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Abstract

Many real-world systems can be elegantly modeled by dynamical systems on net-
works. In this dissertation we analyze network dynamical systems and their in-
duced dynamical effects in a variety of instances. First, we study a discrete-time
dynamical system on a graph. Even though this system exhibits chaotic behavior,
we find solutions that show synchrony among the nodes, analyze the stability of
these solutions and confirm the results numerically. We conduct the analysis and
perform simulations for both regular coupling on graphs as well as for systems
with generalized coupling structure. Next, we focus on continuous-time dynam-
ical systems on networks, specifically, ones for which each node of the network
represents an oscillator. While these oscillations can occur in a general high-
dimensional phase space, a phase reduction can help to reduce the dynamics to
a lower dimensional system, where each oscillator is represented by just a phase
from the unit circle. We derive such phase reductions as a second-order expansion
in the coupling strength and compare the stability of states of collective dynamics
in phase-reduced systems with those in the unreduced system. Subsequently, we
take a higher-order phase oscillator model with a nontrivial coupling structure,
which causes interesting equilibria—so called twisted states—to exist. We analyze
the bifurcation at which these states gain or lose their stability upon variation of
system parameters and approximate emanating branches of equilibria. In general,
network dynamical systems can show complicated behavior. Thus, to get an in-
tuition for their dynamics, numerical simulations are often helpful. We develop
algorithms that can efficiently integrate a wide range of dynamical systems on
networks.
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Titel in deutscher Sprache:
Dynamische Systeme auf großen Netzwerken und deren Grenzwerten

Zusammenfassung
Viele dynamische Systeme, die in der Natur auftreten, lassen sich elegant durch dy-
namische Systeme auf Netzwerken beschreiben. In dieser Doktorarbeit analysieren
wir verschiedene dynamische Systeme auf Netzwerken und die von ihnen erzeugten
dynamischen Effekte. Zuerst betrachten wir ein zeitdiskretes dynamisches System
auf einem Graphen. Auch wenn dieses System chaotische Dynamik zeigt, gibt
es eine Lösung, die trotz ihres chaotischen Verhaltens Synchronisation zwischen
verschiedenen Knoten des Graphen zulässt. Wir analysieren die Stabilität dieser
speziellen Lösung und überprüfen unsere Resultate anhand von numerischen Sim-
ulationen. Dann weiten wir unsere Analyse auf ein System mit generalisierter
Kopplungsstruktur aus und überprüfen, inwiefern die Resultate sich anpassen
lassen. Als Nächstes betrachten wir ein zeitkontinuierliches dynamisches Sys-
tem auf Netzwerken, in dem jeder Knoten des Netzwerkes einen generellen Os-
zillator darstellt. Selbst wenn diese Oszillationen in einem hoch-dimensionalen
Raum stattfinden, ist es möglich, diese mittels einer Phasenreduktion durch jew-
eils eine Phase zu beschreiben. Wir berechnen eine Annäherung zweiter Ordnung
einer solchen Phasenreduktion und vergleichen Stabilitätseigenschaften wichtiger
Gleichgewichtspunkte und periodischer Orbits im phasenreduzierten System mit
den entsprechenden Eigenschaften im nicht-reduzierten System. Des Weiteren
betrachten wir ein System von gekoppelten Phasenoszillatoren auf einem nicht-
trivialen Netzwerk, auf dem interessante Gleichgewichtszustände existieren. Wir
analysieren die Bifurkation, in der diese Zustände stabil oder instabil werden, wenn
man die Kopplungsstruktur verändert, und beschreiben Annäherungsverfahren für
zusätzliche Gleichgewichtspunkte, die in der Bifurkation entstehen. Da dynamis-
che Systeme auf Netzwerken komplizierte dynamische Effekte aufweisen können,
sind numerische Simulationen oft sehr hilfreich, um eine Intuition für das Verhalten
dieser Systeme zu bekommen. Wir entwickeln effiziente numerische Algorithmen,
die Simulationen auf großen Netzwerken ermöglichen.
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[37] Tobias Böhle, Mechthild Thalhammer, and Christian Kuehn. Commu-
nity integration algorithms (CIAs) for dynamical systems on networks.
Journal of Computational Physics, 469:111524, nov 2022.
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Chapter 1

Introduction

Many real-world dynamical systems consist of interacting particles. These par-
ticles can, for example, be celestial bodies, human beings [115], animals [118] or
microscopic particles such as cells [166], neurons [174] or molecules [99]. They
interact with each other via the gravitational force, communication, predator-prey
effects, protein production, electrical currents and physical forces, respectively. In
many areas, the attempt to infer the macroscopic dynamics of the system based
on the behavior of individual particles is an ongoing challenge. For example, some
species of fireflies have the ability to flash in unison [44, 46, 45, 43, 179], even
though there seems to be no leading firefly that can initiate a flash of all the oth-
ers. Rather, each firefly observes the flashes of many other individuals and corrects
its own flashing behavior accordingly. From a biological perspective it is still active
research to investigate how a single firefly adopts its own flashing frequency such
that synchronization with the others can occur.

This phenomenon of synchronization is not limited to flashing fireflies, but it
can be found in many other dynamical systems. In fact, synchronization is so
prominent that it is its own area of research [144, 149, 163]. Synchronization
and many variants thereof has been studied in previous works; see [52, 41, 166,
117, 38, 156, 69, 83, 8, 35, 162, 160, 138, 44, 132, 158, 47] and many more. For
example, it can be applied to crickets chirping in unison [174], soldiers marching
in lock-step [164], neuron clusters in the brain [38, 168], pacemaker cells in the
heart [64, 140, 178], constituents of the global electric power grid [27, 150, 105]
and many more. One of the most prominent examples for synchronization is
when many mechanical metronomes are placed on a board which can move to
counteract the metronomes’ momentum. When they are set to a similar frequency,
they start to synchronize [139]. A prototypical mathematical model that describes
synchronization of oscillatory units is the Kuramoto model [107, 108], which is
known since at least 1975. In this model, each of the finitely many oscillators
is represented by just a phase ϕk ∈ T = R/(2πZ), which can be thought of an

1



2 CHAPTER 1. INTRODUCTION

element on the unit circle. These phases then evolve according to

ϕ̇k = ωk +
K

M

M∑
l=1

sin(ϕl − ϕk), k = 1, . . . ,M, (1.1.1)

if there are a total of M oscillators. Moreover, ωk ∈ R is the intrinsic frequency
of oscillator k and K ∈ R, typically K ≥ 0, is a parameter which describes the
coupling strength. In the classical Kuramoto model, the oscillators are nonidenti-
cal and they can be distinguished by their intrinsic frequencies ωk. In fact, these
frequencies are sampled from a symmetric probability distribution that has a uni-
modal probability density, typically a Gaussian distribution. The randomness of
these frequencies makes it hard to study the dynamics of the Kuramoto model for
finiteM as the occurrence of dynamical effects depends on the specific samples ωk.
To overcome this obstacle, one can consider a limit as M → ∞, where the law of
large number helps to get rid of the randomness. The dynamical effects that ap-
pear in this limit have been extensively studied [165, 162, 63, 127]. If the infinitely
many oscillators are uncoupled, i.e., K = 0, each oscillator moves according to
its own intrinsic frequency. Thus, each oscillator’s evolution is independent of the
state of other oscillators, so there is no tendency to synchronize. For very small
coupling strengths K > 0, one still observes no tendency towards synchronization.
If one increases K beyond a critical coupling strength Kc, a positive proportion of
the oscillators begins to gather at one side of the circle; one says that the oscillators
partially synchronize. Increasing K even further makes this proportion bigger and
bigger such that finally in the limit as K → ∞, all oscillators synchronize.

While the classical Kuramoto model only shows no synchronization, partial
synchronization or complete synchronization (in the limit as K → ∞), only slight
modifications cause fundamentally different phenomena to appear. For example,
one can replace the sin function, that describes how one oscillator is coupled to
another, with a general 2π periodic coupling function. Then, one obtains a general
phase oscillator model, in which more dynamical effects can occur. For example,
already when the coupling function contains only two Fourier modes, cluster states
can occur, where the oscillators split into two groups, and oscillators synchronize
within a group, but two oscillators from different groups do not [100, 161]. Even
more harmonics in the coupling function allow for general cluster states with an
arbitrary number of clusters. More harmonics can also cause the system to become
chaotic, even if the number of oscillatorsM is small; see [25] for identical oscillators
(all intrinsic frequencies are the same) and [119] for nonidentical oscillators.

Note that in the classical Kuramoto model, each oscillator is influenced by every
other. Another possible generalization one can make to this model is to break this
structure and allow for a non all-to-all coupling. Of course, this generalization is
not made out of pure mathematical interest. Rather, non all-to-all coupling can
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be motivated by many real-world examples. Mathematically one can describe a
non all-to-all coupling structure by a network or more specifically by a graph, in
which each node represents an oscillator. Two nodes in this graph are connected
by an edge if the corresponding oscillators influence each other. This non all-
to-all coupling can induce interesting dynamical effects [149], such as chimera
states, where the oscillators in one part of the network are synchronized, whereas
oscillators in other parts are not [109, 135]. Especially when the oscillators are
identical, non all-to-all coupling can also yield interesting equilibria such as regular
twisted states [177, 122, 126, 22] or general patterns [62].

When modeling real-world systems as dynamical systems on networks, such as
the Kuramoto model, one realizes that a graph is not always sufficient to model
the network structure, as a graph can only encode pairwise interactions. Instead,
one often needs to include group or higher-order interactions, which describe the
interplay of three or more particles simultaneously. Mathematically, these higher-
order interactions are modeled by a hypergraph consisting of nodes and a set of
hyperedges, each of which can contain more than just two nodes. For example,
the reaction of two (bio-)chemical elements can depend on a catalyst, which would
result in an interaction of three elements [99]. Such an interaction cannot be
represented by a superposition of interactions in every group of two particles, as
all three elements have to be present to start the reaction. Another example where
higher-order interactions are useful arises when modeling the spread of an epidemic
on a network. Classically, one assumes that an infection from one person to another
happens along an edge in a graph, where each individual is connected to another
if they are in contact with each other. As an individual human is typically part of
multiple groups of people, such as the household he or she lives in or the group of
colleagues he or she works with, it makes sense to take this group structure into
account by studying the spread of the epidemic with higher-order interactions [53,
89, 31, 120]. Further examples include collaboration networks [173] or cell models
in ecology [157]. Incorporating higher-order interaction in existing models has
shown to yield interesting dynamical effects and influence the stability of existing
equilibria [181, 160, 22, 167, 21, 183, 80].

Of course, the generalizations presented above apply not only to the Kuramoto
model, but to general dynamical systems on networks. In this thesis we consider
different network dynamical systems with non all-to-all coupling structure and
higher-order interactions. We derive higher-order interactions in the Kuramoto
model, study these models and their bifurcations in the thermodynamic limit as
the particle size goes to infinity. Moreover, we elucidate synchrony in chaotic
network dynamical systems with higher-order interactions and present numerical
algorithms to efficiently integrate a wide range of network dynamical systems.
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This thesis is organized as follows:
Chapter 2 provides a brief overview of the mathematical concepts of dynamical

systems on networks and gives basic definitions. First, we introduce basic notation
and conventions that are used throughout the thesis. After stating many exam-
ples of continuous-time dynamical systems on networks, we formalize the limit of
these systems as the size of the system tends to infinity. Next, we explain how
these systems can be generalized using higher-order interactions. We describe the
mathematical basics of these higher-order interactions and illustrate how they are
combined with ordinary (pairwise) interactions. The chapter concludes with some
examples of discrete-time dynamical systems, their limits as the network size goes
to infinity and examples of how to incorporate higher-order interactions.

Chapter 3 is split into two parts. In the first part, we review the concept of
coupled map lattices (CMLs), which are a prototypical class of dynamical systems
on graphs, that can exhibit complex patterns such as the synchronization of chaos.
These patterns are generated by combining the iteration of a one-dimensional map
at each node and the diffusive property of a graph Laplacian. We introduce CMLs
in detail by explaining each of these two parts individually. Next, we analyze how
the stability of a synchronized solution depends on the main parameters in the
system and use this information to detect regions of synchronized chaos, whose
existence we confirm numerically. In the second part of this chapter, we propose a
class of higher-order coupled dynamical systems, that we call coupled hypergraph
maps (CHMs). These CHMs generalize the concept of CMLs to hypergraphs,
by including Laplacians on higher-order networks. We extend our analysis from
the first part to find regions of chaotic cluster synchronization occurring in the
parameter space upon varying the main system parameters. Furthermore, we
find key differences between Laplacian and hypergraph Laplacian coupling and
detect various other patterns. The results show the high complexity of CHMs and
indicate that they might be an excellent universal model class to understand the
similarities and differences between dynamics on classical graphs and dynamics on
hypergraphs.

Chapter 3 is based on publications [35, 131], which are joint work with Raffaella
Mulas, Jürgen Jost and Christian Kuehn.

In Chapter 4 we derive and study phase oscillator models, such as the Ku-
ramoto model (1.1.1), from general coupled oscillator systems. The technique
used to describe coupled oscillators just in terms of their phases is called phase
reduction. Since phase reductions are typically derived as an expansion in the
coupling strength, one can obtain phase reductions of different order by truncat-
ing this expansion after a specified amount of terms. For example, a first-order
phase reduction can result in the Kuramoto model (1.1.1). In this chapter we first
introduce the basics of phase reductions and illustrate how one can derive phase
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reductions for coupled Stuart–Landau oscillators. As these Stuart–Landau oscil-
lators are a special type of oscillators with a circular limit cycle, which is rarely
the case in real-world scenarios, we then derive phase reductions up to second
order for coupled Stuart–Landau oscillators in which the limit cycle has been de-
formed. Next, we compare the stability of special periodic orbits, in phase-reduced
systems with the stability of these orbits in unreduced systems. Thereby, we an-
swer questions about when one can assume to have circular limit cycles and when
second-order phase reductions are required. We conclude this chapter by identi-
fying terms in the second-order phase reduction with hyperedges of a hypergraph
to obtain a natural class of hypergraphs that adequately capture the dynamics of
coupled oscillators.

Chapter 4 is based on the publication [20], which is joint work with Christian
Bick and Christian Kuehn.

Motivated by the higher-order phase equations derived in Chapter 4 we move on
to consider a higher-order variant of the Kuramoto model with identical oscillators
and a special ring-like nonlocal coupling structure in Chapter 5. Apart from full
phase synchrony where all oscillators behave identically, this model can exhibit
more interesting patterns, such as twisted states, as equilibria. It was discovered
by Wiley, Strogatz and Girvan in 2006 that the stability of these twisted states
depends on the coupling range of each oscillator [177]. We study their stability and
develop a general bifurcation theory by conducting a Lyapunov–Schmidt reduction
in the infinite particle limit. We then apply our results to a few special cases:
First, we show that equilibria that emanate from twisted states at a bifurcation
are always unstable if one only considers traditional pairwise interactions. Second,
the stability of twisted states itself can be controlled by higher-order interactions
and third, suitably combining different higher-order interaction terms can stabilize
emerging equilibria branches.

Chapter 5 is based on the publication [22], which is joint work with Christian
Bick and Christian Kuehn.

In Chapter 6 we develop efficient numerical algorithms to forward integrate
the dynamics of large-scale network dynamical systems. A forward integration
of high-dimensional dynamical systems on networks can be helpful to get an in-
tuition of the dynamical behavior or to approximate the infinite particle limit.
However, such an integration of large network models is often computationally
prohibitive as the right-hand side of these models typically consist of large sums,
e.g., in (1.1.1). Yet, most networks have intrinsic community structure that we
exploit to propose fast community integration algorithms (CIAs) for network dy-
namical systems. By aggregating the inputs, a node receives, these CIAs can
significantly reduce function evaluations to get from polynomial to linear com-
putational complexity. We illustrate these results by applying our algorithms to
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many network dynamical systems including Kuramoto-type models, used to study
synchronization, and Cucker–Smale models describing flocking behavior of birds.
A numerical comparison of our algorithms confirm their accuracy and efficiency.

Chapter 6 is based on publications [36, 37], which are joint work with Mechthild
Thalhammer and Christian Kuehn.

Finally, Chapter 7 contains a brief conclusion and an outlook for future re-
search.



Chapter 2

Mathematical Foundations of
Network Dynamical Systems

This chapter contains an overview of network dynamical systems (NDS) including
many examples. Network dynamical systems are made up of the constituents (or
nodes) of the network, which can represent very general entities, the coupling
structure of the network that describes which entity influences which other, and
an evolution law, that governs how the states of each entity evolve over time. For
example, the entities can be given by molecules, biological cells, individual animals
or humans, populations of animals or celestial bodies. The structure of the network
can be given in terms of pairs or groups, as described below, and the evolution law
is typically given by a differential equation or an iterated map. Here, we restrict
ourselves to dynamical systems on networks, meaning that only the states of the
nodes evolve over time, but the network itself is assumed to be constant in time.

A dynamical system on a network is a very broad term and there does not
exist one general evolution law that describes all possible dynamical systems on
a network. However, these systems can be grouped into certain classes based on
their properties. For example, one can distinguish between network dynamical
systems posed in continuous time and discrete time. Moreover, at each time the
state of a node can be in a set of discrete states or in a continuous state space.
Then, one can further group these systems based on if they are deterministic or
if stochastic processes are involved. However, stochastic dynamical systems and
dynamical systems posed on a discrete state space are not discussed in this thesis.
Instead, we consider deterministic dynamical systems on a continuous state space.

The rest of this chapter is organized as follows: First, we introduce some basic
definitions and notation and provide a list of graphs that often appear in network
dynamical systems. Then, we provide examples of network dynamical systems in
continuous time. Next, we present two basic concepts about how to derive infi-
nite particle dynamical systems that can approximate large but finite dimensional

7
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models. Moreover, we introduce higher-order interactions and illustrate how they
can be incorporated in finite dimensional continuous-time network dynamical sys-
tems and why it makes sense to do that. Finally, we also mention a few examples
of discrete-time network dynamical systems and describe infinite particle limits
thereof.

2.1 Basic Definitions and Notation

Many real-world dynamical systems have the property that they consist of many
linked particles or particles that behave in a similar way. Not only is their intrinsic
behavior similar, but also their reaction to other particles. In this case, we can in-
terpret the dynamical system as one posed on a network. Such a network describes
the general topology of connections between particles and groups of particles. As
networks have been studied in other fields of mathematics, there are many pow-
erful tools and concepts to understand them. Thus, such an interpretation can
help to study the dynamics as one has access to many more tools. Of course a
network can be very general, but the easiest variant of one is a graph G = (V,E),
where V is the node set and we shall always denote M for the cardinality of V ,
i.e., M = |V |. Typically, the nodes do not have a specific label, so we just assume
V = {1, . . . ,M}. Moreover, E is a set of unordered pairs of elements of V and
these pairs are called edges. Such a graph can be represented by its adjacency
matrix A ∈ RM×M and we denote the entries of A by akl for k, l = 1, . . . ,M . An
edge between two nodes k, l is present if akl ̸= 0 and the value of akl can be seen
as a weight associated with this edge. In case of an unweighted graph we have
akl ∈ {0, 1}. Furthermore, a graph is undirected if akl = alk for all k, l = 1, . . . ,M
and directed otherwise. If there is an edge between any two nodes in the graph, one
says that the coupling is all-to-all or global. If the graph is empty, i.e., there is no
edge at all, the particles are called uncoupled. Otherwise, the coupling structure
is nontrivial and one often refers to such a coupling as nonlocal. More complicated
networks can be described by hypergraphs. Such hypergraphs also consist of a
node set V and a set E of hyperedges, that is a collection of subsets of V .

The rest of this section lists a few important classes of graphs, that appear in
many real-world dynamical systems. Particular hypergraphs will be introduced
later, when needed.

Full graph The most trivial graph is one in which every node is connected to
every other node. Such a graph is called a full graph and the only parameter is
the number of nodes M . Coupling in a full graph is also referred to as all-to-all.
A full graph can be seen in Figure 2.1(a).
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k-nearest neighbor graphs and ring graphs Given a set of M nodes and a
coupling range parameter k ∈ N with 1 ≤ k ≤ ⌊(M − 1)/2⌋, one can imagine a
k-nearest neighbor graph by placing allM nodes uniformly distributed on the unit
circle. Then, one connects every node to k of its neighbors in one direction and
to k of its neighbors in the other direction such that the degree of every node is
2k. Moreover, if M is even and k =M/2, we define the k-nearest neighbor graph
as the full graph on M nodes. In this special case, the degree of every node is just
M − 1 = 2k− 1. An example of a 4-nearest neighbor graph can be seen in Figure
2.1(b). In the special case k = 1, this is also called a ring graph.

Erdös–Rényi graphs Apart from the previously introduced graph classes, an
Erdös–Rényi graph [65] is a random graph, that is determined by the size of the
graph M and a parameter p ∈ [0, 1]. First, one starts with an empty graph of M
nodes. Then, to obtain an Erdös–Rényi graph with parameters M and p one
independently includes each of the M(M − 1)/2 possible edges with probability p.
An example of an Erdös–Rényi graph can be seen in Figure 2.1(c).

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 2.1: List of a few common types of graphs. Part (a1) shows the adjacency
matrix of a full graph of M = 20 nodes. A blue dot represents an entry of +1 in
the adjacency matrix and no dot corresponds to a 0 at the respective position in
the adjacency matrix. Part (a2) depicts the full graph, that corresponds to this
adjacency matrix. Similarly, parts (b1) and (b2) depict the adjacency matrix of
a 4-nearest neighbor graph on M = 20 nodes and the graph itself, respectively.
Then, (c1) and (c2) show one sample of an Erdös–Rényi graph on M = 40 nodes
with p = 0.2. Finally, part (d) depicts a sample of a scale-free graph created using
the Barabási–Albert model with m = 2. The graph sequence has been terminated
at M = 40 nodes.
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Scale-free graphs Scale-free graphs are typically created using the Barabási–
Albert model [13]. However, it is important to note that this model does not
describe a single graph of a given size M but rather creates a sequence of random
graphs, that grow in size. Given a parameter m ∈ N, typically m = 1, 2, 3, one
starts with a full graph of m nodes. Next, one adds a node to the graph and
connects it to m other nodes that are chosen with a probability proportional to
their degree. Then, one repeats this process over and over again to obtain a
sequence of Barabási–Albert graphs. Of course, one can terminate this procedure
when the size of the graphs has reached a predetermined parameter M . There
are many variants of this model, e.g., one can allow multi-edges, directed edges,
start with a different initial graph, ect., but in the limit, the degree distribution of
these sequences converges to Nk ∼ k−α for some α > 0, where Nk is the amount of
nodes with degree k. Therefore, these networks are also called power-law graphs.
An example of a scale-free graph can be seen in Figure 2.1(d).

2.2 Continuous-Time Network Dynamical Sys-

tems

In this section, we present a few prominent examples of continuous-time dynamical
systems, whose coupling structure can be described by a graph. Note that this
graph can also be weighted and directed. The examples listed below are presented
in a simple form. In particular, there are many ways to derive variants thereof or
to generalize them.

Population Models In ecology, one can model the growth of a species with N
individuals as

Ṅ = r
N

S
(S −N),

whereN = N(t) is a function of time t ∈ R that we usually suppress in the notation
and Ṅ = d

dt
N(t). Moreover, r is the intrinsic growth rate of the population and

S > 0 is a saturation capacity. If r > 0, the size of the population N grows but
always stays bounded, which can, for example, model the limited availability of a
resource. The presence of M different species in predator-prey systems can then
be modeled as

Ṅk = rk
Nk

Sk

(
Sk −Nk −

M∑
l=1

aklNl

)
, k = 1, . . . ,M, (2.2.1)
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where Nk is the number of individuals in population k, rk is the intrinsic growth
rate of population k and Sk is its saturation capacity [118]. Moreover, the coef-
ficients akl ∈ R for k, l = 1, . . . ,M describe the effect of population l on popula-
tion k. The parameter akl is positive whenever the presence of many individuals of
population l inhibits the growth of population k and negative if the opposite ap-
plies. These parameters (akl)k,l=1,...,M can be interpreted as the adjacency matrix
of a directed and weighted graph.

