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Abstract

In this dissertation, we analyze some mathematical models with applications in quantum
chemistry and material science.

First, we study the exchange energy of the free electron gas in the thermodynamic
limit. The free electron gas consists of a collection of non-interacting electrons trapped in
a bounded region of space. The thermodynamic limit then corresponds to the limit where
the number of electrons and the volume of the region goes to infinity with their ratio
kept constant. In this limit, we derive a two-term asymptotic expansion with explicit
coefficients for the exchange energy of the free electron gas. In addition, we derive a
similar asymptotic expansion for semi-local density functionals when applied to the ground
state density of the free electron gas. By matching the coefficients of these asymptotic
expansions, we obtain a novel integral constraint on exchange density functionals, such
as the celebrated generalized gradient approximations (GGA), that might be of interest
to density functional theory (DFT).

The second part of the dissertation deals with the Dyson equation for the density-
density response function that appears in the linear response formulation of time-dependent
density functional theory (LR-TDDFT). This Dyson equation provides an efficient frame-
work for computing the electronic excitation energies of large quantum systems. Here we
study the well-posedness of the Dyson equation for some widely used adiabatic approx-
imations of the exchange-correlation kernel of time-dependent density functional theory
(TDDFT). Moreover, we present a rigorous analysis of the pole structure (in the frequency
domain) of the solution of the Dyson equation within the random phase approximation
(RPA). As a by-product of this analysis, we conclude that the excitation energies of the
Kohn-Sham system always underestimate the excitation energies computed in the RPA.
Finally, we show that the eigenvalues of the Casida matrix converge to the actual poles
of the solution of the Dyson equation in the infinite basis limit, i.e., the limit where
the number of virtual Kohn-Sham orbitals used to construct the Casida matrix goes to
infinity.
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Zusammenfassung

In dieser Dissertation analysieren wir einige mathematische Modelle mit Anwendungen in
der Quantenchemie und den Materialwissenschaften.

Zuerst untersuchen wir die Austauschenergie des freien Elektronengases im thermo-
dynamischen Limes. Das freie Elektronengas besteht aus einer Ansammlung einer nur
durch das Pauli’sche Exklusionsprinzip aber nicht durch ein Potential wechselwirkenden
Elektronen, die sich in einem endlichen Volumen bewegen. Der thermodynamische Limes
entspricht dann dem Grenzwert, bei dem sowohl die Anzahl der Elektronen als auch
das Volumen bei konstant gehaltenem Verhältnis gegen Unendlich gehen. In diesem
Limes leiten wir eine Zwei-Term asymptotische Entwicklung mit expliziten Koeffizienten
für die Austauschenergie des freien Elektronengases ab. Darüber hinaus leiten wir eine
analoge asymptotische Entwicklung für semilokale Dichtefunktionale ab, angewendet auf
die Grundzustandsdichte des freien Elektronengases. Indem wir die Koeffizienten dieser
asymptotischen Entwicklungen abgleichen, erhalten wir eine neuartige Integralbedingung
für Austauschdichtefunktionale wie beispielsweise die berühmte Verallgemeinerte Gradi-
entennäherung (engl. GGA). Diese Bedingung könnte für die Entwicklung zukünftiger
Dichtefunktionale von Interesse sein.

Der zweite Teil der Dissertation befasst sich mit der Dyson-Gleichung für die Dichte-
Dichte-Antwortfunktion (engl. density-density response function) aus der Linear-Response-
Formulierung der zeitabhängigen Dichtefunktionaltheorie (LR-TDDFT). Diese Dyson-
Gleichung bietet eine effiziente Herangehensweise für die Berechnung der Anregungsen-
ergien großer Elektronensysteme. Hier beweisen wir, dass die Dyson-Gleichung für einige
weit verbreitete adiabatische Näherungen des Austauschkorrelationskerns der zeitabhängi-
gen Dichtefunktionaltheorie (TDDFT) wohldefinierte und eindeutige L” osungen besitzt.
Darüber hinaus präsentieren wir eine rigorose Analyse der Polstruktur (im Frequenzbere-
ich) der Lösung der Dyson-Gleichung innerhalb der Zufälligen-Phasen-Approximation
(RPA). Als Nebenprodukt dieser Analyse erhalten wir, dass die in der RPA berechneten
Anregungsenergien in Bezug auf die Anregungsenergien des Kohn-Sham-Systems immer
nach oben korrigiert sind. Schließlich zeigen wir, dass die Eigenwerte der Casida-Matrix
gegen die wahren Pole der Lösung der Dyson-Gleichung konvergieren, wenn die Anzahl
der virtuellen Kohn-Sham-Orbitale (die zum Konstruieren der Casida-Matrix verwendet
werden) gegen Unendlich geht.
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Chapter 1

Introduction and overview

The Schrödinger equation (SE)[106] is ubiquitous to quantum chemistry, where one is
interested in understanding and accurately predicting many properties of atoms and
molecules from first principles. In the situations where it can be solved explicitly, the
Schrödinger equation yields remarkable results; the classic example is the Hydrogen
atom, where the SE explains its stability and predicts the quantization of the absorp-
tion/emission spectrum in good agreement with experiments.

Unfortunately, the SE can not be solved analytically for most molecules, and one has
to turn to numerical methods. The success of standard (wave function) methods, however,
is very limited as the number of particles in the system grows. The reasons are in fact well-
understood; in the words of Nobel prize winner Walter Kohn [64], these methods encounter
an exponential wall when the number of particles exceeds N « 10. In other words, the
SE suffers from the curse of dimension, which means that the computational cost for
solving these equations (or, in fact, just storing the solutions) grows exponentially with
the number of particles involved. Therefore, much effort from the scientific community
has been invested into proposing and developing approximate (or effective) theories that
can make quantitative predictions on specific properties of atoms and molecules. (See, for
instance, [84] for a few of them.)

Among such theories, the density functional theory (DFT) of Kohn and Sham [65]
stood out [13, 84, 90]; it has become the method of choice in most ab initio electronic
structure calculations as can be seen from the impressive number of publications on the
topic in the past years [12]. DFT is a formally exact theory for computing the electronic
ground state energy and ground state density of molecules. Moreover, its time-dependent
version (TDDFT) [19, 96, 103, 120] provides an efficient framework for computing the
excitation energies. As opposed to the exponentially scaling cost for solving the SE,
the computational cost of standard DFT and TDDFT calculations scales cubically, or
sometimes even linearly [27, 80, 97], with the number of particles. In particular, DFT
and TDDFT calculations on molecules with thousands of particles can now be performed
[27, 98].

Despite this success, the DFT and TDDFT approaches ultimately rely on semi-
empirical approximations of unknown functionals: the exchange-correlation (xc) func-
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Chapter 1. Introduction and overview

tional in the case of DFT and the exchange-correlation (xc) kernel in the case of (linear
response) TDDFT. Consequently, the many different approximations developed so far
(see [82] for an overview) can not be reliably applied to general atoms and molecules; a
suitable approximation has to be chosen on a case-by-case basis, which undermines the
role of DFT and TDDFT as predictive theories. Moreover, in the TDDFT case, the foun-
dations of the theory are not yet justified in physically relevant cases [36], and a consistent
mathematical framework is still missing.

In this thesis, we shall address two related problems. In the first part, we shall study
exchange effects for the free electron gas. More precisely, we derive asymptotic expansion
for the exact exchange energy and the exchange energy of general semi-local density
functionals when applied to the free electron gas in the thermodynamic limit. By matching
the coefficients of these asymptotic expansions, we obtain a novel exact constraint for
semi-local functionals such as the celebrated generalized gradient approximations (GGA)
[6, 92, 93]. As such functionals are usually designed by fitting a (relatively) simple ansatz
to a mixture of exact constraints and empirical data, the constraint derived here might
be useful for designing more accurate density functionals.

In the second part of this thesis, we study the Dyson equation that appears in the lin-
ear response formulation of time-dependent density functional theory (LR-TDDFT). The
Dyson equation formally connects the density-density response function of an interacting
system of interest to the density-density response function of an equivalent non-interacting
system, the Kohn-Sham system. In this way, the Dyson equation provides an efficient
framework for computing the excitation spectra of large systems. Here we present a func-
tional analytic setting for the well-posedness of the Dyson equation that applies to general
non-relativistic quantum mechanical systems and widely used adiabatic approximations
of the exchange-correlation kernel. Furthermore, we analyze the poles of the solution of
the Dyson equation, which in applications, correspond to the approximations of the exci-
tation spectra of the interacting system of interest. These results set the linear response
formulation of time-dependent density functional theory in the infinite-dimensional (or
continuum) setting in a rigorous mathematical framework.

Let us now outline the content of this thesis. In the rest of this chapter, we present a
short (and rather informal) introduction to DFT and TDDFT and then give an overview
of the main results of this thesis. In Chapter 2 we study the exchange energy of the free
electron gas on a cubic box. Using different methods, we then improve and generalize
these results in Chapter 3. In Chapter 4, we study the Dyson equation from LR-TDDFT.
All chapters are self-contained so that they can be read in any order.

1.1 Introduction to DFT and LR-TDDFT

In this section we present the basics of the (Kohn-Sham) density functional theory (KS-
DFT) and of the linear response formulation of time-dependent density functional theory
(LR-TDDFT). For more detailed introductions to these topics, we refer the reader to
[90, 30, 79, 80, 84, 85] for DFT and to [30, 79, 83, 120] for TDDFT.
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Chapter 1. Introduction and overview

The plan for this section is the following. We start by introducing the ground and
excited state problems in quantum mechanics and describing the standard variational
approach for solving them. We then present the DFT approach for the ground state
problem as initiated by Hohenberg-Kohn [57] and Kohn-Sham [65]. In the sequel, we
describe the connection between linear response theory and the excitation energies of
a given system. We then give a short introduction to TDDFT and present the linear
response approach for computing the excitation energies within the framework of TDDFT.

1.1.1 The quantum ground state probem

In quantum mechanics, the state of an isolated system with N electrons is described by
a (wave) function Ψ : pR3qN Ñ C satisfying the following constraints:

• (Normalization) ∥Ψ∥2L2pR3N q
“
ş

R3N |Ψpr1, ..., rNq|2dr1...drN “ 1.

• (Anti-symmetry) Ψprσp1q, ..., rσpNqq “ sgnpσqΨpr1, ..., rNq, for any permutation of
N -variables σ : t1, ..., Nu Ñ t1, ..., Nu and every points r1, ..., rN P R3.

(For simplicity, we do not consider spin here.) The normalization constraint comes from
the fact that |Ψpr1, ..., rNq|2 represents the probability density of finding electrons at
the positions pr1, ..., rNq. The anti-symmetry accounts for the fact that all electrons are
identical particles and that identical particles are not allowed to occupy the same quantum
state. This is called the Pauli exclusion principle for fermions (e.g., electrons) and is one
of the postulates of quantum mechanics. Hence, the set of admissible states of the system
is the set of normalized functions in the anti-symmetric N -fold tensor product of L2pR3q,

HN “

N
ľ

i“1

L2
pR3

q “ tΨ : R3N
Ñ C : Ψ anti-symmetric and ∥Ψ∥2L2pR3N q ă 8u,

which is a Hilbert space with respect to the standard L2pR3Nq inner-product

xΨ,Φy “

ż

R3N

Ψpr1, ..., rNqΦpr1, ..., rNqdr1...drN .

As is often the case in physics, one is mostly (at least in a first analysis) interested
in the states of the system that minimize some energy functional. For a system with N
electrons, the energy functional usually has the form

ErΨs “

ż

R3N

1

2
|∇Ψpr1, ..., rNq|

2
`

ˆ

ÿ

1ďiăjďN

wpri ´ rjq `

N
ÿ

i“1

vpriq

˙

|Ψpr1, ..., rNq|
2dr1...drN ,

where∇Ψ is the (weak) gradient of Ψ and w and v are real-valued functions describing the
electron-electron interaction and the interaction between the electrons and some external
source, respectively. Here we use the convenient atomic units me “ e “ 4πϵ0 “ ℏ “ 1,
where me and e are respectively the mass and the charge of the electron, ϵ0 is the vacuum
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Chapter 1. Introduction and overview

permittivity, and ℏ is the reduced Planck’s constant. Within the Born-Oppenheimer
approximation for a molecule with M nuclei, the electron-electron interaction and the
external potential are given by the Coulomb potential,

wprq “
1

|r|
and vprq “

M
ÿ

m“1

Zm

|Rm ´ r|
,

where Zm and Rm are respectively the atomic number and position of the mth-nucleus,
and |r| “

ř3
j“1 r

2
j is the standard norm in R3. Here we shall keep the discussion general

and simply assume that v and w are regular enough real-valued functions.
The ground state problem then consists in finding the minimum value and the mini-

mizer of the energy functional E over the set of admissible states:

E0 “ inf

"

ErΨs

∥Ψ∥2
: Ψ P HNzt0u, ∥∇Ψ∥L2pR3N q ă 8

*

“
ErΨ0s

∥Ψ0∥2
. (1.1.1)

The value E0 and the minimizer Ψ0 are called, respectively, the ground state energy and the
ground state wave function (or simply ground state). Note that in general, the infimum
may not be finite (E0 “ ´8) or not be attained. While conditions on v, w, and N for the
minimum to be finite are fairly general, the existence (and uniqueness) of a minimizer is a
subtle question [88, 100, 117]. Here we shall simply assume that the ground state energy
is finite and a minimizer Ψ0 exists.

Next, by formally computing the Euler-Lagrange equation of the above functional, we
obtain the stationary Schrödinger equation (SSE)

ˆ

´
1

2
∆ `

ÿ

1ďiăjďN

wpri ´ rjq `
ÿ

1ďiďN

vpriq

˙

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

:“HN pv,wq

Ψ0 “ E0Ψ0, (1.1.2)

where ∆ is the Euclidean Laplacian in R3N . The operator HNpv, wq is called the (N -body
or N -particles) Hamiltonian of the system and, under suitable assumptions on v and w,
defines a self-adjoint operator whose quadratic form domain is given by

QN :“ Q
`

HNpv, wq
˘

“ HN X H1
pR3N

q “ tΨ P HN : ∥∇Ψ∥L2pR3N q ă 8u.

(For the relation between self-adjointness and quadratic forms and the precise assumptions
on v and w, we refer the reader to [63, 108].) Consequently, one can rigorously show that
minimizing E is equivalent to finding a solution of the SSE (in HN) with E0 being the
lowest value in the spectrum of HNpv, wq.

Ideally, one would like to go beyond the ground state and compute all excited-state
energies and wave functions of the system. These correspond to the pairs pEj,Ψjq P RˆHN

satisfying the SSE,

HNpv, wqΨj “ EjΨj,
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Chapter 1. Introduction and overview

where E0 ď E1 ď E2 ď ... are values in the discrete spectrum1 of HNpv, wq. It turns out
that these states can also be computed by a variational principle known as the (Courant-
Fischer) min-max principle:

Ej “
ErΨjs

|Ψj|
2

“ min

"

ErΨs

∥Ψ∥2
: Ψ P QN X spantΨ0, ...,Ψj´1u

K

*

, (1.1.3)

where spantΨ0, ...,Ψj´1u
K denotes the orthogonal complement of the spaced spanned by

the first j ´ 1 excited states Ψ0, ...,Ψj´1.
In summary, all solutions of the SSE and the associated energies (below the essential

spectrum of HNpv, wq) can be computed by solving the chain of variational problems de-
scribed in (1.1.3). Unfortunately, standard numerical approaches for solving this problem
scale exponentially with the number of electrons, which makes any calculation for systems
with more than N « 10 electrons unfeasible. One possible way to bypass this problem is
to completely abdicate of computing the ground state wave function and settle for reduced
quantities such as the single-particle electronic density. This is the underlying idea of the
density functional approach that we describe next.

Density functional theory: the Kohn-Sham scheme

In density functional theory, we shift the focus from the high-dimensional wave function
to the low-dimensional single-particle electronic density (or simply density henceforth).
For a system in a state Ψ P HN , the corresponding density ρΨ is defined as

ρΨprq “ N

ż

R3N´3

|Ψpr, r2, ..., rNq|
2dr2...drN . (1.1.4)

Note that, whilst the state of a system of N electrons is described by a function in R3N ,
its density ρΨ is always a positive function in R3. Therefore, we would like to reformulate
the ground state problem as a minimization over the space of densities.

The typical starting point of DFT is the foundational theorem of Hohenberg and Kohn
[57]. The Hohenberg-Kohn (HK) theorem states that, for a fixed interaction potential w,
there exists a one-to-one mapping between potentials v (up to an additive constant) and
ground state single-particle densities of Hamiltonians of the form HNpv, wq. Conceptually,
this is an important step because it justifies the idea that any property of the system can
be computed via its ground state density. In practice, however, the proof of the HK
theorem does not lead to any practical insights into the precise form of the mapping
between densities and potentials. We shall therefore skip any precise statement of the HK
theorem2 and directly present the approximated Kohn-Sham scheme [65] for computing
the ground state density.

1The discrete spectrum of a self-adjoint operator is defined as the set of isolated eigenvalues of finite
multiplicity [99, 117].

2For the precise statement of the HK Theorem, we refer the reader to [57, 90]. For a rigorous proof,
we refer to [42, 43].
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Chapter 1. Introduction and overview

To this end, we first recall (see [76]) that the set of N -representable densities, defined
as the image of the map Ψ ÞÑ ρΨ (i.e. the map defined via (1.1.4)) with normalized
Ψ P QN “ HN X H1pR3Nq, can be characterized as

RN “

"

ρ P L1
pR3; r0,8qq :

?
ρ P H1

pR3
q and

ż

R3

ρprqdr “ N

*

. (1.1.5)

Thus the minimization problem in (1.1.1) can be reformulated as

E0 “ inf
ρPRN

"
ż

R3

ρprqvprqdr ` inf
ΨPQN
ρΨ“ρ

"
ż

R3N

1

2
|∇Ψpr̃q|

2
`

ÿ

1ďiăjďN

wpri ´ rjq|Ψpr̃q|
2dr̃

*

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

:“FLLpρq

*

,

(1.1.6)

where FLL is called the Levy-Lieb constrained search functional [70, 71, 76]. We now have
a variational problem in terms of the density only; of course, nothing has been achieved
so far as any evaluation of FLL requires a minimization over the space of wave functions
again.

Remark (The HK functional and v-representability). In the physics/chemistry litera-
ture, FLL is sometimes called the Hohenberg-Kohn functional [57] and denoted by FHK.
However, strictly speaking, the HK functional is the restriction of FLL to the set of w-
interacting V-representable densities

RNpwq “ tρ “ ρΨ0 : Ψ0 is a ground state of HNpv, wq for some v P Vu Ă RN , (1.1.7)

where V Ă tv : R3 Ñ Ru is a suitable class of measurable potentials. For a mathematically
rigorous account of the functionals FHK, FLL, and yet another functional defined as the
Legendre transform of the energy, we refer to the work by Lieb [76].

The ingenious idea of Kohn and Sham [65] was then to approximate the functional
FLL in a way that is reasonably accurate and can be efficiently computed. Precisely, they
proposed the following scheme. First, let us denote the space of anti-symmetric product
states (or Slater determinants) by SN , i.e., Ψ P SN if and only if

Ψpr1, ..., rNq “ det

¨

˚

˝

ϕ1pr1q ... ϕNpr1q
...

...
ϕ1prNq . . . ϕNprNq

˛

‹

‚

“
`

ϕ1 ^ ... ^ ϕN

˘

pr1, ..., rNq

for some functions tϕiu
N
i“1 Ă H1pR3q which are orthonormal with respect to the L2pR3q-

inner-product. The functions ϕj are usually called the (occupied) orbital functions. Next,
let us recall that any density inRN is N -representable by a Slater determinant [45, 52, 76].
Stated differently, the image of the set of normalized Slater determinants under the map
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Chapter 1. Introduction and overview

Ψ ÞÑ ρΨ is also equal to the set of N -representable densities RN . This allows us to define
the Kohn-Sham (KS) kinetic energy of any density ρ P RN as

TKSrρs “ inf
ΨPSN
ΨÞÑρ

1

2
∥∇Ψ∥2L2pR3N q.

Using TKS as an approximation for the kinetic energy, Kohn and Sham then proposed the
following decomposition of the functional FLL:

FLLrρs “ TKSrρs ` Jrρs ` Excrρs,

where J is the Hartree (or direct) term,

Jrρs “
1

2

ż

R6

wpr ´ r1
qρprqρpr1

qdrdr1,

and Exc is called the exchange-correlation (xc-)functional. The xc-functional then contains
all unknown contributions to the energy and must be efficiently approximated. The
advantage of this approach, instead of directly approximating FLL, is that Exc is often
small compared to the other two terms; hence only a small part of the energy has to be
approximated.

In their seminal paper, Kohn and Sham further proposed to approximate the xc-
functional by a functional that depends locally on the pointwise values of the density,

Excrρs « ELDA
xc rρs “

ż

R3

fpρprqqdr, (1.1.8)

for some function f : R Ñ R. This is called the local density approximation (LDA).
With this ansatz for the exchange-correlation, we can now re-state (the approximation
of) problem (1.1.6) as a minimization over the manifold of N -tuples of orbital functions

MN “ tΦ “ pϕ1, ..., ϕNq P pH1
pR3

qq
N : xϕi, ϕjyL2pR3q “ δiju (1.1.9)

in the following way:

ELDA
0 “ inf

ρPRN

"

inf
ΦPMN
ρΦ“ρ

ż

R3

1

2

N
ÿ

j“1

|∇ϕjprq|
2dr

loooooooooooooooomoooooooooooooooon

TKSrρs

`Jrρs ` ELDA
xc rρs `

ż

R3

vprqρprqdr

*

“ inf
ΦPMN

" N
ÿ

j“1

1

2
∥∇ϕj∥2L2pR3q ` JrρΦs ` ELDA

xc rρΦs `

ż

R3

vprqρΦprqdr

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

:“ELDArΦs

s

*

,

where

ρΦprq “

N
ÿ

j“1

|ϕjprq|
2 (1.1.10)
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is the single-particle density of the Slater determinant generated by the orbitals Φ “

pϕ1, ..., ϕNq. So by computing the Euler-Lagrange equations of the above functional
and using the (gauge) invariance of ELDA under unitary transformations of CN , i.e.,
ELDArUΦs “ ELDArΦs for any unitary linear transformation U : CN Ñ CN , we arrive
at the celebrated single-particle Kohn-Sham equations (within the LDA)

´
1

2
∆ϕj`

`

vprq ` vLDA
xc rρΦsprq`

`

ρΦ ˚ w
˘

prq
loooooooooooooooooooomoooooooooooooooooooon

:“vLDA
KS rρΦsprq

˘

ϕj “ λjϕj, for 1 ď j ď N , (1.1.11)

where ρΦ is defined by (1.1.10), the mean-field potential is given by the convolution

ρΦ ˚ wprq “

ż

R3

wpr ´ r1
qρΦpr1

qdr1,

and the exchange-correlation potential is given by

vLDA
xc rρΦsprq “

δELDA
xc

δρ
rρΦsprq “

d

dρ
f
`

ρΦprq
˘

. (1.1.12)

Note that the solutions pλj, ϕjq P R ˆ H1pR3q of (1.1.11) are eigenpairs of the single-
particle Schrödinger operator

hLDA
KS rρΦs :“ ´

1

2
∆ ` vLDA

KS rρΦsprq acting on L2pR3q.

If in addition tλjujďN are the N lowest eigenvalues of the Kohn-Sham Hamiltonian hLDA
KS ,

then the (Kohn-Sham) Slater determinant

ΨKS “ ϕ1 ^ ... ^ ϕN

is the ground state of the N -particles non-interacting Hamiltonian

HLDA
N rρΦs “ HNpvLDA

KS rρΦs, 0q.

In this case, the resulting density ρΨKS
“ ρΦ is expected to be a minimizer3 of ELDA and

provides an approximation to the ground state density of the interacting Hamiltonian
HNpv, wq. Similarly, the energy ELDA

0 “ EpρΨKS
q is an approximation of the ground state

energy of HNpv, wq.

Remark (xc-functional derivative). The middle term in (1.1.12) is the Schwartz kernel of
the functional derivative of the xc-functional. For the LDA xc-functional (with regular f),
this kernel is indeed a function in R3. For more general approximations, the functional
derivative is no longer given by integration against a local potential, and the approximated
xc-potential is only defined in a weak sense (see, e.g., [84, Section 8.6]).

3For rigorous results on the existence of minimizers for the LDA model we refer the reader to [4] and
references therein.
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In summary, the Kohn-Sham scheme for computing the ground state density and
ground state energy of some system consists of the following steps.

(1) One chooses an approximation for the xc-functional Eapp
xc and an initial guess, say

ρ1, for the ground state density of the system.

(2) The effective Kohn-Sham potential vappKS rρ1s is constructed by summing the external
potential (given, e.g., by the position and the atomic number of the nuclei), the
mean-field potential ρ1 ˚ w, and the xc-potential obtained from formula (1.1.12)
with ρΦ and ELDA

xc replaced respectively by ρ1 and the chosen xc-approximation
Eapp

xc .

(3) The first N eigenpairs of the single-particle Kohn-Sham Hamiltonian happKS rρ1s “

´1
2
∆ ` vappKS rρ1s are numerically evaluated. These eigenpairs are then used to con-

struct a new approximation for the ground state density, say ρ2, via formula (1.1.10).

(4) This new density ρ2 is then compared with the previous one for consistency. If
ρ1 ´ ρ2 is small (to some pre-determined accuracy), then the computation is done,
and the density ρ1 is taken as the approximation to the ground state density. If the
two densities do not agree, one updates the guess for the ground state density by
interpolating between ρ1 and ρ2 and re-starts the procedure from step (2) with the
updated density. These steps are then repeated until convergence.

This is called the self-consistent field (SCF) method and can be efficiently implemented
for reasonable approximations of the xc-functional [80, 90, 30].

Remark (Exact xc-potential). For a density ρ that is both w-interacting and non-interacting
V-representable, i.e. ρ P RNp0q X RNpwq (see (1.1.7)), the existence of an external po-
tential vrρs and an exact Kohn-Sham potential vKSrρs such that the ground state densities
of the Hamiltonians HNpvrρs, wq and HNpvKSrρs, 0q are equal to ρ is guaranteed. Since
vrρs and vKSrρs are unique (up to an additive constant) by the HK theorem, the exact
xc-potential is

vstaticxc rρs “ vKSrρs ´ vrρs ´ ρ ˚ w. (1.1.13)

(Here, we use the superscript static to differentiate it from the exact time-dependent xc-
potential introduced later.) Unfortunately, very little is known about the sets RNp0q and
RNpwq (see, e.g., [71, 76] for a proof that they are not the same). Nevertheless, the
approximated Kohn-Sham scheme can be justified by the argument that non-interacting
V-representable densities can reasonably approximate the w-interacting ones [122].

Approximations to the xc-functional

The crucial step in the Kohn-Sham scheme is the choice of the approximated xc-functional.
Over the past decades, hundreds of distinct approximations were proposed by the elec-
tronic structure community [82]. In most cases, such approximations are designed to (i)

9
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have a simple expression that can be efficiently computed, (ii) satisfy some known con-
straints on the exact functional FLL, and (iii) fit some empirical data from benchmark
experiments [6, 95, 92, 93]. Moreover, asymptotic results for quantum systems on differ-
ent regimes play a fundamental role in choosing and designing such approximations. (For
instance, the energy density f from the original LDA [65] is the thermodynamic limit of
the exchange-correlation energy of the electron gas with constant density, the uniform
electron gas (UEG)4 [72].) In this regard, several interesting mathematical developments
appeared in the last few years; let us briefly mention a few of them and refer the reader
to the references therein for further information.

• (The LDA in the small gradient regime) Based on Lieb-Thiring inequalities with
gradient corrections [87], the LDA functional has been rigorously justified in [73] for
densities with small fluctuations.

• (Correlation energy in the high-density limit) The correlation energy formula for
the electron gas in the high-density limit derived in the physics literature [11, 44]
has been rigorously justified for certain mean-field scaling limits of the electron gas
(with interactions less singular then Coulomb) in [7, 8, 23]. This is an important
development for DFT because many approximations to the correlation part of the
xc-functional are based on this formula [85].

• (Strictly correlated or low-density limit) A different regime from the ones mentioned
above (and from the one studied in this thesis) is the strictly correlated electrons
(SCE) limit (or low-density limit) where the interaction energy dominates. From
the recently revealed connection of this limit with optimal transportation theory
[14, 26], several asymptotic results for FLL have emerged. For a comprehensive
review, we refer to [41].

The xc-functional approximations are commonly divided into distinct categories rep-
resented by the rungs of a ladder, the Jacob’s ladder of DFT [94]. Each rung then
incorporates the ingredients of lower rungs and is, typically, more accurate and more
computationally demanding than the previous ones [94]. The first and second rungs of
the Jacob’s Ladder correspond respectively to the local density approximation (LDA) de-
scribed above and the generalized gradient approximations (GGA). Although the LDA is
typically more accurate than the Hartree-Fock approximation, they are usually too crude
and of little use to practitioners. On the other hand, the development of the GGAs was
a milestone in elevating DFT from a conceptually appealing theory to a practical tool for
calculations. These are by far the most used xc-approximations due to their balance be-
tween accuracy and low computational cost. The GGAs are semi-local density functionals
of the form

EGGA
xc rρs “

ż

R3

f
`

ρprq, |∇ρprq|
˘

dr,

4The UEG is often identified with the Jellium, which corresponds to the thermodynamic limit of an
electron gas moving on a positively charged background [48]. Whether this identification is correct or
not is still up to debate; see [72] and references therein for a rigorous account of the UEG
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where f : R2 Ñ R is now a function of the density and the density gradient5. The
LDA and GGA functionals for the exchange energy will be studied in more detail in
Chapters 2 and 3. The subsequent rungs of the Jacob’s Ladder include more complex
functionals such as the meta-GGAs, briefly mentioned in Section 3.7, the exact exchange,
studied in detail in Chapter 2 and 3, and the random phase approximations (RPA) for
the correlation energy. For a detailed discussion of each rung’s components, advantages
and limitations, and numerical implementations, we refer the reader to the previously
mentioned textbooks and the vast literature referenced therein.

1.1.2 Excitation energies

We have now summarized the DFT scheme for computing the ground state energy and
density of a system of interacting electrons. In applications, one would like to go beyond
the ground state and also compute the excited state properties of the system. In this
section, we shall present an approach for computing the (optical) excitation energies.

The optical excitation energies are defined as the difference

ωk :“ Ek ´ E0, (1.1.14)

where E0 and Ek are respectively the ground state and the jth excited-state energies of
a given system of interest. These energy differences are important in many applications
(e.g., to understand a given molecule’s absorption/emission spectrum). Although the
variational problem for the excited states (cf. (1.1.3)) can be easily stated in the N -body
wave function space, a similar reformulation of this problem in terms of the density is not
known. For instance, one could repeat the constrained search approach from the previous
section to obtain

E1 “ inf
ρPRN

tErρs “ V rρs ` F
ΨK

0
LL rρsu,

where

V rρs “

ż

R3

ρprqvprqdr and F
ΨK

0
LL rρs “ inf

Ψ ÞÑρ
ΨKΨ0

xΨ,
`

´
1

2
∆ `

ÿ

1ďjăkďN

wprj ´ rkq
˘

Ψy.

The difficulty now is that F
ΨK

0
LL implicitly depends on the ground state wave function Ψ0,

which can not be computed in practice for large systems. Moreover, as Ψ0 depends on
the potential v, the above splitting of Erρs does not decouple its dependence on v and w.

In other words, the functional F
ΨK

0
LL is not universal with respect to v.

We shall therefore abandon the variational formulation (1.1.3) and present an indirect
approach for computing the excitation energies instead. This approach combines linear
response theory (LRT) with time-dependent density functional theory (TDDFT).

5The common approach in the physics literature is to define the GGAs as the local density approxima-
tion of the exchange-correlation energy density of the homogeneous electron gas times an enhancement
factor depending on the reduced gradient |∇ρ|{ρ

4
3 (see Chapter 2).
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Excitation energies via linear response

Let us start by describing how the linear response of a system of electrons at equilibrium
relates to the excitation energies of the Hamiltonian of the system.

In typical applications of linear response theory, one is interested in the response of
an observable after the system is driven out of equilibrium by some perturbation. In
our case, the system of interest is a collection of N electrons whose energy is described
by some self-adjoint operator H acting on the N -body wave function space HN . (Here,
we do not assume any specific form for the operator H.) Moreover, we assume that the
system is initially in the ground state of H, which corresponds to the equilibrium at
zero temperature. In this setting, the response of the system to a perturbation in the
Hamiltonian of the form

H1ptq “ ϵfptqB,

where the perturbing operator B : HN Ñ HN is bounded and symmetric, the time profile
f : R Ñ R is bounded and causal (i.e., fptq “ 0 for t ď 0), and ϵ is a parameter
representing the strength of the perturbation, is given by the strong solution of the time-
dependent Schrödinger equation

#

iBtΨptq “
`

H ` H1ptq
˘

Ψptq for t ą 0,

Ψp0q “ Ψ0,
(1.1.15)

where Ψ0 is the ground state wave function of H and BtΨptq denotes the time-derivative
of the HN -valued function of time t ÞÑ Ψptq. Consequently, one can show (see Section 4.3)
that the variation in the expectation value of any (bounded) observable A : HN Ñ HN

6

has the expansion

xΨptq, AΨptqyL2pR3N q “ xΨ0, AΨ0yL2pR3N q ` ϵ

ż t

0

fpsqχABpt ´ sqds ` Otpϵ
2
q, (1.1.16)

where χABpt ´ sq is the linear response function defined as

χABptq “ 2θptqImxΨ0, Ae
´itpH0´E0qBΨ0yL2pR3N q. (1.1.17)

Here θptq is the Heaviside step function, and Impzq denotes the imaginary part of some
complex number z P C. Eq. (1.1.16) is sometimes called the Kubo formula for the linear
dynamical response of the system [66, 67].

The connection between the excitation energies of H and the linear response function
can now be understood by looking at the Fourier transform of χAB. More precisely, the
Fourier transform of χAB is given by the formula7

yχABpωq “ lim
ηÑ0`

xΨ0, BRp´ω ´ iηqAΨ0y ` xΨ0, ARpω ` iηqBΨ0y, (1.1.18)

6In quantum mechanics, the observables are self-adjoint operators acting on the Hilbert space of states
H. For a system at state Ψ P H, the expectation value of some observable A : H Ñ H is then given by
the inner-product xAyΨ “ xΨ, AΨyH.

7Here we adopt the physicist’s convention for the Fourier transform in time, zχABpωq “
ş

R χABptqeiωtdt.
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where Rpzq “ PΨK
0

pz ` E0 ´Hq´1PΨK
0
is the reduced resolvent of H ´ E0 on the subspace

tΨ0uK and the one-sided limit η Ñ 0` is taken in the distributional sense. In particular,
the function ω ÞÑ yχABpωq is well-defined and analytic around any point in the open set
tω P R : |ω| R σpH ´ E0qu. On the other hand, the regularity (or singularity) of yχABpωq

at the points |ω| P σpH ´ E0q depends8 on the spectral properties of H ´ E0 at |ω|.
Nevertheless, let us consider the holomorphic extension of yχABpzq to the complex upper
half-plane (which exists since χABptq is causal). It is not hard to see that this extension has
simple poles at the discrete excitation energies |ω| P σdpH´E0q. The physical consequence
of this fact is that the system’s response blows up when the Fourier transform of the
time profile of the perturbation becomes localized around the excitation energies of the
system. In practice, this implies that the excitation energies can be measured by probing
the system to different perturbations.

For us, the essential point is that the excitation energies of a given Hamiltonian are
accessible through the poles of the Fourier transform of the linear response function.
Therefore, if it is possible to efficiently compute (approximations of) χABptq for various
operators A and B, then we have a way to compute the excitation energies of H. Note,
however, that constructing χABptq via formula (1.1.17) (or (1.1.18)) is by no means eas-
ier than solving the variational problem (1.1.3); it requires not only knowledge on the
ground state wave function Ψ0 but also on the Schrödinger propagator (or resolvent) of
H. Fortunately, a major simplification is achieved by employing the TDDFT framework
described below.

Time-dependent density functional theory

TDDFT aims to reproduce (or approximate) the time-dependent density of a system
of electrons, whose evolution is governed by a time-dependent interacting Hamiltonian,
via the time-dependent density of a system of non-interacting electrons. More precisely,
one would like to compute the density ρΨptq of the solution Ψptq of the time-dependent
Schrödinger equation (TDSE)

#

iBtΨptq “ HNpvptq, wqΨptq for t ą 0,

Ψp0q “ Ψ0,
(1.1.19)

where the time-dependent external potential vpt, ¨q : R3 Ñ R is given a priori by the
physics of the problem at hand (e.g., vptq can represent the interaction of the electrons
with classically moving nuclei, or with the external field of a laser beam [83]). To this
end, one postulates the existence of a time-dependent exchange-correlation (xc-)potential
vTD
xc rρΨ; Ψ0; Φ0s : R` ˆ R3 Ñ R such that the solution Φptq of

#

iBtΦptq “ HNpveffptq, 0qΦptq for t ą 0,

Φp0q “ Φ0,
(1.1.20)

8This dependence is particularly subtle for points in the essential spectrum of H ´ E0 where it is
related to the celebrated limiting absorption principle (LAP) [3]
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where the effective potential is given by

veffpt, rq “ vTD
xc rρΨ; Ψ0; Φ0spt, rq ` vpt, rq ` ρΨptq ˚

1

| ¨ |
prq,

satisfies

ρΨptq “ ρΦptq for all t ě 0.

The initial state Φ0 can be chosen arbitrarily as long as it reproduces the density and
the divergence of the current density of Ψ0 (see [83, Chapter 4]). Note, however, that the
xc-potential vTD

xc depends on this choice.

Remark (The time-dependent xc-potential). A few remarks on the xc-potential are now
in place.

(i) (Dependence on the density) The potential vTD
xc rρΨ; Ψ0; Φ0sptq at a given time t ě 0

depends on all the past values of the time-dependent density tρΨpsqusďt.

(ii) (v-representability) Proving the existence of the potential vTD
xc is known as the (time-

dependent) V-representability problem. More precisely, the V-representability prob-
lem consists in characterizing the set of w-interacting and non-interacting V-representable
time-dependent densities. These sets are defined respectively as

RTD
N pwq “ tρptq “ ρΨptq for t ě 0 : Ψ solves (1.1.19) for some pv,Ψ0q P VTD ˆ IN .u,

RTD
N p0q “ tρptq “ ρΦptq for t ě 0 : Φ solves (1.1.20) for some pvs,Φ0q P VTD ˆ IN .u,

where VTD Ă tv : R3ˆr0,8q Ñ R measurableu and IN Ă tΨ0 P HN : ∥Ψ0∥ “ 1u are
suitable classes of time-dependent potentials and initial states. As in the ground state
case, an effective potential veff P VTD that exactly reproduces the density ρΨ exists
if and only if ρΨ P RTD

N p0q. For more detailed discussions on the time-dependent
V-representability problem, we refer to [121, 102].

(iii) (Runge-Gross theorem) The Runge-Gross theorem is the analog of the HK theorem
to the time-dependent case; it states that, for a fixed interaction w and an initial
state Ψ0, the time-dependent external potential is uniquely determined (up to a time-
dependent constant) by the time-dependent density. In particular, the xc-potential
vTD
xc (when existing) is unique. However, the original proof of Runge and Gross
using Taylor expansions (see [103]) was recently shown to be essentially incompatible
with the physically relevant case of Hamiltonians with singular interactions (e.g.
Coulomb)[36].

By choosing the initial compatible state Φ0 to be the Slater determinant of some orbital
functions tϕ1, ..., ϕNu P MN and using the identification ρΨ “ ρΦ, eq. (1.1.20) reduces to
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a system of N single-particle Schrödinger equations known as the time-dependent Kohn-
Sham equations:

$

&

%

iBtϕjpt, rq “

ˆ

´
1

2
∆ ` veffrρΦ; Ψ0; Φ0spt, rq

˙

ϕjpt, rq for j P t1, ..., Nu

ϕjp0, rq “ ϕjprq,

(1.1.21)

where ρΦptqprq “
řN

j“1 |ϕjpt, rq|2 is the density of the Slater determinant Φptq “ ϕ1ptq ^

... ^ ϕNptq. Due to the dependence of the effective potential on ρΦ, the time-dependent
Kohn-Sham equations are a set of N coupled non-linear partial differential equations in
R3. Nevertheless, if the map ρ ÞÑ veffrρ; Ψ0; Φ0s is explicitly known, then a self-consistent
scheme similar to the one described in Section 1.1.1 would (with some luck) allow us to
compute the exact time-dependent density ρΨptq of the interacting system. The philosophy
behind this approach is the same behind ground state DFT: solving the N -particles TDSE
for a non-interacting Hamiltonian, even self-consistently, is more treatable than solving
the N -particles TDSE for an interacting one.

Formal derivation of the TDDFT Dyson equation

We can now present a formal derivation of the Dyson equation from TDDFT. For this, let
us go back to the linear response setting and denote by Ψϵptq the solution to the perturbed
Schrödinger equation

$

&

%

iBtΨ
ϵ
ptq “

ˆ

HNpv, wq ` ϵfptqB

˙

Ψϵ
ptq,

Ψϵ
p0q “ Ψ0,

(1.1.22)

where Ψ0 is the ground state of some interacting Hamiltonian HNpv, wq of interest.
The key observation which allows bringing to bear TDDFT is now the following: by

reducing the set of observables and perturbations to one-body multiplicative potentials,
the linear response function χABptq (defined via (1.1.17) with H “ HNpv, wq) depends
only on the variation of the time-dependent density

ρϵpt, rq “ N

ż

R3pN´1q

|Ψϵ
pt, r, r2, ..., rNq|

2dr2...drN .

More precisely, we consider only operators A and B of the form

AΨpr1, ..., rNq “

N
ÿ

j“1

aprjqΨpr1, ..., rNq and BΨpr1, ..., rNq “

N
ÿ

j“1

bprjqΨpr1, ..., rNq,

where a, b P L8pR3q are real-valued functions and observe that the linear response function
χABptq is R-bilinear in a and b. Consequently, we can view χptq as a family of time-
dependent bilinear forms on L8pR3;Rq. In fact, one can show (see Section 4.2) that

χABptq “ xa, χptqbyL2pR3q “

ż

R3

aprq
`

χptqb
˘

prqdr
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for a strongly continuous operator-valued function t ÞÑ χptq P B
`

L8pR3;Rq, L1pR3;Rq
˘

.
This operator-valued function is called the density-density response function9 of Hpv, wq.
Note that χptq only depends on the static Hamiltonian HNpv, wq. Moreover, it gives the
linear variation (in ϵ) of the density of Ψϵ via the formula

ρϵptq “ ρΨ0 ` ϵ

ż t

0

fpsq
`

χpt ´ sqb
˘

prqds ` Otpϵ
2
q. (1.1.23)

Remark. Let us remark that the poles of the Fourier transform of the density-density
response function correspond to a proper subset of the excitation energies (see Section 4.2).
For instance, in the case of a non-interacting Hamiltonian HNpv, 0q, the poles of pχ are
precisely the single particle-hole excitation energies, i.e., the energies necessary for moving
one electron from an occupied orbital to an unoccupied one. This implies that not all the
excitation energies may be accessible through the density-density response function.

The goal of the Dyson equation is then to approximate the exact density-density re-
sponse function of the interacting Hamiltonian HNpv, wq via the density-density response
function of the equivalent non-interacting Kohn-Sham system. To present a formal deriva-
tion of this equation, let us now make the following assumptions:

(i) The ground state density ρΨ0 is non-interacting V-representable and can be exactly
reproduced by a Kohn-Sham Slater determinant Φ0.

(ii) The time-dependent densities tρϵuϵďϵ0 are non-interacting V-representable and the
compatible initial state can be chosen as the Kohn-Sham Slater determinant Φ0.

(iii) The exact time-dependent xc-potential vTD
xc rρϵ; Ψ0; Φ0s (whose existence is guaran-

teed by the second assumption) is differentiable with respect to ρϵ at ρ0. We call
its derivative the xc-operator10 and denote it by

Fxc “
δvTD

xc rρ; Ψ0; Φ0s

δρ

∣∣
ρ“ρ0

.

Note that Fxc is an operator from (the tangent space of) time-dependent densities
to (the tangent space of) time-dependent potentials.

Using these assumptions, we now proceed as follows. First, from assumption (ii), we
know that the solution Φϵptq of the non-interacting Schrödinger equation

$

’

’

&

’

’

%

iBtΦ
ϵ
ptq “

ˆ

Heffptq ` ϵ
N
ÿ

j“1

fptqbprjq

˙

Φϵ
ptq,

Φϵ
p0q “ Φ0,

9In the physics literature, the name density-density response function (or linear density response
function) is commonly used to refer to the Schwartz kernel of the operator χptq, which is then denoted
by χpt, r, r1q. This notation can be misleading as such a kernel is not necessarily an integral kernel (hence
not a function of r and r1).

10The common approach in the physics/chemistry literature is to approximate the Schwartz kernel of
Fxc, which is then called the exchange-correlation kernel.
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where the effective Hamiltonian is given by

Heffptq “ HN

`

v ` ρϵptq ˚ w ` vTD
xc rρϵ; Ψ0; Φ0sptq, 0q, (1.1.24)

satisfies

ρΦϵptq “ ρϵptq for any t ě 0. (1.1.25)

Moreover, since Ψ0 and Φ0 are respectively the ground states of the interacting Hamilto-
nian HNpv, wq and of the non-interacting Kohn-Sham Hamiltonian

H0 :“ HNpv ` ρΦ0 ˚ w ` vstaticxc rρΦ0s, 0q, (1.1.26)

assumption (i) implies that, for ϵ “ 0, the time-dependent xc-potential reduces to the
exact static xc-potential from ground state DFT (see (1.1.13)). This observation, together
with assumption (iii) and eq. (1.1.23), implies that

vTD
xc rρϵ; Ψ0; Φ0spt, rq “ vstaticxc rρΦ0s ` ϵFxc

`

χ ‹ pf b bq
˘

pt, rq ` Opϵ2q, (1.1.27)

where the time-dependent function χ ‹ pf b bq is defined as

`

χ ‹ pf b bq
˘

pt, rq “

ż t

0

fpsq
`

χpt ´ sqb
˘

prqds.

