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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Gregor Kemper
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Abstract

This thesis studies pure Nash equilibria in atomic congestion games with increasing and
decreasing resource cost functions. In the first part, we consider approximate equilibria
in weighted congestion games with increasing resource cost functions, in particular poly-
nomials with non-negative coefficients. We give the first super-constant lower bounds
on the non-existence of approximate equilibria. For cost functions that are polynomi-
als of degree d, we obtain a lower bound of Ω

(√
d

ln d

)
. For general cost functions, our

lower bound depends on the number of players n and is lower bounded by Ω
(
n

lnn
)
. By

translating a Boolean circuit to an unweighted congestion game with polynomial cost
functions, we are able to translate the lower bounds into hardness results. We show that
it is NP-hard to decide whether a congestion game has an α-approximate equilibrium
for any α below our non-existence bounds.

The second part studies the Price of Stability (PoS) in broadcast games with decreasing
resource cost functions. We consider a generalization of fair cost allocation, where every
edge has a constant total cost that is shared equally by all players. In our model,
each edge has a concave increasing total cost that is shared equally by the players and
the shares for each player are decreasing in the number of players. We give upper
and lower bounds on the PoS. We explicitly compute a constant upper bound for the
PoS in broadcast games with fair cost allocation. The same method shows constant
bounds for quickly decreasing cost functions. For two special classes of cost functions,
we give the first lower bounds. We conducted computational experiments enumerating
small instances using methods from constraint programming. In the experiments, we
found structures giving high lower bounds on the PoS. These instances are analyzed
theoretically. We further study the complexity of computing good equilibria. We show
that it is PLS-hard to compute an equilibrium for uniform network games. Computing
the best equilibrium is shown to be NP-hard for multi- and broadcast games.

In the third part, we consider network games where no congestion is allowed and the
players are restricted to use only shortest paths. This is the problem of finding disjoint
shortest paths in undirected graphs. We give a polynomial-time algorithm for finding
two disjoint shortest paths in graphs with non-negative edge lengths. This fills a gap in
previous results by allowing zero length edges together with edges of positive length. As
a subroutine, we give a polynomial-time algorithm for finding k disjoint paths in weakly
acyclic mixed graphs containing directed and undirected edges.
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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir reine Nash Gleichgewichte in diskreten Aus-
lastungsspielen (atomic congestion games) mit steigenden und fallenden Kostenfunktio-
nen. Im ersten Teil geht es um approximative Gleichgewichte in gewichteten Spielen mit
steigenden Kostenfunktionen, insbesondere Polynome mit nicht-negativen Koeffizienten.
Wir zeigen erste untere Schranken für die Nicht-Existenz approximativer Gleichgewich-
te, die mit einem gewählten Parameter wachsen. Für Polynome vom Grad d zeigen wir
eine Schranke von Ω

(√
d

ln d

)
. Für allgemeine Kostenfunktionen hängt die Schranke Ω

(
n

lnn
)

von der Spieleranzahl n ab. Wir zeigen, dass es für jedes α unter diesen Schranken NP-
schwer ist, zu entscheiden, ob ein Auslastungsspiel ein α-approximatives Gleichgewicht
besitzt. Dazu konstruieren wir aus einem booleschen Schaltkreis ein ungewichtetes Spiel
mit polynomiellen Kostenfunktionen.

Im zweiten Teil der Arbeit geht es um den Price of Stability (PoS) in Broadcastspielen
mit fallenden Kostenfunktionen. Unsere Kostenfunktionen sind eine Verallgemeinerung
von gerechter Kostenverteilung, bei der jede Kante konstante Gesamtkosten hat, die
gleichmäßig auf die Spieler aufgeteilt werden. In unserem Kostenmodell hat jede Kante
konkav steigende Gesamtkosten, die gleichmäßig auf die Spieler aufgeteilt werden, wobei
die Anteile für jeden Spieler mit der Spieleranzahl auf der Kante fallen. Wir zeigen obere
und untere Schranken an den PoS. Insbesondere berechnen wir eine konkrete konstante
obere Schranke für den PoS in Broadcastspielen mit gerechter Kostenverteilung. Mit der
gleichen Methode erhalten wir konstante obere Schranken an den PoS für schnell fallende
Kostenfunktionen. Weiterhin untersuchen wir untere Schranken an den PoS für zwei kon-
krete Klassen von Kostenfunktionen. Wir führen computergestütze Experimente durch,
bei denen wir kleine Instanzen mit Methoden der Constraintprogrammierung aufzählen.
Bei den Experimenten tauchen Strukturen auf, die große untere Schranken liefern. Diese
Instanzen untersuchen wir theoretisch. Außerdem betrachten wir die Komplexität der
Berechnung guter Gleichgewichte. Wir zeigen, dass es PLS-schwer ist, ein Gleichgewicht
in gleichförmigen Netzwerkspielen zu berechnen. Die Berechnung des besten Gleichge-
wichts in Multi- und Broadcastspielen ist NP-schwer.

Der dritte Teil befasst sich mit Netzwerkspielen, in denen keine gemeinsame Nutzung
von Resourcen erlaubt ist und die Spieler nur kürzeste Pfade verwenden dürfen. Wir
untersuchen, ob es zulässige Profile gibt, also die Berechnung disjunkter kürzester Pfade
in ungerichteten Graphen. Wir entwerfen einen polynomiellen Algorithmus, der das Pro-
blem für zwei Pfade in Graphen mit nicht-negativen Kantenlängen löst. Dieses Ergebnis
schließt eine Lücke in der bisherigen Literatur, indem wir sowohl Kanten mit Länge null
als auch Kanten mit positiver Länge erlauben. Als Unterprogramm zeigen wir einen po-
lynomiellen Algorithmus für die Suche nach k disjunkten Pfaden in schwach azyklischen
gemischten Graphen, die sowohl gerichtete als auch ungerichtete Kanten enthalten.
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1 Introduction

Sharing resources with other participants is a common scenario in our daily lives. For
example, the tenants of an apartment building share the bandwidth of their internet
providers and the maintenance costs for the common rooms they use. Comparing these
examples shows that sharing can have different effects on the participants. If many
tenants have the same internet provider, they will experience larger latencies when
trying to stream a movie simultaneously, compared to those who share their provider
with only a few others. On the other hand, sharing the maintenance costs with more
people results in a smaller share for each participant. Typically the tenants act selfishly
and try to minimize their own latency and cost, which is, however, influenced by the
choices of the other tenants.

The theoretical study of the interaction between selfish agents is called game theory.
Situations where players non-cooperatively share common resources can be modeled by
atomic congestion games introduced by Robert W. Rosenthal [Ros73]. A congestion
game is given by a set of resources and a set of players. Every player has some strategies,
which are subsets of the resources. Each resource is associated with a cost function,
giving the cost for every player using it depending on the total load on the resource.
Once all players chose one of their strategies, the cost for each player can be computed
by summing the cost of the resources used by the player. The players want to minimize
their individual costs by selecting appropriate strategies.

©1/8

�6/10 4 1/8

Figure 1.1: Choices of strategies of two players (A and B) in a congestion game with three
resources (©,�,4). a/b gives the cost of a resource. For one player the cost is a and for two
players the cost is b for each of them.

Example 1. Figure 1.1 shows a congestion game with three resources ©,4, and �.
There are two players A and B. A has two strategies {©,4} and {©,�}. B has the
two strategies {4,©} and {4,�}. The resource costs are given in Figure 1.1 next to
the resources. © incurs a cost of 1 for one player and a cost of 8 for two players. 4
has a cost of 1 for one player and a cost of 8 for two players. � has cost of 6 for one
or player and a cost of 10 for two players. In Figure 1.1 A plays {©,�} and B plays
{4,�}. This incurs a cost of 1 + 10 = 11 for both A and B. y

There are two main classes of congestion games that differ in the behavior of the cost
functions of the resources. Congestion games with increasing resource cost functions
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1 Introduction

model scenarios where sharing the same resource is disadvantageous, as in the example
of using the cables of the same internet provider. On the other hand, congestion games
with decreasing resource cost functions model scenarios where sharing resources is
beneficial for the players, as in the example of sharing maintenance costs for common
rooms.

A special case of increasing cost functions is the case where no congestion is allowed
at all. Such games are important in cases where the resources can only be used by one
player at a time. For example, the tenants of the apartment building may be free to
choose their compartments in the cellar, but each compartment can only be used by one
tenant. This thesis studies properties of congestion games with increasing (Chapter 3)
and decreasing (Chapter 4) resource cost functions, and games where no congestion is
allowed (Chapter 5).

Congestion games have been extensively studied in the literature. In particular, the
concept of equilibria is investigated. An equilibrium is a profile (a choice of strategies
for every player) where no player can decrease her cost by unilaterally deviating to
another strategy.
Example 2. The profile in Example 1 is not an equilibrium. Player A can decrease her
cost from 11 to 9 by deviating to her other strategy {©,4}. y

This model of a stable state is called pure Nash equilibrium after John F. Nash. Pure
refers to the fact that every player chooses one of her strategies, in contrast to mixed
strategies, which are probability distributions over pure strategies. In this thesis, we
only consider pure profiles. Nash [Nas50] shows that every finite game (with finitely
many players and finite strategies) has a mixed equilibrium. However, the existence of
pure equilibria is not guaranteed for all games.

For congestion games, Rosenthal [Ros73] shows that pure equilibria exist in all un-
weighted games. In an unweighted congestion game, the total load on a resource is
just the number of players using it (as in Example 1). Hence, all players contribute the
same to the load. The other case, where every player has an associated weight and the
total load of a resource is the sum of the weights of the players using the resource, is
called a weighted congestion game. There are examples of weighted congestion games
that do not have pure equilibria. Thus, research has focused on the relaxed notion of
approximate equilibria. An approximate equilibrium is a profile where no player can
decrease her cost by some factor. If this factor is 1, an approximate equilibrium is a
pure Nash equilibrium. On the other hand, as the factor increases, some profiles may
become stable so that approximate equilibria exist.
Example 3. Recall that the profile from Example 1 is not a pure Nash equilibrium.
However, it is an approximate equilibrium with factor 2, as none of the players can halve
her cost by deviating to her other strategy. y

In the first part of this thesis, we study how large the factor has to be to guarantee
the existence of approximate equilibria in weighted congestion games with increasing
resource cost functions.

In cases where equilibria are guaranteed to exist, one is interested in their quality.
The most commonly used measure is the social cost of a profile, which is the sum of all
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player costs. Although the players try to minimize their cost individually, this does not
necessarily lead to a profile with overall minimal social cost.
Example 4. The profile in Example 1 has minimal social cost of 11 + 11 = 22 in the
game. But as observed in Example 2, it is not an equilibrium. y

One of the research fields in algorithmic game theory investigates the gap between
the social cost of equilibria and the minimal social cost achievable by any profile (not
restricted to be an equilibrium). Two questions arise naturally: How large can the gap be
in the worst case? How small can it be in the best case? The maximal ratio of the social
cost of an equilibrium to the social cost of any profile is called the Price of Anarchy
introduced by Koutsoupias and Papadimitriou [KP99] and Papadimitriou [Pap01]. It
measures the worst-case gap. Schulz and Stier-Moses [SS03] and Anshelevich et al.
[Ans+08a] introduce the counter-part called Price of Stability, which measures the
best case, i.e., the minimal ratio of the social costs of an equilibrium and any profile.
Example 5. In Example 1, there are two equilibria. One is the profile σ∗max where A
plays {©,4} and B plays {4,�}. Its social cost is 16 + 14 = 30. The other is the
profile σ∗min where A plays {©,�} and B plays {4,©}. The social cost is 14 + 9 = 23.
Recall from Example 4 that the minimal social cost in this game is 22. Hence, the Price
of Anarchy is 30

22 determined by σ∗max, and the Price of Stability in this game is given by
σ∗min and evaluates to 23

22 . y

The Price of Anarchy of congestion games is fairly well understood, while for the Price
of Stability much less is known. In particular, only one special case has been studied
so far for congestion games with decreasing resource cost functions. This is the case of
fair cost allocation, where every resource has a constant total cost that is shared equally
by all players using the resource. In the second part of the thesis, we look at a more
general class of decreasing cost functions, where each resource has a concave increasing
total cost that is shared equally by all players, such that each share is decreasing in the
number of players. Cost functions of this form arise in situations where economies of
scale effects are active. In such situations, the total cost increases with the number of
players, but the marginal increase gets smaller. For example, the supply of sweets for
the common party room falls into this category. If more people come, we have to buy
more sweets. However, our local sweets shop has a discount for selling large amounts.
Thus buying one more package if we are already buying 10 packages will be cheaper
than buying an additional package to just one package.

We study the Price of Stability in network games with decreasing cost functions with
economies of scale effects as described above. Network games are special cases of
congestion games where the resources are the edges of an underlying graph, and the
strategies for each player are all paths between her source and sink node. Such games
model, for example, routing traffic between different start and end locations in a road
network.
Example 6. Figure 1.2 shows a network game with three players. The per-player cost
is non-increasing (see Figure 1.2a) while the total costs on the edges are concave and
non-decreasing (see Figure 1.2b). The shown profile is the one with minimal social cost
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1 Introduction

sC = sA tB

tC = sB tA

3/3
2/1

1/1/1

3/2/ 5
3

17
6 /

17
6 /

17
6

(a) The profile is not an equilibrium. Player A can
decrease her cost from 4 + 1

3 to 4 by deviating to her
other strategy.

sC = sA tB

tC = sB tA

3/3/3

1/2/3

3/4/5

17
6 /

17
3 /

17
2

(b) The social cost of the profile is 7+ 5
6 .

Figure 1.2: A network game with three players A, B, C. The respective source and sink nodes
are labeled with s and t. The paths chosen in a strategy profile are highlighted with the respective
colors. The labels on the edges give the resource cost functions, using the same notation as in
Figure 1.1. In (a) the cost incurred to every player is given and in (b) the social cost is shown.

of 7 + 5
6 . There is exactly one equilibrium which is the profile reached by letting A

deviate to her other strategy. This equilibrium has social cost 3 + 3 + 3 = 9. The Price
of Stability is thus 9

7+ 5
6
≈ 1.149. y

If we instead consider the nodes of the graph to be the resources and do not allow
any congestion, then the players have to choose node disjoint paths. In the third part of
the thesis, we further restrict the strategies to contain only the shortest paths between
their source and sink node. In this setting, the concept of equilibria is not meaningful
as it is not clear whether any valid profile exists. We thus ask: Are there node disjoint
shortest paths (one for each player) in the network? See Figure 1.3 for two examples
with a valid profile and without a valid profile.

sA

sB tA

tB

(a) Two disjoint shortest paths.

sA

sB tA

tB

(b) An instance without two disjoint shortest paths.

Figure 1.3: Network games where the resources are the nodes and no congestion is allowed.
Further, the players can only use shortest paths to connect their source and sink. Solid edges
have length 1 and dashed edges have length 0. In (a) there is a valid profile as shown with colors.
In (b), where we changed the length of the thick edge from zero to one, there is no valid profile
as both shortest paths use the center node.
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1.1 Related Work

1.1 Related Work

We give a very brief outline of the development of the questions studied in this thesis,
focusing on atomic congestion games.

The origins of game theory as we know it today can be attributed to the influen-
tial book Theory of Games and Economic Behavior by von Neumann and Morgenstern
[NM47], although the study of strategic behavior has been conducted before for spe-
cific economical settings. Most prominent are the works of Cournot [Cou38] and Pigou
[Pig20]. Stable states have been one of the main concepts of consideration, right from the
beginning. Cournot defines a notion of equilibria that is later (unknowingly) extended
by Nash [Nas50] to more general games. His definition is what we now call a Nash
equilibrium. Von Neumann [Neu28] shows that every zero-sum game has a mixed Nash
equilibrium. In a mixed equilibrium players choose a probability distribution over their
pure strategies. Nash [Nas50] extends the result and shows that all finite games have
mixed equilibria. This is in contrast to the existence of pure Nash equilibria (equilibria).
There are games (like matching pennies) that do not have pure equilibria. To overcome
this issue, other solution concepts have been developed. The notion of α-approximate
pure Nash equilibria (α-equilibria) is a natural relaxation. In an α-equilibrium, players
only deviate if the decrease in their cost is substantial (measured by α). In the additive
version of approximate equilibria, the difference of the costs is considered, while in the
multiplicative version, the ratio of the costs is of interest. In this thesis, we use the
multiplicative version. There are many other equilibria concepts that we do not discuss
here. Examples are refinements of Nash equilibria like strong equilibria, or subgame
perfect equilibria, and correlated equilibria as a generalization.

Another way of guaranteeing the existence of equilibria is to restrict the class of games
under consideration. Rosenthal [Ros73] introduces the class of unweighted congestion
games and shows that they always have equilibria. His proof uses a potential function
with the property that the change in the potential for any single player deviation captures
exactly the change in the corresponding player’s cost. Later, Monderer and Shapley
[MS96] define the class of potential games that are games that allow for a potential
function as the one from Rosenthal. In the same work, Monderer and Shapley show that
every potential game is isomorphic to an unweighted congestion game. Until today the
potential function of Rosenthal is the primary tool to show the existence of equilibria.

In some applications, it may not be the case that all players have the same influ-
ence on the congestion of a resource. Instead, there could be some players who have a
higher demand. Milchtaich [Mil96] extends the model of unweighted congestion games
to weighted games. He gives examples of weighted congestion games that do not have
equilibria. In weighted games, one has to specify how the total cost of a resource is
distributed to the players. In the above paper, the total cost is shared proportionally by
the ratio of the weight of the player to the total weight on the resource. This is also the
model considered in this thesis. Kollias and Roughgarden [KR11; KR15] define another
way to share the total cost called Shapley cost sharing. In this model, every player pays
the average marginal increase she is responsible for over all player orderings. They show
that with this cost sharing method, equilibria exist in any weighted congestion game.

5



1 Introduction

There are many variations of congestion games, each useful for different applications.
We mention only a few. Some are special cases where the structure of the strategies is
restricted. Two examples are singleton games, where every strategy contains exactly one
resource, and matroid games, where the strategies are the bases of a matroid over the
set of resources. Another important class of games is the class of network games, where
the strategies of a player are all paths in an underlying graph connecting her source and
sink node. The study of selfish agents routing some flow in a network is much older
than the definition of congestion games. Pigou [Pig20] already considers a network of
two parallel links. The first use cases of network games are for modeling traffic flow
in road networks. Wardrop [War52] and Braess [Bra68] study situations where players
only control an infinitesimally small portion of a flow, such that a single player does
not have any influence on the congestion. Today such models are referred to as non-
atomic congestion games. A first version of the discrete (atomic) case of network games
was considered by Koutsoupias and Papadimitriou [KP99], where the network consists
of parallel links between the common source and sink node. As network games model
many applications, they received a considerable amount of attention in the literature.
In Chapter 4, we are looking exclusively at network games.

Other variations of congestion games consider different player functions than the sum
of the cost of used resources. One example are bottleneck congestion games, where the
cost of a player is the maximum of the cost of the resources used. Another generalization
is the non-anonymous setting, where the resource cost depend not only on the total
weight of the players using it but also on the specific set of players and their identities.
The case of player-specific cost functions is similar to the above setting, where now every
player has her own cost function for using a resource depending on the total weight.

Research in algorithmic game theory focuses mainly on three questions:
• Existence of equilibria.
• Complexity of computing an equilibrium if it exists.
• Quality of equilibria.

We briefly overview the current results on these three questions for (un)weighted con-
gestion games with increasing and decreasing resource cost functions for exact and ap-
proximate equilibria. This is meant as a rough comparison of the state of the art for the
three parts of this thesis. Detailed discussions of the related literature for the specific
settings are deferred to the respective parts.

Research has focused on two special cases of cost functions. For increasing costs the
case of polynomials of degree d with non-negative coefficients is often considered and
for decreasing costs, the case of fair cost allocation, where every resource has a constant
total cost that is shared equally by all players.

Existence of Equilibria We have already discussed the existence of exact equilibria.
In unweighted congestion games such equilibria always exist both for increasing and
decreasing cost functions, as shown by the potential function of Rosenthal [Ros73]. On
the other hand, there are weighted congestion games that do not have equilibria. Fotakis,
Kontogiannis, and Spirakis [FKS04; FKS05] give an example of a network game with
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1.1 Related Work

simple increasing cost functions. They show, however, that network games with linear
cost functions always have equilibria. For the special case of fair cost allocation of
decreasing cost functions, Chen and Roughgarden [CR06; CR09] give an example of a
three-player undirected multicast game (where all players have the same source) without
equilibria. Anshelevich et al. [Ans+04; Ans+08a] show that under the same cost model,
weighted congestion games with two players and symmetric network games always have
equilibria.

When the approximation factor α is large enough, every game has an α-equilibrium.
Research thus focuses on finding the smallest approximation factor α such that α-
equilibria exist in any game. For increasing cost functions, the most studied case is
that of polynomial cost functions. Caragiannis and Fanelli [CF19; CF21] show that d-
equilibria exist in any weighted game with polynomial cost functions of degree d. On the
other hand, there are examples of such games without α-equilibria, where α is a small
constant. We study the non-existence of approximate equilibria in weighted congestion
games with polynomial cost functions in Chapter 3. For fair cost allocation Chen and
Roughgarden [CR06] show that O(logwmax)-equilibria exist in any weighted directed
network game, where wmax is the maximal weight of any player. In the undirected case
Albers and Lenzner [AL10; AL13] show that any system optimum is a H(n)-equilibrium
in multicast games, where H(n) denotes the n-th harmonic number.

Computation of Equilibria Using the potential defined by Rosenthal [Ros73] puts the
problem of finding an equilibrium in unweighted congestion games in the setting of
polynomial local search problems in PLS as defined by Johnson, Papadimitriou, and
Yannakakis [JPY88]. Hence, one algorithm to find an equilibrium is to let the players
iteratively deviate as long as this decreases the potential. This is called the standard
improving dynamics. Fabrikant, Papadimitriou, and Talwar [FPT04] show that finding
an equilibrium is PLS-complete for games with increasing cost functions. This means
that there are examples where the standard improving dynamics may take exponentially
many steps before converging to a local minimum. Their completeness result holds even
for multi-commodity network games and symmetric general games, where every player
has the same set of available strategies. Ackermann, Röglin, and Vöcking [ARV06;
ARV08] show that this further holds for undirected networks with linear cost functions.
For decreasing cost functions Syrgkanis [Syr10] shows that finding an equilibrium is still
PLS-complete in directed network games with fair cost allocation. Recently, Bilò et al.
[Bil+15; Bil+21] extend this result to undirected network games. There are classes of
congestion games where polynomial-time algorithms are known. Examples include sym-
metric network games for which Fabrikant, Papadimitriou, and Talwar [FPT04] show
that an equilibrium can be found by a min-cost flow computation. Another case are
matroid congestion games introduced by Ackermann, Röglin, and Vöcking [ARV08].
They show that the matroid property is the maximal property on the structure of the
strategies such that the improving dynamics where the players play best-responses, con-
verges in polynomial time. Interestingly, their result holds for any kind of cost functions
(increasing, decreasing, non-monotone).
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1 Introduction

Even the problem of finding an approximate equilibrium in unweighted congestion
games with increasing cost functions is PLS-complete for any approximation factor,
as shown by Skopalik and Vöcking [SV08]. However, there are special cases where α-
equilibria can be computed in polynomial time. Chien and Sinclair [CS07; CS11] show
that the improving dynamics takes polynomially many steps for symmetric congestion
games with increasing cost functions that do not grow too fast. If the cost functions
are polynomials of degree d Giannakopoulos, Noarov, and Schulz [GNS21] show how to
compute dd+o(d)-equilibria in polynomial time. For polynomially decreasing cost func-
tions, i.e., where the cost is of the form cr

xβ
for a fixed β > 0 and a constant cr, Bilò et al.

[Bil+21] develop a distributed algorithm whose running time depends on the approxi-
mation factor, the constant β, and the number of players. If the approximation factor
is chosen to be large enough, the running time of their algorithm is polynomial.

A closely related question is the decision of whether a given weighted congestion game
has an (approximate) equilibrium. Dunkel and Schulz [DS06; DS08] show that the
decision for exact equilibria is NP-hard for weighted network games with increasing cost
functions. In Chapter 3, we show that this is also true for approximate equilibria in
general congestion games with increasing cost functions.

Although the focus is on computing any equilibrium, other profiles can be considered.
In particular, when looking at the quality of equilibria (see later), one is interested in
an equilibrium of minimal social cost. As an approximation to such a best equilibrium
the global minimizer of the potential of Rosenthal [Ros73] has been considered. Chekuri
et al. [Che+06; Che+07] show that computing the global minimizer of the potential is
NP-hard for singleton games with fair cost allocation. Syrgkanis [Syr10] remarks that
their proof can be used to show that computing the best equilibrium is also NP-hard.
For increasing cost functions, Sperber [Spe09; Spe10] shows that computing the best
equilibrium is NP-hard for symmetric network games on a directed series-parallel graph
with at least three players. In Chapter 5, we are interested in finding a profile where no
congestion occurs.

Quality of Equilibria The most common measure of the quality of an equilibrium is its
social cost, that is, the sum of all player costs. One is interested in the loss (in terms of
the social cost) due to the selfish behavior of players, compared to a centrally enforced
social optimum. Comparing the social cost of equilibria to a social minimum is first
considered in Koutsoupias and Papadimitriou [KP99]. They study the worst ratio of
the social costs of an equilibrium to a social optimum. This ratio is later called Price
of Anarchy (PoA) by Papadimitriou [Pap01]. In contrast to this pessimistic measure of
the behavior of selfish agents, Schulz and Stier-Moses [SS03] and Anshelevich, Dasgupta,
Kleinberg, Tardos, Wexler, and Roughgarden [Ans+08a] consider the best ratio of the
social costs of an equilibrium to a social optimum. The term Price of Stability (PoS)
for this ratio is introduced by Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and
Roughgarden [Ans+08a].

Considering other profiles than equilibria in the above definitions yields new quality
measures of games. Replacing equilibria by α-equilibria gives the approximate PoA and
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PoS. Taking the set of strong equilibria results in the strong PoA introduced by Andel-
man, Feldman, and Mansour [AFM07; AFM09]. For the sequential PoA introduced by
Leme, Syrgkanis, and Tardos [LST12], the set of subgame perfect equilibria is considered.
Kawase and Makino [KM12; KM13] restrict the equilibria to have minimal potential in
unweighted congestion games and call the corresponding prices potential-optimal. In
this thesis, we only consider the standard PoA and PoS using the set of all equilibria.

The Price of Anarchy is well understood for congestion games with increasing cost
functions. Roughgarden [Rou09; Rou12; Rou15] gives exact bounds on the PoA for
unweighted congestion games. Bhawalkar, Gairing, and Roughgarden [BGR10; BGR14]
later extended his approach to weighted congestion games. For decreasing functions,
Anshelevich et al. [Ans+08a] show that for the special case of fair cost allocation the
PoA is as large as the number of players, even for unweighted network games.

On the other hand, knowledge of the Price of Stability is not as deep. For increasing
functions, mostly the case of polynomial cost functions has been studied. In unweighted
games with polynomials of degree d, Christodoulou and Gairing [CG13; CG16] give
exact values of the PoS depending on d. They show that asymptotically the PoS in such
games is Θ(d). For weighted games, Christodoulou et al. [Chr+18; Chr+19] give lower
bound examples that have a PoS that is exponential in the degree d. This almost (up
to a factor of 2d+1) settles the PoS for weighted congestion games with polynomial cost
functions. To the best of our knowledge, for decreasing functions, only the special case
of fair cost allocation in network games has been studied so far. For unweighted games
in directed networks, Anshelevich et al. [Ans+08a] show that the PoS is H(n) the n-th
harmonic number, where n is the number of players. For weighted games, they show the
asymptotics Θ(logW ), where W is the sum of all player weights. An almost matching
lower bound of Ω

(
logW

log logW

)
is given by Albers [Alb08; Alb09] for undirected network

games. Subsequent research focuses on special cases of undirected network games. We
follow this line of work in Chapter 4.

Recently, the study of approximate PoA and PoS has emerged. In particular, the
trade-off between the approximation factor and the corresponding PoS (see for example
[CR06; Chr+19; GP20]).

Increasing vs Decreasing Cost Functions We conclude this introduction with a small
discussion on the different behaviors of congestion games with increasing and decreasing
cost functions. In the case of increasing cost functions, the players try to avoid sharing
resources and hence spread over the available resources. For decreasing functions, on
the other hand, the players are concentrating on a small part of the resources to benefit
from a high amount of sharing. These two underlying forces are structurally very dif-
ferent. This is the main reason why results for one of the two settings can not easily be
transferred to the other setting. We have seen in the discussion of the literature above
that progress in both settings is quite unequal, and that research is mostly separated.
It is exceptionally interesting that some of the methods are nevertheless applicable to
both settings, most prominently the potential function of Rosenthal [Ros73].
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1 Introduction

1.2 Structure of the Thesis

Firstly, we fix the notation used in this thesis and briefly introduce some of the main
concepts formally in Chapter 2. The rest of the thesis consists of three main parts.
A detailed introduction to the problems considered and an overview of the relevant
literature are given in each part.

Chapter 3 In the first part, we consider weighted congestion games with increasing
resource cost functions. We study the existence of approximate equilibria in such games
with polynomial and general cost functions. We give super-constant lower bounds on
the approximation factor, for which approximate equilibria do not necessarily exist. Our
proofs are constructive, that is, we explicitly construct games without approximate equi-
libria. Further, we study the question of deciding whether a game has an approximate
equilibrium. We show that this decision is NP-hard for every approximation factor below
the lower bounds for the non-existence.
B This part is based on joint work with George Christodoulou, Martin Gairing, Yiannis
Giannakopoulos, and Diogo Poças presented at ICALP 2020 [Chr+20]. A full version of
the conference paper is accepted for publication at Mathematics of Operations Research.

Chapter 4 The second part deals with unweighted network games with decreasing re-
source cost functions. We generalize the model of fair cost allocation of Anshelevich
et al. [Ans+08a] to resource cost functions that are decreasing for every player while the
total cost of the resource (the sum of the per-player costs) is increasing and concave.
We study the quality and computation of exact equilibria in such games. The contribu-
tions of this part are the extensions of several results for fair cost allocation to our more
general class of cost functions.
B This part is based on unpublished joint work with Yiannis Giannakopoulos and Marcus
Kaiser.

Chapter 5 The last part of the thesis investigates a subclass of network games where
the resources are the nodes, no congestion is allowed, and the strategies of the players
are restricted to be shortest paths in the network. We are interested in finding a feasible
profile for the players, i.e., disjoint shortest paths connecting the respective sources and
sinks. We show that this problem can be decided in polynomial time for two players
in networks with non-negative edge lengths. The main contribution is to allow edges of
length zero together with edges of positive length.
B This part is based on joint work with Marinus Gottschau and Marcus Kaiser published
in Operations Research Letters, Volume 47, Issue 1, 2019 [GKW19].

10



1.2 Structure of the Thesis

Note on Layout The overall layout of this thesis follows the template from Andre
Richter1 with minor modifications. All graphics appearing in the figures are either
self-drawn or taken and adapted from the public domain database of vector graphics
Openclipart2. The colors used in the figures are taken from www.ColorBrewer2.org
by Cynthia A. Brewer. We use the colorblind safe, print-friendly, and photocopy safe
diverging palette with 4 colors3 to make the thesis accessible to many people and in
various forms (viewed on a screen, or printed in color or black and white).

1https://github.com/TUM-LIS/tum-dissertation-latex
2https://openclipart.org/
3https://colorbrewer2.org/#type=diverging&scheme=PuOr&n=4
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2 Preliminaries

In this chapter we introduce terminology, notation and concepts used in this thesis. More
specialized notation for single chapters is introduced there.

2.1 Basic Set Notation
We denote by N the set of natural numbers (including 0) and by N≥a the subset of natural
numbers that are at least a. Q and R denote the sets of rational and real numbers.

For a set M we write 2M for the power set of M containing all subsets of M . The
set of subsets of size k is denoted by

(M
k

)
. We write |M | for the cardinality of M .

The symmetric difference of two sets A and B is denoted by A 4 B and defined as
A4B = (A \B) ∪ (B \A).

A binary relation R on a set M is a set of pairs of elements of M , i.e., R ⊆ M ×M .
We often use the infix notation uRv for (u, v) ∈ R. A binary relation is reflexive, if uRu
for all elements u ∈ M . Two relations R and S on the same set M can be composed.
We write S ◦ R = {(u,w) ∈M ×M |∃v ∈M : u R v ∧ v S w} for the composition of R
and S.

2.2 Congestion Games
The main concept of this thesis and the common subject of interest in all chapters are
congestion games. We fix notation used in this thesis, following the standard notation
from the literature.

A weighted (atomic) congestion game is given by a set of resources R and a set of
players P . Every player p ∈ P has a weight wp ∈ R>0 and a set of available strategies
Sp ⊆ 2R each consisting of a subset of the resources. If every player has weight 1, the
game is called an unweighted congestion game. Each resource r has a cost function
cr : R≥0 → R≥0, giving the cost incurred to a player using r depending on the total
weight of players using the resource. In particular, we assume cr(0) = 0. If the cost
functions are polynomials of maximum degree d with non-negative coefficients we say
the game is a polynomial congestion game.

We distinguish two classes of congestion games by the type of the resource cost func-
tions. If all of the cost functions are non-decreasing, we keep the name congestion game.
If on the other hand, all cost functions are decreasing, we refer to such games as cost
sharing games.

Given a congestion game we are interested in strategy profiles, which are vectors of
strategies chosen by the players. We denote a profile by σ ∈

Ś

p∈P Sp and the strategy
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2 Preliminaries

chosen by player p in a profile σ by σp. Often we fix the strategies of all but one player,
and denote by σ−p the part of the profile σ excluding the strategy of player p. We obtain
a full strategy profile by adding a strategy s ∈ Sp for player p. This profile is written as
(s, σ−p) for any s ∈ Sp.

A profile σ induces a congestion nσ(r) on a resource r, which is the total weight of
players using r. It is formally given by

nσ(r) =
∑
p∈P :
r∈σp

wp.

With this congestion the cost of player p in a profile σ is defined as
Cp(σ) =

∑
r∈σp

cr(nσ(r)).

The sum of all player costs in a profile σ is called the social cost of σ and denoted by
C(σ). A profile with minimal social cost is a social optimum. It will be denoted by
OPT(G) or just OPT if the instance G is clear from the context. Formally,

OPT(G) ∈ arg min
σ profile in G

C(σ).

Other profiles of interest are profiles where no player has an incentive to unilaterally
deviate. A profile σ is a pure Nash equilibrium (equilibrium), if for all players p ∈ P and
all strategies s ∈ Sp the inequality

Cp(σ) ≤ Cp((s, σ−p)) (2.1)
holds. Otherwise, if there is a player p with a strategy s′ ∈ Sp \ {σp} where

Cp(σ) > Cp
((
s′, σ−p

))
, (2.2)

we call s′ an improving move for p in σ. In this thesis we only consider pure strategies
and hence we refer to pure Nash equilibria just with equilibria.

The following process is called improving-dynamics: Begin with any profile σ. As long
as there is a player with an improving move, let her deviate. If this process terminates,
the final profile is an equilibrium by definition.

Since equilibria are not guaranteed to exist for weighted games, we study a relaxed
version. A profile σ is an α-approximate pure Nash equilibrium (α-equilibrium) for some
α ≥ 1, if for all players p ∈ P and strategies s ∈ Sp the inequality

Cp(σ) ≤ α · Cp((s, σ−p)) (2.3)
holds. Otherwise, a strategy s′ ∈ Sp \ {σp} is an α-improving move for p in σ, if

Cp(σ) > α · Cp
((
s′, σ−p

))
. (2.4)

Note that for α = 1 these definitions correspond to the definitions of equilibria (compare
to (2.1)) and improving move (compare to (2.2)). To distinguish this case clearly from
α > 1, we refer to a 1-equilibrium as exact equilibrium.

In Chapter 3, we study α-equilibria in weighted congestion games with increasing cost
functions and in Chapter 4, we focus on exact equilibria in unweighted network games
with decreasing cost functions.

14



2.2 Congestion Games

Network Games A special case of congestion games are network (congestion) games.
A network game is given by a graph G = (V,E), that can be directed or undirected. For
every player p there is a source node sp ∈ V and a sink node tp ∈ V . The resources are
the edges (or arcs) of the graph and the set of available strategies for a player p are all
(directed or undirected) sp− tp paths in G. (See Section 2.3 for graph definitions.) If all
players have the same sink node, we call the network game a multicast (or single-sink)
network game. To clearly distinguish this case from the general case where all players
have their own source and sink node, we call the latter a general network game.

At the end of Chapter 3, we briefly consider network games on directed graphs. In
Chapter 4, we focus on network games on undirected graphs. For the main part, we
look at a subclass of multicast games. The topic of Chapter 5 can be seen as another
special case of network games, where now the strategy set of every players is restricted
to contain only shortest sp − tp paths.

Potential Function Rosenthal [Ros73] introduces the following potential function for
unweighted congestion games. For a strategy profile σ define the potential Φ(σ) as

Φ(σ) =
∑
r∈R

nσ(r)∑
i=1

cr(i).

Note that for unweighted games the congestion nσ(r) is just the number of players using
r in σ. Rosenthal shows that this is an exact potential. This means that for two strategy
profiles differing only in a deviation of one player, the change in the potential is exactly
the change in the cost of that player. For a profile σ in an unweighted congestion game
and another profile σ′ = (s′, σ−i) where player i changed her strategy to s′ ∈ Si, we have

Φ(σ)− Φ
(
σ′
)

= Ci(σ)− Ci
(
σ′
)
.

The proof follows directly from the definitions of the player cost and the potential.
Remarkably, this holds for both increasing and decreasing cost functions.

Using this key property of the potential, Rosenthal establishes the existence of equi-
libria in unweighted congestion games. Equilibria are exactly the local minimizers of the
potential w.r.t. single player deviations. That is

a profile σ is an equilibrium ⇐⇒ ∀p ∈ P∀s′ ∈ Sp : Φ(σ) ≤ Φ
((
s′, σ−p

))
.

This also shows that the improving-dynamics in unweighted games always terminates.
This potential is the main tool until today to show the existence of equilibria and to
discuss the quality of equilibria. In Chapter 4, we follow the line of existing work and
use Φ to derive upper bounds on the quality of equilibria in undirected network games.

Games having an exact potential are called potential games. Monderer and Shapley
[MS96] show that the set of potential games and the set of unweighted congestion games
are the same (up to isomorphism). This immediately creates the need to find similar
concepts for weighted games. There has been progress on designing approximate potential
functions for weighted games with the property, that local minimizers are approximate
equilibria. In Section 3.6, we show that the social cost is an approximate potential for
any weighted congestion game with non-decreasing cost functions.
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2 Preliminaries

Quality of Equilibria We are interested in the quality of equilibria in terms of the social
cost. Equilibria are stable states in a system with selfish players, where every player is
satisfied and does not want to deviate. However, from a centralized perspective they may
not be optimal in terms of social cost. While a centralized authority wants to enforce a
state which has smallest possible total cost, this may incur a high cost for some players.

Two quantities have been introduced in the literature to measure the difference of
system optima and equilibria. The Price of Anarchy (PoA) measures how far apart the
social cost of an equilibrium can be from a system optimum. The term was coined by
Papadimitriou [Pap01] while the concept has been studied before by Koutsoupias and
Papadimitriou [KP99]. We define the PoA of an instance G of an unweighted game as

PoA(G) = max
σ∗ equilibrium in G

C(σ∗)
C(OPT(G)) .

We are interested in the highest possible PoA over a class of instances. We overload
notation and define

PoA(I) = sup
G∈I

PoA(G)

to be the PoA over a class I of instances of a game.
The PoA is very pessimistic as it measures the worst thing happening when introducing

selfish players to a system. In contrast to that, the Price of Stability (PoS) has later been
studied to consider the best thing that can happen when introducing selfish players. The
term is introduced by Anshelevich et al. [Ans+08a] while the concept has been studied
before by Schulz and Stier-Moses [SS03] and Anshelevich et al. [Ans+03]. The PoS of
an instance G of an unweighted game is defined as

PoS(G) = min
σ∗ equilibrium in G

C(σ∗)
C(OPT(G)) .

We refer to an equilibrium of minimal social cost in an instance as the best equilibrium
if it is a global minimizer among all equilibria or one of the best otherwise.

Similar to the PoA we are interested in the PoS over a class of instances and write

PoS(I) = sup
G∈I

PoS(G)

for the PoS over the class of instances I.
In Chapter 4, we study network games parametrized by the number of players. For

every n ∈ N we define Nn to be the set of network games with at most n players. For
this class we abbreviate PoA(Nn) by PoA(n) and PoS(Nn) by PoS(n). When we are
looking at subclasses of network games (like multicast, or broadcast games), we also use
PoA(n) and PoS(n) to denote the PoA and PoS over the respective subclass.

2.3 Graphs
We use standard terminology and notation for undirected and directed graphs as can be
found for example in [Die17].
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2.3 Graphs

Undirected Graphs An undirected graph G = (V,E) consists of a (finite) set of nodes
V and a set of edges E ⊆

(V
2
)
. Every edge e consists of two nodes, which we refer to as

the endpoints of e. We say a node is incident to an edge, if it is one of the endpoints of
the edge. Two edges are incident if they share a common endpoint. Further, two nodes
u and v are adjacent, if {u, v} is an edge in E. In this case, we also say that u is a
neighbor of v. Since the edges are undirected, then also v is a neighbor of u.

The main relevant concept in graphs is that of a path connecting two nodes. A u− v
path is a sequence of nodes (v0, v1, . . . , vk) such that all nodes are different, v0 = u, vk =
v, and every pair of consecutive nodes are neighbors of each other, i.e., {vi−1, vi} ∈ E.
We identify a u − v path simultaneously by its sequence of nodes and by its sequence
of edges. A sequence of nodes (v0, v1, . . . , vk, v0), where (v0, v1, . . . , vk) is a path and
{vk, v0} ∈ E, is called a cycle. Two nodes u and v are said to be connected in G, if there
exists a u − v path in G. A set of nodes is said to be connected, if every pair of nodes
in the set is connected. If the whole set of nodes V is connected, we say the graph G is
connected.

If every edge of the graph is associated with a length (or cost) `(e) ∈ R, then the
length of a path is the sum of the lengths of its edges. A shortest u−v path in G w.r.t. `
is a u− v path in G of minimal length induced by the edge lengths given by `.

A path is a cycle-free way to connect two nodes. One generalization of paths, are cycle-
free connections between a set of nodes. Those are called trees. A graph G = (V,E) is
a tree, if G is connected and does not contain any cycles. In a tree there is exactly one
path between any pair of nodes. A graph (not necessarily connected) without any cycles
is said to be acyclic.

Sometimes, we are only interested in a part of a graph G = (V,E). A graph G′ =
(V ′, E′) containing only a subset of the nodes (V ′ ⊆ V ) or a subset of the edges (E′ ⊆ E)
is called a subgraph of G. A special subgraph of a connected graph G = (V,E) is a
spanning tree. That is, a subgraph G′ = (V ′, E′) that is a tree and contains all nodes
of G, i.e., V ′ = V . Other types of subgraphs can be obtained by specifying the set of
nodes. A subgraph G′ = (V ′, E′) of G = (V,E) is induced by V ′, if E′ contains exactly
those edges of E that have both endpoints in V ′. We write G[V ′] for the subgraph of G
induced by the node set V ′ ⊆ V .

Directed Graphs In contrast to undirected graphs, where the edges are bidirectional,
the edges in directed graphs are unidirectional. To clearly distinguish the case of bi- and
unidirectional edges, we refer to the latter as arcs. A directed graph G = (V,A) is given by
a set of nodes V and a set of (directed) arcs A ⊆ V ×V . An arc a = (u, v) is directed from
u to v. We denote by tail(a) = u the tail of a and by head(a) = v the head of a. Similarly
to before, two nodes u and v are neighbors, if there is an arc connecting both. From the
direction of the arc, we get two types of neighbors. For an arc (u, v), u is an in-neighbor
of v and v is an out-neighbor of u. We denote by N−A (v) = {u ∈ V : (u, v) ∈ A} the set
of all in-neighbors of v w.r.t. the arc set A. Similarly, N+

A (v) = {w ∈ V : (v, w) ∈ A}
denotes the set of all out-neighbors of v w.r.t. A. Sometimes we need the in- and outgoing
arcs for a node. We define δ−A(v) = {a ∈ A : head(a) = v} and δ+

A(v) = {a ∈ A : tail(a)}.
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2 Preliminaries

Most of the definitions for undirected graphs can be naturally adapted to directed
graphs. A directed u→ v path is a sequence of nodes (v0, v1, . . . , vk) such that all nodes
are different, v0 = u, vk = v, and there is an arc between every pair of consecutive nodes,
i.e., (vi−1, vi) ∈ A. As before, we identify a directed path with its sequence of nodes and
its sequence of arcs. A directed cycle is a sequence of nodes (v0, v1, . . . , vk, v0), where
(v0, v1, . . . , vk) is a directed path and (vk, v0) ∈ A.

As counter-part to undirected acyclic graphs, directed acyclic graphs (dag for short)
are directed graphs without any directed cycles. A directed acyclic graph induces a
topological ordering of its nodes, that is a linear order such that every arc goes from left
to right, i.e., for an arc (v, w) ∈ A it holds v < w in the topological ordering. A linear
ordering where all arcs go from right to left, i.e., for (v, w) ∈ A we have v > w, is called
a reverse topological ordering. There may be several topological orderings for a directed
acyclic graph.

A multigraph is a (directed or undirected) graph where there can be multiple edges
or arcs between the same nodes. The definitions of path and cycle naturally extend to
multigraphs.

In Chapter 3, we only consider directed graphs and in Chapter 4, we mainly focus on
undirected graphs. In Chapter 5, we look at both directed and undirected graphs and a
mix of both: mixed graphs, that contain both undirected edges and directed arcs. The
definitions and notation for mixed graphs are given in Chapter 5.

2.4 Running Time and Complexity Classes

We very briefly introduce the concept of running time and the complexity classes consid-
ered in this thesis. We do not give a full introduction to complexity theory. In particular,
we assume the reader to be familiar with (non-)deterministic Turing machines. For the
first parts, the descriptions used here and more details can be found in the book [AB09].
For local search problems, we refer to the original papers by Johnson, Papadimitriou,
and Yannakakis [JPY88] and Schäffer and Yannakakis [SY91].

Running Time The running time of an algorithm measures how many elementary op-
erations are needed until the algorithm stops. We are in particularly interested in the
worst-case running time, that is, the largest number of operations needed for any input
of size at most n. The size of the input is the number of bits needed to represent the
necessary information. Often we are only interested in the asymptotic behavior of the
running time and do not consider the exact number of operations.

We use the following notation for the asymptotic behavior of functions f : N → R≥0
for large arguments. We write f ∈ O(g), if there are constants c ∈ R>0 and n0 ∈ N such
that ∀n ≥ n0 : f(n) ≤ cg(n). This means that the asymptotic behavior of f is upper
bounded by the asymptotic behavior of g, up to some constant factor. On the other
hand, we introduce f ∈ Ω(g) for the reverse relation, that is, f is asymptotically lower
bounded by g. Formally, f ∈ Ω(g), if there are constants c ∈ R>0 and n0 ∈ N such that
∀n ≥ n0 : f(n) ≥ cg(n). If we have both f ∈ O(g) and f ∈ Ω(g), we write f ∈ Θ(g).
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The running time of an algorithm is a function f : N → N, where f(n) gives the
maximal number of elementary operations needed to stop for an input of size at most
n. An algorithm runs in polynomial time, if f ∈ O(p), for some polynomial p.

Decision Problems Every Yes/No-question is a decision problem. Often they are
stated in the form: given an instance of some problem, does there exist a solution
with some desirable properties? For example, given a congestion game, does it have an
equilibrium? Or, given a Boolean formula, does it have a satisfying assignment?

Both of the above examples are members of the class NP. This class contains exactly
those decision problems for which it is easy to check whether some solution has the
desired properties. For congestion games this means, given any strategy profile it can
be efficiently checked whether this profile is an equilibrium. For a Boolean formula one
can efficiently check whether some assignment of the variables is satisfying. Here easy
and efficiently mean, by an algorithm (a Turing machine) that takes time polynomial in
the size of the input instance. Formally, the class NP contains all languages that can
be decided in polynomial time by a non-deterministic Turing machine. Languages that
can be decided in polynomial time by deterministic Turing machines are collected in the
class P. We say, an instance of a decision problem is a Yes-instance, if and only if the
answer to the corresponding question is “Yes”. Otherwise, the instance is a No-instance.
For example the Boolean formula x ∧ y is a Yes-instance to the satisfiability problem,
since there is a satisfying assignment (set both variables x and y to True).

We give two examples of problems in NP, that will be used later in the thesis.
Example 7. Circuit Satisfiability is the following decision problem: Given a Boolean
circuit with n input bits and one output bit, is there an assignment for the input bits
such that the circuit outputs 1?

The size of the instance is the number of input bits plus the number of gates in the
circuit. As for Boolean formulas, we observe that the problem is indeed in NP. Given
an assignment of the input bits, we can efficiently check whether the circuit outputs 1
by just evaluating the circuit. y

Example 8. An instance of Exact-Cover by 3-Sets (X3C) is given by a ground set X and
a family S of 3-element subsets of X. The question is, whether there exists an exact
cover of X, i.e., is there a C ⊆ S such that every element of X appears in exactly one of
the sets in C?

The size of an instance is the number of elements in X plus the size of S. Given a
subset C of S we can efficiently check for every element of X, whether it is contained in
exactly one of the sets in C. Hence, X3C is in NP. y

Some problems in NP seem to be more difficult than others. Karp [Kar72] introduced
a notion of reducibility among problems in NP. A polynomial-time (Karp) reduction
from a problem P ∈ NP to another problem Q ∈ NP consists of a polynomial-time
computable function ϕ, that maps instances I of P to instances of Q such that I is a
Yes-instance for P if and only if ϕ(I) is a Yes-instance for Q. A problem is said to be
NP-complete, if it is a member of NP and there is a polynomial-time reduction from any
other problem in NP to the complete problem. If there is a reduction from any problem
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in NP to some problem P, but that problem is not necessarily a member of NP, then
P is said to be NP-hard.

Both example problems Circuit Satisfiability [Pap94] and X3C [GJ90] are NP-
complete. We use Circuit Satisfiability in Section 3.4 to show NP-hardness of
several questions related to the existence of approximate equilibria in polynomial con-
gestion games. In Section 4.7.3, X3C is used as starting point in reductions showing
that computing special equilibria in multi- and broadcast games is NP-hard.

Counting Problems Another type of problems that arise in some applications is the
question of how many solutions do exist? Problems of this type are collected in the
class #P (sharp P) defined by Valiant [Val79]. Informally, a function f : {0, 1}∗ → N is
in #P if f(x) counts all accepting paths of a polynomial-time nondeterministic Turing
machine for input x. A function f is #P-complete, if it is a member of #P and any
other function in #P can be computed by a polynomial-time Turing machine with an
oracle for f . We refer to the original paper [Val79] and the book [AB09] for the details.

Many counting versions of NP-completes problems give rise to #P-complete problems.
In particular, if a (Karp) reduction from a decision problem A to a decision problem B
is parsimonious, that is, it maintains the number of solutions (it induces a one-to-one
mapping between the solution sets), then the #P-hardness of A can immediately be
transferred to B.
Example 9. The counting version of Circuit Satisfiability is #P-complete as can
be seen by observing that the Cook-Levin reduction gives a one-to-one mapping from
certificates to satisfying assignments. y

Interestingly, there are also #P-complete problems, whose corresponding decision
problems are easy. Valiant [Val79] shows that counting the number of perfect matchings
in a bipartite graph (or equivalently, computing the permanent of a matrix) is #P-
complete. But deciding whether a bipartite graph has a perfect matching can be done
efficiently for example by a computation of a determinant.

We use the counting version of Circuit Satisfiability in Section 3.5 to show #P-
hardness of counting the number of α-equilibria in weighted polynomial congestion games
by giving a parsimonious reduction from Circuit Satisfiability.

Local Search Problems In contrast to decision problems, where the question is whether
there exists some feasible solution, we are often in the situation where several feasible
solutions exist, and we want to find a locally optimal one. To study the complexity of
local search algorithms Johnson, Papadimitriou, and Yannakakis [JPY88] introduce the
class of polynomial-time local search problems (PLS). The key property of a problem
in PLS is that there is a polynomial-time algorithm to decide if a solution is a local
optimum and if not, give a better solution in the neighborhood. This immediately
suggests a standard algorithm to solve such local search problems. Start with any
feasible solution and do local improvements until we reach a local optimum. Each step
can be done in polynomial time, but the question remains how many steps this algorithm
may have to take before terminating. Johnson, Papadimitriou, and Yannakakis [JPY88]
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show that there is a problem where this standard algorithm takes exponentially many
steps in the worst case. They further define a reduction among problems ins PLS and
give a complete problem for the class PLS. Later Schäffer and Yannakakis [SY91] show
PLS-completeness of a variety of local search problems. Their reductions preserve the
property that the standard algorithm may take exponentially many steps.

We give the formal definitions of PLS and PLS-reduction from [JPY88] and [SY91].
An instance I of a local search problem P is associated with a set of feasible solutions
F(I). For every feasible solution S there is a set N (S, I) ⊆ F(I) of feasible solutions
which are called neighbors of S. Further, every feasible solution S has a measure µ(S, I) ∈
R≥0. A solution S is a local optimum, if there is no better solution in its neighborhood.
If µ is to be maximized that means S is a local optimum, if µ(S′, I) ≤ µ(S, I) for every
S′ ∈ N (S, I) in the neighborhood of S. If µ is to be minimized the inequality should
hold in the other direction. The task is to find a local optimum for a given instance.

A local search problem P is in PLS, if all of the following hold.
(i) For every instance I, some feasible solution in F(I) can be computed in polynomial

time.
(ii) The measure of a feasible solution can be computed in polynomial time.
(iii) For every feasible solution S, it can be decided in polynomial time whether S

is a local optimum, and if not, a better solution in N (S, I) can be computed in
polynomial time.

Example 10. Max Cut([SY91]) is a problem in PLS. An instance of Max Cut is given
by an undirected graph (V,E) with positive edge weights w ∈ RE>0. A feasible solution
is a partition of the nodes V = V1 ∪̇ V2. The measure is the sum of the weights of edges
crossing the cut

µ(V1, V2) =
∑

e∈E∩(V1×V2)
w(e)

which is to be maximized. The neighbors of a partition consists of all partitions reached
by moving a single node from one side of the partition to the other side.

We can compute some feasible solution by just setting V1 = V and V2 = ∅. The
measure of a partition can be computed in polynomial time. Since we can compute the
measure of all neighbors by looking at every vertex individually, also the third point is
satisfied. y

P Q

I I ′

S′S

ϕinstance

ϕsolution

local optimum

Figure 2.1: Schematic drawing of a PLS-reduction from P to Q. An instance I of P is trans-
formed to an instance I ′ of Q by the function ϕinstance and any local optimum of I ′ is mapped
to a local optimum of I by ϕsolution.
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A PLS-reduction from a problem P ∈ PLS to another problem Q ∈ PLS consists of
two polynomial-time computable functions ϕinstance and ϕsolution. Where ϕinstance maps
instances of P to instances of Q and ϕsolution maps solutions of ϕinstance(I) to solutions
of I. The main property is that both functions maintain local optima. If SQ is a local
optimum of ϕinstance(I), then ϕsolution(SQ, I) is a local optimum of I. Note that the
reverse direction need not hold, i.e., not every local optimum of I has to appear as a
local optimum of ϕinstance(I). Figure 2.1 shows a schematic drawing of a PLS-reduction.

As for the class NP, there are problems that are complete for PLS. That is they
are member of PLS, and there is a PLS-reduction from any other problem in PLS to
the complete problem. Schäffer and Yannakakis [SY91] show that Max Cut is PLS-
complete. We use this problem in Section 4.7.2 as starting point of a PLS-reduction to
show that finding an equilibrium in a class of network games is PLS-complete.

2.5 Modeling Languages and Solution Methods
We briefly introduce the two languages used in this thesis to model optimization and
decision problems. For our theoretical results we use linear programs and the main
tool of duality. For the computational experiments we use satisfiability modulo theories
(SMT). Notation and details for linear programs can be found in [Sch00]. For a detailed
description of SMT and SMT solvers we refer to [KS16].

Linear Programming A linear program (LP) is an optimization problem of a linear
function over a set of points defined by linear inequalities. The canonical form of an LP
is

max c>x (2.5)
s.t. Ax ≤ b (2.6)

x ≥ 0, (2.7)

where x ∈ Rn are the variables, c ∈ Rn and b ∈ Rm are vectors, and A ∈ R(m×n) is a
coefficient matrix. The linear function x 7→ c>x is called the objective function and for a
vector x the value c>x is the objective (function) value of x. The linear constraints (2.6)
and (2.7) define a polyhedron {x ∈ Rn : Ax ≤ b ∧ x ≥ 0}. This polyhedron is called the
feasible region of the LP and a point x in this polyhedron is a feasible solution of the
LP. If the feasible region is empty, the LP is said to be infeasible. A feasible solution
with maximal objective function value is called an optimal solution and the maximal
objective function value is called the optimal value of the LP. If the objective function
is unbounded on the feasible region, the LP is called unbounded. Otherwise, the LP is
bounded. A bounded LP can have several optimal solutions but there is always at least
one optimal solution that is a vertex of the feasible region.

To find the optimal value of a bounded LP, one can thus compute the objective
function value for all vertices of the feasible region and take the maximum. A vertex
x of an n-dimensional feasible region is specified by n linearly independent constraints
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that are active at x, i.e., x satisfies them with equality. Thus, a vertex is the solution
of a system of linear equations derived from n of the inequality constraints defining the
feasible region. In the context of linear programming, the vertices of the feasible region
are called basic feasible solutions.

Duality. If one is only interested in bounding the value of an LP, one can make use of
duality. The following two linear programs are called dual to each other:

max c>x (primal)
s.t. Ax ≤ b

x ≥ 0

min b>y (dual)
s.t. A>y ≥ c

y ≥ 0.
The dual of an LP has a variable for every inequality in the primal, thus y ∈ Rm. Strong
duality shows that the optimal values of the primal and the dual are the same, if both
feasible regions are non-empty. To bound the optimal value of the primal, it suffices to
show that both feasible regions are non-empty, i.e., by giving feasible solutions. Then,
the dual objective function value of any dual feasible solution is an upper bound on the
optimal value of the primal and thus an upper bound on the objective function value
for any primal feasible solution. This is called weak duality of linear programs. More
details can be found in the book [Sch00].

In Section 4.6, we determine the optimal value of an LP by looking at all basic feasible
solutions. In Section 4.5.2, we use weak duality to show one of the key inequalities.
We set up an LP and give feasible solutions to the primal and dual such that the
corresponding objective function values are the left- and right-hand side of the inequality.

Algorithms. There are several algorithms to solve LPs. The most used algorithm in
practice is the Simplex algorithm invented by Dantzig in 1947 (see [Dan90]). This
algorithm follows the approach of looking at the basic feasible solutions of the LP. It
goes from vertex to vertex of the feasible region as long as the objective function value
increases. Since there are only finitely many vertices, this process terminates. But there
are examples [KM72] where the number of vertices visited by the Simplex algorithm
is exponential in the input size. The Simplex algorithm is thus not efficient in the
worst-case. However, in practice it works very well. In contrast to that, there are
polynomial-time algorithms to solve LPs, that are not useful in practice. The extension
of the ellipsoid method for non-linear programs (where the constraints or the objective
function are non-linear) to linear programs by Khachiyan [Kha80] is the first.

Satisfiability Modulo Theories The constraints of an LP are a conjunction of several
linear inequalities. For some applications it is useful to extend this model by allowing
more Boolean combinations of linear inequalities like disjunction or implication. For
example, one might have to model a constraint of the form “If x ≤ 3, then y + z ≥ 5 or
y ≤ 7”. Such combinations of a Boolean structure on top of an underlying theory can
be expressed with the language of satisfiability modulo theories (SMT). In this thesis,
we consider only quantifier-free formulas over the linear fragment of the theory of reals
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(QF LRA)1. Such formulas model Boolean combinations of linear inequalities of real
variables as in the example above. For a detailed introduction to SMT we refer to the
book [KS16].

In contrast to optimizing some objective function as in LPs, here the question is
whether there is an assignment for the variables such that the formula is satisfied. One
can, however, approximate the optimal value of an LP by solving several satisfiability
problems. Each time we add a new constraint of the form “objective function value >
previous value”. We use this method in Section 4.6.5 to lower bound the optimal value
of an LP with additional Boolean combinations of linear inequalities.
SMT Solvers. State-of-the-Art SMT solvers combine solvers for checking the satisfiabil-
ity of Boolean formulas (SAT solvers) with decision procedures for conjunctions in the
underlying theory. In our case of QF LRA, the latter are feasibility questions of LPs,
i.e., the existence of a point satisfying a set of linear inequalities. The framework of such
SMT solvers is DPLL modulo theories (DPLL(T)) introduced by Tinelli [Tin02]. It is
an extension of the DPLL framework for SAT named after its inventors Davis, Putnam,
Loveland, and Logemann. The key idea is to use a SAT solver for the outer Boolean
formula where the inner inequalities are abstractly represented as Boolean variables. If
the SAT solver finds a satisfying assignment for those Boolean variables, the correspond-
ing inequalities (whose assignment is set to True) are handed to the feasibility checker.
Using a variant of the Simplex algorithm known as the general Simplex algorithm, the
checker tries to find an assignment for the real variables satisfying all of the given in-
equalities. If there is an assignment, the formula is satisfiable and an assignment has
been found. Otherwise, a new satisfying assignment for the outer Boolean variables has
to be found. To prevent the same assignment from appearing again, the negation of
the current conjunction is added as new clause. Several improvements on this proce-
dure have been developed by exchanging more information between the SAT solver and
the feasibility checker. In our computational experiments in Section 4.6.5, we use the
SMT solver OpenSMT2 [Hyv+16]. It is the winner of the 15th International Satisfiability
Modulo Theories Competition (SMT-COMP 2020)2 in the Single Query Track of the
QF LRA division.

