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Abstract

Repeated measurements over time are highly important data for medicine, and for the
life sciences in general. The modelling of natural processes, such as the spreading of a
virus or the survival of a population, depends on such data. It is essential to estimate the
association of risk factors and to predict the development of such processes. However,
longitudinal data poses various challenges depending on the outcome of interest. For
two fields, survival analysis and count models, we showed how analyses have to be
adapted to account for multiple outcomes, to select suitable covariates, and to derive
predictions.

In our first field of application, we determined the significance of association between
allocation type of kidney grafts and transplant outcomes via survival analysis. Further-
more, we built a publicly available prediction tool estimating outcome risks, thereby
facilitating the decision of whether to accept a graft for transplantation or not. Our second
field of application was concerned with temporal and spatial information of the COVID-19
pandemic. We derived the methodological approach and explored the capabilities of a
fundamental Bayesian methodology to model an autoregressive count process. But we
also performed a frequentist cross-sectional analysis of mortality to determine spatially
dynamic covariate effects. With a longitudinal analysis we estimated the association of
time-dynamic risk factors and we built a model to perform weekly forecasts.

We expect that our transplant risk tool will be an important application for graft
allocation decisions and will motivate future external validation and adaptations with
respect to new data. In our studies on count models, we extracted a number of crucial
pitfalls concerning covariate and model selection, which are superficially not evident and
may easily produce misleading results. Findings from such models need to be viewed
critically and future autoregressive count analyses should be adapted accordingly.



Zusammenfassung

Wiederholte Messungen im Laufe der Zeit liefern wichtige Daten für die Medizin und
die Biowissenschaften im Allgemeinen. Die Modellierung natürlicher Prozesse, wie
die Ausbreitung eines Virus oder das Überleben einer Population, basiert auf solchen
Daten. Im Hinblick auf solche Prozesse ist es essenziell, Assoziationen von Risiko-
faktoren abschätzen und Entwicklung vorhersagen zu können. Zeitaufgelöste Daten
stellen jedoch je nach Zielvariable verschiedene Herausforderungen dar. Für zwei Be-
reiche, Überlebensanalysen und Zählmodelle, zeigen wir, wie die Analysen angepasst
werden müssen, um mehrere Zielvariablen zu berücksichtigen, geeignete Kovariaten
auszuwählen und Vorhersagen abzuleiten.

In unserem ersten Anwendungsbereich haben wir die Signifikanz der Assoziation
zwischen Zuweisungsart von Nierentransplantaten und Transplantationsergebnissen
mittels Überlebensanalyse ermittelt. Darüber hinaus haben wir ein öffentlich zugängli-
ches Prognosetool entwickelt, das Risiken abschätzt und damit die Entscheidung für
oder gegen ein Transplantat erleichtert. Unser zweiter Anwendungsbereich befasste
sich mit zeitlichen und räumlichen Informationen der COVID-19-Pandemie. Wir leiteten
den methodischen Ansatz ab und untersuchten die Möglichkeiten einer grundlegenden
Bayes’schen Methodik zur Modellierung eines autoregressiven Zählprozesses. Wir führ-
ten auch eine frequentistische Querschnittsanalyse der Sterblichkeit durch, um räumlich
dynamische Kovariateneffekte zu ermitteln. Mit einer Längsschnittanalyse schätzten
wir die Assoziation von zeitdynamischen Risikofaktoren und erstellten ein Modell für
wöchentliche Prognosen.

Wir erwarten, dass unser Transplantationsrisikoinstrument eine wichtige Anwendung
für Entscheidungen über die Zuteilung von Transplantaten sein wird und zukünftige
externe Validierungen und Anpassungen an neue Daten motivieren wird. In unseren
Analysen zu Zählmodellen haben wir eine Reihe entscheidender Fallstricke bei der
Auswahl von Kovariaten und Modellen herausgestellt, die oberflächlich betrachtet nicht
offensichtlich sind und leicht zu irreführenden Ergebnissen führen können. Ergebnisse
aus solchen Modellen müssen kritisch betrachtet werden und künftige autoregressive
Zählanalysen sollten entsprechend angepasst werden.
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Chapter 1

Introduction

Time series and longitudinal data are sequences of measurements of one or multiple
variables at equally spaced or varying time intervals. Such repeated observations have
a high value in medicine and the life sciences in general due to their ability to capitalize
on dependence for improved prediction. Monitoring changes in populations or ongoing
natural processes are typical examples of how repeated measures are generated. Daily
deaths, hourly averages of wind speed, yearly populations of bark beetles, monthly
counts of carcinoma diagnoses are examples of such observations. A frequent objective
is to identify and quantify the association of explanatory variables with changes in these
processes. However, observations of temporal processes often cannot be analysed
independently since previous states influence later ones. Therefore, dependent on
the type of data, the application of different approaches is needed to model temporal
behaviour and to evaluate explanatory variables [1].

We consider two types of temporal data in this dissertation, patient-level survival
and population-level infection counts. We present multiple ways to approach such data
and illustrate them in two applications. In the first application, we consider survival
and secondary outcomes for patients who received kidney transplants at varying time
points during a fixed period. In the second application, we model the infection and death
counts of the COVID-19 pandemic.

Specifically, the following sections 1.1 and 1.2 provide an introduction to the two
application topics, kidney transplants and spread of COVID-19. The chapters introduce
the relevance of the topics, explain respective backgrounds, and thereby show some of
the important aspects that might need to be considered in analyses and comparable
situations. In chapter 2, we describe tools suitable for survival analysis, including the
challenges of competing risks and clustering of individuals due to different outcome
events and single individuals receiving or donating multiple grafts. We review leading
studies and methodologies investigating COVID-19 temporal dynamics. We develop
and evaluate options to model processes on Bayesian foundations and compare their
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Chapter 1 Introduction

computational efficiency with frequentist tools. In chapter 3, we summarize our first
publication of the thesis investigating the association of risk factors with kidney transplant
outcomes based on 27,903 grafts from the large Eurotransplant registry, followed by
our second publication developing a publicly available tool to predict patient and graft
survival. We present submitted work regarding risk factors concerning COVID-19
mortality across all 400 districts of Germany and show in detail an association analysis
of weekly infection counts. Finally, on the basis of these analyses, we discuss the
findings, characteristics of our approaches, and possibilities to advance the applied
methods in chapter 4.

1.1 Kidney transplantations

Chronic kidney disease is a major contributor to mortality from non-communicable
diseases. Nationally representative studies in Australia [2], the USA [3], and Norway
[3] have shown that more than 10% of the adult population has a marker for kidney
disease. In 2017, about 700 million individuals suffered from the disease, more than
from diabetes, asthma, or depressive disorders, and 1.2 million died from chronic kidney
disease [4]. The most common causes of chronic kidney disease are hypertension
and diabetes. For people with end-stage kidney disease, renal replacement therapy,
through dialysis or renal transplantation, is a life-saving but expensive treatment. In
2010, about 2.6 million people worldwide received renal replacement therapy, with
estimates suggesting that, at best, only half of all people who needed such a treatment
had access to it. The number of people receiving this treatment is expected to more
than double to 5.4 million by 2030 [5].

Stable or declining rates of organ donation coupled with increasing end-stage renal
disease prevalence have led to a shortage of transplanted kidneys. European data
shows that a major barrier to kidney transplantation is low availability of transplants [6].
This is a critical issue because waiting time on dialysis is the strongest modifiable risk
factor for renal transplant outcomes [7]. In the USA, patients who receive kidney trans-
plantation are at increased risk following surgery, for example, of new-onset diabetes
[8] or cancer at a wide variety of sites [9, 10]. Nonetheless, there is ample evidence
that transplants, compared with remaining on dialysis, offer significantly lower mortality,
especially when considered over the long term [11–13]. The risk of cardiovascular
events was lower and quality of life was substantially better for transplant recipients as
shown in an international meta-analysis by Tonelli et al. [13]. For these reasons, kidney
transplant allocation must be maximally efficient so that organs can be made available
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1.1 Kidney transplantations

to recipients as quickly as possible while maintaining or even improving the quality of
matching between donor and recipient.

Typical outcomes of interest following kidney transplantation are patient and graft
survival [14]. A number of risk factors have been well studied and are significantly
associated with these outcomes. These include recipient age, recipient gender [15,
16], diabetes, adult polycystic kidney disease [15], frailty [17], depression [18], donor
age, immunological matching, ethnic background, and time spent on dialysis [19].
There is evidence that some risk factor effects diminished over time such as, recipient
obesity [14] and immunological matching [20]. The role of prolonged cold ischemia
time as a risk-increasing effect was not entirely conclusive in the long term [19, 21, 22].
The relevance of many of these risk factors, such as recipient age, recipient gender,
diabetes, and immunological matching, was confirmed by studies analysing specifically
the Eurotransplant registry [23, 24], and had similar associations to our studies [25, 26].

Depending on these factors, any patient undergoing transplantation is at risk of early
death and graft loss. Thus, whenever a transplant becomes available for a particular
patient, the treating physician needs to assess the match between graft and recipient
and decide whether a transplantation should be performed. Although, many of the
risk factors are well known, considering all of them and their interactions to make a
reliable decision is a challenge. A few tools have already been developed to facilitate
this evaluation by predicting survival chances. However, these often consider only a
specific group of risk factors, have a very short prediction period, consider only a certain
outcome, or are not transferable to the European context.

Other outcomes after kidney transplantation, which are sometimes studied but not
the focus of our analyses, include acute rejection, delayed graft function and primary
non-function [14, 15, 27]. Acute rejection can manifest itself in multiple processes,
resulting in large heterogeneity in severity and duration [28]. Delayed graft function is
usually defined as the use of dialysis within seven days of transplantation [27]. Primary
non-function is defined by the failure of the transplanted kidney to function within a
certain time post-transplant [29]. Many studies also examine the impact of intermediate
outcomes including post-transplant measurements on patient and graft survival. For
example, early signs of impaired graft function adversely affect graft survival [15, 16,
27] and elevated serum cholesterol levels at one year after transplant are negatively
associated to graft and patient survival [30].

In the critical structure of graft allocation, there were several areas where COVID-19
had a significant impact. Organ procurements declined due to problematic transfer of
organs for example due to cancellation of flights, limited or delayed COVID-19 testing
capabilities, limited operating room availability, and avoidance of non-essential clinical
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activities [31]. Strongly reduced transplant numbers were reported internationally [32],
even though a single-centre study in the US of 136 patients suggested that infected
patients on the waiting list were more likely to require hospitalization and were at a higher
risk of mortality than transplant patients [33]. Kidney transplant waitlist deaths increased
by 43% in the US [34], yet COVID-19 severity in kidney transplant recipients was similar
to non-transplant patients when accounting for comorbidities suggesting that long-term
immunosuppression did not affect the severity of an infection as shown by a French,
multi-centre study including 2,878 patients [35]. Aubert et al. [36] compared the number
of kidney, liver, lung, and heart transplants from 22 countries including Eurotransplant
data between 2019 and 2020. Even though the results were heterogeneous between
the countries, they found that kidney transplantations showed the largest decrease
across nearly all countries. This decrease in transplants lead to an estimated 48,000
patient life-years lost.

1.2 COVID-19

The COVID-19 pandemic underwent a very dynamic development, particularly in the
beginning, while many properties were unclear. The following sections will shortly
characterize the COVID-19 pandemic to provide enough background to later apply
suitable methods on a corresponding application. Firstly, we summarize the spreading
of the virus on a global scale. Then, we focus on the development in the first few months
in Germany. Finally, we supplement this description by selected quantifications.

1.2.1 The Development of COVID-19

A cluster of 27 pneumonia cases with unknown cause was identified by the end of
December, 2019, in Wuhan City, Hubei, a city in central China with a population of over
11 million. Dry cough, shortness of breath, fever, and lung infiltrates were the most
notable symptoms displayed. All cases could be linked to a single market, the Huanan
Seafood Wholesale Market, trading in fish and other live animal species, including
poultry, bats, and snakes [37]. The agent was determined as a novel coronavirus and
named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), while the
disease was termed COVID-19. It was a zoonotic disease, meaning that the pathogen,
in this case the virus, jumped from animal to human [38].

In 2002, another zoonotic coronavirus, SARS-CoV, had already surfaced in the
province Guangdong in southern China. Eight years later the Middle East Respiratory
Syndrome (MERS-CoV) had emerged. Each of these two coronaviruses had killed
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1.2 COVID-19

around 800 people with infection numbers in the thousands [38].
However powerful the impression the previous coronaviruses left, their effect was

dwarfed by the dramatic impact of SARS-CoV-2. The French Ministry of Health confirmed
the first three cases of COVID-19 in Europe on January 24, 2020, only a few weeks
after the initial reports from China. Six days later, on January 30, the World Health
Organization (WHO) declared the outbreak an International Public Health Emergency.
Only weeks later the number of cases surpassed 100,000 infected people in 100
countries, leading the WHO to declare COVID-19 officially a pandemic on March 11
[39]. The number of infections continued to rise more than a hundred-fold, amounting to
hundreds of thousands of deaths [40].

Several issues preventing the mitigation of the viral spread of COVID-19 were de-
termined, including the lack of transparency as well as delays in travel restrictions,
quarantine, and emergency announcements. Still, millions of dollars were mobilized
internationally in response to the virus with respect to multiple fields, including testing
ability and capacity, clinical management, and vaccine research. Notably, many regions
introduced general measures to minimize social contact and thereby restrain personal
lives. For example, many countries restricted travel and established quarantines for
arriving travellers and inhabitants of specific areas, affecting 50 million people in China
alone [37].

Although early reports and studies struggled with unreliable and sparse data, some
properties of the disease have crystallized. Similar to the first reported symptoms, fever,
dry cough, shortness of breath, and muscle ache proved to be typical of COVID-19 [41].
Early numbers suggested a mortality rate of 3.4%, a mean incubation period of 5.2 days
and a median duration from onset of symptoms to death of 14 days. Older adults over
70 years of age were identified as especially vulnerable to SARS-CoV-2. Months after
the initial discovery of the disease there was still no effective antiviral treatment available
[37].

1.2.2 COVID-19 in Germany

The first Chinese COVID-19 death was reported on January 11 and eleven days later
there were already 470 Chinese infections, such that all train and flight connections
to Wuhan were cancelled. The first German infection was reported on January 27 in
the Bavarian county of Starnberg. Two weeks later, travellers from the Chinese region
Hubei were quarantined and 15 more cases were reported, most of them in Bavaria
and many of them connected to an automotive supplier in Starnberg. Meanwhile, the
number of COVID-19 deaths internationally had already exceeded those of SARS and
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Figure 1.1: Cumulative infections per 100,000 inhabitants in German districts for four different
dates. The top left figure shows the German state names, while the others highlight notable
districts.

MERS, with more than 40,000 infections in 26 affected countries. By February 26,
multiple European countries, including Germany, continued to oppose general closure of
country borders. By the end of February, 70 infections were reported all over Germany,
including a hotspot with 60 infections in the district Heinsberg in North Rhine-Westphalia
at the Western border of Germany [42]. By this time, Italy had the most infections of all
European countries, with whole cities completely locked down as well as companies
and schools shut down [43, 44].
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1.2 COVID-19

On March 2, the German Ministry for Health recommended adherence to general
hygiene advice. Big events with more than 1,000 participants were advised to be
cancelled on March 10. Some states heeded this advice and completely canceled
bigger events. At this stage, there were over 500 infections reported. Advice to avoid
social contacts and events followed two days later. Starting March 16 many states
closed schools and nurseries. Non-essential shops began to shut down and most
borders closed. Similar measures were introduced in Austria and France. Four days
later several German states restricted the number of people allowed to meet. At the end
of March, Germany counted 64,000 infections and 560 deaths [43, 45].

The central institution of the German government for disease monitoring and pre-
vention, the Robert Koch-Institute (RKI), changed their advice to start wearing masks
on April 2. On April 6, restrictions on incoming travellers from mid-March were further
tightened. Austria began loosening the interventions on April 14. The German govern-
ment opened the first non-essential shops on April 20 and allowed school attendance
starting May 4, however, states implemented individual rules of loosening the measures.
In the following days, multiple states decided to make the wearing of masks compulsory,
while the other states followed later. At the end of April, a number of public places
opened, although the number of infections in Germany had exceeded the threshold of
150,000. Neighbouring countries, such as Austria, had already dropped some of their
interventions, and others, such as Italy and France, were planning to relax them in the
beginning of May [46].

1.2.3 Epidemiological metrics of German districts

In order to visualize the space-time evolution of the COVID-19 pandemic in Germany we
applied the packages ggplot [47], wesanderson [48], and ggpubr [49] to data obtained
from the RKI [50] in R [51]; results are shown in Figure 1.1. Although infections
were reported in Bavaria starting on January 28, normalized by district, the number
of infections remained under 10 per 100,000 inhabitants in the following weeks. By
mid-March, circumstances had changed. While some areas remained largely unaffected,
the two southern states of Bavaria and Baden-Württemberg, as well as the western
border, had a high number of more intensely affected districts, including Starnberg in
the south, one of the first infected districts, and Heinsberg in the west, one of the first
districts to report a large cluster of infections.