Phase Oscillators A phase oscillator model describes the evolution of M cou-
pled oscillators, which are represented just by their phase ϕk ∈ T for k = 1, . . . ,M .
An example of a phase oscillator model is

ϕ̇k = ωk +
K

M

M∑
l=1

akl g(ϕl, ϕk), (2.2.2)

where ωk ∈ R is the intrinsic frequency of oscillator k. Moreover, K ∈ R is the
coupling strength and g : T × T → R is a coupling function. For the special case
of g(ϕl, ϕk) = sin(ϕl − ϕk) and akl ≡ 1, this agrees with the classical Kuramoto
model (1.1.1). A frequently used observable that measures the level of synchrony
in phase oscillator models is the complex order parameter Z ∈ C defined by

Z =
1

M

M∑
k=1

eiϕk ,

where i =
√
−1 is the imaginary unit. On the one hand, we have |Z| = 1 if and

only if the oscillators are synchronized, i.e., ϕ1 = · · · = ϕM . On the other hand,
states with |Z| = 0 are called incoherent. For example, the state in which all
oscillators are equidistantly distributed on T is incoherent.

Cucker–Smale Model The Cucker–Smale model [57, 58] describes the inter-
actions of birds that lead to the emergence of flocks. Each bird is modeled by its
position sk ∈ Rd and its velocity vk ∈ Rd. Then, the governing equations of the
Cucker–Smale model are given by

ṡk = vk,

v̇k =
K

M

M∑
l=1

akl

(σ2 + ∥sl − sk∥2)β
(vl − vk),

where M is the number of birds, σ, β > 0 are parameters and K ∈ R is the
coupling strength. Thus, each bird adopts its velocity to match the velocities of
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other birds. The influence of two birds k, l decreases with the distance ∥sk − sl∥
between them, if akl > 0. Depending on the system parameters, this model can
show flocking behavior, i.e., the separation of the birds into groups that move with
the same velocity, even for global coupling akl ≡ 1.

Epidemic Spreading There are many models of epidemic spreading on net-
works [98]. We assume that the epidemic spreads on a graph G = (V,E) where
V = {1, . . . ,M} is the set of individuals, e.g., humans or animals. An edge be-
tween two individuals is present whenever they are in contact with each other such
that an infection of one can cause an infection of the other. In a simple SIS-model
each individual can be susceptible (S) or infected (I) and an individual can change
its state from S to I by infection and vice versa by recovery. One can, for example,
describe the probability that individual k is infected as ⟨Ik⟩ and the probability of
individual k being susceptible as ⟨Sk⟩. Since there are only these two possibilities,
we have ⟨Sk⟩ = 1− ⟨Ik⟩. Moreover, ⟨Ik⟩ then satisfies

˙⟨Ik⟩ = −γk⟨Ik⟩+ τ
M∑
l=1

akl⟨SkIl⟩,

where τ > 0 is the infection rate, γk the recovery rate of individual k and ⟨SkIk⟩
the probability that k is susceptible and l is infected. Note that this system is not
closed as we do not know the evolution of ⟨SkIl⟩. If the state of two neighboring
individuals k and l was independent one could write ⟨SkIl⟩ = ⟨Sk⟩⟨Il⟩. However,
since an infection occurs along an edge, the state of two neighboring individuals is
not independent. It is an ongoing challenge to find suitable methods to close the
system [98, 101].

2.3 Limits of Continuous-Time Network Dynam-

ical Systems

The derivation of analytic results about network dynamical systems as those pre-
sented in Section 2.2 is often very difficult, especially if the number of particlesM is
large, which is the case in many applications. Moreover, a heterogeneous graph G
further complicates the analysis. For example, the position of equilibria, if they
even exist, can nonlinearly depend on system parameters, such as the frequen-
cies ωk in the Kuramoto model (1.1.1). Here, not even an analytic expression
for all equilibria is known, which makes the analysis of this model particularly
complicated. To overcome this problem, one can consider the limit as M → ∞.
Even though it first seems counter-intuitive to analyze an infinite particle system,
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when one cannot even understand its finite dimensional analog, it turns out that
there are useful tools from nonlinear analysis that can be used to study the infinite
particle limit. Then, one can infer dynamical properties of the finite system from
the infinite particle limit. Yet, sending M → ∞ in a network dynamical system
is not easy. In particular, this requires a sequence of finite dimensional dynamical
systems, whose sizes tend to infinity. Then, one has to establish limits of all the
finite dimensional objects that appear in the system and derive an equation that
governs the dynamics of the limiting infinite dimensional dynamical system. We
demonstrate this at the example of the phase oscillator model (2.2.2), as this model
is particularly relevant for this thesis. To make the dependence on the system size
clear, we include the index M for the system size and write

ϕ̇Mk = ωMk +
K

M

M∑
l=1

aMkl g(ϕ
M
l , ϕ

M
k ), k = 1, . . . ,M. (2.3.1)

Now, one has to derive limit objects of ωM ∈ RM , ϕM ∈ TM and (aMkl )k,l=1,...,M , as
M → ∞, which is not easy as the dimension of the space itself, where these objects
are in, increases. There are two fundamentally different concepts to achieve that,
which differ from each other by the way of representing the state variable ϕ in the
limit. Both of these concepts assume that the graph sequence GM , represented by
the adjacency matrices (aMkl )k,l=1,...,M , is dense. We assume that this is the case
and later explain why such an assumption is necessary. Another important point
when deriving limiting dynamical systems is to ensure that the limiting equation
has a unique solution and that it approximates the finite dimensional systems
reasonably well. These questions have been answered for both concepts presented
below [49, 94, 124].

The first concept is the continuum limit. While the oscillators ϕMk are indexed
by k = 1, . . . ,M for finite M , the idea of the continuum limit is to index the
oscillators in the limit by a continuous variable x ∈ I := [0, 1]. To achieve that,
one first defines a function ΘM : R≥0 × I → T with

ΘM(t, x) := ϕMk (t) if x ∈
[
k − 1

M
,
k

M

)
, (2.3.2)

where ϕMk (t) solve (2.3.1) and the value at x = 1 can be defined arbitrarily. For
every fixed time t, this is a step function on the unit interval I. Moreover, note
that aMkl are the coefficients of an adjacency matrix of a graph GM with M nodes.
Thus, we can also define a two dimensional step function WM : I2 → R as

WM(x, y) = aMkl if x ∈
[
k − 1

M
,
k

M

)
and y ∈

[
l − 1

M
,
l

M

)
. (2.3.3)
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Again, the value of WM at x = 1 and y = 1 can be defined arbitrarily. Now, if
ωMk ≡ ω for some given ω ∈ R, one can immediately see that the function ΘM(t, x)
satisfies

∂

∂t
ΘM(t, x) = ω +K

∫
I

WM(x, y) g(ΘM(t, y),ΘM(t, x)) dy, (2.3.4)

whenever ϕMk (t) solve (2.3.1). Since ΘM(t, ·) : I → T andWM : I2 → R are objects
in a space that is independent of M , one can transition to the limit by lifting
the requirement that they are step-functions and allowing them to be arbitrary
measurable functions in a suitable function space on I and I2, respectively. A
limit Θ of ΘM then satisfies the continuum limit equation

∂

∂t
Θ(t, x) = ω +K

∫
I

W (x, y) g(Θ(t, y),Θ(t, x)) dy, (2.3.5)

where W : I2 → R is the limit of the function WM defined in (2.3.3) in a suitable
metric. This function W is also called a graphon. Generally, this type of graph
limit is suitable if the graph sequence GM is dense. Otherwise, the functions WM

converge to the zero function, and thus information about the structure of the
graph is lost in the M → ∞ limit. In these cases, one has to consider other types
of graph limits, see e.g., [85, 12]. When working with the continuum limit (2.3.5),
it is often useful to know how close a solution of the continuum limit is to one
of the finite dimensional system. For this reason approximation results have been
established, which state when d(ΘM(t, ·),Θ(t, ·)) → 0 as M → ∞, where ΘM

solves (2.3.4), Θ solves (2.3.5) and d is a distance of functions on T. In fact, this
is the case when

∥∥WM −W
∥∥ → 0 in a suitable norm and the initial conditions

converge in the sense that d(ΘM(0, ·),Θ(0, ·)) → 0, see e.g. [124]. A drawback
of the continuum limit is the assumption of identical oscillators, i.e., ωMk ≡ ω,
which prevents us considering limits of heterogeneous particles. Of course, one
can try to derive a continuum limit without this assumption and make the con-
stant ω in (2.3.5) dependent on x. This, however, might result in convergence
issues, in particular when considering the Kuramoto model, where the intrinsic fre-
quencies ωk are samples from a probability distribution that can have unbounded
support. To get around this problem there is a second way of transitioning to the
limit as M → ∞.

A second way of deriving an infinite particle limit of (2.2.2) is the mean-field
limit. This mean-field limit still relies on the existence of a graphon W that
represents the limit of the dense graph sequence GM . If this is not the case, one
has to consider other kinds of limits, see e.g., [72, 106]. A node in this (dense)
graph limit is then described by a value x ∈ I. However, instead of having a
function that describes the exact position of each oscillator in the continuum, one
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here only has a probability density ρ(t, θ, x, ω) with
∫
T×I×R ρ(t, θ, x, ω)dθdxdω = 1

that describes the likelihood of finding an oscillator at time t at the position θ ∈ T
with intrinsic frequency ω ∈ R, when this oscillator is on a node x ∈ I in the
graph limit. Note, however, that there is no randomness involved. Rather, the
probability density only denotes a normalized mass distribution. Apart from the
continuum limit, where each infinitesimal oscillator is located at node x ∈ I in
the graph limit and has one intrinsic frequency, the idea of the mean-field limit is
that at almost every pair (x, ω), where x ∈ I is a position in the graph limit and
ω ∈ R is an intrinsic frequency, there is a whole distribution of oscillators with
density ρ(t, ·, x, ω) up to a normalization factor. This density evolves according to
the continuity equation

∂

∂t
ρ(t, θ, x, ω) +

∂

∂θ

(
ρ(t, θ, x, ω)V [ρ](t, θ, x, ω)

)
= 0, (2.3.6)

where V [ρ] is the velocity field defined by

V [ρ](t, θ, x, ω) = ω +K

∫
I

∫
R

∫
T
W (x, y)g(ξ, θ)ρ(t, ξ, y, λ) dξdλdy,

and the function W is the same graphon that appears in the continuum limit.
It was shown in [76, 94, 49] that this mean-field limit has a unique solution. As
in the continuum limit, it is important to know how well the mean-field limit
approximates a finite dimensional system. Since the mean-field limit (2.3.6) de-
scribes the evolution of a density, but the finite dimensional system (2.2.2) gives
the position of the oscillators, one cannot directly compare the two. However, one
can generalize (2.3.6) to track the evolution of general measures µt on T× I ×R.
Then, a probability distribution with density ρ(t, ·, ·, ·) can also be represented by
a measure µt[ρ]. Furthermore, the state of the finite dimensional system can also
be represented by a discrete measure

µMt =
1

M

M∑
k=1

δ(ϕk(t),(k−1)/M,ωk),

where δ(ϕ,x,ω) is the dirac-distribution centered at (ϕ, x, ω) ∈ T× I ×R. Whenever
the functions ϕk(t) solve the finite dimensional system (2.3.1) one can check that
the measures µMt solve the generalized continuity equation. Now, that we can
describe both systems with a probability measure we can compare the two in a
suitable metric, usually a bounded-Lipschitz or Wasserstein metric. It was shown
that whenever µM0 → µ0[ρ] and W

M → W as M → ∞, then also µMt → µt[ρ] for
fixed t ≥ 0 as M → ∞ and one can even estimate the rate of convergence [76, 94].
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2.4 Higher-Order Interactions for Continuous-Time

Network Dynamical Systems

The systems presented in Section 2.2 and the resulting continuum and mean-field
limits derived in Section 2.3 are made up of pairwise interactions, which is a
type of an interaction between exactly two particles. In particular, the right-hand
side of the systems considered in Section 2.2 are sums of interactions between
two particles. Similarly, the right-hand sides of their limits consist of integrals
over the interaction between two particles. Other types of interactions might
involve more than just two particles. If, for example, the interaction between two
particles depends on a third one, one speaks of a triplet interaction. In general, any
interaction that involves three or more particles is called a higher-order interaction.

Historically, higher-order interactions have first appeared in ecology [172, 1,
26], where the interaction between three or more species occurs in predator-prey
systems due to various competitive or parasitic effects. In particular, it has been
shown that just the pairwise effect of one population on another, see (2.2.1), is
sometimes insufficient to describe the dynamics of coexisting populations. Instead,
when modeling the growth of M coexisting populations, with Nk individuals for
k = 1, . . . ,M , one needs to consider systems of the form

Ṅk = rk
Nk

Sk

(
Sk −Nk −

M∑
l=1

aklNl −
M∑
l=1

M∑
i=1

bkliNlNi

)
, k = 1, . . . ,M,

where the parameters rk, Sk and akl are as in (2.2.1) and bkli ∈ R for k, l, i =
1, . . . ,M model triplet or 3-way interactions between the populations [172]. Some-
times, one also has to include quadruplet or even higher-order interactions [172].
These higher-order interactions can, for example, describe coalitions that are
formed by a few species against another species [172, 118, 26].

Since then, it was discovered that higher-order interactions can also be included
in other type of network models and they lead to interesting effects, see for ex-
ample [161, 160, 4, 19, 18, 183]. A prototypical class of dynamical systems that
generalizes pairwise phase oscillator models to higher-order models is given by

ϕ̇k(t) = ωk +
K2

M

M∑
l=1

akl g2(ϕl(t), ϕk(t)) +
K3

M2

M∑
l,i=1

bkli g3(ϕk(t), ϕl(t), ϕi(t)).

(2.4.1)

As in the pairwise phase oscillator model (2.2.2), akl are the coefficients of an
adjacency matrix corresponding to a graph that describes the pairwise coupling
and we specifically include the index 2 in the coupling function g2 to highlight
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that this is the pairwise coupling function. Moreover, K2 ∈ R is the strength
of the pairwise coupling. The last term on the right-hand side describes triplet
interactions: bkli are the coefficients of a 3-tensor that represents a higher-order
coupling, and similarly, g3 is the three-way interaction function and K3 ∈ R is its
strength.

Mathematically, this higher-order coupling structure can be represented by a
hypergraph. In general, a hypergraph consists of a node set V = {1, . . . ,M} and
a set of hyperedges E, whose elements are subsets of V . One can generalize this
definition by assigning weights to each hyperedge or considering ordered tuples
instead of sets as hyperedges to make the hypergraph directed. In our case, the
coefficients (bkli)k,l,i=1,...,M define a 3-tensor, which can represent a hypergraph
with special properties. First, the hypergraph is 3-uniform, meaning that every
hyperedge in this hypergraph consists of three nodes. Second the hypergraph
is undirected, when bkli are invariant under a permutation of the indices k, l, i
and finally, the hypergraph is weighted, as the coefficients bkli are not restricted
to {0, 1}. Analogously, one can add 4-way interactions and even higher-order
interactions. The coupling structure of an ℓ-way interaction would then be given
by an ℓ-uniform hypergraph, represented by an ℓ-tensor and a coupling function
gℓ : Tℓ → R. In general, dynamical properties of higher-order systems are more
challenging to study since the right-hand side of (2.4.1) involves many sums and
thus numerical simulations become intractable starting at much smaller system
size M .

A simple model up to 4-way interactions, in which all the coefficients from the
adjacency matrix and higher-order coupling tensors are equal to 1 and coupling
functions are sinusoidal, was proposed in [160]. Even in this simple model, the
higher-order interactions can lead to the creation of new equilibria and influence
their bifurcation behavior.

2.5 Discrete-Time Network Dynamical Systems

Having discussed many continuous-time network dynamical systems, their limits,
and generalizations to higher-order interactions, we now want to consider network
dynamical systems in discrete time. A lot of discrete-time network dynamical sys-
tems emerge from discretizing continuous-time network dynamical systems using
an Euler scheme or a general Runge–Kutta method. Below, we present two exam-
ples of discrete-time network dynamical systems; the first of which has an analog
in continuous-time and second of which does not.

Opinion Dynamics An opinion dynamics model consists of a number M of
agents who have their own opinion about some subject. Each agent can react to
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the opinions of other agents to form their own opinion, but an agent does not
need to be influenced by all others in the same way. In fact, an agent might
only react to a few other agents. Such a reaction structure can be represented
by a directed (and possibly weighted) graph, that is represented by an adjacency
matrix A = (akl)k,l=1,...,M . If the opinion of agent k at discrete time n ∈ N can be
represented by a real number xnk for k = 1, . . . ,M , the opinion at time n + 1 is
given by

xn+1
k =

M∑
l=1

akl x
n
l , k = 1, . . . ,M,

or just xn+1 = Axn, where xn = (xn1 , . . . , x
n
M)⊤. Usually, the matrix A is stochastic,

i.e.,
∑M

l=1 akl = 1 and akl ≥ 0 for all k, l, see [86]. If agent k disrespects the opinion
of agent l we have akl = 0. If an agent k disrespects the opinions of all other agents,
we have akl = 0 for all l ̸= k and akk = 1. If the contrary is true and an agent k
imitates the opinion of an agent l we have akl = 1 and aki = 0 for all i ̸= l.

Coupled Map Lattices Coupled map lattices (CMLs) can consist of a smooth
map f : Rd → Rd and some coupling structure, for example a coupling function
g : Rd × Rd → Rd, usually with d = 1, such that

xn+1
k = f(xnk) +

K

M

M∑
l=1

akl g(x
n
l , x

n
k), k = 1, . . . ,M, (2.5.1)

where xnk is the state of particle k at the discrete time n ∈ N and K ∈ R is
the coupling strength. Without coupling, i.e., K = 0, the state of each particle
evolves by iterating the map f . Depending on the specific choice of f there might
be invariant regions in which interesting dynamics, such as chaos can appear.
Already for globally coupled maps, interesting dynamical effects, such as chaos
and pattern formation, were observed; see [143, 93, 95] and Chapter 3.

Similarly to the continuous-time examples, that we presented, infinite parti-
cle limits for discrete-time dynamical systems can also be derived. For example
in [159], the authors study a discrete-time variant of the mean-field limit of (2.5.1),
where the coupling is global. In particular, as (2.5.1) with global coupling, i.e.,
akl ≡ 1, is equivariant under a permutation of the particles [11], it is sufficient to
use a discrete measure µn to represent the state of all particles at time n. Such a
measure is then defined by

µn =
1

M

M∑
l=1

δxnl .
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Using such a measure, one can also rewrite (2.5.1) as an iteration procedure for
measures. This iteration procedure can then also be applied to general measures,
not only to those which are a finite convex combination of dirac measures. Thereby,
the authors of [159] derived a mean-field limit for discrete-time network dynamical
systems. If the map f in (2.5.1) is expanding, one can find chaos in this mean-field
limit [169].



Chapter 3

From Coupled Map Lattices to
Coupled Hypergraph Maps

The content of this chapter is based on publications [35] and [131], which are both
joint work together with Raffaella Mulas, Jürgen Jost and Christian Kuehn.

3.1 Background

Synchronization of interacting particle systems is a ubiquitous phenomenon that is
observed in many real-world systems. However, synchronization can not only occur
among particles with “simple” dynamics, such as coupled oscillators with a stable
limit cycle, but also in chaotic systems [141]. Since chaotic systems feature sensitive
dependence on initial conditions, two trajectories that start close to each other
eventually drift away and become uncorrelated. Therefore, the synchronization of
chaotic systems seems counter-intuitive and its discovery came as a surprise [68].
However, due to many possible applications, the study of synchronization in chaos
has been an active area of research [91, 110, 144]. A prototypical mathematical
framework that is often used to study this phenomenon are coupled map lattices
(CMLs) [91, 95].

Generally speaking, CMLs are a discrete-time dynamical system of particles,
where the intrinsic dynamics at each node is given by an iterated map and the
interactions between the nodes are specified by a simple graph G = (V,E). Then,
the state of a particle at time n + 1 only depends on the state of the particle
itself and the states of all neighboring particles at time n. In this chapter we
denote xnk ∈ R for the state of vertex k = 1, . . . ,M = |V | at discrete time n ∈ N.
Classically, one has considered ring graphs [95] or complete graphs [175] on M
nodes; both classes already display very surprising phenomena.

20
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For example, one of the systems considered in [95] is given by

xn+1
k = f(xnk) + ε

(
(f(xnk−1) + f(xnk+1))/2− f(xnk)

)
,

where n ∈ N is the discrete time, k = 1, . . . ,M labels the nodes of the graph,
ε ∈ R is the coupling strength and f(x) = 1 − ax2 with a ∈ R. Moreover,
there is a periodic boundary condition of the form xnM+1 = xn1 such that the
underlying graph has a ring structure. Even though the author called this system
a “coupled logistic lattice”, it belongs to the later introduced broader class of
CMLs. Starting from the initial condition x0k = sin(2πk/M), the author conducted
numerical simulations for different parameters a, ε and graph sizes M . He found
that in some parameter regimes the trajectories converge to a stable periodic orbit,
that consists of patterns, which are relatively flat in some regions of k = 1, . . . ,M
but then have some sudden jumps to other flat regions. Varying the parameters
can change the profile of these patterns, lead to period doubling bifurcations or
can even make the system chaotic.

Motivated by these findings on ring graphs and further results about CMLs
on complete graphs, many scientists began to study CMLs when the graph is not
complete or a ring and it was discovered that new effects may arise in these cases
[91, 116, 175].

For example, the authors of [175] considered CMLs on scale-free graphs G =
(V,E) with |V | =M nodes, which reads as

xn+1
k = (1− ε)f(xnk) + ε

1

Nk

M∑
k=1

akl deg(l)
αf(xnl ),

where akl are the coefficients of the adjacency matrix of the graph G, ε ∈ [0, 1]
is the coupling strength, f(x) = 1 − ax2 is the same map as in the last example,
α ∈ [−1

4
, 2] and Nk =

∑M
k=1 akl deg(l)

α normalizes the sum. In this system, the
authors focus in particular on the synchronized solution, for which xn1 = · · · = xnM .
They study random scale-free network sequences, see Section 2.1 and deterministic
scale-free network sequences derived thereof. They found that the tendency to-
wards synchronization is mainly controlled by the parameter m that describes the
connectivity in these graph sequences, see Section 2.1. Moreover, even when a = 2,
i.e., when [−1, 1] is mapped onto itself under the application of f , and when the
one-dimensional logistic system yn+1 = f(yn) is maximally chaotic, synchronized
solutions do appear as stable limits.

However, all of the previous studies only consider pairwise interactions by
nodes, even though it was shown that this graph coupling is insufficient in many
applications, see Section 2.4. In this chapter we are interested in the dynamical
effects that can occur when replacing the pairwise graph coupling in CMLs by
higher-order coupling.
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This chapter is organized as follows: First, we review a subclass of CMLs, in
which the coupling is given by a Laplacian. We introduce the Laplacian and the
dynamics of the subclass of CMLs in Section 3.2. Moreover, we analyze the sta-
bility of the synchronized solution. Next, we propose a very general extension of
CMLs that includes higher-order interactions by replacing the graph by a hyper-
graph. In Section 3.3 we therefore introduce Laplacians on Hypergraphs and then
generalize CMLs to coupled hypergraph maps (CHMs). Section 3.4 first analyzes
the dynamics of such a CHM on a special class of hypergraphs in detail and then
gives a numerical summary of new effects discovered in CHMs on further classes of
hypergraphs. Finally, Section 3.5 consists of a summary and concluding remarks.

3.2 Coupled Map Lattices

Given a graph G = (V,E), with vertex set V = {1, . . . ,M} we denote xn =
(xn1 , . . . , x

n
M)⊤ ∈ RM for the state of the CML at time n ∈ N. The dynamics of

the class of CMLs that we consider and then want to generalize to hypergraphs
in Section 3.3, is made up of two separate parts that induce different dynamical
effects. One of them is the iteration of a one-dimensional map that induces chaos
and the other part is the application of a graph Laplacian that creates diffusion.
We introduce these two parts individually in Sections 3.2.1 and 3.2.2 and then
combine the two parts in Section 3.2.3. Combining two parts that induce different
dynamical effects, raises the question whether one of these effects dominates the
other or if the resulting dynamics shows a combination of the two effects. We tackle
this question by a stability analysis of a certain type of solutions in Section 3.2.4
and numerical simulations in Section 3.2.5.

