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Abstract

In this dissertation, we analyze some mathematical models with applications in quantum
chemistry and material science.

First, we study the exchange energy of the free electron gas in the thermodynamic
limit. The free electron gas consists of a collection of non-interacting electrons trapped in
a bounded region of space. The thermodynamic limit then corresponds to the limit where
the number of electrons and the volume of the region goes to infinity with their ratio
kept constant. In this limit, we derive a two-term asymptotic expansion with explicit
coefficients for the exchange energy of the free electron gas. In addition, we derive a
similar asymptotic expansion for semi-local density functionals when applied to the ground
state density of the free electron gas. By matching the coefficients of these asymptotic
expansions, we obtain a novel integral constraint on exchange density functionals, such
as the celebrated generalized gradient approximations (GGA), that might be of interest
to density functional theory (DFT).

The second part of the dissertation deals with the Dyson equation for the density-
density response function that appears in the linear response formulation of time-dependent
density functional theory (LR-TDDFT). This Dyson equation provides an efficient frame-
work for computing the electronic excitation energies of large quantum systems. Here we
study the well-posedness of the Dyson equation for some widely used adiabatic approx-
imations of the exchange-correlation kernel of time-dependent density functional theory
(TDDFT). Moreover, we present a rigorous analysis of the pole structure (in the frequency
domain) of the solution of the Dyson equation within the random phase approximation
(RPA). As a by-product of this analysis, we conclude that the excitation energies of the
Kohn-Sham system always underestimate the excitation energies computed in the RPA.
Finally, we show that the eigenvalues of the Casida matrix converge to the actual poles
of the solution of the Dyson equation in the infinite basis limit, i.e., the limit where
the number of virtual Kohn-Sham orbitals used to construct the Casida matrix goes to
infinity.

il



Zusammenfassung

In dieser Dissertation analysieren wir einige mathematische Modelle mit Anwendungen in
der Quantenchemie und den Materialwissenschaften.

Zuerst untersuchen wir die Austauschenergie des freien Elektronengases im thermo-
dynamischen Limes. Das freie Elektronengas besteht aus einer Ansammlung einer nur
durch das Pauli’sche Exklusionsprinzip aber nicht durch ein Potential wechselwirkenden
Elektronen, die sich in einem endlichen Volumen bewegen. Der thermodynamische Limes
entspricht dann dem Grenzwert, bei dem sowohl die Anzahl der Elektronen als auch
das Volumen bei konstant gehaltenem Verhéltnis gegen Unendlich gehen. In diesem
Limes leiten wir eine Zwei-Term asymptotische Entwicklung mit expliziten Koeffizienten
fiir die Austauschenergie des freien Elektronengases ab. Dariiber hinaus leiten wir eine
analoge asymptotische Entwicklung fiir semilokale Dichtefunktionale ab, angewendet auf
die Grundzustandsdichte des freien Elektronengases. Indem wir die Koeffizienten dieser
asymptotischen Entwicklungen abgleichen, erhalten wir eine neuartige Integralbedingung
fiir Austauschdichtefunktionale wie beispielsweise die beriihmte Verallgemeinerte Gradi-
entenndherung (engl. GGA). Diese Bedingung konnte fiir die Entwicklung zukiinftiger
Dichtefunktionale von Interesse sein.

Der zweite Teil der Dissertation befasst sich mit der Dyson-Gleichung fiir die Dichte-
Dichte-Antwortfunktion (engl. density-density response function) aus der Linear-Response-
Formulierung der zeitabhingigen Dichtefunktionaltheorie (LR-TDDFT). Diese Dyson-
Gleichung bietet eine effiziente Herangehensweise fiir die Berechnung der Anregungsen-
ergien grofler Elektronensysteme. Hier beweisen wir, dass die Dyson-Gleichung fiir einige
weit verbreitete adiabatische Ndherungen des Austauschkorrelationskerns der zeitabhangi-
gen Dichtefunktionaltheorie (TDDFT) wohldefinierte und eindeutige L” osungen besitzt.
Daritiber hinaus présentieren wir eine rigorose Analyse der Polstruktur (im Frequenzbere-
ich) der Losung der Dyson-Gleichung innerhalb der Zufélligen-Phasen-Approximation
(RPA). Als Nebenprodukt dieser Analyse erhalten wir, dass die in der RPA berechneten
Anregungsenergien in Bezug auf die Anregungsenergien des Kohn-Sham-Systems immer
nach oben korrigiert sind. Schliefflich zeigen wir, dass die Eigenwerte der Casida-Matrix
gegen die wahren Pole der Losung der Dyson-Gleichung konvergieren, wenn die Anzahl
der virtuellen Kohn-Sham-Orbitale (die zum Konstruieren der Casida-Matrix verwendet
werden) gegen Unendlich geht.
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Chapter 1

Introduction and overview

The Schrédinger equation (SE)[106] is ubiquitous to quantum chemistry, where one is
interested in understanding and accurately predicting many properties of atoms and
molecules from first principles. In the situations where it can be solved explicitly, the
Schrodinger equation yields remarkable results; the classic example is the Hydrogen
atom, where the SE explains its stability and predicts the quantization of the absorp-
tion/emission spectrum in good agreement with experiments.

Unfortunately, the SE can not be solved analytically for most molecules, and one has
to turn to numerical methods. The success of standard (wave function) methods, however,
is very limited as the number of particles in the system grows. The reasons are in fact well-
understood; in the words of Nobel prize winner Walter Kohn [64], these methods encounter
an exponential wall when the number of particles exceeds N ~ 10. In other words, the
SE suffers from the curse of dimension, which means that the computational cost for
solving these equations (or, in fact, just storing the solutions) grows exponentially with
the number of particles involved. Therefore, much effort from the scientific community
has been invested into proposing and developing approximate (or effective) theories that
can make quantitative predictions on specific properties of atoms and molecules. (See, for
instance, [84] for a few of them.)

Among such theories, the density functional theory (DFT) of Kohn and Sham [65]
stood out [13, 84, 90]; it has become the method of choice in most ab initio electronic
structure calculations as can be seen from the impressive number of publications on the
topic in the past years [12]. DFT is a formally exact theory for computing the electronic
ground state energy and ground state density of molecules. Moreover, its time-dependent
version (TDDFT) [19, 96, 103, 120] provides an efficient framework for computing the
excitation energies. As opposed to the exponentially scaling cost for solving the SE,
the computational cost of standard DFT and TDDFT calculations scales cubically, or
sometimes even linearly [27, 80, 97|, with the number of particles. In particular, DFT
and TDDFT calculations on molecules with thousands of particles can now be performed
[27, 98].

Despite this success, the DFT and TDDFT approaches ultimately rely on semi-
empirical approximations of unknown functionals: the exchange-correlation (xc) func-
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tional in the case of DFT and the exchange-correlation (xc) kernel in the case of (linear
response) TDDFT. Consequently, the many different approximations developed so far
(see [82] for an overview) can not be reliably applied to general atoms and molecules; a
suitable approximation has to be chosen on a case-by-case basis, which undermines the
role of DF'T and TDDFT as predictive theories. Moreover, in the TDDFT case, the foun-
dations of the theory are not yet justified in physically relevant cases [36], and a consistent
mathematical framework is still missing.

In this thesis, we shall address two related problems. In the first part, we shall study
exchange effects for the free electron gas. More precisely, we derive asymptotic expansion
for the exact exchange energy and the exchange energy of general semi-local density
functionals when applied to the free electron gas in the thermodynamic limit. By matching
the coefficients of these asymptotic expansions, we obtain a novel exact constraint for
semi-local functionals such as the celebrated generalized gradient approximations (GGA)
6,92, 93]. As such functionals are usually designed by fitting a (relatively) simple ansatz
to a mixture of exact constraints and empirical data, the constraint derived here might
be useful for designing more accurate density functionals.

In the second part of this thesis, we study the Dyson equation that appears in the lin-
ear response formulation of time-dependent density functional theory (LR-TDDFT). The
Dyson equation formally connects the density-density response function of an interacting
system of interest to the density-density response function of an equivalent non-interacting
system, the Kohn-Sham system. In this way, the Dyson equation provides an efficient
framework for computing the excitation spectra of large systems. Here we present a func-
tional analytic setting for the well-posedness of the Dyson equation that applies to general
non-relativistic quantum mechanical systems and widely used adiabatic approximations
of the exchange-correlation kernel. Furthermore, we analyze the poles of the solution of
the Dyson equation, which in applications, correspond to the approximations of the exci-
tation spectra of the interacting system of interest. These results set the linear response
formulation of time-dependent density functional theory in the infinite-dimensional (or
continuum) setting in a rigorous mathematical framework.

Let us now outline the content of this thesis. In the rest of this chapter, we present a
short (and rather informal) introduction to DFT and TDDFT and then give an overview
of the main results of this thesis. In Chapter 2 we study the exchange energy of the free
electron gas on a cubic box. Using different methods, we then improve and generalize
these results in Chapter 3. In Chapter 4, we study the Dyson equation from LR-TDDFT.
All chapters are self-contained so that they can be read in any order.

1.1 Introduction to DFT and LR-TDDFT

In this section we present the basics of the (Kohn-Sham) density functional theory (KS-
DFT) and of the linear response formulation of time-dependent density functional theory
(LR-TDDFT). For more detailed introductions to these topics, we refer the reader to
[90, 30, 79, 80, 84, 85] for DFT and to [30, 79, 83, 120] for TDDFT.
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The plan for this section is the following. We start by introducing the ground and
excited state problems in quantum mechanics and describing the standard variational
approach for solving them. We then present the DFT approach for the ground state
problem as initiated by Hohenberg-Kohn [57] and Kohn-Sham [65]. In the sequel, we
describe the connection between linear response theory and the excitation energies of
a given system. We then give a short introduction to TDDFT and present the linear
response approach for computing the excitation energies within the framework of TDDFT.

1.1.1 The quantum ground state probem

In quantum mechanics, the state of an isolated system with N electrons is described by
a (wave) function ¥ : (R*)N — C satisfying the following constraints:

e (Normalization) ||\IIH%2(R3N) = SRgN |U(ry,...,ry)2dry...dry = 1.

o (Anti-symmetry) ¥(r,ay,...,7o(n)) = sgn(o)¥(ry,...,ry), for any permutation of
N-variables o : {1,..., N} — {1, ..., N} and every points ry, ..., 7y € R3.

(For simplicity, we do not consider spin here.) The normalization constraint comes from
the fact that |U(ry,...,ry)[* represents the probability density of finding electrons at
the positions (rq,...,7y). The anti-symmetry accounts for the fact that all electrons are
identical particles and that identical particles are not allowed to occupy the same quantum
state. This is called the Pauli exclusion principle for fermions (e.g., electrons) and is one
of the postulates of quantum mechanics. Hence, the set of admissible states of the system
is the set of normalized functions in the anti-symmetric N-fold tensor product of L*(R?),

N
Hy = /\Lz(Rg) = {U:R*» - C: VU anti-symmetric and H\IJH%2(R3N) < o},

=1

which is a Hilbert space with respect to the standard L?(R3") inner-product

(U, d) = U(ry,...,rn)®(ry, ..., ry)dry...dry.
R3N
As is often the case in physics, one is mostly (at least in a first analysis) interested
in the states of the system that minimize some energy functional. For a system with N
electrons, the energy functional usually has the form

5[@]:Lw%\v\y(m,...,m)|2+( > w(ri—rj)+Zv(ri)>|\f[/(r1,...,TN)|2dr1...drN,

1<i<j<N

where VW is the (weak) gradient of U and w and v are real-valued functions describing the
electron-electron interaction and the interaction between the electrons and some external
source, respectively. Here we use the convenient atomic units m, = e = 4mweg = h = 1,
where m, and e are respectively the mass and the charge of the electron, ¢, is the vacuum
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permittivity, and A is the reduced Planck’s constant. Within the Born-Oppenheimer
approximation for a molecule with M nuclei, the electron-electron interaction and the
external potential are given by the Coulomb potential,

M Zm

w(r)=— and o(r) T

m=1

where Z,, and R,, are respectively the atomic number and position of the m!-nucleus,
and |r| = Z?zl r? is the standard norm in R®. Here we shall keep the discussion general
and simply assume that v and w are regular enough real-valued functions.

The ground state problem then consists in finding the minimum value and the mini-

mizer of the energy functional £ over the set of admissible states:

£V
w2

_ &[Yo]
[Woll?

50 = 1nf{ e HN\{O}, ||V\I/HL2(]R3N) < OO} (111)
The value & and the minimizer ¥, are called, respectively, the ground state energy and the
ground state wave function (or simply ground state). Note that in general, the infimum
may not be finite (§, = —o0) or not be attained. While conditions on v, w, and N for the
minimum to be finite are fairly general, the existence (and uniqueness) of a minimizer is a
subtle question [88, 100, 117]. Here we shall simply assume that the ground state energy
is finite and a minimizer ¥, exists.

Next, by formally computing the Euler-Lagrange equation of the above functional, we
obtain the stationary Schrédinger equation (SSE)

<— %A + Z UJ(Ti - Tj) + Z U(TZ‘)) \IIO = 80\110, (112)

I<i<j<N 1<i<N
h- ~- -7

=Hp (v,w)

where A is the Euclidean Laplacian in R3Y. The operator Hy (v, w) is called the (N-body
or N-particles) Hamiltonian of the system and, under suitable assumptions on v and w,
defines a self-adjoint operator whose quadratic form domain is given by

Oy = Q(Hy(v,w)) = Hy n H'(R*) = {¥ e Hy : |V 2gsr) < o0}

(For the relation between self-adjointness and quadratic forms and the precise assumptions
on v and w, we refer the reader to [63, 108].) Consequently, one can rigorously show that
minimizing £ is equivalent to finding a solution of the SSE (in Hy) with & being the
lowest value in the spectrum of Hy (v, w).

Ideally, one would like to go beyond the ground state and compute all excited-state
energies and wave functions of the system. These correspond to the pairs (£;, ¥;) € RxHy
satisfying the SSE,

HN(U, U))\I/] = gj\llj,
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where & < & < & < ... are values in the discrete spectrum! of Hy(v,w). It turns out
that these states can also be computed by a variational principle known as the (Courant-
Fischer) min-max principle:

[y i {5[\11]
E = I3 — min
T2 ]|

Ve QNmspan{\Ilo,...,\Iljl}L}, (1.1.3)

where span{¥y, ..., \Ifj,l}l denotes the orthogonal complement of the spaced spanned by
the first j — 1 excited states W, ..., ¥,_;.

In summary, all solutions of the SSE and the associated energies (below the essential
spectrum of Hy (v, w)) can be computed by solving the chain of variational problems de-
scribed in (1.1.3). Unfortunately, standard numerical approaches for solving this problem
scale exponentially with the number of electrons, which makes any calculation for systems
with more than N ~ 10 electrons unfeasible. One possible way to bypass this problem is
to completely abdicate of computing the ground state wave function and settle for reduced
quantities such as the single-particle electronic density. This is the underlying idea of the
density functional approach that we describe next.

Density functional theory: the Kohn-Sham scheme

In density functional theory, we shift the focus from the high-dimensional wave function
to the low-dimensional single-particle electronic density (or simply density henceforth).
For a system in a state W € Hy, the corresponding density py is defined as

pu(r) =N (U (r,ro, ..., ) [2dry...dry. (1.1.4)

R3N-3

Note that, whilst the state of a system of N electrons is described by a function in R3V,
its density py is always a positive function in R®. Therefore, we would like to reformulate
the ground state problem as a minimization over the space of densities.

The typical starting point of DFT is the foundational theorem of Hohenberg and Kohn
[57]. The Hohenberg-Kohn (HK) theorem states that, for a fixed interaction potential w,
there exists a one-to-one mapping between potentials v (up to an additive constant) and
ground state single-particle densities of Hamiltonians of the form Hy (v, w). Conceptually,
this is an important step because it justifies the idea that any property of the system can
be computed via its ground state density. In practice, however, the proof of the HK
theorem does not lead to any practical insights into the precise form of the mapping
between densities and potentials. We shall therefore skip any precise statement of the HK
theorem? and directly present the approximated Kohn-Sham scheme [65] for computing
the ground state density.

IThe discrete spectrum of a self-adjoint operator is defined as the set of isolated eigenvalues of finite
multiplicity [99, 117].

2For the precise statement of the HK Theorem, we refer the reader to [57, 90]. For a rigorous proof,
we refer to [42, 43].
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To this end, we first recall (see [76]) that the set of N-representable densities, defined
as the image of the map ¥ — py (i.e. the map defined via (1.1.4)) with normalized
Ve Qy=Hyn H' (R*?), can be characterized as

R :{p e L'(R?;[0,0)) : y/p € H'(R*) and JRS p(r)dr = N}. (1.1.5)

Thus the minimization problem in (1.1.1) can be reformulated as

1
Ezinf{Jprvrdr+inf{f V() * + wri—r-\IJdef}}7
07 peRn R3 (r)(r) ‘lp’ggzgf R3N 2’ Ol 1<i<Zj<N ( )W (7)|

. J/
v

=ILL(p)

(1.1.6)

where F1y, is called the Levy-Lieb constrained search functional [70, 71, 76]. We now have
a variational problem in terms of the density only; of course, nothing has been achieved
so far as any evaluation of F1j, requires a minimization over the space of wave functions
again.

Remark (The HK functional and v-representability). In the physics/chemistry litera-
ture, Fry, is sometimes called the Hohenberg-Kohn functional [57] and denoted by Fpk.
However, strictly speaking, the HK functional is the restriction of F11, to the set of w-
interacting V-representable densities

Ry(w) = {p = py, : Vo is a ground state of Hy(v,w) for some veV}c Ry, (1.1.7)

where V < {v : R® — R} is a suitable class of measurable potentials. For a mathematically
rigorous account of the functionals Fyk, F11, and yet another functional defined as the
Legendre transform of the energy, we refer to the work by Lieb [76].

The ingenious idea of Kohn and Sham [65] was then to approximate the functional
F11, in a way that is reasonably accurate and can be efficiently computed. Precisely, they
proposed the following scheme. First, let us denote the space of anti-symmetric product
states (or Slater determinants) by Sy, i.e., ¥ € Sy if and only if

o1(r1) o on(r1)
U(ry,...,ry) = det : : z(gbl A A ng)(rl, i 'N)
o1(rn) - on(rn)

for some functions {¢;}¥, = H'(R?) which are orthonormal with respect to the L?*(R?)-
inner-product. The functions ¢; are usually called the (occupied) orbital functions. Next,
let us recall that any density in R is N-representable by a Slater determinant [45, 52, 76].
Stated differently, the image of the set of normalized Slater determinants under the map
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U — py is also equal to the set of N-representable densities Ry . This allows us to define
the Kohn-Sham (KS) kinetic energy of any density p € Ry as

. 1
Tks[p] = \I}gst §||V\I]H%2(]R3N)‘
Ui—p

Using Tks as an approximation for the kinetic energy, Kohn and Sham then proposed the
following decomposition of the functional Fyy;:

Fioulp] = Txslp] + Jlp] + Exclp],
where J is the Hartree (or direct) term,

Tl =5 [ wlr =)ot )aras’,
2 Jge

and FE. is called the exchange-correlation (xc-)functional. The xc-functional then contains
all unknown contributions to the energy and must be efficiently approximated. The
advantage of this approach, instead of directly approximating Fip, is that E,. is often
small compared to the other two terms; hence only a small part of the energy has to be
approximated.

In their seminal paper, Kohn and Sham further proposed to approximate the xc-
functional by a functional that depends locally on the pointwise values of the density,

Exclp] ~ B[] = L (r))dr (1.1.8)

for some function f : R — R. This is called the local density approximation (LDA).
With this ansatz for the exchange-correlation, we can now re-state (the approximation
of) problem (1.1.6) as a minimization over the manifold of N-tuples of orbital functions

My ={® = (¢1, .., o) € (H'(R*)Y : {83, §j)r2(m9) = b} (1.1.9)

in the following way:

ELPA — mf{ inf J Z\wj )2dr +J[p] + ELPAp ]+J

PERN <1>eMN R3
TKS[]
1
: 2 LDA
-t { 235190y + el + Bl [ o0)ntr]

]:
< J
N~

:=ELDA[P]

where

= 3165 (1.1.10)
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is the single-particle density of the Slater determinant generated by the orbitals & =
(¢1,...,6n). So by computing the Euler-Lagrange equations of the above functional
and using the (gauge) invariance of £*PA under unitary transformations of CV, i.e.,
ELPA[UD] = EWPA[D] for any unitary linear transformation U : CV — CV, we arrive
at the celebrated single-particle Kohn-Sham equations (within the LDA)

—%Aqﬁj—i—(?j(r) + U)E?A[pq)](r)—i—(pq, * w)(rz)gzﬁj = \;jpj, forl<j<N, (1.1.11)

~—

—olBAlpa](r)

where pg is defined by (1.1.10), the mean-field potential is given by the convolution

pew(r) = | e =1 )palr)ar

and the exchange-correlation potential is given by

D _OEIPA d
oA o) = " [oa](r) = £ (o (1) (11.12)

Note that the solutions (\;,¢;) € R x H'(R?) of (1.1.11) are eigenpairs of the single-
particle Schrodinger operator

1 .
hi[pa] = —§A + v [ps](r) acting on L?(R?).

If in addition {\;};<x are the N lowest eigenvalues of the Kohn-Sham Hamiltonian A",
then the (Kohn-Sham) Slater determinant

Uks = @1 A ... A O

is the ground state of the N-particles non-interacting Hamiltonian
HPMpa] = Hy(vgs™[pa], 0).

In this case, the resulting density pg,, = ps is expected to be a minimizer® of ELPA and
provides an approximation to the ground state density of the interacting Hamiltonian
Hy(v,w). Similarly, the energy E¥PA = E(py,.) is an approximation of the ground state
energy of Hy (v, w).

Remark (xc-functional derivative). The middle term in (1.1.12) is the Schwartz kernel of
the functional derivative of the zc-functional. For the LDA zc-functional (with regular f),
this kernel is indeed a function in R3. For more general approzimations, the functional
derivative is no longer given by integration against a local potential, and the approximated
ze-potential is only defined in a weak sense (see, e.q., [84, Section 8.6]).

3For rigorous results on the existence of minimizers for the LDA model we refer the reader to [4] and
references therein.
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In summary, the Kohn-Sham scheme for computing the ground state density and
ground state energy of some system consists of the following steps.

(1) One chooses an approximation for the xc-functional E2PP and an initial guess, say
p1, for the ground state density of the system.

(2) The effective Kohn-Sham potential viig [p1] is constructed by summing the external
potential (given, e.g., by the position and the atomic number of the nuclei), the
mean-field potential p; = w, and the xc-potential obtained from formula (1.1.12)
with pe and ELPA replaced respectively by p; and the chosen xc-approximation
Eavp,

(3) The first N eigenpairs of the single-particle Kohn-Sham Hamiltonian hyg [p1] =
—3A + v [p1] are numerically evaluated. These eigenpairs are then used to con-
struct a new approximation for the ground state density, say ps, via formula (1.1.10).

(4) This new density po is then compared with the previous one for consistency. If
p1 — p2 is small (to some pre-determined accuracy), then the computation is done,
and the density p; is taken as the approximation to the ground state density. If the
two densities do not agree, one updates the guess for the ground state density by
interpolating between p; and py and re-starts the procedure from step (2) with the
updated density. These steps are then repeated until convergence.

This is called the self-consistent field (SCF) method and can be efficiently implemented
for reasonable approximations of the xc-functional [80, 90, 30].

Remark (Exact xc-potential). For a density p that is both w-interacting and non-interacting
V-representable, i.e. p € Ry(0) n Ry(w) (see (1.1.7)), the ezistence of an external po-
tential v[p] and an exact Kohn-Sham potential vks|p| such that the ground state densities
of the Hamiltonians Hy(v[p],w) and Hy(vks|p],0) are equal to p is guaranteed. Since
v[p] and vks|p] are unique (up to an additive constant) by the HK theorem, the exact
xc-potential is

static

vie [p] = vkslp] —vlp] — p*w. (1.1.13)

(Here, we use the superscript static to differentiate it from the exact time-dependent zc-
potential introduced later.) Unfortunately, very little is known about the sets Ry (0) and
Ry(w) (see, e.g., [T1, 76] for a proof that they are not the same). Nevertheless, the
approximated Kohn-Sham scheme can be justified by the argument that non-interacting
V-representable densities can reasonably approximate the w-interacting ones [122].

Approximations to the xc-functional

The crucial step in the Kohn-Sham scheme is the choice of the approximated xc-functional.
Over the past decades, hundreds of distinct approximations were proposed by the elec-
tronic structure community [82]. In most cases, such approximations are designed to (i)

9
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have a simple expression that can be efficiently computed, (ii) satisfy some known con-
straints on the exact functional Fyp, and (iii) fit some empirical data from benchmark
experiments [6, 95, 92, 93]. Moreover, asymptotic results for quantum systems on differ-
ent regimes play a fundamental role in choosing and designing such approximations. (For
instance, the energy density f from the original LDA [65] is the thermodynamic limit of
the exchange-correlation energy of the electron gas with constant density, the uniform
electron gas (UEG)?* [72].) In this regard, several interesting mathematical developments
appeared in the last few years; let us briefly mention a few of them and refer the reader
to the references therein for further information.

e (The LDA in the small gradient regime) Based on Lieb-Thiring inequalities with
gradient corrections [87], the LDA functional has been rigorously justified in [73] for
densities with small fluctuations.

e (Correlation energy in the high-density limit) The correlation energy formula for
the electron gas in the high-density limit derived in the physics literature [11, 44]
has been rigorously justified for certain mean-field scaling limits of the electron gas
(with interactions less singular then Coulomb) in [7, 8, 23]. This is an important
development for DFT because many approximations to the correlation part of the
xc-functional are based on this formula [85].

e (Strictly correlated or low-density limit) A different regime from the ones mentioned
above (and from the one studied in this thesis) is the strictly correlated electrons
(SCE) limit (or low-density limit) where the interaction energy dominates. From
the recently revealed connection of this limit with optimal transportation theory
[14, 26], several asymptotic results for Fp; have emerged. For a comprehensive
review, we refer to [41].

The xc-functional approximations are commonly divided into distinct categories rep-
resented by the rungs of a ladder, the Jacob’s ladder of DFT [94]. Each rung then
incorporates the ingredients of lower rungs and is, typically, more accurate and more
computationally demanding than the previous ones [94]. The first and second rungs of
the Jacob’s Ladder correspond respectively to the local density approximation (LDA) de-
scribed above and the generalized gradient approximations (GGA). Although the LDA is
typically more accurate than the Hartree-Fock approximation, they are usually too crude
and of little use to practitioners. On the other hand, the development of the GGAs was
a milestone in elevating DFT from a conceptually appealing theory to a practical tool for
calculations. These are by far the most used xc-approximations due to their balance be-
tween accuracy and low computational cost. The GGAs are semi-local density functionals
of the form

ESGA[p] = f £ (o). [V p(r)) .

R3

4The UEG is often identified with the Jellium, which corresponds to the thermodynamic limit of an
electron gas moving on a positively charged background [48]. Whether this identification is correct or
not is still up to debate; see [72] and references therein for a rigorous account of the UEG

10
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where f : R?> — R is now a function of the density and the density gradient®. The
LDA and GGA functionals for the exchange energy will be studied in more detail in
Chapters 2 and 3. The subsequent rungs of the Jacob’s Ladder include more complex
functionals such as the meta-GGAs, briefly mentioned in Section 3.7, the exact exchange,
studied in detail in Chapter 2 and 3, and the random phase approximations (RPA) for
the correlation energy. For a detailed discussion of each rung’s components, advantages
and limitations, and numerical implementations, we refer the reader to the previously
mentioned textbooks and the vast literature referenced therein.

1.1.2 Excitation energies

We have now summarized the DFT scheme for computing the ground state energy and

density of a system of interacting electrons. In applications, one would like to go beyond

the ground state and also compute the excited state properties of the system. In this

section, we shall present an approach for computing the (optical) excitation energies.
The optical excitation energies are defined as the difference

Wy = gk — (c;(), (1114)

where & and &, are respectively the ground state and the j excited-state energies of
a given system of interest. These energy differences are important in many applications
(e.g., to understand a given molecule’s absorption/emission spectrum). Although the
variational problem for the excited states (cf. (1.1.3)) can be easily stated in the N-body
wave function space, a similar reformulation of this problem in terms of the density is not
known. For instance, one could repeat the constrained search approach from the previous
section to obtain
& = inf {€p] = VIpl + i [o]}

PERN

where

Vip] = ng p(r)v(r)dr and FL\pLé[p] = qi;I.prOI/’ (- %A - Z w(ry —ry))¥).

U110, 1<j<k<N

1
The difficulty now is that FS’LO implicitly depends on the ground state wave function Wy,
which can not be computed in practice for large systems. Moreover, as ¥, depends on
the potential v, the above Sphttlng of E[p] does not decouple its dependence on v and w.

In other words, the functional FLL is not universal with respect to v.

We shall therefore abandon the variational formulation (1.1.3) and present an indirect
approach for computing the excitation energies instead. This approach combines linear
response theory (LRT) with time-dependent density functional theory (TDDFT).

5The common approach in the physics literature is to define the GGAs as the local density approxima-
tion of the exchange-correlation energy density of the homogeneous electron gas times an enhancement
factor depending on the reduced gradient [Vp|/p3 (see Chapter 2).

11
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Excitation energies via linear response

Let us start by describing how the linear response of a system of electrons at equilibrium
relates to the excitation energies of the Hamiltonian of the system.

In typical applications of linear response theory, one is interested in the response of
an observable after the system is driven out of equilibrium by some perturbation. In
our case, the system of interest is a collection of N electrons whose energy is described
by some self-adjoint operator H acting on the N-body wave function space Hy. (Here,
we do not assume any specific form for the operator H.) Moreover, we assume that the
system is initially in the ground state of H, which corresponds to the equilibrium at
zero temperature. In this setting, the response of the system to a perturbation in the
Hamiltonian of the form

Hl (t) = Ef(t)B,

where the perturbing operator B : Hy — Hy is bounded and symmetric, the time profile
f : R — R is bounded and causal (i.e., f(t) = 0 for ¢t < 0), and € is a parameter
representing the strength of the perturbation, is given by the strong solution of the time-
dependent Schrodinger equation

{z’&t\If(t) =(H + Hy(t))¥(t) fort >0,

B(0) = ¥y, (1.1.15)

where ¥ is the ground state wave function of H and ¢,V (t) denotes the time-derivative
of the H y-valued function of time ¢ — W(t). Consequently, one can show (see Section 4.3)
that the variation in the expectation value of any (bounded) observable A : Hy — Hy®
has the expansion

<\I/<Zf), A\I/(t)>L2(R3N) = <\I’0, A\I/0>L2(R3N) + EJ;) f(S)XAB(t — S)dS + Ot(€2), (1.1.16)

where xap(t — ) is the linear response function defined as
Xap(t) = 20(6)Im( Ty, Ae =€) BUeS 5 gan). (1.1.17)

Here 6(t) is the Heaviside step function, and Im(z) denotes the imaginary part of some
complex number z € C. Eq. (1.1.16) is sometimes called the Kubo formula for the linear
dynamical response of the system [66, 67].

The connection between the excitation energies of H and the linear response function
can now be understood by looking at the Fourier transform of y4p. More precisely, the
Fourier transform of y 45 is given by the formula’

Xag(w) = lir(1]1+<\110, BR(—w —in)A¥q) + (Vo, AR(w + in) BYy), (1.1.18)
'r)g)

6Tn quantum mechanics, the observables are self-adjoint operators acting on the Hilbert space of states
H. For a system at state ¥ € H, the expectation value of some observable A : H — H is then given by
the inner-product (A)g = (U, AV)y,.

"Here we adopt the physicist’s convention for the Fourier transform in time, X a5 (w) = SR xag(t)e™tdt.
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where R(z) = Py (2 + & — H) ™' Py is the reduced resolvent of H — & on the subspace
{Wo}* and the one-sided limit n — 0% is taken in the distributional sense. In particular,
the function w — yap(w) is well-defined and analytic around any point in the open set
{weR: |w| ¢ o(H—E)}. On the other hand, the regularity (or singularity) of xap(w)
at the points |w| € o(H — &) depends® on the spectral properties of H — & at |w].
Nevertheless, let us consider the holomorphic extension of Yap(2) to the complex upper
half-plane (which exists since y 45 (t) is causal). It is not hard to see that this extension has
simple poles at the discrete excitation energies |w| € o4(H —&y). The physical consequence
of this fact is that the system’s response blows up when the Fourier transform of the
time profile of the perturbation becomes localized around the excitation energies of the
system. In practice, this implies that the excitation energies can be measured by probing
the system to different perturbations.

For us, the essential point is that the excitation energies of a given Hamiltonian are
accessible through the poles of the Fourier transform of the linear response function.
Therefore, if it is possible to efficiently compute (approximations of) yap(t) for various
operators A and B, then we have a way to compute the excitation energies of H. Note,
however, that constructing xap(f) via formula (1.1.17) (or (1.1.18)) is by no means eas-
ier than solving the variational problem (1.1.3); it requires not only knowledge on the
ground state wave function Wy but also on the Schrédinger propagator (or resolvent) of
H. Fortunately, a major simplification is achieved by employing the TDDFT framework
described below.

Time-dependent density functional theory

TDDFT aims to reproduce (or approximate) the time-dependent density of a system
of electrons, whose evolution is governed by a time-dependent interacting Hamiltonian,
via the time-dependent density of a system of non-interacting electrons. More precisely,
one would like to compute the density py() of the solution W(t) of the time-dependent
Schrodinger equation (TDSE)

{z‘at\lf(t) = Hy(v(t),w)¥(t) fort >0, (1.1.19)

W(0) = Wy,

where the time-dependent external potential v(¢,-) : R® — R is given a priori by the
physics of the problem at hand (e.g., v(t) can represent the interaction of the electrons
with classically moving nuclei, or with the external field of a laser beam [83]). To this
end, one postulates the existence of a time-dependent exchange-correlation (xc-)potential

vIP[py; Wo; Do) : R, x R® — R such that the solution ®(t) of

{i&ttb(t) = Hy(ve(t),0)®(t) for t >0, (1.1.20)

®(0) = o,

8This dependence is particularly subtle for points in the essential spectrum of H — & where it is
related to the celebrated limiting absorption principle (LAP) [3]
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where the effective potential is given by

1

W(T%

Verr(t, 1) = vy [pws Wo; Qo] (t, 1) + 0(t, ) + pue *

satisfies
pu@y = paow forall t = 0.

The initial state &y can be chosen arbitrarily as long as it reproduces the density and
the divergence of the current density of Wy (see [83, Chapter 4]). Note, however, that the
xc-potential vIP depends on this choice.

Remark (The time-dependent xc-potential). A few remarks on the xc-potential are now
mn place.

(i) (Dependence on the density) The potential viP[py; Wo; ®o(t) at a given time t =0
depends on all the past values of the time-dependent density {pw(s)}s<t-

(ii) (v-representability) Proving the existence of the potential vIP is known as the (time-
dependent) V-representability problem. More precisely, the V-representability prob-
lem consists in characterizing the set of w-interacting and non-interacting V-representable
time-dependent densities. These sets are defined respectively as

RV (w) = {p(t) = pyq) fort =0: ¥ solves (1.1.19) for some (v, ¥y) € VTP x Ty.},
RYP(0) = {p(t) = paw) fort = 0:® solves (1.1.20) for some (vs, ®y) € VIP x Iy},

where VTP < {v : R3x [0, 0) — R measurable} and Iy < {Vg e Hy : ||| = 1} are
suitable classes of time-dependent potentials and initial states. As in the ground state
case, an effective potential veg € VIP that exactly reproduces the density py exists
if and only if py € RAP(0). For more detailed discussions on the time-dependent
V-representability problem, we refer to [121, 102].

(i11) (Runge-Gross theorem) The Runge-Gross theorem is the analog of the HK theorem
to the time-dependent case; it states that, for a fixed interaction w and an initial
state Wy, the time-dependent external potential is uniquely determined (up to a time-
dependent constant) by the time-dependent density. In particular, the xzc-potential
vIP (when existing) is unique. However, the original proof of Runge and Gross
using Taylor expansions (see [103]) was recently shown to be essentially incompatible
with the physically relevant case of Hamiltonians with singular interactions (e.g.

Coulomb)[36].

By choosing the initial compatible state ®, to be the Slater determinant of some orbital
functions {¢1, ..., on} € My and using the identification py = ps, eq. (1.1.20) reduces to
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a system of NV single-particle Schrodinger equations known as the time-dependent Kohn-
Sham equations:

i8t¢j(t,r) Z( — %A + Ueff[pq>; qfo,@o](t,?”)) ¢j(t,7”) fOl" ] € {1, ,N}
$;(0,7) = ;(r),

where pg(r) = Zjvzl |¢;(t,7)|? is the density of the Slater determinant ®(t) = ¢ (¢) A
.. A ¢n(t). Due to the dependence of the effective potential on pg, the time-dependent
Kohn-Sham equations are a set of N coupled non-linear partial differential equations in
R3. Nevertheless, if the map p — veg[p; Uo; Do is explicitly known, then a self-consistent
scheme similar to the one described in Section 1.1.1 would (with some luck) allow us to
compute the exact time-dependent density py (s of the interacting system. The philosophy
behind this approach is the same behind ground state DFT: solving the N-particles TDSE
for a non-interacting Hamiltonian, even self-consistently, is more treatable than solving
the N-particles TDSE for an interacting one.

(1.1.21)

Formal derivation of the TDDFT Dyson equation

We can now present a formal derivation of the Dyson equation from TDDFT. For this, let
us go back to the linear response setting and denote by W¢(¢) the solution to the perturbed
Schrodinger equation

10, Ve(t) = (HN(U, w) + ef(t)B) Ue(t),
we(0) = Wo,

(1.1.22)

where ¥y is the ground state of some interacting Hamiltonian Hy (v, w) of interest.