Similarly, the mean field potential 1
|¨|

˚ ρϵptq can be expanded in powers of ϵ. Using this

expansion and eq. (1.1.27), the effective Hamiltonian of (1.1.24) becomes

Heffptq “ H0 ` ϵ
N
ÿ

j“1

ˆ

fptqbprjq`
`

FH ` Fxc

˘`

χ ‹ pfbq
˘

pt, rq

˙

` Opϵ2q,

where FH is the Hartree operator given by instantaneous convolution against the Coulomb
potential,

`

FHpf b bq
˘

pt, rq “ fptqp
1

| ¨ |
˚ gqprq.

In particular, the ϵ correction above can be viewed as a one-body multiplicative pertur-
bation of the Kohn-Sham Hamiltonian H0. Consequently, by using the equivalence of the
densities in (1.1.25) and the expansion of the density in (1.1.23) (for both the interacting
and non-interacting systems), we obtain

χ ‹ pf b bq “ lim
ϵÓ0

ρΨϵ ´ ρΨ0

ϵ
“ lim

ϵÓ0

ρΦϵ ´ ρΦ0

ϵ

“ χ0 ‹ pf b bq ` χ0‹
`

FH ` Fxc

˘`

χ ‹ pf b bq
˘

,

where χ and χ0 are respectively the density-density response functions of HNpv, wq and
H0. Assuming that the above equation holds for any (reasonable) f and b, we finally
arrive at the celebrated TDDFT Dyson equation

χ “ χ0 ` χ0‹
`

FH ` Fxc

˘

χ. (1.1.28)
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Approximations to the xc-operator

Formally, the Dyson equation yields the exact density-density response of the Hamiltonian
HNpv, wq, thus allowing access to the excitation spectrum ofHNpv, wq. In practice, neither
the exact static xc-potential used to construct the Kohn-Sham Hamiltonian H0 nor the
exact xc-operator are known. As in ground state DFT, one then relies on approximations
of these two objects. For the static xc-potential, a few approximations (defined as the
derivative of approximations to the xc-functional) were already discussed in Section 1.1.1.
For the xc-operator, let us mention just the two most common ones. These are:

• The random phase approximation (RPA): in this approximation, only the
mean-field potential (being the most significant part of electron-electron interaction)
is dynamically updated. In particular, the time-dependent xc-potential reduces to
the static approximation, and the xc-operator vanishes. The RPA Dyson equation
then reads

χptq “ χ0ptq `

ż t

0

χ0pt ´ sqFHχptqds.

• The adiabatic local density approximation (ALDA): in the ALDA, the time-
dependent xc-potential is given by the local density approximation

vTD
xc rρΨ; Ψ0; Φ0sptq “

d

dρ
eHEG
xc

∣∣
ρ“ρΨptq

,

where eHEG
xc pρq is the exchange-correlation energy density of the homogeneous elec-

tron gas11. In particular, the approximated xc-operator in the ALDA is given by
the multiplication operator

`

FALDA
xc rρΦ0sv

˘

pt, rq “
d2

dρ2
eHEG
xc

`

ρΦ0prq
˘

vpt, rq

for any (regular) v : R` ˆ R3 Ñ R.

Both the RPA and ALDA are examples of adiabatic approximations. In these approx-
imations, the time-dependent xc-potential depends only instantaneously on the time-
dependent density. To emphasize this fact, we use the notation

vTD
xc rρ; Ψ0; Φ0spt, rq « vadiaxc rρptq; Ψ0; Φ0sprq.

For adiabatic approximations, the approximated Hartree plus xc-operator F approx
Hxc “

FH ` F approx
xc acts instantaneously in time. Consequently, they can be viewed as oper-

ators between suitable function spaces in R3. This is the viewpoint adopted throughout
Chapter 4, where general adiabatic approximations are studied. For examples of more
refined (frequency-dependent) approximations, we suggest looking at the references men-
tioned at the beginning of this introduction.

11and should not be confused with the homogeneous exchange-correlation energy per particle of the
electron gas εHEG

xc pρq “ eHEG
xc pρq{ρ.
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Remark (Random Phase Approximations). The term RPA has different meanings in the
physics literature. Within DFT, there is an important distinction between the ground-state
RPA and the time-dependent one. In the ground-state case, the RPA (and its variants) are
approximations to the correlation energy based on the high-density limit of the electron
gas [11, 44], which we briefly mentioned in Section 1.1.1. In the time-dependent case,
the RPA is a synonym to the time-dependent Hartree model, i.e., the time-dependent
Kohn-Sham equations (1.1.21) with the time-dependent xc-potential set to zero. In the
mathematical literature, the time-dependent Hartree model (or equations) were studied in
a variety of settings (e.g., for trace-class operators [5], for crystals [16], and for extended
systems [74], to name a few).

1.2 Summary of results

We now describe the main results of this thesis in more detail. All proofs and rigorous
statements are delegated to Chapters 2 to 4.

1.2.1 Exchange effects on the free electron gas

In the first part of this thesis, we consider a collection of N non-interacting electrons
freely moving inside some bounded domain Ω Ă R3. For such a collection of electrons,
the ground state is described by a wave function Ψ : pΩ ˆ Z2q

N Ñ C minimizing the
kinetic energy functional

T rΨs “
1

2

ÿ

s1,...,sNPZ2

ż

ΩN
|∇Ψpr1, s1, ..., rN , sNq|

2dr1...drN

and subject to the following constraints: (i) normalization, (ii) anti-symmetry, and (iii)
boundary conditions. The Hamiltonian associated with this system is the Laplacian on ΩN

(with suitable boundary conditions), which can be seen as the sum of the 3-dimensional
Laplacians acting on each coordinate rj P Ω separately. Consequently, the ground state
wave function12 is given by the anti-symmetric tensor product (Slater determinant) of N
orbital functions tϕjujďN Ă L2pΩ3 ˆ Z2q. Such wave functions are called uncorrelated;
their exchange energy is defined as

ExrΨs :“
ÿ

s1,...,sNPZ2

ż

ΩN

ÿ

1ďjăkďN

|Ψpr1, s1, .., rN , sNq|2

|rj ´ rk|
dr1...drN ´

1

2

ż

Ω2

ρΨprqρΨpr1q

|r ´ r1|
drdr1,

where ρΨ : R3 Ñ R is the single-particle density of the state Ψ,

ρΨprq “ N
ÿ

s1,...,sNPZ2

ż

R3

|Ψpr, s1, r2, s2, ..., rN , sNq|
2dr1...drN .

12For general values of N , ground state wave functions which are not Slater determinants are possible
due to degeneracies. However, for the values of N satisfying the closed-shell condition (see Chapter 2),
the ground state is indeed unique and given by a single Slater determinant.
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Remark. At first sight, evaluating the exchange energy for the ground state of a non-
interacting system may seem contradictory. As briefly mentioned, however, for weakly
interacting systems (i.e., in the high-density limit [81]), the ground state is close to the
ground state of the non-interacting system (see [47, 23]) and the interaction energy can
be viewed as a first-order correction at the level of perturbation theory.

In Chapter 2, we study the asymptotic behaviour of ExrΨN,Ls, where ΨN,L is the
ground state of the free electron gas with N particles in the rescaled box ΩL “ r0, Ls3, in
the limit where N,L Ñ 8 with the average density ρ̄ “ N{|ΩL| kept constant. This is
called the thermodynamic limit. In this limit, we derive a two-term asymptotic formula
of the form

ExrΨN,Ls “ ´cxρ̄
4
3L3

` cBC
2 ρ̄L2

` OpL2
q,

where the first coefficient is the well-known Dirac exchange constant, cx “ 3{4p3{πq
1
3 , and

was rigorously obtained in [40]. The second coefficient depends on the boundary conditions
chosen for the Laplacian and is hitherto unknown. Here we pay special attention to the
Dirichlet case, where the gradient of the ground state single-particle density has variations
of order one close to the boundary.

Moreover, we compare the asymptotics of the exact exchange energy with the asymp-
totics of semi-local density functionals. More precisely, we consider the functional

F rρs “

ż

R3

fpρprq, |∇ρprq|qdr,

under reasonable assumptions on the function f : R2 Ñ R, and study the thermodynamic
limit of the free electron gas, i.e., the thermodynamic limit of F rρN,Ls, where ρN,L “ ρΨN,L
is the single-particle density of the ground state of the free N -electron gas in ΩL. In this
case, we also derive two-term asymptotic expansions of the form

F rρN,Ls “ c1pf, ρ̄qL3
` cBC

2 pf, ρ̄qL2
` OpL2

q,

where the coefficients c1pf, ρ̄q and cBC
2 pf, ρ̄q now depend on the function f and the fixed

average density ρ̄, and cBC
2 pf, ρ̄q depends additionally on the boundary conditions. Match-

ing the first coefficients cBL
1 pf, ρ̄q “ ´cxρ̄

4
3 of the above expansions, for all positive values

of ρ̄, yields the well-known local density approximation for the exchange energy,

fpρ, 0q “ ´cxρ
4
3 ,

which is implicitly used in most exchange DFT functionals. The dependence of f on the
gradient only appears in the second coefficient cBL

2 pf, ρ̄q. Thus by matching this coefficient
with the second coefficient in the asymptotic expansion of the exact exchange energy, we
obtain a novel integral constraint on f (see the next chapter for the precise constraint).

Besides the exchange energy, we also consider the asymptotics of the kinetic energy. In
this case, analogous two-term asymptotic expansions are derived. These expansions are
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well-known in the literature [37, 38, 60] and directly related to the asymptotic distributions
of eigenvalues of the Laplacian. Moreover, the first asymptotic coefficient of the kinetic
energy is also related to the Thomas-Fermi theory [35, 118, 77, 75, 90], which is known
to be asymptotically correct for neutral atoms in a large nuclear charge limit [77]. In
particular, matching the coefficients of the asymptotic expansion of semi-local density
functionals with the corresponding ones for the kinetic energy may provide a useful exact
constraint for semi-local kinetic energy density functionals [89, 91, 69, 24], which play a
central role in orbital-free density functional theory [125, 78].

We conclude Chapter 2 with some numerical experiments. Specifically, we evaluate the
exact exchange energy and the exchange energy predicted by some generalized gradient
approximations [6, 92, 93] for the free N -electron gas in a box with up to N “ 30000
electrons. These numerical results illustrate to which extent some widely used GGAs
satisfy the proposed constraint.

In Chapter 3, we considerably generalize the results of Chapter 2 by using different
methods. Specifically, we extend the results in the following directions: (i) we include a
broader class of domains, called here strictly tessellating polytopes; (ii) we consider Riesz
interactions between the electrons; and (iii) we generalize the results to arbitrary space
dimensions n ě 2. In addition, we significantly improve the remainders for the two-term
expansion of the exchange energy obtained in Chapter 2.

1.2.2 Adiabatic approximations in LR-TDDFT

In the second part of this thesis, we study the solution χF to the Dyson equation

χF ptq “ χHptq `

ż t

0

χHpt ´ sqFχF psqds, (1.2.1)

where χH is the density-density response function of a general Hamiltonian H and F is
an approximation of the Hartree plus xc-operator of TDDFT.

The first result of this part is the description of a general functional analytic setting
for the well-posedness of the Dyson equation. More precisely, we first characterize the
density-density response function of a general Hamiltonian as a strongly continuous fam-
ily of operators between weighted L2-spaces depending on the ground state density of H.
Then, we show that the Dyson equation is well-posed in this space under a compatible
boundedness assumption on the operator F . This functional analytic setting is then ap-
plied to prove the existence and uniqueness of the solutions of the Dyson equation for
widely used adiabatic approximations of the xc-kernel, such as the random phase approxi-
mation (RPA) [83, 103, 120], the Petersilka, Grossman, Gross (PGG) approximation [96],
and the adiabatic local density approximations (ALDA) [127, 19], under the sole condition
that the Hamiltonian H admits a bounded (in L8pR3q) ground state density. (In fact, for

RPA and PGG we only need the ground state density of H to be in L1pR3q X L
3
2 pR3q.)

In the second part of Chapter 4, we study some relevant properties of the solution χF

under the assumption that the operator F is positive in a suitable sense. The prototypical
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example for this assumption is the RPA, where F is given by convolution against the
Coulomb potential:

FRPAfprq “ FHfprq “

ż

R3

fpr1q

|r ´ r1|
dr1.

The positivity of F greatly simplifies the analysis of the Dyson equation in the frequency
domain, which allows for a detailed analysis of its pole structure. Among the main results
of this part, we show that the Fourier transform of the solution χF , denoted here by
xχF , defines a family of meromorphic operators in a suitable open subset of C. We then
show that all poles of this meromorphic extension are simple, have finite rank, and can
be characterized by the existence of non-trivial solutions f to the eigenvalue equation

xχHpωqFf “ f. (1.2.2)

Despite the lack of previous proofs, this characterization is tacitly assumed in the physics
literature. In the finite-dimensional case (i.e., after discretization), it can be justified by
a mixture of complex analytic and compactness arguments. However, for the current
setting where xχHpωq is a meromorphic function with values on the space of bounded
operators between infinite dimensional Banach space, such a characterization is not trivial.
Furthermore, we show that in the situations where some poles of xχH and xχF coincide
(which may happen), the poles ω can be characterized via a similar eigenvalue problem
but in a reduced space.

Another interesting consequence of the positivity of F that is observed in practical
implementations of LR-TDDFT is the forward shift of the poles of the solution xχF with
respect to the poles of the reference density-density response function xχH (see [123]). In
Chapter 4, we give a rigorous proof of this fact. Precisely, we show that the positive poles
of xχF ordered in non-decreasing order and counted with rank are always shifted to the
right of the positive poles of xχH ordered in the same manner. (There is no need to discuss
the negative poles since they are reflections of the positive poles over the imaginary axis.)
In practice, this implies that the excitation energies computed in the RPA approximation
are always greater than the Kohn-Sham excitations.

As a last result in Chapter 4, we analyze the convergence of the Casida formalism in
the continuum (or infinite basis/energy) limit. Roughly speaking, the Casida formalism
consists in a truncation of xχH at some energy level µ of H followed by an ingenious – but
in general not one-to-one – re-parametrization of the finite-dimensional function space
spanned by the overlapping functions

ρ0,jprq “ N

ż

R3N´1

Ψ0pr, r2, ..., rNqΨjpr, r2, ..., rNqdr2...drN ,

where Ψ0 is the ground state wave function of H and Ψj are the excited states with energy
up to µ. This re-parametrization allows us to obtain all solutions pω, fq satisfying equation
(1.2.2) for a truncated version of the density-density response function by computing the
eigenvalues and eigenvectors of a non-symmetric but ω-independent matrix, the Casida
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matrix. Here we show that, under the assumption that H has a purely discrete spectrum
(e.g. H “ ´∆`v for a trapping potential), the eigenvalues of the Casida matrix converge
in an ordered manner to the poles of xχF as the energy level µ (which in practice is related
to the number of virtual Kohn-Sham orbitals used) goes to infinity. The caveat here is
that the lack of injectivity of the mentioned re-parametrization has to be accounted for
by excluding some spurious eigenvalues of the Casida matrix.
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Part I

The Free Electron Gas in the
Thermodynamic Limit
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Chapter 2

Exchange Phenomena on the Box

In this chapter, we derive the next order correction to the Dirac exchange energy for the
free electron gas in a box with zero boundary conditions in the thermodynamic limit.
Like Dirac exchange, the correction is of significant interest for density functional theory
(DFT). In particular, it yields a novel exact constraint on generalized gradient approxi-
mations (GGAs). The work presented here was done in collaboration with Gero Friesecke.

2.1 Main results

The dominating part of the exchange-correlation energy for real molecular and solid-state
systems consists of the exchange energy, on which we focus in this chapter. The local
density approximation (LDA) of the exchange energy is the celebrated Dirac exchange;
it consists in applying the local exchange energy density of the uniform electron gas
(UEG), whose density is homogeneous, to the inhomogeneous density of the system (see
(2.1.8)). To some extent, this fails to account for the fluctuations of the density over
its average value, which is of order 1 (in atomic units) for real systems. More successful
approximations to the exchange energy, such as the generalized gradient approximations
(GGA), attempt to overcome this problem by multiplying the LDA exchange energy
density by an enhancement factor that depends not only on the pointwise values of the
density but also on its gradient (see (2.1.9) and (2.1.10)). However, the precise form of this
enhancement factor is not sacrosanct; distinct GGAs use different semi-empirical ansatzes,
whose parameters are adjusted to fit empirical data and/or known exact constraints [6, 92].

In this chapter, we analyze the exchange energy of the free electron gas (FEG) that
underlies the Dirac exchange, but with an important difference: instead of periodic bound-
ary conditions, we impose zero boundary conditions. While the former yield a uniform
density, the latter yield density gradients of order 1 near the boundary (see Figure 2.1).
This makes the Dirichlet FEG a natural reference system for gaining insight into exchange
GGAs. Therefore, we study its asymptotic behavior in the thermodynamic limit where
the number of electrons N and the sidelength L of the box tend to infinity with the
number of electrons per unit volume, N{L3 “ ρ̄, remaining constant.

By careful asymptotic analysis, we are able to determine not just the bulk contribution
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Figure 2.1: Density (left) and density gradient squared (right) of the free electron gas with
1110 electrons in a three-dimensional box with zero boundary conditions. The picture
shows a two-dimensional cross-section through the center of the box, and the number of
electrons per unit volume was normalized to 1. The density gradients of order 1 near the
boundary persist in the thermodynamic limit.

to the exchange energy, which is just the familiar Dirac exchange regardless of the imposed
boundary conditions (as has been shown previously [40]), but also the next-order (surface)
contribution to the exchange energy, see Theorem 2.1.1 below. The next-order term is to
our knowledge new and captures the inhomogeneous boundary layer depicted in Figure
2.1. It also captures two additional effects: a boundary-condition-induced small shift of
Fermi momentum and bulk density, and a long-range electrostatic finite-size correction
which would also be present for periodic boundary conditions (i.e. unform density).
Our asymptotic methods also yield the next-order (surface) contribution to the exchange
energy for GGA exchange functionals with general f . Requiring these contributions to
match yields a novel exact constraint on GGAs (see eq. (2.1.12) below).

Main result in more detail. The free electron gas in a box consists of N electrons
moving freely in a three-dimensional box QL “ r0, Ls3 of sidelength L and volume V “ L3

in the thermodynamic limit N Ñ 8, V Ñ 8, with the number of electrons per unit
volume, ρ̄ “ N{V , remaining constant. Mathematically, ground states of the finite system
are defined as minimizers of kinetic energy

T rΨs “
ÿ

s1,...,sNPZ2

ż

QNL

1

2

N
ÿ

i“1

|∇riΨpr1, s1, ..., rN , sNq|
2dr1...drN (2.1.1)

over square-integrable N -electron wave functions Ψ with finite kinetic energy (i.e., func-
tions in the Sobolev space H1ppQL ˆ Z2q

N ;Cq) subject to the following constraints: nor-
malization, ||Ψ||L2 “ 1; antisymmetry, Ψp..., ri, si, ..., rj, sj, ...q “ ´Ψp.., rj, sj, ..., ri, si, ...q
for i ‰ j (where pri, siq P QL ˆZ2 are space-spin coordinates for the ith electron); and one
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of the boundary conditions

Ψpr1, s1, ..., rN , sNq “ Ψpr1
1, s1, ..., r

1
N , sNq if r1

´ r P LZ3N (periodic case) (2.1.2)

Ψpr1, s1, ..., rN , sNq “ 0 if any ri P Br0, Ls
3 (Dirichlet case) (2.1.3)

∇riΨpr1, s1, ..., rN , sNq ¨ νpriq “ 0 if any ri P Br0, Ls
3 (Neumann case). (2.1.4)

Here νpriq denotes the outward unit normal to Br0, Ls3 at ri. (Of course, in the Neumann
case no boundary conditions are imposed on the admissible functions; instead, minimizers
then automatically satisfy Neumann conditions.)

For ground states of non-interacting systems, such as the one above, the exchange
energy is defined as the difference between the quantum-mechanical electron-electron in-
teraction energy and the mean-field energy,

ExrΨs “ VeerΨs ´
1

2

ż

Q2
L

ρprqρpr1q

|r ´ r1|
dr dr1 (2.1.5)

with

VeerΨs “
ÿ

s1,...,sNPZ2

ż

QNL

ÿ

1ďiăjďN

1

|ri ´ rj|
|Ψpr1, s1, ..., rN , sNq|

2dr1...drN (2.1.6)

(interaction energy) and

ρprq “ N
ÿ

s1,...,sNPZ2

ż

QN´1
L

|Ψpr, s1, r2, s2, ..., rN , sNq|
2dr2...drN (2.1.7)

(single-particle density of the system). For explicit expressions of the exchange energy in
terms of the single-particle orbitals (Laplace eigenfunctions in the box) see Section 2.2.

We are not just interested in the exact exchange energy functional (2.1.5), but also
want to compare it to two important types of simpler functionals defined only in terms
of the single-particle density:

• The Local Density Approximation (LDA) [65]:

ELDA
x rρs “

ż

R3

eLDA
x pρprqqdr (2.1.8)

where the exchange energy density per unit volume is given by the Dirac-Bloch
formula [10, 29] eLDA

x pρq “ ´cxρ
4{3 with cx “ 3

4
p 3
π

q
1
3 .

• The GGA functionals [6, 92, 93]:

EGGA
x rρs “ ELDA

x rρs `

ż

R3

gGGA
pρprq, |∇ρprq|qdr

looooooooooooooomooooooooooooooon

:“∆EGGA
x rρs

(2.1.9)

with the assumptions that gGGA P C0pr0,8q2qXC1pp0,8qˆr0,8qq and gGGApρ̄, 0q “

0, for all ρ̄ ě 0 (i.e. the functional reduces to the LDA for the homogeneous density).
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In the physics literature [6, 92, 93], GGAs are commonly expressed in terms of the density
and the dimensionless gradient s “ |∇ρ|{ρ4{3. This has the advantage that, by a scaling
argument, one arrives at the simpler ansatz

gGGA
pρ, |∇ρ|q “ eLDA

x pρqGpsq, (2.1.10)

with different GGAs differing only by the choice of G.1 The reason we prefer to work
with the density and the density gradient instead is because sprq Ñ 8 as r approaches
the boundary (for Dirichlet boundary conditions) while ∇ρprq remains bounded, making
the mathematical analysis simpler. Our assumptions on gGGA required in Theorem 2.1.1
below are satisfied for typical GGAs of form (2.1.10) such as those in [6, 92, 93]. (See
Section 2.8 for a proof.)

With the functionals (2.1.5), (2.1.8), (2.1.9) in mind, the main result of this chapter
can be stated as follows.

Theorem 2.1.1 (Asymptotic expansion of exchange functionals). Let N,L ą 0, and
let Ω Ă R3 be a rectangular box. Let ΨN,L be any determinantal ground state wave
function of the free N-electron gas in ΩL “ tx P R3 : x{L P Ωu under either Dirich-
let, Neumann, or periodic boundary conditions, and let ρN,L denote the associated
single-particle density. Moreover, assume that the GGA functional (2.1.9) satisfies
gGGA P C0pr0,8q2q X C1pp0,8q ˆ r0,8qq with gGGApρ̄, 0q “ 0 for all ρ̄. Then in the
thermodynamic limit, i.e., for N,L Ñ 8 and ρ̄ “ N{p|Ω|L3q “ constant, one has:

• Under periodic boundary conditions:

ExrΨPer
N,Ls “ ´cxρ̄

4{3
|Ω|L3

` cPerx,2 ρ̄|BΩ|L2
` OpL

45
23

`ϵ
q

ELDA
x rρPerN,Ls “ ´cxρ̄

4{3
|Ω|L3

` OpL
34
23

`ϵ
q

∆EGGA
x rρPerN,Ls “ OpL

34
23

`ϵ
q

• Under Dirichlet boundary condtions:

ExrΨDir
N,Ls “ ´cxρ̄

4
3 |Ω|L3

´ cDir
x,2 ρ̄|BΩ|L2

` OpL
45
23

`ϵ
q

ELDA
x rρDir

N,Ls “ ´cxρ̄
4
3 |Ω|L3

´ cDir
LDAρ̄|BΩ|L2

` OpL2
q

∆EGGA
x rρDir

N,Ls “ cDir
GGApρ̄q|BΩ|L2

` OpL2
q

1I.e., by the “gradient enhancement factor” F “ 1 ` G of the overall integrand fpρ, |∇ρ|q “ expρq `

gGGApρ, |∇ρ|q “ expρqF psq
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• Under Neumann boundary conditions:

ExrΨNeu
N,Ls “ ´cxρ̄

4
3 |Ω|L3

´ cNeu
x,2 ρ̄|BΩ|L2

` OpL
45
23

`ϵ
q

ELDA
x rρNeu

N,Ls “ ´cxρ̄
4
3 |Ω|L3

´ cNeu
LDAρ̄|BΩ|L2

` OpL2
q

∆EGGA
x rρNeu

N,Ls “ cNeu
GGApρ̄q|BΩ|L2

` OpL2
q

where |Ω| and |BΩ| denotes the volume and surface area of the domain Ω, h is the
explicit function hptq “ 3psin t ´ t cos tq{t3, pF “ p3π2ρ̄q1{3 (Fermi momentum), and
the constants are given by

cPerx,2 “
1

8
, cDir

x,2 “
1 ´ log 2

4
« 0.0767, cDir

LDA “
3

8π

ż 8

0

p1 ´ hptqq
4
3 ´ 1dt `

3

8
« 0.0673,

cNeu
x,2 “

3 log 2 ´ 2

4
« 0.0199, cNeu

LDA “
3

8π

ż 8

0

p1 ` hptqq
4
3 ´ 1dt ´

3

8
« 0.0430,

cDir
GGApρ̄q “

1

2pF

ż 8

0

gGGA

ˆ

ρ̄p1 ´ hptqq, 2ρ̄pF | 9hptq|q

˙

dt,

cNeu
GGApρ̄q “

1

2pF

ż 8

0

gGGA

ˆ

ρ̄p1 ` hptqq, 2ρ̄pF | 9hptq|

˙

dt.

This result extends that of a previous work by Friesecke [40] as we determine not just
the leading but also the next-order terms (of order L2) and include the GGA functionals.
Also, to further illustrate the role of the boundary conditions, we have included the
Neumann case.

An immediate corollary of Theorem 2.1.1 is the following simple exact constraint on
GGAs. The next-order correction to Dirac exchange for the free electron gas with zero
boundary conditions is captured exactly, i.e.

ExrΨN,Ls ´ EGGA
x rρN,Ls

L2
Ñ 0 as N,L Ñ 8 with ρ̄ “

N

L3
“ constant (2.1.11)

for all values of the average density ρ̄, if and only if the gradient enhancement factor
F psq “ 1 ` Gpsq defined by (2.1.10) satisfies

3

8π

ż 8

0

p1 ´ hptqq
4
3G

ˆ

2p3π2
q
1
3

| 9hptq|

p1 ´ hptqq
4
3

˙

dt “ cDir
x,2 ´ cDir

LDA (2.1.12)

where the constants and the function h are those from Theorem 2.1.1. In contrast with
previous exact conditions on G which refer to small-s asymptotics [92] (for the weakly
inhomogeneous electron gas) respectively large-s asymptotics [6] (for atomic densities),
the above condition is an integral constraint which sees the whole profile of G. Note
that as t varies from 0 to 8, the argument s of G (which corresponds to the reduced
density gradient of the Dirichlet free electron gas along a ray moving from the boundary
in perpendicular direction into the interior, see below) traces out all possible s values from
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Chapter 2. Exchange Phenomena on the Box

8 to 0. The extent to which current GGAs fail to satisfy (2.1.12) is discussed in Section
2.7.

Strategy of the proof. We follow the overall strategy introduced in [40] of deriving an
accurate continuum approximation to the ground state density matrix (see Theorem 2.4.2
below, or Theorems 4.1 and 4.2 in [40]) and analyzing the ensuing interior and boundary
contributions to the exchange energy. While the continuum approximation is the same
already introduced in [40], the main advance, and most involved part of our work, is an
improved error estimate (see Theorem 2.4.2) which shows that it is accurate enough to
infer the next-order contributions to the exchange functionals which are of the order of
the surface area of the box. This is achieved by leveraging, on top of Fourier analysis
techniques [111] as already used in [40], the theory of exponential sums [49, 54]. The main
step is the proof of the following technical lemma.

Lemma 2.1.1. Let α P N3
0 and D P R3ˆ3 be a positive diagonal matrix. Then there exists

c “ cpα,Dq ą 0 such that

ˇ

ˇ

ˇ

ˇ

ÿ

kPZ3XBDR

pikq
αeik¨z

´

ż

BDR

pikq
αeik¨zdk

ˇ

ˇ

ˇ

ˇ

ď cp1 ` R|α|` 34
23

`ϵ
q, (2.1.13)

for all z with |z|max :“ maxjď3t|zj|u ď π, where N0 “ N Y t0u and BD
R :“ tk P R3 :

|D´1k| ď Ru.

The exponent 34
23

may seem peculiar at first, and we do not claim it to be optimal, but
the main point is that it improves over the 3

2
exponent obtained in [40]. This improvement

is necessary for rigorous derivation of the asymptotic terms of the order of magnitude of
the surface area of the box. This can be quickly seen by integrating the square of an error
proportional to L´ 3

2 (like in Theorem 4.1 and 4.2 of [40]) against the Coulomb potential
in the double box r0, Ls6, which yields an error proportional to L2 and is therefore not
enough for our purpose.

Estimates of this kind were originally motivated by analytic number theory. In partic-
ular, by setting z “ 0 and α “ 0 one recognizes the famous lattice point counting problem
in R3 (also known as the sphere problem) [124, 22, 21, 53]. The remarkable difference here
is that the estimate holds uniformly in z, even though the integrand oscillates, for typical
k P BD

R , on the length scale of the lattice. The key step in the proof of Lemma 2.1.1
is to estimate some three dimensional weighted exponential sums that appear naturally
when applying the Poisson summation formula to the Fourier transform of (an smoothed
version of) the characteristic function of the unit ball in R3 (see Lemma 2.4.1). While the
weights of such sums are dealt with partial summation, the cancellation of the oscillatory
terms is achieved by estimating higher order derivatives of the phase function and apply-
ing a recent improvement on the kth-order derivative estimate of van der Corput due to
Heath-Brown [54].

The continuum approximation of the density matrix which we justify with the help
of the above lemma (see Theorem 2.4.2) entails, in particular, the following accurate
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approximation to the boundary layer for zero boundary conditions and the box r0, Ls3:

ρN,Lpr0 ` r1
q “ ρ̄

´pN,L

pF

¯3
`

1 ´ hp2pN,L|r1
|q
˘

` OpL´ 35
23

`ε
q (2.1.14)

whenever r0 belongs to the boundary of the box, its distance from the edges is of order
L, and r1 points in normal direction to Br0, Ls3 into the interior. Here pN,L is the Fermi
momentum of the finite system, which is found (see Lemma 2.3.2) to differ from its
thermodynamic limit pF “ p3π2ρ̄q1{3 by an order L´1 shift,

pN,L “ pF `
3π

4
L´1

` OpL
35
23

`ϵ
q. (2.1.15)

This shift produces meaningful contributions to the surface corrections for both the exact
exchange and the semi-local approximations (see cFM in Theorems 2.5.1 and 2.5.2).

For the semi-local approximations, the proof of Theorem 2.1.1 then consists in using
the continuum approximation (2.1.14) for evaluating the semi-local functional and con-
sidering Taylor expansions of the semi-local energy density (i.e. the function fpa, bq “

eLDA
x paq ` gGGApa, bq) with respect to the density and its gradient. A crucial step here
is that the continuum approximation is not only justified for the density but also for its
gradient (and higher-order derivatives). This is the main reason for including the factor
pikαq in Lemma 2.1.1. For the exact exchange, no gradient estimates are necessary as the
integrand is quadratic on the density matrix. In this case, the decay of the function h
plays an important role in justifying the use of the continuum approximation and in the
overall analysis of the bulk and boundary terms.

Structure of the chapter. We start with a small subsection to introduce the notation
used throughout the chapter. In Section 2.2 we begin by recalling some basic facts about
the ground state of the free electron gas in the box under different boundary conditions.
In Section 2.3 we discuss the control of open shell effects and the Fermi momentum asymp-
totics in the thermodynamic limit. Section 2.4 contains the proof of Lemma 2.1.1 and
the derivation of the continuum approximation of the density matrix. In Section 2.5 we
present the proof of Theorem 2.1.1 by first dealing with the semi-local functionals (The-
orem 2.5.1) and then the exact exchange (Theorem 2.5.2). Section 2.6 briefly discusses
the asymptotics of the kinetic energy, which can easily be extracted with our methods.
Section 2.7 compares the asymptotic behaviour of different exchange functionals (exact
exchange, LDA, B88, PBE, PBEsol) when applied to the free electron gas in a box with
zero boundary conditions and up to 30 000 electrons. We find good agreement between
asymptotics and numerics. Physics-minded readers may want to skip Sections 2.2–2.6
and move forward directly to Section 2.7.

Notation

The following notation will be used throughout the text.
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Chapter 2. Exchange Phenomena on the Box

• We use the standard big-O and small-o notation: for functions f : p0,8q Ñ R and
g : R Ñ p0,8q, we say that f “ Opgq respectively f “ Opgq if

lim sup
LÑ8

|fpLq|

gpLq
ă 8 respectively lim sup

LÑ8

|fpLq|

gpLq
“ 0.

Moreover, for functions f, g : R Ñ R, we say that fpLq À gpLq or fpLq „ gpLq to
indicate, respectively, the existence of a constant C ą 0 which does not depend on
L such that

|fpLq| ď C|gpLq| or C´1
|fpLq| ď |gpLq| ď C|fpLq|

for all sufficiently large values of L. Sometimes we will also use the notation Àϵ to
indicate dependence of the implicit constant on an additional parameter (ϵ in this
case).

• Throughout the text, D P R3ˆ3
` will always denote a diagonal matrix with entries

d1, d2, d3 ą 0, and |D| :“ detD stands for its determinant. The balls of radius R
and D-radius R are denoted by

BR :“ tr P R3 : |r| ď Ru and BD
R :“ tr P R3 : |D´1r| ď Ru.

The cubic box, the D-rectangular box, and their re-scaled versions are denoted by

Q :“ r0, 1s
3, QD :“ r0, d1s ˆ r0, d2s ˆ r0, d3s,

QL :“ r0, Ls
3, QD

L :“ tr P R3 :
r

L
P QD

u.

• For the Fourier transform of a function f : Rn Ñ C, we use the normalization
convention

pfpkq “

ż

Rn
fprqe´ik¨rdr (2.1.16)

where k ¨ r :“
řn

j“1 kjrj is the standard Euclidean scalar product. We also denote

by qf the inverse Fourier transform of f .

• For a set Ω Ă Rn, we use χΩ for its characteristic function. In particular, with
the above convention for the Fourier transform, in R3 one has that pχB1 “ 4π

3
hp|k|q,

where the function h : R ÞÑ R will appear many times in the sequel and is given by

hptq “ 3
sinptq ´ t cosptq

t3
. (2.1.17)

For an elementary derivation of this formula see e.g. [40, Lemma 6.1].

• The group generated by reflections at coordinates hyperplanes of R3 is denoted by
G and its elements by σ, i.e.,

G “ tσ P R3ˆ3 : σ diagonal and σjj “ ˘1 for any j “ 1, 2, 3u. (2.1.18)
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• The projection on the ith coordinate hyperplane is denoted by πi : R3 Ñ R2, e.g.
π1pr1, r2, r3q “ pr2, r3q. Moreover, for any z P R3, we define |z|max :“ maxjď3 |zj| .

• We use respectively R` “ p0,8q, N0 “ N Y t0u and Z2 “ t0, 1u for the positive
reals, non-negative integers and the additive group of order 2.

• For any set in R3, we use | ¨ | for either its volume, surface area or cardinality
depending on whether the set has dimension 3, 2, or 0, e.g, |B1| “ 4π

3
, |BB1| “ 4π,

and |B1 XZ3| is the number of elements in Z3 with Euclidean norm smaller than 1.

2.2 Ground state of the free electron gas: closed shell

formulas

We now recall some basic facts and formulas for the ground state of the free N -electron gas
in the box subject to Dirichlet, Periodic or Neumann boundary conditions. (A rigorous
account for the free electron gas in a box can be found in [99, 100] .)

It is well known that the Laplacian in QD
L under any of the discussed boundary con-

ditions (BCs) is diagonalizable in the sense that there exists an orthonormal basis (in
L2pQD

L q) of eigenvectors. Furthermore, the eigenvectors and eigenvalues can be labelled
by

• vectors k P Z3 for periodic boundary conditions:

ϕL
k prq “

1
a

|D|L3
ei

2π
L
D´1k¨r, λk “

4π2|D´1k|2

L2
. (2.2.1)

• vectors k P N3 for Dirichlet boundary condition:

ϕL
k prq “

1
a

|D|L3

3
ź

i“1

?
2 sin

ˆ

ki
π

diL
ri

˙

, λk “
π2|D´1k|2

L2
. (2.2.2)

• vectors k P N3
0 for Neumann boundary conditions:

ϕL
k prq “

1
a

|D|L3

3
ź

i“1
ki‰0

?
2 cos

ˆ

ki
π

diL
ri

˙

, λk “
π2|D´1k|2

L2
. (2.2.3)

As a consequence, one possible ground state for the N -electron gas (i.e. a normalized
anti-symmetric minimizer of (2.1.1) under one of the BCs (2.1.2)–(2.1.4)) is given by the
determinantal wave function (or Slater determinant)

ΨN,Lpx1, ..., xNq “
1

?
N !

det

¨

˚

˝

ψ1px1q . . . ψ1pxNq
...

...
ψNpx1q . . . ψNpxNq

˛

‹

‚

, (2.2.4)
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where xℓ “ prℓ, sℓq P QD
L ˆ Z2 are the space-spin variables and ψi are the space-spin

orbitals given by

ψ2i´1pxq “ ϕL
ki

prqχ1psq, ψ2ipxq “ ϕL
ki

prqχ0psq for i P

"

1, ...,
N

2

*

, (2.2.5)

where ϕL
ki

are the eigenfunctions defined in (2.2.1)–(2.2.3), and tkiuiďN{2 is any subset of
distinct vectors in N3 (in the Dirichlet case) such that Bmaxi |ki|´ϵ XN3 Ă tkiuiďN{2, for all
ϵ ą 0. In fact, the collection of all such Slater determinants forms a basis for the ground
state eigenspace of the free N -electron gas in QD

L .
Let us also introduce the Fermi radius2

RN :“

$

’

’

’

’

’

&

’

’

’

’

’

%

mintR ą 0 :
N

2
ď |BD

R X Z3
|u, for periodic BCs,

mintR ą 0 :
N

2
ď |BD

R X N3
|u, for Dirichlet BCs,

mintR ą 0 :
N

2
ď |BD

R X N3
0|u, for Neumann BCs.

(2.2.6)

Then the ground state of the free electron gas is unique for any N satisfying the closed
shell condition

N “

$

’

’

&

’

’

%

2|BD
RPer
N

X Z3
|, for periodic BCs,

2|BD
RDir
N

X N3
|, for Dirichlet BCs,

2|BD
RNeu
N

X N3
0|, for Neumann BCs,

(2.2.7)

where here and thereafter the superscripts Per, Dir and Neu denote periodic, Dirichlet and
Neumann boundary conditions respectively. In particular, by recalling that the spinless
one-particle density matrix of a state Ψ is defined by

γΨpr, r̃q :“ N
ÿ

s1,...,sNPZ2

ż

pR3qN´1

Ψpr, s1, r2, s2, ...rN , sNqΨpr̃, s1, r2, s2, ..., rN , sNqdr2...drN ,

(2.2.8)

then for any N satisfying the closed shell condition (2.2.7), the spinless density matrix of
the (unique) aforementioned ground state is given by

γN,Lpr, r̃q “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

2

|D|L3

ÿ

kPZ3XBD
RPer
N

ei
2π
L
D´1k¨pr´r̃q, for periodic BCs,

1

4|D|L3

ÿ

σPG

detσ
ÿ

kPZ3XBD
RDir
N

ei
π
L
D´1k¨pr´σr̃q, for Dirichlet BCs,

1

4|D|L3

ÿ

σPG

ÿ

kPZ3XBD
RNeu
N

ei
π
L
D´1k¨pr´σr̃q, for Neumann BCs,

(2.2.9)

2Note that the Fermi radius also depends on D. However, as D will be fixed and N,L will vary, we
will not exhibit this dependence in our notation.
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where G is the reflection group defined in (2.1.18). Therefore, the one-body (spin-less)
density can be written as

ρN,Lprq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

γPerN,Lpr, rq “
N

|D|L3
, for periodic BCs,

γDir
N,Lpr, rq “

1

4|D|L3

ÿ

σPG

detσ
ÿ

kPZ3XBD
RDir
N

ei
π
L
D´1k¨pr´σrq, for Dirichlet BCs,

γNeu
N,Lpr, rq “

1

4|D|L3

ÿ

σPG

ÿ

kPZ3XBD
RNeu
N

ei
π
L
D´1k¨pr´σrq, for Neumann BCs,

(2.2.10)

and the exact exchange energy can be rewritten3 as

ExrΨN,Ls “ ´
1

4

ż

QDLˆQDL

|γN,Lpr, r̃q|2

|r ´ r̃|
drdr̃, (2.2.11)

with γN,L from equation (2.2.9).

Remark. The derivation of formula (2.2.9) from the Slater determinant of the orbitals
in (2.2.1) and (2.2.2) can be found in [40]. (For the Neumann case one can proceed
similarly.)

The above expressions have a few simple but important symmetries that we state as
a lemma for further reference. (The proof is a straightforward verification.)

Lemma 2.2.1 (Symmetries of ρN,L). Let ρN,L be defined by equation (2.2.10), then
|∇ρN,L| and ρN,L are unchanged under the following reflections:

ri ÞÑ diL ´ ri.

2.3 Open shell effects and Fermi momentum asymp-

totics in the thermodynamic limit

In this section we consider two important aspects of the FEG in the thermodynamic limit:
(i) we justify the use of formulas (2.2.9) for determinantal ground states with a general
number of particles N P N (Lemma 2.3.1), and (ii) we derive a two-term asymptotic
formula for the finite-size Fermi momentum (Lemma 2.3.2).

3The equivalence of (2.1.5) and (2.2.11) with γΨ defined by (2.2.8) is in fact valid for any Slater
determinant Ψ of doubly-occupied spatial orbitals. It follows from (2.2.4)-(2.2.5) by straightforward
calculation.
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2.3.1 Open shell effects

Our goal now is to show that, in the thermodynamic limit, the single-particle density
matrix (and its derivatives) for any determinantal ground state is pointwise close to the
unique closed shell formulas in (2.2.9).

To this end, let us introduce the previous and the current shells for some N P N as

N´ :“ maxtn P N : n ă N and n{2 “ |BD
R X N3

| for some R ą 0u “ max
ϵą0

|BD
RN´ϵ X N3

|,

N` :“ mintn P N : n ě N and n{2 “ |BD
R X N3

| for some R ą 0u “ |BD
RN

X N3
|,

where again N is replaced by N0 or Z for Neumann or periodic boundary conditions,
respectively. Then according to [40, Section 3], one can work with the unique (closed
shell) ground state density matrix γN´,L up to a pointwise error proportional to N´1{2

(or L´ 3
2 ). However, as previously remarked, these estimates are not enough to justify the

use of the exact closed shell formulas on the analysis of the next-to-leading order term in
the asymptotic expansion for the exact exchange. To improve on this error estimate and
include the more general rectangular box case, we use our own estimate in Lemma 2.1.1.
More precisely, setting α “ 0 and z “ 0 in Lemma 2.1.1, we obtain4

|Z3
X BD

R | ´
4π

3
|D|R3

“ OpR
34
23

`ϵ
q. (2.3.1)

As a consequence, by adapting the arguments in [40] we can prove the following lemma.

Lemma 2.3.1 (Open shell control). Let α, β P N3
0 and ϵ ą 0. Then, there exists a constant

c “ cpα, β, ϵq ą 0 independent of N and L such that for any determinantal ground state
of the free N-electron gas in QD

L (under either Dirichlet, Neumann or periodic boundary
conditions) we have

|B
α
r B

β
r̃ γN,Lpr, r̃q ´ B

α
r B

β
r̃ γN´,Lpr, r̃q| ď c

N
|α|`|β|

3
` 34

69
`ϵ

L3`|α|`|β|
. (2.3.2)

In particular, if ρ̄ “ N
|QD|L3 is constant, one has

B
α
r B

β
r̃ γN,Lpr, r̃q “ B

α
r B

β
r̃ γN´,Lpr, r̃q ` OpL´ 35

23
`ϵ

q.

Proof. For simplicity we disregard spin here. First, we note that by eq. (2.3.1), the
degeneracy of the open shell can be controlled by

dpNq “ N` ´ N´ À R
34
23

`ϵ

N À N
34
69

`ϵ, (2.3.3)

4Note that for the case of the cubic box, finding the optimal (algebraic) coefficient on the remainder
goes under the name of sphere problem and has been studied by many authors [124, 22, 21, 53]. In
particular, better estimates (with smaller exponent) than (2.3.1) are available in this case.
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where the ϵ in the second inequality is different from the first by a factor of 1{3. Next,
if Ψ is a determinantal ground state of the free N -electron gas in QD

L , then we know (see
Section 2.2) that, up to a phase factor,

Ψ “

ˆ

ľ

kPBRN´

ϕL
k

˙

looooooomooooooon

“ΨN´,L

^rϕ1 ^ ... ^ rϕN´N´
,

where ^ is the anti-symmetric tensor product (see (2.2.4)) and tϕ̃iuiďN´N´
is a set of

orthonormal functions given by linear combinations of the orbitals in the open shell, i.e.

rϕiprq “
ÿ

kPN3

|k|“RN

cikϕ
L
k prq, for a.e. r P QD

L ,

for some cik P C. Since C˚ “ tckiu defines an isometric transformation from CN´N´ to

CdpNq (as
ř

k cikcjk “ xrϕi, rϕjy “ δij), one can show that

ˇ

ˇ

ˇ

ˇ

ÿ

i,j,k

cijcikajbk

ˇ

ˇ

ˇ

ˇ

ď

ˆ

ÿ

j

|aj|
2

˙
1
2
ˆ

ÿ

k

|bk|

˙
1
2

, (2.3.4)

for any pa1, ..adpNqq, pb1, ..., bdpNqq P CdpNq. Finally, we can use the formula

γΨpr, r̃q “
ÿ

kPBRN´
XN3

ϕL
k prqϕL

k pr̃q

loooooooooooomoooooooooooon

“γN´,L
pr,r̃q

`

N´N´
ÿ

i“1

rϕiprqrϕipr̃q,

and the estimates (2.3.4),(2.3.3)), and |BαϕL
k prq| ď cαpR{Lq|α|L´ 3

2 ď cαN
|α|

3 L´ 3
2

´|α| (see
(2.2.1)–(2.2.3)) to conclude that

|B
α
r B

β
r̃ γΨpr, r̃q ´ B

α
r B

β
r̃ γN´,Lpr, r̃q| “

ˇ

ˇ

ˇ

ˇ

N´N´
ÿ

i“1

B
α
rϕiprqB

β
rϕipr̃q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

i,j,k

cijcikB
αϕL

j prqBβϕL
k pr̃q

ˇ

ˇ

ˇ

ˇ

ď

ˆ

ÿ

|j|“RN

|B
αϕL

j prq|
2

˙
1
2
ˆ

ÿ

|k|“RN

|BβϕL
k pr̃q|

2

˙
1
2

À
N

|α|`|β|

3
` 34

69
`ϵ

L3`|α|`|β|
.

