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Prüfer*innen der Dissertation:

1. Prof. Dr. Stefan Weltge
2. Prof. Dr. Christopher Hojny

Die Dissertation wurde am 26.04.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
19.06.2023 angenommen.





Abstract

The main body of the thesis consists of three chapters, each considering a different
viewpoint on integer programming.

Firstly, we consider a practical perspective in form of a real-world problem, formu-
lated as an integer program. To be precise, we examine how to translate a problem with
many impacting factors into a realistic combinatorial optimization problem. We investi-
gate different formulations of the problem as an integer program and use a state of the
art integer programming solver in order to find the best formulation and solve realistic
large-scale instances efficiently. In this context, we tackle the problem of placing public
charging infrastructure for electric vehicles in cities. Our approach incorporates individ-
ual demand and temporal interactions of drivers, exact positioning of charging stations,
as well as various charging speeds, and realistic charging curves. We show that the
resulting integer programming framework can efficiently compute optimal placements
of charging stations for instances based on traffic data for cities with up to 600 000
inhabitants and future electrification rates of up to 15%.

Secondly, we consider a more theoretic application of integer programming, by giving
a proof on a mathematical problem that has been found using integer programming,
but can be written in a way that is easily readable and verifiable by humans. The
specific problem that we investigate in this work is to determine the dimension of the
voting system of the EU council (based on the 2014 population data), i.e., the minimum
number of weighted games, whose intersection represents this simple game. Kurz and
Napel (2015) proved that the dimension is at least 7. This set a new record for real-world
voting rules and the authors posed the exact determination as a challenge. We improve
this lower bound and show that the dimension is at least 8.

Finally, we consider a theoretic question regarding the efficient solvability of certain
subclasses of integer programs. It is a well-known question, whether integer programs
on a totally ∆-modular constraint matrix are solvable in polynomial time, i.e., the ab-
solute value of each subdeterminant of the (integer) constraint matrix is bounded by a
constant. We restrict ourselves to the case of constraint matrices that become totally
unimodular after the removal of one specific row. We present partial progress on this
question by giving an algorithm both for the optimization and recognition of instances
where the totally unimodular matrix in addition is a transposed incidence matrix or a
transposed network matrix that induces a planar, 3-connected graph. Our results rely
on a strengthening of the proximity result by Cook et al. for our specific problem, Sey-
mour’s decomposition of totally unimodular matrices, and structural graph theory and
graph minor results.
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Zusammenfassung

Diese Arbeit besteht aus drei Kapiteln, die Ganzzahlige Programme jeweils aus einem
unterschiedlichen Blickwinkel betrachten.

Zunächst nehmen wir eine angewandte Perspektive ein. Dafür formulieren wir ein
reales Problem als Ganzzahliges Programm. Genauer gesagt untersuchen wir, wie ein
reales Problem in ein kombinatorisches Optimierungsproblem übersetzt werden kann.
Wir formulieren das Problem in verschiedenen Varianten als Ganzzahliges Programm
und verwenden einen Löser, um die beste Formulierung zu finden und realistische In-
stanzen effizient zu lösen. Konkret beschäftigen wir uns mit dem Problem, öffentliche
Ladeinfrastruktur für Elektrofahrzeuge in Städten zu platzieren. Unser Ansatz berück-
sichtigt individuelle Nachfrage und Interaktionen zwischen Fahrern, exakte Position-
ierung der Ladestationen, sowie verschiedene Ladeleistungen und realistische Ladekur-
ven. Wir zeigen, dass unser Modell effizient optimale Platzierungen von Ladestationen
für Instanzen mit Verkehrsdaten von Städten mit bis zu 600.000 Einwohnern und Elek-
trifizierungsraten von bis zu 15% berechnen kann.

Zweitens betrachten wir eine theoretische Anwendung von Ganzzahligen Program-
men, indem wir einen mathematischen Beweis für eine Frage liefern, der mithilfe eines
solchen Programms gefunden wurde, aber in einer leicht lesbaren und überprüfbaren
Weise formuliert werden kann. Das spezifische Problem, das wir hier untersuchen, ist die
Bestimmung der Dimension des Abstimmungssystems des Europäischen Rats (basierend
auf Bevölkerungsdaten von 2014), also die minimale Anzahl von Weighted Games, deren
Schnittmenge diesem Simple Game entspricht. Kurz und Napel (2015) haben bewiesen,
dass die Dimension mindestens 7 beträgt (ein neuer Rekord für Abstimmungssysteme).
Die Autoren stellten die Bestimmung des genauen Werts als Herausforderung. Wir
verbessern diese untere Schranke und zeigen, dass die Dimension mindestens 8 beträgt.

Schließlich betrachten wir eine theoretische Fragestellung bezüglich der effizienten
Lösbarkeit bestimmter Unterklassen von Ganzzahligen Programmen. Es ist eine bekan-
nte Fragestellung, ob Ganzzahlige Programme mit einer total ∆-modularen Bedingungs-
matrix in polynomieller Zeit lösbar sind, also Bedingungsmatrizen, bei denen der Betrag
jeder Subdeterminante durch eine Konstante beschränkt ist. Wir beschränken uns auf
den Fall von Bedingungsmatrizen, die durch Entfernen einer der Zeilen total unimodular
werden. Wir präsentieren partiellen Fortschritt bezüglich dieser Fragestellung, indem wir
einen Algorithmus sowohl für die Optimierung als auch für die Erkennung von Instanzen
geben, bei denen die total unimodulare Matrix zusätzlich eine transponierte Inzidenz-
matrix oder eine transponierte Netzwerkmatrix ist, die einen planaren, 3-zusammen-
hängenden Graphen induziert. Unsere Ergebnisse beruhen auf einer Verstärkung der
Näherung von Cook et al. für das Problem, Seymour’s Zerlegung total unimodularer
Matrizen, sowie Ergebnissen der Graphentheorie und der Graphenminorentheorie.
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1 Introduction

A linear program is a mathematical optimization problem that arises from a linear
objective function that is to be optimized over a feasible region described by linear
inequalities. One common way to denote linear programs is given by

max cᵀx s.t. Ax ≤ b, x ∈ Rn ,

where A ∈ Rm,n, c ∈ Rn, and b ∈ Rm. Such systems of linear inequalities were first con-
sidered by Fourier in 1827, who gave name to the Fourier-Motzkin elimination method
to solve systems of linear inequalities. In parallel to many political, social, and econom-
ical developments within the 20th century that are too diverse to appropriately shed
light upon here, the interest in optimization problems increased a lot starting from the
1940s. More data became available, systems started to interact, inherently increasing
their complexity. Thus, simple heuristics weren’t sufficient anymore and the need to find
(provably) good solutions became significant. For a more extensive description of the
history of linear programming, see [94].

As part of Smale’s problems for the 21st century [95], the arguably biggest question
concerning linear programs is whether they admit a strongly polynomial-time solution
algorithm. Strongly polynomial-time here means that the runtime can only depend on
the size of the constraint matrix A, i.e., the number of variables and constraints, but
not on the encoding length of the entries. Within the last 80 years, many algorithmic
frameworks to solve linear programs have been developed. We restrict our attention to a
few ones that are the most important within the context of this thesis. The first and still
one of the most popular algorithms is the simplex method, developed by Dantzig [35].
Despite its good performance in practice, it is open whether there exists a polynomial-
time variant of the algorithm. The ellipsoid method due to Khachiyan [66] was the first
algorithm for which a polynomial runtime could be shown. In practice, other methods
are more efficient. Notably, we mention interior point methods, which were pioneered
by Karmarkar [62]. Further, Tardos [96] published a proximity based algorithmic frame-
work, whose running time only depends on the entries of A, and therefore in particular
not on the entries of the vectors b and c. As such, it gives a strongly polynomial-time
algorithm for relaxations of totally unimodular and totally ∆-modular integer programs.
More recently, the guarantees on the framework have been improved and generalized to
real-valued matrices by Dadush, Natura, and Végh [33].

While linear programs possess a considerable amount of modelling power and have
been helpful tools to solve various mathematical problems, they are naturally limited
by the linearity of objective functions, constraints, and in particular, variable values.
This stands in contrast to the fact that many decisions in relevant problems are of a
discrete nature. Variables often denote the assignment of inseparable goods, an integer
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1 Introduction

count, or simply a Yes-No-decision. Each of these properties is inherently discrete,
and can therefore not necessarily be trivially modelled within a linear programming
framework. In order to deal with such instances, we consider integer programs, which
can be described by a system of the form

max cᵀx s.t. Ax ≤ b, x ∈ Zn ,

where A ∈ Rm,n, c ∈ Rn, and b ∈ Rm. General exact algorithms employed by state of
the art solvers often rely on cutting plane algorithms and branching rules, both of which
heavily rely on linear programming and the respective solution algorithms mentioned
above.

Integer programming has an abundance of applications. In particular, this includes
many combinatorial optimization problems that can be naturally modeled within this
framework. A range of these applications will appear later within the thesis. To give a
very limited overview, we mention classical problems, such as graph coloring problems,
the travelling salesperson problem, the facility location problem, scheduling problems,
or matching problems. Many of these can also appear in combined or adapted versions
that permit a more direct modelling of real-life scenarios and questions. Through modern
data, technologies, and networks, many of these problems become of new practical rele-
vance or it simply is necessary to solve them for much larger instance sizes. We present
one such example in Chapter 2. In part due to their large modelling power, it can be
shown that general integer programs are hard to solve. In fact, they represent one of
Karp’s original 21 NP-hard problems [63]. Therefore, the search for efficient algorithms
both in a practical and theoretical sense has received a lot of attention.

We mention several polynomial-time algorithms for interesting special cases of integer
programming. In particular, Papadimitriou [84] gave a pseudo-polynomial algorithm
for integer programming with a fixed number of constraints. This result was improved
by Eisenbrand and Weismantel [41] to a running time of (m · ‖A‖∞)O(m). Another
stream of literature has been started by a breakthrough result of Lenstra [75], giving an
algorithm to solve integer programs in time 2O(n2). This result has been subsequently
improved by Kannan [61] to a running time of nO(n), and Dadush [34] to 2O(n)nn. Very
recently, Reis and Rothvoss [86] gave a significant improvement by reducing the running
time to (log(n))O(n). Further, integer programming with bounded subdeterminants has
recently gained an increasing amount of attention. We describe this concept in detail
in Chapter 4. Let us mention an efficient algorithm if the matrix has integer entries
and all subdeterminants are bounded by 2 in absolute value by Artmann, Weismantel,
and Zenklusen [8], as well as an efficient algorithm if the matrix has integer entries, all
subdeterminants are bounded by a constant in absolute value, and there are at most two
non-zero entries per row or column, by Fiorini, Joret, Weltge, and Yuditsky [44].

In this thesis, we look at the framework of integer programming from a few different
perspectives. In Chapter 2, we consider the problem of placing charging stations for
electric vehicles in cities. In its core, this problem can be seen as a facility location prob-
lem together with some problem-specific constraints. The first obstacle in this practical
application of integer programming is the problem formulation. How can real-world

2



1.1 A practical real-world problem formulated as an integer program

data, conditions, and questions be cleanly translated into a mathematical optimization
problem? How can this be done in an efficient way, i.e., by not just enumerating pos-
sibilities, that allows to solve large real-world instances? Formulating the problem as
a combinatorial optimization problem is therefore our first contribution in this chap-
ter. When modelling such a combinatorial optimization problem as an integer program,
there is some further freedom. We can model certain relationships in different ways,
for instance by adding auxiliary variables. In addition, many state of the art solvers
use cutting plane subroutines in order to solve integer programs. In practice, there is a
trade-off between generating a clean and small description of the problem, and trying
to aid the solver by generating problem-specific cuts on the fly, or even add them to the
model from the start. We investigate several different formulations of our given problem
and analyze the advantage of certain reformulations when implemented, using a state of
the art integer programming solver.

We present a more theoretical application of integer programming in Chapter 3. The
main question here is, how to use optimization frameworks and in particular integer
programs in order to prove mathematical theorems. In 2015, Kurz and Napel [74] proved
that the dimension of the council of the European Union, when interpreted as a simple
game is at most 7, and posed the exact determination of that value as a challenge to
the community. Roughly, the dimension of a simple game can be understood as the
number of linear inequalities that are needed in order to describe the set of winning
coalitions within a voting system. The question can for instance be understood as a
coloring problem on a certain hypergraph. Such problems can be modelled easily within
the frameworks of integer programming, or boolean satisfiability with the help of a SAT
solver. Within this work, we design specific optimization problems in order to understand
combinatorial and geometric structures. In addition, we transform the solution of an
integer program that has been calculated by a computer into a clean mathematical proof
that can be checked by humans, using linear programming duality.

Finally, in Chapter 4 we consider a specific subclass of totally ∆-modular integer
programs, for fixed ∆ ∈ N. This chapter focusses on theoretical aspects of integer pro-
gramming. We try to extend the class of integer programs that can be solved efficiently
by investigating a natural, well-structured candidate. We use results from linear alge-
bra, in particular geometry, matroid, and graph minor theory in order to gain structural
insights and design algorithms for an interesting subclass.

In the following, we proceed to give more details on the separate perspectives and
questions, and present our main results from each chapter.

1.1 A practical real-world problem formulated as an integer
program

As mentioned above, in the first part of the thesis, we consider a placement problem for
charging infrastructure for electric vehicles in cities. This planning problem is addressed
from a planers’ perspective that cares about the wellbeing of the drivers within a system.

3



1 Introduction

Figure 1.1: Optimized charging station positions for the city of Düsseldorf, Germany. Red
locations correspond to slow charging stations, while blue locations denote fast
charging stations.

By optimizing the number of satisfied drivers, also the energy throughput of the system
is maximized.

Result. We develop an integer programming based approach to efficiently solve the
charging station placement problem for cities with 600 000 inhabitants and an electri-
fication rate of up to 15%. Our framework supports individual driver patterns, and
temporal interactions, as well as individual charging modes and curves, a flexible choice
of objectives, and exact positioning of the charging stations into account.

Our contribution within this project is three-fold. First, we give a combinatorial opti-
mization problem, capturing realistic details of the problem, that make it more challeng-
ing than the usual facility location problem. This includes specific driver and charging
characteristic on the one hand, like individual demand, different charging speeds, and re-
alistic charging curves, as well as a capacity bound on the charging stations, which leads
to interactions between the drivers when blocking charging ports on the other hand.

We proceed to give an integer programming model for the described optimization
problem. Further, we give two different kinds of cuts that strengthen the relaxation of
the model. A third enhancement is given by relaxing the integrality condition on a type
of variable, whose effect on the solution appears to be restricted. We investigate and
report on the effect of these three modifications, both on the runtime as well as on the

4



1.2 An integer programming powered proof

gap between an optimal solution of the model compared to an optimal solution of the
linear relaxation.

Finally, we are able to solve realistically sized real world instances, see Figure 1.1. We
share the implementation of our optimization method, as well as a simulation framework
for the evaluation of positions, in order to make it possible to replicate our results and
apply them to further environments and settings. The code is available in our Github
repository1.

1.2 An integer programming powered proof

Article 16 of the treaty of Lisbon on the European Union states that in the voting system
of the EU council, a coalition is winning if

1. it contains at least 55% of all members states and

2. it unites at least 65% of the total EU population,

or

3. it consists of at least 25 of the 28 member states.

In 2014, the EU consisted of 28 members (which is our reference for the composition of
the EU, as well as the population data, in order to ensure comparability with the original
publication by Kurz and Napel [74]). Therefore, the voting system can completely be
determined based on the population data of these 28 member states, see Table 1.1.

The question for the dimension of the simple game defined by this voting system can
be understood in the following way. Each country’s vote corresponds to one variable of
a 28-dimensional space. We associate 1 with a country, if they decide to vote in favor
of a certain bill and 0 otherwise. Thus, the set of winning coalitions can be described
as a (monotonic) subset of the 28-dimensional {0, 1}-cube. The dimension of a simple
game is the minimum number of inequalities needed in order to separate winning from
losing coalitions in this space. We were able to improve on the lower bound of 7 on the
dimension, given by Kurz and Napel [74].

Result. The dimension of the simple game corresponding to the EU council under the
treaty of Lisbon is at least 8.

It turns out that while the problem can be concisely represented using Table 1.1, the
calculation of this number comes with computational challenges. This may in part be due
to the fact, that the standard formulation of such a problem asks whether there exists
a certain size set of linear inequalities, separating all winning points from the losing
ones. This type of formulation with two quantors is described by Woeginger [104] in
more detail and links the problem to Σp

2-hardness. To our knowledge, no corresponding
hardness reduction for the determination of the dimension of a simple game is known,

1https://github.com/tumBAIS/driverAwareChargingInfrastructureDesign
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1 Introduction

# Member state Population Percentage # Member state Population Percentage

1 Germany 80 780 000 15.9% 15 Austria 8 507 786 1.7%
2 France 65 856 609 13.0% 16 Bulgaria 7 245 677 1.4%
3 United Kingdom 64 308 261 12.7% 17 Denmark 5 627 235 1.1%
4 Italy 60 782 668 12.0% 18 Finland 5 451 270 1.1%
5 Spain 46 507 760 9.2% 19 Slovakia 5 415 949 1.1%
6 Poland 38 495 659 7.6% 20 Ireland 4 604 029 0.9%
7 Romania 19 942 642 3.9% 21 Croatia 4 246 700 0.8%
8 Netherlands 16 829 289 3.3% 22 Lithuania 2 943 472 0.6%
9 Belgium 11 203 992 2.2% 23 Slovenia 2 061 085 0.4%

10 Greece 10 992 589 2.2% 24 Latvia 2 001 468 0.4%
11 Czech Republic 10 512 419 2.1% 25 Estonia 1 315 819 0.3%
12 Portugal 10 427 301 2.1% 26 Cyprus 858 000 0.2%
13 Hungary 9 879 000 1.9% 27 Luxembourg 549 680 0.1%
14 Sweden 9 644 864 1.9% 28 Malta 425 384 0.1%

Table 1.1: Population data of the European Union on 01.01.2014, see also [74, Table 1].

and this relation is based purely on the formulation of the problem, but it may be an
indication as to why the calculation of the exact number seems to be challenging. For
more details on general complexity and hardness reductions, we refer to the book by
Papadimitriou [83].

We remark that the question for the dimension of a simple game can also be understood
in terms of the relaxation complexity of the related polytope. The relaxation complexity
(rc) of a set of (convex) integer points X ⊆ Zd with respect to a set of integer points
Y ⊆ Zd is defined as the minimum number of facets of a poyhedron P , such that X ⊆ P
and (Y \X) ∩ P = ∅, see Averkov, Hojny, and Schymura [11], originally introduced by
Kaibel and Weltge [60]. Asking for the dimension of the simple game described above,
with W denoting the points associated with winning coalitions amounts to asking for
rc(W, {0, 1}28). Questions around relaxation complexity have gained recent attention,
see Weltge [103], Averkov, Hojny, and Schymura [10, 11], as well as concerning the role
of rationality, Aprile, Averkov, Di Summa, and Hojny [5].

1.3 Algorithms for a well-structured subclass of integer
programs

In the final chapter, we consider integer programs with a certain condition on the sub-
determinants of the constraint matrix, i.e., we assume that the constraint matrix has
integer entries, all subdeterminants are bounded in absolute value by a constant ∆, and
there exists one specific row that is present in all submatrices with absolute value of
their determinant greater than 1. To be more precise, this means that the constraint
matrix is totally ∆-modular, and even totally unimodular after the removal of one row.
This additional row can be interpreted as a weight vector on the columns of the totally
unimodular matrix.
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1.3 Algorithms for a well-structured subclass of integer programs

B1 B2

B3

B4

...

Bt+2

Figure 1.2: Sketch of a t-pumpkin in a graph G. The dashed circles correspond to connected
subgraphs that can be contracted in order to obtain a K2,t-minor. The red vertices
denote labeled vertices.

We use a combination of proximity, based on the results of Cook, Gerards, Schrijver
and Tardos [31], and structural graph theory, in particular a result by Böhme and Mo-
har [19] in order to give efficient algorithms for some subclasses of the problem described
above.

Result. For every ∆ > 0 there exists a strongly polynomial-time algorithm for solving
integer programs of the form

max cᵀx
s.t. Mx ≤ b

dᵀx ≤W
x ∈ Zn

,

where the constraint matrix is totally ∆-modular, and M is a transposed incidence
matrix, orM is a transposed network matrix, and induces a planar, 3-connected instance.

Seymour’s decomposition of totally unimodular matrices [92] motivates the study of
the particular problem for M (or Mᵀ) being a network matrix. Network matrices let us
associate graphs with our problem. A weight on the graph is given by the additional
row. In the case of M being a transposed network matrix, total ∆-modularity limits
the weight of a connected subgraph, such that its complement is connected too. This
characterization leads to a forbidden minor result in the associated graph. We can show
that the size of a pumpkin is bounded in terms of ∆. A pumpkin is a K2,t-minor with
a non-zero weight (labeled) vertex in each of the t connected sets (the central sets in
Figure 1.2). Pumpkins have found previous attention in research, and a forbidden minor
result has further implications on the structure of graphs, in particular in the planar
and bounded genus case, see Böhme and Mohar [19] as well as Böhme, Kawarabayashi,
Maharry, and Mohar [20].
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1 Introduction

1.4 Preliminaries

We assume the reader to be familiar with the standard notations and basic results of
combinatorial optimization, in particular linear and integer programming, as well as
matroid and graph theory. For additional background, we reference the book by Korte
and Vygen on combinatorial optimization [71], the book by Schrijver on linear and
integer programming [90], the books by Truemper [100] and Oxley [81] on matroids, as
well as the book by Diestel [38] on graph theory.

In addition, we use the notation [k] := {1, . . . , k} for counting from 1 to an integer
number k, and similarly for integer numbers i < j, we write [i, j] := {i, i+ 1, . . . , j}. For
graphs, we denote the complete graphs on t vertices by Kt, and the complete bipartite
graph on i+ j vertices, with a bipartition into i and j vertices by Ki,j .
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2 Driver-aware charging infrastructure
design

The content of this chapter is based on a joint publication with Maximilian Schiffer,
Stephan Sorgatz, and Stefan Weltge [69].

2.1 Background

The promotion and deployment of electric vehicles is a key part of the transformation
of the mobility sector towards more emission-free and sustainable transport. One of
the main challenges is the coordination of charging processes and mobility behavior in
general. For commercial fleets a multitude of studies and projects that support the
recharging process exist. Contrarily, in the private sector, early adopters mainly rely on
private charging solutions, e.g., wallboxes on their own property. Especially in urban
environments, potential electric vehicle (EV) users do not necessarily have a private
parking space, such that the supply of public charging infrastructure is crucial to increase
the acceptance of EVs. Accordingly, identifying the right amount of and locations for
public charging stations in cities is of particular interest in order to achieve the goals for
the market diffusion of EVs. In fact, governments have already set aggregated targets
for the development of charging infrastructure. However, municipalities are struggling
with the implementation due to the high costs of installing charging stations and the
inherent complexity of the problem, which stems from the fact that the infrastructure
is addressed to the general public, i.e., obtaining good solutions requires to solve a large
scale facility location problem.