The key observation which allows bringing to bear TDDFT is now the following: by
reducing the set of observables and perturbations to one-body multiplicative potentials,
the linear response function xap(t) (defined via (1.1.17) with H = Hy(v,w)) depends
only on the variation of the time-dependent density

pi(t,r) =N U (t, 7,79, oy ) [Pdrg...dry.
R3(N-1)

More precisely, we consider only operators A and B of the form
N N
AV (ry, .. y) = Za(rj)lll(rl,...,rN) and BVY(ry,..,rn) = Zb(rj)\D(rl,...,rN),
j=1 J=1

where a,b € L®(R?) are real-valued functions and observe that the linear response function
Xap(t) is R-bilinear in a and b. Consequently, we can view x(¢) as a family of time-
dependent bilinear forms on L*(R3;R). In fact, one can show (see Section 4.2) that

Xanlt) = @OV = [ a) (x(08) ()
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for a strongly continuous operator-valued function t — x(t) € B(L*(R?% R), L'(R* R)).
This operator-valued function is called the density-density response function® of H(v,w).
Note that y(t) only depends on the static Hamiltonian Hy (v, w). Moreover, it gives the
linear variation (in €) of the density of ¢ via the formula

pe(t) = py, +€ fot F(s)(x(t = s)b)(r)ds + Oy(€). (1.1.23)

Remark. Let us remark that the poles of the Fourier transform of the density-density
response function correspond to a proper subset of the excitation energies (see Section 4.2).
For instance, in the case of a non-interacting Hamiltonian Hy(v,0), the poles of X are
precisely the single particle-hole excitation energies, i.e., the energies necessary for moving
one electron from an occupied orbital to an unoccupied one. This implies that not all the
excitation energies may be accessible through the density-density response function.

The goal of the Dyson equation is then to approximate the exact density-density re-
sponse function of the interacting Hamiltonian Hy (v, w) via the density-density response
function of the equivalent non-interacting Kohn-Sham system. To present a formal deriva-
tion of this equation, let us now make the following assumptions:

(i) The ground state density py, is non-interacting V-representable and can be exactly
reproduced by a Kohn-Sham Slater determinant ®.

(ii) The time-dependent densities {p}.<¢, are non-interacting V-representable and the
compatible initial state can be chosen as the Kohn-Sham Slater determinant ®.

(iii) The exact time-dependent xc-potential vIP[p Wy; ®g] (whose existence is guaran-
teed by the second assumption) is differentiable with respect to p¢ at p°. We call
its derivative the xc-operator!? and denote it by

dvge[p; Wo; Pol ‘

Sp p=p®"

FXC:

Note that F,. is an operator from (the tangent space of) time-dependent densities
to (the tangent space of) time-dependent potentials.

Using these assumptions, we now proceed as follows. First, from assumption (ii), we
know that the solution ®(¢) of the non-interacting Schrédinger equation

i0,®°(t) = (Heff(t) +e Z f(t)b(rj)> E(t),

O(0) = Do,

9In the physics literature, the name density-density response function (or linear density response
function) is commonly used to refer to the Schwartz kernel of the operator x(t), which is then denoted
by x(¢,7,r"). This notation can be misleading as such a kernel is not necessarily an integral kernel (hence
not a function of r and 7).

0The common approach in the physics/chemistry literature is to approximate the Schwartz kernel of
Fy., which is then called the exchange-correlation kernel.
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where the effective Hamiltonian is given by
Hegr(t) = Hy (v + p(t) = w + v ”[p5 Wo; Do) (£), 0), (1.1.24)
satisfies
paoey = p°(t) for any t > 0. (1.1.25)

Moreover, since W, and ®q are respectively the ground states of the interacting Hamilto-
nian Hy (v, w) and of the non-interacting Kohn-Sham Hamiltonian

Hy == Hy (v + pa, » w + 03[ ps,], 0), (1.1.26)

XC

assumption (i) implies that, for ¢ = 0, the time-dependent xc-potential reduces to the
exact static xc-potential from ground state DFT (see (1.1.13)). This observation, together
with assumption (iii) and eq. (1.1.23), implies that

Ve 1955 P0i Dol (,7) = 05 [pay ] + €Fxc (X * (f @ D)) (t,7) + O(e?), (1.1.27)

where the time-dependent function x  (f ® b) is defined as

(x* (f @) (t7) = f £(5) (x(t — £)b) (r)ds.

Similarly, the mean field potential ﬁ « p°(t) can be expanded in powers of €. Using this
expansion and eq. (1.1.27), the effective Hamiltonian of (1.1.24) becomes

N

Heg(t) = Hy + € 2 (f(t)b(rj)—l—(FH + Feo) (x * (f0))(t, 7‘)) + O(€%),

j=1

where Fy is the Hartree operator given by instantaneous convolution against the Coulomb
potential,

(Fu(f®b))(t.r) = fF(t)( = 9)(r)-

In particular, the e correction above can be viewed as a one-body multiplicative pertur-
bation of the Kohn-Sham Hamiltonian H,. Consequently, by using the equivalence of the
densities in (1.1.25) and the expansion of the density in (1.1.23) (for both the interacting
and non-interacting systems), we obtain

. Pre — Py, . P — Py
* b) = lim =5 F¥0 — qjyy B2 o
X*(f®D) im —— i ——

= xo* (f®b) + xo*(Fu + Fie) (x * (f ®1)),

where x and yq are respectively the density-density response functions of Hy (v, w) and
Hy. Assuming that the above equation holds for any (reasonable) f and b, we finally
arrive at the celebrated TDDFT Dyson equation

X = Xo + Xo*(F + Fxe) X (1.1.28)
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Approximations to the xc-operator

Formally, the Dyson equation yields the exact density-density response of the Hamiltonian
Hy (v, w), thus allowing access to the excitation spectrum of Hy (v, w). In practice, neither
the exact static xc-potential used to construct the Kohn-Sham Hamiltonian Hy nor the
exact xc-operator are known. As in ground state DFT, one then relies on approximations
of these two objects. For the static xc-potential, a few approximations (defined as the
derivative of approximations to the xc-functional) were already discussed in Section 1.1.1.
For the xc-operator, let us mention just the two most common ones. These are:

e The random phase approximation (RPA): in this approximation, only the
mean-field potential (being the most significant part of electron-electron interaction)
is dynamically updated. In particular, the time-dependent xc-potential reduces to
the static approximation, and the xc-operator vanishes. The RPA Dyson equation
then reads

t

X(t) = xo(t) + L Xo(t — ) Frrx(t)ds.

e The adiabatic local density approximation (ALDA): in the ALDA, the time-
dependent xc-potential is given by the local density approximation

d
e Lpw; Uo; o] (1) = d—pGEEG s’

where el (p) is the exchange-correlation energy density of the homogeneous elec-

tron gas''. In particular, the approximated xc-operator in the ALDA is given by
the multiplication operator

(FQ:LDA [p<1>0]v) (tv 7”) = C?_erECEG (,0<1>0 (T))U(t7 T)

for any (regular) v: R, x R?® — R.

Both the RPA and ALDA are examples of adiabatic approximations. In these approx-
imations, the time-dependent xc-potential depends only instantaneously on the time-
dependent density. To emphasize this fact, we use the notation

Vi 195 Wo; Bo] (¢, 7) ~ 03 [p(t); Wo; o] (1),

For adiabatic approximations, the approximated Hartree plus xc-operator Fpr'™ =

Fy + F2PProX acts instantaneously in time. Consequently, they can be viewed as oper-
ators between suitable function spaces in R3. This is the viewpoint adopted throughout
Chapter 4, where general adiabatic approximations are studied. For examples of more
refined (frequency-dependent) approximations, we suggest looking at the references men-
tioned at the beginning of this introduction.

Mand should not be confused with the homogeneous exchange-correlation energy per particle of the
electron gas efIFG (p) = elFG () /p.

xrc
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Remark (Random Phase Approximations). The term RPA has different meanings in the
physics literature. Within DF'T, there is an important distinction between the ground-state
RPA and the time-dependent one. In the ground-state case, the RPA (and its variants) are
approximations to the correlation energy based on the high-density limit of the electron
gas [11, 44], which we briefly mentioned in Section 1.1.1. In the time-dependent case,
the RPA is a synonym to the time-dependent Hartree model, i.e., the time-dependent
Kohn-Sham equations (1.1.21) with the time-dependent xc-potential set to zero. In the
mathematical literature, the time-dependent Hartree model (or equations) were studied in
a variety of settings (e.qg., for trace-class operators [5], for crystals [16], and for extended
systems [74], to name a few).

1.2 Summary of results

We now describe the main results of this thesis in more detail. All proofs and rigorous
statements are delegated to Chapters 2 to 4.

1.2.1 Exchange effects on the free electron gas

In the first part of this thesis, we consider a collection of N non-interacting electrons
freely moving inside some bounded domain 2 = R3. For such a collection of electrons,
the ground state is described by a wave function ¥ : ( x Zy)¥ — C minimizing the
kinetic energy functional

1
T[V] = 3 Z LN IVU(ry, 81, ..., 7N, s3)|*dry...dry

81,0, SNEZL2

and subject to the following constraints: (i) normalization, (ii) anti-symmetry, and (iii)
boundary conditions. The Hamiltonian associated with this system is the Laplacian on QY
(with suitable boundary conditions), which can be seen as the sum of the 3-dimensional
Laplacians acting on each coordinate r; € ) separately. Consequently, the ground state
wave function'? is given by the anti-symmetric tensor product (Slater determinant) of N
orbital functions {¢;};<n = L*(Q® x Zy). Such wave functions are called uncorrelated;
their exchange energy is defined as

v . 2 1 !
E.[V] = Z J Z [P(rs; 51,7, 5| dry..dry — —J pu(r)pelr’) )drdr’,
QN 02

1<j<k<N 75— 7] 2 Ir— 7|

51,...,SN€ZQ

where py : R? — R is the single-particle density of the state ¥,

pu(r) =N Z fa\\P(r,sl,'rz,sg,...,TN,SN)\2d7’1...drN.
R

815+, SNEZL2

12For general values of N, ground state wave functions which are not Slater determinants are possible
due to degeneracies. However, for the values of N satisfying the closed-shell condition (see Chapter 2),
the ground state is indeed unique and given by a single Slater determinant.
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Remark. At first sight, evaluating the exchange energy for the ground state of a non-
interacting system may seem contradictory. As briefly mentioned, however, for weakly
interacting systems (i.e., in the high-density limit [81]), the ground state is close to the
ground state of the non-interacting system (see [47, 23]) and the interaction enerqy can
be viewed as a first-order correction at the level of perturbation theory.

In Chapter 2, we study the asymptotic behaviour of E,[Uy 1], where Uy 1 is the
ground state of the free electron gas with N particles in the rescaled box Q0 = [0, L]?, in
the limit where N, L. — oo with the average density p = N/|€;| kept constant. This is
called the thermodynamic limit. In this limit, we derive a two-term asymptotic formula
of the form

E,[Un 1] = —cop? L + BOpL? + o(L?),

where the first coefficient is the well-known Dirac exchange constant, ¢, = 3/4(3/7)3, and
was rigorously obtained in [40]. The second coefficient depends on the boundary conditions
chosen for the Laplacian and is hitherto unknown. Here we pay special attention to the
Dirichlet case, where the gradient of the ground state single-particle density has variations
of order one close to the boundary.

Moreover, we compare the asymptotics of the exact exchange energy with the asymp-
totics of semi-local density functionals. More precisely, we consider the functional

Flp] = y fp(r), [V p(r)|)dr,

under reasonable assumptions on the function f : R? — R, and study the thermodynamic
limit of the free electron gas, i.e., the thermodynamic limit of F[pn L], where py 1 = pwy
is the single-particle density of the ground state of the free N-electron gas in €2;. In this
case, we also derive two-term asymptotic expansions of the form

F[pN,L] = cl(f7 ﬁ)L?) + CQBC(f7 p)L2 + O(L2)7

where the coefficients ¢, (f, p) and cZ¢(f, p) now depend on the function f and the fixed
average density p, and c2¢(f, p) depends additionally on the boundary conditions. Match-
ing the first coefficients cPL(f, p) = —cxﬁ% of the above expansions, for all positive values
of p, yields the well-known local density approximation for the exchange energy,

4
f(p,0) = —cup3,

which is implicitly used in most exchange DFT functionals. The dependence of f on the
gradient only appears in the second coefficient cZL(f, p). Thus by matching this coefficient
with the second coefficient in the asymptotic expansion of the exact exchange energy, we
obtain a novel integral constraint on f (see the next chapter for the precise constraint).
Besides the exchange energy, we also consider the asymptotics of the kinetic energy. In
this case, analogous two-term asymptotic expansions are derived. These expansions are
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Chapter 1. Introduction and overview

well-known in the literature [37, 38, 60] and directly related to the asymptotic distributions
of eigenvalues of the Laplacian. Moreover, the first asymptotic coefficient of the kinetic
energy is also related to the Thomas-Fermi theory [35, 118, 77, 75, 90], which is known
to be asymptotically correct for neutral atoms in a large nuclear charge limit [77]. In
particular, matching the coefficients of the asymptotic expansion of semi-local density
functionals with the corresponding ones for the kinetic energy may provide a useful exact
constraint for semi-local kinetic energy density functionals [89, 91, 69, 24|, which play a
central role in orbital-free density functional theory [125, 78].

We conclude Chapter 2 with some numerical experiments. Specifically, we evaluate the
exact exchange energy and the exchange energy predicted by some generalized gradient
approximations [6, 92, 93] for the free N-electron gas in a box with up to N = 30000
electrons. These numerical results illustrate to which extent some widely used GGAs
satisfy the proposed constraint.

In Chapter 3, we considerably generalize the results of Chapter 2 by using different
methods. Specifically, we extend the results in the following directions: (i) we include a
broader class of domains, called here strictly tessellating polytopes; (ii) we consider Riesz
interactions between the electrons; and (iii) we generalize the results to arbitrary space
dimensions n > 2. In addition, we significantly improve the remainders for the two-term
expansion of the exchange energy obtained in Chapter 2.

1.2.2 Adiabatic approximations in LR-TDDFT

In the second part of this thesis, we study the solution xr to the Dyson equation

t

xr(t) = xu(t) + Jo xu(t —s)Fxr(s)ds, (1.2.1)

where yg is the density-density response function of a general Hamiltonian H and F' is
an approximation of the Hartree plus xc-operator of TDDF'T.

The first result of this part is the description of a general functional analytic setting
for the well-posedness of the Dyson equation. More precisely, we first characterize the
density-density response function of a general Hamiltonian as a strongly continuous fam-
ily of operators between weighted L2-spaces depending on the ground state density of H.
Then, we show that the Dyson equation is well-posed in this space under a compatible
boundedness assumption on the operator F'. This functional analytic setting is then ap-
plied to prove the existence and uniqueness of the solutions of the Dyson equation for
widely used adiabatic approximations of the xc-kernel, such as the random phase approxi-
mation (RPA) [83, 103, 120], the Petersilka, Grossman, Gross (PGG) approximation [96],
and the adiabatic local density approximations (ALDA) [127, 19], under the sole condition
that the Hamiltonian H admits a bounded (in L*(R?)) ground state density. (In fact, for
RPA and PGG we only need the ground state density of H to be in L*(R?) ~ L2 (R3).)

In the second part of Chapter 4, we study some relevant properties of the solution x g
under the assumption that the operator F'is positive in a suitable sense. The prototypical
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Chapter 1. Introduction and overview

example for this assumption is the RPA, where F' is given by convolution against the
Coulomb potential:

/
FRPAf(r) = Fyf(r) = f G dr’.
R |1 — 1|

The positivity of F' greatly simplifies the analysis of the Dyson equation in the frequency
domain, which allows for a detailed analysis of its pole structure. Among the main results
of this part, we show that the Fourier transform of the solution g, denoted here by
Xr, defines a family of meromorphic operators in a suitable open subset of C. We then
show that all poles of this meromorphic extension are simple, have finite rank, and can
be characterized by the existence of non-trivial solutions f to the eigenvalue equation

(W) Ff = f. (1.2.2)

Despite the lack of previous proofs, this characterization is tacitly assumed in the physics
literature. In the finite-dimensional case (i.e., after discretization), it can be justified by
a mixture of complex analytic and compactness arguments. However, for the current
setting where Yz (w) is a meromorphic function with values on the space of bounded
operators between infinite dimensional Banach space, such a characterization is not trivial.
Furthermore, we show that in the situations where some poles of Yz and Xr coincide
(which may happen), the poles w can be characterized via a similar eigenvalue problem
but in a reduced space.

Another interesting consequence of the positivity of F' that is observed in practical
implementations of LR-TDDFT is the forward shift of the poles of the solution Yz with
respect to the poles of the reference density-density response function yp (see [123]). In
Chapter 4, we give a rigorous proof of this fact. Precisely, we show that the positive poles
of Yz ordered in non-decreasing order and counted with rank are always shifted to the
right of the positive poles of Yz ordered in the same manner. (There is no need to discuss
the negative poles since they are reflections of the positive poles over the imaginary axis.)
In practice, this implies that the excitation energies computed in the RPA approximation
are always greater than the Kohn-Sham excitations.

As a last result in Chapter 4, we analyze the convergence of the Casida formalism in
the continuum (or infinite basis/energy) limit. Roughly speaking, the Casida formalism
consists in a truncation of yz at some energy level p of H followed by an ingenious — but
in general not one-to-one — re-parametrization of the finite-dimensional function space
spanned by the overlapping functions

po;(r) =N Uo(r,re, ... tN) V(7,72 .oy riv)dra...dry,
R3N-1
where U is the ground state wave function of H and ¥; are the excited states with energy
up to p. This re-parametrization allows us to obtain all solutions (w, f) satisfying equation
(1.2.2) for a truncated version of the density-density response function by computing the
eigenvalues and eigenvectors of a non-symmetric but w-independent matrix, the Casida
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matrix. Here we show that, under the assumption that H has a purely discrete spectrum
(e.g. H = —A+vw for a trapping potential), the eigenvalues of the Casida matrix converge
in an ordered manner to the poles of Xz as the energy level u (which in practice is related
to the number of virtual Kohn-Sham orbitals used) goes to infinity. The caveat here is
that the lack of injectivity of the mentioned re-parametrization has to be accounted for
by excluding some spurious eigenvalues of the Casida matrix.
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Part 1

The Free Electron Gas in the
Thermodynamic Limit
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Chapter 2

Exchange Phenomena on the Box

In this chapter, we derive the next order correction to the Dirac exchange energy for the
free electron gas in a box with zero boundary conditions in the thermodynamic limit.
Like Dirac exchange, the correction is of significant interest for density functional theory
(DFT). In particular, it yields a novel exact constraint on generalized gradient approxi-
mations (GGAs). The work presented here was done in collaboration with Gero Friesecke.

2.1 Main results

The dominating part of the exchange-correlation energy for real molecular and solid-state
systems consists of the exchange energy, on which we focus in this chapter. The local
density approximation (LDA) of the exchange energy is the celebrated Dirac exchange;
it consists in applying the local exchange energy density of the uniform electron gas
(UEG), whose density is homogeneous, to the inhomogeneous density of the system (see
(2.1.8)). To some extent, this fails to account for the fluctuations of the density over
its average value, which is of order 1 (in atomic units) for real systems. More successful
approximations to the exchange energy, such as the generalized gradient approximations
(GGA), attempt to overcome this problem by multiplying the LDA exchange energy
density by an enhancement factor that depends not only on the pointwise values of the
density but also on its gradient (see (2.1.9) and (2.1.10)). However, the precise form of this
enhancement factor is not sacrosanct; distinct GGAs use different semi-empirical ansatzes,
whose parameters are adjusted to fit empirical data and /or known exact constraints [6, 92].

In this chapter, we analyze the exchange energy of the free electron gas (FEG) that
underlies the Dirac exchange, but with an important difference: instead of periodic bound-
ary conditions, we impose zero boundary conditions. While the former yield a uniform
density, the latter yield density gradients of order 1 near the boundary (see Figure 2.1).
This makes the Dirichlet FEG a natural reference system for gaining insight into exchange
GGAs. Therefore, we study its asymptotic behavior in the thermodynamic limit where
the number of electrons N and the sidelength L of the box tend to infinity with the
number of electrons per unit volume, N/L? = p, remaining constant.

By careful asymptotic analysis, we are able to determine not just the bulk contribution
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Figure 2.1: Density (left) and density gradient squared (right) of the free electron gas with
1110 electrons in a three-dimensional box with zero boundary conditions. The picture
shows a two-dimensional cross-section through the center of the box, and the number of
electrons per unit volume was normalized to 1. The density gradients of order 1 near the
boundary persist in the thermodynamic limit.

to the exchange energy, which is just the familiar Dirac exchange regardless of the imposed
boundary conditions (as has been shown previously [40]), but also the next-order (surface)
contribution to the exchange energy, see Theorem 2.1.1 below. The next-order term is to
our knowledge new and captures the inhomogeneous boundary layer depicted in Figure
2.1. It also captures two additional effects: a boundary-condition-induced small shift of
Fermi momentum and bulk density, and a long-range electrostatic finite-size correction
which would also be present for periodic boundary conditions (i.e. unform density).
Our asymptotic methods also yield the next-order (surface) contribution to the exchange
energy for GGA exchange functionals with general f. Requiring these contributions to
match yields a novel exact constraint on GGAs (see eq. (2.1.12) below).

Main result in more detail. The free electron gas in a box consists of N electrons
moving freely in a three-dimensional box Qr = [0, L]? of sidelength L and volume V' = L3
in the thermodynamic limit N — oo, V — oo, with the number of electrons per unit
volume, p = N/V, remaining constant. Mathematically, ground states of the finite system
are defined as minimizers of kinetic energy

1 N
Twl= Y fN52|VTZ.\I/(T1,51,...,TN,SN)|2dr1...dTN (2.1.1)
L =1

81,...,SN€ZQ

over square-integrable N-electron wave functions W with finite kinetic energy (i.e., func-
tions in the Sobolev space H'((Qr x Z3)";C)) subject to the following constraints: nor-
malization, ||U||;2 = 1; antisymmetry, W (..., 7, Si, ...y 75, Sjy o) = =V (o, 75, Sjy ooy Ty Siy o)
for i # j (where (r;, s;) € Qr x Zy are space-spin coordinates for the it" electron); and one
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of the boundary conditions

U(ry, 81,7, Sn) = U (1t 81, .., 7, sn) if ' — 1 e LZ3N (periodic case) (2.1.2)
U(ry,s1,...,7n,8n) =0 if any 7, € 9[0,L]*  (Dirichlet case)  (2.1.3)
V. U(ry, 81,..,7n, 85) - v(ri) = 0 if any r; € 0[0, L] (Neumann case). (2.1.4)

Here v(r;) denotes the outward unit normal to 0[0, L]* at r;. (Of course, in the Neumann
case no boundary conditions are imposed on the admissible functions; instead, minimizers
then automatically satisfy Neumann conditions.)

For ground states of non-interacting systems, such as the one above, the exchange
energy is defined as the difference between the quantum-mechanical electron-electron in-
teraction energy and the mean-field energy,

E,[W] = V. [¥] - %L %d v’ (2.15)
with
V(0] = f (s ey o) Pdrdry (2.16)
enez2 VRT 1<z<]<N i — TJ"
(interaction energy) and
p(r)=N Z f |U(r, 51,79, 89, ., TN, SN ) [dr...dry (2.1.7)

81, ,SN€Z2 QL

(single-particle density of the system). For explicit expressions of the exchange energy in
terms of the single-particle orbitals (Laplace eigenfunctions in the box) see Section 2.2.

We are not just interested in the exact exchange energy functional (2.1.5), but also
want to compare it to two important types of simpler functionals defined only in terms
of the single-particle density:

e The Local Density Approximation (LDA) [65]:

BN ) = [ (ol 218
R
where the exchange energy density per unit volume is given by the Dirac-Bloch
formula [10, 29] eXPA(p) = —c,p*? with ¢, = %(%)%

e The GGA functionals [6, 92, 93]:

EJ%Apl = EyPAp) + fRS g% (o(r), |V p(r)])dr (2.1.9)
—AEGOAL)

with the assumptions that g¢“4 € C°([0, 20)?) nC*((0, 20) x [0, 0)) and g¥C4(p,0) =
0, for all p = 0 (i.e. the functional reduces to the LDA for the homogeneous density).
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In the physics literature [6, 92, 93], GGAs are commonly expressed in terms of the density
and the dimensionless gradient s = |Vp|/p*3. This has the advantage that, by a scaling
argument, one arrives at the simpler ansatz

99 p, [Vpl) = ex®(p)G(s), (2.1.10)

with different GGAs differing only by the choice of G.! The reason we prefer to work
with the density and the density gradient instead is because s(r) — o as r approaches
the boundary (for Dirichlet boundary conditions) while Vp(r) remains bounded, making
the mathematical analysis simpler. Our assumptions on ¢g%%4 required in Theorem 2.1.1
below are satisfied for typical GGAs of form (2.1.10) such as those in [6, 92, 93]. (See
Section 2.8 for a proof.)

With the functionals (2.1.5), (2.1.8), (2.1.9) in mind, the main result of this chapter
can be stated as follows.

Theorem 2.1.1 (Asymptotic expansion of exchange functionals). Let N, L > 0, and
let Q <« R? be a rectangular box. Let Wy 1 be any determinantal ground state wave
function of the free N-electron gas in Qp = {x € R : x/L € Q} under either Dirich-
let, Neumann, or periodic boundary conditions, and let py 1 denote the associated
single-particle density. Moreover, assume that the GGA functional (2.1.9) satisfies
geCh e C°([0,0)%) N CL((0,0) x [0,00)) with g8%2(p,0) = 0 for all p. Then in the
thermodynamic limit, i.e., for N, L — o0 and p = N/(|Q|L?) = constant, one has:

e Under periodic boundary conditions:
Ex[‘lf%frﬂ —c.pPIQ|LP + c§f§ﬁ|&Q|L2 + (’)(L%ﬂ)
EEPA[pRe ] = —¢, 5" |Q|L% + O(L5+)
AESM R ] = O(L5 )

e Under Dirichlet boundary condtions:
B[R] = —apt |QIL° — 25p|00IL* + O(L31)
B[R] = —eapt |QILY — 2B aplo|L? + o(L?)
ABMpR] = caia(p)|0QIL? + o(L?)

T.e., by the “gradient enhancement factor” F' = 1 + G of the overall integrand f(p, |Vp|) = ex(p) +
g9 (p.IVpl) = ex(p)F(s)
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e Under Neumann boundary conditions:
B[N = —ap? QIL° = &5'pl00|L? + O(L5 )
4 ou —
E;PApNE] = —eop QIL? — cppaploQ|L? + o(L?)
ABF M piet] = cgda(p)|0QIL? + o(L?)

where | and |08 denotes the volume and surface area of the domain Q, h is the
explicit function h(t) = 3(sint — tcost)/t?, pp = (372p)'/3 (Fermi momentum), and
the constants are given by

er 1 ir 11— 10g2 ir 3 * 4 3
s = = Dy = —— ~ 00767, = 8—7TL (1 —h(t))s — 1dt + g™ 0.0673,
3log2 —2 3 (® 3
Ny = ZE2 T2 10,0199, ), = —f (1+ h(t)5 — 1dt — = ~ 0.0430,
4 81 Jo 8
v 1 © B - .
2p) = g %% (000 = o). 20 )
1 ] o
) = g |9 (o1 + hie) 2]

This result extends that of a previous work by Friesecke [40] as we determine not just
the leading but also the next-order terms (of order L?) and include the GGA functionals.
Also, to further illustrate the role of the boundary conditions, we have included the
Neumann case.

An immediate corollary of Theorem 2.1.1 is the following simple exact constraint on
GGAs. The next-order correction to Dirac exchange for the free electron gas with zero
boundary conditions is captured exactly, i.e.

E, [‘I’N,L] - E;?GA [PN,L]
12

N
—0 as N,L — o with p = 5 constant (2.1.11)

for all values of the average density p, if and only if the gradient enhancement factor
F(s) =1+ G(s) defined by (2.1.10) satisfies

BT e 21 ()]
1= nia (26 0

81 Jo
where the constants and the function h are those from Theorem 2.1.1. In contrast with
previous exact conditions on G which refer to small-s asymptotics [92] (for the weakly
inhomogeneous electron gas) respectively large-s asymptotics [6] (for atomic densities),
the above condition is an integral constraint which sees the whole profile of G. Note
that as ¢ varies from 0 to oo, the argument s of G (which corresponds to the reduced
density gradient of the Dirichlet free electron gas along a ray moving from the boundary
in perpendicular direction into the interior, see below) traces out all possible s values from

)dt = Cp5 — Cba (2.1.12)

29



Chapter 2. Exchange Phenomena on the Box

0 to 0. The extent to which current GGAs fail to satisfy (2.1.12) is discussed in Section
2.7.

Strategy of the proof. We follow the overall strategy introduced in [40] of deriving an
accurate continuum approximation to the ground state density matrix (see Theorem 2.4.2
below, or Theorems 4.1 and 4.2 in [40]) and analyzing the ensuing interior and boundary
contributions to the exchange energy. While the continuum approximation is the same
already introduced in [40], the main advance, and most involved part of our work, is an
improved error estimate (see Theorem 2.4.2) which shows that it is accurate enough to
infer the next-order contributions to the exchange functionals which are of the order of
the surface area of the box. This is achieved by leveraging, on top of Fourier analysis
techniques [111] as already used in [40], the theory of exponential sums [49, 54]. The main
step is the proof of the following technical lemma.

Lemma 2.1.1. Let a € N} and D € R**® be a positive diagonal matriz. Then there exists
¢ =c(a, D) > 0 such that

1 (ik)ets — f (ik)aei’“'de‘g ¢(1 + Rlel+3+<), (2.1.13)
keZ3 BB BR
for all z with |2|mee = max;<sf{|z;|} < 7, where Ny = N U {0} and BR = {k € R® :

|D~k| < R}.

The exponent % may seem peculiar at first, and we do not claim it to be optimal, but
the main point is that it improves over the % exponent obtained in [40]. This improvement
is necessary for rigorous derivation of the asymptotic terms of the order of magnitude of
the surface area of the box. This can be quickly seen by integrating the square of an error
proportional to L™2 (like in Theorem 4.1 and 4.2 of [40]) against the Coulomb potential
in the double box [0, L]%, which yields an error proportional to L? and is therefore not
enough for our purpose.

Estimates of this kind were originally motivated by analytic number theory. In partic-
ular, by setting z = 0 and a = 0 one recognizes the famous lattice point counting problem
in R? (also known as the sphere problem) [124, 22, 21, 53]. The remarkable difference here
is that the estimate holds uniformly in z, even though the integrand oscillates, for typical
k € BE on the length scale of the lattice. The key step in the proof of Lemma 2.1.1
is to estimate some three dimensional weighted exponential sums that appear naturally
when applying the Poisson summation formula to the Fourier transform of (an smoothed
version of) the characteristic function of the unit ball in R? (see Lemma 2.4.1). While the
weights of such sums are dealt with partial summation, the cancellation of the oscillatory
terms is achieved by estimating higher order derivatives of the phase function and apply-
ing a recent improvement on the k*-order derivative estimate of van der Corput due to
Heath-Brown [54].

The continuum approximation of the density matrix which we justify with the help
of the above lemma (see Theorem 2.4.2) entails, in particular, the following accurate
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approximation to the boundary layer for zero boundary conditions and the box [0, L]3:

p _(PN,L\3 p _35,,
plro +7') = p(p—F> (1= hpnclr'])) + O(L~5+) (2.1.14)
whenever rg belongs to the boundary of the box, its distance from the edges is of order
L, and r’ points in normal direction to J[0, L]* into the interior. Here py 1 is the Fermi
momentum of the finite system, which is found (see Lemma 2.3.2) to differ from its
thermodynamic limit pr = (372p)"/3 by an order L~! shift,

PN,L = DF + %Ll + O(L%). (2.1.15)
This shift produces meaningful contributions to the surface corrections for both the exact
exchange and the semi-local approximations (see cpps in Theorems 2.5.1 and 2.5.2).

For the semi-local approximations, the proof of Theorem 2.1.1 then consists in using
the continuum approximation (2.1.14) for evaluating the semi-local functional and con-
sidering Taylor expansions of the semi-local energy density (i.e. the function f(a,b) =
elPA(a) + g9G4(a, b)) with respect to the density and its gradient. A crucial step here
is that the continuum approximation is not only justified for the density but also for its
gradient (and higher-order derivatives). This is the main reason for including the factor
(tk*) in Lemma 2.1.1. For the exact exchange, no gradient estimates are necessary as the
integrand is quadratic on the density matrix. In this case, the decay of the function A
plays an important role in justifying the use of the continuum approximation and in the
overall analysis of the bulk and boundary terms.

Structure of the chapter. We start with a small subsection to introduce the notation
used throughout the chapter. In Section 2.2 we begin by recalling some basic facts about
the ground state of the free electron gas in the box under different boundary conditions.
In Section 2.3 we discuss the control of open shell effects and the Fermi momentum asymp-
totics in the thermodynamic limit. Section 2.4 contains the proof of Lemma 2.1.1 and
the derivation of the continuum approximation of the density matrix. In Section 2.5 we
present the proof of Theorem 2.1.1 by first dealing with the semi-local functionals (The-
orem 2.5.1) and then the exact exchange (Theorem 2.5.2). Section 2.6 briefly discusses
the asymptotics of the kinetic energy, which can easily be extracted with our methods.
Section 2.7 compares the asymptotic behaviour of different exchange functionals (exact
exchange, LDA, B88, PBE, PBEsol) when applied to the free electron gas in a box with
zero boundary conditions and up to 30 000 electrons. We find good agreement between
asymptotics and numerics. Physics-minded readers may want to skip Sections 2.2-2.6
and move forward directly to Section 2.7.

Notation

The following notation will be used throughout the text.
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e We use the standard big-O and small-o notation: for functions f : (0,00) — R and
g: R — (0,00), we say that f = O(g) respectively f = o(g) if

[f(L)] [f(L)]

limsup —— < oo respectively limsup ——=— = 0.
1—w  g(L) L 9(L)

Moreover, for functions f,g : R — R, we say that f(L) < g(L) or f(L) ~ g(L) to
indicate, respectively, the existence of a constant C' > 0 which does not depend on
L such that

[F(L) < Clg(L)]  or  CTHf(L)] < |g(L)] < CIf(L)]

for all sufficiently large values of L. Sometimes we will also use the notation <. to
indicate dependence of the implicit constant on an additional parameter (e in this
case).

e Throughout the text, D e R**® will always denote a diagonal matrix with entries
dy,ds,d3 > 0, and |D| := det D stands for its determinant. The balls of radius R
and D-radius R are denoted by

Br={reR®:|r|<R} and BR:={reR®:|D'r|<R}.
The cubic box, the D-rectangular box, and their re-scaled versions are denoted by
Q= 1[0,1]%, QP :=10,d;] x [0,dy] x [0, ds],
Qui=[0,L, Q= {reR?: % e QP}.

e For the Fourier transform of a function f : R® — C, we use the normalization
convention

fk) = (r)e”*rdr (2.1.16)
Rn

where k- r = Z?:I k;r; is the standard Euclidean scalar product. We also denote
by jY the inverse Fourier transform of f.

e For a set 2 < R", we use xq for its characteristic function. In particular, with

the above convention for the Fourier transform, in R® one has that Xp, = Sh(|k]),
where the function A : R — R will appear many times in the sequel and is given by

n(t) - 330 _tgt cos(t) (2.1.17)

For an elementary derivation of this formula see e.g. [40, Lemma 6.1].

e The group generated by reflections at coordinates hyperplanes of R? is denoted by
G and its elements by o, i.e.,

G = {0 e R***: ¢ diagonal and 0;; = £1 for any j = 1,2, 3}. (2.1.18)
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e The projection on the " coordinate hyperplane is denoted by 7; : R?> — R2, e.g
m1(r1,79,73) = (ra,r3). Moreover, for any z € R?, we define |2|max = max;<s |2 -

e We use respectively R, = (0,20), Ny = N u {0} and Zy = {0, 1} for the positive
reals, non-negative integers and the additive group of order 2.

e For any set in R3 we use | - | for either its volume, surface area or cardinality
depending on whether the set has dimension 3, 2, or 0, e.g, |By| = 4?“, |0B;| = 4m,
and |B; n Z?| is the number of elements in Z3 with Euclidean norm smaller than 1.

2.2 Ground state of the free electron gas: closed shell
formulas

We now recall some basic facts and formulas for the ground state of the free N-electron gas
in the box subject to Dirichlet, Periodic or Neumann boundary conditions. (A rigorous
account for the free electron gas in a box can be found in [99, 100] .)

It is well known that the Laplacian in Q¥ under any of the discussed boundary con-
ditions (BCs) is diagonalizable in the sense that there exists an orthonormal basis (in
L*(QP)) of eigenvectors. Furthermore, the eigenvectors and eigenvalues can be labelled
by

e vectors k € Z3 for periodic boundary conditions:
42| D71k |?

1 22D 1k.p
BH(r) = = e F = T

VID|L?

e vectors k € N3 for Dirichlet boundary condition:

(2.2.1)

2| D1 ?

(1) = W“\@sm( L’ ) M= ——5— (2.2.2)

e vectors k € N} for Neumann boundary conditions:

72| D~ k|2

@i (r) = \/WH\@COS( oL’ ) M= ——7— (2.2.3)

As a consequence, one possible ground state for the N-electron gas (i.e. a normalized
anti-symmetric minimizer of (2.1.1) under one of the BCs (2.1.2)—(2.1.4)) is given by the
determinantal wave function (or Slater determinant)

1 1/)1(1’1) ce 1/)1(1’]\[)
Bt = ) . umlan)) o
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where 2, = (ry,s0) € QP x Zy are the space-spin variables and 1; are the space-spin
orbitals given by

(@) = SE (Mxals),  dai(@) = DL (r)xols) forie{l,...,g}, (2.2.5)

where ¢y are the eigenfunctions defined in (2.2.1)-(2.2.3), and {k;};<n/2 is any subset of
distinct vectors in N* (in the Dirichlet case) such that Buax, k|- N N* < {k;}i<n /o, for all
e > 0. In fact, the collection of all such Slater determinants forms a basis for the ground
state eigenspace of the free N-electron gas in QF.

Let us also introduce the Fermi radius?

N
mln{R >0: 5} < |BE nZ*|}, for periodic BCs,
N
Ry = ymin{R >0 < < |BE AN?%|}, for Dirichlet BCs, (2.2.6)
N
min{R > 0: — < |BF nN3|}, for Neumann BCs.
\

Then the ground state of the free electron gas is unique for any N satisfying the closed
shell condition

QIBRPer nZ?|, for periodic BCs,
N = 2|BRD“ A N?3|,  for Dirichlet BCs, (2.2.7)
2|BRNeu N N3|, for Neumann BCs,

where here and thereafter the superscripts Per, Dir and Neu denote periodic, Dirichlet and
Neumann boundary conditions respectively. In particular, by recalling that the spinless
one-particle density matrix of a state ¥ is defined by

yu(r,7) =N f (r, 81,72, 82, ..*N, SN )W (T, 81,72, S2, .oy ', S )d7a...dry,
81y ,SNEZQ RS

(2.2.8)

then for any N satisfying the closed shell condition (2.2.7), the spinless density matrix of
the (unique) aforementioned ground state is given by

(2 9m N
|D|L? Z LD, for periodic BCs,

D
keZ3nB REer

(7 = 4 4]D|L3 Z det o Z LD - ") for Dirichlet BCs,
N,L\", =

(2.2.9)

oeGG kez3~BP_.

