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Abstract

This publication-based dissertation is concerned with several topics from the area of cyber risk

and cyber insurance. First, a holistic actuarial model for cyber risk based on marked point

processes is developed. The model takes into account multiple stylized facts of cyber losses and

puts particular emphasis on capturing dependence between cyber incidents in a realistic way. The

versatility and practicality of the model for actuarial applications is illustrated in an extensive

simulation study. Second, a simplified version of the proposed model is used to illustrate the

importance of holistic cyber insurance value chains, in particular the need for sophisticated data

collection for actuarial model calibration. Using suitable measures of dependence and risk, we

derive analytically that otherwise risk management decisions may be based on a detrimental

underestimation of risk. Third, the optimal pricing of novel cyber insurance products including

risk mitigation is investigated using the framework of distortion risk measures and a sequential

optimization game. Besides representing a new rigorous mathematical approach to pricing cyber

assistance services currently offered on the market, the study encompasses a first extension to

risk mitigation services which may enhance cyber resilience on a portfolio level.



Zusammenfassung

Diese publikationsbasierte Doktorarbeit beschäftigt sich mit verschiedenen Themen aus dem

Bereich Cyber-Risiko und Cyber-Versicherung. Zuerst wird ein ganzheitliches Modell für Cyber-

Risiken basierend auf markierten Punktprozessen entwickelt. Das Modell berücksichtigt mehrere

statistische Charakteristika und legt besonderen Wert auf die realitätsnahe Modellierung von

Abhängigkeit zwischen Cyber-Vorfällen. Die vielseitige Anwendbarkeit des Modells für praktis-

che aktuarielle Fragestellungen wird in einer ausführlichen Simulationsstudie veranschaulicht.

Des Weiteren wird eine vereinfachte Version des vorgeschlagenen Modells verwendet, um

die Bedeutung der gesamtheitlichen Ausgestaltung von Wertschöpfungsketten in der Cyber-

Versicherung, insbesondere die Notwendigkeit der durchdachten Datensammlung zur Kalib-

rierung aktuarieller Modelle, zu verdeutlichen. Die ansonsten potentiell schädlichen Auswirkun-

gen für das Risikomanagement werden anhand geeigneter Abhängigkeits- und Risiko-Maße an-

alytisch hergeleitet. Außerdem wird die optimale Bepreisung neuartiger Cyber-Versicherungs-

produkte, welche Dienstleistungen zur Risikoreduktion enthalten, unter Verwendung von dis-

tortion risk measures und eines sequenziellen Optimierungsspiels untersucht. Diese Studie stellt

einen theoretisch-mathematischen Ansatz zur Bepreisung aktuell am Markt angebotener Cyber

Assistance-Dienstleistungen dar und enthält außerdem eine Erweiterung auf Dienstleistungen

zur Risikoreduktion, welche dazu dienen können, Cyber-Resilienz auf systemischer Ebene zu

verbessern.
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1 Introduction

Over the last few decades, the digital revolution has moved forward at an ever-increasing pace

and information technology (IT) has become the core of many activities, processes, and systems

shaping public and private life in today’s digitized societies. While the use of smartphones

and other connected devices (ranging from personal computers and smartwatches to digitally

monitored medical equipment) is ubiquitous in industrialized countries, globally as of April

2023 close to 65% of people were identified as internet users, i.e. belonging to the “digital

population” ([130]). People rely on digitized devices for manifold activities in their daily

lives, encompassing highly sensitive topics such as private communication and personal data

storage. Regarding the corporate sector, some time ago a majority of managers and public

decision-makers may have regarded “cyber” as a niche topic to be handled by technical experts

within specialized departments. Several large-scale cyber attacks and their public coverage have

raised awareness about the dependence of today’s business models on functioning IT systems,

making their failure or exploitation a substantial business risk. Several studies have investigated

the potentially enormous economic cost of cyber crime, which could dwarf the detrimental

impact of natural disasters or of the global illegal drug trade (see, e.g., [42]). Alarming as this

may already be, the consequences of adverse cyber incidents are unfortunately not limited to

purely economic losses, but may include physical damage to property and infrastructure (cf.

[14, 13]) and even serious bodily harm to humans (cf. [128]).

Insurers have come to recognize their twofold role in this environment: First, they are them-

selves large enterprises whose business models integrally depend on the storage and analysis

of proprietary and often sensitive data. Second, their core business task of assessing, pricing,

underwriting, and managing risks is affected in two ways by the increasing pervasiveness of

cyber, namely by implicit exposure to cyber incidents in existing policies (e.g. property or

marine insurance) needing to be detected and dealt with as well as – and this will be the

focus of this thesis – by the enormous market potential in explicitly insuring businesses against

adverse consequences of cyber-related incidents via dedicated cyber insurance policies.

While the topic of cyber risk has received increased research interest by experts from different

disciplines (e.g. mathematics, economics, computer science, law), an actuarial modelling

approach comprehensively addressing its stylized facts had remained elusive. Its development

is a challenging task due to the necessity to balance adequate mathematical complexity with

accessibility for actuarial applications in an environment characterized by data scarcity and high

non-stationarity. The adequacy of classical actuarial approaches needs to be scrutinized and

many actuarial tasks need to be approached in an interdisciplinary way due to the technically

intricate nature of information technology.

In the face of the novel and complex nature of cyber risk and its challenging properties, in

particular the potential for accumulation risk and heavy-tailed loss severities (see below),

insurers tread with increasing caution by limiting coverage and demanding high risk premiums

(see, e.g., [123]), often leading to prospective buyers’ perception of cyber insurance coverage
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as currently unattainable (e.g. [102]). This is exacerbated by the fact that an investment

in insurance is usually assumed to curtail the limited budget for cyber-security measures,

implying the notion of cyber security and cyber insurance as substitutes or even competing

activities. Fortunately, many market participants have become aware that – on the contrary –

the combination of risk transfer and risk mitigation via so-called cyber assistance potentially

offers a beneficial enhancement of “traditional” insurance policies for all sides.

This thesis constitutes a contribution to the current research landscape on cyber risk by ad-

dressing several of these topics from the viewpoint of insurance mathematics.

The first core article [1] carefully summarizes the existing literature and then develops a com-

prehensive model for cyber risk using marked point processes based on an extensive review of

stylized facts, with a particular emphasis on capturing dependence between cyber incidents and

resulting accumulation potential in a realistic way. The model is able to capture the dynamic

and heterogeneous nature of cyber risk and is purposely constructed in a modular way to keep

it adaptable for actuarial applications. Some properties of particular relevance in an insurance

context are derived and the applicability of the model for insurance pricing and risk management

is illustrated in a simulation study.

The calibration and testing of the model based on empirical data was not yet feasible due to

the scarcity of available data, in particular regarding data which would allow to infer (implicit)

dependence information. The main objective of article [3] is thus to transcend the viewpoint of

pure actuarial modelling by raising awareness about the importance of designing cyber insurance

value chains in a holistic manner. This refers in particular to the often neglected connection be-

tween data collection in the claims-settlement department and the statistical foundation needed

to calibrate and advance stochastic models in actuarial departments. In [3], we1 therefore use

a simplified (exchangeable) version of the model developed in [1] to illustrate the potentially

detrimental effects for risk management if models are calibrated based on claims data where

dependence information has been omitted or discarded.

The second core article [2] deals with the optimal pricing of cyber insurance policies including

cyber assistance, in particular the question under which circumstances a profit-maximizing in-

surer would subsidize such services as a way to reduce her overall (portfolio) risk. We extend

the study from an interaction between an insurer and a single buyer to a situation in which

cyber assistance services can e.g. inhibit the propagation of cyber losses within a portfolio of

dependent risks. The results of this study provide a promising starting point for further research

about the role of insurers in promoting systemic cyber resilience.

The additional article [4] provides a concise overview of cyber insurance coverage in practice

and outlines cyber insurance as one integral part of holistic cyber risk management.

1Note that the plural pronoun is used throughout this introduction even though I am the single author of

this dissertation. This choice is made for consistency with the contributed articles and – more importantly – to

emphasize that the content of this thesis is of course not derived in isolation, but thanks to many opportunities

for fruitful discussion with my supervisor and research group colleagues and based on previous work by many

researchers of the mathematical scientific community.
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2 Actuarial methods & Challenges of cyber

In order to understand why devising and managing cyber insurance products is a major chal-

lenge, we briefly explain the foundational ideas and tasks of insurance and their underlying

assumptions. These can of course be found in analogous form in any introductory text on the

subject (e.g. [122]), and in our view, it is of merit to revise them before studying insurance

for a novel risk such as cyber. This is the basis of understanding why certain characteristics of

cyber risk challenge the principles of insurance and induce the need to adapt classical actuarial

methods.

2.1 Basics of insurance

The fundamental idea

In daily life, every individual or business is exposed to random events with adverse, potentially

disastrous, outcomes, for example a lightning strike causing a house or factory to catch fire.

Once the possibility of such an adverse event has been identified, one can strive to lower its

occurrence probability, e.g. in the present example by choosing appropriate building material

and installing a lightning rod. However, as the consequences are so severe, most individuals

and companies would still not be willing to invest their life savings or substantial capital into a

property that carries the residual (ruinous) risk of burning down at any time (albeit with low

probability). From an insurance buyer’s viewpoint, an insurance policy is a contract with an

insurance company that allows to exchange such exposure to a pre-defined, randomly occurring

loss event against a fixed upfront payment, called insurance premium. Apart from enabling in-

dividuals to undertake large endeavours which would otherwise not be feasible due to ruinous

risk, such as buying a house in this example, generally an exchange of random losses against

certain payments can be assumed beneficial, as a standard assumption about rational decision

makers is risk aversion (e.g. [138])2. The natural question arises how the insurance company in

turn benefits from this arrangement.

First, let us emphasize one key advantage of using a specialized insurance company as an in-

termediary to carry risks of individuals, as opposed to e.g. the historically preceding principle

of reciprocal (mutual) insurance, where a large group of individuals would collaborate to share

some risk (e.g. inhabitants of a street all saving a little bit of money for the event that one house

should burn down).3 For laymen, random events such as a house fire constitute uncertainties

in the Knightian sense ([93]), i.e. possible occurrences whose probability cannot be objectively

2Risk aversion describes a decision maker’s preference for outcomes with a lower rather than higher degree

of uncertainty. In other words, the highest payment a decision maker would accept in order to avoid a loss of

uncertain size (‘certainty equivalent’) is larger than the expected size of that loss. The most common way to

quantify decision makers’ risk aversions is via a utility function, see also Example 1.
3Another key advantage is of course facilitating contract closure, akin to the introduction of money to replace

pure barter transactions.
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quantified. The first task of a specialized insurance company, respectively its mathematicians,

lawyers, and technical experts (e.g. civil engineers), is to transform such an uncertainty into a

risk in the Knightian sense, i.e. a measurable quantity that can be assigned “objective”4 occur-

rence probabilities. This is accomplished by designing an insurance policy that very precisely

defines the random events which are covered and the resulting payments dependent on the

(random future) manifestation of each event. Additionally, the insurer’s experts need to assign

probabilities to these random events, but this expert assessment is typically kept proprietary

and not shared with the insurance buyer, who only observes it indirectly via the premium which

is demanded to insure the resulting risk (see below).

The benefit for the insurance company results from the idea of pooling risks in large homoge-

neous collectives allowing for diversification, both across time and across the collective, due to

the law of large numbers. The underlying principle is thus still often described as “the contribu-

tion of the many to the misfortune of the few”.

Let in the following all random variables (r.v.) be defined on a common, fixed probability space

(Ω,F ,P). For any r.v. X, let FX(x) = P(X ≤ x) denote its cumulative distribution function

(c.d.f.). Let T > 0 denote the time horizon (often w.l.o.g. T = 1, referring to one policy year). For

now, let n ∈ N be the number of risks (policies) in an insurance portfolio and let {Zi}i∈{1,...,n}
denote the total annual insurance loss for each risk over one policy year.5

Theorem 1 (Diversification in a homogeneous portfolio, see e.g. [115]). For n ∈ N, let {Zi}i∈N be

independent and identically distributed (i.i.d.), non-negative, square integrable random variables,

and let Sn :=
∑n

i=1 Zi. Then

lim
n→∞

Var(Sn)
E2[Sn]

= 0, (1)

and by the weak law of large numbers, for any ϵ > 0, it holds

lim
n→∞

P
( ∣∣∣∣
Sn − E[Sn]

E[Sn]

∣∣∣∣ > ϵ
)
= 0. (2)

Remark 1 (Notes to Theorem 1). text

� Equation (1) is equivalent to stating that the coefficient of variation of Sn tends to 0 with

growing portfolio size, and means that the standard deviation of the total loss is increasing

more slowly than its expected value.

4Of course, as opposed to probabilities for e.g. rolling a fair die, whether assigned probabilities are objective

in the strict sense of the word in this case can be debated.
5As the r.v.s {Zi} denote insurance losses here, and each policy typically has a cover limit, i.e. a maximum

amount covered per claim or per policy year, we can assume the distribution of {Zi} to have finite support,

implying E[|Zi|r] < ∞, ∀i, r ∈ N. However, when working in the cyber risk context, it has to be remarked that

there is empirical evidence suggesting that the distributions of the underlying risks are quite heavy-tailed and

existence of any moments from second order on should not necessarily be assumed, see Subsection 3.1.2 and

the references therein. We therefore remark that while we assume (as is customary) square integrability in the

following, it is not a necessary condition for the law of large numbers and thus Equations (2) and (3) to hold, see

e.g. [80], p. 329.
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� Equation (2) states that the probability of the realized loss deviating strongly from the

expected loss decreases, relative to the expected loss, as the portfolio size increases.

� A sequence of risks is also said to be “balancing in the collective” (see [115]) if Equa-

tion (2) holds. The assumption of independent risks is sufficient, but not necessary, for

this convergence, and can be relaxed to uncorrelated risks, and even risks with some degree

of positive dependence (see [33] and [115], Theorem 1.6). However, in the latter case, the

convergence occurs more slowly, i.e. a relatively larger collective is needed.

Lemma 1 (Net premium and risk surcharge). For {Zi}i∈N, Sn, as in Theorem 1, the strong law

of large numbers holds:

P
(

lim
n→∞

(Sn
n

)
= E[Z1]

)
= 1. (3)

Therefore, for a portfolio of n ∈ N homogeneous risks, E[Sn] = nE[Z1] is called net premium,

as it is the expected capital needed to cover the random total portfolio loss. However, it is also

clear by the Central Limit Theorem that

P(Sn > E[Sn]) = P
(E[Sn]− Sn√

Var[Sn]
< 0
)
≈ P(Z < 0) = 0.5,

where Z ∼ N (0, 1), i.e. in roughly 50% of cases, the net premium would not suffice to cover

the random total loss amount, implying insolvency (“ruin”) of the insurance company once its

initial capital is depleted. A classical result in risk theory (see, e.g., [122]) in the context of the

so-called Cramér–Lundberg model (see below), states that ruin occurs almost surely over time for

any initial capital u > 0 if the demanded insurance premium does not exceed the net premium.

Given the above observation that a risk surcharge needs to be added to the expected loss to

obtain a feasible risk premium, several common premium principles can be considered. For a

more exhaustive list and remarks on each principle, we refer e.g. to [33], p. 86f. Note that the

reason an insurance buyer would accept a premium that exceeds his expected loss is risk aversion,

see Footnote 2.

Example 1 (Some common premium principles). Let X denote an insured risk and Π(X) the

corresponding risk premium for one policy year.

(P1) Expected value principle: Π(X) = (1 + θ)E[X], θ > 0,

(P2) Standard deviation principle: Π(X) = E[X] + θ
√

Var(X), θ > 0,

(P3) Zero-utility principle: Π(X) solves U(w) = E[U(w + Π(X) − X)], where w is the initial

capital of the insurance company and U(·) is her (strictly increasing and concave) utility

function.

The risk premium that results from such a principle for a specific (collective of) risk(s) X covered

by a certain policy is also called actuarial premium. The actual premium typically also includes

5



other components based on business considerations, such as an operating expense surcharge,

a profit margin, and taxes. Furthermore, as in practice the calculation of the theoretical net

premium is of course subject to uncertainty, in particular for new risks, other factors considered

for the determination of the premium may be the comparison with similar established lines of

business or comparable policies of market competitors. As an extreme case, [121] find comparison

with competitors and adaptation from other lines among the main pricing themes for novel cyber

insurance products, hinting at the fact that an established mathematical model to determine an

actuarial premium based on a sound understanding of the underlying risk is still elusive.

This is worrisome, as we have seen above that the choice of a premium that exceeds the expected

loss does not only imply average profitability6 of the insurance company, but is a necessary pre-

requisite for its permanent solvency. Naturally, avoiding a situation of almost sure ruin is a

mandatory starting point but by no means sufficient; instead, an insurer must strive to restrict

the probability of ruin to an objectively acceptable level. This is - in very simplified terms - the

core idea of the Solvency Capital Requirement as stipulated in Pillar 1 of the Solvency II Direc-

tive ([68]), which constitutes the regulatory backbone of insurer’s quantitative risk management

in the European Union. Thereby, insurers are required to hold enough capital in order to cover

all their obligations (e.g. liabilities from random future losses) over a one-year time horizon in all

but 0.5% of (worst) cases (i.e. “ruin” may occur on average at most once every 200 years). These

calculations naturally do not consider every individual risk, but are instead based on so-called

risk modules, which themselves may take into account diversification across lines of business (i.e.

are much more complex than a homogeneous collective of risks as above) and are subsequently

aggregated to determine an overall capital requirement. Generally speaking, this means an in-

surer has to determine an adequate amount of capital, denote it C > 0, corresponding to the

99.5% quantile of the distribution of a random variable S representing a sum of (unexpected)

losses from a group of many (dependent) risks, i.e. based on a chosen stochastic model tackle

equations of the type

P(C < S) ≤ α (4)

where here α = 0.005.

In summary, for pricing the insurer is faced with the – by no means easy – task of determining

distributions FX of single risks (or in case of simple premium principles such as (P1) and (P2)

at least determining its first moments). Much more complicated still is the task of understand-

ing distributions FS (i.e. distributions of sums of many (dependent) risks), which is however

necessary for quantitative risk management of the portfolio, at the heart of which lie equations

of type (4).

6This refers to underwriting profit and we do not go into detail about the second source of insurance profit,

namely capital investment, as this is of minor importance in non-life insurance. Nevertheless, in principle con-

sidering the cost of capital is still relevant here, as it discourages an excessively conservative determination of

solvency capital in risk management.
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The collective risk model

So far, we have considered sums of a deterministic number n ∈ N of total annual losses {Zi}. In
the non-life insurance context, as each insured risk X can produce multiple claims throughout

the policy year, each total annual loss is actually a sum of r.v.s itself, yielding for the annual

portfolio loss Sn:

Sn =

n∑

i=1

Zi =

n∑

i=1

Ni∑

j=1

Y i
j =:

N∑

k=1

Yk, (5)

where {Zi}i∈{1,...,n} is again the annual loss of policy i. Each policy, indexed i, produces a random

number of claims Ni with random claim sizes {Y i
j }j∈{1,...,Ni}. If one takes a top-down viewpoint

on the portfolio and does not distinguish between policies, the total annual portfolio loss is

composed of a random number N of claims of random sizes {Yk}k∈{1,...,N}. This motivates the

following general definition.

Definition 1 (Collective risk model). Consider a portfolio of risks, let N(t) := (N(t))t≥0 be

a counting process describing the total number of claims until time t > 0, and let {Xi}i∈N,
independent of N(t), be an i.i.d. sequence of claim sizes with c.d.f. FX and E[X1] < ∞. The

total loss (or total claim amount) in a policy year [0, T ] is then described by the compound sum

S(T ) :=

N(T )∑

i=1

Xi.

(N(T ), {Xi}i∈N) is called collective (risk) model.

Note that in general the c.d.f. FS(T ) cannot be computed in closed form. Thus, in practice, one

mostly resorts to simulation or numerical approximations e.g. via Panjer recursion ([112]) for

distributions of N(T ) from the Panjer class.

The classical risk model assumes N(t) to be the counting process associated with a homogeneous

Poisson process.7 This implies the number of claims until any fixed time horizon T > 0 to follow

a Poisson distribution N(T ) ∼ Poi(λT ), for some intensity λ > 0. This model, also known as

Cramér–Lundberg model as it was introduced by Filip Lundberg in [97] and later extensively

studied by Harald Cramér ([27]), is the foundation of modern risk theory. [119] emphasizes the

importance of the Poisson process in risk theory by stating that the exponential distribution

(which is intrinsically linked to the Poisson process via its inter-arrival times) “plays a similar

crucial role in actuarial applications as the Normal distribution does in statistics”.

While the classical model is theoretically convenient, it relies on simplifying assumptions, e.g.

i.i.d. (exponential) claim inter-arrival times. Therefore, since its introduction, many researchers

7The intuition for this choice follows quite naturally from the Binomial approximation of the Poisson distri-

bution. If one assumes that the portfolio consists of n i.i.d. risks and the considered time interval [0, T ] can be

split into independent, smaller intervals such that there can be at most one claim per policy and interval (with

probability p), the number of claims for the portfolio follows a Binomial distribution, i.e. N ∼ Bin(n, p). For large

n, small p and λ := np, it follows N ∼ Bin(n, λ/n)
n→∞−→ Poi(λ).
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have worked on including more sophisticated features in order to include phenomena from re-

ality. Maybe the most natural generalization is to replace the homogeneous Poisson process for

claim arrivals by a more general process, e.g. an inhomogeneous Poisson process (determinis-

tic time-dependence of intensity), a general renewal process (Sparre-Andersen model, see [16],

independent inter-arrival times), a Cox process (stochastic time-dependence of intensity due to

exogenous shocks, see e.g. [8]), or a Hawkes process (stochastic time-dependence of intensity due

to endogenous shocks, see e.g. [47]). Of course, there are numerous other ways of generalizing

the classical model, e.g. by challenging the assumption of i.i.d. claim sizes (e.g. [10]) or the

independence between claim arrival times and their sizes (e.g. [9]).

Which risks are insurable?

Reviewing the mathematical foundation of insurance has already alluded to certain prerequisites

for a risk to even be insurable, i.e. feasible to be covered under an insurance contract. Besides

these (implicit) mathematical criteria, there are also economic and societal criteria to be con-

sidered. A commonly cited list of insurability criteria is due to [24] and was systematically used

in [26] and subsequently addressed in [62] to assess the insurability of cyber risk (see Section 2.2

for the results, and Tables 3 and B2 in [26] for the list of criteria). Below, we briefly summarize

some of these criteria (consciously stated rather vaguely), classified as actuarial (A), market

(M), and societal (S).8

Remark 2 (Some insurability criteria, based on [24]). text

(A) Loss occurrences must be independent, random, and allow reliable estimation of loss prob-

abilities.

(A) Loss exposures must be such that the maximum possible loss per event is manageable and

the average loss per event is moderate. In particular, the expected loss per event must be

finite.

(A) Information asymmetries (moral hazard and adverse selection) must not be excessive.

(M) Insurance premiums must be adequate to ensure sufficient profitability for the insurer while

staying affordable for target market participants. Cover limits must be acceptable to both

parties.

(S) Insurance policies must be consistent with public policy and societal values as well as in

accordance with legal restrictions.

8Note that until 2019, most authors emphasized the hopeful perspective that existing challenges to insurability

might be alleviated or fully overcome as the cyber insurance market matured. It is true that cyber policies continue

to evolve, but unfortunately recent empirical and academic studies show that the cyber insurance market has

hardened considerably over the last few years (in particular since the Covid-19 pandemic, which has been labelled

by some experts “the largest-ever cybersecurity threat” ([104])), i.e. prices have increased, coverage has been

limited, and some risks have “moved towards becoming uninsurable” (see [102]).
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We do not yet comment on or interpret these criteria, but will refer back to them when outlining

the characteristics of cyber risk in the next section.

Summary: The tasks of insurance

Having outlined the foundational idea and prerequisites of insurance, we can now summarize

the central tasks an insurance company is faced with when devising a new insurance product or

line of business.

� Policy Design: The risk covered by the insurance policy needs to be clearly defined,

in particular which loss events are deemed (un)insurable and included in (resp. excluded

from) the insurance coverage. Furthermore, it must be clear which financial consequences

of loss events are covered and how their impact can be quantified.

� Pricing: Once the insured risk is unambiguously defined, the determination of a feasible

insurance premium, fundamentally based on an appropriate stochastic model of the under-

lying risk to determine the net premium, is a crucial task. As in reality, risks are typically

not identically distributed (and Equation (3) can be rather thought of as based on homo-

geneous subgroups of the whole portfolio), a related important task is risk assessment,

i.e. the determination of factors along which risks should be distinguished and conse-

quently assigned different premiums. Note that classical pricing focuses on understanding

the distribution of individual risks (and therefore relies implicitly on the independence

assumption).

� Portfolio Risk Management: On the level of the resulting portfolio, the overall risk

needs to be measured and quantified, e.g. by monetary risk measures, in order to ensure

that the insurance company holds enough regulatory capital to render the probability

of insolvency acceptably (vanishingly) small (akin to Equation (4)). Understanding the

overall portfolio risk is not only a necessary basis to meet regulatory requirements, but also

a valuable assessment of whether the overall risk is still appropriate w.r.t. the risk appetite

/ strategy of the insurance company, or whether part of the risk should be transferred via

the purchase of re-insurance solutions9. To this end, it is crucial to understand whether

risks in reality can actually be assumed as (approximately) independent, as the extent

of diversification potential within a portfolio crucially relies on the absence of positive

dependence between risks. Otherwise, it is of paramount importance to understand the

factors driving the dependence between risks in order to avoid excessive (relative to the

company’s risk appetite) accumulation risk in the portfolio.

In the next section, we will outline the challenges the novel risk type “cyber” poses with respect

9Throughout this thesis, we consider a primary insurance company’s viewpoint, but naturally, the same chal-

lenges about cyber risk (accumulation) modelling we tackle are highly relevant from a re-insurer’s viewpoint (even

with intensified urgency, as re-insurers naturally deal with tail risks).
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to the above criteria and tasks, and review the status quo of cyber risk modelling as of the

inception of this thesis.

2.2 Challenges of cyber

Over the last decade, cyber has become a topic of great interest for academic researchers, in-

dustry professionals, and the general public. Due to ubiquitous digitization and dependence on

information technology as well as increasing interconnectivity, reliance on IT and OT (opera-

tional technology) systems has become a prerequisite for the functioning of businesses and daily

life. As companies from all industry sectors have thus become aware of the exacerbating threat

of cyber risk, a rapidly developing cyber insurance market has arisen. For a review of the market

and its development, we refer to our summaries in [4] and Section 2.2 of [1] and the references

therein, in particular [124, 15, 105] and the excellent survey [100]. Detailed overviews of available

cyber coverage are e.g. given in [121], [100] (Table 1), and [26] (Table 2).

For a novel risk type such as cyber, the first challenge is to establish a suitable definition, i.e.

to find a consensus about what even is cyber risk. The plethora of potential definitions is e.g.

alluded to in Appendix D of [61], where 20 different definitions are compared. Clearly, the suit-

ability of such a definition depends on the context, and for an insurance application, it needs to

allow for the derivation of a taxonomy of cyber events and their consequences which constitute

the basis of an insurance policy. To this end, we find the following definition by [61], in line with

the concise definition by [36] in the context of operational risk management, most useful as a

basis for our modelling approach, see Section 3.1 of [1].

Definition 2 (Cyber risk, [61]). text

Cyber risk is “[a]ny risk emerging from the use of information and communication technology

(ICT) that compromises the confidentiality, availability, or integrity of data or services. [...]

Cyber risk is either caused [naturally] or is man-made, where the latter can emerge from human

failure, cyber criminality (e.g. extortion, fraud), cyberwar, and cyber terrorism. It is charac-

terised by interdependencies, potential extreme events, high uncertainty with respect to data and

modelling approach, and risk of change.”

A well-known comprehensive categorisation of cyber risks is due to [41], but should be under-

stood as a unifying framework or a “starting point for discussion” ([41]) rather than a basis for

insurance modelling, see also the corresponding assessment in the recent survey [21]. We there-

fore introduce our own taxonomy of cyber risks, based on the three classical information security

protection goals as in [31], see Table 2 in [1]. Definition 2 already alludes to the dynamic and

complex nature of cyber risk, and indeed, many empirical studies (see Section 2.2.1 in [1]) have

conjectured that the development of the global cyber insurance market has been hampered by its

particularly challenging nature and the resulting question to which extent cyber is an insurable

risk. A detailed analysis of the latter question, based on empirical data and related literature,

was conducted in [26] and subsequently addressed in [62]. The most problematic features iden-
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tified therein include the lack of independence of loss occurrences, the presence of information

asymmetries, and the coverage complexity and its restriction by cover limits. It is interesting

to note that these main challenges are not restricted to the actuarial domain, but include eco-

nomic / market criteria (compare the categories in Remark 2). Likewise, it is worthwhile to

remind oneself that these challenges can and should not be tackled from a merely mathematical

/ statistical viewpoint (e.g. by devising sophisticated stochastic models), but interdisciplinary

collaboration with technical and legal experts, e.g. regarding adequate policy design and risk

assessment, is essential.

We briefly summarize the key challenging properties of cyber risk. These have been discussed

extensively in the rapidly growing body of recent research on the topic, such that we do not give

an exhaustive list of references here and refer to Section 3.1 of [1] and the surveys [100, 62, 137]

for details.

Remark 3 (Key challenging properties of cyber risk, e.g. [100, 62]). The key challenging prop-

erties of cyber risk include:

� Dynamic risk type: Cyber risk is subject to non-stationarity due to the rapid evolution

of the threat landscape, the underlying technology and the legal framework, which makes the

usability of past data for modelling future losses difficult. Furthermore, many companies’

exposure is changing due to increasing dependence on IT systems, compare Remark 5.

� Lack of data: The novelty of cyber risk and the absence of an established terminology for

cyber incidents complicate the creation of reliable databases with information on losses.

This is exacerbated by reporting bias and the high non-stationarity of the risk.

� Strategic threat actors: Cyber losses do not occur in a completely random fashion, as

they are often caused by malicious actors with strategic (economic) motives and attack

patterns.

� Interdependence / Accumulation risk: The interconnectedness of IT-systems and the

often systemic nature of vulnerabilities induce a dependence structure within and across

company networks and the potential for loss accumulation.

� Interdependence of security: The interdependence of loss occurrences and the strategic

motivation of threat actors may result in an interdependence of security measures, which in

a game-theoretical context might lead to systematic underinvestment in security measures

across companies.

� Difficult impact determination and potentially extreme impact: Due to the intan-

gible nature of information assets, it is often difficult to quantify the economic consequences

of a cyber incident, in particular completely immaterial impacts such as e.g. reputational

damage. Furthermore, some impacts of cyber incidents (such as a long-lasting business

interruption) may have ruinous consequences.

� Information asymmetry: Cyber insurance exhibits adverse selection, relating to the
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difficulty for an insurer to reliably determine a company’s risk exposure, and moral hazard,

i.e. the difficulty of ensuring the risk exposure to be maintained throughout the policy year.

Throughout our work, we exclude the explicit modelling of moral hazard (incomplete informa-

tion) as we regard it as a minor issue in practice for several reasons: In reality, the main problem

is incomplete information about this novel risk for all parties rather than asymmetric informa-

tion (see also our detailed discussion of cyber risk assessment services in Online Appendix A.1 of

[2]). Furthermore, as some consequences of cyber incidents (in particular reputational risk) can

clearly not be transferred via insurance, insurance buyers are intrinsically motivated to avoid an

incident, even if insurance coverage for other financial consequences is in place. As to the latter,

we have alluded to the fact that due to the challenging nature of cyber risk, most insurance

policies are endowed with strict cover limits, thus the insurance buyer always carries a residual

risk (and a substantial one, assuming that the impacts of cyber losses can be heavy-tailed, see

below).

It is nevertheless quite obvious that the other properties in Remark 3 challenge the classical

actuarial assumptions in Section 2.1 and the criteria in Remark 2. Particularly the lack of in-

dependence of loss occurrences is alarming, as it inhibits the potential for diversification and

entails accumulation risk, which is often deemed the most worrisome aspect of cyber risk for

insurers (see e.g. [86, 117]). The presence of strategic threat actors challenges the assumption

of the randomness of loss occurrences, as they are at least partially caused by malicious agents

with their own economic motives. The strong non-stationarity puts into question the assumption

of identically distributed risks (even for the same incident type within a short time period), and

combined with the lack of reliable data and difficult impact determination complicates the task

of determining suitable distributional assumptions for an actuarial model and its subsequent

calibration and back-testing. This is exacerbated by the potential presence of extreme cyber loss

severities, which complicate the calibration of (standard) models and require additionally the

toolbox of extreme value theory.

In the last years, many researchers and practitioners have studied cyber risk from their

viewpoint. We refrain from providing an exhaustive overview here and refer to our extensive

literature review in Section 2 of [1] for the corresponding references. Other excellent reviews

are given in [53] (with a focus on business and actuarial science), and earlier [62] (Table A.1)

and [61] (Table 5, with a focus on (dependence) modelling approaches).

We identified several main research streams: Earlier works (until 2010) were mostly motivated

by a game-theoretic viewpoint on interdependent security on networks, studying questions

about (socially optimal) equilibria and their relation to the presence of an insurance market.

An in-depth overview of those studies is given e.g. in [100] (Tables 5-7) and [109] (Table 2).

More recently, many researchers have tackled the modelling of the interdependence of cyber

losses from their provenience, e.g. using copula approaches, (marked) point process models,

methods from time series analysis, and models of epidemic spreading on networks originating

from mathematical biology (which have of course received increased attention over the last few
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years due to their use in the modelling of virus spreads). Furthermore, other works have been

dedicated to the statistical investigation of (the few) publicly available databases on cyber

incidents / losses and sometimes additionally the collection of new useful cyber data (e.g. by

extracting cyber losses from an operational risk database, see [63], or unearthing completely

new feasible data sources, see the recent work of [43]). These studies provide invaluable

information for the development and calibration of stochastic models, e.g. by hinting at suitable

distributional assumptions for the frequency and severity of cyber losses, the covariates and

time-dynamics that govern them, and the necessity to distinguish between “cyber risks of daily

life” and “extreme cyber risks” ([63]).

In summary, despite the existence of a variety of recent research approaches to cyber risk, we

found that the overall picture remained fragmented and an established modelling approach,

bridging the gap between capturing the challenging properties of cyber and staying accessible

for widespread insurance application, remained elusive. The need for multidisciplinary research

on cyber risk and cyber insurance was emphasized in several excellent surveys on the topic,

see [52, 72, 75, 58] and corroborated by the founding of many international initiatives (see

e.g. Table 6 in [61] for an overview) and expert working groups, let us mention the German

Actuarial Association’s (DAV) group on “Data and methods for the valuation of cyber risks”

as one example. Among the most relevant actuarial questions for future research identified in

the above surveys were the development of a set of actuarial models capturing the properties of

cyber risk (in particular the description of extreme cyber scenarios as well as the dependence

structure between cyber losses and resulting accumulation scenarios), the identification of factors

inhibiting the growth of the global cyber insurance market, and the design of new business

solutions to transfer and reduce cyber risks and thus improve the resilience of the overall economy

and society.

3 Developing a holistic model for cyber risk

As all of the above studies emphasize, the complex and multi-faceted nature of cyber risk requires

a multidisciplinary approach. This need for a multitude of perspectives is explicitly emphasized

e.g. in the recent editorial of the Special Issue of the journal Risks dedicated to “Cyber Risk

and Security” ([44]):

[. . .] We specifically looked for contributions also coming from disciplines other than

statistics and actuarial mathematics, to enlarge the perspective and provide distinct,

complementary, and sharp insights to researchers of actuarial mathematics or risk

analysis and management. It should help improve the understanding of cyber risk,

which by nature requires a pluridisciplinary approach if we want to tackle this complex

risk in an innovative and relevant way. Research is generally focused on narrow
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specialization and people choose to concentrate on highly rated or specialized journals.

This Special Issue is an effort to break these barriers and we thank the researchers

who have taken the courage to contribute to this unusual special volume. Readers will

see how rich those various approaches are and how creative research on cyber risk

can be. [. . .]

Therefore, our first step before choosing a mathematical modelling approach was to inquire the

opinions of several IT security experts and cyber insurance industry professionals10 about the

nature of cyber risk, in particular the mechanisms of the underlying dependencies between cyber

incidents and subsequently the characteristics of monetary insurance losses. We then recognized

our first principal task as actuarial science researchers in translating this technical knowledge,

enriched with findings from the existing academic and empirical literature, into a mathematical

model which captures the stylized facts of cyber risk while staying tractable and suitable for

practical insurance applications.

3.1 A marked point process model

As described above, many researchers have recently approached cyber risk modelling from their

provenience. One approach we deem particularly suitable for actuarial applications is the frame-

work of marked point processes, as it provides great flexibility to incorporate relevant stylized

statistical facts while yielding actuarial models which can stay conceptually close to the clas-

sical frequency-severity-approaches insurers are used to and feel comfortable working with (see

Section 2). The latter point is a matter of realism rather than convenience, as in our view

the adoption potential of a model in practice (due to operational constraints, acceptance by

end-users, and regulatory requirements) is substantially increased if the approach constitutes

a suitable “extension” of established and implemented methods rather than a completely new

paradigm.

In the following, we briefly detail and put into context two principal stylized facts of cyber risk

we aim to capture in our modelling approach, namely the dependence between cyber incidents

entailing accumulation risk and the potentially heavy-tailed severity of cyber losses.

3.1.1 Modelling dependent cyber incidents

To illustrate the flexibility of marked point processes, we provide a general definition (see also

Online Appendix A.1 of [1] and the references therein, in particular [46] for a general introduction

to the topic) and some examples of their application.

Definition 3 (Marked Point Process ([46], 6.4.I and Prop. 6.4.IV)). A marked point process

(MPP) with locations in the complete separable metric space (c.s.m.s.) X and marks in the

10See the Acknowledgements of [1] for details.
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c.s.m.s. K is a point process {(xi, ki)} on X × K with the additional property that the ground

process Ng(·), meaning the process of locations {(xi)}, is itself a point process, i.e. for bounded

A ∈ BX , Ng(A) = N(A×K) <∞.

Let N be a MPP with independent marks. Then the probability structure of N is completely

defined by the distribution of Ng and the mark kernel {F (k|x) : k ∈ BK, x ∈ X} representing the

conditional distribution of the mark, given location x.

For many applications, one can specify X = R+ and consider {xi} as locations along the “time

axis” representing the arrival times of events under consideration.11 In the present context, we

will focus on examples where the ground process belongs to the classes of simple point processes

mentioned in Section 2.1, referring to the points in time of some event occurrence.

Example 2 (The versatility of marked point process models). (Marked) Point process models

have been suggested for a variety of applications; we briefly provide one classical and two cyber-

specific examples.

� ETAS model for earthquake occurrences:12 A marked Hawkes process with X =

K = R is used to describe earthquake occurrences in the ETAS (Epidemic Type After-

Shock) model. The locations {xi} are occurrence times, where the stochastic intensity of

the Hawkes process is governed by Omori’s Law for earthquake aftershocks, and the marks

{ki} are magnitudes, whose distribution corresponds to the Gutenberg–Richter frequency-

magnitude law. An important extension is given by letting the ground process include space

coordinates, such that the Hawkes branching structure refers to evolution in both space and

time.

� Marked Hawkes process model for cyber attack rates ([113]): A marked Hawkes

process with X = K = R is suggested for modelling extreme cyber attack rates. The lo-

cations, denoted {ti}, represent arrival times of extreme attack rates, whose stochastic

intensity follows an Autoregressive Conditional Duration (ACD) model to accommodate

stylized facts observed in the considered data (e.g. the slow decay of autocorrelation be-

tween inter-exceedance times). The marks, denoted {x̃i}, represent threshold exceedance

magnitudes and their density thus follows a generalized Pareto distribution, parameterized

conditional on the history of the process (i.e. the ground process as well as previous marks).

� Multivariate Hawkes process model for data breach attacks ([25]): A multivariate

Hawkes process with X = R is suggested to model arrivals of data breach attacks for

different groups (e.g. relating to the type of breach, industry sector of the affected entity,

or geographical location). The arrivals for each group are determined by a base intensity

and a matrix of kernels describing self-excitation within groups (along the diagonal) and

11Naturally, the definition is not restricted to such cases, and the locations {xi} could e.g. more literally refer to

two- or three-dimensional location coordinates on the earth’s surface representing earthquake occurrences (where

the marks could encode the strength of the quake) or something completely abstract altogether.
12For more details, see [46], Example 6.4(d) and the original work of [110].
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cross-excitation between groups. Among several different kernel specifications of exponential

decay, one with non-instantaneous excitation is found to be most suitable for the considered

data. If one is not explicitly interested in the form of self- and cross-excitation, one can

again consider the overall arrival process as a marked point process, where the marks flag

arrivals as belonging to different groups.

In our view, choosing a ground process with such a fairly complicated intensity function is most

suitable for applications where the (short-term) temporal branching structure is of principal

interest and where data is available in suitable amount and granularity to fit the parameters

of the process. This is usually the case in some financial applications (such as limit-order book

trading) and when looking at pure cyber attack rates (e.g. traffic measured at a honeypot),

where multiple occurrences are recorded per second and timestamps are typically available with

millisecond granularity. For those applications, methods from the realm of (high-frequency)

time-series analysis and the analysis of the suitability of rather complicated arrival processes are

certainly of interest (see, e.g., [38, 147, 148]).

In an insurance context, where one is interested mainly in the (average) frequency of loss oc-

currences over a medium term (such as a policy year) and claims data is collected at most with

a daily timestamp, we find it more suitable to remain close to the classical model and assume

an inhomogeneous Poisson process as the ground process. Apart from the more realistic pos-

sibility of fitting such a model to (prospective) empirical insurance data, the Poisson process

class is theoretically opportune due to its many convenient analytical properties, such as being

closed under superposition and thinning (see Online Appendix A.1 of [1]). This “easy” choice of

ground process allows us to choose a rather complicated two-dimensional mark space encoding

two interesting stylized facts of cyber risk:

� The possibility of cyber events to cause dependent incidents in an insurance portfolio,

where the probability of insureds being affected jointly by an event depends on underlying

common risk factors (such as industry sector affiliation or usage of the same operating

system).

� The potential resilience of companies to deter a cyber incident from manifesting itself

and causing an actual monetary loss by the establishment of adequate controls, whose

effectiveness depends on the sophistication of the attack.

Remark 4 (Network models). A complementary actuarial research stream on cyber risk is

dedicated to models of epidemic spreading on networks (see Section 3 of the recent survey [21]

for details and a list of references). These models – originally used in mathematical biology

and epidemiology – are quite a natural candidate if one considers a cyber virus as a contagious

infection spreading between entities or machines comparable to a biological virus spreading in a

population. Phenomena of interest in such models are, e.g., the dynamics of an epidemic within

a population, i.e. the state probabilities (to be susceptible to infection, infected, or recovered) of

individual nodes at any point in time, or the overall infection time in the system. A particularly
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interesting topic in the cyber context concerns the effect of different network topologies on the

before-mentioned quantities. We make the following comments about this class of models:

� We refrain from their application in the actuarial context for two reasons: First, according

to the expert opinions we collected, the “epidemic spreading” assumption is representa-

tive only for a minority of cyber attacks (albeit with potentially very severe consequences),

namely so-called worm-type viruses which can indeed propagate between connected ma-

chines. In contrast, the majority of connected attacks is due to the potential to exploit a

common vulnerability. Second, their quantitative applicability is (as of today) limited by

the prohibitive complexity of the data (i.e. extensive underlying network structures) needed

to fit them to real-world scenarios. Some authors (e.g. [84, 85]) strive to derive very coarse

assumptions from the few, large historical cyber epidemics such as the global WannaCry

attacks in 2017 (see, e.g., [70]), but a realistic, quantitative actuarial application seems yet

out of reach.13

� Nevertheless, network models can be considered useful to derive qualitative results, in par-

ticular regarding the effect of different network structures on the resilience of the economy /

society as a whole with respect to cyber epidemics. Let us in particular mention the ongoing

work of [20], who study security- and topology-based interventions to control systemic cyber

risks. This refers to the idea of developing resilient networks not only by having individual

nodes equip themselves with security investments to be protected from cyber contagion, but

by intervening on the level of the network structure, e.g. by edge removal and node split-

ting. These studies provide starting points for qualitative evaluations of existing regulatory

measures e.g. relating to critical supply chains.

� Lastly, let us remark that models of epidemic spreading on networks and (marked) point

processes are by no means disparate: If one is not necessarily interested in the underlying

mechanisms, but rather the times and total number of infections from a top-down perspec-

tive, as outlined above a Hawkes process is a natural approach to reproduce endogenous

clustering (i.e. contagion within a population), see also Section 3.1 of [21]. [84, 85] reason-

ably argue that while a typical contagion model may be suitable to describe a cyber epidemic

in the global population, an insurance portfolio typically only constitutes a small part of

this population. Therefore, on the level of the insurance portfolio, rather than dealing with

endogenous contagion, during a cyber epidemic one observes a period with increased ex-

ogenous contagion. This relates to the idea of using a Cox process to describe the evolution

of incident numbers in the portfolio.

Another very popular tool to assess dependence are copula approaches, as by Sklar’s theorem

(see [129]) they allow the decomposition of a multivariate distribution into the marginal distri-

butions of the components and an object, called copula, representing the dependence structure,

13Some experts emphasize the hopeful perspective that this may change in the medium to long term due to the

potential of corresponding artificial intelligence approaches.
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which itself is a multivariate distribution function (with standardized marginals). In the cy-

ber insurance context, some works have aimed to identify copulas to describe the dependence

observed in empirical data ([114, 54]), while others have suggested corresponding theoretical ap-

proaches ([83, 28]). In particular the first kind of works provide invaluable insights, both about

the empirical dependence between cyber losses and by simply raising awareness that concentrat-

ing on the statistical analysis of suitable distributions for the marginals it not sufficient. The

drawback of copula models is that they constitute pure top-down approaches without aiming at

understanding the underlying mechanism of the dependence. In a domain such as cyber plagued

by data scarcity and high non-stationary, this is clearly not ideal, as it is likely that there will

be an ongoing necessity to combine (historical) statistical evidence with state-of-the-art expert

opinions in order to calibrate forward-looking models, a task that is accomplished more easily

in a bottom-up model.

3.1.2 Modelling extreme cyber loss severities

Another characteristic of cyber risk that insurers are particularly worried about is the potential of

heavy-tailed loss severities of cyber incidents.14 From a business perspective, cyber risk is usually

regarded as part of operational risk, whose heterogeneity, potential heavy-tailedness, and general

difficulty of management has been long investigated (see, e.g., [108, 37, 65]). Some authors have

therefore approached cyber from this perspective, e.g. by aiming at embedding it into classical

operational risk taxonomies ([36, 39]) or by extracting cyber-related entries from an operational

risk database and comparing (and finding significant differences between) statistical properties

of cyber vs. non-cyber operational risk ([63, 55]). Other authors have analysed empirical data

about cyber losses directly looking for potential heavy-tailedness (e.g. [99, 50, 140, 139], see

also Table A.1 in [63] for details). Due to scarcity of data about general cyber incidents, these

studies have mostly been confined to data breaches based on the well-known publicly available

Chronology of Data Breaches database by the California-based nonprofit corporation Privacy

Rights Clearinghouse (PRC)15, where the severity of an incident is measured as the number of

affected records.16 Exceptions are [63, 39] and the recent work by [43] who investigate a new

interesting database of cyber complaints filed with the French police (for details on the dataset,

see Section 3.1 therein) they obtained for their investigation. An overview of the results of these

studies w.r.t. to the fatness of the tail distribution, is given in Table 1 of [45].

14Note that by referring to cyber incidents instead of cyber events here, we refer to cyber-related loss severities

experienced by a single policyholder. Taking a macro-economic perspective, aggregate losses from cyber events

can of course also exhibit heavy-tailedness as multiple entities are affected simultaneously or in short succession

by a cyber incident. However, in an actuarial context, we find it more straightforward to subsume the phenomenon

of simultaneous, dependent incidents under the umbrella of frequency modelling (see previous subsection) and

consider severity modelling of cyber incidents only.
15Available for public download from https://privacyrights.org/data-breaches.
16The most cited approaches for a subsequent conversion to an approximate monetary loss are Jacob’s formula

([90]), which was however based on a very specific sample and its general applicability has been cautioned against

by the author himself, and a subsequent amendment by [73], see e.g. Online Appendix A.4 of [1] for details.
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Following [63] and akin to [43], we suggest a combination of lognormal and Generalized Pareto

distribution (GPD) for the severity of general cyber incidents. The choice of a GPD for the

tail distribution is by no means arbitrary, as it is rooted in the framework of extreme value

theory (EVT), which provides the appropriate theoretical toolbox to investigate extreme events

and heavy-tailed data. For a general introduction, we recommend e.g. [94] or the excellent

introductory book by [64]. In brief summary, there are two main pillars of univariate EVT:

On the one hand, the so-called three-types theorem due to Fisher–Tippett ([74]) and Gnedenko

([79]) provides a result on the asymptotic distribution of the renormalized maxima of a sample

(akin to the Central Limit Theorem for renormalized means). As the name suggests, there are

three possible candidate distributions for a non-degenerate limit (which can be unified into

a single parametric family, called Generalized Extreme Value distribution), corresponding to

the baseline distribution being short-tailed, light-tailed, and heavy-tailed. On the other hand,

the Pickands–Balkema–de Haan theorem shows that when considering extreme observations

above a sufficiently high threshold, the excess distribution function (i.e. the distribution of the

exceedances above that threshold) can be approximated by the Generalized Pareto distribution,

where again there are three types of tails (short, light, and heavy) depending on the sign of the

tail index (or shape parameter17) ξ.18 The density of the GPD with shape parameter ξ and scale

parameter β is given by

GPDξ,β(x) =




1−

(
1 + ξ

βx
)−1/ξ

, if ξ ̸= 0,

1− exp
(
− x

β

)
, if ξ = 0,

for x ≥ 0 if ξ ≥ 0 and x ∈ [0,−β/ξ] if ξ < 0. This is the basis of the so-called peak-over-threshold

(POT) approach, which aims at fitting a GPD to understand the tail distribution of a data sam-

ple (in the cyber context, see e.g. [63, 73, 43] and the overview Table 1 of [45]) and illustrates

the ubiquity of this choice of distribution to model tail behaviour.19

The immediate question which arises for the application of the POT approach is the appro-

priate choice of threshold to balance the accuracy of the GPD approximation and the size of

the underlying sample (i.e. the higher the threshold, the more theoretically accurate is the ap-

proximation, but the fewer data points lie above it and can thus be used for the estimation).

Various methods for this task have been suggested, mostly relying on graphical examinations of

the so-called mean-excess and Hill plots (see, e.g., [118], p.85ff.) or on rule-of-thumb methods

like simply taking the highest x% of observations. [63] choose a bootstrap goodness-of-fit test

suggested by [132]. For some unsupervised methods, see [48] and the references therein. A very

promising iterative algorithm to choose a threshold “automatically” (i.e. in an unsupervised

fashion) has been developed and recently applied to cyber data by [43]. The method provides

17Note that some authors use both terms synonymously, while others denote as shape parameter 1
ξ
.

18The cases are ξ > 0 corresponding to a heavy tail (Fréchet maximum domain of attraction), ξ = 0 to a light

tail (Gumbel maximum domain of attraction), and ξ < 0 to a short tail (Weibull maximum domain of attraction).

In the cyber risk context, the first case is of interest.
19Note that the existence of such a theoretical framework is particularly invaluable because it conceptually

allows to draw implications about extreme events that exceed any previously observed occurrences in the sample.
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additional flexibility by suggesting up to three components, namely a lognormal distribution for

the body and a GPD for the tail, joined by an exponential bridge which automatically vanishes

during calibration if appropriate from the data. In fact, this automatic removal of the exponential

bridge by the iterative fitting procedure is observed for the considered cyber database, yielding a

two-component (lognormal-GPD) model which had been previously suggested for another cyber

data set by [63] and thus as a general approach for the severity distribution of cyber incidents in

[1]. [63] furthermore employed the approach of [37] for time- and covariate-dependent fitting of

the GPD to investigate the dependence of the tail distribution parameters on characteristics of

the affected company. While this is an important step to assess the heterogeneity of cyber losses,

let us emphasize that all approaches so far choose a global threshold for the POT approach. In

our view, an interesting task for future research would be a procedure to determine a covariate-

dependent threshold, e.g. by developing a suitable EM-type procedure to fit a mixture model

(of body and tail distribution). This corresponds to the idea that depending on the covariates

(e.g. for companies of varying size), different observations should be considered extreme.

Remark 5 (Heterogeneity of cyber risk). At this point, let us briefly interject a remark on the

heterogeneity of cyber risk, which is another major challenging factor and can be understood in

three main dimensions:

� Heterogeneity of threats: As alluded to in Definition 2, cyber risk subsumes a variety

of categories w.r.t. origins, causes, and consequences, whose potentially different statistical

nature (see the references in Section 3.2.1 of [1]) needs to be understood and incorporated

into a model. The relevance of certain categories for a particular actuarial model depends

on the chosen taxonomy and the underlying insurance product. For classifications of cyber

threats, we refer to the sources in Section 2.2 and the references therein.

� Heterogeneity of impact: Another dimension concerns the heterogeneity of targets of

a cyber incident w.r.t. their exposure and resulting potential negative consequences. It is

crucial for an insurer’s risk assessment to understand how characteristics of a prospective

policyholder affect the frequency and severity of a certain cyber incident. For empirical

analyses on the influence of certain covariates (e.g. company size), we refer to the refer-

ences in Section 3.2 of [1], in particular [63], and the recent works [56, 55].

� Heterogeneity over time: The above-mentioned non-stationarity can be regarded as a

third kind of heterogeneity, namely referring to the changing nature of both previous points

over time. Various empirical studies have addressed the question of time trends in cyber loss

data20, coming to conflicting conclusions (most likely due to a large variety in underlying

data and applied methodologies), see e.g. [59] and the references therein.

As to the first point, we suggest a classification of cyber risks along two axes, which allows to

20This refers to studies on non-stationarity of both frequency and severity, as well as studies investigating all

kinds of cyber incidents or “extreme” cyber incidents only (i.e. investigating stationarity of the distribution or

tail distribution).
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incorporate accumulation risk and distinguish different types of cyber incidents in a way which

aims to balance comprehensiveness and applicability in an actuarial context, see Table 2 in [1].

Considering the second and third point, we suggest a time- and covariate-dependent modelling

approach, based on previous empirical findings from the literature, which can be fit to available

data with established statistical methods.

With respect to all the above possibilities to incorporate heterogeneity, we suggest a modular mod-

elling approach with the purpose of rendering it easily adaptable for any end-user’s application,

i.e. to amend or replace parts as dictated e.g. by updated future insights on the nature of cyber

risk or properties of an internal data set, without having to replace the overall structure.

The aforementioned works studying the tail properties and potential extreme occurrence of cyber

loss severities are particularly relevant in an insurance context, as the potential for diversification

effects in a portfolio may be thwarted by the presence of very heavy-tailed distributions (see,

e.g., [60, 89, 88]). This concern is of course exacerbated when coupled with the existence of

non-linear dependencies as in the cyber context (see previous subsection).21

[45] compare the tail index fits of several studies to corroborate that most evidence points towards

the finiteness of the first moment (as a necessary criterion for insurability) to be fulfilled for cyber

risk. At the same time, [43] emphasize that with a tail index indicating potential non-existence

of any moments higher than first order, cyber should be classified as a very high risk comparable

to natural catastrophes.22

Remark 6 (Insurance cover limits). Note that for actuarial modelling, finiteness of moments

for individual severity distributions is not a technical concern, as the size of the insurance claim

corresponding to a cyber incident is contractually equipped with a cover limit, i.e. the distribu-

tion of the insurance loss is truncated at the cover limit and therefore technically short-tailed.

Nevertheless, this does of course not diminish the need to strive to understand the character-

istics of the underlying risk which is then mapped to a claim size distribution. Apart from the

insurer’s necessity to assess the tail of the portfolio loss distribution to accurately determine

regulatory risk capital, let us emphasize that cover limits are a contractual feature designed to

limit the insurer’s liability in rare cases and not expected to actually come into force regularly.

Furthermore, as insurance buyers consequentially carry the residual risk exceeding the insurance

cover limit, they may rightly cast doubt on the usefulness of insurance policies with relatively

small cover limits for heavy-tailed risks. There are convincing arguments for the claim that this

phenomenon actually affects the real cyber insurance market: While insurers are treading with

21Note that while we consider dependence purely as part of frequency modelling, e.g. the first approach suggested

in [19], based on [116], advocates for modelling dependent severities.
22While indeed due to its statistical properties, in particular the heavy-tailedness of loss severities, cyber is

often likened to NatCat, we have emphasized one key difference in Remark 3, namely the man-made, strategic

character of cyber as opposed to the purely random (governed by stochastic physical laws of nature) occurrence

of natural catastrophes. Another difference concerns the potential for diversification, which for the latter quite

obviously corresponds to geographical considerations, whereas it is less clear along which lines to diversify for

cyber insurance portfolios.
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increasing caution and therefore equip cyber policies with relatively strict cover limits, prospec-

tive insurance buyers are looking for coverage precisely in case of extreme scenarios like a large

data breach or long-lasting business interruption. The perceived non-existence of adequate cover

limits was cited as one reason for companies to refrain from closing a cyber insurance contract

in [6, 7].

Two conclusions can be drawn: First, as emphasized by [45], a task of paramount importance

concerns the need for the collection and analysis of more representative data on cyber incidents

in order to better understand the statistical properties of this novel risk type. While the com-

plexity of this task is increased by the heterogeneity and high non-stationarity of the cyber

risk landscape, empirical data analysis is an elementary prerequisite for the conceptualization,

evaluation, and further development of any proposed stochastic model. Second, for a risk type

like cyber, where the application of traditional actuarial approaches and the design of suitable

insurance policies with an acceptable premium to both sides are challenging – compare the re-

mark about the offer-demand-mismatch regarding cover limits above – novel insurance solutions

transcending mere risk transfer need to be devised as a way to close the market gap and increase

cyber resilience.

We will discuss these topics in the following Sections 3.2 and 4, respectively.

3.2 Scarcity of data or scarcity of information?

As described above, we identified as first task for an actuary to understand the underlying

characteristics of cyber risk and to translate them into a mathematical model which is flexible,

accessible to industry professionals, and adaptable to the peculiarities of real-world insurance

portfolios. At many points, concrete choices within the modelling structure were dictated by the

paradigm of imposing as little structure as possible (e.g. Poisson process for frequency modelling,

Uniform attack strength distribution, and industry sector as single (stylized) underlying factor

for common vulnerabilities) given lack of evidence from suitable data that a more complicated

choice was warranted. As an initial step to illustrate (qualitative) results of the model, we relied

on expert opinions and findings from empirical studies to choose parameters for an exemplary

simulation study.

Naturally, several additional sensitivity analyses could have been conducted, and more generally

speaking, many interesting stochastic models for cyber risk could be devised. However, while

we believe these endeavors to be theoretically worthwhile for mathematical researchers, they

remain somewhat academic exercises. While numerous academic works on cyber risk have been

published in recent years, the gap between “research” and true practical “innovation” in the

cyber insurance domain has persisted, if not widened. Therefore, from our vantage point at the

intersection of academia and practice, a currently urgent task is the evaluation (and subsequent

further development) of the existing proposed modelling approaches for cyber based on suitable

data rather than the conception of additional theoretical models.
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Data scarcity is ubiquitously cited as one of the major challenges in the cyber risk context. It is

of course true that representative and reliable data on cyber losses is scarce. This is the reason

that those works dedicated to analyzing the scant available public databases and unearthing or

creating new databases provide particularly invaluable insights about the statistical nature of

cyber risk (e.g. [63, 140, 59, 43]). However, the comparison of their (sometimes diverging) results

is complicated by the heterogeneity of the underlying data and their representativeness for a

particular insurance application is by no means guaranteed.

Therefore, in the realm of cyber insurance, both in theory and practice, the development, fitting,

and back-testing of models is still severely hampered by the lack of suitable available data.

Currently, researchers are struggling to collect any available data and make it fit for insurance

applications, e.g. as described above by mapping data breach “severities” to economic costs and

then approximating insurance losses.

Naturally, the most reliable and representative data source for an insurer’s actuarial modelling

purposes is their own historical claims database, with two obvious limitations: First, cyber

insurance portfolios, due to their short time in existence and comparative small size as well as

the low frequency of cyber losses, cannot be expected to generate an abundant amount of claims

data compared to long-established, larger insurance lines like automotive. Second, due to the

high non-stationarity of the cyber risk landscape, the validity of historical claims data should

unfortunately be expected to decline comparatively quickly.

Nevertheless, there is another problem which we encountered when considering suitable

databases to fit our model: In the (cyber) insurance value chain, actuaries’ tasks of stochastic

modelling for pricing and risk management are often handled separately from related tasks

like risk assessment and product design, but in particular separately from claims settlement,

which is usually conducted by a completely disjoint group of (legal) experts, who do not

have actuarial modelling aspects on their agenda of primary concerns, see Figure 1 in [3].

The crucial connection between data collected in the claims-settlement department and data

needed to fit and backtest a model in actuarial departments is usually overlooked. This

leads to data being collected “näıvely”, i.e. following established lines of business, individual

information about each claim is stored in a way that (ideally) allows to infer individual

policyholders’ loss distributions. However, crucial information about the cause of the loss,

which would allow to identify dependent claims stemming from the same event, is sometimes

available in unstructured form (e.g. text within IT forensic reports which are stored for each

claim separately), but never connected with or added to the structured claims database. In

order to illustrate the potentially detrimental effects of such missing information on portfolio

risk measurement, in [3] we use a purposely simplified (exchangeable) version of the model

suggested in [1] and compare results for such a model with full dependence information to a

model based on (partially) missing information. This illustrates the urgent practical neces-

sity of creating holistic cyber underwriting processes and establishing meaningful data collection.
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We definitely agree that data collection is one of the current tasks of paramount importance

in order to develop and refine cyber insurance models and thus improve the understanding of

this challenging risk; “data collection” is rightly identified as one major research topic in [137].

We emphasize, however, that the task of gathering data has to be approached in a way which

allows to perspectively gain relevant information about the risk - crucially, in the cyber insurance

context, this does not only refer to data about marginal distributions, but also about dependence

between losses. We therefore see it fit to caution insurers against “näıve” data collection following

established paradigms from existing lines (where independence may rationally be assumed and

the estimation of marginal distributions is sufficient), which may have them end up with more

raw data on cyber losses in a few years’ time, but still no (or only partial) information about

the full extent of the underlying risk.

4 Cyber assistance: Novel insurance products as a way forward

In the last sections, we have outlined the actuarial challenges regarding the development of

cyber insurance products and have hinted at the fact that the real-world market, despite its

rapid growth being regularly predicted, has lagged behind the expected development and has

recently hardened with respect to prices and available coverage, see, e.g., [102, 81, 101]. All

parties are interested in ways to close the persistent market gap, and one potential way to

approach this challenge is the conception of novel insurance products containing risk mitigation

measures alongside classical risk transfer, so-called cyber assistance. In the face of cyber as a

potentially systemic risk whose insurability is regularly questioned, we find this idea particularly

promising and have therefore studied the optimal pricing of such combined insurance products in

[2]. While the suggestion of risk mitigation services on an individual contract level already exists

in the market (see Section 4.1), we would already like to emphasize a further advancement of

this idea, namely the hopeful perspective that insurers may make positive use of the dependence

between cyber losses in the portfolio:23 By using their knowledge about observed losses, they

may be able to warn other policyholders who are particularly vulnerable to an imminent cyber

incident and therefore prevent future losses, thereby contributing to the resilience of the whole

system (see Section 4.3).

4.1 Risk management strategies

We have so far focused on the question of quantifying cyber risk for a classical actuarial ap-

plication. This relates to insurance as a means of risk transfer as introduced in Section 2.1: A

prospective insurance buyer, who identifies his business as being exposed to an unacceptable

extent of potential adversity from incidents related to cyber, approaches an insurer to have this

23Note that so far, positive dependence has been introduced as a purely dangerous, worrisome feature of cyber

risk, as it hampers diversification and potentially entails accumulation risk.
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quantified as a risk within an insurance policy and to rid himself of the random exposure for a

corresponding deterministic premium. Naturally, this is not the only type of action a company

could take with respect to cyber risk; in [4], we have outlined the consideration of cyber insur-

ance as one component of a holistic cyber risk management strategy. In general, after a risk has

been identified and assessed, there are different classical ways of coping with it.