Accordingly, designing charging station networks has gained significant interest in
transport optimization and various approaches have been proposed to accomplish this
planning task. The most common approaches are node-based and aggregate charging
demand without a temporal dimension, or are path-based and account for charging de-
mands in aggregated flows. However, these existing approaches suffer from two major
drawbacks: first, both approaches do not consider driver behavior via individual pat-
terns. Second, as a consequence of aggregation, even path-based models insufficiently
consider temporal interactions between drivers that occupy the same charging stations.
Mitigating these fundamental drawbacks by incorporating individual and realistic de-
mands and temporal interactions into a mathematical planning approach remains a
fundamental challenge to provide profound decision support that enables the market
diffusion of EVs. First approaches that tackle these issues can only solve small-scale
instances or are simulation-based approaches that cannot be handled within rigorous
optimization methods.
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2 Driver-aware charging infrastructure design

Against this background, we develop a new approach to compute optimal placements of
public charging stations, incorporating the aforementioned driver-based features. More-
over, our framework supports individual charging modes and curves, a flexible choice
of objectives, and exact positioning. Despite incorporating this level of complexity, we
present an integer programming based approach that remains at the one hand com-
putationally tractable and at the other hand easy to implement. We demonstrate the
effectiveness of our approach on instances based on traffic data of German major cities.
We show that our method scales reasonably well for future electrification rates of up to
15% for cities of up to 600 000 inhabitants.

2.1.1 Literature Review

In the following, we give a short overview of the related literature for the placement of
public charging stations, which comprises three main streams, considering flow-based
demand for recharging facilities [56, 72], arc-based demand [25], or node-based demand.
The flow-based and arc-based models find a cover of origin-destination-pairs, or arcs in
a given network respectively. In particular the refueling station location problem with
routing (RSLP-R) is an active area of research for which recently specialized branch-and-
cut [6, 53] as well as branch-and-price [105] approaches were developed. In these studies,
refueling stations are placed along long trips, which underlines their applicability for
inter-regional travel. While it is possible to adapt these approaches to an urban context
by mapping refueling possibilities to pre-existing breaks, several problem characteristics
that are native to the traffic in cities are not considered in this stream of research. This
includes for instance different charging speeds, the capacity of charging stations or the
effect of break durations, i.e., that short stops may not be enough to fully recharge an
EV.

In contrast, node-based approaches aim to cover discrete demand (clusters) at given
points. Most node-based approaches work in a two-fold manner: in a first step, a
(tempo)-spatial demand is estimated. This is usually done by aggregating the demand
of several vehicles and forming demand clusters. These clusters are covered in a second
step under consideration of problem-specific constraints, e.g., vehicle-to-grid technolo-
gies [36], the exact consumption [2, 55], or the electric grid [13]. In general, this approach
is more appropriate for the urban context, but the static demand aggregation inherently
neglects important features of the problem. Especially dynamic features like individ-
ual user behavior or interaction of users with respect to time are hard to portray in
such models [1]. There exist some attempts to include these dynamic properties in the
literature, for instance Cavadas et al. [26] introduce transferable demand and multiple
periods, Adenaw and Lienkamp [1] combine a simulation approach with an evolutionary
process to find the best charging stations, Shahraki et al. [93] accurately model individ-
ual demand for plug-in hybrid electric vehicles, and Andrews et al. [3] introduce a MIP
that accounts for user interaction. As we will detail in Section 2.2, these approaches
leave room for a more detailed analysis of dynamic properties.

10



2.1 Background

2.1.2 Contribution

We aim to derive a mathematical programming based approach that allows to determine
positions of charging stations in an urban environment such that EV drivers experience
a convenient charging experience, i.e., they can maintain their individual daily schedule
without significant deviations for charging. To this end, we formulate the problem of
finding such positions in a purely combinatorial manner, accounting for individual driver
patterns, and temporal interactions, as well as individual charging modes and curves,
a flexible choice of objectives, and exact positioning. This formulation leads to mixed
integer linear problem (MILP) models, for which we present strengthened formulations
that allow to handle large instances and various objective functions. As a byproduct,
this approach also yields dual bounds on the quality of our placements.

We show how to utilize this approach in practice by making use of traffic data that
contains information of individual drivers on a typical day within a given city, which
can easily be gathered from various traffic simulation frameworks, e.g., MATSim [57].
We present results of a case study for the city of Düsseldorf (Germany, ≈ 620k citizens),
which show that our approach allows to solve instances with the current electrification
rate (≈ 1%), within few minutes and instances with electrification rates up to 15% in few
hours. This equals placing up to 1500 charging ports optimally to cover more than 3800
driver profiles with recharging demand, which improves significantly upon the current
state of the art approach that handles temporal interactions [26], which has been limited
to placing 9 stations for 300 drivers.

Moreover, we evaluate the quality of the obtained solutions within a simulation envi-
ronment to show the efficacy of our approach from a practitioners’ perspective.

To foster future research and the use of our approach in practice, we open the imple-
mentation of our optimization method, our simulation environment, as well as the case
study data on Github1.

2.1.3 Organization

In Section 2.2, we describe our general approach, introduce the most relevant objects
that we deal with and explain how they are exploited to incorporate the aforementioned
driver-based features. We formulate the task of placing public charging stations as a
combinatorial optimization problem in Section 2.3, which gives rise to a natural inte-
ger program. Moreover, we discuss reformulation techniques that are crucial in order
to solve real-world instances efficiently. The second part of this chapter is concerned
with computational experiments. In Section 2.4, we show how to derive a case study
from existing traffic data. We propose a simulation framework to evaluate different po-
sitionings of charging stations in Section 2.5. Section 2.6 demonstrates the effectiveness
of the proposed reformulations, and shows that the resulting model is capable to solve
real-world instances. We close this chapter with remarks on possible applications and
extensions of our work in Section 2.7.

1https://github.com/tumBAIS/driverAwareChargingInfrastructureDesign
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2 Driver-aware charging infrastructure design

2.2 Problem setting

In this section, we describe our general approach for placing public charging infrastruc-
ture in an urban environment. We introduce the most relevant objects that we deal
with and explain how they are exploited to incorporate the aforementioned driver-based
features.

We assume that we have access to a set of drivers D (of electric vehicles) and their
schedules on a representative day (or set of days). Here, we identify each driver with her
vehicle, typically referred to as driver vehicle unit (DVU). For each driver d ∈ D, we are
given a list of trips T (d), where each trip is defined by its start location, end location,
start time, end time, and the amount by which the driver’s state of charge (SOC)
decreases during the trip. Implicitly, this yields information about stops in between
trips, which, for example, correspond to shorter stays while shopping or longer stays
while working, and hence to potential charging activities that do not affect a driver’s
actual schedule. Moreover, information about charging characteristics of d is available.
We note that, while one may argue that this driver behavior is hardly deterministic
over a longer time horizon, we will see in Section 2.6 that it is still possible to derive
representative scenarios for strategic planning.

Individual charging modes and curves. For every charging mode m ∈ M , we are
given a charging curve fm,d. The set M refers to different charging modes and typically
consists of two modes: AC charging (slow) and DC charging (fast). The function fm,d
determines, for given x and t, the SOC of d after charging in mode m for t units of time,
starting with an SOC of x.

Individual demands. We are further given each driver’s SOC at the beginning of the
day as well as bounds within which the SOC must stay over the course of the entire day.
Every trip decreases the driver’s SOC by a given certain amount, depending on the trip.
We assume that the SOC can only be increased by charging at public charging stations,
which results in a recharging demand for each driver. Note, that our planning problem
only encompasses the placement of public charging infrastructure. Private charging
possibilities can still be portrayed, for instance by adapting the SOC and the bounds
for a driver that has access to home charging. Consequently, we also omit commercial
fleets from our model, since they usually charge at specially dedicated charging stations
and therefore do not need to rely on public charging infrastructure.

Accurate placements. In order to allow for charging operations, public charging sta-
tions must be made available at a subset of potential locations L. The latter is a finite
set of locations that may arbitrarily arise from the operating area. Each location can
be equipped with a certain type of charging station, which is defined by a number of
charging ports of a specific mode. To obtain a high degree of accuracy in the placement,
the set of locations has to be defined accordingly. This is for instance possible by using
a grid approach, similar to the one employed by Cavadas et al. [26].
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Hodgson [56], Bayram et al. [13] 3

Kuby and Lim [72], Göpfert and
Bock [53], Yıldız et al. [105]

3

Capar et al. [25], Arslan et al.
[6]

3 3

Hidalgo et al. [55] 3 (3) 3

Cavadas et al. [26] (3)

Shahraki et al. [93] 3 3 (3)

Andrews et al. [3] 3 (3)

Our work 3 3 3 3 3

Table 2.1: Characteristics of previous optimization-based approaches for the placement of pub-
lic charging infrastructure.

Capacities and time interactions. Once charging stations have been placed, drivers
may occupy single charging ports between their trips. Since time intervals between two
consecutive trips typically refer to activities carried out by the drivers, we assume that
drivers charge at (and hence occupy) a port for the whole time interval. At every time
at most one driver may be connected to a port.

Different objectives. Our goal is to determine a subset of locations L′ ⊆ L, and for
each location ` ∈ L′ the type of charging station installed at `. A possible objective is to
minimize the total cost associated to the selected charging stations under the constraint
that every driver’s demand can be satisfied. In this setting, a driver may only be allowed
(or willing) to occupy charging ports at locations whose distance to the driver’s current
location is below a certain threshold. However, as we will see later, our approach can be
easily adapted to various other objectives.

Table 2.1 shows the problem characteristics of the closest related works. As can be
seen, existing approaches that are node or path-based are partially scalable, but neglect
individual demand, realistic charging modes and curves, as well as temporal interactions.
First approaches that aim to mitigate these shortcomings partially consider capacities
but neglect individual demand and multiple objectives or consider the latter, but ignore
capacities. All of these approaches are not scalable to large instances. Concluding, to the
best of the authors’ knowledge, none of the existing approaches accounts for individual
driver patterns, temporal interactions, individual charging modes and curves, a flexible
choice of objectives, as well as exact positioning, and is at the same time scalable to
large instances.
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2 Driver-aware charging infrastructure design

2.3 Method

In this section, we derive a mathematical formulation for the task of positioning public
charging stations that is based on the setting described in the previous section. We first
formulate an optimization problem that includes all relevant objects and constraints in
a combinatorial manner. This formulation gives rise to a natural integer program, which
we discuss in Section 2.3.2. In Section 2.3.3, we describe modifications to the integer
program that do not affect the set of feasible solutions but are crucial in order to solve
real-world instances efficiently.

2.3.1 Combinatorial optimization problem

Recalling Section 2.2, we assume that we are given finite sets of drivers D, charging
modes M , and locations for potential charging stations L. Moreover, we are given a set
of trips T (d) for every driver d ∈ D.

Breaks. Since we associate the time intervals between consecutive trips with a driver’s
charging opportunities, we extract a set of breaks B(d) from the trip data for each driver.
A break is characterized by its start time, end time, and location. We assume that breaks
are individual objects for each driver, i.e., B(d) ∩B(d′) = ∅ for d 6= d′ ∈ D.

Nearby locations. For each break b ∈ B(d), we compute a set of nearby locations
L(b) ⊆ L that driver d is willing to charge at during break b. For example, the set
L(b) may consist of all locations in L that are within a certain distance to the location
of b. However, we do not make any specific assumptions on L(b) in order to keep our
formulation as general as possible.

Feasible charging plans. To identify at which breaks a driver d ∈ D is charging (in
a specific mode), we define a charging plan of d as a set of pairs (b,m) ∈ B(d) ×M .
We say that a charging plan P ⊆ B(d)×M is feasible if its charging operations ensure
that d can complete all trips while respecting the pre-defined bounds on the SOC at
any time. Given the charging curves of d, we assume that we can efficiently determine
whether a charging plan is feasible. We denote the set of all feasible plans of a driver d
by F (d) := {P ⊆ B(d)×M : P is feasible}.

Charging stations. We consider a charging station as a tuple (`,m,∆) ∈ L×M ×Z≥1

indicating its location `, mode m, and number of ports ∆. We assume that we are given
a finite set Ω ⊆ L×M ×Z≥1 denoting possible charging stations. Each charging station
is associated with a (possibly individual) cost c : Ω→ R≥0.

Time points. Finally, we define a set of time points T in order to monitor the capacity
utilization of charging stations at these time points. We use the shorthand notation t ∈ b
to denote that a time point t ∈ T is contained in the time interval of the break b ∈ B(d).
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2.3 Method

Task. Our goal is to find a set of charging stations S ⊆ Ω that minimizes the total cost∑
s∈S c(s) under the following constraints.

1. For each driver d ∈ D there must exist a feasible charging plan P (d) ∈ F (d), where
every charging process (b,m) ∈ P (d) is assigned to a charging station s(b,m) =
(`,m,∆) ∈ S with ` ∈ L(b).

2. Moreover, these assignments have to respect the charging station capacities at any
time, i.e.,

|{(b,m) ∈ P (d) : d ∈ D, s(b,m) = s, t ∈ b}| ≤ ∆

holds for every t ∈ T and s = (`,m,∆) ∈ S.

We note that it is possible to adjust the constraints and objective, for instance by
introducing a budget constraint and maximizing the amount of satisfied demand, or by
working on several driver sets in parallel.

2.3.2 Integer program

In this section, we derive an integer programming formulation of the above combinatorial
optimization problem. First, we introduce a binary variable for every charging station
in Ω, i.e.,

x`,m,∆ ∈ {0, 1} ∀ (`,m,∆) ∈ Ω,

where S corresponds to all (`,m,∆) with x`,m,∆ = 1. The objective function is easily
expressed as

minimize
∑

(`,m,∆)∈Ω

c(`,m,∆) · x`,m,∆.

The constraints ∑
m,∆:

(`,m,∆)∈Ω

x`,m,∆ ≤ 1 ∀ ` ∈ L

ensure that we can create at most one charging station per location. In order to capture
charging operations of drivers, we introduce binary variables

yd,b,`,m ∈ {0, 1} ∀ d ∈ D, b ∈ B(d), ` ∈ L(b), m ∈M,

where yd,b,`,m = 1 encodes that driver d charges at location ` with mode m during
break b. Recall that a charging station (`,m,∆) can be occupied by at most ∆ drivers
simultaneously, which is expressed by the constraints∑

d∈D

∑
b∈B(d):

`∈L(b), t∈b

yd,b,`,m ≤
∑
∆:

(`,m,∆)∈Ω

∆ · x`,m,∆ ∀ ` ∈ L, m ∈M, t ∈ T. (2.1)

Notice that for fixed `∗ ∈ L the sets {(d, b) : d ∈ D, b ∈ B(d), `∗ ∈ L(b), t ∈ b} can be
identical for different time points t ∈ T , resulting in duplicate constraints. In fact, it
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2 Driver-aware charging infrastructure design

suffices to impose the above constraints for the start times of all breaks b with `∗ ∈ L(b)
only.

Finally, we need to make sure that every driver charges according to one of her feasible
charging plans. A straightforward way to model this is by introducing binary variables

zd,P ∈ {0, 1} ∀ d ∈ D, P ∈ F (d),

where zd,P = 1 encodes that driver d charges according to P . The requirement that
every driver has to decide on exactly one feasible charging plan is expressed as∑

P∈F (d)

zd,P = 1 ∀ d ∈ D.

The constraints ∑
`∈L(b)

yd,b,`,m =
∑

P∈F (d):
(b,m)∈P

zd,P ∀ d ∈ D, b ∈ B(d), m ∈M (2.2)

ensure that driver d selects charging operations that match the chosen plan.

Note that the model variations mentioned in Section 2.3.1 can be captured in a similar
way.

2.3.3 Strengthened formulations

It turns out that the above integer programming formulation can be significantly im-
proved since its linear programming relaxation is rather weak in terms of its integrality
gap. That is, it admits non-integer points satisfying all linear constraints but whose
objective value is much smaller than the true optimum value. Fortunately, it is possible
to derive additional linear inequalities that reduce the integrality gap significantly but
do not affect the set of feasible integer solutions. We present a family of such cuts in
Section 2.3.3.1.

Moreover, we discuss the constraints in our model that force drivers to follow feasible
charging plans in Section 2.3.3.2. We observe that they often can be reformulated by
eliminating several variables, which has an additional positive impact on the computation
time needed to solve our model. The effectiveness of the strengthened formulations is
demonstrated in Section 2.6.

2.3.3.1 Capacity cuts

To illustrate why our original formulation is weak, suppose that an (optimal) solution to
the integer program decides to build a charging station (`∗,m∗,∆) ∈ Ω with ∆ = k ≥ 2
ports. Suppose further that at every time at most one driver is charging at this station.
This means that the left-hand sides of constraints (2.1) that correspond to `∗,m∗ are
at most 1 for all t ∈ T . Since these constraints are the only ones that relate x and y
directly, we can set x`∗,m∗,∆ = 1

k and still obtain a solution that is feasible to the linear
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2.3 Method

programming relaxation. Clearly, setting a variable to 1
k instead of 1 may decrease the

objective value significantly. A simple way to exclude such fractional points is by adding
the inequalities

yd,b,`∗,m∗ ≤
∑

∆:(`∗,m∗,∆)∈Ω

x`∗,m∗,∆ (2.3)

for all d ∈ D and b ∈ B(d) with `∗ ∈ L(b), which are certainly valid for all integer
solutions. In our computational study, we show that adding these inequalities improves
our model significantly.

We observe that, in the case where there is only one ∆ with (`∗,m∗,∆) ∈ Ω, inequal-
ities (2.1) together with (2.3) cannot be further strengthened in the following sense:

Proposition 2.1. Let B := {b : d ∈ D, b ∈ B(d), `∗ ∈ L(b)} and suppose that (ȳ, x̄) ∈
RB≥0 × [0, 1] satisfies

∑
b∈B:t∈b ȳb ≤ ∆x̄ for all t ∈ T and ȳb ≤ x̄ for all b ∈ B. Then

(ȳ, x̄) is a convex combination of binary vectors (y′, x′) ∈ {0, 1}B × {0, 1} that satisfy∑
b∈B:t∈b y

′
b ≤ ∆x′ for all t ∈ T .

Proof. If x̄ = 0, then this implies ȳ = 0 in which case we are done. Otherwise, let y∗ :=
1
x̄ ȳ and observe that (ȳ, x̄) = (1−x̄)(0, 0)+x̄(y∗, 1), that is, (ȳ, x̄) is a convex combination
of (0, 0) and (y∗, 1). Thus, it remains to show that y∗ is a convex combination of binary
vectors y′ ∈ {0, 1}B that satisfy

∑
b∈B:t∈b y

′
b ≤ ∆ for all t ∈ T .

To this end, notice that y∗ satisfies
∑

b∈B:t∈b y
∗
b = 1

x̄

∑
b∈B:t∈b ȳb ≤ ∆ for all t ∈ T and

y∗b = 1
x̄ ȳb ≤ 1 for all b ∈ B. In other words, y∗ is contained in the polytope

Q :=

{
ỹ ∈ [0, 1]B :

∑
b∈B:t∈b

ỹb ≤ ∆ for all t ∈ T

}
.

By ordering the constraints according to their time t ∈ T , we see that Q can be written
as {y : Ay ≤ h, 0 ≤ y ≤ 1}, where h is an integer vector and A is a 0/1-matrix that has
the consecutive ones property. Such matrices are known to be totally unimodular [47],
which implies that all vertices of Q are integer, cf. [90, Theorem 19.3], and hence binary.
Thus, y∗ is a convex combination of binary vectors y′ ∈ {0, 1}B ∈ Q as claimed.

However, even with these constraints there are still several constellations in which the
x-values can be decreased in the linear programming relaxation. For this reason, one
may consider the following natural generalization of inequalities (2.3). For every t∗ ∈ T
and every set S ⊆ {(d, b) : d ∈ D, b ∈ B(d), `∗ ∈ L(b), t∗ ∈ b}, consider the inequality∑

(d,b)∈S

yd,b,`∗,m∗ ≤
∑

∆:(`∗,m∗,∆)∈Ω

min(|S|,∆) · x`∗,m∗,∆. (2.4)

Note that the inequalities (2.3) arise as a special case from (2.4) where |S| = 1. Again,
it is easy to see that every integer solution satisfies (2.4). Still, the inequalities (2.4)
do not suffice to generalize the observation of Proposition 2.1 to the case where there
is more than one ∆ with (`∗,m∗,∆) ∈ Ω, and it is not clear how the inequalities can
be further strengthened. Moreover, given the strength of the inequalities in (2.3) and
the large number of the inequalities in (2.4), incorporating the latter inequalities in an
efficient way remains challenging.
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2 Driver-aware charging infrastructure design

2.3.3.2 Charging plan cuts

Recall that we require every driver d ∈ D to follow a feasible charging plan in F (d). To
this end, we introduced auxiliary variables zd,P for all P ∈ F (d) and constraints (2.2) to
link y and z. While this formulation is very explicit, we describe a reformulation that
avoids the auxiliary variables z.

For a charging plan P ∈ F (d) let χ(P ) ∈ {0, 1}B(d)×M denote its characteristic vector,
i.e., χ(P )b,m = 1 if and only if (b,m) ∈ P . Consider the polytope Q(d) := conv{χ(P ) :
P ∈ F (d)}. Suppose we have computed an inequality description Q(d) = {q ∈ RB(d)×M :
Aq ≥ h} for Q(d), where A is a matrix and h is a vector such that the rows of A and
h correspond to some index set I and the columns of A correspond to B(d) ×M . The
following statement shows that the auxiliary variables z and the constraints (2.2) can
be avoided by imposing some specific linear inequalities on y only.

Proposition 2.2. For a vector y ∈ RΓ with Γ := {(b, `,m) : b ∈ B(d), ` ∈ L(b), m ∈
M}, the following are equivalent.

� There exist z ∈ [0, 1]F (d) with
∑

P∈F (d) zP = 1 and∑
`∈L(b)

yb,`,m =
∑

P∈F (d):
(b,m)∈P

zP

for all b ∈ B(d) and m ∈M .

� The linear inequalities

∑
(b,m)∈B(d)×M

 ∑
`∈L(b)

Ai,(b,m)yb,`,m

 ≥ hi (2.5)

are satisfied for all i ∈ I.