RDlr

N

s 1
Z Z LD ke (r=or) for Neumann BCs,

4|D| L3
0€G kez3nBPD
R%cu

\

?Note that the Fermi radius also depends on D. However, as D will be fixed and N, L will vary, we
will not exhibit this dependence in our notation.
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where G is the reflection group defined in (2.1.18). Therefore, the one-body (spin-less)
density can be written as

( N
'7]%%( r) = W7 for periodic BCs,
’VJBHL( =1 D I Z deto Z ' EPT(r=om)  for Dirichlet BCs,
PN,L(7"> = 3 ‘ | oeG kEZBQBgDir
N
V%Eil( 4]D|L3 Z Z o A o), for Neumann BCs,
0€G keZ3nBP,
\ R
(2.2.10)
and the exact exchange energy can be rewritten® as
1 =\ (2
E (V] = ——f Mdrdﬂ (2.2.11)
4 Jopxgr =T

with vy 1, from equation (2.2.9).

Remark. The derivation of formula (2.2.9) from the Slater determinant of the orbitals
n (2.2.1) and (2.2.2) can be found in [40]. (For the Neumann case one can proceed
similarly.)

The above expressions have a few simple but important symmetries that we state as
a lemma for further reference. (The proof is a straightforward verification.)

Lemma 2.2.1 (Symmetries of pn). Let pyr be defined by equation (2.2.10), then
\Von.r| and pn 1 are unchanged under the following reflections:

TiniL—TZ‘.

2.3 Open shell effects and Fermi momentum asymp-
totics in the thermodynamic limit

In this section we consider two important aspects of the FEG in the thermodynamic limit:
(i) we justify the use of formulas (2.2.9) for determinantal ground states with a general
number of particles N € N (Lemma 2.3.1), and (ii) we derive a two-term asymptotic
formula for the finite-size Fermi momentum (Lemma 2.3.2).

3The equivalence of (2.1.5) and (2.2.11) with vy defined by (2.2.8) is in fact valid for any Slater
determinant ¥ of doubly-occupied spatial orbitals. It follows from (2.2.4)-(2.2.5) by straightforward
calculation.
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2.3.1 Open shell effects

Our goal now is to show that, in the thermodynamic limit, the single-particle density
matrix (and its derivatives) for any determinantal ground state is pointwise close to the
unique closed shell formulas in (2.2.9).

To this end, let us introduce the previous and the current shells for some N € N as

N_:=max{neN:n < N and n/2 = |BF n N?| for some R > 0} = magc]BgN_e N N3,
€

N; :=min{ne N:n > N and n/2 = |Bf n N°| for some R > 0} = |By nN’|,

where again N is replaced by Ny or Z for Neumann or periodic boundary conditions,
respectively. Then according to [40, Section 3], one can work with the unique (closed
shell) ground state density matrix vy 1 up to a pointwise error proportional to N -1/2
(or L’%). However, as previously remarked, these estimates are not enough to justify the
use of the exact closed shell formulas on the analysis of the next-to-leading order term in
the asymptotic expansion for the exact exchange. To improve on this error estimate and
include the more general rectangular box case, we use our own estimate in Lemma 2.1.1.
More precisely, setting o = 0 and z = 0 in Lemma 2.1.1, we obtain’

4 4
1Z3 ~ BR| - gympﬁ — O(R3+9), (2.3.1)

As a consequence, by adapting the arguments in [40] we can prove the following lemma.

Lemma 2.3.1 (Open shell control). Let o, 3 € N3 and e > 0. Then, there exists a constant
¢ = c(a, B,€) > 0 independent of N and L such that for any determinantal ground state
of the free N-electron gas in QP (under either Dirichlet, Neumann or periodic boundary
conditions) we have

lal+18] | 34
N 35 tete

|6?657N,L<r7 7:) - aga?’YN,,LO‘; 7:)’ < CW. (232)
In particular, if p = IQD% is constant, one has

8w 1 (r, 7) = 22Dy 1 (r,7) + O(LH7).

Proof. For simplicity we disregard spin here. First, we note that by eq. (2.3.1), the
degeneracy of the open shell can be controlled by

%4‘6 ﬁ#»ﬁ
d(N) =N, — N_ < R®"“ < Nov*e, (2.3.3)

4Note that for the case of the cubic box, finding the optimal (algebraic) coefficient on the remainder
goes under the name of sphere problem and has been studied by many authors [124, 22, 21, 53]. In
particular, better estimates (with smaller exponent) than (2.3.1) are available in this case.
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where the € in the second inequality is different from the first by a factor of 1/3. Next,
if ¥ is a determinantal ground state of the free N-electron gas in QP then we know (see
Section 2.2) that, up to a phase factor,

U = < /\ ¢£) AGL A i A DN_N_,

kGBRN7
—

=VN_.L

where A is the anti-symmetric tensor product (see (2.2.4)) and {¢;}icn_n_ is a set of
orthonormal functions given by linear combinations of the orbitals in the open shell, i.e.

éi(r) = Z cindr (r), for ae. re QP,

keN3
|k|=Rn

CN—N,

for some ¢y, € C. Since C* = {¢;} defines an isometric transformation from to

N) (as X, ctjr, = (¢, (EJ> = 0,j), one can show that

Z CijCik by, <(Z|aj|2>2<2|bk|)2, (2.3.4)
7 %

gk
for any (ai,..aaw)), (b1, ..., bavy) € C*N). Finally, we can use the formula

N—N_ o
yo(r, ) = D op(r)ek(F) + i
keBr, nN? i=1
Z’YN:fL(m*)

laf

and the estimates (2.3.4),(2.3.3)), and |0%¢E(r)| < ca(R/L)*L™2 < ¢uN'3 L2101 (sce
(2.2.1)-(2.2.3)) to conclude that

N—-N_

2 G H(F)| =

0200y (r, 7) = 020 1 (r,7) D k0”67 (r) P (7)

1,7,k
<( Y |aa¢§<r>|2)2( 3 |aﬁ_¢,£<f>|2)2
l7l=Rn |[k|=Rn

\aIHﬁ\ +54+6

N5~
|
~ o L3tlal+lsl

]

Remark. One could equally well consider the density matriz of the current closed shell
YN, n Lemma 2.5.1.
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2.3.2 Fermi momentum asymptotics

Here we derive the asymptotics of the finite-size Fermi momentum appearing in (2.1.15).

For the non-interacting electron gas model, the finite-size Fermi momentum is defined
as the momentum of the highest occupied orbital of the ground state wave function. For
the free N-electron gas in QP it is simply given (in atomic units) by

( 2 Per
MEN , for periodic BCs,
RDir
pvi =14 = LN : for Dirichlet BCs, (2.3.5)
Neu
WfiN , for Neumann BCs,
\

where Ry is the Fermi radius. It is well known that in the thermodynamic limit, the
finite-size Fermi momentum converges to the (continuum) Fermi momentum, defined as

pr = (37°p)3.

The next lemma presents the next-order correction of the finite-size Fermi momentum,
which is crucial for deriving the next-order corrections from Theorem 2.1.1.

Lemma 2.3.2 (Fermi momentum asymptotics). Let p = ﬁ be constant, pr be the
Fermi momentum and py. 1, be the finite-size Fermi momentum. Then
pr + O(L_%“), for periodic BCs,
7T|8QD’ -1 -3 4 inon
g = 2 pr + 8100 L™ +O(L 227¢),  for Dirichlet BCs, (2.3.6)
0 D
Pr— 7;’|C§2D|’L_1 +O(L™ 5%, for Neumann BCs.

Proof. We present the proof only for Dirichlet case and denote RX" simply by Ry. First,
from the previous section we already know that Ry < N3 and 0 < N, — N < d(N) <

N&*e, Since |QP] = |D|, one has

pL’ N |N°nBR

+ O(N &™)

2 2D D
1 > s,
= mUZS N BR | = Y17 nmi(BR,)]) + O(N& ™)
j=1
™ |0Q"] aa
= _R3 — R%2 + O(Nwte

which implies that

: 3r|oQP| 1 O(N6o+¢)
3 _ .3 2
Pr =DPNr1 — WZPN,L + 1z (2.3.7)
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Then, with p = % fixed, it is clear that p} ; — p}. The correction proportional to
1/L now follows from equation (2.3.7) by taking the cubic root and using a mean value
inequality argument. [

Remark. Note that the above lemma is simply a restatement of the famous two term
Weyl’s law [60] on the asymptotic behaviour of eigenvalues of the Laplacian (with an
improved remainder). We shall comment more on this fact in the next chapter.

2.4 Discrete to continuum approximation

In this section we present the proof of Lemma 2.1.1 and use it to derive the continuum
approximation for the density matrix with explicit estimates. To avoid a cumbersome
notation and to make the proofs more efficient, we will focus on the case of the cube )
and simply comment on the modifications necessary for the general case (on QP) at the
end of each proof.

2.4.1 Estimate on exponential sums

Here we want to derive non-trivial® estimates for some weighted exponential sums that
appear naturally in the proof of Lemma 2.1.1. More precisely, let a« € N3, M, R > 0 and
Q", be the cubic holed box defined by

4
Qhy = {reR®: M < |r|mne < gM}, (2.4.1)
then our goal is to find a better than trivial estimate for the sum

o . (k+2)%  iRpkrs
keQh, n(2nZ)3

when M is large and R ~ M?. Using the above notation the main estimate can be stated
as follows.

Lemma 2.4.1. Let € > 0, a € N} and z € R?® with |z|max < 7. Then
1 3 11 1 23
SY(R,z) < M (R2M4 + M2 + R 2 M24),
where the implicit constant depends on € and «, but is independent of M, R and z.

Before proving this result, we recall a recent improvement of the standard Van der
Corput k'-derivative estimate [49] on exponential sums due to Heath-Brown [54].

5In the theory of exponential sums, the elementary estimate 3, . e *) < |Z" A S|, which holds
for any subset S < R™ and any real-valued function f(k), is called trivial. The goal of the theory is then
to improve over such estimates.
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Theorem 2.4.1 (Heath-Brown [54]). Let k > 3 be an integer and f € C*([0, M],R).
Suppose that
0< X < fP(s) < AN, s€e(0,M),

for some A > 0. Then

1

. 1 5 2
e i M1+6<)\,§(‘“’” + MTEET 4 MEET ) k“’“ﬂ*“).

n<M

Remark. Note that for any ¢ < 1, the estimate above still holds for the sum in the
interval cM < n < M (with two times the implicit constant above). Indeed, one can
simply consider the sum in this interval as the sum until M minus the sum until cM,
where both can be controlled by the same factor.

We also recall an elementary partial summation lemma (see e.g. [49, 59] for the proof)
that is used to deal with the weight function in S§;(R, 2).

Lemma 2.4.2 (Partial summation [59]). Let g € C'([a,b]) and denote the total variation
SZ |d'| of g by Vyla,b]. Then for any sequence a,, one has

b

2,0
v

Proof of Lemma 2.4.1. First note that if M is small (compared to R), then the estimate
is trivial. Therefore, we need to consider only the case where M is big. Next, defining

_ _ (k+2)"

< (Vyla.b] + lg(a) ) max

(2.4.3)

the idea is to see f and g as functions of one coordinate, estimate the inner sum by
Theorem 2.4.1 and Lemma 2.4.2, and then use the trivial estimate for the outer sums. To
verify the assumptions of Theorem 2.4.1, let us consider the sets

Ul, = {keR>: k| > M and r?g_x{]kg\} > M/10} n Q% (2.4.4)
Ly ={keR®:|k;j| = M and r?gxﬂkg\} < M/10} n QY;, (2.4.5)

and observe that a straightforward calculation yields

(k + 2)P(|mj(k + 2)[* — 4(k; + Zj)2)'

2.4.
L (2:4.6)

o 1(k) = —3R1

Now the reason for our choice of § in the definition of Q}; (any number between 1 and
v/2 would be enough) is that, since |z|a < 7 is small compared to M, inside of Ui, we
have

4(kj+zj)2—|7rj(k+z)|2 ~ M?, \k+z| ~M, and |7rj(k+z)|2 ~ M?
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(with implicit constants independent of M and R). In particular, from (2.4.6), we find
that

4 R

10k, F(R)| ~ 53 (2.4.7)

inside U?,. Moreover, note that |g(k)| < # and |0k, g(k)| < # Hence, as |k| > M

for any k € Q% if we consider g as a function of only one coordinate, say ks, for any

{k1} x {ko} x I = Q",, we have
Vg(khkm')[l] + |g(/€)‘ S Mﬁz; (2.4.8)

with constant independent of ki, ko, I, M and R. Therefore, we can apply Lemma 2.4.2
and Theorem 2.4.1 (see (2.4.7),(2.4.8)) to conclude that, for any I x Iy x I3 < Uy,

Y g s Y MM (REM A M+ R

kel; xIax I3 k[EQﬂ‘ZﬁI@
ke(27Z)3 0£j
L 3 11 _1 23
< MY(REMT + M™ + R 2 M), (2.4.9)

On the other hand, if I; x Iy x Is = L}, then from equation (2.4.6) and the definition of L7,
(see (2.4.5)), one can show that 8,‘§£f(k) ~ % for ¢ # j. In particular, by summing over I,
first and using the same arguments as before, we conclude that as long as Iy x [, x I3 < ng,
the sum over I; x Iy x I3 is again bounded by the right hand side of (2.4.9).

Finally, note that we can split the summation over Q% as

D g<k>eif<k>=i( 3 g(k)el‘ﬂ“),

keQh ~(27Z)3 p=1 Nkell xI2 ngg
ke(2nZ)

where I are intervals such that the product I} x I2 x I? is contained in one of the U3, or

wa and the number P is independent of M. Therefore, the result follows from estimating
each sum on p independently by (2.4.9) and summing them up (since P is independent
of M). O

Remark. Here are some remarks concerning the proof above.

e The classical Van der Corput 4"-derivative estimate (see [{9]) would actually be
enough for our purposes. However, Theorem 2.4.1 gives a slightly better estimate
on the error term.

o Ifwe assume that z € Q3, then one can show that the same estimate from [21, Lemma
3.1] holds, which would then lead to the Vinogradov, Chen [124, 22] exponent of 4/3
in (2.1.13). Unfortunately, in this case the implicit constant depends on the least
common multiple of the denominators of zy, 22, 23, and therefore, we lose the uniform
control that is essential for our purposes in the next section.
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Remark (Generalization to Q7). For general QP we need an analog of Lemma 2.4.1 with
f and g from equation (2.4.3) replaced by f(k) = R|D(k + z)| and g(k) = %.
In particular, the only significant modifications are that equation (2.4.6) has to change
accordingly, and the sets U3, and L}, defined in (2.4.4) and (2.4.5) have to be replaced by

their pre-images under D (as a map in R?).

2.4.2 Proof of Lemma 2.1.1

To complete the proof of Lemma 2.1.1, we shall use two classical results. The first one is
the celebrated Poisson summation formula (see e.g. [111]), which we write in a slightly
different form to fit our goal.

Lemma 2.4.3 (Poisson summation formula). Let u € CF(R"), then (see the Fourier
transform convention adopted (2.1.16)) the Poisson summation formula states that

2 21 Q)™ —u(z) = > u(z+k). (2.4.10)

kezZ ( ﬂ—)n ke(2nZ)™
k#0

The second one is an (optimal) estimate on the decay of the Fourier transform of
the characteristic function of the ball and its derivatives. The proof is a straightforward
calculation (at least in R?).

Lemma 2.4.4 (Fourier transform of the ball). Let xp, be the characteristic function of

the unit ball in R®. Then
47

G () = (k).
where h(s) = 3(sins — scos s)/s3. Moreover, for any o € N3, there exists ¢, > 0 such that

Ca

= l{? < I
0% (0] < T

Yk e R®. (2.4.11)

Proof of Lemma 2.1.1. Let R > 0, then our goal is to bound the error term

E*R, z) = Z (ik)*e™* — f (ik)*e™*dk.

ke BRAZ3 Br

For this, the main idea is to apply the Poisson summation formula to a smooth version of
the characteristic function of the ball of radius R, use Lemma 2.4.1 to control the error
on the Fourier side and then estimate the difference between our smoothed error and the
error £ defined above. So first, let H > 0 be a small parameter to be chosen later, pick
any non-positive function ¢ € C(0,1) with §¢(s)ds = —1, and define

1, if |r| <R,

fru(r) = (2.4.12)

|r|—R
1+ f @™ (s)ds, otherwise,
0
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where ¢ (s) = %¢(%) Then, one can check that fg g is smooth, it assumes only values
between 0 and 1, and it vanishes outside Br,py. Moreover, observing that frp(k) =

# fR (k) (as frp is symmetric) and applying the Poisson summation formula to u =
fr.p We obtain

Z fru(k)e —fRH Z fRH (z+ k).
keZ3 ke(2rZ)?

N ~ _ k-0

—&n(R,2) - > %

=Ex(R,2)

The next step is to use Lemma 2.4.1 to estimate the right hand side of the above. For
this, we first use spherical coordinates to obtain

fRH(z +k)=| fru(r)eCHRdr
R3
R R+H : —R
_ 47Tf TSID(‘k+z’T)dT+47Tf Tsin(|k + z|7) 1+J oM ()ds ) dr
0 |k + 2] R |k + 2] 0
Cn JRJFH sin(|k + z|7) — (|k + 2|7) cos(|k + z|T) (7 — R)dr
R ‘k + 2’3

In particular, by partial integration and re-scaling we have

R+H
~ . . k
EnlR.2) = —ir | (3¢H<T CR) 4 (r R)) 3 —|§J : ;'” ar
R ke(2nZ)? “
k#0

Z cos((R+ HT)|k + z)

1
0 e(2nZ)3 [k + 2|
k40
(2.4.13)
4 R R+ HT)|k +
_0 s cos 7| Z|)d7’,
|k + z|*

kE(Qﬂ"Z

k40
where we used that 5o 70 oy [k + 2/ 7! < ¢ (since |2]max < 7). Here we slightly abused

the big-O notation to denote O(H ') as something bounded in absolute value by a con-
stant times H~!. Now let M > 0, then by partial integrating n times, throwing out the
terms outside the box Qy/\Q; = [—M, M|*\[-1,1]* and partial integrating back (recall
that ¢ € C*(0,1)), we find that

dr

2 cos((R+HT)|(k+z)D

1
En(R,z) = 47TRJO o(T) e+ 2P

ke(2rZ)3 Q1 \Q1
R
+ O <H Hn+1Mn)
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Next, after possibly replacing the implicit constant above by a factor independent of M, H
and R, we can assume that M = (%)q for some ¢ € N. Thus by using the decomposition

Qv\Q1 = Z: Q?é)k, the facts that H < 1 and |z|;4e < 7 (by periodicity, and Lemma
3
2.4.1, we find that

11k 23k

~ 1 R q-1 4 ke 1 (4 % 4\ 12 a4
gH(Ra Z) ge,nﬁ + W + Z R(g) <R12 (g) +(§) + R 2 (g) )

k=1
se,n% + —HnﬁMn + 1ogM(R13MZ+€ + RM T+ 4 RiiMi?ﬁe), (2.4.14)

where the log M can be absorbed in M€. Moreover, we can estimate the error coming
from the smoothing procedure as

E°R,2) = En(R,2)| < Y |fru(k) + |frn(2) — Xon(2)| < R2H. (2.4.15)
k€2Z3(313}g+]{
k¢Bp

Hence by summing estimates (2.4.14) and (2.4.15), setting M = R™ H = R™" and
minimizing the exponents, one concludes that

EYR,2) Sep RFMWFem o R Ve N,

where h(n) = £224 and m(n) = $2%2. Thus, since h 1 33 for n — o0, by choosing n
big enough, the result for a = 0 follows.

For the estimates with a # 0, we repeat the same arguments by taking f3 ;(r) =
(i) fr.p (7). In this case, note that by the Leibniz rule and using that 0%(|r|™*) < |r| =471

away of the origin, we have

oo cos((R+ Hr)lk+2])\ (iR(k + Z>)a GURHT2] (ol iR H) 2]
F |k + 2|4 2|k + z|lel+4

Rlal-1
S —.
|k + 2[4
(2.4.16)

We also have from the Poisson summation (and symmetry of f3 ;) that

Mo fanR)e™ = frpz) = > faulz+k).

keZ3 ke(277Z)3
- ~ _/ k¢0
=E8(R,2) ~ ~ ~

= AI"; (R,z)

—_—

Hence using the identity (i-)®f = 6°‘f together with estimate (2.4.16), and repeating the
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same steps from before (see (2.4.13)), we conclude that

5%(3,2):_4WL1(%¢(7)+M ) D 5Q(COS R+HT)\k+z!))

4
ke(27Z)3 ‘k + Z|
k0
_ 47TR ZR(k + Z>) GURHHDIR+2] | qylalg=i(RH)lk+2] ) g7
2|k + z[lal+d
ke(2 7)3
k%0

Rlel
n 0( i ) .
Thus we can again integrate n times, throw out all terms for |k| ¢ Qy/\@1 and use Lemma
2.4.1 to show that

1 R 1 1 :
& (R Z) Se R‘al (m + W + RTSJ\4%—~_6 + 1’:5]\454_6 + RZM32+E). (2.4.17)

Finally, by summing (2.4.17) to the following estimate for the smoothing error
’ga(R, Z) - E?I<R7 Z)| < RZHQ‘H?
and optimizing the exponent , the result follows from the same limit n — oo argument. [

Remark (Generalization to Q). To deal with the geneml case, one has to replace fru
by fhu(r) == fru(D~'r) and observe that fR7H( ) = ]D\fR u(DEk). The rest of the proof
follows from the same steps by using the generalization of Lemma 2.4.1 discussed in the
previous remark.

2.4.3 Continuum version of density matrices

We are now in position to present the continuum formulas for the density matrices and
prove that they provide good approximations to the exact ground state density matrices.

Looking back at formula (2.2.9) and replacing sum by integral, we can define the
continuum version of the density matrix as

p]%h(pNL\r —T|p.L), for periodic BCs,
F
3
PN - ..
Y (r, 7) = p—3F Z det ch(py L|r — oT|par), for Dirichlet BCs, (2.4.18)
oeG
pNL Z h(pn.L|r — oF|paL), for Neumann BCs ,
\ pF oeG

where py 1, and pp are the finite-size and continuum Fermi momentum (see (2.3.5)), the
function h is defined in (2.1.17), and |r|par = |r mod D(2LZ)3| (the torus distance).
Then, the following estimate is a direct consequence of Lemma 2.1.1.
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Theorem 2.4.2 (Continuum approximation estimates). Let p = ﬁ be fixed. Let

Uy be any determinantal ground state of the free N-electron gas on QFY, denote its
single-particle density matriz by yn .. Then for any € > 0 we have

[y, (r, 7) — Yo (r, )| S pNTOFE <, oo LT T (2.4.19)

More generally, for any «, 3 € N3,

0200 . 7) = PO ()| S N g pB e B
(2.4.20)
Moreover, one has
()| < p(N + (1t~ ﬂm)?), (2.4.21)
PR 5 (N B (L o) ). (2422

Proof. According to Lemma 2.3.1, up to an error < pos 7L~ 653, we can use the closed
shell formulas for any determinantal ground state.

Next, we know that (i) R ~ L, (ii) Xpp(2) = |D|R*X B, (RD2), (iii) Xp,(2) = Fh(|z]),
and (iv) the sums >3 /s 5 e Th P and D keZ8 B e LED™ are periodic (in w) with
respect to D((2LZ)?) and D((LZ)?) respectively. Hence, estimate (2.4.19) follows directly
from the closed shell formulas (2.2.9) by applying Lemma 2.1.1 with z = ZD~'(r — o7
mod (27Z)* and z = 2D~ (r—7) mod (27Z)? for Dirichlet/Neumann and periodic case,
respectively.

For the derivative estimates in (2.4.20), one can simply use Lemma 2.1.1 together
with the identity (—i-)*f = 6°‘f. Note that each derivation gives an additional factor of

1/L which compensates for the RI*l gained in (2.1.13) and accounts for the factor ﬁl%‘ in
(2.4.20). The decay estimates (2.4.21) and (2.4.22) follow from estimate (2.4.19) and the
decay of h (see Lemma 2.4.4). O

2.5 Proof of Theorem 2.1.1

In this section we make the following simplification to the current notation: as we are
dealing with the thermodynamic limit (N, L — oo with p = ﬁ fixed), all functions
and constants depending on both N and L will simply be indexed by L (e.g., pr = pn.1)-

2.5.1 Semi-local functionals

Our goal now is to prove the following two-term asymptotic expansion for general semi-
local functionals of the density and its gradient.
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Theorem 2.5.1 (General semi-local functional asymptotics). Let ﬁ = p = constant,

U, be any determinantal ground state of the free N-electron gas in QF, and py be the
associated single-particle density. Suppose that f(a,b) € C°([0,0)?) n C*((0,00) x [0, 0))
and let Flpr] = SQD flpr(r),[Vpr(r)])dr. Then for any € > 0 we have

L

(£(p,0)|QP|L? + O(L™ %), for periodic BCs,

Plou] = 1 70011+ (B5(9) + crni(p) ) 0QPIL* + o(L), o Dirichiet 5Cs,

f(p,0)|QPIL*+ <C§i“(ﬁ) - w(ﬁ)) 0QP|L? + o(L?),  for Newmann BCs,

\
where the boundary layer and Fermi momentum corrections are given by
1 0

_ 2r
CBL(p) = 1F 0OO

f(p(1 = h(s)), Zﬁpp|iz(s)\) — f(p,0)ds,  for Dirichlet BCs,

5 F(p(1+ h(s)), Qﬁpp|h(s)\) — f(p,0)ds,  for Neumann BCs,
Pr Jo
3mp
c p) = ——0o f(p,0).
Fu(P) 2pp (p,0)
Proof. In the periodic case, since f is differentiable close to (p,0) for any p > 0, the result
follows from Theorem 2.4.2 and a simple Lipschitz estimate.

As the Neumann and Dirichlet case are analogous, we give the details only for the
Dirichlet case. First note that, since f(p,|Vp|) depends only on p and on the norm of
|V pl|, by the symmetries pointed out in Lemma 2.2.1 we can reduce the integration domain
to

Flpr] =81 f(pw,|Vprl)dr.

D
QL
2

Thus the continuum approximation from Theorem 2.4.2 reads

3
ctm ctim —p
P (r) = A5 (r,r) = p—= > det oh(py||r — or]) (2.5.1)
F seq
(since ||r — or||par = ||r — or|| for any r € Q¥ and o € G). The idea now is to use the
2

continuum approximation to show that pp is only small close to the faces and edges of
the box. For this, first note that h(r) = 1 if and only if r = 0. Therefore, for any 6 > 0
there exist ¢(0) > 0 such that 1 —h(2pg|r;|) = ¢(d) as long as |r;| > 6 and L is big enough.
Moreover, from (2.5.1) and the fact that h decays at infinity, we see that we can choose
R(6) > 0 such that

c(9)

C = pi™(r) = 5 for any r € Qs and some C' > 0, (2.5.2)
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where @), 5 is the region defined by

Qrs:={re@? min|r;)]>¢ and min|mr| > R(5)}.
2 Js3 J<3

Next, note that by the continuum approximation estimate (see equation (2.4.20)) and
estimate (2.5.2), we find that

)
2C = pp(r) = % for any r € Q5 and L big enough.

In particular, by the assumptions on f (C' away from a = 0 and C° up to a = 0), there
exists a Lipschitz constant C'(§) > 0 and a uniform (with respect to § and L) constant
Cy > 0 such that

Flos) - Fls™) < |
Q%\QL,&

< 6L+ R(6)’L + C(8) L=+,

Co + C(5) f@ pn — 5™+ [V, — Vi
L,§

Therefore, by dividing the above by L2, taking the limit as L — oo, and then the limit
6 — 0, one has

Floz] = Fpi™] + o(Z?). (2.5.3)

The next step is to work with the continuum versions on )1 s and use a Taylor ex-
pansion of f together with the decay of h to determine the asymptotic coefficients. To
shorten the notation, let us define

Fi(r,t) = 0 f (p(L = t) + tpE™ (), V™ (r)]), ke {a,b}.
Then, note that by estimate (2.5.2) and the assumptions on f, we have
|fi (r, )] < C(5), (2.5.4)

for any (r,t) € Qs x [0, 1], for any k € {a, b}, and for some C(d) > 0. In addition, by the
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fundamental theorem of calculus we find

Flpp™ = SJ Flor™, [V or™ )dr +8f < f Fa (r ) (p™ (r) = p)dt
QD\QL§ QrLs

o /

<6L2+R(6)2L
1 3 2
fb T, t ctm
+ |Vpctm Z aTJp dr
7j=1

= O(5L* + R(6)*L) + f(p,0)|QP|L? + 8pf . (r,t) (% — )drdt
L, F

n Z 8ppo fE(r,t)det oh(pL||r — or|)drdt
oid _ pF Qrs

J

~~

Jo(9)

8p pLJ J fb (r,t) ar;\?
det h ——— | drdt.
3 o WA\, 2, St opebonlir = or D=0 ) dr
] 1 L,§

-1

7

5 (0)
(2.5.5)

Therefore, to complete the proof we need to study the (L dependent) terms 1(6), J,(9)
and K (9). Let us start with 7(d). In this case, we first note that

p% _ SW’aQD‘ 1 —g—g-i-e

T speleon PO
by Lemma 2.3.2. Hence by scaling out the L in /(J) and making the following observa-
tions: (i) fE(r,t) is bounded in Qs 1 by a constant depending on §, but independent of
L (see (2.5.4)) , (i) limy o fE(Lr,t) = 0,f(p,0) for ae. (r,t) € QF x [0,1], and (iii)

limz o X, 5 (L7) = XQzla (r) in L'(R?), we conclude that

3mp|0Q"|
8pr
We consider next the terms J, with trace(c) < —1. In this case, note that by the decay
of h (see Lemma 2.4.4), there exists some j € {1,2,3}, such that |h(p.||r — or|])| <
(1 + m;7)~2.(Recall that m; : R®* — R? is the projection given by removing the coordinate
r;.) Hence by estimate (2.5.4) we find that J, <s; Llog L, and therefore, we just need
to worry about the terms K; and .J, with trace(c) = 1. For simplicity let us label the

reflection o with trace(c) = 1 and 0;; = —1 by 0. Now note that, by the decay of h and
estimate (2.5.4), we have

1(6) = =20, f(p,0)L* + o(L?*) = cpa(p)|0QP|L* + o(L?), (2.5.6)

R C)
Vol S W)
J

‘f(f(ra t)h(Qerj> + fé:(r? t)
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As a consequence, up to an error bounded by C(§)L, one can change the domain of
integration of K;(8) + J,,(0) from Qs to

7 si={r 1€ (0,0), 1 e mQY, m<1§1|r]| > ¢, and m<i§1|7rj7“| > R(9)}.
’ 2 s

x

In summary, we have

8ppo J <ppL fErt) < L detah pLHr—m’||)4r]>
K;(6) + Jo,(0) = cim
’ g3 oL P Vo™ ( 2 L (=) (ry, L) |

+ fE(r, t)(—h(Qerj))>drdt +O(C(5)L). (2.5.7)

Now note that by the decay of h, for a.e. (r;,m;r) € [0,00) x WJ(Q ), the following holds:

ri, Lmjr) — p = —ph(2ppr;),

ctm(

ctm(

hm p

hm \Vpi™(rj, Lmr)| = QﬁpF]h(QpFrj)],

4r.;

J

= —2pprh(2ppr;),
L —0;)(ry, Lmjry)|| ’

L—
ojj=—1

lim Z detoppph(pe|(1 = o)(rj, Lmyr)|)) I(

L—

lim XQ]L76(Tj,L7TjT) = X(5,) (rj)ij(Q?(er).

Therefore, by scaling out the L in the variables 7;r in K;() and noting that the integrand
in equation (2.5.7) is bounded by C(d)xq, ,(r)(1+]r;])~* (by the decay of h), we conclude
from dominated convergence and the continuity of V f that

£(0) + 0, 0) = 2(TTae) 2 [ | (abf (5(1 — th(2prr,), 2006l 2per;)]) 206 b 207 )|

L#j
— 0uf (p(1 — th(2ppry)), t2ppF\h(2pFrj)\) ﬁh(zpFrj)> dtdr; + O(6L?) + 05(L?)
_ Hz#j dy

o0
L[ (o bry), 20mrli(r3)) — (9, 0)dry + OL?) + 0s(L7),
PFr 2pré
(2.5.8)
where o5 emphasizes that the bounds may depend on 6. As a consequence, the proof
follows from equations (2.5.3),(2.5.5),(2.5.6), and (2.5.8) by first taking the limit L — oo
and then  — 0. m

Remark. Here are some remarks about Theorem 2.5.1.

e Note that cpp(p) above depends on p which is in contrast with the constant cppy
defined in Theorem 2.5.2 below. The reason is that for the “physically” relevant
cases (see the discussion before Theorem 2.1.1), we have cpp(p) = —crupp, where
CrM = g is precisely the value defined there (see Corollary 2.5.1 below).
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e The same arguments can be used for semi-local functionals of higher order deriva-
tives by considering generalized variables like (p,Vp, ...,0%p) and applying estimate

(2.1.13). As we are only interested in LDA and GGAs for the moment, we leave the
asymptotics of functionals for higher order derivatives for future works

o If f is more reqular and one knows the ratio at which the derivatives diverge when
(a,b) — 0, one can further use the decay of h to improve the remainder term from
o(L?) (for Dirichlet and Neumann cases) to, possibly, O(L57e).

As straightforward corollaries of Theorem 2.5.1, we obtain the two term asymptotic
expansion for LDA and GGAs from Theorem 2.1.1.

Corollary 2.5.1 (Asymptotic of LDA). Let py be the single-particle density of any de-
terminantal ground state of the free N-electron gas in QY (under our usual boundary
conditions). Then in the thermodynamic limit we have

—e,p"?|QP|L? + O(L=+e), for periodic BCs,
EXPMpL] = —Cxﬁ4/3|QD\L3 — P plOQP|L* + o(L?),  for Dirichlet BCs,
.2 1QP|L? — Y 5l0QP|L? + o(L?), for Neumann BCs,

where the constants a

re
3 (" 4 -
crm + & (1 —h(s))s —1ds,  for Dirichlet BCs,
T
CLDA = 3 ’ 0

4
3

—cpym +— | (L+h(s))® —1ds, for Neumann BCs,

8T Jo
with cpy = 2. (Compare with the constant in Theorem 2.5.2.)

Corollary 2.5.2 (Asymptotics for GGA). Let ¢9%A(a,b) € C°([0,20)?) n C*((0,0) x
[0,00)) such that g9“*(a,0) = 0, for all a = 0. Moreover, let pr, be the single-particle
density of any determinantal ground state of the free N-electron gas in QF (under our
usual boundary conditions). Then, for AESSA[p,] = SQEJ gApr, [VpLl), in the ther-

modynamic limit we have
O(L_%Jre) for periodic BCs,
AESpr] = { Bt (9)|0QP|L? + o(L?), for Dirichlet BCs,
o (p)|0QP|L? + o(L?),  for Neumann BCs,

where the constants are given by

1 (” .
Wr L 406 <p(1 — h(s)), 2ppF|h(s)|)ds, for Dirichlet BCs,

caaalp) =y | e |
Q]TFJO g% (p(l + h(s))72ppF’h(3)‘)dS, for Neumann BCs.

Proof of Corollary 2.5.1 and 2.5.2. In the first corollary, just apply Theorem 2.5.1 to
f(p) = c,p*>. For the second one, set f(p, |Vp|) = g%“4(p, |Vp|) and note that f(a,0) = 0
for all @ > 0 implies that d,f(a,0) = 0 for all a > 0. O
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2.5.2 Exact exchange

Now we turn to the asymptotic expansion of the exact exchange.

Theorem 2.5.2 (Asymptotics of exact exchange). Let p = s = constant, ¥y, be a

IQD\L
determinantal ground state of the free N-electron gas in QP. Then, we have
—c ﬁ%|QD|L3 + crsp|0QP|L? + O(L%“), for periodic BCs,
B V1] = { —c.pF|QP|L? — (B + cpar — crg)ploQP|L? + O(LE*),  for Dirichlet BCs,
—eop3|QP|L? — (NS — cpar — cpg)p|OQP L + O(LZE*),  for Neumann BCs,

where the finite-size, Fermi momentum and boundary layer corrections are

1 3 (Dir _ log 2 (Neu 3log?2

Crs = —, Cpym = — = ——— and =
8’ g’ °BL 4 7 BL 4

Proof. As before, we prove the Dirichlet case in detail and outline the proof for the other
two boundary conditions at the end.

The first step is again to justify the use of the continuum density matrices (2.4.20).
For this, we use the identity

o (r PP = g™ (r 7)* = Re{(yo(r,7) — 7™ (r, 1) (uw (r,7) + /8™ (r, 7))}

together with estimates (2.4.19) and (2.4.21) from Theorem 2.4.2 to obtain

ULXQL e (r, P = g™ (r 72

| =7

drd < L—$3+EJ | — 7~ drd7
Qr xQ7

. _ & -2
+ L‘gé)*ff At = 7Ape) 4 4
QP xQP r—7|

< Lute 4 Lntelog L.

Therefore, by the continuum formulas we have

h —or h —T7
Z det UT PPLJ (pL|7" UT’D,2L> (~pL|7“ 7'7’|D,2L)drdf7 (2.5.9)
7,06G QDXQD ‘T o T’
—Jar(L)

where ~ will be used throughout this proof to denote equality up to errors included in the
remainder of Theorem 2.5.2. Now, to estimate the terms J, . we start with the following
lemma.