Remark 7 (Four ways of coping with risk). Traditionally, there are four possibilities of dealing

with an identified risk (see, e.g., [100]), namely

� risk acceptance,

� risk avoidance,

� risk mitigation,

� risk transfer.

It is clear that due to the ubiquity of digital technology and the increasing dependence of all

parts of business on information technology, the first two options are not feasible for cyber.24

Risk transfer via cyber insurance is receiving increased attention by companies across sectors and

sizes (see, e.g., [107]), but its uptake continues to be limited, whereby high prices, unavailability

of desired coverage, and policy complexity remain the main obstacles (e.g. [107]).

It seems reasonable to state that some level of cyber risk mitigation exists at every company,

ranging from elementary security measures (like anti-virus software and password-protection of

devices) at small businesses to extensive protection and incident response plans, accounted for

and coordinated by whole departments of IT security experts, at large enterprises. Over the

last decade, the perception of cyber security has shifted from being viewed as a merely technical

topic within IT teams and systems to being considered a substantial business risk which needs

to be incorporated into enterprise risk management (ERM). This heightened awareness of the

dependence of modern business models on information technology is likely the main driver of

companies’ focus on cyber risk mitigation, accompanied by customer expectations, concerns about

reputation risk in case of a cyber incident, and the increase of legal and regulatory requirements

in many jurisdictions.25

In theory and practice, risk mitigation and risk transfer are often regarded as separate and even

competing activities which need to be paid from the same limited budget, and therefore e.g. an

24Some years ago, a non-negligible portion of small businesses may have been content to adopt the strategy of

risk acceptance, assuming fallaciously that their exposure was negligible. This view has likely changed over the

last few years due to widespread media coverage of cyber incidents, the shift to remote work during the Covid-19

pandemic, and generally heightened awareness of ever-increasing reliance on digital technologies (see, e.g., [77]

for the development of the interest in cyber insurance among small and medium-sized enterprises (SMEs) in

Germany).
25In the European Union, this ranges e.g. from the General Data Protection Regulation ([66], in force since

2018) affecting all businesses to the extensive Digital Operational Resilience Act ([69], entering into force in 2025)

for the financial sector, to name only the tip of the iceberg.
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investment in cyber insurance implies reduced spending for cyber security measures. Some game-

theoretical studies on interdependent security on networks indeed conclude that the presence

of insurance inhibits investments in protection measures in the system (e.g. [126, 125]). Such

conclusions are often exacerbated by worries about moral hazard due to asymmetric information,

insinuating that the true IT security level of a policyholder is obscured from the insurer ex-ante

or that security measures are purposely neglected ex-post, once an insurance policy is in place.

We challenge these arguments and do not believe moral hazard to be a dominant problem in

practice, mainly due to the partial non-insurability of cyber and usual policy exclusions in case

of wilfully omitted information, see our discussion in Online Appendix A.1 of [2].

Nevertheless, many academic works have been dedicated to the general problem of combining

risk mitigation by investing in prevention measures and risk transfer by purchasing insurance, see

Section “Related literature” of [2] and the references therein, in particular [144] for an overview

relating to the cyber context. These studies usually centralize on a prospective insurance buyer

(or a network of such buyers for studies of interdependent security) and treat insurance as

an object whose existence enables the considered agents to add a term relating to (pure) risk

transfer to their optimization problem.

However, we observe that on the cyber insurance market a different situation presents itself,

namely that (prospective) insurance buyers do not perceive insurance policies as a vehicle for

mere risk transfer, but in fact expect risk mitigation services, i.e. cyber assistance, as part of

these policies (see [104, 107]).

Remark 8 (Cyber assistance). Several large insurers explicitly emphasize the service-oriented

character of their cyber insurance policies and the necessity to include prevention and incident-

response services through collaboration with specialized IT security providers (see, e.g., [12]).

This view seems to be shared by a majority of (prospective) policyholders, who particularly con-

siders the following two types of risk mitigation services desirable as part of cyber insurance

solutions (see [104, 107] and Remark 1 in [2]):

� Pre-incident services which include, e.g., network security, back-up of critical systems

and data, anti-malware tools, identity and access management, IT security consulting,

employee awareness measures, patch management, and mobile device management.

� Post-incident services which contain, e.g., restoration of data, 24h help hotlines, foren-

sic post-breach services, legal advice, and consulting in case of extortion.

These two types of services on an individual policy level correspond to reducing the loss prob-

ability and mitigating the loss severity respectively, and therefore quite naturally map to the

theoretical concepts of self-protection and self-insurance, see the references in [2], in particular

[40] for an excellent introduction to these concepts.

While these types of service may be more relevant for SMEs without specialized IT departments
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than for large corporations with a high maturity of IT security systems, we additionally advo-

cate for a third type of service relevant to all policyholders, namely using the insurer’s portfolio

knowledge to install warning mechanisms about imminent threats to reduce loss probabilities

across the portfolio (for details, see [2]).

In summary, compared to previous studies we perceive the insurer’s role as more central in

this case: By setting the price for both risk transfer and risk mitigation, the policyholder can be

steered towards a combination of both activities which is optimal for the insurer, considering the

balance between her combined income from risk premium / premium for cyber assistance and

her overall (portfolio) risk. This does not only provide interesting insights on how to price such

combined policies from an insurer’s viewpoint, but also entails relevant implications for insurance

buyers (namely which price structure a buyer is offered based on his own characteristics and the

rest of the portfolio) and for the overall market (namely whether (or rather how) such policies

can help alleviate the aforementioned insurance gap).

Before we detail the mathematical framework we have used to approach these questions, we

emphasize that we essentially study an insurer’s choice of premium which implicates directing

buyers towards a certain level of risk mitigation. This general idea is of course not limited to

the cyber insurance domain and we briefly review some price discrimination approaches in the

cyber context.

Remark 9 (Price discrimination in cyber insurance). text

� Bonus-Malus system: [144] propose a Bonus-Malus system for cyber insurance to incen-

tivize investment in cyber risk mitigation through adjusting the premium of risk transfer.

While a Bonus-Malus system may theoretically yield the desired mechanisms (namely to

alleviate moral hazard and incentivize the insured to adopt more self-mitigation measures

in addition to purchasing insurance), it bases the risk premium purely on the insured’s own

loss history, which in our view is not a suitable approach for a risk such as cyber which

exhibits very low frequency, but high severity losses. This is also emphasized in, e.g., [92],

where it is formally shown in the context of screening mechanisms that post-screening is

not effective at all in a context where losses are rare.

� Risk preference design: [96] use the framework of risk preference design to enable the

insurer to design incentive-compatible cyber insurance contracts by reshaping the insur-

ance buyers’ risk perception. This theoretically allows to quantify and locally reduce the

“intensity of moral hazard” and may steer the insurance buyer(s) towards adopting a level

of security measures which is closer (compared to a “full-information benchmark”) to the

ideal action from the insurer’s viewpoint. While this is an interesting mechanism for aca-

demic studies, its complexity (as it is, e.g., based on the manipulation of a probabilistic

distribution of risk preference types in the population) most likely prohibits a real-world

application.

� Credibility theory: In our view, a promising approach for price discrimination is the
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framework of credibility theory26: The most common application of combining statistical

information about the individual risk and the whole collective is in our view particularly

helpful in the cyber context, where data on individual losses is rare, but at the same time

risks cannot be assumed homogeneous (see Remark 5). In general, the idea of combining

several prior sources of information with varying degree of credibility promises broader

applicability in the cyber context, e.g. in order to calibrate models by combining statistical

information from scarce available data with expert estimations or incorporating data of

different maturity (assuming that due to high non-stationarity, older data may be more

plentifully available, but less representative), see also Section 5.

4.2 Measuring and comparing risks

We recall from Section 2.1 that the underlying “object” of an insurance policy is an insured

risk, represented by a non-negative random variable X with corresponding c.d.f. FX . Therefore,

in order to study the pricing of policies combining risk transfer and risk mitigation as outlined

above, we need a mathematical framework which incorporates formalized answers to the two

questions:

1. How can a risk X be measured, i.e. mapped meaningfully to some corresponding numerical

value (to be interpreted e.g. as monetary units)?

2. How can two risks X and Y be meaningfully compared, i.e. when can one risk be classified

as “more / less risky” than another?

The first question is fundamental in an insurance context, as it relates to determining the amount

of regulatory capital an insurance company needs to hold for a risk (or a collective of risks) it

has underwritten. Due to corresponding regulatory frameworks, in practice the most commonly

used risk measures are

� Value-at-Risk: VaR1−γ(X) := inf
{
x ∈ R : P(X ≤ x) ≥ 1− γ

}
, γ ∈ (0, 1), and

� Average Value-at-Risk: AVaR1−γ(X) := E[X|X ≥ VaR1−γ(X)], γ ∈ (0, 1),27

which we also use to illustrate the modelling results for risk management in [1, 3].

A general mathematical approach to risk measurement was introduced in the seminal work [18],

who coined the axiomatic definition of a coherent risk measure based on four desired properties:

Definition 4 (Coherent risk measure). A map ρ : L1(Ω,F ,P) → R is a coherent risk measure

if it has the following properties:

26See [32] for an original seminal reference and e.g. [34] for an extensive introduction to the topic.
27Note that the term Average / Tail / Conditional Value-at-Risk is often used interchangeably with Expected

Shortfall ES1−γ(X) := 1
γ

∫ 1

1−γ VaRz(X)dz, γ ∈ (0, 1), although in some cases, e.g. for discrete underlying

distributions, there are slight technical differences between them, see [5] for a detailed discussion.
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1. Monotonicity: X ≤ Y a.s. =⇒ ρ(X) ≤ ρ(Y );

2. Cash-additivity / translation invariance: ∀ m ∈ R : ρ(X −m) = ρ(X)−m;

3. Convexity: ∀ X,Y ∈ L1, ∀ λ ∈ [0, 1] : ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y );

4. Positive homogeneity: ∀ λ ∈ [0,∞) : ρ(λX) = λρ(X).

Note that under property 4., convexity is equivalent to sub-additivity.

A coherent risk measure is called law-invariant ([95]) if it additionally fulfils:

5. Law-invariance: X
(d)
= Y =⇒ ρ(X) = ρ(Y ), where

(d)
= denotes equality in distribution.

Many authors have built on and expanded this definition since its conception, see Section

“Related literature” of [2] for an overview. In an insurance context, an important sub-class

of law-invariant, coherent risk measures, which was first connected to insurance pricing in

[133, 134, 135], are concave distortion risk measures (DRM). For a non-negative risk X, a

DRM can generally be expressed as

ρ(X) :=

∫ ∞

0
ψ(FX(x))dx =

∫ 1

0
qX(u)dψ(u), (6)

where ψ : [0, 1] → [0, 1] is a distortion function (i.e. non-decreasing with ψ(0) = 0 and ψ(1) = 1),

FX(x) = P(X > x) is the survival function and qX(u), u ∈ (0, 1), its generalized inverse, called

the tail quantile function. This framework is convenient, as it includes a rather explicit expression

of the decision maker’s risk aversion via the (concave) distortion function, which yields the risk

measure as a distorted expectation of X.

Remark 10 (VaR and AVaR as distortion risk measures). Both Value-at-Risk and Average

Value-at-Risk can be expressed in the form of Equation (6) by choosing the distortion functions

ψVaR(u) = 1{u>γ} (not concave) and ψAVaR(u) = min
{
u
γ ; 1
}
(concave), respectively. As con-

cavity of the distortion function corresponds to convexity of the risk measure (see [141]), this

corroborates that Value-at-Risk does not fulfil all desiderata of a coherent risk measure, which

entails e.g. its well-known undesirable property of potentially penalizing diversification.

While the framework of concave DRMs thus includes Average Value-at-Risk, we prefer to work

with the proportional hazard transform, introduced for insurance pricing by [133], represented

by the distortion function ψ(u) = ur, r ∈ (0, 1], as it additionally possesses the convenient

properties of strict concavity and differentiability everywhere. We provide an overview of (other)

popular DRMs and underlying distortion functions in Table 1 of [2].

The second question of comparing risks relates to defining a suitable order relation (“stochastic

order”) between their distributions to express that one is “more risky” than the other. There

exist numerous plausible possibilities to define a (partial) ordering on the space of probability

distributions; we recommend the excellent book [103] for an overview and a thorough introduc-

tion to the topic. We briefly list the two very common stochastic orders which are used in the

context of this work:
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Definition 5 (‘Usual’ and ‘stop-loss’ stochastic order, see, e.g., [103]). text

X is “larger” (more risky) than Y in the ‘usual stochastic order’, write X ≥st Y , if their

respective c.d.f.s FX and FY fulfil

FX(t) ≤ FY (t), ∀t ∈ R. (7)

This is equivalent to (see [103], Theorem 1.2.8):

E[f(X)] ≥ E[f(Y )] (8)

for any non-decreasing function f : R → R for which both sides exist. In the economic literature,

a common synonymous expression is that X exceeds Y in ‘first-order stochastic dominance’, write

X ≥FSD Y . It is obvious that ≥st is a very strong requirement which is not viable for many

applications. A slight relaxation of Equation (8) yields a weaker ordering: X is “larger” (more

risky) than Y in ‘increasing convex order’, write X ≥icx Y , if (8) holds for all non-decreasing,

convex functions for which both expectations exist. Synonymously, ≥icx is often referred to as

‘stop-loss order’, write X ≥sl Y , as it can be equivalently defined via the following condition for

the class of so called ‘stop-loss functions’ (see [103], Theorem 1.5.7):

E[(X − t)+] ≥ E[(Y − t)+] ∀t ∈ R, (9)

where (x)+ = max{x, 0}. For concrete applications, it is more helpful to characterize ≥icx via an

equation involving the c.d.f.s akin to (7). This can be accomplished via the following sufficient

criterion, called ‘single-crossing condition’ (originally due to Karlin–Novikoff [91], see Theorem

1.5.17 in [103]): If ∃ t0 ∈ R such that

FX(t) ≥ FY (t), ∀t < t0,

FX(t) ≤ FY (t), ∀t > t0,

and E[X] ≥ E[Y ], then X ≥icx Y .

One may argue that a natural way to compare risks is via the numerical value assigned to them

by any of the previously introduced risk measures. Indeed, there are connections between the

above stochastic order relations and (concave) distortion risk measures.28

Remark 11 (Distortion risk measures and stochastic order, see e.g. [49]). text

Let X,Y be non-negative random variables.

Any DRM ρ as in (6) preserves the usual stochastic order, i.e. it holds that

Y ≤st X =⇒ ρ(Y ) ≤ ρ(X).

Any DRM ρ as in (6) with concave distortion function preserves the stop-loss order, i.e.

Y ≤sl X =⇒ ρ(Y ) ≤ ρ(X).

28The relations can even be stated in a stronger form than is needed here, namely as equivalencies which allow

a characterization of the stochastic orders via ordered risk measures (see [49]). For a more general discussion of

such relations, we refer e.g. to [22].
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The above notions are very useful to formalize important aspects in our study of insurance poli-

cies including risk mitigation (presented in a concise, stylized form here). Assume an insurance

buyer is facing a risk X.

� The buyer’s risk aversion can be captured via a corresponding DRM ρB(X), which imme-

diately implies his willingness-to-pay for an insurance policy (i.e. maximum feasible risk

premium). Likewise, the risk aversion of the insurer is analogously captured via a DRM

ρI(X), which entails her minimum feasible risk premium. Naturally, to make the closure

of an insurance contract possible, the insurer needs to be less risk-averse than the buyer.29

� The effect of purchasing risk mitigation service through cyber assistance can be represented

as inducing a decreasing order in first-order stochastic dominance: The c.d.f. FX,s ofX, now

additionally equipped with a parameter s ∈ [0,∞) referring to the amount of service, can

be altered “favourably” (i.e. X can be made “less risky” in the sense of ≤st) by increasing

the level of cyber assistance. Due to the statements in Remark 11, this is directly reflected

in a decrease of the risk measures ρB(X) and ρI(X).

Example 3 (Self-protection and self-insurance inducing ≤st). In order to illustrate how cyber

assistance can induce a stochastic order between risks, consider the following elementary example

relating to Remark 8. Let X and Y be two risks taking only two values:

X =




0 w.p. (1− pX),

KX w.p. pX ,
Y =




0 w.p. (1− pY ),

KY w.p. pY ,

where KX ,KY > 0 and pX , pY ∈ (0, 1] are constant. Let X represent the original risk (with-

out cyber assistance) and Y the corresponding mitigated risk (subject to some kind of cyber

assistance), respectively. Then:30

� The effect of pre-incident services / self-protection is represented by KX = KY (same loss

size) and pX ≥ pY (decreased loss probability).

� The effect of post-incident services / self-insurance is represented by pX = pY (same loss

probability) and KX ≥ KY (decreased loss size).

It is straightforward that in both cases Equation (7) holds, i.e. X ≥st Y .

This framework for measuring and comparing risks, as recently suggested in a more general con-

text in [23], allows to state loss functions for the insurance buyer and insurer which meaningfully

capture the effect of risk mitigation service on the insured risk and the “monetary value” both

29Note that the inclusion of a risk-neutral insurer is possible in this framework by choosing the identity as

distortion function, i.e. ψ(u) = u, yielding ρI(X) = E[X].
30We emphasize at this point that this is only a stylized example and in reality, risk mitigation measures do

typically not have a strictly disjoint effect on either loss probability or loss size, but rather positive consequences

for both; compare the discussion in [2].
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parties assign to this risk (and therefore accept as a reasonable premium for risk transfer). In

summary, both parties deal with their own bivariate optimization problem:

� The insurer sets prices for combined insurance products by selecting a risk loading

θ ∈ [0,∞) (where risk transfer is priced according to the expected value principle, see

Example 1) and a price for cyber assistance, represented by a cost share β ∈ [0, 1] of

administrative service cost charged to the buyer. The choice β = 1 thus represents full al-

location of risk mitigation cost to the buyer, whereas any choice β < 1 indicates a subsidy

for risk mitigation by the insurer. The insurer thereby balances her risk measure ρI(X)

of the insured risk against the risk premium and (potentially subsidized) service premium

she receives.

� The buyer chooses his level of risk transfer (full or no insurance via a proportional insurance

share α ∈ {0, 1}) and level of risk mitigation (via a parameter s ∈ [0,∞)), taking into

account his risk measure ρB(X) and the price of both activities (which has been determined

by the insurer).

Due to its sequential nature – the insurer determines prices for risk transfer and risk mitigation

before the insurance buyer decides on his course of action depending on the offered premiums

– the interaction between insurer and buyer can be modelled as a Stackelberg game and solved

via backward induction (see Section “Interaction between cyber-insurance buyer and insurer”

of [2] for details and references).

The obtained results offer interesting interpretations of the results derived in [23] in the cyber

insurance context from the buyer’s viewpoint and tackle a novel bivariate problem from the

insurer’s viewpoint. This part of the study relates to the types of cyber assistance outlined

in Remark 8, namely pre-incident and post-incident services an insurer offers to an individual

policyholder. As outlined above, a particularly interesting extension from our viewpoint is the

consideration of additional services making explicit use of dependence between policyholders.

Before we treat this topic in the next section, we close with a remark on risk assessment.

Remark 12 (Cyber risk assessment as a service). One may wonder about one feature of cyber

insurance we have not yet treated in this section, namely cyber risk assessment. While risk as-

sessment is not usually considered explicitly as a service within an insurance policy (contrary

to the risk mitigation measures outlined in Remark 8), we have, e.g., emphasized in [4] how an

insurer’s risk assessment process can provide beneficial insights about a company’s exposure to

cyber threats and thus needs for action with respect to cyber security investment.

However, to emphasize that studying risk assessment requires a different mathematical frame-

work, we refer back to the elementary Example 3: As outlined therein, risk mitigation services

can be represented as affecting the distribution function of the underlying risk (i.e. induce a

switch from FX to FY ) in a way that makes the risk “smaller” in the sense of some stochastic

order (in this case Y ≤st X), which can be reflected directly in a loss function via a decrease of

the corresponding risk measure (ρ(Y ) ≤ ρ(X)).
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The study of risk assessment, on the other hand, relates to the acknowledgement that in reality,

neither party has perfect knowledge about the objective “true” distribution FX of the underly-

ing risk and rather works with a subjective assumption F̂B
X (buyer) and F̂ I

X (insurer). The cost

invested in risk assessment aims at increasing the proximity (using an appropriate measure of

distance) of the subjective distributions to (the unknown) FX . This is much harder to capture

within a loss function, compare our extensive discussion and ideas for future research in Online

Appendix A.1 of [2].

4.3 Towards systemic cyber resilience

In the last section, we have focused on equipping individual cyber insurance policies with risk

mitigation services. This is a relevant topic, as it concerns policies already being offered on

the market or increasingly demanded by prospective insurance buyers (see Remark 8 and the

references therein), and indicates a potential way to close the persistent market gap and keep

cyber risk insurable despite hardening market conditions and the challenging nature of the

underlying risk (see previous sections).

We have emphasized repeatedly that for cyber risk modelling, from an insurer’s viewpoint it is

crucial not to view each policy as a stand-alone object, but instead consider the whole portfolio

with its possible dependencies between the underlying risks, e.g. via common vulnerabilities

which could expose many companies to a potential cyber incident at the same time. While

such dependencies are primarily worrisome, as they hamper diversification and may entail

accumulation risk, we would like to highlight the following optimistic viewpoint: In reality,

cyber incidents from the same root cause do not necessarily manifest as truly simultaneous

losses, but may affect victims at different points in time depending on their exposure, the

attack vector, the controls (security measures) they have in place, and not least the detection

time. By using their knowledge about observed cyber losses in the portfolio, insurers may be

in a prime position to prevent or mitigate the manifestation of further losses by warning their

policyholders about imminent threats. We approach the question of how to price such services

in [2], namely for some bivariate examples of common dependence mechanisms in the cyber

context in the Section “The insurer’s problem: portfolio viewpoint” and for an extension to a

general multivariate portfolio in Online Appendix A.7.3. Many interesting extensions await for

future research.

This is a particularly relevant topic, as it relates to the more general question of how cyber

insurers can contribute to the overall cyber resilience of businesses and networks. The necessity

to shift the focus of discussion from mere cyber security to cyber resilience has received

increasing emphasis, e.g. in the recent studies [43, 20, 45] (who all carry the term in their

title or among their keywords). As mentioned therein, the need to enhance resilience of cyber

systems is also reflected by legal and regulatory bodies, consider, e.g., the European Union’s

proposal of a “Cyber Resilience Act” ([67]) and the World Economic Forum’s white paper on

a “cyber resilience index” ([143]). This awareness is driven by the acknowledgement that a
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complete prevention of cyber incidents is not achievable in today’s world, where systems are

increasingly interconnected and digital technologies ubiquitous.

There are numerous context-specific definitions of resilience (see, e.g., [87] for an overview).

NIST31 defines cyber resiliency as “the ability to anticipate, withstand, recover from, and adapt

to adverse conditions, stresses, attacks, or compromises on systems that use or are enabled

by cyber resources”, clearly extending beyond the scope of cyber security which is focused on

prevention and precaution. On an individual company level, this emphasizes the need for a

holistic risk management strategy, in which insurance including both pre- and post-incident

services can form one important building block.

On the level of interconnected cyber systems, [20] study different security- and topology-based

interventions to improve the resilience of networks and relate them to current regulatory

measures regarding, e.g., the protection of critical infrastructure or data protection. In this

context of systemic risk, resilience can be related to the system’s ability to contain a cyber

epidemic (i.e. mitigate the impact of a large cyber event), e.g. regarding the number of affected

companies, the total economic loss or the total overall “infection” time of all targets (which

could be interpreted e.g. as the duration of a business interruption or until complete system

functionality is restored). Similar quantities are used to measure the impact of a large cyber

event on an insurance portfolio in [84], who emphasize another interesting point regarding

operational capacities: If an insurer offers assistance services in cooperation with specialized IT

security providers, their efficiency is limited by the number of experts available at any given

point in time. If a large number of policyholders requires assistance within a relatively short

time period due to a large cyber event / epidemic, individual loss mitigation and containment of

the event may be hampered by the inability to respond to all affected policyholders without delay.

In summary, some academic works already represent the hopeful perspective that insurers may,

in the future, take a role akin to “private regulators” for cyber resilience by setting guidelines

for cyber risk management via their risk assessment and pricing as well as by offering assistance

services aimed at risk mitigation on an individual and systemic level. We close this section with a

related remark which indicates that many challenges remain for future research and innovation.

Remark 13 (Insurers as “private cyber regulators” - Theory vs. practice). While cyber se-

curity legislation has evolved significantly over the last decade, the legal uncertainty associated

with indefinite terms relating to required technical standards often prohibits legal norms from

representing clear-cut, actionable road maps (cf. [20]). Therefore, researchers have examined the

role of private companies and – more recently – cyber insurers as “private governors” of cyber

security (e.g. [139], Section 2.2 of [20] and the references therein), often concluding that insur-

ers can fill this role by promoting holistic cyber risk management through their risk assessment

practices and contractual obligations. This may be particularly true for SMEs who are currently

31The US National Institute of Standard and Technology, see https://csrc.nist.gov/glossary/term/

cyber resiliency.
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often refused cyber coverage due to lack of sufficient cyber security practices (cf. [45]).

Nevertheless, we need to mention that while these ideas are often advocated in an academic

context, empirical evidence suggests that insurers are not (yet) capable of fulfilling this role at

present. [142] study whether cyber insurers actually fulfil the tasks by which they are often claimed

to affect cyber security standards (e.g. conduct security assessments or incentivize investment by

premium discounts). They conclude that the available evidence thwarts policymakers’ hopes and

that “[...] cyber insurance appears to be a weak form of governance at present”. [102] conduct

a large number of interviews with industry professionals and discuss among their main themes

the role of cyber insurance in setting minimum security practices. They interpret the market’s

recent hardening w.r.t. premiums and security standards as corroboration of “how the insurance

industry is [...] somewhat behind the curve in understanding what robust cyber security stan-

dards in organisations should be” and conclude that “the reported state of technical knowledge

at present suggests that asking insurance companies to be the arbiters of good cyber security

practice is not appropriate at present”.

It is clear that cyber insurers will have to play a central role in companies’ holistic cyber

risk management and for (systemic) cyber resilience, entailing manifold implications for public

governance, critical infrastructures, and in general the functionality of various services at the

core of public and private life in today’s digitized society. However, as outlined above, many

cyber insurance design and implementation questions remain to be tackled – and it seems likely

that they will continuously entail new challenges for research and innovation given the dynamic

nature of digital technologies and cyber risk. We will outline some principal lines of future

research in the final section.

5 Outlook and final remark

Cyber risk and cyber insurance is a highly relevant and dynamic topic, with manifold interesting

questions from many disciplines continuously appearing. Relating to the topics tackled in this

thesis, we focus on giving an overview of some main research directions in the proximity of

actuarial science. We naturally do not claim this list to be exhaustive and refer to the many

excellent papers (e.g. [137, 45, 52, 53, 72]) on interdisciplinary aspects of cyber risk research for

complementary summaries.

The first task of paramount urgency concerns the availability of reliable and representative

data for cyber risk research and cyber insurance practice. On the one hand, this refers to data

about individual cyber incidents and corresponding economic consequences which enables a

better understanding of the statistical properties of (highly heterogeneous) different types of

cyber threats and their impacts. On the other hand and of major importance, this refers to data

containing information about dependence between cyber incidents, which allows the calibration
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of models which go beyond the modelling of marginal distributions under an (implicit)

independence assumption. Only the availability of suitable data enables the estimation (and

evaluation of robustness) of various proposed cyber (dependence) models and therefore allows

insurers to incorporate (dependence) models which are based on statistical evidence into their

actuarial workflow. In turn, the ability to base their pricing and risk management on a sound

mathematical foundation will enable insurers to better quantify the underlying (accumulation)

risk and therefore counteract apprehension about cyber moving towards becoming uninsurable.

Finally, as due to the high non-stationarity of the cyber landscape, it is doubtful whether the

calibration of models based purely on historical data is feasible at all, the adaption of methods

from the area of credibility theory which allow combining statistical evidence from data with

input from expert opinions seems to be called for.

Another imminent topic regards the design and pricing of novel cyber insurance products

including cyber assistance. While we have first approached the topic of pricing systemic risk

mitigation services through bivariate applications in [2], this is only the starting point for many

related research questions. From a mathematical viewpoint, this encompasses, e.g., extensions

to more multivariate examples, the modelling of a three-party interaction additionally including

a re-insurer, or questions about optimal risk sharing. Taking a wider perspective, the design of

such insurance products carries many economic and legal challenges regarding collaborations

between insurers and service providers and in particular – as outlined above – the development

of emergency response workflows which are themselves resilient in the face of a large cyber

event. Regarding the resilience of cyber networks, helpful qualitative indications for the effective

design of real-world systemic interventions can be drawn from studies of cyber epidemics

on interdependent networks. Many interesting extensions of the available studies, as well as

approaches to making these results more applicable in practice, remain open for future analysis.

In the cyber context, many actuarial tasks remain challenging and require an interdisciplinary

approach. This includes risk assessment, where several aspects of the identification of relevant

covariates for a company’s cyber risk exposure and their subsequent incorporation into a

stochastic actuarial model remain unresolved. Hereby, an important issue from a technical

viewpoint is the effective quantification (and monitoring) of the cyber security landscape of a

potentially highly complex enterprise for actuarial applications. Another pressing challenge for

actuaries is cyber insurance pricing, where future mathematical research imminently needs to

address the question of pricing dependent risks, a topic which to the best of our knowledge has

not been comprehensively addressed, yet.

The problem of designing optimal cyber insurance contracts in practice is a multidimensional

and complex, yet increasingly important, task. Actuarial considerations have to be balanced

with customer needs as well as legal and governance perspectives to develop products which
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increase the welfare of all parties and contribute to the overall cyber resilience of systems,

processes and the economy as a whole. Interdisciplinary research is needed to investigate welfare

implications of cyber security, cyber resilience, and cyber insurance, with the overarching aim

of developing recommendations and guideposts for the corresponding regulatory environment

and of determining the role cyber insurers can – and should – occupy within the cyber resilience

ecosystem. While the design of optimal cyber insurance solutions for companies indirectly

affects each private person by enhancing the resilience of businesses and systems omnipresent

in daily life, a related open task concerns the development of cyber insurance products for the

private customer segment.

In summary, it is uncontested that many interesting and relevant tasks remain for further

investigation and the need for comprehensive innovation in the cyber insurance domain will

remain pervasive in the future. We close this introduction with the following remark to

emphasize once more that the investigation of actuarial challenges related to cyber risk – which

are at the core of the development of novel cyber insurance solutions – is not a topic that

only mathematicians and actuaries are interested in for professional reasons, but that everyone

should care about.

Previously, we have introduced the fundamental task of insurance as making random adverse

outcomes quantifiable as risks and enabling individuals and businesses to transfer or share oth-

erwise prohibitively large risks, thereby in a sense shaping public and private life. It is not

far-fetched to state that without the existence of adequate (re-)insurance solutions, at this very

moment no commercial airplanes and cargo ships would be travelling the air and seas, no wind

turbines would be spinning to enable the transition to green energies, and many current home

owners and car drivers would have to refrain from the eponymous activities. It is clear that the

ubiquitous dependence on information technology – which has long become the core of most

systems, processes, and activities all of us rely on in daily life – along with the manifold benefits

and opportunities it carries, exposes economy and society to potentially catastrophic adversities

in case of failure or malicious exploitation. This realization renders the often-asked question of

whether cyber risk is insurable somewhat moot, as a negative answer would essentially entail

the need to massively curtail or abandon all insurance and – as a consequence – business activ-

ity. Instead, it must lead to the question of how the resulting risks can be assessed, managed,

and mitigated, and which capacities insurers must develop to be able to leverage their existing

unique expertise in order to hereby play the key role that befits them.
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A Core Publications

A.1 A comprehensive model for cyber risk based on marked point processes

and its application to insurance [1]

Summary

Over the last decade, cyber risk has been a topic of increased interest in academia and prac-

tice and the global cyber insurance market has been developed and expanded at ever-increasing

speed. As of 2020, cyber incidents were ranked the number one peril to businesses worldwide

([11]) and since, the Covid-19 pandemic and its side effects may have exacerbated the problem

([104]). Insurers are starting to recognize the market opportunity, while still grappling with a firm

understanding of this novel type of risk and its underlying drivers. When writing the first draft

of this article in 2020, despite a growing body of academic research on cyber risk (modelling),

an established approach for insurance applications was still elusive given the various challenges,

e.g. scarcity of historical data, non-stationarity, dependence between losses, and difficult impact

quantification. The scope of this article therefore comprises four parts:

The first part (Section 2) extensively surveys existing literature at the time, grouping previous

work by the main theme of investigation into (early) game-theoretic studies (e.g. [30, 126, 125]),

network models and other approaches to modelling interdependence (e.g. [71, 146, 113]), and

statistical investigations of the (scarce) available data on cyber incidents (e.g. [50, 57, 63]).

While these works provide valuable contributions to the study of cyber risk in general, their

applicability for insurers is often limited due to excessive mathematical complexity, prohibitive

data requirements, or limited representativeness of the investigated data for real-world cyber

insurance portfolios. Furthermore, a summary of the current cyber insurance market at the time

is provided, including studies on insurability (e.g. [26]), common coverage features of cyber in-

surance policies (see, e.g., [121, 7]), and (mostly ad-hoc) pricing approaches in practice ([121]).

This part concludes by emphasizing the potential of designing novel cyber insurance solutions

that transcend mere risk transfer. As we regarded this topic as particularly interesting, it was

chosen as the subject of a subsequent research project (see [2] below).

The second part (Section 3) introduces a holistic understanding of cyber risk based on techni-

cal, legal, financial, and actuarial aspects, and scrutinizes cyber risk factors along the classical

decomposition of risk into threat, vulnerability, and impact (e.g. [100]). A classification of cy-

ber incidents along two dimensions is suggested, namely according to the compromise of the

three classical information security protection goals confidentiality, integrity, and availability

(e.g. [17]) and according to the root cause of the incident. The former distinction is important,

as related literature indicates that different kinds of incidents may vary w.r.t. statistical nature

([35]) and economic consequences ([120]). The latter categories allow to include both malicious

and non-malicious origins of cyber incidents and to distinguish between idiosyncratic (indepen-

dent) incidents and systemic events causing dependent incidents. This reflects the fact that –
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based on the aspects described above – we understand common vulnerabilities (e.g. [29]) as the

source of interdependence between cyber incidents. Lastly, this section identifies key characteris-

tics (covariates) which influence a company’s exposure and resilience to cyber threats, regarding

both the frequency of cyber incidents and their (monetary) impact.

The next part (Section 4) introduces an actuarial model to capture the above-investigated char-

acteristics of cyber risk and to enable an application to cyber insurance pricing and risk man-

agement. To summarize, an adequate cyber risk (portfolio) model should encompass different

types of cyber incidents and their dynamic evolution, heterogeneity of companies regarding their

characteristics and resulting susceptibility to cyber losses, and dependence of cyber incidents via

the exploitation of common vulnerabilities. To ensure the applicability of the model to real-world

cyber insurance portfolios, the model combines the separate modelling of frequency and severity

of cyber losses in a loss distribution approach and is purposely constructed in a modular way.

This allows any end-user to easily amend or replace parts of the model, e.g. based on updated

future insights on the nature of cyber risk or on the properties of an internal data set, without

discarding the overall structure.

We suggest to model the frequency of cyber incidents by using a marked point process approach:

On the one hand, idiosyncratic incidents of each type arrive independently at each company ac-

cording to an inhomogeneous Poisson process with possibly time- and covariate-dependent rate,

reflecting the dynamic evolution of cyber threats and the heterogeneity of the portfolio. On

the other hand, systemic events arrive according to an inhomogeneous Poisson process, where

each arrival carries a (conditionally i.i.d.) mark encoding the subset of the portfolio affected

by the event and the (stylized) “strength” of the event. Subsets affected by a common event

represent groups of companies with existing common vulnerabilities. To reflect heterogeneity of

the portfolio regarding resilience w.r.t. systemic events, the strength of the event is compared

to the (stylized) IT security level of each company in the affected subset, leading to an individ-

ually thinned arrival process for actual monetary cyber losses vs. cyber incidents. We analyze

the properties of the frequency model (e.g. conditional loss probabilities and overdispersion of

systemic loss numbers) and interpret them in the cyber context. We suggest to model loss sever-

ities by a combination of (time- and covariate-dependent) lognormal and Generalized Pareto

distribution based on the findings of [63]. Alternative approaches for certain types of incidents

(based on, e.g., [50, 90, 82]) are outlined in the Online Appendix and can be easily substituted

due to the modular model structure.

The final part of the paper (Section 5) provides an example of an actuarial application via an

extensive simulation study. The parameters are chosen in line with previous findings from the

academic literature; an analysis based on suitable empirical data remained as an interesting

task for future research (see [19]). On the individual company level, particular emphasis in the

analysis is given to the effect of increased IT security on the loss distribution and the resulting

insurance premium. On the portfolio level, to emphasize the relevance of including systemic

events and resulting accumulation risk, a comparison with the (default) case of purely indepen-

dent incidents (with identical marginal distributions) is provided. Furthermore, as the involved
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severity distributions are quite heavy-tailed (based on [63]), the importance of cover limits, as

are customary in primary cyber insurance policies, is illustrated numerically.

Erratum

There is a typo in the rightmost part of the last (non-numbered) equation on p. 61. The correct

formula for non-negative losses (as considered here) should read

AV aR1−α(L) = [...]
(∗)
=

1

α

∫ 1

1−α
V aRγ(L)dγ.

This does not have any consequences for the rest of the article, i.e. in all numerical applications

and examples the correct formula is used.

Reception

As the topic is of particularly high interest to practitioners, a discussion of the paper by an

industry expert was invited and has been published in the same journal issue as this article

([117]). The discussion is generally favourable and emphasizes the extensive literature review

and the holistic analysis of cyber risk as apt and useful. The necessity of a model for systemic

events is corroborated as “the most urgent problem of the cyber insurance industry”. As the

main caveat raised is the question about the applicability of the (very general) full extent of

the model due to the scarcity of available data, focussing on the modelling of systemic events is

suggested.

Since the publication of this paper, the suggested model has been well received by cyber

insurance practitioners and researchers. In particular, the German Association of Actuaries

(DAV) working group on data and methods for the valuation of cyber risks (“DAV AG

Daten und Methoden zur Bewertung von Cyberrisiken”) has suggested and implemented the

approach introduced in this paper (in a simplified version) as one of two chosen modelling

approaches in their recent report on cyber risk modelling ([19]). Therein, a case study on an

exemplary insurance portfolio is included, where the parameters of the models are calibrated

based on empirical data and previous findings from the literature. The suggested model is

furthermore repeatedly mentioned as a suitable approach for cyber risks from common vulner-

abilities in the recent comprehensive survey [21] on the modelling and pricing of cyber insurance.

This article has been awarded the Gauss Prize for the best paper in the European Actuarial

Journal in 2022 by the German Society for Insurance and Financial Mathematics (Deutsche

Gesellschaft für Versicherungs- und Finanzmathematik e.V., DGVFM) and the German Associ-

ation of Actuaries (Deutsche Aktuarvereinigung e.V., DAV). The work contained in this article

(prior to publication) has been presented at several scientific conferences and has received the

FiVeG Award 2020 for the Best Junior Presentation at the 11th CEQURA Conference on Ad-

vances in Financial and Insurance Risk Management.

51



Individual contributions

I am the main author of this article. The idea of investigating this topic and the choice of

model along the stylized statistical characteristics of cyber losses was developed jointly with

my supervisor Matthias Scherer, who also made helpful suggestions regarding both content and

presentation of the article during our regular discussions. I was responsible for the writing of the

manuscript (the whole first draft as well as subsequent drafts based on comments by Matthias

Scherer), developing the proofs of all statements contained therein, and the implementation and

presentation of the simulation study.

Permission to include the article

52



Licence to Publish - Open 
Access

Journal Name: European Actuarial Journal (the ‘Journal’)

Manuscript Number: EUAJ-D-20-00047R3

Proposed Title of Article:
A comprehensive model for cyber risk based on 
marked point processes and its application to 
insurance

Author(s) [Please list all 
named Authors]:

Gabriela Zeller, Matthias Scherer (the ‘Author’)

Corresponding Author 
Name:

Gabriela Zeller

Licence Applicable to the Article:

Creative Commons licence CC BY: This licence allows readers to copy, distribute and transmit the Article as long as it 
is attributed back to the author. Readers are permitted to alter, transform or build upon the Article, and to use the 
Article for commercial purposes. Please read the full licence for further details at - 
http://creativecommons.org/licenses/by/4.0/ 

1 Publication
EAJ Association (the ‘Licensee’) will consider publishing this article, including any supplementary 
information and graphic elements therein (e.g. illustrations, charts, moving images) (the 'Article'), 
including granting readers rights to use the Article on an open access basis under the terms of the 
stated Creative Commons licence. 
Headings are for convenience only. 

2 Grant of Rights

Subject to editorial acceptance of the Article, it will be published under the Creative Commons licence 
shown above.

In consideration of the Licensee evaluating the Article for publication, the Author grants the Licensee 
the non exclusive , irrevocable and sub-licensable right, unlimited in time and territory, to copy-edit, 
reproduce, publish, distribute, transmit, make available and store the Article, including abstracts 
thereof, in all forms of media of expression now known or developed in the future, including pre- and 
reprints, translations, photographic reproductions and extensions.

Furthermore, to enable additional publishing services, such as promotion of the Article, the Author 
grants the Licensee the right to use the Article (including the use of any graphic elements on a stand-
alone basis) in whole or in part in electronic form, such as for display in databases or data networks 
(e.g. the Internet), or for print or download to stationary or portable devices. This includes interactive 
and multimedia use as well as posting the Article in full or in part or its abstract on social media, and 
the right to alter the Article to the extent necessary for such use. Author grants to Licensee the right to 
re-license Article metadata without restriction (including but not limited to author name, title, abstract, 
citation, references, keywords and any additional information as determined by Licensee).

If the Article is rejected by the Licensee and not published, all rights under this agreement shall revert 
to the Author.

3 Copyright

Ownership of copyright in the Article shall vest in the Author. When reproducing the Article or extracts 
from it, the Author shall acknowledge and reference first publication in the Journal.

4 Self Archiving

Author is permitted to self-archive a preprint and the accepted manuscript version of their Article.

The rights and licensing terms applicable to the version of the Article as published by the Licensee are 
set out in sections 2 and 3 above. The following applies to versions of the Article preceding publication 
by the Licensee and/or copyediting and typesetting by the Licensee. Author is permitted to self-archive 
a preprint and an Author’s accepted manuscript version of their Article.

a) A preprint is the version of the Article before peer-review has taken place ("Preprint”). Prior to 

Page 1 of 3



acceptance for publication, Author retains the right to make a Preprint of their Article available on 
any of the following: their own personal, self-maintained website; a legally compliant Preprint 
server such as but not limited to arXiv and bioRxiv. Once the Article has been published, the 
Author should update the acknowledgement and provide a link to the definitive version on the 
publisher’s website: “This is a preprint of an article published in [insert journal title]. The final 
authenticated version is available online at: https://doi.org/[insert DOI]”

b) The accepted manuscript version, by industry standard called the “Author’s Accepted Manuscript” 
(“AAM”) is the version accepted for publication in a journal following peer review but prior to 
copyediting and typesetting:

Author retains the right to make an AAM of their Article available on any of the following, provided that 
they are not made publicly available until after first publication: their own personal, self-maintained 
website; their employer’s internal website; their institutional and/or funder repositories. AAMs may be 
deposited in such repositories on acceptance, provided that they are not made publicly available until 
after first publication. 

An acknowledgement in the following form should be included, together with a link to the published 
version on the publisher’s website: “This is a post-peer-review, pre-copyedit version of an article 
published in [insert journal title]. The final authenticated version is available online at: 
http://dx.doi.org/[insert DOI]”.

5 Warranties & Representations 

Author warrants and represents that:

a)
i. the Author is the sole copyright owner or has been authorised by any additional 

copyright owner(s) to grant the rights defined in clause 2,
ii. the Article does not infringe any intellectual property rights (including without 

limitation copyright, database rights or trade mark rights) or other third party rights 
and no licence from or payments to a third party are required to publish the Article,

iii. the Article has not been previously published or licensed,
iv. if the Article contains materials from other sources (e.g. illustrations, tables, text 

quotations), Author has obtained written permissions to the extent necessary from 
the copyright holder(s), to license to the Licensee the same rights as set out in clause
2 and has cited any such materials correctly;

b) all of the facts contained in the Article are according to the current body of research true and 
accurate; 

c) nothing in the Article is obscene, defamatory, violates any right of privacy or publicity, infringes 
any other human, personal or other rights of any person or entity or is otherwise unlawful and 
that informed consent to publish has been obtained for all research participants;

d) nothing in the Article infringes any duty of confidentiality which Author might owe to anyone else 
or violates any contract, express or implied, of Author. All of the institutions in which work 
recorded in the Article was created or carried out have authorised and approved such research and
publication; and

e) the signatory who has signed this agreement has full right, power and authority to enter into this 
agreement on behalf of all of the Authors.

6 Cooperation
a) Author shall cooperate fully with the Licensee in relation to any legal action that might arise from 

the publication of the Article, and the Author shall give the Licensee access at reasonable times to 
any relevant accounts, documents and records within the power or control of the Author. Author 
agrees that the distributing entity is intended to have the benefit of and shall have the right to 
enforce the terms of this agreement.

b) Author authorises the Licensee to take such steps as it considers necessary at its own expense in 
the Author’s name(s) and on their behalf if the Licensee believes that a third party is infringing or 
is likely to infringe copyright in the Article including but not limited to initiating legal proceedings.

7 Author List

Changes of authorship, including, but not limited to, changes in the corresponding author or the 
sequence of authors, are not permitted after acceptance of a manuscript. 

8 Corrections

Author agrees that the Licensee may retract the Article or publish a correction or other notice in relation
to the Article if the Licensee considers in its reasonable opinion that such actions are appropriate from a
legal, editorial or research integrity perspective.

9 Governing Law
This agreement shall be governed by, and shall be construed in accordance with, the laws of the Federal
Republic of Germany. The courts of Berlin, Germany shall have the exclusive jurisdiction.

EAJ Association, 

Page 2 of 3



v.2.3 - (05_2021)-

Page 3 of 3



04.04.23, 12:41 How-to: Get permission to reuse Springer content online | Springer — International Publisher

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882 1/4

SpringerLink shop

Subjects Services About Us

Permissions

Get permission to reuse Springer Nature content

Springer Nature is partnered with the Copyright Clearance Center to meet our
customers' licensing and permissions needs.

Copyright Clearance Center’s RightsLink® service makes it faster and easier to secure
permission for the reuse of Springer Nature content to be published, for example, in a
journal/magazine, book/textbook, coursepack, thesis/dissertation, annual report,
newspaper, training materials, presentation/slide kit, promotional material, etc.

Simply visit SpringerLink and locate the desired content;

Go to the article or chapter page you wish to reuse content from. (Note: permissions
are granted on the article or chapter level, not on the book or journal level). Scroll to
the botton of the page, or locate via the side bar, the "Reprints and Permissions"
link at the end of the chapter or article.
Select the way you would like to reuse the content;
Complete the form with details on your intended reuse. Please be as complete and
specific as possible ao as not to delay your permission request; 
Create an account if you haven’t already. A RightsLink account is different than a
SpringerLink account, and is necessary to receive a licence regardless of the
permission fee. You will receive your licence via the email attached to your
RightsLink receipt;
Accept the terms and conditions and you’re done!

For questions about using the RightsLink service, please contact Customer Support at
Copyright Clearance Center via phone +1-855-239-3415 or +1-978-646-2777 or email
springernaturesupport@copyright.com.



04.04.23, 12:41 How-to: Get permission to reuse Springer content online | Springer — International Publisher

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882 2/4

How to obtain permission to reuse Springer Nature content not
available online on SpringerLink

Requests for permission to reuse content (e.g. figure or table, abstract, text excerpts)
from Springer Nature publications currently not available online must be submitted in
writing. Please be as detailed and specific as possible about what, where, how much,
and why you wish to reuse the content.

Your contacts to obtain permission for the reuse of material from:

- books: bookpermissions@springernature.com
- journals: journalpermissions@springernature.com

Author reuse

Please check the Copyright Transfer Statement (CTS) or Licence to Publish (LTP) that
you have signed with Springer Nature to find further information about the reuse of
your content.

Authors have the right to reuse their article’s Version of Record, in whole or in part, in
their own thesis. Additionally, they may reproduce and make available their thesis,
including Springer Nature content, as required by their awarding academic institution.
Authors must properly cite the published article in their thesis according to current
citation standards.
Material from: 'AUTHOR, TITLE, JOURNAL TITLE, published [YEAR], [publisher - as it
appears on our copyright page]’  

If you are any doubt about whether your intended re-use is covered, please contact
journalpermissions@springernature.com for confirmation. 
 

Self-Archiving

- Journal authors retain the right to self-archive the final accepted version of their
manuscript. Please see our self-archiving policy for full details:
https://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124

- Book authors please refer to the information on this link:
https://www.springer.com/gp/open-access/publication-policies/self-archiving-policy



Vol.:(0123456789)

European Actuarial Journal (2022) 12:33–85
https://doi.org/10.1007/s13385-021-00290-1

1 3

ORIGINAL RESEARCH PAPER

A comprehensive model for cyber risk based on marked 
point processes and its application to insurance

Gabriela Zeller1   · Matthias Scherer1

Received: 12 August 2020 / Revised: 12 February 2021 / Accepted: 16 July 2021 /  
Published online: 17 August 2021 
© The Author(s) 2021

Abstract
After scrutinizing technical, legal, financial, and actuarial aspects of cyber risk, a 
new approach for modelling cyber risk using marked point processes is proposed. 
Key covariates, required to model frequency and severity of cyber claims, are iden-
tified. The presented framework explicitly takes into account incidents from mali-
cious untargeted and targeted attacks as well as accidents and failures. The resulting 
model is able to include the dynamic nature of cyber risk, while capturing accu-
mulation risk in a realistic way. The model is studied with respect to its statistical 
properties and applied to the pricing of cyber insurance and risk measurement. The 
results are illustrated in a simulation study.

Keywords  Cyber risk · Cyber insurance · Emerging risks · Marked point processes · 
Accumulation risk

1  Introduction

Researchers and practitioners from different disciplines have analysed ‘cyber risk’ 
and ‘cyber insurance’ from their provenience, among them IT system experts, econ-
omists, statisticians, actuaries, etc.; a recent survey of the literature on these top-
ics in business and actuarial science is provided in Ref. [1]. Despite the lack of an 
established agreed-upon framework, all stakeholders share the opinion that cyber 
risk is on the rise. This is substantiated by continuously changing and expanding 
cyber threats [2] and an increasing frequency and magnitude of the financial con-
sequences of cyber incidents [3–6]. The potential consequences of cyber incidents 
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have also been prominently covered by the media; examples being [7–9]. This has 
lead to various cooperations between academia, industry, and government agencies 
(e.g. CISA1 in the US or CiSP2 in the UK) with the aim of developing defense strate-
gies against cyber crime and enhancing the overall resilience of IT networks. Corpo-
rations have moved their perception of cyber security from a merely technical topic 
to a larger business risk [10], but this awareness does not yet seem to have translated 
into widespread institutionalisation of cyber risk management [11]. A recently high-
lighted aspect is the connection between Cyber Incidents and Business Interruption, 
which jointly ranked as the top global business risks in a 2019 survey [12].

One strategy to cope with risk is risk transfer, e.g. via insurance contracts. Par-
allel to the risk, the demand for cyber insurance solutions has been continuously 
increasing [10] over the last few years. In spite of its growth, however, today’s cyber 
insurance market is still relatively small compared to the value of the assets that 
could be impaired by a cyber event [2]. Barriers are not a lack of demand for cyber 
risk transfer, but rather a number of obstacles that complicate the understanding and 
quantification of the underlying risk, including the lack of solid data on losses, a 
fast-paced evolution of cyber risk, and the disparity of data protection laws globally 
[4, 13].

Despite these challenges, especially in the US an existing market is already estab-
lished; including underwriters, brokers, and organisations specialized on cyber data 
analytics [14]. Concerning the pricing of cyber risk, however, a surprising finding 
was published by Romanosky et al. [15]: they systematically analysed cyber policies 
across the US and found that the main themes used for pricing included looking to 
competitors and estimation/guesswork. The ad-hoc nature of cyber policy pricing 
confirms that a unified quantitative understanding of this new type of risk and its 
underlying drivers is still at its infancy.

The cyber risk model developed in the present work, designed from an actuarial 
point of view, constitutes a threefold contribution: 

1.	 The model is based on a holistic approach to cyber risk, systematically describing 
the underlying risk factors while including information-technological, economic, 
and actuarial viewpoints.

2.	 The model is able to capture dependencies and accumulation risk in a realistic 
way by explicitly taking into account idiosyncratic cyber incidents and systemic 
cyber events.

3.	 Using the loss distribution approach, the model can easily be applied in an insur-
ance framework. A simulation study illustrating this application is included.

The remainder of this paper is structured as follows: Sect. 2 carefully reviews the 
existing literature on cyber risk and identifies key findings for an actuary. Section 3 
presents a holistic view on cyber risk, including key characteristics and risk factors. 

1  https://​www.​cisa.​gov.
2  https://​www.​ncsc.​gov.​uk/​secti​on/​keep-​up-​to-​date/​cisp.
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A new model is developed and analysed in Sect. 4 and illustrated in a simulation 
study in Sect. 5. Section 6 concludes and reveals opportunities for further research.

2 � Background and literature review

2.1 � Literature review

Most papers on cyber risk and cyber insurance are restricted to one particular point 
of view (e.g. IT security, network modelling, actuarial approaches) and the overall 
picture remains fragmented. In what follows, we group the existing literature accord-
ing to the main theme of investigation.

2.1.1 � Game‑theoretic studies

Bohme and Schwartz [16] studied a unifying framework for modelling cyber insur-
ance and classified existing research approaches of cyber insurance market models. 
Until 2010, many academic papers were motivated by the study of interdependent 
security and primarily focused on questions of network security and its relation to 
the existence of an insurance market, often using game-theoretic approaches (e.g. 
Refs. [17–22]). Other works concentrated on the correlation properties [23] and 
monoculture effects [24] of cyber risk and the existence of an insurance market 
under these conditions.

More recently, a very comprehensive overview of various aspects of cyber 
insurance was given in Ref. [25], including a classification of existing research 
approaches with interdependent security according to the underlying insurance mar-
ket model. While the listed approaches differ in their assumptions, the research aims 
are quite similar. Most studies focus on the existence of a Nash Equilibrium for secu-
rity investments (e.g. Ref. [26]) and the existence or efficiency of an insurance mar-
ket (e.g. Refs. [17, 19, 20, 22, 27–30]). Slightly different mathematical approaches 
include the use of Bayesian network games to design optimal cyber insurance con-
tracts [31] or to study the effect of network externality on security adoption [32].

Under quite realistic assumptions, the socially optimal level of security invest-
ments cannot be attained in these models, as individuals are incentivised to under-
invest [25]. Furthermore, given the availability of cyber insurance, individuals are 
even more reluctant to invest in self-protection and it is thus generally not possible 
to design insurance as a means to reach socially optimal levels of investment (e.g. 
Refs. [19, 20, 22, 27–30]). Some studies thus test whether regulatory actions (e.g. 
fines or rebates, taxes for low self-protection, or risk pooling arrangements) might 
enable insurance to incentivise self-protection, reaching conflicting conclusions (e.g. 
Refs. [17, 19, 22, 28, 29, 33, 34]).

2.1.2 � Interdependence and network models

Given that an accepted terminology and framework for cyber risk does not yet exist, 
some authors concentrated on developing taxonomies and frameworks (e.g. Refs. 
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[35–37]) or on embedding cyber into the better-known context of operational risk 
management (e.g. Refs. [38, 39]).

One feature of cyber risk that is commonly regarded as particularly problematic 
is the lack of independence among the risks/claims, a problem that was addressed 
using copula approaches in Refs. [40, 41], linear correlations in Ref. [24], and a 
combination of both in Ref. [23]. More recently, Peng et al. [42] studied the mul-
tivariate dependence exhibited by real-world cyber attack data using a Copula-
GARCH model. The latter works describe cyber attacks of different types or mul-
tivariate nature to be the source of dependence. Peng et al. [43] propose modelling 
and predicting extreme cyberattack rates by using marked point processes and simi-
larly, studying an empirical data set of breach incidents [44] argue that stochastic 
processes rather than distributions should be used to model and predict hacking 
breach incident inter-arrival times and breach sizes. Baldwin et al. [45] find strong 
evidence of contagion in cyber attacks to different components of a firm’s informa-
tion system using self- and mutually-exciting point processes.

Instead of considering underlying attack rates, studies concerned with cyber 
insurance seek to quantify the expected monetary losses of an insurer’s portfolio. To 
this end, dependencies between losses can also be captured by considering a model 
of epidemic spreading on the underlying network of firms. Fahrenwaldt et al. [46] 
use a (Markovian) SIS-process to model the infectuous spread of a cyber vulnerabil-
ity and subsequently an adapted counting process for the occurrence of attacks. Xu 
and Hua [47] use Markovian and Non-Markovian processes for epidemic spreading 
and propose to use a copula approach to capture the dependence among time-to-
infection distributions. Xu et al. [48] study a model of cyber epidemics over com-
plex networks, additionally introducing copulas to capture dependencies between 
cyberattack events.

2.1.3 � Data‑driven studies

The lack of publicly available, reliable, and sufficiently large data sets for cyber inci-
dents remains one of the obstacles for sound statistical investigations. Among the 
best-known data sources on data breaches are the continuously updated “Chronol-
ogy of Data Breaches” dataset by the California-based nonprofit corporation Privacy 
Rights Clearinghouse (PRC)3 and the “Open security foundation data loss data-
base”.4 The former data was e.g. studied by Edwards et al. [49], with the conclu-
sion that the number of records exposed can be modeled by the log-normal law and 
the daily frequency can be described by a negative binomial distribution. Somewhat 
surprisingly, the study found neither size nor frequency of data breaches to exhibit 
a time trend. Eling and Loperfido [50] use multidimensional scaling and goodness-
of-fit tests to analyze the distribution of the data breach information. They show that 
modelling severity using a log-skew-normal distribution seems adequate and find 
that different types of data breaches need to be modeled as distinct risk categories. 

3  Available for public download from https://​priva​cyrig​hts.​org/​data-​breac​hes.
4  Formerly available for public download from http://​datal​ossdb.​org.
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Eling and Jung [51] study the cross-sectional dependence of the data breach losses 
and identify a significant asymmetric dependence of monthly cross-industry losses 
in four categories by breach types as well as cross-breach type losses in five cat-
egories by industries. Farkas et al. [52] analyze heterogeneity of the reported cyber 
claims through the use of regression trees.

The second database was examined in Ref. [53], who focus on the theft of per-
sonal information and report a stable power-law tail distribution of personal identity 
losses per event. Wheatley et al. [54] combined data from both databases to focus 
exclusively on large breaches and study maximum breach sizes as well as severity 
distributions. The best fit is obtained by using a doubly truncated Pareto (Power law) 
distribution with linearly decreasing shape parameter for breach sizes, with sub-lin-
ear growth for the maximum log breach size.

Romanosky [55] uses a (commercial) dataset from Advisen, a US-based consult-
ant to the insurance industry, with the aim of examining the composition and costs 
of cyber events. They conclude that firms may lack a strong incentive to increase 
their investment in data security and privacy protection and the primary motivation 
may come from the cyber insurance industry through its use of incentive-based pre-
mium reductions.

While the aforementioned papers mostly concentrate on data breaches, Eling and 
Wirfs [56] has a wider focus: they define cyber risk as a subgroup of operational risk 
and analyze cyber data from a large operational risk database (SAS OpRisk Global 
data), including a global range of cyber incidents that have occurred over an around 
twenty-year period and considering actual costs instead of number of affected 
records only. The frequency of losses is found to be most adequately modelled by 
a Negative Binomial distribution in a static approach, and a Poisson process with 
covariate-dependent rate in a dynamic approach based on Ref. [57]. For the loss 
severity, none of the canonical candidates (exponential, Gamma, log-normal, log-
logistic, generalized Pareto, Weibull) were found to accurately model the entire loss 
data. Promising alternatives were a non-parametric transformation kernel estimation 
and an extreme value approach, where excesses over a threshold were modelled by a 
generalized Pareto distribution. The study highlighted the importance of distinguish-
ing between cyber risks of daily life and extreme cyber risks.

2.2 � Background on cyber insurance

Marotta et al. [25] provides an excellent summary of the past, present, and future 
of the cyber insurance market; as seen in 2017. They report an ongoing growth of 
available coverage, spurred by rising demand for insurance protection against cyber 
risks, which in turn is often caused by public coverage of severe cyber incidents [14, 
25, 58], the introduction of stricter legislation across the globe [2, 25], and firms’ 
own loss experience [14, 58]. In 2015, the global market for cyber insurance was 
estimated to be worth around $2 billion in premium, with US business accounting 
for approximately 90% . At the time, fewer than 10% of all companies had purchased 
cyber insurance, with typical buyers coming from industries holding large volumes 
of personal data, such as healthcare and retail, or relying on digitalized technology 
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processes, such as manufacturing and telecommunications. A rapid market growth 
was projected, with total premium reaching $20+ billion by 2025 [4]. As of today, 
this estimate still seems realistic, with a global market size of around $7 billion in 
2020 [59]. However, despite a strong growth and new insurance solutions being 
developed continuously, in 2017 the cyber insurance market in the US still had not 
reached the expected size predicted by optimistic forecasts [25]—thus the question 
of challenges inhibiting the market development arises.

2.2.1 � Challenges and insurability of cyber risk

For the European market’s supply side, ENISA et al. [13] identified the lack of solid 
data on losses, the fast pace of technology evolution, and the lack of adequate rein-
surance among the key factors. Regarding the demand side, companies’ most often 
mentioned reasons to refrain from purchasing cyber insurance include high prices 
[10, 11, 14, 58, 60], lack of availability of desired limits and coverage [14, 58, 60], 
concerns about numerous exclusions and restrictions [10], and lack of understanding 
about own exposure [61] or about policy offers [11].

A fundamental question is if, and under what circumstances, cyber risk is insur-
able at all, given its complex nature. ENISA et al. [13] first examined this question 
and concluded that cyber might well be an insurable type of risk fulfilling almost 
all of the considered desiderata. A more detailed analysis based on a dataset from 
an operational risk database was conducted in Ref. [62] and subsequently adressed 
in Ref. [63]. Their study identified the main problems to be lack of independence of 
loss occurrence, presence of information asymmetries, and lack of adequate cover 
limits. However, they remark that some problematic aspects might be alleviated in 
the future and thus advocate for systematic data collection, e.g. via platforms for 
data sharing organised by national regulators or international associations.

2.2.2 � Cyber insurance policies: coverage and exclusions

Ignoring the academic question “to be (insurable), or not to be,” in practice an imma-
ture cyber insurance market has developed and an increasing scope of cyber insur-
ance products is available. The majority of coverage is offered as dedicated cyber 
coverage [11, 14], with customers frequently shifting from endorsement to stand-
alone policies [58]. The most sought-after types of coverage include cyber-related 
business interruption, data breaches, cyber extortion, and fund transfer fraud/social 
engineering [14, 58]. Cyber policies typically cover the most common and costly 
incidents, including human error, mistakes, and negligence, external attacks by cyber 
criminals, system or business process failures, and malicious or criminal insiders. 
Rarely, however, attacks against business partners, vendors, or other third parties are 
included [10]. All policies generally distinguish between first and third party (liabil-
ity) losses [15]. A systematic qualitative analysis of cyber insurance policies across 
the US [15] found a surprisingly strong similarity regarding covered losses, where 
the ten most commonly covered losses included costs of claims expenses (includ-
ing legal expenses from penalties, defense, and settlement costs), public relations 
services, costs of notification of affected individuals, business income loss, data or 
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system restoration, forensic investigation costs, and data extortion expenses. Roma-
nosky et al. [15] points out that the top covered costs are cleanup costs, i.e. indirect 
costs in order to comply with laws, manage the firm’s reputation, and reduce fur-
ther expenses following a breach. Other studies found similar results for the covered 
types of losses (e.g. Refs. [2, 10, 16, 25]).