Proof. Let y ∈ RΓ, and suppose there is some z ∈ [0, 1]F (d) satisfying the first condition.
For every i ∈ I, we have

∑
(b,m)∈B(d)×M

 ∑
`∈L(b)

Ai,(b,m)yb,`,m

 =
∑

(b,m)∈B(d)×M

Ai,(b,m)

∑
P∈F (d):
(b,m)∈P

zP

=
∑

(b,m)∈B(d)×M

Ai,(b,m)

∑
P∈F (d)

zPχ(P )b,m

=
∑

P∈F (d)

zP
∑

(b,m)∈B(d)×M

Ai,(b,m)χ(P )b,m

≥
∑

P∈F (d)

zPhi = hi,
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where the inequality holds since χ(P ) is contained in Q(d) and hence satisfies Aχ(P ) ≥ h
for all P ∈ F (d).

Suppose now that y ∈ RΓ satisfies (2.5) for all i ∈ I. Define q ∈ RB(d)×M via
qb,m =

∑
`∈L(b) yb,`,m for all b ∈ B(d) and m ∈M . For every i ∈ I we have

∑
(b,m)∈B(d)×M

Ai,(b,m)qb,m =
∑

(b,m)∈B(d)×M

 ∑
`∈L(b)

Ai,(b,m)yb,`,m

 ≥ hi
and hence Aq ≥ h. This means, that q is contained in Q(d) and hence can be written as
q =

∑
P∈F (d) zPχ(P ) for some z ∈ [0, 1]F (d) with

∑
P∈F (d) zP = 1. For every b ∈ B(d)

and m ∈M , we obtain∑
`∈L(b)

yb,`,m = qb,m =
∑

P∈F (d)

zPχ(P ) =
∑

P∈F (d):
(b,m)∈P

zP .

In fact, we suggest to replace the auxiliary variables z and the constraints (2.2) by
the inequality description of Q(d), whenever the latter can be easily computed. For
a general set of feasible charging plans F (d) it is very difficult to derive an inequality
description of Q(d) in a closed form. However, one may use existing software tools to
compute the convex hull of a given set of points. This is particularly feasible when
the ambient dimension of Q(d) is small. Since the ambient dimension of Q(d) is equal
to |B(d)| · |M |, this approach is applicable for drivers d ∈ D with a reasonably small
number of breaks. Indeed, in our computational experiments, for most drivers the set
B(d) consists of at most five breaks, in which case the inequality description of Q(d)
can be quickly computed. Moreover, it turns out that this reformulation improves our
model further.

2.4 Case study

In this section, we derive a case study from existing traffic data. We perform our
evaluations on open traffic data2 that has been generated for the city of Düsseldorf,
Germany (≈ 619 000 inhabitants in 2019) provided by Rakow et al. [85]. Based on
current traffic information, the authors used MATSim to simulate a collection of drivers
together with their stops within a typical day in Düsseldorf. In what follows, we describe
how to turn such information into driver data as needed for our method.

Our data contains 268 110 individual agents and their mobility plans on a typical work
day. The set of agents encompasses all agents that spend a certain amount of time in
Düsseldorf during the day. Out of these agents, we identify 113 852 as actual residents,
i.e., agents that start their first trip within the city borders of Düsseldorf, which are

2https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/

duesseldorf/
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2 Driver-aware charging infrastructure design

Figure 2.1: Effective charging speeds of AC and DC charging stations in our case study.

responsible for 477 277 trips, using different modes of transport. The true number of
such trips was approximately 2.16 million in 2019 (calculations based on Gerike et al.
[48]). Therefore, we estimate that our set of agents and consequently the portrayed
traffic represents approximately one quarter of the true size.

Extracting only the trips that were done by car, we obtain 475 639 trips that are done
by 128 059 different drivers. Recall, that this only represents approximately one quarter
of the traffic, so we assume that our groundset of potential EVs consists of N := 512 236
drivers. To identify a set of potential EV drivers, we restrict ourselves to drivers whose
consecutive trips end and start at locations within a distance of 300m, which we also
require for the last and first trip to hold.

An EV in our setting is characterized by its battery capacity, its range and its charging
behavior. Since we are investigating an urban environment, we assume all cars to be
rather compact with a battery capacity of 50kWh and an effective range of 260km,
corresponding to a consumption of 19.23kWh per 100km. However, we remark that our
approach would also allow to model arbitrary EVs and assign them to different drivers.
We consider two modes of charging, AC and DC. For AC charging, the charging speed
can be assumed to be almost independent of the SOC of the battery. Therefore, we
assume a constant charging speed of 11kW and an efficiency of 0.85, which results in
an effective charging speed of 9.35kW. The charging speed of DC charging typically
follows a charging curve whose speed decreases with the SOCs. We use a piecewise
linear function as a charging curve, as depicted in Figure 2.1.

We assume that during an average day, drivers avoid their state of charge to fall below
10% of its capacity. Based on this, we exclude all drivers whose SOC will fall below 10%
even when starting with an SOC of 100% in the morning and DC charging at every break
within the planning region. This results in a set of 100 854 remaining drivers, which we
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use as our final set of drivers D to sample from. Out of these drivers, 26 740 live within
the city of Düsseldorf and we denote this set by Dc ⊆ D.

We assume that all drivers from D\Dc have a wallbox, i.e., they have the opportunity
to recharge their vehicle at home. This is motivated by the facts that drivers in D\Dc live
outside of our planning region and that houses in rural regions have a higher probability
of being able to install a wallbox [12]. Moreover, we assume that 39% of the drivers
in Dc, selected uniformly at random, also have access to a wallbox. This percentage is
based on the dena study by Bamberg et al. [12].

To generate an actual instance for our approach, we proceed as follows. Assuming a
specific electrification rate r ∈ [0, 1], we uniformly sample rN · |Dc|/|D| distinct drivers
from Dc and rN · (1− |Dc|/|D|) drivers from D \ Dc.

We assume that all sampled drivers with a wallbox start with an SOC of 100%. For
each driver d without a wallbox, let µd ≥ 10% be the minimum starting SOC needed to
never reach an SOC below 10% when DC charging at every break within the planning
region. The starting SOC of d is then chosen uniformly at random from the interval
[max(µd, 20%), 100%].

We define a charging plan for a driver d as feasible if it ensures that the SOC never
falls below 10% and reaches at least max(µd, 20%) after the last break. To this end, we
only compute minimally feasible plans, i.e., those plans that do not satisfy the previous
criteria when switching from a charging break to a non-charging break, or from a DC
charging break to an AC charging break. While calculating all minimal feasible charging
plans is only tractable for a small number of breaks, we further declare charging plans
to be feasible if they consist of at least four charging breaks.

To define the possible locations of charging stations, we use a grid approach (cf. [26,
32]) by overlaying the entire city region of Düsseldorf with a square grid with cells of
side length 100m, resulting in a total of 21 745 possible locations. For each location, we
allow nAC ∈ {2, 4, 6, 8} AC charging ports, or nDC ∈ {4, 6, 8} DC charging ports, and
define its cost to be nAC or 2nDC, respectively.

Finally, for each break b of a driver, we define its set of nearby locations L(b) as all
locations within the grid whose distance is at most 200 meters. In order to reduce the
size of the instance, we exclude those locations ` for which there exists another location
`′ with {b ∈ B(d) : d ∈ D, ` ∈ L(b)} ⊆ {b ∈ B(d) : d ∈ D, `′ ∈ L(b)}.

2.5 Simulation

In this section, we describe the simple driver-based simulation that has been used to
evaluate the positioning of charging stations obtained by our main method. The code
for the simulation is available in our Github repository3 alongside with our optimization
method.

Recall that our main approach is based on the idea that a set of charging stations
performs well if most drivers are able to charge during breaks without deviating from
their original schedules, making a transition to EVs as easy as possible. Given a fixed

3https://github.com/tumBAIS/driverAwareChargingInfrastructureDesign
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set of charging stations, we describe a simple simulation where each driver greedily aims
at satisfying their own demand. The number of drivers that need to take ‘large’ detours
in order to satisfy their demand is then regarded as a measure of performance.

Input. Apart from a fixed set of charging stations to be evaluated, our simulation is
again based on the set of drivers D, which is obtained as described in Section 2.4. Given
an electrification rate, we sample a specific set of drivers D and their starting SOC as
explained in Section 2.4. Moreover, we specify the maximum distance rh a driver is
willing to walk between their stop and a charging station without deviating from the
schedule, and a maximum distance rm that can be travelled in this manner at all. For
our experiments, we use rh := 400m and rm := 5000m.

Main simulation loop. The main attention of our simulation is devoted to the decisions
of individual drivers in D. We assume that each driver knows ahead of day about both
the planned trips as well as the starting SOC of their EV. We say that a feasible charging
plan is compatible (to the set of charging stations) if for every charging stop there is a
charging station with the desired mode within distance rm, and initially label it as good
if the respective charging stations are within distance rh. We assume that drivers prefer
plans that both use few charging stops and have them as early as possible. For every
driver, we determine an initial preferred charging plan accordingly from the set of good
charging plans, or from the set of compatible charging plans if no good charging plan
exists.

We sort the set of all breaks of drivers in D in increasing order with respect to the
starting time. For each break of a driver d in this list, we proceed as follows:

1. If the current preferred plan of d is good and contains a charging operation at the
current break, we search for a charging station within distance rh that has a free
port of the respective charging mode.

2. If such a charging station exists, d blocks a port for the whole duration of the
break, and we proceed with the next break.

3. If such a station does not exist, d chooses a new good charging plan that still
matches the drivers’ charging operations so far and dismisses the current one,
provided that such a new plan exists.

4. Otherwise, if no good charging plans remain, we remove the label ‘good’ from the
current preferred charging plan and try to find a free charging station within a
distance rm.

5. If no such station exists, dismiss the current plan and choose another compatible
plan that still matches the drivers’ charging operations so far.

6. Only in the case, where no further compatible plan is available, and the current
plan cannot be completed, we label a driver as “not compatible” and remove her
breaks from the rest of the simulation.
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Evaluation. Note that, at the end of the simulation, every driver that has not been
labeled as “not compatible” was able to perform charging operations according to a
feasible charging plan. Moreover, if the preferred plan of a driver d at the end of the
simulation is still labeled as good, then d was able to avoid large detours at all. Thus,
in order to evaluate how well the charging stations served the drivers’ needs, we can
compare the (i) number of drivers that were able to follow a feasible charging plan (i)
without detours and (ii) with detours, and (iii) the number of drivers that were not able
to follow a feasible charging plan at all (labeled as “not compatible”).

Repeated simulation. We remark that the initial distribution of the SOCs described
above may seem arbitrary. However, observe that at the end of each simulation loop,
we can reconstruct the exact SOC of a driver at the end of the day by analyzing the
performed charging processes throughout the day. These SOCs can be used as new
initial SOCs for another simulation loop. Running the simulation loop several times
yields SOCs that might serve as a more realistic input.

2.6 Results

In this section, we demonstrate the effectiveness of the strengthened formulations de-
scribed in Section 2.3.3 and show that the resulting model is capable to solve real-world
instances.

2.6.1 Effectiveness of strengthened formulations

To analyze the effectiveness of the strengthened formulations presented in Section 2.3.3,
first recall that we proposed to add the capacity cuts (2.3). Second, we suggested to
use charging plan cuts, i.e., inequality descriptions of Q(d) for each driver d (see Sec-
tion 2.3.3.2) instead of the auxiliary variables z and constraints (2.2). A third enhance-
ment that turned out to be very efficient is to relax the binary variables y (which assign
charging processes to locations) to fractional variables in [0, 1]. Clearly, this may result
in selections of charging stations that do not permit a feasible assignment of charging
processes to locations. However, in all our experiments, we found that this caused al-
most no change in the value of the optimal solution, but had a significant impact on the
performance of our model.

To evaluate the impact of the proposed enhancements, for each electrification rate in
{1%, 2%, . . . , 6%}, we independently sampled driver data for 10 days as described in the
previous section. The size of the instances in our experiments spans a range between 200
and 1 200 drivers (that need to charge at a public charging station) who have between
1 000 and 6 000 stops in total. For each subset of the three enhancements, we ran the
adapted model on all generated instances using Gurobi Optimization, LLC [52] on a
standard laptop. First, we evaluated the computational times, averaged over the ten
instances per electrification rate, until Gurobi determines a gap of at most 1%. Here,
the gap is defined as (P −D)/D, where P denotes the objective value of the best known
feasible solution and D denotes the dual bound. The results are depicted in Figure 2.2.
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Figure 2.2: Comparison of average computational times for enhanced models. Each curve repre-
sents a variant of our original model, where the selected enhancements are depicted
on the right.

We observe that in our calculations, adding additional enhancements always has a
positive effect on the computational time of our model. The strength of the enhance-
ments appears to increase from ‘capacity cuts’ to ‘charging plan cuts’ to the fractional
relaxation of the y variables.

Secondly, we evaluated the quality of the linear programming relaxations of the respec-
tive models by evaluating the ‘root LP gap’ given by (OPT−D)/D, where OPT denotes
the optimum value and D denotes the dual bound directly after the linear programming
relaxation has been solved. The results are depicted in Figure 2.3.

It should be noted that since Gurobi’s preprocessing routines may further strengthen
the linear programming relaxations, it is difficult to specify the actual linear program that
determines the dual bound D. However, as above, we observe that adding enhancements
is favorable in order to improve the root LP gap. In particular, adding the capacity cuts
improves the gap most significantly. Note that without preprocessing, the other two
enhancements would not have an effect on the dual bound.

In summary, we recommend to use all three presented enhancements in a practical
application. For the ‘fractional’ enhancement, we observe the largest improvement in
terms of computational time, which comes at the cost that the solution is not necessarily
feasible. Since the exact future mobility demand is not known a priori and the new
solution value is almost indistinguishable from the original, this cost seems negligible.
The two different classes of cuts also improve the computational time by an extent that
clearly outweighs their generation cost.
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Figure 2.3: Comparison of average root LP gap for enhanced models. Again, each curve repre-
sents a variant of our original model, where the selected enhancements are depicted
on the right.

2.6.2 Case study analysis

In this section, we demonstrate that our approach is able to determine positions for
charging infrastructure in large urban environments that satisfy driver demands to a
high degree.

To this end, we consider the two following slight modifications of the presented model.
First, instead of minimizing the cost and satisfying all drivers, we maximize the number
of satisfied drivers under the constraint that the cost is below a given budget. This
allows us to compare our solutions with existing positions, and can be easily incorporated
into our model by introducing binary variables for each driver indicating whether their
demands could be satisfied. Second, instead of considering a single set of drivers, we
incorporate multiple independent sets of drivers (which can be thought of as different
days). This avoids overfitting to driver data of a single day.

Notice that, in our model, not only the positioning of charging stations but also the
allocation of a fixed set of drivers to charging stations is optimized. Thus, in order to
evaluate our method on realistic instances, it is necessary to understand how a solution
performs on (i) an unknown set of drivers who (ii) occupy charging stations according
to some natural behavior.

We propose to evaluate the positioning of charging stations by means of a driver-based
simulation. A simple version, where each driver greedily aims at satisfying their own
demand is described in Section 2.5. Recall that our goal is to determine charging stations
that allow drivers to switch to EVs without having to significantly deviate from their
original schedules. To this end, within the simulation, we count the number of drivers
that need to take ‘large’ detours in order to satisfy their demand. Here, we say that a
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Figure 2.4: Currently existing charging infrastructure in the city of Düsseldorf (November
2021). Red points represent AC charging stations, and blue points represent DC
charging stations.

driver took a large detour if she charges at a distance of more than 400 m to the position
of her respective break. A walking distance in this range is a standard assumption in
the related literature (cf. [89]). If the distance is more than 5 km, then we say that the
driver’s schedule is not compatible.

The baseline for our experiments are the positions of existing charging infrastructure
in Düsseldorf4 (cf. Figure 2.4), which has a total cost of C = 272 cost units as defined
in Section 2.4. We compute four solutions with budgets worth C, 2C, 4C and 6C,
each based on two random driver sets corresponding to electrification rates of 3%, 5%,
12%, and 18%, respectively. The specific models were chosen in a way that the respective
budgets had to be fully used. While there is no clear indication what electrification rates
and number of driver sets are optimal as an input, we found that solutions obtained from
different variations of the input performed almost equally in our evaluations.

Each solution was found within at most 5 hrs using Gurobi version 9.5.1 on a standard
laptop and is within 1% of the optimal solution. The solutions consist of 272, 544, 1068,
and 1560 charging ports, respectively, and the arrangements of the respective charging
stations are shown in Figure 2.5. We see that, in each solution, the charging infrastruc-
ture is much more evenly dispersed than in the reference arrangement (see Figure 2.4).

4https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/

Unternehmen_Institutionen/E_Mobilitaet/Ladesaeulenregister.xlsx
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(a) Budget C (b) Budget 2C

(c) Budget 4C (d) Budget 6C

Figure 2.5: Charging station positions for selected solutions of the budget-constrained model.
Red points represent AC charging stations, and blue points represent DC charging
stations.
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Figure 2.6: Proportion of drivers that need to take a detour of more than 400 m for at least one
of their charging processes. Each datapoint is the average over 10 simulation runs.

This is in particular observable in Figure 2.5a, which operates on the same budget as the
reference arrangement, but covers a larger area. Since in our model, DC charging stations
are twice as expensive as AC stations, they are only placed within scenarios that permit
a higher budget, i.e., for a budget of more than 4C (see Figure 2.5c and Figure 2.5d).
The general structure of our solutions is an even distribution over the central part of the
city (see in particular Figure 2.5a). Starting from a budget of 2C, also outer areas are
well covered (see Figure 2.5b). While a budget of 4C additionally allows for some DC
charging stations (see Figure 2.5c), a budget of 6C suffices for an even distribution of
both types of charging stations over the whole city area.

To evaluate the performance of our solutions, we depict the proportion of drivers that
need to take at least one detour of at least 400 m in Figure 2.6. We clearly see that our
solution with a budget of C outperforms the reference solution. Still, neither of the two
positionings can satisfy the demand of an unknown set of drivers to a satisfying degree.
In contrast, if we allow for a budget of 4C, our solution provides sufficient charging
infrastructure for populations that consist of up to 10% of EVs. The 6-fold budget
suffices for an electrification rate of 15% consistently.

In Figure 2.7, we show the proportion of drivers whose schedules are not compatible,
i.e., who need to take a detour of more than 5000 m for at least one of their charging
processes. The graphic shows that the positionings of charging stations appear to have
a ‘tipping point’: a specific electrification rate at which the number of incompatible
drivers begins to drastically increase. At lower electrification rates, the proportion of
incompatible drivers is almost constant, and is comprised of the drivers whose demands
are not covered by the positioning. This graphic underlines the result of Figure 2.6:
while a budget of 2C is not sufficient to cover the entire region of the city (even for small
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Figure 2.7: Proportion of drivers that are incompatible. Each datapoint is the average over 10
simulation runs.

electrification rates), our solution for the 4-fold budget performs well for electrification
rates of up to 10%, and a 6-fold budget is sufficient for electrification rates of 15%.

2.7 Outlook

We introduced a mathematical programming based approach for determining positions
of charging stations that allow EV drivers to maintain their individual daily schedule
without significant deviations for charging. We formulated this problem as a combina-
torial optimization problem and derived MILP models with strengthened formulations
that allow to handle large instances and various objective functions. We demonstrated
how this approach can be utilized in practice based on traffic data containing mobil-
ity information of individual drivers. We presented results of a case study for the city
of Düsseldorf, which show that our approach allows to efficiently solve instances with
electrification rates up to 15%.

Our work paves the way for future research from a methodological and from a prac-
titioner’s perspective. From a methodological perspective, it remains interesting to en-
hance our framework for solving even larger instances. This can be done by either further
improving our exact approach or by developing competetive metaheuristics. In the latter
case, our exact approach may serve for benchmarking purposes.

From a practitioner’s perspective, several questions remain that require additional
case studies. First, it remains interesting to analyze how existing charging infrastruc-
ture should be extended to meet increasing demand. The approach presented in this
chapter is readily applicable to such a problem setting (by fixing decision variables for
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existing charging stations). Second, analyzing various case studies can help to detect
structural properties that yield profound insights to inform city planners in practice.
Third, extending our planning model to account for power network related constraints
remains a challenging but also crucial avenue for future work.
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3 Improved lower bound on the dimension
of the EU council’s voting rules

The content of this chapter is based on a joint publication with Stefan Weltge [68].

3.1 Background

Simple games are cooperative games that are commonly used to describe real-world
voting systems. Considering a fixed, finite set M of voting members, a simple game is
given by a collection W of subsets of M satisfying the monotonicity property: C ∈ W
and C ⊆ C ′ ⊆ M implies C ′ ∈ W. The sets in W are called winning coalitions, and
each subset of M that is not in W is called a losing coalition. It is convenient to require
the empty coalition to be losing and the grand coalition of all voting members to be
winning when dealing with real-world examples. A fundamental class of simple games
are weighted games whose winning coalitions can be written as

W =
{
C ⊆M :

∑
m∈C

am ≥ β
}

for some a ∈ RM≥0 and β ∈ R. Note that there exist winning and losing coalitions if and
only if 0 < β ≤

∑
m∈M am. It is a basic fact that every simple game is the intersection

of finitely many weighted games, and hence we may define the dimension of a simple
game W to be the smallest number of weighted games whose intersection is W.

In a similar way, the codimension of a simple game was defined by replacing inter-
section with union in the above definition [46]. As a third measure for the complexity
of the description of simple games, the boolean dimension was introduced, which allows
arbitrary combinations of intersections and unions [43]. The three notions are similarly
interesting from a mathematical point of view. Nevertheless, the notion of dimension
stands out above the others for its analogy to the H-representation of polyhedra.

Determining the dimension of (simple games associated to) real-world voting systems
has been of particular interest in social choice theory, see, e.g., the books by Taylor
and Zwicker [99] and Taylor and Pacelli [97]. Even though it is in general NP-hard
to determine the exact dimension of a given simple game [37], the dimensions of many
real voting rules are known. For instance, many real world examples actually have
dimension one, which is easy to verify. Examples of dimension two are given by the US
federal legislative system [98] and the amendment of the Canadian constitution [67]. A
voting rule of dimension three has been adopted by the Council of the European Union
under the treaty of Nice [45] and by the Legislative Council of Hong Kong [29].
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A new record was set with the change of the EU (European Union) council’s voting
system by the Treaty of Lisbon in 2014. Based on the population data of 2014, Kurz and
Napel [74] showed that its dimension is at least 7 and at most 13 368, and they posed
the exact determination as a challenge to the community. In response, Chen, Cheung,
and Ng [28] were able to reduce the upper bound to 24.

