ) = max
{
νa · %v(ϑ), χa(ϑ)

}
, it follows immediately that

dza/ dϑ
(
`v(ϑ)

)
=
[
f+
a

(
`v(ϑ)

)
− νa

]
+
. Otherwise, χa(ϑ) = 0 must holds, which im-

plies the equation dza/ dϑ
(
`v(ϑ)

)
= 0 =

[
f+
a

(
`v(ϑ)

)
− νa

]
+
. Finally, if a ∈ A∗ϑ, then

za
(
`v(ϑ)

)
> 0 holds. Further, νa ·%w(ϑ) = χa(ϑ) yields dza/ dϑ

(
`v(ϑ)

)
= f+

a

(
`v(ϑ)

)
−νa.

In total, za fulfills (QD) for almost every `v(ϑ) such that ϑ ∈ R and %v(ϑ) 6= 0, which is
almost everywhere on R.

The queuing dynamics. To see that (f+, f−) is a feasible flow over time, we will show
that it respects the queuing dynamics za

(
`v(ϑ)

)
= F+

a

(
`v(ϑ)

)
− F−a

(
`v(ϑ) + τa

)
for all

a ∈ A and ϑ ∈ R.
Let a = (v, w) ∈ A. We start by establishing it for a single point in time and extend

it by looking at its derivative. Consider the time ϑ̂ = inf{θ ≥ 0 | a ∈ A′θ}, relative to
which a is active for the first time. If no such time exists, that is, ϑ̂ = +∞, then za ≡ 0,
F+
a ≡ 0, and F−a ≡ 0 satisfy the equation trivially. Otherwise, we get `w(ϑ̂) = `v(ϑ̂) + τa

and, therefore,

za
(
`v(ϑ̂)

)
= 0 = F+

a

(
`v(ϑ̂)

)
− F−a

(
`w(ϑ̂)

)
= F+

a

(
`v(ϑ̂)

)
− F−a

(
`v(ϑ̂) + τa

)
.

It remains to prove that the derivatives of both sides of the equation agree almost every-
where. As we have shown that za is a solution to (QD), it suffices to prove for almost
every ϑ ∈ R with %v(ϑ) 6= 0 that

f−a
(
`v(ϑ) + τa

)
=

{
min

{
f+
a

(
`v(ϑ)

)
, νa
}

if za
(
`v(ϑ)

)
= 0, that is, a ∈ A \A∗ϑ

νa if za
(
`v(ϑ)

)
> 0, that is, a ∈ A∗ϑ.

First, consider ϑ ∈ R such that a ∈ A′ϑ \ A∗ϑ, that is, `w(ϑ) = `v(ϑ) + τa. Due to the
continuity of `, the set {θ ∈ R | a ∈ A′θ \A∗θ} consists of closed intervals. Consequently,
for almost every considered ϑ it holds %w(ϑ) = %v(ϑ). Therefore, f−a

(
`v(ϑ) + τa

)
=

f−a
(
`w(ϑ)

)
= f+

a

(
`v(ϑ)

)
and f−a

(
`w(ϑ)

)
≤ νa. Hence, the equation holds for almost all

ϑ ∈ R such that %v(ϑ) 6= 0 and a ∈ A′ϑ \A∗ϑ.
If a ∈ A\A′ϑ, define ¯

ϑ := sup{θ ≤ ϑ | a ∈ A′θ} ∈ R∪{−∞} and ϑ̄ := inf{θ ≥ ϑ | a ∈ A′θ} ∈
R∪{+∞}. Continuity of ` yields a ∈ A\A′θ for all θ ∈ (

¯
ϑ, ϑ̄) as well as `w(

¯
ϑ) = `v(

¯
ϑ)+τa

and `w(ϑ̄) = `v(ϑ̄) + τa. Therefore, monotonicity and continuity of `v and `w imply that
f+
a and f−a vanish almost everywhere on the intervals

(
`v(

¯
ϑ), `v(ϑ̄)

)
and

(
`w(

¯
ϑ), `w(ϑ̄)

)
=(

`v(
¯
ϑ) + τa, `v(ϑ̄) + τa

)
, respectively. This proves that the equation is fulfilled for almost

every ϑ ∈ R such that a ∈ A \A′ϑ.
A similar argument shows that f−a

(
`v(ϑ) + τa

)
= νa for almost every ϑ with a ∈ A∗ϑ.

In conclusion, za(ϑ) = F+
a (ϑ)− F−a (ϑ+ τa) holds on R.

63

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

The earliest times function. Now, it is immediate to see that ` indeed is the earliest
times function of the feasible flow over time (f+, f−). For a = (v, w) ∈ A and ϑ ∈ R,
the above characterization of za in terms of ` immediately implies `w(ϑ) ≤ `v(ϑ) + 1/νa ·
za
(
`v(ϑ)

)
+τa with equality if and only if a ∈ A′ϑ. This proves that ` satisfies the Bellman

equations (BE).

The equilibrium condition. To complete the proof, we only have to show that (f+, f−)
is a dynamic equilibrium. For a = (v, w) ∈ A, `v and `w are monotonically nondecreasing.
Hence, for every ϑ ∈ R, two changes of variables yield

F+
a

(
`v(ϑ)

)
=

∫ ϑ

0
f+
a

(
`v(θ)

)
· %v
(
θ
)
dθ

=

∫ ϑ

0
χa
(
θ
)
dθ

=

∫ ϑ

0
f−a
(
`w(θ)

)
· %w

(
θ
)
dθ = F−a

(
`w(ϑ)

)
.

Lemma 4.2 gives that (f+, f−) is a dynamic equilibrium. �

4.4.2 Dynamic Equilibria for Right-Monotone Inflow

The above theorem suggests to construct a dynamic equilibrium by integrating over thin
flows with resetting. The method of Koch and Skutella (2011) does this by implicitly
assuming that ` is right-linear. This is feasible for piecewise constant inflow rates, as
there always is a dynamic equilibrium with that property. For these dynamic equilibria,
the functions ϑ 7→ %G

′
ϑv

(
ν0(ϑ)

)
are right-constant. We want to consider a more general

class of inflow rates.

Definition 4.17 (Monotone functions). We call a function g ∈ L1
loc(R) monotonically

nondecreasing (nonincreasing) if there exists a set N ⊆ R of measure zero such that
g(ξ) ≤ g(ξ̂)

(
g(ξ) ≥ g(ξ̂)

)
for all ξ, ξ̂ ∈ R \N with ξ ≤ ξ̂.

We call a function g monotone if it is monotonically nondecreasing or monotonically
nonincreasing. Further, g is right-monotone (left-monotone) if for every ξ ∈ R there
is ε > 0 such that g is monotone on [ξ, ξ + ε]

(
[ξ − ε, ξ]

)
.

For a right-monotone inflow rate ν0, the map ϑ 7→ %G
′
ϑv

(
ν0(ϑ)

)
cannot be expected to

be right-constant. Due to the piecewise linear dependency of the thin flows with resetting
on the flow value, however, this map is right-monotone. This still allows to use the same
method for constructing a dynamic equilibrium as follows.

Theorem 4.18 (α-extension of dynamic equilibria). Let the inflow rate ν0 be right-
monotone. For ϑ ≥ 0, let ` : (−∞, ϑ] → RV≥0 fulfill the differential equation (DE) on
(−∞, ϑ]. Then there is α > 0 such that ` can be extended to fulfill it on (−∞, ϑ+ α].

For the proof of this theorem, we make use of some basic properties of right-monotone
functions which we show first. Lemma 4.19 regards the composition of left-/right-
monotone functions. Lemma 4.20 relates right-monotone functions to their primitives.

64

4.4 Evolution of Dynamic Equilibria

Lemma 4.19 (Composition of left-/right-monotone functions). Let h ∈ L1
loc(R) be

right-monotone and g ∈ L1
loc(R) be left- and right-monotone such that their composition

g ◦h is well-defined. If h is locally bounded or there exists υ ≥ 0 such that g is monotone
on the unbounded intervals (−∞,−υ) and (υ,+∞), then also g ◦ h is right-monotone.

Proof. Let ξ ∈ R. Assume h is monotonically nondecreasing on (ξ, ξ+ε) for some ε > 0.
Set

¯
υ to be the essential infimum of h on (ξ, ξ + ε), that is,

¯
υ := ess inf h|(ξ,ξ+ε) = sup{υ ∈ R | h ≥ υ a.e. on (ξ, ξ + ε)}.

If
¯
υ > −∞, there is ῡ >

¯
υ such that g is monotone on (

¯
υ, ῡ) as g is right-monotone.

Otherwise, h is not locally bounded and the assumption gives ῡ ∈ R such that g is
montone on (

¯
υ, ῡ) = (−∞, ῡ). Choose 0 < ε̂ ≤ ε small enough such that h ≤ ῡ almost

everywhere on (ξ, ξ + ε̂). Then g ◦ h is monotone on (ξ, ξ + ε̂).
The case that h is monotonically nonincreasing on (ξ, ξ + ε) works similarly. It needs

the left-monotonicity instead of right-monotonicity of g. �

Lemma 4.20. Let g ∈ L1
loc(R) be a right-monotone function such that G : R → R, ξ 7→∫ ξ

0 g(ξ̂) dξ̂ satisfies inf{ξ > 0 | G(ξ) > 0} = 0. Then, there is ε > 0 such that g > 0
almost everywhere on (0, ε) and G > 0 on (0, ε).

Proof. Let ε > 0 such that g is monotone on (0, ε), and set

δ := sup
{
δ̂ ∈ [0, ε)

∣∣ g ≤ 0 a.e. on [0, δ̂]
}
.

δ > 0 would imply G ≤ 0 on [0, δ] which contradicts inf{ξ > 0 | G(ξ) > 0} = 0. Hence,
δ = 0. If g is monotonically nondecreasing on (0, ε), then g > 0 almost everywhere on
(0, ε) and G > 0 on (0, ε) follow. If g is monotonically nonincreasing on (0, ε), then δ = 0
implies ess sup g|(0,ε) > 0. Thus, there is 0 < ε̂ ≤ ε such that g > 0 almost everywhere
on (0, ε̂) and G > 0 on (0, ε̂). �

Proof of Theorem 4.18. We extend ` by assuming that G′ϑ is constant to the right, that
is, G′ϑ+ε = G′ϑ for small ε > 0. This assumption is not necessarily true. We will see,
however, that the extension we get in this way fulfills (DE).

The extension. For that purpose, define for ε > 0

`(ϑ+ ε) := `(ϑ) +

∫ ϑ+ε

ϑ
%G
′
ϑ
(
ν0(θ)

)
dθ,

where integration is applied element-wise. First of all, we show that this definition is
sound. For component v ∈ V , the integrand %G′ϑv ◦ ν0 is indeed locally integrable since

65

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

for every compact set K ⊆ R, Proposition 4.14 yields∫
K

∣∣%G′ϑv (ν0(θ)
)∣∣ dθ =

∫
K∩ν−1

0 ([0,1])
%G
′
ϑ

v

(
ν0(θ)

)
dθ +

∫
K\ν−1

0 ([0,1])

%G
′
ϑv

(
ν0(θ)

)
ν0(θ)

· ν0(θ) dθ

≤ %G′ϑv (1) ·
∫
K

max
{

1, ν0(θ)
}
dθ < +∞.

The feasibility. This extension defines G′ϑ+ε = (V,A′ϑ+ε, A
∗
ϑ+ε) for ε > 0. To show

that ` fulfills (DE) on a strictly larger interval than (−∞, ϑ], it is sufficient to prove
%G
′
ϑ+ε ◦ ν0 ≡ %G

′
ϑ ◦ ν0 for all small enough ε > 0. For that purpose, define the following

limits of the sets of active and resetting arcs,

A′ := lim inf
ε→0+

A′ϑ+ε =
{
a = (v, w) ∈ A

∣∣ ∃ δ > 0: `w ≥ `v + τa on (ϑ, ϑ+ δ)
}
and

A∗ := lim inf
ε→0+

A∗ϑ+ε =
{
a = (v, w) ∈ A

∣∣ ∃ δ > 0: `w > `v + τa on (ϑ, ϑ+ δ)
}
.

We show that G′ϑ+ε = (V,A′, A∗) for small ε > 0. Due to the continuity of `, we know
that the inclusions A′ ⊆ A′ϑ+ε ⊆ A′ϑ and A∗ϑ ⊆ A∗ = A∗ϑ+ε hold for ε > 0 small enough.
Since ν0 is right-monotone and %G′ϑ is piecewise linear (with finitely many breakpoints),

Lemma 4.19 implies that %G′ϑw ◦ ν0 − %G
′
ϑv ◦ ν0 is right-monotone for all pairs v, w ∈ V .

Active arcs. For arcs a = (v, w) ∈ A′ϑ \A′, there is a sequence (εk)k∈N ⊆ R>0 such that
limk→+∞ εk = 0 and a ∈ A′ϑ \ A′ϑ+εk

for all k ∈ N. As ` is continuous and a ∈ A′ϑ, a
limit argument yields `w(ϑ) = `v(ϑ) + τa. Further, for all k ∈ N, we get∫ ϑ+εk

ϑ
%G
′
ϑ

w

(
ν0(θ)

)
−%G′ϑv

(
ν0(θ)

)
dθ =

(
`w(ϑ+εk)−`v(ϑ+εk)−τa

)
−
(
`w(ϑ)−`v(ϑ)−τa

)
< 0.

Lemma 4.20 implies %G′ϑw ◦ ν0 < %G
′
ϑv ◦ ν0 and, hence, χG′ϑa ◦ ν0 = 0 almost everywhere on

(ϑ, ϑ + βa) for some βa > 0. Further, it implies a 6∈ A′ϑ+ε for small ε > 0. A′ = A′ϑ+ε

follows for small ε > 0.

Resetting arcs. For a = (v, w) ∈ A∗ \ A∗ϑ, there exists a sequence (εk)k∈N ⊆ R>0

such that limk→+∞ εk = 0 and a ∈ A∗ϑ+εk
\ A∗ϑ for all k ∈ N. Continuity of ` yields

`w(ϑ) = `v(ϑ) + τa. Hence, for k ∈ N∫ ϑ+εk

ϑ
%G
′
ϑ

w

(
ν0(θ)

)
−%G′ϑv

(
ν0(θ)

)
dθ =

(
`w(ϑ+εk)−`v(ϑ+εk)−τa

)
−
(
`w(ϑ)−`v(ϑ)−τa

)
> 0.

Lemma 4.20 implies %G′ϑw ◦ ν0 > %G
′
ϑv ◦ ν0 and, hence, χG′ϑa ◦ ν0 = νa · %G

′
ϑw ◦ ν0 almost

everywhere on (ϑ, ϑ+ βa) for some βa > 0.

In total, there is an α > 0 such that G′ϑ+ε = (V,A′, A∗) for all 0 < ε < α. More
importantly, %G′ϑ

(
ν0(ϑ+ ε)

)
are the corresponding labels of a normalized thin flow with

resetting of value ν0(ϑ + ε) in G′ϑ+ε. Corollary 4.12 yields %G′ϑ ◦ ν0 ≡ %G
′
ϑ+ε ◦ ν0 on

(ϑ, ϑ+ α). �

66

4.4 Evolution of Dynamic Equilibria

Just like in the case of constant inflow rate, the α-extension can be applied iteratively
to construct a dynamic equilibrium. Each such extension that is maximal with respect to
α is called a phase in the evolution of the dynamic equilibrium. Note that Theorem 4.18
does not state anything about the length of a phase. It is still an open question whether
for constant inflow rate the extensions can converge to a finite domain, see Cominetti,
Correa, and Olver 2017. If that is the case, the dynamic equilibrium cannot be computed
this way in a finite number of steps. In theory, we can take the limit of such a converging
sequence of α-extensions and repeat. As done by Cominetti, Correa, and Olver (2017)
and Graf and Harks (2019), the Kuratowski-Zorn lemma (1922, 1935) can be applied to
get a dynamic equilibrium on R.

Theorem 4.21 (Existence of dynamic equilibria). For every nonnegative, right-monotone,
locally integrable inflow rate, there exists a dynamic equilibrium.

Proof. Let L be the set of functions ` : (−∞, ϑ] → RV≥0 which fulfill (DE) on (−∞, ϑ)

for some ϑ ∈ R≥0 ∪ {+∞}. Define the partial order � on L by setting ` � ˆ̀ if dom(`) ⊆
dom(ˆ̀) and ` = ˆ̀|dom(`). Here, dom(·) denotes the domain of a function, and ·|X denotes
the restriction of a function to a subset X of its domain.
Let (`(k))k∈K be a chain in (L,�) indexed by some set K with domains dom(`(k)) =

(−∞, ϑk]. Set ϑ := supk∈K ϑk and define the function

` : (−∞, ϑ)→ RV≥0, θ 7→ sup
k∈K : θ≤ϑk

`(k)(θ).

Note that `|(−∞,ϑk) ≡ `(k) for all k ∈ K. We would like to continuously extend ` to ˆ̀onto
(−∞, ϑ]. Therefore, set ˆ̀(ϑ) := limk→+∞ `(ϑk). This limit exists as ` is monotonically
nondecreasing. It is not clear, however, that it is finite. Since ` fulfills (DE) on (−∞, ϑ),
applying Proposition 4.14 yields

ˆ̀
v(ϑ) = lim

k→+∞

∫ ϑk

0
%G
′
θ

v

(
ν0(θ)

)
dθ

= lim
k→+∞

∫
[0,ϑk)∩ν−1

0 ([0,1])
%G
′
θ

v

(
ν0(θ)

)
dθ +

∫
[0,ϑk)\ν−1

0 ([0,1])

%G
′
θv

(
ν0(θ)

)
ν0(θ)

· ν0(θ) dθ

≤ max
G′=(V,A′,A∗)

shortest path graph
with resetting

%G
′

v (1) ·
∫ ϑ

0
max

{
1, ν0(θ)

}
dθ < +∞.

Hence, ˆ̀ ∈ L is well-defined and `(k) � ˆ̀ for all k ∈ K. The Kuratowski-Zorn lemma
yields a maximal element ` ∈ L. Theorem 4.18 shows that the domain of ` has to be R.
By Theorem 4.16, ` is the earliest times function of a dynamic equilibrium. �

Theorem 4.22 (Uniqueness of right-monotone dynamic equilibria). Let the inflow
rate ν0 be right-monotone. If there are two right-monotone dynamic equilibria, then their
earliest times functions agree.

67

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

Proof. Let Θ ⊆ R be the set on which the earliest times functions of every right-
monotone equilibrium with inflow rate ν0 agree. By definition R≤0 ⊆ Θ. Since earliest
times functions are continuous, Θ is a closed set. We need to show that Θ = R.
Let (f+, f−) be a dynamic equilibrium for inflow rate ν0 such that f+

a is right-monotone
for all a = (v, w) ∈ A. Let ` be the corresponding earliest times function. For almost
every ϑ ∈ R, za is increasing at ϑ if and only if f+

a (ϑ) > νa. Therefore, za is right-
monotone as well. (Looking into the proof of) Lemma 4.19 yields right-monotonicity of
f+
a ◦ `v and za ◦ `v since `v is continuous, hence, locally bounded, and nondecreasing.
Let ϑ ∈ Θ. We will see that the support of

(
f+
a

(
`v(ϑ+ ε)

))
a=(v,w)∈A and A∗ϑ+ε are

respectively the same for almost every small enough ε > 0. Define the set

A′ :=
{
a = (v, w) ∈ A

∣∣ ∃ δ > 0: f+
a ◦ `v > 0 a.e. on (ϑ, ϑ+ δ)

}
.

For a ∈ A \ A′, the right-monotonicity of f+
a ◦ `v implies f+

a

(
`v(ϑ + ε)

)
= 0 for almost

every small enough ε > 0. Thus, the support of
(
f+
a

(
`v(ϑ+ ε)

))
a=(v,w)∈A is exactly A′.

Similarly, define the set

A∗ := lim inf
ε→0+

A∗ϑ+ε =
{
a = (v, w) ∈ A

∣∣ ∃ δ > 0: za ◦ `v > 0 on (ϑ, ϑ+ δ)
}
.

As za ◦ `v is right-monotone, A∗ = A∗ϑ+ε for small enough ε > 0. Thus for almost every
small enough ε > 0,

(
f+
a

(
`v(ϑ + ε)

)
· d`v

dϑ (ϑ + ε)
)
a=(v,w)∈A is a normalized thin flow

of value ν0(ϑ + ε) in G′ := (V,A′, A∗) with corresponding labels d`
dϑ+ (ϑ + ε) . Hence,

Theorem 4.16 implies

`(ϑ+ ε) = `(ϑ) +

∫ ϑ+ε

ϑ
%G
′(
ν0(θ)

)
dθ.

Since (f+, f−) was chosen arbitrarily, [ϑ, ϑ+ ε] ⊆ Θ. As a consequence, Θ = R. �

The following example shows that the α-extension may fail if ν0 is not right-monotone.

Example 4.23 (α-extension for non-right-monotone inflow rate). We consider the
graph G = (V,A) which consists only of the source s, the sink t, and two parallel arcs
a, b from s to t with capacity νa = νb = 1 and transit time τa = 0 and τb = 1, see
Figure 4.6a. As mentioned before the network can be transformed to an equivalent
instance without multi-arcs. The inflow rate is depicted in Figure 4.6b and given by the
function

ν0 : R→ R≥0, ϑ 7→

0 for ϑ ∈ (−∞, 0)

2 for ϑ ∈ [0, 1]

0 for ϑ ∈ [1 + 2−k−1, 1 + 2−k), k ∈ 2N + 1

2 for ϑ ∈ [1 + 2−k−1, 1 + 2−k), k ∈ 2N
2 for ϑ ∈ [2,+∞)

.

68

4.4 Evolution of Dynamic Equilibria

s t

τa = 0, νa = 1

τb = 1, νb = 1

(a) graph G

ϑ1 2

ν0

1

2

(b) inflow rate ν0

ϑ1 2

`t

1

2

3

ϑ+ 1

1
2
(ϑ+ 3)

ϑ

(c) earliest time function of t in a dynamic equilibrium

Figure 4.6: Example with nonright-monotone inflow rate for which the α-extension does not

work.

Note that ν0 ∈ L1
loc(R≥0) is not right-monotone at ϑ = 1. A dynamic equilibrium is

given by the earliest time functions `s : R→ R, ϑ 7→ ϑ and

`t : R→ R, ϑ 7→

ϑ for ϑ ∈ (−∞, 0)

2ϑ for ϑ ∈ [0, 1]

2 + 2−k−1 for ϑ ∈ [1 + 2−k−1, 1 + 2−k), k ∈ 2N− 1

2ϑ− 3 · 2−k−2 for ϑ ∈ [1 + 2−k−1, 1 + 3 · 2−k−2), k ∈ 2N
ϑ+ 1 for ϑ ∈ [1 + 3 · 2−k−2, 1 + 2−k), k ∈ 2N
ϑ+ 1 for ϑ ∈ [2,+∞)

.

The graph of `t is shown in Figure 4.6c. A queue grows on a up to time 1, when b becomes
active, that is, A′1 = {a, b}. After time 1, the following three phases repeat for every
k ∈ 2N. For times ϑ ∈ [1 + 2−k−2, 1 + 2−k−1), there is no inflow, the set of active arcs is
A′ϑ = {a}, and the queue on a shrinks. At time 1 + 2−k−1 the inflow sets in again. For
times ϑ ∈ [1 + 2−k−1, 1 + 3 · 2−k−2), the set of active arcs is still A′ϑ = {a}, but the queue
on a is growing. At time 1+3 ·2−k−2, b gets active. For times ϑ ∈ [1+3 ·2−k−2, 1+2−k),
the set of active arcs is A′ϑ = {a, b} and the queue lengths stay constant. At time 1+2−k,

69

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

the inflow stops again, and the three phases repeat. In particular, G′ϑ is not constant on
(1, 1 + ε) for any ε > 0. Applying an α-extension at time 1 yields for small ε > 0

`t : R≥0 → R≥0, 1 + ε 7→

{
1 + 1

32−k for ε ∈ [2−k−1, 2−k), k ∈ 2N− 1

1 + ε− 1
32−k for ε ∈ [2−k−1, 2−k), k ∈ 2N

.

Then, A′1+ε = {a} for small ε > 0. But (DE) is not fulfilled at times 1 + ε for all
ε ∈ [2−k−1, 2−k), k ∈ 2N.

4.5 Thin Flows with Resetting in Series-Parallel Graphs

The nature of the proof of existence makes the problem of computing a normalized thin
flow with resetting part of the complexity class PPAD. It remains open whether this
computational problem can be solved in polynomial time for general acyclic arc sets
A∗ ⊆ A′ ⊆ A. So far, the complexity is known only for the cases A∗ = A′ and A∗ = ∅.
For A∗ = A′, the complementarity problem in Theorem 4.5 reduces to a system of linear
equations and, hence, can be solved efficiently. For A∗ = ∅, the problem is also solvable
in polynomial time as shown by Koch and Skutella (2011). Instead of restricting the
set A∗, we address the computation of normalized thin flows with resetting for graphs
(V,A′) that are series-parallel.
The following two lemmas show how the function %G

′ relates to the functions %G′1
and %G

′
2 for the series composition G′ = G′1 ∗ G′2 as well as the parallel composition

G′ = G′1 ‖ G′2. Restricting a thin flow with resetting in G′ to G′1 or G′2 yields a thin flow
with resetting in the respective graph. The other way round, the conditions for a flow
to be a thin flow with resetting in G′ are roughly a combination of the conditions for
flows in G′1 and G′2. The only additional requirement is to have one common label `′v at
every common vertex v of G′1 and G′2. For the series composition this synchronization
of labels is straightforward. For the parallel composition, it is achieved by splitting the
total amount of flow appropriately between G′1 or G′2.

Lemma 4.24 (Series composition). Let G′ = (V,A′) be a two-terminal directed acyclic
graph. Further, let V1, V2 ⊆ V be vertex sets and set G′i := G′[Vi] for i = 1, 2. If
G′ = G′1 ∗ G′2 and n1, n2, n are the numbers of breakpoints of %G′1 , %G′2 , %G′ , respectively,
then n ≤ n1 + n2.

Proof. Let r ∈ V be such that V1 ∩ V2 = {r}. As discussed in the paragraph before
Lemma 4.24, the conditions of Definition 4.4 for G′1 and G′2 also appear for G′. Applying
Lemma 4.15 yields that, for ν ′0 > 0

%G
′

v (ν ′0) = %G
′
1

v (ν ′0) if v ∈ V1 and

%G
′

v (ν ′0) = %G
′
1

r (ν ′0) · %G′2v
(

ν ′0
%G
′
1r (ν ′0)

)
if v ∈ V2.

70

4.5 Thin Flows with Resetting in Series-Parallel Graphs

ν ′0

%G
′
1

r

ν̂0 ν ′0

%G
′
2

t

ν̂0

%G
′
1r (ν̂0)

ν ′0

%G
′

t

ν̂0

Figure 4.7: Series composition G′ = G′1 ∗G′2 at common vertex r. The breakpoint of %G
′

t at ν̂0

results from the breakpoint of %G
′
2

t .

For v ∈ V2, %G
′

v can have a breakpoint at ν ′0 > 0 only if %G′1r does, or %G′2v has a break-
point at ν′0

%G
′
1r (ν′0)

and the function ν′0
%G
′
1r (ν′0)

is not constant around ν ′0. Lemma 4.15 shows

that ν′0
%G
′
1r (ν′0)

is monotone in ν ′0. Therefore, n ≤ n1 + n2 follows. See Figure 4.7 for an
illustration. �

Lemma 4.25 (Parallel composition). Let G′ = (V,A′) be a two-terminal directed acyclic
graph. Further, let V1, V2 ⊆ V be vertex sets and set G′i := G′[Vi] for i = 1, 2. If
G′ = G′1 ‖ G′2 and n1, n2, n are the numbers of breakpoints of %G′1 , %G′2 , %G′, respectively,
then n ≤ n1 + n2 + 1.

Proof. Considering Definition 4.4 or the complementarity problem from Theorem 4.5
reveals that for every ν ′0 ≥ 0

%G
′

t (ν ′0) = min
i∈{1,2}

%G
′
i

t (ν ′i)

%G
′

t (ν ′0) = %G
′
i

t (ν ′i) for i ∈ {1, 2} with ν ′i > 0

%G
′

v (ν ′0) = %G
′
i

v (ν ′i) for i ∈ {1, 2}, v ∈ Vi \ {t}

ν ′1 + ν ′2 = ν ′0

ν ′1, ν
′
2 ≥ 0.

71

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

ρ

ν ′1

%G
′
1

t

ν1(ν̂0) ν ′2

%G
′
2

t

ν2(ν̂0)

ρ

ν ′0

%G
′

t

%
G
′
1
t

(ν
′
0
)

ν̂0

% G ′
2t (ν̂

0 −
ν ′
0)

ν2(ν̂0)ν1(ν̂0)

Figure 4.8: Parallel composition G′ = G′1 ‖ G′2. The breakpoint ν̂0 of %G
′

t is based on the

intersection of %G
′
1

t (ν′0) and %G
′
2

t (ν̂0 − ν′0) at a breakpoint of %G
′
1

t .

By Corollary 4.12, %G′t (ν ′0) is uniquely determined by this nonlinear complementarity
problem for given ν ′0, %G

′
1

t , and %G
′
2

t . However, ν ′1 and ν ′2 are generally not uniquely
determined. This fact is independent of the equations for all v ∈ V \ {t}. Hence, we
ignore those for the time being and find functions ν1 : R≥0 → R≥0 and ν2 : R≥0 → R≥0

which are piecewise linear and describe a solution ν1(ν ′0), ν2(ν ′0) for every ν ′0 ≥ 0. The
idea is to define them on a discrete set for which they are unique solutions and interpolate
linearly.
For i ∈ {1, 2}, define the functions

¯
νi : R≥0 → R≥0 and ν̄i : R≥0 → R≥0 by

¯
νi(ρ) := min

{
ν ′i ≥ 0

∣∣ %G′it (ν ′i) ≥ ρ
}

and ν̄i(ρ) := inf
{
ν ′i ≥ 0

∣∣ %G′it (ν ′i) > ρ
}
.

Then for ρ ≥ %G
′
i

t (0), the preimage of ρ under the function %G
′
i

t is exactly the interval
[
¯
νi(ρ), ν̄i(ρ)]. For ρ < %G

′
i

t (0), we get
¯
νi(ρ) = ν̄i(ρ) = 0. Note that ν̄i(ρ) <

¯
νi(ρ̂) for all

%G
′
i

t (0) ≤ ρ < ρ̂ due to the monotonicity of %G′it .
Without loss of generality, we can assume that %G′1t (0) ≤ %G

′
2

t (0). For ν ′0 ≥ 0, there is a
unique ρ ≥ %G′1t (0) such that ν ′0 ∈

[
¯
ν1(ρ) +

¯
ν2(ρ), ν̄1(ρ) + ν̄2(ρ)

]
. If ρ < %G

′
2

t (0), then ρ =
%G
′
1

t (ν ′0). Otherwise, ρ is the value at the intersection of the graphs %G′1t and %G′2t (ν ′0−·), see
Figure 4.8. The set of solutions

(
%G
′

t (ν ′0), ν ′1, ν
′
2

)
to the above complementarity problem

72

4.5 Thin Flows with Resetting in Series-Parallel Graphs

can be written as{
(ρ, ν ′1, ν

′
2) ∈ R≥0 × [

¯
ν1(ρ), ν̄1(ρ)]× [

¯
ν2(ρ), ν̄2(ρ)]

∣∣ ν ′1 + ν ′2 = ν ′0, ρ ≥ %G
′
1

t (0)
}
.

Thus, a solution (ρ, ν ′1, ν
′
2) is unique if and only if ν ′0 =

¯
ν1(ρ)+

¯
ν2(ρ) or ν ′0 = ν̄1(ρ)+ ν̄2(ρ).

Let R :=
{
%G
′
1

t (0), %G
′
2

t (0)
}
∪
{
%G
′
i

t (ν ′0)
∣∣ i ∈ {1, 2} and ν ′0 ≥ 0 is breakpoint of %G′it

}
be

the values at breakpoints of %G′1t and %G′2t (including the border of the domain). By the
above, ν1 and ν2 are in particular uniquely determined on N := {

¯
ν1(ρ) +

¯
ν2(ρ) | ρ ∈ R}∪

{ν̄1(ρ) + ν̄2(ρ) : ρ ∈ R}. Hence, for every i ∈ {1, 2} and ρ ∈ R, we set

νi
(
¯
ν1(ρ) +

¯
ν2(ρ)

)
:=

¯
νi(ρ) and νi

(
ν̄1(ρ) + ν̄2(ρ)

)
:= ν̄i(ρ).

These definitions are extended to R≥0 by linear interpolation. Then for i = 1, 2, the
composition %G

′
i

t ◦ νi is piecewise linear with breakpoints only in N . In particular, all
breakpoints of %G′t lie in N . By construction, ν1(ν ′0) and ν2(ν ′0) define a solution for every
ν ′0 ∈ N . Linearity in-between the breakpoints generalizes this to all ν ′0 ∈ R≥0.
The above allows to bound the number of breakpoints of %G′t . For ρ ∈ R, the strict

inequality
¯
ν1(ρ) +

¯
ν2(ρ) < ν̄1(ρ) + ν̄2(ρ) holds only if there is i ∈ {1, 2} such that

¯
νi(ρ) <

ν̄i(ρ) and, thus,
¯
νi(ρ) and ν̄i(ρ) are two breakpoints of %G′it with value ρ. This shows the

inequality |N | ≤ n1+n2+2, where the constant is accounting for the border of the domain.
As 0 ∈ N due to %G′1t (0) ∈ R, it follows that %G′t has at most n1 + n2 + 1 breakpoints.
Repeating the counting more carefully allows to extend this bound to the number of
breakpoints of %G′ . The set N only contains breakpoints which are based on breakpoints
of %G′1t and %G′2t . For i = 1, 2, any breakpoint of %G′i at which %G′it is differentiable leads
to at most one breakpoint of %G′i ◦ νi additional to those in N . Consequently, %G′ does
not have more than n1 + n2 + 1 breakpoints. �

Understanding both compositions that series-parallel graphs are based on allows us to
compute the function %G′ for these graphs recursively. Our algorithm not only computes
a normalized thin flow with resetting for one single flow value, but for all flow values
simultaneously. As seen in Section 4.4, this is necessary in order to compute dynamic
equilibria for more general inflow rates than piecewise constant functions.

Theorem 4.26 (Labels in series-parallel graphs). Let G′ := (V,A′) be a two-terminal
series-parallel directed graph and A∗ ⊆ A′. Then %G′ has at most 2|A′| − |A∗| − |V | + 1
many breakpoints and can be computed in polynomial time.

Proof. We prove the claim by a structural induction on two-terminal series-parallel
graphs. For the base case, assume V = {s, t} and A′ contains a single arc a = (s, t).
Then, %G′s ≡ 1 and %G

′
t ≡ %a(1, ·) as defined in Definition 4.4. Hence, %G′ has exactly

1 − |A∗| = 2|A′| − |A∗| − |V | + 1 many breakpoints. Assume there are V1, V2 ⊆ V such
that G′ = G′[V1] ∗G′[V2]. The statement for G′ follows immediately from the induction
hypothesis and Lemma 4.24 as |V | = |V1|+ |V2| − 1. Now, assume there are V1, V2 ⊆ V
such that G′ = G′[V1] ‖ G′[V2]. Then, the statement for G′ follows immediately from the
induction hypothesis and Lemma 4.25 as |V | = |V1|+ |V2| − 2.

73

Chapter 4 Dynamic Equilibria under the Fluid Queuing Network

Since all involved functions are piecewise linear with few breakpoints, they can be rep-
resented efficiently by their linear pieces. Regarding the proofs of Lemmas 4.24 and 4.25,
it becomes evident that in both cases %G′ can be constructed from %G

′
1 and %G′2 efficiently.

To compose G′ from single arcs, |A′| − 1 compositions are needed. In total, the function
%G
′ can be computed in polynomial time in the size of the input G′, A∗, and (νa)a∈A′ . �

If the corresponding labels `′ of a normalized thin flow with resetting are known,
computing flow values is not hard. The flow value x′a on a = (v, w) ∈ A′ lies in the
interval [0, νa`

′
w]. If `′v > `′w and a 6∈ A∗, then x′a is zero. If `′v < `′w or a ∈ A∗, then

x′a = νa`
′
w holds. Finding a flow satisfying these conditions can be done by a simple flow

computation.

Corollary 4.27 (Normalized thin flows in series-parallel graphs). Normalized thin flows
with resetting in two-terminal series-parallel graphs can be computed in polynomial time.