Remark. One could equally well consider the density matrix of the current closed shell
γN`,L in Lemma 2.3.1.
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2.3.2 Fermi momentum asymptotics

Here we derive the asymptotics of the finite-size Fermi momentum appearing in (2.1.15).
For the non-interacting electron gas model, the finite-size Fermi momentum is defined

as the momentum of the highest occupied orbital of the ground state wave function. For
the free N -electron gas in QD

L , it is simply given (in atomic units) by

pN,L :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2πRPer
N

L
, for periodic BCs,

πRDir
N

L
, for Dirichlet BCs,

πRNeu
N

L
, for Neumann BCs,

(2.3.5)

where RN is the Fermi radius. It is well known that in the thermodynamic limit, the
finite-size Fermi momentum converges to the (continuum) Fermi momentum, defined as

pF “ p3π2ρ̄q
1
3 .

The next lemma presents the next-order correction of the finite-size Fermi momentum,
which is crucial for deriving the next-order corrections from Theorem 2.1.1.

Lemma 2.3.2 (Fermi momentum asymptotics). Let ρ̄ “ N
|QD|L3 be constant, pF be the

Fermi momentum and pN,L be the finite-size Fermi momentum. Then

pN,L “

$

’

’

’

’

’

&

’

’

’

’

’

%

pF ` OpL´ 35
23

`ϵ
q, for periodic BCs,

pF `
π|BQD|

8|QD|
L´1

` OpL´ 35
23

`ϵ
q, for Dirichlet BCs,

pF ´
π|BQD|

8|QD|
L´1

` OpL´ 35
23

`ϵ
q, for Neumann BCs.

(2.3.6)

Proof. We present the proof only for Dirichlet case and denote RDir
N simply by RN . First,

from the previous section we already know that RN À N
1
3 and 0 ď N` ´ N ď dpNq À

N
34
69

`ϵ. Since |QD| “ |D|, one has

ρ̄L3

2
“

N

2|D|
“

|N3 X BD
RN

|

|D|
` OpN

34
69

`ϵ
q

“
1

8|D|
p|Z3

X BD
RN

| ´

3
ÿ

j“1

|Z2
X πjpB

D
RN

q|q ` OpN
34
69

`ϵ
q

“
π

6
R3

N ´
π|BQD|

16|D|
R2

N ` OpN
34
69

`ϵ
q,

which implies that

p3F “ p3N,L ´
3π|BQD|

8|D|

1

L
p2N,L `

OpN
34
69

`ϵq

L3
. (2.3.7)
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Then, with ρ̄ “ N
|QD|L3 fixed, it is clear that p3N,L Ñ p3F . The correction proportional to

1{L now follows from equation (2.3.7) by taking the cubic root and using a mean value
inequality argument.

Remark. Note that the above lemma is simply a restatement of the famous two term
Weyl’s law [60] on the asymptotic behaviour of eigenvalues of the Laplacian (with an
improved remainder). We shall comment more on this fact in the next chapter.

2.4 Discrete to continuum approximation

In this section we present the proof of Lemma 2.1.1 and use it to derive the continuum
approximation for the density matrix with explicit estimates. To avoid a cumbersome
notation and to make the proofs more efficient, we will focus on the case of the cube Q
and simply comment on the modifications necessary for the general case (on QD) at the
end of each proof.

2.4.1 Estimate on exponential sums

Here we want to derive non-trivial5 estimates for some weighted exponential sums that
appear naturally in the proof of Lemma 2.1.1. More precisely, let α P N3

0, M,R ą 0 and
Qh

M be the cubic holed box defined by

Qh
M :“ tr P R3 :M ă |r|max ď

4

3
Mu, (2.4.1)

then our goal is to find a better than trivial estimate for the sum

Sα
MpR, zq :“

ÿ

kPQhMXp2πZq3

pk ` zqα

|k ` z||α|`2
eiR|k`z|, (2.4.2)

when M is large and R „ M2. Using the above notation the main estimate can be stated
as follows.

Lemma 2.4.1. Let ϵ ą 0, α P N3
0 and z P R3 with |z|max ď π. Then

Sα
MpR, zq À M ϵ

pR
1
12M

3
4 ` M

11
12 ` R´ 1

24M
23
24 q,

where the implicit constant depends on ϵ and α, but is independent of M,R and z.

Before proving this result, we recall a recent improvement of the standard Van der
Corput kth-derivative estimate [49] on exponential sums due to Heath-Brown [54].

5In the theory of exponential sums, the elementary estimate
ř

kPZnXS eifpkq ď |Zn X S|, which holds
for any subset S Ă Rn and any real-valued function fpkq, is called trivial. The goal of the theory is then
to improve over such estimates.
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Theorem 2.4.1 (Heath-Brown [54]). Let k ě 3 be an integer and f P Ckpr0,M s,Rq.
Suppose that

0 ă λk ď f pkq
psq ď Aλk, s P p0,Mq,

for some A ą 0. Then

ÿ

nďM

eifpnq
Àk,A,ϵ M

1`ϵ
´

λ
1

kpk´1q

k ` M´ 1
kpk´1q ` M´ 2

kpk´1qλ
´ 2
k2pk´1q

k

¯

.

Remark. Note that for any c ă 1, the estimate above still holds for the sum in the
interval cM ď n ď M (with two times the implicit constant above). Indeed, one can
simply consider the sum in this interval as the sum until M minus the sum until cM ,
where both can be controlled by the same factor.

We also recall an elementary partial summation lemma (see e.g. [49, 59] for the proof)
that is used to deal with the weight function in Sα

MpR, zq.

Lemma 2.4.2 (Partial summation [59]). Let g P C1pra, bsq and denote the total variation
şb

a
|g1| of g by Vgra, bs. Then for any sequence an, one has

ˇ

ˇ

ˇ

ˇ

b
ÿ

něa

gpnqan

ˇ

ˇ

ˇ

ˇ

ď pVgra, bs ` |gpaq|qmax
γďb

ˇ

ˇ

ˇ

ˇ

b
ÿ

γ

an

ˇ

ˇ

ˇ

ˇ

.

Proof of Lemma 2.4.1. First note that if M is small (compared to R), then the estimate
is trivial. Therefore, we need to consider only the case where M is big. Next, defining

fpkq :“ R|k ` z| and gpkq :“
pk ` zqα

|k ` z|2`|α|
, (2.4.3)

the idea is to see f and g as functions of one coordinate, estimate the inner sum by
Theorem 2.4.1 and Lemma 2.4.2, and then use the trivial estimate for the outer sums. To
verify the assumptions of Theorem 2.4.1, let us consider the sets

U j
M :“ tk P R3 : |kj| ě M and max

ℓ‰j
t|kℓ|u ě M{10u X Qh

M , (2.4.4)

Lj
M :“ tk P R3 : |kj| ě M and max

ℓ‰j
t|kℓ|u ă M{10u X Qh

M , (2.4.5)

and observe that a straightforward calculation yields

B
4
kj
fpkq “ ´3R

|πjpk ` zq|2p|πjpk ` zq|2 ´ 4pkj ` zjq
2q

|k ` z|7
. (2.4.6)

Now the reason for our choice of 4
3
in the definition of Qh

M (any number between 1 and
?
2 would be enough) is that, since |z|max ď π is small compared to M , inside of U j

M we
have

4pkj ` zjq
2

´ |πjpk ` zq|
2

„ M2, |k ` z| „ M, and |πjpk ` zq|
2

„ M2
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(with implicit constants independent of M and R). In particular, from (2.4.6), we find
that

|B
4
kj
fpkq| „

R

M3
(2.4.7)

inside U j
M . Moreover, note that |gpkq| À 1

|k|2
and |Bkjgpkq| À 1

|k|3
. Hence, as |k| ě M

for any k P Qh
M , if we consider g as a function of only one coordinate, say k3, for any

tk1u ˆ tk2u ˆ I Ă Qh
M , we have

Vgpk1,k2,¨qrIs ` |gpkq| À M´2, (2.4.8)

with constant independent of k1, k2, I,M and R. Therefore, we can apply Lemma 2.4.2
and Theorem 2.4.1 (see (2.4.7),(2.4.8)) to conclude that, for any I1 ˆ I2 ˆ I3 Ă U j

M ,

ÿ

kPI1ˆI2ˆI3
kPp2πZq3

gpkqeifpkq
Àϵ

ÿ

kℓP2πZXIℓ
ℓ‰j

M´2M1`ϵ
pR

1
12M´ 1

4 ` M´ 1
12 ` R´ 1

24M´ 1
24 q

À M ϵ
pR

1
12M

3
4 ` M

11
12 ` R´ 1

24M
23
24 q. (2.4.9)

On the other hand, if I1ˆI2ˆI3 Ă Lj
M , then from equation (2.4.6) and the definition of Lj

M

(see (2.4.5)), one can show that B4
kℓ
fpkq „ R

M3 for ℓ ‰ j. In particular, by summing over Iℓ
first and using the same arguments as before, we conclude that as long as I1ˆI2ˆI3 Ă Lj

M ,
the sum over I1 ˆ I2 ˆ I3 is again bounded by the right hand side of (2.4.9).

Finally, note that we can split the summation over Qh
M as

ÿ

kPQhMXp2πZq3

gpkqeifpkq
“

P
ÿ

p“1

ˆ

ÿ

kPI1pˆI2pˆI3p
kPp2πZq3

gpkqeifpkq

˙

,

where Ijp are intervals such that the product I1p ˆ I2p ˆ I3p is contained in one of the U j
M or

Lj
M , and the number P is independent ofM . Therefore, the result follows from estimating

each sum on p independently by (2.4.9) and summing them up (since P is independent
of M).

Remark. Here are some remarks concerning the proof above.

• The classical Van der Corput 4th-derivative estimate (see [49]) would actually be
enough for our purposes. However, Theorem 2.4.1 gives a slightly better estimate
on the error term.

• If we assume that z P Q3, then one can show that the same estimate from [21, Lemma
3.1] holds, which would then lead to the Vinogradov, Chen [124, 22] exponent of 4{3
in (2.1.13). Unfortunately, in this case the implicit constant depends on the least
common multiple of the denominators of z1, z2, z3, and therefore, we lose the uniform
control that is essential for our purposes in the next section.
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Remark (Generalization to QD). For general QD we need an analog of Lemma 2.4.1 with

f and g from equation (2.4.3) replaced by fpkq “ R|Dpk ` zq| and gpkq “
pDpk`zqqα

|Dpk`zq||α|`2 .

In particular, the only significant modifications are that equation (2.4.6) has to change
accordingly, and the sets U j

M and Lj
M defined in (2.4.4) and (2.4.5) have to be replaced by

their pre-images under D (as a map in R3).

2.4.2 Proof of Lemma 2.1.1

To complete the proof of Lemma 2.1.1, we shall use two classical results. The first one is
the celebrated Poisson summation formula (see e.g. [111]), which we write in a slightly
different form to fit our goal.

Lemma 2.4.3 (Poisson summation formula). Let u P C8
c pRnq, then (see the Fourier

transform convention adopted (2.1.16)) the Poisson summation formula states that

ÿ

kPZn

1

p2πqn
pupkqeik¨z

´ upzq “
ÿ

kPp2πZqn

k‰0

upz ` kq. (2.4.10)

The second one is an (optimal) estimate on the decay of the Fourier transform of
the characteristic function of the ball and its derivatives. The proof is a straightforward
calculation (at least in R3).

Lemma 2.4.4 (Fourier transform of the ball). Let χB1 be the characteristic function of
the unit ball in R3. Then

yχB1pkq “
4π

3
hp|k|q,

where hpsq “ 3psin s´ s cos sq{s3. Moreover, for any α P N3
0, there exists cα ą 0 such that

|B
α
yχB1pkq| ď

cα
p1 ` |k|q2

, @k P R3. (2.4.11)

Proof of Lemma 2.1.1. Let R ą 0, then our goal is to bound the error term

Eα
pR, zq :“

ÿ

kPBRXZ3

pikq
αeik¨z

´

ż

BR

pikq
αeik¨zdk.

For this, the main idea is to apply the Poisson summation formula to a smooth version of
the characteristic function of the ball of radius R, use Lemma 2.4.1 to control the error
on the Fourier side and then estimate the difference between our smoothed error and the
error Eα defined above. So first, let H ą 0 be a small parameter to be chosen later, pick
any non-positive function ϕ P C8

c p0, 1q with
ş

ϕpsqds “ ´1, and define

fR,Hprq “

$

&

%

1, if |r| ď R,

1 `

ż |r|´R

0

ϕH
psqds, otherwise,

(2.4.12)
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where ϕHpsq :“ 1
H
ϕ
`

s
H

˘

. Then, one can check that fR,H is smooth, it assumes only values

between 0 and 1, and it vanishes outside BR`H . Moreover, observing that qfR,Hpkq “
1

p2πq3
pfR,Hpkq (as fR,H is symmetric) and applying the Poisson summation formula to pu “

fR,H we obtain
ÿ

kPZ3

fR,Hpkqeik¨z
´ pfR,Hpzq

looooooooooooooomooooooooooooooon

:“EHpR,zq

“
ÿ

kPp2πZq3

k‰0

pfR,Hpz ` kq

loooooooooomoooooooooon

:“pEHpR,zq

.

The next step is to use Lemma 2.4.1 to estimate the right hand side of the above. For
this, we first use spherical coordinates to obtain

pfR,Hpz ` kq “

ż

R3

fR,Hprqe´ir¨pz`kqdr

“ 4π

ż R

0

τ sinp|k ` z|τq

|k ` z|
dτ ` 4π

ż R`H

R

τ sinp|k ` z|τq

|k ` z|

ˆ

1 `

ż τ´R

0

ϕH
psqds

˙

dτ

“ ´4π

ż R`H

R

sinp|k ` z|τq ´ p|k ` z|τq cosp|k ` z|τq

|k ` z|3
ϕH

pτ ´ Rqdτ.

In particular, by partial integration and re-scaling we have

pEHpR, zq “ ´4π

ż R`H

R

ˆ

3 9ϕH
pτ ´ Rq ` τ :ϕH

pτ ´ Rq

˙

ÿ

kPp2πZq3

k‰0

cosp|k ` z|τq

|k ` z|4
dτ

“ ´4π

ż 1

0

ˆ

“Op 1
H

q
hkkkkkkkkkikkkkkkkkkj

3

H
9ϕpτq `

τ

H
:ϕpτq `

R

H2
:ϕpτq

˙

ÿ

kPp2πZq3

k‰0

cos
`

pR ` Hτq|k ` z|
˘

|k ` z|4
dτ

(2.4.13)

“ O
ˆ

1

H

˙

´
4πR

H2

ż 1

0

:ϕpτq
ÿ

kPp2πZq3

k‰0

cos
`

pR ` Hτq|k ` z|
˘

|k ` z|4
dτ,

where we used that
ř

kPp2πZq3zt0u
|k ` z|´4 ď c (since |z|max ď π). Here we slightly abused

the big-O notation to denote OpH´1q as something bounded in absolute value by a con-
stant times H´1. Now let M ą 0, then by partial integrating n times, throwing out the
terms outside the box QMzQ1 “ r´M,M s3zr´1, 1s3 and partial integrating back (recall
that ϕ P C8

c p0, 1q), we find that

pEHpR, zq “ 4πR

ż 1

0

ϕpτq
ÿ

kPp2πZq3XQM zQ1

cos
`

pR ` Hτq|pk ` zq|
˘

|k ` z|2
dτ

` O
ˆ

1

H
`

R

Hn`1Mn

˙

.
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Next, after possibly replacing the implicit constant above by a factor independent ofM,H
and R, we can assume that M “ p4

3
qq for some q P N. Thus by using the decomposition

QMzQ1 “
Ťq´1

k“1Q
h
p 4
3

qk
, the facts that H ă 1 and |z|max ď π (by periodicity, and Lemma

2.4.1, we find that

pEHpR, zq Àϵ,n
1

H
`

R

Hn`1Mn
`

q´1
ÿ

k“1

R

ˆ

4

3

˙kϵˆ

R
1
12

ˆ

4

3

˙
3k
4

`

ˆ

4

3

˙
11k
12

` R´ 1
24

ˆ

4

3

˙
23k
24
˙

Àϵ,n
1

H
`

R

Hn`1Mn
` logM

ˆ

R
13
12M

3
4

`ϵ
` RM

11
12

`ϵ
` R

23
24M

23
24

`ϵ

˙

, (2.4.14)

where the logM can be absorbed in M ϵ. Moreover, we can estimate the error coming
from the smoothing procedure as

|E0
pR, zq ´ EHpR, zq| ď

ÿ

kPZ3XBR`H
kRBR

|fR,Hpkq| ` | pfR,Hpzq ´ yχBRpzq| À R2H. (2.4.15)

Hence by summing estimates (2.4.14) and (2.4.15), setting M “ Rm, H “ R´h, and
minimizing the exponents, one concludes that

E0
pR, zq Àϵ,n R

2´hpnq`ϵmpnq logR, @n P N,

where hpnq :“ 12n`11
23n`22

and mpnq :“ 12n`12
23n`22

. Thus, since h Ò 12
23

for n Ñ 8, by choosing n
big enough, the result for α “ 0 follows.

For the estimates with α ‰ 0, we repeat the same arguments by taking fα
R,Hprq “

pirqαfR,Hprq. In this case, note that by the Leibniz rule and using that Bαp|r|´4q À |r|´4´|α|

away of the origin, we have

B
α
k

ˆ

cosppR ` Hτq|k ` z|q

|k ` z|4

˙

´

`

iRpk ` zq
˘α

2|k ` z||α|`4

ˆ

eipR`Hτq|k`z|
` p´1q

|α|e´ipR`Hτq|k`z|

˙

À
R|α|´1

|k ` z|4
.

(2.4.16)

We also have from the Poisson summation (and symmetry of fα
R,H) that

ÿ

kPZ3

fα
R,Hpkqeik¨z

´ pfα
R,Hpzq

looooooooooooooomooooooooooooooon

:“EαHpR,zq

“
ÿ

kPp2πZq3

k‰0

pfα
R,Hpz ` kq

loooooooooomoooooooooon

:“pEαHpR,zq

.

Hence using the identity ­pi¨qαf “ Bα
qf together with estimate (2.4.16), and repeating the
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same steps from before (see (2.4.13)), we conclude that

Eα
HpR, zq “ ´4π

ż 1

0

ˆ

3

H
9ϕpτq `

R ` Hτ

H2
:ϕpτq

˙

ÿ

kPp2πZq3

k‰0

B
α

ˆ

cosppR ` Hτq|k ` z|q

|k ` z|4

˙

“ ´
4πR

H2

ż 1

0

:ϕpτq
ÿ

kPp2πZq3

k‰0

`

iRpk ` zq
˘α

2|k ` z||α|`4

ˆ

eipR`Hτq|k`z|
` p´1q

|α|e´ipR`Hτq|k`z|

˙

dτ

` O
ˆ

R|α|

H2

˙

.

Thus we can again integrate n times, throw out all terms for |k| R QMzQ1 and use Lemma
2.4.1 to show that

Eα
HpR, zq Àϵ R

|α|

ˆ

1

H2
`

R

Hn`1Mn
` R

13
12M

3
4

`ϵ
` RM

11
12

`ϵ
` R

23
24M

23
24

`ϵ

˙

. (2.4.17)

Finally, by summing (2.4.17) to the following estimate for the smoothing error

|Eα
pR, zq ´ Eα

HpR, zq| À R2`|α|H,

and optimizing the exponent , the result follows from the same limit n Ñ 8 argument.

Remark (Generalization to QD). To deal with the general case, one has to replace fR,H

by fD
R,Hprq :“ fR,HpD´1rq and observe that pfD

R,Hpkq “ |D| pfR,HpDkq. The rest of the proof
follows from the same steps by using the generalization of Lemma 2.4.1 discussed in the
previous remark.

2.4.3 Continuum version of density matrices

We are now in position to present the continuum formulas for the density matrices and
prove that they provide good approximations to the exact ground state density matrices.

Looking back at formula (2.2.9) and replacing sum by integral, we can define the
continuum version of the density matrix as

γctmN,Lpr, r̃q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ρ̄
p3N,L

p3F
hppN,L|r ´ r̃|D,Lq, for periodic BCs,

ρ̄
p3N,L

p3F

ÿ

σPG

detσhppN,L|r ´ σr̃|D,2Lq, for Dirichlet BCs,

ρ̄
p3N,L

p3F

ÿ

σPG

hppN,L|r ´ σr̃|D,2Lq, for Neumann BCs ,

(2.4.18)

where pN,L and pF are the finite-size and continuum Fermi momentum (see (2.3.5)), the
function h is defined in (2.1.17), and |r|D,2L “ |r mod Dp2LZq3| (the torus distance).
Then, the following estimate is a direct consequence of Lemma 2.1.1.
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Theorem 2.4.2 (Continuum approximation estimates). Let ρ̄ “ N
|QD|L3 be fixed. Let

ΨN,L be any determinantal ground state of the free N-electron gas on QD
L , denote its

single-particle density matrix by γN,L. Then for any ϵ ą 0 we have

|γN,Lpr, r̃q ´ γctmN,Lpr, r̃q| Àϵ ρ̄N
´ 35

69
`ϵ

Àϵ ρ̄
34
69

`ϵL´ 35
23

`3ϵ. (2.4.19)

More generally, for any α, β P N3
0,

|B
α
r B

β
r̃ γN,Lpr, r̃q ´ B

α
r B

β
r̃ γ

ctm
N,Lpr, r̃q| Àϵ,α,β ρ̄

1`
|α|`|β|

3 N´ 35
69

`ϵ
Àϵ,α,β ρ̄

34
69

`
|α|`|β|

3
`ϵL´ 35

23
`3ϵ.

(2.4.20)

Moreover, one has

|γ
Dir/Neu
N,L pr, r̃q| Àϵ ρ̄

ˆ

N´ 35
69

`ϵ
` p1 ` |r ´ r̃|D,2Lq

´2

˙

, (2.4.21)

|γPerN,Lpr, r̃q| Àϵ ρ̄

ˆ

N´ 35
69

`ϵ
` p1 ` |r ´ r̃|D,Lq

´2

˙

. (2.4.22)

Proof. According to Lemma 2.3.1, up to an error À ρ̄
34
69

`ϵL´ 35
69

`3ϵ, we can use the closed
shell formulas for any determinantal ground state.

Next, we know that (i) R „ L, (ii) pχBDR
pzq “ |D|R3

pχB1pRDzq, (iii) pχB1pzq “ 4π
3
hp|z|q,

and (iv) the sums
ř

kPZ3XBR
ei
π
L
k¨D´1w and

ř

kPZ3XBR
ei

2π
L
k¨D´1w are periodic (in w) with

respect to Dpp2LZq3q and DppLZq3q respectively. Hence, estimate (2.4.19) follows directly
from the closed shell formulas (2.2.9) by applying Lemma 2.1.1 with z “ π

L
D´1pr ´ σr̃q

mod p2πZq3 and z “ 2π
L
D´1pr´ r̃q mod p2πZq3 for Dirichlet/Neumann and periodic case,

respectively.
For the derivative estimates in (2.4.20), one can simply use Lemma 2.1.1 together

with the identity {p´i¨qαf “ Bα
pf . Note that each derivation gives an additional factor of

1{L which compensates for the R|α| gained in (2.1.13) and accounts for the factor ρ̄
|α|

3 in
(2.4.20). The decay estimates (2.4.21) and (2.4.22) follow from estimate (2.4.19) and the
decay of h (see Lemma 2.4.4).

2.5 Proof of Theorem 2.1.1

In this section we make the following simplification to the current notation: as we are
dealing with the thermodynamic limit (N,L Ñ 8 with ρ̄ “ N

|QD|L3 fixed), all functions

and constants depending on both N and L will simply be indexed by L (e.g., ρL “ ρN,L).

2.5.1 Semi-local functionals

Our goal now is to prove the following two-term asymptotic expansion for general semi-
local functionals of the density and its gradient.
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Theorem 2.5.1 (General semi-local functional asymptotics). Let N
|QD|L3 “ ρ̄ “ constant,

ΨL be any determinantal ground state of the free N-electron gas in QD
L , and ρL be the

associated single-particle density. Suppose that fpa, bq P C0pr0,8q2q XC1pp0,8q ˆ r0,8qq

and let F rρLs :“
ş

QDL
fpρLprq, |∇ρLprq|qdr. Then for any ϵ ą 0 we have

F rρLs “

$

’

’

’

’

’

&

’

’

’

’

’

%

fpρ̄, 0q|QD
|L3

` OpL´ 34
23

`ϵ
q, for periodic BCs,

fpρ̄, 0q|QD
|L3

`

ˆ

cDir
BLpρ̄q ` cFMpρ̄q

˙

|BQD
|L2

` OpL2
q, for Dirichlet BCs,

fpρ̄, 0q|QD
|L3

`

ˆ

cNeu
BL pρ̄q ´ cFMpρ̄q

˙

|BQD
|L2

` OpL2
q, for Neumann BCs,

where the boundary layer and Fermi momentum corrections are given by

cBLpρ̄q “

$

’

’

&

’

’

%

1

2pF

ż 8

0

f
`

ρ̄p1 ´ hpsqq, 2ρ̄pF | 9hpsq|
˘

´ fpρ̄, 0qds, for Dirichlet BCs,

1

2pF

ż 8

0

f
`

ρ̄p1 ` hpsqq, 2ρ̄pF | 9hpsq|
˘

´ fpρ̄, 0qds, for Neumann BCs,

cFMpρ̄q :“
3πρ̄

8pF
Bafpρ̄, 0q.

Proof. In the periodic case, since f is differentiable close to pρ̄, 0q for any ρ̄ ą 0, the result
follows from Theorem 2.4.2 and a simple Lipschitz estimate.

As the Neumann and Dirichlet case are analogous, we give the details only for the
Dirichlet case. First note that, since fpρ, |∇ρ|q depends only on ρ and on the norm of
|∇ρ|, by the symmetries pointed out in Lemma 2.2.1 we can reduce the integration domain
to

F rρLs “ 8

ż

QDL
2

fpρL, |∇ρL|qdr.

Thus the continuum approximation from Theorem 2.4.2 reads

ρctmL prq “ γctmL pr, rq “ ρ̄
p3L
p3F

ÿ

σPG

detσhppL∥r ´ σr∥q (2.5.1)

(since ∥r ´ σr∥D,2L “ ∥r ´ σr∥ for any r P QD
L
2

and σ P G). The idea now is to use the

continuum approximation to show that ρL is only small close to the faces and edges of
the box. For this, first note that hprq “ 1 if and only if r “ 0. Therefore, for any δ ą 0
there exist cpδq ą 0 such that 1´hp2pL|ri|q ě cpδq as long as |ri| ą δ and L is big enough.
Moreover, from (2.5.1) and the fact that h decays at infinity, we see that we can choose
Rpδq ą 0 such that

C ě ρctmL prq ě
cpδq

2
for any r P QL,δ and some C ą 0, (2.5.2)
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where QL,δ is the region defined by

QL,δ :“ tr P QD
L
2
: min

jď3
|rj| ą δ and min

jď3
|πjr| ą Rpδqu.

Next, note that by the continuum approximation estimate (see equation (2.4.20)) and
estimate (2.5.2), we find that

2C ě ρLprq ě
cpδq

4
for any r P QL,δ and L big enough.

In particular, by the assumptions on f (C1 away from a “ 0 and C0 up to a “ 0), there
exists a Lipschitz constant Cpδq ą 0 and a uniform (with respect to δ and L) constant
C0 ą 0 such that

|F rρLs ´ F rρctmL s| À

ż

QDL
2

zQL,δ

C0 ` Cpδq

ż

QL,δ

|ρL ´ ρctmL | ` |∇ρL ´ ∇ρctmL |

À δL2
` Rpδq2L ` CpδqL

34
23

`ϵ.

Therefore, by dividing the above by L2, taking the limit as L Ñ 8, and then the limit
δ Ñ 0, one has

F rρLs “ F rρctmL s ` OpL2
q. (2.5.3)

The next step is to work with the continuum versions on QL,δ and use a Taylor ex-
pansion of f together with the decay of h to determine the asymptotic coefficients. To
shorten the notation, let us define

fL
k pr, tq :“ Bkf

`

ρ̄p1 ´ tq ` tρctmL prq, t|∇ρctmL prq|
˘

, k P ta, bu.

Then, note that by estimate (2.5.2) and the assumptions on f , we have

|fL
k pr, tq| ď Cpδq, (2.5.4)

for any pr, tq P QL,δ ˆ r0, 1s, for any k P ta, bu, and for some Cpδq ą 0. In addition, by the
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fundamental theorem of calculus we find

F rρctmL s “ 8

ż

QDL
2

zQL,δ

fpρctmL , |∇ρctmL |qdr

looooooooooooooooomooooooooooooooooon

ÀδL2`Rpδq2L

`8

ż

QL,δ

ˆ

fpρ̄, 0q `

ż 1

0

fL
a pr, tqpρctmL prq ´ ρ̄qdt

`

ż 1

0

fL
b pr, tq

|∇ρctmL prq|

ˆ 3
ÿ

j“1

Brjρ
ctm
L prq

˙2

dt

˙

dr

“ OpδL2
` Rpδq2Lq ` fpρ̄, 0q|QD

|L3
` 8ρ̄

ż 1

0

ż

QL,δ

fL
a pr, tq

ˆ

p3L
p3F

´ 1

˙

drdt
loooooooooooooooooooomoooooooooooooooooooon

:“Ipδq

`
ÿ

σ‰id

8ρ̄p3L
p3F

ż 1

0

ż

QL,δ

fL
a pr, tq detσhppL∥r ´ σr∥qdrdt

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

:“Jσpδq

`

3
ÿ

j“1

8ρ̄2p6L
p6F

ż 1

0

ż

QL,δ

fL
b pr, tq

|∇ρctmL prq|

ˆ

ÿ

σjj“´1

detσpL 9hppL∥r ´ σr∥q
4rj

∥r ´ σr∥

˙2

drdt

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

:“Kjpδq

.

(2.5.5)

Therefore, to complete the proof we need to study the (L dependent) terms Ipδq, Jσpδq
and Kpδq. Let us start with Ipδq. In this case, we first note that

p3L
p3F

´ 1 “
3π|BQD|

8pF |QD|

1

L
` OpL´ 35

23
`ϵ

q

by Lemma 2.3.2. Hence by scaling out the L in Ipδq and making the following observa-
tions: (i) fL

a pr, tq is bounded in Qδ,L by a constant depending on δ, but independent of
L (see (2.5.4)) , (ii) limLÑ8 f

L
a pLr, tq “ Bafpρ̄, 0q for a.e. pr, tq P QD

1
2

ˆ r0, 1s, and (iii)

limLÑ8 χQL,δpLrq “ χQD1
2

prq in L1pR3q, we conclude that

Ipδq “
3πρ̄|BQD|

8pF
Bafpρ̄, 0qL2

` OpL2
q “ cFMpρ̄q|BQD

|L2
` OpL2

q, (2.5.6)

We consider next the terms Jσ with tracepσq ď ´1. In this case, note that by the decay
of h (see Lemma 2.4.4), there exists some j P t1, 2, 3u, such that |hppL∥r ´ σr∥q| À

p1 ` πjrq
´2.(Recall that πj : R3 Ñ R2 is the projection given by removing the coordinate

rj.) Hence by estimate (2.5.4) we find that Jσ Àδ L logL, and therefore, we just need
to worry about the terms Kj and Jσ with tracepσq “ 1. For simplicity let us label the
reflection σ with tracepσq “ 1 and σjj “ ´1 by σj. Now note that, by the decay of h and
estimate (2.5.4), we have

|fL
a pr, tqhp2pLrjq ` fL

b pr, tq
|Brjρ

ctmprq|2

|∇ρctmprq|
| À

Cpδq

p1 ` rjq2
.
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As a consequence, up to an error bounded by CpδqL, one can change the domain of
integration of Kjpδq ` Jσjpδq from QL,δ to

Qj
L,δ :“ tr : rj P p0,8q, πjr P πjQ

D
L
2
, min

jď3
|rj| ě δ, and min

jď3
|πjr| ą Rpδqu.

In summary, we have

Kjpδq ` Jσjpδq “
8ρ̄p3L
p3F

ż 1

0

ż

R3

χQjL,δ
prq

ˆ

ρ̄p3L
p3F

fL
b pr, tq

|∇ρctmL prq|

ˆ

ÿ

σjj“´1

pL detσ 9hppL∥r ´ σr∥q4rj
∥p1 ´ σqprj, Lπjrq∥

˙2

` fL
a pr, tqp´hp2pLrjqq

˙

drdt ` OpCpδqLq. (2.5.7)

Now note that by the decay of h, for a.e. prj, πjrq P r0,8q ˆ πjpQ
D
1
2

q, the following holds:

lim
LÑ8

ρctmL prj, Lπjrq ´ ρ̄ “ ´ρ̄hp2pF rjq,

lim
LÑ8

|∇ρctmL prj, Lπjrq| “ 2ρ̄pF | 9hp2pF rjq|,

lim
LÑ8

ÿ

σjj“´1

detσρ̄pL 9h
`

pL∥p1 ´ σqprj, Lπjrq∥
˘ 4rj
∥p1 ´ σjqprj, Lπjrjq∥

“ ´2ρ̄pF 9hp2pF rjq,

lim
LÑ8

χQjL,δ
prj, Lπjrq “ χpδ,8qprjqχπjpQD1

2

qpπjrq.

Therefore, by scaling out the L in the variables πjr in Kjpδq and noting that the integrand
in equation (2.5.7) is bounded by CpδqχQL,δprqp1`|rj|q

´2 (by the decay of h), we conclude
from dominated convergence and the continuity of ∇f that

Kjpδq ` Jσjpδq “ 2

ˆ

ź

ℓ‰j

dℓ

˙

L2

ż 8

δ

ż 1

0

ˆ

Bbf
`

ρ̄p1 ´ thp2pF rjqq, t2ρ̄pF | 9hp2pF rjq|
˘

2ρ̄pF | 9hp2pF rjq|

´ Baf
`

ρ̄p1 ´ thp2pF rjqq, t2ρ̄pF | 9hp2pF rjq|
˘

ρ̄hp2pF rjq

˙

dtdrj ` OpδL2
q ` OδpL

2
q

“

ś

ℓ‰j dℓ

pF
L2

ż 8

2pF δ

f
`

ρ̄p1 ´ hprjq, 2ρ̄pF | 9hprjq|
˘

´ fpρ̄, 0qdrj ` OpδL2
q ` OδpL

2
q,

(2.5.8)

where Oδ emphasizes that the bounds may depend on δ. As a consequence, the proof
follows from equations (2.5.3),(2.5.5),(2.5.6), and (2.5.8) by first taking the limit L Ñ 8

and then δ Ñ 0.

Remark. Here are some remarks about Theorem 2.5.1.

• Note that cFMpρ̄q above depends on ρ̄ which is in contrast with the constant cFM

defined in Theorem 2.5.2 below. The reason is that for the “physically” relevant
cases (see the discussion before Theorem 2.1.1), we have cFMpρ̄q “ ´cFM ρ̄, where
cFM “ 3

8
is precisely the value defined there (see Corollary 2.5.1 below).
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• The same arguments can be used for semi-local functionals of higher order deriva-
tives by considering generalized variables like pρ,∇ρ, ..., Bαρq and applying estimate
(2.1.13). As we are only interested in LDA and GGAs for the moment, we leave the
asymptotics of functionals for higher order derivatives for future works

• If f is more regular and one knows the ratio at which the derivatives diverge when
pa, bq Ñ 0, one can further use the decay of h to improve the remainder term from

OpL2q (for Dirichlet and Neumann cases) to, possibly, OpL
34
23

`ϵq.

As straightforward corollaries of Theorem 2.5.1, we obtain the two term asymptotic
expansion for LDA and GGAs from Theorem 2.1.1.

Corollary 2.5.1 (Asymptotic of LDA). Let ρL be the single-particle density of any de-
terminantal ground state of the free N-electron gas in QD

L (under our usual boundary
conditions). Then in the thermodynamic limit we have

ELDA
x rρLs “

$

’

&

’

%

´cxρ̄
4{3

|QD
|L3

` OpL
34
23

`ϵ
q, for periodic BCs,

´cxρ̄
4{3

|QD
|L3

´ cDir
LDAρ̄|BQD

|L2
` OpL2

q, for Dirichlet BCs,

´cxρ̄
4{3

|QD
|L3

´ cNeu
LDAρ̄|BQD

|L2
` OpL2

q, for Neumann BCs,

where the constants are

cLDA “

$

’

’

&

’

’

%

cFM `
3

8π

ż 8

0

p1 ´ hpsqq
4
3 ´ 1ds, for Dirichlet BCs,

´cFM `
3

8π

ż 8

0

p1 ` hpsqq
4
3 ´ 1ds, for Neumann BCs,

with cFM “ 3
8
. (Compare with the constant in Theorem 2.5.2.)

Corollary 2.5.2 (Asymptotics for GGA). Let gGGApa, bq P C0pr0,8q2q X C1pp0,8q ˆ

r0,8qq such that gGGApa, 0q “ 0, for all a ě 0. Moreover, let ρL be the single-particle
density of any determinantal ground state of the free N-electron gas in QD

L (under our
usual boundary conditions). Then, for ∆EGGA

x rρLs “
ş

QDL
gGGApρL, |∇ρL|q, in the ther-

modynamic limit we have

∆EGGA
x rρLs “

$

’

&

’

%

OpL´ 34
23

`ϵ
q for periodic BCs,

cDir
GGApρ̄q|BQD

|L2
` OpL2

q, for Dirichlet BCs,

cNeu
GGApρ̄q|BQD

|L2
` OpL2

q, for Neumann BCs,

where the constants are given by

cGGApρ̄q “

$

’

’

&

’

’

%

1

2pF

ż 8

0

gGGA

ˆ

ρ̄p1 ´ hpsqq, 2ρ̄pF | 9hpsq|

˙

ds, for Dirichlet BCs,

1

2pF

ż 8

0

gGGA

ˆ

ρ̄p1 ` hpsqq, 2ρ̄pF | 9hpsq|

˙

ds, for Neumann BCs.

Proof of Corollary 2.5.1 and 2.5.2. In the first corollary, just apply Theorem 2.5.1 to
fpρq “ cxρ

4{3. For the second one, set fpρ, |∇ρ|q “ gGGApρ, |∇ρ|q and note that fpa, 0q “ 0
for all a ě 0 implies that Bafpa, 0q “ 0 for all a ą 0.
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2.5.2 Exact exchange

Now we turn to the asymptotic expansion of the exact exchange.

Theorem 2.5.2 (Asymptotics of exact exchange). Let ρ̄ “ N
|QD|L3 “ constant, ΨL be a

determinantal ground state of the free N-electron gas in QD
L . Then, we have

ExrΨLs “

$

’

’

&

’

’

%

´cxρ̄
4
3 |QD

|L3
` cFS ρ̄|BQD

|L2
` OpL

45
23

`ϵ
q, for periodic BCs,

´cxρ̄
4
3 |QD

|L3
´ pcDir

BL ` cFM ´ cFSqρ̄|BQD
|L2

` OpL
45
23

`ϵ
q, for Dirichlet BCs,

´cxρ̄
4
3 |QD

|L3
´ pcNeu

BL ´ cFM ´ cFSqρ̄|BQD
|L2

` OpL
45
23

`ϵ
q, for Neumann BCs,

where the finite-size, Fermi momentum and boundary layer corrections are

cFS “
1

8
, cFM “

3

8
, cDir

BL “ ´
log 2

4
, and cNeu

BL “
3 log 2

4
.

Proof. As before, we prove the Dirichlet case in detail and outline the proof for the other
two boundary conditions at the end.

The first step is again to justify the use of the continuum density matrices (2.4.20).
For this, we use the identity

|γLpr, r̃q|
2

´ |γctmL pr, r̃q|
2

“ RetpγLpr, r̃q ´ γctmL pr, r̃qqpγNpr, r̃q ` γctmN pr, r̃qqu

together with estimates (2.4.19) and (2.4.21) from Theorem 2.4.2 to obtain

ˇ

ˇ

ˇ

ˇ

ż

QDLˆQDL

|γLpr, r̃q|2 ´ |γctmL pr, r̃q|2

|r ´ r̃|

ˇ

ˇ

ˇ

ˇ

drdr̃ À L´ 70
23

`ϵ

ż

QDLˆQDL

|r ´ r̃|´1drdr̃

` L´ 35
23

`ϵ

ż

QDLˆQDL

p1 ` |r ´ r̃|D,2Lq´2

|r ´ r̃|
drdr̃

À L
45
23

`ϵ
` L

34
23

`ϵ logL.

Therefore, by the continuum formulas we have

ExrρLs « ´
ÿ

τ,σPG

detpστq
ρ̄2p6L
4p6F

ż

QDLˆQDL

hppL|r ´ σr̃|D,2LqhppL|r ´ τ r̃|D,2Lq

|r ´ r̃|
drdr̃

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

:“Jσ,τ pLq

, (2.5.9)

where « will be used throughout this proof to denote equality up to errors included in the
remainder of Theorem 2.5.2. Now, to estimate the terms Jσ,τ we start with the following
lemma.

Lemma 2.5.1. If tracepσq ď ´1 or tracepτq ď ´1, then Jσ,τ pLq À LplogLq2. Further-
more, if tracepσq “ 1 “ tracepτq and σ ‰ τ , we also have Jσ,τ pLq À LplogLq4.
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Proof. First observe that since rj, r̃j P r0, djLs, one has

|rj ` r̃j mod 2djL| “ mintrj ` r̃j, 2djL ´ rj ´ r̃ju ě |rj ´ r̃j|.

In particular, by the decay of h, we see that

|hppL|r ´ σr̃|D,2Lq| À
1

p1 ` |r ´ σr̃|D,2Lq2
À

1

p1 ` |r ´ r̃|q2
, (2.5.10)

for any σ P G. On the other hand, if tracepσq ď ´1, there exists j P t1, 2, 3u such that

|r ´ σr̃| ě min
pPπjpDp2LZq3q

pPπjpQD2Lq

|πjpr ` r̃q ´ p|,

and therefore,

|hppL|r ´ σr̃|D,2Lq| À
ÿ

pPπjpDp2LZq3q

pPπjpQD2Lq

1

p1 ` |πjpr ` r̃q ´ p|q2
. (2.5.11)

As a result, assuming that tracepσq ď ´1, we can see from (2.5.10) and (2.5.11) that

Jσ,τ pLq À

ż

QDLˆQDL

ÿ

pPπjpDp2LZq3q

pPπjpQD2Lq

1

p1 ` |πjpr ` r̃q ´ p|q2

1

p1 ` |r ´ r̃|q2
1

|r ´ r̃|
drdr̃ À LplogLq

2.

For the terms Jσ,τ with tracepσq “ 1 “ tracepτq and σ ‰ τ , note that there exists
j ‰ ℓ P t1, 2, 3u such that

|hppL|r ´ σr̃|q| À
ÿ

pjPt0,2djLu

1

p1 ` |rj ` r̃j ´ pj|qp1 ` |πjpr ´ r̃|q
,

|hppL|r ´ τ r̃|q| À
ÿ

pℓPt0,2dℓLu

1

p1 ` |rℓ ` r̃ℓ ´ pℓ|qp1 ` |πℓpr ´ r̃q|q
.

The lemma thus follows by integrating the product of the estimates above against the
coulomb potential in the box QD

L ˆ QD
L .

From the lemma above, it is enough to study Jid,idpLq, Jσ,idpLq and Jσ,σpLq where
tracepσq “ 1.

We start with Jid,idpLq. In this case, we first note that |r ´ r̃|D,2L “ |r ´ r̃| for any
r, r̃ P QD

L . In particular, by the change of variables pwpr, r̃q, w̃pr, r̃qq “ pr´ r̃, r̃q, we obtain

Jid,idpLq “ |QD
|L3

ż

QDL´QDL

hppL|w|q2

|w|
dw ´ L2

3
ÿ

j“1

ˆ

ź

ℓ‰j

dℓ

˙
ż

QDL´QDL

hppL|w|q2|wj|

|w|
dw

`

ż

QDL´QDL

hppL|w|q2

|w|

ˆ

L
3
ÿ

j“1

dj
ź

ℓ‰j

|wℓ| ´

3
ź

j“1

|wj|

˙

dw.
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Now, note that by the decay of h and a simple estimate, up to an error À L logL, the
integral on the first two terms can be taken over the whole R3, and the third integral can
be neglected. In addition, by scaling out pL, using spherical coordinates, and recalling
that |BQD| “ 2pd1d2 ` d1d3 ` d2d3q, we have

Jid,idpLq «
4π|QD|L3

p2L

ż 8

0

hprq2rdr
loooooomoooooon

:“I0

´
π|BQD|L2

p3L

ż 8

0

hprq2r2dr
loooooomoooooon

:“I1

. (2.5.12)

Next for the term Jσ,σ we assume without loss of generality that σ11 “ ´1. Then, by
invariance of the integrand over the reflections ri ´ r̃i ÞÑ r̃i ´ ri, the change of variables
pwpr, r̃q, w̃pr, r̃qq “ pr´ r̃, r1 ` r̃1, r̃2, r̃3q (notice

dwdw̃
2

“ drdr̃), and the decay of h, we have

Jσ,σpLq “

ż

QDL´QDL

ż 2d1L´|w1|

|w1|

hppL|pw̃1 mod 2d1L, π1wq|q2
ś

ℓ‰1pdℓL ´ |wℓ|q

|w|

dw̃1dw

2

“ 8d2d3L
2

ż

QDL

ż d1L

w1

hppL|pw̃1, π1wq|q2

|w|
dw̃1dw ` OpL logLq

“ 8d2d3L
2

ż

QDL

hppL|pw̃1, π1wq|q
2

ˆ
ż w̃1

0

1

|w|
dw1

˙

dw̃1dπ1w ` OpL logLq

(where we inverted the order of integration between w̃1 and w1 in the last step). In

addition, since
ş|w̃1

0
1

|w|
dw1 “ 1

2
log

`

w̃1`|pw̃1,π1wq|

|pw̃1,π1wq|´w̃1

˘

À
|w̃1|

|π1w|
, by the decay of h one can see

that, up to an error À L, we can replace the integration over QD
L by R3

` . Hence, by
scaling out pL, changing to spherical coordinates, and recalling the definition of I1 in
(2.5.12), we find that

Jσ,σpLq «
2πd2d3
p3L

L2

ż 8

0

hprq2r2dr

ż π
2

0

log

ˆ

1 ` cos θ

1 ´ cos θ

˙

sin θdθ
loooooooooooooooomoooooooooooooooon

“pcos θ´1q logp1´cos θq´p1`cos θq logp1`cos θq

“
4π logp2q

p3L
d2d3I1L

2.