We provide the first improved lower bound and show that the dimension is at least
8. Although we will not rely on this interpretation in what follows, the idea behind our
lower bound is based on the observation that the dimension of a simple game W can
be seen as the chromatic number of a particular hypergraph H: the nodes of H are the
losing coalitions, and a set of losing coalitions N forms a hyperedge iff N ∩W ′ 6= ∅ for
every weighted game W ′ ⊇ W. The proof of Kurz and Napel [74] establishes that H
contains a clique of cardinality 7, which directly implies that the chromatic number of H
is at least 7. This idea has been used previously in the context of lower bounds on sizes
of integer programming formulations [58, 60, 42]. While we have not found any simple
subgraph of larger chromatic number, we will show that H contains a hypergraph on 15
nodes whose chromatic number is 8.

3.1.1 Organization

In Section 3.2 we introduce the concept of non-separable subsets of the losing coalitions
of a simple game W. A family F of such subsets can be thought of as a subgraph of the
above hypergraph. Moreover, we consider the notion of a k-cover for such a set F , which
can be seen as a node-coloring of the respective subgraph with k colors. Accordingly,
we will see that if the dimension of W is at most k, then there exists a k-cover for
each F . In Section 3.3 we consider the simple game associated to the EU council and
give a construction of a set F , for which no 7-cover exists. A proof of the latter fact
will be given in Section 3.4. We give a short geometric intuition on the proof for the
currently standing upper bound in Section 3.5. In the final Section 3.6, we comment on
the structure of the subgraph, that is used to obtain the improved lower bound and on
possible further improvements.

3.2 Strategy

In what follows, we consider simple games on a common fixed ground set M .

Definition 3.1. Let W be a simple game and N be any set of losing coalitions of W.
We say that N is non-separable with respect to W if every weighted game W ′ ⊇ W
satisfies W ′ ∩N 6= ∅.

From the definition it is immediate that a simple game is weighted if and only if no
set of losing coalitions is non-separable. So, the existence of a single non-separable set
yields that the dimension of a simple game is at least two. To obtain a larger lower
bound, the following notion will be useful.
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3.3 Our Construction

Definition 3.2. LetW be a simple game with losing coalitions L, and letN1, . . . ,Nt ⊆ L
be non-separable with respect to W. A k-cover of (N1, . . . ,Nt) is a collection of sets
L1, . . . ,Lk ⊆ L such that

1. L1 ∪ · · · ∪ Lk = N1 ∪ · · · ∪ Nt and

2. Ni * Lj for all i ∈ {1, . . . , t}, j ∈ {1, . . . , k}.

In order to obtain a lower bound on the dimension, we will exploit the following
observation.

Lemma 3.3. Let W be a simple game with non-separable sets N1, . . . ,Nt. If W has
dimension at most k, then there exists a k-cover for (N1, . . . ,Nt).

Proof. If W has dimension at most k, then there exist k weighted games W1, . . . ,Wk

such that
⋂k
i=1Wi = W. For i ∈ {1, . . . , k} define Li as the intersection of the losing

coalitions in Wi and L∗ := N1 ∪ · · · ∪ Nt.
We claim that (L1, . . . ,Lk) is a k-cover of (N1, . . . ,Nt). In order to show Property 1,

first observe that L1 ∪ · · · ∪Lk ⊆ L∗ holds. Now, for any ` ∈ L∗ ⊆ L we have ` /∈ W and
hence there is an i ∈ {1, . . . , k} with ` /∈ Wi, which implies ` ∈ Li.

For Property 2, assume that Ni ⊆ Lj holds for some i ∈ {1, . . . , t} and j ∈ {1, . . . , k}.
This means that each coalition in Ni is losing for Wj , meaning that Ni and Wj are
disjoint. This contradicts the fact that Ni is non-separable with respect to W since
Wj ⊇ W is weighted.

In what follows, we will consider the simple game associated with the EU council and
construct a collection of non-separable losing coalitions that does not permit a 7-covering.
By Lemma 3.3 this implies that the dimension must be at least 8.

3.3 Our Construction

Let us give a formal definition of the simple game associated to the EU council based
on the population data of 2014, as considered by Kurz and Napel [74]. In 2014, the
European Union consisted of 28 members and hence we may fix M := {1, . . . , 28}. In
the voting system of the EU council, a coalition is winning if

1. it contains at least 55% of all members states and

2. it unites at least 65% of the total EU population,

or

3. it consists of at least 25 of the 28 member states.

Denoting the weighted game associated with rule i by Wi and the simple game that
represents the voting system of the EU council by WEU, we thus have

WEU = (W1 ∩W2) ∪W3.
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3 Improved lower bound on the dimension of the EU council’s voting rules

# Member state Population Percentage # Member state Population Percentage

1 Germany 80 780 000 15.9% 15 Austria 8 507 786 1.7%
2 France 65 856 609 13.0% 16 Bulgaria 7 245 677 1.4%
3 United Kingdom 64 308 261 12.7% 17 Denmark 5 627 235 1.1%
4 Italy 60 782 668 12.0% 18 Finland 5 451 270 1.1%
5 Spain 46 507 760 9.2% 19 Slovakia 5 415 949 1.1%
6 Poland 38 495 659 7.6% 20 Ireland 4 604 029 0.9%
7 Romania 19 942 642 3.9% 21 Croatia 4 246 700 0.8%
8 Netherlands 16 829 289 3.3% 22 Lithuania 2 943 472 0.6%
9 Belgium 11 203 992 2.2% 23 Slovenia 2 061 085 0.4%

10 Greece 10 992 589 2.2% 24 Latvia 2 001 468 0.4%
11 Czech Republic 10 512 419 2.1% 25 Estonia 1 315 819 0.3%
12 Portugal 10 427 301 2.1% 26 Cyprus 858 000 0.2%
13 Hungary 9 879 000 1.9% 27 Luxembourg 549 680 0.1%
14 Sweden 9 644 864 1.9% 28 Malta 425 384 0.1%

Table 3.1: Population data of the European Union on 01.01.2014, see also [74, Table 1].

Note that W2 depends on the population of each member state. As in [74], we will work
with the data depicted in Table 3.1. Out of the 228 possible coalitions, 30 340 718 are
winning. It can be seen that the following coalitions are losing with respect to WEU.

L1 := M \ {1, 4, 7, 13, 14} L2 := M \ {2, 3, 6, 13}
L3 := M \ {1, 4, 5, 28} L4 := M \ {1, 2, 10, 11, 14}
L5 := M \ {1, 3, 8, 11, 15} L6 := M \ {1, 4, 8, 9, 12}
L7 := M \ {1, 2, 7, 17, 18} L8 := M \ {1, 5, 6, 16, 18}
L9 := M \ {2, 4, 6, 15, 21} L10 := M \ {1, 3, 9, 10, 12}
L11 := M \ {3, 4, 5, 20, 22} L12 := M \ {2, 3, 7, 8, 9}
L13 := M \ {1, 3, 6, 26} L14 := M \ {2, 3, 5, 19}
L15 := M \ {16, 17, . . . , 28}

In fact, note that each coalition Li contains less than 25 members. Now, L1, . . . , L14 are
losing since each of them unites less than 65% of the total EU population, and L15 is
losing since it contains less than 55% of all members.

Next, we construct non-separable subsets with respect to WEU that consist of the
above losing coalitions. In order to verify that these subsets are indeed non-separable,
the following lemma is helpful.

Lemma 3.4. Let W be a simple game and let W∗ and N be sets of some winning and
losing coalitions for W, respectively, such that |W∗| ≥ |N |. If

|{W ∈ W∗ : m ∈W}| ≤ |{L ∈ N : m ∈ L}|

holds for all m ∈M , then N is non-separable with respect to W.

34



3.3 Our Construction

Proof. Consider any weighted gameW ′ = {C ⊆M :
∑

m∈C am ≥ β} ⊇ W with a ∈ RM≥0

and β ∈ R. Then we have∑
L∈N

∑
m∈L

am ≥
∑

W∈W∗

∑
m∈W

am ≥ β |W∗| .

The last inequality holds because all elements of W∗ are contained in W ′. Thus, there
must exist some L ∈ N , such that∑

m∈L
am ≥ β ·

|W∗|
|N |

≥ β.

Therefore, we have L ∈ W ′ and hence W ′ ∩ N 6= ∅. Since this holds for any weighted
game W ′ ⊇ W, N is non-separable with respect to W.

We claim that the following 2-element subsets of the above losing coalitions are non-
separable.

{L1, L5}, {L1, L8}, {L1, L9}, {L1, L10}, {L1, L11}, {L1, L13}, {L1, L14}, {L1, L15},
{L2, L3}, {L2, L4}, {L2, L5}, {L2, L6}, {L2, L7}, {L2, L8}, {L2, L10}, {L2, L11}, {L2, L15},
{L3, L4}, {L3, L5}, {L3, L7}, {L3, L9}, {L3, L10}, {L3, L12}, {L3, L13}, {L3, L14}, {L3, L15},
{L4, L6}, {L4, L8}, {L4, L9}, {L4, L11}, {L4, L12}, {L4, L13}, {L4, L14}, {L4, L15},
{L5, L7}, {L5, L8}, {L5, L11}, {L5, L14}, {L5, L15},
{L6, L7}, {L6, L8}, {L6, L9}, {L6, L11}, {L6, L13}, {L6, L14}, {L6, L15},
{L7, L9}, {L7, L10}, {L7, L11}, {L7, L13}, {L7, L14}, {L7, L15},
{L8, L9}, {L8, L10}, {L8, L11}, {L8, L12}, {L8, L14}, {L8, L15},
{L9, L10}, {L9, L11}, {L9, L12}, {L9, L13}, {L9, L14}, {L9, L15},
{L10, L11}, {L10, L14}, {L10, L15},
{L11, L12}, {L11, L13}, {L11, L15},
{L12, L13}, {L12, L15},
{L13, L14}, {L13, L15},
{L14, L15} (3.1)

To see that each above set N := {Li, Lj} is non-separable, we make use of Lemma 3.4
as follows. If Li, Lj 6= L15, we have that Li and Lj are contained inW1\W2. Pick a set of
states A ⊆ Li∪Lj \ (Li∩Lj) of minimum total population such that W1 := A∪ (Li∩Lj)
is contained in W3 ⊆ W. For all above pairs it can be checked that W2 := (Li ∪Lj) \A
is contained in W1 ∩ W2 ⊆ W. By construction, N and W∗ := {W1,W2} satisfy the
assumptions of Lemma 3.4 and hence N is indeed non-separable.

Otherwise, we may assume that Lj = L15. For all above pairs, exchanging the two
members with the least population in Li \L15 with the member of largest population in
L15 \Li, results in two winning sets W1,W2. Again, N and W∗ := {W1,W2} satisfy the
assumptions of Lemma 3.4, implying that N is non-separable.
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3 Improved lower bound on the dimension of the EU council’s voting rules

Moreover, the following 3-element subsets of losing coalitions are also non-separable.

{L1, L2, L12}, {L1, L4, L7}, {L1, L6, L12}, {L4, L5, L10}, {L5, L10, L12} (3.2)

To see that these sets are non-separable, consider the following sets of winning coalitions.

W1 := M \ {3, 7, 8, 9, 10, 11, 12, 15} W2 := M \ {1, 2, 3}
W3 := M \ {1, 2, 7, 14} W4 := M \ {3, 4, 7, 8, 9}
W5 := M \ {1, 8, 9, 10, 11, 12, 14, 15} W6 := M \ {1, 3, 8, 9}
W7 := M \ {2, 6, 7, 8, 13} W8 := M \ {1, 7, 8, 9, 12, 13, 14}
W9 := M \ {1, 3, 10, 11} W10 := M \ {1, 2, 4}
W11 := M \ {3, 4, 7, 9, 13, 14} W12 := M \ {1, 7, 10, 11, 13, 14, 17, 18}

Observing that the pairs

({W2,W7,W11}, {L1, L2, L12}),
({W3,W10,W12}, {L1, L4, L7}),
({W4,W8,W10}, {L1, L6, L12}),
({W2,W5,W9}, {L4, L5, L10}), and

({W1,W2,W6}, {L5, L10, L12})

satisfy the assumptions of Lemma 3.4, we see that the sets in (3.2) are indeed non-
separable.

In the next section, we show that the non-separable sets in (3.1) and (3.2) do not admit
a 7-cover. Recall that this implies that the dimension must be at least 8 by Lemma 3.3.

3.4 Proof that no 7-cover can exist

For the sake of contradiction, let us assume that the non-separable sets in (3.1) and (3.2)
admit a 7-cover. This implies that there exist sets L1, . . . ,L7 ⊆ {L1, . . . , L15} such that

(i) each Lj is an inclusion-wise maximal subset of {L1, . . . , L15} that does not contain
any of the sets in (3.1) and (3.2), and

(ii) L1 ∪ · · · ∪ L7 = {L1, . . . , L15}.

It can be easily verified that the only sets satisfying (i) are the following.

{L1, L2}, {L1, L3, L6}, {L1, L4}, {L1, L7, L12}, {L2, L9}, {L2, L12, L14}, {L2, L13},
{L3, L8}, {L3, L11}, {L4, L5}, {L4, L7}, {L4, L10}, {L5, L6, L10}, {L5, L6, L12},
{L5, L9}, {L5, L10, L13}, {L6, L10, L12}, {L7, L8}, {L8, L13}, {L11, L14}, {L15} (3.3)

In what follows, for a weight-vector w = (w1, . . . , w15) ∈ R15, let us define the weight of
a set L′ ⊆ {L1, . . . , L15} as w(L′) :=

∑
i:Li∈L′ wi.
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3.5 Strategy for the upper bound by Chen et al. [28]

Suppose first that none of the sets L1, . . . ,L7 is equal to {L1, L3, L6}. In this case,
consider the weight-vector

w = (1/2, 0, 1, 1/2, 0, 1, 1/2, 0, 1, 0, 0, 0, 1, 1, 1)

and observe that the weight of each set in (3.3) that is distinct from {L1, L3, L6} is at
most 1. Thus, the weight of each set L1, . . . ,L7 is at most 1, and we obtain

7 < 15
2 = w({L1, . . . , L15}) = w(L1 ∪ · · · ∪ L7) ≤ w(L1) + · · ·+ w(L7) ≤ 7,

a contradiction.
It remains to consider the case that one of the sets L1, . . . ,L7 is equal to {L1, L3, L6},

say L1. Consider the weight-vector

w = (0, 1/3, 0, 2/3, 1/3, 0, 1/3, 2/3, 2/3, 1/3, 1, 2/3, 1/3, 0, 1)

and observe that the weight of each set in (3.3) is at most 1, and that w(L1) = 0. Thus,
we have

6 < 19
3 = w({L1, . . . , L15}) = w(L1 ∪ · · · ∪ L7) ≤ w(L2) + · · ·+ w(L7) ≤ 6,

another contradiction. This completes our proof.

3.5 Strategy for the upper bound by Chen et al. [28]

We proceed to give the general idea for the proof by Chen, Cheung, and Ng [28], which
reduced the upper bound on the dimension from 13 368 to 24. They give their Theorem 1,
which is crucial for the upper bound in terms of weighted games. We add a short
geometric intuition, how the theorem can structurally be applied to the given problem.

The integral observation for the upper bound result is that the set W3 \ (W1 ∩ W2)
is both small and well-structured. Almost all coalitions that contain 25 members also
unite at least 65% of the population. Exceptions to this are only

W1 := M \ {1, 2, 3} W2 := M \ {1, 2, 4}
W3 := M \ {1, 2, 5} W4 := M \ {1, 2, 6}
W5 := M \ {1, 3, 4} W6 := M \ {1, 3, 5}
W7 := M \ {1, 3, 6} W8 := M \ {1, 4, 5}
W9 := M \ {1, 4, 6} W10 := M \ {2, 3, 4} .

Note that {7, . . . , 28} ⊆ Wi for i ∈ [10]. When interpreting coalitions as the corners
of the 28-dimensional {0, 1}-cube, this implies that when projecting to the hyperplanes
xj = 0 for j ∈ {7, . . . , 28}, W1 ∩W2 already captures all of WEU. Therefore, we can fix
the intersection between the weighted game (which can be interpreted as a halfspace)
given by rule 2 and any such hyperplane. We can find a modified hyperplane, pertaining
this intersection but not separating any coalition in Wi for i ∈ [10]. This uses the fact
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3 Improved lower bound on the dimension of the EU council’s voting rules

that all winning coalitions are on the same side of the hyperplane. Therefore, 22 weighted
games (one corresponding to each hyperplane), together with the weighted game given
by rule 1 suffice to completely describe the case where at least one element of {7, . . . , 28}
is missing from the coalitions. This leaves a problem in 6 variables to be solved. It turns
out, that there is a single additional weighted games that suffices to cover this remaining
problem, resulting in a total number of 24 weighted games.

3.6 Outlook

As mentioned in Section 3.1, the dimension of WEU is equal to the chromatic number
of a hypergraph that is formed by all losing coalitions. Actually, it is sufficient to
consider the subgraph that is induced by maximally losing coalitions. Unfortunately,
this subgraph still contains 270 179 nodes and determining its chromatic number seems
computationally intractable. However, in order to obtain a lower bound on the chromatic
number one may consider any smaller subgraph. Natural candidates for small subgraphs
with a large chromatic number are subgraphs with many hyperedges of small cardinality.

Kurz and Napel [74] considered the simple subgraph induced by L∗, which consists
of all losing coalitions L such that |L| ∈ {23, 24} or L = L15. Note that our losing
coalitions L1, . . . , L15 all belong to L∗. In fact, this subgraph contains many edges: If a
coalition L with |L| ∈ {23, 24} is losing, then its population is below 65% of the total EU
population. For two such losing coalitions it is quite likely that exchanging a member
with a high population against some members with a small population results in two
winning coalitions. In this case the losing coalitions share an edge (see Lemma 3.4). In
a similar manner, it is easy to see that L15 is adjacent to every other coalition in L∗.

As observed in [74], this subgraph contains many 7-cliques, showing that its chromatic
number is at least 7. However, it is possible to find a 7-coloring for this graph. When
also considering hyperedges of arbitrary size, we showed in Section 3.4 that one needs
at least 8 colors. In order to provide a short combinatorial proof for the lower bound,
it is not practical to work with the whole set L∗, which contains 950 coalitions, even
when only considering maximal losing coalitions. Therefore, we iteratively reduced the
size of the set, while ensuring that the bound was still intact. For the remaining set of
coalitions, we analyzed the corresponding dual of the fractional coloring linear program
in order to obtain the weights used in Section 3.4.

We mention that it is possible to separate all coalitions in L∗ fromWEU with the help
of 8 weighted games. Thus, in order to obtain an improved lower bound, it is necessary
to include a broader set of losing coalitions and to find a more diverse set of blocking
hyperedges. We expect some room for improvement, especially on the currently standing
upper bound by Chen, Cheung, and Ng [28], but find it hard to predict the true value
of the dimension of WEU.
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4 Totally ∆-modular IPs with TU
constraint matrix and one additional row

The content of this chapter is based on discussions with Manuel Aprile, Samuel Fiorini,
Stefan Weltge, and Yelena Yuditsky.

4.1 Background

Total unimodularity is one of the most important concepts in integer optimization.
Roughly speaking, it gives a condition on the constraint matrix of integer programs
such that all vertex solutions of the associated polyhedron are integral for any integer
right-hand side of the problem. As such, total unimodularity allows to solve certain
integer programs as linear programs, which are known to be polynomial-time solvable,
for instance by the ellipsoid method [66], or even in strongly polynomial time due to
the algorithm given by Tardos [96], whose running time depends only on the size of the
entries in the constraint matrix. Well-known problems with such a formulation are for
instance the bipartite matching problem or the maximum flow problem. To be more
precise, an integer matrix A is said to be totally unimodular, if all its square submatrices
A′ fulfill det(A′) ∈ {−1, 0, 1}. This includes the 1×1 submatrices, i.e., single entries of A.
In general, total unimodularity is very well researched and part of the main textbooks on
integer programming and combinatorial optimization, see e.g. [90, 71]. Among the most
important results on such matrices, we have an extensive characterization theorem [90,
Thm. 19.3], their decomposition due to Seymour [92][90, Thm. 19.6], and a polynomial-
time algorithm to recognize whether a given matrix is totally unimodular [90, Thm. 20.3].

A generalization of total unimodularity that has recently gained a lot of attention is
given by the concept of total ∆-modularity. In this case, the condition on subdetermi-
nants is relaxed such that they are bounded between −∆ and ∆. Note that since all
entries of A are integer, the same holds for each subdeterminant. It is a natural question
to ask, how many of the concepts above can be generalized from total unimodularity to
total ∆-modularity. In particular the optimization question has been frequently asked
and is a challenging open question.

Question 4.1. Does there exist a polynomial-time algorithm for solving integer pro-
grams with a totally ∆-modular constraint matrix for fixed ∆ > 0?

An analog to Question 4.1 is open for ∆-modular matrices, i.e., integer matrices
where the same condition is relaxed to full-rank subdeterminants. Within this work,
we focus on total ∆-modularity only. Question 4.1 has recently been resolved for a few
interesting cases. Let us begin by remarking that the case ∆ = 1 is trivially true, since
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

the definition coincides with total unimodularity, and we can apply the algorithm by
Tardos [96]. The case for ∆ = 2 has been completely solved by Artmann, Weismantel,
and Zenklusen [8], who build up on previous work by Veselov and Chirkov [101]. More
recently, Nägele, Santiago, and Zenklusen [79], as well as Nägele, Nöbel, Santiago, and
Zenklusen [80] made progress on testing feasibility of strictly ∆-modular integer programs
for the cases ∆ = 3 and ∆ = 4 respectively by giving a randomized polynomial-time
algorithm. Strictly ∆-modular matrices are a subclass of ∆-modular matrices, where
full-rank subdeterminants are constrained to be in {−∆, 0,∆}, for which an analog of
Question 4.1 is also open. Further, Fiorini, Joret, Weltge, and Yuditsky [44] were able
to answer Question 4.1 in the affirmative for general fixed ∆ if the constraint matrix
fulfills the additional property that there are at most two non-zero entries in each row
or column. The last work covers for instance the stable set problem with a bounded
number of node-disjoint odd cycles (bounded odd cycle packing number).

