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It is the supreme art of the teacher to awaken joy in creative expression and knowledge.
Albert Einstein

—

If you can’t explain it simply, you don’t understand it well enough.
Albert Einstein
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Zusammenfassung

Titel in deutscher Sprache:
Numerische Methoden und Anwendungen in nichtlinearer Akustik und Seismologie:
Medizinische Ultraschall- und Erdbebensimulationen

Diese Arbeit beschäftigt sich mit verschiedenen Aspekten nichtlinearer akustischer
und seismischer Wellen. In der mathematischen Modellierung von Ultraschallwellen ho-
her Intensität, wie sie in der medizinischen Therapie von Nierensteinen und Tumoren
verwendet werden, sind die Westervelt- und Kuznetsov-Gleichung bekannte Modelle.
Diese nichtlinearen partiellen Differentialgleichungen modellieren Effekte wie die Ver-
zerrung von Wellen und die Ausbildung steiler Wellenfronten aufgrund physikalischer
Gesetze bei starken Druckvariationen. Für ein solches Wellenmodell werden transpa-
rente Randbedingungen entwickelt, die es erlauben das numerische Simulationsgebiet
künstlich zu begrenzen, ohne dass von diesen Grenzen ausgehende, unphysikalische Re-
flexionen die Lösung im Inneren des Gebietes beeinträchtigen. Des Weiteren betrachtet
die Arbeit die Kopplung der akustischen Modelle mit einem Festkörpermodell zur Simu-
lation von elasto-akustischen Problemen mit unterschiedlichen Materialien. Das resul-
tierende, nichtlineare, gekoppelte System partieller Differentialgleichungen wird mittels
der discontinuous Galerkin spectral element method diskretisiert und im Rahmen einer
numerischen Fehleranalysis die Konvergenz des Verfahrens gezeigt. Numerische Beispiele
stützen dabei jeweils die theoretischen Resultate und vermitteln mögliche Einsätze in an-
wendungsorientierten Szenarien. In Bezug auf die seismologische Anwendung der Arbeit
wird ein numerisches Modell für die Simulation des Verhaltens eines Dammes während
eines Erdbebens konstruiert. Die resultierende Simulation umfasst mehrere Längenska-
len von der Quelle bis hin zur betrachteten Gebäudestruktur und enthält Modelle für
die seismische Quelle und Wellenausbreitung sowie elasto-akustische Interaktion zwi-
schen dem festen Boden und Damm sowie dem Wasser im Reservoir-See dahinter. Die
Methoden werden auf ein reales Erdbeben aus dem Jahr 2020 mit echten Daten zur
Modellierung und Validierung angewendet.
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Abstract

This thesis deals with different aspects of nonlinear acoustic as well as seismic waves.
For the mathematical modeling of high intensity ultrasound waves, as they are used in
the medical treatment of kidney stones or tumors, the Westervelt and Kuznetsov equa-
tions are well known models. These nonlinear partial differential equations model effects
such as the distortion of a wave field and the development of sharp wavefront-gradients
due to physical laws valid for waves in the regime of high pressure variations. For such a
wave model absorbing boundary conditions are developed, which allow the truncation of
the computational domain without reflections reentering from these boundaries, impact-
ing the solution in the interior. Furthermore, the coupling of the acoustic models with a
solid model for the simulation of elasto-acoustic problems with different materials is con-
sidered. The resulting, nonlinear, coupled system of partial differential equations is then
discretized using the discontinuous Galerkin spectral element method and convergence of
the method is shown via a numerical error-analysis. Numerical examples always support
the theoretical findings and show possible usages in applicational scenarios. Concern-
ing the seismic application of the thesis, a numerical model for the simulation of the
response of dam structures during earthquakes is constructed. The resulting simulation
spans multiple length scales from source to site and contains seismic fault and propa-
gation models as well as elasto-acoustic interaction between the solid ground and dam
structure and the water of the reservoir lake behind. The methods are applied to a real
seismic event from the year 2020 with actual data used for modeling and validation.
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1. Introduction
Waves are an omnipresent phenomenon in various fields of science and engineering.
Starting from gravitational waves with wavelengths up to cosmic scales, over seismic
and water waves in the earth’s crust and seas up to sound and finally electro-magnetic
ones; waves come in all shapes and sizes, each with its own physical mechanisms. In
this work I mainly focus on ultrasound-waves with frequencies in the kHz to MHz range
traveling in acoustic media like water, air or human tissue with wavelengths within the
µm to mm scale. For article [III] of the thesis, I will move to the regime of seismic waves,
which is settled in the order of magnitude of Hz, however also on a much larger scale of
several km.
I start by giving a short introduction into the fields of application motivating the

individual articles of this thesis in Sec. 1.1. For sound wave, this will be a medical
background considering ultrasound-based treatment methods for kidney stones or cancer,
for the seismic wave part it will be the simulation of earthquakes and their effects on
building structures. Then, in Sec. 1.2, I formulate the concrete problems coming from
these fields of applications, that are tackled in this thesis. A mathematical background
review stating the problems in a mathematical-abstract setting, summarizing existing
literature and giving further details about important equations, results and theorems
is given in Sec. 2. Similar Sec. 3 gives an overview over the numerical methods used in
this thesis. Finally Sec. 4 summarizes the results of the individual articles being part
of this thesis, relates them to the scientific questions asked in Sec. 1.2 and reflects on
further possible research topics following or emerging from the articles of this thesis. All
core-articles that are part of this thesis are included in appendix A, all further (non-
core) articles in appendix B. References to these articles within the following sections
are denoted by the roman numbers introduced in the contributed article list (with full
bibliography information being linked therein), references to other works are denoted by
arabic numbers as listed in the bibliography.

1.1. Applications and motivations for (nonlinear) waves
Ultrasound in medicine: The areas of application for natural and artificially gener-
ated waves are huge. For the later especially concerning ultrasound, which is defined
as acoustic waves with frequencies above 20 kHz. The most prominent application con-
cerning ultrasound lies within its publicly well-known diagnostic capabilities, sending
ultrasound waves through the human body as an acoustic medium, then detecting the
intensity of their reflections to compute an image of e.g. internal organs or a fetus. Typi-
cal pressure amplitudes for diagnostic ultrasound range from 0.1−4MPa [77, Sec. 12.2.2]
leaving the human tissue unharmed. However, ultrasound may not only be used for di-
agnostic reasons, but also as a direct medical treatment method. An example for such a
therapeutic application would be extracorporeal shockwave lithotripsy (ESWL) for the
treatment of kidney stones [70]. As its name suggests, this method avoids a larger, open
surgery to remove a stuck kidney stone by applying a short-pulsed ultrasound wave with
a much higher pressure amplitude of up to 100MPa [310, p. 852] at the kidney stone
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from outside the body. This fractures the kidney stone into smaller debris that can pass
out naturally [91]. Also the applications to certain types of cancer, making use of the
heat generated by the high pressure amplitudes (ultrasound hyperthermia treatment),
are summarized for example in [212, 317].

With such high pressure amplitudes, aiming is important to avoid or at least re-
duce damage dealt to tissue in the vicinity of the kidney stone [187]. Hence, a method
of focusing the high-intensity ultrasound beam is needed. Similar to the focusing of
light with an optical lens, acoustic lenses made e.g. of rubber can be used to achieve
that goal [229], assigning to the resulting application the term high-intensity focused
ultrasound (HIFU). Of course the specific shape of such a focusing lens is of crucial im-
portance for its focusing capabilities. Finding an optimal lens-shape to aim for a given
focal point [294] by means of isogeometric shape optimization [63, 109, 110, 186, 297] is
the main topic of article [V] being the chronological first that I was involved in. Another
focusing mechanism using a curved, vibrating transducer (array) directly aiming at the
focal region without a lens is considered and simulated involving its elasto-acoustic in-
teraction in [II].
Another point that comes with the high frequency and amplitude of HIFU appli-

cations is the process of wave-steepening. A sine-wave, assuming no damping and no
wave-spread, for instance when propagation takes place in a confined channel, does not
change its shape during propagation. HIFU waves in contrast are distorted over time re-
sulting in sawtooth-like wave shapes eventually exhibiting shocks, even if they are driven
by a smooth sine-wave excitation, see for example, [170, Fig. 5.37], [V, Fig. 2]. A reason
for that behavior is the nonlinear pressure-density relation (4), that is otherwise often
linearized with differences becoming evident only at higher amplitudes. The linear wave
equation, while being an often used approximation within moderate amplitude regimes,
does not capture such nonlinear effects, which is why nonlinear wave models such as the
Westervelt (6) or Kuznetsov equation (7) are employed instead for increased accuracy.

A problem common to acoustic as well as the later mentioned elastic waves, being
linear or nonlinear, once it comes to numerical simulation is the sensible truncation of
the computational domain. Take for example a simulation of a certain part of the human
body with direct application of an aforementioned HIFU beam as it is done in [II, V].
It is often not possible to simulate its complete surrounding such as the whole body or
ambient room as a closed system due to computational constraints or the limitations of
the model used. However, often this is also not necessary as influences from there can
be neglected. Hence, the computational domain can be cut off at an artificial boundary
to only incorporate the region of interest. For mathematical models based on partial
differential equations (PDEs), such as the nonlinear wave equations in this thesis, this
approach now yields the necessity to prescribe some boundary conditions on the newly
introduced artificial boundaries. However, the first naive idea of homogeneous Dirichlet
or Neumann conditions would result in reflections on a, physically non existent, wall
traveling back into the truncated domain, spoiling the solution therein with unphysical
data. Hence, just neglecting what lies outside the truncated domain is not enough, one
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also has to make sure that wave components trying to leave the domain of interest can
do so unhindered, i.e. in the ideal case without any reflections back into the interior.
[I] deals with the derivation of such absorbing boundary conditions (ABCs) [119, 228] for
the Westervelt equation (8) [275], that also adaptively detect and incorporate the angle
of incidence [133, 274] the wave has at the artificial boundary. The resulting conditions
drastically improve their quality compared to e.g. the most classical, linear ones by
Engquist and Majda [95], especially at large, oblique incidence angles, being the main
motivation for this ([I]), chronologically second, publication.

Seismological earthquake simulations: From the destruction of the ancient colossus
of Rhodes, 226 BC [181], up to more recent, famous events such as the collapse of
the CTV Building in Christchurch, New Zealand on the 22nd of February 2011 [247],
earthquakes pose a serious threat to human civilizations all over the world, especially
concerning their destructive effects in general [25], on buildings [173], and with special
attention in this work, on dam structures [2, 185, 316]. It has therefore been of major
interest since the antiquity to measure, understand and ultimately being able to predict
earthquakes, the damages they might cause and to assess the risk that is posed to struc-
tures in specific areas of the world. Besides empirical methods such as ground motion
measurements using seismographs or theoretical foundations of seismology [5] yielding
seismic source and propagation models, the numerical simulation of earthquakes poses
an additional mean to reach these goals.
Seismic waves are variations in the vectorial displacement field of the earth’s body. As

such, they behave a bit different to acoustic waves as they might not only contain a com-
pression component, usually denoted by the term P-wave, but also a shear component,
denoted by S-wave, with the two components typically traveling at different velocities
[152, Chap. 2], also see Sec. 2.4. Nevertheless, the general structure of a wave equation
is applicable here as well, resulting in a dynamic elasticity equation assuming that an
elastic material law is employed. The consideration of also seismic waves in this thesis
was ultimately motivated by the goal to conduct earthquake simulations such as finally
done in [III] analyzing the effects of seismic scenarios on building structures [13, 180,
214, 215] like dams using realistic seismic source and topography data as well as real live
measurement data to validate the simulations against. Considering a dam, it becomes
obvious that if the water in the reservoir sea should not be neglected, an elasto-acoustic
interface [7, 106] between the elastic domains, the dam and sub-soil layers, and the
acoustic domain being the water is present. Also, due to stacked layers of different soil
materials in the earth’s crust as well as even more different materials used for human
built structures, jumps in the material coefficients for such large scale simulations need
to be considered. Such problems fitted well not only to the seismic setting, but also to
the initially introduced medical application. Therefore the two articles [IV] and [II] be-
ing chronologically third and fourth were given priority to analyze the required methods
also mathematically in depth on simpler examples that I was already familiar with.
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First, in [IV] the emphasize is put on the application of a high-order discontinuous
Galerkin (DG) method to the nonlinear acoustic problem. To keep the setting more
general, polygonal shaped elements were assumed [15, 52]. The main result of the arti-
cle is the proof of convergence for the applied method under h-refinement together with
an a-priori error-bound in a suitable energy-norm. Besides some academic test-cases in
2D using MATLAB to show the convergence results also numerically, the article also
contains two first, larger simulations in 3D using the high-performance code framework
SPEED [14, 214, 283] paving the way for all subsequently following, more complex and
application-driven 3D simulations in the remaining articles.
In [II] then the coupling of an acoustic (pressure-field) domain to an elastic (displace-

ment-field) domain is studied. The motivating application comes again from medical
ultrasound therapy using beam focusing. However, this time the alternative focusing
mechanism using a piezoelectric transducer [170, Fig. 12.47] is employed instead of the
lens mechanism. The elastic parts of that focusing mechanism are modeled using the
equations of linear elasticity, while the acoustic wave guide is again modeled using the
nonlinear acoustic equations of Westervelt and Kuznetsov. The elasto-acoustic interface
in between is then equipped with suitable coupling conditions communicating the force
exchange between the two models. Also the human tissue where the pressure focus is
aimed to is modeled. In case of an acoustic model for the tissue also acoustic-acoustic
interfaces between different materials and hence jumps in the material parameters ap-
pear. The article then generalizes the numerical DG scheme from [IV] in a hybrid way
to capture all features mentioned. Again convergence of the resulting method is proven
and error bounds are given together with numerical examples in academic as well as
application inspired scenarios.

Finally my, for this thesis chronologically last, publication [III] accomplishes the orig-
inal plan to perform realistic, large scale and real data driven earthquake simulations.
Here the elasto-acoustic mathematical model is applied to the seismic scenario of an
earthquake impacting a dam-structure analyzing the response of the dam in terms of
e.g. maximal displacement and velocity being relevant for an engineering risk assessment.
Using the magnitude 7 earthquake that took place on the 30th of October 2020 in the
Icarian Sea near Samos (Greece) [59] as a case study, the article analyses the threat the
earthquake posed to the Tahtalı dam (Turkey) being approximately 30 km away from the
hypocenter. The publication goes into details about geometry (topography) acquisition
from satellite data [155], mesh generation, seismic sources, modeling the fault plane and
its slip-process [103, 290], validation against real data and model comparisons. While
in reality luckily no damage was caused to the dam, such simulations can for example
be used in future work to not only recreate the actual situation, but also to conduct
sensible variants of the event, ultimately yielding a seismic hazard analysis for the region
of interest. This publication can be seen as the application of a general, numerical model
to a specific case study with influences from seismology, using the methods derived and
analyzed in the previous articles. It combines them together with a high-performance,
parallel implementation, resulting in the largest simulations conducted for this thesis,
as well as extensive data evaluation to obtain actual application-relevant results.
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1.2. Scientific questions and problems
Coming from the motivational examples of Sec. 1.1, the following list contains the con-
crete scientific questions and problems that were asked before the work on the individual
articles. The mathematical tools and methods used to answer these questions are de-
scribed and embedded in a broader (literature) context in Sec. 2 and 3 and are elaborated
in detail in the respective articles in the appendix.

Core articles as principal author

• Core article [I] in appendix A.1 as reference [224]:
Self-adaptive absorbing boundary conditions for quasilinear acoustic wave propa-
gation

Derivations/Proofs: How can absorbing boundary conditions for the nonlinear
Westervelt equation (in potential form) be derived, including the angle of incidence
information?
Methodological/algorithmic aspects: How can the angle of incidence be au-
tomatically detected/computed efficiently?
Implementational aspects: How can the quality of the newly derived absorbing
boundary conditions be tested and compared to others?
Evidence aspects: How large is the influence of the angle of incidence? How
large is the influence of the nonlinearity in the equation on the boundary condi-
tions compared to the linear one?

• Core article [II] in appendix A.2 as reference [225]:
A discontinuous Galerkin coupling for nonlinear elasto-acoustics

Modeling aspects: How can a transducer based excitation ESWL scenario be
modeled using elastic and acoustic components? How to formulate coupling con-
ditions on the elasto-acoustic interfaces? How does an elastic tissue model differ
from an acoustic one?
Derivations/Proofs: Does the higher-order hybrid DG spectral element method
converge, when applied to the nonlinear acoustic problem, coupled to an elastic
one? What is the order of convergence? How are nonlinearities, damping in the
acoustic equation and jumping material coefficients treated especially?
Implementational aspects: How can the resulting coupled model/method be
implemented and error-rates tested in the high-performance software SPEED for
larger 3D coupled simulations?
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Further articles
• Article [III] in appendix B.1 as reference [213]:

Elasto-acoustic modelling and simulation for the seismic response of structures:
The case of the Tahtalı dam in the 2020 İzmir earthquake

Modeling aspects: How can the seismic ground-dam-water configuration be
described as a mathematical model using real data? What kind of seismic source
models are applicable?
Methodological/algorithmic aspects: How can the complex geometry of ground-
dam and water be meshed efficiently, especially concerning multiple length scales?
How can real data such as topography information be included into the setup?
Implementational aspects: How can the implementation be made efficient
enough to solve the given problem in reasonable times?
Evidence/application aspects: With which other seismological models/data
can the results be compared? What are physically relevant quantities of interest
and which values do they attain?

• Article [IV] in appendix B.2 as reference [12]:
A high-order discontinuous Galerkin method for nonlinear sound waves

Derivations/Proofs: Does the higher order DG spectral element method, based
on polygonal elements, converge for the nonlinear Westervelt equation? What is
the order of convergence?
Implementational aspects: How can a nonlinear acoustic solver be implemented
in the high-performance software SPEED? Can it solve physically motivated 3D
problems?

Further articles which are not part of this thesis
• Article [V] as reference [226]:

Isogeometric shape optimization for nonlinear ultrasound focusing

Modeling aspects: How can the focus capability of an acoustic focusing lens
be modeled, resp. judged? How can the full problem of finding a lens shape with
optimal focusing be formulated in the context of shape optimization? In what
sense is an optimal lens shape optimal?
Derivations/Proofs: How does the shape derivative read when using the non-
linear Westervelt equation as the acoustic model? How does the adjoint equation
read?
Methodological/algorithmic aspects: How can the shapes of acoustic focus-
ing lenses be represented on a computer in a way that is easily accessible to shape
optimization? How can the involved equations be solved efficiently, the shape
derivative computed and the geometry be updated/improved?
Implementational aspects: How can the implementation be verified?
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2. Mathematical problem formulations
In this section mathematical background information about the models, equations and
concepts considered in the articles of this thesis are summarized. Important properties
and results are stated and accompanied by further literature references. The content
provided in this section forms the basis to formulate the problems introduced in Sec. 1
in a mathematical precise way, as (systems of) PDEs with suitable boundary conditions,
making them accessible to the numerical methods that are provided in Sec. 3.
In Sec. 2.1 the nonlinear wave models such as the Westervelt or Kuznetsov equation
are described from a modeling and analysis perspective. Sec. 2.2 then states some main
results and tools from the development of absorbing boundary conditions for waves.
A short glimpse at the competing method of perfectly matched layers (PMLs) is given.
Sec. 2.3 provides a short introduction to linear elasticity stating key quantities and equa-
tions, while Sec. 2.4 then focuses more on the seismological point of view such as seismic
source models. Finally Sec. 2.5 highlights some general mathematical tools used in some
of the proofs of the articles of this thesis.

2.1. Equations of nonlinear acoustics
Derivation of acoustic model equations: The Westervelt (6) and Kuznetsov equation
(7), that will be the main models for the acoustic part of this thesis, are by far not the
only nonlinear acoustic models that exist. Starting from the compressible Navier-Stokes
equations (1)-(2), a whole sequence of nonlinear wave equations can be derived, depend-
ing on the degree of simplifications resp. assumptions, where the Westervelt equation
can be seen as one of the simpler second order in time representatives.

Compressible Navier Stokes system with entropy and state equation
The starting point for the derivation of nonlinear wave equations

ρ̇+∇ · (ρv) = 0 (1)

ρ (v̇ +∇v · v) = −∇p+∇ ·
[
η
(
∇v +∇v>

)
+
(
ηB −

2η
3

)
(∇ · v) · 1

]
(2)

ρT (ṡ+ v · ∇s) = λ∆T + η(∇ · v)2 + η

2

(
∇v +∇v> − 2

3(∇ · v) · 1
)2

(3)

p′ = ρ0c
2
0

 ρ′
ρ0

+ B

2!A

(
ρ′

ρ0

)2

+ C

3!A

(
ρ′

ρ0

)3

+ ...

 (4)

(1) mass conservation, (2) momentum conservation, with density ρ, pressure p and veloc-
ity v. η is the dynamic viscosity, ηB the bulk viscosity, (3) entropy equation with entropy
s, temperature T , heat conductivity λ [275],(4) Taylor expansion of equation of state [130].
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Detailed examples of such derivations can be found in [74, 131, 170, 275, 224], with
typical steps involving a decomposition of the field variables into background and per-
turbation component such as ρ = ρ0 +ρ′, the assumption of vanishing rotation ∇×v = 0
and the simplifying, repeated insertion of the linear wave equation p̈ − c2∆p = 0 and
the linearized Euler equation v̇ = − 1

ρ0
∇p.

The coefficient of nonlinearity B/A that distinguishes the nonlinear models (6)-
(9) from a linear wave equation enters the derivation via the pressure-density relation
p = p(ρ), see (4), that is used as an equation of state. In the most simplest case, only
considering first order terms, the approximation p′ = c2

0ρ
′ would be used with c2

0 = κp0
ρ0

being the undisturbed background flow’s speed of sound computed via the heat capacity
ratio κ. This leads to the linear wave equation. Employing the Taylor-like expansion (4)
up to second order, the nonlinearity enters, where under constant entropy the parameter
B/A can be interpreted as B/A = 2ρ0c0 (∂c/∂p)|p=p0

[131, §2.2], [259, §8.3]. This not
only explains the origin of the parameter B/A within the wave equations but also sheds
light on the wave distortion process that can be observed in nonlinear wave propagation,
cf. Fig. 2 in [V]. The larger B/A becomes, the larger the sensitivity of c with respect
to p becomes, changing the local speed of sound within the wave field more drastically,
eventually distorting the waveform [130]. Vividly explained, high pressure parts of the
wave travel faster than low pressure parts, leading to a steepening of the wavefronts.

In order to account for dissipative losses in thermoviscous media an entropy-
equation such as (3) is considered [74, 275] to derive an expression for the diffusivity of
sound parameter b [204] within (6),(7) reading b = 1

ρ0

(
4η
3 + ηB

)
+ κ

ρ0

(
1
cV
− 1

cP

)
, with cP

and cV being specific heat capacities of the propagation medium. In combination with
∆ṗ, b enters as a weak damping parameter depending on the medium of propagation.
Finally, suppressing the sub- and superscripts indicating background and perturbation
values, equations (6) and (7) follow [199, 303]. An approach to incorporate the (trans-
port of) heat generated in this process by considering a coupled system of the nonlinear
wave and a heat equation is made in [277], also see [127, 257]

Noting, that besides pressure, the Kuznetsov equation (7) still contains the particle
velocity v as an additional unknown, the acoustic potential ψ can be introduced to solve
that issue. It relates pressure and velocity via:

(Acoustic potential) p = ρψ̇, v = −∇ψ (5)

Insertion into the pressure form equations (6) and (7) then yields the respective potential
forms (8) and (9) with ψ being the only unknown in both cases.
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Nonlinear acoustic equations, pressure and potential forms
The main models for the nonlinear acoustic parts of this thesis

Pressure forms:

(Westervelt eq.) p̈− c2∆p− b∆ṗ = (2 +B/A)
ρc2 (pp̈+ ṗ2) (6)

(Kuznetsov eq.) p̈− c2∆p− b∆ṗ = B/A

ρc2 (pp̈+ ṗ2)− ρ0∂
2
t (v · v) (7)

Potential forms:

(Westervelt eq.) ψ̈ − c2∆ψ − b∆ψ̇ = 2 +B/A

c2 ψ̇ψ̈ (8)

(Kuznetsov eq.) ψ̈ − c2∆ψ − b∆ψ̇ = B/A

c2 ψ̇ψ̈ + 2∇ψ · ∇ψ̇ (9)

Differences between the two models resp. in their derivation are the fact that
for the Westervelt equation it is sufficient to use the linearized Euler equation instead
of the fully nonlinear momentum conservation (2) and the assumption that the La-
grangian density L := 1

2ρ0|v|2 − p2

2ρ0c2 vanishes, which can be interpreted as “[...] the
pressure/density and velocity are in phase.” [65, Sec. 3.3, p. 480]. Via the acoustic po-
tential this assumption, for simplicity in 1D, translates to |∂xψ| = |1

c
ψ̇|, which is true

for linear plane waves and a good approximation for mild deviations from them, but
loses its validity the more cummulative nonlinear effects such as the wave steepening
start to dominate, leading to e.g. different shock formation times [64, 65], making the
Kuznetsov equation the more physically accurate one for the price of a more challenging
mathematical and numerical treatment.

Honorable mentions of further nonlinear acoustic models are the closely related
Blackstock equation [41, 108], being even more general than Kuznetsov’s equation, and
on the other side the more simple Burgers’ equation ṗ+ (c+ bp) ∂xp = d∂2

xp [74], which
can be seen as a further simplification of Westervelt’s equation in 1D [131]. Some more
advanced models are the Khokhlov-Zabolotskaya-Kuznetsov-equation [260] that incorpo-
rates directivity effects in sound-beams or the third order in time Jordan-Moore-Gibson-
Thompson equation [159, 165] incorporating the heat flux according to the Maxwell-
Cattaneo law τ q̇+q = −K∇T instead of Fourier’s law [251] eventually avoiding infinite
(thermal) propagation speeds, resulting in an additional term of the form τ

...
ψ , where τ is

a relaxation time parameter. For a broader overview [168] lists several acoustic models
in a clear, hierarchical structure giving an overview over how they are connected, while
[160] gives a review of the historical development of nonlinear acoustic models.

Well posedness results: For both, the Westervelt and Kuznetsov equation well posed-
ness results, mainly by Kaltenbacher and Lasiecka, exist [68, 161, 162, 163, 164, 167,
279]. Even though they are most often restricted to smooth domains and specific types of
boundary conditions, which are conditions that are not always guaranteed in the further
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applications, the computations within their proofs can shed light on certain aspects of
the model. As an example Westervelt’s equation in pressure form (6) could be rewritten
as (1− 2kp)p̈− c2∆p− b∆ṗ = 2kṗ2 where 2k := 2+B/A

ρc2 > 0 is another coefficient for the
nonlinear term. The assumption (1−2kp) > 0 used in the analysis to preserver the char-
acter of the equation for example is directly linked to the smallness of data requirement,
i.e. that p does not become too large to prevent the model from degeneracy. A few of
those results are summarized in the following. If not stated differently it is assumed that
Ω ⊂ Rd, d ∈ {1, 2, 3} is open, bounded with C2 boundary and the respective equations
are always considered with initial data (p(0), ṗ(0)) = (p0, p1). Furthermore the following
energy functional are a key ingredient for the respective statements:
Definition 2.1 (Energy functionals). Define the following energy functionals, where |·|0
stands for the standard L2(Ω)-norm.

Ep,0(t) = 1
2
(
|ṗ(t)|20 + |∇p(t)|20

)
, Ep,1(t) = 1

2
(
|p̈(t)|20 + |∇ṗ(t)|20 + |∆p(t)|20

)
The well-posedness results for classical boundary conditions (Dirichlet and Neumann)

with finite time horizon from [162, 163, 164] for both model equations can then be
summarized as follows.

Theorem 2.1.1 (Local well posedness).
Consider Westervelt’s/Kuznetsov’s equation in pressure form (6)/ (7) together with
either

a) Dirichlet data p = g on ∂Ω [163, 164] or

b) Neumann data ∂np = g on ∂Ω [162]

each being compatible with the initial data at t = 0, then for any T > 0, there exist
ρe > 0, ρg > 0 such that with the following smallness of data assumption

Ep,0(0) + Ep,1(0) ≤ ρe, g ∈ X∗), ‖g‖2
X ≤ ρg

there exists a unique weak solution with p ∈ C([0, T ];H2(Ω)) ∩ C1([0, T ];H1(Ω))∩
C2([0, T ];L2(Ω)), p̈ ∈ L2((0, T );H1(Ω)).

∗)The space X contains further requirements on the boundary data g depending on case
a) or b), for details see the individual references.

Let M > 0, then under additional smallness and regularity assumptions on the given
data and some further modifications in the Neumann case [162], these well posedness
results can also be extended to be global in time, resulting in global existence of a solu-
tion and energy bounds such as Ep,0(t) + Ep,1(t) ≤M for all t > 0.

In [166, 217, 219] similar well posedness results are given also for the potential form
equation. Also in the presence of certain absorbing boundary conditions (cf. Sec. 2.2),
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existence and uniqueness results are available for the nonlinear acoustic models. In [68]
an optimal boundary control problem using (6) or (7) in combination with an inhomo-
geneous Dirichlet excitation signal ∂np = g on Γ ⊂ ∂Ω is considered. On the remaining
boundary ∂Ω\Γ zero order, linear, absorbing boundary conditions (10) are prescribed.
Well posedness of the resulting initial boundary value problem is proven in up to three
dimensions. In [167, 279] well posedness of the Westervelt equation also together with
the higher order, nonlinear, absorbing boundary conditions derived in [275] is shown.

2.2. Absorbing boundary conditions
The need for boundary conditions that behave transparent is immanent to many different
PDE-based (wave) models, from shallow water waves [230] over the Schrödinger equation
[197] to the acoustic case considered here but also to geophysics/seismology [9, 57] where
such conditions are applied to the elastic wave equation, also see [II, III] of this thesis.
Considering only a finite spatial domain Ω ⊂ Rd with waves being induced in the
interior, it is only a matter of (simulation-) time until these waves reach the artificial
truncation-boundaries. The goal is now to prescribe ABCs on said boundaries that let
waves coming from the interior of the domain pass, but annihilate unphysical reflections
traveling back into the domain as good as possible. Also for parabolic problems such as
the heat and convection-diffusion equation [129, 284, 308] similar problems occur and
similar techniques are used to derive corresponding ABCs.

Classical results: The situation can be understood best in 1D considering Ω = (−∞, 0),
where the artificial truncation boundary lies at x = 0. Thinking of the derivation of
d’Alemberts formula [269, Sec. 2.3], the linear wave equation ü − c2∆u = 0 can be
rewritten as (∂t − c∂x) (∂t + c∂x)u = 0, with the two factors corresponding to wave
components u±(t, x) := a±e

i(kx±ωt) traveling to the left (+, hence back into Ω), resp.
right (−, hence out of Ω) [183]. Using c = ω/k, it directly follows that (∂t− c∂x)u+ = 0
is fulfilled by reentering waves and (∂t + c∂x)u− = 0 by the ones leaving Ω but not
vice-versa. This makes ∂tu + c∂xu = 0 ⇔ ∂xu + 1

c
∂tu = 0 the first candidate for an

ABC. The problem becomes more involved in higher dimensions, where one assumes
Ω to be the negative half-space in the first spatial, i.e. x, direction. In [95, 228] the
situation is described in 2D but instead of the operator splitting, a general solution to
the wave equation is directly represented in Fourier-space. Again by distinguishing in-
and outward moving waves, the following, perfectly absorbing, condition is derived, still
in Fourier-space.

∂xû+ i
ω

c

√
1− c2k2

ω2 û = 0

Here û(ω, x, k) is the Fourier-transform of u(t, x, y) w.r.t. the t and y coordinates. Ex-
pressing that condition in physical space requires the application of the inverse Fourier-
transform. However, due to the square-root function not being a polynomial, nor even
rational, the result would not be a classical, but a pseudo differential operator (PSDO)
(cf. next paragraph, (15)) one could prescribe on the boundary. Such, even though math-
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ematically perfectly absorbing, conditions are called non local as they involve information
from the whole space-time domain in order to perform the Fourier-transformation, which
requires large effort from a computational complexity perspective.

The original idea of Engquist and Majda (EM) [95] was then to replace the problematic
square root function f(x) =

√
1− x by means of its Taylor resp. Padé approxi-

mation of a certain order around k = 0. For those the inverse Fourier-transformation
then again yields classical partial differential operators (PDOs). The two most promi-
nent of their approximations together with the respectively resulting boundary condi-
tions read:

Engquist-Majda ABCs of 0th and 1st order:
The order relates to the order of the Taylor-approximation used for the square root function.

0th order:√
1− c2k2

ω2 ≈ 1 =⇒ F−1
(
∂xû+ i

ω

c
û

)
=⇒ ∂xu+ 1

c
∂tu = 0 (10)

1st order:√
1− c2k2

ω2 ≈ 1− 1
2
c2k2

ω2 =⇒ F−1
(
∂xû+ i

ω

c
û− 1

2 i
ck2

ω
û

)
·iω/c=⇒ 1

c
∂txu+ 1

c2∂
2
t u−

1
2∂

2
yu = 0

(11)

Here F−1 denotes the inverse Fourier-transformation. In a general oriented setting
the y-derivative has to be replaced by the tangential-, the x-derivative by the normal-
derivative. Due to their simple structure and straight forward implementation the con-
ditions (10) are among the most renown ones and are often simply denoted as EM condi-
tions (of 0th order) where the order corresponds to the order of the Taylor-approximation
of the square root function.
A measure for the quality of these ABCs is also discussed in [95, 254], where the

amplitude Ar of the spurious reflection of a plane wave hitting the absorbing boundary
under the angle of incidence α, i.e. w.r.t. its normal, is compared to the incident wave’s
amplitude Ai. The ratio |R| = |Ar/Ai|, called the reflection coefficient, would be
zero in case of perfect absorption. However, for the just stated conditions the expression
|R| = |Ar/Ai| =

∣∣∣ cosα−1
cosα+1

∣∣∣σ was derived with σ = 1 for (10) and σ = 2 for (11). Even
more, [183] uses a more general, geometric setting to show that, up to a scaling, the nth

order EM conditions differential operator can be written as the (n + 1)-st power of the
0th order corresponding differential operator. Indeed (11) can be written as 1

2(∂x+ 1
c
∂t)2u

and the corresponding reflection coefficients share that property in the sense that for
the nth order conditions, σ = n+ 1 in the above formula.
This shows that while all those conditions yield good results for small angles of in-

cidence α, their reflection coefficients also tend to 1 when α gets close to 90◦, i.e. full
reflection at glancing. The reason is that k, corresponding to the tangential direction
of the boundary in Fourier-space, grows with the angle of incidence deteriorating the
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Taylor-approximations in (10) and (11). This already suggests that an angle dependent
variant of the conditions might yield some improvement.

In [197, 308] very similar ideas and computations are employed to derive ABCs also
for the heat- and Schrödinger equation, showing a broad applicability of the approach.
Before continuing with details about angle dependent conditions, [112, 119] give reviews
about the development of ABCs from foundations, even before EM’s seminal work [95],
over the incorporation of incidence angles by Higdon [133], see (12) up to the development
of ABCs for elastic waves (cf. Sec. 2.3) and the competing technology of PMLs, for which
a short overview is given at the end of this section.

Angle dependency: The idea to consider a plane wave traveling in x (resp. normal)
direction towards a boundary was generalized by Higdon in [133], where he considers the
plane wave field u(t, x, y) = f(x cos(α)+y sin(α)+t) defined on Ω = {(x, y) ∈ R2, x > 0},
i.e. with the absorbing boundary on the left hand side in contrast to before, for some
function f . This plane wave hits the artificial boundary at x = 0 exactly with an angle
of incidence of α fulfilling the modified version of (10) reading cos(α)∂tu−∂xu = 0. This
condition guarantees perfect absorption in case that the angle of incidence is exactly α.
Similar to the (n + 1)-st power of 0th order conditions, see [183] from before, he then
generalizes that approach to conditions of order p, taking into account different possible
angles αi.

p∏
i=1

(cos(αi)∂tu− ∂xu) = 0, |αi| <
π

2 ∀i = 1, ..., p (12)

The condition is perfectly absorbing, if the wave’s angle of incidence matches any of
the angles αi, i = 1, . . . , p, which have to be chosen in advance. In detail the reflection
coefficient of these conditions turns out to be |R| = ∏p

i=1 | cosαi−cosα
cosαi+cosα |. Further notes on

Higdon’s conditions also regarding its discretization using finite differences can be found
in [134].
The advantage of the conditions (12) to be perfectly absorbing for a predefined

set of angles αi requires some knowledge about the specific situation. Provided the
wave field is known approximately a sensible choice of angles αi can be made to balance
accuracy and computational complexity. However, it would be advantageous to deter-
mine the local angle of incidence adaptively, especially in case of non-timeharmonic
wave fields. Such an approach was studied by Shevchenko and Wohlmuth [274] in
2D, where the local wave propagation direction is computed using a localized Fourier-
transformation of the wave field to determine the spatial main frequencies. From the
propagation direction the local angle of incidence α follows readily, resulting in ABCs
having the form ∂nu− 1

c
cos(α)∂tu = 0 but with α varying in space (and time).
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So far, all mentioned ABCs have been developed for the linear (undamped) wave
equation. Application of these conditions to nonlinear wave models such as (6)-(9) is
possible as well, especially in the regime of mild nonlinearity. However, with increasing
parameters of nonlinearity and in more complex domains, conditions specialized for the
nonlinear equations outperform them as it is shown in [I]. In the following some tools
and references concerning the derivation of ABCs for the nonlinear acoustic models are
given.

ABCs for nonlinear equations: Pursuing the idea to derive ABCs for the nonlinear
wave equations (6)-(9), the act of splitting the associated PDO is not as straight forward
as in the linear case. Shevchenko and Kaltenbacher [275, 276] used pseudo-differential
techniques to derive nonlinear analoga of the conditions (10) and (11) up to order 1
(2D), resp. 2 (1D) for the Westervelt equation in pressure form (6). [285] uses the
same approach for another, general nonlinear wave equation. Elements from pseudo-
differential calculus also form the basis for the derivation of the nonlinear ABCs in [I],
where they are combined with an angle-of-incidence detection algorithm in order to well
approximate α and incorporate angle dependency as in (12). The final result therein
reads:

c∂nψ + b

c
∂2
ntψ = −

√
1−M∂tψ ∂tψ cos(αh) (13)

Here M is a constant depending on the parameter of nonlinearity (2 + B/A)/c2 of (8),
vanishing together with it, as well as the used linearization strategy. Hence, in the
absence of nonlinearities and damping (b = 0) the conditions fall back to the linear,
angle dependent conditions (12) where αh is assumed to be the precise or at least a
good approximation to the angle of incidence with details on how to obtain such an
approximation being given in [I, Sec. 5]. For an orthogonal impingement the conditions
then even reduce to the classical ones (10). In that sense they can really be seen as an
extension by combination of the previous ideas.

Pseudo differential calculus: The concept of PSDOs can be understood best, if one
first tries to express a regular, linear PDO in terms of pseudo-differential calculus and
then generalizes. Following the definition in [306, Chap. 6], (14) defines a classical lin-
ear PDO over Rd and its corresponding symbol being, for fixed x, a polynomial in the
components of δ = (δ1, . . . , δd)>. (15) then poses a, compared to the classical applica-
tion of P to a function φ, quite complicated method to evaluate P (x, D)φ. It consist
of first applying the Fourier-transformation to φ, then multiplying the resulting φ̂, in
Fourier-space, with the symbol of the PDO and then an inverse Fourier-transformation
back to physical space. This way of evaluation becomes interesting once one allows also
expressions for p(x, δ) that are non-polynomial in δ and hence would not result in a
classical PDO in physical space. This then renders (15) the definition of what is called
a PSDO.

The theory of PSDOs is rich, details can be found in the works of Hörmander [144]
and Kohn and Nirenberg [188] or [145, 306] also defining the proper symbol-spaces Sm
and (Schwartz-)function-spaces from and to which PSDOs map [306, Def. 6.1, Prop. 6.7].
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(Pseudo) differential operators and their symbols
Definition of a classical, linear PDO, its symbol and the connection between the two, [306,
(6.1)-(6.4)]

(PDO) P (x, D) =
∑
|α|≤m

aα(x)Dα, (symbol) p(x, δ) =
∑
|α|≤m

aα(x)δα

(14)

(Connection) (P (x, D)φ)(x) = (2π)−d/2
∫
Rd
eix·δp(x, δ)[F(φ)](δ) dδ (15)

Since PSDOs only serve as a tool for the splitting of the wave operator to derive ABCs
in this work, only the following definitions and theorems are introduced, which are also
used in [I].

First, the definition of an asymptotic expansion of a symbol falls back one step
from the very general definition by stating a way of approximation, again with special
functions. If p(x, δ) is a polynomial of degreem in δ, as in (14), it can be written (exactly)
as a sum of monomials pj(x, δ) = am−j(x)δm−j, which are homogeneous of degree m −
j, j = 0, 1, 2, . . . ,m respectively. The asymptotic expansion of a symbol makes use
of that idea by approximating a general symbol a ∈ Sm via a sum of (homogeneous)
functions aj according to the following definition.
Definition 2.2 (Asymptotic expansion of symbols, [306, Def. 6.9]). Given a symbol a ∈
Sm and a strictly decreasing sequence (mj)∞j=0 diverging to −∞, starting with m0 = m.
If there are symbols aj ∈ Smj with a −∑N−1

j=0 aj ∈ SmN for all N ∈ N, then the series∑∞
j=0 aj is called asymptotic expansion of the symbol a, denoted by a ∼ ∑∞j=0 aj.

In [234, (5.5)] Nirenberg then restricts his considerations to the class of symbols where
the expansion terms are homogeneous of degree m− j each.

With these definitions at hand, factorization results such as in [20] or in detail [234,
Lem. 1], are employed in [129, Thm. 3.1, (3.10)], [275, (51)], [285, (3.2)] and in the same
way in [I, (14)] to the (linearized) PDO P of the equation considered. One then arrives
at the following decomposition of P .

P = −(∂x −A)(∂x − B) +R, (16)

where A,B,R are pseudo-differential operators and one of them, i.e. the term ∂x −A,
will eventually yield the desired ABC. In order to determine A and B, their respective
asymptotic expansions are inserted into (16). In the subsequent formal multiplication of
A · B in (16), resp. their symbols a · b, an expression for the product of two asymptotic
expansions is required. It can be found in [145, Thm. 18.18], [306, Thm. 8.1]. Ultimately
the (symbol of) A is then approximated by considering only a finite portion of its asymp-
totic expansion a. Its coefficients aj can be determined up to the desired order via an
ordering by their degree of homogeneity and a coefficient comparison with the left
hand side of (16) being (the symbol of) P .
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Angle-adaptive ABCs for Westervelt’s equation - Contribution of [I]: In this ar-
ticle absorbing boundary conditions for the potential form of the Westervelt equation
(8) are derived using methods from pseudo differential calculus. First, they form an
extension to the classical EM conditions taking into account the nonlinear term similar
to [275]. However, additionally the angle of incidence is considered in the derivation. In
contrast to the approach of [133], where a predefined set of angles with optimal absorp-
tion properties is chosen, in [I] the angle of incidence is adaptively computed and then
directly inserted into the respective boundary condition formula. An efficient algorithm
for the computation of the angle of incidence is stated with further method parameters
for fine tuning. Different linearization strategies for the nonlinear part of the equation
are compared, where one specific variant outperforms the others by far. The condi-
tions are tested and compared in 2D and 3D application relevant scenarios dealing with
ultrasound.

Perfectly matched layers: A different approach to the artificial boundary problem
is summarized under the term of PMLs. Originally introduced by Berenger [36] for
the electrodynamic Maxwell equations, their basic idea consists of a highly damping
“sponge”-layer encasing the truncated computational domain Ω at all artificial bound-
aries. Within that layer, waves are damped to non-critical amplitudes such that their
reflections coming from the very outer (outside of the encasing layer) boundaries can
be neglected. On those very outer boundaries classical boundary conditions such as
Dirichlet can be used then. The mathematically challenging part in the derivation of
PMLs however is not the mere introduction of an additional damping parameter σ,
which is then just chosen wide enough. On the interface between Ω and the PML, hence
before damping to negligible amplitude, reflections can originate if the impedance differ-
ence between the two materials is not zero. Hence the PML’s material has to fulfill an
impedance-matching condition with the interior material in addition to its damping
property. In one dimension this can be achieved by extending from real to complex mate-
rial parameters and choosing for example ρpml = ρ(1− iσ) and cpml = c

1−iσ [170, (5.139)].
This results in a match with the interior material’s impedance Zpml = ρpmlcpml = ρc = Z
as well as a damping of the wave by the factor e−σx with x being the depth of the wave-
front within the PML. In two and three dimensions again the angle of incidence plays a
role, which is resolved by splitting even scalar fields such as pressure into artificial spatial
components treating each of them with their own damping parameters according to the
one dimensional result. A further strategy to increase the damping provided within the
PML while retaining the matched impedance at the interior-PML interface is to apply
the impedance-matching condition to determine the damping coefficients at the interface
and then smoothly increase them towards the outer boundary [36]. For a PML layer of
width L this results in a decrease of the outgoing wave’s amplitude by ∼ e−2

∫ L
0 σ(x) dx

until it reenters Ω. Specifically for the acoustic case derivations can be found in [170]
and in combination with the Helmholtz equation also in [228] employing an analytical
continuation of the plane wave solution and a coordinate transformation, also see [61,
158, 252]. An application of PMLs to a nonlinear wave equations is discussed in [16].
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2.3. Elastic solid model
The equations of linear elasticity form the second mathematical model that is part of
this thesis. [II] studies the interplay of the elastic wave-equation when coupled to the
acoustic models from before and gives convergence results for the numerical solution of
the resulting coupled system. [III] then considers the problem in an applied case-study
from seismology where additional model components such as special source mechanisms
are added. A background about those additional factors directly relating to the seismic
modeling is given in Sec. 2.4, while here in Sec. 2.3 general foundations of linear elasticity
theory are presented.

Derivations from continuum mechanics: The equations of static (linear) elastic-
ity can be derived from continuum mechanical considerations [90] such as the conser-
vation of mass and (angular) momentum in combination with a constitutive material
law describing the material internal stress-reaction to deformation. Employing a dis-
placement base approach, the base variable is the displacement vector field u from
which the strain-tensor E = 1

2

(
∇u+∇u> +∇u · ∇u>

)
and the linearized strain-

tensor ε = 1
2

(
∇u+∇u>

)
, neglecting the geometric nonlinearity ∇u · ∇u> are formed,

where this geometric linearization is valid for relatively small displacements. So far, all
involved quantities are valid for arbitrary materials as they only contain given defor-
mations. The question arises, what internal stresses, i.e. forces per infinitesimal area,
are created in a specific material subjected to deformations. It was Cauchy who proved
in 1822 [22, 278] that the answer can be given in terms of a symmetric stress-tensor σ
allowing to compute internal forces acting over virtual cut-surfaces via F =

∫
Γ σ ·n dS.