3.2.1 First Part: Iterated Map

The first part is based on a one-dimensional real valued map fµ that induces a
dynamical system via the iteration

yn+1 = fµ(y
n), (3.2.1)

where yn ∈ R and µ ∈ R is a parameter. Typical examples of fµ are the logistic
map

fµ(x) = µx(1− x) (3.2.2)

or the tent map

fµ(x) =
µ

2
min(x, 1− x), (3.2.3)
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both with parameter µ ∈ [0, 4], which makes the unit interval [0, 1] invariant.
Moreover, since upon increasing µ the dynamical system (3.2.1) first undergoes
many period doubling bifurcations and then transitions to chaos (see first row of
Figure 3.1), we also call µ the main bifurcation parameter. A method to determine
if the system is chaotic or not, is to evaluate the Lyapunov coefficient [3], which
is given by

µ0 = lim
N→∞

1

N

N−1∑
n=0

log |f ′
µ(y

n)|. (3.2.4)

If µ0 > 0, the system is chaotic and if µ0 < 0 it is not. For the tent map and the
logistic map, the second row of Figure 3.1 depicts how the Lyapunov coefficient
depends on µ.

µ µ

µ µ

µ0

yn

µ0

yn
Tent map Logistic map

Figure 3.1: Simulation of the system (3.2.1) for the tent map (3.2.3) (left column)
and the logistic map (3.2.2) (right column). The first row shows yn for 10000 ≤
n ≤ 10050 for different values of µ and a random initial condition. The second
row depicts the Lyapunov coefficient µ0.

This one-dimensional dynamical system trivially induces a dynamical system
on a graph by simply applying fµ to the state of each vertex, such that

xn+1
k = fµ(x

n
k), (3.2.5)

which we also denote by xn+1 = fµ(x
n) in vector notation. Here, fµ(x

n) is the vec-
tor of element-wise applications of fµ to the elements of xn = (xn1 , . . . , x

n
M)⊤ ∈ RM .
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In general, we write yn for the state of the one-dimensional system (3.2.1) and xn to
denote the vector valued state of (3.2.5). Note that (3.2.5) basically represents M
independent dynamical systems that are governed by the same iterated map, since
there is no interaction among the different vertices. In parameter regions of µ,
where the system exhibits chaos, there is sensitive dependence on initial condi-
tions, i.e., even if x0k is close to x0l , for some k ̸= l, the two trajectories xnk and xnl
drift apart and quickly become uncorrelated as n increases. Therefore, this step
defies the synchronization among the different vertices.

3.2.2 Second Part: Diffusive Process

A diffusive process on a graph is typically defined by a graph Laplacian. To define
a Laplacian, we need the adjacency matrix A ∈ {0, 1}M×M of the graph, which
we assume to be symmetric. Moreover, we define the degree matrix D = (dkl)kl ∈
NM×M

0 as the matrix with dkl = 0 if k ̸= l and dkk = deg(k). Then, the normalized
graph Laplacian is an operator given by the matrix L = IdM −D−1A, where IdM
is theM -dimensional identity matrix. If the graph is connected, which we assume,
the degree matrix D is indeed invertible and as a consequence L is well defined. To
indicate that we are using a graph Laplacian we also denote LG for this operator.
A diffusive process on the graph is then given by the application of the normalized
graph Laplacian LG to the state xn. Thereby, this step couples the individual
vertices. In particular, we consider the dynamics of

xn+1 = xn − ε(LGx
n), (3.2.6)

where ε ∈ R is a parameter that controls the coupling strength. Thus, we call ε
the coupling parameter. Such a process can, for example, be obtained by the
discretization of the continuous-time heat equation where ε is the time step. If the
time step ε is in (0, 1), this process inherits the diffusive property from the heat
equation. In particular, this means that the state xnk of the node k is attracted
towards a mean of the state of neighboring nodes of k. Moreover, if ε ∈ (0, 1),
the process (3.2.6) satisfies a maximum principle, i.e., maxk x

n+1
k ≤ maxk x

n
k and

mink x
n+1
k ≥ mink x

n
k . Eventually, as the graph is connected, the process converges

to an equilibrium, in which the states of the nodes are synchronized among each
other. Figure 3.2 shows a simulation of the diffusive process (3.2.6) on a ring
graph of 5 nodes with parameter ε = 0.3. The initial condition at time n = 1 is
depicted in Figure 3.2(a). The tip of the red arrows, that originate from the state
of vertex k, corresponds to the mean of the states of neighboring nodes. Since
ε = 0.3, the state of the vertex at time n = 2 can be obtained by moving the state
of the vertex at time n = 1 exactly 3

10
along this arrow, which then results in the

state depicted in Figure 3.2(b). Figure 3.2(c) shows another iteration and after a
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few more iterations the states of the vertices synchronize more and more, as seen
in Figure 3.2(d).

1 2 3 4 5

0.2

0.4

0.6

(a)
Nodes (k)

x1k

1 2 3 4 5

0.2

0.4

0.6

(b)
Nodes (k)

x2k

1 2 3 4 5

0.2

0.4

0.6

(c)
Nodes (k)

x3k

1 2 3 4 5

0.2

0.4

0.6

(d)
Nodes (k)

x50k

Figure 3.2: Visualization of the diffusive process (3.2.6) on a ring graph with 5
nodes, see Section 2.1. Part (a)-(d) show the state of the vertices at time n = 1,
n = 2, n = 3 and n = 50, respectively. The dashed lines indicate which node
is coupled to which. The red arrows point towards the mean of the state of
neighboring nodes. Parameter value: ε = 0.3.

As we will see later in this section, the eigenvalues and eigenvectors of the
graph Laplacian are important characteristics when dealing with dynamical sys-
tems involving the graph Laplacian. To analyze them, one first notes that the
graph Laplacian is self-adjoint with respect to the scalar product

⟨x, y⟩ =
M∑
l=1

xlyl deg(l),

where x, y ∈ RM . Consequently, the eigenvectors (uj)j=1,...,M are orthogonal with
respect to this scalar product and in particular, they form a basis of RM . Moreover,
since LG is diagonally dominant, it is positive semi-definite and its eigenvalues
λ1, . . . , λM can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λM ,

where λ1 = 0 is always an eigenvalue to the corresponding eigenvector u1 = 1 =
(1, 1, . . . , 1)⊤ ∈ RM . More specifically, the multiplicity of the eigenvalue 0 cor-
responds to the number of connected components of the graph G. If G has two
connected components, then λ2 = 0; if it has three connected components, then
also λ3 = 0, etc. If, however, G is connected, we always have λ2 > 0.
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In the following, we assume that the graphG is connected, since the full dynam-
ics on an unconnected graph can be broken down into smaller dynamical systems
on the connected components of G. In particular, we do not allow for isolated
nodes, i.e., deg(k) ≥ 1 for all k ∈ V .

3.2.3 The Dynamics of our Coupled Map Lattice

Finally, the dynamics of the CML, that we consider and that has already been
considered in [91], is given by alternately applying a step of (3.2.5) and then one
of (3.2.6), such that the dynamics is given by

xn+1 = fµ(x
n)− εLG(fµ(x

n)), (3.2.7)

where again xn = (xn1 , . . . , x
n
M) ∈ RM is the vector containing the states at the

vertices k = 1, . . . ,M . This CML has an important invariant manifold, which
is the (complete) synchronization manifold M := {x1 = x2 = · · · = xM}. This
manifold is invariant under the dynamics of (3.2.7), due to the invariance under
both steps (3.2.5) and (3.2.6). A solution of (3.2.7) is called synchronized if it
eventually ends up in M, i.e., when xnk = xnl for all k, l and all times n ≥ n0 for
some n0 ∈ N. Since the states of all nodes agree, such a solution is also referred to
as a synchronized solution. Importantly, a synchronized solution in M does not
need to be constant in n, but could, for instance, show itself chaotic behavior. In
such a case, one speaks of the (complete) synchronization of chaos [95].

However, since the CML (3.2.7) consists of a part (3.2.5) that defies synchro-
nization and a part (3.2.6) that promotes synchronization, the transverse stability
of M is nontrivial. Due to the importance of synchronized solutions, the stability
analysis of M has attracted a lot of attention [95, 91, 68]. Since the two competing
parts can be controlled using the main bifurcation parameter µ and the coupling
parameter ε, one expects transverse stability of M to be dependent on µ and ε.
The next subsection recalls an analytical approach to study the stability of M
from [91].

3.2.4 Stability Analysis of the Homogeneous Solution

To analyze the transverse stability, we consider an orbit yn of (3.2.1), i.e., such that
yn+1 = fµ(y

n). Caused by the invariance of M, the homogeneous sequence xn =
yn1, where 1 = (1, 1, . . . , 1)⊤ is the vector in RM containing only ones, is indeed
a solution of (3.2.7) and thus M is invariant. To analyze its transverse stability,
we can proceed as in [91]. In particular, we perturb the homogeneous solution
xn = yn1 in the direction of an eigenvector uj of the graph Laplacian LG. Doing
that for all eigenvectors j = 1, . . . ,M , provides a complete picture about the local



3.2. COUPLED MAP LATTICES 27

dynamics around M, since they form a basis of RM . However, we cannot expect
every perturbation to decay, because perturbing with the constant eigenvector u1,
that corresponds to the eigenvalue λ1 = 0, leaves M invariant. Thus, a decay
of perturbations in the direction of all other eigenvectors j = 2, . . . ,M entails
transverse stability of M. To analyze such a perturbation we proceed as in [91]
and start with the ansatz

xn = yn1+ δαnj uj, (3.2.8)

for some j ≥ 2, αnj ∈ R and small enough δ. A sufficient condition for the decay
of these perturbations is

0 > lim
N→∞

1

N
log

∣∣∣∣∣αNjα0
j

∣∣∣∣∣ = lim
N→∞

1

N
log

N−1∏
n=0

∣∣∣∣∣αn+1
j

αnj

∣∣∣∣∣ , (3.2.9)

since this entails αNj → 0 as N → ∞. To get a formula for αn+1
j /αnj , we insert the

ansatz (3.2.8) into the left- and right-hand side evolution law of the CML (3.2.7)
to obtain

yn+1
1+ δαn+1

j uj = fµ(y
n
1+ δαnj uj)

− εLG

(
fµ(y

n
1+ δαnj uj)

)
.

Next, we linearize fµ(y
n
1 + δαnj uj) ≈ fµ(y

n)1 + f ′
µ(y

n)δαnj uj, use the linearity
of LG and LG1 = 0. This leads us to

yn+1
1+ δαn+1

j uj ≈ fµ(y
n)1+ f ′

µ(y
n)δαnj uj − εf ′

µ(y
n)δαnjLGuj.

Finally, noting that fµ(y
n) = yn+1 and LGuj = λjuj this leads us to the linearized

stability condition

αn+1
j

αnj
= f ′

µ(y
n)(1− ελj).

Inserting this into (3.2.9) yields

0 > lim
N→∞

1

N
log

N−1∏
n=0

∣∣f ′
µ(y

n)(1− ελj)
∣∣

= lim
N→∞

1

N

N−1∑
n=0

(
log(

∣∣f ′
µ(y

n)
∣∣) + log(|1− ελj|)

)
= µ0 + log(|1− ελj|),
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where µ0 is given by (3.2.4). Finally, after applying the exponential function to
both sides, we are left with a sufficient linear stability condition

eµ0 |1− ελj| < 1 (3.2.10)

for the decay of perturbations in the direction of the eigenfunction uj and

eµ0 |1− ελj| < 1 for all j = 2, . . . ,M (3.2.11)

for the transverse stability of M.

3.2.5 Numerical Simulations

In order to get an intuition of how far the sufficient stability condition (3.2.11) is
from being necessary and to get an intuition of the dynamics of (3.2.7) when (3.2.11)
is not satisfied, we choose the logistic map (3.2.2) and numerically simulate the
dynamics of (3.2.7) on a 3-nearest neighbor graph with 10 nodes, see Section 2.1.
To determine, if the full 10-dimensional system is chaotic or not, we compute its
Lyapunov coefficients. The largest of them, which we denote by µmax, can be
computed by

µmax = lim
N→∞

1

N
log

∥∥∥∥∥
N−1∏
n=0

DF(xn)

∥∥∥∥∥ ,
where F is the right-hand side of (3.2.7), ∥·∥ is an arbitrary matrix norm and the
product

∏N−1
n=0 DF(xn) has to be understood as a product of matrices in the order

DF(xN−1) · · ·DF(x0). If µmax > 0 we can conclude that the system is chaotic.
If on the other hand µmax < 0, the system does not show chaotic behavior. Fur-
thermore, to measure the synchronization among the nodes, we use the standard
deviation. For each time step n, it is given by

ζn =

 1

M

M∑
l=1

(
xnl −

1

M

M∑
j=1

xnj

)2
 1

2

. (3.2.12)

A state xn = (xn1 , . . . , x
n
M) is in the synchronized manifold M if and only if

ζn = 0. Figures 3.3(a)-(b) show a mean of ζn over many time steps and µmax,
respectively, for different values of µ and ε. Moreover, the area dashed by red
lines in Figure 3.3(a) depict the area in which the stability condition (3.2.11) is
valid. As one can see this agrees closely with the parameter region where the mean
of the standard deviation is zero. Figures 3.3(c)-(e) show the dynamics for three
different parameter value pairs (µ, ε). The parameter pairs for parts (c) and (d)
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Figure 3.3: Simulation of a coupled map lattice (3.2.7) with the logistic map (3.2.2)
on a 3-nearest neighbor graph with 10 nodes, starting from an initial condition that
is close to the synchronized manifold M. Part (a) shows the mean 1

200

∑5200
n=5001 ζn

of the standard deviations for different time steps. The parameter region dashed by
the red lines indicates where the stability condition (3.2.11) is valid. The maximal
Lyapunov coefficient is depicted in part (b). The system is chaotic whenever
it is positive (green regions) and not chaotic when it is negative (blue regions).
Each of the yellow crosses in (a) and (b) represents a pair (µ, ε) for which the
dynamics is shown more detailedly in (c), (d) and (e). In particular, the values are
(µ, ε) = (3.55, 0.57) for (c), (µ, ε) = (3.92, 0.72) for (d) and (µ, ε) = (3.82, 0.05)
for (e). The plotted iterations in these three subfigures are 5000 < n ≤ 5200.
The values of xnk are alternately plotted in red, cyan, green and purple upon
increasing n.

are in a region, where the stability condition (3.2.11) is satisfied, and thus the
synchronized manifold M is locally stable. Thus, when starting the simulation
close to this manifold, the dynamics remains near it, as seen in parts (c) and (d)
of the figure. While for part (c) the parameters (µ, ε) are in a region where
µmax < 0, for part (d) we have µmax > 0. Therefore, the dynamics at parameter
values in part (d) is chaotic but not chaotic in part (c). In particular, as seen
in Figure 3.3(c), the dynamics settles to an eight-periodic orbit. Upon further
increasing µ, the dynamics would undergo more period doubling bifurcations before
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becoming chaotic. Finally, the parameter values of part (e) are in a region, where
the stability condition (3.2.11) is not valid and µmax > 0. Here, the dynamics
is not synchronized and each node shows chaotic behavior, that is in no direct
relation to the behavior of other nodes.

3.3 Defining Coupled Hypergraph Maps

Next, we want to extend the pairwise coupling property of CMLs to higher-order
coupling. Since the coupling structure of CMLs is based on graphs and graphs
can only encode pairwise coupling, we need to replace the graph by a hypergraph
to allow for higher-order coupling. The resulting discrete-time dynamical system,
that is then based on the hypergraph, is called a coupled hypergraph map (CHM).

However, in order to generalize CMLs to hypergraphs, we need to define a
Laplacian on hypergraphs. In general, there are many generalizations of graph
Laplacians to hypergraph Laplacians. To obtain them, one selects one or a few
properties of the Laplacian on a graph and then derives an operator with similar
properties, that is based on a hypergraph. The next two subsections present two
possible ways of defining Laplacians on hypergraphs. We then choose one of these
ways to define CHMs in Section 3.3.3.

3.3.1 Random Walk Hypergraph Laplacians

One such property of a graph Laplacian is its relation to a random walk on the
underlying graph. In fact, given a graph G = (V,E) with V = {v1, . . . , vM} and
graph Laplacian L, one can define a random walk on the node set of the graph by
imposing transition probabilities

P(vk → vl) :=

{
0 if k = l,

−Lkl if k ̸= l,
(3.3.1)

i.e., the random walker has to move in each time step. Using this definition, it
follows that this indeed defines a random walk, because P(vk → vl) ≥ 0 for all k, l
and

∑
l P(vk → vl) = 1.

If one now wants to define random walks on a hypergraph H = (V,E), with
node set V and hyperedge set E, one notices that there are many possibilities. In
the simplest case, a random walker, that starts at a node v ∈ V has two options
for choosing its next position:

1. Go to a vertex w that is connected to v with a probability that is proportional
to the number of hyperedges that v and w have in common, but does not
depend on the sizes of such hyperedges.
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2. First choose among the hyperedges containing v with equal probability, and
when one such hyperedge is selected, go to any of its vertices other than v
with equal probability. See for instance [184, 112, 51].

Given the transition probabilities that arise from these random walks, one can
then define a hypergraph Laplacian L by reversing the definition order in (3.3.1),
i.e., defining the random walk in terms of the transition probabilities as

Lkl :=

{
1 if k = l,

−P(vk → vl) if k ̸= l.

Importantly, a random walk on a hypergraph, as conceived here is defined in
terms of transition probabilities for going from one vertex to another one. But
this is a pairwise relation between vertices, and any pairwise relation between
vertices can be encoded by an ordinary (possibly weighted) graph. Therefore,
dynamical systems, that are based on a coupling by such a hypergraph Laplacian,
can be reduced to dynamical systems with an underlying (weighted) graph. In
particular, there is no benefit and there are no new effects when generalizing
from weighted graphs to hypergraphs. Therefore, we do not take random walk
hypergraph Laplacians to define dynamical systems on hypergraphs. Instead, to
study effects, that are purely induced by higher-order (hypergraph) interactions,
we need another generalization of graph Laplacians to hypergraphs.

3.3.2 Chemical Hypergraph Laplacians

Now, let us look at another possible definition of Laplacians on graphs that can
easily be transferred to hypergraphs. Apart from the adjacency matrix, that is
typically used to represent a graph G = (V,E), one can also use an incidence
matrix. Classically, if the node set is V = {v1, . . . , vM} and the edge set is E =
{e1, . . . , eL}, this incidence matrix I ∈ {0, 1}M×L is defined as

Ikl :=

{
1 if vk ∈ el,

0 else.

Consequently, each column consists of exactly two ones and zeros otherwise. Next,
we define a matrix Io ∈ {−1, 0, 1}M×L by taking I and reversing the sign of
exactly one of the non-zero entries in each column. As a remark, one can see this
as introducing an orientation of the edges. Changing the orientation of an edge
corresponds to multiplying the respective column by −1. However, even though
there is a choice involved here, the following definitions and results are independent
of this choice. Now, one can define a Laplace operator as

L = D−1IoI⊤
o , (3.3.2)
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where D ∈ RM×M is the degree matrix as introduced in Section 3.2.2. It can be
shown that this definition of a graph Laplacian does not depend on the orienta-
tion of the edges and that it agrees with the definition from Section 3.2.2, see [92,
130]. Since hypergraphs can easily be represented by incidence matrices, the def-
inition (3.3.2) of the graph Laplacian can be transferred to hypergraphs. First,
however, we need to have an orientation of hyperedges. Hypergraphs with this
property are called chemical hypergraphs [92] as they were introduced to model
chemical reactions. In fact, each node of a chemical hypergraph corresponds to a
chemical element, a hyperedge represents a chemical reaction and each node in a
hyperedge is classified as input, output or both, depending on whether the cor-
responding element is an educt, product or catalyst of the reaction. The precise
definition is given as:

Definition 3.3.1 (cf. [92]). A chemical hypergraph is a pair H = (V,H) such
that V is a non-empty finite set and H is a set such that every h ∈ H is a pair
of elements h = (Vh,Wh) with Vh,Wh ⊂ V . The sets Vh and Wh do not necessar-
ily need to be disjoint and they are called inputs and outputs of the hyperedge,
respectively. The order of the tuple (Vh,Wh) is called the orientation of the hy-
peredge. Changing the orientation of a hyperedge means replacing (Vh,Wh) by
(Wh, Vh). Moreover, we still denote |h| = |Vh ∪Wh| for the number of nodes in a
hyperedge h.

Even though this definition allows for catalysts, i.e., nodes v with v ∈ Vh and
v ∈ Wh for some h, we assume in the remainder of this chapter that there are
no such nodes. For a chemical hypergraph neither of the two orientations of a
hyperedge is preferred over the other. This is also what distinguishes oriented
hypergraphs from directed hypergraphs [92].

Such a chemical hypergraph H = (V,H) with V = {v1, . . . , vM} and H =
{h1, . . . , hL} can be represented by its incidence matrix Io ∈ {−1, 0, 1}M×L, given
by

(Io)kl :=


−1 if vk ∈ Vhl ,

1 if vk ∈ Whl ,

0 else.

Now, the chemical Laplacian ∆H, which was introduced along with the chemical
hypergraphs in [92], is given by

∆H := D−1IoI⊤
o , (3.3.3)

where D is the hyperdegree matrix defined by Dkl = 0 if k ̸= l and Dkk =
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hypdeg(k), with

hypdeg(k) :=
∑
h:vk∈h

(|h| − 1). (3.3.4)

Again, changing the orientation of a hyperedge does not influence the definition
(3.3.3) of the chemical Laplacian [92, 130]. Moreover, this definition can be refor-
mulated to

(∆Hx)k =

∑
hin:k input

(∑
k′ input of hin

xk′ −
∑

l′ output of hin
xl′

)
hypdeg(k)

−

∑
hout:k output

(∑
k̂ input of hout

xk̂ −
∑

l̂ output of hout
xl̂

)
hypdeg(k)

,

(3.3.5)

where x ∈ RM and k = 1, . . . ,M . Here, the first sum runs over {hin : k input},
which is the set of all hyperedges hin, in which the k-th node is classified as an
input node. For a given hin, the set {k′ input of hin} = Vhin consists of all nodes
which are an input of hin and the other summations can be explained analogously.
The chemical hypergraph Laplacian ∆H is a natural generalization of the classical
normalized Laplacian for graphs as introduced in Section 3.2.2. Observe that the
graph Laplacian from Section 3.2.2 gives the difference between the value xk and
the average of the values xl, where the l’s are the neighbors of the node k. The
hypergraph Laplacian has a similar, but more complex, interpretation. In fact,
the contribution of xl in (∆Hx)k depends on how many hyperedges the nodes k
and l have in common, as well as on the orientations that k and l have on these
hyperedges. For example, if two nodes k and l are contained in exactly two common
hyperedges h1 and h2, and they have the same orientation in h1 while they have
opposite orientations in h2, then xl does not appear in (∆Hx)k, because the terms
that correspond to h1 and h2 cancel each other. In order to give a more practical
interpretation, we state a third equivalent definition of the chemical hypergraph
Laplacian as follows. Given a node k and an hyperedge h, let

o(k, h) :=


1 if k ∈ h is an input,

−1 if k ∈ h is an output,

0 otherwise.

Then,

(∆Hx)k =
1

hypdeg(k)

(∑
h:k∈h

F(k, h)

)
, (3.3.6)



34 CHAPTER 3. FROM CMLS TO CHMS

where

F(k, h) :=
∑
k′∈h:

o(k′,h)=o(k,h)

xk′ −
∑
l′∈h:

o(l′,h)=−o(k,h)

xl′ . (3.3.7)

Hence, if we see xk as the amount of a given quantity at node k, then F(k, h)
is the difference between the total amount of that quantity at all nodes with the
same orientation as k in h, and the total amount of that quantity at all nodes with
a different orientation as k in h. As it only matters if the orientation is the same
or different than the one of node k, the reformulation (3.3.6), (3.3.7) is best to
see that changing the orientation of an edge does not influence the value of ∆H.
The closer F(k, h) is to zero, the more does the total amount of input balance
the total amount of output of h. But the individual input nodes can contribute
quite differently, as only their sum enters into the balance, and the same is true for
the individual output nodes. This is the source of new phenomena for dynamics
on hypergraphs governed by the chemical Laplacian compared to what we can
see on ordinary graphs. Therefore, we take this Laplacian to generalize CMLs to
hypergraphs.