Regarding exclusions, Romanosky et al. [15] found more variation between poli-
cies, where the most common exclusions stemmed from criminal, fraudulent, or 
dishonest acts, errors or omissions, intentional violation of a law, criminal inves-
tigations or proceedings, and payment of fines, penalties, or fees. Furthermore, 
hard-to-quantify costs like loss of employee productivity or brand damage are often 
excluded [10].

Lastly, an important issue to mention is non-affirmative or silent cyber cover, 
meaning that cover for cyber incidents may exist for example in traditional property 
and casualty policies, even though this was not the intention of the underwriter [12]. 
Misconceptions like this might lead to a dangerous perception gap for insureds [11] 
who suffer from an illusion of protection as well as insurers who might suffer from 
(unintentionally written) exposure to cyber risk.

2.2.3 � Cyber insurance: risk assessment and pricing in practice

In the US, carriers typically assess an applicant’s cyber risk through questionnaires, 
most of which emphasize the amount and type of data handled by the investigated 
company, whereas the technical infrastructure and IT security management receive 
less attention [15]. The sample questionnaire for risk assessment for cyber insur-
ance by the German Insurance Association [64] differentiates between three risk cat-
egories primarily according to the annual turnover of a company and, secondarily, 
according to certain risky business units (e.g. e-commerce or handling of sensitive 
data), where the number of questions for a candidate increases with increasing risk 
category.

Regarding pricing, there seem to be large differences between carriers, while sur-
prisingly, some of the recurring themes are reliance on external sources, estimation, 
comparison with competitors, using underwriter’s experience, and adaptation of 
prices from other insurance lines [15]. Similarly, respondents in Refs. [14, 58] stated 
that competition between carriers seemed to prevail over actuarial assessment of the 
cost of risk. Most examined policies in Ref. [15] multiply a base premium by vari-
ables relating to standard insurance factors and industry-related factors, where high 
hazard weightings are assigned to businesses that collect and store a high volume of 
sensitive data or operate in industries like retail, healthcare, and the financial indus-
try. Finally, premium multipliers are commonly assigned according to the outcome 
of the questionnaire regarding IT security (e.g. privacy controls, network security 
controls, existence of an incident response plan). In conclusion, the impression man-
ifests that while insurers are trying to get a better understanding of cyber risk and its 
drivers, due to the lack of ample reliable data to describe the problem with sufficient 
statistical precision, as of today pricing often happens on an ad-hoc basis and estab-
lished quantitative models do not exist, yet.
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2.2.4 � The potential of cyber insurance: insurance as a service

While traditionally insurance is a means of risk transfer, cyber insurance can 
potentially offer more than compensation for monetary losses. Many insurers 
already advertise the services their cyber insurance policies include, e.g. preven-
tion and incident response services or crisis communication support [65]. Moreo-
ver, ENISA et al. [13] highlights possible benefits of the development of a cyber 
insurance market such as the potential to incentivise firms to increase IT secu-
rity through premium discrimination or the development of a market for secu-
rity consulting firms that investigate security practices as part of the underwriting 
process.

Another future topic for insurers concerns arrangements and standards that facili-
tate sharing data and information about cyber incidents. In order to help corpora-
tions to overcome their resentments about sharing such data, it is the insurers’ task 
to demonstrate that pooling data enables them to improve their range of services and 
design adequate new and transparent products that meet companies’ needs [11].

Thus, despite most academic works concluding that in their theoretical frame-
works cyber insurance cannot improve social welfare or network resilience, in prac-
tice the development of adequate, transparent cyber insurance products and services 
might entail a number of benefits transcending a mere possibility for companies’ 
cyber risk transfer. In summary, during the last few years research on cyber risk has 
considerably increased and various aspects have been considered (disjointly). Our 
work focuses on the viewpoint of actuarial science, but we aim at providing a holis-
tic modelling approach, taking into account both IT security and economic factors.

3 � Cyber risk: a holistic view

Cyber risk as a multi-faceted and young risk still lacks an established definition 
in the (insurance) literature. We therefore introduce key characteristics and risk 
factors a cyber risk model should comprise.

3.1 � Definition and key characteristics

Eling et al. [66] summarizes the origins, consequences, and key characteristics of 
cyber risk as follows:

 “Any risk emerging from the use of information and communication tech-
nology (ICT) that compromises the confidentiality, availability, or integrity 
of data or services. [...] Cyber risk is either caused naturally or is man-
made, where the latter can emerge from human failure, cyber criminality 
(e.g. extortion, fraud), cyberwar, and cyber terrorism. It is characterised by 
interdependencies, potential extreme events, high uncertainty with respect 
to data and modelling approach, and risk of change.” 
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Interpreted from the actuarial perspective, the traditional approach of quantify-
ing risk by frequency and severity of incidents, and combining them (potentially 
using an appropriate dependence structure) to obtain an aggregated loss distribu-
tion is complicated for cyber risk. We follow [25, 63] in summarizing the central 
properties of cyber risk:

•	 Absence of historical data: The novelty of this risk and the absence of an estab-
lished terminology for cyber incidents makes it difficult for insurers to create a 
reliable database with information on losses. This is exacerbated by a reporting 
bias, i.e. companies are often reluctant to reveal incidents in order to avoid repu-
tation damages.

•	 Dynamic risk type: Cyber risk is as non-stationary as the underlying technol-
ogy and legal framework, which makes the usability of past data for modelling 
future losses difficult. Among the main features that underscore the dynamic 
nature of cyber risk are the growing speed and scope of digital transformation, 
widening sources of vulnerability from hyperconnectivity, and the evolution of 
threat actors [2].

•	 Strategic threat actors: Cyber losses do not occur in a completely random 
fashion, as they are often caused by malicious actors with strategic (economic) 
motives and attack patterns. In 2018, Lewis [6] even described the trend of 
cybercrime as a service (CaaS) encompassing a large diversity and volume of 
cybercrime offerings, including products (e.g. exploit kits, custom malware) and 
services (e.g. botnet rentals). Around this, a thriving cybercrime economy has 
emerged from the related communities, offering for instance product develop-
ment and technical support.

•	 Interdependence/Accumulation risk: The interconnectedness of IT-systems 
and the often systemic nature of vulnerabilities induce a dependence structure 
within and across company networks and the potential for loss accumulation.

•	 Interdependence of security: Another result of the network interdependence 
are negative externalities regarding security, which within a game-theoretical 
context might lead to an equilibrium in which all companies underinvest in secu-
rity and, therefore, the overall network is not sufficiently protected.

•	 Difficult impact determination: Due to the intangible nature of information 
assets, it is often difficult to quantify the economic consequences of a cyber inci-
dent.

•	 Information asymmetry: Cyber insurance exhibits two sorts of information 
asymmetry: Adverse selection and moral hazard. The former refers to the chal-
lenge for an insurer to reliably determine a company’s risk exposure, the latter 
refers to the difficulty of ensuring the risk exposure to be maintained throughout 
the entire contract period.

As we focus on actuarial questions, we refrain from considering in more detail 
technological aspects of information security, the economics of cyber security and 
cybercrime, or the legal framework.

However, one important aspect to be mentioned concerns the role of governments 
and legislation. For example, in the European Union, the General Data Protection 
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Regulation (GDPR) came into force on May 25, 2018 with fines up to 20 €  million 
or 4% of annual global revenues, emphasizing that the respective legal framework 
must be considered when modelling the size of cyber insurance claims, as penalties 
and fines may be included in the coverage. Furthermore, besides setting the legal 
framework, Anchen [2] argued that the government could help to promote cyber 
resilience by reshaping incentives and increasing awareness of cyber threats.

3.2 � Cyber risk factors

So far, the term risk was used informally. Going further, we disintegrate risk into 
a combination of threat, vulnerability, and impact (c.f. Ref. [25]). A threat is the 
underlying root cause of the risk, which itself does not necessarily manifest as an 
incident, but is only harmful if there is a corresponding vulnerability in the target 
system. If a threat and an existing vulnerability lead to the occurrence of an incident, 
the impact refers to the consequences, which can be tangible (e.g. direct financial 
consequences) or intangible (e.g. loss of reputation). The process of risk manage-
ment classically consists of identifying risks by characterising threats, vulnerabili-
ties, and impacts, analysing risks with regards to the probability and impact of an 
incident and treating the estimated risks by selecting and applying adequate meas-
ures. As outlined in Ref. [25], there are four classical ways of dealing with risks: risk 
reduction, risk transfer, risk avoidance, and risk acceptance. Clearly, cyber insurance 
is a tool for risk transfer and a potential incentive for risk reduction.

3.2.1 � Threats

In order to assign cyber incidents to a few distinct classes, we recall a quite concise 
definition of cyber risk originally motivated by the study of operational risk man-
agement, namely “operational risks to information and technology assets that have 
consequences affecting the confidentiality, availability, or integrity of information or 
information systems.” [38].

We follow [37] in applying this definition to classify cyber incidents according to 
three classical information security protection goals: confidentiality, integrity, and 
availability of information assets [67]. Table 1 gives an overview of their definitions 
and the incident types that compromise each goal.

Of course, these categories are not mutually exclusive; an example combining 
features of fraud and business interruption is a Ransomware attack, i.e. extortion for 
temporarily withheld data. We nevertheless implement the above distinction, as it is 
known from data breaches that incidents of different kinds typically show a differ-
ent statistical nature [68] and, moreover, the economic consequences vary across the 
incident categories [55]. An incident falling into more than one class could e.g. be 
assigned partially to both of them according to the losses it entails, e.g. for the Ran-
somware case, losses from the interruption of operations under BI and losses from 
ransom payments under FR. Furthermore, we can understand FR as a general class 
of incidents that cannot be distinctly classified as DB or BI.
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Until a few years ago, data breaches have been the most observed type of inci-
dent, see Sect.  2.1. Recently, however, the potential impact from cyber-related BI 
has become a major concern [4] whose financial consequences could equal or sur-
pass losses from a data breach. Vice versa, cyber incidents have become the most 
feared BI trigger [12]. Our classification is quite similar to the definition of a cyber 
attack used in Ref. [13] which, however, only focuses on malicious cyber attacks. In 
our view, to capture the whole scope of cyber incidents, a second distinction along 
another dimension, namely the root cause, should be made.5 Here, the following 
should be distinguished:

•	 Targeted attacks: Malicious attacks that target one firm specifically due to its 
characteristics and assets. Usually, the attack vector is tailor-made to circumvent 
the company’s defense strategies.

•	 Individual failures: Non-malicious incidents at single firms that happen due to 
internal or external machine or system malfunction or human error.

•	 Untargeted attacks: Malicious attacks (from an external source) that do not tar-
get one firm specifically because of its characteristics, but are opportunistic in 
the sense that they attack many available targets—usually simultaneously.

•	 Mass failures: Non-malicious events that affect multiple entities simultaneously, 
such as the failure of a cloud service provider.

Combining incident types and root causes yields the partition of cyber incidents 
as shown in Table 2.6 Note that we use terminology that is common in the natu-
ral catastrophe context and is applied in the cyber context in Ref. [70]: an incident 
refers to a single loss, whereas an event can cause many related incidents.7

One can further scrutinize motives of individuals or groups for targeting compa-
nies via cyber attacks. CRO Forum [69] defines five types of threat actors (with cor-
responding motivation): nation states (strategic), organised criminals (economic), 
hackers (reputational), hacktivists (political), and insiders. The last group includes 
unintentional insiders, emphasizing that, although malicious attacks are more pub-
licly present, a large share of cyber incidents stems from human error or technical 

6  This categorisation also comprises classifications by other sources, e.g. Refs. [51, 55], the PRC data-
base, the database of Advisen (https://​www.​advis​enltd.​com/​data/​cyber-​loss-​data/) and the four incident 
types of Ref. [69].
7  Note that the common IT terminology of systemic vulnerabilities introduced in Sect.  3.2.2 is trans-
ferred directly to the terminology of systemic events used throughout this work. As this might be reminis-
cent of the term systemic risk used in the finance literature, let us already emphasize that we understand 
the risk from systemic events in the cyber context as neither the risk of a cascading failure of a whole 
industry nor a mixture of underlying, non-diversifiable market factors. Rather, we understand that sys-
temic vulnerabilities create common entry points for external threats to the system and therefore intro-
duce the potential for common external shocks to the whole portfolio or parts of it and thus multiple 
dependent, simultaneous loss occurrences.

5  To avoid confusion, the well-known classification of cyber risk by CRO Forum [69], which distin-
guishes four types of cyber incidents and four potential root causes, should be mentioned. In this work, 
we consider their classification’s root causes in the context of vulnerabilities and denote as root cause the 
actual origin of the incident.
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problems. This applies to cyber-related BI [4, 12], data breaches [5, 12], and general 
cyber incidents [3, 55, 56].

One peculiar type of targeted attacks not yet explicitly mentioned are so-called 
supplier attacks, where a company is not attacked directly but through attacks on 
supply-chain partners (with potentially weaker defenses). Although this so far only 
accounts for a minority of incidents, studies have identified a trend of attackers 
slowly shifting their attack patterns to exploit supply chain partner environments, 
particularly for industries with mature cybersecurity standards [3], and thus many 
companies will increasingly seek to extend insurance cover to their supply chains 
[4].

3.2.2 � Vulnerabilities and controls

Threats only manifest as successful incidents if there exists an exploitable vulner-
ability in the target system [36]. We distinguish between symptomatic and systemic 
vulnerabilities (c.f. Ref. [36, 71]), where the former only affect single firms (e.g. via 
custom software), while the latter can affect many firms simultaneously (e.g. via a 
vulnerability in standard software). Especially the second kind is worrisome, as it 
exposes many potential targets to the same threat and thus could lead to highly cor-
related and simultaneous losses [36]. From the viewpoint of a company, a vulner-
ability can be mitigated by establishing adequate controls, both technical (e.g. anti-
virus software) and non-technical (e.g. awareness campaigns [36]).

Investments in cyber security require strategic decisions and cannot be limited 
to the prevention of cyber incidents, but must also take into account the discov-
ery, investigation, and containment of an attack and the fast recovery of systems 
to a working state [3]. Many academic works have studied the problem of finding 
an optimal security level, balancing the cost of controls against the benefits from 
reduced losses (see Sect. 2.1). We do not further study this problem here, but rather 
conclude that a firm’s IT security level must be a central parameter for an insurance 
company’s risk assessment (as it already is in practice [15]).

Besides opportunistic attacks that stem from the opportunity of exploiting an 
existing vulnerability, we also consider targeted attacks on a specific victim. Thus, 
further firm characteristics that incentivise such attacks need to be identified. Con-
sidering the list of threat actors in the previous section, the following characteristics 
arise:

•	 Industry sector: Previous studies indicate that both the number and cost of 
cyber incidents depend on the industry [3, 5, 51, 52, 54, 55], with regulated 
industries such as healthcare and financial services suffering most. Wheatley 
et al. [54] mention that the industrial sector as a risk factor may serve as a proxy 
to identify relatively homogeneous subgroups of companies with respect to their 
frequency of interaction with consumers and the total volume of personal data 
they guard.

•	 Data: It is intuitive that indeed the amount and sensitivity of data handled by the 
company is a factor, as especially actors with economic motives will target com-
panies with a high amount of valuable data in order to maximize their economic 
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gain. In practice, this is already incorporated into insurance pricing via hazard 
weightings [15].

•	 Company size: Regarding the size of a company, there are different aspects to 
be considered: Large, publicly known companies are prime targets for threat 
actors with reputational motives, whereas SMEs are often worse protected due to 
budget constraints or their smaller awareness for cyber risks.

Eling and Wirfs [56] considered, among others, the company-specific covariates 
industry sector and size and found both of them to be highly significant for the fre-
quency of all kinds of cyber incidents in their model.

3.2.3 � Impact

Parallel to increasing occurrence rates, the economic consequences of various cyber 
incidents have recently become more severe, with BI and information loss having 
the highest monetary impact [3]. For data breach incidents, the average cost could 
be up to several million USD [5, 10], where the biggest financial consequence is 
found to be lost business. Quantifying the consequences of cyber incidents is dif-
ficult due to the scarcity of historical data and the various (intangible) types of costs. 
Nevertheless, earlier studies give some indications of cost drivers.

For data breaches, Ponemon Institute LLC [5] find the average cost per record 
to depend on the root cause (malicious attacks vs. system failures and human error) 
and the industry sector. The latter could be explained by the fact that the rate of lost 
customers and business depends on the industry, but also by considering the impact 
of regulation and litigation on breach cost causing highly regulated industries to suf-
fer larger losses [12]. An effect of the company size on the breach cost was reported 
in Refs. [53] and [55], who developed a model for the log-cost of a data breach 
depending on the firm’s revenue (as a proxy for size) and the number of compro-
mised records. This is more comprehensive than the well-known Jacob’s formula 
[72], which simply links the log-cost of a data breach to the (log-)number of com-
promised records. Another amendment was proposed in Ref. [52], who argue that 
[72] did not yet take into account the cost of mega data breaches observed in future 
years. Finally, adequate controls can not only decrease the probability of a breach, 
but also its potential consequences: Improvements in data governance programs, 
presence of incident response plans, and employee training all result in average cost 
savings in case of a breach [5, 60].

Concluding, there is evidence that for data breaches the cost of an incident 
depends on the industry sector, the size of the company, the amount of data affected, 
potentially the type of attack, and controls in place. The statistical findings and dis-
tributions used to model the severity of data breaches found in investigations of 
available databases have been summarized in Sect. 2.1. Note that these findings for 
data breaches might not necessarily translate to the other incident types, as different 
types of cyber incidents (e.g. data breaches and privacy violations) are found to dis-
play large median cost differences [55].

It is hard to find information on the economic impact of the other two types of 
incidents studied here, namely BI and fraud. For the former, some sources from the 
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non-cyber domain are available [73–77]. The only sources including indications of 
which distributions are useful to model economic loss from BI are [77], who finds 
that the size of yearly BI insurance claims follows a Pareto distribution with an 
extremely heavy tail and infinite expected claim size, and [75], who suggests model-
ling BI loss by a PERT distribution.

For fraud one might hope to find information in studies on the cost of cyber crime 
but, unfortunately, the data is usually either aggregated over all types of cyber inci-
dents from malicious sources or focuses on information loss/theft. Thus, there is 
very little reliable evidence on the actual cost of cyber fraud. Despite indications 
that cyber risk is quite different from other types of operational risk [56], one way 
might be to draw on knowledge about the modelling of operational risk as, e.g. the 
Basel II framework [78] includes internal fraud and external fraud as event-type 
categories.

Another option is to refer to the recent work of [56], who study all kinds of cyber 
incidents (including data breaches as a subset) using a model where the parameters 
of the distribution of both frequency and severity of cyber incidents might depend 
on firm-specific and incident-specific covariates as well as time. They resort to an 
EVT approach to model the severity of events, using the generalized Pareto distribu-
tion (GPD) to model excesses over a high threshold (the tail of the distribution) and 
a series of simple parametric distributions (e.g. exponential, Gamma, log-normal) 
for the body. The GPD with shape parameter � and scale parameter � is of the form

for x ≥ 0 if � ≥ 0 and x ∈ [0,−�∕�] if 𝜉 < 0 . They build on the work of [57] to fit a 
model where the parameters of the GPD may depend on covariates (including time). 
To the best of our knowledge, their work is the first to model the actual economic 
loss and to consider general types of cyber incidents instead of only data breaches, 
thus we incorporate their approach in our framework.

3.3 � Properties of a cyber risk model

Before proposing a model for cyber risk, we shortly summarize the properties/styl-
ized facts it should possess given the findings from this chapter:

•	 Different types of incidents (DB, BI, and FR/general incidents) should be distin-
guished.

•	 The model should include idiosyncratic incidents and systemic events, where 
both categories can include malicious and non-malicious causes. Systemic events 
stemming from common vulnerabilities are particularly worrisome as they entail 
accumulation risk.

•	 Companies should be viewed as heterogeneous, as their exposure and resilience 
to cyber threats depends on their characteristics. The most relevant such charac-

GPD�,�(x) =

⎧⎪⎨⎪⎩

1 −
�
1 +

�

�
x
�−1∕�

, if � ≠ 0,

1 − exp
�
−

x

�

�
, if � = 0,
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teristics are the industry sector, the company size, the data handled by the com-
pany, and its IT security level.

•	 The model should be able to capture the dynamic nature of cyber risk, as occur-
rence rates as well as impact of cyber incidents may change over time.

4 � Actuarial model

Considering cyber risk a combination of threat, vulnerability, and impact, from an 
actuarial viewpoint it remains to translate this understanding into modelling fre-
quency and severity of losses within a portfolio. After doing so in Sects. 4.2 and 4.3, 
in Sect. 4.4 we address actuarial questions, before illustrating the model in a simula-
tion study in Sect. 5. Note that the proposed model is purposefully constructed in a 
modular way, as some of the assumptions and parameter choices might be updated 
in the future once suitable data is available. Moreover, a user who wants to incorpo-
rate properties of an internal data set can refine individual features of the model (or 
replace parts) without changing the overall structure.

4.1 � Insurance portfolio

Consider K firms, labeled {1,… ,K} , constituting the portfolio of an insurance com-
pany exposed to losses due to cyber incidents (idiosyncratic or caused by systemic 
events). This typically refers to losses covered by stand-alone cyber policies, but 
might in some cases include losses that still fall under traditional policies for some 
insurers (note that a trend towards the elimination of cyber exposure in traditional 
business is observed, hopefully leading to a clear-cut distinction in the future). Fol-
lowing the findings of Sect. 3, we assume that for each company included into the 
insurer’s portfolio, information about relevant covariates is collected via a question-
naire and public information. Table 3 gives an overview of the characteristics we 
identified as relevant, the potential to elicit the necessary information from public 
data or a firm’s voluntary disclosure, and a suggestion for their inclusion in a math-
ematical model.8 Thus, for each firm j ∈ {1,… ,K} , the vector of covariates

is known, yielding a K × 5 covariate matrix

(1)xj = (xj1,… , xj5)
� = (bj, sj, dj, cj, nsupj)

�,

8  We do not claim this list to be exhaustive but stress that all required information can be objectively 
collected by an insurer. For example, one could argue that for an insurer with a world-wide portfolio, 
information on a firm’s location (jurisdiction) should be added as it might influence the severity (e.g. via 
fines to be paid following a data breach) as well as, for targeted attacks, the frequency (as data from some 
countries might be more valuable and therefore a more frequent target) of cyber losses.
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where each row corresponds to one firm in the portfolio and each column to one of 
the above covariates in the order given in Eq. (1). We assume for notational conveni-
ence that all firms are ordered by sector, i.e. suppose there are B sectors and 
Kb̂, b̂ ∈ {1,… ,B}, such that firms in sector b̂ exactly correspond to indices 
i ∈ Ib̂ ∶= {1 +

∑b̂−1

�=1
K� ,… ,Kb̂ +

∑b̂−1

�=1
K� =

∑b̂

�=1
K�} ⊆ {1,… ,K} , where ∑0

�=1
= 0 . This implies that there are exactly Kb̂ firms in each sector b̂ and 

K =
∑B

b̂=1
Kb̂ . Additionally, we denote the ordered values of the fourth column of � 

as (c[k])k∈{1,…,K} and additionally define c[0] = 0 and c[K+1] = 1.9 Analogously, for 
each sector b̂ ∈ {1,… ,B} , denote the Kb̂ ordered values of (ci)i∈Ib̂

 as (cb̂
[kb̂]

)kb̂∈{1,…,Kb̂}
 , 

and additionally set cb̂
[0]

= 0 and cb̂
[Kb̂+1]

= 1 . Thus, on the whole portfolio

and on each sector b̂ ∈ {1,… ,B}

4.2 � Loss frequency

We will use the framework of point processes to model the arrival of cyber inci-
dents. This allows to naturally incorporate time- and covariate-dependence of the 
incident frequency and to distinguish between different types of incidents. A com-
prehensive overview on point processes is given in Refs. [79, 80], whose notation 
we use. In the following, all random variables are defined on a suitable probability 
space (Ω,F,ℙ) , where Ω is the state space, F  a �-algebra on Ω , and ℙ a probability 
measure on (Ω,F) . For our purposes, we focus on simple point processes on the 
non-negative real line, i.e. processes on the state space [0,∞) interpreted as time, 
whose corresponding counting process (N(t))t≥0 =

(
|{i ∈ ℕ ∶ ti ∈ [0, t]}|

)
t≥0 has 

unit increments, where | ⋅ | denotes the cardinality, i.e. the number of elements, of a 
set.

We recall Table 2 for a classification of cyber incidents according to their inci-
dent type and root cause: Idiosyncratic incidents (targeted attacks and individual 
failures) are discussed in the next section, systemic events (untargeted attacks and 
mass failures) are addressed subsequently.

� =

⎛⎜⎜⎝

x�
1

⋮

x�
K

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

x11 ⋯ x15
⋮ ⋱ ⋮

xK1 ⋯ xK5

⎞⎟⎟⎠
,

0 = c[0] ≤ c[1] ≤ … ≤ c[K] ≤ c[K+1] = 1,

0 = cb̂
[0]

≤ cb̂
[1]

≤ … ≤ cb̂
[Kb̂]

≤ cb̂
[Kb̂+1]

= 1.

9  Ties can be ordered arbitrarily.
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4.2.1 � Idiosyncratic incidents

Idiosyncratic incidents are assumed to occur at each firm independently (from inci-
dents at other firms as well as between types of incidents at the same firm). For 
these types of incidents, we assume that any incident is successful in the sense that it 
breaches the firms IT security measures and causes a loss. This is reasonable, given 
that targeted attacks are usually tailor-made against one company and furthermore, 
the majority of non-successful incidents (near misses) of this type might not be 
monitored or recognized.10

We assume the arrival of such incidents of each type {DB, BI, FR} at each firm 
j ∈ {1,… ,K} to follow an inhomogeneous Poisson process with time- and covari-
ate-dependent rate

where the super-/subscript ⋅ stands for one of the incident types ⋅ ∈ {DB,FR,BI} , 
the functions f⋅ additively map (a relevant subset of) the covariates, i.e. 
f⋅(x) = ��,⋅ +

∑
k f�,⋅,k(xjk) for some constant ��,⋅ and g⋅ ∶ [0, T] → ℝ is a measurable 

function describing the time dependence. The explicit form of the functions f⋅ and 
g⋅ is of course unknown but can be estimated from a suitable data set.11 The depend-
ence on covariates and time can differ for the three incident types. As an example, 
if one assumes the rate of data breaches to depend on the covariates xj3 (data; for 
targeted attacks), xj4 (IT security; for failures), and xj5 (number of suppliers; for sup-
plier attacks) only, this would yield

where the functions f�,DB,k map factor levels to constants for the ordinal covariates 
indexed k ∈ {3, 5} (i.e. are naturally measurable) and f�,DB,4 is any measurable func-
tion of the numerical covariate xj4.

It is clear that for any interval [𝜏1, 𝜏2] ⊆ [0,∞) (set for now �1 ∶= 0 and �2 =∶ T  ), 
given the covariate matrix � , the number of idiosyncratic incidents of each type 
arriving at firm j follows a Poisson distribution:

(2)�⋅,idio(xj, t) = exp
(
f⋅(xj) + g⋅(t)

)
,

(3)
log

(
�DB,idio(xj, t)

)
= f�DB,idio (xj3, xj4, xj5) + g�DB,idio (t)

= ��,DB +
∑

k=3,4,5

f�,DB,k(xjk) + g�DB,idio (t),

10  As we assume these attacks to occur due to the firm’s characteristics, one might ask if a firm has to 
simply take its exposure to these types of threats as given. For the occurrence rate of malicious targeted 
attacks this might be true, but we assume that the impact of a successful attack can be limited by ade-
quate measures (see Sect. 4.3). Furthermore, putting security measures in place mitigates the occurrence 
of individual failures and potentially implicitly deters targeted attacks as attackers would have to invest 
more resources to devise an attack vector.
11  As this ansatz constitutes a standard generalized additive model, techniques for parameter estimation 
are readily available, see, e.g. Ref. [81]. Using the statistical software R, such models can be fit with the 
function gam(...,family=poisson) from the package mgcv.
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where Λ⋅,idio

j
(T) = ∫ T

0
�⋅,idio
j

(t)dt is the mean measure of the inhomogeneous Poisson 
process.

As the processes are assumed independent between firms, it follows by superpo-
sition that the number of idiosyncratic incidents on the whole portfolio is also Pois-
son distributed:

4.2.2 � Systemic events

Systemic events cause incidents at multiple firms at the same time and, if of mali-
cious origin, are typically of an opportunistic nature, i.e. a set of firms is affected 
not because of their specific features or the economic gain attainable from attack-
ing them, but rather due to the availability of an exploitable attack vector against 
them. This often stems from a common vulnerability, for example a list of bought 
e-mail-addresses that allows a threat actor to send ransomware to employees of cer-
tain firms. In many cases, a common vulnerability would likely affect firms within 
one industry sector (e.g. if custom software is vulnerable), but of course the com-
mon factor can also be unobservable. In any case, to model incidents from systemic 
events, an extension of the simple point process framework of the previous section 
is needed. We use the framework of marked point processes, where the process of 
locations (arrival timepoints of events), now called the ground process Ng(⋅) , is a 
simple12 point process {ti}i∈ℕ on the non-negative real line as above, more specifi-
cally a non-homogeneous Poisson process with log-rate13

where the super-/subscript ⋅ indicates the event type ⋅ ∈ {DB,FR,BI} , and again g⋅ 
is a measurable function of time. Each arrival of the ground process {ti}i∈ℕ is then 
equipped with a mark (mi, Si) ∈ M × S consisting of realisations of components 
mi ∈ M ∶= [mmin,mmax]

w.l.o.g.
= [0, 1] and Si ∈ S ∶= PK , such that the resulting pro-

cess is a marked point process 
{
ti, (mi, Si)

�
}
i∈ℕ

 on [0,∞) × (M × S) , where M × S 
is called the mark space (for a rigorous definition, see Definition 1 in Online Appen-
dix A.1).

∀j ∈ {1,… ,K} ∶ N
⋅,idio

j
(T) ∼ Poi

(
Λ⋅,idio

j
(T)

)
,

K∑
j=1

N
⋅,idio

j
(T) = N ⋅,idio(T) ∼ Poi

(
Λ⋅,idio(T)

)
, where Λ⋅,idio(T) = ∫

T

0

( K∑
j=1

�⋅,idio
j

(t)
)
dt.

(4)log
(
�⋅,g(t)

)
= g�⋅,g(t),

12  As remarked in Ref. [79], by suitably redefining the marks, any marked point process can be repre-
sented as a marked point process on the same state space with a simple ground process Ng.
13  Of course, the log-link is superfluous in this case and might even seem a bit artificial. However, we 
decide to use this formulation in order to keep consistent with the previous section, especially as we will 
see the results from both sections being treated jointly later on.
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Remark 1  (Interpretation of mark components)  

1.	 mi ∈ M = [0, 1] describes the strength of an event, where strength can be under-
stood e.g. as effectiveness to overcome IT security measures.14 This is useful to 
include, as in reality a wide range of sophistication of attacks exists and capturing 
their strength allows to quantify the effectiveness of IT security measures and the 
sensitivity of the expected loss to their improvement.

2.	 Si ∈ S = PK encodes the subset of the portfolio affected by an event.

The two components of the mark are used jointly to determine which firms suf-
fer a loss from a given event, namely those firms included in the affected subset 
whose security level is lower than the strength of the event. With the above nota-
tion, an event 

(
ti, (mi, Si)

�
)

–	 arrives at time ti,
–	 reaches exactly the firms 

{
j ∈ Si

}
 , and

–	 causes a loss in exactly the firms 
{
j ∈ S∗

i

}
∶=

{
j ∈ Si, cj < mi

}
.

To characterize a marked point process completely, it remains to specify the 
conditional distribution of the marks, given the locations of the Poisson ground 
process Ng (see Proposition 6 in Online Appendix A.1). This is done in the fol-
lowing assumptions whose rationality will be detailed below:

Assumption 1  (Conditional mark distribution)  

	(A1)	 The joint mark distribution is independent of the location t ∈ [0,∞) and the 
marks {(mi, Si)

�}i∈ℕ are independent and identically distributed (iid.).
	(A2)	 The two mark components {mi}i∈ℕ and {Si}i∈ℕ are independent, where the 

distribution of mi is given by the cdf FM (with pdf fM ) and the distribution of 
Si is given by a (discrete) pmf fS.

	(A3)	 mi follows a continuous Uniform distribution on M = [0, 1].
	(A4)	 The distribution of Si is generated by distinguishing between general and sector-

specific events. Given the event type, firms in the relevant subset are affected 
with identical probability and independently from each other. More specifically, 
assume there are r.v. Zij ∈ {0, 1} – such that {j ∈ Si} ⟺ Zij = 1 – whose dis-
tribution depends on independent r.v. Gi ∼ Ber(pG) and Bi following some cat-
egorical distribution on {1,… ,B} with probability {p1,… , pB} ( Gi determines 
whether the event is sector-specific ( Gi = 1 ) or general ( Gi = 0 ); Bi determines 
the affected sector in the former case). Then let 

14  For example, a simple phishing e-mail that would immediately be classified spam is rather weak, 
whereas a sophisticated exploit designed to circumvent state-of-the-art security systems is rather strong.
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 Of course, pG, psec, pgen ∈ [0, 1] and pb ∈ [0, 1], ∀b ∈ {1,… ,B} , s.t. ∑
pb = 1 . We exclude the cases pG = pgen = 0 and (1 − pG) = psec = 0 , which 

lead to the uninteresting case ℙ(Si = �) = 1.

A concrete distributional assumption for a model should ideally be backed by 
empirical evidence. As this is currently not possible due to data scarcity in the cyber 
domain, we stick to the principle of imposing as little (unknown) prior information 
as possible. This justifies (A1) and (A2), as we do not have any evidence that would 
suggest deviating from iid., to introduce any particular dependence, neither between 
locations and marks, nor between the components of the mark. Similarly, regarding 
(A3), one might intuitively rather assume the number of very weak attacks (such 
as easily recognizable spam e-mails) to be higher than the number of very sophis-
ticated attacks. However, as we do not have statistical evidence that would allow to 
choose a particular distribution, we use a Uniform distribution (maximum entropy 
distribution among all continuous distributions on a bounded interval [82]). Con-
sidering (A4), several industry experts have highlighted in conversations with us the 
importance of industry sector-specific systemic events. Thus, we incorporate this 
idea in our model, while again leaving the distribution as simplistic as possible (con-
ditionally iid. Bernoulli draws). Furthermore, note that due to the modular structure 
of the model, each assumption can be altered or replaced individually if suitable 
data indicates the necessity, without compromising the general model structure.

4.2.3 � Properties of the model

In the following, we detail properties of the model and their interpretation in the 
cyber insurance context. As proofs mostly rely on standard techniques, they are 
given in Online Appendix A.3.

Proposition 1  (Distribution of number of incidents and losses) Under (A4), the 
number of incidents per event {|Si|}i∈ℕ follows a Binomial mixture distribution, i.e. 
f|Si||n,p(k) = Binom(n, p, k) with

Similarly, under (A3) and (A4), the number of losses per event {|S∗
i
|}i∈ℕ follows a 

Binomial mixture distribution, i.e. f|S∗
i
||n,p(k) = Binom(n, p, k) with

ℙ(Zij = 1 | Gi = 0) = pgen iid. ∀j ∈ {1,… ,K},

ℙ(Zij = 1 | Gi = 1,Bi = b̂) =

{
psec iid. ∀j ∈ Ib̂,

0 else.

(5)(n, p) =

{
(K, pgen) with weight (1 − pG),

(Kb̂, psec) with weight pG pb̂, b̂ ∈ {1,… ,B}.

(6)

(n, p) =

{
(K∗, pgen) with weight (1 − pG) (c[K∗+1] − c[K∗]), K∗ ∈ {0,… ,K},

(k∗
b̂
, psec) with weight pG pb̂ (c

b̂
[k∗

b̂
+1]

− cb̂
[k∗

b̂
]
), k∗

b̂
∈ {0,… ,Kb̂}, b̂ ∈ {1,… ,B}.
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Notice that the distribution of {|S∗
i
|}i∈ℕ implies the distribution of {|Si|}i∈ℕ as the 

special case where c[k] = 0,∀k ∈ {1,… ,K} , i.e. the worst-case scenario where no 
firm has any IT security measures in place and thus the number of incidents and 
losses is equivalent.

Proposition 2  (Conditional incident and loss probability) For a firm j1 ∈ {1,… ,K} 
in sector bj1, the probability of being affected by an event, given the information that 
another firm j2 ∈ {1,… ,K} in sector bj2 has been affected (i.e. the conditional inci-
dent probability), is given by

P(j1 ∈ Si | j2 ∈ Si) =





p2
sec pbj2

pG + p2
gen (1 − pG)

p̃(bj2)
, bj1 = bj2 , (7a)

p2
gen (1 − pG)

p̃(bj2)
, bj1 �= bj2 , (7b)

 where

is the (unconditional) incident probability for each firm, given its industry sector.

Likewise, for the conditional loss probabilities,

P(j1 ∈ S∗
i | j2 ∈ S∗

i ) =





p2
sec pbj2

pG + p2
gen (1 − pG)

p̃(bj2)
, bj1 = bj2 , cj1 ≤ cj2 , (9a)

p2
gen (1− pG)

p̃(bj2)
b, j1 �= bj2 , cj1 ≤ cj2 , (9b)

F̄M (cj1)
F̄M (cj2)

(p2
sec pbj2

pG + p2
gen (1− pG)

p̃(bj2)

)
, bj1 = bj2 , cj1 > cj2 , (9c)

F̄M (cj1)
F̄M (cj2)

(p2
gen (1− pG)

p̃(bj2)

)
, bj1 �= bj2 , cj1 > cj2 , (9d)

 where the unconditional loss probability is given by

The above results are interesting from a practical viewpoint: If an insurer is noti-
fied about a cyber incident by one of its policyholders (many policies include man-
datory immediate notification or even the provision of an immediate-response-team 

(8)p̃(bj) ∶= ℙ(j ∈ Si | bj) = pG pbj psec + (1 − pG) pgen

(10)ℙ(j ∈ S∗
i
| bj) = F̄M(cj)

(
pG pbj psec + (1 − pG) pgen

)
= F̄M(cj) p̃(bj).
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by the insurer), it is worthwhile to find (and warn!) firms with a high conditional 
probability of having been affected by the same event, thus potentially giving them 
the chance to avert the actual manifestation in their firm (e.g. by warning employees 
about a phishing threat or updating vulnerable software). The information about an 
incident in one firm always has a non-negative effect on the incident probabilities for 
other firms of the same sector ((7a) vs. (8); a formal proof of this statement is given 
in Online Appendix A.3), while the effect can go in either direction for firms of dif-
ferent sectors ((7b) vs. (8)). For a detailed illustration, see Fig. 1. The same holds for 
the information of a suffered loss, i.e. the probability of suffering a loss increases 
with the knowledge that another firm of the same sector has suffered a loss, and the 
increase is larger if the harmed firm’s IT security level exceeds the one of the firm 
under consideration.

Analogously to the notation in the previous section, for any interval 
[0, T] ⊆ [0,∞) , given the arrival process 

{
ti, (mi, Si)

�
}
i∈ℕ

 and the covariate matrix � , 
the number of incidents N̄ ⋅,syst

j
 resp. losses N⋅,syst

j
 at each firm follows a Poisson pro-

cess, where the rate can be obtained by thinning the ground process N⋅,g of arrivals 
{ti}i∈ℕ appropriately (see Ref. [83] and Proposition 5 in Online Appendix A.1). In 
particular

Contrary to the previous section, we cannot transition to the portfolio level by sim-
ple superposition due to lack of independence between firms. Instead, we express 
the cumulative number of incidents N̄ ⋅,syst(T) resp. losses N⋅,syst(T) across the entire 
portfolio for fixed T > 0 as a compound Poisson distributed r.v.

where N⋅,g(T) ∼ Poi
( ∫ T

0
�⋅,g(t)dt

)
 and {|Si|}i∈ℕ resp. {|S∗

i
|}i∈ℕ are iid. mixed Bino-

mial and independent from N⋅,g(T).15 Using well-known results for the calculation of 
the expectation and variance of a compound Poisson r.v. (details in Refs. [84, 85] 
and Online Appendix A.2), this yields:

Proposition 3  (Overdispersion of systemic incident/loss numbers) Assume K > 1 
and Kb̂ > 1 for at least one b̂ ∈ {1,… ,B} with pb̂ > 0. Then, the cumulative number 

N̄
⋅,syst

j
(T) =

N⋅,g(T)∑
i=1

�{j∈Si}
∼ Poi

(
p̃(bj)Λ

⋅,g(T)
)
,

N
⋅,syst

j
(T) =

N⋅,g(T)∑
i=1

�{j∈S∗
i
} ∼ Poi

(
p̃(bj)F̄M(cj)Λ

⋅,g(T)
)
.

N̄⋅,syst(T) =

N⋅,g(T)∑
i=1

|Si| and N⋅,syst(T) =

N⋅,g(T)∑
i=1

|S∗
i
|,

15  The notation N̄ and N alludes to the fact that the number of incidents can always be considered a 
worst-case bound for the number of losses (counterfactual analysis: what had happened if no security 
was in place at all); in particular, for a given realisation {ti, (mi, Si)}i∶ti∈[0,T] always N̄⋅,syst(T) ≥ N⋅,syst(T).
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(a)

(b)

Fig. 1   We illustrate the effect of the information that a firm of the same (resp. a different) sec-
tor has been affected by an event on the incident probability for just two sectors. (a) shows the (un)
conditional probabilities for a firm from sector 1 dependent on p1 . The other parameters are cho-
sen as pG = psec = pgen = 0.5 (thin lines) or pG = 0.5, psec = 0.2, pgen = 0.8 (thick lines), such that 
one observes that for bj1 ≠ bj2 , the conditional probabilities can be above or below the unconditional 
one (solid line), whereas for bj1 = bj2 , the conditioning has a non-negative effect in both cases. Like-
wise in (b), for pG = 0.5, pgen = 0.5, p1 = 1 − p2 = 0.75 , probabilities for all cases are shown depend-
ent on psec . Observe again that conditioning on the same sector has a non-negative effect, whereas 
when conditioning on the other sector, there is an intersection ℙ(j1 ∈ Si) = ℙ(j1 ∈ Si | j2 ∈ Si) (and 
ℙ(j2 ∈ Si) = ℙ(j2 ∈ Si | j1 ∈ Si) ) at psec = 0.4305
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of incidents resp. losses from systemic events is overdispersed, i.e. has a dispersion 
index (DI = variance-to-mean ratio) exceeding 1.

It is well-known that the Poisson distribution exhibits equidispersion ( DI = 1 ), 
while empirical studies in non-life insurance often report overdispersed claim count 
data and therefore recommend to use alternative distributions (e.g. negative Bino-
mial) to model claim counts. Proposition 3 shows that our construction using a 
marked Poisson process to allow simultaneous arrivals of several incidents (resp. 
losses) due to one systemic event likewise is able to introduce overdispersion.

4.2.4 � Summary: loss frequency model

Recall that idiosyncratic incidents arrive to each firm j ∈ {1,… ,K} independently 
as inhomogeneous Poisson processes with rates �⋅,idio

j
(t) , ⋅ ∈ {DB,FR,BI} . Each 

incident is assumed to cause a loss. For a fixed time T > 0 , the overall number of 
losses caused by idiosyncratic incidents up to this time N⋅,idio(T) follows a Poisson 
distribution with rate Λ⋅,idio(T) = ∫ T

0

�∑K

j=1
�⋅,idio
j

(t)
�
dt.

Systemic events arrive to the portfolio with overall rates �⋅,g(t) . Each arrival ti car-
ries a mark including the strength of the event mi and the affected subset Si . An event 
at time ti thus causes incidents in all firms in the set {j ∈ Si} and causes losses in its 
subset {j ∈ S∗

i
} =

{
j ∈ Si, cj < mi

}
 . The total number of incidents and losses from 

systemic events up to time T > 0 , N̄ ⋅,syst(T) resp. N⋅,syst(T) , follow a compound Pois-
son distribution with mixed Binomial jump sizes.

Aggregating the number of incidents and losses from both root causes on the 
level of each individual firm translates to aggregating two independent Poisson r.v.

On the portfolio level, we aggregate two independent compound Poisson r.v. (one 
with jumps of constant size 1 and one with mixed Binomial jump sizes), which 
yields (see Proposition 7 in Online Appendix A.2):

where N(T) ∼ Poi
(
Λ⋅,idio(T) + Λ⋅,g(T)

)
 and {Yi}i∈ℕ are iid., independent of N(T), 

with mixture distribution

DI
�
N̄ ⋅,syst(T)

�
∶=

�ar
�
N̄ ⋅,syst(T)

�

�
�
N̄ ⋅,syst(T)

� = 1 +
(1 − pG) p

2
gen

(K2 − K) + pG p2
sec

∑B

𝓁=1
p𝓁(K

2

𝓁
− K𝓁)

(1 − pG) K pgen + pG psec
∑B

𝓁=1
p𝓁 K𝓁

> 1,

DI
�
N ⋅,syst(T)

�
= 1

+
(1 − pG)

∑K

k∗=0
p2
gen

((k∗)2 − k∗)(c[k∗+1] − c[k∗]) + pG
∑B

𝓁=1

∑K𝓁

k∗
𝓁
=0

p2
sec
p𝓁((k

∗
𝓁
)2 − k∗

𝓁
)(c𝓁

[k∗
𝓁
+1]

− c𝓁
[k∗

𝓁
]
)

(1 − pG)pgen
∑K

k∗=0
k∗(c[k∗+1] − c[k∗]) + pGpsec

∑B

𝓁=1

∑K𝓁

k∗
𝓁
=0

p𝓁k
∗
𝓁
(c𝓁

[k∗
𝓁
+1]

− c𝓁
[k∗

𝓁
]
)

> 1.

(11)
N⋅

j
(T) ∶= N

⋅,idio

j
(T) + N

⋅,syst

j
(T) ∼ Poi

(
Λ⋅,idio

j
(T) + p̃(bj)F̄M(cj)Λ

⋅,g(T)
)
=∶ Poi

(
Λ⋅

j
(T)

)
.

(12)N⋅(T) ∶= N ⋅,idio(T) + N ⋅,syst(T)
d
=

N(T)∑
i=1

Yi,
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Note that so far, we have kept the numbers of losses of different types {DB, FR, BI} 
separate. In general, assuming independence between them, they could be aggre-
gated into one arrival process, but this may not be desirable as also the loss severity 
distributions might be different (see Sect. 3.2.3), and therefore for the determination 
of the portfolio loss their numbers have to be taken into account separately.

4.3 � Loss severity

After describing the model of the cumulative number of cyber incidents and losses 
in the last section, we now turn to their impact, i.e. let Lij ∶= Lj(ti) be a r.v. describ-
ing the non-negative monetary loss caused by a cyber incident reaching firm 
j ∈ {1,… ,K} at time ti ∈ [0, T] . Based on previous findings from academic litera-
ture and the arguments in Sect. 3.2.3, we model the body and tail of the loss severity 
distribution separately and allow the parameters of the distributions to exhibit time- 
and covariate-dependence. Specifically, for all types of incidents, we suggest using a 
combination of log-normal and generalized Pareto distribution based on the findings 
of Ref. [56]. Other promising approaches (e.g. based on Refs. [49] and [72] for DBs 
or based on Ref. [75] for BIs) are detailed in Online Appendix A.4.

As we do not rely on empirical data, we first need to set a threshold between body 
and tail of the to-be-constructed distribution. Therefore, we first assume an underly-
ing log-normal distribution L̃⋅

ij
∼ LN(�⋅

ij
, �⋅) and select a high quantile as threshold, 

e.g. set u⋅
ij
= qz(L̃

⋅

ij
) with e.g. z = 0.95 . Given the threshold, construct the density fL⋅

ij
 

of the loss distribution as16

where TruncLN(�, �, xmin, xmax) denotes a truncated log-normal distribution on the 
interval [xmin, xmax] and GPD(u, �, �) denotes a generalized Pareto distribution with 

FYi
(n) =

Λ⋅,idio(T)

Λ⋅,idio(T) + Λ⋅,g(T)
𝟙[1,∞)(n) +

Λ⋅,g(T)

Λ⋅,idio(T) + Λ⋅,g(T)
F|S∗

i
|(n), n ∈ ℕ0.

(13)

fL⋅
ij
(l) =

{
z fTruncLN(l;�

⋅

ij
, �⋅, 0, u⋅

ij
), l ∈ [0, u⋅

ij
],

(1 − z) fGPD(l;u
⋅

ij
, �⋅

ij
, � ⋅

ij
), l ∈ (u⋅

ij
,∞),

�⋅

ij
= ��,⋅ +

∑
k

f�,⋅,k(xjk) + g�,⋅(ti),

�⋅
ij
= ��,⋅ +

∑
k

f�,⋅,k(xjk) + g�,⋅(ti),

� ⋅
ij
= f�,⋅(xj, ti),

16  Note that when fitting a spliced severity distribution as below, in order to apply established fitting pro-
cedures, one would usually select a global, non-covariate-dependent threshold u and fit each distribution 
onto the data that fall into the “globally” specified regions. As we do not address the question of model 
fitting here, we stick to the more general formulation, as it is interesting to assume that depending on the 
covariates, the classification of a severity as extreme should start at different levels.
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location u, shape � , and scale �.17 As for the idiosyncratic frequency modelling illus-
trated in Sect. 4.2.1, the sum might run over different subsets of covariates for differ-
ent incident types (see e.g. Eq. (3)).

Next, we combine the concepts for frequency and severity modelling to study 
some questions that arise from an actuarial viewpoint.

4.4 � Insurance pricing and risk measurement

Recall that we take the perspective of an insurer, whose portfolio consists of K firms 
exposed to cyber losses whose frequency and severity are modelled as detailed in 
Sects. 4.2 and 4.3. Questions of interest for the insurer when setting up a portfolio of 
cyber insurance policies typically include: 

1.	 Contract design (deductibles, cover limits, coverage period);
2.	 Pricing of individual policies given an applicant’s characteristics;
3.	 Estimation and quantification of the portfolio risk.

In this work, we do not elaborate in detail on the first question and for now assume 
no deductible, no cover limit, and a standard policy duration of one year. These 
assumptions imply that for each incident, the loss suffered by the insured firm and 
the claim size faced by the insurer are equal and the terms will be used interchange-
ably. To study the latter two questions, the total claim amount process is denoted

where it is assumed that the claim number process (N(t))t≥0 is independent of the 
iid., a.s. positive, claim size sequence {Yi}i∈ℕ . We restrict our focus to the case of 
fixed T > 0 , i.e. instead of studying the process (L(t))t≥0 , study the random variable 
L(T). In general, it is very hard to make statements about the exact distribution of L 
and one has to resort to Monte Carlo methods or, if applicable, a numerical routine 
like the Panjer recursion.

In our context, the loss for a firm j ∈ {1,… ,K} up to time T > 0 from one type of 
cyber incidents (e.g. data breaches) can be expressed as

L(t) =

N(t)∑
i=1

Yi, t ≥ 0,

L⋅
j
(T) =

N⋅

j
(T)∑

i=1

L
⋅,(j)

i
,

17  Note that when fitting a GPD with covariate-dependent parameters using the method developed in 
Ref. [57], an orthogonal reparametrization (�(xj, t), �(xj, t)) ∶= (�(xj, t), log(�(xj, t)(1 + �(xj, t)))) is cho-
sen. The resulting MLE 𝜈̂ can be transformed back directly to an estimator 𝛽  , but the dependence of � 
on the covariates does then not follow a GAM structure anymore. Therefore, a more general functional 
relationship is stated above.
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where N⋅

j
(T) ∼ Poi

(
Λ⋅

j
(T)

)
 as given in Eq. (11) and {L⋅,(j)

i
}i∈ℕ ∶= {Y ⋅,(j)(ti)}i∈ℕ with 

pdf. fL⋅
ij
 as given in Eq. (13). Note that in general the sequence {L⋅,(j)

i
}i∈ℕ is not iid. 

(due to time-dependence). However, if we drop time-dependence, which in practice 
could mean assuming constant severity distributions on one-year intervals consid-
ered separately, L⋅

j
(T) is again compound Poisson, and the total cyber loss incurred 

by firm j ∈ {1,… ,K} is given by

The portfolio loss is simply given by the sum of (dependent) firm losses, i.e.

Regarding the second question of finding a premium Π(T) for an individual insur-
ance policy on [0,  T], we recall the well-known premium calculation principles 
listed below [86]. As it is often impossible to find the exact distributional properties 
of the total claim amount process, the ones based on the first two moments are popu-
lar in practice.

–	 Expected value principle: Πj(T) = (1 + �)�
[
Lj(T)

]
 , with safety loading 𝜌 > 0.

–	 Standard deviation principle: Πj(T) = �
[
Lj(T)

]
+ �

√
�ar

(
Lj(T)

)
 , where 𝜌 > 0.

–	 Exponential principle: Πj(T) =
1

�
log

(
�[e�Lj(T)]

)
 , with risk aversion 𝛾 > 0.

Concerning the question of quantifying the risk of the overall portfolio loss, the two 
most common tail risk measures are the Value-at-Risk (VaR) at a given confidence 
level 1 − � and, if applicable, the corresponding Average Value-at-Risk (AVaR). The-
oretically, for a positive loss r.v. L with cdf FL , they are given by

where F−1
L

 denotes the generalized inverse of FL and (∗) requires FL to be continu-
ous. Note that in cases with very heavy-tailed loss severities (as e.g. observed in 
some of the previous works on cyber risk), AVaR(L) cannot be computed as it relies 
on L to have finite expectation.

Lj(T) =

Nj(T)∑
i=1

L
(j)

i
, where Nj(T) ∼ Poi

(
ΛDB

j
(T) + ΛFR

j
(T) + ΛBI

j
(T)

)
,

and F
L
(j)

i

=
∑

y∈{DB,FR,BI}

Λ
y

j
(T)

ΛDB
j
(T) + ΛFR

j
(T) + ΛBI

j
(T)

F
L
y,(j)

i

.

L⋅(T) =

K∑
j=1

L⋅
j
(T) and L(T) =

K∑
j=1

Lj(T).

VaR1−�(L) ∶= inf
{
l ∈ ℝ ∶ ℙ(L ≤ l) ≥ 1 − �

}
= F−1

L
(1 − �),

AVaR1−�(L) ∶= 𝔼
[
L||L ≥ VaR1−�(L)

] (∗)
=

1

1 − � �
1−�

0

VaR� (L)d� ,
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5 � An example of an actuarial application via a simulation study

The aim of the following section is to illustrate the application of the proposed mod-
elling approach to pricing and risk measurement in an actuarial context. To this end, 
a fictitious insurance portfolio is constructed and parameters for the frequency and 
severity distributions as given in the previous sections are proposed based on pre-
vious academic literature and expert judgement. Based on the resulting simulated 
portfolio loss distribution, the effect of interdependent losses and the introduction 
of cover limits is highlighted. Due to the scarcity of available empirical data, the 
parameters and model assumptions could not yet be fit to (resp. challenged on) a real 
dataset; this remains an important task for future research.

5.1 � Portfolio composition and company covariates

We first construct a (fictitious) insurance portfolio consisting of K = 50 firms from 
B = 6 sectors, all details are listed in Table 3. A bigger portfolio, which is used in 
our simulation study, is then obtained by copying each firm 10 times with IT secu-
rity levels varying from 0.05 to 0.95 (stepsize 0.1). This enables us to compare the 
results of the entire portfolio ( K = 500 ) with sub-portfolios ( K = 50 ) of different 
security level (denoted sub-portfolio 1 – 10), and for each individual firm with vary-
ing security level. Table 4 gives an overview of the relative and absolute frequencies 
for each covariate in each sub-portfolio.

5.2 � Frequency distribution

We require our simulation to adhere to the following stylized facts (F1)–(F5) for the 
frequency of idiosyncratic incidents: 

	(F1)	 Consider a T = 5-year observation period, during which the frequency increases 
by around 67% [3]. The increase is realized in yearly (log-linear) steps; within 
each year the frequency is assumed constant.

	(F2)	 During the first year ( t ∈ [0, 1) ) and for baseline covariate levels 
sj = dj = nsupj = 1, cj = 0.5 , the incident (loss) probability is 0.01 (this is a 
conservative estimate).
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	(F3)	 Incidents are distributed into 25% DBs [56], 25% BIs, and 50% FR (or other).
	(F4)	 An increase of either of the categorical covariates sj, dj , and nsupj by one (two) 

level(s) from the baseline implies an increase of the incident rate by 10% (20%).

	(F5)	 Assume a log-linear influence of the security level such that increasing it to the 
maximum ( cj = 1 ) yields a halved rate of cyber incidents (and thus lowering it 
to the minimum ( cj = 0 ) leads to a doubled rate), compared to the baseline.

These assumptions imply the parameters for the covariate-dependent rates of idio-
syncratic incidents (c.f. Eq. (2)) in the upper panel of Table 5.18 For systemic events, 
we follow Sect.  4.2.2, where the assumed parameters for the ground process (c.f. 
Eq. (4)) and the mark distribution are given in the lower panel of Table 5. Although 
it is difficult to make assumptions, as none of the existing studies explicitly dis-
tinguish systemic events, Table  5 reflects the following simplifying assumptions 
(F6), (F7) (as before, we do not have any information to justify any more complex 
assumptions): 

	(F6)	 The mark distribution is equal for DB, BI, and FR. Sector-specific events are 
(discretely) uniformly distributed over all sectors.

	(F7)	 The number of incidents from systemic events is similar to the number of 
idiosyncratic incidents for baseline covariate levels, which implies a doubled 
overall incident frequency (and a 50% increased loss frequency).

5.3 � Severity distribution

For this study, we deviate from the very high mean (resp. median) severity estimates 
given in the existing literature (several million US$ for a single incident) for two rea-
sons: First, it is reasonable that events listed in public databases exhibit much higher 
losses than the average daily-life cyber incident that goes unnoticed by the public 
and second, insurance policies currently offered on the market (especially policies 
for SMEs) usually have cover limits of up to 5 million US$ , therefore it would not be 
reasonable to assume mean claim severities that already exhaust the policy limit.19 
Recall that this study is intended as a prototype to show the general behaviour of 
the model; absolute numbers given should not be interpreted as representative of 

19  Note that as the existing studies do not state whether the recorded cyber losses were fully or partly 
insured, it is not possible to make statements about the relationship between those losses and the size of 
potentially corresponding insurance claims.

18  To illustrate how these parameters relate to the assumptions, take the example of (F4): 
The increase of the idiosyncratic rate of some type of incident when increasing a categori-
cal covariate by one level from the benchmark (where the benchmark is represented by the inter-
cept) is given by �⋅,idio((xj1, 2, xj3, xj4, xj5), t)∕�

⋅,idio((xj1, 1, xj3, xj4, xj5), t) = exp(f�,⋅,2(2)) . Equat-
ing this ratio to 1.1, i.e. assuming a c.p. 10% increase, yields f�,⋅,2(2) = 0.095 . Likewise, equating 
�⋅,idio((xj1, 3, xj3, xj4, xj5), t)∕�

⋅,idio((xj1, 1, xj3, xj4, xj5), t) = exp(f�,⋅,2(3)) to 1.2, i.e. assuming a c.p. 20% 
increase, yields f�,⋅,2(3) = 0.18.
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a real-world portfolio. The following assumptions (S1)–(S7) lead to the choice of 
parameters given in Table 6: 

	(S1)	 During the first year and for baseline covariate levels, for all types of incidents 
the expected claim size of the underlying log-normal distribution is given by 
�[L̃ij] = 50.

	(S2)	 The standard deviation of the underlying log-normal cost distribution is con-
stant and consistent with the results for (negligent) data breaches in Refs. [49] 
and [72].

	(S3)	 The expected claim size �[L̃ij] increases by 10% (20%) for a one (two) level 
increase of either sj or dj relative to the benchmark. The influence of cj on �[L̃ij] 
is log-linear, where cj = 1 results in a halved expected claim size.

	(S4)	 Over the T = 5-year observation period, �[L̃ij] increases (in yearly log-linear 
steps) by 60%.

	(S5)	 For large claims, the shape parameter � of the GPD is constant and close to 
1 [56] to model heavy-tailed behaviour while avoiding a switch from a finite-
mean to an infinite-mean scenario.

	(S6)	 The expected threshold exceedance (relative to the correspond-
ing threshold, dependent on the underlying log-normal distribution) 
�[Lij − uij | Lij > uij]∕uij = 𝛽ij (uij(1 − 𝜉ij))

−1 equals 0.5 for baseline covariate 
levels, i.e. the expected size of a claim exceeding the threshold is given by 1.5 
times the threshold.

	(S7)	 The same assumptions regarding covariate- and time-dependence as for small 
claims are made, referring to the expected relative threshold exceedance (e.g. 
a one-level increase of sj leads to a 10% increase) instead of the expected claim 
size. In this case, the influence of cj is linear and such that cj = 1 results in a 
halved expected relative threshold exceedance.20

5.4 � Results of the simulation study

The following results are based on 50.000 simulation runs on a grid of 5 years, reported 
values refer to the first year unless stated otherwise. For each run, the arrival times of 
idiosyncratic incidents (at each firm) and systemic events are generated using the rates 
in Eqs. (2) and (4), respectively. For each systemic event, the affected subset Si is gener-
ated as described in (A4) using r.v. Gi, Bi , and Zij from their respective distributions. 
Furthermore, mi is drawn and the set S∗

i
 deduced from the realisations of Si and mi . This 

20  Assumptions (S6) and (S7) result in equations for � of the type 
� ⋅
ij
= u⋅

ij
(1 − �⋅) (��,⋅ +

∑
f�,⋅,k(xjk) + g�,⋅(t)) with coefficients given in Table  6 which do not strictly fit 

into the framework of [57] for fitting a covariate-dependent GPD. When calibrating the model to data, 
it is not required to make any such assumption. Note, however, that due to the reparametrization in the 
framework of [57], the covariate dependence of � is not intuitive. Therefore, we stick to intuitively inter-
pretable assumptions.
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yields an overall number of losses and incidents for each firm on each step of the grid, 
such that the corresponding severities can be drawn from the appropriate (time- and 
covariate-dependent) distribution.

5.4.1 � Cumulative loss distribution

First, we examine the number of incidents/losses and the distribution of cumulative 
losses in the full portfolio ( K = 500 ) in Fig. 2a and b. We compare the case where 
only actual losses are counted with the case where all incidents are counted (i.e. the 
worst case where all incidents cause a loss). At first glance, the two cases appear to 
be surprisingly similar. Notice, however, that due to the assumptions above, for most 
firms the rate of idiosyncratic incidents outweighs the rate of incidents from sys-
temic events. Furthermore, the lower the security level for a given firm, the higher 
its contribution to the overall number of incidents, and simultaneously the lower 
the effect of distinguishing losses and incidents. Conversely, the higher the security 
level of a given firm, the less likely it is to be affected at all. Therefore, when only 
few cases are registered at all, these cases are likely to have occurred at firms with 
low security and are therefore unlikely to be filtered. The cases where most filtering 
occurs are large systemic events whose effect is clearly reduced (consider the range 
around [45, 65] on the x-axis of Fig. 2b). Of course, this translates analogously to 
Fig. 2a, where particularly the tail of the distribution is altered (x-axis-range around 
[2500, 4000] in Fig. 2a). In this case, it additionally has to be kept in mind that inci-
dents at well-protected firms—which are mostly filtered—are assumed to typically 
cause below-average losses. In both figures, one observes the difference in mean 
between counting losses and incidents, and that the mean is shifted clearly to the 
right from the mode of the body of the distribution. As expected from the assump-
tions above, we observe a shift of the cumulative loss distribution to the right as 
time progresses. To corroborate the simulation results, we generate 50.000 samples 
of incident/loss numbers following Proposition 1 and Eq. (12) and compare them 
in Fig. 2d. The simulation via Eq. (12) is much faster, but cannot be directly used 
to generate the cumulative loss distribution, as only samples of the total number of 
incidents/losses are drawn without information as to which firms they affect (and 
severity differs between firms).