It remains to specify the relation between strain ε and stress σ. Here the choice of
a linear relation in the form of Hook’s law σ = C : ε with the fourth order material
tensor C results in linear elasticity theory. Symmetry considerations depending on the
internal structure of the material in use reduce the amount of free parameters within
C [72]. While organic materials such as wood or bones might for example be mod-
eled by an orthotropic material law [143, 265] respecting some e.g. fiber-orientation,
isotropic materials, without any preferred direction, state the most simplest case. By
the Rivlin-Ericksen theorem [67, Thm. 3.6-1, 3.8–1] for such an isotropic material ten-
sor only two free parameters are left, ultimately leading to the linear, homogeneous,
isotropic material law σ(u) = 2µε(u) + λ(∇ · u)I, where the parameters λ and µ are
called Lamé-parameters. Returning to the continuum mechanical conservation laws, the
state equation (17) is derived, where f denotes some external (volumetric) force and
suitable boundary conditions have to be prescribed. This could be Dirichlet conditions
in case of a fixed/prescribed displacement u = g, homogeneous Neumann conditions
σn = 0 in case of free surfaces, elasto-acoustic coupling conditions (cf. Sec. 3.3) or
absorbing boundary conditions specifically tailored for elastic waves (see below).

17



Elasticity equations:
Equations used for the modeling of solids, e.g. the transducer and tissue parts in [II] or
the earth’s soil layers in [III].

(Static) −∇ · σ = f (17)
(Dynamic) ρü−∇ · σ = f (18)
(Dynamic with damping) ρü+ 2ρζu̇+ ρζ2u−∇ · σ = f (19)

Seismic (moment) sources can be incorporated via f or directly by a modification of σ. ρ
denotes the materials density, ζ is damping parameter.

In order to move from a static to a dynamic model, Newton’s second law F = mü
can be employed to arrive at the elastic, second order in time, wave equation (18) which
then of course needs to be supported by suitable initial conditions.

To incorporate damping or attenuation in the equation additional damping terms
scaling with a damping parameter ζ, as used in [202] and the articles of this thesis, allow
to specify frequency independent attenuation e.g. in each soil layer of the earth’s crust
as in [III]. The parameter ζ is related to the materials quality factor Q = 2π E

∆E [9, 286]
expressing the relative energy decay of a wave per wavelength. The damping approach
can also be related to the PML technique mentioned in Sec. 2.2 damping the whole
wave-field with a defined attenuation factor [55, 194], however, in contrast to the outer
PML-layer, extended to the whole interior region. It is furthermore advantageous from a
computational perspective as in the semi-discrete form of the equation it only introduces
scalar multiples of the mass matrix being diagonal in the spectral element method, see
Sec. 3.1. Hence, almost no additional numerical effort has to be invested. Another
famous method to introduce damping would be by means of Rayleigh-damping [206].
The resulting model equation (19) states a relatively simple model that, considering all
the uncertainties involved in real seismic applications such as the distribution of soil
materials or fault parameters, is still often used due to its computational advantages.
The model can be extended in various directions e.g. by means of different constitutive
laws involving not only elastic but also plastic models [113, 184, 200, 236], or by means
of visco-elastic/hysteresis based attenuation models [42, 83, 205] such as the Maxwell-
or Kelvin-Voigt-model introducing certain degrees of nonlinearity into the equation.

ABCs for elastic waves: The dynamic elasticity equation (19) is a vector-valued wave
equation. As such, the same requirements on absorbing boundary conditions to cope
with artificially truncated domains as in the acoustic case arise. Results very similar to
[95] in the acoustic case can be found also by Engquist and Majda for the elastic case
in [94]. Also very similar to the acoustic case Higdon generalizes the angle dependent
conditions from [133] to the elastic case in [135, 136]. [120] supports such conditions
with further numerical experiments in the finite element setting. A common idea in the
derivation of ABCs for elastic waves is the splitting of the displacement wave field into
two components being normal and tangential, resp. pressure- and shear-waves, each
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propagating with its own velocity cn, resp. ct. To each of them e.g. the simplest 0th-
order EM conditions (10) can then be applied with the respective value of c [207]. A
short derivation of these two wave components which is of special relevance for seismic
applications is given in Sec. 2.4. Finally, as in [9, 57, 216] the articles of this thesis use the
absorbing boundary conditions proposed by Stacey [280], who combined the individual
terms for normal and tangential wave-components in order to find correction terms that
improve the order to the ABCs w.r.t. to the incidence angle without requiring higher
order derivatives.

2.4. Seismic modeling
There is a number of special properties and additional methodology to linear elasticity
that becomes especially useful in certain areas of application. For the seismology part,
I will highlight two of them. First will be the decomposition of the dynamical elasticity
equation into its pressure- and shear wave components, which already played some im-
portant role in the derivation of ABCs for elastic wave propagation. Second, there will
be shortly summarize the seismic source mechanisms that were used e.g. in [III].

P- and S-waves, elasticity revisited: In contrast to pure, longitudinal pressure (P)-
waves as they occur in acoustic media like water or air, the elastodynamic wave equation
(18) (for this section the additional damping terms of (19) and the external force f will be
dropped) allows for a second propagation mechanism being transversal shear (S)-waves.
The two wave components propagate with different, material dependent velocities that
are denoted by cP and cS. The distinction of these two wave types is important as for
example in case of an earthquake their wave speeds can differ by a factor of 1.5 - 2, see for
example [288] with P-waves arriving prior to S-waves. Derivations of that splitting can
be found in [272], or [152, Chap. 2], where equation (18), with the linear, homogeneous,
isotropic material law for σ(u) inserted, is transformed using vector identities to obtain:

ρü− (λ+ 2µ)∇(∇ · u) + µ∇× (∇× u) = 0 (20)
assuming potentials (Φ◦,Φ×) for a Helmholtz-decomposition of u = u◦ + u× into a
rotation free component u◦ = ∇Φ◦ and a divergence free component u× = ∇×Φ× one
can see (20) as the superposition of the two independent potential-waves:

Φ̈◦ −
λ+ 2µ
ρ

∆Φ◦ = 0, Φ̈× −
µ

ρ
∆Φ× = 0 (21)

the first traveling with cP =
√

λ+2µ
ρ

, the second with cS =
√

µ
ρ
. Often seismological soil

material datasets contain these speeds instead of other material parameters, where the
larger one of the two, cP , is also used e.g. for the computation of the Courant-Friedrichs-
Lewy (CFL)-number within a simulation.
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Seismic source mechanism: With the dynamic elasticity equation (19) describing the
propagation of seismic waves, it remains the question how to model the source/origin of
such waves, resp. an earthquake. For a general, first understanding of earthquake sources
[291, Chap. 1] summarizes underlying physical mechanism taking place at a seismic fault,
i.e. a (two-dimensional) crack in the solid earth’s body where the body parts on either
side of it slide parallel to each other due to a sudden release of accumulated stress.
A seismic fault can be approximated by a e.g. rectangular fault-plane of area A with
orientation being defined via the azimuth-angle φ w.r.t. north and the dip-angle δ w.r.t.
a horizontal plane. Distributed over the fault plane one then defines the slip vector
field s. It describes how far each material point on the fault plane has moved compared
to its (former) counter part on the other side of the fault. A measure for the intensity
of an earthquake is given by the overall seismic moment M0 = µŝA [4, 5], where ŝ is
the mean slip and µ the shear modulus of the material. From M0 also the publicly well
recognized (moment magnitude) scale valueMW = 2/3 log10(M0)−10.7, associated with
the severity of an earthquake, can be computed [5, 171].
For the mathematical modeling of the fault one generally distinguishes [264] on the

one hand side dynamic rupture models resolving the rupture-process [75, 244, 293] and
the resulting slip involving e.g. friction models. On the other hand side, there are
kinematic rupture models, where these data are already given, e.g. by measurement data
and/or other models, and only the wave propagation into the rest of the domain during
the predefined rupture process is numerically computed. In [III] the later approach is
employed to recreate a realistic earthquake relying on the broad range of fault data
obtained from [290]. In detail that data is used in the source models described in [103]
especially with the seismic-source-tensor/stress-glut model [24],[291, Chap. 5]. The
idea of the model is to incorporate the non-elastic stress contributions, e.g. induced by
the slip vector-field s on the fault-plane with normal n into a seismic moment tensor
m = (mij(x, t))3

i,j=1 depending on the spatial location x and time.

(Seismic moment tensor) m(x, t) = m0(x) ·m(t)(t) ·
[
(s⊗ n) + (s⊗ n)>

]
,

where m0 scales with the magnitude of the earthquake and m(t)(t) is the moment release
function associated with the time-evolution of the rupture process. The seismic moment
tensor, resp. its equivalent body force f = −∇ ·m [103], models the stresses that
are induced in the surrounding material by the non-elastic slip caused by the rupture
process. These are then used to startle a wave propagation from the fault plane into
the rest of the computational domain eventually attaining a displacement field that
is again in equilibrium with the the overall stress being the sum of elastic and non-
elastic/prescribed stresses.
For specific earthquakes, fault-plane data such as the moment-distribution m0(x) or

the slip-vector field s [290] can be obtained by seismic wave-form inversion techniques
[132, 156] relying on actual measurement data such as they are provided by [1] for the
region of Turkey considered in [III]. The situation is more complex if one tries to simulate
alternative, however still realistic scenarios that have not (yet) happened. This is done
for example in the seismic risk assessment [13], also see Sec. 3.4 of a region by means
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of physics based simulations, where several possible scenarios with different parameter
distributions are simulated. In order to conduct such random simulations with sensible
parameters, correlations between fault parameters have been analyzed e.g. in [73, 264]
from which reasonable choices of parameters can be deducted.

2.5. Further mathematical tools
In this section I will briefly state a small selection of mathematical tools/theorems that
are mainly used in the proofs of the articles constituting this thesis.

Young’s ε inequality Young’s ε inequality is a variant of the standard Young inequality
involving a parameter ε. By choosing ε either very large or very small, it allows to control
one of the terms on the right hand side.

Lemma 2.2.1 (Young’s ε inequality [105, App.A]).
Let a, b ∈ R and ε ∈ R>0, then there holds:

ab ≤ a2

2ε + εb2

2 (22)

This becomes relevant in situations where one wants to absorb e.g. the a2 term on the
right by some additional term Ca2 on the left, where C > 0 is an unknown constant. In
order to avoid rendering the left hand side negative, one has to choose ε large enough such
that 1

2ε < C. Then the term can be brought to the left hand side easily. Of course the
choice of a large ε increases the b2 term on the right hand side, which again emphasizes
why only one term can be controlled by that approach. This fact, in combination with
the common saying “You have to rob Peter to pay Paul” also yields the name Peter-Paul
inequality to (22) [84].

Gronwall’s lemma For the lemma of Gronwall a lot of different versions exist. Their
common purpose is that they allow to derive from an implicit estimate ϕ(t) ≤ F (t, ϕ) of
some quantity ϕ an explicit estimate ϕ(t) ≤ C(t), where F typically involves integration
and C grows with time. The lemma is employed, e.g., in stability estimates for time
dependent problems.

Lemma 2.2.2 (Gronwall’s lemma [250, Lem. 2.2]).
Let a, b ∈ R, b > a and A,B, ϕ : [a, b] → R where A ∈ L1(a, b) is non-negative, B
and ϕ are continuous and B is non-decreasing. Then the implicit estimate

ϕ(t) ≤ B(t) +
∫ t

a
A(τ)ϕ(τ) dτ, ∀t ∈ [a, b],

implies the explicit estimate

ϕ(t) ≤ B(t) exp
(∫ t

a
A(τ) dτ

)
, ∀t ∈ [a, b].
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Banach’s fixed point theorem Banach’s fixed point theorem plays an important role
in proofs dealing with nonlinear equations as for example the a priori error estimate
in [II, IV], where it guarantees the existence of a solution to a nonlinear problem, also
see for example [232, 240]. The typical procedure therein first assumes a linearized
version of the nonlinear problem around a reference solution. If for example u would be
the exact solution of the (nonlinear) PDE, one might choose a finite element function
wh that is, in some energy-norm ‖ · ‖E, “close to u”, i.e. ‖u − wh‖E . hr for some
r > 0, as such a reference solution. With u(wh)

h being the solution of the resulting linear
problem one finds an estimate like ‖u− u(wh)

h ‖E . hr + ‖f(u)− f(wh)‖. Here the later
term ‖f(u)− f(wh)‖ contains differences from the nonlinear terms f resulting from the
use of the exact solution u vs. the use of the linearization wh. This estimate however
also still depends on wh. In order to get rid of wh one carefully defines a mapping S
that maps the reference solution wh onto u(wh)

h . A fixed point of such a mapping
would then constitute a finite element function zh with ‖u − zh‖E = ‖u − S(zh)‖E .
hr + ‖f(u) − f(zh)‖. From here it becomes visible that the last term involving the
nonlinear terms f must be bounded somehow by Chr in order to carry over the error-
estimate from the linear to the nonlinear model as well as to show contractivity of the
mapping S as it is needed in Banach’s fixed point theorem 2.2.1 that guarantees existence
of such a fixed point.

Theorem 2.2.1 (Banach’s fixed point theorem [302, Ch. IV.7]).
Let (X, d) be a complete metric space and let M ⊂ X be non-empty and closed. If a
mapping S : X → X fulfills:

• Self-mapping property: S(M) ⊂M

• Contractivity: d(S(x),S(y)) ≤ L · d(x, y), ∀x, y ∈M with L < 1

thenM contains exactly one fixed-point x∗ of S, i.e. S(x∗) = x∗. Furthermore
the sequence xn+1 := S(xn) with x0 ∈M being arbitrary converges to x∗ with:

d(xn, x∗) ≤
Ln

1− Ld(x1, x0)

While existence of such a fixed point can then directly be guaranteed by means of Ba-
nach’s fixed point theorem, the challenging task to be done is the proper definition of
the set M and the mapping S and to proof the prerequisites necessary for the appli-
cation of the fixed-point theorem, being the self-mapping property and contractivity.
Such remaining estimates on the nonlinear terms ‖f(u) − f(wh)‖ now rely on inverse-
(Lem. 3.2.1) and interpolation-estimates (Lem. 3.2.3) from classical finite element, resp.
DG literature.
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3. Numerical methods
Having introduced the mathematical models for acoustics and elasticity as well as some
theoretical foundations for the applied methods, this section focuses on the numerical
methods used to solve the resulting (systems of) PDEs.
For the spatial discretization there will be summarized results, references and tools

about discontinuous Galerkin methods in Sec. 3.1, especially in connection with the spec-
tral (element) method. Since all involved models are time-dependent, Sec. 3.2 contains
an overview over Newmark-type time integration schemes that were used in this the-
sis with special attention to the numerical damping of higher modes. In Sec. 3.3 the
elasto acoustic coupling employed in [II, III] will be discussed. Sec. 3.4 gives an overview
over different applications and the internal structure of the high-performance software-
framework SPEED that was mainly used for this thesis.

3.1. Discontinuous Galerkin spectral element method
The method used for spatial discretization in articles [II, III, IV] is the discontinuous
Galerkin spectral element method (DGSEM) as discussed in [14, 214], applied to the
model equations of elasticity [9, 13] and acoustics, where examples for the linear wave
equation are given in [8]. The method is a combination of the classical spectral element
method (SEM) [54, 53, 273] using polynomials associated with Gauss-Legendre-Lobatto
(GLL) quadrature nodes on hexahedral elements as finite element basis functions and
a DG approach [81, 255], in detail the symmetric interior penalty Galerkin method
(SIPG) [17, 304], that allows jumps across element faces. To some extend the faces,
where the DG paradigm is applied and where a conforming approach is used instead,
can be chosen by the user. While it is possible to treat every element face as a DG-
face, resulting in a classical, full DG scheme, the idea of DGSEM is to partition Ω
into subdomains Ωi, i = 1, . . . , N , each meshed and treated in a conforming way using
spectral elements, while the DG approach is only applied at the subdomain-interfaces.
This hybrid approach combines advantages from both continuous and discontinuous
discretizations such as the lower number of degrees of freedom in the conforming and
the flexibility in meshing and local h- and p-refinement of the non-conforming approach.
It further becomes especially useful in situations where a complex geometry consisting
out of different materials, possibly spanning multiple length scales or having varying
accuracy requirements, is considered. Prime examples for applications of DG, SEM and
DGSEM can be found in seismology and the simulation of earthquakes [60, 88, 100, 193,
191, 214, 216, 305], where such methods offer an attractive alternative to e.g. finite
difference schemes [195, 220, 221] and classical finite element approaches [37, Sec. 2]. In
the rest of this section first some background information and definitions for the DG
parts of the method are introduced working with an arbitrary elementwise polynomial
basis. Second, important inequalities such as trace-, inverse- and error-estimates are
summarized. Finally a short review on SEM is given, from which a specific elementwise
basis and numerical quadrature rule is employed to constitute the final DGSEM scheme.
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Historical development of DG-methods: Following the introductory article [116, part
I, article 5] and [18, 69], the DG method can be traced back to Reed and Hill [253], with a
numerical analysis of [157, 201], considering a first order, hyperbolic transport equation
arising from nuclear physics. In (one of) their formulations, the weak form of the equa-
tion was already discretized using independent, elementwise degrees of freedom (DOFs)
allowing for discontinuities in between. Applications also to elliptic and parabolic prob-
lems, especially involving the SIPG method, which is also applied to the second order
spatial derivative part in this work, then followed [17, 26, 304]. Further developments
related to DG methods include the weak incorporation of Dirichlet boundary conditions
[235], a posteriori error-estimators [56, 99, 175] or shock-capturing methods and slope
limiters [146, 198, 289] also known from finite volume methods. Also see [19] for a
broader overview over different DG techniques.
By now DG methods have been applied to many different problems. From the afore-

mentioned seismic applications, over waves [78, 126, 147, 227], especially also nonlinear
acoustic ones [182, 287], mostly via their conservative system formulation, the shallow
water equation [3] up to fluid-mechanics [118] and turbulence [31] and magneto-hydro-
dynamics [300].

Meshing: For the rest of this section the Westervelt equation (8) will serve as a model
problem in order to formulate fundamental parts of the method. The basis of a DG (or
general finite element) discretization of e.g. the model problem is formed by meshing
the domain Ω, i.e. forming a non-overlapping subdivision T = {τk}Nk=1,Ω = ⋃N

k=1 τk,
where the τk s can be simplices, quadrilaterals in 2D resp. hexahedra in 3D, or even
general polyhedra. In contrast to a conforming mesh, hanging nodes are allowed in a
DG setting. As in classical finite elements, hτ stands for the diameter of the element
τ and by h := maxτ∈T hτ one denotes the maximal element diameter present in the
mesh. Further classical terms such as shape-regularity, i.e. the existence of a constant
κ > 0 such that κhτ ≤ ρτ , ∀τ ∈ T , ρτ being the radius of the largest inscribed ball
within τ , are defined for simplicial, but also general meshes for example in [81]. It sets
in relation the element diameter hτ with the area resp. volume of the element and hence
avoids degeneracy. For anisotropic elements that are e.g. very thin in only one direction
[114, 115], for prismatic elements [51] or for even more general polyhedral elements, that
are of interest recently, [15, 50, 52, IV] state similar conditions and results. In [II] the
DG approach is only applied on subdomain interfaces, as introduced in [14]. There
further mesh assumptions dealing with the comparability of the subdomain meshes are
formulated.
For the rest of this chapter E will denote the set of all element edges (2D) resp. faces

(3D) that are part of the DG approach. In case of the subdomain wise DG interface
coupling, it will only contain the interface- and boundary-faces, in the full DG approach,
it will contain all faces. With each face e ∈ E one associates the face normal ne being
either the outward normal of the element on the left side of e, denoted by n+ or the
outward normal of the element on the right side of e denoted by n−, where the choice of
“left and right” is arbitrary but fixed for each face. With the face normal at hand one
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then defines the mean- and jump-values of a scalar quantity ψ as:

(Mean- and jump-values) {{ψ}} = 1
2(ψ+ + ψ−), [[ψ]] = (ψ+ − ψ−)ne,

where again ψ+ and ψ− stand for the values of ψ on the left resp. right hand side of
the face, where on Dirichlet boundary faces the boundary value is taken instead of the
“outer” evaluation. For vectorial or even tensorial quantities similar definitions can be
found in [7, 9].

Variational formulation: With the non-conforming mesh Th also comes a broken defi-
nition of the space Hn(Th) as well as the finite element ansatz space Vh, where the index
h denotes the dependency on a particular mesh with mesh-size h e.g. from a family of
successively refined meshes. For the later, Pp(τ) denotes the space of polynomials up
to order p over the element τ and Qp(τ) the space of polynomials up to order p per
dimension over τ , which can be set up via a tensor product.

Definition 3.1 (Broken spaces). Let n, p ≥ 1 and Sp(τ) be either Pp(τ) or Qp(τ), then
the broken space Hn and finite element ansatz space Vh in a full DG setting are defined
as:

Hn(Th) := {ψ ∈ L2(Ω) | ψ|τ ∈ H
n(τ) ∀τ ∈ Th}

Vh := {ψ ∈ L2(Ω) | ψ|τ ∈ S
p(τ) ∀τ ∈ Th}

Again, in a subdomain-wise conforming approach with DG faces only at the interfaces,
the spaces are defined differently as subdomain-wise H1 instead of only L2 [14, II].

Returning to the Westervelt equation (8) as a model-problem, its variational form
using the SIPG is stated in the following as an example. To that extend, the DG
paradigm will be employed over the whole domain, i.e. assume every element as a
material subdomain and hence all element faces are assumed to be DG interfaces. For
simplicity of exposition the damping factor is chosen to be b = 0 with homogeneous
Dirichlet conditions assumed on all of ∂Ω and f ∈ L2(Ω) as a right hand side force term.

Definition 3.2 (Bilinear forms and penalty). The following bilinear forms are defined,
where the gradient has to be understood in a broken, elementwise, sense:

• Interior bilinear form: ah : Vh × Vh → R, ah(ψh, φh) := (c2∇ψh,∇φh)Ω

• Consistency term: bh : Vh × Vh → R, bh(ψh, φh) := ∑
e∈Eh〈{{c

2∇ψh}} , [[φh]]〉e

• Symmetry term: sh : Vh × Vh → R, sh(ψh, φh) := ∑
e∈Eh〈{{c

2∇φh}} , [[ψh]]〉e

• Penalty term: ph : Vh × Vh → R, ph(ψh, φh) := ∑
e∈Eh〈χ [[ψh]] , [[φh]]〉e

where the penalty parameter χ on the face e ∈ E is defined as χ|e := σmaxτ∈{τ+,τ−}
c2p2

hτ
with τ+ and τ− being the elements left and right of the face e and σ is constant to be
chosen appropriately (large).
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With these definitions and 2k = 2+B/A
c2 being a more compact notation for the nonlinear

coefficient, the semi-discrete variational form then reads:

(Semi-discrete variational form)
Find ψh ∈ Vh such that for almost all t ∈ (0, T ) and for all φh ∈ Vh there holds:

(ψ̈h, φh)Ω + ah(ψh, φh)− bh(ψh, φh)− sh(ψh, φh) + ph(ψh, φh) = (23)∫
Ω

2kψ̇hψ̈hφh dx+ (f, φh)Ω

with initial conditions (ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h) ∈ Vh × Vh.

Inequalities and estimates: Inverse inequalities and trace estimates are some of the
main tools for the error analysis of DG methods. The main purpose of trace estimates lies
in relating norms on element faces, e.g. stemming from the above introduced consistency,
symmetry or penalty terms of the weak form with norms on the interior of the element,
in order to arrive at a specific norm for the final error-estimate. Inverse estimates on the
other hand estimate higher order Sobolev-norms of finite element functions/polynomials
against lower order ones. In the following the notation x . y is used standing for x ≤ Cy
with some constant C > 0.

Lemma 3.2.1 (Trace and inverse estimates [81, Lem. 1.44, 1.46], [268, Thm. 4.76]).
Let τ ∈ Th and ψh ∈ Sp(τ), then there holds:

Trace estimate: i) ‖ψh‖L2(∂τ) .
1
h

1/2
τ

‖ψh‖L2(τ),

Inverse estimates: ii) |ψh|H1(τ) .
1
hτ
‖ψh‖L2(τ), iii) ‖ψh‖L∞(τ) .

1
hd/2
‖ψh‖L2(τ)

where d is the spatial dimension of Ω.

Details as well as precise values for the constants - at least for simplicial elements - of
the trace inequality are considered in [301], while for more general, polygonal shaped
elements a variant can be found in [52].
For interpolation estimates as in Lem. 3.2.3, but using for example the DG norm (24),

the trace of a non-polynomial function ψ, resp. its interpolation error ψ − Πpψ has to
be estimated on element faces as well. Therefore the following continuous trace estimate
can be employed. Such trace inequalities are not only restricted to DG methods but can
also be found for example in isogeometric analysis [102].
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Lemma 3.2.2 (Continuous trace estimate [81, Lem. 1.49]). Let Th be a shape regular
mesh, τ ∈ Th, e be a face of τ and ψ ∈ H1(Th), then there holds:

‖ψ‖2
L2(e) .

(
|ψ|H1(τ) + h−1

τ ‖ψ‖L2(τ)
)
‖ψ‖L2(τ)

. hτ |ψ|2H1(τ) + h−1
τ ‖ψ‖2

L2(τ)

Interpolation-estimates: Following the typical structure of finite element a priori error
estimates a decomposition of the error ‖ψ − ψh‖ of exact solution ψ and finite element
solution ψh into an interpolation part ‖ψ−Πpψ‖ and an approximation part ‖Πpψ−ψh‖
is employed. Here Πp is a suitable interpolation operator from H1(Th) to Vh which, in
the full DG setting, can be employed element-wise. In order to control the interpolation
part of the error the following interpolation estimates are needed, which can also be
found in [II, Lem. 4.4] and [IV, Lem. 2].

Lemma 3.2.3 (Interpolation estimate [45, Thm. 4.4.4, 4.6.11, Cor. 4.4.7]). Let Th
be a shape regular mesh, τ ∈ Th and ψ ∈ Hn(τ). Then there exists an interpolation
operator Πp : Hn(τ)→ Sp(τ) such that with m := min{n, p+ 1} there holds:

L2-estimate: i) ‖ψ − Πpψ‖L2(τ) . hmτ ‖ψ‖Hn(τ), n ≥ 0,
H1-estimate: ii) |ψ − Πpψ|H1(τ) . hm−1

τ ‖ψ‖Hn(τ), n ≥ 1,
L∞-estimate: iii) ‖ψ − Πpψ‖L∞(τ) . hm−d/2τ ‖ψ‖Hn(τ), n > d/2.

The aforementioned interpolation estimate on element faces can be found for example in
[81, Lem. 1.59] and again [52] states similar results in the general polygonal case. Finally
[45, Lem. 4.4.1] also states a stability estimate for ‖Πpψ‖Wk,p(τ), which is then used in
[II, Lem. 4.5].

Finite element error-estimates: Having available the semi-discrete form (23) of the
model problem as well as the estimates and inequalities from above, a priori error-
estimates can be derived. In the elliptic case of e.g. Poisson’s equation, the strat-
egy consist of showing continuity and coercivity [81] of the bilinear form ah(ψh, φh) −
bh(ψh, φh)− sh(ψh, φh) + ph(ψh, φh) from above w.r.t. the DG-norms:

‖ϕ‖2
DG :=

∑
τ∈T
|ϕ|2H1(τ) +

∑
e∈E
‖√χ [[ϕ]] ‖2

L2(e) (24)

‖|ϕ‖|2DG := ‖ϕ‖2
DG +

∑
e∈E

he‖ {{∇ϕ · ne}} ‖2
L2(e)

For coercivity to hold true, it is required that the penalty parameter σ within the
definition of χ is large enough [17, 116]. Lower bounds on σ to be actually large enough
can be found in [96]. The elliptic case then proceeds by estimating the individual norm
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contributions to the interpolation error-terms on the right hand side of

‖ψ − ψh‖DG . inf
φh∈Vh

‖|ψ − φh‖|DG ≤ ‖|ψ − Πpψ‖|DG

by means of the interpolation estimates of Lem. 3.2.3 as well as their trace-equivalents
by means of Lem. 3.2.2. Finally one arrives at

‖ψ − ψh‖DG . hm−1‖ψ‖Hn(Th), m = min{n, p+ 1},

provided ψ ∈ Hn(Ω).
For time dependent problems, the approach is similar, e.g. for parabolic equations

like the heat-equation [17, 256], or the (linear) scalar wave-equation [126] or elastic wave
equation [15]. In order to account for the time evolution of the problem, the norm (24)
used for the error-estimate is extended for example by ‖ϕ̇‖2

L2(Ω) to form a, now time
dependent, energy-norm

‖ψ(t)‖2
E := ‖ψ̇(t)‖2

L2(Ω) + ‖ψ(t)‖2
DG +

∫ t

0
‖ψ̈(s)‖2

L2(Ω) ds,

where the last term appears additionally in case of the Westervelt and Kuznetsov equa-
tion, see [II, (4.1)]. In that energy norm then stability- and later also error-estimates are
derived, typically by testing the weak form, resp. the error equation, i.e. the difference
of the variational forms with the exact and numerical solutions being inserted, with
a suitable test function. Here partial integration in time and the lemma of Gronwall
Lem. 2.2.2 play an important role to obtain estimates that are explicit in the energy
(energy/stability-estimate) or the error (error-estimate).

Numerical analysis of nonlinear (elasto-) acoustics - Contribution of [II] and [IV]:
Here the novel contribution of [II] and [IV] lies in the incorporation of the nonlinear term∫

Ω 2kψ̇hψ̈hφh dx, resp. its equivalent in case of the Kuznetsov equation (9) even involving
gradients ∑τ∈T

∫
τ 2k′∇ψh∇ψ̇hφh dx, of the variational form. The error-analysis is first

conducted for a linearization around a reference solution, where the nonlinear terms,
evaluated at this reference solution, are treated as additional force contributions to the
right hand side. By doing so, the linear version can be analyzed with standard methods
and results from literature, while the problematic nonlinear part is dealt with separately.
The method of choice to extend the error-estimate to the nonlinear regime is by means
of Banach’s fixed point theorem (Thm. 2.2.1) and the procedure described in Sec. 2.5.
The result shows that the method converges with the same order of h in the nonlinear
case as in the linear one, for both Westervelt and Kuznetsov type nonlinearities, resp.
a combination of both. The result holds true for elasto-acoustic interfaces in the same
way as for acoustic-acoustic interfaces between subdomains of different materials.
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Spectral (element) method: Even though there is of course a connection, one has
to distinguish between (globally) spectral methods and spectral element methods SEM.
The first one is mainly attributed to Orszag during the 1970’s, where he used truncated
series of orthogonal polynomials [237] or Fourier-series [238], i.e. globally smooth, mu-
tual orthogonal basis functions - hence the name spectral - to represent the solution of
a PDE, see also the details in the more recent text books [53, 54, 123, 273]. Originally
restricted to rectangular domain shapes the method was soon extended to more general
shaped domains via mappings and by coupling multiple patches [239], both being princi-
ples also used for finite element meshes. Eventually it was a logical step to combine the
flexibility of finite elements concerning general domain shapes with the spectral methods
advantages such as spectral convergence [54, Sec. 5.1, 5.4] as it can also be found in the
very similar [80, Sec. 2.3.2, 2.4] higher-order p-FEM e.g. in [23], [268, Cor. 3.12]. With
the finite element space Vh being defined in Def. 3.1, resp. its analogue for conforming
finite elements, it still remains to choose an (elementwise, polynomial) basis {ψj}p+1

j=1
spanning that space. A sensible choice for this basis now poses the connection to the
original spectral methods, see also [312] for a detailed review of the development of the
method.
In classical, conforming finite elements, Lagrange-polynomials associated with (equidis-

tant) Lagrange interpolation nodes on each element can be chosen. Stitched together
across element boundaries they yield globally continuous basisfunctions with local sup-
ports. Applying a numerical quadrature rule with sufficiently high degree of exactness
to assemble mass- and stiffness matrices results in their well known sparse structure.
These are properties one wishes to pass on to the spectral basis to be chosen. Start-
ing in one dimension, a well known family of orthogonal polynomials are the Legendre
polynomials Ln ∈ Pn([−1, 1]), n = 0, 1, 2, . . . , p+ 1. Their roots (xi)ni=1 are known to be
the Gauss-Legendre quadrature nodes yielding the highest possible degree of exactness,
2n − 1 resp. 2p + 1 for n = p + 1, for the associated quadrature rule. However, since
the nodes xi lie strictly in the interior of [−1, 1], continuity across element boundaries
can not be enforced, posing a problem if the DG approach is not employed between all
elements but a partly conforming approach is used, see [II]. In that case the boundary
points x = −1 and x = 1 are supposed to be interpolation nodes as well and a mod-
ified (nodal) basis, based on the GLL nodes being the roots of (1 − x2)L′n−1, is
used. The associated quadrature formula yields a reduced degree of exactness of 2n− 3,
resp. again 2p − 1 for n = p + 1 [54] but the chosen basis has the desired properties
from above. The resulting method is called (a version of) the nodal SEM [80, 292]. On
quadrilateral/hexahedral elements a simple tensor product approach is used to obtain
the GLL-grid also in more dimensions while for simplicial elements different approaches
are analyzed in [243].

An important trait of the just created method, where quadrature and interpolation
nodes coincide, is the fact that by choosing the Gauss-Lobatto quadrature for the nu-
merical integration of the mass matrix, one automatically obtains a diagonal, lumped
mass matrix with much less computational quadrature effort than with standard el-
ements thanks to the interpolatory property of the interpolation polynomials. It has
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to be noted though that due to the aforementioned reduced order of exactness of the
Gauss-Lobatto-quadrature, a variational crime is committed by the numerical integra-
tion of each mass-matrix entry comprising the reference-element integral of ψ̂hϕ̂h being
of degree 2p plus the Jacobian determinant of the element mapping. The effect on the
convergence order can be analyzed using the first lemma of Strang [98, Lem. 2.27], where
the order of the quadrature error enters. For parallelpiped-shaped elements the quadra-
ture formula is still “good enough” and no order reduction is inferred, while for generally
shaped elements a dependency on the dimension d enters with an order reduction for
d ≥ 3 [89, Thm3.6., Rem. 3.3. and 3.4.], also see [210]. However, the underintegration
is performed on purpose [60, Sec. 5.1] as such a diagonal mass matrix goes hand in hand
with explicit time integration schemes such as the leap-frog or explicit Newmark scheme
[313, 314].

Even though the invention of the SEM is now mainly associated with Maday and
Patera [312, Ch. 7.3], an earlier applications of the SEM, even though not yet called like
that, to a reservoir simulation can be found by Young [311]. Later applications to the
acoustic waves [270, 313, 314] as well as seismic waves [190, 191, 192, 193, 222, 248],
where the SEM is one of the most commonly used methods, followed. While in [II] the
error analysis for the DGSEM method is only conducted w.r.t. an h-refinement assuming
fixed values of p, the degree-dependency is resolved e.g. in [245] for a diffusion-problem
or in [7, 10] for elastic and acoustic waves.

3.2. Newmark-type methods for time integration
After spatial discretization of any of the acoustic models (6),(8),(9) one arrives at a
system of ordinary differential equations (ODEs) of the structure:

M ü+ Cu̇+Ku+ T (u, u̇, ü) = b (25)

where M,C and K are mass, damping and stiffness matrices, b is a right hand side
vector of possible external forces or Neumann data that might vary over time and space
and T summarizes all nonlinearities present in the respective equation, see for example
the model problem (23). The precise shape of T depends on the equation in use consist-
ing out of up to two of the third order tensors T1[u, ü, ·], T2[u̇, u̇, ·], T3[u̇, ü, ·], T4[u, u̇, ·]
each, see for example [170, p. 165 f.], [IV, (7.1)], [V, p. 181], or even further nonlinearities
entering through nonlinear ABCs such as in [I, (33)]. Dirichlet data are incorporated
either via a lifting, see [I, (33)], or in a weak sense, see [IV, (7.1)], also on the right hand
side. For brevity, homogeneous Dirichlet data are assumed in this section and without
further notation the system (25) is considered only for interior, non-Dirichlet DOFs.
Initial conditions are given for u and u̇ as usual.

In order to integrate (25) through time, different options are available. One common
approach is to transform the second order in time system (25) into a first order system,
e.g. by introducing the new variable v := u̇. For first order systems a long list of time
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integration methods can then be used ranging from classical Runge-Kutta methods [125,
295], over linear multistep methods [30, 174] up to symplectic methods [208, 263] making
use of the Hamiltonian structure of the resulting first order system. Especially when it
comes to nonlinear systems mixed methods consisting of implicit and explicit (IMEX)
time stepping schemes are advantageous combining the stability of implicit methods
for the linear parts and the fast evaluation of explicit ones e.g. for the evaluation of
the nonlinear part [138]. Another class of methods are exponential integrators. They
employ a linearization of the nonlinear equation producing a nonlinear remainder term
on the right hand side. The resulting ODE system with inhomogeneity is transformed
into an integral equation by means of the variation of constant principle. The result-
ing integral involving a matrix exponential is then solved numerically by a quadrature
rule. A review of such methods can be found in [139]. Considering spatially high-order
approximations with error rates O(hp), p ≥ 5, classical Runge-Kutta methods aiming
at the same order for the temporal error O(τ p), p ≥ 5 suffer from the Butcher-barriers
resulting in a continuously growing effort to compute the necessary amount of stages to
reach the respective order. Here the arbitrary derivative (ADER) methods are settled.
With them the solution is expanded into a (temporal) Taylor-series around the current
time-step. Then the higher-order time derivatives are expressed via spatial derivatives
such that upon evaluation of the Taylor-series at the new timestep the high spatial or-
der of the method carries over to the temporal error [178, 266]. Even though acoustic,
elastic as well as further wave-type equations have distinct features and differences, they
follow the same general structure. Hence, a common framework for acoustic, elastic and
electromagnetic waves being discretized using the DG method in space with subsequent
application of different time integration methods can be found in [140].
Alternative approaches that solve the time-dependent equations not in a separate

spatio-temporal way exist as well. As an example methods that involve a combined
space-time discretization are discussed in [11]. Here the time interval is divided into
sub-intervals over which spatial discretization is done independently with a coupling
across sub-intervals by means of DG interfaces and jump-terms. For such a space-time
method also see [82].
Finally, the approach that is also used in the articles of this thesis is a predictor-

corrector scheme of Newmark type with nonlinear extensions directly operating on the
second order equation as proposed in [141, 170]. Generalizations to cope with Gibbs-
like high frequency overshoots at steep wave-fronts typical in nonlinear acoustics are
discussed as well in terms of the so called Generalized-α schemes [66].

Derivation of the Newmark scheme: The original method of Newmark [231], for-
mulated in displacement u, velocity v = u̇ and acceleration a = ü, can be derived
by approximating a in between timesteps tn and tn+1 either as mean-value of
the respective value an and an+1, their linear interpolation or for example a centered
step function. Each of these choices leads to a different parameter value β in the re-
sulting scheme below. In any case, an+1 is treated as an unknown, while all values
are assumed to be known at the old timestep tn. The value of vn+1 is then obtained
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via a numerical integration of a, where the parameter γ enters as a weighting fac-
tor for the quadrature weights. The quadrature is repeated to obtain un+1 from the
numerical integration of v where the second parameter β enters. One obtains the re-
lations (26), (27), where an+1 is still unknown. To compute it, the original ODE (25)
is evaluated at the new timestep tn+1 with the predicted values upred and vpred being
inserted. This yields the (nonlinear) system (28) that remains to be solved for ex-
ample via a fixed-point iteration using an and the predictions for u and v as initial
values. One then iterates, with iteration index κ, the solution of the linear system
M∗an+1,κ+1 = bn+1 − T (un+1,κ,vn+1,κ,an+1,κ) − Cvpred − Kupred and the correction
steps in (26),(27) until a sufficient termination criterion is met before advancing to the
next time step. M∗ is called the effective mass matrix. Details about the algorithm can
be found in [141] as well as, for its generalized-α form, in [V, Alg. 1] and [IV, Sec. 7.1].

Newmark-relations
Predictor Corrector scheme with initial predictions for u, v, then alternating solution of
the linear system and correction using its solution an+1. γ and β are the Newmark
methods parameters with classical choices γ = 1

2 , β = 1
4 .

Prediction and Correction equations

vn+1 = vn + ∆t(1− γ)an + ∆tγan+1 =: vpred + ∆tγan+1 (26)

un+1 = un + ∆tvn + ∆t2
2 (1− 2β)an + ∆t2

2 2βan+1 =: upred + ∆t2
2 2βan+1 (27)

Algebraic system

M∗an+1 + Cvpred +Kupred = bn+1 − T (un+1,vn+1,an+1) (28)

The matrix M∗ is given by M∗ = M + γ∆tC + β∆t2K

For the special choice of parameters γ = 1
2 and β = 0 the method becomes the Störmer-

Verlet, resp. Leapfrog method (with full timestep size) [128, Ch. I.1.4]. In that sense,
the Newmark algorithm is a generalization of those methods which, for β > 0 adds an
implicit component also to the u-update (27). It should be noted that also explicit ver-
sions of the Newmark-scheme exist as in [121] or [148, 149], where the ODE is evaluated
at the new (unknown) timestep tn+1 only for the acceleration an+1 while for u and v the
predicted values are inserted. This results in an algorithm where instead of the effective
mass matrix M∗ only the original mass matrix M appears in the algebraic system to
be solved. Especially for spectral elements, see Sec. 3.1, where M is diagonal this yields
a fast, explicit algorithm, however, in the general case of C 6= 0 with only a first order
convergence [148] compared to the, see below, order p = 2 of the implicit, “original”
Newmark-method. In [211, 314] further versions of the Newmark scheme are discussed
and compared in the context of acoustic waves, in [315] for elastic ones.
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Consistency and stability: The presence of the parameters γ and β in the Newmark
scheme yield the questions, for which values of them is the resulting scheme stable and
convergent with which order? In the linear case the question has been addressed in [124]
by means of a modal decomposition and in [62, 121] by deriving a recursion relation
for the Newmark scheme, i.e. formulating it as a linear two-step method, then using
stability criteria from the theory of such. As a result, one obtains the following general
conditions [149].
Consistency: If γ = 1

2 , the method is consistent of order p = 2, otherwise at least
of order p = 1. In the absence of damping, i.e. C = 0 in (25), the additional choice of
β = 1

12 then even leads to order p = 4 consistency [121].
Stability: If γ ≥ 1

2 , hence especially in the second order case, stability is uncondi-
tional, provided β ≥ γ

2 , as it is the case for the classical choice of parameters. For values
β < γ

2 conditional stability is given, restricting the time stepsize w.r.t. the maximal
present frequency of the oscillation, again see [149].
An increase of the parameter γ beyond the value of 1

2 introduces artificial damping
to the system. Especially in the context of nonlinear waves such behavior is favored
since the additional damping helps to cope with the aforementioned high-frequency
overshoots. For a given value of γ > 1

2 the choice of β = 1
4(γ + 1

2)2 yields an optimal
damping behavior [148]. However, recalling the above consistency condition on γ the
higher-mode damping comes for the price of a reduction to an order p = 1 method.
In addition, damping is not only confined to the high frequency range but also affects
the remaining spectrum ultimately preventing oscillations. A method that allows to
apply the additional damping ideally only on those high frequency components while
not, or at least less, affects the low frequency band, would be the searched for remedy.
Generalized-α methods as employed in the articles of this thesis accomplish exactly that.

Generalized-α-schemes: The need for a method with the just mentioned damping,
accuracy but also stability properties led to the development of a multitude of meth-
ods very similar to the Newmark method e.g. the Hilber-Hughes-Taylor HHT-α [137]
or Wood-Bossak-Zienkiewicz WBZ-α method [307]. The idea of these two consists of
evaluating the ODE (25) at the new timestep t(n+1) as in the Newmark method, but
instead of u(n+1) a linear combination of (1+α)u(n+1)−αu(n) (HHT-α) and similar with
ü (WBZ-α) is used, shifting the purely implicit equation a bit more to the explicit side.
Chung and Hulbert [66] then combined these two methods into a mathematical frame-
work with two additional parameters αm and αf consituting the generalized-α method.
Indeed for specific choices of αm and αf the Newmark method or any of the other two
mentioned schemes can be recovered. The derived scheme is consistent of second order
for γ = 1

2 − αm + αf and unconditionally stable for αm ≤ αf ≤ 1
2 , β ≥

1
4 + 1

2(αf − αm).
This allows to increase γ beyond 1

2 without losing second order accuracy as it was the
case with the standard Newmark scheme. Further more in [66] it is also shown that the
parameters αf and αm can be expressed by one single free parameter ρ∞ ∈ [0, 1], which
represents the numerical high-frequency damping of the method with no numerical
damping at all (ρ∞ = 1) vs. immediate annihilation in only one timestep (ρ∞ = 0).
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The algorithm parameters and conditions are compared between the generalized-α and
its predecessor methods in [97, Tab. 1-3], where the high-frequency damping capability
of the method as well as its consistency order have also been analyzed for certain non-
linearities, see also [43].
Generalized-α methods have already been applied to (nonlinear) wave problems e.g.

in solid mechanics [44, 85, 150] and nonlinear (vibro) acoustics [258, 298] e.g. in aircraft
simulations [271]. There are also versions of the method extended to first order systems
by employing the idea of linear combinations between new and old timesteps in a simi-
lar way with order and stability conditions also carrying over from second to first order
[154]. Exemplary applications are in fluid-mechanics [154] or to phase-field models [122].
Just recently also a 3rd order version of the method was derived in [33], with even higher
order versions for different types of equations following [32, 34, 35]. The precise way
how the generalized-α method is used to resolve the steep wave fronts of the nonlinear
acoustic models in this thesis can be found in [IV, Sec. 7.2], [V, Alg. 1].

3.3. Elasto-acoustic coupling
In the simulation of complex (mechanical) systems different materials, each with its own
physics and modeling-equations, interact with each other. Formerly individual fields such
as displacement, pressure or temperature now exhibit dependencies, which need to be
captured by appropriate coupling mechanisms. One distinguishes between the coupling
of variables once on the same domain Ω, such as acoustic potential and temperature in
[257, 277] or a flow equation such as the Navier-Stokes system and a convection-diffusion
concentration/heat equation in fluid mechanics [79, 172, 223] influencing each other on
the whole volume of Ω; and second the coupling of different (material) regions over an
interface, as it is classically done for example in fluid-structure interaction [107, 261].
Also for the coupling of an elastic to an acoustic material the later, interface-based
approach is commonly used as the materials are usually separated. In the presented
examples the elastic materials are a solid ultrasound excitator, a portion of human
tissue, the earth’s ground or a building structure, while the acoustic material is most
often a fluid such as water or air. In the elastic and acoustic linear case the problem is
treated for example in [7, 106] with further, more elaborated simulation results in [8],
where the key concept to transport information from one material domain to the other
is an exchange via interface conditions. The conditions are chosen in such a way that
continuity of (particle) velocity and normal stresses is given across the interface.
In that sense the interface conditions avoid the penetration of one material into the
other and hence keep the interface intact. Making use of the definition of the acoustic
potential ψ (5) relating it to pressure p and particle velocity v, these conditions, without
damping, read:

(Interface conditions) σ(u) · n = −ρψ̇n, ∇ψ · n = −u̇ · n

where the first one can be identified as a Neumann-condition on the solid displacement
field u for equation (19), the second one in reverse is a Neumann-condition for the acous-
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tic wave equation in ψ. While the interface conditions can be kept the same also in the
presence of the nonlinear terms of e.g. Westervelt’s or Kuznetsov’s equation, for the in-
corporation of the additional damping term b∆ψ̇, see (8), (9), the conditions have been
extended in [II]. Similar interface conditions that have been extended even more to also
incorporate nonlinear contributions can be found in [298] with the presented conditions
as a linear approximation.