(2.5.13)

At last, for Jid,σ (again assuming that σ11 “ ´1 without loss of generality), by the
change of variables pwpr, r̃q, w̃pr, r̃qq “ pr´ r̃, r1 ` r̃1, r̃2, r̃3q and the same arguments from
before, we conclude that

Jid,σ “

ż

QDL´QDL

ż d1L

|w1|

hppL|pw̃1, π1wq|qhppL|w|q
ś

ℓ‰1pdℓL ´ |wℓ|q

|w|
dw̃1dw

“ 8d2d3L
2

ż

R3
`

ż 8

|w1|

hppL|pw̃1, π1wq|qhppL|w|q

|w|
dw̃1dw ` OpL logLq.

Hence, scaling the pL out and using spherical coordinates on w, we have

Jid,σpLq «
4πd2d3
p3L

L2

ż 8

0

ż π
2

0

ż 8

r cos θ

hp

b

pr sin θq2 ` w̃2
1qhprqr sin θdw̃1dθdr

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

:“I2

. (2.5.14)

54



Chapter 2. Exchange Phenomena on the Box

Thus by plugging (2.5.12),(2.5.13) and (2.5.14) into (2.5.9), we have

ExrρLs « ´
ρ̄2p6L
4p6F

ˆ

Jid,idpLq `

3
ÿ

j“1

Jσj ,σjpLq ´

3
ÿ

j“1

`

Jid,σjpLq ` Jσj ,idpLq
˘

˙

« ´
πρ̄2p4L
p6F

I0|Q
D

|L3
´

ˆ

´
πρ̄2p3L
4p6F

I1 `
π log 2ρ̄2p3L

2p6F
I1 ´

πρ̄2p3L
p6F

I2

˙

|BQD
|L2.

As a result, using Lemma 2.3.2 to replace pL by pF plus correction, we conclude that

ExrρLs « ´
π

p3π2q
2
3

I0
looomooon

cx

ρ̄
4
3 |QD

|L3
´

ˆ

1

6
I0

loomoon

cFM

´
1

12π
I1

loomoon

cFS

`
log 2

6π
I1 ´

1

3π
I2

looooooomooooooon

cBL

˙

ρ̄|BQD
|L2.

The proof is then completed by using the values of the integrals computed in the next
lemma.

Lemma 2.5.2. I0 “ 9
4
, I1 “ 3π

2
and I2 “

3π log 2
2

.

Proof. For I0, we can use the identity
ş

psin s´s cos sq2

s5
ds “

´2s2`2s sinp2sq`cosp2sq´1
s4

(see e.g.,
[40, Lemma 6.1] for an elegant evaluation) to obtain

I1 “

ż 8

0

9
psin s ´ s cos sq2

s5
ds “ ´9 lim

sÑ0

´2s2 ` 2s sinp2sq ` cosp2sq ´ 1

s4
“

9

4
,

where the limit can be done by L’Hôpital’s rule. Next, note that for any a ą 0, by
Plancherel’s theorem, we have

ż 8

0

hprqhparqdr “
1

4π|B1|2

ż

R3

pχB1pkqpχB1pakqdk

“
p2πq3

4π|B1|2a3

ż

R3

χB1pkqχB1

ˆ

k

a

˙

dk

“
3π

2maxta, 1u3
. (2.5.15)

In particular, the value of I1 follows by setting a “ 1. For I2, first note that by using the
inverse of polar coordinates pr, θq “ p

a

x2 ` y2, arctanpy{xqq, one has

I2 “

ż

R2
`

ż 8

x

h
`

b

y2 ` w̃2
1

˘

h
`

a

x2 ` y2
˘ y
a

x2 ` y2
dw̃1dxdy.

Next, set R :“ tpx, y, w̃1q P R3 : x ą 0, y ą 0, w̃1 ą xu and consider the change of
coordinates

T :

"

ps, ϕ, vq P R3 : s ą 0, 0 ă ϕ ă
π

2
, 0 ă v ă log

ˆ

sinϕ ` 1

cosϕ

˙*

Ñ R

ps, ϕ, vq ÞÑ px, y, w̃1q “ T ps, ϕ, vq “ ps cosϕ sinh v, s

b

sin2 ϕ ´ cos2 ϕ sinh2 v, s cosϕ cosh vq,
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for which

det∇T ps, ϕ, vq “ s2
sinpϕq cospϕq

a

sin2 ϕ ´ cos2 ϕ sinh2 v
“ s2 cosϕ

a

x2 ` y2

y
.

Then, by (2.5.15) and the substituion τ “ sinϕ, we conclude that

I2 “

ż π
2

0

cospϕq log

ˆ

sinϕ ` 1

cosϕ

˙
ż 8

0

hpsqhps sinϕqs2ds
loooooooooooomoooooooooooon

“ 3π
2

dϕ

“
3π

2

ż 1

0

log

ˆ
?
1 ` τ

?
1 ´ τ

˙

dτ “
3π log 2

2
,

which completes the proof of Theorem 2.5.2 for the Dirichlet case.

For the periodic case, we first note that by the decay of h,

|hppL|r ´ r1
|L,D|q

2
´

ÿ

pPDLZ3

|D´1p|maxďL

hppL|r ´ r1
´ p|q

2
À L´2

p1 ´ |r ´ r1
|L,Dq

´2.

Moreover, one can show that

ż

QDLˆQDL

hppL|r ´ r̃ ´ p|q2

|r ´ r̃|
drdr̃ À L logL for any p P DLZ3zt0u,

and therefore, ExrΨLs « ´
ρ̄2p6L
4p6F

Jid,idpLq. The result now follows from Lemma 2.3.2, esti-

mate (2.5.12) and Lemma 2.5.2).

2.6 Kinetic energy

In this section we use Lemma 2.1.1 to compute the asymptotic expansion of the kinetic
energy.

Theorem 2.6.1 (Asymptotics of kinetic energy). Let D fixed, ρ̄ “ N
|QD|L3 “ constant

and ΨN,L be any ground state of the free N-electron gas in the box QD
L under our usual

boundary conditions. Let T be the kinetic energy functional defined in (2.1.1). Then, we
have

T rΨN,Ls “

$

’

’

&

’

’

%

cTF ρ̄
5{3

|QD
|L3

` OpL
34
23

`ϵ
q, for periodic BCs,

cTF ρ̄
5{3

|QD
|L3

` cK ρ̄
4{3

|BQD
|L2

` OpL
34
23

`ϵ
q, for Dirichlet BCs,

cTF ρ̄
5{3

|QD
|L3

´ cK ρ̄
4{3

|BQD
|L2

` OpL
34
23

`ϵ
q, for Neumann BCs,

where cTF “ 3
10

p3π2q2{3 is the Thomas-Fermi constant and cK “ 3π
32

p3π2q1{3.
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Proof. For the Dirichlet case, just note that

T rΨN,Ls “ xΨN,L,´
∆

2
ΨN,Ly “

ÿ

kPN3XBDRN

π2|D´1k|2

L2
´ pN` ´ Nq

π2R2
N

L2

“
π2

L2

1

8

ˆ

ÿ

kPZ3XBDRN

|D´1k|
2

´

3
ÿ

j“1

ÿ

kPZ3XBDRN
kj“0

|D´1k|
2

˙

` OpL
34
23

`ϵ
q.

Moreover, by a simple estimate6 we find that

ÿ

kPBDRN
XZ3

kj“0

|D´1k|
2

“

ż

R2

χπjpBDRN
qpkq

ÿ

ℓ‰j

pd´1
ℓ kℓq

2dk ` OpR3
Nq “

π

4
R4

N

ź

ℓ‰j

dℓ ` OpR3
Nq

(2.6.1)

Thus using estimate (2.6.1) and Lemma 2.1.1, we conclude that

T rΨN,Ls “
1

10π2
p5N,L|QD

|L3
´

1

32π
p4N,L|BQD

|L3
` OpL

34
23

`ϵ
q.

The result now follows from the asymptotic of pL in Lemma 2.3.2. The Neumann and
periodic case are entirely analogous.

Remark. Note that we do not assume ΨN,L to be a determinantal ground states as the
kinetic energy is simply the ground state energy of the Laplacian and therefore unique
(even if the ground state is not).

2.7 Numerical results

We now compare our asymptotic results to numerical values of different exchange func-
tionals for the free electron gas with zero boundary conditions, for up to 30000 electrons.
Our numerical computations were carried out in Matlab. All energy functionals other
than exact exchange were evaluated by direct numerical integration of the exact formulas
given in section 2. For exact exchange, accurate direct numerical evaluation of the ex-
pression (2.2.11), (2.2.9) is impossible, because of the high-dimensionality of the domain
of integration (6D) and the 1{|r ´ r1| singularity of the integrand. We tackled these ob-
structions by reducing the problem to the numerical computation of a small (OpN1{3q)
number of one-dimensional integrals of smooth functions (see Section 2.7.1 for a detailed
description). Moreover, we focus here on the case of a cubic box r0, Ls3 and ρ̄ “ 1.

To begin with, in Figure 2.2 we have plotted the exact exchange energy per unit
volume, together with the theoretical one-term (just cx) and two-term asymptotics (cx `

cx,2 ¨6L´1) from Theorem 2.1.1. For comparison we have also included the LDA exchange
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Figure 2.2: Exact exchange energy per unit volume of the free electron gas in a box
with zero boundary conditions, compared with the LDA, one-term asymptotics (Dirac
exchange constant) and two-term asymptotics (present work, Theorem 2.1.1).

energy per unit volume. Note that even for small N , the two-term asymptotics is a much
better approximation than the one-term asymptotics, and also a better one than the
more complicated LDA. Note that the latter requires integration of an inhomogeneous
N -electron exchange energy density of the system.

Let us now look in more detail at the next-order contribution. Besides exact exchange
and the LDA, we consider the widely used GGAs introduced by Becke in 1988 (B88) [6]
and Perdew, Burke and Ernzerhof in 1996 (PBE) [92], and the modified version of PBE
introduced by Perdew et al. in 2008 (PBEsol)[93]. For convenience of the reader, we
recall the expressions for these functionals here:

gB88
pρ, |∇ρ|q “

2
1
3β
`

|∇ρ|{ρ
4
3

˘2

1 ` 6β2
1
3

`

|∇ρ|{ρ
4
3

˘

sinh´1
`

2
1
3 |∇ρ|{ρ

4
3

˘
ρ

4
3 (2.7.1)

gPBE
pρ, |∇ρ|q “ cx

µ
`

|∇ρ|{ρ
4
3

˘2

4p3π2q
2
3 `

µ
κ

`

|∇ρ|{ρ
4
3

˘2ρ
4
3 (2.7.2)

where sinh´1 is the inverse hyperbolic sine and the constants are β “ 0.0042, κ “ 0.804,
and µ “ 0.2195. For PBEsol, one has the same expression as for PBE in (2.7.2), but with
µ “ 0.1235.

6In fact, by adapting the proof of [40], one can get a remainder of order OpR2` 2
3 q in estimate (2.6.1).
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Figure 2.3: Exchange energy of the free electron gas in a box with zero boundary con-
ditions minus leading order term, per unit boundary area, for various functionals. The
number of electrons per unit volume was normalized to 1. Solid lines: Numerical values.
Dashed lines: asymptotic values (second order coefficients from Theorem 2.1.1, present
work).

Numerical evaluation of the exact one-dimensional integral expression for the GGA
constant in Theorem 2.1.1 gives the following values:

cDir
PBE « 0.0157, cDir

B88 « 0.0192, cDir
PBEsol « 0.0105. (2.7.3)

To numerically verify the next-order asymptotics, we plotted in Figure 2.3 the graph
of the energy functionals minus the leading order term divided by the boundary area
|Br0, Ls3| “ 6L2, together with the asymptotic values predicted by Theorem 2.1.1 and
(2.7.3). Precisely, since ρ̄ “ 1, the values for the dashed lines in Figure 2.3 are, respectively,
cDir
x,2 , c

Dir
LDA, c

Dir
LDA ` cDir

B88, c
Dir
LDA ` cDir

PBE, and c
Dir
LDA ` cDir

PBEsol.
Overall, there is a good match between numerics and asymptotics as N gets large.

More detailed observations are the following.
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• Asymptotically, the LDA underestimates the surface term by 12%, whereas B88 and
PBE overestimate it by 13% respectively 8%.

• Asymptotically, only PBEsol is much more accurate than the LDA, exhibiting an
error of just 1.4%. This should not come as a surprise to experts, as certain surface
data (although not the ones considered here) entered into the choice of the param-
eters. Thus one may say that the present work provides an alternative theoretical
justification of the PBEsol parameters. The price to pay is that PBEsol is the least
accurate of the GGAs for very small N .

• B88 is the most accurate GGA for very small N . This is not unexpected given
the fact that the parameter β was fitted to data for the first few noble gas atoms.
The price to pay is that B88 does not improve on the LDA beyond a few hundred
electrons.

• In the regime of 20 to 100 electrons, which is certainly relevant in applications,
particularly in chemistry, PBE fares best.

• The slowest convergence to the asymptotic value, and the largest fluctuations, occur
for exact exchange. Neither asymptotics up to second order nor any of the GGA
functionals correctly reproduce these significant finite-N fluctuations. Note that
they would be captured exactly by the universal Hohenberg-Kohn functional.

In the context of our model system, the free electron gas in a box with zero boundary
conditions, our rigorous asymptotic results and the above observations illustrate both
the advances that have been made in the physics and chemistry literature in designing
computationally simple exchange-correlation functionals, and the immense difficulties in
improving on the current state of the art. For the latter, we hope that the new exact
constraint on GGAs presented here (eq. (2.1.12)) will in the future turn out to be useful.

2.7.1 Numerical scheme for exact exchange

Here we detail our scheme for accurate and efficient evaluation of exact exchange for
the free electron gas in a box. As already explained, the closed-form expression (2.2.11),
(2.2.9) cannot be evaluated directly by numerical integration, because of the high-dimensionality
of the domain of integration (6D) and the Coulomb singularity of the integrand.

Recall that the eigenfunctions of the Laplacian with zero boundary conditions on
Q “ r0, 1s3 are given by the following expression:

ϕkpxq “

3
ź

i“1

?
2 sinpπkixiq pk P N3

q. (2.7.4)

Hence for closed shell N , the ground state ΨN,L of the free N -electron gas in QL “ r0, Ls3

with ρ̄ “ N{L3 “ 1 is unique and the exact exchange energy is, by rescaling to the fixed
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domain Q,

ExrψN,Ls “ ´
1

L

ż

QˆQ

ˇ

ˇ

ˇ

ř

kPN3, |k|ďRN
ϕkpxqϕkpyq

ˇ

ˇ

ˇ

2

|x ´ y|
dx dy

“ ´
1

L

ÿ

k,ℓPN3

|k|,|ℓ|ďRN

ż

QˆQ

ś3
i“1 4 sinpπkixiq sinpπℓixiq sinpπkiyiq sinpπℓiyiq

|x ´ y|
dx dy

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

“:Ik,ℓ

(2.7.5)

where RN is the Dirichlet Fermi radius defined in (2.2.6).
The starting point of our numerical scheme is a simple calculation which reduces the

above six-dimensional integral to the three-dimensional integral of a separable function
times the Coulomb potential over a finite region. For periodic boundary conditions such
a reduction is trivial because the system is translation invariant, which implies that the
exchange integrand depends only on the relative coordinate z “ x ´ y; but the zero
boundary condition breaks the translation invariance. Nevertheless the following holds:

Lemma 2.7.1. For k, ℓ P N3, and Ik,ℓ as defined above,

Ik,ℓ “ 8

ż

r0,1s3

ś3
i“1 fki,ℓipziq

|z|
dz (2.7.6)

where for a, b P N, fa,b is defined as

fa,bpτq “
1 ´ τ

2

´

cospπpa ` bqτq ` cospπpa ´ bqτq

¯

`

ˆ

1

a
`

1

b
´

1

pa ` bq

˙

sinpπpa ` bqτq

2π

`

#

´

1
a

´ 1
b

´ 1
a´b

¯

sinpπpa´bqτq

2π
if a ‰ b,

1´τ
2

otherwise.
(2.7.7)

We remark that there is a well known alternative reduction of any 6D Coulomb integral
of the form

ş

upxq 1
|x´y|

vpyq dx dy to a 3D integral over reciprocal space, by using the
convolution theorem for the Fourier transform. But this leads to an integral over an
unbounded domain, a stronger („ 1{|k|2) singularity, and – in our case – a slow decay of
the integrand, making the expression (2.7.6) numerically much more favourable.

Proof. Using the identity 2 sinpAq sinpBq “ cospA ´ Bq ´ cospA ` Bq and the change of
variables w “ x ` y, z “ x ´ y, and noting that the volume element becomes dxidyi “
1
2
dwidzi,

Ik,ℓ “

ż

r´1,1s3

1

|z|

3
ź

i“1

#

1

2

ż 2´|zi|

|zi|

`

cosπkizi ´ cos πkiwi

˘`

cosπℓizi ´ cosπℓiwi

˘

dwi

+

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“:fki,ℓi pziq

dz.
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The integral in the definition of fa,bpziq is elementary to evaluate by using the identity
2 cosA cosB “ cospA ` Bq ` cospA ´ Bq for the term cosπawi cos πbwi, yielding

fa,bpziq “ p1 ´ |zi|q cospπaziq cospπbziq ` cospπaziq
sinpπb|zi|q

πb
` cospπbziq

sinpπa|zi|q

πa

´
sinpπpa ` bq|zi|q

2πpa ` bq

#

´
sinpπpa´bq|zi|q

2πpa´bq
if a ‰ b,

`
1´|zi|

2
otherwise.

Next, we note that since fa,bp´ziq “ fa,bpziq and the Coulomb potential 1{|z| is invariant
under the transformations zi ÞÑ ´zi, we can replace r´1, 1s3 by r0, 1s3 by adding a factor of
8 in front of the integral. The final expression for fa,b given in the lemma now follows from
the trigonometric identities 2 cosA cosB “ cospA`Bq ` cospA´Bq and α sinA cosB `

β cosA sinB “
α`β
2

sinpA ` Bq `
α´β
2

sinpA ´ Bq.

Since the integrand in (2.7.6) is a separable function except for the Coulomb potential,
the idea now is to also approximate the latter by separable functions, therefore reducing
the problem to the computation of one dimensional integrals. Such an approximation is
provided by recent advances in low-rank tensor approximation; more specifically, we use
results of Hackbusch ([51, Section 9.8.2]). The Coulomb potential can be very accurately
approximated by a sum of weighted Gaussians,

1

r
«

M
ÿ

j“1

ωje
´αjr

2

. (2.7.8)

Plugging this approximation into equation (2.7.6) and factorizing e´αj |z|2 “
ś3

i“1 e
´αjz

2
j ,

one obtains

Ik,ℓ « 8
M
ÿ

j“1

ωj

3
ź

i“1

Iki,ℓi,j with Ia,b,j “

ż 1

0

fa,bptqe
´αjt

2

dt, (2.7.9)

which reduces the 3D integral in (2.7.6) to one-dimensional integrals of analytic functions.7

To reduce the overall number of 1D integrals that must be computed, let us introduce,
for p P t0, 1, ..., 2tRDir

N uu and j P t1, ...,Mu (where t u denotes the integer part), the
auxiliary integrals

Cp,j :“

ż 1

0

1 ´ t

2
cospπp tqe´αjt

2

dt and Sp,j :“

ż 1

0

sinpπp tq

2π
e´αjt

2

dt. (2.7.10)

It follows from the explicit expression for fa,b in (2.7.7) that

Ia,b,j “ Ca`b,j ` C|a´b|,j `

´

1
a

` 1
b

´ 1
a`b

¯

Sa`b,j

`

#

´

1
a

´ 1
b

´ 1
a´b

¯

signpa ´ bqS|a´b|,j if a ‰ b

C0,j if a “ b.
(2.7.11)

7In fact, one could represent these integrals exactly in terms of the error function erf and the imaginary
error function erfi, but we do not use this fact on our scheme.
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Thus in total

ExrΨN,Ls « ´
8

L

ÿ

k,ℓPN3

|k|,|ℓ|ďRN

M
ÿ

j“1

ωj

3
ź

i“1

Iki,ℓi,j (2.7.12)

with Ia,b,j given by (2.7.10)–(2.7.11). In particular, as RDir
N „ N1{3, calculating the ex-

change energy of the free N -electron gas reduces to the problem of evaluating OpN1{3Mq

one-dimensional integrals of analytic functions on the interval r0, 1s, and multiplying and
summing them according to equation (2.7.12).

Next, let us discuss the choice of weights and exponents, and the error, in (2.7.8). We
used the values tωH

j , α
H
j u51j“1 given on Hackbusch’s webpage [50] for the (approximately)

best approximation of the Coulomb potential as the sum of M “ 51 Gaussians, which
satisfy ∥1{r ´ vHprq∥L8pr1,109sq ď 10´9 where vHprq “

ř51
j“1 ω

H
j e

´αHj r2 . Moreover since we
are interested in a good approximation of 1{r on the unit cube, we rescaled Hackbusch’s
parameters by setting

ωj “
ωH
j

r0
and αj “

αH
j

r20
,

which yields a pointwise error of

∥vprq ´ 1{r∥L8prr0,109r0sq ď r´1
0 ˆ 10´9 (2.7.13)

where vprq “
ř51

j“1 ωje
´αjr

2
. In our numerical results we chose r0 “ 10´4, to achieve good

accuracy in (2.7.6) both in the region |z| ă r0 (note that the integral of 1{|z| over this
region is „ r20) and outside it.

Finally, let us discuss evaluation of the 1D integrals (2.7.10), which requires a moment’s
thought as one needs to resolve both the oscillatory trigonometric factor and the Gaussian
factor. The wavevector πp is ď π ¨ 2RDir

N and hence À 200 for up to N “ 30 000 electrons
(in which case RDir

N « 31), so the trigonometric oscillations can be accurately resolved by
any standard quadrature method. The Gaussian factor, however, turns out to be more
delicate, as the maximum value of αj is « 8 ˆ 108. For αj ą 1 we therefore used the
following alternative expressions obtained by re-scaling:

Ca,j “
1

?
αj

ż

?
αj

0

ˆ

1

2
´

t

2
?
αj

˙

cospπa
t

?
αj

qe´t2dt, (2.7.14)

Sa,j “
1

?
αj

ż

?
αj

0

1

2π
sinpπa

t
?
αj

qe´t2dt. (2.7.15)

Note that even though the integration interval may be big, for practical purposes one can
truncate at mint

?
αj, 10u (as

ş8

10
e´t2dt « 10´45).

2.8 Assumptions on GGAs

We now show that the expressions for the PBE and B88 functionals (see equations (2.7.2)
and (2.7.1)) satisfy the assumptions of Theorem 2.1.1.
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The C1 regularity in p0,8q ˆR is straightforward, so we just need to worry about the
continuity when a goes to zero and b remains bounded. For this, let us rewrite equations
(2.7.1) and (2.7.2) as

gPBE
pa, bq “ cx

µs2

4p3π2q
2
3 `

µ
κ
s2
a

4
3

gB88
pa, bq “

2
1
3 s2

1 ` 6β2
1
3 s sinh´1

p2
1
3 sq

a
4
3 “

2
1
3 s

1 ` 6β2
1
3 s sinh´1

p2
1
3 sq

b

where s “ b{a
4
3 . Thus for the PBE, since the (enhancement) factor in front of a

4
3 is

bounded, we see that gPBEpa, bq Ñ 0 as a Ñ 0 regardless of b. For the B88, we make two
observations: first, if s Ñ 8 and b stays bounded, then gB88pa, bq goes to zero because of
the superlinear growth of the denominator in the enhancement factor; and second, if s is
bounded and b Ñ 0, then gB88pa, bq also goes to zero. In particular, as taking the limit
a Ñ 0 with b bounded falls into one of these two cases, the assumption holds.
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Chapter 3

Exchange Phenomena on Strictly
Tessellating Polytopes

In this chapter, we extend the results from the previous chapter in three directions: (i)
we extend the two-term asymptotics for the exchange energy and for semi-local density
functionals to strictly tesselating polytopes and fundamental domains of lattices, (ii) we
deal with general Riesz-type of interactions, and (iii) we work on arbitrary dimension Rn

with n ě 2. The methods used in this chapter also lead to a significant improvement on
the remainder of Theorem 2.1.1. In addition, we prove a two-term generalized version of
Weyl’s law that includes boundary corrections.

3.1 Main results

We start with some notation and then present the main results of this chapter. Although
the setting is quite similar to the previous chapter, we shall approach the problem from
the spectral asymptotics point of view. Therefore, we will follow the notation from [110]
and speak of eigenfunctions and spectral functions as opposed to the orbital functions
and density matrix terminology from the previous chapter. The connection between the
two viewpoints will be clarified later on.

Let Ω Ă Rn denote an open, bounded, and connected subset with regular boundary.
Then under either Dirichlet or Neumann boundary conditions (BCs), there exists a se-
quence 0 ď λ1 ď λ2 ď ... Ñ 8 and an orthonormal basis (in L2pΩq) of smooth functions
tejujPN Ă C8pΩq such that

´∆ej “ λ2jej,

where ∆ is the Euclidean Laplacian (see [116]). One can thus define the spectral function
and its scaled diagonal up to λ as

Sλpr, r̃q :“
ÿ

λjďλ

ejprqejpr̃q and Ss,λprq “
1

λn
Sλ

ˆ

r

λ
,
r

λ

˙

. (3.1.1)
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Our goal for this chapter is to derive two-term asymptotic expansions for the exchange
energy with Riesz interaction,

Expλq “

ż

ΩˆΩ

|Sλpr, r̃q|2

|r ´ r̃|s
drdr̃ with 0 ă s ă n, (3.1.2)

and for semi-local functionals

F pλq “

ż

Ωλ

f
`

2Ss,λprq, 2∇Ss,λprq
˘

dr, (3.1.3)

in the limit as λ Ñ 8. (The factor of 2 inside f comes from the spin of the electrons, see
(3.1.10).) Note that the class of semi-local functionals includes the important example of
the counting function

Npλq :“ #tj : λj ď λu “

ż

Ωλ

Ss,λprqdr. (3.1.4)

From this example and the extensive literature on it (see [62, 60, 61, 110, 104] and ref-
erences therein), one sees that two-term asymptotics of this kind are often subtle and
influenced by the regularity of the boundary and geometry of the domain. Even in the
simple case of a connected domain with smooth boundary in Rn, it is not known1 whether
the following two-term asymptotic formula holds:

Npλq “

$

’

&

’

%

ωn

p2πqn
λn|Ω| ´

ωn´1

4p2πqn´1
λn´1

|BΩ| ` Opλn´1
q, for Dirichlet BCs,

ωn

p2πqn
λn|Ω| `

ωn´1

4p2πqn´1
λn´1

|BΩ| ` Opλn´1
q, for Neumann BCs,

(3.1.5)

where ωn is the volume of the unit ball on Rn. Therefore, we restrict ourselves in this
chapter to two types of domains where such asymptotics can be obtained: (i) the set of
strictly tesselating polytopes Ω Ă Rn (see Definition 3.2.1), and (ii) fundamental domains
of lattices Γ Ă Rn with the periodic Laplacian.

On such domains, the main theorems of this chapter can be stated as follows.

Theorem 3.1.1 (Asymptotics of exchange energy). Let Ω Ă Rn be a strictly tessellat-
ing polytope (see Definition 3.2.1) or the fundamental domain of a lattice. Let Expλq

be the exchange energy defined in (3.1.2) and suppose that n ě 2 and n´1
2

´ n´1
n`1

ă

s ă n. Then, for any ϵ ą 0 we have

Expλq “ cx,1pn, sqλ
n`s

|Ω|`
`

cFSpn, sq ` cBLpn, sq
˘

λn´1`s
|BΩ| ` Opλrpn,sq`ϵ

q, (3.1.6)

1Formula (3.1.5) is known to hold under some non-periodicity assumptions on the geodesic flow [62, 86].
Such assumptions are conjectured to hold for general smooth domains but only proved (to the knowledge
of the author) for special cases such as convex domains (see [104])
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where

rpn, sq “

#

maxts, 7{6, 1 ` s{6u for n “ 2,

maxtn ´ 2 ` s, p3n ´ 2q{2 ´ pn ´ 1q{pn ` 1qu otherwise,

The leading exchange constant, the finite size, and the boundary layer corrections are
given, respectively, by

cx,1pn, sq “
ω2
n

p2πq2n

ż

Rn

hnp|z|q2

|z|s
dz, cFSpn, sq “ ´

ω2
n

p2πq2n

ż

Rn

hnp|z|q2|zn|

2|z|s
dz,

cPerBLpn, sq “ 0,

cDir
BLpn, sq “

ω2
n

p2πq2n

ż

Rn

ż 8

|zn|

hnp|pπnz, wnq|q
hnp|pπnz, wnq|q ´ 2hnp|z|q

2|z|s
dwndz,

cNeu
BL pn, sq “

ω2
n

p2πq2n

ż

Rn

ż 8

|zn|

hnp|pπnz, wnq|q
hnp|pπnz, wnq|q ` 2hnp|z|q

2|z|s
dwndz,

where ωn “ |B1| is the volume of the unit ball in Rn, hnp|r|q “ yχB1prq{ωn is the
normalized Fourier transform of the characteristic function of B1, πn is the projec-
tion πnprq “ pr1, ..., rn´1q, and the superscript Per, Dir, and Neu indicate periodic,
Dirichlet, and Neumann boundary conditions.

Theorem 3.1.2 (Asymptotics of semi-local functionals). Let Ω Ă Rn be either a
strictly tessellating polytope or a fundamental domain of a lattice. Suppose f P

C1
`

p0,8q ˆ Rn
˘

X L8
locpr0,8q ˆ Rnq. Then, for F pλq defined in (3.1.3) we have

F pλq “ fpν0qλ
n
|Ω| ` cpf,Ωqλn´1

` Opλn´1
q, (3.1.7)

where

cpf,Ωq “

$

’

’

&

’

’

%

ż

BΩ

ˆ
ż 8

0

fpν0 ´ ν1pτ, r
1
qq ´ fpν0qdτ

˙

dHn´1
pr1

q, for Dirichlet BCs,

ż

BΩ

ˆ
ż 8

0

fpν0 ` ν1pτ, r
1
qq ´ fpν0qdτ

˙

dHn´1
pr1

q, for Neumann BCs,

and

ν0 :“
2ωn

p2πqn
p1, 0q P R ˆ Rn, ν1pτ, r

1
q :“

2ωn

p2πqn

`

hnp2τq, 2 9hnp2τqnpr1
q
˘

,

where npr1q is the inwards pointing unit normal to BΩ at r1, Hn´1 is the pn ´ 1q-
dimensional Hausdorff measure, and ωn and hn are the same from Theorem 3.1.1.

Remark. A few remarks are in place:
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(i) Due to radial symmetry of the interaction 1{|r|s, the coefficients cx,1pn, sq, cFSpn, sq
and cBLpn, sq can be computed by numerically evaluating a 1D, 2D, and 3D integral
respectively. In fact, Theorem 3.1.1 can be directly extended to non-radial interac-
tions w satisfying c{|r|s ď wprq ď C{|r|s for some positive constants c, C ą 0 (e.g.
positively homogeneous interactions).

(ii) For the Coulomb interaction in 3D, the constants can be analytically computed (see
Lemma 2.5.2 in Chapter 2) and are given by

cx,1p3, 1q “
1

4π3
, cFSp3, 1q “ ´

1

24π2
, and cDir

BL p3, 1q “ ´
log 2

12π2
.

(iii) By f P Llocpr0,8q ˆ R3q we mean that f is bounded on r0, T s ˆ K for any T ą 0
and K Ă Rn compact.

(iv) The asymptotics of semi-local functionals for the periodic case is trivial and has no

boundary corrections because Ss,λprq “
Npλq

λn
“ ωn

p2πqn
` Opλ´1´n´1

n`1 q in this case. The
seemingly unphysical boundary corrections for the exchange energy come from the
fact that the interaction considered is not periodic (as in Chapter 2).

Figure 3.1: Kaleidoscopic polytopes in R3. From left upper corner: rectangular paral-
lelepiped, equilateral prism, 30-60-90 prism, isosceles (45-45-90) prism, quadrirectangular
tetrahedron, trirectangular tetrahedron, and tetragonal disphenoid.

The thermodynamic limit of the free electron gas. Let us now briefly describe how the
quantities Expλq and F pλq in the limit λ Ñ 8 are related to the thermodynamic limit for
the free electron gas (FEG). First, recall that the FEG is a collection of non-interacting
electrons confined to a region Ω Ă R3. For N particles, the ground state of the system is
described by a N -body wave function Ψ : pΩ ˆ SqN Ñ C minimizing the kinetic energy

T rΨs “
1

2

ż

pΩˆSqN

|∇Ψpx1, ..., xNq|
2dx1...dxN

68



Chapter 3. Exchange Phenomena on Strictly Tessellating Polytopes

and subject to the following constraints: (i) normalization in L2ppΩ ˆ SqNq, (ii) anti
symmetry with respect to the permutation of the space-spin variables xℓ “ prℓ, sℓq

2,
and (iii) suitable boundary conditions (e.g. Dirichlet or Neumann). Here, S :“ t0, 1u

denotes the spin states. Therefore, any ground state wave function of the FEG is a
linear combination of antisymmetric N -fold tensor products (or Slater determinants) of
the (orbital) functions ϕℓ P L2pΩ ˆ Sq given by

ϕℓpr, sq “ etℓ{2uprqχℓ´2tℓ{2upsq (3.1.8)

where tℓ{2u is the greatest integer smaller than or equal to ℓ{2 (the floor function) and
χjpsq “ 1 for s “ j and zero otherwise. In particular, if N satisfies the closed shell
condition

N “ 2Npλq for some λ ą 0, (3.1.9)

where Npλq is the counting function (see (3.1.4)), then the ground state ΨN is unique, and
the associated (spinless) single-particle reduced density matrix is related to the spectral
function by the formula

γΨN pr, r1
q “ N

ÿ

sPS

ż

pΩˆSqN´1

Ψpr, s, x2.., xNqΨpr1, s, x2, ..., xNqdx2...dxN “ 2Sλpr, r1
q.

(3.1.10)

Moreover, if we assume the interactions between electrons to be of Coulomb type, the
exchange energy of a Slater determinant Ψ is defined as the difference

ExrΨs “ xΨ,
ÿ

1ďiăjďN

1

|ri ´ rj|
Ψy

looooooooooooomooooooooooooon

VeerΨs

´
1

2

ż

ΩˆΩ

ρΨprqρΨpr1q

|r ´ r1|
dr

loooooooooooomoooooooooooon

Jrρψs

dr1, (3.1.11)

where Vee is the electron-electron interaction energy and JrρΨs is the classical electrostatic
energy of a charged cloud with distribution given by the single-particle density

ρΨprq “ N
ÿ

sPS

ż

pΩˆSqN´1

|Ψpr, s, x2, ..., xNq|
2dx2...dxN . (3.1.12)

Therefore, the exchange energy of the ground state ΨN of the FEG with 2Npλq particles
in Ω can be written as3

ExrΨN s “ ´
1

4

ż

ΩˆΩ

|γΨN pr, r1q|2

|r ´ r1|
drdr1

“ ´

ż

ΩˆΩ

|Sλpr, r1q|2

|r ´ r1|
drdr1

“ ´Expλq, (3.1.13)

2In this section we will always use x for space-spin variables and r for space only. We also use the
notation

ş

ΩˆS fpxqdx “
ř

sPS
ş

Ω
fpr, sqdr

3This follows from straightforward computation by taking the Slater determinant of the orbitals in
(3.1.8) and plugging into (3.1.11).
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where Expλq is the function defined in (3.1.2). Similarly, we can relate the function
F pλq defined in (3.1.3) with generalized gradient approximations (GGA) for the exchange
energy. In the physics literature [6, 92], exchange GGAs are commonly expressed as

EGGA
x rρs “ ´

ż

Ω

cxρprq
4
3Fx

`

sprq
˘

dr, (3.1.14)

where cx “ p3{πq
1
33{4 is the Dirac constant, sprq “ |∇ρprq|{ρprq

4
3 is the dimensionless

reduced gradient and the function Fx : r0,8q Ñ R is called the enhancement factor and
satisfy Fxp0q “ 1. So if we apply EGGA

x to the ground state density ρλ (defined via
(3.1.12)) of the FEG with 2Npλq particles in Ω, then (after a scaling argument) we arrive
at the formula

EGGA
x rρλs “ λF pλq, (3.1.15)

where F is defined by (3.1.3) with fp2ρ, 2∇ρq “ ´cxρ
4
3Fxp|∇ρ|{ρ

4
3 q. Therefore, Theo-

rems 3.1.1 and 3.1.2 yield the following corollary.

Corollary 3.1.1 (Exchange functionals for the FEG in the thermodynamic limit). Let
Ω be a strictly tessellating polyhedron or a fundamental domain of a lattice and define
Ωλ “ tr P R3 : r{λ P Ωu. Let ρλ be the single-particle density associated to the unique
ground state Ψλ of the free electron gas in Ωλ with 2Npλq particles under either Dirichlet,

Neumann, or periodic boundary conditions. Suppose also that pa, bq ÞÑ a
4
3Fxpb{a

4
3 q P

C1pp0,8q ˆ r0,8qq X L8
locpr0,8q ˆ r0,8qq. Then we have

ExrΨλs “ ´cxρ̄
4
3 |Ω|λ3 ` cx,2ρ̄|BΩ|λ2 ` Opλ

3
2 log λq, (3.1.16)

EGGA
x rρλs “ ´cxρ̄

4
3 |Ω|λ3 ` cGGA

x,2 ρ̄|BΩ|λ2 ` Opλ2q (3.1.17)

where cx “ p3{4qp3{πq
1
3 is the Dirac constant, ρ̄ “ limλÑ8

2Npλq

|Ωλ|
“ 1

3π2 is the average
density in the thermodynamic limit, and the second coefficients are given by

cx,2 “

$

’

&

’

%

1{8 for periodic BCs,

p1 ` 2 log 2q{8 for Dirichlet BCs,

p1 ´ 6 log 2q{8 for Neumann BCs,

(3.1.18)

and

cGGA
x,2 “

$

’

’

’

’

’

&

’

’

’

’

’

%

cx

p3π2q
1
3

ż 8

0

„

1´
`

1 ´ h3p2τq
˘

4
3Fx

ˆ

2p3π2q
1
3 | 9h3p2τq|

`

1 ´ h3p2τq
˘

4
3

˙ȷ

dτ for Dirichlet BCs,

cx

p3π2q
1
3

ż 8

0

„

1´
`

1 ` h3p2τq
˘

4
3Fx

ˆ

2p3π2q
1
3 | 9h3p2τq|

`

1 ` h3p2τq
˘

4
3

˙ȷ

dτ for Neumann BCs,

(3.1.19)

where h3pτq “ 3psin τ ´ τ cos τq{τ 3.
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We, therefore, conclude that exchange GGAs can capture the surface corrections to
the exchange energy of the Dirichlet FEG in the thermodynamic limit exactly, as long as
the enhancement factor Fx satisfies the following constraint:

1

2p3π2q
1
3

ż 8

0

„

1´
`

1 ´ h3pτq
˘

4
3Fx

ˆ

2p3π2
q
1
3

| 9h3pτq|

p1 ´ h3pτqq
4
3

˙ȷ

dτ “
cx,2
cx
. (3.1.20)

with cx,2 and cx defined in Corollary 3.1.1.
Connection to the previous chapter. Let us briefly comment on how the results pre-

sented above are connected to the results from the previous chapter. First, observe that
the thermodynamic limit considered here differs slightly from the one in Chapter 2. While
in Chapter 2 we considered the limit N Ñ 8 with a fixed average density of particles ρ̄,
in this chapter the average density is

ρ̄ “ 2Npλq{|Ωλ| “ p3π2
q

´ 1
3 ` cλ´1

` Opλ´ 3
2 q,

which is only approximately constant. On the other hand, the finite-size Fermi momentum
here is constant (equals to 1 for every λ) as opposed to Chapter 2, where it has an
asymptotic expansion with a correction of order 1{L (see Lemma 2.3.2). In particular, the
asymptotic expansions stated here are more natural from the mathematical perspective.
(Compare the coefficients in Theorem 2.1.1 and Corollary 3.1.1.) Nonetheless, we remark
that the proposed constraint for the GGAs in (3.1.20) and in (2.1.12) are the same and,
therefore, independent of the precise specifics of the thermodynamic limit.

Proof strategy. The underlying strategy in the proofs of Theorems 3.1.1 and 3.1.2
is the same and consists of two main steps: (i) we obtain precise asymptotics for the
spectral function, including the behavior close to the boundary, and (ii) we perform a
careful analysis of the interior and boundary terms.

The first step is done via the wave equation (or kernel) method (see the next section).
To construct the exact wave kernel for all times, we use the symmetries of the domain Ω.
At this step, the reflection (respectively, translation) symmetry of the strictly tessellating
polytopes (respectively, fundamental domains of lattices) plays a central role and is the
main reason for our restriction to such domains. With the exact wave kernel at hand,
we follow the approach in [110, Chapter 3] to obtain the continuum limit of the spectral
function with explicit uniform estimates. Such estimates include derivatives and are not
restricted to the diagonal; they can be stated as follows.

Theorem 3.1.3 (Asymptotics of the spectral function). Let Ω Ă Rn be a strictly tessel-
lating polytope or a fundamental domain of a lattice. Then for any α, β P Nn

0 , there exists
a constant C “ CpΩ, α, βq ą 0 such that

ˇ

ˇB
α
r B

β
r1Sλpr, r1

q ´ B
α
r B

β
r1S

ctm
λ pr, r1

q
ˇ

ˇ ď C
´

1 ` λn´1´n´1
n`1

`|α|`|β|
¯

, (3.1.21)
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where

Sctm
λ pr, r1

q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ωn

p2πqn
λn

ÿ

vPT nbΩ

hnpλ|r ´ r1
` v|q for periodic BCS,

ωn

p2πqn
λn

ÿ

σPRnb
Ω

detσhnpλ|r ´ σr1
|q for Dirichlet BCs,

ωn

p2πqn
λn

ÿ

σPRnb
Ω

hnpλ|r ´ σr1
|q
˘

for Neumann BCs,

(3.1.22)

where ωn and hn are the same from Theorem 3.1.1, T nb
Ω and Rnb

Ω are respectively the
sets of neighbouring translations and reflections of Ω, and detσ is the determinant of the
linear part of σ. (See (3.2.7) and the preceding discussion for the proper definitions.)

Remark. Let us remark that upon completion of this work, we found an old paper by
Berard [9] containing similar formulas as the ones proved in Theorem 3.1.3 and Corol-
lary 3.2.1. The method of proof also seems to be similar. Unfortunately, we could not find
an English version of [9] to compare them properly.

As a corollary of the above estimates, we obtain a generalized version of the two-
term Weyl law with improved remainders (see Theorem 3.3.1). Estimates (3.1.21) are
also enough to justify using the continuum spectral function for the asymptotics of F pλq.
This follows by using the Lipschitz regularity of the function f in the integrand of F pλq,
and a cut-off away from the boundary to avoid the points where ρ “ 0 and f is no longer
Lipschitz (see Section 3.4).

On the other hand, the above estimates are not enough to justify using the contin-
uum approximation Sctm

λ for the exchange energy. Roughly speaking, this is because
the exchange energy is given by integration against the square of the spectral function.
Therefore, the error estimate in (3.1.21) yields an error proportional to pλ

3
2 q2 “ λ3 (in

the 3D Coulomb case) between the exchange energy of the spectral function and its con-
tinuum version, which is precisely of the order of the second term in Theorem 3.1.1. In
Chapter 2, we overcame this problem by using the theory of exponential sums to im-
prove the remainder in (3.1.21) from λ

3
2 to λ

3
2

´ 1
46

`ϵ. This was possible because explicit
eigenfunction formulae are available in the rectangular box. In this chapter, however, our
goal is to derive such asymptotics without any explicit expressions for the eigenfunctions.
Inspired by the work of Schmidt [105], where the bulk asymptotics of the spectral func-
tion as well as the leading order exchange constant were justified for general domains, we
realized that interpolating the L8 estimates from Theorem 3.1.3 with L2 estimates is a
much more efficient approach for two reasons: first, the L2 estimates can be obtained by
slightly modifying the proof of the L8 estimates; and second, they lead to a significant
improvement in the remainder of the asymptotic expansion of the exchange energy. Our
main estimate in the L2 setting is the following.

Theorem 3.1.4 (L2 estimate of spectral function). Let Ω Ă Rn be a strictly tessellating
polytope or a fundamental domain of a lattice. Then, there exists C “ Cpn,Ωq ą 0 such
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that

∥Sλ ´ Sctm
λ ∥L2pΩˆΩq ď Cp1 ` λ

n´1
2 q, (3.1.23)

where Sctm
λ is the same from Theorem 3.1.3.

By combining Theorems 3.1.3 and 3.1.4, we can justify the use of the continuum
spectral function in the calculation of the exchange energy. The asymptotic expansion for
Expλq then follows from geometric considerations and a careful analysis of the boundary
and interior terms (see Section 3.4).