Furthermore, we compare the cumulative loss distribution for selected sub-port-
folios in Fig. 2c, taking into account only simulation runs where a non-zero loss has 
been observed. As to be expected, we observe a shift of the body and tail of the loss 
distribution to the left as the security level increases. Understanding the cumulative 
loss distribution—especially in the tail—is particularly interesting in the context of 
reinsurance, where common contract design involves so-called excess-of-loss rein-
surance, meaning that (portfolio) losses exceeding a pre-specified limit are ceded. 
For this case, an accurate understanding of the portfolio loss distribution and its tail 
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is clearly essential. Apart from these considerations, insurers are mostly concerned 
with the pricing of individual policies. This is addressed next.

Table 4   Occurrence frequencies of covariate values in the toy portfolio

This dataset is copied ten times with varying IT security level ranging from 0.05 to 0.95

Covariate Scope Frequency

Sector bj FI: finance and insurance 0.30 (15)
HC: healthcare 0.30 (15)
BR: businesses (retail) 0.10 (5)
EDU: education 0.10 (5)
GOV: government and military 0.10 (5)
MAN: manufacturing 0.10 (5)

Size sj 1 Small 0.60 (30)
2 Medium 0.30 (15)
3 Large 0.10 (5)

Data dj 1 Low risk 0.20 (10)
2 Medium risk 0.28 (14)
3 High risk 0.52 (26)

Number of suppliers nsupj 1 Low 0.74 (37)
2 Medium 0.20 (10)
3 High 0.06 (3)

Table 5   Chosen parameter assumptions for frequencies (based on (F1)–(F7))

Idiosyncratic incidents
 Intercept (�DB, �FR, �BI) (−6,−5.3,−6)

 Data factor levels fDB,3(xj3) (0, 0.095, 0.18)
 Size factor levels fFR,2(xj2), fBI,2(xj2) (0, 0.095, 0.18)
 Supplier factor levels fDB,5(xj5), fFR,5(xj5), fBI,5(xj5) (0, 0.095, 0.18)
 IT security dependence fDB,4(xj4), fBI,4(xj4) 1.39 (0.5 − xj4)

 Time dependence g�DB,idio (t), g�FR,idio (t), g�BI,idio (t) 0.128 ⌊t⌋
Ground process of systemic events
 �DB,g(t) = exp(g�DB,g (t)) exp(−3.28 + 0.128 ⌊t⌋)
 �FR,g(t) = exp(g�FR,g (t)) exp(−2.59 + 0.128 ⌊t⌋)
 �BI,g(t) = exp(g�BI,g (t)) exp(−3.28 + 0.128 ⌊t⌋)

Distribution of Si
 (pG, pgen, psec) (0.5, 0.1, 0.2)
 Sector distribution Bi ∼ Unif {1,… , 6} , i.e. pb =

1

6
∀b ∈ {1,… ,B}
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5.4.2 � Premium calculation

Based on the distribution of individual losses, we calculate the first-year premium 
based on the expected value principle given in Sect. 4.4.21 Table 7 compares the fol-
lowing exemplary firms: 

Firm 1:	 A small manufacturing business with low data and supplier risk and low IT 
security standards ( c = 0.15).

Firm 2:	 A medium-sized company in the financial sector with medium data and sup-
plier risk and high IT security standards ( c = 0.85).

Firm 3:	 A large health care provider with high data risk, medium supplier risk, and 
average IT security standards ( c = 0.55).

The results show that the IT security level dominates the covariate-effect on the 
premium, which is in line with the assumptions. As in practice, the calculation of 
expected losses is typically based on historically recorded (rare!) losses, only very 
few firms with the exact same covariate combinations might be in the portfolio and 
therefore, the premium is rather calculated based on all losses within a class of firms 
considered homogeneous. New firms falling into the same class are then assigned 
the same premium. The quite difficult task is to find an appropriate way of parti-
tioning firms into homogeneous groups. If we partition firms according to their IT 
security level and calculate their premium by taking into account all firms with the 
same level, we obtain the results shown in Fig. 3.22 As to be expected, the premium 

Table 6   Chosen parameter assumptions for severities (based on (S1)–(S7))

�

Intercept ��,⋅ 3.91
Data factor levels f�,DB,3(xj3) (0, 0.095, 0.18)
Size factor levels f�,FR,2(xj2), f�,BI,2(xj2) (0, 0.095, 0.18)
IT security dependence f�,⋅,4(xj4) 1.39 (0.5 − xj4)

Time dependence g�,⋅(t) 0.1175 ⌊t⌋
� �⋅ 0.076
� ��,⋅ 0.9
�

Intercept ��,⋅ 0.5
Data factor levels f�,DB,3(xj3) (0, 0.05, 0.1)
Size factor levels f�,FR,2(xj2), f�,BI,2(xj2) (0, 0.05, 0.1)
IT security dependence f�,⋅,4(xj4) 0.5 (0.5 − xj4)

Time dependence g�,⋅(t) (0, 0.063, 0.133, 0.211, 0.3) �{⌊t⌋=i}, i ∈ {0,… , 4}

21  Note that for the chosen severity parameters, only the first moment exists (0.5 < 𝜉 < 1) . This prohibits 
the use of the exponential and standard deviation principle. We will remedy this by introducing cover 
limits later.
22  Theoretical premiums in this figure refer to the premium that would be assigned to each firm if the 
expected sub-portfolio loss (the sum of the expected single losses) was allocated evenly among all firms 
in the sub-portfolio. This is analogous to the simulated approach of pricing each firm equally based on 
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(b)

(a)

Fig. 2   In panels (a) and (b), for the entire portfolio ( K = 500 ), the number of incidents and losses and 
the distribution of the cumulative portfolio loss for 50.000 runs is compared. In panel (c), the cumulative 
loss distributions for three sub-portfolios with different security levels, namely 0.05 (Portfolio 1), 0.45 
(Portfolio 5), and 0.95 (Portfolio 10) are shown; here, only runs with non-zero recorded loss are taken 
into account, causing the sample size to vary between portfolios as to be expected. In panel (d), incident 
numbers as in Eq. (12) are simulated such that one can observe the similarity to panel (b)

Footnote 22 (continued)
the loss history of the—assumed homogeneous—portfolio. Combining the two “extremes” of consider-
ing only individual loss experience and only loss experience from a homogeneous group lies at the heart 
of credibility theory approaches and will not be addressed here.
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decreases with increasing security level, while the difference between incidents and 
losses increases. As an alternative to (and validation for) the Monte Carlo simula-
tion, we have furthermore implemented a Panjer recursion scheme using a discre-
tized version of the severity distribution; the results are given in Online Appen-
dix A.5 and corroborate the ones given here.

(d)

(c)

Fig. 2   (continued)
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5.4.3 � Risk measurement on individual and portfolio level

We compare VaR and AVaR for the three firms described above and two sub-portfo-
lios in Table 8, as well as for all sub-portfolios in Fig. 4a and b. The historical esti-
mate refers to the sample quantile from the simulation data, i.e. for a realisation of 
losses � = (L1,… , Ln) , let L(1) < L(2) < … < L(n) denote the order statistics, then for 
a chosen level (1 − �) ∈

(
i−1

n
,
i

n

]
 , VaR1−� and AVaR1−� are estimated as their empiri-

cal counterparts

The POT estimate assumes that for a large threshold u, the excesses are distributed 
according to a generalized Pareto distribution GPD(u, �, �) , and thus VaR1−� and 
AVaR1−� can be estimated as (see, e.g. Ref. [57])

where 𝛽  and 𝜉 are the parameter estimates of the scale and shape of the GPD given 
the data � and n′ is the number of threshold exceedances. As to be expected, both 
VaR and AVaR decrease with increasing security level, while the reduction when 
considering only losses instead of all incidents is more substantial. Note again that 

�VaR1−𝛼(�) = F̂−1
L
(1 − 𝛼) = L(i),

�AVaR1−𝛼(�) =
1

n − i + 1

n∑
j=i

L(j).

�VaR1−𝛼(�) = u +
𝛽

𝜉

(( 𝛼
n�

n

)−𝜉
− 1

)
, �AVaR1−𝛼(�) =

{
�VaR1−𝛼(�)+𝛽−𝜉u

1−𝜉
, if 𝜉 ∈ (0, 1),

∞, if 𝜉 ≥ 1,

Fig. 3   We compare the premium (with loading 0.2 as above) that would be assigned to firms if they were 
grouped according to their IT security level. We observe that simulated values are now very close to 
theoretical ones, as they depend on the loss history of a sub-portfolio of 50 firms, such that Monte Carlo 
noise is reduced (compared to Table 7). We furthermore compare the values for the single firms from 
Table 7 with the portfolio they would be grouped into, and observe that e.g. firm 1, when evaluated on its 
own, is slightly less risky than the average firm in sub-portfolio 2
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for individual firms, the numbers are based on their own loss history only and should 
be interpreted with care.

5.5 � How relevant is accumulation risk?

We have repeatedly stressed the distinction between idiosyncratic incidents and sys-
temic events and emphasized that the latter can lead to accumulation risk (re-)

(a)

(b)

Fig. 4   Comparison of VaR0.99 and AVaR0.99 for all sub-portfolios
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insurers should be particularly worried about. One might now question whether the 
effect of including systemic events on the loss distribution warrants such a more 
complicated model. In order to answer this question (spoiler alert: yes!), we com-
pare the results above with the results of a model that assumes the same marginal 
frequency as before for each firm, but assumes all incidents to be idiosyncratic, i.e. 
to occur independently from other firms. Intuitively, this should lead to the same 
premium for each individual contract, but decrease portfolio risk. Following 
Eq. (11), the overall number of incidents N̄⋅

j
(T) at each firm j ∈ {1,… ,K} is gener-

ated using two independent Poisson r.v.

independently from all other firms. To be able to compare the two cases in each run, 
the number of losses N⋅

j
(T) at each firm j ∈ {1,… ,K} is then generated as

With the severity distributions remaining unchanged, an analogous simulation study 
as above is conducted. Again, we first examine the overall distribution of the cumu-
lative portfolio loss and number of incidents and losses in Fig.  5a and b, respec-
tively. The difference to Fig. 2a and b is immediately evident:

–	 The visible heavy tails for both incident numbers and cumulative losses have 
vanished; thus it can be assumed they have been caused by systemic events with 
many firms affected simultaneously.

–	 In particular, the highest observed number of losses has decreased to around 17% 
of its previous value in both considered years, while mean losses and mean num-
bers of incidents/losses have stayed unaffected.

–	 The difference between incidents and losses is more directly visible, as in 
the independence case the body of the cumulative loss distribution is directly 
affected. This is because individual incidents are now filtered instead of the fil-
tering impacting only systemic events, whose occurrence mostly alters the tail of 
the distribution.

From these findings, we conclude that incorporating systemic events into the 
model to capture potential accumulation risk is essential. We furthermore report 
VaR0.99 and AVaR0.99 for all sub-portfolios in Fig. 6a and b, respectively. Comparing 
them with Fig. 4a and b yields the same to-be-expected decreasing pattern as the 
security level increases, but the absolute values of the risk measures can be observed 
to have about halved. Perhaps it should rather be put vice versa: By including sys-
temic events compared to complete independence, for the same expected overall 

N̄⋅

j
(T) = N

⋅,idio

j
(T)

�����

∼Poi
(
Λ⋅,idio

j
(T)
)
+ N̄

⋅,syst

j
(T)

�����

∼Poi
(
p̃(bj)Λ

⋅,g

j
(T)
)

N⋅

j
(T) = N

⋅,idio

j
(T) + N̄

⋅,syst

j
(T)

�����

∼Binom
(
N

⋅,syst

j
(T),F̄M (cj)

)
.
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number of incidents, the risk measures VaR0.99 and AVaR0.99 on sub-portfolio level 
double.

As the marginal frequency and severity for each firm remain unchanged, calcu-
lated premiums should not differ from the previous simulation study; this is corrobo-
rated in Online Appendix A.5.

We have mentioned before that very heavy-tailed loss severities characterize 
cyber risk, and previous studies typically suggest such heavy tails that any moments 
higher than first order do not exist (and in some cases tail parameter estimates even 
yield infinite-mean scenarios). Even a finite-mean, infinite-variance scenario (as 
above, with 0.5 < 𝜉 < 1 ) is cumbersome to deal with, as e.g. only premium calcula-
tions based on the first moment can be applied. “Luckily,” in the insurance context, 
one typically does not deal with loss severities (without upper limit) directly, but 
rather with claim sizes, which are typically bounded from above by the introduction 
of a cover limit, a maximum amount the insurer is obliged to cover for each loss. 
The effects of this contract design feature are examined next.

5.6 � Cyber policy design: the effect of cover limits

In practice, typical (primary) insurance contracts include a cover limit, as the insurer 
seeks to bound losses from single, extreme incidents. This, however, can lead to a 
supply-demand-mismatch: Insurers, still cautious of this new risk type, prefer rela-
tively low cover limits (with a few exceptions, see the overview in Ref. [25]) that are 
sufficient to cover day-to-day cyber incidents, while many firms particularly seek 
protection for extreme scenarios such as a large data breach or long BI. [14, 58, 60] 
reported the non-existence of adequate cover limits as one reason for firms to refrain 
from purchasing cyber insurance.

Mathematically speaking, the introduction of a cover limit M̄ corresponds to the 
truncation of the loss distribution, i.e. each Yi ∈ [0,∞) is mapped to a claim size 
Ŷi via Yi ↦ Ŷi ∶= min{Yi, M̄} ∈ [0, M̄] . Note that we assume a limit on each loss; 
alternatives might be a limit on the total loss over the policy duration or a limit on 
the number of covered claims. Assuming, however, a realistically small claim fre-
quency, this does not make a large difference, as cases of multiple losses happening 
at the same firm during a single policy year are extremely unlikely. Table 9 reports 
the probabilities of exceeding different cover limits for a large severity event and 
three different covariate combinations: the baseline case (year 1, s = d = nsup = 1 , 
c = 0.5 ), the lowest-risk case in the portfolio (year 1, s = d = nsup = 1 , c = 0.95 ), 
and the highest-risk case in the portfolio (year 5, s = d = nsup = 3 , c = 0.05 ). To 
find the probability of an incoming claim to exceed the cover limit, we condition on 
observing a large claim event, i.e. in the notation of Sect. 4.3:

ℙ(Lij > M̄) = ℙ(Lij > M̄ | Lij > uij)
���������������������������

see Table 9

ℙ(Lij > uij)
���������
= 1−z

e.g.
= 0.05

, M̄ > uij.
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(a)

(b)

Fig. 5   For the entire portfolio ( K = 500 ), the number of incidents/losses and the distribution of the 
cumulative portfolio loss for two different years is compared if incidents are assumed to arrive com-
pletely independently between firms
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We now assume the cover limit for all contracts to be M̄2 and run the same simu-
lation as before. This could be generalized to allowing different limits depending 
on the insured’s characteristics, e.g. a certain IT security level could be considered 
a prerequisite for a contract with a high limit. Similarly as above, Fig. 7 displays 
the (simulated) premium. While changes in the absolute numbers for the expected 
value principle are minor, the use of other common principles are now viable (all 
moments exist for the truncated losses) and deliver stable results.

(a)

(b)

Fig. 6   Comparison of VaR0.99 and AVaR0.99 for sub-portfolios of size K = 50 with varying security levels
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Figures showing VaR0.99 and AVaR0.99 analogously to above are given in Online 
Appendix A.6. As to be expected, the introduction of a cover limit leads to an over-
all decrease in both risk measures, where the effect is higher for sub-portfolios with 
lower security (who tend to suffer the most severe losses and are therefore most 
impacted by a cover limit) and AVaR0.99 decreases more than VaR0.99 in absolute 
numbers (see Figure 9 in Online Appendix A.6).

6 � Conclusion

We have presented an actuarial approach to modelling cyber risk that is consistent 
with the characteristics of the underlying risk factors from an economic and infor-
mation-technological viewpoint. For this purpose, the existing literature on tech-
nical, statistical, economic, actuarial, and legal aspects of cyber risk was analysed 
in detail to identify relevant risk factors and plausible distributional assumptions 
within an actuarial framework. By construction, the resulting model is able to cap-
ture accumulation risk stemming from multiple firms being simultaneously affected 
by a cyber event; a prospect that insurers are especially worried about. Some dis-
tributional properties of the model and their relevance in the cyber context were 
highlighted. Moreover, we demonstrated how the model can be implemented in an 
insurance context using a loss distribution approach. An illustrative simulation study 
makes use of this implementation and derives the yearly premium for individual 
contracts as well as common portfolio risk measures. The model is stressed in dif-
ferent directions (contract design, the omission of systemic events) and the findings 
are analysed from the perspective of an actuary. Given the scarcity of available data 
on cyber losses, let us reiterate that distributional assumptions and concrete param-
eter choices rely on the existing literature (scattered across different disciplines) and 
expert judgments, hence, all quantitative findings should be interpreted with some 
caution in the light of model/parameter risk. Naturally, since the model presented 
here is not challenged on data, it is limited to its specific assumptions, e.g. using a 
Poisson process for arrivals; for the exemplary simulation study, these assumptions 
are further simplified to illustrate the actuarial exercise. However, to account for 
updates in the future, we consciously use a modular design that could allow to alter/
replace parts of the model or to adapt it to a specific portfolio an insurance company 
works with.

Table 9   Conditional exceedance probabilities ℙ(L
ij
> M̄ | L

ij
> u

ij
) × 102 of three cover limits for large 

severity incidents

We observe that a cover limit in most cases impacts only very few (large) claims

Cover limit Low risk Baseline High risk

M̄1 = 500 0.0977 0.4055 5.9530
M̄2 = 1.000 0.0437 0.1760 2.1016

M̄3 = 10.000 0.0033 0.0129 0.1335
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Many interesting aspects, however, remain open for future research. Once suf-
ficient cyber risk data is available, optimal estimation procedures and out-of-sample 
tests for the model assumptions are called for. Less theoretical, but equally impor-
tant, appears the economic/legal question of categorizing cyber incidents. From the 
actuarial perspective, extremely interesting is the question of (optimal) cyber insur-
ance contract design. Currently offered cyber insurance products seem to reflect the 
lack of an established common understanding of cyber risk and the resulting caution 
with which many insurers approach the topic. A better understanding of the underly-
ing dynamics of cyber risk will in time hopefully enable product design to reflect 
economic optimality criteria instead of the insurers’ operational limitations. Fur-
thermore, what separates cyber from most other loss categories is the potential of 
designing cyber insurance products that transcend mere risk transfer, e.g. by includ-
ing incident response teams or other services. To the best of our knowledge, this 
(non-traditional) part of cyber insurance contract design has not yet been addressed 
from an academic actuarial science viewpoint.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s13385-​021-​00290-1.
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A Online Appendix to the paper “A Comprehensive Model for
Cyber Risk based on Marked Point Processes and its Appli-
cation to Insurance”

A.1 Background on Point Processes

Proposition 4 (Superposition, ([49], p.16)). Let {Ni}i∈N be a countable collection of point processes,
then their superposition

⋃∞
i=1Ni also forms a point process. If N1, N2, . . . are independent Poisson

processes with mean measures Λ1,Λ2, . . ., then their superposition will also be a Poisson process with
mean measure Λ =

∑∞
i=1 Λi.

Proposition 5 (Thinning ([28], p.34)). Let N(·) be a (simple, inhomogeneous) Poisson process with rate
λ(·). Let p(·) be a measurable function on [0,∞) such that 0 ≤ p(x) ≤ 1 holds ∀x ∈ [0,∞). Let a new
process Ñ(·) be formed by independently looking at each point of a realization {ti} of N(·) and retaining
it with probability p(xi) (thus deleting it with probability 1− p(xi)). Then Ñ(·) is a Poisson process with
rate p(x)λ(x).

Definition 1 (Marked Point Process ([28], 6.4.I)). A marked point process (MPP) with locations in
X and marks in K is a point process {xi, ki} on X × K with the additional property that the ground
process Ng(·), meaning the process of locations {xi} is itself a point process, i.e. for bounded A ∈ BX ,
Ng(A) = N(A×K) <∞.

Proposition 6 ([28], Prop. 6.4.IV). Let N be a MPP with independent marks. Then the probability
structure of N is completely defined by the distribution of Ng and the mark kernel {F (k|x) : k ∈ BK, x ∈
X} representing the conditional distribution of the mark, given location x.

Definition 2 (Compound Poisson process). Let N := (N(t))t≥0 be a Poisson process with mean measure
Λ(t) > 0. Let {Zi}i∈N be a sequence of iid. random variables independent of N . Then the process
R := (R(t))t≥0 defined as

R(t) :=

N(t)∑

i=1

Zi, t ≥ 0,

is called a compound Poisson process.

A.2 Characteristics of Compound Poisson Distribution

Theorem 1 (Wald equation ([78])). Let {Xi} be a sequence of real-valued, iid. random variables and
let N(t) ≥ 0 be an integer-valued r.v. independent of the sequence {Xi}. Suppose E[N(·)] < ∞ and
E[Xi] <∞. Then

E
[N(t)∑

i=1

Xi

]
= E[X1]E[N(t)].

Theorem 2 (Law of total variance ([15], p. 401)). Let X and Y be random variables on the same
probability space and assume Var[Y ] <∞. Then

Var[Y ] = E[Var(Y |X)] + Var(E[Y |X]).

The last two results imply that if {Xi} is a sequence of iid. random variables and N(t) ≥ 0 an
integer-valued random variable independent of the sequence {Xi}, then it holds

Var
(N(t)∑

i=1

Xi

)
=: Var(Y (t)) = E[Var(Y (t)|N(t)] + Var(E[Y (t)|N(t)])

= E[N(t)Var(X1)] + Var(N(t)E[X1])

= Var(X1)E[N(t)] + E[X1]2Var(N(t)).

Proposition 7 ([57], Prop.3.3.4). Consider the independent compound Poisson sums

Lj =

Nj∑

i=1

X
(j)
i , textj = 1, . . . ,K,

i



where Nj ∼ Poi(λj) for some λj > 0 and, for every fixed j, (X
(j)
i )i=1,2,... is an iid. sequence of claim

sizes. Then the sum
L̃ = L1 + . . .+ LK

is again compound Poisson with representation

L̃
d
=

Nλ∑

i=1

Yi, textNλ ∼ Poi
( K∑

j=1

λj

)
,

and (Yi) is an iid. sequence, independent of Nλ, with mixture distribution given by

FY1
(x) =

K∑

j=1

λj∑
λj
F
X

(j)
1

(x), textx ∈ R.

A.3 Calculations and Proofs from Chapter 4

Proof of Proposition 1. Note that based on (A4) for generating Si and generally mi being distributed
according to cdf. FM , S∗i can be thought of as generated analogously to Si by drawing a realisation of
mi first and then letting

P(Zij = 1 | Gi = 0, mi) =

{
pgen iid. ∀j ∈ {1, . . . ,K} s.t. cj < mi,

0 else

P(Zij = 1 | Gi = 1, Bi = b̂, mi) =




psec iid. ∀j ∈ {1 +

∑b̂−1
`=1 K`, . . . ,

∑b̂
`=1K`} s.t. cj < mi,

0 else

i.e. one adds Zij ≡ 0 for all j : cj ≥ mi in each case, by effectively drawing only on the subset

of the portfolio of size K∗ = max
k∈{0,...,K}

c[k] < mi (resp. the subset of one industry sector b̂ of size

K∗
b̂

= max
k∈{0,...,Kb̂}

cb̂[k] < mi).

Conditioning on the realisation of Gi ∈ {0, 1}, Bi ∈ {1, . . . , B}, mi ∈ [0, 1] (in particular, for mi

distinguishing the cases of falling in any of the intervals [c[K∗], c[K∗+1]] resp. [cb̂[k∗
b̂
], c

b̂
[k∗
b̂
+1]]) yields

P(
∣∣S∗i
∣∣ = k) = P(

∣∣S∗i
∣∣ = k | Gi = 0) P(Gi = 0) +

B∑

b̂=1

P(
∣∣S∗i
∣∣ = k | Gi = 1, Bi = b̂) P(Bi = b̂ | Gi = 1) P(Gi = 1)

= (1− pG)

∫ 1

0

P(
∣∣S∗i
∣∣ = k | Gi = 0,mi = m)dFM (m)

︸ ︷︷ ︸
(I)

+ pG

B∑

b̂=1

pb̂

∫ 1

0

P(
∣∣S∗i
∣∣ = k | Gi = 1, Bi = b̂,mi = m)dFM (m)

︸ ︷︷ ︸
(II)

,

where

(I) = (1− pG)

∫ 1

0

(
K∗

k

)
pkgen(1− pgen)K

∗−kdFM (m)

= (1− pG)
K∑

K∗=0

∫ 1

0

1[c[K∗],c[K∗+1]]
(m)

(
K∗

k

)
pkgen(1− pgen)K

∗−kdFM (m)

= (1− pG)
K∑

K∗=0

(
K∗

k

)
pkgen(1− pgen)K

∗−k(FM (c[K∗+1])− FM (c[K∗])
)
,

and

(II) = pG

B∑

b̂=1

pb̂

∫ 1

0

(
K∗
b̂

k

)
pksec(1− psec)K

∗
b̂
−kdFM (m)

= pG

B∑

b̂=1

pb̂

K
b̂∑

K∗
b̂
=0

∫ 1

0

1
[cb̂

[K∗
b̂
]
,cb̂

[K∗
b̂
+1]

]
(m)

(
K∗
b̂

k

)
pksec(1− psec)K

∗
b̂
−kdFM (m)

= pG

B∑

b̂=1

pb̂

K
b̂∑

K∗
b̂
=0

(
K∗
b̂

k

)
pksec(1− psec)K

∗
b̂
−k(FM (cb̂[K∗

b̂
+1])− FM (cb̂[K∗

b̂
])
)
.
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This implies that
∣∣S∗i
∣∣ follows a Binomial mixture distribution, i.e. f|S∗i ||n,p(k) = Binom(n, p, k) with

parameters and weights (2K +B + 1 cases):

(n, p) =





(K∗, pgen) with weight (1− pG)
(
FM (c[K∗+1])− FM (c[K∗])

)
, K∗ ∈ {0, . . . ,K},

(k∗
b̂
, psec) with weight pG pb̂

(
FM (cb̂[k∗

b̂
+1])− FM (cb̂[k∗

b̂
])
)
, k∗

b̂
∈ {0, . . . , kb̂}, b̂ ∈ {1, . . . , B}.

Again, intuitively this means that, depending on Gi, Bi, and mi, one draws from a set of different size
of potentially affected firms to suffer a loss. As on the respective set, the draws are conditionally iid.
Bernoulli draws, the number of “successes” of interest is of course Binomially distributed.
Equation (6) in Proposition 1 follows immediately from above using (A3), i.e. mi ∼ Unif([0, 1]), thus
FM (c) = c, ∀c ∈ [0, 1]. Likewise, Equation (5) follows immediately from (A3) and by considering the

case c[K∗] = cb̂[k∗
b̂
] = 0, ∀K∗ ∈ {1, . . . ,K},∀k∗

b̂
∈ {1, . . . , kb̂}, b̂ ∈ {1, . . . , B}.

Corollary 1 (Moments of number of incidents and losses per event).

E
[
|Si|

]
= (1− pG) K pgen + pG psec

B∑

`=1

p` K`,

E
[
|S1|2

]
= (1− pG)

(
K2p2

gen +K pgen (1− pgen)
)

+ pG

B∑

`=1

p`
(
K2
` p

2
sec +Kl psec (1− psec)

)
,

E
[
|S∗i |

]
= (1− pG) pgen

K∑

k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑

`=1

K∑̀

k∗`=0

p` k
∗
` (c`[k∗`+1] − c`[k∗` ]),

E
[
|S∗i |2

]
=

K∑

k∗=0

(1− pG) (c[k∗+1] − c[k∗])
(
(k∗)2p2

gen + k∗pgen(1− pgen)
)

+
B∑

`=1

K∑̀

k∗`=0

pG p`
(
c`[k∗`+1] − c`[k∗` ])

(
(k∗` )2p2

sec + k∗` psec(1− psec)
)
.

Proof of Corollary 1. By Proposition 1, |Si| and
∣∣S∗i
∣∣ follow a Binomial mixture distribution.

For Xi ∼ Binom(n, p), it holds of course that

E[Xi] = n p,

E[X2
i ] = n p (1− p) + n2p2,

Var[Xi] = n p (1− p).

For a general mixture X of r.v. {Xi} with weights {wi}, means {µi}, and variances {σ2
i }, it holds that

E[X] =
∑

i

wiµi,

E[X2] =
∑

i

wiE[X2
i ],

Var[X] =
(∑

i

wi(µ
2
i + σ2

i )
)
− µ2.

The claims follow directly.

Lemma 1 (Joint incident and loss probability). The probability for two firms j1, j2 ∈ {1, . . . ,K} (given
their covariates) to register an incident / loss simultaneously from an event is given by
Case 1: bj1 = bj2 (same industry sector)

P(j1, j2 ∈ Si) = p2
sec pbj1 pG + p2

gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
) (
p2
sec pbj1 pG + p2

gen (1− pG)
)
.

Case 2: bj1 6= bj2 (different industry sector)

P(j1, j2 ∈ Si) = p2
gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
)
p2
gen (1− pG).

iii



Proof of Lemma 1. The statements follow immediately by conditioning and using conditional indepen-
dence:
Case 1: bj1 = bj2

P(j1, j2 ∈ Si) = P(j1, j2 ∈ Si | Gi = 1, Bi = bj1) P(Bi = bj1 | Gi = 1) P(Gi = 1) + P(j1, j2 ∈ Si | Gi = 0) P(Gi = 0)

= p2sec pbj1 pG + p2gen (1− pG),

P(j1, j2 ∈ S∗i ) = P
(
j1, j2 ∈ S∗i | Gi = 1,mi > max(cj1 , cj2)

)
P
(
Gi = 1 | mi > max(cj1 , cj2)

)
P
(
mi > max(cj1 , cj2)

)

+ P
(
j1, j2 ∈ S∗i | Gi = 0,mi > max(cj1 , cj2)

)
P
(
Gi = 0 | mi > max(cj1 , cj2)

)
P
(
mi > max(cj1 , cj2)

)

= p2sec pbj1 pG F̄M
(

max(cj1 , cj2)
)

+ p2gen (1− pG) F̄M
(

max(cj1 , cj2)
)

= F̄M
(

max(cj1 , cj2)
) (
p2sec pbj1 pG + p2gen (1− pG)

)
.

Case 2: bj1 6= bj2

P(j1, j2 ∈ Si) = P(j1, j2 ∈ Si | Gi = 1) P(Gi = 1) + P(j1, j2 ∈ Si | Gi = 0) P(Gi = 0) = p2gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
)
p2gen (1− pG).

Proof of Proposition 2. It follows immediately using Lemma 1

P(j1 ∈ Si | j2 ∈ Si) =
P(j1, j2 ∈ Si)
P(j2 ∈ Si)

=





p2sec pbj2
pG+p2gen (1−pG)

p̃(bj2 ) , bj1 = bj2 ,

p2gen (1−pG)

p̃(bj2 ) , bj1 6= bj2 ,

P(j1 ∈ S∗i | j2 ∈ S∗i ) =
P(j1, j2 ∈ S∗i )

P(j2 ∈ S∗i )
=





p2sec pbj2
pG+p2gen (1−pG)

p̃(bj2 ) bj1 = bj2 , cj1 ≤ cj2 ,

F̄M (cj1 )

F̄M (cj2 )

(
p2sec·pbj2 pG+p2gen (1−pG)

p̃(bj2 )

)
bj1 = bj2 , cj1 > cj2 ,

p2gen (1−pG)

p̃(bj2 ) bj1 6= bj2 , cj1 ≤ cj2 ,
F̄M (cj1 )

F̄M (cj2 )

(
p2gen (1−pG)

p̃(bj2 )

)
bj1 6= bj2 , cj1 > cj2 .

Proof of remark about conditional vs. unconditional probabilities. We have remarked that for firms of the
same industry sector, the knowledge about an incident for a firm in the same sector always has a non-
negative effect on the incident probability, i.e. for j1, j2 ∈ {1, . . . ,K} with bj1 = bj2 =: bj

P(j1 ∈ Si | j2 ∈ Si) ≥ P(j1 ∈ Si | bj1)

Prop.2⇐⇒ p2
sec pbj pG + p2

gen (1− pG) ≥
(
p̃(bj)

)2

⇐⇒ p2
sec pbj pG + p2

gen (1− pG) ≥
(
pG pbj psec + (1− pG) pgen

)2
. (14)

Generally, for any x = (x1, . . . , xn)′,y = (y1, . . . , yn)′ ∈ Rn (n ∈ N), the Cauchy–Schwarz inequality
states that ( n∑

i=1

xi yi

)2

≤
( n∑

i=1

x2
i

)( n∑

i=1

y2
i

)
.

Let a = (a1, . . . , an)′ ∈ (0,∞)n,b = (b1, . . . , bn)′ ∈ Rn (n ∈ N), and assume
∑n
i=1 ai ≤ 1. Substituting

above x =
√

a b,y =
√

a yields

( n∑

i=1

ai bi

)2

≤
( n∑

i=1

ai b
2
i

)( n∑

i=1

ai

)

︸ ︷︷ ︸
≤1

≤
n∑

i=1

ai b
2
i .

Substituting for n = 2

a = (a1, a2)′ = (pG pbj , (1− pG))′,

b = (b1, b2)′ = (psec, pgen)′,

yields (14).

iv



Lemma 2 (Moments of cumulative incident and loss numbers). It holds that

E
[
N̄ ·,syst(T )

]
= Λ·,g(T )

(
(1− pG) K pgen + pG psec

B∑

`=1

p` K`

)
,

Var
[
N̄ ·,syst(T )

]
= Λ·,g(T )

(
(1− pG)

(
K2p2gen +K pgen (1− pgen)

)
+ pG

B∑

`=1

p`
(
K2
` p

2
sec +K` psec (1− psec)

))
,

E
[
N ·,syst(T )

]
= Λ·,g(T )

(
(1− pG) pgen

K∑

k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑

`=1

K∑̀

k∗`=0

p` k
∗
` (c`[k∗`+1] − c`[k∗` ])

)
,

Var
[
N ·,syst(T )

]
= Λ·,g(T )

( K∑

k∗=0

(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2gen + k∗pgen(1− pgen))

+
B∑

`=1

K∑̀

k∗`=0

pG p` (c`[k∗`+1] − c`[k∗` ]) ((k∗)2p2sec + k∗psec(1− psec))
)
.

Proof of Lemma 2. For the number of arrivals of the ground process on any interval [0, T ], it holds that

E
[
N ·,g(T )

]
= Var

[
N ·,g(T )

]
= Λ·,g(T ) =

∫ T

0

λ·,g(t)dt.

By Wald’s equation and the law of total variance (see Appendix A.2), it follows from Corollary 1

E
[
N̄ ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|Si|

]
= Λ·,g(T )

(
(1− pG) K pgen + pG psec

B∑

`=1

p` K`

)
,

Var
[
N̄ ·,syst(T )

]
= E

[
N ·,g(T )

]
Var

[
|Si|

]
+ E

[
|Si|

]2 Var[N ·,g(T )] = E
[
N ·,g(T )

]
E
[
|Si|2

]

= Λ·,g(T )
(

(1− pG)
(
K2p2

gen +K pgen (1− pgen)
)

+ pG

B∑

`=1

p`
(
K2
` p

2
sec +K` psec (1− psec)

))
.

Likewise,

E
[
N ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|S∗i |

]

= Λ·,g(T )
(

(1− pG) pgen

K∑

k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑

`=1

K∑̀

k∗`=0

p` k
∗
` (c`[k∗`+1] − c`[k∗` ])

)
,

Var
[
N ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|S∗1 |2

]

= Λ·,g(T )
( K∑

k∗=0

(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2
gen + k∗pgen(1− pgen))

+

B∑

`=1

K∑̀

k∗`=0

pG p` (c`[k∗`+1] − c`[k∗` ]) ((k∗)2p2
sec + k∗psec(1− psec))

)
.

Proof of Proposition 3. It follows immediately from Lemma 2 that

DI
(
N̄ ·,syst(T )

)
=

Var
[
N̄ ·,syst(T )

]

E
[
N̄ ·,syst(T )

] =
E
[
|Si|2

]

E
[
|Si|

]

=
(1− pG)

(
K2p2gen +K pgen (1− pgen)

)
+ pG

∑B
`=1 p` (K2

` p
2
sec +K` psec (1− psec))

(1− pG) K pgen + pG psec
∑B
`=1 p` K`

= 1 +
(1− pG) p2gen (K2 −K) + pG p2sec

∑B
`=1 p`(K

2
` −K`)

(1− pG) K pgen + pG psec
∑B
`=1 p` K`

> 1,
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and likewise

DI
(
N ·,syst(T )

)
=

Var
[
N ·,syst(T )

]

E
[
N ·,syst(T )

] =
E
[∣∣S∗i

∣∣2 ]

E
[∣∣S∗i

∣∣ ]

=

∑K
k∗=0(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2gen + k∗pgen(1− pgen))

(1− pG) pgen
∑K
k∗=0 k

∗ (c[k∗+1] − c[k∗]) + pG psec
∑B
`=1

∑K`
k∗`=0 p` k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

+

∑B
`=1

∑K`
k∗`=0 pG p` (c`[k∗`+1] − c`[k∗` ]) ((k∗` )2p2sec + k∗` psec(1− psec))

(1− pG) pgen
∑K
k∗=0 k

∗ (c[k∗+1] − c[k∗]) + pG psec
∑B
`=1

∑K`
k∗`=0 p` k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

= 1 +
(1− pG)

∑K
k∗=0 p

2
gen((k∗)2 − k∗)(c[k∗+1] − c[k∗]) + pG

∑B
`=1

∑K`
k∗`=0 p

2
secp`((k

∗
` )2 − k∗` )(c`[k∗`+1] − c`[k∗` ])

(1− pG)pgen
∑K
k∗=0 k

∗(c[k∗+1] − c[k∗]) + pGpsec
∑B
`=1

∑K`
k∗`=0 p`k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

> 1.

The fractions in the last lines of both equations are obviously non-negative (positive, under the addi-
tional assumptions in Proposition 3), as they contain only sums and products of non-negative (positive)
quantities.

A.4 Alternative Severity Distributions

DB: Use link between number of records and cost

While it is difficult to find reliable empirical data about the cost of a data breach, some data about the
number of breached / stolen records is available. Thus, several authors have tried to find a link between
the number of records and the cost of a data breach. The often cited Jacob’s formula ([47]) suggests to
link the log-transformed cost L of a data breach to the number of compromised records D according to

log(L) = 7.68 + 0.7584 log(D). (15)

An amendment to this formula was proposed in [41], who argue that [47] did not yet take into account
the cost of mega data breaches observed in future years and thus alternatively propose

log(L) = −1.998 + 7.503 log
(

log(D)
)
. (16)

Therefore, an alternative to modelling the cost of a data breach directly using a combination of log-normal
and GPD would be to first model the number of breached records using a log-normal (as suggested by
the results in [32]) and then convert the number of records into monetary losses using (15) or (16).

In the context of this work, let Dij be the number of lost / stolen records in a DB incident at time
ti affecting firm j (where {ti}i∈N only counts the event times at firm j). Then assume

Dij ∼ LN
(
µDBj (ti), σ

DB
j (ti)

)
, (17)

µDBj (ti) = αµ,DB + fµ,DB,3(xj3) + fµ,DB,4(xj4) + gµ,DB(ti),

σDBj (ti) ≡ σDB ,

where the functions fµ,DB,· and gµ,DB are as usual. By (15), the number of records Dij is converted
into the cost of the breach Lij according to

log(Lij) = 7.68 + 0.7584 log(Dij),

which is equivalent to directly assuming that

Lij ∼ LN(µ̂DBj (ti), σ̂
DB),

µ̂DBj (ti) = αµ̂,DB + fµ̂,DB,3(xj3) + fµ̂,DB,4(xj4) + gµ̂,DB(ti),

σ̂DBj (ti) ≡ σ̂DB

Likewise, using (16) to convert the number of records into the cost of the breach, i.e. assume Dij to be
distributed according to (17) and the breach cost Lij then to be given by

log(Lij) = −1.998 + 7.503 log
(

log(Dij)
)
.
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BI: Replace log-normal by PERT

Regarding the economic impact of BI incidents, some sources from the non-cyber domain are available
([21, 30, 44, 48, 85]). The only sources including indications of which distributions are useful to model
economic loss from BI are [85], who finds the size of yearly BI insurance claims to follow a Pareto distri-
bution with an extremely heavy tail and infinite expected claim size, and [44], who suggests modelling BI
loss by a PERT distribution, a special case of the beta distribution with the three parameters minimum
xmin, mode xmode, and maximum xmax with density

fPERT (x) =
(x− xmin)v−1(xmax − x)w−1

Beta(v, w)(xmax − xmin)v+w−1
1[xmin,xmax],

v = 1 + γP

(xmode − xmin
xmax − xmin

)
,

w = 1 + γP

(xmax − xmode
xmax − xmin

)
,

where Beta(·) is the Beta function and for the standard PERT γP = 4.
Thus, for BI incidents, one could suggest replacing the log-normal distribution for the body by a PERT
distribution, i.e. assume for a BI loss Lij at time ti affecting firm j it holds

(Lij | Lij ≤ uBIij ) ∼ PERT (xmin
ij , xmodeij , xmax

ij , 4),

xmin
ij = 0,

xmax
ij = uBIij ,

xmode
ij = exp

(
µBIj (ti)− σBIj (ti)

2
)
,

where PERT (xmin, xmode, xmax, 4) denotes the PERT distribution with minimum, mode, and maximum
values xmin, xmode, xmax respectively and standard shape parameter γp = 4. The mode and threshold
(maximum) are chosen such that they coincide with the ones from the underlying log-normal used to
find the threshold between body and tail of the loss distribution.

A.5 Comparison of all Premium Calculation Results

Below, we compare the premiums (for three individual firms and all sub-portfolios) obtained from the
simulation with dependent losses, with independent losses, with cover limit, and with the premiums
obtained from calculating the (discretized) loss distribution pdf. using Panjer recursion. We observe
that they are very similar in all cases; as for the latter two cases (simulation with cover limit and Panjer
recursion) loss severities are truncated from above, the application of premium principles that depend on
more than just the first moment are feasible and the results for the expected value principle are slightly
lower.
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Premium Principle
Expected Value (ρ = 0.2) Exponential (γ = 10−3) Standard Deviation (ρ = 0.2)

Premium based on dependent simulated losses (incidents)
Firm 1 2.0814 (2.2338) – –
Firm 2 0.4451 (0.7746) – –
Firm 3 1.1732 (1.5164) – –

Premium based on independent simulated losses (incidents)
Firm 1 2.1213 (2.2514) – –
Firm 2 0.4726 (1.3395) – –
Firm 3 1.2149 (1.5353) – –

Premium based on simulated losses (incidents) with cover limit
Firm 1 2.1592 (2.3051) 1.8993 (2.0258) 4.5101 (4.7022)
Firm 2 0.4385 (0.7783) 0.3717 (0.6608) 1.0745 (1.6300)
Firm 3 1.1620 (1.5115) 0.9960 (1.2956) 2.4413 (2.9404)

Premium based on Panjer recursion
Firm 1 1.7633 (1.8849) 2.1160 (2.2619) 1.8366 (1.9632)
Firm 2 0.3797 (0.662) 0.4557 (0.7944) 0.3861 (0.6731)
Firm 3 0.9605 (1.2643) 1.1526 (1.5171) 0.9874 (1.2997)

Table 10: Comparison of one-year cyber insurance premiums for three selected firms, based
on 50.000 simulation runs (upper panels) and Panjer recursion for the given assumptions and
parameter values (lower panel). Numbers in brackets indicate what the premium would have
been if all incoming incidents had been counted.
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(b) Results from simulation (independent).
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(c) Results from simulation (with cover limit).
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(d) Results from Panjer recursion.

Figure 8: We compare the premium that would be assigned to firms if they were grouped
according to their IT security level, based on the three simulation studies and the implemented
Panjer recursion scheme. Note that the results in Figure 8d are for firms with the given security
level and otherwise baseline covariate levels, so should be expected slightly below results from
simulations of the sub-portfolios with mixed covariate levels.
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A.6 Risk Measures for Simulation with Cover Limit
0

20
0

40
0

60
0

80
0

10
00

Security level

V
aR

 (
99

%
)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Incidents − Historical
Incidents − POT
Losses − Historical
Losses − POT

(a) V aR0.99; Cover Limit M̄2.
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Figure 9: Comparison of V aR0.99 and AV aR0.99 for all sub-portfolios.
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A.7 Details on Covariate Levels

Number of employees
Revenue small medium large

small 1 1 (2)
medium 1 2 3

large (2) 3 3

Table 11: Factor levels of s by combinations of revenue and number of employees. This is
in line with the classification of SMEs in the European Union. As revenue and number of
employees are highly correlated, only very few companies should fall into the classifications in
the upper right or lower left cell.

Number of stored records
Sensitive Data ≤ threshold > threshold

No 1 2
Yes 2 3

Table 12: Factor levels of d, given the number of stored records and sensitivity of data.
Sensitive data includes, e.g. Personally Identifiable Information (PII), Protected Health In-
formation (PHI), or classified government data. Despite the labels, this is not a numerical
attribute and it is not clear whether the two cases labeled 2 (medium risk) are comparable,
or, if considered not comparable, how they should be ordered.

Number of employees e
Sector b small medium large

HC, EDU, GOV 1 1 2
FI, BR, MAN 1 2 3

Table 13: Factor levels of nsup by combinations of sector and number of employees. The
classification relies on expert judgment and is not founded by empirical evidence. An insurance
company might simply obtain this information from its customers.
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A.2 Risk mitigation services in cyber insurance: optimal contract design and

price structure [2]

Summary

This article investigates novel cyber insurance policies equipped with risk mitigation services,

in particular how to optimally price such contracts from an insurer’s viewpoint. This is a highly

relevant topic on the currently evolving cyber insurance market, as policies continue to ma-

ture and the potential of including so-called cyber assistance, i.e. pre-incident and post-incident

services is recognized by insurers and insurance buyers (e.g. [104]). However, to the best of

our knowledge, these policies are currently priced on an ad-hoc basis and established actuarial

pricing approaches are yet to be developed. Theoretically, policies combining risk transfer and

risk mitigation give rise to interesting trade-offs for both parties: The insurance buyer balances

(deterministic) upfront investment into risk mitigation against some reduction of (stochastic)

future risk, and the insurer weighs some reduction of the (stochastic) to-be-insured (portfolio)

risk against a reduced (deterministic) feasible premium.

The first part of the article outlines types of cyber assistance and connects services offered on the

market to the established theoretical concepts of self-protection and self-insurance ([51]). The

former refers to activities modifying the probability of a loss, whereas the latter encompasses

activities shaping the loss severity if a loss manifests. We thus identify existing pre-incident

and post-incident services as self-protection and self-insurance activities, respectively, and fur-

thermore suggest a new type of self-protection activity requiring a portfolio viewpoint, to use

dependencies between risks to all parties’ advantage. Next, we introduce the prerequisites of

the mathematical model inspired by the framework of [23], i.e. to capture the effect of risk

mitigation services on the loss distribution by inducing a decreasing order in the sense of first-

order stochastic dominance (see, e.g., [103]), to model the risk measurement of both parties by

(concave) distortion risk measures (e.g. [136]) and their interaction as a so-called Stackelberg

game (e.g. [76]). Within this sequential optimization game, the insurer leads by choosing a price

structure, i.e. a combination of risk premium and service premium, which determines the price

of any offered contract, and the buyer follows by selecting a contract, determined by the level

of risk mitigation services and proportional insurance share. This part concludes by formalising

both parties’ optimization problems and connecting the insurance buyer’s choices to classical

ways of dealing with risk (e.g. [100]).

A typical approach to a Stackelberg game is by backward induction (see e.g. [111]). Thus, the

next two sections deal with first deriving the insurance buyer’s optimal response to any in-

surer’s choice of price structure, and subsequently finding the insurer’s optimal solution (given

knowledge of all the buyer’s optimal responses). In this part, we still consider a single-contract

perspective. The buyer’s problem is conceptually similar to [23] (but slightly more involved in

the self-insurance case due to the different structure of the loss function), such that we focus on

the novelties originating from the new formulation of the insurer’s problem and the interpreta-
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tion of all results in the cyber insurance context. The insurer’s problem is now a more general

bivariate problem (choosing a combination of risk premium and service premium) and includes

the univariate analysis in [23] as a special case. The main finding of this section is that under the

given assumptions, the insurer would never subsidize services in a self-protection scenario (i.e.

it is always an optimal solution to shift the full cost of risk mitigation services to the buyer),

but might indeed do so in a self-insurance scenario. This conceptual difference stems from the

converse extent of the effect of services on the price of insurance and the distortion risk measure

in the two cases. The results are illustrated in extensive case studies (in the Online Appendix).

We extend the analysis by considering the self-protection scenario from a portfolio viewpoint,

and show that the results from the single-contract case do not necessarily carry over, i.e. already

in simple bivariate examples of dependent risks, it may be optimal for the insurer to subsidize

risk mitigation services for some policyholders. We consider dependence mechanisms represen-

tative for cyber risk, namely directed loss propagation (originating from network models, e.g.

[71, 145]), common events (e.g. [29, 4]) and copula approaches (e.g. [54, 114]). We present an

exemplary extension to a general multivariate model for the case of common cyber events (in

the Online Appendix).

In summary, this article extends the landscape of previous studies on the combination of risk

mitigation and risk transfer by bestowing the insurer with a more central role, namely controlling

the price of both activities. This relates to the real-world situation in cyber insurance, where

insurers have started to endow insurance policies with cyber assistance services.

The contribution offers threefold insights, regarding the viewpoints of insurers, (prospective)

insurance buyers, and the general cyber insurance market. For insurers, the study of the insurer’s

new bivariate optimization problem offers first guidance to the optimal pricing of insurance

policies including cyber assistance. For insurance buyers, it is invaluable to better understand

how different contracts would be optimally priced by an insurer. In particular, it is relevant that

the price structure which a prospective policyholder is offered (and the implicit incentive for

risk mitigation) may not only depend on his own characteristics, but on the insurer’s existing

portfolio and the dependence between risks. Finally, the study of the insurance buyer’s problem

may serve to theoretically explain the insurance gap observed in the cyber insurance market (see,

e.g., [127]), and suggests equipping insurance policies with (potentially subsidized) services,

which help to alter the risk in a way that allows the insurer to offer desired coverage at an

acceptable (from the buyer’s viewpoint) premium, as a way to mitigate it.
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Introduction

Motivation and approach

Cyber insurance is still a relatively new, but steadily expanding market. The rea-
sons for its ongoing growth in demand are manifold: the dynamically expand-
ing and evolving cyber-threat landscape (ENISA 2021; tenable 2021), extensive 
media coverage of severe cyber incidents (Advisen and PartnerRe 2017, 2018; 
Marotta et al. 2017), ubiquitous introduction of stricter legislation (Anchen and 
Pain 2017; Marotta et al. 2017), and increased awareness of companies about their 
augmented dependence on information technology. To emphasise the first point, 
in particular the growing extent of the professionalism and economic potential 
of the ransomware “industry” are addressed, e.g. in ENISA (2021). As of 2020, 
cyber incidents were ranked the number one peril to businesses worldwide (Alli-
anz 2020) and their perilousness can hardly be expected to have diminished since, 
as the COVID-19 pandemic and its effects (e.g. extensive ad-hoc shifts to remote 
work without adequate time to amend IT security measures and practices) have 
been labelled by some experts “the largest-ever cybersecurity threat” (Munich 
Re 2021). Many insurers are already actively participating in the global cyber 
insurance market, while still grappling with a firm understanding of this new 
and dynamic type of risk and its underlying drivers. Far from being solved is 
the question of how to adequately assess and price cyber risk given the various 
challenges, e.g. scarcity of historical data, non-stationarity of claims, association 
between claims, and strategic motivations of threat actors. Many academic works 
have recently been devoted to understanding and modelling these challenges in 
cyber risk. We, therefore, deliberately refrain from providing an exhaustive over-
view and refer to the surveys (Marotta et al. 2017;  Awiszus et al. 2023).

In most established insurance lines, insurers have multiple years of claims 
experience and established technical expertise to quantify risks. In contrast, 
assessing and pricing cyber risks is particularly challenging due to the dynami-
cally evolving threat landscape and the high complexity of modern IT systems. 
Therefore, insurers strive to collaborate with specialised IT security service pro-
viders (consider Bosch CyberCompare as an example or Advisen for a market 
overview), who not only support insurers in accurately assessing to-be-insured 
risks, but collaborate in providing services that aim at mitigating the insured risk 
as part of an insurance policy. Such cyber-assistance services can be divided into 
pre-incident services, such as network security, back-up of critical systems and 
data, and patch management, and post-incident services, such as restoration of 
data, forensic services, and legal advice (see Munich Re 2021). The former typi-
cally serve to decrease the probability of a cyber incident, while the latter sup-
port mitigation of the loss size in case an incident has occurred. In practice, the 
effects of both types of service are naturally intertwined, and additionally, all 
types of cyber assistance can also serve to provide insurers with additional infor-
mation, i.e. to enhance their cyber-risk assessment practices or simply to obtain 
supplementary data (see also Remark 1 below). A recent survey (Munich Re 
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2021) indicates that the majority of (prospective) buyers believes that such ser-
vices should be covered by holistic cyber insurance solutions, indicating that both 
the supply and demand side have realised that cyber insurance coverage should 
encompass more than pure compensation for financial losses. One type of service 
which is not yet explicitly advertised on the market, but holds great potential, is 
the insurer’s ability to use the interdependence of cyber incidents to all parties’ 
benefit by offering additional risk mitigation services.

To the best of our knowledge, established actuarial pricing approaches for these 
new policies are yet to be developed. The aim of this work is to propose a math-
ematical framework to study the optimal price structure of such insurance contracts, 
in particular to start addressing the question if (and under which circumstances) an 
insurer is economically incentivised to subsidise risk reduction services within an 
insurance policy. As part of this question, the issue of the optimal combination of 
insurance and risk mitigation (depending on their prices) from an insurance buyer’s 
point of view is also studied. A further point, which is particularly relevant in the 
cyber context, is that for an insurer, it is not exhaustive to consider every single poli-
cyholder separately, but due to the potential interconnectedness of cyber losses, a 
portfolio viewpoint considering dependencies needs to be taken into account.

Our approach is based on the work of Bensalem et al. (2020), by using the frame-
work of distortion risk measures and stochastic ordering of loss distributions, respec-
tively, to capture risk assessment of all parties and the effects of risk mitigation ser-
vices, and by modelling the interaction between insurer and insurance buyer(s) as 
a Stackelberg game. We extend their setting to a bivariate problem for the insurer, 
allowing her to choose the price for both risk transfer and risk mitigation, and ana-
lyse the results of the corresponding buyer’s problem [which is conceptually similar 
to Bensalem et  al. (2020)] in the cyber insurance context. Furthermore, we tran-
scend from the study of an interaction with a single buyer to examples of (sequential 
or simultaneous) interactions with several buyers with dependent losses.

Related literature

A concise overview of academic studies on the interaction between risk reduction 
and insurance in the cyber context is given in Xiang et  al. (2021). As mentioned 
therein, many of these studies rely on very simplified assumptions regarding the dis-
tribution of random cyber losses or the interplay between costs of prevention and 
consequence on the reduction of risk. Most often, the optimal combination of secu-
rity provisions and insurance from an insured’s point of view is studied, see, e.g. the 
early game-theoretic contribution of Pal and Golubchik (2010), the work of Young 
et  al. (2016), and subsequently Mazzoccoli and Naldi (2020), or Yang and Lui 
(2014), Chase et al. (2017), and Mazzoccoli and Naldi (2021) who investigate opti-
mal security investments under the presence of cyber insurance in a heterogeneous 
network, in a cloud computing environment, and for a multi-branch firm with corre-
lated vulnerabilities, respectively. Zhang and Zhu (2021) use a dynamic moral haz-
ard type of principal–agent model with Markov decision processes to capture deci-
sions on self-protection of the insured and Skeoch (2022) expands the Gordon–Loeb 
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model (Gordon and Loeb 2002) for cybersecurity to a cyber insurance context. Pal 
et  al. (2014, 2017) more generally study synergies between cybersecurity and the 
(existence of a then nascent) cyber insurance market.

Fewer studies emphasise the insurer’s role in designing cyber insurance contracts, 
e.g. by choosing premium and contractual indemnity (Dou et al. 2020), employing 
a bonus-malus system (Xiang et  al. 2021), or trying to mitigate moral hazard by 
means of risk preference design (Liu and Zhu 2022).

The problem of combining different strategies of coping with risk, in particu-
lar the combination of risk reduction by investing in prevention measures and risk 
transfer by purchasing insurance, is of course not specific to cyber and has been the 
interest of many earlier studies. A good starting point is the survey (Courbage et al. 
2013) on the economic literature on prevention and precaution. As differentiated 
therein, prevention activities encompass self-protection, i.e. modifying the probabil-
ity of a loss, and self-insurance, i.e. shaping the potential loss size. The seminal 
work by Ehrlich and Becker (1972) examined the relationship of both activities to 
market insurance, and many authors have subjected these results to various model 
changes (for an overview, see Courbage et al. 2013), see, e.g. Dionne and Eeckhoudt 
(1985) and Hiebert (1989). Most aforementioned models use an Expected Utility 
(EU) framework and consider only two states (i.e. a loss occurs = “bad” state or no 
loss occurs = “good” state).1 Another model of behaviour under risk, namely Rank 
Dependent Expected Utility (RDEU), has been considered for the study of preven-
tion, e.g. in Konrad and Skaperdas (1993), Bleichrodt and Eeckhoudt (2006), Etner 
and Jeleva (2013). Courbage (2001) considered the relationships between market 
insurance, self-insurance, and self-protection in the context of Yaari’s Dual Theory.

Our work is conceptually most closely related to Bensalem et  al. (2020), who 
model the interaction between insurer and insurance buyer as a so-called Stackel-
berg game (see, e.g. Osborne and Rubinstein 1994; Fudenberg and Tirole 1991), a 
setting recently used to describe the interaction between reinsurer(s) and insurer(s), 
e.g. in Bai et al. (2022), Chen and Shen (2018), Chen et al. (2020), and Cheung et al. 
(2019).2 Recently, some authors have also studied equilibria in sequential optimi-
sation games in an insurance-reinsurance-setting, see, e.g. Boonen and Ghossoub 
(2022), Boonen et  al. (2021) and Boonen and Zhang (2022). Let us also mention 
that in the cyber insurance domain, some works employ different game-theoretic 
approaches including the insurer and insured as parties, sometimes additionally fea-
turing malicious third parties (cyber attackers), see, e.g. Zhang et al. (2017) and Yin 
et al. (2021). One aspect of the usual (principal-agent)problem between an insurer 
(acting as principal) and an insurance buyer (responding as agent) is the problem of 
moral hazard, i.e. the fact that the (risk reduction) actions of the agent are unobserv-
able to the principal (see, e.g. Holmstrom 1979). This complicates matters, i.e. static 
principal-agent problems involving moral hazard are typically hard to solve (see, 

1  The distinction between self-protection and self-insurance provides good guidance and fits well with 
simple two-state models and frequency-severity approaches. Note that in reality, the effects of altering 
loss probabilities and loss sizes are often inseparable, which may be particularly relevant for cyber risks.
2  The cited studies use a continuous-time setting, whereas we consider a one-period model.
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e.g. Rogerson 1985; Jewitt 1988). Many of the above-mentioned works incorporate, 
or at least mention, the issue of asymmetric information in their studies, e.g. Liu and 
Zhu (2022), Boonen et al. (2021), and Zhang and Zhu (2021).3

The popular framework of risk measures to model risk preferences of both the 
insurance buyer and insurer has recently been used by, e.g. Bensalem et al. (2020), 
Cheung et  al. (2019), Boonen and Ghossoub (2022), and Balbás et  al. (2011), 
mostly in an insurance-reinsurance context. In the insurance context, an axiomatic 
characterisation of insurance prices as Choquet integrals (see Denneberg 2013) 
with respect to distorted probabilities was introduced in Wang et  al. (1997) and 
studied further, e.g. in Bellini and Caperdoni (2007) and Wang (2000).4 The first 
explicit connection of distortion risk measures and insurance pricing was made by 
introducing the proportional hazard transform (Wang 1995, 1996, 1998). Wang 
et al. (1997) described an axiomatic characterisation of insurance prices as Cho-
quet integrals and Wang (2000) introduces another particular distortion in the gen-
eral setting of Wang (1996), later called Wang transform, with the aim of connect-
ing the pricing of insurance and financial risks. Finally, let us mention that many 
questions that arise from the practical usage (due to corresponding regulatory 
frameworks) of the value-at-risk (VaR) and average value-at-risk (AVaR) meas-
ures are subsequently studied for a more general class of distortion risk measures, 
e.g. backtesting methods [see, e.g. Christoffersen and Pelletier (2004) and Ziggel 
et al. (2014) for VaR, Emmer et al. (2015) and Kratz et al. (2018) for AVaR, and 
Bettels et  al. (2022) for general distortion risk measures and an extensive over-
view of works on VaR and AVaR backtesting] or risk sharing [see, e.g. Galchion 
(2010) for VaR, Embrechts et al. (2018) for quantile-based risk measures (range 
value-at-risk), and Wang (2016), resp. Weber (2018), for more general (resp. VaR-
type) distortion risk measures].

3  Indeed, in other insurance domains, if incentive programmes exist (e.g. discounts on health insurance 
for participating in fitness regimes), they often give rise to moral-hazard issues, i.e. the insurer needs to 
secure the insured actually complies with the agreed-upon level of effort. In the cyber context, however, 
moral hazard does not seem to be a major concern for two reasons: first, due to the novelty and dynamics 
of cyber risk and the high complexity of technical systems, it is likely that neither of the parties (insurer 
and insured) have a full understanding of the underlying risk, i.e. the main problem is a lack of informa-
tion for both parties rather than information being withheld. Due to the necessity for up-to-date technical 
expertise, insurers collaborate with specialised IT service providers to assess and monitor the insured 
risks and recommend or employ risk mitigation measures. Thus, in our framework, we assume both risk 
transfer and risk reduction are offered through the insurer (principal), i.e. risk reduction services are part 
of the insurance contract and therefore their uptake (ex-ante) and upholding (ex-post) observable to the 
insurer. Second, as e.g. reputational risk from cyber events or losses from threats classified as war actions 
are not fully insurable but substantial risks in practice, the insured has an intrinsic motivation to mitigate 
such risks, even if an insurance policy to transfer other financial losses is in place.
4  Such distortion risk measures result from the properties of law-invariant, coherent risk measures if the 
property of sub-additivity for all random variables is replaced by additivity for comonotone random vari-
ables (see, e.g. Föllmer and Schied (2016) and Dhaene et al. (2012) for a detailed exposition and Dhaene 
et al. (2006, 2011) for a general review on (distortion) risk measures and their relation to comonotonic-
ity). The sub-class of distortion risk measures with concave distortion functions used in this study can 
furthermore be shown to be coherent (see Wirch and Hardy 1999), i.e. are a sub-class of law-invariant, 
coherent risk measures.
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Contribution

This paper extends the landscape of previous studies on the combination of risk 
reduction and risk transfer by bestowing the insurer with a more central role, namely 
controlling the cost of both risk transfer and risk mitigation. This relates to the real-
world situation in cyber insurance, where insurers have started to endow insurance 
policies (risk transfer) with so-called cyber-assistance services (risk mitigation). We 
consider a monopolistic, profit-maximising, risk-averse or risk-neutral insurer using 
a concave distortion risk measure and study separately the cases of cyber-assistance 
services relating to the concepts of self-protection and self-insurance.5 The interac-
tion between the insurer and the insurance buyer(s),6 who are risk averse and also 
use a concave distortion risk measure, is modelled as a Stackelberg game, where 
the “inner” optimisation problem corresponds to the insurance buyer’s response to 
a given price structure by the insurer and the “outer” optimisation problem corre-
sponds to the insurer’s problem of determining prices for (cyber) risk transfer and 
(cyber) assistance services. In particular, we derive the following insights:

•	 The “The insurer’s problem: single-contract case” section addresses the insurer’s 
problem in the single-contract case, studying in which cases an insurer is incentivised 
to encourage risk reduction in her policyholders by sharing the cost of risk reduction 
measures. We find that under the above assumptions, the insurer would never share 
the cost of risk reduction in a single-contract, pure self-protection scenario (Theo-
rem 1 and case study in section A.5 in the electronic supplementary information). 
This does not hold in a single-contract, pure self-insurance scenario, where the opti-
mal share of risk mitigation cost the insurer chooses to bear may depend e.g. on the 
parameters of the loss size distribution and both parties’ risk aversions (Remark 11 
and case study in section A.6 of the electronic supplementary information).