4.6 Closing Remarks

We examine normalized thin flows with resetting as a parametric problem in dependency
on the flow value. The results allow us to give a constructive proof for the existence of
dynamic equilibria for single-source single-sink networks with right-monotone inflow rate.
Further, we obtain a polynomial-time algorithm for computing thin flows with resetting
on two-terminal series-parallel networks. The recursive approach that we take for the
latter does not seem to generalize to arbitrary networks. A central aspect that we use in
this recursion is that every considered subnetwork has a single source and a single sink.
Major open questions on the model, like the price of anarchy and the number of phases,

seem to require insights into the relation between the thin flows of subsequent phases.
These, in turn, would need a better understanding of the dependency of thin flows with
resetting on the sets of active and resetting arcs.
The characterization of normalized thin flows with resetting by a linear complementar-

ity problem in Theorem 4.5 allows us to deduce some basic properties of the functions %G′ .
Beyond this, it opens the way to approach normalized thin flows with resetting through
the existing machinery of linear complementarity problems. The properties of the pre-
sented linear complementarity problem as established in Lemma 4.8 and in the proof of
Theorem 4.10 show that normalized thin flows with resetting can be computed in finitely
many steps via Lemke’s algorithm. While there is no immediate nontrivial bound on the
number of steps in theory, it suggests an efficient method in practice. The complexity of
computing normalized thin flows with resetting (or even parametric thin flows) remains
open in general. Analyzing the number of iteration of Lemke’s algorithm for the proposed
linear complementarity problem or similar formulations might shed some light on this
question.

74

Chapter 5

Nash Equilibria in Network Cost-Sharing
Games

This chapter treats Nash equilibria in network cost-sharing games. These games
represent the game theoretic counterpart of buy-at-bulk network design. In network
cost-sharing games, a set of players needs to connect their respective source and sink by
selecting a path. The use of an edge incurs a cost that is nondecreasing with the number
of users. Under fair cost allocation, the cost is fairly split among all users. We restrict to
the cases where the total edge cost is nondecreasing and concave, and the resulting
cost per player is nonincreasing in the number of players. We use the term cost-
sharing in order to emphasize the latter. Formally, cost-sharing games fall into the class
of congestion games. We assume that all players act selfishly and, thus, try to minimize
the total cost they spend on connecting their source and sink. As opposed to congestion
games with nondecreasing player cost, the sharing of the costs incentivizes coordination
between the players up to some point. A defecting player, however, can obliterate the
benefits of a group’s cooperation. Maybe the most prominent questions in this area of
research are the computational complexity and the efficiency of Nash equilibria.
We want to advance the understanding by improving the existing bounds on the price of
stability and generalize many existing results to more general cost functions.
The questions at hand are closely related to the topic of minimum concave-cost

network flows. This model differs from the well known minimum-cost flow problem
by allowing a separable concave objective function with respect to an edge flow. We
highlight this connection in Section 5.3.1. In general, however, we keep the notation of
the original domain in order to be more consistent with the existing literature on the
topic.

Authorship. The presented results are joint work with Yiannis Giannakopoulos and
Clara Waldmann.

Outline. Section 5.1 starts with introducing notation and terminology specific to net-
work cost-sharing games. Further, it relates our contributions to existing literature. In
Section 5.2, we establish basic structural results for Nash equilibria and social optima.
Section 5.3 deals with the computational complexity of Nash equilibria. On the posi-
tive side, we discuss various formulations of the problem of finding a Nash equilibrium
in Section 5.3.1. On the negative side, we provide several intractability results in Sec-

75

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

tion 5.3.2. Section 5.4 focuses on the efficiency of Nash equilibria. After analyzing the
price of anarchy in Section 5.4.1, we move on to the analysis of the price of stability.
Section 5.4.2 provides upper bounds on the price of stability via two different methods.
This is augmented by lower bounds for various classes of cost functions in Section 5.4.3.
We close this chapter by some final remarks in Section 5.5.

5.1 Introduction

We start by introducing basic terms and notation to define the problem formally. Further,
we establish some special classes of instances in terms of the the sources and sinks as
well as the cost functions.

Network cost-sharing games. An (undirected) network cost-sharing game is de-
fined on an (undirected) graph G = (V,E). There are n ∈ N players. Each player i ∈ [n]
wants to connect her source si ∈ V to her sink ti ∈ V . Therefore, the strategies of a
player i ∈ [n] are the sets of edges in E that connect her source si and sink ti, that is,

Σi :=
{
E′ ⊆ E

∣∣ si is connected to ti in E′
}
.

We denote the set of all strategy profiles by Σ :=×i∈[n] Σi. The set of edges that is
used by all players in a strategy profile σ is called its support and denoted supp(σ) :=⋃
i∈[n] σi. The congestion that a strategy profile σ ∈ Σ creates on the edges is expressed

by the function
nσ : E → N, e 7→

∣∣{i ∈ [n]
∣∣ e ∈ σi}∣∣.

Depending on the congestion, the players incur costs for the usage of edges. These costs
are described by c ∈ RE≥0 and a positive, nonincreasing cost function f : N→ R>0. The
requirement of f being nonincreasing distinguishes cost-sharing games from congestion
games with increasing cost function. The total edge cost that is incurred by k ∈ N
players using it is given by cekf(k) if k > 0 and zero otherwise. The total cost is
split fairly among all players that use it. This allocation of total cost to users is called
the Shapley cost-sharing mechanism as the player costs relate to the Shapley value
named after Shapley (1951). We define the cost cσ(e) for using an edge e ∈ E in the
strategy profile σ as

cσ : E → R≥0, e 7→ cef
(
nσ(e)

)
.

For subsets of edges E′ ⊆ E, we write cσ(E′) :=
∑

e∈E′ cσ(e). In a strategy profile σ ∈ Σ,
the total player cost of i ∈ [n] is the sum of all costs she incurs for using edges in σi;
that is, the total player cost evaluates to

Ci(σ) =
∑
e∈σi

cσ(e) =
∑
e∈σi

cef
(
nσ(e)

)
.

We assume that every player strives for minimizing her total player cost.

76

5.1 Introduction

It is a natural assumption that the total cost of a resource is nondecreasing in the
number of users. Hence, we will assume throughout that the total edge cost cekf(k) is
nondecreasing in k for all e ∈ E. We further assume that the total edge cost exhibits
economies of scale. Then k 7→ cekf(k) is concave, that is, the marginal total edge cost
ce(k + 1)f(k + 1)− cekf(k) is nonincreasing in k ∈ N.
The following variant of an edge’s cost is very helpful when it comes to examining

unilateral deviations. We define c′σ(e) for e ∈ E as the cost a player i ∈ [n] with e 6∈ σi
would incur for using e (assuming no other player changes their strategy). It evaluates
to c′σ(e) = cef

(
nσ(e) + 1

)
. Note that c′σ(e) ≤ cσ(e) holds for all e ∈ E as we assume that

f is nonincreasing. Again, we write c′σ(E′) :=
∑

e∈E′ c
′
σ(e) for a set of edges E′ ⊆ E. If

σ̂ ∈ Σ is the result of a player i ∈ [n] unilaterally deviating from a strategy profile σ ∈ Σ,
then nσ̂(e) = nσ(e) for all e ∈ σ̂i ∩σi whereas nσ̂(e) = nσ(e) + 1 for all e ∈ σ̂i \σi. Thus,
the change of the total cost of player i can be expressed as

Ci(σ̂)− Ci(σ) = cσ̂(σ̂i)− cσ(σi) = c′σ(σ̂i \ σi)− cσ(σi \ σ̂i).

The social cost C(σ) of a strategy profile σ ∈ Σ is defined as the sum of the total
player costs and evaluates to

C(σ) =
∑
i∈[n]

Ci(σi) =
∑

e∈supp(σ)

cenσ(e)f
(
nσ(e)

)
.

As mentioned before, network cost-sharing games belong to the class of congestion
games. For these, Rosenthal (1973) shows the existence of Nash equilibria by an ele-
gant potential function argument. Monderer and Shapley (1996) characterize congestion
games as all games which have such a potential. For the class of network cost-sharing
games, the potential function is defined as follows. Set F : N→ R, k 7→

∑k
l=1 f(l). Note

that F (0) = 0. Then the potential function is given by

Φ: Σ→ R, σ 7→
∑
e∈E

ceF
(
nσ(e)

)
.

Classes of network cost-sharing games. Various specializations and variants of net-
work cost-sharing games appear in the literature. The most important ones are deter-
mined by the network topology and the type of considered cost functions. The above def-
inition of network cost-sharing games naturally translates to directed networks. There
is a large difference in the behavior of the directed and undirected versions. If not stated
explicitly, we refer to the undirected problem throughout the chapter.
With respect to the structure of the sources and sinks, there are three classes: the

general case with arbitrary source-sink pairs, multicast, and broadcast. A multicast
game is a network cost-sharing game in which all players share a common source vertex.
We refer to this common source as the root. In these games, we identify the players

77

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

2 4 6 8

2

4

6

8

(a) k 7→ kf(k)

2 4 6 8
0

0.2

0.4

0.6

0.8

1

(b) f(k)

2 4 6 8

2

4

6

8

(c) F (k)

Figure 5.1: The relevant cost functions under constant total edge cost (yellow), polynomial

total edge cost with α = 0.6 (violet), affine total edge cost with s = 0.4 (green), and linear total

edge cost (red).

with their sink. At first glance, this does not allow to represent multicast games with
multiple players having the same sink. This can be remedied by modifying the graph and
adding additional sinks which are connected by zero-cost edges to the original sinks. A
broadcast game is a network cost-sharing game with every vertex of the network being
associated with a player who wants to connect to a common source. In other words,
these are multicast games with the set of players being V . As the empty strategy is
dominant for the player associated with the root, she is often excluded from the set of
players. Both definitions are equivalent.
When it comes to the cost functions, there is the basic distinction between the uniform

and nonuniform settings. If not stated otherwise, we consider the uniform case, that
is, the cost of every edge varies only in ce but not in f . If additionally f is allowed to
depend on the edge, the game is called nonuniform (and ce ≡ 1 can be assumed).
In the following sections, we will particularly discuss four specific choices for the cost

function f . Their cost functions are depicted in Figure 5.1. The most prominent choice
is f(k) = 1/k. We refer to this as constant total edge cost, because cekf(k) = ce for
k > 0. This choice is also called step function pricing in buy-at-bulk network design. It
represents the extreme case of f decreasing as fast as possible under the assumption that
k 7→ kf(k) is nondecreasing.
The opposite extreme is given by linear total edge cost k 7→ kce. Then f does not

decrease at all, that is, f ≡ 1. In this case, there is no effect of sharing. Therefore, any
shortest si-ti path is a dominant strategy for player i ∈ [n].
We consider two natural interpolations between these two extreme cases. The first is

a linear interpolation and given by the choice f(k) = s + (1 − s)/k for the parameter
0 ≤ s ≤ 1. This corresponds to affine total edge cost k 7→ ce + (k − 1)sce, which is
also called offset linear pricing. For the usage of an edge a startup cost of ce is payed and
any additional use has a unit cost of sce. Secondly, we discuss a geometric interpolation
given by the class of polynomially decreasing functions f(k) = kα−1 for the parameter
0 ≤ α ≤ 1. In this case, we obtain polynomial total edge cost k 7→ cek

α.

78

5.1 Introduction

5.1.1 Related Literature

We give an overview of related work on network cost-sharing games and connected top-
ics. Primarily, we are interested in understanding Nash equilibria and how their social
compares to a social optimum. Finding a social optimum is known as the buy-at-bulk
network design problem. Any Nash equilibrium constitutes a feasible solution to the
network design problem. Hence, hardness results for the approximation of network de-
sign immediately translate to hardness of computing Nash equilibria of the respective
quality. The other way round, being able to compute Nash equilibria of small social cost
efficiently would imply an approximation algorithm for network design. This suggests
that the state of the art for the approximation of network design gives a natural bound
for the computation of good Nash equilibria.
The buy-at-bulk network design problem can be viewed as a minimum concave-cost

flow problem. Research on the latter focuses on directed networks. Still there are some
connections which are relevant for undirected networks. There is a significant difference
in the complexity of the discussed problems in directed and undirected networks. The
directed version is generally harder. This is the reason why the work on buy-at-bulk
network design focuses on the undirected case.

Buy-at-bulk network design. There is a large body of literature on the network design
problem. In terms of our problem, network design asks for a social optimum. As solving
the problem exactly is hard in most cases, research has focused on approximation algo-
rithms. We only give a selection of results, a survey on approximation techniques and
further results is given by Gupta and Könemann (2011).
The work of Awerbuch and Azar (1997), Bartal (1998), and Fakcharoenphol, Rao, and

Talwar (2003, 2004) yields an O
(

log n
)
-approximation algorithm for (uniform, undi-

rected) buy-at-bulk network design. The same guarantee can be achieved when nonuni-
form costs are allowed but a common source of all players is assumed as shown by
Chekuri, Khanna, and Naor (2001) and Meyerson, Munagala, and Plotkin (2000, 2008).
For multicast network design with uniform cost, there is a constant factor approximation
due to Guha, Meyerson, and Munagala (2001), Gupta, Kumar, Pál, and Roughgarden
(2007), Gupta, Kumar, and Roughgarden (2003), and Talwar (2002).
On the negative side, Andrews (2004) shows that there is no O

(
(log n)1/2−ε)-approx-

imation algorithm for nonuniform buy-at-bulk network design for any ε > 0, unless
all problems in NP of size k can be solved in time O

(
kpolylog(k)

)
using randomiza-

tion. The hard instances use (nonuniform) affine total edge costs. Further, there is
no O

(
(log n)1/4−ε)-approximation algorithm for uniform buy-at-bulk network design for

any ε > 0 under the same assumption. The involved construction uses an edge cost
function of the form k 7→ min{sk, S + k} where s, S ∈ R≥0. For the multicast set-
ting, Chuzhoy, Gupta, Naor, and Sinha (2005, 2008) show that there cannot be an
O
(

log log n
)
-approximation algorithm, unless all problems in NP of size k are solvable

in time kO(log log log k).

79

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Minimum concave-cost flow. The minimum concave-cost flow problem asks for a flow
in a network with supply and demand of minimal total cost with respect to a separa-
ble concave objective function. It was formally introduced in the literature by Zangwill
(1968). It is essentially equivalent to the buy-at-bulk network design problem. The com-
plexity of the minimum concave-cost flow problem depends on the number of sources
and the number of arcs with nonlinear cost function. It is well known that capacities
in network flows can be modeled by introducing additional sources and sinks. The fol-
lowing concerns uncapacitated networks after such a transformation. Erickson, Monma,
and Veinott (1987) provide an algorithm based on dynamic programming, which they
call send-and-split. Its running time is polynomial in the size of the network, but expo-
nential in the number of sources and sinks. For planar networks, they are able to reduce
this exponential dependency to the minimum number of faces that cover all sources and
sinks. For networks with a single source and a single edge with nonlinear cost function,
Guisewite and Pardalos (1993) as well as Klinz and Tuy (1993) give polynomial-time
algorithms. Tuy, Ghannadan, Migdalas, and Värbrand (1995) further isolate the depen-
dency on the two critical parameters. They find an algorithm that runs in polynomial
time if the number of sources as well as the number of arcs with nonlinear cost functions
is bounded (see also Tuy 2000).
Besides the attempts to compute a global minimizer, there is also work on finding local

minima. Gallo and Sodini (1979) and Guisewite and Pardalos (1991) devise local searches
to tackle the problem. These are particularly interesting when it comes to finding Nash
equilibria in network cost-sharing games. More on this is postponed to Section 5.3.1.

Network cost-sharing games. In their seminal paper, Anshelevich, Dasgupta, Klein-
berg, Tardos, Wexler, and Roughgarden (2004, 2008) examine network design from a
game theoretic perspective and introduce network cost-sharing games. The authors show
that the price of anarchy in this model with constant total edge cost is the number of
players, even in the case of undirected broadcast games. Subsequently, they focus on the
price of stability. While their focus lies on constant total edge cost, they extend their
results to more general settings including nonincreasing player cost.

The price of stability. The first upper bound on the price of stability is obtained by
Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and Roughgarden (2004, 2008) via
the potential function method. It bounds the cost of a Nash equilibrium that results
from executing the improving dynamics on a social optimum. The achieved upper bound
of H(n) is based on relating the social cost and potential function value of strategy
profiles. The authors show that this bound is best possible for directed networks and
constant total edge cost (even in the case of broadcast games). The following applies to
undirected networks with constant total edge cost unless noted otherwise. Kawase and
Makino (2012, 2013) examine the social cost of global potential minimizers, which are
a subset of all Nash equilibria. The ratios of the maximal and minimal cost of such a
potential minimizer to the cost of a social optimum are called potential-optimal price
of anarchy and potential-optimal price of stability, respectively. The authors show

80

5.1 Introduction

that both these prices are in O(
√

log n) and Ω(
√

log log n) for broadcast games. Disser,
Feldmann, Klimm, and Mihalák (2013, 2015) take a similar approach for the general
setting by analyzing the social cost of a global potential minimizer. They end up with
the upper bound

(
1−Θ(n−4)

)
H(n). Mamageishvili, Mihalák, and Montemezzani (2018,

2014) refine this method by analyzing strategy profiles obtained from combining a global
potential minimizer with a social optimum. This gives an upper bound of H(n/2) + ε
for any ε > 0 and large enough n.
Better bounds on the price of stability are only known when the players share a common

source. By exploiting the tree structure of a Nash equilibrium, Li (2009) refines the anal-
ysis of the potential function method and proves an upper bound of O

(
log n/ log log n

)
on the price of stability in multicast games. For broadcast games, a series of papers
culminates in a constant price of stability. The evolved method is referred to as the
homogenization-absorption framework. Its foundation is laid by Fiat, Kaplan,
Levy, Olonetsky, and Shabo (2006). Just like the potential function method, their al-
gorithm starts with a social optimum and transforms it into an equilibrium through
improving moves. These moves, however, are chosen carefully such that the strategy
profile stays relatively close to the initial social optimum. Players with similar strate-
gies in the social optimum also have similar strategies throughout the improving steps,
which is later dubbed homogenization. Due to this homogenization, when a player
deviates, other players that are close in the social optimum have an incentive to follow
this deviation. This effect is used in a process called absorption. These ideas yield
an upper bound of O

(
log logn

)
. Lee and Ligett (2013) introduce additional moves to

the improving dynamics, in which groups of players deviate. Thereby, the cost of some
deviating players might increase, but the potential function still decreases. This leads
to a better homogenization and absorption. A charging scheme based on a preorder
traversal of the social optimum results in an upper bound of O

(
log log log n

)
. Finally,

Bilò, Flammini, and Moscardelli (2013, 2020) achieve a constant upper bound. They
leverage that every vertex is a player to improve significantly on the homogenization.
Their charging scheme uses the partition of edges into classes of exponentially growing
cost. In an effort to transfer these results to more general settings, Freeman, Haney,
and Panigrahi (2016) extend the homogenization-absorption framework to the class of
multicast games on quasi-bipartite networks. These are multicast games in which every
edge is incident to at least one player’s sink (or the common source). The authors obtain
again a constant upper bound on the price of stability in this class.
In all cases, there is a large gap between the upper and lower bounds on the price of

stability. In the general case, Christodoulou, Chung, Ligett, Pyrga, and van Stee (2009)
and Bilò, Caragiannis, Fanelli, and Monaco (2013) give families of instances which yield
lower bounds of approximately 1.826 and 2.245. The best lower bound for multicast
games is 1.862 by Bilò, Caragiannis, Fanelli, and Monaco (2010, 2013). The same authors
optimize the weights in an instance by Fiat, Kaplan, Levy, Olonetsky, and Shabo (2006)
to raise their lower bound from approximately 1.714 to 1.818 for broadcast games.
As determining the price of stability has proven a tough problem, there is research on

instances with a small number of players and networks with ring topology. For two play-
ers, Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and Roughgarden (2004, 2008)

81

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

and Christodoulou, Chung, Ligett, Pyrga, and van Stee (2009) show a price of stability
of 4/3 in multicast and general networks, respectively. For three players, the work of Bilò
and Bove (2011), Bilò, Caragiannis, Fanelli, and Monaco (2010, 2013), Christodoulou,
Chung, Ligett, Pyrga, and van Stee (2009), and Disser, Feldmann, Klimm, and Mihalák
(2015) culminates in the intervals [1.571, 1.634] and [1.524, 1.532] for the price of stability
in general games and multicast games, respectively, and a value of around 1.485 for the
price of stability in broadcast games. The fact that even for three players the exact value
is not known illustrates the difficulty of the problem. In networks with ring topology, the
price of stability is determined to be 3/2 in general games by Fanelli, Leniowski, Monaco,
and Sankowski (2012, 2015) and 4/3 in multicast games by Mamageishvili, Mihalák, and
Montemezzani (2018, 2014).

Computational complexity. A first result that suggests the hardness of computing Nash
equilibria is by Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and Roughgarden
(2004, 2008). They construct an instance with constant total edge cost on which improv-
ing dynamics simulates a binary counter when initialized with a specific strategy profile.
Hence, the running time of improving dynamics can be exponential in the number of
players n.
Syrgkanis (2010) shows that finding a Nash equilibrium is PLS-hard for nonuniform

network cost-sharing games with specific cost function classes. He uses a tight reduction
from the maximum cut problem. This result covers the case of uniform directed network
games with constant total edge cost. Bilò, Flammini, Monaco, and Moscardelli (2015,
2021) extend the reduction to also apply to undirected networks with constant total edge
cost.
Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and Roughgarden (2004, 2008)

show that computing a Nash equilibrium of minimal social cost in directed multicast
games is NP-hard via a reduction from 3D matching. Syrgkanis (2010) shows the same
hardness for undirected multicast games. Chekuri, Chuzhoy, Lewin-Eytan, Naor, and
Orda (2006, 2007) prove that it is NP-hard to compute a global potential minimizer in
undirected multicast games via a reduction from a variant of the satisfiability problem
based on a result by Lund and Yannakakis (1993, 1994).
On the positive side, Albers and Lenzner (2010, 2013) show that any social optimum in

an undirected multicast game is a H(n)-approximate Nash equilibrium. For fixed α > 0,
Bilò, Flammini, Monaco, and Moscardelli (2015, 2021) give a polynomial-time algorithm
to compute an Ω(nα−1)-approximate equilibrium for network cost-sharing games with
cost function f(k) = kα.

Several variants and extensions of network cost-sharing games are present in the liter-
ature. We only include a subset of them.

Sequential games. One line of research treats a variant in which players enter the game
sequentially and choose a best response at the moment of entry to the present players.
In this setting, Charikar, Karloff, Mathieu, Naor, and Saks (2008) prove the bounds

82

5.1 Introduction

O
(

log2 n
)
and Ω

(
log n

)
on the price of anarchy in multicast games. When a subse-

quent phase of best-response dynamics is added to obtain a Nash equilibrium, Chekuri,
Chuzhoy, Lewin-Eytan, Naor, and Orda (2006, 2007) show that the price of anarchy in
multicast games is bounded by O

(√
n log2 n

)
and Ω

(
log n/ log logn

)
. Charikar, Karloff,

Mathieu, Naor, and Saks (2008) improve these to O
(

log3 n
)
and Ω

(
log n

)
. Further, they

examine the result of interleaving the player entries with best-response deviations. Ma-
mageishvili, Mihalák, and Montemezzani (2018, 2014) treat sequential multicast games
on ring topologies.

Relaxed and refined equilibria. Lee and Ligett (2013) examine a solution concept which
they call go-it-alone equilibrium. It is a relaxation of the Nash equilibrium as it assumes
that players only want to deviate if it is cheaper for them to pay their new strategy all
on their own. Under this relaxation the price of stability in multicast games is constant
for constant total edge cost.
Another line of research considers a refinement of Nash equilibria, the so-called strong

Nash equilibria. Those are Nash equilibria in which no coalition of players can deviate
and improve on the cost of every involved player. Epstein, Feldman, and Mansour (2007,
2009) show the existence of strong Nash equilibria in some network topologies. Then
they show that the price of anarchy for this notion is bounded by H(n) for general
cost functions (in games that admit a strong Nash equilibrium). Albers (2008, 2009)
refines this bound for approximate strong Nash equilibria and proves a lower bound of
Ω
(√

log n
)
.

Weighted players. In the model as examined in this chapter, all players using an edge
share its cost equally. In a variation, every player is assigned a weight and the cost of an
edge is shared proportionally to the weights of the present players. H. Chen and Rough-
garden (2009, 2006) show that already in games with three weighted players Nash equi-
libria may fail to exist. Subsequently, they study approximate equilibria in this setting.
Albers and Lenzner (2010) analyze to what extend social optima represent approximate
Nash equilibria for weighted players. Chekuri, Chuzhoy, Lewin-Eytan, Naor, and Orda
(2006) deal with the possible nonexistence of Nash equilibria in a different way. They
show that equilibria always exist in a fractional version of network cost-sharing games
with weighted players.

5.1.2 Our Contribution

We examine Nash equilibria of network cost-sharing games in terms of their computa-
tional complexity and their efficiency. Most existing work on these games focuses on the
cost function f(k) = 1/k. We provide a wider angle, by considering general positive,
nonincreasing functions f such that k 7→ kf(k) is nondecreasing and concave.
In terms of the complexity, our main results fortify the intractability of finding Nash

equilibria. We discuss formulations for finding Nash equilibria as local optimization
problems and relate them to the minimum concave-cost flow problem. These formulations
yield natural algorithmic approaches, which, however, do not generally run in polynomial

83

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

time under common assumptions in complexity theory. This hardness is revealed by
several results. We extend the work of Bilò, Flammini, Monaco, et al. (2015, 2021) and
Syrgkanis (2010) to obtain PLS-hardness for all nonconstant cost function f . Further,
we show that it is NP-hard to compute specific Nash equilibria even in broadcast games,
specifically Nash equilibria of minimal social cost and global minimizers of the potential
function. Finally, we give an example that provides evidence for slow convergence of the
improving dynamics in multicast games.
In terms of the efficiency of Nash equilibria, we exactly determine the price of anarchy

for arbitrary cost functions f as f(1)/f(n) and improve the bounds on the price of
stability. An improved analysis of the potential function method by Anshelevich et
al. (2004, 2008) yields the better upper bound of 1 + ln

(
f(1)/f(n)

)
on the price of

stability for general cost functions f . For the classes of affine total edge cost kf(k) =
1 + s(k − 1) and polynomial total edge cost kf(k) = kα, we obtain the even tighter
bounds 1 + W0

(
(1− s)/(se)

)
and 1/α, respectively. (Here, W0 denotes the Lambert W

function.) For broadcast games, we advance the homogenization-absorption framework
by Bilò, Flammini, and Moscardelli (2013, 2020), Fiat et al. (2006), and Lee and Ligett
(2013). We are able to significantly simplify the algorithm at its core and the charging
scheme used for its analysis. This facilitates a constant upper bound on the price of
stability of 265 for broadcast games with constant total edge cost, which is a magnitude
smaller than (the estimate of) the best previously existing bound. Further, we obtain
constant upper bounds for broadcast games in which kf(k) is bounded. We augment
these results by investigating the lower bounds on the price of stability. The structure
of worst-case instances highly depends on the cost function f . Hence, we focus on fan
graphs which provide the currently best lower bounds of 20/11 for broadcast games with
constant total edge cost as found by Bilò, Caragiannis, et al. (2010, 2013) and Fiat et
al. (2006). We prove that the known bound is the best possible within a natural class
of instances. In addition, we obtain lower bounds for broadcast games with affine and
polynomial total edge cost.

5.2 Structure of Nash equilibria

This section repeats and establishes basic results on the structure of Nash equilibria. The
foundation for these results and large parts of the analysis in later sections is provided
by the potential function. Rosenthal (1973) finds that it reflects the change of the total
player cost in a unilateral deviation, as stated in the next theorem. We include its short
proof due to its fundamental importance.

Theorem 5.1 (Potential game). Let σ ∈ Σ be a strategy profile and let σ̂ ∈ Σ result
from a player i ∈ [n] unilaterally deviating in σ. Then it holds

Φ(σ̂)− Φ(σ) = Ci(σ̂)− Ci(σ).

84

5.2 Structure of Nash equilibria

Proof. As σ̂ differs from σ only by a unilateral deviation of a player i ∈ [n], we know

nσ̂(e)− nσ(e) =

1 if e ∈ σ̂i \ σi
−1 if e ∈ σi \ σ̂i
0 otherwise.

Applying this to the definitions of the potential function and total player cost, we obtain

Φ(σ̂)− Φ(σ) =
∑

e∈σ̂i\σi

cef
(
nσ̂(e)

)
−
∑

e∈σi\σ̂i

cef
(
nσ(e)

)
=
∑
e∈σ̂i

cef
(
nσ̂(e)

)
−
∑
e∈σi

cef
(
nσ(e)

)
= Ci(σ̂)− Ci(σ). �

An immediate consequence of Theorem 5.1 is that the set of local minimizers of the
potential is exactly the set of Nash equilibria. This is discussed further in Section 5.3.1.
The contribution of zero-cost edges to the total player cost (and the potential function)

is zero. Hence, they behave slightly different than edges with positive cost. To deal with
them, we make the following basic observation.

Observation 5.2 (Zero-cost edges). Let E′ ⊆ E such that ce = 0 for all e ∈ E′. Set
G′ = G/E′ to be the graph G after contracting the edges in E′. Then the total player
costs of σ ∈ Σ in the cost-sharing game on G are exactly the total player costs of σ/E′ in
the game on G′, that is, Ci(σ) = Ci(σ/E

′) for all i ∈ [n]. In particular, their social costs
are the same, and, σ is a Nash equilibrium in G if and only if σ/E′ is a Nash equilibrium
in G′.

This observation essentially allows us to separate edges with zero and positive cost.
We obtain our first structural result for Nash equilibria in network cost-sharing games.

Lemma 5.3 (Support of Nash equilibria). Let E0 := {e ∈ E | ce = 0} be the set of zero
edges. For every Nash equilibrium σ′ ∈ Σ of a network cost-sharing game with n players
and strictly decreasing cost function f , there is a Nash equilibrium σ ∈ Σ such that

(i) σi \ E0 = σ′i \ E0 for all i ∈ [n], and

(ii) the set of edges
⋃
i∈[n] : v∈V (σi)

σi is a tree for every vertex v ∈ V .

Proof. We show that the support of σ′ is a tree up to edges of cost zero. To break ties on
E0, we need the function Φ̂(σ) :=

∑
e∈E H

(
nσ(e)

)
. Note that Φ̂ is the potential function

if we assume unit total edge cost. For all edges e ∈ E, define the corresponding cost
ĉσ(e) := 1/nσ(e) if nσ(e) > 0 and ĉσ(e) = +∞ otherwise. Further, denote by Ĉi(σ) the
total player cost of player i ∈ [n] in σ ∈ Σ with respect to ĉσ.
Let σ ∈ Σ be such that it fulfills (i) and Φ̂(σ) is minimal under all such choices.

Lemma 5.3 implies that σ is a Nash equilibrium. To see (ii), fix an arbitrary v ∈ V . Let
I := {i ∈ [n] | v ∈ V (σi)} be the set of players whose strategy is incident to v. Let T be
a lexicographically shortest path tree from the source v with respect to cσ and ĉσ; that

85

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

is, for all w ∈ V the path T [v, w] minimizes ĉσ(T [v, w]) under all shortest paths with
respect to cσ. We finish the proof by showing that the strategies of all players i ∈ I lie
in T .
Assume that there is i ∈ I such that σi 6= T [si, ti]. Set σ̂ to be the strategy profile

that results from i unilaterally deviating in σ to σ̂i = T [si, ti]. Then,

cσ(σ̂i) ≤ cσ(T [si, v]) + cσ(T [v, ti]) ≤ cσ(σi) = Ci(σ)

holds, because σi is split by v into an si-v path and a v-ti path.
If σi \ E0 6= T [si, ti] \ E0, then either σ̂i \ E0 (σi \ E0 or (σ̂i \ σi) \ E0 6= ∅ has to be

true. In the former case, clearly Ci(σ̂) < Ci(σ) contradicts σ being a Nash equilibrium.
Otherwise, f being strictly decreasing yields the contradiction

Ci(σ̂) = cσ(σ̂i ∩ σi) + c′σ(σ̂i \ σi) < cσ(σ̂i) ≤ Ci(σ).

Hence, σ′i \ E0 = σi \ E0 = σ̂i \ E0 = T [si, ti] \ E0. Consequently, Φ̂(σ) ≤ Φ̂(σ̂) follows
from the choice of σ. Similarly to the preceding, we consider the two cases σ̂i (σi and
σ̂i \ σi 6= ∅. In the first case, we get the contradiction Φ̂(σ̂) < Φ̂(σ). In the second case,
we repeat the preceding arguments and obtain

Ĉi(σ̂) = ĉσ(σ̂i ∩ σi) + ĉ′σ(σ̂i \ σi) < ĉσ(σ̂i) ≤ ĉσ(T [si, v]) + ĉσ(T [v, ti]) ≤ ĉσ(σi) ≤ Ĉi(σ),

which is a contradiction based on Theorem 5.1. Thus, in total σi = T [si, ti] holds for all
i ∈ I and σ fulfills (ii) as well. �

For multicast and broadcast games, Lemma 5.3 implies the following structural result
as also found by Fiat et al. (2006).

Lemma 5.4 (Support of Nash equilibria in multicast games). Let E0 = {e ∈ E | ce = 0}.
For every Nash equilibrium σ′ ∈ Σ of a multicast game with strictly decreasing cost func-
tion f , there is a Nash equilibrium σ ∈ Σ such that σi \E0 = σ′i \E0 for all players i and
supp(σ) is a tree. In a broadcast game, supp(σ) is a spanning tree.

Proof. The statement is a corollary of Lemma 5.3. The strategies of all players are
incident to r. Thus, Lemma 5.3 in particular implies that supp(σ) is a tree. As in a
broadcast game every vertex is a player connecting to r, it is spanning for those. �

Lemma 5.4 shows that Nash equilibria in multicast and broadcast games with strictly
decreasing cost function are supported by a tree up to zero-cost edges. In particular,
if all edges have positive cost, every Nash equilibrium is supported by a tree. For an
equilibrium that is not supported by a tree there is an equilibrium on a tree of the
very same social cost. Lemma 5.4 enables us in many cases to restrict the attention to
tree-supported equilibria. Therefore, we discuss them in terms of trees.
Consider a multicast game with root r. For a Nash equilibrium σ ∈ Σ that is supported

by a tree S, the strategy σv of a player v ∈ V is the unique r-v path in S, which we denote
by S[r, v]. Hence, S fully determines σ. We also say that S induces σ. This extends

86

5.2 Structure of Nash equilibria

to all trees that span the set of all players and the root. Also the difference between the
strategies of two players u, v ∈ V can be interpreted in terms of S. We have that σv \ σu
is exactly the path in S from v to the vertex where S[v, r] and S[u, r] meet. The latter
is the lowest common ancestor of u and v in S and we get σv \ σu = S[v, lca(u, v)].
Their tree structure leads to a particularly nice characterization of Nash equilibria

in multicast and broadcast games. It is sufficient to consider deviations which are the
concatenation of a path in E \ S and a path in S.

Theorem 5.5 (Nash equilibria in multicast games). Let σ ∈ Σ be a strategy profile in
a multicast game that is supported by a tree S = supp(σ). Then σ is a Nash equilibrium
if and only if it holds for all vertices u, v ∈ V (S) and all u-v paths P ⊆ E \ S that are
internally vertex disjoint to V (S) that

cσ
(
σv \ σu

)
− c′σ

(
σu \ σv

)
≤ c(P)f(1) (NE)

where the notation σw = S[r, w] is extended to all w ∈ V .

Proof. Assume σ is a Nash equilibrium. Fix u, v ∈ V (S) and a u-v path P ⊆ E \ S
which does not intersect S. Let σ̂ be the strategy profile that results from v unilaterally
deviating in σ to σ̂v = σu ∪P . Applying the definition of a Nash equilibrium to σ yields

0 ≤ Cv(σ̂)− Cv(σ)

= cσ
(
(σu ∪ P) ∩ σv

)
+ c′σ

(
(σu ∪ P) \ σv

)
− cσ

(
σv
)

= c′σ
(
σu \ σv

)
+ c(P)f(1)− cσ

(
σv \ σu

)
.

For the converse direction, assume that σ is not a Nash equilibrium. Then there is a
player w ∈ V who can decrease her cost by deviating. Choose σ̂w to be an improving
move of w in σ that minimizes |σ̂w \ S|. Without loss of generality, we can assume
that σ̂w is a path. As σ is supported by a tree, it follows that the improving move σ̂w
contains at least one edge that is not in S. Define P = σ̂w[u, v] by u, v ∈ V (S) such that
S[r, u] = σ̂w[r, u], V (P) ∩ V (S) = {u, v}, and P 6= ∅; that is, P is the inclusion-maximal
subpath of σ̂w that is closest to r and internally vertex disjoint to V (S). We compare to
σ̂w the strategy σv∪ σ̂w[v, w], which uses σv instead of σu∪P . Observe that σv∪ σ̂w[v, w]
contains strictly less edges in E \ S. Hence, it cannot be improving for w in σ as this
would contradict the choice of σ̂w. Thus, we get

0 < Cw
(
σ−w, σv ∪ σ̂w[v, w]

)
− Cw

(
σ−w, σ̂w

)
≤ cσ

(
σv \ (σu ∪ P)

)
− c′σ

(
(σu ∪ P) \ σv

)
= cσ

(
σv \ σu

)
− c′σ

(
σu \ σv

)
− c(P)f(1). �

Corollary 5.6 (Nash equilibria in broadcast games). Let σ ∈ Σ be a strategy profile in
a broadcast game that is supported by a tree S = supp(σ). Then σ is a Nash equilibrium
if and only if it holds for all edges e = {u, v} ∈ E \ S that

cσ
(
σv \ σu

)
− c′σ

(
σu \ σv

)
≤ cef(1).