Finally, let us remark that there is no unique trivial extension of the degree
of a vertex from graphs to hypergraphs. In particular, instead of defining the
hyperdegree as in (3.3.4), one can also define the hyperdegree of a vertex as the
amount of hyperedges, the vertex is contained in. Another possibility is to define it
as the amount of nodes that v is directly connected to. However, we choose to work
with the definition (3.3.4), as it correctly normalizes the chemical Laplacian (3.3.5).
In particular, the hyperdegree (3.3.4) of vertex k corresponds to the amount of
summands (except xk) that appear in the numerator of (3.3.5).

3.3.3 The Definition of a Coupled Hypergraph Map

Analogously to (3.2.7), we now want to couple the dynamics on a hypergraph
via ∆H for a given map fµ : [0, 1] → [0, 1] at each node. However, the hypergraph
Laplacian may fail to satisfy the maximum principle. While it is easy to see that
the CML (3.2.7) on graphs leaves the unit cube [0, 1]M invariant if ε ∈ [0, 1],
the nonexistence of a maximum principle for the hypergraph Laplacian causes
the unit cube [0, 1]M not to be invariant anymore when directly replacing LG
in (3.2.7) by ∆H, even if ε ∈ [0, 1]. In particular, due to the normalization with the
hyperdegree in (3.3.5) and (3.3.6), values in a process that is analogous to (3.2.7)
with LG replaced by ∆H, do not directly leave the unit cube [0, 1]M through the
upper boundary, but they first become negative before potentially diverging to
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infinity. To overcome this problem, we define a periodic triangular function

σ[x] :=

{
x− 2i if x ∈ [2i, 2i+ 1]

2(i+ 1)− x if x ∈ [2i+ 1, 2i+ 2]

for i ∈ Z and put

xn+1 = σ [fµ(x
n)− ε∆H(fµ(x

n))] , (3.3.8)

where the action of σ on a vector has to be understood as the application of σ
to each of the elements of the vector. This makes the unit cube [0, 1]M invariant
under the dynamics and does not influence important properties of the dynamics,
such as synchronization and chaotic behavior, that we will consider below. The
process (3.3.8) is what we call a coupled hypergraph map (CHM).

3.4 Dynamics of Coupled Hypergraph Maps

As for CMLs, the dynamical behavior of CHMs depends on the spectral properties
of the coupling operator ∆H. The spectrum of chemical Laplacians has similar
properties as the spectrum of Laplacians on graphs. In particular, the chemical
Laplacian is self-adjoint with respect to the scalar product

⟨x, y⟩ =
M∑
l=1

xlyl hypdeg(l).

Thus, the eigenfunctions are orthogonal with respect to this scalar product and
they form a basis of RM . Moreover, it can be shown that the eigenvalues are
always non-negative [130]. However, the eigenvalue 0 might occur multiple times
even when the hypergraph is connected. Further, the constant function is not
necessarily an eigenfunction for the eigenvalue 0.

3.4.1 Dynamics on Hyperflowers

An example is the hyperflower Hc,t,ℓ defined via three parameters c, t and ℓ, see [6].
It is a generalization of the star graph. There is a set of c central vertices and ℓ sets
each consisting of t peripheral vertices. Each set containing peripheral vertices is
called a leaf. Central vertices are contained in all hyperedges, but each hyperedge
additionally includes only peripheral nodes from one leaf, so in total there are ℓ
hyperedges. By convention we classify central vertices as inputs and peripheral
nodes as outputs, see Figure 3.4(a). An example for the dynamics of (3.3.8) in
Figure 3.4(b) shows chaotic cluster synchronization. In particular, we speak of
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chaotic cluster synchronization if xnk is constant within each component of the
hyperflower, when n is large, but xnk and xnl are different when k and l are from
different components. As seen in Figure 3.4(b), chaotic cluster synchronization
emerges from an initial condition that is globally synchronized with a small generic
perturbation.
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Figure 3.4: Part (a) shows an example of a hyperflower Hc,t,ℓ with c = t = 7 and
ℓ = 3. Inputs of a hyperedge are represented by a plus sign and outputs by a minus
sign. Part (b) shows a numerical integration of (3.3.8) for fµ(x) = µx(1 − x) on
the hyperflower depicted in (a) for µ = 1.4 and ε = 8. The initial condition x0k
was chosen synchronized over all components with a small generic perturbation.
Plotted iterations are 5000 < n ≤ 5200. The values of xnk are alternately plotted
in red, cyan, green and purple upon increasing n.

To understand how and when such chaotic cluster synchronization can emerge
from a globally synchronized solution, we analyze the synchronized solution by
studying the eigenvalue/eigenfunction structure of ∆H on a hyperflower. The
function which equals −1 on central nodes and +1 on peripheral nodes is an
eigenfunction for the eigenvalue (c + t)/(c + t− 1). Next, we have functions that
are +1 on one leaf, −1 one on another and 0 elsewhere, corresponding to the
second largest eigenvalue t/(c+ t− 1). There are ℓ− 1 such linearly independent
eigenfunctions. The remaining eigenfunctions have eigenvalue 0. There is one
eigenfunction, which attains the value 1/c on central nodes and 1/t on peripheral
nodes. Furthermore, every function that is +1 on one node, −1 on another of
the same component (the center or a leaf) and 0 elsewhere is an eigenfunction;
there are c − 1 + ℓ(t − 1) such linearly independent functions. Altogether, we
have generated c + tℓ linearly independent eigenfunctions, which is the required
number. Note that the synchronized solution only exists if the constant function is
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an eigenfunction for the eigenvalue 0. Since this corresponds to c = t, we therefore
need to require c = t. Then, deriving a transverse stability condition for the
synchronized solution follows a similar pattern as the analysis in Section 3.2.4, as
one just has to replace LG by ∆H. In particular, perturbations in the direction of
an eigenfunction uj of ∆H decay if the condition (3.2.10) is satisfied, where λj is
the corresponding eigenvalue.

A necessary condition to retain at least partial synchronization (xk = xl for
some k ̸= l) is stability in the direction of eigenfunctions, which are +1 on one
vertex −1 on another vertex in the same component and 0 everywhere else. As
this is an eigenfunction corresponding to the zero eigenvalue, (3.2.10) is equivalent
to

µ0 < 0. (3.4.1)

This is in clear contrast to the assumption µ0 > 0 for CMLs on graphs. In fact, on
graphs the instability in direction of a spatially constant perturbation, which was
caused by µ0 > 0, was necessary to have non-stationary dynamics of a synchronized
solution. Given the condition µ0 < 0 on hyperflowers, the constant eigenfunction
can no longer generate non-stationary dynamics. However, in contrast to LG,
the hypergraph Laplacian on the hyperflower has further eigenfunctions, which
are constant on certain components of the hyperflower. By requiring instability
of the synchronized solution with respect to perturbations in direction of these
eigenfunctions, we may still hope to retain non-stationary dynamics of partially
synchronized solutions. In other words, the eigenfunctions that are constant on
each of the components and thus corresponding to positive eigenvalues are taking
over the job of the constant eigenfunction corresponding to the eigenvalue 0 on
graphs. Instability in direction of the positive eigenvalue λ̃ = (c + t)/(c + t − 1),
which is responsible for differences between central and peripheral nodes, and
λ̂ = t/(c+ t−1), that governs differences across the leaves, directly translates into
the conditions ∣∣∣eµ0(1− ελ̃)

∣∣∣ > 1, (3.4.2)∣∣∣eµ0(1− ελ̂)
∣∣∣ > 1. (3.4.3)

Even though one actually needs to find additional stability conditions around a par-
tially synchronized solution, our numerical simulations reveal that the instability
conditions around the completely synchronized solution do already provide great
insight about the existence of non-stationary partially synchronized solutions. Es-
pecially, if fµ is given by the tent map (3.2.3) this makes sense, as fµ is piecewise
linear and thus stability conditions derived from a linearization of fµ(x) are to
some extent independent of the particular state x. For the tent map (3.2.3), the
Lyapunov coefficient can explicitly be given by µ0 = ln(µ/2). This allows us to fur-
ther investigate which pairs (µ, ε) fulfill the (in)stability conditions (3.4.1), (3.4.2)
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and (3.4.3). In particular, we marked areas in which these conditions are satis-
fied by diagonal lines seen in Figure 3.5. Further, a numerical integration of the
CHM (3.3.8), starting from a slight perturbation of a completely synchronized
state, yields areas in which one has non-stationary partial synchronization with
different dynamics in each of the components of the underlying hyperflower, see
green regions in Figure 3.5.

µ

ε (1.8, 3)

Stability Region for the Tent Map

Figure 3.5: Stability region for the tent map. The diagonal lines represent areas
in the (µ, ε) parameter plane for which the (in)stability conditions (3.4.1), (3.4.2)
and (3.4.3) around a completely synchronized solution are satisfied for the tent
map (3.2.3). The green region depicts (µ, ε) values for which numerical simulations
revealed non-stationary partial synchronization with different dynamics on each
component. The parameter pair (µ, ε) = (1.8, 3) satisfies (3.4.1) and (3.4.2) but
not (3.4.3), see Figure 3.6.

As can be seen in Figure 3.5, our (in)stability conditions (3.4.1), (3.4.2), (3.4.3)
match the green region pretty closely even though they represent theoretical con-
ditions for stability of the completely synchronized solution and the green region
indicates when a solution is partially synchronized with different dynamics on each
component. In particular, condition (3.4.1), which says µ < 2, applies for both the
green region and the diagonal lines. Overall the green region is contained in the re-
gion depicted by the diagonal lines, which tells us that our conditions (3.4.1),(3.4.2)
and (3.4.3) are here necessary for non-stationary partial synchronization with dif-
ferent dynamics on each component. A closer look at the dynamics for parameter
values in the green region shows chaotic dynamics on each component of the hy-
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perflower, as also observed in Figure 3.4(b). In particular, chaotic dynamics can
appear for values of µ < 2 for which the one-dimensional iteration (3.2.1) of the
tent map (3.2.3) alone exhibits no chaotic dynamics, but here a sufficiently positive
or negative coupling induces chaos.

By neglecting the requirement of stability condition (3.4.3), i.e., allowing per-
turbations that are −1 on one leaf, +1 on another leaf and 0 elsewhere to decay, we
additionally observe parameter regions, in which all peripheral nodes synchronize
among themselves and so do the central nodes but the two groups show different
dynamics. For instance (µ, ε) = (1.8, 3) satisfies (3.4.1) and (3.4.2) but not (3.4.3).
The resulting dynamics can be seen in Figure 3.6.
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Figure 3.6: Numerical integration of (3.3.8) for fµ(x) given by the tent map (3.2.3)
on a hyperflower with c = t = 7 and ℓ = 3 for µ = 1.8 and ε = 3. Plotted iterations
are 5000 < n ≤ 5200. The values of xnk are alternately plotted in red, cyan, green
and purple upon increasing n. The parameters µ, ε satisfy the conditions (3.4.1)
and (3.4.2) but not (3.4.3).

Even though our analytical derivations of stability conditions require assump-
tions about the hyperflower, numerical simulations can of course be performed for
the cases not covered by our analytical derivations. Specifically, we consider sim-
ulations on a hyperflower with c = 10, ℓ = 5 and t = 3, which are parameters for
which a globally synchronized solution does not exist. For a given parameter pair
(µ, ε), we numerically infer synchronization of the central nodes if the standard
deviation ζn over k = 1, . . . , c of xnk , see (3.2.12), drops below a certain threshold
(≈ 10−5) as n → ∞. Similarly, we infer chaos in the center of the hyperflower if
the leading Lyapunov coefficient is positive on the central nodes. In the same way
we deduce synchronization and chaotic behavior of nodes in the first leaf of the
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hyperflower. Based on those four criteria this allows us to classify the dynamical
behavior for given parameter values and initial conditions. In particular, we say
that the dynamics shows doubly synchronized chaos if both of the leading Lya-
punov coefficients for the two clusters are positive and the values of xn synchronize
within the two clusters (but not necessarily across the clusters). Now, we conduct
numerical simulations for different parameter values of µ and ε but with the same
initial condition for each simulation and investigate for each parameter pair (µ, ε)
the occurrence of doubly synchronized chaos. The yellow regions in Figure 3.7 de-
pict such areas, whereas there is no doubly synchronized chaos in the blue region.
On hyperflowers, we have detected a variety of other patterns, including steady
and periodic synchronization patters, as well as chaotic cluster patterns, where a
single cluster chaotically forces other clusters.

µ

ε

Figure 3.7: Numerical simulations of (3.3.8) for fµ(x) = µx(1−x) on a hyperflower
with c = 10, ℓ = 5 and t = 3 reveal cluster synchronization of chaos in yellow
regions. Doubly synchronized chaos occurs for all parameter values (µ, ε) in the
yellow regions. This is a case that is not covered by our analytical derivations.
The yellow regions, do not seem to be regular shapes as the regions shown in
Figure 3.5. They rather seem to resemble irregular and somewhat fractal shapes,
that are difficult to analyze analytically. This shows that the assumption c = t
and taking fµ to be the tent map (3.2.3) was indeed helpful to derive analytical
conditions.
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3.4.2 Dynamics on Other Types of Hypergraphs

The analysis of the dynamics of hyperflowers that was conducted in the last section,
can, of course, also be performed on other types of hypergraphs. Since this exactly
follows the lines of Section 3.4.1, we will not present it here. Instead, we present
a few examples of simulations on other types of hypergraphs.

First, we consider a CHM on hyperferns, which is a class of hypergraphs defined
in [7], see Figure 3.8(a). They consist of c central nodes, which are connected by a
hyperedge, in which all nodes are classified as inputs. Moreover, each central node
is connected to two sets (leaves) of peripheral nodes by one hyperedge each and all
of these leaves consist of t nodes. By convention, nodes of these leaves are outputs
and the central node that they are connected to is an input of the connecting
hyperedge. In total, there are n = c(2t+1) nodes and 2c+1 hyperedges. On these
hypergraphs, we have detected parameter regions in which another interesting
phenomenon occurs, see Figure 3.8(b). Here, we consider a hyperfern with c = 3
and t = 2, where the nodes are labeled such that the first three nodes are the central
nodes. Nodes with the numbers 4 and 5 form one leaf that is connected to the first
node in the center. Then, the next two nodes form another leaf, that is connected
to the first central node, too. The next four nodes form two leaves, both connected
to the second central node. Finally, the last four nodes create two leaves, which are
both connected to the last central node. Interestingly, when choosing parameter
values as in Figure 3.8(b), starting from a synchronized initial condition with slight
perturbation, the dynamics ends up in a region where all nodes are chaotic, the
central nodes are desynchronized, the leaves are synchronized within itself but not
among each other. In particular, there seem to exist two trapping intervals in
which xnk can end up in, when k is a peripheral node. In particular, 0 ≤ xnk ≲ 0.25
for some peripheral nodes k and 0.2 ≲ xnk ≲ 0.65 for other peripheral nodes k.
While the synchronization of leaves always causes two peripheral nodes that are
in a same leaf to end up in the same trapping interval, the situation is reversed if
they are not in the leaf but still connected to the same central node. In fact, then
they always end up in different trapping intervals. Consequently, by their indirect
connection via a central node, two peripheral nodes seem to repel each other.
Thus, this phenomenon combines the concept of chaotic cluster synchronization
with desynchronization or repulsion across clusters.

Next, we consider lattice hypergraphs [7], which do not consist of central and
peripheral nodes. Rather, each node is contained in two hyperedges and the num-
ber of nodes of a lattice hypergraph is determined by two parameters a, b ∈ N. In
fact, one can imagine a lattice hypergraph by arranging n = ab nodes in a grid of a
rows and b columns. Then, there are two more parameters α ∈ N and β ∈ N with
1 ≤ α ≤ a and 1 ≤ β ≤ b, that determine the hyperedges of a lattice hypergraph.
In fact, each row is connected by a hyperedge such that the first α nodes are inputs
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Figure 3.8: Simulation on other types of hypergraphs. Part (a) depicts a hyperfern
with c = 3 and t = 2. Part (b) shows a simulation result on the hyperfern from
part (a). Here, fµ is given by the tent map (3.2.3) and the parameter values are
µ = 0.82 and ε = 4.4. Part (c) illustrates a lattice hypergraph with a = b = 5 and
α = β = 2. Finally, part (d) shows a simulation on this lattice hypergraph when
µ = 1.4, ε = 3.8 and fµ is given by the tent map (3.2.3). The values of xnk in parts
(b) and (d) are alternately plotted in red, cyan, green and purple upon increasing
n and the plotted iterations are 5000 < n ≤ 5200.

and the remaining a− α nodes are outputs. Similarly, each column is grouped by
a hyperedge, in which the first β nodes are inputs and the last b − β nodes are
outputs, see Figure 3.8(c). In total there are a + b hyperedges. For particular
parameter choices we observed the emergence of node clusters that synchronize
even though the node cluster might not be connected via an edge. In particular,
when a = b = 5 and α = β = 2, as in Figure 3.8(c), the nodes of the hypergraph
can be split into four main groups. The first group consists of nodes which are
inputs in each hyperedge, i.e., k = 1, 2, 6, 7. We call this group a symmetric group.
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Then, there is a group of nodes, which are inputs in the hyperedges connecting the
rows but outputs in hyperedges encompassing one row. The node labels of this
group are k = 3, 4, 5, 8, 9, 10 and we call this an anti-symmetric group. There is
another symmetric and another anti-symmetric group, in which the roles of inputs
and outputs are reversed. As one can see in Figure 3.8(c), the two anti-symmetric
groups are not connected via any hyperedge. Yet, as seen in Figure 3.8(d), their
nodes can still synchronize. Moreover, the two symmetric groups are synchronized
within themselves but not among them.

Furthermore, we have considered less symmetric hypergraphs, e.g., the cyclic
hypergraphs Ze,ℓ,m,s, which is a class defined by four parameters e, ℓ,m, s. One
can view Ze,ℓ,m,s as a set of M = es nodes, which are arranged in a circle, see
Figure 3.9(a). There are e edges each encompassing ℓ neighbors. These edges are
distributed uniformly around the circle such that if one edge starts at a node k
on the circle, the next edge starts at node that is s nodes away from k. If one
goes around the circle, the first m nodes of each edge are specified as input nodes,
whereas the remaining ones are output nodes. While for some parameters, this
class of hypergraphs has symmetries under permutation of nodes, it does not for
others. If we consider, for example, the cyclic hypergraph with e = 10 edges, ℓ = 6,
m = 1 and s = 2, there is no symmetric subgroup that leaves the hypergraph
Laplace operator ∆H invariant. Permuting two nodes would either cause edges to
be spanned over non-neighboring nodes or edges not to start with nodes specified as
input, both contradicting with a possible invariance of the hypergraph Laplacian.
However, a numerical simulation starting from a completely synchronized initial
condition with small perturbation, see Figure 3.9(b), shows that both even and odd
nodes form a cluster within which the dynamics synchronizes and shows chaotic
behavior but there is no synchronization across the two clusters.

3.5 Summary

Although CMLs have been a prototypical dynamical system studied on usual
graphs for quite some time, so far no natural generalization to hypergraphs has
been available. Here, we provided this extension, which has been triggered by the
requirement to model physical processes beyond pairwise coupling. Classical CMLs
show highly complex patterns due to the intertwining of Laplacian coupling and
nonlinear iterated maps. Replacing the regular Laplacian by a hypergraph Lapla-
cian led to new challenges. We used linearized stability analysis for synchronized
states in combination with hypergraph spectral theory, and numerical methods, to
detect robust regions of chaotic cluster synchronization for CHMs. Chaotic cluster
synchronization occurs large regions in the parameter space, which is made up of
the coupling strength and the main bifurcation parameter in the unimodal map
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Figure 3.9: A cyclic hypergraph and a numerical integration of a CHM on this
hypergraph. Part (a) depicts a cyclic hypergraph with e = 10, ℓ = 6, m = 1
and s = 2. Part (b) shows the numerical integration of (3.3.8) with fµ being
the logistic map (3.2.2) and parameter values µ = 2.868 and ε = 6.03 on the
cyclic hypergraph depicted in part (a). Plotted iterations are 5000 < n ≤ 5200.
The values of xnk are alternately plotted in red, cyan, green and purple upon
increasing n. This is an example of chaotic cluster synchronization on a hypergraph
for which the nodes in a cluster (here, even nodes and odd nodes), within which
we observe synchronization, cannot be permuted such that the permutation of the
nodes represents a hypergraph automorphism.

at each node. We found key differences between Laplacian and hypergraph Lapla-
cian coupling and also detected various other classes of periodic and quasi-periodic
patterns. The results show the high complexity of CHMs.



Chapter 4

Higher-Order Phase Reductions
for Oscillators with Non-circular
Limit Cycles

Phase reductions are a technique to derive phase oscillator models, i.e., systems
of ODEs with TM as the phase space, from coupled oscillator systems that are
posed in a higher-dimensional phase space. These phase oscillator models include,
but are not limited to, the Kuramoto model (1.1.1), a pairwise phase oscillator
model (2.2.2) and higher-order variants such as (2.4.1). The next section introduces
phase reductions and the organization of this chapter.

This chapter is based on the publication [20], which is joint work with Christian
Bick and Christian Kuehn. In particular, the technical parts are taken from this
publication of which I am the main author.

Data Availability This chapter is accompanied by software. In particular,
the Matlab code that generates the figures and the Mathematica code that
computes the phase reductions is publicly available on a GitHub repository [33]
that can be accessed via
https://github.com/tobiasboehle/HigherOrderPhaseReductions.

4.1 An Introduction to Phase Reductions

Phase reductions are a powerful tool from nonlinear analysis that allow to study
coupled limit-cycle oscillators just in terms of their phases [142, 128, 133]. Consider
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for example the continuous-time coupled particle system

ẋk = f(xk) +
K

M

M∑
j=1

akj g(xj, xk), k = 1, . . . ,M, (4.1.1)

where xk ∈ Rd is the state of particle k = 1, . . . ,M in a d-dimensional state space.
Further, K ∈ R is the coupling strength, (akj)k,j=1,...,M are the coefficients of an
adjacency matrix of a graph, that describes the coupling structure, g : Rd ×Rd →
Rd is a smooth coupling function and f : Rd → Rd is a smooth vector field that
describes the intrinsic dynamics of each particle. Moreover, assume that the system
ẋ = f(x), i.e., a single uncoupled particle, has a stable hyperbolic limit cycle
γ : [0, T ] → Rd with period T such that γ(0) = γ(T ). This assumption is satisfied
by many real-world dynamical systems. Examples range from biological systems
such as pacemaking cells in a healthy human heart, regularly spiking neurons or
flashing fireflies to large scale technological systems, such as power grids, or the
periodic motion of planets [144, 44, 75]. Each of these systems consists of coupled
particles that have stable periodic orbits. In any case, as this limit cycle is a closed
one-dimensional curve in Rd, which is homeomorphic to T := R/(2πZ), one can
represent the position of the particle on the limit cycle by just one element (or
phase) ϕ ∈ T. In particular, one can describe x ∈ γ([0, T ]) by ϕ = 2π

T
γ−1(x).