Two weeks later, by April 1, the number of infections rose steeply throughout the
country (Figure 1.1). Both infection and death count increased sharply, as shown in
Figure 1.2. Initially, deaths lagged behind infections. However, in late April the number
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Figure 1.2: Daily infections and deaths in Germany from January 28 to August 31, 2020.

of new cases started to decrease, with deaths at a faster rate that no longer tracked
the rate of infections. The reason could be that testing capacity was no longer limited
to the more severe cases [52]. The RKI determined that for weeks 12 through 16 of
2020, from mid-March to mid-April, the proportion of positive tests ranged from 6 to 9%.
Although the number of weekly performed tests remained similar, at around 300,000 to
400,000, during weeks 22 to 25, spanning the end of May to mid-June, the proportion of
positive tests dropped to 0.8-1.3%. These statistics implied that for a steady amount of
testing, the proportion of positive outcomes dropped significantly between the end of
March and the start of June.

Figure 1.1 shows that after the start of April, all districts had increasing numbers
of infections. However, there were some counties in the south and south-east that
witnessed particularly elevated infection rates, such as Tübingen, Tirschenreuth, and
Rosenheim. These had already comparably high numbers in mid-March, but now their
neighbouring districts indicated increases as well.

A characteristic of the COVID-19 metrics in Germany as well as other countries is
that reported cases are lower near weekends compared to other weekdays (Figure
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Figure 1.3: Daily reported number of infections (left) and deaths (right) from week of March 3
(light) to May 30 (dark).

1.3). The tendency is not as clear for deaths, but still visible for some of the weeks.
Comparable observations have already been made for other diseases, for example,
Wei et al. [53] identified a weekend-reporting effect on hand, foot, and mouth disease
and parotitis infections. Bergman et al. [54] attributed periodic weekly oscillation for
COVID-19 incidence and mortality in New York and Los Angeles to "biasing practices in
case reporting" rather than biological mechanisms.

The distribution of infections in Germany until August 31, 2020, showed systematic
differences between age and gender (Figure 1.4). The number of infections was
higher for the age groups between 15 and 59 then dropped off slightly for higher age.
However, mortality was higher in older age groups and for males compared to females.
Summarizing the numbers over the districts to consider the overall case fatality rate, this
effect became more apparent. In contrast to mortality, the fatality rate normalizes the
number of deaths based on the number of infections. Table 1.1 shows that while the
fatality rate was close to zero for young ages, it increased for females and males to 5
and 10%, respectively, for the age group 60 to 79 years. It rose to 22% and 34% for
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Figure 1.4: Boxplots of reported infections and deaths across the German districts during the
period January 28 to August 31, 2020; less than 1% of the respective counts with unknown
gender or age are not shown.

80+ year old females and males, respectively. We collapsed the three youngest age
groups and applied a Poisson model to deaths with infections as offset and age and
gender. Both were significant at the 0.05 level. We note that the number of infections
was similar between females and males for all age groups except for the 80+ group with
approximately 14,000 female and less than 8,000 male cases. This selection differential
might be confounding the observed significant age effect on COVID-19 mortality.

In general, early data from the CDC COVID-19 Response Team [55] in the US
showed that the fatality rate increased for older adults ranging from 3% to 11% for 65-84
years followed by 10% to 27% for >84 years. The meta-study of Dorjee & Kim [56]
comprising 44 studies and over 20,000 COVID-19 patients identified that next to pre-
existing conditions, male gender and age ≥ 60 were significantly associated with death
and severe disease. Williamson et al. [57] considered confounding factors including
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1.2 COVID-19

Female Male
Case fatality Case fatality

Age Infections Deaths rate [%] Infections Deaths rate [%]

0-4 1962 1 0.1 2150 0 0.0
5-14 5024 0 0.0 5373 0 0.0
15-34 34485 5 0.0 36713 13 0.0
35-59 49591 118 0.2 47694 320 0.7
60-79 18356 920 5.0 20211 2085 10.3
80+ 14109 3109 22.0 7984 2750 34.4

Table 1.1: COVID-19 metrics by age and gender in Germany until August 31, 2020. Cases with
unknown age or gender are not shown.

smoking or obesity in addition to co-morbidities and found that older age and male
gender were strongly associated with COVID-19 mortality. Sama et al. [58] examined
ACE2, a functional receptor for coronaviruses, and found that higher expression levels
in men may be the reason for their higher susceptibility and mortality.
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Chapter 2

Methodological background

In the following, we describe and develop multiple methods to analyse temporal data, in
particular, we lay the groundwork for much of the statistical methodology necessary for
the analysis of survival and count data. Specifically, the first section addresses survival
analysis and certain challenges associated with it. Later we present various approaches
that were used and published to model time series of infectious diseases, especially
with respect to COVID-19. Lastly, we focus on Bayesian methods, explore their capacity
to model autoregressive count processes, and compare their efficiency with frequentist
options.

2.1 Survival analysis methods

Survival analysis is concerned with the time to a particular event and its comparison
between specific groups, which are signified by certain characteristics. Without loss
of generality, we will refer to survival analysis primarily as the analysis of time to graft
loss. But, in general, survival may also refer to other events, for example, patient death,
the time to development of a specific disease, or regression of a tumour. Furthermore,
survival analysis is not only relevant to medical applications but is also related to
analyses in economics, sociology, and engineering, for example, to estimate when a
machine will break down. With such a broad field of application and often very particular
challenges, the development of very specific tools is necessary.

In the following, we focus largely on the methods we employed in survival analyses in
Assfalg et al. [25] and Miller et al. [26]. We describe some basics of survival analysis and
particularly the Cox proportional hazards model as basis of our analyses. Further, we
show how this model can be changed and extended to account for challenges including
clustering as arises due to organs from the same donor sent to different recipients or
recipients receiving multiple organs and multiple competing event outcomes, such as
graft loss and death with functioning graft. Additionally, we present an approach to
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Chapter 2 Methodological background

the selection of suitable covariates as well as to accommodate missing data. For the
final models, we discuss how we implemented calibration, decision curve analysis, and
accuracy measurements.

2.1.1 The Cox proportional hazards model

The Cox proportional hazards model is one of the most widely used methods in the
field of survival analysis. The following description of the basic model is largely based
on Therneau & Grambsch [59]. Let X be a matrix of covariates, where xij is the jth
covariate of the ith graft with i = 1, . . . , n, and j = 1, . . . , p. Let xi be the covariate vector
for graft i. The covariates may be fixed or may vary over time. In the latter case, we will
write xi(t). A major goal of survival analysis is to estimate one of its most fundamental
functions, the hazard function h(t). It is defined as

h(t) = lim
δ→0

P (t < T < t+ δ|T > t)
δ

.

Thus, the hazard function is the probability that the considered graft fails in the next
small interval of time, assuming it survived until time t, divided by the length of this
interval δ [60]. For graft i, the Cox model defines the hazard at time t as

hi(t) = h0(t) exp(xi(t)β),

where h0 is a non-negative function called the baseline hazard, the hazard of a graft
with all covariates equal to zero, and β is a vector of coefficients of length p. In order
to estimate β, the partial likelihood was introduced. In the case of untied failure times,
where each event time corresponds to exactly one event, the partial likelihood is defined
as

PL(β) =
n∏

i=1

∏
t≥0

(
yi(t)ri(β, t)∑
j yj(t)rj(β, t)

)dNi(t)

,

where yi(t) is the indicator function displaying if graft i is still under observation at time t
and ri(β, t) = exp(xi(t)β) is the graft-specific risk score. Ni is the number of observed
failures at time t, which means it is 0 until failure and 1 thereafter, if observed, and
dNi(t) is the increment in Ni over the infinitesimal time interval [t, t + dt). β can be
calculated by maximizing the partial likelihood via the first and second derivative and the
application of the Newton-Raphson algorithm. There are a number of methods that can
deal with tied failure times, which are a common occurrence in practice. For example,
the Efron approximation, which is probably the most prominent method, weights the risk
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2.1 Survival analysis methods

scores of the affected grafts in the denominator of the partial likelihood by the number of
tied grafts for the corresponding time points.

The Cox model is called a proportional hazards model since the following fraction for
two grafts with fixed covariates xi and xj is constant over time:

hi(t)
hj(t) = h0(t) exp(xiβ)

h0(t) exp(xjβ) = exp(xiβ)
exp(xjβ) .

Denote xi in the following as the ith covariate value for some graft. Assume that we
want to test the effect of a treatment in a group A, where x1 = 1, in comparison to a
control group B without the treatment, x1 = 0. In our case, this can be, for example,
the comparison between a normal and an alternative allocation process of transplant
grafts and their association with the subsequent survival. The hazards of grafts in the
respective groups, which have otherwise equal covariates, are then:

hA(t) = h0(t) exp(β0 + β1 + β2x2 + . . . βpxp)

hB(t) = h0(t) exp(β0 + β2x2 + . . . βpxp).

Thus, the hazard ratio of the treatment is

hA(t)
hB(t) = exp(β1),

for any t ≥ 0, as shown above. Therefore, the hazard at any time for grafts with the
treatment is exp(β1) times that of grafts without the treatment [61].

In order to better understand the effect on survival, we consider the survival function

S(t) = P (T > t) = exp
(
−
∫ t

0
h(u)du

)
= exp(−H(t)), 0 < t <∞,

giving the probability of surviving up to a point t, where H(t) =
∫ t

0 h(u)du is the cumula-
tive hazard function [60]. It follows for the survival of group A, which has received the
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treatment, that [61]

SA(t) = −
∫ t

0
hA(u)du

= exp
(
− exp(β0 + β1 + β2x2 + . . . βpxp)

∫ t

0
h0(u)du

)
= exp

(
− exp(β0 + β2x2 + . . . βpxp)

∫ t

0
h0(u)du

)exp(β1)

= SB(t)exp(β1).

Thus, if the hazard ratio of the treatment is 0.8, it decreases the hazard by 20% and
increases survival at time t to SA(t) = SB(t)0.8.

Note that by defining the survival function, we can also express the hazard function as

h(t) = lim
δ→0

P (t < T < t+ δ|T > t)
δ

= lim
δ→0

P (t < T < t+ δ)
δS(t) .

We can further re-express this term after introducing the cumulative risk function F (t) =
P (T ≤ t), 0 < t < ∞. Consequently, we can derive the probability density function
f(t) = d

dtF (t), which is the rate of change of the cumulative risk function. This is
equivalent to the negative rate of change of the survival function, which follows from the
definitions of survival function and cumulative risk function as they are complementary
probabilities. Hence, the hazard function can be defined as

h(t) = f(t)
S(t) ,

which we will need further below [60].
One of the most widely used non-parametric estimators of the survival function is the

product-limit or Kaplan-Meier estimator [62]. It is given by [60]:

Ŝ(t) =
∏
ti≤t

(1− di/ni),

where di is the number of grafts, which fail at time ti, and ni is the number of those,
which are at risk at time ti. We can specify an alternative estimator that incorporates
covariates by applying the above results. First, we define an estimate of the baseline
hazard function as the ratio of deaths and the sum of estimated risk scores:

ĥ0(ti) = di∑
j∈Ri

exp
(
xj β̂

) ,
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2.1 Survival analysis methods

where Ri is the set of all grafts at risk at ti and xj is the covariate vector of graft
j. Furthermore, we set Ŝ0(t) = exp

(
−Ĥ0(t)

)
, where Ĥ0 is the sum of the estimated

baseline hazards ĥ0(tj) with tj ≤ t. It follows that we can define the survival function
estimator as

Ŝ(t|xi) =
(
Ŝ0(t)

)exp(xiβ̂)
,

for a covariate vector xi of graft i.

2.1.2 Competing risks

So far, we have only considered survival for a single event. However, patients may
experience different, excluding events. For example, they may die by the analysed
disease, but also by an accident or any other disease. In our case, we were interested
in the continued function of a transplanted kidney. However, this may be cut short due
to an unrelated death of the patient. In this case, it would have been misleading to
consider this as a failure of the graft, if it was still functioning at the time of death, and
on the other hand, we could not expect it to continue functioning when the body had
stopped working. If we were only interested in a particular outcome, in this case, the
longevity of the transplant, a simple solution would have been to censor the survival
time at this point. However, the fact that a patient survived with a transplanted kidney
without failure until their death, is itself an important outcome we wanted to consider. In
general, one of the key assumptions in censoring usually is that it is independent of the
event in question, however, in a competing risk context, this assumption may often be
questionable.

The following is mostly based on Moore [60]. In order to design a model incorpo-
rating competing risks, consider K distinct outcomes. Assume that every patient may
experience only one outcome. We consider failure to be the ubiquitous outcome, so
in our particular case, graft loss and patient death with functioning graft are the two
distinct and competing causes of failure. The cumulative risk function, also called the
sub-distribution function, now gives the cumulative probability of failure from cause j by
time t:

Fj(t) = P (T ≤ t, C = j) =
∫ t

0
hj(u)S(u)du.

The cause-specific hazard hj relates to the probability of failure at a specific time due to
cause j given that a graft survived this long. Adding up all cause-specific hazards at a
particular time results in the hazard function.
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To model competing risks, Fine & Gray [63] introduced a sub-distribution hazard

h̄j(t) = lim
δ→0

P (t < Tj < t+ δ|E)
δ

,

for the event time Tj specific to cause j, given the conditional event

E = {{Tj > t} or {Ti ≤ t and i ̸= j}}.

Thus, the cause-specific hazard is further adapted such that it also includes grafts,
which will experience another cause of death than j at a later time point than t, into the
risk set. Similar to the Cox model before, Fine and Gray modelled the sub-distribution
hazards for cause j as

h̄j(t) = h̄0j(t) exp(Xβ).

An important measure of competing risks in given time periods is the above-mentioned
cumulative incidence. In order to estimate the cumulative incidence function, that means
the probability of failure due to a particular cause until some time point, let t1, . . . , td be
the ordered, distinct event times. In general, the hazard at time ti can be estimated by
ĥ(ti) = di/ni, where di is the number of events at time ti and ni the number of at-risk
grafts at that time. For the cause-specific hazard, we restrict the former to the number
of events due to cause j, dij , such that ĥj(ti) = dij/ni. Multiplying the risk of failure due
to j at ti, ĥj(ti), with the probability of being alive until just before, Ŝ(ti−1), results in the
probability of failing due to cause j at time ti. Finally, we get the cumulative incidence at
t for cause j by adding up this probability over all prior time points:

F̂j(t) =
∑
ti≤t

ĥj(ti)Ŝ(ti−1),

where Ŝ(t0) is typically set to 1.
Scheike & Zhang [64] introduced a generalization of the Fine and Gray model in

their R package timereg, which we used. Consider the formulation of the cumulative
incidence function

Pj(t|x) = 1− exp (−H0(t) exp (β⊺x)) ,

where x is some covariate vector. Scheike & Zhang [64] split up the covariate vector
such that

cloglog(1− Pj(t|x, z)) = γ⊺x+ η(t)⊺z,

where cloglog is the complementary log-log link function: cloglog(u) = log(− log(1− u)),
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z is a (p + 1)-dimensional, time-varying covariate, z = (1, z1, . . . , zp), and x is a q-
dimensional covariate.

2.1.3 Model diagnostics

In order to select the best possible models for the transplant outcome prediction tool,
we used the Bayesian Information Criterion (BIC). This metric measures a model’s
goodness of fit and was first described in Schwarz [65]. It is defined as

BIC = −2 log
(
L̂
)

+ p log(n),

where L̂ is the maximum value of the likelihood function of the corresponding model, p
is the number of predictors, and n is the sample size. It follows that smaller BIC values
indicate a better fit. For our model selection, we started with a full model, including all
predictors considered relevant, and calculated the BIC. Then we fitted all models, where
one of the predictors was excluded, and calculated their BIC. We moved to the model
with the smallest BIC as long as it was smaller than the value of the current model. The
process was repeated until there was no more improvement. After every iteration, we
refitted the model with all possible data, which is relevant since some grafts had missing
values for some of the predictors. Therefore, these cases could not be used for fitting
models where the corresponding predictors were included. This approach is based on
the algorithm described in Neumair et al. [66].

An alternative to excluding incomplete observations is to impute the missing values.
We compared the results from the above model selection to an approach called multiple
imputation by chained equations (MICE), one of the most popular imputation methods.
The following description of the method is based on Azur et al. [67]. For MICE one
assumes that missing data is missing at random, which means that the possibility that a
data point is missing depends only on observed values. Because survival outcomes were
observed for everybody in this study, we used MICE to impute missing covariates and not
missing outcomes. MICE iteratively imputes missing covariates using the appropriate
model for that covariate type using all other variables. This cycle of updating the imputed
values is repeated for a set number of times to receive an imputed dataset. Finally, the
whole process is repeated multiple times to generate several imputed datasets, which
will later help to incorporate the uncertainty that was introduced by the imputation into
the analysis results. While some publications suggest about five datasets, White et al.
[68] advised that the number should be at least equal to the percentage of incomplete
cases. A detailed introduction to the imputation and following analyses using the R
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package mice is given by Zhang [69]. We applied our analyses to each of the datasets
imputed via MICE and combined the results to compare them with the missing values
approach above.

The following validation methods usually require that the modelling and validation
are performed on separate datasets. After selecting suitable models in Miller et al. [26],
we retrained the selected models on 80% of the data. We used the remaining 20% as
validation data for the following metrics.