87

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

1 2 3

9− ε
14

9− ε

4 + ε 4 + ε

r

1 2 3

9− ε
14

4 + ε 4 + ε

Figure 5.2: Braess’s paradox for the price of stability in an instance with f(k) = 1/k (left).

The social optima and Nash equilibria are highlighted in yellow and violet, respectively. The

deletion of {r, 3} decreases the price of stability from (22 + 2ε)/(17 + ε) to 1 (right).

Ultimately, the sparsity of the support of Nash equilibria is based on the concavity of
the potential function. As we assume that k 7→ kf(k) is concave as well, we obtain that
social optima are supported by trees as well (up to edges of cost zero). This also results
from the following observation on pairs of related games.

Observation 5.7. Let f : N → R be a cost function. Then the potential function of
the game with cost function f is equal to the social cost function of the game with cost
function f̄ : N → R, k 7→ F (k)/k. Hence, a social optimum with respect to f̄ is a global
potential minimizer with respect to f and, hence, a Nash equilibrium.

We finish this section, by exploring the effect of changing the network on the set of
Nash equilibria and social optima. Clearly, a social optimum is preserved when deleting
edges which are not in its support. We observe that the same is true for Nash equilibria.

Observation 5.8 (Nash equilibria under edge deletion). Let σ ∈ Σ be a Nash equilibrium
in a network cost-sharing game and let E′ ⊆ E be a subset of edges that contains supp(σ).
Then σ is also a Nash equilibrium in the network cost-sharing game restricted to E′.

Crucially, Observation 5.8 deals only with deleting edges that are not part of the
equilibrium. Clearly, deleting arbitrary edges can destroy Nash equilibria. It turns out,
that deleting edges can also create Nash equilibria. We obtain an effect similar to the
paradox by Braess (1968). In the example illustrated in Figure 5.2, the price of stability
decreases on deleting an edge. The cost function of the example is f(k) = 1/k. The
edges are annotated with their costs ce. We compare the price of stability before and
after deleting the edge {r, 3}. First of all, a social optimum is given by the path r−1−2−3
with a social cost of 17 + ε. The induced strategy profile by this path becomes a Nash
equilibrium after deleting {r, 3}. Before, however, the best Nash equilibrium is induced
by the tree {{r, 2}, {1, 2}, {2, 3}}. Its social cost evaluates to 22 + 2ε.

88

5.3 Computational Complexity of Nash Equilibria

Algorithm 3: Improving dynamics
Input: G = (V,E), r ∈ V, c ∈ RE≥0, player cost function f
Output: Nash equilibrium σ ∈ Σ

1 Choose an arbitrary strategy profile σ ∈ Σ;
2 while ∃i ∈ [n], σ′i ∈ Σi : Ci(σ−i, σ

′
i) < Ci(σ) do

3 σ ← (σ−i, σ
′
i);

4 end
5 return σ;

5.3 Computational Complexity of Nash Equilibria

In this section, we examine the complexity of computing Nash equilibria. On the positive
side, we discuss formulations which lead to algorithmic approaches. On the negative side,
we give hardness results.

5.3.1 Formulations

Given the definition of a Nash equilibrium, it is not clear how to construct one algo-
rithmically. The potential function allows to apply methods from (local) optimization.
We compare the standard approach of the improving dynamics to a local search that
stems from a concave-cost flow formulation. Further, we discuss a relaxation of this flow
formulation.

Improving dynamics. Theorem 5.1 suggests a simple algorithm for computing a Nash
equilibrium. An arbitrary initial strategy profile is gradually manipulated. As long as
there is a player who wants to deviate from the current strategy profile, let her unilaterally
defect to an improving strategy. This algorithm is called improving dynamics. A
formal description is presented in Algorithm 3. Its finite convergence is an immediate
consequence of Theorem 5.1. Indeed, the potential decreases strictly by each unilateral
deviation. As there is only a finite number of strategy profiles, this process has to
terminate after a finite number of steps.
In multicast games, Lemma 5.4 shows that Nash equilibria are essentially supported

by trees. We obtain a variant of the improving dynamics which keeps the tree structure
of a strategy profile throughout the process.

Lemma 5.9 (Improving tree moves in multicast games). Let σ be a strategy profile
in a multicast game that is supported by a tree S = supp(σ) ⊆ E. If there are vertices
u, v ∈ V (S) and a u-v path P that is internally vertex disjoint to V (S) and violates (NE)
then the strategy profile σ̂ induced by the tree S \ {eS(v)} ∪ P fulfills Φ(σ̂) < Φ(σ) and
Cw(σ̂) ≤ Cw(σ−w, σ̂w) < Cw(σ) for every w ∈ DS(v).

Proof. Let u, v ∈ V (S) and the u-v path P that is internally vertex disjoint to V (S)
violate (NE), that is, cσ

(
σv \ σu

)
− c′σ

(
σu \ σv

)
> c(P)f(1). Note that u 6∈ DS(v) as

89

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Algorithm 4: Improving tree dynamics
Input: G = (V,E), r ∈ V, c ∈ RE≥0, player cost function f
Output: Nash equilibrium σ ∈ Σ

1 Let σ be a strategy profile induced by an arbitrary spanning tree;
2 while ∃u, v ∈ V (supp(σ)), u-v path P internally vertex disjoint to supp(σ) :

cσ
(
σv \ σu

)
− c′σ

(
σu \ σv

)
> c(P)f(1) do

3 Update σ to be the induced strategy profile of S \ {eS(v)} ∪ P ;
4 end
5 return σ;

otherwise cσ
(
σv \ σu

)
= 0 contradicts the strict inequality. Hence, S \ {eS(v)} ∪ P is

indeed a tree. Let σ̂ be its induced strategy profile. As all w ∈ DS(v) share the path
σv and σ̂v in σ and σ̂, respectively, we have σ̂w \ σw = σ̂v \ σv and σw \ σ̂w = σv \ σ̂v.
Therefore, we get

Cw(σ−w, σ̂w)− Cw(σ) = c′σ(σ̂w \ σw)− cσ(σw \ σ̂w)

= c′σ(σu \ σv) + c(P)f(1)− cσ(σv \ σu) < 0.

Due to the tree structure of σ and σ̂, we know for every e ∈ E and w ∈ DS(v)

nσ̂(e)− nσ(e) =

|DS(v)| if e ∈ σ̂v \ σv,
−|DS(v)| if e ∈ σv \ σ̂v,
0 otherwise

 = |DS(v)|
(
nσ−w,σ̂w(e)− nσ(e)

)
.

Note that v ∈ DS(v) and so |DS(v)| ≥ 1. Thus, we get for the player cost of all w ∈ DS(v)

Cw(σ̂)− Cw(σ) =
∑

e∈σ̂w\σw

cef(nσ̂(e))−
∑

e∈σw\σ̂w

cef(nσ(e))

≤
∑

e∈σ̂w\σw

cef(nσ(e) + 1)−
∑

e∈σw\σ̂

cef(nσ(e)) = Cw(σ−w, σ̂w)− Cw(σ).

Finally, the change of the potential is

Φ(σ̂)− Φ(σ) =
∑
e∈E

ce(F (nσ̂(e))− F (nσ(e)))

≤ |DS(v)|
∑

e∈σ̂w\σw

cef(nσ(e) + 1)− |DS(v)|
∑

e∈σw\σ̂

cef(nσ(e))

= |DS(v)|(Φ(σ−w, σ̂w)− Φ(σ))

< 0. �

90

5.3 Computational Complexity of Nash Equilibria

Based on Lemma 5.9, we devise a variant of the improving dynamcis on the set of
strategy profiles which are supported by trees. We call this the improving tree dy-
namics. Its pseudo code is listed in Algorithm 4. If a profile that is supported by a
tree is not in equilibrium, there is a whole set of players given by a subtree who want
to deviate. Note that every single of these players benefits in this move. These players
would even deviate successively one by one. Therefore, a move in the improving tree
dynamics corresponds to a sequence of moves in the improving dynamics.

Local search. Improving dynamics can be viewed as local search. For a strategy profile
σ ∈ Σ, we define its unilateral neighborhood as the set of strategy profiles that differ
from σ by the strategy of exactly one player, that is,

Nunilateral(σ) =
{
σ′ ∈ Σ

∣∣ ∃!i ∈ [n] such that σ′i 6= σi
}
.

Then we obtain from Theorem 5.1 the following characterization of Nash equilibria.

Corollary 5.10 (Nash equilibria as local minima). The Nash equilibria in a network cost-
sharing game are exactly the local minima of Φ with respect to the unilateral neighborhood
Nunilateral.

Hence, finding a Nash equilibrium is equivalent to computing a local minimum of the
potential function. In particular, the global minimizer of the potential function is a Nash
equilibrium. The latter can be formulated in terms of a flow problem. To do so, we need
an orientation of the undirected graph G = (V,E). Let

↼⇀
G = (V,A) be the graph on the

same vertex set as G such that every edge is replaced by two opposite arcs. We extend
the cost to

↼⇀
G in the natural way, that is, cv,w = c{v,w} for all (v, w) ∈ A.

min
∑
e∈E

e={v,w}

ceF

∑
i∈[n]

x(i)
v,w +

∑
i∈[n]

x(i)
w,v

 (MCCFP)

s. t.
∑

a∈δ−(v)

x(i)
a −

∑
a∈δ+(v)

x(i)
a =

1 if v = ti

−1 if v = si

0 otherwise
for all v ∈ V, i ∈ [n]

x(i)
a ∈ N for all a ∈ A, i ∈ [n]

Strictly speaking, (MCCFP) is not a flow problem. Its objective function is not sepa-
rable with respect to the total flow on every arc. Instead it involves the sum of the total
flows on opposite arcs. This issue can be remedied by replacing two opposite arcs with
a gadget as depicted in Figure 5.3. The central arc of the gadget gets the cost of the
original arc while the other arcs get cost zero. In that spirit, we can treat (MCCFP) as
an (uncapacitated) multicommodity minimum concave-cost flow problem. In case of a
multicast game with players W ⊆ V this multicommodity flow problem simplifies to a

91

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

v w
cv,w

cv,w
v w

0 0

cv,w

0 0

Figure 5.3: Two opposite arcs (left) are replaced by a gadget (right). The arcs are annotated

with their cost.

singlecommodity flow problem.

min
∑
a∈A

caF (xa) (SSMCCFP)

s. t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa =

{
1 if v ∈W
0 otherwise

for all v ∈ V \ {r}

xa ∈ N for all a ∈ A

Note that for the single commodity case, the objective does not need to consider the
sum of the total flows on opposite arcs. This is due to the fact that in any minimum
only one of two opposite arcs can carry flow. This stems from a directed version of
Lemma 5.4. Thus, (SSMCCFP) gives a formulation as (uncapacitated) single-source
minimum concave-cost flow problem.

The extreme points of the uncapacitated single-source flow polyhedron correspond
exactly to flows that are supported by an arborescence. These in turn correspond exactly
to strategy profiles which are supported by trees. Gallo and Sodini (1979) show that
two flows that are supported by arborescences are adjacent in (the one skeleton of) the
polyhedron if and only if the union of their supports contains exactly one undirected
cycle. Augmenting along this cycle generates one flow from the other. Subsequently,
Gallo and Sodini (1979) propose a local search for solving uncapacitated single-source
minimum concave-cost flow problems with respect to the polyhedral neighborhood

Npolyhedral(σ) =
{
σ′ ∈ Σ

∣∣ supp(σ) ∪ supp(σ′) contains a unique cycle
}
.

This local search is closely related to the improving tree dynamics. However, there is
a subtle difference between them. The improving tree move guaranteed by Lemma 5.9
is indeed adjacent to the initial strategy profile with respect to Npolyhedral. Hence, a
local minimum with respect to Npolyhedral is a Nash equilibrium. But not every poten-
tial decreasing move with respect to Npolyhedral must give rise to a deviation in which
every deviating player benefits. This is caused by the fact that local search requires the
decrease of the potential only, whereas the improving dynamics requires the decrease of
all deviating players’ individual costs.

92

5.3 Computational Complexity of Nash Equilibria

Nonlinear optimization. Finally, we consider another concept of local minima. In con-
tinuous nonlinear optimization a point is a local minimum if it assumes the smallest
objective function value within a small (continuous) neighborhod. We relax (MCCFP)
by dropping the integrality constraints on the flow. Let F̂ be a continuous extension of
F onto R≥0, that is, F and F̂ agree on N. Using this extension of the objective function
to the relaxed feasible region, we obtain a nonlinear continuous optimization problem
(MCCFP’). x is a local minimum of (MCCFP’) if there is ε > 0 such that F (x) ≤ F (x′)
holds for every feasible point x′ of (MCCFP’) with ‖x′ − x‖∞ ≤ ε. Note that the spe-
cific choice of the uniform norm is not important, as the definition is invariant under
different choices. The next results establish properties of local minima of (MCCFP’) in
dependence on the interpolation F̂ .

Lemma 5.11. Let F̂ be a strictly concave, continuous extension of F and ca > 0 for all
a ∈ A. Then every local minimum of (MCCFP’) is integer.

Proof. In (MCCFP’), a strictly concave objective function is minimized over a polyhe-
dron. Hence, any local optimum is attained at a vertex of the polyhedron. As the flow
polyhedron is integer, the statement follows. �

Lemma 5.12. Let F̂ be a nondecreasing, concave, continuous extension of F . Then every
Nash equilibrium corresonds to a local minimum of (MCCFP’).

Proof. Define Φ̂ : RA → R, x 7→
∑
{v,w}∈E ceF̂ (xv,w+xw,v). Let σ be a Nash equilibrium,

and let x be the flow induced by σ. We prove that x has minimal objective value under
all feasible points within distance 1

n with respect to the uniform norm. To this end, let
x′ be a feasible point of (MCCFP’) such that ‖x′ − x‖∞ ≤

1
n . Denote by Pi the set

of si-ti paths in G, and by C the set of cycles. Then nx′ − (n − 1)x is also feasible
to (MCCFP’). Decomposing this flow into elementary flows on paths and cycles yields
y

(i)
P ≥ 0 for i ∈ [n], P ∈ Pi with

∑
P∈Pi y

(i)
P = 1 for all i ∈ [n] and yC ≥ 0 for C ∈ C such

that
nx′ − (n− 1)x =

∑
i∈[n]

∑
P∈Pi

y
(i)
P 1P +

∑
C∈C

yC1C .

For a player i ∈ [n] and a path P ∈ Pi, the flow x−1σi +1P corresponds to the strategy
profile that results from i deviating in σ to P . As σ is a Nash equilibrium, we know

Φ̂ (x) ≤
∑
i∈[n]

∑
P∈Pi

y
(i)
P

n
Φ̂ (x− 1σi + 1P) .

93

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

We apply concavity of Φ̂ to the right-hand side and obtain

Φ̂ (x) ≤ Φ̂

∑
i∈[n]

∑
P∈Pi

y
(i)
P

n
(x− 1σi + 1P)

= Φ̂

x− 1

n

∑
i∈[n]

1σi + x′ − n− 1

n
x−

∑
C∈C

yC
n
1C

= Φ̂

(
x′ −

∑
C∈C

yC
n
1C

)
.

Finally, Φ̂(x) ≤ Φ̂(x′) follows, because F̂ is nondecreasing. �

Lemma 5.13. Let F̂ be the linear interpolation of F . Then every local minimum of
(MCCFP’) is a Nash equilibrium.

Proof. Let x ∈ RA be a local minimum of (MCCFP’); that is, there exists ε > 0 such
that Φ̂(x) ≤ Φ̂(x′) for all feasible x′ ∈ RE with ‖x′ − x‖∞ ≤ ε. By Lemma 5.11, x is
integer and, hence, corresponds to a strategy profile σ ∈ Σ. For a player i ∈ [n] and a
path P ∈ Pi, let σ̂ be the resulting strategy profile when i deviates in σ to the strategy
P , and let x̂ ∈ RA be the corresponding flow. Then ‖x− x̂‖∞ ≤ 1 shows that F̂ is linear
on the segment between x and x̂. Therefore, we get

Φ̂(x) ≤ Φ̂
(
(1− ε)x+ εx̂

)
= Φ̂(x) + ε

(
Φ̂(x̂)− Φ̂(x)

)
.

Consequently, Φ(σ) = Φ̂(x) ≤ Φ̂(x̂) = Φ(σ̂). Because σ̂ emerged from an arbitrary
unilateral deviation, this shows that σ is a Nash equilibrium. �

Unfortunately, the linear interpolation of F is inherently nonsmooth. Lemma 5.13 still
holds for continuous extensions of F that are close to the linear interpolation. Yet, such
an extension does not seem to yield a smooth function which would be benefitial for
nonlinear optimization.

5.3.2 Intractability Results

In this section, we give lower bounds on the complexity of computing Nash equilibria in
network cost-sharing games. For arbitrary structure of the sources and sinks, we show
that finding a Nash equilibrium for any fixed strictly decreasing edge cost function is
PLS-complete. The considered neighborhood is that of unilateral deviations. In other
words, the improving dynamics does not run in polynomial time unless P = PLS. Note
that the same is true for the improving tree dynamics as any sequence of improving
tree moves translates to a sequence of improving moves which is longer by a polynomial
factor. The reduction for PLS-hardness does not work for multicast games. This is
why we proceed by examining the complexity of computing specific Nash equilibria. We

94

5.3 Computational Complexity of Nash Equilibria

prove that it is NP-hard to compute a Nash equilibrium which minimizes the social cost
in broadcast games for any fixed strictly decreasing cost function. Further, computing the
global minimizer of the potential function, which is also a Nash equilibrium, is NP-hard
for broadcast games with fixed strictly decreasing cost function.

5.3.2.1 PLS-Hardness of Computing Nash Equilibria

Syrgkanis (2010) shows PLS-hardness of computing Nash equilibria in nonuniform net-
work cost-sharing games for a certain class of cost functions. Bilò, Flammini, Monaco,
et al. (2015, 2021) extend this hardness to uniform games with cost function f(k) = 1/k.
Both results are based on a reduction from the maximum cut problem via a specific
subclass of cost-sharing games. We refer to this class as intermediate cost-sharing
games. Our reduction uses a similar construction and shows PLS-hardness for uniform
network cost-sharing games with arbitrary fixed nonconstant cost function f .

Theorem 5.14 (PLS-completeness). Let f : N → R>0 be a cost function such that
f(2) < f(1). Then computing a Nash equilibrium in a network cost-sharing game with
cost function f is PLS-complete (with respect to the neighborhood of unilateral deviation).

For the proof of this theorem, we use the PLS-hardness of a subclass of (general)
cost-sharing games as shown by Syrgkanis (2010). A cost-sharing game is defined by its
players, resources, the players’ strategies, and the resources’ cost functions. The sets of
players and resources can both be arbitrary (finite) sets. In this context, a strategy is a
subset of resources. The cost function of a resource maps the number of players using it
to the cost each player has to pay for using it. The cost of a player is then the sum of
the cost of all resources she uses. For network cost-sharing games the resources are given
by the edges in the network.
An instance of the intermediate cost-sharing game has a particular structure. There

are n ∈ N players. For every (unordered) pair of players {i, j} there are two resources r0
i,j

and r1
i,j . Hence, the set of resources is given by R :=

{
rki,j

∣∣ 1 ≤ i < j ≤ n, k ∈ {0, 1}
}
.

Every player i ∈ [n] has exactly two strategies which are

σ0
i :=

{
r0

0,i, . . . , r
0
i−1,i, r

1
i,i+1, . . . , r

1
i,n

}
and

σ1
i :=

{
r1

0,i, . . . , r
1
i−1,i, r

0
i,i+1, . . . , r

0
i,n

}
.

Note that a resource rki,j is only part of a strategy of the players i and j. Further, all
strategies of i and j contain exactly one of r0

i,j and r
1
i,j . In particular, every resource can

be used by at most two players. Hence, we need to specify the resource cost functions
only for one and two players. For every 1 ≤ i < j ≤ n, the resource cost function of r0

i,j

and r1
i,j is defined by a weight wi,j ∈ R≥0. If a player exclusively uses the resource r0

i,j or
r1
i,j , she pays wi,j for it. Resources used by more than one player do not incur any cost.

Proof of Theorem 5.14. We transform an instance of the intermediate cost-sharing
game to an instance of a network cost-sharing game. Then we show the correspondence
of their respective sets of equilibria.

95

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

u0
12

v0
12

u1
12

v1
12

u0
13

v0
13

u1
13

v1
13

u0
23

v0
23

u1
23

v1
23

u0
14

v0
14

u1
14

v1
14

u0
24

v0
24

u1
24

v1
24

u0
34

v0
34

u1
34

v1
34

u0
15

v0
15

u1
15

v1
15

u0
25

v0
25

u1
25

v1
25

u0
35

v0
35

u1
35

v1
35

u0
45

v0
45

u1
45

v1
45

Figure 5.4: An instance resulting from an intermediate cost-sharing game with n = 5 players.

Thick connections represent paths of length L. Thin edges correspond to the resources of the

intermediate game. The two highlighted paths are the dominant strategies of player 4, which
correspond to her strategies in the intermediate game.

The network cost-sharing game. Let n ∈ N be the number of players in the in-
termediate cost-sharing game. Further, let r0

i,j and r1
i,j be the resources with weight

wi,j ∈ R≥0 of the pair of players 1 ≤ i < j ≤ n. The constructed network is illustrated
in Figure 5.4. Every resource rki,j is represented by an edge

{
uki,j , v

k
i,j

}
with cost function

k 7→ wi,jf(k)/
(
f(1) − f(2)

)
. This function is chosen such that the difference between

the player cost for one and two players is exactly wi,j .
Each thick connection in Figure 5.4 represents an undirected path of length L ∈ N. All

edges of such a path are assigned the cost functionWf , whereW ∈ R≥0 is chosen an order

96

5.3 Computational Complexity of Nash Equilibria

of magnitude larger compared to the remaining costs in the instance. Therefore, these
paths are called heavy paths. Heavy paths are used to restrict the strategies which can
appear in an equilibrium. To achieve that the heavy paths’ cost is essentially constant
and does not depend too much on the number of players using them, we introduce
dummy players. For every of the L edges of a heavy path, D ∈ N dummy players are
added and associated with the edge. Their source and sink are the endpoints of their
associated edge. The length L is chosen carefully to ensure that for every dummy player
the associated edge is a dominant strategy.
For every player i ∈ [n] of the intermediate cost-sharing game, there is a player with

source si and sink ti in the network cost-sharing game. Due to the high cost of the
heavy paths, every such player naturally minimizes the number of such paths in her
strategy. Only as a secondary objective, the players minimize the cost incurred by edges
that correspond to resources of the intermediate cost-sharing game. As a result, in an
equilibrium player i plays one of the two paths

P ki := si − uk1,i − vk1,i − · · · − uki−1,i − vki−1,i − u1−k
i,i+1 − v

1−k
i,i+1 − · · · − u

1−k
i,n − v

1−k
i,n − ti

for k ∈ {0, 1}. Note that these dominant strategies pairwise intersect only in edges which
correspond to resources of the intermediate cost-sharing game. For i ∈ [n], k ∈ {0, 1},
the strategy P ki corresponds to the strategy σki of the intermediate cost-sharing game.
The edges in P ki that correspond to resources of the intermediate game are exactly σki .

The parameters. We choose the parameters L,D, and W and show subsequently that
they yield the desired properties. First, we show that if n is large enough, there is
D ∈ [2n3] satisfying nf(D+ 1) < (n+ 1

2)f(D+n). Assume for a contradiction that this
is not the case. Then, in particular, it holds

f
(
l(n− 1) + 2

)
≤ 2m

2n+ 1
f
(
(l − 1)(n− 1) + 2

)
for all l ∈ [n(2n+ 1)].

We chain all these inequalities and use that k 7→ kf(k) is nondecreasing to obtain

1

n(2n+ 1)(n− 1) + 2
≤
f
(
n(2n+ 1)(n− 1) + 2

)
f(1)

≤
(

1− 1

2n+ 1

)(2n+1)n

≤ e−n.

This is a contradiction for large enough n, as the exponential function grows faster than
any polynomial. Therefore, a D with the desired property exists. Set L := 2(D+ 1) and
W := n(n− 1) max1≤i<j≤nwi,j/

(
f(1)− f(2)

)
.

The strategies of dummy players in equilibria. First, we prove that in a Nash
equilibrium σ every dummy player plays her associated edge. Assume there is a heavy
path P such that there are associated dummy players of P which do not play their
associated edge. By Lemma 5.3, we may assume without loss of generality that all
dummy players associated with the same edge have the same strategy in σ. Let E′ ⊆ P
be the set of edges in P that are not played by their associated dummy players. Note
that all such dummy players use all edges of P except for their associated one. Further,

97

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

let K be the number of players using P which are not associated with it. Every such
external player either uses all edges of P or none. We obtain that

nσ(e) =

{
K +

(
|E′| − 1

)
D for e ∈ E′

K +
(
|E′|+ 1

)
D for e ∈ P \ E′.

Choose d to be one of the dummy players associated with an edge in E′. We compare
σ to the strategy profile σ̂ which results from σ by d unilaterally deviating to play her
associated edge. If |E′| ≥ 2, then L ≥ 3 and f being nonincreasing yield

Cd(σ̂) = Wf
(
K +

(∣∣E′∣∣− 1
)
D + 1

)
<
(
L−

∣∣E′∣∣)Wf
(
K +

(∣∣E′∣∣+ 1
)
D
)

+
(∣∣E′∣∣− 1

)
Wf

(
K +

(∣∣E′∣∣− 1
)
D
)

≤ Cd(σ).

As this contradicts σ being a Nash equilibrium, |E′| must be equal to one. But then
k 7→ kf(k) being nondecreasing implies

Cd(σ̂) = Wf(K + 1) ≤WK + 2D

K + 1
f(K + 2D) ≤ 2DWf(K + 2D)

< (L− 1)Wf(K + 2D) ≤ Cd(σ)

which again contradicts the choice of σ. It follows that all dummy players use their
associated edge in a Nash equilibrium.

The strategies of other players in equilibria. Next, we show that a player i ∈ [n]
plays either P 0

i or P 1
i if all dummy players play their associated edge. Assume the latter

is the case for a strategy profile σ. From the preceding, we know that every edge is used
by at least D and at most D + n players. Note that P 0

i or P 1
i contain exactly n heavy

paths, and any other si-ti path contains at least n + 1 heavy paths. Assume there is
i ∈ [n] such that σi 6∈

{
P 0
i , P

1
i

}
. Let σ̂ be the strategy profile that agrees with σ except

for σ̂i being P 0
i . Then our choice of the parameters gives

Ci(σ̂) ≤ (n− 1) max
j∈[n]

wij
f(1)− f(2)

f(1) + nLWf(D + 1)

<
W

n
f(1) +

(
n+ 1

2

)
LWf(D + n)

≤ W

n
f(1)−W 2(D + 1)

2(D + n)
f(1) + (n+ 1)LWf(D + n)

≤ (n+ 1)LWf(D + n) ≤ Ci(σ).

This shows that player i wants to deviate from σ.

98

5.3 Computational Complexity of Nash Equilibria

Correspondence of equilibria. Let σ be a strategy profile such that all dummy players
play their associated edge and all players i ∈ [n] play one of their paths P 0

i or P 1
i . We

know that all Nash equilibria in the network cost-sharing game are of this form. Let the
strategy profile σ̂ in the intermediate cost-sharing game be defined as follows. Player
i ∈ [n] plays σ̂i = σki if and only if i plays σi = P ki for k ∈ {0, 1}. As the paths P ki
are pairwise disjoint with respect to the heavy paths and contain exactly the edges that
correspond to the resources in σki , we obtain

Ci(σ) = nLWf(D + 1) +
∑

j∈[n]\{i} :
σi∩σj=∅

wi,j
f(1)

f(1)− f(2)
+
∑

j∈[n]\{i} :
σi∩σj 6=∅

wi,j
f(2)

f(1)− f(2)

= nLWf(D + 1) +
∑

j∈[n]\{i}

wi,j
f(2)

f(1)− f(2)
+
∑

j∈[n]\{i} :
σi∩σj=∅

wi,j

= nLWf(D + 1) +
∑

j∈[n]\{i}

wi,j
f(2)

f(1)− f(2)
+ Ci(σ̂).

where we set wi,j = wj,i for all i 6= j. We see that Ci(σ) is increasing in Ci(σ̂). If σ is an
equilibrium, so must be σ̂. This finishes the proof. �

Note that the PLS-reduction in the proof of Theorem 5.14 is tight. The set of relevant
strategy profiles in the constructed network cost-sharing game is given by all profiles in
which dummy players play their associated edge and all players i ∈ [n] play either P 0

i or
P 1
i .
The construction does not seem to generalize to multicast games or even broadcast

games. The possibility to pick individual source and sink vertices for all players is used
in two ways. On the one hand, the dummy players are bound to their associated edge.
On the other hand, Lemma 5.4 shows that a common source would result in equilibria
which are supported by trees. This appears insufficient to model the rich interaction
patterns between players in the intermediate cost-sharing game.

Remark 5.15. Theorem 5.14 can be extended to all cost functions which are not constant.
If there is K ∈ N such that f(K + 2) < f(K + 1), all edges

{
ukij , v

k
ij

}
for 1 ≤ i < j ≤ n

and k ∈ {0, 1} can be replaced by a path of length 2(K + 1). Further, every edge of
these paths is associated with additional K dummy players. As for the dummy players
on heavy paths of the construction, also for these new dummy players their dominant
strategy is their associated edge. This results in the nondummy players either meeting
K or K + 1 other players instead of zero or one other player on these edges. Thus, the
difference f(K + 1)− f(K + 2) appear instead of f(1)− f(2) in the analysis.

Note that an equilibrium can be efficiently computed in the case f(k) = 1. Then there
is no benefit for the players to share edges, hence a strategy profile is in equilibrium if
and only if every player chooses a shortest path with respect to c.

99

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

S1 S2 S3 S4

u1 u2 u3 u4 u5 u6

Figure 5.5: The broadcast game resulting from an exact 3-set cover problem with universe

U = {u1, . . . , u6} and family of subsets S = {S1, . . . , S4}. The strategy profile supported by the

highlighted edges corresponds to the exact covering {S2, S4}.

5.3.2.2 NP-Hardness of Computing a Minimum-Cost Nash Equilibrium

We show that it is NP-hard to compute a Nash equilibrium which minimizes the social
cost in broadcast games with fixed strictly decreasing edge cost function f . This was
previously only known for multicast games with constant total edge cost. We devise a
reduction from the exact 3-set cover problem. Let an instance be given by the universe U
and the family of subsets S. Define the following broadcast game. The graph G = (V,E)
is given by the set of vertices V := {r} ·∪ S ·∪ U where r is a distinct root vertex. The
edge set is given by E := {{r, S} | S ∈ S}∪{{S, u} | u ∈ S ∈ S}∪{{r, u} | u ∈ U} with
weights

ce =

{
1 + f(4)

f(1) if ∃u ∈ U : e = {r, u}, and
1 otherwise.

See Figure 5.5 for an illustration.

Theorem 5.16 (Correspondence of packings and equilibria). The set of packings of
(U,S) corresponds one-to-one to the set of equilibria in G. Moreover, a packing P ⊆ S
corresponds to an equilibrium with social cost f(1)|S \ P|+ f(4)|P|+

(
f(1) + f(4)

)
|U |.

Proof. We define a canonical injection from packings to equilibria. A subsequent exam-
ination of the equilibria’s structure implies its surjectivity.

Mapping packings to equilibria. Let P ⊆ S be a packing of U . Define the strategy
profile σP by

σPv :=

{{
{r, S}, {S, v}

}
if ∃S ∈ P : v ∈ S, and{

{r, v}
}

otherwise.

100

5.3 Computational Complexity of Nash Equilibria

The player cost of v ∈ V evaluates to

Cv
(
σP
)

=

f(1) if v ∈ S \ P,
f(4) if v ∈ P, and
f(1) + f(4) if v ∈ U.

It can be checked that σP is an equilibrium. Its social cost is as claimed.

The height of equilibria. Let σ be a Nash equilibrium. Due to Lemma 5.4, we may
assume that T := supp(σ) is a tree rooted at r. We claim that the height of T is two.
Assume that it is larger. Let u ∈ V be a leaf of maximal depth in T . If u ∈ S, then
|σu| > 1 and Cu(σ) > f(1). In that case, deviating to {u, r} would result in a cost of at
most f(1) for u and, hence, be an improving move. As σ is a Nash equilibrium, however,
it follows that u ∈ U . Let S ∈ S be the parent of u in T . Since we assumed |σu| > 2,
S has at most two children in T and Cu(σ) > f(1) + f(3). Hence, u wants to deviate
to {u, r} which incurs a cost of at most f(1) + f(4). This contradicts σ being a Nash
equilibrium. It follows that T has height 2.

Surjectivity. Let u ∈ U such that |σu| = 2 and let S ∈ S be the parent of u in T . As
|S| = 3, S has at most three children in T . Hence, it follows nσ({S, r}) ≤ 4. For the
player cost of u, we obtain

Cu(σ) = f
(
nσ({u, S})

)
+ f

(
nσ({S, r})

)
≥ f(1) + f(4).

As f is strictly decreasing, the inequality holds with equality if and only if nσ({S, r}) = 4.
This means that u wants to deviate to {r, u} in the case that nσ({S, r}) < 4. In total,
we get that nσ({S′, r}) ∈ {1, 4} for all S′ ∈ S. Consequently, we get the correspondence
σ = σP for the packing P := {S′ ∈ S | nσ({S′, r}) = 4}. �

Corollary 5.17 (NP-hardness of minimum-cost Nash equilibria). Let f be a strictly
decreasing cost function. It is NP-hard to compute a Nash equilibrium of minimal social
cost in undirected broadcast games with edge cost function f .

Proof. An instance of the exact 3-set cover problem has an exact covering if and only
if it has a packing of size 1

3 |U |. By Theorem 5.16, this is the case if and only if the
constructed broadcast game has a Nash equilibrium of social cost at most f(1)|S| +(

2
3f(1) + 4

3f(4)
)
|U|. �

5.3.2.3 NP-Hardness of Computing a Global Potential Minimizer

The global minimizer of the potential is in particular a Nash equilibrium. This gives
a natural approach to computing one. It is NP-hard, however, to compute this specific
equilibrium even in broadcast games. The hardness is very much the same as the hardness
of computing social optima for network cost-sharing games with arbitrary edge cost
functions. This connection is based on Observation 5.7. For completeness, we include
the proof here.

101

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

S1 S2 S3 S4

u1 u2 u3 u4 u5 u6

Figure 5.6: Illustration of the reduction for the hardness of global potential minimization. The

depicted broadcast game is based on an exact 3-set cover instance with universe U = {u1, . . . , u6}
and the family of subsets S = {S1, . . . , S4}. The highlighted edges support a strategy profile

that corresponds to the exact set covering {S2, S4}.

The reduction resembles that of the previous section. Again, we reduce from the exact
3-set cover problem. Fix a resource cost function f . Let an instance of exact 3-set cover
be given by a universe U and a family of subsets S ⊆ 2U . We transform it into an
instance of a broadcast game. The set of vertices is given by a root vertex r, all elements
of the universe U , and all sets in S, that is, V = {r} ·∪ S ·∪U . We add all edges between
r and S as well as all edges between S and U . The cost of edges incident to r is set to
1, the cost of the other edges is set to f(1)/f(3). The resulting instance is illustrated in
Figure 5.6.

Theorem 5.18 (NP-hardness of the global potential minimizer). Let f be strictly
decreasing. It is NP-hard to compute a global minimizer of the potential function.

Proof. Let σ ∈ Σ be a global minimizer of the potential Φ in a network cost-sharing
game resulting from the preceding reduction. Due to Theorem 5.1, we know that σ is
a Nash equilibrium. By Lemma 5.4, the support of σ is a spanning tree. Assume that
its height is larger than two. Let u ∈ V be a leaf of maximal depth in this tree. If u is
in S its path to r has to start with an edge of cost f(1)/f(3). It follows that Cu(σ) >
f(1)2/f(3)f(1). But deviating to {r, u} would cost f(1) only, which contradicts σ being
a Nash equilibrium. Hence, u ∈ U . Let S ∈ S be the parent of u in supp(σ). Assume
the strategy σu is not

{
{r, S}, {S, u}

}
. Then, S has at most two children in supp(σ) and

Cu(σ) > (f(1) + f(3))f(1)/f(3). Therefore, u would deviate to
{
{r, S}, {S, u}

}
which

costs at most (f(1)/f(3) + 1)f(1). In total, we get that supp(σ) has height two. In
particular,

∑
S∈S nσ({r, S}) = |S|+ |U |.

Using the structure of σ, we obtain

Φ(σ) =
∑
S∈S

F
(
nσ({r, S})

)
+
f(1)

f(3)

∑
u∈S∈S

F
(
nσ({S, u})

)
=
∑
S∈S

F
(
nσ({r, S})

)
+
f(1)2

f(3)
|U |.