Lemma 2.5.1. If trace(c) < —1 or trace(t) < —1, then J,.(L) < L(log L)?. Further-
more, if trace(c) = 1 = trace(t) and o # T, we also have J, (L) < L(log L)*.
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Proof. First observe that since r;,7; € [0,d;L], one has
|7”j + fj mod 2djL| = min{rj + ?ja 2dJL — 7"]' — 77]} = ’Tj — fj .
In particular, by the decay of h, we see that

1 1
<
1+‘7"—Uf|D7QL)2 ~ (1—|— |’I“—f|)2’

\h(pLlr — oF|paL)| < ( (2.5.10)

for any o € G. On the other hand, if trace(c) < —1, there exists j € {1,2,3} such that

r—or| = min mi(r+7)—Dp|,
rotl > min (7))
pEﬂj(QQDL)
and therefore,

1
(L + [mj(r +7) = p)*

\hW(pLlr — oF|pa)| < Z

pery (DRLE)?)
PET; (Q2DL)

(2.5.11)

As a result, assuming that trace(o) < —1, we can see from (2.5.10) and (2.5.11) that

1 1 1
Jor(L) < f . - —drdF < L(log L)2.
opop . B T+ 7 = L+ =P =7
pe”’j(QzDL)
For the terms J,, with trace(c) = 1 = trace(r) and o # 7, note that there exists

j # L€ {1,2,3} such that

- 1
hpclr — o) <Y :

metoany (L1775 = o) (L4 [ (r = 7])°

N 1
hpelr — i) < i

pec{02deL) (1+ |re + 7o — pe| ) (1 + |me(r = 7)|)

The lemma thus follows by integrating the product of the estimates above against the
coulomb potential in the box QP x QF. O

From the lemma above, it is enough to study Jiqja(L), Joia(L) and J,,(L) where
trace(o) = 1.

We start with Jigia(L). In this case, we first note that |r — 7|por = |r — 7| for any
r,7 € QP. In particular, by the change of variables (w(r,7),w(r, 7)) = (r—7,7), we obtain

2|,
st =100 [ P () [ PO

Jj=1 NAl#j

3
+JQLD—QL p‘L“”T‘ < ZdH‘W'_H’wﬂ‘)dw

j=1  t#j
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Now, note that by the decay of h and a simple estimate, up to an error < Llog L, the
integral on the first two terms can be taken over the whole R?, and the third integral can

be neglected. In addition, by scaling out py, using spherical coordinates, and recalling
that |0QP| = 2(dydy + did3 + dads), we have

4 D L3 a D LQ 00
Jia,a(L) ~ M f h(r)?rdr —M f h(r)*r?dr. (2.5.12)
P 0 by, Jo
Y
=1y =1
Next for the term J,, we assume without loss of generality that o1; = —1. Then, by

invariance of the integrand over the reflections r; — 7; — 7; — r;, the change of variables
(w(r,7), @(r,7)) = (r—F,r +71,72,73) (notice ¥49% = drdF), and the decay of h, we have

fomy - [ [ e mod 20t (L) i
0,0 = |w| L

7-QF Jlwi]

r di1L h ~ 2
— 8dydy L2 J Pel(@0 M) 4 q + O(Log 1)
JQP Ju, |U)‘

.

w1 1
= 8dyd3 L* h(pr|(wy, mw)|)? (J —dwl) dwdmw + O(Llog L)
Jer o [w]

(where we inverted the order of integration between w; and w; in the last step). In

addition, since So ! dw1 = %log(m—;’)ﬁﬂ) < ‘Lﬁljﬂl, by the decay of h one can see

that, up to an error < L, we can replace the integration over Q¥ by R? . Hence, by
scaling out pr, changing to spherical coordinates, and recalling the definition of I in
(2.5.12), we find that

2mdyd (1 0 4r]
Joo(L) ~ ke 3L2JO h(r)*r*dr LQ log<ﬂ) sin 0df = Lg()dgdgllL .

P 1 —cos0 P

v

=(cos0—1) log(1—cos 0)—(1+cos 0) log(1+-cos 0)
(2.5.13)

At last, for Jig, (again assuming that o1; = —1 without loss of generality), by the
change of variables (w(r,7),w(r,7)) = (r —7,r1 + 71, 72, 73) and the same arguments from
before, we conclude that

J JdlL h(pr|(@1, mw)|)h(prw]) [ [, (deL — [we])
1da
-Qr

dﬁ)ldw

|wi | ’U)‘

h
_ 8d2d3L2f J Mpel (@ mw)DPLD 45 4+ O(L10s L),
|wi]

|w]

Hence, scaling the p;, out and using spherical coordinates on w, we have

4
Jiao(L) ~ 7rd2d3 f J f rsm@) + w?)h(r)rsin Odw,dodr.  (2.5.14)
rcos 6

7

~

=1l
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Thus by plugging (2.5.12),(2.5.13) and (2.5.14) into (2.5.9), we have

6 3 3

E:c[pL] ~ Z;L ( id 1d Z oj, JJ ) - Z(Jid70'j (L) + JUj7id(L)))
F j=1
=2

~N —

4 1 2—2 3 =23
6 6 6
& 4pF 2pp Pp

As a result, using Lemma 2.3.2 to replace pr, by pr plus correction, we conclude that

1 1 log2 1 .\
Epr]l ~ — —— L5 |QPIL3—( Iy — —1 +—251, — —1, ) ploQP|L2.
(37T ) 6 127 bm 3m
— R,_/ —_————

CFM CFs CBL
Cx

The proof is then completed by using the values of the integrals computed in the next
lemma.

Lemma 2.5.2. Iy =2, I, = ¥ and I, = %2,

sin s— scoss)zds _ —252+2ssin(2s)+cos(2s)

—1
= (see e.g.,

Proof. For Iy, we can use the identity S
[40, Lemma 6.1] for an elegant evaluation) to obtain

* (sins— 2 —2s% + 2ssin(2s) + cos(2s) —1 9
9 :J 9(sms :cos s) ds = —0lim =25 ssin( i) cos(2s) _9
0 S s—0 S 4

where the limit can be done by L’Hopital’s rule. Next, note that for any a > 0, by
Plancherel’s theorem, we have

JOO h(r)h(ar)dr = F}}?l]? fRs X, (k)XB, (ak)dk

0
(2m)3 J k
= k = )dk
47T|Bl’2a3 RS XBI( )XBl a

3T

= 2.5.15
2max{a, 1}3 ( )

In particular, the value of I; follows by setting a = 1. For I, first note that by using the
inverse of polar coordinates (r,6) = (1/2? + y?, arctan(y/x)), one has

I - JRJ y +w1)h(m)ﬁ

Next, set R = {(z,y,w;) € R* : x > 0,y > 0,w; > x} and consider the change of
coordinates

dwdxdy.

i 1

cos ¢

(s,0,v) — (z,y,w) =T(s,¢p,v) = (scos psinhwv, 3\/sin2 ¢ — cos? ¢psinh® v, s cos ¢ cosh v),
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for which
: /2 o 2
det VT (s, ¢,v) = s* sin(g) cos(@) = 5% cos gbx—w.
\/ sin? ¢ — cos? ¢ sinh? v Y

Then, by (2.5.15) and the substituion 7 = sin ¢, we conclude that

I, = JQ cos(¢) log<sm¢—+1> JOO h(s)h(ssin ¢)s*ds d¢
0 /

cos ¢ 0
3r (* v1i+T1 3mlog 2
=— | log dr = ,
2 Jo V=71 2
which completes the proof of Theorem 2.5.2 for the Dirichlet case. O]

For the periodic case, we first note that by the decay of h,

h(pelr = vlLo)? = D h(pelr = =p))> S LA = |r—|Lp) "
DLZ73
|D€?p|max<L

Moreover, one can show that

h - 2
J (prlr i pl) drd7 < Llog L for any p € DLZ\{0},
opxap  Ir =T

and therefore, £, [V ] ~ —%zJid,id(L). The result now follows from Lemma 2.3.2, esti-
F
mate (2.5.12) and Lemma 2.5.2). O

2.6 Kinetic energy

In this section we use Lemma 2.1.1 to compute the asymptotic expansion of the kinetic
energy.

Theorem 2.6.1 (Asymptotics of kinetic energy). Let D fized, p = ﬁ = constant

and Wy 1 be any ground state of the free N-electron gas in the box QY under our usual
boundary conditions. Let T be the kinetic energy functional defined in (2.1.1). Then, we
have

crrp®|QP| L3 + O(L%“), for periodic BCs,
TIOn.L] =R crrp®?|QP|L? + cxp?|0QP|L? + O(L%“), for Dirichlet BCs,
crrp?P|QP|L? — cxp3l0QP|L? + O(L=*),  for Neumann BCs,

2/3 /3

where crp = 13—0(37r2) 18 the Thomas-Fermi constant and cx = %(37?2)
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Proof. For the Dirichlet case, just note that

A 7T2 D_lk 2 7T2R2
TNz ={Ynr,—=Ynr) = Z DR (N, — N)—X

2 L? L?
keN*nBE
™1 17,2 - —17.12 e
= 33 dIDTRP =D D IDTRP) + oLt
keZ3mBgN Jj=1 keZSr\BgN

kj=0

Moreover, by a simple estimate® we find that

— _ ™
3D = | v (B D kPdk+ O(RY) = TR e+ O

keBR Z? 0] 0]
k;j=0
(2.6.1)

Thus using estimate (2.6.1) and Lemma 2.1.1, we conclude that

L D13 Ly D13 e
T[Wn] = @pw,ﬂ@ IL® - ?)Q—WPN,LWQ |L* + O(L=7).
The result now follows from the asymptotic of py in Lemma 2.3.2. The Neumann and

periodic case are entirely analogous. O]

Remark. Note that we do not assume ¥y 1, to be a determinantal ground states as the
kinetic energy is simply the ground state energy of the Laplacian and therefore unique
(even if the ground state is not).

2.7 Numerical results

We now compare our asymptotic results to numerical values of different exchange func-
tionals for the free electron gas with zero boundary conditions, for up to 30000 electrons.
Our numerical computations were carried out in Matlab. All energy functionals other
than exact exchange were evaluated by direct numerical integration of the exact formulas
given in section 2. For exact exchange, accurate direct numerical evaluation of the ex-
pression (2.2.11), (2.2.9) is impossible, because of the high-dimensionality of the domain
of integration (6D) and the 1/|r — 7’| singularity of the integrand. We tackled these ob-
structions by reducing the problem to the numerical computation of a small (O(N'/3))
number of one-dimensional integrals of smooth functions (see Section 2.7.1 for a detailed
description). Moreover, we focus here on the case of a cubic box [0, L]* and p = 1.

To begin with, in Figure 2.2 we have plotted the exact exchange energy per unit
volume, together with the theoretical one-term (just c,) and two-term asymptotics (¢, +
Cr2- 6L~ from Theorem 2.1.1. For comparison we have also included the LDA exchange
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Exchange energy per unit volume
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Figure 2.2: Exact exchange energy per unit volume of the free electron gas in a box
with zero boundary conditions, compared with the LDA, one-term asymptotics (Dirac
exchange constant) and two-term asymptotics (present work, Theorem 2.1.1).

energy per unit volume. Note that even for small N, the two-term asymptotics is a much
better approximation than the one-term asymptotics, and also a better one than the
more complicated LDA. Note that the latter requires integration of an inhomogeneous
N-electron exchange energy density of the system.

Let us now look in more detail at the next-order contribution. Besides exact exchange
and the LDA, we consider the widely used GGAs introduced by Becke in 1988 (B88) [6]
and Perdew, Burke and Ernzerhof in 1996 (PBE) [92], and the modified version of PBE
introduced by Perdew et al. in 2008 (PBEsol)[93]. For convenience of the reader, we
recall the expressions for these functionals here:

245(Vpl/p)”
1+ 64323 (\Vp]/p%) sinh ™! (2%\Vp[/p%)

ol

9" (p, |Vpl) =

(2.7.1)

w(IVpl/ps)’
4(37%)5 + £(|Vpl/p3)

wle

9" (p, |Vpl) = ¢,

5P (2.7.2)

where sinh ™! is the inverse hyperbolic sine and the constants are 5 = 0.0042, x = 0.804,
and p = 0.2195. For PBEsol, one has the same expression as for PBE in (2.7.2), but with
= 0.1235.

6In fact, by adapting the proof of [40], one can get a remainder of order O(R2+%) in estimate (2.6.1).
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Exchange energy minus leading order per unit area
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Exact
LDA
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Figure 2.3: Exchange energy of the free electron gas in a box with zero boundary con-
ditions minus leading order term, per unit boundary area, for various functionals. The
number of electrons per unit volume was normalized to 1. Solid lines: Numerical values.
Dashed lines: asymptotic values (second order coefficients from Theorem 2.1.1, present
work).

Numerical evaluation of the exact one-dimensional integral expression for the GGA
constant in Theorem 2.1.1 gives the following values:

cprp ~ 0.0157,  cpie ~0.0192, X, .~ 0.0105. (2.7.3)

To numerically verify the next-order asymptotics, we plotted in Figure 2.3 the graph
of the energy functionals minus the leading order term divided by the boundary area
|0[0, L]3| = 6L?, together with the asymptotic values predicted by Theorem 2.1.1 and
(2.7.3). Precisely, since p = 1, the values for the dashed lines in Figure 2.3 are, respectively,
Chss CLpas CEDA + CBSss CLpa + Cpip, and ¢ a + Cphpo-

Overall, there is a good match between numerics and asymptotics as N gets large.

More detailed observations are the following.
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e Asymptotically, the LDA underestimates the surface term by 12%, whereas B88 and
PBE overestimate it by 13% respectively 8%.

e Asymptotically, only PBEsol is much more accurate than the LDA, exhibiting an
error of just 1.4%. This should not come as a surprise to experts, as certain surface
data (although not the ones considered here) entered into the choice of the param-
eters. Thus one may say that the present work provides an alternative theoretical
justification of the PBEsol parameters. The price to pay is that PBEsol is the least
accurate of the GGAs for very small N.

e B&8 is the most accurate GGA for very small N. This is not unexpected given
the fact that the parameter § was fitted to data for the first few noble gas atoms.
The price to pay is that B88 does not improve on the LDA beyond a few hundred
electrons.

e In the regime of 20 to 100 electrons, which is certainly relevant in applications,
particularly in chemistry, PBE fares best.

e The slowest convergence to the asymptotic value, and the largest fluctuations, occur
for exact exchange. Neither asymptotics up to second order nor any of the GGA
functionals correctly reproduce these significant finite-N fluctuations. Note that
they would be captured exactly by the universal Hohenberg-Kohn functional.

In the context of our model system, the free electron gas in a box with zero boundary
conditions, our rigorous asymptotic results and the above observations illustrate both
the advances that have been made in the physics and chemistry literature in designing
computationally simple exchange-correlation functionals, and the immense difficulties in
improving on the current state of the art. For the latter, we hope that the new exact
constraint on GGAs presented here (eq. (2.1.12)) will in the future turn out to be useful.

2.7.1 Numerical scheme for exact exchange

Here we detail our scheme for accurate and efficient evaluation of exact exchange for
the free electron gas in a box. As already explained, the closed-form expression (2.2.11),
(2.2.9) cannot be evaluated directly by numerical integration, because of the high-dimensionality
of the domain of integration (6D) and the Coulomb singularity of the integrand.

Recall that the eigenfunctions of the Laplacian with zero boundary conditions on
Q = [0, 1] are given by the following expression:

or(z) = H V2sin(rkiz;) (k€ N°). (2.7.4)

Hence for closed shell N, the ground state Wy ;, of the free N-electron gas in @y = [0, L]
with p = N/L3? = 1 is unique and the exact exchange energy is, by rescaling to the fixed
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domain @),
2
1 ’ZkeNS,m\gRN Or(2) Pk (y)
E.[Yne] = —+ J dx dy
L Joxq |z =y
_ 1 Z Hf’:14sin(7rkixi)sin(w&xi)sin(ﬁkiyi)sin(w&yi)dx dy
kfeN3  @xQ [z —yl ,
K el<Ray e
(2.7.5)

where Ry is the Dirichlet Fermi radius defined in (2.2.6).

The starting point of our numerical scheme is a simple calculation which reduces the
above six-dimensional integral to the three-dimensional integral of a separable function
times the Coulomb potential over a finite region. For periodic boundary conditions such
a reduction is trivial because the system is translation invariant, which implies that the
exchange integrand depends only on the relative coordinate z = x — y; but the zero
boundary condition breaks the translation invariance. Nevertheless the following holds:

Lemma 2.7.1. For k, { € N3, and I}, as defined above,

3
Io =8 Mdz

2.7.6
[0,1]3 |2| ( )

where for a,be N, f, is defined as

Jap(T) = 1 ; T (cos(ﬂ(a +b)7) + cos(m(a — b)ﬂ) + (é n % B . _1{_ b)) Sin(ﬂ'(;?:- b)T)

1 1 1 sin(m(a—b)T) .
+ (5 B ﬂ) 2 ifa#b, (2.7.7)
17 otherwise.

We remark that there is a well known alternative reduction of any 6D Coulomb integral
of the form Su(x)ﬁv(y) dr dy to a 3D integral over reciprocal space, by using the
convolution theorem for the Fourier transform. But this leads to an integral over an
unbounded domain, a stronger (~ 1/|k[?) singularity, and — in our case — a slow decay of
the integrand, making the expression (2.7.6) numerically much more favourable.

Proof. Using the identity 2sin(A)sin(B) = cos(A — B) — cos(A + B) and the change of
variables w = x + y, 2 = x — y, and noting that the volume element becomes dx;dy; =
Tdw;dz;
2 (AL

1 3 2— ‘ZZ|
I, = f ‘ ’ H { J cos wk;z; — cos Wkiwi) (cos wl;z; — cos Wﬁiwi)dwi dz.
z
|

2|

J

=:fr; ¢, (2i)
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The integral in the definition of f,;(%;) is elementary to evaluate by using the identity

2cos Acos B = cos(A + B) + cos(A — B) for the term cos wraw; cos mhw;, yielding
sin(mb|z;]) N COS(ﬂbZi)sin(ﬂa|zi|)

fan(z:) = (1 = |2i]) cos(maz;) cos(mbz;) + cos(maz;) — —

_ sin(r(a +b)|zi) {—W if a # b,

27(a +b) + 1%'” otherwise.

Next, we note that since f,,(—2;) = fap(2;) and the Coulomb potential 1/|z| is invariant
under the transformations z; — —z;, we can replace [—1, 1]® by [0, 1]? by adding a factor of
8 in front of the integral. The final expression for f,; given in the lemma now follows from
the trigonometric identities 2 cos A cos B = cos(A + B) + cos(A — B) and asin Acos B +
fcos Asin B = QT*ﬁsin(A—i—B)—kanﬁsin(A—B). O

Since the integrand in (2.7.6) is a separable function except for the Coulomb potential,
the idea now is to also approximate the latter by separable functions, therefore reducing
the problem to the computation of one dimensional integrals. Such an approximation is
provided by recent advances in low-rank tensor approximation; more specifically, we use
results of Hackbusch ([51, Section 9.8.2]). The Coulomb potential can be very accurately
approximated by a sum of weighted Gaussians,

1 & )
o Z wje 4", (2.7.8)
j=1

Plugging this approximation into equation (2.7.6) and factorizing el = H?=1 e’“jzﬂz,
one obtains
M 3 1
. 2
ijg x 82&)]' [k‘iafzvj with Ia,b,j = f fa,b(t)e ajt dt, (279)
j=1 1 0

which reduces the 3D integral in (2.7.6) to one-dimensional integrals of analytic functions.”

To reduce the overall number of 1D integrals that must be computed, let us introduce,
for p € {0,1,...,2| RY|} and j € {1,.., M} (where | | denotes the integer part), the
auxiliary integrals

"1t "sin(mpt

Cpj = J Cos(wpt)e_o‘ftht and S, = J we_o‘ftht. (2.7.10)

’ 0o 2 7 0 T

It follows from the explicit expression for f,; in (2.7.7) that

Iopj = Caspj + Cla—pj + <§ +1- ﬁ) Satb,j

1 1 . .
N (E -3 ﬁ)&gn(a —0)Sjap; fa#b (2.7.11)

CUJ' if a = b.

"In fact, one could represent these integrals exactly in terms of the error function er f and the imaginary
error function er fi, but we do not use this fact on our scheme.
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Thus in total
E;t[\PN,L] x~ —

M 3
Y i [ ke (2.7.12)

kfeN3  j=1 i=1
kl,|£|<RN
with I, given by (2.7.10)—(2.7.11). In particular, as Ry ~ N3 calculating the ex-
change energy of the free N-electron gas reduces to the problem of evaluating O(N3M)
one-dimensional integrals of analytic functions on the interval [0, 1], and multiplying and
summing them according to equation (2.7.12).

Next, let us discuss the choice of weights and exponents, and the error, in (2.7.8). We
used the values {w/’, af}*L, given on Hackbusch’s webpage [50] for the (approximately)
best approximation of the Coulomb potential as the sum of M = 51 Gaussians, which
satisfy ||1/r — o™ (r)|| Lo (1,1007) < 1072 where v (r) = Z?il w]He_aflTQ. Moreover since we
are interested in a good approximation of 1/r on the unit cube, we rescaled Hackbusch’s
parameters by setting

&~ o0

wH aH
wj=—— and a; =—,
To o
which yields a pointwise error of
[o(r) = 1/rl| oo (fro100ma)) < 7+ x 107° (2.7.13)

51 i . _ .
where v(r) = 3772, wje”®". In our numerical results we chose 7o = 107%, to achieve good

accuracy in (2.7.6) both in the region |z| < r¢ (note that the integral of 1/|z| over this
region is ~ rZ) and outside it.

Finally, let us discuss evaluation of the 1D integrals (2.7.10), which requires a moment’s
thought as one needs to resolve both the oscillatory trigonometric factor and the Gaussian
factor. The wavevector mp is < 7 - 2RY and hence < 200 for up to N = 30 000 electrons
(in which case RN ~ 31), so the trigonometric oscillations can be accurately resolved by
any standard quadrature method. The Gaussian factor, however, turns out to be more
delicate, as the maximum value of «; is ~ 8 x 10%. For a; > 1 we therefore used the
following alternative expressions obtained by re-scaling:

1 J«/@ (1 t > t
= - — cos(ma
Vo5 Jo 2 2./q; £\

1 Ac N t 2
Sej = —— — sin(7a Je " dt. (2.7.15)
A/ G5 Jo 2w A/ O

Coi )e tdt, (2.7.14)

Note that even though the integration interval may be big, for practical purposes one can
truncate at min{,/a;, 10} (as STE) e~ dt ~ 107%).

2.8 Assumptions on GGAs

We now show that the expressions for the PBE and B88 functionals (see equations (2.7.2)
and (2.7.1)) satisfy the assumptions of Theorem 2.1.1.
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The C" regularity in (0,0) x R is straightforward, so we just need to worry about the
continuity when a goes to zero and b remains bounded. For this, let us rewrite equations
(2.7.1) and (2.7.2) as

2

PBE HS 4
g (a,b) = c,——————as
) 4(3m2)5 4 L2
3.2 1
9" (a,b) = 2 ot 2

= 1 1 = 1 1 b
1 4+ 6423ssinh ™' (235) 1+ 68323ssinh ™' (235)

where s = b/a3. Thus for the PBE, since the (enhancement) factor in front of a3 is
bounded, we see that g"8F(a,b) — 0 as a — 0 regardless of b. For the B88, we make two
observations: first, if s — 00 and b stays bounded, then gZ%¥(a, b) goes to zero because of
the superlinear growth of the denominator in the enhancement factor; and second, if s is
bounded and b — 0, then ¢®*(a,b) also goes to zero. In particular, as taking the limit
a — 0 with b bounded falls into one of these two cases, the assumption holds.
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Chapter 3

Exchange Phenomena on Strictly
Tessellating Polytopes

In this chapter, we extend the results from the previous chapter in three directions: (i)
we extend the two-term asymptotics for the exchange energy and for semi-local density
functionals to strictly tesselating polytopes and fundamental domains of lattices, (ii) we
deal with general Riesz-type of interactions, and (iii) we work on arbitrary dimension R”
with n > 2. The methods used in this chapter also lead to a significant improvement on
the remainder of Theorem 2.1.1. In addition, we prove a two-term generalized version of
Weyl’s law that includes boundary corrections.

3.1 Main results

We start with some notation and then present the main results of this chapter. Although
the setting is quite similar to the previous chapter, we shall approach the problem from
the spectral asymptotics point of view. Therefore, we will follow the notation from [110]
and speak of eigenfunctions and spectral functions as opposed to the orbital functions
and density matrix terminology from the previous chapter. The connection between the
two viewpoints will be clarified later on.

Let €2 < R™ denote an open, bounded, and connected subset with regular boundary.
Then under either Dirichlet or Neumann boundary conditions (BCs), there exists a se-
quence 0 < A\; < Ay < ... > o0 and an orthonormal basis (in L*(Q2)) of smooth functions
{e;}jen © C*(Q) such that

—Aej = )\]26]',

where A is the Euclidean Laplacian (see [116]). One can thus define the spectral function
and its scaled diagonal up to A as

S\(r,7) = Y e;(re () and  Sya(r) = %SAGQ (3.1.1)

)\jé)\
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Our goal for this chapter is to derive two-term asymptotic expansions for the exchange
energy with Riesz interaction,

N
E,(\) = J SDE 47 with 0 <5 <, (3.1.2)
axq [T =T
and for semi-local functionals
F(\) = f F(2557(r), 2V S, \(r))dr, (3.1.3)
95

in the limit as A — o0. (The factor of 2 inside f comes from the spin of the electrons, see
(3.1.10).) Note that the class of semi-local functionals includes the important example of
the counting function

N = 40 Ay < A} = L Sa(r)dr. (3.1.4)

From this example and the extensive literature on it (see [62, 60, 61, 110, 104] and ref-
erences therein), one sees that two-term asymptotics of this kind are often subtle and
influenced by the regularity of the boundary and geometry of the domain. Even in the
simple case of a connected domain with smooth boundary in R”, it is not known'! whether
the following two-term asymptotic formula holds:

wn n wn_ n— n— ..
(Qﬂ)n)‘ Q| - 4—(2@,1_1)\ 1oQ| + o(A"1),  for Dirichlet BCs,
N =19 “wa W1 (3.1.5)
(27-(—)n)\n|Q| + 12m) T N'7HoQ| + o(A"1),  for Neumann BCs,

where w,, is the volume of the unit ball on R™. Therefore, we restrict ourselves in this
chapter to two types of domains where such asymptotics can be obtained: (i) the set of
strictly tesselating polytopes 2 < R™ (see Definition 3.2.1), and (ii) fundamental domains
of lattices I' ¢ R™ with the periodic Laplacian.

On such domains, the main theorems of this chapter can be stated as follows.

Theorem 3.1.1 (Asymptotics of exchange energy). Let Q < R™ be a strictly tessellat-
ing polytope (see Definition 3.2.1) or the fundamental domain of a lattice. Let E.(\)
n—1

. n—1
be the exchange energy defined in (3.1.2) and suppose that n = 2 and "7 — = <
s <mn. Then, for any € > 0 we have

E,(N) = coi(n, s)AN"#1Q|+ (cps(n, ) + cpr(n, s)) A" 12|00 + O(A" ™€) (3.1.6)

Formula (3.1.5) is known to hold under some non-periodicity assumptions on the geodesic flow [62, 86].
Such assumptions are conjectured to hold for general smooth domains but only proved (to the knowledge
of the author) for special cases such as convex domains (see [104])

66



Chapter 3. Exchange Phenomena on Strictly Tessellating Polytopes

where

(n. s) = max{s,7/6,1 + s/6} forn =2,
e max{n —2+s,(3n—2)/2—(n—1)/(n+ 1)} otherwise,

The leading exchange constant, the finite size, and the boundary layer corrections are
given, respectively, by

wp [ Pa(l2])? w; hn(121)* |20

T ) = = d 9 9 = - L d 5
calons) = b |, s erstnn) = g || e
Per
cgr(n,s) =0,

| A hn ([ (02, wn)|) = 2hn([2])
Ar(n,s) = ' f ho (| (02, wy)|) —— 2T - dw,dz,
Bi0.9) = fym [ [ pullmz) 2l

cu wy ” hn (| (T2, wn)|) + 2hn([2])
W) = otz || halimazwn)) e du,dz

where w, = |Bi| is the volume of the unit ball in R™, h,(|r]) = Xg,(r)/w, is the

normalized Fourier transform of the characteristic function of By, m, is the projec-
tion mp(r) = (r1,...,7n_1), and the superscript Per, Dir, and Neu indicate periodic,
Dirichlet, and Neumann boundary conditions.

Theorem 3.1.2 (Asymptotics of semi-local functionals). Let Q < R™ be either a
strictly tessellating polytope or a fundamental domain of a lattice. Suppose f €

C1((0,00) x R™) n L2 ([0,00) x R™). Then, for F()) defined in (3.1.3) we have

loc

FA\) = f(wo)A"|Q] + c(f, )N + oA, (3.1.7)

where

f (JOO flvo — (7, r")) — f(Vo)dT) dH"Y(r"), for Dirichlet BCs,

C(f, Q) _ o0 OOO
J <J f(vo +uvi(r, 7)) — f(Vo)dT) dH" 1 (+"), for Neumann BCs,
oo \ Jo
and
= é(:;n(l, 0)e R xR" vy(r,7) = (z(:?)l" (hn(27), 2Hn(27)n(r’)),

where n(r') is the inwards pointing unit normal to o at v, H" ' is the (n — 1)-
dimensional Hausdorff measure, and w, and h,, are the same from Theorem 5.1.1.

Remark. A few remarks are in place:
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(i)

(i)

(iii)
(i)

Due to radial symmetry of the interaction 1/|r|*, the coefficients c,1(n, s), crs(n, s)
and cpr,(n, s) can be computed by numerically evaluating a 1D, 2D, and 3D integral
respectively. In fact, Theorem 3.1.1 can be directly extended to non-radial interac-
tions w satisfying c/|r|* < w(r) < C/|r|* for some positive constants ¢,C > 0 (e.g.
positively homogeneous interactions).

For the Coulomb interaction in 3D, the constants can be analytically computed (see
Lemma 2.5.2 in Chapter 2) and are given by

1 , log 2
crs(3,1) = ———, and cB7(3,1) = _12g7;r2'

Ca:,l(37 1) = 2471'2’

1
43’
By f € Lie([0,00) x R®) we mean that f is bounded on [0,T] x K for any T > 0
and K < R™ compact.

The asymptotics of semi-local functionals for the periodic case is trivial and has no

boundary corrections because Ss (1) = ]\i\(,?) = (;T")n + (9()\_1_:%) in this case. The

seemingly unphysical boundary corrections for the exchange energy come from the
fact that the interaction considered is not periodic (as in Chapter 2).

e
>~ >

Figure 3.1: Kaleidoscopic polytopes in R3. From left upper corner: rectangular paral-
lelepiped, equilateral prism, 30-60-90 prism, isosceles (45-45-90) prism, quadrirectangular
tetrahedron, trirectangular tetrahedron, and tetragonal disphenoid.

The thermodynamic limit of the free electron gas. Let us now briefly describe how the
quantities £,(\) and F()) in the limit A — oo are related to the thermodynamic limit for
the free electron gas (FEG). First, recall that the FEG is a collection of non-interacting
electrons confined to a region €2 = R3. For N particles, the ground state of the system is
described by a N-body wave function ¥ : (2 x §) — C minimizing the kinetic energy

1

T[] - -J VU (zr, .., 2|2y dey
2 Jiaxs)v
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and subject to the following constraints: (i) normalization in L*((Q x S)V), (ii) anti
symmetry with respect to the permutation of the space-spin variables x, = (ry,5¢)?,
and (iii) suitable boundary conditions (e.g. Dirichlet or Neumann). Here, S := {0, 1}
denotes the spin states. Therefore, any ground state wave function of the FEG is a
linear combination of antisymmetric N-fold tensor products (or Slater determinants) of
the (orbital) functions ¢, € L*(2 x 8) given by

Ge(r,5) = ejesa) (1) Xe—21¢/2) (5) (3.1.8)

where |£/2] is the greatest integer smaller than or equal to /2 (the floor function) and
Xj(s) = 1 for s = j and zero otherwise. In particular, if N satisfies the closed shell
condition

N =2N(A) for some A > 0, (3.1.9)

where V() is the counting function (see (3.1.4)), then the ground state ¥ is unique, and
the associated (spinless) single-particle reduced density matrix is related to the spectral
function by the formula

Yoy (r,7") = NZJ U(r,s,29..,25) V(1) 8,79, ..., v5)dxs...dzy = 255(r, 7).
seS QxS)N

—1

(3.1.10)

Moreover, if we assume the interactions between electrons to be of Coulomb type, the
exchange energy of a Slater determinant ¥ is defined as the difference

1 /
—qw, ) ——f Mdrdr’, (3.1.11)
1<’L<_]<N - r]’ ? QxQ ‘/”' -Tr ‘ P
VE(:E‘I/] J[Pw]

where V.. is the electron-electron interaction energy and J[py| is the classical electrostatic
energy of a charged cloud with distribution given by the single-particle density

J U(r, s, T, ..., vy)|[2day...dzy. (3.1.12)
ses Y (OQxS)N

Therefore, the exchange energy of the ground state Wy of the FEG with 2N () particles
in Q can be written as®

|2
B [Wy] = —= f Pras ()P g g 2 f I e = —B, (0, (3.113)
OxQ axq |r—1]

2In this section we will always use x for space-spin variables and r for space only. We also use the

notation §, o f(x)dz =3 s, f(r, s)dr
3This follows from straightforward computation by taking the Slater determinant of the orbitals in
(3.1.8) and plugging into (3.1.11).
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where E,()) is the function defined in (3.1.2). Similarly, we can relate the function
F()) defined in (3.1.3) with generalized gradient approximations (GGA) for the exchange
energy. In the physics literature [6, 92], exchange GGAs are commonly expressed as

ESCA[p] = — J;) cxp(r)%Fx (s(r))dr, (3.1.14)

where ¢, = (3/7)33/4 is the Dirac constant, s(r) = |Vp(r)|/p(r)3 is the dimensionless
reduced gradient and the function F : [0,00) — R is called the enhancement factor and
satisfy F,(0) = 1. So if we apply ESS* to the ground state density py (defined via
(3.1.12)) of the FEG with 2N () particles in €, then (after a scaling argument) we arrive
at the formula

ES9Mpa] = AF(N), (3.1.15)

where F is defined by (3.1.3) with f(2p,2Vp) = —cup3 Fo(|Vp|/p3). Therefore, Theo-
rems 3.1.1 and 3.1.2 yield the following corollary.

Corollary 3.1.1 (Exchange functionals for the FEG in the thermodynamic limit). Let
Q be a strictly tessellating polyhedron or a fundamental domain of a lattice and define
Oy ={reR3:r/xeQ}. Let py be the single-particle density associated to the unique
ground state Wy of the free electron gas in Qy with 2N () particles under either Dirichlet,
Newmann, or periodic boundary conditions. Suppose also that (a,b) — a3 F,(b/a3) €
C*((0,00) x [0,00)) N L ([0,0) x [0,00)). Then we have

Eo[Ua] = —cop?| QN + c40p|00| A% + O(A2 log ), (3.1.16)
ESSMpa] = —e,p5 [N + 52500 A2 + 0(A2) (3.1.17)

where ¢, = (3/4)(3/7)3 is the Dirac constant, p = limy_, 2{;]2(;\') = o3 is the average

density in the thermodynamic limit, and the second coefficients are given by
1/8 for periodic BCs,

Cro =13 (1+2log2)/8  for Dirichlet BCs, (3.1.18)

(1—-6log2)/8 for Neumann BCs,

and

(¢, [® i (2(372)5 |hy(2
C2 T f [1—(1 — hs(27))3 F, ™) s Té)| ]dT for Dirichlet BCs,
con _ | (37)3 Jo L= hy(27))?

(
(
‘s Jw[l—(l+h3(27))§Fgg(2((%2);'%(27)')](17 for Neumann BCs,

(3.1.19)

where h3(T) = 3(sinT — T cosT)/T".
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We, therefore, conclude that exchange GGAs can capture the surface corrections to
the exchange energy of the Dirichlet FEG in the thermodynamic limit exactly, as long as
the enhancement factor F), satisfies the following constraint:

mf[l_(l B h3(7.))%pz (2(3#):@%)]& = CCL; (3.1.20)

with ¢, 2 and ¢, defined in Corollary 3.1.1.

Connection to the previous chapter. Let us briefly comment on how the results pre-
sented above are connected to the results from the previous chapter. First, observe that
the thermodynamic limit considered here differs slightly from the one in Chapter 2. While
in Chapter 2 we considered the limit N — oo with a fixed average density of particles p,
in this chapter the average density is

p=2NN/|%] = (37 F + A + O(A2),

which is only approximately constant. On the other hand, the finite-size Fermi momentum
here is constant (equals to 1 for every A) as opposed to Chapter 2, where it has an
asymptotic expansion with a correction of order 1/L (see Lemma 2.3.2). In particular, the
asymptotic expansions stated here are more natural from the mathematical perspective.
(Compare the coefficients in Theorem 2.1.1 and Corollary 3.1.1.) Nonetheless, we remark
that the proposed constraint for the GGAs in (3.1.20) and in (2.1.12) are the same and,
therefore, independent of the precise specifics of the thermodynamic limit.

Proof strategy. The underlying strategy in the proofs of Theorems 3.1.1 and 3.1.2
is the same and consists of two main steps: (i) we obtain precise asymptotics for the
spectral function, including the behavior close to the boundary, and (ii) we perform a
careful analysis of the interior and boundary terms.

The first step is done via the wave equation (or kernel) method (see the next section).
To construct the exact wave kernel for all times, we use the symmetries of the domain 2.
At this step, the reflection (respectively, translation) symmetry of the strictly tessellating
polytopes (respectively, fundamental domains of lattices) plays a central role and is the
main reason for our restriction to such domains. With the exact wave kernel at hand,
we follow the approach in [110, Chapter 3] to obtain the continuum limit of the spectral
function with explicit uniform estimates. Such estimates include derivatives and are not
restricted to the diagonal; they can be stated as follows.

Theorem 3.1.3 (Asymptotics of the spectral function). Let Q@ < R™ be a strictly tessel-
lating polytope or a fundamental domain of a lattice. Then for any «, € Nij, there exists
a constant C' = C(Q, «, B) > 0 such that

16205 Sy (r, 1) — 290%.55™ ()| < C (1 + A"—l—%liﬂalﬂff') , (3.1.21)
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where
(o) Z hy(A|r = 1"+ v]) for periodic BCS,
(27‘{‘)” ’vET"b
Q
“n 30 N det ohy, (A / Dirichiet BC
SSm (e 1) = 2r)" Zb et ohy(A|r —or'|)  for Dirichle s, (3.1.22)
oERG
(;n)nxl 2 P (Al — UT’D) for Neumann BCs,
T
\ O'ER?Zb

where w, and h, are the same from Theorem 3.1.1, TH and RY are respectively the
sets of meighbouring translations and reflections of ), and det o is the determinant of the
linear part of o. (See (3.2.7) and the preceding discussion for the proper definitions.)