Structure of the chapter. In Section 3.2, we construct the exact wave kernel and derive
a generalized Poisson summation formula on strictly tessellating polytopes. We then use
this Poisson summation formula to prove Theorems 3.1.3 and 3.1.4 in Section 3.3. The
proof of the main theorems of this chapter is given in Section 3.4. In Section 3.5, we
show that the definition of strictly tessellating polytopes presented here is equivalent to
[101, Definition 2]. We postpone the proof of the generalized Weyl law (Theorem 3.3.1) to
Section 3.6. Finally, in Section 3.7 we comment on possible extensions and applications
of the results presented here.

Notation

In this chapter Ω Ă Rn will always denote a bounded, connected, and open subset of Rn,
where n ě 2. Moreover, we denote the characteristic function of a set Ω Ă Rn by χΩ and
its re-scaled version by a factor c ą 0 by Ωc “ tr P Rn : r{c P Ωu. The unit ball in Rn is
denoted by B1. For the Fourier transform of a function f : Rn Ñ C we use the convention

pfpkq “

ż

Rn
fprqe´ik¨rdr,

where k¨r “
řn

j“1 kjrj is the standard scalar product in Rn. The inverse Fourier transform

is denoted by pf . The Schwartz space of smooth fast decaying functions in Rn and its dual,
the space of tempered distribution, are denoted respectively by SpRnq and S 1pRnq. Here we
use the standard big-O and small-O notation. More precisely, for functions f : r0,8q Ñ R
and g : r0,8q Ñ R we say that f “ Opgq respectively f “ Opgq provided that

lim sup
λÑ8

|fpλq|

|gpλq|
ă 8 respectively lim sup

λÑ8

|fpλq|

|gpλq|
“ 0.

We also use the notation f À g to indicate the existence of an unimportant constant
C ą 0 such that |fpλq| ď C|gpλq| for all values of λ large enough. In addition, if f or g
depends on additional parameters (e.g. ϵ), we indicate the dependence of the constant C
on this parameter by using the notation f Àϵ g.
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3.2 The wave kernel and Poisson summation

In this section, we recall some basic facts about the homogeneous wave equation (see
for instance [110, 104] for more detailed discussions). We then use these classical results
to construct the exact wave kernel on strictly tessellating polytopes and fundamental
domains of lattices, which leads to a generalized Poisson summation formula for radial
functions. This summation formula is the key ingredient in the proofs of Theorems 3.1.3
and 3.1.4.

We start by recalling some classical existence, uniqueness and regularity results for the
solutions of the wave equation on bounded domains. In what follows, we assume Ω Ă Rn

to be an open, bounded, and connected domain with Lipschitz boundary. Then, let us
consider the initial value problem (IVP) for the wave equation in Ω,

$

’

&

’

%

Bttu ´ ∆u “ 0 in Ω ˆ R,
Btupr, 0q “ 0,

upr, 0q “ gprq for some g P C8
c pΩq,

(3.2.1)

with the boundary conditions (BCs)

#

upr, tq “ 0 on BΩ ˆ R (Dirichlet BCs), or

∇rupr, tq ¨ nprq “ 0 on BΩ ˆ R (Neumann BCs),
(3.2.2)

where nprq is the unit normal vector to BΩ at r. Then, for an initial condition g P C8
c pΩq,

the unique solution to (3.2.1)(3.2.2) in C8pΩ ˆ Rq is given by

upr, tq “
`

cospt
a

´∆Ωqg
˘

prq,

where ∆Ω is the self-adjoint extension of the Laplacian in Ω defined by the boundary
conditions, and cospt

?
´∆Ωq is defined via the spectral calculus. (We refer the reader

to [116, Chapter 6] for a proof.) In particular, if u is the solution of (3.2.1) for some
g P C8

c pΩq, then from the spectral theorem we have

ż

R
fptqupr, tqdt “

`

pfp
a

´∆Ωqg
˘

prq (3.2.3)

for any f P SpRq even (i.e. fpsq “ fp´sq for any s P R). The identity above lies at the
heart of the wave equation method in spectral asymptotics because it allows us to obtain
information on the kernel of pfp

?
´∆Ωq through (approximate) solutions of (3.2.1).

Remark. If Ω is the fundamental domain of a lattice, then periodic boundary conditions
can be imposed and the same results described above hold.

To construct the wave kernel on bounded domains, we will need an explicit represen-
tation of the wave kernel in Rn and its finite speed of propagation property. For later use,
we state it as a lemma here.
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Lemma 3.2.1 (Wave kernel on Rn [110]). Let E0ptq be the distribution defined by

xE0ptq, gyD1pRnq,DpRnq “
1

p2πqn

ż

Rn
cospt|k|qpgpkqdk, for g P C8

c pRnq. (3.2.4)

Then, E0ptq P E 1pRnq (where E 1 is the set of distributions with compact support) and
supppE0ptqq “ tr P Rn : |r| ď |t|u. Moreover, for any g P C8pRnq, the function defined by

upr, tq :“
`

E0ptq ˚ g
˘

prq “
1

p2πqn

ż

Rn
cospt|k|qpgpkqeik¨rdk

is smooth and satisfies the wave equation in Rn ˆ R with initial condition upr, 0q “ g and
Btupr, 0q “ 0.

3.2.1 Wave kernel on symmetric polytopes

Now we turn to the construction of the wave kernel on strictly tessellating polytopes
and fundamental domains of lattices. The key idea is to exploit the symmetries of the
reflection/translation group associated to such polytopes. Let us start by introducing
some notation and the proper definitions.

Let Ω be a polytope in Rn. We denote by tF1, ..., Fmu the set of boundary faces of
Ω, and by tσ1, ..., σmu the corresponding set of reflections over the faces of Ω. The group
of reflections, RΩ, is then defined as the group generated by the reflections tσℓu1ďℓďm

through composition, i.e.,

RΩ “ tτ : Rn
Ñ Rn : τ “ σj1 ˝ ... ˝ σjM , where jk P t1, ...,muu. (3.2.5)

For any σ P RΩ, we denote the determinant of the linear part of σ by detσ. Note that
detσ P t1,´1u for any σ P RΩ. The set of strictly tessellating polytopes can then be
defined as follows.

Definition 3.2.1 (Strictly tesselating polytopes). We say that an open polytope Ω Ă Rn

strictly tessellates Rn if for any σ, τ P RΩ with σ ‰ τ , the reflected polytopes σpΩq and
τpΩq do not intersect. In mathematical terms, Ω is strictly tessellating if and only if the
following holds:

σpΩq X τpΩq ‰ H ðñ τ “ σ. (3.2.6)

(See Figure 3.2.)

Remark. The term strictly tessellates is adopted from [101]. Note, however, that the
definition given here is different from the one in [101, Definition 2]. The reason for this
difference is that the property stated above is precisely the one needed for the construction
of the wave kernel in Lemma 3.2.2 below. That both definitions are equivalent is shown
in Section 3.5

Similarly, we can define the fundamental domain of a lattice Γ as follows.
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Figure 3.2: Example of strict tessellations of the space by some solids of Figure 3.1.

Definition 3.2.2 (Fundamental domains). We say that an open polytope Ω Ă Rn is the
fundamental domain of a lattice Γ “ spanZtv1, ..., vnu4 if and only if (after a translation)

Ω “

" n
ÿ

j“1

tjvj : 0 ă tj ă 1 for any 1 ď j ď n.

*

.

Let us also define the set of neighbouring reflections/translations of Ω as the set of
reflections/translations for which the distance between the reflected/translated polytope
and the original one is zero, i.e.,

Rnb
Ω “ tσ P RΩ : σpΩq X Ω ‰ Hu, T nb

Ω “ tv P Γ : Ω ` v X Ω ‰ Hu. (3.2.7)

We can now construct the wave kernel in Ω explicitly. For this, it is helpful to introduce
the reflection and translation of a function g, respectively, as

σ#
pgqprq “ gpσrq for σ P RΩ and τvgprq “ gpr ´ vq for v P Γ.

Lemma 3.2.2 (Wave kernel on symmetric polytopes). Let Ω Ă Rn be a strictly tessellat-
ing polytope or a fundamental domain of a lattice Γ Ă Rn. Then, for any g P C8

c pΩq, the
unique solution in C8pΩq to the initial value problem

Bttu “ ∆Ωu, in Ω ˆ p0,8q with initial conditions

#

Btupr, 0q “ 0

upr, 0q “ gprq
(3.2.8)

where ∆Ω is either the Dirichlet, Neumann, or periodic Laplacian, is given by

upr, tq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ÿ

σPRΩ

detσ
`

E0ptq ˚ pσ#gq
˘

prq for Dirichet BCs,

ÿ

σPRΩ

`

E0ptq ˚ pσ#gq
˘

prq for Neumann BCs,

ÿ

vPΓ

`

E0ptq ˚ pτvgq
˘

prq for periodic BCs,

(3.2.9)

where E0 is defined in (3.2.4).
4Here we assume that the lattice Γ has dimension n, i.e. tv1, ..., vnu is a set of linearly independent

vectors in Rn.
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Proof. For simplicity, we prove only the Dirichlet case. (The other two are entirely anal-
ogous.) First, note that since supppgq Ă Ω, by the strictly tessellating property (3.2.6),

supppσ#gq X supppτ#gq “ H,

for any σ ‰ τ P RΩ. In particular,
ř

σPRΩ
detσσ#g is a sum of smooth functions with

disjoint support and therefore smooth. Thus by Lemma 3.2.1, the function upr, tq defined
in (3.2.9) is smooth and solves the wave equation in Rn with initial condition upr, 0q “
ř

σPRΩ
detσσ#g and Btupr, 0q “ 0. Since uniqueness follows from the previous discussion,

we just need to check that the boundary condition is satisfied. To this end, note that

ÿ

σPRΩ

detσσ#
pσ#

ℓ gq “
ÿ

σPRΩ

detσpσℓ ˝ σq
#g “ ´

ÿ

σPRΩ

detσσ#g,

where we used that σℓ is invertible and detpσ ˝ σℓq “ ´ detσ. Thus

upσℓr, tq “
ÿ

σPRΩ

detσσ#
ℓ

`

E0 ˚ pσ#gq
˘

prq “
ÿ

σPRΩ

detσE0ptq˚

ˆ

pσℓ ˝ σq
#g

˙

prq “ ´upr, tq.

To conclude, we note that σℓprq “ r for any r P Fℓ and BΩ “
Ť

ℓ Fℓ, which implies that
upr, tq “ 0 on BΩ.

An useful corollary of the lemma above is the following generalized Poisson summation
formula for radial functions.

Corollary 3.2.1 (Generalized Poisson summation formula). Let Ω Ă Rn be a strictly
tessellating polytope or a fundamental domain of a lattice Γ. Let ∆Ω be either the Dirichlet,
Neumann, or periodic Laplacian in Ω. Then, for any f P SpRq even (i.e. fpsq “ fp´sq
for any s P R), we have

ÿ

λj

fpλjqejprqejpr̃q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1

p2πqn

ÿ

σPR
detσ{fp| ¨ |qpr ´ σr̃q for Dirichlet BCs,

1

p2πqn

ÿ

σPR

{fp| ¨ |qpr ´ σr̃q for Neumann BCs,

1

p2πqn

ÿ

vPΓ

{fp| ¨ |qpr ´ r̃ ´ vq for periodic BCs,

(3.2.10)

where {fp| ¨ |q is the Fourier transform of the radial function r P Rn ÞÑ fp|r|q.

Proof. First, observe that by the standard elliptic regularity estimate, for any V ĂĂ U ,
there exists some constant C “ CpV q ą 0 such that

∥ej∥Wm,2pV q ď Cp1 ` λjq
2m,
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for any m P N and λj. Moreover, by the leading order Weyl law (see (3.1.5)), which can
be shown to hold by the Dirichlet-Neumann bracketing technique [100, Section XIII.15],
one can control the degeneracy of any eigenvalue by

dpλjq :“ dimkerp´∆Ω ´ λ2jq À λn.

Thus from the classical Sobolev embedding we conclude that
ÿ

λjďλ

|ejprq|
2

À p1 ` λq
M ,

for some M P N and uniformly for r P V . As a consequence, the left hand side of (3.2.10)
is summable and the convergence is locally uniform in Ω ˆ Ω as long as f decays fast
enough. Similarly, the right hand side of (3.2.10) is also an absolutely convergent sum,

since {fp| ¨ |q P SpRnq (as f is even) and the set tσruσPRΩ
is uniformly discrete for any

r P Ω. Finally, to obtain (3.2.10) we can integrate the right hand side of (3.2.10) against
some test function g P C8

c pΩq and use the identity (3.2.3) with u given by Theorem 3.2.2.
Then, we find

ÿ

j

fpλjqejprqxej, gyL2pΩq “
1

2π

ż

R

pfptq
ÿ

σPRΩ

detσ
1

p2πqn

ż

Rn
cospt|k|qeik¨r

yσ#gpkqdkdt

“
ÿ

σPRΩ

detσ

p2πqn

ż

Rn
fp|k|qeik¨r

yσ#gpkqdk

“
ÿ

σPRΩ

detσ

p2πqn

ż

Rn
{fp| ¨ |qpr ´ σr̃qgpr̃qdr̃

(where the change in the order of integration/summation can again be justified by the
fast decay of f and g). As the above identity holds for any test function g P C8

c pΩq, the
result follows.

3.3 Asymptotics of the spectral function

The goal of this section is to prove Theorems 3.1.3 and 3.1.4. Throughout these proofs,
we will often use some decaying properties of the Fourier transfoms of the n-dimensional
ball and pn ´ 1q-dimensional sphere. For later reference, we state these properties in the
lemma below. (The reader can consult [55] or [111, Section 1.2] for a proof.)

Lemma 3.3.1 (Fourier transform of the ball and sphere). Let hnp|k|q “ yχB1pkq{ωn be
the normalized Fourier transform of the characteristic function of the unit ball in Rn, and
µn “ Hn´1 Sn´1 be the n ´ 1 Hausdorff measure restricted to the sphere Sn´1 “ tr P

Rn : |r| “ 1u. Then we have

|B
α
xµnpkq| Àα,n

1

p1 ` |k|q
n´1
2

and |B
α
`

hnp|k|q
˘

| Àα,n
1

p1 ` |k|q
n`1
2

,

where the implicit constant depends on α P Nn
0 and n P N, but not on k P Rn.
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3.3.1 Uniform estimates

We now present the proof of Theorem 3.1.3. This proof is an adaptation of the arguments
in [110, Chapter 3], where the diagonal version of Theorem 3.1.3 is proved for the periodic
case.

The first step in the proof is a uniform control on the growth of the sum of eigenfunc-
tions (and its derivatives) in a small interval around λ.

Lemma 3.3.2 (Sup-norm of Spectral ϵ-Band). Let Ω be a strictly tessellating polytope or
a fundamental domain of a lattice and ej be the eigenfunctions of the Laplacian under our
usual BCs. Then, for any α P N3

0 and 1 ď ϵ´1 ď λ, there exists a constant C “ Cpαq ą 0
(independent of λ and ϵ) such that

ÿ

|λj´λ|ďϵ

|B
αejprq|

2
ď C

`

1 ` λ
n´1
2

`2|α|
pϵλ

n´1
2 ` ϵ´n´1

2 q
˘

for any r P Ω (3.3.1)

Proof. The idea here is to estimate the sum in (3.3.1) by studying the kernel of ηϵλp
?

´∆Ωq

for some fast decaying non-negative function ηϵλ that is positive in the interval rλ´ϵ, λ`ϵs.
For this, let µn “ Hn´1 Sn´1, and let η P SpRq be a non-negative even function such
that ηpsq ą 1 for |s| ď 1, and suppppηq Ă r´1, 1s. Then, we define its even rescaled version
by

ηϵλpτq :“ η

ˆ

τ ´ λ

ϵ

˙

` η

ˆ

τ ` λ

ϵ

˙

,

and note that suppp pηϵλq Ă r´1
ϵ
, 1
ϵ
s. Thus from Lemma 3.3.1,

B
α
{ηϵλp| ¨ |qpzq “

ż 8

0

ηϵλpτqB
α
`

xµnpτzq
˘

τn´1dτ

“ ϵ

ż 8

0

`

ηpτ ´ λ{ϵq ` ηpτ ` λ{ϵq
˘

B
α
xµn

`

ϵτzqpϵτq
n´1`|α|dτ

Àη ϵλ
n´1
2

`|α| min

"

λ
n´1
2 ,

1

|z|
n´1
2

*

. (3.3.2)

Now, let us consider the set of reflections in RΩ for which the reflected polytope σpΩq lies
at most a distance of 1

ϵ
away of the original polytope Ω, i.e.,

Rϵ :“ tσ P RΩ : distpσpΩq,Ωq ď ϵ´1
u. (3.3.3)

Then, due to the strictly tessellating property, one can see that #Rϵ À 1
ϵn
. Moreover, we

claim that

`

B
α
{ηϵλp| ¨ |q

˘

pr ´ σr̃q “ 0 for any σ R Rϵ, r, r̃ P Ω and α P Nn
0 . (3.3.4)
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To show (3.3.4), just note that since supppE0ptqq Ă t|r| ď |t|u, we have

ż

Rn
{ηϵλp| ¨ |qpr̃ ´ rqgprqdr “

ż

Rn

ˆ
ż

Rn

ˆ

1

π

ż 1
ϵ

0

pηϵλptq cospt|k|qdt

˙

e´ik¨pr´r̃qdk

˙

gprqdr

“
p2πqn

π

ż 1
ϵ

0

pηϵλptqpE0ptq ˚ gqpr̃qdt “ 0,

for any g P C8
c pRnq with distpsupppgq, r̃q ě 1

ϵ
. As g was arbitrary, we conclude that

pηϵλprq “ 0 for any |r| ě 1
ϵ
and (3.3.4) holds. Hence, from Leibniz rule we have

B
α
r B

α
r̃
{ηϵλp| ¨ |qpr ´ σr̃q “

ÿ

|γ|“|α|

cγ,σ
`

B
α`γ

pηϵλp| ¨ |q
˘

pr ´ σr̃q, (3.3.5)

where all cγ,σ are bounded by a constant independent of ϵ, λ and σ (since all entries in the
linear part of σ are bounded by 1). Therefore, by (3.3.4), Corollary 3.2.1, and estimate
(3.3.2) (and recalling that ηϵλ ě 1 on rλ ´ ϵ, λ ` ϵs), we conclude that

ÿ

|λj´λ|ďϵ

|B
αejprq|

2
ď
ÿ

λj

ηϵλpλjq|B
αejprq|

2
“

ÿ

σPRϵ

detσ
ÿ

|γ|“|α|

cγ,σ
`

B
α`γ

{ηϵλp| ¨ |q
˘

pr ´ σrq

À ϵλn´1`|α|
` ϵλ

n´1
2

`|α|
ÿ

1ďdistpσpΩq,Ωqď 1
ϵ

1

|r ´ σr|
n´1
2

À λ
n´1
2

`|α|
`

ϵλ
n´1
2 ` ϵ´n´1

2

˘

.

We can now complete the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. The idea here is similar to the previous proof; we choose a
smooth version of the characteristic function of the interval r´λ, λs and use Lemma 3.3.2
and the generalized Poisson summation to get the continuum version with error estimates
controlled by powers of ϵ and λ. We can then estimate the error from smoothing the
characteristic function and optimize ϵ to complete the proof.

Let χλpsq be the characteristic function on the interval r´λ, λs, and let η P SpRq be
an even nonnegative function with pηp0q “ 1 and suppppηq Ă r´1, 1s. In addition, let χϵ

λ be
the mollification of χλ on the scale ϵ, i.e., χϵ

λpsq “ χλ˚
`

ϵ´1ηpϵ´1¨q
˘

psq, and rϵλ “ χλ ´ χϵ
λ

be the mollification error function. As η decays fast, it is not hard to see that

|rϵλpsq| ÀN
1

p1 ` ϵ´1|λ ´ s|qN
`

1

p1 ` ϵ´1|λ ` s|qN
ÀN

1

p1 ` ϵ´1|λ ´ s|qN
(3.3.6)

for any s ě 0. Thus denoting the mollified version of the spectral function by

Sϵ
λpr, r̃q “

ÿ

λj

χϵ
λpλjqejprqejpr̃q,

80



Chapter 3. Exchange Phenomena on Strictly Tessellating Polytopes

we can use (3.3.1), Cauchy-Schwarz and (3.3.6) to bound the error with respect to Sλ by

|B
α
r B

β
r̃ Sλ ´ B

α
r B

β
r̃ S

ϵ
λ| ď

8
ÿ

ℓ“1

ÿ

|λj´ℓϵ|ďϵ

|rϵλpλjqB
αejprqB

βejpr̃q|

ÀN

ÿ

ℓ

1

p1 ` |ϵ´1λ ´ ℓ|qN

ˆ

ÿ

|λj´ℓϵ|ďϵ

|B
αejprq|

2

˙
1
2
ˆ

ÿ

|λj´ℓϵ|ďϵ

|B
βejpr̃q|

2

˙
1
2

À
ÿ

ℓ

1 ` ℓn´1`|α|`|β|ϵn`|α|`|β| ` ℓ
n´1
2

`|α|`|β|ϵ|α|`|β|

p1 ` |ϵ´1λ ´ ℓ||qN

À λ
n´1
2

`|α|`|β|
`

ϵλ
n´1
2 ` ϵ´n´1

2

˘

. (for λ big). (3.3.7)

On the other hand, by applying Corollary 3.2.1 to Sϵ
λ and recalling from the last proof

that {χϵ
λp| ¨ |qpkq “ 0 for |k| ě 1

ϵ
(since suppppηϵq Ă r´1{ϵ, 1{ϵs), we find that

B
α
r B

β
r̃ S

ϵ
λpr, r̃q “

ÿ

σPRϵ

detσ
1

p2πqn

ż

Rn

`

χλp|k|q ` rϵλp|k|q
˘

B
α
r B

β
r̃

`

eik¨pr´σr̃q
˘

dk

“
ÿ

σPRϵ

detσ

p2πqn

ˆ

ωnλ
n
B
α
r B

β
r̃ hnpλ|r ´ σr̃|q `

ż 8

0

rϵλpτqτn´1
B
α
r B

β
r̃ xµn

`

τpr ´ σr̃q
˘

qdτ

˙

.

(3.3.8)

Moreover, from (3.3.6) and Lemma 3.3.1 we have

rϵλpτqτn´1
B
α
r B

β
r̃ xµn

`

τpr ´ σr̃q
˘

À
τ
n´1
2

`|α|`|β|

p1 ` ϵ´1|λ ´ τ |qN
mintτ

n´1
2 , |r ´ σr̃|´n´1

2 u.

By integrating the estimate above over p0,8q and summing over σ P Rϵ, we can see that

the last term in (3.3.8) yields (at most) an error of order O
`

λ
n´1
2

`|α|`|β|pϵλ
n´1
2 ` ϵ´n´1

2 q
˘

.
Therefore, we conclude from (3.3.7), (3.3.8), and the decay of hn that

B
α
r B

β
r̃ Sλpr, r̃q “ B

α
r B

β
r̃ S

ctm
λ pr, r̃q `

ÿ

σPRϵzR1

detσ
ωn

p2πqn
λnB

α
r B

β
r̃ hnpλ|r ´ λr̃|q

loooooooooooomoooooooooooon

Àλ
n´1
2 `|α|`|β|

|r´σr̃|
´
n`1
2

` O
`

λ
n´1
2

`|α|`|β|
pϵλ

n´1
2 ` ϵ´n´1

2 q
˘

“ B
α
r B

β
r̃ S

ctm
λ pr, r̃q ` O

`

λ
n´1
2

`|α|`|β|
pϵλ

n´1
2 ` ϵ´n´1

2 q
˘

. (3.3.9)

The result now follows by setting ϵ “ λ´n´1
n`1 . The proof for the periodic and Neumann

cases is a straightforward adaptation of the arguments presented above.

An interesting consequence of Theorem 3.1.3 is the following generalized Weyl law,
which gives the next term of the Cesàro means considered in the work by Schmidt [105,
Theorem 1.1]. (For the proof, see Section 3.6.)
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Theorem 3.3.1 (Two-term generalized Weyl law). Let Ω Ă Rn be a strictly tessellating
polytope or a fundamental domain of a lattice. Let ej the eigenfunctions of the Dirichlet,
Neumann or periodic Laplacian. Let a P C8

`

Rn;SpRnq
˘

, then we have

ÿ

λjďλ

xej, a
w

pr, λ´1Dqejy “ cLpaqλn`
`

cFSpaq ` cBCpaq
˘

λn´1
` Opλn´1´n´1

n`1 q, (3.3.10)

where awpr, λ´1Dq is the Weyl quantization of apr, ξq at scale h “ λ´1 (see [130, Section
4.1]), and the leading, finite-size, and boundary correction constants are given by

cLpaq “
1

p2πqn

ż

ΩˆB1

apr, ξqdrdξ (3.3.11)

cFSpaq “
1

p2πqn`1

ż

BΩˆB1

„

p.v.

ˆ

1

τ

˙ȷ

`

∇ξa
`

r, ξ ´ τnprq
˘

¨ nprq
˘

dξdHn´1
prq (3.3.12)

cBCpaq “
mBC

p2πqn`1

ż

B˚
1

ż

R
a

ˆ

r, ξ1
` p1 ´ |ξ1

|
2
q
1
2 τnprq

˙

logp
|1`τ |

|1´τ |
q

τ
dτdHn´1

pξ1
qdHn´1

prq,

(3.3.13)

where nprq is the outward-pointing normal vector at r P BΩ, B˚
1 “ tpr, ξq P BΩ ˆ B1 : r P

BΩ and ξ ¨nprq “ 0u is the unit ball bundle in the (co)tangent bundle of BΩ, p.v.r1{τ s is the
Cauchy principal value distribution (see (3.6.1)), and mBC “ ´1, 1 and 0 for Dirichlet,
Neumann, and periodic BCs, respectively.

Remark. The assumption on apr, ξq are chosen mostly to simplify the proof. For instance,
Theorem 3.3.1 still holds (with essentially the same proof) under the assumption that the
Fourier transform of the function ξ ÞÑ apr, ξq (and its derivatives with respect to r) are
tempered distribution of order 0 with compact singular support and decay fast enough. In
particular, for apr, ξq “ 1 we recover the classical two-term Weyl law (3.4.3) with improved
remainder.

3.3.2 L2 estimate

We now turn to the L2 estimates for the spectral function. This result can be seen as
a quantified version of the L2 convergence of the density in the work by Schmidt [105,
Theorem 1.2]. However, unlike the more classical (and more general) methods used in
[105], our proof is again based on the wave kernel constructed before.

Proof of Theorem 3.1.4. As in the proof of Theorem 3.1.3, we let χλ be the characteristic
function on the interval r´λ, λs and η P SpRq be an nonnegative even function with pη “ 1
on a neighbourhood of 0. Then, we define the mollified version of χλ, the mollifying
error function, and the smoothed spectral function as χ1

λ :“ χλ ˚ η, rλ :“ χ1
λ ´ χλ, and
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S1
λ “

ř

j χ
1
λpλjqejprqejpr̃q, respectively. Hence, by the orthogonality of ej, we have

∥Sλ ´ S1
λ∥2L2pΩˆΩq “

ÿ

j,k

rλpλjqrλpλkq

ż

ΩˆΩ

pejekqprqpejekqpr̃qdrdr̃

À
ÿ

j

|rλpjq|
2
pNpj ` 1q ´ Npjqq À

ÿ

j“1

p1 ` pλ ´ jqq
´Njn´1

À λn´1.

So up to an error À λ
n´1
2 , we can work with the smoothed spectral function S1

λ. Now, since

we do not vary the support of pη in this proof (no scaling with ϵ), we see that xχ1
λ “ pχλpη

has support on a fixed neighbourhood of 0. In particular, if we choose the support of
pη small enough and apply the generalized Poisson summation in Corollary 3.2.1 to χ1

λ,
we conclude (see (3.3.4) in the previous proof) that all terms with σ P RΩzRnb

Ω vanish.
Therefore, the result follows if we show that for any σ P RΩ the following estimate holds:

∥ {χ1
λp| ¨ |qpr ´ σr̃q ´ {χλp| ¨ |qpr ´ σr̃q∥L2pΩˆΩq “ ∥ {rλp| ¨ |qpr ´ σr̃q∥L2pΩˆΩq À λ

n´1
2 ,

where {gp| ¨ |q is the Fourier transform in Rn of the function r ÞÑ gp|r|q. This estimate is a
direct consequence of Plancherel’s theorem and the estimate rλp|r|q ď p1`|λ´|r||q´N .

Remark. Note that we only used the wave kernel for times of order 1 here5 . In particular,
the same estimate is expected to hold on more general domains (e.g. smooth ones).

We can now interpolate between the L2 and L8 estimate to obtain

Corollary 3.3.1 (Lp estimates). Let Ω be a strictly tessellating polytope or a fundamen-
tal domain of a lattice, and let Sλ be the spectral function of the periodic, Dirichlet or
Neumann Laplacian in Ω. Then,

∥Sλ ´ Sctm
λ ∥LppΩˆΩq À λpn´1qp1´ 1

pq´n´1
n`1p1´ 2

pq, (3.3.14)

where Sctm
λ is the continuum spectral function defined in Theorem 3.1.3.

3.4 Asymptotics of exchange functionals

In this section we present the proof of the main results of this chapter. For these proofs,
we shall use two geometric lemmas.

The first lemma is a lower bound on the distance between points in the original
polytope and points in the reflected one. To state this lemma, let us introduce some
more notation. First recall that, since Ω is an open convex polytope with faces tFjujďm,
there exists tαjujďm Ă R such that

Ω “ tr P Rn : r ¨ nj ă αj for any 1 ď j ď mu, (3.4.1)

5Unlike in the L8 case, we could not use the large times wave kernel to improve the remainders in
the L2 case.
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where nj is the unit outward-pointing normal vector to the face Fj. Moreover, for any

σ P Rnb
Ω there exists tj1, ..., jpu Ă t1, ...,mu such that ΩXσpΩq “

Şp
k“1 Fjk and the interior

int
p
č

k“1

Fjk :“

"

r P Rn : r ¨ nj

#

“ αj if j P tjkukďp,

ă αj otherwise

*

(3.4.2)

is non-empty (see Lemma 3.5.1 below). We then denote the metric projection along the
affine space extending this intersection by πσ, i.e.,

πσr “ argmint|r ´ r1
| : r1

P Rn and njk ¨ r1
“ αjk for all 1 ď k ď pu. (3.4.3)

We also define the complementary projection as πK
σ r :“ r ´ πσr.

Lemma 3.4.1 (Lower bound on reflected distances). Let σ P Rnb
Ω , then

|r ´ σr1
| Á |πσr ´ πσr

1
| ` |πK

σ r ` πK
σ r

1
| and |r ´ σr1

| Á |r ´ r1
|

for any r, r1 P Ω. (With the convention that πσprq “ r if σ is the identity.)

Proof. After relabelling the faces and translating our reference frame, we can assume
that 0 P

Şp
j“1 Fj “ Ω X σpΩq. In this case, σ is a linear transformation given by some

composition of the (linear) reflections tσjujďp (see Lemma 3.5.1 below) and πσ becomes
the orthogonal projections along the subspace

Vσ “ tr P Rn : r ¨ nj “ 0 for all j ď pu. (3.4.4)

In particular, σr “ r for any r P Vσ and σr P V K
σ for any r P V K

σ . If we now define the
closed conic sets CΩ “ tr P V K

σ : r¨nj ď 0 for 1 ď j ď pu and σpCΩq “ tσr P V K
σ : r P CΩu,

then we have

Ω Ă Vσ ‘ CΩ and σpΩq Ă Vσ ‘ σpCΩq. (3.4.5)

Moreover, one can show that CΩ X σpCΩq “ t0u. Indeed, if r, rr P CΩ with r “ σr̃, then
for any p P int

Ťp
k“1 Fk (see (3.4.2)) we have δr` p “ σpδr̃` pq P ΩXσpΩq Ă Vσ for δ ą 0

small enough, which implies that r “ r̃ “ 0. Thus CΩ and σpCΩq are closed conic subsets
that intersect only at zero. Consequently,

|r ´ σr1
| Á |r| ` |σr1

| for any r, r1 P CΩ,

where the implicit constant is independent of r and r1. From this inequality, the inclusions
in (3.4.5), and the fact that Vσ is invariant under σ, we conclude that

|r ´ σr1
|
2

“ |πσpr ´ r1
q|
2

` |πK
σ pr ´ σr1

q|
2

“ |πσpr ´ r1
q|
2

` |πK
σ r ´ σπK

σ r
1
|
2

Á |πσpr ´ r1
q|
2

` p|πK
σ r| ` |πK

σ σr
1
|q
2 for any r, r1 P Ω. (3.4.6)

Lemma 3.4.1 now follows from (3.4.6), the triangle inequality, and the fact that σ is an
isometry.
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The second geometric lemma we need is a first-order Taylor expansion of the function
w ÞÑ |pΩ ´ wq X Ω| at w “ 0.

Lemma 3.4.2 (Distributional derivative of Ω X pΩ ´ wq). Let Ω Ă Rn be a polytope.
Then, for any a P C8

c pRnq, there exists a constant C “ Cp|Ω|, |BΩ|, ∥a∥L8 , ∥∇a∥L8q ą 0
such that

ˇ

ˇ

ˇ

ˇ

ż

ΩXpΩ´wq

aprqdr ´

ż

Ω

aprqdr `

ż

BΩ

aprqpnprq ¨ wq`dHn´1
prq

ˇ

ˇ

ˇ

ˇ

ď C|w|
2, @w P Rn,

(3.4.7)

where nprq is the outward-pointing unit normal and fprq` :“ maxtfprq, 0u. In particular,
we have

ż

pΩ´w1qXpΩ`w2q

aprqdr “

ż

Ω

aprqdr ´

ż

BΩ

aprq
|nprq ¨ pw1 ` w2q| ` nprq ¨ pw1 ´ w2q

2
dHn´1

prq

` Op|w1|
2

` |w2|
2
q. (3.4.8)

Proof. Since Ω is bounded, it is clear that F pzq “
ş

ΩXpΩ´zq
aprqdr is continuous and com-

pactly supported. Therefore, it is enough to show that (3.4.7) holds on a neighbourhood
of 0. For this, let us define the sets

Fkpzq :“ tr P Ω : αk ´ pnk ¨ zq` ď nk ¨ r ď αku,

where αk and nk are the same from (3.4.1). Then we find that ΩzpΩ ´ zq “
Ťm

k“1 Fkpzq

and |Fkpzq X Fjpzq| “ Op|z|2q for j ‰ k. Thus,

ż

pΩ´zqXΩ

aprqdr ´

ż

Ω

aprqdr `

m
ÿ

k“1

ż

Fkpzq

aprqdr ` Op∥a∥L8 |z|
2
q (3.4.9)

Next, note that since Ω is a convex polytope, up to an error À ∥a∥L8 |z|2, we can replace
the integration over the set Fkpzq by integration over the set tr ´ τnj : r P Fk, 0 ď τ ď

pnprq ¨ zq`u – Fk ˆ r0, pnk ¨ zq`s. Therefore, we find that

ż

Fkpzq

aprqdr “

ż

Fk

dHn´1
prq

ż pnprq¨zq`

0

a
`

r ´ τnprq
˘

dτ ` Op∥a∥L8 |z|
2
q

“

ż

Fk

aprqpnprq ¨ zq`dHn´1
prq ` O

`

∥|a|∥L8 |z|
2

` ∥∇a∥L8 |z|
2
˘

,

which together with (3.4.9) completes the proof.

Remark. Note that Lemma 3.4.2 also holds for smooth domains by taking a partition of
the unity along the boundary.
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3.4.1 Proof of Theorem 3.1.2

Throughout this section, we use νλ for the combined function

νλprq “ 2pSs,λprq,∇Ss,λprqq P R1`n, (3.4.10)

where Ss,λ and ∇Ss,λ are the re-scaled spectral function and its gradient. Similarly, the
continuum version νctmλ prq is defined by using the continuum spectral function

Sctm
s,λ prq “

2ωn

p2πqn

ˆ

1 ´
ÿ

σPRnb
Ωλ

ztidu

detσhnp|r ´ σr|q

˙

. (3.4.11)

We start with the asymptotic expansion of

F ctm
pλq “

ż

Ωλ

f
`

νctmλ prq
˘

dr. (3.4.12)

Lemma 3.4.3 (Continuum semi-local asymptotics). Let f P C1pp0,8qˆRnqXL8
locpr0,8qˆ

Rnq. Then we have

F ctm
pλq “

ż

Ωλ

fpνctmλ prqqdr “ fpν0q|Ω|λn ` cpf,Ωqλn´1
` Opλn´1

q,

where ν0 and the coefficient cpf,Ωq are defined in Theorem 3.1.2.

Proof. First, we want to use the C1 regularity of f to estimate the difference F ctmpλq ´

fpν0q|Ωλ|. Since fpa, bq is only C1 at the points a ą 0, we start by showing that Sctm
s,λ

only vanishes close to the edges and faces of Ω. For this, first note that hnpτq “ 1 if
and only if τ “ 0 and that hnpτq Ñ 0 as τ Ñ 8. Therefore, for any δ ą 0 we can find
C0, Cpδq, cpδq ą 0 such that

Sctm
s,λ prq ą cpδq and |∇νctmλ prq| ď C0, (3.4.13)

for any r in the set

Ωδ
λ :“ tr P Ωλ : min

1ďℓďm
t|r ´ σℓprq|u ě δ and min

σPRnb
Ωλ

ztσℓu0ďℓďm

t|r ´ σr|u ě Cpδqu, (3.4.14)

where σℓ is the reflection over the re-scaled face λFℓ of the re-scaled polytope Ωλ and σ0
is the identity on Rn. In other words, Ωδ

λ is the set of points of Ωλ which are at least a
distance δ of the faces and a distance of order Cpδq of the edges of Ωλ (see Lemmas 3.4.1
and 3.5.1). So from (3.4.13), the assumptions on f , and the simple estimate

|ΩλzΩδ
λ| À Cpδq2λn´2

` δλn´1,

we find that

F pλq ´ fpν0q|Ωλ| “

ż

Ωδλ

ż 1

0

∇f
`

ν0 ` tpνctmλ prq ´ ν0q
˘

¨ pνctmλ prq ´ ν0qdtdr

` OpCpδq2λn´2
` δλn´1

q. (3.4.15)
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The next step is to expand the difference νctmλ ´ ν0 that appears outside ∇f in a sum of
terms overRnb

Ω ztσ0u, and then get rid of the terms that only give lower order contributions.
To this end, let us define

ρσprq :“
2ωn

p2πqn
hnp|r ´ σr|q and νσ :“ pρσ,∇ρσq.

Then since rangepπσq is an affine subspace of dimension at most n ´ 2 for any σ P

RΩλztσℓu0ďℓďm, we can use Lemma 3.4.1, the decay of hn, and the local boundedness
of the gradient of f to show that

ż

Ωδλ

ż 1

0

∇f
`

ν0 ` tpνctmλ ´ ν0
˘

¨ νσprqdr Àδ

ż

Ωδλ

p1 ` |πK
σ r|q

´n`1
2 dr Àδ λ

n´mintn`1
2

,2u (3.4.16)

for any σ P Rnb
Ωλ

ztσℓu0ďℓďm. As a consequence, we are left with the terms

Kℓpλ, δq :“

ż

Ωδλ

ż 1

0

∇f
`

ν0 ` tpνctmλ prq ´ ν0q
˘

¨
`

´ νσℓprq
˘

dtdr for 1 ď ℓ ď m.

To obtain the asymptotics of Kℓ, we can assume (without loss of generality) that the face
Fℓ lies on the plane tr P Rn : rn “ 0u and the inward-pointing normal is nℓ “ p0, ...., 1q.
Under this assumption, ρℓprq “ 2ωn{p2πqnhnp2rnq and

νσℓprq “
2ωn

p2πqn

`

hnp2rnq, 2nℓ
9hnp2rnq

˘

.

Moreover, one can check that

lim
λÑ8

χΩδλ
pλr1, ..., λrn´1, rnq “ χFℓpr1, ..., rn´1, 0qχpδ,8qprnq and (3.4.17)

lim
λÑ8

νctmλ pλr1, ..., λrn´1, rnq ´ ν0 “ ´νσℓprnq (3.4.18)

for almost every r P Rn´1 ˆ p0,8q, where χA stands for the characteristic function of

the set A. Thus since νσℓprq À p1 ` |rn|q´n`1
2 P L1pRq, we can now re-scale the variables

r1, ..., rn´1 by λ and apply the dominated convergence theorem to conclude that

Kℓpλ, δq

λn´1
Ñ

ż

Rn´1

ż 8

δ

χFℓpr1, .., rn´1, 0q

ż 1

0

∇f
`

ν0 ´ tνσℓprnqq¨
`

´ νσℓprnq
˘

dtdrndr1...drn´1

“

ż

Fℓ

ż 8

0

f
`

ν0 ´ tν1prn, r
1
q
˘

´ fpν0qdrndHn´1
pr1

q ` Opδq, (3.4.19)

where ν1prn, r
1q “ 2ωn

p2πqn

`

hp2rnq, 2npr1q 9hp2rnq
˘

. The proof now follows by plugging (3.4.16)

and (3.4.19) in (3.4.15) and taking the limit λ Ñ 0 and then δ Ñ 0.
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To complete the proof of Theorem 3.1.2, it is enough to show that

F ctm
pλq ´ F pλq “ Opλn´1

q. (3.4.20)

So fix again some δ ą 0 and let Ωδ
λ be defined as in (3.4.14). Then from (3.4.13) and

Theorem 3.1.3 we find that

Ss,λprq ě cpδq{2 in Ωδ
λ and |∇νλprq| ď 2C0 in Ωλ (3.4.21)

for λ big enough. It thus follows from the assumptions on f and Theorem 3.1.3 that
ż

Ωλ

fpνλq ´ fpνctmλ qdr À |ΩλzΩδ
λ| ` ∥∇f∥

L8

`

p
cpδq

2
,2C0qˆp´2C0,2C0q3

˘

ż

Ωδλ

|νctmprqλ ´ νλprq|dr

À Cpδq2λn´2
` δλn´1

` Dpδqλn´1´n´1
n`1 for some Dpδq ą 0.

Therefore, we can divide the estimate above by λn´1, send λ Ñ 8 and then δ Ñ 0 to
obtain (3.4.20).

3.4.2 Proof of Theorem 3.1.1

As in the previous section, we only work out the Dirichlet case in detail. We comment on
the modifications necessary for the Neumann and periodic cases at the end of the proof.
We start again by computing the asymptotics of the exchange energy for the continuum
spectral function

Ectm
x pλq “

ż

Ω2

|Sctm
λ |2

|r ´ r1|
drdr1

“
ω2
nλ

s

p2πq2n

ÿ

σ,τPRnb
Ωλ

detστ

ż

Ω2
λ

hnp|r ´ σr1|qhnp|r ´ τr1|q

|r ´ r1|s
drdr1

looooooooooooooooooooomooooooooooooooooooooon

:“Eσ,τ pλq

.

(3.4.22)

The first step here is to get rid of the terms Eσ,τ pλq that only gives lower order contribu-
tions; to this end, we use the following Lemma.

Lemma 3.4.4 (Lower order contribution). Suppose that either σ R tσℓu0ďℓďm or pσ, τq “

pσj, σkq where 1 ď j ‰ k ď m. Then we have

λsEσ,τ pλq “ Opλmaxtn´2`s,n´1,n´1
2

`su`ϵ
q, (3.4.23)

for any ϵ ą 0.

Proof. The key idea is to split the decay of hn over linear combinations of the components
of r and r1 in order to compensate for the integration in Ωλ ˆ Ωλ in as many directions
as possible. So first, from Lemma 3.4.1 we have

Eσ,τ pλq À

ż

Ω2
λ

p1 ` |πσr ´ πσr
1
|q

´n`1
2

`x
p1 ` |πK

σ r ` πK
σ r

1
|q

´x
p1 ` |r ´ r1

|q
´n`1

2 |r ´ r1
|
´sdrdr1,
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for any 0 ď x ď pn`1q{2. Hence, identifying the spaces rangepπσq « Rd and rangepπK
σ q «

Rn´d, we can make the change of variables pz, z1, w, w1q “ pπσr ´ πσr
1, πK

σ r ´ πK
σ r

1, πK
σ r `

πK
σ r

1, πσr ` πσr
1q P Rd ˆ Rn´d ˆ Rn´d ˆ Rd to find that

λsEσ,τ pλq À λs
ż

|z|`|z1|Àλ
|w|`|w1|Àλ

p1 ` |z|q
´n`1

2
`x

p1 ` |w|q
´x

p|z| ` |z1
|q

´n`1
2

´sdz1dzdw1dw

À λs`d`maxtn´d´x,0u`maxtx´s´1,0u`ϵ
ď λmaxtd`s,n´1,n´1

2
`su`ϵ,

where the last inequality follows from minimizing the function x ÞÑ maxtn ´ x, du `

maxtx ´ 1, su in the interval 0 ď x ď n`1
2
. Thus since d ď n ´ 2 for any σ R tσℓu0ďℓďm,

estimate (3.4.23) follows in this case.
For the second case, we first assume that Fk X Fj “ H. Under this assumption, the

faces Fj and Fk of the re-scaled polytope Ωλ are a distance „ λ away of each other. So close

to Fj, respectively Fk, we have hnp|r ´ σkr|q À λ´n`1
2 , respectively hnpr ´ σjr|q À λ´n`1

2 .
Thus again from Lemma 3.4.1,

λsEσj ,σkpλq À λs
ż

Ω2
λ

λ´n`1
2 p1 ` |r ´ r1

|q
´n`1

2 |r ´ r1
|
´sdrdr1

À λmaxtn´1,n´1
2

`su`ϵ.

Finally, if Fj XFk ‰ H, then the normal vectors nj, nk are not parallel. Consequently, the
variables wj “ πK

σj
r ` πK

σj
r1 P R, wk “ πK

σk
r ` πK

σk
r1 P R and r ´ r1 P Rn are independent.

Therefore, we can split the decay of hn and use Lemma 3.4.1 to compensate for the
integration in the directions wj, wk and r ´ r1. This yields the estimate

λsEσk,σjpλq À λs
ż

|r´r1|Àλ
|wj |`|wk|Àλ

p1 ` |wj|q
´1p1 ` |πσjpr ´ r1q|q´n´1

2

p1 ` |wk|qp1 ` |πσkpr ´ r1q|q
n´1
2

|r ´ r1
|
´sdrdr1

À λmaxtn´2`s`,n´1u`ϵ,

which completes the proof of the lemma.