For the solution process of the coupled system with its mutually dependent cou-
pling conditions, a staggered time integration approach is well suited. Time integra-
tion schemes of the Newmark family for the acoustic part discussed in Sec. 3.2 are of
predictor-corrector type. Combining them also with such a scheme for the elastic part,
as for example the leapfrog scheme allows for a sequential solution process where the in-
terface conditions for the first variable can be evaluated from the predicted values of the
other allowing for an explicit time integration approach. Wrapping the solution process
into an outer fixed point iteration loop as well as local time-stepping for only one of the
two variables [277, III] are further options, easy to realize. Noting, that SPEED already
contained routines dealing with e.g. interface quadratures coming from the coupling of
elastic-elastic interfaces between non-matching grids [14, 214], the incorporation of the
elasto-acoustic interface via boundary-conditions is straight forward for non-matching
interfaces as well. Alternative approaches using Lagrange-multipliers for the interface
coupling can be found in [106, 203].

Transducer-Fluid-Tissue simulation - Contribution of [II] part 2: From a modeling
and applicational point of view the simulations conducted in [II] are of interest as they
contain the whole propagation process of a focused ultrasound wave. Starting with the
curved transducer mechanical impulses are applied to excite an elastic wave. Then the
first elasto-acoustic interface transmits that wave into an ultrasound wave-guide where
it propagates according to the nonlinear acoustic models showing the typical effects
such as wave-steepening. Finally the wave enters a portion of human tissue for which
different, elastic and acoustic models are used. In that way, the conducted numerical
examples pose a further step in the simulation of medical ESWL, as it was one of the
first motivations for this thesis.

3.4. Seismic simulations in SPEED
The software framework SPEED is mainly developed at the MOX laboratory for Mod-
eling and Scientific Computing at Politecnico di Milano in Italy, with strong influence
from the older software GeoELSE [282, 283]. The acronym SPEED stands for SPectral
Elements in Elastodynamics withDiscontinuous Galerkin, which shows its original scope
being in the simulation of (purely) elastic problems by means of the DGSEM approach
[14]. This of course changed over time with SPEED now being able to handle also the
nonlinear acoustic equations discussed in this thesis [IV] and coupled elasto-acoustic
problems [7, II].
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Features and application scenarios: The main area of application for SPEED lies
for sure in the simulation of seismological scenarios. Studies conducted so far encom-
pass ground-only cases, however with a complex sub-soil layer structure, e.g. in the
Netherlands [242], in combination with a seismic risk assessment in China [13] or a
topography-including case in Italy [101]. However, also ground-structure interactions
were considered for example in [180, 209, 214, 216] for China, New Zealand and again
Italy. Also for a different region of Turkey than in [III] a study was already conducted
with it [153]. In that sense, the case study of the Tahtalı dam in [III] queues up in a
long range of other scenarios on which validation of the SPEED code was repeatedly
performed. It brings together the new elasto-acoustic coupling features by considering
the full 3D interaction of the dam with the reservoir-lake behind it, the dam as a more
complex fully resolved building structure as well as its embedding into a real topogra-
phy. Making use of the rich set of available real-life data in the presented scenario makes
the article [III] a good showcase of SPEED’s capabilities in terms of large, complex
simulations involving real data. The DG approach is utilized in [III] to great extend
in a full source-to-site simulation including the seismic fault model from Sec. 2.3 on a
kilometer scale as well as the, comparably much smaller scaled, dam. The multiscale
nature of the problem is resolved by locally refined sub-meshes (h- and p-variability)
that are coupled using DG interfaces as in [216, II, IV].
The output data of the simulation are of importance from a seismological and en-

gineering perspective especially concerning peak values of displacement, velocity and
acceleration [58, 92, 309]. Those values, presented e.g. in peak-ground maps such as in
[III], are crucial for the assessment of seismic risks. Other quantities of interest might
be the deformation, (maximum) displacement or frequency and spectral responses spec-
tra (of a building) or stress and elastic pressure values, all being extractable from the
numerical simulations [104]. Building structures for example might be designed to resist
ground motions up to a certain percentage of the earth’s acceleration g ≈ 9.81 m

s2 before
taking damage or even collapsing [13, 93]. Often, the buildings themselves are simulated
using single- or multi-degree of freedom spring and damper models [93, 196], but also
finite difference and finite element models are used [180, 215], especially for large, non-
filigree buildings such as dams [176, 299], also under consideration of the dam-reservoir
interaction [6, 117].

Seismic dam simulation - Contribution of [III]: The case study performed in [III] pro-
vides a detailed numerical study of the considered seismic event. The large scale simu-
lation containing the actual seismic fault, modeled with the equations from Sec. 2.4, as
well as the analyzed building structure does not depend on additional assumptions on
the wave excitation such as a single backtraced seismogram measurement which, how-
ever, is also used for a comparison. The whole simulation workflow is contained in one
large, coupled multi-scale model, incorporating specific site effects such as the material
properties of soil layers, topographic information, the dam geometry as well as the influ-
ence of the reservoir lake. The simulation is validated by comparison of the numerical
data with actual seismogram readings at several locations, see [III, Fig. 8]. Altogether,
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the simulation capabilities created and shown in this work offer a robust, accurate and
computationally efficient numerical model for the assessment of the seismic response of
dam structures, involving various physical aspects. Due to its mathematical generality,
in the future, it can also be employed at different locations for different scenarios.

Based on the simulation results such as peak values of quantities of interest and
statistical consideration concerning the probabilities of occurrence of certain (magnitude)
events [142, 262], it is also of interest to conduct projections of other possible scenarios
that might happen. This ultimately leads to the field of seismic hazard analysis [71, 153,
281, 296], which also poses a possible further field of research after completion of this
thesis.

Internal, (parallel) structure of SPEED: The core of SPEED is written in (proce-
dural) FORTRAN and designed for parallelization using MPI (OpenMPI [111]) from
top to bottom. SPEED follows a domain decomposition approach by dividing the mesh
input using METIS [177] among the specified number of MPI ranks by partitioning the
element-based graph using an edge-cut minimization, which allows to keep the commu-
nication volume between the different ranks low. The mesh itself can be generated by
an arbitrary third party software such as for example Cubit [40] with standard export
capabilities to e.g. EXODUS files, which are then suitably converted. In order to use
the tensor-product structure of spectral elements in SPEED, hexahedral elements are
required. The creation of such hexahedral meshes can be challenging for complex geome-
tries such as in [III]. It can be suitably achieved by a semi-automatic pave-and-sweep
approach [38, 39, 218] with details for the presented case being given in [III].
All steps involved in time integration, from the initial assembly of matrices, setup

of initial conditions, prediction, correction, evaluation of boundary conditions up to
the diagonal solver (e.g. in case of a diagonal matrix to be inverted) are executed on
each rank in parallel with the necessary information exchange across the rank’s mesh-
portion’s boundaries in between. For solver tasks that go beyond a diagonal-divide, e.g.
for non-diagonal matrices as they appear in the Newmark-method once the matrix to be
inverted also contains the stiffness matrix, an interface to PETSc [27, 28, 29] is available
in order to use the huge variety of (iterative) solvers provided by it.
Independently from the domain decomposition, SPEED allows to define material sub-

domains also called blocks. Of course a natural choice for such blocks are indeed different
material components like soil layers of different mechanical properties or different fluid
regions. However, this structure can also be exploited to facilitate locally h- and/or p-
refined grids as the meshes of these sub-blocks do not have to coincide at their interfaces
thanks to the discontinuous Galerkin approach [14, 214]. Finally the graphical output of
SPEED can conveniently be based on those material blocks as well by generating VTK
[267] files with the desired data for each of the blocks individually, which can then be
read and displayed using Paraview [21] also individually allowing to “switch on and off”
individual material components of the solution for inspection.
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SPEED is by far not the only high performance computing (HPC)-oriented software
used for seismic simulations. While SPEED has historically grown mainly from physical
and engineering applications such as different source and soil models and coupling (now
also elasto-acoustic) methods, the software package EDGE incorporates techniques such
as fused simulations running multiple inputs at the same time [47, 49]. The realization
of such is not only interesting from a computer science point of view but yields also a
desired feature for the aforementioned seismic risk analysis where multiple scenarios with
different sources need to be computed. EDGE as also SeisSol [46, 48] uses an ADER-DG
method for time integration, also see the paper series [86, 87, 178, 179, 249]. In seismic
simulations also the finite difference method is still widely used, e.g. in the SW4- (Seismic
Waves, 4th order) [215, 246] or FLAC3D-code [241]. In the light of advances in graphics
processing unit (GPU) computing, [76, 189] consider the seismic wave problem with
GPU-bases implementations using finite differences resp. spectral elements. Finally [151]
gives a review over the development of different methods, problems and applications.

4. Summary of results and outlook
The articles contributed deal with different topics of nonlinear acoustics and seismol-
ogy ranging from a heuristic, methodological side in the derivation of the ABCs in [I],
over the numerical analysis of its model equations in [II, IV] up to an application, cou-
pled with optimization methods in [V] and an extensive, real-data driven computational
model and simulation case-study in [III]. The articles contain novel contributions in these
fields but also open new research questions and possibilities for future work. Closing the
circle to the originally asked scientific questions from Sec. 1.2 a short summary of results
and outlook to further questions will be given.
Beginning with [I] the ABCs derived therein for the Westervelt equation outperform

classical conditions by far, depending on the linearization strategy used in the derivation.
Taking into account the angle of incidence is also of great importance for the quality
of the conditions. Therefore the introduced adaptive algorithm for the angle computa-
tion provides an efficient, easy to use and implement option, where no a-priori knowledge
about possible angles is necessary. Future work on absorbing boundary conditions might
involve their derivation for even higher orders, see e.g. [275], also for different model
equations, as well as their efficient implementation considering the higher order deriva-
tives that come with them. Similar, the derivation of the shortly mentioned PMLs for
more advanced nonlinear acoustics models is as well of interest in order to effectively
truncate computational domains.
In [IV] the purely acoustic problem, then in [II], with similar methods, the coupled

elasto-acoustic problem was discretized using the DGSEM approach. The model con-
siders interfaces between elastic and acoustic materials as well as acoustic-acoustic in-
terfaces with jumps in the acoustic material parameters. This allows for multi-material
simulations such as the medically interesting, elaborated model example of an elastic
ultrasound transducer, an acoustic wave-guide and a portion of human tissue, where for
the later one different material models were compared. Using a linearization around a
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reference solution and a fixed-point argument, it was proven that the method converges
with the same order as in the linear case also for nonlinear acoustic models of Westervelt
and Kuznetsov type in the presence of elasto-acoustic and acoustic-acoustic interfaces
between different materials. Numerous, also computationally more intensive, numerical
experiments were performed to show the theoretically derived error-rates and to place
the considered model into the applicational context. That context being medical ESWL
therapy also links the works with [V], where the shape optimization of such an acoustic
focusing device was conducted, increasing precision of an acoustic focusing lens. Due
to the need for high resolution approximations a lot of attention can be payed to the
respective simulations with lens or transducer focusing as well as different model equa-
tions in the future, also from a computational perspective applying methods from high
performance computing. Also a further development of combined models and simula-
tions for example a thermo-(elasto)-acoustic one considering the effect of heat generated
by the focused ultrasound e.g. on tissue or a tumor might contribute to patient-specific
treatment [127, 257]. From a mathematical perspective the field of nonlinear acoustic
models yields a variety of possible works concerning well-posedness but also numerical
analysis of e.g. the higher (than two) order models [165, 169, 233].
Finally [III] brought the elasto-acoustic framework and implementation into the field

of seismology. It combines the DGSEM method with source models for earthquakes
and ultimately constitutes a multi-scale numerical model for the simulation of the seis-
mic response of dam-structures during earthquakes. The simulations conducted use real
data for the computational model as well as measurements from an actual seismic even
for validation. The work can be summarized as a realistic simulation case study yield-
ing a better understanding and additional evidence for the considered seismic event as
well as constituting a general numerical tool for seismic analyses with possible usage in
various other events and locations in the future. With such simulation capabilities at
hand, further studies could implement more advanced sediment or solid models involving
e.g. plastic deformations into the source to site setting, the use of a dynamic rupture
model or lead into the (see Sec. 3.4) direction of physics based seismic hazard analyses
encompassing statistical data and methods.

39





Acronyms

ABC absorbing boundary condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

ADER arbitrary derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CFL Courant-Friedrichs-Lewy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DG discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DGSEM discontinuous Galerkin spectral element method . . . . . . . . . . . . . . . . . . . . . . 23

DOF degree of freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

EM Engquist and Majda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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GPU graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HIFU high-intensity focused ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

HPC high performance computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

IMEX implicit and explicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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SIPG symmetric interior penalty Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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[86] M. Dumbser and M. Käser. “An arbitrary high-order discontinuous Galerkin method
for elastic waves on unstructured meshes—II. The three-dimensional isotropic case”.
Geophysical Journal International 167.1 (2006), pp. 319–336. DOI: 10 .1111/j .1365-
246X.2006.03120.x.
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[126] M. J. Grote, A. Schneebeli, and D. Schötzau. “Discontinuous Galerkin Finite Element
Method for the Wave Equation”. SIAM Journal on Numerical Analysis 44.6 (2006),
pp. 2408–2431. DOI: 10.1137/05063194X.

[127] P. Gupta and A. Srivastava. “Numerical analysis of thermal response of tissues subjected
to high intensity focused ultrasound”. International Journal of Hyperthermia 35.1 (2018),
pp. 419–434. DOI: 10.1080/02656736.2018.1506166.

[128] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations. 2nd ed. Springer, 2010.
ISBN: 9783642051579.

[129] L. Halpern and J. Rauch. “Absorbing boundary conditions for diffusion equations”.
Numerische Mathematik 71.2 (1995), pp. 185–224. DOI: 10.1007/s002110050141.

[130] M. F. Hamilton and D. T. Blackstock. “On the coefficient of nonlinearity β in nonlinear
acoustics”. The Journal of the Acoustical Society of America 83.1 (1988), pp. 74–77.
DOI: 10.1121/1.396187.

[131] M. F. Hamilton, D. T. Blackstock, et al. Nonlinear Acoustics. Vol. 237. Academic press
San Diego, 1998. ISBN: 9780123218605.

[132] S. H. Hartzell and T. H. Heaton. “Inversion of strong ground motion and teleseismic
waveform data for the fault rupture history of the 1979 Imperial Valley, California,
earthquake”. Bulletin of the Seismological Society of America 73.6A (1983), pp. 1553–
1583. DOI: 10.1785/BSSA07306A1553.

[133] R. L. Higdon. “Absorbing boundary conditions for difference approximations to the
multidimensional wave equation”. Mathematics of Computation 47.176 (1986), pp. 437–
459. DOI: 10.1090/S0025-5718-1986-0856696-4.

[134] R. L. Higdon. “Numerical absorbing boundary conditions for the wave equation”. Math-
ematics of Computation 49.179 (1987), pp. 65–90. DOI: 10.1090/S0025- 5718- 1987-
0890254-1.

[135] R. L. Higdon. “Absorbing boundary conditions for elastic waves”. Geophysics 56.2 (1991),
pp. 231–241. DOI: 10.1190/1.1443035.

[136] R. L. Higdon. “Absorbing boundary conditions for acoustic and elastic waves in stratified
media”. Journal of Computational Physics 101.2 (1992), pp. 386–418. DOI: 10.1016/
0021-9991(92)90016-R.

[137] H. M. Hilber, T. J. Hughes, and R. L. Taylor. “Improved numerical dissipation for time
integration algorithms in structural dynamics”. Earthquake Engineering & Structural
Dynamics 5.3 (1977), pp. 283–292. DOI: 10.1002/eqe.4290050306.

[138] M. Hochbruck and J. Leibold. “An implicit–explicit time discretization scheme for
second-order semilinear wave equations with application to dynamic boundary condi-
tions”. Numerische Mathematik 147.4 (2021), pp. 869–899. DOI: 10.1007/s00211-021-
01184-w.

52

https://doi.org/10.1137/140958293
https://doi.org/10.1137/05063194X
https://doi.org/10.1080/02656736.2018.1506166
https://doi.org/10.1007/s002110050141
https://doi.org/10.1121/1.396187
https://doi.org/10.1785/BSSA07306A1553
https://doi.org/10.1090/S0025-5718-1986-0856696-4
https://doi.org/10.1090/S0025-5718-1987-0890254-1
https://doi.org/10.1090/S0025-5718-1987-0890254-1
https://doi.org/10.1190/1.1443035
https://doi.org/10.1016/0021-9991(92)90016-R
https://doi.org/10.1016/0021-9991(92)90016-R
https://doi.org/10.1002/eqe.4290050306
https://doi.org/10.1007/s00211-021-01184-w
https://doi.org/10.1007/s00211-021-01184-w


[139] M. Hochbruck and A. Ostermann. “Exponential integrators”. Acta Numerica 19.May
(2010), pp. 209–286. DOI: 10.1017/S0962492910000048.
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[145] L. Hörmander. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential
Operators. Springer Science & Business Media, 2007. ISBN: 9783540499374. DOI: 10.
1007/978-3-540-49938-1_3.
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[165] B. Kaltenbacher and V. Nikolić. “The Jordan–Moore–Gibson–Thompson Equation: Well-
posedness with quadratic gradient nonlinearity and singular limit for vanishing re-
laxation time”. Mathematical Models and Methods in Applied Sciences 29.13 (2019),
pp. 2523–2556. DOI: 10.1142/S0218202519500532.

54

https://doi.org/10.1785/0120190235
https://doi.org/10.1016/S0045-7825(00)00203-6
https://srtm.csi.cgiar.org
https://doi.org/10.1785/0120000916
https://doi.org/10.1785/0120000916
https://doi.org/10.1090/S0025-5718-1986-0815828-4
https://arxiv.org/abs/2108.05348
https://arxiv.org/abs/2108.05348
https://doi.org/10.3934/dcdsb.2014.19.2189
https://doi.org/10.3934/dcdsb.2014.19.2189
https://doi.org/10.1016/j.mechrescom.2016.02.014
https://doi.org/10.1016/j.mechrescom.2016.02.014
https://doi.org/10.3934/dcdss.2009.2.503
https://doi.org/10.3934/proc.2011.2011.763
https://doi.org/10.1002/mana.201000007
https://doi.org/10.1007/978-3-0348-0075-4_19
https://doi.org/10.1142/S0218202519500532
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Self-adaptive absorbing boundary conditions for
quasilinear acoustic wave propagation

Markus Muhr, Vanja Nikolić and Barbara Wohlmuth

One of the first appearances of absorbing boundary conditions dates back to Engquist
and Majda [95] who derived them for the linear wave equation. In more than one spatial
dimension the quality of these conditions drastically depends on the angle of incidence of
the wave at a given boundary part. Higdon [133] generalized the conditions to incorpo-
rate a whole set of angles for which the conditions work well, however, these angles need
to be known a priori. Compared to the linear equation, Shevchenko and Kaltenbacher
[275, 276] derived an extension taking into account the additional nonlinear terms of
the nonlinear Westervelt equation in pressure form. In this article we combine ideas of
both the angle incorporation side and the extensions to the nonlinear regime to develop
absorbing boundary conditions for the Westervelt equation in potential form. Inspired
by [274] the conditions contain an adaptive component that lets them automatically
detect the angle of incidence and incorporates it to improve their quality.
Our derivation relies on a linearization of the considered PDE around a reference

solution. Expressing the resulting equation in frequency space via a Fourier-transform
lets us use methods from pseudo-differential calculus to factorize the partial differential
wave operator into two parts, one being associated with a wave traveling towards the
boundary the other with a wave traveling away from it. These operators are given in
terms of asymptotic expansions allowing to determine their coefficients by solving an
algebraic system. Also identifying the angle of incidence from the dispersion relation,
transformation back to physical space and reinsertion of the (nonlinear) solution in place
of the reference solution then finally yields angle dependent absorbing boundary condi-
tions that also incorporate the nonlinear terms. For the adaptive computation of the
angle of incidence we rely on the Poynting vector P (ψ) = −∂tψ∇ψ that can directly
be computed from the wave field. Parameters to steer the sensitivity of the detection
algorithm are introduced.
After the introduction, Sec. 2 gives a brief summary of the derivation and the different

components of the Westervelt equation. Sec. 3 contains the mathematical main result.
It discusses the aforementioned linearization, operator splitting and asymptotic expan-
sion, where Subsec. 3.2.2 adds a short energy argument to also incorporate additional
damping into the conditions. Sec. 4 then discusses the numerical treatment using finite
elements and the generalized-α method for time integration, while Sec. 5 explains the
angle detection algorithm in detail. Finally Sec. 6 contains a multitude of numerical
experiments in 2D and 3D that show the capability of the derived conditions.
I was significantly involved in finding the ideas and carrying out the scientific work

presented in this article including the write-up (in Sec. 3.2 only Subsec. 3.2.1). Further-
more I was solely in charge of the numerical part of the article, i.e. algorithm design,
realization of the implementation and the creation of the figures.
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We propose a self-adaptive absorbing technique for quasilinear ultrasound waves in two-
and three-dimensional computational domains. As a model for the nonlinear ultrasound 
propagation in thermoviscous fluids, we employ Westervelt’s wave equation solved for the 
acoustic velocity potential. The angle of incidence of the wave is computed based on the 
information provided by the wave-field gradient which is readily available in the finite 
element framework. The absorbing boundary conditions are then updated with the angle 
values in real time. Numerical experiments illustrate the accuracy and efficiency of the 
proposed method.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Accurate simulation of nonlinear ultrasound offers a path to a better quality of many procedures in industry and 
medicine, from non-destructive detection of material damages [1–3] to non-invasive treatments of medical disorders [4–8]. 
When studying such procedures, there is always a region of interest: a kidney stone that will be disintegrated or a prop-
agating fatigue crack in a component of an aircraft. The large physical space then often has to be truncated for numerical 
simulations. To accurately simulate ultrasound, we have to avoid spurious reflections of the wave at the boundary of the 
truncated domain.

Absorbing boundary conditions provide a simple and effective way of dealing with unwanted reflections. They were 
introduced by B. Engquist and E. Majda in their seminal work [9]. Since then many approaches have been developed for the 
non-reflecting boundary conditions; we refer the reader to the review papers [10,11] and the references given therein. In 
spite of such comprehensive research in this area, only a small portion of the results focus on nonlinear models.

A class of semilinear wave equations and nonlinear Schrödinger equations was investigated in [12,13]. Results for non-
linear hyperbolic systems of the form ut + A(u)ux = 0 were obtained in [14]. An approach based on the operator splitting 
method was used in [15] to derive absorbing conditions for a semilinear wave equation of the form utt − a2�u = f (u). 
In [16,17], nonlinear ultrasound propagation was investigated in this context for the first time, and absorbing conditions 
were developed for the Westervelt equation in the pressure form.

Another commonly used approach for avoiding spurious reflections is the Perfectly Matched Layer (PML) technique. 
Developed by J.-P. Bérenger in [18], this method introduces an artificial absorbing layer around the computational domain. 
Linear acoustic wave equations have been extensively studied in this context; see, for example, [19–23].

* Corresponding author.
E-mail addresses: muhr@ma.tum.de (M. Muhr), vanja.nikolic@ma.tum.de (V. Nikolić), wohlmuth@ma.tum.de (B. Wohlmuth).
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The main downside of absorbing conditions is that they are sensitive to the angle of incidence of the wave. As a rule 
of thumb, they perform bad if the range of incidence angles is large. The information on the incidence angles can be 
included in the conditions to tackle this issue; we refer to the work in [24–26]. However, these angles are not a priori 
known in a realistic computational setting. The idea behind the self-adaptive technique is to compute the local wave vector 
and then update the absorbing conditions with the angle information in real time. This approach was applied in [27] to 
the Schrödinger-type equations, where the wave number was computed via the Gabor transform. In [28], the linear wave 
equation was investigated in this context. It was proposed to divide the absorbing boundary into segments and compute 
the local incidence angle by employing the Fourier transformation only in the vicinity of the boundary. The self-adaptive 
approach to absorption can also be found in earlier works on acoustic scattering [29,30].

The goal of our work is to develop an efficient self-adaptive absorbing technique for nonlinear ultrasound propagation. 
As a model equation, we employ a classical quasilinear acoustic model - Westervelt’s equation. We first extend the results 
from [16,17] by considering the potential form of Westervelt’s equation and the non-zero angle of incidence θ . In addition, 
we derive the absorbing conditions for two- and three-dimensional computational domains. The derivation relies on choos-
ing an appropriate linearization of the equation around a reference solution. The absorbing conditions are then formally 
derived for this linearization, after which we bring back the nonlinear term.

To obtain the angle θ in practice, we develop a self-adaptive method that locally computes the incidence angle and 
updates the absorbing conditions on the fly. Unlike the self-adaptive approach taken in [28], we base the local angle com-
putation on the gradient of the wave field. Computation of the local propagation direction in isotropic media based on 
the information provided by the wave-field gradient has been studied in [31–36]. This approach is particularly suitable for 
our finite-element framework since the gradient information is already available at every time step in our simulations. The 
use of the field gradient information in the absorbing conditions has been already investigated for the Helmholtz equation 
in [37]. There it was proposed to replace the normal derivatives that appear in the absorbing conditions by the derivatives 
in the direction of the wave propagation. In the linear regime, our approach can be understood as an extension of the 
gradient method in [37] for a time-dependent wave model.

We organize the rest of the paper as follows. We begin in Section 2 by introducing the model and setting the problem. 
Section 3 contains the derivation of absorbing conditions for a given angle of incidence of the wave. In Section 4, we present 
the numerical scheme for solving the initial-boundary value problem for the Westervelt equation. Section 5 describes the 
computation of the local incidence angle via the information provided by the wave-field gradient. Finally, in Section 6, we 
present numerical experiments which illustrate the accuracy of the proposed adaptive boundary conditions.

2. Modeling and problem setting

The weakly nonlinear models in thermoviscous acoustics that are commonly used are obtained as an approximation of 
the compressible Navier-Stokes system. We here briefly reflect upon the derivation, which will give us a better understanding 
of the often-employed Westervelt equation. Mathematically rigorous justification of the classical acoustic models can be 
found in [38]. For a detailed insight into the acoustic field theory, we refer to [39–41].

Propagation of waves can be described by the time, the density �̄, the pressure ū and the velocity v̄, decomposed into 
their ambient value and the acoustic perturbation

�̄ = �0 + �,

ū = u0 + u,

v̄ = v0 + v;
see [41]. We call � the acoustic density, u the acoustic pressure, and v the acoustic particle velocity. The equations governing 
the wave propagation are then given by

• the equation of momentum conservation

(�0 + �)vt + �0

2
∇(v · v) + ∇u =

(
4νV

3
+ ηV

)
�v,

• the equation of mass conservation

�t + �0∇ · v = −�∇ · v − v · ∇�,

• the pressure-density relation

� = 1

c2
u − 1

�0c4

B

2A
u2 − κ

�0c4

(
1

c�

− 1

cu

)
ut .

Above, ηV denotes the bulk viscosity and νV the shear viscosity. The constant κ stands for the adiabatic exponent, cu and c�

denote the specific heat capacitance at constant pressure and constant volume, respectively. The parameter of nonlinearity 
B/A is an indicator of the nonlinearity of the medium. Finally, c denotes the speed of sound in the fluid.
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This system of equations is approximated by one model, whereby every term of order two and higher in the acoustic 
Mach number is neglected. This approach results in⎧⎪⎨

⎪⎩
1
c2 utt − �u − b

c2
�ut = 1

�0c4

B

2A
utt + �0

c2

∂2

∂t2
(v · v),

�0vt = −∇u,

(1)

where the so-called sound diffusivity b is given by

b = 1

�0

(
4νV

3
+ ηV

)
+ κ

�0

(
1

cV
− 1

cu

)
.

The acoustic velocity potential ψ is then introduced to obtain a scalar equation; it is related to the acoustic pressure by

u ≈ �0ψt, (2)

and to the acoustic particle velocity by

v = −∇ψ. (3)

By expressing (1) in terms of ψ , integrating with respect to time and taking the resulting constant of integration to be zero, 
we arrive at the Kuznetsov equation

1

c2
ψtt − �ψ − b

c2
�ψt = B/A

c4
ψtψtt + 2

c2
∇ψ · ∇ψt; (4)

cf. [42]. If the cumulative nonlinear effects dominate the local ones in the sense of

2

c2
∇ψ · ∇ψt ≈ 2

c4
ψtψtt, (5)

a simplification of (4), known as the Westervelt equation [43], is obtained

1

c2
ψtt − �ψ − δ�ψt = k

c2
ψtψtt . (6)

Above we have introduced the notation

δ = b

c2
, k = 1

c2
(B/A + 2). (7)

After numerically solving (6), the pressure field can be obtained in a post-processing step via the relation (2). We mention 
as well that the Westervelt equation in the pressure form is given by

1

c2
utt − �u − δ�ut = k

�c2
(uutt + u2

t ). (8)

Equation (8) can be obtained from (1) by employing the approximation (5) which in terms of the velocity and pressure 
reads as

�0(v · v)t ≈ 1

�0c2
(u2)t .

3. Absorbing conditions for the Westervelt equation

We consider the Westervelt equation (6) on a three-dimensional spatial domain � = {(x, y, z) : x < 0, y, z ∈ R}. We 
restrict ourselves in the problem description to the case of positive constant coefficients c, b, and k.

3.1. Linearization of the Westervelt equation

Following the approach from [16] where equation (8) was considered, we derive absorbing conditions for the Westervelt 
equation in the potential form (6) by first transforming it into a linear equation, deriving the non-reflecting conditions for 
this linear model, and then “plugging” back in the nonlinear term.

It is clear that the linearization of the equation plays a crucial role in deriving the absorbing conditions. A possible 
linearization of the Westervelt equation around a reference solution ψ ref is given by

1

c2
ψtt − �ψ − δ�ψt = k

c2
β(x, y, z, t)ψtt, (9)
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where β = ψ ref
t . We note that, unlike in the derivation of the Westervelt equation in Section 2, here we do not split ψ into 

a background and oscillatory part, instead we assume ψ ref to be a solution of the equation. This linearization is analogous 
to the one employed in [16] for the equation in the pressure formulation (8).

We propose an alternative linearization. Note that the right-hand side of the Westervelt equation (6) can be rewritten as 
1

2

k

c2
(ψ2

t )t . We linearize the term ψ2
t as ψ ref

t ψt and study the following equation

1

c2
ψtt − �ψ − δ�ψt = 1

2

k

c2
(β(x, y, z, t)ψt)t, (10)

where again β = ψ ref
t . The absorbing boundary conditions based on linearizations (9) and (10) are numerically compared in 

Section 6.
We first derive absorbing conditions for the linear equation (10) and a given angle of incidence. After obtaining the 

conditions for such a model, the coefficient β is set back to ψt to obtain nonlinear conditions.
We remark that the linearization via Taylor expansion around a reference solution ψ ref is not considered here since it 

would introduce the term ψ ref
t ψ ref

tt into the linearized equation; we refer to a similar discussion in [16].

3.2. Derivation of absorbing conditions for the angle of incidence θ

We study here the derivation of the absorbing conditions for the linearization (10); equation (9) can be treated analo-
gously. To derive the conditions, we could use the frozen coefficient approach which first transforms the variable coefficient 
equation into its constant-coefficient counterpart by “freezing” its coefficients at a given point before employing the Fourier 
transform in the (y, z, t) coordinates; cf. [9, Section 1]. Although the main focus of the present work is the derivation of 
the zero-order (adaptive) absorbing conditions, we still follow the approach based on the pseudo-differential calculus since 
it allows to arrive at a general system for determining the correcting terms beyond order zero in the absorbing conditions; 
see system (19) below.

We first rewrite the linearized equation (10) in the operator form as

Pu = 0, (11)

where the operator P is given by

P =
(

1

c2
− 1

2

k

c2
β(x, y, z, t)

)
∂2

t − ∂2
x − ∂2

y − ∂2
z − δ∂2

x ∂t − δ∂2
y∂t − δ∂2

z ∂t − 1

2

k

c2
βt(x, y, z, t)∂t . (12)

At this point we also introduce

α0(x, y, z, t) =
√

1

c2
− 1

2

k

c2
β(x, y, z, t),

α1(x, y, z, t) = 1

2

k

c2
βt(x, y, z, t).

(13)

Note that the well-posedness results for the Westervelt equation rely on the fact that the factor 1
c2 (1 − kψt) next to the 

second time derivative remains positive; see [44–46]. Therefore, it is reasonable to assume that the term under the square 
root in (13) is positive for sufficiently small data. We note that we proceed heuristically since the rigorous justification of 
the derivations given below would also require C∞ regularity of α0 and α1 which is not proven here.

Absorbing boundary conditions for (11) will be derived by employing the pseudo-differential calculus and factorization 
of the operator P according to L. Nirenberg’s procedure [47, Chapter II]. We briefly summarize the procedure here for the 
convenience of the reader. A detailed account on the pseudo-differential operators can be found in [48,47,49].

Definition 1. [49,50] Let the set Sm , where m ∈ R, be defined as the set of all functions q(t, τ ) ∈ C∞(Rd ×Rd) such that 
for any two multi-indices k and l, there is a positive constant Ckl depending only on k and l, such that

|∂k
t ∂ l

τ q(t, τ )| ≤ Ckl(1 + |τ |)m−|l|, t, τ ∈ Rd.

Sm is called the space of symbols of order m. We set S−∞ = ∩m∈RSm .

Definition 2. [49, Definition 5.2] Let q be a symbol. The pseudo-differential operator Q associated to q is defined by

(Qϕ)(t) = (2π)−d/2
∫
Rd

eit·τ q(t, τ )Fϕ(τ )dτ ,

where ϕ is a function from the Schwartz space, and F denotes the Fourier transform.
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3.2.1. Propagation without losses
Following the approach in [16], we first derive the absorbing conditions with the assumption that δ = 0. This assumption 

facilitates the derivation of the conditions based on the pseudo-differential factorization. The δ-term will be included as a 
post-processing step based on energy arguments.

The derivation of the conditions relies on the fact that the operator P can be factorized into the form

P = − (
∂x − A

(
x, y, z, t, ∂y, ∂z, ∂t

)) (
∂x − B

(
x, y, z, t, ∂y, ∂z, ∂t

)) + R
(
x, y, z, t, ∂y, ∂z, ∂t

) ; (14)

see [47, Lemma 1]. In (14), the operators A and B are pseudo-differential operators with the symbols a(x, y, z, t, η, ζ, τ )

and b(x, y, z, t, η, ζ, τ ), respectively, from the space S1. The conditions on A that we will develop will have the effect of 
associating A with waves that travel out of the computational domain. The pseudo-differential operator R is a smoothing 
operator with the full symbol r(x, y, z, t, η, ζ, τ ) that belongs to S−∞ .

The symbols a and b formally admit asymptotic expansions

a(x, y, z, t, η, ζ, τ ) ∼
∑
j≥0

a1− j(x, y, z, t, η, ζ, τ ),

b(x, y, z, t, η, ζ, τ ) ∼
∑
j≥0

b1− j(x, y, z, t, η, ζ, τ ),

where a1− j and b1− j denote homogeneous functions of degree 1 − j with respect to τ ; see [49, Theorem 5.10]. We note 
that the symbol a(x, y, z, t, η, ζ, τ )b(x, y, z, t, η, ζ, τ ) of the product of A and B has an asymptotic expansion as well

a(x, y, z, t, η, ζ, τ )b(x, y, z, t, η, ζ, τ ) ∼
∑
j≥0,

k+l+n= j,
k,l,n≥0

(−1)n

n! ∂n
τ a1−l(x, y, z, t, η, ζ, τ )∂n

t b1−k(x, y, z, t, η, ζ, τ );

see [49, Theorem 7.1].
According to [51, Theorems 1 and 2], absorbing boundary conditions on the boundary x = 0 are given in the form

(
∂x − A

(
x, y, z, t, ∂y, ∂z, ∂t

))
ψ

∣∣∣
x=0

= 0.

Since the symbol a of A has an infinite expansion, in numerical simulations this expansion is truncated after a certain 
number of terms. Absorbing conditions of order k ∈N0 are then on the symbolic level given by⎛

⎝∂x −
k∑

j=0

a1− j(0, y, z, t, η, ζ, τ )

⎞
⎠ψ

∣∣∣
x=0

= 0. (15)

The higher-order absorbing conditions, although numerically more accurate, are also significantly more involved when it 
comes to implementation. We will compute the absorbing conditions of order zero for the given angle of incidence θ . 
Combined with the proposed self-adaptive technique, this approach allows to improve the accuracy of zero-order conditions, 
yet keeps them easy to implement.

We recall how the operator P was defined in (12), set δ = 0, and then develop factorization (14) to obtain

α2
0 ∂2

t − ∂2
x − ∂2

y − ∂2
z − α1∂t

= − ∂2
x + (A + B)∂x + Bx − AB + R.

(16)

By employing the asymptotic expansion of the symbols a, b, and ab, equation (16) reduces on the symbolic level to

α2
0(iτ )2 − (iη)2 − (iζ )2 − α1(iτ )

∼=
∑
j≥0

(a1− j + b1− j)∂x +
∑
j≥0

∂xb1− j −
∑
j≥0,

k+l+n= j,
k,l,n≥0

(−1)n

n! ∂n
τ a1−l∂

n
t b1−k. (17)

Above, we have denoted the dual variables to t , y, and z by τ , η, and ζ , with the correspondence ∂t ↔ iτ , ∂y ↔ iη, and 
∂z ↔ iζ . Following the notation in [9], ∼= stands for “within a smooth error” because we have dropped R. We note that 
the operator R can only be controlled in terms of its smoothness. However, its action on the solution is expected to be 
negligible for high frequencies that are present in ultrasound waves.
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Fig. 1. Illustration of the interplay between the wave vector �k, outward normal vector �n, and the angle of incidence θ .

To determine a1 and b1, we equate the symbols with the same degree of homogeneity with respect to τ and get the 
system{

a1 + b1 = 0

a1b1 = −(α2
0(iτ )2 − (iη)2 − (iζ )2),

(18)

assuming that α2
0τ

2 ∼= η2 + ζ 2. The system that determines the coefficients {a1− j, b1− j} j≥1 is then given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1− j + b1− j = 0, j ≥ 1,

−α1(iτ )δ j1 = −
∑
j≥1,

k+l+n= j,
k,l,n≥0

(−1)n

n! ∂n
τ a1−l∂

n
t b1−k + ∂xb1− j, (19)

where δ denotes the Kronecker delta. From (18), we find that

a1 = −
√

α2
0(iτ )2 − (iη)2 − (iζ )2

and

b1 =
√

α2
0(iτ )2 − (iη)2 − (iζ )2.

Note that the sign of a1 determines the propagation direction of the wave. To obtain the absorbing conditions for the given 
angle of incidence, we freeze the coefficient β in (12) by assuming that it is constant in space and time. The dispersion 
relation for (10) when β is constant is as follows

α2
0(iτ )2 − (iξ)2 − (iη)2 − (iζ )2 = 0. (20)

The wave vector is given by (ξ, η, ζ ). If we denote by θ ∈ [0◦, 90◦] the angle between the incident wave and the outer 
normal to the boundary, we have for τ > 0

sin θ =
√

η2 + ζ 2√
ξ2 + η2 + ζ 2

=
√

η2 + ζ 2

α0τ
;

see Fig. 1.
Therefore, we can express a1 as

a1 = − α0(iτ )

√
1 − η2 + ζ 2

α2
0τ

2
= −α0(iτ ) cos θ.

According to (15), the absorbing conditions of order zero are then given by

∂ψ

∂n
= −α0 ψt cos θ. (21)
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We mention that for a variable coefficient problem with jumps outside the computational domain, it is not possible to build 

an exact ABC based on local computations. After returning to β = ψt and α0 =
√

1

c2 − 1

2

k

c2 ψt , we obtain the absorbing 
boundary conditions for the inviscid Westervelt equation in the potential formulation for a given angle of incidence θ :

c
∂ψ

∂n
+

√
1 − k

2
ψt ψt cos θ = 0. (22)

3.2.2. Propagation with losses
We next want to incorporate the b term into the conditions. This was not possible before since we needed b = 0 to 

make use of the pseudo-differential factorization and the dispersion relation (20). Instead, we employ a reasoning based on 
an energy argument.

To this end, we test the linearized equation (10) with ψt , integrate over space and (0, t), where t ≤ T , and integrate by 
parts with respect to time, to arrive at the following identity:

E0[ψ](t) + δ

t∫
0

‖∇ψt‖2
L2(�)

ds

= E0[ψ](0) +
t∫

0

∫
�

(
1
2 (α2

0)t + α1

)
ψ2

t dxds +
t∫

0

∫
∂�

(
∂ψ

∂n
+ δ

∂ψt

∂n

)
ψt dxds,

(23)

where the energy is given by

E0[ψ](t) = 1

2

(
‖α0(t)ψt(t)‖2

L2(�)
+ ‖∇ψ(t)‖2

L2(�)

)
.

This identity suggests to modify the conditions (21) to include the sound diffusivity as follows

∂ψ

∂n
+ δ

∂ψt

∂n
= −α0 ψt cos θ on �abc. (24)

These conditions facilitate the extraction of energy through the boundary since (23) becomes

E0[ψ](t) + δ

t∫
0

‖∇ψt‖2
L2(�)

ds +
t∫

0

∥∥∥√
α0 cos θ ψt

∥∥∥2

L2(∂�)
ds

= E0[ψ](0) +
t∫

0

∫
�

( 1
2 (α2

0)t + α1)ψ
2
t dxds,

(25)

from which by employing Gronwall’s inequality it follows that

E0[ψ](t) + δ

t∫
0

‖∇ψt‖2
L2(�)

ds +
t∫

0

∥∥∥√
α0 cos θ ψt

∥∥∥2

L2(∂�)
ds ≤ C(T )E0[ψ](0),

provided 1
2 (α2

0)t + α1 ∈ L∞(0, T ; L∞(�)).

We therefore adopt conditions (24). After returning to β = ψt and α0 =
√

1

c2
− 1

2

k

c2
ψt in (24) and recalling that δ = b/c2, 

we obtain the nonlinear conditions

c2 ∂ψ

∂n
+ b

∂ψt

∂n
= − c

√
1 − k

2
ψt ψt cos θ on �abc. (26)

We note that in realistic settings the sound diffusivity b in fluids is small; see, e.g., [41]. It is also known that the presence 
of a large b damping in the model would imply a parabolic instead of a wave-like behavior of the equation resulting in an 
exponential decay of the energy; cf. [44, Theorem 3.3].

Setting k to zero in (26) corresponds to conditions for a linear, strongly damped wave equation. If in addition b = 0, we 
end up with the standard linear absorbing conditions for the angle θ

c
∂ψ

∂n
+ ψt cos θ = 0 on �abc; (27)

see [24,26].
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Remark 1 (One- and two-dimensional domains). In a one-dimensional setting, system (18) for determining the symbols a1 and 
b1 simplifies to{

a1 + b1 = 0

a1b1 = −α2
0(iτ )2.

In a two-dimensional setting, system (18) simplifies to{
a1 + b1 = 0

a1b1 = −(α2
0(iτ )2 − (iη)2).

It is then straightforward to show that conditions (26) hold in 1D and 2D as well, where in 1D the angle θ can be interpreted 
as being set to θ = 0◦ .

Remark 2 (A different linearization). Employing linearization (9) would result in the following absorbing conditions

c2 ∂ψ

∂n
+ b

∂ψt

∂n
= − c

√
1 − kψt ψt cos θ on �abc. (28)

The performance of conditions (26) and (28) is compared in Section 6, where the proposed conditions (26) significantly 
outperform (28).

Remark 3. In our experiments, we employ the gradient information to compute the angle of incidence θ via

cos θ = |∇ψ · n|√
ψ2

x + ψ2
y + ψ2

z

on �abc,

assuming that ∇ψ �= 0 on the absorbing boundary. The linear conditions (27) for the angle θ are then equivalent to

c|∇ψ | + ψt = 0 on �abc. (29)

Therefore, in the linear regime, conditions (29) can be seen as the extension of the absorbing conditions proposed in [37]
for the Helmholtz equation to the linear time-dependent wave model.

4. Numerical treatment

After deriving the absorbing boundary conditions for the potential form of the Westervelt equation (6), we next focus 
on the numerical schemes used in simulations. We begin by formulating the initial-boundary value problem that has to be 
solved.

4.1. The initial-boundary value problem for the Westervelt equation

We consider the following problem for the Westervelt equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψtt − c2�ψ − b�ψt = 1

c2
(B/A + 2)ψtψtt in � × (0, T ),

ψ = g on �exc × (0, T ),

c
∂ψ

∂n
+ b

c

∂ψt

∂n
= −√

1 − σkψt ψt cos θ(ψ) on �abc × (0, T ),

∂ψ

∂n
= 0 on �N × (0, T ),

ψ = ψt = 0 in � × {0}.

(30)

The wave source is given in the form of inhomogeneous Dirichlet conditions on the excitation part of the domain boundary 
�exc ⊂ ∂�. In our numerical tests, the excitation signal is always taken to be a modulated sine wave, that is growing over 
time until its maximal amplitude is reached, i.e.,

g(t) =
{

( f 2/4)t2 A sin(ωt), t < 2/ f ,

A sin(ωt), t ≥ 2/ f ,
(31)

where f denotes the frequency, ω = 2π f the angular frequency, and A the maximal amplitude of the signal.
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We have introduced the parameter σ within the square root of the absorbing conditions in (30). In this way, we gen-
eralized in one formula all the absorbing conditions that we want to compare. Indeed, setting σ = 0 yields the adaptive 
absorbing conditions for the linear strongly damped wave equation

c
∂ψ

∂n
+ b

c

∂ψt

∂n
= −ψt cos θ(ψ), (32)

which we denote from now on in experiments by “ABC0
W adaptive”. In case also θ = 0 everywhere, we denote them just by 

ABC0
W. Setting σ = 1/2 recovers our new nonlinear adaptive conditions, denoted by “ABC1/2

W adaptive”. If the angle is always 
set to zero, we denote them just by ABC1/2

W . Finally, σ = 1 leads to conditions based on the second linearization (9), which 
are denoted in the experiments by “ABC1

W adaptive” and ABC1
W.

We start from the weak form of the problem (30). We are looking for a solution in

{ψ ∈ C1([0, T ]; H2(�)) ∩ C2([0, T ]; H1(�)) | ψ = g on �exc × (0, T )}
such that∫

�

((1 − kψt)ψtt v + c2∇ψ · ∇v + b∇ψt · ∇v)d� +
∫

�abc

c
√

1 − σkψt ψt cos θ(ψ) v dS = 0

for all test functions in {v ∈ H1(�) | v = 0 on �exc × (0, T )} a.e. in time, with (ψ, ψt)|t=0 = (0, 0). We assume that the prob-
lem (30) is well-posed, although the rigorous proof is beyond the scope of the current work. Results on the well-posedness 
of the Westervelt equation in the pressure form with nonlinear absorbing conditions for the angle of incidence θ = 0◦ can 
be found in [17,52].

4.2. Finite element discretization and time integration

We follow the standard discretization methods for nonlinear acoustics based on finite elements [41,53–57]. The finite 
element method is employed in space with lowest order conforming elements on simplicial meshes.

The mass M, stiffness K, and damping matrix C as well as the nonlinearity tensor T are assembled in the usual manner; 
see [41,56]. By dividing the set of degrees of freedom into the set of Dirichlet degrees D and the set of interior degrees I, 
the semi-discrete problem reads as follows⎧⎪⎪⎨

⎪⎪⎩
MI,Iψ̈ I

+ KI,Iψ I
+ CI,Iψ̇ I

− T I,I,I[ψ̈ I
, ψ̇

I
, ·] − T I,D,I[ψ̈ I

, ψ̇
D
, ·]

−T D,I,I[ψ̈D
, ψ̇

I
, ·] + AI(ψ, ψ̇, θ(ψ)) = F (t) in (0, T ),

ψ = ψ̇ = 0 at t = 0.