For a calibration analysis, we compared the observed risk to experience one of the
three analysed outcomes, patient death, graft loss, and death with functioning graft,
with the corresponding risk predicted by the model after ten years. In a well-calibrated
model, these probabilities should be similar, at least for the clinically relevant ranges,
that means the probabilities that occur most frequently.

A complementary method to evaluate predictive models is decision curve analysis,
introduced by Vickers & Elkin [70]. The advantage of decision curve analyses is their
clinical relevance in comparison to more traditional metrics evaluating calibration and
discrimination, such as sensitivity, specificity, or area under the receiver operating
characteristic curve (AUC), as these are limited in determining whether a model justifies
its actual usability. We first define a threshold probability pc. This probability is often
determined by the physician or the graft, setting the threshold where a test is considered
positive. For example, this may determine if a patient should undergo biopsy after initial
cancer screening. In our case, this would translate to the assumption that the graft will
experience failure up to a specific time point. We performed this analysis for all final
models as well as the other outcomes, death and death with functioning graft, and set a
time interval of ten years. In dependence of the threshold probability pc, the net benefit
is defined as

Net benefit = True positives
n

− False positives
n

(
pc

1− pc

)
,

where n is the number of grafts in the dataset. Let p̂ denote the probability of experi-
encing the negative outcome, such as graft failure, based on a fitted risk model. Then
the procedure for calculating the decision for further clinical action starts with selecting
the threshold probability pc. Grafts are defined positive, meaning the event has a high
likelihood of occurring, if p̂ ≥ pc.

Identification of a threshold allows the calculation of the number of true and false posi-
tives, and thus the net benefit. In the kidney transplant application, true positives were
defined as the number of grafts predicted to fail during the ten years past transplantation
out of those who did experience mortality during this period. False positives were the
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reverse, the number of grafts predicted to fail out of those who did not. The process
can be repeated for a range of pc, as well as for different models under comparison.
Typically, two reference models are additionally calculated, where we assume that every
prediction is either positive or negative, respectively. This translates to p̂ = 1 and p̂ = 0.
In general, we should only consider clinically relevant threshold probabilities. In an
optimal case, the considered model or test will have a higher net benefit than the other
reference models for the relevant probabilities. For the calculation of the decision curve,
we used the R package dcurves.

The formula above used for the calculation of the net benefit needs to be adapted if
censoring or competing risks are present in the survival model. According to Vickers
et al. [71], censoring is implemented by defining the number of true positives as (1−
(Ŝ(t)|p̂ ≥ pc)) · P (p̂ ≥ pc) · n, where, to be clear, Ŝ(t) is the Kaplan-Meier estimator
at time t, p̂ is the predicted probability, pc is the probability threshold, and n is the
number of grafts in the dataset. Thus, instead of counting the true positives, we
multiply the joint probability of a graft loss and a positive prediction for a time period
of ten years with the total number of grafts. Similarly, the number of false negatives
is given by (Ŝ(t)|p̂ ≥ pc) · P (p̂ ≥ pc) · n. For competing risks, we use the cumulative
incidence F̂j(t) for a specific cause j instead of the Kaplan-Meier estimator, such that
the true positives are set to (F̂j(t)|p̂ ≥ pc) · P (p̂ ≥ pc) · n and the false negatives to
(1− (F̂j(t)|p̂ ≥ pc)) · P (p̂ ≥ pc) · n.

Besides calibration and decision curve analysis, we used the AUC as primary metric.
We calculated the metric for the validation data using bootstrapping, meaning resampling
of the data, to get confidence intervals. For five and ten years, we predicted, among
other outcomes, the risk of graft loss and compared it to the actual status of the graft
at the respective time. From this, we extracted the number of true positives, false
negatives, false positives, and true negatives. These metrics allowed us to calculate the
true positive rate, which is the ratio of true positives and the sum of true positives and
false negatives. Translated to our graft survival, it is the proportion of correctly predicted
losses over all actual losses. Similarly, the false positive rate is defined as the ratio of
false positives and the sum of false positives and true negatives. The receiver operating
characteristic curve plots the two metrics against each other, with the true positive rate
as y axis and false positive rate as x axis. Thus, the AUC should be as high as possible
with a maximum at 1. This is equivalent to high true positive rates, indicating that most
of the graft losses were predicted, and low false positive rates, indicating that few still
functioning grafts were predicted to fail. To account for censoring in the data, an inverse
probability of censoring weighted estimator can be used as described by Wolbers et al.
[72]. For these calculations, we used the R package riskRegression [73], which is
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focused on prediction scores for survival analyses.

2.1.4 Clustering in survival analysis

In our application, kidney donors often donated two kidneys each going to a different re-
cipient and some recipients received more than one kidney each coming from a different
donor. Such clusters may indicate associations in the outcomes that cannot be identified
with the available predictors. In the following, we will consider the implementation of
clustering into the Cox proportional hazards model based on Moore [60].

We created clusters in Miller et al. [26] by considering a single recipient r and all their
received grafts g1, . . . , gr, which were part of the analysed dataset. Then we determined
all donors of these grafts. If any graft of one of these donors was already included in a
cluster, then we assigned g1, . . . , gr also to this cluster. If that was not the case, then we
created a new cluster for these grafts. This was repeated for all recipients and led to a
total of 18,694 clusters. The majority of clusters (n=12,665) contained two grafts, 5,408
clusters contained only one graft, and 621 clusters contained at least three grafts.

One option to consider clusters, applied to transplanted grafts in Miller et al. [26],
is based on marginal survival models. In this approach, parameter estimates are
obtained as usual from a Cox proportional hazards model under the assumption that
the observations are independent. Assuming that the model is correctly specified, Lee
et al. [74] showed that this estimator is consistent and asymptotically normal, but its
covariance matrix estimate has to be corrected. Let V̂ be the usual covariance estimate
under the independence assumption and G be the number of clusters. We define for
graft i in cluster k, i = 1, . . . , nk, k = 1, . . . , G, a score residual:

sij = δki(xki − x̄(tki))−
∑

tu≤tki

(xki − x̄(tki)) exp(xkiβ)(Ĥ0(tu)− Ĥ0(tu−1)),

where δki is the event indicator, which means δki = 0 for censoring and δki = 1 for loss of
graft i, tki is the event time, xki are the covariates, and x̄(tki) are the expected values of
the covariates at this time, a weighted sum of the covariate values for grafts at risk at tki.
Ĥ0 is the estimated baseline cumulative hazard. Assuming a model with p covariates,
then ski is a 1× p matrix. A cluster-adjusted standard error for the coefficient estimates
is then defined by diag(V ∗)1/2, where the adjusted covariance matrix V ∗ = V̂ CV̂ , with
C =

∑G
k=1

∑nk
i=1

∑nk
l=1 s

⊺
kjskl and G as number of clusters, is used instead of the usual

covariance estimate. For a detailed derivation see the initial introduction of this approach
in Lee et al. [74] or Klein & Moeschberger [75]. In R, this approach is implemented by
expanding the formula of the function coxph with a cluster() term.
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Another approach to account for clusters adapts the hazard function with a common
factor for each graft called frailty. It can be considered a random effect. For this method,
let ωi be the frailty for all grafts in the ith cluster. Let (ti, δi, xi) be the ith observation.
Consider the likelihood function:

L(β|xi) =
n∏

i=1
f(ti, β)δiS(tk, β)1−δi

=
n∏

i=1
h(ti, β)δiS(tk, β)

=
n∏

i=1
(h0(ti) exp(xiβ))δi exp(−H0(ti) exp(xiβ))

using h(t) = f(t)/S(t), h(t, β) = h0(ti) exp(xiβ), and H0(ti) = −
∫ ti

0 h0(v)dv. Then
incorporate the frailty term into the hazard function for the ith graft in the kth cluster by
defining

h(tki|ωi, xki, β) = h0(tki)ωi exp(xkiβ).

The frailty depends on the G clusters and can be modelled via some distribution like the
gamma distribution: Often, it is assumed that ω ∼ g(ω|θ) follows a gamma distribution,
such that the joint likelihood for the ith graft in cluster k can be written as

L(β, θ|ωk, tki, δki, xki) = g(ωk|θ)(h0(tki)ωi exp(xkiβ))δki exp(−H0(tki)ωk exp(xkiβ))).

As an alternative to using the gamma distribution, we can also write ωk = exp(σuk),
where uk has a standard normal distribution, such that random and fixed effects are on
the same level:

h(tki|ωi, xki, β) = h0(tki) exp(xkiβ + ukσ).

Finally, the expectation-maximization algorithm, a well-known iterative process to find
maximum likelihood estimates described for example in Dellaert [76], can be used to
estimate the parameters. In R, the frailty model can be implemented by expanding the
formula of the function coxph with a frailty() term, which uses by default the gamma
distribution.

There are some reviews on the decision to include cluster effects in the model,
however, previous publications often considered multi-centre clinical trials in which a
clinic represented a cluster, which is quite different from the clusters we considered.
Nonetheless, Glidden & Vittinghoff [77] summarize several reviews by deriving that fixed
effects should be chosen if inference is only intended to apply for the selected centres
and for more general inferences, random effects are preferred. Yet, Snavely [78] argues
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that frailty models should be used for centre-specific interpretations, while the marginal
model should be used if population-averaged interpretation is of interest. In the first
study, cluster sizes between 2 and 20 and a total sample size of 100 and 400, in the
latter, a cluster size of 10-50 and a sample size of 500 were simulated. Therefore, these
results have very limited applicability to our situation with very small clusters and much
larger sample sizes. Further simulation studies are urgently needed to determine the
relevance of cluster adjustments and which method is most appropriate in comparable
survival analyses.

2.2 Published COVID-19 time series models

The COVID-19 pandemic catalysed statistical methodological research to reproduce
and simulate the pandemic’s development, with a primary focus on the modelling and
prediction of infection or death. Some of the more highly publicized models are listed in
Table 2.1. In the following, we present a diverse selection of early publicized COVID-19
models to understand core ideas that dictate state-of-the-art model development for
infectious diseases.

2.2.1 Models of early developments in China

Wu et al. [86] were one of the first to forecast the spread of COVID-19 in China and
internationally. In order to simulate the Wuhan epidemic, the authors employed a
susceptible-exposed-infectious-recovered (SEIR) model, where S(t), E(t), I(t), and
R(t) are the numbers of susceptible, exposed, infectious, and recovered individuals
at time t. SEIR models are one of the major schools of methods modelling infectious
diseases. Usually based on ordinary differential equations, they are deterministic and
derive from the more basic susceptible-infectious and susceptible-infectious-recovered
models [94]. In the susceptible-infectious model, the population is partitioned into two
distinct groups. The union of these disjoint groups covers the whole population. One
group, the infectious, is infected with respect to a specific disease and is capable of
infecting individuals of the other group, the susceptibles. The counts of these groups
are variables and the flow between them is typically modelled by differential equations.
For the SEIR approach, the partition of the population is extended from two to four
compartments. Next to the susceptible and the infectious group, there are now also
the exposed, who are infected but not yet infectious, and the removed or recovered
individuals. A more detailed introduction to the concept can be found in Murray [94].
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Publication Disease Main statis-
tic

Model framework Model details Location Time range

Schneble
et al. [79]

COVID-
19

Daily deaths Generalized addi-
tive mixed model

Flexible statistical models with smooth spa-
tial components and a district-specific Pois-
son process

German dis-
tricts

Mar 26 - May
13, 2020

Wang et al.
[80]

COVID-
19

Daily infec-
tions

Statistical survival-
convolutional
model

Transmission rate modelled as non-
negative piecewise linear function with
knots placed at meaningful event times

China /
South Korea
/ Italy / USA

Jan 20 - Feb 4 /
Feb 15 - Mar 4 /
Feb 20 - Apr 29
/ Feb 21 - May
1, 2020

IHME [81] COVID-
19

Cumulative
death rate

Mixed effect non-
linear regression

Cumulative death rate as parametrised
Gaussian error function; state-specific so-
cial distancing covariates

13 regions
with peak
deaths in
China, Italy,
Spain, USA

Until Apr 14,
2020

Mercker et
al. [82]

COVID-
19

Infection
rate

Generalized addi-
tive mixed model
(GAMM)

GAMM of time series of districts with federal
state as random intercept, autoregressive
structure with order 1; NegBin distribution

Germany Until Apr 13,
2020

Guenther
et al. [83]

COVID-
19

Daily infec-
tions

Hierarchical
Bayesian

Poisson and Binomial distribution for cases
and their delays

Bavaria
(Germany)

Mar 1 - Apr 9,
2020

Woody et
al. [84]

COVID-
19

Daily death
rate

Generalized linear
model

Similar to IHME model but daily death rates
as mixed effect NegBin generalized linear
model

USA Until Apr 3,
2020

Flaxman et
al. [85]

COVID-
19

Daily deaths Semi-mechanistic
Bayesian hierarchi-
cal model

Deaths as sum of past infections weighted
by probability of death; expected number
of deaths expected to follow NegBin; infec-
tions as sum of infections in previous days,
weighted by discretized generation distribu-
tion

11 Eu-
ropean
countries

Until Mar 28,
2020

Wu et al.
[86]

COVID-
19

Cumulative
infections

SEIR Modelling change in compartments based
on prior numbers and disease periods

mainly
China

Dec 31 - Jan 28,
2020

Charu et al.
[87]

Influenza Weekly in-
fections

Partial likelihood of
spatial locations

Semi-parametric model for the conditional
intensity giving the hazard of infection in a
specific location based on proximity to other
locations

USA 2002 - 2010

Mahsin et
al. [88]

Influenza Daily infec-
tions

Geographically de-
pendent discrete-
time individual-
level model

Conditional autoregressive to capture spa-
tially structured latent covariates

Calgary
(Canada)

Oct 25 - Nov 14,
2009

Lowe et al.
[89]

Dengue
fever

Monthly
infections

Generalised linear
mixed model

Count of cases as NegBin Brazil 2001 - 2009

Meyer et al.
[90]

Meningo-
coccal
disease

Weekly in-
fections

Additive model of
epidemic and en-
demic parts

Endemic: piecewise constant function on
spatiotemporal grid; epidemic: the sum of
factorized effects of marks, elapsed time,
and relative location

German dis-
tricts

2002 - 2008

Paul et al.
[91]

Influenza
with
meningo-
coccal
disease /
Influenza

Weekly in-
fections

Additive model of
epidemic and en-
demic parts

Epidemic: autoregression on previous
cases with NegBin; endemic: harmonics
with incidence levels dependent on sub-
groups

Germany /
USA

2001 - 2006 /
1996 - 2006

Hefley
et al. [92]

Chronic
waisting
in white-
tailed
deer

Overall infec-
tions

Generalized linear
mixed model for
spatial processes

Spatial process in a hierarchical model Wisconsin
(USA)

2002

Malesios
et al. [93]

Sheep
pox

Weekly
farms with
infections

Spatio-temporal
Bayesian model

Extend spatio-temporal model with
Ornstein-Uhlenbeck process to incorporate
features of epidemic data

Greece 1994 - 1998

Table 2.1: Selection of infectious disease models. NegBin corresponds to the negative binomial
distribution, GAMM to generalized additive mixed model, SEIR to susceptible-exposed-infectious-
recovered model.
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Chapter 2 Methodological background

Wu et al. [86] modelled the spread of the virus as a function of the changes in S, E,
and I dependent on day t via derivatives as follows:

dS(t)
dt = LI,W + LC,W (t)− S(t)

N

(
R0
DI

I(t) + z(t)
)
−
(
LW,I

N
+ LW,C(t)

N

)
S(t),

dE(t)
dt = S(t)

N

(
R0
DI

I(t) + z(t)
)
− E(t)

DE
−
(
LW,I

N
+ LW,C(t)

N

)
E(t),

dI(t)
dt = E(t)

DE
− I(t)

DI
−
(
LW,I

N
+ LW,C(t)

N

)
I(t).

R is not explicitly defined in the publication, but it would comprise at least the recovered
individuals leaving the group of infected, expressed in the third equation as the factor
I(t)
DI

. Above equations require specification of nine parameters, DE , DI , R0, N , z(t),
LW,I , LI,W , LW,C(t), and LC,W (t), which we now define in turn.
N is the catchment population size of the Wuhan Tianhe International Airport at

Wuhan. The authors set the passenger numbers to the numbers of previous years, where
LW,I was the daily average of international outbound air passengers from mainland
China, LI,W the international inbound air passengers, LW,C(t) the daily number of all
domestic outbound travellers, and LC,W (t) the domestic inbound travellers. Figure 2.2
illustrates the intensity of outbound passenger numbers and shows that regional travel
inside the country is very heterogeneous and highlights the importance in comparison
to international travel.

Figure 2.1: Diagram of time intervals in infectious diseases (based on Lipsitch et al. [95] and
Porta [96]).

The basic reproductive number, R0, is the average number of infected people by a
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2.2 Published COVID-19 time series models

single infectious person, if the whole population is assumed to be still susceptible to the
virus. In contrast to the other parameters, R0 is not taken from literature but modelled
as discussed further down.

The components DE and DI are the mean latent and infectious periods, defined
as the time range between exposure and beginning of infectiousness and between
onset and end of infectiousness, respectively (see Figure 2.1). They assumed that the
latent period equals the incubation period and the infectious period the serial minus
the latent period, and used time ranges from the literature from the previous two major
coronaviruses SARS-CoV and MERS-CoV.