102

5.3 Computational Complexity of Nash Equilibria

Further, we know that 1 ≤ nσ({r, S}) ≤ 4 holds for all S ∈ S. Thus, we can bound the
right-hand side with the help of the concavity of F and find

Φ(σ) ≥
∑
S∈S

(
4− nσ({r, S})

3
F (1) +

nσ({r, S})− 1

3
F (4)

)
+
f(1)2

f(3)
|U |

=
∑
S∈S

(
F (1) +

F (4)− F (1)

3
(nσ({r, S})− 1)

)
+
f(1)2

f(3)
|U |

= |S|F (1) +

(∑
S∈S

nσ({r, S})− |S|

)
F (4)− F (1)

3
+
f(1)2

f(3)
|U |

= |S|F (1) + |U |
(
F (4)− F (1)

3
+
f(1)2

f(3)

)
As we assume that f is strictly decreasing, F is strictly concave. Hence, the inequal-
ity is tight if and only if nσ({r, S}) ∈ {1, 4} for all S ∈ S. The latter is equivalent
to the existence of an exact covering of U . If nσ({r, S}) ∈ {1, 4} for all S ∈ S,
then {S ∈ S | nσ({r, S}) = 4} is such an exact cover. An exact covering C ⊆ S on
the other hand induces a strategy profile σC with σCS = {r, S} for all S ∈ S and
σCu =

{
{r, S}, {S, u}

}
for all u ∈ S ∈ C. This profile clearly fulfills nσC({r, S}) ∈ {1, 4}.

It follows that computing a global potential minimizer is enough to decide on exact 3-set
cover. �

Note that an α-approximation to the global potential minimizer for some α ≥ 1 is not
necessarily an α-approximate Nash equilibrium. This might seem to be the case on a first
glance. While the change in the cost of a deviating player and the corresponding change
of the potential are the same, the two notions of approximate solutions relate this value
to different baselines. The absolute value of the potential function can be arbitrarily
larger than the cost of a player.

5.3.2.4 Slowly Improving Dynamics

Improving dynamics provides a canonical algorithm for computing Nash equilibria. PLS-
hardness in the general setting, however, shows that it can take exponential time to
converge. The complexity of computing equilibria in multicast games is still open. We
provide evidence that improving dynamics might converge slowly for multicast games
with f(k) = 1/k as well. Remember that the measure of progress for the dynamics is
the potential function. If the potential function would decrease sufficiently in every step,
the number of steps was bounded. We provide an example with unit constant total edge
cost with a step of small improvement.
This is remarkable as Schäffer and Yannakakis (1991) observe that the exponential

running time of local search algorithms stems from the weights and their binary encoding.
It is not immediate, however, that network cost-sharing games with c ≡ 1 can be solved

103

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

in polynomial time. The reason is that in their case the weight of an edge e with k
players is given by cef(k) and not ce alone.
Let σ ∈ Σ be a strategy profile and σ̂i be an improving move of player i ∈ [n]. The

change of the potential under this deviation is

Φ(σ−i, σ̂i)− Φ(σ) =
∑

e∈σ̂i\σi

1

nσ(e) + 1
−

∑
e∈σi\σ̂i

1

nσ(e)
.

To show that this change can be small, we give numbers a1, . . . , am ∈ {−n, . . . , n} \ {0}
such that δ :=

∑m
i=1

1
ai
< 0 is exponentially small in n and m. The positive and negative

ai correspond to nσ(e) + 1 for e ∈ σ̂i \ σi and −nσ(e) for e ∈ σi \ σ̂i, respectively. Then
δ is exactly the difference Φ(σ−i, σ̂i)− Φ(σ).

Example 5.19 (Small potential decrease). Fix 1 ≤ k < n and set aj = (−1)k+j−1(n−j)
for j = 0, . . . , k. We do the preceding calculation for the family of numbers where each
aj appears exactly

(
k
j

)
times. In total, we get

∑k
j=0

(
k
j

)
= 2k many numbers. We claim

that

δ :=
k∑
j=0

(
k

j

)
(−1)k+j−1

n− j
= − 1

(n− k)
(
n
k

)
Choosing k and n such that n = 2k, then yields(

n

k

)
≥
(

n

log n

)logn

= nlogn−log logn ≥ n
1
2

logn

for large enough n. This shows that
(
n
k

)
grows faster than any polynomial in n. Conse-

quently, the absolute value of δ decreases faster than the inverse of any polynomial.
We finish by proving the claim with an induction on k. It can be checked quickly that

it holds for k = 1. We assume that it holds for some k ∈ N and prove that it holds for
k + 1 as well. By Pascal’s rule and a subsequent index shift, we obtain

k+1∑
j=0

(
k + 1

j

)
(−1)k+j

n− j
=

k∑
j=0

(
k

j

)
(−1)k+j+1

n− 1− j
+

k∑
j=0

(
k

j

)
(−1)k+j

n− j
.

Applying the induction hypothesis to both sums yields

k+1∑
j=0

(
k + 1

j

)
(−1)k+j

n− j
= − 1

(n− 1− k)
(
n−1
k

) +
1

(n− k)
(
n
k

) = − 1

(n− k − 1)
(
n
k+1

) .
This finishes the proof of the claim.

This example gives the algebraic basis for an improving step in a multicast game with
very small potential decrease. The multicast game with a suitable strategy profile σ is
depicted in Figure 5.7. When player i deviates from the lower path σi to the upper
path σ̂i the change of potential is exactly Φ(σ−i, σ̂i) − Φ(σ) = − 1

(n−k)(nk)
. The example

104

5.4 Efficiency of Nash Equilibria

i

r

(
k
k−1

) (
k
k−3

) (
k
3

) (
k
1

)

(
k
k−2

) (
k
k−4

) (
k
2

)

· · ·
n− k

· · ·
n− k − 1

Figure 5.7: The deviation of player i from the highlighted strategy profile in this multicast

game leads to a small decrease of the potential. Vertices with associated players are represented

by filled nodes (•). All total edge costs are constant and one.

shows that in the improving dynamics there can occur steps which decrease the potential
only slightly. This is a necessary condition for the improving dynamics to take super-
polynomially many steps to converge. It is an open question whether there are instances
in which this actually happens.
Note that the numeric example cannot be transformed to an improving move in a

broadcast game easily. The reason is that the same numbers appear several times. In a
strategy profile of a broadcast game that is induced by a tree, however, the number of
users on the edges increases strictly towards the root. In particular, every such number
can appear at most once.

5.4 Efficiency of Nash Equilibria

In this section, we examine the increase of the social cost in network design that is
caused by the selfish behavior of the players. We determine the price of anarchy exactly
for network cost-sharing games with arbitrary fixed cost function f . Further, we obtain
bounds on the price of stability. Firstly, we apply the potential function method in
order to prove upper bounds for general structure of the sources and sinks. Secondly,
we simplify the homogenization-absorption framework and improve its analysis to get
a constant upper bound on the price of stability in broadcast games in which kf(k) is
bounded. Finally, we analyze a class of instances to obtain lower bounds for constant,
affine, and polynomial total edge costs.

5.4.1 The Price of Anarchy

Anshelevich et al. (2008) show that the price of anarchy for network cost-sharing games
with cost function f(k) = 1/k is exactly n. We generalize the analysis to arbitrary fixed
cost functions. The proof of the upper bound as well as the example for the lower bound
are very similar to the known case. We include it for completeness.

105

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

f(n) f(1)

0 0

· · ·
n− 1

Figure 5.8: A broadcast game with root r which exhibits a large price of anarchy. The edges

are annotated with their cost ce. The social optimum (yellow) and a Nash equilibrium of large

social cost (violet) are highlighted.

Theorem 5.20 (The price of anarchy). The price of anarchy for network cost-sharing
games with n players and cost functions f is exactly f(1)/f(n).

Proof. We start by proving the upper bound on the price of anarchy, and continue by
showing that it is tight by providing a class of instances.

Upper bound. Let σ∗ ∈ Σ be a social optimum and σ ∈ Σ be a Nash equilibrium. As σ
is an equilibrium, a player cannot improve by deviating from σ to her respective strategy
in σ∗. We obtain Ci(σ) ≤ Ci(σ−i, σ∗i) for all i ∈ [n]. Using further that f(n) ≤ f(1), we
get the inequality

Ci(σ) ≤ Ci(σ−i, σ∗i) =
∑
e∈σ∗i

cef
(
nσ−i,σ∗i (e)

)
≤
∑
e∈σ∗i

ce
f
(
nσ∗(e)

)
f(n)

f(1) =
f(1)

f(n)
Ci(σ

∗).

Summing up this inequality for every player i ∈ [n] yields f(n)C(σ) ≤ f(1)C(σ∗).

Lower bound. To see that this bound is tight, consider the two highlighted strategy
profiles for the instance depicted in Figure 5.8. It is a broadcast game with n vertices
that want to connect to a root r. To do so, they can choose one of two parallel edges.
In the unique social optimum σ∗ all players use the cheaper edge of total cost f(n)

(besides edges of cost zero). Its social cost is C(σ∗) = nf(n)2. The strategy profile
σ in which all players use the more expensive edge of total cost f(1) (besides edges of
cost zero) is a Nash equilibrium. Indeed, all player costs are f(1)f(n), which is exactly
the cost they would incur when unilaterally deviating to the cheaper edge. Hence, this
instance has a price of anarchy of

C(σ)

C(σ∗)
=
nf(1)f(n)

nf(n)2
=
f(1)

f(n)
. �

106

5.4 Efficiency of Nash Equilibria

Note that the proof of the upper bound on the price of anarchy fits the smoothness
framework of Roughgarden (2009, 2015). In particular, network cost-sharing games are(
f(1)/f(n), 0

)
-smooth. Multicast and broadcast games have the same price of anarchy

as the lower bound instance is in both these classes. We observe that the price of anarchy
is constant for n→∞ if and only if f is bounded away from zero. The following lemma
can be used to characterize this class of cost functions. An example are affine total edge
costs cekf(k) = ce + sce(k − 1). Here, we obtain a price of anarchy of 1/s.

Lemma 5.21. Let f : N → R>0 be a cost function and s ≥ 0. Then f(k) ≥ s holds for
all k ∈ N if and only if (k + 1)f(k + 1)− kf(k) ≥ s for all k ∈ N.

Proof. We show limk→+∞ f(k) = limk→+∞(k+ 1)f(k+ 1)− kf(k). The statement then
follows as f and k 7→ (k + 1)f(k + 1) − kf(k) are nonincreasing by the assumptions on
f . Because both these functions are additionally nonnegative, we know that the limits
exist.
Let ŝ := limk→+∞(k + 1)f(k + 1)− kf(k). Fix ε > 0. There is a K ∈ N such that

ŝ ≤ (k + 1)f(k + 1)− kf(k) ≤ ŝ+ ε

holds for all k ≥ K. It follows inductively that (k−K)ŝ ≤ kf(k)−Kf(K) ≤ (k−K)(ŝ+ε)
for all k ≥ K. Dividing by k and taking the limit yields

ŝ = lim
k→+∞

(k −K)ŝ

k
≤ lim

k→+∞

kf(k)−Kf(K)

k
≤ lim

k→+∞

(k −K)(ŝ+ ε)

k
= ŝ+ ε.

As ε was chosen arbitrarily, it follows limk→+∞ f(k) = limk→+∞ f(k) − K
k f(K) = ŝ.

This finishes the proof. �

5.4.2 Upper Bounds on the Price of Stability

We use two techniques for providing upper bounds to the price of stability. For network
cost-sharing games with general source-sink structure, the potential function method by
Anshelevich et al. (2004, 2008) is still asymptotically the best known upper bound. We
improve its analysis for arbitrary fixed cost functions and even further for specific classes
of cost functions. For broadcast games, we continue the work of Bilò, Flammini, and
Moscardelli (2013, 2020), Fiat et al. (2006), and Lee and Ligett (2013) and simplify the
homogenization-absorption framework significantly. This leads to an improved analysis
and a constant which is by a magnitude smaller than the previously best bound.

5.4.2.1 The Potential Function Method

Anshelevich et al. (2008) devise a method for the proof of existence of Nash equilibria
with low social cost. The key idea lies in relating the potential function value Φ(σ) and
the social cost C(σ) for a strategy profile σ ∈ Σ. Let σ∗ ∈ Σ be a social optimum.
Initiating the improving dynamics (Algorithm 3) with σ∗ leads to a Nash equilibrium
σ ∈ Σ with a potential that is at most the potential of σ∗. On the one hand, C(σ) ≤ Φ(σ)

107

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

follows directly from the definitions of Φ and C. On the other hand, we can bound any
summand of Φ(σ∗) relative to the respective summand of C(σ∗) and get

C(σ) ≤ Φ(σ) ≤ Φ(σ∗) =
∑
e∈E

ceF
(
nσ∗(e)

)
≤ max

n̄∈[n]

F (n̄)

n̄f(n̄)

∑
e∈E

cenσ∗(e)f
(
nσ∗(e)

)
= max

n̄∈[n]

F (n̄)

n̄f(n̄)
C(σ∗).

Bounding the maximum on the right-hand side immediately gives an upper bound on
the price of stability. Due to its reliance on the potential, this approach is called the
potential function method. With it, Anshelevich et al. (2004, 2008) show that the
n-th harmonic number H(n) is an upper bound. We improve this bound for general
uniform cost functions.

Theorem 5.22 (The price of stability). The price of stability for a network cost-sharing
game with n players and player cost function f is bounded by 1 + ln

(
f(1)/f(n)

)
.

Proof. We combine two bounds on f to estimate F (n̄)/(n̄f(n̄)) from above for n̄ ∈ [n].
First, we know f(k) ≤ f(1) for all k ∈ N because f is nonincreasing. Secondly, we
assumed that k 7→ kf(k) is nondecreasing. Therefore, f(k) ≤ n̄/k · f(n̄) holds for all
1 ≤ k ≤ n̄. Both together yield

F (n̄)

n̄f(n̄)
=

∑n̄
k=1 f(k)

n̄f(n̄)
≤

n̄∑
k=1

min

{
f(1)

n̄f(n̄)
,

1

k

}
.

Clearly, the minimum on the right-hand side is nonincreasing in k. This allows us to
bound the sum by an integral and we obtain

F (n̄)

n̄f(n̄)
≤
∫ n̄

k=0
min

{
f(1)

n̄f(n̄)
,

1

k

}
dk =

∫ n̄f(n̄)
f(1)

k=0

f(1)

n̄f(n̄)
dk+

∫ n̄

k=
n̄f(n̄)
f(1)

1

k
dk = 1+ln

(
f(1)

f(n̄)

)
.

Note that the right-hand side is nondecreasing in n̄. Hence, the maximum in the bound
of the potential function method is attained at n̄ = n. This gives the desired bound on
the price of stability. �

Note that ln(k) ≤ H(k) ≤ ln(k) + 1 holds for all k ∈ N. Therefore, the bound
of Theorem 5.22 essentially interpolates between the previously known bounds of 1 for
linear total edge cost and H(n) for constant total edge cost. Under the presence of
multiple sinks and multiple sources, no better asymptotic upper bound for the price of
stability is known.
The analysis of the previous theorem can be improved under the assumption that the

total cost of edges grows at a certain rate.

108

5.4 Efficiency of Nash Equilibria

Theorem 5.23 (The price of stability under increasing total cost). Let h : N→ R≥0 be
a nonincreasing function. The price of stability of a network cost-sharing game with cost
function f such that f(1) = h(1) and (k+ 1)f(k+ 1)− kf(k) ≥ h(k+ 1) for all k ∈ N is
at most 1 +W0

(
(f(1)− h(n))/(eh(n))

)
. Here, W0 denotes (the principal branch of) the

Lambert W function.

Proof. We fix n̄ ∈ [n]. Since k 7→ kf(k) is concave, we know (k+1)f(k+1)−kf(k) ≥ h(n)
for all 1 ≤ k < n̄. This can be used to relate f(k) to f(n̄) by the telescoping sum

n̄f(n̄)− kf(k) =

n̄∑
l=k+1

(
lf(l)− (l − 1)f(l − 1)

)
≥ (n̄− k)h(n̄).

On the one hand, it follows f(n̄) ≥ h(n̄) by setting k = 1 and using f(1) = h(1) ≥ h(n̄).
On the other hand, rearranging this inequality leads to an upper bound on f(k). As f
is nonincreasing, we additionally can use the upper bound f(k) ≤ f(1) and get

F (n̄) =

n̄∑
k=1

f(k) ≤
n̄∑
k=1

min
{
f(1), h(n̄) +

n̄

k

(
f(n̄)− h(n̄)

)}
.

Again, we use the fact that the minimum on the right-hand side is nonincreasing in k.
This allows us to bound the sum by an integral, which yields

F (n̄) ≤
∫ n̄

k=0
min

{
f(1), h(n̄) +

n̄

k

(
f(n̄)− h(n̄)

)}
dk

=

∫ n̄
f(n̄)−h(n̄)
f(1)−h(n̄)

k=0
f(1) dk +

∫ n̄

k=n̄
f(n̄)−h(n̄)
f(1)−h(n̄)

h(n̄) +
n̄

k

(
f(n̄)− h(n̄)

)
dk

= n̄
f(n̄)− h(n̄)

f(1)− h(n̄)
f(1) + n̄

f(1)− f(n̄)

f(1)− h(n̄)
h(n̄) + n̄(f(n̄)− h(n̄)) ln

(
f(1)− h(n̄)

f(n̄)− h(n̄)

)
Dividing both sides of this inequality by n̄f(n̄) gives

F (n̄)

n̄f(n̄)
≤ 1 +

(
1− h(n̄)

f(n̄)

)
ln

(
f(1)− h(n̄)

f(n̄)− h(n̄)

)
.

We want to determine what value for f(n̄) maximizes the right-hand side. From the
preceding, we know that h(n̄) ≤ f(n̄) ≤ f(1) holds. The derivative with respect to the
value of f(n̄) is

d
df(n̄)

(
1 +

(
1− h(n̄)

f(n̄)

)
ln

(
f(1)− h(n̄)

f(n̄)− h(n̄)

))
=

h(n̄)

f(n̄)2
ln

(
f(1)− h(n̄)

f(n̄)− h(n̄)

)
− 1

f(n̄)
.

109

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

For f(n̄)↘ h(n̄) this goes to +∞. For f(n̄) = f(1) this is − 1
f(1) . Hence, the maximum

is attained for h(n̄) < f(n̄) < n̄. Setting the derivative to zero yields

ln

(
f(1)− h(n̄)

f(n̄)− h(n̄)

)
=
f(n̄)

h(n̄)
⇔ f(1)− h(n̄)

f(n̄)− h(n̄)
= e

f(n̄)
h(n̄)

⇔ f(1)− h(n̄)

eh(n̄)
=
f(n̄)− h(n̄)

h(n̄)
e
f(n̄)−h(n̄)

h(n̄)

⇔ f(n̄) = h(n̄)

(
1 +W0

(
f(1)− h(n̄)

eh(n̄)

))
.

As this is the unique point which satisfies the necessary conditions for a local optimum,
by the preceding considerations it has to be indeed a global maximum. From substituting
this value for f(n̄), it follows

F (n̄)

n̄f(n̄)
≤ 1 +

W0

(
f(1)−h(n̄)

eh(n̄)

)
1 +W0

(
f(1)−h(n̄)

eh(n̄)

) ln

 f(1)− h(n̄)

h(n̄)W0

(
f(1)−h(n̄)

eh(n̄)

)
 = 1 +W0

(
f(1)− h(n̄)

eh(n̄)

)
.

As this bound is nondecreasing in n̄, the maximum that appears in the bound of the
potential function method is attained for n̄ = n. �

The potential method for specific cost functions. Knowing the cost function allows
for better bounds. We examine the potential method for affine and polynomial cost
functions. The results are collected in Figure 5.9.
In the case of affine total cost, we have kf(k) = 1+s(k−1) for some 0 ≤ s ≤ 1. Then,

Theorem 5.22 gives an upper bound on the price of stability of 1 − ln
(
(1 − s)/n + s

)
.

For n → +∞, this converges to a bound of 1 − ln(s), which holds independently of the
number of players. Theorem 5.23 on the other hand gives 1 + W0

(
(1 − s)/(es)

)
. The

inequalities for the principal branch of the Lambert W function by Hassani (2005) yield
that 1 +W0

(
(1− s)/(es)

)
∈ Θ

(
− ln(s)

)
for s→ 0. Hence, the asymptotic of the bounds

from Theorems 5.22 and 5.23 agree for s → 0 and at s = 1. For fixed s, however,
Theorem 5.23 gives an improved estimate.
For the class of polynomial cost functions, Theorems 5.22 and 5.23 give the bounds

1+(1−α) ln(n) and 1+W0

(
(1−nα+(n−1)α)/(enα−e(n−1)α)

)
on the price of stability

for games with n players. Again, carrying out the potential method more carefully allows
to obtain the following constant bound.

Theorem 5.24 (The price of stability under polynomial cost). Let 0 < α ≤ 1. The
price of stability of a network cost-sharing game with cost function f(k) = kα−1 is at
most 1/α.

Proof. For the specific cost function f(k) = kα−1, we get for n̄ ∈ [n]

F (n̄)

n̄f(n̄)
=

∑n̄
k=1 k

α−1

n̄α
≤

1 +
∫ n̄

1 kα−1 dk
n̄α

=
1

α
− 1− α

αn̄α
≤ 1

α
. �

110

5.4 Efficiency of Nash Equilibria

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

s

(a) The two bounds 1 − ln(s) (yellow) and
1 + W0

(
(1 − s)/(es)

)
(violet) on the price of

stability under affine total cost. The bound of
1/s on the price of anarchy (green) is included
for comparison.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

α

(b) The bound 1/α (red) on the price of sta-
bility under polynomial total edge cost. The
bounds from Theorem 5.22 (yellow) and Theo-
rem 5.23 (violet) are evaluated for n = 100. So
is the price of anarchy (green).

Figure 5.9: Bounds on the price of stability under affine and polynomial total edge cost.

The potential method for the nonuniform case. The preceding results only deal with
the uniform case of network cost-sharing games; that is, we assume that the cost function
f is the same for all edges. In the nonuniform model, the cost function fe is allowed to
depend on e. The potential method relates the social cost and potential of a strategy
profile for one edge at a time. Therefore, it easily generalizes to the nonuniform setting.
The bound on the price of stability then is given by the worst bound on any cost function
that appears. The following lemma gives some insight into the monotonicity of this
bound.

Lemma 5.25 (Monotonicity of the potential function method). Let f, f ′ : N → R>0

be two player cost functions such that f ′(k + 1)/f ′(1) − f ′(k)/f ′(1) ≥ f(k + 1)/f(1) −
f(k)/f(1) for all k ∈ N. Then, for all n ∈ N∑n

k=1 f
′(k)

nf ′(n)
≤
∑n

k=1 f(k)

nf(n)
.

Proof. By induction, it follows that f ′(l)/f ′(1) − f ′(k)/f ′(1) ≥ f(l)/f(1) − f(k)/f(1)
holds for all 1 ≤ k ≤ l. In particular, it holds f ′(k)/f ′(1) ≥ f(k)/f(1) holds for all
k ∈ N. Applying these inequalities yields∑n

k=1 f
′(k)

nf ′(n)
= 1+

∑n
k=1

(
f ′(k)− f ′(n)

)
nf ′(n)

≤ 1+

∑n
k=1

(
f(k)− f(n)

)
nf(n)

=

∑n
k=1 f(k)

nf(n)
. �

Lemma 5.25 suggests that the bound provided by the potential method does not depend
so much on the absolute value of f than on its rate of change. This fits with the

111

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

observations for the extreme choices of the cost function. For f(k) = 1, which does
not change at all and, thus, has the lowest possible rate of change, we obtain the best
possible price of stability of 1. On the other side, f(k) = 1/k decreases most rapidly
(under our assumptions) and the potential method yields the worst possible bound of
H(n).

5.4.2.2 The Homogenization-Absorption Framework

The homogenization-absorption framework is inspired by the potential function
method and applies to broadcast games with bounded total edge cost. It picks up the
fundamental idea of starting with a social optimum σ∗ and following improving steps to a
Nash equilibrium. By choosing the improving steps carefully, it controls the quality of the
resulting strategy profile. This is achieved by keeping it as close to the social optimum
σ∗ as possible. Two main concepts are involved in this process, homogenization and
absorption. Ultimately, the homogenization-absorption framework is not an improving
dynamics in the classical sense. The player cost of deviating players do not necessarily
decrease. The improvement in each step rather lies in the strict decrease of the potential.
In that sense, it is rather a guided version of the local search for the minimum concave-cost
flow problem as discussed in Section 5.3.1. Overall the process focuses on introducing
as few edges from E \ supp(σ∗) into the support of the strategy profile as possible.
The underlying key observation is the following. Let T be the support of σ∗ and S be
the support of any other strategy profile σ ∈ Σ. For a cost function f with bounded
k 7→ kf(k), the contribution of edges in T to the social cost of σ is only a constant factor
away from the social optimum σ∗; that is,

∑
e∈S∩T

cenσ(e)f
(
nσ(e)

)
≤ sup

k∈[n]

kf
(
k
)

f(1)
·
∑

e∈S∩T
cef(1) ≤ sup

k∈N

kf
(
k
)

f(1)
· C(σ∗).

Hence, the ratio of the social costs of σ and σ∗ is mostly determined by edges that σ
uses but σ∗ does not; that is,

C(σ)

C(σ∗)
=

∑
e∈S∩T cenσ(e)f

(
nσ(e)

)
+
∑

e∈S\T cenσ(e)f
(
nσ(e)

)
C(σ∗)

≤ sup
k∈N

kf(k)

f(1)
+

∑
e∈S\T cenσ(e)f

(
nσ(e)

)∑
e∈S∩T cenσ∗(e)f

(
nσ∗(e)

)
≤ sup

k∈N

kf(k)

f(1)
·

(
1 +

c
(
S \ T

)
c
(
T
))

.

In that sense, it is enough to control the use of edges outside of supp(σ∗) and allow
arbitrary usage of edges within supp(σ∗). Even more, we can use edges in supp(σ∗) in
order to reduce the usage of edges in E \ supp(σ∗).
The formal description of the algorithm is given in Algorithm 5. The missing definitions

are developed in this section. Note that we are not interested in the running time of the

112

5.4 Efficiency of Nash Equilibria

Algorithm 5: The homogenization-absorption framework
Input: G = (V,E), r ∈ V, c ∈ RE≥0, player cost function f
Output: Nash equilibrium σ

1 Compute a social optimum σ;
2 T ← supp(σ);
3 while ∃e = {u, v} ∈ E \ supp(σ) : cσ

(
σv \ σu

)
− c′σ

(
σu \ σv

)
> cef(1) do

// Absorb

4 W ←
{
w ∈ V

∣∣∣ dT,f̄ (v, w) ≤ f(1)−f(2)
2 ce

}
;

5 σ ← σW−T,e→u;

// Homogenize with respect to T
6 while ∃w, z ∈ V : Φ

(
σw−T→z

)
< Φ

(
σ
)
do

7 σ ← σw−T→z;
8 end
9 end

10 return σ;

algorithm but merely in the social cost of the resulting strategy profile. It starts with
a social optimum and orchestrates deviations that utilize the support T of this initial
strategy profile as much as possible. The main loop is executed as long as there is
a deviating player v in the maintained profile σ. The stopping criterion is based on
the characterization in Corollary 5.6 for broadcast games. In the absorption step of
every iteration, the neighborhood W of the deviating player v (with respect to a specific
metric dT,f̄ ; see Definition 5.28) joins v on her new strategy via edges from T , yielding
the strategy profile σw−T,e→u (see Lemma 5.31). This process ensures that within the
neighborhood W the only edge in the support of the resulting strategy profile not in T is
e, the edge certifying that the previous profile is not a Nash equilibrium. In order for the
potential function to decrease during such an absorption, the players in W need to have
similar total player costs to v in the previous profile. A sufficient condition thereof is
the homogeneity of the profile (see Definition 5.27), which is sustained by an interleaved
homogenization step. It uses deviations via edges in T that achieve a lower potential
function value of the resulting strategy profile σw−T→z (see Lemma 5.30).

The following technical lemma is the main tool in the analysis of the strategy profiles
resulting from homogenization and absorption. It relates the potential function value of
a given strategy profile and the profile obtained after a cooperative deviation of a group
of players. In the examined deviation, the strategies of the deviating players are changed
to largely agree with the strategy of a specified player. For an illustration (using the
notation of the lemma), see Figure 5.10.

113

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

v

aWS (u)

u

(a) The original strategy profile σ with support
S = supp(σ) (violet) and the tree T (yellow).

r

a
S[v,r]
T ′ (u)

v

aWS (u)

u

(b) The strategy profile σ′ (violet) resulting
from the players DS(W) following v via T [W].
The tree T ′ is induced by the set DS(W)
(green).

Figure 5.10: Illustration of the strategies of players DS(W) in the profiles σ and σ′ from
Lemma 5.26 with the set of deviating players W highlighted in yellow.

Lemma 5.26 (Change of potential under coordination). Let W ⊆ V and v ∈ W .
Further, let T ⊆ E be a tree such that T [W] is connected. Let σ be a strategy profile
supported by a spanning tree S ⊆ E rooted at r, and define the strategy profile σ′ ∈ Σ for
every u ∈ V by

σ′u :=

S
[
u, aWS (u)

]
∪ T

[
aWS (u), v

]
∪ S
[
v, r
]

if u ∈ DS(W),

S
[
u, r
]

otherwise.

Then

Φ(σ′)− Φ(σ) ≤
∑
w∈W

∣∣DW
S (w)

∣∣(c′σ(σv \ σw)− cσ(σw \ σv)
)

+
∑

e∈T\σv

ceF
(
n
DS(W)
σ′ (e)

)

where nDS(W)
σ′ (e) := |{u ∈ DS(W) | e ∈ σ′u}| denotes the number of players using an edge

e in σ′ when accounting only for descendants of W in S. Moreover, there is a strategy
profile σ′′ ∈ Σ supported by a tree with Φ(σ′′) ≤ Φ(σ′).

Before giving the proof of Lemma 5.26, we remark that the tree T is generally chosen
as a social optimum. Then the lemma is used to show that the potential decreases when
a set of vertices W and their descendants cooperatively follow the social optimum to the
strategy of a player v.

114

5.4 Efficiency of Nash Equilibria

Proof. We start by estimating the difference of the potential for single edges. Thereby,
we distinguish between three sets of edges. All deviating players join v on the edges σv.
To do so, they use auxiliary edges from T \σv. All other edges S \(σv∪T) are abandoned
by the cooperative deviation.

Joint edges. Every player u such that σu 6= σ′u uses all edges of σv in σ′, that is,
σv ⊆ σ′u. Therefore, we know nσ′(e) ≥ nσ(e) for all e ∈ σv. For all e ∈ σv, we use that f
is nonincreasing to get

F
(
nσ′(e)

)
− F

(
nσ(e)

)
=

nσ′ (e)∑
k=nσ(e)+1

f(e) ≤
(
nσ′(e)− nσ(e)

)
f
(
nσ(e) + 1

)
.

Further, grouping the deviating players by their lowest ancestor in W yields

nσ′(e)− nσ(e) =
∣∣{u ∈ DS(W)

∣∣ e ∈ σ′u \ σu}∣∣ =
∑

w∈W :
e∈σ′w\σw

∣∣DW
S (w)

∣∣.

Abandoned edges. An edge e ∈ S \ (σv ∪ T) is used in σ′ at most as many times as in
σ, that is, nσ′(e) ≤ nσ(e). This is due to the fact that σ′u \ σu ⊆ σv ∪ T by construction.
As f is nonincreasing, it holds for e ∈ S \ (σv ∪ T) that

F (nσ′(e))− F (nσ(e)) = −
nσ(e)∑

k=nσ′ (e)+1

f(e) ≤ −
(
nσ(e)− nσ′(e)

)
f(nσ(e)).

For w ∈ W and u ∈ DW
S (w), the definition of σ is such that σw \ σ′w = σu \ σ′u holds.

Further, e 6∈ σ′w ⊆ σv ∪ T . Therefore, we get that

nσ(e)− nσ′(e) =
∣∣{u ∈ DS(W)

∣∣ e ∈ σu \ σ′u}∣∣ =
∑

w∈W :
e∈σw

∣∣DW
S (w)

∣∣.

Auxiliary edges. For an edge e ∈ T \ σv, there is no general monotonicity between
nσ′(e) and nσ(e). Here it helps to compare σ and σ′ to what they have in common,
which is the strategies of players in V \DS(W). Set n̂ := |{u ∈ V \DS(W) | e ∈ σu}| =
|{u ∈ V \DS(W) | e ∈ σ′u}| to be the number of such players using e. Using again that
f is nonincreasing yields for e ∈ T \ σv

F
(
nσ′(e)

)
− F

(
nσ(e)

)
=

nσ′ (e)∑
k=n̂+1

f(k)−
nσ(e)∑
k=n̂+1

f(k) ≤ F
(
n
DS(W)
σ′ (e)

)
−
(
nσ(e)− n̂

)
f
(
nσ(e)

)
.

115

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

For w ∈W and u ∈ DW
S (w), we know σw ⊆ σu by definition. Thus, it follows

nσ(e)− n̂ = |{u ∈ DS(W) | e ∈ σu}| ≥
∑

w∈W :
e∈σw

∣∣DW
S (w)

∣∣.

The change of potential. Finally, we put together the above estimates in order to get
an upper bound on the difference in the potential. Note that the supports of σ and σ′

lie in S ∪ T . Thus, we get

Φ(σ′)− Φ(σ)−
∑

e∈T\σv

ceF
(
n
DS(W)
σ′ (e)

)
=
∑

e∈S∪T
ce

(
F
(
nσ′(e)

)
− F

(
nσ(e)

))
−
∑

e∈T\σv

ceF
(
n
DS(W)
σ′ (e)

)

≤
∑
e∈σv ,
w∈W :
e∈σ′w\σw

∣∣DW
S (w)

∣∣ · cef(nσ(e) + 1
)
−
∑

e∈(S∪T)\σv ,
w∈W :
e∈σw

∣∣DW
S (w)

∣∣ · cef(nσ(e)
)

=
∑
e∈σv ,
w∈W :
e∈σ′w\σw

∣∣DW
S (w)

∣∣ · c′σ(e)−
∑

e∈(S∪T)\σv ,
w∈W :
e∈σw

∣∣DW
S (w)

∣∣ · cσ(e)

=
∑
w∈W

∣∣DW
S (w)

∣∣ · c′σ(σv \ σw)−
∑
w∈W

∣∣DW
S (w)

∣∣ · cσ(σw \ σv).

The last equality is based on changing the order of summation. This proves the first part
of the lemma.

Reducing the support. The definition of σ′ does not guarantee that the players’ strate-
gies are paths. By reducing them as follows, we claim to obtain a strategy profile σ′′ that
is supported by a tree. For all u ∈ V \ DS(W), set σ′′u := σ′u. For every u ∈ DS(W),
we choose a path σ′′u ⊆ σ′u such that |σ′′u \ σv| is minimal. This definition directly implies
nσ′′ ≤ nσ′ . Consequently, Φ(σ′′) ≤ Φ(σ′) as required. It order to prove the second part
of the lemma, it remains to show that the support of σ′′ indeed is a tree.

We first show that supp(σ′) is close to a tree. By the definition of DS(W), for all
u ∈ V \DS(W), the strategy σ′′u = σu is not incident to any vertex in W . Similarly for
w ∈ W , the tree S[DW

S (w)] is incident to no other vertex from W other than w. As
T [W] is a tree, we obtain that

T ′ :=
⋃

u∈DS(W)

(
S
[
u, aWS (u)

]
∪ T

[
aWS (u), v

])
=
⋃
w∈W,

u∈DWS (w)

(
S[u,w] ∪ T [w, v]

)
= T [W] ∪

⋃
w∈W

S
[
DW
S (w)

]

116

5.4 Efficiency of Nash Equilibria

is a tree again, which is vertex-disjoint to the strategies σ′u of players u ∈ V \ DS(W).
Hence, the support of σ′ is the union of two vertex-disjoint trees and the path S[v, r];
that is,

supp(σ′) = S[V \DS(W)] ∪ T ′ ∪ S[v, r].

By the preceding, σ′u for u ∈ DS(W) is the union of the paths S
[
u, aWS (u)

]
∪T
[
aWS (u), v

]
and S[v, r]. Then the definition of σ′′u for such u yields that σ′′u \ σv is a prefix of σ′u \ σv
ending at the first vertex on σv; that is,

σ′′u = T ′
[
u, a

S[v,r]
T ′ (u)

]
∪ S
[
a
S[v,r]
T ′ (u), r

]
where T ′ is considered to be rooted at v. Arguing analogously to T ′ being a tree, we get
that

⋃
u∈DS [W] σ

′′
u is a tree. On the other hand, σ′′v ∪

⋃
u∈V \DS [W] σ

′′
u is a subtree of S.

Both, these trees make up supp(σ′′) and overlap only in σv. Hence, supp(σ′′) is indeed a
tree. �

Recall that the homogenization-absorption framework tries to maintain a strategy
profile which is as close as possible to a social optimum. The maintained strategy profile
is kept homogeneous with respect to a social optimum in the sense of the following
definition.

Definition 5.27 (Homogeneity). Let σ ∈ Σ be a strategy profile that is supported by a
spanning tree S ⊆ E. Further, let T ⊆ E be another spanning tree. Define the strategy
profile σw−T→v ∈ Σ by setting σw−T→vu := σu for all u 6∈ DS(T [w, v]) and choosing

σw−T→vu ⊆ S
[
u, a

T [w,v]
S (u)

]
∪ T

[
a
T [w,v]
S (u), v

]
∪ S[v, r]

to be a u-r path that minimizes
∣∣σw−T→vu \ σv

∣∣ for all u ∈ DS(T [w, v]). The profile σ is
called homogeneous with respect to T if Φ(σ) ≤ Φ(σw−T→v) holds for all v, w ∈ V .