In addition to the above optimization question, the concept of total ∆-modularity
has proved helpful in different areas of geometry, combinatorics and optimization. In
particular, we have a proximity bound on the distance of optimal solutions of the integer
program to optimal solutions of its linear relaxation, see Cook, Gerards, Schrijver, and
Tardos [31], which was recently improved by Celaya, Kuhlmann, Paat, and Weisman-
tel [27]. Further, there is a polynomial upper bound on the diameter of polytopes of
the form P = {x | Ax ≤ b} for a totally ∆-modular matrix A and an integer vector
b. Such a bound was first shown by Dyer and Frieze [40] for ∆ = 1, and was later
improved and extended to general fixed ∆ by Bonfias, Di Summa, Eisenbrand, Hähnle,
and Niemeier [21]. In addition, there is evidence of further results for certain subclasses
of integer programs defined by totally ∆-modular matrices. Especially for the stable
set problem, due to the close connection with the odd cycle packing number, there is a

PTAS if ∆ ∈ 2O(
√

log(n)/loglog(n)) (with n the number of vertices) due to Bock, Faenza,
Moldenhauer, and Ruiz-Vargas [17], as well as an extended formulation of size O(n2) if
∆ = 2 due to Conforti, Fiorini, Huynh, and Weltge [30]. Finally, let us mention recent
work on the maximal number of distinct columns in totally ∆-modular matrices, con-
ducted by Glanzer, Weismantel, and Zenklusen [50], Averkov and Schymura [9], as well
as Paat, Stallknecht, Walsh, and Xu [82].

The general Question 4.1 is out of scope for this thesis. Therefore, for the following
work, we restrict ourselves to an interesting subcase.

Question 4.2. Does there exist a polynomial-time algorithm for solving integer pro-
grams with a totally ∆-modular constraint matrix for fixed ∆ > 0, if the constraint
matrix becomes totally unimodular after the removal of one row?

It turns out that the natural transpose of the question, i.e., on totally ∆-modular
matrices that become totally unimodular after the removal of one column is actually
easy to solve. The Cook et al. proximity bound [31], see Theorem 4.5 gives an upper
and lower bound on the additional variable (column). We can then solve the problem
by using dynamic programming on the value of this variable and solving O(n∆) totally
unimodular integer programs.
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4.1 Background

Question 4.2 defines a second class of integer programs that we now take a closer
look at. We investigate problems on integer constraint matrices that consist of a to-
tally unimodular matrix with one additional row. While this class of integer programs
may sound very restricted, we can model some interesting problems in this way. We
mention the partially ordered knapsack problem, see Problem 4.23, which is strongly
NP-complete and has been studied by Kolliopoulos and Steiner [70] with regards to ap-
proximations and an FPTAS for a special case, as well as Boyd [23] with regards to its
polyhedral structure. In addition, the exact matching problem, see Problem 4.20 has
gained a lot of recent attention, and its hardness is unresolved, even for the bipartite
case which is relevant for us. Jia, Svensson, and Yuan [59] very recently showed that
the corresponding polytope has exponential extension complexity. On the positive side,
there is a randomized algorithm due to Camerini, Galbiati, and Maffioli [24], as well as
exact polynomial time algorithms for the special cases of planar graphs (Yuster [106])
and dense graphs (Gurjar, Korwar, Messner, and Thierauf [51], as well as El Maalouly
and Steiner [76]).

As mentioned above, there is a decomposition theorem of totally unimodular matrices
due to Seymour [92], see Theorem 4.16, describing how they can be built from (trans-
posed) network matrices. We partially answer Question 4.2 for some restrictions to the
case of transposed network matrices, see Theorem 4.25 and Theorem 4.34. By consid-
ering these base blocks, we obtain a direct interpretation of the respective problems in
terms of graphs. This allows us to make use of celebrated results from graph and minor
theory to solve our problem. In the following, we give a short overview over the most
relevant techniques and theory that relate to our problem.

We assume that the reader is familiar with the standard notions of graph theory and
refer to Diestel [38] for an extensive reference. Let us assume for the context of the
introduction that our graphs are simple and undirected unless explicitly denoted other-
wise. One fundamental containment relation that we will be working with in Section 4.5
is the concept of minors. We say for two graphs G and H that H is a minor of G if it
is isomorphic to some graph that can be obtained from G by deleting and contracting
edges. We call a class of graphs G minor-closed if G is closed under taking minors, i.e.,
for H a minor of G and G ∈ G we have H ∈ G.

One of the arguably most famous minor-closed graph classes are planar graphs, i.e.,
graphs that can be drawn on the surface of the plane without any pair of its edges
intersecting. We have a nice characterization of planar graphs in terms of minors due
to Kuratowski [73], and Wagner [102]. Essentially, a graph can be drawn in the plane
if and only if it doesn’t contain K5 or K3,3 as a minor. We mention that there is an
extension to graphs that can be embedded on a surface of bounded genus that pertain
many structural advantages. In particular, embedded graphs come with an orientation
which can be exploited in order to gain additional structural knowledge, see for instance
Section 4.5.3. In addition, the 4-color theorem (see [38, Theorem 5.1.1]) gives a tight
upper bound on the chromatic number of planar graphs. Together with the forbidden
minor characterization, this result implies one of the base cases of Hadwiger’s conjec-
ture [54], one of the most important open questions in graph theory, see Seymour [91]
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for a survey. The conjecture suggests that if G does not contain Kt+1 as a minor, then
G is t-colorable.

The concept of graph classes that are closed under minors is particularly interesting
due to a theorem of Robertson and Seymour [88], resolving a conjecture attributed
to Wagner. They prove that any class of graphs that is closed under taking minors
can be characterized by a finite set of forbidden minors. The work of Robertson and
Seymour also implies an algorithm with cubic running time for recognizing whether a
graph contains a fixed graph H as a minor. The running time was later improved to
quadratic by Kawarabayashi, Kobayashi, and Reed [64]. This opens the door for fixed
parameter tractable algorithms for testing properties of graphs that persist under minor
taking, i.e., that induce a minor-closed class. Note that while the mentioned work proves
that such FPT algorithms exist for a large number of problems, finding the corresponding
minors, and consequently the algorithms is a problem in itself, as the proof by Robertson
and Seymour is not constructive.

One important part of the minor testing algorithm (in fact the bottleneck of the run-
time) is an algorithm for the k disjoint rooted path problem (k-DRP), see Problem 4.3.

Problem 4.3. An instance of k-DRP A is described by a graph G = (V,E) and a set of
k ∈ N pairs of vertices (s1, t1), . . . , (sk, tk). A is a YES -instance if there is node-disjoint
si − ti-paths in G for all i ∈ [k].

The idea of the algorithm to solve k-DRP that was given by Robertson and Sey-
mour [87] can be roughly sketched as follows. If the treewidth of G is small, the problem
can be efficiently solved. Otherwise it can be shown that G contains a large clique or
grid minor. Now, either the connectivity between the terminals and a large clique minor
is sufficiently high. Then, the clique can be used to reroute the path. In all other cases,
the authors efficiently find an irrelevant vertex, i.e., a vertex whose removal does not
change the answer of the problem. This strategy can be recursed, until the question is
answered or low tree-width is reached.

This brings us to tree decompositions and tree-width, which are the last concept that
we want to discuss within the scope of this introduction. A tree decomposition of some
graph G can be described by some tree T and a map that assigns vertices of G to
subtrees of T . For any edge {v, w} ∈ E(G), the intersection of the images of v and w
cannot be empty. Roughly speaking, a tree decomposition relates an arbitrary graph
to a tree, while pertaining its connectivity information. The tree-width of G is defined
as the minimum over all such maps of the maximum size of the preimage of a vertex
of T (minus 1, for normalization purposes). Tree decompositions are a helpful base for
dynamic programming algorithms, see for instance Bodlaender [18]. This is due to the
fact that a tree can be traversed without the risk of getting unwanted dependencies by
circuits, while vertices that are connected through an edge in the original graph still
appear in the same tree-vertex at least once.
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4.2 Results for the general case

4.1.1 Organization

In Section 4.2, we describe general results on integer programs that we ask about in
Question 4.2. This includes a characterization of the constraint matrices we consider,
and a strengthening of the proximity bound by Cook et al. [31] for our particular type
of problem together with a decomposition of the solution vector. In the following Sec-
tion 4.3 we present Seymour’s decomposition of TU matrices [92], to motivate the study
of network matrices and their transposes. Here, we translate the previous general re-
sults to these base blocks. We study the particular case of transposed incidence matrices
in Section 4.4 and answer Question 4.2 in the affirmative for this subproblem. Section 4.5
deals with the more general case of transposed network matrices and uses graph and mi-
nor theory in order to solve a further subcase of Question 4.2. Finally we conclude this
chapter in Section 4.6 with open questions and directions for further research.

4.2 Results for the general case

We start by formally defining total ∆-modularity, and then establish Lemma 4.8, which
characterizes total ∆-modularity for matrices that become totally unimodular after re-
moving one row.

Definition 4.4. An integer matrix A ∈ Zm,n is said to be totally ∆-modular for some
fixed integer ∆ > 0 if all its square submatrices A′ satisfy −∆ ≤ det(A′) ≤ ∆. The
maximum subdeterminant of A is the maximum of | det(A′)| over all square submatrices
A′ ofA. Consequently, A is totally ∆-modular if and only if its maximum subdeterminant
is at most ∆.

Let us assume in the following that A is totally ∆-modular, and has a specific row
whose removal makes it totally unimodular, i.e.,

A =

(
M
dᵀ

)
and b =

(
bM
W

)
,

for M totally unimodular, bM , d appropriately sized integer vectors, and some integer
W . We claim that we can assume without loss of generality that A contains a n × n
identity matrix, denoted by In, as well as its opposite. We consider the IP max{pᵀx |
Ax ≤ b, x integer}, for an appropriately sized integer vector p, and bᵀ := (bᵀM ,W ). We
also define P := {x ∈ Rn |Mx ≤ bM}. This is an integral polyhedron, since M is a TU
matrix and bM is integer.

We can make sure that the IP is feasible by minimizing dᵀx on P and check that
there is at least one point x ∈ P with dᵀx ≤ W , and otherwise report infeasibility. We
then solve the LP relaxation max{pᵀx | Ax ≤ b}. If the LP relaxation turns out to be
unbounded, then the IP itself is also unbounded and we report this. Else, we find an
optimal solution x∗ to the LP. By the proximity result of Cook, Gerards, Schrijver, and
Tardos [31] (see Theorem 4.5 below), we know that there exists an optimal solution to
the IP within `∞-distance at most ∆n of x∗. Hence, we may add integral upper and
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

lower bounds on each x-variable without changing the optimum value of the IP. Adding
the corresponding rows to Mx ≤ bM , we keep the property that M is a TU matrix and
that A is totally ∆-modular. In fact, this corresponds to adding to A the n× n identity
matrix and its opposite.

Theorem 4.5. [Cook et al. [31], Thm. 1.]
Let A ∈ Zm,n be a totally ∆-modular matrix and let b and p be vectors such that Ax ≤ b

has an integral solution and max{pᵀx | Ax ≤ b} exists. Then for each optimal solution x∗

to max{pᵀx | Ax ≤ b}, there exists an optimal solution x̄ to max{pᵀx | Ax ≤ b, x ∈ Zn}
with ||x∗ − x̄||∞ ≤ n∆.

We fix the following notation for the remainder of the chapter: Let A ∈ Zm+1,n be a
totally ∆-modular matrix of the form

A =

(
M ′

dᵀ

)
, where M ′ =

 In
−In
M


for some totally unimodular matrix M . Note that M ′ ∈ {−1, 0, 1}m,n is also totally
unimodular. Ultimately, we want to solve the IP

max pᵀx
s.t. Ax ≤ b

x ∈ Zn
. (4.1)

4.2.1 Characterization

The theory of both total unimodularity and total ∆-modularity is closely coupled with
matroid and graph minor theory, see e.g. [90]. For an extensive introduction into matroid
theory, see [81]. In this work, we focus our attention on graphic matroids, which naturally
occur from Seymour’s decomposition of TU matrices [92], and matroids represented by
a given matrix. We say that a matroid (E, I) is represented by a matrix M , if the
elements E correspond to the columns of M , and a set of columns is in I if and only if
the corresponding vectors are linearly independent. Since all matroids that we consider
arise from totally unimodular matrices, they are regular and can thus be represented over
any field, see [81]. Recall that a circuit of a matroid is defined as a minimal dependent
set, i.e., a subset of the elements C ⊆ E is a circuit if and only if C /∈ I and C \ x ∈ I
for all x ∈ C.

We define a circuit vector of M ′ as a signed incidence vector of a circuit of the matroid
represented by (M ′, Im), restricted to the column space of M ′. To be more precise,
we say that c ∈ {−1, 0, 1}n is a circuit vector of M ′ if and only if there is a vector
c′ ∈ {−1, 0, 1}n+m with c′[n] = c such that (M ′ Im)c′ = 0 and the support of c′ is a circuit

C of the matroid represented by (M ′ Im). In this case, we say that c induces C.

Lemma 4.6. Every circuit of the matroid represented by (M ′ Im) induces a unique (up
to sign) circuit vector of M ′.
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Proof. Consider some circuit C ⊆ [n+m] of the matroid represented by (M ′ Im). Denote
the corresponding columns of (M ′ Im) by ci for i ∈ C. Since the columns are linearly
dependent and have rational entries, we can find integer coefficients αi ∈ Z for i ∈
C, such that they sum up to the m-dimensional zero-vector, i.e.,

∑
i∈C αici = 0m.

Assume without loss of generality that gcd{αi : i ∈ C} = 1. Clearly, then also
∑

i∈C(αi
mod 2)ci ≡ 0m mod 2. Thus, since all entries in (M ′ Im) are in {−1, 0, 1}, we obtain a
set of columns, such that each row-index has an even number of non-zero entries.

The characterization of TU-matrices given by Ghouila-Houri [49], see [90, Thm. 19.3
(iv)] gives a signing of the corresponding columns such that they sum up to 0. Since C
is inclusion-minimally dependent, this signing is unique.

The following lemma shows that we can alternatively define circuit vectors as the
kernel of row-submatrices of M ′ of rank n− 1.

Lemma 4.7. Let c ∈ {−1, 0, 1}n be a non-zero vector. Then, c is a circuit vector of M ′

if and only if rᵀi c = 0 for n− 1 linearly independent rows r1, . . . , rn−1 of M ′.

Proof. Assume first that rᵀ1c = · · · = rᵀn−1c = 0, where r1, . . . , rn−1 are linearly indepen-
dent rows of M ′. Due to a similar argument as in the proof of Lemma 4.6, this implies
that in supp(c), each of the n − 1 rows has an even number of non-zero entries. Since
M ′ is totally unimodular, we can apply the characterization of TU-matrices given by
Ghouila-Houri [49], see [90, Thm. 19.3 (iv)]. Applied to the support of c, this gives us
some vector v ∈ {−1, 0, 1}n with supp(c) = supp(v) and M ′v ∈ {−1, 0, 1}m. In particu-
lar, since the number of non-zero entries of the rows in ri with respect to the columns of
supp(v) is even, it holds that rᵀi v = 0 for i ∈ [n−1]. In addition, since the ri are linearly
independent for i ∈ [n−1], the submatrix of M ′ obtained by choosing the corresponding
rows has rank n − 1, and therefore its kernel is 1-dimensional. Therefore, either v = c,
or v = −c.

It remains to show that the support of c′ is a circuit, i.e., that it is minimally dependent.
Therefore, assume that our choice of support on Im is already minimal. In order to find
a smaller dependent set, the support on M ′ needs to differ, yielding a new solution c̃′ to
(M ′ Im)x = 0. When restricted to the columns of M ′, we obtain a new solution c̃. This
solution also satisfies rᵀi c̃ = 0 for i ∈ [n− 1], contradicting the fact that the kernel of the
associated matrix is 1-dimensional.

Now, take any circuit vector c ∈ {−1, 0, 1}n and its extension c′ ∈ {−1, 0, 1}n+m.
Since M ′ has full column rank, the support of c′[n+1,n+m] is non-empty. For each j ∈ [m]

with c′n+j 6= 0, remove the corresponding row from M ′. Denote the resulting submatrix
of M ′ by M ′′. Due to Lemma 4.6, we know that M ′′c = 0. It remains to show that
rank(M ′′) = n − 1. Any minimally dependent set of columns of M ′′ cannot contain an
index outside of supp(c), because of the identity matrices on top of M ′. If there is a
dependent set of columns of M ′′ that is a proper subset of supp(c), this induces a smaller
dependent set inM ′, contradicting the fact that c is a circuit vector. Therefore, supp(c) is
the unique circuit in the matroid represented by M ′′, showing that rank(M ′′) = n−1.

We are ready to give a full characterization of the subdeterminants of A. Note that
we are interested in subdeterminants of maximum absolute value only. Therefore, we

45



4 Totally ∆-modular IPs with TU constraint matrix and one additional row

can assume that the submatrices contain the last row, since the rest of the matrix is
totally unimodular and its subdeterminants are bounded by 1 in absolute value.

Lemma 4.8. The maximum absolute value of a subdeterminant of A (containing the
row dᵀ) is equal to the maximum absolute value of dᵀc, where c is a circuit vector of M ′.

Proof. Consider a (k × k) submatrix Ã of A containing the last row. The (k − 1 × k)
submatrix of Ã obtained by removing the last row is totally unimodular and has rank
at most k− 1; if the rank is less than k− 1, then det(Ã) = 0, hence we can assume that
the rank is exactly k − 1. Hence the (k − 1 × k) submatrix contains a unique minimal
set of linearly dependent columns. This can be extended to a circuit C of (M ′ Im), by
adding columns of Im. Note that if there is a dependent subset of C, this would induce
a second solution in the set of linearly dependent columns in Ã. Now, consider vector c
given by Lemma 4.6, and in Ã replace one of the columns in C with ÃcÃ, i.e., with the
signed sum of columns in C, where the sign is given by the circuit vector c. Note that
this does not change the absolute value of the determinant of Ã.

We claim that the column we obtained is 0 everywhere but in the last component,
where it is equal to dᵀc. For the second part of the claim, observe that the extension
to C only uses elements (columns) of Im. For the first part of the claim, observe that
the set of columns in C is minimally dependent in Ã. Since the extension to a circuit
of the matroid only happens on the columns of Im, the sum for each row of Ã must be
in {−1, 0, 1}. Following the arguments of Lemma 4.6, we can see that each row has an
even number of non-zero entries with respect to the circuit columns of Ã, implying that
they are already 0. Laplace expansion on this new column shows that |det(Ã)| = |dᵀc|.

On the other hand, consider a circuit vector c of M ′ and let k = |supp(c)|. Thanks to
the minimality of the circuit, the rank of M ′C is k − 1. Let Ã be the (k × k) submatrix
of A containing k − 1 linearly independent rows of M ′C and the last row dᵀ. With the
same column operation as before, we see that the determinant of Ã is equal to dᵀc in
absolute value.

Generally speaking, such characterization results of total ∆-modularity are interesting
for a larger class of problems than we discuss here. By giving additional properties on the
possible problem structure, they are the first step to a potential polynomial algorithm
solving the corresponding optimization problems. Such results are for instance known
for the stable set problem, where a connection to the odd-cycle packing number can be
shown and has been exploited [17, 44].

We remark that our results for matrices that become totally unimodular after remov-
ing one row can be extended to k ∈ N rows in a meaningful way. Similar to the concept
of circuit vectors, maximum subdeterminants arise from submatroids of the matroid rep-
resented by (M ′ Im) that can be obtained by deleting a number of elements (columns)
in order to obtain a certain relationship between the number of elements in the subma-
troid, and its rank. In this submatroid, the object of interest is the circuit space, i.e.,
the linear subspace that can be generated by the incidence vectors of all circuits (over
Z2). If we choose k′ ≤ k of the additional rows in a subdeterminant, we can show that
the dimension of a relevant corresponding circuit space is k′. We create an auxiliary
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k′× k′ matrix M ′′, whose rows correspond to the k′ additional rows and whose columns
correspond to a basis of the circuit space. Now, the subdeterminant is equal to the
determinant of M ′′, where each entry corresponds to the dot product of the respective
additional row and the element of the circuit base.

4.2.2 Proximity and solution decomposition

In this section, we prove a strong decomposition and proximity result for totally ∆-
modular IPs on TU matrices with one additional row. We strengthen the totally ∆-
modular proximity result by Cook et al. [31] for our particular case of a TU matrix with
one additional row to a distance (in ∞-norm) of at most O(∆). Such a proximity result
alone reduces the search space for an optimal solution to be in ∆O(n), which is still too
large to efficiently search. The additional decomposition into circuit vectors provides
a potential path towards an efficient algorithm by understanding their structure. Note
that while we follow along the notation of the previous section, we do not explicitly use
that A contains the n-dimensional identity matrix as well as its negative. The following
results hold for any totally ∆-modular rank-n matrix which is totally unimodular after
removing one row. Note that as before, we define P := {x ∈ Rn | M ′x ≤ bM ′} the
(integral) polytope of the totally unimodular part of our problem.

Lemma 4.9. Each one-dimensional face of P is generated by a circuit-vector r ∈
{−1, 0, 1}n. In particular, if a one-dimensional face is generated by r ∈ {−1, 0, 1}n,
then |dᵀr| ≤ ∆.

Proof. Any one-dimensional face of P is determined by n − 1 linearly independent in-
equalities of M ′x ≤ bM ′ which are tight, i.e., it is generated by a circuit vector, see
Lemma 4.7. Lemma 4.8 shows that the scalar product of a circuit vector with d is
bounded by ∆ in absolute value.

Lemma 4.10. [Nägele, Santiago, and Zenklusen [79], Lemma 29]
Let T ∈ {−1, 0, 1}m,n be a totally unimodular matrix such that the cone C := {x ∈ Rn :

Tx ≤ 0} is pointed, and let y ∈ C ∩Zn. Then one can determine in strongly polynomial
time integer extremal rays y1, . . . , yk ∈ Zn of C and coefficients λ1, . . . , λk ∈ Z≥0 such
that y =

∑k
i=1 λiyi.

As before, we assume that P is an integral polytope containing at least one integer
point x ∈ Zn with dᵀx ≤ W . Let x∗ denote an extreme point of {x ∈ P : dᵀx ≤
W} maximizing pᵀx, i.e., an optimal solution to the linear relaxation of the integer
program (4.1). If x∗ is integral, we are done. Else, x∗ is the intersection of a one-
dimensional face F of P and the hyperplane H := {x ∈ Rn : dᵀx = W}.