(33)

The right-hand side of the equation is given by

F (t) = −MI,Dψ̈
D

− KI,Dψ
D

− CI,Dψ̇
D

+ T D,D,I[ψ̈D
, ψ̇

D
, ·].

The underlined quantities ψ, ψ̇ , and ψ̈ denote the coefficient vectors of ψ, ψt , and ψtt resulting from the spatial finite 
element discretization. The compact notation with index sets D and I is used to extract the respective rows and columns of 
matrices and vectors that belong to Dirichlet and interior degrees of freedom.

The absorbing boundary vector A is formally given by

A(ψt, θ(ψ)) = (Ai(ψt, θ(ψ)))i∈DOF(�abc),

Ai(ψt, θ(ψ)) =
∫

�abc

c
√

1 − σkψt ψt cos θ(ψ) Ni dS. (34)

Above, Ni stands for the finite element ansatz function of the i-th global degree of freedom, while DOF(�abc) is the set of 
degrees of freedom belonging to the absorbing boundary.

The nonlinearity tensor T is used to resolve the nonlinear bulk term in the weak formulation in a fixed-point iteration. 
The same also holds for the absorbing boundary vector which is iteratively updated with the current values of ψt , ψtt as 
well as updates for the angle θ .

The system (33) is a nonlinear system of ordinary differential equations of second order with |I| components. It remains 
to solve it by using a suitable time integrator. Following [56], we employ the Generalized-α scheme in combination with 
the Newmark relations for time integration. Values of the Generalized-α parameters (αm, α f ) and the Newmark parameters 
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Table 1
Time-stepping parameters.

parameter value

Newmark-parameters βnm 4/9
γnm 5/6

Generalized-α parameters αm 0
α f 1/3

Nonlinear iteration parameters TOL 10−6

κmax 100

(βnm, γnm) that are used in experiments are chosen according to the stability and accuracy criteria stated in [58]:

αm = 2ρ∞ − 1

1 + ρ∞
, α f = ρ∞

1 + ρ∞
, βnm = 1

(1 + ρ∞)2
, γnm = 1

2

3 − ρ∞
1 + ρ∞

where we take ρ∞ = 1/2; see also Table 1 for the resulting values.
In comparison to the numerical solvers proposed in [53,56], a new aspect of our method is the computation of the angle 

of incidence θ(ψ). The angle is computed once in every time step before the first assembly of the absorbing boundary 
vector. Details on how we compute the angle can be found in Section 5.

5. Computation of the angle of incidence

It remains to see how we can compute the angle of incidence θ that the local wave vector encloses with the outward 
normal to the absorbing boundary at a given point on �abc. To reduce the computational cost, we compute the angle θ once 
per time step and do not update it within the nonlinear fixed-point iteration.

According to [33,35], the Poynting vector P(ψ) of a wave field ψ can be used to compute its local propagation direction. 
The vector P(ψ) is given by

P(ψ) = −∂ψ

∂t
∇ψ. (35)

Since neither the sign nor the norm of the propagation vector plays a role when computing the incidence angle, we 
restrict ourselves to the spatial gradient alone to determine the main propagation direction of the wave. Such an approach 
was also taken in [31,34,36] for wave fields in an isotropic medium. In our case, this method of computing the local 
propagation direction works especially well since, although globally discontinuous, the element-wise gradient information 
is readily available at every time step in the finite element framework. We also refer to [32] for a further discussion on the 
use of the Poynting vector in angle decomposition methods.

We conduct experiments with zero initial data and inhomogeneous Dirichlet conditions on part of the boundary, and so 
most of the potential field is at rest at the beginning of the simulation. However, numerical noise of low magnitude can 
be present at the absorbing boundary before the wave reaches it. Such behavior could be accounted to weak ill-posedness; 
see [59]. To tackle this issue, we implement a switch. When going over all elements adjacent to the absorbing boundary, 
we only compute the element-wise angle of incidence once the local wave amplitude (in terms of absolute value of the 
elements degrees of freedom) exceeds a certain percentage p1 of a reference value; see Algorithm 1, line 3. We take the 
reference value to be the source amplitude of the wave. In the case that the source amplitude is not known a priori, 
an alternative would be to compute the maximum field amplitude in the interior of the domain and take this as a reference 
value. As long as the criterion is not matched, the local angle of incidence is set to 0; see Algorithm 1, line 14. We note 
that a similar approach was taken in [28]. In all our numerical experiments, we set p1 = 0.1.

Algorithm 1 summarizes our method of computing the incidence angle. Within the algorithm, indices in the exponent 
indicate the time step.

Note that even once the local amplitude of the wave at a given element is large enough for the angle computation to 
start, unreliable angle values can be computed at points where a local wave maximum or minimum hits the boundary 
since the gradient is close to zero. As a remedy, we propose that gradients with the Euclidean norm below some threshold 
should not influence the angle of incidence. Whenever such a small gradient appears, we use the angle of the last time 
step; see Algorithm 1, line 9. We employ a percentage p2 of a reference value for the threshold.

As the reference value we take the local gradient history of the given element and pick the norm-wise maximum over 
the past time steps; see Algorithm 1, line 8. We compute a new angle of incidence only in cases where the threshold is 
surpassed, i.e., when the local gradient is sufficiently large; cf. Algorithm 1, line 11. To also reduce the oscillations with 
respect to time in the angle distribution, in all experiments we choose a relatively high threshold of p2 = 0.5.

Together with the previously introduced switch, the above approach allows to steer the sensitivity of the angle computa-
tion algorithm by adapting the parameters p1 and p2. If these parameters are close to 1, the angle is only computed for very 
high amplitudes and local gradients, while for most other parts of the boundary the angle remains zero. On the other hand, 
small values of p1 and p2 would lead to highly sensitive angles that react to even small perturbations in the wave field.
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Algorithm 1: Angle-computation algorithm
Initialization:

1 Formally set |∇ψ
(−1)

el | = ∞ and θ0
el = 0◦ for all elements el

In time step n = 1,2, ... do

2 for el ∈ {elements : element has an edge/face on the absorbing boundary}
3 if max{|ψn

i | : dofi belongs to el} > p1 · A then
4 enable angle computation for el
5 end
6 if angle computation is enabled for el then
7 Evaluate ∇ψ(�x, tn−1) within el → save as ∇ψn−1

el

8 if |∇ψn−1
el | ≤ p2 max

k<n−1
|∇ψk

el| then

9 set θn
el = θn−1

el
10 else

11 compute θn
el = arccos

( |〈∇ψn−1
el , �nel〉|

|∇ψn−1
el |

)

12 end
13 else
14 set θn

el = 0◦
15 end
16 end

Fig. 2. Computational domains used in simulations. (Top left) Channel with an inclined absorbing boundary, (Top right) Octant of a “plate with hole” 
geometry, (Bottom left) Geometry of a focusing transducer, (Bottom right) Geometry with multiple sources and wave superposition.

6. Numerical results

We proceed with numerical simulations where we put our self-adaptive technique to the test. Computational domains �
used in numerical experiments are sketched in Fig. 2. The dashed lines symbolize the boundaries of the reference domain 
�ref where we compute the reference solution ψ ref. The reference solution is always first computed on �ref , then restricted 
to the actual domain �, and compared with the potential field obtained on � by employing the absorbing conditions.

We mention again that in all numerical simulations conforming finite elements of lowest order on simplicial meshes are 
used. Geometry and mesh are generated by using the Gmsh software package [60].
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Fig. 3. Time snapshots of the potential field.

Fig. 4. Inclined plane boundary: Relative L2(�) error of the potential ψ(t) over the simulation time with θ = 20◦ . (Left) Nonlinear vs. linear conditions 
with and without adaptivity, (Right) Performance of adaptive conditions with numerically computed vs. the exact incidence angle θ . (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

6.1. Domain with an inclined absorbing boundary

In our first experiment, we consider a two-dimensional channel geometry, where the upper (absorbing) boundary �abc is 
tilted by a given angle of θ ; see Fig. 2. The waves originate from the excitation boundary �exc at the bottom of the rectangle 
and travel straight upwards. We impose homogeneous Neumann boundary conditions on the sides of the domain. The wave 
vector �k in this setting points straight upwards. Therefore, the angle that the wave vector and the outward normal �n of �
at �abc enclose is exactly θ for the absorbing boundary.

We compute the reference solution ψ ref on a larger domain without the absorbing boundary and then conduct a simu-
lation on �. To get an impression on how the wave propagates in the present setting, Fig. 3 shows the potential field ψ at 
different time snapshots. Material parameters were chosen to be the ones of water, i.e.

c = 1500 m/s, b = 6 · 10−9 m2/s, ρ = 1000 kg/m3, B/A = 5;
see [41, Chapter 5], while the excitation (31) has an amplitude of A = 0.01 m2/s2 and a frequency of 210 kHz. The experi-
ment was conducted for two different angles

θ ∈ {20◦,50◦}.
For spatial discretization, we take 13045 (20◦ case) and 13046 (50◦ case) degrees of freedom in space for the channel width 
of 0.02 m and channel length (in the middle) of 0.03 m. In time, 9800 time steps were taken to cover the interval from 
t0 = 0 s until T = 9.45 · 10−5 s.

The error plots are given in Fig. 4. We observe that the conditions that do not take the angle of incidence into consid-
eration significantly deteriorate when the angle increases. For the angle of incidence θ = 50◦ , the maximal relative error 
is more than 20% for the linear conditions and around 17% for the nonlinear conditions with the fixed angle θ = 0◦ . In 
comparison, the self-adaptive technique when combined with the nonlinear conditions (26) allows for the error to remain 
around 1%. Note that linearization (10) and the resulting absorbing conditions (26) clearly outperform conditions (28). We, 
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Fig. 5. Inclined plane boundary: Relative L2(�) error of the potential ψ(t) over the simulation time with θ = 50◦ . (Left) Nonlinear vs. linear conditions 
with and without adaptivity, (Right) Performance of adaptive conditions with numerically computed vs. the exact incidence angle θ .

therefore, proceed in the following experiments with testing only (26) in combination with the self-adaptive technique. We 
also observe that the nonlinear conditions (26) that use an approximate angle computation via the gradient of the wave 
field perform similarly to the conditions that employ the exact angle.

It is also interesting to see how the errors are distributed over the domain �, i.e., where they originate from and how 
far they spread. Fig. 6 shows the error fields |ψ(t) − ψ ref(t)| at different times for the ABC1/2

W conditions with and without 
adaptivity. The first snapshots were taken just as the first wave hits the absorbing boundary. In the subsequent snapshots, 
we can see how the erroneous reflections travel together with the wave across the absorbing boundary. It is evident that 
there are fewer reflections present when using the self-adaptive absorbing boundary conditions that take the local angle 
information into account.

6.2. Higher source frequency

So far our experiments have been conducted with the same source excitation. After varying the domain geometry via 
the angle θ , we investigate the influence of the source frequency on the quality of absorbing conditions. We now test with 
the excitation frequency

f = 250 kHz.

All the remaining parameters being the same as before. The domain again has the upper boundary tilted with the 
angle of 50◦ . Fig. 7 shows the error plots for the higher frequency. We observe that conditions ABC0

W asymptotically show 
the same poor results as conditions ABC0

W with self-adaptivity. Only our combination of nonlinear conditions with the 
self-adaptive technique (26) allows for the relative error to stay around 1%. By comparing Fig. 5 and Fig. 7, we also notice 
that the difference in the error between the nonlinear and the corresponding linear conditions increases with the frequency, 
emphasizing the need to employ nonlinear conditions for high-frequency nonlinear sound waves.

6.3. Plate with a hole

We previously tested the new absorbing boundary conditions in a domain where the angle of incidence was constant 
over the absorbing boundary. To show that both our approach of computing the angle of incidence of the wave as well as 
the nonlinear boundary conditions work in more realistic settings, we now consider the so-called “plate with a hole” domain. 
It consists of a square with a circular hole in the center. In our case, the excitation of the wave takes place at the boundary 
of the hole. By using symmetry, we reduce the simulation of the whole domain to half of one of its quarters; see Fig. 2.

An analytical expression for the angle of incidence is also available here which allows us to judge the quality of our 
angle approximation. If the origin is at the center of the circular hole and the square has sides of length a, the angle of 
incidence is given by

θ(x, y, t) = arccos

(
a/2√

x2 + (a/2)2

)
. (36)

We set a = 0.08 in the experiments. The domain is resolved with 13820 degrees of freedom in space. For time discretization, 
we choose 8330 time steps with final time T = 8.0325 · 10−5 s.

Fig. 8 shows the angle of incidence computed by our approach at two different points in time and further illustrates 
our criterion on computing the incidence angle based on the amplitude of the wave on the boundary. Note that formula 
(36) assumes a reflection-free potential field so an exact match of our angle to the analytical angle distribution cannot 
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Fig. 6. Potential difference |ψ(t) − ψ ref(t)| plotted over time (Horizontal) for ABC1/2
W (First row) without adaptivity and (Second row) with self-adaptive 

angle.

Fig. 7. Inclined plane boundary: Relative L2(�) error of the potential ψ(t) for t ∈ [0, T ] with θ = 50◦ and higher source frequency. (Left) Nonlinear vs. 
linear conditions with and without adaptivity, (Right) Performance of adaptive conditions with numerically computed vs. the exact incidence angle θ .

Fig. 8. Computed versus exact angle of incidence θ . (Left) The angle is only computed on the parts of the absorbing boundary that the wave has reached.
(Right) Angle computation towards the end of the simulation.



M. Muhr et al. / Journal of Computational Physics 388 (2019) 279–299 293

Fig. 9. Time snapshots of the pressure field u = ρψt .

Fig. 10. Pressure difference |u(t) − uref(t)| plotted over time (Horizontal) for ABC1/2
W without (First row) and with (Second row) angle consideration.

Fig. 11. Plate with a hole: Relative L2(�) error of (Left) the potential ψ(t) and (Right) the pressure u(t) = ρψt (t) over the simulation time.

be expected. In fact, our method tries to compensate also for the waves that originate as spurious reflections from the 
absorbing boundary.

As in our last experiment, we proceed by showing the wave field at different time steps as well as the error comparison 
of different absorbing boundary conditions; see Fig. 9 and Fig. 11. This time we also compute them in terms of the acoustic 
pressure u = ρψt due to its practical importance. We also introduce here the relative errors in the L2(0, T ; L2(�)) norm, i.e.

eψ = ‖ψ − ψ ref‖L2(0,T ;L2(�))

‖ψ ref‖L2(0,T ;L2(�))

, eu = ‖u − uref‖L2(0,T ;L2(�))

‖uref‖L2(0,T ;L2(�))

.

In the present experiment, those errors amount to eψ = 1.82% and eu = 0.93% for the self-adaptive conditions and 
eψ = 5.41% and eu = 5.17% for the conditions without adaptivity, giving an overall improvement of 66.36% in the potential 
and 82.01% in the pressure.

Plots of the difference field |u(t) − uref(t)| at different times are given in Fig. 10. We observe that with the absorbing 
conditions that are not adaptive, the amplitude of the error increases over the width of the domain as the angle grows.
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Fig. 12. Snapshots of the pressure field u = ρψt of a propagating, self-focusing wave.

Fig. 13. HIFU transducer in 2D: Relative L2(�) error of (Left) the potential ψ(t) and (Right) the pressure u(t) = ρψt (t) over the simulation time.

6.4. High-intensity focused ultrasound (HIFU)

We next simulate the potential field generated by a piezoelectric transducer. Such devices are made of small plates of a 
piezoelectric material that are aligned in an arc-shaped array pointing towards a common focal point [61,62]. When set into 
motion, those vibrating plates induce acoustic sound waves that propagate towards the focal point. As it travels, the wave 
is focused more and more the closer it comes to the focal point. This technique of generating high-pressure amplitudes at 
specific locations is used in medicine to treat kidney stones and certain types of cancer; see [4–8]. The pressure levels in 
the non-focal region are sufficiently low so that damage to the surrounding tissue is avoided.

For this experiment, the medium of propagation is again chosen to be water with the same physical parameters as 
before. The source frequency is again given by f = 210 kHz and the source amplitude by A = 0.02 m2/s2 which increases 
at the focal point due to focusing. As depicted in Fig. 2, the absorbing boundary here consists out of three line segments at 
the left, right and top. Time-snapshots of the transducer simulation can be seen in Fig. 12.

The computational domain was resolved with 13313 degrees of freedom, while for the time stepping 9800 steps and a 
final time of T = 4.725 · 10−5 s were used.

A comparison of the relative L2(�) errors at every time step is displayed in Fig. 13. Due to the relevance of measuring the 
acoustic pressure in HIFU applications, we again also plot the relative error that the absorbing boundary conditions produce 
in the pressure u = ρψt . We observe that the qualitative behavior of the errors and especially also the improvement made 
by the new adaptive conditions remains the same. For the adaptive conditions, the relative errors in the L2(0, T ; L2(�))

norm are eψ = 4.12% and eu = 4.46%, whereas eψ = 7.94% and eu = 7.27% if the adaptivity is not considered, resulting in an 
improvement of 51.89% in ψ and even 61.35% in u. The increase in computational time when using the adaptive absorbing 
conditions amounts to 1.5%.

Since even with the absorbing boundary conditions an impinging wave is not completely absorbed, there are always 
some spurious reflections that travel back into the interior of the domain. They then interact with the “main” wave that still 
travels towards the boundary and other spurious reflections originating from different parts of the boundary. Those effects 
together can accumulate over time, leading to an increase of the deviation from the reference solution and therefore the 
error, as can be observed in Fig. 13. These effects appear to be more pronounced in more complicated geometries as well 
as with wave focusing.

6.5. Multi-source wave superposition

Our next experiment is intended to illustrate that the adaptive method also works in scenarios with more than one 
wave source present and when superposition of waves occurs. In such cases, we can expect a less distinct wave propagation 
direction. In contrast to the other examples, here we use a source term on the right-hand side of the Westervelt equation. 
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Fig. 14. Wave propagation induced by two different source terms.

Fig. 15. Multi-source wave superposition: Relative L2(�) error of the potential ψ(t).

The computational domain is given by the square � = (0, 0.03)2 and we choose the source term as follows

f (x, y, t) = A sin(ωt)

[
exp

(
−

(
x − xmp1

σx

)2

−
(

y − ymp1

σy

)2
)

−2

3
exp

(
−

(
x − xmp2

σx

)2

−
(

y − ymp2

σy

)2
)]

,

with σx = σy = 0.0005, xmp1 = 0.02, xmp2 = 0.01, ymp1 = ymp2 = 0.015, and A = 1011 m2/s4. Fig. 14 depicts wave propaga-
tion at two different times induced by two different source terms within the computational domain. We impose absorbing 
conditions on all four boundaries. The transparent region depicts the reference domain. In Fig. 15, we can see the relative 
L2 errors. We observe that also in this setting the adaptive approach results in a smaller error and a better overall behavior.

6.6. 3D transducer

To also show the capability of our method in three dimensions, we perform another experiment in a transducer setting, 
this time in 3D. Due to the high computational costs, especially for the reference solution on the larger domain �ref , 
we choose a source amplitude of A = 0.002 m2/s2, while keeping physical parameters and the excitation frequency the 
same. Fig. 16 shows the computational domain together with the grid, while Fig. 17 depicts the three-dimensional wave 
propagation in the given domain.

In Fig. 18, we compare the adaptive conditions to the nonlinear conditions with the fixed angle θ = 0◦ . Note that in 
3D, in addition to the discretization error, there is also an interpolation error caused by a mismatch between the grid 
for the simulation with absorbing conditions and the mesh of the reference solution. Combined with the L2-norm of the 
reference solution being small at the beginning of the simulation, this results in the initial peak in the relative error for both 
adaptive and non-adaptive conditions. In 2D, the meshing software was able to avoid the interpolation error. In the long 
term behavior as well as in the absolute errors, we observe that the adaptive angle information improves the quality of the 
conditions. The qualitative behavior of the errors of the new adaptive conditions is similar in 3D. The relative errors in the 
L2(0, T ; L2(�)) norm are eψ = 8.28% and eu = 8.3% if the adaptivity is considered, whereas eψ = 10.34% and eu = 10.39% if 
the adaptivity is not considered, resulting in an improvement of 19.92% in ψ and 20.12% in u.
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Fig. 16. Three-dimensional transducer geometry with mesh visible on the surface. Absorbing conditions are employed on the green surface, Dirichlet 
conditions on the grey.

Fig. 17. Three-dimensional propagation of the pressure wave u = ρψt . The iso-volumes show the regions of highest (in absolute value) pressure amplitudes 
in 3D, while the two planes show slices through the three-dimensional pressure field.

Fig. 18. HIFU transducer 3D: (Left) Relative L2(�) error of the potential ψ(t), (Right) Absolute L2(�) error of the potential ψ(t).

6.7. 3D acoustic horn

Nonlinear sound propagation has been widely reported to occur in wind instruments; see [63–66]. Motivated by this, for 
our final experiment, we consider a numerical simulation of an acoustic horn.

The excitation takes place at the bottom of the domain and the waves then travel through a waveguide with an increasing 
diameter; see Fig. 20. At the end of the waveguide, where the wave starts to propagate into the ambient space, we employ 
again the absorbing conditions to truncate the domain at a spherical boundary. In this experiment we use the physical 
parameters of air instead of water:

c = 331
m

s
, b = 0.00005

kg

m s
, B/A = 1.2, � = 1.29

kg

m3
;

see [67]. The excitation has a frequency of f = 6.5 kHz and an amplitude of A = 0.01 m2/s2. To keep the computational 
cost reasonable, we again use symmetry to reduce the simulation to a quarter of the actual three-dimensional acoustic 
horn. The two planes of symmetry are equipped with homogeneous Neumann conditions; see Fig. 19. A comparison of 
adaptive and non-adaptive conditions is given in Fig. 21. The relative errors in the L2(0, T ; L2(�)) norm are eψ = 5.23% and 
eu = 5.33% if the adaptivity is considered, whereas eψ = 6.11% and eu = 6.07% if the adaptivity is not considered, resulting 
in an improvement of 14.4% in ψ and 12.19% in u.
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Fig. 19. Three-dimensional acoustic horn geometry with mesh visible on the surface. Absorbing conditions are employed on the green surface, homogeneous 
Neumann conditions on the grey and a wave excitation via inhomogeneous Dirichlet conditions at the bottom surface.

Fig. 20. Three-dimensional propagation of the pressure wave u = ρψt . The iso-volumes show the regions of highest (in absolute value) pressure amplitudes 
in 3D.

Fig. 21. Acoustic horn 3D: (Left) Relative L2(�) error of the potential ψ(t), (Right) Absolute L2(�) error of the potential ψ(t) over the simulation time.

We observe less of a gain in our recent examples compared to the introductory ones in 2D, which has a natural expla-
nation. In our simplest 2D setting in Section 6.1, the angle of incidence is constant over the whole absorbing boundary and 
large, so the boundary conditions can significantly profit from taking the angle information into account adaptively. In the 
later, more advanced examples (e.g., in Section 6.3) a large portion of the wave leaves the domain with quite small incidence 
angles. The same also holds for the application-oriented example of the focusing transducer in Sections 6.4 and 6.6. There, 
most of the angles of incidence are smaller than in the introductory examples which results in a smaller improvement 
compared to the standard non-adaptive conditions.
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7. Conclusion

We have developed a self-adaptive absorbing technique for sound propagation in the presence of nonlinearities. Within 
our approach, the angle of incidence of the wave is computed locally by employing the information given by the gradient 
of the wave-field. The absorbing conditions are then updated in real time with the angle values.

The method offers three fundamental advantages. It is sufficiently accurate over a range of angles of incidence, and it is 
easy to implement. Moreover, by only relying on the gradient of the wave field which is readily available in finite element 
simulations, we can keep the additional computational efforts low.
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[67] T. Gudra, K. Opieliński, The parametric formation of acoustic waves in the air by using ultrasonic transducers, Rev. Acust. XXXII (2002), Sevilla.



A.2. A discontinuous Galerkin coupling for nonlinear
elasto-acoustics

95



A discontinuous Galerkin coupling for nonlinear
elasto-acoustics

Markus Muhr, Vanja Nikolić and Barbara Wohlmuth

This article was inspired from the mechanical application of a piezoelectric transducer,
which by elastic vibrations excites ultrasound waves in an acoustic medium. The waves
then travel through an acoustic wave guide until they transition into human tissue, for
which different modeling approaches are used. The key feature of the article is hereby
the coupling and numerical treatment of a nonlinear acoustic- with the elastic-wave-
model of the excitator and the human tissue. In case of an acoustic tissue model, jumps
in the material parameters have to be considered, which are resolved using a DG ap-
proach. Elasto-acoustic interface coupling together with the application and analysis of
numerical methods for it can be found in [7, 106] for the linear case. In this article we
extend the considerations to the nonlinear case by combining the ideas with arguments
from [IV] to treat the nonlinear terms.
We introduce the elasto-acoustic model with two options, where one of them also con-

tains an acoustic-acoustic interface of different materials. The acoustic model equation
is stated in a general form that, by picking parameters accordingly, reduces to either
the Westervelt or Kuznetsov equation. The overall computational domain is divided
into material sub-domains with interfaces in between. Discretization is done using sub-
domain-wise conforming hexahedral finite elements of order p, where on the interfaces
coupling conditions are prescribed. For the elasto-acoustic interface they take the form
of mutual force-exchange Neumann conditions, in the acoustic-acoustic case continuity
conditions from DG are applied. The meshes of the individual sub-domains have to
fulfill some regularity assumptions. However, due to the interface DG approach, ge-
ometrically they do not have to be matching at the interfaces. The same holds for
the subdomain-wise polynomial degrees. We then continue to analyze the semi-discrete
problem to ultimately arrive at a convergence result. Under a sufficient smallness of data
assumption, we can show that in the L∞- in time and energy-norm in space the method
converges w.r.t. the mesh size parameter hs−1, where s depends on the regularity of the
problem and the polynomial degree of the finite element ansatz functions.
After the introduction, in Sec. 2, our coupled model is introduced, in Sec. 3 the semi-

discrete problem is stated. In Sec. 4 the linearized problem is analyzed involving a
stability estimate. Furthermore all necessary approximation results are collected. Sec. 5
then deals with the analysis of the nonlinear problem relying on Banach’s fixed point
theorem making use of the linear results from before. Finally Sec. 6 shows the theo-
retically proven convergence rates on extensive numerical experiments and also closes
the loop back to the original motivation by conducting a complex simulation of the ini-
tially mentioned transducer-wave-guide-tissue configuration in the software framework
SPEED.
I was significantly involved in finding the ideas and carrying out the scientific work

presented in this article including the write-up (except Remark 4.1, Prop. 4.10). Further-
more I was solely in charge of the numerical part of the article, i.e. design of numerical
examples, realization of the implementation and the creation of the figures.
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Inspired by medical applications of high-intensity ultrasound we study a coupled elasto-acoustic problem
with general acoustic nonlinearities of quadratic type as they arise, for example, in the Westervelt and
Kuznetsov equations of nonlinear acoustics. We derive convergence rates in the energy norm of a finite
element approximation to the coupled problem in a setting that involves different acoustic materials
and hence jumps within material parameters. A subdomain-based discontinuous Galerkin approach
realizes the acoustic-acoustic coupling of different materials. At the same time, elasto-acoustic interface
conditions are used for a mutual exchange of forces between the different models. Numerical simulations
back up the theoretical findings in a three-dimensional setting with academic test cases as well as in
an application-oriented simulation, where the modeling of human tissue as an elastic versus an acoustic
medium is compared.

Keywords: nonlinear acoustics; elasto-acoustic coupling; discontinuous Galerkin methods; Westervelt’s
equation; Kuznetsov’s equation; ultrasonic waves.

1. Introduction

This work is devoted to the numerical analysis and simulation of coupled linear elastic-nonlinear
acoustic problems, which arise in a variety of medical and industrial applications of ultrasonic waves.

Coupled problems in general play an essential role in different fields of application. Starting
with fluid–structure interaction (FSI), where fluid-dynamical equations like Navier–Stokes equations
are coupled to equations of solid mechanics (Hou et al., 2012; Wick & Wollner, 2020), over
electro/magneto-mechanical systems involving electromagnetic field equations (Kaltenbacher, 2007),
to biomedical applications, such as the mathematical modeling of tumor growth and the simulation of
thermo-acoustic effects (Shevchenko et al., 2012), which couple wave and heat equations. All such
problems have in common at least two different models—mostly in the form of partial differential
equations (PDEs)—that describe, for example one a fluid part, the other a solid part of the overall
problem. It is then necessary to couple the individual models to a global system. Therefore, different
techniques can be used, for example by individual (volumetric) source terms or factors mutually
depending on each other such as temperature and speed of sound in Shevchenko et al. (2012) or—in
case of spatially separated modeldomains with some common interface—via a coupling using Lagrange
multipliers, as discussed in Li (1998) for a simple model-problem, or in Flemisch et al. (2006) for an

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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elasto-acoustic coupling. A direct exchange via boundary conditions can also be used, as discussed in
Felippa et al. (2011) in an FSI setting.

The coupled problem considered in this work is the elasto-acoustic problem, where elastic
subdomains are modeled by an elastodynamic wave equation, whereas on (mostly) fluid subdomains
a nonlinear acoustic wave equation is employed to model the propagation of pressure waves. The choice
of the subdomain models often depends on the concrete application of interest. Therefore, different
coupling of elastic and acoustic equations have been investigated in the literature. A Lagrange-multiplier
approach for the coupling of a linear elastic equation and a linear undamped acoustic problem is
considered in Flemisch et al. (2006), whereas the approach of Antonietti et al. (2020a) employs a direct
exchange of forces via interface conditions.

In this work displacement-based linear elasticity is chosen to model the elastic parts of the domain,
whereas a nonlinear wave equation with a general nonlinearity of quadratic type is used for the acoustic
part:

1

c2
ψ̈ − Δψ − b

c2
Δψ̇ = 1

c2
(k1ψ̇ψ̈ + k2∇ψ · ∇ψ̇). (1.1)

This equation is formulated in terms of the acoustic velocity potential ψ = ψ(x, t), from which the
acoustic pressure can be computed using the relation p = �ψ̇ , where � is the mass density of the
medium. In homogeneous media, depending on the choice of the parameters k1 and k2, the well-known
Westervelt and Kuznetsov equations of nonlinear acoustics are obtained from (1.1) as special cases; see
Westervelt (1963); Kuznetsov (1970); Kaltenbacher (2007) and Section 2 below for more details on the
modeling aspects. Such wave equations model the propagation of sound waves with sufficiently high
amplitudes and frequencies through thermoviscous media. The thermoviscous dissipation is reflected in
the presence of the strong damping − b

c2 Δψ̇ in the equation. The magnitude of the parameter b plays a

significant role in the analysis. If b → 0+ the hyperbolic character of 1
c2 ψ̈ −Δψ dominates the behavior

of solutions. On the other hand, if the sound diffusivity b is relatively large, the parabolic character of
1
c2 ψ̈ − b

c2 Δψ̇ is pronounced and, in homogeneous media, one can even expect exponential decay of
the energy of solutions in time; see, for example, Mizohata & Ukai (1993); Kaltenbacher & Lasiecka
(2009). Thus, the presence of this strong damping will be crucial in our energy arguments.

A common medical use of high-intensity ultrasonic waves is in the noninvasive treatments of kidney
stones (Lee et al., 2007) and certain types of cancer (Kennedy, 2005). In such scenarios high-intensity
waves are generated, for example, by vibrating piezoelectric transducers (Kaltenbacher, 2007) arranged
on a part of the boundary of an acoustic medium, which might, for example, be a simple pipe filled
with water. Due to the shape of the transducers, the ultrasonic waves induced into the acoustic medium
are focused towards the central axis of the device, increasing the pressure amplitude there even more
(Kaltenbacher & Peichl, 2016; Muhr et al., 2019). Finally, on the other end of the acoustic channel, the
ultrasound waves propagate into human tissue, where they further travel towards, for example, a kidney
stone or tumor. Due to the fact that the waves are focused and of high power, the waves reaching, e.g.,
the kidney stone have enough energy to break it apart into smaller debris, thus avoiding an open surgery
for the patient; see, e.g., Skolarikos et al. (2006).

For solving the arising PDEs finite elements are our method of choice. A full discontinuous Galerkin
higher-order approach has been developed in Antonietti et al. (2020a) for the linear elasto-acoustic
problem. In Antonietti et al. (2020b) the acoustic propagation in homogeneous media without the
quadratic gradient nonlinearity has been treated in a discontinuous Galerkin setting. In Antonietti et al.
(2012) the purely elastic problem has been considered using the dG approach for the coupling
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of different subdomains; the developed approached was termed the discontinuous Galerkin spectral
element method (DGSEM).

To our best knowledge rigorous numerical analysis of an interface coupling between linear elasticity
and nonlinear acoustics has not been performed before. The available results in the literature on the
numerical analysis seem to focus either on related linear coupled problems or on nonlinear (acoustic)
wave propagation in homogeneous media. In particular, a priori analysis of a high-order discontinuous
Galerkin method for a spatial discretization of the corresponding undamped linear problem (b = k1 =
k2 = 0) has been conducted in Antonietti et al. (2020a). Error analysis of the (semi-)discrete Kuznetsov
equation is seemingly still an open problem. A high-order discontinuous Galerkin method for the
Westervelt equation (obtained when k2 = 0 in (1.1)) in homogeneous media has been analyzed in
Antonietti et al. (2020b). We also point out the results of Maier (2020), which as a particular case,
include rigorous analysis of the semidiscrete (based on a finite-element discretization) and fully discrete
Westervelt equation in pressure form in homogeneous inviscid media, where b = 0.

The hybrid approach developed in this work combines advantages of both the conforming and
discontinuous Galerkin framework. Within regions of constant material properties and simple geometry,
we use a conforming hexahedral mesh with its—conforming as well—nodal degrees of freedom located
at the Gauss–Laguerre–Lobatto points known from the spectral finite element method. However, in order
for more flexibility concerning the meshes being used, complex, possibly nonconforming, interfaces are
resolved using a DG-paradigm, which also allows us to clearly separate blocks of different material
properties, resolve jumps in the coefficients precisely and refine (material) subdomains of the overall
model individually to their needs.

The rest of the paper is structured as follows. In Section 2 we discuss the modeling aspects of
the problem, interface conditions and the variational formulation as well as the discrete finite element
setting. Section 3 introduces the semidiscrete problem with the necessary notation for the hybrid DG-
coupling approach. In Section 4 we prove stability of a linear version of the approximate problem and
derive convergence rates of this numerical scheme in the energy norm, where the proof of the error-
estimate is postponed to the appendix. Section 5 then presents a fixed-point argument, through which
we transfer the results from the linear error estimator to the nonlinear case, under the assumption of
sufficiently small data and the global mesh size. In particular, the main error estimate for the nonlinear
problem is obtained in Theorem 5.3 below. Finally, Section 6 contains our three-dimensional numerical
examples that illustrate the convergence results numerically in certain academic test cases as well as in
more application-oriented simulations.

2. The nonlinear elasto-acoustic problem

We begin by stating the elasto-acoustic coupled problem in its strong form. The different domains of
elastic as well as acoustic media are denoted using indices motivated by medical ultrasound applications
as discussed in the introduction. Nevertheless, whenever the term ‘excitator’ or ‘actuator’ is used, one
might also think of some general elastic domain Ωe⊂ Rd being coupled to some again general ‘fluid’
domain Ωf⊂ Rd representing an acoustic medium. What is here called ‘tissue’ domain Ωt⊂ Rd will be a
domain where both an elastic or an acoustic model could be used, depending on the concrete application.
We refer to Fig. 1 below for a graphical representation of the individual domains and interfaces.

Throughout the paper we assume the elastic and acoustic domains to be polygonal and convex, so
that they can be discretized exactly. Furthermore, T > 0 is a given fixed final time.

The coupling terms as well as the analysis of the global problem depend on the choice of the material
models. For the theoretical considerations we restrict ourselves to the case of an acoustic model in the
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Fig. 1. (Top left) Actuator Ωe, fluid Ωf and tissue Ωt domain in exemplary situation motivated by focused ultrasound

applications. (Top right) Material interfaces Γ
e,f
I , Γ

f,t
I (highlighted in green). (Bottom left) Option 1 with elastic tissue domain.

The fluid forms the acoustic domain Ωa alone (highlighted in green). (Bottom right) Option 2 with acoustic tissue domain.

The acoustic domain is formed by Ωf and Ωt (highlighted in green) with an acoustic-acoustic interface Γ
a,a
I = Γ

f,t
I . Here the

elasto-acoustic interface Γ
e,a
I = Γ

e,f
I .

tissue domain. From the point of view of analysis this is a more challenging problem, since it involves a
different type of interface coupling. However, our numerical experiments will deal with both situations
and compare the two models in an applicational context.

Actuator/mechanical excitator(elastic medium)

�e üe+2�eζ e u̇e + �e(ζ e)2 ue − div( σ (ue)) = f e, in Ωe × (0, T],

ue = 0, on Γ e
D × (0, T],

(ue, u̇e)|t=0 = (ue
0, ue

1), in Ωe,

Fluid(acoustic medium)

(cf)−2ψ̈ f − Δψ f − bf

(cf)2 Δψ̇ f = f f(ψ̇ f, ψ̈ f, ∇ψ f, ∇ψ̇ f), in Ωf × (0, T],

ψ f = 0, on Γ f
D × (0, T],

(ψ f, ψ̇ f)t=0 = (ψ f
0, ψ f

1), in Ωf,

Tissue, Option 1(elastic medium)

�t üt + 2�tζ t u̇t + �t(ζ t)2 ut − div( σ (ut)) = f t, in Ωt × (0, T],

ut = 0, on Γ t
D × (0, T],

(ut, u̇t)|t=0 = (ut
0, ut

1), in Ωt,
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Tissue, Option 2(acoustic medium)

(ct)−2ψ̈ t − Δψ t − bt

(ct)2 Δψ̇ t = f t(ψ̇ t, ψ̈ t, ∇ψ t, ∇ψ̇ t), in Ωt × (0, T],

ψ t = 0, on Γ t
D × (0, T],

(ψ t, ψ̇ t)t=0 = (ψ t
0, ψ t

1), in Ωt.

The acoustic right-hand side nonlinearity is defined as

f i(ψ̇ i, ψ̈ i, ∇ψ i, ∇ψ̇ i) = 1

(ci)2

(
ki

1(ψ̇
i)2 + ki

2|∇ψ i|2
)

t
= 2

(ci)2

(
ki

1ψ̇
iψ̈ i + ki

2∇ψ i · ∇ψ̇ i
)

, (2.1)

where i ∈ {f, t}. Here the notation (·)t stands for the partial derivative with respect to time. The stress-
tensor σ in the elastic domains is given by Hook’s law in the framework of linear elasticity as

σ (u) = Cε(u) = λdiv(u)1+ 2με(u),

where u stands for either ue or ut. Furthermore, ε(u) = 1
2 (∇u + ∇u�), C is the material stiffness

tensor with λ and μ being the Lamé-parameters of the given material. Further, ζ e and ζ t are damping
parameters. The source terms f e and f t denote external body forces.

Interface coupling. We next discuss the coupling conditions over different interfaces. We introduce

Γ
e,f

I = Ωe ∩ Ωf

as the interface between the purely elastic and purely acoustic domains. Moreover, we set

Γ
f,t

I = Ωf ∩ Ωt

as the interface between the purely acoustic domain Ωf and the domain Ωt, for which the role of the
interface will differ, but not its geometry. Finally, we denote by ni, i ∈ {e,t,f} the outward unit normal
vector field of the respective subdomain Ωi.
Actuator–fluid interface. This is an elasto-acoustic interface that prescribes a normal stress/pressure on
the elastic domain given by the acoustic pressure in the fluid domain, while the acoustic particle velocity
is prescribed by the displacement velocity of the elastic medium

σ (ue) ne = −�f
(

ψ̇ f + bf

(cf)2 ψ̈ f
)

ne, on Γ
e,f

I × (0, T],

∂ψ f

∂nf + bf

(cf)2

∂ψ̇ f

∂nf = −u̇e · nf, on Γ
e,f

I × (0, T].

Fluid–tissue interface. The type of the interface between the fluid and tissue depends on the choice of
the material model for the tissue domain Ωt.
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Option 1: elastic tissue In case of an elastic material Ωt the interface has the same structure as the
actuator–fluid interface.

σ (ut) nt = −�f
(

ψ̇ f + bf

(cf)2 ψ̈ f
)

nt, on Γ
f,t

I × (0, T],

∂ψ f

∂nf + bf

(cf)2

∂ψ̇ f

∂nf = −u̇t · nf, on Γ
f,t

I × (0, T].

Option 2: acoustic tissue In case of an acoustic material Ωt, the type of the interface changes to
the following transmission condition respecting jumps in the acoustic material parameters, as well as
enforcing continuity of the acoustic potential across the acoustic-acoustic interface in the trace sense.

(
∇ψ t + bt

(ct)2 ∇ψ̇ t
)

nf =
(

∇ψ f + bf

(cf)2 ∇ψ̇ f
)

nf, on Γ
f,t

I × (0, T],

ψ t = ψ f, on Γ
f,t

I × (0, T].

As already discussed we will focus on the stability and error analysis in the case of the tissue being
an acoustic medium. The analysis when the tissue is elastic follows by analogous arguments, and so
we omit it here. In the numerical experiments we will extensively test both settings. We refer to Fig. 1
(bottom line) for a graphical description of the two options and corresponding domain setups.

Remark 2.1 (On the choice of the acoustic model). Our model for acoustic propagation in media with
piecewise constant coefficients can be written in the strong form on Ωa as

1
c2(x)

ψ̈ − Δψ − div
( b(x)

c2(x)
∇ψ̇
) = 1

c2(x)
(k1(x)ψ̇ψ̈ + k2(x)∇ψ · ∇ψ̇). (2.2)

This choice of the acoustic model is in part dictated by the physical interface conditions between
the elastic and acoustic domain. Simplified versions of (2.2) can be found in the nonlinear acoustics
literature. In particular, equation

1

c2(x)
p̈ − Δp = βnl

�c4
(p2)tt

for the acoustic pressure is valid when the inhomogeneity of the medium varies in one direction;
see Hamilton & Blackstock (1998, §5, Eq. (40)). In such cases it can be assumed that this weak
inhomogeneity of the medium results in changes only to the speed of sound, while the other parameters
remain constant. Above, βnl denotes the coefficient of nonlinearity in a given medium. Integrating with
respect to time and using the relation p = �ψ̇ gives

1

c2(x)
ψ̈ − Δψ = βnl

c4 (ψ̇2)t. (2.3)

Equation (2.2) can be understood as a mathematical generalization of (2.3) that allows for a Kuznetsov-
type nonlinearity and all coefficients to be piecewise constant functions.
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2.1 Notation

Since in the analysis we assume the tissue to be an acoustic medium, we can treat both the fluid and
tissue as one acoustic domain with piecewise constant parameters. We thus denote this tissue–fluid
acoustic region as

Ωa = Ωf ∪ Ωt.

The general elasto-acoustic interface Γ
e,a

I and the acoustic-acoustic interface Γ
a,a

I are then defined as

Γ
e,a

I = Ωa ∩ Ωe, Γ
a,a

I = Ωf ∩ Ωt.

We then define the parts of the boundary with homogeneous Dirichlet conditions prescribed as

Γ a
D = ∂Ωa \ Γ

e,a
I , Γ e

D = ∂Ωe \ Γ
e,a

I .

To facilitate the analysis we introduce the following Hilbert spaces:

H1
D(Ωf) = {u ∈ H1(Ωf) : u = 0 on Γ f

D}, H1
D(Ωt) = {u ∈ H1(Ωt) : u = 0 on Γ t

D},
H1

D(Ωa) = {u ∈ H1(Ωa) : u = 0 on Γ a
D}, H1

D(Ωe) = {u ∈ H1(Ωe) : u = 0 on Γ e
D},

where H1(Ωe) stands for the vector-valued version of the H1(Ωe) Sobolev space. By ‖ · ‖Ωa
and ‖ · ‖Ωe

we denote the norm in L2(Ωa) and L2(Ωe) again being the vector-valued version of L2(Ωe):

‖φ‖Ωa
=
{∫

Ωa

|φ|2 dx

}1/2

, ‖u‖Ωe
=
{∫

Ωe

‖u‖2 dx

}1/2

.

Similarly, ‖ · ‖Ωf
and ‖ · ‖Ωt

denote the norms in L2(Ωf) and L2(Ωt), respectively.

2.2 Assumptions on the medium parameters

We assume all the medium parameters to be piecewise constant functions:

c(x) :=
{

cf, x ∈ Ωf,

ct, x ∈ Ωt,
b(x) :=

{
bf, x ∈ Ωf,

bt, x ∈ Ωt,
k1(x) :=

{
kf

1, x ∈ Ωf,

kt
1, x ∈ Ωt,

k2(x) :=
{

kf
2, x ∈ Ωf,

kt
2, x ∈ Ωt.

Furthermore, we assume that cf, ct > 0 and bf, bt > 0. As mentioned in the introduction the presence
of strong b-damping in the nonlinear acoustic equation is crucial for the validity of our error estimates.
The sign of k does not play an important role in the analysis, and we can assume that kf

i , kt
i ∈ R for

i = 1, 2. The piecewise acoustic nonlinearity is given by

f a(ψ̇ , ψ , ∇ψ , ∇ψ̇) :=
{

f f(ψ̇ f, ψ f, ∇ψ f, ∇ψ̇ f), x ∈ Ωf,

f t(ψ̇ t, ψ t, ∇ψ t, ∇ψ̇ t), x ∈ Ωt.
(2.4)
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Since in the analysis we work with one elastic domain, from now on we drop the superscript e from the
notation of the elastic solution and its derivatives, and use, for example, just u in place of ue. We also set
ζ = ζ e > 0. The material density ρ is the only parameter appearing in both elastic and acoustic media,
hence we introduce the piecewise constant function

�(x) =

⎧
⎪⎨
⎪⎩

�a(x) =
{

�f, x ∈ Ωf,

�t, x ∈ Ωt,

�e, x ∈ Ωe,

which is assumed to be positive as well.

2.3 Weak formulation

We can now introduce the bilinear form

aa : {ψ ∈ L2(Ωa) : ψ|Ωf
∈ H1

D(Ωf), ψ|Ωt
∈ H1

D(Ωt)}2 → R

as

aa(ψ , φ) = (∇ψ f, ∇φf)Ωf
+ (∇ψ t, ∇φt)Ωt

,

where ψ |Ωf
= ψ f and ψ |Ωt

= ψ t. The bilinear form ae : H1
D(Ωe) × H1

D(Ωe) → R corresponding to
the elastic medium is given by

ae(u, v) = (Cε(u), ε(v))Ωe
.

Going forward we assume that our problem has a solution in the following sense. Let the solution space
for the displacement be given by

Xe = C1([0, T]; H1
D(Ωe)) ∩ H2(0, T; Hs(Ωe)),

and the solution space for the acoustic velocity potential by

Xa = {ψ ∈ C1([0, T]; H1
D(Ωa)) ∩ H2(0, T; L2(Ωa)) : ψ |Ωi

∈ H2(0, T; Hs(Ωi))},

where s > 1 + d/2, d being the spatial dimension of the problem. We note that the choice of the
regularity index s is dictated by the nonlinear error analysis below; see Theorem 5.3 for details.