The zoonotic force of infection, z(t), was set in the baseline scenario to 86 cases per
day until January 1, 2020, and then 0 thereafter, as January 1 was the day the Huanan
seafood wholesale market, the most probable index source, was closed.

The derivatives represent the change in each of the compartments, S, E, and I, over
time. Each compartment has incoming and outgoing flows. All three compartments have
one outgoing number which is the count of departing passengers, LW,I and LW,C(t),
multiplied by the proportion of the respective compartment in the local population. We
can see in the first equation that the number of susceptible individuals increases by
the incoming passengers. The number of new infections, either by zoonotic force or by
contact with other infected decreases the number of susceptible. The zoonotic force is
fixed as described above, while the contact infections are determined by the number of
currently infectious individuals factored by the strength, R0, over the duration, DI , of the
infectiousness.

These newly infected are then counted towards the exposed group, visible in the
second equation. People in the exposed group either travel outward or stay in the area
and become infectious after the latent period, thereby counting towards the infectious
group then.

Decreasing summands of the infectious group are given by the outflow of travellers
and the people who are not infectious anymore. For this, the infectious cases are divided
by the infectious period.

Wu et al. [86] then modelled the international case exportation by a non-homogeneous
process with rate

λ(t) = LW,I

N
(E(t) + I(t)),

assuming that travel behaviour was not affected by the disease. Thus, the case ex-
portations are assumed to be a Poisson process with a mean dependent on time and
defined as the number of outbound travellers multiplied by the proportion of exposed
and infectious individuals in the local population, thereby assuming that the proportion
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Figure 2.2: Major routes of outbound air and train travel originating from Wuhan during the
Spring Festival travel season, 2019. Darker and thicker edges represent greater numbers of
passengers (from Wu et al. [86]).

of cases in the local population and for the travellers is equal. As seen in the equations
above, these two groups have the parameter basic reproductive number R0. They
applied Markov Chain Monte Carlo methods with Gibbs sampling and non-informative
flat prior distributions to estimate R0 assuming the model and mobility and flight data
(Figure 2.2).

Shortcomings of the publication included that many assumptions were required due
to the sparse data. For example, the mean serial interval of COVID-19 was calculated to
be 3.96 days based on 468 COVID-19 transmissions between January 21 and February
8, 2020 [97], which was lower than the respective period of SARS-CoV. Furthermore,
some assumptions could not be projected into the future such as the unaffected travel
behaviour. Similarly, the model assumed that all cases showed symptoms at some point,
but the literature reported from 4 to 42 percent asymptotic cases among positive tested
individuals [98, 99]. Other assumptions could also be unreliable, such as the zoonotic
mechanism.

There were a number of other COVID-19 publications utilizing the SEIR modelling
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framework [100–105]. However, SEIR models are not tailored for the implementation of
dynamic changes, such as the introduction of non-pharmaceutical interventions (NPI),
which can have a big impact on the reproductive rate. Therefore, many SEIR models
have failed to forecast downward trends in the number of deaths or infected [81]. Another
limitation is their reliance on the number of reported infections, which is in many cases
not comparable due to differences in testing systems between regions as well as
changes over time.

2.2.2 The IHME model

The Institute for Health Metrics and Evaluation (IHME) 2020 group also took a determin-
istic approach but instead of using the SEIR model, modelled the cumulative death rate
as a function of time on a regional level. They modelled deaths rather than infections
based on their higher accuracy, and only considered locations with a death rate greater
than exp(−15) ≈ 0.31 per million.

They assumed that cumulative death rates follow a Gaussian error function:

D(t;α, β, p) = p

2

(
1 + 2√

π

∫ α(t−β)

0
exp

(
−τ2

)
dτ

)
, (2.1)

where p denotes the location-specific maximum death rate, t the time since the death
rate exceeded exp(−15), β the location-specific time axis shift parameter that indicated
the time at which the rate of change of the cumulative death rate D is maximal and α
is a location-specific growth parameter, which can be interpreted as the speed of the
infection.

An ensemble of three mixed-effects models was applied to the log of the death rate
that differed by the definition of social distancing applied to regions from China, Italy,
Spain, and USA, which were assumed to have reached peak deaths by April 14, 2020.
For each model, there were two variants, a short-term to explain existing data and
a long-term for forecasting. A predictive validity framework that analysed errors in
predicting out-of-sample observations was used to calculate uncertainties of models.

Jewell et al. [106] noted that a disadvantage of the model was the strong assumption
that epidemic curves follow a normal distribution. Another assumption of the model was
that mortality rates were influenced by introduction dates of social distancing measures
in a similar manner across different countries with differences modelled by random
effects. Although a uniform response may apply for early epidemic curves, it can be
expected to deviate with time and by country. Analyses of mortality in US cities during
the 1918 influenza pandemic showed that not only the timing of implementation of
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non-pharmaceutical interventions influenced the death rate, but also the timing of their
relaxation [107, 108]. Figure 2.3 from Markel et al. [107] shows peaks in mortality rate
following the end of bans and shows different distributions in accordance with different
interventions. Another issue was that early on, when only few complete mortality curves

Figure 2.3: Weekly excess death rates during the 1918 influenza pandemic from September 8,
1918, through February 22, 1919 (from Markel et al. [107]).

were observed, estimated parameters, such as curve inflection times, may have been
unduly influenced by unrepresentative regions and policies supplying the data.

The model offered a broad range of uncertainty, especially considering that some
sources, such as data and model structure, were not incorporated. For example,
projected cumulative US deaths based on data from mid-April plateaued after about
three weeks at 60,000 counts with a 95% confidence interval ranging from 34,000 to
140,000 until the end of the prediction period around the end of June. Furthermore,
predictions sometimes changed drastically when new input data was provided, without

30



2.2 Published COVID-19 time series models

any apparent reason. Marchant et al. [109] also found that 49-73% of observed death
counts fell outside a 95% prediction interval based on an early version of the model in
contrast to the expected 5%.

Other approaches have also modelled death counts. Atkeson et al. [110] compared a
stylized version of the IHME model to a SIR model. Schumacher et al. [111] utilized a
nonlinear mixed-effects model for the death numbers in Latin American countries, and
Schüttler et al. [112] employed a Gaussian function of time for the logarithm of daily
death rates in 25 countries.

2.2.3 The University of Texas model

Woody et al. [84] shifted from the cumulative to the daily death rate, thus considering
the derivative of the key equation from the IHME model (2.1):

D′(t) = pα√
π

exp
(
−α2(t− β)2

)
.

with a different parametrization. The daily death rate λit was modelled as

E(yit) = λit = κit exp
(
−ωit

2 (t− µit)2
)
,

where t was the number of days since deaths crossed the threshold of 3 per 10 million,
yit is the observed number of deaths in an area i at time t, κ = pα√

π
the maximum daily

expected death rate, µ = β the day on which the expected death rate achieved its
maximum, and ω = 2α2 a steepness parameter for the rise or fall of the death rate. The
authors assumed the log death rate varied quadratically with time t:

log λit = log κit − 0.5ωit(t− µi)2 ≡ βi0 + βi1t+ βi2t
2,

with ω = −2β2, µ = β1
2β2

, and κ = exp
(
β0 −

β2
1

2β2

)
.

At this point, the authors moved away from an assumed Normal distribution for the
number of deaths yit and assumed instead the more appropriate negative binomial
distribution for counts. One strong constraint of the Poisson distribution, a typical count
model distribution, is that expected value and variance are equal. If we consider a
Poisson model for count data y ∼ Poisson(ϕ), ϕ > 0, and assume that the mean ϕ

is a Gamma distributed random variable, ϕ ∼ Gamma(r, r
λ), we obtain the negative

binomial distribution, NegBin(λ, r). Therefore, the negative binomial has the major
advantage of higher flexibility over the Poisson distribution. The NegBin(λ, r) distribution
is determined by two parameters, the mean λ and the overdispersion parameter r. The
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implied variance is λ(1 + 1
rλ). For r → ∞, variance approaches the mean and the

distribution approaches again a Poisson distribution.
Normally distributed random effects were incorporated to yield the full hierarchical

specification of the University of Texas (UT) model:

yit ∼ NegBin(λit, r),

log λit = logNi + βit,0 + βit,1t+ βit,2t
2,

(βit,0, βit,1, βit,2)T = µ+ Γxit + νi,

νi ∼ N (0,Σ),

where xit was a vector of social distancing predictors and Ni the population of area i as
offset to obtain the rate of deaths in the respective area. The authors included extensions
to the model, including a fixed effect for weekend days in the linear expression for the
log of the death rate λ to incorporate under-reporting of numbers on weekends. The
authors fit the model using Markov Chain Monte Carlo in a Bayesian approach with prior
distributions β via the R package rstanarm [113].

The expectation of the death rate was quadratic similar to the Gaussian kernel of the
IHME model. The UT team implemented additional mobility data to quantify movement
and social distancing, similar to the later IHME models. GPS traces of mobile phones
provided surrogates of visitor density in public and working spaces. In detail, mobile
phone data described the median time people spent at home, the number of people
spending full time at their usual place of work, and the total per capita visitation counts
of specific types of public places. This is visualized in Figure 2.4, which shows that
the mobility indicators started dropping off at the beginning of March with colleges and
schools showing the earliest decline and grocery stores first increasing shortly and then
also declining at the end of March.

The original IHME model had a statistical flaw in the assumptions that exaggerated
certainty in forecast results. Namely, in modelling cumulative death rates their procedure
erroneously assumed successive model errors were independent. But as the estimation
goal was cumulative, values on one day depended on values of previous days. In
contrast, the UT group modelled daily death rates, however, they did not apply an
autoregressive error structure to account for the likely dependence between days.

Other publications employed comparable techniques in the modelling of COVID-19.
Millett et al. [114] built a zero-inflated negative binomial regression model to determine
racial disparities in US counties regarding cases and deaths. Guenther et al. [83] used
a Bayesian hierarchical model for fitting the number of cases with a negative binomial
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Figure 2.4: Visitation patterns in Texas visualized as relative changes to pre-pandemic baselines
for various points of interest (from Woody et al. [84]). The vertical line showing when the state
death rate reached 3 per 10 million residents.

distribution in order to nowcast, i.e. correct daily case counts for occurred-but-not-yet-
reported events, in districts in Bavaria, Germany. Applying the same framework, Neelon
et al. [115] compared the temporal effect on infection and death rates between US
counties with respect to their social vulnerability. Coker et al. [116] used a negative
binomial model to suggest a positive association between the overall excess mortality
due to COVID-19 and air pollution in municipalities in Northern Italy.

2.2.4 The Imperial College model

The Imperial College COVID-19 Response Team model inferred bounds on infection
numbers, case detection probabilities, and reproduction numbers Rt over time for
individual countries [117]. In order to achieve this, they fit a Bayesian model of the
mechanics of the infection cycle to the observed deaths for eleven European countries
based on data up to March 28, 2020. The death count was taken as a more reliable
dependent variable compared to the reported number of infected. An update to the first
publication expanded the original model to include population saturation effects, prior
uncertainty on the infection fatality ratio, better balancing on intervention effects, and
partial pooling of the lockdown intervention effect [85]. However, one key property of
the model remained, namely, that the authors did not derive a number of parameters
empirically but rather took estimates from the literature.
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They assumed

Dt,m ∼ NegBin (dt,m,Φ) ,

Φ ∼ N+(0, 5),

where Dt,m are the daily deaths attributed to COVID-19 for the days t ∈ 1, . . . , n and
countries m ∈ 1, . . . , p. Parameter dt,m is the mean and Φ the overdispersion parameter
assumed to follow a half normal distribution. To avoid deaths resulting from non-locally
acquired infections, the authors only included deaths from days after regions had
cumulatively observed at least ten deaths.

In order to link the number of deaths with the number of infected, the authors utilized
two quantities. One was the infection-fatality-ratio, ifr∗, and the other, was the time from
infection to death π. Then, country-specific expected deaths for specific days and age
groups were modelled as

dt,m,a = ifr∗
m,a

t−1∑
τ=0

πt−τ cτ,m,

ifr∗
m ∼ ifra · N (1, 0.1),

ifra = AR50−59
ARa

ifr ′
a,

ARa = ca/Na

πs =


∫ 1.5

0 π(τ) dτ for s = 1∫ s+0.5
s−0.5 π(τ) dτ for s = 2, 3, . . .

π ∼ Gamma(5.1, 0.86) + Gamma(18.8, 0.45).

The expected number of deaths for country m on day t was modelled as the sum of
past infections weighted by their probabilities of death, which depended on the number
of days since infection. The parameter cτ,m was the number of new infections on day
τ and location m to be modelled as shown later. In order to incorporate uncertainty
in the estimate of the country-specific mean infection-fatality ratio ifrm, the authors
incorporated additional noise around the mean and created ifr∗

m . Parameter ifr ′, which
assumed homogeneous attack rates across age groups, was identified from the literature.
The attack rate is a synonym here for the infected proportion of the population. ifr ′ was
adapted by age-group-specific attack rates to obtain ifra. The term ca was assumed
to be the number of infections, Na the underlying size of the population, and ARa the
attack rate, all three specific to the age group a. The time from infection to death π
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was defined as the sum of the incubation period and the time between the onset of
symptoms and death, assumed Gamma distributed with parameters taken from the
literature. Its density π(τ) was used to discretize it to πs.

A discrete renewal process was used to model the true number of infected c, thus the
number of infections on day t in country m was given by

ct,m = St,mRt,m

t−1∑
τ=0

cτ,mgt−τ ,

St,m = 1−
∑t−1

i=1 ci,m

Nm
,

g ∼ Gamma(6.5, 0.62).

The time between when a person gets infected and when they subsequently infect other
people was given by the density g(τ) with the generation distribution g, assumed to
be equal to the serial interval distribution and Gamma distributed. Furthermore, Nm

was the population of country m, and St,m an adjustment factor accounting for herd
immunity reducing the number of newly infected. The model assumed that reinfection
was not possible over the considered time frame and did not account for infected who
died before infecting others. The parameter Rt,m was the country-specific time-varying
reproduction number, scaled from a baseline prior R0,m by piecewise constant functions
driven by NPI.

Country- and time-specific reproductive numbers were modelled with multiplicative
effects of interventions:

Rt,m = R0,me
−
∑6

k=1 αkIk,t,m−βmI5,t,m ,

β1, . . . , βM ∼ N (0, γ),

γ ∼ N (0, 0.2),

αk ∼ Gamma(1/6, 1)− log(1.05)
6 .

The indicator functions Ik,t,m, k ∈ {1, . . . , 6} equalled one if intervention k was in place
in country m at time t, otherwise zero. The six interventions considered were the closure
of schools and universities (k = 1), self-isolation if ill (k = 2), banning of public events
(k = 3), any intervention in place (k = 4), partial or complete lockdown (k = 5), and
encouragement of social distancing (k = 6). The fourth covariate (k = 4) indicated
only whether any of the five interventions were in effect. Figure 2.5 shows that the
introduction dates of interventions were in some cases very different and in other cases
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very similar between the countries. The effects of interventions were assumed to be
multiplicative. The parameter βm was the country-specific random effect of a lockdown,
while all impacts αk were shared between the countries. Individual parameters αk were
chosen to have a probability that individual interventions do not reduce Rt,m, P (αk < 0),
near 48% and that the joint effect of all αk on the probability be uniformly distributed on
[0, 1.05] if all interventions are in place.

Figure 2.5: Introduction dates of interventions (from Flaxman et al. [117]).

A focus of the Imperial College model was the reproduction number R, which is the
average number of infections generated directly by one infected case. The effective
reproduction number at time t, Rt, generalizes the basic reproduction number, R0,
defined as the expected number of infections generated by one case, in the sense that
R0 assumes that all of the population is susceptible whereas Rt does not. A value of
Rt < 1 indicates that new infections are decreasing, implying control of the epidemic,
and Rt > 1 that they are increasing until herd immunity is achieved and the epidemic
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ultimately declines. Lipsitch et al. [95] formulated the basic reproductive number as
R0 = kbD, where k is the number of contacts an infectious person has per unit of
time, b is the probability of infection per contact, and D is the average infectiousness
duration. The effective reproductive number was then defined as Rt = R0x, where x is
the susceptible proportion of the population.

The overall approach of reliance on key values from external studies allowed to make
the individual parameters more robust, yet, it reduced the model’s flexibility and made
it more reliant on the infection process. Furthermore, due to the different stages of
the epidemic curves in the incorporated countries, higher counts of death and earlier
interventions had an increased impact on the model, which may have introduced bias.
However, this disadvantage applied to all models integrating different administrative
regions.

Other publications also used the presented method or followed similar approaches.
Delius et al. [118] analysed the infection-fatality-ratio in European data by adapting
the Imperial College model. Olney et al. [119] used it to measure the effect of social
distancing interventions based on data from the US. Brauner et al. [120] went even
further and applied a similar framework to analyse interventions for 41 countries. Saez
et al. [121] used generalized linear mixed models to monitor the development and effect
of interventions on COVID-19 infections and deaths in the context of socio-economic
and demographic factors.

2.3 Modelling options for longitudinal count data with
autoregression

In the following, we discuss modelling options for count data. We compare Bayesian
approaches with frequentist methods as a basis for the modelling decisions made in
later sections.