2.6 Weighted Harmonic Mean

In Section 4.6, we use as tool the weighted harmonic mean of some values. We intro-
duce the notation and some properties used later. The weighted harmonic mean of the
elements r1, . . . , rn ∈ R>0 with weights w1, . . . , wn ∈ R≥0 is defined as

H((w1, r1), . . . , (wn, rn)) = w1 + . . .+ wn
w1
r1

+ . . .+ wn
rn

.

We observe the usual properties of a mean.
1see https://smtlib.cs.uiowa.edu/logics.shtml
2https://smt-comp.github.io/2020/
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2.6 Weighted Harmonic Mean

Observation 1.
(i) The mean is between the minimal and maximal element, irregardless of the chosen

weights:

min{r1, . . . , rn} ≤ H((w1, r1), . . . , (wn, rn)) ≤ max{r1, . . . , rn}.

(ii) The mean of n elements can be recursively computed by computing the means of
two elements:

H((w1, r1), (w2, r2), (w3, r3)) = H((w1, r1), (w2 + w3,H((w2, r2), (w3, r3)))).

We show two monotonicity properties of the weighted harmonic mean. First, we show
that decreasing the weight of the smaller element or increasing the weight and the value
of the larger element increases the weighted harmonic mean.

Lemma 1. For elements r1, r2, r
′
2 ∈ R≥0 with r1 ≤ r2 ≤ r′2 and weights w1, w

′
1, w2, w

′
2 ∈

R≥0 with w1 ≥ w′1 and w2 ≤ w′2 the weighted harmonic means satisfy

H((w1, r1), (w2, r2)) ≤ H
(
(w′1, r1), (w2, r2)

)
(2.8)

and
H((w1, r1), (w2, r2)) ≤ H

(
(w1, r1), (w′2, r′2)

)
. (2.9)

Proof. We have

H((w1, r1), (w2, r2)) ≤ H
(
(w′1, r1), (w2, r2)

)
⇐⇒ w2

( 1
r1
− 1
r2

)(
w′1 − w1

)
≤ 0.

As w2 ≥ 0 we look at the remaining factors on the right hand side. Since r1 ≤ r2 the
second factor is non-negative and as w1 ≥ w′1 the third factor is negative. Thus, the
right hand side is satisfied and (2.8) holds.

For (2.9), we similarly compute

H((w1, r1), (w2, r2)) ≤ H
(
(w1, r1), (w′2, r′2)

)
⇐= w′2

( 1
r′2
− 1
r2

)(
w1 + w′2

)
≤ 0,

where we used w2 ≤ w′2. As r2 ≤ r′2 the right hand side is satisfied and (2.9) holds.

The next lemma shows other conditions under which the mean increases. They arise
in the computations done in Section 4.6.

Lemma 2. For elements r1, r
′
1, r2 ∈ R≥0 with

r1 ≤ r2 and r1 ≤ r′1

and weights w1, w
′
1, w2, w

′
2 ∈ R≥0 where

w′2 = xw2 and w′1 ≤ xw1

for some x ∈ R≥0, the weighted harmonic means satisfy

H((w1, r1), (w2, r2)) ≤ H
(
(w′1, r′1), (w′2, r2)

)
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Proof. From the definition of the weighted harmonic mean, we see that multiplying the
weights with the same factor does not change the mean

H((w1, r1), (w2, r2)) = H((xw1, r1), (xw2, r2)).

With (2.8) we get the relation

H((xw1, r1), (xw2, r2)) ≤ H
(
(w′1, r1), (w′2, r2)

)
.

From the definition we also have that increasing one of the elements increases the mean,
which finally gives the inequality from the statement

H((w1, r1), (w2, r2)) ≤ H
(
(w′1, r1), (w′2, r2)

)
≤ H

(
(w′1, r′1), (w′2, r2)

)
.
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3 Existence and Complexity of Approximate
Equilibria in Weighted Congestion Games

3.1 Introduction

We begin with the situation where using the same resource is disadvantageous for the
players.

Consider a group of mathematicians and a group of computer scientists who want to
offer some cookies to their visitors. Each group needs small cookies to be served with a
cup of tea and large cookies to be served on their own. There are 4 local bakeries that
produce cookies of different sizes, shapes, and flavors. In Figure 3.1, we see that bakery
1 produces small, round, classic chocolate chip cookies. Bakery 2 produces large, round,
plain shortbread. Bakery 3 produces small, rectangular, plain shortbread. Finally,
bakery 4 produces large, rectangular, classic chocolate chip cookies. Both of the groups

1 2

3 4

4

1

1
4x

1
32x

2

Figure 3.1: Four bakeries producing cookies of different size (small or large), shape (round
or rectangular), and flavor (with chocolate chunks or plain shortbread). The production times
depending on the number of packages x is given at the top in gray. A choice of the computer
scientists is shown in orange. They need 4 packages of each size. A choice of the mathematicians
is shown in purple. They only need 1 package of each size.

have different criteria for choosing the combination of their small and large cookies. The
computer scientists prefer to have the same shape for both versions. So they either order
the round cookies at bakeries 1 and 2 or the rectangular ones from bakeries 3 and 4.
The mathematicians, on the other hand, prefer to have the same type of cookies. They
either order the classic chocolate chip cookies from bakeries 1 and 4 or the shortbread
from bakeries 2 and 3.
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All of the bakeries follow the same procedure of handling their orders. They first
collect the orders, that is, the number of cookies to be produced, then they bake the
cookies, and finally (once all of the cookies are done) they are packaged and delivered to
the customers. The time between placing an order and getting the cookies thus depends
on the total number of cookies produced by the respective bakery. All bakeries sell
packages of 100 cookies. The bakeries for the small cookies take 1

4 unit of time per
package to be produced. While the bakeries for the large cookies take 1

32 unit of time
for the square of the number of packages to be produced (see Figure 3.1).

As there are more computer scientists, they need 400 cookies (4 packages) of both
sizes and the mathematicians only need 100 (1 package). Now the question arises, where
should both groups place their orders to get the cookies as quickly as possible?

Figure 3.1 shows one choice of the two groups: the computer scientists (orange) chose
the round shape and the mathematicians (purple) chose the chocolate chip cookies. In
this scenario, the waiting time for the mathematicians is 1

4(4 + 1) + 1
32 = 41

32 . If they
would instead go for the shortbread, assuming the computer scientists still want the
round cookies, the waiting time would be 1

4 + 1
32(4 + 1)2 = 33

32 . Hence, they would save
some time by switching to ordering shortbread. Computing the waiting time of the
computer scientists in the resulting scenario shows that they now would save some time
by changing their order. These considerations can be continued, and one observes that
in each of the 4 possible choices of the two groups, one group can save some time by
changing their order. Thus, there is no stable scenario where none of the groups can
decrease their waiting time.

However, both mathematicians and computer scientists are lazy people. They are only
willing to change their order if the waiting time decreases by at least one-half of the time
they are currently experiencing. In the scenario shown in Figure 3.1, the mathematicians
are too lazy to change their order, and the computer scientists can not decrease their
waiting time by changing their order. Hence, this is a lazy stable state.

We have seen that stable states do not necessarily exist, but stable states are obtained
once the players are lazy enough. In this chapter, we study the following questions. How
lazy do the players have to be to obtain stable states? Given a situation as above and
a value of the laziness, can one decide whether there is a lazy stable state?

The above situation can be modeled as a weighted congestion game as introduced in
Section 2.2, where the resources are the bakeries, the players are the two groups with
the number of needed packages being their weight, and the strategies are the choices
of the bakeries as explained above. The costs incurred to the players are the waiting
times. The stable states in this game are the pure Nash equilibria (equilibria). We
have seen in the example in Figure 3.1 that there are weighted congestion games that
do not have equilibria. Hence, a natural approach is to relax the condition and study
α-approximate pure Nash equilibria (α-equilibria). These are states where none of the
players can decrease her cost by a factor of α ≥ 1 (the laziness). Notice that for α = 1
the 1-equilibria are the same as the equilibria. To distinguish this case, we refer to 1-
equilibria as exact equilibria. If the factor α is large enough, then α-equilibria do exist
in any game. We study how large α has to be such that α-equilibria are guaranteed to
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exist, and how hard it is to check for a specific game and a given factor α, whether the
game has an α-equilibrium.

Note on Collaboration This chapter is based on joint work with George Christodoulou,
Martin Gairing, Yiannis Giannakopoulos, and Diogo Poças. The results were presented
at ICALP 2020 [Chr+20]. A full version of the conference paper is accepted for publi-
cation at Mathematics of Operations Research. The presentation of this chapter follows
closely the one in the full version. Here we add a small discussion on transferring our
results to network games.

Previous Work We give a brief overview of the literature related to the existence of
exact and approximate equilibria in weighted congestion games. As in the rest of this
chapter, we focus on polynomial congestion games.
Exact Equilibria. As mentioned already in the introduction of this thesis, Rosenthal
[Ros73] showed that unweighted congestion games always have exact equilibria.

On the other hand, for weighted congestion games, there are examples that do not have
any equilibria. Libman and Orda [LO97; LO01], Fotakis, Kontogiannis, and Spirakis
[FKS04; FKS05], and Goemans, Mirrokni, and Vetta [GMV05] give instances of network
games with two players of weights 1 and 2 that do not have equilibria. Goemans,
Mirrokni, and Vetta use polynomial cost functions of degree 2.

On the positive side, there are special cases of weighted games where equilibria are
guaranteed to exist. Fotakis, Kontogiannis, and Spirakis [FKS04; FKS05] show that
network games with linear cost functions always have equilibria. Equilibria also exist
for exponential cost functions, as shown by Panagopoulou and Spirakis [PS07], Harks,
Klimm, and Möhring [HKM09; HKM11], and Harks and Klimm [HK10; HK12].

Besides restricting the cost functions of the game, one can also consider special struc-
tures of the strategies to obtain the existence of equilibria. Fabrikant, Papadimitriou,
and Talwar [FPT04] and Fotakis, Kontogiannis, Koutsoupias, Mavronicolas, and Spi-
rakis [Fot+02; Fot+09] show that singleton games (where every strategy consists of
exactly one resource) possess equilibria. The same holds for games with the matroid
property (where strategies consist of bases of a matroid over the resources), as shown by
Ackermann, Röglin, and Vöcking [ARV06; ARV08].

Dunkel and Schulz [DS06; DS08] show that deciding whether an equilibrium exists
is NP-complete, even for weighted symmetric network games with step cost functions.
They extend the non-existence instance of Fotakis, Kontogiannis, and Spirakis [FKS04;
FKS05] to a gadget that is used in a reduction from 3-Partition ([GJ90]).
Approximate Equilibria. The currently largest known lower bound on the non-existence of
approximate equilibria in weighted polynomial congestion games is given by Hansknecht,
Klimm, and Skopalik [HKS14]. They construct two-player polynomial congestion games
of degree 4 that do not have α-equilibria where α ≈ 1.153.

On the positive side, Caragiannis, Fanelli, Gravin, and Skopalik [Car+11] show that
polynomial congestion games of degree d always have d!-equilibria. This factor was later
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improved to d + 1 by Hansknecht, Klimm, and Skopalik [HKS14] and finally to d by
Caragiannis and Fanelli [CF19; CF21].

To the best of our knowledge, there are no known lower bounds on the existence of
approximate equilibria in weighted congestion games with general cost functions.

Our Results

Lower Bounds on the Non-Existence. We construct weighted congestion games with poly-
nomial and general cost functions that do not have α-equilibria, where α is lower bounded
by a super-constant.

For polynomial cost functions of degree d, we give games that do not have α-equilibria,
for any α < α(d), where α(d) grows as Ω

(√
d

ln d

)
(Section 3.3, Theorem 1). In contrast to

the previous constant lower bound of α ≈ 1.153, we had to use a construction where the
number of players grows as a function of d.

For general cost functions, we study the non-existence of α-equilibria depending on
the number of players n in Section 3.6. We build games with n players that do not
have α-equilibria, for any α < α(n), where α(n) grows as Ω

(
n

lnn
)

(Theorem 5). Our
cost functions are step functions with a single breakpoint. We almost match this lower
bound by showing that n player games always have n-equilibria (Theorem 4). Thus, one
cannot derive super-constant lower bounds for the non-existence with instances with a
fixed number of players (as for example studied by Hansknecht, Klimm, and Skopalik
[HKS14]).

Hardness Construction. In Section 3.4, we create a polynomial unweighted congestion
game from a Boolean circuit, such that in any α-equilibrium, the players emulate the
computation of the circuit, for any α < 3d/2. This allows us to transfer hardness results
from Circuit Satisfiability to the hardness of deciding the existence of α-equilibria.
Inspired by similar results of Conitzer and Sandholm [CS08] for mixed equilibria, we show
NP-hardness of deciding the existence of pure α-equilibria with additional properties
(Theorem 2), such as: Is there an α-equilibrium where a specific resource is used by at
least one player? Our hardness results hold for any α < 3d/2. An interesting property of
our construction is that the set of α-equilibria and equilibria are the same. Hence, our
gadget is gap-introducing.

NP-Hardness Results. We use the hardness gadget together with the non-existence gad-
gets to show that the decision versions of the existence of α-equilibria are NP-hard,
where α is bounded by the bounds from the non-existence games.

In particular, for polynomial cost functions, both gadgets are combined in a black-box
way. This immediately gives NP-hardness of the decision version for any polynomial
congestion game without α-equilibria (Theorem 3). In particular, with the non-existence
games from Section 3.3, we obtain that it is NP-hard to decide whether a congestion
game with polynomials of degree d has an α-equilibrium for any α < α(d). Further,
our reduction is parsimonious, showing #P-hardness of counting different α-equilibria
(Corollary 2).
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For general cost functions, a similar combination of both gadgets is shown in Theo-
rem 6. Thus, it is NP-hard to decide the existence of α-equilibria in n player games,
where α < α(n).

We want to point out that in the above decision problems, α is not part of the input.
Further, for polynomial cost functions, we assume the degree d to be fixed and not part
of the problem’s input. In contrast to that, for general cost functions, the number of
players n is part of the problem’s input.

3.2 Model and Notation
We study congestion games as introduced in Section 2.2. For the main part of this
chapter the resource cost functions are polynomials of degree d ∈ N with non-negative
coefficients.

Approximate Equilibria Recall the definition of α-equilibria from Section 2.2. A profile
σ is an α-equilibrium, if for all players p ∈ P and all strategies s ∈ Sp the inequality

Cp(σ) ≤ α · Cp((s, σ−p))

holds. Otherwise, there is a player p with a strategy s′ ∈ Sp \ {σp} for which

Cp(σ) > α · Cp
((
s′, σ−p

))
.

Such a strategy s′ is called an α-improving move for p in σ.
Observe that if a game has an α-equilibrium it also has a β-equilibrium for any β > α.

A game does not have an α-equilibrium, if for every strategy profile there is some player
who has an α-improving move. Similarly to before, if a game does not have α-equilibria,
it also does not have β-equilibria for any β < α.
Example 11. Recall the example from the introduction (Figure 3.1). The given profile
σ is a 2-equilibrium, but the game does not have any exact equilibria. In fact the game
has α-equilibria for any α > 57

56 but for no smaller α. y

Given a partial profile σ−p, a strategy s ∈ Sp is α-dominating for p, if it is an α-
improving move for any other strategy of p. That is

∀s′ ∈ Sp \ {s} : Cp
((
s′, σ−p

))
> α · Cp((s, σ−p)).

Observe that a profile σ where the current strategy σp of every player is α-dominating,
is an α-equilibrium and even an exact equilibrium.

Computational Complexity In this chapter, we study questions of the form: Given a
game G, does G have an α-equilibrium? We are interested in the complexity of deciding
this question for fixed values of α. We make the following assumptions on the games
appearing as input:
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• All players have rational weights.
• The set of available strategies for every player is given explicitly. (In contrast to

congestion games with implicitly given strategies, like network games.)
• For polynomial resource cost functions all coefficients are rationals, and for step

functions the values and breakpoints are rationals.
Our two main results show NP-hardness of deciding the aforementioned question

for any real α below a given bound. This is independent on α being a rational or
an irrational. To show that the problem lies in NP, we have to be able to check in
polynomial time whether a strategy profile is an α-equilibrium. We say a real number α
is polynomial-time computable, if the upper Dedekind cut {q ∈ Q : q > α} is decidable in
polynomial time. As in particular all rationals are polynomial-time computable, we have
NP-completeness of the problem for any rational α below the given bound. We extend
this notion of polynomial-time computability to sequences of reals α : N → R. Such
a sequence is polynomial-time computable if {(n, q) ∈ N×Q : q > α(n)} is decidable in
polynomial time.

3.3 The Non-Existence Gadget
In this section we construct a family of weighted polynomial congestion games of degree
d that do not have α(d)-equilibria, where α(d) grows as Ω

(√
d

ln d

)
.

For a fixed degree d ≥ 2, the game Gd(n,k,w,a) is given by the parameters

n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], and a ∈ [0, 1].

There is a heavy player of weight 1 and n light players 1, . . . , n all of weight w. There
are 2(n+ 1) resources r0, r1, . . . , rn and r′0, r′1, . . . , r′n. The cost function for r0 and r′0 is

c0(x) = xk

and for all other resources the cost is

c1(x) = axd.

Every player has exactly two strategies. The heavy player either plays all r resources or
all r′ resources:

Sheavy =
{
{r0, . . . , rn},

{
r′0, . . . , r

′
n

}}
.

A light player i plays either r0 or r′0 together with her own resource of the other type:

Si =
{{
r0, r

′
i

}
,
{
r′0, ri

}}
.

Figure 3.2 shows the structure of the strategies of Gd(n,k,w,a).
This game is highly symmetric in the strategies and the cost functions of the resources.

Hence, there are only two truly different situations: either the heavy player uses r0 on
her own, or she shares this resource with some of the light players. To show that the
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r0 r1 · · · ri · · · rn

r′n · · · r′i · · · r′1 r′0

Figure 3.2: The strategies of Gd(n,k,w,a). The heavy player plays either all r resources (solid
black) or all r′ resource (dashed black). The two strategies (solid and dashed) of light players
1, i, and n are shown in purple, orange, and light purple, respectively.

game does not have an α-equilibrium, we show that in both situations some player has
an α-improving move. Since we want to find a lower bound on α such that there is an
improving move, we look at specific moves and the changes in the player costs. Choosing
α to be less than those cost ratios, guarantees that the moves are α-improving. If we
then maximize those values over all games, we get a bound α(d) for which there are
games not having α-equilibria for any α < α(d). Finally, we show the asymptotic lower
bound of α(d) by choosing specific values for the parameters.

Now consider a game Gd(n,k,w,a) and a strategy profile where the heavy player is alone
on resource r0. Then every light player i is playing {r′0, ri}. Hence the current cost of
the heavy player is c0(1) + nc1(1 + w). Switching to her other strategy would incur a
cost of c0(1 + nw) + nc1(1). Thus, the improvement factor is

c0(1) + nc1(1 + w)
c0(1 + nw) + nc1(1) = 1 + na(1 + w)d

(1 + nw)k + na
. (3.1)

In the other situation, where the heavy player shares r0 with some light player i, the
current cost of i is at least c0(1 + w) + c1(w). Switching to her other strategy would
incur a cost of at most c0(nw) + c1(1 + w). Thus, the improvement factor can be lower
bounded by

c0(1 + w) + c1(w)
c0(nw) + c1(1 + w) = (1 + w)k + awd

(nw)k + a(1 + w)d . (3.2)

We define

αd(n, k, w, a) = min
{

1 + na(1 + w)d
(1 + nw)k + na

,
(1 + w)k + awd

(nw)k + a(1 + w)d

}
.

Then we have from the above computations that the game Gd(n,k,w,a) does not have an
α-equilibrium for any α < αd(n, k, w, a). Let

α(d) = sup{αd(n, k, w, a) : n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], a ∈ [0, 1]}. (3.3)

We have shown the following theorem.

Theorem 1. For any d ∈ N≥2 there exist weighted polynomial congestion games of
degree d that do not have α-equilibria for any α < α(d).
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10 20 30 40 50 60 70 80 90 100
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2.4

2.6

1.05

d

α(d)

Figure 3.3: Values of α(d) for d ∈ {2, . . . , 100}, as given by (3.3). In particular, for small values
of d = 2, 3, 4 we have α(2) ≈ 1.054, α(3) ≈ 1.107 and α(4) ≈ 1.153.

Figure 3.3 shows the values of α(d) for small values of d. We observe that for d = 2, 3, 4
the supremum of (3.3) is attained at n = 1, i.e., for 2 player games. Our bounds for
α(d) are the same as the ones obtained by Hansknecht, Klimm, and Skopalik [HKS14],
who study the non-existence of approximate equilibria in 2 player polynomial congestion
games. Later we show that games with 2 players can not achieve a higher bound than
2. Thus for larger values of d we need more players to get a higher value in (3.3).

We conclude this section by giving the asymptotic growth of α(d).

Lemma 3. For d ∈ N≥2 we have α(d) ∈ Ω
(√

d
ln d

)
. More specifically, α(d) >

√
d

2 ln d for
large enough d.

Proof. Take the following choice of the parameters:

k =
⌈ ln d

2 ln ln d

⌉
, w = ln d

2d , a = 1
d

k
2(k+1) (1 + w)d

, n =
⌊

1
d

1
2(k+1)w

⌋
.

One can check that for d ≥ 4 these choices satisfy k ∈ {1, . . . , d} and w, a ∈ [0, 1]. We
bound the terms appearing in (3.1) and (3.2) as follows.

1 + na(1 + w)d ≥ 1 +
(

1
d

1
2(k+1)w

− 1
)

1
d

k
2(k+1) (1 + w)d

(1 + w)d

= 1 +
(

2d
d

1
2(k+1) ln d

− 1
)

1
d

k
2(k+1)

= 2d
d

1
2(k+1) + k

2(k+1) ln d
+ 1− 1

d
k

2(k+1)
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≥ 2d
d1/2 ln d

(since d ≥ 1)

= 2
√
d

ln d ; (3.4)

(1 + nw)k + na ≤
(

1 + 1
d

1
2(k+1)w

w

)k
+ 1
d

1
2(k+1)wd

k
2(k+1) (1 + w)d

=
(

1 + d
− 1

2(k+1)

)k
+ 1

d1/2 ln d
2d

(
1 + ln d

2d

)d
=
(

1 + d
− 1

2(k+1)

)k
+ 2

√
d

ln d
(
1 + ln d

2d

)d ; (3.5)

(1 + w)k + awd ≥ 1; (3.6)

(nw)k + a(1 + w)d ≤
(

1
d

1
2(k+1)w

w

)k
+ 1
d

k
2(k+1) (1 + w)d

(1 + w)d

= 2 · 1
d

k
2(k+1)

= 2d
1

2(k+1)
√
d
≤ 2d ln ln d

ln d
√
d

= 2 ln d√
d
. (3.7)

In the Appendix, we prove (Lemma 43) that the final quantity in (3.5) converges to 1
as d goes to ∞. In particular, for large d it is upper bounded by 4. Numerically, we
observe that d ≥ 8 suffices. Thus, we can lower bound the ratios in (3.1) and (3.2) as

1 + na(1 + w)d
(1 + nw)k + na

≥
2
√
d

ln d
4 =

√
d

2 ln d ∈ Ω
(√

d

ln d

)
, (from (3.4), (3.5) and large d)

(1 + w)k + awd

(nw)k + a(1 + w)d ≥
1

2 ln d√
d

=
√
d

2 ln d ∈ Ω
(√

d

ln d

)
. (from (3.6) and (3.7))

3.4 The Hardness Gadget
In this section we show NP-hardness of the existence of approximate equilibria with
additional properties in unweighted congestion games. The main additional property is:
Is a player playing a specific strategy? We show this hardness by a reduction from Cir-
cuit Satisfiability. From a Boolean circuit we construct an unweighted polynomial
congestion game such that in any α-equilibrium the players emulate the computation of
the circuit.
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Circuit Satisfiability Recall the decision problem Circuit Satisfiability as intro-
duced in Section 2.4. For a Boolean circuit C with n input bits and a vector x ∈ {0, 1}n,
we denote the output of C for input x by C(x). So Circuit Satisfiability asks, given
a circuit C, is there a vector x ∈ {0, 1}n such that C(x) = 1?

This problem is NP-hard even for connected acyclic circuits with only 2-input NAND
gates [Pap94]. A 2-input NAND gate computes the negation of the conjunction of its
input bits. Figure 3.4 shows the truth table for a NAND gate. Hence, we only consider

x
y out

x y out
0 0 1
0 1 1
1 0 1
1 1 0

Figure 3.4: Schematic drawing and semantics of a NAND gate.

connected acyclic circuits with 2-input NAND gates in this chapter. We make further
assumptions on the structure of the circuits which do not change the hardness of the
problem. They are merely syntactical transformations.

g3 g2
g1x1

x2

inputs C output

(a) A circuit C.

g5
x1
1

g4
x2
1

g3 g2

1 g1

(b) Canonical form of C.

1

x1

x2

g5

g4

g3 g2
g1

(c) Directed acyclic graph corre-
sponding to C’s canonical form.

Figure 3.5: Example of a circuit C, its canonical form, and the corresponding directed graph.

Circuit Model Firstly, we assume that the two input bits to a NAND gate are different.
If this is not the case, we set one of the input bits of this NAND gate to 1. See g2 in
Figure 3.5b. Observe from the truth table in Figure 3.4 that a NAND gate with one
input fixed to 1 computes the negation of the free input bit just like a NAND gate with
identical input bits.

Secondly, we negate every input bit of the circuit by adding a NAND gate with one
input fixed to 1 in between. See Figure 3.5b for this transformation. Note that negating
the input bits does not change the satisfiability of the circuit. Let C be a circuit and C′
the circuit where we added NAND gates after the input bits as explained above. Then
we have C(x) = C′(x), where x is the vector resulting from x by flipping every bit. Hence,
C is satisfiable exactly if C′ is satisfiable.
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A connected acyclic circuit containing only 2-input NAND gates where both input
bits are different and every input of the circuit is connected to exactly one NAND gate
where the other input is fixed to 1 is said to be in canonical form. See Figure 3.5b for
an example of a circuit in canonical form.

We think of a circuit in canonical form as a directed acyclic graph. Every input bit,
every gate and the fixed input 1 are the nodes of the graph. There is a directed arc
between nodes, if the tail of the arc is an input to the head of the arc. This defines a
directed acyclic graph. See Figure 3.5c for an example graph of a circuit. The gates
are numbered in reverse topological ordering of this graph. Hence, the output bit of
the circuit is the output of the first gate and the successors of a gate have all smaller
numbers, i.e., N+(gk) ⊆ {gj : j < k}. Since the circuit is in canonical form, we further
have

∣∣N+(xi)
∣∣ = 1 for every input bit xi.

Translation to Congestion Games We will now construct a polynomial congestion
game from the canonical form of a Boolean circuit in such a way that in any α-equilibrium
the players emulate the computation of the gates in the circuit. Let C be a circuit in
canonical form with input bits x1, . . . , xn, gates g1, . . . , gK and the input fixed to 1. The
game Gdµ(C) is given by the parameters

d ∈ N≥1 and µ ∈ R≥0 where µ > 1 + 2 · 3d+d/2. (3.8)

It is an unweighted polynomial congestion game of degree d.
For every input bit there is an input player Xi, for every output of a gate there is a

gate player Gk, and there is the static player for the input fixed to 1. We refer to G1 as
the output player as the output of g1 is the output of the circuit.

For every gate gk there are two resources 0k and 1k. Every player has two strategies
representing the state of the corresponding bit. The zero strategy of a player contains
her own zero resource (for gate players) together with all the zero resources of the direct
successors. The one strategy is defined analogously with the one resources.

An input player Xi has the two strategies

s0
Xi =

{
0k : gk ∈ N+(xi)

}
and s1

Xi =
{

1k : gk ∈ N+(xi)
}
.

Recall that for a circuit in canonical form the input bits are connected to exactly one
gate, hence the strategies of the input players contain exactly one resource.

The static player has only one strategy

sstatic =
{

1k : N+(1)
}

containing all one resources of gates where one input is fixed to 1.
For a gate player Gk the zero and one strategy are given by

s0
Gk

= {0k} ∪
{

0l : gl ∈ N+(gk)
}

and s1
Gk

= {1k} ∪
{

1l : gl ∈ N+(gk)
}
.

Since the gates are numbered by a reverse topological ordering, every strategy of a gate
player Gk contains at most k resources. See Figure 3.6 for an illustration of the resources
and strategies of Gdµ(C).
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G5

05, 15

X1
1

G4

04,14

X2
1

G3

03,13

G2

02, 12

1

G1

01,11

Figure 3.6: Structure of the game Gdµ(C) for the circuit C from Figure 3.5. Every gate has two
resources 0k, 1k, and an associated gate player Gk. Three strategies are highlighted: The one
strategy of G4 (orange), the zero strategy of G3 (purple), and the zero strategy of X1 (light
purple).

Every gate gk has 3 associated players: the gate player Gk and the two players corre-
sponding to the input bits of the gate. Since the input bits of a NAND gate are assumed
to be different by the definition of the canonical form, there are indeed three different
players associated to every gate. From the above definitions of the strategies we observe
that every resource 0k and 1k can only be played by the three players associated to gate
gk.

The resource cost functions are defined using parameter µ. We set

c1k(x) = µkxd and c0k(x) = λµkxd where λ = 3d/2. (3.9)

This finishes the description of the unweighted polynomial congestion game Gdµ(C).
Skopalik and Vöcking [SV08] also translate Boolean circuits to congestion games.

Their construction differs in two main points. Firstly, they use 3 resources per gate
and secondly, their resource cost functions are general (step) functions. Skopalik and
Vöcking use these games to show PLS-hardness of computing approximate equilibria in
congestion games with general increasing cost functions. Their result leaves open the
following
Research Question 1. Is finding approximate equilibria in polynomial congestion games
PLS-hard?

We were not able to specialize their construction to polynomial cost functions, or use
our gadget for a PLS-reduction. However, we achieve several NP-hardness results of
deciding the existence of approximate equilibria with additional properties by studying
our gadget on its own.

α-equilibria in Gdµ(C) A strategy profile σX of the input players will be interpreted as
a bit vector x ∈ {0, 1}n by setting xi = 0 if sXi = s0

Xi
and xi = 1 if sXi = s1

Xi
. To

discuss the emulation of the computation of the circuit by the gate players in Gdµ(C),
we introduce the term following the NAND semantics. In a strategy profile σ, the gate
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players follow the NAND semantics, if every gate player plays her zero strategy if and
only if both input players associated to the gate play their one strategy. As can be seen
in the truth table in Figure 3.4 this corresponds to the semantics of a NAND gate. If in
a profile σ all gate players follow the NAND semantics, and we take x ∈ {0, 1}n to be
the bit vector corresponding to the strategies of the input players in σ, then the output
player G1 plays according to C(x).

We show that for small enough α the α-equilibria in Gdµ(C) are exactly the profiles
where the players emulate the computation of the circuit C. To specify what “small
enough” means, we define

ε(µ) = 3d+d/2

µ− 1 . (3.10)

Since d ≥ 1 and µ > 1 + 2 · 3d+d/2 (see (3.8)), we have

3d/2 − ε(µ) ≥ 3d/2 − 1
2 > 1

and hence, we can choose α ∈ [1, 3d/2 − ε(µ)).

Lemma 4. For any circuit C in canonical form and valid choices of parameters d and
µ (satisfying (3.8)) consider the game Gdµ(C). Let σX be a strategy profile for the input
players X1, . . . , Xn and let x ∈ {0, 1}n be the corresponding bit vector.

Then the partial profile σX can be extended to a unique α-equilibrium σ of Gdµ(C) for
any α ∈ [1, 3d/2 − ε(µ)). Further, in σ all gate players follow the NAND semantics, and
in particular the output player G1 plays according to C(x).

Proof. Let C be a circuit in canonical form and take valid choices of d, µ and α.
We will first fix the input players to their strategies given by σX . We show that the

gate players follow the NAND semantics in any α-equilibrium by showing that switching
to the right strategy is an α-improving move. We will then see that once the gate players
follow the NAND semantics, the input players do not have an incentive to change their
strategies. This shows that there is a unique α-equilibrium where the input players play
according to σX and the gate players emulate the computation of the circuit.
Input players fixed to σX . Let σ be an α-equilibrium of Gdµ(C), where the input players
X1, . . . , Xn play according to σX . Consider a gate gk and its associated players Gk and
Pa, Pb, where Pa and Pb correspond to the two input bits of the gate. We show that Gk
plays her zero strategy exactly if both Pa and Pb play their one strategy.
Case 1: Both Pa and Pb play their one strategy in σ. The cost incurred to Gk on her
one strategy is at least c1k(3), since all three players Gk, Pa and Pb use 1k. On the other
hand, the cost for her zero strategy is at most c0k(1) + ∑k−1

j=1 c0j (3). The improving
factor is thus

CGk

((
s1
Gk
, σ−Gk

))
CGk

((
s0
Gk
, σ−Gk

)) ≥ c1k(3)
c0k(1) +∑k−1

j=1 c0j (3)
= µk3d

λµk +∑k−1
j=1 λµ

j3d
.
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Since 1
µk
∑k−1
j=1 µ

j = 1
µk

(
µk−µ
µ−1

)
< 1

µ−1 , we can lower bound the above by

3d
λ

(
1

1 + 1
µ−13d

)
= 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2

(
1− 1

µ− 13d
)

= 3d/2 − ε(µ) > α (3.11)

where we used the definitions of λ (see (3.9)) and ε(µ) (see (3.10)). Thus, Gk plays her
zero strategy in the α-equilibrium σ.
Case 2: At least one of Pa or Pb is playing her zero strategy in σ. The cost incurred
to Gk on her zero strategy is at least c0k(2), since at least one of Pa and Pb is using
0k additionally to Gk. On the other hand, the cost for her one strategy is at most
c1k(2) +∑k−1

j=1 c1j (3), as the one of Pa and Pb playing the zero strategy is not using 1k.
The improving factor is thus

CGk

((
s0
Gk
, σ−Gk

))
CGk

((
s1
Gk
, σ−Gk

)) ≥ c0k(2)
c1k(2) +∑k−1

j=1 c1j (3)
= λµk2d

µk2d +∑k−1
j=1 µ

j3d
.

Using the same bound on the sum of the µj as in the previous case, we lower bound the
above by

λ

(
1

1 + 1
µ−1

3d
)
> 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2

(
1− 1

µ− 13d
)

= 3d/2 − ε(µ) > α (3.12)

where we again used the definitions of λ and ε(µ). Thus, player Gk is playing her one
strategy in the α-equilibrium σ.

This shows that in any α-equilibrium where the input players are fixed, the gate players
follow the NAND semantics, and hence there is at most one such α-equilibrium. We now
come to the second part. We show that the input players do not have an incentive to
change their strategies once the gate players follow the NAND semantics.
Gate players follow NAND semantics. We will now show that in a profile where all gate
players follow the NAND semantics, the input players do not have α-improving moves.
Let σ be a strategy profile of Gdµ(C) where all gate players follow the NAND semantics
and let Xi be one of the input players. Since C is in canonical form, there is exactly one
gate gk connected to xi and the other input of this gate is fixed to 1.
Case 1: Xi plays her one strategy in σ. We know that Gk is playing her zero strategy,
since she follows the NAND semantics and hence negates xi. The cost incurred to Xi

on her one strategy is c1k(2) = µk2d. On the other hand, the cost of her zero strategy is
c0k(2) = λµk2d. The improvement factor is thus

CXi

((
s0
Xi
, σ−Xi

))
CXi

((
s1
Xi
, σ−Xi

)) = λµk2d
µk2d = λ = 3d/2 > 3d/2 − ε(µ) > α.

This shows that her one strategy is α-dominating for Xi in σ.
Case 2: Xi plays her zero strategy in σ. Similarly to the previous case, we know that Gk
plays her one strategy. The cost incurred to Xi on her zero strategy is c0k(1) = λµk. On
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the other hand, the cost of her one strategy is c1k(3) = µk3d. The improvement factor
is thus

CXi

((
s1
Xi
, σ−Xi

))
CXi

((
s0
Xi
, σ−Xi

)) = µk3d
λµk3d = 3d

λ
= 3d/2 > α.

This shows that her zero strategy is α-dominating for Xi in σ.
This shows that the α-equilibrium is indeed unique.

We observe from the above proof that the unique α-equilibrium is actually an exact
equilibrium. Since every player has only two strategies, we showed that following the
NAND semantics is α-dominating for every player. Hence, in the α-equilibrium all
players play α-dominating strategies. Recall from the beginning that such a profile is an
exact equilibrium.

With this key lemma we can now show NP-hardness of deciding the existence of
approximate equilibria with additional properties. We emphasize that the parameters
d, α and z are fixed and not part of the input of the problems in the following theorem.

Theorem 2. For unweighted congestion games of degree d ≥ 1, the problems
• “Is there an α-equilibrium where a given subset of players play specific strategies?”
• “Is there an α-equilibrium where a given resource is used by at least one player?”
• “Is there an α-equilibrium where a given player has cost at most z?”

are NP-hard for any α ∈ [1, 3d/2) and any z > 0.

Proof.
α-equilibria with specific strategies. To show the NP-hardness of the first problem we
reduce from Circuit Satisfiability. Let C be a Boolean circuit in canonical form.
Take α ∈ [1, 3d/2). Then there is an ε > 0 such that α < 3d/2 − ε. By taking µ to be a
rational with

µ > 1 + 3d+d/2

min
{
ε, 1

2

}
we have µ > 1 + 2 · 3d+d/2 and hence a valid choice of µ. Further, we obtain ε(µ) ≤ ε
and hence 3d/2 − ε(µ) ≥ 3d/2 − ε > α.

Now consider the game Gdµ(C). If λ = 3d/2 is irrational we instead take a rational λ
such that

α

(
1 + 1

µ− 13d
)
< λ <

3d

α
(
1 + 1

µ−13d
) . (3.13)

This preserves the key inequalities (3.11) and (3.12) and makes the game Gdµ(C) com-
pletely defined by rationals.

We show that there is an α-equilibrium where the output player G1 plays her one
strategy if and only if C is a Yes-instance to Circuit Satisfiability.
Case 1: C is Yes-instance. Let x ∈ {0, 1}n be a bit vector such that C(x) = 1 and let σX
be the corresponding strategy profile for the input players of Gdµ(C). From our choices of
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µ and α, we can apply Lemma 4 and extend the profile σX to an α-equilibrium where
G1 plays according to C(x), that is, σG1 = s1

G1
.

Case 2: C is No-instance. Again using Lemma 4, we know that any choice of the
strategies of the input players can be extended to a unique α-equilibrium. In this α-
equilibrium the gate players emulate the computation of the circuit. Since for all vectors
x ∈ {0, 1}n we have C(x) = 0, the output player is playing her zero strategy in any
α-equilibrium.
α-equilibria with specific resource. For the NP-hardness of the second problem we use
the same reduction as for the first problem. We add a new resource of cost 0 to the one
strategy of the output player. Then there is an α-equilibrium where this new resource
is used if and only if the circuit is a Yes-instance.
α-equilibria with upper bound on player cost. Again, we want to use a reduction similar
to the one before. To have a better understanding of the costs incurred to the output
player, we transform the circuit C in the following way. We negate the output of C by
adding a NAND gate with fixed input 1 right after the first gate in C. Let C be the
resulting circuit, then we have C(x) = ¬C(x).

Observe that C is again in canonical form and the output player of C corresponds to
a NAND gate with one input fixed to 1. Consider the game Gdµ(C), where we choose µ
and λ as in the reduction for the first problem. We show that there is an α-equilibrium
where the output player has cost at most λµ if and only if C is a Yes-instance.
Case 1: C is Yes-instance. Let x ∈ {0, 1}n be a bit vector such that C(x) = 1 and
let σX be the corresponding strategy profile for the input players of Gdµ(C). Then we
have C(x) = 0 and with Lemma 4 σX can be extended to an α-equilibrium σ where G1
plays her zero strategy. Since the gate players follow the NAND semantics, both players
corresponding to the two input bits of g1 are playing their one strategy. Thus the cost
incurred to G1 by σ is c01(1) = λµ.
Case 2: C is No-instance. As before we get from Lemma 4 that G1 is playing her one
strategy in any α-equilibrium, since for all bit vectors x ∈ {0, 1}n we have C(x) = 0 and
thus C(x) = 1. Since the gate players follow the NAND semantics, the free input player
to g1 has to play her zero strategy. Thus the cost incurred to G1 in σ is c11(2) = µ2d.

Since λ = 3d/2 < 2d, we have shown that deciding the existence of an α-equilibrium
where the output player has cost at most z is NP-hard, for all λµ < z < 2dµ. To show
NP-hardness for any choice of z > 0, take a rational a with aλµ < z < a2dµ and scale
all resource cost functions in Gdµ(C) by a.

3.5 Hardness of Existence

We now show the main result of this chapter: that it is NP-hard to decide whether a
polynomial congestion game has an α-equilibrium. Our reduction combines the circuit
gadget of the previous section in a black-box way with any polynomial congestion game
without α-equilibria (for example the games from Section 3.3). First, we make some
assumptions on the structure of the game G without α-equilibria.
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Structure of G We begin with two properties related to the players.
Every strategy contains at least one resource. If a player p had an empty strategy,

then this would be α-dominating for p for any profile and any α. We can thus remove
player p from the game without changing the (non-)existence of approximate equilibria.

Every player has positive weight. If a player p had weight zero, she would not affect
the costs incurred to the other players. We can thus remove p from the game as above.

Further, we assume the resource cost functions to be monomials.
Every resource cost function is of the form cr(x) = arx

kr , where ar > 0 and kr ∈
{1, . . . , d}. Resources with cost zero can be removed from the game as they do not affect
the choices of the players. Note that this may result in empty strategies for some players,
but as explained above we can remove such players.

For a resource r with a general polynomial cost function cr(x) = ar,0 + ar,1x + . . . +
ar,dx

d we replace r by d + 1 resources (r, 0), (r, 1), . . . , (r, d) with monomial cost func-
tions ar,0, ar,1x, . . . , ar,dxd respectively. If a strategy contained r, it now contains all of
(r, 0), (r, 1), . . . , (r, d) and the cost of the strategy is unchanged. As before, if some of
the coefficients are zero, we remove the resource.

Since we want all monomials to have degree at least 1, we replace resources r with
constant cost ar,0. For every player p that had r in some of her strategies, we introduce
a new resource rp with cost ar,0

wp
x and replace r by rp in all her strategies. These

new resources are only used by the respective player p. Since crp(wp) = ar,0, the cost
incurred to p does not change. In this way, the (non-)existence of approximate equilibria
is maintained.

We say a game with the above properties is in canonical form. For a game G in
canonical form with resources R and players P , we define

amin(G) = min
r∈R

ar, W (G) =
∑
p∈P

wp, and cmax(G) =
∑
r∈R

cr(W (G)). (3.14)

Note that all of the above quantities are strictly positive and that the cost incurred to
any player in any strategy profile is at most cmax.

Later we need to scale G such that the weights of the players are small. For a poly-
nomial congestion game G of degree d in canonical form and a scaling factor γ ∈ (0, 1]
let Gγ be the game resulting from G when scaling the weights of the players and the
coefficients of the resource cost functions by γ and γd+1−kr . Formally, Gγ has the same
set of resources, players, and strategies as G. The weights of the players and the resource
cost functions change to

wp = γwp and cr(x) = arx
kr , where ar = γd+1−krar. (3.15)

This transformation scales the player costs by γd+1. Thus, the existence of improving
moves is maintained and hence also the (non-)existence of approximate equilibria.

We have the following relations between the parameters amin,W , and cmax of the
original and of the scaled game.

amin(Gγ) = min
r∈R

γd+1−krar ≥ γd min
r∈R

ar = γdamin(G) (since kr ≥ 1) (3.16)
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W (Gγ) = γW (G) (3.17)
cmax(Gγ) =

∑
r∈R

cr(W (Gγ)) =
∑
r∈R

γd+1arW (G)kr = γd+1cmax(G). (3.18)

Combining G with the Circuit Gadget We are now ready to describe the combination
of G with the circuit gadget from Section 3.4.

The idea is to use the output player of the circuit gadget as mediator between the
two games. If the output player plays her zero strategy then both games are separated
and hence there is no α-equilibrium. If on the other hand, she plays her one strategy,
she stabilizes G such that the game now has an α-equilibrium. See Figure 3.7 for an
illustration of this idea.

1

X1

...

Xn

G1

Gdµ(C)

01

11
• •
• •

Gγ

i j

dummy

(a) If G1 plays her zero strategy, the games are
separated. The players of Gγ play in Gγ . Hence
there is no α-equilibrium.

1

X1

...

Xn

G1

Gdµ

01

11
• •
• •

Gγ

i j

dummy

(b) IfG1 plays her one strategy, she additionally
plays all resources of Gγ . The players of Gγ play
their new dummy strategy. This profile is an
α-equilibrium.

Figure 3.7: Structure of the game Gdµ(C)→ Gγ . The output player G1 acts as mediator between
the circuit gadget Gdµ(C) and the non-existence gadget Gγ . The strategy of G1 is shown in orange
and the strategies of players in Gγ are shown in purple and light purple.

We are now formalizing this idea. Recall that G is a polynomial congestion game
of degree d in canonical form without any α-equilibria. Let C be a Boolean circuit in
canonical form. To get the circuit game Gdµ(C) we need to specify parameter µ. We do
this in a way similar to the first reduction in the proof of Theorem 2. Since polynomial
congestion games of degree d have d-equilibria [CF21], we have α < d < 3d/2. Choose an
0 < ε < 3d/2 − α and set µ to be a rational with

µ > 1 + 3d+d/2

min
{
ε, 1

2

} .
Then µ is a valid choice and α < 3d/2 − ε ≤ 3d/2 − ε(µ). Again, if λ = 3d/2 is irrational,
we take a rational λ satisfying (3.13).

To give the output player the power to stabilize G, we use a scaled version of G as
described above. We have to make sure that the weights of the players in Gγ are small
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compared to the weights in Gdµ(C) (which are all 1). We choose γ ∈ (0, 1] to be a
sufficiently small rational such that

γW (G) < 1, γ
∑
r∈R

ar <
µ

µ− 1

(3
2

)d
, and γα2 <

amin(G)
cmax(G) . (3.19)

The combined game Gdµ(C)→ Gγ is given by:
• The players are the disjoint union of the players of Gdµ(C) of weight 1 and Gγ of

weight γwp.
• The resources are the disjoint union of the 0k and 1k resources of Gdµ(C) and the

resources R of Gγ together with a new dummy resource.
• The resource cost function of the dummy resource is constantly amin(Gγ)

α and all
other cost functions are unchanged.

• The one strategy of the output player is changed by adding all resources R of Gγ .
For all players in Gγ we add a new dummy strategy containing exactly the new
dummy resource. All other strategies stay unchanged.

See Figure 3.7 for a graphical representation of this game.
We observe that the behavior of the circuit players is not affected by Gγ . That is,

Lemma 4 still holds in Gdµ(C)→ Gγ for the circuit part.

Lemma 5. Let σX be a strategy profile for the input players X1, . . . , Xn of the cir-
cuit part Gdµ(C) and x ∈ {0, 1}n the corresponding bit vector. For all gate players it
is α-dominating to follow the NAND semantics in Gdµ(C) → Gγ. In particular, it is
α-dominating for the output player G1 to play according to C(x) in Gdµ(C)→ Gγ.

Proof. We use almost the same proof as for Lemma 4. Since the costs and strategies
for all players but the output player are the same in Gdµ(C) and Gdµ(C) → Gγ , the same
arguments show that it is α-dominating for those players to follow the NAND semantics.
We only have to take care about the output player. Her zero strategy is unchanged and
the cost of her one strategy increased, as she is now also playing all of the resources
of Gγ . Hence, if C(x) = 0 then it is α-dominating to play the zero strategy in Gdµ(C)
and this is also the case in Gdµ(C) → Gγ . If on the other hand C(x) = 1, then we have
from Lemma 4 that G1 plays according to C(x) in Gdµ(C), and hence not both of the
input players of the output gate g1 are playing their one strategy. As argued above, the
behavior of these two players is the same in Gdµ(C) → Gγ . Thus, the cost of the zero
strategy of G1 in Gdµ(C)→ Gγ is at least c01(2) = λµ2d and the cost of her one strategy
is at most

c11(2) +
∑
r∈R

cr(1 +W (Gγ)) = µ2d +
∑
r∈R

γd+1−krar(1 + γW (G))kr .

Using the first and second bound from (3.19) together with γ ≤ 1, we can upper bound
this by

µ2d + γ
∑
r∈R

ar2d < µ2d + µ

µ− 13d.
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The improvement factor for G1 is thus at least

λµ2d
µ2d + µ

µ−13d = λ

 1

1 + 1
µ−1

(
3
2

)d
 > 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2 − ε(µ) > α.

This shows that playing the one strategy is still α-dominating for G1 in Gdµ(C) → Gγ .
As in the proof of Lemma 4, the input players do not have an incentive to change their
strategies once the gate players follow the NAND semantics.

The next lemma shows the stabilization of Gγ by the output player.

Lemma 6.
• If the output player plays her one strategy in Gdµ(C) → Gγ, it is α-dominating to

play the dummy strategy for every player in Gγ.
• If the output player plays her zero strategy in Gdµ(C)→ Gγ, the dummy strategy is
α-dominated by any other strategy for every player in Gγ.

Proof. First, let the output player play her one strategy and consider a player p in Gγ .
If p is not playing her dummy strategy, she plays at least one resource r ∈ R together
with the output player. Hence her cost is at least

cr(1 + wp) = ar(1 + wp)kr > ar ≥ amin(Gγ).

The strict inequality holds as G is in canonical form and hence ar, wp, and kr are all
strictly positive. On the other hand, the cost incurred to p on her dummy strategy
is amin(Gγ)

α . Thus the improvement factor is strictly greater than α, showing that the
dummy strategy is α-dominating for every player in Gγ .

Now let the output player play her zero strategy. The dummy strategy of any player
in Gγ has cost of amin(Gγ)

α ≥ γd amin(G)
α . On the other hand, any of the strategies in Gγ

incur a cost of at most cmax(Gγ) = γd+1cmax(G). Thus the improvement factor is at least

γdamin(G)
αγd+1cmax(G) = amin(G)

αγcmax(G) .

Using the third bound in (3.19) shows that the dummy strategy is α-dominated by any
other strategy in Gγ .

With these properties of both parts, we can show the key lemma for the combination
of the games.

Lemma 7. Gdµ(C)→ Gγ has an α-equilibrium if and only if C has a satisfying assignment.

Proof. “⇒”: Let σ be an α-equilibrium of Gdµ(C) → Gγ . Let σX be the profile of the
input players in σ and x ∈ {0, 1}n be the corresponding bit vector. We show that the
output player G1 has to play her one strategy. From Lemma 6 we know that if G1
plays her zero strategy then all players of Gγ play one of their original strategies in
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Gγ (and not the dummy strategy). But since Gγ does not have an α-equilibrium, this
is a contradiction to σ being an α-equilibrium of Gdµ(C) → Gγ and thus, G1 plays her
one strategy. On the other hand, we get from Lemma 5 that in any α-equilibrium of
Gdµ(C) → Gγ the gate players follow the NAND semantics, and in particular G1 plays
according to C(x). Thus, C(x) = 1 and hence C has a satisfying assignment.
“⇐”: Now let x ∈ {0, 1}n be a satisfying assignment for C and let σX be the correspond-
ing strategy profile for the input players of Gdµ(C)→ Gγ . Then by Lemma 5, the profile
where all gate players follow the NAND semantics is a profile, where every strategy is
α-dominating for every gate player. In particular, G1 plays her one strategy. But then
with Lemma 6 this profile can be extended to an α-equilibrium of Gdµ(C)→ Gγ by letting
all players of Gγ play their dummy strategy.

We observe that any α-equilibrium is indeed also an exact equilibrium, since we showed
that all players play α-dominating strategies. Hence Gdµ(C)→ Gγ has the following gap-
introducing property:

• Either C has a satisfying assignment, then Gdµ(C)→ Gγ has an exact equilibrium
• or C has no satisfying assignment and then Gdµ(C) → Gγ does not have any α-

equilibria.

Hardness Results With the above lemmas, we can finally show the NP-hardness of
deciding the existence of approximate equilibria in polynomial congestion games.

Theorem 3. Fix a degree d ∈ N≥2 and a real α > 1. If there is a weighted polynomial
congestion game of degree d without an α-equilibrium, then it is NP-hard to decide
whether a weighted polynomial congestion game of degree d has an α-equilibrium.

Proof. For fixed d ∈ N≥2 and α > 1 assume that there is a polynomial congestion game
of degree d without α-equilibria. Then for any profile σ, there is a player p and a strategy
s′ ∈ Sp \ {σp} such that Cp(σ) > αCp((s′, σ−p)). The player costs Cp are polynomials of
degree d and hence continuous on the weights wp and the coefficients ar. Perturbing the
weights and the coefficients will thus not change the above inequality. Hence there is a
polynomial congestion game of degree d with rational weights and coefficients without an
α-equilibrium. Similarly, we can choose a rational ᾱ > α such that the above inequality
is still satisfied. Together with the transformations at the beginning of this section that
do not change the (non-)existence of approximate equilibria, we get the existence of
a polynomial congestion game G of degree d with rational weights and coefficients in
canonical form without an ᾱ-equilibrium.

Consider the scaled game Gγ as described above where we replace α by ᾱ. Since γ is
chosen to be rational, Gγ also has rational weights and coefficients.

We now show the statement by a reduction from Circuit Satisfiability. Let C
be a Boolean circuit in canonical form. Construct the game Gdµ(C) as explained in the
previous paragraph. Note that this can be done in polynomial time in the size of C.
Now consider the combined game Gdµ(C) → Gγ . The part Gγ involves only rational
numbers and moreover its size is independent of the circuit C. The dummy resource has
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a constant cost which is a rational number. Changing the strategies as in the definition
of Gdµ(C)→ Gγ can be done in polynomial time.

We have thus constructed the game Gdµ(C) → Gγ from the circuit C in polynomial
time. From Lemma 7 we have that this game has an ᾱ-equilibrium if and only if C is a
Yes-instance. We can choose ᾱ to be close enough to α such that the set of ᾱ-equilibria
and α-equilibria are the same.

If in the above proof α is polynomial-time computable (see Section 3.2), then the
problem is NP-complete, since we can check in polynomial time whether a profile is an
α-equilibrium.

As we have shown in Section 3.3 that there are polynomial congestion games without
α-equilibria for α growing as Ω

(√
d

ln d

)
, we immediately obtain NP-hardness of deciding

the existence of such equilibria.

Corollary 1. For d ∈ N≥2 let α(d) be the one from (3.3). Then it is NP-hard to decide
whether a weighted polynomial congestion game of degree d has an α-equilibrium for any
real α ∈ [1, α(d)).

The proof of Lemma 7 shows that the reduction from Circuit Satisfiability used
in the proof of Theorem 3 is parsimonious. There is a bijection between the satisfying
assignments of C and the α-equilibria of Gdµ(C)→ Gγ . Thus we immediately get hardness
of the respective counting versions.

Corollary 2. For d ∈ N≥2 let α(d) be the one from (3.3) and let α ∈ [1, α(d)).
• It is #P-hard to count the number of α-equilibria in weighted polynomial congestion

games of degree d.
• For a fixed k ≥ 1, it is NP-hard to decide whether a weighted polynomial congestion

game of degree d has at least k distinct α-equilibria.

Proof. The first result is a consequence of the #P-hardness of the counting version of
Circuit Satisfiability (see [Pap94]).

For the second result consider the following version of Circuit Satisfiability. For
a fixed k ≥ 1, decide whether a Boolean circuit has at least k distinct satisfying as-
signments. This problem is NP-complete, since we can add dlog ke “dummy input bits”
to the circuit that are not connected to the rest. Then the new circuit has at least k
distinct satisfying assignments if and only if the original circuit has at least one satis-
fying assignment. We can even transform this circuit in polynomial time into canonical
form by connecting the dummy input bits to the original circuit C. Combine the dummy
inputs by 2-input NAND gates in any way to a single output O and add a wiring of
the form NAND(NAND(C, O), NAND(C,¬O)). This will forward the output of C
independently of the assignment of the dummy input bits.

3.6 General Cost Functions
In this section, we consider general non-decreasing cost functions. In the previous sec-
tions, the parameter of interest was the degree d of the cost functions. Since we do
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not have polynomial cost functions anymore, we instead take the number of players n
as parameter. We show the existence of n-equilibria and the non-existence of Θ

(
n

lnn
)
-

equilibria together with the NP-hardness of deciding the existence of Θ
(
n

lnn
)
-equilibria

similarly to the previous sections.

Existence of n-Equilibria To show the existence of n-equilibria in n player games, we
observe that the social cost strictly decreases at every n-improving move. This is closely
related to the result of Caragiannis and Fanelli [CF21] that the weighted social cost
decreases at every (d + 1)-improving move for polynomial congestion games of degree
d. This shows that (global or local) minimizers of the social cost are n-equilibria and
additionally that those can be reached by a sequence of n-improving moves.

Theorem 4. Every weighted congestion game with general non-decreasing cost functions
and n ≥ 2 players has an n-equilibrium.

Proof. Let G be a weighted congestion game with n players. We show that a minimizer
of the social cost is an n-equilibrium. Take σ to be a global minimizer of the social cost.
Assume for a contradiction that player p has an n-improving move s′ ∈ Sp in σ and
define σ′ = (s′, σ−p).

First, we bound the change of the cost of any other player q 6= p by the new cost of p.
We have

Cq
(
σ′
)
− Cq(σ) =

∑
r∈σq

cr(nσ′(r))−
∑
r∈σq

cr(nσ(r))

=
∑

r∈σq∩(s′\σp)
(cr(nσ′(r))− cr(nσ(r)))

+
∑

r∈σq∩(σp\s′)
(cr(nσ′(r))− cr(nσ(r))).

As the cost functions are non-decreasing, all of the terms in the second sum are non-
positive. We can thus bound the change in the player cost of q from above by

Cq
(
σ′
)
− Cq(σ) ≤

∑
r∈σq∩(s′\σp)

(cr(nσ′(r))− cr(nσ(r))) ≤
∑
r∈s′

cr(nσ′(r)) = Cp
(
σ′
)
.

If we add the above inequalities for all of the n− 1 players q 6= p, we obtain∑
q 6=p

Cq
(
σ′
)
−
∑
q 6=p

Cq(σ) ≤ (n− 1)Cp
(
σ′
)
.

As the social cost is defined as the sum of all player costs, we equivalently have(
C
(
σ′
)
− Cp

(
σ′
))
− (C(σ)− Cp(σ)) ≤ (n− 1)Cp

(
σ′
)
.

Rearranging the terms yields

C
(
σ′
)
− C(σ) ≤ nCp

(
σ′
)
− Cp(σ). (3.20)

49



3 Existence and Complexity of Approximate Equilibria in Weighted Congestion Games

Since s′ is an n-improving move for p in σ, we have that the right hand side is strictly
negative. On the other hand, since σ is a global minimizer of the social cost, the left
hand side is non-negative. This is a contradiction, and thus shows that any minimizer
of the social cost is an n-equilibrium.

In [CR06; CR09; CKS09; CKS11; Chr+18; Chr+19] the concept of approximate po-
tential functions was studied. Here we showed in (3.20) that the social cost is an n-
approximate potential for any congestion game with non-decreasing cost functions.

Non-Existence of Θ
(
n

lnn

)
-Equilibria We are giving a game with n players that does

not have Θ
(
n

lnn
)
-equilibria. The construction of the game is similar to the non-existence

games for polynomial cost functions of degree d from Section 3.3. We introduce the real
number ϕn1 to be the unique positive solution of the equation

(x+ 1)n = xn+1.

This means that ϕn satisfies
ϕn =

(
1 + 1

ϕn

)n
.

This sequence is strictly increasing in n and asymptotically ϕn ∼ n
lnn (see [Chr+19,

Lemma A.3]). For n = 1, the number ϕ1 is the golden ratio.
The game Gn has n players: a heavy player, and (n − 1) light players 1, . . . , n − 1.

The weight of the heavy player is 1 and for a light player i it is wi = 1
2i . There are 2n

resources r0, r1, . . . , rn−1 and r′0, r′1, . . . , r′n−1. The cost function for r0 and r′0 is given by

c0(x) =
{

1, if x ≥ w0,

0, otherwise

and for resource ri and r′i (i ∈ {1, . . . , n− 1}) by

ci(x) =

 1
ϕn−1

(
1 + 1

ϕn−1

)i−1
, if x ≥ w0 + wi,

0, otherwise
.

Every player has two strategies. The heavy player plays either all r resources or all r′
resources:

Sheavy =
{
{r0, r1, . . . , rn−1},

{
r′0, r

′
1, . . . , r

′
n−1

}}
.

A light player i plays her own ri or r′i resource together with all the previous resources
of the other type:

Si =
{{
r0, r1, . . . , ri−1, r

′
i

}
,
{
r′0, r

′
1, . . . , r

′
i−1, ri

}}
.