We assume that there exists (u, ψ) ∈ Xe × Xa such that

(�eü, v)e
+ (2�eζ u̇, v)e

+ (�eζ 2u, v)e
+ ae(u, v)

+ I (�f(ψ̇ + b
c2 ψ̈), v) − I (φ, u̇) + (c−2ψ̈ , φ)a

+ aa(ψ + b
c2 ψ̇ , φ)

= (f e, v)e
+ (f a(ψ̇ , ψ̈ , ∇ψ , ∇ψ̇), φ)a
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for a.e. t ∈ (0, T) and all test functions (v, φ) ∈ H1
D(Ωe) × {φ ∈ L2(Ωa) : φ|Ωf

∈ H1
D(Ωf), φ|Ωt

∈
H1

D(Ωt)}, supplemented by the initial conditions

(u, u̇)|t=0 = (u0, u1), (ψ , ψ̇)t=0 = (ψ0, ψ1).

The interface form I : H1
D(Ωa) × H1

D(Ωe) → R above is defined as

I (ψ , v) = (ψne, v)Γ e,a
I

.

Well-posedness of this coupled nonlinear problem appears to still be an open problem. The main
difficulties in its analysis lie in the quasi-linear nature of the acoustic wave equation and the quadratic
gradient nonlinearity, which, in general, requires the use of high-order energies in the analysis. However,
some results on related linear coupled and nonlinear acoustic problems can be found in the literature. In
particular, well-posedness of the linear undamped version (b = k1 = k2 = 0) of the coupled problem
with f a = f a(x, t) is proven in Antonietti et al. (2020a, Theorem 1.1). Small-data global well-posedness
of the Kuznetsov equation has been established in Mizohata & Ukai (1993), whereas the Westervelt
equation expressed in terms of the acoustic pressure has been analyzed in, for example, Kaltenbacher
& Lasiecka (2009) and Meyer & Wilke (2011). We also point out the analysis of a nonlinear elasto-
acoustic problem in Brunnhuber et al. (2014), where the acoustic field is modeled by the Westervelt
equation with an additional strong nonlinear damping.

2.4 Discrete setting

Before introducing the semidiscrete version of the above problem, we state the assumptions on the finite
element mesh used in the discretization (with d = 3). Each subdomain Ωe, Ωf and Ωt is individually
meshed in a conforming way by trilinear hexahedral Lagrange elements, where the element mapping
for element κ will be denoted by

Fκ : (−1, 1)3 → R3, Fκ((−1, 1)3) = κ .

This gives rise to the subdomain-wise tessellations The,e, Thf,f and Tht,t, where we have defined
hi := maxκ∈Thi ,i

hκ , i ∈ {e,f,t}, and the global mesh Th with global mesh size

h = max{he, hf, ht}.

At the interfaces the subdomain meshes do not have to match, which allows for a more flexible grid
generation as well as different levels of refinement. For i ∈ {e,f,t} we make the following assumptions
on the families {Thi,i}:

• Shape-regularity subdomain-wise: there exists σi > 0 such that each element κ ∈ Thi,i contains a

ball with the radius ρκ � hκ

σi
, where hκ denotes the diameter of the element κ .

• Uniformity (subdomain-wise): there exist σ̂i > 0, such that: hi
minκ∈Thi ,i

hκ
� σ̂i.

• Comparability of subdomains: there exists ς̂i > 0 such that: h � ς̂ihi.
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• Face nondegeneracy: let κ ∈ Thi,i and F be any face of κ , then there exists some constant ιi such

that |F| � h2
κ

ιi
.

Remark 2.2 We remark that the assumed face nondegeneracy is applied only subdomain-wise, and
does not exclude grids that are for example staggered by a length-parameter ε w.r.t. each other. The
‘comparability of subdomain’ assumption can easily be satisfied even for individually generated sub-
meshes, as only the global mesh-size information needs to be exchanged.

Besides the computational domain’s volumetric tessellation, we also define the sets of mesh faces
that belong to the interfaces. As mentioned before the analysis deals with Option 2, where the tissue is an
acoustic medium. Hence, we classify the interfaces into elasto-acoustic and acoustic-acoustic. To deal
with meshes that are nonmatching at the interfaces, we follow ideas and notation of mortar methods and
classify master and slave sides for the subdomains meeting at the interfaces; see, for example, Brivadis
et al. (2015). In the case of the elasto-acoustic interface the acoustic fluid region will be considered the
master side, the elastic excitation domain the slave side. The fluid will be regarded as the master and
the tissue domain as the slave side for the acoustic-acoustic interface again. We define the interface-
face-collection now only for the master side, where later summation/integration over them, of course,
incorporates the respective slave sides contributions as well, e.g. via jump terms.

Elasto-Acoustic interface faces (master side): F e,a
h = {F : F face of some κ ∈ Th,f ∧ F ⊂ Γ

e,a
I },

Acoustic-Acoustic interface faces: F a,a
h = {F : F face of some κ ∈ Th,f ∧ F ⊂ Γ

a,a
I }.

If we talk about faces on a generic interface (e.g. any of elasto-acoustic or acoustic-acoustic) we use
F I

h. We can now use the following physical-domain elementwise ansatz-spaces:

QF
p (κ) = {ϕ : κ → R : ϕ = ϕ̂ ◦ F−1

κ , with some ϕ̂ ∈ Qp((−1, 1)3)},
QF

p (κ) = {v : κ → R3 : v = v̂ ◦ F−1
κ , with some v̂ ∈ Qp((−1, 1)3)},

where Qp denotes the tensor-product polynomial space of degree � p in each direction and Qp its
vector-valued version. Furthermore, we introduce the finite-element spaces as

V f
h := {ψ ∈ H1

D(Ωf) : ψ | κ ∈ QF
p (κ)∀ κ ∈ Th,f}, V t

h := {ψ ∈ H1
D(Ωt) : ψ | κ ∈ QF

p (κ)∀ κ ∈ Th,t},
Va

h := {ψ ∈ L2(Ωa) : ψ | Ωf
∈ V f

h, ψ | Ωt
∈ V t

h}, Ve
h := {v ∈ H1

D(Ωe) : v| κ ∈ QF
p (κ)∀ κ ∈ Th,e}.

Remark 2.3 Having different polynomial degrees pf , pt and pe within the individual subdomains
would be possible. However, for simplicity of notation, we restrict ourselves here to a single polynomial
degree p.

We use x � y to denote x � Cy, where the constant C > 0 does not depend on the mesh
size, however, might still depend on the material parameters and on the polynomial degree. For better
readability we do not track this dependency on material parameters in this work. In an easier, purely
acoustic setting such constant tracking was performed in Antonietti et al. (2020b).



A DISCONTINUOUS GALERKIN COUPLING FOR NONLINEAR ELASTO-ACOUSTICS 11

3. The semidiscrete problem

To state our hybrid semidiscrete problem we introduce the following average and jump operators on the
fluid–tissue interface. For sufficiently smooth ψ we set the gradient average on F ∈ F a,a

h and define the
jump of the normal trace as follows:

{{∇ψ}} = ∇ψ f + ∇ψ t

2
, �ψ� = ψ fnf + ψ tnt.

Moreover, we introduce the short-hand notations

〈ψ , φ〉F a,a
h

=
∑

F∈F a,a
h

(ψ , φ)L2(F), and ‖ψ‖F a,a
h

= 〈ψ , ψ〉1/2
F a,a

h
.

The semidiscrete problem is given by

(�eüh(t), vh)e
+ (2�eζ u̇h(t), vh)e

+ (�eζ 2uh(t), vh)e
+ ae(uh(t), vh)

+ (c−2ψ̈h(t), φh)a
+ aa

h(ψh(t) + b
c2 ψ̇h(t), φh)

+ I (�f(ψ̇h(t) + b
c2 ψ̈h(t)), vh) − I (φh, u̇h(t))

= (fe(t), vh)e
+ (f a

h (ψ̇h(t), ψ̈h(t), ∇ψh(t), ∇ψ̇h(t)), φh)a
(3.1)

a.e. in time for all (vh, φh) ∈ Ve
h × Va

h and supplemented with initial conditions

(uh(0), u̇h(0), ψh(0), ψ̇h(0)) ∈ Ve
h × Ve

h × Va
h × Va

h .

The acoustic gradient terms on the right-hand side of (3.1) should be understood as

(f a
h (ψ̇h(t), ψ̈h(t), ∇ψh(t), ∇ψ̇h(t)), φh)Ωa

= (f f
h(ψ̇

f
h(t), ψ̈

f
h(t), ∇ψ f

h(t), ∇ψ̇ f
h(t)), φh)Ωf

+ (f t
h(ψ̇

t
h(t), ψ̈

t
h(t), ∇ψ t

h(t), ∇ψ̇ t
h(t)), φh)Ωt

,

where f f
h and f t

h are defined analogously to f t and f t in (2.1) just over the discrete spaces. This is used
for a compact notation of the difference ‖f a − f a

h ‖ later in Sec. 4 and 5. The discrete acoustic bilinear
form aa

h : Va
h × Va

h → R is given by

aa
h(ψh, ϕh) = (∇ψ f

h, ∇ϕh)f
+ (∇ψ t

h, ∇ϕh)t

− 〈{{∇ψh}}, �ϕh�〉F a,a
h

− 〈{{∇ϕh}}, �ψh�〉F a,a
h

+ 〈χ�ψh�, �ϕh�〉F a,a
h

.

Finally, the stabilization parameter χ is defined face-wise on F ∈ F a,a
h :

χ = β
p2

hF
, hF = min{hκ : κ ∈ Th,t, λ2(κ ∩ κF) > 0}, (3.2)
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where κF is the element that F belongs to as a face and λ2(·) is the two-dimensional Lebesgue measure.
By that hF is the minimal h of all elements from the slave-side (tissue domain) that have a nontrivial
intersection with the face F, while β > 0 is a suitable DG penalty parameter that will be chosen as
sufficiently large to guarantee stability of the semidiscrete method. Finally, we also incorporate the
p-dependency in the stabilization parameter in the standard way via p2, see Schötzau et al. (2002);
Epshteyn & Rivière (2007); Antonietti et al. (2020a), where p is again the polynomial degree of the
finite element ansatz functions.

4. Stability analysis and a priori bounds of the linearized semidiscrete formulation

We first perform the stability analysis in the case

f a
h = f a

h (x, t).

To facilitate the later study of the nonlinear problem the following points are important:

(i) Discretization errors f a − f a
h of the acoustic source terms should be taken into account.

(ii) An error estimate of ψ̈h and not only of the approximate potential field ψh and its first time
derivative ψ̇h is needed.

The second point implies that we have to involve the second time derivative of the approximate acoustic
velocity potential as a test function in the energy analysis.

Motivated by the analysis in Antonietti et al. (2020b), we define the higher-order acoustic energy

‖ψh(t)‖2
Ea = ‖ψ̇h(t)‖2

a
+
∫ t

0
‖ψ̈h(τ )‖2

a
dτ + ‖∇ψ̃h(t)‖2

a
+ ‖√χ �ψ̃h(t)� ‖2

F a,a
h

, (4.1)

where we have introduced the short-hand tilde notation

ψ̃h = ψh + b

c2 ψ̇h.

The gradient term should be understood in a broken sense as

‖∇ψ̃h(t)‖2
a

= aa(ψ̃h(t), ψ̃h(t))

=
∥∥∥∇
(
ψ f

h + bf

(cf)2 ψ̇ f
h

)
(t)
∥∥∥

2

f
+
∥∥∥∇
(
ψ t

h + bt

(ct)2 ψ̇ t
h

)
(t)
∥∥∥

2

t
.

For convenience of notation we also introduce the broken Hs-norm on the total acoustic domain as

‖φ‖2
s,a = ‖φ‖2

Hs(Ωf)
+ ‖φ‖2

Hs(Ωt)
, s � 0.

We further recall that

‖√χ �ψ̃h(t)� ‖2
F a,a

h
=〈χ�ψ̃h�, �ψ̃h�〉F a,a

h
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with

�ψ̃h� = (ψ f
h + bf

(cf)2 ψ̇ f
h)n

f + (ψ t
h + bt

(ct)2 ψ̇ t
h)n

t

and the stabilization parameter χ defined in (3.2). The elastic energy is given by

‖uh(t)‖2
Ee = ‖u̇h(t)‖2

e
+ ‖uh(t)‖2

e
+ ‖ε(uh(t))‖2

e
. (4.2)

We can then set the total energy as

‖(uh(t), ψh(t))‖2
E = ‖ψh(t)‖2

Ea + ‖uh(t)‖2
Ee .

Note that, except for the term b/c2ψ̇h, the norms within energies are chosen without scaling that would
involve material parameters. For careful tracking of material parameters within the hidden constants in
the numerical analysis, we refer to Antonietti et al. (2020a,b).

Remark 4.1 For the upcoming estimates it is useful to note that a bound on the acoustic energy of a
function ψ at time t will give us a bound on ‖∇ψ(t)‖Ωa

and ‖∇ψ̇(t)‖Ωa
as well. Indeed, let

‖ψ(t)‖2
Ea � M

for some M > 0. Then by

‖∇ψ̃(t)‖2
a

= ‖∇ψ(t)‖2
a

+ (bf)2

(cf)4 ‖∇ψ̇ f(t)‖2
f

+ 2
bf

(cf)2 (∇ψ f
h(t), ∇ψ̇ f

h(t))f

+ (bt)2

(ct)4
‖∇ψ̇ t(t)‖2

f
+ 2

bt

(ct)2
(∇ψ t

h(t), ∇ψ̇ t
h(t))t

� M,

and Hölder’s and Young’s inequalities, we have

‖∇ψ(t)‖2
Ωa

+ b2

c4
‖∇ψ̇(t)‖2

Ωa
� M + 2b

c2
‖∇ψ(t)‖Ωa

‖∇ψ̇(t)‖Ωa

� M + 2

ε
‖∇ψ(t)‖2

Ωa
+ ε

b
2

2c4 ‖∇ψ̇(t)‖2
Ωa

, (4.3)

where b = min{bf, bt}, b = max{bf, bt} and similarly c = min{cf, ct}, c = max{cf, ct}. We can choose
ε > 0 small enough so that the last term on the right in (4.3) is absorbed by the left side. By additionally
relying on the bound

‖∇ψ(t)‖2
Ωa

� 2T
∫ t

0
‖∇ψ̇(τ )‖2

Ωa
dτ + 2‖∇ψ(0)‖2

Ωa
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and Gronwall’s inequality, we then have

‖∇ψ(t)‖2
Ωa

+ ‖∇ψ̇(t)‖2
Ωa

� C̃(T , b)
(

M + ‖∇ψ(0)‖2
Ωa

)
, t ∈ [0, T], (4.4)

where the constant C̃ tends to infinity as T → ∞ or b → 0+, but does not depend on h.

4.1 Preliminary theoretical results

In this subsection we collect several well-known results on interpolation, trace inequalities and standard
estimates used in the (discontinuous) Galerkin framework that we will later need to employ in our
proofs.

Lemma 4.2 Let p ∈ N be a given polynomial degree and let κ ∈ Th. Then for v ∈ QF
p (κ), it holds

‖v‖L∞(κ) � Cinvh−d/2
κ ‖v‖L2(κ),

‖v‖L2(∂κ) � h−1/2
κ ‖v‖L2(κ).

(4.5)

Note that the constants in Lemma 4.2 depend on the polynomial degree of v. However, this
dependency is suppressed here just as the material parameter dependencies.

Lemma 4.3 Let χ be the stabilization parameter defined in 3.2 with parameter β. Then it holds

‖χ−1/2{{∇ψ̃h(t)}}‖F a,a
h

� 1√
β

‖∇ψ̃h(t)‖Ωa
, t ∈ [0, T].

Proof. The proof follows analogously to the proof of Antonietti et al. (2020a, Lemma A.1). �
Lemma 4.4 Let ψh ∈ H2(0, T; Va

h) and let C1 and C2 be two given positive constants. For a sufficiently
large penalty parameter β in (3.2), the following estimates hold:

C1‖ψh(t)‖2
Ea − 〈{{∇ψ̃h(t)}}, �ψ̃h(t)�〉F a,a

h
� ‖ψh(t)‖2

Ea ,

C2‖ψh(0)‖2
Ea − 〈{{∇ψ̃h(0)}}, �ψ̃h(0)�〉F a,a

h
� ‖ψh(0)‖2

Ea .

Proof. Note that ψh ∈ H2(0, T; Va
h) ↪→ C1([0, T]; Va

h). The proof can then be carried out analogously
to the proof of Lemma A.2 in Antonietti et al. (2020a). �

The following lemmas summarize standard interpolation and stability estimates in the L2, H1 and
L∞ norms.

Lemma 4.5 (see Theorem 4.6.14 in Brenner & Scott, 2008) Let i ∈ {f,t}. There exists a subdomain-wise
interpolation operator

Πp : Hs(Ωi) → V i
h,

which satisfies the following bounds:

• ‖φ − Πpφ‖L2(Ωi)
� Capp2hs‖φ‖Hs(Ωi)

∀ s = 0, 1, ..., p + 1,
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• |φ − Πpφ|H1(Ωi)
� hs−1‖φ‖Hs(Ωi)

∀ s = 1, 2, ..., p + 1,

• ‖φ − Πpφ‖L∞(Ωi)
� hs−d/2‖φ‖Hs(Ωi)

∀ d/2 < s � p + 1.

Component-wise application allows to extend the definition to vector-valued functions; i.e., there exists
Πp : Hs(Ωe) → Ve

h with the same orders of approximation.

Due to the regularity assumptions on the exact solution to our problem we can employ the Lagrange
interpolation operator. Restriction to a single element κ ∈ Th yields the following stability estimate.

Lemma 4.6 (See Lemma 4.4.1 in Brenner & Scott, 2008). The interpolation operator introduced in
Lemma 4.5 fulfills the following stability estimate in the Wk,∞(κ) norm:

‖Πpψ‖Wk,∞(κ) � Cst‖ψ‖C0(κ).

We also recall the following multiplicative trace inequality, which will be used to derive error
estimates.

Lemma 4.7 Let κ ∈ Th be a mesh element with diameter hκ satisfying our mesh assumptions.
Furthermore, let F be any face of κ . Then for v ∈ H1(κ), it holds

‖v‖2
L2(F)

� ‖v‖L2(κ)

(
|v|H1(κ) + h−1

κ ‖v‖L2(κ)

)
.

Proof. The statement follows by Lemma 1.49 in Di Pietro & Ern (2012). �
Lemma 4.8 Let φh ∈ Va

h and let χ be the stabilization parameter defined in (3.2) with parameter β.
Then for the global polynomial interpolant φI ∈ Va

h of degree p of φ ∈ Hs(Ωa), d/2 < s � p + 1, it
holds

‖χ−1/2{{∇(φ − φI)}}‖2
F a,a

h
� h2(s−1)‖φ‖2

s,a.

Proof. The statement follows by Lemmas 3 and 4 in Antonietti et al. (2020b). �
Lemma 4.9 For any element κ ∈ Th and polynomial degree p ∈ N, let φ ∈ Hs(κ) for some d/2 < s �
p + 1 and let F be a face of κ . Then, the following interpolation estimate on the face F holds true:

‖φ − Πpφ‖L2(F) �
√|F| hs−d/2

κ ‖φ‖Hs(κ), ∀ d/2 < s � p + 1.

Proof. The statement follows as a special case of the more general result of Lemma 4.2 in Cangiani
et al. (2014); see also Lemma 1.59 in Di Pietro & Ern (2012). �

With these technical results at hand we now proceed with considering stability and error estimate
for the linearization of the coupled problem.

4.2 Stability of the semidiscrete formulation in the energy norm

We first prove that our linearized semidiscrete approximation is uniquely solvable and stable in the
energy norm.
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Proposition 4.10 Let f e ∈ L2(0, T; L2(Ω)), f f
h ∈ L2(0, T; V f

h) and f t
h ∈ L2(0, T; V t

h). The following
estimate holds:

‖(uh(t), ψh(t))‖2
E � ‖(uh(0), ψh(0)‖2

E) +
∫ t

0
(‖f e(τ )‖2

e
+ ‖f a

h (τ )‖2
f

) dτ , (4.6)

for a.e. t ∈ [0, T], provided the penalty parameter β in (3.2) is sufficiently large. The hidden constant
depends on the material parameters and the polynomial degree p, and tends to ∞ as T → ∞, but does
not depend on the mesh size.

Proof. We note that the existence of a unique (uh, ψh) ∈ H1(0, T; Ve
h) × H2(0, T; Va

h) follows by
standard arguments for linear ordinary differential equations and the energy bounds derived below; see,
for example, Nikolić & Wohlmuth (2019), Antonietti et al. (2020b). The proof then follows by testing
the problem by vh = u̇h and

φh = �f ˙̃
ψh = �f(ψ̇h + b

c2 ψ̈h).

Note that we have the same factor �f on both subdomains,

φh =
⎧
⎨
⎩

�f(ψ̇ f
h + bf

(cf)2 ψ̈ f
h) in Ωf,

�f(ψ̇ t
h + bt

(ct)2 ψ̈ t
h) in Ωt.

The reason for this choice of test functions is that they lead to the canceling out of the elasto-acoustic
interface terms in (3.1):

(�f(ψ̇ f
h + bf

(cf)2 ψ̈ f
h)n

e, u̇h)Γ e,a
I

= −(u̇h · na, �f(ψ̇ f
h + bf

(cf)2 ψ̈ f
h))Γ e,a

I

because na = −ne on Γ
e,a

I . Moreover, scaling the acoustic test function by the constant �f (as opposed
to �) will not cause issues with the symmetry of dG terms across the acoustic interface. Standard
computations then lead to (4.6). We omit the details here. �

4.3 Error analysis of the linearized semidiscrete problem

To facilitate the error analysis of the linearization we define suitable norms in space and time, as well
as decompose the overall error into interpolation and discretization parts, which are then estimated
separately. We introduce the following norms:

‖v‖L∞Ee = ess sup
t∈(0,T)

‖v(t)‖Ee , ‖φ‖L∞Ea = sup
t∈(0,T)

‖φ(t)‖Ea (4.7)

as well as the overall energy norm

‖(v, φ)‖2
L∞E = ‖v‖2

L∞Ee + ‖φ‖2
L∞Ea . (4.8)
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As standard the total error between the solution and its approximation

e = (eu, eψ) = (u − uh, ψ − ψh)

can be decomposed into two parts as follows:

e = (eu, eψ) = (eu,I − eu,h, eψ ,I − eψ ,h)

= ((u − uI) − (uI − uh), (ψ − ψI) − (ψI − ψh)), (4.9)

where uI and ψI are the subdomain-wise defined, global interpolants of (u, ψ) ∈ Xe × Xa given by
Lemma 4.5; i.e., uI

∣∣
Ωe

= Πp u| Ωe
, ψI

∣∣
Ωf

= Πp ψ | Ωf
and ψI

∣∣
Ωt

= Πp ψ | Ωt
.

With these assumptions and the technical results from Subsection 4.1 at hand, we can derive an
approximation bound for the global interpolants.

Lemma 4.11 Given (u, ψ) ∈ Xe × Xa the global interpolants satisfy the following error estimates:

‖ψ − ψI‖2
L∞Ea � h2(s−1)

{
sup

t∈(0,T)

(
‖ψ(t)‖2

s,a + ‖ψ̇(t)‖2
s,a

)
+
∫ t

0
‖ψ̈(τ )‖2

s,a dτ

}
,

‖u − uI‖2
L∞Ee � h2(s−1) sup

t∈(0,T)

(
‖u(t)‖2

Hs(Ωe)
+ ‖u̇(t)‖2

Hs(Ωe)

)
.

Proof. Directly follows from Lemma 4.7 and the interpolation estimates from Lemma 4.5. �
We approximate initial conditions by applying the subdomain-wise global interpolation operators to

the given data. In other words, we take (uh(0), u̇h(0), ψh(0), ψ̇h(0)) ∈ Ve
h × Ve

h × Va
h × Va

h such that

uh(0) = u0,I , u̇h(0) = u1,I ,

ψh(0) = ψ0,I , ψ̇h(0) = ψ1,I .
(4.10)

We can now state the error bound in the energy norm for the linearized problem.

Theorem 4.12 Let (u, ψ) ∈ Xe × Xa and let the discrete initial conditions be obtained by interpolation
of the exact ones; that is, let (4.10) hold. Then the approximation error e = (eu, eψ) = (u − uh, ψ −ψh)

can be bounded as follows:

‖e‖2
L∞E � h2(s−1)

[
sup

t∈(0,T)

(
‖u(t)‖2

Hs(Ωe)
+ ‖ψ(t)‖2

s,a + ‖ψ̇(t)‖2
s,a

)

+
∫ T

0

(
‖u̇‖2

Hs(Ωe)
+ ‖ü‖2

Hs(Ωe)
+ ‖ψ̈‖2

s,a

)
dτ

]
+
∫ T

0
‖f a − f a

h ‖2
Ωa

dτ , (4.11)

provided the penalty parameter β in (3.2) is sufficiently large. The hidden constant in the estimate tends
to infinity as T → ∞, but does not depend on h.

The proof follows by combining the arguments from the proof of Theorem 5.2 in Antonietti
et al. (2020a) (with respect to treating the elastic and coupling terms) with our particular choice of
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test functions, as already seen in Proposition 4.10, and allowing for the error in the source term. For a
worked out version of the proof see Appendix A in Muhr et al. (2021).

5. A priori analysis of the nonlinear coupled problem

We next analyze the nonlinear problem by relying on the Banach fixed-point theorem; see, for example,
Ortner & Süli (2007); Antonietti et al. (2020b) for similar techniques used in the numerical analysis of
nonlinear wave equations. To this end, we introduce the mapping

S : Bh � (ũh, wh) �→ (uh, ψh),

where (uh, ψh) solves the linear problem

(�eüh(t), vh)e
+ (2�eζ u̇h(t), vh)e

+ (�eζ 2uh(t), vh)e
+ ae(uh(t), vh)

+ (c−2ψ̈h(t), φh)a
+ aa

h(ψh(t) + b
c2 ψ̇h(t), φh)

+ I (�f(ψ̇h(t) + b
c2 ψ̈h), vh) − I (φh, u̇h(t))

= (f e(t), vh)e
+ (f a

h (ẇh(t), ẅh(t), ∇wh(t), ∇ẇh(t)), φh)a
, (5.1)

a.e. in time for all test functions (vh, φh) ∈ Ve
h × Va

h and supplemented with initial conditions (4.10).
Recall that

f a
h (ẇh, ẅh, ∇wh, ∇ẇh) = 2

c2

(
k1ẇhẅh + k2∇wh · ∇ẇh

)

with material parameter jumps allowed at the fluid-tissue interface; cf. (2.4).
Furthermore, given C� > 0, Bh is the ball containing all (ũh, wh) ∈ H1(0, T; Ve

h) × H2(0, T; Va
h)

such that

‖(u − ũh, ψ − wh)‖L∞E � C�hs−1 {|||u|||s,e + |||ψ |||s,a

}
,

with initial conditions

(wh(0), ẇh(0)) = (ψ0,I , ψ1,I), (ũh(0), ˙̃uh(0)) = (u0,I , u1,I).

Above, we have introduced the following short-hand notation:

|||u|||2s,e = sup
t∈(0,T)

‖u(t)‖2
Hs(Ωe)

+
∫ T

0
(‖u̇‖2

Hs(Ωe)
+ ‖ü‖2

Hs(Ωe)
) dτ ,

and

|||ψ |||2s,a = sup
t∈(0,T)

(
‖ψ(t)‖2

s,a + ‖ψ̇(t)‖2
s,a

)
+
∫ T

0
‖ψ̈‖2

s,a dτ ,
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where we recall that the s-regularity above should be understood subdomain-wise:

‖φ‖2
s,a = ‖φ‖2

Hs(Ωf)
+ ‖φ‖2

Hs(Ωt)
.

The constant C� = C�(u, ψ) in the error estimate will be specified below. The set Bh is nonempty
because the solution of the linear problem belongs to it when f a

h = f a for a suitably chosen C�.
On account of the existence and uniqueness result for the linear problem this mapping is well-

defined. Furthermore, the space (Bh, d) is complete with respect to the metric d((u, ψ), (v, φ)) = ‖(u−
v, ψ − φ)‖E. We first determine sufficient conditions for S to be self-mapping. To simplify notation
we use ‖·‖LpLq below in place of ‖ · ‖Lp(0,T;Lq(Ωi))

for p, q ∈ {2, ∞}. We will also rely on the continuous
embedding

Hs(Ωi) ↪→ W1,∞(Ωi), s > 1 + d/2,

with the embedding constant denoted by Cemb.

Proposition 5.1 Let 1+d/2 < s � p+1 and f e ∈ L2(0, T; L2(Ω)). Assume that the penalty parameter
β in (3.2) is chosen as sufficiently large according to Proposition 4.10 and Theorem 4.12. Then there
exist h > 0 and δ > 0, such that for

|||u|||s,e + |||ψ |||s,a � δ

and 0 < h � h, the mapping S satisfies

S (Bh) ⊂ Bh.

Proof. For a given (ũh, wh) ∈ Bh and (uh, ψh) solving (5.1), we know from the linear result that there
exists Clin > 0 such that

‖(u − uh, ψ − ψh)‖L∞E � Clin

(
hs−1 (|||u|||s,e + |||ψ |||s,a

)+ ‖f a − f a
h ‖L2L2

)
(5.2)

provided β > 0 in (3.2) is large enough. Since

f a − f a
h = 2

c2

(
k1(ψ̇ψ̈ − ẇhẅh) + k2(∇ψ · ∇ψ̇ − ∇wh · ∇ẇh)

)

= 2

c2

(
k1(ψ̇(ψ̈ − ẅh) + ẅh(ψ̇ − ẇh)) +k2(∇wh · ∇(ψ̇ − ẇh) + ∇ψ̇ · ∇(ψ − wh))

)
,

we can estimate the error in the acoustic source term using |ki| := max{|kf
i |, |kt

i|}, i = 1, 2 as follows:

‖f a − f a
h ‖L2L2 � 2|k1|

c2

(‖ψ̇(ψ̈ − ẅh)‖L2L2 + ‖ẅh(ψ̇ − ẇh)‖L2L2

)

+ 2|k2|
c2

(‖∇wh · ∇(ψ̇ − ẇh)‖L2L2 + ‖∇ψ̇ · ∇(ψ − wh)‖L2L2

)
,
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where the gradient should be understood in a broken Ωf ∪ Ωt sense. Recall that c = min{cf, ct}.
Therefore, we infer

‖f a − f a
h ‖L2L2 � 2|k1|

c2

(‖ψ̇‖L∞L∞‖ψ̈ − ẅh‖L2L2 + ‖ẅh‖L2L∞‖ψ̇ − ẇh‖L∞L2

)

+ 2|k2|
c2

(‖∇wh‖L2L∞‖∇(ψ̇ − ẇh)‖L∞L2 + ‖∇ψ̇‖L2L∞‖∇(ψ − wh)‖L∞L2

)
. (5.3)

We know the approximation error of (ũh, wh) ∈ Bh, so we can further deduce

‖f a − f a
h ‖L2L2 � 2k

c2

(‖ψ̇‖L∞L∞ + ‖ẅh‖L2L∞ + ‖∇wh‖L2L∞ + ‖∇ψ̇‖L2L∞
)

C�hs−1 (|||u|||s,e + |||ψ |||s,a

)
,

where k = max{|k1|, |k2|}. From (5.2) we see that for the self-mapping property to hold, we have to
guarantee that

Č := Clin

[
1 + 2k

c2

(
‖ψ̇‖L∞L∞ + ‖ẅh‖L2L∞ + ‖∇wh‖L2L∞ + ‖∇ψ̇‖L2L∞

)
C�

]
� C�.

We will next further bound the wh terms by relying on the inverse estimates together with the stability
and approximation properties of the interpolant. Note first that

‖ψ̇‖L∞L∞ � Cemb|||ψ |||s,a, ‖∇ψ̇‖L2L∞ �
√

TCemb|||ψ |||s,a.

Let κ ∈ Thf,f ∪ Tht,t be the element such that

‖∇wh‖L2L∞ = ‖∇wh‖L2L∞(κ) � ‖∇wh − ∇Πpψ‖L2L∞(κ) + ‖∇Πpψ‖L2L∞(κ).

Then thanks to the inverse estimate (4.5), we find that

‖∇wh‖L2L∞ � h−d/2Cinv‖∇wh − ∇Πpψ‖L2L2(κ) + ‖∇Πpψ‖L2L∞(κ)

� C̃Cinvh−d/2‖wh − ψI‖L2Ea + ‖∇Πpψ‖L2L∞(κ), (5.4)

where in the second line we have used the bound (4.4) on the gradient via the acoustic energy and relied
on our choice of approximate initial data. Recall that the constant C̃ = C̃(T , b) tends to infinity as
T → +∞ or b → 0+; cf. Remark 4.1. From here we have

‖∇wh‖L2L∞ � C̃Cinvh−d/2‖wh − ψ + ψ − ψI‖L2Ea + ‖∇�pψ‖L2L∞(κ)

� C̃Cinvh−d/2
√

TC�hs−1(|||u|||s,e + |||ψ |||s,a)

+ C̃Cinvh−d/2
√

TCapphs−1|||ψ |||s,a + Cst‖ψ‖L2L∞ , (5.5)
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where we have relied on the approximation properties of the global interpolant in the energy norm with
Capp being the hidden constant therein; see Lemma 4.11. Also we have used the stability of the local

interpolant in the W1,∞ norm; see Lemma 4.6. Finally,

Cst‖ψ‖L2L∞ �
√

TCstCemb|||ψ |||s,a.

Similarly, it holds that

‖ẅh‖L2L∞ � Cinvh−d/2 (‖ẅh − ψ̈‖L2L2 + ‖ψ̈ − (ψ̈)I‖L2L2

)+ ‖�pψ̈‖L2L∞(κ)

� Cinvh−d/2(C�hs−1(|||u|||s,e + |||ψ |||s,a) + Capphs−1|||ψ |||s,a

)+ Cst‖ψ̈‖L2L∞ , (5.6)

where the last term can be further bounded as follows:

Cst‖ψ̈‖L2L∞ � CstCemb|||ψ |||s,a.

Let us collect the embedding, stability and approximation constants appearing above into one constant
given by

C (T) = Cemb(Cst + 1)(1 + √
T) + Cinv(Capp + 1)(1 + C̃

√
T).

Altogether, we then have

Č � Clin

{
1 + 2k

c2 (|||u|||s,e + |||ψ |||s,a)C (T)
[
1 + hs−1−d/2C� + hs−1−d/2

]
C�

}
.

Observe that if hs−1−d/2 � 1 and hs−1−d/2C� � 1 then

Č � Clin

{
1 + 2k

c2
(|||u|||s,e + |||ψ |||s,a) · 3C (T)C�

}
� Clin

(
1 + 6k

c2
δC (T)C�

)
.

In order to fulfill the desired property that Č � C� we demand the bound δ for |||u|||s,e + |||ψ |||s,a to be
small enough, so that

1 − 6
k

c2 ClinC (T)δ > 0 (5.7)

and then set

C�(δ, T) = Clin

1 − 6
k

c2 ClinC (T)δ

.
(5.8)
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Finally, we take h small enough, so that

h
s−1−d/2 � min

{
1,

1

C�(δ, T)

}
.

Altogether, for 1 + d/2 < s � p + 1, we then have

supt∈(0,T)‖(u − uh, ψ − ψh)(t)‖E � C�(δ, T)hs−1(|||u|||s,e + |||ψ |||s,a).

�
The smallness condition (5.7) is mitigated in practice by the fact that the factor k

c2 is quite small; see

Section 6 for typical values of the acoustic medium parameters. We next provide sufficient conditions
under which S is strictly contractive.

Proposition 5.2 Let 1 + d/2 < s � p + 1. Assume that the penalty parameter β in (3.2) is chosen
sufficiently large according to Proposition 4.10 and Theorem 4.12. There exist h > 0 and δ > 0, such
that for 0 < h � h and |||u|||s,e + |||ψ |||s,a � δ, the mapping S is strictly contractive on Bh in the
topology induced by the L∞E norm; cf. (4.8).

Proof. To prove contractivity take (ũ(1)
h , w(1)

h ), (ũ(2)
h , w(2)

h ) ∈ Bh and set

(u(1)
h , ψ(1)

h ) = S (ũ(1)
h , w(1)

h ), (u(2)
h , ψ(2)

h ) = S (ũ(2)
h , w(2)

h ).

The difference (ūh, ψ̄h), where ψ̄h = ψ
(1)
h − ψ

(2)
h and ūh = u(1)

h − u(2)
h , then satisfies the weak form

(�e ¨̄uh(t), vh)e
+ (2�eζ ˙̄uh(t), vh)e

+ (�eζ 2ūh(t), vh)e
+ ae(ūh(t), vh)

+ (c−2 ¨̄ψh(t), φh)a
+ aa

h(ψ̄h(t) + b
c2

˙̄ψh(t), φh)

+ I (�f( ˙̄ψh(t) + b
c2

¨̄ψh(t)), vh) − I (φh, ˙̄uh(t))

= (f a
h (ẇ(1)

h (t), ẅ(1)
h (t), ∇w(1)

h (t), ∇ẇ(1)
h (t)), φh)a

− (f a
h (ẇ(2)

h (t), ẅ(2)
h (t), ∇w(2)

h (t), ∇ẇ(2)
h (t)), φh)a

for all (vh, φh) ∈ Ve
h × Va

h a.e. in time, and supplemented with zero initial conditions. We can then rely
on the linear stability result of Proposition 4.10 with f e and the initial conditions set to zero, and the
right-hand side taken as the above difference of the f a

h terms. This immediately yields

‖S (ũ(1)
h , w(1)

h )(t) − S (ũ(2)
h , w(2)

h )(t)‖E

� 1

c2 ‖2k1(ẇ
(1)
h ẅ(1)

h − ẇ(2)
h ẅ(2)

h ) + 2k2(∇w(1)
h · ∇ẇ(1)

h − ∇w(2)
h · ∇ẇ(2)

h )‖L2(0,t;L2),
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for all t ∈ (0, T). Then analogously to deriving (5.3), we have the estimate

‖S (ũ(1)
h , w(1)

h )(t) − S (ũ(2)
h , w(2)

h )(t)‖E

� ‖ẇ(1)
h ‖L∞L∞‖ẅ(1)

h − ẅ(2)
h ‖L2L2 + ‖ẅ(2)

h ‖L2L∞‖ẇ(1)
h − ẇ(2)

h ‖L∞L2

+ ‖∇ẇ(1)
h ‖L2L∞‖∇w(1)

h − ∇w(2)
h ‖L∞L2 + ‖∇w(2)

h ‖L2L∞‖∇ẇ(1)
h − ∇ẇ(2)

h ‖L∞L2 .

By taking the supremum over t ∈ (0, T), we obtain

sup
t∈(0,T)

‖S (ũ(1)
h , w(1)

h )(t) − S (ũ(2)
h , w(2)

h )(t)‖E

�
(
‖ẇ(1)

h ‖L∞L∞ + ‖ẅ(2)
h ‖L2L∞ +‖∇w(2)

h ‖L2L∞ + ‖∇ẇ(1)
h ‖L2L∞

)

× sup
t∈(0,T)

‖(ũ(1)
h − ũ(2)

h , w(1)
h − w(2)

h )‖E, (5.9)

where we have again relied on estimate (4.4). In view of estimates (5.5)–(5.6) and analogous ones
that can be derived for ‖ẇ(1)

h ‖L∞L∞ and ‖∇ẇ(1)
h ‖L2L∞ , we can reduce the terms in the bracket on the

right-hand side of (5.9) by assuming smallness of |||u|||s,e + |||ψ |||s,a and h. In this way we obtain strict
contractivity of the mapping S in the L∞E norm, as claimed. �

Similarly to before the hidden constant in (5.9) has the form k
c2 · C, which helps to fulfill the strict

contractivity condition in more realistic ultrasonic settings. By virtue of the previous two results and the
Banach fixed-point theorem, we obtain a unique approximate solution (uh, ψh) in Bh.

Theorem 5.3 Under the assumptions of Propositions 5.1 and 5.2 there exist h > 0 and δ > 0, such that
for 0 < h � h and |||u|||s,e + |||ψ |||s,a � δ, approximate solution (uh, ψh) of the nonlinear elasto-acoustic
problem (4.10) satisfies the following error bound:

‖(u − ũh, ψ − wh)‖L∞E � C�(δ, T)hs−1(|||u|||s,e + |||ψ |||s,a),

where the constant C�(δ, T) is given in (5.8).

6. Numerical simulation

In this chapter we perform numerical simulations with the method proposed and analyzed before.
We begin with synthetic experiments to back up the proven convergence results with numerical data.
Therefore, we conduct several mesh analysis scenarios, where we test the numerical solution against
a known analytical one. Later we will come back to the initial motivation for this work and use
the proposed method to simulate ultrasound excitation, propagation and transition into human tissue
in a more natural setting with physical parameters and more realistic domains. The simulations are
conducted with the software SPEED, Stupazzini et al. (2009); Antonietti et al. (2012); Mazzieri et al.
(2013), in detail its elasto-acoustic development branch (Antonietti et al., 2020b). In order to focus
on the numerical results, for precise details, e.g. about the used material parameter values, artificial
solutions, boundary data and geometry measures, we refer to the extended arxiv version (Muhr et al.,
2021).
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Fig. 2. (Left) ‘Three stacked cubes’ artificial domains for elasto-acoustic coupled problem with analytical solution available.
(Right) Exemplary nonconforming mesh at the interfaces between the subdomains.

6.1 Numerical experiment 1: test against analytical solution

In this first numerical experiment we employ artificial domain sizes, boundary conditions and external
forces, in order to enforce a known analytical solution to the full coupled problem. We then conduct
a convergence study comparing our numerical solutions against that analytical one. We consider the
following domains: Ωe := (−π

2 , π
2 )2 × (0, π), Ωf := (−π

2 , π
2 )2 × (π , 2π) and Ωt := (−π

2 , π
2 )2 ×

(2π , 3π), which are depicted in Fig. 2.
Option 1: elastic tissue As the first option we choose the tissue domain Ωt to be an elastic material. On
the three domains we then define the following analytical solutions:

ui(x, y, z, t) =
⎛
⎝

sin(x) cos(y) sin(z)
cos(x) sin(y) sin(z)
cos(x) cos(y) cos(z)

⎞
⎠ ae(t) in Ωi × (0, T], i ∈ {e,t}

ψ(x, y, z, t) = cos(x) cos(y) sin(z) aa(t) in Ωf × (0, T],

where the time-dependent amplitudes of the elastic and acoustic fields ae(t) and aa(t) are given by

ai(t) = Ei sin(t) + Di cos(t), Ei, Di ∈ R, i ∈ {e,a}.

In order for these solutions to fulfill the coupling conditions on the elasto-acoustic interfaces, certain
conditions on the choice of the material parameters and the prescribed solution amplitudes have to be
considered. The right-hand sides f i, i ∈ {e,t,f} enforcing the given solutions can be obtained by insertion
into the PDEs. To analyze convergence of the proposed numerical scheme, we conduct the simulation
on a sequence of meshes with h tending to zero. Time integration is always conducted with a final
time T = 2π and small enough time step size, such that on all meshes in use, the overall errors are
all dominated by their spatial components. For the time integration we employ the Newmark scheme
in its predictor-corrector form using β = 0.25 and γ = 0.5 as in Kaltenbacher (2007, §5) for the
nonlinear acoustic components, while the leapfrog scheme is used for the elastic ones. The meshes are
chosen to be nonconforming at the subdomain interfaces on purpose for this artificial data experiment
to show convergence also in this general situation. In order to guarantee the nonconformance, the whole
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mesh-sequence is generated with a 3:2 ratio in mesh size between the central and the two outer blocks,
cf. Fig. 2.

Convergence results are collectively plotted at the end of this subsection in order to be directly
compared with modeling Option 2.
Option 2: acoustic tissue We use the same geometry and subdomains as before (cf. Fig. 2), only with
the tissue domain being modeled as an acoustic medium this time. This corresponds to the case analyzed
in the theoretical part of this work. The analytical solutions are defined as before just with u (dropping
the index e for the elastic displacement u) only being defined on Ωe, while ψ extends to Ωa now.
The amplitudes are again scaled with aa(t) = Ea sin(t) + Da cos(t) and ae(t) = Ee sin(t) + De cos(t).
However, this time the acoustic amplitudes are allowed to attain different values in the two individual
acoustic domains; i.e.,

Ea =
{

Ef, in Ωf

Et, in Ωt
, Da =

{
Df, in Ωf

Dt, in Ωt.

In order for these functions to be indeed solutions to the coupled problem, we employ the same
conditions and right-hand side forcing terms as before, but in addition, to satisfy the acoustic-acoustic
interface flux condition, additional constraints on the material parameters are imposed. It should be
noted that due to Ωf and Ωt having different material parameters, the forcing term f a also differs/jumps
in between the acoustic subdomains. Convergence results can be found in Fig. 3. We note that the
simulation with polynomial degree p = 1 is not included in our theory. However, the numerical
experiment suggests that, at least in this synthetic setting, the convergence rate O(hs−1) can also be
obtained for p = 1.

Remark 6.1 Note that for Parameter set 1 the factor k2 in front of the quadratic gradient type
nonlinearity is set to zero, reducing the model to Westervelt’s equation in potential form (with synthetic
material parameters) in the acoustic sub-domains. For Parameter set 2 the parameter k2 is nonzero,
and hence inclusion of the quadratic gradient nonlinearity leads to Kuznetsov’s equation of nonlinear
acoustics (Kuznetsov, 1970), with synthetic material parameters as well.

6.2 Numerical experiment 2: focused ultrasound propagation into human tissue

For the final numerical example we come back to our motivation for the present work, the simulation
of medical ultrasound applications involving human tissue. Due to the presence of different boundary
conditions (i.e., not only homogeneous Dirichlet data) this experiment lies beyond the theory of this
work. Nevertheless, it adheres to the structure of subdomains and coupling given before. Figure 4 depicts
the mechanical device design lying behind the subdomain partition and boundary conditions used.
Geometry and boundary data setup We set up a computational domain consisting out of the following
three subdomains and data.

• Curved transducer/excitation array is modeled as an elastic body made of silicone rubber, where
at the bottom side an excitation signal is applied via a (displacement) Dirichlet condition. Using
our previous notation this subdomain takes the role of the purely elastic part Ωe. The excitation

signal takes the space-time factorized form ud(t, x, y) = u(t)
d (t)u(x)

d (x, y), where u(x)
d models the

spatial distribution of the excitator plates (cf. Fig. 4), while u(t)
d is a sine-pulse signal.

The remaining surfaces of the excitator block have homogeneous Dirichlet conditions
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Fig. 3. Relative errors in L∞E-norm. (Top) Material set 1, (Bottom) Material set 2. In each we have (Left) convergence plots for
Option 1 (elastic tissue) and (Right) convergence plots for Option 2 (acoustic tissue) with simulations using different polynomial
degrees p.

prescribed for the displacement, which can be interpreted as a rigid fixation of the silicon rubber
part within the rest of the mechanical device; cf. Fig. 4. For a graphical depiction of different parts
of the boundary and used conditions we refer to Fig. 4.
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Fig. 4. (Left) Depiction of the computational domain embedded into the device framework with walls (270◦ cut-out view),
bearings and excitator plates (Right) actual computational domain. The remaining device parts are not numerically resolved, but
incorporated via boundary conditions.

• Acoustic conductor pipe is modeled as an acoustic/fluid body filled with water. This subdomain
takes the role of the purely acoustic/fluid part Ωf from before. On its bottom end the subdomain
aligns with the elastic excitator domain on the interface Γ

e,f
I . On its top end the interface Γ

f,t
I with

the tissue domain is placed. The cylinder mantle surface has homogeneous Dirichlet conditions for
the acoustic potential prescribed, modeling the devices rigid walls encasing the water (compare to
Fig. 4).