2.3.1 Simple Poisson Model

We first considered a simple autoregressive Poisson distribution as base model to infer
infection numbers on one day given the count of the previous day:

It|λt ∼ Poisson(λt) ∀t ∈ {1, . . . , n}

log(λt) = β0 + α log(It−1 + 1),
(2.2)
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where It are the infections on day t and n is the number of observed days. This model
is similar to integer-valued generalized autoregressive conditional heteroscedasticity
(INGARCH) models often used in finance mathematics [122]. However, we used a log
link function extension, which considers the exponential growth rates and enables a
more intuitive generalization with external factors. The model will later be extended as
this simple specification is not yet able to simulate more than a stable situation with
constant dynamics as demonstrated in Figure 2.6. Nonetheless, we will discuss this
basis in detail. The parameter combinations in the figure will later be considered for
simulation studies.
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Figure 2.6: Time series of daily COVID-19 infections in Munich from 2020-02-24 to 2021-03-16
(black) in comparison to Poisson models (coloured) with different parameter combinations each
with 10 simulations.

We utilized Markov Chain Monte Carlo (MCMC) with the Metropolis algorithm to
sample from the posterior f(θ|I), where I = (I0, . . . , In) and θ = (α, β0), to fit the hierar-
chical model. The procedure is briefly illustrated in Algorithm 1. The individual steps,
particularly the key calculation of the acceptance probability and its log transformation,
are discussed below.
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Algorithm 1 Metropolis sampler

1: procedure METROPOLISSAMPLER(iterations, startvalues, Σ, data)
2: θold ← θ(1) ← startvalues
3: for i← 2, iterations do
4: Sample θprop from proposal density g given θold and covariance matrix Σ
5: Calculate acceptance probability pA(θprop, θold, data) given observed data
6: Sample U from Uniform(0, 1)
7: if U < pA then
8: θ(i) ← θprop
9: else

10: θ(i) ← θold
11: end if
12: θold ← θ(i)

13: end for
14: return θ(1), . . . , θ(iterations)

15: end procedure

In order to compute the likelihood conditioned on the initial infection count I0 we
assumed that It is only dependent on It−1:

L(θ) = f(I|θ)

= f(In|In−1, . . . , I0, θ) · f(In−1|In−2, . . . , I0, θ) · . . . · f(I1|I0, θ)

= f(In|In−1, θ) · f(In−1|In−2, θ) · . . . · f(I1|I0, θ)

=
n∏

t=1
f(It|It−1, θ)

=
n∏

t=1

exp(−λt)λIt
t

It!
,

where λt = λt(θ, It−1) = exp(β0 + α log(It−1 + 1)). For easier computation we consid-
ered the logarithm:

logL(θ) =
n∑

t=1
log

(
exp(−λt)λIt

t

It!

)

=
n∑

t=1
It log(λt)− log(It!)− λt.
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As priors we assumed α ∼ N(0, ϕα), β0 ∼ N(0, ϕβ0), independently. Thus,

πα(x) = 1√
2πϕα

exp
(
−x2

2ϕα

)
,

πβ0(x) = 1√
2πϕβ0

exp
(
−x2

2ϕβ0

)
,

π(θ) = πα(α)πβ0(β0).

We set ϕ = (ϕβ0 , ϕα) = (100, 100). In a sensitivity analysis with ϕ being multiplied with
i ∈ {0.01, 0.1, 1, 10} we could not detect any relevant changes with respect to parameter
estimates and acceptance rates. We also compared the results to the algorithm when
using a flat prior, α ∼ 1, β0 ∼ 1 and did not find any relevant differences in the estimates.

In order to obtain a new θ candidate in the chain we utilized the proposal density

g(θprop|θold) = N(θold, C · Σ),

where Σ and ϕ are given variances and C a constant matrix, which we assumed
in the general case to be the identity matrix but enabled adaptation for a sensitivity
analysis. For Σ we used the covariance matrix of the frequentist fit with the function
tsglm from the tscount R package [123]. Furthermore, we also utilized its coefficient
estimates perturbed by an additive value sampled from a Normal distribution with
standard deviation 0.1 and mean 0 as starting values for the Bayesian methods.

In the following, let θprop be the proposal and θold the values of the previous draw in
the MCMC. We sampled U from a Uniform(0, 1) distribution and accepted the proposal
after comparing U with the factor

f(θprop|I)g(θold|θprop)
f(θold|I)g(θprop|θold) = f(I|θprop)π(θprop)g(θold|θprop)

f(I|θold)π(θold)g(θprop|θold)

= L(θprop)π(θprop)g(θold|θprop)
L(θold)π(θold)g(θprop|θold) .

Since the proposal function is symmetric in the sense that g(θprop|θold) = g(θold|θprop),
the factor for the acceptance probability pA can be simplified. For numerical stability, we
work on the log scale, and accept a proposal if

log(U) ≤ log(pA) = min
(

log(1), log
(
L(θprop)π(θprop)
L(θold)π(θold)

))
.
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If we consider

log(1) = 0,

log
(
L(θprop)
L(θold)

)
=

n∑
t=1

(
It log

(
λ

(prop)
t

)
− log(It!)− λ(prop)

t

)
−

n∑
t=1

(
It log

(
λ

(old)
t

)
− log(It!)− λ(old)

t

)
=

n∑
t=1

[
It

(
log
(
λ

(prop)
t

)
− log

(
λ

(old)
t

))
− λ(prop)

t + λ
(old)
t

]
,

log
(
π(θprop)
π(θold)

)
= log

(
πα(α(prop))πβ0(β(prop)

0 )
πα(α(old))πβ0(β(old)

0 )

)

= log
(
πα(α(prop))

)
+ log

(
πβ0(β(old)

0 )
)

− log
(
πα(α(old))

)
− log

(
πβ0(β(old)

0 )
)

= −α
(prop)2

2ϕα
− β

(prop)2

0
2ϕβ0

+ α(old)2

2ϕα
+ β

(old)2

0
2ϕβ0

,

where λ(old)
t = λt(θold, It−1) and λ(prop)

t = λt(θprop, It−1), we obtain

log(pA) = min
(

0,− α(prop)2

2ϕα
− β

(prop)2

0
2ϕβ0

+ α(old)2

2ϕα
+ β

(old)2

0
2ϕβ0

+
n∑

t=1

[
It

(
log
(
λ

(prop)
t

)
− log

(
λ

(old)
t

))
− λ(prop)

t + λ
(old)
t

] )
.

The acceptance probability is simplified, when using a reference prior, which eliminates
the term before the summation symbol in the second factor. It can also be further
computationally optimized by considering

n∑
t=1

It log(λt) =
n∑

t=1
Itβ0 + Itα log(It−1 + 1) = β0

n∑
t=1

It + α
n∑

t=1
It log(It−1 + 1)

= β0sumi+ αsumli,
n∑

t=1
λt = exp(β0)

n∑
t=1

exp(α log(It−1 + 1)) = exp(β0)
n∑

t=1
exp(log(It−1 + 1))α

= exp(β0)
n∑

t=1
(It−1 + 1)α,

where sumi =
∑n

t=1 It and sumli =
∑n

t=1 It log(It−1 + 1) depend only on the data and
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can be calculated just once, before the sampler begins. Thus, the log of the acceptance
probability can be written as:

log(pA) = min
(

0,− α(prop)2

2ϕα
− β

(prop)2

0
2ϕβ0

+ α(old)2

2ϕα
+ β

(old)2

0
2ϕβ0

+ sumi
(
β

(prop)
0 − β(old)

0

)
+ sumli

(
α(prop) − α(old)

)
− exp

(
β

(prop)
0

) n∑
t=1

(It−1 + 1)α(prop) + exp
(
β

(old)
0

) n∑
t=1

(It−1 + 1)α(old)
)

The code for the Metropolis sampler is shown in B.2.
As mentioned we utilized the frequentist approach of the function tsglm from the

tscount package to find suitable starting values but also to compare the results to the
Bayesian methods [123]. The tsglm function generally employs quasi conditional maxi-
mum likelihood estimation, which simplifies for Poisson models to an ordinary maximum
likelihood estimator [123]. A more detailed description of this method specifically for
Poisson autoregression is given in Fokianos et al. [124]. The tsglm function returned
a mean estimate of α at 0.84 with a standard error of < 0.01 and a 95% confidence
interval between 0.78 and 0.80. The mean estimate of β0 was 1.14 with a standard error
0.02 and confidence interval limits at 1.10 and 1.19.

We compared multiple commonly used MCMC programs employing different algo-
rithms and our Metropolis sampler. The Metropolis sampler was written and run in
R while the others were accessed via R to enable post-processing of the output in
similar fashion. WinBUGS as one of the first popular statistical software applications for
Bayesian analysis employed Gibbs sampling, but was only usable on Windows platforms
[125]. In order to have larger applicability, OpenBUGS and Just Another Gibbs Sam-
pler (JAGS) [126] were developed. Although very similar, they were not identical. For
example, OpenBUGS applied a different updating method [125]. While the source code
of WinBUGS and OpenBUGS was written in Component Pascal, JAGS was written in
C++, thereby increasing usability. JAGS also corrected some flaws present in WinBUGS
at the time. Despite the disparities, WinBUGS, JAGS, and OpenBUGS all rely on BUGS
scripts, which enabled us to use the same script in our implementation. Finally, we also
incorporated the probabilistic programming language Stan. The main differences to the
other methods are that Stan uses a more flexible and expressive programming language
and that its MCMC technique is based on Hamiltonian Monte Carlo (HMC), which is
more efficient and robust for complex posteriors than Gibbs or Metropolis-Hastings
samplers [127]. The default sampler of Stan is the No-U-Turn Sampler, an adaptive
variant of HMC sampling [128]. As it is based on HMC, it uses gradient information
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2.3 Modelling options for longitudinal count data with autoregression

in the log density function thereby limiting random walk behaviour and sensitivity to
correlated parameters.

HMC was first described in Duane et al. [129], where it was still called Hybrid Monte
Carlo. We will give a short introduction to the method and the No-U-Turn expansion and
will therefore mostly rely on Hoffman & Gelman [128]. For a more detailed introduction
to HMC, Neal et al. [130] explains the topic with a focus on one of the origins of the
approach, molecular dynamics, specifically Hamiltonian dynamics, while Betancourt
[131] describes the method in a detailed manner from a geometric point of view. HMC
introduces for each model variable θd a momentum variable rd. These are independently
drawn from the standard normal distribution. Thus,

p(θ, r) ∝ exp
(
L(θ)− 1

2r · r
)
,

where L(θ) is the logarithm of the joint density of θ and x · y denotes the inner prod-
uct of the vectors x and y. Typically, a leapfrog integrator, simulating a Hamiltonian
dynamics evolution, is used to propose a move to a new point. Thereby, the position
and momentum vectors after step size ϵ are given by

r(t+ϵ/2) = r(t) + (ϵ/2)∇θL(θ(t))

θ(t+ϵ) = θ(t) + ϵrt+ϵ/2

r(t+ϵ) = r(t+ϵ/2) + (ϵ/2)∇θL(θ(t+ϵ)),

where ∇θ denotes the gradient with respect to θ.
A standard sampling strategy is described in Algorithm 2, where M is the targeted

number of samples. For each sample m the momentum variables are sampled from a
standard normal distribution, analogous to Gibbs sampling. These momentum variables
and the previous position variables θ(m−1) are used as starting values for the leapfrog
process with L updates and step size ϵ. The resulting momentum and position variables
are used as proposals and are accepted according to the Metropolis algorithm.

The effectiveness of HMC depends strongly on the choice of appropriate values for
ϵ and L. The No-U-Turn Sampler eliminates the need to set L manually and thereby
removes a big pitfall of the approach. It does so by simulating a Hamiltonian trajectory
by using the leapfrog integrator forwards and backwards until it starts making a U-turn
and begins going back towards another position on the trajectory. Since retracing its
steps will likely be inefficient the simulation is stopped and a point is sampled from the
computed path. In order to find suitable ϵ, the dual averaging algorithm of Nesterov
[132] can be utilized.
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Algorithm 2 Hamiltonian Monte Carlo as described in Hoffman & Gelman [128]

1: procedure HAMILTONIANSAMPLER(startvalue, stepsize, updates, density, samplesize)
2: θ(0) ← startvalue
3: ϵ← stepsize
4: L← updates
5: L ← density
6: M ← samplesize
7: for m← 1,M do
8: Sample r(0) ∼ N(0, I)
9: θm ← θ(m−1), r̃ ← r(0)

10: for i← 1, L do
11: θ̃, r̃ ← Leapfrog(θ̃, r̃, ϵ)
12: end for
13: With probability min

(
1, exp(L(θ̃− 1

2 r̃·r̃))
exp(L(θ(m−1)− 1

2 r(0)·r(0)))

)
, set θ(m) ← θ̃, r(m) ← −r̃

14: end for
15: return θ(1), . . . , θ(m)

16: end procedure
17:
18:
19: function LEAPFROG(θ, r, ϵ)
20: r̃ ← r + (ϵ/2)∇θL(θ)
21: θ̃ ← θ + ϵr̃
22: r̃ ← r̃ + (ϵ/2)∇θL(θ̃)
23: return θ̃, r̃
24: end function

We used the packages R2WinBUGS [133], R2jags [134], and rstan [135] as R inter-
faces to the respective software. Table 2.2 compares the results of these methods and
the Metropolis sampler applied to daily infections in Munich.

There are numerous metrics for determining convergence of MCMC chains [136].
Probably the most widely used is R̂, first defined by Gelman & Rubin [137]. The basic
idea of the metric is that for multiple MCMC chains, the variance of the chains together
should be higher than the variance of the individual chains, if the simulations have not
mixed well. Thus, for each scalar of interest the standard deviation from all chains
together is divided by the root of the mean square of the individual within-chain standard
deviations to obtain the potential scale reduction R̂. The definition evolved over the last
years to correct shortcomings of the original definition. Gelman et al. [138] introduced
the split-R̂ variant, which the computation of the rstan package is based on. We define
it below with the notation of Vehtari et al. [139]. Let B and W be the between- and
within-chain variances of the scalar θ with respect to M chains each with N draws. Then
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Method Mean SE Quantile R̂ Runtime

2.5% 50% 97.5% [seconds]

β0 Metropolis R 1.15 0.02 1.11 1.15 1.20 1.00 4.7

β0 WinBUGS 1.10 0.02 1.06 1.10 1.15 1.01 8.0

β0 OpenBUGS 1.10 0.02 1.06 1.10 1.15 1.01 46.3

β0 Jags 2.60 0.03 2.56 2.60 2.64 1.00 36.8

β0 Stan 1.15 0.02 1.11 1.15 1.20 1.00 50.2

α Metropolis R 0.79 0.00 0.78 0.79 0.80 1.00 4.7

α WinBUGS 0.80 0.00 0.79 0.80 0.81 1.01 8.0

α OpenBUGS 0.80 0.00 0.79 0.80 0.81 1.01 46.3

α Jags 0.54 0.00 0.54 0.54 0.55 1.00 36.8

α Stan 0.79 0.00 0.78 0.79 0.80 1.00 50.2

Table 2.2: Results for β0 and α across Bayesian sampling methods with respect to daily COVID-
19 infection numbers in Munich from 2020-02-24 to 2021-03-16. SE is the standard error, R̂ is an
indicator for convergence with values < 1.01 indicating convergence. For the Metropolis sampler
the function Rhat from the package rstan was used to calcuate R̂, the other methods reported
it as standard output of their function. In the case of WinBUGS the runtime only comprises the
access time from R to the program, since it requires user input.

B and W are defined as

B = N

M − 1

M∑
m=1

(θ̄(·m) − θ̄(··))2, θ̄(·m) = 1
N

N∑
n=1

θ(nm), θ̄(··) = 1
M

M∑
m=1

θ̄(·m),

W = 1
M

M∑
m=1

s2
m, s2

m = 1
N − 1

N∑
n=1

(θ(nm) − θ̄(·m)),

with θ(nm) the nth draw in chain m, θ̄(·m) the average of all draws from chain m, θ̄(··)

the average of all draws and s2
m the variance of the mth chain. The marginal posterior

variance var(θ|y) is then estimated by a weighted average of the above variances:

v̂ar+(θ|y) = N − 1
N

W + 1
N
B.
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From this follows the definition

R̂ =

√
v̂ar+(θ|y)

W
,

which declines to 1 as N →∞ for an ergodic process. It is called split-R̂ because the
chains are split in half beforehand such that M is twice the number of simulated chains.
Vehtari et al. [139] suggest at least four chains and R̂ < 1.01 to confirm convergence.
Therefore, we sampled four chains each with 15,000 iterations and discarded a burn-in
of 5,000 draws.

Table 2.2 shows that the MCMC estimates are almost identical and R̂ < 1.01 for all
methods except for JAGS. The posterior estimate α = 0.79 is equal to the estimate of
the frequentist method, tsglm, both with a standard error < 0.01. The posterior estimate
β0 = 1.14 and its standard error are also equal to the tsglm results. The Stan algorithm
was by far the slowest, while the other implementations were still considerably slower
than the manually coded Metropolis sampler for a given number of iterations. However,
as can be seen in Figure 2.7, Stan converges much faster than the Metropolis sampler.
This illustrates that Stan requires fewer iterations and a shorter burn-in.