See Figure 3.8 for an illustration of the structure of the strategies.
1This number is usually denoted by Φn in the literature. To avoid confusion with the potential function

Φ, we use ϕn here.

50



3.6 General Cost Functions

r0 r1 · · · ri−1 ri · · · rn−1 rn

r′0 r′1 · · · r′i−1 r′i · · · r′n−1 r′n

Figure 3.8: The strategies of Gn. The heavy player plays either all r resources (solid black) or
all r′ resource (dashed black). The two strategies (solid and dashed) of light players 1, i, and n
are shown in purple, orange, and light purple, respectively.

We show that Gn does not have an α-equilibrium for any α < ϕn−1. Similarly to
Section 3.3, due to symmetries there are only two settings to consider. For both cases
we show that some player has an ϕn−1-improving move.

Theorem 5. For n ∈ N≥2 and α < ϕn−1, there exists a weighted congestion game with
n players and general non-decreasing cost functions that does not have an α-equilibrium.

Proof. Consider the game Gn as described above and a strategy profile σ.
Case 1: The heavy player is alone on resource r0. In this case the heavy player is playing
{r0, r1, . . . , rn−1} and all of the light players play

{
r′0, r

′
1, . . . , r

′
i−1, ri

}
. Hence, the current

cost of the heavy player is

c0(w0) +
n−1∑
i=1

ci(w0 + wi) = 1 + 1
ϕn−1

n−1∑
i=1

(
1 + 1

ϕn−1

)i−1
=
(

1 + 1
ϕn−1

)n−1
= ϕn−1.

Deviating to
{
r′0, r

′
1, . . . , r

′
n−1

}
incurs a cost of

c0(w0 + w1 + . . .+ wn−1) +
n−1∑
i=1

ci

w0 +
n−1∑
j=i+1

wj

.
From the structure of the weights, we have

n−1∑
j=i+1

wj < wi (3.21)

for all i ∈ {1, . . . , n− 1}. Hence the above cost evaluates to 1 + 0, which shows that the
heavy player has an ϕn−1-improving move in σ.
Case 2: The heavy player shares r0 with at least one light player. Let i be the light player
with smallest index playing r0. Then i plays {r0, r1, . . . , ri−1, r

′
i} and all light players

j ∈ {1, . . . , i− 1} play
{
r′0, r

′
1, . . . , r

′
j−1, rj

}
. The current cost of player i is thus at least

c0(w0 + wi) +
i−1∑
j=1

cj(w0 + wi + wj) = 1 + 1
ϕn−1

i−1∑
j=1

(
1 + 1

ϕn−1

)j−1
=
(

1 + 1
ϕn−1

)i−1
.
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Deviating to her other strategy
{
r′0, r

′
1, . . . , r

′
i−1, ri

}
incurs a cost of at most

c0

n−1∑
j=1

wj

+
i−1∑
j=1

cj

 n−1∑
k=j+1

wk

+ ci

(
w0 +

n−1∑
k=i

wk

)
.

Using again (3.21) for i = 0 (where we set w0 = 1 = wheavy) and i = j, we evaluate the
above to

0 + 0 + 1
ϕn−1

(
1 + 1

ϕn−1

)i−1
.

This shows that player i has an ϕn−1-improving move.

NP-Hardness Result Similarly to Section 3.5, we combine the above non-existence
gadget with the circuit gadget from Section 3.4 to obtain NP-hardness of deciding the
existence of α-equilibria for congestion games with general non-decreasing cost functions.
Here, our approximation bound α is not fixed, but depends on the number of players
n. However, we are not restricted to use polynomial cost functions anymore in our
reduction. We show the following theorem.
Theorem 6. For a fixed 1 > ε > 0 and a sequence of reals α(n) : N≥2 → R where
1 ≤ α(n) < ϕn−1

1+ε it is NP-hard to decide whether a weighted congestion game G with nG
players has an α(nG)-equilibrium.
Proof. The proof is done by a reduction from Circuit Satisfiability and follows the
structure of Section 3.5. We first describe how to build the circuit part and continue
to give the combination of this gadget with the non-existence games from above. We
will see that in the combined game, the gate players in the circuit part still follow the
NAND semantics. As before the output player acts as mediator between the two games
and stabilizes the non-existence gadget when playing her zero strategy such that the
combined game has an α(n)-equilibrium exactly if the circuit has a satisfying assignment.

Let C be a Boolean circuit in canonical form. We have to build a congestion game with
n players, such that the game has an α(n)-equilibrium if and only if C has a satisfying
assignment.

For technical reasons we negate the output of C by adding an extra NAND gate with
one input fixed to 1. Let C be the resulting circuit. Then C(x) = ¬C(x) and hence C is
a Yes-instance, if there is an assignment of the input bits x with C(x) = 0. Let m be
the number of input bits and K be the number of NAND gates of C. Then there are
n1 = m+ 1 +K players in the circuit gadget.
Preliminary Choices of Parameters. In the non-existence games Gn, the quantity ϕn−1
appears. This number may in general be irrational. We thus consider an integer under-
approximation

ϕ̄n−1 =
⌊
n

lnn

⌋
.

Recall that ϕn−1 ∼ n
lnn and hence we can choose a large enough n0 ∈ N such that

∀n ≥ n0 :
(

1− ε

3

)
n

lnn ≤ ϕ̄n−1 < ϕn−1 ≤
(

1 + ε

3

)
n

lnn. (3.22)
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We further choose a large enough ` ∈ N such that

1 + 1
`
<

(1 + ε)
(
1− ε

3
)

1 + ε
3

. (3.23)

Since 0 < ε < 1, the right hand side is indeed strictly larger than 1.
The number of players considered for the non-existence game is set to

n2 = `n1. (3.24)

We assume that n1 ≥ n0. If n1 was bounded by a constant, it could be decided in
polynomial time whether C has a satisfying assignment.

Observe that the parameters n1 and n2 can be found in time polynomial in the de-
scription of C.
The Circuit Gadget. For the circuit part Gdµ(C) we have to define the degree d and pa-
rameter µ. We have to choose those parameters to be rational and of size polynomial in
n1, the size of C. We choose d ∈ N≥2 such that

3d/2 > 1 + ϕ̄n2−1 and 3d/2 >

(
1 + 1

ϕ̄n2−1

)n2−1
. (3.25)

Since ` is independent of C, we have that n2 is polynomial in n1. Further, note that d is
logarithmic in n2 as ϕ̄n2−1 grows asymptotically as n2

lnn2
and

(
1 + 1

ϕ̄n2−1

)n2−1
grows as

n2. For µ we choose an integer with µ > 1 + 2 · 3d+d/2. Then ε(µ) < 1 (see (3.10)) and

3d/2 − ϕ̄n2−1 > ε(µ).

Hence we can choose a rational λ such that

ϕ̄n2−1

(
1 + 1

µ− 13d
)
< λ <

3d

ϕ̄n2−1
(
1 + 1

µ−13d
) . (3.26)

The numerator and denominator of both bounds are of size polynomial in n2, hence λ
can be chosen to be of size polynomial in n2. This shows that the parameters d, µ and
λ for the circuit gadget Gdµ(C) can all be found in time polynomial in n1 and for any
α̃ < ϕ̄n2−1 < 3d/2 − ε(µ) the players emulate the computation of C in any α̃-equilibrium
(Lemma 4).
The Non-Existence Gadget. In the non-existence games Gn2 we use the integer ϕ̄n2−1
instead of ϕn2−1 and call the resulting game G′n2 . Then for any α̃ < ϕ̄n2−1 the α̃-
improving moves are not changed, as ϕ̄n2−1 <

(
1 + 1

ϕ̄n2−1

)n2−1
. In particular, for any

α̃ < ϕ̄n2−1 the game G′n2 does not have α̃-equilibria.
Combining G′n2 with the Circuit Gadget. We combine both games via the output player
of Gdµ(C). As in Section 3.5, we scale the game G′n2 . We divide all weights and breakpoints
in the cost functions by 2 and denote by Gn2 the resulting game. Then the sum of all
player weights in Gn2 is less than 1 and the behavior of the players is the same in both
games.

The combined game Gdµ(C)→ Gn2 is given by:
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• The players are the disjoint union of the players of Gdµ(C) of weight 1 and the
players of Gn2 with the respective weights 1

2wi.
• The resources are the disjoint union of the 0k and 1k resources of Gdµ(C) and the

resources R of Gn2 together with a new dummy resource.
• The resource cost function of the dummy resource is

cdummy(x) =

ϕ̄n2−1
(
1 + 1

ϕ̄n2−1

)n2−1
, if x ≥ 1,

0, otherwise

and all other cost functions are unchanged.
• The one strategy of the output player is changed by adding the dummy resource.

For all players in Gn2 we add a new dummy strategy containing exactly the new
dummy resource. All other strategies stay unchanged.

See Figure 3.9 for a graphical representation of Gdµ(C)→ Gn2 .

1

X1

...

Xn

G1

Gdµ(C)

01

11
• •
• •

Gn2

i j

dummy

(a) If G1 plays her zero strategy, the dummy
resource incurs cost zero to every player of Gn2 .
Hence there is an α̃-equilibrium.

1

X1

...

Xn

G1

Gdµ(C)

01

11
• •
• •

Gn2

i j

dummy

(b) If G1 plays her one strategy, she addition-
ally plays the dummy resource. It is now α̃-
dominating for every player of Gn2 to play in the
original game. Hence there is no α̃-equilibrium.

Figure 3.9: Structure of the game Gdµ(C)→ Gn2 . The output player G1 acts as mediator between
the circuit gadget Gdµ(C) and the non-existence gadget Gn2 . The strategy of G1 is shown in orange
and the strategies of players in Gγ are shown in purple.

The combined game has n = n1 + n2 players. It remains to show that Gdµ(C) → Gn2

has an α(n)-equilibrium if and only if C has a satisfying assignment. First, we show this
statement for any α̃ < ϕ̄n2−1 and then we show that α(n) < ϕ̄n2−1.
NAND Semantics and Stabilization of Gn2. Let σ be an α̃-equilibrium in Gdµ(C) → Gn2 .
Let σX be the profile for the input players and let x ∈ {0, 1}m be the corresponding bit
vector.

Since α̃ < ϕ̄n2−1 < 3d/2−ε(µ) we can reuse the proof of Lemma 4. Since the costs and
strategies of all players in Gdµ(C) but the output player are the same in Gdµ(C) → Gn2 ,
the same arguments show that it is α̃-dominating for those players to follow the NAND
semantics. We only have to consider the output player.

54



3.6 General Cost Functions

Her zero strategy is unchanged and the cost of her one strategy increased as she is
now also playing the dummy strategy. Hence, if C(x) = 0, then it is still α̃-dominating
to play the zero strategy.

If on the other hand C(x) = 1, then we have from Lemma 4 that G1 plays according
to C(x) in Gdµ(C). Thus not both of the input players of the output gate g1 play their one
strategy. As before the behavior of those players is the same in Gdµ(C) → Gn2 . Hence,
the cost of the zero strategy of G1 in Gdµ(C)→ Gn2 is at least c01(2) = λµ2d and the cost
of her one strategy is at most

c11(2) + ϕ̄n2−1

(
1 + 1

ϕ̄n2−1

)n2−1
< µ2d + µ

µ− 13d.

Thus, the improvement factor for G1 is at least α̃ as in Lemma 5. This shows that
following the NAND semantics remains α̃-dominating for all gate players, and hence as
in the proof of Lemma 4, the input players do not have an incentive to change their
strategies.
Claim 1.

• If the output player plays her zero strategy, it is α̃-dominating to play the dummy
strategy for every player in Gn2 .

• If the output player plays her one strategy, the dummy strategy is α̃-dominated
by any other strategy for every player in Gn2 .

Proof. If the output player plays her zero strategy, she is not using the dummy resource.
Hence, the cost of the dummy strategy for any of the players in Gn2 is zero, and hence
α̃-dominating.

Now, observe that the cost of any of the original strategies of the players in Gn2 is
upper bounded by

(
1 + 1

ϕ̄n2−1

)n2−1
. If the output player plays her one strategy, then

the dummy resource is ϕ̄n2−1-dominated by any other strategy of the players in Gn2 .

Claim 2. Gdµ(C)→ Gn2 has an α̃-equilibrium if and only if C has a satisfying assignment.

Proof. The proof is the same as for Lemma 7 using Claim 1 and swapping zero and one
strategy of the output player. In any α̃-equilibrium, the output player plays her zero
strategy. As otherwise by Claim 1, the players of Gn2 do not have an α̃-equilibrium. If
the output player, plays her zero strategy, then by the discussion at the beginning of the
proof, the gate players follow the NAND semantics, and hence C(x) = 0. Showing that
C has a satisfying assignment.

On the other hand for a satisfying assignment, the gate players follow the NAND
semantics and hence the output player plays her zero strategy. With Claim 1, we obtain
an α̃-equilibrium by letting all players of Gn2 play their dummy strategies.

As for polynomial cost functions (see comment after Lemma 7), we observe that any
α̃-equilibrium is also an exact equilibrium. Hence, we again have the gap-introducing
property of the combined game. Either C has a satisfying assignment, in which case the
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game has an exact equilibrium, or C does not have a satisfying assignment, in which case
the game does not have an α̃-equilibrium.
Feasibility of α(n). We are left to show that α(n) < ϕ̄n2 . By the definition of α(n) we
have

α(n) = α(n1 + n2) < ϕ̄n1+n2

1 + ε
.

Using the upper and lower bounds on ϕ̄ from (3.22) we continue with

α(n) ≤
1 + ε

3
1 + ε

· n1 + n2
ln(n1 + n2)

≤
1 + ε

3
(1 + ε)(1− ε

3) ·
lnn2
n2
· n1 + n2

ln(n1 + n2) ϕ̄n2−1,

where we used for the second inequality that n1 + n2 ≥ n2 ≥ n1 ≥ n0. As lnn2 <
ln(n1 + n2) and n2 = `n1 we continue with

α(n) <
1 + ε

3
(1 + ε)(1− ε

3) ·
(

1 + n1
n2

)
ϕ̄n2−1

=
1 + ε

3
(1 + ε)(1− ε

3) ·
(

1 + 1
`

)
ϕ̄n2−1.

Finally, by the choice of ` (3.23) we have α(n) < ϕ̄n2−1.

As before in Theorem 3, if the sequence α(n) is polynomial-time computable (as
described in Section 3.2), the problem is NP-complete.

3.7 Network Games
Up to now we assumed the strategies of the games to be given explicitly. In some cases
the strategies of the players can be represented in a succinct way. One such example
are network games. There may be exponentially many paths for a player connecting her
source and sink node. However, they are given implicitly by the underlying graph. In this
section we discuss how our hardness results can be carried over to network games. We
begin with the hardness gadget from Section 3.4, where we are able to give a construction
of a network game with the same properties as Gdµ(C). For the non-existence gadget Gn
from Section 3.3, we give an idea of a translation to a network game. Unfortunately, we
were not able to find a complete construction. Finally, we briefly discuss the combination
of both gadgets.

The Hardness Gadget We show that the game Gdµ(C) from Section 3.4 can be translated
to a network congestion game. For this we refine our circuit model so that no connection
splits, i.e., every output of a gate is input to at most one other gate.
Circuit Model. The idea is to introduce a doubling gadget which has one input and two
outputs. The semantics of these gadgets are that both output bits are the same as the
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in a
b

in a b

0 1 1
1 0 0

Figure 3.10: Schematic drawing and semantics of a doubling negation gate.

input bit. Using these gadgets we can replace a fork in a wire by a series of doubling
gadgets, so that every output is input to at most one other gate. The doubling gadget
consists of a NAND gate with one input fixed to 1 followed by a new doubling negation
gate. The semantics of this gate is that both output bits are the negation of the input
bit (see Fig. 3.10).

g4

g3

g2

g1

(a) part of a circuit with
a 3-way fork (•) in a wire

g4 z

1
y

x

1
w

g3

g2

g1

(b) canonical form of the circuit part using two doubling gadgets
(dashed boxes)

Figure 3.11: Replacement of a forking in a wire with two doubling gadgets consisting of NOT
gates z and x and doubling negation gates y and w

Our circuits contain only 2-input NAND gates and doubling negation gates, every
output of a gate is input to at most one other gate, and there are no doubling negation
gates which are direct successors. We look at circuits in canonical form where we replace
any fork with a series of doubling gadgets as described above. See Fig. 3.11 for an
example of replacing a fork in a circuit. In this section we overload notation and call a
circuit of this form to be in canonical form. For a circuit in canonical form, we again
look at the corresponding directed acyclic graph −→G(C), where every input bit and gate
is a node and the wires are the arcs. See Figure 3.12. We observe that every node

g4

1

z y

x

g2

w

g3

g1

Figure 3.12: Part of the directed acyclic graph −→G(C) for the canonical form of the circuit part
of Figure 3.11
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corresponding to a gate has either two ingoing and one outgoing arc (NAND gates), or
one ingoing arc and two outgoing arcs (doubling negation gates).
Translation to Network Games. The translation of a circuit in canonical form to a net-
work congestion game N d

µ (C) is similar to the construction of Gdµ(C). However, now we
have a player for every wire in the circuit, i.e., every arc in the directed graph associated
to the circuit.

For the formal definition of the network game associated to a circuit C in canonical
form let A be the set of all NAND gates and D be the set of all doubling negation gates
in C. Consider the directed graph −→G(C) associated to C. There are 7 types of arcs (u, v)
in −→G(C):

• An input arc connects an input bit to some gate, i.e., u is an input bit of C.
• A NOT arc connects the fixed input 1 to one of the NOT gates, i.e., a ∈ δ+(1).
• The output arc corresponds to the output of the circuit, i.e., u = g1.
• A NAND arc connects two NAND gates, i.e., u, v ∈ A.
• A NAND-DN arc connects a NAND gate to a doubling negation gate, i.e., u ∈ A

and v ∈ D.
• A DNa arc connects the a-output of a doubling negation gate to some NAND gate.
• A DNb arc connects the b-output of a doubling negation gate to some NAND gate.

See Figure 3.13a for a part of a circuit containing 6 of the above types of arcs (no output
arc).

g6

1
X1

g5

g3
g4

g2

NAND-DN
DNa

DNb

NAND

NOT

input

(a) Part of a circuit in canonical
form. Labels on the wires give the
type of the corresponding arc.

s6

s1 t1

t6sX1 tX1
s5a s5b

s4 t5a t4

t5b

06

16

0a5

1a5

0b5

1b5

03

13

02

12

04

14

(b) The part of the network related to the circuit part. The
zero strategy of the NAND-DN arc is shown in orange and
the one strategy of the DNa arc in purple. For simplicity the
players pa are identified by the head of a.

Figure 3.13: Translation of a part of a circuit to a network. (a) shows 6 of the arc types and
(b) the construction of the network. Resource arcs are drawn black and zero arcs gray.

For every arc a = (u, v) in −→G(C) we introduce a player pa. The players related to
input arcs are called input players. Additionally, there is an output player that is not
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related to any arc but corresponds to the output of C. One can think of adding a single
outgoing arc to the last gate in −→G(C). Then the output player is the player associated
to this arc.

In the directed graph for the network game, there are unique source nodes sp and
sink nodes tp for every player p. The remaining nodes of the graph are the endpoints of
resource arcs related to the gates of C. For every NAND gate gk ∈ A we introduce the
two resource arcs 0k and 1k, and for every doubling negation gate gk ∈ D we introduce
four resource arcs 0ak, 0bk and 1ak, 1bk. These will be the only arcs having some cost. All
other arcs have cost zero and are used to connect the resource arcs and the sources and
sinks of the players in the right way.

Every arc a in −→G(C) induces some arcs in our network connecting the source and sink
of player pa to the resource arcs. Table 3.1 shows which arcs are added depending on
the type of a. Every → corresponds to a new arc. By u → v we mean the arc going
from (the head of) u to (the tail of) v. For example for an input arc a = (xi, gk) the
two arcs added in the first path are (spa , tail(0k)) and (head(0k), tpa). The arcs added in

type of a paths
input arc spa → 0k → tpa
a = (xi, gk) spa → 1k → tpa

NOT arc
spa → 1k → tpaa = (1, gk)

output arc spa → 01 → tpa
spa → 11 → tpa

type of a paths
NAND arc spa → 0k → 0k′ → tpa
a = (gk, gk′) spa → 1k → 1k′ → tpa

NAND-DN arc spa → 0k → 0ak′ → 0bk′ → tpa
a = (gk, dk′) spa → 1k → 1ak′ → 1bk′ → tpa

DNa arc spa → 0ak → 0k′ → tpa
a = (dk, gk′) spa → 1ak → 1k′ → tpa

DNb arc spa → 0bk → 0k′ → tpa
a = (dk, gk′) spa → 1bk → 1k′ → tpa

Table 3.1: The paths defining the directed graph for N d
µ (C).

this process are called zero arcs. They all have cost zero. See Fig. 3.13 for an example
of the network game construction for a small part of a circuit.

To define the costs on the resource arcs, we again index the gates in reverse topological
ordering, so that the output gate is g1 and the gates connected to the input bits have
high index.

The parameters of the network game N d
µ (C) are

d ∈ N≥1 and µ ∈ R≥0 where µ > 32d+2. (3.27)

For the resource arcs 0k and 1k, we define the cost as before for Gdµ(C) (see (3.9)) by

c1k(x) = µkxd and c0k(x) = λµkxd, where λ = 3d/2.

For the new resource arcs corresponding to the doubling negation gates we set

c0a
k
(x) = c0b

k
(x) = c1a

k
(x) = c1b

k
(x) = 1

2µ
kxd.
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All other arcs have cost zero. This finishes the description of the directed graph and the
network game N d

µ (C). The strategies of a player p are all sp → tp paths in the graph.
Properties of the Network Game. We show that the behavior of N d

µ (C) is the same as for
Gdµ(C). In particular, in any α-equilibrium of N d

µ (C) the players emulate the computation
of the gates in the circuit.

We begin with two observations on the structure of the paths for the players that
follow directly from the definition of the graph.
Observation 2. For every player pa the set of spa → tpa paths contains exactly the paths
given in Table 3.1.

We will thus refer to the two sp → tp paths as zero and one strategy of player p. From
the structure of these sp → tp paths we immediately get
Observation 3.

• Every player uses resource arcs of at most 2 gates (the gates she connects in −→G(C)).
• Every resource arc of a NAND gate can be used by at most 3 players (the players

associated to the ingoing and the two outgoing arcs in −→G(C)).
• Every resource arc of a doubling negation gate can be used by at most 2 players

(the players associated to the ingoing and the corresponding outgoing arc in −→G(C)).
With these properties we are able to show that Lemma 4 also holds in N d

µ (C). That is,
for small enough α, the α-equilibria of N d

µ (C) are exactly the profiles where the players
emulate the computation of C. As before we define a small cut-off

ε′(µ) = 3d+d/2

µ
.

Then by the choices of d ≥ 1 and µ > 32d+2 (see (3.27)), we have 3d/2 − ε′(µ) > 1 as
before.

Lemma 8. (cf. Lemma 4) For any circuit C in canonical form and valid choices of
parameters d and µ (satisfying (3.27)) consider the network game N d

µ (C). Let σX be a
strategy profile for the input players and let x ∈ {0, 1}n be the corresponding bit vector.

Then the profile σX can be extended to a unique α-equilibrium σ of N d
µ (C) for any

α ∈ [1, 3d/2 − ε′(µ)). Further, in σ the three players associated to a gate follow the
semantics of the gate. In particular, the output player plays according to C(x).

Proof. Let C be a circuit in canonical form and take valid choices of d, µ, and α. We
proceed as in the proof of Lemma 4. We first fix the input players to their strategies in
σX and show that the players related to a gate follow the corresponding semantics. As
the strategies and incurred costs for the input players are the same as in Gdµ(C), the same
proof as in Lemma 4 shows that the input players do not have an incentive to change
their strategies in a profile where the players emulate the computation of the circuit.

Let σ be an α-equilibrium of N d
µ (C) where the input players play according to σX .

Consider a doubling negation gate gk ∈ D and the three associated players: Pin corre-
sponding to the ingoing NAND-DN arc, Pa corresponding to the outgoing DNa arc, and
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3.7 Network Games

Pb corresponding to the outgoing DNb arc. We want to show that if Pin plays her one
strategy, then it is α-improving for both Pa and Pb to play their zero strategies and
analogously for the zero strategy. Due to symmetries consider only Pa. This player is
related to an arc connecting gk to some NAND gate gl ∈ A, where k > l.
Case 1: Pin plays her one strategy. The cost of the one strategy of Pa is at least c1a

k
(2)

since Pin and Pa use the resource arc 1ak. On the other hand, the cost of her zero strategy
is at most c0a

k
(1) + c0l(3) as she is alone on resource arc 0ka but potentially all of the

three players related to the NAND gate gl are playing their zero strategy. Hence, the
ratio of both costs is at least

c1a
k
(2)

c0a
k
(1) + c0l(3) =

1
2µ

k2d
1
2µ

k + λµl3d
= 2d−1

1
2 + µl−kλ3d

>
2d−1

1
2 + 1

µλ3d
>

2d−1

1
2 + 1

3d/2+2

,

where the last inequality follows from the choice of µ > 32d+2. From d ≥ 1, we further
have 2d > 3d/2 + 2

32 . Thus, we get that the ratio is strictly larger than 3d/2. This shows
that Pa plays her zero strategy in the α-equilibrium σ.
Case 2: Pin plays her zero strategy. By similar arguments to the previous case, we have
that the cost of the zero strategy of Pa is at least c0a

k
(2) and the cost of her one strategy

is at most c1a
k
(1) + c1l(3) As c0l(3) > c1l(3), the ratio of the costs is at least

c0a
k
(2)

c1a
k
(1) + c0l(3) =

1
2µ

k2d
1
2µ

k + λµl3d
> 3d/2

exactly as in the previous case. Thus Pa plays her one strategy in the α-equilibrium σ.
Now consider a NAND gate gk ∈ A and the three associated players: Pa and Pb

corresponding to the two ingoing arcs, and Pout corresponding to the outgoing arc. We
want to show that it is an α-improving move for Pout to play her zero strategy if and
only if both Pa and Pb play their one strategy.

Let gl be the successor of gk in −→G(C). Recall that k > l. We consider three cases:
either gl ∈ A, or gl ∈ N , or k = 1, that is, Pout is the output player of the circuit. We
begin with gl ∈ A.
Case 1: Both Pa and Pb play their one strategy. The cost incurred to Pout on her one
strategy is at least c1k(3), since all three players Pa, Pb, and Pout use arc 1k. On the
other hand, the cost for her zero strategy is at most c0k(1) + c0l(3). The ratio of the
costs is thus at least

c1k(3)
c0k(1) + c0l(3) = 3d

λ

( 1
1 + µl−k3d

)
>

3d
λ

(
1− 1

µ
3d
)
.

By the definitions of λ and ε′(µ) the last term is equal to 3d/2−ε′(µ) and hence the ratio
is strictly larger then α. Thus Pout plays her zero strategy in the α-equilibrium σ.
Case 2: At least one of Pa or Pb is playing her zero strategy. The cost incurred to
Pout on her zero strategy is at least c0k(2) and the cost of her one strategy is at most
c1k(2) + c1l(3). The ratio of these costs is thus at least

c0k(2)
c1k(2) + c1l(3) = λ

(
1

1 + µl−k(3
2)d

)
> λ

(
1− 1

µ
3d
)
.
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3 Existence and Complexity of Approximate Equilibria in Weighted Congestion Games

As in the previous case the last term is equal to 3d/2 − ε′(µ) and hence strictly larger
than α. Thus, Pout plays her one strategy in the α-equilibrium σ.

Now assume that gl ∈ D. Note that in the above computations only the second term
in the upper bounds on the strategies changes. Instead of using arc 0l (possibly together
with at most two other players), Pout is now using arcs 0al and 0bl (possibly together with
at most one other player each). Observe that for any index l we have the relations

c0a
l
(2) + c0b

l
(2) = c1a

l
(2) + c1b

l
(2) = 2 · 1

2µ
l2d = µl2d < c1l(3) = µl3d < c0l(3).

Thus, the ratio of the costs for Pout can be bounded as before.
Finally, if Pout is the output player of the circuit, she only plays the resource arc 01

or 11. The ratios of her costs are then at least

c11(3)
c01(1) = 3d

λ
and c01(2)

c11(2) = λ.

By the definition of λ those are both strictly larger than α. Thus, also the output player
follows the NAND semantics.

This shows that in any α-equilibrium where the input players are fixed, the other
players emulate the computation of the circuit. The same proof as in Lemma 4 shows
that the input players do not have an incentive to deviate. Thus there is a unique
α-equilibrium as in the statement of the theorem.

With this lemma, Theorem 2 also holds for network games. As the costs incurred to
the input players and the output player is the same in Gdµ(C) and N d

µ (C), we can use
almost the same proof for the network version. We choose µ > 32d+2

ε such that ε′(µ) ≤ ε.
As before we can choose a rational λ such that

α

(
1 + 1

µ
3d
)
< λ <

3d

α
(
1 + 1

µ3d
)

without changing the key inequalities above.
For the first and third problem, the same proof can be used, replacing the application

of Lemma 4 by Lemma 8. For the second problem, the addition of the new resource of
cost zero to the one strategy of the output player can be modeled in the network game.
Instead of adding the path spout → 11 → tpout for the output player (see Table 3.1),
we introduce a new dummy arc corresponding to the new resource and add the path
spout → 11 → dummy→ tpout .

Non-Existence Gadgets First, consider the games Gd(n,k,w,a) from Section 3.3 with poly-
nomial cost functions and no α-equilibrium for α < α(d). We propose a network struc-
ture as shown in Figure 3.14.

For this construction to work, we need a gadget for the orange and purple parts. The
purple gadget will be a flipped version of the orange gadget. This gadget has to have
the following properties.
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r0 r1 r2 · · ·
rn

r′0 r′1 r′2 · · ·
r′n

sheavy theavy sntn s2t2 s1t1

Figure 3.14: The structure of the network version of the game Gd(n,k,w,a). The network uses
gadgets (orange, purple) containing the resource arcs with the costs as in Gd(n,k,w,a). All other
arcs (gray) have cost zero.

• There are exactly 4 entry points: left, top, right, and bottom.
• A path that enters the gadget at the top has to leave the gadget at the bottom.
• A path that enters the gadget at the left has to leave the gadget at the right.
• The top-bottom and left-right paths share the resource arc in the gadget.

With such a gadget, there would be exactly two si → ti paths in the network, corre-
sponding to the strategies in Gn. We were not able to find such a gadget. The key
difficulty is to reproduce the congestion on the resource arcs without introducing more
available si → ti paths in the network.

Another approach would be to replace the gadgets by just the resource arcs (identify
the left and top entry point as single node and similarly for right and bottom) and to
put some cost on the arcs connecting the gadgets. To make sure that the two desired
si → ti paths for every player are α-dominating in any profile. Here the key difficulties
are that we do not have the nice structure of the strategies as before in Gd(n,k,w,a). For
example, previously we had that if the heavy player is playing r′0 she is not using r0.
However, in the network there is an sheavy → theavy path using both of the resources.
Further, previously resource ri could only be used by light player i. However, in the
network there are sj → tj paths using the resource arc ri for some j 6= i. We were not
able to find polynomial cost functions for the connecting arcs satisfying all of the above
properties.
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3 Existence and Complexity of Approximate Equilibria in Weighted Congestion Games

Similar problems arise for the games Gn with general cost functions from Section 3.6.
It is thus left open as
Research Question 2. Can the games Gd(n,k,w,a) and Gn be modeled as network games?

Combination of the Hardness Gadget and the Non-Existence Gadget As for the
combination of both parts in our hardness reductions, we do not see a way to model the
combination for polynomial congestion games. Recall that the combination is done by
letting the output player of Gdµ(C) play all of the resources from the non-existence game
in her one strategy (see the definition of Gdµ(C)→ Gγ in Section 3.5). This would mean
that we have to introduce a path in the network non-existence gadget containing all of
the resources. This will introduce new paths for the players of the non-existence part and
thereby affect the behavior of this gadget, even if the output player is not playing this
strategy. Further, our transformations from Section 3.5 to the canonical structure are
not applicable to network games. For example, when splitting a resource with constant
cost into player specific resources with monomial cost, we can not guarantee anymore
that each player uses only his own resource.

On the other hand, the combination for general costs can be done. Assume that there
is a network version of Gn from Section 3.6. We adapt the network version of the circuit
part N d

µ (C). Add a new arc related to the dummy resource. Add this arc to the path
corresponding to the one strategy of the output player, i.e., add spout → 11 → dummy→
tpout instead of spout → 11 → tpout . Further, for every player p of the non-existence game
add an additional sp → dummy→ tp path. This does not change the non-existence part.
Also the circuit part is unchanged, except for the additional dummy arc for the output
player. Hence, the same arguments as in Section 3.6 can be used for this combination.

3.8 Conclusion
In this chapter, we construct weighted congestion games with polynomial cost functions
that do not have α-equilibria for α < α(d) ∈ Ω

(√
d

ln d

)
. For general cost functions, we

show that n player games always have n-equilibria, but there are games that do not have
α-equilibria for any α < ϕn−1 ∈ Θ

(
n

lnn
)
. Further, we develop a translation of a Boolean

circuit to an unweighted polynomial congestion game. With this gadget, we are able to
show NP-hardness of deciding the existence of α-equilibria for α as bounded above, and
the existence of α-equilibria with additional properties.

Our results leave open the question of where exactly the non-existence begins. For
polynomials of degree d we know from Caragiannis and Fanelli [CF21] that d-equilibria
always exist. In Theorem 3, we show that Ω

(√
d

ln d

)
-equilibria do not necessarily ex-

ist. Similarly, for general cost functions, we show that n-equilibria exist, but Θ
(
n

lnn
)
-

equilibria do not necessarily exist. Closing these gaps is one of the obvious future research
directions.
Research Question 3. What is the smallest α such that all weighted (polynomial) con-
gestion games have an α-equilibrium?
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3.8 Conclusion

In Section 3.7, we show that the hardness gadget can also be transformed into a
network game. However, we do not have such translations for our non-existence gadgets
(Research Question 2). It would be interesting to see whether the same bounds hold for
network games.

Another related area, which we did not touch on in this chapter, is the complexity of
computing α-equilibria in the cases where they are guaranteed to exist. For polynomial
games of degree d, Caragiannis and Fanelli [CF21] show that d-improving moves converge
to a d-equilibrium. Hence, computing a d-equilibrium is a problem in PLS. The only
known hardness result is the PLS-completeness of finding exact equilibria in unweighted
games by Fabrikant, Papadimitriou, and Talwar [FPT04] and Ackermann, Röglin, and
Vöcking [ARV08]. On the other hand, dO(d)-equilibria can be computed in polynomial
time (see for example [Car+15; Fel+17; GNS21]). For general cost functions, Skopalik
and Vöcking [SV08] show that it is PLS-complete to compute an α-equilibrium for any
fixed α.
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4 Network Design Games with Economies
of Scale

4.1 Introduction

In contrast to (negative) congestion effects on shared resources as in the previous chap-
ter, there are situations where using the same resource is beneficial for the participants.
Consider a small town which is about to be extended by a new district. Some compa-
nies were assigned a local storehouse and a shop each to make the new neighborhood
attractive. The missing piece is the construction of the new road network.

A map of all possible roads has been published together with the respective construc-
tion costs. Each company wants to connect its storehouse to its shop in the district
and is paying for the roads needed to be built. The construction cost of each road de-
pends on the number of companies using this road. For a single company, a country
road is sufficient, but for 10 companies a proper motorway has to be built. Hence, the
construction cost is increasing. Further, extending a motorway by an additional lane is

1/2/2.5/3

1/2/3/4

1/2/3/4 1.5/2/2/2 1

4

4

12 3 1

1

11

1

1

(a) Map of possible roads. The edge labels give
the construction cost for the street. The label
a/b/c/d means that for 1 company the cost is a,
for 2 companies the cost is b and so on. A label a
means that the construction cost is a independent
of the number of companies.

(b) A realization of a road network connecting all
stores to their corresponding shop. The streets
built by the companies are highlighted in the re-
spective color.

Figure 4.1: Example of the planning of a new district. There are 4 companies: a cinema, the
coffeeORtea club, a cupcake shop, and the chord company with a shop and a storehouse each.
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4 Network Design Games with Economies of Scale

cheaper than upgrading a country road to a motorway. Hence, there are economies of
scale effects in place, and the construction cost of each road is concave. Since anyone
can use a road, once it is built, the construction cost of a road is shared by all companies
wanting to build this road. To incentivize the companies to share roads to protect the
environment, the share for each company is decreasing in the number of companies using
a road. Figure 4.1 shows an example of the situation.

In the process of deciding which roads to build for which company, there are two
competing interests to consider. On the one hand, there is the overall social cost of the
roads to be built; on the other hand, there are the individual costs incurred by each
company. While the local authorities want to minimize the social cost of the new road
network, each company wants to minimize its own cost. The companies will thus propose
a stable road network, where no company is better off by building a different path of
roads given the choices of the other companies.
Example 12. Figure 4.1b shows a road network of minimal social cost 23.5. This network
is not stable as the cinema can decrease its cost from 1 + 4

2 + 4
3 + 1

3 + 2
2 = 5 + 2

3 to
1 + 2

2 + 1 + 1 + 2
2 = 5 by building the other path using the left upper corner. y

The local authorities’ only interest is the social cost, ignoring the stability of the
proposed network. The companies’ only interest is the stability of the proposed network,
ignoring the social cost. To satisfy both sides, the goal is to find a stable network of
minimal social cost and show that the social cost of this network is not too far away
from the minimal social cost achievable. The quality of such stable networks and how
to find them is the topic of this chapter.
Example 13. The network resulting from the one shown in Figure 4.1b where both the
cinema and the coffeeORtea club build the other path (using the left upper corner) is
the only stable state with social cost of 25. In this example, the gap between a stable
state and a state with minimal social cost is thus 25

23.5 ≈ 1.06 y

The task of the local authorities in the above setting is the network design problem
with economies of scale as introduced by Salman et al. [Sal+97]. Taking the viewpoint
of the companies puts the problem in the scope of game theory. The game described
above, where the companies are the players, can be formulated as a congestion game.
In particular, a network congestion game with decreasing per-player cost functions. The
stable states are the pure Nash equilibria (equilibria) in these games. To measure the
quality of equilibria, the two notions of Price of Anarchy (PoA) ([Pap01]) and Price
of Stability (PoS) ([Ans+08a]) have been introduced as the worst and best ratio of the
social cost of an equilibrium and the overall minimal social cost.

Anshelevich et al. [Ans+08a] were the first to study the quality of equilibria in network
congestion games with decreasing cost functions. Most of the subsequent literature
focuses mainly on the case where the total construction cost of each road (the cost
shared by all players) is constant (and hence independent of the number of players).
Note that in this case, the task of the local authorities is to find a minimum Steiner
forest w.r.t. the construction costs.

68



4.1 Introduction

In this chapter, we extend the study of equilibria as in [Ans+08a] to the case of general
non-decreasing concave total construction costs with decreasing per-player costs as in the
network design problem. We thus call these games network design games with economies
of scale.

An instance of such a game is given by an undirected graph and a set of players.
Every player wants to connect her source and sink node by a path in the graph. Once
all players chose a path, the cost incurred to each player is computed by the sum of
the costs of the edges used on their respective paths. Each edge in the graph has a
cost function, which gives the per-player cost incurred to every player using the edge
depending on the total number of players using the edge. If, for example, 3 players
use edge e with per-player cost function f on their path, then each of the three players
has to pay f(3) for this edge. We thus get a total cost of 3 · f(3) paid for edge e. We
assume the per-player costs to be decreasing and at the same time the total costs to
be non-decreasing and concave (with non-increasing marginal costs). Such functions
will be called sharing functions with economies of scale. Two extreme cases of sharing
functions with economies of scale are f(k) = γ and f(k) = γ

k , where γ > 0 is some
constant. Functions of the second form fall into the model of fair cost allocation studied
in [Ans+08a] and most of the subsequent works. If the per-player cost function is the
same up to some constant scaling factor on all edges, then we speak of a uniform game;
otherwise, the game is called non-uniform.

For a choice of player paths, the sum of all player costs is called the social cost.
Two kinds of collections of player paths are of interest: equilibria (collections where no
player can reduce her cost by switching to another path) and social optima (collections
of minimal social cost). We are especially interested in broadcast network design games
with economies of scale where all players have a common sink node, and there is a player
associated to each node of the graph, which is the source node of the player.

We study the Price of Stability (PoS) of network design games with economies of scale
from two perspectives. Firstly, we are interested in the value of the PoS, that is, how
good can equilibria be in terms of their social cost. Secondly, we investigate how those
good equilibria can be found efficiently.

Note on Collaboration This chapter is based on joint work with Yiannis Giannakopou-
los and Marcus Kaiser. The results presented here also appear in the PhD thesis of
Marcus Kaiser.

Previous Work
Network Design Games. The model of network design games we use here is the one
from Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, and Roughgarden [Ans+04;
Ans+08a]. Every player wants to connect their source node to their destination node
and pays for all edges on the path. The total cost of an edge is shared equally by players
using the edge. Anshelevich et al. [Ans+08a] focus on the case where the total edge cost
is constant, which they call fair cost allocation. They also mention that some of their
results extend to non-decreasing and concave total edge costs with decreasing per-player
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costs. Such cost functions are the main focus of our work. The same model has also
been studied by Syrgkanis [Syr10].

There are many variants of connection games in networks that differ in the set of
edges players pay for and how they share the cost of used edges. We mention only two
well-studied variants.

Anshelevich, Dasgupta, Tardos, and Wexler [Ans+03; Ans+08b] introduce a quite
general model where players want to connect their terminal nodes (possibly more than
two) by buying edges. For every edge used by a player, she offers a cost-share she is
willing to pay. Once an edge is bought (if all cost shares cover the total edge cost), all
players can use the edge, even if they did not pay for it. This models the unregulated
and unrestricted formation of a new communication network.

In contrast to this global perspective of the players, Bala and Goyal [BG03] and
Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker [Fab+03] define a local model,
where players pay only for some of the incident edges of the source node. The cost
incurred to a player is the sum of the edge cost paid and the distance in the resulting
graph to every other node (in terms of number of edges). This models the formation
of a social network, where users connect to some friends and get thereby connected to
friends of friends.

Extensions of the model of Anshelevich et al. [Ans+08a] include giving weights to
players (see for example Anshelevich et al. [Ans+08a] and Chen and Roughgarden [CR06;
CR09]) or adding capacity constraints to the edges (see for example Feldman and Ron
[FR12; FR15]).

Network Design Games with Fair Cost Allocation. The study of the quality of equilibria
in network design games with fair cost allocation was initiated by Anshelevich et al.
[Ans+08a]. They give an example of a directed multicast game, with a Price of Anarchy
of n, the number of players. Their example (two parallel arcs) can be transformed
into a broadcast instance even for undirected graphs. Hence in all settings (directed,
undirected; general, multi-, broadcast), the PoA is n.

For the Price of Stability, they show an upper bound of H(n) (the nth harmonic
number) for both directed and undirected games with n players, which is asymptotically
Θ(logn). They give a tight example of a general network game that can easily be
transformed into a broadcast game, which shows that the PoS for directed (broadcast)
games is H(n). The value of the PoS for undirected games is posed as an open problem.
A series of papers have attacked this question from different angles without finding
an answer until today. There are huge gaps between the best-known upper and lower
bounds for all three cases of multi-source-sink, multicast, and broadcast games.

For general network games, the H(n) upper bound from Anshelevich et al. [Ans+08a]
is only slightly improved up to now. Disser, Feldmann, Klimm, and Mihalák [Dis+15]
show an improved bound of

(
1−Θ

(
1
n4

))
H(n) and Mamageishvili, Mihalák, and Monte-

mezzani [MMM18] further reduce this toH(n2 ). Asymptotically, the current bound is still
O(logn). The lower bound was increased from 1.714 by Fiat, Kaplan, Levy, Olonetsky,
and Shabo [Fia+06] (a broadcast instance) to 1.826 by Christodoulou, Chung, Ligett,
Pyrga, and Stee [Chr+09]. Bilò, Caragiannis, Fanelli, and Monaco [Bil+10; Bil+13]
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construct a general game with the currently highest lower bound on the PoS of 2.245.
Only for small numbers of players, there are better bounds on the PoS for general games.
Christodoulou, Chung, Ligett, Pyrga, and Stee [Chr+09] show that the PoS for 2 player
games is exactly 4

3 , and for 3 players, the PoS is in the interval [1.542, 1.65]. Disser,
Feldmann, Klimm, and Mihalák [Dis+15] improve the lower bound to 1.571 and Bilò
and Bove [BB11] improve the upper bound to 1.634.

The only improvement of the H(n) upper bound of Anshelevich et al. [Ans+08a] for
multicast games is given in Li [Li09] as O

(
logn

log logn

)
. Anshelevich et al. [Ans+08a] give

an example of a multicast game with 2 players achieving a PoS of 4
3 , which they show

to be the exact PoS for 2 player multicast games. For 3 players, Bilò and Bove [BB11]
show that the PoS is in the interval [1.524, 1.532]. The currently best lower bound of
1.862 for any number of players is constructed in Bilò, Caragiannis, Fanelli, and Monaco
[Bil+10; Bil+13]. They give a family of multicast games parameterized by the number
of players. They show that the PoS of each instance is the solution of a linear program
where the total edge costs are the variables.

Freeman, Haney, and Panigrahi [FHP16] consider quasi-bipartite games as intermedi-
ate setting between multi- and broadcast games. In a quasi-bipartite game, there are
no edges between nodes that are not source nodes of players (i.e., every edge is incident
to at least one source node). Extending the method of Bilò, Flammini, and Moscardelli
[BFM13] from broadcast games to quasi-bipartite games, they show that the PoS in such
games is constant (without specifying the exact value).

All mentioned upper bounds also hold for broadcast games. However, this special
case allowed for a series of improvements culminating in a constant upper bound. The
first improvement over the H(n) bound from Anshelevich et al. [Ans+08a] is a bound
of O(log logn) shown by Fiat, Kaplan, Levy, Olonetsky, and Shabo [Fia+06]. Lee and
Ligett [LL13] further improve this bound to O(log log logn). Finally, Bilò, Flammini,
and Moscardelli [BFM13; BFM20] show that the PoS for broadcast games is bounded
by a constant. Unfortunately, they do not give the value of their constant, but it is
assumed to be very large. In contrast to that, the best lower bound so far is 1.81 from
Bilò, Caragiannis, Fanelli, and Monaco [Bil+10; Bil+13]. Similar to the multicast case,
this bound is shown by solving a linear program. Their instances are optimized versions
of the instance for the first lower bound of 1.714 by Fiat, Kaplan, Levy, Olonetsky,
and Shabo [Fia+06]. For 3 players Bilò and Bove [BB11] show that the PoS is 1.485 in
broadcast games.

Cost of a Social Optimum. To specify the PoS of a network game exactly, we have to
compute the cost of a social optimum of the instance. For bounds on the PoS, bounds
on the social optimum are sufficient.

In undirected networks computing the cost of a social optimum is a special case of
the (unsplittable) buy-at-bulk network design problem (see for example [Sal+97; AA97]),
where the demand of every source-sink pair is 1. For network design games with fair cost
allocation, the contribution of an edge to the social cost is independent of the number of
players using the edge. Hence, a social optimum corresponds to a minimum Steiner forest
connecting all source-sink pairs. In the broadcast case, this problem reduces to finding
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a minimum spanning tree. Thus, buy-at-bulk network design is NP-hard ([Sal+97]) for
all cases except broadcast instances.

Hence, many papers study algorithms to approximate the cost of an optimal net-
work for different settings. The first approximation by Salman, Cheriyan, Ravi, and
Subramanian [Sal+97] considers the uniform case. They study single-sink instances in
the Euclidean plane and show a O(logD) approximation where D is the total demand.
Later, constant factor approximations have been shown for this setting ([GMM01; Tal02;
GKR03; Gup+07; JR04; JR09; GI06]). The currently best constant achieved is 40.82
by Grandoni and Rothvoß [GR10].

For uniform multi-sink instances the first approximation by Awerbuch and Azar [AA97]
gives a factor of O

(
log2 n

)
, where n is the number of nodes in the network. Using the

tree embedding of Fakcharoenphol, Rao, and Talwar [FRT03; FRT04] gives an improved
factor of O(logn).

In the non-uniform setting, there are approximations for the single-sink case. Meyer-
son, Munagala, and Plotkin [MMP00] give a randomized O(log k)-approximation algo-
rithm, where k is the number of sources. Chekuri, Khanna, and Naor [CKN01] deran-
domized their algorithm, maintaining the approximation ratio. The best known approx-
imation ratio for multi-sink instances is O

(
log4 k

)
by Chekuri, Hajiaghayi, Kortsarz,

and Salavatipour [Che+10], where k is the number of source-sink pairs.
On the other hand, Andrews [And04] gives inapproximability results for uniform and

non-uniform buy-at-bulk network design.

Finding Equilibria. Already in the first paper studying network design games, Anshele-
vich et al. [Ans+04] show that computing one of the best equilibria, an equilibrium of
minimal social cost, is NP-complete for directed multicast games by a reduction from
3D-Matching. For undirected multicast games, Syrgkanis [Syr10] remarks that the
NP-hardness can be shown similarly to an NP-hardness proof in Chekuri, Chuzhoy,
Lewin-Eytan, Naor, and Orda [Che+06; Che+07]. Instead of finding the best equilib-
rium, Chekuri et al. consider the global potential minimizer.

Finding the global potential minimizer is an uncapacitated minimum concave cost
multicommodity flow computation, where the edge costs are the contributions of the
edge to the potential function. For multi- and broadcast instances, the problem simplifies
to single-source single-commodity minimum concave cost flow. Both problems are NP-
hard in general as they contain minimum Steiner forest for constant edge costs. For
network design games, the potential is not constant, but Guisewite and Pardalos [GP91a]
show that the problem remains NP-hard even for single-source minimum concave cost
flow with strictly concave cost functions. Exact algorithms have been developed for
restricted instances, see for example [EMV87; GP93; Tuy+95; War99; Tuy00]. We refer
to Guisewite [Gui95] for a survey of the early results and algorithms. Recent works on
the minimum concave cost flow problem have focused on better heuristics [FG07; BS07;
MFF13; WKD20].

Since network design games are potential games, the equilibria are exactly the local
minimizers of the potential function, w.r.t. single player deviations. Even though the
global minimizer of the potential is an equilibrium, Kawase and Makino [KM12; KM13]
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show that there are instances of undirected broadcast network design games, where the
ratio of the social cost of the global minimizer to the social optimum is Ω

(√
log logn

)
.

Since the PoS for undirected broadcast games is constant, this tells us that using the
global potential minimizer as an approximation to a best equilibrium is not a good idea.

From these hardness results on finding the best equilibrium, the question arises whether
it is easier to find just some equilibrium. The task of computing an equilibrium of an
instance of a network design game can be formulated as a local search problem, where
the neighbors are profiles reachable by single-player deviations. The standard algorithm
is the improving-dynamics.

There are local search algorithms for minimum concave cost flow problems (for exam-
ple [GP91a; GP91b]), but we emphasize here that their concepts of neighborhoods are
often geometric and do not compare to single-player deviations. In particular, the notion
of adjacent flow defined by rerouting a subpath of flow is not a single-player deviation
but rather all players using the subpath changing their strategies. Further, to the best
of our knowledge, there are no theoretical results on the quality of reached local minima.

Johnson, Papadimitriou, and Yannakakis [JPY88] introduced the complexity class
of polynomial-time local search problems (PLS) for local search problems. For general
directed network design games with fair cost allocation, Anshelevich et al. [Ans+08a] give
an example where the improving-dynamics takes exponential time in n, the number of
players, by simulating a binary counter with n bits. Later, Syrgkanis [Syr10] shows that
finding an equilibrium in general directed network design games is PLS-hard for classes
of cost functions satisfying some properties. In particular, fair cost allocation satisfies
those properties. He also gives a reduction for undirected network design games, where
the cost functions have to satisfy some other set of properties. Here, fair cost allocation
is not included. Only recently, Bilò, Flammini, Monaco, and Moscardelli [Bil+21] filled
the gap showing PLS-hardness for undirected general network design games with fair
cost allocation. The complexity for finding an equilibrium in multi- and broadcast games
is still open for directed and undirected games and any set of cost functions.

Despite these hardness results, there might be efficient centralized algorithms to find
an equilibrium. To the best of our knowledge, no such algorithms have been developed
for network design games.

Our Results In this chapter, we study the Price of Stability (PoS) of uniform undirected
broadcast network design games with concave total edge costs and decreasing per-player
costs. We consider three classes of per-player cost functions characterized by their total
cost. Functions of the first type have constant total cost, and thus, they represent fair
cost allocation as in [Ans+08a]. The two remaining classes are interpolations between the
two extreme cases of sharing functions with economies of scale with constant and linear
(slope greater than 1) total costs. On the one hand, we have linear total cost functions
where the slope is between 0 and 1. On the other hand, we consider polynomial total
cost functions where the exponent is between 0 and 1. Note that fair cost allocation is
an extreme case of both classes: linear functions with slope 0 and polynomial functions
with exponent 0.
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4 Network Design Games with Economies of Scale

After stating our model formally in Section 4.2, we begin with some structural prop-
erties of equilibria in these games (Section 4.3).

Price of Anarchy. The first new result is an extension of the lower and upper bound on
the Price of Anarchy (PoA) from [Ans+08a] from fair-cost allocation to sharing functions
with economies of scale. In Section 4.4, we show that the PoA for uniform broadcast
games with underlying cost function f is f(1)

f(n) .

Price of Stability. The main part (Sections 4.5 and 4.6) focuses on bounding the Price
of Stability. In Section 4.5, we give upper bounds on the PoS for general games. We
extend the method from [Ans+08a] using the potential function from fair cost allocation
to sharing functions with economies of scale (Section 4.5.1). In particular, we show a
constant upper bound on the PoS for all linear and polynomial functions except for fair
cost allocation. In both cases, the constant gets large as the function approaches fair
cost allocation.

In Section 4.5.2, we extend the homogenization-absorption framework from [BFM20]
for broadcast games from fair cost allocation to sharing functions with economies of
scale. We show a constant upper bound for quickly decreasing functions where two
quantities (a supremum and a series) are bounded (Theorem 9). The bound on the PoS
is given explicitly in dependence on the function values at 1 and 2, the two aforemen-
tioned quantities, and the absorption- and charging-radii. Theorem 9 applies to fair cost
allocation, for which we give an upper bound of 264.25, improving upon the currently
best known bound of [BFM20].

For uniform broadcast games, we then turn to lower bounds for the PoS in Section 4.6.
We generalize the lower bound construction by Bilò et al. [Bil+13] for fair cost alloca-
tion to sharing functions with economies of scale. As in [Bil+13], we get lower bounds
by considering a feasible solution to an LP. The variables are the scaling factors of the
underlying cost function on each edge. For functions satisfying two properties, the con-
straints of the LP characterize instances where a special tree is the unique (and hence the
best) equilibrium (Corollary 4). We show that all three classes of cost functions satisfy
those properties. By computing the objective value for different values of the parameters
(slope and exponent), we obtain the first lower bounds for linear and polynomial total
cost functions (Sections 4.6.2 and 4.6.3). For fair cost allocation, we show (Theorem 10)
that the weights computed in [Bil+13] determine the PoS in the subclass of instances
considered in that paper.

These theoretical results are complemented with computational experiments (Sec-
tion 4.6.5). Using methods of constraint programming, we enumerate small instances of
up to 5 nodes (4 players). The experiments show that for fair cost allocation, instances
with highest PoS are of the form as considered in [Bil+13]. To reduce the search space,
we restrict to a subclass of instances. The experiments suggest that the instances studied
in Sections 4.6.2 and 4.6.3 are optimal.

Computing Equilibria. Finally, we consider the question of computing (good) equilibria
in Section 4.7. First (Section 4.7.1), we give an example of an improving move in
a multicast game with fair cost allocation, where the decrease in the potential is very
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small. It remains open, whether such moves can often appear in the improving-dynamics
and hence, whether improving-dynamics may take exponential steps.

For general games, we extend the PLS-hardness proof of Bilò et al. [Bil+21] from fair
cost allocation to sharing functions with economies of scale in Section 4.7.2. Syrgkanis
[Syr10] already considers sharing functions with economies of scale and shows PLS-
hardness for non-uniform games.

Additionally to this local search problem of the players, trying to find some equilib-
rium, we consider the task of computing the best equilibrium for sharing functions with
economies of scale. We give a reduction (Section 4.7.3), showing that this is NP-hard for
uniform multicast and broadcast games. The same reduction also shows that computing
the global potential minimizer is NP-hard for broadcast games.

4.2 Model and Notation

In this chapter we are interested in network games on undirected graphs with decreasing
edge costs. We use the game theoretic notation as introduced in Section 2.2. First,
we state our model of network games with a special class of decreasing cost functions
formally, before recalling some of the notation related to network games and introducing
new notation.

Model We consider an (unweighted, undirected) network game as defined in Sec-
tion 2.2. A game is given by an undirected graph G = (V,E) and a set of players
P with a corresponding source sp ∈ V and sink tp ∈ V for each player p ∈ P . The set of
available strategies Sp ⊆ 2E for player p is the set of all sp − tp paths in G.

Every edge has a per-player cost ce : N≥1 → R≥0, that gives the cost incurred to each
player using edge e on her path. This cost depends on the total number of players using
e. If k players use edge e on their paths then each of them pays ce(k) for edge e and the
total cost of e is kce(k). Note that ce is only defined on N≥1. We sometimes extend this
to N by setting ce(0) = 0. Another way of thinking of these costs is as follows. Every
edge has a total cost depending on the number of players using the edge. This cost is
shared equally by all players using the edge.

In this chapter we are looking at a special class of cost functions where sharing an
edge is beneficial to the players, in contrast to the previous chapter, where players tried
to avoid using the same edge. We have the following assumptions on the cost functions
ce : N≥1 → R≥0

• the per-player cost ce(k) is strictly decreasing in k or ce ≡ 0 and
• the total cost kce(k) is non-decreasing and (k+1)ce(k+1)−kce(k) is non-increasing

in k.
The first condition models the benefit of sharing edges. If more players use the same
edge, the cost for each player decreases. The second condition models economies of scale
effects. The total cost for an edge is getting larger for more players, but the marginal
increase gets smaller. By forcing ce to be strictly decreasing, we exclude some decreasing
functions. Together with the non-increasing marginal costs assumption, these functions
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4 Network Design Games with Economies of Scale

have the following structure: they are constant up to some point, and then strictly
decreasing. In particular, constant per-player cost functions are not part of our model.
For technical reasons we allow constant per-player costs of zero. Note that from the
total cost being non-decreasing we have ce(k) ≥ ce(1)

k > 0 if and only if ce(1) > 0. Hence
if some edge has per-player cost of 0 for some k, then it has to be 0 always. Thus, ce is
either always strictly positive or always zero.

We call a function satisfying the above two properties a sharing function with economies
of scale. See Figure 4.2 for an illustration of such functions. Cost functions of this form
have already been considered by Anshelevich et al. [Ans+08a] and Syrgkanis [Syr10].
Note that the main model of fair cost allocation studied in [Ans+08a] is a special case
of our model, where the total cost of each edge is constant.

k

ce(k)

fair cost allocation

f0.5 ∈ Flin

f0.5 ∈ Fpoly

(a) Per-player cost functions are strictly decreasing
in the shaded region.

k

kce(k)

(b) Total cost functions are non-decreasing
with non-increasing marginal cost in the
shaded region.

Figure 4.2: Feasible regions for sharing functions with economies of scale on the left together
with a representative of every class of interest. On the right, the corresponding total cost
functions.

We are looking at three classes of sharing functions with economies of scale described
by their related total cost. First, we consider the case of constant total cost, where the
per-player cost is ce(k) = γe

k for some constant γe > 0. As mentioned before this is
the model of fair cost allocation from [Ans+08a]. Since the total cost is assumed to
be non-decreasing this is one extreme case where ce is decreasing as fast as possible.
Another boundary case would be that ce is constant, meaning that there is no sharing
effect. Recall that constant ce are not part of our model.

The two remaining classes are interpolations between these extremes. The class Flin
contains functions with linear total cost kfs(k) = 1 + s(k − 1) for s ∈ [0, 1). The per-
player costs are of the form fs(k) = s+ (1−s)

k and the marginal cost of the total cost is
always s. These functions fs are linear interpolations between f(k) = 1

k for s = 0 and
f ≡ 1 for s = 1. The class Fpoly contains functions, where the total cost is a polynomial
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kfα(k) = kα for α ∈ [0, 1). The per-player costs are polynomially decreasing functions
of the form fα(k) = kα−1. For α = 0 we obtain fair cost allocation and for α = 1
we have the constant case. Since 0 ≤ α < 1, fα and kfα are indeed decreasing and
non-decreasing. Further, since kα is concave, the marginal cost is non-increasing in k.
Figure 4.2 shows the two functions f0.5 in Flin (orange) and Fpoly (purple).