Remark. Let us remark that upon completion of this work, we found an old paper by
Berard [9] containing similar formulas as the ones proved in Theorem 3.1.3 and Corol-
lary 3.2.1. The method of proof also seems to be similar. Unfortunately, we could not find
an English version of [9] to compare them properly.

As a corollary of the above estimates, we obtain a generalized version of the two-
term Weyl law with improved remainders (see Theorem 3.3.1). Estimates (3.1.21) are
also enough to justify using the continuum spectral function for the asymptotics of F'(\).
This follows by using the Lipschitz regularity of the function f in the integrand of F'()),
and a cut-off away from the boundary to avoid the points where p = 0 and f is no longer
Lipschitz (see Section 3.4).

On the other hand, the above estimates are not enough to justify using the contin-
uum approximation S§™ for the exchange energy. Roughly speaking, this is because
the exchange energy is given by integration against the square of the spectral function.
Therefore, the error estimate in (3.1.21) yields an error proportional to (A2)2 = A3 (in
the 3D Coulomb case) between the exchange energy of the spectral function and its con-
tinuum version, which is precisely of the order of the second term in Theorem 3.1.1. In
Chapter 2, we overcame this problem by using the theory of exponential sums to im-
prove the remainder in (3.1.21) from A% to A\2-+¢. This was possible because explicit
eigenfunction formulae are available in the rectangular box. In this chapter, however, our
goal is to derive such asymptotics without any explicit expressions for the eigenfunctions.
Inspired by the work of Schmidt [105], where the bulk asymptotics of the spectral func-
tion as well as the leading order exchange constant were justified for general domains, we
realized that interpolating the L® estimates from Theorem 3.1.3 with L? estimates is a
much more efficient approach for two reasons: first, the L? estimates can be obtained by
slightly modifying the proof of the L* estimates; and second, they lead to a significant
improvement in the remainder of the asymptotic expansion of the exchange energy. Our
main estimate in the L? setting is the following.

Theorem 3.1.4 (L? estimate of spectral function). Let  « R™ be a strictly tessellating
polytope or a fundamental domain of a lattice. Then, there exists C = C'(n,) > 0 such
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that
15y = S5 | 2y < C(1+ A7), (3.1.23)
where S§™ is the same from Theorem 3.1.5.

By combining Theorems 3.1.3 and 3.1.4, we can justify the use of the continuum
spectral function in the calculation of the exchange energy. The asymptotic expansion for
E.(\) then follows from geometric considerations and a careful analysis of the boundary
and interior terms (see Section 3.4).

Structure of the chapter. In Section 3.2, we construct the exact wave kernel and derive
a generalized Poisson summation formula on strictly tessellating polytopes. We then use
this Poisson summation formula to prove Theorems 3.1.3 and 3.1.4 in Section 3.3. The
proof of the main theorems of this chapter is given in Section 3.4. In Section 3.5, we
show that the definition of strictly tessellating polytopes presented here is equivalent to
[101, Definition 2]. We postpone the proof of the generalized Weyl law (Theorem 3.3.1) to
Section 3.6. Finally, in Section 3.7 we comment on possible extensions and applications
of the results presented here.

Notation

In this chapter €2 < R™ will always denote a bounded, connected, and open subset of R,
where n > 2. Moreover, we denote the characteristic function of a set 2 < R™ by xq and
its re-scaled version by a factor ¢ > 0 by Q. = {r € R" : r/c € Q}. The unit ball in R" is
denoted by B;. For the Fourier transform of a function f : R® — C we use the convention

flky = | f(r)e™rdr,
R

where k-r = Z?Zl kjr; is the standard scalar product in R”. The inverse Fourier transform

is denoted by ]? The Schwartz space of smooth fast decaying functions in R™ and its dual,
the space of tempered distribution, are denoted respectively by S(R") and S’(R"). Here we
use the standard big-O and small-O notation. More precisely, for functions f : [0,00) — R
and ¢ : [0,0) — R we say that f = O(g) respectively f = o(g) provided that

ISV [f I

limsup ——= < o0 respectively limsup
o gV Ao |g(A)]

We also use the notation f < ¢ to indicate the existence of an unimportant constant
C' > 0 such that [f(\)] < Clg(N)| for all values of A large enough. In addition, if f or g
depends on additional parameters (e.g. €), we indicate the dependence of the constant C'
on this parameter by using the notation f <. g.
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3.2 The wave kernel and Poisson summation

In this section, we recall some basic facts about the homogeneous wave equation (see
for instance [110, 104] for more detailed discussions). We then use these classical results
to construct the exact wave kernel on strictly tessellating polytopes and fundamental
domains of lattices, which leads to a generalized Poisson summation formula for radial
functions. This summation formula is the key ingredient in the proofs of Theorems 3.1.3
and 3.1.4.

We start by recalling some classical existence, uniqueness and regularity results for the
solutions of the wave equation on bounded domains. In what follows, we assume 2 < R"”
to be an open, bounded, and connected domain with Lipschitz boundary. Then, let us
consider the initial value problem (IVP) for the wave equation in €2,

6’ttu—Au=0 il’lQXR,
opu(r,0) =0, (3.2.1)
u(r,0) = g(r) for some g € CF(Q),

with the boundary conditions (BCs)

u(r,t) =0 on 09 x R (Dirichlet BCs), or
(3.2.2)

V,u(r,t)-n(r) =0 on 092 x R (Neumann BCs),

where n(r) is the unit normal vector to d€2 at . Then, for an initial condition g € C(Q2),
the unique solution to (3.2.1)(3.2.2) in C*(§2 x R) is given by

u(r,t) =(cos(t —Ag)g) (r),

where Aq is the self-adjoint extension of the Laplacian in €2 defined by the boundary
conditions, and cos(ty/—Agq) is defined via the spectral calculus. (We refer the reader
to [116, Chapter 6] for a proof.) In particular, if u is the solution of (3.2.1) for some
g € CX(Q), then from the spectral theorem we have

fRfa)u(r, Hdt =(F(v/~Ba)g) (1) (3.2.3)

for any f € S(R) even (i.e. f(s) = f(—s) for any s € R). The identity above lies at the
heart of the wave equation method in spectral asymptotics because it allows us to obtain
information on the kernel of f(1/—Agq) through (approximate) solutions of (3.2.1).

Remark. If Q is the fundamental domain of a lattice, then periodic boundary conditions
can be imposed and the same results described above hold.

To construct the wave kernel on bounded domains, we will need an explicit represen-
tation of the wave kernel in R™ and its finite speed of propagation property. For later use,
we state it as a lemma here.
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Lemma 3.2.1 (Wave kernel on R™ [110]). Let Ey(t) be the distribution defined by
1 ~
(Eo(t), 9)p/(rm)per) = WJ cos(t|k)g(k)dk,  for g€ CF(R™). (3.2.4)

Then, Ey(t) € E'(R™) (where & is the set of distributions with compact support) and
supp(Ey(t)) = {r e R" : |r| < |t|}. Moreover, for any g € C*(R™), the function defined by

alr,t) =(Eo(t) = 9) (r) = ﬁ f *cos(tlK)R)™

is smooth and satisfies the wave equation in R™ x R with initial condition u(r,0) = g and

oyu(r,0) = 0.

3.2.1 Wave kernel on symmetric polytopes

Now we turn to the construction of the wave kernel on strictly tessellating polytopes
and fundamental domains of lattices. The key idea is to exploit the symmetries of the
reflection/translation group associated to such polytopes. Let us start by introducing
some notation and the proper definitions.

Let © be a polytope in R™. We denote by {Fi, ..., F},} the set of boundary faces of
Q, and by {01, ..., 0., } the corresponding set of reflections over the faces of 2. The group
of reflections, Rq, is then defined as the group generated by the reflections {o,}1<r<m
through composition, i.e.,

Ro={r:R"->R":7 =0, 0..00j,, where j, € {1,...,m}}. (3.2.5)

For any o € Rgq, we denote the determinant of the linear part of o by det o. Note that
deto € {1,—1} for any 0 € Rq. The set of strictly tessellating polytopes can then be
defined as follows.

Definition 3.2.1 (Strictly tesselating polytopes). We say that an open polytope @ < R™
strictly tessellates R™ if for any o,7 € Rq with o # T, the reflected polytopes o(Q2) and
7(2) do not intersect. In mathematical terms, Q is strictly tessellating if and only if the
following holds:

o) nT(Q)# P = T=0. (3.2.6)
(See Figure 3.2.)

Remark. The term strictly tessellates is adopted from [101]. Note, however, that the
definition given here is different from the one in [101, Definition 2]. The reason for this
difference 1s that the property stated above is precisely the one needed for the construction
of the wave kernel in Lemma 3.2.2 below. That both definitions are equivalent is shown
in Section 3.5

Similarly, we can define the fundamental domain of a lattice I" as follows.
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Figure 3.2: Example of strict tessellations of the space by some solids of Figure 3.1.

Definition 3.2.2 (Fundamental domains). We say that an open polytope Q2 = R™ is the
fundamental domain of a lattice I’ = spang{v1, ..., v, }* if and only if (after a translation)

Q:{thvj20<tj<1 forany1<j<n}

J=1

Let us also define the set of neighbouring reflections/translations of 2 as the set of
reflections/translations for which the distance between the reflected /translated polytope
and the original one is zero, i.e.,

R ={0eRa:0(QnQ#}, Tl={vel:Q+vnQ =T} (3.2.7)

We can now construct the wave kernel in 2 explicitly. For this, it is helpful to introduce
the reflection and translation of a function g, respectively, as

o (g)(r) = g(or) foroceRq and T,9(r) =g(r —v) forvel.

Lemma 3.2.2 (Wave kernel on symmetric polytopes). Let Q@ < R™ be a strictly tessellat-
ing polytope or a fundamental domain of a lattice ' = R™. Then, for any g € CF(2), the

unique solution in C*(Q2) to the initial value problem

ou(r,0) =0
Ouu = Aqu, in Q x (0,00)  with initial conditions wu(r, 0) (3.2.8)
U(T’, O) = g(?“)
where Aq is either the Dirichlet, Neumann, or periodic Laplacian, is given by
( Z det o (Eo(t) = (6% g))(r) for Dirichet BCs,
O’GRQ
u(r,t) = 4 Z (Eo(t) « (c%g))(r) for Neumann BCs, (3.2.9)
O'ERQ
Z (Eo(t) = (1,9)) (1) for periodic BCs,
\vel’

where Ey is defined in (3.2.4).

“Here we assume that the lattice I' has dimension n, i.e. {v1,...,v,} is a set of linearly independent
vectors in R”.
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Proof. For simplicity, we prove only the Dirichlet case. (The other two are entirely anal-
ogous.) First, note that since supp(g) < 2, by the strictly tessellating property (3.2.6),

supp(c?g) N supp(r¥g) = &,

for any ¢ # 7 € Rq. In particular, deRQ det 0o? g is a sum of smooth functions with
disjoint support and therefore smooth. Thus by Lemma 3.2.1, the function u(r,t) defined
in (3.2.9) is smooth and solves the wave equation in R" with initial condition u(r,0) =
ZO’ERQ det oo™ g and d,u(r,0) = 0. Since uniqueness follows from the previous discussion,
we just need to check that the boundary condition is satisfied. To this end, note that

Z detaa#(afg) = Z det o(op00)¥g=— Z det oo™ g,

O'ERQ O'ERQ O'GRQ

where we used that o, is invertible and det(o o 0y) = — det 0. Thus

u(oer, t) = Z det oo} (Eo = (c%g))(r) = Z det JEo(t)*<(O'g o a)#g) (r) = —u(r,t).

0€Rq 0€Rq

To conclude, we note that o,(r) = r for any r € Fy and 0Q2 = |, F¥, which implies that
u(r,t) = 0 on OS2 O

An useful corollary of the lemma above is the following generalized Poisson summation
formula for radial functions.

Corollary 3.2.1 (Generalized Poisson summation formula). Let Q < R™ be a strictly
tessellating polytope or a fundamental domain of a lattice I'. Let Aq be either the Dirichlet,
Neumann, or periodic Laplacian in 2. Then, for any f € S(R) even (i.e. f(s) = f(—s)
for any s € R), we have

(271r)n Z det Um(r — of) for Dirichlet BCs,
o€ER
Z F(Aj)e(r)e;(7) = < (271T)” ZRm(T —oT) for Neumann BCs, (3.2.10)
)‘j s
(271r)" Z f/(|\|)(r — 7 —v) for periodic BCs,
\ vel’

e —

where f(| -|) is the Fourier transform of the radial function r € R™ — f(|r]).

Proof. First, observe that by the standard elliptic regularity estimate, for any V cc U,
there exists some constant C' = C'(V') > 0 such that

lejllwmean < C(1+ Ap)>™,
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for any m € N and A;. Moreover, by the leading order Weyl law (see (3.1.5)), which can
be shown to hold by the Dirichlet-Neumann bracketing technique [100, Section XIII.15],
one can control the degeneracy of any eigenvalue by

d(\;) = dimker(—Ag — A2) € A",

Thus from the classical Sobolev embedding we conclude that

D e < 1+ )M,

A <A

for some M € N and uniformly for r € V. As a consequence, the left hand side of (3.2.10)
is summable and the convergence is locally uniform in 2 x ) as long as f decays fast
enoug}ﬁmilarly, the right hand side of (3.2.10) is also an absolutely convergent sum,
since f(]-]) € S(R™) (as f is even) and the set {o7},er,, is uniformly discrete for any
r € €. Finally, to obtain (3.2.10) we can integrate the right hand side of (3.2.10) against
some test function g € C*(Q) and use the identity (3.2.3) with u given by Theorem 3.2.2.
Then, we find

D IO essbie - ol L > deto;

geERQ

- X %LnﬂW)@ik'T%(k)dk

f cos(t|k|)e* T o# g(k)dkdt

det o — NP
- T Gy | AT = origtiar

(where the change in the order of integration/summation can again be justified by the
fast decay of f and g). As the above identity holds for any test function g € C(Q2), the
result follows. 0

3.3 Asymptotics of the spectral function

The goal of this section is to prove Theorems 3.1.3 and 3.1.4. Throughout these proofs,
we will often use some decaying properties of the Fourier transfoms of the n-dimensional
ball and (n — 1)-dimensional sphere. For later reference, we state these properties in the
lemma below. (The reader can consult [55] or [111, Section 1.2] for a proof.)

Lemma 3.3.1 (Fourier transform of the ball and sphere). Let h,(|k]) = X5, (k)/w, be
the normalized Fourier transform of the characteristic function of the unit ball in R™, and
pn = H" 1L S™! be the n — 1 Hausdorff measure restricted to the sphere S"~! = {r €
R™:|r| = 1}. Then we have
1 1
0B (k)] Sam ————=  and |0%(ha([K]))] San T
(14 (k)= (1 +[k[)"2

where the implicit constant depends on o € N and n € N, but not on k € R".
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3.3.1 Uniform estimates

We now present the proof of Theorem 3.1.3. This proof is an adaptation of the arguments
in [110, Chapter 3], where the diagonal version of Theorem 3.1.3 is proved for the periodic
case.

The first step in the proof is a uniform control on the growth of the sum of eigenfunc-
tions (and its derivatives) in a small interval around .

Lemma 3.3.2 (Sup-norm of Spectral e-Band). Let Q be a strictly tessellating polytope or
a fundamental domain of a lattice and e; be the eigenfunctions of the Laplacian under our
usual BCs. Then, for any o € N3 and 1 < 7' < A, there exists a constant C = C(a) > 0
(independent of \ and €) such that

Z 0% (r)P < C(1+ AT Pel(eN T 4 e_nT_l)) for any r € Q (3.3.1)

[A;—Al<e

Proof. The idea here is to estimate the sum in (3.3.1) by studying the kernel of 1§ (v/—Aq)
for some fast decaying non-negative function 7§ that is positive in the interval [A—e, A +¢].
For this, let p, = H" 'L S""! and let n € S(R) be a non-negative even function such
that n(s) > 1 for |s| < 1, and supp(7) < [—1,1]. Then, we define its even rescaled version

by
A7) = n(T;A) +U(TJEF)\>,

and note that supp(75) < [—1,1]. Thus from Lemma 3.3.1,

SARCH| @ (@)

0

= ¢ LOO (U(T —Ne) +n(T + )\/e))ao‘@ (672)(67)”—1+\a|dT

n—1 n—1 1
<, ex'z flel min{)\ 2 —} (3.3.2)

n—1

e

Now, let us consider the set of reflections in R for which the reflected polytope o(2) lies
at most a distance of % away of the original polytope €2, i.e.,

R = {0 € Rq : dist(c(Q),Q) < e '}. (3.3.3)

Then, due to the strictly tessellating property, one can see that #R. < Ein Moreover, we
claim that

L —

(“ns(l- D) (r —oF) =0 for any o ¢ Re,r,7 € Q and o € Nj. (3.34)

79



Chapter 3. Exchange Phenomena on Strictly Tessellating Polytopes

To show (3.3.4), just note that since supp(Ey(t)) < {|r| < |t|}, we have

[ a6 =g ([ (3]
_ (2?” f (t)(Eo(t) = g)(F)dt = 0,

for any g € CX(R") with dist(supp(g),7) = 1. As g was arbitrary, we conclude that

1
€

s (t) cos(t|k;|)dt) e‘““‘(’“‘f)dk> g(r)dr

S

15 (r) = 0 for any |r| > 1 and (3.3.4) holds. Hence, from Leibniz rule we have

s (| N —oi) = D o (@ - ) (r — o), (3.3.5)

Iy1=lal

where all ¢, , are bounded by a constant independent of €, A and o (since all entries in the
linear part of ¢ are bounded by 1). Therefore, by (3.3.4), Corollary 3.2.1, and estimate
(3.3.2) (and recalling that 7§ = 1 on [\ — €, A + €]), we conclude that

Z Z ns(A;)]0%;(r) Z det o Z Cro (6“”77%)) (r —or)

|>\j—)\|<6 o€Re IvI=lal

< eAnitlel e\ "5 Hll Z N T
—or|" T
1<dist((2),0)<L | — o]

n—1

< A"7 flel (6>\n%1 + €7T).

We can now complete the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. The idea here is similar to the previous proof; we choose a
smooth version of the characteristic function of the interval [—A, A\] and use Lemma 3.3.2
and the generalized Poisson summation to get the continuum version with error estimates
controlled by powers of ¢ and A\. We can then estimate the error from smoothing the
characteristic function and optimize € to complete the proof.

Let xa(s) be the characteristic function on the interval [—A, A], and let n € S(R) be
an even nonnegative function with 7(0) = 1 and supp(7) < [—1, 1]. In addition, let x§ be
the mollification of x, on the scale €, i.e., x§(s) = xax(e 'n(e™))(s), and 7§ = xx — X5
be the mollification error function. As n decays fast, it is not hard to see that

1 1 1
€ g —+ $
e P e R (e P

(3.3.6)

for any s > 0. Thus denoting the mollified version of the spectral function by

S5(r,7) ZX,\ e;(7),
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we can use (3.3.1), Cauchy-Schwarz and (3.3.6) to bound the error with respect to S by

a0
opalSy —aralssl < D) DL Iri(A)a%e;(r) e ()]
=1 |nj—te|<e

1

NZ(1+|E‘11)\—€|)N< Z |aaej(r)|2>é< Z |aﬁ€j(f)|2)2

14 [Xj—Lle|<e [X;—Le|<e

A

| 4 gn-1+lal+18] gn+lal+18 | p=5 +lal+I8| lal+18]
; A+ cA— Y
A"z Hlal+sl (6)\7? + 6_"51). (for A big). (3.3.7)

A

N

On the other hand, by applying Corollary 3.2.1 to S5 and recalling from the last proof

that Xm)(k) =0 for |k| = 1 (since supp(n°) < [~1/¢,1/e]), we find that

~ ]' € « ik-(r—o7r
0085 (r,F) = ) dewW JRn(XA(\kp + 5 (k) 02af (e =) dk

oER.

det
- 2 <wn)\”6,?8§hn()\]r — o7 + f

oERe (271-)n 0

Q0

5 ()7 0% o (r(r — af)))dr).
(3.3.8)

Moreover, from (3.3.6) and Lemma 3.3.1 we have

75 Flal+B]

(I+ e YN=T1)N

T;(T)Tnflagafj@(T(’r—O'f)) < 111111{7'717717 |7*_O-f|*nTil}'
By integrating the estimate above over (0, 00) and summing over o € R, we can see that

the last term in (3.3.8) yields (at most) an error of order (’)()\HT_““'“HW'(G)\"T_I + e_nT_l)).
Therefore, we conclude from (3.3.7), (3.3.8), and the decay of h,, that

000l Sy (r,F) = 0202ST™ () + Y deto I Ama 38 h (A — A7)

(2m)" -
AT g)\%jﬂa\ﬂﬂ\h«,a-ﬂ*i;*l
+ (9()\%1HO‘MB'(EA%1 + 67%71))
= Q22T (r,7) + O(NF Hel P\ ). (3.3.9)

The result now follows by setting € = An1. The proof for the periodic and Neumann
cases is a straightforward adaptation of the arguments presented above. O]

An interesting consequence of Theorem 3.1.3 is the following generalized Weyl law,
which gives the next term of the Cesaro means considered in the work by Schmidt [105,
Theorem 1.1]. (For the proof, see Section 3.6.)
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Theorem 3.3.1 (Two-term generalized Weyl law). Let Q@ < R" be a strictly tessellating
polytope or a fundamental domain of a lattice. Let e; the eigenfunctions of the Dirichlet,
Neumann or periodic Laplacian. Let a € C* (R”; S(R”)), then we have

> dej,a(r, X' D)ey) = cp(@)A"+ (cps(a) + epe(a)) N + O\"175),  (3.3.10)
A <A

where a®(r, \"'D) is the Weyl quantization of a(r,&) at scale h = A\~ (see [130, Section
4.1]), and the leading, finite-size, and boundary correction constants are given by

1
cp(a) = ( foBl a(r,&)drd (3.3.11)

2m)n

crs(a) = ﬁ L . lp.v. (%)] (Vea(r.& —7n(r)) -n(r)dedH™(r)  (3.3.12)
cpole) = G L;k fR a(r, ¢+ (1- s’F)éTn(r)) %dmw—l(s’)w—w

(3.3.13)

where n(r) is the outward-pointing normal vector at r € 02, Bf = {(r,§) € 02 x By : 1 €
02 and £-n(r) = 0} is the unit ball bundle in the (co)tangent bundle of 02, p.v.[1/7] is the
Cauchy principal value distribution (see (3.6.1)), and mpc = —1,1 and O for Dirichlet,
Neumann, and periodic BCs, respectively.

Remark. The assumption on a(r,§) are chosen mostly to simplify the proof. For instance,
Theorem 3.3.1 still holds (with essentially the same proof ) under the assumption that the
Fourier transform of the function & — a(r,§) (and its derivatives with respect to r) are
tempered distribution of order 0 with compact singular support and decay fast enough. In
particular, for a(r,£) = 1 we recover the classical two-term Weyl law (3.4.3) with improved
remainder.

3.3.2 [? estimate

We now turn to the L? estimates for the spectral function. This result can be seen as
a quantified version of the L? convergence of the density in the work by Schmidt [105,
Theorem 1.2]. However, unlike the more classical (and more general) methods used in
[105], our proof is again based on the wave kernel constructed before.

Proof of Theorem 3.1.4. As in the proof of Theorem 3.1.3, we let x, be the characteristic
function on the interval [—A, A] and i € S(R) be an nonnegative even function with 7 = 1
on a neighbourhood of 0. Then, we define the mollified version of x,, the mollifying
error function, and the smoothed spectral function as x5 = xx * 7, 7y == X% — X, and
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Si = Zj xXa(A\j)e;(r)e&;(F), respectively. Hence, by the orthogonality of e;, we have

151 = SHlEs e = Dr(m) | e Een) (ards
S 2 MOPWG +1) = NG £ 10+ A=) s

j=1

So up to an error < A%, we can work with the smoothed spectral function S;. Now, since

we do not vary the support of 7 in this proof (no scaling with €), we see that x5 = X\7
has support on a fixed neighbourhood of 0. In particular, if we choose the support of
7 small enough and apply the generalized Poisson summation in Corollary 3.2.1 to x3,
we conclude (see (3.3.4) in the previous proof) that all terms with o € Rg\R%’ vanish.
Therefore, the result follows if we show that for any o € Rq the following estimate holds:

DA D = 07) = xall - D = o7)[[2@xey = Irall- D = 07) [ z2xm) S A2,

where m is the Fourier transform in R™ of the function r +— g(|r|). This estimate is a
direct consequence of Plancherel’s theorem and the estimate ry(|r]) < (1+[X—|r|[)™". O

Remark. Note that we only used the wave kernel for times of order 1 here® . In particular,
the same estimate is expected to hold on more general domains (e.g. smooth ones).

We can now interpolate between the L? and L® estimate to obtain

Corollary 3.3.1 (L? estimates). Let Q2 be a strictly tessellating polytope or a fundamen-
tal domain of a lattice, and let Sy be the spectral function of the periodic, Dirichlet or
Neumann Laplacian in 2. Then,

153 — S5 | aaxay s AP DO-2) =57 (0-5), (3.3.14)

where S§™ s the continuum spectral function defined in Theorem 3.1.3.

3.4 Asymptotics of exchange functionals

In this section we present the proof of the main results of this chapter. For these proofs,
we shall use two geometric lemmas.

The first lemma is a lower bound on the distance between points in the original
polytope and points in the reflected one. To state this lemma, let us introduce some
more notation. First recall that, since €2 is an open convex polytope with faces {F}};<m,
there exists {c;};<m < R such that

Q={reR":r -n; <a; forany 1 <j < m}, (3.4.1)

5Unlike in the L*® case, we could not use the large times wave kernel to improve the remainders in
the L? case.
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where n; is the unit outward-pointing normal vector to the face Fj. Moreover, for any
o € RY there exists {j1, ..., j,} < {1, ..., m} such that Qna(Q) = (F_, F}, and the interior

P _ ) f . c . ’
int ﬂ F;, :z{r eR":7-n, _ Zj‘ i)tfler {‘?k}kgp } (3.4.2)
1 i wise

is non-empty (see Lemma 3.5.1 below). We then denote the metric projection along the
affine space extending this intersection by 7., i.e.,

mor = argminf{|r — 7’| : 7' € R" and nj, -1 =q«;, forall 1 <k <p}. (3.4.3)

We also define the complementary projection as wir = r — m,r.

Lemma 3.4.1 (Lower bound on reflected distances). Let o € R, then
Ir —or'| 2 |mer — wr!| + It + 7| and  |r—or| 2 |r — 1|
for any r,r" € Q. (With the convention that m,(r) = r if o is the identity.)

Proof. After relabelling the faces and translating our reference frame, we can assume
that 0 e ?:1 F,=Qn (). In this case, o is a linear transformation given by some
composition of the (linear) reflections {o;};<, (see Lemma 3.5.1 below) and 7, becomes
the orthogonal projections along the subspace

Vo={reR":r-n; =0 forall j <p}. (3.4.4)

In particular, or = 7 for any 7 € V, and or € V' for any r € V5. If we now define the
closed conic sets Cq = {re V:k : ron; <0 for 1 < j < p}and 0(Cq) = {or e V- :re Cq},
then we have

QcV,®Cq and o(Q) <V, ®0(Cq). (3.4.5)

Moreover, one can show that Co n o(Cq) = {0}. Indeed, if r,77 € Cq with r = oF, then
for any p € int (| Ji_, Fy (see (3.4.2)) we have 0r +p = o(67 +p) € Qna(Q) = V, for § > 0
small enough, which implies that » = 7 = 0. Thus Cq and o(Cq) are closed conic subsets
that intersect only at zero. Consequently,

|r —or'| 2 |r| + |or'|  for any r, 1" € Cgq,

where the implicit constant is independent of r and 7’. From this inequality, the inclusions
in (3.4.5), and the fact that V, is invariant under o, we conclude that

(r =) + |7y (r — or)]* = |mo (r = 1")* + |myr — omyr'|?

Ir—or'|? = |7, (r
> 1o (r — )2 + (|7ir| + |[7for')? for any r,7" € Q. (3.4.6)

Lemma 3.4.1 now follows from (3.4.6), the triangle inequality, and the fact that o is an
isometry. O
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The second geometric lemma we need is a first-order Taylor expansion of the function
w— [(2—w)n Q| at w=0.

Lemma 3.4.2 (Distributional derivative of Q n (2 — w)). Let Q < R™ be a polytope.
Then, for any a € CP(R™), there exists a constant C = C(|€], |09, ||a|| L=, |Val|r=) > 0
such that

J a(r)dr — f a(r)dr + J a(r)(n(r) - w) dH" 1 (r)] < Clw]?, YweR",
QAN (Q—w) Q o
(3.4.7)

where n(r) is the outward-pointing unit normal and f(r), = max{f(r),0}. In particular,
we have

| arrar — alr In(r) - (w1 + wa)| +n(r) - (wy —wa) . .4 .
fmm)a(?”)d?“ = L (r)d LQ (r) dH"1(r)

A (Q+w2) 2
+ (9(|w1|2 + |w2|2). (348)

Proof. Since Q is bounded, it is clear that F'(z) = SQH(Q_Z) a(r)dr is continuous and com-

pactly supported. Therefore, it is enough to show that (3.4.7) holds on a neighbourhood
of 0. For this, let us define the sets

Fi(z) ={reQ:ap— (ng- 2)4 <ng-r < oyl

where «y, and ny are the same from (3.4.1). Then we find that Q\(Q — 2) = -, Fi(2)
and |Fi.(2) N Fj(z)| = O(]z|?) for j # k. Thus,

m

a(r)dr — | a(r)dr a(r)dr + O(||al| =|z|? "
o gatar = J ot S [ - amar s oQatulzty @9

Next, note that since € is a convex polytope, up to an error < ||a|r«|z|?, we can replace
the integration over the set Fj(z) by integration over the set {r —1n; : r € F},,0 < 7 <
(n(r)-z)4} = Fp x [0, (ng - 2)+]. Therefore, we find that

(n(r)-2)+
a(r)dr = dH Y (r a(r — m(r))dr + O(||al| z=|z|?
LW) ) f <>J (r = rn(r)dr + O(laf =)

0

= L a(r)(n(r) - ). dH" " (r) + O(lllalllz=|=” + [[Vall - |2[*).

which together with (3.4.9) completes the proof. O

Remark. Note that Lemma 3.4.2 also holds for smooth domains by taking a partition of
the unity along the boundary.
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3.4.1 Proof of Theorem 3.1.2
Throughout this section, we use v, for the combined function
vA(1r) = 2(Ssa(r), VS (1)) € RM™ (3.4.10)

where S, \ and V.S; ) are the re-scaled spectral function and its gradient. Similarly, the

continuum version v§™(r) is defined by using the continuum spectral function

Sehn(r) = 2 (1— > detahn(|r—ar|)). (3.4.11)

2m)n
( ) creRgbA \{id}

We start with the asymptotic expansion of
F™(\) = f F (5™ (r))dr. (3.4.12)
Q

Lemma 3.4.3 (Continuum semi-local asymptotics). Let f € C1((0,00) xR™")n L%

loc([O? OO) x
R™). Then we have

F™(\) = . Fsm () dr = f(vo)|QUA + c(f, QN1 + o(A" 1),

where vy and the coefficient c(f,Q2) are defined in Theorem 3.1.2.

Proof. First, we want to use the C! regularity of f to estimate the difference F'™(\) —
f(0)|Q]. Since f(a,b) is only C* at the points a > 0, we start by showing that S}
only vanishes close to the edges and faces of 2. For this, first note that h,(7) = 1 if
and only if 7 = 0 and that h,(7) — 0 as 7 — . Therefore, for any 6 > 0 we can find
Co, C(9),c(d) > 0 such that

SR (r) > ¢(d) and |Vt (r)] < Co, (3.4.13)
for any r in the set

Q% == {reQy: min {|r —o(r)|} = ¢ and min {Ir —or|} =C>)}, (3.4.14)

1<ésm UGR&Z\{UZ}OQSm

where oy is the reflection over the re-scaled face AFj of the re-scaled polytope 2, and oy
is the identity on R™. In other words, € is the set of points of {2, which are at least a
distance 0 of the faces and a distance of order C(d) of the edges of 2, (see Lemmas 3.4.1
and 3.5.1). So from (3.4.13), the assumptions on f, and the simple estimate

1\ | S CO)>A" 2 + A",
we find that
1
F(A) — f(wo)lfu] = J ) J V(v + (W™ (r) — ) - (5™ (r) — vo)dtdr
Q4 Jo

+ O(C(6)2N"2 4 sAm ). (3.4.15)
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The next step is to expand the difference v§™ — v that appears outside V f in a sum of

terms over Ri\{oo}, and then get rid of the terms that only give lower order contributions.
To this end, let us define

2wy,
Po(r) = nhn(|r —or|) and v, = (ps, Vo).
(2m)
Then since range(r,) is an affine subspace of dimension at most n — 2 for any o €
Ra, \{o¢}o<i<m, we can use Lemma 3.4.1, the decay of h,, and the local boundedness
of the gradient of f to show that

J J V(v + t(ws™ — o) - vp(r)dr <s J (14 |ztr))~" " dr <5 A2 (3.4.16)
Q3 Q3

for any o € Rgli\\{o'g}ogggm. As a consequence, we are left with the terms

J J V(v + (5™ (r) — v9))-(— vo, (r))dtdr  for 1 < €< m.
QJ

To obtain the asymptotics of K, we can assume (without loss of generality) that the face
F, lies on the plane {r € R : r, = 0} and the inward-pointing normal is n, = (0, ...., 1).
Under this assumption, p,(r) = 2w, /(27)"h,(2r,) and

2w,
VUZ (7’) = (27_‘,),1

(hn(2rn), Qngﬁn(%n)).

Moreover, one can check that

}Erolo Xﬂs()\rl, s A1, 70) = XE, (71, -, Tne1, 0) X (5,00) (Tn)  and (3.4.17)
}lm VS (L, oy M1, T0) — Vo = — Vg, (1) (3.4.18)

for almost every r € R"™! x (0,00), where x4 stands for the characteristic function of
the set A. Thus since v,,(r) < (1 + ra])"2 € LY(R), we can now re-scale the variables
r1,...,7n—1 by A and apply the dominated convergence theorem to conclude that

Ky(A,0)
i\n - J 1f X, (715 ooy T—1, 0 J Vf(vo = tve,(1n))-( = Vo, (ry) ) dtdry,dry...dr,
Rn—

= L f f(vo — (1, 7)) = F(wo)dr,dH" (1) + O(9), (3.4.19)

where vy (r,,1") = (3:771 (h(2r,), 2n(r’)h(2rn)). The proof now follows by plugging (3.4.16)

and (3.4.19) in (3.4.15) and taking the limit A — 0 and then § — 0. O
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To complete the proof of Theorem 3.1.2, it is enough to show that
F™(\) — F(\) = o(A" ). (3.4.20)

So fix again some § > 0 and let Q3 be defined as in (3.4.14). Then from (3.4.13) and
Theorem 3.1.3 we find that

Sea(r) =¢(0)/2in Q) and  |Vua(r)] < 20, in Qy (3.4.21)

for A big enough. It thus follows from the assumptions on f and Theorem 3.1.3 that

. Foa) = fFr™)dr < [N\ + IIVfIILw« [ (r)a = wa(r)ldr

@7200)“*200,200)3) fﬂi

n—

< C(5)PA"2 + A" + D(S)N"" 51 for some D(8) > 0.

Therefore, we can divide the estimate above by A"™! send A\ — oo and then § — 0 to
obtain (3.4.20).

3.4.2 Proof of Theorem 3.1.1

As in the previous section, we only work out the Dirichlet case in detail. We comment on
the modifications necessary for the Neumann and periodic cases at the end of the proof.
We start again by computing the asymptotics of the exchange energy for the continuum
spectral function

ctm |2 2ys _ / _ /
ES™(\) = J ™ drdr’ = w”)\n Z det O'TJ fin(lr — o7 DI — 71 Ddrdr’.
Q

2 |r =7 (2m)? o 02 |r —r!|*
:=E:T(>\)
(3.4.22)

The first step here is to get rid of the terms E, .(\) that only gives lower order contribu-
tions; to this end, we use the following Lemma.

Lemma 3.4.4 (Lower order contribution). Suppose that either o ¢ {os}o<o<m o7 (0,7) =
(0j,0k) where 1 < j # k < m. Then we have

)\SEO',T(A) _ O()\max{n—2+s,n—1,”7_1+s}+s), (3423)
for any e > 0.

Proof. The key idea is to split the decay of h,, over linear combinations of the components
of r and ' in order to compensate for the integration in €2, x €2y in as many directions
as possible. So first, from Lemma 3.4.1 we have

n+l

E,-(\) < J (14 |mor — Wgr’\)_nglﬂ(l +|mtr 7k )L =) | — | drde,
Q

2
A
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for any 0 < z < (n+1)/2. Hence, identifying the spaces range(r,) ~ R? and range(r L) ~
R" 4, we can make the change of variables (z, 2/, w,w') = (7,7 — w,r', 7ir — wir' wir +

i o + ') € RY x R4 x R4 x R? to find that

NEqz(A) <N |Z|+|Z,|<)\( F )T (L jw]) (2] + )T Y dzdwdw

|w[+|w'| <A
d —d—=,0 —5—1,0 d+sn—1,251
< AT +max{n z,0}+max{zx—s—1,0}+€ < )\max{ +s,n—1,73 +5}+e’

where the last inequality follows from minimizing the function z — max{n — x,d} +
max{z — 1, s} in the interval 0 < z < 23, Thus since d < n — 2 for any o ¢ {o/}o<t<m,
estimate (3.4.23) follows in this case.