In other words, a homogeneous strategy σ with respect to a spanning tree T ⊆ E is a
local optimum with respect to the potential function and the neighborhood

Nhomogeneous(σ) =
{
σw−T→v ∈ Σ

∣∣ w, v ∈ V }.
The strategy profile σw−T→v results from σ when all descendants of vertices on the path
from v to w in T deviate. Every such descendant u connects to this path T [w, v] via a
subpath of her strategy σu, then follows T [w, v] to v, and finally follows the strategy of
v in σ to r. The support of σw−T→v is reduced to a tree according to the last part of
the proof of Lemma 5.26. In a strategy profile that is homogeneous with respect to T ,
players that are close within T have similar total player costs. To express this proximity
in T , we need the following notion of a distance.

117

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Definition 5.28 (Broadcast distance). Let T be a spanning tree and g : N → R>0 be a
nonincreasing function. We define the directional broadcast distance from vertex v to
vertex w in T with respect to g as ~dT,g(v, w) :=

∑k
i=1 g(i)cei where e1, . . . , ek are the edges

on T [v, w] in the order from v to w. Further, we define the (undirectional) broadcast
distance between vertices v, w in T with respect to g as dT,g(v, w) :=

∑k
i=1 g(i)cei where

e1, . . . , ek are the edges on T [v, w] in descending order by cost, that is, ce1 ≥ ce2 ≥ · · · ≥
cek .

We use broadcast distances with respect to two functions. The first is the cost function
f . For vertices v, w in a tree T , the directional broadcast distance ~dT,f (v, w) gives an
upper bound on the cost for v to travel to w in T while assuming that all players
on the way follow along. The latter is a natural assumption as we know that a Nash
equilibrium is supported by a tree. The second function with respect to which we measure
the broadcast distance is f̄ : N → R>0, k 7→ F (k)/k. So, f̄(k) is the average of the
first k values of f . Since f is nonincreasing, also f̄ is nonincreasing. The directional
broadcast distance arises naturally from the concept of homogeneity. The next lemma
shows that the undirectional broadcast distance is metric, as opposed to the directional
broadcast distance. This is why we use the undirectional version as an upper bound on
the directional one.

Lemma 5.29 (Undirectional broadcast distance). Let T ⊆ E be a spanning tree and
g : N→ R>0 be a nonincreasing function. For all u, v, w ∈ V (T), it holds

(i) dT,g(u, v) ≥ 0

(ii) dT,g(u, v) = dT,g(v, u)

(iii) dT,g(u,w) ≤ dT,g(u, v) + dT,g(v, w)

(iv) dT,g(u, v) ≤ dT,g(u,w) if v ∈ V (T [u,w])

(v) ~dT,g(u, v) ≤ dT,g(u, v) ≤ dT,ḡ(u, v) with ḡ(k) := 1
k

∑k
i=1 g(k) for k ∈ N>0

Proof. Nonnegativity (i) follows directly from the definition of dT,g. So does symmetry
(ii), as dT,g is independent of the order of the edges between two vertices.
For a set of edges P ⊆ E, let πP : [|P |] → P be a permutation of the edges in P in

nonincreasing order by cost, that is, cπP (i) ≥ cπP (j) for all 1 ≤ i ≤ j ≤ |P |. This allows
us to express the broadcast distance between two vertices u, v as

dT,g(u, v) =

|T [u,v]|∑
i=1

g(i)cπT [u,v](i) =
∑

e∈T [u,v]

g
(
π−1
T [u,v](e)

)
ce.

Monotonicity. To prove (iv), let u, v, w ∈ V (T) such that v is on the path T [u,w].
From T [u, v] ⊆ T [u,w], it follows that the |T [u, v]| most expensive edges on T [u,w]

118

5.4 Efficiency of Nash Equilibria

are at least as expensive as the edges on T [u, v]; that is, cπT [u,v](i) ≤ cπT [u,w](i) for all
i ∈ [|T [u, v]|]. We use the preceding representation of dT,g to find

dT,g(u, v) =

|T [u,v]|∑
i=1

g(i)cπT [u,v](i) ≤
|T [u,v]|∑
i=1

g(i)cπT [u,w](i) ≤ dT,g(u,w).

Triangle inequality. To see that (iii) holds, we fix three vertices u, v, w ∈ V (T). As T
is a tree, we know T [u,w] ⊆ T [u, v, w] := T [u, v] ∪ T [v, w] and, hence, we get by similar
arguments as for monotonicity that

dT,g(u,w) =

|T [u,w]|∑
i=1

g(i)cπT [u,w](i) ≤
|T [u,v,w]|∑
i=1

g(i)cπT [u,v,w](i) ≤
∑

e∈T [u,v,w]

g
(
π−1
T [u,v,w](e)

)
ce.

As g is nonincreasing, we continue

dT,g(u,w) ≤
∑

e∈T [u,v]

g
(
π−1
T [u,v](e)

)
ce +

∑
e∈T [v,w]

g
(
π−1
T [v,w](e)

)
ce = dT,g(u, v) + dT,g(v, w).

This shows that dT,g indeed fulfills the triangle inequality.

Bounds. The first inequality of (v) is an immediate consequence of the rearrangement
inequality as shown by Hardy, Littlewood, and Pólya (1953). The second inequality
holds since g is nonincreasing and, therefore, g ≤ ḡ. �

Lemma 5.30 (Player costs under homogeneity). Let T ⊆ E be a spanning tree. Further,
let σ ∈ Σ be a strategy profile that is supported by a spanning tree S ⊆ E and homogeneous
with respect to T . Then for every v, w ∈ V , it holds

cσ(σv \ σw)− c′σ(σw \ σv) ≤ ~dT,f̄ (v, w).

Proof. The stated inequalities are a consequence of the local optimality of σ with respect
to the neighborhood as defined by homogeneity. To see this, we set up a linear program
with inequalities that result from applying Lemma 5.26 to σ and σw−T→z for all choices
of z ∈ V (T [w, v]). Applying weak duality to the feasibility of the player costs in σ yields
the statement.
Fix v, w ∈ V . Let the players and edges along the path T [w, v] be labeled by w =

v0, v1, . . . , vk = v and e1, . . . , ek, respectively, such that ei = {vi−1, vi} for all i ∈ [k]. Set
W := {v0, . . . , vk} to be the vertex set of T [w, v]. Further, let

n
(i)
j :=

∣∣∣DT [v0,vi]
S (vj)

∣∣∣ and N
(i)
j :=

∣∣∣DT [v0,vi]
S

(
T [v0, vj]

)∣∣∣ =

j∑
k=0

n
(i)
k

for all 0 ≤ j ≤ i ≤ k.

119

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

viv1w = v0 vk−1 vk = v

e1 ek

D
T [v0,vi]
S (v0) D

T [v0,vi]
S (v1) D

T [v0,vi]
S (vi)

Figure 5.11: The strategy σw−T→vi as considered in the proof of Lemma 5.30. The descendants

of T [w, vi] use the path T [w, v] (yellow) to follow vi (violet).

The linear program. By definition, the homogeneity of σ with respect to T implies
0 ≤ Φ(σw−T→vi)−Φ(σ) for all i ∈ {0, . . . , k}. Note that σw−T→vi can be obtained from
σ by a construction as described in Lemma 5.26. See Figure 5.11 for an illustration of
σw−T→vi . Hence, it follows

0 ≤ Φ(σw−T→vi)− Φ(σ) ≤
i−1∑
j=0

n
(i)
j

(
c′σ(σvi \ σvj)− cσ(σvj \ σvi)

)
+

i∑
j=1

F
(
N

(i)
j−1

)
cej .

Applying the estimate

c′σ(σvi \ σvj)− cσ(σvj \ σvi) ≤ cσ(σvi \ σvj)− cσ(σvj \ σvi) = cσ(σvi)− cσ(σvj)

for all i, j ∈ {0, . . . , k} shows that the choice Ci = cσ(σvi) for i ∈ {0, . . . , k} is a feasible
solution to the linear program

max C0 − Ck

s. t.

i−1∑
j=0

n
(i)
j (Cj − Ci) ≤

i∑
j=1

F
(
N

(i)
j−1

)
cej for all i ∈ [k]

Ci ≥ 0 for all i ∈ {0, . . . , k}.

In order to get an upper bound to the objective function value of any feasible solution,
in particular to cσ(σv0) − cσ(σvk), we use weak duality. Dualizing the preceding linear

120

5.4 Efficiency of Nash Equilibria

program gives

min
k∑
j=1

k∑
i=j

F (N
(i)
j−1)cejyi

s. t.

k∑
j=1

n
(j)
0 yj ≥ 1

k∑
j=i+1

n
(j)
i yj −N (i)

i−1yi ≥ 0 for all i ∈ [k − 1]

−N (k)
k−1yk ≥ −1

yi ≥ 0 for all i ∈ [k].

A feasible dual solution. Summing over all k + 1 constraints of the dual (excluding
the nonnegativity constraints) yields zero on both sides. Therefore, any feasible dual
solution fulfills all of them with equality. Summing only the inequalities corresponding
to Ci, . . . , Ck yields

∑k
j=iN

(j)
i−1yj ≤ 1. Therefore, the recursive definition

ŷi :=
(
N

(i)
i−1

)−1
(

1−
k∑

j=i+1

N
(j)
i−1yj

)

for all i ∈ [k] starting with i = k gives the unique feasible dual solution.

A first bound. Weak duality implies that the primal objective value for Ci = cσ(σvi)
is bounded from above by the dual objective value for yi = ŷi. This gives

cσ(σw \ σv)− cσ(σv \ σw) = cσ(σv0)− cσ(σvk) ≤
k∑
j=1

k∑
i=j

cejF
(
N

(i)
j−1

)
ŷi

Because for fixed j the number N (i)
j is nonincreasing in i by its definition, and f̄ is

nonincreasing as well, we obtain

k∑
j=1

k∑
i=j

cejF
(
N

(i)
j−1

)
ŷi =

k∑
j=1

k∑
i=j

f̄
(
N

(i)
j−1

)
cejN

(i)
j−1ŷi ≤

k∑
j=1

f̄
(
N

(k)
j−1

)
cej

k∑
i=j

N
(i)
j−1ŷi.

We have shown already that the inner sums of the right-hand side are at most one. We
further use N (k)

j−1 ≥ j for all j ∈ N to find

k∑
j=1

f̄
(
N

(k)
j−1

)
cej

k∑
i=j

N
(i)
j−1ŷi ≤

k∑
j=1

f̄
(
N

(k)
j−1

)
cej ≤

k∑
j=1

f̄(j)cej = ~dT,f̄ (w, v).

121

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Note that combining these three chains of inequalities almost yields the inequality which
we want to show. In order to improve it slightly, we construct another feasible solution
to the primal linear program and apply the same reasoning to it.

Another feasible primal solution. We claim that Ĉi := c′σ(σvi ∩ σv) + cσ(σvi \ σv)
for all i ∈ {0, . . . , k} fulfills all inequalities of the primal linear program. We show
c′σ(σvi \ σvj) − cσ(σvj \ σvi) ≤ Ĉi − Ĉj holds for all i, j ∈ {0, . . . , k}. Together with the
inequalities we obtained from Lemma 5.26, this proves the claim.

In the following, we leverage that S is a tree and, hence, the pairwise intersections of
strategies follow some structure as indicated in Figure 5.12. We start off by interpreting
the relevant differences between strategies as part of the tree S through

c′σ(σvi \ σvj)− cσ(σvj \ σvi)

= c′σ
(
S[vi, lca(vi, vj)]

)
− cσ

(
S[vj , lca(vi, vj)]

)
= c′σ

(
S[r, lca(vi, vj , v)]

)
+ cσ

(
S[lca(vi, vj , v), lca(vi, vj)]

)
+ c′σ

(
S[lca(vi, vj), vi]

)
+

− c′σ
(
S[r, lca(vi, vj , v)]

)
− cσ

(
S[lca(vi, vj , v), lca(vi, vj)]

)
− cσ

(
S[lca(vi, vj), vj]

)
.

In the case of lca(vi, vj , v) = lca(vi, vj), the right-hand side simplifies instantaneously
and it follows that

c′σ(σvi \ σvj)− cσ(σvj \ σvi)

= c′σ
(
S[r, vi]

)
− c′σ

(
S[r, lca(vi, vj , v)]

)
− cσ

(
S[lca(vi, vj , v), vj]

)
≤ c′σ

(
S[r, lca(vi, v)]

)
+ cσ

(
S[lca(vi, v), vi]

)
− c′σ

(
S[r, lca(vj , v)]

)
− cσ

(
S[lca(vj , v), vj]

)
= Ĉi − Ĉj

since c′σ ≤ cσ and lca(vi, vj , v) is at least as close to the root r in S as lca(vj , v). Otherwise,
lca(vi, vj , v) 6= lca(vi, vj) implies lca(vi, vj , v) = lca(vi, v) = lca(vj , v), as can be seen with
the help of Figure 5.12. Consequently, we obtain

c′σ(σvi \ σvj)− cσ(σvj \ σvi)

= c′σ
(
S[r, lca(vi, v)]

)
+ cσ

(
S[lca(vi, v), lca(vi, vj)]

)
+ c′σ

(
S[lca(vi, vj), vi]

)
+

− c′σ
(
S[r, lca(vj , v)]

)
− cσ

(
S[lca(vj , v), lca(vi, vj)]

)
− cσ

(
S[lca(vi, vj), vj]

)
≤ c′σ

(
S[r, lca(vi, v)]

)
+ cσ

(
S[lca(vi, v), lca(vi, vj)]

)
+ cσ

(
S[lca(vi, vj), vi]

)
+

− c′σ
(
S[r, lca(vj , v)]

)
− cσ

(
S[lca(vj , v), lca(vi, vj)]

)
− cσ

(
S[lca(vi, vj), vj]

)
= c′σ

(
S[r, lca(vi, v)]

)
+ cσ

(
S[lca(vi, v), vi]

)
− c′σ

(
S[r, lca(vj , v)]

)
− cσ

(
S[lca(vj , v), vj]

)
= Ĉi − Ĉj .

122

5.4 Efficiency of Nash Equilibria

r

lca(vj , vi, v)

vj lca(vi, v)

vi v

r

lca(vj , vi, v)

lca(vj , v)

vj

vi

v

r

lca(vj , vi, v)

lca(vj , vi)

vj vi

v

Figure 5.12: Possible relationships between the lowest common ancestors in S.

In total, we see that Ĉi, i ∈ {0, . . . , k} indeed give a feasible solution to the linear program.
Proceeding as before, we use the feasible dual solution ŷi, i ∈ [k] and weak duality to
eventually find

cσ(σw\σv)−c′σ(σv\σw) = c′σ(σw∩σv)+cσ(σw\σv)−c′σ(σv) = Ĉ0−Ĉk ≤ ~dT,f̄ (w, v). �

Now we are able to analyze the absorption step. When a player deviates from a
strategy profile that is homogeneous with respect to T , all players that are close enough
with respect to the broadcast distance in T can follow while the overall change of the
potential is negative.

Lemma 5.31 (Absorption). Let T ⊆ E be a spanning tree. Further, let σ ∈ Σ be
a strategy profile which is supported by a spanning tree S ⊆ E and is homogeneous
with respect to T . Assume that there is an edge e = {u, v} ∈ E \ (S ∪ T) such that
c′σ
(
σu \ σv

)
+ cef(1) < cσ

(
σv \ σu

)
. Define the set

W :=
{
w ∈ V

∣∣∣ dT,f̄ (v, w) ≤ f(1)−f(2)
2 ce

}
and the strategy profile σW−T,e→u by setting for z ∈ V

σW−T,e→uz :=

S
[
z, aWS (z)

]
∪ T

[
aWS (z), v

]
∪ {e} ∪ S

[
u, r
]

if z ∈ DS(W),

S
[
z, r
]

otherwise.

Then it holds Φ
(
σW−T,e→u

)
< Φ(σ). Moreover, for every w ∈ W \ {v} with eS(w) 6∈ T

the edge eS(w) is not in the support of σW−T,e→u.

Proof. We combine Lemmas 5.26 and 5.30 to show that the potential of σW−T,e→u is
strictly less than the potential of σ.

Relating to u. First, we show that σW−T,e→u can be obtained from σ by a construction
as in Lemma 5.26. By Lemma 5.29 (iv), T [W] is a tree. We show that V (σu) ∩W = ∅.
To that end, let z ∈ V (σu). Then σz ⊆ σu shows cσ(σv \ σu) ≤ cσ(σv \ σz) and
c′σ(σu \ σv) ≥ c′σ(σz \ σv). The assumption that v wants to deviate via e in combination

123

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

lca(u, v, w)

u lca(v, w)

v w

(a) lca(u, v) = lca(u,w)

r

lca(u, v, w)

lca(u, v)

u v

w

(b) lca(u,w) = lca(v, w)

r

lca(u, v, w)

lca(u,w)

u

v

w

(c) lca(u, v) = lca(v, w)

Figure 5.13: The contributions of paths in S to c′σ
(
σu \ σw

)
− cσ

(
σw \ σu

)
. Paths highlighted

in yellow add to c′σ
(
σu \ σw

)
. Paths highlighted in violet add to cσ

(
σw \ σu

)
.

with Lemma 5.30 yields

ce
f(1)− f(2)

2
≤ cef(1) < cσ(σv \ σu)− c′σ(σu \ σv)

≤ cσ(σv \ σz)− c′σ(σz \ σv) ≤ ~dT,f̄ (u, v) ≤ dT,f̄ (u, v).

Thus, z 6∈ W as claimed. In particular, T [W] ∪ {e} is a tree again and Lemma 5.26 is
applicable. The support of σW−T,e→u does not change by the reduction in the proof of
Lemma 5.26, because V (σu) ∩W = ∅ holds. Hence, it is a tree. Particularly, all edges
eS(w) 6∈ T for w ∈W \ {v} are removed from the support. Further, Lemma 5.26 implies

Φ
(
σW−T,e→u

)
− Φ

(
σ
)
≤
∑
w∈W

∣∣DW
S (w)

∣∣(c′σ(σu \ σw)− cσ(σw \ σu)
)

+
∑

e′∈T [W]\σu

ce′F
(
n
DS(W)

σW−T,e→u
(e′)
)

+ ceF
(
|DS(W)|

)
.

Relating to v. The term on the right hand sight contains the cost differences c′σ(σu \
σw)− cσ(σw \ σu) while the definition of W in combination with Lemma 5.30 results in
estimates for the cost differences c′σ(σv \ σw) − cσ(σw \ σv). Therefore, we relate these
two differences to each other. For every w ∈W , we use the fact that S is a tree and that
v wants to deviate via e. Thus it holds

c′σ
(
σu \ σw

)
− cσ

(
σw \ σu

)
= c′σ

(
S[lca(u,w), u]

)
− cσ

(
S[lca(u,w), w]

)
= c′σ

(
S[lca(u, v, w), lca(u, v)]

)
+ c′σ

(
S[lca(u, v), u]

)
− c′σ

(
S[lca(u, v, w), lca(u,w)]

)
− cσ

(
S[lca(u,w), w]

)
< c′σ

(
S[lca(u, v, w), lca(u, v)]

)
+ cσ

(
S[lca(u, v), v]

)
− c′σ

(
S[lca(u, v, w), lca(u,w)]

)
− cσ

(
S[lca(u,w), w]

)
− cef(1).

124

5.4 Efficiency of Nash Equilibria

If lca(u, v, w) = lca(v, w), then it follows

c′σ
(
σu \ σw

)
− cσ

(
σw \ σu

)
< c′σ

(
S[lca(v, w), lca(u, v)]

)
+ cσ

(
S[lca(u, v), v]

)
− c′σ

(
S[lca(v, w), lca(u,w)]

)
− cσ

(
S[lca(u,w), w]

)
− cef(1)

≤ cσ
(
S[lca(v, w), v]

)
− c′σ

(
S[lca(v, w), w]

)
− cef(1)

≤ cσ
(
σv \ σw

)
− c′σ

(
σw \ σv

)
− cef(1).

Otherwise, we are in the case of Figure 5.13a, that is, lca(u, v, w) = lca(u, v) = lca(u,w)
holds. Then we get

c′σ
(
σu \ σw

)
− cσ

(
σw \ σu

)
< cσ

(
S[lca(u, v, w), v]

)
− cσ

(
S[lca(u, v, w), w]

)
− cef(1)

= cσ
(
S[lca(v, w), v]

)
− cσ

(
S[lca(v, w), w]

)
− cef(1)

≤ cσ
(
S[lca(v, w), v]

)
− c′σ

(
S[lca(v, w), w]

)
− cef(1)

≤ cσ
(
σv \ σw

)
− c′σ

(
σw \ σv

)
− cef(1).

So we obtain the same inequality in both cases. Plugging it into the upper bound on the
difference of the potentials of σ and σW−T,e→u yields

Φ
(
σW−T,e→u

)
− Φ

(
σ
)
<
∑
w∈W

∣∣DW
S (w)

∣∣(cσ(σv \ σw)− c′σ(σw \ σv)− cef(1)
)

+
∑

e′∈T [W]\σu

ce′F
(
n
DS(W)

σW−T,e→u
(e′)
)

+ ceF
(
|DS(W)|

)
.

The inequality is strict as v ∈W and v ∈ DW
S (v) 6= ∅.

Relating to the broadcast distance. The terms on the right-hand side of the pre-
ceding inequality can be bounded in terms of the broadcast distance. The definition of
W then yields an upper bound of zero. As we assume that σ is homogeneous, we can
apply Lemma 5.30 to the first of the three summands on the right-hand side. In order
to bound the remaining terms, we carefully analyze the contribution of players to the
congestion of e and edges in T [W]. To that end, let T ′ ⊆ E be the set of edges used by
players of DS(W) to connect to v in σW−T,e→u, that is, T ′ = T [W] ∪

⋃
w∈W S[DS(w)].

Similar to the last part of the proof of Lemma 5.26, it can be shown that T ′ is a tree
on the vertices DS(W) rooted at v. For any 0 ≤ k < |T ′|, the rooted tree T ′ has at
least k + 1 vertices with depth less than or equal to k. This is a simple consequence of
connectedness. Using in addition that f is nonincreasing yields

F
(
|DS(W)|

)
=

|DS(W)|∑
k=1

f(k) ≤
∑

z∈DS(W)

f
(∣∣T ′[z, v]

∣∣+ 1
)
≤
∑
w∈W

∣∣DW
S (w)

∣∣f(|T [w, v]|+ 1
)
.

125

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

We denote the path in T ′ from a vertex z ∈ DS(W) up to (but without) some edge
e′ ∈ T ′ by T ′[z, e′]. By reasoning for subtrees in T ′ underneath edges e′ ∈ T [W] just like
for T ′, we get

F
(
n
DS(W)

σW−T,e→u
(e′)
)
≤
∑

z∈DS(W):
e′∈T ′[z,v]

f
(∣∣T ′[z, e′]∣∣+ 1

)
≤
∑
w∈W :

e′∈T [w,v]

∣∣DW
S (w)

∣∣f(∣∣T ′[w, e′]∣∣+ 1
)
.

We combine these inequalities for all e′ ∈ T [W] \ σu to obtain∑
e′∈T [W]\σu

ce′F
(
n
DS(W)

σW−T,e→u
(e′)
)
≤
∑

e′∈T [W]\σu,
w∈W :

e′∈T [w,v]

∣∣DW
S (w)

∣∣ · ce′f(∣∣T ′[w, e′]∣∣+ 1
)

=
∑
w∈W

∣∣DW
S (w)

∣∣∑
e′∈T [w,v]

ce′f
(∣∣T [w, e′]

∣∣+ 1
)

=
∑
w∈W

∣∣DW
S (w)

∣∣~dT,f (w, v).

The overall bound. Combining the inequalities of the preceding paragraph with our
bound on the change of the potential results in

Φ
(
σW−T,e→u

)
− Φ

(
σ
)

<
∑
w∈W

∣∣DW
S (w)

∣∣(~dT,f̄ (v, w)− cef(1) + ~dT,f (w, v) + cef(|T [w, v]|+ 1)
)

≤
∑

w∈W\{v}

∣∣DW
S (w)

∣∣(~dT,f̄ (v, w) + ~dT,f (w, v) + (f(2)− f(1))ce

)
.

Finally, Lemma 5.29 (v) and (ii) together the definition of W based on the distance dT,f̄
imply that every single summand on the right-hand side is nonpositive and, therefore,
also Φ

(
σW−T,e→u

)
− Φ

(
σ
)
< 0. �

Theorem 5.32 (Correctness and termination). Algorithm 5 returns a Nash equilibrium
after finitely many steps.

Proof. To prove correctness of Algorithm 5, we show that the support of σ through-
out the execution of the algorithm is a spanning tree. As shown before, Lemma 5.26
applies to the strategy profiles σw−T→z and σW−T,e→u resulting from homogenization
and absorption, respectively. These profiles are supported by trees. Then, correctness
of Algorithm 5 is an immediate consequence of Corollary 5.6 in combination with the
termination criterion of the main loop.
The algorithm’s progress is measured by the decrease of the potential. By Lemma 5.31,

the potential Φ of the current strategy profile decreases strictly in each absorption step.
The same is true for each iteration of the homogenization. In total, homogenization

126

5.4 Efficiency of Nash Equilibria

does not increase the potential. Hence, no strategy profile appears in more than one
iteration. Because there are only finitely many strategy profiles, Algorithm 5 terminates
after finitely many iterations. �

Theorem 5.33 (The price of stability under bounded cost). Let f be strictly decreasing.
For any 0 < ρ′ < ρ < 1

2 , the Nash equilibrium computed by Algorithm 5 has social cost
at most(

sup
k∈N

kf(k)

f(1)

)1 +
2f(1)

f(1)− f(2)

 (1− ρ)ρ

(1− 2ρ)ρ′ 2

∞∑
j=1

(
f̄(j)

f(1)

)2

+
1− ρ′

(1− 2ρ′)(ρ− ρ′)

times the cost of a social optimum.

Proof. Let T ⊆ E be the minimum spanning tree computed in the beginning of the
algorithm. Further, let σ be the Nash equilibrium computed by Algorithm 5 and S ⊆ E
be its supporting spanning tree. We bound the social cost of σ with respect to the total
cost of the edges in T , which is equal to

∑
e∈T ce. The latter can be bounded with respect

to the social cost of a social optimum, which then yields the statement of the theorem.
To estimate the contribution cenσ(e)f(nσ(e)) of edges e ∈ S ∩ T to the social cost of σ,
we use the trivial bound

cenσ(e)f(nσ(e)) ≤ sup
k∈N

kf(k)

f(1)
· cef(1).

In the remaining, we focus on bounding the contribution by edges in S\T with the help
of a charging scheme. To that end, let the edges S \ T = {e1, . . . , ek} be indexed in the
order that they were added to S by Algorithm 5. If an edge is added to S in more than
one iteration (since it is removed in between), we consider the last point in time that it
is being added. Note that neither the absorption nor the homogenization step introduce
edges from E \ T into the support of the strategy profile except for the respective ei.
Further, let v1, . . . , vk and u1, . . . , uk be the vertices such that ei = {ui, vi} = eS(vi) for
all i ∈ [k], that is, ui is closer to the root r in S than vi. Note that homogenization
and absorption (in particular, the reduction of the support according to Lemma 5.26)
preserve the direction in which an edge in S \ T is used, that is, the definition of ui and
vi.

The charging scheme. Let α = 1
2

(
1−f(2)/f(1)

)
denote the relative absorption radius.

We apply a charging scheme in order to bound c(S \ T) by a multiple of c(T); that is,
we assign the edge costs in S \ T to edges in T . We charge the contribution of ei to the
social cost to edges in T [vi, r] which are relatively close to vi. This proximity is specified
by 0 < ρ < 1

2 . For i ∈ [k], let wi ∈ T [vi, r] such that |T [vi, wi]| is maximal subject to
dT,f̄ (vi, wi) ≤ ραceif(1). We charge T [vi, wi] and the adjacent edge eT (wi) for ei. To see
that eT (wi) exists, we need to show that wi 6= r. For that purpose, let σ(i) denote the
strategy profile at the beginning of the iteration in which ei was added to S for the last
time. By the construction of the algorithm, σ(i) is homogeneous with respect to T . Note

127

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

vi

vj

r

wi

wj

z

ui

ujeS(wj)

eS(wi)

ei

ej

Figure 5.14: Charging scheme from the proof of Theorem 5.33. The yellow circles represent

the absorption radius αceif(1) and the charging radius ραceif(1) around vi with respect to dT,f̄ .
Similarly, the violet circles represent the absorption radius αcejf(1) and the charging radius

ραcejf(1) around vj with respect to dT,f̄ . The thick connections represent edges and paths in

T . The vertex z is on both paths, T [vi, wj] and T [vj , wj].

that the profile induced by T is trivially homogeneous with respect to T . It holds by the
choice of e = ei and Lemma 5.30 that

cei ≤ c′σ(i)

(
σ(i)
ui \σ

(i)
vi

)
+ cei < cσ(i)

(
σ(i)
vi \σ

(i)
ui

)
≤ cσ(i)

(
σ(i)
vi \σ

(i)
r

)
≤ ~dT,f̄ (vi, r) ≤ dT,f̄ (vi, r)

where σ(i)
r is considered to be the empty strategy. By the definition of wi, it follows that

wi 6= r and we can indeed charge eT (wi). Figure 5.14 provides a schematic overview of
the charging scheme.

Now we define the exact value γei,e that an edge e ∈ T is charged for an edge ei ∈
S \ T, i ∈ [k]. Fix 0 < ρ′ < ρ, which we use to decide whether to charge T [vi, wi] or
eT (wi). In the case of dT,f̄ (vi, wi) ≥ ρ′αceif(1), the cost of ei is distributed to the edges

128

5.4 Efficiency of Nash Equilibria

of T [vi, wi] by

γei,e :=

(ρ′α)−2
∑∞

j=1

(
f̄(j)
f(1)

)2
ce
cei
ce if e ∈ T [vi, wi],

0 otherwise.

Otherwise, the whole cost of ei is charged to eT (wi) by

γei,e :=

{
cei
ce
ce if e = eT (wi),

0 otherwise.

Cost coverage. We first show that the cost of an edge ei for i ∈ [k] is covered by the
charges. If dT,f̄ (vi, wi) < ρ′αceif(1), this is clearly the case because

∑
e∈T γei,e = cei .

Otherwise, squaring the inequality dT,f̄ (vi, wi) ≥ ρ′αceif(1) and applying the Cauchy-
Schwarz inequality to dT,f̄ (vi, wi)

2 yields

cei ≤ (ρ′α)−2
dT,f̄ (vi, wi)

2

ceif(1)2
≤ (ρ′α)−2

∞∑
j=1

(
f̄(j)

f(1)

)2 ∑
e∈T [vi,wi]

c2
e

cei
=
∑
e∈T

γei,e.

Overcharge. As the paths T [vi, wi] ∪ {eT (wi)} can generally not be expected to be
pairwise disjoint, we examine which ei are charged to the same edge in T . For i < j such
that there is z ∈ V (T [vi, wi]) ∩ V (T [vj , wj]), the triangle inequality (Lemma 5.29 (iii))
and the monotonicity property of dT,f̄ (Lemma 5.29 (iv)) yield

dT,f̄ (vi, vj) ≤ dT,f̄ (vi, z) + dT,f̄ (vj , z) ≤ dT,f̄ (vi, wi) + dT,f̄ (vj , wj) ≤ ρα(cei + cej)f(1).

On the other hand, we know that ei was not absorbed in the iteration when ej was
added to S for the last time. Thus, we know dT,f̄ (vi, vj) > αcejf(1). Combined with
the preceding inequality, this gives cej < ρ/(1 − ρ) · cei for all 1 ≤ i < j ≤ k with
V (T [vi, wi]) ∩ V (T [vj , wj]) 6= ∅.
If eT (wi) = eT (wj) for 1 ≤ i < j ≤ k then wi = wj . If, in addition, both ei and ej get

charged to eT (wi) = eT (wj), then dT,f̄ (vi, wi) < ρ′αceif(1) and dT,f̄ (vj , wj) < ρ′αcejf(1).
Arguing as in the preceding paragraph, it follows that cej < ρ′/(1− ρ′) · cei in this case.
Next we bound the ratios of the costs of charging and charged edge. For i ∈ [k] and

e ∈ T [vi, wi], we get

cef(1) ≤ max
e′∈T [vi,wi]

ce′f(1) ≤ dT,f̄ (vi, wi) ≤ ραceif(1).

On the other hand, let i ∈ [k] such that dT,f̄ (vi, wi) < ρ′αceif(1) and e = eT (wi). Due
to the choice of wi and the triangle inequality, we obtain

ραceif(1) < dT,f̄ (vi, pT (wi)) ≤ dT,f̄ (vi, wi) + cef(1) < (ρ′αcei + ce)f(1)

129

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

where pT (wi) denotes the parent of wi, that is, its adjacent ancestor in the rooted tree
T . Rearranging yields (ρ− ρ′)αcei < ce.
Now, we can bound the overcharge of edges in T under this scheme. For e ∈ T , the

charging of the two types yields

k∑
i=1

γei,e = (ρ′α)−2
∞∑
j=1

(
f̄(j)

f(1)

)2 ∑
i∈[k] :

dT,f̄ (vi,wi)≥ρ′αceif(1)

e∈T [vi,wi]

ce
cei
ce +

∑
i∈[k] :

dT,f̄ (vi,wi)<ρ
′αceif(1)

e=eT (wi)

cei
ce
ce

Applying the bounds on the ratios between charging and charged edges, and the bounds
on the ratio between different charging edges gives

k∑
i=1

γei,e ≤
ρ

ρ′ 2α

∞∑
j=1

(
f̄(j)

f(1)

)2 ∞∑
l=0

(
ρ

1− ρ

)l
ce +

1

(ρ− ρ′)α

∞∑
l=0

(
ρ′

1− ρ′

)l
ce

≤

 (1− ρ)ρ

(1− 2ρ)ρ′ 2

∞∑
j=1

(
f̄(j)

f(1)

)2

+
1− ρ′

(1− 2ρ′)(ρ− ρ′)

α−1ce.

The overall bound. In total, we get

c(S) ≤ c(T) + c(S \ T) ≤ c(T) +
∑
e∈T

k∑
i=1

γei,e

≤

1 + α−1

 (1− ρ)ρ

(1− 2ρ)ρ′ 2

∞∑
j=1

(
f̄(j)

f(1)

)2

+
1− ρ′

(1− 2ρ′)(ρ− ρ′)

 c(T)

Observing C(S) ≤ supl∈N lf(l)c(S) and f(1)c(T) ≤ C(T) finishes the proof. �

Corollary 5.34 (The price of stability under constant total edge cost). For the cost
function f(k) = 1/k, the price of stability for broadcast games is at most 265.

Proof. For f(k) = 1
k , we have supl∈N lf(l)/f(1) = 1. Further, the series

∑∞
j=1 f̄(j)2 =∑∞

j=1H(j)2/j2 belongs to the so-called Euler sums. It evaluates to 17
4 ζ(4) = 17π4

360 as
shown by D. Borwein and J. M. Borwein (1995) (where ζ denotes the Riemann zeta
function). Hence, the upper bound from Theorem 5.33 evaluates to

1 + 4

(
(1− ρ)ρ

(1− 2ρ)ρ′ 2
17π4

360
+

1− ρ′

(1− 2ρ′)(ρ− ρ′)

)
for any 0 < ρ′ < ρ < 1

2 . Setting ρ = 0.31, ρ′ = 0.24 yields an upper bound below 265. �

130

5.4 Efficiency of Nash Equilibria

5.4.3 Lower Bounds on the Price of Stability

In this section, we focus on the price of stability of broadcast games. It is defined as the
maximal price of stability of any instance. The price of stability of an instance, in turn,
equals the ratio of the minimal cost of any Nash equilibrium and the cost of a social
optimum. Therefore, we are facing the max-min problem

PoS = max
G=(V,E)

graph

max
c∈RE≥0

min
σ∈Σ

Nash equilibrium

C(σ)

C(σ∗)

where σ∗ denotes a social optimum in G with respect to the cost c. In the following,
we successively restrict the structure of the graph G and the cost c in order to simplify
the problem while maintaining a lower bound. Dealing with the internal minimization
problem of finding a minimum-cost Nash equilibrium seems the most challenging. We
take an approach similar to the one of Bilò, Caragiannis, et al. (2013). We restrict the
graph and the edge costs in such a way that the inner problem becomes trivial. This can
be achieved by designating a minimum-cost Nash equilibrium first and then choosing the
cost which complies with this designation. In some sense, this separates the structural
properties from the numerical ones. We discuss the price of stability under various fixed
structural features. The simplest one considering a fixed graph only. We denote the price
of stability on a graph G by

PoS(G) = max
c∈RE≥0

min
σ∈Σ

Nash equilibrium

C(σ)

C(σ∗)
.

Further, fixing the support S ⊆ E of the designated minimum-cost Nash equilibrium
yields the price of stability on G conditioning on S inducing a minimum-cost Nash
equilibrium, which we denote by

PoS(G | S) = max
c∈RE≥0 :

S minimum-cost
Nash equilibrium

C(S)

C(σ∗)
.