We consider two cases of network games with decreasing cost functions. A non-uniform
network game is given by a set of available functions F satisfying our assumptions and
a network game as described above, where every cost function ce is one of the given
functions, i.e., ce ∈ F for every edge e. Such game is denoted by (N, c), N is a network
game and c is the vector of cost functions ce ∈ F on the edges. In the uniform case
we specify a single sharing function with economies of scale f : N≥1 → R>0 and every
cost function of the network game has to be a scaled version of f , i.e., for every edge
e there is some scaling factor γe ≥ 0 such that ce(k) = γef(k). We refer to f as the
underlying function of the game. Note that for uniform games we force f to be strictly
positive everywhere (except at 0). Edge costs of zero can be modeled by setting γe = 0.
A uniform network game will be denoted by (N, f, γ), where N is a network game, f
is the underlying function, and γ is the vector of the scaling factors γe for all edges.
By setting F = {k 7→ γf(k) : γ ∈ R≥0} we see that uniform games are special cases of
non-uniform games. We will mostly look at the uniform case here.

Network Games We introduce additional notation to the one of Section 2.2. In this
chapter, we denote by (V,E, {(sp, tp) : p ∈ P}, c) an unweighted undirected network
game, where (V,E) is the undirected graph, the third entry is the set of the source-
sink pairs for every player, and c is a vector of the cost functions ce for every edge. For
a strategy profile σ we say player p uses edge e in σ if e ∈ σp and p goes through v if v
is one of the nodes lying on the path σp. We denote by supp(σ) the support of σ which
is the set that consists of all the edges being used by at least one player. Sometimes the
support of a profile will be a tree in which case there is a correspondence between the
tree as a graph and the profile. If we are given a profile we can construct the tree by
taking the edges being used. On the other hand, if we are given the tree there is exactly
one path for every pair of nodes in the tree, which defines the strategies of the players.
In some cases we use both terms interchangeably.

Note that we are looking at unweighted network games, and thus the congestion on
edge e ∈ E is nσ(e) = |{p ∈ P : e ∈ σp}|, the number of players using e in σ. The cost of
edge e in a profile σ is cσ(e) = ce(nσ(e)), and the cost of player p is Cp(σ) = ∑

e∈σp cσ(e).
We extend the cost of an edge to the cost of a set of edges F ⊆ E naturally to cσ(F ) =∑
e∈F cσ(e). Since we are often interested in single player deviations, it is useful to

introduce the short notation c+1
σ (e) for the cost on an edge e if there is one extra player

using edge e additionally to the players using e in σ, that is, c+1
σ (e) = ce(nσ(e) + 1).

We consider two special cases of network games. A network game where all players
have the same sink node is called a multicast game. We refer to this common sink by
the root of the game, and we say player p is in node v if the source of p is v. A broadcast
game is a special case of a multicast game with |V |−1 players and each node except the

77



4 Network Design Games with Economies of Scale

root is the source of exactly one player. Hence, a broadcast game (V,E, r) is given by a
graph (V,E) and a root node r, and every node wants to connect to the root, while in a
multicast game (V,E, r, P ) only a subset P of the nodes has to connect to the root. To
distinguish these special cases from the multi source-sink case (V,E, {(sp, tp) : p ∈ P}),
we refer to the latter as general game.

We give a small example to illustrate our notation.

r

v2v1 v3

1 1 1

1
3

1
3

Figure 4.3: A uniform broadcast game with root r and three players located in v1, v2, and v3.
The underlying function is f0.5 ∈ Flin, that is, f0.5(k) = 0.5 + 0.5

k . The labels on the edges are
the scaling factors γe. The orange edges represent a strategy profile σ which is an equilibrium.

Example 14. Consider the graph shown in Figure 4.3. This is an instance of a uniform
broadcast game. The root is node r and there are three players located in nodes v1, v2
and v3. As underlying function for the costs on the edges we take f0.5 ∈ Flin, that is,
f0.5(k) = 0.5 + 0.5

k . The scaling factors γ are given by the labels on the edges. For
example, we have γ{v1,r} = 1. The orange edges represent a strategy profile σ, where
σv1 = {{v1, v2}, {v2, r}}, σv2 = {{v2, r}}, and σv3 = {{v3, v2}, {v2, r}}. In this profile the
congestion on {v2, r} is 3. We observe that σ is an equilibrium, since for player v1 the
current cost is Cv1(σ) = 1

3 · f(1) + 1 · f(3) = 1
3 + 2

3 = 1, while deviating to s′ = {{v1, r}}
would incur a cost of Cv1(s′, σ−v1) = 1 · f(1) = 1. Hence deviating is not an improving
move for v1. Checking the remaining strategy for v1 and applying symmetry shows that
no player wants to deviate and hence σ is an equilibrium. The social cost of σ is given
by C(σ) = 1

3 · f(1) + 3 · f(3) + 1
3 · f(1) = 8

3 . Note that σ is no longer an equilibrium for
f0.9 ∈ Flin as underlying cost function. y

Quality of Equilibria To recall the definitions of PoA and PoS from Section 2.2, we
give another example.

r

21 3

8
11

8

4 4

Figure 4.4: Instance of a broadcast game with fair cost allocation. The best equilibrium is
shown in orange and one of the worst equilibria is shown in purple.

78



4.2 Model and Notation

Example 15. Consider the broadcast game with fair cost allocation shown in Figure 4.4.
The path r − 1 − 2 − 3 is a social optimum with social cost 8 + 4 + 4 = 16. There are
three equilibria in the game. The orange tree with social cost 19, the purple tree and
the symmetric version of the purple tree both with social cost 20.

We observe that the Price of Anarchy of this instance is 20
16 and the Price of Stability

is 19
16 . Thus PoA(3) ≥ 20

16 and PoS(3) ≥ 19
16 . y

Trees Finally, let us introduce notation related to trees. In a spanning tree T of a
graph (V,E) there is exactly one path for every pair of nodes. We denote by T [v, w]
the unique v − w path in T . We are mostly dealing with rooted trees which have a
distinguished root node. In a rooted tree (T, r) we will think of the edges being directed
towards the root. That is the path T [v, r] starts at v and goes to r. The first edge on
the path T [v, r] (the one incident to v) is called the parent edge of v in T and denoted
by eT (v). The other node of this edge is called the parent of v in T denoted by pT (v),
i.e., if eT (v) = {u, v} then u = pT (v).

Looking from v at the other direction we have the descendants DT (v) of v, which are
all nodes that have v on their path: DT (v) = {u ∈ V : v ∈ T [u, r]}. Note that this also
includes v itself. For two nodes u and v we denote by lcaT (u, v) the lowest common
ancestor which is the first node where the paths T [u, r] and T [v, r] meet. We refer to the
part of the path T [u, r] up to lcaT (u, v) by T [u↗ v] = T [u, lcaT (u, v)] and analogously
for the part of T [v, r] by T [v ↗ u] = T [v, lcaT (u, v)]. Note that T [u ↗ v] can be
empty, which is the case if v ∈ DT (u). From the definition of lcaT (u, v) we have the
following equalities for the edge sets of the paths T [u, r] \ T [u↗ v] = T [lcaT (u, v), r] =
T [v, r] \ T [v ↗ u]. See Figure 4.5 for an illustration of the notation. In figures we draw
single edges as straight lines and paths containing more edges as curves.

lca(u, v)e

r

v

lca(u,w) = u

w

Figure 4.5: Schematic drawing of parts of a rooted tree (T, r). The path T [v, r] is shown in
orange. The thick edge labeled e is eT (lca(u, v)). It is the first edge which v and u use together.
The dashed path shows T [u ↗ v]. The nodes in the gray area are the descendants DT (u) of u
(including u). The path T [u↗ w] is empty as w is a descendant of u.
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4.3 Preliminaries
We begin with some structural properties of equilibria in network games, which will be
used throughout this chapter. We consider equilibria in multicast games and show that
we can focus on trees spanning all sinks of the players. The first lemma deals with the
case where all edge costs are strictly positive.

Lemma 9. Let (V,E, r, P, c) be a (non-uniform) multicast game, where every edge cost
is strictly positive. For any equilibrium σ the support supp(σ) is a tree.

Proof. Let σ be an equilibrium in (V,E, r, P, c). Consider the shortest paths tree T
rooted at r w.r.t. the following weights. For an edge e which is used in σ the weight is
set to cσ(e) and for e /∈ supp(σ) to +∞. We show that for every player p the current
strategy σp is exactly the path from sp to r in T . Assume for a contradiction that there
is a player p with σp 6⊆ T . Define s′ = T [sp, r] and consider the new profile σ′ = (s′, σ−p)
where p switched to the path in the shortest paths tree. Now either σ′p ⊂ σp and since
all edge costs are positive we have the contradiction Cp(σ′) < Cp(σ) to σ being an
equilibrium. In the other case we have σ′p \ σp 6= ∅. From the definitions of σ′ and s′ we
have Cp(σ′) = Cσ′(s′). We write

Cσ′
(
s′
)

=
∑

e∈s′\σp

cσ′(e) +
∑

e∈s′∩σp
cσ′(e).

For every edge e ∈ s′ \ σp we have cσ′(e) < cσ(e) and for all edges e′ ∈ s′ ∩ σp it holds
cσ′(e′) = cσ(e′). Since s′ \ σp 6= ∅, we obtain Cσ′(s′) < Cσ(s′). Now, since s′ is an
sp − r path in T ⊆ supp(σ) of minimal length w.r.t. cσ, and σp is another sp − r path
in supp(σ), we get Cσ(s′) ≤ Cσ(σp) = Cp(σ). In total, we thus have Cp(σ′) < Cp(σ).
Again, this is a contradiction to σ being an equilibrium, which concludes the proof.

If there are edges with cost zero in the graph, an equilibrium need not necessarily be
a tree. However, we show that one can always choose a tree which is an equilibrium and
differs only on edges of cost zero.

Lemma 10. Let σ be an equilibrium in the multicast game (V,E, r, P, c). Then there
exists a profile σ′ such that

• supp(σ′) is a tree and
• for every player p and any edge e ∈ σp 4 σ′p holds ce ≡ 0 .

Proof. If supp(σ) is already a tree, choose σ′ = σ. Otherwise, consider the graph Ḡ
constructed from G = (V,E) by contracting all edges where ce ≡ 0, and the profile σ̄
build from σ in the same way by contracting edges of cost zero in every player path.
Note that there will not appear any loops in σ̄ since this would correspond to paths
leaving and reentering a component of zero cost edges. Since σ is an equilibrium and
connecting both points within the component is a feasible deviation of less cost (cost
zero) this can not happen. Since every path in Ḡ can be transformed into a path in the
original graph G by adding some edges of cost zero, σ̄ is an equilibrium in Ḡ. Since all
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edge costs in Ḡ are positive we know from Lemma 9 that supp(σ̄) is a tree. Hence the
only cycles in supp(σ) are within components of zero cost edges. We will now add some
of those edges to σ̄ to obtain our profile σ′ in the original instance. By this construction
we immediately have the second property that the player paths in σ and σ′ differ only
on zero cost edges. Take a component Z of zero cost edges containing a cycle of supp(σ),
and let P ′ ⊆ P be the players whose paths form this cycle. From the discussion that
there are no loops in σ̄ we get that every player enters and leaves Z exactly once on their
way to the root. Denote by vp1 and vp2 the first and last node in Z on the path σp starting
at sp for player p ∈ P ′. Since σ̄ is a tree, the nodes where the players leave Z have to
be the same, i.e., vp2 = v for all p ∈ P ′. Now we choose any tree TZ in Z connecting
every vp1 to v. We build σ′ by replacing the part of the path σp in Z by TZ [vp1 , v] for
every p ∈ P ′. Applying this construction in every component of zero cost edges where
supp(σ) contains a cycle, yields a feasible profile σ′ whose support is a tree.

This will help us for example when looking at the PoS of an instance, since we only have
to consider trees for equilibria. The lemma shows that for every non-tree equilibrium in
a multicast game, there is another equilibrium which is a tree and has the same social
cost. The result that an equilibrium in a broadcast game is a tree if all edge costs are
positive is already implicitly shown in [Fia+06].

For broadcast games we give a characterization of when a spanning tree is an equilib-
rium.
Lemma 11. Let (V,E, r, c) be a broadcast game, T a spanning tree rooted at r and τ
the corresponding strategy profile. τ is an equilibrium, iff for every edge e = {u, v} not
in T the following holds
cτ (T [v ↗ u]) ≤ ce(1) + c+1

τ (T [u↗ v]) and cτ (T [u↗ v]) ≤ ce(1) + c+1
τ (T [v ↗ u]).

(NECond)

e

r

v

lca(u, v)

u

(a) The current strategy of v in T is shown
in orange. A different strategy t′ for v using
e and then following u is shown in purple. If
cτ (T [v ↗ u]) > ce(1) + c+1

τ (T [u↗ v]), then
deviating to purple is an improving move for
v.

r

v

e

v
w

u

(b) An improving move t′ for v is shown in orange. It
uses three edges outside of T . The last edge outside
of T is e = (v, w). The other strategy of interest t′′
is shown in dashed purple. It is built by using the
orange path from u to v and then following T [v, r]
(shown in black).

Figure 4.6: Illustrations for Lemma 11. Parts of tree T are shown together with some strategies.
Edges in T are drawn solid, while edges outside of T are dotted.
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Proof. Let e = {u, v} be an edge outside of T and consider player v who is currently
connecting to the root r via T , that is, τv = T [v, r]. Another feasible strategy for v is to
use e and then follow the current strategy of u. Set t′ = {e} ∪ T [u, r] (see Figure 4.6a).
Switching to t′ is an improving move for v, if and only if

0 < Cv(τ)− Cv
(
t′, τ−v

)
=

∑
e∈τv\t′

cτ (e)−
∑

e∈t′\τv

c(t′,τ−v)(e)

= cτ (T [v ↗ u])− c(t′,τ−v)(e)− c(t′,τ−v)(T [u↗ v])
= cτ (T [v ↗ u])− c(e)(1)− c+1

τ (T [u↗ v])

Swapping u and v everywhere in the above argument yields that u has an improving
move, iff

0 < cτ (T [u↗ v])− ce(1)− c+1
τ (T [v ↗ u]).

Thus, if τ is an equilibrium, no player can have an improving move. In particularly,
the players incident to edges outside T . Thus (NECond) has to hold for any e ∈ E \ T .

For the other direction, assume that τ is not an equilibrium and let u be a player who
has an improving move. Let t′ be one of the improving moves for u which minimizes
|t′ \ T |, that is, every other improving move for u has at least as many edges outside
of T as t′. Further define e = (v, w) to be the last edge outside of T in t′, that is, the
path t′ can be partitioned into three parts: a first part t′u→v taking u to v, the edge e,
and the part from w to r which is T [w, r]. Consider an alternative strategy t′′ for u,
where u follows v instead of taking edge e, i.e., t′′ = t′u→v ∪ T [v, r]. Note that this is
not necessarily a path. If not, we shortcut cycles to obtain a path (see Figure 4.6b). If
Cu(t′′, τ−u) ≤ Cu(t′, τ−u), then t′′ would be an improving move for u with fewer edges
outside of T (namely e) which contradicts our choice of t′. Thus, we have

0 > Cu
(
t′, τ−u

)
− Cu

(
t′′, τ−u

)
= ce(1) + c(t′,τ−u)(T [w ↗ v])− c(t′′,τ−u)(T [v ↗ w])

as the first parts and the parts from lcaT (v, w) are the same in t′ and t′′. Since player u
may not have used any edge of T [w ↗ v] in τ , we get the lower bound c+1

τ (T [w ↗ v]) ≤
c(t′,τ−u)(T [w ↗ v]). For T [v ↗ w] it could have been the case that u already uses every
edge in τ , thus we get the lower bound −cτ (T [v ↗ w]) ≤ −c(t′′,τ−u)(T [v ↗ w]). In total
we obtain

0 > ce(1) + c(t′,τ−u)(T [w ↗ v])− c(t′′,τ−u)(T [v ↗ w])
≥ ce(1) + c+1

τ (T [w ↗ v])− cτ (T [v ↗ w])

which shows that e = {v, w} violates (NECond).

We use this characterization to introduce a special type of improving-dynamics.
Lemma 12. Consider a spanning tree T whose corresponding profile τ is not an equi-
librium in a broadcast game (V,E, r, c). Let e = {u, v} ∈ E \ T be an edge violating
(NECond), in particular cτ (T [v ↗ u]) > ce(1) + c+1

τ (T [u↗ v]). Define a new spanning
tree T ′ = T \ {eT (v)} ∪ {e} from T by replacing the current parent edge of v be e. Then
the profile τ ′ corresponding to T ′ can be reached from τ by a sequence of improving moves
and for every w ∈ DT (v) we have Cw(τ ′) < Cw(τ).
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Proof. First observe that T ′ is indeed a spanning tree as u 6∈ DT (v). If u is a descendant
of v then cτ (T [v ↗ u]) = cτ (T [v, v]) = 0 and since both terms on the right hand side
of the condition on edge e are non-negative, this is not possible. From cτ (T [v ↗ u]) >
ce(1) + c+1

τ (T [u↗ v]) we immediately see that v has an improving move taking edge e
and then following u. Note that the same holds for every descendant of v when replacing
the path from v by e followed by the path from u. These paths are exactly the strategies
of the descendants in τ ′. We show that switching to τ ′w stays an improving move for
w even if some of the other descendants already switched to their strategy in τ ′. For
W ⊆ DT (v) define τ ′W to be the profile where every player w ∈ W switched from τ to
τ ′w. For example, we have τ ′∅ = τ , τ ′{w} = (τ ′w, τ−w), and τ ′DT (v) = τ ′. Now consider a
descendant x of v who did not yet change her path. For the costs of τx and τ ′x in τ ′W we
have Cx(τ ′x, τ ′W ) − Cx(τx, τ ′W ) = c(τ ′x,τ ′W )(e) + c(τ ′x,τ ′W )(T [u↗ v]) − c(τx,τ ′W )(T [u↗ v]).
Since the edge costs are decreasing and x uses e as well as T [u↗ v] in (τ ′x, τ ′W ) but not
in (τx, τ ′W ), we have c(τ ′x,τ ′W )(e) ≤ ce(1) and c(τ ′x,τ ′W )(T [u↗ v]) ≤ c+1

τ (T [u↗ v]). On
the other hand there are fewer players on T [v ↗ u] in (τ ′x, τ ′W ) than in τ since all players
in W left. Hence, we have c(τx,τ ′W )(T [u↗ v]) ≥ cτ (T [u↗ v]). In total we obtain

Cx
(
τ ′x, τ

′
W

)
− Cx

(
τx, τ

′
W

)
≤ ce(1) + c+1

τ (T [u↗ v])− cτ (T [u↗ v]) < 0

from the condition on e. Hence τ ′ can be reached by a sequence of improving moves
from τ , where the descendants of v switch subsequently.

Using the same arguments as before we get for the player costs

Cw
(
τ ′
)
− Cw(τ) = cτ ′(e) + cτ ′(T [u↗ v])− cτ (T [v ↗ u])

≤ ce(1) + c+1
τ (T [u↗ v])− cτ (T [v ↗ u]) < 0.

We call the step going from T to T ′ as in Lemma 12 an (improving) tree-move. The
process of making several tree-moves is called tree-dynamics. The previous lemma shows
that tree-dynamics is a refinement of the standard improving-dynamics. Together with
Lemma 11 we see that tree-dynamics terminate in equilibria. The advantage of this
new dynamics is that we always have a tree after every step, compared to the standard
dynamics where cycles can appear in the support.

The above characterization is for equilibria in broadcast games. Recall from Sec-
tion 2.2, the characterization of Rosenthal [Ros73] for equilibria in general games as the
local minimizers of the potential function

Φ(σ) =
∑
r∈R

nσ(r)∑
i=1

cr(i).

We introduce the short notation Fe(k) for ∑k
i=1 ce(i) and for uniform games we define

F (k) = ∑k
i=1 f(i). Hence the potential can be written as Φ(σ) = ∑

e∈supp(σ) Fe(nσ(e))
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4 Network Design Games with Economies of Scale

and for uniform games as Φ(σ) = ∑
e∈supp(σ) γeF (nσ(e)). For uniform fair cost allocation

we obtain Φ(σ) = ∑
e∈supp(σ)H(nσ(e)) where H(n) is the n-th harmonic number ∑n

i=1
1
i .

Note that since the per-player costs are decreasing, Fe and F are strictly concave. We
further denote the average of the first values of a function f by f̄(k) = F (k)

k . Observe
that for a sharing function f with economies of scale also f̄ is a sharing function with
economies of scale. As f is decreasing, so is the average of the first values. The total
cost w.r.t. f̄ is F and hence non-decreasing and concave. There is a relation between
socially optimal profiles and equilibria on the same graph but with different underlying
cost functions.
Observation 4. A social optimum in a uniform game (N, f̄) is an equilibrium in the game
(N, f).

In the next sections we look at the quality of equilibria in uniform network games.
First, we give the Price of Anarchy for broadcast games. Then we look at the Price of
Stability and give upper bounds for general games and broadcast games. For broadcast
games we also give lower bounds on the PoS for special classes of cost functions.

4.4 Price of Anarchy
In this section we determine the Price of Anarchy (PoA) of uniform broadcast games.
Recall that the PoA is the worst ratio of the social costs of an equilibrium and a social
optimum:

PoA(n) = PoA(Nn) = max
broadcast game G

with at most n players

max
σ∗ equilibrium in G

C(σ∗)
C(OPT(G))

Lower bound First we give a lower bound example which is a generalization of the
example for fair cost allocation given in [Ans+08a].

rvn
1

f(1)
f(n)

v1

vn−1

0

0

...

Figure 4.7: A uniform broadcast game with n players at v1, . . . , vn and underlying function f

with PoA of f(1)
f(n)

Consider the instance of a uniform broadcast game depicted in Figure 4.7. There
are n players located in node vn and we use the standard construction to transform an
instance with more than one player per node to a proper broadcast instance with exactly
one player at every node. Essentially there are two edges connecting vn to the root r.
We call these the top edge etop and the bottom edge ebot. The underlying function to
this uniform game is f and the scaling factors are γetop = 1 and γebot = f(1)

f(n) .
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4.4 Price of Anarchy

First we show that the social optimum is given by the profile σOPT where all players
use the top edge. The corresponding social cost is nf(n). For any strategy profile σ we
denote by nbot the number of players using the bottom edge. We can then bound the
social cost of σ as:

C(σ) = (n− nbot)f(n− nbot) + f(1)
f(n)nbotf(nbot)

≥ (n− nbot)f(n) + f(1)
f(n)nbotf(n)

=
(
n+

(
f(1)
f(n) − 1

)
nbot

)
f(n)

where the inequality holds as f is decreasing and n− nbot, nbot ≤ n. From f(1)
f(n) − 1 ≥ 0

we see that the social cost is minimal if nbot = 0, that is, if all players use the top edge.
Now consider the profile σ∗ where all players play the bottom edge. This is an equi-

librium since the cost of each player is f(1)
f(n)f(n) = f(1) and switching to the top edge is

not an improving move as the incurred cost would be f(1).
In total we get a lower bound on the PoA of:

C(σ∗)
C(σOPT) =

f(1)
f(n)nf(n)
nf(n) = f(1)

f(n) .

Upper bound For the upper bound on the PoA we bound the cost for each player in an
equilibrium by her cost in a social optimum. For an instance (V,E, r, f, γ) of a uniform
broadcast game let σOPT be a profile corresponding to a social optimum and let σ∗ be
an equilibrium. Consider the profile σ′ constructed from σ∗ by letting one player, say v,
switch to her strategy in σOPT, i.e., σ′ = (σOPT,v, σ

∗
−v). For any edge e ∈ σ′v = σOPT,v

we have nσ′(e) ≥ 1 since at least v uses e, and nσOPT(e) ≤ n. As f is decreasing we get
the following bound on the cost of v

Cv
(
σ′
)

=
∑
e∈σ′v

γef(nσ′(e)) =
∑
e∈σ′v

γe
f(nσ′(e))
f(nσOPT(e))f(nσOPT(e))

≤
∑
e∈σ′v

γe
f(1)
f(n)f(nσOPT(e)) = f(1)

f(n)Cv(σOPT)

As σ∗ is an equilibrium we know that the cost of player v can not decrease by deviating
to her strategy in σOPT. Thus we get Cv(σ∗) ≤ Cv(σ′) ≤ f(1)

f(n)Cv(σOPT).
This bound holds for every player so that in total the social cost of σ∗ is bounded by

C(σ∗) ≤ f(1)
f(n)C(σOPT).

With this matching upper and lower bound we have shown the following theorem.
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Theorem 7. The PoA for uniform broadcast games with n players and underlying
function f is

f(1)
f(n) .

Observe that for fair cost allocation, where f(k) = 1
k , we obtain the known bound

f(1)
f(n) = n from [Ans+08a].

4.5 Price of Stability – Upper Bounds
After looking at the worst equilibria in the previous section, we will now look at the
best equilibria. In this section, we give upper bounds on the Price of Stability (PoS) for
uniform network games. Recall the definition of the PoS as the best ratio of the social
costs of an equilibrium and a social optimum:

PoS(n) = PoS(Nn) = max
network game G

with at most n players

min
σ∗ equilibrium in G

C(σ∗)
C(OPT(G)) .

To get upper bounds on the PoS, we need to show that in every instance, there is an
equilibrium with social cost close to a social optimum. For general games, we relate the
social cost of an equilibrium and a social optimum by the potential as done in [Ans+08a]
for fair cost allocation. With this method we give specific upper bounds for functions
in Flin and Fpoly. For broadcast games, we simplify the homogenization-absorption
framework of Bilò, Flammini, and Moscardelli [BFM20], allowing us to generalize it to
other cost functions than fair cost allocation. Further, we explicitly compute a constant
upper bound on the PoS for fair cost allocation.

4.5.1 Potential Method for General Games
Anshelevich et al. observe in [Ans+08a] that the potential Φ(σ) = ∑

e∈supp(σ)
∑nσ(e)
i=1 ce(i)

not only guarantees the existence of equilibria (as noted by [Ros73]) but also gives a
bound on the social cost of a particular equilibrium. We show how this method can be
used for sharing functions with economies of scale. For any strategy profile σ we give
an upper and a lower bound on the social cost in terms of the potential. First, observe
that since the edge cost functions are decreasing we have for any i ∈ {1, . . . , nσ(e)} the
bound ce(nσ(e)) ≤ ce(i). From this we immediately get

C(σ) =
∑

e∈supp(σ)
nσ(e)ce(nσ(e)) ≤ Φ(σ).

On the other hand, we have for any edge e ∈ supp(σ)

nσ(e)∑
i=1

ce(nσ(e)) =
∑nσ(e)
i=1 ce(nσ(e))
nσ(e)ce(nσ(e)) nσ(e)ce(nσ(e)) ≤ max

n∈N>0

∑n
i=1 ce(n)
nce(n) nσ(e)ce(nσ(e))
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and hence
Φ(σ) ≤ max

e∈supp(σ)
max
n∈N>0

∑n
i=1 ce(n)
nce(n) C(σ).

For uniform games with underlying function f the factor on the right hand side evaluates
to maxn∈N>0

∑n

i=1 f(i)
nf(n) , since for every edge the scaling factor γe cancels.

To bound the PoS consider a profile σOPT corresponding to a social optimum. This
need not be an equilibrium, but if we start improving-dynamics from here we will reach
an equilibrium σ∗ at some point. By this construction we have Φ(σ∗) ≤ Φ(σOPT).
Combining all bounds we established so far, we get

C(σ∗) ≤ Φ(σ∗) ≤ Φ(σOPT) ≤ max
n∈N>0

∑n
i=1 f(i)
nf(n) C(σOPT).

Hence, the value maxn∈N>0

∑n

i=1 f(i)
nf(n) is an upper bound on the PoS for uniform network

games. We define the short hand notation M(f)

M(f) = max
n∈N>0

∑n
i=1 f(i)
nf(n) .

Using this method, we can show a kind of monotonicity of the PoS. If the slope of a
function is point-wise higher than the slope of another function, then the PoS w.r.t. the
first function is smaller.

Lemma 13. For two sharing functions with economies of scale f and g satisfying

∀k ∈ N≥1 : f(k + 1)− f(k)
f(1) ≤ g(k + 1)− g(k)

g(1)

we have M(g) ≤M(f).

Proof. Chaining the inequalities from the assumption of the statement we obtain

f(n)− f(k)
f(1) = f(n)− f(n− 1) + f(n− 1)− . . .+ f(k + 1)− f(k)

f(1)

≤ g(n)− g(n− 1) + g(n− 1)− . . .+ g(k + 1)− g(k)
g(1) = g(n)− g(k)

g(1)

for any k ≤ n. Plugging in k = 1, we especially obtain f(n)
f(1) ≤

g(n)
g(1) . Combining all

inequalities we get∑n
k=1 g(k)
ng(n) = ng(n) +∑n

k=1(g(k)− g(n))
ng(n) = 1 +

∑n
k=1

g(k)−g(n)
g(1)

ng(n)
g(1)

≤ 1 +
∑n
k=1

f(k)−f(n)
f(1)

nf(n)
f(1)

=
∑n
k=1 f(k)
nf(n)

and thus M(g) ≤M(f).
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In the remainder of this section we give bounds on M(f) for some functions f to
obtain specific bounds on the PoS.

We begin with a first bound for any sharing function f with economies of scale which
is a generalization of the H(n) bound of [Ans+08a] for fair cost allocation.

Lemma 14. For any sharing function f with economies of scale we have

M(f) ≤ 1 + ln
(
f(1)
f(n)

)
.

Proof. Since f is decreasing we have f(k) ≤ f(1) for any k ∈ N. From the non-decreasing
total cost kf(k) we get another upper bound f(k) ≤ n

k f(n) for all 1 ≤ k ≤ n. Combining
both bounds yields

M(f) ≤
∑n
k=1 min

{
f(1), nk f(n)

}
nf(n) ≤

∫ n
k=0 min

{
f(1), nk f(n)

}
dk

nf(n)

since min
{
f(1), nk f(n)

}
is non-increasing in k. The point where the minimum switches

values is at k∗ = nf(n)
f(1) , where for smaller k the minimum is f(1). We can thus compute

the integral and obtain the desired bound

∫ n
k=0 min

{
f(1), nk f(n)

}
nf(n) =

∫ n f(n)
f(1)

k=0 f(1)dk +
∫ n
k=n f(n)

f(1)

n
k f(n)dk

nf(n)

=
f(1)nf(n)

f(1) + nf(n)
(
ln(n)− ln

(
nf(n)
f(1)

))
nf(n)

= 1 + ln(n)− ln
(
n
f(n)
f(1)

)
= 1 + ln

(
f(1)
f(n)

)
.

For fair cost allocation, where f(k) = 1
k this yields a bound of 1 + ln(n) which is an

upper bound on the bound H(n) given in [Ans+08a].
We will now consider functions in Flin. Recall that for fs ∈ Flin we have fs(k) =

s+ (1−s)
k .

Lemma 15. For fs ∈ Flin with s > 0 we have

M(fs) ≤ 1 +W

(1− s
se

)
.

Where W denotes the principal branch of the Lambert W function with the property
W (x)eW (x) = x for x > 0.
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Proof. We compute

M(fs) = max
n∈N>0

sn+ (1− s)H(n)
sn+ 1− s

≤ max
n∈N>0

sn+ (1− s)(ln(n) + 1)
sn+ 1− s = 1 + max

n∈N>0

(1− s) ln(n)
sn+ 1− s

where we used the bound H(n) ≤ ln(n) + 1. To find the maximum on the right hand
side we set the derivative w.r.t. n to 0:

d
dn

(1− s) ln(n)
sn+ 1− s = 0⇐⇒ 1− s

n
(sn+ 1− s)− s(1− s) ln(n) = 0⇐⇒ ln(n) = 1 + 1− s

sn

This can be equivalently written as x = yey where x = 1−s
se and y = 1−s

sn . From the
definition of the Lambert W function we know that the unique solution to this equation is
y = W (x). Solving this for n yields n = 1−s

sW (x) . Rearranging the equality to x
W (x) = eW (x)

we can write n = eW (x)+1. We check that this point actually gives a maximum. We
have (1−s) ln(n)

sn+1−s ≥ 0 for all n ∈ N>0. Further, since for n = 1 the value is 0 and there is
a unique extreme point it has to be a maximum. Evaluating (1−s) ln(n)

sn+1−s at this value for
n we obtain for the maximum:

(1− s) ln(n)
sn+ 1− s =

(1− s)
(
W
(

1−s
se

)
+ 1

)
s (1−s)
sW( 1−s

se ) + 1− s
= W

(1− s
se

)
.

This shows that for any function in Flin other than fair cost allocation (where s = 0),
the PoS in general games is constant. However, for s getting smaller this constant is
growing big. For s ≤ 1

1+e2 we have the bound 1+W
(

1−s
se

)
≤ ln

(
1
s

)
(using the inequality

W (x) ≤ ln(x) for x ≥ e from [Has05]).
For functions fα ∈ Fpoly we get a similar result saying that the PoS is constant for

any function except fair cost allocation (where α = 0). Recall that for fα ∈ Fpoly we
have fα(k) = kα−1.

Lemma 16. For fα ∈ Fpoly with α > 0 we have

M(fα) ≤ 1
α
.

Proof. We compute

M(fα) = max
n∈N>0

∑n
k=1 k

α−1

nnα−1 ≤ max
n∈N>0

1 +
∫ n
k=1 k

α−1dk
nα

= max
n∈N>0

1
α
− 1− α

αnα
≤ 1
α

The above bounds are good for large values of s and α, where the per-player cost
decreases slowly.
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4.5.2 Homogenization-Absorption Framework for Broadcast Games

For broadcast games we show a constant upper bound for functions decreasing quickly.
Upper bounds on the PoS in broadcast games have been studied for fair cost allocation.
Fiat et al. [Fia+06] give a first bound of O(log logn) for this class, which was later
improved to O

(
logn

log logn

)
by Li [Li09] and O(log log logn) by Lee and Ligett [LL13], and

finally Bilò, Flammini, and Moscardelli [BFM20] show that the PoS is bounded by a
constant independent on the number of players. The results by [Fia+06], [LL13] and
[BFM20] have been achieved by a homogenization-absorption framework.

Recall that to prove an upper bound on the PoS, we need to show that there is a
good equilibrium in every broadcast game, whose social cost is close to the cost of a
social optimum. The idea in the homogenization-absorption framework is closely related
to the upper bound from the potential method. We start with a profile of a social
optimum and show that by improving moves an equilibrium of good social cost can be
reached. Since we did not restrict the improving moves in the potential method, we
had to look at the worst ratio of the contributions of every edge to the social cost. In
the homogenization-absorption framework, we are now considering specifically chosen
improving moves which allows us to have a better understanding of the relation of the
social cost of the start and end state. The guiding idea is to stay as close as possible to
the social optimum in terms of edges being used.

We consider improving moves introducing only one new edge, i.e., tree-moves. This
process reaches an equilibrium by Lemma 12. If a player introduces a new edge outside
of the social optimum, we absorb players who are close by in the social optimum. For
every player we consider the path in the social optimum to the deviating player, who
introduced the edge. If the length of this path (w.r.t. some notion of distance) is less
than the absorption-radius, the player switches to the social optimum path and then
follows the deviating player. The radius is chosen relative to the cost of the new edge.
This process possibly reduces the number of edges in the support outside of the social
optimum and decreases the potential. Further, two edges of similar cost in the support
of the final equilibrium which are not in the social optimum have to be far apart, as
otherwise one of the players absorbs the other.

The idea of using edges of the social optimum is also used in the homogenization of
states, where the goal is to assimilate player costs. As absorption, also homogenization
decreases the number of edges outside of the social optimum and the potential.

The iterative algorithm to find a good equilibrium from a social optimum is as follows.
As long as the profile is not an equilibrium, let a player deviate by a tree-move, absorb
players via the social optimum, homogenize the resulting profile and repeat. At the
beginning of each iteration we have a homogeneous profile corresponding to a tree, and
in every iteration the potential decreases. Hence, this algorithm terminates. The bound
on the PoS obtained by this method is related to the absorption-radius. If this radius
is large, edges of similar cost have to be far apart w.r.t. the social optimum and hence
there can not be that many. On the other hand, it could be the case that there are many
edges outside of the social optimum with smaller and smaller costs such that absorption
would not remove some of them. By carefully charging the cost of the edge to a part of
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the absorption-ball given by the charging-radius, it is possible to bound the total cost
of these edges. On the one hand, we want to make the charging-radius large, that the
cost of the edge is covered by the charged parts, on the other hand, we have to make the
charging-radius small enough, so that not too many of the charging-balls can overlap.

Fiat et al. [Fia+06] are the first to use this homogenization-absorption framework to
get an upper bound of O(log logn). While they consider single player improvement
moves, Lee and Ligett [LL13] introduce group moves reducing the potential. Fur-
ther, they reduce the overlap in the charging-balls to obtain the improved bound of
O(log log logn). Using a better homogenization and charging-scheme, Bilò, Flammini,
and Moscardelli [BFM20] show that the PoS is constant. The constant is not explicitly
given but estimated to be very large.

In this section, we show how to generalize the techniques of Bilò, Flammini, and
Moscardelli [BFM20] to sharing functions with economies of scale. While the techniques
are the same, we use a different representation, which we think is more clear.

We consider the algorithm as explained above. Starting with a social optimum, let
a player deviate using a single new edge, absorb other nearby players and homogenize
the resulting profile w.r.t. the social optimum. These steps are repeated until we reach
an equilibrium. To show that this algorithm terminates after finitely many iterations,
we show that the potential decreases in every iteration. To get an upper bound on the
PoS, we design a charging-scheme distributing the contribution of an edge outside of the
social optimum to the social cost to edges in the social optimum.

First, we describe the three parts at a high level before going into details.
Homogenization. The goal of homogenization is to assimilate the costs of the players,
such that the difference of two player costs can be bounded by the length of the path
connecting them in a social optimum. Here the length is w.r.t. some distance introduced
later. See Figure 4.8 for a drawing of a homogenization step. In a homogeneous profile,

v

w

(a) Parts of the initial profile, where v connects
to r not using w.

v

w

(b) A move of v: going to w via edges in a social
optimum. In contrast to only v deviating, we con-
sider also all players met along the path to join.

Figure 4.8: The moves considered for homogenization of profiles. The current support is shown
in black, where the directions point to the root. Edges in a social optimum are shown in orange.

no player has an “improving” move of the form: connecting via a social optimum to
some other node and following the strategy of this node. Here, the cost along the path
in the social optimum is not the actual cost incurred to the player, but the share of
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the potential on these edges. We give the formal definition later. The idea is that in a
homogeneous profile, the potential can not be decreased by moves as described above
and shown in Figure 4.8.
Absorption. After a player deviated and introduced a new edge outside of the social
optimum, she absorbs players, who are close in a social optimum. See Figure 4.9 for
a schematic drawing of two absorption steps. The idea is that, if it is beneficial for a

v

u

v′

u′

(a) Before the first absorption. v is about to
deviate to {v, u} (dashed).

v

u

v′

u′

(b) After the first absorption. The 4 players
in the absorption-ball changed their strategy,
removing 4 edges outside of the social optimum.

v

u

v′

u′

(c) Before the second absorption. Now v′ is
about to deviate to {v′, u′}.

v

u

v′

u′

(d) After the second absorption. The edge
{v, u} is removed.

Figure 4.9: Two absorption steps. Parts of the current support are shown in black. The arrows
give the direction to the root in this tree. Parts of a social optimum are shown in orange. The
absorption-balls are shown in purple.

player to deviate, then following this player is also good for players who are close in
the social optimum. This depends on the cost of the new edge and hence we choose
the absorption-radius relative to this cost. The main benefit of absorption is to delete
edges outside of the social optimum. Observe that in the second step the previously
introduced edge {v, u} is deleted again, as v is in the absorption-ball of v′. We show
that an absorption step decreases the potential, if the initial profile is homogeneous.
Charging-Scheme. Repeating absorption and homogenization steps terminates in an equi-
librium. To bound the social cost of this profile we look at the edges outside of the social
optimum and charge them to some edges in the social optimum. In this charging-scheme
we have to make sure that the cost of the edge to be distributed is covered while bound-
ing the total charge on social optimum edges. Every edge in the final profile that is not
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part of the social optimum has a corresponding absorption-ball. We charge the cost of
the edge to edges of the social optimum in a part of this ball. This part is called the
charging-ball and its radius is chosen relative to the absorption-radius. See Figure 4.10
for an illustration of the charging-ball relative to the absorption-ball. The cost of {u, v}

v

e

u

w

(a) Absorption and charging-ball around v cor-
responding to edge {v, u}. The cost on {v, u} is
charged to the orange edges.

v

e

u

v′

u′

w

(b) The charging-balls around v and v′ corre-
sponding to {v, u} and {v′, u′} overlap in w. Edge
e gets charged by both {v, u} and {v′, u′}

Figure 4.10: Relation of absorption-balls (purple) and charging-balls (light purple). Edges in
a social optimum are shown in orange. (a) shows the two balls for node v. (b) shows two
overlapping charging-balls at v and v′.

is charged to the edges of the social optimum inside and the edge leaving this charging-
ball, i.e., the orange edges connecting v to w and edge e in Figure 4.10a. The distribution
is chosen such that the cost of {u, v} is covered. From Figure 4.10b we observe that the
radii of overlapping charging-balls have to decrease exponentially. Although an edge of
the social optimum can be charged by many balls, their cost has to get small and hence
we can bound the total charge on edges of the social optimum.

We remark here that none of the current upper bounds use any property of a social
optimum other than the fact that it is a spanning tree. All arguments can be done
w.r.t. any spanning tree in the graph.

Research Question 4. Which properties of a social optimum can be used to improve the
upper bounds obtained by the homogenization-absorption framework?

We were in particular not able to use the fact that also the social optimum has to pay
more compared to fair cost allocation. In fair cost allocation the contribution of an edge
to the social cost of a profile does not depend on the number of players using the edge.
In contrast to this we can not use edges in the social optimum for free when looking at
sharing functions with economies of scale. Hence, we have an additional factor of kf(k)

f(1)
in our bound, since it could be the case that in the social optimum only one player is
using the edge, but in our construction k players use the edge.

Now we come to the details for the three main parts explained above. We begin with
the underlying idea of connecting strategies along the social optimum, which is then
used by both homogenization and absorption. Finally we describe the charging-scheme
and conclude with the upper bound obtained by this method.
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Using the social optimum Both homogenization and absorption are steps where parts
of the current support are replaced by parts of the social optimum tree. While in homog-
enization we use paths as replacements, absorption uses trees inside the absorption-balls.
We give a formal definition of this replacement.

Consider a profile σ with support S which is a tree. Further, let W ⊆ V be a subset
of the nodes, let w be any node and let T be a tree spanning W ∪ {w}. We define the
quasi-profile σ̄T,w, where we change the strategies of all players in DS(W ) to connect
via T to w and then following w. Formally, we have

σ̄T,wu = S[u,w′(u)] ∪ T [w′(u), w] ∪ S[w, r] (4.1)

for players u ∈ DS(W ) \ {w} and σ̄T,wv = σv for all other players. Here we denote by
w′(u) the first node on the path S[u, r] in W . Consider Figure 4.11 for an example.

w

w1

w2 w3

w4 w5
u2u1

(a) σw does not go through W .

w

w1

w2 w3

w4 w5
u2u1

(b) The quasi-profile σ̄T,w which is a valid pro-
file with tree support.

w

w1

w2 w3

w4 w5
u2u1

(c) σw goes through W \ {w}.

w

w1

w2 w3

w4 w5
u2u1

(d) σ̄T,w containing the dashed and solid edges
is not a valid strategy profile, as the edge sets for
all nodes except w1 contain cycles. The profile
σT,w containing only the solid arcs is valid and
has tree support.

Figure 4.11: The two cases of using the orange tree T in W = {w1, . . . , w5} and w. Parts of
the current profile σ are shown on the left in black. We have w′(u1) = w4 and w′(u2) = w3.

Note that this is not necessarily a valid strategy profile, as the given edge set for a
player may contain cycles (see Figure 4.11d). However, we have a characterization when
this happens and define a very similar profile with tree support.
Lemma 17. Let σ be a strategy profile with tree support S. Take W ⊆ V and w ∈ V ,
and let T be a tree spanning W ∪ {w}. Then σ̄T,w has tree support, if and only if
σw ∩ (W \ {w}) = ∅.
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Proof. First assume that σw ∩ (W \ {w}) = ∅. Consider the set of edges⋃
u∈DS(W )\{w}

S[u,w′(u)],

i.e., the first parts of the new strategies up to W . Since S is a tree this set of edges
does not contain a cycle. As w′(u) is the first node in W on S[u, r] and since T is a
tree spanning W ∪{w}, the set of edges formed by the new strategies up to node w, i.e.,⋃
u∈DS(W )\{w} S[u,w′(u)]∪T [w′(u), w], does not contain a cycle. Since all of the players

u ∈ DS(W ) use the path S[w, r] in σ̄T,w and S[w, r] does not intersect W , there can not
be a cycle in the union of the new strategies of players in DS(W ) ∪ {w}.

The strategies of the other players u 6∈ DS(W ) do not change and they do not intersect
W . Hence their union does not contain a cycle, since S is a tree. This shows that the
support of σ̄T,w is a tree.

On the other hand, if σw ∩W \ {w} 6= ∅ there is a v ∈W \ {w} such that v ∈ S[w, r].
Then the edge set σ̄T,wv = T [v, w] ∪ S[w, r] and hence the support contains a cycle.

If σw goes through W \{w}, we do shortcuts as necessary in the strategies σ̄T,wu . That
is, instead of going to w, players only go to the first node, where they meet S[w, r] in
W ∪ {w}. We define σT,w from σ̄T,w. We interpret σ̄T,wu as walk starting at u and set

σT,wu = σ̄T,wu [u,w′′(u)] ∪ S[w′′(u), r] (4.2)

for players u ∈ DS(W ) \ {w} and σT,wu = σu for all other players. Here w′′(u) is the first
node on σ̄T,wu in S[w, r]. See Figure 4.11d where w′(u1) = w4 and w′′(u1) = w2, and for
w1 we have w′′(w1) = w.

We show that σT,w has tree support, and thus is a valid strategy profile.
Lemma 18. Let σ be a strategy profile with tree support S. Take W ⊆ V and w ∈ V ,
and let T be a tree spanning W ∪ {w}. Then, the support of σT,w is a tree.
Proof. If σw ∩ (W \ {w}) = ∅, then the statement follows by Lemma 17 and the obser-
vation that σT,w = σ̄T,w in this case.

In the case where σw ∩ (W \ {w}) 6= ∅ we have as in the proof of Lemma 17 that the
edge set ⋃

u∈DS(W )\{w}
σ̄T,wu [u,w′′(u)] ⊆

⋃
u∈DS(W )\{w}

S[u,w′(u)] ∪ T [w′(u), w]

does not contain cycles. The remaining edges of the strategies of players in DS(W ) are
all part of the path S[w, r]. Since w′′(u) is the first node on this path, adding this path
as strategy of w does not introduce cycles.

As in the proof of Lemma 17 the strategies of the remaining players u 6∈ DS(W )∪{w}
do not change and they don’t intersect W . Hence, the support of σT,w is a tree.

Observe that by definition σT,wu ⊆ σ̄T,wu for all players u. If σw does not visit W \ {w}
we even have σT,wu = σ̄T,wu for all players. Thus, supp

(
σT,w

)
⊆ supp

(
σ̄T,w

)
and in

particular all edges in the support of σT,w are used in the same direction as the edges in
the support of σ̄T,w. Thus we observe the following.
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Observation 5.
Φ
(
σT,w

)
≤ Φ

(
σ̄T,w

)

We upper bound the change in the potential when using tree T . We introduce the
notation DW

S (w) for the inverse relation to w′. That is DW
S (w) is the set of descendants

of W , where w is the first node met in W , i.e., DW
S (w) = {v ∈ DS(W ) : w′(v) = w}.

Further, we need the restriction of nσ(e) to a subset of players. We define nUσ (e) =
|{u ∈ U : e ∈ σu}|.

Lemma 19. Consider a uniform broadcast game with underlying function f . Let σ be
a profile with support S which is a tree. Let W ⊆ V , w ∈ V and T be a tree spanning
W ∪ {w}. Then

Φ
(
σT,w

)
− Φ(σ) ≤ Φ

(
σ̄T,w

)
− Φ(σ) ≤

∑
v∈W

∣∣∣DW
S (v)

∣∣∣(c+1
σ (S[w ↗ v])− cσ(S[v ↗ w])

)
+

∑
e∈T\σw

F
(
n
DS(W )
σ̄T,w

(e)
)
γe.

For an intuition of this upper bound consider the case, where σT,w = σ̄T,w and none
of the edges of T are already used in S. We look at edges of the support that changed.
These are edges inside of W and edges above W (closer to the root in S). The edges
in W are those of T and they are now used by the players in DS(W ). This gives the
second sum. On the other hand we use that Φ is an exact potential, meaning that the
change in the potential under a single player deviation is exactly the change in the player
cost. Now consider some player v ∈W and the profile where only v switched. Then the
change in the cost of player v is c+1

σ (S[w ↗ v])− cσ(S[v ↗ w]). For the descendants of
v, which are now connecting to v, the part of the strategy which changes is exactly the
same as for v. Since the number of players on edges currently used only decreased by v
leaving, and the number of players on new edges increased as v went there, the change
in the player cost of a descendant is upper bounded by the respective difference of v.
This explains the first sum, where the players in DS(W ) are grouped by their w′. The
other case where edges of T have already been used in S has to be handled differently
as shown in the following proof.

Proof of Lemma 19. We show the bound for Φ
(
σ̄T,w

)
−Φ(σ). By Observation 5 we get

the first inequality.
We abbreviate σ̄T,v by σ′. To show the bound we look at the contribution of each

edge, i.e., we bound F (nσ′(e))− F (nσ(e)). We group edges into three groups. First, we
consider σw, then S \ (σw ∪ T ), and finally T \ σw.
Edges in σw. Every player who changed her strategy, i.e., σ′u 6= σu, is now using all of σw
by definition of σ′. Thus for edges in σw we have nσ′(e) ≥ nσ(e). Since f is decreasing,
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we get for every e ∈ σw:

F (nσ′(e))− F (nσ(e)) =
nσ′ (e)∑

k=nσ(e)+1
f(k)

≤ (nσ′(e)− nσ(e))f(nσ(e) + 1)
=
∣∣{u ∈ DS(W ) : e ∈ σ′u \ σu

}∣∣f(nσ(e) + 1).

Since S is a tree we can group the players in DS(W ) not using e previously by their w′.
If w′ uses e already in σ, then also all of its descendants use e. On the other hand, if
w′ did not use e, then none of the descendants can have used e before. Hence, we can
rewrite the right hand side as ∑

v∈W
e∈σ′v\σv

∣∣∣DW
S (v)

∣∣∣f(nσ(e) + 1). (4.3)

Edges in S \ (σw ∪ T ). For edges in S \ (σw ∪ T ) we have the opposite relation nσ′(e) ≤
nσ(e), since no edges outside of T and σw are added in σ′. Similarly to the previous case
we obtain

F (nσ′(e))− F (nσ(e)) = −
nσ(e)∑

k=nσ′ (e)+1
f(k)

≤ −(nσ(e)− nσ′(e))f(nσ(e))
= −

∣∣{u ∈ DS(W ) : e ∈ σu \ σ′u
}∣∣f(nσ(e))

since f is decreasing. Again, we group players inDS(W ) by their w′, since σv\σ′v = σu\σ′u
for all v ∈ W and u ∈ DW

S (v). Since e ∈ S \ (σw ∪ T ) and σ′v ⊆ σw ∪ T , we get
e ∈ σv \ σ′v ⇔ e ∈ σv. In total, the right hand side can be rewritten to

−
∑
v∈W
e∈σv

∣∣∣DW
S (v)

∣∣∣f(nσ(e)). (4.4)

Edges in T \ σw. For edges e in T \ σw we do not know the relation of nσ′(e) and nσ(e).
Instead, we consider the strategies of players in V \DS(W ), which are the same for σ′

and σ. In particular, nV \DS(W )
σ′ (e) = n

V \DS(W )
σ (e). We have

F (nσ′(e))− F (nσ(e)) = F (nσ′(e))− F
(
n
V \DS(W )
σ′ (e)

)
+ F

(
nV \DS(W )
σ (e)

)
− F (nσ(e))

=
nσ′ (e)∑

k=nV \DS(W )
σ′ (e)+1

f(k) −
nσ(e)∑

k=nV \DS(W )
σ (e)+1

f(k).

Since nσ′(e) = n
DS(W )
σ′ (e) + n

V \DS(W )
σ′ (e), there are exactly nDS(W )

σ′ (e) terms in the first
sum. The same holds for σ and the second sum. Since f is decreasing every f(k) is
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upper bounded by f(k − nV \DS(W )
σ′ (e)) in the first sum. For the second sum we bound

every f(k) from below by f(nσ(e)). Together, we obtain the upper bound

F
(
n
DS(W )
σ′ (e)

)
− nDS(W )

σ (e)f(nσ(e)) ≤ F
(
n
DS(W )
σ′ (e)

)
− |{u ∈ DS(W ) : e ∈ σu}|f(nσ(e)).

For every v ∈W using e in σ, also all descendants use e. Thus in total we get

F (nσ′(e))− F (nσ(e)) ≤ F
(
n
DS(W )
σ′ (e)

)
−
∑
v∈W
e∈σv

∣∣∣DW
S (v)

∣∣∣f(nσ(e)). (4.5)

We combine upper bounds (4.3), (4.4) and (4.5) to

Φ(σ′)− Φ(σ)−
∑

e∈T\σw

γeF
(
n
DS(W )
σ′ (e)

)
=

∑
e∈S∪T

γe(F (nσ′(e))− F (nσ(e))) −
∑

e∈T\σw

γeF
(
n
DS(W )
σ′ (e)

)
≤
∑
e∈σw

∑
v∈W

e∈σ′v\σv

γe
∣∣∣DW

S (v)
∣∣∣f(nσ(e) + 1) −

∑
e∈(S∪T )\σw

∑
v∈W
e∈σv

γe
∣∣∣DW

S (v)
∣∣∣f(nσ(e)).

Since γef(nσ(e)) = cσ(e) and γef(nσ(e) + 1) = c+1
σ (e) we continue with∑

e∈σw

∑
v∈W

e∈σ′v\σv

∣∣∣DW
S (v)

∣∣∣c+1
σ (e)−

∑
e∈(S∪T )\σw

∑
v∈W
e∈σv

∣∣∣DW
S (v)

∣∣∣cσ(e).

Since σw ⊆ σ′v for any v ∈W and σv ⊆ S ∪T , swapping the order of summation in both
sums yields for the right hand side∑

v∈W

∣∣∣DW
S (v)

∣∣∣c+1
σ (σw \ σv)−

∑
v∈W

∣∣∣DW
S (v)

∣∣∣cσ(σv \ σw).

From σw \ σv = S[w ↗ v] and σv \ σw = S[v ↗ w], we obtain the statement by
rearranging the terms.

This is the algorithmic part of homogenization and absorption: using parts of an
optimum tree. We gave an upper bound on the change of the potential in such a step.
Now we introduce the distance notion used to define homogeneous profiles and to specify
the absorption- and charging-radii.

The distance is measured w.r.t. a spanning tree T and a decreasing function. We
consider the underlying function f of the broadcast game, and the average of the first
values f̄ . Consider two nodes u and v and the path T [u, v] connecting them in T . Let
e1, . . . , ek be the edges of T [u, v] ordered from u to v (that is, e1 is incident to u and
ek is incident to v). The cost incurred to player u along this path is upper bounded by∑k
i=1 γeif(i). Since T is a tree at least the players on the path T [u, v] join u, such that

at least i players are using edge ei. This bound is used as one of the two distances of
interest.
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We define the unidirectional broadcast distance ~dT,g(u, v) w.r.t. a spanning tree T and
a decreasing function g : N → R≥0. Let T [u, v] be the path connecting u and v in T
and order the edges according to their position in T [u, v], such that T [u, v] = e1, . . . , ek
where e1 is incident to u and ek is incident to v. Then set

~dT,g(u, v) =
k∑
i=1

γeig(i).

For u = v we set ~dT,g(u, v) = 0.
Notice that ~dT,g is not necessarily a metric. Consider the path T [u, v] = u − v − w

where γ{u,v} = 3 and γ{v,w} = 1 with underlying function f(i) = 1
i (fair cost allocation).

Observe that ~dT,f is not symmetric, as ~dT,f (u,w) = 3 + 1
3 while ~dT,f (w, u) = 1 + 3

3 .
Further, ~dT,f is not monotone along paths, i.e., ~dT,f (v, u) = 3 ≥ ~dT,f (w, u).

Nevertheless, the unidirectional broadcast distance is used to define homogenization.
To still use the properties of a metric, we introduce another distance which is an upper
bound on the unidirectional distance and a metric.

For a tree T and a decreasing function g as before we define the bidirectional broadcast
distance dT,g(u, v). Here we order the edges of T by decreasing γ, i.e., we have γe1 ≥
. . . ≥ γek and set as before

dT,g(u, v) =
k∑
i=1

γeig(i).

The uni- and bidirectional distances differ only in the order of the edges on path T [u, v]
and give an upper bound on the cost incurred to the players on this path.

We show that the bidirectional broadcast distance is a metric.

Lemma 20. Let T be a spanning tree of V and g : N → R>0 a decreasing function.
Then for all u, v, w ∈ V the following are satisfied

(i) dT,g(u, v) ≥ 0
(ii) dT,g(u, v) = dT,g(v, u)

(iii) dT,g(u,w) ≤ dT,g(u, v) + dT,g(v, w)
(iv) ∀v ∈ T [u,w] : dT,g(u, v) ≤ dT,g(u,w)
(v) ~dT,g(u, v) ≤ dT,g(u, v)

(vi) ~dT,g(u, v) ≤ ~dT,ḡ(u, v) and dT,g(u, v) ≤ dT,ḡ(u, v)

Proof. (i) and (ii) follow from the definition of dT,g. (vi) holds since g is decreasing and
hence g(i) ≤ ḡ(i).

For the remaining items we use the following observation. The term γeg(i) increases
if either γe stays the same and i decreases (since g is decreasing) or i stays the same
and γe increases. For (iii) fix three nodes u, v, w and observe that since T is a tree we
have T [u,w] ⊆ T [u, v] ∪ T [v, w]. Order the edges of T [u,w] by decreasing γ as in the
definition of dT,g(u,w) and consider one of the terms γeig(i). Since all edges of T [u,w]
appear in T [u, v] or T [v, w] there is an index j such that γeig(j) appears on the right
hand side.
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If j ≤ i, then by our observation in the beginning, γeig(i) ≤ γeig(j). On the other
hand, if j > i, the edge ei appears later in one of the paths T [u, v] or T [v, w] w.r.t. γ.
That is, there is an edge e′ at position i in dT,g(u, v) or dT,g(v, w) with γe′ ≥ γ. Again
from the discussion above we obtain γeig(i) ≤ γe′g(i).

This shows that all summands of the left hand side are dominated by terms appearing
on the right hand side. As T [u,w] ⊆ T [u, v] ∪ T [v, w], the mapping of summands on
the left to dominating terms on the right can be made injective, concluding the proof of
(iii).

The monotonicity in (iv) follows similarly to the previous item. Since T [v, w] ⊆ T [u,w]
the same arguments from above can be applied to dT,g(u, v). The relation of ~dT,g and
dT,g in (v) can be shown with the same arguments.

This concludes the preliminaries for our homogenization-absorption framework.

Homogenization Recall, the idea of homogenization is to reduce the potential by
adding paths from the social optimum to the current profile.

A strategy profile σ with tree support S is called homogeneous w.r.t. a spanning tree
T , if

∀v, w ∈ V : Φ(σ) ≤ Φ
(
σT [v→w]

)
,

where σT [v→w] is a short notation for σT [v,w],w as defined in (4.2), where W = T [v, w].
See Figure 4.12 for an illustration of σT [v→w].

v

w

(a) Parts of the initial profile σ, where v connects
to r not using w.

v

w

(b) The profile σT [v→w], where v connects to w
via T and all descendants of T [v, w] join.

Figure 4.12: Moves considered for homogenization. The current support of σ is shown in black,
where the directions point to the root. Edges in T are shown in orange.

The key property of homogeneous profiles is that the difference in player costs can be
bounded by their distance. Observe that Cv(σ)−Cw(σ) = cσ(S[v ↗ w])−cσ(S[w ↗ v]).
Since c(e) ≥ c+1(e) we can bound the difference of the player costs as Cv(σ)−Cw(σ) ≤
cσ(S[v ↗ w])− c+1

σ (S[w ↗ v]).
Lemma 21. Consider a uniform broadcast game with underlying function f . In a profile
σ with tree support S which is homogeneous w.r.t. a spanning tree T , we have

∀v, w ∈ V : cσ(S[v ↗ w])− c+1
σ (S[w ↗ v]) ≤ ~dT,f̄ (v, w).
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Proof. We use the inequalities of Lemma 19 to set up a linear program. The statement
then follows by weak duality.

Let v, w be two players and consider the path T [v, w]. We order the k edges of
T [v, w] from v to w and call the intermediate nodes vi. In particular, we have v0 = v,
ei = {vi−1, vi} and vk = w.

Since σ is homogeneous w.r.t. T the profile σT [v→w] does not have smaller potential
than σ. This holds for any pair of players. In particular, for all pairs (v, vi), we have
0 ≤ Φ

(
σT [v→vi]

)
−Φ(σ). On the other hand, we can apply Lemma 19 to each of the sets

W = {v, . . . , vi} with w = vi and T = T [v, vi] and obtain

0 ≤ Φ
(
σT [v→vi]

)
− Φ(σ) (4.6)

≤
i∑

j=0

∣∣∣DT [v,vi]
S (vj)

∣∣∣(c+1
σ (S[vi ↗ vj ])− cσ(S[vj ↗ vi])

)
+

i∑
j=1

γejF
(
n
DS(T [v,vi])
σ̄T [v→vi]

(ej)
)
.