In order to confirm that we obtain sensible results from our methods we simulated
data similar to the available data with a broad range of parameter combinations, fit
the data with a selection of the above methods and compared the estimates with the
actual values. We iteratively sampled 500 observations from the distribution described
in Equation 2.2 for each parameter combination. For the coefficient estimates, we used
tsglm, the Metropolis sampler, and Stan on this simulated data. As before we used
N(0, ϕα) as independent priors for the two coefficients and slightly disturbed coefficient
estimates of tsglm as starting values for the Bayesian methods. In order to reduce
computational time Metropolis only samples 3,000 times including a burn-in of 1,000.
For Stan half of the iterations and burn-in length were used. The simulation and fitting
were repeated 500 times. The whole procedure was executed for 16 combinations of
β0 ∈ {0, 0.5, 1, 2} and α ∈ {0, 0.3, 0.6, 0.9} model values. For illustration, we plotted a
histogram for one simulation of each of the combinations (Figure B.1 in the appendix).

In the following, we will only consider Bayesian results if the chains of the sampling
converged. We assume convergence if R̂ < 1.01. The comparison of the biases, which
are the estimated value minus the actual parameter value, shows that the estimates
are overall close to the actual value and there is mostly no systematic deviation. The
differences only become apparent for greater values of the model parameters (Figure
B.2 in the appendix). Using tsglm underestimates β0 and overestimates α in these
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Figure 2.7: Trace plots of Metropolis sampler and Stan fitting Poisson model of COVID-19
infections in Munich. Only the first 500 draws are shown, which are discarded as burn-in.

cases. However, in two of these three parameter combinations, the models generate
such high values that they would not be relevant for our use case (see Figure B.1).
Nonetheless, in the model with β0 = 0.5 and α = 0.9, which might simulate values
in a domain interesting for us, this tendency of estimate deviation is already slightly
noticeable. The Bayesian methods are influenced by this since their starting values
are based on tsglm. This leads to non-convergence, which could be improved by
more sampling steps, otherwise, Stan and Metropolis have comparably good estimation
results and seem to be more reliable for the more extreme cases.

For 95% posterior credible intervals we use the 2.5% and 97.5% quantiles of the
posterior samples for the respective parameters. We defined coverage rates as the
fraction of times the initial parameters fell inside their credible intervals or the confidence
interval in the case of tsglm of the 500 simulated datasets. Figure 2.8 shows the
coverage rates of the confidence intervals and the credible intervals. Although tsglm’s
estimate is usually very close, its 95% confidence interval is too small to cover the model
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Figure 2.8: Coverage rates in percent of the confidence interval in the case of tsglm and credible
intervals in the case of Metropolis and Stan for simulated data. One simulation comprises 500
observations distributed by the autocorrelated Poisson model defined in Equation 2.2 with
different combinations of β0 and α values. 500 simulations were performed for each combination.
Gray cells indicate non-convergence for all simulations.

parameter if α is very large, while the Bayesian methods are again more dependable
for the more extreme conditions. However, in general, all three models show coverage
rates close to 95% suggesting intervals neither too large nor too small.

2.3.2 Negative Binomial Model

A Poisson distribution has the limitation that the variance is equal to the expectation.
Negative binomial distributions can be considered a generalization with an overdisper-
sion parameter allowing the variance to exceed the expected value. In the following, we
show a suitable parametrization in terms of the negative binomial distribution and derive
important properties. We assumed that It ∼ NegBin(λt, ψ), such that λt is the mean of
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It and λt(1 + ψλt) the variance. This can be represented as:

It|µt ∼ Poisson(µt) µt > 0 ∀t ∈ {1, . . . , n}

µt|λt, ψ ∼ Gamma(ψ−1,
ψ−1

λt
)

log(λt(α, β0)) = β0 + α log(It−1 + 1)

ψ ≥ 0

α, β0 ∈ R

We show that the negative binomial is equivalent to the above Poisson-Gamma
mixture with a parametrization with respect to the mean λ and the overdispersion
parameter r = ψ−1. For easier reading we skip the t index for λ and µ in the following
equation:

∫ ∞

0
fPoisson(y;µ)fGamma(µ; r, r

λ
) dµ =

∫ ∞

0

µ

y! exp(−µ)µ
r−1

Γ(r)

(
r

λ

)r

exp
(
−µ r

λ

)
dµ

= rr

λry!Γ(r)

∫ ∞

0
µy+r−1 exp

(
−µλ+ r

λ

)
dµ

= rr

λry!Γ(r)

∫ ∞

0

(
ν

λ

λ+ r

)y+r−1
exp(−ν) λ

λ+ r
dν

= rr

λry!Γ(r)

(
λ

λ+ r

)y+r

Γ(y + r)

= Γ(y + r)
y!Γ(r)

(
λ

λ+ r

)y ( r

λ+ r

)r

= Γ(y + r)
y!Γ(r)

(
λ

λ+ r

)y (
1− λ

λ+ r

)r

= fNegativeBinomial(y;λ, r),

where we applied the integral transformation ν = µ(1 + r/λ). In the literature the
distribution is often defined by another parametrization p = λ

r+λ .
We used the shorthand λt = λt(θ, It−1) = exp(β0 + α log(It−1 + 1)) in order to com-

49



Chapter 2 Methodological background

pute the likelihood:

L(θ) = P (I, µ|θ)

= P (In, . . . , I0|θ)

= P (In|In−1, . . . , I0, θ) · . . . · P (I1|I0, θ)

= P (In|In−1, θ) · . . . · P (I1|I0, θ)

=
n∏

t=1
P (It|It−1, θ)

=
n∏

t=1

Γ(It + r)
It!Γ(r)

(
λt

λt + r

)It
(

1− λt

λt + r

)r

= Γ(r)−n
n∏

t=1

Γ(It + r)
It!

(
λt

λt + r

)It
(

r

λt + r

)r

The log-likelihood can then be written as:

logL(θ) = −n log (Γ(r)) +
n∑

t=1

(
log(Γ(It + r))− log(It!)

+It(log(λt))− It(log(λt + r)) + r(log(r))− r(log(λt + r))
)

= n
(
r(log(r))− log (Γ(r))

)
+

n∑
t=1

(
log(Γ(It + r))− log(It!)

+It(log(λt))− It(log(λt + r))− r(log(λt + r))
)

Inspired by Gelman et al. [140] we suggest α ∼ Cauchy(0, ϕα), β0 ∼ Cauchy(0, ϕβ0) as
suitable priors. Thus with the center µ = 0 we define

πα(x) = ϕ2
α

πϕα((x− µ)2 + ϕ2
α) = ϕ2

α

πϕα(x2 + ϕ2
α)

πβ0(x) =
ϕ2

β0

πϕβ0((x− µ)2 + ϕ2
β0

)
=

ϕ2
β0

πϕβ0(x2 + ϕ2
β0

)

with ϕα = 2.5 and ϕβ0 = 10. Similar to the Poisson we can employ for the proposal
functions:

g(θprop|θold) = N(θold, C · Σ).

As defined above, the variance of the negative binomial distribution is λt(1 + ψλt).
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Therefore, we set

ψprop = 1
n

n∑
t=1

σ2 − λt((α, β0)prop)
λt((α, β0)prop)2 ,

where σ2 is the variance estimate of the response data.
For our later analyses, we also wanted to be able to incorporate various covariates and

further autoregressive components. Thus we define a more general negative binomial
model parametrization similar to Liboschik et al. [123], where we consider the history of
the process until t− 1, Ft−1, for the infection count It:

It|Ft−1 ∼NegBin(λt, ψ)

log(λt) =β0+

β1 log(It−i1 + 1) + . . .+ βp log
(
It−ip + 1

)
+

α1 log(λt−j1) + . . .+ αq log
(
λt−jq

)
+

η1Xt,1 + . . .+ ηkXt,k,

(2.3)

where Xt,v is the value of covariate v at time t, k is the number of included covariates,
and i, j ∈ 1, . . . , t− 1.

Regarding the fitted models, we focused on the exponentiated coefficient estimates of
Poisson and negative binomial models, which are called incidence rate ratios. Epidemi-
ologically, the incidence rate ratio is defined as the number of new cases of a disease
during a given time divided by the corresponding person-time of the observation [141].
We consider that the incidence is the number of COVID-19 infections divided by the
population p of an area a, which we assume stays constant during our analysis time for
each district, for any fixed time t. We divide the incidence by the length s of the time
period of t and denote it IR(a)

t . Let us consider the expected incidence rates of two
areas, a and b, that differ in only one covariate v by one unit at time t− 1. Then, we get
for the ratio of the incidence rates at t considering Equation 2.3:
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= exp (β0 + . . .+ ηv(Xt,v + 1) + . . .+ ηk(Xt,k))
exp (β0 + . . .+ ηvXt,v + . . .+ ηk(Xt,k))

= exp (ηv(Xt,v + 1))
exp (ηvXt,v)

= exp (ηv) ,

where λ(a)
t , λ

(b)
t and I(a)

t , I
(b)
t are the means and infections of the areas a and b, respec-

tively. Considering the final equation, we see that the result is independent of t. Thus,
similar to the Cox proportional hazards model, the vth exponentiated coefficient at any
time is the ratio of the incidence rates with a unit increase in covariate v assuming that
all other covariates stay the same.

2.3.3 Selected model metrics

Variable selection in regression is a common challenge. Information criteria are useful
tools in data-driven approaches to select variables. One of the most widely used is the
Akaike Information Criterion (AIC) [142], which is defined by

AIC = −2 log
(
L̂
)

+ 2k,

where L̂ is the maximum likelihood and k is the number of estimated parameters in the
model. The BIC [65] is an alternative to the AIC, as already mentioned in section 2.1.3,
and penalizes the number of parameters more severely. It does so by including the
logarithm of the sample size n as penalizing factor:

BIC = −2 log
(
L̂
)

+ log(n)k.

The quasi-likelihood under the independence model criterion (QIC) expands the AIC in
the case of regression analyses based on generalized estimating equations (GEE) by
employing the quasi-likelihood instead of the likelihood and adjusting the penalty term
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[143]. Thus, the QIC is defined as

QIC = −2Q+ 2trace(Ω̂I V̂r),

where Q is the quasi-log-likelihood, Ω̂I can be considered an empirical quasi-log-
likelihood information matrix [144], and V̂r is a robust covariance estimator.

To measure the accuracy of the prediction models, we used the Symmetric Median
Absolute Percentage Error (SMDAPE). It is defined by the median of the differences
between prediction, Pt, and actual observation, Ot, divided by the mean of the two
values for all time points t [145]:

SMDAPE = median
( |Pt −Ot|

(Pt +Ot)/2

)
.

There are various other measures, which are suitable for count predictions. We chose
SMDAPE since we did not have values close to zero, which may have led to instability, it
is intuitive, and it adjusts weights by the respective scale. For example, a forecast error
of 100 cases was by far not as concerning if the actual observation was at 2000 as it
would be if the observed value was 200.
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Results

The following sections discuss results of four studies completed as part of this thesis.
The first three are already published or submitted for publication, with the primary
statistical methods explained in Chapter 2 and the background, data, results, limitations,
and conclusions appearing in the respective publications. The fourth topic concerning
COVID-19 longitudinal analyses, which is not yet submitted for publication, is discussed
in detail.

The first study analysed survival outcomes following kidney transplantations in Eu-
ropean countries and focused on the effect of a single risk factor, the allocation type.
The goal was to determine if there was a significant association with transplant out-
comes, including overall survival, death with functioning graft, and graft loss, which
could substantially influence allocation of grafts. The second study created an online
risk prediction tool to incorporate the most important predictors of kidney transplant
outcomes, estimate the corresponding risks, and thus allow immediate quantitative-
based decisions on graft allocations in clinical practice. The third and fourth studies
shifted from patient-level survival data in kidney transplants to population-level counts
with respect to COVID-19 over time. The third study focused again on a subset of
risk factors to determine the significance of their association with the outcome. In this
case, the outcome was the number of cumulative deaths due to COVID-19 for individual
districts in Germany in the two years after the start of the pandemic. Risk factors of
particular interest were air pollution measures. The cross-sectional approach analysed
time-aggregated data over different spatial entities distinguishing it from longitudinal
analyses on COVID-19 infection time series within single spatial entities such as in
the fourth study. In this final study, we modelled COVID-19 infections on a weekly
basis for selected German districts, thereby evaluating various time-dynamic risk factors
as covariates, estimating their association with infection counts, and determining the
potential of one-week-ahead predictions.
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3.1 Kidney transplantation after rescue allocations

Assfalg, V., Miller, G., Stocker, F., et al. (2021). Kidney Transplantation After Res-
cue Allocation—the Eurotransplant Experience: A Retrospective Multicenter Outcome
Analysis. Transplantation 106, 1215–1226 (2022).

The Eurotransplant (ET) consortium provides two major waiting list programs for potential
kidney transplant recipients, the Eurotransplant Kidney Allocation System and the
Eurotransplant Senior Program, the latter limited to donors and recipients who are
at least 65 years old. These define the standards for distribution of available organs,
incorporating metrics such as time on waiting list, immunological matching, or regional
distance. In the event that kidney transplants fail to be allocated through the standard
system due to impending organ loss, the process converts to a rescue allocation. In
such cases, allocation processes can deviate from previously required metrics in order
to avoid organ loss.

We analysed deceased donor kidney transplantations of the ET program between
2006 and 2018 in order to determine if rescue allocations had significantly worse
outcomes in comparison to standard allocations. The dataset contained 2,422 rescue
and 25,481 standard allocated kidneys. We considered three different outcomes after
the kidney transplant, patient survival, death with functioning graft, and graft survival. We
applied a Cox proportional hazards model to analyse patient survival and the Fine-Gray
proportional regression model for the competing risks, death with functioning graft and
graft survival. We considered known risk factors that were routinely collected by ET.
In addition to rescue versus standard allocation, risk factors included recipient gender,
immunological matching, recipient and donor age, cold ischemia time, time on waiting
list, indication whether the recipient had diabetes, and number of kidney transplants.
Cold ischemia time was defined as the period of cold organ preservation. The senior
allocation system had different patient characteristics and processes compared to the
general allocation system, including higher recipient and donor age as well as shorter
cold ischemia and waiting time. Therefore, we performed the analysis separately for the
respective datasets.

Rescue transplants were associated with worse outcomes in univariate analyses.
When accounting for other risk factors, rescue allocations were associated with longer
survival for all three outcomes, although not significantly in most cases. On the other
hand, poor immunological matching, higher donor and recipient age, increased cold
ischemia time, longer waiting time, diabetes, and re-transplants were all associated
with worse outcomes. Conclusions show that facing donor shortages coupled with
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long waiting times, rescue allocations may provide a beneficial option to avoid loss of
available organs.

Author contribution

Gregor Miller processed the data, performed all statistical analyses, and wrote the
manuscript. Volker Aßfalg, Donna Ankerst, and Norbert Hüser participated in writing the
manuscript. All authors participated in the manuscript revision.

3.2 A risk prediction tool for kidney transplants

Miller, G., Ankerst, D. P., Kattan, M. W., et al. (2022). Kidney Transplantation Outcome
Predictions (KTOP): A Risk Prediction Tool for Kidney Transplants from Brain-dead
Deceased Donors Based on a Large European Cohort. European Urology. ISSN:
0302-2838 (2022).

Relationships between risk factors and success of kidney transplantation have been well
studied. For the United States in particular, online tools have already been developed
to calculate corresponding risks. Allocation systems in the US are limited to a certain
number of risk factors and are not directly transferable to the European population for
which no online tool exists. The availability of a European-tailored risk tool is crucial for
impacting clinical practice and decision-making as an estimate of transplant performance
determines whether a transplantation should be performed with a given available organ.
Risk estimates provide more confidence than anecdotal medicine, where individual
clinicians recall specific experiences that may be subject to error. Furthermore, they can
help manage patient expectations, when a graft is not yet available. Therefore, the aim
of this study was to develop the first European online risk tool for kidney transplantation
outcomes.

The survival analyses were based on the same kidney transplant dataset as for
the first project, using patient death, graft loss, and death with functioning graft as
outcomes. We distinguished between recipient-only and recipient-donor risk factors,
leading to six models overall, flexibly allowing risk predictions when all recipient and
donor characteristics were known, but also when donor information was not yet available.
For the selection of variables to be included in each of the models we used backward
variable selection employing the BIC while continuously adapting the dataset to the
incorporated risk factors and the corresponding complete cases. As alternative, we also
applied the imputation method MICE on the dataset, however there was no increase in
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model accuracy. Recipient age, recipient sex, re-transplantation, number of transplants,
cystic disease, diabetes, time on waiting list, and allocation program were in the recipient-
only risk factor set. The recipient-donor set also included donor age, donor sex, cold
ischemia time, allocation process, and immunological matching.

We re-trained models on a subset of the data and performed calibration and decision
curve analyses on the remaining validation data. With 60%, Germany had the highest
proportion of transplants in the ET dataset. There were also large differences for some
risk factors between the countries. In order to determine if the models performed
significantly different for some countries, we considered four country groups, Austria,
Belgium, Germany, and the other countries. We selected one country group to validate
the AUC, for five and ten year survival, and the coefficient estimates of the model that
was fit on data of the remaining countries. This was iterated for all country groups to
determine if there were any relevant differences.