For the second case, we first assume that Fj, n F; = . Under this assumption, the
faces F; and Fj, of the re-scaled polytope (2, are a distance ~ X away of each other. So close
to F}, respectively F, we have h,(|r — oxr|) < A\™"2, respectively h,(r — o;r|) < <A

Thus again from Lemma 3.4.1,
N Ey, 0 (N) < ASJ AT (L4 =) | — | drdy g ALty shee
59

Finally, if N Fk #* I, then the normal Vectors n;, Ny are not parallel Consequently, the
variables w; = 7 ]7‘ + 7t r eR, wy =7t T+ 7TL r" € R and r — " € R™ are independent.
Therefore, we can spht "the decay of h and use Lemma 3.4.1 to compensate for the
integration in the directions w;, wy and r —r’. This yields the estimate

_ _n—1
(Lt lo) MOt o (=)
R ) (L [ (7 — 1))

[w; | +[we [ €A

NE, o (A) €\
< )\max{n—2+s+,n—1}+e

which completes the proof of the lemma. ]

From Lemma 3.4.4 and the symmetric relation E, ,(\) = E, ,(\), we see that only the
terms E,,,,(\) and E,, ,,(\) (where oy is the identity in R™) gives significant contribu-
tions. We thus need to compute their asymptotics. Let us start with the term E,; 5, ().
In this case, from Lemma 3.4.2, the decay of h,, and the change of variables z = r — 1/,
we find that

2
EO'Q,G’()()\) _ J |hn(|i|) J dT/dZ
Qx— ’Z| (Qx—2)n2)

- JQA_QA%ZJ)QQW—W [| e nnareriory ¢ xe-20(s a:

I, 2 n
_ )\n’Q’ (‘Z|) dz — )\n—l‘aQ’ (| |) z dz + O()\n 2+max{l— 50})‘
R |2 S

(3.4.24)
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Next, let us look to the terms E,, .. with j > 1. For simplicity, let us assume without
loss of generality that F; < R"~ ' {0} and n; = (0,...,0,1). Let us also denote the
height of Q by H = max{rn R x {r,} n Q # &}, the cross-section of Q) at height
h by Qh) = {r e R* ' : (r;h) € Q}, and the projection sending (r1,...,7,) € R™ to
(r1,...,7n1) € R" by 7,. Since € is a convex polytope, we can bound the area of the
symmetric difference of the cross-sections at different heights by |Q(h)AQ(R')| < |h — R|.
In particular, a scaling argument yields

}(QQA(h + zy) — an)m(QQA(h — Zy) + an)‘ — Q22 (0)] < A" 2(|A] + |2]), (3.4.25)

for any z € 2. We can now use the above estimate with the change of variables z =
r—1r',w =1+ and the decay of h, to obtain

J f ho(|(702, wy)|)? dzdw
UJ U] Q= J(Qr—2) Qg)\—i-z) |2[* 2r
20AH—|zn| h 2 dw.d
J f an;wn)‘) |Q2>\(0)| wT,LL Z +O(>\max{n—1—s,n—2}+e)
Q=0 J|zn| | ‘ 2

)\” | F; 0 Wn)|)?
\ ’f .[ 71; D 4y 4 4 OARSIRIS 2 (3.4.96)
" Jlzn|

where we used that dzdw = 2"drdr’, |Q,(0)| = 2" '\""!|F}|, and that

r2HM\
P ( (14 (72, wn)|) T2 7 (Jwn] + |2])dw,dz < Amex{n=lzsn=2)te
JIzlsA Jlzn|
00
A [ (1 + |(mnz, wn)|) ™" 2| S dw,dz g Amex{n=2n=1=skte - anq
Jz|SA J2HA—|zn]
0
A [ (14 [(Tnz, wn) )" Hz| Sdw,dz < AV175F€

JzIz A Jzn]

for any € > 0. For the last terms, o, ,,(\) with 1 < j < m, one can use the same change
of coordinates together with (3.4.25) to find that

)\’n—l F o0 hn nZs N hn
EO'OJJ'()‘> = JJ j | (|(7T z ‘7:|S)|) (|z|)dwndz + O()\max{n—l—s,n—Q}-i-e).

(3.4.27)

Hence by summing (3.4.24),(3.4.26), and (3.4.27) with the estimates in Lemma 3.4.4 we
conclude that

E;tm(A) _ C:r,l(na S))\n+s+(CF5<’TL, S) + CBL(”; 8)))\’”,*1“1’8 + O(}\max{n 1,n—2+s, —+s}+e>
(3.4.28)

with the constants c; 1, crpg and cpy, defined according to Theorem 3.1.1.
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Finally, to complete the proof we just need to bound the difference ES™(\) — E, ().
For this, we use Corollary 3.3.1, Theorem 3.1.3, and the decay of h (Lemma 3.3.1) to
obtain the estimate

S 2 _ Sctm 2 S, — Sctm 2 218, — Sctm Sctm
f ‘/\’ ’/)\ ‘dd <J‘ ‘)\ )/\ ‘ + |)\ )\/H)\ ’dT’dT,
axq [r—=T1° axe [r—T1')° r—7r'f*
ctm ||2 ctm SCtm‘
< 1S3 =SSl = 717 zaez) + 193 = SX™ Lo -
(n—1)
< A2 2—7(2+2 1 )wa HLq ) +)\n 1) 2 +max{ "5+ s} log)\
(3.4.29)
where % + % = 1 and the log A term is just needed for the case ”T’l = s (e.g. Coulomb

in 3D). Now given ¢ > 0 we can choose ¢ < n/s such that 2/p = 1 — s/n —e. For
such ¢, the function ||~ belongs to L (R™) and the first term in (3.4.29) is of order
P\ 1+s(n—1)2/(n? F1)+e Therefore,

E,(\) = E®™()) + O(A”‘”“Zﬁl < L A0D(GE-7) 1og A) (3.4.30)

which together with (3.4.28) completes the proof of Theorem 3.1.1 for the Dirichlet case.
For the Neumann case, one just need to change the sign before the terms E,, ,,(\). For
the periodic case, one replaces E, ,(\) by

ol !
Eyu(\) :J ho(lr —r" + M| hp(Jr — 7" + )\w’)drdr',
’ 02 lr —r'|s

where v, w € R%Y. By using arguments similar to the ones presented above, one can show
that all the terms F, ,(\) with v # 0 or w # 0 give lower order contributions. The proof
then reduces to computing the asymptotic expansion of Fyo(\) = E,,,(A), which we
already did (see (3.4.24)).

3.5 Strictly tessellating polytopes

We now show that our definition of a strictly tessellating polytope is equivalent to [101,
Definition 2].

Proposition 3.5.1. Let QQ < R™ be an open polytope. Then ) is strictly tessellating in
the sense of Definition 3.2.1 if and only if R™ = UjeNQ where each €); is obtained by
reflecting § across its boundary faces and the hyperplanes extending the boundary faces
of each 2; have empty intersection with (the interior of) . for any j, k € N.

Proof. First, let us assume that () is strictly tessellating in the sense of [101, Definition
2] and then show that € satisfies Definition 3.2.1. For this, first observe that by [101,
Corollary 1], all eigenfunctions of the Dirichlet Laplacian —Aq are trigonometric, thus
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real analytic in R”. Lamé’s fundamental theorem (see [101, Theorem 4]) then implies
that any eigenfunction e; is anti-symmetric with respect to reflection over the faces of 2,
and therefore, e;(r) = detoe;(or) for any o € Rq. Now suppose that o(2) = 7(€2) for
some 0,7 € Rg. Then we have (7710)(Q2) = Q and det(7! o 0)e; (77 or) = ¢;(r) for any
eigenfunction j € N. But since {e;},en is an orthonormal basis of L*(Q), the push-back
map f — det(c o7)(c% o (r71)#) f is the identity in L?(2), which shows that 7 = o and
Q) satisfies Definition 3.2.1.

For the converse implication, just note that ) clearly tessellates R" with reflected
copies of itself, hence, it is enough to show that the hyperplanes extending the boundary
faces of any reflected polytope do not intersect the interior of (2. So let 0 € R and Hy be
the hyperplane extending the face o(F}) of o(€2). Then the reflection over H, is given by
the composition 7, = c oo,00~! € Rg where oy is the reflection over the face F, of Q. As
a consequence, if we suppose that H, n {2 # J, then we have 7,(Q) nQ # & because Hy is
invariant under the reflection 7,. But from our definition of strictly tessellating polytopes,
this implies that 7, is the identity, which contradicts the fact that 7, is a reflection over
the hyperplane H,. We thus conclude that H, n {2 = ¢, which completes the proof. []

Next, we prove the characterization of the intersection Q n o (€2) that was used in the
proof of Lemma 3.4.1.

Lemma 3.5.1 (Intersection characterization). Let Q = {r e R" :r-n; < a;,1 < j <mj}
be a strictly tessellating polytope with faces Fy = {reQ:r-n,=a}. Suppose that I, =
Qno(Q) # F for some o € RY\{oo}. Then there exists ji, ..., j, such that I, = (V_, Fjy,
o €{0j,,...,05,), and the interior

p - . g5 =4 1<k<p.
intﬂij :{TeRn : T"nj{ a; if j = i for some p } (3.5.1)
k=1

< otherwise.

is non-empty. Here (and in the proof below) (o}, ...,0;,) denotes the group generated by

O'jl, ...,O’jp.

Proof. The result follows if we show the following claim:

Claim: int(),_, Fj, is contained in the interior of UU€<%MUM> (). (3.5.2)

Indeed, if this holds, then we can argue as follows. Since 0f) is the union of the interior
of all possible face intersections, for any 7 € R we can find ¢ € int (\2_, Fj, n o7(Q) for
some faces {F}, }x<p. By the claim, the non-empty open set Bs(¢q) n 7(£2) is contained in
_ 00 ()
is a countable union of sets with Hausdorff dimension n — 1). By the strictly tessellating
property, we have 7 = o € {0j,,...,0;,), hence (,_; Fj, < 07(2). Moreover, if ji, ..., j,
is minimal in the sense that int (2_] F. ik, N OT(§2) = I for all possible choice {jj, -

UU€<JJ_17__U]_ ,0(€2) (for ¢ small) and must intersect some o(€2) (because J

0’€<0’j1 IR

{Gx}r_,, then 7(Q) n Q = (_, F}, (by a convexity argument), which proves the lemma.
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To prove the claim we use induction and argue by contradiction. First, it is clear that
intF, is contained in the interior of Q@ N o (€2). Now suppose that the claim holds for
intersections of n — 1 faces and there exists some ¢ € int(),_, F}, for which

Bs(q) € C,, = U o(2)  for any § > 0 small.

TETjy 530

Since Bs(¢)\ [ )i_; Fj, is open and connected (as n > 2) and C, is closed and has non empty
interior inside Bj(q), there exists some point g2 € Bs(q) n dC,\[i_, Fj,- In particular,
q2 € 00(Q2) for some o € {0j,,...05,). Moreover, since o is an isometry that leaves the
intersection (,_, F}, invariant, we have 0= '(g2) € Bs(q) m dQ\(,_, F}j,- Therefore, if
§ > 0 is small enough, 07!(gz) must be contained in the interior of the 1ntersect10n of
at most n — 1 of the faces {F}, }x<n. By assumption, this implies that 07*(go) is in the
interior of C,,. But since o is an isometry (hence open) and C,, is invariant under o, we
conclude that gs belongs to the interior of C),, contradicting the fact that ¢y € 0C,,.

O

3.6 Generalized Weyl law with boundary corrections

Here we give a proof of Theorem 3.3.1. We start with the following identities.

Lemma 3.6.1. Let w,h,(|k|) = X5, (k) be the Fourier transform of the unit ball in R",
be S(R"), and 7, : R® — R be the projection on the first n — 1 coordinates, then

fn E(w)hn(|w|)|z cw|dz = qu [p v. —] (Veb(§ —72) - 2)dE  for any z € R™,

Wy, T
[1+7|
1 log (7=
f J ((mw, )| )dsduw — e (1 — epyin) U g e
n 'wn‘ T n |€/|<1 T
where & € R, p.v.% 15 the principal value distribution
1 . f(7)
[p.v.;] (f(1)) = E1_131+ T dr, (3.6.1)

and b is the inverse Fourier transform of b.

Proof. The first identity follows from Parseval’s formula, MOnvolution property of the
Fourier transform and the identities wb(w) = iVb and sgn(-)(1) = p.v.2, where sgn(r)
is the signum function.

For the second identity from the lemma, we use Fubini’s theorem, the identities

sin(7s)

X[—ss](T) = =2 and hy(|mw, s|) =

_Zf/'ﬂnwwdﬁ’ and Parseval’s for-
S

el G
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mula to obtain

J J hy(|mpw, s|)dsdw = hm f J J o (|mw, s))b(w)dm, wdw,ds
n wnl —s JRN— 1
= lim —J f J J sin((1— €'7) ) b(w)e € ™ d¢ dm, wdw,ds
R—0 wy, —s JrRn—1 Jjgr1<1 S

sin((1 — |¢'?)2s) sin(7s) )
o 2 [ [ [0

To complete the proof we can now use the identity

R - . R o o
QJ sin(as) sm(Ts)dS :J cos(|T — als) cos(|7'+a|s)ds

0 S 0 S

Rq_ Rq_ _
_ J 1 — cos(|T + a|8)ds _J 1 — cos(|7 a]s)ds
0 0

S S
R|T+al
+
= log(|T a|) —J &(S)ds.
|T - CL| R|T—al S

Indeed, from this identity we find that hmRHOO2SR sinfes)sin(rs) 4g — 1 log(|T+a|) and

TS |T—al
2%% w < 2% log(‘“+b‘)| for 7 # +a, and therefore, the result follows from
dominated convergence, since { [ log(l?i} )dr = { |+ log( ‘T+1|)d7'| C for any a. [

Proof of Theorem 3.5.1. From the definition of a*(r, hD) with h = A7 (see [130, Section

n

A - /
Z lek,a"”(r,hD)eyy = WJ a(r/2 + 7"//2,5)6”\(7"_’” )'5S>\(7", r')dédrdr’
QAxQxR™

SN

7

:=A()\)

Hence, by the change of variables z = (r + r’)/2, w = A(r — ') we have

A(N) = JR%XQ(H%)X (z—%) (2,w) Sy (2 %,z 2>\)dwdz

where a(z,w) = M(w) is the inverse Fourier transform of the function w — a(z, w).
Then from Theorem 3.1.3 and the bound @(z,w) <y (1 + |w|)™™ we find that

ATL
AN = 222 N det o A, (M) + O(A 15, (3.6.2)
(2 ) o€R
where
A,(N\) = f J a(z,w)hy (A (1= 0)z+ (1 + o)w/2|)dwd=.
-0 J(OQ-Z)n(Q+3%) —_—

=Zs =We
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For ¢ = o0y, we have z,, = 0 and w,, = w. We can then use Lemma 3.4.2, the bounds
IV.a(z,w)| + |a(z,w)] <y (14 |w|)™ and the first identity in Lemma 3.6.1 to obtain

fm QAJ (z W) hy, (Jw|)dzdw

J a(z, w)hn(|w])dzdw 1 f a(z, w)hﬂ\wbwd?{n*l(z)dw,
\QXR" A 0QxR™ 2

J

2

g g

=% 1 (a) =% cps(a)

wn wn

where we use &~ to indicate equality up to O()\ n+1) This yields the first two constants
from Theorem 3.3.1.

For the boundary layer correction, we need to analyze the terms A,(\) with o €
RN\{oo}. So first, note that if o € Ro\{o}1,, then the range of 7t is at least 2
dimensional. Thus by Lemma 3.4.1 and the decay of h,, one can show that A,(\) <
Am-2-50 for any o € RI\{o,}",. We are thus left with the terms A,,()\) where
{o¢}1<oe<m are the reflections across the boundary faces of 2. For theses terms, we proceed
as we did in the proof of Theorem 3.1.1. More precisely, we can now assume that the face
F, lies on the hyperplane {r,, = 0} with outward normal vector n, = (0, ...,0, —1), denote
the height of Q by H = sup{h : R" ! x {h} n Q} # &, and denote the cross-section of
Q at height h by Q(h) = {r e R"! (r,h) € Q}. Then, by re-scaling the variable z, by
(2A)~!, using the decay of @ and h,,, applying Lemma 3.4.2, and using the estimate

((25) - 0)o (o(25%) - Y| < 5

we find that

2 \H — |wn|
Ag,( f f ho(|mpw, zn|)f a(mnz, 2,/ (2N), w)dm, zdz,dw
T2 o0, 2(0)
Q0

2)\ FyxR™ a(z, w)ﬁ ho(| (0w, 8)|)dsdwdH™ ().

W |

Finally, we obtain cpr(a) from the equation above after summing the terms A,, for
1 < ¢ < m and using the second identity from Lemma 3.6.1. O

3.7 Concluding remarks

We have now proved two-term asymptotic expansions for the exchange energy and for
semi-local density functionals for the free electron gas on a broad class of domains 2 ¢ R",
and for any dimension n > 2. By matching the coefficients of such expansions in the case of
the Coulomb potential in 3D, we obtained a novel exact constraint for generalized gradient
approximations of the exchange energy. To conclude this chapter, we now mention some
possible extensions and further applications of these results.

95



Chapter 3. Exchange Phenomena on Strictly Tessellating Polytopes

FEzxtensions. The asymptotics of F'(A) can be extended to smooth domains for which
the two-term Weyl law (3.1.5) holds, under the stronger condition that f e L.([0,00) x

R3) n C?((0,00) x R?). This can be done by using the gradient estimates in [107] to
extend Theorem 17.5.10 in [58, Chapter XVII, pp.52] to first-order derivatives. With
the extended version of Hérmander’s theorem, one can justify the use of the continuum
version of the spectral function from [58] inside the integration in F'(\) by using a second-
order Taylor expansion of f. The rest of the proof follows the same steps from the proof
of Theorem 3.1.2.

Unfortunately, we can not extend the asymptotics of E,(\) to smooth domains because
our approach requires an error in the pointwise Weyl law (3.1.21) that is uniform over
Q) x Q and of order 0(A?/log \). (This can be seen from estimate (3.4.29) in Section 3.4.)
An error of this order, however, represents an improvement over the sharp pointwise
Weyl law [104, 60, 39], which usually requires strong assumptions on the geodesic flow
[31, 17, 18] (see also [104, Chapter 1]. Another possibility is to improve the L? version
of the Weyl law from Theorem 3.1.4. Such improvements would likely require the use
of more refined tools from microlocal analysis such as pseudo-differential operators and
Fourier integral operators [115, 32, 111]. Nevertheless, the extension of these results to
smooth domains and to general Schrodinger operators seems like an interesting topic for
further research.

Further applications. As briefly mentioned in the introduction, the asymptotic for-
mulas derived here can also be used to obtain exact constraint on semi-local density
functionals for the kinetic energy. More precisely, we can match the coefficients of Theo-
rem 3.1.2 with the coefficients of the asymptotic expansion for the kinetic energy of the
free 2NV (\)-electron gas in Qy,

nwy, I (n—1)wy —1 -1
T[Wana) Z CEDIE QA" = < o1 [0RA 4 0(A")
AT mra)En R

=cr,1(n) i=cr,2(n)

(see [37, 38] or Section 2.6)%, to obtain the constraints

f(i;;/;jao) = p"2epyi(n)  and (3.7.1)

LQJ < %" hn<2f)),—%2/@(27)7@@'))dnm"—l(r') = 1" 2er0(n)| 09

for any 4 > 0. Here h,, and w, are defined in Theorem 3.1.1 and p > 0 is a scale
parameter coming from replacing the length scale L = A by L = pA. For the case n = 3,

SNote that, from the kinetic energy density stated in (3.7.2), one can also use the results from this
chapter (namely Theorem 3.1.3) to derive the asymptotic of T[W3n(x),x] With the improved remainder

O,
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constraint (3.7.1) singles out the Thomas-Fermi functional for the local part of f,

F(p,0) = frr(p) = crpps  with  cpp = %(372)3-
The second constraint on the other hand is new and might be of interest for the design
of semi-local density functionals for the kinetic energy, which play an important role in
orbital-free density functional theory [89, 91, 69, 125, 78, 24].

To conclude, let us mention that the results from this chapter can be used to obtain a
similar integral constraint for the meta generalized gradient approximations (meta-GGAs)
[114, 129, 112]. These are semi-local functionals depending not only on the density and
its gradient but also on the kinetic energy density of the Kohn-Sham system and/or on
higher derivatives of the single-particle density. More precisely, they have the form

Frofg] = | £(ol0). [9p(r)] ), Bp(r)dr
Q

for some f : R* — R, where Ap is the Laplacian of the density, and the kinetic energy
density is defined as

1 N
— 52 Vo,(r Zarja ()|, (3.7.2)

j 1

where ~y(r,7") is the single-particle density matrix of the Kohn Sham system. For the
free electron gas, the single-particle density matrix is related to the spectral function via
(3.1.10). So by noticing that Theorem 3.1.3 also holds for derivatives of the spectral func-
tion of any order, we can repeat the analysis of Section 3.4 to obtain two-term asymptotic
expansions for meta-GGAs.

97



Part 11

Linear Response Formalism in
Time-Dependent Density Functional
Theory

98



Chapter 4

Positive Adiabatic Approximations

In this chapter, we study the solution yr of the Dyson equation

t

V() = volt) + f Yolt — $)Fxr(s)ds, (1.0.1)
where Y is the density-density response function of a general Hamiltonian and F' is an
operator whose Schwartz kernel corresponds to an adiabatic approximation of the Hartree
plus exchange-correlation kernel of time-dependent density functional theory. More pre-
cisely, we shall study (i) the well-posedness of the above equation in an appropriate setting
and (ii) the pole structure of the Fourier transform of the solution xz and their relation
with the poles of the Fourier transform of xo. The results presented here set the linear
response time-dependent density functional theory (LR-TDDFT) approach for computing
the (electronic) optical excitation energies [19, 79, 120] on a rigorous mathematical footing,.
These results are extensions and improvements of the results obtained in collaboration
with Gero Friesecke and Mi-Song Dupuy [25].

4.1 Main results and applications

We now present and discuss the main results of this chapter in detail. For this, let us
first introduce our main assumptions and some notation. Throughout this chapter, H is
a self-adjoint operator acting on the anti-symmetric N-fold tensor product of L*(R3),

Hy = /N\LQ(R?’). (4.1.1)

(For the sake of simplicity, we neglect any internal degrees of freedom.) Moreover, we
assume that H satisfies the following assumptions.

Assumption 4.1.1. (i) (Real Hamiltonian) H commutes with complex conjugation.

(ii) (Spectral Gap) The ground state energy & = info(H) > —o is in the discrete
spectrum of H.
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(iii) (Non-degeneracy) & is a simple eigenvalue.

Since the ground state of H is non-degenerate, we can unambiguously define its ground
state single-particle density (or simply density) as

po(r) =N |Wo(r,ray .y )] drs...

R3N-3

T’N?

where Uy is the unique (up to phase) normalized ground state wave function of H. We
then introduce the norms

W =( [ 0m0r) " ant 151 =( [ 0o

and define the respective weighted L? spaces as
>, ={f : supp(py) — C (Lebesgue) measurable : 1fllrz, < oo},
1
LY, = {f - supp(po) — C measurable :|| f|l,, = lfpo *[|2 < 0}. (4.1.2)

As usual, dr is the Lebesgue measure in R?, and we identify all measurable functions that
coincide Lebesgue almost everywhere. The density-density response function (DDRF) of
H can be rigorously defined as

XH R_)B( 007 1/9())

t — xu(t) =20(t)Ssin((& — H)t)S*, (4.1.3)
where 6(t) is the Heaviside step function, & is the ground state energy of H, and the
operators S = Sy, : Hy — L?/po and S* = S§ : L2 — Hy are defined as follows:

(S@) (r)y=N Uo(r, 79y ooy TN )P(r, 79, oy T )dra..dry, (4.1.4)
R3N-3

(S*f) T1yeeey T frj)¥o(r1, ..., n). (4.1.5)

”MZ

The connection of this definition with the linear response of the system will be clarified
in Section 4.2. For now, we want to briefly discuss how the Fourier transform of yp is
related to the excitation energies of H.

Remark. In the physics literature [83, 120], the name density-density response function
usually refers to the Schwartz kernel of xy(t). Here we see no advantage in such a
kernel representation and refer to the operator-valued function t — xy(t) as the density-
density response function. Let us also remark that xy is sometimes called the (linear)
susceptibility, or the reducible (or irreducible) polarizability operator [79].
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The Fourier transform of yg (see Proposition 4.2.4) is given by the formula

Ti(w) = lim 20— &)

, dSE\S*,
1—0% g, (W +1m)% — (A = &)? g

where wy = info(H)\{&} — & is the first optical excitation (if H has more than one
eigenvalue), E, is the spectral projection-valued measure of H, and the limit is taken in
the distributional sense. Consequently, Yz admits a (unique) meromorphic extension to
the set

Do = {zeC:Im(z) # 0 or |Re(z)| < 2}, (4.1.6)

where 0 = inf oos(H) — & > 0 is the ionization threshold of H (see Section 4.2). The
positive poles of this meromorphic extension are all simple and lie in the set

P(Xn) = {0 <w<Q:&+weo(H) with ran SPY | # &5}, (4.1.7)

where P£+w is the orthogonal projection on ker & + w — H < Hy. P(X#) is a subset of
the excitation energies of H, which we call the one-body excitations'. Hence the one-body
excitations of H correspond to the poles of Yp, and the degeneracy of the associated
excited energies can be estimated by the formula

rank, () < rank Pg = dimker& + w — H,

where rank, (xz) denotes the rank of the pole w € P(xm). (See Section 4.2 for the
definition of the rank of a pole.)

For the Hamiltonian of a system with many interacting electrons, computing yg di-
rectly from H becomes unfeasible due to the high-dimensionality of the N-body space
Hy. Therefore, finding accurate approximations of yg that can be efficiently computed
is paramount for understanding the response of large molecules to external perturbations.
The solution of the Dyson equation for some specific choice of xo and F are believed to
provide such approximations (see Section 1.1.2). This belief is to some extent (e.g., for
computing the low-lying excitation spectra of H) supported by the agreement of numer-
ical calculations with experimental data [19, 68, 96, 120, 123]. Understanding precisely
to which extent this approach is justified goes beyond the scope of the current chapter.
Instead, our goal here is two-fold. First, we want to prove the well-posedness of the Dyson
equation in a setting that is general enough to include many situations of interest in LR-
TDDFT. Second, we want to investigate the relationship between the poles of Yz and the
poles of yo under the assumption that F' is positive.

Let us start with the well-posedness theory. The first step for studying the existence
and uniqueness of solutions to any equation is to agree on the underlying solution space.

'For non-interacting (or independent-particle) Hamiltonians H, these excitations are called the single
particle-hole excitations as they correspond to the excitation energies necessary for moving a single
electron from an occupied orbital to an unoccupied one. This terminology, however, seems misleading
for interacting Hamiltonians, where this orbital picture does not hold.

101



Chapter 4. Positive Adiabatic Approximations

In LR-TDDFT, the goal of the Dyson equation is to approximate the density-density
response function of an interacting system of interest by starting with the density-density
response function of an equivalent non-interacting system (the Kohn-Sham system). The
equivalence here is in the sense that the Hamiltonians of both the interacting and non-
interacting systems have the same ground state density pg. Thus, in virtue of the definition
of xg in (4.1.3), one natural choice for the solution space is given by the space of strongly
continuous time-dependent families of operators on B (LZO, Lf/po), denoted here by

CS (R+7 B(L2 L%/PO)) .

Po?

This choice is not unique but rather useful for our purposes. It is also, in some sense,
maximal (see Proposition 4.2.3). In this space, the following theorem holds.

Theorem 4.1.1 (Well-posedness of the Dyson equation). Let F' € B(LY, ,L2) and
xo € Cs (RJF;B(Lf)O,L%/pO)). Then, there exists a unique solution xr of the Dyson
equation (4.0.1) in the space Cs(Ry; B(L? , L?

% 1/p0)). Moreover, the solution map

SF :CS(R+;B(L2 L?/po)) - CS(R+;B(L2 L%/PO)>’

Po’ PO’
X0 = XF

is bijective.

The proof of the above theorem is a standard application of Banach’s fixed point theorem.
For the convenience of the reader, we sketch it in Section 4.3. Although the proof is rather
simple, we shall see later on that the above theorem guarantees the existence and unique-
ness of the solution of the Dyson equation with widely used adiabatic approximations
whenever Y is the density-density response function of a general Hamiltonian. In addi-
tion, the bijectivity of the solution map shows that any density-density response function
can be obtained by solving the Dyson equation for some reference xo. Of course, this
does not guarantee that yo = x g, for some non-interacting Hamiltonian Hy, a standard
premise of LR-TDDFT.

Next, we want to discuss the poles of the Fourier transform of the solution yr when yq
is the density-density response of a Hamiltonian — interacting or not — satisfying Assump-
tion 4.1.1. To illustrate the kind of results we aim for and the difficulties entailed, let us
consider the following simplified situation. Suppose that F' = f > 0 is a real number and
X0 is the complex-valued meromorphic function given by

Xo(z) = Z %b(w},

< w
weP(xo)

where all b(w) > 0 are also real numbers. This simplification is achieved if xo = xp for
some Hamiltonian with purely discrete spectrum and one considers 1D approximations of
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the spaces L2 and L7, . Then, by formally applying the Fourier transform to (4.0.1), we
obtain

XF(2) = Xo(2) + Xo(2) Fxr(2), (4.1.8)
which is the frequency version of the Dyson equation. This leads to the explicit formula

2ueP(55) #mb(w)
1= Yer(m) 7o 0(@) f

From this formula, we can directly read some properties of xr. First, Yz is meromorphic
on Dg (which is the whole complex plane in this example) and

Xr(2) = (1= Xo(2)F)"'Xo(2) =

lim Yp(2) = —f~  for any w e P(Xy). (4.1.9)

In particular, o and Xz have no mutual poles. Second, a point z € C is a pole of Yp if
and only if it satisfy the equation

=%Ef = Y oo

2 2
P —Ww
weP(Xo)

b(w)f. (4.1.10)

This implies that any pole of ¥z must lie in the real axis. Moreover, by noticing that
(i) Xo(a)f <0 for any a € R with |a|] < minP(Xo),
(i) Xo(«)f is continuous and decreasing along any interval on R\P(Xxp), and

(iii) limae Xo(@)f = 00 = —limay, Xo(@) f, for any w € P(xo),

we can deduce that
0<w <wh <wy<wd <wsg<wl <., (4.1.11)

where 0 < w; < wy < ... and 0 < wi" < wl” < ... are respectively the positive poles of g
and yr. (Note that the negative poles are the reflections of the positive poles over the
imaginary axis.)

These results, in special eq. (4.1.11), are precisely the results we would like to transfer
to the infinite-dimensional setting. In this setting, however, the following difficulties
arise. First, since we are dealing with operators between infinite-dimensional spaces, the
inverse (1—Xo(2)F)~! is not necessarily meromorphic and could be ill-defined everywhere.
Second, the product of positive operators such as b(w) f in our example is not necessarily
positive if the space is no longer one-dimensional. Third, the operators in question act
on different Hilbert spaces, which raises the question of what a positive operator should
mean.

So let us start by precisely defining what a positive F' means. The key observation
here is that F' maps a Banach space to its dual, which allows for the following natural
definition of a positive operator.
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Definition 4.1.1 (Positive operator). We say that F € B(L?/po, L2) is positive if

<ﬁFﬁpm%=J%fGXRﬂer>O forany 0 # fe L} . (4.1.12)

This property has various useful implications for the analysis of the Dyson equation;
we now mention a few that are necessary for stating our main results. For starters, we
see that for positive F', the sesquilinear form

e =, Fgroms

defines a continuous inner-product on the space L?/po. Indeed, continuity follows since
FeB (Lf/po, L? ) and symmetry follows from the polarization identity. Consequently, for
any finite-dimensional subspace V' < L%/po, there exists an F-orthogonal decomposition

L, =vev' (4.1.13)

with associated projections Py, Py = 1— Py € B(L?/po). Here V* is the orthogonal
complement with respect to the inner-product ¢, -)r and should not be confused with the
orthogonal complement with respect to the natural inner-product in L?/po. (The latter
will play no role in our analysis.) In particular, for any density-density response function
XH, the F-orthogonal projections Py,1 on the finite-dimensional subspaces

V, =ran SP§ ., wherewe P({n), (4.1.14)

are well-defined. To simplify the next statements, it is also useful to define V, := {0} for
any z ¢ P(Xz). Observe that the operator-valued function z — PVZ%)?;{(Z)F is holomor-
phic around z = zy for any zg € Dq.

Meromorphic function and pole equation. We are now in position to present our first
main result; it states that Yz is a meromorphic function with poles of finite rank and
gives a criterion for identifying the rank of each pole. For this and the subsequent results,
we implicitly assume that F' € B (L%/po, L,Q)O) is positive and xo = x g for some H satisfying
Assumption 4.1.1.

Theorem 4.1.2 (Fourier transform of xp). The solution xr is a tempered distribu-
tion, and its Fourier transform satisfies the following:

(i) Xr(z) has a (unique) meromorphic extension from Dq (see (4.1.6)) to B(L? L%/po)

(i) The poles of Xz are all simple and lie inside the interval (—§2, ).

(iii) The rank of each pole w € P(Xr) is finite and can be computed via the formula

rank,(Xr) = dimker 1 — Py, xg(w)F < oo, (4.1.15)

=7y
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‘ where Py1 =1 — Py, is the F'-orthogonal projection defined above.

This theorem shows that many aspects of our simple 1D example persist in the infinite-
dimensional case. Precisely, Y is still a meromorphic function whose poles are all simple,
have finite rank, and lie in the real axis. Note also that eq. (4.1.15) is the equivalent of
(4.1.10). In addition, one can find explicit formulae for Xz in terms of xz and F. To
state these formulae, we define the projection Pgy,, as the projection associated with the
decomposition

L2 =ran FSPgﬂw‘ @ ker SP£+|w|S*.
—_—
=FV,

(That this decomposition is possible is another consequence of the positivity of F.)

Theorem 4.1.3 (Formula for 7). Let w € Do and P(Xr) denote the set of positive
poles of Xr. Let Py, be the F-orthogonal projection on Z,, (defined in (4.1.15)). Then,
the following holds:

(i) If z ¢ P(XF), then the operator Py (1 — X (2)F)|yL is invertible in B(V;") and

Xr(z) = (Pya(1— )G(Z)FHVZL)_lPVZL)G(Z)(l — Ppy,) — F'Ppy..  (4.1.16)

(ii) Ifw € P(Xr), then the operatorT,, = PVMSP‘ngS*‘FVW is invertible in B(F'V,, V,,)
the operator

K= Py, (@(w)PFVwaPVw»a(w)F _ x*H(mF) Py (4.1.17)

is invertible in B(Z,,), and we have

_ K:'P, X& 1-P
() = Be 2. X0 (@) (1 — Pry,)

+O(1) (4.1.18)

Z— W

for z close to w.

Remark. Some remarks are now in place.

e First, note that the operator K, defined in (4.1.17) is bounded. Indeed, this follows
from the identities PyuSPH . S* = 0 = SPH . S*FPy. (see Proposition 4.5.4)
and the fact that Z, = V. Moreover, we see that (4.1.16) reduces to the familiar
formula Xr(2) = (1 — Xa(2)F) " 'Xa(2) for any z ¢ P(X#). Similarly, the operator

K,, reduces to K, = —Py Xu(w)F Py, for any w ¢ P(xXn).

e Second, observe that the functions Xr(z) and Xu(z) may have mutual poles. That
this is not the case in our 1D example is a consequence of the lack of dimension.
Nonetheless, note that (4.1.16) generalizes (4.1.9).
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e Third, note that (4.1.18) only describes the leading order coefficient of Xr(z) as z
approaches one of its poles. Fxplicit formulae for the coefficients of a full asymptotic
expansion of the form \r(z) = X, (2 — w)* 2K}, could also be computed by using
the results of Section 4.4. As these formulas become increasingly cumbersome to
state (and compute), we have chosen to omit them here.

Pole shifting. We have now given an explicit way to compute Yr together with a
criteria for verifying whether some w € (—,Q) is a pole of Yz. However, neither of
these results provides an insight into the distribution of the poles of Yz along the interval
(—Q, ). Such an insight, as the alternating behavior in eq. (4.1.11), might be useful for
designing efficient algorithms for finding the poles of Yr. Therefore, our next theorem
might be particularly interesting for applications; roughly speaking, it gives a variational
procedure for estimating the number of poles of Y7 in a given interval I < (—Q,). To
state this theorem precisely, let us define the F-max-min values of Yz F as

pFw) = sup inf (Ff xa(W)Ff, (4.1.19)
vevt  feV
dim Vg SHEH=1

and the F-min-max values as

pp(w) = inf  sup {(Ff, xg(w)Ff). (4.1.20)
VeVt eV
dim VR (£ F -1

Note that because we restrict the search to subspaces of the F-orthogonal complement
VL, the above values are well-defined real numbers for any w € (—,) and k € N.

Theorem 4.1.4 (Variational approach). For any w € (—£2,Q) we have

rank, (Xr) = #{k : pF(w) = 1} (4.1.21)

(with the convention that w is not a pole if the right-hand side is zero). Moreover, the
functions p*, . : [0,Q) — R are non-increasing on any interval J < [0, Q\P(X#),
and they satisfy

(i) pi'(s) <0 for any |s| < minP(Xu),

(i4) limgy, p*(s) = 00 = —limgp, pr(s) for any k < dimV, and w € P(Xz),
(i4) limgp, p*(s) = pF(w) = limgy, p*r4mVe(s) for any k € N, and
(1v) limte, pkidimv, (8) = pr(w) = limg e, p(s) for any k € N,

where the subspaces Vi, are defined according to (4.1.14) (again with the convention
that V,, = {0} for w ¢ P(Xn))
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Let us now briefly clarify the content of Theorem 4.1.4 and explain how it yields
the analogous of eq. (4.1.11). First, we see from (4.1.21) and (i) that the function xr
has no poles inside the interval [0, min P(Yz)]. Moreover, since p* is non-increasing and
continuous on any interval (a,b] < [0,Q2)\P(x#), the sum of the rank of all poles inside
this interval is

Z rank,, (Yp) = max{k : u"(a) > 1} — max{k : pzF(b) > 1}.

we(a,b]

In addition, Theorem 4.1.4 also tells us how to compute the total rank of the poles inside
an interval containing some of the one-body excitations of H. Indeed, it follows from
statements (ii) and (iii) that

Z rank, (Yz) = max{k : u*(a) > 1} — max{k : xz*(b) > 1} + 2 dim V,

we(a,b] wela,b)nP(Xm)
for any (a,b] = [0,9). If we now combine this statement with the fact that
rank,(yg) = dimV,, for any w € P(xn),

we then conclude that the poles of Xz, when counted with rank, are forward shifted with
respect to the poles of P(xx). In mathematical notation, we have just proved

Corollary 4.1.1 (Forward shift of poles). The poles of Xr are forward shifted with respect
to the poles of Xp in the sense that

Z rank, (xr) < Z rank, (X#),

O<w<b O<w<b

for any 0 < b < €.