Notice that in the second summand we sum over all edges of T [v, vi] and do not exclude
those contained in σvi as in Lemma 19, which gives a weaker but still valid bound.

We set

n
(i)
j =

∣∣∣DT [v,vi]
S (vj)

∣∣∣ and N
(i)
j =

j∑
k=0

n
(i)
k .

Observe that N (i)
j−1 is exactly the number of players in DS(T [v, vi]) using edge ej in

σ̄T [v→vi].
The LP. Define the linear program with k + 1 variables Ci as

max C0 − Ck

s.t. ∀i ∈ {1, . . . , k} :
i∑

j=0
n

(i)
j (Cj − Ci) ≤

i∑
j=1

γejF
(
N

(i)
j−1

)
∀i ∈ {0, . . . , k} : 0 ≤ Ci.

With the bound Cvi(σ) − Cvj (σ) ≥ c+1
σ (S[vi ↗ vj ]) − cσ(S[vj ↗ vi]) we see from (4.6)

that the player costs Cvi(σ) are a feasible solution to the LP. For this choice we get as
objective function value C0 − Ck = Cv(σ)− Cw(σ) which is a lower bound on the right
hand side of the statement as discussed before the lemma.
The dual LP. We show an upper bound on this value by looking at the dual problem
with k variables yi:

min
k∑
j=1

k∑
i=j

γejF
(
N

(i)
j−1

)
yi

s.t.
k∑
i=1

n
(i)
0 yi ≥ 1
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∀i ∈ {1, . . . , k − 1} :
k∑

j=i+1
n

(j)
i yj −N (i)

i−1yi ≥ 0

−N (k)
k−1yk ≥ −1

∀i ∈ {1, . . . , k} : 0 ≤ yi.

Adding all of the constraints except for the non-negativity constraints gives zero on both
sides. Hence, a feasible solution has to satisfy all of them with equality. We can thus
define the unique solution recursively starting from ŷk = 1

N
(k)
k−1

and for i ∈ {1, . . . , k − 1}

ŷi = 1
N

(i)
i−1

1−
k∑

j=i+1
N

(j)
i−1yj

.
Adding the inequalities for j = i, . . . , k gives ∑k

j=iN
(j)
i−1yj ≤ 1, and hence ŷ is indeed

feasible for the dual LP. We compute the dual objective function value for ŷ as

k∑
j=1

k∑
i=j

γejF
(
N

(i)
j−1

)
ŷi =

k∑
j=1

k∑
i=j

γej f̄
(
N

(i)
j−1

)
N

(i)
j−1ŷi,

where we used F (k) = kf̄(k). We use maxi=j,...,k f̄
(
N

(i)
j−1

)
as upper bound for each of

the terms f̄
(
N

(i)
j−1

)
. Since f is decreasing also f̄ is decreasing. Hence, the maximum is

attained at the smallest value N (i)
j−1 for i = j . . . , k. For j ≤ i we have n(j)

` ≥ n
(i)
` for all

` ≤ j − 1 by the following argument. n(j)
` counts the number of descendants of T [v, vj ]

who have v` as their first node on this path. If we now consider the longer path T [v, vi]
only fewer players can have v` as their first node on this path, since some of DT [v,vj ]

S (v`)
may meet T [v, vi] on some other node than v`. See Figure 4.13 for an illustration. Thus,
n

(i)
` is decreasing in i, and hence maxi=j,...,k f̄

(
N

(i)
j−1

)
is attained at i = k.

v
v̄1 v` vj v̄2 vi

w

u1 u2 u3

Figure 4.13: Illustration for n(j)
` ≥ n

(i)
` for j ≤ i used in the proof of Lemma 21. The path

T [v, w] is shown in orange. Parts of tree S are drawn in black. u2 is always in D
T [v,vk]
S (v`) for

all k ≥ `, while u1 is never a member of DT [v,vk]
S (v`). For u3 we have u3 ∈ D

T [v,vj ]
S (v`) since v`

is the first node on T [v, vj ] met by u3. On the other hand u3 6∈ DT [v,vi]
S (v`) as u3 meets T [v, vi]

at v̄2.

102



4.5 Price of Stability – Upper Bounds

Further, we use the bound D
T [v,w]
S (v`) ≥ 1, as in the worst case only v` is in this set

and thus f̄
(
N

(k)
j−1

)
≤ f̄(j). Together with ∑k

j=iN
(j)
i−1ŷj ≤ 1, we obtain the upper bound

k∑
j=1

γej max
i=j,...,k

f̄
(
N

(i)
j−1

)
≤

k∑
j=1

γej f̄(j) = ~dT,f̄ (v, w).

By weak duality we thus have

Cv(σ)− Cw(σ) ≤ ~dT,f̄ (v, w),

which is almost what we want.
A primal feasible solution. To show the statement, we give another feasible solution to
the (primal) LP, whose objective function value is the left hand side of the inequality to
be shown, and the bound follows as before from weak duality.

Define
Ĉi = c+1

σ (σvi ∩ σw) + cσ(σvi \ σw)

for i ∈ {0, . . . , k}. For this choice the primal objective evaluates to

Ĉ0 − Ĉk = c+1
σ (σv ∩ σw) + cσ(σv \ σw)− c+1

σ (σw ∩ σw)− cσ(σw \ σw)
= cσ(σv \ σw)− c+1

σ (σw \ σv)

which is the left hand side of the statement.
Hence, it remains to show that Ĉ is feasible for the primal LP. As for feasibility of the

vector of the actual player costs, we prove this by showing Ĉi − Ĉj ≥ c+1
σ (S[vi ↗ vj ])−

cσ(S[vj ↗ vi]) and using (4.6). There are structurally two possibilities how the lowest
common ancestors of (vi, vj) and (vi, vj , w) are placed relative to each other in S. Either
lca (vi, vj , w) = lca (vi, vj), or lca (vi, vj , w) 6= lca (vi, vj) (see Figure 4.14).

r

lca (vi, vj , w)

w lca (vi, vj)

vi vj
+ −

−+

+

+

−

−

(a) lca (vi, vj , w) 6= lca (vi, vj)

r

lca (vi, vj , w)

vj lca (vi, w)

vi w

+

+−
+

+−

+

−

(b) lca (vi, vj , w) = lca (vi, vj)
and lca (vi, w) is below
lca (vi, vj , w)

r

lca (vi, vj , w)

vi lca (vj , w)

vj w

−

−+
−

−+

−

+

(c) lca (vi, vj , w) = lca (vi, vj)
and lca (vj , w) is below
lca (vi, vj , w)

Figure 4.14: Illustration for proof of Ĉi − Ĉj ≥ c+1
σ (S[vi ↗ vj ]) − cσ(S[vj ↗ vi]) used in

Lemma 21. Paths contributing to terms on the left hand side are shown in purple and paths
appearing on the right hand side in orange. Edges where cσ is considered are marked solid, while
edges where we consider c+1

σ are marked with dashes. The label on these marks give the sign of
the corresponding term.
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Consider the case where lca (vi, vj , w) 6= lca (vi, vj). As lca (vi, vj , w) is closer to the
root than lca (vi, vj), we have the situation as shown in Figure 4.14a. In particular,
we have lca (vi, vj , w) = lca (vi, w) = lca (vj , w). Paths appearing on the right hand
side c+1

σ (S[vi ↗ vj ]) − cσ(S[vj ↗ vi]) are marked with orange. Parts where we use c+1
σ

are marked with dashes and parts with cσ are marked solid. For the left hand side we
compute

Ĉi − Ĉj = c+1
σ (σvi ∩ σw) + cσ(σvi \ σw)− c+1

σ

(
σvj ∩ σw

)
− cσ

(
σvj \ σw

)
.

The respective paths are shown in purple. For example cσ
(
σvj \ σw

)
corresponds to

the solid purple marks with label “−” from vj to lca (vj , vi) and from lca (vj , vi) to
lca (vi, vj , w). We observe from the picture that the only difference in the left and right
hand side is the path from vi to lca (vi, vj , w), where we have cσ on the left and c+1

σ on the
right. Since c+1

σ (e) ≤ cσ(e), this shows that Ĉi − Ĉj ≥ c+1
σ (S[vi ↗ vj ])− cσ(S[vj ↗ vi])

in this case.
Formally, we write

σvi ∩ σw = S[lca (vi, w), lca (vi, vj , w)] ∪ S[lca (vi, vj , w), r] (4.7)
and σvi \ σw = S[vi, lca (vi, vj)] ∪ S[lca (vi, vj), lca (vi, vj , w)]

and similarly for σvj ∩ σw and σvj \ σw replacing vi by vj . We thus have

Ĉi − Ĉj =c+1
σ (σvi ∩ σw) + cσ(σvi \ σw)− c+1

σ

(
σvj ∩ σw

)
− cσ

(
σvj \ σw

)
=cσ(S[vi, lca (vi, vj)])− cσ(S[vj , lca (vj , vi)])

since lca (vi, w) = lca (vj , w). As cσ(e) ≥ c+1
σ (e) we get the bound

Ĉi − Ĉj = cσ(S[vi, lca (vi, vj)])− cσ(S[vj , lca (vj , vi)])
≥ c+1

σ (S[vi, lca (vi, vj)])− cσ(S[vj , lca (vj , vi)])

= c+1
σ

(
σvi \ σvj

)
− cσ

(
σvj \ σvi

)
.

For the other case where lca (vi, vj , w) = lca (vi, vj) we consider two subcases. First,
assume lca (vj , w) is closer to the root than lca (vi, w) (see Figure 4.14b). Then we
have lca (vi, vj , w) = lca (vj , w), as lca (vi, w) is a descendant of lca (vj , w) both vi and
w are descendants of lca (vj , w). With (4.7) and S[vi, lca (vi, vj)] = S[vi, lca (vi, w)] ∪
S[(lca (vi, w), lca (vi, vj , w))] we compute

Ĉi − Ĉj = c+1
σ (σvi ∩ σw) + cσ(σvi \ σw)− c+1

σ

(
σvj ∩ σw

)
− cσ

(
σvj \ σw

)
= c+1

σ (S[lca (vi, w), lca (vi, vj , w)]) + cσ(S[vi, lca (vi, w)])
+ cσ(S[lca (vi, w), lca (vi, vj , w)])− cσ(S[vj , lca (vj , vi, w)])
≥ c+1

σ (S[lca (vi, w), lca (vi, vj , w)]) + c+1
σ (S[vi, lca (vi, w)])

− cσ(S[vj , lca (vj , vi, w)])
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= c+1
σ (S[vi, lca (vi, vj , w)])− cσ(S[vj , lca (vj , vi, w)])

= c+1
σ

(
σvi \ σvj

)
− cσ

(
σvj \ σvi

)
.

In the remaining subcase, where lca (vi, vj , w) = lca (vi, vj) and lca (vj , w) is a descendant
of lca (vi, w), we have similar to before lca (vi, vj , w) = lca (vi, w) (see Figure 4.14c).
Further, σvj \ σw = S[vj , lca (vj , w)] and thus

Ĉi − Ĉj =c+1
σ (σvi ∩ σw) + cσ(σvi \ σw)− c+1

σ

(
σvj ∩ σw

)
− cσ

(
σvj \ σw

)
=cσ(S[vi, lca (vi, vj , w)])− c+1

σ (S[lca (vj , w), lca (vi, vj , w)])− cσ(S[vj , lca (vj , w)])
≥c+1

σ (S[vi, lca (vi, vj , w)])− cσ(S[lca (vj , w), lca (vi, vj , w)])− cσ(S[vj , lca (vj , w)])
=c+1

σ (S[vi, lca (vi, vj , w)])− cσ(S[vj , lca (vi, vj , w)])

=c+1
σ

(
σvi \ σvj

)
− cσ

(
σvj \ σvi

)
.

This shows that Ĉ is a feasible solution with objective value being the left hand side
of the inequality in the statement. Together with the bound from the feasible solution
to the dual LP, the proof is complete.

Homogenization is the process of repeatedly checking all player pairs (v, w) and chang-
ing to σT [v→w] if this decreases the potential until no improvement is available.

1 Function Homogenize(T , σ) -- Homogenize σ w.r.t. T

2 while ∃w, z ∈ V : Φ
(
σT [w→z]

)
< Φ(σ) do

3 σ ← σT [w→z]

4 end
Function Homogenize(T , σ)

The procedure terminates as in every while-iteration the potential strictly decreases
and there are only finitely many profiles. The resulting profile is homogeneous by the
condition of the while-loop and has tree support by Lemma 18.

Absorption In contrast to the global nature of homogenization, we consider only local
replacements in absorption. If a player deviates and introduces a new edge outside of
the social optimum, we absorb nearby players using the social optimum. The goal is to
remove edges from the support that are not in the social optimum while not increasing
the potential.

Consider a profile σ with tree support S and assume that player v has an improving
tree-move (Lemma 11). That is, there is an edge e = {v, u} such that cσ(S[v ↗ u]) >
γef(1) + c+1

σ (S[u↗ v]). We define the absorption-ball at v w.r.t. e in terms of the
bidirectional broadcast distance w.r.t. a spanning tree T in B(v, e) as

B(v, e) =
{
w ∈ V : dT,f̄ (v, w) ≤ f(1)− f(2)

2 γe

}
.
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Note that since dT,f̄ is a metric (see Lemma 20) this set is indeed a ball (a connected
set without holes). If w ∈ B(v, e), then also all w′ ∈ T [w, v] are in B(v, e), and hence
the subgraph of T induced by nodes in B(v, e) is a tree. We define the short notation
rabsorb = f(1)−f(2)

2 for the absorption-radius.

v

u

e

(a) Before the absorption (σ). v has an im-
proving tree-move using e (dashed).

v

u

e

(b) σT [B(v,e)] after the absorption. The 5 play-
ers in the absorption-ball and their descendants
changed their strategy, removing 4 edges out-
side of the social optimum.

Figure 4.15: An absorption step at v w.r.t. e = {u, v}. Parts of the support of σ are shown
in black. The arrows give the direction to the root in this tree. Parts of tree T are shown in
orange. The absorption-ball B(v, e) is shown in purple.

Absorption is the process of letting v deviate to u using e and changing the strategy
of every player in the absorption-ball and their descendants to connect to v via T . We
denote the resulting profile by σT [B(v,e)]. The strategy of a player w ∈ DS(B(v, e)) is

S[w,w′(w)] ∪ T [w′(w), v] ∪ {e} ∪ S[u, r] (4.8)

where we use again the notation w′(w) for the first node met in T by w. The strategies
of other players do not change. See Figure 4.15 for an illustration of σT [B(v,e)].

1 Function Absorb(T , σ, v, e) -- Absorb σ at v w.r.t. e and T

2 return σT [B(v,e)]

Function Absorb(T , σ, v, e)

We consider absorption only in homogeneous profiles, since then the support of the
new profile is again a tree.

Lemma 22. For a profile σ with tree support S that is homogeneous w.r.t. T , and an
edge e = {u, v} ∈ E \ (S ∪ T ) with cσ(S[u↗ v]) > γef(1) + c+1

σ (S[v ↗ u]), we have
(i) σu ∩B(v, e) = ∅ and

(ii) σT [B(v,e)] = σ̄T |W∪{e},u as defined in (4.1), where W = B(v, e) and T |W is the
subgraph of T induced by nodes in W .

Proof. For the first part consider any node w ∈ σu. From Item (vi) of Lemma 20 we
have dT,f̄ (v, w) ≥ ~dT,f̄ (v, w). Since we assume σ to be homogeneous w.r.t. T , we have
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from Lemma 21 that

dT,f̄ (v, w) ≥ ~dT,f̄ (v, w) ≥ cσ(S[v ↗ w])− c+1
σ (S[w ↗ v]). (4.9)

We show that the right hand side is lower bounded by the same term where we set
w = u. If w ∈ σv then S[w ↗ v] is empty and S[v ↗ u] ⊆ S[v ↗ w]. Hence

cσ(S[v ↗ w])− c+1
σ (S[w ↗ v]) ≥ cσ(S[v ↗ u])− c+1

σ (S[u↗ v]).

In the other case where w 6∈ σv, we have lca(v, u) = lca(v, w) and hence cσ(S[v ↗ w]) =
cσ(S[v ↗ u]). Further S[w ↗ v] ⊆ S[u ↗ v] and thus c+1

σ (S[w ↗ v]) ≤ c+1
σ (S[u↗ v]).

In total, we also obtain

cσ(S[v ↗ w])− c+1
σ (S[w ↗ v]) ≥ cσ(S[v ↗ u])− c+1

σ (S[u↗ v]).

Using this inequality and the fact that e is an improving edge for v, we continue to
lower bound (4.9) with

cσ(S[v ↗ u])− c+1
σ (S[u↗ v]) > f(1)γe ≥

f(1)− f(2)
2 γe.

Putting everything together, we showed that for all w ∈ S[u, r] the distance dT,f̄ (v, w)
is strictly larger than γerabsorb and thus w can not lie in B(v, e). Thus σu ∩B(v, e) = ∅.

For the second part, we need to show that T |W ∪{e} is a tree spanning B(v, e)∪{u},
as then the definitions of σT [B(v,e)] (4.8) and of σ̄T |W∪{e},u (4.1) coincide. From the first
part we know that in particular u is not in B(v, e). As T |W is a tree spanning B(v, e)
we get that indeed T |W ∪ {e} is a tree spanning B(v, e) ∪ {u}.

Together with Lemma 17 we immediately get the following key properties of absorp-
tion.
Observation 6. For a profile σ with tree support S that is homogeneous w.r.t. a tree T
and a player v with improving tree-move using e

(i) the support of σT [B(v,e)] is a tree and contains the part of T in B(v, e) as subtree.
(ii) the parent edges eS(w) ∈ E \ T of nodes w in B(v, e), are not contained in the

support of σT [B(v,e)].
We show that absorbing decreases the potential in homogeneous profiles.

Lemma 23. Consider a uniform broadcast game with underlying function f . Let σ be
a homogeneous profile w.r.t. a spanning tree T and let S be its support. Further, let
e = {u, v} ∈ E \ (S ∪ T ) with cσ(S[v ↗ u]) > γef(1) + c+1

σ (S[u↗ v]). Then,

Φ
(
σT [B(v,e)]

)
< Φ(σ).
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Proof. We show Φ
(
σT [B(v,e)]

)
− Φ(σ) < 0 with the upper bounds of Lemma 19 and

Lemma 21. We use the representation of σT [B(v,e)] as σ̄T |W∪{e},u, whereW = B(v, e) from
Lemma 22. The following short notations are used in this proof. We set D = DS(W ),
σ′ = σT [B(v,e)] = σ̄T |W∪{e},u and S′ = supp(σ′). From the bound of Lemma 19 we get

Φ
(
σ′
)
− Φ(σ) ≤

∑
w∈W

∣∣∣DW
S (w)

∣∣∣(c+1
σ (S[u↗ w])− cσ(S[w ↗ u])

)
+

∑
e′∈T\σu

F
(
nDσ′
(
e′
))
γe′ + F

(
nDσ′(e)

)
γe. (4.10)

To show that the right hand side is upper bounded by zero, we bound both parts – the
first sum, and the remaining two summands involving F – by the sum of the unidirec-
tional distance of w ∈W to v and γe times some f(k). We proceed in two steps. First, we
upper bound the difference of the costs appearing in the first sum by the unidirectional
distance of w to v as

c+1
σ (S[u↗ w])− cσ(S[w ↗ u]) ≤ ~dT,f̄ (v, w)− γef(1). (4.11)

This bound is strict for v since e is an improving tree-move. Second, we bound the two
remaining terms by∑
e′∈T\σu

F
(
nDσ′
(
e′
))
γe′ + F

(
nDσ′(e)

)
γe ≤

∑
w∈W

∣∣∣DW
S (w)

∣∣∣(~dT,f (w, v) + γef
(
pos

(
e, σ′w

)))
,

(4.12)
where pos(e, σ′w) denotes the position of edge e in the path σ′w starting at w. In par-
ticular, pos(e, σ′v) = 1. The statement then follows by Lemma 20 and the definition of
W = B(v, e), since for any w ∈W \ {v} we have pos(e, σ′w) ≥ 2 and

~dT,f̄ (v, w)− γef(1) + ~dT,f (w, v) + γef(2) ≤ 2dT,f̄ (v, w) + γe(f(2)− f(1)) ≤ 0.

Proof of (4.11). On the left hand side the cost of w is compared to the cost of u, instead
we want to relate it to the cost of v. We show

c+1
σ (S[u↗ w])− cσ(S[w ↗ u]) ≤ cσ(S[v ↗ w])− c+1

σ (S[w ↗ v])− γef(1). (4.13)

There are three cases for the relation of lca (v, w) and lca (u, v, w) similar to the proof
of Lemma 21. If lca (v, w) 6= lca (u, v, w), we have S[v ↗ w] = S[v, lca (v, w)] and
S[w ↗ v] = S[w, lca (v, w)]. Since cσ(e) ≥ c+1

σ (e) we get a lower bound on the right
hand side as

cσ(S[v ↗ w])− c+1
σ (S[w ↗ v])− γef(1) ≥ cσ(S[v ↗ u])− c+1

σ (S[w ↗ u])− γef(1).

As e is an improving tree-move for v we obtain

cσ(S[v ↗ u])− c+1
σ (S[w ↗ u])− γef(1) ≥ c+1

σ (S[u↗ v])− c+1
σ (S[w ↗ u])

≥ c+1
σ (S[u↗ w])− cσ(S[w ↗ u]).
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If lca (v, w) = lca (u, v, w), consider first the case where lca (u,w) is a descendant of
lca (u, v, w). We have lca (v, w) = lca (v, u) and thus S[v ↗ w] = S[v ↗ u]. Using the
condition on e as improving tree-move for v we obtain

cσ(S[v ↗ w])− c+1
σ (S[w ↗ v])− γef(1) ≥ c+1

σ (S[u↗ v])− c+1
σ (S[w ↗ v]).

As S[u ↗ v] and S[w ↗ v] share the common part S[lca (u,w), lca (u, v, w)] and since
c(e) ≥ c+1(e), we continue with

c+1
σ (S[u↗ v])− c+1

σ (S[w ↗ v]) ≥ c+1
σ (S[u↗ w])− cσ(S[w ↗ u]).

For the remaining case we have lca (v, w) = lca (u, v, w) and lca (u, v) is a descendant of
lca (u, v, w). Similar to before lca (v, w) = lca (u,w). We write

S[v ↗ w] = S[v ↗ u] ∪ S[lca (u, v), lca u, v, w]
and use the condition on e for the first term to obtain the bound

cσ(S[v ↗ w])− c+1
σ (S[w ↗ v])− γef(1)

≥c+1
σ (S[u↗ v]) + cσ(S[lca (u, v), lca (u, v, w)])− c+1

σ (S[w ↗ u])
≥c+1

σ (S[u↗ w])− c+1
σ (S[w ↗ u]),

where the last inequality follows from c(e) ≥ c+1(e).
We have thus shown (4.13) and since σ is homogeneous w.r.t. T , we get (4.11) from

Lemma 21.
Proof of (4.12). For the second bound, we use that f is decreasing and upper bound
F
(
nDσ′(e′)

)
by ∑

w∈D
e′∈σ′w

f
(
pos

(
e′, σ′w

))
.

Since the support of σ′ is a tree (Observation 6), we have nσ′(e′) ≥ pos(e′, σ′w) for any
w as at least all players along σ′w before e′ use e′.

Grouping players in D by their w′ we get

F
(
nDσ′
(
e′
))
≤

∑
w∈W
e′∈σ′w

∣∣∣DW
S (w)

∣∣∣f(pos
(
e′, σ′w

))
,

since the position of e′ only increases for descendants of w and f is decreasing. Changing
the order of summation on the left hand side yields∑

e′∈T\σu

F
(
nDσ′
(
e′
))
γe′ + F

(
nDσ′(e)

)
γe

≤
∑
w∈W

∑
e′∈T [w,v]\σu

∣∣∣DW
S (w)

∣∣∣f(pos
(
e′, σ′w

))
γe′ +

∑
w∈W

∣∣∣DW
S (w)

∣∣∣f(pos
(
e, σ′w

))
γe.

For w ∈W observe that ∑
e′∈T [w,v]

f
(
pos

(
e′, σ′w

))
γe′ = ~dT,f (w, v)

which proves (4.12).
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Algorithm With the definitions of homogenization and absorption we are now ready
to state Algorithm 1 that computes a good equilibrium.

Input: uniform broadcast game ((V,E), r, f, γ), spanning tree T of V
Output: equilibrium σ

1 compute the stationary point of the following sequence of profiles
2 σ0 := strategy profile induced by T
3 σi+1 := if σi is equilibrium then return σi
4 else
5 let ei+1 = {ui+1, vi+1} ∈ E \ supp(σi) such that

cσi(Si[vi+1 ↗ ui+1]) > c+1
σi (Si[ui+1 ↗ vi+1]) + f(1)γei+1

6 return Homogenize(T , Absorb(T , σi, vi+1, ei+1))
7 end
Algorithm 1: Homogenization-Absorption framework to compute a good equilib-
rium

Theorem 8. Algorithm 1 computes an equilibrium in finitely many steps.

Proof. From Lemma 11 we have the existence of an edge ei+1 as in Line 5 for any profile
σi not being an equilibrium. Since T is homogeneous w.r.t. itself we always have a
homogeneous profile before absorption in Line 6. Hence, absorbing at vi+1 is feasible
and results in a profile with tree support (Observation 6). The result of homogenization
is also a tree (Lemma 18). Thus, the steps can be applied in this form.

From the definition of homogenization and from Lemma 23 we have that the potential
strictly decreases in the else-branch (Line 5 - Line 6). Thus, no profile can be con-
structed twice by just using the else-branch. As there are only finitely many profiles
available, the algorithm computes a stationary point after finitely many steps. This
stationary point is an equilibrium from Line 3.

Although Algorithm 1 terminates, we are not able to say anything about the running
time; about how many steps are needed in the worst case. In particular, we want to
remark here that the decrease in the potential is chosen to be as small as possible in every
step. Intuitively, we want to absorb as many players and use as many edges of the social
optimum, while still decreasing the potential. Somehow, this is contrary to fast progress
towards a local minimizer of the potential. Hence, our feeling is that this algorithm may
take many steps. Further, we are not defining any order of the improving tree-moves in
each iteration. We do not know of any characterization of a good improving move in
terms of fast stabilization.

To get an upper bound on the PoS we would like to call this algorithm with a social
optimum tree. Since it is hard to compute the social optimum for sharing functions with
economies of scale we instead use a minimum spanning tree w.r.t. the cost factors γ.

Charging-Scheme To measure the quality of the equilibrium σ computed by Algo-
rithm 1 we compare its social cost to the social cost of tree T in the input. Our analysis
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is basically the analysis for fair cost allocation, as we are ignoring sharing effects. On
the one hand, we use the lower bound C(T ) ≥ ∑

e∈T f(1)γe for tree T . On the other
hand, we use the upper bound nσ(e)f(nσ(e)) ≤ supk∈N kf(k) for the social cost of σ.
Note that for fair cost allocation both of these bounds are tight. The relation of the
social costs of T and σ is obtained by splitting C(σ) in two parts:

C(σ) ≤ sup
k∈N

kf(k)
f(1)

 ∑
e∈supp(σ)∩T

f(1)γe +
∑

e∈supp(σ)\T
f(1)γe

. (4.14)

While the first summand is upper bounded by C(T ) we show that the second summand
can be bounded by C(T ) times some factor independent of T and σ.

An edge e outside of T has been introduced to σ by an improving tree-move of some
v. We charge γe to edges in T which are close to v. We define the charging-radius
to be an α > 2 fraction of the absorption-radius around v, i.e., the charging-radius
is rcharge = rabsorb

α = f(1)−f(2)
2α γe where we use again dT,f̄ as distance. In particular, we

charge edges of the path from v to r in T . It may happen that the part of this path in the
charging-ball has very small cost (sum of γ’s) or is even empty. In this case, we charge
γe to the edge on this path leaving the charging-ball. We introduce another parameter
β > 1, and charge the leaving edge in the case, where the path in the charging-ball has
cost only a β fraction of the charging-radius. See Figure 4.16 for an illustration of the
two cases.

vu

γe

wv

w′v
ev

R

R
α

R
αβ

(a) The path from v to wv in the charging-ball
is large enough and gets charged.

vu

γe

wv

w′v
ev

(b) The path from v to wv in the charging-ball
is too small, hence edge ev leaving the charging-
ball gets charged.

Figure 4.16: The two charging situations. The absorption-ball of radius R = rabsorbγe is drawn
in purple, the charging-ball is drawn in light purple and has radius R

α . Parts of the path T [v, r]
are shown in orange. wv is the last node of T [v, r] in the charging-ball.

Depending on the underlying function f different choices of α and β yield good upper
bounds.
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Theorem 9. For a uniform broadcast game ((V,E), r, f, γ) and a spanning tree T , let
σ be the profile returned by Algorithm 1. For any α > 2 and β > 1, we have

C(σ)
C(T ) ≤

(
sup
k∈N

kf(k)
f(1)

)
(1 +X(α, β))

where

X(α, β) = 2αβ2(α− 1)
(f(1)− f(2))f(1)(α− 2)

∞∑
j=1

f̄(j)2 + 2f(1)αβ(αβ − 1)
(f(1)− f(2))(β − 1)(αβ − 2)

Proof. As explained above we use (4.14) to bound the social cost of σ and focus on edges
in supp(σ) \ T . Let Ē = (ej1 , . . . , ejk) be the edges in supp(σ) \ T indexed by their last
appearance in Line 5 of Algorithm 1. That is, ejk is added to σjk−1 and σ = σjk . This
defines the sequence of nodes V̄ = (vj1 , . . . , vjk) introducing the edges in supp(σ) \ T
(see also Line 5 of Algorithm 1).

For each of those nodes v = vj ∈ V̄ we define edge ev as the edge on T [v, r] leaving
the charging-ball, i.e., ev = {wv, w′v} where dT,f̄ (v, wv) ≤ rabsorb

α γej but dT,f̄ (v, w′v) >
rabsorb
α γej (see Figure 4.16). To show that ev exists, we show that the root r is not in

the charging-ball of v. Let v = vj be one of the nodes in V̄ and consider the profile
σ̄ = σj−1. Since σ̄ is homogeneous w.r.t. T , we have from Lemma 21 and Lemma 20

dT,f̄ (v, r) ≥ ~dT,f̄ (v, r) ≥ cσ̄
(
S̄[v ↗ r]

)
.

With the property of ej from Line 5, we continue with

cσ̄
(
S̄[v ↗ r]

)
≥ cσ̄

(
S̄[v ↗ u]

)
> c+1

σ̄

(
S̄[u↗ v]

)
+ f(1)γej ≥ f(1)γej .

Since α > 2, this shows that r is not in the charging-ball of vj w.r.t. ej and hence wvj
exists.
Charging-Scheme. We define the charging function Γ : Ē × T → R, where Γ(ej , e)
specifies how much of γej is charged to e. Let Ēin be those edges ej ∈ Ē where
dT,f̄ (vj , wvj ) ≥ rabsorb

αβ γej , and Ēout be the remaining edges of Ē, i.e., those where
dT,f̄ (vj , wvj ) < rabsorb

αβ γej . For an edge ej ∈ Ēin we charge edges e in T [vj , wvj ] with

Γ(ej , e) =
(

αβ

rabsorb

)2( ∞∑
i=1

f̄(i)2
)
γ2
e

γej
.

For an edge ej ∈ Ēout we charge evj with γej . All other pairs (ej , e) are mapped to 0.
The proof consists of three parts. Firstly, we show that each γej is covered by the

charging factors, i.e., for every ej ∈ Ē:

γej ≤
∑
e∈T

Γ(ej , e) (4.15)
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Secondly, we show that the edges in T are not charged too much, i.e., for every e ∈ T :∑
ej∈Ē

Γ(ej , e) ≤ X(α, β)γe. (4.16)

Using these two bounds, we finally show the overall bound on the ratio of the social
costs.
Proof of (4.15). For an edge ej ∈ Ēout, we charge evj with γej and hence the inequality
is satisfied. For an edge ej ∈ Ēin, we have

γej ≤
(

αβ

rabsorb

)2dT,f̄ (vj , wvj )
2

γej

from the square of the defining inequality of ej ∈ Ēin. Applying the Cauchy-Schwarz
inequality to dT,f̄ (vj , wvj )

2, we obtain

dT,f̄ (vj , wvj )
2 ≤

( ∞∑
i=1

f̄(i)2
) ∑

e∈T [vj ,wvj ]
γ2
e

.
Plugging this into the previous inequality, we arrive at

γej ≤
∑
e∈T

Γ(ej , e).

Proof of (4.16). Consider an edge e ∈ T . We bound the amount charged to e for the
two cases Ēin and Ēout separately. For edges ej ∈ Ēin charging e we upper bound γe

γej
,

and for edges ej ∈ Ēout charging e we upper bound γej
γe

to obtain a bound by

∑
ej∈Ē

Γ(ej , e) ≤
∑

ej∈Ēin
e∈T [vj ,wvj ]

(
αβ

rabsorb

)2( ∞∑
i=1

f̄(i)2
)
γe
γej

γe +
∑

ej∈Ēout
e=evj

γej
γe
γe. (4.17)

Consider an edge ei ∈ Ēin charging e. On the one hand we have dT,f̄ (vi, wvi) ≤
rabsorb
α γei and on the other hand since e ∈ T [vi, wvi ] we also have f(1)γe ≤ dT,f̄ (vi, wvi).

Putting both together we get
γe
γei
≤ rabsorb
f(1)α . (4.18)

Now take an edge ei ∈ Ēout charging e, that is, dT,f̄ (vi, wvi) < rabsorb
αβ γei . Let w be the

other node of e = evi different from wvi , then we have dT,f̄ (vi, w) > rabsorb
α γei , since w is

not in the charging-ball of vi. By the triangle inequality for dT,f̄ we further have

dT,f̄ (vi, w) ≤ dT,f̄ (vi, wvi) + dT,f̄ (wvi , w) = dT,f̄ (vi, wvi) + f(1)γe.
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Combining all bounds results in

γei
γe
≤ f(1)αβ
rabsorb(β − 1) . (4.19)

We will now see that the cost factors of edges with overlapping charging-balls have
to decrease exponentially, making our previous bounds stronger. Consider two nodes
vi and vj in V̄ with i < j whose charging-balls intersect. I.e., there is a node v in the
charging-ball around vi that is also in the charging-ball around vj . From the triangle
inequality and the monotonicity of dT,f̄ (Lemma 20) we get:

dT,f̄ (vi, vj) ≤ dT,f̄ (vi, v) + dT,f̄ (v, vj) ≤ dT,f̄ (vi, wvi) + dT,f̄ (wvj , vj).

From the definitions of wvi and wvj we obtain

dT,f̄ (vi, vj) ≤
f(1)− f(2)

2α
(
γei + γej

)
.

On the other hand, we have

dT,f̄ (vi, vj) >
f(1)− f(2)

2 γej ,

as vi was not absorbed by vj , since ei is still in the support of σ. Combining both bounds
on dT,f̄ (vi, vj) gives

γej <
1

α− 1γei .

The cost factors decrease even more if both ei and ej are in Ēout. We then have the
stronger bound

dT,f̄ (vi, vj) ≤
f(1)− f(2)

2αβ
(
γei + γej

)
which gives

γej <
1

αβ − 1γei .

We can thus bound
∑

ej∈Ēin
e∈T [vj ,wvj ]

γe
γej
≤
∞∑
`=0

1
(α− 1)`

γe
γek
≤
∞∑
`=0

1
(α− 1)`

rabsorb
f(1)α

with (4.18) and

∑
ej∈Ēout
e=evj

γej
γe
≤
∞∑
`=0

1
(αβ − 1)`

γe1

γe
≤
∞∑
`=0

1
(αβ − 1)`

f(1)αβ
rabsorb(β − 1)

with (4.19). Plugging both into (4.17) and evaluating the geometric series shows (4.16).
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Overall bound. With (4.15) and (4.16) we finish the proof by

C(σ) ≤
(

sup
k∈N

kf(k)
f(1)

) ∑
e∈supp(σ)∩T

f(1)γe +
∑
e∈Ē

f(1)γe


≤
(

sup
k∈N

kf(k)
f(1)

)∑
e∈T

f(1)γe +
∑
ej∈Ē

f(1)
∑
e∈T

Γ(ej , e)


≤
(

sup
k∈N

kf(k)
f(1)

)(∑
e∈T

f(1)γe +
∑
e∈T

X(α, β)f(1)γe
)

≤
(

sup
k∈N

kf(k)
f(1)

)
(1 +X(α, β))C(T ).

This gives a constant PoS for any sharing function f with economies of scale where
supk∈N

kf(k)
f(1) and ∑∞j=1 f̄(j)2 are bounded.

For fair cost allocation supk∈N
kf(k)
f(1) = 1 and ∑∞j=1 f̄(j)2 is bounded ([BB95]). We

can thus apply Theorem 9 and numerically optimize the values for α and β giving the
smallest bound.

Corollary 3. In broadcast games with fair cost allocation the values α ≈ 3.22 and
β ≈ 1.28 give the minimal upper bound on the PoS of approximately 264.25.

4.6 Price of Stability – Lower Bounds for Broadcast Games
In this section, we look at lower bounds for the Price of Stability (PoS) in broadcast
games. We give instances of broadcast games with functions in Flin and Fpoly and
compute explicit bounds on the PoS in these instances. We consider the graph used
in [Bil+13] which gives the best known lower bound for fair cost allocation. We give
some evidence that the choices made in [Bil+13] are optimal to some extent. From
computational experiments we observe that the same instance gives good bounds also
in the Flin case for small s. For larger s the best bound we found is a small instance
with 3 nodes. For functions in Fpoly we additionally look at another graph which gives
better bounds for large α.

When searching for lower bound instances we restrict ourselves to graphs being the
union of two trees (the tree of a social optimum and the tree corresponding to the best
equilibrium). At first, this seems like a natural choice, since equilibria are maintained
under edge deletion. That is, every equilibrium is still an equilibrium in a subgraph.
However, the opposite is not true: Deleting edges may introduce new equilibria. In
particularly interesting for the PoS, the social optimum can become an equilibrium.
Consider the graph in Figure 4.17 for an example with fair cost allocation. If all edges
are present, the social optimum shown in purple is not an equilibrium as player 3 has an
incentive to deviate to {r, 3}: C3(purple) = 4+2+3− ε

3 > 9−ε. One can check that the
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profile shown in orange is the best equilibrium. Hence the PoS in this instance is ≈ 22
17 .

However, after removing the dotted edge {r, 3} the purple profile is an equilibrium and
the PoS drops to 1.

r

21 3

9− ε

14− 3ε

9− ε

4 4

Figure 4.17: Instance of a broadcast game with fair cost allocation. A social optimum is shown
in purple, the best equilibrium is shown in orange. The edges {1, 2} and {2, 3} are used by both
the social optimum and the equilibrium. After removing the dotted edge {r, 3}, the purple profile
is an equilibrium.

Thus, it is not clear why looking only at the union of two trees should give the highest
lower bound for the PoS. In our experiments we observe, however, that using more edges
does not give higher bounds. To determine the PoS precisely, a better understanding of
this behavior is needed.
Research Question 5. Does the worst case instance for the PoS in broadcast games need
more edges than the ones contained in a social optimum and a best equilibrium?

The structure of this section is as follows. First, we describe the graph we are going
to use and how we choose the edge costs to obtain a high PoS. We will then look at the
two classes Flin and Fpoly and give bounds on the PoS depending on the parameters s
and α. For fair cost allocation we show that the costs chosen in [Bil+13] are optimal
in a restricted class of instances. The instances we consider for sharing functions with
economies of scale are inspired by computational experiments which we briefly explain
in the last part of this section.

4.6.1 The Fan Instance
We consider the fan graph F (n) as used in [Bil+13] for the currently best lower bounds
on the PoS in the fair cost allocation case. The fan graph F (n) consists of a star rooted
at r spanning n nodes 1, . . . , n, and a path connecting nodes 1 to n. The (uniform)
fan instance is denoted by Ff (n, x, y), where n ∈ N>0 is the number of nodes, f is the
underlying function, and the vectors x ∈ Rn−1

≥0 and y ∈ Rn≥0 give the scaling factors for
the edge costs. We index x beginning with 2, i.e., we think of x ∈ Rn≥0 where x1 is not
used. See Figure 4.18 for an illustration of the fan instance.

Some spanning trees in a fan graph are of special interest. We refer to the star rooted
at r and spanning all nodes 1, . . . , n as the star Sn. A spanning tree using all edges
1− 2− · · · − n is characterized by the (unique) edge incident to the root. Such a tree is
denoted by Tt, where the root is connected to node t. A special case of those trees is T1
consisting of the edges r − 1 − 2 − · · · − n which is a path and hence will be called the
path. The set of all trees using all edges 1− 2− · · · − n is denoted by Tn.
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r

1 2 3 n− 1 n

y1

y2 y3 yn−1

yn

x2 x3
· · ·

xn

Figure 4.18: The fan instance Ff (n, x, y) consist of an n-star rooted at r and a path connecting
nodes 1 to n. The scaling factors for the cost functions are given as edge labels.

We consider a subclass F∗ of fan instances where the edge costs are such that the star
is one of the best equilibria. For a fixed underlying function f the PoS in this class can
be expressed as

PoSfF∗(n) = max
n′≤n

max
tree T in F (n′)

max
x,y∈Rn′≥0

Sn′ is best equilibrium

C(Sn′)
C(T ) .

In contrast to the definition of PoS(n) in Section 2.2 where we fix OPT and minimize
over all equilibria, here we fix the best equilibrium to be the star and maximize over
all trees for the social optimum. We briefly discuss the first maximum in the above
expression. When looking at subclasses of graphs it is not clear why the value of the
PoS (without the first maximum) should be increasing. In particular, if the class is not
closed under the operation of adding a node, it could be the case that the value is higher
for smaller number of nodes. That is why we have to include the maximum over smaller
instances.

The key ingredient to compute PoSfF∗(n) is to formulate the innermost maximization
problem as linear program. With this we get a lower bound on the PoS by computing a
feasible solution to this LP.

Characterization of a subset of F∗ We start by looking closer at instances in F∗. If the
underlying function f satisfies two monotonicity properties, we have a characterization
for instances Ff (n, x, y) being in F∗.

Lemma 24. Let y > 0 and f be a sharing function with economies of scale satisfying

∀k ≥ 1 : f(1)
(
f(2)
f(1)

)k
≤f(2k) and (4.20)

∀k ≥ 1 : f(3)
(
f(2)
f(1)

)k−1
≤f(2k + 1). (4.21)

Then, Ff (n, x, y) lies in F∗, if and only if for x and y all of the following hold:

∀i ∈ {1, . . . , n− 1} :f(1)yi < f(1)xi+1 + f(2)yi+1 (4.22)
∀i ∈ {2, . . . , n} :f(1)yi < f(1)xi + f(2)yi−1 (4.23)
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∀i ∈ {2, . . . , n− 1} :f(1)yi−1 < f(1)xi + f(3)yi or (4.24)
f(1)yi+1 < f(1)xi+1 + f(3)yi or (4.25)
f(1)yi−1 + f(1)yi + f(1)yi+1 ≤ f(1)xi + f(1)xi+1 + 3f(3)yi (4.26)

Proof. Let f be a sharing function with economies of scale satisfying (4.20) and (4.21).
“⇐”: Assume f additionally satisfies (4.22) to (4.26). We show that the star Sn is one
of the best equilibria. Let σ be the profile corresponding to Sn, that is, for every player
i ∈ {1, . . . , n} we have σi = {{i, r}}. First, we show that σ is an equilibrium. The
current cost of player i is Ci(σ) = f(1)yi. Any other strategy of i is of the form: go to
some j 6= i and then to r. There are two possibilities: go to the right or to the left. We
show that none of these strategies is improving for i in σ.

If j > i, consider the strategy s′ = {{k, k + 1} : k = i, . . . , i− j − 1} ∪ {j, r}. Using
(4.22) for j − 1 and that f is decreasing we can bound the cost of s′ as

Ci
(
s′, σ−i

)
= f(1)xi + . . .+ f(1)xj−1 + f(1)xj + f(2)yj
> f(1)xi + . . .+ f(1)xj−1 + f(1)yj−1 (4.22)
> f(1)xi + . . .+ f(1)xj−1 + f(2)yj−1. (f decr.)

We can continue this chain of inequalities using (4.22) for indices k = j − 2, . . . , i+ 1 to
obtain

Ci
(
s′, σ−i

)
> f(1)xi+1 + f(2)yi+1 > f(1)yi = Ci(σ)

showing that s′ is not improving for i. In the other case, where j < i, we consider
s′ = {{k, k − 1} : k = i, . . . , i− j − 1}∪{j, r}. Taking now inequalities (4.23) for indices
k = j + 1, . . . , i in the arguments from above we get that Ci(s′, σ−i) > Ci(σ). Thus we
established that σ is an equilibrium. We now have to argue that σ is one of the best
equilibria in Ff (n, x, y). Actually we show the stronger statement that σ is the unique
equilibrium.

Let σ̄ 6= σ be any profile with tree support. We show that σ̄ can not be an equilibrium,
and hence by Lemma 10 there are no other equilibria in Ff (n, x, y). As σ̄ 6= σ some
edge {i, r} is used by at least 2 players. For this edge let i` and ir be the player with
smallest and largest index using {i, r}. Since supp(σ̄) is a tree, all players between i`
and ir are using edge {i, r} and we have nσ̄({i, r}) = ir − i` + 1 ≥ 2. There are three
cases: either i` is farther away from i than ir, or the other way around, or both have
the same distance to i.

We start with the case i − i` > ir − i, where ir − i` + 1 ≤ 2(i − i`) and in particular
1 ≤ i− i`. We consider player i` and show that there is an improving move. The current
cost of player i` is

Ci`(σ̄) =
i−i∑̀
k=1

f(k)xi`+k + f(ir − i` + 1)yi. (4.27)

Chaining inequalities (4.22) for indices k = i`, . . . , i− 1 yields

f(1)yi` <
i−i∑̀
k=1

(
f(2)
f(1)

)k−1
f(1)xi`+k +

(
f(2)
f(1)

)i−i`
f(1)yi. (4.28)
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We compare the coefficients in (4.27) and (4.28). From (4.20) we have(
f(2)
f(1)

)k−1
f(1) ≤ f(k) and (4.29)(

f(2)
f(1)

)i−i`
f(1) ≤ f(2(i− i`)) ≤ f(ir − r` + 1)

and hence Ci`(σ̄) > f(1)yi` . So {i`, r} is an improving move for i` in σ̄. The case
ir − i > i− i` is symmetric to the previous case. Consider player ir and use inequalities
(4.23) to observe that {ir, r} is an improving move.

We are left with the case i−i` = ir−i, where ir−i`+1 = 2(i−i`). Since ir−r`+1 ≥ 2
we have i− i`, ir − i ≥ 1 and hence i ∈ {2, . . . , n− 1}. Assume now that (4.24) holds at
i. As before we have for the current cost of player i`

Ci`(σ̄) =
i−i∑̀
k=1

f(k)xi`+k + f(ir − i` + 1).

Also as previously done, we chain the inequalities (4.22) for indices k = i`, . . . , i− 2 but
now for index i− 1 we use the stronger inequality (4.24) for i to get

f(1)yi` <
i−i∑̀
k=1

(
f(2)
f(1)

)k−1
f(1)xi`+k +

(
f(2)
f(1)

)i−i`−1
f(3)yi.

To compare the coefficients we still have (4.29) and using (4.21) we get(
f(2)
f(1)

)i−i`−1
f(3) ≤ f(2(i− i`) + 1) = f(ir − i` + 1).

Again we obtain Ci`(σ̄) > f(1)yi` showing that i` has an improving move switching to
{i`, r}. If (4.24) does not hold at i but (4.25) does, again consider ir and use (4.23)
together with (4.25) in the above reasoning to see that ir has an incentive to switch to
{ir, r}.

To conclude the first direction of this proof we show that for x, y with y > 0 satisfying
(4.24), (4.25) and (4.26) at least one of (4.24) or (4.25) has to hold. Assume (4.24) and
(4.25) are violated at some i ∈ {2, . . . , n− 1}, that is,

f(1)yi−1 ≥ f(1)xi + f(3)yi and f(1)yi+1 ≥ f(1)xi+1 + f(3)yi

hold. Then we have

f(1)yi−1 + f(1)yi + f(1)yi+1 ≥ f(1)xi + f(1)xi+1 + (2f(3) + f(1))yi.

Since yi > 0 and f(3) < f(1) this is a contradiction to (4.26).
We finished the first part of the proof and showed: If x, y with y > 0 satisfy (4.22) to

(4.26), than the star σ is the unique equilibrium in Ff (n, x, y).
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“⇒”: For the other direction, take again f satisfying (4.20) and (4.21) and assume now
that the star σ is one of the best equilibria in Ff (n, x, y). We show that x, y satisfy all
constraints (4.22) to (4.26).

Since σ is an equilibrium no player has an improving move. For every player i going to
one of her neighbors i−1 or i+1 and then to r is a feasible strategy. From this we already
know that (4.22) and (4.23) have to hold with ≤ instead of the strict inequality. Now
assume that for some i ∈ {1, . . . , n− 1} (4.22) is not satisfied with strict inequality, that
is, f(1)yi = f(1)xi+1 + f(2)yi+1 holds. Consider the strategy s′ = {{i, i+ 1}, {i+ 1, r}}
for i and define σi = (s′, σ−i). Comparing the social cost of σi and σ as

C
(
σi
)
− C(σ) = f(1)xi+1 − f(1)yi + (2f(2)− f(1))yi+1

< f(1)xi+1 − f(1)yi + f(2)yi+1 = 0

shows that σi can not be an equilibrium in Ff (n, x, y) since σ is an equilibrium of minimal
social cost. Starting improving-dynamics from σi ends in an equilibrium σ′ with strictly
smaller potential Φ(σ′) < Φ(σi) (since there is a player in σi with an improving move).
We compute the potential of σi as

Φ
(
σi
)

=
n∑
k=1
k 6=i

f(1)yk + f(1)xi+1 + f(2)yi+1 =
n∑
k=1

f(1)yk.

For the star σ we have ∑n
k=1 f(1)yk = C(σ). Combining all inequalities we obtain

C
(
σ′
)
≤ Φ

(
σ′
)
< Φ

(
σi
)

= C(σ).

This is a contradiction, as σ is an equilibrium of minimal social cost. Thus, (4.22) can
not be satisfied with equality. For (4.23) take i and consider the symmetric strategy
{{i, i− 1}, {i− 1, r}}. The same arguments as above show that (4.23) has to hold with
strict inequality.

Now assume (4.24), (4.25) and (4.26) are not satisfied at some j ∈ {2, . . . , n− 2}. In
particular, we have f(1)yj−1 ≥ f(1)xj + f(3)yj and f(1)yj+1 ≥ f(1)xj+1 + f(3)yj . Con-
sider the profile σ̄j which differs from the star σ only in the strategies of player j−1 and
j + 1 who go via j. Formally σ̄jj−1 = {{j − 1, j}, {j, r}} and σ̄jj+1 = {{j + 1, j}, {j, r}}.
We show that σ̄j is an equilibrium with smaller social cost than σ which gives a contradic-
tion. To see that σ̄j is an equilibrium we check (NECond) from Lemma 11. For an edge
e = {k, k + 1} 6∈ supp

(
σ̄j
)

where k ∈ {1, . . . , n}\{j − 3, j − 2, j − 1, j, j + 1, j + 2, j + 3}
we have from (4.22) and (4.23)

cσ̄j (T [k ↗ k + 1]) = f(1)yk < f(1)xk+1 + f(2)yk+1 = c{k,k+1}(1) + c+1
σ̄j

(T [k + 1↗ k])

and

cσ̄j (T [k + 1↗ k]) = f(1)yk+1 < f(1)xk+1 + f(2)yk = c{k,k+1}(1) + c+1
σ̄j

(T [k ↗ k + 1]).
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For e = {j − 2, j − 1} we have

cσ̄j (T [j − 2↗ j − 1]) = f(1)yj−2

≤ f(1)xj−1 + f(2)xj +
(
f(2)
f(1)

)2
f(1)yj ((4.22))

≤ f(1)xj−1 + f(2)xj + f(4)yj ((4.20))
= c{j−2,j−1}(1) + c+1

σ̄j
(T [j − 1↗ j − 2])

and

cσ̄j (T [j − 1↗ j − 2]) = f(1)xj + f(3)yj
≤ f(1)yj−1

< f(1)xj−1 + f(2)yj−2 ((4.23))
≤ f(1)xj−1 + f(1)yj−2

= c{j−2,j−1}(1) + c+1
σ̄j

(T [j − 2↗ j − 1])

For e = {j + 1, j + 2} the same arguments hold exchanging (4.22) and (4.23). The
remaining cases are {j − 1, r} and {j + 1, r} where we have the desired inequalities from
our assumption that (4.24) and (4.25) do not hold. In total, we obtain that σ̄j is an
equilibrium. Comparing the social cost to σ gives

C
(
σ̄j
)
− C(σ) = f(1)xj + f(1)xj+1 − f(1)yj−1 + f(1)yj+1 + (3f(3)− f(1))yj

< f(1)xj + f(1)xj+1 − f(1)yj−1 + f(1)yj+1 + 2f(3)yj ≤ 0.

This is a contradiction to σ having smallest social cost among all equilibria.
We have shown that if the star σ is one of the best equilibria in Ff (n, x, y), then all

constraints (4.22) to (4.26) have to be satisfied which concludes the proof

Observe from the proof of Lemma 24 that the star is the unique equilibrium, if it is one
of the best. From the same proof we also get that dropping (4.26) gives a characterization
for the star being the unique equilibrium.

Corollary 4. In a fan instance Ff (n, x, y) where y > 0 and f satisfies (4.20) and (4.21),
the star is the unique equilibrium, if and only if all of the conditions (4.22), (4.23), (4.24),
and (4.25) from Lemma 24 hold.

Maximizing over smaller instances allows to further restrict our attention to instances
where x and y are strictly positive and consider only trees in T .

Lemma 25. For a tree T in F (n) not containing edge {i, i+ 1} we have the bound

max
x,y∈Rn≥0

Sn is best equilibrium

C(Sn)
C(T ) ≤ max

{
PoSfF∗(i),PoSfF∗(n− i)

}
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Proof. We split the instance into two smaller instances left and right of edge {i, i+ 1}
by removing {i, i+ 1}. The left part is then induced by nodes {1, . . . , i, r} and the
right part by nodes {i+ 1, . . . , n, r}. Note that these are again fan instances. Now
consider x, y ∈ Rn≥0 giving the maximum on the left hand side of the statement of the
lemma. Define xL, yL and xR, yR to be the entries of x and y in the left and right part
respectively. Again, we think of xR ∈ Rn−i≥0 by adding some first component which is not
used.

Let SL be the part of the star Sn in the left part with the edges {{j, r} : j = 1, . . . , i},
and SR the part of Sn in the right part. Then we have C(S) = C

(
SL
)

+ C
(
SR
)
.

Similarly define TL and TR to be the parts of tree T in the left and right instance. As
{i, i+ 1} /∈ T we also have C(T ) = C

(
TL
)

+ C
(
TR
)

and in total

C(Sn)
C(T ) =

C
(
SL
)

+ C
(
SR
)

C(TL) + C(TR) ≤ max

C
(
SL
)

C(TL) ,
C
(
SR
)

C(TR)

.
Observe that SL is one of the best equilibria in the left instance: First, since the star

Sn is an equilibrium in the original instance, SL is an equilibrium in the small instance.
Further, if there was another equilibrium σ′ in the left instance with smaller social cost,
we could replace SL by σ′ in the original instance and obtain an equilibrium which is
better than the star. Similar arguments hold for SR in the right instance. Hence, we
split the original instance in two smaller instances again in F∗ and thus

C(Sn)
C(T ) ≤ max

{
PoSfF∗(i),PoSfF∗(n− i)

}
.

We use this lemma to show that we can assume x and y to be strictly positive.

Lemma 26. In a fan instance Ff (n, x, y) in F∗ where some yi = 0 or some xi = 0 we
have the bound

C(Sn)
C(T ) ≤ max

{
PoSfF∗(i),PoSfF∗(n− i)

}
for every tree T in F (n).

Proof. Let T be some tree in F (n). If T /∈ Tn we get the bound immediately from
Lemma 25. Now assume T ∈ Tn, that is, T = Tt for some t ∈ {1, . . . , n}. First consider
the case where yi = 0 for some i ∈ {1, . . . , n}. We build a new tree T ′ from T of smaller
social cost. The idea is to have {i, i+ 1} /∈ T ′ and hence T ′ /∈ Tn so that we can use
Lemma 25.

If t ≤ i, we replace {i, i+ 1} by {i+ 1, r}. This results in a tree T ′. Since the star is an
equilibrium and yi = 0 we have xi+1 ≥ yi+1 and hence we replaced the edge by an edge of
no greater cost. By this replacement the number of players using an edge e 6= {i+ 1, r}
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in T ′ has only decreased. For {i+ 1, r} /∈ T we have nT ′({i+ 1, r}) ≤ nT ({i, i+ 1}).
Since the total cost of an edge kf(k) is non-decreasing in the number of players, we get

C
(
T ′
)

=
∑
e∈T ′

e6={i+1,r}

nT ′(e)f(nT ′(e))γe + nT ′({i+ 1, r})f(nT ′({i+ 1, r}))yi+1

≤
∑
e∈T ′

e6={i+1,r}

nT (e)f(nT (e))γe + nT ({i, i+ 1})f(nT ({i, i+ 1}))xi+1

= C(T ).

Otherwise, if t ≥ i + 1, we replace {i, i+ 1} by {i, r}. As before this decreases the
number of players on edges other than {i, r}. With yi = 0 we thus have C(T ′) ≤ C(T ).

In all cases we get
C(Sn)
C(T ) ≤

C(Sn)
C(T ′)

and the desired bound from Lemma 25 as {i, i+ 1} /∈ T ′.
If some xi = 0, then we also have yi = 0: since the star is an equilibrium we have

f(1)yi−1 ≤ f(2)yi and f(1)yi ≤ f(2)yi−1. Since f is decreasing this can only be true if
yi and yi−1 are 0. Hence, we get the bound from the above discussion.

Combining Lemma 24, Lemma 25 and Lemma 26 we get

PoSfF∗(n) = max
n′≤n

max
T∈Tn′

max
x,y∈Rn′>0

Sn′ unique equilibrium

C(Sn′)
C(T )

for a sharing function f with economies of scale satisfying (4.20) and (4.21). Thus, for
computing PoSfF∗(n) (or lower bounds) we can restrict our attention to fan instances
where x, y > 0 and the star is the unique equilibrium. From now on we consider un-
derlying functions f satisfying (4.20) and (4.21) where we have the characterizations of
Lemma 24 and Corollary 4 for the star being the unique equilibrium.

The LP for PoSfF∗(n). Let f be a sharing function with economies of scale satisfying
(4.20) and (4.21). Using Lemma 24 and Corollary 4 we write maxSn unique equilibrium

C(Sn)
C(T )

for a fixed tree T in F (n) as the following optimization problem.

sup C(Sn)
C(T ) (P Tn )

s.t.∀i ∈ {1, . . . , n− 1} : f(1)yi < f(1)xi+1 + f(2)yi+1

∀i ∈ {2, . . . , n} : f(1)yi < f(1)xi + f(2)yi−1

∀i ∈ {2, . . . , n− 1} :f(1)yi−1 < f(1)xi + f(3)yi or f(1)yi+1< f(1)xi+1 + f(3)yi
(4.30)

x, y ≥ 0
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We approximate the optimal value of (P Tn ) by a maximization over several linear pro-
grams, where we fix the choices of the satisfied disjunct in the or-constraint in (4.30). For
this, we introduce binary variables z ∈ {0, 1}n. Setting zi = 0 corresponds to choosing
f(1)yi−1 < f(1)xi+f(3)yi and setting zi = 1 to choosing f(1)yi+1 < f(1)xi+1+f(3)yi for
i ∈ {2, . . . , n− 1}. We fix z1 = 0 and zn = 1. Observe that for a fixed i ∈ {2, . . . , n− 1}
we either have the inequalities f(1)yi < f(1)xi+1 + f(2)yi+1 and f(1)yi < f(1)xi+1 +
f(3)yi+1; or f(1)yi < f(1)xi+f(2)yi−1 and f(1)yi < f(1)xi+f(3)yi−1. In both cases the
second inequality is stronger than the first, as f is decreasing. We can thus combine the
corresponding inequalities and obtain an LP with 2n−1 variables and 2(n−1)+1+(2n−1)
inequalities for a fixed choice of z.

max C(Sn) (LPTz )
s.t. ∀i ∈ {2, . . . , n} :f(1)yi−1 ≤ f(1)xi + (zif(2) + (1− zi)f(3))yi (4.31)
∀i ∈ {1, . . . , n− 1} :f(1)yi+1 ≤ f(1)xi+1 + (zif(3) + (1− zi)f(2))yi (4.32)

C(T ) = 1 (4.33)
x, y ≥ 0. (4.34)

If we ignore the normalization constraint (4.33), any feasible solution can be scaled by
a positive factor staying feasible. Any solution to this new LP can be transformed to a
feasible solution of (LPTz ) by scaling with 1

C(T ) . We will thus ignore (4.33) and consider
the new objective function value C(Sn)

C(T ) for any solution. We then have

Remark 1. The optimal value of (P Tn ) and the maximum max z∈{0,1}n
z1=0,zn=1

(LPTz ) are arbi-

trarily close.