Diabetes, re-transplantation, and recipient age were associated worse overall sur-
vival and survival with functioning graft. Diabetes, older donor age, and long cold
ischemia time were associated with an increase in the graft loss hazard. The developed
models achieved ten-year AUC values of up to 81%. Risks were well-calibrated and
decision curves showed net benefit. Comparisons between countries showed only small
deviations in effect estimation and accuracy.

The models were incorporated in an online risk tool at riskcalc.org/ktop (Figure
3.1) in order to support physicians and patients facing kidney transplants and potential
organ donations. This reproducible and consistent tool fills a previously vacant role
estimating the progress after such a transplantation both before and after a donor has
been identified, particularly in a European context. We hope that the online tool fosters
independent external validation. Having demonstrated its usefulness, the tool should be
a step toward further development of transplant risk calculators that facilitate decisions
about kidney and other organ allocation. Considering the importance of bench-to-
bedside practice, public health, and ecological efforts to advance scientific discoveries
and translate them into daily applications, efforts such as online risk calculators for
accessible results will evolve even further in the future for example with a spatial
distinction or continuous risk assessment after transplantation [146].

Author contribution

Gregor Miller analysed and interpreted the data, conducted all statistical analyses,
designed and created the online tool, and drafted the manuscript. Gregor Miller, Donna
Ankerst, and Volker Aßfalg were responsible for the study concept. Volker Aßfalg
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Figure 3.1: Screenshot of the online risk calculator for kidney transplants KTOP available at
riskcalc.org/ktop.

participated in drafting the manuscript. All authors participated in the manuscript
revision.

3.3 Associations of air pollution and COVID-19 in a
cross-sectional analysis

Miller, G., Menzel, A., Ankerst, D. P. (2022). Association between short-term exposure
to air pollution and COVID-19 mortality in all German districts: The importance of
confounders. In submission.

Multiple studies have investigated the association between air pollution and the COVID-
19 spreading process. Earlier studies provided preliminary results following the first few
weeks after the pandemic outbreak and typically accounted for only few potential if any
confounding factors, making results highly heterogeneous.

In this study, we sought to examine the association between short-term air pollution
and COVID-19 mortality in Germany over two years, focusing particularly on sensitivity
to choice of confounders. All 400 German districts were included and associations were
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estimated in a cross-sectional analysis, where the number of deaths were cumulated
over the analysis period for each district and modelled via negative binomial regression.
We confined cumulative COVID-19 mortality analyses to two time periods, March 2020-
February 2021 and March 2021-February 2022. We considered six air pollution variables,
PM2.5, PM10, CO, NO, NO2, and O3, which were averaged over the time periods. To
avoid multicollinearity among pollutants, we created separate models for each of the
pollution variables with cumulative COVID-19 deaths for each of the two time periods.
We identified and applied leading variable selection methods to account for 37 potential
confounders, including change-in-estimate and information criteria methods. We then
compared the selection approaches with models incorporating no and all confounders,
while ensuring that the pollution variables were always included in the models.

Univariate analyses found significant positive associations with COVID-19, at least for
the first time period, for O3 and PM2.5. CO, NO, and NO2 showed negative associations.
However, the inclusion of confounders dismissed these associations in the multivariate
models for almost all selection approaches. The confounders most often selected were
mobility, political voting behaviour, and age.

In conclusion, this study could not determine significant associations between COVID-
19 mortality and air pollution, in contrast to a number of other studies. Assuming that
there is an association, one possible reason for the lack of detection could be that
the pollution levels were simply not high enough to have a relevant effect or that a
cross-sectional study did not provide the sensitivity necessary to detect associations.
However, the loss of significance in the multivariate models compared with univariate
analysis, as well as a number of prior published studies, could indicate that air pollution
served merely as a surrogate for confounding factors, such as mobility. The results
from this study highlight the importance of appropriate confounder integration on the
basis of initial exploratory analyses and sufficient data accumulation. Even though the
predominant selection methods led to similar results, more significant effects could
have generated more heterogeneous results across different choices of confounder
variables for conclusion in the model. In such a case, especially when the focus is on
inference, comparative methodologies need to be considered in order to draw reliable
conclusions. This study showed how to implement the integration of multiple variable
selection approaches, compare results, and draw conclusions in such a context.

Author contribution

Gregor Miller analysed and interpreted the data, conducted all statistical analyses, and
drafted the manuscript. Gregor Miller and Donna Ankerst were responsible for the study
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concept. All authors participated in the manuscript revision.

3.4 Longitudinal analyses of COVID-19 in Germany

In the final study of the thesis, we implemented longitudinal count models in order to
investigate the association of weather variables with COVID-19 infections. The analysis
was based on weekly data from four German cities, Berlin, Frankfurt, Hamburg, and
Munich, between February 24, 2020, and March 6, 2022. We determined time series
analysis as the most suitable approach in order to capture dynamic changes due to
seasons and other confounders, such as mobility.

Districts and
neighbours

Berlin

Frankfurt

Hamburg

Munich

Figure 3.2: The four German districts for which longitudinal analyses were performed for the
time period between February 24, 2020, and March 6, 2022, and their neighbouring districts.
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3.4.1 Data

We assembled predictors and outcomes for the German administrative districts from a
number of sources. The Federal Statistical Office provided population and area statistics
for the latest reporting date on December 31, 2018 [147, 148]. We acquired the daily
number of vaccinations from the RKI [149] as well as the daily number of COVID-19
infections [150] (dl-de/by-2-0 [151]). The daily vaccination rate was defined as the
number of people who acquired full vaccination status as defined by RKI [149] on the
specified day in the vaccination district divided by the population of that district. If the
number of vaccinations administered in a district on a given day was less than five, they
were not reported for that day but were added to the next day. We selected four of the
400 districts in Germany, each representing a major city, to perform the time series
analysis. The four cities were Berlin, Frankfurt, Hamburg, and Munich, which have
3.7, 0.8, 1.8, and 1.5 million inhabitants and are situated in the north-east, north, west,
and south of Germany, respectively (Figure 3.2). For analyses of the selected districts,
neighbouring districts were also incorporated by calculating the log of their weekly sum
of infections per 100,000 inhabitants. Before dividing infection counts by population
counts, 1 was added to avoid having to calculate the log of 0. Data from February 24,
2020, to March 6, 2022, representing 106 weeks, was used for the analysis.

We extracted daily mobility data from the Google Community Mobility Report [152],
which was only available on a state level for the 16 states in Germany. The mobility data
quantified the change in the number of visits and length of stay at specific locations,
including grocery stores, pharmacies, parks, residences, retail and recreational facilities,
transit stations, and workplaces, compared to a reference period between January 3
and February 6, 2020. We averaged the daily values for each week.

The dates of country-wide lockdowns were extracted from government announce-
ments [153–157]. The first lockdown started on March 22, 2020, and ended on May 6,
2020, when restrictions were at least partially lifted. A soft lockdown was implemented
on November 2, 2020. A more severe lockdown with enhanced restrictions was then
introduced on December 16, 2020, and ended on January 10, 2021. Season variables
were defined so that winter refers to December, January, February; spring refers to
March, April, May; summer refers to June, July, August; and autumn refers to September,
October, November. In order to summarize daily indicators of season and lockdown to
weekly indicators, we selected the value of the majority of days in the respective week.

We joined these statistics with geographic information on the administrative bound-
aries of the individual districts. The required geographic data of the districts was down-
loaded in geojson format with a simplification factor of 20 provided by Stabiszewski
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& Ebert [158] (Geodatenzentrum © GeoBasis-DE / BKG 2018 (VG250 31.12., Data
changed)). The original geographic information was adapted for the analyses as neces-
sary, such that polygons only covering sea were excluded and the subdivision of the
district Berlin was united.

Daily weather data was continuously queried and compiled from the open data
resource of the German weather service [159], which provided daily measurements
of several variables from 581 weather stations all over Germany. Six of the stations,
which had an altitude above 1,000 metres, were excluded. We utilized inverse distance
weighting to interpolate the station values for each district based on the distance between
weather stations and the centroid of that district. A maximum of five stations were used
to infer the value for each district for every day in the relevant time frame. We employed
the function idw of the R package gstat [160, 161] to apply the interpolation. Figure
3.3 shows the locations of weather stations and an example interpolation on a specific
day. We considered the daily mean wind speed in meters per second, precipitation
in millimetres, sunshine duration in hours, mean temperature in degrees Celsius, and
mean relative humidity in percent. Additionally, we calculated daily absolute humidity
AH in g/m3 for each district based on the temperature T and relative humidity RH [162]
as:

AH =
6.112× exp

(
17.67×T
T +243.5

)
× 2.1674×RH

273.15 + T
.

3.4.2 Methods

Since we have previously noted the importance of confounders for this data, particularly
mobility, the inclusion of other risk factors was necessary. This suggested the use of the
frequentist R package tscount, due to the high computational cost of Bayesian models
with increased model complexity and the similarity of the results shown previously.

For all predictor variables, we introduced a lag of seven days to account for an
incubation period [163] and time to reporting. First, we considered a negative binomial
model with all of the 20 aforementioned risk factors and the two corresponding infection
counts from the previous two weeks of the district as predictors. Adapting the model
specification of Equation 2.3, our model was then defined as:

It|Ft−1 ∼ NegBin(λt, ψ)

log(λt) = β0 + β1 log(It−1 + 1) + β2 log(It−2 + 1) + η1Xt−1,1 + . . .+ η20Xt−1,20,

where It is the number of infected in week t, Ft−1 is the history of the process until
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−15 −10 −5 0
Average Temperature [°C]

Figure 3.3: Example interpolation of average temperatures in the districts based on weather
station measurements on February 9, 2021. On the left, weather stations are indicated as
coloured points, showing the average temperature measured at the respective station. On the
right, the interpolated values for the respective districts are displayed.

t − 1, and Xt−1,i is the value of the ith covariate in week t − 1 with i = 1, . . . , 20 and
t = 3, . . . , 106. For each of the four analysed districts we created a separate model. As
mentioned, we used the R package tscount to fit the model.

In order to select the most relevant predictors for the models and avoid overfitting, we
implemented a step-wise selection algorithm. We used the QIC as selection criterion
and considered in each step the models, where one of the currently included covariates
were excluded or one of the previously excluded covariates were included again. The
autoregressive factors were not considered for exclusion. The model with the smallest
QIC was then selected for the next step. Each of the potential new models was fitted
as a negative binomial model, however, if the overdispersion parameter was estimated
at zero such that the variance equalled the mean, we refitted the model as a Poisson
model. The algorithm stopped when all of the considered models had a higher QIC than
the current model.
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To also determine the predictive power of our method, we considered an adapted
approach. We defined the data of the first year as training data, such that the data of the
51 weeks between February 24, 2020, and February 21, 2021, were used for variable
selection and model fitting as described above. Then, for each of the following weeks,
we calculated one-week-ahead predictions and 95% prediction intervals based on this
selected model, which was refitted on all previous weeks each time.

3.4.3 Results
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Figure 3.4: Weekly values of predictor variables between February 24, 2020, and March 6,
2022, for the districts Berlin, Frankfurt, Hamburg, and Munich.

Looking at the risk factors over the analysis period, some weather variables had
very fluctuating movements of their weekly values without strong seasonal effects,
such as relative humidity, precipitation, wind velocity (Figure 3.4). On the other hand,
temperature, absolute humidity, sunshine duration, as well as park activity were very
season-dependent. The vaccination rate increased strongly in autumn of 2021 and
kept steadily increasing after that, however, without major differences between the four
analysed cities. The disruptive effect on activity patterns due to the first lockdown
between March and May, 2020, the second lockdown between December 2020 and
January 2021, and the holiday season at the end of each year is apparent in the changes
regarding retail, recreation, transit stations, workplaces, and residences.

For the association analysis regarding the full time period, the stepwise selection
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Incidence rate ratio (95% confidence interval)

Berlin Frankfurt Hamburg Munich

Lockdown 1 0.28 (0.27, 0.29) 0.37 (0.19, 0.71) 0.65 (0.41, 1.05)

Lockdown 2 0.72 (0.71, 0.73) 0.65 (0.64, 0.67) 0.78 (0.51, 1.18)

Lockdown soft 0.76 (0.74, 0.77)

Lag 2 infections 0.99 (0.98, 1.01) 0.75 (0.49, 1.14) 0.86 (0.85, 0.87) 0.72 (0.55, 0.94)

Absolute humidity 1.04 (1.02, 1.05) 0.91 (0.90, 0.92) 0.82 (0.63, 1.05)

Transit station activity 1.03 (1.02, 1.03) 0.94 (0.90, 0.99) 0.95 (0.95, 0.95)

Grocery and pharmacy activity 0.99 (0.96, 1.01) 0.99 (0.99, 0.99) 0.95 (0.92, 0.97)

Precipitation 0.97 (0.97, 0.98) 0.98 (0.98, 0.98)

Park activity 0.99 (0.99, 0.99) 1.00 (1.00, 1.00)

Workplace activity 1.01 (1.01, 1.01)

Temperature 1.01 (1.00, 1.01) 1.02 (1.01, 1.03) 1.03 (0.92, 1.16)

Relative humidity 1.01 (1.01, 1.01) 1.01 (0.99, 1.03) 1.04 (1.04, 1.04) 1.02 (0.99, 1.06)

Retail and recreation activity 1.02 (1.02, 1.02) 1.02 (1.00, 1.04) 1.04 (1.04, 1.04) 1.03 (1.02, 1.05)

Sunshine duration 1.05 (1.04, 1.05) 0.99 (0.98, 0.99) 1.05 (0.97, 1.14)

Autumn 1.08 (1.06, 1.10) 1.31 (0.92, 1.86) 0.76 (0.75, 0.78)

Residences activity 1.20 (1.19, 1.21) 0.91 (0.78, 1.06)

Winter 1.10 (1.08, 1.13) 1.13 (0.71, 1.79) 0.80 (0.79, 0.82) 1.21 (0.85, 1.73)

Neighbourhood infections 0.77 (0.76, 0.78) 1.64 (0.95, 2.86)

Spring 1.29 (1.26, 1.32) 1.49 (0.88, 2.52) 1.36 (0.78, 2.40)

Lag 1 infections 2.72 (2.69, 2.75) 2.72 (1.74, 4.25) 2.72 (2.68, 2.76) 1.83 (1.02, 3.30)

Vaccination rate 2.22 (2.17, 2.28) 5.89 (1.92, 18.06) 2.30 (1.22, 4.36)

Table 3.1: Exponentiated coefficient estimates, called incidence rate ratios, with 95% confidence
intervals for infection count models of Berlin, Frankfurt, Hamburg, and Munich. Poisson models
were used for Berlin and Hamburg, negative binomial models for Frankfurt and Munich. Empty
entries indicate that the corresponding variable was not included in the model of the respective
district. Wind speed was not selected in any model.

methods selected Poisson models for the districts Berlin and Hamburg. Negative
binomial models were selected for Frankfurt and Munich. In general, the Poisson models
included more covariates than the negative binomial models, incorporating almost all
of the potential predictors (Table 3.1). Furthermore, almost all confidence intervals of
the covariate estimates indicated significance in the Poisson case, while barely any
significant ones were identified in the negative binomial case.

Vaccination rate, infection count of the previous week, retail and recreational activity,
as well as relative humidity had a consistently positive association with infections of a
district when included in the model. On the other hand, negative associations emerged
for lockdowns, infection counts from two weeks ago, activity in grocery stores and
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pharmacies, and precipitation. Large differences between the incidence rate ratios
(IRR) appeared for infections in neighbouring districts between Berlin (IRR: 0.77, 95%
confidence interval (CI): 0.76-0.78) and Munich (IRR: 1.64, CI: 0.95-2.86). Similar
differences were also visible for other covariates, including absolute humidity, transit
station activity, sunshine duration, and seasonal indicators.
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Figure 3.5: Infection curves (black) and one-week-ahead predictions (blue) with 95% prediction
intervals for the districts Berlin, Frankfurt, Hamburg, and Munich.

For the forecast models, where the selection method was applied to the data of the
first 51 weeks, a Poisson model was selected only for Hamburg. Figure 3.5 shows
one-week-ahead predictions and corresponding 95% prediction intervals, which illustrate
the difference in the predictions between Poisson and negative binomial models. The
SMDAPE was smallest for the Poisson model in Hamburg with 15.0% compared to
17.0%, 15.6%, and 15.7% in Berlin, Frankfurt, and Munich, respectively. Thus, the
forecasts were similarly accurate for all districts. However, only 20% of the prediction
intervals covered the observed values for Hamburg, while the negative binomial predic-
tion intervals contained 53 of the predicted 54 weekly infection counts (98%) for each of
the other districts.
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3.4.4 Limitations

Multiple limitations and options for future improvement became apparent in this study.
Selecting an appropriate distribution for modelling infection counts was one of the most
crucial points of the analysis. Poisson models have the property that their variance
is equal to their mean parameter. Thus, Poisson models may include more predictor
variables and their coefficient estimates may have a higher significance compared to
negative binomial models to compensate for this restriction. Thus, the possibility to
compare results of Poisson and negative binomial models can be very limited and
coefficient significance has to be interpreted with caution. To emphasize this conclusion,
we adapted our inferential approach by substituting the selected covariates by random
samples from normal distributions with no associations to the outcomes. The Poisson
models indicated significant associations to almost all of the new covariates, while the
negative binomial models barely found any association (Appendix C.1). The fact that
many publications relied on the Poisson distribution and derived seemingly impactful
associations [164–166] highlights the importance to select appropriate models with due
caution. Our Poisson model used for forecasting had very small prediction intervals and,
although their mean estimates were close to the actual values, confidence intervals
rarely covered the observed infection counts, further emphasizing the critical concern
with any inappropriate use of such models.