•	 The “The insurer’s problem: portfolio viewpoint” section extends the insurer’s 
study of the pure self-protection scenario from a single-contract view to bivariate 
examples of insurance buyers facing dependent cyber losses under dependence 
mechanisms relevant for cyber (loss propagation, common events). We dem-
onstrate that the finding from the single-contract case does not carry over, i.e. 
already for these small toy portfolios, the insurer may have an incentive to subsi-
dise risk mitigation in some policyholders. The study is extended to an example 
of a larger ( N ≥ 2 ) portfolio in section A.7.3 in the electronic supplementary 
information, illustrating the increasing importance of taking a portfolio view-
point for dependent risks.

5  While both types of services can have intertwined effects and relate to gaining information via risk 
assessment services, the issues of moral hazard / asymmetric information and the prospect of gaining 
additional information are excluded from the mathematical analysis in the main part of this paper. A dis-
cussion of how to potentially address the effect of risk assessment services is provided in section A.1 in 
the electronic supplementary information.
6  We consider a single buyer during the first part of the paper and extend this to examples of two (resp. 
N ≥ 2 ) buyers with dependent cyber-loss occurrences in the “The insurer’s problem: portfolio view-
point” section (resp. section A.7.3. in the electronic supplementary information).
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•	 The “Solution to the insurance buyer’s problem” section addresses the insur-
ance buyer’s solution to his problem of choosing an optimal combination of 
insurance and risk mitigation for a given price structure by the insurer (Corol-
lary 3) and deduces the potentially complementary nature of the two activities 
(Corollary 4).

In summary, the contribution offers threefold insights, regarding the viewpoints of 
insurers, (prospective) insurance buyers, and the general (cyber insurance) mar-
ket. For insurers, the study of the insurer’s bivariate optimisation problem offers a 
first guidance to the optimal pricing of insurance policies including risk mitigation 
services (under specific assumptions). For insurance buyers, it is also invaluable to 
better understand how different contracts would be optimally priced by an insurer, 
in particular that the price structure a prospective policyholder is offered (and the 
included incentive for risk reduction) may not only depend on his own characteric-
tics, but on the insurer’s existing portfolio and the (assumed prospective) depend-
ence between losses.7 The study of the insurance buyer’s problem on the optimal 
combination of risk transfer and risk mitigation is not conceptually new, but its 
detailed consideration offers valuable insights. Next to naturally providing guidance 
on the recommended course of action for insurance buyers, it may serve to theo-
retically explain the insurance gap observed in the cyber insurance market (see, e.g. 
Shetty et al. 2018), an offer-demand mismatch caused by the fact that potential buy-
ers often look for insurance against extreme cyber events and tend to perceive asked 
prices of such coverage as excessive, while insurers seek to limit their liabilities 
from unprecedented cyber losses either by limiting coverage or by charging heavy 
risk premiums. One way to mitigate this mismatch, where no premium acceptable 
to both parties can be found for the original risk, is to equip insurance policies with 
(potentially subsidised) risk reduction services which help to alter the risk in a way 
that allows the insurer to reduce premiums and offer desired coverage at an accept-
able (from the buyer’s viewpoint) premium.

The remainder of this paper is structured as follows:  in the “Model set-up and 
assumptions” section, the model assumptions and set-up are explained;  in the 
“Solution to the insurance buyer’s problem” and “The insurer’s problem: single-
contract case” sections the insurance buyer’s and insurer’s optimisation problems, 
respectively, are studied in the single-contract setting; the “The insurer’s problem: 
portfolio viewpoint” section addresses the insurer’s problem in simple portfolio set-
tings with dependent losses. The “Conclusion” section summarises and outlines 
future research opportunities.

7  This implies that a prospective buyer would be particularly well advised to enquire about prices at 
different insurers, as the offered price structures may differ depending on the existing portfolio, even if 
(hypothetically) the insurers’ risk assessment and modelling processes were identical.
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Model set‑up and assumptions

Risk mitigation services in cyber insurance (cyber assistance)

We first consider a model involving one profit-maximising, risk-averse insurer 
(‘she’) and one risk-averse (insurance) buyer (‘he’). Before detailing the model set-
up and the mechanics of the sequential optimisation game, we give some compelling 
arguments for considering risk mitigation services in conjunction with cyber insur-
ance policies and subsume types of risk mitigation services into three categories: 

	(R1)	 Reduction of loss probability after initial risk assessment: Insurers often work 
with specialised IT service providers (SP) who help them to thoroughly clas-
sify a prospective client’s IT security. After the effort of such an assessment 
is invested, the SP and the assessed company share a common understanding 
of the company’s IT security standpoint and potential need for action. Given 
that the risk is deemed insurable, a joint offer by SP and insurer to the com-
pany is in everyone’s interest: the company receives insurance protection and 
high-quality IT security maintenance services as a joint package without the 
necessity of extra effort to ensure complying with the insurer’s requirements, 
which is especially relevant for small companies. The insurer does not forfeit 
the upfront investment for risk assessment and has certainty about the main-
tenance and potential improvement of the IT security according to the SP’s 
assessment. The SP has certainty about the company’s willingness to comply 
with recommendations in order not to jeopardise insurance coverage, and about 
insurance coverage with a trusted “counterparty” who will not doubt their work 
in case a cyber event still occurs.8

	(R2)	 Reduction of loss magnitude in a cyber event: Among the insured’s obligations 
within a typical cyber insurance contract is the immediate notification of the 
insurer in case of a (suspected) cyber event. This allows the insurer to supply 
immediate technical and legal support in order to mitigate economic losses. 
Naturally, it is in both the company’s and insurer’s interest for these experts 
to already have a good understanding of the company’s IT security landscape 
and to be available immediately, both of which can be guaranteed by including 
these services – to be performed by a service provider collaborating with the 
insurer – in an insurance contract.

	(R3)	 Use of insurer’s knowledge about current cyber-loss landscape: While many 
businesses dedicate their attention to describing current cyber-threat trends, 
insurers have invaluable knowledge about economic losses currently suffered 
by their portfolio of clients. Companies are usually obliged by contract to notify 
their cyber insurer about cyber events, while naturally being reluctant to volun-
tarily share this information publicly or with external parties (e.g. researchers) 
in order to avoid reputational damage. Therefore, insurers have an information 

8  All of the above considerations emphasise again that moral hazard and information asymmetries might 
not be a severe problem in cyber as knowledge and incentives are aligned.
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advantage regarding current threats and their common causes (e.g. a new trend 
in phishing mails or a vulnerability in a software used by companies of a spe-
cific industry sector) and can make use of this extra knowledge to warn other 
policyholders who are particularly prone to similar threats and vulnerabilities 
(e.g. all policyholders from the same industry sector or all using some vulner-
able software). The benefit of doing so is reducing the probability of additional 
cyber losses from the same cause in their portfolio. This is especially relevant 
for large companies with sophisticated IT security (who may already work with 
external SPs) which might not find it necessary to additionally take advantage 
of (R1) and (R2) as part of insurance coverage. For the insurer, this type of 
mitigation helps to reduce the impact of systemic events and, thus, accumula-
tion risk in the portfolio.

Remark 1  (Link between theoretical and marketed types of risk reduction service) 
The types of service currently offered on the cyber insurance market and suggested 
above direct quite naturally to the concepts of self-protection and self-insurance: 

	(R1)	 Describes pre-incident services which are self-protection activities. Examples 
are network security, back-up of critical systems and data, anti-malware tools, 
identity and access management, IT security consulting, employee awareness 
measures, patch management, and mobile device management (Munich Re 
2021).

	(R2)	 Describes post-incident services which are self-insurance activities, such as res-
toration of data, 24h help hotlines, forensic post-breach services, legal advice, 
and consulting in case of extortion (Munich Re 2021).

	(R3)	 Describes a type of self-protection activity not yet advertised on the market, as 
contracts are typically viewed stand alone. However, using the insurer’s port-
folio knowledge to install such warning mechanisms would be an important 
way to use dependencies (and information) between risks to the insurer’s and 
insureds’ advantage.

Of course, the above categorisation simplifies reality regarding several points: pre- 
and post-incident services are usually not offered disjointly, but as a complete “cyber 
assistance” service package, and each service activity within the above categories 
can have beneficial effects on both cyber-loss probability and severity. For example, 
anti-malware tools not only serve their primary purpose, i.e. to deter malware from 
entering the system (preventing a cyber incident completely), but as a side effect – in 
case malware circumvents the protection – may help to identify the source of a cyber 
incident more efficiently and reduce the time until system functionality is restored 
(reducing the economic impact of an occurred cyber incident). Nevertheless, from a 
mathematical viewpoint, it is convenient (and in line with previous academic work) 
to study the two concepts separately and therefore it is helpful to keep in mind the 
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types of “real-world cyber assistance activities” they relate to.9 One aspect of cyber 
assistance which is purposely omitted here is risk-assessment services (see section 
A.1 in the electronic supplementary information). This includes, e.g. extensive IT 
audits conducted by an IT service provider collaborating with the insurer to analyse 
a company’s IT security provisions, to identify vulnerabilities, and to provide rec-
ommended courses of action.

Model prerequisites

Following the framework of Bensalem et  al. (2020), we assume that over a given 
policy year, the buyer faces a random loss represented by a non-negative ran-
dom variable (r.v.) X from a family of distributions Fs indexed by a param-
eter s ∈ [0,∞).10 For X ∼ Fs , we denote the corresponding survival function by 
FX,s(x) = ℙs(X > x), x ∈ ℝ , and its generalised inverse, the tail quantile function, by 
qX,s(u) = F

−1

X,s
(u) = inf{x ∈ ℝ ∶ FX,s(x) ≤ u}, u ∈ (0, 1) . To formalise the relation-

ship between the parameter s and the distributions Fs , we assume a decreasing order 
in the sense of first-order stochastic dominance ( ≤FSD ), i.e. for any 0 ≤ s1 < s2 < ∞ 
and X1 ∼ Fs1

, X2 ∼ Fs2
 it holds that X2 ≤FSD X1 . This is equivalent (see Müller and 

Stoyan (2002), Theorem 1.2.8) to assuming

for any non-decreasing11 function f ∶ ℝ → ℝ for which both expectations exist. We 
furthermore assume that �s[X] > 0, ∀s ∈ [0,∞) , meaning that no risk reduction can 
ever completely eliminate the possibility of a positive loss.

The decreasing order in the sense of FSD of Fs implies that

This means that increasing s alters the risk X in such a way that for any probability 
level, the minimum loss amount that is exceeded by X with this probability does not 
increase.

Assumption 1  (Convexity of tail quantile in s). Furthermore, we assume that

0 ≤ s1 < s2 < ∞ ⟹ �s2

[
f (X)

] ≤ �s1

[
f (X)

]

(A1)for any u ∈ (0, 1), the map s ↦ qX,s(u) is non-increasing.

(A2)for any u ∈ (0, 1), the map s ↦ qX,s(u) is convex.

10  The parameter s denotes the amount of risk mitigation service, whose categories were detailed above.
11  Throughout, we use the term non-decreasing for a real-valued function that fulfils 
∀x, y ∶ x < y ⟹ f (x) ≤ f (y) and increasing if the order in the implication is strict. The terms non-
increasing and decreasing are used analogously.

9  Naturally, an extension to a setting where both concepts are studied as intertwined remains an interest-
ing task for future research.
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This assumption can be interpreted as a decrease in marginal effect of service, i.e. 
the impact per unit of s on the risk X in the sense of (A1) does not increase as the 
baseline level of s increases, which is a very natural economic assumption.

We assume that both parties evaluate risk by using law-invariant, coherent risk 
measures, whose properties are recalled in section A.2 of the electronic supplemen-
tary information. An important class of risk measures are so-called distortion risk 
measures (see Wang et al. 1997), defined for a real-valued r.v. X as the usual Cho-
quet integral that simplifies for non-neg. X to

where � ∶ [0, 1] → [0, 1] is a distortion function12 and qX(u), u ∈ (0, 1), is the tail 
quantile function. From Eq. (1), one can directly see that the distortion risk measure 
for a.s. non-neg. losses represents a distorted expectation of X.

Assumption 2  (Concavity of distortion function). Concavity of the distortion func-
tion is a natural economic assumption. As it corresponds to assigning a higher 
weight to small probability events, it describes risk aversion of the decision maker, a 
standard assumption and indeed a prerequisite for the existence of insurance. There-
fore, we will restrict our analysis to distortion risk measures with concave distortion, 
a class of coherent, law-invariant risk measures.13

Remark 2  [Distortion risk measures and stochastic dominance, e.g. Dhaene et  al. 
(2006)] Any distortion risk measure � preserves first-order stochastic dominance, i.e. 
for any a.s. non-negative r.v. X1,X2 , it holds that X1 ≤FSD X2 ⟹ �(X1) ≤ �(X2).

Example 1  Table 1 lists some commonly used distortion risk measures and their cor-
responding distortion functions. In the case studies of our latter analysis, we focus 
on the proportional hazard transform.

The above assumptions on the risk measures and loss distributions [in particular 
(A2)] are convenient insofar as they imply that the map s ↦ �s(X) (and as a special 
case s ↦ �s[X] ) is convex, continuous, non-increasing, and 𝜌s(X) ≥ �s[X] > 0 [see 
Bensalem et al. (2020) and section A.3 in the electronic supplementary information].

(1)�(X) ∶= ∫
∞

0

�(FX(x))dx
e.g. [32]
= ∫

1

0

qX(u)d�(u),

13  By the properties of the Choquet integral (see Denneberg 2013), any distortion risk measure fulfils 
1., 2., 4., and 5. in Definition 1  (Section A.2 of the electronic supplementary information) and addition-
ally 3. if the distortion function � is concave (and the underlying probability space has no atoms), see, 
e.g. Wirch and Hardy (1999).

12  A distortion function � ∶ [0, 1] → [0, 1] is a continuous, non-decreasing function with �(0) = 0 and 
�(1) = 1 . The distortion is often economically interpreted as a subjective weighting of objective prob-
abilities representing the decision maker’s views or risk preference.
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Interaction between cyber‑insurance buyer and insurer

We now describe how the interaction between insurance buyer and insurer in the 
case of a cyber insurance contract is modelled as a Stackelberg game, i.e. a sequen-
tial optimisation game between two parties, where one party (the leader) moves 
first by choosing her strategy and the other party (the follower) moves second by 
choosing his strategy depending on the selected strategy of the leader, whereby both 
parties seek to maximise a gain or utility function or equivalently, minimise a loss 
function. For a general introduction to Stackelberg games, see Fudenberg and Tirole 
(1991) and Osborne and Rubinstein (1994). A common tool to solve a Stackelberg 
game is backward induction (see Fudenberg and Tirole 1991), i.e. first solving the 
follower’s problem for any possible choice of the leader’s strategy and then – know-
ing all the follower’s responses – solving the leader’s problem. The search for a solu-
tion (and its existence) therefore depends on the specific formulation of both prob-
lems, which we now detail in our case.

0.	 Common (correct) knowledge of initial loss distribution

The prospective insurance buyer approaches the insurer to inquire about offered 
prices for cyber insurance policies (in person or by entering data into an online cal-
culation system), where in order to receive price quotes, he needs to provide infor-
mation that allows the insurer (with the help of an IT service provider) to classify 
his risk profile given his characteristics (e.g. industry sector, company size, IT secu-
rity measures). We assume he provides the information truthfully and to the best 
of his knowledge, such that buyer and insurer have a common, unambiguous view 
of the original loss distribution, denoted F0.14 The real-world uncertainty of either 

Table 1   Popular distortion risk measures (DRM) and underlying distortion functions

Risk measure Distortion �(u) , u ∈ (0, 1) � concave Parameters and remarks

VaR� �{u>1−𝛼} No � ∈ (0, 1)

AVaR� min
{

u

1−�
;1
}

Yes � ∈ (0, 1)

Wang transform RM (Wang 
2000)

Φ
(
Φ−1(u) + �

)
Yes � ∈ (0,∞) , Φ is std. Normal 

c.d.f.
Beta DRM (Wirch and Hardy 

2000)
1

�(a,b)
∫ u

0
ta−1(1 − t)b−1dt Yes 0 < a ≤ 1, b ≥ 1 , 

�(a, b) =
Γ(a)Γ(b)

Γ(a+b)

Proportional Hazard (PH) 
transform RM (Wang 1995)

ur Yes r ∈ (0, 1], Special case of Beta 
DRM

14  F0 denotes the loss distribution of the buyer given his initial characteristics, including his existing 
IT security measures. The subscript 0 indicates that no additional services to reduce the risk have yet 
been acquired following the initial risk assessment. As the initial IT security level (and other characteris-
tics) vary between prospective buyers, the initial risk assessment yields inhomogeneous F0 . Note that for 
some companies, the risk assessment as part of the insurance take-up process may be the first compre-
hensive analysis of the cybersecurity level of their organization. While not every inquiry about insurance 
prices leads to the closure of a cyber insurance contract, the process may serve as a wake-up call for the 
acquisition of (additional) risk reduction measures within or without an insurance policy.
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parties’ knowledge of the unknown initial loss distribution is not studied here. Natu-
rally, the question of accurate cyber-risk assessment has gained increased practical 
importance and expresses itself, e.g. in the increasing number of service providers in 
this domain, see, e.g. Bosch CyberCompare as an example or Advisen for a market 
overview. For a seminal discussion of cyber-risk assessment services and a proposal 
how to approach them mathematically, see section A.1 in the electronic supplemen-
tary information.

1.	 Prices quotes by the insurer

Given the buyer’s original risk X ∼ F0 , the insurer offers price quotes Π for a 
range of contracts, where each offered contract is characterised by the included level 
of risk mitigation service s ∈ [0,∞).15 Assume that the price of entering a contract 
with service level s ∈ [0,∞) is given by

where the first term represents the risk premium according to the expected value 
principle with loading � and the second term denotes the service premium, where we 
assume that providing service at level s ∈ [0,∞) requires a monetary cost of c(s) for 
the insurer, of which a proportion � ∈ [�, 1] , 𝛽 > 0,16 is charged to the insured and, 
thus, the remaining proportion (1 − �) can be regarded a subsidy by the insurer to 
incentivise risk reduction. Analogously to (A1) and (A2), s ↦ c(s) is assumed to be 
increasing, strictly convex, and continuous with c(0) = 0 and lim

s→∞
c(s) = ∞ . The cost 

incurred by the insurer can be understood e.g. as the internal cost charged by the IT 
service provider for providing pre- or post-incident services (i.e. (R1) and (R2)) or 
the administrative cost of monitoring and evaluating loss data to warn policyholders 
about imminent threats (i.e. (R3)). Thus, the insurer’s task is to choose a combina-
tion (�, �) ∈ [0,∞) × [�, 1] which then defines price quotes for all feasible contracts.

2. Choice of a contract by the buyer (or opt-out)
Given a family of prices Π(s) for all feasible contracts, the buyer selects a con-

tract by choosing a proportional insurance share � ∈ {0, 1} (to opt into full insur-
ance � = 1 or to not buy insurance � = 0 ) and the amount of risk mitigation ser-
vice s ∈ [0,∞) . We assume that the purchase of (additional) service at any level 
s is also feasible outside of an insurance contract, but at a higher cost �oc(s) with 
𝛽o > 1 . This can be understood as the cost of buying service directly through an IT 
service provider (without a discount offered for insurance customers) or from the 

Π(s) = (1 + �)�s[X] + �c(s),

15  One might argue that s should rather be chosen from a discrete set {s1,… , sn}, n ∈ ℕ (a potentially 
interesting combinatorial optimisation problem), representing all feasible combinations of service pack-
ages offered by the insurer. This is reasonable and we regard this as a mathematically different version of 
the problem whose analysis is not the present focus.
16  As � does not depend on s (a potential generalisation for future studies), we do not allow the insurer 
to give away service for free, as otherwise the cost of service �c(s) would not increase with its amount, 
which is unnatural.
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insurer herself at a mark-up.17 In summary, given the prices for all feasible con-
tracts as offered by the insurer, the insurance buyer’s problem consists of choos-
ing (�, s) ∈ {0, 1} × [0,∞) . We detail in Remark 4 how the insurance buyer’s choice 
encapsulates three classical ways of dealing with risk (acceptance, reduction, trans-
fer), see, e.g. Marotta et al. (2017).

3. Solution by backward induction
To find both parties’ optimal solution, we use backward induction (see, e.g. 

Osborne and Rubinstein 1994) by first finding the buyer’s optimal response (�∗, s∗) 
to any insurer’s choice of (�, �) and second, given all optimal buyer’s responses, 
finding the insurer’s optimal choice (�∗(�∗, s∗), �∗(�∗, s∗)) . In order to formulate and 
solve the game, below we state the loss functions of buyer and insurer, respectively.

Remark 3  We highlight some similarities and distinctions between the present work 
and the study of Bensalem et al. (2020), whose framework was our inspiration: as 
indicated above, the choice of risk measures and the ordering of loss distributions 
follows Bensalem et  al. (2020) and from the insurance buyer’s point of view, the 
risk reduction service s fulfils a very similar role to the effort considered in Bensa-
lem et  al. (2020), yielding related optimisation problems for the buyer within the 
Stackelberg game. In the present study, however, the insurer’s role is more cen-
tral, as she controls the cost of risk mitigation service within an insurance contract 
(via the share � of administrative cost charged to the insured). This implies that the 
insurer has to solve a two-dimensional problem (choosing a combination of risk pre-
mium and service premium optimally), and circumvents the moral-hazard problem 
that often occurs in studies on prevention and insurance. As in the present setting 
the risk mitigation service is offered through the insurer, the challenge of ensuring 
that the buyer actually complies with the agreed-upon optimal level of risk reduc-
tion (according to which insurance is priced) does not arise. Furthermore, we extend 
the study of the interaction with one insurance buyer to toy examples of interac-
tions with a portfolio of dependent buyers, a particularly relevant issue in the cyber 
context.

Formalisation of the Stackelberg game

We now combine the assumptions of the above sections to formulate the optimisa-
tion problems of both parties within a Stackelberg game. For the reader’s conveni-
ence, all parameters and functions appearing within the optimisation problems are 
summarized in Tables  2 and 3. The insurance buyer’s objective is to minimise a 
coherent and law-invariant risk measure �1 associated to his total position includ-
ing insurance, while the insurer’s objective is to minimise, given the buyer’s opti-
mal response, another coherent and law-invariant risk measure �0 associated to her 
(negative) total loss.

17  The latter option is not necessarily feasible in practice, as the insurer may not be interested in or 
legally allowed to sell such services.
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 where we have used that both risk measures are cash-additive and positively homo-
geneous. It is obvious that the insurer’s loss depends on (�, �) directly as well as via 
the buyer’s optimal response denoted (�∗(�, �), s∗(�, �)).

Remark 4  (Interpretation of insurance buyer’s choice) The buyer’s options corre-
spond to three classical ways of dealing with risk:

•	 Risk acceptance: The choice (�, s) = (0, 0) yields L1(0, 0) = �1,0(X) , i.e. is 
equivalent to opting out of buying insurance or services and just retaining and 
accepting the original risk.

•	 Pure risk transfer: Choosing (�, s) = (1, 0) yields L1(1, 0) = (1 + �)�0[X] , 
meaning that the buyer opts for fully insuring the original risk.

•	 Pure risk reduction: A choice 𝛼 = 0, s > 0 yields L1(0, s) = �1,s(X) + �oc(s) , 
i.e. the buyer opts out of risk transfer but chooses to reduce the original retained 
risk by purchasing risk reduction services (from the insurer outside of a policy or 
from a service provider directly).18

•	 Combination of risk transfer and risk reduction: A choice 𝛼 = 1, s > 0 yields 
L1(1, s) = (1 + �)�s[X] + �c(s) and means that the buyer chooses an insurance 
policy with risk mitigation services included, i.e. opts for insuring a reduced risk.

Remark 5  (Buyer’s and insurer’s optimal attainable loss) 

•	 Note that as the insurance buyer starts out by facing the non-negative  random 
loss X, by assumption L1(𝛼∗, s∗) > 0 , i.e. the insurance buyer can never com-
pletely eliminate his risk or even make a profit.

•	 On the contrary, we naturally assume that the insurer only offers a contract if it 
is profitable, i.e. only if she can obtain a negative loss L0(𝜃∗, 𝛽∗) < 0 . Otherwise, 
she would refrain from offering a contract by refusing to quote a price.

(BP)

min
(�,s)∈{0,1}×[0,∞)

L1(�, s) ∶= �1,s(X) + �oc(s) + �
[
(1 + �)�s[X] − �1,s(X) + (� − �o)c(s)

]
,

(IP)

min
(�,�)∈[0,∞)×[�,1]

L0(�, �) ∶= �∗(�, �)
(
�0,s∗(�,�)(X) − (1 + �)�

s∗(�,�)[X] + (1 − �)c(s∗(�, �))
)
,

18  If one does not want to allow the interpretation that such contracts are offered by the insurer outside 
of an insurance policy (e.g. due to legal restrictions), the insurer’s loss function should be formulated in 
a way that makes these contracts unprofitable (e.g. as done here by restricting � ∈ [�, 1] ). If one wants 
to allow such contracts (one could argue that such a contract could be closed in the cyber domain with a 
client that has other contracts with the same insurer), a choice of 𝛽 > 1 would allow the insurer to sell her 
services at a mark-up (one could argue that this might be profitable for an insurer who has the appropri-
ate infrastructure in place anyway for the rest of her portfolio). In our analysis, we stick to the interpreta-
tion that these outside service contracts are offered by third parties, i.e. service providers, and their price 
is externally given and higher than any within-insurance price (i.e. 𝛽o > 1 , see above).
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Solution to the insurance buyer’s problem

As the analysis of (BP) is an extension of Bensalem et al. (2020), this section focuses 
on the additions to their analysis originating from the new formulation of (IP) and 
the interpretation of all results in the cyber insurance context. Derivations and proofs 
are outlined in section A.3 of the electronic supplementary information. First, one 
determines the set of values of s such that full insurance is demanded (i.e. �∗(s) = 1 , 
denoted I  ) and its complement (no insurance is demanded, �∗(s) = 0, N ∶= I

� ). 
Note that for fixed s, the choice �∗ ∈ {0, 1} depends only on the sign of the expres-
sion in the last bracket of (BP) such that it follows:

 On the sets I  and N  , the buyer’s loss function is a sum of convex functions:

Therefore, one considers (BP) separately on I  and N  and compares the resulting local 
minima to obtain a global minimum. To this end, one first needs to study I  and N  for 
given (�, �) , i.e. the behaviour of s ↦ G�(s) with respect to the threshold (1 + �) . We 
know that by assumption and Lemma 1 (see section A.3 in the electronic supplemen-
tary information), s ↦ G�(s) is continuous and its second summand s ↦ (�o − �)

c(s)

�s[X]
 

is non-negative and increasing.19 In this study, we consider two cases:

•	 Self-protection: In a self-protection scenario (Ehrlich and Becker 1972), i.e. if 
service only affects the probability of a loss, the map s ↦ �s(X)

�s[X]
 is monotone non-

decreasing (see Bensalem et al. 2020, Lemma 3.2, and section A.3 in the elec-
tronic supplementary information). Economically, this means that increased risk 
reduction has a larger impact on (reducing) the price of insurance than on (reduc-
ing) the risk.20 Mathematically, this implies increasingness of the entire map 

(2)

�∗ = 1 ⟺ G
� (s) ∶=

�1,s(X)

�
s
[X]

+ (�
o
− �)

c(s)

�
s
[X]

≥ (1 + �) ⟹ I ∶= {s ∈ [0,∞) ∶ G
� (s) ≥ (1 + �)},

(3)𝛼∗ = 0 ⟺ G𝛽(s) < (1 + 𝜃) ⟹ N ∶= {s ∈ [0,∞) ∶ G𝛽(s) < (1 + 𝜃)}.

L1,N(s) ∶= �1,s(X) + �oc(s), s ∈ N,

L
�,�

1,I
(s) ∶= (1 + �)�s[X] + �c(s), s ∈ I.

19  This follows immediately as by assumption �s[X] > 0 , 𝛽o − 𝛽 > 0 , and s ↦ c(s) is non-negative and 
increasing, while by Lemma 1, s ↦ �s[X] is non-negative and non-increasing.
20  This can be seen even more clearly by rewriting Equation (A3) in terms of elasticity � with respect 
to s [as used in economics for e.g. the price-elasticity of demand, see e.g. Parkin et al. (2002)], i.e. for 
0 < s1 < s2 < ∞ as

yielding that the expectation is more elastic with respect to service than the risk measure.

�s2
[X]−�s1

[X]

�s1
[X]

s2−s1
s1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
�
�,s

≤
�s2

[X]−�s1
[X]

�s1
[X]

s2−s1
s1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
��,s

≤ 0,
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s ↦ G�(s) , meaning that G�(s) could intersect (for given � and � ) the threshold 
(1 + �) at most once, making I  and N  straightforward to determine. This setting 
will be considered in the following.

•	 Special case of self-insurance: Bensalem et al. (2020) argue that in a scenario 
of self-insurance, i.e. in the present context if service only affects the severity of 
a cyber loss, for some standard loss distributions (e.g. Pareto, Weibull, or Log-
Normal), s ↦ �s(X)

�s[X]
 is monotone non-increasing. This does not lead to a straight-

forward expression of I  and N  , as monotonicity of s ↦ G�(s) is not implied and 
there is a priori no limit for the number of times it crosses a given threshold 
(1 + �) for s ∈ [0,∞) , such that no general results for this case can be stated. In 
section A.6  in the electronic supplementary information, we study the particular 
case of a Pareto-distributed loss whose severity is affected by risk reduction ser-
vice. Here, under mild assumptions, G�(s) turns out to be strictly convex (with 
lim
s→∞

G�(s) = ∞ ), yielding only one additional case compared to the self-protec-
tion case, namely G�(s) intersecting the level (1 + �) exactly twice.

As outlined above, we now consider a scenario of self-protection (Ehrlich and 
Becker 1972), i.e. an a.s. non-negative loss X which stems from a family of zero-
inflated distributions of the form

where s ↦ p(s) ∈ [0, 1] is decreasing and FY is the c.d.f. of an a.s. positive r.v. Y. 
This means that a positive loss with c.d.f. FY (which could describe a single loss or 
be a compound distribution describing a cumulative loss) occurs with a probability 
that can be lowered by purchasing services while the severity distribution remains 
untouched, relating to (R1) and (R3) above. Ansatz (4) only assumes s ↦ p(s) to 
be decreasing (which is natural, as increased service should decrease the loss prob-
ability). As a standard economic assumption (e.g. Courbage et al. 2013) is s ↦ p(s) 
being convex (decreasing marginal impact), (A2) is not necessarily implied. There-
fore, we assume another sufficient condition to ensure convexity of s ↦ �s(X) for 
distributions of the form (4), namely that both the objective loss probabilities p(s) 
and the subjective loss probabilities �(p(s)) are decreasing in a convex way (see 
Bensalem et al. 2020, Lemma 3.3, and section A.3 in the electronic supplementary 
information).

Example 2  As � is concave, s ↦ p(s) must be “sufficiently” convex for the con-
catenation to be convex; e.g. for the common choice of distortion function 
�(u) = ur, r ∈ (0, 1] , a sufficient condition for the convexity of �(p(s)) = p(s)r 
would be for s ↦ p(s) to be logarithmically convex (see section A.5 in the electronic 
supplementary information).

(4)FX,s(x) = [(1 − p(s)) + p(s)FY (x)]1{x≥0},
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Increasingness of s ↦ G�(s) for any � ∈ [�, 1] in the self-protection case allows 
a convenient expression of the sets I  and N .

Corollary 1  (Structure of I  and N  in the self-protection case, extension of Bensa-
lem et al. (2020), Lemma 3.2) There exists a constant �0 ≥ 0 such that: 

(1)	 If � ≤ �0 , then N = � and I = [0,∞).
(2)	 If 𝜃 > 𝜃0 , then for any � ∈ [�, 1] , there exists sB(𝜃, 𝛽) > 0 such that 

N = [0, sB(�, �)) and I = [sB(�, �),∞).

In the latter case, both maps � ↦ sB(�, �) and � ↦ sB(�, �) are increasing.

Remark 6  (Interpretation of Corollary 1) Case (1) states that if the loading is lower 
than a given constant level �0 , the buyer would purchase insurance already for the 
original risk (at s = 0 ) and therefore at any level s (recall that increasing s reduces 
the price more than the risk). Case (2), illustrated in Figure 1, corresponds to a situ-
ation where the loading is too high for the buyer to insure the original risk, but by 
adding a service level of at least sB(�, �) (which depends on � as well as its relative 
cost � ), an insurance contract with loading � becomes acceptable for the buyer.

This directly relates to the insurance gap on the cyber insurance market: for the 
pure risk transfer ( s = 0 ) policies offered with loading � , it may not be acceptable for 
the buyer to insure the original risk at the price the insurer demands. To make an insur-
ance contract possible, either � would have to be lowered to at most a level �0 (move 
from case (2) to case (1)) or risk reduction services equivalent to a level sB would have 
to be offered as part of the policy (in case (2), enable a move from N  to I).

Lastly, it is intuitive that if the risk premium or service premium increase, the 
with-insurance solution becomes relatively more expensive for the buyer, and the 
interval corresponding to N  (resp. I  ) becomes larger (resp. smaller).

To solve the buyer’s problem, first note that L1,N(s) , resp. L�,�
1,I
(s) , each admit a 

unique global minimiser on [0,∞) , denoted sN resp. sI(�, �).

Corollary 2  (Solutions of separate problems, extension of Bensalem et  al. 
(2020, section 3.3)

1. For any � ∈ [�, 1] , there exists a positive constant 𝜃N(𝛽) > 𝜃0 such that

The map � ↦ �N(�) is decreasing.

2. For any � ∈ [�, 1] , there exists a constant �I(�) such that

𝜃 < 𝜃N(𝛽) ⟹ argminNL1,N(s) = sB(𝜃, 𝛽),

𝜃 ≥ 𝜃N(𝛽) ⟹ argminNL1,N(s) = sN .
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In the latter case, the following hold: 

	 (i)	 For any � ∈ [�, 1] , the map � ↦ sI(�, �) is increasing.
	 (ii)	 For any 𝜃 > 0 , the map � ↦ sI(�, �) is decreasing.

Remark 7  (Interpretation of Corollary 2) 

Part 1.: As the loading � increases, the set N  (no insurance) expands, i.e. the 
boundary sB(�, �) increases (shift to the right in Fig. 1). The value �N(�) is the small-
est loading such that the global minimiser of L1,N(s) lies in N

Part 2.: For fixed service cost � , as � increases, it becomes relatively more expen-
sive to transfer risk, which makes it economically rational to reduce the to-be-
insured risk by increasing service. Vice versa, for fixed risk loading � , as � increases, 
and thus, service becomes relatively more expensive, it is economically rational to 
decrease the purchased amount of service.

Corollary 2 does not make a statement about the local solution on I  . As both 
sI(�, �) (by Corollary 2) and sB(�, �) (by Corollary 1) are non-decreasing in � , 
to determine the local solution on I  and the global solution to the minimisa-
tion of L1(�∗(s), s) , one has to consider all possible cases regarding the order of 
sN , sI(�, �), sB(�, �) (see sectin A.3 in the electronic supplementary information).

Corollary 3  (Global solution in the self-protection case, extension of Bensalem et al. 
(2020, Theorem 3.2) For any � ∈ [�, 1] , there exists a constant �R(�) ≥ 0 , such that: 

	 (i)	 If � ≤ �R(�) , the global minimiser of L1(�∗(s), s) is (�∗, s∗) = (1, sI(�, �)).
	 (ii)	 If 𝜃 > 𝜃R(𝛽) , the global minimiser of L1(�∗(s), s) is (�∗, s∗) = (0, sN).

Furthermore, it holds �R(�) ≥ �N(�) and the map � ↦ �R(�) is non-increasing.

𝜃 ≤ 𝜃I(𝛽) ⟹ sI(𝜃, 𝛽) = 0,

𝜃 > 𝜃I(𝛽) ⟹ sI(𝜃, 𝛽) > 0.

Fig. 1   Schematic illustration 
of G� (s) and resulting sB(�, �) 
for one value of � . �0 is the 
minimum value of the loading 
such that G� (s) intersects the 
level 1 + � , resulting in N  being 
non-empty
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Remark 8  (Interpretation of Corollary 3) For any choice of � , there is a maximum 
loading �R(�) the insurance buyer is willing to accept: if it is not exceeded, he sub-
scribes to full insurance with service level sI(�, �) ; else, he refrains from purchas-
ing insurance and buys service at level sN from an outside provider. The maximum 
acceptable loading decreases as the share of service cost increases, which is intuitive 
as the buyer accepts the contract if his total loss with insurance does not exceed his 
(fixed) total loss without insurance.

The relationship between risk loading and service demand is summarised in 
Corollary 4.

Corollary 4  (Based on Bensalem et al. 2020, Corollary 3.3) For any � ∈ [�, 1] , the 
map � ↦ s∗(�, �) is non-decreasing for � ≤ �R(�) and constant (equal to sN ) for 
𝜃 > 𝜃R(𝛽) . It has a negative jump of size sN − sI(�R(�), �) at � = �R(�) , which means 
that demand for risk transfer and service can be complements.

Remark 9  (Interpretation of Corollary 4 in the cyber context) Corollary 4 is mean-
ingful in cyber insurance: earlier game-theoretic studies concerned with the exist-
ence and efficiency of a cyber-insurance market where agents in a network invest in 
interdependent security measures (e.g. Lelarge and Bolot 2009; Schwartz et al. 2013; 
Schwartz and Sastry 2014; Shetty et al. 2010, 2010) have in many cases concluded 
that given the availability of cyber insurance, individuals’ willingness to invest in 
self-protection decreases and it is, thus, generally not possible to design insurance 
as a means to reach socially optimal levels of investment. Corollary 4 emphasises 
the much more optimistic perspective that in case of self-protection, the existence of 
insurance can indeed lead to higher optimal levels of risk reduction at least for indi-
vidual policyholders. While we do not consider negative externalities of interdepend-
ent security investments, it is reasonable to postulate that by subscribing to insurance 
with a high service level, policyholders inadvertently benefit other agents in their net-
work, e.g. by reducing the risk of cyberattacks being propagated through their sys-
tems or by providing loss data the insurer can use to warn other policyholders.

Furthermore, Corollary 4 allows another understanding of the cyber insurance 
gap: as the optimal service demand within insurance can be higher than without 
insurance, for a given combination (�, �) that an insurer demands in practice, if the 
service that can be offered is limited (e.g. due to technical constraints or due to lim-
ited contracts between insurers and service providers), the optimal within-insurance 
service level may not be attainable and the company may prefer the no-insurance 
solution. A way to close (or narrow) the gap would be to either decrease the pre-
mium or to increase the amount of available service within an insurance policy to 
make sI(�, �) attainable.

Having found the insurance buyer’s optimal response to any combination 
(�, �, �o) , we address the insurer’s problem of choosing (�, �) to minimise her loss 
over all optimal responses of the buyer.
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The insurer’s problem: single‑contract case

Given the results of Corollary 3, (IP) reduces to a minimisation over a compact set:

 assuming that the obtainable objective value of (5) is negative. This corresponds 
to a choice (�, �) yielding full risk transfer with service level sI(�, �) ≥ 0 as the 
buyer’s optimal response. In case the insurer could not obtain a negative objective 
value in (5), she abstains from offering risk transfer by choosing 𝜃 > 𝜃R(𝛽) in (IP). 
In this case, the buyer’s optimal response is (�∗, s∗) = (0, sN(�o)) , i.e. to buy ser-
vice at level sN(�o) outside an insurance policy.21 Note that the special case � = 1 , 
where the insurance buyer carries the full cost of self-protection, has already been 
studied previously, the difference here being that the self-protection measures can 
be obtained cheaper within an insurance contract, increasing the maximum risk pre-
mium chargeable by the insurer.

We now state that in the self-protection case, choosing � = 1 is also a solution to the 
more general problem (5). The steps leading to this result are outlined subsequently, 
proofs are postponed to section A.4 in the electronic supplementary information.

Theorem  1  (Solution of (5) in the self-protection case) Let the assumptions of 
Lemma 2 (self-protection, see section A.3 in the electronic supplementary informa-
tion) hold. Then, a solution (�∗, �∗) to the minimisation problem (5) lies in the com-
pact set {(�, 1) ∶ � ∈ [0, �R(1)]} . This means that in the self-protection case, i.e. if 
service only affects the loss probability, it is always optimal for the insurer to shift 
the full service cost to the insured.

Example 3  (Zero-inflated Pareto loss) The solution to (5) cannot be characterised 
further without more structure. Details for the special case of a zero-inflated Pareto-
distributed loss are given in section A.5 of the electronic supplementary informa-
tion. In this case, the insurer’s loss can be shown to be monotone in � for � = 1 , 
yielding the solution �∗ = �R(1) (see Bensalem et  al. 2020). Combining this with 

(5)

min
(�,�)∈A∶=[0,�R(�)]×[�,1]

L0(�, �) = �0,sI (�,�)(X) − (1 + �)�sI (�,�)
[X] + (1 − �)c(sI(�, �)),

21  As mentioned above, one could theoretically allow the insurer to offer “service-only” contracts by 
solving

which certainly yields a non-positive objective value. It might be feasible to assume that the insurer 
would be able to offer such services cheaper than other market participants, as she might have certain 
service infrastructures (contracts with IT experts, warning mechanisms) in place already for her insur-
ance clients. One might also assume that the insurer has initially solved this problem, thus, determining 
�o , and the upper bound in (6) is the next-cheapest outside option. Under no circumstance would we find 
it realistic to allow the insurer to simultaneously compare (negative) objective values of (5) and (6) and 
choose the lower one. In other words, the insurer should not compare for a prospective buyer where risk 
transfer is profitable whether it could be more profitable to offer only services and choose a solution that 
discourages the buyer from buying risk transfer.

(6)min
�∈[1,�o]

(1 − �)c(sN (�)),
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Theorem  1 means that for a Pareto-distributed loss whose occurrence probability 
can be lowered by risk reduction services, an optimal solution for the insurer is 
given by shifting the full cost of service to the insured and charging the maximum 
acceptable loading, i.e. (�∗, �∗) = (�R(1), 1).

Remark 10  Theorem  1 does not make a statement about uniqueness of the solu-
tion, as uniqueness only holds whenever the maximum attainable loading �R(�) is 
larger than the minimum loading �I(�) that makes pure risk transfer undesirable to 
the insured compared to a combination of risk reduction and risk transfer (i.e. leads 
to a solution sI(𝜃, 𝛽) > 0 , see the proof of Corollary 2). This holds true under quite 
general assumptions on the function s ↦ c(s) , e.g. for its right-side derivative at 0 to 
vanish, i.e. c�(s)|s=0+ = 0.

We use the (implicit) definition of the maximum feasible loading for any share of 
service cost �R(�) from the proof of Corollary 3, given as

which is well-defined for any � ∈ [�, 1] , as the map � ↦ L
�,�

1,I
(sI(�, �)) is increas-

ing with L0,𝛽
1,I
(sI(0, 𝛽)) < L1,N(sN) . Furthermore, it is shown that for any � ≥ 0 (resp. 

𝜃 > 𝜃I(𝛽) ), the map � ↦ L
�,�

1,I
(sI) is non-decreasing (increasing) such that � ↦ �R(�) 

is non-increasing (decreasing). By denoting � ∶= �R(1) and 𝜃̄ ∶= 𝜃R(𝛽) , it holds 
L
𝜃,𝛽

I
(sI(𝜃, 𝛽)) < LN(sN) for any 𝜃 ∈ [0, 𝜃̄] , such that one can likewise define for any 

such � the constant

denoting the maximum feasible share of service cost such that the contract is 
accepted for a given loading. The map � ↦ �M(�) is by definition non-increasing on 
𝜃 ∈ [0, 𝜃̄] . As a corollary of Lemma 2, we deduce that for � ≥ 0 fixed, the insurer’s 
loss is monotone in the share of service cost �.

Proposition 1  (Monotonicity of insurer’s loss in � ) Under the conditions of 
Lemma 2 (self-protection) and under the necessary condition of profitability for the 
insurer, i.e. if L0(𝜃, 𝛽) < 0 , � ↦ L0(�, �) is a monotone, non-increasing function for 
any � ≥ 0.

Proposition 1 states that for any (fixed) loading � , an optimal solution for the 
insurer is to choose the maximum possible service cost �M(�) acceptable to the 
buyer, or equivalently that the insurer has no incentive to subsidise risk reduc-
tion through a rebate on services. This implies that an optimal solution to prob-
lem (5) lies in the (compact) set {(𝜃, 𝛽M(𝜃)), 𝜃 ∈ [𝜃, 𝜃̄]} ∪ {(𝜃, 1), 𝜃 ∈ [0, 𝜃]} or 
equivalently {(�R(�), �), � ∈ [�, 1]} ∪ {(�, 1), � ∈ [0, �]} (see Figure 2). The one-
dimensional optimisation problem on {(�R(�), �), � ∈ [�, 1]} can be understood 
as solving the insurer’s trade-off between charging a higher service cost versus a 

�R(�) ∶= sup
{
� ≥ 0 ∶ L

�,�

1,I
(sI(�, �)) ≤ L1,N(sN)

}
,

�M(�) ∶= max
{
� ∈ [�, 1] ∶ L

�,�

I
(sI(�, �)) ≤ LN(sN)

}
,
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higher risk loading while offering a contract the buyer will accept. The following 
proposition states that the insurer’s loss on this set is monotone in � , leading to 
the statement of Theorem 1.

Proposition 2  (Monotonicity of insurer’s loss in � with maximum feasible risk pre-
mium) Under the conditions of Lemma 2 (self-protection), the map � ↦ L0(�R(�), �) 
is non-increasing.

Remark 11  (Self-insurance) A central property leading to the above results for the self-
protection case is non-decreasingness of s ↦ �s(X)

�s[X]
 . In case of self-insurance, this 

assumption does not necessarily hold; indeed, for some standard loss distributions 
(e.g. Pareto, Weibull, or Log-Normal), the converse holds true, i.e. s ↦ �s(X)

�s[X]
 is non-

increasing (see Bensalem et al. 2020). In section A.6 in the electronic supplementary 
information, we study the particular case of a Pareto-distributed loss whose severity is 
affected by risk reduction service. We find that in this self-insurance case, the insurer 
can indeed have an incentive to subsidise service cost (i.e. offer contracts with 𝛽∗ < 1 ), 
where the optimally subsidised share (1 − �∗) increases with the insurer’s risk aver-
sion. In particular, if the risk aversions of insurer and insurance buyer are similar (i.e. 
r0 ↘ r1 for the PH transform risk measure), a mutually acceptable contract may only 
exist if the cost is shared ( 0 < 𝛽 < 1 ). This further implies that the insurer’s optimal 
solution, i.e. the price structure the insurance buyer is offered, may depend on his 
choice of risk measure, even if the initial risk assessment is equivalent.

So far, we scrutinised the interaction between the insurer and a single insur-
ance buyer as an isolated problem. This is often reasonable, as in practice insurers 

Fig. 2   Schematic illustration of the insurer’s admissible set A = [0, �R(�)] × [�, 1] (grey) and the set con-
taining the optimal solution in the self-protection case. According to Proposition 1, an optimal solution 
must lie on the boundary {(�R(�), �), � ∈ [�, 1]} ∪ {(�, 1), � ∈ [0, �]} (solid black line). Proposition 2 
restricts the set containing an optimal solution to the set {(�, 1), � ∈ [0, �]} (dashed black line). For the 
special case of a Pareto-distributed loss, the optimal solution (�∗, �∗) = (�, 1) is marked by a cross (for 
details, see section A.5 in the electronic supplementary information)
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usually price individual risks on a stand alone basis without taking into account 
the existing portfolio. However, the failure of the independence assumption 
between risks is one of the central challenges in cyber insurance, as cyber inci-
dents at different firms can be dependent, e.g. due to common underlying vulner-
abilities (e.g. Böhme et al. 2018; Zeller and Scherer 2022) or due to propagation 
for worm-type viruses. Therefore, one could argue that rather than finding price 
structures (�, �) by considering problem (5) separately for each customer, the 
insurer should jointly optimise the risk measure for the entire portfolio against 
the sum of all premiums received (note that distortion risk measures are in most 
situations not additive for non-comonotonic risks).

In  the “The insurer’s problem: portfolio viewpoint” section, we illustrate 
that already for portfolios of two dependent losses, the results of Theorem 1 do 
not necessarily hold anymore, i.e. when optimising from a portfolio viewpoint, 
indeed the insurer can have an incentive to subsidise self-protection measures for 
some policyholders.

The insurer’s problem: portfolio viewpoint

In the self-protection case, a central property is that for any single contract in a 
portfolio of n policyholders with risks Xi, i ∈ {1,… , n} , for any feasible  loading 
�i, i ∈ {1,… , n} , the reduction in price for increased service outweighs the reduc-
tion in the insurer’s risk measure �0,si(Xi), i ∈ {1,… , n} for each single risk, i.e.

However, ordering of the relevant sensitivities is not necessarily preserved in a 
portfolio context, i.e. when adding a new policyholder to an existing portfolio, the 
reduction of the overall portfolio risk measure �0,s(X) may outweigh the price reduc-
tion of the additional contract, i.e. for some i ∈ {1,… , n}: 

 where s ∶= (s1,… , sn) and X =
∑n

i=1
Xi is the aggregated loss. This may imply a 

situation where the insurer has an economic incentive to subsidise risk reduction 
for some policyholders in the self-protection case, as we will now analyse in a toy 
example of two policyholders with dependence mechanisms representative for cyber 
risk: (directed) loss propagation, common cyber events, and copula approaches. 
While these bivariate examples will already be sufficient to work out the structural 
difference to the univariate case, we provide one exemplary extension to a general 
multivariate setting in section A.7.3 of the electronic supplementary information.

(1 + 𝜃i)
𝜕�si

[Xi]

𝜕si
�����������������

sensitivity of premium for Xi

<
𝜕𝜌0,si (Xi)

𝜕si
�������

sensitivity of risk measure for Xi

≤ 0, i ∈ {1,… , n}.

(7)
𝜕𝜌0,s(X)

𝜕si
< (1 + 𝜃i)

𝜕�si
[Xi]

𝜕si
<

𝜕𝜌0,si (Xi)

𝜕si
≤ 0,
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(Directed) loss propagation

A popular way of modelling dependencies between cyber losses is to consider a 
model of epidemic spreading in an underlying network, i.e. a directed or undirected 
graph whose nodes are interpreted as companies (or machines) and whose edges 
are interpreted as connections between these companies (or machines) through 
which a state of “infectiousness” can be passed on. These models, often originat-
ing from mathematical biology, have been extensively studied in the cyber context 
over the last few years, see, e.g. Fahrenwaldt et al. (2018), Xu and Hua (2019), Xu 
et al. (2015) or the surveys Marotta et al. (2017), and Kerstin Awiszus et al. (2022). 
Interpretations of such models are worm-type viruses spreading between connected 
machines or a state of business interruption propagating through a supply chain.

Example 4  (Bivariate model with one directed edge) For illustration purposes, we 
consider a portfolio of two firms with one directed edge between them and we 
understand the “infected” state as a loss occurrence, i.e. assume a loss occurrence in 
firm 1 can cause a loss in firm 2 with probability q ∈ [0, 1] , but not vice versa.22 If 
a loss occurs, the loss sizes are deterministic; w.l.o.g. 0 < L1 ≤ L2 < ∞ . We assume 
that the events of the occurrence of a loss in firm 1, its propagation, and the occur-
rence of a non-propagated loss in firm 2 are independent. This implies that, depend-
ing on the chosen service levels si, i ∈ {1, 2} , the loss r.v.s Xi, i ∈ {1, 2} , take the 
values

 where s ↦ pi(s) are continuous, non-increasing functions with lim
s→∞

pi(s) > 0 for 
i ∈ {1, 2} . Let X ∶= X1 + X2 denote the portfolio loss, such that the insurer’s portfo-
lio risk measure, using  �(u) = ur0 , r0 ∈ (0, 1] , is given by (see section A.7.1 in the 
electronic supplementary information):

 where the dependence on si, i ∈ {1, 2} , is suppressed for notational convenience 
and s ∶= (s1, s2).

Figure 3 illustrates that (7) may hold in the above example, which indicates that 
the insurer can have a financial incentive to subsidise service.

Remark 12  (Insurer’s problem: individual optimisation) If the insurer evaluates the 
two contracts individually, she solves separately

X1 =

{
0 w.p. 1 − p1(s1),

L1 w.p. p1(s1),
X2 =

{
0 w.p. 1 − (p2(s2) + qp1(s1)(1 − p2(s2))),

L2 w.p. p2(s2) + qp1(s1)(1 − p2(s2)),

�0,s(X) = L1[(p1 + p2 − p1p2)
r0 + (p1q + p1p2 − p1p2q)

r0] + (L2 − L1)(p2 + p1q − p1p2q)
r0 ,

22  The cited works typically use two processes, one to model the state of infectiousness among nodes in 
the graph and another one for loss occurrences among “infected” nodes; we regard this additional com-
plexity as unnecessary for the present example.
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 where the superscript ‘ind’ denotes individual contract pricing.

Remark 13  By very similar calculations as for the Pareto case, one can show 
that for a loss of deterministic severity, � ↦ L0,i(�, 1) is monotone non-increas-
ing, such that the insurer’s optimal solution to the minimisation problems (8) is 
(�∗

i
, �∗

i
) = (�R,i(1), 1), i ∈ {1, 2} , i.e. to shift the full cost of service to the buyers and 

charge the maximum feasible loading, respectively.

We now consider her optimisation problem from a portfolio viewpoint in a two-
contract set-up, where, interestingly, it has to be distinguished whether the contracts 
with the buyers are closed sequentially or simultaneously. Let us commence by 
assuming that the two contracts are closed sequentially and firm 2 is insured first.

Example 5  (Interpretation of sequential contract closure) Sequential contract closure 
could be interpreted as a situation where for a prospective policyholder, a loss could 
be caused by an occurrence at another firm (e.g. a supplier) outside the insurer’s 
portfolio, but insuring the other firm is not feasible (yet).

(8)

min
(�i ,�i)∈[0,�R,i(�i)]×[�,1]

L
ind

0,i
(�

i
, �

i
) =�0,sIi(�i ,�i)(Xi

) − (1 + �
i
)�

sIi(�i ,�i)
[X

i
] + (1 − �

i
)c(s

I,i(�i, �i)), i ∈ {1, 2},
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Fig. 3   Comparison of derivatives with respect to  s1 of single-contract and portfolio risk measures as well 
as the price of insurance (at a feasible loading �1 = 0.35 ). Note that Equation (7) holds: The decrease in 
price outweighs the decrease in both single-contract risk measures, but is outweighed by the reduction in 
the insurer’s portfolio risk measure. The parameters for this example are chosen as 
r0 = 0.8, r1 = r2 = 0.3, L1 = 5, L2 = 10, p1(s1) =

1

a+s1
+ b =

1

2.5+s1
+ 0.2, p2 = 0.3, q = 0.8
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Remark 14  (Insurer’s problem: sequential optimisation, first policy) The results for 
firm 2, being insured first, are analogous to the single-contract case: In her initial 
risk assessment, assume the insurer correctly assesses the loss probability (given 
service level s2 ) as

which depends (due to loss propagation) on the unknown loss probability of 
firm 1.23 For this study, we assume that firm 1 has not subscribed to insurance yet, 
but has solved the minimisation problem for the no-insurance case correctly, such 
that in Eq. (9) we set s1 = sN1 . As remarked above, we know that the solution to the 
insurer’s problem (8) for i = 2 is given by (�∗

2
, �∗

2
) = (�R,2(1), 1) and given (9), we 

can proceed analogously to Sect. 3 to deduce firm 2’s optimal service level without 
insurance sN2 and sI2(�∗2 , �

∗
2
) within insurance.

The striking observation is as follows: By incentivising a higher service level in a 
subsequent contract with firm 1, the insurer not only improves the to-be-insured risk 
in that contract, but also the already priced risk in the existing contract with firm 2, 
as the probability for a propagated loss decreases.24

Remark 15  (Insurer’s problem: sequential optimisation, second policy) If the insurer 
prices each contract as if the risks were independent (or the propagation potential is 
undetected), she would solve (8) for i = 1 yielding (�∗

1
, �∗

1
) =

(
�R,1(1), 1

)
 . However, 

if she correctly takes the effect on the portfolio risk into account, to find (�∗
1
, �∗

1
) she 

instead considers the problem

 where the superscript ‘seq’ denotes sequential contract closure and X = X1 + X2.
25

Remark 16  Sequential contract closure in the reverse order can be studied analo-
gously. It is, however, obvious from the set-up of directed loss propagation that the 
insurer has no additional incentive to subsidise service for firm 2, independently of 
whether firm 1 is part of the portfolio, i.e. this analysis would not yield different 
results from the single-contract case and is, thus, omitted.

(9)ℙ
s
(X2 = L2) = p2(s2) + qp1(s1)

(
1 − p2(s2)

)
,

(10)

min
(�1,�1)∈[0,�R,1(�1)]×[�,1]

L
seq

0,1
(�1, �1) =�0,sI1(�1,�1),sI2(�R,2(1),1)(X)

− (1 + �1)�sI1(�1,�1)
(X1) − (1 + �2)�sI2(�2,R(1),1)

(X2)

+ (1 − �1)c(sI1(�1, �1)) + (1 − �2)c(sI2(�2,R(1), 1)),

25  Note that the terms corresponding to contract 2 are not adjusted at this point and therefore will not 
appear in the minimisation.

23  Note that (9) implies that by buying service from the insurer, firm 2 can reduce the probability of a 
non-propagated loss only.
24  This example is somewhat related to the question studied in Khalili et al. (2019) about jointly under-
writing a service provider and its customers as interdependent insurance customers.
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We now assume that both contracts are priced simultaneously.

Example 6  (Interpretation of simultaneous contract closure) In practice, simultane-
ous contract closure could be interpreted as two firms jointly inquiring about insur-
ance (e.g. companies along a supply chain or parent company and subsidiary) or the 
insurer approaching both before the first contract is closed.

Remark 17  (Insurer’s problem: simultaneous optimisation) If the insurer offers both 
contracts simultaneously, she considers the four-dimensional problem

where the superscript ‘sim’ denotes simultaneous contract closure, X = X1 + X2, 
and A ∶= [0, �R,1(�1)] × [�, 1] × [0, �R,2(�2)] × [�, 1] is the admissible set for this 
problem.

The results of numerically solving the above optimisation problems are given in 
Fig.  4 for the propagation probability q ∈ [0, 1] , which in this set-up governs the 
dependence between the risks.26

Remark 18  (Interpretation of results for directed loss propagation) 

•	 Panel 4(a) depicts the optimal pricing parameters (�∗
1
, �∗

1
) of the contract offered 

to firm 1 (the “source of propagation”). If the contract with firm 2 is priced first, 
the insurer may subsidise service (i.e. choose 𝛽∗ < 1 ) in the subsequent con-
tract with firm 1, as this reduces the insured risk in contract 2 (without having to 
adjust the premium of firm 2). This subsidy (1 − �∗) , as well as the loading �∗

1
 , 

increase with the dependence between the risks. The same effect occurs, but to 
a smaller extent, if the contracts are priced simultaneously. This is caused by the 
fact that by subsidising service for firm 1, the insured risk in firm 2 is reduced, 
but this now has to be reflected in a decreased chargeable premium for that con-
tract. Therefore, the incentive to subsidise service for firm 1 is smaller relative to 
the case where the price of contract 2 is fixed first.

•	 Panel 4(b) depicts the optimal parameters (�∗
2
, �∗

2
) of the contract offered to firm 

2. As the service level of firm 2 has no additional effect on firm 1, the insurer’s 
problem for firm 2 is always analogous to the single-contract case, and thus, ser-
vice cost is never subsidised ( �∗ = 1 ). However, the risk loading depends on the 

(11)

min
(�1,�1,�2,�2)∈A

Lsim
0

(�1, �1, �2, �2) = �0,sI1(�1,�1),sI2(�1,�1,�2,�2)(X)

− (1 + �1)�sI1(�1,�1)
[X1] − (1 + �2)�sI2(�1,�1,�2,�2)

[X2]

+ (1 − �1)c(sI1(�1, �1)) + (1 − �2)c(sI2(�1, �1, �2, �2)),

26  The calculation of the gradients, used in the numerical optimisation routine, is detailed in section 
A.7.1 of the electronic supplementary information.
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loss probability ℙ
s
(X2 = L2) , which differs between the cases as it depends on s∗

1
 

and therefore on whether firm 1 is insured already (and under which parameters).
•	 Panel 4(c) depicts the insurer’s optimally attainable negative loss (gain) 

L0(�
∗
1
, �∗

1
, �∗

2
, �∗

2
) , which decreases with increasing dependence between the 

risks, while the additional gain from pricing contracts “correctly”, i.e. using the 
portfolio risk measure, increases with the dependence. Analogous observations 
hold for the insurer’s portfolio risk, see Panel 4(d).

Cyber events at multiple ‘targets’

Another way to understand dependence between cyber losses is to consider the 
presence of common (systemic) vulnerabilities which allow cyber threats to affect 
multiple companies simultaneously (see, e.g. Böhme et al. 2018; Zeller and Scherer 
2022). Realistic examples for systemic events causing incidents in multiple firms 
are the accidental outage or the malicious exploitation of a vulnerability in com-
monly used software or operating systems, leading to, e.g. data breaches or fraudu-
lent activity (e.g. ransomware claims).27
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Fig. 4   Aspects of the insurer’s solution in the portfolio case with directed loss propaga-
tion. The parameters for this example are: loss sizes L1 = 50,L2 = 100 , loss probability param-
eters a1 = a2 = 2.5, b1 = b2 = 0.2 , risk aversion r0 = 0.8, r1 = 0.7, r2 = 0.3 , cost parameters 
� = 0.5, � = 2, �o = 1.1 , q ∈ [0, 1]

27  One recent example were the multiple, sometimes effectively simultaneous attacks on exchange serv-
ers via the so-called ProxyShell exploit during 2021, see, e.g. Born (2021).
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Remark 19  (Buyer’s vs. insurer’s perspective on common events) In this setting, 
each company faces incidents from systemic events as well as idiosyncratic inci-
dents occurring independently from other firms, e.g. the loss or theft of hardware 
or negligent employee behaviour leading to involuntary data disclosure or business 
interruption. From the viewpoint of each company (insurance buyer), both types of 
incidents are indistinguishable in the sense that they aggregate to one loss arrival 
process, i.e. the company simply monitors if a loss occurs (disregarding its source) 
without knowing (or caring) if others may be simultaneously affected. From the 
insurer’s portfolio viewpoint, however, the two types of incidents are viewed dif-
ferently: incidents from systemic events are particularly  worrisome as they entail 
accumulation risk, whereas idiosyncratic incidents are “desirable” in the sense that 
they constitute (if correctly priced) the basis of the insurance business and can be 
“diversified away” in a large portfolio.