Proof. First, consider an optimal solution to (P Tn ). This solution is feasible for (LPTz )
for some choice of z ∈ {0, 1}n. Hence, the optimal value of (P Tn ) is upper bounded by
maxz∈{0,1}n (LPTz ). On the other hand, consider z ∈ {0, 1}n maximizing maxz∈{0,1}n
(LPTz ) and an optimal solution (x, y) to (LPTz ). We add a small ε > 0 to x and obtain
(x̂, y). Since x’s only appear on the right hand sides, (x̂, y) is a feasible solution for
(P Tn ). We bound the social cost of T w.r.t. (x̂, y) by

C(x̂,y)(T ) ≤ C(x,y)(T ) + nε.

If we choose ε > 0 small enough then C(x̂,y)(Sn)
C(x̂,y)(T )−nε is close to the objective function

value of (P Tn ) for (x̂, y). And hence, maxz∈{0,1}n (LPTz ) = C(x,y)(Sn)
C(x,y)(T ) is a lower bound on

(P Tn ).

With these LPs we can write the PoS informally as

PoSfF∗(n) = max
n′≤n

max
T∈Tn′

max
z∈{0,1}n

′

z1=0,zn′=1

(LPTz ).
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At the basic feasible solutions of (LPTz ) 2n−1 constraints are active: Either all of (4.31)
and (4.32) (additionally to the normalization constraint), or some xi or yi is 0 . The
objective function value of a solution where some xi or yi is 0 is bounded by the PoS of
a smaller instance by Lemma 26. Thus, it suffices to look at the basic solution where all
of (4.31) and (4.32) are active. We denote this solution by (x∗z, y∗z) and obtain

PoSfF∗(n) = max
n′≤n

max
T∈Tn′

max
z∈{0,1}n

′

z1=0,zn′=1

C(x∗z ,y∗z )(Sn′)
C(x∗z ,y∗z )(T ) . (4.35)

The basic solution (x∗z, y∗z) The system of linear equations given by constraints (4.31)
and (4.32) of (LPTz ) has a unique solution (x∗z, y∗z) (or (x∗, y∗) when z is clear from the
context) given by the recursion

yi = f(1) + zi−1f(3) + (1− zi−1)f(2)
f(1) + zif(2) + (1− zi)f(3) yi−1 and (4.36)

xi = f(1)2 − (zi−1f(3) + (1− zi−1)f(2))(zif(2) + (1− zi)f(3))
f(1)(f(1) + zi−1f(3) + (1− zi−1)f(2)) yi (4.37)

for i ∈ {2, . . . , n}. Note that this actually describes a family of feasible solutions as
we are free to choose one of the y values. However, all these solutions give the same
objective value for trees Tt ∈ T as both

C(x∗z ,y∗z )(Sn) =
n∑
i=1

f(1)y∗i and (4.38)

C(x∗z ,y∗z )(Tt) =
t∑
i=2

(i− 1)f(i− 1)x∗i + nf(n)y∗t +
n∑

i=t+1
(n+ 1− i)f(n+ 1− i)x∗i (4.39)

contain the same number of terms and implicit occurrences of the chosen common y
parameter and hence get scaled by the same factor when changing the parameter.

We often interpret the objective function value for a tree Tt ∈ T as weighted harmonic
mean. We use yt as free parameter in the basic solution (x∗, y∗) and express all other
y’s and x’s in terms of yt. The objective value can be written as

C(x,y)(Sn)
C(x,y)(Tt)

=
∑t−1
i=1 f(1)yi + f(1)yt +∑n

i=t+1 f(1)yi∑t−1
i=1 if(i)xi+1

yi
yi + nf(n)yt +∑n

i=t+1(n+ 1− i)f(n+ 1− i)xiyi yi
. (4.40)

This is the weighted harmonic mean of the elements f(1)
if(i)

yi
xi+1

with weight f(1)yi for
i ∈ {1, . . . , t− 1}, the element f(1)

nf(n) of weight f(1)yt, and the elements f(1)
(n+1−i)f(n+1−i)

yi
xi

with weight f(1)yi for i ∈ {t+ 1, . . . , n}. For fair cost allocation this simplifies as all
scalar factors are 1. In particular, for the path we have

C(x,y)(Sn)
C(x,y)(T1) = H

(
(y1, 1),

(
y2,

y2
x2

)
, . . .

(
yn,

yn
xn

))
. (4.41)
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We focus on a particular choice of z and define

z∗n(ζ) = (ζ, 0, . . . , 0, 1) ∈ {0, 1}n for ζ ∈ {0, 1}. (4.42)

For z∗n(0) the recursion in (4.36) and (4.37) evaluates to

yi = f(1) + f(2)
f(1) + f(3)yi−1 and xi = f(1)2 − f(2)f(3)

f(1)(f(1) + f(2))yi for i = 2, . . . , n− 1 (4.43)

yn = yn−1 and xn=f(1)− f(2)
f(1) yn.

We observe a symmetry in the basic solutions w.r.t. z.

Lemma 27. For t ∈ N and z ∈ {0, 1}t define←−z by←−z i = 1−zt−i+1. Let (x, y) = (x∗z, y∗z)
and (x′, y′) = (x∗←−z , y

∗←−z ). Then ∑t−1
i=1 y

′
i∑t−1

i=1 x
′
i+1

=
∑t
i=2 yi∑t
i=2 xi

.

Proof. We use the representation of (4.40)

∑t−1
i=1 y

′
i∑t−1

i=1 x
′
i+1

=
∑t−1
i=1

y′i
yt∑t−1

i=1
y′i
yt
· x
′
i+1
y′i

and
∑t
i=2 yi∑t
i=2 xi

=
∑t
i=2

yi
y1∑t

i=2
yi
yt
· xiyi

and the transformation i↔ t− i+ 1. We show

yi
y1

=
y′t−i+1
y′t

and xi
yi

=
x′t−i+2
y′t−i+1

. (4.44)

For the first equality consider yi
yi−1

and (4.36). We have zi−1 = 1 − ←−z t−i+2 and zi =
1−←−z t−i+1 from the definition of ←−z . Hence

yi
yi−1

=
y′t−i+1
y′t−1+2

which shows the first equality in (4.44) by induction. For the second equality we write

x′t−i+2
y′t−i+1

=
x′t−i+2
y′t−i+2

·
y′t−i+2
y′t−i+1

.

With (4.36), (4.37), zi−1 = 1 − ←−z t−i+2 and zi = 1 − ←−z t−i+1, we obtain the second
equality in (4.44).

This lemma is especially helpful for the following choice of z. Define

ztn = (0, 1, . . . , 1, 0, . . . , 0, 1) ∈ {0, 1}n, (4.45)
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where z1 = 0 and zt, . . . , zn−1 = 0 and all other entries are 1. For example z1
5 =

(0, 0, 0, 0, 1), z2
5 = (0, 0, 0, 0, 1) and z3

5 = (0, 1, 0, 0, 1).
Notice that the last part of ztn after t is z∗n−t+1(0) and

←−−−−−−−−−
(z1, . . . , zt−1) = z∗t (0). Thus

from Lemma 27 we know that the solution (x∗ztn , y
∗
ztn

) is the same on both sides of t. In
particular, the ratios yt−i

xt−i+1
and yt+i

xt+i
are the same.

We use these feasible solutions for ztn to obtain lower bounds on PoSfF∗(n) and hence on
PoS(n) for functions in Flin and Fpoly. For fair cost allocation we show that the solution
for z∗n(0) gives the highest objective value if the tree T is the path. The resulting instance
is exactly the instance used in [Bil+13] yielding the currently best known lower bounds.
Thus, we show that in the class F∗ the instance of [Bil+13] determines the PoS.

4.6.2 Lower Bounds for Flin

For functions fs ∈ Flin, where fs(k) = s+ (1−s)
k , we give lower bounds on PoSfsF∗(n) by

computing
C(x∗z ,y∗z )(Sn)
C(x∗z ,y∗z )(T )

for trees T = Tt in Tn and z = ztn. We denote by

R(Tt) =
C(x∗

ztn
,y∗
ztn

)(Sn)

C(x∗
ztn
,y∗
ztn

)(Tt)

the objective function value for a tree Tt ∈ T .
Before doing the computations, we show that functions in Flin satisfy the conditions

of Lemma 24. We use the following facts. For k ≥ 1 we have k ≤ 2k−1. The function
x 7→ 1+s(x−1)

x is decreasing in x for any s ∈ [0, 1). Further, any s ∈ [0, 1) satisfies
(1 + s)k ≤ 1 + s(2k − 1). This follows from the binomial theorem, the fact that s ≤ 1
and that ∑k

i=1
(k
i

)
= 2k − 1. From these we get (4.20) by

f(1)
(
f(2)
f(1)

)k
=
(1 + s

2

)k
≤ 1 + s(2k − 1)

2k ≤ 1 + s(2k − 1)
2k = f(2k).

For (4.21), we additionally use k + 1 ≤ 2k and thus together with k ≤ 2k−1 we have
2k+ 1 ≤ 3 ·2k−1. For k = 1 (4.21) is trivially satisfied, hence we consider k ≥ 2. In total
we get

f(3)
(
f(2)
f(1)

)k−1
= 1

3sf(2)k−1 + 2
3f(2)k

≤ 1
3s ·

1 + s(2k−1 − 1)
2k−1 + 2

3 ·
1 + s(2k − 1)

2k

= 1 + s(2k + s(2k−1 − 1))
3 · 2k−1

≤ 1 + s(2k + 2k−1 − 1)
3 · 2k−1 = 1 + s(3 · 2k−1 − 1)

3 · 2k−1
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≤ 1 + s(2k + 1− 1)
2k + 1 = f(2k + 1)

which shows that fs satisfies (4.21).
We can thus use (LPTz ) and consider the solution (x∗z, y∗z) for ztn (see (4.36) and (4.37)).

The objective function value, i.e., the lower bound on the PoS can be computed from
(4.38) and (4.39). The remaining choice is which T ∈ T to consider.

The Path First, we take the path and look at the objective function values depending
on s. Note that z1

n = z∗n(0). Figure 4.19 shows the plots of R(T1) depending on parameter
s for some values of n ∈ {2, . . . , 100}. A zoom into small values of s is shown in
Figure 4.20. Note that we compute only a lower bound on the PoS by taking C(Sn)

C(T ) .
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n = 22
n = 32
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n = 82
n = 92
n = 102
n = 112

maxnR(T1)

Figure 4.19: Values of R(T1) depending on s ∈ [0, 1) for different values of n. The black curve
shows the maximum over n ∈ {2, . . . , 120} for each s. In the main part, the lines are ordered
from top to bottom by increasing n, i.e., n = 22 for the top most dashed purple line at s = 0.4.

We do not check that T is actually a social optimum, we just use the fact that the cost
of a social optimum is at most that of T . Hence, it is possible that R(T ) drops below
1, this happens in particular if C(Sn) ≤ C(T ). The values at the boundary are already
known. For s = 0, the value is the currently highest lower bound from [Bil+13] for fair
cost allocation (approx. 1.81). For s = 1 the value is 1 as there are no sharing effects and
every player chooses a shortest path which is the social optimum. Intuitively, the PoS
should decrease with decreasing sharing effects (increasing s) as the players get closer to
choosing shortest paths.

From the plots we observe that for fixed n the ratio R(T1) first decreases and later
increases when s goes from 0 to 1. While we do not fully understand the behavior, there
are three aspects influencing the ratio which partly work against each other.
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Figure 4.20: Zoom into Figure 4.19 for small values s ∈ [0, 0.02]. Note that here the relative
order of lines changes compared to Figure 4.19 (while still having the same legend). The bottom
dashed purple line at s = 0.005 corresponds to n = 22.

First of all we consider the structure of the social cost. For fair cost allocation the
contribution of an edge to the social cost is independent of the number of players using
the edge. This is not the case for sharing functions with economies of scale. In particular,
every edge gets the factor nσ(e)f(nσ(e)). For fixed n and increasing s this factor gets
larger as can be seen in Figure 4.21b. Especially when looking at the star as the best
equilibrium, these factors only appear in the social cost of tree T , as in the star every
edge is used by only one player. Hence, intuitively the ratio R(T1) should be decreasing
in s.

Ignoring the factors nσ(e)f(nσ(e)), we express R(T1) as a weighted harmonic mean
of yi

xi
with weight yi and 1 with weight y1 as in (4.41). We will now discuss how the

weights yi and the ratios yi
xi

change with s. From (4.43) we see an exponential increase
in the y values. Every yi is a factor of f(1)+f(2)

f(1)+f(3) = 3
4 + 3

2(s+1) larger than the previous

yi−1. In particular, we have yi = y1
(
f(1)+f(2)
f(1)+f(3)

)i−1
for i ∈ {2, . . . , n− 1}. If we look at

these factors in dependence of s (Figure 4.21a), we see that they get smaller for larger
s. Hence, for large s we have small weights in the weighted harmonic mean. If x was
independent of y also the values of the harmonic mean decrease, and hence intuitively
R(T1) should decrease.

On the other hand, we have xi = f(1)2−f(2)f(3)
f(1)(f(1)+f(2))yi. Note that the ratio yi

xi
= 3(3+s)

6−(1+s)(2s+1)
is independent of i. But for s going near 1 the denominator approaches 0 and hence the
ratio grows very large (see Figure 4.21c). Thus for s near 1 also R(T1) grows. Since yi

xi
grows very slowly in the beginning, this increasing effect is overtaken by the decreasing
effects explained above for small s.
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Figure 4.21: The three building blocks yi

xi
, yi

y1
and kf(k) of R(T ) and their dependency on

parameter s ∈ [0, 1).

Now consider a fixed s and varying values of n. For large n we have more values yi
xi

in the weighted harmonic mean. Since these values grow fast for large s, the slope at
s = 1 is steeper for large n as can be observed in Figure 4.19. On the other hand, if s is
close to 1 there are almost no sharing effects occurring. But in the path there are many
edges used by more players. In fact, the path is the unique tree with highest number
of shares, i.e., maximizing ∑e∈supp(T ) nτ (e) among all trees with the same number of
nodes. Hence, it is no surprise that for large s the ratio R(T1) drops below 1. In other
words, if s is close to 1 the cost of a social optimum is the sum of the shortest paths for
every player. Using the path as a shortest path for every player gives a bad bound on a
social optimum. Especially for many players.

For s close to 0 we have the opposite effect. Now sharing is advantageous and as
mentioned before the path is a tree with maximal sharing. For small s the social cost of
a profile is independent of the numbers of players on edges. Hence using the path as an
upper bound on a social optimum seems promising. Further observe from Figure 4.21a
that for small s the growth of the y values is large while the ratio yi

xi
is small. Hence, it

is beneficial to introduce many y edges.
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In total we observe that for large s the maximal lower bound we get by this is achieved
at small n, while for small s this changes and using more players is better.
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Figure 4.22: Different choices of t ∈ {1, . . . , n} depending on s for fixed values of n. We use
10 equally distributed values for s ∈ [0, 1). The black x marks indicate a value for t giving the
highest ratio R(Tt) for each s. The vertical gray line indicates n

2 . The color code is the same
as in Figure 4.19. s increases from top to bottom in (a). The dotted orange line corresponds to
s = 0 and the solid purple line to s = 0.6.

Trees Tt ∈ T The above arguments hold similarly for other trees Tt ∈ T . We consider
the right part from t to n as a path and have the same behavior of y and x in this part.
Similarly for the left part from 1 to t, starting at t. There is a slight asymmetry as we
set zt = 0, hence yt−1 = yt and the increase in the y values starts only from there. But
for large n we have the same relations on each of the sides of t. However, the stem {t, r}
is only accounted for once in R(Tt). In the interpretation of R(Tt) as weighted harmonic
mean, we have the ratios yi

xi
scaled by some kf(k) with weight yi for i ∈ {1, . . . , n} \ {t},

and value f(1)
nf(n) of weight yt for the stem {t, r} of the tree. Since the total edge cost is

non-decreasing, the value for the stem is less than any of the other values. It is thus
beneficial to put a small weight on the stem relative to the other weights. Since the
weights yi grow exponentially, choosing a small t for the stem seems good. Especially
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for small s where the growth in the y values is large. For large s the y values do not differ
that much and hence we have to consider the factors kf(k). As mentioned before the
sharing effects are maximal in the path. If we want to minimize sharing effects among
trees Tt ∈ T , we choose t to be roughly at n

2 . We always have all n players using the
stem {t, r} and some sharing effects on the paths connecting 1 and n to t. Making both
paths as short as possible at the same time leads to choosing t ≈ n

2 . We observe from
Figure 4.22 that choosing t to be approximately n

2 has a slight offset, preferring larger
t’s, due to the asymmetry of setting zt = 0.
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Figure 4.23: Lower bounds on the PoS given by ratios R(T ) for T ∈ T together with the upper
bound from Lemma 15.

Conclusion A combined plot of the lower bounds obtained by looking at R(T ) can be
found in Figure 4.23. The maximal lower bound we computed is shown in black. For
every s ∈ [0, 1), we computed the values R(Tt∗) for n ∈ {2, . . . , 120}, where t∗ denotes
the value for t giving the maximal ratio R(Tt) for fixed s and n. We then take the
maximum of all these values. For s we plot maxn=2,...,120 maxt=1,...,nR(Tt). Additionally
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we show the maximum curve of the ratios R(T1) for paths in orange. That is, we plot
the function s 7→ maxn=2,...,120R(T1). The plot also contains the ratio R(T2) for n = 3
in light orange, R(T2) for n = 4 in purple, and R(T3) for n = 5 in light purple. Finally,
we include the upper bound as computed in Section 4.5 (Lemma 15) in gray.

We observe that paths already give a good approximation of the maximal lower bound,
especially for small s. For larger s the maximum is given by small instances. These
results are also supported by our computational experiments, where we enumerate small
instances. In these experiments we fix the star to be one of the best equilibria and
consider all other trees for T in the lower bound. We want to emphasize that in the
experiments we consider all trees T and not only trees in T . For functions in Flin, we
observe that for s ≥ 0.5 the small instance with n = 2 and t = 3 gives the highest
ratio. For s ∈ [0.3, 0.4] the instance with n = 4 and t = 2, that is the small instance
from before with one more player, gives the highest ratio. Finally, for s = 0.2 the
instance with highest ratio has n = 5 and t = 3. Since we ran experiments only for
s ∈ {0.1, 0.2, . . . , 0.9}, we do not explicitly know, for which s the worst case instance
switches. To summarize, we observe that for functions fs ∈ Flin where s ≥ 0.2, small
instances with 3, 4 and 5 nodes give the highest lower bound on the PoS if we fix the
star to be one of the best equilibria. In contrast to that, paths give high bounds for very
small s.

It would be interesting to know, whether this behavior holds for all s > 0. That is,
is the case s = 0 the only case, where we have to take the limit of n growing large to
obtain the PoS?
Research Question 6. For functions fs ∈ Flin, where s > 0, is the PoS given by a finite
instance?

4.6.3 Lower Bounds for Fpoly

As in the case of Flin, we compute R(T ) for T ∈ T as a lower bound on the PoS. First
we show that fα ∈ Fpoly, where fα(k) = kα−1, satisfies the conditions of Lemma 24.

From k ≤ 2k−1 and 2k + 1 ≤ 3 · 2k−1 as for fs ∈ Flin and α− 1 ≤ 0 we get

f(1)
(
f(2)
f(1)

)k
=
(
2k
)α−1

≤ (2k)α−1 = f(2k)

and

f(3)
(
f(2)
f(1)

)k−1
=
(
3 · 2k−1

)α−1
≤ (2k + 1)α−1 = f(2k + 1).

Comparison to Flin for the Fan Instance Again, we consider R(T ) as a weighted
harmonic mean built by the fractions yi

y1
, yixi and the factors kf(k). The dependence of

the three building blocks on parameter α is similar to functions in Flin. That is, yi
y1

is
increasing and kf(k) is decreasing in α, and yi

xi
grows slowly for small α and fast for α

close to 1. Hence, the curves for R(Tt) and R(T1) in particular, are similar for fs ∈ Flin
and fα ∈ Fpoly (compare Figure 4.24 to Figure 4.19).
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Figure 4.24: Values of R(T1) depending on α ∈ [0, 1) for different values of n. The black curve
shows the maximum over n ∈ {2, . . . , 120} for each α. In the main part, the lines are ordered
from top to bottom by increasing n, i.e., n = 22 for the top most dashed purple line at α = 0.4.

To explain the differences in the curves for fixed n and varying α, we compare the
building blocks of R(T ) in Figure 4.26. We observe that for a fixed parameter p ∈ [0, 1)
the factor kf(k) is smaller for fp ∈ Fpoly than for fp ∈ Flin. This hints to the shallower
decrease of R(T ) for small α. Further, we see that the values yi

xi
are almost the same

for p up to 0.6 and the steep increase begins later for fp ∈ Fpoly. Together with the fact
that the weights yi

y1
are larger for fp ∈ Fpoly, these are further reasons explaining the

shallow decrease for fp ∈ Fpoly. In total, we observe from Figure 4.25a that the same
path instance gives a higher ratio R(T1) for Fpoly.
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(a) R(T1) for n = 2 (orange), n = 22 (light orange)
and n = 72 (purple).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 0.2 0.4 0.6 0.8 1

R(Tt∗)

s,α

fs
fα

(b) maxnR(Tt∗ )

Figure 4.25: Comparison of the lower bounds R(T ) for fs ∈ Flin (solid) and fα ∈ Fpoly (dashed).
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Again, we also consider other trees Tt ∈ T and compute the optimal t∗ for fixed n and
α. Comparing p 7→ maxn=2,...,120 maxt=1,...,nR(Tt) in Figure 4.25b shows that the lower
bound from these fan instances is higher for functions in Fpoly.
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Figure 4.26: Comparison of the three building blocks yi

xi
, yi

y1
and kf(k) of R(T ) for functions

fs ∈ Flin (solid lines) and fα ∈ Fpoly (dashed lines). In (a) and (b) we consider s, α = 0.1
(orange) s, α = 0.4 (light orange), and s, α = 0.9 (purple).

The Bridge Instance While the fan instance already gives good lower bounds, we
additionally consider another class of instances for functions in Fpoly, which is better for
large α. The graph Bn consists of a root node r, a node 1 and nodes {2, . . . , n}. The
edges are the union of the star Sr rooted at r and the star S1 rooted at 1. See Figure 4.27
for an illustration. The scaling factors on edges of Sr are called y and those of S1 are
called x as shown in Figure 4.27. Note that Sr and S1 share edge {1, r} and hence as
before we consider x ∈ Rn where x1 is never used. A bridge instance is given by the
bridge graph Bn and scaling factors x, y ∈ Rn≥0, formally Bf (n, x, y) = (Bn, r, f, (x, y)).

As for the fan instance, we consider bridge instances where the star rooted at r is the
unique equilibrium. To get a lower bound on the PoS, we compare the cost of Sr to the
cost of S1 in these instances.
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r1

2 3 n− 1 n

y1

y2
y3

yn−1 yn

· · ·

x2 x3
xn−1

xn

Figure 4.27: Bridge instance Bn consisting of two stars rooted at r and at 1

Lemma 28. In a bridge instance Bf (n, x, y) the star Sr is the unique equilibrium, if for
x and y all of the following hold:

∀i ∈ {2, . . . , n} :f(1)y1≤f(1)xi + f(2)yi (4.46)
∀i ∈ {2, . . . , n} :f(1)yi<f(1)xi + f(i)y1 (4.47)
∀2 ≤ i < j ≤ n :f(1)yi<f(1)xi+ f(i)xj+f(i+ 1)yj (4.48)
∀2 ≤ j < i ≤ n :f(1)yi<f(1)xi+ f(i− 1)xj+ f(i)yj (4.49)

(4.50)

Proof. Let Bf (n, x, y) be a bridge instance where x and x satisfy all conditions stated
above. We show that the star Sr is an equilibrium by checking (NECond) for every edge
outside of Sr. These edges are of the form {1, i} for i ∈ {2, . . . , n}. From (4.46) we have

f(1)y1 ≤ f(1)xi + f(2)yi

and from (4.47)
f(1)yi ≤ f(1)xi + f(i)yi ≤ f(1)xi + f(2)yi

which shows that (NECond) is satisfied for any edge {1, i} outside of Sr.
Now let σ be a strategy profile in Bf (n, x, y) with supp(σ) being a tree different from

the star Sr. The means there is an edge {i, r} used by more than one player. Let {i, r} be
one of those edges and denote by `i the largest index of a player using {i, r} additionally
to player i, in particular `i 6= i. We show that `i has an improving move and together
with Lemma 10 we get that there are no other equilibria than Sr.

Switching to {`i, r} incurring a cost of at most f(1)y`i is an improving move for `i.
Consider the case where i = 1, that is, edge {1, r} is used at least by player 1 and player
`1. The current strategy of `1 has cost at least

f(1)x`i + f(`i)y1

since at most all players j ≤ `i could be using {1, r}. Hence, (4.47) shows that playing
{`i, r} is an improving move.
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If i 6= 1, we first look at the case where `i < i. The current cost incurred to `i is at
least

f(1)x`i + f(`i)xi + f(`i + 1)yi.

Again, at most all of the players j ≤ `i use edge {i, r} additionally to i. From (4.48) we
see that `i has an improving move {`i, r}. If `i > j, we have to exclude player i from
the above computation and obtain a lower bound on the current cost of

f(1)x`i + f(`i − 1)xi + f(`i)yi.

Using (4.49) concludes the proof.

Note that as for the conditions in the fan instance x’s only appear on the right hand
side and thus we can weaken the inequalities in Lemma 28. For any (x, y) satisfying this
weakened conditions, we can add a small ε > 0 to x to obtain a feasible solution to the
original conditions.

For fα ∈ Fpoly we give two vectors x and y satisfying the weak conditions of Lemma 28.

Lemma 29. The vectors x′, y′ ∈ Rn defined by

x′i = y′1
1− (2i)α−1

1 + 2α−1 and y′i = y′1
1 + iα−1

1 + 2α−1

for i ∈ {2, . . . , n} and x′1 = y′1 > 0 satisfy the weak inequalities of Lemma 28 for
fα ∈ Fpoly.

Proof. For x′, y′ as defined above, the weakened inequalities (4.46) and (4.47) are satisfied
with equality. For 1 ≤ i < j ≤ n we have

f(1)y′i ≤ f(1)x′i + f(i)y′1 ⇐⇒ 0 ≤
(
1 + jα−1

)(
(i+ 1)α−1 − (2i)α−1

)
.

Since α − 1 < 0 and i + 1 ≤ 2i the right inequality is satisfied. For 1 ≤ j < i ≤ n we
have

f(1)y′i ≤ f(1)x′i + f(i− 1)x′j + f(i)y′j ⇐⇒

0 ≤ (i− 1)α−1 − (2i)α−1 + jα−1
(
iα−1 − (2(i− 1))α−1

)
.

Again, the inequality on the right hand side is satisfied as i− 1 ≤ 2i and for i ≥ 2 also
i ≤ 2(i− 1).

For the feasible vectors x′, y′ from Lemma 29 we compute

R(B) =
C(x′,y′)(Sr)
C(x′,y′)(S1) =

∑n
i=1 f(1)y′i

nf(n)y′1 +∑n
i=2 f(1)x′i

=
1 +∑n

i=2
1+iα−1

1+2α−1

nα +∑n
i=2

1−(2i)α−1

1+2α−1

(4.51)

as a lower bound for the PoS in Bf (n, x, y). Figure 4.28 shows this bound for different
values of n depending on α.

137



4 Network Design Games with Economies of Scale
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n = 12
n = 22
n = 32
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n = 52
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n = 72
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n = 92
n = 102
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maxnR(B)

Figure 4.28: Lower bound R(B) (from (4.51)) given by a bridge instance B depending on α for
different values of n. The black curve shows the maximum over n ∈ {2, . . . , 120} for each α.

In the combined plot in Figure 4.29 we observe that the bridge instance gives higher
bounds than the fan instance for α > 0.6. In contrast to functions in Flin, the path in
the fan instance is not giving good lower bounds compared to other choices of t.

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

R

α

maxnR(T1)
maxnR(B)

maxnR(Tt∗)
1
α

Figure 4.29: Lower bounds on the PoS for functions fα ∈ Fpoly together with the upper bound
from Lemma 16 (gray). For the fan instance we show R(T1) in orange and R(Tt) for the best
choice of t in black. The lower bound maxnR(B) from the bridge instance is shown in purple.
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4.6.4 Fan Instance for Fair Cost Allocation

We are now looking at the special case of fair cost allocation. The goal of this section is
to show that PoSfair

F∗ (n) is given by the path and the costs used in [Bil+13] and thus

Theorem 10.

∀n ∈ N : PoSfair
F∗ (n) =

20
(

9
8

)n−2
− 16

11
(

9
8

)n−2
− 8

≤ 20
11

Unfortunately, this does not yet solve the question of computing the PoS in general
fan instances with fair cost allocation, since we only look at instances where the star is
the best equilibrium.
Research Question 7. Is the highest PoS in a fan instance with fair cost allocation
achieved by an instance where the star is one of the best equilibria?

Computational experiments suggest that this is true, even for other graph classes and
general sharing functions with economies of scale. Since the star is the only profile
without sharing of edges it is a natural choice for the best equilibrium in instances with
high PoS, where one tries to make the social cost large. Unfortunately, we were not able
to proof this intuition.

To show Theorem 10 we use the characterization of Lemma 24 and (LPTz ). First note
that for k ≥ 1 we have 2k ≤ 2k and 2k + 1 ≤ 3 · 2k−1, and hence fair cost allocation
satisfies (4.20) and (4.21) of Lemma 24. We can thus use (4.35) to write

PoSfair
F∗ (n) = max

n′≤n
max
T∈Tn′

max
z∈{0,1}n

′

z1=0,zn′=1

C(x∗z ,y∗z )(Sn′)
C(x∗z ,y∗z )(T ) .

The proof of Theorem 10 consists of two parts. First, we determine the best choice of
z for the path which gives the value as stated in the theorem. Then we show that the
maximal value for any other tree is bounded by the value of the path.

Optimal choice of z for the path The social cost of the star w.r.t. (x∗, y∗) is given by
the sum over all y’s, while the social cost of the path is the sum over all x’s. We have

C(x∗z ,y∗z )(Sn)
C(x∗z ,y∗z )(T1) = y∗1 +∑n

i=2 y
∗
i

y∗1 +∑n
i=2 x

∗
i

.

We maximize this value over all choices of z. We show that z∗n(0) maximizes the ratio.
We begin with the part where the star and the path are disjoint, i.e., ignoring edge
{r, 1}. Define

ρ(z) =
∑n
i=2 y

∗
z,i∑n

i=2 x
∗
z,i

.

First, we compute ρ(z∗n(0)) and ρ(z∗n(1)).
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yi
yi−1

zi = 0 zi = 1

zi−1 = 0 9
8 1

zi−1 = 1 1 8
9

xi
yi

zi = 0 zi = 1

zi−1 = 0 5
9

1
2

zi−1 = 1 2
3

8
5

Table 4.1: The ratios appearing in the basic solution (x∗z, y∗z) for fair cost allocation depending
on the entries of z.

We evaluate the appearing ratios yi
yi−1

and xi
yi

from (4.36) and (4.37) for the possible
choices of zi−1 and zi in Table 4.1. With these values we get

ρ(z∗n(0)) =
∑n−1
i=2

(
9
8

)i−1
y∗1 +

(
9
8

)n−2
y∗1∑n−1

i=2
5
9

(
9
8

)i−1
y∗1 + 1

2

(
9
8

)n−2
y∗1

=
10
(

9
8

)n−2
− 9

11
2

(
9
8

)n−2
− 5

. (4.52)

For ζ = 1 we first consider n ≥ 3

ρ(z∗n(1)) =
y∗1 +∑n−1

i=3

(
9
8

)i−2
y∗1 +

(
9
8

)n−3
y∗1

2
3y
∗
1 +∑n−1

i=3
5
9

(
9
8

)i−2
y∗1 + 1

2

(
9
8

)n−3
y∗1

=
10
(

9
8

)n−3
− 8

11
2

(
9
8

)n−3
− 13

3

(4.53)

and for n = 2 we get

ρ(z∗2(1)) = y∗2
x∗2

=
8
9y
∗
1

5
8

8
9y
∗
1

= 8
5 =

10
(

9
8

)2−3
− 8

11
2

(
9
8

)2−3
− 13

3

.

Observation 7. We have the following properties:
• ρ(z∗n(0)) is decreasing in n and lower bounded by 20

11
• ρ(z∗n(1)) is increasing in n and upper bounded by 20

11
• for every n ≥ 2 we have ρ(z∗n(1)) ≤ ρ(z∗n(0)).
We show that z∗n(ζ) maximizes ρ(z). The proofs are different for ζ = 1 and ζ = 0.

Lemma 30. For n ∈ N≥2 both

max
z∈{0,1}n
z1=1,zn=1

∑n
i=2 y

∗
z,i

y∗z,1
and max

z∈{0,1}n
z1=1,zn=1

ρ(z)

are maximized for z∗n(1).

Proof.
First Maximum. For the first maximum, observe from Table 4.1 that the ratio y∗z ,i

y∗z,i−1
is

maximized for zi−1 = zi = 0 for i ∈ {3, . . . , n− 1}. Also for z2 = 0 and zn−1 = 0 the
ratios are maximal, since we fixed z1 = 1 = zn.
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Second Maximum. Since z∗n(1) is a valid choice for the maximum, we only need to show
that no other z gives a higher ratio. Let n ≥ 2 and take some z ∈ {0, 1}n with z1 = 1
and zn = 1 which is different from z∗n(1).

We decompose z into parts of the form 1, 0, . . . , 0, 1 as shown in Figure 4.30. Let
1 ≤ i` ≤ n be the positions of 1 in z, i.e., zi1 = z1 = 1. Define z̄` to be the part of
z between two 1s, i.e., z̄` = (zi` , . . . , zi`+1). With this we have z̄` = z∗|z̄`|(1) for every

` ≥ 1, where we denote by
∣∣∣z̄`∣∣∣ the length of part z̄`,i.e., i`+1 − i` + 1 . Let K be the

number of parts in this decomposition, i.e., iK+1 = n. Note that since z 6= z∗n(1) this
decomposition divides z in at least two parts and every part has length less than n.

z = ( 1,
i1

0, . . . , 0, 1,
i2

0, . . . , 0, 1,
i3

1,
i4

0, . . . , 0, 1
i5

)

z̄1 z̄2 z̄3 z̄4

Figure 4.30: z is decomposed into four parts of the form 1, 0 . . . , 0, 1.

We write

ρ(z) =
∑i2
j=i1+1 y

∗
j + . . .+∑iK+1

j=iK+1 y
∗
j∑i2

j=i1+1 x
∗
j + . . .+∑iK+1

j=iK+1 x
∗
j

≤ max
`=1,...,K

∑i`+1
j=i`+1 y

∗
j∑i`+1

j=i`+1 x
∗
j

.

Observe that each of the ratios on the right hand side corresponds to ρ
(
z̄`
)
. If we set y∗1

to y∗z,i` for every part z̄`, the basic solution (x∗
z̄`
, y∗
z̄`

) coincides with the respective part
of (x∗z, y∗z), i.e., y∗

z̄`
= (y∗z,i` , . . . , y

∗
z,i`+1

) and x∗
z̄`

= (x∗z,i` , . . . , x
∗
z,i`+1

).
Since ρ(z∗n(1)) is increasing in n (Observation 7) we obtain

ρ(z) ≤ max
`=1,...,K

ρ

(
z∗|z̄`|(1)

)
≤ ρ

(
z∗max`=1,...,K |z̄`|(1)

)
≤ ρ(z∗n(1)).

Since ρ(z∗n(0)) is decreasing in n, the above proof can not be used for ζ = 0, but the
analogous statement holds nevertheless.

Lemma 31. For n ∈ N≥2 both

max
z∈{0,1}n
z1=0,zn=1

∑n
i=2 y

∗
z,i

y∗z,1
and max

z∈{0,1}n
z1=0,zn=1

ρ(z)

are maximized for z∗n(0).

Proof.
First Maximum. As in Lemma 30, we observe from Table 4.1 that the ratio y∗z,i

y∗z,i−1
is

maximized for zi−1 = zi = 0 for i ∈ {2, . . . , n− 1}. Since we again fixed zn = 1, also the
choice of zn−1 = 0 remains the best.
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Second Maximum. We show that no z 6= z∗n(0) gives a higher ratio than z∗n(0). Recall
from Observation 7 that ρ(z∗n(0)) > 20

11 . Now assume z 6= z∗n(0) gives the maximum and
has a higher ratio. We split z in two parts. Let i be the index of the first 1 in z. We
consider the first part z̄1 = (z1, . . . , zi+1) and the second part z̄2 = (zi+1, . . . , zn). Since
z 6= z∗n(0) we have i < n and hence these parts are well-defined. We show that replacing
zi by 0 increases the ratio and hence is a contradiction to z being optimal. Denote by
z′ the vector resulting from z by replacing zi to be 0. We split z′ in the same way as
z and have z̄′1 = (z′1, . . . , z′i+1) and z̄′2 = (z′i+1, . . . , z

′
n) = z̄2. Let (x, y) = (x∗z, y∗z) and

(x′, y′) = (x∗z′ , y∗z′).
We consider ρ(z) as weighted harmonic mean of ρ

(
z̄1) and ρ(z̄)2 with weights ∑i+1

j=2 yj
and ∑n

j=i+2 yj respectively. For ρ(z′) we take the analogous representation. We have
ρ
(
z̄2) = ρ

(
z̄′2
)
.

We show ρ
(
z̄1) ≤ ρ

(
z̄2), ρ(z̄1) ≤ ρ

(
z̄′1
)

and ∑i+1
j=2 yj ≤ x

∑i+1
j=2 y

′
j and ∑n

j=i+2 yj =
x
∑n
j=i+2 y

′
j for some x ∈ R≥0. With Lemma 2 this gives the contradiction ρ(z) ≤ ρ(z′).

Case zi+1 = 0: First observe that changing zi to 0 increases yi and yi+1 by a factor of
9
8 and

(
9
8

)2
respectively, and hence all yj in the second part by a factor of

(
9
8

)2
. Thus

i+1∑
j=2

yj ≤
(9

8

)2 i+1∑
j=2

y′j and
n∑

j=i+2
yj =

(9
8

)2 n∑
j=i+2

y′j .

Consider ρ
(
z̄1) and ρ

(
z̄′1
)

as weighted harmonic mean of the corresponding yj
xj

with
weight yj . The mean of the first i − 1 elements is 9

5 , since zj = z′j = 0 for all j ∈
{1, . . . , i− 1} with (4.37).

We compute the mean of elements i and i+ 1 in z̄1 as

yi + yi+1
yi
xi
yi

+ yi+1
xi+1
yi+1

= 2
1
2 + 2

3
= 12

7 .

For z̄′1 this mean is again 9
5 . As 12

7 < 9
5 <

20
11 , we have

ρ
(
z̄1
)
< ρ

(
z̄′1
)
<

20
11 .

From our choice of z we have ρ(z) > 20
11 . Since the first part has ratio less than 20

11 , the
ratio of the second part has to be larger than 20

11 . We thus have,

ρ
(
z̄1
)
< ρ

(
z̄′1
)
< ρ

(
z̄2
)

= ρ
(
z̄′2
)
.

From Lemma 2 we get the contradiction ρ(z) ≤ ρ(z′).
Case zi+1 = 1: As in the previous case observe that changing zi to 0 increases yi and
yi+1 by a factor of 9

8 , and also all y’s in the second part by 9
8 . Thus

i+1∑
j=2

yj ≤
9
8

i+1∑
j=2

y′j and
n∑

j=i+2
yj = 9

8

n∑
j=i+2

y′j .
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Again, the mean of the first i− 1 elements is 9
5 and we compute the mean of elements

i and i+ 1 for z̄1 as
yi + yi+1

yi
xi
yi

+ yi+1
xi+1
yi+1

=
1 + 8

9
1
2 + 8

9 ·
5
8

= 306
171

and for z̄′1 as
y′i + y′i+1

y′i
x′i
y′i

+ y′i+1
x′i+1
y′i+1

= 2
5
9 + 1

2
= 36

19 .

We have 306
171 <

20
11 <

36
19 . Thus, as before we have ρ

(
z̄1) ≤ ρ

(
z̄2) and ρ

(
z̄1) ≤ ρ

(
z̄′1
)

and
get the contradiction by Lemma 2.

With these lemmas we give the best choice of z for the path.

Lemma 32. For n ∈ N≥2 and ζ ∈ {0, 1} the maximum

max
z∈{0,1}n
z1=ζ,zn=1

C(x∗z ,y∗z )(Sn)
C(x∗z ,y∗z )(T1)

is attained at z∗n(ζ). The value is

10
(

9
8

)n−2
− 8

11
2

(
9
8

)n−2
− 4

for ζ = 0 and
10
(

9
8

)n−3
− 7

11
2

(
9
8

)n−3
− 10

3

for ζ = 1.

Proof. The values for z∗n(ζ) follow directly from (4.52) and (4.53) as we add y∗1 in the
numerator and denominator. Observe that both ratios are increasing in n and > 1.

To show that z∗n(ζ) maximizes the ratio, take any z ∈ {0, 1}n with z1 = ζ and zn = 1.
Let (x, y) = (x∗z, y∗z) and (x′, y′) = (x∗z∗n(ζ), y

∗
z∗n(ζ)). We consider C(x,y)(Sn)

C(x,y)(T1) as weighted
harmonic mean of 1 with weight y1 and ρ(z) with weight ∑n

i=2 yi.
If ρ(z) ≤ 1, we immediately have C(x,y)(Sn)

C(x,y)(T1) ≤ 1 < C(x′,y′)(Sn)
C(x′,y′)(T1) .

In the other case, Lemma 30 and Lemma 31 give ρ(z) ≤ ρ(z∗n(ζ)) and
∑n

i=2 yi
y1

≤∑n

i=2 y
′
i

y′1
. Since scaling the weights in the harmonic mean by the same factor does not

change the mean, and increasing both the value and the weight of the larger element
increases the mean (see Lemma 1), we obtain

C(x,y)(Sn)
C(x,y)(T1) = H

(
(y1, 1),

(
n∑
i=2

yi, ρ(z)
))

=H
(

(1, 1),
(∑n

i=2 yi
y1

, ρ(z)
))

≤ H
(

(1, 1),
(∑n

i=2 y
′
i

y′1
, ρ(z∗n(ζ))

))
=
C(x′,y′)(Sn)
C(x′,y′)(T1) .

Observation 8. For fixed n ≥ 2 the value of the maximum in Lemma 32 for ζ = 1 is
smaller than the value for ζ = 0.
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Other trees than the path We will now show that no other tree Tt in T than the
path gives a higher ratio. Using the symmetry from Lemma 27 we are able to apply
Lemma 30 and Lemma 31 to the left part of Tt, i.e., for {1, . . . , t}. For these lemmas
we need zn = 1 and hence, we are now fixing z1 to 0 so that after the transformation of
Lemma 27 ←−z n = 1.

Lemma 33. For n ∈ N≥2 the maximum

max
T∈Tn

max
z∈{0,1}n
z1=0,zn=1

C(x∗z ,y∗z )(Sn)
C(x∗z ,y∗z )(T )

is attained for T1 and z∗n(0).

Proof. We show that all T1 6= Tt ∈ T have smaller ratio than T1. Recall from Lemma 32
that the ratio for T1 (and ζ = 0) is 10( 9

8 )n−2−8
11
2 ( 9

8 )n−2−4
, which is greater than 1 and increasing

in n.
Consider Tt for some t ∈ {2, . . . , n− 1} and a z ∈ {0, 1}n with z1 = 0 and zn = 1. Let

(x, y) = (x∗z, y∗z). We introduce the short notations

R(n) =
10
(

9
8

)n−2
− 8

11
2

(
9
8

)n−2
− 4

and RTt =
C(x,y)(Sn)
C(x,y)(Tt)

.

We split the instance in three parts: the left part L = {1, . . . , t− 1}, the middle part
(the stem) M = {t}, and the right part R = {t+ 1, . . . , n}. Define the ratios

ρL =
∑t−1
i=1 yi∑t−1

i=1 xi+1
and ρM = yt

yt
and ρR =

∑n
i=t+1 yi∑n
i=t+1 xi

,

with weights wL =
∑t−1

i=1 yi
yt

, wM = 1, and wR =
∑n

i=t+1 yi
yt

such that

RTt = H((wL, ρL), (wM , ρM ), (wR, ρR)) ≤ max{ρL, ρM , ρR}.

If this maximum is ρM = 1, then we immediately have RTt < R(n).
In the case where the maximum is larger than 1 assume ρL ≤ ρR. Applying Lemma 30

and Lemma 31 to the right part yields ρR ≤ ρ
(
z∗n−t+1(zt)

)
and wR ≤ w′R, where w′R is

the ratio of the y’s to yt for z∗n−t+1(zt) (the first ratio in the statement of Lemma 30 and
Lemma 31). Thus increasing the value and the weight of the largest element gives (see
Lemma 1)

RTt ≤ H
(
(wL, ρL), (wM , ρM ), (w′R, ρ

(
z∗n−t+1(zt)

)
)
)
.

Now consider the right part together with the stem and define R′ = {t, . . . , n} and

ρR′ = yt +∑n
i=t+1 ȳi

yt +∑n
i=t+1 x̄i

and wR′ = 1 +
∑n
i=t+1 ȳi
yt

,
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where (x̄, ȳ) is the basic solution to z∗n−t+1(zt). We have

ρR′ = H
(
(wM , ρM ),

(
w′R, ρ

(
z∗n−t+1(zt)

)))
and thus RTt ≤ H((wL, ρL), (wR′ , ρR′)).

If ρL ≤ ρR′ , then we get the bound RTt < R(n) from Lemma 32 as the right part R′
is a path instance of size 2 ≤ n− t+ 1 ≤ n− 1 and the ratio for ζ = 0 is pointwise larger
than the ratio for ζ = 1 (Observation 8).

If on the other hand ρL > ρR′ , we apply Lemma 30 and Lemma 31 to the left part
using Lemma 27. This gives ρL ≤ ρ(z∗t (zt)) and wL ≤ w′L, where w′L is again the ratio
of the y’s to yt for z∗t (zt).

Similarly to before, we get

RTt ≤ H
(
(w′L, ρ(z∗t (zt))), (wM , ρM ), (w′R, ρ

(
z∗n−t+1(zt))

))
.

Evaluating the right hand side for zt = 0 and zt = 1 using (4.36) and (4.37), finally
shows RTt < R(n) also in this case.

If ρl > ρR the arguments from above hold, when exchanging L and R everywhere and
using Lemma 27.

This concludes the proof of

Theorem 10.

∀n ∈ N : PoSfair
F∗ (n) =

20
(

9
8

)n−2
− 16

11
(

9
8

)n−2
− 8

≤ 20
11

We wrote

PoSfair
F∗ (n) = max

n′≤n
max
T∈Tn′

max
z∈{0,1}n

′

z1=0,zn′=1

C(x∗z ,y∗z )(Sn′)
C(x∗z ,y∗z )(T )

with (4.35) and showed that no T ∈ T \ {T1} has higher ratio than T1 (Lemma 33), and
that the maximum for T1 is exactly the given right hand side (Lemma 32).

4.6.5 Computational Experiments

The instances studied in the previous sections for functions in Flin and Fpoly are the result
of computational experiments. The experiments show that those instances are among
those with highest PoS in a restricted class of instances. For fair cost allocation and
small number of players (up to 4) the experiments confirm that the instances considered
in [Bil+13] give the highest PoS among all instances.

Method Similarly to the previous sections (see Section 4.6.1) we fix the underlying
graph and try to find edge costs such that the PoS of the resulting instance is as high
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as possible. For input n and underlying cost function f the implementation computes a
lower bound on PoSf (n) in uniform broadcast games by bounding

max
graph G with n nodes

rooted at R

max
tree TOPT in G

max
tree TNE in G

(4.54)

max{r ∈ R | ∃ scaling factors γ ∈ RE : C(TNE)
C(TOPT) > r∧

TOPT is a social optimum and TNE is one of the best equilibria in (G,R, f, γ)}.

We do not enumerate all graphs G with n nodes but rather take the complete graph Kn.
For a (not complete) graph G we can add edges with high scaling factor compared to
the factors on edges in G without changing the value of the PoS. Hence, looking at the
complete graph removes the outer maximization and does not change the value of (4.54).
The remaining maximizations are realized by enumeration. A program enumerates the
two trees TOPT and TNE in the complete graph and the value r. For each choice it
constructs a satisfiability problem for the conditions on the scaling factors and calls a
satisfiability solver. As long as the formula is satisfiable, r is increased and the solver is
called again for the new formula. With this procedure (see Algorithm 2) we get a lower
bound on the innermost maximization and hence a lower bound on the total value. In
the following we describe the method in more detail.
Maximizing Over Trees. For the tree TOPT in the outer maximization we enumerate all
unlabeled rooted trees on n nodes, of which there are 1, 1, 2, 4, 9, 20, 48, 115 for n =
1, . . . , 8 [Inc21]. For TNE we have to consider all nn−2 labeled trees on n nodes. In total
we enumerate all 6, 64, 1125 pairs of trees for n = 3, . . . , 5. As the number of trees gets
large quickly (the value for n = 6 is 25920), we reduce the search space for larger n.
Firstly, we fix TNE to be the star rooted at R and enumerate all unlabeled rooted trees
for TOPT. Secondly, we do not consider the complete graph, but only the union of the
two trees TNE and TOPT. This gives only lower bounds on PoSf (n) but we believe that
our restrictions are not decreasing the value.

For every pair of TOPT and TNE we have to solve the inner maximization, that is, find
scaling factors for the edges such that TOPT is a social minimum, TNE is one of the best
equilibria, and the ratio of their social costs is maximal. We propagate the currently
highest achieved ratio to the remaining pairs of trees. If we found scaling factors for the
trees (TOPT, TNE) giving a ratio of r1, we try to find scaling factors for the remaining
tree pairs that achieve a ratio of at least r1 (see the recursive calls in Lines 7 and 13).
In this way we reduce the number of constraint systems to be solved.
Maximizing the Ratio r. For a pair of trees (TOPT, TNE) the inner maximization is lower
bounded by iteratively increasing r (see Function inner()). If the constraint system
is satisfiable for r we compute the PoS of the instance corresponding to the satisfying
assignment. Note that we are guaranteed that TOPT is a social optimum and TNE is one
of the best equilibria and hence the PoS of the instance is just the ratio of the social
cost of both trees and can easily be computed from the satisfying assignment. In the
next call of the procedure we replace r by the maximum of the new PoS and r plus some
step size (see Line 19). On the one hand, we want to use the new PoS as new bound
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Function Bound(n, step)
1 let opts = unlabeled trees on n nodes rooted at R
2 let nes = labeled trees on n nodes rooted at R

3 let maxOpts(ts, r) = -- maximum over opt trees
4 if null ts then r
5 else
6 let (TOPT, os) = (head(ts), tail(ts))
7 maxOpts(os, maxNEs(TOPT, nes, r))
8 end
9 let maxNEs(TOPT, ts, r) = -- maximum over ne trees

10 if null ts then r
11 else
12 let (TNE, ns) = (head(ts), tail(ts))
13 maxNEs(TOPT, ns, inner(TOPT, TNE, r, step))
14 end

15 maxOpts(opts, 1)

Function inner(TOPT, TNE, r, step) -- maximum over r
16 repeat
17 let γ = solve constraint system for TOPT, TNE, and r -- call SMT solver
18 if sat then -- γ is a satisfying assignment
19 Update r to max

{
Cγ(TNE)
Cγ(TOPT) , r + step

}
20 end
21 until unsat
22 return r

Algorithm 2: Computing a lower bound on PoSf (n) by enumerating the trees TOPT
and TNE, and using an SMT-solver.

since we know that an instance with this value exists. On the other hand, if we only use
this value, the procedure may progress in very small improvements of the ratio (it does).
Hence we add a step size to decrease the number of steps taken to terminate. However,
this does not solve the maximization problem exactly. The step size gives the accuracy
of the returned bound. We end with a ratio r for which an instance with PoS r exists
and the guarantee that the PoS of the graph is smaller than r plus the step size.

Since the PoS is greater than 1, we start with r = 1. If we assume that the PoS is less
than 2 (no larger values have been observed in the currently known lower bounds) then
each inner maximization takes at most 1

step size iterations. Notice, that we have to solve
at least one system for every pair of trees. This is the unsatisfiable system giving us an
upper bound on the PoS in the instance. This upper bound allows us to continue with
the next pair of trees.
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The Constraint System. We now describe the key step of generating the constraint sys-
tem for the inner maximization, i.e., Line 17. We express the three conditions on the
scaling factors (TOPT is a social minimum, TNE is one of the best equilibria, and the ratio
of their social costs is strictly larger than r) in QF LRA, the language of quantifier free
formulas over the linear fragment of the theory of reals. The variables are the scaling
factors.

The first condition is modeled as

∀ tree T : C(T ) ≥ C(TOPT),

where the universal quantifier is expressed by the conjunction of the inequalities for
every tree T . Observe, that for uniform games the social cost is indeed linear in the
scaling factors.

The condition of TNE being one of the best equilibria is represented by a formula of
the form

∀ tree T : T is equilibrium =⇒ C(TNE) ≤ C(T ).

For the premise of this implication we use the characterization of Lemma 11, where we
express the universal quantifier by combining all instances of the subformula. For every
edge we take the inequalities (NECond) and combine all of those with a conjunction.

In the following we show parts of the realization of the constraints in QF LRA for
n = 4, underlying function f0.5 ∈ Flin, r ≈ 1.163, and the trees TOPT and TNE rooted at 1
and consisting of the edges {{1, 2}, {2, 3}, {2, 4}} and {{1, 2}, {1, 3}, {1, 4}}, respectively.

1 (declare-fun var () Real) -- edge {1,2}
2 (declare-fun var_1 () Real) -- edge {1,3}
3 (declare-fun var_2 () Real) -- edge {1,4}
4 (declare-fun var_3 () Real) -- edge {2,3}
5 (declare-fun var_4 () Real) -- edge {2,4}
6 (declare-fun var_5 () Real) -- edge {3,4}
7

8 -- TOPT is social minimum (for any tree T: C(T ) ≥ C(TOPT))
9 (assert

10 (>=
11 (+ (* (/ 3 2) var) (* (/ 1 1) var_2) (* (/ 1 1) var_3))
12 (+ (* (/ 2 1) var) (* (/ 1 1) var_3) (* (/ 1 1) var_4)) ))
13 ...
14

15 -- TNE is equilibrium using (NECond)
16 (assert (>= (+ var_3 (* (/ 3 4) var_1)) (* (/ 1 1) var))) -- 2 -> 3
17 (assert (>= (+ var_3 (* (/ 3 4) var)) (* (/ 1 1) var_1))) -- 3 -> 2
18 ...
19

20 -- TNE is best equilibrium (for any tree T: T is equilibrium =⇒ C(TNE) ≤ C(T ))
21 (assert
22 (=>
23 (and
24 (and
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25 (>= (+ var_1 (+ (* (/ 2 3) var) (* (/ 3 4) var_3))) (/ 0 1))
26 (>= (+ var_1 (/ 0 1)) (+ (* (/ 3 4) var) (* (/ 1 1) var_3))) )
27 (and
28 (>= (+ var_4 (* (/ 3 4) var_2)) (* (/ 3 4) var))
29 (>= (+ var_4 (* (/ 2 3) var)) (* (/ 1 1) var_2)) )
30 (and
31 (>= (+ var_5 (* (/ 3 4) var_2)) (+ (* (/ 3 4) var) (* (/ 1 1) var_3)))
32 (>= (+ var_5 (+ (* (/ 2 3) var) (* (/ 3 4) var_3))) (* (/ 1 1) var_2)) ) )
33 (<=
34 (+ (* (/ 1 1) var) (* (/ 1 1) var_1) (* (/ 1 1) var_2))
35 (+ (* (/ 3 2) var) (* (/ 1 1) var_2) (* (/ 1 1) var_3)) ) ) )
36 ...
37

38 -- C(TNE) > r · C(TOPT)
39 (assert
40 (> (+ (* (/ 1 1) var) (* (/ 1 1) var_1) (* (/ 1 1) var_2))
41 (* (/ 4131348405888421 3552935091602100)
42 (+ (* (/ 2 1) var) (* (/ 1 1) var_3) (* (/ 1 1) var_4)) ) ) )
43

44 (assert (>= var (/ 0 1)))
45 (assert (>= var_1 (/ 0 1)))
46 (assert (>= var_2 (/ 0 1)))
47 (assert (>= var_3 (/ 0 1)))
48 (assert (>= var_4 (/ 0 1)))
49 (assert (>= var_5 (/ 0 1)))

The example uses the syntax of the SMT-LIB Standard Version 2.6 [BFT17]. First, the
real variables for every edge are declared. The variable corresponding to edge {1, 2} is
called var as shown by the comment on the right. Then follows the condition that TOPT
is a social optimum. This is expressed as: the social cost of any tree is at least the social
cost of TOPT. In Lines 9-12 the corresponding inequality for the tree consisting of the
edges {{1, 2}, {1, 4}, {2, 3}} is shown. The standard uses prefix notation for operators.
Note that {1, 2} is used by two players and hence the total cost of this edge evaluates
to 2f0.5(2)γ{1,2} = 3

2var. Next, the condition that TNE is an equilibrium is stated using
(NECond). We show only the two inequalities for edge {2, 3} in Lines 16 and 17. In
Lines 21 - 35, we see the constraint that if T is an equilibrium, then its cost must be at
least the cost of TNE for the tree T consisting of edges {{1, 2}, {1, 4}, {2, 3}}. We see the
implication => at top level followed by the (NECond) inequalities for the edges not in T .
There is a corresponding statement for every tree. The bound of the ratio of the social
costs of TOPT and TNE is shown in Lines 39-42. Note that r ≈ 1.163 is written with
its exact rational representation. This value for r appears as a PoS of some instance
in the enumeration process. Since they heavily depend on the satisfying assignments
returned by the solver, these ratios are not necessarily “nice”. Finally, all variables are
constrained to be non-negative.

These constraint systems are generated by a Haskell [Mar10] program using the smtlib2-
library [Gün17]. This library is a type-safe interface to communicate with SMT solvers,
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realized as embedded domain specific language. The code producing the constraints for
TNE being one of the best equilibria looks as follows:

1 -- ne is best equilibrium
2 -- (for any tree st: st is equilibrium =⇒ C(ne) ≤ C(st))
3 forM_ sts $ \st -> do
4 if st /= toChildMap ne -- st is not the tree ne
5 then assert $
6 -- st is equilibrium
7 and' (map
8 (\e -> do
9 ((vul, vur), (uvl, uvr)) <- cnstr l xs (toTree (root opt) st) e

10 -- (NECond) for edge e outside st
11 (vul .>=. vur) .&. (uvl .>=. uvr) )
12 (es L.\\ edges st) )
13 .=>.
14 -- C(ne) ≤ C(st)
15 soccost l xs ne .<=. soccost l xs (toTree (root opt) st)
16 else assert true -- no constraint needed for ne

We see features of the embedded language: the assert statement in Lines 5 and 16,
the implication .=>. in Line 13, inequalities .>=. and .<=. in Lines 11 and 15 and a
conjunction .&. in Line 11. Further, there are features of the host language like forM_, $,
->, do, map. The function cnstr constructs the left and right hand sides of the (NECond)
inequalities given a cost sharing scheme (l), the variables for the edges (xs), a rooted
tree, and an edge (e). The complete program can be found at https://github.com/
44534/networkdesign/commit/b2b048536834d62c179b8f411ba81fd158c2b92a.

For every pair of trees (TOPT, TNE) and every step for r one constraint system is
generated and solved. Each system has a real variable for every edge of the (complete)
graph. The largest part of the formula are the constraints for TNE being one of the best
equilibria. For every tree in the (complete) graph there are inequalities for all edges
outside of the tree in the premise of the implications. Hence, the size of the formula is
roughly the number of trees times the number of edges. There are nn−2 labeled trees on
n nodes and n(n−1)

2 edges in the complete graph, hence the size of the formula is roughly
nn. This evaluates to 1, 4, 27, 256, 3125, 46656 for n = 1, . . . , 6.
Software and Hardware Specification. Our program is compiled with the Glasgow Haskell
Compiler (GHC) [MP12] (version 8.10.41). The constraint systems are solved by the
SMT solver OpenSMT2 [Hyv+16] (version 2.0.22). The time to solve one system varies
from seconds to several minutes. The computations were executed on two machines.
The computations for fs ∈ Flin were conducted on a Fedora 31 system on a computer
from the LRZ Compute Cloud3 with 10 Intel Xeon (Skylake, IBRS) processors with
2.4 GHz and 45 GiB RAM. The computations for fα ∈ Fpoly and for fair cost allocation

1https://www.haskell.org/ghc/download_ghc_8_10_4.html
2https://github.com/usi-verification-and-security/opensmt/commit/

334e87cf0adbd60c9e04219bad1a04ea36d32a6c
3https://doku.lrz.de/display/PUBLIC/Compute+Cloud
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were excecuted on a Fedora 34 system on a machine with 24 Intel Xeon (E5-2620 0)
processors with 2.3 GHz and 64 GiB RAM.