• The tissue domain resides on top of the acoustic conductor. It can be modeled as an elastic
or acoustic body, corresponding to the two previously discussed options. In both cases the
computational tissue domain has the shape of a cylinder cut out of the larger physical tissue domain,
being (part of) the human body. To avoid unphysical reflections on the mantle and top surfaces
resulting from that truncation procedure absorbing boundary conditions of Engquist–Majda type
(Engquist & Majda, 1977) (in the acoustic case) or as in (Stacey, 1988; Antonietti et al., 2018) (in
the elastic case) are employed on these surfaces. The remaining surface is the (skin) surface of the
human body without the interface Γ

f,t
I , equipped with homogeneous Neumann conditions.

For this numerical experiment the simulation starts from the zero initial conditions (ψ , ψ̇)t=0 =
(0, 0), (u, u̇)t=0 = (0, 0); in other words, solid and fluid bodies being at rest. Furthermore, no additional
external forces are applied; that is, f e = f t = 0 and all the dynamics of the system is induced via the
excitation/Dirichlet conditions described above.
Material parameters In contrast to the synthetic test case parameters for realistic materials are often
given, not in terms of the Lamé-parameters λ and μ, but rather in terms of the elastic modulus E and
Poisson ratio ν. Similarly in nonlinear acoustics, the coefficient of nonlinearity β = 1 + 1

2 B/A is
commonly used to indicate the nonlinear wave behavior. Here the ratio B/A denotes the parameter
of nonlinearity, which arises from the Taylor expansion of the variations of the pressure in terms of
variations of the density in a given medium; cf. Hamilton & Blackstock (1998, §2).

We can choose between two different well-established models. The choice k1 = 2+B/A
2c2 and k2 = 0

leads to Westervelt’s equation, while k1 = B/A
2c2 , k2 = 1 leads to Kuznetsov’s equation; see Hamilton &

Blackstock (1998); Kaltenbacher (2007).
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Fig. 5. Pressure field over time using Westervelt’s equation as acoustic model. (Top left–Bottom left) Option 2, (Bottom right)
Option 1 and Westervelt’s equation only in the fluid domain.

Discretization As a final time for this simulation we have chosen T = 1.5 · 10−4 s, which is resolved
by 15000 time steps of 10 ns each. For the nonlinear acoustic part, we employ the generalized α

scheme as in Antonietti et al. (2020b) to damp high-frequency oscillations that might appear in
a Gibb phenomenon-like manner near a steep wavefront. In detail, we use the method parameters
β = 4/9, γ = 5/6, αm = 0 and αf = 1/3. We refer to Chung & Hulbert (1993); Erlicher et al.
(2002) for a deeper insight into this time-stepping method. For the elastic part again the leapfrog
scheme is employed. In this experiment the meshes of the subdomain were chosen to be conforming
at the interfaces. Spatial discretization is done using 686937 degrees of freedom with polynomial basis
functions of degree p = 3.
Results From the computed acoustic potential ψ and displacement field u, from our numerical
simulation we post-process the acoustic and elastic pressure values relevant for the application according
to pac = �ψ̇ and pel = − 1

3

∑3
i=1 σ ii, respectively, depending on whether a subdomain contains an

acoustic or elastic material. Herein σ (u) = λdiv(u)1 + 2με(u) is the stress-tensor, as defined before.
Figure 5 shows the pressure wave propagation within the computational domain over different time
steps for Option 2 (acoustic) choice for the tissue using the Westervelt equation as the acoustic wave
model.
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Fig. 6. Model comparison of pressure signal at (Left) axis of symmetry of tissue domain at 76 % of simulation time. (Right)
Same comparison, but over time at fixed point p = (0, 0, 0.12)� m.

Further, the pressure field within the tissue is compared with Option 1 of having an elastic tissue
model. Figure 6 then compares different choices for the acoustic wave equation being the linear wave
equation, the Westervelt or the Kuznetsov equation.

First it can be seen that, while qualitatively behaving similar, Options 1 and 2 differ in amplitude and
propagation velocity of the wave, which is due to the material parameters for the two options stemming
from different references, with some of them being available only approximately.

In contrast to that, one observes almost no visible difference among the different acoustic models
(i.e, the linear wave equation, Westervelt’s and Kuznetsov’s equations) in the given pressure regime.
This observation changes once we employ higher excitation amplitudes and hence increase the influence
of the nonlinear terms of the models. Figures 7 and 8 directly compare the acoustic models with each
other for a simulation with an excitation amplitude of a = 0.075 m. We note that this amplitude might
be exaggerated from this application/experiment point of view. However, it shows very accurately the
wave steepening effect modeled by the nonlinear terms in the higher pressure regime in contrast to the
linear model. Even in Option 1 simulations with the linear elastic tissue model, a small steepening and
amplitude increase of the pressure wave is visible once the nonlinear wave equations are used in the
fluid region compared to a completely linear simulation.

The comparably quite small difference between the Westervelt and Kuznetsov equation’s results
further shows that the approximative assumption of ∇ψ · ∇ψ̇ ≈ 1

c2 ψ̇ψ̈ , which is made in the derivation
of the Westervelt equation as a simplification of Kuznetsov’s equation and which holds with equality in
the case of a linear plane wave, is still reasonable in the given regime of nonlinearity.

7. Conclusion

In this work we have considered a coupled elasto-acoustic problem with thermoviscous dissipation
and general nonlinearities of quadratic type in the acoustic regime. The mathematical model was in
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Fig. 7. Comparison of acoustic models in high pressure regime, all at 76 % simulation time in tissue domain. (Top left) Linear
wave equation, (Top right) Kuznetsov’s equation, (Bottom left) Westervelt’s equation. (Bottom right) Option 1 with Westervelt’s
equation only in the fluid domain.

particular motivated by the medical applications of high-intensity ultrasound, which tend to involve
different elastic and acoustic subdomains with possible jumps in the material parameters. The elasto-
acoustic interface was resolved by a coupling based on force-exchange via Neumann conditions, while
the acoustic-acoustic interfaces were treated using a discontinuous Galerkin approach, resulting in a
fully coupled initial boundary-value problem. We discretized the problem in space using hexahedral
elements of degree p being conform within each material subdomain, but with the option of nonmatching
grids across interfaces. By a careful choice of test functions, taking into account the thermoviscous
dissipation term, we proved stability and error bounds for the linearized approximation in a suitable
energy norm. Under regularity and smallness assumptions on the exact solution in an appropriate norm
and smallness of the mesh size parameter h, we derived an error estimate in the energy norm for the
nonlinear problem by employing the Banach fixed-point theorem.

Additionally, we have conducted extensive convergence studies to support our theoretical findings
for different options, with respect to modeling the tissue and material parameters of the discussed
model. Finally, a three-dimensional simulation using realistic material data and geometries showing
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Fig. 8. Model comparison of pressure signal at (Left) axis of symmetry of tissue domain at 76 % of simulation time. (Right)
Same comparison, but over time at fixed point p = (0, 0, 0.12)� m.

the propagation of ultrasound waves into human tissue closes the loop to the original motivation of the
work.

Future research on the topic will be concerned with the analysis and simulation of problems
including nonlinear effects, not only in the acoustic, but also elastic regime, and the simulation of
ultrasound heating by an additional coupling with a temperature model.
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Elasto-acoustic modelling and simulation for the
seismic response of structures: The case of the

Tahtalı dam in the 2020 İzmir earthquake
Ilario Mazzieri, Markus Muhr, Marco Stupazzini and Barbara Wohlmuth

Seismic hazard analysis, especially in regions of high ground motion activity, is crucial
for risk assessment and seismic design of building structures. This article deals with the
construction and application of a numerical, elasto-acoustic model to simulate the effects
a seismic event has on dam structures. As a concrete case study the response of the
Tahtalı dam, located in Turkey near the city of İzmir, during the magnitude Mw = 7
earthquake from the 30th of October 2020 is analyzed [59]. Real topography and ground
data [155, 290] is used to create a realistic model, which is then validated against actual
seismograph-measurements [1] from the event. Due to the generality of the model, the
achieved simulation capabilities lay the foundations for further simulation based seismic
analyses.
For this article we utilize the elasto-acoustic- and DG-coupling capabilities of SPEED

in order to simulate the dam, the underlying layers of ground, each with possibly different
material parameters, as well as the reservoir lake behind the dam. The elasto-acoustic
model and discretization hereby are adopted from [7, II], where in this article the focus
lies on the application and the incorporation of real data. First of all, the topography of
the surrounding area of the dam is resolved from satellite altitude data [155]. A CAD-
model of the dam is then placed in the topography and a complex mesh is generated
to capture the necessary features of the solid/elastic geometry. The elasto-acoustic
interface is used to incorporate the influence of the water in the reservoir-lake, being the
acoustic medium. To model the seismic source, inversion-data about the actual seismic
fault plane are used for a stress-glut source model. The final source-to-site model spans
several length scales, which are resolved by means of local mesh refinement and the
DG approach to couple non-matching sub-meshes. The resulting all-in-one simulation
is compared also to a more classical approach using a deconvolved seismograph signal
as a plane wave input. Outputs of the simulations feature peak ground maps of e.g.
displacement and velocity and deformations of the dam, relevant from a seismological
and engineering point of view to judge the safety of the dam.
After the introduction, Sec. 2 introduces the elasto-acoustic mathematical model and

Sec. 3 the numerical methods used for spatial and temporal discretization. In Sec. 4, a
description of the seismic event, the region of interest and the dam itself is given, placing
it into a broader context. Sec. 5 then contains a description of the real-data based
geometry acquisition and the meshing. In Sec. 6, the different numerical experiments
are then conducted, evaluated and compared. Sec. 7 finally gives a conclusion and an
outlook to further work to be done in this direction ultimately aiming for the goal of a
seismic hazard analysis of the whole region.
I was significantly involved in finding the ideas and carrying out the scientific work

presented in this article including the write-up, except for Sec. 4. Furthermore I was in
charge of the numerical part of the article, i.e. acquisition, treatment and evaluation of
data, implementation and conduction of the simulations and the creation of the figures.
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Abstract. As a mean to assess the risk dam structures are exposed to during earth-
quakes, we employ an abstract mathematical, three dimensional, elasto-acoustic coupled
wave-propagation model taking into account (i) the dam structure itself, embedded into
(ii) its surrounding topography, (iii) different material soil layers, (iv) the seismic source
as well as (v) the reservoir lake filled with water treated as an acoustic medium. As a case
study for extensive numerical simulations we consider the magnitude 7 seismic event of the
30th of October 2020 taking place in the Icarian Sea (Greece) and the Tahtalı dam around
30 km from there (Turkey). A challenging task is to resolve the multiple length scales that
are present due to the huge differences in size between the dam building structure and
the area of interest, considered for the propagation of the earthquake. Interfaces between
structures and highly non-conforming meshes on different scales are resolved by means of
a discontinuous Galerkin approach. The seismic source is modeled using inversion data
about the real fault plane. Ultimately, we perform a real data driven, multi-scale, full
source-to-site, physics based simulation based on the discontinuous Galerkin spectral el-
ement method, which allows to precisely validate the ground motion experienced along
the Tahtalı dam, comparing the synthetic seismograms against actually observed ones. A
comparison with a more classical computational method, using a plane wave with data
from a deconvolved seismogram reading as an input, is discussed.

1. Introduction

With the continuous growth of computational power in the last decades, physics based
simulation (PBS) emerged as an aspiring, alternative approach to ground motion predic-
tion equations (GMPEs), which has already been applied to seismic scenarios at various
sites including the United States [80, 81], Japan [37, 45], New-Zealand [26, 52], Turkey
[44], China [4], the Netherlands [64], Italy [32]. PBS aims at describing, as reliably as
possible, the seismic wave propagation problem and therefore it is crucial, on the one hand,
to properly characterize the mechanical properties of the different portion of the compu-
tational domain and, on the other, to have a reliable seismic excitation source, see, e.g.
[18, 38, 44, 64, 68, 87]. Because of the intrinsically high epistemic uncertainties involved in
the construction of 3D numerical models, those need to be verified and validated against
available earthquake recordings, cf. e.g. [12, 19, 65]. Nowadays, thanks to the availability
of openly accessible data, as for example [30, 83], this challenge can be tackled in spe-
cific regions of the world. PBS generates synthetic time histories of displacement, velocity,
acceleration and also other engineering relevant quantities, such as strains, stresses and
rotations. The numerical methods used are most often finite differences [24, 56, 69], finite
elements [11], finite volumes [17, 28, 29, 67] or, as used here in combination with a linear

Key words and phrases. Earthquake simulation, elasto-acoustic coupling, DG-method, water-dam-
structure.
∗Corresponding author: Markus Muhr, muhr@ma.tum.de.
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visco-elastic model, spectral elements in conforming [38, 49, 77] but also discontinuous ways
[7, 25, 34].

In this work, we simulate within a single computational model a full seismic event, from
source-to-site, and study the effects of ground shaking on a larger building structure. We
therefore employ a, mathematically general seismic wave-popagation model to a compu-
tational domain consisting of several layers of soil, each with its own material properties
and with lengths up to the 100 km scale. On the small scale of 10-100 m, with the same
mathematical model, we consider a, comparably small, dam structure in order to analyze
its performance under the seismic impact of an earthquake. Together this results in a
large, multi-scale problem. The challenge of coupling the multiple, non-conforming meshes
of different sizes [57] is tackled by means of the discontinuous Galerkin spectral element
method [8]. In addition, two more important factors are considered for properly simulating
a dam subjected to seismic excitation: (i) the structure is embedded into its surround-
ing and therefore the topography should be accurately described, resulting in complex
geometries and hence mesh structures, (ii) in contrast to free-standing typical edifices [48]
where the surrounding air is most often ignored, the seismic behaviour of the reservoir lake
located behind the dam cannot be neglected, and therefore a coupled elasto-acoustic wave-
propagation problem needs to be solved. These two factors are considered in this work by
making use of digital elevation maps, that can be obtained freely from [46, 70], to obtain
a realistic topographic profile and second by resolving the reservoir lake behind the dam
as well. As a matter of fact, within the reservoir lake the propagation of acoustic waves
will be modeled by a scalar wave equation. The elasto-acoustic dam-water- and ground-
water-interfaces are equipped with force exchange coupling conditions. For a mathematical
discussion of the coupled problem, we refer to [5, 35], while [60] considers the problem
even in a nonlinear, acoustic context. As a seismic source we consider a kinematic rupture
model with a prescribed slip-vector and moment-tensor distribution across a fault plane
[33]. The model is also compared to another sourcing mechanism using a plane wave input
of a recorded seismogram.

The mathematical model and the numerical simulation are validated with respect to the
specific magnitude 7 seismic event that took place on the 30th of October in 2020 at around
11:51 h. Its hypocenter lies at 37.8973◦N, 26.7953◦ E in the Icarian Sea northern the isle of
Samos, Greece. Approximately 30 km north-east of it on Turkish mainland there lies the
Tahtalı-dam with its fresh-water reservoir. Due to its proximity to the source, the dam was
severely threatened by the seismic event; however, the reconnaissance team provided the
evidence that no severe damages occurred [23]. Besides the topography data mentioned
above, in this work, we make use of the large amount of available data regarding the seismic
fault source [83] for a realistic simulation of the earthquake’s origin, recorded seismograms
made freely available by the Turkish Disaster & Emergency Management Authority AFAD
[1] and ground material data [83], in order to validate our model and to yield a realistic
description of and reliable results for the considered case study.

Our simulations have been obtained using the code SPEED [8, 55, 77] employing hexa-
hedral meshes with higher order spectral elements. Sub-meshes with non-matching grids,
e.g., at material interfaces with different refinements are coupled using a discontinuous
Galerkin approach. Real case simulations as in the present case can easily result in millions
of degrees of freedom in space and time, especially when considering higher polynomial or-
ders. Therefore SPEED employs a hybrid MPI/OpenMP parallel implementation allowing
to harness a large amount of computational resources.
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We organize the rest of the paper as follows. Section 2 introduces the elasto-acoustic
mathematical model, the equations, boundary- and coupling conditions used. In Section 3,
we discuss the adopted discretization in space and time. We derive the semi-discrete form of
the model equations by means of spectral elements and introduce a standard time integra-
tion scheme. In Section 4, we briefly describe the seismic event adopted as a case study in
this work. Section 5, is then devoted to the geometry acquisition (topography/mechanical
properties) from real data, and some comments on the mesh generation are given. Finally,
the numerical simulations and results are discussed in Section 6, where different simulation
methods are presented, validated and finally compared.

2. Mathematical model

We begin by defining the mathematical models used to describe the seismic problem, be-
ing the elastic model for the solid parts (soil layers and dam in the specific case study) and
acoustic model equations for the fluid part (reservoir lake) each with their corresponding
sets of boundary, initial and interface conditions. The computational domain together with
its individual material subdomains is then also introduced where, without loss of generality,
we refer to the specific case study of the Tahtalı-dam considered in this work. For the whole
manuscript, we will denote scalar quantities by regular, greek or latin characters, vectorial
quantities will be bold and underlined and tensorial quantities will just be bold.

Mathematical model. As a mathematical model for the description of the individual
solid parts/subdomains Ωe,i, i = 1, 2, . . . , Ne of the problem, we use the equations of
displacement-based linear elasticity (2.1) subdomain-wise with Hook’s law σ = λtr(ε)1 +
2µε as constitutive relation [48, 53], ε = 1

2

(
∇u +∇u>

)
being the symmetric gradient of

the displacement u, and λ and µ being subdomain-wise constant Lamé-parameters, reading

λ = λ(x) = λi, for x ∈ Ωe,i and i = 1, 2, . . . , Ne,

µ = µ(x) = µi, for x ∈ Ωe,i and i = 1, 2, . . . , Ne.

Parts of ∂Ωe on the top surface with no overlying body of water (green and white visible
surfaces in Fig. 1, right), summarized as Γe,N are treated as free surfaces (2.2), the four
artificial boundaries in x and y directions as well as the plane bottom surface in z-direction
(brown in Fig. 1) are equipped with absorbing boundary conditions (2.3). Herein t∗ is a
fictitious traction force reducing the amount of artificial reflections originating from these
surfaces [8, 33, 76]. Parts of ∂Ωe that are interfaces to the acoustic domain Ωa, denoted
by ΓEA (orange in Fig. 1), are equipped with non-homogeneous Neumann conditions (2.4)
acting as force-exchange interface conditions to the acoustic field [5, 60]. Here the short
hand notation of

ψ̃ := ψ +
b

c2
ψ̇

is introduced. On internal interfaces between the individual elastic sub-domains Ωe,i, col-
lectively denoted by ΓDG (not visible in Fig. 1, however analogously to elasto-acoustic-
interfaces but between ground and dam subdomain), transmission conditions (2.5) are
employed, where

[[σ]] := (σ+ − σ−)n, [[u]] := (u+ − u−)⊗ n.

Hereby n is the interface normal with arbitrary but fixed orientation and ι±(x) := limt↓0 ι(x±
tn), ι ∈ {σ,u}. Finally suitable initial conditions (2.6) for displacement and velocity v = u̇
are prescribed, completing the elastic problem.
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ρe,i

(
ü + 2ζiu̇ + ζ2

i u
)
−∇ · σ(u) = f , in Ωe,i × (0, T ],(2.1)

σn = 0, on Γe,N × (0, T ],(2.2)

σn = t∗, on Γe,ABC × (0, T ],(2.3)

σn = −ρa
˙̃
ψn, on ΓEA × (0, T ],(2.4)

[[σ]] = 0, [[u]] = 0, on ΓDG × (0, T ],(2.5)

(u, u̇) = (u0,u1), at Ωe × {0}.(2.6)

In the above system of equations ρe,i are the mass densities of the subdomains Ωe,i, i =
1, 2, . . . , Ne, ρa is the mass density for the acoustics domain and ζi, i = 1, . . . , Ne are vis-
cous damping factors proportional to the inverse of time. For future use, we also introduce
the compressional vp and shear vswave velocities defined as vp,i =

√
(λi + 2µi)/ρe,i and

vs,i =
√
µi/ρe,i for i = 1, . . . , Ne, respectively.

In the acoustic subdomain Ωa, the linear, damped wave equation (2.7) in potential
form, ψ being the acoustic potential, is used to model the propagation of pressure waves
with speed of sound c and damping coefficient b. On free water-surfaces (Fig. 1 left, blue)
homogeneous Neumann conditions (2.8), on artificially generated surfaces, resulting from
the cut-out of Ω from the Earth (Fig. 1 backside, where the lake is cut-off), absorbing
boundary conditions (2.9) [31, 75] and on interfaces with the elastic bodies Ωe,i (Fig. 1
right, orange) interface conditions (2.10) once more as in [5, 60] are imposed. Again,
suitable initial conditions (2.11) complete the acoustic problem.

1

c2
ψ̈ −∆ψ̃ = 0, in Ωa,i × (0, T ],(2.7)

∇ψ̃ · n = 0, on Γa,N × (0, T ],(2.8)

∇ψ̃ · n = −1

c
ψ̇, on Γa,ABC × (0, T ],(2.9)

∇ψ̃ · n = −u̇ · n, on ΓEA × (0, T ],(2.10)

(ψ, ψ̇) = (ψ0, ψ1), at Ωa × {0}(2.11)

Note that for all material parameters ι ∈ {ρe,i, ρa, ζi, λi, µi, c, b} defined above, we assume
the existence of uniformly positive and finite bounds above and below. Note that quantities
of interest like acoustic or seismic/elastic pressure can be computed from the solutions of

the above models via pac = ρaψ̇, pel = −1
3

∑3
i=1 σii in a post processing step.

Remark 1. We remark that ΓDG does not have to contain all internal elastic interfaces
necessarily and hence the (discontinuous Galerkin) transmission conditions do not have
to be applied to all of them. As an alternative, if grids are matching, also a conforming
coupling would be possible.

Computational domain. For the computational core-domain Ω in the specific case study
we choose an, in x − y direction rectangular, cut-out of the Earth around the location of
the dam. In z-direction Ω is limited by a plane surface at a given depth below the Earth
surface at bottom, while on top the topographic profile of the Earth is used. In a second
step, Ω is divided into an acoustic part Ωa consisting of a portion of the dam reservoir lake
lying within Ω, and the remaining part Ωe consisting of solid ground (mountain range, soil
layers) and the dam itself. The elastic subdomain Ωe is then further divided into individ-
ual subdomains Ωe,i, i = 1, 2, . . . , Ne, each representing an individual material block, with
its own set of constant material parameters, which are possibly discontinuous across the
interfaces between the blocks. As a prime example, the dam structure would be one such
subdomain while the surrounding ground would be an other. See Fig. 1, left, for a graphical
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depiction of the domain of interest with Ne = 2 elastic subdomains.

Figure 1. (left) Computational domain with three subdomains. Green: Solid ground
Ωe,1, White: Solid dam structure Ωe,2, Blue: Acoustic water domain Ωa. (right)
Highlighting boundary/interface conditions: Brown: Absorbing boundary conditions (all
4 sides, incl. the water cut-off surface plus bottom surface), Orange: Elasto-Acoustic
coupling interface., Green, White, Water top surface: Free surfaces, Non visible:
Interfaces between Ωe,1 and Ωe,2; they are analogous to the elasto-acoustic interfaces.

3. Numerical methods

This section starts with a description of the spatially discrete setting used to approximate
a weak solution to the seismic problem (2.1)-(2.11). We then derive the semi-discrete
equation in variational and matrix-vector form and end with some notes about the used
time integration scheme.

3.1. Spatial discretization

In this subsection, the mesh(es) to be used and the finite element spaces built on them
are introduced. We hereby closely follow [60], where more details on mesh assumptions
being sufficient to prove convergence in a similar setting are given.

Meshing. The meshing of the computational domain Ω is done sub-domain wise. This
means that each Ωe,i as well as Ωa is subdivided into a mesh Te,i, resp. Ta of hexahe-
dral elements individually. While we assume that also after meshing the discrete interface
manifolds do coincide - seen from both sides of the interfaces - the individual meshes on
those manifolds do not have to. Hence, on the interface the mesh from one side could be a
refinement of the mesh from the other side or, for example at a flat interface, could also be
a staggered or even completely different mesh. Such non-conformities will be treated by a
discontinuous Galerkin approach for the interface coupling.

Discrete spaces. Our goal is to approximate a weak solution to the seismic problem by
means of spectral finite elements. Within each subdomain Ωe,i and Ωa, this is done in a
conforming way, while only at (part of) the interfaces the aforementioned DG approach will
be used. This goes hand in hand with the different material properties of the individual
sub-domains, and it also allows to keep the amount of degrees of freedom low within the
sub-domains, while being flexible at the interfaces.

We denote by Ve,i
h the space of discrete ansatz-functions on the i-th elastic subdomain,

i = 1, 2, . . . , Ne, which are elementwise polynomials of order pi when transformed back to
the reference element. By Ve

h we denote the space of global elastic ansatz-functions, which,
restricted to any of the subdomains, are within the subdomain’s ansatz-space. Similar V a

h
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denotes the ansatz-space for the acoustic subdomain. The setting hence directly corre-
sponds to the one in [60] where the overall coupled elasto-acoustic problem, even though in
a medical ultrasound setting, including additional non-linear acoustic terms, was analyzed
regarding stability and convergence w.r.t. spatial refinement. Therein also further mathe-
matical details are given in a similar setting.

Semi-discrete form. With introducing the mean operator defined as:

{{σ}} =
1

2
(σ+ + σ−), {{u}} =

1

2
(u+ + u−).

in addition to the already defined jump operator, the semi-discrete variational problem is
given by:

For any time t ∈ (0, T ] find (uh, ψh) ∈ Ve
h × V a

h such that for all (wh, φh) ∈ Ve
h × V a

h
there holds:

Ne∑

i=1

[
(ρe,iüh,wh)Ωe,i + (ρe,i2ζiu̇h,wh)Ωe,i + (ρe,iζ

2
i uh,wh)Ωe,i + (σ(uh), ε(wh))Ωe,i

]

−(t∗h,wh)Γe,ABC
− 〈{{σ(uh)}}, [[vh]]〉ΓDG

− 〈[[uh]] , {{σ(vh)}}〉ΓDG
+ 〈χ [[uh]] , [[vh]]〉ΓDG

(3.1)

+
(
ρa

˙̃
ψhn,wh

)
ΓEA

+ (u̇h · n, φh)ΓEA

+
(
c−2ψ̈h, φh

)
Ωa

+ (∇ψ̃h,∇φh)Ωa +
(
c−1ψ̇h, φh

)
Γa,ABC

= (fh,wh)Ωe

and uh(0) = u0 = 0, u̇h(0) = u1 = 0, ψh(0) = ψ0 = 0 and ψ̇h(0) = ψ1 = 0, which corre-
sponds to an initial state at rest for the solid as well as for the acoustic quantities.

Finally, for any face in ΓDG, defined as the intersection between opposite elemental faces,
we define the penalty parameter χ as:

χ|F := {λ+ 2µ}A
p2
F

hF

being F a DG face shared by the mesh elements E+ and E−, pF = max{p+, p−}, hF =
min{h+, h−}, {q}A the harmonic average of the quantity q, and β a positive real number
at our disposal, cf. [8, 25, 60].

Matrix-Vector form. After representing the discrete trial functions uh and ψh as well as
their temporal derivatives in the nodal finite element basis, denoting the coefficient vectors
by (abuse of notation) also uh and ψ

h
, the following system of ODEs in matrix-vector form

is directly obtained from (3.1):
(
M(2)

e 0

0 M(2)
a

)(
üh

ψ̈
h

)
=−

(
M(1)

e 0
0 0

)(
u̇h

ψ̇
h

)
−
(
M(0)

e 0
0 0

)(
uh

ψ
h

)

+

(
−Ke + D + D> −P 0

0 −Ka

)(
uh

ψ
h

)
(3.2)

−
(

0 E
A 0

)(
u̇h
˙̃
ψh

)
−
(

0 0
0 Ca + Ca,ABC

)(
u̇h

ψ̇
h

)
+

(
T∗h
0

)
+

(
Fh

0

)

with initial conditions:

(
u
ψ

)
=

(
u̇

ψ̇

)
=

(
0
0

)

Herein M
(1)
e and M

(0)
e are subdomain-wise scaled versions of the standard mass-matrix

M
(2)
e for the elastic part of the problem. Due to the DG approach for the interface coupling,
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they are block-diagonal with one block per subdomain. In fact, due to the use of spectral
elements, they even become diagonal. This property is not only advantageous to be ex-
ploited by the time stepping scheme but also allows to denote the aforementioned scaling
using the diagonal matrix Z, which has entries ζi for each degree of freedom belonging to

the elastic subdomain Ωe,i. With that, the scaled mass matrices read M
(1)
e = 2ZM

(2)
e and

M
(0)
e = Z2M

(2)
e . Analogously M

(2)
a is the standard mass-matrix for the acoustic part. Ka

resp. Ke denote stiffness-matrices for the scalar resp. vectorial case, Ca incorporates the
b-damping of the acoustic equation. On the right hand side D and P are the matrices stem-
ming from the inter-elastic DG coupling, where P contains the penalization term, while
E and A contain the coupling terms between the elastic and acoustic domains. Finally
Ca,ABC is a boundary mass-matrix used in the implementation of the acoustic absorbing
boundary conditions, T∗h incorporates the elastic absorbing boundary conditions and Fh

the elastic source term inducing the earthquake (cf. Sec. 6 for different source models).

3.2. Time integration

The basis scheme used for time integration is the Leap-Frog scheme in its full-step
predictor-corrector form [42]. After the prediction step

φ(n+1) = φ
pred

= φ(n) + ∆tφ̇
(n)

+
1

2
∆t2φ̈

(n)
, φ̇

pred
= φ̇

(n)
+

1

2
∆tφ̈

(n)

for φ ∈ {uh, ψh
} the right hand side of (3.2) can be evaluated using the predicted values

(and the previous timestep value for ψ̈
h

within
˙̃
ψ
h
). One then conducts a solver step for

the left hand side variables ü
(n+1)
h and ψ̈

(n+1)

h
followed by the correction step

φ̇
(n+1)

= φ̇
pred

+
1

2
∆tφ̈

(n+1)

again φ ∈ {uh, ψh
}.

To take into account the multiscale nature in time, we also employ a simple local time-
stepping approach for the acoustic part of the problem similar to [74]. Especially in the
vicinity of the inclined dam surface that is under water (cf. Fig. 4, right) water elements
become quite thin hence requiring small timesteps that are not necessary in the remaining
region of the problem, especially the huge land masses Ωe,i of seismic propagation. Hence,
within each regular time step of size ∆t the solution of the acoustic equation within Ωa

consisting of prediction, evaluation, solving and correction is internally repeated within a
loop of nloc timesteps of size ∆t

nloc
before the next regular step for the elastic portion of the

problem is conducted. In the presented simulation cases a value of nloc = 10 yields good
results.

4. Seismic scenario description

We now provide some selected information about the specific, real seismic event that
will serve as a case study for the mathematical model and numerical methods described in
Sec. 2 and 3. The event was chosen due to the large amount of seismograms recorded and
therefore allowing a proper validation of the simulation.

The Samos Island (Aegean Sea) earthquake struck at 14:51 local time in Turkey, on 30
October 2020. Severe damages have been observed in some densely populated districts of
İzmir (Bayraklı, Bornova, Karşıyaka and Konak), and 118 fatalities have been reported.
The present event occurred in the cross-border region between the eastern Aegean Sea
islands and Western Turkey, which is among the most seismically active areas in Eastern
Mediterranean and has been the site of devastating earthquakes in both recent and historical
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times, see [40]. The fault that ruptured during the mainshock is located offshore the
northern coast of Samos Island, and it was previously identified as Kaystrios Fault (see
GreDaSS database [20] and the GEM-Faults database [78]). The geometric characteristics
of the Kaystrios Fault are: strike in the range 260° to 290°, dip 45° to 70° and rake in the
range -100° to -80°, while the maximum depth of the fault is estimated as 14.5 km.

The mainshock was well recorded by the broadband seismic networks of Greece and
Turkey, and 35 records are located within 100 km distance from the epicenter [22, 23, 27,
63, 88]. Between October 31st and November 6th a group of engineers assembled by the

İzmir Regional Directorate of State Hydraulic Works (DSI) and a reconnaissance team from
METU visited dam sites to document the performance of earth-fill and rock-fill dams shaken
by the event. After a detailed inspection of six small to medium size earth-fill and rock-
fill dams including the Tahtalı dam, no apparent damage was reported by reconnaissance
teams.

As reported by [82], the Tahtalı dam is a rockfill dam on the Tahtalı River near Gumuldur

County in the İzmir Metropolitan Area. It has a 54.4 m height from river bed. When the
reservoir is at maximum capacity, the facility impounds 306.6 hm3 of water in its reservoir.
Its construction was finished in 1999. It was designed to provide domestic water with an
active volume of 287 hm3. As reported by [82], the Tahtalı dam is only 1.9 km away from an
active fault and, according to the seismic hazard analyses performed, it will be subjected
to a peak ground acceleration of 0.277 g by an earthquake of Mw 5.7. The Tahtalı dam is
at second place, after Gordes dam, when regarding the total capacity of the reservoir and
one of the most critical dams in the İzmir Metropolitan Area.

5. Geometry acquisition and mesh generation

The methods described in this section are general and can easily be adopted to different
scenarios. However, the individual steps are motivated and illustrated based on the case
study discussed in Sec. 4.

Digital elevation map data. In the presently examined case study, the topography of the
surrounding area of the Tahtalı-dam is obtained from the SRTM Digital Elevation Database
of CGIARCSI [46], which contains topographic elevation data in a 3 arc second grid.
On the left-hand side of Fig. 2 a contour plot of a roughly 3 km×2 km area around the
Tahtalı-dam is shown, while on the right-hand side of Fig. 2, the respective area in a satellite
view for a clear image of the dam location is given.

Map data: Google, Imagery ©2021
CNES/Airbus, Maxar Technologies, Map
data ©2021

Figure 2. (left) Topographic map of the region around the Tahtalı-dam with reference
coordinate-system. Data source [46]. (right) Satellite view of the same area. The red
marker is located at 38.0888 ◦N, 27.0415 ◦E. Image source [39].
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CAD model construction. Starting from the elevation point-cloud data, a volumetric
object is constructed and afterwards modified in order to add the dam and the water,
and finally proceeding with the meshing. To tackle this challenge the software Cubit
[13, 21], which also features some CAD-capabilities, was used firstly for the surface- and
then volume-reconstruction.
Using the point cloud elevation data, a spline-surface approximating the topography is
created, see Fig. 3. For the bottom surface a rectangle in the x-y-plane directly below
the topographic spline-surface at depth z = −300 m is used. The four sides remaining to
close the volume are flat surfaces and connect the four boundary curves of bottom and top
surfaces.

Figure 3. (left) Orange: Elevation point data obtained from [46], Blue: x − y-
spline curves, Green: Spline net-surface approximation of topography. (right) Volumetric
ground object with closing sides (and bottom surface at z = −300 m) in brown.

Once the topography is available, the dam is added, see Fig. 4, left. The dam is placed
in the proper location within the topography and, by means of simple boolean intersec-
tion/subtraction as well as downward extrusion operations between the two volumes, is
“naturally” finally embedded into the surrounding area. Fig. 4, middle, shows the portion
of the dam after the operations within the topography.

Figure 4. (left) CAD-model of a gravitational dam. The blue lines (compare to figure
right) are the intersection curves between the dam and ground model. (middle) Dam-
structure embedded into surface topography. (right) Cross section View on CAD-model
of ground, dam and water. Due to the embedding into the topography the dam measures
reduce to approximately L ≈ 570 m, B ≈ 250 m and H ≈ 50 m of visible size.

Having placed ground and dam, only the acoustic water-subdomain - the reservoir lake
- is missing. It is created by “flooding” the ground block behind the dam and again some
downward extrusion followed by a boolean subtraction from the ground block. The result-
ing water block can be seen in Fig. 1, right, as a whole, Fig. 4, right, gives a cross-sectional
view. It should be observed that the inclined dam surface interfacing with the water block



10 I. MAZZIERI, M. MUHR, M. STUPAZZINI AND B. WOHLMUTH

is explicitly created as part of the model, again by means of boolean CAD operations. The
final model, consisting of the blocks ground, dam and water can be seen in Fig. 1, left.

Meshing. The usage of a complete hexahedral mesh, with matching interfaces, bears a
much more difficult task in mesh generation than a tetrahedral mesh. Even though the
software Cubit offers automatic hex-mesh routines like sculpt [62], the resulting mesh qual-
ity turned out to be not fully satisfactory in the present case, especially in the proximity of
interfaces or corners with sharp angles. The process of mesh generation for this work was
done in a semi-automatic way, where in a manual pre-processing step the three blocks of the
CAD model were subdivided into even more smaller blocks, each with an easily meshable
form. Fig. 5, left, shows all those sub-blocks used. The meshing of the sub-blocks was then

Figure 5. (left) Division into sub-blocks for the pave-and-sweep meshing approach.
(middle) Meshed sub-blocks with free view on critical water-dam interface. (right)
Complete mesh of the computational domain, divided into three blocks: Ground, dam
and water. Compare to Fig. 1, left.

conducted automatically by a pave-and-sweep approach [14, 15, 58]. Special care had to be
taken for the inclined water-dam interface (cf. Fig. 4, right).

After successful meshing of all sub-blocks by the aforementioned strategy, sub-block
meshes of the same material were merged again to conforming meshes such that in the end
(non-conforming) interfaces only remain, where introduced in Sec. 2. Fig. 5, right, shows a
complete mesh of the three material blocks, cf. Fig. 1, left.

6. Numerical simulation results

In this section, we present the numerical results obtained. We conduct essentially three
numerical simulations: The first one considers the seismic event on a regional scale and
ignores the dam or the reservoir lake but takes into account the topography in order to
validate the seismic source and numerical wave-propagation model against observed seis-
mograms. In the second scenario, the vicinity region of the dam/reservoir from Fig. 1 and
5 is excited by a simple plane wave input at the bottom of the domain where the time his-
tory of the adopted input signal corresponds to the seismogram recorded in the proximity,
namely AFAD # 3536. Finally, a full source-to-site simulation of the considered event is
conducted, spanning the multiple length scales from the seismic fault plane up to the dam
structure including the complete domain from the second analysis as a sub-domain.

As previously mentioned, the dam and other details are ignored in the regional simula-
tion; this allows to have sufficient degrees of freedom and computational resources available
to span a broader region and therefore being capable to incorporate 10 seismograph stations
for comparison. In the following source-to-site simulation, the domain is tailored around
the optimal size that encompasses the fault plane and the dam region and the thereby
saved resources are used to adequately simulate the details in the dam vicinity region.

We would like to point out that previously, different verification tests have been consid-
ered in order to evaluate the accuracy of the numerical discretization adopted. In particular,
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we refer the reader to [6] for the linear elasto-acoustic case and to [60] for the non-linear
and viscous elasto-acoustic case.

It is important to recall the concepts of verification and validation [54, 59]: verification
of a numerical method may be defined as the demonstration of the consistency of the nu-
merical method with the original mathematical–physical problem defined by the controlling
equation, constitutive law, and initial and boundary conditions. The quantitative analysis
of accuracy should be a part of the verification. Once the numerical method is analyzed and
verified for accuracy, it should be validated using observations. In general, the validation
may be defined as the demonstration of the capability of the theoretical model (i.e., the
mathematical–physical model and its numerical approximation) to predict and reproduce
observations. Normally the criteria and the metrics adopted for the verification and the
validation phase are different, given the complexity of the physical problem analyzed.

6.1. Large scale validation-simulation

For the aforementioned validation step, we first conduct a large scale simulation in the
domain Ωlarge, depicted in Fig. 6, without the fine scaled dam structure.

Simulation parameters. The domain Ωlarge contains not only the area around the Tahtalı-
dam but also the seismic fault location where the considered event originated from (cf.
Sec. 4) as well as the locations of ten selected stations of the AFAD network [1], see Fig. 6.
The mesh used for this large scale simulation is coarser by a factor of around 13 (measured
between two average elements with edge lengths 75 m vs. 1000 m), compared to the dam
mesh from Fig. 5, and ignores the dam structure as a detail in order to effectively span a
volume of roughly 135 × 100 × 35 km. In order to properly describe the mechanical prop-
erties of the area along the Earth’s crust, layered materials have been employed, which are
assumed to be parallel to the x-y-plane. The adopted mechanical parameters as well as the
layer depths used can be found in Tab. 1.

35 km

Map data: Google, Imagery ©2021
TerraMetrics, Map data ©2021

Figure 6. Domain for the large scale simulation. Cross-section view with different
material layers and the seismic fault plane showing iso-lines of rupture time (see also right
figure for a zoom with time scale). The red pins mark the locations of the seismographic
measurement stations with their AFAD ID numbers being printed next to them. The blue
box is the dam vicinity region from Fig. 2.

The final large-scale mesh contains Nel,large = 536.105 elements with polynomial degree
of p = 3 for the ansatz functions. Time discretization is done with NT,large = 40.000
timesteps of size ∆tlarge = 10−3 s.
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Mat. par. material block

parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 unit

depth 0− 0.3 0.3− 1.7 1.7− 3.7 3.7− 13.7 13.7− 23.2 23.2− 35.0 km

ρ 2355 2200 2300 2700 2900 3100 kg
m3

vp 1695 2300 3200 6000 6600 7200 m
s

vs 1130 1600 3400 3700 3700 4000 m
s

Qs 113 160 340 370 370 400 −

Table 1. Layers and material parameters used for the large-scale simulations.
Data derived and adapted from the original data-set taken from [83]. The quality factor
Qs = πf0/ζ, where f0 is a frequency reference value here chosen equal to f0 = 1 Hz.

Seismic fault data and kinematic source mechanism. The source mechanism is de-
scribed by means of a set of double-couple moment-tensors Mi(t), i = 1, 2, . . . , 160 dis-
tributed along the fault plane, each with its own set of source parameters being slip-vector
si, rupture- and rise-times trup,i and trise,i as well as the released moment magnitude M0,i.
Data have been obtained by [83] on a grid of 10 × 16 points pi across the seismic fault
plane depicted in Fig. 7. The moment tensors Mi are then associated with the numerical

Figure 7. Seismic fault plane with coordinates relative to the hypocenter measured in
km. (left) Seismic moment magnitude M0, (right) slip vector field s (vectors scaled by
a factor of 2000), rupture time trupt can be found in Fig. 6.

quadrature node closest to the data point pi and can be computed as:

Mi(t) = M0,i ·mi

(
t− trupt,i

trise,i

)
·
[
(si ⊗ n) + (si ⊗ n)>

]

where n is the fault plane normal computed from the provided data-set, and mi(t̂) is a nor-
malized moment-function monotonically increasing from 0 to 1 that models the moment-
release over time at the point pi respecting the available data of rupture- and rise-time,
hence the individual distance from the hypocenter. We refer the reader to [72] for the
precise definition of the moment-rate functions ṁi from which mi are computed.

Numerical results and validation. In order to assess the maximal (over time) displace-
ment, resp. velocity that is attained at each point p on the computational domain’s surface,
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we introduce the so called geometric mean horizontal peak ground displacement PGUgmh

and velocity PGVgmh at point p ∈ Ω [16] as quantities of interest:

PGUgmh(p) :=
√

sup
t∈(0,T )

ux(t,p) · sup
t∈(0,T )

uy(t,p), PGVgmh(p) :=
√

sup
t∈(0,T )

vx(t,p) · sup
t∈(0,T )

vy(t,p)

Fig. 8 then shows the PGV-map of the large scale simulation. The location of the dam,
fault and hypocenter as well as the AFAD stations available are reported (see also Fig. 6).
The latters are color coded, according to the values retrieved from the observed seismo-
grams. The filtered time-history of simulated and measured seismograms are also listed
and compared in the time domain in Fig. 9 and in the frequency domain in Fig. 10. Both
for the subset of the six stations closest to the hypocenter.

Map data: Google, Imagery ©2021
TerraMetrics, Map data ©2021

Figure 8. PGV-map for the large scale simulation. Color scale is cut-off at 0.1 m
s

.
AFAD stations are marked by their ID number, peak ground velocity values of mea-
surements are color coded. The blue rectangle shows the dam vicinity region of Fig. 1,
the hypocenter and the fault are marked in yellow. (original map image overlayed with
simulation colormap)

Given the relatively simplistic model adopted, Fig. 9 shows a satisfactory agreement
between the observed and simulated velocities, in terms of arrival time, duration of the
signal, phase and amplitude of the waves. The goodness of these results is also confirmed
by the PGV map, showed in Fig. 8. Referring to the comparison in terms of Fourier
spectra, cf. Fig. 10, it turns out that, in general, there is a satisfactory agreement between
simulated and recorded amplitudes for frequencies up to about 1 Hz, although synthetic
tends sometimes to underestimate the observed amplitudes.

To give a quantitative measure of the overall performance of the numerical simulation
we adopt the Goodness of Fit (GoF) criteria proposed by [3], being this latter widely
followed and recognized for this kind of evaluation. For the frequency band of interest (i.e.
0.1 − 1 Hz), a GoF score from 0 to 10 (< 4, poor; 4 − 6, fair; 6 − 8, good; ≥ 8, excellent)
is estimated on five metrics of interest for engineering purposes, namely: energy duration
(ED), Peak Ground Velocity (PGV), Peak Ground Displacement (PGU), Response Spectral
(RS) acceleration and Fourier Amplitude Spectrum (FAS). Note that FAS and RS criteria
are evaluated considering only the frequencies and structural periods within the range
0.1 − 1 Hz of validity of the numerical simulations. The GoF scores, computed for each
criterion and for the three components of motion, are shown in Fig. 11 for the whole set of
ten recording stations considered in Fig. 8. These results confirm that with few exceptions,
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Figure 9. (rows) Comparison of numerically evaluated velocity seismograms (blue)
and records (orange) for the six AFAD-stations closest to the hypocenter. Stations are
sorted by increasing Rrupt (see label on the right, also for station ID). (columns) First col-
umn x-component, second y-component, third z-component. All data filtered to [0.1, 1] Hz
with 2nd order Butterworth filter.

the numerical model provides predictions that are in overall good agreement (from fair to
excellent) with the records. By taking inspiration from [61] we not only compute the average
GoF value for each ground motion component but also the average between the components
in order to summarize the results into a single final score for each station. Hence, in Fig.
11, we additionally present that score as an overview of the misfit between records and
simulated results at territorial scale. We found that for the majority of the stations the
agreement between simulations and observations is from fair to good. These results are
aligned with those obtain for other, different earthquake scenarios as, e.g., [41, 65].

6.2. Plane-wave excitation using nearby seismogram

Measurement data and source mechanism. For our second numerical simulation, we
use input data for the ground motion from recorded measurements. Namely the station
AFAD # 3536, located at 38.1968 ◦N, 26.8384 ◦E , (cf. Figs. 6, 8) and positioned approx-
imately 30 km from the Tahtalı-dam. In Fig. 9, second row, the x, y and z components
vref
x,y,z(t) (orange lines) of the ground motion velocity vref(t) recorded at AFAD # 3536

during the seismic event [1] can be seen. They were deconvolved to a certain depth, since
it was observed on the free surface, and subsequently it was adopted as input for the plane
wave excitation, following [33]. Therein the equivalent body force

f = 2ρevpδ(z − z0)vref(t)
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Figure 10. Amplitude power spectra of the velocity signals in Fig. 9. Again (blue)
are the numerical data, (orange) the filtered measurement data.

is applied on a horizontal plane located at z = z0. The seismic wave generated by it will
rise and yields an approximation to the actual ground motion of the event. The realiza-
tion of this approach is based on an additional layer of same material properties below the
bottom surface of the mesh in Fig. 5, right, which has a thickness of only one element and
z0 being its mean depth, in which the body force is applied. This approach is often used
in engineering analysis aiming at simulating the so-called “dynamic soil structure inter-
action” problem (DSSI). In fact, due to scarcity of numerical code capable of taking into
account the entire problem (from source-to-site) and/or having only limited computational
resources available, the state-of-the-art engineering approach considers, typically, only the
region in the immediate proximity to the dam and assumes that at this scale the excitation
can be properly approximated by a plane wave [9, 79]. Obviously this approach presents a
series of limitations that are even more relevant when, as often happens operationally, the
dam is studied in 2D [10].