The Casida formalism. In practice, neither x g nor the solution xr can be computed
analytically. To solve the equation xp(w)Ff = f, and hence find the poles of xr, one
has to appeal to numerical methods. Such methods require some discretization procedure
that reduces the problem to a finite-dimensional approximation, which some numerical
scheme can then tackle. As a final result for this chapter, we prove the convergence of one
such discretization procedure, namely the Casida formalism [19, 79|, in the continuum
(or infinite basis) limit. More specifically, we show that, under the additional assumption
that the Hamiltonian H has a purely discrete spectrum, the poles obtained via the Casida
equations converge in an ordered manner to the true poles of Yz in the continuum limit.
To state this result precisely, let us briefly describe the Casida formalism.

Assuming that H has a purely discrete spectrum, we can choose an orthonormal basis
of eigenfunctions {¥,};>, with corresponding eigenvalues {& + w;};>1 and spanning the
space {Wo}t. After possibly relabelling and excluding some of the eigenfunctions, we
can further assume that the diagonal of the mixed single-particle density matrices do not
vanish, i.e.,

S\IJO\IIJ‘ =N w \I/_O('7T2, ...7TN)\I[]'(',T‘2, ...,T‘N>d7“2...dTN € L%/PO (4122)
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is not identically zero for any j € N. Hence the set {w,};>1 is precisely the set of one-body
excitations of H. However, note that we do not assume the excitations to be in increasing
order, and we allow for degeneracies in the sense that w; = wy, for some j # £ is possible.
Moreover, note that for degenerated excitations w € {w; }3":1, it may happen that

d(w) = #{j : wj = w} — dimspan{SVY, : w; = w} >0 (4.1.23)

because there may be linear combinations of ¥; that belong to the kernel of S. The Casida
formalism then consists in truncating the set of excitations at some m € N, computing
the eigenvalues of the m'* Casida matrix?

C™ e C™M, O™ = 2w, ( STy, FS,) + w2l here 4 boati=,
c , i':: W i ; W; 045, where ] = .

7 ! ! ! 0 otherwise,
and using their square roots as approximations for the poles of Y. The next theorem
shows that, after excluding spurious eigenvalues coming from the mismatch in (4.1.23),
this approach is justified for large m.

Theorem 4.1.5 (Casida formalism). Let xo = xg be the DDRF of a Hamiltonian
satisfying Assumption 4.1.1 and with purely discrete spectrum. Then C™ is diagonal-
izable, all its eigenvalues are positive, and for any A > 0 we have

dimker A\ = C™ = #{j: j < m,w; = VAL — dimspan{S¥; : j < m,w; = VL.
::dn:r(ﬁ)

Let 0 < Ay < Agoo. S Ay dp(w) De the eigenvalues of C™ counted in a way that

#{k : \p = A} = dimker(A — C™) — d,,(VN),

then we have monotone convergence of A/ to the ordered poles of Xr in the following
sense:

(1) A/ANT = AN =0 for any wE < w,, e N and me N, and

(1) limy o A/ A = wf  for any k € N,

where 0 < wi” < wl” < ... — o0 are the ordered poles of Xr counted with rank.

Remark. In typical applications of the Casida formalism, the Hamiltonian H is a sum
of one-body Hamiltonians h acting on each coordinate separately. In this case, the ground

2The usual definition of the Casida matrix [19, 83, 120] is slightly different from the one above.
Nevertheless, as shown in Section 4.7.2 below, the above definition of the Casida matrix is essentially
equivalent to the original one under the assumptions of real Hamiltonian and real-valued (or constant
phase) ground state wave function. Such assumptions are usually satisfied in applications.
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state wave function is the Slater determinant of the first N eigenfunctions of h (the
occupied orbitals). Moreover, the excited states satisfying (4.1.22) are (usually chosen as)
the Slater determinants of N — 1 occupied orbitals with 1 unoccupied (or virtual) orbital.
In this situation, m = Nk where k is the number of virtual orbitals used to construct the
Casida matriz (see Section 4.7.2).

Applications. Let us now describe how the functional analytic setting described so
far is applicable in the context of LR-TDDFT. For this, the key observation is that
most Hamiltonians appearing in non-relativistic quantum mechanics share the common
property that their ground state density po (when it exists) is bounded. For instance, this
is the case for any Schrodinger operators of the form

H=-A + V(Tl, ...,TN),

where V' is some real-valued potential whose positive and negative part lies respectively
in the local and global Kato class of R*" [109]. (In fact, the ground state densities of
such operators decay exponentially fast, see [1, 28, 56, 109] and references therein). For
bounded p, we have the following criteria for adiabatic approximations. (The proof is a
straightforward application of Holder’s inequality.)

Proposition 4.1.1 (Sufficient criteria for adiabatic approximations). Let py € L'(R3) n
L*(R3), and F = F, + F, satisfy

IFfl 2@y o) S | fllor@synrzes)  and  [(Fof)(r)] S po(r)~H (7).
Then F e B(LY, ,L2).
The above criteria can be easily verified for the following adiabatic approximations:

e The random phase approximation (RPA). In the RPA, F' is the Hartree operator

/
(FRPAg) (r) :<FH9) (r) = J g(r') dr.
R [T — 1]
Thus from the Hardy-Littlewood-Sobolev (HLS) inequality, we conclude that FRFPA e
B(L}, ,L2). (In fact we just need po € L3(R3) here.)

Ypo

e The Petersilka, Gossmann, and Gross approximation (PGG) [96]. In the PGG
approximation, the operator F'is given by

L[ Bl g0) g
R

()@ =E) 0 =5 | o) =71

where vy (r,7”) is the ground state single-particle density matrix of the Hamiltonian
associated with yz. Thus from the simple inequality |yg(r,')|? < po(r)po(r’) and
the HLS inequality, we also have FF9C ¢ B(Lf/po, L2 ) for any pg € L3 (R3).
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e The adiabatic local density approximation (ALDA) [127, 120]. This is not a single
approximation but rather a class of approximations. In the ALDA, the operator F

is given by
ALDA GPRe
(En0) (r) =(Fing) (r) + 75 (pe™ () i
= 7156 (po (1))
where elIEG(p) = lECG(p) 4 £IEG () is the exchange-correlation energy per particle

of the homogeneous electron gas. While the exchange part is known and given by

MG (p) = —(C)p3, (4.1.24)

X

the correlation part has to be approximated, which leads to different operators
FAPA - To see why these operators also belong to B(L?/pO,Lf)O), let us take the

parametrization of !¢ introduced by Perdew and Wang [95]. This correlation
approximation can be written as

1

1
PW92 —
e (p) = _QA(]- +aqp 3) lOg(]_ + 1 )7
Bup6 + Bap™5 + Bap72 @p—%”( |
4.1.25

where P = 1 or 2, and A, aq, 31, B2, B3, B+ > 0 are parameters chosen to reproduce

47
the asymptotics expansions of e in the low and high-density limits, and to fit

data from quantum Monte Carlo simulations [20] for intermediate densities. Thus
from (4.1.24) and (4.1.25) (and some tedious calculations), one can check that

PW92

PW92 d2 HEG
|f (p) + pe,

e (po(r) =| 75 (pes (PD) | o] Shoollze Po(r) "

Therefore, FALPA ¢ B(L?/po,Lf)O) for any bounded p,. Other approximations to

HEG () can also be shown to satisfy the above inequality as long as they reproduce

HEG (p) in the low-density

C

€
(up to second derivatives) the asymptotic expansion of €
limit.

In summary, Theorem 4.1.1 and Proposition 4.1.1 guarantees the well-posedness of the
Dyson equation with widely used adiabatic approximations of the xc-operator (see Sec-
tion 1.1.2) under the sole condition that yo = x g for some Hamiltonian with bounded
ground state density.

Regarding the applicability range of Theorems 4.1.2 to 4.1.5, the positive assumption
is a big drawback. Indeed, among the approximations mentioned above, only the RPA is
positive; this can be seen from the Fourier space representation

5 2
<9>FHg>L2(R3) — 47TJ ’g(£)|

5 d¢ >0 for any g € LY(R3) n L?(R3).
R3
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Nevertheless, we can conclude that the excitation energies obtained from the RPA approx-
imation are always greater than the excitation energies of the non-interacting Kohn-Sham
system (see Appendix 1.1). Moreover, the results from Theorem 4.1.2-4.1.5 also apply to
the RPA approximation with other interaction potentials such as the Riesz interactions
(see Chapter 3) or the Yukawa potential [126]. Finally, let us remark that we do not
use the assumption that the underlying physical space is R? in the proof of the main
results of this chapter. All assumptions and proofs are, in fact, of an operator-theoretical
nature. In particular, the same results can be straightforwardly applied to systems on
bounded domains €2 < R™ with general dimensions n > 2, or to spin systems where the
single-particle state is given by ¢*(N) or variants thereof.

Outline of the chapter. We start by introducing some notation in the next paragraph.
In Section 4.2, we give a rigorous definition for the density-density response function,
compute its Fourier transform, and discuss the mentioned maximality of B (L,%w Lf/po). In
Section 4.3 we prove Theorem 4.1.1. In Section 4.4, we derive some results about the
spectrum and the inverse of operator-valued functions around one of its poles. These
results are then applied to the operator 1 — y g F' in Section 4.5. In this section, we give
a detailed description of the operator-valued function (1 — Yz F)~!, which corresponds
to the main step in the proof of Theorems 4.1.2 to 4.1.4. We then complete their proofs
in Section 4.6. In Section 4.7 we study the convergence of the Casida eigenvalues under
the assumption of pure discrete spectrum for H. In Section 4.8, we comment on possible
extensions of the results presented here and related open questions.

Notation

The set R, = [0,00) denotes the set of non-negative real numbers. For A and B scalar
quantities, A < B means that there is an irrelevant positive constant C' such that A < C'B.
Let F,G be Banach spaces. We will denote their respective norms by |||z and |-|¢-
Moreover, we denote the set of continuous linear operators from F' to G by B(F, G), and
their operator norm by

1Tl e = sup |Tfllc-
feF
I fllF=1

For an operator T' € B(F, G), we denote its kernel and range by ker 7' < F and ranT < G.
We also use rankT' = dimranT for the rank of 7. For 1 < p < oo, LP?(R?) (or just
LP) denotes the standard LP spaces with respect to Lebesgue measure. We also use

LP(R™) + LY(R™) and LP(R"™) n L9(R™) for the Banach spaces of measurable (with respect
to the Lebesgue measure) functions with the respective norms

P (A PR TA S

[ fllzreze = maxc{{|fllze, | f]lza}-

111



Chapter 4. Positive Adiabatic Approximations

Moreover, for a continuous function A(u) with values in a Banach space F' and defined
on the neighborhood of some smooth closed curve v < C,

1

— G A(u)dpeF

5 §Aw)due
)

denotes the standard contour integral along the path ~+ oriented counter-clockwise. For
time-dependent functions with values in a Banach space F', we define the Fourier transform
as

flw) = JR f(t)e™dt. (4.1.26)

(Note that this is different from the convention for the spatial Fourier transform used in
Chapters 2 and 3.)

4.2 The density-density response function

In this section we give a rigorous definition for the density-density response function
(DDRF) and relate it to the Kubo formula from linear response theory. We then give an
alternative definition that relies on our assumptions on the Hamiltonian H, and give a
representation formula for its Fourier transform in terms of the resolvent of H.

4.2.1 Definition and Kubo formula

The density-density response function can be defined as follows.

Definition 4.2.1 (Density-density response function). Let H be a Hamiltonian with
ground state Wy, then, for any 7 € R we define the density-density response function
of H as the unique operator xy(7) : L*(R3;R) — L*(R3;R) satisfying

i vp(rr), ( i vo(rk))I(T)] \If0> : (4.2.1)

for all vp,vo € L®(R3;R). In the above, [A, B] = AB — BA denotes the commutator, 0
1s the Heaviside function

<U(9, XH(T)UP>L2(1R3) = 29(7') <‘I’0,

1,  otherunse,

o(t) - {o, ift <0,

and (A);(t) = ™ Ae=" s the time evolution of the operator A in the Heisenberg picture.
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To motivate the above definition, let us relate yg to the Kubo formula for the linear
response of the density of the system at the ground state ¥,. The starting point for the
Kubo formula is to consider a time-dependent perturbation of H,

H(t) = H + ef(t)Vp, (4.2.2)

where the perturbing operator Vp : Hy — Hy is bounded and symmetric, the time
profile f € L*(R;R) is causal (i.e. f(t) = 0 for t < 0), and ¢ € R is the strength of
the perturbation. Then for an observable of interest, Voo : Hy — Hy, we would like to
compute the variation in the expectation value (Vio), := (U (t), VoV (t)), where W(t) is the
solution of the time-dependent Schrédinger equation

(4.2.3)

i0,0(t) = H)T(), t >0,
W(0) = W,

with U, being the ground state wave function of H. For this, one can iterate the Duhamel
representation formula for the solutions of (4.2.3),

o0 = i e £ (5) Vpi(s)ds,

0

to show that the following holds.

Proposition 4.2.1. Let H(t) be the family of self-adjoint operators defined in (4.2.2).
Let W(t) be the solution of (4.2.3) and Vo : Hy — Hn be a bounded operator. Then
Vo = (U (1), Vol(t)) has the following expansion:

Vope = Voo + ie f; O(t —t") fF(t' ) o, [V, (Vo)1 (t —t) ] Uddt' + O(e?),  (4.2.4)

where the remainder is locally uniform with respect to t.

Therefore, if we now assume that the perturbation Vp as well as the observable Vp
are given by one-body potentials

N N
Vo = Y op(re), Vo= vo(rs),
k=1 k=1

with vp and vp real-valued bounded functions, we arrive at the Kubo formula for the first
order (with respect to €) variation of (V»); due to the perturbation ef(¢)Vp.

Corollary 4.2.1 (Kubo formula). Let xg be defined in (4.2.1), then

Vo= Vot = [ o xult = yom s () ot + O,
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4.2.2 Regularity of the density-density response function

We now present an alternative representation for the DDRF of H and discuss the men-

tioned optimality of the space B(L?, L%/po).

First, recall that the operators S and S* are defined by

(SP)(r) = NJ Uo(r,re, ..., rN)P(r, o, ..., 7n)drg...dry, (4.2.5)
(R3)N—1
(S*0)(r1, .., TN) = Z v(ri)Wo(ry, ..., n). (4.2.6)

Thus from Definition 4.2.1, the fact that e®?W¥, = 0¥, and the (anti-)symmetry of
Hy, we see that

xu(t)g(r) = 29(t)1m{56it(5°_H)S*g(r)}.

This expression is similar but not equivalent to (4.1.3) in general. However, under the
assumption that the Hamiltonian is real (i.e. commutes with complex conjugation) and
U, is real-valued (or has constant phase), we recover the formula from the introduction:

xu(t) = 20(t)S sin(t(& — H))S*.

Remark (C-linear extension). We remark that x g is in fact a R-linear operator acting
on R-valued functions. However, it is useful to extend it to a C-linear operator acting on
C-valued functions in the obvious way,

xu(f+1i9) = xuf +ixug, for real-valued f and g. (4.2.7)

Since this is the unique way to extend it, there is no harm in doing so. Also, note that
if F is another R-linear operator, then first composing the C-extensions of xy(t) and F
and later restricting to R yields the composition of the original R-linear operators. Thus
solving the Dyson equation for the C-extensions and restricting to R afterwards yields the
unique solution in the space of R-linear operator-valued functions.

Next, we show that yy has more regularity than simply mapping L* to L.

Proposition 4.2.2 (Regularity of x5 ). The operators S : Hy — L%/po and S* : L2 — Hy
are bounded. In particular, {xu(t)}er is a strongly continuous and uniformly bounded

famaly of operators in B(Lf,o, L%/po).

Proof. Let ¢ € Hy, then using that p(r) = N §pan s [Wo(r, r2, .., 7n)[2dra...dry,

2

po(r) "L ISS(M2 = po(r) " NJ To(r, 19, s 7 )B(rs 7o o)l < pa(r).
R3N-3
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As py(r) € L'(R?), we have S € B(Hy, L}, ). Similarly, by the (anti-)symmetry of W,
and Cauchy-Schwarz,

N 2 N
1S I3, = wa DI [Wo(re o ry)Pdrydry < NJZ () F[Wol* = NIIfIIZs,
i=1 i=1
The strong continuity and uniform boundedness follow from the fact that 6(¢) sin(t(& —
H)) is strongly continuous and uniformly bounded in B(Hy). O

We have now shown that xu(t) € B(E*, E) for the spaces E = L} and E = L'(R?).
Moreover, for bounded py we could also take £ = L'(R3) n L2(IR?)3. In this case we have
(from Holder’s inequality) the inclusions

L}, < L'(R®) n L*(R®) < L'(R?).

Hence a natural question is whether £ = Lf/po is a minimal space for which yg €

Cs (R,B(E*, E)) This question is not only natural but also relevant because a mini-
mal F yields a maximal space of allowed adiabatic approximations B(E, E*).

We now give a partial answer to this question. The idea is the following. Looking
back at the definition of xg, we see from a duality argument that yy(t) € B(E, E*) as
long as we can show that S : Hy — FE is bounded. Thus a reasonable approach is to look
for a minimal subspace E for which S : Hy — FE is bounded. As we show next, £ = Lf/po
is in fact minimal among a general class of function spaces .

Proposition 4.2.3 (Minimality of Lf/po). Let E be a Banach space of (Lebesque) measur-
able functions such that, for any 0 < g < f with f € E, we have g € E and ||g|lg < ||f||&-
Then if S : Hy — E is bounded and E = L?, , we have E = L?

Yeo? Yeo*

Proof. First, observe that by the assumptions on £ we have g € F for any |g| € E. Second,
note that by duality, L2 < E* and SS* : E* — E is bounded. Thus for any g € Lf/po, we

have [g|/po € L2 and

2
dry...dry = [g(r)|

SS*gl/po = |g(r)| + N(N — 1) JRS ()| !‘Ilo(r,;z,(;).,mv)l

But since SS*|g|/po € E, from the assumption on E we conclude that g € E. O

In particular, the space L%/po is minimal among the class of sums, intersections, and

interpolations of weighted spaces of the form L?(|w(r)|dr) for any p and measurable weight
function w.

Remark (Reduced weighted spaces). Note that xy(t)1 = 0 for the constant function
le Lio. Consequently, the operators S and S* can be replaced by the operators B = P\I,éS
and B* = S*P\I,Oi, and the spaces Lie and Lf/po can be reduced to the quotient spaces

3E = LY(R3) n L?(R3) is in fact the setting used in [25].
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of functions up to an additive constant and the annihilator of the constant function 1,
respectively. In other words, we can replace S, S*, L?)O and Lf/po respectively by

B®(r) = S®(r) — (o, ®)po(r), B*f(ri,...ry) =S*f(r1,....r~n) —{po, H¥o(r1, ..., TN,

Lio/l ={lfl: f~gif f(r)—g(r)=c}, and {1}L :{f c Lf/po . ng F(r)dr = O}.

This leads to a more precise description of the spaces of multiplicative potential perturba-
tions and density variations. For simplicity, we keep working with S, S*, Lio and Lf/po.

4.2.3 Fourier transform and poles

We now turn to the representation of Yz in terms of the resolvent of H. This represen-
tation is called the Lehmann representation in the physics literature* . In the sequel, we
present the definition of a meromorphic operator-valued function and show that the poles
of X are located at the one-body excitations of H. We start with the Fourier transform.

Proposition 4.2.4 (Fourier transform of x ). Let xy be the DDRF of some H satisfying
Assumption 4.1.1. Then, the Fourier transform of xg is given by

u(2) =SA=PO((&—2—H) "+ (& +2—H) ") (1 —PI)S*,  for Im(z) > 0,

where the operators S and S* are defined in (4.2.5),(4.2.6), & is the ground state energy
of H, and ngg 1s the orthogonal projection onto the space spanned by Vo. In particular,
the Fourier transform of xg along the real line is the tempered distribution given by

Xa(w) = lim S(1— Pg)((é’o —w —in— H)_1 + (& +w+i77—H)_1)(1 — Pgol)S*,

n—0+
where the limit 1s taken in the distributional sense.
Proof. Since H is self-adjoint, we can apply the spectral theorem to find
f X (t)e'@rmids = § f f 2sin(t(E — A)) e’ A EdtS*
0 0 J&
@ 1 1
- S + dE,\S*
LO So—w—m—XA E+w+in—A A
=SA-PO((&—2—H) "+ (&+2—H) )1 - PisS*,

where z = w + in, F), is the spectral projection-valued measure of H, and we have used
that (& +w +in— H) "o + (& —w — in — H)"'¥, = 0. That the limit  — 07 is a
tempered distribution follows from the fact that yy(t) is causal and uniformly bounded
in time. O

4The classical Lehmann representation assumes that H admits an orthonormal basis of eigenfunctions.
On the other hand, the formula presented below accounts for the essential spectrum of H, which is not
empty in many physically relevant situations.
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Remark. Ezplicit expressions for the distributional limit defined above can be obtained in
terms of operator-valued versions of the principal value and delta distributions (see [15]
for a rigorous account). As they will play no role in our analysis, we refrain from stating
them here.

We can now characterize the poles of xz according to the following definition of a
meromorphic operator-valued function.

Definition 4.2.2 (Meromorphic operator-valued function). Let D < C be open and E, F
be Banach spaces. Then we say that K : D — B(E, F) is a meromorphic function if for
any zy € D, there exist finitely many operators {K_;};<i < B(E, F) such that

K(z) = Ko(z) + Z(Z — 20) K,

where Ko(z) is holomorphic near zy. If K_; # 0 for some j = 1, then we say that 2 is a
pole of K. If in addition K_; = 0 for all j > 2, we say that zy is a simple pole and define
its rank as

rank,, (K) = rank K_;.

Proposition 4.2.5 (Poles of x). Let xy be the DDRF of some Hamiltonian H satisfying
Assumption 4.1.1 and

Dq :={zeC:Im(z) # 0 or |[Re(z)| < Q} = C. (4.2.8)

Then Xg extends to a meromorphic family of operators on Dq with simple poles only.
Moreover, the set of non-negative poles of Xg 18

P(xg) ={we (0,0): & +weay(H) and SPEI§+W # 0}, (4.2.9)
and the rank of any pole w € P(Xn) is given by

rank, (xz) = rank SP(%HLU‘, (4.2.10)

where P51§+w is the orthogonal projection on the eigenspace ker(H — & — w). (Note that
the set of negative poles is given by —P(xXn) since Xu(—=2) = Xu(z).)

Proof. For Im(z) > 0, from Proposition 4.2.4 and the spectral decomposition of H, we
have

Xnr(z) = Z SP5§+A(_/\_Z+Z_>\)P£+AS
)\EO'd(Hfgo)\{U}

1 1

+ S n
Uess(H)go_Z_)\ 80+Z—A

dE\S*, (4.2.11)
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where 04(H) denotes the discrete spectrum of H. So by the spectral gap assumption on
H, we can extend yp(z) analytically to Dg. Moreover, from the spectral decomposition
above we directly see that the set of poles in Dg, is contained in P(xz).

For the statement on the rank of the poles, note that

(fo SPgS™ Praws) = (Péy S f PegS™ Praony = | Pey 5™ f 30y
for any f € L?/ﬂo, and
<\Ij, P£+wS*SP£+w\I}>HN = ”SPc‘f+w\IjH%2(R3)?
for any W € Hy. Thus rank,(Xz) = rank(SP#,S*) = rank(SPZ_ ). O

Remark (Regularity of Yz past the ionization threshold). If H has compact resolvent
(for instance, a Schrédinger operator with a trapping potential), then Dg = C and P(Xz)
is the whole set of singular points of (the meromorphic extension of) xg. However,
for typical Hamiltonians in electronic structure theory (such as the atomic or molecular
Hamiltonians), the spectrum is divided in a discrete and a continuous part [100]. In some
special cases, the regularity of Xg along the continuous spectrum can be studied (see [33]
for a related question) via the celebrated limiting absorption principle [2, 3, 34, 113].

4.3 Well-posedness of the Dyson equation

We now turn to the proof of Theorem 4.1.1. To shorten the notation, for any 7" > 0 and
x € Cs([0,T7; B(L?,, L%, ), we define

po? 1/pg

Ixll7 = esssup|x(t)llz 12 - (4.3.1)
te[0,T] O™ 4/po

Proof of Theorem /.1.1. We start with the existence and uniqueness and then prove the

bijection property. First, we define the convolution map

t

Clx0n )(t) = f Yolt — $)Fx(s)ds.

Since '€ B(L?, , L)) we can use dominated convergence to show that ¢ — C(xo, x)(t) is
strongly continuous. Moreover, we find

1C(x0, )l < Tlixollz x|z (4.3.2)

Thus for 7" small enough, the map C(-, xo) : Cs ([O, T); B(Lzo, L%/po
is a contraction. Therefore, the map - — xo + C(xo,-) has an unique fixed point y =
Xo + C(xo, x) by the Banach fixed-point theorem. The solution y defined for t < T can

now be uniquely extended to any interval [0, K], and consequently to R, by a classical

) = C([0,T]; B(L,, L
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continuity and extension argument. To complete the proof, we need to show that the
solution map
Sp: Cs(Ry; B(L2, 13,)) — Cs(Ry; B(Ly,, L3, )
Xo — xr € ker{xo + C(xo0,") — }-

is bijective in C ([0, 0l; B(Lio, L%/po)). For this, we can exchange the roles of x and y, and
repeat the same arguments to show the existence and uniqueness of the solution yq to the
equation xo = x — C(xo, x) for fixed x. In particular, y = Sr(xo) is the unique solution
of the Dyson equation, which implies that Sg is surjective. Similarly, the uniqueness of

the solution yq implies that Sg is injective, which completes the proof. O

4.4 The spectrum of operator-valued functions around
poles

In this section, we derive asymptotic formulas for the inverse of an operator-valued func-
tion, z — D(z), as z approaches one of its poles. We then use this asymptotic formula
to study the spectrum of D(z) close to its poles. The theory developed here in a general
setting will be applied to the operator-valued function yzF in Section 4.5.

For the discussion to follow, it is convenient to introduce the concept of invertibility
with respect to a projection.

Definition 4.4.1 (Inverse with respect to a projection). Let P € B(H) be a projection
on a Hilbert space H, i.e., P> = P. Then we say that an operator B € B(H) is invertible
with respect to P if PBP = B and there exists an operator B~' € B(H) such that

PB'P=B' and BB '=B'B=P

Moreover, for a closed subspace V- < H, we say that B € B(H) is invertible on V provided
that B is invertible with respect to the orthogonal projection on V, denoted henceforth by
Py.

Remark. In block notation on H = ran P @ ker P, the definition above is equivalent to

saying that
(B 0 4 (B0
B—(O O) and B _<O O)’

where B € B(ran P) is invertible.

4.4.1 Spectral theory of bounded operators

We start by recalling two well-known results on the spectral theory of bounded operators.
For convenience of the reader, we briefly sketch the proof of these results here. Detailed
versions of the proofs below can be found in [46, Chapter 1].
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The first classical result we recall is the continuity of the spectra with respect to the
operator norm.

Proposition 4.4.1 (Continuity of spectra). Let A € B(E) where E is a Banach space
and p € p(A) (where p(A) denotes the resolvent set of A). Then for any B with ||B|| <
(1w — A" we have p € p(A + B). In particular, if A : Bs(0) ¢ C — B(E) is
continuous and W < p(A(O)) 1s compact, then W < p(A(z)) for any z close enough to 0.

Proof. For € p(A), we have
(n=A (u—=A-B)=1—-(n-A)7"'B and (p—A-B)(u—A)"=I-Bu-A)~"

So for ||B|| < ||[(x — A)7!||7!, the operators above are of the form I — K with ||K|| < 1.
The inverse is then given by the Neumann series, (I — K)™' = >}, K". The second
statement now follows from a continuity plus compactness argument. ]

The second classical result we need is the decomposition of isolated parts of the spectra
via the Riesz projections and a countour formula for the resolvent with respect to these
projections.

Proposition 4.4.2 (Riesz projection and separation of spectra). Let v < p(A) < C be a
closed smooth curve separating the spectrum of A. Then, the operator

1 _
P=-—®(u—A)""du

271
¥

is a projection commuting with A. Moreover, for ug ¢ vy, the operator

1 1

S = —

) omi | 1 — 1o
5

(n—A)dp. (4.4.1)

satisfies

S(0) = {((1 — P)(po — A)(1 = P)) " for po inside ~, (4.4.9)

~1
—(P (o — A)P )
where the inverses are with respect to the projections 1 — P and P. In particular, the

spectrum ofA‘ranP € B(ran P) and A}kerP € B(ker P) is given by the spectrum of A inside
and outside of v, respectively.

for ug outside 7,

Proof. That the operator P is well-defined and bounded is clear since v < p(A) and
p— (u—A)~!is continuous in u. To see that P is a projection, note that one can choose
a curve 7y inside v such that all points lying between ; and  are in the resolvent of A.
Thus from a standard argument of holomorphic function theory,

1
P=— ()\ — A)_ld/\.
271
T
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Hence multiplying the above integral by P (defined as a contour integral on ), using the
resolvent identity (p— A)"'(A—A)™t = (u—A)"H((A—A)"' = (0 — A)™', and using the
Cauchy integral formula for holomorphic functions, one can show that P? = P.

Next, since S(pp) commutes with A, formula (4.4.2) follows from the identities

1 1 1 _ 1— P, for g inside 7,
(o = A)S (ko) = 5 o 2 (n—A) " du {_ P for o outside .
v v
and
1 —At-A=-A) 0, f inside 7,
S(o) P _§j€ (1 ) ( ) drdy = or fip insi 'e v
27i (1 — po) (N — p) S(ug), for py outside .

Finally, the last statement follows from two observations. First, the existence of the
inverses in (4.4.2) implies that U(A‘ran ) lies inside v and U(A’ker p) lies outside . Second,

from the decomposition
A= (A‘ranP 0 )
0 A’kerP

with respect to H = ran P @ ker P, we have o(A) = 0(A|kerp) U 0(A|ranp)-

4.4.2 Inverse around a pole

We now consider operator-valued functions of the form D(z) = A+2z"'B+C(z), for 2 € C
close to 0. To study the spectra of D(z) as z goes to 0, our main tool is the following
lemma.

Lemma 4.4.1 (Inverse of operator-valued function around a pole). Let A, B,C, P € B(H)
be such that (i) P is a projection, (ii) B is invertible with respect to P, (iii) A is invertible
with respect to P+, and (iv) P*CP+ = 0. Then, for z small enough, the operator D(z) =
A+ C + 271 B is invertible and

D(z)" = A" +2(1-A7C)B™ i S(OATIC-1)B Y (1—-C0ATY) (4.4.3)
k=0

where A7 is the inverse with respect to P*.

Proof. The proof is based on the Schur complement [128] for the block representation of
D on ‘H = ker P @ ran P. Precisely, let

D(z) = (? g) - (pc(1A_ P) z(—11]; f)JgCPP)’
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then the Schur complement of the block A is
A=D-CA'B=2"'B+ PCP—-PCA'CP.

Thus for small z, the inverse of A is given by the Neumann series

' =zB7' ) M(CAT'C-1)B )"
n=0

But since A = A is invertible on B(ker P), the result follows from the formula

1 1 1 1 g1 —1
D(2)! = (A + A 'BATICA™ A7'BA

NEyE I ) — A H (1 ATB)ATI(1 - CATY.

]

As an immediate corollary of the lemma above, we find an asymptotic expansion for
the resolvent of D(z) in terms of C, B~!, and the resolvent of A.

Corollary 4.4.1 (Resolvent expansion). Let A, B,C, P € B(H) be such that (i) P is a
projection, (i) B is invertible with respect to P, (iii) PLAP+ = A, and (iv) PLCP+ =0
Then for any compact set W < p(A), we have W < p(D(z) =A+z'B+ C) for z small.
Moreover, the resolvent Rp,)(p) = (p— D(2))~" satisfies

Rp() (1) = Ra(p)—2(1+Ra(p Z (nB"'=C(1+Ra(p)C)B™)" (1+CRa())

where Ra(p) =(P*+(p— A)P)™ is the resolvent with respect to P~.

Proof. Just apply Lemma 4.4.1 to the operator u— D(2) = (uP+—A) + 271 (=B) + (uP —
C). O

With the above expansion of the resolvent of C(z), one can compute functions of C(z)
in terms of B~! and functions of A. For the applications in the next section however,
the operator A will not be fixed but vary holomorphic with z. So in the next lemma,
we compute the asymptotic expansion of f(A(z) + z7'B + C(z)) when A(z) and C(z)
are holomorphic around 0 and f is holomorphic around some isolated point py in the
spectrum of A(0). For simplicity, we state the formula only to second order, which is
enough for our applications.

Lemma 4.4.2 (Convergence of spectra). Let P, A, B,C satisfy the assumption of Corol-
lary 4.4.1. Suppose in addition that ug € o(A) is an isolated point in the spectrum of A
and A(z) and C(z) are holomorphic functions satisfying A(0) = A, PLA(z)P+ = A(z),
and C(0) = C. Then, for any f holomorphic around py and z small, there exists 6 > 0
such that 0Bs(pg) is in the resolvent set of D(z) = A(z) + 27'B + C(z) and

FDE) = 5§ f@(n=DE) = W) + O, (1)
)

05 Bs (1o
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where f(A) = (2mi)~! §aBé(u0) flu)(uPt — A)~tdu and (uP*t — A)~t is the inverse with
respect to P+. Furthermore, if the Riesz projection Q = 1(A) satisfies AQ = uoQ, then

F(D(2)) = f(1o)@ + 2f (o) (@(A<0> —CB'C)R+ R(A(0) - CB~'C)Q
—QCB™ — B—10Q> + 2f(10)Q(A(0) — CB'0)Q + O(Jz]?), (4.4.5)

where R :=((u— A)(1 — Q))_l is the inverse with respect to 1 — Q.

Proof. By Corollary 4.4.1, we can find 6 > 0 small such that

for any p € 0Bs(110) and z small. We can now use the formula

OBy (1) = Rag) (1) A(2) Ragz) (1)

to obtain

Rpey (1) = Ra(p) + 2Ra(w)A(0)Ra(p) — 2(1 + Ra(p)C) B (1 + CRa(p)) + O(EZ\Q)- |
446

The leading order of the above expansion yields (4.4.4). For the next formula, note that
since AQ = upQ, we have the expansion

n—1

Ra(p) = (= p0) ™' Q + X (1 — o) R¥ + O((1 = 1)), (4.4.7)
k=0

where R =((uoPt — A)(P+ — Q))fl is the inverse with respect to P+ — Q (which is
a projection since ran ) < ker P), and the remainder is holomorphic for p close to pp.
The result now follows by plugging (4.4.7) into (4.4.6), integrating on §635(“0), and using
Cauchy’s integral formula. O

4.5 The operator Yy I

In this section we want to understand how the positive spectra of Yz (w)F behaves as
w moves along the interval (=, ), and to construct the inverse (1 — Yz F)~! around
the poles of Yz. To achieve this, the key idea here is to define an abstract auxiliary
Hilbert space, Hr, on which the operator Xz (2)F becomes self-adjoint for real values of
z. This allow us to study the spectral properties of YgF on Lf/po via the spectral theory
of self-adjoint operators on Hilbert spaces.

The plan for this section is the following. First, we introduce the Hilbert space Hr and
prove a few useful lemmas regarding the composition BF for general B € B(Lzo, L%/po).
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Then, we use the representation of Xz from Proposition 4.2.4 and the positivity assump-
tion on F' to prove a series of lemmas concerning the positive spectra of yz(w)F for
w e (—Q,9). Once the behaviour of the positive spectra of Yz F is well-understood, we
turn to some asymptotic formulas for the inverse (1—Xz(2)F)~! when z approaches either
a pole of Y or a zero of 1 — Yz F. The latter set will be shown to be the poles of Y in
Section 4.6.

4.5.1 The Hilbert space Hp.

Let F € B(L?/po, Lzo) be an operator satisfying the positivity assumption

<f>f>F:<f7Ff>L2 >O7 for aHYfELQL' (451)

PO

Then, F' is symmetric (by the polarization identity) and {:,-)r defines an inner-product
on Lf/po. Therefore, we can define the Hilbert space Hp as the completion of L?/po with
respect to this inner-product, i.e.,

Hr = Lf/pO(R‘g)”.HF, where || f||% ={f,Ff), forany fe L%/po. (4.5.2)

Even though Hr is an abstract space and not necessarily a function space, we will canon-
ically identify L%/po with a dense subspace of Hp.

The first result we shall need is that the operator F' can be uniquely extended to an
operator in B(Hp, L2 ).

Proposition 4.5.1 (Extension of F' to Hp). There ezists a unique extension of F' to

B(Hp, L2,) and it satisfies
1Flliess, < /TFTz_zz, 4539
PO

Proof. Since || f|l2 =sup .2 {f,9)r2ms), we find that
o Yp

llgll,2 =1
po

IFfllz, = sup (f,Fgy= sup (f,gor< sup ~/{f,Ff)Xg,Fg)

QEL%/P QEL%//J QEL%/p
lgll2 =1 gl 2 =1 lgll2 =1
“po "o “po
< Fll;2 72 .
< 17y Iz, 5,
The result then follows since L?, is dense in Hp. O
Ypo

The next result justifies the definition of Hp. It will be used to show that yg(z)F is
a meromorphic family of operators on Hp whose restriction to R is self-adjoint.
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Proposition 4.5.2 (Adjoint on Hp). Let B € B(L3, ,L%). Then BF has a unique

extension to an operator in B(Hr) and its adjoint on Hp is given by
(BF)*F = B*F,

where B* € B(L%/ ,Lf,o) is the adjoint with respect to the L*-inner-product.

Proof. Note that

for any f € L%/po. Hence, by the continuity of F' and the density of L%/po on Hp, the result
follows. 0
As a last result here, we show that for any B € B(L? | L?

po? 1/pg
composition BF' on Hp is related to the spectrum on L/

), the spectrum of the

Po’
unique extension to Hr. Then, for any 0 # X € C, we have

Proposition 4.5.3 (Inverse of A — BF). Let B € B(L}, L3, ) and BF € B(Hr) be the

ker A\ — BF c L?P

Moreover, if X\ — BF' is invertible in Hpr, then X — BF 1is invertible in L2/ and the

restriction of the inverse (A — BF)™! is given by the inverse of the restriction.