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sat

nr 106 101 75 46 94 77 82 78 76
max 20.29 23.40 28.38 17.41 22.86 25.29 35.24 40.60 41.47
min 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.15
avg 4.77 3.28 3.65 5.37 3.01 3.22 4.50 5.07 5.88

unsat
max 48.15 43.00 66.24 49.12 36.64 67.96 59.19 54.19 97.97
min 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.15
avg 3.47 3.28 4.05 3.46 2.70 4.07 4.88 4.85 6.48

total hours 1.22 1.12 1.34 1.15 0.92 1.34 1.62 1.62 2.16

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sat

nr 94 69 81 116 47 63 45 51 44
max 342.74 319.11 438.46 773.67 328.94 251.49 341.55 295.52 910.08
min 0.33 0.40 0.33 0.33 0.31 0.19 0.19 0.19 0.19
avg 69.71 90.83 98.62 138.37 119.47 86.25 70.17 85.06 116.70

unsat
max 776.95 781.51 720.25 1418.25 520.93 560.37 659.28 707.50 794.33
min 0.30 0.30 0.26 0.27 0.28 0.16 0.16 0.16 0.16
avg 46.41 43.39 39.56 95.14 34.39 33.40 39.02 38.98 42.67

total hours 16.32 15.30 14.58 34.19 12.30 11.94 13.07 13.38 14.76

Table 4.2: Computation statistics for the complete enumeration with n = 5 nodes (4 players),
step size 0.001, and functions fs ∈ Flin and fα ∈ Fpoly. The first part shows statistics for
satisfiable constraint systems. We give the number of satisfiable systems and the maximum
(max), minimum (min) and average (avg) time in seconds to solve one system. The same times
are shown for the systems which are not satisfiable. Finally, we give the total computation time
in hours.

Execution Time We give an impression of the number of iterations taken and the
computation time for the complete enumeration for n = 5 and a step size of 0.001.
In Table 4.2 we show some metrics depending on parameter s for fs ∈ Flin and α for
fα ∈ Fpoly.4 We show the number (nr) of satisfiable constraint systems solved during the
complete enumeration. Recall, that for every pair of tree we encounter exactly one system
that is not satisfiable, hence there are 1125 unsat systems for every parameter. We
further give the maximum (max), minimum (min), and average (avg) time (in seconds)
the solver takes to solve one of the systems. Finally, the total computation time (total)
for the complete enumeration is given in hours.

We observe that the solver times vary among the parameters and that the case of
functions fs ∈ Flin is considerably faster than the case of functions fα ∈ Fpoly. This

4data generated by the following calls to the program: networkdesign --pos --enum --all 5
-b opensmt -c 1 --start 1 --normalize -s 0.001 --sharing2 1.1 --sharingslope
0.1 --complete --debug "results/linear/times/complete-s01-5.log" for f0.1 ∈ Flin
and replacing --sharing2 and --sharingslope with --power 0.1 for f0.1 ∈ Fpoly.
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may be due to the complexity of the numbers appearing in the constraints. For fs the
coefficients of the scaling factors are of the form nσ(e)fs(nσ(e)) = 1+(s−1)nσ(e) and for
fα we get coefficients of the form (nσ(e))α. We further see that there are big differences
in the maximal and minimal time needed to solve the constraint systems.

For the complete enumeration for n = 6 nodes, we observed a significant increase in
the average solver time for one system. For f0.1 ∈ Flin we have an average (over the
first 263 instances) time of around 4 h. Recall that there are 25920 pairs of trees in the
complete enumeration for 6 nodes. Using the average of 4 h the enumeration would take
roughly 12 years. For f0.1 ∈ Fpoly we see an average (over the first 53 instances) time
of roughly 19 h. Hence, we were not able to completely enumerate instances with more
than 5 nodes (4 players).

Results The complete enumerations for small values of n = 3, 4, 5 result in instances
with highest bound on the PoS where only edges in the union of the two trees TOPT and
TNE are used. We thus believe that the answer to Research Question 5 is No. Further, in
these instances the star is one of the best equilibria (see top parts of Tables 4.3 and 4.4).
This suggests that the answer to Research Question 7 is Yes, even for all (not only fan)
instances. Hence we reduce the search space for n ≥ 6 by fixing TNE to be the star and
considering only the union of the two trees (instead of the complete graph).

In Tables 4.3 and 4.4 we show instances giving the highest bound achieved by Al-
gorithm 25. Note that these are just representatives, there may be more instances
giving the same value6. The step size is 0.001. Hence, the values given in the ta-
bles are lower bounds on the PoS in the instances and the PoS is at most the value
plus 0.001. The corresponding scaling factors for the edges can be found at https:
//github.com/44534/networkdesign/tree/master/results.
How to read Table 4.3. Instances with n nodes can be extended to instances with n+ 1
nodes without chaging the PoS by adding a single edge with scaling factor 0, connecting
the new node to the root R (and putting a high scaling factor on all other edges incident
to the new node in complete graphs). Whenever this construction happens, we do not
draw the graph for n + 1. For example, the graph for s = 0.2 and n = 7 is the one
resulting from the graph for n = 6 by adding an isolated edge as described above. With
the above extension it is immediate that the PoS is increasing with the number of nodes
(for a fixed value of s). In some columns of Table 4.3 the values are not monotone. This
is a consequence of computing just a lower bound within an accuracy given by the step
size. The values depend on the satisfying assignments found by the SMT solver. We

5Data generated by networkdesign --pos --enum --all 5 -b opensmt -c 1 --start
1 --normalize -s 0.001 --sharing2 1.1 --sharingslope 0.1 --complete | tee
results/linear/complete-s01-5.txt for f0.1 ∈ Flin and n ≤ 5. For fixing TNE to be the
star and considering only the union of the two trees for n ≥ 6, replace --all 5 --complete
by --star 6 --continue. Data for Fpoly can be produced by replacing --sharing2 and
--sharingslope by --power.

6Those can be found with the program (see https://github.com/44534/networkdesign for a more
detailed documentation of the program and its options). Example call for f0.5 ∈ Flin, n =
6, and ratio 1.1638: networkdesign --find --star 6 -b opensmt --start 1.1638 --pos
--sharing2 1.5 --sharingslope 0.5 --normalize -s 0.001 -c 4 +RTS -N2
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chose to show this numbers to be consistent with the output of the program. Whenever
the underlying graphs are the same we can take the maximum of the computed bounds.
For example for s = 0.9, the underlying graph is the same for all n ≥ 4. The highest
bound found for this graph is 1.0279 for n = 5. This bound is valid for all n ≥ 4. But the
SMT solver found satisfying assignments for other values of n which are already close to
the actual PoS and hence our algorithm may terminate with smaller bounds (as 1.0277
for n = 4). We show the maximal bounds in bold.

We observe from Table 4.3 that for s ≥ 0.5 the small instance with n = 3 and t = 2
gives the highest bounds for all n ≥ 4. For s between 0.3 and 0.4 the small instances
with n = 4 and t = 2 achieves the highest bound and for s = 0.2 the instance with n = 5
and t = 3 gives the highest bound. For s = 0.1 the tree Tdn2 e gives the highest bound.
This is evidence that the fan instances we studied in Section 4.6.2 are optimal (among
all instances for n ≤ 5 and for n ≥ 6 among instances where the star is fixed to be one
of the best equilibria and considering only the union of the two trees) for functions in
Flin.

In Table 4.4 we see that for small α ≤ 0.2 the path and Tdn2 e give the highest bounds.
However, for larger α and n we observe a new structure for TOPT giving the highest
bounds. Here we no longer have a tree of the form Tt, but rather a star with arms of
different length. The simplified version where TOPT is another star (with all arms of
length 1) gives the bridge instances studied in Section 4.6.3.

For fair cost allocation the experiments show that the fan instances of Bilò et al.
[Bil+13] are optimal. For n = 3, 4, 5 complete enumeration of all pairs of trees in the
complete graph, results in the fan instances giving the highest bound. The same is true
for n ≥ 6 and our restricted search space. This suggest that the fan instance is optimal
in the class of all broadcast games and not only in the class of fan instances where the
star is fixed to be the unique equilibrium. Hence, this is evidence that the answer to
Research Question 7 is Yes.
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n
s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 1.2897 1.2495 1.2112 1.1756 1.1420 1.1110 1.0809 1.0521 1.0252
R R R R R R R R R

4 1.3900 1.3116 1.2482 1.2040 1.1638 1.1259 1.0915 1.0590 1.0277
R R R R R R R R R

5 1.4245 1.3318 1.2644 1.2068 1.1636 1.1267 1.0910 1.0583 1.0279

R R R R

6 1.4396 1.3398 1.2645 1.2065 1.1637 1.1265 1.0917 1.0591 1.0277

R R

7 1.4544 1.3398 1.2645 1.2065 1.1637 1.1265 1.0917 1.0591 1.0277

R

8 1.4574 1.3398 1.2645 1.2065 1.1637 1.1265 1.0917 1.0591 1.0277

R

Table 4.3: Lower bounds on PoSf (n) for functions fs ∈ Flin returned by Algorithm 2 with step
size 0.001 together with the trees achieving this bound. TOPT is drawn solid and TNE is drawn
dashed. For n = 3, 4, 5 we completely enumerated all pairs of trees in the complete graph. For
n > 5 the star rooted at R is fixed to be one of the best equilibria and we conisder only the union
of the two trees. A missing graph means that the graph is the same as the one above in the
same column. For example the instance giving a lower bound of 1.2077 for s = 0.9 and n = 7 is
the same as the instance for n = 4. Bounds marked in bold are the highest bound for the same
underlying graph (for fixed s).
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n
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 1.3014 1.2701 1.2374 1.2043 1.1709 1.1373 1.1029 1.0690 1.0346
R R R R R R R R R

4 1.4319 1.3790 1.3269 1.2759 1.2323 1.1896 1.1445 1.0978 1.0490
R R R R R R R R R

5 1.5009 1.4307 1.3780 1.3297 1.2797 1.2269 1.1727 1.1161 1.0578

R R R R R R R R R

6 1.5410 1.4637 1.4108 1.3550 1.2992 1.2408 1.1836 1.1249 1.0638

R R R R R R R R R

7 1.5655 1.4921 1.4311 1.3699 1.3143 1.2554 1.1959 1.1337 1.0680

R R R R R R R R R

8 1.5819 1.5070 1.4456 1.3873 1.3274 1.2656 1.2039 1.1387 1.0710

R R R R R R R R R

Table 4.4: Lower bounds on PoSf (n) for functions fα ∈ Fpoly returned by Algorithm 2 with
step size 0.001 together with the trees achieving this bound. TOPT is drawn solid and TNE is
drawn dashed. For n = 3, 4, 5 we completely enumerated all pairs of trees in the complete graph.
For n > 5 the star rooted at R is fixed to be one of the best equilibria and we conisder only the
union of the two trees.

155



4 Network Design Games with Economies of Scale

4.7 Computing Equilibria
In the previous sections we looked at the PoS and tried to understand how far away the
cheapest equilibrium can be from a social optimum. For some classes we found good
(constant) bounds. A system designer is now faced with the task of proposing such a
good equilibrium to the users. Hence the question is:

Can we find a good equilibrium in network games efficiently?

We take two approaches to answer this question. First, we look at the players and
ask whether they can reach an equilibrium fast. Note that here we are looking for any
equilibrium, not necessarily the best. Since equilibria are the local minimizers of the
potential (as discussed in Section 2.2), this can be posed as a local search problem.
A natural thing is to look at the standard improving-dynamics and see how fast it
converges. We give some weak evidence that this process can be slow for multicast
games with fair cost allocation. Bilò et al. [Bil+21] show that finding an equilibrium
in general network games with fair cost allocation is PLS-hard. We show how their
reduction can be generalized to decreasing cost functions.

Secondly, we take the system designer’s view and consider finding the best equilibrium
in a centralized way. We show that this is NP-hard in multi- and broadcast games for
sharing functions with economies of scale. Finally, we show the same hardness for finding
the global potential minimizer in broadcast games.

4.7.1 Potential Decreasing Moves for Multicast Games
A natural approach to find an equilibrium is to look at the standard improving-dynamics.
Starting from any strategy profile, let the players do improving moves iteratively until
they reach an equilibrium. The progress of each step is measured by the improvement
in the potential. If the potential decreases at least some fixed constant amount in each
improving move, we get an upper bound on the running time of the improving-dynamics.

For network games the difference in the potential of two profiles σ and σ′ which differ
only in the strategy of a single player is of the form

Φ(σ)− Φ(σ′) =
∑

e∈σi\σ′i

(Fe(nσ(e))− Fe(nσ(e)− 1))−
∑

e∈σ′i\σi

(Fe(nσ(e) + 1)− Fe(nσ(e))).

For fair cost allocation this evaluates to

Φ(σ)− Φ(σ′) =
∑

e∈σi\σ′i

1
nσ(e) −

∑
e∈σ′i\σi

1
nσ(e) + 1 .

This is the case we are now focusing on. We give an example of an improving move in a
multicast game where the decrease in the potential is sub-polynomial in the number of
players. This is some evidence that bounding the potential improvement by a constant
is not possible. However, this does not show that improving-dynamics take many steps
in general. It could be that there can not be too many improving moves with only a
small decrease in the potential.
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Research Question 8. Is there an example of a multicast (broadcast) game with a super-
polynomial sequence of improving moves?

This question is closely related to the PLS-completeness of finding an equilibrium
in a multicast game, which is studied later. In particular, the answer to this question
is Yes for general network games where players have different source and sink nodes.
Anshelevich et al. [Ans+08a] construct a directed network game where a sequence of
improving moves emulates a binary counter. For undirected networks the result follows
from the tight PLS-reduction of Syrgkanis [Syr10].

Hence, we consider multicast games. Our game has 2n − 2 players, where n is some
integer power of 4, i.e., there is an even k ∈ N such that n = 2k. The network is shown
in Figure 4.31. The idea is that there are two paths connecting the source si of a player

si r

ek e1
k−2

· · ·
e
( k
k−2)
k−2

· · ·
e1

2
· · ·

e
(k2)
2

e0

e1
k−1

· · ·
e
( k
k−1)
k−1 e1

k−3
· · ·

e
( k
k−3)
k−3

· · ·
e1

1
· · ·

e
(k1)
1

· · ·
n− k − 1

· · ·
n− k

sodd

seven

Figure 4.31: The multicast instance with a small decrease in the potential. The strategies σ of
the path players are shown in light purple. Player i switches from seven (orange) to sodd (light
orange).

i to the root. The bottom path for i is referred to as the even path and the top path as
the odd path. There are edges e1

j , . . . , e
(kj)
j which form a path for every j ∈ {0, . . . , k}.

The total number of edges is ∑k
j=0

(k
j

)
= 2k = n. The even path contains the paths

related to even j ∈ {0, . . . , k}, while the odd path contains the remaining paths related
to odd j ∈ {0, . . . , k}. At the beginning of each of the subpaths of some j there are 2
players joining. Except for j = k, where n − k − 1 player join and for j = k − 1 where
n− k players join. Hence, there are n− 1 players associated to the even path and n− 2
players associated to the odd path. These players are called path players. Source si and
root r are connected to both paths by edges of cost zero, while all other edges have cost
1. Recall that we are considering the case of fair cost allocation.

Define the profile σ, where all path players use their canonical strategy of joining and
then following the corresponding path to the root. We consider the two strategies seven
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and sodd for player i and compute the change in the potential as

Φ((seven, σ))− Φ((sodd, σ)) =
k∑
j=0

(−1)j
(
k

j

)
1

n− j
Lemma 44= (−1)k

(n− k)
(n
k

) .
From our choice of n = 2k and since log(n) ≤

√
n for large enough n, we obtain(

n

k

)
≥
(
n

k

)k
=
(

n

log(n)

)log(n)
≥ n

1
2 log(n).

Since the right hand side grows faster than any polynomial in n, the decrease in the
potential can not be lower bounded by a polynomial in n.

For broadcast games we introduced the tree-dynamics where several (standard) im-
provement moves are subsumed in one tree-move such that every state in a tree-dynamics
corresponds to a tree. It is not clear whether this tree-dynamics reaches an equilibrium
fast. Observe that in broadcast games along a path in a tree the number of players using
edges are all different. Thus, we can not use the example from above where we used the
same number 1

n−j several times.

4.7.2 PLS-hardness for General Network Games
Since the potential tracks exactly the change in player costs, the task of finding an
equilibrium can be formulated as a local search problem, where the neighborhood consists
of all single player deviations. Recall the definition of the class PLS of polynomial-time
local search problems as introduced by Johnson, Papadimitriou, and Yannakakis [JPY88]
and explained in Section 2.4.

The task of finding an equilibrium in unweighted network games can be expressed
as a problem in PLS. The feasible solutions are all strategy profiles in the game. The
measure of a solution is the potential of the profile and the neighbors are all strategy
profiles which differ in the strategy of a single player. We want to find a local minimum.
Some feasible solution can be found by just choosing any of the strategies for every
player. Once we have a strategy profile σ, we can compute the potential, since nσ(e)
can be determined for every edge e. To decide if a profile σ is a local optimum (i.e.,
an equilibrium), we do a shortest-path computation for every source-sink pair of every
player p in the graph with the following weights. For every edge e ∈ σp we set the
weight to cσ(e) and for any other edge e′ ∈ E \ σp the weight is c+1

σ (e′). If the resulting
shortest path has weight strictly smaller than Cp(σ), then this path corresponds to an
improving move. Otherwise, σ is an equilibrium. This shows that finding an equilibrium
in a network game is a problem in PLS.

For directed networks, Syrgkanis [Syr10] shows that the problem is PLS-complete.
His reduction was recently generalized by Bilò et al. [Bil+21] to work also for undirected
graphs. We show that the same holds for uniform network games with sharing functions
with economies of scale. Our reduction is a generalization of the reduction used in
[Bil+21] which in turn is a generalization of the reduction of [Syr10]. We reduce from
the PLS-complete problem Max Cut as introduced in Section 2.4.
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The Intermediate Game Syrgkanis [Syr10] reduces Max Cut to an intermediate
game. This game is the starting point of the reduction to undirected network games
with fair cost allocation in [Bil+21]. This intermediate game is not a network game but
a general cost sharing game. An instance of this game is given by an ordered set of n
players 1, . . . , n and for every pair of players (i, j) where i < j there are two resources
r0
i,j and r1

i,j . Further, we are given a weight wi,j ∈ R≥0 and the cost functions of r0
i,j and

r1
i,j are such that the difference of one and two player using the resource is exactly wi,j ,

i.e., cr0
i,j

(1) − cr0
i,j

(2) = wi,j and the same holds for r1
i,j . Every player i ∈ [n] has two

strategies

σ0
i =

{
r0

0,i, . . . , r
0
i−1,i, r

1
i,i+1, . . . , r

1
i,n

}
and σ1

i =
{
r1

0,i, . . . , r
1
i−1,i, r

0
i,i+1, . . . , r

0
i,n

}
.

A player plays all resources associated to her, for the players before her she plays all
resources of one of the sets r0 or r1, and for the players after her the resources of the
other set. In this way a resource r∗i,j can only be used be the two players i and j, and
they are both on the resource only if they play different strategies. That is for i < j
resource r0

i,j is used by both i and j, if and only if i plays σ1
i and j plays σ0

j . See
Figure 4.32. Syrgkanis [Syr10] shows that finding an equilibrium in an intermediate
game is PLS-complete, by a reduction from Max Cut.

r1
1,2

r0
1,2

r1
1,3

r0
1,3

r1
1,4

r0
1,4

r1
2,3

r0
2,3

r1
2,4

r0
2,4

r1
3,4

r0
3,4

σ0
2

σ1
2

σ0
3

Figure 4.32: The strategies in an intermediate game with 4 players. Every player can either
play its row (orange) or its column (purple). A resource is only used by two players, if and only
if the corresponding players play different strategies. For example r0

2,3 is used by two players, if
and only if 2 plays σ1

2 and 3 plays σ0
3 .

The Network Game We transform an instance of an intermediate game to a uniform
undirected network game as shown in Figure 4.33. Note that this is the same graph as
used in [Syr10] and [Bil+21].

The graph consists of (thin) edges for every resource r0
i,j and r1

i,j and some paths (thick
edges) connecting the resource edges. For every player of the intermediate game there
is a source and a sink node si and ti. These nodes are connected by two canonical paths
corresponding to the strategies σ0

i and σ1
i from the intermediate game. We chose the

cost on the paths high enough, so that in an equilibrium every player is playing one of
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r1
1,2

r0
1,2

r1
1,3

r0
1,3

r1
1,4
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1,4
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2,3

r0
2,3

r1
2,4

r0
2,4

r1
3,4

r0
3,4

s1

s2

s3

s4

t4
t3
t2
t1

Figure 4.33: The network constructed from an instance of an intermediate game with 4 players.
The canonical paths corresponding to the two strategies σ0

2 (row) and σ1
2 (column) are shown

in orange and purple respectively. Thick edges represent paths of length L. The thin edges
correspond to the resources of the intermediate game given as edge label.

its canonical paths. Observe from the graph that the canonical paths contain exactly n
of the paths, while any other strategy contains strictly more. The main issue is to make
the cost of the paths high regardless of how many players use it. For this we introduce
some dummy players for each edge of a heavy path, who have their source and sink node
at the two endpoints of the edge. Their canonical strategy is to just use the edge. If we
have a lot of dummy players on an edge, then the cost for other players joining on this
edge is almost constant. Think of fair cost allocation and consider the case where we
have for example 100 players already using an edge. The cost incurred to the next few
players is almost the same. Once we have that in an equilibrium every player plays their
canonical strategy, the reduction is done since we immediately have the correspondence
of strategies in the equilibrium and strategies in the intermediate game.

More formally, the graph to an instance of an intermediate game consists of resource
edges for every resource r0

i,j and r1
i,j . The scaling factor of a resource edge is set to

wi,j
f(1)−f(2) , where wi,j is the weight given in the intermediate game and f is the underlying
function of our uniform network game. Note that for this choice the difference of one
and two players using a resource edge is exactly wi,j just as in the intermediate game.
Further, there are paths of length L in the network which will be called heavy paths. The
structure of resource edges and heavy paths can be seen in Figure 4.33. We refer to an
edge of a heavy path as a heavy edge. The scaling factor for a heavy edge is set to some
W ∈ R≥0 which will be a lot larger than the other costs in the game. For every player
in the intermediate game we have a player in the network game with the corresponding
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source and sink nodes si and ti as shown in Figure 4.33. Additionally, we have D ∈ N
dummy players associated to every heavy edge. In total there are n+2n2DL players. We
denote this game by Gf (L,D,W ). The canonical strategy of a dummy player is playing
the associated edge. For a player in the intermediate game, the canonical strategy is one
of the paths corresponding to the respective row or column in the graph using exactly
n heavy paths and (n− 1) resource edges (see Figure 4.33).

We will now show under which conditions on L,D and W , every player uses one
of their canonical strategies in an equilibrium. That there are feasible values for the
parameters will be discussed afterwards.

Lemma 34. If D ≥ 1 and 2D < L − 1, then in any equilibrium in Gf (L,D,W ) every
dummy player plays her associated edge.

Proof. Consider an equilibrium σ in Gf (L,D,W ), where D ≥ 1 and 2D < L−1. Assume
that there is some dummy player d associated to a heavy edge e but σp 6= {e}. Let P
be the heavy path which contains e. First observe that in any equilibrium all dummy
players associated to the same edge play the same strategy. If there are two players
following different paths, then the cost of one of the paths upper bounds the cost of the
other path. Since we are looking at decreasing per-player costs, switching to the cheaper
(or same cost) strategy is an improving move for one of the players. Thus, we know
that none of the D dummy players associated to edge e are using this edge. Note that
these players use all other edges of the heavy path except edge e (see Figure 4.34). Let

e e1

Figure 4.34: Drawing of a heavy path P where the dummy players associated to edge e do not
follow their canonical strategy. They have to use all other edges on P as shown in purple. The
players associated to e1 play their canonical strategy (light purple). The orange path is a path
of an external player to P . It has to use all edges on P .

P̄ be those edges of P where the associated dummy players do not use their canonical
strategy. From the above discussion this is well-defined as an edge is either used by all
its associated players or by none of them. Denote by η the size of P̄ . Further let ηext
be the number of external players using path P . An external player is a player whose
source and sink are not contained in P . Hence, if an external player uses any edge of P ,
she has to use the whole path to connect her source and sink node. With this notation
we can bound the current cost of d by the cost incurred on path P . We consider the cost
on the η−1 edges in P̄ used by d and the remaining L−η edges on P . On every edge in
P̄ there are the ηext external players and all dummy players on P who do not play their
canonical strategies except those associated with the edge. Thus we have a contribution
of (η − 1)Wf(ηext + D(η − 1)) to the cost of d from edges in P̄ . The remaining edges
of P are used by all dummy players not playing their canonical strategy additionally to
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the associated and the external players. Hence we can bound the current cost as

Cd(σ) ≥ (L− η)Wf(ηext +D(1 + η)) + (η − 1)Wf(ηext +D(η − 1)).

Now consider the strategy s′ = {e} for player d. The cost of this strategy is

Cd
((
s′, σ−d

))
= Wf(ηext +D(η − 1) + 1).

If η ≥ 2, then Wf(ηext +D(η − 1) + 1) is smaller than (η − 1)Wf(ηext +D(η − 1)) and
since L − η ≥ 0, s′ would be an improving move for d. On the other hand, we bound
the cost of s′ for η = 1 as

Cd
((
s′, σ−d

))
= Wf(ηext + 1)

≤W ηext + 2D
ηext + 1 f(ηext + 2D) (kf(k) non-decr.)

≤W2Df(ηext + 2D) (D ≥ 1)
< W (L− 1)f(ηext + 2D) ( 2D < L− 1)
≤ Cd(σ).

In both cases this is a contradiction to σ being an equilibrium. In total, we showed that
every dummy player has to play her associated edge.

Lemma 35. If

nf(D + 1) <
(
n+ 1

2

)
f(D + n) and W ≥ n(n− 1) max

1≤i<j≤n

wi,j
f(1)− f(2)

additionally to the conditions from Lemma 34, then in any equilibrium in Gf (L,D,W )
every (non-dummy) player plays one of her canonical strategies.

Proof. Let σ be an equilibrium in Gf (L,D,W ) where the conditions of the statement are
satisfied. Assume that there is a (non-dummy) player i not playing one of the canonical
strategies. From a previous discussion we know that she uses at least n+ 1 heavy paths
and hence the current cost is at least

Ci(σ) ≥ (n+ 1)LWf(D + n)

since from Lemma 34 we already have that every dummy player is on her associated
edge in σ. On the other hand the cost of one of the canonical strategies for i is at most

nLWf(D + 1) + (n− 1) max
j∈[n]

wi,j
f(1)− f(2)f(1),

where we set wi,j = wj,i for i > j. With the first condition of this lemma we get the
upper bound

(n+ 1)LWf(D + n)− 1
2LWf(D + n) + (n− 1) max

j∈[n]

wi,j
f(1)− f(2)f(1).
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From the conditions of Lemma 34 we have L ≥ 2D+ 2 and since the total cost kf(k) is
non-decreasing we obtain

1
2LWf(D + n) ≥W L

2(D + n)f(1) ≥W 2(D + 1)
2(D + n)f(1) ≥W 1

n
f(1)

Together with the condition on W we get an upper bound on the cost of a canonical
strategy of

(n+ 1)LWf(D + n) + f(1)
(

(n− 1) max
1≤i<j≤n

wi,j
f(1)− f(2) −

W

n

)
< Ci(σ).

This is a contradiction to σ being an equilibrium.

We show that there are valid parameters L,W and D such that the conditions of
Lemma 34 and Lemma 35 are satisfied. The main question is whether there exists D
fulfilling nf(D + 1) < (n + 1

2)f(D + n). We show that for any sharing function f with
economies of scale such a D exists and can be chosen to be polynomial in n.

Lemma 36. For n ≥ 7, there is a D ∈ [2n3] satisfying nf(D + 1) <
(
n+ 1

2

)
f(D + n)

for any sharing function f with economies of scale.

Proof. Assume the statement is false. Then for all D ∈ [2n3] we have nf(D + 1) ≥
(n+ 1

2)f(D+n). If we set D = (`− 1)(n− 1) + 1 for some ` ∈ [n(2n+ 1)], then D ≤ 2n3

and

f(D + n) = f((`− 1)(n− 1) + 1 + n)

= f(`(n− 1) + 2) ≤ n

n+ 1
2
f((`− 1)(n− 1) + 2)

Chaining ` of these inequalities yields

f(`(n− 1) + 2) ≤
(

1− 1
2n+ 1

)`
f(2) ≤

(
1− 1

2n+ 1

)`
f(1).

Together with the non-decreasing total cost of f , we obtain

1
2n3 f(1) ≤ 1

n(2n+ 1)(n− 1) + 2f(1)

≤ f(n(2n+ 1)(n− 1) + 2) ≤
(

1− 1
2n+ 1

)n(2n+1)
f(1)

≤ e−n(2n+1)f(1) ≤ e−nf(1).

Since the exponential function grows faster than any polynomial, this is a contradiction.
In particular, for n ≥ 7, we have 2n3 < en.
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Since there are hard instances of Max Cut and hence instances of the intermediate
game with many players, the assumption n ≥ 7 is not a restriction for our reduction.
Now that we have the existence of a feasible D, we choose the parameters as

D ∈ [2n3] satisfying nf(D + 1) <
(
n+ 1

2

)
f(D + n) (from Lemma 36)

L = 2(D + 1) and W = n(n− 1) max
1≤i<j≤n

wi,j
f(1)− f(2) . (4.55)

These values satisfy the conditions of Lemma 34 ad Lemma 35. We are now ready to
show the main theorem.

Theorem 11. Computing an equilibrium in a uniform network game is PLS-complete.

Proof. We reduce from an intermediate game of Syrgkanis [Syr10] with n ≥ 7 players.
Let Gf (L,D,W ) be the game as described in the beginning of this section, where the
parameters are chosen as in (from Lemma 36). Since the parameters and hence the
graph are all polynomial in n, this specifies a feasible mapping ϕinstance of instances of
an intermediate game to a network game.

Consider an equilibrium σ′ in Gf (L,D,W ). From Lemma 34 and Lemma 35 all players
follow one of their canonical strategies in σ′. Define the profile σ in the intermediate
game, where player i plays according to σ′i. If σ′i corresponds to the row-path, then σi =
σ0
i and if σ′i corresponds to the column-path we set σi = σ1

i . From the previous lemmas
this defines a mapping ϕsolution of local minima in Gf (L,D,W ) to feasible solutions in
the intermediate game. We show a relation of the player costs in Gf (L,D,W ) and in
the intermediate game. From this we will see that equilibria in Gf (L,D,W ) are mapped
to equilibria in the intermediate game. For a non-dummy player i we compute

Ci
(
σ′
)

= nLWf(D + 1) +
∑

j∈[n]\{i}
σ′i∩σ

′
j 6=∅

wi,j
f(1)− f(2)f(2) +

∑
j∈[n]\{i}
σ′i∩σ

′
j=∅

wi,j
f(1)− f(2)f(1)

= nLWf(D + 1) +
∑

j∈[n]\{i}

wi,j
f(1)− f(2)f(2) +

∑
j∈[n]\{i}
σ′i∩σ

′
j=∅

wi,j
f(1)− f(2)(f(1)− f(2))

= nLWf(D + 1) +
∑

j∈[n]\{i}

wi,j
f(1)− f(2)f(2) +

∑
j∈[n]\{i}
σ′i∩σ

′
j=∅

wi,j .

The only term depending on the strategy chosen by i (and other players) is the last
summand. For the profile σ in the intermediate game we have

Ci(σ) =
∑

j∈[n]\{i}
σi∩σj 6=∅

cri,j (2) +
∑

j∈[n]\{i}
σi∩σj=∅

cri,j (1)

=
∑

j∈[n]\{i}
cri,j (2) +

∑
j∈[n]\{i}
σi∩σj=∅

cri,j (1)− cri,j (2)
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=
∑

j∈[n]\{i}
cri,j (2) +

∑
j∈[n]\{i}
σi∩σj=∅

wi,j .

Observe that the term depending on the strategy chosen by i is the same in both games.
Hence, if σ′ is an equilibrium in Gf (L,D,W ), then σ is an equilibrium in the intermediate
game, which completes the reduction.

We remark here that our reduction follows closely the one from Bilò et al. [Bil+21]. We
were able to keep the main property that every non-dummy player follows a canonical
strategy in an equilibrium for sharing functions with economies of scale. These cost
functions are already considered in [Syr10], but the main difference is that here we are
looking at uniform games, whereas Syrgkanis uses different functions on the edges from
a huge class of functions. So our reduction is a generalization of fair cost allocation from
Bilò et al. [Bil+21] and a specialization of non-uniform games from Syrgkanis [Syr10].

The main open question is, whether the same result also holds for network games
where all players have a common sink.
Research Question 9. Is the problem of finding an equilibrium in multi- or broadcast
games PLS-complete?

This is still unsolved even for fair cost allocation. On the other hand, if we had allowed
constant per-player cost functions finding an equilibrium in this case is easy. As there is
no effect of sharing, every player just chooses a shortest path w.r.t. the scaling factors.

The above construction can not be adapted easily for multicast games. To make the
cost on the heavy paths almost constant for the non-dummy players, we need to force
the dummy players to use their edge. For this, we need that the source and sink node
of a dummy player are exactly the endpoints of the associated edge. Further, we need
to make sure that every player freely chooses one of her two canonical strategies. In
multicast games any equilibrium forms a tree (Lemma 10). It seems rather difficult to
model independent choices of paths in trees.

4.7.3 NP-Hardness Results for Multi- and Broadcast Games
We are now looking at finding equilibria in a centralized way. This question has been
studied for fair cost allocation. Already Anshelevich et al. [Ans+08a] shows that com-
puting the best equilibrium is NP-hard in directed multicast games. The same result
for unidrected multicast games is implicitly given in [Syr10]. Syrgkanis shows that sin-
gleton cost sharing games are special cases of multicast games (directed and undirected)
and remarks that the proof from Chekuri et al. [Che+06] showing that computing the
global potential minimizer for singleton cost sharing games is NP-hard, can be used to
show NP-hardness of computing the best equilibrium. Syrgkanis elaborates on a relation
between minimizing the social cost in singleton cost sharing games and set cover.

We use the translation of a set cover instance to a multicast game as in [Che+06] and
[Syr10]. We show how to use this for sharing functions with economies of scale. With
a small adaption, this game can also be used to obtain results for broadcast games.
Instead of reducing from (general) Set Cover we reduce from Exact Cover by 3-Sets
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(X3C). Hence our reduction can also be viewed as a generalization of the reduction
from 3D-Matching by Anshelevich et al. [Ans+08a].

Network Game from X3C Recall the Exact-Cover by 3-Sets (X3C) problem as intro-
duced in Section 2.4. An instance is given by a ground set X and a family S of 3-element
subsets of X. The question is, whether there exists an exact cover of X, i.e., is there a
C ⊆ S such that every element of X appears in exactly one of the sets in C? We call a
collection C ⊆ S a cover , if X ⊆ ⋃C∈C C and it is called a packing, if the sets in C are
pairwise disjoint. An exact cover is both a cover and a packing.

From an instance (X,S) of X3C we build a graph as shown in Figure 4.35. There are
nodes for every element of X and every element of S. Whenever we have x ∈ S there is
an edge {x, S}. Additionally there is a root node r and every element of S is connected
to r. We denote this graph by G(X,S). For the case of computing a best equilibrium in
broadcast games we also add edges {x, r} for every element of X (the dashed edges in
Figure 4.35). This graph will be denoted by Ḡ(X,S).

For multicast games we have players only in elements of X, whereas in broadcast
games we also have players in elements of S.

We consider uniform games, where the edges {S, r} have scaling factor 1 and edges
{x, S} have factor Γ. This Γ is the same for all edges {x, S} and is set to different values
in the respective reductions. In Ḡ(X,S) the edges {x, r} have scaling factor Γ̄.

r

S1 S2 S3 S4

x1 x2 x3 x4 x5 x6

1

ΓΓ̄

Figure 4.35: The graph Ḡ(X,S) for an X3C instance (X,S) where X = {x1, . . . , x6} and
S = {S1, . . . , S4}. Without the dashed edges we get G(X,S). Thin edges going from S to r have
γ{S,r} = 1, bold edges have γ{u,S} = Γ, and the dashed edges have γ{x,r} = Γ̄.

We define the games
(
G(X,S), β

)
and

(
Ḡ(X,S), β

)
where the underlying graphs are

G(X,S) and Ḡ(X,S) respectively. The parameter β ∈ {0, 1} denotes whether we are in a
multicast (β = 0) or in a broadcast (β = 1) game. Formally we have the broadcast game(
Ḡ(X,S), 1

)
=
(
Ḡ(X,S), r, f, γ

)
, where γ{S,r} = 1, γ{x,S} = Γ, and γ{x,r} = Γ̄. Whereas(

G(X,S), 0
)

describes the multicast game (G(X,S), r,X, f, γ), where γ is as above.
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We show a relation between equilibria in
(
G(X,S), β

)
and

(
Ḡ(X,S), β

)
, and exact covers

of (X,S) depending on the choices of Γ and Γ̄. Intuitively, we define for an exact cover
C, a profile, where every S ∈ S goes directly to the root and every x ∈ X goes via the
unique set in C to the root. On the other hand for any equilibrium, we consider a set
S ∈ S to be in the cover, if some x uses S to connect to r.

For an exact cover C denote by C(x) the unique element of C containing x. We define
the profile σC , where

σCS = {S, r} and σCx = {{x,C(x)}, {C(x), r}}

for players in S and X respectively. Under some conditions on Γ and Γ̄ these profiles
are equilibria.

Lemma 37. For an exact cover C of (X,S), the profile σC is
• an equilibrium in

(
G(X,S), β

)
, if Γ ≥ 1

• an equilibrium in
(
Ḡ(X,S), β

)
, if Γ ≥ 1 and f(1)Γ̄ ≥ f(1)Γ + f(3 + β) .

Further, σC satisfies

nσC({C, r}) = 3 + β for C ∈ C and nσC({S, r}) = β for S ∈ S \ C.

Proof. Let C be an exact cover of (X,S). The numbers of players using edges {S, r}
follow immediately from the fact that the sets in C are disjoint and cover all elements of
X.

Now let Γ ≥ 1. Consider a player S ∈ S (if β = 1). The current cost of S is

CS
(
σC
)

= f(3 + β).

Any other strategy begins with an edge {S, x} followed by an edge {x, S′}. From x ∈ S
and the discussion above we get that {S, x} is used by x and {x, S′} is not used in σC .
Hence, the cost of any other strategy for player S is lower bounded by Γf(2) + Γf(1).
Since f is decreasing and Γ ≥ 1, there are no improving moves for S.

For a player x ∈ X we compute the current cost

Cx
(
σC
)

= Γf(1) + f(3 + β).

If we are in G(X,S), then any other strategy begins with an edge of cost Γf(1) and the
next edge is used by at most 2 players and may even have the scaling factor Γ. Hence,
there is no improving move for x. If we are in Ḡ(X,S), the direct edge to r is an available
strategy of cost f(1)Γ̄. From the condition on Γ̄ together with the arguments above,
there are no improving moves for x.

For the other direction, consider an equilibrium σ in
(
G(X,S), β

)
or
(
Ḡ(X,S), β

)
and

define the set
Sσ = {S ∈ S : nσ({S, r}) > β}.
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We will show that in a game
(
G(X,S), β

)
the collection Sσ is a cover, and in

(
Ḡ(X,S), β

)
it is a packing of (X,S). For this we need an auxiliary lemma showing that only the
elements of a set S are using S on their path to the root.

Lemma 38.
An equilibrium τ of

(
G(X,S), β

)
where Γ ≥ 1 and f(1) ≤ f(2 + β)Γ satisfies

∀S ∈ S : τS = {S, r} and
∀x ∈ X : τx = {{x, S}, {S, r}} for some S ∈ S with x ∈ S.

An equilibrium τ of
(
Ḡ(X,S), β

)
where Γ ≥ 1 and f(1)Γ̄ ≤ f(1)Γ + f(2 + β)Γ satisfies

∀S ∈ S : τS = {S, r} and
∀x ∈ X : τx = {x, r} or τx = {{x, S}, {S, r}} for some S ∈ S with x ∈ S.

Proof. Let τ be an equilibrium of
(
G(X,S), β

)
or
(
Ḡ(X,S), β

)
and let T = supp(τ) be the

corresponding tree from Lemma 9.
We show that any strategy consists of at most 2 edges if the corresponding properties

of Γ and Γ̄ are satisfied. From the structure of G(X,S) and Ḡ(X,S) the given form of the
strategies follows.

Let v be a player with a longest path in τ , i.e., v maximizes |τv|. Then v is a leaf in
T . Assume for a contradiction that |τv| > 2.

If v ∈ S (if β = 1), then the current cost of v is strictly greater than f(1)Γ. But going
directly to the root would incur a cost of at most f(1). Since Γ ≥ 1, this shows that v
would have an improving move, contradicting τ being an equilibrium.

So we have v ∈ X. Since v uses more than 2 edges the strategy is of the form
τv = {{v, S}, {S, x}} ∪ τx. Since v is a leaf in T she uses the first edge on her own. The
edge {S, x} is used by all descendants of S in T . As v has a longest path, these can only
be direct neighbors of S (excluding r). Hence this edge is used by at most 2 +β players:
player v, the third element of S unequal to v and x, and possibly S. Since the path τx
incurs some positive cost the current cost of v is lower bounded by

Cv(τ) > f(1)Γ + f(2 + β)Γ.

We are now looking at two alternative strategies for v. In G(X,S) consider the strategy
t′ = {{v, S}, {S, r}}. This strategy incurs a cost of at most f(1)Γ + f(1). Since f(1) ≤
f(2 + β)Γ, this would be an improving move for v. In

(
Ḡ(X,S), β

)
consider t′ = {v, r} of

cost f(1)Γ̄. Again, we get a contradiction from the condition on Γ̄.

We are now able to show that equilibria correspond to covers or packings. For the
game

(
G(X,S), β

)
this follows immediately from the previous lemma.

Corollary 5. For an equilibrium σ in a game
(
G(X,S), β

)
with the conditions of Lemma 38,

the set Sσ is a cover of (X,S). Further, Sσ is an exact cover, if and only if nσ({S, r}) ∈
{1, 3 + β} for every S ∈ S.
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Lemma 39. For an equilibrium σ in a game
(
Ḡ(X,S), β

)
where f(1)Γ̄ ≤ f(1)Γ+f(3+β),

the set Sσ is a packing of (X,S).

Proof. First, observe that the condition on Γ̄ given here implies the condition of Lemma 38
since f is decreasing. Hence, we know that the structure of the strategies in σ is as given
in Lemma 38. We show that for any set S ∈ S either all of the three elements of S
go via S to r or none of them does. This yields that the elements of Sσ are disjoint.
Consider a set S ∈ S and a player x ∈ X visiting S on its path. From Lemma 38 we
have σx = {{x, S}, {S, r}}. Further, x is a leaf in supp(σ) and the edge {S, r} can be
used by at most 3 + β players. Hence, the current cost of x is lower bounded by

Cx(σ) ≥ f(1)Γ + f(3 + β).

Going directly to the root is a feasible strategy of x, which incurs a cost of

Cx(({x, r}, σ−x)) = f(1)Γ̄ ≤ f(1)Γ + f(3 + β).

Since σ is an equilibrium, switching to {x, r} can not be an improving move.
If f(1)Γ̄ < f(1)Γ + f(3 +β), all players use their direct edge and Sσ is a packing since

it is empty. Now let f(1)Γ̄ = f(1)Γ + f(3 + β), then the current cost of x has to be
exactly f(1)Γ + f(3 + β). This can only be the case, if all of the 3 + β available players
use edge {S, r}. Meaning that if some player x goes via S in an equilibrium, then the
other 2 elements have to join. This shows that the sets in Sσ are disjoint.

We use these relations of equilibria and covers and packings to show that computing
best equilibria is NP-hard.

Best Equilibria in Multicast Games We consider the multicast game
(
G(X,S), 0

)
, where

we set Γ = f(1)
f(2) . For this choice we have Γ ≥ 1 and f(1) ≤ f(2)Γ. Hence we can use

Lemma 37 and Corollary 5.

Theorem 12. It is NP-hard to find a best equilibrium in a uniform multicast game.

Proof. We reduce from X3C. Let (X,S) be an instance of X3C and consider the game(
Ḡ(X,S), 0

)
as described before. First assume that there is no exact cover of X in S. Let

σ be any equilibrium of
(
G(X,S), 0

)
and Sσ be the corresponding cover (Corollary 5).

We show a relation of the social cost of σ and the size of Sσ. For i ∈ {1, 2, 3} define the
set Sσi containing the sets C from Sσ where i elements go via C, i.e., nσ({C, r}) = i.
From Lemma 38 we have nσ({C, r}) ≤ 2 for any C ∈ S \ Sσ3 . The social cost can be
bounded as

C(σ) =
∑

e={u,S}
∈supp(σ)

γenσ(e)f(nσ(e)) +
∑

e={S,r}
∈supp(σ)

γenσ(e)f(nσ(e))

≥ |U |f(1)f(1)
f(2) +

∑
S∈Sσ3

3f(3) +
∑

S∈S\Sσ3

nσ({S, r})f(2). (4.56)
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Since every player has to connect to the root we have |U | = ∑
S∈S nσ({S, r}). We can

thus rewrite the right hand side of (4.56) to

|U |f(1)2

f(2) + |Sσ3 |3f(3) + (|U | − 3|Sσ3 |)f(2) = |U |
(
f(1)2

f(2) + f(2)
)

+ 3|Sσ3 |(f(3)− f(2))

The number of players |U | can also be expressed as |Sσ| + |Sσ2 | + 2|Sσ3 | and hence we
have

2|Sσ3 | ≤ |U | − |Sσ|. (4.57)

We continue (4.56) as

C(σ) ≥ |U |
(
f(1)2

f(2) + f(2)
)
− 3

2(|U | − |Sσ|)(f(2)− f(3)) (4.58)

= |U |
(
f(1)2

f(2) −
1
2f(2) + 3

2f(3)
)

+ 3
2 |S

σ|(f(2)− f(3)).

Since there is no exact cover for (X,S) the inequalities (4.57) and hence (4.58) are strict
for Sσ.

On the other hand, if C is an exact cover for (X,S), there is an equilibrium σC from
Lemma 37. In the computations above for the social cost of σC the inequalities (4.56),
(4.57) and (4.58) are satisfied with equality, since C = SσC is an exact cover of U .

Assume we can compute a best equilibrium in
(
G(X,S), β

)
. Comparing the social cost

of the equilibrium to the right hand side of (4.58), where |Sσ| = |U |
3 , decides X3C.

Best Equilibria in Broadcast Games For broadcast games consider the game
(
Ḡ(X,S), 1

)
with the dashed edges connecting every element x directly to the root. We set Γ̄ = 1+ f(4)

f(1)
and Γ = 1. The conditions of Lemma 37 and Lemma 39 are satisfied as Γ ≥ 1 and
f(1)Γ̄ = f(1)Γ + f(4).

For multicast games any equilibrium corresponds to a cover and by minimizing the
social cost we tried to make the elements of the cover disjoint and hence an exact cover.
Here we go in the other direction. We know that any equilibrium corresponds to a
packing and minimizing the social cost leads to a packing covering all elements and
hence an exact cover. For this, we need the information whether some elements are
covered by a packing or not. This is why we can not use the same graph as for multicast
games. Consider the graph without the dashed edges in the case of fair cost allocation.
Then every profile has the same social cost, since every S connects to the root and every
x to some S. We thus loose the information which S is actually used to cover some x.
By adding the outer strategies for players in x we regain the information that some x is
not covered.

Using the correspondence of equilibria and packings we show the main statement.

Theorem 13. It is NP-hard to find a best equilibrium in a uniform broadcast game.
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Proof. We reduce from X3C. Let (X,S) be an instance of X3C and consider the game(
Ḡ(X,S), 1

)
as described above. Assume there is no exact cover in (X,S). Let τ be

any equilibrium of
(
Ḡ(X,S), 1

)
and Sτ be the corresponding packing (Lemma 39). From

Lemma 38 we can compute the social cost of τ as

C(τ) = f(1)|S \ Sτ |+ f(4)|Sτ |+ (f(1) + f(4))|U |.

We have |S \ Sτ | = |S| − |Sτ | and since Sτ is a packing also |Sτ | ≤ |U |3 . Thus

C(τ) = f(1)|S|+ (f(4)− f(1))|Sτ |+ (f(1) + f(4))|U |
= f(1)|S|+ (f(1)− f(4))(|U | − |Sτ |) + 2f(4)|U |

≥ f(1)|S|+ (f(1)− f(4))2
3 |U |+ 2f(4)|U | (4.59)

= f(1)|S|+ |U |
(2

3f(1) + 4
3f(4)

)
Since Sτ is not an exact cover, (4.59) is strict.

On the other hand, if there is an exact cover C for (X,S), there is an equilibrium
σC from Lemma 37 with C = SσC . In the above computation for the social cost of σC ,
inequality (4.59) is satisfied with equality.

Thus, as before, if we can compute a best equilibrium in
(
Ḡ(X,S), 1

)
, we can decide

X3C by comparing the social cost to the final quantity in (4.59).

The Global Potential Minimizer in Broadcast Games Instead of trying to find the
best equilibrium, one can also try to find another special equilibrium, the global potential
minimizer. Computing the global potential minimizer in a multicast game corresponds
to finding a minimum cost flow with concave edge costs. For strictly concave edge costs,
Guisewite and Pardalos [GP91a] show that finding a minimum cost flow is NP-hard in
the directed multicast case. Our potential function induces strictly concave edge costs
and hence falls into their class. We show that the problem stays NP-hard for undirected
broadcast games.

We consider the game
(
G(X,S), 1

)
, where we set Γ to f(1)

f(3) . With this choice we have
Γ ≥ 1 and f(1) ≤ f(3)Γ and hence we can apply Lemma 37 and Corollary 5.

Note that for fair cost allocation, in contrast to the social cost, the number of players
using an edge influences the potential and hence we do not need the outer dashed edges
in this case.

Theorem 14. It is NP-hard to find a global potential minimizer in a uniform broadcast
game.

Proof. We reduce from X3C. Let (X,S) be an instance of X3C and consider the game(
G(X,S), 1

)
as described above. Assume there is no exact cover of (X,S). Let σ be any

equilibrium of
(
G(X,S), 1

)
. With the structure of σ from Lemma 38 we compute the
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potential as
Φ(σ) =

∑
S∈S

F (nσ({S, r})) + ΓF (1)|U |.

Since F is concave and 1 ≤ nσ({S, r}) ≤ 4, we can bound the potential by

Φ(σ) ≥
∑
S∈S

(4− nσ({S, r})
3 F (1) + nσ({S, r})− 1

3 F (4)
)

+Γf(1)|U | (4.60)

=
∑
S∈S

(
3F (1) + (nσ({S, r})− 1)F (4)− F (1)

3

)
+Γf(1)|U |

Since ∑S∈S nσ({S, r}) = |U |+ |S| we can write the right hand side as

3|S|F (1) +
(∑
S∈S

nσ({S, r})− |S|
)
F (4)− F (1)

3 + Γf(1)|U |

=3|S|F (1) + |U |
(
F (4)− F (1)

3 + Γf(1)
)

As F is strictly concave, (4.60) is tight only if nσ({S, r}) ∈ {1, 4} for every S ∈ S. From
Corollary 5, we have that (4.60) is strict since there is no exact cover.

On the other hand, if there is an exact cover C of (X,S), there is an equilibrium σC

from Lemma 37 where nσ({S, r}) ∈ {1, 4} for every S ∈ S. In the above computation of
the potential of σC the inequality is satisfied with equality.

Thus, if we can compute a global potential minimizer, we can decide X3C by com-
paring the potential to the final quantity in the above computation.

Note that the social cost of the global potential minimizer can be far away from the
cost of a social optimum as studied in [KM13].

4.8 Conclusion
In this chapter, we give the first detailed study of the efficiency of equilibria in uniform
network cost sharing games with general concave non-decreasing total costs. We deter-
mine the Price of Anarchy for uniform games and give bounds on the Price of Stability
for general and broadcast games. Finally, we show hardness results for the computation
of (good) equilibria.
Upper Bounds on the Price of Stability. For general games, we show a constant upper
bound for linear and polynomial total cost functions. This constant depends on the
parameter s or α, and as the parameter gets close to 0, the bound grows very large.
On the other hand, the case where s, α are 0 is fair cost allocation for which a constant
bound is already known. Thus, the main direction of future research is to find better
upper bounds on the PoS for small parameters s and α, which are closer to the known
bounds for fair cost allocation.

For broadcast games, we extend the homogenization-absorption framework from Bilò,
Flammini, and Moscardelli [BFM20] for fair cost allocation to sharing functions with
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economies of scale. This gives constant upper bounds for broadcast games where the
cost function decreases quickly. In our analysis, we did not use any properties specific
to a social optimum. We did not even use the exact social cost of an optimum but just
a lower bound. Finding ways to incorporate the above aspects into the analysis is a
promising direction to reduce the bound (Research Question 4).
Lower Bounds on the Price of Stability. We construct instances of broadcast games to
obtain lower bounds for sharing functions with economies of scale. For small graphs,
our computational experiments show that these instances give the highest values among
graphs with the same number of nodes. However, we do not have any theoretical tools to
prove this formally. There is a significant lack in the understanding of instances where
the best equilibrium is far away from a social optimum. It is, for example, not clear
what graphs we have to consider. Do we need to take the complete graph, or can we
restrict the instances to smaller subclasses (Research Question 5)? Intuitively, due to
economies of scale effects, the cost of an equilibrium is high if only few players share
edges. Hence, another point of attack is to show that the PoS is defined by an instance
where a star is one of the best equilibria (compare to Research Question 7). Developing
compact characterizations of a profile being one of the best equilibria would also benefit
the computational experiments. So far, all lower bounds are below 2. Hence, we ask
Research Question 10. Is the PoS of broadcast games at most 2?

Computing (good) Equilibria. We extend the PLS-hardness proof for finding an equilib-
rium in general network games of Bilò et al. [Bil+21] to sharing functions with economies
of scale and show that computing the best equilibrium is NP-hard even in broadcast
games for sharing functions with economies of scale. The main open question is whether
the PLS-hardness also holds for multicast games (Research Question 9). On the one
hand, existing constructions in PLS-hardness proofs do not seem to transfer to the
single-sink case. The tree structure of equilibria is very restrictive in modeling inde-
pendent decisions. Does this prevent PLS-reductions for the problem? On the other
hand, while trying to find a local search algorithm, we came up with the example in Sec-
tion 4.7.1 showing that there are local moves where the progress is very little. We were
not able to extend this to a complete sequence of improving moves taking exponentially
many steps. Apart from local search algorithms, there may exist centralized algorithms
to find an equilibrium.
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5 The Undirected Two Disjoint Shortest
Paths Problem

5.1 Introduction
In the previous two chapters, we looked at two types of effects appearing when sharing
common resources. In both cases, using the same resource is allowed but has a different
impact on the players. In the first setting, sharing was disadvantageous, and in the
second setting, sharing was beneficial for the players. In this chapter, we are interested
in the case where using the same resource is disallowed.

Consider a factory for filled chocolates. In one of the buildings, the chocolates get their
outer chocolate cover. The company produces two types of chocolates: One with cassis
filling and white chocolate cover and one with orange filling covered with dark chocolate.
There are some conveyor belts installed that can be run in both directions interconnected
by junctions. The plain chocolates arrive at two places from another building, and the
melted white and dark chocolate arrive at two other places. The producer has to find
two ways of activating some of the conveyor belts to bring the coverings to their plain
chocolates. He must make sure that the two assembly lines he chooses do not cross in
any of the junctions. Otherwise, the white and dark chocolate get mixed and can not be
used anymore. Further, the melted chocolate has to be used very quickly as otherwise,
it gets too cold. Thus the assembly lines have to be as short as possible. Figure 5.1
shows an example of the situation.

Figure 5.1: Example of conveyor belts and junctions in the cover building. The arrival points
of the plain chocolates (left) and the melted cover chocolate (right) are given. All conveyor belts
have length 1. Two feasible assembly lines are highlighted. They are as short as possible and do
not meet at any junction.
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In the above setting, the shared resources are the junctions, and the task is to find
two node disjoint shortest paths in an undirected graph. An instance of the problem is
given by an undirected graph with edge lengths and two source-sink node pairs. The
question is whether there exist two paths connecting the sources to their corresponding
sinks, such that each path is a shortest source-sink path in the graph, and they do not
use any nodes in common.

This type of problem often arises in practice, and there are many versions. The natural
generalization of the above problem to k source-sink pairs is called k disjoint shortest
paths problem (k-DSPP). If we drop the condition that the paths have to be shortest
paths, the problem is called the k disjoint paths problem (k-DPP). Both problems can
be studied in undirected graphs and in directed graphs, where the task is to find directed
paths. There are two versions of each problem. The paths can either considered to be
node disjoint or edge disjoint. Finally, different types can be specified by restricting the
allowed lengths of edges. If all lengths are 0, then every path is a shortest path, and
hence k-DSPP and k-DPP are the same problem. In all other cases, these two problems
are different. We mention two of the cases of interest. Instances, where every length is
strictly positive, are distinguished from instances where the lengths are restricted to be
non-negative, i.e., both edges of length 0 and positive length are allowed.

We study the node disjoint version of the undirected 2 disjoint shortest paths problem
(2-DSPP) with non-negative edge lengths.

Note on Collaboration This chapter is based on joint work with Marinus Gottschau
and Marcus Kaiser. The results are published in Operations Research Letters, Volume
47, Issue 1, 2019 [GKW19] and presented here in rewritten form.

Previous Work
Disjoint Paths. The disjoint paths problem is an old problem in graph theory and has
received much attention. The first results show that the problem is NP-complete if the
number k of disjoint paths is part of the input. On undirected graphs, it is one of Karp’s
first NP-complete problems [Kar72]. Even, Itai, and Shamir [EIS76] show that it is also
NP-complete for directed graphs and even the restriction to planar graphs remains hard
as shown by Lynch [Lyn75].

Hence, most papers study k-DPP for the case where k is fixed and not part of the
input. Unfortunately, Fortune, Hopcroft, and Wyllie [FHW80] show that the problem
remains NP-complete for any fixed k ≥ 2 in general directed graphs. For special classes
of directed graphs, polynomial-time algorithms are known. Shiloach and Perl [SP78] give
the first efficient algorithm for the 2 disjoint paths problem (2-DPP) in directed acyclic
graphs. Their algorithm was later improved by Tholey [Tho05] and generalized to k
disjoint paths by Fortune, Hopcroft, and Wyllie [FHW80]. For acyclic mixed graphs, that
contain undirected edges and directed arcs such that no orientation of the edges induces
a directed cycle, Zhang and Nagamochi [ZN12] give a polynomial-time algorithm for the
node disjoint version of k-DPP. Schrijver [Sch94] gives a polynomial-time algorithm for
the same problem on planar directed graphs.
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For undirected graphs, the first results are efficient algorithms for 2-DPP found in-
dependently by Seymour [Sey80], Shiloach [Shi80], Thomassen [Tho80], and Ohtsuki
[Oht80]. Similarly to directed graphs, an efficient algorithm for planar graphs was de-
veloped by Reed, Robertson, Schrijver, and Seymour [Ree+91]. For the general k-DPP
where k is fixed and not part of the input, Robertson and Seymour [RS85; RS95] give an
O
(
n3) algorithm (where n is the number of nodes) as part of their influential graph mi-

nors project. Kawarabayashi, Kobayashi, and Reed [KKR12] improved their algorithm
to run in quadratic time. We summarize the known complexity results for k-DPP in
Table 5.1.

undirected directed
k arbitrary NP-complete [Kar72] NP-complete [EIS76]
k fix P [RS85] NP-complete [FHW80]
k = 2 P [Sey80; Shi80; Tho80; Oht80] NP-complete [FHW80]

Table 5.1: Complexity of k-DPP for k ≥ 2.

Disjoint Shortest Paths. The problem we study in this chapter was introduced by Eilam-
Tzoreff [Eil98]. She shows that k-DSPP is NP-complete if k is part of the input in both
directed and undirected graphs, for the node and edge disjoint version, even for planar
graphs where all edges have unit length. For directed graphs with non-negative edge
lengths, the problem remains NP-complete for every fixed k ≥ 2, as shown by Bérczi
and Kobayashi [BK17]. On the positive side, Bérczi and Kobayashi give polynomial-time
algorithms for 2-DSPP in directed graphs with positive edge lengths and for the node
disjoint version of k-DSPP in planar directed graphs. They further give algorithms for
k-DSPP in undirected planar graphs. As for k-DPP, the first results for k-DSPP are
algorithms for the case k = 2. Already Eilam-Tzoreff [Eil98] gives an O

(
n8) algorithm

for the node and edge disjoint version of 2-DSPP on graphs with positive edge lengths.
For the node disjoint case Akhmedov [Akh20] improves these algorithms to O

(
n7) and

O
(
n6) for unit length edges. Apart from the algorithm for planar graphs by Bérczi

and Kobayashi [BK17], there are only efficient algorithms for the unit length case by
Lochet [Loc21] and Bentert, Nichterlein, Renken, and Zschoche [Ben+21] for k-DSPP
when k is fixed. The complexity of k-DSPP for fixed k ≥ 3 and general edge lengths is
open for undirected graphs. We summarize the known complexity results for k-DSPP
in Table 5.2.
Variations. There are several variations of k-DSPP. We mention only some of them
without giving a complete list of known results. Eilam-Tzoreff [Eil98] studies 2-DSPP,
where only one of the paths is constrained to be a shortest path. She shows that this
problem is NP-complete in directed and undirected graphs for node and edge disjoint
paths, even for unit length edges. Cai and Ye [CY16] develop FPT-algorithms for several
bounds on the lengths of the two paths. Their parameters are different sums of the two
bounds. So for the problem mentioned above studied by Eilam-Tzoreff, they give an
algorithm that is polynomial in the length of a shortest s1 − t1 path.
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5 The Undirected Two Disjoint Shortest Paths Problem

undirected directed
` = 1 ` > 0 ` ≥ 0 ` > 0 ` ≥ 0

k arb. NP-compl. NP-compl. NP-compl. NP-compl. NP-compl.
[Eil98] [Eil98] [Kar72] [Eil98] [EIS76]

k fix P NP-compl.
[Loc21; Ben+21] [FHW80]

k = 2 P P P * P NP-compl.
[Eil98] [Eil98] [KS19; GKW19] [BK17] [FHW80]

Table 5.2: Complexity of k-DSPP for k ≥ 2 and constraints on the edge lengths `. An algorithm
for the undirected 2 disjoint shortest paths problem with ` ≥ 0 (marked with *) is the topic of
this chapter. This result has been obtained independently by Kobayashi and Sako [KS19].