Simulation parameters. Tab. 2 shows the material parameters used for the different
zones of the numerical simulations. Since ”in-situ” measured values were not available it
was decided to adopt reliable literature values.

The numerical simulation was conducted with NT = 106 timesteps of size ∆t = 5 · 10−5

on a spacial grid using Nel = 18.948 elements with a polynomial degree of p = 2 for the
ansatz functions. The DG penalty-parameter was chosen as β = 250.
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Map data: Google, Imagery ©2021
TerraMetrics, Map data ©2021

Figure 11. Evaluation of Anderson GoF-criteria to assess the similarity of the seis-
mographs in Fig. 9. (top left, right, bottom left) Energy duration (ED), peak ground
velocity (PGV), peak ground displacement (PGU), response spectrum (RS) and Fourier
amplitude spectrum (FAS) evaluated for x, y and z-components at the presented stations.
Extreme values marked in red and green: z-comp. of # 3536 at ≈ 2.637 (poor) to z-
comp. of # 3538 at ≈ 8.372 (excellent). (bottom right) Station-wise mean of x, y and
z component’s presented Anderson criteria.

Numerical results. Fig. 12 (top) shows a snapshot of the simulated displacement-field
u in the elastic, and acoustic pressure field pac in the acoustic domain. The bottom row
shows a corresponding snapshot of the upcoming source-to-site simulation from Sec. 6.3
which highlights the different scales of magnitude of the simulations. In addition to the
time-snapshot picture, we can also employ the time-history of the simulation at certain
points of interest (cf. Fig. 14) and again compute peak-ground maps of the conducted
simulation, which will also be depicted later in Fig. 15 for a comparative discussion with
the results of the full source-to-site simulation. Fig. 14 contains the numerical seismograms
of the components of v (oriented orthogonal, parallel and vertical to the dam, compare
Fig. 16 for orientation) of the simulation at three distinct locations around the dam. One
of them is located on the ground in front of the dam, the other directly on top of the
dam and the third at the right dam ambutment. The exact locations of these synthetical
seismographs are depicted in Fig. 12 via the red pin-needles. In order to compare the signals
with similar frequency content, the signals are again frequency filtered based on a second
order Butterworth filter with a frequency-band of [0.1, 1] Hz, eliminating high frequency
(numerical) artifacts and measurement oscillations.
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Material parameters material block

type parameter Ground Dam Water unit

all ρ 2355 2000 998.23 kg
m3

vp 1695 525 / m
s

elastic vs 1130 350 / m
s

Qs 500 500 / -

acoustic

c / / 1500 m
s

b / / 6 · 10−9 m2

s

Table 2. Material parameters used for the numerical simulations. Ground consists
of Rock/Limestone and the Dam is mostly modelled as Gravel/Sand material . The
quality factor Qs = πf0/ζ, where f0 is a frequency reference value here chosen equal to
f0 = 1 Hz.

Plane wave:

Source-to-site:

Figure 12. Time snapshot of displacement-field in (top) plane wave simulation, (bot-
tom) source-to-site simulation where in the zoomed in picture the blue frame of the
dam-vicinity region Ω is visible. The pin-needles (top picture) show the locations of the
synthetic seismographs evaluated in Fig. 14.

6.3. Full source-to-site simulation

The final simulation setup consists of a full source-to-site simulation using a domain Ωs2s

containing the Tahtalı-dam area as well as the seismic fault just as Ωlarge. By respecting the
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dam-structure, the topography in its vicinity and the presence of water behind the dam,
Ω becomes a subset of Ωs2s and hence the original mesh (cf. Fig. 5) a submesh as well.
The resulting grid contains multiple length-scales in element size from the larger elements
having an edge length in the order of a kilometer to the smaller ones measuring only few
meters. The geometry is created by embedding the domain Ω from Fig. 1 on top of a
rectangular block of an approximate size of 88×55×40 km. In order to have a smooth top-
surface, a transition zone was used, in which the detailed topography of the dam-area gets
flattened down to the level z = 0 such that it is accurately resolved only in the proximity
of the dam. Fig. 13 shows the resulting geometry, which was then meshed with a locally
refined mesh consisting out of around 100.000 elements in total. The mesh is also depicted
in Fig. 13 and takes advantage of the DG coupling approach by individually meshing the
surrounding, transition and core blocks in a not-necessarily matching way, then coupling
them together to arrive at a locally refined final mesh. This strategy allows for an easy
local grid refinement in the vicinity of the structure while the mesh further away stays
relatively coarse. In combination with the elaborate fine structure mesh (cf. Fig. 5), this
keeps the overall amount of elements relatively low while retaining well behaved element
shapes. These blockwise meshes also easily allow to assign different polynomial degrees pi
to the individual blocks.

Figure 13. (top left) Full source-to-site domain in cross-section view with different
material layers as well as the seismic fault plane and slip distribution (cf. Fig. 7) visible.
(top right) Zoom into the region of the dam. The dark blue lines mark Ω as a sub-region
with resolved topography (cf. Fig. 1), the light blue frame marks the transition zone.
(bottom left) Hexahedral mesh of the complete source-to-site domain Ωs2s. The brown
surfaces carry absorbing boundary conditions. (bottom right) Zoom into the region of
the dam. The transition zone (yellow) and the core blocks (blue) with their individual
meshes are elevated here in order to see the (non matching) DG interfaces between each
of them.

As within the large scale simulation, also the source-to-site simulation adopts the layered
materials, presented in Tab. 1, and the seismic fault rupture mechanism and slip distribution
as previously described (see Fig. 7). Both the layers and the location of the fault plane w.r.t.
the dam structure are depicted in Fig. 13.
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The simulation was conducted using a polynomial degree of p = 2 in the core- (water, dam,
dam-vicinity) and the transition-blocks and p = 3 in the outer layers and 920.000 timesteps
of size 5 ·10−5. Fig. 14 shows the comparison between the synthetic seismograms computed
on (i) ground, (ii) crest and (iii) abutment of the dam, as obtained with the source-to-site
simulation (present paragraph) and with the plane-wave approach (previous simulation
from Sec. 6.2). Note that the orthogonal, parallel and up-down synthetic time histories of
displacement and velocity are considered; the directions are w.r.t to the orientation of the
dam (see Fig. 16 for the orientations). Furthermore, Fig. 15 compares the respective peak
ground maps of the two simulations: on the left-hand side the plane-wave model and, on
the right-hand side, the source-to-site model.

Finally Fig. 16 shows the maximum orthogonal displacement along the dam over different
cross sections. The quantity u⊥,max := supt∈(0,T ) |u⊥|, is presented along the four sections
depicted in the nearby sketch.

6.4. Discussion of results

The results obtained so far deserve some comments, since at first glance the large differ-
ence in terms of displacement and velocity, experienced by the Tahtalı dam adopting the
plane-wave model and the source-to-site one, is evident. It is worth noting that the Tahtalı
dam and station AFAD #3536 are located both at about 30 km away from the hypocenter,
therefore in the so-called near-field region, however the azimuthal difference is around 30◦.
Radiation pattern [51] and rupture directivity [36, 71] effects might play a significant role in
this region and therefore the large variability observed can be at least partially explained by
these effects. Thanks to the validations accomplished (see Sec. 6.1) we are confident about
the reliability of our simulations up to 1 Hz, and therefore we consider the source-to-site
simulation not only a state-of-the-art modelling approach but also the more reliable one, in
terms of the excitation experienced by the Tahtalı dam during the seismic event analysed
in this study.

Regarding the magnitude of the ground motion observed, it is important to mention
that nor the plane-wave model neither the source-to-site simulation seems to be capable
to produce shaking levels that might endanger the dam itself. In fact, according to the
exhaustive literature examined, both based on numerical studies [2, 9, 10, 79] or empiri-
cal observations [66, 73, 84–86, 89] the shaking level simulated seems to be incapable of
producing significant damages to the infrastructure. This findings are coherent with the
empirical observation as witnessed by the reconnaissance team [23, 63].

Furthermore, as highlighted by [66], there are more than 59,000 large dams worldwide,
and more than three quarters employ earthfill and rockfill construction [43]. Several large
earthquakes were recorded at embankment dams, for example, during the 2008 Wenchuan
earthquake (Mw 7.9), the 156-meter-high Zipingpu concrete-faced rockfill dam (CFRD)
was damaged partially without any collapse or freeboard deficiency. The dam, designed
with peak ground acceleration of 0.26 g at its foundation bedrock, recorded data exceeding
0.5 g [50, 90]. During the 2011 Tohoku earthquake (Mw 9.0), the Aratozawa rockfill dam
experienced a PGA of 1.04 g at foundation rock and in spite of that the safety was not
endangered [47]. According to [86] most modern embankment dams are capable of with-
standing significant seismic shaking with no detrimental consequences in the past events.
This leads to the conclusion that further analyses are necessary to predict more accurately
which seismic event may involve a dangerous shaking for the structural safety of the build-
ing during earthquakes. The full source-to-site simulation provides an example of what our
tool is capable of and must be properly exploited in the future.

7. Conclusion and Outlook

Starting from a general mathematical description of a coupled elasto-acoustic wave prop-
agation problem, we have studied a realistic earthquake event for which we have analyzed
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Displacement:

Velocity:

Figure 14. Comparison of synthetical displacement (top block) and velocity (bot-
tom block) seismograms between plain wave (bold lines) and source-to-site simulation
(thin lines). Each quantity is decomposed into dam-orthogonal, -parallel and vertical
components and is compared at three physical locations (ground, dam-crest and am-
butment), see Fig. 12 for locations. All data again filtered to [0.1, 1] Hz with 2nd order
Butterworth filter.

the seismic response of a dam. The computational model comprises the actual topography
around the dam, its reservoir lake as well as a simplified one dimensional crustal model.
Regarding this last aspect, it is worth mentioning that, by taking into account a more
accurate seismic tomography it will be possible to improve the computational model so
far adopted. Eventual taking into account local soil heterogeneities in the proximity of
the dam, as well as a more detailed characterisation of the material of the dam will also
contribute to that. The generation and analysis of the latter will be the subject of future
studies. Due to the comparably small ground motions recorded during the seismic event,
we considered for the solid portion of the domain a relatively simple but rather realistic,
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Displacement:

Velocity:

Map data: Google, Imagery ©2021
CNES/Airbus, Maxar Technologies,
Map data ©2021

Figure 15. Comparison of (top row) PGU and (bottom row) PGV maps between
the (left column) plain wave simulation of Sec. 6.2 and (right column) the full source-
to-site simulation both in the vicinity region of the dam. (original map image overlayed
with simulation colormap)

Map data: Google, Imagery ©2021
CNES/Airbus, Maxar Technologies,
Map data ©2021

Figure 16. Evaluation of maximal orthogonal dam displacement u⊥,max across four
slices depicted in (left) image (original map image overlayed with simulation colormap).
The image also shows the unit vectors in e⊥ in orthogonal and e‖ in parallel direction.

Results show the (middle strands) plain wave simulation and (outer strands) source-
to-site simulation with dashed lines for the reservoir side, continuous lines for the free side
of the dam. (blue) slice 1, (orange) slice 2, (green) slice 3, (red) slice 4.

visco-elastodynamic model; this latter should be enhanced to a plastic one, for an analysis
focusing on individual features of the dam, especially in case of higher ground motions (i.e.:
local events in the immediate proxmity of the dam). Having said that and precisely due to
the model’s simplicity, the conducted simulations turn out to be in good agreement with
the recorded seismograms and are capable to produce reliable results in the frequency range
of up to 1 Hz at manageable computational costs. This resulted in a flexible and robust
computational numerical model.
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The final, state-of-the-art, fully-coupled source-to-site simulation makes use of local and
independent grid-refinements, treated with a discontinuous Galerkin approach, in order
to accurately resolve the multiple length scales adopted in the model. With one single
simulation the source-to-site approach allows to obtain numerical data at site, such as
maximum displacement or peak velocities, that can be used for engineering purposes. The
source-to-site model presented here could be used for a better assessment of the seismic
risk associated to the dam and its nearby region by investigating the ground motion wave
field generated by (i) different earthquake realizations along the Kaystrios fault and/or (ii)
different seismogenic faults. Due to its generality the model can be also easily employed
and further adapted for the seismic risk assessment in other active regions and for different
structures with additional uncertainties being considered.
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[9] A. Bayraktar, A. Altunişik, B. Sevim, M. Kartal, T. Türker, and Y. Bilici. Comparison of near- and far-
fault ground motion effect on the nonlinear response of dam–reservoir–foundation systems. Nonlinear
Dynamics, 58:655–673, 12 2009.
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The Westervelt equation of nonlinear acoustics plays an important role when it comes
to the modeling of high amplitude ultrasound waves. Such waves appear for example in
the medical treatment of kidney stones via extracorporeal shockwave lithotripsy. There-
fore accurate numerical simulations of such processes, often in complex, multi-material
domains, is of relevance. This article deals with the application of a DG finite element
method to the Westervelt equation, derives an a priori error estimate for polynomial
degrees p ≥ 2 and also shows the numerical applicability of the method in a hybrid
continuous/discontinuous way. To keep the analysis general, polytopic elements in 2D
and 3D are considered.
The proof of the error estimate is based on Banach’s fixed point theorem. First, a

linearized version of Westervelt’s equation is studied, where a reference solution is used
in the nonlinear terms. We first prove stability and then an priori error estimate in a
suitable energy norm. Then, in order to extend the argument to the nonlinear equation,
a fixed point mapping is defined, which maps the reference solution from the linearized
argument to the nonlinear solution. The rest of the proof consists of showing the nec-
essary prerequisites for Banach’s fixed point theorem for the defined mapping. In order
to support the general polytopic elements careful assumptions on the meshes have to
be made. The implementation of the method treats the nonlinearity via a fixed-point
iteration, time integration is done with a generalized-α scheme in order to avoid Gibbs
oscillations at the steep wave-fronts. A first numerical example with synthetic data
shows the proven error-rates numerically and also the feasibility of the method in case
of nearly degenerate mesh edges, covered by the general polygonal case. More elabo-
rated 3D examples feature the method also in a hybrid way, where the DG approach is
only used at sub-domain interfaces, also with jumping coefficients, while a conforming
approach is used within the individual subdomains.
After the introduction, Sec. 2 shortly introduces the acoustic model equation. In Sec. 3

the assumptions on the polytopic meshes are stated and basic estimates from the DG lit-
erature are collected, while in Sec. 4 the DG discretization of the equation is performed.
The analysis of the method is then done in Sec. 5 for the linear case, and Sec. 6 for the
nonlinear case. Sec. 7 describes the computational approach and Sec. 8 finally contains
the numerical experiments.
I was significantly involved in finding the ideas and carrying out the scientific work

presented in this article including the write-up. I was in charge of the numerical sections
of the work, i.e. Sec. 3, 4, 7 and 8. Furthermore I was in charge of the computational
part of the article, i.e. design of numerical examples, realization of the implementation
and the creation of the figures.
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We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic waves 
on polytopic meshes. To model sound propagation with losses through homogeneous 
media, we use Westervelt’s nonlinear wave equation with strong damping. Challenges in 
the numerical analysis lie in handling the nonlinearity in the model, which involves the 
derivatives in time of the acoustic velocity potential, and in preventing the equation from 
degenerating. We rely in our approach on the Banach fixed-point theorem combined with 
a stability and convergence analysis of a linear wave equation with a variable coefficient 
in front of the second time derivative. By doing so, we derive an a priori error estimate 
for Westervelt’s equation in a suitable energy norm for the polynomial degree p ≥ 2. 
Numerical experiments carried out in two-dimensional settings illustrate the theoretical 
convergence results. In addition, we demonstrate efficiency of the method in a three-
dimensional domain with varying medium parameters, where we use the discontinuous 
Galerkin approach in a hybrid way.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear sound waves arise in many different applications, such as medical ultrasound [22,39,50], fatigue crack detec-
tion [52,55], or musical acoustics of brass instruments [12,26,42]. Although considerable work has been devoted to their 
analytical studies [33,34,37,41] and their computational treatment [31,38,48,58], rigorous numerical analysis of nonlinear 
acoustic phenomena is still largely missing from the literature. The goal of our work is to develop a high-order discontinu-
ous Galerkin (DG) scheme for nonlinear sound waves in homogeneous media that is rigorously justified through a stability 
and convergence analysis.

The DG method was first introduced in the seventies for the numerical approximation of hyperbolic problems [47], and, 
independently, in the context of elliptic [21] and parabolic [6] equations. Since then DG methods have been successfully 
developed and applied to a wide range of problems arising in computational sciences and engineering; cf. the books [19,
30,49] for a comprehensive overview. In relation to our setting, we point out in particular the works on the Euler and 
Navier–Stokes equations [10] and on a class of nonlinear elliptic and second-order hyperbolic problems [44].
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The finite-dimensional DG space consists of piecewise discontinuous polynomial functions defined over a computational 
tessellation of the domain. As a consequence, the DG paradigm can naturally support finite element spaces built upon 
meshes consisting of arbitrarily shaped polygonal/polyhedral elements, thus generalizing the paradigm that stands at the 
basis of classical Finite Elements on triangles, quadrilaterals, or their combinations in two dimensions (2D), and tetrahedra, 
prisms, pyramids, and hexahedra or their combinations in three dimensions (3D), and gaining flexibility in the process of 
mesh generation. DG methods on polygonal/polyhedral grids (PolyDG methods for short) have received a lot of attention 
in the last years; we give here only an incomplete list [3,8,9,14–16] and refer the reader to the references therein for a 
comprehensive overview. In PolyDG methods, high order accuracy can be achieved in any space dimension by introducing 
suitable modal basis functions defined directly in the physical frame configuration. Finally, PolyDG methods can be seen as 
extensions of the classical DG approach and they are naturally oriented towards 3D scalable implementations.

We organize the rest of the paper as follows. In Section 2, we first discuss the continuous initial-boundary value problem 
for a classical model of nonlinear acoustics–Westervelt’s wave equation. Section 3 contains some theoretical preliminaries 
that are useful for the numerical analysis. In Section 4, we propose and discuss a high-order discontinuous Galerkin scheme 
for the Westervelt equation. Section 5 is devoted to the stability analysis of a linearized semi-discrete problem and its a 
priori error analysis. In Section 6, we use the Banach fixed-point theorem to prove an a priori estimate for the approximate 
solution of the Westervelt equation. Section 7 describes in detail our numerical solver. Finally, in Section 8, we carry out 
several numerical experiments, both in two and three dimensions, to illustrate the theory from previous sections. In a three-
dimensional setting, we use the discontinuous Galerkin approach in a hybrid way to demonstrate that the method can also 
handle varying medium parameters.

2. The continuous problem

We employ Westervelt’s wave equation [59] to model nonlinear sound propagation through a homogeneous medium, 
given in terms of the acoustic velocity potential ψ by

(1 − 2kψ̇)ψ̈ − c2�ψ − b�ψ̇ = 0. (2.1)

The constant c denotes the speed of sound and b is the so-called sound diffusivity. The constant k is given by k = βa/c2

where βa is the coefficient of nonlinearity of the medium. For the derivation of nonlinear acoustic models and their physical 
background, we refer the interested reader to, e.g., [18,23,29,54]. The acoustic pressure u can be obtained via the relation 
u = �ψ̇ , where � denotes the mass density of the medium.

Westervelt’s equation is a nonlinear acoustic wave equation, which we couple with initial conditions and homogeneous 
Dirichlet data, and investigate the following problem:⎧⎪⎪⎨

⎪⎪⎩
(1 − 2kψ̇)ψ̈ − c2�ψ − b�ψ̇ = 0 in � × (0, T ],
ψ = 0 on ∂� × [0, T ],
(ψ, ψ̇) = (ψ0,ψ1) on � × {t = 0}

(2.2)

on a bounded domain � ⊂Rd for d ∈ {2, 3} and for a given final time T > 0.
If b > 0, then Westervelt’s equation is strongly damped. With enough dissipation (i.e., b large enough), it exhibits a 

parabolic-like behavior. The initial-boundary value problem (2.2) is then known to be globally well-posed for sufficiently 
small and smooth initial data on regular domains, provided that appropriate compatibility conditions at the initial time are 
satisfied. We refer to [37, Theorem 2.2], from which global well-posedness of (2.2) follows as a special case. We mention 
also the local-in-time well-posedness result from [35, Section 7] that relaxes the regularity assumptions on the initial data.

If we consider propagation in inviscid media, then b = 0 in (2.2). It is expected and numerically observed [17,36] that 
now smooth solutions of (2.2) exist only for a short time before the shock develops due to nonlinear steepening. A rigorous 
proof of the short-term well-posedness is available for propagation in unbounded domains as a particular case of a general 
quasi-linear hyperbolic system of second order in [32, Theorem 1]. For the inviscid Westervelt equation reformulated in 
terms of the acoustic pressure u, the local well-posedness on bounded domains follows from a special case of a general 
quasi-linear wave equation studied in [20, Theorem 4.1].

We point out here another important feature of Westervelt’s equation. The factor 1 − 2kψ̇ in front of the second time 
derivative can degenerate if the acoustic pressure is too high. To avoid that this happens, we have to prove that ψ̇ stays 
below 1/(2k). In the continuous analysis, this is commonly achieved by having sufficiently smooth data such that the 
solution space for the pressure embeds continuously into L∞(�) almost everywhere in time and by additionally assuming 
that the data are sufficiently small in an appropriate norm; see [33–35,41]. Our non-conforming discretization approach 
prevents this strategy. Since our approximate solution is only piecewise smooth, we have to rely on an inverse inequality to 
avoid degeneracy. On the other hand, we do not want a bound that degenerates as h converges to 0, and so we will need 
to involve additionally the (local) interpolant in the estimate and employ its approximation and stability properties.
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3. Assumptions and preliminaries

Let � ⊂ Rd for d ∈ {2, 3} be a convex polygonal or polyhedral domain. We consider a family of meshes Th made of 
disjoint open polygonal/polyhedral elements κ with diameter hκ .

Following [3,14,16], we introduce the concept of mesh interface, defined as the intersection of the (d − 1)-dimensional 
facets of two neighboring elements. When d = 3, each interface consists of a general polygon which we assume can be 
decomposed into a set of co-planar triangles. We assume that a sub-triangulation of each interface is provided and we 
denote the set of all these triangles by Fh . We then use the terminology face to refer to one of the triangular elements in 
Fh . When d = 2, each interface simply consists of a line segment, so that the concept of faces and interfaces coincides in 
this case. We denote by Fh the set of all faces of Th , decomposed into the set of internal faces F i

h and the set of boundary 
faces Fb

h so that Fh = F i
h ∪ Fb

h .
We assume a fixed uniform polynomial degree p ≥ 1 and introduce the following finite-dimensional space:

Vh = {ψ ∈ L2(�) : ψ|κ ∈ Pp(κ) ∀κ ∈ Th},
where Pp(κ) is the space of polynomials of total degree p defined on κ , as well as the broken Sobolev spaces

Hn(Th) = {ψ ∈ L2(�) : ψ|κ ∈ Hn(κ) ∀κ ∈ Th}
for n ≥ 1. It is natural to employ the broken gradient operator ∇h· on the space H1(Th); see [19, Definition 1.21].

For sufficiently smooth ψ , we introduce jumps and averages on an interior face F ∈ F i
h , F ⊂ ∂κ+ ∩ ∂κ− with κ+ and κ−

any two neighboring elements in Th , as follows:

�ψ� = ψ+n+ + ψ−n−, {{ψ}} = ψ+ + ψ−

2
, (3.1)

where ψ± denotes the trace of ψ on F taken within the interior of κ± , and n± denotes the unit normal vector to ∂κ±
pointing outwards from ∂κ± . On the boundary face F ∈ Fb , we set �ψ� = ψn and { {ψ} } = ψ . For a (smooth enough) vector-
valued function ψ , definition (3.1) extends analogously.

For later use, we also define here the stabilization function χ ∈ L∞(Fh) as follows:

χ|F =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2 β max
κ∈{κ+,κ−}

p2

hκ
for all F ∈ F i

h, F ⊂ ∂κ+ ∩ ∂κ−,

c2 β
p2

hκ
for all F ∈ Fb

h , F ⊂ ∂κ.

(3.2)

The parameter β > 0 will be chosen in a convenient manner in the following proofs.
For an open subset D of Rd , where d ∈ {1, 2, 3}, and a function v ∈ Hn(D), where n ≥ 0, we denote by ‖v‖Hn(D) and 

|v|Hn(D) the standard norm and seminorm, respectively, with the convention that H0(D) ≡ L2(D). When D ≡ �, we simply 
write ‖∇v‖Hn and |v|Hn . We use the short-hand notation

〈ψ, v〉F =
∑
F∈F

(ψ, v)L2(F ), ‖ψ‖F = 〈ψ,ψ〉1/2
F

for a generic collection of faces F ⊂ Fh , and regular enough functions ψ and v . Here (·, ·)L2(F ) denotes the inner product 
in L2(F ).

We occasionally use the notation x � y and x � y instead of x ≤ C y and x ≥ C y, respectively, when the hidden constant 
C > 0 does not depend on the coefficients in the equation c, b, and k, the mesh size, and the number of faces of a mesh 
element, but can depend on the polynomial degree p and the final time T .

3.1. Grid assumptions and preliminary estimates

Throughout the paper, we make the following assumptions on the family of polytopic decompositions Th , which allow 
to extend the trace-inverse and inverse inequalities on simplices to polytopic elements.

Mesh assumptions. For any κ ∈ Th , we assume that

hd
κ ≥ |κ | � hd

κ

for d = 2, 3, where |κ | denotes the Hausdorff measure of κ ∈ Th . We also assume that there exists a positive number m, 
such that every polytopic element κ ∈ Th admits a sub-triangulation into at most mκ ≤ m shape-regular simplices si for 
i = 1, 2, . . . , mκ , such that
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κ̄ = ∪mκ
i=1s̄i and |si| � |κ |,

where the hidden constant is independent of κ and Th . Finally, we assume that

maxκ hκ

minκ hκ
� 1.

Under these mesh assumptions, the following trace-inverse and inverse inequalities hold on polytopic domains.

Lemma 1. For any v ∈ Pp(κ), κ ∈ Th, the following trace-inverse and inverse inequalities hold:

‖v‖L2(∂κ) � h−1/2
κ ‖v‖L2(κ) , (3.3)

‖v‖L∞(κ) � h−d/2
κ ‖v‖L2(κ) . (3.4)

Proof. The statement follows from, e.g., [15, Lemma 6] combined with our mesh assumptions. �

Remark 1 (On the mesh assumptions). We choose to simplify our mesh assumptions for the clarity of exposition. However, for 
the trace-inverse inequality (3.3) to hold, these assumptions are slightly more restrictive than needed, and can be weakened 
by employing the arguments of [13]. Indeed, the inequality holds provided that, for any κ ∈ Th , there exists a set of non-

overlapping d-dimensional simplices κ F

 ⊂ κ such that, for any face F ⊂ ∂κ , F = ∂κ ∩ ∂κ F


 , and 
⋃

F⊂∂κ κ F

 ⊂ κ , and the 

diameter hκ of κ can be bounded by

hκ �
d|κ F


 |
|F |

for all F ⊂ ∂κ , where |F | and |κ F

 | denote the Hausdorff measure of F and κ F


 , respectively. This latter assumption does 
not put a restriction on either the number of faces that an element possesses, or indeed the measure of a face of an 
element κ ∈ Th , relative to the measure of the element itself; cf. also [3,14–16]. As pointed out in [13], meshes obtained by 
agglomeration of a finite number of polygons that are uniformly star-shaped with respect to the largest inscribed ball will 
automatically satisfy the above weak requirement.

The inverse inequality (3.4) also holds under weaker assumptions: if, for any point x ∈ κ , there exists a shape-regular 
simplex containing x and contained in κ , with diameter comparable to that of κ . In other words, for any point x ∈ κ , 
there exists sκ (x), such that x ∈ sκ (x) ⊆ κ and hs(x) � hκ . The proof follows by relying on the L∞ inverse estimates on 
shape-regular simplexes; cf. [25, equation (3.8)], [53, Theorem 4.76].

3.2. Interpolation bounds on polytopic meshes

For future reference, we also state here the specific interpolation bounds on polytopic meshes we will rely on in the 
proofs.

Lemma 2. Let v ∈ Hn(κ), where κ ∈ Th. Then, there exists �κ,p : Hn(κ) → Pp(κ) such that∥∥v − �κ,p v
∥∥

L2(κ)
�hμ

κ |v|Hn(κ), n ≥ 0,

|v − �κ,p v|H1(κ) �hμ−1
κ |v|Hn(κ), n ≥ 1,∥∥v − �κ,p v

∥∥
L∞(κ)

�hμ−d/2
κ |v|Hn(κ), n > d/2,

(3.5)

where μ = min{n, p + 1}.

Proof. The statement follows by employing our mesh assumptions and classical interpolation bounds on quadrilateral/hex-
ahedral and simplicial elements; cf. [7,11,16]. �

We can now also state a result on the interpolation error for time-dependent piecewise smooth functions. Let ψ ∈
C([0, T ]; Hn(Th)), where n ≥ 2. For any time t ∈ [0, T ], we define the global interpolant ψI element-wise as

ψI |κ (t) = ψI,κ (t), κ ∈ Th, (3.6)

where ψI,κ (t) = �κ,pψ(t) is the local interpolant of Lemma 2.
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Lemma 3. Let ψ ∈ C([0, T ]; Hn(Th)), where n ≥ 2. Then, there exists an interpolant ψI ∈ C([0, T ]; Vh), defined as in (3.6), such that 
the error eI = ψ − ψI satisfies

c2‖∇heI (t)‖2
L2 + ‖√χ�eI (t)�‖2

Fh
� c2

∑
κ∈Th

h2μ−2
κ |ψ(t)|2Hn(κ),

for all t ∈ [0, T ], where μ = min{n, p + 1} and χ is defined in (3.2); we recall that c > 0 denotes the speed of sound. Moreover, the 
following estimate holds:

‖χ−1/2{{∇heI (t)}} ‖2
Fh

� 1

c2

∑
κ∈Th

h2μ−2
κ |ψ(t)|2Hn(κ), for 0 ≤ t ≤ T . (3.7)

Proof. The statement follows by relying on the mesh assumptions, estimates (3.5), and the following multiplicative trace 
inequality on shape-regular simplices s:

‖η‖2
L2(∂s)

� ‖η‖L2(s) ‖∇η‖L2(s) + h−1
s ‖η‖2

L2(s)
for all η ∈ H1(s);

cf. [7] and [15, Lemma 33]. �

4. The DG approximation in space of the Westervelt equation

In this section, we introduce and discuss the semi-discrete approximation of the initial-boundary value problem (2.2) for 
the Westervelt equation. To motivate our approximate weak form, we rewrite the Westervelt equation as

(1 − 2kψ̇)ψ̈ − c2�(ψ + b
c2 ψ̇) = 0.

Together with the fact that sound diffusivity b is relatively small in realistic applications, this suggests to introduce an 
auxiliary state

ψ̃ = ψ + b

c2
ψ̇, (4.1)

which allows us to formally write the Westervelt equation as

(1 − 2kψ̇)ψ̈ − c2�ψ̃ = 0. (4.2)

We are interested in the solutions of this problem in the sense of the equation

((1 − 2kψ̇)ψ̈, v)L2 + a(ψ̃, v) = 0 (4.3)

being satisfied for all v ∈ H1
0(�) and almost all times t ∈ (0, T ), with (ψ, ψ̇)|t=0 = (ψ0, ψ1). The bilinear form a : H1

0(�) ×
H1

0(�) →R is given by

a(ψ, v) = c2(∇ψ,∇v)L2 .

We introduce the corresponding DG bilinear form ah : H2(Th) × Vh →R by

ah(ψ, vh) = c2(∇hψ,∇h vh)L2 − 〈{{c2∇hψ}}, �vh�〉Fh

− 〈�ψ�, {{c2∇h vh}}〉Fh + 〈χ�ψ�, �vh�〉Fh ,

where the stabilization function χ is defined as in (3.2). We then look for the approximate solution ψh ∈ C2([0, T ]; Vh) of 
equation (4.3), such that

((1 − 2kψ̇h)ψ̈h, vh)L2 + ah(ψ̃h, vh) = 0 (4.4)

holds for all vh ∈ Vh , a.e. t ∈ (0, T ), supplemented with the approximate initial data

(ψh(0), ψ̇h(0)) = (ψ0,h,ψ1,h) ∈ Vh × Vh.

In equation (4.4), we have used, analogously to (4.1), the notation

ψ̃h = ψh + b

c2
ψ̇h, (4.5)

and therefore our weak form (4.4) is equivalent to
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((1 − 2kψ̇h)ψ̈h, vh)L2 + c2(∇hψh,∇h vh)L2 + b(∇hψ̇h,∇h vh)L2

−〈{{c2∇hψh}}, �vh�〉Fh − 〈{{b∇hψ̇h}}, �vh�〉Fh

−〈�ψh�, {{c2∇h vh}}〉Fh − 〈� b
c2 ψ̇h�, {{c2∇h vh}}〉Fh

+〈χ�ψh�, �vh�〉Fh + 〈χ� b
c2 ψ̇h�, �vh�〉Fh = 0.

(4.6)

Recall that in (3.2) the stabilization function χ has a c2 scaling, and thus the two stabilization terms in (4.6) effectively 
scale by c2 and b.

We note that in the case of sound propagation without losses, where b = 0 in the Westervelt equation, (4.4) formally 
corresponds to the standard DG formulations for second-order undamped wave equations; see, for example, [28].

5. Analysis of the linearized semi-discrete problem

As a first step in the analysis, we consider a non-degenerate linearization of (2.2) that is given by the following initial-
boundary value problem for a linear strongly damped wave equation:⎧⎪⎪⎨

⎪⎪⎩
α(x, t)ψ̈ − c2�ψ̃ = 0 in � × (0, T ],
ψ = 0 on ∂� × [0, T ],
(ψ, ψ̇) = (ψ0,ψ1) on � × {t = 0},

(5.1)

where it is assumed that there exist α0, α1 > 0 such that

α0 ≤ α(x, t) ≤ α1 in � × [0, T ],
and the relation (4.1) holds. Sufficient conditions for the well-posedness of (5.1) in the case that b > 0 can be found in [35, 
Proposition 3.2]. The weak form of this problem is given by

(αψ̈, v)L2 + a(ψ̃, v) = 0

for all v ∈ H1
0(�), 0 < t ≤ T with (ψ, ψ̇)|t=0 = (ψ0, ψ1). We analyze its semi-discrete approximation, given by equation

(αhψ̈h, vh)L2 + ah(ψ̃h, vh) = 0 (5.2)

which should hold for all vh ∈ Vh, 0 < t ≤ T , supplemented with the approximate initial data

(ψh(0), ψ̇h(0)) = (ψ0,h,ψ1,h) ∈ Vh × Vh.

In equation (5.2), the coefficient αh denotes a discrete version of the coefficient α such that

α0 ≤ αh(x, t) ≤ α1 in � × [0, T ]. (5.3)

The main idea behind studying this linearized problem is to later choose

αh = 1 − 2kẇh

with wh in a neighborhood of ψ , and define a map J : wh �→ ψh , where ψh solves the linear semi-discrete problem (5.2). 
The fixed point of this map will be the solution of the nonlinear problem (4.4). Our approach here follows, in spirit, the 
strategy taken in [44], where nonlinear hyperbolic systems in divergence form are considered.

5.1. Existence and stability

Our first task is to prove that the semi-discrete problem (5.2) has a unique solution that remains bounded in a suitable 
energy norm. We begin by recalling a useful inequality for functions in Vh .

Lemma 4. For any vh ∈ Vh, the following inequality holds:

‖χ−1/2{{∇h vh}}‖Fh � 1

c
√

β
‖∇h vh‖L2 ,

where β > 0 is the stability parameter that appears in the definition (3.2) of the stabilization function χ .

Proof. The statement follows by a straightforward modification of the arguments in [5, Lemma 3.2]; cf. also [4]. �
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By relying on Lemma 4, we can show that

c2‖〈{{∇h vh}}, �vh�〉Fh ‖ � c
1√
β

‖∇h vh‖L2‖√χ �vh�‖Fh

� c2 1

4ε

1

β
‖∇h vh‖2

L2 + ε‖√χ �vh�‖2
Fh

(5.4)

for functions vh ∈ Vh , which we can rely on in the proofs by choosing ε > 0 in a convenient manner.
In order to state our results, we introduce the discrete energy function

E[ψh](t) :=‖√
αh(t) ψ̇h(t)‖2

L2 + b
c2

t∫
0

‖√αh ψ̈h‖2
L2 ds

+ c2‖∇hψ̃h(t)‖2
L2 + ‖√χ �ψ̃h(t)�‖2

Fh
,

for t ∈ [0, T ]. We note that in the case b = 0, we have ψ̃h = ψh , and we formally recover the energy of undamped linear 
wave equations.

Theorem 1. Let c > 0, b ≥ 0, and let T > 0 be a fixed time horizon. Let the coefficient αh ∈ H1(0, T ; Vh) be such that the non-
degeneracy condition (5.3) holds, where α0 and α1 are independent of the discretization parameters. Moreover, assume that there 
exists γ ∈ (0, 1) such that

‖α̇h/αh‖L1 L∞ =
T∫

0

sup
�

|α̇h/αh| ds ≤ γ . (5.5)

Then the semi-discrete problem (5.2) has a unique solution ψh such that it holds

max
t∈[0,T ] E[ψh](t) ≤ CTh1 E[ψh](0), (5.6)

provided that the parameter β in (3.2) is sufficiently large. The constant CTh1 > 0 does not depend on the mesh size, the number of 
faces of a mesh element, or the coefficients in the equation, but depends on the polynomial degree and on γ .

We postpone the proof of the theorem to the appendix.
Before moving to the error analysis, let us discuss how to obtain a bound on c2|∇hψh(t)|L2 and b

c2 |∇hψ̇h(t)|L2 from the 
available bound on c2|∇hψ̃h(t)|L2 . From the energy estimate (5.6), by recalling that ψ̃h = ψh + b

c2 ψ̇h , we have

c2‖∇hψ̃h(t)‖2
L2 = c2‖∇hψh(t)‖2

L2 + b2

c2 ‖∇hψ̇h(t)‖2
L2 − 2c2(∇hψh(t),

b
c2 ∇hψ̇h(t))L2

� E[ψh](0)
(5.7)

for all t ∈ [0, T ]. We can rely on the Fundamental theorem of calculus to show that

‖∇hψh(t)‖L2 =
∥∥∥∥∥∥

t∫
0

∇hψ̇h ds + ∇hψh(0)

∥∥∥∥∥∥
L2

≤
t∫

0

‖∇hψ̇h‖L2 ds + ‖∇hψh(0)‖L2

≤√
t‖∇hψ̇h‖L2(0,t;L2) + ‖∇hψh(0)‖L2 .

(5.8)

By employing Young’s inequality together with inequality (5.8) in estimate (5.7), we arrive at

c2‖∇hψh(t)‖2
L2 + b2

c2 ‖∇hψ̇h(t)‖2
L2

≤ 2c2‖∇hψh(t)‖2
L2 + 1

2
b2

c2 ‖ψ̇h(t)‖2
L2 + E[ψh](0)

� 4c2T

t∫
0

‖∇hψ̇h‖2
L2 ds + 4c2‖∇hψh(0)‖2

L2 + 1
2

b2

c2 ‖ψ̇h(t)‖2
L2 + E[ψh](0).

Therefore, we can conclude that
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c2‖∇hψh(t)‖2
L2 + 1

2
b2

c2 ‖∇hψ̇h(t)‖2
L2 � c2T

t∫
0

‖∇hψ̇h‖2
L2 ds + c2‖∇hψh(0)‖2

L2 + E[ψh](0).

Remark 2 (Assuming b > 0). Let b > 0. We have from above

c2‖∇hψh(t)‖2
L2 + 1

2
b2

c2 ‖∇hψ̇h(t)‖2
L2 � c2T c2

b2

t∫
0

1
2

b2

c2 ‖∇hψ̇h‖2
L2 ds + c2‖∇hψh(0)‖2

L2 + E[ψh](0).

By making use of Gronwall’s inequality, we obtain

c2‖∇hψh(t)‖2
L2 + b2

c2 ‖∇hψ̇h(t)‖2
L2 � exp (C T 2 c4

b2 )(c2‖∇hψ0,h‖2
L2 + E[ψh](0)).

We observe that this bound, however, degenerates as b → 0.

5.2. Error analysis of the linearization

In this subsection, we state an a priori error estimate for the linear semi-discrete problem (5.2). We note that we also 
have to take the error of the variable coefficient α into account to be able to later employ a fixed-point argument and prove 
a convergence result for the Westervelt equation as well.

5.2.1. Error estimate in the energy norm
We decompose the approximation error by involving the interpolant as follows:

e = (ψ − ψI )︸ ︷︷ ︸
eI

− (ψh − ψI )︸ ︷︷ ︸
eh

,

where ψ solves (5.1), ψh solves (5.2), and ψI is the interpolant introduced in Lemma 3. To simplify the exposition, we 
introduce the following auxiliary variables:

ẽ = ψ̃ − ψ̃h, ψ̃I = ψI + b
c2 ψ̇I , ẽh = ψ̃h − ψ̃I , ẽ I = ψ̃ − ψ̃I .

In order to formulate the convergence result, we also define the energy norm

||ψh||E :=
⎛
⎝ max

t∈[0,T ] ‖ψ̇h(t)‖2
L2 + b

c2

T∫
0

‖ψ̈h‖2
L2 ds + c2 max

t∈[0,T ] ‖∇hψ̃h(t)‖2
L2 + max

t∈[0,T ] |
√

χ �ψ̃h(t)�|2Fh

⎞
⎠

1/2

. (5.9)

Thanks to Lemma 3, we can estimate the interpolation error in this norm by

‖eI‖2
E � max

t∈[0,T ]
∑
κ∈Th

h2μ−2
κ

(
c2|ψ(t)|2Hn(κ) + (1 + b2

c2 )|ψ̇(t)|2Hn(κ)

)
+ b

c2

T∫
0

∑
κ∈Th

h2μ−2
κ |ψ̈ |2Hn(κ) ds. (5.10)

We are now ready to state the convergence result.

Theorem 2. Let the assumptions of Theorem 1 hold. Let ψ ∈ H2(0, T ; H1
0(�) ∩ Hn(�)), where n ≥ 2, be the solution of the linear 

initial-boundary value problem (5.1). Let ψh be the solution of the corresponding semi-discrete problem (5.2) with the approximate 
initial data given by

(ψh(0), ψ̇h(0)) = ((ψ0)I , (ψ1)I ),

and the parameter β in (3.2) chosen sufficiently large according to Theorem 1. Then the following bound holds for the discretization 
error:

‖ψ − ψh‖2
E ≤ CTh2

⎧⎨
⎩h2μ−2 max

t∈[0,T ]
∑
κ∈Th

(
|ψ̇(t)|2Hn(κ) + |ψ(t)|2Hn(κ)

)
+ h2μ−2

T∫
0

∑
κ∈Th

(
|ψ̈ |2Hn(κ) + |ψ̇ |2Hn(κ)

)
ds

+
T∫

0

‖(α − αh)ψ̈‖2
L2 ds

⎫⎬
⎭ ,

(5.11)

where μ = min{n, p + 1} and h = maxκ∈Th hκ , provided that γ ∈ (0, 1) in (5.5) is sufficiently small. The constant CTh2 > 0 depends 
on the polynomial degree, but not on the mesh size.
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The proof of this auxiliary result is given in the appendix. Now we proceed directly with the analysis of the nonlinear 
model.

6. Analysis of the nonlinear model

Our next aim is to analyze the semi-discretization of the Westervelt equation given by (4.4). To this end, we will rely 
on our results for the linearized problem together with a fixed-point argument. We point out, however, that we have to 
restrict ourselves to the case b > 0. The reason for this is that we will need a uniform in h bound for ‖ψ̈h‖L2 L2 . Such a 
bound follows from ψh being bounded in the energy norm, defined in (5.9), only if b > 0.

Theorem 3. Let c > 0, b > 0, and k ∈ R. Let the final time T > 0 be given and assume that the initial-boundary value problem (2.2)
for the Westervelt equation has a solution

ψ ∈ H2(0, T ; H1
0(�) ∩ Hn(�)), where n > 1 + d/2,

for which it holds that

0 < α0 ≤ 1 − 2kψ̇ ≤ α1 in � × [0, T ]
for some α0 , α1 > 0. Assume that the polynomial degree p ≥ 2 and that the approximate initial conditions are given by

(ψh(0), ψ̇h(0)) = ((ψ0)I , (ψ1)I ). (6.1)

Then for sufficiently small h = max
κ∈Th

hκ and

M(ψ) = max
t∈[0,T ] |ψ(t)|2Hn + max

t∈[0,T ] |ψ̇(t)|2Hn + max
t∈[0,T ] ‖ψ̇(t)‖2

L∞ +
T∫

0

(|ψ̈ |2Hn + ‖ψ̈‖2
L∞ + |ψ̇ |2Hn )ds,

the corresponding semi-discrete problem (4.4) for the Westervelt equation has a unique solution ψh ∈ H2(0, T ; Vh) that satisfies the 
following error bound:

||ψ − ψh||2E ≤ CTh 3 h2μ−2
∑
κ∈Th

⎧⎨
⎩ max

t∈[0,T ]

(
|ψ̇(t)|2Hn(κ) + |ψ(t)|2Hnκ)

)
+

T∫
0

(
|ψ̈ |2Hn(κ) + |ψ̇ |2Hn(κ)

)
ds

⎫⎬
⎭ ,

with μ = min{n, p + 1}, provided that the parameter β in (3.2) is sufficiently large. The constant CTh3 > 0 depends on M(ψ) and on 
the polynomial degree, but not on the mesh size.

Proof. We conduct the proof by employing the Banach fixed-point theorem. Therefore, we first need to define a fixed-point 
map. We begin by introducing the ball

Bh =
{

wh ∈ H2(0, T ; Vh) : ||ψ − wh||2E ≤ CTh3 h2μ−2
∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t) (wh(0), ẇh(0)) = (ψ0,h,ψ1,h)

⎫⎬
⎭ ,

where we have used the notation

Eκ [ψ](t) =|ψ̇(t)|2Hn(κ) + |ψ(t)|2Hn(κ) +
t∫

0

(
|ψ̈ |2Hn(κ) + |ψ̇ |2Hn(κ)

)
ds.

The constant CTh3 > 0 will be made precise below.

Step 1: Defining the fixed-point map.
For wh ∈ Bh , we then define the operator J : wh �→ ψh , where ψh solves⎧⎨

⎩
((1 − 2kẇh)ψ̈h, vh)L2 + ah(ψ̃h, vh) = 0 for all vh ∈ Vh, t ∈ (0, T ),

(ψh(0), ψ̇h(0)) = (ψ0,h,ψ1,h).