Proof. As the unique extension BF' is given by the composition of B with the unique
extension F' € B(Hp, Lf,o) from Proposition 4.5.1, we have BFg € L/ for any g € Hp.
Hence, if A # 0 and f € ker A\ — BF' we have

BF
fL

1
f=3M==tell,

which shows that ker A\ — BF < L},

For the second statement, note that if A — BF is injective on Hp, then A\ — BF is
injective on L2/ Similarly, if A — BF' is surjective on Hp, then for any g € L/ there
exists f € Hp such that (A — BF)f = g. But since BFf € Ll/p0 for any such f, we
see that A\f = g + BFf € L%/po. Therefore, A\ — BF € B(L?/po) is bijective provided
that A — BF € B(Hr) is also bijective. The result now follows from the closed graph
theorem. [

4.5.2 Positive spectra

Let us now combine the results about Hp, the results from Section 4.4, and the formula
for Xz to prove a series of lemma concerning the positive spectra of xg(2)F. These
lemmas will provide us a fairly complete qualitative description of the positive spectra of

Xu(2)F as z moves along the real axis. This description is the main step in the proof of
Theorem 4.1.4.
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To simplify the next statements and proofs, let us introduce (and recall) some notation.
First, recall that the set of poles of Y is given by

P(Xn) ={0<w<Q:SPI , #0} (4.5.4)

where Pg +w 1s the orthogonal projection on the eigenspace ker H — & —w, S is our usual
operator defined in (4.1.4), and 2 = inf e (H) — & > 0 is the ionization threshold of H.
We also recall the definition of the finite-dimensional subspaces V,, and their F-orthogonal

complement:
V. =ranSPY, < L3, < Hp, Vie={feHr: (f9pr=0, VYgeVi}. (455)

The associated F-orthogonal projections (in B(Hp)) are denoted by Py, and Py. =
1 — Py.. We then introduce the operators B, and the operator-valued function Beg(z)
via the spectral decomposition

_ 2w . 2\ .
XH(Z)FZ Z ﬁSPgJMS F+S(J mdP£+)\)S F. (456)
weP(X1) T Q . ,
:=Begs (2)

Then, the starting point of our analysis is the observation that the family of operators
Xu(2)F is self-adjoint for real values of z.

Lemma 4.5.1 (Self-adjointness of Xz (2)F). The operator xg(z)F satisfies
(XuZ)F)'* = xu(2)F = xu(—=2)F, for any z € Dq. (4.5.7)
In particular, Xg(2)F is self-adjoint for z € (—Q, Q)\ £ P(X#).

Proof. From the formula in Proposition 4.2.4, we have

—~

Xu(2)" = Xu(2) = Xu(=2).
Hence the symmetries in (4.5.7) follows from the ones above and Proposition 4.5.2. [

Next, we want to study the positive spectra of Yz (w)F along the interval w € [0, ).
For this, we first observe that the operators B, defined in (4.5.6) can be seen as positive
operators acting on the finite-dimensional subspaces V.

Proposition 4.5.4 (B, as positive operators on V). The operator B, defined on (4.5.6)
1s symmetric and bounded on Hp and satisfy

Py,B,Py, = B, and {f,B,f)r >0, foranyfeV,. (4.5.8)

In particular, B, is invertible with respect to the (F-)orthogonal projection Py, .
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Proof. That B,, is symmetric follows from Proposition 4.5.2 since (SP# , ,S*)* = SPH, S*.
That B, is non-negative follows from the identity

(f.Bufor =Ff,SPg ,S*Ff) = || Pey o, S*F [l 2z = 0. (4.5.9)

Since ran B, < V,, and B,, is symmetric, we see that B, = Py, B,Py,. Finally, to see
that B, is positive on V,,, note that for any 0 # f € V,, there exists ® € Hy such that
f=SPH_ . Therefore,

(@, Pgl, ,S*Ff) = (FSPL 0. f) =(Ff. f)>0.

H
As a consequence, Pgl,

S*F'f # 0 and the result follows from (4.5.9). O

We now use the positivity of B, to show that the positive spectra of xz(2)F is discrete
for real z.

Lemma 4.5.2 (Positive spectra is discrete). For any s € [0, Q)\P(X#n), we have
ess (X1 (8)F) < (—0,0]. (4.5.10)

Proof. As Qﬁ < 0 for any 0 < |s| < A and the operators B, are non-negative, we have

2w
{f; 2.2 szwf>F <0, forany |s| <w, and (4.5.11)
<f? Bess(s)f>F < O, for any s < Q. (4512)

In addition, from Weyl’s criteria and the fact that all B,, have finite rank, we have

- 2 .
Oess(XH(S)F) = oess( Z v B, + Bess(s)> for any finite set F . (4.5.13)

2 _ 2

weP(Xm)\F § w
Thus for Q > |s| ¢ P(x#), the result follows from (4.5.11), (4.5.12), (4.5.13), and the
Rayleigh-Ritz principle (max-min principle). O

Next, we want to understand the behaviour of the eigenvalues of xpy(s)F as s ap-
proaches the excitations w € P(xz). The idea is to use the operator Py xu(z)F Py as a
reference. Precisely, we can apply Lemma 4.4.2 to prove the following lemma.

Lemma 4.5.3 (Positive spectra close to excitations). Let ug > 0. Then for any 6 > 0
small enough, there exists some neighborhood Us of w on which the projection
1 _— _
Q) = g P - TIF) (4.5.14)
dBs (ko)

is well-defined, holomorphic, and satisfies

Q(2) = Qw) + O(|z — wjl),

where Q(w) is the orthogonal projection on ker pog— Pir X (w)F. If Q(w) = 0, then Bs(po)
is on the resolvent of Xu(2)F and Q(z) =0 on Us.
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Proof. Note that A(z) := Py Xu(z)F Py is holomorphic and bounded for z close to w.
Moreover pp > 0 must be either on the discrete spectrum or on the resolvent set of A(z)
(see Lemma 4.5.2). Either way, we can apply Lemma 4.4.2 to the operator

Xa(z)F=A(z)+ (z —w)™' B, +Pyrxu(2)FPy, + Py xn(z)FPy; — (2 +w) 'B,,
N — N—— - ~ _
=D(z) =B =C(z)

with f(u) = 1 to prove the Lemma. (Note that ker jio—Pyr Xn(w)F = ker pio— Py X (w)F Py,
for any po # 0.) O

We are now in position to complete the description of the qualitative behaviour of the
positive eigenvalues of Yz (2)F as z moves along the interval (—€, ). To state this last
lemma, let us denote the max-min and the min-max values of Yz F over V.1 = Hp as

piw) = sup  inf (f,Xp(W)Ffr and py(w):= inf sup (f,Xu(w)Ff)p.
chj_ fEW WCV:‘ fGW
dim W IflF=1 dim W=k || f|| p=1
Lemma 4.5.4 (Max-min and min-max values). The functions u* and p are non-increasing
along any excitation-free interval J < [0, Q\P(xg). Moreover, they satisfy

(i) pi(s) <0, for |s| < minP(Xm),

(ii) limy_,,+ pF(s) = 0 = —lim,_- (), for any 1 < k < dim 'V,

(i) iy (5(5) = (@) = Ty f5Y% () for any w € P(Th), and

(1) img_ - frrdimv, (W) = pr(w) = lim,_,+ pg(w), for any w e P(xXn).

Proof. From the proof of Lemma 4.5.2, we see that yg(w)F < 0 for |w| < minP(xr),
which proves item (i). Next, note that for w € [0,Q)\P(X#), items (i), (¢i7) and (iv)
are equivalent to the continuity of u; and p* (since V,, = {0} at these points), which
follows from the continuity of Yz (w)F around these points. To see why p* and sy are
non-increasing along any interval J < [0, Q)\P(x), just note that

—~ * A * * A *
foxu(s$)Efr = f deEﬁ&S Ffl*= J deEﬁ&)S Ef|?

w1

> (f,xu(8)Ff)r, forany §>s>0in J. (4.5.15)

In particular, the limits lim, ,,+ u*(s) € R U {+00} exists for any k € N and w € [0, Q).
To show that this limit goes to infinity for £ < dim V,, we note that

—~ . 2
lim+<f, xu(s)Ff) = hm+ rww2<f, Bof)+O(1) =, forany0# feV,,
by the positivity of B,,. On the other hand, we can use that Py . xu(s)F Py 1 is bounded
for s close to w to show that the limit is finite for £ > dim V,,. A similar argument implies

that lim,_, - pr(s) — —oo if and only if k£ < dim V.
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Finally, the last two items follow from Lemma 4.5.3. Indeed, since xpy(s)F is self-
adjoint, we have 1*(s) € o(xn(s)F) for any k € N and s ¢ P(\z). Lemma 4.5.3 then
implies that lim,_,.+ 11*(s) belongs to the spectrum of Py1 X g (w)FPy1 (on B(V,)')) as long
as it is finite. Moreover, Lemma 4.5.3 also implies that any point pg € o(Py1Xa(w)FPy1)
that lies above the essential spectrum must be the limit of exactly dim ker po— Py 1 X (w)F Py
eigenvalues of xy(w)F. Item (i7) and an ordering argument then completes the proof of
(731). Item (iv) follows from similar arguments. O

4.5.3 The inverse of 1 — xy(2)F

We now combine the results from the previous sections to show that the inverse of 1 —y gz F
is meromorphic and to obtain asymptotic formulas for (1 — Xz (z)F)~! when 2z approaches
the set of poles of Y or the set of zeros of 1 — Y5 F. These formulas will be used in the
next section to prove Theorem 4.1.3.

We start by showing that 1 — xg(2)F is invertible for z away of the real axis, or
before the first excitation w; = min P(xg). In addition, we obtain an upper bound on
the growth of ||(1 — Xz (w+in)F)~!|] as n — 0. This bound will be used to show that the
poles of Y are all simple.

Lemma 4.5.5 (Inverse away of the real axis and before wq). Let pg > 0. Then, the
operator g — Xu(2)F is invertible for any z € {w+ine C:n # 0 or |w| < wi}, where
wi == minP(xg). Moreover, we have

(10 = Xz (w + i) F) 7| < pg 2]l (4.5.16)
for any z € C\R.

Proof. The first step is to prove the following estimate on the ratio between the real and
imaginary part of xz(2)F:

2 2

Re((f, Xu(2)Ffor) < max{O, %}Hm((ﬁ C()Fr)| (4.5.17)

For this, let z = w + in and suppose that w? — n? < w?. Then from the spectral theorem
and the representation of Yz (z) in Proposition 4.2.4, we find that
<0

A
e N

0 )\(0)2 o 772 _ )\2)
A2+ 222

Re(f, 551 (2)F for = 2 f

w1

d| P ST FfI* <0,

which gives estimate (4.5.17) in this case. Now suppose that w? — n* > w}. Then since
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<0
A

Mw? —n? = \?) . . 5 5
Pl is negative for A > +/w? — n?, we find that

A/ w2—n?2 )\(WQ . 772 _ )\2)

Re(f, Gil2)Ff) <2 f d|EE S Ff|]?

., o P

[ R
% 9 L o Mi%d]\EgHOHS*FfHQ
S, G P

which proves (4.5.17). Next, let g : C\{w;, —w1} — [0, 00] be the function

w2—772—w%}

(4.5.18)
|wn]

g(w +in) = maX{O,
Then by estimate (4.5.17),
(0 = X (2)F) [} = (Red fo o = Xar(2)F o) + [l f, T (2)F ol
> (Re(f. Xu(2)F f)r) (1 + g(2)™*) — 2uoRe(f, X (2) F f)r + 15,

for any f € Hp with || f||r = 1. Hence by minimizing the function 7 +— 72(1 + g(z)?) —
2107 + p, we find that

(10 — X () F) fll 7 = ——— | £ - (4.5.19)

V14 g(z)?

Moreover, because g(z) = g(z), the same lower bound holds for the F-adjoint (x g (z)F)*F =
Xu(Z)F. Therefore, pg — xg(2)F is invertible whenever g(z) < oo, which is precisely the
set {w+in:n # 0or|w < w}. Estimate (4.5.16) now follows from (4.5.19) and the
estimate g(z) = max{0, (w? — n* — w?)/|wn|} < |w|/|nl. O

Now we can use the estimate just proved and the results of Section 4.4 to show that
(1 — xgF)~! is meromorphic.

Lemma 4.5.6 (Inverse of 1 — \gF). The function (1 — XgF)™' : Dg — B(Hr) is
meromorphic and its positive poles are precisely the set of zeros of 1 — xgF, i.e.,

P(xXr) 2{0 <w<Q:Z,=kerl — Pyixu(w)F # {0}},

Furthermore, we have the following expansions of (1 — XgF)™' near the w € P(Xm) U

P(Xr):
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(i) For we P(xu)\P(Xr), we have

(1—xaw+2)F) ' =R, — 2(1+ RoXg(w)F)B, (1 + Yg(w)FR,) + O(|z]?),

(4.5.20)
where Ry, ==(Py1(1— )@(w)F)Pvﬁ)fl is the inverse with respect to Py..
(ii) For w e P(Xr), the operator
K., = Pz, (Xu(@)FB;' T (W) F — i (w)F) Pz,
15 inwvertible with respect to the orthogonal projection Pz, and we have
(1—xXglw+2)F) "t =2"1K1+0(1), (4.5.21)
(1—Xnlw+2)F)'Py, = —K.)'Xu(w)FB,"' + O(|2]). (4.5.22)

Proof. Since 1 — X F is holomorphic on Dq\ &+ P(X#), the inverse (1 — Yz F)™! is also
holomorphic on this set whenever it exists. Thus by Lemmas 4.5.2 and 4.5.5, the inverse
(1 — XpF)~" is holomorphic on Do\ (+ P(xn) v =P(XF))-

For w € P(xg), we want to apply the results of Section 4.4 to the operator yg(w +
2)F = A(z) + 27'B + C(2) where

A(z) = Pyixu(w+ 2)FPy., B:=DB,, and
—~ —~ —~ BUJ
C(2) = Puxa(w+ 2)FPy + Pyixa(w + 2)FPy, + Py, (XH(W +2)F — 7> Py,
(4.5.23)

In the case Z, = {0}, the operator A(0) is invertible with respect to Py,1 (as its positive
spectra is discrete). Hence formula (4.5.20) follows directly from Corollary 4.4.1. For the
case Z,, # {0}, we start by showing that K, is invertible on Z,. For this, note that the
Riesz projection of Yz (z)F around 1 is well-defined by Lemma 4.5.3, and it satisfies

Q(2) := (2mi)~* § (1 —xXu(w+ 2)F) 'dp = Py, + O(|z)) (4.5.24)
0Bs(1)

for z close to 0 and § > 0 small. Moreover, by applying Lemma 4.4.2 to Yg(w + 2)F =
A(z) + 27'B + C(z) with f(u) = 1 — p we find that

Q)1 - Gil2)F) = (2mi) 35 (1= @)t — Gi(2)F) "'yt = 2K + O(|2]2).
9Bs(1)

Thus from the blow-up estimate (4.5.16) we obtain

(1= Xn(w + in)F)Q(in) f = nK.Q(in)f + O(ln|*) = n||f||, for any f e ranQ(in).
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But since rank Q(in) = dim Z,, < o for n small, the above estimate implies that K, is
invertible on Z,,.

The next step is to compute the expansion of (1 — Xz F)~!. For this, let us rewrite
1 — Xu(2)F in block notation on V.+ @V,

Pyi(1 = Xu(w+2)F)Pyr —Pyixu(w+ 2)FPy, ) _ (A B)

L= Xn(w+2)F = ( —Py,Xu(w+2)FPy Py,(1-xXulw+2)F)Py, ¢ D

Thus since B, is invertible on V,, we have

-1
Dt = (va(l —Xu(z+w)F +27'B,) Py, — z_le> = —2B;'+ O(]z]*) (4.5.25)

=0(1)

From this equation and the identities Py, Py1(1—Xg(w)F)Pyr = 0 = Pyr(1-Xua(w)F)PyL1 Py, ,
the Schur complement of the block D is given by

A=A-BD'C=Py. (1 —xu(2)F + z@(z)FB;lﬁI(z)F> Py 4+ O(|2%)

- P ((1 CGHW)F) — =G W) F + z@(w)FB;%a(w)F) Pys + O(?)

.

= PzJ_pvJ_(l — )z-]\{(CU)F)PvJ_PzL +z Kw +Zé(2’)),
w w — w (A/'J \ )

=B =A

where CN’(z) satisfies P, C(2)Pz, = O(|z]). An application of Lemma 4.4.1 to A =
2(A+ 271B + C(2)) € B(Z: A V1) then yields A™! = 271K 1 + O(1), which together
with (4.5.25) and the Schur complement inverse formula

1-—xg(x)F)'=D'+(1-D'C)A (1 -BD™)

completes the proof of (4.5.22). The case w € P(xr)\P(xz) follows from similar calcula-
tions. O

4.6 The Fourier transform of yp

We are now ready to prove the main theorems of this chapter. We start by showing that
Xr 1s a tempered distribution and then compute the asymptotic expansion of Yz around
its poles. This will be enough to prove Theorems 4.1.2 and 4.1.3. Theorem 4.1.4 is an
immediate consequence of Lemma 4.5.4 and Theorem 4.1.2.

4.6.1 Yr as a tempered distribution

To show that xr is a tempered distribution, we combine Lemma 4.5.5 with the following
lemma from [119].
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Lemma 4.6.1 (Tempered distribution as boundary value of holomorphic functions). Let
E be a Banach space and F : {z € C: 0 < Im(z) < 2} — E be a holomorphic function
such that

(1 + )™
K
for any 0 < n <1 and for some M € R and K € N. Then, for any f € S(R), the limit

lim, o+ § F(w + i) f(w)dw ezists in E and satisfies

|1F(w+in)||e < (4.6.1)

Y

SIS+ D ).
E

n—0

lim fR Flw + in) f(y)dw

In particular, lim,|o F'(w + in) defines a E-valued tempered distribution.

Proof of Lemma 4.6.1. The proof is a simple iteration of an integration by parts argument
with Morrera’s theorem. For n € N, let us define

n w
FE(w +in) = f F" (i )dn' + J FED (W 4 im)du,
1 0

where F(© — F. Then, since the line integral of a holomorphic function on a simply
connected domain along a closed rectifiable curve is zero, from estimate (4.6.1) we find
that

< (14 |w)™

1FCD (@ + o) — POV (e + i) s =\ Ll
E Mo

70
f F(w + in")dy

m

for any 0 < 9 < 1 < 2. In particular, we have

(L + wh™ (1 + Jwph™
K-1 ’

+HFE(w +d)l|e < e

1FCD (@ + i)l <

Next, by induction we can show that
IFCS (w +in)l| e < (1 + w5 (1 +logng '),
for 0 < ng < m < 2, which implies that
IFE D (w4 i) — FERD(w i)l p < (1+ [w) S m (1 +logn ), (4.6.2)

for 0 < ng < m < 1. Therefore, integrating by parts we have
f (F(w +in) — Fw+ im))f(w)dw
R

= f (FER D (w +ing) = FER "D (w + i) f5H D (w)dw
R

< m(1+logny HILFEIL + lw) M i wy,

for any 0 < 19 < n; < 1, where the bound is in the EF-norm. The result then follows since
m(1+logn; ') — 0asn — 0 and E is a Banach space. O
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Theorem 4.6.1 (xr as a tempered distribution). Let xy be the DDRF of a Hamiltonian
satisfying Assumption 4.1.1 and F € B(Lf/po,Lf)o) be positive. Then the unique solution
Xr of the Dyson equation (4.0.1) is a tempered distribution.

Proof. Since C' = sup,cg_ ||x#z(t)|| < o, the Fourier transform Yz(z) is holomorphic and
well-defined for Im(z) > C. Hence applying the Fourier transform to (4.0.1) and using
the convolution property,

Xr(2) = Xu(2) + Xu(2) FXr(2), (4.6.3)

for Im(z) > C. But since the operator-valued function z — (1 — Xo(2)F)™! € B(HF) is
holomorphic on the upper half-plane (by Lemma 4.5.5), we see that

Xr(2) = (1= Xu(2)F) " 'Xa(2)

is the analytic extension of Yz € B (Lio, Hr) to the upper half plane. Moreover, we have
the bound ||(w + i — H) Y|uyny < |7|7! because H is self-adjoint. So from the formula
for Xz (2) in terms of the resolvent of H (see Proposition 4.2.4), we obtain

IXa (@ + i)z 2 < Il (4.6.4)
PO
Therefore, by using this estimate and the blow-estimate (4.5.16) in (4.6.3), we have

IXF (W + i)z, 4 S 1721+ [w]), (4.6.5)

for any 1 > n > 0 and w € R. Note however that the bound here is on the operator norm

in B(L3 , Hr) and not in B(L2 , L}, ) as we would like. To obtain the bound on the right

norm, we now use (4.6.3) again. Indeed, since F' € B(Hp, L7 ) (by Proposition 4.5.1),
from estimates (4.6.4) and (4.6.5) and the identity (4.6.3) we obtain

IXp(w+imlies ez, < Xm0+ imlieg ez, (1 1Fllen, X0 (@ + i)z, 90,
SURMCE )

The result now follows from Lemma 4.6.1.

4.6.2 The poles of Y

Let us now prove Theorems 4.1.2 and 4.1.3.

Proof of Theorems 4.1.2 and 4.1.5. We have already shown in the proof of Theorem 4.6.1
that

Xr(z) = (1= Xu(2)F) " 'Xa(2)
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is the (unique) analytic extension of xz(w) to the upper half-plane. Since the composition

of meromorphic functions is also meromorphic, from Lemma 4.5.6 and Proposition 4.2.5

we see that Yz is also meromorphic on Dg. Moreover, its poles can only lie on the set

P(xX#) v P(xr) as both Xg(z) and (1 — xg(z))~! are holomorphic outside this set.
Next, let us consider the points w € P(xg) v P(Xr) and fist show that

L2 = FV,®ker SP, S*

is a decomposition of Lfm into closed complementary subspaces. That they are closed
subspaces of L2 is clear because SPH. ,S* is bounded and dimV,, < . To see that
they are complementary, note that B, = SP;: 4w F is injective on V,,. Hence F'V,, N
ker SPH S* = {0} and codimker SPY, S* = dimV,, = dim F'V,, < 0. Therefore, the
above decomposition holds and the associated projection Ppy,, € B(Lf)o) is well-defined.

Moreover, we see that the restriction SPg, S* € B(FV,,V,) is invertible and

v

Bl = F 'SP, 5", ) 'Py, and BJ'SP{, S =F'Ppy,. (4.6.6)

[v.)

Using this formula, the expansions in (4.1.16) and (4.1.18) follows directly from the iden-
tity X7(2) = (1 — Xg(2)F)"'xz(2) and the expansion on (4.5.20) and (4.5.22).
Finally, to see that (4.1.15) holds, it is enough to show that

rank, (Yr) = rank,((1 — )?})*1), for any w € P(xr).

The inequality rank, (Yr) < rank,((1 — XgF)™' follows from the explicit formulas in
Theorem 4.1.3 and the characterization of (1 — Yz F)™! in Lemma 4.5.6. The opposite
inequality follows from the identity

XrF = (1= XuF)"'XuF = (1-xuF)™ - 1.

4.7 Casida formalism

The goal of this section is to prove Theorem 4.1.5 and briefly discuss how the general
Casida formalism presented here reduces to the original one in the non-interacting case.

4.7.1 Proof of Theorem 4.1.5

Throughout this section we assume that H is a Hamiltonian with purely discrete spectrum
and satisfying Assumption 4.1.1. Since H is an operator on an infinite dimensional space,
we can choose an orthonormal family

{U;};2, c Hy suchthat HV; = (& +w;)¥; and  lim w; = +oo.

Jj—©
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As mentioned in the introduction, we can further assume that {w;}52, = P(Xm) after
possibly reducing and relabelling the set {U; } As in the introduction, we do not
assume that w; < wj;1, and w; = w;, for some k 7& j is allowed. The m* Casida matrix
is then defined as

1, ifj=k,

0, otherwise.

]n]z = 20)j<5‘1’j, FS\I’k>L2(R3) + w?éjk, where 5jk: = { (4.7.1)

Let us also define the m* truncation of the finite-dimensional subspaces {V,}wso and
their direct sum as
VI =span{SV, : j <mand w; = w} and H™ = @,=oV)", (4.7.2)

where we use again the convention that V" = {0} if w ¢ {w;}7L,. In addition, we define
the degeneracy of w with respect to the truncated space V" as

dp(Ww) =#{k <m:wp =w} —dim V" (4.7.3)

Then, we start by showing that the eigenvalues of C" are related to the truncated density-
density response function

i 2““ SP\I, S*.

where Py, is the projection on the space spanned by V.

Proposition 4.7.1 (Casida matrix and truncated response function). Let )?\H”(z) be de-
fined as above, then for any w > 0 we have

dim ker w? — O™ = dimker 1 — P&m@(w) + dp (W),

where P‘}m is the F-orthogonal projection on the F-orthogonal complement of the space
v defined in (4.7.2).

Proof. Let 0 # f € Ll/po satisfy P‘imx/\g(w)Ff = f, and define

aj = (W — w))'2w;(SV;, Ff)  for any j < m with w; # w. (4.7.4)
For j with w; = w, we can choose the rest of the coefficients {a;} in a way that
Z ajS\Ifj = _PVJ” Z OéjS‘Ifj. (475)
Jj<m j<m
wj=w wjFw

This is possible because V" = span{S\I/ | < m,w; = w}. So by the definition of C™
(see (4.7.1)) and the assumption Py x i (w )F f = f, one can easily check that

f= Z a;SV; and (C™a); = 2w;(SV;, Ff)+wia; for any j < m. (4.7.6)

=1
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Since f € (V/™)* implies that (SU;, Ff) = 0 for any w; = w, we conclude from (4.7.4)
and (4.7.6) that o € ker w? — C™. Moreover, there are exactly d,,(w) + 1 ways of choosing
the «;’s satisfying (4.7.5), by the definition of d,,(w). Hence dimker w? — C™ = d,(w) +
dimker1 — P‘}Wm@(w)F.

For the opposite inequality we let o € ker w? — C™ and construct f € Lf/po via the first
equation in (4.7.6). The second equation in (4.7.6) then shows that f = 0 if and only
if a; = 0, for any j < m with w; # w, and Z;’:le:w a;SV¥; = 0. Then on one hand, we
have at most d,,(w) linearly independent solutions o € kerw? — C"™ with 3}, a;S¥; = 0.

On the other hand, we can use both equations in (4.7.6) to show that Pim@(w)Ff = f.

These two statements then imply that dim ker w? —C™ < d,,(w) +dim ker 1 — Py, X (w)F,
which concludes the proof. n

Note that X@(z) has the same form as the Fourier transform of the density-density
response function of some Hamiltonian. As a consequence, one can show that the min-
max/max-min results from Lemma 4.5.4 also holds for @(w)F . This fact together with
Proposition 4.7.1 can be used to show the following corollary.

Corollary 4.7.1 (Eigenvalues of Casida matrix). The Casida matriz C™ is diagonalizable
and all its eigenvalues are positive.

Proof. By Proposition 4.7.1 and the identity m = ), _, d,(w) + dim V), it is enough to
show that

Ydimker Z7' = Y dim V", where ZJ' =ker1— P x(w)F. (4.7.7)

w>0 w>0

To this end, we first note that since (7., V™) = (oo (V)" < ker X w)F and Y7 (w)
is symmetric, it is enough to deal with the restriction x’j(w)F to the finite dimensional
space H™. In particular, the eigenvalues of x7!(w)F on H™ are given by the F-max-min

values,

phm = sup inf <Ff,x/%(w)Ff> for k < dimH™.
VermavmyL TV
dimv=g ~ IfllF=1
Moreover, the F-min-max values over ‘H™, denoted here by {(tkm }k<dim#m, also corre-
spond to eigenvalues and the following relation holds:

[Lk’m((,U) = ,udim'Hm—k’—i-l,m(w)a for any 1<k <dimH™. (478)

Next, let us compactify the extended real line by identifying the points {+o0} with +7 on
the circle S ~ [—m, 7]/ ~ via the stereographic projection s — s/(7? — s%). The eigen-
values of " (w)F can then be seen as functions p#™ : [0, 00)\{w; y, — S*. Moreover, if
we define

Mz@(s) — Nk—1+2w<s dim V] mod dimHm-‘rl,m’ for any s € [0’ OO)\{CL)]'};nzl,
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then we see from Theorem 4.1.4 and the relation in (4.7.8) that the functions pu}* can
be continuously extended to the whole interval [0,00), and they move in the clockwise
direction as w grows. Furthermore, we have

dim Z™ = #{k : p"(w) = 1/(7* — 1)}. (4.7.9)
To conclude we now make two observations. First, since limg,_o X7 (w)| = 0, we have

lim 7' (w) =0 for any 1 < k < dim H™.

w—00
Second, Theorem 4.1.4 (ii) implies that the eigenvalues functions pf?, ..., ! 3;m cross the
point {+7} =~ {+oo} exactly >, _,dim V" times. Consequently, the eigenvalue functions
P ey (U 2 m mUSE cross the point 1/(w? — 1) in the circle exactly Y, dim V™ times as
w moves from 0 to oo, which completes the proof of (4.7.7). O

To complete the proof of Theorem 4.1.5, we need to show that the poles of )?\I? converge
to the poles of Xr. This is now a consequence of the convergence of x7 to xz and the
ordered monotone behaviour of the F-max-min values depicted in Theorem 4.1.4.

Proof of Theorem 4.1.5. We start by showing that the F-max-min values of the truncated
LRF converge monotonically locally uniformly to the F-min-max values of xz. For this,
let us define

m

wiiy = min{w; }jsm > 0.

Then, we have

v~

=1, (X @) —Xa (@)) Fr

for any 0 < w < w)y, with w ¢ {w;},;>1 and f € L?/po with ||f||r = 1. Here we used the

estimates [|S*[|z2 2y < VN and 1E 3,2, = /HFHL%/povL/%o' Moreover, since V" =V,

for any w < w/,, (4.7.10) yields the estimate

2wy,
0 < pP™(w) — pfw) < (wmu;—g“iwz for any w < W, (4.7.11)

for the difference between the F-max-min values of X/EF and ypF. But since wl, — 0

min
as m — o0, we conclude that the max-min functions of xj; converge locally uniformly and
monotonically from above to the F-max-min values of Yz.
Now let wi” < wl” < ... be the poles of Xp counted with rank and A" < A\J'... <

§ _ dimvy De the eigenvalues of C™ counted in a way that #{k A = A+ d (V)

dimker A — C™ for any A > 0. Suppose that m is so big that wf’ < w

m
min*

The monotone
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convergence of the max-min values together with Lemma 4.5.4 (which holds for both )Z’\ﬁ
and Yj7) then shows that all F-max-min values of x7 F(w) in the interval w € [0, w] must
lie either above 1 or below 0. From Proposition 4.7.1, we thus conclude that \/W > wf.
An induction argument then shows that

wi <A/AP, for any wf < wm

The convergence /A7 | wf now follows from the convergence of the max-min values,
Proposition 4.7.1, and a continuity argument. O

Remark (Convergence error estimates). Note that estimate (4.7.11) can be used to esti-
mate the difference between the eigenvalues of the Casida matriz and the true poles of Xr
by plotting the maz-min values of the truncated density-density response function X g (w)
over the interval (0, wy,).

4.7.2 The original Casida matrix: non-interacting case

Let us now comment on the relation between the Casida formalism described in the
previous section and the situation often encountered in practice.

In practice [19, 96, 83, 120], the Hamiltonian H acting on the N-body electronic space
H is given by the sum

N
H=>1®..® h ®.®1,

j=1 ) "
! jth position

where h is a self-adjoint operator acting on the single-electron space L*(R3). In this
case, and under the assumption that the spectrum of A is purely discrete, the set of
anti-symmetric tensor products of N distinct eigenfunctions of h, i.e. the set of functions

Gir(r1) o Pi(rn)
\I/](Tl,...,TN) = det , 1= (’il,...,iN)ENN,
Gin(r1) o Giy(rn)
where 1 < 4; < 49... < iy and {¢;}jen is the orthonormal basis of eigenfunctions of h,
form an orthonormal basis (for H ) of eigenfunctions of H. If we denote the eigenvalues

associated to ¢; by ¢;, then the ground state wave function and ground state energy of H
are given respectively by

N
‘I/() = \11{1727_._7]\[} = (bl AN ¢N and 50 = Z €j.

Jj=1

A simple calculation then shows that SWU; = 0 for any [ with #I n{1,...,N} < N — 2,
where S is our usual operator defined in (4.2.5). Consequently, the one-body excitations
are given by the following subset of the excitation energies of h:

P(Xu) ={we; =er—¢e;:€>N, j<N}.
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Moreover, the Schwartz kernel of the Fourier transform of x g in the upper complex plane
can be written as the sum

D Z Or(r)¢; (r)ok(r)d; () di(r)d;(r)ow(r)¢; (')

Z — Wkj Z 4 W j

Xu(z 1) = (4.7.12)

where the limit of the series k — oo is understood in the distributional sense®.

Remark. Fq. (4.7.12) is the standard representation for the density-density response func-
tion appearing in the DF'T literature. In said literature, the Hamiltonian h is called the
single-particle Kohn-Sham Hamiltonian, x g s the density-density response function of the
Kohn-Sham system, and the orbital functions ¢; and ¢y, are respectively the Kohn-Sham
occupied and virtual orbital functions.

In the original formulation [19], the Casida matrix is defined as

Y

N(m—N A _B m— X m—
Cori(gml ) _ <B’ —A’) e C2N(m=N)x2N(m—N)

where A, B, A’, B' € CN(m=N)xN(m=N) are given by

AL 1) = {DiPk, Fdpdq)r2(s) + W k0 p0k.q, BI(J k) = {00k, Fopdq)r2(ws),
Al ima) = (PiPk Fopde)rams) + wikdipdig,  Bigw, = (¢jbn, Fdpda)r2ms),

where p,j < N < k,q < m and the indexing map is given by I(j, k)=N(k—-N-1)+j.
Under the assumption that h is a real Hamiltonian (and W, has constant phase), all the
orbital functions ¢; can be taken real-valued. So if we further assume that F' is real (i.e.,
F'f is real-valued for f real-valued), then the Casida matrix reduces to

C

original

N(m—N B+ W -
( ) _ < B B W> where Wik 1(p.q) = Wiik0jp0k.q-

We can now show that the eigenvalues of Congmal appear in pairs of negative and positive

values and that their squares are the eigenvalues of the previously defined Casida matrix

N(m—N
CI(](',k),I(p), ) = 2&)] k<¢]¢k‘a F¢p¢q>L2(R3 + w] k5 5k,q- (4713)

Proposition 4 7. 2 (Original Casida matrix). Let C ) and CN=N) be defined as

orlglnal
above, then oM

Ongmal 15 diagonalizable and we have

dimker CM"N) 4\ = dim OV — \2) (4.7.14)

original

for any A € R.

5For Schrédinger operators with Kato class potentials, one can show that the above distributional
kernel is an integral kernel for any +z ¢ o(H — &) by the results of [109)].
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Proof. The proof follows from straightforward algebraic manipulations. Precisely, for

0 # <5 1) = BekerCoin V) + X e 2NN,

52 original

one can check that a = 8, — B, € C=NN ig non trivial and satisfies CN™=Nqa = A\2a.
On the other hand, for a € ker CN™=N) — X2 one can check that

= () o

and satisfy C’N(m_N)@ = +A8. (The matrix W is invertible because it is diagonal with

original

only positive entries). That Cé\rfi(gﬁ;fv ) is diagonalizable follows from (4.7.14) and the fact
that CV(m=N) is diagonalizable by Corollary 4.7.1. m

4.8 Concluding remarks

We have now presented a mathematical framework for the analysis of the Dyson equation
from LR-TDDFT. More precisely, we (i) presented a functional analytic setting for the
well-posedness of the Dyson equation that is applicable to various adiabatic approxima-
tions of the xc-operator and to general Hamiltonians of interest in electronic structure
theory, (ii) provided a careful and rigorous analysis of the poles of the solution of the
Dyson equation within the random phase approximation (RPA), and (iii) proved the con-
vergence of the poles computed via the Casida formalism in the continuum (or infinite
orbital basis) limit. To conclude this chapter, let us now briefly comment on some possible
extensions of these results and further related questions.

Non-positive adiabatic approximations. The proof of all results on the pole structure
of Xr rely on the positivity assumption on the adiabatic approximation F'. With the ex-
ception of the simplest adiabatic approximation, the RPA, this assumption is not satisfied
as the exchange-correlation kernel is usually negative. So a natural question is whether
the results presented here can be extended to the case where the operator F'is given by
the difference of two positive operators (in the sense discussed here). In this case, we do
not expect all poles of the solution Yz to be forward shifted with respect to the poles of
the xz. Nonetheless, we expect that a rigorous characterization of the poles of Yz via
an eigenvalue equation as in Theorem 4.1.2 can be achieved by methods from analytic
Fredholm theory [34, Appendix]. If this is the case, it would also be interesting to under-
stand whether standard approaches for computing the poles of Yz, such as the Casida
equations described in Section 4.7, converge in the continuum limit.

Casida formalism with essential spectrum. To prove the convergence of the poles
computed via the Casida formalism, we have explicitly assumed that the Hamiltonian H
has purely discrete spectrum. Although this assumption holds in some physically relevant
situations, such as Schrodinger operators with trapping potentials, this is no longer true for
the molecular Hamiltonian that plays a central role in quantum chemistry. In this case, the
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Casida formalism is usually applied to a truncation of the Hamiltonian to some bounded
domain with appropriate boundary conditions. Therefore, an interesting problem is to
understand the relation between the poles computed via the Casida equations for the
truncated Hamiltonian and the true poles of the infinite-dimensional solution of the Dyson
equation, in the limit where both the size of the domain and the number of virtual orbitals
goes to infinity.

Frequency-dependent exchange-correlation kernel. Here we have only considered adia-
batic approximations to the exchange-correlation kernel. Hence, another natural question
is whether the results presented here can be extended to frequency-dependent approxi-
mations of the exchange-correlation kernels. Such kernels typically yield better approxi-
mations to the excitation energies at a higher computational cost. Hence a mathematical
understanding of the solution Yz for such approximations is not only relevant from a
theoretical perspective, but may also provide insight on how to design more efficient nu-
merical schemes. We expect that the functional analytic setting presented here for the
well-posedness can be adapted to this case. However, for a rigorous analysis of the poles
of Xr in such situations, one would also need to bypass the positivity assumption on F,
which requires different methods.
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