An additional simplification can be made while preserving a lower bound. The social
optimum does not have to be exact. For any spanning tree T ⊆ E, we define

PoS(G | S, T) = sup
c∈RE≥0 :

S minimum-cost
Nash equilibrium

C(S)

C(T)
.

Eventually, considering specific edge costs c ∈ RE≥0 such that S induces a minimum-cost
Nash equilibrium leaves a simple expression C(S)/C(T) that we write as PoS(G, c | S, T).
The defined values constitute a chain of lower bounds on the price of stability PoS of the

131

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

321 n− 1 n

cr,1 cr,2 cr,3 cr,n−1 cr,n

c1,2 c2,3 cn−1,n

Figure 5.15: The fan graph with n players.

problem, as we have

PoS ≥ PoS(G) ≥ PoS(G | S) ≥ PoS(G | S, T) ≥ PoS(G, c | S, T).

The choices of G, S, and T in the following are generally motivated by computational
experiments. Choices resulting in good lower bounds seem to depend significantly on the
cost function f . Therefore, we examine the price of stability for three different classes,
which are constant total edge cost, affine total edge cost, and polynomial total edge
cost. A common theme that appears is the structure S of a minimum-cost equilibrium.
Computational experiments suggest that the best lower bounds are achieved by S being
a star, that is, when every player connects to the root via a single edge. This makes sense
on an intuitive level, a high price of stability originates from the lack of sharing edges in
Nash equilibria.

5.4.3.1 The Fan Graph

For constant total edge cost and affine total edge cost, setting G to be the fan graph
results in strong lower bounds according to computational experiments. The fan graph
Gn on n + 1 vertices is depicted in Figure 5.15. Every vertex of a path on n vertices
is connected by a direct edge to a common root r. Instances of this structure are first
considered by Fiat et al. (2006) for the construction of lower bounds. Bilò, Caragiannis,
et al. (2010, 2013) optimize the weights and get an improved lower bound.
We examine the price of stability PoS(Gn | Sn) where Sn is the star in Gn, that is, the

set of all edges that are incident to the root. The regularity of these instances leads to
the first simplifications. The following lemmas show that we can focus on system optima
that use exactly one edge that is incident to the root. These spanning trees are actually
characterized by their single edge which is incident to the root. For k ∈ [n], we denote
by Tk the spanning tree that consists of {r, k} and the path 1− 2− · · · − n in Gn.

Observation 5.35 (Decomposition with respect to the social optimum). Let T ⊆ E
be a spanning tree in Gn such that |δT (r)| > 1. Then

PoS(Gn | Sn, T) ≤ max
n′∈[n]

max
k∈[n′]

PoS(Gn′ | Sn′ , Tk).

132

5.4 Efficiency of Nash Equilibria

Proof. The tree T decomposes into k ∈ N trees T (1), . . . , T (k) such that T =
⋃̇
i∈[k]T

(i)

and two trees T (i) and T (j), i 6= j overlap in r only. Let S(i) := Sn[V (T (i))] be the
star induced by the vertex set of T (i) for every i ∈ [k]. Then C(Sn)/C(Tn) is the
mediant of C(S(i))/C(T (i)) over all i ∈ [k]. Now the statement follows from the mediant
inequality. �

A similar decomposition can be performed if there is an edge incident to the root which
has cost zero. Due to the following lemma we can concentrate on instances with positive
cost.

Observation 5.36 (Decomposition with respect to zero edges). Let c ∈ REn≥0 such that
there is i ∈ [n] with cr,i = 0. Then there is a network cost-sharing game on a smaller fan
graph with at least as good price of stability, that is,

PoS(Gn, c | Sn) ≤ max
k∈[n−1]

PoS(Gk | Sk).

Proof. Let T ⊆ E be the support of a social optimum. Set T̂ to be the result of T after
contracting {r, i} and replacing any occurence of {i− 1, i} and {i, i+ 1} by {r, i− 1}
and {r, i+ 1}, respectively. By Lemma 5.4 and Observation 5.2, we may assume that
T̂ is again a tree. From Sn being a Nash equilibrium, we obtain cr,i−1 < ci−1,i and
cr,i+1 < ci,i+1. Therefore, C(T̂) ≤ C(T). Further, T̂ does not contain {i− 1, i} or
{i, i+ 1}. Now the statement follows from Observation 5.35. �

The preceding two observations are based on decomposing instances on the fan graph
into smaller ones. The following result shows the natural property that the price of
stability on a fan graph is the higher the larger the graph is.

Lemma 5.37 (Monotonicity of the price of stability). The price of stability in the fan
is nondecreasing in its size, that is, for n ≤ n′

PoS(Gn | Sn) ≤ PoS(Gn′ | Sn′).

Proof. Let c ∈ REn≥0 such that the star Sn is a cost-minimal Nash equilibrium in the
broadcast game on Gn with cost c. Further, let T ⊆ En be the support of a social
optimum. We extend the game by one player. Set cr,n+1 = 0 and cn−1,n =

∑
e∈En ce.

The exact value of cn−1,n is not important as long as it is large enough. Then Sn+1 induces
a Nash equilibrium and T ∪ {{r, n}} induces a social optimum in the broadcast game on
Gn+1 with the extended cost c ∈ REn+1

≥0 . As the cost was chosen arbitrarily (under the
condition that the star is a cost-minimal Nash equilibrium), we obtain PoS(Gn | Sn) ≤
PoS(Gn+1 | Sn+1). The statement follows by induction. �

In order to obtain good bounds on PoS(Gn | Sn), we need to understand the edge cost
under which Sn indeed induces a minimum-cost Nash equilibrium. The following lemma
gives a characterization for a class of cost functions f , which includes many natural cost
functions (see Observation 5.39).

133

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Lemma 5.38 (Stars as Nash equilibria). Let f be a strictly decreasing player cost func-
tion such that(

f(2)
f(1)

)k
2 ≤ f(k)

f(1) for all k ∈ 2N≥1 and
(
f(2)
f(1)

)k−3
2 f(3)

f(1) ≤
f(k)
f(1) for all k ∈ 2N≥1 + 1.

Further, let c ∈ REn≥0 such that cr,i > 0 for all i ∈ [n]. Then the star is a cost-minimal
equilibrium with respect to c and f if and only if

(i) cr,i < ci−1,i + f(2)
f(1)cr,i−1 for all i = 2, . . . , n

(ii) cr,i < ci,i+1 + f(2)
f(1)cr,i+1 for all i = 1, . . . , n− 1

(iii) for all i = 2, . . . , n− 1

cr,i−1 < ci−1,i + f(3)
f(1)cr,i or

cr,i+1 < ci,i+1 + f(3)
f(1)cr,i or

cr,i−1 + cr,i + cr,i+1 ≤ ci−1,i + ci,i+1 + 3f(3)
f(1)cr,i.

Proof. Sufficiency. Assume that (i), (ii), and (iii) hold. Let σ be the strategy profile
induced by the star. It follows from (i) and (ii), that for all i ∈ [n− 1]

cσ(σi+1 \ σi)− c′σ(σi \ σi+1) = f(1)cr,i+1 − f(2)cr,i < f(1)ci,i+1

and
cσ(σi \ σi+1)− c′σ(σi+1 \ σi) = f(1)cr,i − f(2)cr,i+1 < f(1)ci,i+1

hold. Corollary 5.6 implies that σ is a Nash equilibrium.

Let σ̄ be another equilibrium different from the star σ. Then there must be j ∈ [n]
such that nσ̄({r, j}) > 1. Based on Lemma 5.4, there are 1 ≤ k ≤ j ≤ l ≤ n such that
the set of players using the edge {r, j} is exactly {k, . . . , l}. Assume for contradiction
that j − k > l − j, that is, k is further away from j than l. Then l − k < 2(j − k). By
combining (ii) for the indices i = k, . . . , j − 1, we obtain

cr,k <

j−k∑
i=1

(
f(2)

f(1)

)i−1

ck+i−1,k+i +

(
f(2)

f(1)

)j−k
cr,j .

With the convention f(0) = f(1), the monotonicity of f yields f(2(i− 1)) ≤ f(i) for all
i ∈ N≥1. When combining the assumption on f with this, we can continue the preceding

134

5.4 Efficiency of Nash Equilibria

inequality to

f(1)cr,k <

j−k∑
i=1

f(2(i− 1))ck+i−1,k+i + f(2(j − k))cr,j

≤
j−k∑
i=1

f(i)ck+i−1,k+i + f(l − k + 1)cr,j = Ck(σ̄).

This means player k has an incentive to deviate to {r, k}, which contradicts σ̄ being an
equilibrium. Thus, the assumption j − k > l − j is false. The case j − k < l − j can be
ruled out by symmetrical reasoning. Hence, j − k = l − j has to hold.
We show that (iii) actually implies that always one of the first two conditions in (iii)

has to hold. Assume that this is not the case; that is, there is i ∈ {2, . . . , n− 1} such
that f(1)cr,i−1 ≥ f(1)ci−1,i + f(3)cr,i and f(1)cr,i+1 ≥ f(1)ci,i+1 + f(3)cr,i. As cr,i > 0
and f decreases strictly, we get

cr,i−1 + cr,i + cr,i+1 ≥ ci−1,i + ci,i+1 +
2f(3) + f(1)

f(1)
cr,i > ci−1,i + ci,i+1 + 3

f(3)

f(1)
cr,i.

It follows that none of the inequalities in (iii) holds. This is a contradiction and we
conclude that one of the first two inequalities in (iii) is valid.
Assume without loss of generality (due to symmetry) that for index j, the inequality

f(1)cr,j−1 < f(1)cj−1,j + f(3)cr,j holds. Similar to before, we combine this inequality
with (i) for i = k, . . . , j − 2 and obtain

cr,k <

j−k∑
i=1

(
f(2)

f(1)

)i−1

ck+i−1,k+i +

(
f(2)

f(1)

)j−k−1 f(3)

f(1)
cr,j .

Again, we continue this inequality by using the assumptions on f and get

f(1)cr,k <

j−k∑
i=1

f(2(i− 1))ck+i−1,k+i + f(2(j − k) + 1)cr,j

≤
j−k∑
i=1

f(i)ck+i−1,k+i + f(l − k + 1)cr,j = Ck(σ̄).

This shows that player k wants to deviate, which contradicts σ̄ being a Nash equilibrium.
In total, we get that under (i), (ii), and (iii), the star is the unique equilibrium. In
particular, it minimizes the social cost among all Nash equilibria.

Necessity of (i) and (ii). For the converse direction, assume that the star σ is a cost-
minimal equilibrium. Corollary 5.6 immediately implies that (i) and (ii) hold with weak
inequality. Assume they do not hold in a strict sense. Then without loss of generality (due
to symmetry), there is a player i ∈ [n−1] such that f(1)cr,i = f(1)ci,i+1 +f(2)cr,i+1. Let

135

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

σ̂i = {{r, i+ 1}, {i+ 1, i}} be the strategy of player i via her neighbor i+1. Executing the
improving dynamics on (σ−i, σ̂i) results in a Nash equilibrium σ̄ with smaller potential.
We evaluate their respective potentials to obtain

C(σ̄) ≤ Φ(σ̄) ≤ Φ(σ−i, σ̂i) = Φ(σ)− f(1)cr,i + f(1)ci,i+1 + f(2)cr,i+1 = Φ(σ) = C(σ).

As σ is a minimum-cost Nash equilibrium, equality has to hold. Hence, σ̄ = (σ−i, σ̂i)
follows. The change of the social cost under i deviating in σ to σ̂i is

C(σ−i, σ̂i)− C(σ)

f(1)
= ci,i+1 − cr,i +

(
2f(2)

f(1)
− 1

)
cr,i+1 < ci,i+1 − cr,i +

f(2)

f(1)
cr,i+1 = 0

as f is strictly decreasing. This, again, is a contradiction to the assumption that σ
minimizes the social cost. It follows that (i) and (ii) hold (with strict inequality).

Necessity of (iii). Assume (iii) does not hold. Thus, there is a j ∈ {2, . . . , n− 1} such
that all three constraints are violated. Define the strategy profile σ̂ which differs from
σ in two strategies. Players j − 1 and j + 1 both play their respective paths via their
common neighbor j; that is, σ̂j−1 = {{j − 1, j}, {j, r}} and σ̂j+1 = {{j + 1, j}, {j, r}}.
We compare the social cost of σ̂ and σ to get

C(σ̂)− C(σ)

f(1)
= cj−1,j + cj,j+1 − cr,j−1 − cr,j+1 +

(
3f(3)

f(1)
− 1

)
cr,j < 0.

Therefore, σ̂ cannot be a Nash equilibrium.
As j violates (iii), we know in particular that f(1)cr,j−1 ≥ f(1)cj−1,j + f(3)cr,j and

f(1)cj,j+1 ≥ f(1)cr,j+1 + f(3)cr,j . This means that players j − 1 and j + 1 do not
want to deviate from σ̂ to their respective strategies in σ. It follows from Corollary 5.6
that a player other than j has an incentive to deviate to a neighboring player in [n] \
{j − 1, j, j + 1}. Let σ̄ be the resulting strategy profile after such a deviation. Note that
it leads to 1 ≤ k ≤ i ≤ l ≤ n such that the set of players using the edge {r, i} is exactly
{k, . . . , l} and i− k 6= k− l. In the proof of sufficiency of (i), (ii), and (iii), we show that
under (i) and (ii), the player who deviated from σ̂ to σ prefers her direct edge to the
root. This is a contradiction. �

Observation 5.39 (Star equilibria under constant, affine, or polynomial total edge
cost). The requirements of Lemma 5.38 on the cost function are met by

(i) constant total edge cost, that is, f(k) = 1
k ,

(ii) affine total edge cost, that is, f(k) = 1+(k−1)s
k for s ∈ [0, 1], and

(iii) polynomial total edge cost, that is, f(k) = kα−1 for α ∈ [0, 1].

Proof. Constant total edge cost (i) is a special case of affine total edge cost when choosing
s = 0. In the following, we make use of the inequalities 2k ≥ 2k and 3 · 2k−1 ≥ 2k+ 1 for
all k ∈ N which hold due to Bernoulli’s inequality.

136

5.4 Efficiency of Nash Equilibria

Affine total edge cost. For k ∈ N≥1, we use the binomial theorem and s ≤ 1 to obtain(
f(2)

f(1)

)k
=

(
1 + s

2

)k
=

∑k
i=0

(
k
i

)
si

2k
≤

1 + s
∑k

i=1

(
k
i

)
2k

=
f(2k)

f(1)
≤ f(2k)

f(1)
.

For k ∈ N≥1, we apply the same bound based on the binomial theorem twice to get

f(3)

f(1)

(
f(2)

f(1)

)k−1

=
s

3

(
f(2)

f(1)

)k−1

+
2

3

(
f(2)

f(1)

)k
≤ s

3

f(2k−1)

f(1)
+

2

3

f(2k)

f(1)
.

Evaluating the right hand-side and using s ≤ 1 gives

s

3

f(2k−1)

f(1)
+

2

3

f(2k)

f(1)
=

1 + s2k + s2(2k−1 − 1)

3 · 2k−1
≤ f(3 · 2k−1)

f(1)
≤ f(2k + 1)

f(1)
.

Polynomial total edge cost. For k ∈ N≥1, a straightforward calculation shows that(
f(2)

f(1)

)k
=
(
2k
)α−1 ≤

(
2k
)α−1

=
f(2k)

f(1)

and
f(3)

f(1)

(
f(2)

f(1)

)k−1

=
(
3 · 2k

)α−1 ≤
(
2k + 1

)α−1
=
f(2k + 1)

f(1)
. �

Observation 5.40. From the first part of the proof of Lemma 5.38, we see that if the star
is the best equilibrium, then the star is the unique equilibrium. Further, the last condition
of Lemma 5.38 (iii) can be dropped.

Due to Observation 5.35, we focus on determining PoS(Gn | Sn, Tk). Based on Lemma 5.38,
we examine the following program. Note that C depends implicitly on the decision vari-
ables c.

max
C(Sn)

C(Tk)
(FAN)

s. t. cr,i+1 < ci,i+1 +
f(2)

f(1)
cr,i for all i ∈ [n− 1]

cr,i < ci,i+1 +
f(2)

f(1)
cr,i+1 for all i ∈ [n− 1]

cr,i−1 < ci−1,i +
f(3)

f(1)
cr,i or cr,i+1 < ci,i+1 +

f(3)

f(1)
cr,i for all i ∈ [n− 1] \ {1}

ci,i+1 ≥ 0 for all i ∈ [n− 1].

cr,i > 0 for all i ∈ [n]

We transform this program (FAN) to obtain a formulation that allows us to apply the
theory of linear programming.

137

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

The set of feasible solutions to (FAN) is a cone. Scaling any feasible solution with
a positive constant yields another feasible solution with the same objective function
value. Hence, we can fix the denominator of the objective function to f(1) and obtain
an equivalent formulation.

Further, the strict inequalities in the program can be relaxed to weak inequalities. To
see this, consider a feasible solution to this relaxation. Adding ε > 0 to all variables
yields another feasible solution that fulfills all inequalities strictly. As the objective is
continuous and ε can be chosen arbitrarily small, the relaxation is actually not proper;
that is, changing the strict inequalities to weak inequalities preserves the optimal value.

Finally, we introduce binary variables z ∈ {0, 1}n representing the satisfied inequalities
of the disjunctive constraints. Setting zi = 0 corresponds to cr,i−1 < ci−1,i + f(3)

f(1)cr,i and

zi = 1 to cr,i+1 < ci,i+1+ f(3)
f(1)cr,i. Note that these inequalities dominate the corresponding

inequalities in the first two sets of constraints in (FAN). Hence, we can combine them.
To avoid case distinctions, we set z1 = 0 and zn = 1. For the sake of a more compact
notation, we define the set of such vectors Zn := {z ∈ {0, 1}n | z1 = 0, zn = 1}.
Altogether, we obtain the equivalent program

max

n∑
i=1

cr,i (FAN’)

s. t. 1 =

k−1∑
i=1

if(i)

f(1)
ci,i+1 +

nf(n)

f(1)
cr,k +

n−1∑
i=k

(n− i)f(n− i)
f(1)

ci,i+1

cr,i+1 ≤ ci,i+1 +
f(2 + zi)

f(1)
cr,i for all i ∈ [n− 1]

cr,i ≤ ci,i+1 +
f(3− zi+1)

f(1)
cr,i+1 for all i ∈ [n− 1]

ci,i+1 ≥ 0 for all i ∈ [n− 1]

cr,i ≥ 0 for all i ∈ [n]

z ∈ Zn.

Observation 5.41 (Symmetry of solutions). If c, z is a solution to (FAN’), then also
c̄, z̄ is a solution where

c̄r,i = cr,n−i+1 for all i ∈ [n]

c̄i,i+1 = cn−i,n−i+1 for all i ∈ [n− 1]

z̄i = 1− zn−i+1 for all i ∈ [n]

After fixing the variables z in (FAN’), we obtain a linear program. The following
lemma regards one specific solution to it. The subsequent theorem shows in particular

138

5.4 Efficiency of Nash Equilibria

that this solution determines PoS(Gn | Sn, Tk). Together with the preceding findings, we
obtain a characterization of PoS(Gn | Sn).

Lemma 5.42 (Basic solutions). Let f be a cost function fulfilling the requirements of
Lemma 5.38. Fix some z ∈ Zn. Then (FAN’) has a unique positive basic feasible solution
c(z), which is the solution to the system of equations

cr,i+1 = ci,i+1 +
f(2 + zi)

f(1)
cr,i for all i ∈ [n− 1]

cr,i = ci,i+1 +
f(3− zi+1)

f(1)
cr,i+1 for all i ∈ [n− 1]

1 =

k−1∑
i=1

if(i)

f(1)
ci,i+1 +

nf(n)

f(1)
cr,k +

n−1∑
i=k

(n− i)f(n− i)
f(1)

ci,i+1

Proof. We show that the system of equations defines a unique vector c(z) and check its
feasibility and uniqueness afterwards.

A solution. Note that all but the last equation in the system are homogeneous; that
is, they do not involve an additive constant. Hence, a solution satisfying all but the last
equality can be scaled such that it fulfills the whole system. Consequently, we focus on
the other equations. Eliminating the variables ci,i+1 for all i ∈ [n− 1] yields

cr,i+1

cr,i
=

1 + f(2+zi)
f(1)

1 + f(3−zi+1)
f(1)

> 0 for all i ∈ [n− 1].

By substituting this into the original equations, we further obtain

cr,i
ci,i+1

=
1 + f(3−zi+1)

f(1)

1− f(3−zi+1)
f(1)

f(2+zi)
f(1)

> 0 for all i ∈ [n− 1].

These two families of equations clearly determine c up to scaling. Moreover, all compo-
nents of c have the same sign (or are all zero). Since all coefficients of the last inequality
in the defining system of c are positive, it follows that there is a unique solution c(z).

Feasibility and uniqueness. The system of 2n−1 equations uniquely determines 2n−1
variables. Hence, the equations must be linearly independent and c(z) is a basic solution
of (FAN’). As it is positive, it is also feasible. The remaining inequalities of (FAN’)
are nonnegativity constraints. Therefore, in every other basic solution there is a variable
that is zero. �

139

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

Theorem 5.43 (The price of stability in the fan). Let f be a cost function fulfilling the
requirements of Lemma 5.38. Further, let c(z) be the cost vector as defined in Lemma 5.42.
Then the price of stability on the fan under the assumption that the star is a minimum-
cost Nash equilibrium can be expressed as

PoS
(
Gn

∣∣ Sn) = max
n′∈[n]

max
k∈[n′]

max
z∈Zn′

PoS
(
Gn′ , c

(z)
∣∣ Sn′ , Tk).

Proof. Due to the decomposition property shown in Observation 5.35, we obtain for the
price of stability

PoS(Gn | Sn) = max
spanning tree

T⊆En

PoS(Gn | Sn, T) = max
n′∈[n]

max
k∈[n′]

PoS(Gn′ | Sn′ , Tk).

For 1 ≤ k ≤ n′, the price of stability PoS(Gn′ | Sn′ , Tk) can be determined using (FAN’)
due to Lemma 5.38. For a cost vector c with cr,i = 0 for some i ∈ [n′], the characterization
Lemma 5.38 does not hold. Still, Observation 5.36 shows that a smaller n′ would achieve
a larger or equal price of stability. After fixing the decisions z ∈ {0, 1}n, the program
(FAN’) becomes linear. Thus, there is an optimal basic solution. Lemma 5.42 shows
that c(z) is the unique positive basic feasible solution. Thus, any other basic feasible
solution contains a variable that is zero. We show that all these other solutions can be
reduced to smaller instances. If cr,i = 0 for some i ∈ [n], Observation 5.36 shows that the
instance can be decomposed into smaller ones. If ci,i+1 = 0 for some i ∈ [n− 1], then the
constraints cr,i+1 ≤ ci,i+1 + f(2 + zi)/f(1) · cr,i and cr,i ≤ ci,i+1 + f(3− zi+1)/f(1) · cr,i+1

yield cr,i = cr,i+1 = 0. Thus, also in this case the instance decomposes. We therefore can
focus on the solutions c(z) and get

PoS(Gn | Sn) = max
n′∈[n]

max
k∈[n′]

max
z∈Zn′

val(FAN’)

= max
n′∈[n]

max
k∈[n′]

max
z∈Zn′

PoS(Gn′ , c
(z) | Sn′ , Tk). �

The objective function value of the feasible basic solution corresponding to c(z), z for
some z ∈ Zn evaluates to ∑n

i=1 c
(z)
r,i∑k−1

i=1
if(i)
f(1) c

(z)
i,i+1 + nf(n)

f(1) c
(z)
r,k +

∑n−1
i=k

(n−i)f(n−i)
f(1) c

(z)
i,i+1

.

This fraction can be interpreted as the mediant of the fractions

c
(z)
r,1

c
(z)
1,2

, . . . ,
c

(z)
r,k−1

(k−1)f(k−1)
f(1) c

(z)
k−1,k

,
c

(z)
r,k

nf(n)
f(1) c

(z)
r,k

,
c

(z)
r,k+1

(n−k)f(n−k)
f(1) c

(z)
k,k+1

, . . . ,
c

(z)
r,n

c
(z)
n−1,n

.

The first k−1 fractions and the last n−k fractions are associated with the two branches
of the tree Tk, respectively. The k-th term corresponds to its stem. Due to the mediant

140

5.4 Efficiency of Nash Equilibria

inequality, the price of stability cannot be greater than the largest of these fractions.
Hence, the following ratios play an important role for determining (a lower bound on)
the price of stability. As deduced in the proof of Lemma 5.42, the inequalities defining
c(z) yield for i ∈ [n− 1]

c
(z)
r,i+1

c
(z)
r,i

=
1 + f(2+zi)

f(1)

1 + f(3−zi+1)
f(1)

,
c

(z)
r,i

c
(z)
i,i+1

=
1 + f(3−zi+1)

f(1)

1− f(3−zi+1)
f(1)

f(2+zi)
f(1)

,
c

(z)
r,i+1

c
(z)
i,i+1

=
1 + f(2+zi)

f(1)

1− f(2+zi)
f(1)

f(3−zi+1)
f(1)

.

The possible values that the latter two ratios can assume are

3
2 ≤

1

1− f(3)
f(1)

=
1 + f(3)

f(1)

1−
(
f(3)
f(1)

)2 ≤
1 + f(3)

f(1)

1− f(3)
f(1)

f(2)
f(1)

≤
1 + f(2)

f(1)

1− f(2)
f(1)

f(3)
f(1)

≤
1 + f(2)

f(1)

1−
(
f(2)
f(1)

)2 =
1

1− f(2)
f(1)

.

This order is due to f being nonincreasing. As further k 7→ kf(k) is nondecreasing,
1/
(
1 − f(2)/f(1)

)
is an upper bound to the objective function value obtained from

c(z), z. We obtain the following corollary to Theorem 5.43.

Corollary 5.44. Let f be a cost function fulfilling the requirements of Lemma 5.38. Then
for every n ∈ N, the price of stability on the fan under the assumption that the star is a
cost-minimal Nash equilibrium is at most

PoS(Gn | Sn) ≤ f(1)

f(1)− f(2)
.

The smallest ratio contributing to the objective function interpreted as mediant is(
f(1)c

(z)
r,k

)
/
(
nf(n)c

(z)
r,k

)
. Therefore, it is beneficial for obtaining a large price of stability

to put more weight on the other ratios. On the one hand, this can be achieved through
the choice of z. As we see in the next sections, thereby we can get an exponential growth
of the weight of the i-th term in the distance |i− k| to the stem. On the other hand,
increasing n includes more terms in the mediant with ratio at least 3

2 . It has, however,
a converse effect. As k 7→ kf(k) is nondecreasing, the larger n is the smaller is the ratio
of the terms with index close to k. It depends on the cost function f which of these two
opposite influences is stronger.

5.4.3.2 A Lower Bound for Constant Total Edge Cost

For constant total edge cost, we obtain PoS(Gn | Sn) ≤ 2 from Corollary 5.44. We
continue with a more careful analysis in order to determine PoS(Gn | Sn) exactly for
f(k) = 1/k. According to Theorem 5.43, it suffices to understand which z ∈ Zn maxi-
mizes the value of (FAN’). To that end, we interpret the objective function value attained
by c(z) and z as the harmonic mean of the ratios∑k−1

i=1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1

,
c

(z)
r,k

c
(z)
r,k

,

∑n
i=k+1 c

(z)
r,i∑n

i=k+1 c
(z)
i−1,i

141

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

c
(z)
r,i+1

c
(z)
r,i

zi+1 = 0 zi+1 = 1

zi = 0 9
8 1

zi = 1 1 8
9

c
(z)
r,i+1

c
(z)
i,i+1

zi+1 = 0 zi+1 = 1

zi = 0 9
5 2

zi = 1 3
2

8
5

Table 5.1: The solution c(z) under the cost function f(k) = 1/k.

weighted by
∑k−1

i=1 c
(z)
r,i , c

(z)
r,k , and

∑n
i=k+1 c

(z)
r,i , respectively. We focus on the third ratio

and its weight. By symmetry considerations along the lines of Observation 5.41, the
results extend to the first ratio and its weight. Table 5.1 contains the relevant ratios of
the costs of pairs of single edges for constant total edge cost that we use in the following.

Lemma 5.45 (Optimal choice of z with z1 = 0). Among all z ∈ Zn, the choice z = 1n

simultaneously maximizes the two ratios∑n
i=2 c

(z)
r,i

c
(z)
r,1

and

∑n
i=2 c

(z)
r,i∑n

i=2 c
(z)
i−1,i

.

Proof. Consulting Table 5.1 shows that the former ratio is maximized for z = 1n. Hence,
we focus on the latter ratio in the following. Assume for a contradiction that z = 1n

does not attain the maximum. Fix z ∈ Zn to be a maximizer of the ratio at hand. Let
j ∈ N be the smallest index such that zj = 1. By our assumption, we have j < n. Let
z̄ = z − 1j be equal to z except for z̄j = 0. We show that z̄ has a better ratio than z
which contradicts its choice. For that purpose, we interpret the ratio of z as the harmonic
mean of the two ratios ∑j+1

i=2 c
(z)
r,i∑j+1

i=2 c
(z)
i−1,i

and

∑n
i=j+2 c

(z)
r,i∑n

i=j+2 c
(z)
i−1,i

weighted by
∑j+1

i=2 c
(z)
r,i and

∑n
i=j+2 c

(z)
r,i , respectively.

Comparing the two ratios. First, we show that the first ratio is less than the second
ratio. We evaluate the ratio of the terms up to the index j + 1 using the values from
Table 5.1. In the case zj+1 = 0, we get∑j+1

i=2 c
(z)
r,i∑j+1

i=2 c
(z)
i−1,i

=

∑j−1
i=2

(
9
8

)i−1
+
(

9
8

)j−2
+
(

9
8

)j−2∑j−1
i=2

(
9
8

)i−1 5
9 +

(
9
8

)j−2 1
2 +

(
9
8

)j−2 2
3

=

∑j−1
i=2

(
9
8

)i−1
+
(

9
8

)j−2
2∑j−1

i=2

(
9
8

)i−1 5
9 +

(
9
8

)j−2 7
6

.

142

5.4 Efficiency of Nash Equilibria

As 12
7 < 9

5 , the properties of the harmonic mean imply that the ratio of the terms up to
the index j + 1 is strictly less than 9

5 . If zj+1 = 1, this ratio is∑j+1
i=2 c

(z)
r,i∑j+1

i=2 c
(z)
i−1,i

=

∑j−1
i=2

(
9
8

)i−1
+
(

9
8

)j−2
+
(

9
8

)j−3∑j−1
i=2

(
9
8

)i−1 5
9 +

(
9
8

)j−2 1
2 +

(
9
8

)j−3 5
8

=

∑j−1
i=2

(
9
8

)i−1
+
(

9
8

)j−2 17
9∑j−1

i=2

(
9
8

)i−1 5
9 +

(
9
8

)j−2 19
18

.

Again this ratio is below 9
5 because 34

19 <
9
5 .

For the choice 1n, however, we obtain a ratio of∑n
i=2 c

(1n)
r,i∑n

i=2 c
(1n)
i−1,i

=

∑n−1
i=2

(
9
8

)i−1
+
(

9
8

)n−2∑n−1
i=2

(
9
8

)i−1 5
9 +

(
9
8

)n−2 1
2

=
10
(

9
8

)n−2 − 9

11
2

(
9
8

)n−2 − 5
↘ 20

11
for n→∞.

As z was chosen to be optimal, its overall ratio has to be larger than 20
11 . The mediant

inequality yields ∑j+1
i=2 c

(z)
r,i∑j+1

i=2 c
(z)
i−1,i

<
9

5
<

20

11
<

∑n
i=j+2 c

(z)
r,i∑n

i=j+2 c
(z)
i−1,i

.

Comparing to z̄. Recomputing the ratios for z̄ shows∑j+1
i=2 c

(z)
r,i∑j+1

i=2 c
(z)
i−1,i

<
9

5
=

∑j+1
i=2 c

(z̄)
r,i∑j+1

i=2 c
(z̄)
i−1,i

and

∑n
i=j+2 c

(z)
r,i∑n

i=j+2 c
(z)
i−1,i

=

∑n
i=j+2 c

(z̄)
r,i∑n

i=j+2 c
(z̄)
i−1,i

.

Additionally, we get that the weight of the second part, which has the higher ratio,
increases by setting z̄j = 0 relative to the weight of the first part, as

j+1∑
i=2

c
(z̄)
r,i <

(
9

8

)2 j+1∑
i=2

c
(z)
r,i and

n∑
i=j+2

c
(z̄)
r,i =

(
9

8

)2 n∑
i=j+2

c
(z)
r,i .

In total, the monotonicity of the weighted harmonic mean implies that z̄ has a larger
total ratio than z. This is the contradiction we aimed for. �

Lemma 5.46 (Optimal choice of z with z1 = 1). Among all z ∈ {0, 1}n with z1 = 1
and zn = 1, the choice z = 11 + 1n simultaneously maximizes the two ratios∑n

i=2 c
(z)
r,i

c
(z)
r,1

and

∑n
i=2 c

(z)
r,i∑n

i=2 c
(z)
i−1,i

.

Proof. Again, Table 5.1 shows that the first ratio is maximized by z = 11 + 1n. Thus,
we focus on the second ratio. Let z ∈ {0, 1}n such that z1 = 1 and zn = 1. Further, let
1 = i0 < i1 < · · · < ik = n be the indices for which z is one; that is, zi = 1 if and only if

143

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

i ∈ {i0, . . . , ik}. We interpret the ratio in question for z as the mediant of the k ratios∑ij
i=ij−1+1 c

(z)
r,i∑ij

i=ij−1+1 c
(z)
i−1,i

, j ∈ [k].

Let j ∈ [k] and l = ij − ij−1 be the number of summands in the respective ratio. Its
evaluation yields∑ij

i=ij−1+1 c
(z)
r,i∑ij

i=ij−1+1 c
(z)
i−1,i

=
1 +

∑l−1
i=2

(
9
8

)i−1
+
(

9
8

)l−2

2
3 +

∑l−1
i=2

(
9
8

)i−1 5
9 +

(
9
8

)l−2 1
2

=
10
(

9
8

)l−2 − 8

11
2

(
9
8

)l−2 − 13
3

↗ 20

11
for l→∞.

Note that even though the first equation is based on l > 1, the overall evaluation is the
same for l = 1. As this is increasing in l, the mediant inequality shows that k = 1 and,
therefore, z = 11 + 1n maximizes the total ratio. �

Lemma 5.47 (Price of stability in the fan under constant total edge cost). Under the
assumption that the star is a minimum-cost Nash equilibrium, the price of stability in the
fan is 20

11 . More specifically, for fixed number of players n, the worst-case is attained by

PoS
(
Gn

∣∣ Sn) = PoS
(
Gn, c

(1n)
∣∣ Sn, T1

)
=

20
(

9
8

)n−2 − 16

11
(

9
8

)n−2 − 8
↗ 20

11
for n→∞.

Proof. Theorem 5.43 guarantees the existence of n′ ∈ [n], k ∈ [n′], z ∈ Zn′ such that

PoS
(
Gn

∣∣ Sn) = PoS
(
Gn′ , c

(z)
∣∣ Sn′ , Tk) =

∑k−1
i=1 c

(z)
r,i + c

(z)
r,k +

∑n′

i=k+1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1 + c

(z)
r,k +

∑n′

i=k+1 c
(z)
i−1,i

.

We first argue that zi = 1 for all 1 < i < k and zi = 0 for all k < i < n based on the
monotonicity of certain harmonic means. Then we finish the proof by comparing the
explicit evaluations for the possible values of n′ and k.

We interpret the price of stability attained by n′, k, and z as the harmonic mean of
the three ratios ∑k−1

i=1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1

,
c

(z)
r,k

c
(z)
r,k

, and

∑n′

i=k+1 c
(z)
r,i∑n′

i=k+1 c
(z)
i−1,i

weighted by
∑k−1

i=1 c
(z)
r,i , c

(z)
r,k , and

∑n′

i=k+1 c
(z)
r,i , respectively. Note that these ratios corre-

spond to the stem and the two branches of Tk. If a branch does not exist due to k = 1
or k = n′, we treat the associated ratio as one.

144

5.4 Efficiency of Nash Equilibria

The high-ratio branch. Due to Observation 5.41, we can assume without loss of gen-
erally that these three ratios are ordered by

1 =
c

(z)
r,k

c
(z)
r,k

≤
∑k−1

i=1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1

≤
∑n′

i=k+1 c
(z)
r,i∑n′

i=k+1 c
(z)
i−1,i

.

From Lemmas 5.45 and 5.46, we know that zi = 0 for all k < i < n′ simultaneously
maximizes the ratio on the right hand-side and its weight relative to the other weights.
From the monotonicity of the weighted harmonic mean, it follows that this also maximizes
the price of stability attained by n′, k, and z. Thus, we may assume zi = 0 for all
k < i < n′.