Example 7  (Bivariate model with common events) Consider as model for the risks 
X1 and X2:

with E1 ∼ Exp(�1), E2 ∼ Exp(�2) , and E12 ∼ Exp(�12) independent with 
𝜆1, 𝜆2, 𝜆12 ≥ 0, s.t. 𝜆i + 𝜆12 > 0, i ∈ {1, 2} , and w.l.o.g. 0 < L1 ≤ L2 < ∞ . E1 and 
E2 model the arrival times of an idiosyncratic incident to firm 1 and 2, respectively, 
whereas E12 models the arrival time of a common event causing simultaneous 
incidents in both firms, with deterministic loss sizes L1 and L2 , respectively. Let T 
denote the time horizon of the policy under consideration (w.l.o.g. T = 1 in what fol-
lows) and let

denote the overall marginal arrival rates of incidents to firms 1 and 2, respectively.28 
It follows that the buyers’ risk measure and expected loss are given by

while the insurer’s portfolio risk measure is given by (see section A.7.2 in the elec-
tronic supplementary information)

 where y00 ∶= e−(�1+�2+�12), y10 ∶= (1 − e−�1 )e−(�2+�12), y01 ∶= (1 − e−�2 )e−(�1+�12) 
are the probabilities of none (subscript 00 ) or exactly one (subscripts 10 and 01 ) of the 
companies experiencing a loss.29

X1 = L1�{min{E1,E12}≤T}, X2 = L2�{min{E2,E12}≤T},

�I ∶= �1 + �12, �II ∶= �2 + �12,

�1(X1) = L1(1 − e−�I )r1 , �[X1] = L1(1 − e−�I ),

�2(X2) = L2(1 − e−�II )r2 , �[X2] = L2(1 − e−�II ),

�0(X) = L1[(1 − y00)
r0 + (1 − (y00 + y10 + y01))

r0] + (L2 − L1)(1 − (y00 + y10))
r0 ,

28  This corresponds to the seminal Marshall–Olkin shock model, see Marshall and Olkin (1967).
29  In this case X1 and X2 are comonotone iff �1 = �2 = 0 , implying y00 = e−�12 , y10 = y01 = 0 
such that the risk measure is additive (a well-known general result for DRM): 
�(X1) + �(X2) = �(X) = (L1 + L2)(1 − e−�12 )r0.
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Remark 20  (Interpretation: Self-protection by prevention of systemic events) We 
now consider the effect of self-protection services which can be distinguished into 
different categories described in Table 4. In the following, we scrutinise one pos-
sible type of effect we regard as particularly interesting in the cyber context, namely 
the prevention of systemic events: as the existence of common vulnerabilities (e.g. 
use of the same software) is regarded as the source of dependence between losses, 
it is firstly crucial for a cyber insurer to identify such common factors among poli-
cyholders and offer services which prevent the manifestation of a loss from a sys-
temic event for the policyholder himself (e.g. timely patch management for standard 
software). Second, it is in the insurer’s interest to use knowledge about an incident 
(or so-called near miss, i.e. a threat that did not lead to an incident due to adequate 
controls) at one insured company to immediately warn other policyholders about the 
imminent threat and, thus, hopefully increase the chance of averting a loss mani-
festation for them. Thus, the total portfolio loss in case of a systemic event could 
be reduced or, if all policyholders are warned on time, the manifestation of the sys-
temic event could even be prevented.30

Remark 21  (Insurer’s problem: sequential optimisation, first policy) Assume again 
sequential contract closure, where w.l.o.g. the contract with firm 2 is closed first 
and its chosen service level affects the rate �II via a decreasing map s2 ↦ �II(s2).31 
Recall that by Lemma 3 (see section A.3 in the electronic supplementary informa-
tion) a sufficient condition for convexity of the insurance buyer’s optimisation prob-
lem is to choose the map s2 ↦ �II(s2) in such a way that the subjective loss prob-
ability s2 ↦ �2

(
ℙ
s
(X2 = L2)

)
= (1 − e−�II (s2))r2 is convex. For simplicity, we choose 

analogously to above (however, for the rate, not the loss probability directly)

with a2, b2 > 0 such that the above convexity condition is fulfilled.
With the contract closure of firm 2, the insurer solves the single-contract problem 

(8) for i = 2 , resulting in (�∗
2
, �∗

2
) =

(
�R,2(1), 1

)
 and within-insurance service level 

s∗
2
= sI2

(
�R,2(1), 1

)
 determining the loss probability of firm 2 via the rate �II(s∗2).

�II(s2) =
1

s2 + a2
+ b2,

31  In this sequential set-up, there is no distinction between idiosyncratic incidents and incidents 
from systemic events yet, as firm 1 is not yet part of the portfolio; in other words, the overall rate 
�II = �2 + �12 can be observed, but it is not yet distinguished between �2 and �12.

30  Our model implicitly equates incident arrival times (e.g. Z1 ∶= min{E1,E12} ) with loss occurrence 
times, which would not allow time for a warning mechanism as all losses occur instantly and simultane-
ously. In reality, however, the discovery and exploitation of the same vulnerability in different firms can 
be delayed over time, see again, e.g. the ProxyShell exploit case (Born 2021). As we do not take into 
account discounting over the policy year and therefore do not need to explicitly model a delayed loss 
occurrence time after the incident arrival time, we assume the warning mechanism to directly prevent the 
incident arrival.
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Remark 22  (Insurer’s problem: sequential optimisation, second policy) At subse-
quent contract offering to firm 1, we assume that the service level of firm 1 influ-
ences the rate �I(s1) via a decreasing map

with a12, b12 > 0 such that s1 ↦ �1

(
ℙ
s
(X1 = L1)

)
 is convex and it must hold 

�12(s1) ≤ �II(s
∗
2
) for any s1 ≥ 0 . The marginal rates for both firms are then given by 

(now the incidents can be classified as idiosyncratic or systemic)

for some constant 𝜆1 > 0 , implying that the choice of s1 affects the marginal distri-
butions of both risks as well as the dependence between them, e.g. expressed by 
s1 ↦ 1 −

�1

�I (s1)
.32 Therefore, when offering a contract to firm 1, the insurer should 

again consider problem (10) to correctly take the dependence into account, as 
opposed to solving (8) for i = 1.

Remark 23  (Results for prevention of systemic events) Numerical results of solving 
(10) are given in Fig. 5 for varying degree of dependence between the two risks.33 
We observe that if the contract of firm 1 is priced using (10), it can be optimal for 
the insurer to choose 𝛽∗

1
< 1 , leading to an increased risk loading, an increased 

optimal service level sI1 within the insurance policy, a decreased loss probability 
for both policyholders, and an increased gain and decreased portfolio risk for the 
insurer. These effects increase with the dependence between the two risks.34

Copula approaches

Copula approaches have become a widely popular method to assess and describe 
dependence between random variables, as they allow the decomposition of a mul-
tivariate distribution function (c.d.f.) F of a random vector (X1,… ,Xd) into mar-
ginal c.d.f.s F1,… ,Fd and an object representing the dependence structure, called 
copula C, which itself is a multivariate c.d.f. with standardized uniform margin-
als (see section A.2  in the electronic supplementary information). In empirical 
research on cyber-risk modelling, one starts with observations of cyber losses that 

s1 ↦ �12(s1) =
1

s1 + a12
+ b12,

�I(s1) = �1 + �12(s1),

�II(s1, s
∗
2
) = �2(s

∗
2
) + �12(s1),

33  The gradients used for the numerical optimisation are given in section A.7.2 in the electronic supple-
mentary information. Due to the symmetrical set-up of the dependence, we do not consider the reverse 
order of contract closures.
34  Note that contrary to the last example, the x-axis does not start at �12(0) = 0 representing (initial) 
independence, resulting in 𝛽∗

1
< 1 for the whole depicted range �12(0) ∈ {0.15, 2}.

32  Note that in this set-up, neither independence nor comonotonicity can be reached, as b12 > 0 and 
𝜆1 > 0 , respectively.
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are conjectured not to be independent. As the main goal of many empirical studies is 
the description and analysis of the observed data, bottom-up approaches that seek to 
mimic the mechanism underlying the dependence between cyber losses may not be 
available for a statistical investigation, yet. Rather, a top-down approach of analysing 
the multivariate observations by fitting (parametrically or non-parametrically) uni-
variate distributions to the marginals and by choosing a flexible parametric copula 
family and fitting its parameter(s) to the observed data, is often preferred (due to 
numerical tractability).

In the cyber context, e.g. Eling and Jung (2018) study the cross-sectional depend-
ence of data breach losses (cross-industry and cross-breach type) using a Gaussian 
copula, among others. Previously, Böhme and Kataria (2006) and Herath and Her-
ath (2011) proposed models for cyber risk using the t-copula and the Archimedean 
copula family (Clayton and Gumbel), respectively. More recently, Peng et al. (2018) 
studied the multivariate dependence exhibited by real-world cyber attack data using 
a Copula-GARCH model with vine copulas.

Example 8  (Bivariate Gumbel copula) An example akin to the ones above would be 
for the bivariate case (X1,X2) ∼ F

s
 with
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Fig. 5   Aspects of the insurer’s solution in the portfolio case with common cyber events. The parameters 
for this example are: L1 = 50,L2 = 100 , �1 = 0.5 , r0 = 0.8, r1 = 0.4, r2 = 0.3 , � = 0.5, � = 2, �o = 1.1 , 
with �12(0) =

1

a12
+ b12 ∈ [0.15, 2] and lims→∞ �12(s)

�12(0)
=

1

2
 for any starting value
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where Fi,si
 are the marginal c.d.f.s of the single risks depending on the chosen 

service levels si (for example, zero-inflated Pareto distributions as considered in 
Appendix 7.5 in elctronic supplementary information) and C�(s)(u, v) is the bivariate 
Gumbel copula (see Gumbel 1960)

which seems a suitable choice in the cyber-risk context as it allows for capturing 
upper tail dependence and is the only member of the Archimedean family which 
is also an extreme-value copula.35 The dependence is governed by the parameter 
�(s) ∈ [1,∞) , ranging between the independence copula for �(s) = 1 and perfect 
positive dependence (i.e. converging to the comonotonicity copula) for �(s) → ∞.36

Remark 24  (Effects of service on portfolio risk in the copula setting) Again, differ-
ent assumptions about how the chosen service levels s = (s1, s2) of insurance buyers 
influence the (joint) portfolio risk can be postulated:

•	 If service only influences the marginal distribution of the insured risk, i.e. via 
si ↦ Fi,si

, i ∈ {1, 2} , inducing a decreasing order in the sense of the “Model 
set-up and assumptions” section, the analysis does not differ from the univariate 
case. For examples in the cyber context, see the first row of Table 4.

•	 If service only affects the dependence between the risks via a (in some suitable 
(partial) ordering decreasing) map s ↦ �(s) without altering the marginals, it is 
obvious that no insurance buyer would have an economic incentive to purchase 
such service (compare the last case in Table 4) and another (interesting!) ques-
tion would arise, namely, how much the insurer should optimally spend on giv-
ing away service (as a free addition to risk transfer) to favourably (in her risk 
measure) alter the dependence structure of her portfolio.

•	 If service affects both the marginal distribution(s) and the dependence structure, 
an example where both parties agree to share the cost of service could be con-
structed. For interpretations in the cyber context, compare the second and third 
row of Table 4.

F
s
(x1, x2) = C�(s)

(
F1,s1

(x1),F2,s2
(x2)

)
, x1, x2 ∈ ℝ,

C�(s)(u, v) = exp
[
−
(
(− ln(u))�(s) + (− ln(v))�(s)

)1∕�(s)]
, �(s) ∈ [1,∞), u, v ∈ [0, 1],

36  Note that generally, an Archimedean copula is not parametrised by a parameter � , but by the so-called 
(Archimedean) generator � = �� , a non-increasing function � ∶ [0,∞) → [0, 1] with �(0) = 1 and 
limx→∞ �(x) = 0 . The Gumbel copula is obtained by using the parametric family ��(x) = exp

(
− x

1

�

)
 ; 

for brevity, we use the notation C� instead of C��
.

35  Extreme-value copulas allow to capture the dependence structure between certain rare events, for 
details see, e.g. Mai and Scherer (2017). The necessity of dealing adequately with extreme events in the 
cyber context has been emphasised by many authors, e.g. the comprehensive data-driven analysis of 
cyber losses by Eling and Wirfs (2019) advocated for distinguishing between “cyber risks of daily life” 
and “extreme cyber risks”.
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As remarked above, however, the main drawback of such a top-down modelling 
approach is that it is not based on an attempt to causally understand the dependence 
between cyber losses; instead, its merit is based on the analytical decomposition in 
Theorem  2 (see section A.2 in the electronic supplementary information)  and its 
tractability in statistical inference. This is a somewhat questionable foundation in the 
cyber context due to scarcity, limited reliability, and suspected non-stationarity of 
available data, limiting the informativeness of models estimated on past data for the 
prediction of future losses. Therefore, we do not go into more detail on this example, 
but reiterate that in principle it provides the same flexibility regarding the effect of 
risk reduction services in insurance policies as the examples treated in detail above.

Conclusion

In recent years, with demand for cyber insurance increasing tremendously, cyber 
insurance markets around the world have been growing and the range of available 
cyber policies has been continuously expanding. As policies continue to mature, 
many prospective insurance buyers and external cyber experts agree that pure risk 
transfer cannot be an optimal cyber-risk management solution. Instead, companies 
– insured or not – have to make ongoing efforts to keep their cybersecurity measures 
up-to-date, given the evolving cyber-threat landscape. Therefore, there is mutual 
benefit (for all stakeholders) in the combination of risk transfer and risk reduction 
measures, leading to the (prospective) ubiquitous offering of pre-incident and post-
incident services.

In this study, we have dealt with this combination of risk reduction and risk trans-
fer in the cyber insurance context, and in particular addressed the question of how 
such risk reduction services should be optimally priced from an insurer’s viewpoint. 
We have illustrated how common services within cyber insurance can be classified 
into the concepts of self-protection and self-insurance, and have argued how insur-
ers should make use of their unique position regarding knowledge about the cur-
rent cyber-loss landscape to offer additional pre-incident (warning) services to their 
policyholders.

We have shown that in the univariate case, i.e. when pricing a single contract 
alone, an insurer using a distortion risk measure with concave distortion (i.e. being 
risk-neutral or risk-averse) never has an economic incentive to subsidise pure self-
protection services (i.e. only considering the effect on loss probability, factoring out 
potential cross-effect on loss sizes and the prospect of gaining additional informa-
tion) and will, thus, always shift their full cost to the insurance buyer. Interestingly, 
this does not generally hold for the pricing of self-insurance services or when taking 
a multivariate (portfolio) viewpoint, in which case it can be optimal (and in some 
cases even mandatory to find an acceptable contract for both parties) to share the 
cost of risk reduction service between insurer and policyholder. We illustrate this 
finding using toy examples of two risks with dependence mechanisms representative 
for the cyber context and one exemplary extension to a larger multivariate setting.

From the insurance buyers’ point of view, the study serves to illustrate how 
their initial risk (when approaching the insurer) and their choice of (distortion) risk 
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measure as well as the existing portfolio of the insurer can influence the insurance 
price offered to them for different contracts (i.e. how much risk reduction is implic-
itly incentivised for them by the insurer’s choice of price structure).

Some interesting aspects, however, remain for future research. We restricted the 
insurance buyer’s options to full or no insurance (as is customary for primary insur-
ance in the cyber context), but one could extend this to more general payout func-
tions (e.g. proportional at any share � ∈ [0, 1] or excess-of-loss per risk at different 
priorities and limits).37 Furthermore, we have mentioned that in the cyber context, 
part of the risk should be considered non-insurable (e.g. reputational risk), an aspect 
that could generalize the modelling of the insurance buyer’s optimisation problem.

From the insurer’s point of view, the pricing of self-protection and self-insurance 
services has been studied disjointly, whereas in practice, the combination of both 
types of services within a policy is customary. Furthermore, we have only illustrated 
the insurer’s portfolio viewpoint in bivariate examples and an exchangeable exten-
sion. Fully exploring the question of optimal offering of cyber services using an 
insurer’s more general multivariate viewpoint on a portfolio of dependent policy-
holders comprises many interesting questions for future work.

Furthermore, especially due to the potential for extreme cyber losses result-
ing from single large losses or accumulation risk from a large cyber event, many 
insurers work with reinsurance providers to limit their exposure and manage their 
portfolio risk. This opens the potential to analyse a suitable Stackelberg game 
between insurer and reinsurer(s) or even a set-up involving all three parties (insur-
ance buyer(s), insurer, and reinsurer(s)). In this context, also interesting questions 
about optimal risk sharing arise.

Lastly, we have argued that the understanding of the dependence between 
cyber losses is crucial for insurers, as purely top-down dependence modelling 
approaches may not be suitable in the highly dynamic, non-stationary cyber 
domain. Therefore, more empirical research on the dependence structures under-
lying cyber risk, e.g. to more accurately determine underlying common factors 
leading to simultaneous exposure to a certain cyber event, is certainly neces-
sary to better understand the evolving cyber-threat landscape. Lastly, it should 
be mentioned that many related questions from a not purely mathematical view-
point arise. For example, economically and legally, it needs to be investigated 
how to ideally set up cyber insurance policies including services such that all 
parties (insurer, insureds, and IT security experts as service providers) draw syn-
ergies from the collaboration. From a technical viewpoint, one important issue is 
how to effectively quantify (and monitor) the IT security landscape of a poten-
tially highly complex enterprise for actuarial applications. These issues empha-
sise the importance of interdisciplinary collaboration and research in the cyber 

37  An immediate generalization is a proportional insurance share � ∈ {0} ∪ [�0, 1] , which could illus-
trate not only the two cases no insurance and full insurance, but additionally the case where the insur-
ance buyer purchases a minimum feasible share of risk transfer �0 in order to benefit from the risk reduc-
tion services within insurance; in other words, insurers could sell policies that customers would not buy 
from a pure risk transfer viewpoint by including attractive services.
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insurance domain in order to tackle this challenging risk. This article is comple-
mented by an electronic supplement (Appendix) containing a seminal discussion 
of risk-assessment services, mathematical preliminaries, proofs, case studies and 
extended calculations.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1057/​s41288-​023-​00289-7.
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A Electronic Supplementary Information

This is the electronic supplement to the article: Zeller, G. and M. Scherer. 2023. Risk
mitigation services in cyber insurance: optimal contract design and price structure.
It contains a seminal discussion of risk-assessment services, mathematical preliminaries,
proofs, case studies, and extended calculations.

A.1 A Note on Risk-Assessment Services

An important, yet challenging, aspect of cyber insurance is risk assessment. In established
insurance lines, insurers can rely on plenty of historical claims and in-house expertise to clas-
sify prospective policyholders into risk categories (e.g. using standardized models for mass
segments such as motor insurance, individual expert judgement for large risks in industrial
lines, or a mixture of both). In contrast, due to the novelty, non-stationarity, and complex-
ity of cyber risk, the choice of relevant risk factors and the process of their assessment is
a challenging task. For example, it seems intuitive that a policyholder’s IT infrastructure
and existing cyber security provisions are an important factor for his susceptibility to cyber
risk. However, how to include extensive qualitative information about a system’s structure
and potential vulnerabilities into an actuarial model is a complex open issue in itself. Nev-
ertheless, insurers often cooperate with specialized IT security experts to conduct extensive
IT audits of a prospective policyholder before pricing insurance coverage (and choosing to
make an offer at all). While the exact nature of these collaborations is of course opaque
from the outside, it is likely that insurers currently carry the full costs of these audits and
subsume them under operational or acquisition costs of their cyber insurance business. Thus,
for such services, the following questions naturally arise: Which amount of effort should an
insurer optimally invest in risk assessment? Under which circumstances is it (feasible and)
optimal for an insurer to shift part of the cost of risk assessment to the insurance buyer? To
elaborate on these questions, three relevant points should be mentioned:

� An extensive risk assessment benefits both parties: While the insurer increases her knowl-
edge about the to-be-insured risk (allowing for more accurate pricing and risk manage-
ment), the prospective insurance buyer also benefits from gaining expert knowledge about
his IT security situation, often even including an ordered list of priorities to be addressed
to ensure efficient spending of limited IT (security) budget. This is particularly beneficial
for small to medium-size enterprises without sophisticated internal IT divisions, for whom
the risk assessment as part of the insurance take-up process may be the first comprehen-
sive analysis of the cyber-security level of their organization. While not every inquiry
about insurance prices leads to the closure of a cyber-insurance contract, the process may
serve as a wake-up call for the acquisition of (additional) risk reduction measures within
or outside of an insurance policy.

� It is clear that due to the dynamics of the cyber threat landscape and the ongoing evolution
of IT ecosystems, the risk assessment process should not be conducted only once, but
periodically during the life (and at the renewal) of a cyber-insurance policy. From this
perspective, one may argue that this is a service offering complementary to the ones
discussed in the main body of this study. While self-protection and self-insurance services
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aim to reduce the loss probability and loss severity respectively, i.e. re-shape the original
loss distribution (previously denoted F0) favourably, risk assessment services acknowledge
that neither party has accurate knowledge of F0 and therefore aim at better understanding
it.

� In our view, the issue of incomplete information in the cyber context is not exactly akin to
asymmetric information or moral hazard. By that we mean that in reality, it is not usually
the case that an insurance buyer has better knowledge (in a meaningful, quantifiable way)
about their own IT systems than the insurer and seeks to obscure this knowledge from the
insurer, such that she has to use risk assessment to extract this hidden information. Rather,
both parties jointly seek the expertise of an IT security provider to better understand
the underlying risk and thus through the risk assessment process jointly gain improved
(shared) knowledge. Apart from the insurance buyer’s own lack of information, it has to be
considered that as cyber risks are partly non-insurable (in particular regarding reputational
risks) and cyber policies (as other lines) come with exclusions in case relevant information
is wrongly stated or willfully omitted at policy closure, the insurance buyer has no incentive
to take malicious advantage of asymmetric information.

There are, so far, very few mathematical papers concerned with cyber risk assessment ser-
vices.39 Below, we propose a general mathematical framework to describe the setting where
none of the parties has full information, but both are able to learn more about the true
underlying distribution through a (costly) risk audit. The further study of this setting is
outside the scope of this manuscript but remains an interesting problem for future research.

0. As before, denote by F0 the true (unknown) distribution of the risk X the buyer faces.

1. As the buyer approaches the insurer, both parties have (distinct) subjective views about
the distribution of the risk X:

(Buyer : pre audit) : F0,B depending on his own (incomplete) knowledge about his IT

systems.

(Insurer : pre audit) : F0,I depending on her standard models for cyber and publicly

available information about the buyer.

Note that while insurers routinely think in terms of risk and probability distributions,
already assuming that a regular insurance buyer would have a certain distribution in
mind is one step ahead of reality. In practice, most companies may consider scenarios and
a setting of uncertainty rather than an already formalized context of risk.

2. If an IT audit is conducted, this causes some effort a > 0 (where different options w.r.t.
extensiveness are usually available) with associated cost c(a) (with the typical assumptions

39An exception is [Khalili et al., 2018], who study the role of pre-screening (i.e. risk assessment) in cyber
insurance (again in a setting of asymmetric information, i.e. assuming the insurance buyer has perfect infor-
mation). They study the influence of risk aversion (in an expected utility setting) and interdependence of
insurance buyers under very specific assumptions on the loss distribution (normal distribution with parame-
ters depending on the insurance buyer’s effort), the effect of effort on the loss distribution, the pre-screening
process (the outcome being the true effort plus standard Gaussian noise), and the interdependence between
agents.

ii



of increasingness and convexity). At the conclusion of the audit, an IT security expert
shares their subjective opinion with all other parties:

(IT Expert : audit) : F a
0,A depending on the extent of the audit a > 0.

The more effort is invested in the audit, the closer the expert assessment approaches the
true distribution, i.e.

0 < a1 ≤ a2 <∞ : D
(
F a1
0,A, F0

)
≥ D

(
F a2
0,A, F0

)
≥ 0, (12)

where D denotes some measure of distance between probability distributions (e.g. the
Wasserstein distance between the associated probability measures, see e.g. [Vaserstein, 1969]).

3. Both buyer and insurer update their original views by incorporating the result of the IT
audit, i.e.

(Buyer : post audit) F̂0,B(a) := hB(F0,B, F
a
0,A)

e.g.
= wBF0,B + (1− wB)F

a
0,A, wB ∈ [0, 1],

(Insurer : post audit) F̂0,I(a) := hI(F0,I , F
a
0,A)

e.g.
= wIF0,I + (1− wI)F

a
0,A, wI ∈ [0, 1].

As an example, we have assumed that each party uses a convex combination (mixture) of
their original view and the new information, with potentially different weights. In general,
hB(·) and hI(·) could denote any functions mapping two distribution functions (a priori
and IT audit) to a new distribution function (a posteriori).

4. As an initial step, one may formulate the insurer’s loss function depending on the risk
assessment effort as

(pre audit)
[
ρI,F0,I

(X)− (1 + θ)EF0,I
[X]
]
1{(1+θ)EF0,I [X]≤ρB,F0,B (X)},

(post audit)
[
ρI,F̂0,I(a)

(X)− (1 + θ)EF̂0,I(a)
[X]
]
1{(1+θ)EF̂0,I (a)[X]≤ρB,F̂0,B(a)(X)} + c(a),

where ρI,·, ρB,· denote the risk measures of the risk X used by the insurer and buyer,
respectively, given their subjective views about the distribution of X (a priori without
audit and a posteriori with audit).

However, the above loss function does not yet encode the insurer’s preference for a better
estimation of the true distribution, i.e. the gain resulting from (12). Crucially, note that in
this setting, we are in the framework of precaution and uncertainty as opposed to prevention
and risk in the main body of the paper. An excellent summary of both concepts and
the corresponding literature can be found in [Courbage et al., 2013]. As outlined therein,
there are several approaches to formalizing the effect of more information; a classical result
(without intertemporal dependence) in an expected utility setting is due to the seminal
work of [Epstein, 1980] whose results have been used as the foundation for many following
studies. Another (contested) approach to precaution is the idea of ambiguity (aversion),
see [Klibanoff et al., 2005]. The choice and application of such an approach to the above
problem is an interesting next step in a consecutive research project.
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A.2 Mathematical Prerequisites

Definition 1 (Law-invariant, coherent risk measure (see [Artzner et al., 1999, Kusuoka, 2001])).
A risk measure ρ : L1(Ω,F ,P) → R is a coherent risk measure if it has the following prop-
erties:

1. Monotonicity: X ≤ Y =⇒ ρ(X) ≤ ρ(Y );

2. Cash-additivity / translation invariance: ∀ m ∈ R : ρ(X −m) = ρ(X)−m;

3. Convexity: ∀ X, Y ∈ L1,∀ λ ∈ [0, 1] : ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y );

4. Positive homogeneity: ∀ λ ∈ [0,∞) : ρ(λX) = λρ(X).

Note that under property 4., convexity is equivalent to sub-additivity. A coherent risk measure
is called law-invariant if additionally:

5. Law-invariance: X
(d)
= Y =⇒ ρ(X) = ρ(Y ), where

(d)
= denotes equality in distribution.

Definition 2 (Copula, see, e.g., [Mai and Scherer, 2017]). A function C : [0, 1]d → [0, 1] is
called copula, if there is a random vector (U1, . . . , Ud) such that Uj ∼ U [0, 1], j ∈ {1, . . . , d},
and C is the joint c.d.f. of (U1, . . . , Ud), i.e.

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1].

Theorem 2 (Sklar’s Theorem, see [Sklar, 1959]). A function F : Rd → [0, 1] is the c.d.f.
of a random vector (X1, . . . , Xd) iff there exist a copula C : [0, 1]d → [0, 1] and univariate
c.d.f.s F1, . . . , Fd : R → [0, 1] s.t.

C
(
F1(x1), . . . , Fd(xd)

)
= F (x1, . . . , xd), ∀x1, . . . , xd ∈ R.

A.3 Proofs and Derivations of Sections 2 and 3

The following lemma details the relationship between the parameter s and the distortion
risk measure ρs(X) :=

∫∞
0
ψ(FX,s(x))dx under the assumptions of Section 2.

Lemma 1 ([Bensalem et al., 2020], Lemma 2.1). Let ρ be a coherent, law-invariant risk
measure and assume X to be distributed according to a family of distributions Fs such that
(A2) holds. Then, the map s 7→ ρs(X) is convex, continuous, non-increasing and ρs(X) ≥
Es[X] > 0.

Proof. See proof of Lemma 2.1 in [Bensalem et al., 2020].

Choosing ψ(u) = u, the statements of Lemma 1 carry over to the special case s 7→ Es[X].
For notational convenience, we formalize the following:

Assumption 3 (Monotonicity of s 7→ ρs(X)
Es[X]

). Assume that s 7→ ρs(X)
Es[X]

is monotone non-

decreasing, i.e.

∀ 0 ≤ s1 ≤ s2 <∞ :
ρs2(X)

Es2 [X]
≥ ρs1(X)

Es1 [X]
⇐⇒ 0 ≤ ρs1 [X]− ρs2 [X]

ρs1 [X]
≤ Es1 [X]− Es2 [X]

Es1 [X]
. (A3)
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Lemma 2 (A sufficient condition for Assumption 3 - [Bensalem et al., 2020], Lemma 3.2).
Let ρ be a distortion risk measure with concave distortion function ψ and let the distribution
of X be as in (4). Then, the map s 7→ ρs(X)

Es[X]
is non-decreasing.

An alternative proof to the one given in [Bensalem et al., 2020] is given below.

Proof (Lemma 2). To show (A3), rearranging the equation and using that by Equation (4)
the survival functions FX,s are given by

FX,s(x) =

{
1 if x < 0,

p(s)FY (x) if x ≥ 0,

yield the need to show for s2 ≥ s1

ρs2(X) ≥ ρs1(X)
Es2 [X]

Es1 [X]
= ρs1(X)

p(s2)E[Y ]

p(s1)E[Y ]
= ρs1(X)

p(s2)

p(s1)
.

Note that for the concave function ψ with ψ(0) = 0 it holds

∀t ∈ [0, 1], x ∈ R : ψ(tx) ≥ tψ(x), (13)

implying

ρs1(X)
p(s2)

p(s1)
=

∫ ∞

0

p(s2)

p(s1)︸ ︷︷ ︸
∈[0,1]

ψ
(
p(s1)FY (x)

)
dx

(13)

≤
∫ ∞

0

ψ
(p(s2)
p(s1)

p(s1)FY (x)
)
dx

=

∫ ∞

0

ψ
(
p(s2)FY (x)

)
dx = ρs2(X).

Lemma 3 ([Bensalem et al., 2020], Lemma 3.3). Assume that ρ is a distortion risk measure
with a distortion function ψ such that s 7→ ψ(p(s)) is convex. Then s 7→ ρs(X) and s 7→
Es[X] are convex.

Proof (Lemma 3). See proof of Lemma 3.3 in [Bensalem et al., 2020].

Proof (Corollary 1). The proof follows the derivation in [Bensalem et al., 2020], p.375 -
where sB(θ, β) for fixed β ∈ [β, 1] corresponds to eθ therein - with the following amendments:
1. The introduction of the constant θ0 allows the inclusion of the values s = 0 and s =
sB(θ, β) in either of the sets I or N , and the statement of increasingness (instead of non-
decreasingness) in the case θ > θ0.
2. To derive the definition of sB(θ, β) and show its increasingness in θ, we use the map
Gβ(s) with given assumptions on s 7→ c(s) (increasing and continuous with c(0) = 0 and
lim
s→∞

c(s) = ∞).

3. We need to show increasingness of β 7→ sB(θ, β):
Note that for any s > 0, β 7→ Gβ(s) is decreasing: Let β ≤ β1 < β2 ≤ 1, then

Gβ1(s) =
ρ1,s(X)

Es[X]
+ (βo − β1)︸ ︷︷ ︸

>0

c(s)

Es[X]︸ ︷︷ ︸
>0

>
ρ1,s(X)

Es[X]
+ (βo − β2)

c(s)

Es[X]
= Gβ2(s).

Therefore, sB(θ, β) is increasing in β:

sB(θ, β1) = min{s > 0 : Gβ1(s) ≥ 1 + θ} < min{s > 0 : Gβ2(s) ≥ 1 + θ} = sB(θ, β2).
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Proof (Corollary 2). text
Part 1.:
First of all, assume that θ > θ0, else N is empty and a local minimizer on this set does not
exist. Following the proof of Proposition 3.4 in [Bensalem et al., 2020], we define for fixed
β the (finite) constant

θN(β) := inf{θ ≥ 0 : sB(θ, β) > sN}
to derive the statement, where we note that in the case θ < θN(β), the argument “the
concave map LN is non-decreasing on N” has to be replaced by “the convex map L1,N is
non-increasing on N”.
Furthermore, we note that as β 7→ sB(θ, β) is increasing by Lemma 1 and sN does not depend
on β, by definition β 7→ θN(β) is decreasing.
Part 2.:
The definition of the constant θI(β) for any fixed β ∈ [β, 1] and the increasingness of θ 7→
sI(θ, β) follow the first part of the proof of Proposition 3.2 in [Bensalem et al., 2020], whereby

the loss function Lθ,β
1,I is considered. We additionally have to show decreasingness of β 7→

sI(θ, β) in case θ > θI(β). Here, the global minimizer sI(θ, β) is an interior point on (0,∞)
characterized by

[Lθ,β1,I(s)]
′|s=sI(θ,β) = 0 ⇐⇒ β =

1

c′(s)|s=sI(θ,β)︸ ︷︷ ︸
>0, decreasing in s

(−(1 + θ)E′
s[X]|s=sI(θ,β))︸ ︷︷ ︸

>0, non-increasing in s

. (14)

As the left-hand side is increasing in β, so must be the right-hand side. As s 7→ 1
c′(s)(−(1 + θ)E′s[X])

is non-increasing as a product of two positive, (at least) non-increasing functions, the inner
function β 7→ sI(θ, β) must be decreasing.

To prove Corollary 3, we introduce the following lemma, where for the rest of this section,
we suppress the dependencies sI(θ, β) and sB(θ, β) for brevity.

Lemma 4 (Adapted from [Bensalem et al., 2020]). If

(N1) sN < sI < sB or (N2) sI ≤ sN < sB,

the global minimizer of L1(α
∗(s), s) is (α∗, s∗) = (0, sN).

If
(I1) sB ≤ sI < sN or (I2) sB ≤ sN ≤ sI ,

the global minimizer of L1(α
∗(s), s) is (α∗, s∗) = (1, sI).

The case sI < sB ≤ sN is not possible, i.e. the global minimizers of Lθ,β
1,I(s) resp. L1,N (s)

cannot be simultaneously outside of I resp. N .
If

(T ) sN < sB ≤ sI ,

for any β ∈ [β, 1], there exists a constant θR(β) ≥ 0 such that

(i) If θ ≤ θR(β), the global minimizer of L1(α
∗(s), s) is (α∗, s∗) = (1, sI).

(ii) If θ > θR(β), the global minimizer of L1(α
∗(s), s) is (α∗, s∗) = (0, sN).

Furthermore, it holds θR(β) ≥ θN(β).
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Proof (Lemma 4). See proof of Proposition 3.6 (for cases (N1) and (N2)), Proposition
3.5/Corollary 3.2 (for cases (I1) and (I2) and the argument directly after), and Theorem
3.2 (for case (T )) in [Bensalem et al., 2020].

Proof (Corollary 3). The statement follows by combining the results of Lemma 4 by consid-
ering the progression through the cases for θ ∈ [0,∞).

� θ = 0 implies sB = 0, I = [0,∞), thus at θ = 0, either (I1) or (I2) holds.

� If at θ = 0, (I1) holds, a transition to (I2) must occur as θ increases (as so do sI and sB),
as the only alternative sI < sB ≤ sN is impossible (see Lemma 4). As sI is increasing in
θ, transitioning back is not possible.

� (I1) or (I2) occur exactly while sB ≤ sN (meaning sN /∈ N ), i.e. for 0 ≤ θ ≤ θN(β) (see
Corollary 2). The optimal solution is (α∗, s∗) = (1, sI).

� After crossing θ = θN(β), one transitions from sB ≤ sN in (I2) to one of the cases
with sN < sB, i.e. (T ) or (N1). Note that (N1) cannot occur while θ ≤ θM(β), as by
definition of θM(β) and global optimality of sN for L1,N , for any θ ≤ θM(β) it holds that
sI ∈ I = [sB,∞) as

Lθ,β
1,I(sI) ≤ L1,N (sN) < L1,N (sI).

� This implies that if the transition at θN(β) is to (N1), then θM(β) = θN(β) and if the
transition is to (T ), then θM(β) > θN(β). In any case, for θ ≤ θM(β), implication (i) of
Lemma 4 holds, i.e. (α∗, s∗) = (1, sI). For θ > θM(β), either implication (ii) of Lemma 4
or Lemma (N1) holds; in either case, (α∗, s∗) = (0, sN).

The assertion that θR(β) ≥ θN(β) follows from Lemma 4.
It remains to show that β 7→ θR(β) is non-increasing. Note that for any θ ≥ 0, the map
β 7→ Lθ,β

1,I(sI) is non-decreasing:
Let β ≤ β1 < β2 ≤ 1, then

Lθ,β1

1,I
(
sI(θ, β1)

)
= (1 + θ)EsI(θ,β1)[X] + β1c

(
sI(θ, β1)

)

≤ (1 + θ)EsI(θ,β2)[X] + β1c
(
sI(θ, β2)

)

≤ (1 + θ)EsI(θ,β2)[X] + β2c
(
sI(θ, β2)

)
= Lθ,β2

1,I
(
sI(θ, β2)

)
,

where the first inequality stems from the global optimality of sI(θ, β1) for Lθ,β1

1,I and both
inequalities are strict unless sI(θ, β1) = sI(θ, β2) = 0.
This implies that β 7→ Lθ,β

1,I(sI) is constant for θ ≤ θI(β) and increasing for θ > θI(β), thus
non-decreasing. It follows from the definition of θR(β) that

θR(β1) = sup{θ ≥ 0 : Lθ,β1

1,I (sI(θ, β1)) ≤ L1,N (sN)}
≥ sup{θ ≥ 0 : Lθ,β2

1,I (sI(θ, β2)) ≤ L1,N (sN)} = θR(β2).

Proof (Corollary 4). See the proof of Corollary 3.3 in [Bensalem et al., 2020].
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A.4 Proofs of Section 4

Note that as above the derivative w.r.t. s will be denoted by the prime ()′ and partial
derivatives w.r.t. θ and β will be denoted explicitly as ∂

∂θ
and ∂

∂β
; occasionally, the dependency

sI(θ, β) is omitted for brevity. Furthermore, we assume all derivatives calculated in the
following to exist.

Proof (Proposition 1). The partial derivative of the insurer’s loss w.r.t. β is given by

∂

∂β
L0(θ, β) =

∂

∂β
sI(θ, β)

︸ ︷︷ ︸
≤0 by Cor. 2

[
ρ′0,s(X)|s=sI − (1 + θ)E′

s[X]|s=sI︸ ︷︷ ︸
(∗)

+(1− β)c′(s)|s=sI︸ ︷︷ ︸
≥0 by assumption

]
−c(sI(θ, β))︸ ︷︷ ︸

≤0

Showing (∗) > 0 directly implies ∂
∂β
L0(θ, β) ≤ 0 such that the claim follows.

Recall that a necessary condition for the insurer to be willing to offer a contract is that it
entails a negative loss, i.e.

L0(θ, β) = ρ0,sI(θ,β)(X)− (1 + θ)EsI(θ,β)[X] + (1− β)c(sI(θ, β)) < 0.

As the last term is non-negative, this implies the necessity of

ρ0,sI(θ,β)(X) < (1 + θ)EsI(θ,β)[X], (15)

i.e. that the insurer’s measure of the risk taken over must be at least compensated by the pre-
mium received (and unless β = 1, the difference must furthermore compensate the additional
cost taken over by the provision of services). Recall that for a risk-averse insurer, Lemma 2
states that for any s ≥ 0

0 ≥ Es[X]ρ′s(X) ≥ ρs(X)E′s[X] ⇐⇒ 0 ≤ Es[X](−ρ′s(X)) ≤ ρs(X)(−E′s[X]),

which, together with Equation (15), implies that in particular also at s = sI ,

0 ≤ EsI [X](−ρ′0,sI (X)) ≤ ρ0,sI (X)(−E′sI [X])
(15)
< (1 + θ)EsI [X](−E′sI [X]).

Dividing by EsI [X] > 0 and rearranging yield

0 ≥ ρ′0,sI (X) > (1 + θ)E′sI [X] ⇐⇒ (∗) = ρ′0,sI (X)− (1 + θ)E′sI [X] > 0. (16)

The claim holds with strict inequality (i.e. ∂
∂β
L0(θ, β) < 0) unless sI(θ, β) = 0.

Proof (Proposition 2). Recall that by definition, for any β ∈ [β, 1]

θR(β) = sup
{
θ ≥ 0 : Lθ,β

1,I(sI(θ, β)) ≤ L1,N (sN)
}

is the highest loading the insurance buyer would accept. As θ 7→ Lθ,β
1,I(sI(θ, β)) is increasing

with lim
θ→∞

Lθ,β
1,I(sI(θ, β)) = ∞, the supremum is attained and by continuity of Lθ,β

1,I it holds that

at (θR(β), β) the insurance buyer is indifferent between buying and not buying insurance, i.e.

L
θR(β),β
1,I (sI(θR(β), β)) = LN (sN )

(1 + θR(β)) EsI(θR(β),β)[X] + βc(sI(θR(β), β)) = ρ1,sN (X) + βoc(sN )

⇐⇒ (1 + θR(β)) EsI(θR(β),β)[X] = ρ1,sN (X) + βoc(sN )− βc(sI(θR(β), β)). (17)
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Thus, the insurer’s loss function on the boundary (θR(β), β) is given by

L0(θR(β), β) = ρ0,sI(θR(β),β)(X)− (1 + θR(β))EsI(θR(β),β)[X] + (1− β)c(sI(θR(β), β))

(17)
= ρ0,sI(θR(β),β)(X) + c(sI(θR(β), β))− ρ1,sN (X)− βoc(sN ) < 0.

The total derivative of L0(θR(β), β) w.r.t. β at s = sI(θR(β), β) is given by

d

dβ
L0(θR(β), β) =

d

dβ
ρ0,sI(θR(β),β)(X) +

d

dβ
c(sI(θR(β), β)) +

d

dβ

(
− ρ1,sN (X)− βoc(sN )

)

︸ ︷︷ ︸
=0

= ρ′0,s(X)|s=sI(θR(β),β)

[ ∂
∂θ
sI(θ, β)|θ=θR(β)

d

dβ
θR(β) +

∂

∂β
sI(θ, β)|θ=θR(β)

]

+ c′(s)|s=sI(θR(β),β)

[ ∂
∂θ
sI(θ, β)|θ=θR(β)

d

dβ
θR(β) +

∂

∂β
sI(θ, β)|θ=θR(β)

]

=
[
ρ′0,s(X)|s=sI︸ ︷︷ ︸

≤0

+ c′(s)|s=sI︸ ︷︷ ︸
≥0

] [ ∂
∂θ
sI(θ, β)|θ=θR(β)

︸ ︷︷ ︸
≥0 by Cor. 2

d

dβ
θR(β)

︸ ︷︷ ︸
≤0 by Cor. 3

+
∂

∂β
sI(θ, β)|θ=θR(β)

︸ ︷︷ ︸
≤0 by Cor. 2

]

︸ ︷︷ ︸
≤0

. (18)

While it follows from the previous computations that the second factor is non-positive, the
sign of the first factor is not yet determined, as the derivatives of the risk measure and the
cost w.r.t. s are of opposite signs. However, we show that their sum is always positive when
evaluated at the optimal solution sI(θR(β), β) of the buyer, such that it follows immediately
that the overall product in (18) and thus the sign of d

dβ
L0(θR(β), β) is non-positive.

Recall from the proof of Corollary 2 that sI(θ, β) is the global minimizer of the strictly convex
function Lθ,β

1,I(s) and that for any β there exists θI(β) such that

θ ≤ θI(β) =⇒ [Lθ,β
1,I(s)]

′|s=0 ≥ 0, sI(θ, β) = 0,

θ > θI(β) =⇒ [Lθ,β
1,I(s)]

′|s=0 < 0, sI(θ, β) > 0, [Lθ,β
1,I(s)]

′|s=sI = 0.

In the first case, the loss function is non-decreasing at s = 0 and therefore by convexity
non-decreasing everywhere, thus the global minimizer given by sI = 0. In the second case,
the loss function is decreasing at 0, thus the global minimizer an interior point on (0,∞)
characterized by the first-order optimality condition.
In any case, the derivative of the loss function evaluated at the global minimizer is non-
negative, i.e.

[L
θR(β),β
1,I (s)]′|s=sI(θR(β),β) ≥ 0. (19)

Therefore, for the first factor in (18), it follows

ρ′0,s(X)|s=sI(θR(β),β) + c′(s)|s=sI(θR(β),β)

β≤1

≥ ρ′0,s(X)|s=sI(θR(β),β) + βc′(s)|s=sI(θR(β),β)

(16)
> (1 + θR(β))E′

s[X]|s=sI(θR(β),β) + βc′(s)|s=sI(θR(β),β) =
[
L
θR(β),β
1,I (s)

]′|s=sI(θR(β),β)

(19)

≥ 0,

implying the claim of the proposition and Theorem 1.
Note again that unless θR(β) < θI(β) implying sI(θR(β), β) = 0, the second factor of the
derivative is negative (instead of non-positive), leading to uniqueness of the solution.
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A.5 Case Study: Self-Protection with a Pareto Loss

To illustrate the results for a single insurance buyer in a self-protection setting, we now
consider a loss with c.d.f.

FX,s(x) = (1− p(s)) + p(s)FY (x), x ≥ 0,

where 0 ≤ p(s) ≤ 1 and FY is the c.d.f. of a Pareto-distributed r.v. Y ∼ Pareto(x̂, k)
(compare [Bensalem et al., 2020]), i.e. a zero-inflated Pareto distribution. Naturally, s 7→
p(s) is assumed to be decreasing (loss probability decreases as service increases) and convex
(decreasing marginal impact). Additionally, assume that lim

s→∞
p(s) > 0, i.e. the risk of a loss

can never be completely eliminated.
Assume that both parties use the PH transform, where the exponents of the distortion
function express that the insurer (index r0) is less risk averse than the buyer (index r1):
ψ1(u) = ur1 , ψ0(u) = ur0 , r1, r0 ∈ (0, 1], r0 > r1. Furthermore, assume for the cost of
service (recall that s 7→ c(s) is assumed increasing and strictly convex with c(0) = 0) the
functional form c(s) = ηsγ, η > 0, γ > 1. It follows (see [Bensalem et al., 2020]):

F̄X,s(x) = Ps(X > x) =




p(s) ∀ 0 ≤ x ≤ x̂,

p(s)
(

x̂
x

)k
, ∀ x̂ < x,

Es[X] =

{
p(s) x̂k

k−1 , if k > 1,

∞, else,
ρ1,s(X) =

{
x̂r1kp(s)r1

r1k−1 , if k > 1
r1
,

∞, else,

such that from now on, we assume k > 1
r1
. In this case, Gβ(s) is given by

Gβ(s) =
ρ1,s(X)

Es[X]
+ (βo − β)

c(s)

Es[X]
=
r1(k − 1)

r1k − 1
p(s)r1−1 + (βo − β)

ηsγ(k − 1)

x̂kp(s)
,

which is indeed a non-decreasing function of s, as s 7→ p(s) is non-increasing and r1− 1 < 0.

As θ0 =
r1(k−1)p(0)r1−1

r1k−1 − 1, it follows:

� If θ ≤ r1(k−1)p(0)r1−1

r1k−1 − 1, this implies N = ∅, I = [0,∞);

� If θ > r1(k−1)p(0)r1−1

r1k−1 − 1, this implies N = [0, sB(θ, β)), I = [sB(θ, β),∞), where by
continuity sB(θ, β) solves

(1 + θ)− r1(k − 1)

r1k − 1
p(sB(θ, β))

r1−1 − (βo − β)(k − 1)η

x̂k
sB(θ, β)

γp(sB(θ, β))
−1 = 0.

For θ > θ0, recall that on N , the insurance buyer minimizes

L1,N (s) = ρ1,s(X) + βoc(s) =
x̂r1kp(s)

r1

r1k − 1
+ βoηs

γ.

From now on, let us assume that p(s) = 1
a+s

+ b, a ≥ 1, b > 0 (such that p(0) ≤ 1), which
ensures convexity of the buyer’s problem.40

40Here, s 7→ L1,N (s) is convex iff s 7→ p(s)r1 is convex. This is ensured if (r1 − 1)(p′(s))2 + p(s)p′′(s) ≥ 0,
which is fulfilled for logarithmic convexity of p(s) (see, e.g. [Niculescu and Persson, 2018]).
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The optimality criterion for the global minimizer sN of L1,N (s) is then given by

L′1,N (s)|s=sN
!
= 0 ⇐⇒ sN =

[
− x̂kr21
βoηγ(r1k − 1)

p(sN)
r1−1p′(sN)

] 1
γ−1

,

which is an interior point as L′1,N (s)|s=0+ < 0 and lim
s→∞

L′1,N (s) = ∞.

Analogously, on I, the buyer minimizes

Lθ,β
1,I(s) = (1 + θ)Es[X] + βc(s) = (1 + θ)

x̂k

k − 1
p(s) + βηsγ,

whose derivative w.r.t. s is given by [Lθ,β
1,I(s)]

′ = (1+θ) x̂k
k−1p

′(s)+βηγsγ−1, implying [Lθ,β
1,I(s)]

′|s=0 <
0 ∀ θ > 0 such that in all cases, sI(θ, β) > 0 is an interior point and the results of Corollary
2 and Section 4 hold with strict inequality, in particular the insurer’s solution is unique.
The optimality criterion for sI(θ, β) is given by

[Lθ,β
1,I(s)]

′|s=sI
!
= 0 ⇐⇒ sI(θ, β) =

[
− (1 + θ)x̂k

βηγ(k − 1)
p′(sI(θ, β))

] 1
γ−1

, (20)

implying that θ 7→ sI(θ, β) (β 7→ sI(θ, β)) is increasing (decreasing) (Corollary 2).
The insurer’s problem (5) in this setting becomes

min
(θ,β)∈[0,θR(β)]×[β,1]

x̂r0k

r0k − 1

( 1

sI(θ, β) + a
+ b
)r0

− (1 + θ)
x̂k

k − 1

( 1

sI(θ, β) + a
+ b
)
+ (1− β)ηsI(θ, β)

γ ,

where sI(θ, β) is characterized by Equation (20). Applying the results of Section 4 yields
that the insurer’s optimal solution lies in the set {(θ, 1), θ ∈ [0, θ]}, i.e. the insurer’s problem
simplifies to

min
θ∈[0,θR(1)]

L0(θ, 1) =
x̂r0k

r0k − 1

( 1

sI(θ, 1) + a
+ b
)r0

− (1 + θ)
x̂k

k − 1

( 1

sI(θ, 1) + a
+ b
)
,

which can be shown to be monotone in θ (see [Bensalem et al., 2020]). We illustrate the
buyer’s and insurer’s solution in Figures 6 and 7, respectively, for one exemplary set of
parameters.41

� For small θ (0 ≤ θ ≤ θN), i.e. the left region in Panel 6a where sB(θ, 1) < min{sN , sI(θ, 1)},
both sN and sI(θ, 1) lie in [sB(θ, 1),∞) = I. Thus, the solution for L1,N is sB(θ, 1) (Corol-
lary 2), while the problem for L1,I has an interior solution on I, which is also the global
solution.

� For large θ, i.e. the right region in Panel 6a where sB(θ, 1) > sI(θ, 1) > sN , both sN and
sI(θ, 1) lie in [0, sB(θ, 1)) = N , yielding sN as global solution.

� The region where θ is such that sN < sB(θ, 1) < sI(θ, 1) is where both problems have
interior solutions on their domains, thus to determine the global solution, it remains to
compare the objective functions to find the boundary θR(1) (see Panel 6b).42

41The parameters in this example are: for the risk measures r1 = 0.5, r0 = 0.6 (r1 < r0 required), for the
Pareto distr. x̂ = 1, k = 2.5 (k > 1/r1 required), for the cost η = 0.5, γ = 2, βo = 1.2, β = 0.05, and for

the loss probability p(s) = 1
s+1/0.6 + 0.2 implying p(s) ∈ [ lim

s→∞
p(s), p(0)] = [0.2, 0.8].

42One could compare the results in Figure 6 for different choices of β (which we know are not optimal
to offer from the insurer’s viewpoint): As expected, if β decreases, sI(θ, β) increases for any θ (Corollary
2) and thus the size of the jump in s∗ at θR(β) increases. Furthermore, as β decreases, θR(β) increases
(Corollary 3).
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� Note again that the optimal service demand within insurance increases with the loading,
but jumps downward once the premium is too high for the contract to be acceptable – in
other words, insurance and risk reduction are complements (Corollary 4).

� Panel 7a compares the maximum acceptable loading for the buyer (which as stated in
Corollary 3 is non-increasing in β ∈ [β, 1]) with the minimum acceptable loading for the
insurer. For small β, i.e. in the gray region left of the vertical line, no mutually acceptable
contract exists.

� This is also visible in Panel 7b depicting the insurer’s loss for all parameter combinations in
{(θR(β), β), β ∈ [β, 1]}∪{(θ, 1), θ ∈ [0, θ]}, truncated at 0. The left of the dashed vertical
line corresponds to L0(θR(β), β), β ∈ [β, 1]. As stated in Proposition 2, β 7→ L0(θR(β), β)
is decreasing, leaving the optimal solution to lie in {(θ, 1), θ ∈ [0, θ]}. The loss on this part
of the boundary is depicted to the right of the vertical dashed line, and for the special case
of a zero-inflated Pareto distribution is decreasing (see [Bensalem et al., 2020]), such that
the unique optimal solution of the insurer’s problem is (θ∗, β∗) = (θR(1), 1) ≈ (2.88, 1).

� The gray areas in Panel 7b where no negative insurer’s loss can be attained correspond
to the small values of β to the left of the vertical line on the first part of the boundary
in Panel 7a (left gray area), and the small values θ ∈ [0, θmin(1)] below the intersection of
θmin(β) with the vertical part of the boundary (right gray area).
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(a) sN , sI(θ, 1) and sB(θ, 1).
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LI(sI)
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(b) L1,N (sN ) and Lθ,11,I(sI(θ, 1)).

Figure 6: Insurance buyer’s solution depending on the loading θ, if he bears the full service cost
(β = 1). Gray areas mark values of θ where no mutually acceptable contract exists.

A.6 Case Study: Self-Insurance with a Pareto Loss

Consider a loss with the following zero-inflated Pareto distribution:

FX,s(x) = (1− p) + pFY,s(x), x ≥ 0,

where 0 < p < 1 and FY,s is the c.d.f. of a Pareto-distributed r.v. Y ∼ Pareto(x̂, k(s)) , i.e.

F̄Y,s(x) =
(

x̂
x

)k(s)
for all x > x̂ (see [Bensalem et al., 2020]).
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Figure 7: Insurer’s solution: Comparison θR(β) (maximum acceptable loading for buyer) and
θmin(β) (minimum acceptable loading for insurer) (left panel), and insurer’s loss on the boundary
{(θR(β), β), β ∈ [β, 1]} ∪ {(θ, 1), θ ∈ [0, θ]} (right panel). Areas where no mutually acceptable
contract exists are marked gray.

This means that the service level controls the loss size via the map s 7→ k(s), which is assumed
non-decreasing (service decreases loss severity), concave (decreasing marginal impact), and
such that k(0) =: z > 1

r1
> 1 (to ensure finiteness of ρ1,s(X) for any s ≥ 0). As previously,

assume ψ1(u) = ur1 , ψ0(u) = ur0 , r1, r0 ∈ (0, 1], r0 > r1, and c(s) = ηsγ, η > 0, γ > 1.43 It
follows (see [Bensalem et al., 2020]):

F̄X,s(x) =




p ∀ 0 ≤ x ≤ x̂,

p
(

x̂
x

)k(s)
∀ x̂ < x,

q̄X,s(u) =




x̂
(

p
u

)1/k(s)
, if u ∈ [0, p],

0, if u ∈ (p, 1].

Es[X] =
px̂k(s)

k(s)− 1
, k(s) > 1, ∀ s ≥ 0, ρ1,s(X) =

{
x̂r1k(s)pr1

r1k(s)−1 , if k(s) > 1
r1
,

∞, else.

Note that concavity of s 7→ k(s) implies convexity of s 7→ q̄X,s(u) for all u ∈ (0, 1) and that
we now assume k(s) > 1

r1
for all s ≥ 0.44 It follows that Gβ(s) is given by

Gβ(s) =
ρ1,s(X)

Es[X]
+ (βo − β)

c(s)

Es[X]
=
r1p

r1−1(k(s)− 1)

r1k(s)− 1
+ (βo − β)

ηsγ(k(s)− 1)

x̂pk(s)
.

Calculating the first two derivatives of the first summand w.r.t. s yields decreasingness

and convexity of the ratio, i.e.
(

ρ1,s(X)

Es[X]

)′
< 0,

(
ρ1,s(X)

Es[X]

)′′
≥ 0, implying that in this case,

Assumption 3 does not hold and indeed the reverse is fulfilled (the risk measure decreases
faster than the price as s increases). A sufficient condition for convexity (in s) of the second

43The subscripts 0 and 1 refer again to the insurer and insurance buyer, respectively.
44Otherwise, this would simply imply that the insurance buyer would always choose a service level of at

least s > k−1( 1
r1
).
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summand of Gβ(s) is for c(s) = ηsγ and k(s) to be such that for any s ≥ 0:

k(s)γsγ−1k′(s) + k(s)sγk′′(s)− 2sγ(k′(s))2 ≥ 0. (21)

For the remainder of this study we will assume for the service cost η = 0.5, γ = 2 (as in A.5),
and for the loss severity k(s) =

√
s+ z, where z > 1

r1
. It is easily checked that Equation (21)

then holds, yielding Gβ(s) as a convex function in s with lim
s→∞

Gβ(s) = ∞ and by continuity

of the derivative decreasing for small s > 0, as

(
Gβ(s)

)′
= k′(s)︸ ︷︷ ︸

s→0−→∞

[ r1pr1−1(r1 − 1)

(r1k(s)− 1)2︸ ︷︷ ︸
s→0−→const<0

+
(βo − β)ηsγ

px̂k(s)2︸ ︷︷ ︸
s→0−→0

]
+

(βo − β)ηγ

px̂

k(s)− 1

k(s)
sγ−1

︸ ︷︷ ︸
s→0−→0

s→0−→ −∞.

Therefore, for any β, the convex map s 7→ Gβ(s) admits a minimizer s0 which is an interior
point on (0,∞) characterized by

(
Gβ(s)

)′|s=s0 = 0. The smallest loading θ0(β) making Gβ(s)
intersect the level 1 + θ for any θ > θ0 is given by

θ0(β) = Gβ(s0)− 1,

such that it follows

θ ≤ θ0(β) =⇒ Gβ(s) > (1 + θ) ∀s ≥ 0, I = [0,∞), N = ∅
θ > θ0(β) =⇒ ∃ 0 ≤ sB1(θ, β) < s0 < sB2(θ, β) <∞ :

I =
[
0, sB1(θ, β)

]
∪
[
sB2(θ, β),∞

)
, N =

(
sB1(θ, β), sB2(θ, β)

)
,

where sB1(θ, β) and sB2(θ, β) are defined as

sB1(θ, β) := inf{s ∈ [0,∞) : Gβ(s) ≤ 1 + θ},
sB2(θ, β) := sup{s ∈ [0,∞) : Gβ(s) ≤ 1 + θ}.

Note that sB1(θ, β) (sB2(θ, β)) is non-increasing (non-decreasing) in θ and β. The economic
interpretation is straightforward: As the insurance solution gets more expensive (increase in
θ or β), the interval corresponding to the no-insurance solution widens.
For θ > θ0, recall that on N =

(
sB1(θ, β), sB2(θ, β)

)
, the insurance buyer minimizes the loss

function

L1,N (s) = ρ1,s(X) + βoc(s) =
x̂r1p

r1k(s)

r1k(s)− 1
+ βoηs

γ.

Thus, the optimality criterion for the global minimizer sN of L1,N (s) is given by

L′
1,N (s)|s=sN

!
= 0 ⇐⇒ sN =

[ x̂r1p
r1k′(sN )

βoηγ(r1k(sN )− 1)2

] 1
γ−1

,

which is an interior point as lim
s→0

L′1,N (s) = −∞ and lim
s→∞

L1,N (s) = ∞.

Analogously, on I = [0, sB1(θ, β)] ∪ [sB2(θ, β),∞) the insurance buyer minimizes

Lθ,β
1,I(s) = (1 + θ)Es[X] + βc(s) = (1 + θ)

x̂pk(s)

k(s)− 1
+ βηsγ.

The optimality criterion for the global minimizer sI(θ, β) is given by

[Lθ,β1,I(s)]
′|s=sI

!
= 0 ⇐⇒ sI(θ, β) =

[ (1 + θ)x̂pk′(sI(θ, β))
βηγ(k(sI(θ, β))− 1)2

] 1
γ−1

. (22)

Analogously to the self-protection case, one can argue that:
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� For any β, at θ = 0 it holds that I = [0,∞) and sI(θ, β) is also the local minimizer on I
and the global minimizer of L1(α, s) is (α

∗, s∗) = (1, sI).

� Define θN > 0 as the smallest θ > 0 such that sN ∈ N , i.e. sB1(θ, β) < sN (if sN ≤ s0) or
sN < sB2(θ, β) (if sN > s0).

� As both sB2(θ, β) and sI(θ, β) are non-decr. functions of θ, one has to distinguish the
case sI ∈ N , i.e. sI(θ, β) < sB2(θ, β) (in which automatically sN is the global minimizer
and (α∗, s∗) = (0, sN) the global solution) and the case sI ∈ I, i.e. sB2(θ, β) ≤ sI(θ, β),
in which one has to compare the function values L1,I(sI) and L1,N (sN) to determine the
global solution.

� As L1,N (sN) is independent of θ, while θ 7→ L1,I(sI) is increasing, one can define the
maximum feasible loading as θR(β) := sup{θ ≥ 0 : L1,I(sI(θ, β)) ≤ L1,N (sN)}, such that
for given β for any θ > θR(β) no insurance is preferred, i.e. (α∗, s∗) = (0, sN).

The insurer’s problem is therefore given by

min
(θ,β)∈[0,θR(β)]×[β,1]

L0(θ, β) :=
x̂r0p

r0k(sI)

r0k(sI)− 1
− (1 + θ)

x̂pk(sI)

k(sI)− 1
+ (1− β)ηsγI ,

where sI(θ, β) is characterized by Equation (22). In the self-insurance case, Assumption 3
does not hold anymore, and therefore neither do (necessarily) monotonicity of β 7→ L0(θ, β)
(Proposition 1) and monotonicity of β 7→ L0(θR(β), β) (Proposition 2). Monotonicity (non-
increasingness) of the insurer’s loss in θ can be shown for the special case β = 1 (see
[Bensalem et al., 2020]), but not for general β ∈ [β, 1]. Therefore, we resort to numerical
optimization (using the R package nloptr) of the program

min
θ,β

L0(θ, β) s.t. L
θ,β
1,I(sI(θ, β))− L1,N (sN) ≤ 0, 0 ≤ θ <∞, β ≤ β ≤ 1,

where the calculations to derive the gradients of the objective (insurer’s loss function) and
the constraint (insurance buyer’s loss function) are given in the following subsection (for
η = 0.5, γ = 2 as above). The insurance buyer’s and insurer’s solutions for an exemplary
set of parameters are illustrated in Figures 8 and 9, respectively.45

� Panel 8a shows the insurance buyer’s optimal service demand with and without insurance
depending on the loading. As θ 7→ sI(θ, β) is increasing, at a higher loading the insurance
buyer has an incentive to purchase more service within insurance (at fixed cost). However,
in this case (as remarked in [Bensalem et al., 2020] for the self-insurance case), the jump in
s∗ at θ = θR(0.5) is positive (i.e. when switching to the no-insurance solution, more service
is demanded), meaning that risk transfer demand and service demand are substitutes
(contrary to Corollary 4).

� The left region of Panel 8a corresponds to the case θ < θ0 where I = [0,∞) and thus
s∗ = sI . For θ ≥ θ0, the interval (sB1(θ, 0.5), sB2(θ, 0.5)) corresponding to the set N
broadens with increasing θ.

45The parameters for this example are: for the risk measures r1 = 0.5, r0 ∈ [r1 + ∆, 1], ∆ = 10−3, for
the service cost η = 0.5, γ = 2, βo = 1.1, β = 0.05, for the loss (severity) distribution x̂ = 2, p = 0.2,

k(s) =
√
s + z with z = 1

r1
+ 0.1. For z ≤ 1

r1
, one would need to calculate s := k−1

(
1
r1

)
and restrict the

analysis to s ∈ (s,∞).
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� In the right region of Panel 8a, it holds sI(θ, 0.5) ∈ N implying s∗ = sN .