In this case, the evolution of a particle on the limit cycle can be described by
ϕ̇ = 2π

T
=: ω. Thus, the limiting dynamics of a single limit-cycle oscillator takes

place on T. As a consequence, the dynamics of the particle system (4.1.1) without
coupling, i.e., K = 0, settles to an invariant torus TM . If one uses the same
representation ϕk = 2π

T
γ−1(xk) for each particle on the limit cycle in terms of

a phase ϕk, the dynamics on this invariant torus is just given by ϕ̇k = ω for
k = 1, . . . ,M . As the limit cycle γ is hyperbolic, the invariant torus persists for
small coupling strengths K ̸= 0. In this case, the dynamics on the torus can be
described by a phase oscillator model of the form

ϕ̇k = ω + Gk(K,ϕ), k = 1, . . . ,M, (4.1.2)

with ϕ = (ϕ1, . . . , ϕM)⊤ ∈ TM and interaction functions Gk : (−ε0, ε0) × TM → R
for small enough ε0 > 0. Note that these interaction functions satisfy Gk(0, ϕ) = 0.
The process of transitioning from (4.1.1) to (4.1.2) is called phase reduction. Since
the explicit derivation of the functions Gk is hard, one typically approximates them
as expansions in K. Approximations of (4.1.2) that rely on first-order expansions
of Gk in K are called first-order phase reductions. Similarly, if one includes terms
of second order in K, the resulting system is called a second-order phase reduction.
Because one usually only considers a first-order phase reduction, everything beyond
first order is also referred to as a higher-order phase reduction. For example, (2.2.2)
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might be a first-order phase reduction while (2.4.1) with K2 := K and K3 := K2

might be a higher-order phase reduction.

If the coupling is weak, i.e., |K| is small enough, and the first-order phase
reduction is non-degenerate, these first-order phase reductions provide a good ap-
proximation of the full/unreduced system and they have found application to eluci-
date collective dynamics, such as synchronization, for example in neuroscience [9].
However, only considering first-order phase reductions, can be insufficient to de-
scribe the dynamics of the full/unreduced system when the first-order truncation
undergoes a bifurcation or when the coupling is stronger.

To accurately describe the dynamics of the full system in these cases, one has to
consider higher-order phase reductions. Recently, progress has been made to com-
pute such phase reductions: Explicit computations show how nonpairwise phase
interactions enter the phase-reduced equations once one goes to second or higher
orders [114, 70]. However, in general, computing higher-order phase reductions
is not straightforward and the focus has been on simple systems. This includes,
for example, the system (4.1.1), when f denotes the right-hand side of simple
oscillator model, such as a Stuart–Landau oscillator. In particular, the authors
of [114] consider coupled Stuart–Landau oscillators, which is special in the sense
that these oscillators have a rotational symmetry such that the limit cycle is the
unit circle. Their computations make explicit use of this symmetry and the result-
ing phase equations reflect the symmetry properties. However, such an assumption
of rotational symmetry is rarely satisfied for general oscillator systems.

In this chapter, we derive higher-order phase reductions for systems in which
the limit cycle of the individual oscillators is non-circular. In particular, we con-
sider networks of coupled Stuart–Landau oscillators on a graph that are subject to
a small perturbation. This perturbation deforms the circular limit cycle of regular
(unperturbed) Stuart–Landau oscillators into one that has a phase-dependent am-
plitude. Consequently, our perturbation also breaks the rotational symmetry of
the system. We derive phase reductions as expansion in terms of both the coupling
strength between oscillators as well as in the parameter that controls the size of
the limit cycle deformation. We then analyze how these higher-order interaction
terms affect the stability of full synchrony—all oscillators are at the same state—
and the splay configuration, in which the phases of the oscillators are uniformly
spread out.

Our approach not only allows to compute phase reductions for all-to-all coupled
networks, but also for coupled oscillators on arbitrary graphs. It turns out that the
resulting second-order terms in these phase reductions resemble the non-pairwise
terms in (2.4.1) that include interactions which depend on three oscillator phases.
In particular, we can explicitly compute corresponding coefficients (bkli)k,l,i=1,...,M

and interaction functions such that these two terms match. By interpreting these
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coefficients as entries of a 3-tensor that define a hypergraph, this yields a tool
to construct phase dynamics on a family of hypergraphs, which is a meaningful
approximation of nonlinearly coupled oscillators. This family is parameterized in
terms of the underlying coupling graph as well as the system parameters. The re-
sult is especially useful as so far, many phase oscillator networks with higher-order
interactions that have been considered were ad-hoc, for example, by generalizing
the Kuramoto model to hypergraphs (see, e.g., [160, 22]). By contrast, our results
provide a natural family of hypergraphs together with phase interaction functions
that describe the dynamics of an (unreduced) nonlinear oscillator network.

The rest of this chapter is organized as follows: In Section 4.2 we recall the
main points of a previous work [114] considering higher-order phase reductions
for globally coupled Stuart–Landau oscillators. Then, in Section 4.3 we study a
system whose limit cycle can be obtained from perturbing the circular limit cycle
from a Stuart–Landau oscillator. We derive phase reductions as an expansion
up to second order in the coupling strength and the parameter that controls the
deformation of the limit cycle. Next, in Section 4.4 we numerically analyze how the
deformation of the limit cycle affects the stability of synchronized and splay states.
We investigate how accurately first- and second-order phase reductions reproduce
these stability properties. Finally, Section 4.6 contains a short summary.

4.2 Phase Reductions for Stuart–Landau Oscil-

lators

In this section, we recall the main aspects of how to derive higher-order phase
reductions for coupled Stuart–Landau oscillators from [114]. We highlight the
main assumptions that are made to derive these reductions.

First, let us consider a single complex Stuart–Landau oscillator with state
A = A(t) ∈ C, that evolves according to

Ȧ = A− (1 + ic2) |A|2A, (4.2.1)

where c2 ∈ R is a parameter. The right-hand side of (4.2.1) is equivariant with
respect to the continuous group T, which acts on C by shifting an oscillator by a
given phase. Due to this symmetry, it makes sense to introduce polar coordinates
A = reiϕ with r ≥ 0 and ϕ ∈ T. In these new coordinates, the evolution of a
Stuart–Landau oscillator (4.2.1) is given by

ṙ = r − r3,

ϕ̇ = −c2r2
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and one can see that the system has a stable limit cycle at r = 1. Moreover, on this
limit cycle, the dynamics can be described by just the phase ϕ. In fact, on the limit
cycle, the phase ϕ increases with constant speed −c2, such that ϕ(t) = ϕ(0)− c2t.
To understand the dynamics off the limit cycle, we note that every point in the
basin of attraction of this attractive limit cycle has an asymptotic phase, which
is the phase of an initial condition of a trajectory on the limit cycle that the
point converges to. The set of points with the same asymptotic phase are called
isochrons [82, 111]. To define them, we introduce the notation ΦtA0 for the solution
of (4.2.1) with A(0) = A0 at time t. If A0 is on the limit cycle, i.e., |A0| = 1, and
ϕ(t) = θ − c2t then

I(θ) := {Â0 ∈ C : lim
t→∞

ΦtÂ0 − ei(θ−c2t) = 0}

is the isochron with asymptotic phase θ. Upon variation of θ, the isochrons foli-
ate the basin of attraction of the limit cycle. For (4.2.1), they can explicitly be
calculated [114] to be

I(θ) = {A = reiϕ : θ = ϕ− c2 ln r}.

As one can see from this formula these isochrons are symmetric in the sense that
one isochron can be obtained from another by shifting it by a constant phase, see
Figure 4.1. This property also follows directly from the T symmetry of (4.2.1).
An important observation about this isochrons is that θ̇ = ϕ̇− c2ṙ/r = −c2. Con-
sequently, in new coordinates (r, θ), a Stuart–Landau oscillator can be described
by

ṙ = r − r3,

θ̇ = −c2,

which makes r and θ independent. This will later be helpful when deriving phase
equations.

Having studied a single Stuart–Landau oscillator, we now considerM ∈ N cou-
pled Stuart–Landau oscillators described by complex variables Ak, k = 1, . . . ,M .
When the coupling is as in [114], they satisfy

Ȧk = Ak − (1 + ic2) |Ak|2Ak + ε(1 + ic1)(Ā− Ak), k = 1, . . . ,M. (4.2.2)

Here, c1, c2 are two real parameters, ε ≥ 0 relates to the coupling strength and Ā =
1
M

∑M
j=1Aj. Now, one changes to polar coordinates Ak = rke

iϕk , with rk ≥ 0 and
ϕk ∈ T. After conducting the additional nonlinear transformation θ = ϕ− c2 ln(r)
to straighten the isochrons, the authors of [114] arrive at the system

ṙk = f(rk) + εgk(r, θ), (4.2.3a)

θ̇k = ω + εhk(r, θ), (4.2.3b)
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Figure 4.1: Isochrons of a Stuart–Landau oscillator (4.2.1). The limit cylcle of the
Stuart–Landau oscillator is shown by the thick red line and the black lines depict
eight different isochrons I(iπ/4) for i = 1, . . . , 8, respectively. Moreover, the blue
lines represent the orbits of three initial conditions. Note, that at t = 0, these
trajectories are on the same isochron. Thus, the trajectories are also on the same
isochron if they are evaluated at a later time. In particular, the evaluation of these
three trajectories at times t = iπ/4 for i = 1, . . . , 8 is depicted by different symbols.
Observe that symbols of the same type are on the same isochron. Parameter values:
c2 = −1.

where ω ∈ R is a parameter that depends on c2, f(r) = r(1 − r2) and the func-
tions gk and hk are given by

gk(r, θ) = −rk +
1

M

M∑
j=1

{
rj

[
cos

(
θj − θk + c2 ln

rj
rk

)

− c1 sin

(
θj − θk + c2 ln

rj
rk

)]}
,

hk(r, θ) = c2 − c1 +
1

Mrk

M∑
j=1

{
rj

[
(c1 − c2) cos

(
θj − θk + c2 ln

rj
rk

)

+ (1 + c1c2) sin

(
θj − θk + c2 ln

rj
rk

)]}
.
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Changing the coordinate system from (r, ϕ) to (r, θ) is necessary to make (4.2.3b)
independent of r when ε = 0, as we see later. The coupling in (4.2.2) respects
the T symmetry of a Stuart–Landau oscillator such that (4.2.2) again possesses
a T symmetry group that acts on CM by shifting all oscillators A1, . . . , AM by
the same phase. Since the transformation that straightens the isochrons does not
break this symmetry, the system (4.2.3) inherits the same symmetry group. This
fact can also be observed by directly looking at the structure of the functions
gk, hk and f . Since they only depend on phase differences, they are invariant when
all oscillators are shifted by the same phase. Therefore, we can change into a
co-rotating coordinate frame

θ 7→ θ + ωt, (4.2.4)

and thereby set ω = 0 without loss of generality.
Next, we derive first- and second-order phase reductions for the system (4.2.3).

In absence of the coupling, i.e., ε = 0, each oscillator in (4.2.2) and (4.2.3) has
a stable limit cycle at |Ak| = 1 or rk = 1, respectively. Therefore, the limiting
dynamics of the whole system takes place on the M -dimensional torus that is
described by rk ≡ 1 for all k = 1, . . . ,M . When slightly varying ε this torus
persists but it gets perturbed. The radii of this invariant torus are then functions
of the phases. In fact, they can be expanded in terms of ε such that

rk(θ) = r
(0)
k (θ) + εr

(1)
k (θ) + ε2r(2)(θ) +O(ε3), (4.2.5)

with r
(0)
k ≡ 1, see [114]. Inserting the ansatz (4.2.5) into (4.2.3b) as done in [114]

yields

θ̇k = εhk(r(θ), θ)

= εhk(r
(0)(θ) + εr(1)(θ) +O(ε2), θ)

= εhk(r
(0)(θ), θ) + ε2∇rhk(r

(0)(θ), θ) · r(1)(θ) +O(ε3), (4.2.6)

since ω = 0. By truncating terms of order O(ε2), one can obtain a first-order
phase reduction. In particular, a first-order phase reduction is given by

θ̇k = εhk(r
(0)(θ), θ) = εhk(1, θ)

= ε(c2 − c1) + ε
1

M

M∑
j=1

(
(c1 − c2) cos(θj − θk) + (1 + c1c2) sin(θj − θk)

)
,

where 1 = (1, . . . , 1)⊤ ∈ RM . This shows the importance of using isochrons
for conducting phase reductions. As explained, if one did not change into the
coordinates (r, θ), (4.2.3b) would depend on r in absence of the coupling, i.e.,
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when ε = 0. Such a dependence would then cause the existence of ε0 terms
in (4.2.6) that depend on r. Even after truncating O(ε2) terms, the right-hand
side of (4.2.6) would still be dependent on r. Consequently, one cannot obtain a
closed system for just the phases in this way.

To derive a second-order phase reduction one keeps the ε2 terms in (4.2.6)
and truncates only the O(ε3) terms. These second-order terms are made up of
∇rhk(1, θ) and r(1)(θ). An expression for ∇rhk can be derived by direct differ-
entiation of hk. An expression for r(1)(θ) can be obtained by inserting (4.2.5)
into (4.2.3a) and collecting terms of order ε, see [114]. One then ends up with

ṙ
(1)
k = f ′(r

(0)
k )r

(1)
k + gk(r

(0), θ). (4.2.7)

Moreover, by the chain rule, one has

ṙk = (∇θrk) · θ̇ = (∇θrk) · (ω1+ εh(r, θ))

=
(
∇θr

(0)
k + ε∇θr

(1)
k +O(ε2)

)
·
(
ω1+ εh(r(0) +O(ε), θ)

)
,

for the dynamics on the invariant torus. Now, it is crucial that ω can be set to 0,
because then collecting terms of order ε in this equation yields

ṙ
(1)
k = (∇θr

(0)
k ) · h(r(0), θ). (4.2.8)

Because ∇θr
(0)
k = ∇θ1 = 0, combining (4.2.7) and (4.2.8), the authors of [114]

arrive at

r
(1)
k = −gk(r

(0), θ)

f ′(r(0))
=

1

2
gk(r

(0), θ).

Substituting that into (4.2.6) and truncating O(ε3) terms yields the second-order
phase reduction

θ̇k = εhk(1, θ) +
1

2
ε2∇rhk(1, θ) · g(1, θ).

An explicit calculation of the second-order terms yields

∇rhk(1, θ) · g(1, θ)

=
1 + c22
2M2

M∑
l=1

M∑
j=1

(
− (1 + c21) sin(θj + θk − 2θl) + (c21 − 1) sin(θj − 2θk + θl)

+ 2c1 cos(θj − θk)− 2c1 cos(θj − 2θk + θl)− (c21 − 1) sin(θj − θk)
)
.
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Observe, that these second-order terms contain both pairwise and triplet interac-
tions. In the special case1 c2 = 0, this second-order phase reduction can also be
rewritten using trigonometric identities as

θ̇k = ε |1 + ic1|S sin(Ξ− θk + α)− ε |1 + ic1| sin(α)

+
ε2 |1 + ic1|2

4

(
SQ sin(Υ− Ξ− θk) + S sin(Ξ− θk + 2α)

− S2 sin(2Ξ− 2θk + 2α)
)
,

(4.2.9)

where α = arg(1 + ic1), Qe
iΥ = 1

M

∑M
j=1 e

2iϕj and SeiΞ = 1
M

∑M
j=1 e

iϕj , to match
the notation of [114, Equation (15)].

4.3 Phase Reductions for Limit Cycles with Phase

Dependent Amplitude

In this section, we introduce a variation of Stuart–Landau oscillators where the
limit cycle is not circular but has a phase dependent amplitude. We then derive
first- and second-order phase reductions for this class of oscillators subject to cou-
pling as in the previous section. Finally, we investigate how these phase reductions
are affected by the parameter that determines the deviation of the shape of the
limit cycle from a circle.

Similarly to the work [114], the starting point of this section is a Stuart–Landau
oscillator. However, instead of considering the case when the isochrons are bent,
i.e., c2 ̸= 0, we want to generalize a Stuart–Landau oscillator in another way,
which allows for non-circular limit cycles. If δ ∈ (−1, 1) with |δ| ≪ 1 is the
parameter that determines deviation from a circular limit cycle and g : T → R is a
smooth function that determines the shape of the deviation, consider an oscillator
A = reiϕ ∈ C whose state evolves according to

ṙ = δg′(ϕ)ω
r

1 + δg(ϕ)
+mr2(r − 1− δg(ϕ)), (4.3.1a)

ϕ̇ = ω, (4.3.1b)

where ω > 0 is the angular velocity of the oscillator and m < 0. If δ = 0
the limit cycle is circular and (4.3.1) agrees with (4.2.1), when c2 = 0. Upon
varying δ, the oscillator’s limit cycle deforms into one that is parameterized by
r = 1+ δg(ϕ) and m determines the rate of attraction to this limit cycle. When g
is a constant this would keep the shape of the limit cycle but only alter its radius.

1An equivalent representation is also available if c2 ̸= 0, see [114].
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Since this is only a rescaled version of a regular Stuart–Landau oscillator, we
assume

∫
T g(ϕ)dϕ = 0.

Now, given an ensemble of M oscillators (Ak = rke
iϕk)k=1,...,M , we assume a

mean-field coupling, of the form

Ȧk = F(Ak) +Keiα(Ā− Ak), (4.3.2)

where F(Ak) denotes the intrinsic dynamics of oscillator k as described in (4.3.1),
K ∈ R is the coupling strength, α ∈ T is a parameter and Ā = 1

M

∑M
j=1Aj is

the average position as before. Rewritten in polar coordinates, this results in the
system

ṙk = δg′(ϕk)ω
rk

1 + δg(ϕk)
+mr2k(rk − 1− δg(ϕ))

+
K

M

M∑
l=1

[rl cos(ϕl − ϕk + α)− rk cos(α)],

ϕ̇k = ω +
K

Mrk

M∑
l=1

[rl sin(ϕl − ϕk + α)− rk sin(α)].

After the transformation

Rk =
rk

1 + δg(ϕk)
,

to transform the phase-dependent limit cycle to a circle, we arrive by a direct, but
slightly lengthy, calculation at the system

Ṙk = F (Rk, ϕk) +KGk(R, ϕ), (4.3.3a)

ϕ̇k = ω +KHk(R, ϕ), (4.3.3b)

with functions F,Gk and Hk defined by

F (Rk, ϕk) = mR2
k(Rk − 1)(1 + δg(ϕk))

2,

Gk(R, ϕ) =
1

M

M∑
l=1

[
Rl

1 + δg(ϕl)

1 + δg(ϕk)
cos(ϕl − ϕk + α)−Rk cos(α)

− δg′(ϕk)

(
Rl

1 + δg(ϕl)

(1 + δg(ϕk))2
sin(ϕl − ϕk + α)−Rk

sin(α)

1 + δg(ϕk)

)]
,

Hk(R, ϕ) =
1

M

M∑
l=1

[
Rl(1 + δg(ϕl))

Rk(1 + δg(ϕk))
sin(ϕl − ϕk + α)− sin(α)

]
.
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It is important to note, that F,G and H depend explicitly on the phase. Therefore,
the system (4.3.3) does not have a T symmetry. Hence, we cannot change into a co-
rotating coordinate system. That means, unlike in the system (4.2.3), we cannot
assume ω = 0 without loss of generality. However, ω = 0 was a crucial assumption
to derive formula (4.2.8) in Section 4.2. Next, we show how to generalize the
methods of [114] to derive higher-order phase reductions anyway.

4.3.1 Phase Reductions of First-Order

Because there is an additional parameter δ in our system, we expand in both K
and δ, i.e., we study asymptotics in two parameters [103]. Regarding notation,
if W is a function or a scalar, we write W (n,j) for the contribution of order Knδj

to W , i.e.,

W =
∞∑

n,j=0

KnδjW (n,j).

Moreover, we write W (n,⋆) for all contributions of order Kn, which includes all
orders in δ. Similarly, W (⋆,j) includes all terms of order δj. Consequently,

W =
∞∑
j=0

δjW (⋆,j) =
∞∑
n=0

KnW (n,⋆).

In particular, if the quantity W is independent of K, we have W = W (0,⋆), but
we use the notation W = W (−,⋆) to highlight the independence of K. We use this
notation to derive phase reductions of different approximation order inK and δ. To
distinguish these phase reductions, we speak of an (a, b)-phase reduction when a is
the highest approximation order in K and b is the highest order in δ. In particular,
an (a, b)-phase reduction is given by

ϕk =
a∑

n=0

b∑
j=0

KnδjP
(n,j)
k (ϕ),

where P
(n,j)
k (ϕ) denotes the contribution on the order Knδj. Explicit expressions

for P
(n,j)
k (ϕ) will be derived below.

By the same reasons as illustrated in Section 4.2, the limiting dynamics of
the system (4.3.3) takes place on an attractive invariant M -dimensional torus. If
K = 0 this torus is described by Rk ≡ 1 for all k = 1, . . . ,M . If |K| is small, the
torus persists and the radii of this torus can be expanded in terms of K as

Rk(ϕ) = R
(0,⋆)
k (ϕ) +KR

(1,⋆)
k (ϕ) +K2R

(2,⋆)
k (ϕ) +O(K3), (4.3.4)
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where R
(0,⋆)
k (ϕ) ≡ 1. When inserting the expansion (4.3.4) into the system (4.3.3b)

we obtain

ϕ̇k = ω +KHk

(
R(0,⋆)(ϕ) +KR(1,⋆)(ϕ) +K2R(2,⋆)(ϕ) +O(K3), ϕ

)
= ω +KHk(R

(0,⋆)
k (ϕ), ϕ) +K2∇RHk(R

(0,⋆)(ϕ), ϕ) ·R(1,⋆)(ϕ) +O(K3)

= ω +KHk(1, ϕ) +K2∇RHk(1, ϕ) ·R(1,⋆)(ϕ) +O(K3), (4.3.5)

which is the base equation for phase reductions of any order. A phase reduction
of first-order can be obtained by truncating terms of order O(K2), a second-order
phase reduction is derived from (4.3.5) by ignoring all terms of order O(K3), etc.
In particular, the (1,∞)-phase reduction is given by

ϕ̇k = ω +KHk(1, ϕ)

= ω +K
1

M

M∑
l=1

[
1 + δg(ϕl)

1 + δg(ϕk)
sin(ϕl − ϕk + α)− sin(α)

]
. (4.3.6)

Up to now, this contains all orders of δ, but by writing

Hk(R, ϕ) = H
(−,0)
k (R, ϕ) + δH

(−,1)
k (R, ϕ) + δ2H

(−,2)
k (R, ϕ) +O(δ3),

the (1,∞)-phase reduction can also be written as

ϕ̇k ≈
1∑

n=0

∞∑
j=0

KnδjP
(n,j)
k (ϕ),

where P
(0,0)
k (ϕ) ≡ ω, P

(0,j)
k (ϕ) ≡ 0 for all j ∈ N and

P
(1,j)
k (ϕ) = H

(−,j)
k (1, ϕ), j ∈ N0.

For example, we find

P
(1,0)
k (ϕ) =

1

M

M∑
l=1

[sin(ϕl − ϕk + α)− sin(α)] ,

P
(1,1)
k (ϕ) =

1

M

M∑
l=1

(g(ϕl)− g(ϕk)) sin(ϕl − ϕk + α),

P
(1,2)
k (ϕ) =

1

M

M∑
l=1

g(ϕk)(g(ϕk)− g(ϕl)) sin(ϕl − ϕk + α).
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Consequently, the (1, 0)-phase reduction is

ϕ̇k =
1∑

n=0

0∑
j=0

KnδjP
(n,j)
k (ϕ)

= ω +
K

M

M∑
l=1

[sin(ϕl − ϕk + α)− sin(α)] ,

which is the Kuramoto–Sakaguchi model [155] for identical oscillators.

4.3.2 Higher-Order Phase Reductions

Having explicitly stated the first-order phase reductions, we move on by considering
the terms of order K2 in (4.3.5), thereby deriving a second-order phase reduction.
As in Section 4.2, this requires knowledge of R(1,⋆)(ϕ). To get a formula describing
it, we follow the lines of [114] and insert the expansion (4.3.4) into (4.3.3a). Using
R(0,⋆) ≡ 1 and applying the chain rule, we find that the left-hand side of (4.3.3a)
turns into

Ṙk =
d

dt
Rk(t)

=
d

dt

(
R

(0,⋆)
k (ϕ(t)) +KR

(1,⋆)
k (ϕ(t)) +O(K2)

)
= K∇ϕR

(1,⋆)
k (ϕ(t)) · ϕ̇(t) +O(K2)

= K∇ϕR
(1,⋆)
k (ϕ(t)) ·

(
ω1+KH(R, ϕ)

)
+O(K2)

= Kω∇ϕR
(1,⋆)
k (ϕ(t)) · 1+O(K2), (4.3.7)

whenever the dynamics is constrained to the limiting torus. Using, 1 = (1, 1, . . . , 1)⊤ ∈
RM it follows that

ω∇ϕR
(1,⋆)
k (ϕ) · 1 = ω

M∑
l=1

∂

∂ϕl
R

(1,⋆)
k (ϕ).