From Lemma 3.4.4 and the symmetric relation Eσ,τ pλq “ Eτ,σpλq, we see that only the
terms Eσℓ,σℓpλq and Eσ0,σℓpλq (where σ0 is the identity in Rn) gives significant contribu-
tions. We thus need to compute their asymptotics. Let us start with the term Eσ0,σ0pλq.
In this case, from Lemma 3.4.2, the decay of hn, and the change of variables z “ r ´ r1,
we find that

Eσ0,σ0pλq “

ż

Ωλ´Ωλ

|hnp|z|q2

|z|s

ż

pΩλ´zqXΩλq

dr1dz

“

ż

Ωλ´Ωλ

hnp|z|q2

|z|s

ˆ

λn|Ω| ´ λn´1

ż

BΩ

pz ¨ npr1
qq`dHn´1

pr1
q ` λn´2Op|z|

2
q

˙

dz

“ λn|Ω|

ż

Rn

hnp|z|q2

|z|s
dz ´ λn´1

|BΩ|

ż

Rn´1ˆr0,8q

hnp|z|q2zn
|z|s

dz ` Opλn´2`maxt1´s,0u
q.

(3.4.24)
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Next, let us look to the terms Eσj ,σj with j ě 1. For simplicity, let us assume without
loss of generality that Fj Ă Rn´1 ˆ t0u and nj “ p0, ..., 0, 1q. Let us also denote the
height of Ω by H “ maxtrn : Rn´1 ˆ trnu X Ω ‰ Hu, the cross-section of Ω at height
h by Ωphq “ tr P Rn´1 : pr, hq P Ωu, and the projection sending pr1, ..., rnq P Rn to
pr1, ..., rn´1q P Rn´1 by πn. Since Ω is a convex polytope, we can bound the area of the
symmetric difference of the cross-sections at different heights by |Ωphq△Ωph1q| À |h´ h1|.
In particular, a scaling argument yields

ˇ

ˇ

`

Ω2λph ` znq ´ πnz
˘

X
`

Ω2λph ´ znq ` πnz
˘
ˇ

ˇ ´ |Ω2λp0q| À λn´2
p|h| ` |z|q, (3.4.25)

for any z P Ωλ. We can now use the above estimate with the change of variables z “

r ´ r1, w “ r ` r1 and the decay of hn to obtain

Eσj ,σjpλq “

ż

Ωλ´Ωλ

ż

pΩ2λ´zqXpΩ2λ`zq

hnp|pπnz, wnq|q2

|z|s

dzdw

2n

“

ż

Ωλ´Ωλ

ż 2λH´|zn|

|zn|

hnp|pπnz, wnq|q2

|z|s
|Ω2λp0q|

dwndz

2n
` Opλmaxtn´1´s,n´2u`ϵ

q

“
λn´1|Fj|

2

ż

Rn

ż 8

|zn|

hnp|pπnz, wnq|q2

|z|s
dwndz ` Opλmaxtn´1´s,n´2u`ϵ

q, (3.4.26)

where we used that dzdw “ 2ndrdr1, |Ω2λp0q| “ 2n´1λn´1|Fj|, and that

λn´2

ż

|z|Àλ

ż 2Hλ

|zn|

p1 ` |pπnz, wnq|q
´n´1

|z|
´s

p|wn| ` |z|qdwndz À λmaxtn´1´s,n´2u`ϵ,

λn´1

ż

|z|Àλ

ż 8

2Hλ´|zn|

p1 ` |pπnz, wnq|q
´n´1

|z|
´sdwndz À λmaxtn´2,n´1´su`ϵ, and

λn´1

ż

|z|Áλ

ż 8

|zn|

p1 ` |pπnz, wnq|q
´n´1

|z|
´sdwndz À λn´1´s`ϵ

for any ϵ ą 0. For the last terms, Eσ0,σjpλq with 1 ď j ď m, one can use the same change
of coordinates together with (3.4.25) to find that

Eσ0,σjpλq “
λn´1|Fj|

2

ż

Rn

ż 8

|zn|

hnp|pπnz, wnq|qhnp|z|q

|z|s
dwndz ` Opλmaxtn´1´s,n´2u`ϵ

q.

(3.4.27)

Hence by summing (3.4.24),(3.4.26), and (3.4.27) with the estimates in Lemma 3.4.4 we
conclude that

Ectm
x pλq “ cx,1pn, sqλ

n`s
`
`

cFSpn, sq ` cBLpn, sq
˘

λn´1`s
` Opλmaxtn´1,n´2`s,n´1

2
`su`ϵ

q,
(3.4.28)

with the constants cx,1, cFS and cBL defined according to Theorem 3.1.1.
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Finally, to complete the proof we just need to bound the difference Ectm
x pλq ´ Expλq.

For this, we use Corollary 3.3.1, Theorem 3.1.3, and the decay of h (Lemma 3.3.1) to
obtain the estimate
ż

ΩˆΩ

|Sλ|2 ´ |Sctm
λ |2

|r ´ r1|s
dxdy ď

ż

ΩˆΩ

|Sλ ´ Sctm
λ |2

|r ´ r1|s
`

2|Sλ ´ Sctm
λ ||Sctm

λ |

|r ´ r1|s
drdr1

À ∥Sλ ´ Sctm
λ ∥2Lp∥|r ´ r1

|
´s∥LqpΩ2q ` ∥Sλ ´ Sctm

λ ∥L8

ż

|Sctm
λ |

|r ´ r1|s

À λ2n´2´n´1
n`1p2`

2pn´1q

p q∥|r|´s∥LqpΩ2q ` λpn´1q n
n`1

`maxtn´1
2

,su log λ
(3.4.29)

where 2
p

` 1
q

“ 1 and the log λ term is just needed for the case n´1
2

“ s (e.g. Coulomb

in 3D). Now given ϵ ą 0 we can choose q ă n{s such that 2{p “ 1 ´ s{n ´ ϵ. For
such q, the function |r|´s belongs to Lq

locpRnq and the first term in (3.4.29) is of order
λn´1`spn´1q2{pn2`1q`ϵ. Therefore,

Expλq “ Ectm
x pλq ` O

ˆ

λ
n´1`s pn´1q2

n2`n
`ϵ

` λpn´1qp 3
2

´ 1
n`1q log λ

˙

, (3.4.30)

which together with (3.4.28) completes the proof of Theorem 3.1.1 for the Dirichlet case.
For the Neumann case, one just need to change the sign before the terms Eσℓ,σ0pλq. For
the periodic case, one replaces Eσ,τ pλq by

Ev,wpλq “

ż

Ω2
λ

hnp|r ´ r1 ` λv|qhnp|r ´ r1 ` λw|q

|r ´ r1|s
drdr1,

where v, w P Rnb
Ω . By using arguments similar to the ones presented above, one can show

that all the terms Ev,wpλq with v ‰ 0 or w ‰ 0 give lower order contributions. The proof
then reduces to computing the asymptotic expansion of E0,0pλq “ Eσ0,σ0pλq, which we
already did (see (3.4.24)).

3.5 Strictly tessellating polytopes

We now show that our definition of a strictly tessellating polytope is equivalent to [101,
Definition 2].

Proposition 3.5.1. Let Ω Ă Rn be an open polytope. Then Ω is strictly tessellating in
the sense of Definition 3.2.1 if and only if Rn “

Ť

jPN Ωj, where each Ωj is obtained by
reflecting Ω across its boundary faces and the hyperplanes extending the boundary faces
of each Ωj have empty intersection with (the interior of) Ωk for any j, k P N.

Proof. First, let us assume that Ω is strictly tessellating in the sense of [101, Definition
2] and then show that Ω satisfies Definition 3.2.1. For this, first observe that by [101,
Corollary 1], all eigenfunctions of the Dirichlet Laplacian ´∆Ω are trigonometric, thus
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real analytic in Rn. Lamé’s fundamental theorem (see [101, Theorem 4]) then implies
that any eigenfunction ej is anti-symmetric with respect to reflection over the faces of Ω,
and therefore, ejprq “ detσejpσrq for any σ P RΩ. Now suppose that σpΩq “ τpΩq for
some σ, τ P RΩ. Then we have pτ´1σqpΩq “ Ω and detpτ´1 ˝ σqejpτ

´1σrq “ ejprq for any
eigenfunction j P N. But since tejujPN is an orthonormal basis of L2pΩq, the push-back
map f ÞÑ detpσ ˝ τq

`

σ# ˝ pτ´1q#
˘

f is the identity in L2pΩq, which shows that τ “ σ and
Ω satisfies Definition 3.2.1.

For the converse implication, just note that Ω clearly tessellates Rn with reflected
copies of itself, hence, it is enough to show that the hyperplanes extending the boundary
faces of any reflected polytope do not intersect the interior of Ω. So let σ P RΩ and Hℓ be
the hyperplane extending the face σpFℓq of σpΩq. Then the reflection over Hℓ is given by
the composition τℓ “ σ ˝σℓ ˝σ´1 P RΩ where σℓ is the reflection over the face Fℓ of Ω. As
a consequence, if we suppose that Hℓ XΩ ‰ H, then we have τℓpΩqXΩ ‰ H because Hℓ is
invariant under the reflection τℓ. But from our definition of strictly tessellating polytopes,
this implies that τℓ is the identity, which contradicts the fact that τℓ is a reflection over
the hyperplane Hℓ. We thus conclude that Hℓ X Ω “ H, which completes the proof.

Next, we prove the characterization of the intersection Ω X σpΩq that was used in the
proof of Lemma 3.4.1.

Lemma 3.5.1 (Intersection characterization). Let Ω “ tr P Rn : r ¨ nj ă αj, 1 ď j ď mu

be a strictly tessellating polytope with faces Fℓ “ tr P Ω : r ¨ nℓ “ αℓu. Suppose that Iσ “

ΩXσpΩq ‰ H for some σ P Rnb
Ω ztσ0u. Then there exists j1, ..., jp such that Iσ “

Şp
k“1 Fjk ,

σ P xσj1 , ..., σjpy, and the interior

int
p
č

k“1

Fjk “

"

r P Rn : r ¨ nj

#

“ αj if j “ jk for some 1 ď k ď p.

ă αj otherwise.

*

(3.5.1)

is non-empty. Here (and in the proof below) xσj1 , ..., σjpy denotes the group generated by
σj1 , ..., σjp.

Proof. The result follows if we show the following claim:

Claim: int
Şp

k“1 Fjk is contained in the interior of
Ť

σPxσj1 ,...,σjk y
σpΩq. (3.5.2)

Indeed, if this holds, then we can argue as follows. Since BΩ is the union of the interior
of all possible face intersections, for any τ P Rnb

Ω we can find q P int
Şp

k“1 Fjk X BτpΩq for
some faces tFjkukďp. By the claim, the non-empty open set Bδpqq X τpΩq is contained in
Ť

σPxσj1 ,...σjpy
σpΩq (for δ small) and must intersect some σpΩq (because

Ť

σPxσj1 ,...,σjk y
BσpΩq

is a countable union of sets with Hausdorff dimension n´ 1). By the strictly tessellating
property, we have τ “ σ P xσj1 , ..., σjpy, hence

Şp
k“1 Fjk Ă BτpΩq. Moreover, if j1, ..., jp

is minimal in the sense that int
Şp´1

ℓ“1 Fjkℓ
X BτpΩq “ H for all possible choice tjkℓu

p´1
ℓ“1 Ă

tjku
p
k“1, then τpΩq X Ω “

Şp
k“1 Fjk (by a convexity argument), which proves the lemma.
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To prove the claim we use induction and argue by contradiction. First, it is clear that
intFk is contained in the interior of Ω X σkpΩq. Now suppose that the claim holds for
intersections of n ´ 1 faces and there exists some q P int

Şn
k“1 Fjk for which

Bδpqq Ć Cn :“
ď

σPxσj1 ,...,σjny

σpΩq for any δ ą 0 small.

SinceBδpqqz
Şn

k“1 Fjk is open and connected (as n ě 2) and Cn is closed and has non empty
interior inside Bδpqq, there exists some point q2 P Bδpqq X BCnz

Şn
k“1 Fjk . In particular,

q2 P BσpΩq for some σ P xσj1 , ...σjny. Moreover, since σ is an isometry that leaves the
intersection

Şn
k“1 Fjk invariant, we have σ´1pq2q P Bδpqq X BΩz

Şn
k“1 Fjk . Therefore, if

δ ą 0 is small enough, σ´1pq2q must be contained in the interior of the intersection of
at most n ´ 1 of the faces tFjkukďn. By assumption, this implies that σ´1pq2q is in the
interior of Cn. But since σ is an isometry (hence open) and Cn is invariant under σ, we
conclude that q2 belongs to the interior of Cn, contradicting the fact that q2 P BCn.

3.6 Generalized Weyl law with boundary corrections

Here we give a proof of Theorem 3.3.1. We start with the following identities.

Lemma 3.6.1. Let ωnhnp|k|q “ yχB1pkq be the Fourier transform of the unit ball in Rn,
b P SpRnq, and πn : Rn Ñ Rn´1 be the projection on the first n ´ 1 coordinates, then

ż

Rn
qbpwqhnp|w|q|z ¨ w|dz “

1

πωn

ż

|ξ|ď1

„

p.v.
1

τ

ȷ

`

∇ξbpξ ´ τzq ¨ z
˘

dξ for any z P Rn,

ż

Rn

ż 8

|wn|

qbpwqhnp|pπnw, sq|qdsdw “
1

πωn

ż

|ξ1|ď1

b
`

ξ1, p1 ´ |ξ1
|
2
q
1
2 τ
˘

logp
|1`τ |

|1´τ |
q

τ
dτdξ1,

where ξ1 P Rn´1, p.v. 1
τ
is the principal value distribution

„

p.v.
1

τ

ȷ

pfpτqq “ lim
ϵÑ0`

ż

|τ |ąϵ

fpτq

τ
dτ, (3.6.1)

and qb is the inverse Fourier transform of b.

Proof. The first identity follows from Parseval’s formula, the convolution property of the

Fourier transform and the identities wqbpwq “ i|∇b and i
2
{sgnp¨qpτq “ p.v. 1

τ
, where sgnpτq

is the signum function.
For the second identity from the lemma, we use Fubini’s theorem, the identities

­χr´s,sspτq “
sinpτsq

πτ
and hnp|πnw, s|q “ 2

ωn

ş

|ξ1|ď1
e´iξ1¨πnw sinpp1´|ξ1|2q

1
2 sq

s
dξ1 and Parseval’s for-
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mula to obtain
ż

Rn

ż 8

|wn|

qbpwqhnp|πnw, s|qdsdw “ lim
RÑ8

ż R

0

ż s

´s

ż

Rn´1

hnp|πnw, s|qqbpwqdπnwdwnds

“ lim
RÑ8

2

ωn

ż R

0

ż s

´s

ż

Rn´1

ż

|ξ1|ď1

sinpp1 ´ |ξ1|2q
1
2 sq

s
qbpwqe´iξ1¨πnwdξ1dπnwdwnds

“ lim
RÑ8

2

πωn

ż

|ξ1|ď1

ż

R
bpξ1, τq

ż R

0

sinpp1 ´ |ξ1|2q
1
2 sq

s

sinpτsq

τ
dsdτdξ1.

To complete the proof we can now use the identity

2

ż R

0

sinpasq sinpτsq

s
ds “

ż R

0

cosp|τ ´ a|sq ´ cosp|τ ` a|sq

s
ds

“

ż R

0

1 ´ cosp|τ ` a|sq

s
ds ´

ż R

0

1 ´ cosp|τ ´ a|sq

s
ds

“ log

ˆ

|τ ` a|

|τ ´ a|

˙

´

ż R|τ`a|

R|τ´a|

cospsq

s
ds.

Indeed, from this identity we find that limRÑ8 2
şR

0
sinpasq sinpτsq

τs
ds “ 1

τ
logp

|τ`a|

|τ´a|
q and

2
şR

0
sinpτsq sinpτsq

τs
ds À 2| 1

τ
logp

|a`b|

|a´b|
q| for τ ‰ ˘a, and therefore, the result follows from

dominated convergence, since
ş

R | 1
τ
logp

|τ`a|

|τ´a|
qdτ “

ş

R | 1
τ
logp

|τ`1|

|τ´1|
qdτ | ď C for any a.

Proof of Theorem 3.3.1. From the definition of awpr, hDq with h “ λ´1 (see [130, Section
4.1]),

ÿ

kďNpλq

xek, a
w

pr, hDqeky

looooooooooooomooooooooooooon

:“Apλq

“
λn

p2πqn

ż

ΩˆΩˆRn
a
`

r{2 ` r1
{2, ξqeiλpr´r1q¨ξSλpr, r1

qdξdrdr1

Hence, by the change of variables z “ pr ` r1q{2, w “ λpr ´ r1q we have

Apλq “

ż

R2n

χΩ

ˆ

z `
w

2λ

˙

χΩ

ˆ

z ´
w

2λ

˙

rapz, wqSλ

`

z `
w

2λ
, z ´

w

2λ

˙

dwdz,

where rapz, wq “ ­apz, ¨qpwq is the inverse Fourier transform of the function w ÞÑ apz, wq.
Then from Theorem 3.1.3 and the bound rapz, wq ÀN p1 ` |w|q´N we find that

Apλq “
ωnλ

n

p2πqn

ÿ

σPRΩ

detσAσpλq ` Opλn´1´n´1
n`1 q, (3.6.2)

where

Aσpλq “

ż

Ωλ´Ωλ

ż

pΩ´ w
2λ

qXpΩ` w
2λ

q

rapz, wqhn
`

|λ p1 ´ σqz
looomooon

:“zσ

` p1 ` σqw{2
looooomooooon

:“wσ

|
˘

dwdz.
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For σ “ σ0, we have zσ0 “ 0 and wσ0 “ w. We can then use Lemma 3.4.2, the bounds
|∇zrapz, wq| ` |rapz, wq| ÀN p1 ` |w|q´N and the first identity in Lemma 3.6.1 to obtain

Aσ0pλq “

ż

Ωλ´Ωλ

ż

pΩ´ w
2λ

qXpΩ` w
2λ

q

rapz, wqhnp|w|qdzdw

«

ż

ΩˆRn
rapz, wqhnp|w|qdzdw

looooooooooooooomooooooooooooooon

“
p2πqn

ωn
cLpaq

´
1

λ

ż

BΩˆRn
rapz, wqhnp|w|q

|npzq ¨ w|

2
dHn´1

pzqdw
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“
p2πqn

ωn
cFSpaq

,

where we use « to indicate equality up to Opλ´1´n´1
n`1 q. This yields the first two constants

from Theorem 3.3.1.
For the boundary layer correction, we need to analyze the terms Aσpλq with σ P

Rnb
Ω ztσ0u. So first, note that if σ P RΩztσℓu

m
ℓ“0, then the range of πK

σ is at least 2
dimensional. Thus by Lemma 3.4.1 and the decay of hn, one can show that Aσpλq À

λmaxt´2,´n`1
2

u for any σ P Rnb
Ω ztσℓu

m
ℓ“0. We are thus left with the terms Aσℓpλq where

tσℓu1ďℓďm are the reflections across the boundary faces of Ω. For theses terms, we proceed
as we did in the proof of Theorem 3.1.1. More precisely, we can now assume that the face
Fℓ lies on the hyperplane trn “ 0u with outward normal vector nℓ “ p0, ..., 0,´1q, denote
the height of Ω by H “ supth : Rn´1 ˆ thu X Ωu ‰ H, and denote the cross-section of
Ω at height h by Ωphq “ tr P Rn´1, pr, hq P Ωu. Then, by re-scaling the variable zn by
p2λq´1, using the decay of ra and hn, applying Lemma 3.4.2, and using the estimate

ˇ

ˇ

ˇ

ˇ

ˆ

Ω

ˆ

zn ` wn

2λ

˙

´
πnw

2λ

˙

X

ˆ

Ω

ˆ

zn ´ wn

2λ

˙

`
πnw

2λ

˙

△Ωp0q

ˇ

ˇ

ˇ

ˇ

À
|z| ` |w|

λ

we find that

Aσℓpλq «
1

2λ

ż

Ωλ´Ωλ

ż 2λH´|ωn|

|ωn|

hnp|πnw, zn|q

ż

Ωp0q

rapπnz, zn{p2λq, wqdπnzdzndw

«
1

2λ

ż

FℓˆRn
rapz, wq

ż 8

|wn|

hnp|pπnw, sq|qdsdwdHn´1
pzq.

Finally, we obtain cBLpaq from the equation above after summing the terms Aσℓ for
1 ď ℓ ď m and using the second identity from Lemma 3.6.1.

3.7 Concluding remarks

We have now proved two-term asymptotic expansions for the exchange energy and for
semi-local density functionals for the free electron gas on a broad class of domains Ω Ă Rn,
and for any dimension n ě 2. By matching the coefficients of such expansions in the case of
the Coulomb potential in 3D, we obtained a novel exact constraint for generalized gradient
approximations of the exchange energy. To conclude this chapter, we now mention some
possible extensions and further applications of these results.
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Extensions. The asymptotics of F pλq can be extended to smooth domains for which
the two-term Weyl law (3.1.5) holds, under the stronger condition that f P L8

locpr0,8q ˆ

R3q X C2pp0,8q ˆ R3q. This can be done by using the gradient estimates in [107] to
extend Theorem 17.5.10 in [58, Chapter XVII, pp.52] to first-order derivatives. With
the extended version of Hörmander’s theorem, one can justify the use of the continuum
version of the spectral function from [58] inside the integration in F pλq by using a second-
order Taylor expansion of f . The rest of the proof follows the same steps from the proof
of Theorem 3.1.2.

Unfortunately, we can not extend the asymptotics of Expλq to smooth domains because
our approach requires an error in the pointwise Weyl law (3.1.21) that is uniform over
ΩˆΩ and of order Opλ2{ log λq. (This can be seen from estimate (3.4.29) in Section 3.4.)
An error of this order, however, represents an improvement over the sharp pointwise
Weyl law [104, 60, 39], which usually requires strong assumptions on the geodesic flow
[31, 17, 18] (see also [104, Chapter 1]. Another possibility is to improve the L2 version
of the Weyl law from Theorem 3.1.4. Such improvements would likely require the use
of more refined tools from microlocal analysis such as pseudo-differential operators and
Fourier integral operators [115, 32, 111]. Nevertheless, the extension of these results to
smooth domains and to general Schrödinger operators seems like an interesting topic for
further research.

Further applications. As briefly mentioned in the introduction, the asymptotic for-
mulas derived here can also be used to obtain exact constraint on semi-local density
functionals for the kinetic energy. More precisely, we can match the coefficients of Theo-
rem 3.1.2 with the coefficients of the asymptotic expansion for the kinetic energy of the
free 2Npλq-electron gas in Ωλ,

T rΨ2Npλq,λs “
ÿ

λjďλ

λ2j
λ2

“
nωn

pn ` 2qp2πqn
loooooomoooooon

:“cT,1pnq

|Ω|λn ´
1

4

pn ´ 1qωn´1

pn ` 1qp2πqn´1
looooooooomooooooooon

:“cT,2pnq

|BΩ|λn´1
` Opλn´1

q

(see [37, 38] or Section 2.6)6, to obtain the constraints

f

ˆ

2ωnµ
n

p2πqn
, 0

˙

“ µn`2cT,1pnq and (3.7.1)

ż

BΩ

ż 8

0

f

ˆ

µn2ωn

p2πqn

`

1 ´ hnp2τq
˘

,´
µn`12ωn

p2πqn
2 9hnp2τqnpr1

q

˙

dτdHn´1
pr1

q “ µn`2cT,2pnq|BΩ|

for any µ ą 0. Here hn and ωn are defined in Theorem 3.1.1 and µ ą 0 is a scale
parameter coming from replacing the length scale L “ λ by L “ µλ. For the case n “ 3,

6Note that, from the kinetic energy density stated in (3.7.2), one can also use the results from this
chapter (namely Theorem 3.1.3) to derive the asymptotic of T rΨ2Npλq,λs with the improved remainder

Opλn´1´
n´1
n`1 q.
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constraint (3.7.1) singles out the Thomas-Fermi functional for the local part of f ,

fpρ, 0q “ fTF pρq “ cTFρ
5
3 with cTF “

3

10
p3π2

q
2
3 .

The second constraint on the other hand is new and might be of interest for the design
of semi-local density functionals for the kinetic energy, which play an important role in
orbital-free density functional theory [89, 91, 69, 125, 78, 24].

To conclude, let us mention that the results from this chapter can be used to obtain a
similar integral constraint for the meta generalized gradient approximations (meta-GGAs)
[114, 129, 112]. These are semi-local functionals depending not only on the density and
its gradient but also on the kinetic energy density of the Kohn-Sham system and/or on
higher derivatives of the single-particle density. More precisely, they have the form

FmGGA
rρs “

ż

Ω

f
`

ρprq, |∇ρprq|, τprq,∆ρprq
˘

dr

for some f : R4 Ñ R, where ∆ρ is the Laplacian of the density, and the kinetic energy
density is defined as

τprq “
1

2

N
ÿ

j“1

|∇ϕjprq|
2

“
1

2

n
ÿ

j“1

BrjBr1
j
γpr, r1

q
∣∣
r1“r

, (3.7.2)

where γpr, r1q is the single-particle density matrix of the Kohn Sham system. For the
free electron gas, the single-particle density matrix is related to the spectral function via
(3.1.10). So by noticing that Theorem 3.1.3 also holds for derivatives of the spectral func-
tion of any order, we can repeat the analysis of Section 3.4 to obtain two-term asymptotic
expansions for meta-GGAs.
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Chapter 4

Positive Adiabatic Approximations

In this chapter, we study the solution χF of the Dyson equation

χF ptq “ χ0ptq `

ż t

0

χ0pt ´ sqFχF psqds, (4.0.1)

where χ0 is the density-density response function of a general Hamiltonian and F is an
operator whose Schwartz kernel corresponds to an adiabatic approximation of the Hartree
plus exchange-correlation kernel of time-dependent density functional theory. More pre-
cisely, we shall study (i) the well-posedness of the above equation in an appropriate setting
and (ii) the pole structure of the Fourier transform of the solution χF and their relation
with the poles of the Fourier transform of χ0. The results presented here set the linear
response time-dependent density functional theory (LR-TDDFT) approach for computing
the (electronic) optical excitation energies [19, 79, 120] on a rigorous mathematical footing.
These results are extensions and improvements of the results obtained in collaboration
with Gero Friesecke and Mi-Song Dupuy [25].

4.1 Main results and applications

We now present and discuss the main results of this chapter in detail. For this, let us
first introduce our main assumptions and some notation. Throughout this chapter, H is
a self-adjoint operator acting on the anti-symmetric N -fold tensor product of L2pR3q,

HN “

N
ľ

j“1

L2
pR3

q. (4.1.1)

(For the sake of simplicity, we neglect any internal degrees of freedom.) Moreover, we
assume that H satisfies the following assumptions.

Assumption 4.1.1. (i) (Real Hamiltonian) H commutes with complex conjugation.

(ii) (Spectral Gap) The ground state energy E0 “ inf σpHq ą ´8 is in the discrete
spectrum of H.
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(iii) (Non-degeneracy) E0 is a simple eigenvalue.

Since the ground state of H is non-degenerate, we can unambiguously define its ground
state single-particle density (or simply density) as

ρ0prq :“ N

ż

R3N´3

|Ψ0pr, r2, ..., rNq|
2dr2...drN ,

where Ψ0 is the unique (up to phase) normalized ground state wave function of H. We
then introduce the norms

∥f∥ρ0 “

ˆ
ż

R3

|fprq|
2ρ0prqdr

˙
1
2

and ∥f∥1{ρ0
“

ˆ
ż

R3

|fprq|
2ρ0prq´1dr

˙
1
2

,

and define the respective weighted L2 spaces as

L2
ρ0

“ tf : supppρ0q Ñ C (Lebesgue) measurable : ∥f∥L2
ρ0

ă 8u,

L2
1{ρ0

“ tf : supppρ0q Ñ C measurable :∥f∥1{ρ0
“ ∥fρ´ 1

2
0 ∥L2 ă 8u. (4.1.2)

As usual, dr is the Lebesgue measure in R3, and we identify all measurable functions that
coincide Lebesgue almost everywhere. The density-density response function (DDRF) of
H can be rigorously defined as

χH : R Ñ BpL2
ρ0
, L2

1{ρ0
q

t ÞÑ χHptq “ 2θptqS sin
`

pE0 ´ Hqt
˘

S˚, (4.1.3)

where θptq is the Heaviside step function, E0 is the ground state energy of H, and the
operators S “ SΨ0 : HN Ñ L2

1{ρ0
and S˚ “ S˚

Ψ0
: L2

ρ0
Ñ HN are defined as follows:

`

SΦ
˘

prq “ N

ż

R3N´3

Ψ0pr, r2, ..., rNqΦpr, r2, ..., rNqdr2...drN , (4.1.4)

`

S˚f
˘

pr1, ..., rNq “

N
ÿ

j“1

fprjqΨ0pr1, ..., rNq. (4.1.5)

The connection of this definition with the linear response of the system will be clarified
in Section 4.2. For now, we want to briefly discuss how the Fourier transform of χH is
related to the excitation energies of H.

Remark. In the physics literature [83, 120], the name density-density response function
usually refers to the Schwartz kernel of χHptq. Here we see no advantage in such a
kernel representation and refer to the operator-valued function t ÞÑ χHptq as the density-
density response function. Let us also remark that χH is sometimes called the (linear)
susceptibility, or the reducible (or irreducible) polarizability operator [79].
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The Fourier transform of χH (see Proposition 4.2.4) is given by the formula

xχHpωq “ lim
ηÑ0`

ż

E0`ω1

2pλ ´ E0q
pω ` iηq2 ´ pλ ´ E0q2

dSEλS
˚,

where ω1 “ inf σpHqztE0u ´ E0 is the first optical excitation (if H has more than one
eigenvalue), Eλ is the spectral projection-valued measure of H, and the limit is taken in
the distributional sense. Consequently, xχH admits a (unique) meromorphic extension to
the set

DΩ “ tz P C : Impzq ‰ 0 or |Repzq| ă Ωu, (4.1.6)

where Ω “ inf σesspHq ´ E0 ą 0 is the ionization threshold of H (see Section 4.2). The
positive poles of this meromorphic extension are all simple and lie in the set

PpxχHq :“ t0 ă ω ă Ω : E0 ` ω P σpHq with ranSPH
E0`ω ‰ Hu, (4.1.7)

where PH
E0`ω is the orthogonal projection on ker E0 ` ω ´ H Ă HN . PpxχHq is a subset of

the excitation energies of H, which we call the one-body excitations1. Hence the one-body
excitations of H correspond to the poles of xχH , and the degeneracy of the associated
excited energies can be estimated by the formula

rankωpxχHq ď rankPH
E0`ω “ dimker E0 ` ω ´ H,

where rankωpxχHq denotes the rank of the pole ω P PpxχHq. (See Section 4.2 for the
definition of the rank of a pole.)

For the Hamiltonian of a system with many interacting electrons, computing χH di-
rectly from H becomes unfeasible due to the high-dimensionality of the N -body space
HN . Therefore, finding accurate approximations of χH that can be efficiently computed
is paramount for understanding the response of large molecules to external perturbations.
The solution of the Dyson equation for some specific choice of χ0 and F are believed to
provide such approximations (see Section 1.1.2). This belief is to some extent (e.g., for
computing the low-lying excitation spectra of H) supported by the agreement of numer-
ical calculations with experimental data [19, 68, 96, 120, 123]. Understanding precisely
to which extent this approach is justified goes beyond the scope of the current chapter.
Instead, our goal here is two-fold. First, we want to prove the well-posedness of the Dyson
equation in a setting that is general enough to include many situations of interest in LR-
TDDFT. Second, we want to investigate the relationship between the poles of xχF and the
poles of xχ0 under the assumption that F is positive.

Let us start with the well-posedness theory. The first step for studying the existence
and uniqueness of solutions to any equation is to agree on the underlying solution space.

1For non-interacting (or independent-particle) Hamiltonians H, these excitations are called the single
particle-hole excitations as they correspond to the excitation energies necessary for moving a single
electron from an occupied orbital to an unoccupied one. This terminology, however, seems misleading
for interacting Hamiltonians, where this orbital picture does not hold.
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In LR-TDDFT, the goal of the Dyson equation is to approximate the density-density
response function of an interacting system of interest by starting with the density-density
response function of an equivalent non-interacting system (the Kohn-Sham system). The
equivalence here is in the sense that the Hamiltonians of both the interacting and non-
interacting systems have the same ground state density ρ0. Thus, in virtue of the definition
of χH in (4.1.3), one natural choice for the solution space is given by the space of strongly
continuous time-dependent families of operators on BpL2

ρ0
, L2

1{ρ0
q, denoted here by

Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

.

This choice is not unique but rather useful for our purposes. It is also, in some sense,
maximal (see Proposition 4.2.3). In this space, the following theorem holds.

Theorem 4.1.1 (Well-posedness of the Dyson equation). Let F P BpL2
1{ρ0
, L2

ρ0
q and

χ0 P Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

. Then, there exists a unique solution χF of the Dyson

equation (4.0.1) in the space Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

. Moreover, the solution map

SF :Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

Ñ Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

,

χ0 ÞÑ χF

is bijective.

The proof of the above theorem is a standard application of Banach’s fixed point theorem.
For the convenience of the reader, we sketch it in Section 4.3. Although the proof is rather
simple, we shall see later on that the above theorem guarantees the existence and unique-
ness of the solution of the Dyson equation with widely used adiabatic approximations
whenever χ0 is the density-density response function of a general Hamiltonian. In addi-
tion, the bijectivity of the solution map shows that any density-density response function
can be obtained by solving the Dyson equation for some reference χ0. Of course, this
does not guarantee that χ0 “ χH0 for some non-interacting Hamiltonian H0, a standard
premise of LR-TDDFT.

Next, we want to discuss the poles of the Fourier transform of the solution χF when χ0

is the density-density response of a Hamiltonian – interacting or not – satisfying Assump-
tion 4.1.1. To illustrate the kind of results we aim for and the difficulties entailed, let us
consider the following simplified situation. Suppose that F “ f ą 0 is a real number and
xχ0 is the complex-valued meromorphic function given by

xχ0pzq “
ÿ

ωPPpxχ0q

2ω

z2 ´ ω2
bpωq,

where all bpωq ą 0 are also real numbers. This simplification is achieved if χ0 “ χH for
some Hamiltonian with purely discrete spectrum and one considers 1D approximations of
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the spaces L2
ρ0

and L2
1{ρ0

. Then, by formally applying the Fourier transform to (4.0.1), we
obtain

xχF pzq “ xχ0pzq ` xχ0pzqFxχF pzq, (4.1.8)

which is the frequency version of the Dyson equation. This leads to the explicit formula

xχF pzq “ p1 ´ xχ0pzqF q
´1
xχ0pzq “

ř

ωPPpxχ0q
2ω

z2´ω2 bpωq

1 ´
ř

ωPPpxχ0q
2ω

z2´ω2 bpωqf
.

From this formula, we can directly read some properties of xχF . First, xχF is meromorphic
on DΩ (which is the whole complex plane in this example) and

lim
zÑω

xχF pzq “ ´f´1 for any ω P Ppxχ0q. (4.1.9)

In particular, xχ0 and xχF have no mutual poles. Second, a point z P C is a pole of xχF if
and only if it satisfy the equation

1 “ xχ0pzqf “
ÿ

ωPPpxχ0q

2z

z2 ´ ω2
bpωqf. (4.1.10)

This implies that any pole of xχF must lie in the real axis. Moreover, by noticing that

(i) xχ0pαqf ă 0 for any α P R with |α| ă minPpxχ0q,

(ii) xχ0pαqf is continuous and decreasing along any interval on RzPpxχ0q, and

(iii) limαÓω xχ0pαqf “ 8 “ ´ limαÒω xχ0pαqf , for any ω P Ppxχ0q,

we can deduce that

0 ă ω1 ă ωF
1 ă ω2 ă ωF

2 ă ω3 ă ωF
3 ă ..., (4.1.11)

where 0 ă ω1 ă ω2 ă ... and 0 ă ωF
1 ă ωF

2 ă ... are respectively the positive poles of xχ0

and xχF . (Note that the negative poles are the reflections of the positive poles over the
imaginary axis.)

These results, in special eq. (4.1.11), are precisely the results we would like to transfer
to the infinite-dimensional setting. In this setting, however, the following difficulties
arise. First, since we are dealing with operators between infinite-dimensional spaces, the
inverse p1´xχ0pzqF q´1 is not necessarily meromorphic and could be ill-defined everywhere.
Second, the product of positive operators such as bpωqf in our example is not necessarily
positive if the space is no longer one-dimensional. Third, the operators in question act
on different Hilbert spaces, which raises the question of what a positive operator should
mean.

So let us start by precisely defining what a positive F means. The key observation
here is that F maps a Banach space to its dual, which allows for the following natural
definition of a positive operator.
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Definition 4.1.1 (Positive operator). We say that F P BpL2
1{ρ0
, L2

ρ0
q is positive if

xf, FfyL2pR3q “

ż

R3

fprqpFfqprqdr ą 0 for any 0 ‰ f P L2
1{ρ0

. (4.1.12)

This property has various useful implications for the analysis of the Dyson equation;
we now mention a few that are necessary for stating our main results. For starters, we
see that for positive F , the sesquilinear form

xf, gyF “ xf, FgyL2pR3q

defines a continuous inner-product on the space L2
1{ρ0

. Indeed, continuity follows since

F P BpL2
1{ρ0
, L2

ρ0
q and symmetry follows from the polarization identity. Consequently, for

any finite-dimensional subspace V Ă L2
1{ρ0

, there exists an F-orthogonal decomposition

L2
1{ρ0

“ V ‘ V K (4.1.13)

with associated projections PV , PV K “ 1 ´ PV P BpL2
1{ρ0

q. Here V K is the orthogonal

complement with respect to the inner-product x¨, ¨yF and should not be confused with the
orthogonal complement with respect to the natural inner-product in L2

1{ρ0
. (The latter

will play no role in our analysis.) In particular, for any density-density response function
χH , the F -orthogonal projections PV K

ω
on the finite-dimensional subspaces

Vω :“ ranSPH
E0`ω, where ω P PpxχHq, (4.1.14)

are well-defined. To simplify the next statements, it is also useful to define Vz :“ t0u for
any z R PpxχHq. Observe that the operator-valued function z ÞÑ PV K

z0
xχHpzqF is holomor-

phic around z “ z0 for any z0 P DΩ.
Meromorphic function and pole equation. We are now in position to present our first

main result; it states that xχF is a meromorphic function with poles of finite rank and
gives a criterion for identifying the rank of each pole. For this and the subsequent results,
we implicitly assume that F P BpL2

1{ρ0
, L2

ρ0
q is positive and χ0 “ χH for some H satisfying

Assumption 4.1.1.

Theorem 4.1.2 (Fourier transform of χF ). The solution χF is a tempered distribu-
tion, and its Fourier transform satisfies the following:

(i) xχF pzq has a (unique) meromorphic extension from DΩ (see (4.1.6)) to BpL2
ρ0
, L2

1{ρ0
q.

(ii) The poles of xχF are all simple and lie inside the interval p´Ω,Ωq.

(iii) The rank of each pole ω P PpxχF q is finite and can be computed via the formula

rankωpxχF q “ dimker 1 ´ PV K
ω
xχHpωqF

looooooooooomooooooooooon

:“Zω

ă 8, (4.1.15)
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where PV K
ω

“ 1 ´ PVω is the F -orthogonal projection defined above.

This theorem shows that many aspects of our simple 1D example persist in the infinite-
dimensional case. Precisely, xχF is still a meromorphic function whose poles are all simple,
have finite rank, and lie in the real axis. Note also that eq. (4.1.15) is the equivalent of
(4.1.10). In addition, one can find explicit formulae for xχF in terms of xχH and F . To
state these formulae, we define the projection PFVω as the projection associated with the
decomposition

L2
ρ0

“ ranFSPH
E0`|ω|

looooooomooooooon

“FVω

‘ kerSPH
E0`|ω|S

˚.

(That this decomposition is possible is another consequence of the positivity of F .)

Theorem 4.1.3 (Formula for xχF ). Let ω P DΩ and PpxχF q denote the set of positive
poles of xχF . Let PZω be the F -orthogonal projection on Zω (defined in (4.1.15)). Then,
the following holds:

(i) If z R PpxχF q, then the operator PK
Vz

p1 ´ xχHpzqF q|V K
z

is invertible in BpV K
z q and

xχF pzq “ pPV K
z

p1 ´ xχHpzqF q
∣∣
V K
z

q
´1PV K

z
xχHpzqp1 ´ PFVzq ´ F´1PFVz . (4.1.16)

(ii) If ω P PpxχF q, then the operator Tω “ PVωSP
H
E0`ωS

˚
∣∣
FVω

is invertible in BpFVω, Vωq,
the operator

Kω “ PZω

ˆ

xχHpωqPFVωT
´1
ω PVω xχHpωqF ´ 9

xχHpωqF

˙

PZω (4.1.17)

is invertible in BpZωq, and we have

xχF pzq “
K´1

ω PZω xχHpωqp1 ´ PFVωq

z ´ ω
` Op1q (4.1.18)

for z close to ω.

Remark. Some remarks are now in place.

• First, note that the operator Kω defined in (4.1.17) is bounded. Indeed, this follows
from the identities PV K

ω
SPH

E0`ωS
˚ “ 0 “ SPH

E0`ωS
˚FPV K

ω
(see Proposition 4.5.4)

and the fact that Zω Ă V K
ω . Moreover, we see that (4.1.16) reduces to the familiar

formula xχF pzq “ p1 ´ xχHpzqF q´1
xχHpzq for any z R PpxχHq. Similarly, the operator

Kω reduces to Kω “ ´PZω
9
xχHpωqFPZω for any ω R PpxχHq.

• Second, observe that the functions xχF pzq and xχHpzq may have mutual poles. That
this is not the case in our 1D example is a consequence of the lack of dimension.
Nonetheless, note that (4.1.16) generalizes (4.1.9).
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• Third, note that (4.1.18) only describes the leading order coefficient of xχF pzq as z
approaches one of its poles. Explicit formulae for the coefficients of a full asymptotic
expansion of the form xχF pzq “

ř8

k“1pz ´ ωqk´2Kk could also be computed by using
the results of Section 4.4. As these formulas become increasingly cumbersome to
state (and compute), we have chosen to omit them here.

Pole shifting. We have now given an explicit way to compute xχF together with a
criteria for verifying whether some ω P p´Ω,Ωq is a pole of xχF . However, neither of
these results provides an insight into the distribution of the poles of xχF along the interval
p´Ω,Ωq. Such an insight, as the alternating behavior in eq. (4.1.11), might be useful for
designing efficient algorithms for finding the poles of xχF . Therefore, our next theorem
might be particularly interesting for applications; roughly speaking, it gives a variational
procedure for estimating the number of poles of xχF in a given interval I Ă p´Ω,Ωq. To
state this theorem precisely, let us define the F -max-min values of xχHF as

µk
pωq :“ sup

V ĂV K
ω

dimV “k

inf
fPV

xf,Ffy“1

xFf, xχHpωqFfy, (4.1.19)

and the F -min-max values as

µkpωq :“ inf
V ĂV K

ω
dimV “k

sup
fPV

xf,Ffy“1

xFf, xχHpωqFfy. (4.1.20)

Note that because we restrict the search to subspaces of the F -orthogonal complement
V K
ω , the above values are well-defined real numbers for any ω P p´Ω,Ωq and k P N.

Theorem 4.1.4 (Variational approach). For any ω P p´Ω,Ωq we have

rankωpxχF q “ #tk : µk
pωq “ 1u (4.1.21)

(with the convention that ω is not a pole if the right-hand side is zero). Moreover, the
functions µk, µk : r0,Ωq Ñ R are non-increasing on any interval J Ă r0,ΩqzPpxχHq,
and they satisfy

(i) µ1psq ď 0 for any |s| ď minPpxχHq,

(ii) limsÓω µ
kpsq “ 8 “ ´ limsÒω µkpsq for any k ď dimVω and ω P PpxχHq,

(iii) limsÒω µ
kpsq “ µkpωq “ limsÓω µ

k`dimVωpsq for any k P N, and

(iv) limsÒω µk`dimVωpsq “ µkpωq “ limsÓω µkpsq for any k P N,

where the subspaces Vω are defined according to (4.1.14) (again with the convention
that Vω “ t0u for ω R PpxχHq).
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Let us now briefly clarify the content of Theorem 4.1.4 and explain how it yields
the analogous of eq. (4.1.11). First, we see from (4.1.21) and (i) that the function xχF

has no poles inside the interval r0,minPpxχHqs. Moreover, since µk is non-increasing and
continuous on any interval pa, bs Ă r0,ΩqzPpxχHq, the sum of the rank of all poles inside
this interval is

ÿ

ωPpa,bs

rankωpxχF q “ maxtk : µk
paq ą 1u ´ maxtk : µk

pbq ą 1u.

In addition, Theorem 4.1.4 also tells us how to compute the total rank of the poles inside
an interval containing some of the one-body excitations of H. Indeed, it follows from
statements (ii) and (iii) that

ÿ

ωPpa,bs

rankωpxχF q “ maxtk : µk
paq ą 1u ´ maxtk : µk

pbq ą 1u `
ÿ

ωPra,bqXPpyχHq

dimVω

for any pa, bs Ă r0,Ωq. If we now combine this statement with the fact that

rankωpxχHq “ dimVω for any ω P PpxχHq,

we then conclude that the poles of xχF , when counted with rank, are forward shifted with
respect to the poles of PpxχHq. In mathematical notation, we have just proved

Corollary 4.1.1 (Forward shift of poles). The poles of xχF are forward shifted with respect
to the poles of xχH in the sense that

ÿ

0ăωăb

rankωpxχF q ď
ÿ

0ăωăb

rankωpxχHq,

for any 0 ă b ă Ω.

The Casida formalism. In practice, neither χH nor the solution χF can be computed
analytically. To solve the equation xχHpωqFf “ f , and hence find the poles of xχF , one
has to appeal to numerical methods. Such methods require some discretization procedure
that reduces the problem to a finite-dimensional approximation, which some numerical
scheme can then tackle. As a final result for this chapter, we prove the convergence of one
such discretization procedure, namely the Casida formalism [19, 79], in the continuum
(or infinite basis) limit. More specifically, we show that, under the additional assumption
that the Hamiltonian H has a purely discrete spectrum, the poles obtained via the Casida
equations converge in an ordered manner to the true poles of xχF in the continuum limit.
To state this result precisely, let us briefly describe the Casida formalism.