� For values of θ such that sI(θ, 0.5) ∈ I, sN ∈ N , one compares the insurance buyer’s
loss (objective function value) for both problems to determine θR(0.5), as illustrated in
Panel 8b.

� Panel 9a compares the admissible set (θ, β) ∈ [0, θR(β)]× [β, 1] of the insurance buyer (for
r1 = 0.5) with the admissible set of the insurer (θ, β) ∈ [θmin(β),∞) × [β, 1] (for selected
values r0 ∈ (r1, 1]), i.e. a mutually acceptable contract exists for β s.t. θmin(β) ≤ θR(β).

� Interestingly, β 7→ θmin(β) is not necessarily monotone decreasing anymore, and in partic-
ular if r0 is close to r1 (the insurer is almost as risk-averse as the buyer), the case that no
acceptable contract can be found does not only occur for small values of β (as observed
before), but also for very high values of β. As this is perhaps counter-intuitive, it merits an
explanation: The more risk-averse the insurer, the more she values risk reduction by the
buyer; however, the service amount sI(θ, β) the buyer is willing to (optimally) purchase
to achieve risk reduction with insurance decreases with β, i.e. if service becomes too ex-
pensive, the buyer may not be willing to buy as much service as required by a risk-averse
insurer. This occurs due to the property of the self-insurance case that for any increase
in service, the risk measure decreases faster than the price of insurance and therefore,
while buying a unit of service without insurance is relatively more expensive (βo > 1),
the decrease in risk (which the buyer considers without insurance) may overcompensate
this relative to the smaller decrease in price within insurance. This implies that if the risk
aversions of buyer and insurer are similar, a mutually acceptable contract can only
be found if the cost of risk reduction service is shared.

� The bold part of the boundary in Panel 9a marks the set of optimal solutions (θ∗, β∗)
obtained by solving (numerically) the Stackelberg game for r0 ∈ [r1+∆, 1]. This illustrates
that contrary to the self-protection case, β 7→ L0(θR(β), β) is not necessarily monotone
decreasing anymore.

� The solid line in Panel 9b shows the optimal share of service cost β∗ burdened on the
buyer depending on the absolute difference r0 − r1. The more risk-averse the insurer is
relative to the buyer, the more she will incentivise risk reduction by subsidizing service,
i.e. by optimally offering a contract with lower β. If the insurer is much less risk-averse
than the buyer, she will not subsidize service any longer (β∗ = 1), as the partial service
cost is no longer overcompensated by her subjective gain of insuring a reduced risk.

� The dashed line in Panel 9b shows the optimally attainable value of the insurer’s objective
function depending on the absolute difference r0 − r1. Naturally, the insurer’s obtainable
gain (negative loss) decreases as she becomes more risk-averse.

� While the insurer’s loss is again monotone decreasing on {(θ, 1), θ ∈ [0, θR(1)]} (this was
shown for the special Pareto case in [Bensalem et al., 2020]), this is not necessarily the
case on {(θR(β), β), β ∈ [β, 1]} anymore. The optimal β∗ < 1 and the corresponding
insurer’s loss are depicted in Panels 9c and 9d, for the parameter choices r0 = 0.6 and
r0 = 0.51 (very close to r1), respectively. Panel 9d illustrates the phenomenon observed in
Panel 9a that the insurer cannot obtain a negative loss for β → 1 (as well as for small β).
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Figure 8: The figure illustrates the insurance buyer’s solution depending on the loading θ, if the
insurance buyer has to bear half of the service cost (β = 0.5). Gray areas again represent values of
θ where no contract is closed.

Derivatives of insurer’s loss in the self-insurance case

Recall that the insurer’s loss function is given by

L0(θ, β) =
x̂r0p

r0k(sI)

r0k(sI)− 1
− (1 + θ)

x̂pk(sI)

k(sI)− 1
+ (1− β)c(sI).

Its partial derivative w.r.t. θ is given by

∂

∂θ
L0(θ, β) = −r0p

r0 x̂k′(sI) ∂∂θ sI(θ, β)

(r0k(sI)− 1)2︸ ︷︷ ︸
≤0

−px̂k(sI)(k(sI)− 1)− (1 + θ)k′(sI) ∂∂θ sI(θ, β)

(k(sI)− 1)2︸ ︷︷ ︸
<0, see [Bensalem et al., 2020]

+(1− β)c′(sI)
∂

∂θ
sI(θ, β)

︸ ︷︷ ︸
≥0

,

(23)

where we use that by assumption k′(s) ≥ 0, k′′(s) ≤ 0, and to derive ∂
∂θ
sI(θ, β), use

that sI is characterized by Equation (22) or equivalently (by rearranging), for the function

Fβ(θ, s) :=
sβ(k(s)−1)2

px̂k′(s) − (1+θ), the tuple (θ, sI(θ, β)) is a solution to Fβ = 0 for any θ. Then,

applying the implicit function theorem (IFT) yields (see [Bensalem et al., 2020])

∂sI(θ, β)

∂θ
= −

∂Fβ(θ,sI)
∂θ

∂Fβ(θ,sI)
∂s

=
( sI
1 + θ

)

︸ ︷︷ ︸
≥0

(
1

1 +
2sIk

′(sI)
k(sI)− 1︸ ︷︷ ︸

>0

−k
′′(sI)sI
k′(sI)︸ ︷︷ ︸
>0

)
≥ 0,

corroborating that θ 7→ sI(θ, β) is non-decreasing. Equation (23) implies that in the
special case β = 1 (where the third term vanishes), the insurer’s loss is decreasing in θ, but
this does not necessarily hold for general β ∈ [β, 1].
Analogously, we derive the partial derivative of the insurer’s loss w.r.t. β as
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Figure 9: Illustration of several aspects of the insurer’s solution in the self-insurance case. Panels
9c and 9d show the insurer’s loss L0(θR(β), β), β ∈ [β, 1] and L0(θ, 1), θ ∈ [0, θ = θR(1)].

∂

∂β
L0(θ, β) = −

pr0r0x̂k
′(sI) ∂∂β sI(θ, β)

(r0k(sI)− 1)2︸ ︷︷ ︸
≥0

+
(1 + θ)px̂k′(sI) ∂∂β sI(θ, β)

(k(sI)− 1)2︸ ︷︷ ︸
≤0

+(1− β)sI
∂

∂β
sI(θ, β)− c(sI)

︸ ︷︷ ︸
≤0

,

where, analogously to above, consider that sI is characterized by Equation (22), or equiv-

alently, the tuple (β, sI(θ, β)) for any β is a solution to Fθ(β, s) := β − (1 + θ) px̂k′(s)
s(k(s)−1)2 = 0.

As before, applying the IFT yields

∂sI(θ, β)

∂β
= −

∂Fθ(β,sI)
∂β

∂Fθ(β,sI)
∂s

=
1

β

(
k′′(sI)
k′(sI)︸ ︷︷ ︸

≤0

− 1

sI︸︷︷︸
<0

− 2k′(sI)
k(sI)− 1︸ ︷︷ ︸

≤0

)−1

< 0,

corroborating that also in this self-insurance case, β 7→ sI(θ, β) is non-increasing.
Lastly, the gradient of the constraint Lθ,β

1,I(sI(θ, β))− L1,N (sN) ≤ 0 is given by
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∂Lθ,β1,I(sI(θ, β))

∂θ
= px̂

k(sI)(k(sI)− 1)− (1 + θ)k′(sI) ∂∂θ sI(θ, β)

(k(sI)− 1)2
+ βc′(sI)

∂

∂θ
sI(θ, β),

∂Lθ,β1,I(sI(θ, β))

∂β
=

−(1 + θ)px̂k′(sI) ∂∂β sI(θ, β)

(k(sI)− 1)2
+ βc′(sI)

∂

∂β
sI(θ, β)− c(sI).

A.7 The Insurer’s Problem in the Portfolio Case

A.7.1 (Directed) Loss Propagation

With the stated assumptions on Xi, i ∈ {1, 2}, the portfolio loss X := X1 +X2 and its tail
quantile function are given by

X =





0 w.p. (1− p1)(1− p2),

L1 w.p. p1(1− q)(1− p2),

L2 w.p. (1− p1)p2,

L1 + L2 w.p. p1q + p1(1− q)p2,

qX,s(u) =





0 u ∈ (p1 + p2 − p1p2, 1],

L1 u ∈ (p2 + p1q − p1p2q, p1 + p2 − p1p2],

L2 u ∈ (p1q + p1p2 − p1p2q, p2 + p1q − p1p2q],

L1 + L2 u ∈ [0, p1q + p1p2 − p1p2q],

where the dependence on si, i ∈ {1, 2}, is omitted for brevity. The insurer’s portfolio risk
measure with s := (s1, s2) (for ψ(u) = ur0 , r0 ∈ (0, 1)) is then given by

ρ0,s(X) = L1[(p1 + p2 − p1p2)
r0 − (p2 + p1q − p1p2q)

r0 ] + L2[(p2 + p1q − p1p2q)
r0

− (p1q + p1p2 − p1p2q)
r0 ] + (L1 + L2)(p1q + p1p2 − p1p2q)

r0

= L1[(p1 + p2 − p1p2)
r0 + (p1q + p1p2 − p1p2q)

r0 ] + (L2 − L1)(p2 + p1q − p1p2q)
r0 . (24)

The general difference between the single-contract and the portfolio case, i.e. that Equa-
tion (7) may hold, is illustrated in Figure 3 for an exemplary set of parameters in this case
of directed loss propagation.

Calculation of gradients for sequential contract closure (SEQ 21)
Recall the insurer’s objective function in Equation (10) for contract 1 is given by

Lseq
0,1(θ1, β1) =ρ0,sI1(θ1,β1),sI2(θR,2(1),1)(X)− (1 + θ1)EsI1(θ1,β1)(X1) + (1− β1)c(sI1(θ1, β1)),

where the portfolio risk measure is given in (24). Its partial derivatives w.r.t. θ1 and β1
are thus given by

∂Lseq
0,1(θ1, β1)

∂θ1
=
[
L1

(
r0(p1(sI1)(1− pI2) + pI2)

r0−1(1− pI2) + (q + pI2 − pI2q)
r0r0p1(sI1)

r0−1
)

+ (L2 − L1)r0
[
p1(sI1)(q − pI2q) + pI2

]r0−1
(q − pI2q)

]
p′1(sI1)

∂sI1
∂θ1

−
(
L1p1(sI1) + (1 + θ1)L1p

′
1(sI1)

∂sI1
∂θ1

)
+ (1− β1)c

′(sI1)
∂sI1
∂θ1

,

∂Lseq
0,1(θ1, β1)

∂β1
=
[
L1

(
r0(p1(sI1)(1− pI2) + pI2)

r0−1(1− pI2) + (q + pI2 − pI2q)
r0r0p1(sI1)

r0−1
)

+ (L2 − L1)r0
[
p1(sI1)(q − pI2q) + pI2

]r0−1
(q − pI2q)

]
p′1(sI1)

∂sI1
∂β1

− (1 + θ1)L1p
′
1(sI1)

∂sI1
∂β1

− c(sI1) + (1− β1)c
′(sI1)

∂sI1
∂β1

,
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where the dependence sI1(θ1, β1) is omitted for brevity and pI2 := p2(sI2).
Analogously to above, to derive ∂sI1

∂θ1
and ∂sI1

∂β1
, use that sI1 is characterized by

[
Lθ1,β1

I,1 (s1)
]′|s1=sI1

!
= 0 ⇐⇒ sI1(θ1, β1) =

[
− (1 + θ1)L1

β1ηγ
p′1(sI1)

] 1
γ−1 η=0.5,γ=2

= − (1 + θ1)L1p
′(sI1)

β1
. (25)

Rearranging (25) yields that (θ1, sI1) is a solution to Fβ1(θ1, s) :=
sβ1

L1p′1(s)
+ (1 + θ1) = 0

for any θ1 and likewise (β1, sI1) is a solution to Fθ1(β1, s) := β1 + (1 + θ1)L1
p′1(s)
s

= 0 for any
β1. Applying IFT then yields

∂sI1(θ1, β1)

∂θ1
= −

∂Fβ1
(θ1,s)

∂θ1
|s=sI1

∂Fβ1
(θ1,s)

∂s |s=sI1
=

−L1p
′
1(sI1)

β1

(
1− sI1p′′1 (sI1)

p′1(sI1)

) > 0,

∂sI1(θ1, β1)

∂β1
= −

∂Fθ1
(β1,s)

∂β1
|s=sI1

∂Fθ1
(β1,s)

∂s |s=sI1
= − sI1(

p′′1(sI1)−
p′1(sI1)
sI1

)
L1(1 + θ1)

< 0.

The partial derivatives of the constraint Lθ1,β1

I,1 (sI1(θ1, β1))− LN ,1(sN1) ≤ 0 are

∂

∂θ1
Lθ1,β1

I,1 (sI1(θ1, β1)) = L1p1(sI1) + (1 + θ1)L1p
′
1(sI1)

∂sI1
∂θ1

+ β1c
′(sI1)

∂sI1
∂θ1

,

∂

∂β1
Lθ1,β1

I,1 (sI1(θ1, β1)) = (1 + θ1)L1p
′
1(sI1)

∂sI1
∂β1

+ c(sI1) + β1c
′(sI1)

∂sI1
∂β1

.

Calculation of gradients for sequential contract closure (SEQ 12)
If the contracts are closed in reverse sequential order, the insurer’s objective function for
contract 2 is

Lseq
0,2(θ2, β2) =ρ0,sI1(θR,1(1),1),sI2(θ2,β2)(X)− (1 + θ2)EsI2(θ2,β2)(X2) + (1− β2)c(sI2(θ2, β2)),

yielding its partial derivatives w.r.t. θ2 and β2 as

∂Lseq
0,2(θ2, β2)

∂θ2
=
[
L1

(
r0(pI1 + (1− pI1)p2(sI2))

r0−1(1− pI1) + r0(pI1q + pI1(1− q)p2(sI2))
r0−1pI1(1− q)

)

+ (L2 − L1)r0
[
pI1q + (1− qpI1)p2(sI2))

]r0−1
(1− qpI1)

]
p′2(sI2)

∂sI2
∂θ2

−
(
L2(pI1q + (1− pI1q)p2(sI2)) + (1 + θ2)L2(1− pI1q)p

′
2(sI2)

∂sI2
∂θ2

)
+ (1− β2)c

′(sI2)
∂sI2
∂θ2

,

∂Lseq
0,2(θ2, β2)

∂β2
=
[
L1

(
r0(pI1 + (1− pI1)p2(sI2)))

r0−1(1− pI1) + r0(pI1q + pI1(1− q)p2(sI2))
r0−1pI1(1− q)

+ (L2 − L1)r0
[
pI1q + (1− qpI1)p2(sI2))

]r0−1
(1− qpI1)

]
p′2(sI2)

∂sI2
∂β2

− (1 + θ2)L2(1− pI1q)p
′
2(sI2)

∂sI2
∂β2

− c(sI2) + (1− β2)c
′(sI2)

∂sI2
∂β2

,

where the dependence sI2(θ2, β2) is omitted, again pI1 := p1(sI1), and the partial deriva-
tives ∂sI2

∂θ2
and ∂sI2

∂β2
are derived analogously to above as
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∂sI2(θ2, β2)

∂θ2
=

−L2(1− p1q)p
′
2(sI2)

β2

(
1− sI2p′′2 (sI2)

p′2(sI2)

) > 0,

∂sI2(θ2, β2)

∂β2
= − sI2(

p′′2(sI2)−
p′2(sI2)
sI2

)
L2(1 + θ2)(1− p1q)

< 0.

The partial derivatives of the constraint Lθ2,β2

I,2 (sI2(θ2, β2))− LN ,2(sN2) ≤ 0 are

∂

∂θ2
Lθ2,β2

I,2 (sI2(θ2, β2)) = L2(pI1q + p2(sI2)(1− p1q)) + (1 + θ2)L2(1− p1q)p
′
2(sI2)

∂sI2
∂θ2

+ β2c
′(sI2)

∂sI2
∂θ2

,

∂

∂β2
Lθ2,β2

I,2 (sI2(θ2, β2)) = (1 + θ2)L2(1− p1q)p
′
2(sI2)

∂sI2
∂β2

+ c(sI2) + β2c
′(sI2)

∂sI2
∂β2

.

Calculation of gradients for simultaneous contract closure (SIM)
Recall that if the contracts are closed simultaneously, the insurer solves the four-dimensional
problem stated in Equation (11), minimizing the loss function

Lsim
0 (θ1, β1, θ2, β2) = ρ0,sI1(θ1,β1),sI2(θ1,β1,θ2,β2)(X)

− (1 + θ1)EsI1(θ1,β1)[X1]− (1 + θ2)EsI2(θ1,β1,θ2,β2)[X2]

+ (1− β1)c(sI1(θ1, β1)) + (1− β2)c(sI2(θ1, β1, θ2, β2))

=: f1(θ1, β1, θ2, β2)− f2(θ1, β1, θ2, β2)− f3(θ1, β1, θ2, β2)

+ f4(θ1, β1, θ2, β2) + f5(θ1, β1, θ2, β2),

on the admissible set A := [0, θR,1(β1)]× [β, 1]× [0, θR,2(β2)]× [β, 1]. Note that

� Due to the directed nature of loss propagation, sI1 does not depend on θ2, β2, sI2, implying
∂f2
∂θ2

= ∂f2
∂β2

= ∂f4
∂θ2

= ∂f4
∂β2

= 0.

� The derivatives of the portfolio risk measure and the price of insurance and service cost
for firm 2, i.e. ∂f1

∂θ2
, ∂f1

∂β2
, ∂f3

∂θ2
, ∂f3

∂β2
, ∂f5

∂θ2
, ∂f5

∂β2
, are as in (SEQ 12).

� Analogously, the partial derivatives of the price of insurance and service cost for firm 1,
i.e. ∂f2

∂θ1
, ∂f2

∂β1
, ∂f4

∂θ1
, ∂f4

∂β1
, are as in (SEQ 21).

The remaining derivatives w.r.t. θ1 are given by:

∂f1(θ1, β1, θ2, β2)

∂θ1
= L1

[
r0(pI1 + pI2 − pI1pI2)

r0−1
[
p′1(sI1)

∂sI1
∂θ1

(1− pI2) + p′2(sI2)
∂sI2
∂θ1

(1− pI1)
]

+ r0(pI1q + pI1pI2 − pI1pI2q)
r0−1

[
(pI2 + q − pI2q)p

′
1(sI1)

∂sI1
∂θ1

+ pI1(1− q)p′2(sI2)
∂sI2
∂θ1

]]

+ (L2 − L1)r0(pI1q − pI1pI2q + pI2)
r0−1

[
q(1− p2)p

′
1(sI1)

∂sI1
∂θ1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂θ1

]
,

∂f3(θ1, β1, θ2, β2)

∂θ1
= (1 + θ2)L2

(
(1− pI2)qp

′
1(sI1)

∂sI1
∂θ1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂θ1

)
,

∂f5(θ1, β1, θ2, β2)

∂θ1
= (1− β2)c

′(sI2)
∂sI2
∂θ1

.
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To derive ∂sI2
∂θ1

, recall that sI2 is characterized by
(1+θ2)L2(1−qpI1)p′2(sI2)

β2
+ sI2 = 0, thus for

Fθ2,β2(s1, s2) :=
(1+θ2)L2(1−qp1(s1))p′2(s2)

β2
+ s2, it follows as above

∂sI2
∂sI1

= −
∂Fθ2,β2

(s1,s2)

∂s1
∂Fθ2,β2

(s1,s2)

∂s2

=
(1 + θ2)L2p

′
2(sI2)qp

′
1(sI1)

(1 + θ2)L2(1− qpI1)p′′2(sI2) + β2

and by the chain rule ∂sI2
∂θ1

= ∂sI2
∂sI1

· ∂sI1
∂θ1

where ∂sI1
∂θ1

has been calculated in (SEQ 21) above.
The partial derivatives w.r.t. β1 are derived analogously as

∂f1(θ1, β1, θ2, β2)

∂β1
= L1

[
r0(pI1 + pI2 − pI1pI2)

r0−1
[
p′1(sI1)

∂sI1
∂β1

(1− pI2) + p′2(sI2)
∂sI2
∂β1

(1− pI1)
]

+ r0(pI1q + pI1pI2 − pI1pI2q)
r0−1

[
(pI2 + q − pI2q)p

′
1(sI1)

∂sI1
∂β1

+ pI1(1− q)p′2(sI2)
∂sI2
∂β1

]]

+ (L2 − L1)r0(pI1q − pI1pI2q + pI2)
r0−1

[
q(1− p2)p

′
1(sI1)

∂sI1
∂β1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂β1

]
,

∂f3(θ1, β1, θ2, β2)

∂β1
= (1 + θ2)L2

(
(1− pI2)qp

′
1(sI1)

∂sI1
∂β1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂β1

)
,

∂f5(θ1, β1, θ2, β2)

∂β1
= (1− β2)c

′(sI2)
∂sI2
∂β1

,

where ∂sI2
∂β1

= ∂sI2
∂sI1

· ∂sI1
∂β1

and ∂sI1
∂β1

has been derived above.
In this case, both constraints

Lθ1,β1

I,1 (sI1(θ1, β1))− LN ,1(sN1) ≤ 0,

Lθ1,β1,θ2,β2

I,2 (sI2(θ1, β1, θ2, β2))− LN ,2(sN2) ≤ 0,

have to be fulfilled simultaneously. Again
∂L

θ1,β1
I,1 (sI1(θ1,β1))

∂θ2
=

∂L
θ1,β1
I,1 (sI1(θ1,β1))

∂β2
= 0, and

∂L
θ1,β1
I,1 (sI1(θ1,β1))

∂θ1
,

∂L
θ1,β1
I,1 (sI1(θ1,β1))

∂β1
and

∂L
θ1,β1,θ2,β2
I,2 (sI2(θ1,β1,θ2,β2))

∂θ2
,

∂L
θ1,β1,θ2,β2
I,2 (sI2(θ1,β1,θ2,β2))

∂β2
have

been calculated above for sequential contract closure. To implement the numerical opti-
mization routine, it remains to compute

∂Lθ1,β1,θ2,β2

I,2 (sI2)

∂θ1
= (1 + θ2)L2

(
(1− pI2)qp

′
1(sI1)

∂sI1
∂θ1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂θ1

)
+ β2c

′(sI2)
∂sI2
∂θ1

,

∂Lθ1,β1,θ2,β2

I,2 (sI2)

∂β1
= (1 + θ2)L2

(
(1− pI2)qp

′
1(sI1)

∂sI1
∂β1

+ (1− pI1q)p
′
2(sI2)

∂sI2
∂β1

)
+ β2c

′(sI2)
∂sI2
∂β1

.

A.7.2 Cyber Events at Multiple Targets

For X1, X2 as above, let Z1 := min{E1, E12} and Z2 := min{E2, E12}. Then, the portfolio
loss X := X1 +X2 is described by

X =





0 if Z1 > T, Z2 > T =⇒ P(X = 0) = e−(λ1+λ2+λ12) =: y00,

L1 if Z1 ≤ T, Z2 > T =⇒ P(X = L1) = (1− e−λ1)e−(λ2+λ12) =: y10,

L2 if Z2 ≤ T, Z1 > T =⇒ P(X = L2) = (1− e−λ2)e−(λ1+λ12) =: y01,

L1 + L2 if Z1 ≤ T, Z2 ≤ T =⇒ P(X = L1 + L2) = y11 := 1− (y00 + y10 + y01),
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FX(x) =





1 x < 0,

1− y00 0 ≤ x < L1,

1− (y00 + y10) L1 ≤ x < L2,

1− (y00 + y10 + y01) L2 ≤ x < L1 + L2,

0 L1 + L2 ≤ x.

The risk measure of the portfolio loss is thus

ρ(X) = L1[(1− y00)
r − (1− (y00 + y10))

r] + L2[(1− (y00 + y10))
r − (1− (y00 + y10 + y01))

r]

+ (L1 + L2)(1− (y00 + y10 + y01))
r

= L1[(1− y00)
r + (1− (y00 + y10 + y01))

r] + (L2 − L1)(1− (y00 + y10))
r.

Prevention of systemic events: Extended calculations
By the assumptions above, the expectation and insurer’s risk measure for the contract of
firm 1 are given by

Es1 [X1] = L1(1− e−(λ1+λ12(s1))), ρ0,s1(X1) = L1(1− e−(λ1+λ12(s1)))r0 ,

while the insurer’s portfolio risk measure is given by

ρ0,s(X) = L1((1− y00(s))
r0 + (1− y00(s)− y10(s)− y01(s))

r0) + (L2 − L1)(1− y00(s)− y10(s))
r0 ,

where
y00(s) := e−(λ1+λ2(s2)+λ12(s1)) =⇒ ∂y00(s)

∂s1
= −y00(s)λ′12(s1),

y10(s) := (1− e−λ1)e−(λ2(s2)+λ12(s1)) =⇒ ∂y10(s)

∂s1
= −y10(s)λ′12(s1),

y01(s) := (1− e−λ2(s2))e−(λ1+λ12(s1)) =⇒ ∂y01(s)

∂s1
= −y01(s)λ′12(s1).

The derivative of the insurer’s portfolio risk measure w.r.t. s1 is given by

∂ρ0,s(X)

∂s1
= L1

[
r0(1− y00(s))

r0−1
(
− ∂y00(s)

∂s1

)
+ r0(1− y00(s)− y10(s)− y01(s))

r0−1

(
− ∂y00(s) + y10(s) + y01(s)

∂s1

)]
+ (L2 − L1)r0(1− y00(s)− y10(s))

r0−1
(
− ∂y00(s) + y10(s)

∂s1

)

= L1

[
r0(1− y00(s))

r0−1y00(s)λ
′
12(s1) + r0

(
1− y00(s)− y10(s)− y01(s)

)r0−1

(y00(s) + y10(s) + y01(s))λ
′
12(s1)

]
+ (L2 − L1)r0(1− y00(s)− y10(s))

r0−1(y00(s) + y10(s))λ
′
12(s1).

(26)

Using that sI1 is characterized by

[Lθ1,β1

I,1 (s1)]
′|s1=sI1 = (1 + θ1)L1e

−(λ1+λ12(sI1))λ′12(sI1) + β1c
′(sI1) = 0,

similar calculations to Subsection A.7.1 yield the derivatives of sI1 w.r.t. θ1 and β1 as

∂sI1
∂θ1

= − L1e
−(λ1+λ12(sI1))λ′12(sI1)

β1

(
1 + sI1λ′12(sI1)− sI1

λ′′
12(sI1)
λ′
12(sI1)

) , (27)

∂sI1
∂β1

=
sI1

(1 + θ1)L1e−(λ1+λ12(sI1))
(
λ′12(sI1)

2 − λ′′12(sI1) +
λ′
12(sI1)
sI1

) , (28)

xxiii



such that the gradient of the constraint LI,1(sI1(θ1, β1))−LN ,1(sN1) ≤ 0 w.r.t. (θ1, β1) is
given by

∂Lθ1,β1

I,1 (sI1)

∂θ1
= L1(1− e−(λ1+λ12(sI1))) + (1 + θ1)L1e

−(λ1+λ12(sI1))λ′12(sI1)
∂sI1
∂θ1

+ β1c
′(sI1)

∂sI1
∂θ1

,

∂Lθ1,β1

I,1 (sI1)

∂β1
= (1 + θ1)L1e

−(λ1+λ12(sI1))λ′12(sI1)
∂sI1
∂β1

+ c(sI1) + β1c
′(sI1)

∂sI1
∂β1

.

In the case of sequential contract closure, the insurer’s objective function is

Lseq
0,1(θ1, β1) = ρ0,sI1(θ1,β1),sI2(θR,2(1),1) − (1 + θ1)EsI1(θ1,β1)(X1) + (1− β1)c(sI1(θ1,β1)),

where the derivatives of the portfolio risk measure w.r.t. θ1 and β1 are

∂ρ0,sI1(θ1,β1),sI2(θR,2(1),1)

∂θ1
=
∂ρ0,s(X)

∂s1︸ ︷︷ ︸
(26)

|s1=sI1
∂sI1(θ1, β1)

∂θ1︸ ︷︷ ︸
(27)

,

∂ρ0,sI1(θ1,β1),sI2(θR,2(1),1)

∂β1
=
∂ρ0,s(X)

∂s1︸ ︷︷ ︸
(26)

|s1=sI1
∂sI1(θ1, β1)

∂β1︸ ︷︷ ︸
(28)

.

A.7.3 Cyber Events at Multiple Targets: A Multivariate Example

We now generalize the idea behind the bivariate example in Section 5.2 to a larger portfolio.
While the qualitative differences to the univariate case regarding cost-sharing can already be
observed in the bivariate case, this portfolio treatment gives an indication of how to generalise
the underlying idea for a specific assumption of dependence through common cyber events.
We use an adapted version of the setting in [Zeller and Scherer, 2021] as follows:

� Existing portfolio: Assume the existing portfolio consists of (N − 1) ≥ 1 homogeneous
companies indexed j ∈ {1, . . . , N − 1}, whose contracts were priced on an individual
basis previously with some risk loading θfix > 0 (and implicitly β = 1). One important
characteristic of each company is its IT security level, denoted here by ℓj ∈ [0, 1], which
encodes the company’s ability to withstand systemic attacks (see below). We assume a
homogeneous level of ℓj = ℓfix ∈ [0, 1), j ∈ {1, . . . , N − 1}, for the existing portfolio.

� Arrival of cyber incidents and events: Cyber incidents at each company stem from
two independent Poisson arrival processes, namely from idiosyncratic incidents (indepen-
dently from other companies) and systemic events (where multiple companies are affected
jointly). We assume that an arrival from a systemic event can affect each company in the
portfolio with equal probability psyst ∈ [0, 1]. Denote the random subset of the portfolio
affected by an event as S ⊆ {1, . . . , N − 1} ∪ {N}. Each event arrival is furthermore
equipped with a mark m ∼ Unif([0, 1]) encoding the strength of the attack, where a
company which is affected by an event suffers a loss iff the strength of the attack exceeds
the company’s security level, i.e. ℓj < m. In summary, for each company one can write
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the number of cyber losses in the period [0, T ] (in the following w.l.o.g. T = 1), denoted
Nj(T ), as the sum of two independent Poisson r.v.s:

Nj(T ) = N idio
j (T ) +N syst

j (T ),

N idio
j (T ) ∼ Poi(λidioj T ),

N syst
j (T ) ∼ Poi(λg T psyst (1− ℓj)),

where λidioj is the arrival rate of idiosyncratic cyber losses and λg is the fixed rate of the
ground process of systemic cyber events.

As an additional company, indexed N , is to be added to the portfolio, the insurer seeks
to price the new contract by choosing (θN , βN). The insurer’s choice will again induce a
choice of service level within insurance, denoted sI(θN , βN), by the buyer, which will in turn
affect his security level, denoted ℓ(sI). Analogously to the bivariate example, we assume the
following:

� Effect of service on IT security level: Initially, i.e. when approaching the insurer,
buyer N has IT security level ℓ0 ∈ [0, 1). By purchasing service at level s ∈ [0,∞), he can
improve his security level according to

ℓ(s) = 1− 1
1

1−ℓ0 + s
,

such that s 7→ ℓ(s) is increasing and concave with ℓ(0) = ℓ0 and lim
s→∞

ℓ(s) = 1.

� Loss probability for individual company: By combining the above assumptions, one
can use the properties of the Poisson distribution to express the loss probability for an
individual company j ∈ {1, . . . , N} as

p(s) = P(Nj(T ) ≥ 1) = 1− P(Nj(T ) = 0) = 1− exp
(
− T

(
λidioj + λg psyst (1− ℓj(s))

))
, (29)

such that again s 7→ p(s) is decreasing.46

� Mitigation of systemic events through warning mechanism: In order to replicate
the mechanism of prevention of systemic events by self-protection described in Remark 20,
we assume the following: the companies affected by each common cyber event are targeted
in a random order over time, represented by a random permutation of S. The first company
which is well-enough protected to withstand the attack furthermore enables the insurer
to trigger a warning mechanism such that the remaining companies in the portfolio can

46Note that, as previously, to ensure convexity of the buyer’s problem, one needs to check that furthermore
the subjective loss probabilities ψ(p(s)) are convex in s. Furthermore, note that for consistency with the
setting of this study we will approximate P(Nj(T ) = 1) ≈ P(Nj(T ) ≥ 1), i.e. we assume that at most one
loss can occur. This is reasonable in practice and for the parameters chosen below, as typically arrival rates
of cyber incidents are very low, such that the probability of multiple losses at one policyholder in a single
year is negligible (and may even be contractually excluded).
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adjust their security in time in order to equally withstand the attack.47 Denote the subset
of the portfolio which is affected by an event after implying the warning mechanism as
S∗(ℓ(s)), where ℓ(s) = (ℓ1, . . . , ℓN−1, ℓN) = (ℓfix, . . . , ℓfix, ℓ(sI)).

� Loss severity: As in the self-protection case study in Appendix A.5, we assume each
loss size to follow a Pareto distribution (with fixed parameters independent of s for a pure
self-protection scenario).

Remark 25 (Effect of warning mechanism on almost homogeneous portfolio). Due to the
homogeneity assumption for the structure of the existing portfolio, one needs to distinguish
only three cases to understand the functionality of the warning mechanism:

(weak attacks) m ≤ ℓfix ≤ ℓ(sI) =⇒ S∗ = ∅,
(medium attacks) ℓfix < m ≤ ℓ(sI) =⇒ S∗ ⊂ S,
(strong attacks) ℓfix ≤ ℓ(sI) < m =⇒ S∗ = S.

In the case of a weak attack, the first affected firm can always withstand the attack and
everyone else can be warned (which is actually unnecessary, as they could also withstand the
attack at their established security level). In the case of a strong attack, every company in
the targeted set suffers a loss and no warning mechanism can be triggered. In the second
(and interesting) case of a medium attack, company N (who is better protected than the
homogeneous rest of the portfolio) can withstand the attack and the subset of companies of S
affected after N in the random permutation can be warned in time (essentially, their security
level is artificially heightened to ℓ(sI) > ℓfix for this attack).

Remark 26 (Insurance Buyer’s Problem). The optimization problem and its solution for
buyer N are analogous to Section 3 and Appendix A.5 with loss probability p(s) as in (29),
as he does not consider a portfolio viewpoint; compare Remark 19.

Remark 27 (Insurer’s Portfolio Loss and Optimization Problem). By the above assumptions,
the insurer’s portfolio loss X is given by

X =
N∑

j=1

(N idio
j (T )∑

i=1

Lidio
i +

Nsyst(T )∑

i=1

1j∈S∗i (ℓ)L
syst
i

)
=:

N∑

j=1

Xj,

where N idio
j (T ) ∼ Poi(λidioj T ), N syst(T ) ∼ Poi(λg T ), and Lidio

i , Lsyst
i ∼ Pareto(x̂, k), i.i.d. ∀i

are independent and S∗i (ℓ) is generated as described above independently for all i. Analo-
gously to Remark 15, the insurer’s problem for ‘sequential’ optimization of contract N is

47It is obvious that spreading out resp. ordering attacks from common events over time is actually more
realistic than assuming strictly simultaneous losses. Admittedly, the specific warning mechanism is only
realistic for certain types of cyber attacks, namely for those that do not immediately “notify” the victim
that the system has been compromised or a loss typically stays undetected for some time. This may e.g.
be the case for most data breaches (where affected companies may need years until they realize a leak) and
malware which lingers or spreads in the system until the attacker uses an opportune moment to cause a
business interruption or make a ransomware demand. In this case, only companies which are well-enough
protected to realize an attack has been attempted can immediately trigger a warning, whereas compromised
victims who do not recognize the breach cannot.

xxvi



given by

min
(θN ,βN )∈[0,θR,N (βN )]×[β,1]

Lseq
0,N (θN , βN ) =ρ0,ℓ(s)(X)− (1 + θN )Eℓ(sI(θN ,βN ))(XN ) + (1− βN )c(sI(θN , βN ))

− (N − 1)(1 + θfix)Eℓfix
(X1),

(30)

where ρ0,ℓ(s)(·) denotes the insurer’s risk measure, dependent on the security levels ℓ(s) of the
portfolio. Note that the last term (premium for the existing portfolio) does not influence the
optimization, but serves to check whether the solution complies with the necessary profitability
condition Lseq

0,N(θ
∗
N , β

∗
N) < 0. If the insurer priced the contract individually, she would solve

min
(θN ,βN )∈[0,θR,N (βN )]×[β,1]

Lind
0,N (θN , βN ) =ρ0,ℓ(sI)(XN )− (1 + θN )Eℓ(sI(θN ,βN ))(XN ) + (1− βN )c(sI(θN , βN )),

(31)

yielding (θ∗N , β
∗
N) = (θR(1), 1); see Section 4 and Appendix A.5.

Example 9. In Figure 10 and Table 5, we report insightful aspects of the insurer’s optimal
solution depending on two variables:

� Figure 10 shows the optimal share of service cost and the resulting portfolio risk measure

for varying psyst, whereby λ
g is adjusted according to λg =

λg0
psyst

for some λg0 > 0 constant.

This means that the overall expected number of cyber losses from systemic events stays
constant, but for larger psyst there are fewer events which affect on average more companies
(as opposed to more events to on average smaller subsets for small psyst).

� Table 5 shows the optimal parameters (θ∗N , β
∗
N) and the resulting service demand sI and

security level ℓ(sI) of company N for different portfolio sizes N as well as the insurer’s
resulting total loss and portfolio risk measure.

It is intuitive from the above construction that the effect of the warning mechanism (and
therefore the benefit from company N having higher security standards) increases with both
psyst (influencing the expected size of the affected subset for each event) and the portfolio size
N . This increases the insurer’s willingness to subsidize service by lowering βN for increasing
psyst or increasing N . Precisely this effect is visible in Panel 10a and Table 5. As before,
with decreasing β∗N , the attainable feasible risk loading θ

∗
N increases (see Table 5). The higher

the subsidy on service cost, the more service company N will purchase within insurance (see
Corollary 2), leading to increased security of company N (and therefore a stronger effect of
the warning mechanism). Furthermore, the difference in the insurer’s portfolio risk between
pricing contract N using a portfolio viewpoint and pricing contract N individually again
increases (see Panel 10b and the lower part of Table 5). This emphasizes the importance
of using a portfolio viewpoint when pricing the additional contract, in particular for large
portfolios or portfolios with strong dependence from systemic events.
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(b) Insurer’s optimal portfolio risk ρ0,ℓ(s)(X).

Figure 10: Aspects of the insurer’s solution in the portfolio case with common cyber events for varying
psyst ∈ [0.05, 0.95] in steps of ∆ = 0.1. The parameters for this example are: portfolio size N = 10, loss

severity parameters x̂ = 1, k = 10, loss probability parameters ℓfix = ℓ0 = 0.2, λidio =
λg
0

1−ℓfix
= 0.05, risk

aversions r0 = 0.7, r1 = 0.6, cost parameters η = 0.5, γ = 2, βo = 1.1. The portfolio loss distribution used to
approximate the insurer’s portfolio risk measure (by numerical integration) is simulated based on 1.000.000
runs.

No insurance
Insurance
(using (31))

Insurance (using (30))

N = 5 N = 10 N = 25 N = 50 N = 100

β∗
N 1.1 1 0.7350 0.4504 0.2076 0.1070 0.0623

θ∗N 0 1.8055 1.8217 1.8566 1.9408 2.0464 2.1562
s∗ 0.0561 0.0971 0.1273 0.1922 0.3501 0.5554 0.7823
ℓ(s∗) 0.2343 0.2577 0.2739 0.3067 0.3750 0.4461 0.5080

Insurer’s Loss
(using (31))

0 – -0.5333 -1.1819 -3.1754 -6.5735 -13.4685

Insurer’s Loss
(using (30))

0 – -0.5338 -1.1875 -3.2226 -6.7477 -13.9697

Portfolio Risk
(using (31))

0 – 1.0157 1.9467 4.6921 9.1921 18.0933

Portfolio Risk
(using (30))

0 – 1.0118 1.9274 4.5883 8.8683 17.2908

Table 5: Aspects of the insurer’s solution in the portfolio case with common cyber events with varying
portfolio size N . All parameters are as in Figure 10 apart from psyst = 0.5 fixed. Due to the (realistically)

small rates λidio =
λg
0

1−ℓfix
= 0.05, the absolute differences of the total loss and portfolio risk measure are

only minor (particularly for small portfolio sizes). Therefore, we additionally report the results for another
set of parameters (higher rate of systemic events) in Table 6. Note that the qualitative observations do not
change, the effects are just more pronounced (as expected).
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No insurance
Insurance
(using (31))

Insurance (using (30))

N = 5 N = 10 N = 25 N = 50 N = 100

β∗
N 1.1 1 0.4766 0.3007 0.1650 0.0919 0.0569

θ∗N 0 0.6079 0.7135 0.8010 0.9807 0.8523 1.4374
s∗ 0.1798 0.2960 0.5275 0.7347 1.0986 1.4475 2.0933
ℓ(s∗) 0.3006 0.3532 0.4374 0.4961 0.5742 0.6293 0.7009

Insurer’s Loss
(using (31))

0 – -2.2468 -5.3134 -14.4852 -29.8766 -60.8180

Insurer’s Loss
(using (30))

0 – -2.2959 -5.4938 -15.2872 -31.9760 -66.4986

Portfolio Risk
(using (31))

0 – 4.0259 7.9876 19.9007 39.6507 78.9922

Portfolio Risk
(using (30))

0 – 3.8815 7.5812 18.5390 36.4532 71.1643

Table 6: Aspects of the insurer’s solution in the portfolio case with common cyber events with varying

portfolio size N . All parameters are as in Table 5 apart from λidio =
λg
0

10(1−ℓfix)
= 0.05, i.e. the ground

process rate of systemic events is increased ten-fold. As this increases the occurrence rate of systemic events,
it yields more pronounced (but qualitatively analogous) results to Table 5. We remark that we purposely
did not choose this as the default example as for higher rates the quality of the approximation in (29) (see
the corresponding footnote) deteriorates.
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B Further Articles

B.1 Is accumulation risk in cyber systematically underestimated? [3]

Summary

This article is motivated by a phenomenon the authors have observed during exchanges with

experts from the cyber insurance industry. “Cyber” has emerged as a novel type of risk and

insurers have started to grasp this new market opportunity by devising cyber insurance solutions

and establishing their cyber portfolios. Thus, actuaries have found themselves confronted with

the challenging task of pricing these new policies and managing the risks from the resulting

(rapidly growing, see, e.g., [15, 105]) portfolios. These are difficult tasks, as cyber risk possesses

many characteristics which inhibit the applicability of standard actuarial approaches, e.g. the

dynamically evolving threat landscape, the presence of strategic threat actors, and the difficulty

of quantifying resulting economic losses, see e.g. [1] and the references therein. The two core

challenges on a portfolio level, however, are the failure of the independence assumption between

claim occurrences (which underlies the foundation of insurance) and the lack of suitable data

on which the chosen models can be calibrated and back-tested.

The purpose of this article is to highlight that the challenge of cyber risk modelling must not

be confined to the isolation of an actuarial department, and that holistic collaboration between

experts along the whole insurance value chain is necessary and may help alleviate the challenges

actuaries face.

The first part of the paper (Section 2) illustrates how the processes of product design, risk

assessment, actuarial modelling, and claims settlement must be purposely designed and inter-

connected. This is the basis for meaningful data collection which enables the calibration and

advancement of actuarial models. In particular, we aim at illustrating that the standard prac-

tice of data collection during claims settlement may be suitable to collect adequate data for

calibrating individual loss distributions (which is sufficient in markets where claims can be as-

sumed independent), but discards valuable information about the dependence between claim

occurrences, which has dangerous implications for risk management.

The next part of the paper (Section 3.1) therefore introduces a purposely simplified version of

the model for cyber incidents proposed in [1], which postulates that dependence between cyber

incidents stems from the exploitation of systemic vulnerabilities (e.g. [29]) which may affect

many companies simultaneously in a common event (a prominent example being the attacks on

Microsoft Exchange Server in 2021, see, e.g., [131]).

To ensure tractability of the model and avoid the curse of dimensionality, we assume that under

a “true” model (M), cyber events (to any non-empty subset of a portfolio ofK ∈ N homogeneous

companies) arrive according to independent, homogeneous Poisson processes, where the Poisson

arrival rate only depends on the size of the subset (exchangeability). For an insurer, this would

imply the necessity to estimate the vector of arrival rates λ := (λ|I|=1, . . . , λ|I|=K), where λ|I|=k
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denotes the arrival rate of events affecting any subset of size k ∈ {1, . . . ,K}. As the maximum

likelihood estimator of the rate of a homogeneous Poisson process is given by the sample mean

over the observation period (see, e.g., [46]), an insurer would use the mean total number of

observed events affecting precisely k companies based on the available data (i.e. settled claims

from observed policy years) to obtain each estimator λ̂|I|=k. However, as outlined above, as

information about common events is not fully analyzed or even discarded, this available data

may unfortunately not truthfully represent model (M), but rather a corresponding model with

(partially) missing information, denoted (M̃). We assume that, independently for each common

event and for each company, the probability of an incident at this company being (in retrospect)

correctly identified as belonging to the common event is given by p ∈ [0, 1]. Mathematically,

this corresponds to thinning and superposition (see, e.g., [46]) of the Poisson arrival processes in

model (M) according to weights connected to a Binomial distribution, leading to a new vector

of homogeneous Poisson arrival rates λ̃ in model (M̃). Thus, to quantify the consequences of

missing information about common events, Section 3.2 compares quantities of interest between

models (M) and (M̃).

We first show that the marginal arrival rate (and therefore marginal loss distribution) for each

company does not change when passing from (M) to (M̃). This is meaningful for pricing,

which is usually based on the marginal distribution only. In contrast, quantities of interest for

portfolio risk measurement do change, which we show first by calculating the corresponding λ̃

for a given vector of rates λ and using the Panjer recursion algorithm (based on [112]) to derive

the compound distribution of the total incident number in the portfolio over a policy year.

This allows to compare the common Value-at-Risk measure at different levels and for different

probabilities p, corroborating the intuition that high quantiles of the compound distribution are

systematically lowered by missing information about common events, and that this phenomenon

becomes more severe the lower the probability of correctly identifying the extent of common

events.

We more generally use the connection between increasing convex order (≥icx) and ordering

of coherent risk measures ([22]) to show that Expected Shortfall at any level (and any other

coherent risk measure) of the total incident number in the portfolio will decrease in model

(M̃) compared to model (M). We use that (M) resp. (M̃) correspond to collective risk models

with equal expected claims amount and relatively few, large losses resp. relatively many, small

losses, and provide an elementary proof that the former is larger (“more risky”) in the sense

of ≥icx. We furthermore use the structure of the exchangeable model, i.e. the fact that first

arrival times (τ1, . . . , τK) of cyber incidents follow an exchangeable Marshall-Olkin distribution

(see [98]) and that therefore bivariate survival copulas of any (τi, τj) are Cuadras–Augé copulas

with known upper tail dependence coefficient, to compare the instantaneous joint loss arrival

rates for any two companies under models (M) and (M̃). We show that the joint loss arrival

rate is underestimated by a factor of p2 in model (M̃), which intuitively corresponds to the

probability of independently not overlooking a joint event in two companies.

We conclude by highlighting the urgent practical implications of this study for insurers.
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This article contributes to the interface of cyber insurance research and practice by using a

tractable mathematical model, which despite its simplicity still captures the essence of depen-

dence between cyber incidents, to illustrate the urgent practical necessity of creating holistic

cyber underwriting processes, by showing the otherwise potentially detrimental effects on port-

folio risk measurement.

Individual contributions

I am the main author of this article. The idea of investigating this topic and a sketch of the
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regular discussions. I was responsible for the writing of the manuscript (the whole first draft
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Abstract

Many insurers have started to underwrite cyber in recent years. In parallel, they
developed their first actuarial models to cope with this new type of risk. On the port-
folio level, two major challenges hereby are the adequate modelling of the dependence
structure among cyber losses and the lack of suitable data based on which the model
is calibrated. The purpose of this article is to highlight the importance of taking a
holistic approach to cyber. In particular, we argue that actuarial modelling should
not be viewed stand-alone, but rather as an integral part of an interconnected value
chain with other processes such as cyber-risk assessment and cyber-claims settlement.
We illustrate that otherwise, i.e. if these data-collection processes are not aligned with
the actuarial (dependence) model, näıve data collection necessarily leads to a danger-
ous underestimation of accumulation risk. We illustrate the detrimental effects on the
assessment of the dependence structure and portfolio risk by using a simple mathe-
matical model for dependence through common vulnerabilities. The study concludes
by highlighting the practical implications for insurers.
text

Keywords: Cyber Risk; Cyber Insurance; Accumulation Risk; Poisson process.

1 Introduction

Cyber insurance still is a relatively new, but steadily expanding market.1 Insurers who have
recently entered the market and started to establish their cyber portfolios, exploiting the on-
going growth in demand, are becoming increasingly aware of the challenges associated with
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1In 2015, the global market size was estimated at approximately $2 billion in premium, with US business
accounting for around 90%. A rapid market growth was projected, with total premium reaching $20+ billion
by 2025 ([7]). This estimate currently still seems within reach, with a global market size of around $7 billion
in 2020 ([26]).
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insuring cyber risk. These include the dynamically evolving threat landscape, interdepen-
dence of risks, heavy-tailed loss severities, and scarcity of reliable data to calibrate (nascent)
actuarial models. Particularly the last point is repeated like a mantra; and indeed, while
there are growing databases on cyber incidents and their consequences2, they often do not
contain the information necessary for the various tasks of an actuary. In fact, the best data
source which can be adjusted to contain all details to calibrate an insurer’s individual model
is the insurer’s own claims-settlement department. While an increasing number of claims in
cyber insurance strain insurers’ profitability margins, from the statistical point of view they
should be welcomed as the detailed and reliable data whose lack is so frequently lamented.
To make full use of the data collected in-house, however, the processes and systems around
the underwriting of a cyber portfolio need to be aligned using a holistic approach, where
risk assessment, product design, actuarial modelling, and claims settlement are treated as
complementary activities interconnected by feedback loops.

In this article, we aim at illustrating the importance for insurers of using the current
moment – namely when starting to underwrite cyber risk – to contemplate and establish
data-collection processes in risk assessment and claims settlement which allow them to ac-
tually use the collected data to calibrate and refine their actuarial models continuously.
Sections 2.1 and 2.2, respectively, address the cyber insurance value chain in detail to il-
lustrate the above mentioned interconnections and to introduce one particular approach to
modelling dependence in cyber, namely via common vulnerabilities.
In Section 3 we introduce a (purposely simplified) mathematical model capturing such a
dependence structure to illustrate that straightforward, näıve data collection necessarily
leads to accumulation risk being systematically underestimated, both in the statistical and
colloquial sense. We show that while this does not necessarily imply erroneous pricing of
individual contracts, it may lead to a dangerous underestimation of dependence and port-
folio risk. This is illustrated by comparing the common risk measures Value-at-Risk and
Expected Shortfall for the total incident number in the portfolio as well as the joint loss
arrival rate for any two companies in the portfolio.
Section 4 concludes and highlights the practical implications of this study for insurers.

2 Two Challenges for Cyber Insurance

2.1 A holistic approach to cyber-insurance underwriting

In recent years, various academic papers and numerous empirical studies have been devoted
to proposing stochastic models for cyber risk.3 Likewise, the establishment of cyber insurance
as a new business line has occupied many insurers and industry subsidiaries such as brokers,
see e.g. [6]. Whenever a new insurance line is introduced, the central tasks for actuaries
will be technical pricing of the to-be-insured risks and risk management of the resulting

2See e.g. PRC [1] for a publicly available dataset on data breaches and e.g. the commercial providers
Advisen [2] and SAS for more specialized datasets.

3For example, game-theoretic models based on a highly stylised understanding of the IT landscape ([17,
35]) or analyses of publicly available cyber loss data to propose frequency and severity distributions ([14, 15]),
to name opposite ends of the modelling spectrum.
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portfolio (or more precisely in cyber, risk management of an established portfolio, which
now additionally contains risks from cyber policies). Underwriting and pricing risks can be
done based on expert judgement for each risk individually4 or – more commonly – based on
a chosen mathematical model. In other words, actuaries have to devise an answer to the
question: “How (do we choose) to model cyber risk?” Equally important, however, and often
overlooked by academic papers, is the observation that it is not reasonable for actuaries to
come up with a (no matter how accurate) answer to the above question in the isolation of an
actuarial department. Instead, the chosen mathematical model needs to be simultaneously
based on and itself be the basis of the business processes surrounding actuarial modelling
along the entire economic insurance value chain. The development, calibration, and back-
testing of an actuarial model are only sensible if they are based on information and data from
risk assessment, product design, and claims settlement, as detailed below and illustrated in
Figure 1.

� Product design: Before even starting to devise an actuarial model, a clear-cut definition
and taxonomy of cyber risk(s) needs to be established in order to determine which aspects
of cyber are deemed insurable (anything else should be excluded from the coverage by
contract design) and which coverage components a cyber insurance policy should consist of.
This product design process naturally needs to be revised regularly with the involvement
of legal and market experts, as the cyber threat landscape as well as prospective clients’
coverage needs evolve dynamically.

� Risk assessment: The risk-assessment process serves to elicit information deemed rele-
vant to estimate a prospective policyholder’s susceptibility to cyber risk. For cyber insur-
ance, this process should naturally include an assessment of the client’s IT infrastructure
and existing cyber-security provisions. For an accurate assessment of such technical sys-
tems, cooperation with IT security experts is indispensable. However, how to adequately
include extensive qualitative knowledge about an IT system’s vulnerabilities and security
into a stochastic model is a complex, unresolved issue in itself. Nevertheless, the questions
asked and information gathered from prospective policyholders during the risk-assessment
process should depend on the actuarial model that is subsequently used for pricing of
individual contracts and risk management of the cyber portfolio.

� Actuarial modelling: The actuarial modelling step aims at developing a stochastic
model which allows an estimation of the distribution of each policy’s and the overall
portfolio’s loss from cyber risk. This serves as the basis for (technical) pricing and risk
management. The model should be calibrated – and ideally back-tested – using adequate
data (once available) and expert judgement. In summary, the choice of stochastic model
depends on product design (which types of cyber losses are to be modelled) and in order to
calibrate and develop it further, adequate data must be gathered through risk assessment
and claims settlement.

� Claims settlement: Claims settlement deals with incoming claims from cyber losses in
existing policies. In practice, this task is often treated completely disjoint from the above-
mentioned processes (except product design), and typically conducted by legal experts

4This is indeed common e.g. for very large risks in industrial lines.
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whose main concern is to understand the intricacies of each individual claim well enough
to judge whether and to which extent it is covered by the components of the policy. The
manner of data collection and storage is mostly dictated by legal (and efficiency) concerns.
For cyber it is relevant to stress that technical expertise cannot be expected in a classical
claims-settlement department. However, this is a crucial shortcoming: The information
that needs to be collected in order to make claims data usable for model calibration
is dictated by the choice of model. Vice versa, additional information collected may
uncover flaws or omissions of the actuarial model and support its continuing development.
Therefore, it is important to collect historical claims information with the underlying
actuarial model in mind. In cyber, it is well-established consensus that any actuarial
model needs to take dependence between cyber losses into account. The exact choice of
dependence model is of course an insurer’s individual decision5, but it is clear that if one
strives to calibrate such a model based on data, the model choice needs to be reflected in
the data-collection process from the insurer’s own claims experience.

Depending on the reader’s own practical experience, interconnection of the above pro-
cesses and cooperation between all stakeholders may sound like a utopia or a matter of course.
We agree that for established business lines, either may be the case, depending on whether
systems and processes were set up and continuously monitored intentionally or rather were
allowed to grow historically. It is clear that as cyber insurance is just being established, now
is the moment to intentionally set up this value chain in a way that enables insurers to cope
with the dynamic challenges of this new and continuously evolving risk type in the future.

2.2 Dependence in cyber via common vulnerabilities

It is uncontested that a core actuarial challenge in cyber risk is the failure of the indepen-
dence assumption between claim occurrences, which underlies the diversification principle
in insurance. Due to increasing interconnectivity, businesses, systems, and supply chains
become ever more dependent on functional IT infrastructure and crucially, more interde-
pendent. Therefore, including the modelling of dependence in an actuarial model for cyber
risk is indispensable. The actuarial literature discusses several approaches for this, most
commonly using epidemic spreading on networks / graphs (e.g. [17, 35]), based on (marked
/ self- or cross-exciting) point processes (e.g. [10, 28, 36]), or employing copula approaches
(e.g. [20, 24, 29]).
Regardless of the concrete modelling approach, dependence between cyber losses is worrisome
for insurers as it may entail accumulation risk, which can be defined e.g. as the

risk of large aggregate losses from a single event or peril due to the concentration
of insured risk exposed to that single event or peril.6

Of course, accumulation risk as a concern is not limited to cyber insurance; other lines of
business typically confronted with exposure concentrated to a single event are lines subject

5We will advocate for modelling common vulnerabilities as the source of dependence in cyber in the
coming sections, but the exact choice of dependence modelling is irrelevant for this argument.

6Compare the definition of risk exposure accumulation by Casualty Actuarial Society (https://
www.casact.org/).
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Figure 1: The diagram illustrates the interconnections between different tasks in a holistic insur-
ance value chain. While actuaries are typically mainly involved in risk assessment and actuarial
modelling, there are crucial connections to other areas which must not be overlooked. In particular,
the necessity to create awareness that meaningful data, which can (and should) be tailored to the
chosen acturial model, is being collected daily in the claims-settlement department (usually by a
completely disjoint group of experts, who do not have actuarial modelling aspects on their agenda
of primary concerns) should be emphasized.

to natural catastrophes7 or marine insurance (see e.g. [4]).

Following the classical decomposition of risk into a combination of threat, vulnerability,
and impact (see e.g. [23]), a cyber threat only manifests itself as an incident (with potential
monetary impact) if there is a corresponding vulnerability in the target system. Therefore,
we postulate that any cyber incident is caused by the exploitation of a vulnerability in
the company’s system, where it can be distinguished between symptomatic and systemic8

vulnerabilities (see [12, 11]), the former affecting a single company while the latter affect
multiple companies simultaneously. Commonly cited examples of systemic vulnerabilities
are the usage of the same operating system, cloud service provider, or payment system,
affiliation with the same industry sector, or dependence on the same supplier.

Example 1. We give two recent examples of common vulnerabilities which prominently
exposed many companies to a cyber threat simultaneously. The following information and
more technical details on both examples can be found in the report [33]. These examples serve
to illustrate that in some cases, it might be quite obvious for an insurer to determine from
incoming claims data that several cyber claims are rooted in the same common vulnerability,

7For example, Hurricane Katrina has been named as the most expensive event ever to the insurance
industry world-wide, see [3].

8We remark that some authors (see the recent survey paper [9]) employ a slightly diverging nomencla-
ture: They denote dependency of cyber risks from common vulnerabilities as systematic risk and, in turn,
understand systemic risk to mean cyber risk due to contagion effects in interconnected networks.
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whereas in other cases this is very difficult to detect.

� Microsoft Exchange: In the first quarter of 2021, threat actors exploited four zero-day
vulnerabilities in Microsoft Exchange Server. The attacks drew widespread media atten-
tion due to the high number of affected companies (estimates of 60.000 victims globally, see
[34]) within a short time frame, enabled by the ubiquitous use and accessibility of Exchange
Servers at organizations world-wide and by their ability to be chained with other vulnera-
bilities. Due to the massive media coverage, leading to high awareness among companies,
and the relatively clear time frame (the attacks had begun in January and were rampant
during the first quarter of 2021), it was relatively easy for insurers to identify whether
incoming cyber claims during (or slightly after) this time frame were rooted in one of the
Microsoft Exchange vulnerabilities.

� Print Spooler / Print Nightmare: In the third quarter of 2021, several zero-day
vulnerabilities were disclosed in Windows Print Spooler, another widely used service in
Windows environments. As mentioned in [33], the same service was already exploited in
2010 in the so-called Stuxnet attacks. Stuxnet was a malicious worm consisting of a lay-
ered attack, where Windows systems were infected first (through zero-day vulnerabilities),
but not the eventual target; i.e. the infection would have usually stayed undetected in the
Windows system and seeked to propagate to certain (Siemens) PLCs (see, e.g., [18, 32]).
These 2010 attacks were not immediately connected to an insurance context. However,
if an analogous mechanism (e.g. through the recent Print Spooler vulnerabilities) were
to cause cyber insurance claims, it would certainly be hard to attribute all claims to the
same common vulnerability for two reasons: First, the eventual target system where the
(economic) impact is caused differs from the system affected by the common vulnerability
and second, the time frame is much less clear than in the previous example, as the delay
between exploitation of the vulnerability and economic impact is somewhat arbitrary.

In any case, in order to calibrate a model that uses common vulnerabilities as the source
of dependence, an insurer needs to collect at least some information about the root cause
for each claim to be able to estimate the dependence structure correctly. We now give a
very general overview of how information on common vulnerabilities would be reflected in
the insurer’s risk modelling process, before introducing a more concrete, slightly simplified
mathematical model in Section 3.

2.3 Notation

Assume that an insurer’s portfolio consists of K ∈ N companies. From the viewpoint of
each company, indexed i ∈ {1, . . . , K}, cyber incidents arrive according to a simple point

process with corresponding counting process (N (i)(t))t≥0 =
(
|{k ∈ N : t

(i)
k ∈ [0, t]}|

)
t≥0

, in

the simplest case a homogeneous Poisson process with rate λi > 0. This rate may differ
between companies (i.e. some are assumed to be more frequently affected than others) and
the main focus of cyber risk assessment (e.g. via a questionnaire, see [19] for a blueprint, or
a more extensive audit for larger risks) is to gather information about characteristics which
are considered relevant to determine a prospective policyholder’s rate (classical covariates
are e.g. company size, type and amount of data stored, types of business activities, see e.g.

6

Electronic copy available at: https://ssrn.com/abstract=4353098



[15, 30, 31]).
As the λi are naturally unknown, the insurer usually estimates them given past claims ex-
perience of similar policyholders (depending on the portfolio size, more or less homogeneous
groups would be considered similar). The overall arrival of incoming incidents to com-
pany i is actually composed of several (assumed independent and Poisson) arrival processes
(from idiosyncratic incidents and common events), i.e. the overall Poisson rate for company
i ∈ {1, . . . , K} decomposes into

λi = λi,idio +
∑

s∈S∗
i

λs,syst > 0, (1)

where λi,idio ≥ 0 is the rate of idiosyncratic incidents arriving to company i, possibly modelled
as some function of the covariates9, S∗i ⊆ {1, . . . , S} is the subset of S known systemic risk
factors (any common factor through which multiple companies in the portfolio could be
affected simultaneously) present at company i and λs,syst ≥ 0 is the overall occurrence rate
of an event due to exploitation of systemic risk factor s ∈ {1, . . . , S}. In this modelling step,
several “pitfalls” could occur:

(1) If questions about relevant covariates are omitted during risk assessment (i.e. because
their influence on the frequency of cyber incidents is unknown), this may introduce a bias
when estimating λi,idio (in either direction, i.e. over-/underestimation depending on the
covariates).

(2) If certain systemic risk factors are unknown and therefore not inquired about during risk
assessment (e.g. no question about the choice of operating system or cloud service provider)
for some or all companies, a systematic underestimation of the true rates is introduced,
as the set S, resp. subsets S∗i , do not contain all possible events.

The errors (1) and (2) should be mitigated by refining risk assessment procedures contin-
uously based on expert input and evaluation of claims data. This leads to the main point
of inquiry in this article: Given (correct) assumptions about covariates and systemic risk
factors, the goal is to enable the insurer to estimate the corresponding rates, both idiosyn-
cratic and systemic, using historical claims data. As the insurer monitors incoming claims
over a policy year [0, T ], where typically T = 1, in addition to client-related data and basic
claims-related data, usually a description of the incident (i.e. the order of occurrences that
lead to a monetary loss) is provided by the client. This is unstructured data, and depend-
ing on the case could e.g. be given in the form of a phone conversation or e-mail report
to an insurance agent or via a scanned PDF containing a report of an IT forensics expert.
This information is typically reviewed by the insurance agent in order to decide whether
the claim is covered, but may not or only in abbreviated form be entered into the insurer’s
claims database. This means that information allowing claims to be identified as stemming
from the same systemic vulnerability is often not available or (fully or partly) discarded. In
the following, we illustrate the detrimental effect of this omission of information about the
extent of systemic events on the estimation of dependence and portfolio risk.