The low-ratio branch. We slightly reinterpret the price of stability as the harmonic
mean of the two ratios given by the low-ratio branch and the combination of the stem
with the high-ratio branch. Assume for contradiction that the inequality∑k−1

i=1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1

≥
c

(z)
r,k +

∑n′

i=k+1 c
(z)
r,i

c
(z)
r,k +

∑n′

i=k+1 c
(z)
i−1,i

,

does not hold. Then, the mediant inequality implies∑k−1
i=1 c

(z)
r,i + c

(z)
r,k +

∑n′

i=k+1 c
(z)
r,i∑k−1

i=1 c
(z)
i,i+1 + c

(z)
r,k +

∑n′

i=k+1 c
(z)
i−1,i

<
c

(z)
r,k +

∑n′

i=k+1 c
(z)
r,i

c
(z)
r,k +

∑n′

i=k+1 c
(z)
i−1,i

.

Note that the right-hand side almost corresponds to the price of stability of the instance
that is obtained when deleting the vertices 1, . . . , k − 1, which is another fan. The only
difference might be that zk = 1. The computations in the proofs of Lemmas 5.45 and 5.46
reveal that zk = 0 and, therefore, the smaller instance would give an even larger ratio.
This contradicts the optimal choice of n′, k, and z. Hence, the assumption is wrong and
the inequality holds. Then, repeating the reasoning from the high-ratio branch under the
additional use of Observation 5.41 shows that we may assume zi = 1 for all 1 < i < k.

The stem. Now, we can compute PoS
(
Gn′ , c

(z)
∣∣ Sn′ , Tk) under the assumption that

zi = 1 for 1 < i < k and zi = 0 for k < i < n. We invoke Observation 5.41 once again to
see that we may assume zk = 0 as well as k < n. The costs are depicted in Figure 5.16.
For k > 2, PoS

(
Gn′ , c

(z)
∣∣ Sn′ , Tk) evaluates to(

9
8

)k−3
+
∑k−2

i=2

(
9
8

)k−i−1
+ 1 + 1 +

∑n−1
i=k+1

(
9
8

)i−k
+
(

9
8

)n−k−1(
9
8

)k−3 1
2 +

∑k−2
i=2

(
9
8

)k−i−1 5
9 + 2

3 + 1 +
∑n−1

i=k+1

(
9
8

)i−k 5
9 +

(
9
8

)n−k−1 1
2

.

For k = 2, we obtain (
9
8

)−1
+ 1 +

∑n−1
i=3

(
9
8

)i−2
+
(

9
8

)n−3(
9
8

)−1 5
8 + 1 +

∑n−1
i=3

(
9
8

)i−2 5
9 +

(
9
8

)n−3 1
2

.

145

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

r

011110 0 0 0 1

(9
8

) k−3 (9
8

) k−3 (9
8
) k−4 (9

8
) 1 (9 8

) 0 (
98)

0

(
98)

1

(
9
8)
n−
k−

2

(
9

8

)
n−
k−

1

(
9

8
)
n−
k−

1

12 (
98)
k−

3

59 (
98)
k−

3

59 (
98)

1

23 (
98)

0

59 (
98)

1

59 (
98)
n−

k−
1

12 (
98)
n−

k−
1

Figure 5.16: The edge cost c(z) in the fan with zi = 1 for 1 < i < k and zi = 0 for k ≤ i < n.
The vertices i ∈ [n] are annotated with their value of zi in gray. Tk is highlighted in yellow.

In both these cases, the fractions are equal to

10
((

9
8

)k−3
+
(

9
8

)n−k−1
)
− 16

11
2

((
9
8

)k−3
+
(

9
8

)n−k−1
)
− 25

3

↗ 20

11
for n→∞.

For k = 1, on the other hand we obtain

1 +
∑n−1

i=2

(
9
8

)i−1
+
(

9
8

)n−2

1 +
∑n−1

i=2

(
9
8

)i−1 5
9 +

(
9
8

)n−2 1
2

=
10
(

9
8

)n−2 − 8

11
2

(
9
8

)n−2 − 4
↗ 20

11
for n→∞.

It can be checked that for fixed n′ the value is maximized by k = 1. As for k = 1 the
value is increasing in n′, it follows n′ = n. �

5.4.3.3 A Lower Bound for Affine Total Edge Cost

Computational experiments suggest that fan graphs result in best possible lower bounds
for affine total edge cost as well. To obtain suitable cost vectors c(z), we use the choice
for z ∈ Zn that proved optimal for constant total edge cost. For n ∈ N and k ∈ [n], let
zk ∈ Zn be the vector such that zi = 1 if and only if 1 < i < k or i = n. We evaluate
the lower bound

PoS
(
Gn

∣∣ Sn) ≥ max
n′∈[n]

max
k∈[n′]

PoS
(
Gn′ , c

(zk)
∣∣ Sn′ , Tk)

146

5.4 Efficiency of Nash Equilibria

c
(z)
r,i+1

c
(z)
r,i

zi+1 = 0 zi+1 = 1

zi = 0
3(3 + s)

4(2 + s)
1

zi = 1 1
4(2 + s)

3(3 + s)

c
(z)
r,i+1

c
(z)
i,i+1

zi+1 = 0 zi+1 = 1

zi = 0
3(3 + s)

(1− s)(2s+ 5)

2

1− s

zi = 1
3

2(1− s)
4(2 + s)

(1− s)(2s+ 5)

Table 5.2: The solution c(z) under the cost function f(k) = s+ (1− s)/k.

that is implied by Theorem 5.43. We use the ratios in Table 5.2 to evaluate the social
cost of the star under this choice of z. For 2 < k < n, we obtain

C(Sn)

c
(zk)
r,k

=
(

3(3+s)
4(2+s)

)k−3
+

k−1∑
i=2

(
3(3+s)
4(2+s)

)k−1−i
+ 1 +

n−1∑
i=k+1

(
3(3+s)
4(2+s)

)i−k
+
(

3(3+s)
4(2+s)

)n−k−1

Simplifying the right-hand side and doing the computations for the extreme cases of k
shows for n > 1

C(Sn)

c
(zk)
r,k

=

2(5+s)

1−s

(
3(3+s)
4(2+s)

)n−k−1
− 8+4s

1−s if k = 1

2(5+s)
1−s

((
3(3+s)
4(2+s)

)k−3
+
(

3(3+s)
4(2+s)

)n−k−1
)
− 8(2+s)

1−s if 1 < k < n

2(5+s)
1−s

(
3(3+s)
4(2+s)

)k−3
− 7+5s

1−s if k = n.

The cost of a social optimum on the other hand for 2 < k < n is

C(Tk)

c
(zk)
r,k

=
(

3(3+s)
4(2+s)

)k−3 2

1− s
+
k−2∑
i=2

(1 + s(i− 1))
(

3(3+s)
4(2+s)

)k−1−i 3(3 + s)

(1− s)(2s+ 5)

+ (1 + s(k − 2))
3

2(1− s)
+ (1 + s(n− 1))

+
n−1∑
i=k+1

(1 + s(n− i))
(

3(3+s)
4(2+s)

)i−k 3(3 + s)

(1− s)(2s+ 5)
+
(

3(3+s)
4(2+s)

)n−k−1 2

1− s

147

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

0 0.2 0.4 0.6 0.8 1

1

1.5

s

(a) PoS
(
G5, c

(zk) | S5, Tk
)
for k = 1 (yellow) to

k = 5 (violet). k = 3 is highlighted in green.

0 0.2 0.4 0.6 0.8 1

1

1.5

s

(b) PoS
(
G10, c

(zk) | S10, Tk
)
for k = 1 (yellow)

to k = 10 (violet). k = 5 is highlighted in green.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

s

(c) PoS
(
G20, c

(zk) | S20, Tk
)
for k = 1 (yellow) to

k = 20 (violet). k = 10 is highlighted in green.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

s

(d) PoS
(
G80, c

(zk) | S80, Tk
)
for k = 1 (yellow)

to k = 80 (violet). k = 40 is highlighted in green.

Figure 5.17: The dependency of PoS
(
Gn, c

(zk) | Sn, Tk
)
on k ∈ [n] for affine total edge cost.

Doing the calculcations also for the extreme cases of k yields for n > 1

C(Tk)

c
(z)
r,k

=

(
3(3+s)
4(2+s)

)n−k−1
12s3+63s2+82s+11

2(1−s)

−2s(s+ 2)n+ s(2s+ 5)k − 8s3+33s2+39s+4
1−s if k = 1((

3(3+s)
4(2+s)

)k−3
+
(

3(3+s)
4(2+s)

)n−k−1
)

12s3+63s2+82s+11
2(1−s)

−2s(s+ 2)n+ 2s(1−s)
3 k − 64s3+209s2+206s+25

3(1−s) if 1 < k < n(
3(3+s)
4(2+s)

)k−3
12s3+63s2+82s+11

2(1−s)

+sn− s(8s+13)
3 k − 40s3+107s2+95s+10

3(1−s) if k = n.

For fixed n ∈ N, the choice of the social optimum that maximizes the bound on the price
of stability depends on s. Figure 5.17 shows the dependency of PoS

(
Gn, c

(zk) | Sn, Tk
)

148

5.4 Efficiency of Nash Equilibria

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

s

Figure 5.18: Lower bounds to the price of stability for affine total edge cost. The bounds

PoS(Gn, c
(zdn/2e)) | Sn, Tdn/2e) are plotted for n = 1 (yellow) to n = 100 (violet). The bound

resulting from maximizing over all n ∈ N is highlighted in green. The upper bound based on

Theorem 5.23 is plotted in red.

on k for n ∈ {5, 10, 20, 80}. The diagrams show that our bounds can be below one. This
results from the fact that Tk is not enforced to be a social optimum in (FAN’). The choice
k = dn/2e generally results in good lower bounds on the price of stability for fixed n.
Only for small s ≥ 0, setting k = 1 yields better results. Note that this is in accordance
with Lemma 5.47, which applies to s = 0. This latter effect becomes irrelevant when
maximizing over all n ∈ N. Then the improved bound from k = 1 is dominated by
increasing n and using k = dn/2e again. Therefore, we focus on the lower bound

PoS
(
Gn

∣∣ Sn) ≥ max
n′∈[n]

PoS
(
Gn′ , c

(zdn/2e)
∣∣ Sn′ , Tdn/2e).

It is visualized in Figure 5.18. For s = 0, the limit for n → +∞ is the same when
choosing k = 1 or k = dn/2e (or any other k). Hence, we recover PoS ≥ 20/11 in
that case as already shown by Lemma 5.47. Interestingly, the best lower bound for
s > 0 is obtained by a finite n ∈ N. The reason becomes evident when consulting the
interpretation of the price of stability as the mediant of ratios from pairs of edges, (see
the end of Section 5.4.3.1). The increase of n includes more ratios in the mediant that

149

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

α

(a) PoS
(
G5, c

(zk) | S5, Tk
)
for k = 1 (yellow) to

k = 5 (violet). k = 3 is highlighted in green.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

α

(b) PoS
(
G10, c

(zk) | S10, Tk
)
for k = 1 (yellow)

to k = 10 (violet). k = 5 is highlighted in green.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

α

(c) PoS
(
G20, c

(zk) | S20, Tk
)
for k = 1 (yellow) to

k = 20 (violet). k = 10 is highlighted in green.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

α

(d) PoS
(
G80, c

(zk) | S80, Tk
)
for k = 1 (yellow)

to k = 80 (violet). k = 40 is highlighted in green.

Figure 5.19: The dependency of PoS
(
Gn, c

(zk) | Sn, Tk
)
on k ∈ [n] for polynomial total edge

cost.

make up for the bad ratio of the stem of Tk. The ratio of these additional pairs, however,
gets smaller with n. At the same time, the ratio of the stem decreases. For large s, this
gain from increasing n quickly turns into a loss. Thus, small finite values for n yield the
best lower bounds.

5.4.3.4 A Lower Bound for Polynomial Total Edge Cost

Applying the lower bound on the price of stability

PoS
(
Gn

∣∣ Sn) ≥ max
n′∈[n]

max
k∈[n′]

PoS
(
Gn′ , c

(zk)
∣∣ Sn′ , Tk)

for polynomial total edge cost gives similar results as for affine total edge cost. Again,
choosing k = dn/2e provides the best bounds α large enough. This is illustrated by
the diagrams in Figure 5.19. After maximizing over all n ∈ N, we obtain the bound
as depicted in Figure 5.20. Experiments, however, show that the lower bound obtained

150

5.5 Closing Remarks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

α

Figure 5.20: Lower bounds to the price of stability for polynomial total edge cost. The bounds

PoS(Gn, c
(zdn/2e)) | Sn, Tdn/2e) are plotted for n = 1 (yellow) to n = 100 (violet). The bound

resulting from maximizing over all n ∈ N is highlighted in green. The upper bound based on

Theorem 5.24 is plotted in red.

from the fan graph is not best possible for polynomial total edge cost. Table 5.3 shows
the structure of worst case examples for small n under the assumption that the star is
a Nash equilibrium that minimizes the social cost. These networks were determined by
full enumeration. For large enough n and α, these worst case examples are not captured
by the fan graph. Hence, further investigation should lead to improved lower bounds on
the price of stability in this case.

5.5 Closing Remarks

In this chapter, we examine Nash equilibria in network cost-sharing games in terms of
their computational complexity and their efficiency. Our analysis moves towards a better
comprehension of cost functions between two extreme cases, constant total edge cost and
linear total edge cost. The complexity of finding a Nash equilibrium does not seem to
vary gradually in between. We obtain hardness for cost functions that are not linear.
This vastly extends to finding special equilibria in multicast and broadcast games. The
analysis of the running time for the improving dynamics in multicast and broadcast

151

Chapter 5 Nash Equilibria in Network Cost-Sharing Games

α n = 2 n = 3 n = 4 n = 5 n = 6

0.1

r r r r r

0.2

r r r r r

0.3

r r r r r

0.4

r r r r r

0.5

r r r r r

0.6

r r r r r

0.7

r r r r r

0.8

r r r r r

0.9

r r r r r

Table 5.3: Trees T maximizing the price of stability under the assumption that the star Sn is

a minimum-cost Nash equilibrium and T is a social optimum for f(k) = kα−1.

games seems to involve numerical intricacies. It remains open whether they converge in
polynomial time.
The efficiency of Nash equilibria on the other hand appears to depend on the choice

of the cost function in a more continuous way. A first evidence is given by the potential-
based bounds on the price of anarchy and the price of stability. There, the study of affine
and polynomial total edge costs gives smooth interpolations between the extremes. The
same applies to the lower bounds on the price of stability that we obtain for these classes
in broadcast games. Together, these findings suggest that constant and linear total edge
costs yield the worst and best quality of equilibria, respectively. Intuitively, this can be
explained with the benefit from sharing edges, which is larger the slower the total edge

152

5.5 Closing Remarks

cost grows. This effect can be leveraged by a social optimum, whereas it cannot by a Nash
equilibrium due to lack of coordination. Formalizing this monotonicity and the involved
properties of the cost function remains open. The upper bounds on the price of stability
of broadcast games obtained from the homogenization-absorption framework, however,
disagrees with this trend. Out of the class of functions that it applies to, constant total
edge cost yields the best bounds. The reason for this lies in the arbitrary way that
the homogenization and the absorption use edges in the support of a social optimum.
High congestion of edges in the optimum is not utilized in the bounds. Improving on
this promises better bounds on the price of stability and extended applicability of the
method to a larger class of cost functions.

153

Notation

| · | cardinality of a set. 5
| · | value of a static/dynamic flow. 11
[·] first positive natural numbers. 5
[·]− negative part of a number. 5
[·]+ positive part of a number. 5
‖ · ‖∞ uniform norm of a vector or function. 6
◦ composition of two relations or functions. 5
·∪ disjoint union of two sets. 5
‖ parallel composition of two two-terminal graphs. 11
∗ series composition of two two-terminal graphs. 11
4 symmetric difference of two sets. 5
⇒Æ disjoint paths relation. 27
�Æ1

Æ2
two disjoint paths relation. 33

`
⇒E disjoint shortest paths relation. 28
1 all-one vector. 5
1i unit vector with respect to component i. 5
1X characteristic vector of a set X. 5
2X power set of a set X. 5

AT (v) ancestors of a vertex v in a rooted tree T . 10
aWT (v) lowest ancestor of a vertex v from a set W in a rooted tree T . 10

cσ(e) cost for using edge e in strategy profile σ. 76
Ci(σ) total cost of player i in strategy profile σ. 13, 76
C(σ) social cost of strategy profile σ. 13, 77

δÆ(U) arcs/edges in Æ across the cut U . 7, 8
δ−A (U) incoming arcs of U in A. 8
δ+
A (U) outgoing arcs of U in A. 8

155

Notation

~dT,g(v, w) directional broadcast distance from v to w in a tree T with respect to
a cost function g. 118

dT,g(v, w) undirectional broadcast distance between v and w in a tree T with
respect to a cost function g. 118

DT (v) descendants of a vertex v in a rooted tree T . 10
DW
T (u) directed descendants of a vertex w in a rooted tree T with respect to

a set W . 10

eT (v) parent edge of a vertex v in a rooted tree T . 10

G/U contraction of a set U in a graph G. 9
G/U contraction of a family of sets U in a graph G. 9
G[U] subgraph of a graph G induced by a set U . 9
−⇀
G partial orientation of a graph G. 33

H(n) n-th harmonic number. 5

Id identity matrix. 5

L1
loc(R) locally Lebesgue-integrable functions on R. 6

lcaT (v, w) lowest common ancestor of vertices v and w in a rooted tree T . 10

MI,J submatrix of a matrix M with respect to rows I and columns J . 5
MI,• submatrix of a matrix M with respect to rows I. 6
M•,J submatrix of a matrix M with respect to columns J . 6
M> transposed of a matrix M . 5

N natural numbers. 5
nσ(e) congestion of an edge e in a strategy profile σ. 76
NÆ(v) neighbors of a vertex v with respect to a set of arcs/edges Æ. 7, 8
N−A (v) in-neighbors of a vertex v with respect to a set of arcs A. 8
N+
A (v) out-neighbors of a vertex v with respect to a set of arcs A. 8

O(f) set of functions not growing faster than f . 15
Ω(f) set of functions not growing slower than f . 16

π(`′) normalization of labels `′ of a thin flow with resetting. 52
PoS price of stability. 131
PoS(G) price of stability on a graph G. 131

156

Notation

PoS(G | S) price of stability on a graph G with a cost-minimal Nash equilibrium
S. 131

PoS(G | S, T) largest ratio of social costs of S and T on a graphG with a cost-minimal
Nash equilibrium S. 131

PoS(G, c | S, T) ratio of social costs of S and T in a graph G with costs c. 131

R real numbers. 5
R≤0 nonpositive real numbers. 5
R<0 negative real numbers. 5
R≥0 nonnegative real numbers. 5
R>0 positive real numbers. 5
%a label function on an arc a. 49
%G
′ label function on a graph G′. 58

(σ−i, σ̂i) unilateral deviation of a player i in a strategy profile σ to σ̂i. 13
Σi set of strategies of a player i. 13
Σ set of strategy profiles. 13, 76

T [v, w] unique v-w path in a tree T . 9(
V
k

)
family of subsets of size k in a set V . 5

x(I) sum of components I of a vector x. 6
χG
′ thin flow function on a graph G′. 58

xI subvector of a vector x with respect to indices I. 6

Φ(σ) potential of a strategy profile σ. 77

157

Index

α-approximation, 17
α-extension, 42, 64, 68

absorption, 81, 112, 123
ancestor, 10

lowest, 10
lowest common, 10

arborescence, 10
arc, 7

active, 46, 48
incoming, 8
outgoing, 8
resetting, 46, 48

Bellman equations, 46, 49
best response, 13

capacity constraints, 11, 12, 44
complementarity condition, 21, 49
composition, 28

parallel, 11, 71
series, 11, 70

congestion, 1, 76
connected, 7, 8

strongly, 8
weakly, 8

connected components, 7
strongly, 8
weakly, 8, 55, 58

contraction, 9, 28, 55, 85
covering, 16
cut, 7
cycle, 7

directed, 8
simple, 7

depth, 10

descendant, 10
direct, 10

deviation
unilateral, 13, 77
improving, 13

duality
strong, 19
weak, 19, 121

edge, 7, 19
equilibrium

α-approximate Nash, 15
dynamic, 40, 46
mixed Nash, 14
Nash, 13, 84
strong Nash, 15, 83
user, 14, 46

excess, 11, 12
exponential-time hypothesis, 18

flow, 11
s-t, 11
decomposition, 12
multicommodity, 12, 27
over time, 12
path, 11
singlecommodity, 11
value, 11

flow conservation, 49
strict, 11, 12, 44
weak, 11, 12

flow over time, 40, 43
s-t, 12
feasible, 44

fluid queuing model, 40, 43

game

159

INDEX

broadcast, 78, 87, 100, 131
multicast, 77, 87, 104
network cost-sharing, 75, 76
normal form, 13

graph, 7
directed, 8, 43, 77
directed acyclic, 10, 48
fan, 132
mixed, 8
planar, 10
series-parallel, 10, 43, 70, 73
two-terminal, 10
undirected, 7, 77
weakly acyclic, 27, 30

harmonic mean
weighted, 6, 141, 144

harmonic number, 5
height, 10
homogenization, 81, 112
homogenization-absorption framework,

81, 112

improving dynamics, 13, 89, 103
tree, 91

incidence matrix, 9, 51
incident, 7
induced subgraph, 9
instance, 15

Laplacian matrix
weighted, 9, 54

Lemke’s algorithm, 21, 56
linear complementarity problem, 21, 49
linear program, 18, 120, 138

dual, 19
value, 18

mediant, 6, 140, 145
inequality, 6

monotone, 64
left-, 64, 65
right-, 43, 64, 65

neighbor, 7, 8

in-, 8, 46, 49
out-, 8

neighborhood, 17
polyhedral, 92
unilateral, 91

network cost-sharing game
nonuniform, 78, 111
uniform, 78

NP, 16
-complete, 16
-hard, 16, 101, 102

optimum, 18, 102
local, 17, 91

P, 16
packing, 16
partial orientation, 33
path, 7, 8

directed, 8
disjoint, 25, 32
arc/edge-, 9, 24, 30, 32
internally vertex-, 9, 87
vertex-, 9, 24, 38

heavy, 97
shortest, 25, 32, 99
dynamic, 46, 48

simple, 7
player, 12
PLS, 17, 91

-complete, 17, 95
polyhedron, 19
polytope, 19
potential function, 77, 102, 106, 114

method, 80, 108
PPAD, 17, 70
price

of anarchy, 14, 42, 105, 106
of stability, 14, 80, 108, 126, 140

problem, 15
disjoint paths, 24
disjoint shortest paths, 24
exact 3-set cover, 16, 100, 102
maximum cut, 17, 95

160

INDEX

reachable, 8
reduction

of a decision problem, 16
of a local search problem, 17

shortest path graph, 32
with resetting, 48

social
cost, 13, 77
optimum, 13, 88, 132

solution
basic, 18, 139
feasible, 16, 18
optimal, 18

strategy, 13, 76
dominant, 13
profile, 13, 76
homogeneous, 117, 119

induced, 86

thin flow with resetting, 41
normalized, 42, 49, 52, 60
parametric, 57

time horizon, 12
topological ordering, 10, 28, 52
total edge cost, 76

affine, 78, 110, 136, 146
constant, 78, 136, 141
linear, 78
polynomial, 78, 110, 136, 150

transit time, 12
tree, 9, 86

rooted, 10
spanning, 9, 86
sub-, 10

vertex, 7, 19

161

Bibliography

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows.

Albers, S. (2008). On the value of coordination in network design. S. Teng (ed.). Pro-
ceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008). SIAM, 294–303.

Albers, S. (2009). On the value of coordination in network design. SIAM Journal on
Computing 38(6):2273–2302.

Albers, S. and Lenzner, P. (2010). On approximate Nash equilibria in network design. A.
Saberi (ed.). Proceedings of the 6th International Workshop on Internet and Network
Economics (WINE 2010). LNCS 6484. Springer, 14–25.

Albers, S. and Lenzner, P. (2013). On approximate Nash equilibria in network design.
Internet Mathematics 9(4):384–405.

Anderson, E. J. and Philpott, A. B. (1994). “Optimisation of flows in networks over time”.
Probability, Statistics and Optimisation. Ed. by F. P. Kelly. Wiley, 369–382.

Andrews, M. (2004). Hardness of buy-at-bulk network design. Proceedings of the 45th
Annual Symposium on Foundations of Computer Science (FOCS 2004). IEEE, 115–
124.

Anshelevich, E., Dasgupta, A., Kleinberg, J. M., Tardos, É., Wexler, T., and Roughgar-
den, T. (2004). The price of stability for network design with fair cost allocation. Pro-
ceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
2004). IEEE, 295–304.

Anshelevich, E., Dasgupta, A., Kleinberg, J. M., Tardos, É., Wexler, T., and Roughgar-
den, T. (2008). The price of stability for network design with fair cost allocation. SIAM
Journal on Computing 38(4):1602–1623.

Awerbuch, B. and Azar, Y. (1997). Buy-at-bulk network design. Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS 1997). IEEE, 542–
547.

Bartal, Y. (1998). On approximating arbitrary metrices by tree metrics. J. S. Vitter (ed.).
Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC
1998). ACM, 161–168.

Bentert, M., Nichterlein, A., Renken, M., and Zschoche, P. (2021). Using a geometric lens
to find k disjoint shortest paths. N. Bansal, E. Merelli, and J. Worrell (eds.). Proceed-
ings of the 48th International Colloquium on Automata, Languages, and Programming

163

http://dl.acm.org/citation.cfm?id=1347082.1347115
https://dx.doi.org/10.1137/070701376
https://dx.doi.org/10.1007/978-3-642-17572-5_2
https://dx.doi.org/10.1080/15427951.2012.754800
https://dx.doi.org/10.1109/FOCS.2004.32
https://dx.doi.org/10.1109/FOCS.2004.68
https://dx.doi.org/10.1137/070680096
https://dx.doi.org/10.1109/SFCS.1997.646143
https://dx.doi.org/10.1145/276698.276725
https://dx.doi.org/10.4230/LIPIcs.ICALP.2021.26
https://dx.doi.org/10.4230/LIPIcs.ICALP.2021.26

Bibliography

(ICALP 2021). LIPIcs 198. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 26:1–
26:14.

Bérczi, K. and Kobayashi, Y. (2017). The directed disjoint shortest paths problem. K.
Pruhs and C. Sohler (eds.). Proceedings of the 25th Annual European Symposium on
Algorithms (ESA 2017). LIPIcs 87. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
13:1–13:13.

Bhaskar, U., Fleischer, L., and Anshelevich, E. (2011). A stackelberg strategy for routing
flow over time. D. Randall (ed.). Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2011). SIAM, 192–201.

Bhaskar, U., Fleischer, L., and Anshelevich, E. (2015). A stackelberg strategy for routing
flow over time. Games and Economic Behavior 92:232–247.

Bilò, V. and Bove, R. (2011). Bounds on the price of stability of undirected network
design games with three players. Journal of Interconnection Networks 12(1-2):1–17.

Bilò, V., Caragiannis, I., Fanelli, A., and Monaco, G. (2010). Improved lower bounds
on the price of stability of undirected network design games. S. C. Kontogiannis, E.
Koutsoupias, and P. G. Spirakis (eds.). Proceedings of the 3rd International Symposium
on Algorithmic Game Theory (SAGT 2010). LNCS 6386. Springer, 90–101.

Bilò, V., Caragiannis, I., Fanelli, A., and Monaco, G. (2013). Improved lower bounds
on the price of stability of undirected network design games. Theory of Computing
Systems 52(4):668–686.

Bilò, V., Flammini, M., Monaco, G., and Moscardelli, L. (2015). Computing approxi-
mate Nash equilibria in network congestion games with polynomially decreasing cost
functions. E. Markakis and G. Schäfer (eds.). Proceedings of the 11th International
Conference on Web and Internet Economics (WINE 2015). LNCS 9470. Springer, 118–
131.

Bilò, V., Flammini, M., Monaco, G., and Moscardelli, L. (2021). Computing approxi-
mate Nash equilibria in network congestion games with polynomially decreasing cost
functions. Distributed Computing 34(1):1–14.

Bilò, V., Flammini, M., and Moscardelli, L. (2013). The price of stability for undirected
broadcast network design with fair cost allocation is constant. Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013). IEEE,
638–647.

Bilò, V., Flammini, M., and Moscardelli, L. (2020). The price of stability for undirected
broadcast network design with fair cost allocation is constant. Games and Economic
Behavior 123:359–376.

Björklund, A. and Husfeldt, T. (2014). Shortest two disjoint paths in polynomial time. J.
Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias (eds.). Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP 2014),
Part I. LNCS 8572. Springer, 211–222.

164

https://dx.doi.org/10.4230/LIPIcs.ESA.2017.13
https://dx.doi.org/10.1137/1.9781611973082.18
https://dx.doi.org/10.1137/1.9781611973082.18
https://dx.doi.org/10.1016/j.geb.2013.09.004
https://dx.doi.org/10.1016/j.geb.2013.09.004
https://dx.doi.org/10.1142/S0219265911002824
https://dx.doi.org/10.1142/S0219265911002824
https://dx.doi.org/10.1007/978-3-642-16170-4_9
https://dx.doi.org/10.1007/978-3-642-16170-4_9
https://dx.doi.org/10.1007/s00224-012-9411-6
https://dx.doi.org/10.1007/s00224-012-9411-6
https://dx.doi.org/10.1007/978-3-662-48995-6_9
https://dx.doi.org/10.1007/978-3-662-48995-6_9
https://dx.doi.org/10.1007/978-3-662-48995-6_9
https://dx.doi.org/10.1007/s00446-020-00381-4
https://dx.doi.org/10.1007/s00446-020-00381-4
https://dx.doi.org/10.1007/s00446-020-00381-4
https://dx.doi.org/10.1109/FOCS.2013.74
https://dx.doi.org/10.1109/FOCS.2013.74
https://dx.doi.org/10.1016/j.geb.2014.09.010
https://dx.doi.org/10.1016/j.geb.2014.09.010
https://dx.doi.org/10.1007/978-3-662-43948-7_18

Bibliography

Björklund, A. and Husfeldt, T. (2019). Shortest two disjoint paths in polynomial time.
SIAM Journal on Computing 48(6):1698–1710.

Borwein, D. and Borwein, J. M. (1995). On an intriguing integral and some series related
to ζ(4). Proceedings of the American Mathematical Society 123(4):1191–1198.

Braess, D. (1968). Über ein Paradoxon aus der Verkehrsplanung. German. Unternehmens-
forschung 12(1):258–268. Translated as: D. Braess, A. Nagurney, and T. Wakolbinger.
On a paradox of traffic planning. Transportation Science 39(4) (2005):446–450.

Brandstädt, A., Le, V., and Spinrad, J. (1999). Graph Classes: A Survey. SIAM.

Brouwer, L. E. J. (1911). Über Abbildung von Mannigfaltigkeiten. German. Mathema-
tische Annalen 71 (1):97–115.

Burkard, R. E., Dlaska, K., and Klinz, B. (1993). The quickest flow problem. Mathemat-
ical Methods of Operations Research 37(1):31–58.

Charikar, M., Karloff, H., Mathieu, C., Naor, J. S., and Saks, M. (2008). Online multicast
with egalitarian cost sharing. F. M. auf der Heide and N. Shavit (eds.). Proceedings
of the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2008). ACM, 70–76.

Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., and Orda, A. (2006). Non-cooperative
multicast and facility location games. J. Feigenbaum, J. C. Chuang, and D. M. Pennock
(eds.). Proceedings of the 7th ACM Conference on Electronic Commerce (EC 2006).
ACM, 72–81.

Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., and Orda, A. (2007). Non-cooperative
multicast and facility location games. IEEE Journal on Selected Areas in Communi-
cations 25(6):1193–1206.

Chekuri, C., Khanna, S., and Naor, J. S. (2001). A deterministic algorithm for the cost-
distance problem. S. R. Kosaraju (ed.). Proceedings of the 12th Annual Symposium on
Discrete Algorithms (SODA 2001). ACM/SIAM, 232–233.

Chen, H. and Roughgarden, T. (2009). Network design with weighted players. Theory of
Computing Systems 45(2):302–324.

Chen, H.-L. and Roughgarden, T. (2006). Network design with weighted players. P. B.
Gibbons and U. Vishkin (eds.). Proceedings of the 18th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2006). ACM, 29–38.

Chen, X., Deng, X., and Teng, S.-H. (2009). Settling the complexity of computing two-
player Nash equilibria. Journal of the ACM 56(3).

Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., and van Stee, R. (2009). On the price
of stability for undirected network design. E. Bampis and K. Jansen (eds.). Proceedings
of the 7th International Workshop on Approximation and Online Algorithms (WAOA
2009). LNCS 5893. Springer, 86–97.

165

https://dx.doi.org/10.1137/18M1223034
http://www.jstor.org/stable/2160718
http://www.jstor.org/stable/2160718
https://dx.doi.org/10.1007/BF01918335
https://dx.doi.org/10.1287/trsc.1050.0127
https://dx.doi.org/10.1137/1.9780898719796
https://dx.doi.org/10.1007/BF01456931
https://dx.doi.org/10.1007/BF01415527
https://dx.doi.org/10.1145/1378533.1378544
https://dx.doi.org/10.1145/1378533.1378544
https://dx.doi.org/10.1145/1134707.1134716
https://dx.doi.org/10.1145/1134707.1134716
https://dx.doi.org/10.1109/JSAC.2007.070813
https://dx.doi.org/10.1109/JSAC.2007.070813
http://dl.acm.org/citation.cfm?id=365411.365452
http://dl.acm.org/citation.cfm?id=365411.365452
https://dx.doi.org/10.1007/s00224-008-9128-8
https://dx.doi.org/10.1145/1148109.1148114
https://dx.doi.org/10.1145/1516512.1516516
https://dx.doi.org/10.1145/1516512.1516516
https://dx.doi.org/10.1007/978-3-642-12450-1_8
https://dx.doi.org/10.1007/978-3-642-12450-1_8

Bibliography

Chuzhoy, J., Gupta, A., Naor, J., and Sinha, A. (2005). On the approximability of some
network design problems. Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2005). SIAM, 943–951.

Chuzhoy, J., Gupta, A., Naor, J., and Sinha, A. (2008). On the approximability of some
network design problems. ACM Transactions on Algorithms 4(2):23:1–23:17.

Cominetti, R., Correa, J. R., and Larré, O. (2011). Existence and uniqueness of equilibria
for flows over time. L. Aceto, M. Henzinger, and J. Sgall (eds.). Proceedings of the 38th
International Colloquium on Automata, Languages and Programming (ICALP 2011),
Part II. LNCS 6756. Springer, 552–563.

Cominetti, R., Correa, J. R., and Larré, O. (2015). Dynamic equilibria in fluid queueing
networks. Operations Research 63(1):21–34.

Cominetti, R., Correa, J. R., and Olver, N. (2017). Long term behavior of dynamic
equilibria in fluid queuing networks. F. Eisenbrand and J. Könemann (eds.). Proceed-
ings of the 19th International Conference on Integer Programming and Combinatorial
Optimization (IPCO 2017). LNCS 10328. Springer, 161–172.

Cominetti, R., Harks, T., Osorio, C., and Peis, B. (2018). Dynamic traffic models in
transportation science (Dagstuhl Seminar 18102). Dagstuhl Reports 8(3):21–38.

Cook, S. A. (1971). The complexity of theorem-proving procedures. M. A. Harrison, R. B.
Banerji, and J. D. Ullman (eds.). Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing (STOC 1971). ACM, 151–158.

Correa, J. R., Cristi, A., and Oosterwijk, T. (2019). On the price of anarchy for flows
over time. A. Karlin, N. Immorlica, and R. Johari (eds.). Proceedings of the 20th ACM
Conference on Economics and Computation (EC 2019). ACM, 559–577.

Cottle, R. W., Pang, J.-S., and Stone, R. E. (2009). The Linear Complementarity Prob-
lem. SIAM.

Dantzig, G. B. (1990). Origins of the simplex method. A History of Scientific Computing.
ACM, 141–151.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2006). The complexity of
computing a Nash equilibrium. J. M. Kleinberg (ed.). Proceedings of the 38th Annual
ACM Symposium on Theory of Computing (STOC 2006). ACM, 71–78.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity of
computing a nash equilibrium. SIAM Journal on Computing 39(1):195–259.

Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Mathematics - Doklady 11:1277–1280.

Disser, Y., Feldmann, A. E., Klimm, M., and Mihalák, M. (2013). Improving the H(k)-
bound on the price of stability in undirected Shapley network design games. P. G.
Spirakis and M. J. Serna (eds.). Proceedings of the 8th International Conference on
Algorithms and Complexity (CIAC 2013). LNCS 7878. Springer, 158–169.