Assuming that H has a purely discrete spectrum, we can choose an orthonormal basis
of eigenfunctions tΨjujě1 with corresponding eigenvalues tE0 ` ωjujě1 and spanning the
space tΨ0u

K. After possibly relabelling and excluding some of the eigenfunctions, we
can further assume that the diagonal of the mixed single-particle density matrices do not
vanish, i.e.,

SΨ0Ψj “ N

ż

R3

Ψ0p¨, r2, ..., rNqΨjp¨, r2, ..., rNqdr2...drN P L2
1{ρ0

(4.1.22)
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is not identically zero for any j P N. Hence the set tωjujě1 is precisely the set of one-body
excitations of H. However, note that we do not assume the excitations to be in increasing
order, and we allow for degeneracies in the sense that ωj “ ωk for some j ‰ k is possible.
Moreover, note that for degenerated excitations ω P tωju

8
j“1, it may happen that

dpωq :“ #tj : ωj “ ωu ´ dim spantSΨj : ωj “ ωu ą 0 (4.1.23)

because there may be linear combinations of Ψj that belong to the kernel of S. The Casida
formalism then consists in truncating the set of excitations at some m P N, computing
the eigenvalues of the mth Casida matrix2

Cm
P Cmˆm, Cm

i,j :“ 2ωixSΨi, FSΨjy ` ω2
i δij, where δij “

#

1 if i “ j,

0 otherwise,

and using their square roots as approximations for the poles of xχF . The next theorem
shows that, after excluding spurious eigenvalues coming from the mismatch in (4.1.23),
this approach is justified for large m.

Theorem 4.1.5 (Casida formalism). Let χ0 “ χH be the DDRF of a Hamiltonian
satisfying Assumption 4.1.1 and with purely discrete spectrum. Then Cm is diagonal-
izable, all its eigenvalues are positive, and for any λ ą 0 we have

dimkerλ ´ Cm
ě #tj : j ď m,ωj “

?
λu ´ dim spantSΨj : j ď m,ωj “

?
λu

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

:“dmp
?
λq

.

Let 0 ă λ1 ď λ2... ď λm´
ř

ωą0 dmpωq be the eigenvalues of Cm counted in a way that

#tk : λk “ λu “ dimkerpλ ´ Cm
q ´ dmp

?
λq,

then we have monotone convergence of
?
λk to the ordered poles of xχF in the following

sense:

(i)
a

λmk ě

b

λm`1
k ě ωF

k for any ωF
k ď ωm P N and m P N, and

(ii) limmÑ8

a

λmk “ ωF
k for any k P N,

where 0 ă ωF
1 ď ωF

2 ď ... Ñ 8 are the ordered poles of xχF counted with rank.

Remark. In typical applications of the Casida formalism, the Hamiltonian H is a sum
of one-body Hamiltonians h acting on each coordinate separately. In this case, the ground

2The usual definition of the Casida matrix [19, 83, 120] is slightly different from the one above.
Nevertheless, as shown in Section 4.7.2 below, the above definition of the Casida matrix is essentially
equivalent to the original one under the assumptions of real Hamiltonian and real-valued (or constant
phase) ground state wave function. Such assumptions are usually satisfied in applications.
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state wave function is the Slater determinant of the first N eigenfunctions of h (the
occupied orbitals). Moreover, the excited states satisfying (4.1.22) are (usually chosen as)
the Slater determinants of N ´ 1 occupied orbitals with 1 unoccupied (or virtual) orbital.
In this situation, m “ Nk where k is the number of virtual orbitals used to construct the
Casida matrix (see Section 4.7.2).

Applications. Let us now describe how the functional analytic setting described so
far is applicable in the context of LR-TDDFT. For this, the key observation is that
most Hamiltonians appearing in non-relativistic quantum mechanics share the common
property that their ground state density ρ0 (when it exists) is bounded. For instance, this
is the case for any Schrödinger operators of the form

H “ ´∆ ` V pr1, ..., rNq,

where V is some real-valued potential whose positive and negative part lies respectively
in the local and global Kato class of R3N [109]. (In fact, the ground state densities of
such operators decay exponentially fast, see [1, 28, 56, 109] and references therein). For
bounded ρ0 we have the following criteria for adiabatic approximations. (The proof is a
straightforward application of Hölder’s inequality.)

Proposition 4.1.1 (Sufficient criteria for adiabatic approximations). Let ρ0 P L1pR3q X

L8pR3q, and F “ F1 ` F2 satisfy

∥F1f∥L2pR3q`L8pR3q À ∥f∥L1pR3qXL2pR3q and |pF2fqprq| À ρ0prq
´1

|fprq|.

Then F P BpL2
1{ρ0
, L2

ρ0
q.

The above criteria can be easily verified for the following adiabatic approximations:

• The random phase approximation (RPA). In the RPA, F is the Hartree operator

`

FRPAg
˘

prq “
`

FHg
˘

prq “

ż

R3

gpr1q

|r ´ r1|
dr1.

Thus from the Hardy-Littlewood-Sobolev (HLS) inequality, we conclude that FRPA P

BpL2
1{ρ0
, L2

ρ0
q. (In fact we just need ρ0 P L

3
2 pR3q here.)

• The Petersilka, Gossmann, and Gross approximation (PGG) [96]. In the PGG
approximation, the operator F is given by

`

FPGGg
˘

prq “
`

FHg
˘

prq ´
1

2

ż

R3

|γHpr, r1q|2

ρ0prqρ0pr1q

gpr1q

|r ´ r1|
dr1,

where γHpr, r1q is the ground state single-particle density matrix of the Hamiltonian
associated with χH . Thus from the simple inequality |γHpr, r1q|2 ď ρ0prqρ0pr

1q and

the HLS inequality, we also have FPGG P BpL2
1{ρ0
, L2

ρ0
q for any ρ0 P L

3
2 pR3q.
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• The adiabatic local density approximation (ALDA) [127, 120]. This is not a single
approximation but rather a class of approximations. In the ALDA, the operator F
is given by

`

FALDA
ρ0

g
˘

prq “
`

FHg
˘

prq `
d2

dρ2
`

ρεHEG
xc pρq

˘
∣∣
ρ“ρ0prq

loooooooooooomoooooooooooon

“fHEG
xc

`

ρ0ptq
˘

gprq,

where εHEG
xc pρq “ εHEG

x pρq ` εHEG
c pρq is the exchange-correlation energy per particle

of the homogeneous electron gas. While the exchange part is known and given by

εHEG
x pρq “ ´Cρ

1
3 , (4.1.24)

the correlation part has to be approximated, which leads to different operators
FALDA
ρ0

. To see why these operators also belong to BpL2
1{ρ0
, L2

ρ0
q, let us take the

parametrization of εHEG
c introduced by Perdew and Wang [95]. This correlation

approximation can be written as

εPW92
c pρq “ ´2Ap1 ` α1ρ

´ 1
3 q log

ˆ

1 `
1

β1ρ
´ 1

6 ` β2ρ
´ 1

3 ` β3ρ
´ 1

2 ` β4ρ
´ 1`P

3

˙

,

(4.1.25)

where P “ 1 or 3
4
, and A,α1, β1, β2, β3, β4 ą 0 are parameters chosen to reproduce

the asymptotics expansions of εHEG
c in the low and high-density limits, and to fit

data from quantum Monte Carlo simulations [20] for intermediate densities. Thus
from (4.1.24) and (4.1.25) (and some tedious calculations), one can check that

|fPW92
xc

`

ρ0prq
˘

| “

ˇ

ˇ

ˇ

ˇ

d2

dρ2
pρεHEG

x pρq ` ρεPW92
c pρq

˘
∣∣
ρ“ρ0prq

ˇ

ˇ

ˇ

ˇ

À∥ρ0∥L8 ρ0prq
´1.

Therefore, FALDA
ρ0

P BpL2
1{ρ0
, L2

ρ0
q for any bounded ρ0. Other approximations to

εHEG
c pρq can also be shown to satisfy the above inequality as long as they reproduce
(up to second derivatives) the asymptotic expansion of εHEG

c pρq in the low-density
limit.

In summary, Theorem 4.1.1 and Proposition 4.1.1 guarantees the well-posedness of the
Dyson equation with widely used adiabatic approximations of the xc-operator (see Sec-
tion 1.1.2) under the sole condition that χ0 “ χH for some Hamiltonian with bounded
ground state density.

Regarding the applicability range of Theorems 4.1.2 to 4.1.5, the positive assumption
is a big drawback. Indeed, among the approximations mentioned above, only the RPA is
positive; this can be seen from the Fourier space representation

xg, FHgyL2pR3q “ 4π

ż

R3

|pgpξq|2

|ξ|2
dξ ą 0 for any g P L1pR3q X L2pR3q.
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Nevertheless, we can conclude that the excitation energies obtained from the RPA approx-
imation are always greater than the excitation energies of the non-interacting Kohn-Sham
system (see Appendix 1.1). Moreover, the results from Theorem 4.1.2–4.1.5 also apply to
the RPA approximation with other interaction potentials such as the Riesz interactions
(see Chapter 3) or the Yukawa potential [126]. Finally, let us remark that we do not
use the assumption that the underlying physical space is R3 in the proof of the main
results of this chapter. All assumptions and proofs are, in fact, of an operator-theoretical
nature. In particular, the same results can be straightforwardly applied to systems on
bounded domains Ω Ă Rn with general dimensions n ě 2, or to spin systems where the
single-particle state is given by ℓ2pNq or variants thereof.

Outline of the chapter. We start by introducing some notation in the next paragraph.
In Section 4.2, we give a rigorous definition for the density-density response function,
compute its Fourier transform, and discuss the mentioned maximality of BpL2

ρ0
, L2

1{ρ0
q. In

Section 4.3 we prove Theorem 4.1.1. In Section 4.4, we derive some results about the
spectrum and the inverse of operator-valued functions around one of its poles. These
results are then applied to the operator 1 ´ χHF in Section 4.5. In this section, we give
a detailed description of the operator-valued function p1 ´ xχHF q´1, which corresponds
to the main step in the proof of Theorems 4.1.2 to 4.1.4. We then complete their proofs
in Section 4.6. In Section 4.7 we study the convergence of the Casida eigenvalues under
the assumption of pure discrete spectrum for H. In Section 4.8, we comment on possible
extensions of the results presented here and related open questions.

Notation

The set R` “ r0,8q denotes the set of non-negative real numbers. For A and B scalar
quantities, A À B means that there is an irrelevant positive constant C such that A ď CB.
Let F,G be Banach spaces. We will denote their respective norms by ∥¨∥F and ∥¨∥G.
Moreover, we denote the set of continuous linear operators from F to G by BpF,Gq, and
their operator norm by

∥T∥F,G “ sup
fPF

∥f∥F“1

∥Tf∥G.

For an operator T P BpF,Gq, we denote its kernel and range by kerT Ă F and ranT Ă G.
We also use rankT “ dim ranT for the rank of T . For 1 ď p ď 8, LppR3q (or just
Lp) denotes the standard Lp spaces with respect to Lebesgue measure. We also use
LppRnq `LqpRnq and LppRnq XLqpRnq for the Banach spaces of measurable (with respect
to the Lebesgue measure) functions with the respective norms

∥f∥Lp`Lq “ inf
f“fp`fq

t∥fp∥Lp ` ∥fq∥Lqu

∥f∥LpXLq “ maxt∥f∥Lp , ∥f∥Lqu.
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Moreover, for a continuous function Apµq with values in a Banach space F and defined
on the neighborhood of some smooth closed curve γ Ă C,

1

2πi

¿

γ

Apµqdµ P F

denotes the standard contour integral along the path γ oriented counter-clockwise. For
time-dependent functions with values in a Banach space F , we define the Fourier transform
as

pfpωq “

ż

R
fptqeitωdt. (4.1.26)

(Note that this is different from the convention for the spatial Fourier transform used in
Chapters 2 and 3.)

4.2 The density-density response function

In this section we give a rigorous definition for the density-density response function
(DDRF) and relate it to the Kubo formula from linear response theory. We then give an
alternative definition that relies on our assumptions on the Hamiltonian H, and give a
representation formula for its Fourier transform in terms of the resolvent of H.

4.2.1 Definition and Kubo formula

The density-density response function can be defined as follows.

Definition 4.2.1 (Density-density response function). Let H be a Hamiltonian with
ground state Ψ0, then, for any τ P R we define the density-density response function
of H as the unique operator χHpτq : L8pR3;Rq Ñ L1pR3;Rq satisfying

xvO, χHpτqvPyL2pR3q “ iθpτq

C

Ψ0,

«

N
ÿ

k“1

vPprkq,
´

N
ÿ

k“1

vOprkq

¯

I
pτq

ff

Ψ0

G

, (4.2.1)

for all vP , vO P L8pR3;Rq. In the above, rA,Bs “ AB ´ BA denotes the commutator, θ
is the Heaviside function

θptq “

#

0, if t ă 0,

1, otherwise,

and pAqIptq “ eitHAe´itH is the time evolution of the operator A in the Heisenberg picture.
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To motivate the above definition, let us relate χH to the Kubo formula for the linear
response of the density of the system at the ground state Ψ0. The starting point for the
Kubo formula is to consider a time-dependent perturbation of H,

Hptq “ H ` εfptqVP , (4.2.2)

where the perturbing operator VP : HN Ñ HN is bounded and symmetric, the time
profile f P L8pR;Rq is causal (i.e. fptq “ 0 for t ď 0), and ε P R is the strength of
the perturbation. Then for an observable of interest, VO : HN Ñ HN , we would like to
compute the variation in the expectation value xVOyt :“ xΨptq, VOΨptqy, where Ψptq is the
solution of the time-dependent Schrödinger equation

#

iBtΨptq “ HptqΨptq, t ą 0,

Ψp0q “ Ψ0

(4.2.3)

with Ψ0 being the ground state wave function of H. For this, one can iterate the Duhamel
representation formula for the solutions of (4.2.3),

ψptq “ e´itHΨ0 ´ i

ż t

0

e´ipt´sqHϵfpsqVPψpsqds,

to show that the following holds.

Proposition 4.2.1. Let Hptq be the family of self-adjoint operators defined in (4.2.2).
Let Ψptq be the solution of (4.2.3) and VO : HN Ñ HN be a bounded operator. Then
xVOyt “ xΨptq, VOΨptqy has the following expansion:

xVOyt “ xVOy0 ` iε

ż 8

´8

θpt ´ t1qfpt1qxΨ0, rVP , pVOqIpt ´ t1qsΨ0ydt
1
` Opε2q, (4.2.4)

where the remainder is locally uniform with respect to t.

Therefore, if we now assume that the perturbation VP as well as the observable VO
are given by one-body potentials

VP “

N
ÿ

k“1

vPprkq, VO “

N
ÿ

k“1

vOprkq,

with vO and vP real-valued bounded functions, we arrive at the Kubo formula for the first
order (with respect to ϵ) variation of xVOyt due to the perturbation ϵfptqVP .

Corollary 4.2.1 (Kubo formula). Let χH be defined in (4.2.1), then

xVOyt ´ xVOy0 “ ε

ż 8

´8

xvO, χHpt ´ t1qvPyfpt1q dt1 ` Opε2q.
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4.2.2 Regularity of the density-density response function

We now present an alternative representation for the DDRF of H and discuss the men-
tioned optimality of the space BpL2

ρ0
, L2

1{ρ0
q.

First, recall that the operators S and S˚ are defined by

pSΦqprq “ N

ż

pR3qN´1

Ψ0pr, r2, ..., rNqΦpr, r2, . . . , rNqdr2...drN , (4.2.5)

pS˚vqpr1, .., rNq “

N
ÿ

i“1

vpriqΨ0pr1, ..., rNq. (4.2.6)

Thus from Definition 4.2.1, the fact that eitHΨ0 “ eitE0Ψ0, and the (anti-)symmetry of
HN , we see that

χHptqgprq “ 2θptqIm
␣

SeitpE0´HqS˚gprq
(

.

This expression is similar but not equivalent to (4.1.3) in general. However, under the
assumption that the Hamiltonian is real (i.e. commutes with complex conjugation) and
Ψ0 is real-valued (or has constant phase), we recover the formula from the introduction:

χHptq “ 2θptqS sin
`

tpE0 ´ Hq
˘

S˚.

Remark (C-linear extension). We remark that χH is in fact a R-linear operator acting
on R-valued functions. However, it is useful to extend it to a C-linear operator acting on
C-valued functions in the obvious way,

χHpf ` igq “ χHf ` iχHg, for real-valued f and g. (4.2.7)

Since this is the unique way to extend it, there is no harm in doing so. Also, note that
if F is another R-linear operator, then first composing the C-extensions of χHptq and F
and later restricting to R yields the composition of the original R-linear operators. Thus
solving the Dyson equation for the C-extensions and restricting to R afterwards yields the
unique solution in the space of R-linear operator-valued functions.

Next, we show that χH has more regularity than simply mapping L8 to L1.

Proposition 4.2.2 (Regularity of χH). The operators S : HN Ñ L2
1{ρ0

and S˚ : L2
ρ0

Ñ HN

are bounded. In particular, tχHptqutPR is a strongly continuous and uniformly bounded
family of operators in BpL2

ρ0
, L2

1{ρ0
q.

Proof. Let ϕ P HN , then using that ρ0prq “ N
ş

R3N´1 |Ψ0pr, r2, .., rNq|2dr2...drN ,

ρ0prq´1
|Sϕprq|

2
“ ρ0prq

´1

ˇ

ˇ

ˇ

ˇ

N

ż

R3N´3

Ψ0pr, r2, ..., rNqΦpr, r2, ..., rNqdr2...drN

ˇ

ˇ

ˇ

ˇ

2

ď ρΨprq.
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As ρΨprq P L1pR3q, we have S P BpHN , L
2
1{ρ0

q. Similarly, by the (anti-)symmetry of Ψ0

and Cauchy-Schwarz,

∥S˚f∥2HN
“

ż

R3N

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

fpriq

ˇ

ˇ

ˇ

ˇ

2

|Ψ0pr1, ..., rNq|
2dr1...drN ď N

ż N
ÿ

i“1

|fpriq|
2
|Ψ0|

2
“ N∥f∥2L2

ρ0
.

The strong continuity and uniform boundedness follow from the fact that θptq sinptpE0 ´

Hqq is strongly continuous and uniformly bounded in BpHNq.

We have now shown that χHptq P BpE˚, Eq for the spaces E “ L2
1{ρ0

and E “ L1pR3q.

Moreover, for bounded ρ0 we could also take E “ L1pR3q XL2pR3q3. In this case we have
(from Hölder’s inequality) the inclusions

L2
1{ρ0

Ă L1
pR3

q X L2
pR3

q Ă L1
pR3

q.

Hence a natural question is whether E “ L2
1{ρ0

is a minimal space for which χH P

Cs

`

R,BpE˚, Eq
˘

. This question is not only natural but also relevant because a mini-
mal E yields a maximal space of allowed adiabatic approximations BpE,E˚q.

We now give a partial answer to this question. The idea is the following. Looking
back at the definition of χH , we see from a duality argument that χHptq P BpE,E˚q as
long as we can show that S : HN Ñ E is bounded. Thus a reasonable approach is to look
for a minimal subspace E for which S : HN Ñ E is bounded. As we show next, E “ L2

1{ρ0

is in fact minimal among a general class of function spaces .

Proposition 4.2.3 (Minimality of L2
1{ρ0

). Let E be a Banach space of (Lebesgue) measur-

able functions such that, for any 0 ď g ď f with f P E, we have g P E and ∥g∥E ď ∥f∥E.
Then if S : HN Ñ E is bounded and E Ă L2

1{ρ0
, we have E “ L2

1{ρ0
.

Proof. First, observe that by the assumptions on E we have g P E for any |g| P E. Second,
note that by duality, L2

ρ0
Ă E˚ and SS˚ : E˚ Ñ E is bounded. Thus for any g P L2

1{ρ0
, we

have |g|{ρ0 P L2
ρ0

and

SS˚
|g|{ρ0 “ |gprq| ` NpN ´ 1q

ż

R3

|gpr2q|
|Ψ0pr, r2, ..., rNq|2

ρ0prq
dr2...drN ě |gprq|

But since SS˚|g|{ρ0 P E, from the assumption on E we conclude that g P E.

In particular, the space L2
1{ρ0

is minimal among the class of sums, intersections, and

interpolations of weighted spaces of the form Lpp|wprq|drq for any p and measurable weight
function w.

Remark (Reduced weighted spaces). Note that χHptq1 “ 0 for the constant function
1 P L2

ρ0
. Consequently, the operators S and S˚ can be replaced by the operators B “ PΨK

0
S

and B˚ “ S˚PΨK
0
, and the spaces L2

ρ0
and L2

1{ρ0
can be reduced to the quotient spaces

3E “ L1pR3q X L2pR3q is in fact the setting used in [25].
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of functions up to an additive constant and the annihilator of the constant function 1,
respectively. In other words, we can replace S, S˚, L2

ρ0
and L2

1{ρ0
respectively by

BΦprq “ SΦprq ´ xΨ0,Φyρ0prq, B˚fpr1, ..., rNq “ S˚fpr1, ..., rNq ´ xρ0, fyΨ0pr1, ..., rNq,

L2
ρ0

{1 “ trf s : f „ g if fprq ´ gprq “ cu, and t1u
K

“

"

f P L2
1{ρ0

:

ż

R3

fprqdr “ 0

*

.

This leads to a more precise description of the spaces of multiplicative potential perturba-
tions and density variations. For simplicity, we keep working with S, S˚, L2

ρ0
and L2

1{ρ0
.

4.2.3 Fourier transform and poles

We now turn to the representation of xχH in terms of the resolvent of H. This represen-
tation is called the Lehmann representation in the physics literature4 . In the sequel, we
present the definition of a meromorphic operator-valued function and show that the poles
of xχH are located at the one-body excitations of H. We start with the Fourier transform.

Proposition 4.2.4 (Fourier transform of χH). Let χH be the DDRF of some H satisfying
Assumption 4.1.1. Then, the Fourier transform of χH is given by

xχHpzq “ Sp1 ´ PH
E0 q

`

pE0 ´ z ´ Hq
´1

` pE0 ` z ´ Hq
´1
˘

p1 ´ PH
E0 qS˚, for Impzq ą 0,

where the operators S and S˚ are defined in (4.2.5),(4.2.6), E0 is the ground state energy
of H, and PH

E0 is the orthogonal projection onto the space spanned by Ψ0. In particular,
the Fourier transform of χH along the real line is the tempered distribution given by

xχHpωq “ lim
ηÑ0`

Sp1 ´ PH
E0 q

`

pE0 ´ ω ´ iη ´ Hq
´1

` pE0 ` ω ` iη ´ Hq
´1
˘

p1 ´ PH
E0 qS˚,

where the limit is taken in the distributional sense.

Proof. Since H is self-adjoint, we can apply the spectral theorem to find
ż 8

0

χHptqeipω`iηqtdt “ S

ż 8

0

ż 8

E0
2 sin

`

tpE0 ´ λq
˘

eipω`iηqtdEλdtS
˚

“ S

ż 8

E0

1

E0 ´ ω ´ iη ´ λ
`

1

E0 ` ω ` iη ´ λ
dEλS

˚

“ Sp1 ´ PH
E0 q

`

pE0 ´ z ´ Hq
´1

` pE0 ` z ´ Hq
´1
˘

p1 ´ PH
E0 qS˚,

where z “ ω ` iη, Eλ is the spectral projection-valued measure of H, and we have used
that pE0 ` ω ` iη ´ Hq´1Ψ0 ` pE0 ´ ω ´ iη ´ Hq´1Ψ0 “ 0. That the limit η Ñ 0` is a
tempered distribution follows from the fact that χHptq is causal and uniformly bounded
in time.

4The classical Lehmann representation assumes that H admits an orthonormal basis of eigenfunctions.
On the other hand, the formula presented below accounts for the essential spectrum of H, which is not
empty in many physically relevant situations.
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Remark. Explicit expressions for the distributional limit defined above can be obtained in
terms of operator-valued versions of the principal value and delta distributions (see [15]
for a rigorous account). As they will play no role in our analysis, we refrain from stating
them here.

We can now characterize the poles of xχH according to the following definition of a
meromorphic operator-valued function.

Definition 4.2.2 (Meromorphic operator-valued function). Let D Ă C be open and E,F
be Banach spaces. Then we say that K : D Ñ BpE,F q is a meromorphic function if for
any z0 P D, there exist finitely many operators tK´jujďk Ă BpE,F q such that

Kpzq “ K0pzq `

k
ÿ

j“1

pz ´ z0q
´jK´j,

where K0pzq is holomorphic near z0. If K´j ‰ 0 for some j ě 1, then we say that z0 is a
pole of K. If in addition K´j “ 0 for all j ě 2, we say that z0 is a simple pole and define
its rank as

rankz0pKq “ rankK´1.

Proposition 4.2.5 (Poles of xχH). Let χH be the DDRF of some Hamiltonian H satisfying
Assumption 4.1.1 and

DΩ :“ tz P C : Impzq ‰ 0 or |Repzq| ă Ωu Ă C. (4.2.8)

Then xχH extends to a meromorphic family of operators on DΩ with simple poles only.
Moreover, the set of non-negative poles of xχH is

PpxχHq “ tω P p0,8q : E0 ` ω P σdpHq and SPH
E0`ω ‰ 0u, (4.2.9)

and the rank of any pole ω P PpxχHq is given by

rankωpxχHq “ rankSPH
E0`|ω|, (4.2.10)

where PH
E0`ω is the orthogonal projection on the eigenspace kerpH ´ E0 ´ ωq. (Note that

the set of negative poles is given by ´PpxχHq since xχHp´zq “ xχHpzq.)

Proof. For Impzq ą 0, from Proposition 4.2.4 and the spectral decomposition of H, we
have

xχHpzq “
ÿ

λPσdpH´E0qzt0u

SPH
E0`λ

´ 1

´λ ´ z
`

1

z ´ λ

¯

PH
E0`λS

˚

` S

ż

σesspHq

1

E0 ´ z ´ λ
`

1

E0 ` z ´ λ
dEλS

˚, (4.2.11)
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where σdpHq denotes the discrete spectrum of H. So by the spectral gap assumption on
H, we can extend xχHpzq analytically to DΩ. Moreover, from the spectral decomposition
above we directly see that the set of poles in DΩ is contained in PpxχHq.

For the statement on the rank of the poles, note that

xf, SPH
E0`ωS

˚fyL2pR3q “ xPH
E0`ωS

˚f, PH
E0`ωS

˚fyL2pR3N q “ ∥PH
E0`ωS

˚f∥2HN
,

for any f P L2
1{ρ0

, and

xΨ, PH
E0`ωS

˚SPH
E0`ωΨyHN

“ ∥SPH
E0`ωΨ∥2L2pR3q,

for any Ψ P HN . Thus rankωpxχHq “ rankpSPH
E0`ωS

˚q “ rankpSPH
E0`ωq.

Remark (Regularity of xχH past the ionization threshold). If H has compact resolvent
(for instance, a Schrödinger operator with a trapping potential), then DΩ “ C and PpxχHq

is the whole set of singular points of (the meromorphic extension of) xχH . However,
for typical Hamiltonians in electronic structure theory (such as the atomic or molecular
Hamiltonians), the spectrum is divided in a discrete and a continuous part [100]. In some
special cases, the regularity of xχH along the continuous spectrum can be studied (see [33]
for a related question) via the celebrated limiting absorption principle [2, 3, 34, 113].

4.3 Well-posedness of the Dyson equation

We now turn to the proof of Theorem 4.1.1. To shorten the notation, for any T ą 0 and
χ P Cs

`

r0, T s;BpL2
ρ0
, L2

1{ρ0
q
˘

, we define

∥χ∥T :“ ess sup
tPr0,T s

∥χptq∥L2
ρ0

,L2
1{ρ0

. (4.3.1)

Proof of Theorem 4.1.1. We start with the existence and uniqueness and then prove the
bijection property. First, we define the convolution map

Cpχ0, χqptq “

ż t

0

χ0pt ´ sqFχpsqds.

Since F P BpL2
1{ρ0
, L2

ρ0
q we can use dominated convergence to show that t ÞÑ Cpχ0, χqptq is

strongly continuous. Moreover, we find

∥Cpχ0, χq∥T À T∥χ0∥T∥χ∥T . (4.3.2)

Thus for T small enough, the map Cp¨, χ0q : Cs

`

r0, T s;BpL2
ρ0
, L2

1{ρ0
q
˘

Ñ Cs

`

r0, T s;BpL2
ρ0
, L2

1{ρ0
q
˘

is a contraction. Therefore, the map ¨ Ñ χ0 ` Cpχ0, ¨q has an unique fixed point χ “

χ0 ` Cpχ0, χq by the Banach fixed-point theorem. The solution χ defined for t ď T can
now be uniquely extended to any interval r0, Ks, and consequently to R`, by a classical
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continuity and extension argument. To complete the proof, we need to show that the
solution map

SF : Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

Ñ Cs

`

R`;BpL2
ρ0
, L2

1{ρ0
q
˘

χ0 ÞÑ χF P kertχ0 ` Cpχ0, ¨q ´ ¨u.

is bijective in Cs

`

r0,8s;BpL2
ρ0
, L2

1{ρ0
q
˘

. For this, we can exchange the roles of χ and χ0 and
repeat the same arguments to show the existence and uniqueness of the solution χ0 to the
equation χ0 “ χ ´ Cpχ0, χq for fixed χ. In particular, χ “ SF pχ0q is the unique solution
of the Dyson equation, which implies that SF is surjective. Similarly, the uniqueness of
the solution χ0 implies that SF is injective, which completes the proof.

4.4 The spectrum of operator-valued functions around

poles

In this section, we derive asymptotic formulas for the inverse of an operator-valued func-
tion, z ÞÑ Dpzq, as z approaches one of its poles. We then use this asymptotic formula
to study the spectrum of Dpzq close to its poles. The theory developed here in a general
setting will be applied to the operator-valued function xχHF in Section 4.5.

For the discussion to follow, it is convenient to introduce the concept of invertibility
with respect to a projection.

Definition 4.4.1 (Inverse with respect to a projection). Let P P BpHq be a projection
on a Hilbert space H, i.e., P 2 “ P . Then we say that an operator B P BpHq is invertible
with respect to P if PBP “ B and there exists an operator B´1 P BpHq such that

PB´1P “ B´1 and BB´1
“ B´1B “ P.

Moreover, for a closed subspace V Ă H, we say that B P BpHq is invertible on V provided
that B is invertible with respect to the orthogonal projection on V , denoted henceforth by
PV .

Remark. In block notation on H “ ranP ‘ kerP , the definition above is equivalent to
saying that

B “

ˆ

B̃ 0
0 0

˙

and B´1
“

ˆ

B̃´1 0
0 0

˙

,

where B̃ P BpranP q is invertible.

4.4.1 Spectral theory of bounded operators

We start by recalling two well-known results on the spectral theory of bounded operators.
For convenience of the reader, we briefly sketch the proof of these results here. Detailed
versions of the proofs below can be found in [46, Chapter 1].
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The first classical result we recall is the continuity of the spectra with respect to the
operator norm.

Proposition 4.4.1 (Continuity of spectra). Let A P BpEq where E is a Banach space
and µ P ρpAq (where ρpAq denotes the resolvent set of A). Then for any B with ∥B∥ ă

∥pµ ´ Aq´1∥´1 we have µ P ρpA ` Bq. In particular, if A : Bδp0q Ă C Ñ BpEq is
continuous and W Ă ρ

`

Ap0q
˘

is compact, then W Ă ρ
`

Apzq
˘

for any z close enough to 0.

Proof. For µ P ρpAq, we have

pµ ´ Aq
´1

pµ ´ A ´ Bq “ I ´ pµ ´ Aq
´1B and pµ ´ A ´ Bqpµ ´ Aq

´1
“ I ´ Bpµ ´ Aq

´1

So for ∥B∥ ă ∥pµ ´ Aq´1∥´1, the operators above are of the form I ´ K with ∥K∥ ă 1.
The inverse is then given by the Neumann series, pI ´ Kq´1 “

ř

kě0K
n. The second

statement now follows from a continuity plus compactness argument.

The second classical result we need is the decomposition of isolated parts of the spectra
via the Riesz projections and a countour formula for the resolvent with respect to these
projections.

Proposition 4.4.2 (Riesz projection and separation of spectra). Let γ Ă ρpAq Ă C be a
closed smooth curve separating the spectrum of A. Then, the operator

P “
1

2πi

¿

γ

pµ ´ Aq
´1dµ

is a projection commuting with A. Moreover, for µ0 R γ, the operator

Spµ0q “
1

2πi

¿

γ

1

µ ´ µ0

pµ ´ Aq
´1dµ. (4.4.1)

satisfies

Spµ0q “

#

`

p1 ´ P qpµ0 ´ Aqp1 ´ P q
˘´1

for µ0 inside γ,

´
`

P pµ0 ´ AqP
˘´1

for µ0 outside γ,
(4.4.2)

where the inverses are with respect to the projections 1 ´ P and P . In particular, the
spectrum of A

∣∣
ranP

P BpranP q and A
∣∣
kerP

P BpkerP q is given by the spectrum of A inside
and outside of γ, respectively.

Proof. That the operator P is well-defined and bounded is clear since γ Ă ρpAq and
µ ÞÑ pµ´Aq´1 is continuous in µ. To see that P is a projection, note that one can choose
a curve γ1 inside γ such that all points lying between γ1 and γ are in the resolvent of A.
Thus from a standard argument of holomorphic function theory,

P “
1

2πi

¿

γ1

pλ ´ Aq
´1dλ.
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Hence multiplying the above integral by P (defined as a contour integral on γ), using the
resolvent identity pµ´Aq´1pλ´Aq´1 “ pµ´ λq´1

`

pλ´Aq´1 ´ pµ´Aq´1, and using the
Cauchy integral formula for holomorphic functions, one can show that P 2 “ P .

Next, since Spµ0q commutes with A, formula (4.4.2) follows from the identities

pµ0 ´ AqSpµ0q “
1

2πi

¿

γ

1

µ ´ µ0

´
1

2πi

¿

γ

pµ ´ Aq
´1dµ “

#

1 ´ P, for µ0 inside γ,

´P, for µ0 outside γ,

and

Spµ0qP “
1

2πi

¿

γ

¿

γ1

pµ ´ Aq´1 ´ pλ ´ Aq´1

pµ ´ µ0qpλ ´ µq
dλdµ “

#

0, for µ0 inside γ,

Spµ0q, for µ0 outside γ.

Finally, the last statement follows from two observations. First, the existence of the
inverses in (4.4.2) implies that σpA

∣∣
ranP

q lies inside γ and σpA
∣∣
kerP

q lies outside γ. Second,
from the decomposition

A “

ˆ

A
∣∣
ranP

0
0 A

∣∣
kerP

˙

with respect to H “ ranP ‘ kerP , we have σpAq “ σpA
∣∣
kerP

q Y σpA
∣∣
ranP

q.

4.4.2 Inverse around a pole

We now consider operator-valued functions of the form Dpzq “ A`z´1B`Cpzq, for z P C
close to 0. To study the spectra of Dpzq as z goes to 0, our main tool is the following
lemma.

Lemma 4.4.1 (Inverse of operator-valued function around a pole). Let A,B,C, P P BpHq

be such that (i) P is a projection, (ii) B is invertible with respect to P , (iii) A is invertible
with respect to PK, and (iv) PKCPK “ 0. Then, for z small enough, the operator Dpzq “

A ` C ` z´1B is invertible and

Dpzq
´1

“ A´1
` zp1 ´ A´1CqB´1

8
ÿ

k“0

zn
`

CpA´1C ´ 1qB´1
˘n

p1 ´ CA´1
q (4.4.3)

where A´1 is the inverse with respect to PK.

Proof. The proof is based on the Schur complement [128] for the block representation of
D on H “ kerP ‘ ranP . Precisely, let

Dpzq “

ˆ

A B
C D

˙

“

ˆ

A p1 ´ P qCP
PCp1 ´ P q z´1B ` PCP

˙

,
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then the Schur complement of the block A is

∆ :“ D ´ CA´1B “ z´1B ` PCP ´ PCA´1CP.

Thus for small z, the inverse of ∆ is given by the Neumann series

∆´1
“ zB´1

8
ÿ

n“0

zn
`

CpA´1C ´ 1qB´1
˘n
.

But since A “ A is invertible on BpkerP q, the result follows from the formula

Dpzq
´1

“

ˆ

A´1 ` A´1B∆´1CA´1 ´A´1B∆´1

´∆´1CA´1 ∆´1

˙

“ A´1
` p1 ´ A´1Bq∆´1

p1 ´ CA´1
q.

As an immediate corollary of the lemma above, we find an asymptotic expansion for
the resolvent of Dpzq in terms of C,B´1, and the resolvent of A.

Corollary 4.4.1 (Resolvent expansion). Let A,B,C, P P BpHq be such that (i) P is a
projection, (ii) B is invertible with respect to P , (iii) PKAPK “ A, and (iv) PKCPK “ 0.
Then for any compact set W Ă ρpAq, we have W Ă ρ

`

Dpzq “ A`z´1B`C
˘

for z small.
Moreover, the resolvent RDpzqpµq “ pµ ´ Dpzqq´1 satisfies

RDpzqpµq “ RApµq´zp1`RApµqCqB´1
8
ÿ

n“0

zn
`

µB´1
´Cp1`RApµqCqB´1

˘n
p1`CRApµqq

where RApµq “
`

PKpµ ´ AqPKq´1 is the resolvent with respect to PK.

Proof. Just apply Lemma 4.4.1 to the operator µ´Dpzq “ pµPK ´Aq`z´1p´Bq`pµP ´

Cq.

With the above expansion of the resolvent of Cpzq, one can compute functions of Cpzq

in terms of B´1 and functions of A. For the applications in the next section however,
the operator A will not be fixed but vary holomorphic with z. So in the next lemma,
we compute the asymptotic expansion of fpApzq ` z´1B ` Cpzqq when Apzq and Cpzq

are holomorphic around 0 and f is holomorphic around some isolated point µ0 in the
spectrum of Ap0q. For simplicity, we state the formula only to second order, which is
enough for our applications.

Lemma 4.4.2 (Convergence of spectra). Let P,A,B,C satisfy the assumption of Corol-
lary 4.4.1. Suppose in addition that µ0 P σpAq is an isolated point in the spectrum of A
and Apzq and Cpzq are holomorphic functions satisfying Ap0q “ A, PKApzqPK “ Apzq,
and Cp0q “ C. Then, for any f holomorphic around µ0 and z small, there exists δ ą 0
such that BBδpµ0q is in the resolvent set of Dpzq “ Apzq ` z´1B ` Cpzq and

f
`

Dpzq
˘

“
1

2πi

¿

BδBδpµ0q

fpµq
`

µ ´ Dpzq
˘´1

dµ “ fpAq ` Op|z|q, (4.4.4)
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where fpAq “ p2πiq´1
ű

BBδpµ0q
fpµqpµPK ´ Aq´1dµ and pµPK ´ Aq´1 is the inverse with

respect to PK. Furthermore, if the Riesz projection Q “ 1pAq satisfies AQ “ µ0Q, then

f
`

Dpzq
˘

“ fpµ0qQ ` zfpµ0q

ˆ

Q
`

9Ap0q ´ CB´1C
˘

R ` R
`

9Ap0q ´ CB´1C
˘

Q

´ QCB´1
´ B´1CQ

˙

` z 9fpµ0qQ
`

9Ap0q ´ CB´1C
˘

Q ` Op|z|
2
q, (4.4.5)

where R :“
`

pµ ´ Aqp1 ´ Qq
˘´1

is the inverse with respect to 1 ´ Q.

Proof. By Corollary 4.4.1, we can find δ ą 0 small such that

RDpzqpµq “ RApzqpµq ´ z
`

1 ` RApzqpµqCpzq
˘

B´1
`

1 ` CpzqRApzqpµq
˘

` Op|z|
2
q,

for any µ P BBδpµ0q and z small. We can now use the formula

BzRApzqpµq “ RApzqpµq 9ApzqRApzqpµq

to obtain

RDpzqpµq “ RApµq ` zRApµq 9Ap0qRApµq ´ z
`

1 ` RApµqC
˘

B´1
`

1 ` CRApµq
˘

` Op|z|
2
q.

(4.4.6)

The leading order of the above expansion yields (4.4.4). For the next formula, note that
since AQ “ µ0Q, we have the expansion

RApµq “ pµ ´ µ0q
´1Q `

n´1
ÿ

k“0

pµ ´ µ0q
kRk`1

` O
`

pµ ´ µ0q
n
˘

, (4.4.7)

where R “
`

pµ0P
K ´ AqpPK ´ Qq

˘´1
is the inverse with respect to PK ´ Q (which is

a projection since ranQ Ă kerP ), and the remainder is holomorphic for µ close to µ0.
The result now follows by plugging (4.4.7) into (4.4.6), integrating on

ű

BBδpµ0q
, and using

Cauchy’s integral formula.

4.5 The operator xχHF

In this section we want to understand how the positive spectra of xχHpωqF behaves as
ω moves along the interval p´Ω,Ωq, and to construct the inverse p1 ´ xχHF q´1 around
the poles of xχH . To achieve this, the key idea here is to define an abstract auxiliary
Hilbert space, HF , on which the operator xχHpzqF becomes self-adjoint for real values of
z. This allow us to study the spectral properties of xχHF on L2

1{ρ0
via the spectral theory

of self-adjoint operators on Hilbert spaces.
The plan for this section is the following. First, we introduce the Hilbert space HF and

prove a few useful lemmas regarding the composition BF for general B P BpL2
ρ0
, L2

1{ρ0
q.
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Then, we use the representation of xχH from Proposition 4.2.4 and the positivity assump-
tion on F to prove a series of lemmas concerning the positive spectra of xχHpωqF for
ω P p´Ω,Ωq. Once the behaviour of the positive spectra of xχHF is well-understood, we
turn to some asymptotic formulas for the inverse p1´ xχHpzqF q´1 when z approaches either
a pole of xχH or a zero of 1 ´ xχHF . The latter set will be shown to be the poles of xχF in
Section 4.6.

4.5.1 The Hilbert space HF .

Let F P BpL2
1{ρ0
, L2

ρ0
q be an operator satisfying the positivity assumption

xf, fyF “ xf, FfyL2 ą 0, for any f P L2
1
ρ0

. (4.5.1)

Then, F is symmetric (by the polarization identity) and x¨, ¨yF defines an inner-product
on L2

1{ρ0
. Therefore, we can define the Hilbert space HF as the completion of L2

1{ρ0
with

respect to this inner-product, i.e.,

HF “ L2
1{ρ0

pR3q
∥¨∥F

, where ∥f∥2F “ xf, Ffy, for any f P L2
1{ρ0

. (4.5.2)

Even though HF is an abstract space and not necessarily a function space, we will canon-
ically identify L2

1{ρ0
with a dense subspace of HF .

The first result we shall need is that the operator F can be uniquely extended to an
operator in BpHF , L

2
ρ0

q.

Proposition 4.5.1 (Extension of F to HF ). There exists a unique extension of F to
BpHF , L

2
ρ0

q and it satisfies

∥F∥HF ,L2
ρ0

ď
b

∥F∥L2
1{ρ0

,L2
ρ0

(4.5.3)

Proof. Since ∥f∥L2
ρ0

“ sup gPL2
1{ρ0

∥g∥
L2
1{ρ0

“1

xf, gyL2pR3q, we find that

∥Ff∥L2
ρ0

“ sup
gPL2

1{ρ0
∥g∥

L2
1{ρ0

“1

xf, Fgy “ sup
gPL2

1{ρ0
∥g∥

L2
1{ρ0

“1

xf, gyF ď sup
gPL2

1{ρ0
∥g∥

L2
1{ρ0

“1

a

xf, Ffyxg, Fgy

ď ∥f∥F
b

∥F∥L2
ρ0

,L2
1{ρ0

.

The result then follows since L2
1{ρ0

is dense in HF .

The next result justifies the definition of HF . It will be used to show that xχHpzqF is
a meromorphic family of operators on HF whose restriction to R is self-adjoint.
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Proposition 4.5.2 (Adjoint on HF ). Let B P BpL2
1{ρ0
, L2

ρ0
q. Then BF has a unique

extension to an operator in BpHF q and its adjoint on HF is given by

pBF q
˚F “ B˚F,

where B˚ P BpL2
1{ρ0
, L2

ρ0
q is the adjoint with respect to the L2-inner-product.

Proof. Note that

xf,BFfyF “ xf, FBFfy “ xB˚Ff, Ffy “ xB˚Ff, fyF ,

for any f P L2
1{ρ0

. Hence, by the continuity of F and the density of L2
1{ρ0

on HF , the result
follows.

As a last result here, we show that for any B P BpL2
ρ0
, L2

1{ρ0
q, the spectrum of the

composition BF on HF is related to the spectrum on L2
1{ρ0

.

Proposition 4.5.3 (Inverse of λ ´ BF ). Let B P BpL2
ρ0
, L2

1{ρ0
q and BF P BpHF q be the

unique extension to HF . Then, for any 0 ‰ λ P C, we have

kerλ ´ BF Ă L2
1{ρ0
.

Moreover, if λ ´ BF is invertible in HF , then λ ´ BF is invertible in L2
1{ρ0

and the

restriction of the inverse pλ ´ BF q´1 is given by the inverse of the restriction.

Proof. As the unique extension BF is given by the composition of B with the unique
extension F P BpHF , L

2
ρ0

q from Proposition 4.5.1, we have BFg P L2
1{ρ0

for any g P HF .
Hence, if λ ‰ 0 and f P kerλ ´ BF we have

f “
1

λ
λf “

BFf

λ
P L2

1{ρ0
,

which shows that kerλ ´ BF Ă L2
1{ρ0

.
For the second statement, note that if λ ´ BF is injective on HF , then λ ´ BF is

injective on L2
1{ρ0

. Similarly, if λ ´ BF is surjective on HF , then for any g P L2
1{ρ0

there

exists f P HF such that pλ ´ BF qf “ g. But since BFf P L2
1{ρ0

for any such f , we

see that λf “ g ` BFf P L2
1{ρ0

. Therefore, λ ´ BF P BpL2
1{ρ0

q is bijective provided

that λ ´ BF P BpHF q is also bijective. The result now follows from the closed graph
theorem.