Other versions include minimizing the total length of both paths (in contrast to in-
dividually minimizing their length). Suurballe [Suu74] is the first to study this version
where all sources are the same and all sinks are the same. Later, Björklund and Hus-
feldt [BH14; BH19] give a randomized algorithm for two source-sink pairs and unit length
edges. Instead of minimizing the total length, Li, McCormick, and Simchi-Levi [LMS90]
consider minimizing the maximum length of both paths. They show that this problem is
NP-complete in undirected and directed graphs for node and edge disjoint paths. Amiri
and Wargalla [AW20] consider k-DSPP where the paths do not have to be completely
node disjoint, but up to c paths can meet in a node. They give a polynomial-time
algorithm for fixed k in directed acyclic graphs with unit length arcs.

On the other hand, the edge disjoint version of k-DPP is a special case of integral
multi-commodity flow where all capacities are 1. Even, Itai, and Shamir [EIS76] show
that the problem is NP-complete even for two commodities in directed and undirected
graphs. For instances of k-DPP where all sources are the same and all sinks are the same,
the problem reduces to the standard maximum flow problem using Menger’s theorem
[Men27].

Our Results We give a polynomial-time algorithm for solving 2-DSPP with non-negative
edge lengths. The restriction to shortest paths is guaranteed by directing edges accord-
ing to shortest paths networks. This removes the length information and results in a
mixed graph that contains undirected edges and directed arcs. We introduce the class
of weakly acyclic mixed graphs and give an algorithm to solve k-DPP in such graphs.
This problem appears as a subproblem when solving 2-DSPP. Our algorithm follows the
one from Bérczi and Kobayashi [BK17] for 2-DSPP on directed graphs. They reduce
the problem to 2-DPP in directed acyclic graphs. We reduce 2-DSPP on undirected
graphs to 2-DPP on weakly acyclic mixed graphs. Our algorithm for this subproblem is
a generalization of the one from Fortune, Hopcroft, and Wyllie [FHW80] for k-DPP in
directed acyclic graphs.

We remark here that Kobayashi and Sako [KS19] independently developed a polyno-
mial-time algorithm for 2-DSPP.
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5.2 Model and Notation

5.2 Model and Notation
Model We study the node disjoint version of the undirected k disjoint shortest paths
problem (k-DSPP). An instance is given by an undirected graph G = (V,E) with non-
negative edge lengths ` : E → R≥0 and k source and sink nodes si and ti in V , that are
pairwise different. The task is to find a shortest si− ti path in G w.r.t. ` for each of the
k source-sink pairs, such that all of the paths are pairwise node disjoint, or decide that
no such paths exist. Two paths (as sequence of nodes) are node disjoint if they do not
have a node in common. If the paths are not restricted to be shortest si − ti paths, the
problem is called the k disjoint paths problem (k-DPP). See Figure 5.2 for an example
of 2-DSPP.

s1 s2

t2 t1

0 0

2

3

Figure 5.2: An instance of 2-DSPP. The edge labels give the length of the edge. Edges without
label have length 1. Two node disjoint shortest si − ti paths are shown in orange and purple.

An instance of k-DSPP can be modeled as a congestion game with k players. The
shared resources are the nodes of the graph G = (V,E) with increasing cost functions,
where the cost for one player is 0 and for more than one player ∞. The available
strategies for a player i are all shortest si − ti paths in G w.r.t. `. We are interested in
the existence of a profile with finite cost.

We will use the graph theoretic interpretation of the problem rather than the game
theoretic one in this chapter.

Relation to Other Problems We are interested in node disjoint paths. There are two
closely related versions of the disjoint paths problem. We show that both of them can
be modeled in our setting.
Internally Node Disjoint Paths. In some settings, looking at node disjoint paths is too
restrictive. It disallows for sources and sinks to lie on some of the shortest paths chosen
by other players, or instances where sources and sinks may coincide. If we want to allow
these scenarios, we are looking for internally node disjoint paths. Two si − ti paths
P1 = (s1, p1, . . . , pl, t1) and P1 = (s2, q1, . . . , qm, t2) are internally node disjoint, if the
sets {p1, . . . , pl} and {q1, . . . , qm} of internal nodes are disjoint.

However, we can transform an instance of internally node disjoint paths into an in-
stance of node disjoint paths by copying nodes. We add a copy of every node that is a
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5 The Undirected Two Disjoint Shortest Paths Problem

source or a sink together with its incident edges. If a node is used as source or sink for
several players, we add copies for each of them. Figure 5.3 shows an example.

s1, s2 t1, t3

s3 t2

(a) A graph G with three internally node
disjoint si − ti paths.

s1
s2

t1
t3

s3 t2

(b) The corresponding node disjoint si − ti paths in
G.

Figure 5.3: Transforming an instance with internally node disjoint paths into an instance with
node disjoint paths.

In this way, the sources and sinks end up being all different and there is a one-to-one
correspondence between internally node disjoint si − ti paths in the original graph and
node disjoint si − ti paths in the new graph.

Take a set of internally node disjoint si − ti paths in the original graph. Every path
has a canonical image in the new graph, obtained by the same copy transformation.
These images are node disjoint paths in the new graph. In the original graph the
paths intersected only at source or sink nodes. These intersections are resolved by the
transformation.

On the other hand, a set of node disjoint si−ti paths in the new graph, can be mapped
to a set of paths in the original graph by merging the copies of each node into a single
node. The resulting paths can only intersect in source or sink nodes, hence they are
internally node disjoint.

The mappings between paths in the original graph and in the new graph maintain the
lengths of the paths.
Edge Disjoint Paths. Instead of taking the resources to be nodes we can also consider
edges. We are then looking for edge disjoint paths. An instance for edge disjoint paths
can be transformed to node disjoint paths by taking the line graph.

The line graph of a graph is constructed by swapping the roles of edges and nodes. For
every edge in the graph there is a node in the line graph. Two edges are adjacent in the
line graph, if they are incident in the original graph. We add the sources and sinks as
nodes to the line graph and connect them to their incident edges. The length of an edge
in the original graph is distributed to the incident edges in the new graph. Each of those
gets half of the length. If the edges e1 and e2 are adjacent in the line graph, then the
edge {e1, e2} has length `(e1)

2 + `(e2)
2 . Figure 5.4 shows an example of the construction.

There is a canonical translation of paths in G to paths in G by using the edges of
G as nodes on the path in G. For paths in G there also is a canonical translation to
edge sets in G, taking all edges used on the path. Notice that this translation does not
necessarily result in paths in G. In the example of Figure 5.4 the path s2 − e3 − e1 − t2
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s1 t2

s2 t1

e1

e2 e3

e4

(a) A graph G with 4 nodes and edges, and
2 pairs of source and sink nodes

s1 t2

s2 t1

e1

e2

e4

e3

`(e4)
2

`(e3)+`(e4)
2

(b) The graph G consisting of the line graph of G
(solid edges) and the source and sink nodes with
their connections (dashed). We only show two edge
labels illustrating the construction of the lengths
on new edges {e3, e4} and {e4, t1}.

s1 t2

s2 t1

e1

e2 e3

e4

(c) Two edge disjoint si − ti paths in G.

s1 t2

s2 t1

e1

e2

e4

e3

(d) The corresponding node disjoint si − ti paths
in G.

Figure 5.4: Transforming an instance with edge disjoint paths to an instance with node disjoint
paths.

is a feasible s2 − t2 path in G. Its image is the set {e3, e1}. We observe that this set is
not an s2 − t2 path in G. However, every image of a path in G contains a valid path in
G. In the above example, just taking edge e3 is an s2 − t2 path.

Lemma 40. Every canonical image in G of an si− ti path in G contains an si− ti path
in G.

Proof. Let P = (si, e1, . . . , el, ti) be an si − ti path in G. By construction of G, si and
ti are connected in the canonical image of P in G. Now let P ′ be an si − ti path in G
using only nodes in {e1, . . . , el} with minimal number of nodes. The canonical image of
P ′ connects si and ti in G with minimal number of edges from {e1, . . . , el}. Hence, it is
an si − ti path in G.

With the previous lemma we can show a one-to-one correspondence between edge
disjoint shortest paths in the original graph G and node disjoint shortest paths in the
new graph G.

Take a collection of edge disjoint shortest si−ti paths in G. Every path has a canonical
image in G, where the edges on the paths are now nodes on the path (see Figure 5.4d).
By construction of G these images are node disjoint si − ti paths. Further, the length
of the paths are maintained, as every node in G corresponding to an edge in G is an
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5 The Undirected Two Disjoint Shortest Paths Problem

internal node with degree 2 in an image of a path. Thus the length of the edge in G is
split to the two incident edges on the path in G. The missing half of the length of the
first and last edge on the path, is covered by the additional edges from the source and
sink nodes in G. With the same arguments, the length of any path in G is the sum of
the lengths of the edges (nodes) on the path. With the previous lemma we have that
any si − ti path in G is at least as long as an si − ti path in G. This shows that the
images are indeed shortest paths in G.

For the other direction take a set of node disjoint shortest si − ti paths in G. From
Lemma 40 the images of these paths contain si − ti paths in G. These paths are edge
disjoint. Let P be an si − ti path in G and P be the si − ti path in G in the canonical
image of P . By construction we have `(P ) ≤ `(P ). Any si − ti path in G translates to
an si− ti path in G with the same length. As P is a shortest si− ti path in G, its length
is at most the length of any other si − ti path. In particular, at most the length of the
images of si − ti paths in G. We thus obtain that P is a shortest si − ti path in G.

With these transformations we can restrict our attention to node disjoint paths. When
we write just “disjoint” for paths in the remainder of this chapter, we mean node disjoint.

Mixed Graphs To solve the disjoint shortest path problem on undirected graphs, we
use an auxiliary graph where some of the edges are directed.

Graphs with (undirected) edges and (directed) arcs are called mixed graphs. We denote
a mixed graph as G = (V,A ∪̇E), where A contains the arcs and E the edges. We write
L = A ∪̇ E for the set of all links in G. We assume that the link type between any pair
of nodes is unique, that is, we don’t have {u, v} ∈ E and (u, v) ∈ A or (v, u) ∈ A at the
same time. The notion of a u−v path is extended in the natural way to mixed graphs: A
path is a sequence of different nodes such that the link between two subsequent nodes is
either an edge in E or an arc in A, i.e., P = (v0, . . . , vk) is a path if and only if all nodes
are different and for all i ∈ {1, . . . , k} we have either {vi−1, vi} ∈ E or (vi−1, vi) ∈ A.
For a set of links L we define V (L) to be the set of nodes incident to links in L. For
example V ({{1, 2}, (2, 3)}) = {1, 2, 3}.

The auxiliary graphs will have a crucial property: they do not contain directed cycles.
To state this formally, we introduce the notion of contracting an edge. We denote by
G/e the multigraph resulting from G by identifying the two endpoints of edge e as a
single node and removing all links between them. Figure 5.5b shows an example of
a contraction of an edge. This operation can be extended to a set of edges E′ where
G/E′ is the multigraph resulting from G by contracting all edges in E′ in any order. If
we contract all edges of a mixed graph we end up with a directed multigraph. We set
GA = G/E. If during the contractions no arc in A has been removed and GA is a directed
acyclic multigraph, then the mixed graph G is called weakly acyclic. The example graph
in Figure 5.5 is weakly acyclic. The multigraph GA (shown in Figure 5.5c) is acyclic.
Notice that weakly acyclic graphs can contain undirected cycles.

Instead of looking only at the arcs of a mixed graph, we also look at the graph
GE = (V,E) containing only the edges of G. Note that in contrast to GA we are not
performing any contractions of arcs, we just remove all arcs from G.
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e

(a) A mixed graph G with arcs
(black) and edges (orange and
purple).

e

(b) The contracted multigraph
G/e.

e

O

(c) The multigraph GA ob-
tained from G by contracting
all edges.

Figure 5.5: A weakly acyclic mixed graph G (a). The multigraph GA (c). The graph GE

consists of the two components containing the purple and orange edges and the single node on
the left.

A connected component in an undirected graph is an inclusion-wise maximal subset of
the nodes that is connected. I.e., there is a path between any pair of nodes in the set and
no node can be added while maintaining this property. In a weakly acyclic mixed graph
the connected components of GE can be ordered according to a topological ordering of
GA. In Figure 5.5c the topological ordering of the three components of GE is: e, •,O.

Path Relations Our algorithm to solve 2-DSPP does not just compute the two disjoint
si − ti paths if they exist. Instead we compute all pairs of pairs of nodes where two
disjoint shortest paths exist.

Since we consider node disjoint paths, the sources and sinks have to have different
entries. We thus define the notation V k

6= for the set of k tuples of pairwise different
elements of V .

For an undirected graph G = (V,E) with non-negative edge lengths ` : E → R≥0 and
a subset of edges E′ ⊆ E, we define the relation `——E′ on V 2

6=, where(
u1
u2

)
`——E′

(
v1
v2

)

if there exists a shortest u1− v1 path and a shortest u2− v2 path w.r.t. ` in the edge set
E′ which are disjoint.

By building an auxiliary mixed graph we go from shortest paths to directed paths.
The corresponding version of the relation is extended to k tuples of nodes. For a mixed
graph G = (V,L) and a subset of links L′ ⊆ L define the relation →···→L′ on V k

6= by

u→···→L′ v

if there are disjoint ui → vi paths in L′ for all i ∈ {1, . . . , k}.
For the special case where k = 2 we use the symbol →→. We further allow to restrict

the set of links for both paths individually. For two subsets of links L1, L2 ⊆ L, define
the relation →→L1

L2
on V 2

6= by (
u1
u2

)
→→L1
L2

(
v1
v2

)
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if there is a u1 → v1 path in L1 and a u2 → v2 path in L2 which are disjoint.
For technical reasons we define an asymmetric version of the previous relation for

k = 2. For two subsets of links L1, L2 ⊆ L, define the relation →←L1
L2

on V 2
6= by(

u1
u2

)
→←L1
L2

(
v1
v2

)

if there is a u1 → v1 path in L1 and a v2 → u2 path in L2 which are disjoint. Note that
obviously (

u1
u2

)
→←L1
L2

(
v1
v2

)
⇐⇒

(
u1
v2

)
→→L1
L2

(
v1
u2

)
.

Thus, if we have one of the relations, we obtain the other by swapping the second compo-
nents. However, composing two of those relations behaves differently. The composition
→→′◦→→ builds both paths in the same direction. That is u1 → v1 → w1 and u2 → v2 → w2.
On the other hand →←′ ◦ →← builds one of the paths backwards. I.e., u1 → v1 → w1 but
u2 ← v2 ← w2. Constructing paths in opposite directions is one of the crucial ideas for
our algorithm.

Since we consider only tuples of nodes with different entries, all of the above relations
are reflexive. We define the relation

Id(V ) = {(v, v) : v ∈ V }

consisting of all pairs of elements of V with the same entries. Observe that Id
(
V k
6=

)
is

contained in any of the above path relations.
For the relations on mixed graphs we show conditions for which transitivity holds.

v1 p1

v2 = p2

p3 = q3 = w3

v3

q1 w1

q2 w2

V1 V2

→···→L1
→···→L3

→···→L2

Figure 5.6: The situation in Lemma 41. The three node disjoint paths showing v →···→L1 p
→···→L3

q →···→L2 w are highlighted with colors.

Lemma 41. Let G = (V,L) be a mixed graph and V1, V2 ⊆ V two subsets of nodes that
are disjoint. Let L1, L2 ⊆ L be two sets of links with the property that V (L1) ⊆ V1 and
V (L2) ⊆ V2. Further let L3 ⊆ V1 × V2 be a set of arcs in L from V1 to V2. Then

∀v, w ∈ V k
6= :

(
∃p, q ∈ V k

6= : v →···→L1 p
→···→L3 q

→···→L2 w
)
⇐⇒ v →···→L1∪̇L2∪̇L3 w
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Proof. First observe that the three sets of links L1, L2 and L3 are pairwise disjoint as
their underlying node sets are different.
“⇒”: Let v, w, p, q ∈ V k

6= such that v →···→L1 p
→···→L3 q

→···→L2 w and consider the paths vi → pi
in L1, pi → qi in L3 and qi → wi in L2 for all i ∈ {1, . . . , k} (see Figure 5.6).

As V (L1) ⊆ V1 and V (L2) ⊆ V2, and V1 ∩ V2 = ∅, the paths vi → pi and qi → wi
are disjoint. Since L3 consists only of arcs going from V1 to V2 the path pi → qi is a
single arc. Thus the concatenation of all three paths is a valid simple vi → wi path in
the union of the three link sets.

Further, all three parts of all vi → wi paths are node disjoint in L1, L2 and L3. Since
the entries of p and q are all different, also the concatenations are pairwise node disjoint,
showing v →···→L1∪̇L2∪̇L3 w.
“⇐”: Take v, w ∈ V k

6= with v→···→L1∪̇L2∪̇L3 w and let Pi be the corresponding vi → wi path
for each i ∈ {1, . . . , k}. Similar to the previous direction we get from the disjointness of
the node sets of L1 and L2 and the direction of arcs in L3, that every path Pi can be
split in three parts: a subpath in L1, an arc in L3, and finally a subpath in L2. Each of
the parts can be empty. Let pi be the last node on Pi in V (L1). Set pi = vi if Pi does
not visit V (L1). Further let qi be the first node on Pi in V (L2). Set qi = wi if Pi does
not visit V (L2). Figure 5.6 shows example paths and the corresponding pi and qi. Since
the whole paths Pi are node disjoint also the subpaths are node disjoint in the respective
link sets and p, q ∈ V k

6= shows the claim.

For k = 2 this transitivity holds also for restricted sets of links for both paths. We
phrase the statement using the asymmetric path relation, as this is how we are going to
apply it later.

Corollary 6. Let G = (V,E) be a mixed graph and V1, V2 ⊆ V two subsets of nodes that
are disjoint. Let L1, L

′
1, L2, L

′
2 ⊆ L be sets of links with the properties V (L1), V (L′1) ⊆ V1

and V (L2), V (L′2) ⊆ V2. Further let L3 ⊆ V1 × V2 and L′3 ⊆ V2 × V1 be sets of arcs in L
from V1 to V2 and vice versa. Then

∀v, w ∈ V 2
6= :

(
∃p, q ∈ V 2

6= : v →←L1
L′1
p→←L3

L′3
q →←L2

L′2
w
)
⇐⇒ v →←L1∪̇L2∪̇L3

L′1∪̇L
′
2∪̇L

′
3
w

These compositions of relations on separate node sets is the key building block of our
algorithms.

As subroutines we compute relations on parts of the graph. To compose these relations
we have to extend them to the whole graph. We introduce the process of extending a
relation R on Uk6= to V k

6= , where U ⊆ V . The extension contains Id
(
V k
6=

)
and for every

element ((u1, . . . , uk), (v1, . . . , vk)) of R we add elements of the form

((u1, . . . , ui−1, xi, ui+1, . . . , uj−i, xj , . . . , xj+3, uj+4, . . . , uk),
(v1, . . . , vi−1, xi, vi+1, . . . , vj−i, xj , . . . , xj+3, vj+4, . . . , vk)),

where we replaced some of the entries with pairwise different elements xi from V \U on
both sides. This replacement can be done for any position and any number of positions
in the vectors. Note that if the relation R is empty, its extension is equal to Id

(
V k
6=

)
.
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The size of the extension is upper bounded by
(|V |
k

)
for Id

(
V k
6=

)
plus |R| · |V \ U | · 2k

for the new elements resulting from the elements of R. Hence the size is bounded by a
polynomial in the size of R.

Common Idea of the Algorithms The two problems “Find two disjoint shortest paths
in an undirected graph” and “Find k disjoint paths in a weakly acyclic mixed graph” are
solved by the same high-level idea. Both problems are transformed to finding disjoint
paths in a mixed graph. We do not only compute the si−ti paths, but rather a large part
of the corresponding disjoint path relation. We identify two layers in the mixed graph
and compute the relation separately on those layers. The inner layer consists of disjoint
components where computing disjoint paths can be handled by some subroutine. The
paths computed in these layers are then extended to paths in the whole graph. The inner
components are connected by the outer layer. For both problems the outer layer has an
acyclic structure. This is helpful as we then know the order in which paths in the whole
graph pass through the inner components. We can thus use dynamic programming to
extend the paths in the inner components to larger parts of the whole graph.

The three key properties for this approach are
• finding disjoint paths in the inner components can be done efficiently
• the outer layer is acyclic
• the disjoint paths relation on the mixed graph can be decomposed to the inner

components as in Lemma 41 and Corollary 6.
We begin with an algorithm for k-DPP in weakly acyclic mixed graphs. This algorithm

is then used as subroutine for the inner components for 2-DSPP.

5.3 Disjoint Paths in Weakly Acyclic Mixed Graphs
In this section, we give an algorithm to solve the problem of finding disjoint paths in
weakly acyclic mixed graphs. This algorithm is used as a subroutine in the algorithm for
solving 2-DSPP. In the special case where the mixed graph does not contain any edges,
the graph is a directed acyclic graph and our algorithm resembles the one of Fortune,
Hopcroft, and Wyllie [FHW80].

Formally, we consider the following problem. Given a mixed graph G = (V,L) and
two vectors of k sources s ∈ V k

6= and k sinks t ∈ V k
6= , decide whether there are k pairwise

node disjoint si → ti paths in G.
Following the high-level idea of the algorithm as explained above in Section 5.2, we

solve this problem by computing the relation →···→L on V k
6= as shown in Algorithm 3. That

is, we compute all pairs of source and sink vectors having disjoint paths between them.
The two layers of the mixed graph are specified by the arcs and edges. The outer layer

is the arc layer GA containing only the directed arcs, and the inner layer is the edge layer
GE containing only the undirected edges. The connected components of the edge layer
are the inner components. Finding disjoint paths in these components corresponds to
finding disjoint paths in an undirected graph. Hence it can be solved efficiently by any
algorithm for k-DPP, for example the one from Robertson and Seymour [RS95]. As the
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whole graph is weakly acyclic, the outer layer is acyclic by definition. Thus, we can order
the inner components according to a topological ordering of the arc layer. Hence, paths
in G have to traverse the connected components of the edge layer in the order given by
the arc layer. We will thus use Lemma 41 for the connected components in the edge
layer and the arcs between this components from the arc layer. Figure 5.7 shows one
update iteration of Algorithm 3 in a mixed graph.

Input: weakly acyclic mixed graph G = (V,A ∪̇ E), k ∈ N≥2
Output: →···→A∪̇E on V k

6=

1 let (V1, E1), . . . , (Vl, El) be the connected components of GE sorted according to
a topological ordering of GA

2 for j = 1, . . . , l do
3 Compute →···→Ej using an algorithm for k-DPP and extend it to V k

6=
4 Compute →···→δ−A (Vj) on V k

6=

5 let →···→ = Id
(
V k
6=

)
6 for j = 1, . . . , l do
7 Update →···→ to →···→Ej ◦

→···→δ−A (Vj) ◦
→···→

8 return →···→
Algorithm 3: Solving k-DSPP for fixed k in weakly acyclic mixed graphs

V1 V2 V3

(a) A mixed graph with the connected components V1, V2, V3 of GE in a topological ordering of GA.

v2

v1

p2

v3 p3
w1

p1 = q1

q2

q3
w2

w3

V1

v →···→ p

V2

p→···→δ−A (V3) q

V3

q →···→E3 w

(b) One iteration of extending the disjoint paths in the components by arcs of the outer layer. The
relation →···→ has already been computed on the first two components. It is extended to V3. Three
disjoint vi → wi paths are shown, illustrating the composition of the relations.

Figure 5.7: Example of an iteration of Algorithm 3.
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Theorem 15. For a fixed k ∈ N≥2, Algorithm 3 computes →···→L on V k
6= for a weakly acyclic

mixed graph G = (V,L) in polynomial time.

Proof.
Correctness. Let (V1, E1), . . . , (Vl, El) be the connected components of GE sorted by a
topological ordering of GA, as computed in Line 1. For every j ∈ {0, . . . , l} we define
Lj as the set of arcs and edges in the subgraph of G induced by the first j components
V1, . . . , Vj . Further let →···→j be the relation →···→ after the j-th iteration of Line 7. With
these definitions we have in particular L0 = ∅ and →···→0 = Id

(
V k
6=

)
from Line 5.

We prove the invariant
→···→
j = →···→Lj on V k

6= (5.1)

by induction on j. The base case for j = 0 follows immediately from the definitions.
Now assume (5.1) is true for j and take →···→j+1 = →···→Ej+1 ◦

→···→δ−A (Vj+1) ◦
→···→
j .

Observe that V (Lj) ⊆ V1∪ . . .∪Vj by the definition of Lj , and V (Ej+1) ⊆ Vj+1. Thus
these two sets of links are separated as in Lemma 41. From G being weakly acyclic we
further have δ−A(Vj+1) ⊆ (V1 ∪ . . . ∪ Vj) × Vj+1. Thus all conditions of Lemma 41 are
satisfied. As Lj ∪̇ δ−A(Vj+1) ∪̇ Ej+1 = Lj+1, (5.1) is shown for j + 1.
Running time. The graphs GE and GA can be constructed from G in polynomial time.
Further finding the connected components (V1, E1), . . . , (Vl, El) can be done with a
breadth first search and a topological ordering of GA can be found in time polynomial
in the size of G by successively removing vertices with in-degree zero.

As there are efficient algorithms for k-DPP (e.g., [RS95]), →···→Ej can be computed in
polynomial time. Its extension to V k

6= can be computed in time polynomial in the size of
→···→Ej which is upper bounded by |V |2k.

The relations →···→δ−A (Vj) consist of all matchings between nodes in Vj and nodes in the
preceding components V1∪ . . .∪Vj−1. As relations on V k

6= they contain at most |V |2k ele-
ments. Hence they can be computed in polynomial time, even by complete enumeration.
Similarly, the composition of relations on V k

6= can be computed in polynomial time. As
the number of update iterations is at most |V |, the algorithm runs in time polynomial
in |V |.

5.4 Disjoint Shortest Paths in Undirected Graphs

We are now giving the algorithm to solve the two disjoint shortest path problem for
non-negative edge lengths. From the undirected graph we construct a weakly acyclic
mixed graph, such that the shortest paths in the original graph correspond to directed
paths in the mixed graph. To solve the problem we use the algorithm from the previous
section as subroutine. This approach is based on the algorithm of Bérczi and Kobayashi
[BK17] for 2-DSPP in directed graphs.
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5.4.1 From Shortest Paths to Directed Paths
To restrict the set of available paths to the shortest si− ti paths in the undirected graph
G = (V,E) with edge lengths ` : E → R≥0, we consider the shortest paths networks
rooted at the two sources s1 and s2. The shortest paths network consists of all edges
appearing on shortest paths from the source to the other nodes. The edges of the graph
get directed by increasing distance to the source. The formal definition is given in the
following.

For a source s define the distance function ds : V → R≥0 by

ds(v) = min
s− v path P

∑
e∈P

`(e).

The distance of node v is the length of a shortest s− v path in G w.r.t. `.
The shortest paths network consists of all edges appearing on shortest s − v paths.

These are edges where the length of the edge is exactly the difference of the distances of
its endpoints. We set

Es = {{u, v} ∈ E : `({u, v}) = |ds(u)− ds(v)|}.

For edges in Es with strictly positive length the distance increases from u to v or vice
versa. We orient the edges in Es by increasing distance. The shortest paths network of
G rooted at s is the mixed graph −→Gs = (V,E0 ∪ As), where E0 are the edges of length
0 in G and

As = {(u, v) : {u, v} ∈ Es ∧ ds(u) < ds(v)}.

To solve 2-DSPP, we take the union of both shortest paths networks rooted at s1 and
s2. Define the shortest path orientation of G as the mixed graph

−→
G = (V,E0 ∪As1 ∪As2).

Figure 5.8 shows an example of a shortest path orientation. Notice that the arc sets As1

and As2 may have arcs in common, and it is possible that (u, v) ∈ As1 and (v, u) ∈ As2 .

With this construction, shortest si − ti paths in G (as sequence of nodes) are exactly
the mixed si → ti paths in E0 ∪Asi in the shortest path orientation of G.
Observation 9. For an undirected graph G = (V,E) with edge lengths ` : E → R≥0 and
a pair of sources (s1, s2) ∈ V 2

6= the following holds for all (t1, t2) ∈ V 2
6=(

s1
s2

)
`——E

(
t1
t2

)
in G⇐⇒

(
s1
s2

)
→→E0∪As1
E0∪As2

(
t1
t2

)
in −→G.

This shortest path orientation is the mixed graph used in the algorithm for 2-DSPP.
We show that the shortest path orientation has the properties mentioned in the descrip-
tion of the high-level idea in Section 5.2.
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s1 s2

t2 t1

0 0

2

3

(a) An undirected graph G.
Edge labels give the length ` of
the edge. Edges without label
have length 1.

s1 s2

t2 t1

−2

−1

0

1

2

0 0

(b) The shortest path orientation −→G of G. Arcs in the shortest
path network rooted at s1 are drawn orange and arcs in As2 are
drawn in purple. The gray highlighted node sets are the weakly
connected components of −→Guni. Their labels give the value of
ds1 − ds2 .

Figure 5.8: Construction of the shortest path orientation of an undirected graph.

The inner layer is the unidirectional layer consisting of the arcs in As1 ∩ As2 which
are used in the same direction in both shortest paths networks together with the zero
edges. Set −→

Guni = (V,E0 ∪ (As1 ∩As2)).

The outer layer is the bidirectional layer. It is the multigraph resulting from −→G when
contracting all weakly connected components of −→Guni. A weakly connected component is
a connected component in the multigraph resulting from ignoring the directions of arcs.
The bidirectional layer consists of arcs in As1 4 As2 . We thus split this layer into two
layers corresponding to the two directed multigraphs

−→
Gbi
s1 = −→Gs1/L

(−→
Guni

)
and −→

Gbi
s2 = −→Gs2/L

(−→
Guni

)
resulting from the shortest paths networks by contracting the links that are used in the
same direction.

We show that the weakly connected components of −→Guni can be used as inner compo-
nents. Refer to Figure 5.8 to follow the statements and the proof of the next lemma.

Lemma 42. Let G = (V,E) be an undirected graph with non-negative edge lengths
and (s1, s2) ∈ V 2

6= a pair of sources. Further let W1, . . . ,Wl be the weakly connected
components of −→Guni. Then all of the following hold for all j ∈ {1, . . . , l}

(i) A
(−→
G [Wj ]

)
⊆ As1 ∩As2 and E

(−→
G [Wj ]

)
⊆ E0.

(ii) −→G [Wj ] is weakly acyclic.
(iii) Sorting the components non-decreasingly w.r.t. ds1 − ds2 is a topological ordering

of −→Gbi
s1 and a reverse topological ordering of −→Gbi

s2.

Proof. First note that ds1 strictly increases along arcs in As1 and is constant on edges
in E0. The same holds for ds2 on arcs in As2 . Now consider ds1 − ds2 on an arc (v, w) ∈
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As1 \ As2 . Since (v, w) ∈ As1 we have ds1(w) = ds1(v) + `({v, w}) and in particular
ds1(v) < ds1(w). On the other hand (v, w) 6∈ As2 . If (w, v) ∈ As2 , then ds2(w) < ds2(v)
and hence ds1−ds2 increases along (v, w). If (w, v) 6∈ As2 , then from the definition of the
distance we have ds2(w) < ds2(v)+`({v, w}). Together with ds1(w) = ds1(v)+`({v, w}),
also in this case ds1 − ds2 increases along (v, w). By symmetry we have that ds1 − ds2

is strictly decreasing along any arc in As2 \ As1 . On arcs in As1 ∩ As2 and edges in E0,
both distances change in the same way. Hence ds2 − ds2 is constant on those links.

This shows that for all j ∈ {1, . . . , l} the function is constant on all nodes in −→Guni[Wj ].
Thus there can not be a link in −→G [Wj ] from As1 4 As2 , since then the value changes.
This proves (i).

Similarly, for (iii) ((ii) will be shown later) consider two components Wi and Wj such
that ds1 − ds2 is smaller on Wi than on Wj . Since ds1 − ds2 is strictly increasing on arcs
in As1 , there can not be an arc going from Wj to Wi in As1 . On the other hand, as
ds1 − ds2 is strictly decreasing on arcs in As2 , there can only be arcs from Wj to Wi in
As2 . Note that with the same arguments, there can not be arcs between two components
where the value of ds1−ds2 is the same. Hence, sorting the components non-decreasingly
w.r.t. ds1−ds2 and breaking ties arbitrarily is a topological ordering of −→Gbi

s1 and a reverse
topological ordering of −→Gbi

s2 .
For (ii) take any path in −→G [Wj ]. From (i) we know that ds1 increases along the path.

Hence, any cycle in −→G [Wj ] can only consist of edges in E0. Further, there are no arcs
from As1 or As2 between the nodes V (E0), as along such arcs ds1 or ds2 changes but
on the other hand along edges in E0 the distances do not change. Thus, no arcs are
removed in the contractions and −→G [Wj ] is indeed weakly acyclic.

5.4.2 Solving the Two Disjoint Shortest Path Problem

We are ready to give an algorithm to solve the 2-DSPP in undirected graphs. We reduce
the problem to finding disjoint paths in weakly acyclic mixed graphs.

Following the high-level idea as explained in the beginning (Section 5.2), we solve the
problem by computing a part of the relation `——E on V 2

6= as shown in Algorithm 4.
The underlying mixed graph is the shortest path orientation of G with the inner

(−→Guni) and outer (−→Gbi
s1 and −→Gbi

s1) layers as explained above. Using the weakly connected
components of −→Guni as inner components satisfies all three properties of the high-level
idea. The disjoint paths relation on the inner components can be computed efficiently.
Lemma 42 (ii) shows that they are weakly acyclic and hence we can use Algorithm 3
from the previous section. Further, Lemma 42 (iii) shows that the outer layers −→Gbi

s1 and
−→
Gbi
s1 are each acyclic. In contrast to the connected components in weakly acyclic mixed

graphs, the two si − ti paths in the shortest path orientation pass through the weakly
connected components in opposite directions (Lemma 42 (iii)). We thus build one of
the paths backwards. In this way the path relation can be decomposed to the inner
components with Corollary 6. Figure 5.9 shows an update iteration of Algorithm 4 in
the shortest path orientation.
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Input: undirected graph G = (V,E) with non-negative edge lengths
` : E → R≥0 and a pair of sources s ∈ V 2

6=

Output: the set of successors of s w.r.t. `——E

1 let −→G = (V,E0 ∪As1 ∪As2) be the shortest path orientation of G
2 let (W1, L1), . . . , (Wl, Ll) be the weakly connected components of −→Guni sorted

non-decreasingly w.r.t. ds1 − ds2

3 for j = 1, . . . , l do
4 Compute �Lj

Lj
in Wj using Algorithm 3 and extend it to V 2

6=

5 Compute �δ−
As1 (Wj)
δ+
As2 (Wj)

on V 2
6=

6 let � = Id
(
V 2
6=

)
7 for j = 1, . . . , l do

8 Update � to �Lj
Lj
◦�

δ−
As1 (Wj)
δ+
As2 (Wj)

◦�

9 return
{
t ∈ V 2

6= :
(
s1
t2

)
�

(
t1
s2

)}
Algorithm 4: Solving 2-DSPP in undirected graphs with non-negative edge lengths

v2

v1
p2

p1 q2

q1
w2

w1

W1

v� p

W2

p�
δ−
As1 (W3)
δ+
As2 (W3) q

W3

q�L3
L3
w

Figure 5.9: One iteration of extending the two disjoint paths in the weakly connected compo-
nents W1,W2,W3 of the shortest path orientation by arcs in the outer layers as in Algorithm 4.
The relation � has already been computed on the first two components. It is extended to W3.
Two disjoint paths, a v1 → w1 path and a w2 → v2 path, are shown to illustrate the composition
of the relations. Note that the second path is built backwards. Arcs in As1 \ As2 are drawn
dashed and arcs in As2 \As1 dotted. Links within the components are in E0 ∪ (As1 ∩As2).

Theorem 16. For an undirected graph G = (V,E) with non-negative edge lengths ` :
E → R≥0 and a pair of sources s ∈ V 2

6=, Algorithm 4 computes the successors of s

w.r.t. `——E in polynomial time.

Proof. Let (W1, L
′
1), . . . , (Wl, L

′
l) be the weakly connected components of −→Guni sorted

non-decreasingly w.r.t. ds1 − ds2 .
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First observe that all steps of the algorithm can be executed in the given order. From
Lemma 42 (ii) we know that the components (Wj , L

′
j) are weakly acyclic and hence we

can use Algorithm 3 to compute �L′j
L′j

in Line 4.
Correctness: For every j ∈ {0, . . . , l} define L1

j and L2
j as the set of links in the subgraphs

of−→Gs1 and−→Gs2 induced by the first j weakly connected componentsW1, . . . ,Wj . Further
let �j be the relation � after the j-th iteration of Line 8.

With these definitions we have in particular L1
0 = L2

0 = ∅ and �0 = Id
(
V 2
6=

)
. We

prove the invariant

�j =�L1
j

L2
j

on V 2
6= (5.2)

by induction on j. The base case for j = 0 follows from the definitions. Now assume
(5.2) holds for j and consider �j+1 =�L′j+1

L′j+1
◦�

δ−
As1 (Vj+1)
δ+
As2 (Vj+1) ◦�

j .
Set V1 = W1 ∪ . . . ∪Wj and V2 = Wj+1. Then V1 ∩ V2 = ∅ since Wi are the weakly

connected components of −→Guni and thus pairwise disjoint.
Further V (L1

j ) and V (L2
j ) are contained in V1 since links between the j components

W1, . . . ,Wj stay in those components. Similarly V (L′j+1) ⊆ V2 as these are the links in
component Wj+1.

Finally, since the components are sorted by a topological ordering in −→Gbi
s1 (Lemma 42

(iii)), δ−As1 (Wj+1) is contained in V1 × V2. For −→Gbi
s2 , the components are sorted by a

reverse topological ordering and hence δ+
As2 (Wj+1) is contained in V2 × V1.

Thus all conditions of Corollary 6 are fulfilled.
L1
j+1 = L1

j ∪ δ
−
As1 (Wj+1) ∪ L′j+1 and the corresponding equation for L2

j+1, shows the
invariant (5.2) for j + 1.

Since L1
l = E0 ∪ As1 and L2

l = E0 ∪ As2 , we get by Observation 9 that the algorithm
computes the successors of s w.r.t. `——E .
Running time: Computing the distances ds1 and ds2 for every node, the shortest path
networks and the shortest path orientation −→G can be done efficiently, for example using
Dijkstra’s algorithm. Finding the weakly connected components (W1, L1), . . . , (Wl, Ll)
and sorting them w.r.t. ds1 − ds2 can also be done in time polynomial in |V |.

Theorem 15 shows that�L′j
L′j

can be computed in polynomial time for every component.

As in the proof of Theorem 15, the extension to V 2
6=, the relations �δ−

As1 (Wj)
δ+
As2 (Wj)

, and the
composition in Line 8 can all be computed in polynomial time.

To solve 2-DSPP, we execute Algorithm 4 and check whether (t1, t2) is contained in
the returned set of pairs of nodes.

193



5 The Undirected Two Disjoint Shortest Paths Problem

5.5 Conclusion
In this chapter, we give the first polynomial-time algorithm to solve 2-DSPP in graphs
with non-negative edge lengths. We introduce a new class of acyclic mixed graphs and
show that k-DPP can be solved efficiently in these graphs.

Future research directions are filling the gaps in Table 5.2. That is determining the
complexity of k-DSPP for fixed k in undirected graphs and in directed graphs with
strictly positive edge lengths. The ideas we used here of directing edges according to
shortest paths networks and constructing one of the two paths backwards do not seem
to be applicable to k ≥ 3. The paths may visit the weakly connected components in any
order.

In contrast to our approach of globally directing the arcs of the graph once and then
searching for disjoint directed paths, the recent geometric view on the problem by Bentert
et al. [Ben+21] tries different possibilities of directing parts of the graph, using the
structure of parts where paths may intersect. Bentert et al. state that their approach
also works for positive edge lengths. A promising direction for future research would be
to see whether edges of length zero can be embedded into their framework. We have
the feeling that this may result in weakly acyclic mixed graphs (as opposed to directed
acyclic graphs in their original setting). Hence, our algorithm to find disjoint paths in
weakly acyclic mixed graphs could be used as a subroutine.
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proving the Hk-bound on the price of stability in undirected Shapley net-
work design games”. In: Theoretical Computer Science 562 (2015), pp. 557–
564. doi: 10.1016/j.tcs.2014.10.037.

201

https://doi.org/10.1145/1148109.1148114
https://doi.org/10.1007/s00224-008-9128-8
https://doi.org/10.1007/s00224-008-9128-8
http://dl.acm.org/citation.cfm?id=1283383.1283402
http://dl.acm.org/citation.cfm?id=1283383.1283402
https://doi.org/10.1016/j.geb.2008.02.015
https://doi.org/10.1016/j.geb.2009.05.004
https://doi.org/10.1007/978-3-662-53536-3_6
https://doi.org/10.1145/87252.88081
https://doi.org/10.1145/87252.88081
https://doi.org/10.1016/j.tcs.2014.10.037


Bibliography

[DS06] Juliane Dunkel and Andreas S. Schulz. “On the Complexity of Pure-Strategy
Nash Equilibria in Congestion and Local-Effect Games”. In: Internet and
Network Economics, Second International Workshop, WINE 2006, Patras,
Greece, December 15-17, 2006, Proceedings. Ed. by Paul G. Spirakis, Mar-
ios Mavronicolas, and Spyros C. Kontogiannis. Vol. 4286. Lecture Notes in
Computer Science. Springer, 2006, pp. 62–73. doi: 10.1007/11944874_7.

[DS08] Juliane Dunkel and Andreas S. Schulz. “On the Complexity of Pure-Strategy
Nash Equilibria in Congestion and Local-Effect Games”. In: Mathematics of
Operations Research 33.4 (2008), pp. 851–868. doi: 10.1287/moor.1080.
0322.

[Eil98] Tali Eilam-Tzoreff. “The disjoint shortest paths problem”. In: Discrete Ap-
plied Mathematics 85.2 (1998), pp. 113–138. doi: 10.1016/S0166-218X(97)
00121-2.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. “On the Complexity of Timetable
and Multicommodity Flow Problems”. In: SIAM Journal on Computing 5.4
(1976), pp. 691–703. doi: 10.1137/0205048.

[EMV87] Ranel E. Erickson, Clyde L. Monma, and Arthur F. Veinott. “Send-and-
Split Method for Minimum-Concave-Cost Network Flows”. In: Mathematics
of Operations Research 12.4 (1987), pp. 634–664. doi: 10.1287/moor.12.
4.634.

[Fab+03] Alex Fabrikant, Ankur Luthra, Elitza N. Maneva, Christos H. Papadim-
itriou, and Scott Shenker. “On a network creation game”. In: Proceedings
of the Twenty-Second ACM Symposium on Principles of Distributed Com-
puting, PODC 2003, Boston, Massachusetts, USA, July 13-16, 2003. Ed. by
Elizabeth Borowsky and Sergio Rajsbaum. ACM, 2003, pp. 347–351. doi:
10.1145/872035.872088.

[Fel+17] Matthias Feldotto, Martin Gairing, Grammateia Kotsialou, and Alexander
Skopalik. “Computing Approximate Pure Nash Equilibria in Shapley Value
Weighted Congestion Games”. In: Web and Internet Economics - 13th In-
ternational Conference, WINE 2017, Bangalore, India, December 17-20,
2017, Proceedings. Ed. by Nikhil R. Devanur and Pinyan Lu. Vol. 10660.
Lecture Notes in Computer Science. Springer, 2017, pp. 191–204. doi: 10.
1007/978-3-319-71924-5_14.

[FG07] Dalila B. M. M. Fontes and José F. Gonçalves. “Heuristic solutions for
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equilibria”. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC 2008), Victoria, British Columbia, Canada, May 17-
20, 2008. Ed. by Cynthia Dwork. ACM, 2008, pp. 355–364. doi: 10.1145/
1374376.1374428.
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Global Notation
2-DPP 2 disjoint paths problem
2-DSPP 2 disjoint shortest paths problem
k-DPP k disjoint paths problem
k-DSPP k disjoint shortest paths problem
Φ(σ) potential function, Φ(σ) = ∑

r∈R
∑nσ(r)
i=1 cr(i)

S ◦R = {(u,w) ∈M ×M |∃v ∈M : u R v ∧ v S w}, com-
position of binary relations R and S on set M

A4B = (A \ B) ∪ (B \ A), symmetric difference of sets A
and B

f ∈ O(g) asymptotically upper bounded, ∃c ∈ R>0∃n0 ∈
N∀n ≥ n0 : f(n) ≤ cg(n)

f ∈ Ω(g) asymptotically lower bounded, ∃c ∈ R>0∃n0 ∈
N∀n ≥ n0 : f(n) ≥ cg(n)

f ∈ Θ(g) asymptotically upper and lower bounded, f ∈ O(g)∧
f ∈ Ω(g)

Circuit Satisfiability decision problem: Given a Boolean circuit with n
input bits and one output bit, is there an assignment
for the input bits such that the circuit outputs 1?

Exact-Cover by 3-Sets
(X3C)

decision problem: Input: ground set X, family S of
3-element subsets of X. Is there an exact cover C ⊆ S
of X?

α-equilibrium α-approximate pure Nash equilibrium. Profile where
no player can decrease her cost by at least a factor of
α by unilaterally deviating

equilibrium pure Nash equilibrium (NE). Profile where no player
can decrease her cost by unilaterally deviating

fair cost allocation cost sharing scheme, where every resource has a con-
stant cost that is shared equally by all players using
the resource
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Global Notation

LP Linear Program

PLS class of polynomial-time local search problems
#P(sharp P) class of functions that count the number of accepting

paths of a non-deterministic Turing machine
NP class of decision problems solvable in polynomial time

by a non-deterministic Turing machine
PoA Price of Anarchy. Maximal ratio of social cost of an

equilibrium and social cost of any profile

PoA(G) = max
σ∗ equilibrium in G

C(σ∗)
C(OPT(G))

PoS Price of Stability. Minimal ratio of social cost of an
equilibrium and social cost of any profile

PoS(G) = min
σ∗ equilibrium in G

C(σ∗)
C(OPT(G))

QF LRA quantifier-free formulas over the linear fragment of
the theory of reals

SAT Satisfiability of Boolean Formulas
SMT Satisfiability Modulo Theories

216



Notation for Chapter 3

α(d) lower bound of non-existence of equilibria in polyno-
mial congestion games of degree d,

= sup
{

min
{

1 + na(1 + w)d
(1 + nw)k + na

,
(1 + w)k + awd

(nw)k + a(1 + w)d

}
:

n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], a ∈ [0, 1]
}
,

grows as Ω
(√

d
ln d

)
ε(µ) = 3d+d/2

µ−1

ε′(µ) = 3d+d/2

µ

Gdµ(C) unweighted polynomial congestion game where in any
α-equilibrium the players emulate the computation of
the Boolean circuit C for any α < 3d/2

N d
µ (C) unweighted polynomial network game where in any

α-equilibrium the players emulate the computation
of the Boolean circuit C for any α < 3d/2

Gn weighted congestion game with general cost functions
without α-equilibria for α < ϕn

Gd(n,k,w,a) weighted polynomial congestion game without α(d)-
equilibria

Gdµ(C)→ Gn2 combined game of circuit gadget and non-existence
gadget for general cost functions

Gdµ(C)→ Gγ combined game of circuit gadget and non-existence
gadget for polynomial cost functions

ϕn unique positive solution to (x+ 1)n = xn+1

ϕ̄n−1 =
⌊
n

lnn
⌋

integer under-approximation of ϕn−1

217





Notation for Chapter 4

Bf (n, x, y) bridge instance with n players, weights x and y and
underlying function f

B(v, e) =
{
w ∈ V : dT,f̄ (v, w) ≤ f(1)−f(2)

2 γe
}

absorption-ball

c+1
σ (e) = ce(nσ(e) + 1)

DT (v) = {u ∈ V : v ∈ T [u, r]}, descendants of node v in tree
T (including v)

DW
T (w) = {v ∈ DT (W ) : w′(v) = w}, descendants of nodes in

W w.r.t. tree T , where w is the first node met in W
~dT,g(u, v) = ∑k

i=1 γeig(i) where ei are the edges of T [u, v] or-
dered by their position starting from u; unidirectional
broadcast distance

dT,g(u, v) = ∑k
i=1 γeig(i) where ei are the edges of T [u, v] or-

dered by decreasing γ; bidirectional broadcast dis-
tance

F (k) = ∑k
i=1 f(i)

f̄(k) = F (k)
k

Ff (n, x, y) fan instance with n players, weights x and y and un-
derlying function f

F∗ subclass of fan instances where the star Sn is one of
the best equilibria

Flin class of functions of the form fs(k) = s + 1−s
k for

s ∈ [0, 1)
Fpoly class of functions of the form fα(k) = kα−1 for α ∈

[0, 1)

Gf (L,D,W ) general uniform network game used in the PLS-
reduction, L is the length of heavy paths, D the num-
ber of dummy players associated to every heavy edge,
and W the scaling factor of each heavy edge
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Notation for Chapter 4

(
G(X,S), β

)
,
(
Ḡ(X,S), β

)
network games constructed from an instance (X,S)
of Exact-Cover by 3-Sets (X3C)

H((w1, r1), . . . , (wn, rn)) = w1+...+wn
w1
r1

+...+wn
rn

, weighted harmonic mean of elements
r1, . . . , rn ∈ R>0 with weights w1, . . . , wn ∈ R≥0

homogeneous profile w.r.t. a spanning tree T , if ∀v, w ∈ V : Φ(σ) ≤
Φ
(
σT [v→w]

)
(LPTz ) the LP used to compute PoSfF∗(n)

M(f) = maxn∈N>0

∑n

i=1 f(i)
nf(n) , upper bound on the PoS for

uniform network games

(NECond) characterization for a spanning tree being an equilib-
rium in a broadcast game

nUσ (e) = |{u ∈ U : e ∈ σu}|, congestion on e counting only
players in U

PoSfF∗(n) PoS in the class of uniform fan instances with under-
lying function f and at most n players where the star
Sn is one of the best equilibria

rabsorb = f(1)−f(2)
2 γe absorption-radius at v w.r.t. improving

edge e
rcharge = rabsorb

α , where α > 2; charging-radius

ρ(z) =
∑n′

i=2 y
∗
z,i∑n′

i=2 x
∗
z,i

R(Tt) =
C(x∗

ztn
,y∗
ztn

)(Sn)

C(x∗
ztn
,y∗
ztn

)(Tt) , lower bound on PoSfsF∗(n) and

PoSfαF∗(n); objective function value of (LPTz ) for tree
Tt and ztn

Sn star rooted at r in fan instance Ff (n, x, y)
sharing function with
economies of scale

function f : N≥1 → R≥0 satisfying
• f is strictly decreasing or constantly zero
• kf(k) is non-decreasing and (k + 1)f(k + 1) −
kf(k) is non-increasing
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Notation for Chapter 4

σT,w profile resulting from σ by replacing parts of the sup-
port by tree T

σT [v→w] profile resulting from σ by adding the path T [v, w] to
the support

σT [B(v,e)] profile resulting from σ by absorbing around v

σC profile in
(
G(X,S), β

)
,
(
Ḡ(X,S), β

)
corresponding to an

exact cover C, where

σCS = {S, r} and σCx = {{x,C(x)}, {C(x), r}}

Sσ = {S ∈ S : nσ({S, r}) > β}, cover/packing corre-
sponding to an equilibrium in

(
G(X,S), β

)
,
(
Ḡ(X,S), β

)
tree-move replacing spanning tree T by spanning tree T ′ =

T \ {eT (v)} ∪ {e} for e = {u, v} ∈ E \ T with
cτ (T [v ↗ u]) > ce(1) + c+1

τ (T [u↗ v])
Tt tree containing all edges r− 1− 2− . . .−n and {r, t}

in fan instance Ff (n, x, y)
T [u↗ v] = T [u, lca (u, v)]

(x∗z, y∗z) the all non-zero basic solution to (LPTz ) given by
(4.36) and (4.37)

z∗n(ζ) = (ζ, 0, . . . , 0, 1) ∈ {0, 1}n for ζ ∈ {0, 1}
ztn = (0, 1, . . . , 1, 0, . . . , 0, 1) ∈ {0, 1}n, where z1 = 0 and

zt, . . . , zn−1 = 0 and all other entries are 1
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Notation for Chapter 5

u→···→L v there are disjoint ui → vi paths in L(
u1
u2

)
`——E′

(
v1
v2

)
there is a shortest u1−v1 path and a shortest u2−v2
path in E′ w.r.t. ` that are disjoint(

u1
u2

)
→→L1
L2

(
v1
v2

)
there is a u1 → v1 paths in L1 and a u2 → v2 path
in L2 which are disjoint(

u1
u2

)
→←L1
L2

(
v1
v2

)
there is a u1 → v1 paths in L1 and a v2 → u2 path
in L2 which are disjoint

As = {(u, v) : {u, v} ∈ Es ∧ ds(u) < ds(v)}, oriented
edges of the shortest paths network rooted at s
w.r.t. `

Es = {{u, v} ∈ E : `({u, v}) = |ds(u)− ds(v)|}, edges of
the shortest paths network rooted at s w.r.t. `

ds(v) = mins− v path P
∑
e∈P `(e), length of a shortest s−

v path w.r.t. `

GA = G/E, contracting all undirected edges in a mixed
graph
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Notation for Chapter 5

GE = (V,E), only considering the undirected edges of a
mixed graph

−→
G (V,E0 ∪As1 ∪As2), shortest path orientation of G =

(V,E) w.r.t. s1, s2, and `
−→
Guni (V,E0 ∪ (As1 ∩As2)), the unidirectional layer of the

shortest path orientation

Id(V ) = {(v, v) : v ∈ V }

V k
6= set of k tuples of pairwise different elements of V
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Index

(x∗z, y∗z), 125
As, 189
B(v, e), 105
Bn, 135
C(σ), 14
Cp(σ), 14
Es, 189
F (k), 83
G[V ], 17
GA, 182, 186, 187
GE , 182, 186, 187
H(n), 84
M(f), 87
N+
A (v), 17, 37

N−A (v), 17
Sn, 116
T [u↗ v], 79
T [v, w], 79
Tt, 116
V k
6= , 183, 187
W (G), 43
Φ(·), 15, 86
PoA(G), 16
PoA(n), 16
PoS(G), 16
PoS(n), 16
PoSfF∗(n), 117
α-dominating, 31, 45, 46, 54
α(d), 33, 48, 64
f̄(k), 84, 98
DT (v), 79, 82
DW
S (w), 96

δ+
A(v), 17, 192
δ−A(v), 17, 187, 192
→···→L, 183, 184, 186, 187

`——E , 183, 189, 191, 192
Flin, 76, 88, 127, 150
Fpoly, 76, 89, 133, 150
Gdµ(C)→ Gγ , 45, 45–47, 64
Gdµ(C)→ Gn2 , 53, 54
Gdµ(C), 37, 39, 41, 44, 45, 47, 53, 56, 58,

60
N d
µ (C), 58, 59, 60, 64
Gd(n,k,w,a), 32, 62
Gn, 50, 51–53, 64
γe, 77
Id(V ), 184, 187, 192
lcaT (u, v), 79
LPTz , 124
C(x), 36
F∗, 117
Ff (n, x, y), 116
H(·), 24
O(·), 18
Tn, 116
OPT(G), 14
ρ(z), 139
σT [B(v,e)], 106
σp, 14
σ−p, 14
−→
Gbi
s1 , 190
−→
Guni, 190−→
G , 189−→
Gs, 189
supp(σ), 77
σ̄T,w, 94
σT,w, 95
σT,wu , 95
σT [v→w], 100
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→→L1
L2

, 183, 189
→←L1
L2

, 184, 185, 192
Ω(·), 18
Θ(·), 18
ε′(µ), 60, 60
ε(µ), 39, 39, 45, 53
ϕn, 50, 51, 52, 56, 64
~dT,g, 99
amin(G), 43
c+1
σ (e), 77, 81, 82
cmax(G), 43
ds, 189, 190, 192
dT,g, 99
eT (v), 79
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A Appendix for Chapter 3

Lemma 43. Define the sequence g : N≥2 → R by

g(d) =
(

1 + d
− 1

2(kd+1)

)kd
+ 2

√
d

ln d
(
1 + ln d

2d

)d where kd =
⌈ ln d

2 ln ln d

⌉
.

Then limd→∞ g(d) = 1.

Proof. Define

g1(d) =
(

1 + d
− 1

2(kd+1)

)kd
and g2(d) = 2

√
d(

1 + ln d
2d

)d
ln d

so that g(d) = g1(d) + g2(d). We will show the desired convergence by establishing that
limd→∞ g1(d) = 1 and limd→∞ g2(d) = 0. We will make use of the following inequalities
(see, e.g., [Olv+10, Eq. 4.5.13]):

exp
(

xy

x+ y

)
<

(
1 + x

y

)y
< exp(x), for all x, y > 0. (A.1)

First, we show limd→∞ g1(d) = 1. As d and kd are positive, we have g1(d) > 1 for
every d. Furthermore, g1 is increasing in kd, and kd <

ln d
2 ln ln d + 1. Thus,

g1(d) <
(

1 + d
− 1

ln d
ln ln d+4

) ln d
2 ln ln d+1

.

Using the second inequality of (A.1) with y = ln d
2 ln ln d + 1 and x = yd−

ln ln d
ln d+4 ln ln d , we can

further bound

g1(d) < exp
( ln d

2 ln ln d + 1
d

ln ln d
ln d+4 ln ln d

)
. (A.2)

We will show that the argument of the exponential function on the r.h.s. of (A.2) goes
to 0 for d→∞, thus proving the claim. Replacing ln d = exp(ln ln d) in the numerator
and d = exp(ln d) in the denominator, that argument can be written as

exp(ln ln d)
(

1
2 ln ln d + 1

ln d

)
exp

(
ln d ln ln d

ln d+4 ln ln d

) =
( 1

2 ln ln d + 1
ln d

)
exp

(
4(ln ln d)2

ln d+ ln ln d

)
. (A.3)
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A Appendix for Chapter 3

The argument of the exponential function on the r.h.s. of (A.3) goes to 0, as ln d is the
dominating term in the denominator for d → ∞. Thus, the whole expression in (A.3)
goes to 0.

Next, we show that limd→∞ g2(d) = 0. As d ≥ 2, we have that g2(d) > 0 for every d.
Using the first inequality of (A.1) with x = ln d

2 and y = d, we have
(

1 + ln d
2d

)d
> exp

(
d ln d

ln d+ 2d

)
.

Thus, we obtain an upper bound on g2 by writing
√
d = exp

(
ln d
2

)
:

g2(d) <
2 exp

(
ln d
2

)
ln d exp

(
d ln d

ln d+2d

) = 2
ln d exp

(
(ln d)2

2 ln d+ 4d

)
. (A.4)

As 4d is the dominating term in the denominator of the argument of the exponential
function, the argument goes to 0 for d → ∞, and thus the r.h.s. of (A.4) goes to 0,
showing the claim.
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B Appendix for Chapter 4

Lemma 44.

∀n ∈ N≥3∀k ∈ {1, . . . , n− 1} :
k∑
j=0

(
k

j

)
1

(−1)j(n− j) = (−1)k
(n− k)

(n
k

)
Proof. Proof by induction on k. Base case k = 1:

k∑
j=0

(
k

j

)
1

(−1)j(n− j) = 1
n
− 1
n− 1 = − 1

n(n− 1) = (−1)k
(n− k)

(n
k

) .
Step k → k + 1:

k+1∑
j=0

(
k + 1
j

)
1

(−1)j(n− j) =
k+1∑
j=0

((
k

j

)
+
(

k

j − 1

))
1

(−1)j(n− j)

=
k∑
j=0

(
k

j

)
1

(−1)j(n− j) +
(

k

k + 1

)
1

(−1)k+1(n− (k + 1))

+
k+1∑
j=0

(
k

j − 1

)
1

(−1)j(n− j)

=
k∑
j=0

(
k

j

)
1

(−1)j(n− j) +
k∑
j=0

(
k

j

)
1

(−1)j+1((n− 1)− j)

= (−1)k
(n− k)

(n
k

) − (−1)k

(n− 1− k)
(n−1
k

)
= (−1)kk! 1

(n− 1) · · · (n− k)

( 1
n
− 1
n− k − 1

)
= (−1)k+1 (k + 1)!

n(n− 1) · · · (n− k)(n− k − 1)

= (−1)k+1

(n− (k + 1))
( n
k+1
)

where we used the induction hypothesis in equation 4 for k and n and for k and n − 1
for the respective summands.
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