Furthermore let x0 ∈ F with dᵀx0 < W be the closest feasible integer point on F to
x∗. Lemma 4.9 shows that W − dᵀx0 < ∆. Now consider some optimal solution xopt

to the integer program (4.1). We can of course write xopt = x0 + xdiff for some integer
difference vector. Let K ⊆ Rn be the cone defined by

K :=

{
x ∈ Rn :

M ′ix ≤ 0 if M ′ix
diff < 0

−M ′ix ≤ 0 if M ′ix
diff ≥ 0

}
,
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where M ′i denotes the ith row of M ′. By definition, it is clear that xdiff ∈ K. Since
M ′ has full rank, K is pointed. As the constraint matrix of K can be obtained from
M ′ by multiplying some rows with −1, it is totally unimodular. Therefore, Lemma 4.10
gives a decomposition of xdiff into integer extremal rays of K with integer coefficients.
By Lemma 4.9, the vectors in the decomposition have bounded weight and correspond
to circuit vectors. Create a multiset of vectors S := {λi × yi : i ∈ [k]}, where λi denotes
the multiplicity of the vector yi in S. Any submultiset S ′ ⊆ S induces a point in x′ ∈ P
by x′ = x0 +

∑
S∈S′ S, since all linear constraints of P are maintained.

Lemma 4.11. Let W = {w1, w2, . . . , wk} denote a multiset of integers, all between −∆
and ∆ such that |

∑k
i=1wi| ≤ ∆, and k ≥ 2∆ + 2. Then there exists a nonempty I ⊆ [k]

with |I| ≤ 2∆ + 1 such that
∑

i∈I wi = 0.

Proof. Clearly we can assume that 0 /∈ W, otherwise we are done. Order the set W by
starting from an element of largest value and applying iteratively the following rule: if
the sum of the elements listed so far is positive (resp. non-positive), look for a negative
(resp. positive) element in W and set it to be the next one in the list. If at some point
we cannot find an element of the desired sign, say if the current sum is positive and there
is no negative element left in W, since the sum of all elements of W is at most ∆ in
absolute value we must have only a bounded number of elements left, which we add in
arbitrary order to our list. Notice that proceeding this way all partial sums lie between
−∆ and ∆, i.e., there exists a permutation π : [k]→ [k] such that |

∑`
i=1wπ(i)| ≤ ∆ for

all ` ∈ [k].

Now, by the pigeon hole principle since |W| > 2∆ + 1 there must be two values
`1 < `2 ∈ [k] with `2 ≤ `1 + 2∆ + 1 such that

∑`1
i=1wπ(i) =

∑`2
i=1wπ(i), hence the

multiset {wπ(`1+1), . . . , wπ(`2)} is the desired submultiset.

Lemma 4.12. There is an optimal solution xopt of IP (4.1) such that xdiff =
∑k

i=1 λiyi
as in Lemma 4.10, and also

∑k
i=1 λi ∈ O(∆).

Proof. Let x0 be the rounded solution to the linear relaxation of (4.1) as defined before,
and xopt be an optimal solution of the integer program (4.1) such that

∑k
i=1 λi given

by Lemma 4.10 is as small as possible. Again, xdiff := xopt − x0. As before, consider
S := {λi × yi : i ∈ [k]}. Consider the weight dᵀS of every S ∈ S: each is an integer
between −∆ and ∆. We claim that |

∑
S∈S d

ᵀS| ≤ ∆.

We have
∑

S∈S d
ᵀS ≤ ∆, since otherwise W ≥ dᵀxopt = dᵀx0 + dᵀxdiff = dᵀx0 +∑

S∈S d
ᵀS > dᵀx0 + ∆ and this contradicts the fact that dᵀx0 ≥W −∆.

We now show that
∑

S∈S d
ᵀS ≥ −∆. Toward a contradiction, assume that

∑
S∈S d

ᵀS <
−∆. Hence, dᵀxopt < W − ∆. We inspect the vectors S one by one. For every
S ∈ S, x0 +

∑
S′∈S\{S} S

′ = xopt − S is a feasible IP solution by Lemma 4.10 and

dᵀ(xopt − S) = dᵀxopt − dᵀS < W −∆ + ∆ = W . This in turn implies that pᵀS > 0 for
all S ∈ S, since otherwise the optimality of xopt would be contradicted. If there exists
some S ∈ S such that dᵀS ≤ 0 then x∗ + εS is feasible for the LP relaxation for some
ε > 0 small enough (due to convexity of P ), which contradicts the optimality of x∗. We
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conclude that dᵀS > 0 for all j, which contradicts our assumption
∑

S∈S d
ᵀS < −∆.

This concludes the proof of the claim.
Now we can apply Lemma 4.11 to the multiset of integers W := {dᵀS : S ∈ S}. If
|W| ≥ 2∆ + 2, then we can find a proper nonempty submultiset S ′ whose weight is 0.
By Lemma 4.10, we know that x0 +

∑
S∈S\S′ S is a feasible solution to the IP, and in

addition on the same translate of H as xopt. By minimality of xopt and S, this implies∑
S∈S′ p

ᵀS > 0. This again contradicts the optimality of x∗, since x∗ + ε
∑

S∈S\S′ S is
feasible for the LP relaxation for ε > 0 small enough, but has profit more than that of
x∗.

4.3 Seymour’s decomposition

Seymour’s decomposition of totally unimodular matrices [92] gives a way to decompose
such matrices into smaller blocks that can be understood better in terms of graph the-
ory. It is a technique often employed for questions revolving around totally unimodular
matrices, e.g., by Artmann, Weismantel, and Zenklusen [8], or Aprile and Fiorini [4].
Instead of dealing with an arbitrary totally unimodular matrix, this approach allows us
to work with network matrices, and their transposes, which have a graph representation.
These matrices are combined by certain block-like operations of low rank. We give a
short introduction into the relevant objects that will be used in this chapter. For a more
detailed reference, see Artmann [7, Section 1.5] or Schrijver [90, Section 19.4], on which
the following part is based. Note that we do not solve the whole totally unimodular case
in this thesis, but use Seymour’s decomposition theorem as a motivation to work on the
base blocks and block-like combination operations.

Any network matrix can be represented by a directed tree T = (V,AT ) and a directed
graph D = (V,AD) on the same set of vertices. Note that T is defined to be a spanning
tree (in the undirected sense) on the set of vertices V . The network matrix represented
by T and D is defined by the fundamental cycles that the arcs of D close in T .

Definition 4.13. Let T and D be given as before, and consider M ∈ {−1, 0, 1}AT ,AD .
We define the corresponding network matrix as

Mi,j :=


1 if the fundamental cycle defined by j uses i in backward direction
−1 if the fundamental cycle defined by j uses i in forward direction
0 otherwise

,

for i ∈ AT and j ∈ AD.

Note that while T and D uniquely determine a network matrix (up to exchanging the
order of rows or columns), a given network matrix can have different graph representa-
tions. We define a simple undirected graph G from a network matrix M as G = (V,E),
where E is the set of edges obtained by undirecting each arc in AT and AD.

Remark 4.14. Network matrices generalize both arc-node incidence matrices of directed
graphs and edge-node incidence matrices of bipartite undirected graphs. This can be
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seen by adding an auxiliary vertex v0 to a given graph and defining the tree T as a star
with center v0. As such, network matrices play a role in many important combinatorial
optimization problems, see for instance Problem 4.20 and Problem 4.23.

Together with M1,M2 ∈ {−1, 0, 1}5,5 in (4.2), network matrices form the building
blocks of totally unimodular matrices, see Theorem 4.16 below. This motivates the
study of network matrices and their transposes, and what total ∆-modularity means
for them in our setting. First we need to define, with which operations it is possible to
combine said blocks.

M1 =


1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 M2 =


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

 (4.2)

Definition 4.15. Consider the following TU-preserving combination operations on ma-
trices and vectors:

replace

(
ε cᵀ

b D

)
by

(
−ε εcᵀ

εb D − εbcᵀ
)

(pivot)

A⊕1 B :=

(
A 0
0 B

)
(1-sum)

(
A a

)
⊕2

(
bᵀ

B

)
:=

(
A abᵀ

0 B

)
(2-sum)(

A a a
cᵀ 0 1

)
⊕3

(
1 0 bᵀ

d d B

)
:=

(
A abᵀ

dcᵀ B

)
, (3-sum)

for ε ∈ {−1, 1}, a, b, c, d appropriately sized column vectors and A,B appropriately sized
matrices, such that each matrix on the left side is totally unimodular.

Theorem 4.16. [Seymour [92], (14.3), see also Schrijver [90], Thm. 19.6]

Let A be totally unimodular. Then, one of the following applies:

� A is a network matrix

� A is one of M1 and M2

� there is a combination of (1-sum), (2-sum) and (3-sum) that decomposes A into
smaller blocks

� we can apply a series of simple operations until one of the above applies:

– use a (pivot) operation

– delete a duplicate row or column

– permute rows or columns
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4.3 Seymour’s decomposition

– delete a row or column with at most one non-zero entry

– change the sign of a row or column

– replace A with Aᵀ

4.3.1 k-sums

Seymour’s decomposition uses k-sums of matrices (or matroids, originally) as means to
compose arbitrary totally unimodular matrices from simpler base blocks. This motivates
the study of these operations: How can this additional structure be benificial to us, and
how can we deal with these k-sums within an optimization framework? Lemma 4.17
answers the first question in terms of (transposed) network matrices, by relating k-sums
of the matrix to connectivity properties of the corresponding graphic matroid and graph
respectively. Note that in the context of this work, we use the term of connectivity to
denote vertex-connectivity only. Lemma 4.18 builds up on this by showing that we can
assume some basic connectivity properties on M ′, i.e., we can deal with 1-sums and
reduce to the case where the corresponding matroid (M ′ Im) is 2-connected. Note that
this proof relies on the fact that the blocks given by a 1-sum are independent except
for the additional constraint. Therefore, it cannot be immediately generalized to 2- and
3-sums.

Lemma 4.17. Let M be a network matrix and consider the simple undirected graph G
obtained from M in the same way as above.

If M cannot be decomposed by means of a k-sum for k in {1, 2, 3} after a series of the
operations in Theorem 4.16, then G is k + 1-vertex-connected.

Note that the simple operations involve transposing M , so the same statement holds
for Mᵀ.

Proof. Consider the matroid represented by (M Im). Adding the identity matrix as
columns to M corresponds to adding an element to the matroid for each arc in AT .
Columns of this matrix are linearly dependent if and only if the corresponding edges
contain a cycle in G. Therefore, the matroid represented by (M Im) is the graphic
matroid of G.

For these matroids, the claimed connectivity properties are well-known, see e.g. [100,
Theorem. 3.2.25, Corollary 3.2.29, Lemma 8.2.6, Lemma 8.3.12].

Lemma 4.18. Let A be an algorithm that solves (4.1) if the totally unimodular part
cannot be decomposed by means of a (1-sum).

Then there is a dynamic programming algorithm invoking A at most O(∆4n3) times
and with polynomial overhead that solves (4.1).

Proof. Assume M ′ decomposes via 1-sums into k blocks M ′1, . . . ,M
′
k, such that the blocks

M ′i are associated with disjoint sets of rows mi ⊆ [m] and columns ni ⊆ [n]. We solve
the LP relaxation of (4.1) and denote the optimal solution by x∗. As in Section 4.2.2,
we round x∗ to a feasible integer solution x0. We associate a weight with each block
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

by defining Wi = dᵀnix
0
ni

for all i ∈ [k]. By Lemma 4.12, we know that there exists
some optimal solution to (4.1), denoted by xopt, such that ‖x0 − xopt‖∞ ≤ 2∆. Since
‖d‖∞ ≤ ∆, this implies that |dᵀnix

opt
ni −Wi| ≤ 2∆2|ni| for each i ∈ [k] and corresponding

results for partial sums as well as the whole vector.

Define a modified problem via

ρ(W̃ , i) := max pᵀni
xni s.t. M ′ixni ≤ bmi , d

ᵀ
ni
xni ≤ W̃ , xni ∈ Zni . (4.3)

Note that A solves instances of the form (4.3). Define a dynamic programming table,
whose columns represent the blocks for i ∈ [k] and whose rows represent the accumulated
weight difference to x0 with respect to the additional constraint dᵀx ≤ W . To be more

precise, we define nodes NW̃ ,i for i ∈ [k] and W̃ ∈
[
−2∆2

∑i
j=1 |nj |, 2∆2

∑i
j=1 |nj |

]
,

as well as an auxiliary node N0,0. We connect two nodes NW ′,i, NW ′′,j by an arc
(NW ′,i, NW ′′,j) if i + 1 = j and |W ′ − W ′′| ≤ 2∆2|nj |. Each arc is assigned a profit
denoted by p, which is defined as p(NW ′,i, NW ′′,j) := ρ(W ′′ −W ′, j).

Since our dynamic programming table corresponds to a directed acyclic graph with
at most 2∆2n2 nodes and 4∆4n3 arcs, we can run a longest path algorithm from N0,0 to
NW−

∑k
i=1Wi,k

. Observe that each N0,0-NW−
∑k

i=1Wi,k
-path in the graph corresponds to

a feasible solution of (4.1). In addition, since we optimize over the blocks independently,
given the right combination of weights, this algorithm performs at least as good as xopt

on each block certifying optimality of our solution.

The longest path problem in a directed acyclic graph can for instance be solved with
the Bellman-Ford algorithm [14]. Its runtime is given by the number of nodes times the
number of arcs, which is upper bounded by O(∆6n5). Together with solving the LP
relaxation once, this gives a polynomial overhead. In addition, A is used to calculate
the weight on the O(∆4n3) arcs.

4.3.2 Network matrices

The main results of Section 4.2.1 and Section 4.2.2 motivate the further study of circuit
vectors. In particular, it is interesting to further investigate the combinatorial structure
given by them. In Lemma 4.6, we characterize circuit vectors as the circuits of some
related (regular) matroid. Matroids can be seen as a generalization of graphs that
preserve a lot of their combinatorial structure. However, as we will see in Section 4.4
and Section 4.5, we can make use of structural graph theory results that help solve
the integer program (4.1) in some special cases. These graph theoretical results do
not trivially translate to matroids. Therefore, we repeat our general characterization
result from Section 4.2.1 for the special cases of network matrices and their transposes
respectively, which gives us clean results on the directed graph obtained by taking the
union of T and D.

Lemma 4.19. Let M be a network matrix inducing T and D, and consider D′ =
(V,AT ∪AD).
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4.3 Seymour’s decomposition

Then the set of supports of circuit vectors of M correspond exactly to the cycles in D′

(in the undirected sense). Furthermore, the signs of a circuit vector give a direction on
the arcs of the corresponding cycle, such that it is a directed cycle.

Proof. Recall the definition of a circuit vector as the circuits of the matroid represented
by (M Im). Adding the identity matrix as columns to M corresponds to adding a parallel
arc to AD for each arc in AT . This implies that the elements of the matroid represented
by (M Im) correspond exactly to the arcs of D′. Elements of the matroid are dependent,
if and only if the corresponding arcs contain a cycle. In addition, an orientation of a
cycle gives a signing to the corresponding elements such that the columns sum up to 0,
see [90, Section 19.3, Example 4, (32)]. Thus, the set of supports of circuit vectors of
M corresponds exactly to the set of cycles in D′, and the signing on the elements of a
circuit vector gives an orientation on the cycles.

In particular, the preceding lemma implies that if A can be described by a network
matrix with one additional row dᵀ, then we can view dᵀ as a weighting function on the
arcs of D′, with all weights of arcs in AT being 0. By Lemma 4.8, A is totally ∆-modular,
this restricts the weight of a cycle in the graph D′ that represents the network matrix
to at most ∆ in absolute value.

An interesting problem that can be described as an integer program that is a network
matrix with one additional row is the bipartite exact matching problem, see Problem 4.20
below. Note that the classical formulation of the perfect matching polytope is obtained
from a constraint matrix that is the node-edge incidence matrix of the corresponding
graph.

Problem 4.20. An instance A of the bipartite exact matching problem is described by
a bipartite undirected graph G = (V,E), a coloring function on its edges c : E → {0, 1}
and an integer k ∈ N. A is a YES -instance if there is a perfect matching M⊆ E in G,
such that

∑
e∈M c(e) = k.

The exact matching problem asks for a matching fulfilling an exact weight constraint.
While this would take 2 additional inequalities, which is not allowed in our setting, we
can make use of the fact that the decision version of this problem is already interesting
and unsolved (as opposed to an optimization version). Therefore, it suffices to model
the upper bound of the weight as a constraint, and maximize the weight simultaneously.
If we find a solution that reaches the upper bound, the instance is a YES -instance.

Corollary 4.21. The constraint matrix for the bipartite exact matching problem for-
mulated as an integer program as described above is totally ∆-modular for some fixed
∆ ∈ N if and only if every path P = (e1, . . . , ek) in G has imbalance I(P ) at most ∆.
The imbalance of a path is defined as

I(P ) :=

∣∣∣∣∣∣
∑

i∈[dk/2e]

c(e2i−1)−
∑

i∈[bk/2c]

c(e2i)

∣∣∣∣∣∣ .
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

Note that a node-edge incidence matrix of a bipartite graph can be interpreted as a
network matrix by adding an apex va to the set of nodes, choosing the spanning tree as
(v, va) for v ∈ V , and assigning appropriate directions to the edges. In particular, any
path in the graph can be completed to a cycle through va.

4.3.3 Transposed network matrices

As network matrices, tranposed network matrices are important building blocks of totally
unimodular matrices. We proceed to analyze these matrices in the same way as TU
matrices and network matrices before.

Let G = (V,E) be a graph (directed or undirected). For S ⊆ V , we define S̄ := V \S.

Lemma 4.22. Let M be a network matrix inducing T and D, and consider D′ =
(V,AT ∪AD).

Then the set of supports of circuit vectors of Mᵀ induces minimal cuts. That is,
removing the edges corresponding to the support of the circuit vector, we obtain two
subgraphs that are weakly connected. Denote the vertices of the subgraphs by S and S̄.
Then, the signs of a circuit vector give a direction on the arcs of the corresponding
minimal cut, such that all arcs either go from or to S.

Proof. The proof follows along the lines of the proof of Lemma 4.19. Adding the identity
matrix as columns to M corresponds to subdividing each arc in AD into an arc of AT
and the original arc by adding an auxiliary vertex. This implies that the elements of
the matroid represented by (M Im) correspond exactly to the arcs of D′ (the arcs in
AT obtained by subdivision correspond to the respective arc in AD). Elements of the
matroid are dependent if and only if the corresponding arcs contain a cut of the graph.
In addition, orienting the arcs on a cut in the same direction gives a signing to the
corresponding elements such that the columns sum up to 0. This can for instance be
seen as a consequence of the proof of Lemma 4.6, where we show that circuits correspond
to inclusion-minimal subsets of columns, such that each row-index has an even numbers
of entries in these columns.

Thus, the set of supports of circuit vectors of M corresponds exactly to the set of
minimal cuts, and the signing on the elements of a circuit vector gives a direction of the
cut.

Similar as before, Lemma 4.22 implies that if A can be described by a transposed
network matrix with one additional row dᵀ, then we can view dᵀ as a weighting function
on the arcs of D′, with all weights of arcs in AD being 0. By Lemma 4.8, A is totally
∆-modular, this restricts the weight of a minimum cut in the graph D′ that represents
the transposed network matrix to at most ∆ in absolute value.

Here again, we describe a well-known combinatorial problem that falls into the de-
scribed category of integer programs arising from a transposed network matrix with one
additional row.

Problem 4.23. An instance A of the partially ordered knapsack problem is defined by a
directed acyclic graph G = (V,A), giving a precedence order on the elements V , a profit
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4.4 Transposed incidence matrices

function p : V → N, a weight function w : V → N, and a maximum capacity W ∈ N. We
describe the optimization version of the problem. Therefore, we search for the subset
K ⊆ V maximizing

∑
v∈K p(v) such that the weight constraint

∑
v∈K w(V ) ≤ W is

fulfilled, and the precedence order is accounted for, i.e., for each arc (v, w) ∈ A, w ∈ K
implies v ∈ K.

The precedence constraints can be formulated by a transposed incidence matrix with
the 0-vector as a right-hand side. The knapsack capacity constraint is modeled by the
additional row. The following corollary characterizes total ∆-modularity for transposed
incidence matrices, and therefore also for the partially ordered knapsack problem.

Corollary 4.24. Consider a matrix M arising from a transposed incidence matrix of
the graph G = (V,A) with one additional row w, assigning weights to each vertex v ∈ V .
Then, M is totally ∆-modular if every weakly connected subgraph H of G fulfills∣∣∣∣∣∣

∑
v∈V (H)

w(v)

∣∣∣∣∣∣ ≤ ∆.

Note that a transposed incidence matrix of a directed graph can be interpreted as a
network matrix by adding an apex va to the set of nodes, choosing the spanning tree as
(v, va) for v ∈ V , and assigning appropriate directions to the edges. In particular, any
edge-cut in the original graph extends to a minimal cut in the extended graph.

4.4 Transposed incidence matrices

Instead of the full transposed network matrix case, we start to analyze an important
subcase, which are transposed incidence matrices with one additional row. Due to the
direct interpretation of a transposed incidence matrix as one graph, and the clean char-
acterization (see Corollary 4.24), this is a very instructive case. Note that as remarked
above, this already includes the totally ∆-modular partially ordered knapsack problem.
To be precise, we answer two questions in this section: Given an integer program of the
form (4.1), where M is a transposed incidence matrix (possibly together with bounds on
the variables), how can we check efficiently if it is indeed totally ∆-modular? And how
can we solve it in strongly polynomial time? We consider the questions in Section 4.4.3
and Section 4.4.2 respectively. In particular, we show the following optimization results.

Theorem 4.25. There exists a fixed parameter tractable algorithm in terms of ∆ for
solving integer programs of the form (4.1) where A is totally ∆-modular, and M is a
transposed incidence matrix.

Corollary 4.26. There exists a fixed parameter tractable algorithm in terms of ∆ for
solving the partially ordered knapsack problem defined by G = (V,A), with integer weights
d and profits p if every weakly connected subgraph of G has weight at most ∆ in absolute
value.
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

4.4.1 Structural results

We start by analyzing the meaning of total ∆-modularity for this subcase further. There-
fore, let G = (V,E) be a graph together with integer vertex weights d ∈ ZV . We denote
the absolute value of the maximum weight of a connected subgraph of G by α(G, d).

Let D = (V,A) be the (directed) graph representing M . Lemma 4.18 implies for
transposed incidence matrices that we can assume D to be (weakly) connected. This
can for instance be seen by interpreting the transposed incidence matrix as a transposed
network matrix, where the tree is a star formed by an auxiliary apex. This apex is not
part of D, which reduces 2-connectedness to connectedness for this setting. In addition,
within the scope of this section we denote the graph that we obtain by undirecting the
arcs of D by G. Note that for G, obtained by a transposed incidence matrix, together
with a weight vector which is given by the additional row, we know that the maximal
absolute value of a subdeterminant is given by α(G, d). Thus, we proceed to investigate
the weighted graph given by G and d.