166

http://dl.acm.org/citation.cfm?id=1070432.1070568
http://dl.acm.org/citation.cfm?id=1070432.1070568
https://dx.doi.org/10.1145/1361192.1361200
https://dx.doi.org/10.1145/1361192.1361200
https://dx.doi.org/10.1007/978-3-642-22012-8_44
https://dx.doi.org/10.1007/978-3-642-22012-8_44
https://dx.doi.org/10.1287/opre.2015.1348
https://dx.doi.org/10.1287/opre.2015.1348
https://dx.doi.org/10.1007/978-3-319-59250-3_14
https://dx.doi.org/10.1007/978-3-319-59250-3_14
https://dx.doi.org/10.4230/DagRep.8.3.21
https://dx.doi.org/10.4230/DagRep.8.3.21
https://dx.doi.org/10.1145/800157.805047
https://dx.doi.org/10.1145/3328526.3329593
https://dx.doi.org/10.1145/3328526.3329593
https://dx.doi.org/10.1137/1.9780898719000
https://dx.doi.org/10.1137/1.9780898719000
https://dx.doi.org/10.1145/87252.88081
https://dx.doi.org/10.1145/1132516.1132527
https://dx.doi.org/10.1145/1132516.1132527
https://dx.doi.org/10.1137/070699652
https://dx.doi.org/10.1137/070699652
https://dx.doi.org/10.1007/978-3-642-38233-8_14
https://dx.doi.org/10.1007/978-3-642-38233-8_14

Bibliography

Disser, Y., Feldmann, A. E., Klimm, M., and Mihalák, M. (2015). Improving the H(k)-
bound on the price of stability in undirected Shapley network design games. Theoretical
Computer Science 562:557–564.

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM 19(2):248–264.

Eilam-Tzoreff, T. (1998). The disjoint shortest paths problem. Discrete Applied Mathe-
matics 85(2):113–138.

Elias, P., Feinstein, A., and Shannon, C. (1956). A note on the maximum flow through
a network. IRE Transactions on Information Theory 2(4):117–119.

Epstein, A., Feldman, M., and Mansour, Y. (2007). Strong equilibrium in cost sharing
connection games. J. K. MacKie-Mason, D. C. Parkes, and P. Resnick (eds.). Pro-
ceedings of the 8th ACM Conference on Electronic Commerce (EC 2007). ACM, 84–
92.

Epstein, A., Feldman, M., and Mansour, Y. (2009). Strong equilibrium in cost sharing
connection games. Games and Economic Behavior 67(1):51–68.

Erickson, R. E., Monma, C. L., and Veinott, A. F. (1987). Send-and-split method for
minimum-concave-cost network flows. Mathematics of Operations Research 12(4):634–
664.

Even, S., Itai, A., and Shamir, A. (1975). On the complexity of timetable and multi-
commodity flow problems. Proceedings of the 16th Annual Symposium on Foundations
of Computer Science (FOCS 1975). IEEE, 184–193.

Even, S., Itai, A., and Shamir, A. (1976). On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing 5(4):691–703.

Fakcharoenphol, J., Rao, S., and Talwar, K. (2003). A tight bound on approximating
arbitrary metrics by tree metrics. L. L. Larmore and M. X. Goemans (eds.). Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC 2003). ACM,
448–455.

Fakcharoenphol, J., Rao, S., and Talwar, K. (2004). A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences 69(3):485–
497.

Fanelli, A., Leniowski, D., Monaco, G., and Sankowski, P. (2012). The ring design game
with fair cost allocation. P. W. Goldberg (ed.). Proceedings of the 8th International
Workshop on Internet and Network Economics (WINE 2012). LNCS 7695. Springer,
546–552.

Fanelli, A., Leniowski, D., Monaco, G., and Sankowski, P. (2015). The ring design game
with fair cost allocation. Theoretical Computer Science 562:90–100.

Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., and Shabo, R. (2006). On the price of
stability for designing undirected networks with fair cost allocations. M. Bugliesi, B.
Preneel, V. Sassone, and I. Wegener (eds.). Proceedings of the 33rd International Collo-

167

https://dx.doi.org/10.1016/j.tcs.2014.10.037
https://dx.doi.org/10.1016/j.tcs.2014.10.037
https://dx.doi.org/10.1145/321694.321699
https://dx.doi.org/10.1145/321694.321699
https://dx.doi.org/https://doi.org/10.1016/S0166-218X(97)00121-2
https://dx.doi.org/10.1109/TIT.1956.1056816
https://dx.doi.org/10.1109/TIT.1956.1056816
https://dx.doi.org/10.1145/1250910.1250924
https://dx.doi.org/10.1145/1250910.1250924
https://dx.doi.org/10.1016/j.geb.2008.07.002
https://dx.doi.org/10.1016/j.geb.2008.07.002
https://dx.doi.org/10.1287/moor.12.4.634
https://dx.doi.org/10.1287/moor.12.4.634
https://dx.doi.org/10.1109/SFCS.1975.21
https://dx.doi.org/10.1109/SFCS.1975.21
https://dx.doi.org/10.1137/0205048
https://dx.doi.org/10.1137/0205048
https://dx.doi.org/10.1145/780542.780608
https://dx.doi.org/10.1145/780542.780608
https://dx.doi.org/10.1016/j.jcss.2004.04.011
https://dx.doi.org/10.1016/j.jcss.2004.04.011
https://dx.doi.org/10.1007/978-3-642-35311-6_45
https://dx.doi.org/10.1007/978-3-642-35311-6_45
https://dx.doi.org/10.1016/j.tcs.2014.09.035
https://dx.doi.org/10.1016/j.tcs.2014.09.035
https://dx.doi.org/10.1007/11786986_53
https://dx.doi.org/10.1007/11786986_53

Bibliography

quium on Automata, Languages and Programming (ICALP 2006), Part I. LNCS 4051.
Springer, 608–618.

Filippov, A. F. (1988). Differential Equations with Discontinuous Righthand Sides. Ed.
by F. M. Arscott. Vol. 18. Mathematics and its Applications (Soviet Series). Translated
from Russian. Springer.

Fleischer, L. and Tardos, É. (1998). Efficient continuous-time dynamic network flow al-
gorithms. Operations Research Letters 23(3):71–80.

Fleischer, L. and Skutella, M. (2007). Quickest flows over time. SIAM Journal on Com-
puting 36(6):1600–1630.

Ford, L. R. and Fulkerson, D. R. (1958). Constructing maximal dynamic flows from static
flows. Operations Research 6(3):419–433.

Ford Jr., L. R. and Fulkerson, D. R. (1956). Maximal flow through a network. Canadian
Journal of Mathematics 8:399–404.

Ford, L. R. and Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press.

Fortune, S., Hopcroft, J., and Wyllie, J. (1980). The directed subgraph homeomorphism
problem. Theoretical Computer Science 10(2):111–121.

Freeman, R., Haney, S., and Panigrahi, D. (2016). On the price of stability of undirected
multicast games. Y. Cai and A. Vetta (eds.). Proceedings of the 12th International
Conference on Web and Internet Economics (WINE 2016). LNCS 10123. Springer,
354–368.

Gale, D. (1959). Transient flows in networks. Michigan Mathematical Journal 6(1):59–63.

Gallo, G. and Sodini, C. (1979). Adjacent extreme flows and application to min concave
cost flow problems. Networks 9(2):95–121.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co.

Geršgorin, S. (1931). Über die Abgrenzung der Eigenwerte einer Matrix. German. Izvestiya
Rossiiskoi Akademii Nauk, Seriya Matematicheskaya 6:749–754.

Goldberg, P. W. and Papadimitriou, C. H. (2018a). Towards a unified complexity theory
of total functions. A. R. Karlin (ed.). Proceedings of the 9th Innovations in Theoret-
ical Computer Science Conference (ITCS 2018). Vol. 94. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 37:1–37:20.

Goldberg, P. W. and Papadimitriou, C. H. (2018b). Towards a unified complexity theory
of total functions. Journal of Computer and System Sciences 94:167–192.

Gottschau, M., Kaiser, M., and Waldmann, C. (2019). The undirected two disjoint short-
est paths problem. Operations Research Letters 47(1):70–75.

Graf, L. and Harks, T. (2019). Dynamic flows with adaptive route choice. A. Lodi and
V. Nagarajan (eds.). Proceedings of the 20th International Conference on Integer Pro-

168

https://dx.doi.org/10.1007/978-94-015-7793-9
https://dx.doi.org/10.1016/S0167-6377(98)00037-6
https://dx.doi.org/10.1016/S0167-6377(98)00037-6
https://dx.doi.org/10.1137/S0097539703427215
https://dx.doi.org/10.1287/opre.6.3.419
https://dx.doi.org/10.1287/opre.6.3.419
https://dx.doi.org/10.4153/CJM-1956-045-5
http://www.jstor.org/stable/j.ctt183q0b4
https://dx.doi.org/10.1016/0304-3975(80)90009-2
https://dx.doi.org/10.1016/0304-3975(80)90009-2
https://dx.doi.org/10.1007/978-3-662-54110-4_25
https://dx.doi.org/10.1007/978-3-662-54110-4_25
https://dx.doi.org/10.1307/mmj/1028998140
https://dx.doi.org/10.1002/net.3230090202
https://dx.doi.org/10.1002/net.3230090202
https://dx.doi.org/10.4230/LIPIcs.ITCS.2018.37
https://dx.doi.org/10.4230/LIPIcs.ITCS.2018.37
https://dx.doi.org/10.1016/j.jcss.2017.12.003
https://dx.doi.org/10.1016/j.jcss.2017.12.003
https://dx.doi.org/10.1016/j.orl.2018.11.011
https://dx.doi.org/10.1016/j.orl.2018.11.011
https://dx.doi.org/10.1007/978-3-030-17953-3_17

Bibliography

gramming and Combinatorial Optimization (IPCO 2019). LNCS 11480. Springer, 219–
232.

Graf, L., Harks, T., and Sering, L. (2020). Dynamic flows with adaptive route choice.
Mathematical Programming 183(1):309–335.

Guha, S., Meyerson, A., and Munagala, K. (2001). A constant factor approximation
for the single sink edge installation problems. J. S. Vitter, P. G. Spirakis, and M.
Yannakakis (eds.). Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC 2001). ACM, 383–388.

Guisewite, G. M. and Pardalos, P. M. (1993). A polynomial time solvable concave network
flow problem. Networks 23(2):143–147.

Guisewite, G. M. and Pardalos, P. M. (1991). Algorithms for the single-source uncapac-
itated minimum concave-cost network flow problem. Journal of Global Optimization
1(3):245–265.

Gupta, A. and Könemann, J. (2011). Approximation algorithms for network design: a
survey. Surveys in Operations Research and Management Science 16(1):3–20.

Gupta, A., Kumar, A., Pál, M., and Roughgarden, T. (2007). Approximation via cost
sharing: simpler and better approximation algorithms for network design. Journal of
the ACM 54(3):11:1–11:38.

Gupta, A., Kumar, A., and Roughgarden, T. (2003). Simpler and better approximation
algorithms for network design. L. L. Larmore and M. X. Goemans (eds.). Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC 2003). ACM,
365–372.

Hardy, G., Littlewood, J., and Pólya, G. (1953). Inequalities. The Mathematical Gazette
37(321):236–236.

Hassani, M. (2005). Approximation of the Lambert W function. RGMIA Research report
collection 8(4).

Hoppe, B. and Tardos, É. (1994). Polynomial time algorithms for some evacuation prob-
lems. D. D. Sleator (ed.). Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1994). ACM/SIAM, 433–441.

Hoppe, B. and Tardos, É. (1995). The quickest transshipment problem. K. L. Clarkson
(ed.). Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1995). ACM/SIAM, 512–521.

Hoppe, B. and Tardos, É. (2000). The quickest transshipment problem. Mathematics of
Operations Research 25(1):36–62.

Impagliazzo, R. and Paturi, R. (1999). Complexity of k-sat. D. C. Martin (ed.). Pro-
ceedings of the 14th Annual IEEE Conference on Computational Complexity. IEEE
Computer Society, 237–240.

169

https://dx.doi.org/10.1007/s10107-020-01504-2
https://dx.doi.org/10.1145/380752.380827
https://dx.doi.org/10.1145/380752.380827
https://dx.doi.org/10.1002/net.3230230208
https://dx.doi.org/10.1002/net.3230230208
https://dx.doi.org/10.1007/BF00119934
https://dx.doi.org/10.1007/BF00119934
https://dx.doi.org/10.1016/j.sorms.2010.06.001
https://dx.doi.org/10.1016/j.sorms.2010.06.001
https://dx.doi.org/10.1145/1236457.1236458
https://dx.doi.org/10.1145/1236457.1236458
https://dx.doi.org/10.1145/780542.780597
https://dx.doi.org/10.1145/780542.780597
https://dx.doi.org/10.1017/S0025557200027455
https://rgmia.org/papers/v8n4/lambert.pdf
http://dl.acm.org/citation.cfm?id=314464.314583
http://dl.acm.org/citation.cfm?id=314464.314583
http://dl.acm.org/citation.cfm?id=313651.313810
https://dx.doi.org/10.1287/moor.25.1.36.15211
https://dx.doi.org/10.1109/CCC.1999.766282

Bibliography

Impagliazzo, R. and Paturi, R. (2001). On the complexity of k-sat. Journal of Computer
and System Sciences 62(2):367–375.

Israel, J. and Sering, L. (2020). The impact of spillback on the price of anarchy for
flows over time. T. Harks and M. Klimm (eds.). Proceedings of the 13th International
Symposium on Algorithmic Game Theory (SAGT 2020). LNCS 12283. Springer, 114–
129.

Jaffe, A. M. (2006). The millennium grand challenge in mathematics. Notices of the AMS
53(6):652–660.

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1985). How easy is local
search? Proceedings of the 26th Annual Symposium on Foundations of Computer Sci-
ence (FOCS 1985). IEEE, 39–42.

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is local
search? Journal of Computer and System Sciences 37(1):79–100.

Kahn, A. B. (1962). Topological sorting of large networks. Communications of the ACM
5(11):558–562.

Kaiser, M. (2022). Computation of dynamic equilibria in series-parallel networks. Math-
ematics of Operations Research 47(1):50–71.

Kakutani, S. (1941). A generalization of Brouwer’s fixed point theorem. Duke Mathemat-
ical Journal 8(3):457–459.

Kantorovich, L. V. (1939). Matematicheskiye metody organizatsii i planirovaniya proizvod-
stva. Russian. Leningrad State University. Translated as: Mathematical Methods of
Organizing and Planning Production. Trans. by W. Campbell and W. H. Marlow.
Management Science 6(4) (1960):366–422.

Karp, R. M. (1972). Reducibility among combinatorial problems. R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger (eds.). Proceedings of a Symposium on the Complexity
of Computer Computations. Springer, 85–103.

Karp, R. M. (1975). On the computational complexity of combinatorial problems. Net-
works 5(1):45–68.

Kawarabayashi, K.-i., Kobayashi, Y., and Reed, B. (2012). The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B 102(2):424–435.

Kawase, Y. and Makino, K. (2012). Nash equilibria with minimum potential in undirected
broadcast games. M. S. Rahman and S. Nakano (eds.). Proceedings of the 6th Inter-
national Workshop on Algorithms and Computation (WALCOM 2012). LNCS 7157.
Springer, 217–228.

Kawase, Y. and Makino, K. (2013). Nash equilibria with minimum potential in undirected
broadcast games. Theoretical Computer Science 482:33–47.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Russian. Pro-
ceedings of the USSR Academy of Sciences 244(5):1093–1096.

170

https://dx.doi.org/10.1006/jcss.2000.1727
https://dx.doi.org/10.1007/978-3-030-57980-7_8
https://dx.doi.org/10.1007/978-3-030-57980-7_8
https://www.ams.org/notices/200606/fea-jaffe.pdf
https://dx.doi.org/10.1109/SFCS.1985.31
https://dx.doi.org/10.1109/SFCS.1985.31
https://dx.doi.org/10.1016/0022-0000(88)90046-3
https://dx.doi.org/10.1016/0022-0000(88)90046-3
https://dx.doi.org/10.1145/368996.369025
https://dx.doi.org/10.1287/moor.2020.1108
https://dx.doi.org/10.1215/S0012-7094-41-00838-4
https://dx.doi.org/10.1287/mnsc.6.4.366
https://dx.doi.org/10.1287/mnsc.6.4.366
https://dx.doi.org/10.1007/978-1-4684-2001-2_9
https://dx.doi.org/10.1002/net.1975.5.1.45
https://dx.doi.org/10.1016/j.jctb.2011.07.004
https://dx.doi.org/10.1016/j.jctb.2011.07.004
https://dx.doi.org/10.1007/978-3-642-28076-4_22
https://dx.doi.org/10.1007/978-3-642-28076-4_22
https://dx.doi.org/10.1016/j.tcs.2013.02.031
https://dx.doi.org/10.1016/j.tcs.2013.02.031

Bibliography

Klee, V. and Minty, G. J. (1972). How good is the simplex algorithm? O. Shisha (ed.).
Inequalities – III. Academic Press, 159–175.

Klinz, B. and Tuy, H. (1993). Minimum concave-cost network flow problems with a single
nonlinear arc cost. D. Z. Du and P. M. Pardalos (eds.). Network Optimization Problems:
Algorithms, Applications and Complexity. World Scientific, 125–145.

Klinz, B. and Woeginger, G. J. (1995). Minimum cost dynamic flows: the series-parallel
case. E. Balas and J. Clausen (eds.). Proceedings of the 4th International Conference
on Integer Programming and Combinatorial Optimization (IPCO 1995). LNCS 920.
Springer, 329–343.

Klinz, B. and Woeginger, G. J. (2004). Minimum-cost dynamic flows: the series-parallel
case. Networks 43(3):153–162.

Kobayashi, Y. and Sako, R. (2019). Two disjoint shortest paths problem with non-
negative edge length. Operations Research Letters 47(1):66–69.

Koch, R. and Skutella, M. (2009). Nash equilibria and the price of anarchy for flows
over time. M. Mavronicolas and V. G. Papadopoulou (eds.). Proceedings of the 2nd
International Symposium on Algorithmic Game Theory (SAGT 2009). LNCS 5814.
Springer, 323–334.

Koch, R. and Skutella, M. (2011). Nash equilibria and the price of anarchy for flows over
time. Theory of Computing Systems 49(1):71–97.

Kollock, P. (1998). Social dilemmas: the anatomy of cooperation. Annual Review of So-
ciology 24(1):183–214.

Kotnyek, B. (2003). An annotated overview of dynamic network flows. Tech. rep. RR-
4936. INRIA.

Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case equilibria. C. Meinel and S.
Tison (eds.). Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 1999). LNCS 1563. Springer, 404–413.

Koutsoupias, E. and Papadimitriou, C. (2009). Worst-case equilibria. Computer Science
Review 3(2):65–69.

Kuratowski, C. (1922). Une méthode d’élimination des nombres transfinis des raison-
nements mathématiques. French. Fundamenta Mathematicae 3(1):76–108.

Lee, E. and Ligett, K. (2013). Improved bounds on the price of stability in network cost
sharing games. M. J. Kearns, R. P. McAfee, and É. Tardos (eds.). Proceedings of the
14th ACM Conference on Electronic Commerce (EC 2013). ACM, 607–620.

Lemke, C. E. (1965). Bimatrix equilibrium points and mathematical programming. Man-
agement Science 11(7):681–689.

Lemke, C. E. and Howson Jr., J. T. (1964). Equilibrium points of bimatrix games. Journal
of the Society for Industrial and Applied Mathematics 12(2):413–423.

171

https://dx.doi.org/10.1142/9789812798190_0008
https://dx.doi.org/10.1142/9789812798190_0008
https://dx.doi.org/10.1007/3-540-59408-6_62
https://dx.doi.org/10.1007/3-540-59408-6_62
https://dx.doi.org/10.1002/net.10112
https://dx.doi.org/10.1002/net.10112
https://dx.doi.org/10.1016/j.orl.2018.11.012
https://dx.doi.org/10.1016/j.orl.2018.11.012
https://dx.doi.org/10.1007/978-3-642-04645-2_29
https://dx.doi.org/10.1007/978-3-642-04645-2_29
https://dx.doi.org/10.1007/s00224-010-9299-y
https://dx.doi.org/10.1007/s00224-010-9299-y
https://dx.doi.org/10.1146/annurev.soc.24.1.183
https://dx.doi.org/10.1007/3-540-49116-3_38
https://dx.doi.org/10.1016/j.cosrev.2009.04.003
https://dx.doi.org/10.4064/fm-3-1-76-108
https://dx.doi.org/10.4064/fm-3-1-76-108
https://dx.doi.org/10.1145/2492002.2482562
https://dx.doi.org/10.1145/2492002.2482562
https://dx.doi.org/10.1287/mnsc.11.7.681
https://dx.doi.org/10.1137/0112033

Bibliography

Li, J. (2009). An O(log(n)/ log(log(n))) upper bound on the price of stability for undi-
rected Shapley network design games. Information Processing Letters 109(15):876–
878.

Lochet, W. (2021). A polynomial time algorithm for the k-disjoint shortest paths problem.
D. Marx (ed.). Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2021). SIAM, 169–178.

Lund, C. and Yannakakis, M. (1993). On the hardness of approximating minimization
problems. S. R. Kosaraju, D. S. Johnson, and A. Aggarwal (eds.). Proceedings of the
25th Annual ACM Symposium on Theory of Computing (STOC 1993). ACM, 286–293.

Lund, C. and Yannakakis, M. (1994). On the hardness of approximating minimization
problems. Journal of the ACM 41(5):960–981.

Lynch, J. F. (1975). The equivalence of theorem proving and the interconnection problem.
ACM SIGDA Newsletter 5(3):31–36.

Macko, M., Larson, K., and Steskal, L. (2010). Braess’s paradox for flows over time.
S. C. Kontogiannis, E. Koutsoupias, and P. G. Spirakis (eds.). Proceedings of the 3rd
International Symposium on Algorithmic Game Theory (SAGT 2010). LNCS 6386.
Springer, 262–275.

Macko, M., Larson, K., and Steskal, L. (2013). Braess’s paradox for flows over time.
Theory Comput. Syst. 53(1):86–106.

Mamageishvili, A., Mihalák, M., and Montemezzani, S. (2018). Improved bounds on
equilibria solutions in the network design game. International Journal of Game Theory
47(4):1113–1135.

Mamageishvili, A., Mihalák, M., and Montemezzani, S. (2014). An H(n/2) upper bound
on the price of stability of undirected network design games. E. Csuhaj-Varjú, M.
Dietzfelbinger, and Z. Ésik (eds.). Proceedings of the 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2014). LNCS 8635. Springer,
541–552.

Megiddo, N. (1978). Combinatorial optimization with rational objective functions. R. J.
Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho (eds.). Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978).
ACM, 1–12.

Megiddo, N. (1979). Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research 4(4):414–424.

Menger, K. (1927). Zur allgemeinen Kurventheorie. German. Fundamenta Mathematicae
10(1):96–115.

Merchant, D. K. and Nemhauser, G. L. (1978a). A model and an algorithm for the
dynamic traffic assignment problems. Transportation Science 12(3):183–199.

Merchant, D. K. and Nemhauser, G. L. (1978b). Optimality conditions for a dynamic
traffic assignment model. Transportation Science 12(3):200–207.

172

https://dx.doi.org/10.1016/j.ipl.2009.04.015
https://dx.doi.org/10.1016/j.ipl.2009.04.015
https://dx.doi.org/10.1137/1.9781611976465.12
https://dx.doi.org/10.1145/167088.167172
https://dx.doi.org/10.1145/167088.167172
https://dx.doi.org/10.1145/185675.306789
https://dx.doi.org/10.1145/185675.306789
https://dx.doi.org/10.1145/1061425.1061430
https://dx.doi.org/10.1007/978-3-642-16170-4_23
https://dx.doi.org/10.1007/s00224-013-9462-3
https://dx.doi.org/10.1007/s00182-017-0600-z
https://dx.doi.org/10.1007/s00182-017-0600-z
https://dx.doi.org/10.1007/978-3-662-44465-8_46
https://dx.doi.org/10.1007/978-3-662-44465-8_46
https://dx.doi.org/10.1145/800133.804326
https://dx.doi.org/10.1287/moor.4.4.414
https://dx.doi.org/10.4064/fm-10-1-96-115
https://dx.doi.org/10.1287/trsc.12.3.183
https://dx.doi.org/10.1287/trsc.12.3.183
https://dx.doi.org/10.1287/trsc.12.3.200
https://dx.doi.org/10.1287/trsc.12.3.200

Bibliography

Meunier, F. and Wagner, N. (2010). Equilibrium results for dynamic congestion games.
Transportation Science 44(4):524–536.

Meyerson, A., Munagala, K., and Plotkin, S. A. (2000). Cost-distance: two metric network
design. Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS 2000). IEEE, 624–630.

Meyerson, A., Munagala, K., and Plotkin, S. A. (2008). Cost-distance: two metric network
design. SIAM Journal on Computing 38(4):1648–1659.

Minieka, E. (1973). Maximal, lexicographic, and dynamic network flows. Operations Re-
search 21(2):517–527.

Monderer, D. and Shapley, L. S. (1996). Potential games. Games and Economic Behavior
14(1):124–143.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the USA 36(1):48–49.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic Game
Theory. Cambridge University Press.

Orlin, J. B., Punnen, A. P., and Schulz, A. S. (2009). Integer programming: optimization
and evaluation are equivalent. F. K. H. A. Dehne, M. L. Gavrilova, J. Sack, and C. D.
Tóth (eds.). Proceedings of the 11th International Symposium on Algorithms and Data
Structures (WADS 2009). Vol. 5664. LNCS. Springer, 519–529.

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other inef-
ficient proofs of existence. Journal of Computer and System Sciences 48(3):498–532.

Papadimitriou, C. H. (2001). Algorithms, games, and the internet. F. Orejas, P. G. Spi-
rakis, and J. van Leeuwen (eds.). Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP 2001). LNCS 2076. Springer, 1–3.

Peeta, S. and Ziliaskopoulos, A. K. (2001). Foundations of dynamic traffic assignment:
the past, the present and the future. Networks and Spatial Economics 1(3):233–265.

Pham, H. M. and Sering, L. (2020). Dynamic equilibria in time-varying networks. T.
Harks and M. Klimm (eds.). Proceedings of the 13th International Symposium on Al-
gorithmic Game Theory (SAGT 2020). LNCS 12283. Springer, 130–145.

Robertson, N. and Seymour, P. D. (1995). Graph minors .XIII. The disjoint paths prob-
lem. Journal of Combinatorial Theory, Series B 63(1):65–110.

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory 2:65–67.

Roughgarden, T. (2009). Intrinsic robustness of the price of anarchy. M. Mitzenmacher
(ed.). Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC
2009). ACM, 513–522.

Roughgarden, T. (2015). Intrinsic robustness of the price of anarchy. Journal of the ACM
62(5):32:1–32:42.

173

https://dx.doi.org/10.1287/trsc.1100.0329
https://dx.doi.org/10.1109/SFCS.2000.892330
https://dx.doi.org/10.1109/SFCS.2000.892330
https://dx.doi.org/10.1137/050629665
https://dx.doi.org/10.1137/050629665
https://dx.doi.org/10.1287/opre.21.2.517
https://dx.doi.org/10.1006/game.1996.0044
https://dx.doi.org/10.1073/pnas.36.1.48
https://dx.doi.org/10.1017/CBO9780511800481
https://dx.doi.org/10.1017/CBO9780511800481
https://dx.doi.org/10.1007/978-3-642-03367-4_45
https://dx.doi.org/10.1007/978-3-642-03367-4_45
https://dx.doi.org/10.1016/S0022-0000(05)80063-7
https://dx.doi.org/10.1016/S0022-0000(05)80063-7
https://dx.doi.org/10.1007/3-540-48224-5_1
https://dx.doi.org/10.1023/A:1012827724856
https://dx.doi.org/10.1023/A:1012827724856
https://dx.doi.org/10.1007/978-3-030-57980-7_9
https://dx.doi.org/10.1006/jctb.1995.1006
https://dx.doi.org/10.1006/jctb.1995.1006
https://dx.doi.org/10.1007/BF01737559
https://dx.doi.org/10.1145/1536414.1536485
https://dx.doi.org/10.1145/2806883

Bibliography

Saho, M. and Shigeno, M. (2017). Cancel-and-tighten algorithm for quickest flow prob-
lems. Networks 69(2):179–188.

Schäffer, A. A. and Yannakakis, M. (1991). Simple local search problems that are hard
to solve. SIAM Journal on Computing 20(1):56–87.

Schlöter, M. and Skutella, M. (2017). Fast and memory-efficient algorithms for evacuation
problems. P. N. Klein (ed.). Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2017). SIAM, 821–840.

Schlöter, M., Skutella, M., and Van Tran, K. (2021). A faster algorithm for quickest
transshipments via an extended discrete newton method. CoRR abs/2108.06239.

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

Schulz, A. S. (2009). On the relative complexity of 15 problems related to 0/1-integer
programming. W. J. Cook, L. Lovász, and J. Vygen (eds.). Research Trends in Combi-
natorial Optimization, Bonn Workshop on Combinatorial Optimization. Springer, 399–
428.

Schulz, A. S. and Stier-Moses, N. (2003). On the performance of user equilibria in traffic
networks. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2003). SIAM, 86–87.

Sering, L. and Skutella, M. (2018). Multi-source multi-sink nash flows over time. R.
Borndörfer and S. Storandt (eds.). Proceedings of the 18th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018).
OASICS 65. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:20.

Sering, L. and Vargas Koch, L. (2019). Nash flows over time with spillback. T. M. Chan
(ed.). Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2019). SIAM, 935–945.

Seymour, P. D. (1980). Disjoint paths in graphs. Discrete Mathematics 29(3):293–309.

Shapley, L. S. (1951). Notes on the N-Person Game — II: The Value of an N-Person
Game. RAND Corporation.

Shiloach, Y. (1980). A polynomial solution to the undirected two paths problem. Journal
of the ACM 27(3):445–456.

Skutella, M. (2009). An introduction to network flows over time. W. J. Cook, L. Lovász,
and J. Vygen (eds.). Research Trends in Combinatorial Optimization, Bonn Workshop
on Combinatorial Optimization. Springer, 451–482.

Spielman, D. A. and Teng, S. (2001). Smoothed analysis of algorithms: why the sim-
plex algorithm usually takes polynomial time. J. S. Vitter, P. G. Spirakis, and M.
Yannakakis (eds.). Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC 2001). ACM, 296–305.

Spielman, D. A. and Teng, S. (2004). Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51(3):385–463.

174

https://dx.doi.org/10.1002/net.21726
https://dx.doi.org/10.1002/net.21726
https://dx.doi.org/10.1137/0220004
https://dx.doi.org/10.1137/0220004
https://dx.doi.org/10.1137/1.9781611974782.52
https://dx.doi.org/10.1137/1.9781611974782.52
https://arxiv.org/abs/2108.06239
https://arxiv.org/abs/2108.06239
https://dx.doi.org/10.1007/978-3-540-76796-1_19
https://dx.doi.org/10.1007/978-3-540-76796-1_19
http://dl.acm.org/citation.cfm?id=644108.644121
http://dl.acm.org/citation.cfm?id=644108.644121
https://dx.doi.org/10.4230/OASIcs.ATMOS.2018.12
https://dx.doi.org/10.1137/1.9781611975482.57
https://dx.doi.org/10.1016/0012-365X(80)90158-2
https://dx.doi.org/10.7249/RM0670
https://dx.doi.org/10.7249/RM0670
https://dx.doi.org/10.1145/322203.322207
https://dx.doi.org/10.1007/978-3-540-76796-1_21
https://dx.doi.org/10.1145/380752.380813
https://dx.doi.org/10.1145/380752.380813
https://dx.doi.org/10.1145/990308.990310
https://dx.doi.org/10.1145/990308.990310

Bibliography

Suurballe, J. W. (1974). Disjoint paths in a network. Networks 4(2):125–145.

Syrgkanis, V. (2010). The complexity of equilibria in cost sharing games. A. Saberi (ed.).
Proceedings of the 6th International Workshop on Internet and Network Economics
(WINE 2010). LNCS 6484. Springer, 366–377.

Talwar, K. (2002). The single-sink buy-at-bulk LP has constant integrality gap. W. J.
Cook and A. S. Schulz (eds.). Proceedings of the 9th International Conference on Inte-
ger Programming and Combinatorial Optimization (IPCO 2002). LNCS 2337. Springer,
475–486.

Thomassen, C. (1980). 2-linked graphs. European Journal of Combinatorics 1(4):371–
378.

Tuy, H. (2000). The MCCNF problem with a fixed number of nonlinear arc costs: com-
plexity and approximation. P. M. Pardalos (ed.). Approximation and Complexity in
Numerical Optimization: Continuous and Discrete Problems. Springer, 525–544.

Tuy, H., Ghannadan, S., Migdalas, A., and Värbrand, P. (1995). The minimum concave
cost network flow problem with fixed numbers of sources and nonlinear arc costs.
Journal of Global Optimization 6(2):135–151.

Vickrey, W. S. (1969). Congestion theory and transport investment. The American Eco-
nomic Review 59(2):251–260.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of
the Institution of Civil Engineers 1(3):325–362.

Wilkinson, W. L. (1971). An algorithm for universal maximal dynamic flows in a network.
Operations Research 19(7):1602–1612.

Yagar, S. (1971). Dynamic traffic assignment by individual path minimization and queu-
ing. Transportation Research 5(3):179–196.

Zadeh, N. (1973). A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming 5(1):255–266.

Zangwill, W. I. (1968). Minimum concave cost flows in certain networks. Management
Science 14(7):429–450.

Zhang, C. and Nagamochi, H. (2012). The next-to-shortest path in undirected graphs
with nonnegative weights. J. Mestre (ed.). Proceedings of the 18th Computing: The
Australasian Theory Symposium (CATS 2012). CRPIT 128. Australian Computer So-
ciety, 13–20.

Zhu, D. and Marcotte, P. (2000). On the existence of solutions to the dynamic user
equilibrium problem. Transportation Science 34(4):402–414.

Zorn, M. (1935). A remark on method in transfinite algebra. Bulletin of the American
Mathematical Society 41(10):667–670.

175

https://dx.doi.org/10.1002/net.3230040204
https://dx.doi.org/10.1007/978-3-642-17572-5_30
https://dx.doi.org/10.1007/3-540-47867-1_33
https://dx.doi.org/10.1016/S0195-6698(80)80039-4
https://dx.doi.org/10.1007/978-1-4757-3145-3_30
https://dx.doi.org/10.1007/978-1-4757-3145-3_30
https://dx.doi.org/10.1007/BF01096764
https://dx.doi.org/10.1007/BF01096764
http://www.jstor.org/stable/1823678
https://dx.doi.org/10.1680/ipeds.1952.11259
https://dx.doi.org/10.1287/opre.19.7.1602
https://dx.doi.org/https://doi.org/10.1016/0041-1647(71)90020-7
https://dx.doi.org/https://doi.org/10.1016/0041-1647(71)90020-7
https://dx.doi.org/10.1007/BF01580132
https://dx.doi.org/10.1007/BF01580132
http://www.jstor.org/stable/2628890
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV128Zhang.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV128Zhang.html
https://dx.doi.org/10.1287/trsc.34.4.402.12322
https://dx.doi.org/10.1287/trsc.34.4.402.12322
https://dx.doi.org/10.1090/S0002-9904-1935-06166-X

	1 Introduction
	2 Preliminaries
	2.1 Basic Notation and Terminology
	2.2 Graphs
	2.3 Network Flows
	2.4 Game Theory
	2.5 Computational Problems and Complexity Theory
	2.6 Linear Programming
	2.7 Linear Complementarity Problems

	3 Two Disjoint Shortest Paths
	3.1 Introduction
	3.1.1 Related Literature
	3.1.2 Our Contribution

	3.2 A Decomposition of Disjoint Paths
	3.3 Disjoint Paths in Weakly Acyclic Mixed Graphs
	3.4 Undirected Disjoint Shortest Paths
	3.4.1 Orienting Shortest Paths
	3.4.2 Disjoint Paths in the Partial Orientation

	3.5 Closing Remarks

	4 Dynamic Equilibria under the Fluid Queuing Network
	4.1 Introduction
	4.1.1 Related Literature
	4.1.2 Our Contribution

	4.2 The Fluid Queuing Model and Dynamic Equilibria
	4.3 Normalized Thin Flows with Resetting
	4.3.1 A Linear Complementarity Problem
	4.3.2 Parametric Normalized Thin Flows with Resetting

	4.4 Evolution of Dynamic Equilibria
	4.4.1 A Differential Equation
	4.4.2 Dynamic Equilibria for Right-Monotone Inflow

	4.5 Thin Flows with Resetting in Series-Parallel Graphs
	4.6 Closing Remarks

	5 Nash Equilibria in Network Cost-Sharing Games
	5.1 Introduction
	5.1.1 Related Literature
	5.1.2 Our Contribution

	5.2 Structure of Nash equilibria
	5.3 Computational Complexity of Nash Equilibria
	5.3.1 Formulations
	5.3.2 Intractability Results
	5.3.2.1 PLS-Hardness of Computing Nash Equilibria
	5.3.2.2 NP-Hardness of Computing a Minimum-Cost Nash Equilibrium
	5.3.2.3 NP-Hardness of Computing a Global Potential Minimizer
	5.3.2.4 Slowly Improving Dynamics

	5.4 Efficiency of Nash Equilibria
	5.4.1 The Price of Anarchy
	5.4.2 Upper Bounds on the Price of Stability
	5.4.2.1 The Potential Function Method
	5.4.2.2 The Homogenization-Absorption Framework

	5.4.3 Lower Bounds on the Price of Stability
	5.4.3.1 The Fan Graph
	5.4.3.2 A Lower Bound for Constant Total Edge Cost
	5.4.3.3 A Lower Bound for Affine Total Edge Cost
	5.4.3.4 A Lower Bound for Polynomial Total Edge Cost

	5.5 Closing Remarks

	Notation
	Index
	Bibliography