9For example, fitting a standard GLM or GAM here would be common practice.
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3 Mathematical model

To quantify the effect we have introduced and discussed on a qualitative level in Section 2,
we now construct a simple mathematical model which captures common events (‘shocks’)
and allows to analyze the effect of underestimating the extent of joint events.

3.1 An exchangeable portfolio model and the modelling of missing
information

We assume that the insurer’s portfolio consists of K ∈ N homogeneous companies and let
∅ ⊂ I ⊆ {1, . . . , K} denote a non-empty subset of the portfolio affected by a common event.
Assume that cyber events (to any set I) arrive according to independent, homogeneous
Poisson processes. In theory, each subset I could potentially have a different arrival rate of
common events, leading to the prohibitive complexity of needing to estimate 2K − 1 rates.
To avoid the curse of dimensionality, we make the following assumption.

Assumption 1 (Exchangeability: Equal rates for subsets of equal size). Assume that arrival
rates only depend on the number of companies in the subset, i.e. the insurer aims at esti-
mating a vector of K arrival rates λ := (λ|I|=1, . . . , λ|I|=K), where λ|I|=k denotes the arrival
rate of events affecting any subset of size k ∈ {1, . . . , K}.

We denote as model (M) the model given these ‘true’ rates λ.10 Assumption 1 leads to
homogeneous marginal arrival rates λi, i ∈ {1, . . . , K}, for each company of

λi =
K∑

k=1

λ|I|=k

(
K
k

)
(
K − 1

k − 1

)
=

K∑

k=1

k

K
λ|I|=k =

λ|I|=1

K︸ ︷︷ ︸
idiosyncratic incidents

+
K∑

k=2

k

K
λ|I|=k.

︸ ︷︷ ︸
incidents from common events

(2)

Note that (2) is a simplified formalisation of (1).
It is well-known that the maximum likelihood estimator of the rate of a homogeneous Poisson
process is given by the sample mean (see e.g. [13]) over the observation period, i.e. in our
case each estimator λ̂|I|=k is given by the mean total number of observed events affecting
precisely k companies11, i.e. for L > 0 observed policy years

λ̂|I|=k =
1

L

L∑

ℓ=1

n̂
|I|=k
ℓ ,

10Note that model (M) describes a setting where the first claim-arrival times, denoted τ = (τ1, . . . , τK) ,
of the companies in the portfolio follow an exchangeable Marshall-Olkin distribution, see [22], p. 122ff. Note
that in contrast to [22], we denote by λ|I|=k the arrival rate of the Poisson process that is essentially the
superimposed process of all arrival processes to subsets of size k, i.e. the rate for every particular subset of

size k would be (independently of the subset) given by λk := λ|I|=k

(Kk)
. For example, for k = 1, λ|I|=1 describes

the overall rate of events affecting one single firm. As the model is exchangeable, each firm is equally likely
to be affected by such an event, i.e. from the viewpoint of each of the K firms, these events arrive with rate

λ1 = λ|I|=1

K .
11For simplicity, we assume policy years of length T = 1, during which the portfolio does not change.
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where n̂
|I|=k
ℓ is the number of observed events to subsets of size k during policy year (or

simulation run) ℓ ∈ {1, . . . , L}.
Assumption 2 (Missing information on common events). Assume that, independently for
each common event to a subset of any size |I| ≥ 2 and independently for each company in
the subset, i.e. i ∈ I, the probability that the arrival at this company is correctly identified as
belonging to the common event (affecting all companies in I) is given by p ∈ [0, 1].12

Example 2. To illustrate Assumption 2, consider the following situation: A vulnerability in
a commonly used software could be exploited, leading to hackers gaining access to confidential
data which allowed them to defraud several companies throughout the policy year. After the
policy year, when historical claims data is analyzed, all incidents in the database are first
considered independent. Those incidents where detailed information is available, in this case
that the original cause of the loss was the exploit of the common vulnerability, are then
identified as belonging to a common event. If originally five companies were affected in this
way, but only for three of them the required information was available, instead of (correctly)
counting one observed event on a subset of five companies (contribution to the estimator

λ̂|I|=5), the insurer would (incorrectly) count one event on a subset of three companies and

two independent incidents (contribution to the estimators λ̂|I|=3 and twice to λ̂|I|=1).

Mathematically, Assumption 2 means that the Poisson arrival processes to subsets of size
|I| = k ≥ 2 are subject to thinning (with probability (1− pk)) and superposition of (K − k)
other Poisson arrival processes.

Definition 1 (Model (M̃) - missing information). Assumption 2 leads to a different model,

denoted (M̃), with Poisson arrival rates denoted λ̃ := (λ̃|I|=1, . . . , λ̃|I|=K) given by

λ̃|I|=1 = λ|I|=1 +
K∑

i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)
+

max(i−1,2)∑

j=2

(i− j)fBin(j; i, p)
]
, (3)

λ̃|I|=k =
K∑

i=k

λ|I|=ifBin(k; i, p), k ∈ {2, . . . , K}, (4)

where fBin(k; i, p) =
(
i
k

)
pk(1− p)i−k is the p.m.f. of a Binomial distribution.

Remark 1 (Interpretation of the rates λ̃). The rates λ̃ can be interpreted as follows:

� For k = K, the rate in the model with missing information is given by

λ̃|I|=K = λ|I|=KfBin(K;K, p) = λ|I|=KpK ,

i.e. the original rate thinned by the probability that all (of the K independently investigated)

incidents are identified correctly. Note that for p ∈ [0, 1), λ̃|I|=K < λ|I|=K, i.e. the rate of
events that jointly affect the whole portfolio is obviously lowered.

12A straightforward generalisation would be to assume different detection probabilities for different event
sizes, i.e. a vector p := (p|I|=2, . . . , p|I|=K). Intuitively, this may e.g. be used to represent the assumption
that incidents from larger events are more likely to be detected, as such events are often subject to public
coverage (see e.g. the Microsoft Exchange example above) and therefore insurers may already be alert to
check if recorded claims belong to this same root cause.
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� For 1 < k < K, the rate in the model with missing information is given by the sum of
the original rate for i = k thinned by the probability of classifying all k incidents correctly
(summand for i = k) and the rates resulting from the probabilities of misclassifying events
to more than k firms incorrectly such that they are counted as events to k firms (summands

for i > k); compare Example 2. λ̃|I|=k can thus be higher or lower than λ|I|=k, depending
on λ and p. However, in general, the cumulative rate of ‘small’ events (i.e. all events up
to any size k) does not decrease, i.e.

k∑

i=1

λ̃|I|=i ≥
k∑

i=1

λ|I|=i, ∀k ∈ {1, . . . , K}.

� The rate for idiosyncratic incidents in model (M̃) is given by the sum of the original rate
(these incidents are never “misclassified”) and all the “fallout” from classifying common
events incorrectly: If for an event to a subset of size i, none or only one of the firms
are classified correctly, all i incidents will be counted as idiosyncratic (first part in square
bracket in (3)); if j ≥ 2 firms are attributed correctly, the remaining i − j are classified
as idiosyncratic (second part in square bracket in (3)). Therefore, for p ∈ [0, 1), it holds

λ̃|I|=1 > λ|I|=1, i.e. the rate of idiosyncratic incidents is increased.

Lemma 1 (Marginal rates remain unchanged). The marginal arrival rates for each company

stay unchanged between model (M) and model (M̃), i.e.

λ̃i = λi =
K∑

k=1

k

K
λ|I|=k, i ∈ {1, . . . , K}.

Proof. Intuitively, the statement is clear, as an incorrect (non-)identification of common
events does not lead to missing a claim, but to wrongly attributing its cause. A formal proof
is given in Appendix A.

The interpretation of Lemma 1 is of high practical relevance: For pricing of (cyber)
insurance policies, usually only the individual loss distribution of a company is taken into
account. As the marginal arrival rates stay unchanged, prices for all individual insurance
contracts would stay unchanged (i.e. ‘correct’) between models (M) and (M̃). This means
that omitting information about common events would not lead to mispricing of individual
policies. This identity of marginal rates is dangerous, as the crucial oversight of underesti-
mating the extent of common events would not be evident as affecting (average) profitability,
but only in a (worst-case) scenario that an unexpectedly large loss (exceeding the estimated

risk measure, typically Value-at-Risk, which may be much smaller in model (M̃) than the
actual one in model (M), see next section) manifests.

3.2 Implications for dependence- and risk-measurement

Portfolio Value-at-Risk

Despite the marginal rates staying unchanged when moving from (M) to (M̃), see Lemma 1,
omitting information about common events may have dangerous implications for risk man-
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agement. We first illustrate how it may lead to an underestimation of portfolio risk, measured
e.g. by Value-at-Risk, denoted VaR1−γ, of the total incident number in the portfolio in a
policy year.13 VaR1−γ for a r.v. X in an actuarial context (where positive values denote
losses) is defined as

VaR1−γ(X) = inf
{
x ∈ R : P(X ≤ x) ≥ 1− γ

}
, γ ∈ (0, 1). (5)

Note that the overall incident number in a portfolio of size K follows a compound Poisson
distribution, i.e.

S(T ) :=

N(T )∑

i=1

Zi, where N(T ) ∼ Poi
(
T

K∑

k=1

λ|I|=k
)
,

{Zi}i∈N i.i.d. with P(Zi = k) =
λ|I|=k

∑K
k=1 λ

|I|=k
, ∀k ∈ {1, . . . , K}.

The rate
(∑K

k=1 λ
|I|=k

)
corresponds to the overall Poisson arrival rate of events (of any

size), and {Zi}i∈N correspond to the associated “jump sizes” of the total incident number,
i.e. the number of companies affected in the ith event. Therefore, we can use the Panjer
recursion formula (based on [27]) to compute the probability mass function (p.m.f.) and
corresponding cumulative distribution function (c.d.f.) and Value-at-Risk (as in Equation

(5)) of the total incident number in a policy year under models (M) and (M̃) for chosen λ
and p ∈ [0, 1]. We choose an exemplary set of rates for a portfolio of size K = 10 as given

in Table 1, where λ again denotes the rates of an original model (M) and λ̃ the rates of the

corresponding model (M̃) resulting from Assumption 2.
Figure 2a displays the p.m.f. under model (M) and highlights the comparison of VaR0.995

for p = 1 (full information, i.e. original rates), p = 0.5 (partial information about common
events, compare Table 2), and p = 0 (no information about common events, i.e. complete
independence assumption). Figure 2b compares VaR1−γ for (1 − γ) ∈ {0.95, 0.995} and

p ∈ [0, 1], based on the c.d.f. of total incident numbers under the rates λ and λ̃. This small
example already highlights the importance of gathering (full!) information about the origins
of cyber incidents, as otherwise the portfolio risk will be drastically underestimated.
Finally, let us mention an observation that can be made by considering the p.m.f. (and
corresponding c.d.f.) for different p ∈ [0, 1], as exemplarily depicted in Figure 3: When

moving from (M) to (M̃), no events / incidents are missed completely, thus the c.d.f.s of the
total incident number in the portfolio are not ordered in the sense of usual stochastic order,
i.e. it does not hold that for all x ≥ 0 : FS

M̃
(T )(x) ≥ FSM (T )(x), where SM(T ) (resp. SM̃(T ))

denotes the total incident number under model (M) (resp. (M̃)).
We have observed, however, from the results illustrated in Table 2 and Figure 2, that this
ordering of c.d.f.s does hold for certain large values of x. Figure 3b shows that indeed it holds
exactly for large values of x, more precisely x > x0 for some x0 ≥ 0, i.e. the so-called single-
crossing condition or cut-off criterion (see e.g. [25]) is fulfilled here. This is meaningful as

13For the sake of simplicity, we only consider incident numbers here, as of course the results would not
be qualitatively different if for an insurance application, one were to equip each incident with a (random)
monetary loss size.
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Model p |I| = 1 |I| = 2 |I| = 3 |I| = 4 |I| = 5 |I| = 6 |I| = 7 |I| = 8 |I| = 9 |I| = 10

(M) 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(M̃) 0.5 29.49 1.93 1.77 1.45 1.00 0.55 0.23 0.07 0.01 0.0010

(M̃) 0 55.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Original rates and resulting rates for p = 0.5 (i.e. for each event affecting a subset of at least
two firms jointly, the incident at each firm is attributed correctly to this event with probability
p = 0.5 and otherwise incorrectly seen as independent as a result of not being able to identify
the common root cause) and p = 0. By partially omitting information about common events, the
resulting idiosyncratic rates are much increased, rates of smaller common events (here up to |I| = 4)
are also increased, whereas rates of larger common events (here from |I| = 6 on) are lowered.

Model p λi (i ∈ {1, . . . ,K}) E[S(T )] VaR0.95(S(T )) VaR0.99(S(T )) VaR0.995(S(T ))

(M) 1 5.5 55 90 107 113

(M̃) 0.5 5.5 55 76 86 90

(M̃) 0 5.5 55 68 74 76

Table 2: Resulting marginal rates (homogeneous for all companies), expected total incident num-
bers, and risk measures VaR1−γ(S(T )) at three levels for p ∈ {0, 0.5, 1} and T = 1. Crucially,
marginal rates and thus expected incident numbers E[S(T )] do not change (by Lemma 1 and lin-
earity), while VaR1−γ(S(T )) at all chosen levels is systematically lowered when common event
information is partly or fully disregarded.

it is a sufficient condition for another (weaker) type of stochastic order, so-called increasing
convex order, which has an important connection to the class of coherent risk measures; this
will be addressed more generally in a subsequent section.

Quantifying dependence by joint loss arrival rate

From a practical viewpoint, the illustrations of the last section already emphasize the detri-
mental effects of missing information about common events. Theoretically, there are different
quantities one might use to assess the extent of “missed / overlooked dependence” in model

(M̃) compared to the true model (M). From a risk management perspective, it is clear that
simultaneous losses by multiple policyholders carry potentially greater risk than independent,
diversifiable losses. Therefore, one might look at the instantaneous rate of two policyholders
i, j ∈ {1, . . . , K}, i ̸= j, simultaneously experiencing a cyber claim.14 As arrivals of cyber
incidents to policyholder i ∈ {1, . . . , K} follow a Poisson process with rate λi (see (2)), the
first arrival time, denoted τi, follows an exponential distribution and for small T > 0 it holds
by a first-order Taylor expansion

P(τi ≤ T ) = 1− e−λ
iT ≈ 1− (1− λiT ) = λiT ⇐⇒ 1

T
≈ λi

P(τi ≤ T )
.

14As we are assuming an exchangeable model, w.l.o.g. i = 1, j = 2.
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Figure 2: Panel 2a shows the p.m.f. of the total incident number for parameters as in Table 1 and
again T = 1. The solid vertical line depicts the corresponding VaR0.995 if full information about
common events is available (p = 1), i.e. all incidents are classified correctly. The dashed lines depict
analogously VaR0.995 for partial information (p = 0.5, i.e. for each event on average half of the
resulting incidents are attributed correctly), and no information (p = 0, i.e. all incidents regarded
as idiosyncratic) about common events. In both latter cases, the true risk is clearly underestimated
(compare VaR0.995 for p = 0 with the ‘true’ underlying distribution!). Panel 2b shows VaR· for
(1− γ) ∈ {0.95, 0.995} and p ∈ [0, 1] (in steps of ∆ = 0.01), based on underlying rates λ and λ̃. As
expected, the lower the probability p of correctly identifying a common root cause, the more severe
is the resulting underestimation of the risk.

This implies for the instantaneous joint loss arrival rate

lim
T↘0

P(τi ≤ T, τj ≤ T )

T
≈ lim
T↘0

λiP(τi ≤ T, τj ≤ T )

P(τi ≤ T )
= λi lim

T↘0
P(τj ≤ T | τi ≤ T ) = λi LTDC , (6)

where τi, τj are the first arrival times of a cyber claim to policyholders i and j, respectively,
and LTDC denotes the lower tail dependence coefficient of the bivariate copula C of (τi, τj).
We know (see [22], p. 122ff) that by Assumption 1 the survival copula of the random vector of
allK first claim-arrival times, (τ1, . . . , τK), is an exchangeable Marshall–Olkin (eMO) survival
copula, and its two-margins (i.e. the survival copula of (τi, τj)) are bivariate Cuadras–Augé
copulas with parameter α given by15:

α = 1−

∑K−1
i=1

(
K−2
i−1
)

1

(Ki )
λ|I|=i

∑K
i=1

(
K−1
i−1
)

1

(Ki )
λ|I|=i

= 1−
∑K−1

i=1

(
K−2
i−1
)
λi∑K

i=1

(
K−1
i−1
)
λi
. (7)

From (7), some interpretation of α is immediately visible:

� Comonotonicity occurs iff only common events to the whole portfolio occur, i.e.
α = 1 ⇐⇒ λK > 0, λi = 0 ∀i ∈ {1, . . . , K − 1};

� Independence occurs iff only idiosyncratic incidents occur, i.e.
α = 0 ⇐⇒ λ1 > 0, λi = 0 ∀i ∈ {2, . . . , K}.
15See the previous footnote on the relation of λ|I|=i and λi.
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Figure 3: Panel 3a shows the p.m.f. of the total incident number for rates λ as in Table 1, T = 1,
and resulting rates λ̃ for p ∈ {0, 0.5}. Figure 3b analogously plots the c.d.f.s, illustrating that while
the c.d.f.s are not ordered in the sense FS

M̃
(T )(x) ≥ FSM (T )(x), ∀x ≥ 0, there is a threshold value

x0 s.t. this ordering holds (exactly) for large values x > x0 ≥ 0, i.e. the so-called single-crossing
condition is fulfilled here. In the actuarial context, one is typically interested in high quantiles of
the loss distribution (VaR1−γ for (1− γ) close to 1), i.e. the region where in this case it holds for
the quantile functions F←S

M̃
(T )(1− γ) ≤ F←SM (T )(1− γ), leading to the observations for the portfolio

risk measure discussed in this section.

Definition 2 (Bivariate Cuadras–Augé copula, [22], p. 9). For α ∈ [0, 1], let Cα : [0, 1]2 7→
[0, 1] be defined by

Cα(u1, u2) := min{u1, u2}max{u1, u2}1−α, u1, u2 ∈ [0, 1].

Remark 2 (Tail dependence coefficients of Cuadras–Augé (survival) copula ([22], p. 34f)).
For a bivariate Cuadras–Augé copula Cα, the tail dependence coefficients are given by

UTDCα = α, LTDCα = 1{α=1}.

Note that in general for a copula C and its survival copula Ĉ, it holds (provided existence)
that UTDC = LTDĈ and LTDC = UTDĈ, respectively.

This means for the comparison of the instantaneous joint loss arrival rate in (6), we are

interested in comparing the parameter α (as in (7)) for models (M) and (M̃).

Remark 3 (LTDĈα
for constant λ). Assume λ|I|=i ≡ λ̄ > 0, ∀i ∈ {1, . . . , K}. Then, in

model (M) the lower tail dependence coefficient of the bivariate copula of (τi, τj) is given by

LTDĈα
= α =

2

3
,

and the instantaneous joint loss arrival rate in (6) is given by

lim
T↘0

P(τi ≤ T, τj ≤ T )

T
= λiα =

λ̄(K + 1)

2
· 2
3
=
λ̄(K + 1)

3
.
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Lemma 2 (Relation of LTDĈα
for models (M) and (M̃)). Let (M) be an exchangeable model

as in Assumption 1 with any vector of arrival rates λ and let (M̃) be the corresponding model
according to Definition 1. Let α and α̃ be the respective parameters of the bivariate survival
copulas of (any two) first-arrival times (τi, τj) as given in (7). Then, it holds that α̃ ≤ α
and more specifically, under Assumption 2,

α̃ = p2α

for any p ∈ [0, 1].

Lemma 2 implies that in model (M̃), by omitting information about common events
according to Assumption 2, the instantaneous joint loss arrival rate for any two companies in
the portfolio is underestimated by a factor of p2, which intuitively makes sense, as this factor
indicates the probability of independently not overlooking a joint event in two companies.

Stochastic ordering and coherent risk measures

Above, we have observed exemplarily that the portfolio risk when measured by Value-at-
Risk (at ‘relevant’ levels in an actuarial context, see the remark about the single-crossing
condition above and illustration in Figure 3b) is underestimated in a model with missing

information (M̃) compared to an original model (M). Another important risk measure is
Expected Shortfall (at level (1− γ)), in the following denoted ES1−γ(X) for a r.v. X in the
actuarial context, defined as (see e.g. [5]):

ES1−γ(X) =
1

γ

∫ 1

1−γ
VaRz(X)dz, (8)

where VaRz(X) is defined in (5). It is well-known that ES1−γ possesses in a certain sense
preferable analytical properties compared to VaR1−γ, in particular ES1−γ is a coherent risk
measure.1617 The fact of ES1−γ being coherent allows to draw some interesting theoretical
conclusions for the present study presented below in Corollary 1. As a basis, we use the
more general observation on the stochastic ordering of compound Poisson random variables
summarized in the following theorem.

Theorem 1 (Increasing convex order for specific compound Poisson distributions). Let L >
0 and ℓ ∈ N and consider two independent homogeneous Poisson processes with intensities

16See the seminal work of [8] for the definition and properties of coherent risk measures and e.g. [16] for a
collection of proofs of the coherence of expected shortfall.

17Note that the term ‘expected shortfall’ is often simply used interchangeably with ‘average / tail /
conditional Value-at-Risk’ or ‘tail conditional expectation’, which are in turn usually used synonymously.
In an actuarial context, the most well-known definition is TVaR1−γ(X) = E[X|X ≥ VaR1−γ(X)], i.e. the
expected loss given that a loss at least equal to the Value-at-Risk occurs. However, many equivalencies
between the above risk measures, and in particular the coherence of the risk measures other than ES1−γ
as defined in (8), only hold if X follows a continuous distribution; see [5] for a detailed discussion. As in
the context of this work, discrete underlying distributions (of incident numbers) occur, we therefore only
consider ES1−γ .
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λ > 0 and λ̃ := ℓ λ > 0, denoted N(t) := (N(t))t≥0 and Ñ(t), respectively. For any fixed
T > 0, let

S(T ) :=

N(T )∑

i=1

L = L N(T )textandtextS̃(T ) =

Ñ(t)∑

i=1

L

ℓ
=
L

ℓ
Ñ(T ).

Then, E
[
S(T )

]
= E

[
S̃(T )

]
and

S(T ) ≥icx S̃(T ), (9)

where ≥icx denotes ‘increasing convex order’.

Proof. See Appendix A.18

Remark 4 (Notes to Theorem 1). text

1. Note that S(T ) ≥icx S̃(T ) and E
[
S(T )

]
= E

[
S̃(T )

]
is equivalent to S(T ) ≥cx S̃(T )

( ‘convex order’), see [25], Theorem 1.5.3.

2. In actuarial science, a perhaps more common, synonymous name for ‘increasing convex
order’ (≥icx) is ‘stop-loss order’ (≥sl), which stems from an important characterization of
≥icx by the so-called stop-loss transforms (see [25], Theorem 1.5.7):

X ≤icx Y ⇐⇒ E
[
(X − t)+

]
≤ E

[
(Y − t)+

]
∀t ∈ R. (10)

3. Note that S(T ) and S̃(T ) can be interpreted as two collective risk models with equal expected

total claims amount E
[
S(T )

]
= E

[
S̃(T )

]
, where

⋄ S(T ) is the total claims amount from a model with relatively few, large losses (of deter-
ministic size L > 0), and

⋄ S̃(T ) is the total claims amount from a model with relatively many, small losses (of
deterministic size 0 < L

ℓ
< L).

Thus, Theorem 1 states that the model with on average many (independent) small losses is
preferable ( ‘less risky’) in the sense of increasing convex order compared to a model with
equal expected claims amount and on average few (independent) large losses.

Corollary 1 (Expected Shortfall for models (M) and (M̃)). Let ES1−γ(·) denote Expected
Shortfall as in (8) and let SM(T ) and SM̃(T ) denote the total incident number in the portfolio

under models (M) and (M̃), respectively, until a fixed time T > 0. Then, for any T > 0 and
any γ ∈ (0, 1), it holds

ES1−γ
(
SM(T )

)
≥ ES1−γ

(
SM̃(T )

)
. (11)

Proof. See Appendix A.

This implies that by omitting information about common events, the portfolio risk is
necessarily underestimated when using expected shortfall (or any other coherent risk mea-
sure).

18Somewhat surprising to us, we did not find the (or a correspondent) statement of the theorem in the
literature, hence, for completeness we provide an elementary proof in the Appendix.
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4 Conclusion

When insurers started to develop actuarial models for cyber risk, they soon emphasized that
one major challenge is the lack of adequate data to calibrate and backtest their models.
Many classical actuarial models are based on the assumption of independence between losses
and historical data is mainly used to draw inference about individual policyholders’ loss dis-
tributions (i.e. the parameters of their loss frequency and severity distribution for a certain
risk). Indeed, this is sufficient in markets where the claims are independent. Risk assess-
ment and claims settlement therefore usually take into account this individual client-specific
information. However, in the case of cyber, collecting such individual information alone is
not sufficient, as not only parameters of the individual (marginal) loss distributions, but also
those of an adequate model of dependence, have to be calibrated. This is only possible if
information about dependence between historical claims, i.e. that losses may have stemmed
from the same cause, is systematically collected.
This article has used a stylized mathematical model to highlight the effects on portfolio risk
measurement if information on common events is fully or partly discarded. In practice, and
we have to raise a big warning sign here, the resulting underestimation of accumulation risk
would only become evident too late, namely once a (to-be-avoided) extreme portfolio loss
has occurred.

The urgent practical implications for insurers are evident: As outlined in Section 2.1,
actuarial modelling of cyber cannot be regarded as an isolated challenge, but as one in-
terconnected step in the insurance value chain. Actuaries therefore must be in continuous
exchange with other stakeholders, in particular legal experts (regarding insurability of cyber,
product design, and requirements on the collection of claims settlement data) and informa-
tion security experts. The central importance of the latter group for the actuarial modelling
of cyber can hardly be overstated; their expertise is essential in tackling important challenges
such as how to include an extensive qualitative assessment of a company’s IT landscape, in-
cluding existing security provisions, into a stochastic actuarial model.
Only continuous interdisciplinary cooperation will allow to develop a holistic approach which
allows insurers to proactively steer their cyber underwriting activities without exposing them-
selves to potentially starkly underestimated levels of accumulation risk.
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A Appendix A

Proof of Lemma 1

Proof of Lemma 1. Starting from Definition 1, we observe that the new marginal rates for
any ℓ ∈ {1, . . . , K} are given by

λ̃ℓ =
K∑

i=1

i

K
λ̃|I|=i =

1

K
λ|I|=1 +

1

K

[
K∑

i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)

+

max(i−1,2)∑

j=2

(i− j)fBin(j; i, p)
]]

+
K∑

i=2

i

K

K∑

j=i

λ|I|=jfBin(i; j, p)

=
1

K
λ|I|=1 +

1

K

[ K∑

i=2

λ|I|=ii
(
fBin(0; i, p) + fBin(1; i, p)

)

︸ ︷︷ ︸
(S1)

+
K∑

i=2

λ|I|=i

max(i−1,2)∑

j=2

(i− j)fBin(j; i, p)

︸ ︷︷ ︸
(S2)

+
K∑

i=2

i
K∑

j=i

λ|I|=jfBin(i; j, p)

︸ ︷︷ ︸
(S3)

]
.

It remains to show that the sum in the square bracket equals
∑K

j=2 jλ
|I|=j. Reversing the

order of summation in (S3) and renaming i↔ j in the remaining terms yields

[
(S1) + (S2) + (S3)

]
=

K∑

j=2

λ|I|=jj
(
fBin(0; j, p) + fBin(1; j, p)

)

+
K∑

j=2

λ|I|=j

max(j−1,2)∑

i=2

(j − i)fBin(i; j, p) +
K∑

j=2

λ|I|=j

j∑

i=2

ifBin(i; j, p)

=
K∑

j=2

λ|I|=jj
(
fBin(0; j, p) + fBin(1; j, p)

)
+

K∑

j=2

λ|I|=j
( j−1∑

i=2

jfBin(i; j, p) + jfBin(j; j, p)
)

=
K∑

j=2

jλ|I|=j

j∑

i=0

fBin(i; j, p)

︸ ︷︷ ︸
=1

=
K∑

j=2

jλ|I|=j.

i
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Proof of Remark 3

Proof of Remark 3. Note that due to the properties of the Binomial coefficient, it holds that

(
K−1
i

)
(

K
i+1

) =
i+ 1

K
,

(
K−2
i

)
(

K
i+1

) =
K−1−i
K−1

(
K−1
i

)
(

K
i+1

) =
K − 1− i

K − 1
· i+ 1

K
=

(K − (i+ 1))(i+ 1)

K(K − 1)
.

Inserting this into the expression in (7) yields

α = 1−

∑K−2
i=0

(
K−2
i

)
1

( Ki+1)
λ|I|=i+1

∑K−1
i=0

(
K−1
i

)
1

( Ki+1)
λ|I|=i+1

= 1−
1

K(K−1) λ̄
∑K−2

i=0 (K − (i+ 1))(i+ 1)

1
K
λ̄
∑K−1

i=0 (i+ 1)

= 1− 1

K − 1

∑K−1
i=1 (K − i)i∑K

i=1 i
= 1− 1

K − 1

1
6
K(K + 1)(K − 1)

1
2
K(K + 1)

= 1− 2

6
=

2

3
.

For the marginal rates λi in (2), it holds

λi =
K∑

k=1

k

K
λ|I|=k =

λ̄

K

K∑

k=1

k =
λ̄

K

K(K + 1)

2
=
λ̄(K + 1)

2
,

implying the remark.

Proof of Lemma 2

Proof of Lemma 2. By definition, α and α̃ are given by

α = 1−
∑K−1

i=1

(
K−2
i−1
)
λi∑K

i=1

(
K−1
i−1
)
λi

=: 1− Zα

Nα

, α̃ = 1−
∑K−1

i=1

(
K−2
i−1
)
λ̃i∑K

i=1

(
K−1
i−1
)
λ̃i

=: 1− Zα̃

Nα̃

,

where λi =
λ|I|=i

(Ki )
and λ̃i =

λ̃|I|=i

(Ki )
.

We use the following properties of the Binomial coefficient and the Binomial distribution

(
K − 1

i− 1

)
=

i

K

(
K

i

)
, (BIN1)

(
K − 2

i− 1

)
=
K − i

K − 1

(
K − 1

i− 1

)
=
K − i

K − 1

i

K

(
K

i

)
, (BIN2)

(
K − 2

i− 2

)
=

(
K − 1

i− 1

)
−
(
K − 2

i− 1

)
. (BIN3)

X ∼ Binom(K, p) =⇒ E[X] = Kp, (BIN4)

X ∼ Binom(K, p) =⇒ E
[
X2
]
= Kp(1− p) +K2p2. (BIN5)

ii
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This implies the following auxiliary result:

Nα − Zα =
K∑

i=1

(
K − 1

i− 1

)
λi −

K−1∑

i=1

(
K − 2

i− 1

)
λi

(BIN3)
= λK +

K−1∑

i=2

(
K − 2

i− 2

)
λi =

K∑

i=2

(
K − 2

i− 2

)
λi.

(12)

Furthermore, it holds that Nα = Nα̃, as

Nα̃ =
K∑

i=1

(
K − 1

i− 1

)
λ̃i =

K∑

i=1

(
K − 1

i− 1

)
λ̃|I|=i

(
K
i

) (BIN1)
=

K∑

i=1

i

K
λ̃|I|=i Lemma 1

=
K∑

i=1

i

K
λ|I|=i = Nα.

(13)

We will show that for Zα̃ it holds that

Zα̃ = λ1 +
K∑

i=2

λi

[(K − 1

i− 1

)
−
(
K − 2

i− 2

)
p2
]
. (∗)

This implies the claim, as one can rewrite

Zα̃ = λ1 +
K∑

i=2

λi

[(K − 1

i− 1

)
−
(
K − 2

i− 2

)
p2
]
=

K∑

i=1

(
K − 1

i− 1

)
λi − p2

K∑

i=2

(
K − 2

i− 2

)
λi

(12),(13)
= Nα − p2(Nα − Zα). (14)

From this it follows

α̃ = 1− Zα̃

Nα̃

(13),(14)
= 1− Nα − p2(Nα − Zα)

Nα

= 1−
[
1− p2

(
1− Zα

Nα

)]
= p2α.

To show (∗), we rewrite (3) as

λ̃|I|=1 = λ|I|=1 +
K∑

i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)
+

max(i−1,2)∑

j=2

(i− j)fBin(j; i, p)
]

= λ|I|=1 + λ|I|=22
(
fBin(0; 2, p) + fBin(1; 2, p)

)
︸ ︷︷ ︸

(1−p2)

+
K∑

i=3

λ|I|=i
[
i

i−1∑

j=0

fBin(j; i, p)

︸ ︷︷ ︸
i(1−pi)

−
i−1∑

j=2

jfBin(j; i, p)

︸ ︷︷ ︸
±∑

j=0,1,i jfBin(j;i,p)

]

(BIN4)
= λ|I|=1 + λ|I|=22(1− p2) +

K∑

i=3

λ|I|=i
[
i− ipi −

(
ip− ip(1− p)i−1 − ipi

)]

= λ|I|=1 + λ|I|=22(1− p2) +
K∑

i=3

λ|I|=ii(1− p+ p(1− p)i−1)

= λ|I|=1 +
K∑

i=2

λ|I|=ii(1− p+ p(1− p)i−1).

iii
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Changing to the rates λ̃1 =
λ̃|I|=1

K
(LHS) and λi =

λ|I|=i

(Ki )
(RHS) yields

λ̃1 = λ1 +
K∑

i=2

i

K

(
K

i

)
λi(1− p+ p(1− p)i−1)

(BIN1)
= λ1 +

K∑

i=2

(
K − 1

i− 1

)
λi(1− p+ p(1− p)i−1),

i.e. for fixed i ∈ {2, . . . , K}, the coefficient of λi from λ̃1, which appears in Zα̃ with factor(
K−2
0

)
= 1 is given by

(
K−1
i−1
)
(1 − p + p(1 − p)i−1). Analogously, the coefficients of λi from∑K−1

j=2 λ̃j, scaled by
(
K−2
j−1
)
, are illustrated as the column sums in Table 3 and given by

λi

(
K

i

)

︸ ︷︷ ︸
λi(Ki )=λ|I|=i

i∑

j=2

(
i

j

)
pj(1− p)i−j

(
K − 2

j − 1

)

︸ ︷︷ ︸
Def. of Zα

1(
K
j

)
︸︷︷︸

λj=
λ|I|=j

(Kj )

(BIN2)
= λi

(
K

i

) i∑

j=2

K − j

K − 1

j

K
fBin(j; i, p) =

λi
(
K
i

)

(K − 1)K

[
K

i∑

j=2

jfBin(j; i, p)−
i∑

j=2

j2fBin(j; i, p)
]

(BIN4),(BIN5)
=

λi
(
K
i

)

(K − 1)K

[
K(ip− ip(1− p)i−1)−

[
ip(1− p) + i2p2 − ip(1− p)i−1

]]

=
λi
(
K
i

)

(K − 1)K

[
Kip−Kip(1− p)i−1 − ip+ ip2 − i2p2 + ip(1− p)i−1

]

=
λi
(
K
i

)

(K − 1)K

[
(K − 1)ip− (K − 1)ip(1− p)i−1 − (i− 1)ip2

]

= λi

[(K
i

)
i

K
p−

(
K

i

)
i

K
p(1− p)i−1 −

(
K

i

)
i(i− 1)

K(K − 1)
p2
]

(BIN1)
= λi

[(K − 1

i− 1

)
(p− p(1− p)i−1)−

(
K − 2

i− 2

)
p2
]
.

Thus, adding the coefficients of λi from λ̃1 and
∑K

j=2 λ̃j
(
K−2
j−1
)
for each fixed i ∈ {2, . . . , K−1}

yields
(
K − 1

i− 1

)
(1− p+ p(1− p)i−1) +

(
K − 1

i− 1

)
(p− p(1− p)i−1)−

(
K − 2

i− 2

)
p2 =

(
K − 1

i− 1

)
−
(
K − 2

i− 2

)
p2,

which implies (∗) and therefore the claim.

Proof of Theorem 1

Proof of Theorem 1. text
Step 1: Increasing convex order for some discrete random variables
For an integer K > 0, consider a Bernoulli r.v. Z ∼ Ber(p), p ∈ [0, 1] and K i.i.d. copies of
it denoted Zi, i ∈ {1, . . . , K}.
Furthermore, consider the r.v.s X and Y defined as follows:

X = K Z,

Y =
K∑

i=1

ki Zi, i ∈ {1, . . . , K},
(15)

iv
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where k := (ki)i∈{1,...,K} is an NK
0 -vector s.t. ∀i : ki ∈ {0, . . . , K} with

∑K
i=1 ki = ∥k∥1 = K.

Assume w.l.o.g. ki ≥ ki+1, ∀i ∈ {1, . . . , K − 1}, and let i∗ := |{ki : ki > 0}|, then the first i∗

entries of k represent a partition of K (and the remaining entries equal 0).
It is obvious that for any r.v. Y as above

E[Y ] = E[X] = Kp,

and we will now show that for any such Y it holds that

Y ≤icx X

by using the following sufficient condition (the so-called cut criterion or crossing condition,
see e.g. [25], p. 23): If for two r.v.s X and Y with c.d.f.s FX and FY respectively, it holds
that E[Y ] ≤ E[X] and in addition, there exists t0 ∈ R s.t.

FY (t) ≤ FX(t) ∀t < t0,

FY (t) ≥ FX(t) ∀t ≥ t0,
(16)

then this implies Y ≤icx X.
Let us in the following exclude the trivial cases p ∈ {0, 1} and k = (K, 0, . . . , 0) as they lead
to FX = FY . Note that in all non-degenerate cases we have i∗ > 1.
Then, for r.v.s X and Y as defined in (15), there exists t0 ∈ [1, K− 1] s.t. the single-crossing
condition is fulfilled:
For t < 0 and t ≥ K, obviously FX(t) = FY (t).
For t ∈ [0, 1), we use that p ∈ (0, 1) and i∗ > 1 to see

FY (t) = P(Y = 0) = (1− p)i
∗
< 1− p = P(X = 0) = FX(t).

For t ∈ (K − 1, K), again with p ∈ (0, 1) and i∗ > 1,

FY (t) = P(Y ≤ K − 1) = 1− P(Y = K) = 1− pi
∗
> 1− p = P(X = 0) = FX(t).

Lastly, note that

� t 7→ FX(t) is constant for t ∈ (0, K − 1] at the level FX(t) ≡ 1− p.

� FY (t) is monotone increasing (being a c.d.f. ) for t ∈ (0, K−1] with (non-negative) jumps
at some of the {1, . . . , K − 1} and FY (0+) = (1− p)i

∗
< 1− p < 1− pi

∗
= FY (K − 1).

Thus, due to the monotonicity of FY , there must be a unique t0 ∈ [1, K − 1] fulfilling (16).
Step 2: Implication for (compound) Poisson process setting
Now, fix a time horizon T > 0 and consider two independent homogeneous Poisson processes
N(t) := (N(t))t≥0 with rate λ > 0 and Ñ(t) := (Ñ(t))t≥0 with rate ℓλ > 0, ℓ ∈ N. As Ñ(t)
can be understood (in the sense of being equal in distribution) as the superposition of ℓ

independent Poisson processes Ñj(t), j ∈ {1, . . . , ℓ}, all of them with rate λ > 0 (see e.g.

[21], p. 16), one can write S(T ) and S̃(T ) as

S(T ) =

N(T )∑

i=1

L = L N(T ),

S̃(T ) =

Ñ(T )∑

i=1

L

ℓ
D
=
L

ℓ

ℓ∑

j=1

Ñj(T ).

v
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Due to the properties of the homogeneous Poisson process and by Wald’s equation, it follows
immediately that

N(T ), Ñj(T ) ∼ Poi(λ T ), j ∈ {1, . . . , ℓ},
E
[
N(T )

]
= E

[
Ñj(T )

]
= λ T, j ∈ {1, . . . , ℓ},

E
[
S(T )

]
= E

[
S̃(T )

]
= λ T L,

where Poi(λ) denotes the Poisson distribution with density fPoi(λ)(k) =
λke−λ

k!
, k ∈ N0, λ > 0.

Now, consider the following random variables:

X i = L 1{N(T )≥i} =

{
L if N(T ) ≥ i,

0 else,
=⇒ X i =





L w.p. 1−
i−1∑

j=0

fPoi(λT )(j),

0 w.p.
i−1∑

j=0

fPoi(λT )(j),

Y i
j =

L

ℓ
1{Ñj(T )≥i} =

{
L
ℓ

if Ñj(T ) ≥ i,

0 else,
=⇒ Y i

j =





L
ℓ

w.p. 1−
i−1∑

j=0

fPoi(λT )(j),

0 w.p.
i−1∑

j=0

fPoi(λT )(j),

j ∈ {1, . . . , ℓ}.

Note that X i denotes the size of the ith jump of the Poisson process N(t) if it occurs until
time T (of deterministic size L > 0 if the process jumps at least i times until time T , and of
size 0 else), and analogously the ℓ independent random variables Y i

j denote the sizes of the

ith jump of each of the independent Poisson processes Ñj(t) if they occur until time T .
As the Y i

j , j ∈ {1, . . . , ℓ}, are independent, one can derive the density of their sum, denoted
Y i, from arguments borrowed from the Binomial law:

Y i :=
ℓ∑

j=1

Y i
j =





L w.p.
(
1−

i−1∑

j=0

fPoi(λT )(j)
)ℓ
,

ℓ−1
ℓ
L w.p.

(
ℓ

ℓ−1
)(

1−
i−1∑

j=0

fPoi(λT )(j)
)ℓ−1 i−1∑

j=0

fPoi(λT )(j),

· · ·
1
ℓ
L w.p.

(
ℓ
1

)(
1−

i−1∑

j=0

fPoi(λT )(j)
)( i−1∑

j=0

fPoi(λT )(j)
)ℓ−1

,

0 w.p.
( i−1∑

j=0

fPoi(λT )(j)
)ℓ
.

Note that this illustrates the fundamental difference between the two considered cases (pro-

cess N(t) vs. superposition of ℓ processes Ñj(t)): In the notation of a collective risk model, if
the claim occurrences are driven by the process N(t) (corresponding to relatively few events)
and claim sizes are relatively large (i.e. of size L), either a large total claims amount occurs

vi
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or no claim at all occurs for each jump. On the contrary, if claim occurrences are driven by
the independent processes Ñj(t) or equivalently their superposition Ñ(t) (relatively many
events) and claim sizes are relatively small (i.e. of size L

ℓ
), for a large total claims amount

of size L from all the first (second, third, . . .) jumps to occur, all ℓ processes Ñj(t) inde-
pendently need to jump at least once (twice, three times, . . .); equivalently, ℓ independent

jumps need to occur before time T in the superimposed process Ñ(t). Likewise, to obtain

no claim at all from the ith jumps, any of the processes Ñj(t) independently must not jump
more than (i− 1) times; or equivalently, the superimposed process may not jump more than
(i − 1)ℓ times until T . Therefore, the probability of both large (i.e. size L) and no (size 0)
total claims amounts is reduced, and probability mass is shifted to the intermediate cases
that some (but not all or none) of the independent processes observe at least i jumps. As

E[X i] = E[Y i] = L
(
1−

i−1∑

j=0

fPoi(λT )(j)
)

– note that the weights for Y i are akin to the density of a Binomial distribution with
N = ℓ, p = 1 −∑i−1

j=0 fPoi(λT )(j) – for any i ∈ N the discrete random variables X i and

Y i are akin to X and Y from the first part of the proof, X i being a Bernoulli r.v. with
positive mass only on the largest admissible value L and Y i following a discrete density
supported on the set of values {0, L

ℓ
, · · · , (ℓ−1)L

ℓ
, L} with equal expectation. It follows from

the above derivations that X i ≥icx Y
i, i ∈ N. As (increasing) convex order is preserved

under summation (this follows immediately from the transitivity of ≤icx), this implies the
statement of the theorem as

S(T ) =
∑

i∈N
X i ≥icx

∑

i∈N
Y i = S̃(T ).

Note that it is straightforward to again extend the result to a case where not all deterministic
jump sizes corresponding to the ℓ arrival processes Ñℓ(t) are equally of size L

ℓ
, but instead

one replaces them by a collection {Li}i∈{1,...,ℓ}, such that Li > 0,∀i ∈ {1, . . . , ℓ}, and∑Li =
L.

Proof of Corollary 1

Proof of Corollary 1. It is a well-known result that for any two integrable r.v. X and Y ,
convex order is equivalent to the ordering of expected shortfall at all levels q, i.e.

Y ≤cx X ⇐⇒ ESq(Y ) ≤ ESq(X), ∀q ∈ (0, 1),

see e.g. [16] and the references therein. Therefore, the statement of the corollary is equivalent
to showing SM(T ) ≥cx SM̃(T ). As from Lemma 1 (and linearity) it follows that E[SM(T )] =
E[SM̃(T )], it is sufficient to show SM(T ) ≥icx SM̃(T ) (see first point of Remark 4).
This follows immediately from Theorem 1: Recall that in model (M), the arrival rates for
events of size k ∈ {1, . . . , K} are given by λ := (λ|I|=1, . . . , λ|I|=K) and that all arrivals
are independent (from arrivals of events of the same or any other size). The total incident
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number until time T can therefore again be written as a sum of K independent compound
Poisson r.v.s:

SM(T )
D
=

K∑

k=1

kNk(T ),

where Nk(t) := (Nk(t))t≥0, k ∈ {1, . . . , K}, are independent Poisson processes with rates
λ|I|=k. In turn, for any k, the process Nk(t) can (artificially) be understood as the superpo-
sition of (k + 1) independent Poisson processes Nk,j(t) := (Nk,j(t))t≥0, j ∈ {0, . . . , k}, with
rates λ|I|=k fBin(j; k, p), where in model (M) each of the arrivals of each of these processes
is associated with a jump of size k.
Then, the total incident number from events of size k until time T > 0, denoted Sk(T ),
and events of all sizes, denoted S(T ), are given by the following compound Poisson r.v.s,
respectively:

Sk(T ) =
k∑

j=0

kNk,j(T )
D
= kNk(T ), S(T ) =

K∑

k=1

Sk(T ) =
K∑

k=1

k∑

j=0

kNk,j(T ),

where
D
= denotes equality in distribution.

In model (M), for any k ∈ {1, . . . , K} each Poisson arrival process Nj,k(t) is associated

with jumps of size k. In model (M̃), each arrival process Nj,k(t) is replaced by several
independent processes with equal Poisson rate, but associated with smaller jump sizes (which
sum up to k), as represented in Table 4. From Theorem 1, it follows immediately that the
compound incident number in the second column (model (M)) of each row dominates in
increasing convex order the compound incident number of the corresponding processes in
the third column (model (M̃)). By summing over all rows (recall that ≤icx is preserved
under summation), the same holds for the compound incident number from each process
Nk(t), k ∈ {1, . . . , K}, in model (M) as compared to the overall compound incident number

from all the corresponding independent processes in model (M̃). By summing over all
k ∈ {1, . . . , K}, it follows that SM(T ) ≥icx SM̃(T ) for any fixed T > 0 and thus the statement
of the corollary.
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λ
2

λ
3

··
·

λ
K

−
2

λ
K

−
1

λ
K

( K
−
2

j
−
1

)

λ̃
K

( K K
) λ
K
p
K

( K K

)

( K K

)

λ̃
K

−
1

( K
−
1

K
−
1

) λ
K

−
1
p
K

−
1

(
K

K
−

1

)

(
K

K
−

1

)
+

(
K
K

−
1

) λ
K
p
K

−
1
(1
−

p
)

( K K

)

(
K

K
−

1

)
( K

−
2

K
−
2

)

λ̃
K

−
2

( K
−
2

K
−
2

) λ
K

−
2
p
K

−
2

(
K

K
−

2

)

(
K

K
−

2

)
+

( K
−
1

K
−
2

) λ
K

−
1
p
K

−
2
(1
−

p
)

(
K

K
−

1

)

(
K

K
−

2

)
+

(
K
K

−
2

) λ
K
p
K

−
2
(1
−

p
)2

( K K

)

(
K

K
−

2

)
( K

−
2

K
−
3

)

··
·

··
·

··
·

··
·

··
·
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B.2 Cyber Insurance: An integral component of Cyber Risk Management [4]

Summary

This article is an invited contribution to the ‘Yearbook 2021’ of the Frankfurt Institute for

Risk Management and Regulation (FIRM e.V.). The goal of FIRM e.V. is to “promote teaching

and research around the world of risk management and regulation”32 and to enable knowledge

transfer between academia and industry. The yearbook represents a collection of spotlight expert

contributions on current topics in risk management and regulation and is aimed at risk managers

and other (C-level) decision makers in the area of risk and regulation in Germany.

The goal of this article is to foster an understanding of cyber insurance solutions as one building

block of a holistic cyber risk management strategy. Therefore, the first part provides an overview

of the German cyber insurance market at the time in terms of products and types of coverage

(see, e.g., [124]) and emphasizes the potential to transcend mere risk transfer by offering services

which help to prevent the manifestation of a cyber incident overall or mitigate its financial con-

sequences. We also shed light on the factors which typically determine a company’s risk rating

and, hence, insurance premium, based on the extensive survey [121] and our own visualization of

the German Insurance Association’s (GDV) sample questionnaire for risk assessment for cyber

insurance applicable to small and medium-sized enterprises ([78]).

The article furthermore describes the limits of insurability of cyber due to worrisome accumu-

lation scenarios such as a long-lasting blackout (see, e.g., [106]) and the complications arising

from the necessity to detect so-called silent cyber exposure in traditional lines of business.

The article concludes with an urgent appeal to abandon the beliefs that cyber is a merely tech-

nical topic isolated within IT teams and systems, or that risk avoidance is a feasible strategy for

cyber as one’s own exposure is negligible. Instead, two actionable conclusions are drawn: First,

in today’s interconnected world with business models heavily relying on functional internal and

external IT infrastructures, cyber risk management should be regarded as a central part of en-

terprise risk management. Second, prospective cyber insurance buyers should not let themselves

be deterred by the market’s (perceived) lack of transparency as the risk assessment process for

dedicated cyber coverage (independent of the final decision about purchasing insurance) pro-

vides a valuable opportunity for reflection of one’s exposure to cyber threats and their potential

(financial) consequences.

32See https://www.firm.fm/en/.
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Cyber Insurance:  
An integral component of Cyber Risk 
Management
Gabriela Zeller | Matthias Scherer

With increasing interconnectivity, dependence on information technology, and continuous expansion of IT systems, 
companies from all industry sectors have become aware of the exacerbating threat cyber risk poses to their business. 
Besides, many jurisdictions have started to impose fines for data protection violations. Likewise, the perception of 
cyber security has been moving from a merely technical topic, rooted within IT teams and systems, to being con-
sidered a larger business risk that needs to be incorporated into the ERM. In 2020, cyber incidents are ranked the 
number one peril to businesses worldwide, see [AGCS 2020]. For many companies, signing a dedicated cyber insur-
ance policy constitutes one building block of a holistic risk management strategy. This article surveys today’s cyber 
insurance market in terms of products and types of coverage and explains which factors determine a company’s risk 
category and, hence, insurance premium. Furthermore, it describes limits of insurability of cyber risk and highlights 
the influence of `silent cyber’ on traditional insurance policies.

Cyber incidents are the most feared BI-trigger and likewise, BI is 
the main cause of an economic loss after a cyber incident, see 
[AGCS 2019, 2020]. As businesses continue to rely on increasingly 
complex, global supply chain systems that in turn depend on the 
interconnectivity of systems and services, the potential (contingent) 
business interruption exposure is set to increase for businesses and 
insurers alike.

Once a company has identified its coverage needs, an adequate 
policy has to be selected from the offers on the market. Surveys 
indicate that this is often perceived as non-trivial; many prospective 
buyers report difficulties in understanding cyber insurance policies 
and criticize the lack of consistency between different carriers, see 
[Advisen and Zurich 2019].

Most standard policies cover financial losses originating from a com-
promise of one of the three classical information security protec-
tion goals: confidentiality, integrity, and availability of information 
assets, i.e. data or services. This excludes bodily injury and property 
damage, however, as data is not considered physical property in 
most cases, includes data loss or data compromise, see [GDV 2017]. 
First-party coverage typically includes service costs such as forensic 
investigation costs, costs of crisis management and public relations 
services, costs of notifying affected individuals (e.g. data breach 
victims) and reimbursement, as well as BI loss and data restoration 
loss. Third-party liability coverage covers legal liabilities, e.g. from 
regulatory defense costs and fines, see [Biener et al. 2015]. While 
this basic first- and third-party coverage is relevant for all companies 
seeking stand-alone cyber coverage, additional elements such as 
coverage of losses from fraudulent use of payment data or dam-
ages to Industrial Control Systems might be of interest for some 
buyers, see [Schonschek 2020].

Many cyber insurance policies seek to transcend mere risk trans-
fer by offering services that help to prevent the manifestation of a 
cyber incident overall or mitigate the financial consequences of an 
incident. The incentive for the insurer is to reduce both frequency 
and severity of losses. Prevention efforts can take the form of soft-
ware and services included in the policy, e.g. IT security trainings 

Cyber Insurance Market: Status Quo
In 2015, the global market for cyber insurance was estimated to be 
worth around $2bn in premium, with US business accounting for 
approximately 90%. At the time, fewer than 10% of all companies 
had purchased cyber insurance, with typical buyers of cyber cov-
erage coming from industries holding large volumes of personal 
data, e.g. healthcare and retail, or relying on digitalized technology 
processes, such as manufacturing and telecommunications. A rapid 
market growth was projected, with total premium reaching $20+ 
billion by 2025, see [AGCS 2015]. Seen from today, this estimate 
still seems realistic, with a global market size of around $7bn in 
2020, see [Munich Re 2020a]. A testimony to the relative matu-
rity of the US market is the yearly published `Advisen Cyber Guide,’ 
which listed around 170 cyber service providers in the US in 2018. 
Among them were 43 carriers underwriting cyber risk, 23 brokers, 
and 15 organizations providing service in `Insurance Data and Ana-
lytics,’ i.e. collecting data on cyber losses, conducting data-driven 
cyber analytics, and building probabilistic models for cyber losses, 
see [Advisen 2018]. Concerning the local German market, as of 
2020 a comprehensive overview lists 14 insurers offering stand-
alone cyber coverages, with cover limits ranging up until €25mn, 
see [Schonschek 2020].

Cyber Insurance Coverage: Combining risk transfer and risk 
mitigation
Companies considering purchasing cyber insurance are advised 
to first scrutinize their coverage requirements. Often, responses 
about most sought-after types of coverage are influenced by news 
of cyber losses experienced by others. Consequently, while a few 
years ago losses related to data breaches were the top concern 
for most companies, more recently fund transfer fraud / social 
engineering, cyber extortion / ransomware, and particularly cyber-
related business interruption have moved to the fore, see [Advisen 
and PartnerRe 2018, Advisen and Zurich 2019].

The connection between cyber risk and business interruption (BI) 
is a particularly critical one, as the latter has led for many years the 
list of global top business risks only to be overtaken by the for-
mer in 2020. Furthermore, these risks are very much intertwined: 
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or special offers on security software. Mitigation efforts include 
the availability of a 24/7 incident response service, which provides 
companies with instant advice on how to proceed if they suspect to 
have fallen victim to a cyber incident. These services are often pro-
vided in collaboration with IT security experts. Finally, a concern for 
many companies is reputation loss as the consequence of a publicly 
known incident. While the resulting financial loss of a reputation 
damage is hard or impossible to quantify (and thus to reimburse), 
cyber insurance coverage can help mitigate the consequences by 
including legal advice on reporting requirements and crisis com-
munication support, see [Schonschek 2020].

Pricing: (Why) Is my company classified as high risk?
Among the most stated obstacles for purchasing cyber insurance is 
high premiums, see [Advisen and PartnerRe 2018]. Naturally, com-
panies seek to understand how their risk is classified and priced; 
while insurers refrain from providing full transparency into their risk 
assessment and pricing.

In the US, carriers typically assess an applicant’s cyber risk through 
questionnaires, most of which emphasize the amount and type 
of data handled by the investigated company. Somewhat surpris-
ingly, less attention is put on the technical infrastructure as well 
as risk management and IT security management. Policies are 
often priced by multiplying a base premium by variables relat-
ing to standard insurance factors (e.g. changes to the limits or 
deductible and claims history) and industry-related factors, where 
high hazard weightings are assigned to businesses that collect 
and store a high volume of particularly sensitive data or operate 
in industries like healthcare and finance. Finally, premium multi-
pliers are commonly assigned according to the outcome of the 
IT security questionnaire (e.g. privacy controls, network security 
controls, and existence of an incident response plan), see [Roma-
nosky et al. 2019]. In contrast to these pricing approaches on 
the market, contributions from the academic literature on cyber 
risk modelling seek to study and apply the underlying frequency 
and severity distributions of cyber losses to risk management and 
pricing, see e.g. [Eling and Wirfs 2019, Farkas et al. 2020, Zeller 
and Scherer 2020].

The German Insurance Association’s (GDV) sample questionnaire 
for risk assessment for cyber insurance differentiates between three 
risk categories primarily according to the annual turnover and sec-
ondarily according to certain risky business units (e.g. e-commerce 
or handling of sensitive data). The number of questions a candidate 
needs to answer increases with the risk category, starting from 10 
general questions regarding policy conditions and 5 questions on 
specific areas. General questions cover the topics access, protec-
tion against malware, patching/updates, and back-up/data stor-
age, whereas additional questions can cover organizational secu-
rity, separation of networks, and protection of sensitive data, see 
[GDV 2019] and  Fig. 01. The questionnaire is applicable for small 
and medium-sized enterprises; for enterprises with annual turnover 
exceeding 10mn, a more comprehensive risk assessment (e.g. an 
on-site audit) is advised.

At policy closure, insurers usually require an applicant’s IT security 
standards to meet certain minimum criteria, e.g. usage and regular 
update of anti-virus software, periodic back-ups with separate stor-
age, patch management, and appropriate access controls such as 
password protection or two-factor authentication. Duties in case 
of an incident include immediate notification of the insurer (or its 
affiliated IT security experts) and support in carrying out the appro-
priate incident response measures, see [Schonschek 2020].

Investing in cyber security requires strategic decisions and should 
be done in a comprehensive and effective way. The risk assessment 
and obligations posed by insurers emphasize that it is not enough to 
invest in the prevention of cyber incidents. Additionally, the discov-
ery, investigation, and containment of an attack, and the fast recov-
ery of systems to a working state (in accordance with the often-
repeated mantra “Assume that you are already compromised”) is 
called for. Studies on the cost of data breaches show that improve-
ments in data governance programs, presence of incident response 
plans, appointment of a CISO, employee training and awareness 
programs, and a business continuity management strategy all result 
in average cost savings in case of a breach, see [Ponemon Institute 
LLC 2016]. Companies need to accept the reality that cyber risks 
cannot be fully eliminated and therefore, they must contribute to 
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making the economy more resilient by improving their cyber risk 
management, including greater investment in security technology 
and employee awareness. 

Accumulation scenarios and the limits of insurability of cyber
In a 2015 survey, many companies stated to not having purchased 
cyber coverage yet due to unavailability of desired coverage or 
cover limits, see [Advisen 2015]. This results from a natural conflict 
of interests: On one hand, buyers of cyber insurance seek coverage 
for extreme scenarios such as a large public data breach or a long 
company-wide BI. On the other hand, insurers were approaching 
this difficult-to-quantify risk by offering (relatively) low cover limits, 
to be prudent. As the market for dedicated cyber insurance keeps 
growing and insurers keep expanding their coverage and limits, 
insurers generally perceive the market as profitable and a strategic 
growth field.

However, one important concern that leads insurers to tread with cau-
tion while expanding their cyber portfolios is accumulation risk. This is 
caused by interdependence of insureds’ systems due to common vul-
nerabilities (e.g. widespread use of standardized operating systems 
or the dependence on centralized cloud service providers). Scenarios 
that are currently regarded as uninsurable due to their underlying 
accumulation potential and therefore excluded from coverage include 
the outage of electricity (such as a long-lasting brownout or blackout) 
and failure within internet infrastructure (e.g. due to a DDoS attack 
or a telecommunication network outage), see [Munich Re 2020b].

Silent Cyber in Traditional Insurance Lines
Silent cyber describes cover for cyber incidents that may exist in 
traditional lines, e.g. property/casualty (P&C) policies, even though 
this was not originally intended by the underwriter. One such sce-
nario is a hacking attack disabling the cooling system of an indus-

Fig. 01: Visualization of the risk assessment questionnaire template by GDV 

(information from 
Gesamtverband der 
Deutschen Versiche-
rungswirtschaft e.V. 
(2019): Unverbindlicher 
Muster-Fragebogen 
zur Risikoerfassung im 
Rahmen von Cyber-Ver-
sicherungen für kleine 
und mittelständische 
Unternehmen. (Unver-
bindliche Bekanntgabe 
des Gesamtverbandes 
der Deutschen Versi-
cherungswirtschaft e.V. 
(GDV) zur fakultativen 
Verwendung. Abwei-
chende Vereinbarungen 
sind möglich.)



 127

Fig. 01: Visualization of the risk assessment questionnaire template by GDV 

Source: own illustration, own translation from German

trial plant, leading to a fire, and resulting in property damage to 
machines etc. As traditional policies typically describe their cover-
age along the covered type of loss (e.g. physical damage) instead of 
its cause, such a scenario would typically be included.

While formerly cyber cover was included as an explicit endorse-
ment to existing policies, as buyers seek dedicated and higher limits 
and expanded coverage, exclusions in traditional policies become 
more commonplace and stand-alone cyber products constitute the 
main source of liability cover. For some coverage elements, such 
as cyber-related property damage, underwriters now even seem 
to be divided on whether they should be included in traditional 
lines or in a stand-alone cyber policy, see [Advisen and PartnerRe 
2018]. This inconsistency emphasizes the importance - for insur-
ers and insurance buyers alike – of reviewing existing traditional 
policies with respect to cyber, to avoid a dangerous perception gap 

where insureds may suffer from an illusion of protection. For exam-
ple, the sense of security that any cyber-related BI is covered under 
a traditional BI policy may be unwarranted if specific exclusions are 
in place or a physical damage trigger is required.

Summary
As the frequency and severity of cyber incidents is increasing, com-
panies are aware of the imminent need of dealing with cyber as a 
risk management topic.

While the purchase of external insurance coverage naturally can-
not be a replacement for sound internal security measures, novel 
dedicated cyber insurance products can amend risk assessment 
and mitigation efforts by providing a multitude of pre- and post-
incident services. These services should also be accounted for when 
the premium of a cyber insurance policy is discussed.
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At first sight, buyers of insurance may find the exact assessment 
of their coverage needs and their matching with available offers 
on a rapidly evolving market challenging. The inclusion of cyber-
related losses in existing coverage should be critically checked; 
endorsements to traditional policies may be available, but are pre-
dominantly being replaced by stand-alone policies offering higher 
dedicated coverage and limits as well as invaluable service features.

Companies considering the purchase of dedicated cyber coverage 
should not let themselves be deterred by the market’s lack of trans-
parency, as the decision process itself, including the reflection of 
one’s exposure to cyber threats and the potential (financial) con-
sequences as well as the completion of the insurers’ risk assess-
ment process, can certainly serve as the peg on which to hang a 
potentially overdue conversation about cyber risk management as 
a central part of ERM – regardless of the final decision to purchase 
insurance or not. Decision makers need to be aware that in an inter-
connected world with business models heavily relying on functional 
internal and external IT infrastructures and digitalization strategies 
on every board’s agenda, complete risk avoidance is not an avail-
able strategy for cyber, and the perception that one’s own exposure 
is negligible is almost certainly a fallacy.
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