Similarly, the right-hand of (4.3.3a) side turns into

F
(
R

(0)
k (ϕ(t)) +KR

(1)
k (ϕ(t)) +O(K2)), ϕk

)
+KGk

(
R(0)(ϕ(t)) +KR(1)(ϕ(t)) +O(K2), ϕ

)
= F (R

(0)
k (ϕ), ϕk) +KFR(R

(0)
k (ϕ), ϕk)R

(1)
k (ϕ) +KGk(R

(0)(ϕ), ϕ) +O(K2)

= F (R
(0)
k (ϕ), ϕk) +K

(
FR(R

(0)
k (ϕ), ϕk)R

(1)
k (ϕ) +Gk(R

(0)(ϕ), ϕ)
)
+O(K2),

(4.3.8)
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where FR(R, ϕ) = ∂
∂R
F (R, ϕ). Now, equating (4.3.7) and (4.3.8) and collecting

terms of order K yields

FR(1, ϕk)R
(1,⋆)
k (ϕ) +Gk(1, ϕ) = ω∇ϕR

(1,⋆)
k (ϕ) · 1, (4.3.9)

or equivalently, when using the definitions of F and G,

m(1 + δg(ϕk))
2R

(1,⋆)
k (ϕ) +

1

M

M∑
l=1

[
1 + δg(ϕl)

1 + δg(ϕk)
cos(ϕl − ϕk + α)− cos(α)

− δg′(ϕk)

(
1 + δg(ϕl)

(1 + δg(ϕk))2
sin(ϕl − ϕk + α)− sin(α)

1 + δg(ϕk)

)]
= ω∇ϕR

(1,⋆)
k (ϕ) · 1,

which is a linear first-order partial differential equation describing R
(1,⋆)
k (ϕ).

Ideally, we would like to set ω = 0, because then (4.3.9) turns into an algebraic

equation that we can easily solve for R
(1,⋆)
k (ϕ). However, at this point, we can no

longer proceed as in Section 4.2, because we cannot set ω = 0, since our system
is not rotationally invariant. Thus, we generalize the methods of [114] by solving
the PDE (4.3.9), as proposed in [70]. Assuming an expansion

R
(1,⋆)
k (ϕ) = R

(1,0)
k (ϕ) + δR

(1,1)
k (ϕ) + δ2R

(1,2)
k (ϕ) +O(δ3), (4.3.10)

we solve the PDE (4.3.9) order by order [67, 59, 96]. When δ = 0, the PDE

describing R
(1,0)
k is

mR
(1,0)
k (ϕ) +

1

M

M∑
l=1

[cos(ϕl − ϕk + α)− cos(α)] = ω∇ϕR
(1,0)
k (ϕ) · 1.

The solution to this PDE, which can, for example, be found with the method of
characteristics [67] or a computer algebra software2, is given by

R
(1,0)
k (ϕ) =

1

Mm

M∑
l=1

s0(ϕk, ϕl), s0(ϕk, ϕl) = − cos(ϕl − ϕk + α) + cos(α).

(4.3.11)

On first-order in δ, the resulting PDE is

mR
(1,1)
k (ϕ) + 2mg(ϕk)R

(1,0)
k (ϕ)− ω∇ϕR

(1,1)
k (ϕ) · 1

= − 1

M

M∑
l=1

[
(g(ϕl)− g(ϕk)) cos(ϕl − ϕk + α)

− g′(ϕk) (sin(ϕl − ϕk + α)− sin(α))
]
.

(4.3.12)

2This PDE can be solved with theMathematica code, which is available on GitHub, see [33].
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The solution of this PDE now depends on the specific choice of g. However, as
one can infer from the structure of (4.3.12), its solutions are linear in g in the

sense that if R̂
(1,1)
k (ϕ) is a solution to (4.3.12) when g = ĝ and R̃

(1,1)
k (ϕ) is one

if g = g̃, then γR̂
(1,1)
k (ϕ) is a solution when g = γĝ for all γ ∈ R. Moreover,

R̂
(1,1)
k (ϕ) + R̃

(1,1)
k (ϕ) is the solution to (4.3.12) when g = ĝ + g̃. If g(ϕ) = sin(ϕ),

the solution of (4.3.12) is given by

R
(1,1)
k (ϕ) =

1

2M(m2 + ω2)

M∑
l=1

s1(ϕk, ϕl), (4.3.13)

where s1(ϕk, ϕl) is a trigonometric polynomial that is defined by

s1(ϕk, ϕl) = ω
(
4 cos(ϕl + α)− cos(ϕk − 2ϕl − α) + 2 cos(2ϕk − ϕl − α)

− 2 cos(ϕk − α)− 3 cos(ϕk + α)
)

+m
(
4 sin(ϕl + α) + sin(ϕk − 2ϕl − α) + 2 sin(2ϕk − ϕl − α)

− 2 sin(ϕk − α)− 3 sin(ϕk + α)
)
.

(4.3.14)

A solution for (4.3.12) for general functions g is stated in Appendix A. Equivalently,
if α = 0, this condenses into

s1(ϕk, ϕl) = −2
(
1− cos(ϕk − ϕl)

)
·
(
2ω cos(ϕk)− ω cos(ϕl) + 2m sin(ϕk)−m sin(ϕl)

)
Finally, the PDE on order O(δ2) is

mR(1,2)(ϕ) + 2mg(ϕk)R
(1,1)
k (ϕ) +mg(ϕk)

2R
(0,1)
k (ϕ)− ω∇ϕR

(1,2)
k (ϕ) · 1

= − 1

M

M∑
l=1

[
g′(ϕk)

(
(g(ϕk)− g(ϕl)) sin(ϕl − ϕk + α)

+ g(ϕk)(sin(ϕl − ϕk + α)− sin(α))
)

+ g(ϕk)(g(ϕk)− g(ϕl)) cos(ϕl − ϕk + α)

]
.

This PDE, however, is not linear in g. In particular, if R̂
(1,2)
k (ϕ) is a solution for

g = ĝ then γ2R̂
(1,2)
k (ϕ) solves the PDE whenever g = γĝ, for γ ∈ R. If g(ϕ) = sin(ϕ)
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a solution is of the form

R
(1,2)
k (ϕ) =

1

−4mM (m4 + 5m2ω2 + 4ω4)

M∑
l=1

s2(ϕk, ϕl),

where s2(ϕk, ϕl) is a trigonometric polynomial of the same form as s1(ϕk, ϕl) but
with more summands3.

To determine the second-order interactions in (4.3.5), we also need to ex-

pand ∇RHk(R
(0)(ϕ), ϕ) in terms of delta. Denoting Hk(R, ϕ) = H

(−,0)
k (R, ϕ) +

δH
(−,1)
k (R, ϕ) + δ2H

(−,2)
k (R, ϕ) +O(δ3), we find

∇RH
(−,0)
k (1, ϕ) =

1

M

 sin(ϕ1 − ϕk + α)
...

sin(ϕM − ϕk + α)

− 1

M
ek

M∑
l=1

sin(ϕl − ϕk + α),

∇RH
(−,1)
k (1, ϕ) =

1

M

 (g(ϕ1)− g(ϕk)) sin(ϕ1 − ϕk + α)
...

(g(ϕM)− g(ϕk)) sin(ϕM − ϕk + α)


− 1

M
ek

M∑
l=1

(g(ϕl)− g(ϕk)) sin(ϕl − ϕk + α),

∇RH
(−,2)
k (1, ϕ) =

1

M

 g(ϕk)(g(ϕk)− g(ϕ1)) sin(ϕ1 − ϕk + α)
...

g(ϕk)(g(ϕk)− g(ϕM)) sin(ϕM − ϕk + α)


− 1

M
ek

M∑
l=1

g(ϕk)(g(ϕk)− g(ϕl)) sin(ϕl − ϕk + α),

where ek is the k-th unit vector in RM . Finally, we can put everything together
and calculate the second-order terms in (4.3.5):

∇RHk(1, ϕ) ·R(1,⋆)
k (ϕ) = P

(2,0)
k (ϕ) + δP

(2,1)
k (ϕ) + δ2P

(2,2)
k (ϕ) +O(δ3),

with

P
(2,0)
k (ϕ) = ∇RH

(−,0)
k (1, ϕ) ·R(1,0)(ϕ), (4.3.15a)

P
(2,1)
k (ϕ) = ∇RH

(−,0)
k (1, ϕ) ·R(1,1)(ϕ) +∇RH

(−,1)
k (1, ϕ) ·R(1,0)(ϕ), (4.3.15b)

P
(2,2)
k (ϕ) = ∇RH

(−,0)
k (1, ϕ) ·R(1,2)(ϕ) +∇RH

(−,1)
k (1, ϕ) ·R(1,1)(ϕ)

+∇RH
(−,2)
k (1, ϕ) ·R(1,0)(ϕ).

(4.3.15c)

3The full expression of s2(ϕk, ϕl) can be generated with the Mathematica code, which is
available on GitHub, see [33].
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Evaluating these expressions yields, for example,

P
(2,0)
k (ϕ) =

1

2M2m

M∑
l=1

M∑
i=1

(
sin(ϕi + ϕk − 2ϕl)− sin(ϕi − ϕk + 2α)

+ sin(ϕi − 2ϕk + ϕl + 2α)
)

for the second-order terms in K when δ = 0. We emphasize that it is here clearly
visible that three phases interact with each other, which is different from the
pairwise terms that appear in a (1, 0)-phase reduction. In other words, higher-
order interactions appear in higher-order phase reductions.

In conclusion, the (2, 2)-phase reduction is given by

ϕ̇k = ω +K
(
P

(1,0)
k (ϕ) + δP

(1,1)
k (ϕ) + δ2P

(1,2)
k (ϕ)

)
+K2

(
P

(2,0)
k (ϕ) + δP

(2,1)
k (ϕ) + δ2P

(2,2)
k (ϕ)

)
,

where P
(1,0)
k (ϕ), P

(1,1)
k (ϕ) and P

(1,2)
k (ϕ) are as in Section 4.3.1 and P

(2,0)
k (ϕ), P

(2,1)
k (ϕ)

and P
(2,2)
k (ϕ) are defined in (4.3.15).

4.3.3 Comparison of Phase Reductions With and Without
Symmetry

As we have highlighted in this section, the full system (4.3.3) has a T symmetry,
when δ = 0, that it does not have when δ ̸= 0. When existent, this symmetry
acts on the phase space by shifting all oscillators by a common phase. Now, we
compare the full system to its phase reductions and see if the symmetry of the full
system gets passed on to the phase reductions, when δ = 0. Moreover, when δ = 0,
the phase reductions should agree with the phase reductions derived in [114], as
outlined in Section 4.2.

The (2, 0)-phase reduction, i.e., the second-order phase reduction when δ = 0,
is given by

ϕ̇k = ω +KP
(1,0)
k (ϕ) +K2P

(2,0)
k (ϕ)

= ω +K
1

M

M∑
l=1

[sin(ϕl − ϕk + α)− sin(α)]

+K2 1

2M2m

M∑
l=1

M∑
i=1

(
sin(ϕi + ϕk − 2ϕl)− sin(ϕi − ϕk + 2α)

+ sin(ϕi − 2ϕk + ϕl + 2α)
)
.
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As one can see, the right-hand side of this equation only depends on phase dif-
ferences. Therefore, its value remains invariant when shifting all oscillators by a
common phase. Consequently, the (2, 0)-phase reduction inherits the T symmetry
of the full system. This (2, 0)-phase reduction can also be written as

ϕ̇k = ω +KS sin(Ξ− ϕk + α)−K sin(α) +K2 1

2m

(
SQ sin(Ξ + ϕk −Υ)

− S sin(Ξ− ϕk + 2α) + S2 sin(2Ξ− 2ϕk + 2α)
)
,

which agrees with (4.2.9), if one switches into a suitable rotating coordinate system
and chooses K = ε|1 + ic1|, m = −2 and c2 = 0. Note also, that ϕk = θk,
when comparing this equation with (4.2.9), since c2 = 0. The plausibility of
K = ε|1 + ic1| is immediate, when comparing the coupling strength in (4.2.2)
with those in (4.3.2). Moreover, m = −2 can be explained as follows: When
δ = 0, the parameter m is the rate of attraction towards the limit cycle of a single
oscillator (4.3.1). In particular, this rate can be obtained by linearizing (4.3.1a)
with respect to r and evaluating at the limit cycle r = 1. Doing the same for
the Stuart–Landau oscillator (4.2.1), yields that the rate of attraction to this limit
cycle is −2.

Now, let us consider phase reductions when δ ̸= 0. In particular, a (1, 1)-phase
reduction is given by the system

ϕ̇k = ω +KP
(1,0)
k (ϕ) +KδP

(1,1)
k (ϕ)

= ω +K
1

M

M∑
l=1

[sin(ϕl − ϕk + α)− sin(α)]

+Kδ
1

M

M∑
l=1

(sin(ϕl)− sin(ϕk)) sin(ϕl − ϕk + α)

which does not have a T symmetry, because the right-hand side does not remain
invariant when one shifts all oscillators by a common phase. Specifically, this
is the case for the terms of order δ1. Since, higher-order phase reductions also
consist of these terms, any phase reduction of higher-order than 1 in δ is also
not T symmetric. To conclude, phase reductions of the full system (4.3.3) possess
a T symmetry if and only if the full system itself possesses this symmetry.

As a remark, when α = 0, the (1, 1)-phase reduction can also be written as

ϕ̇k = ω +K
1

M

M∑
l=1

sin(ϕl − ϕk)
[
1 + δ(sin(ϕl)− sin(ϕk))

]
.
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This formula shows that the effect of δ on the (1, 1)-phase reduction can also be
seen as a perturbation of the (1, 0)-phase reduction. Similarly, when α = 0, the
(2, 1)-phase reduction can be written as

ϕ̇k = ω +K
1

M

M∑
l=1

sin(ϕl − ϕk)
[
1 + δ(sin(ϕl)− sin(ϕk))

]
+K2 1

M2m

M∑
l=1

M∑
i=1

{
sin(ϕl − ϕk)(1− cos(ϕi − ϕl))

·
[
1 + δ

(
u(ϕl, ϕi) + sin(ϕl)− sin(ϕk)

)]
− sin(ϕl − ϕk)(1− cos(ϕi − ϕk))

·
[
1 + δ

(
u(ϕk, ϕi) + sin(ϕl)− sin(ϕk)

)]}
,

where

u(ϕk, ϕi) =
−m

m2 + ω2
(2ω cos(ϕk)− ω cos(ϕi) + 2m sin(ϕk)−m sin(ϕi)).

Again, the effect of δ on the (2, 1)-phase reduction can be seen as a correction of
the (2, 0)-phase reduction.

4.4 Dynamics in Phase-Reduced Systems

In this section we consider two different orbits, specifically, the synchronized orbit
and the splay orbit, and compare their stability in a few different systems, including
the full system (4.3.3) and various phase reductions of different order.

4.4.1 The Synchronized Orbit

First, we consider synchronized states in the full system. A state in the phase
space is called synchronized if all the oscillators are at the same position. In the
full system (4.3.3) this state is defined by {A1 = · · · = AM} or in polar coordinates

{R1 = · · · = RM} and {ϕ1 = · · · = ϕM}. (4.4.1)

Consequently, if a state is synchronized, it is uniquely given by its amplitude
R⋆ := Rk and its phase ϕ⋆ := ϕk for any k = 1, . . . ,M . Due to the SM symmetry
of (4.3.3) the set of synchronized states (4.4.1) is dynamically invariant. Thus, we
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can insert the ansatz (4.4.1) into the system (4.3.3) to obtain ODEs for R⋆ and ϕ⋆

as

Ṙ⋆ = m(R⋆)2(R⋆ − 1)(1 + δg(ϕ⋆))2,

ϕ̇⋆ = ω.

Based on these equations one can see that always R⋆ = 1 on the invariant torus
and that the rate of attraction to R⋆ = 1 is given by m(1 + δg(ϕ⋆))2. Since |δ| is
small, this rate is mostly governed by m < 0. Moreover, the phase ϕ⋆ evolves with
constant speed ω. Consequently, the synchronized orbit on the invariant torus is
given by γf(t) = (1, (ϕ0 + ωt)1), which is periodic with period T = 2π/ω.

Now, we look at synchronized states in phase-reduced systems. In a phase-
reduced system, there are no amplitudes and thus, a synchronized state is present
when the single condition ϕ1 = · · · = ϕM is fulfilled. Here, a synchronized state
is only determined by its phase ϕ⋆ := ϕk for any k = 1, . . . ,M . Similarly to the
full system, phase-reduced systems retain the SM symmetry and therefore the set
of synchronized states is dynamically invariant. Inserting ϕ ≡ ϕ⋆ into any of the
phase reductions derived in Section 4.3 yields

ϕ̇⋆ = ω.

Therefore, the synchronized orbit in phase-reduced systems is γpr(t) = (ϕ0 + ωt)1
with period T = 2π/ω.

Having established representations for the synchronized orbits, we now inves-
tigate their stability. Usually, when one wants to check the stability of a syn-
chronized orbit, one changes into a co-rotating coordinate system, in which each
synchronized state is an equilibrium. Then, one linearizes the vector field around
this equilibrium and calculates the eigenvalues of this linearization. If they are all
negative, apart from a single 0 eigenvalue that corresponds to perturbations along
the continuum of synchronized states, the synchronized orbit is linearly stable and
linearly (neutrally) unstable otherwise. However, when δ ̸= 0, we cannot change
into a co-rotating coordinate system, since the full system as well as phase-reduced
systems are not T symmetric. In particular, the rate of attraction to the limit cycle
depends on the position on the limit cycle. Consequently, one needs to take aver-
ages over all rates of attraction of one period of the limit cycle. These averages are
called Floquet exponents. The concept of Floquet exponents and Poincaré return
maps is often helpful when analyzing the stability of periodic orbits [50, 170]. To
understand it, let us consider the general differential equation

ẋ = H(x), H : X → TX ,

where H is a smooth vector field on the phase space X and TX is its tangent
bundle. Suppose there is a periodic orbit γ : [0, T ] → X with period T . Later
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we want to apply this to the full system, in which x = (R, ϕ)⊤ ∈ RM
≥0 × TM ,

and phase-reduced systems with x = ϕ ∈ TM . To analyze the stability of the
orbit γ, one assumes a perturbation of the starting point of the periodic orbit
x(0) = γ(0) + εη(0) and continues this perturbation along the periodic orbit such
that x(t) = γ(t)+εη(t). One the one hand, if all possible perturbations η(0) decay
after one period T , we expect the periodic orbit γ to be stable. On the other hand,
if some perturbations η(0) grow in amplitude, the orbit γ is unstable. Therefore,
we solve for η(t). However, since that is difficult to do in general, we first linearize
in ε to obtain on first order

η̇(t) = A(t)η(t), A(t) = DH(γ(t)), (4.4.2)

which is a system of linear ODEs with a time-dependent coefficient matrix A(t).
Now, let Φ(t) ∈ RM×M be a fundamental solution of this ODE such that η(t) =
Φ(t)η(0). To determine the linear stability of the periodic orbit γ(t) one propagates
all possible perturbations η(0) over one period T of the orbit and then looks at
the eigenvalues of the map Φ(T ). Of course, this map has an eigenvalue 1, that
corresponds to the eigenvector that represents a perturbation along the periodic
orbit. All other eigenvalues λk, k = 1, . . . ,M − 1 are the multipliers of a Poincaré
return map. They are related to the Floquet exponents qk of the orbit as λk = eTqk ,
for k = 1, . . . ,M − 1. If the largest absolute value of all Poincaré return map
multipliers (PRMMs) is less than 1, the periodic orbit is linearly stable. If one
PRMM has an absolute value greater than 1, the orbit is linearly unstable.

Next, we apply this concept to the synchronized orbit in phase-reduced systems.
We start by calculating the PRMMs for the (1,∞)-phase-reduced system (4.3.6).
When putting this system into the framework of (4.4.2), we see that the matrix
A(t) is given by

A(t) = f(γ(t))
K

M
(JM −MIdM),

where JM := {1}M×M is the M ×M matrix where all entries are ones, IdM is the
M ×M dimensional identity matrix and

f(γ) =
1

1 + δg(γ)

(
δg′(γ) sin(α) + (1 + δg(γ)) cos(α)

)
.

Due to the SM symmetry of the synchronized state in the phase-reduced systems,
the matrix A(t) has the special property that it is just a multiple of JM −MIdM .
Since matrices of this form commute with each other, a fundamental solution Φ(t)
of (4.4.2) can explicitly be calculated using the matrix exponential:

Φ(t) = exp

(∫ t

0

A(t̂)dt̂

)
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= exp

(∫ t

0

f(γ(t̂))dt̂

(
K

M
(JM −MIdM)

))
.

Integrating f(γ(t)) over one period of the orbit γ(t) = ϕ0 + ωt yields∫ T

0

f(γ(t̂)) dt̂ =
[
sin(α) ln(1 + δg(γ(t̂))) + t̂ cos(α)

]t̂=T
t̂=0

= T cos(α) =
2π

ω
cos(α).

Combining this with the fact that the eigenvalues of exp( a
M
(JM −MIdM)) are e−a

with multiplicityM−1 and 1 with multiplicity 1, we infer that the critical PRMM
is

λcrit = exp

(
−2πK

ω
cos(α)

)
. (4.4.3)

Interestingly, this is independent of δ even though the system (1,∞)-phase reduc-
tion includes all orders in δ. Consequently, the stability of a synchronized orbit
is unaffected by δ in any phase reduction without higher-order interactions. A
similar calculation4 yields that the critical PRMM of the synchronized orbit in a
(2, 0)-phase reduction is

λcrit = exp

(
−2πK

mω
(m cos(α)−K sin(α)2)

)
. (4.4.4)

The critical PRMM in a (2, 1)-phase reduction agrees with (4.4.4), which can be
shown using the formulas (4.3.13) and (4.3.15b) if g(ϕ) = sin(ϕ). When g is a
general function, the formulas to show that can be found in Appendix A. Finally,
when g(ϕ) = sin(ϕ), the critical PRMM in a (2, 2)-phase reduction it is given by

λcrit = exp

(
−2πK

mω(m2 + ω2)

(
m3 cos(α) +mω2 cos(α)−Km2 sin(α)2

− 2Km2δ2 sin(α)2 −Kω2 sin(α)2
))

,

(4.4.5)

which finally shows the dependence on δ.
Having derived stability conditions for synchronized orbits in phase-reduced

system, we now analyze the stability of the synchronized orbit in the full system.
Unfortunately, when applying the concept (4.4.2) to the full system, the matrices
A(t) and A(s) do not commute with each other. Therefore, it is not possible to

4The Mathematica code, that calculates these PRMMs, is available on GitHub, see [33].