Despite a general estimate of incubation time, our definition of a seven-day lag for all
covariates was arbitrary, at least to some degree. We only had data available for the
incubation period, not the time until cases were reported, and incubation periods varied
greatly between COVID-19 variants [167]. Future work may include the data-driven
selection of appropriate time lags or a distributed lag model as well as virus-variant-
specific and covariate-specific adaption of the lag. Another level of added precision that
we did not include was the age and gender information. The differences in infection
counts with respect to these two variables explored in Section 1.2 indicated some
relevance. These implementations, however, would increase the risk of overfitting and
may superficially lead to significance when estimating coefficients. Applying these
changes to the model would therefore require careful and thorough implementation.

Finally, the analysis could be further improved if data with higher resolution and
accuracy were available. This could also improve the forecasting performance, which
had acceptable point estimates for one-week-ahead predictions, which would, however,
lead to large deviations for multiple-week-ahead predictions and already had quite large
prediction intervals at various time points, at least for the negative binomial models.
For example, mobility data was only available on a state level. Non-pharmaceutical
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interventions were far more numerous and locally restricted than the three nationwide
lockdowns we included in our analysis would suggest. Unfortunately, data in that
regard with high enough spatial resolution and, in particular, enough reliability were
not available (see also Appendix C.2). Since the analysis was based on aggregated
data on a district level, any inference from the results had to be considered with caution
and in some instances could not substitute a patient-level analysis. An example for
this is the incidence rate ratio of the vaccination rate, which indicated that a higher
vaccination rate would lead to more COVID-19 infections. However, a multitude of
patient-level analyses showed that vaccinations decreased the infection risk [168–170],
thus indicating that high infection numbers only coincided with higher vaccination rates,
in particular towards the end of 2021 and beginning of 2022 (Figures 3.4 and 3.5),
and were not caused by them. More infections, but less severity, can be explained
in part by increased prevalence of different virus variants [171, 172], which we could
not consider due to lacking data availability. In conclusion, future analyses could be
improved substantially by incorporating time-dependent virus variant predominance and
other essential information.

3.4.5 Conclusion

We performed a longitudinal analysis of weekly COVID-19 infection counts in four
German districts considering a time frame of two years after the pandemic started. In
contrast to many studies, we incorporated autoregressive features and neighbouring
district infections and allowed for Poisson as well as negative binomial models, while
accounting for potentially relevant covariates. Coefficient estimates showed large
differences between Poisson and negative binomial models. Poisson models had the
tendency to overestimate coefficient significance considerably.

Nonetheless, the negative associations of lockdowns and activity in grocery stores
and pharmacies with infection counts became apparent. Similarly, positive associations
were found for retail and recreational activities and the number of infections in the
previous week. Finally, we showed the predictive capabilities of our approach, which
produced accurate one-week-ahead predictions, however, prediction intervals in the
case of the Poisson models were much too small. Prediction intervals of the negative
binomial models were large but accurate.

Here we preferred frequentist methods for our longitudinal analysis, yet Bayesian
methods should not be discarded and have already demonstrated the ability to model
infectious diseases [173, 174]. Another consideration that could be incorporated in the
future is dynamic autoregression. Since behaviour and spread of a disease can vary, a

69



Chapter 3 Results

model could adapt accordingly by relaxing the linear model to a piecewise constant linear
model or even a separate model for each time point such that the model parameters
can be fully time-dependent [175].

Our frequentist approach enabled us to consider a large number of covariates and a
data-based approach to select a relevant subset in a computationally manageable way.
However, we also saw that the wide range of analysis techniques carries the risk of easy
misuse and misleading results. Therefore, a critical evaluation of the applied methods
and the resulting outcomes is essential, especially in the analysis of time series, due
to the many possibilities and ease of adjusting potential covariates – intentionally or
unintentionally – to the outcome.
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Discussion

We have already discussed our individual results in detail, from which we were able to
derive very specific goals for the near future. We are currently working on further risk
tools, extending from kidney to pancreas and liver, based on thousands of transplants
in the Eurotransplant region. We also found that the relevance and appropriateness of
approaches to account for clustering is unclear for large sample sizes but small groups.
We plan to derive clear recommendations by simulating comparable circumstances in
survival analyses. However, we would also like to point to possible further development
in a larger context and mention some other important findings from our analyses.

There is a plethora of possibilities that enables the modern statistician to analyse
temporal information in all its facets. The broad spectrum of disciplines, such as econo-
metrics, signal processing, political sciences, and biometry, having a vested interest in
findings from this kind of data, lead to very different expectations and therefore available
methods. Curve fitting, decomposition, prediction, classification, and segmentation are
just a few of the general topics that cover the analysis of time series. All of them utilize
many methods, including harmonic models, Box-Jenkins forecasting, wavelets, and
deep neural networks, to understand the temporal dimension in all its complexity [176,
177]. Thus, there are many ways to start and expand analyses of temporal data.

But also the progression to a higher focus on spatial information is often an option.
Spatial analyses, particularly native to areas such as astronomy, geography, and biology,
have their own questions and methods, including correlation analysis, interpolation,
and spatial regression. However, spatial information is often not as structured as other
data due to irregular measurement systems, non-uniform administrative boundaries,
multi-dimensionality, alternative projections, and inhomogeneities of earth and universe.
As a result, large fields of application, such as geographic information systems, evolved
in order to store, manage, visualize, as well as analyse geospatial data [178].

Therefore, it is not surprising that space and time are often explored independently for
simplicity and clarity. Yet, focused analyses based on the connection of space and time

71



Chapter 4 Discussion

might be inevitable to elevate the discovery process. Compared to separate analyses,
the development of statistical methods for the combined analysis of space and time has
not made as much progress for a long period of time despite increasing abundance of
spatio-temporal data. But, there have been a number of investigations of spatio-temporal
processes particularly in fields such as spatial epidemiology, for example, reviewed by
Elliott & Wartenberg [179]. Furthermore, comprehensive statistical methodology for
spatio-temporal processes, as described by Cressie & Wikle [180] among others, has
recently seen a surge in application [181–188]. Due to the strong spatio-temporal nature
of the spread and major impact of COVID-19, this trend has further intensified.

Figure 4.1: Screenshot of our interactive COVID-19 metrics tool displaying infection counts per
100,000 inhabitants for German districts on February 11, 2022.

Even though our analyses already included limited efforts in linking these two dimen-
sions, there is much more potential to intensify and implement these efforts in the future.
However, with higher complexity, there is a risk that results will be misleading due to
inappropriate methods. Our analyses have shown that seemingly minuscule changes
in model specification can dramatically change the message of the results in such a
context. For example, our findings have demonstrated that the selection of covariates is
one of the crucial steps in such analyses, which is often non-trivial and much debated
for good reason [189–191]. Therefore, methods must be selected and applied with great
care, and results should be questioned and verified. Especially for longitudinal count
data, we showed that the selection of a suitable model and extensive validation are vital
to avoid misleading results and to extract reliable conclusions.
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Considering our analyses on kidney transplants, we believe that a stronger focus
on regions and even more local approaches are necessary, as even at centre-specific
levels there are often very different processes and conditions present. These efforts will
be severely limited due to privacy regulations, nonetheless, our approach of focusing
model validation on cross-country comparisons can be considered a very small step
in this direction. As another example, current public sources on COVID-19, which are
abundantly available, often consider spatial and temporal information only separately
[192–195]. The principle of linking space and time more closely should therefore be
extended not only to modelling approaches but also to general information efforts. Thus,
we have developed an intuitive tool to display various metrics such as the number of
infections or cumulative deaths for all German districts on a daily scale, for specific dates,
but also as a sequence since the beginning of the pandemic (Figure 4.1). Although we
have highlighted a few pitfalls on the path to reliable results, we hope that this is just the
beginning of further efforts to consider time and space jointly to make future findings not
only faster and easier but also more substantial and accurate.
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List of Acronyms

AIC Akaike Information Criterion . . . . . . . . . . . . . . . . . . . . . . . 52

AUC area under the receiver operating characteristic curve . . . . . . . . 20

BIC Bayesian Information Criterion . . . . . . . . . . . . . . . . . . . . . 19

ET Eurotransplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

GEE generalized estimating equations . . . . . . . . . . . . . . . . . . . . 52

HMC Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 42

IHME Institute for Health Metrics and Evaluation . . . . . . . . . . . . . . . 29

INGARCH integer-valued generalized autoregressive conditional
heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

JAGS Just Another Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . 42

MCMC Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 38

MICE multiple imputation by chained equations . . . . . . . . . . . . . . . 19

NPI non-pharmaceutical interventions . . . . . . . . . . . . . . . . . . . . 29

QIC quasi-likelihood under the independence model criterion . . . . . . . 52

RKI Robert Koch-Institute . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

SEIR susceptible-exposed-infectious-recovered . . . . . . . . . . . . . . . . 24

SMDAPE Symmetric Median Absolute Percentage Error . . . . . . . . . . . . 53

UT University of Texas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

WHO World Health Organization . . . . . . . . . . . . . . . . . . . . . . . 5
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Remarks on Implementation

B.1 tsglm output

The following shows R output of the tsglm function used in section 2.3.1 for a sample of
the COVID-19 data of Munich.

Call:
tsglm(ts = y,
model = list( past_obs = 1),
link = "log",
distr = " poisson ")

Coefficients :
Estimate Std.Error CI(lower) CI(upper)

( Intercept ) 0.674 0.0461 0.583 0.764
beta_1 0.842 0.0104 0.821 0.862
Standard errors and confidence intervals (level = 95 %)
obtained by normal approximation .

Link function : log
Distribution family : poisson
Number of coefficients : 2
Log - likelihood : -2010.577
AIC: 4025.153
BIC: 4032.047
QIC: 4025.153
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B.2 Metropolis sampler code

The following shows the Metropolis R code used in section 2.3.1 for the Poisson model
of the COVID-19 data of Munich.

###################################
# Factor of the log probability
log_prob_f <- function (coefs_old , coefs_new , sumi , sumli , ↷

↪→ exp_lagged , phi){
facto <- ( coefs_old [1]^2 - coefs_new [1]^2) /(2* phi [1]) + ↷

↪→ ( coefs_old [2]^2 - coefs_new [2]^2) /(2* phi [2]) +
sumi *( coefs_new [1] - coefs_old [1]) + sumli *( coefs_new [2] - ↷

↪→ coefs_old [2]) +
exp( coefs_old [1])*sum( exp_lagged ^ coefs_old [2]) - ↷

↪→ exp( coefs_new [1])*sum( exp_lagged ^ coefs_new [2])
return (facto)

}

###################################
# The proposal function
Proposal_opt <- function (coefs , Sigma){

return ( mvrnorm (n = 1, mu = coefs , Sigma = Sigma))
}

###################################
# Sampler
MetropolisSampler_opt <- function (init , iterations , ↷

↪→ predictors , output , phi , Sigma){
# Initialize array to save chain values , with acceptance info
if(is. function (init)){ startvalues <- ↷

↪→ init ()}else{ startvalues <- init}
chain <- array(dim=c(iterations , k + 2))
chain [1,] <- c(1, TRUE , startvalues )
current_coefs <- startvalues

# Initial calculations
sumi <- sum( output )
sumli <- sum( output * predictors [ ,2])
exp_lagged <- exp( predictors [ ,2]) # take exp of log(I_{t -1} ↷

↪→ + 1)

# Run loop
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for (i in 2: iterations ){
# Generate theta from proposal
suggested <- Proposal_opt (coefs = current_coefs , Sigma)
# Compute acceptance probability
log_prob <- min (0, log_prob_f ( coefs_old = current_coefs ,
coefs_new =suggested ,
sumi=sumi , sumli=sumli ,
exp_lagged =exp_lagged , phi=phi))
# Decision to accept Y
if(log(runif (1))<log_prob ){

chain[i,] <- c(i, TRUE , suggested )
# Change values of current step
current_coefs <- suggested

}else{
chain[i,] <- c(i, FALSE , current_coefs )

}
}
return (as.data.frame(chain))

}

B.3 Stan code

The following shows the Stan script used in section 2.3.1 for the Poisson model of the
COVID-19 data of Munich.

data
{

// Number of observations
int <lower =0> n;
// Number of beta parameters
int <lower =0> k;
// Covariates
matrix [n, k] X;
// Outcome
int <lower =0> y[n];
// Given variances
vector [k] phi;

}

parameters
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{
vector [k] beta;
// matrix [k, k] Sigma;

}

transformed parameters
{

vector [n] lambda ;
lambda = exp(X * beta);

}

model
{

// Priors - no need to specify non - informative priors
for (i in 1:k)
{

beta[i] ~ normal (0, phi[i]);
}
// Likelihood part
y ~ poisson ( lambda );

}

With the corresponding variables set, this script can be employed in R by running the
below code.

# Library and Stan properties
library (rstan)
options (mc.cores = parallel :: detectCores ())
rstan_options ( auto_write = TRUE)

# Data inputs
data <- list(y=y, X=X, k=k, n=n, phi=phi)

# Run sampling
stan_sim <- stan(file = filepath ,

data = data ,
pars = "beta",
iter = iterations ,
warmup = burnin ,
chains = n_chains ,
init = starting_values )
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B.4 Simulations

The figures in this section visualize auxiliary results with respect to sample values and
coefficient estimates of Poisson simulations described in chapter 2.3.1.
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Figure B.1: Histogram of single simulations comprising 500 observations distributed by the
autocorrelated Poisson model defined in Equation 2.2 with different combinations of β0 and α.
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Figure B.2: Coefficient estimate bias of β0 (left) and α (right) in simulations comprising 500
observations distributed by the autocorrelated Poisson model defined in Equation 2.2 with
different combinations of β0 and α values. 100 simulations were performed for each combination.
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Remarks on application

C.1 Random covariates in Poisson models

Incidence rate ratio (95% confidence interval)

Berlin Frankfurt Hamburg Munich

Random5 0.98 (0.98, 0.98) 1.03 (1.00, 1.07) 1.00 (1.00, 1.00) 1.00 (0.94, 1.06)

Random4 1.00 (1.00, 1.00) 1.01 (0.96, 1.05) 0.97 (0.97, 0.97) 0.98 (0.90, 1.06)

Random3 0.98 (0.98, 0.98) 0.98 (0.91, 1.05) 0.97 (0.97, 0.97) 1.02 (0.92, 1.13)

Random2 0.98 (0.98, 0.98) 0.98 (0.91, 1.05) 0.95 (0.95, 0.95) 0.97 (0.85, 1.11)

Random1 1.02 (1.02, 1.02) 0.91 (0.78, 1.08) 1.05 (1.04, 1.05) 1.01 (0.72, 1.44)

Lag 2 infections 0.96 (0.95, 0.97) 0.94 (0.54, 1.66) 0.90 (0.89, 0.91) 0.95 (0.45, 2.01)

Lag 1 infections 2.71 (2.69, 2.74) 2.72 (1.50, 4.93) 2.71 (2.68, 2.74) 2.63 (1.24, 5.57)

Table C.1: Exponentiated coefficient estimates, which are incidence rate ratios, with 95%
confidence intervals for infection count models for Berlin, Frankfurt, Hamburg, and Munich.
Poisson models were used for Berlin and Hamburg, negative binomial models for Frankfurt and
Munich. Random1 through Random5 are samples from a normal distribution with mean 0 and
standard deviation 1, 2, 3, 4, and 5, respectively.

The variance of Poisson distributions equals the mean. This means that Poisson mod-
els estimate a significant effect of covariates more easily to compensate for observations
with higher variance than, for example, negative binomial models. To exemplify this,
we adapted the models from Chapter 3.4 modelling the weekly COVID-19 infections in
four German districts from February 24, 2020, until March 6, 2022. There, we used as
predictors the two previous weekly counts and a data-based selection of covariates. We
sampled from five normal distributions with mean zero and standard deviation 1, 2, 3, 4,
and 5, respectively, and substituted the selected covariates with them. The coefficient
estimates and their confidence intervals of the newly fit models are shown in C.1, where
we used Poisson models for the two districts Berlin and Hamburg and negative binomial
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models for Frankfurt and Munich. While the negative binomial models did not indicate a
significant association for almost any of the randomly sampled covariates, the Poisson
models did so for almost all of them.

C.2 Intervention data

In order to integrate the effect of interventions into our models we sought a public
database collecting the type and time frame of these measures on a regional level. Even
though this kind of information is fundamental for reproducibility and comparability in
analyses exploring intervention effects, the supply of such databases is very limited. One
of the few available is the CoronaNet Research Project database [196]. The CoronaNet
Research Project compiles government responses based on the input of more than 450
research assistants from around the world. Unfortunately, the data is by far not complete
or fully up-to-date, thereby implying false intervention effects. A selection of extracted,
processed, and aggregated data on a few of the measures is shown in Figure C.1.
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Figure C.1: Processed intervention data extracted on 2021-03-24 from the CoronaNet Research
Project database [196] between 2020-03-01 and 2021-02-28.
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