(6.2)

The operator J is well-defined thanks to the well-posedness result of Theorem 1, whose assumptions we verify below. We 
note that the set Bh is non-empty when CTh3 ≥ CTh2 because the solution of the linear problem (5.2) with αh = α belongs 
to it. Moreover, Bh is closed with respect to topology induced by ‖ · ‖E .
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Step 2: The self-mapping property.
We next want to verify that J (Bh) ⊂ Bh . Let wh ∈ Bh . To show that ψh = J (wh) ∈ Bh , we rely on Theorems 1 and 2, which 
guarantee stability and convergence for the linearized problem. We choose the variable coefficient in the linear model to 
be αh = 1 − 2kẇh and check that all the assumptions of these theorems are satisfied. In particular, we have to justify the 
non-degeneracy assumption (5.3) and the smallness of α̇h/αh in (5.5).

We already know that αh = 1 − 2kẇh ∈ H1(0, T ; Vh). We next rely on the inverse estimate given in Lemma 1 and 
properties of the interpolant stated in Lemma 3 to verify the non-degeneracy assumption (5.3) on αh .

The coefficient αh does not degenerate. Fix t ∈ [0, T ]. We can pick an element κ̂ ∈ Th , such that

max
x∈�

|ẇh(x, t)| = max
x∈κ̂

|ẇh(x, t)|. (6.3)

By involving the local interpolant and then relying on the inverse estimate, we find that

max
x∈�

|ẇh(x, t)|2 = max
x∈κ̂

|ẇh(x, t)|2

triangle ineq.
� ‖ψ̇I,κ̂ (t) − ẇh(t)‖2

L∞(κ̂)
+ ‖ψ̇I,κ̂ (t)‖2

L∞(κ̂)

inverse est.
� h−d

κ̂
‖ψ̇I,κ̂ (t) − ẇh(t)‖2

L2(κ̂)
+ ‖ψ̇I,κ̂ (t)‖2

L∞(κ̂)

triangle ineq.
� h−d

κ̂

(
‖ψ̇I,κ̂ (t) − ψ̇(t)‖2

L2(κ̂)
+ ‖ψ̇(t) − ẇh(t)‖2

L2(κ̂)

)
+ ‖ψ̇I,κ̂ (t)‖2

L∞(κ̂)
.

(6.4)

We can estimate the last three terms on the right-hand side of (6.4) by employing the stability and approximation properties 
of the interpolant, and the fact that wh ∈ Bh . By doing so, we obtain

max
x∈�

|ẇh(x, t)|2 �h2μ−d
κ̂

|ψ̇(t)|2Hs(κ̂)
+ h−d

κ̂
h2μ−d CTh3

∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t) + ‖ψ̇I,κ̂ (t)‖2

L∞(κ̂)

� h2μ−d|ψ̇(t)|2Hs(�) + CTh3

(
h

hκ̂

)d

h2μ−2−d
∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t) + ‖ψ̇I,κ̂ (t)‖2

L∞(κ̂)
,

recalling that due to our assumptions, we have μ = min{n, p + 1} > 1 + d/2. By using the L∞ stability of the interpolant 
and the assumption on quasi-uniformity of the mesh, we infer

max
x∈�

|ẇh(x, t)|2 ≤ C1M(ψ)
(

h2μ−d + CTh3(M(ψ))h2μ−2−d + 1
)

:= m (6.5)

for every t ∈ [0, T ], where the constant C1 > 0 above does not depend on the mesh size. We refer to (6.8) below for the 
exact form of CTh3(M(ψ)). By taking the maximum over t ∈ [0, T ] in (6.5), we further have

‖ẇh‖C(�×[0,T ]) ≤ √
m.

We then choose M(ψ) and h sufficiently small so that

0 < α0 ≤ 1 − 2|k|√m ≤ αh = 1 − 2kẇh ≤ 1 + 2|k|√m ≤ α1

in � × [0, T ].
The quotient α̇h/αh is sufficiently small. The assumption on α̇h/αh in Theorems 1 and 2 can be verified as follows:∥∥∥∥ α̇h

αh

∥∥∥∥
L1 L∞

=
∥∥∥∥ −2kẅh

1 − 2kẇh

∥∥∥∥
L1 L∞

≤ 2|k|
1 − 2|k|√m

‖ẅh‖L1 L∞

≤ 2|k|
1 − 2|k|√m

√
T ‖ẅh‖L2 L∞ .

We can bound ‖ẅh‖L2 L∞ in a similar fashion as (6.3)–(6.5) by relying on the interpolant and inverse estimates. Note, 
however that this bound would degenerate if b → 0 because by the definition of the energy norm (5.9) we have

‖ẅh‖L2 L2 ≤ c2

b
‖wh‖E . (6.6)

Therefore, we find

T∫
0

max
x∈�

|ẅh(s)|2 ds �h2μ−d

T∫
0

|ψ̈(s)|2Hs(�) ds + c4

b2
CTh3h2μ−2−d

∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t)+

T∫
0

‖ψ̈I,κ̂ (s)‖2
L∞(κ̂)

ds,
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from which it follows that

T∫
0

max
x∈�

|ẅh(s)|2 ds ≤ C2m, (6.7)

where the constant C2 > 0 does not depend on the mesh size, but it degenerates if b tends to zero. Therefore, for Theorem 2
to hold, we need that

γ := 2|k|
1 − 2|k|√m

√
T C2m

is sufficiently small, which we can achieve by decreasing M(ψ) and h.
Choosing the constant CTh3 so that J is a self-mapping. We have therefore verified all the assumptions of Theorems 1 and 2. 

On account of Theorem 2 and the resulting error estimate (5.11), we conclude that problem (6.2) has a unique solution 
ψh ∈ C2([0, T ]; Vh) that satisfies

||ψ − ψh||2E ≤ CTh2

⎛
⎝h2μ−2

∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t) + max

t∈[0,T ] ‖α(t) − αh(t)‖2
L2

T∫
0

‖ψ̈‖2
L∞(�) ds

⎞
⎠ .

Noting that the error in α can be estimated according to

max
t∈[0,T ] ‖α(t) − αh(t)‖2

L2 = max
t∈[0,T ] ‖2kψ̇(t) − 2kẇh(t)‖2

L2

≤4k2CTh3 h2μ−2
∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t),

since wh ∈ Bh , we obtain

||ψ − ψh||2E ≤ CTh2 (1 + 4k2CTh3M(ψ))h2μ−2
∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t).

For sufficiently small M(ψ) such that 1 − 4k2CTh2M(ψ) > 0, we can choose CTh3 as

CTh3 := CTh2

1 − 4k2CTh2M(ψ)
. (6.8)

This choice of the constant CTh3 implies that

||ψ − ψh||2E ≤ CTh3h2μ−2
∑
κ∈Th

max
t∈[0,T ]Eκ [ψ](t);

in other words, ψh ∈ Bh .

Step 3: Contractivity.
To prove that the operator J is strictly contractive, take w(1)

h , w(2)

h ∈ Bh and set ψ(1)

h = J (w(1)

h ), ψ(2)

h = J (w(2)

h ) ∈ Bh . 
Denote Wh = w(1)

h − w(2)

h . Then the difference �h = ψ
(1)

h − ψ
(2)

h satisfies the problem

((1 − 2kẇ(1)

h )�̈h, vh)L2 + ah(�̃h, vh) = (2k Ẇh ψ̈
(2)

h , vh)L2 , vh ∈ Vh (6.9)

for all time, with zero initial data. This equation corresponds to equation (A.4) satisfied by the approximation error in the 
proof of Theorem 2. Therefore, testing (6.9) with ˙̃

�h and proceeding analogously to the proof of Theorem 2 results in the 
estimate

||�h||2E � 4k2(1 + b
c2 )α−1

0

⎧⎨
⎩

T∫
0

‖ψ̈(2)

h ‖2
L∞(�) ds

⎫⎬
⎭ max

t∈[0,T ] |Ẇh(t)|2L2 .

This inequality then corresponds to estimate (A.9) in the proof of Theorem 2 if we formally set the interpolant error to zero. 
We further have

||�h||2E � 4k2(1 + b
c2 )α−1

0

⎧⎨
⎩

T∫
0

‖ψ̈(2)

h ‖2
L∞(�) ds

⎫⎬
⎭ ||Wh||2E . (6.10)
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We can bound ‖ψ̈(2)

h ‖2
L2 L∞ by proceeding in the same way as in (6.6)–(6.7). This term can thus be made sufficiently small 

by reducing M(ψ) and h. From estimate (6.10), we then conclude that J is contractive for sufficiently small M(ψ) and h.
On account of Banach’s contraction principle, the mapping J has a unique fixed-point ψh = J (ψh) ∈ Bh , which is, in 

turn, the unique solution of the nonlinear semi-discrete problem (4.4) with approximate initial data (6.1). �

7. Computational DG approach for nonlinear sound waves

Starting from the semi-discrete equation (4.4), this section describes the numerical treatment and solution process 
involving the assembly of an equation in matrix-vector form and the time-integration scheme that is used. Discontin-
uous Galerkin approaches for nonlinear acoustic waves based on a first-order conservation system are investigated in, 
e.g., [38,56,57].

7.1. The matrix form of the semi-discrete problem

For the purpose of carrying out our numerical experiments, we consider here a more general case than before of having 
either a non-zero source term or inhomogeneous Dirichlet boundary conditions. We present the numerical treatment of the 
latter case; the simpler case of having a non-zero source term f can be treated in an analogous manner.

Let ψ = g on �D = ∂�, where the function g is assumed to be sufficiently smooth on �D, compatible with initial data. 
The Dirichlet conditions are imposed in a weak sense; see [19, Chapter 4, Section 4.2.2] for a detailed explanation. Therefore, 
in our semi-discrete weak form, the following terms arise additionally on the right-hand side:∫

�D

−c2 g̃
(∇v · n

)
dS +

∫
�D

χ g̃ v dS,

where, analogously to before, we have used the auxiliary notation g̃ = g + b
c2 ġ .

The semi-discrete form of (4.4) then reads as

Mψ̈ +
(

K − D − D� + P
)

(ψ + b
c2 ψ̇) − T [·, ψ̇, ψ̈] = w, (7.1)

where M denotes the standard mass matrix and K the stiffness matrix. In addition, we assemble the nonlinearity tensor T , 
the DG penalty matrix P, the DG jump matrix D, and the Dirichlet data vector w. Furthermore, we introduce the shorthand 
notation A := K − D − D� + P.

We therefore have a second-order system of ordinary differential equations with a nonlinear term on the right-hand 
side, which now remains to be solved by a suitable time-integration scheme. Herein the initial data approximations 
(ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h) ∈ Vh × Vh are represented in the finite element basis via the coefficient vectors ψ

0
and ψ

1
such that for the ODE-system we have ψ(0) = ψ

0
and ψ̇(0) = ψ

1
.

7.2. Time integration

In order to integrate the system of ordinary differential equations (7.1) in time, we employ either the Newmark scheme 
or the Newmark-type Generalized-α method; we refer to [31,36] for a similar strategy. The nonlinear term is resolved via 
a fixed-point iteration during the solving stage of the predictor-corrector scheme. The termination criterion that checks the 
relative change of the solution-vector between iteration steps is employed. In the experiments with realistic physical data, 
where we observe the nonlinear steepening of the wave front in our computational domain, we choose the Generalized-α
scheme because it allows to add targeted numerical damping to the higher modes and subdue Gibbs oscillations.

The algorithm for conducting the timestep n �→ n + 1 within the Generalized-α scheme is given in the following. It 
involves ψn, ψ̇n

, and ψ̈n
as the approximations of ψ, ψ̇ , and ψ̈ at time level tn = n�t , where �t is a suitable timestep. The 

so-called effective mass matrix

M∗ = (1 − αm)M + (1 − α f )γnm�t
b

c2
A + (1 − α f )βnm�t2A

and the intermediate time tn+1,α := (1 − α f )tn+1 + α f tn are also used within the time-stepping algorithm.
Predictor step:

ψ
pred

= ψn + �tψ̇
n + �t2

2
(1 − 2βnm)ψ̈

n
, ψ

pred,α
= (1 − α f )ψpred

+ α f ψ
n

ψ̇
pred

= ψ̇
n + (1 − γnm)�tψ̈

n
, ψ̇

pred,α
= (1 − α f )ψ̇pred

+ α f ψ̇
n

Iteration over κ = 1, 2, 3, ..., κmax with ψ
1
= ψn, ψ̇

1
= ψ̇

n
, ψ̈

1
= ψ̈

n
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Table 1
Numerical parameters used in the experiments.

Test case 1 Test case 2 Test case 3 Test case 4

Newmark scheme βnm = 0.25
γnm = 0.5

βnm = 4/9
γnm = 5/6

βnm = 4/9
γnm = 5/6

βnm = 4/9
γnm = 5/6

Generalized-α scheme αm = 0
α f = 0

αm = 0
α f = 1/3

DG penalty β = 10 β = 10 β = 250 β = 1750

α-Combinations

ψ
κ,α

= (1 − α f )ψκ
+ α f ψ

n

ψ̇
κ,α

= (1 − α f )ψ̇κ
+ α f ψ̇

n

ψ̈
κ,α

= (1 − αm)ψ̈
κ

+ αmψ̈
n

Solve algebraic system

M∗ψ̈
κ+1

= w(tn+1,α) − αmMψ̈
n − b

c2
Aψ̇

pred,α

− Aψ
pred,α

+ T
[
·, ψ̇

κ,α
, ψ̈

κ,α

]

Corrector step:

ψ
κ+1

= ψ
pred

+ βnm�t2ψ̈
κ+1

ψ̇
κ+1

= ψ̇
pred

+ γnm�tψ̈
κ+1

Check termination criterion:

If
‖ψ̈

κ+1
− ψ̈

κ
‖

‖ψ̈
κ+1

‖ < TOL, set

⎧⎪⎪⎨
⎪⎪⎩

ψn+1 = ψ
κ+1

ψ̇
n+1 = ψ̇

κ+1

ψ̈
n+1 = ψ̈

κ+1

and break iteration
end iteration
The numerical parameters that are used in the forthcoming experiments can be found in Table 1. The physical and 

discretization parameters for each experiment are given below in their respective sections.
In Table 1, the values βnm and γnm denote the parameters in the Newmark scheme given in the formulas above. The 

numbers αm and α f are the additional parameters in the Generalized-α scheme. TOL is the relative tolerance in the termi-
nation criterion of the fixed-point-iteration, κmax stands for the maximum number of iterations after which the algorithm 
should abort. Those parameters were chosen to be TOL = 10−5 and κmax = 100 throughout all experiments. Finally, β is the 
DG-penalty term introduced in (3.2).

8. Numerical results

In this section, we perform numerical experiments to illustrate our theoretical findings. The first two numerical tests are 
conducted in a two-dimensional computational setting based on a MATLAB implementation. The third and fourth, three-
dimensional experiments were implemented in SPEED—a parallel, high-order spectral finite-element FORTRAN code [40].

8.1. Test case 1: exact solution known

In our first example, we simulate the Westervelt equation (2.1) with a given source term f on the right hand side, which 
we choose as

f =
[

16π2(c2 − 1) sin(4πt) + 64π3b cos(4πt)
]

sin(4πx) +
[

64π3k sin(4πt) cos(4πt)
]

sin(4πx)2.

In this way, the exact solution is given by ψ = sin(4πx) sin(4πt), which we use in the error analysis. In this numerical 
experiment, all the physical quantities involved are assumed to be dimensionless. Our computational domain is given by 
the rectangle � = (0, 1) × (0, 23

√
3). We tessellate it with Nelem polygonal elements in two ways: a regular hexagonal 

pattern and a random way using polygons with different number of edges each; see Fig. 1 for exemplary depictions of the 
resulting grids. The ratio of domain length and width is chosen such that the regular tessellation bears the same element 
shapes in the interior as well as (exactly halfed elements) on all four sides yielding control over the mesh quality. The 
initial conditions and Dirichlet boundary data are set to correspond to the values of ψ at time zero and on the boundary, 
respectively.

We choose the coefficients in the equation to be c = 1, b = 10−5, βa = 10−4, and the mass density is ρ = 1. The time-
discretization is conducted with final time T = 0.8 and the Newmark scheme, where the timestep size is always adapted in 
such a way, that the time-discretization error does not dominate in Fig. 2 and the convergence with respect to the number 
of elements can be observed.
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Fig. 1. Computational domain with exemplary polygonal grids. (left) regular hexagonal grid, (right) grid with arbitrary polygonal structure and highlighting 
of a few exemplary “small” edges, making the grid only suitable under the weaker assumptions discussed in Remark 1.

Fig. 2. L2 and |∇h(·)|L2 errors of ψh at final time for four sequentially refined polygonal meshes and second- and third-order polynomials, comparing a 
sequence of regular polygonal grids (reg.) with a sequence of irregular ones (rand.).

We perform this experiment on a sequence of regular grids that satisfy our mesh assumptions and on an unstructured 
grid which might not; see Fig. 1. Such unstructured meshes satisfy the weaker assumptions discussed in Remark 1, which 
is why we want to test if we still observe the same order of convergence when using them.

Fig. 2 displays convergence results for five sequentially refined polygonal meshes, where we have employed polynomials 
of degree p = 2 and p = 3. As a reference, on the five levels the unstructured grid consists out of 281, 827, 1828, 2998, 
and 4727 elements, respectively. As expected in practice for DG methods, the L2-error of the acoustic velocity potential 
converges with the order hp+1; see, e.g., [28].

8.2. Test case 2: exact solution unknown

Our second example features a more realistic setting. The computational domain is chosen to be a rectangle with dimen-
sions H = 0.02 m and L = 3√

3
· 0.02 m; see Fig. 3 left. The physical parameters are now set to

c = 1500 m/s, b = 6 × 10−9 m2/s, βa = 7, and ρ = 1000 kg/m3.

The time horizon is T = 2.4 × 10−5 s, resolved by a step size of dt = 2 × 10−9 s. Instead of a non-zero source term f , we 
employ inhomogeneous Dirichlet conditions. The excitation signal is given in the form g(x, y, t) = g(s)(x, y) · g(t)(t). Herein 
the temporal part responsible for the initialization of the wave oscillations is given by

g(t)(t) =
⎧⎨
⎩

(
f t
2

)2
A sin(ωt), t < 2

f s,

A sin(ωt), t ≥ 2
f s,
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Fig. 3. (left) Computational domain with exemplary polygonal grid. The left boundary is the excitation part, where the Dirichlet data g is non-zero. 
At remaining boundary parts homogeneous Dirichlet data are imposed. The blue line is the axis of symmetry over which the solution is evaluated on the 
right. (right) Computed acoustic pressure field uh = ρψ̇h over the horizontal axis of symmetry of the channel at final time T of a simulation with increased 
amplitude A = 0.0175 m2/s2, plotted together with the pressure wave obtain by solving the linear damped wave equation with same boundary and initial 
data. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

while the spatial part is given by a mollifier-type function in order to get a spatially smooth transition between the inho-
mogeneous excitation and the homogeneous remaining boundary data. In particular, we have

g(s)(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x = 0 m, y = 0 m

exp

(
1 − 1

1−
∣∣∣ 1

0.005 (y−0.005)

∣∣∣2

)
, x = 0 m,0 m < y < 0.005 m

1, x = 0 m,0.005 m ≤ y ≤ 0.015 m

exp

(
1 − 1

1−
∣∣∣ 1

0.005 (y−0.015)

∣∣∣2

)
, x = 0 m,0.015 m < y < 0.02 m

0, x = 0 m, y = 0.02 m

0, 0 m < x

We therefore employ a spatially smooth, temporally modulated sinusoidal excitation with driving frequency f = 210 kHz
and amplitude A = 0.01 m2/s2, where ω denotes the angular frequency ω = 2π f . Fig. 3 displays a plot of the acoustic 
pressure uh = ρψ̇h along the horizontal axis of symmetry of the channel at final time T . To better observe the nonlinear 
steepening, the figure also contains a pressure wave obtained by solving the linear damped wave equation (i.e., Westervelt’s 
equation with k = 0).

We next want to analyze the behavior of the numerical solution with respect to h- and p-refinement. However, in this 
more realistic setting an exact solution is unknown. Therefore, instead of tracking the deviation from a given solution, we 
track a given quantity of interest. Here we choose to compute

Q (ψh) := ‖ψh‖L∞(0,T ;L2(�)), (8.1)

on different discretization levels. We note that

Q (ψ) − ‖ψh − ψ‖L∞(0,T ;L2(�)) ≤ Q (ψh) ≤ Q (ψ) + ‖ψh − ψ‖L∞(0,T ;L2(�)),

and so we expect that, for p fixed, Q (ψh) behaves asymptotically as q1 + q2 · hp+1 for some constants q1 and q2.

h-refinement. We restrict ourselves to structured, quasi-uniform polygonal meshes consisting of Nelem ∈ {220, 312, 420, 544,

684, 840, 1104, 1740, 2664} elements. The polynomial degree is set to p = 3. Values Q (ψh) for these levels of refinement 
are plotted in Fig. 4 on the left. In order to observe the convergence order, we perform a least-square fit of the (h, Q (ψh))

data pairs. We obtain a fitted curve

Q f (h) = q1 + q2 · h4,

where q1 and q2 are subject to the least-square fit. The fitted curve Q f with optimized parameters reads approximately as

Q f (h) = 1.322735 · 10−4 − 504.613929 · h4

and is plotted in Fig. 4 on the left as well. As expected, we observe O (hp+1) convergence. The extrapolated value for the 
quantity of interest Q f (0) evaluates to 1.322735 · 10−4.
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Fig. 4. (left) The quantity of interest Q (ψh) = ‖ψh‖L∞(0,T ;L2(�)) computed on a sequence of polygonal meshes with third-order polynomials and a least-

square fitted extrapolation-curve of order h4. (right) Deviation of the computed quantity of interest Q (ψh) from a reference value as a function of p on a 
fixed mesh.

p-refinement. We also perform a refinement analysis of the quantity of interest with respect to the polynomial degree. Here 
we choose a fixed mesh with Nelem = 312 elements and successively increase the polynomial degree p ∈ {1, 2, ..., 7}, where 
it should be mentioned that even though our theory holds for p ≥ 2, the case p = 1 yields a similar result as well. The 
deviations of the resulting quantities from a reference value are plotted in Fig. 4 on the right. As the reference, we choose 
the extrapolated value of the h-refinement with degree p = 4. For p = 7, the quantity of interest evaluates to 1.322730 ·10−4

with the deviation from the extrapolated reference value below 7.6 · 10−5 %.

8.3. Test case 3: a three-dimensional example

Our third example is performed in a three dimensional setting, where we use the discontinuous Galerkin approach in 
a hybrid way. Fig. 5 shows an image of the computational geometry consisting of six different material blocks. The blocks 
differ in all relevant material parameters, given in Table 2. This example is motivated by nonlinear sound propagation in 
inhomogeneous media. These types of computational settings often arise in medical ultrasound when the sound waves 
propagate through human body with varying speed of sound and other medium parameters; see, for example, [46]. We, 
therefore, solve here Westervelt’s equation

(1 − 2k(x)ψ̇)ψ̈ − div(c2(x)∇ψ) − div(b(x)∇ψ̇) = 0

with coefficients in L∞(�). The pressure is then computed via u = �(x)ψt , where the mass density is now as well in L∞(�). 
The stabilization function has the form

χ|F =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β max
κ∈{κ+,κ−}

c2|κ
p2

hκ
for all F ∈ F i

h, F ⊂ ∂κ+ ∩ ∂κ−,

βc2|κ
p2

hκ
for all F ∈ Fb

h , F ⊂ ∂κ.

To save computational power, the blocks are meshed and discretized individually via conforming spectral elements within 
each block, while the discontinuous Galerkin approach deals with the non-matching grids on the interfaces.

Setup of the experiment. Block 1 has a width and length of 0.025 m and a height of 0.01 m; see Fig. 5. On its bottom surface, 
the wave excitation takes place. We use an excitation signal in the form of a Dirichlet condition similarly to Section 8.2. 
The four walls of the block are equipped with homogeneous Neumann/symmetry boundary conditions, its top surface with 
a homogeneous Dirichlet condition, except at the interfaces to the blocks 2 to 5. Those are truncated four-sided pyramids 
which are aligned in a regular way between blocks 1 and 6, each with a height of 0.01 m and homogeneous Dirichlet 
conditions on its four walls. Block 6, with a height of 0.04 m and the remaining measures as for Block 1, covers the upper 
part of the geometry, again equipped with homogeneous Neumann/symmetry conditions on its four sides and homogeneous 
Dirichlet conditions at top and bottom, except for the interfaces with the blocks 2 to 5.

The excitation signal is given by

g(t, x, y, z) = g(t)(t) =
⎧⎨
⎩

(
f t
2

)2
A sin(ωt), t < 2

f s

0, t ≥ 2
f s;
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Fig. 5. Test case 3: Computational domain with six different material blocks. Each block has its own material parameters, mesh, and ansatz space. Interface 
coupling is done via the DG approach.

Table 2
Physical parameters of different material blocks.

Material block 1 • 2 • 3 • 4 • 5 • 6 •
c [m/s] 1500 1000 1000 3000 750 1500
b

[
m2/s

]
6 × 10−9 4 × 10−9 4 × 10−2 4 × 10−9 6 × 10−9 6 × 10−9

βa 5 4 4 7 4 5
ρ

[
kg/m3

]
1000 1250 1250 2000 1500 1000

Fig. 6. Iso-volumina at time steps (left) 12000 (middle) 19000 (right) 24600 of the highest acoustic pressure amplitudes (in absolute value) uh = ρψ̇h

during wave propagation through the four connecting channels of the computational domain. The orientation of the images is the same as in Fig. 5.

i.e., by a cut-off pulse-version of the continuous excitation signal used before. We use such a signal here in order to avoid 
interference within the block 1 originating from reflections off the walls between the interfaces to blocks 2 to 5. Amplitude 
and frequency are chosen as before. For the time discretization again the Generalized-α method is used with the final time 
T = 2.217 · 10−5 s, resolved with a step size of �t = 10−9 s.

Fig. 6 shows snapshots of the solution computed with p = 2 on 260730 elements. We observe iso-volumina of the 
highest acoustic pressure amplitudes at different time steps which show how the wave propagates through the four separate 
channels connecting the base block with the top block. Especially the deviations in the speed of sound are visible as the 
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Fig. 7. Pressure signal within the four connecting “pillar”-like blocks 2, 3, 4, and 5 of the computational domain at time step 24400, showing the influence 
of different speeds of sound and damping parameters.

Fig. 8. Iso-volumina of the highest acoustic pressure amplitudes at time step 24600 within the upper part of the computational domain, where the individual 
waves coming from the connecting channels merge. (left) Same orientation of the domain as in Fig. 6 (right) View rotated by ≈ 90◦ at the same time step.

wave propagates much faster in block 4 (on the right) than, for example, in block 5 (on the left). This effect can also be 
seen in Fig. 7, where the pressure signal is plotted along the central axes of the four “pillars” at a given time step.

While the signals corresponding to blocks 2 and 3 in Fig. 7 are traveling with the same speed (cf. Table 2), the signal in 
block 3 is much more damped compared to block 2, due to the damping parameter b being much higher there. In contrast 
to that, the signal from block 5 is slower, while also higher in amplitude due to the changes in material properties and 
the signal in block 4 with the highest speed of sound has already passed through the “pillar”-like structure and decayed in 
amplitude afterwards due to spreading into the empty space of block 6.

Fig. 8 shows iso-volumina of the acoustic pressure field as well, this time focusing on the wave propagation in the upper 
part of the computational domain, i.e., block 6 where the four individual waves coming from the four connecting channels 
again merge together into a single acoustic wave field. We observe decrease in the amplitude compared to Fig. 6 due to the 
wave spreading.

As before, exact solution is not available. Therefore, we again track the quantity of interest given by (8.1). We evaluate 
it over an h-refinement with quadratic shape functions on meshes with mesh-sizes of h j = 0.001

3√
2− j, j = 0, ..., 7. The 

results are depicted in Fig. 9.
We observe a convergence of the quantity of interest towards a value of around 1.064 · 10−5 as h approaches zero; 

see Fig. 9 on the right. We note, however, that allowing for the jumping material coefficients lies beyond the theory pre-
sented in this work. Therefore, we can conclude that the application of the spectral discontinuous Galerkin method on a 
problem with varying coefficients is feasible, while a rigorous convergence analysis is left for future work.
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Fig. 9. Quantity of interest over an h-refinement with quadratic shape functions. (left) L2(�) norm of the numerical solution over the course of time for all 
tested levels of refinement (right) Respective L∞(0, T ; L2(�))-norm results on all 8 mesh levels in order to observe convergence.

Fig. 10. (left) Acoustic domain consisting out of different layers of air with different material properties. (right) Topographic profile of the mountain range 
below the acoustic layers.

8.4. Test case 4: wave scattering

Our final example deals on a larger spatial scale, where seismic events take place. In particular, we are motivated by 
nonlinear effects that can be observed in seismic wave propagation [27,45]. In this experiment, the acoustic medium is a 
rectangularly cut-out block of air above a mountain-like range. On the top-surface of the acoustic domain, a wave is excited 
vertically and is traveling towards the mountain’s surface where it gets reflected. On its way towards the mountain’s surface, 
the wave travels through different layers of the acoustic medium bearing different material properties.

In the applicational context, these could be layers of air-currents of different temperature and hence varying density 
ρ and speed of sound c2. The coupling between those layers is again performed by employing the discontinuous-Galerkin 
approach in a hybrid way to couple non-conforming meshes. This feature is especially useful in the context of locally refined 
grids. In the present case, this is done by resolving the layers with more complex dynamics closer to the reflecting mountain 
surface finer than the most upper air-layer, resulting in non-conforming mesh-interfaces between the layers.

Fig. 10 (left) shows an image of the computational domain highlighting the different layers in use. The bottom and 
middle layer have a height of 2000 m each. The top layer has a minimal thickness of 3000 m. Fig. 10 (right) shows the 
topographic profile of the mountain range below the air layers. The depicted area has a width and length of 11520 m
and is located on the earth’s surface with mid-point at 11.51855 ◦E, 48.07305 ◦N (Munich-area, Germany, with the Alps in 
the south). The elevation model was constructed from data in the Digital Elevation Database (http://srtm .csi .cgiar.org/). The 
altitudes have been smoothed and are exaggerated by a factor of 40 and normalized to a minimum of 0 m to create a more 
dynamic profile.
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Table 3
Physical parameters of different air layers.

Material block Top layer Mid layer Bottom layer

c [m/s] 351.88 331.30 315.77
ρ

[
kg/m3

]
1.1455 1.2922 1.4224

As for the material parameters, we use the following varying values, see Table 3.
The damping and nonlinearity parameters were chosen to be constant with values b = 0.00005 m

2

s , βa = 1.2. The upper 
surface of the top layer is equipped with a time-varying Dirichlet conditions:

g(t, x, y, z) = e
− 1

2

[(
x−μx
σx

)2+
(

y−μy
σy

)2
]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
f t
2

)2
A sin(ωt), t < 2

f s⎛
⎝1 −

(
f
(

t− 2
f

)
2

)2
⎞
⎠ A sin(ωt), 2

f s ≤ t < 4
f s;

0, else,

with parameters: μx = μy = 5760 m, σx = σy = 1000 m, f = 0.1 Hz, A = 0.01 m2/s2. To the lower surface of the bottom 
block which constitutes the mountain’s surface, we prescribe homogeneous Neumann conditions. On the remaining surfaces 
encasing the block of air, we employ the Engquist–Majda absorbing boundary conditions, i.e. c∂nψ = −ψt [24], to prevent 
unphysical reflections traveling back into the domain.

Due to the kilometer scale, the time-horizon of 90 s for this simulation is much larger than in the previous experiments 
on the centimeter scale. The simulation time is resolved once more by the Generalized-α-method with 30000 timesteps. 
For spatial discretization, 46516 elements for the top-layer, 82500 elements for the middle layer and 82264 elements for 
the bottom layer have been used, hence featuring a mesh that is refined more towards the reflection surface, where mesh-
coupling between the non-conforming material layers is done via the discontinuous Galerkin method. In this example, the 
value of the penalty parameter in the DG approach is set to be larger than before. By this we allow for poorly shaped 
elements at the interfaces, and we do enforce the solution to have no significant jump at the interface between the layers. 
We note that this does not deteriorate the quality of the solution since the best approximation property of a constrained 
space having zero jump is in this special case of the same quality as of the unconstrained case. This is due to the fact that 
our mesh generator starts from a conforming surface mesh for the layers. The value p = 2 is chosen as degree of the basis 
functions.

Fig. 11 shows the snapshots of the acoustic potential at certain timesteps, such that the reflection of the wave on the 
mountain’s surface can be observed.

9. Conclusion

We have considered the discretization of the Westervelt’s nonlinear wave equation with strong damping to model sound 
propagation with losses through homogeneous media. For the space discretization, we proposed a high-order discontinu-
ous Galerkin scheme that can support general polygonal/polyhedral meshes. The fully discrete formulation is then obtained 
based on employing either the Newmark scheme or the Newmark-type Generalized-α method. The nonlinear term is re-
solved via a fixed-point iteration during the solving stage of the predictor-corrector scheme.

For the semidiscrete formulation we proved existence, stability and a priori error estimates in a suitable (mesh-dependent) 
energy norm, under the assumption that the polynomial approximation order p is such that p ≥ 2. To accomplish the the-
oretical analysis, preventing the equation from degenerating, and handling the nonlinearity in the model which involves 
the derivatives in time of the acoustic velocity potential, we made use of the Banach fixed-point theorem combined with a 
stability and convergence analysis of a linear wave equation with a variable coefficient in front of the second time derivative.

A wide set of two- and three-dimensional numerical experiments validate the theoretical convergence bounds and il-
lustrate the practical performance of the proposed method on a practical test case stemming from medical ultra-sound 
applications and nonlinear seismic waves. Future developments include the extension of the proposed analysis to coupled 
non-linear elasto-acoustic wave propagation problems, by expanding on the recent results of [1,2] where discontinuous 
Galerkin and discontinuous Galerkin spectral element methods for the linear elasto-acoustic coupled problem have been 
proposed. Further research will also cover the extensive testing of the proposed method on a set of challenging test cases 
stemming from practical applications.
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Fig. 11. Slicing half-plane (green) through the computational domain depicting values of the acoustic potential ψ together with iso-volumina {(x, y, z)� ∈
� | ψ(t, x, y, z) ≥ 0.4} at time steps (top left) 13000, (top right) 17000, (bottom left) 19000, (bottom right) 24000. The gray base symbolizes the mountain 
range which is not simulated.
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Appendix A

We present here the proofs of Theorems 1 and 2.

Proof of Theorem 1. The linearized problem is non-degenerate and αh ∈ H1(0, T ; Vh), and so local-in-time existence of 
a solution ψh ∈ H2(0, Th; Vh) for some Th ≤ T follows by relying on the standard theory of linear ordinary differential 
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equations; cf. [51, Theorem 1.44] and [43, Theorem 4.2]. The upcoming energy estimate will allow us to extend the existence 
interval to [0, T ].

We next focus on proving stability. In energy analysis of second-order wave equations, the first time derivative of the 
solution is a natural choice of test function. However, due to the presence of a varying coefficient αh in our case, we would 
need to additionally test with a suitably scaled second time derivative. We combine these ideas and choose vh = ˙̃

ψh =
ψ̇h + b

c2 ψ̈h as a test function.

Taking vh = ˙̃
ψh in (5.2), integrating over (0, t), where t ≤ Th , and performing integration by parts with respect to time 

leads to the identity

t∫
0

(αhψ̈h,
˙̃
ψh)L2 ds + 1

2 c2‖∇hψ̃h(s)‖2
L2

∣∣∣t

0
+ 1

2 ‖√χ �ψ̃h(s)�‖2
Fh

∣∣∣t

0

=〈{{c2∇hψ̃h(s)}}, �ψ̃h(s)�〉Fh

∣∣∣t

0
.

(A.1)

Above, we have made use of the fact that

〈{{c2∇hψ̃h}}, � ˙̃
ψh�〉Fh + 〈�ψ̃h�, {{c2∇h

˙̃
ψh}}〉Fh = d

dt
〈{{c2∇hψ̃h}}, �ψ̃h�〉Fh .

We can employ Lemma 4 and inequality (5.4) to obtain

1
2 c2‖∇hψ̃h‖2

L2 + 1
2 ‖√χ �ψ̃h�‖2

Fh
− c2〈{{∇hψ̃h}}, �ψ̃h�〉Fh

≥ C1(c2‖∇hψ̃h‖2
L2 + ‖√χ �ψ̃h�‖2

Fh
)

for all t ∈ [0, Th], provided that parameter β in (3.2) is sufficiently large. Similarly, we obtain

1
2 c2‖∇hψ̃h(0)‖2

L2 + ‖√χ �ψ̃h(0)�‖2
Fh

− 〈{{c2∇hψ̃h(0)}}, �ψ̃h(0)�〉Fh

≤ C2(c2‖∇hψ̃h(0)‖2
L2 + ‖√χ �ψ̃h(0)�‖2

Fh
).

The constants C1, C2 > 0 above are independent of c, b, or the mesh size, but depend on the polynomial degree p. It 
remains to estimate the αh-term in (A.1). We recall how the auxiliary state ψ̃h is defined in (4.5) and employ integration by 
parts with respect to time, which results in

t∫
0

(αhψ̈h,
˙̃
ψh)L2 ds = b

c2

t∫
0

‖√αh ψ̈h‖2
L2 ds +

t∫
0

(αhψ̈h, ψ̇h)L2 ds

=
t∫

0

(
b
c2 ‖√αh ψ̈h‖2

L2 − 1
2 ‖√

α̇hψ̇h‖2
L2

)
ds

+ 1
2 ‖√

αh(s)ψ̇h(s)‖2
L2

∣∣∣t

0
.

From here, we can further estimate the last term to obtain

t∫
0

(αhψ̈h,
˙̃
ψh)L2 ds ≥ b

c2

t∫
0

‖√αh ψ̈h‖2
L2 ds + 1

2 ‖√
αh(s)ψ̇h(s)‖2

L2

∣∣∣t

0

− 1
2

t∫
0

sup
x∈�

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ · ‖√αhψ̇h‖2
L2 ds

≥ b
c2

t∫
0

‖√αh ψ̈h‖2
L2 ds + 1

2 ‖√
αh(s)ψ̇h(s)‖2

L2

∣∣∣t

0

− 1
2 max

s∈[0,Th] ‖
√

αh(s)ψ̇h(s)‖2
L2

T∫
0

sup
x∈�

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ ds,

where we have additionally employed the fact that t ≤ Th ≤ T in the last step. By combining our previously derived esti-
mates, we arrive at
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1
2 ‖√

αh(t)ψ̇h(t)‖2
L2 + C1c2‖∇hψ̃h(t)‖2

L2

+ b
c2

t∫
0

‖√αh ψ̈h‖2
L2 ds + C1‖√χ �ψ̃h(t)�‖2

Fh

≤ 1
2 ‖√

αh(0)ψ̇h(0)‖2
L2 + C2

(
c2‖∇hψ̃h(0)‖2

L2 + ‖√χ �ψ̃h(0)�‖2
Fh

)

+ 1
2 max

s∈[0,Th] ‖
√

αh(s)ψ̇h(s)‖2
L2

T∫
0

sup
x∈�

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ ds

(A.2)

for all t ∈ [0, Th]. Taking the maximum of the above estimate over [0, Th] then yields

(1 − γ ) max
t∈[0,Th] ‖

√
αh(t)ψ̇h(t)‖2

L2 + c2 max
t∈[0,Th] ‖∇hψ̃h(t)‖2

L2

+ b
c2

Th∫
0

‖√αh ψ̈h‖2
L2 ds + max

s∈[0,Th] ‖
√

χ �ψ̃h(t)�‖2
Fh

�‖√
αh(0)ψ̇h(0)‖2

L2 + c2‖∇hψ̃h(0)‖2
L2 + ‖√χ �ψ̃h(0)�‖2

Fh
.

(A.3)

Since the right-hand side of (A.3) does not depend on Th , we are allowed to extend the existence interval to [0, T ]; i.e., we 
can set Th = T . Uniqueness follows by linearity of the problem and the derived stability bound. �

Proof of Theorem 2. We begin the proof by observing that ψ satisfies the weak form (5.2) when αh = α. Therefore, we can 
see the error e = ψ − ψh as the solution of the following problem:

(αhë, vh)L2 + ah(ẽ, vh) = −((α − αh)ψ̈, vh)L2 (A.4)

for all vh ∈ Vh and all time t ∈ (0, T ], with

(e(0), ė(0)) = (ψ0 − ψ0,h, ψ1 − ψ1,h).

By involving the interpolant, we can then rewrite equation (A.4) as

(αhëh, vh)L2 + ah(ẽh, vh) = (αhëI + (α − αh)ψ̈, vh)L2 + ah(ẽ I , vh) (A.5)

for t ∈ (0, T ] and all vh ∈ Vh . We next test equation (A.5) with vh = ˙̃eh ∈ Vh and estimate the resulting terms. By treating 
all the terms arising from the left-hand side of (A.5) as in the proof of Theorem 1, we arrive at the following counterpart of 
estimate (A.2) for the energy of eh at time t:

‖√
αh(t) ėh(t)‖2

L2 + b
c2

t∫
0

‖√αh ëh‖2
L2 ds + c2‖∇hẽh(t)‖2

L2 + ‖√χ �ẽh(t)�‖2
Fh

�

∣∣∣∣∣∣
t∫

0

{
(αhëI + (α − αh)ψ̈, ˙̃eh)L2 + ah(ẽ I ,

˙̃eh)
}

ds

∣∣∣∣∣∣ + γ max
s∈[0,t] ‖

√
αh(s)ėh(s)‖2

L2 ,

(A.6)

where we have additionally used that eh(0) = ėh(0) = 0 due to our choice of the approximate initial data. By employing 
Hölder’s and then Young’s inequality with ε1 > 0, we obtain
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t∫
0

(αh ëI + (α − αh)ψ̈, ėh + b
c2 ëh)L2 ds

≤
t∫

0

(‖√αhëI‖L2 +
∥∥∥α−αh√

αh
ψ̈

∥∥∥
L2

)(‖√αhėh‖L2 + b
c2 ‖√αhëh‖L2)ds

≤ 1
4ε1

(1 + b
c2 )

t∫
0

(
α1‖ë I‖2

L2 + α−1
0 ‖(α − αh)ψ̈‖2

L2

)
ds

+ 2ε1

t∫
0

‖√αhėh‖2
L2 ds + 2ε1

b
c2

t∫
0

‖√αhëh‖2
L2 ds

for all t ∈ [0, T ]. We note that the following useful estimate holds for the bilinear form ah(·, ·):

|ah(φ, vh)| � c2‖∇hφ‖L2‖∇h v‖L2 + ‖χ−1/2{{c2∇hφ}} ‖Fh ‖
√

χ�vh�‖Fh

+ c 1√
β
‖∇h vh‖L2‖√χ�φ�‖Fh + ‖√χ�φ�‖Fh ‖

√
χ�vh�‖Fh ,

(A.7)

which we will use below with the choice of φ ∈ {ẽ I , ̇̃eI }. The term ‖χ−1/2{ {c2∇hφ} }‖Fh appearing in (A.7) is the reason why 
we need the bound (3.7) on the interpolant error. To estimate the ah(ẽ I , ̇̃eh) term in (A.6), we employ integration by parts 
with respect to time and then twice inequality (A.7),

t∫
0

ah(ẽ I ,
˙̃eh)ds =ah(ẽ I (t), ẽh(t)) −

t∫
0

ah(
˙̃eI , ẽh)ds

� c2‖∇hẽI (t)‖L2 |∇hẽh(t)|L2 + ‖χ−1/2{{c2∇hẽI (t)}}‖Fh ‖
√

χ�ẽh(t)�‖Fh

+ c 1√
β
‖∇hẽh(t)‖L2‖√χ�ẽ I (t)�‖Fh + ‖χ1/2�ẽ I (t)�‖Fh ‖χ1/2�ẽh(t)�‖Fh

+
t∫

0

(
c2‖∇h

˙̃eI‖L2‖∇hẽh‖L2 + ‖χ−1/2{{c2∇h
˙̃eI }}‖Fh ‖

√
χ�ẽh�‖Fh

+ c 1√
β
‖∇hẽh‖L2‖√χ� ˙̃eI�‖Fh + ‖√χ� ˙̃eI�‖Fh ‖

√
χ�ẽh�‖Fh

)
ds.

From here by Young’s inequality with ε2 ∈ (0, ε1), we have

t∫
0

ah(ẽ I ,
˙̃eh)ds �ε1

(
c2(1 + 1

β
)‖∇hẽh(t)‖2

L2 + ‖√χ�ẽh(t)�‖2
Fh

)

+ ε2

t∫
0

(
c2(1 + 1

β
)‖∇ ẽh‖2

L2 + ‖√χ�ẽh�‖2
Fh

)
ds + 1

4ε2
Ē[eI ](t),

where the modified energy of the interpolant error is given by

Ē[eI ](t) := c2‖∇hẽI (t)‖2
L2 + ‖√χ�ẽ I (t)�‖2

Fh
+ ‖χ−1/2{{c2∇hẽI (t)}}‖2

Fh

+
t∫

0

(
c2‖∇h

˙̃eI‖2
L2 + ‖√χ� ˙̃eI�‖2

Fh
+ ‖χ−1/2{{c2∇h

˙̃eI }}‖2
Fh

)
ds.

We fix ε1 > 0 sufficiently small and include the derived bounds in estimate (A.6), from which we immediately have
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E[eh](t) �ε2T max
t∈[0,T ]

(
‖√

αh(t)ėh(t)‖2
L2 + c2(1 + 1

β
)‖∇hẽh(t)‖2

L2

+ ‖√χ�ẽh(t)�‖2
Fh

)
+ (1 + b

c2 )α−1
0

t∫
0

‖(α − αh)ψ̈‖2
L2 ds

+ 1
4ε2

⎛
⎝Ē[eI ](t) + (1 + b

c2 )α1

t∫
0

‖ë I‖2
L2 ds

⎞
⎠

+ γ max
t∈[0,T ] ‖

√
αh(t)ėh(t)‖2

L2

(A.8)

for all t ∈ [0, T ]. Above, we have also employed the inequality

t∫
0

‖v‖2
L2 ds ≤ T max

t∈[0,T ] ‖v(t)‖2
L2 ,

which holds for functions v ∈ C([0, T ]; L2(�)). By possibly decreasing ε2 and γ , and then taking the maximum over [0, T ]
of (A.8), we obtain

max
t∈[0,T ] E[eh](t) � (1 + b

c2 )α−1
0

T∫
0

‖(α − αh)ψ̈‖2
L2 ds + max

t∈[0,T ] Ē[eI ](t)

+ (1 + b
c2 )α1

T∫
0

‖ë I‖2
L2 ds.

(A.9)

Recalling also the properties of the interpolant stated in Lemma 3 leads to

‖eh‖2
E �h2μ−2 max

t∈[0,T ]
∑
κ∈Th

(
c2|ψ(t)|2Hn(κ) + b2

c2 |ψ̇(t)|2Hn(κ)

)

+ h2μ−2

T∫
0

∑
κ∈Th

(
(α1 + b

c2 α1 + b2

c2 )|ψ̈ |2Hn(κ) + c2|ψ̇ |2Hn(κ)

)
ds

+ (1 + b
c2 )α−1

0

T∫
0

‖(α − αh)ψ̈‖2
L2 ds.

Together with estimate (5.10) for ‖eI‖E , this yields the desired bound (5.11) for the discretization error. We note that the 
constant CThm2 in the final estimate has the form

CThm2 = O
(

c2 + b2

c2 + b
c2 + 1

)
. �
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