4.4. DYNAMICS IN PHASE-REDUCED SYSTEMS 67

use the matrix exponential to analytically compute PRMMs and Floquet expo-
nents, but we have to resort to numerical methods to determine them. Yet, in the
special case δ = 0, the stability analysis of these periodic orbits simplifies quite
significantly. In fact, in this case, the full system has a T symmetry, which acts
by shifting all oscillators by a constant phase. Then, one can also change to a
co-rotating coordinate frame, in which ω = 0. In these new coordinates all syn-
chronized states are then equilibria. The spectrum of the right-hand side of the
system at the synchronized state then contains information about the stability.
There will be one zero eigenvalue, since there is a one-dimensional continuum of
synchronized states. If all the other eigenvalues have negative real part, the syn-
chronized state as an equilibrium in the co-rotating frame is linearly stable and thus
the synchronized orbit in the original system inherits this stability. Conversely, if
one eigenvalue has positive real part, the synchronized orbit in the original system
is unstable. Conducting this analysis for the full system (4.3.3) yields that the
linearization of the right-hand side is given by a matrix(

mIdM + K
M

cos(α)(JM −MIdM) −K
M

sin(α)(JM −MIdM)
K
M

sin(α)(JM −MIdM) K
M

cos(α)(JM −MIdM)

)
. (4.4.6)

The eigenvalues of this matrix can explicitly be calculated and are given by

q1 = 0,

q2,...,M =
1

2

(
m− 2K cos(α) +

√
−2K2 +m2 + 2K2 cos(2α)

)
,

qM+1 = m,

qM+2,...,2M =
1

2

(
m− 2K cos(α)−

√
−2K2 +m2 + 2K2 cos(2α)

)
,

where we denote them by qk for k = 1, . . . , 2M because they describe the instan-
taneous rate of attraction to the periodic orbit and thus relate to the Floquet
exponents. In fact, since this instantaneous rate of attraction is constant over the
whole orbit, these eigenvalues agree with the Floquet exponents. Note that m < 0
and thus, when K = 0, we have q2,...,M = 0 and qM+1,...,2M = m, which is the
rate of attraction to the limit cycle. Consequently, the first M eigenvalues corre-
spond to perturbations of the phases ϕ and the last M eigenvalues originate from
perturbations in the radial directions. To compare this model with phase-reduced
models, we assume that |m| is big enough such that the last M eigenvalues can
be neglected and the critical Floquet exponent qcrit is given by q2, . . . , qM . Of
course there is also the zero eigenvalue q1. However, that does not contribute to
the stability as it corresponds to a perturbation along the continuum of synchro-
nized states. Given the critical Floquet exponent, one can then obtain the critical
PRMM by simply calculating λcrit = exp(qcritT ) = exp(2π

ω
qcrit). When δ ̸= 0 in
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the full system, PRMMs can only numerically be calculated, as shown in Fig-
ure 4.2(a). Figures 4.2(b-d) compare PRMMs from the full system with PRMMs
from phase-reduced systems.
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Figure 4.2: Comparison of the critical multipliers of the Poincaré return map of the
synchronized orbit in the full system and phase-reduced systems. Part (a) shows
the critical PRMM of the synchronized orbit in the full system in dependence of
δ and the coupling strength K. Part (b) depicts the critical PRMM (4.4.3) of the
synchronized orbit in a (1,∞)-phase reduction and part (c) illustrates the critical
PRMM (4.4.5) of the same orbit in a (2, 2)-phase reduction. Finally, part (d)
depicts the critical PRMM in the full system, the (1,∞)-phase reduction and the
(2, 2)-phase reduction when δ = 0. Note that the range of K in part (d) is wider
than in parts (a)-(c). As one can see in part (d), the critical PRMM in the full
system agrees with the critical PRMM of a (2, 2)-phase reduction for a wide range
of K. Parameter values: ω = 1,m = −1, α = π/2 + 1/20, g(ϕ) = sin(ϕ).

4.4.2 The Splay Orbit

While all oscillators gather at one point on the circle if they are synchronized, one
can say that the splay state is the opposite of that. A splay state is given when
the oscillators phases are equidistantly distributed on the circle. More specifically,
a state ϕ ∈ TM is a splay state if there is a permutation σ : [M ] → [M ] such that

ϕσ(k+1) = ϕσ(k) +
2π

M
,

for k = 1, . . . ,M − 1. By relabeling the nodes, we might also assume that σ is the
identity map. Thus, the set of splay states is given by

D := {ϕ ∈ TM : ϕk+1 = ϕk +
2π

M
for k = 1, . . . ,M − 1}. (4.4.7)
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A splay state in this set can be characterized by just the first phase ϕ1. This
set has a ZM := Z/(MZ) symmetry group that acts on a state by shifting the
indices, which have to be understood modulo M , of each oscillator by a constant
integer. Now, let us consider the set of splay states in phase-reduced systems with
δ = 0. Since the right-hand sides of (1, 0)- and (2, 0)-phase-reduced systems are
equivariant with respect to this group action, the set of splay states is dynamically
invariant. In particular, when inserting a splay state into the right-hand side of
a (1, 0)-phase reduction and a (2, 0)-phase reduction, it follows that ϕ̇k = ω −
K sin(α) =: ω̂. Therefore, if ω̂ ̸= 0, there exists a periodic orbit γpr(t) ∈ TM with
γprk (t) := ω̂t + 2πk

M
, that has period T = 2π

ω̂
= 2π

ω−K sin(α)
. We refer to this orbit as

the splay orbit.
Next, we consider splay states in the full system (4.3.3) and still assume δ = 0.

Inserting the ansatz (4.4.7) into the full system (4.3.3) yields that the amplitudes
on the invariant torus are given by

Rk ≡
1

2

(
1 +

√
1 +

4K cos(α)

m

)
=: R⋆. (4.4.8)

Therefore, we call a state (R, ϕ) ∈ RM
≥0 × TM a splay state if ϕ ∈ D and the

amplitudes satisfy (4.4.8). Then, the splay state in the full system has the same
symmetry group ZM as splay states in phase-reduced systems. Moreover, since
the right-hand side of the full system (4.3.3) is again equivariant with respect
to this symmetry group, the splay state is dynamically invariant. Furthermore,
the angular frequency of the phases is ϕ̇k = ω − K sin(α) = ω̂ as for phase-
reduced systems. Therefore, there exists a periodic orbit γf(t) = (Rf(t), ϕf(t))⊤

with Rf
k(t) = R⋆ and ϕf

k(t) = ω̂t + 2πk
M

, that has the same period as the one in
phase-reduced systems.

When analyzing the stability of these splay orbits in both phase-reduced and
the full system, it is important to note that splay orbits are just one single periodic
orbit in a whole continuum of periodic orbits. In particular, in phase-reduced
systems, all incoherent states, that are characterized by

Z :=
1

M

M∑
k=1

eiϕk = 0, (4.4.9)

rotate around the circle with constant frequency ω̂. In the full system states
(R, ϕ) ∈ RM

≥0 × TM with Rk = R⋆ for k = 1, . . . ,M and Z = 0 rotate around the
circle with the same constant frequency. Therefore, there exist further periodic
orbits, which we refer to as incoherent orbits. Since a splay state is a special
incoherent state, but in general the set of incoherent states is larger than the set of
splay states, the splay orbit is only one orbit in a continuum of incoherent orbits.
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Consequently, when analyzing the stability of the splay orbits with PRMMs or
Floquet exponents, there is always one neutral multiplier or exponent, respectively.
The only exception is present when the set of incoherent states coincides with the
set of splay states, i.e., whenM = 3. To overcome the problem of neutral stability,
we restrict ourselves to M = 3.

If δ = 0, we can change into a rotating frame coordinate system, in which splay
states are equilibria. After having done that, we linearize the right-hand side at
the splay state and thereby obtain Jacobians with eigenvalues

q1 = 0, q2,3 =
K

2
e±iα

in a (1, 0)-phase reduction and

q1 = 0, q2,3 =
K

2
e±iα

(
1− 1

2m
Ke±iα

)

in a (2, 0)-phase reduction. An analytical derivation of the eigenvalues in the
full system turned out to be too complicated. In both cases, the critical Floquet
exponent is given by qcrit = q2,3 and thus the critical PRMM is λcrit = eTq

crit
.

While all the previous theory was only valid for δ = 0, we now investigate what
happens if δ ̸= 0. In this case, the right-hand sides of both the phase-reduced sys-
tems and the full system are no longer equivariant with respect to ZM . Therefore,
splay states are in general not invariant anymore. However, when M = 3 and
δ = 0, there is a single periodic orbit, i.e., the splay orbit. For general parameter
values, this orbit has no PRMMs whose absolute value equals 1. Thus, this splay
orbit is hyperbolic. Slight changes in δ away from 0 preserve the existence of a
periodic orbit in the neighborhood of the splay orbit. To illustrate the stability
of these orbits, we numerically search for periodic orbits in a neighborhood of
the splay orbit in the full system and phase-reduced systems. Then, we numeri-
cally calculate their critical PRMMs to determine the stability of these orbits, see
Figure 4.3.

A numerical analysis revealed that there is a subcritical Neimark-Sacker bifur-
cation in Figure 4.3(f) when K is negative and the modulus of the critical PRMM
passes through 1. In particular, there are two complex conjugated PRMMs that
pass through the complex unit circle. This correctly represents the bifurcation
behavior of the full system, as in Figure 4.3(d). A (1,∞)-phase reduction does
not even capture the bifurcation, see Figure 4.3(e). The bifurcation at K = 0 is
degenerate. When K = 0 there is no coupling and so all eigenvalues and Floquet
exponents are 0.
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Figure 4.3: Numerical calculation of periods and critical multipliers of the Poincaré
return map of periodic orbits in a neighborhood of the splay orbit. The first column
represents the full system, the second column is the (1,∞)-phase reduction and
the third column displays the (2, 2)-phase reduction. The upper row is the period
of the resulting periodic orbit, while the lower row depicts the critical PRMM of
this orbit. Parameters: α = π/2 + 1/20,m = −1, ω = 1,M = 3, g(ϕ) = sin(ϕ)

4.5 Phase Reduction Beyond All-To-All Coupled

Networks

In Sections 4.3 and 4.4, we have started with a system of coupled oscillators, de-
rived various phase reductions and compared the stability of synchronized and
splay orbits. The system (4.3.2), that we started with, consists of M complex
Stuart–Landau oscillators coupled with each other via a mean-field coupling, i.e.,
each oscillator influences every other oscillator in the same way. However, instead
of such an all-to-all coupling, one could also assume that the coupling between
oscillators is described by a graph. In Section 4.5.1 we adopt our calculations
from the previous sections to a non all-to-all coupling and Section 4.5.2 then con-
tains an interpretation of the higher-order interactions terms that we derive from
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a phase reduction of nonlocally coupled Stuart–Landau oscillators. This provides
additional evidence that it is important to study dynamical systems on hyper-
graphs which have recently been encountered in many different contexts; see for
example [160, 35, 156, 78, 80, 69].

4.5.1 Derivation of the Phase-Reduced Dynamics

Now, let us assume that the coupling structure is not given by an all-to-all topol-
ogy, but instead by a (possibly directed and weighted) graph Γ = (V,E) that is
described by its adjacency matrix A ∈ RM×M with entries akl. Then, the governing
equation is

Ȧk = F(Ak) +Keiα
1

M

M∑
l=1

akl (Al − Ak), (4.5.1)

which contains (4.3.2) as a special case when akl = 1 for all k, l = 1, . . . ,M . Now,
one can do the same analysis as in Section 4.3, but with (4.5.1) as a starting point.
The procedure from Section 4.3 is directly applicable to (4.5.1), only the resulting
formulas are slightly different. Therefore, will not explain the whole procedure
again, but only state the results.

The system (4.5.1) can be written in polar coordinates Ak = rke
iϕk . Trans-

forming the radii as Rk = rk/(1 + δg(ϕk)) yields the system

Ṙk = F (Rk, ϕk) +KGk(R, ϕ) (4.5.2a)

ϕ̇k = ω +KHk(R, ϕ), (4.5.2b)

with functions F,Gk and Hk defined by

F (Rk, ϕk) = mR2
k(Rk − 1)(1 + δg(ϕk))

2,

Gk(R, ϕ) =
1

M

M∑
l=1

akl

[
Rl

1 + δg(ϕl)

1 + δg(ϕk)
cos(ϕl − ϕk + α)−Rk cos(α)

− δg′(ϕk)

(
Rl

1 + δg(ϕl)

(1 + δg(ϕk))2
sin(ϕl − ϕk + α)−Rk

sin(α)

1 + δg(ϕk)

)]
,

Hk(R, ϕ) =
1

M

M∑
l=1

akl

[
Rl(1 + δg(ϕl))

Rk(1 + δg(ϕk))
sin(ϕl − ϕk + α)− sin(α)

]
.

The existence of an invariant torus as in (4.3.4) is still guaranteed. Therefore,
proceeding as in Section 4.3, we obtain the first-order phase reduction

ϕ̇k = ω +KP
(1,⋆)
k (ϕ) = ω +KHk(1, ϕ)
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= ω +K
1

M

M∑
l=1

akl

[
1 + δg(ϕl)

1 + δg(ϕk)
sin(ϕl − ϕk + α)− sin(α)

]
. (4.5.3)

To obtain second-order phase reductions in K, we need to solve the PDE (4.3.9).
When δ = 0, this PDE has the solution

R
(1,0)
k (ϕ) =

1

Mm

M∑
l=1

akls0(ϕk, ϕl),

with s0(ϕk, ϕl) as in (4.3.11). Similarly, if g(ϕ) = sin(ϕ), on the first order in δ the
solution is

R
(1,1)
k (ϕ) =

1

2M(m2 + ω2)

M∑
l=1

akls1(ϕk, ϕl),

where s1(ϕk, ϕl) is as in (4.3.14). Finally, if g(ϕ) = sin(ϕ), the solution on second
order in δ is

R
(2,1)
k (ϕ) =

1

−4mM (m4 + 5m2ω2 + 4ω4)

M∑
l=1

akls2(ϕk, ϕl).

To determine the second-order phase reduction inK, one also needs to calculate
the gradient of H as illustrated in (4.3.15). It turns out that

∇RH
(−,0)
k (1, ϕ) =

1

M

 ak1 sin(ϕ1 − ϕk + α)
...

akM sin(ϕM − ϕk + α)

− 1

M
ek

M∑
l=1

akl sin(ϕl − ϕk + α)

and that gradients on higher order in δ are generally of the form

∇RH
(−,β)
k (1, ϕ) =

1

M

 ak1wβ(ϕk, ϕ1)
...

akMwβ(ϕk, ϕM)

− 1

M
ek

M∑
l=1

aklwβ(ϕk, ϕl),

for β = 0, 1, 2, . . . , where wβ are trigonometric polynomials. Now, calculating the

second-order contributions P
(2,0)
k (ϕ) yields5

P
(2,0)
k (ϕ) = − 1

2M2m

M∑
l=1

M∑
i=1

aklaki

(
sin(ϕi − ϕl)− sin(ϕi − 2ϕk + ϕl + 2α)

− sin(ϕk − ϕl)− sin(ϕk − ϕl − 2α)
)
.

(4.5.4a)

5The expression for P
(2,1)
k (ϕ) and P

(2,2)
k (ϕ) can be generated with the Mathematica code,

which is available on GitHub, see [33].
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+
1

2M2m

M∑
l=1

M∑
i=1

aklali

(
sin(ϕi + ϕk − 2ϕl)− sin(ϕk − ϕl)

− sin(ϕk − ϕl − 2α)− sin(ϕi − ϕk + 2α)
)

(4.5.4b)

The next subsection discusses these second-order contributions.

4.5.2 Second-Order Phase Reductions as Higher-Order Net-
works

We now discuss the individual coupling terms that constitute the (2, 0)-phase re-
duction. The coupling includes nonpairwise terms and we discuss how the coupling
can be interpreted as a higher-order phase oscillator network on hypergraphs that
can be derived from the original graph Γ = (V,E) that describes the coupling of
the nonlinear oscillators. In summary, the (2, 0)-phase reduction is given by

ϕ̇k = ω +KP
(1,0)
k (ϕ) +K2P

(2,0)
k (ϕ),

where

P
(1,0)
k (ϕ) = H

(−,0)
k (1, ϕ) =

1

M

M∑
l=1

akl

(
sin(ϕl − ϕk + α)− sin(α)

)
(4.5.5)

agrees with (4.5.3) for δ = 0 and P
(2,0)
k (ϕ), as specified in (4.5.4), contains the

second-order terms. First, note that the coupling of the first-order phase reduc-
tion (4.5.5) is posed on the graph Γ(1) := Γ that describes the interactions of the
coupled nonlinear oscillator network.

The second-order phase interaction terms (4.5.4) not only contain pairwise
interactions along network edges but also nonpairwise interactions between triplets
of oscillators. On a broad level, these can be interpreted as phase interactions on
two 3-uniform directed hypergraph, defined by the 3-tensors ĥ, h̄ ∈ RM×M×M with
coefficients

ĥkli := aklaki, h̄kli := aklali,

where a triplet (k, l, i) describes the strength of the group interaction between
three nodes k, l, i on node k. The coupling functions along these hyperedges are

ĝ(ϕk, ϕl, ϕi) = 2 cos(α) sin(ϕl − ϕk + α) + sin(ϕi − ϕl)− sin(ϕi − 2ϕk + ϕl + 2α),

ḡ(ϕk, ϕl, ϕi) = 2 cos(α) sin(ϕl − ϕk + α)− sin(ϕi − ϕk + 2α) + sin(ϕi + ϕk − 2ϕl).

(4.5.6)
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(a1)
k

li

sin(ϕl − ϕk + α)

(a2)

k

l

i

sin(ϕl − ϕk + α)

(b1)
k

li

sin(ϕi − ϕl)

(b2)

k

l

i

sin(ϕi − ϕk + 2α)

(c1)
k

li

sin(ϕi − 2ϕk + ϕl + 2α)

(c2)

k

l

i

sin(ϕi + ϕk − 2ϕl)

Figure 4.4: Illustration of second-order phase interactions in K that affect node k
(indicated in red). The first row corresponds to terms appearing in ĝ, while the
second row lists terms of ḡ. The black lines indicate edges in the graph Γ that
describe the interaction of the unreduced nonlinear oscillator network. The (hy-
per)edges that describe the directed phase interactions are indicated by green blobs
(with node k being the head). These include pairwise interactions (panels a1, a2),
pairwise interactions that may be virtual (panel b2), and three types of nonpair-
wise interactions (panels b1, c1, c2).

These can be obtained from (4.5.4) using trigonometric identities and we have

P
(2,0)
k (ϕ) = − 1

2M2m

M∑
l,i=1

ĥkliĝ(ϕk, ϕl, ϕi) +
1

2M2m

M∑
l,i=1

h̄kliḡ(ϕk, ϕl, ϕi).

Since the coupling functions (4.5.6) contain both pairwise and nonpairwise
phase interactions, the interaction structure can be further broken down: Each of
the three summands can be associated with a particular type of interaction, which
results in six subclasses in total. These are illustrated in Figure 4.4.

First, there are pairwise correction terms to the first-order phase reduction,
that correspond to the first summand in the definition of ĝ and ḡ; see (4.5.6).

The coupling of these pairwise correction terms is posed on the graph Γ
(2)
a := Γ

that is the same graph as the coupling of the full system and the coupling of the
first-order phase reduction Γ(1); see Figure 4.4(a). One of these pairwise correction
terms is weighted with the degree of the node k; see Figure 4.4(a1), while the other
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term is weighted with the degree of node l (that is in the neighborhood of k), see
Figure 4.4(a2). Moreover, the interaction function sin(ϕl−ϕk+α) agrees with the
interaction function of a first-order phase reduction (4.5.5) up to the shift sin(α)
and a constant factor. Since the two pairwise correction terms in Figure 4.4(a)

share the same coupling structure Γ
(2)
a and the same interaction function, they can

be combined into

− cos(α)

M2m

(
M∑
l=1

akl(deg(k)− deg(l)) sin(ϕl − ϕk + α)

)
.

Based on this formula, one can see that the sign of the pairwise correction terms
is determined by comparing the degree of node k with the average degrees of all
neighbors l of k.

Next, consider the second summand in ḡ that describes a pairwise interaction
between node k and node i that is in the neighborhood of a neighbor l of k.
While this yields a pairwise interaction from node i to node k, there may not
necessarily be and edge (i, k) ∈ E(Γ) from i to k in the graph Γ that describes the
original network of coupled nonlinear oscillators. If (i, k) ∈ E(Γ) then this second-
order term describes a second-order correction to the first-order interaction. If
(i, k) ̸∈ E(Γ) then this interaction can be considered as a virtual edge, which is

present in a weighted graph Γ
(2)
b2 defined by the adjacency matrix C = (cki)k,i=1,...,M

with coefficients cki :=
∑

l aklali but not in Γ. As one can see from the definition

of the entries cki of the adjacency matrix of Γ
(2)
b2 , this interaction is weighted by

the number of paths connecting k to i in the graph Γ.
Third, the second summand of ĝ represents a part of the second-order inter-

actions, in which two nodes i and l, that are both neighbors of k, influence the
node k. Thus, there is a nonpairwise interaction as two nodes jointly influence
a third node (even though the interaction is independent on the state of k); see
Figure 4.4(b1). This interaction can be represented by a directed and possibly

weighted hypergraph H(2)
b1 , which could be described by a 3-tensor indexed by

k, l, i. Then, there would be a symmetry by swapping the indices l and i, but this
hypergraph is in general still directed as one can not arbitrarily permute all indices
k, l, i.

Finally, there are two further triplet interactions. The first triplet interac-
tion, i.e., the last summand in the definition of ĝ is an interaction between two
neighbors i and l of the node k. The coupling structure of this interaction can
be described by a directed and weighted hypergraph H(2)

c1 , whose 3-tensor agrees
with ĥ. Note that there is a symmetry between i and l, but one cannot arbitrarily
permute all indices which is why in general the hypergraph is directed. The second
triplet interaction, which is governed by the last summand in the definition of ḡ,
is one between the node k itself, a neighbor l of k and a neighbor i of l. Again,
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the coupling structure can be described by a directed hypergraph H(2)
c2 . This time,

however, the 3-tensor, that describes this hypergraph and corresponds with h̄, does
not possess any symmetry with respect to a permutation of indices.

To summarize, the first-order phase reduction, that we have considered, consists
of only one interaction term, whose coupling structure Γ(1) agrees with the coupling
structure Γ of the full system (4.5.2). In a second-order phase reduction, quite a
few new interaction terms appear. While the coupling of some of them is posed on
a graph that agrees with Γ, the coupling of others is determined by a graph that
consists of virtual edges that might not be present in Γ. Moreover, there are also
three types of triplet interactions on directed hypergraphs, which can be derived
from the adjacency matrix of Γ.

To conclude this section, we want to remark that a second-order phase reduc-
tion contains interaction terms on directed hypergraphs, even when the underlying
graph Γ, that determined the coupling in the full system (4.5.2), is undirected and
unweighted. The only exception is when Γ itself is an all-to-all graph. However,
whenever Γ is connected, yet non all-to-all, there exists an open triangle as seen in
Figure 4.4(c1), which causes the hypergraph, that governs the second-order phase
reduction, to be directed.

4.6 Summary

Phase reductions provide a useful tool to analyze the dynamics of coupled oscillator
networks. Here, we derived explicit expressions for nonlinear oscillations with
phase-dependent amplitude subject to simple mean-field coupling. By using a
suitable coordinate transformation, our results also apply to systems where the
limit cycle is simple but the coupling is phase dependent or a combination thereof.

While the shape of the limit cycle affects the collective dynamics, a first-order
phase reduction is insufficient to capture the dynamical effects of the amplitude
dependence: The phase reduction needs to be at least of second order in both the
coupling strength K and the parameter δ that describes the perturbation from
a circular limit cycle. We showed that second-order phase reductions were able
to accurately predict the stability properties of the synchronized and splay orbit
when all terms of up to second order in K and δ are included. Importantly, the
amplitude dependence breaks the rotational symmetry of phase equations that is
typical, for example, of the Kuramoto equations. While such symmetry breaking
has been analyzed from the perspective of the phase equations [42], it arises in
our setup through a perturbation of the underlying nonlinear oscillator. This
perspective allows to make direct comparisons between the nonlinear system and
the phase-reduced dynamics in contrast to phase reductions via normal forms [10],
where normal form symmetries—that may be absent in the full equations [56]—can
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appear in the phase reduction.
As detailed in Section 4.5.2, the second-order phase interaction term for coupled

oscillators on a given graph Γ can be interpreted as phase oscillator dynamics
on (directed) hypergraphs. Specifically, the second-order phase interaction terms
correspond to second-order corrections of interactions along edges of Γ, possible
virtual pairwise connections between oscillator pairs that are not joined by an edge
in Γ, and nonpairwise triplet interactions of different type.



Chapter 5

Bifurcation Analysis of Twisted
States in Nonlocally Coupled
Higher-Order Phase Oscillator
Networks

The content of this chapter is based on the publication [22], which is joint work
together with Christian Bick and Christian Kuehn. In particular, the technical
parts are taken from this publication, of which I am the main author.