We first describe a subgraph contraction operation that essentially goes one step fur-
ther than the classical graph contraction operation. Usually, contracting all edges within
a connected subgraph corresponds to replacing said subgraph with a star, such that the
center vertex corresponds to the contracted subgraph which has an edge to each neighbor
of the subgraph. We extend this operation by also removing the center vertex and re-
placing it with a clique on its neighbors. More formally, this operation can be described
in the following way.

Definition 4.27. Let G = (V,E) be a graph and consider some vertex subset U ( V
inducing a connected subgraph of G. We define G/0U := (V \ U,E ∪ E′′ \ E′), where
E′ := {{v, w} ∈ E | v ∈ U or w ∈ U} the edges incident to U and E′′ := {{v, w} |
v ∈ N(U), w ∈ N(U), v 6= w} a clique on the neighborhood of U . We denote the
corresponding operation as 0-contraction.

The 0-contractions behave well with respect to α when applied to connected subgraphs
where each vertex has weight 0.

Lemma 4.28. Let U ⊆ V with d(u) = 0 for all u ∈ U such that U induces a connected
subgraph of G. Then, α(G, d) = α(G/0U, d).

Proof. We prove the claim by showing that some induced subgraph H of G/0U is con-
nected if and only if there is some subset U ′ of U , such that V (H) ∪ U ′ induces a
connected subgraph of G.

First assume that H is connected and take any two vertices v, w ∈ V (H). Consider a
v, w-path in H. We replace any edge that was obtained by 0-contracting U by a corre-
sponding path in U . This is possible since U induces a connected subgraph. Therefore,
we obtain a v, w-walk in G using only vertices of V (H) and U . We can use the same
argument in the other direction to show that a path of vertices in V (H) ∪ U can be
shortcutted using edges obtained from 0-contracting U to only use vertices of H.

Denote the set of vertices of weight 0 with respect to d by C := {v ∈ V | d(v) = 0}.
Further, we denote the connected components of G restricted to the vertices in C by
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C1, . . . , Ck. We define the 0-contraction of G by G0 := G/0C1/
0 . . . /0Ck. Note that

d(v) 6= 0 for all v ∈ V (G0).

Corollary 4.29.
α(G, d) = α(G0, d).

Proof. This follows directly from Lemma 4.28

Corollary 4.29 implies that the largest subdeterminants of A are in fact still represented
in G0. Since all weights in G0 are non-zero, its structure is easier to analyze, as the
following two lemmas show. When we talk about the degree of some vertex in V (G0),
we always mean its degree in G0 unless explicitly denoted otherwise.

Lemma 4.30.
maxv∈V (G0) deg(v) ≤ 2α(G, d).

Proof. Assume there is a vertex v∗ ∈ V (G0) with deg(v∗) > 2α(G, d). Denote its
neighbors by v1, . . . , vk. We partition the neighbors in two classes: V + := {vi | d(vi) >
0 for i ∈ [k]} and V − := {vi | d(vi) < 0 for i ∈ [k]}. Clearly, both v ∪ V + and
v ∪ V − induce a connected subgraph of G0, and d(v∗ ∪ V +) − d(v∗ ∪ V −) ≥ deg(v∗) >
2α(G, d), implying that one of the values must be greater than α(G, d) in absolute value,
a contradiction.

Lemma 4.31.
|{v ∈ V (G0) | deg(v) > 2}| ∈ O(α(G, d)3).

Proof. Throughout the proof, we denote the distance of two distinct vertices v, w in G0

as the number of edges on a shortest v, w-path in G0. Following the arguments from
Lemma 4.30, any spanning tree of G0 can have at most 2α(G, d) leaves. This holds, since
we can partition the set of leaves in the same way into positive and negative weights and
argue that the tree minus the leaves can be combined to a connected subgraph with any
subset of leaves.

Now, consider any inclusion-maximal packing (distance ≥ 3) of vertices of degree > 2.
Construct a spanning tree by including all edges incident to vertices of the packing,
and completing to an aribtrary spanning tree. Observe that the edges incident to the
packing don’t form a cycle, because of the distance requirement. In any tree, the number
of leaves is greater than the number of vertices of degree > 2. Therefore, the size of the
packing is at most 2α(G, d).

Because of maximality of the packing, any vertex of degree > 2 must be of distance
at most 2 from a vertex of the packing. Combining the degree bound of 2α(G, d) and
the size of the packing of at most 2α(G, d), we see that G can have at most 2α(G, d) +
4α(G, d)2 + 8α(G, d)3 vertices of degree > 2.

Thus, we can describe the structure of G0 in the following way. There is a collection
of O(α(G, d)3) vertices of degree more than 2, denoted by V ∗. The rest of the vertices
are on paths that start from some vertex in V ∗ and either end in a leaf or in some other
vertex in V ∗. In order to avoid unnecessary case distinction, if maxv∈V (G0) deg(v) ≤ 2,
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i.e., G0 is a path or a cycle, we set V ∗ := {v} for an arbitrary v ∈ V (G0). Thus, we can
assume that V ∗ is non-empty.

4.4.2 Optimization

We showed in the previous section that structurally, G0 has nice properties. Lemma 4.31
for instance immediately shows bounded treewidth of G0, which may motivate the de-
velopment of a dynamic programming algorithm for our problem. Note that the same
is not true for G, since the original graph could contain a large clique or grid minor
that contains only few non-zero vertices and is not well-connected to the rest of the
graph. Since the 0-vertices are part of our problem, it is not sufficient to restrict the op-
timization algorithm to the structure of G0. Therefore, we proceed to characterize, how
components of 0-weight vertices can be integrated in the above structure when reversing
the 0-contraction operation. We distinguish three cases, depending on the size of the
intersection between the neighborhood of a component and V (G0) \ V ∗, see Figure 4.1.
Therefore, consider a component of 0-weight vertices denoted by Ci. The following cases
are relevant.

(a) |N(Ci) ∩ (V (G0) \ V ∗)| = 0

(b) |N(Ci) ∩ (V (G0) \ V ∗)| = 1

(c) |N(Ci) ∩ (V (G0) \ V ∗)| = 2

Note that if |N(Ci)∩(V (G0)\V ∗)| ≥ 3, this induces a K3 on the vertices of V (G0)\V ∗.
Since G0 is connected and V ∗ is non-empty, these vertices must have at least one further
edge, contradicting the fact that deg(v) ≤ 2 for v ∈ V (G0) \ V ∗.

Algorithm. We are ready to describe a dynamic programming algorithm in order to
prove Theorem 4.25.

We start by computing an optimal solution to the linear relaxation of the integer
program of the form (4.1), with M a transposed incidence matrix (possibly together with
bounds on the variables). We round the solution to a nearby feasible integer solution x0

as in Section 4.2.2. Recalling Lemma 4.12, this implies that there is an optimal solution
xopt to the problem such that ‖x0 − xopt‖∞ ∈ O(∆).

This holds in particular for the variables corresponding to vertices in V ∗. Since their
number is in O(∆3) and the corresponding guessing range is in O(∆) for each of them,
there is a function f , such that f(∆) guesses suffice for these variables.

We proceed to describe what happens when this set of guesses is fixed, i.e., we have
fixed values xv = x̃v for v ∈ V ∗. Note that type-(a) components of 0-weight vertices
only depend on variables corresponding to vertices in V ∗ and have no influence on the
additional constraint. Thus, checking feasibility and calculating an optimal solution for
these components amounts to solving a totally unimodular integer program on the cor-
responding variables. To be more precise, consider some type-(a) component of 0-weight
vertices and denote it by Ci. Denote the submatrix containing the rows interacting with
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V ∗

(a)

. . .

. . .

. . .

(b)

(c)

(c)

(b)

Figure 4.1: Sketch of G illustrating the possible configurations of components of 0-weight ver-
tices in G. Vertices of weight 0 are depicted in blue. We obtain G0 by deleting the
blue vertices and adding cliques on the vertices inside the dashed blue lines.

the variables corresponding to Ci, and all columns corresponding to Ci or N(Ci) by MCi .
These subproblems can then be written as

max pᵀx s.t. MCix ≤ b, xv = x̃v for v ∈ V ∗, x ∈ ZCi∪N(Ci) ,

where p and b are naturally restricted to the set of variables and constraints respectively.
Since the additional row is not contained in MCi by definition, this constraint matrix is
totally unimodular.

Once we have fixed all guesses on the variables corresponding to vertices in V ∗ and
type-(a) components, we run the following dynamic programming algorithm in order to
complete the guesses to a complete solution. We do this for all the f(∆) possible guesses
and simply return the best solution we obtain in this way. This adds a factor of f(∆) to
the total runtime of the algorithm. Due to Lemma 4.12, we are guaranteed to find an
optimal solution within the search space.

Dynamic programming network. Observe that the connected components of V (G0) \
V ∗ are paths in G0. Denote n′ := |V (G0) \ V ∗|. We reindex the vertices to obtain
a sequence v1, . . . , vn′ such that |i − j| = 1 if {vi, vj} ∈ E(G0), i.e., vertices that are
connected by an edge in G0 appear in succesive fashion.

We create a dynamic programming network N . The network has layers corresponding
to the vertices vi for i ∈ [n′]. Each node within a layer carries two additional pieces of
information:
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� the value of xvi (compared to the base solution x0), and

� the accumulated weight margin with respect to the upper bound W .

Note that due to Lemma 4.12, we know that the guessing range for each variable xvi is at
most 4∆ + 3. In addition, since the entries of d are bounded by ∆ in absolute value, we
see that the total weight difference between x0 and xopt can be bounded by (4∆2 +3∆)n
for any subset of entries. Thus, we see that N contains O(∆3n2) nodes. We add arcs
between vertices of layers i and i + 1 that correspond to guesses on the variable xvi+1 ,
for which we have at most 4∆ + 3 choices. Each arc will obtain a value based on the
profit that can be generated by this choice. Note that therefore the outdegree of every
node is in O(∆), and N contains O(∆4n2) arcs.

We proceed to formally define the above network. Define W0 := dᵀx0 +
∑

v∈V ∗(x̃v −
x0
v)dv − W , the weight margin of our initial solution after guessing on the variables

corresponding to V ∗. As long as this margin is negative, our intermediate solutions are
feasible with respect to the last constraint. We define the nodes Ni,W̃ ,x̃ for i ∈ [n′],

W̃ ∈ [−(2∆2 +∆)n+W0, (2∆2 +∆)n+W0], x̃ ∈ [−(2∆+1), 2∆+1], as well as auxiliary
nodes N0,W0,0 and Nn′+1,0,0. Let i ∈ [n′]. We add arcs with profit 0 from Nn′,W ′,x′ to
Nn′+1,0,0 for all choices of x′ if W ′ ≤ 0. In addition, we add an arc from Ni−1,W ′,x′ to
Ni,W ′′,x′′ if

� the original integer program has a solution with xv = x̃v for all v ∈ V ∗, xvi−1 =
x0
vi−1

+x′, and xvi = x0
vi +x′′ (this can be checked by optimizing a totally unimod-

ular integer program as outlined in the beginning of Section 4.2), and

� W ′′ = W ′ + x′′dvi .

The profit on these arcs can be calculated by the following subroutine. Denote the set
of type-(b) components of 0-weight vertices by Cb and similarly, type-(c) components by
Cc. Let i ∈ [n′]. We define Cb(i) := {C ∈ Cb | vi ∈ N(C)} and Cc(i) := {C ∈ Cc | vi−1 ∈
N(C) and vi ∈ N(C)}, where Cc(1) := ∅. Recall that components of 0-weight vertices
are replaced by a clique on their neighbors in G0. Therefore, the neighbors are connected
by an edge and appear succesively within our reindexed order. Thus, these sets give a
partition of Cb and Cc respectively. The relevant variables for each step correspond to the
vertices in C(i) := Cb(i) ∪ Cc(i). Further, the variables that correspond to vi or vertices
in the neighborhood of vi in G0, excluding vi+1 will already be fixed. To be more formal,
we denote these vertices by V (i) := {vi} ∪ N(vi) \ vi+1. Note that due to the degree
constraints, |V (i)| ≤ 3.

Let us create totally unimodular subproblems for each i ∈ [n′]. Denote the submatrix
containing the rows interacting with the variables corresponding to C(i), and all columns
corresponding to vertices in C(i) or V (i) by Mi.

ρ(i, (x̃v)v∈V (i)) = max pᵀx s.t. Mix ≤ b, xv = x̃v for v ∈ V (i), x ∈ ZV (i)∪{v∈C|C∈C(i)} ,

where p and b are naturally restricted to the set of variables and constraints respec-
tively. The profit on the arc (Ni−1,W ′,x′ , Ni,W ′′,x′′) is determined by ρ(i, xv = x̃v for v ∈
V ∗, xvi−1 = x0

vi−1
+ x′, xvi = x0

vi + x′′).
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It is easy to check that each N0,W0,0−Nn′+1,0,0-path corresponds to a feasible solution
of our problem of the form (4.1), with M a transposed incidence matrix. In addition,
the profit along such a path corresponds to the profit of a corresponding solution. Due
to the proximity result in Lemma 4.12, we are guaranteed to find an optimal solution in
the search space. The runtime of the dynamic programming algorithm is in g(∆)nO(1)

by construction of the dynamic programming network.

Remark 4.32. Note that our dynamic programming does not make use of the full
power of Lemma 4.12. In fact, using Lemma 4.31 we can show that for fixed ∆, G0

only induces a polynomial number of circuit vectors. Due to the solution decomposition
part of Lemma 4.12, this immediately implies a polynomial-time brute force algorithm,
testing all possible augmentations and solving totally unimodular integer programs in
order to solve the components of 0-weight vertices. This algorithm is not fixed parameter
tractable in terms of ∆ though, since it does not take advantage of the low dependency
of vertices in V (G0) \ V ∗.

4.4.3 Recognition

We give a short sketch on how to check whether a transposed incidence matrix with one
additional row is totally ∆-modular for fixed ∆. Note that due to Corollary 4.29, it
suffices to check whether G0 contains a connected subgraph of weight more than ∆ in
absolute value. If G0 is not connected itself, we deal with every connected component
separately. Due to Lemma 4.30 and Lemma 4.31, we can reject instances where G0

contains a vertex of degree more than 2∆, or more than 8∆3 + 4∆2 + 2∆ vertices of
degree more than 2. Thus, we can assume G0 to be of the same structure as before, with
V ∗ denoting the set of vertices of degree at least 3. Further, by combining Lemma 4.30
and Lemma 4.31, we can see that the sum of the degrees in V ∗ is bounded. Thus, also
the number of paths starting in V ∗ is bounded by a function of ∆.

We claim that these restrictions make it computationally tractable to find the largest
absolute value of a connected subgraph. Observe that instead of searching for the largest
absolute value, it suffices to maximize the weight of a connected subgraph for the original
weights and their negative. Thus, it suffices to describe an algorithm for finding the
largest weight of a connected subgraph.

We denote the paths in V (G0) \ V ∗ by P1, . . . , Pk. Note that by definition, each path
induces a connected component on the vertices of V (G0) \ V ∗. Since both the number
of vertices in V ∗, and the number of paths in V (G0) \ V ∗ are bounded by a function of
∆, the same holds for the set of all possible subsets. Thus, we can iterate over all these
subsets and check whether it is possible to extend them by partial paths to a connected
subgraph of large weight. Choose any such subset, defined by a subset of high-degree
vertices U∗ ⊆ V ∗ and a subset of k′ ≤ k paths, say without loss of generality P1, . . . , Pk′ .

Observe that each connected set in G0 can be partitioned into some vertices in V ∗,
some complete paths, as well as some partial paths. Since each path induces a connected
component on the vertices of V (G0) \ V ∗, partial paths cannot connect two components
that would be disconnected otherwise. Thus, we begin by checking if the induced sub-
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

graph defined by U∗ and P1, . . . , Pk′ is connected. Otherwise, we proceed with the next
subset.

For each path in Pk′+1, . . . , Pk, if it is connected to U∗, we optimize the maximum
weight interval that can be connected to the rest of the graph. Since there is only
a quadratic number of intervals on each path, this can be done efficiently. Also, the
decisions on each path are independent, since connectivity on the partial paths is only
relevant locally.

Observe that the runtime of the algorithm we presented is in O(f(∆)n2) for some
function f , i.e., it is fixed parameter tractable in terms of ∆.

4.5 Transposed network matrices

We saw in Section 4.4 that we can solve IPs of the form (4.1) if M is a transposed
incidence matrix. Since transposed network matrices are a natural generalization of
transposed incidence matrices, see Remark 4.14, it is an interesting question of how
many of the concepts carry over and can be generalized to transposed network matrices.
Recall that with a (transposed) network matrix, we associate a directed graph D′ =
(V,AT ∪ AD). In the transposed case, adding the two incidence matrices to the top of
M ′, see Section 4.2.1, corresponds to adding the arcs of AT (in both directions) to the
rows, i.e., the arcs of AD. Thus, interestingly we can find a linear transformation that
transforms M ′ to the transposed incidence matrix of D′. Note that such a change of
variables need not be subdeterminant-preserving, which is why we cannot reduce the
case of transposed network matrices to transposed incidence matrices. In the following,
we start to describe this linear change of variables and its implications on the graphic
representation of our transposed network matrix.

4.5.1 Change of variables

We describe a change of variables that transforms the IP max{pᵀx|M ′x ≤ bM ′ , d
ᵀx ≤

W, x integer} where M ′ arises from a transposed network matrix as described in Sec-
tion 4.2.1 to the same type of problem, where M ′ is replaced with the transposed in-
cidence matrix of a related graph. Recall that M ′ itself is still a transposed network
matrix, whose rows correspond to the arcs in AD and the arcs in AT in both directions.
The corresponding variables correspond to the arcs of the tree, i.e., x ∈ ZAT . Thus,
AD already includes this complete collection of arcs. Both T and D are defined on the
same set of vertices V . Fix a root vertex r ∈ V . After replacing some variables x(a)
by their opposite −x(a) (this corresponds to multiplying the corresponding columns by
−1), we may assume that T is an r-arborescence, i.e., every arc of T points toward root
r. For each vertex v ∈ V , let P (v) = P (v, r) ⊆ AT denote the unique v–r path in T (in
particular, P (r) is empty) and let y(v) :=

∑
a∈P (v) x(a) (in particular, y(r) = 0).

When transforming from arcs to vertices, it is helpful to also translate the property of a
minimal cut in the following way. Consider some (potentially directed) graphD = (V,A).
We call a vertex subset S ⊆ V doubly connected if both induced subgraphs D[S] and
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4.5 Transposed network matrices

D[S̄] are weakly connected. We use the shorthand docset to refer to a doubly connected
set.

The following lemma helps to relate the objective vector pᵀ and the weight vector dᵀ

of the original problem to corresponding vectors of the new problem. These new vectors
preserve the values of objective and weights under the linear transformation.

Lemma 4.33. Let x ∈ ZAT and y ∈ ZV be related as above. Let d ∈ ZAT be an arbitrary
vector. If w(v) =

∑
a∈δ+T (v) d(a)−

∑
a∈δ−T (v) d(a) holds for each v ∈ V , then∑

v∈V
w(v)y(v) =

∑
a∈AT

d(a)x(a) .

Proof. Notice that
∑

v:a∈P (v)w(v) = d(a) holds for each arc a ∈ AT since the left-hand
side contains two opposite terms d(f) and −d(f) for each arc f of the subtree rooted at
the tail of a, as well as the extra term d(a). Hence,

∑
v∈V

w(v)y(v) =
∑
v∈V

w(v)
∑

a∈P (v)

x(a)


=
∑
a∈AT

 ∑
v:a∈P (v)

w(v)

x(a)

=
∑
a∈AT

d(a)x(a) .

Note that Lemma 4.33 gives a nice characterization for the transformation of weight
and profit vectors respectively: The weight (or profit) of a variable that corresponds to
a vertex in the new space is equal to the weight of the corresponding (directed) cut,
separating said vertex from the rest of the graph in (V,AT ∪AD). Recall that a circuit
vector c in the transposed network matrix case corresponds to a (directed) minimal cut.

Such a minimal cut induces a docset. Due to the transformation of the weight vector
as defined above, we can see that the weight of such a cut dᵀc behaves nicely under the
transformation and corresponds to the sum of the weights of the vertices in the induced
docsets.

Further, we see that all constraints of M ′x ≤ bM ′ can be written as
∑

a∈P (u) x(a) −∑
a∈P (v) x(a) ≤ b(u, v) for (u, v) ∈ AD, where b(u, v) equals bi for the corresponding row

index i. Switching to y-variables, these constraint become y(u)− y(v) ≤ b(u, v). For the
last constraint of dᵀx ≤W , we simply use Lemma 4.33 and write it as

∑
v∈V w(v)y(v) ≤

W . Therefore, in y-variables, the IP max{pᵀx|M ′x ≤ bM ′ , dᵀx ≤W, x integer} becomes:

max
∑

v∈V q(v)y(v)
s.t. y(u)− y(v) ≤ b(u, v) ∀(u, v) ∈ AD∑

v∈V w(v)y(v) ≤W
y(r) = 0
y ∈ ZV .

(4.4)
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4 Totally ∆-modular IPs with TU constraint matrix and one additional row

Above, q(v) := p(δ+
T (v))−p(δ−T (v)) for v ∈ V . Notice that

∑
v∈V w(v) =

∑
v∈V p(v) = 0.

We can now formulate the central theorem of this section and prove a small reduction
result on the recognition of such matrices.

Theorem 4.34. For every ∆ > 0 there exists a strongly polynomial-time algorithm
for solving integer programs of the form (4.1) where A is totally ∆-modular, M is a
transposed network matrix, and the simple undirected graph G obtained by undirecting
the arcs in AT and AD is planar and 3-connected.

Recall that we defined k-DRP in Problem 4.3.

Lemma 4.35. Checking whether a transposed network matrix with one additional row
is still totally unimodular is at least as hard as 2-DRP.

In a similar fashion, we can show that checking whether a totally unimodular matrix
with k additional rows is 2k−1-modular is at least as hard as k-DRP.

Proof. Note that due to the weight propagation inside the tree, any definition of integer
node-weights that sum up to 0 leads to a valid definition of weights for the arcs in AT .
Let an instance of 2-DRP be given by a connected graph G = (V,E), and two sets
of terminals (s1, t1), (s2, t2). We define node-weights w : V → Z as follows: w(s1) =
w(t1) = 1, w(s2) = w(t2) = −1, and w(v) = 0 otherwise. Now, the maximum weight
docset contains both s1 and t1, but none of s2 and t2. Such a docset exists if and only
if the 2-DRP instance is a YES -instance.