4.5.2 Positive spectra

Let us now combine the results about HF , the results from Section 4.4, and the formula
for xχH to prove a series of lemma concerning the positive spectra of xχHpzqF . These
lemmas will provide us a fairly complete qualitative description of the positive spectra of
xχHpzqF as z moves along the real axis. This description is the main step in the proof of
Theorem 4.1.4.
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To simplify the next statements and proofs, let us introduce (and recall) some notation.
First, recall that the set of poles of xχH is given by

PpxχHq “ t0 ă ω ă Ω : SPH
E0`ω ‰ 0u, (4.5.4)

where PH
E0`ω is the orthogonal projection on the eigenspace kerH ´ E0 ´ω, S is our usual

operator defined in (4.1.4), and Ω “ inf σesspHq ´ E0 ą 0 is the ionization threshold of H.
We also recall the definition of the finite-dimensional subspaces Vω and their F -orthogonal
complement:

Vz :“ ranSPH
E0`z Ă L2

1{ρ0
Ă HF , V K

z :“ tf P HF : xf, gyF “ 0, @g P Vzu. (4.5.5)

The associated F -orthogonal projections (in BpHF q) are denoted by PVz and PV K
z

“

1 ´ PVz . We then introduce the operators Bω and the operator-valued function Besspzq

via the spectral decomposition

xχHpzqF “
ÿ

ωPPpyχHq

2ω

z2 ´ ω2
SPH

E0`ωS
˚F

looooomooooon

:“Bω

`S

ˆ
ż

Ω

2λ

z2 ´ λ2
dPH

E0`λ

˙

S˚F
loooooooooooooooomoooooooooooooooon

:“Besspzq

. (4.5.6)

Then, the starting point of our analysis is the observation that the family of operators
xχHpzqF is self-adjoint for real values of z.

Lemma 4.5.1 (Self-adjointness of xχHpzqF ). The operator xχHpzqF satisfies

pxχHpzqF q
˚F “ xχHpzqF “ xχHp´zqF, for any z P DΩ. (4.5.7)

In particular, xχHpzqF is self-adjoint for z P p´Ω,Ωqz ˘ PpxχHq.

Proof. From the formula in Proposition 4.2.4, we have

xχHpzq
˚

“ xχHpzq “ xχHp´zq.

Hence the symmetries in (4.5.7) follows from the ones above and Proposition 4.5.2.

Next, we want to study the positive spectra of xχHpωqF along the interval ω P r0,Ωq.
For this, we first observe that the operators Bω defined in (4.5.6) can be seen as positive
operators acting on the finite-dimensional subspaces Vω.

Proposition 4.5.4 (Bω as positive operators on Vω). The operator Bω defined on (4.5.6)
is symmetric and bounded on HF and satisfy

PVωBωPVω “ Bω and xf,BωfyF ą 0, for any f P Vω. (4.5.8)

In particular, Bω is invertible with respect to the (F -)orthogonal projection PVω .
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Proof. ThatBω is symmetric follows from Proposition 4.5.2 since pSPH
E0`ωS

˚q˚ “ SPH
E0`ωS

˚.
That Bω is non-negative follows from the identity

xf,BωfyF “ xFf, SPH
E0`ωS

˚Ffy “ ∥PH
E0`ωS

˚Ff∥2L2pR3q ě 0. (4.5.9)

Since ranBω Ă Vω and Bω is symmetric, we see that Bω “ PVωBωPVω . Finally, to see
that Bω is positive on Vω, note that for any 0 ‰ f P Vω there exists Φ P HN such that
f “ SPH

E0`ωΦ. Therefore,

xΦ, PH
E0`ωS

˚Ffy “ xFSPH
E0`ωΦ, fy “ xFf, fy ą 0.

As a consequence, PH
E0`ωS

˚Ff ‰ 0 and the result follows from (4.5.9).

We now use the positivity of Bω to show that the positive spectra of xχHpzqF is discrete
for real z.

Lemma 4.5.2 (Positive spectra is discrete). For any s P r0,ΩqzPpxχHq, we have

σess
`

xχHpsqF q Ă p´8, 0s. (4.5.10)

Proof. As 2 λ
s2´λ2 ă 0 for any 0 ă |s| ď λ and the operators Bω are non-negative, we have

xf,
2ω

s2 ´ ω2
BωfyF ď 0, for any |s| ă ω, and (4.5.11)

xf,BesspsqfyF ď 0, for any s ă Ω. (4.5.12)

In addition, from Weyl’s criteria and the fact that all Bω have finite rank, we have

σesspxχHpsqF q “ σess

ˆ

ÿ

ωPPpyχHqzF

2ω

s2 ´ ω2
Bω ` Besspsq

˙

for any finite set F . (4.5.13)

Thus for Ω ą |s| R PpxχHq, the result follows from (4.5.11), (4.5.12), (4.5.13), and the
Rayleigh-Ritz principle (max-min principle).

Next, we want to understand the behaviour of the eigenvalues of xχHpsqF as s ap-
proaches the excitations ω P PpxχHq. The idea is to use the operator PK

Vω
xχHpzqFPK

Vω
as a

reference. Precisely, we can apply Lemma 4.4.2 to prove the following lemma.

Lemma 4.5.3 (Positive spectra close to excitations). Let µ0 ą 0. Then for any δ ą 0
small enough, there exists some neighborhood Uδ of ω on which the projection

Qpzq “
1

2πi

¿

BBδpµ0q

pµ ´ xχHpzqF q
´1dµ (4.5.14)

is well-defined, holomorphic, and satisfies

Qpzq “ Qpωq ` Op|z ´ ωj|q,

where Qpωq is the orthogonal projection on kerµ0´PK
Vω
xχHpωqF . If Qpωq “ 0, then Bδpµ0q

is on the resolvent of xχHpzqF and Qpzq “ 0 on Uδ.
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Proof. Note that Apzq :“ PK
Vω
xχHpzqFPK

Vω
is holomorphic and bounded for z close to ω.

Moreover µ0 ą 0 must be either on the discrete spectrum or on the resolvent set of Apzq

(see Lemma 4.5.2). Either way, we can apply Lemma 4.4.2 to the operator

xχHpzqF
looomooon

:“Dpzq

“ Apzq ` pz ´ ωq
´1 Bω

loomoon

:“B

`PK
Vω xχHpzqFPVω ` PVω xχHpzqFPK

Vω ´ pz ` ωq
´1Bω

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

:“Cpzq

,

with fpµq “ 1 to prove the Lemma. (Note that kerµ0´P
K
Vω
xχHpωqF “ kerµ0´P

K
Vω
xχHpωqFPK

Vω

for any µ0 ‰ 0.)

We are now in position to complete the description of the qualitative behaviour of the
positive eigenvalues of xχHpzqF as z moves along the interval p´Ω,Ωq. To state this last
lemma, let us denote the max-min and the min-max values of xχHF over V K

ω Ă HF as

µk
pωq :“ sup

WĂV K
ω

dimW“k

inf
fPW

∥f∥F“1

xf, xχHpωqFfyF and µkpωq :“ inf
WĂV K

ω
dimW“k

sup
fPW

∥f∥F“1

xf, xχHpωqFfyF .

Lemma 4.5.4 (Max-min and min-max values). The functions µk and µk are non-increasing
along any excitation-free interval J Ă r0,ΩqzPpxχHq. Moreover, they satisfy

(i) µ1psq ď 0, for |s| ă minPpxχHq,

(ii) limsÑω` µkpsq “ 8 “ ´ limsÑω´ µkpsq, for any 1 ď k ď dimVω,

(iii) limsÑω´ µkpsq “ µkpωq “ limsÑω` µk`dimVωpωq, for any ω P PpxχHq, and

(iv) limsÑω´ µk`dimVωpωq “ µkpωq “ limsÑω` µkpωq, for any ω P PpxχHq.

Proof. From the proof of Lemma 4.5.2, we see that xχHpωqF ď 0 for |ω| ă minPpxχF q,
which proves item piq. Next, note that for ω P r0,ΩqzPpxχHq, items piiq, piiiq and pivq

are equivalent to the continuity of µk and µk (since Vω “ t0u at these points), which
follows from the continuity of xχHpωqF around these points. To see why µk and µk are
non-increasing along any interval J Ă r0,ΩqzPpxχHq, just note that

xf, xχHpsqFfyF “

ż 8

ω1

λ

s2 ´ λ2
d∥EH

λ`E0S
˚Ff∥2 ě

ż 8

ω1

λ

s̃2 ´ λ2
d∥EH

λ`E0S
˚Ff∥2

ě xf, xχHps̃qFfyF , for any s̃ ą s ą 0 in J . (4.5.15)

In particular, the limits limsÑω` µkpsq P R Y t`8u exists for any k P N and ω P r0,Ωq.
To show that this limit goes to infinity for k ď dimVω, we note that

lim
sÑω`

xf, xχHpsqFfy “ lim
sÑω`

2ω

s2 ´ ω2
xf,Bωfy ` Op1q “ 8, for any 0 ‰ f P Vω,

by the positivity of Bω. On the other hand, we can use that PV K
ω
xχHpsqFPV K

ω
is bounded

for s close to ω to show that the limit is finite for k ą dimVω. A similar argument implies
that limsÑω´ µkpsq Ñ ´8 if and only if k ď dimVω.
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Finally, the last two items follow from Lemma 4.5.3. Indeed, since xχHpsqF is self-
adjoint, we have µkpsq P σpxχHpsqF q for any k P N and s R PpxχHq. Lemma 4.5.3 then
implies that limsÑω˘ µkpsq belongs to the spectrum of PV K

ω
xχHpωqFPV K

ω
(on BpV K

ω q) as long
as it is finite. Moreover, Lemma 4.5.3 also implies that any point µ0 P σpPV K

ω
xχHpωqFPV K

ω
q

that lies above the essential spectrummust be the limit of exactly dimkerµ0´PV K
ω
xχHpωqFPV K

ω

eigenvalues of xχHpωqF . Item piiq and an ordering argument then completes the proof of
piiiq. Item pivq follows from similar arguments.

4.5.3 The inverse of 1 ´ xχHpzqF

We now combine the results from the previous sections to show that the inverse of 1´ xχHF
is meromorphic and to obtain asymptotic formulas for p1´ xχHpzqF q´1 when z approaches
the set of poles of xχH or the set of zeros of 1 ´ xχHF . These formulas will be used in the
next section to prove Theorem 4.1.3.

We start by showing that 1 ´ xχHpzqF is invertible for z away of the real axis, or
before the first excitation ω1 :“ minPpxχHq. In addition, we obtain an upper bound on
the growth of ∥p1´ xχHpω` iηqF q´1∥ as η Ñ 0. This bound will be used to show that the
poles of xχF are all simple.

Lemma 4.5.5 (Inverse away of the real axis and before ω1). Let µ0 ą 0. Then, the
operator µ0 ´ xχHpzqF is invertible for any z P tω ` iη P C : η ‰ 0 or |ω| ď ω1u, where
ω1 :“ minPpxχHq. Moreover, we have

∥pµ0 ´ xχHpω ` iηqF q
´1∥ À µ´1

0 |z||η|
´1, (4.5.16)

for any z P CzR.

Proof. The first step is to prove the following estimate on the ratio between the real and
imaginary part of xχHpzqF :

Re
`

xf, xχHpzqFfyF
˘

ď max

"

0,
ω2 ´ η2 ´ ω2

1

|ωη|

*

ˇ

ˇIm
`

xf, xχHpzqFfyF
˘
ˇ

ˇ. (4.5.17)

For this, let z “ ω ` iη and suppose that ω2 ´ η2 ď ω2
1. Then from the spectral theorem

and the representation of xχHpzq in Proposition 4.2.4, we find that

Rexf, xχHpzqFfyF “ 2

ż 8

ω1

ď0
hkkkkkkkkikkkkkkkkj

λpω2
´ η2 ´ λ2q

|λ2 ` z2|2
d∥PH

E0`λS
˚Ff∥2 ď 0,

which gives estimate (4.5.17) in this case. Now suppose that ω2 ´ η2 ą ω2
1. Then since
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ď0
hkkkkkkkkikkkkkkkkj

λpω2
´ η2 ´ λ2q

|λ2`z2|2
is negative for λ ě

a

ω2 ´ η2, we find that

Rexf, xχHpzqFfy ď 2

ż

?
ω2´η2

ω1

λpω2 ´ η2 ´ λ2q

|λ2 ´ z2|2
d∥EH

E0`λS
˚Ff∥2

ď 2

ż

?
ω2´η2

ω1

λ|ωη|

|λ2 ´ z2|2

ˆ

ω2 ´ η2 ´ λ2

|ωη|

˙

d∥EH
E0`λS

˚Ff∥2

ď
ω2 ´ η2 ´ ω2

1

|ωη|

ˇ

ˇ

ˇ

ˇ

2

ż

?
ω2´η2

ω1

λωη

|λ2 ´ z2|2
d∥EH

E0`λS
˚Ff∥2

ˇ

ˇ

ˇ

ˇ

ď
ω2 ´ η2 ´ ω2

1

|ωη|
|Imxf, xχHpzqFfyF |,

which proves (4.5.17). Next, let g : Cztω1,´ω1u Ñ r0,8s be the function

gpω ` iηq “ max

"

0,
ω2 ´ η2 ´ ω2

1

|ωη|

*

. (4.5.18)

Then by estimate (4.5.17),

∥pµ0 ´ xχHpzqF qf∥2F ě
`

Rexf, µ0 ´ xχHpzqFfyF
˘2

` |Imxf, xχHpzqFfyF |
2

ě pRexf, xχHpzqFfyF q
2
p1 ` gpzq

´2
q ´ 2µ0Rexf, xχHpzqFfyF ` µ2

0,

for any f P HF with ∥f∥F “ 1. Hence by minimizing the function τ ÞÑ τ 2p1 ` gpzq´2q ´

2µ0τ ` µ2
0, we find that

∥pµ0 ´ xχHpzqF qf∥F ě
µ0

a

1 ` gpzq2
∥f∥F . (4.5.19)

Moreover, because gpzq “ gpzq, the same lower bound holds for the F -adjoint pxχHpzqF q˚F “

xχHpzqF . Therefore, µ0 ´ xχHpzqF is invertible whenever gpzq ă 8, which is precisely the
set tω ` iη : η ‰ 0 or |ω| ă ω1u. Estimate (4.5.16) now follows from (4.5.19) and the
estimate gpzq “ maxt0, pω2 ´ η2 ´ ω2

1q{|ωη|u ď |ω|{|η|.

Now we can use the estimate just proved and the results of Section 4.4 to show that
p1 ´ xχHF q´1 is meromorphic.

Lemma 4.5.6 (Inverse of 1 ´ xχHF ). The function p1 ´ xχHF q´1 : DΩ Ñ BpHF q is
meromorphic and its positive poles are precisely the set of zeros of 1 ´ xχHF , i.e.,

PpxχF q “

"

0 ă ω ă Ω : Zω :“ ker 1 ´ PV K
ω
xχHpωqF ‰ t0u

*

.

Furthermore, we have the following expansions of p1 ´ xχHF q´1 near the ω P PpxχHq Y

PpxχF q:
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(i) For ω P PpxχHqzPpxχF q, we have

p1 ´ xχHpω ` zqF q
´1

“ Rω ´ zp1 ` RωxχHpωqF qB´1
ω p1 ` xχHpωqFRωq ` Op|z|

2
q,

(4.5.20)

where Rω :“
`

PV K
ω

p1 ´ xχHpωqF qPV K
ω

˘´1
is the inverse with respect to PV K

ω
.

(ii) For ω P PpxχF q, the operator

Kω “ PZω

`

xχHpωqFB´1
ω xχHpωqF ´ 9

xχHpωqF
˘

PZω

is invertible with respect to the orthogonal projection PZω and we have

p1 ´ xχHpω ` zqF q
´1

“ z´1K´1
ω ` Op1q, (4.5.21)

p1 ´ xχHpω ` zqF q
´1PVω “ ´K´1

ω xχHpωqFB´1
ω ` Op|z|q. (4.5.22)

Proof. Since 1 ´ xχHF is holomorphic on DΩz ˘ PpxχHq, the inverse p1 ´ xχHF q´1 is also
holomorphic on this set whenever it exists. Thus by Lemmas 4.5.2 and 4.5.5, the inverse
p1 ´ xχHF q´1 is holomorphic on DΩz

`

˘ PpxχHq Y ˘PpxχF q
˘

.
For ω P PpxχHq, we want to apply the results of Section 4.4 to the operator xχHpω `

zqF “ Apzq ` z´1B ` Cpzq where

Apzq :“ PV K
ω
xχHpω ` zqFPV K

ω
, B :“ Bω, and

Cpzq “ PVω xχHpω ` zqFPV K
ω

` PV K
ω
xχHpω ` zqFPVω ` PVω

ˆ

xχHpω ` zqF ´
Bω

z

˙

PVω

(4.5.23)

In the case Zω “ t0u, the operator Ap0q is invertible with respect to PV K
ω

(as its positive
spectra is discrete). Hence formula (4.5.20) follows directly from Corollary 4.4.1. For the
case Zω ‰ t0u, we start by showing that Kω is invertible on Zω. For this, note that the
Riesz projection of xχHpzqF around 1 is well-defined by Lemma 4.5.3, and it satisfies

Qpzq :“ p2πiq´1

¿

BBδp1q

pµ ´ xχHpω ` zqF q
´1dµ “ PZω ` Op|z|q (4.5.24)

for z close to 0 and δ ą 0 small. Moreover, by applying Lemma 4.4.2 to xχHpω ` zqF “

Apzq ` z´1B ` Cpzq with fpµq “ 1 ´ µ we find that

Qpzqp1 ´ xχHpzqF q “ p2πiq´1

¿

BBδp1q

p1 ´ µqpµ ´ xχHpzqF q
´1dµ “ zKω ` Op|z|

2
q.

Thus from the blow-up estimate (4.5.16) we obtain

p1 ´ xχHpω ` iηqF qQpiηqf “ ηKωQpiηqf ` Op|η|
2
q Á η∥f∥, for any f P ranQpiηq.
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But since rankQpiηq “ dimZω ă 8 for η small, the above estimate implies that Kω is
invertible on Zω.

The next step is to compute the expansion of p1 ´ xχHF q´1. For this, let us rewrite
1 ´ xχHpzqF in block notation on V K

ω ‘ Vω:

1 ´ xχHpω ` zqF “

ˆ

PV K
ω

p1 ´ xχHpω ` zqF qPV K
ω

´PV K
ω
xχHpω ` zqFPVω

´PVω xχHpω ` zqFPV K
ω

PVωp1 ´ xχHpω ` zqF qPVω ,

˙

“

ˆ

A B
C D

˙

.

Thus since Bω is invertible on Vω, we have

D´1
“

ˆ

PVωp1´xχHpz ` ωqF ` z´1Bω
looooooooooooomooooooooooooon

“Op1q

qPVω ´ z´1Bω

˙´1

“ ´zB´1
ω ` Op|z|

2
q (4.5.25)

From this equation and the identities PZωPV K
ω

p1´xχHpωqF qPV K
ω

“ 0 “ PV K
ω

p1´xχHpωqF qPV K
ω
PZω ,

the Schur complement of the block D is given by

∆ :“ A ´ BD´1C “ PV K
ω

ˆ

1 ´ xχHpzqF ` zxχHpzqFB´1
ω xχHpzqF

˙

PV K
ω

` Op|z|
2
q

“ PV K
ω

ˆ

p1 ´ xχHpωqF q ´ z 9
xχHpωqF ` zxχHpωqFB´1

ω xχHpωqF

˙

PV K
ω

` Op|z|
2
q

“ PZK
ω
PV K

ω
p1 ´ xχHpωqF qPV K

ω
PZK

ω
loooooooooooooooooomoooooooooooooooooon

:“B̃

`z Kω
loomoon

:“Ã

`z rCpzq

˙

,

where rCpzq satisfies PZω
rCpzqPZω “ Op|z|q. An application of Lemma 4.4.1 to ∆ “

zpÃ ` z´1B̃ ` C̃pzqq P BpZK
ω X V K

ω q then yields ∆´1 “ z´1K´1
ω ` Op1q, which together

with (4.5.25) and the Schur complement inverse formula

p1 ´ xχHpzqF q
´1

“ D´1
` p1 ´ D´1Cq∆´1

p1 ´ BD´1
q

completes the proof of (4.5.22). The case ω P PpxχF qzPpxχHq follows from similar calcula-
tions.

4.6 The Fourier transform of χF

We are now ready to prove the main theorems of this chapter. We start by showing that
χF is a tempered distribution and then compute the asymptotic expansion of xχF around
its poles. This will be enough to prove Theorems 4.1.2 and 4.1.3. Theorem 4.1.4 is an
immediate consequence of Lemma 4.5.4 and Theorem 4.1.2.

4.6.1 xχF as a tempered distribution

To show that χF is a tempered distribution, we combine Lemma 4.5.5 with the following
lemma from [119].
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Lemma 4.6.1 (Tempered distribution as boundary value of holomorphic functions). Let
E be a Banach space and F : tz P C : 0 ă Impzq ă 2u Ñ E be a holomorphic function
such that

∥F pω ` iηq∥E À
p1 ` |ω|qM

ηK
, (4.6.1)

for any 0 ă η ă 1 and for some M P R and K P N. Then, for any f P SpRq, the limit
limηÑ0`

ş

R F pω ` iηqfpωqdω exists in E and satisfies
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim
ηÑ0

ż

R
F pω ` iηqfpyqdω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

À ∥f pK`1q
pωqp1 ` |ω|q

M`K∥L1pRq.

In particular, limηÓ0 F pω ` iηq defines a E-valued tempered distribution.

Proof of Lemma 4.6.1. The proof is a simple iteration of an integration by parts argument
with Morrera’s theorem. For n P N, let us define

F p´nq
pω ` iηq “

ż η

1

F´n`1
piη1

qdη1
`

ż ω

0

F p´n`1q
pω1

` iηqdω1,

where F p0q “ F . Then, since the line integral of a holomorphic function on a simply
connected domain along a closed rectifiable curve is zero, from estimate (4.6.1) we find
that

∥F p´1q
pω ` iη0q ´ F p´1q

pω ` iη1q∥E “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż η0

η1

F pω ` iη1
qdη1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

À
p1 ` |ω|qM

ηK´1
0

for any 0 ă η0 ă η1 ă 2. In particular, we have

∥F p´1q
pω ` iη0q∥E À

p1 ` |ω|qM

ηK´1
` ∥F p´1q

pω ` iq∥E À
p1 ` |ω|qM`1

ηK´1
.

Next, by induction we can show that

∥F p´Kq
pω ` iηq∥E À p1 ` |ω|q

M`K
p1 ` log η´1

0 q,

for 0 ă η0 ă η1 ă 2, which implies that

∥F p´K´1q
pω ` iη0q ´ F p´K´1q

pω ` iη1q∥E À p1 ` |ω|q
M`Kη1p1 ` log η´1

1 q, (4.6.2)

for 0 ă η0 ă η1 ă 1. Therefore, integrating by parts we have
ż

R

`

F pω ` iη0q ´ F pω ` iη1q
˘

fpωqdω

“

ż

R

`

F p´K´1q
pω ` iη0q ´ F p´K´1q

pω ` iη1q
˘

f pK`1q
pωqdω

À η1p1 ` log η´1
1 q∥f pK`1q

p1 ` |ω|q
M`K∥L1pRq,

for any 0 ă η0 ď η1 ă 1, where the bound is in the E-norm. The result then follows since
η1p1 ` log η´1

1 q Ñ 0 as η1 Ñ 0 and E is a Banach space.
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Theorem 4.6.1 (χF as a tempered distribution). Let χH be the DDRF of a Hamiltonian
satisfying Assumption 4.1.1 and F P BpL2

1{ρ0
, L2

ρ0
q be positive. Then the unique solution

χF of the Dyson equation (4.0.1) is a tempered distribution.

Proof. Since C “ suptPR`
∥χHptq∥ ă 8, the Fourier transform xχF pzq is holomorphic and

well-defined for Impzq ą C. Hence applying the Fourier transform to (4.0.1) and using
the convolution property,

xχF pzq “ xχHpzq ` xχHpzqFxχF pzq, (4.6.3)

for Impzq ą C. But since the operator-valued function z ÞÑ p1 ´ xχ0pzqF q´1 P BpHF q is
holomorphic on the upper half-plane (by Lemma 4.5.5), we see that

xχF pzq “ p1 ´ xχHpzqF q
´1

xχHpzq

is the analytic extension of xχF P BpL2
ρ0
,HF q to the upper half plane. Moreover, we have

the bound ∥pω` iη´Hq´1∥HN ,HN
ď |η|´1 because H is self-adjoint. So from the formula

for xχHpzq in terms of the resolvent of H (see Proposition 4.2.4), we obtain

∥xχHpω ` iηq∥L2
ρ0

,L2
1{ρ0

À |η|
´1. (4.6.4)

Therefore, by using this estimate and the blow-estimate (4.5.16) in (4.6.3), we have

∥xχF pω ` iηq∥L2
ρ0

,HF
À η´2

p1 ` |ω|q, (4.6.5)

for any 1 ą η ą 0 and ω P R. Note however that the bound here is on the operator norm
in BpL2

ρ0
,HF q and not in BpL2

ρ0
, L2

1{ρ0
q as we would like. To obtain the bound on the right

norm, we now use (4.6.3) again. Indeed, since F P BpHF , L
2
ρ0

q (by Proposition 4.5.1),
from estimates (4.6.4) and (4.6.5) and the identity (4.6.3) we obtain

∥xχF pω ` iηq∥L2
ρ0

,L2
1{ρ0

ď ∥xχHpω ` iηq∥L2
ρ0

,L2
1{ρ0

`

1 ` ∥F∥HF ,L2
ρ0
∥xχF pω ` iηq∥L2

ρ0
,HF

˘

À η´3
p1 ` |ω|q.

The result now follows from Lemma 4.6.1.

4.6.2 The poles of xχF

Let us now prove Theorems 4.1.2 and 4.1.3.

Proof of Theorems 4.1.2 and 4.1.3. We have already shown in the proof of Theorem 4.6.1
that

xχF pzq “ p1 ´ xχHpzqF q
´1

xχHpzq
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is the (unique) analytic extension of xχF pωq to the upper half-plane. Since the composition
of meromorphic functions is also meromorphic, from Lemma 4.5.6 and Proposition 4.2.5
we see that xχF is also meromorphic on DΩ. Moreover, its poles can only lie on the set
PpxχHq Y PpxχF q as both xχHpzq and p1 ´ xχHpzqq´1 are holomorphic outside this set.

Next, let us consider the points ω P PpxχHq Y PpxχF q and fist show that

L2
ρ0

“ FVω ‘ kerSPH
E0`ωS

˚

is a decomposition of L2
ρ0

into closed complementary subspaces. That they are closed
subspaces of L2

ρ0
is clear because SPH

E0`ωS
˚ is bounded and dimVω ă 8. To see that

they are complementary, note that Bω “ SPH
E0`ωS

˚F is injective on Vω. Hence FVω X

kerSPH
E0`ωS

˚ “ t0u and codimkerSPH
E0`ωS

˚ “ dimVω “ dimFVω ă 8. Therefore, the
above decomposition holds and the associated projection PFVω P BpL2

ρ0
q is well-defined.

Moreover, we see that the restriction SPH
E0`ωS

˚
∣∣
FVω

P BpFVω, Vωq is invertible and

B´1
ω “ F´1

pSPH
E0`ωS

˚
∣∣
FVω

q
´1PVω and B´1

ω SPH
E0`ωS “ F´1PFVω . (4.6.6)

Using this formula, the expansions in (4.1.16) and (4.1.18) follows directly from the iden-
tity xχF pzq “ p1 ´ xχHpzqF q´1

xχHpzq and the expansion on (4.5.20) and (4.5.22).
Finally, to see that (4.1.15) holds, it is enough to show that

rankωpxχF q “ rankωpp1 ´ xχF q
´1

q, for any ω P PpxχF q.

The inequality rankωpxχF q ď rankωpp1 ´ xχHF q´1 follows from the explicit formulas in
Theorem 4.1.3 and the characterization of p1 ´ xχHF q´1 in Lemma 4.5.6. The opposite
inequality follows from the identity

xχFF “ p1 ´ xχHF q
´1

xχHF “ p1 ´ xχHF q
´1

´ 1.

4.7 Casida formalism

The goal of this section is to prove Theorem 4.1.5 and briefly discuss how the general
Casida formalism presented here reduces to the original one in the non-interacting case.

4.7.1 Proof of Theorem 4.1.5

Throughout this section we assume that H is a Hamiltonian with purely discrete spectrum
and satisfying Assumption 4.1.1. Since H is an operator on an infinite dimensional space,
we can choose an orthonormal family

tΨju
8
j“1 Ă HN such that HΨj “ pE0 ` ωjqΨj and lim

jÑ8
ωj “ `8.
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As mentioned in the introduction, we can further assume that tωju
8
j“1 “ PpxχHq after

possibly reducing and relabelling the set tΨju
8
j“1. As in the introduction, we do not

assume that ωj ď ωj`1, and ωj “ ωk for some k ‰ j is allowed. The mth Casida matrix
is then defined as

Cm
jk “ 2ωjxSΨj, FSΨkyL2pR3q ` ω2

j δjk, where δjk “

#

1, if j “ k,

0, otherwise.
(4.7.1)

Let us also define the mth truncation of the finite-dimensional subspaces tVωuωą0 and
their direct sum as

V m
ω “ spantSΨj : j ď m and ωj “ ωu and Hm :“ ‘ωą0V

m
ω , (4.7.2)

where we use again the convention that V m
ω “ t0u if ω R tωju

m
j“1. In addition, we define

the degeneracy of ω with respect to the truncated space V m
ω as

dmpωq “ #tk ď m : ωk “ ωu ´ dimV m
ω . (4.7.3)

Then, we start by showing that the eigenvalues of Cm are related to the truncated density-
density response function

xχm
Hpzq “

m
ÿ

j“1

2ωj

z2 ´ ω2
j

SPΨjS
˚,

where PΨj is the projection on the space spanned by Ψj.

Proposition 4.7.1 (Casida matrix and truncated response function). Let xχm
Hpzq be de-

fined as above, then for any ω ą 0 we have

dimkerω2
´ Cm

“ dimker 1 ´ PK
Vmω

xχm
Hpωq ` dmpωq,

where PK
Vmω

is the F -orthogonal projection on the F -orthogonal complement of the space
V m
ω defined in (4.7.2).

Proof. Let 0 ‰ f P L2
1{ρ0

satisfy PK
Vmω

xχm
HpωqFf “ f , and define

αj :“ pω2
´ ω2

j q
´12ωjxSΨj, Ffy for any j ď m with ωj ‰ ω. (4.7.4)

For j with ωj “ ω, we can choose the rest of the coefficients tαju in a way that
ÿ

jďm
ωj“ω

αjSΨj :“ ´PVmω

ÿ

jďm
ωj‰ω

αjSΨj. (4.7.5)

This is possible because V m
ω “ spantSΨj : j ď m,ωj “ ωu. So by the definition of Cm

(see (4.7.1)) and the assumption PK
Vmω

xχm
HpωqFf “ f , one can easily check that

f “

m
ÿ

j“1

αjSΨj and pCmαqj “ 2ωjxSΨj, Ffy ` ω2
jαj for any j ď m. (4.7.6)
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Since f P pV m
ω qK implies that xSΨj, Ffy “ 0 for any ωj “ ω, we conclude from (4.7.4)

and (4.7.6) that α P kerω2 ´Cm. Moreover, there are exactly dmpωq ` 1 ways of choosing
the αj’s satisfying (4.7.5), by the definition of dmpωq. Hence dimkerω2 ´ Cm ě dmpωq `

dimker 1 ´ PK
Vmω

xχm
HpωqF .

For the opposite inequality we let α P kerω2 ´Cm and construct f P L2
1{ρ0

via the first

equation in (4.7.6). The second equation in (4.7.6) then shows that f “ 0 if and only
if αj “ 0, for any j ď m with ωj ‰ ω, and

řm
j:ωj“ω αjSΨj “ 0. Then on one hand, we

have at most dmpωq linearly independent solutions α P kerω2 ´ Cm with
ř

j αjSΨj “ 0.

On the other hand, we can use both equations in (4.7.6) to show that PK
Vmω

xχm
HpωqFf “ f .

These two statements then imply that dimkerω2´Cm ď dmpωq`dimker 1´PK
Vmω

xχm
HpωqF ,

which concludes the proof.

Note that xχm
Hpzq has the same form as the Fourier transform of the density-density

response function of some Hamiltonian. As a consequence, one can show that the min-
max/max-min results from Lemma 4.5.4 also holds for xχm

HpωqF . This fact together with
Proposition 4.7.1 can be used to show the following corollary.

Corollary 4.7.1 (Eigenvalues of Casida matrix). The Casida matrix Cm is diagonalizable
and all its eigenvalues are positive.

Proof. By Proposition 4.7.1 and the identity m “
ř

ωą0 dmpωq ` dimV m
ω , it is enough to

show that

ÿ

ωą0

dimkerZm
ω “

m
ÿ

ωą0

dimV m
ω , where Zm

ω “ ker 1 ´ PK
Vmω

xχm
HpωqF. (4.7.7)

To this end, we first note that since p‘m
ωą0V

m
ω qK “

Ş

ωą0pV
m
ω qK Ă ker xχm

HpωqF and xχm
Hpωq

is symmetric, it is enough to deal with the restriction xχm
HpωqF to the finite dimensional

space Hm. In particular, the eigenvalues of xχm
HpωqF on Hm are given by the F -max-min

values,

µk,m
“ sup

V ĂHmXpVmω qK

dimV “k

inf
fPV

∥f∥F“1

xFf, xχm
HpωqFfy for k ď dimHm.

Moreover, the F -min-max values over Hm, denoted here by tµk,mukďdimHm , also corre-
spond to eigenvalues and the following relation holds:

µk,m
pωq “ µdimHm´k`1,mpωq, for any 1 ď k ď dimHm. (4.7.8)

Next, let us compactify the extended real line by identifying the points t˘8u with ˘π on
the circle S1 – r´π, πs{ „ via the stereographic projection s ÞÑ s{pπ2 ´ s2q. The eigen-
values of xχm

HpωqF can then be seen as functions µk,m : r0,8qztωju
m
j“1 Ñ S1. Moreover, if

we define

µm
k psq :“ µk´1`

ř

ωăs dimVmω mod dimHm`1,m, for any s P r0,8qztωju
m
j“1,
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then we see from Theorem 4.1.4 and the relation in (4.7.8) that the functions µm
k can

be continuously extended to the whole interval r0,8q, and they move in the clockwise
direction as ω grows. Furthermore, we have

dimZm
ω “ #tk : µm

k pωq “ 1{pπ2
´ 1qu. (4.7.9)

To conclude we now make two observations. First, since limωÑ8∥xχm
Hpωq∥ “ 0, we have

lim
ωÑ8

µm
k pωq “ 0 for any 1 ď k ď dimHm.

Second, Theorem 4.1.4 (ii) implies that the eigenvalues functions µm
1 , ..., µ

m
dimHm cross the

point t˘πu – t˘8u exactly
ř

ωą0 dimV m
ω times. Consequently, the eigenvalue functions

µm
1 , ..., µ

m
dimHm must cross the point 1{pπ2 ´ 1q in the circle exactly

ř

ωą0 dimV m
ω times as

ω moves from 0 to 8, which completes the proof of (4.7.7).

To complete the proof of Theorem 4.1.5, we need to show that the poles of xχm
F converge

to the poles of xχF . This is now a consequence of the convergence of xχm
H to xχH and the

ordered monotone behaviour of the F -max-min values depicted in Theorem 4.1.4.

Proof of Theorem 4.1.5. We start by showing that the F -max-min values of the truncated
LRF converge monotonically locally uniformly to the F -min-max values of xχH . For this,
let us define

ωm
min “ mintωjująm ą 0.

Then, we have

0 ď
ÿ

jąm

2ωj

ω2 ´ ω2
j

xS˚Ff,ΨjyxΨj, S
˚Ffy

loooooooooooooooooooooomoooooooooooooooooooooon

“xf,
`

yχmH pωq´yχHpωq

˘

FfyF

ď N∥F∥L2
1{ρ0

,L2
ρ0

2ωm
min

pωm
minq2 ´ ω2

, (4.7.10)

for any 0 ď ω ă ωm
min with ω R tωjujě1 and f P L2

1{ρ0
with ∥f∥F “ 1. Here we used the

estimates ∥S˚∥L2
ρ0

,HN
ď

?
N and ∥F∥HF ,L2

ρ0
“

b

∥F∥L2
1{ρ0

,L2
ρ0
. Moreover, since V m

ω “ Vω

for any ω ă ωm
min, (4.7.10) yields the estimate

0 ď µk,m
pωq ´ µk

pωq À
2ωm

min

pωm
minq2 ´ ω2

for any ω ă ωm
min, (4.7.11)

for the difference between the F -max-min values of xχm
HF and xχHF . But since ωm

min Ñ 0

as m Ñ 8, we conclude that the max-min functions of xχm
H converge locally uniformly and

monotonically from above to the F -max-min values of xχH .
Now let ωF

1 ď ωF
2 ď ... be the poles of xχF counted with rank and λm1 ď λm2 ... ď

λmř
ωą0 dimVmω

be the eigenvalues of Cm counted in a way that #tk : λk “ λu ` dmp
?
λq “

dimkerλ ´ Cm for any λ ą 0. Suppose that m is so big that ωF
1 ă ωm

min. The monotone

138



Chapter 4. Positive Adiabatic Approximations

convergence of the max-min values together with Lemma 4.5.4 (which holds for both xχm
H

and xχH) then shows that all F -max-min values of xχm
HF pωq in the interval ω P r0, ωF

1 s must
lie either above 1 or below 0. From Proposition 4.7.1, we thus conclude that

a

λm1 ě ωF
1 .

An induction argument then shows that

ωF
k ď

a

λmk , for any ωF
k ă ωm

min.

The convergence
a

λmk Ó ωF
k now follows from the convergence of the max-min values,

Proposition 4.7.1, and a continuity argument.

Remark (Convergence error estimates). Note that estimate (4.7.11) can be used to esti-
mate the difference between the eigenvalues of the Casida matrix and the true poles of xχF

by plotting the max-min values of the truncated density-density response function xχHpωq

over the interval p0, ωmq.

4.7.2 The original Casida matrix: non-interacting case

Let us now comment on the relation between the Casida formalism described in the
previous section and the situation often encountered in practice.

In practice [19, 96, 83, 120], the Hamiltonian H acting on the N -body electronic space
HN is given by the sum

H “

N
ÿ

j“1

1 b ... b h
loomoon

jth position

b... b 1,

where h is a self-adjoint operator acting on the single-electron space L2pR3q. In this
case, and under the assumption that the spectrum of h is purely discrete, the set of
anti-symmetric tensor products of N distinct eigenfunctions of h, i.e. the set of functions

ΨIpr1, ..., rNq “ det

¨

˚

˝

ϕi1pr1q ... ϕi1prNq
...

. . .
...

ϕiN pr1q ... ϕiN prNq

˛

‹

‚

, I “ pi1, ..., iNq P NN ,

where 1 ď i1 ă i2... ă iN and tϕjujPN is the orthonormal basis of eigenfunctions of h,
form an orthonormal basis (for HN) of eigenfunctions of H. If we denote the eigenvalues
associated to ϕi by εi, then the ground state wave function and ground state energy of H
are given respectively by

Ψ0 “ Ψt1,2,...,Nu “ ϕ1 ^ ...ϕN and E0 “

N
ÿ

j“1

εj.

A simple calculation then shows that SΨI “ 0 for any I with #I X t1, ..., Nu ď N ´ 2,
where S is our usual operator defined in (4.2.5). Consequently, the one-body excitations
are given by the following subset of the excitation energies of h:

PpxχHq “ tωℓ,j “ εℓ ´ εj : ℓ ą N, j ď Nu.
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Moreover, the Schwartz kernel of the Fourier transform of χH in the upper complex plane
can be written as the sum

xχHpz, r, r1
q “

8
ÿ

k“N`1

N
ÿ

j“1

ϕkprqϕjprqϕkpr1qϕjpr
1q

z ´ ωk,j

´
ϕkprqϕjprqϕkpr1qϕjpr

1q

z ` ωk,j

(4.7.12)

where the limit of the series k Ñ 8 is understood in the distributional sense5.

Remark. Eq. (4.7.12) is the standard representation for the density-density response func-
tion appearing in the DFT literature. In said literature, the Hamiltonian h is called the
single-particle Kohn-Sham Hamiltonian, χH is the density-density response function of the
Kohn-Sham system, and the orbital functions ϕj and ϕk are respectively the Kohn-Sham
occupied and virtual orbital functions.

In the original formulation [19], the Casida matrix is defined as

C
Npm´Nq

original “

ˆ

A ´B
B1 ´A1

˙

P C2Npm´Nqˆ2Npm´Nq,

where A,B,A1, B1 P CNpm´NqˆNpm´Nq are given by

AIpj,kq,Ipp,qq “ xϕjϕk, FϕpϕqyL2pR3q ` ωj,kδj,pδk,q, BIpj,kq,Ipp,qq “ xϕjϕk, FϕpϕqyL2pR3q,

A1
Ipj,kq,Ipp,qq “ xϕjϕk, FϕpϕqyL2pR3q ` ωj,kδj,pδk,q, B1

Ipj,kq,Ipp,qqq “ xϕjϕk, FϕpϕqyL2pR3q,

where p, j ď N ă k, q ď m and the indexing map is given by Ipj, kq “ Npk ´N ´ 1q ` j.
Under the assumption that h is a real Hamiltonian (and Ψ0 has constant phase), all the
orbital functions ϕj can be taken real-valued. So if we further assume that F is real (i.e.,
Ff is real-valued for f real-valued), then the Casida matrix reduces to

C
Npm´Nq

original “

ˆ

B ` W ´B
B ´B ´ W

˙

where WIpj,kq,Ipp,qq “ ωj,kδj,pδk,q.

We can now show that the eigenvalues of C
Npm´Nq

original appear in pairs of negative and positive
values and that their squares are the eigenvalues of the previously defined Casida matrix

C
Npm´Nq

Ipj,kq,Ipp,qq
“ 2ωj,kxϕjϕk, FϕpϕqyL2pR3q ` ω2

j,kδj,pδk,q. (4.7.13)

Proposition 4.7.2 (Original Casida matrix). Let C
Npm´Nq

original and CNpm´Nq be defined as

above, then C
Npm´Nq

original is diagonalizable and we have

dimkerC
Npm´Nq

original ˘ λ “ dimCNpm´Nq
´ λ2, (4.7.14)

for any λ P R.
5For Schrödinger operators with Kato class potentials, one can show that the above distributional

kernel is an integral kernel for any ˘z R σpH ´ E0q by the results of [109].
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Proof. The proof follows from straightforward algebraic manipulations. Precisely, for

0 ‰

ˆ

β1
β2

˙

“ β P kerC
Npm´Nq

original ˘ λ P C2pm´NqN ,

one can check that α :“ β1 ´ β2 P Cpm´NqN is non trivial and satisfies CNpm´Nqα “ λ2α.
On the other hand, for α P kerCNpm´Nq ´ λ2, one can check that

β “

ˆ

p˘λW´1 ` 1qα
p˘λW´1 ´ 1qα

˙

‰ 0

and satisfy C
Npm´Nq

original β “ ˘λβ. (The matrix W is invertible because it is diagonal with

only positive entries). That C
Npm´Nq

original is diagonalizable follows from (4.7.14) and the fact

that CNpm´Nq is diagonalizable by Corollary 4.7.1.

4.8 Concluding remarks

We have now presented a mathematical framework for the analysis of the Dyson equation
from LR-TDDFT. More precisely, we (i) presented a functional analytic setting for the
well-posedness of the Dyson equation that is applicable to various adiabatic approxima-
tions of the xc-operator and to general Hamiltonians of interest in electronic structure
theory, (ii) provided a careful and rigorous analysis of the poles of the solution of the
Dyson equation within the random phase approximation (RPA), and (iii) proved the con-
vergence of the poles computed via the Casida formalism in the continuum (or infinite
orbital basis) limit. To conclude this chapter, let us now briefly comment on some possible
extensions of these results and further related questions.

Non-positive adiabatic approximations. The proof of all results on the pole structure
of xχF rely on the positivity assumption on the adiabatic approximation F . With the ex-
ception of the simplest adiabatic approximation, the RPA, this assumption is not satisfied
as the exchange-correlation kernel is usually negative. So a natural question is whether
the results presented here can be extended to the case where the operator F is given by
the difference of two positive operators (in the sense discussed here). In this case, we do
not expect all poles of the solution xχF to be forward shifted with respect to the poles of
the xχH . Nonetheless, we expect that a rigorous characterization of the poles of xχF via
an eigenvalue equation as in Theorem 4.1.2 can be achieved by methods from analytic
Fredholm theory [34, Appendix]. If this is the case, it would also be interesting to under-
stand whether standard approaches for computing the poles of xχH , such as the Casida
equations described in Section 4.7, converge in the continuum limit.

Casida formalism with essential spectrum. To prove the convergence of the poles
computed via the Casida formalism, we have explicitly assumed that the Hamiltonian H
has purely discrete spectrum. Although this assumption holds in some physically relevant
situations, such as Schrödinger operators with trapping potentials, this is no longer true for
the molecular Hamiltonian that plays a central role in quantum chemistry. In this case, the
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Casida formalism is usually applied to a truncation of the Hamiltonian to some bounded
domain with appropriate boundary conditions. Therefore, an interesting problem is to
understand the relation between the poles computed via the Casida equations for the
truncated Hamiltonian and the true poles of the infinite-dimensional solution of the Dyson
equation, in the limit where both the size of the domain and the number of virtual orbitals
goes to infinity.

Frequency-dependent exchange-correlation kernel. Here we have only considered adia-
batic approximations to the exchange-correlation kernel. Hence, another natural question
is whether the results presented here can be extended to frequency-dependent approxi-
mations of the exchange-correlation kernels. Such kernels typically yield better approxi-
mations to the excitation energies at a higher computational cost. Hence a mathematical
understanding of the solution xχF for such approximations is not only relevant from a
theoretical perspective, but may also provide insight on how to design more efficient nu-
merical schemes. We expect that the functional analytic setting presented here for the
well-posedness can be adapted to this case. However, for a rigorous analysis of the poles
of xχF in such situations, one would also need to bypass the positivity assumption on F ,
which requires different methods.
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