Note that checking for total unimodularity can be done efficiently in general, see
e.g.[90, Section 20]. Also, 2-DRP can be solved itself in linear time [65], and even k-
DRP admits an efficient algorithm for fixed k [87, 64]. Still, the reduction gives insight
on the techniques and theory related to the recognition question and hints that this may
be a non-trivial question. It seems plausible to also relate our recognition question to
the labeled minor containment problem, see e.g. [64].

4.5.2 Structural results

The following results concentrate on the simple undirected graph G that is obtained
by undirecting D (as before, including the arcs of T ). Using the change of variables,
we obtain a profit vector q ∈ ZV and a weight vector w ∈ ZV . We call the vertices
v ∈ V (G) such that w(v) 6= 0 terminals, and the other vertices non-terminals. We let
β(G,w) denote the maximum weight w(S) :=

∑
v∈S w(v) of a docset. Therefore, the

original matrix A is totally ∆-modular if and only if β(G,w) ≤ ∆.

The aim of this section is to analyze the possible structure of G with respect to
the terminals. In the related literature, graphs that contain a special class of vertices
are also called labeled, see e.g. [19, 20]. We investigate such labeled graphs with the
hope to find substructures that guarantee large β(G,w), independent of the specific
weights in w. Therefore, we start by defining the notion of a pumpkin. These objects
have received prior attention in graph-theory, both in labeled and unlabeled form, see
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4.5 Transposed network matrices

e.g. [19, 20, 39, 22]. Roughly speaking, a pumpkin is a model of K2,t in G such that
each of the t last branch sets contains a terminal.

Definition 4.36. A t-pumpkin is a collection {B1, B2, B3, . . . , Bt+2} of disjoint con-
nected subsets of G such that Bi has an edge to Bj for each i ≤ 2 and j ≥ 3, and
moreover each of B3, . . . , Bt+2 contains a terminal.

Lemma 4.37. If G contains a pumpkin of size t ∈ N, then 4 · β(G,w) ≥ t.

In order to prove Lemma 4.37, we need an additional technical lemma. This lemma
allows us to construct certain kind of docsets in an iterative way.

Lemma 4.38. Let G be a 2-connected graph, with a docset H ⊆ V (G) and a docset
I ( H. Then, there is some vertex v in H \ I, such that I ∪ v is a docset.

Proof. Consider the (non-empty) set of neighbors of I in H and denote it by NH(I).
Choose any vertex vG in H, and calculate shortest paths from each vertex of NH(I) to
vG that do not touch I (this is possible, since I is connected). We create an auxiliary
directed containment graph J on the vertices of NH(I), i.e., (i, j) ∈ (NH(I)×NH(I)) is
an arc of J if the shortest path from i to vG contains j. Observe that J is acyclic, because
we chose shortest paths, i.e., J has a source. Given some source v∗ ∈ J , it remains to
show that I∪v∗ is a docset, making v∗ a valid choice for v. Clearly, I∪v∗ is connected, so
for a contradiction, assume I ∪ v∗ decomposes into more than one connected component
B1, . . . , Bk. Since H is connected, it is completely contained in a connected component,
say wlog B1. Because of 2-connectedness, NH(I) ∩ Bi 6= ∅ (otherwise, v∗ would be a
1-cut) for each i ∈ [2, k], i.e., each Bi contains a neighbor of I, denoted by vi. For each
vi, we calculated a shortest path to vG in I before, not containing v∗ by construction, a
contradiction.

Proof of Lemma 4.37. Assume that G contains a t-pumpkin for some t ∈ N. Denote
some t-pumpkin maximizing the number of non-zero bags by B = {B1, . . . , Bt+2}, i.e.,
it maximizes |{i : i ∈ [3, t + 2], w(Bi) 6= 0}| among all t-pumpkins of G. We will show
that at most t

2 of the bags have zero-weight.
For a contradiction, consider some bag Bi∗ with w(Bi∗) = 0 for i∗ ∈ [3, t + 2]. For

t ≥ 2, Bi∗ is a docset. Choose H = Bi∗ and I = {v} for some v ∈ Bi∗ ∩N(B1). While I
contains no terminal, apply Lemma 4.38 in order to grow I by one vertex. Observe that
when I contains exactly one terminal, then Bi∗ \ I is non-empty, since w(Bi∗) = 0. In
addition, we have that w(I) 6= 0 and w(Bi∗ \ I) 6= 0.

Upon removal of I, Bi∗ may decompose into connected components. Clearly, at least
one of them has non-zero weight, denote it by J . Since I is connected, J connects to
some Bi for i∗ 6= i. Define J ′ := J ∩ Bi∗ , which is connected and has non-zero weight.
In addition, J ′ connects to B1 by construction of I.

If J connects to B2, define B′i∗ := J ′ and B′2 := B2 ∪ J . Otherwise, if J connects to
B1, then J ′ must connect to B2. Then, define B′i∗ := J ′ and B′1 := B1∪J . In both cases,
we obtain a same-size pumpkin with w(B′i∗) 6= 0 and no other weight of Bi changing for
i∗ 6= i ∈ [3, t+ 2], a contradiction.
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b1 b2

v1

v2

v3

v4

v5

v6

Figure 4.2: Graph G containing a pumpkin of size 4. Red vertices are assigned a weight of 1,
blue vertices a weight of −1 and black vertices have weight 0.

Otherwise, we can see that J must connect to some Bi for i∗ 6= i ∈ [3, t + 2]. Notice
that this implies that J ′ is connected to both B1 and B2. If w(Bi) = 0, define B′i∗ := J ′

and B′i := Bi∪J . We again obtain a same-size pumpkin with w(Bi∗) 6= 0 and w(Bi) 6= 0,
a contradiction.

Assume that none of the above options exist for all Bi with w(Bi) = 0 for i ∈ [3, t+2].
This implies in particular that each zero-weight branchset has a partition into connected
subsets (J, J ′), such that J connects to some non-zero weight Bi for i ∈ [3, t+ 2] and J ′

connects to both B1 and B2. Create a bipartite auxiliary graph H on the branchsets of
G in the following way: the vertices of H correspond to branchsets Bi for i ∈ [3, t+ 2].
For each zero-weight component Bi∗ , determine (J, J ′). If J is a neighbor of Bi for some
i ∈ [3, t+ 2], then add the edge {i, i∗} to H.

Now, consider some non-zero branchset Bĩ and its neighborhood in H. If Bĩ has
k > 1 neighbors Bi1 , . . . , Bik in H, denote the corresponding partitions by (J(ij), J

′(ij)).
Define Bĩ′ := Bĩ

⋃
j∈[k] J(ij) and Bij := J ′(ij).

Observe that each of the above redefinitions keeps the size of the pumpkin intact, while
increasing the number of non-zero-weight components by at least one, a contradiction.
In particular this means that in H, each non-zero component has at most one zero-
component neighbor. Since H is bipartite, and each zero-component has a non-zero
neighbor, this implies that at most half of the components have zero-weight.

Denote B+ := {B′i : i ∈ [3, t+2], w(Bi) ≥ 0} and B− = {B′i : i ∈ [3, t+2], w(Bi) < 0}.
Then, both B′1 ∪ B+ and B′1 ∪ B− induce docsets with a weight difference of at least
t/2.
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Remark 4.39. It turns out that the factor of 4 in Lemma 4.37 on the relationship
between the maximum size of a pumpkin in a graph G, and β(G,w) is tight. For this,
consider the graph G in Figure 4.2 with V (G) = {b1, b2, v1, . . . , v6}, such that b1 and
b2 represent the ends of the pumpkin. The sets of vertices v1, v2, v3, and v4, v5, v6 each
induce a path of length three. In addition, the ends of the path are connected to the
ends of the pumpkin, i.e., {bi, v1}, {bi, v3}, {bi, v4}, {bi, v6} ∈ E(G) for i = 1, 2. Further,
w(b1) = w(b2) = 0, w(v1) = w(v3) = w(v5) = 1, and w(v2) = w(v4) = w(v6) = −1.

As can be seen from the dashed lines, G contains a pumpkin of size 4. Still β(G,w)
is only 1. To prove this, it suffices to show that the maximum weight of a docset is
bounded by 1, since the total weights sum up to 0.

We separately consider the possible numbers of positive vertices in a docset S. As-
sume S contains all 3 positive vertices v1, v3, v5. Then, in order to induce a connected
subgraph, and having the complement connected, S must contain at least 2 vertices of
v2, v4, v6. Otherwise, if S contains v1 and v3 but not v5, then for S̄ to be connected, we
need v2 ∈ S. If S contains v5 and one of v1 and v3, then for S to be connected, we need
either v4 ∈ S or v6 ∈ S. Finally, if none of this is fulfilled, S contains at most one vertex
of positive weight. Thus, w(S) ≤ 1 for all docsets S ⊆ V (G).

By adding copies of the paths v1, v2, v3 and v4, v5, v6 and connecting them to b1 and
b2 in the same way, this construction can be extended to show that there exist graphs
G containing a 4k-pumpkin with β(G,w) = k.

4.5.3 Optimization of planar 3-connected instances

From now on, assume that G is planar and 3-connected, and β(G,w) ≤ ∆, aligning
with Theorem 4.34. By Lemma 4.37, G has no (4∆ + 1)-pumpkin. In the following, we
use structural graph theory results by Böhme and Mohar [19] as well as Bienstock and
Dean [15] in order to show that the bound on the size of a pumpkin implies that all
terminals can be covered by a bounded number of faces, see Theorem 4.40.

Bienstock and Dean [15] relate the maximum size of a packing of a set of labeled
vertices with the minimum size of a face cover of that set by showing that their values
differ at most by a multiplicative constant. A packing of vertices denotes a subset of the
labeled vertices, such that no two of them are incident to the same face. A face cover of
the set of labeled vertices denotes a set of faces, such that each of the vertices is incident
to at least one of the selected faces.

Böhme and Mohar [19] studied pumpkins in the context of work by Mohar [78] on
the genus problem for apex graphs. Interestingly, their notion of a labeled K2,t minor
completely coincides with our notion of pumpkins. They show that if the minimum size
face cover is large, say of order k, then we can either find a pumpkin of order

√
k, or a

cycle containing at least
√
k terminals. If there is a cycle of this form, they continue to

show that this also implies a large pumpkin (of much smaller order, but still unbounded
for increasing k). Their proof uses the result of Bienstock and Dean [15] in order to
obtain a large packing from the given large face cover.

Together, this implies the following:
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(a) A 2-connected graph G with a large
packing of terminals that does not
contain a large pumpkin. The termi-
nal vertices are depicted in red.

(b) A K4,3-minor within G, if two termi-
nals share a face. Green edges are
contracted, leaving 3 green vertices,
each of them neighboring all 4 yellow
vertices.

Figure 4.3: An obstruction to extending Theorem 4.40 to 2-connected graphs.

Theorem 4.40. [Böhme and Mohar [19], Thm. 1.2]

Let G = (V,E) be a 3-connected graph with a set of terminals Z ⊆ V . If G contains
no k-pumpkin, then we can cover all elements of Z with a set of at most f(k) faces,
where f : N→ N and each terminal is incident to at least one of the faces in the set.

Remark 4.41. The 3-connectedness of G is crucial for the argument of Böhme and
Mohar [19] to work. They give such an example within their work, which can be reduced
in order to make the structure more clear.

Consider the graph given in Figure 4.3a, consisting of k identical copies of the same
graph on 5 vertices, which is connected by identifying vertices of succesive graphs. It can
be easily checked that the largest pumpkin in G has size at most 4 (using Lemma 4.37
and an alternating signing of the terminals, giving β(G,w) = 1), while for this drawing,
we need k faces in order to cover all terminals, since no two terminals share a face.
Figure 4.3b shows that the second argument holds for any planar drawing of G. Indeed,
assume that there is a planar drawing such that two terminals share a face. Then, the
drawing remains valid, even if we add an edge between these terminals, implying that
the graph is still planar. In Figure 4.3b we show a K4,3-minor within this modified
graph. Thus, no planar drawing of G can have two terminals within the same face.

The following two lemmas make use of these results in order to restrict the interaction
between terminals and docsets.

Lemma 4.42. For every face f and docset S of G, the vertices of S incident to f are
consecutive on the boundary of f .
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We remark that a slightly weaker statement extends to graphs embeddable on a surface
of genus Γ. Due to a result of Mohar [77] that excludes K3,k minors on surfaces of genus
Γ, with k ∈ Θ(Γ), we can bound the number of intervals in which a docset intersects a
region of the graph by k.

Proof. Assume for a contradiction that the vertices of S incident to f decompose into
at least 2 sets f1, . . . , fk that are each consecutive on the boundary of f . Observe that
also f \ (f1 ∪ f2) decomposes into two parts that are consecutive on the boundary of f ,
denoted by g1, g2. Additionally, we define an auxiliary vertex h within f and connect it
to each vertex of f .

Contract f1, g1, f2, g2 to single vertices. These vertices are necessarily connected in a
circular manner by their definition as a partition of a common face. Furthermore, since
S is a docset, both f1 and f2 as well as g1 and g2 are connected. Finally, h is connected
to each f1, g1, f2, g2, giving a K5 minor. Observe that this auxiliary graph is obtained
by contraction and with the addition of h. As such, it is planar if the original graph is
planar, a contradiction.

Lemma 4.43. Let Z denote the set of all terminals of G. If G has a set of k faces such
that every terminal is incident to at least one of these faces, then the number of possible
intersections Z ∩ S of the terminal set with a docset S is at most n2k, where n denotes
the number of vertices of G.

Proof. This follows straight from Lemma 4.42.

We now have everything in place to give a strongly-polynomial time algorithm for
our described problem as announced in Theorem 4.34. Strictly speaking, the change of
variables is not necessary since it is possible to analyze the structures and obtain the
subsequent results in the original space. It makes the results and their interpretation
easier to follow, so we included it in the final version of the algorithm.

We first follow along the lines of Section 4.2.2 in order to obtain a fractional solution
x∗, as well as a rounded feasible integer solution x0 to our problem. By employing
our change of variables, see Section 4.5.1, we obtain a new problem on a transposed
incidence matrix, as well as a feasible integer solution y0. Note that due to the linear
transformation, and the equivalence of minimal cuts and docsets, Lemma 4.12 also holds
for y0. This implies that there is an optimal solution yopt to our version of (4.1) that
can be obtained by augmenting y0 in the direction of O(∆) docsets. Ultimately, we
guess y(v) for all v ∈ Z. Lemma 4.43 shows that for ∆ constant, there is a polynomial
number of guesses to consider. It turns out that we can find the corresponding faces
and therefore all guesses efficiently, since we assume our graph to be 3-connected, which
implies a fixed embedding. In addition, Bienstock and Monma [16] give an algorithm to
find a corresponding embedding if it exists, even if G is not 3-connected.

For each of these guesses, we check whether the constraint wᵀy ≤ W is satisfied. We
can do this, since the components of y that are not fixed at this stage have a coefficient
of zero in the additional constraint. If the constraint is not satisfied, we reject the guess.
Otherwise, we solve IP (4.4), fixing all variables y(v) for v ∈ Z to their guessed value,
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and removing the additional constraint wᵀy ≤W which we know is satisfied. We get an
IP over a TU constraint matrix, with integer right-hand sides. Once we have processed
all guesses, we simply take the best solution that was found. The complexity of this
algorithm is nO(f(∆)), where n denotes the number of vertices of G, which is strongly
polynomial in n for fixed ∆.

Remark 4.44. We remark that in addition to planar 3-connected instances, we can also
solve the following types of instances in strongly polynomial time:

� the number of terminals is in O(log(n)). Then, the number of intersections between
terminals and docsets is bounded by a polynomial in n, allowing for a similar
approach as before.

� the treewidth of G is bounded in terms of ∆. This allows for a dynamic program-
ming algorithm comparable to the one presented in Section 4.4.2.

� the 0-weight vertices form a stable set. This implies that the treewidth is bounded,
since the grid minor would contain a large pumpkin otherwise.

4.5.4 Recognition of planar 3-connected instances

Recognizing whether an instance is of the aforementioned type (planar, 3-connected,
and totally ∆-modular) is an easy consequence of the results from the previous section.
We can check for network matrices that induce a planar 3-connected graph due to [90,
Theorem 20.1, Theorem 20.2]. Further, we can use the unique embedding or the result
by Bienstock and Monma [16] to check whether we need more than f(∆) faces in order
to cover all terminals. If we need more faces, we can immediately reject the instance.
Otherwise, Lemma 4.43 gives us a polynomial number of docsets to check, whether each
of their weights is bounded by ∆.

4.6 Outlook

We close this chapter by giving an overview over possible further research directions
relating to Question 4.2. From our presentation of results and the motivation of us-
ing Seymour’s decomposition, there is some obvious questions. In particular it would
be interesting to find strongly polynomial time optimization algorithms for the rest of
the base blocks, i.e., general transposed network matrices as well as network matrices.
Observe that in the related setting, studied by Nägele, Santiago, and Zenklusen [79],
and Nägele, Nöbel, Santiago, and Zenklusen [80], the non-transposed case also proved to
be the more challenging one, since they could only give a randomized algorithm for it.
Furthermore, it seems relevant to try and generalize Lemma 4.18 to 2-sums and 3-sums.

In addition to these important open questions, our work permits some possible gen-
eralizations. In particular it would be intriguing to see if our optimization algorithm for
planar and 3-connected instances can be generalized to instances that can be described
by a graph of fixed, bounded genus. In our analysis, the result by Böhme and Mohar [19]
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plays a key role. This argument seems to generalize to higher genus, if in addition large
facewidth is assumed, see Böhme, Kawarabayashi, Maharry, and Mohar [20, Section 3]
where a corresponding statement is given without proof. The facewidth (also known as
representability) of a graph embedded on a surface of bounded genus is defined as the
minimum number of intersections of a closed, non-contractible curve with the vertices of
the graph, where the curve and the graph can only intersect in its vertices. Given this
result, it is not necessarily clear though, how to find a respective embedding that allows
for a small face cover of the terminals, even if existence is guaranteed.

A second important ingredient of our algorithm presented in Section 4.5.3 is the con-
cept of pumpkins. They are a substructure that permit to find large subdeterminants,
only based on the knowledge which vertices are terminals. Thus, they represent struc-
tures that cannot appear in our problem. It would be interesting to see if we can find a
corresponding structure for network matrices or the general totally unimodular case.

In a similar spirit, it is not clear whether pumpkins are the only, or best structure that
permits a forbidden minor result. The results by Böhme and Mohar [19] imply something
like this for the planar, 3-connected case: if we have a configuration of terminals in G,
such that no matter their weight (apart from being non-zero), β(G,w) is large, then
there also is a large pumpkin in G. It is not immediately clear, whether this can be
generalized to arbitrary graphs.

Finally, we remark on the recognition question of total ∆-modularity. This question
was left open by Artmann, Weismantel, and Zenklusen [8] in their paper on 2-modularity.
It would be intriguing to see, whether it is possible to recognize 2-modularity at least
in our strengthened setting. In addition, the recognition question for network matrices
with one additional row seems interesting, i.e., is a matrix of the previously described
form totally ∆-modular for some fixed ∆? Basically, we ask whether there is a cycle
exceeding a certain length in a weighted and directed graph, with some minor addi-
tional information. This question is close to provably hard questions, but includes some
additional information that may allow for a polynomial-time algorithm.
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[49] Alain Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. In
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[55] Pablo A. López Hidalgo, Max Ostendorp, and Markus Lienkamp. Optimizing the
charging station placement by considering the user’s charging behavior. In 2016
IEEE International Energy Conference (ENERGYCON), pages 1–7, 2016.

[56] M. John Hodgson. A flow-capturing location-allocation model. Geographical Anal-
ysis, 22(3):270–279, 1990.

[57] A. Horni, K. Nagel, and K. Axhausen, editors. The Multi-Agent Transport Simu-
lation MATSim. Ubiquity Press, London, 2016. ISBN 978-1-909188-77-8.

[58] Robert G Jeroslow. On defining sets of vertices of the hypercube by linear inequal-
ities. Discrete Mathematics, 11(2):119–124, 1975.

[59] Xinrui Jia, Ola Svensson, and Weiqiang Yuan. The exact bipartite matching
polytope has exponential extension complexity. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1635–1654. SIAM,
2023.

[60] Volker Kaibel and Stefan Weltge. Lower bounds on the sizes of integer programs
without additional variables. Mathematical Programming, 154(1-2):407–425, 2015.

[61] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math-
ematics of operations research, 12(3):415–440, 1987.

[62] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 302–311, 1984.

[63] Richard Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

77

https://www.gurobi.com


BIBLIOGRAPHY

[64] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths
problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):
424–435, 2012.

[65] Ken-ichi Kawarabayashi, Zhentao Li, and Bruce Reed. Connectivity preserv-
ing iterative compaction and finding 2 disjoint rooted paths in linear time.
arXiv:1509.07680, 2015.

[66] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming.
In Doklady Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of
Sciences, 1979.

[67] D Marc Kilgour. A formal analysis of the amending formula of Canada’s Con-
stitution Act, 1982. Canadian Journal of Political Science/Revue canadienne de
science politique, 16(4):771–777, 1983.

[68] Stefan Kober and Stefan Weltge. Improved lower bound on the dimension of the
EU council’s voting rules. Optimization Letters, 15:1293–1302, 2021.

[69] Stefan Kober, Maximilian Schiffer, Stephan Sorgatz, and Stefan Weltge. Driver-
aware charging infrastructure design. arXiv:2212.05084, 2022.

[70] Stavros G Kolliopoulos and George Steiner. Partially ordered knapsack and appli-
cations to scheduling. Discrete Applied Mathematics, 155(8):889–897, 2007.

[71] Bernhard H Korte and Jens Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

[72] Michael Kuby and Seow Lim. The flow-refueling location problem for alternative-
fuel vehicles. Socio-Economic Planning Sciences, 39(2):125–145, 2005.

[73] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Funda-
menta mathematicae, 15(1):271–283, 1930.

[74] Sascha Kurz and Stefan Napel. Dimension of the Lisbon voting rules in the EU
Council: a challenge and new world record. Optimization Letters, 10(6):1245–1256,
2015. doi: 10.1007/s11590-015-0917-0.

[75] Hendrik W Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of operations research, 8(4):538–548, 1983.

[76] Nicolas El Maalouly and Raphael Steiner. Exact matching in graphs of bounded
independence number. arXiv:2202.11988, 2022.

[77] Bojan Mohar. An obstruction to embedding graphs in surfaces. Discrete mathe-
matics, 78(1-2):135–142, 1989.

[78] Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of
Combinatorial Theory, Series B, 82(1):102–117, 2001.

78



BIBLIOGRAPHY

[79] Martin Nägele, Richard Santiago, and Rico Zenklusen. Congruency-constrained
TU problems beyond the bimodular case. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2743–2790. SIAM, 2022.
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