5.1 Introduction

While the classical Kuramoto model (1.1.1) assumes all-to-all coupling, in many
real-world systems the coupling is actually not all-to-all but interactions are cap-
tured by a graph. As an example, each oscillator may have a spatial position
and coupling between oscillators depends on their positions; such networks often
arise in neural field modeling [5, 55, 66], where coupling strength typically relates
to the distance of nodes. These coupling schemes can be realized by considering
Kuramoto oscillators on a graph. Suppose there are M oscillators and this graph
is given by its adjacency A = (aij)i,j=1,...,M . Then, there is a coupling between
two oscillators i and j if aij = 1 and the oscillators are uncoupled if aij = 0. The
phase ϕi ∈ T := [0, 2π]/(0 ∼ 2π) of oscillator i evolves according to

ϕ̇i = ωi +
1

M

M∑
j=1

aij sin(ϕj − ϕi), (5.1.1)

for i = 1, . . . ,M . Graphs that do not describe all-to-all coupling allow for more
interesting dynamics beyond full phase synchrony [149]. For example, one can

79
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consider a k-nearest neighbor graphs ofM nodes: As illustrated in Section 2.1, the
oscillators are arranged around a circle and each oscillator is coupled to all of its k
predecessors and all of its k successors. In other words, aij = 1 if min(|i− j| ,M−
|i− j|) ≤ k and aij = 0 otherwise. Changing k changes the coupling range: For
k = 1 we have a ring with local nearest neighbor coupling, for k = M/2 the
network is globally all-to-all coupled, and for intermediate k the coupling is often
called nonlocal. On such networks, the Kuramoto model with ωi ≡ 0 converges
to many interesting patterns. For example regular twisted states [177] or irregular
chimera states [136, 180] when we allow for phase lag parameters in the coupling
function.

While the classical Kuramoto model assumes interactions between pairs of os-
cillators, higher-order interactions can have a profound impact on the dynamics;
cf. [16, 23]. Such nonpairwise interactions arise naturally in phase oscillator net-
works that originate from (higher-order) phase reductions, see Chapter 4, and
become important for the dynamics as the coupling strength is increased [10, 114].
Moreover, nonpairwise interactions also arise in ring-like networks of nonlocally
coupled oscillators: In [121], the authors consider a network of eight nanoelec-
tromechanical oscillators coupled via higher-order nearest neighbor interactions.
They found that this system exhibits complex and exotic states even though the
coupling functions are fairly simple.

It turns out, that instead of analyzing twisted states on large finite networks,
it is easier to consider them in the continuum limit, as introduced in Section 2.3.
In order for this continuum limit to be well defined, or specifically, in order for
the network sequence to converge to a graphon, the parameter k has to scale with
the system size M . Thus, we fix a coupling range r = k/M and send M → ∞
to obtain a well defined continuum limit. Then, we consider the dynamics of this
continuum limit. In particular, we analyze the stability and the bifurcation around
twisted states. While twisted states have originally been studied in [177], a lot of
research has been done to generalize these results [126, 125, 122, 137, 136, 48, 71].

In this chapter, we propose an extension of the pairwise coupling in the con-
tinuum limit to higher-order interactions. We study the stability of twisted states
and show how this property is influenced by higher-order interactions. To this
end, we analyze the bifurcation point where a twisted state loses or gains stability.
We investigate which nontrivial equilibria bifurcate from the twisted states and
how they depend on the parameters of the system, which are the coupling range r
and the strengths of the higher-order interactions. We apply this theory to regu-
lar models without higher-order interactions and thereby extend the analysis from
many previous works by a bifurcation analysis. Moreover, we show how higher-
order interactions can make twisted states stable or unstable and how they affect
the type of the bifurcation.
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This chapter is organized as follows: In Section 5.2 we derive the continuum
limit for the Kuramoto model on k-nearest-neighbor networks, present the orig-
inal stability analysis of twisted states [177] and mention related works on this
topic. Section 5.3 introduces our system and clarifies general notation. Next,
in Section 5.4, we first perform a Lyapunov–Schmidt reduction to convert the
infinite-dimensional problem of finding equilibria in the continuum limit into a
finite-dimensional problem. Then, we explain how to use the symmetry of the sys-
tem to simplify the finite-dimensional problem into a two-dimensional one. Next,
we tackle this two-dimensional problem to determine the type of the bifurcation.
In the last part of this section, we derive equilibria approximations and analyze lin-
ear stability of bifurcating equilibria. Section 5.5 contains three interesting special
cases, for which we conduct numerical simulations that illustrate and confirm the
theory. In Section 5.6 we compare different ways of generalizing pairwise k-nearest
neighbor coupling to higher-order interactions and explain the advantages of our
particular choice. Finally, Section 5.7 summarizes our findings.

5.2 Background

5.2.1 Continuum Limit Derivation

Even though we have already introduced a general continuum limit in Section 2.3,
we repeat the derivation here for limits of nearest neighbor graphs. In fact, these
graphs make the derivation special, as the coefficients aij of the adjacency matrix
only depend on i − j. Thus, they can be represented as aij = âi−j for some one-
dimensional array of coefficients â. By a slight abuse of notation, we drop the
hat, and denote ai = 1 if min(|i| ,M − |i|) ≤ k and ai = 0 otherwise. Then, the
graph, whose adjacency matrix is given by A = (ai−j)i,j=1,...,M , where the index
i−j ∈ [M ] has to be understood moduloM , is a k-nearest neighbor graph. On this
graph we now consider M identical Kuramoto oscillators, i.e., ωi ≡ ω in (5.1.1),
where without loss of generality ω = 0. The phase ϕi of oscillator i then evolves
according to

ϕ̇i =
1

M

M∑
j=1

ai−j sin(ϕj − ϕi), for i = 1, . . . ,M. (5.2.1)

This ODE system is posed in the phase space TM and the underlying coupling
structure is illustrated in Figure 2.1(b). The system (5.2.1) has multiple sym-
metries. First, there is continuous symmetry that shifts all the oscillators by a
common phase α ∈ T. Moreover, since ai−j only depends on the difference i − j
and the network is symmetric, the system also has a finite symmetry group DM ,
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which is the dihedral group consisting of 2M elements. For a full investigation
of symmetry in this system see [11]. For q ∈ Z, a q-twisted state is a phase
configuration that satisfies

ϕqi = 2πqi/M + α, for i = 1, . . . ,M, (5.2.2)

where α ∈ T is an arbitrary parameter, see Figure 5.1(a). The parameter q is
also referred to as the winding number. By exploiting these symmetries and the
odd symmetry of the coupling function sin, one can show that these q-twisted
states are equilibria of (5.2.1). While showing the time invariance of a q-twisted
state on (5.2.1) is relatively easy, investigating its stability turns out to be more
complicated [71].

0 5 10 15 20 0 0.2 0.4 0.6 0.8 1

(a) (b)

ϕ3
i Θ3(x)

Nodes (i) x

Figure 5.1: An illustration of the q-twisted state. Part (a) depicts the q-twisted
state (5.2.2) for q = 3 in the finite dimensional. Part (b) shows its infinite-
dimensional analog (5.2.9). In both cases the parameter α is set to 0. Even though
it seems as if Θ3 is discontinuous it is continuous when regarded as a function to T.

To understand the stability of q-twisted states one often considers the contin-
uum limit of the network dynamical system with infinitely many oscillators [177,
126]. Now, we repeat the derivation from Section 2.3 at the example of the
model (5.2.1). Given a solution ϕMi (t) of the system (5.2.1), one can derive the
continuum limit by first defining a function ΘM(t, x) as

ΘM(t, x) = ϕi(t) if x ∈
[
i− 1

M
,
i

M

)
. (5.2.3)

Here, x represents the position of an oscillator in the infinite network limit. In
order to distinguish the phase space T from the index set of the network nodes, we
regard x as a variable on the unit circle S := [0, 1]/(0 ∼ 1), that we parameterize
from 0 to 1. This is slightly different from the convention in Section 2.3, where
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x ∈ I, but here x ∈ S is more convenient for two reasons. First, S is more suitable
to represent the ring-topology of a k-nearest neighbor network, see Figure 2.1(b).
Second, whenever x, y ∈ S we also have x − y ∈ S, which would not be the case
for I instead of S. Since we often evaluate functions on x−y ∈ S we do not need to
go through the hassle of periodically extending functions from I to R or evaluating
them on x− y mod 1. The function ΘM(t, x) from (5.2.3) then satisfies

∂

∂t
ΘM(t, x) =

∫
S
WM
r (x− y) sin(ΘM(t, y)−ΘM(t, x)) dy, (5.2.4)

where WM
r : S → R is defined as

WM
r (x) = ai if x ∈

[
i− 1

M
,
i

M

)
,

for x ∈ S. Keeping the coupling range r := k/M ∈ (0, 1
2
] fixed and lettingM → ∞,

we formally obtain the limit WM
r → Wr ∈ L2(S), with

Wr(x) :=

{
1 if min(x, 1− x) ≤ r

0 else
, (5.2.5)

where we consider the representation of x ∈ S in [0, 1). This limiting process is
illustrated in Figure 5.2. As Wr is an even function, the choice of Wr in (5.2.5)

(a) (b) (c) (d)
i i i x

j j j
y

Figure 5.2: Limit of a sequence of nearest-neighbor networks. Here, the coupling
range r = k/M is fixed to be 0.2. Parts (a)-(c) depict the adjacency matrix of
k-nearest neighbor graphs on M = 10, M = 20 and M = 40 nodes, respectively.
There is a blue dot whenever ai−j = 1 and no dot otherwise. Finally, part (d)
shows the function Wr(x−y). Its value is 1 in the black regions and 0 in the white
regions.

yields a Fourier decomposition in which no sin-terms appear. In particular,

Wr(x) =
1

2
Ŵr(0) +

∞∑
k=1

Ŵr(k) cos(2πkx), (5.2.6)
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with

Ŵr(k) =

{
2 sin(2πkr)

πk
if k ̸= 0,

4r if k = 0.
(5.2.7)

Now, suppose that limM→∞ΘM(t, x) = Θ(t, x) for a function Θ. Then, formally
taking the limit of (5.2.4) as M → ∞, we obtain the continuum limit

∂

∂t
Θ(t, x) =

∫
S
Wr(x− y) sin(Θ(t, y)−Θ(t, x)) dy. (5.2.8)

In this continuum limit, a q-twisted state, see Figure 5.1(b), is given by a function
Θq : S → T with

Θq(x) = 2πqx+ α. (5.2.9)

Even though this derivation was formal, it can be rigorously shown that the con-
tinuum limit (5.2.8) approximates the dynamics of the finite system (5.2.1) for
large M , see [124, 123, 105, 73].

5.2.2 The Original Analysis of Twisted States

In their analysis from 2006, the authors Wiley, Strogatz and Girvan numerically
studied the global dynamics of the finite dimensional model (5.2.1), discovered
twisted states as attractors and subsequently analyzed the their stability [177].
They began their study by numerically simulating this model for random initial
conditions, i.e., ones for which ϕi(0) are independent and uniformly distributed
on T for i = 1, . . . ,M . Simulating the system (5.2.1) for many sampled initial
conditions of this kind gives numerical evidence that the only attractors of this
model are q-twisted states (5.2.2). Moreover, they found that the probability to
converge to the synchronized state (q = 0) increases with k. In fact, on the one
hand, if k ⪆ 0.33M every initial condition converges to the synchronized state.
On the other hand, the lower the value of k is, the more likely are q-twisted states
to appear as attractors with higher values of |q|.

In particular, numerical simulations from [177] revealed that the probability
that a random initial condition converges to a q-twisted state can be approxi-
mated with a Gaussian distribution, see Figure 5.3. The standard deviation of this
Gaussian distribution decreases with k, such that the synchronized state becomes
a more likely attractor if k increases. Specifically, they found that the standard
deviation σ of this Gaussian only depends on the coupling range r = k/M and
can be approximated as σ = a

√
1/r + b for some parameters a > 0 and b ∈ R,

see [177].
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Figure 5.3: Twisted states as attractors for the system (5.2.1). A simulation for
this system with parameters M = 100 and k = 1 for 104 uniformly random initial
conditions revealed only q-twisted states (5.2.2) as attractors. The histogram
depicts the likelihood of converging to a twisted state with winding number q.
Moreover, the bell curve is the probability density function of a Gaussian with
zero mean and standard deviation σ = 1.8.

Note that the model (5.2.1) only admits finitely many q-twisted states, as a
q-twisted state (5.2.2) agrees with a q+M -twisted state. However, the support of
the Gaussian is unbounded and thus a Gaussian describes infinitely many twisted
states as attractors. Consequently, the approximation of the probability of con-
verging to a q-twisted state by a Gaussian cannot be very precise whenM is small.
If M gets larger and r = k/M is fixed, this approximation becomes better and
better, as numerical simulations in [177] revealed.

Motivated by their numerical findings, the authors proceed to analytically an-
alyze the stability of twisted states. Instead of conducting their analysis in the
finite dimensional model (5.2.1), they switch to the continuum limit (5.2.8) since
the analysis there is simpler and the dynamics of these two models is close if M is
large, see Section 5.2.1. In this continuum limit, the q-twisted states (5.2.9) can
be checked to be invariant, too. Inserting the ansatz

Θ(t, x) = Θq(x) + η(t, x),

for Θq as in (5.2.9) and a perturbation η with |η| ≪ 1, into the continuum
limit (5.2.8) yields

∂

∂t
η(t, x) =

∫
S
Wr(x− y) sin(Θq(y)−Θq(x) + η(t, y)− η(t, x)) dy
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=

∫
S
Wr(x− y)

[
sin(Θq(y)−Θq(x))

+ (η(t, y)− η(t, x)) cos(Θq(y)−Θq(x)) +O(η2)
]
dy.

Now, keeping only linear terms in this equation and assuming an expansion η(t, x) =∑
k∈Z η̂k(t)e

2πikx we obtain∑
k∈Z

η̂′k(t)e
2πikx =

∑
k∈Z

η̂k(t)

∫
S
Wr(x− y)(e2πiky − e2πikx) cos(2πq(y − x)) dy.

Next, using the expansion (5.2.6) one can solve the integral on the right-hand side
of the last equation (see Appendix B.1 for the details) and collect terms of order
e2πikx resulting in

η̂′k(t) = ξkηk(t), ξk =
1

4

(
Ŵr(q − k) + Ŵr(q + k)− 2Ŵr(q)

)
, (5.2.10)

for k ∈ Z, where we use the convention Ŵr(−k) := Ŵr(k) if k ≥ 0. Note that
ξ0 = 0, so there always is a zero eigenvalue that corresponds to shifting the q-
twisted state by a constant phase. As such a perturbation leaves the set of twisted
states invariant, the authors argued that this zero eigenvalue can be neglected.
Moreover, we have ξk = ξ−k. As a consequence the authors of [177] came up with
the stability condition ξk < 0 for all k ∈ N of a q-twisted state (5.2.9). Even
though this stability analysis was very formal, it was later made rigorous and the
linear stability was transferred to nonlinear stability [126].

5.2.3 Further Works about Twisted States

Since twisted states have been discovered as (stable) equilibria in (5.2.1) and (5.2.8)
a lot of work has been conducted to analyze and generalize these equilibria in
various different setting. A few selected works are presented below:

The authors of [71] analyzed the finite dimensional Kuramoto model (5.2.1) as
well as the infinite dimensional continuum limit (5.2.8) on nearest neighbor graphs
after a reversal of time t 7→ −t. This is equivalent to multiplying the right-hand
side of these two systems by the factor −1 or changing the interaction function
from sin to − sin. Since two oscillators in (5.2.1), that are close to each other,
repel each other, this model and its continuum limit is also referred to as the
repulsive Kuramoto model. For each winding number q, their analysis elucidates
parameter regions for the coupling range r in which the q-twisted state is stable in
the continuum limit of the repulsive Kuramoto model. Moreover, to compare the
finite dimensional model to the continuum limit, they show that whenever a twisted
state is asymptotically stable in the continuum limit, it is also asymptotically
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stable in the finite dimensional system if the system size M is sufficiently large.
Apart from focusing on the analysis of twisted states they also conduct numerical
simulations with random initial conditions to explore the whole phase space of
the repulsive Kuramoto model, which is in analogy with the simulation conducted
in [177], see Section 5.2.2. It turns out that the global dynamics of the repulsive
Kuramoto model on nearest neighbor graphs is fundamentally different than the
dynamics of the model (5.2.1) with regular (attractive) coupling. In particular
the repulsive Kuramoto model not only admits regular twisted states as attractive
equilibria but also more complicated equilibria that the authors of [71] call multi-
twisted states. While q-twisted states (5.2.2) have a constant phase difference
ϕqi+1−ϕqi = 2πq/M , the phase differences of multi-twisted states are not constant.
Specifically, they are roughly 2πq/M in one part and −2πq/M in another part of
the domain [71].

In [125] the authors consider twisted states (5.2.2) in a finite dimensional Ku-
ramoto model with attractive and then with repulsive coupling. Instead of an-
alyzing these twisted states on nearest neighbor graphs, they rather take more
complicated graphs such as Paley graphs. Similarly to nearest neighbor graphs,
the adjacency matrix of these Paley graphs is given by (ai−j)i,j=1,...,M , such that
their entries only depend on i− j. The type of this dependence is a bit more com-
plicated and relies on a number theoretic relation, in particular, on the existence
of square roots in the cyclic group ZM = Z/(MZ). The authors of [125] found
that the stability of q-twisted states then depends on the fact of whether q is a
square in this cyclic group or not.

Instead of considering the Kuramoto model on a ring or k-nearest neighbor
graphs whose nodes can be parameterized by a one-dimensional variable one can
extend the graph to two or even higher-dimensional lattices. In particular, the
authors of [74] considered the Kuramoto model on a lattice of M = M1M2 nodes
where two nodes are connected if their distance in the grid with respect to a given
norm is less than a certain threshold. Moreover, there are also edges connecting the
nodes in the first row with corresponding nodes in the last row. Similarly, there are
edges that warp around the lattice to connect the first column with the last column.
In this scenario one can define generalized twisted states, that are characterized by
a row-winding number q1 ∈ Z and a column-winding number q2 ∈ Z. In analogy
with (5.2.2), resulting (q1, q2)-twisted states are a linear function of the indices and
are of the form

ϕ
(q1,q2)
ij = 2πiq1/M1 + 2πjq2/M2 + α,

where i is an index for the row of the oscillator and j describes the column of the
oscillator. Moreover, α ∈ T is a constant. The authors of [74] analyze these double
twisted states and derive criteria for their stability.
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A global numerical analysis for the same model shows that these doubly twisted
states are not the only attracting equilibria [136]. Instead, one can also observe
chimera-like patterns where the oscillators’ phases seem to depend continuously on
their indices in one part of the domain and irregularly behave in another part of
the domain. Moreover, some of these patterns even show spiraling behavior [136].

Apart from the analysis of Kuramoto models on deterministic graphs, twisted
states have also been analyzed on a variety of random graphs, such as Erdös–Rényi
graphs [125] and small-world graphs, which can be regarded as an interpolation
between k-nearest neighbor networks and Erdös–Rényi graphs [122].

5.3 Our Model of Nonlocally Coupled Phase Os-

cillators with Higher-Order Interactions

5.3.1 Extension by Higher-Order Interactions

Motivated by the dynamical effects that higher-order interactions can generate and
their ability to better approximate a coupled oscillator network, as seen in Chap-
ter 4, we propose an extension of (5.2.8) that includes higher-order interactions.
An example for triplet interactions between three oscillators at x, y, z ∈ S with
phases Θ(t, x),Θ(t, y),Θ(t, z) at time t is given by sin(Θ(t, z)+Θ(t, y)−2Θ(t, x)).
To incorporate these nonpairwise higher-order interactions, we extend the contin-
uum limit (5.2.8) in the natural way: For a network with pure triplet interactions
the phases evolve according to

∂

∂t
Θ(t, x) =

∫
S

∫
S
W (z, y, x) sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) dydz,

where W : S3 → R is a general 3-tensor that describes in which triplets there is
an interaction and thereby generalizes the weighted adjacency tensor for pairwise
interactions.

As we are interested in q-twisted states, we consider a specific class of nonlocal
higher-order interaction structure W (z, y, x) = Wr(z + y − 2x) for the coupling
function sin(Θ(t, z)+Θ(t, y)−2Θ(t, x)). This higher-order network topology allows
for long range connections: An oscillator x is not only influenced by triangles
spanned by nodes neighboring x. Instead, if say x = 0, a triangle (x, y, z) exists
when |z + y| ≤ r in S, which is the case when for example z = 1/4 and y = 3/4. In
particular, in this case z+ y− 2x = 0 and thus this triangle exists for all coupling
ranges r > 0, see Figure 5.4(a). In that sense, it is distinct from the “nearest
neighbor” higher-order networks considered in [121].

We focus on this interaction structure and coupling function for several reasons.
First, the coupling function sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) arises in higher-order
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(a) (b)y
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Figure 5.4: Network topology of the triplet interactions. Part (a) shows all pairs
(y, z) for which a triangle between (x, y, z) for x = 0 exists, i.e., that satisfy
Wr(z+y−2·0) = 1. There pairs are depicted by the black area. In part (b) we have
x = 0.15 and the black region depicts pairs (y, z) such thatWr(z+y−2 ·0.15) = 1.
For both parts, r = 0.2.

phase reduction of coupled oscillators; see for example (4.5.4) with α = 0 or [114].
Second, this choice of network topology naturally extends nonlocal pairwise in-
teractions and in the resulting network dynamical system q-twisted states are
still relative equilibria—the resulting network topology can be seen in Figure 5.4.
While we focus on this particular generalization, there are other nonlocal higher-
order network topologies that preserve the invariance of q-twisted states. Some of
them have even closer connections to higher-order topologies that arise in phase-
reductions, as we discuss in Section 5.6. However, third, we found that our choice
of generalization is best analytically tractable, among other tested higher-order
network topologies and coupling functions. In this sense, our choice of general-
ization to triplet interactions is a first step in understanding the dynamics of all
possible types of triplet interactions. Furthermore, using our generalization, we
demonstrate which dynamical effects are in principle possible with higher-order
interactions. Our nonlocal higher-order coupling also naturally extends beyond
triplet coupling: In the following we will consider a combination of pairwise and
higher-order (triplet and quadruplet) interactions. Specifically, we consider the
continuum limit

∂

∂t
Θ(t, x) =

∫
S
Wr(x− y) sin(Θ(t, y)−Θ(t, x)) dy

+ λ

∫
S

∫
S
Wr(z + y − 2x) sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) dydz

+ µ

∫
S

∫
S

∫
S
Wr(z − y + w − x)

· sin(Θ(t, z)−Θ(t, y) + Θ(t, w)−Θ(t, x)) dwdydz,

(5.3.1)
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where r ∈ (0, 1
2
] describes the coupling range and λ, µ ∈ R are the strengths of

the higher-order interactions. These three parameters can be summarized into one
parameter p = (r, λ, µ) ∈ P , where P = (0, 1

2
] × R × R denotes the parameter

space. Here, the first line of (5.3.1) describes the continuum limit of a Kuramoto
model with nonlocal coupling and the remaining lines are triplet and quadruplet
higher-order interactions.

The system (5.3.1) has the same symmetries as the system (5.2.8). In par-
ticular, the system (5.3.1) has a continuous T × S symmetry and a discrete Z2

symmetry, where Z2 is the group of two elements defined by Z/(2Z). A symmetry
element β ∈ T acts by a phase shift

β : Θ(t, x) 7→ Θ(t, x) + β (5.3.2)

to all oscillators and an element ϕ ∈ S acts by rotating the ring-like network, that
is,

ϕ : Θ(t, x) 7→ Θ(t, x+ ϕ). (5.3.3)

Besides these two continuous symmetries, an element ζ ∈ Z2, acts by reflecting
the spatial variable, i.e.,

ζ : Θ(t, x) 7→ Θ(t, (−1)ζx). (5.3.4)

The combination of (5.3.3) and (5.3.4) can be seen as the limit of the DM sym-
metry of the finite-dimensional system as M → ∞; cf. [24]. The symmetry prop-
erty (5.3.2) can directly be shown by inserting Θ(t, x)+β into (5.3.1). To see (5.3.3)
and (5.3.4) one first inserts the right-hand sides of these symmetries in the sys-
tem (5.3.1) and then performs linear substitutions y 7→ y+ϕ, z 7→ z+ϕ, w 7→ w+ϕ
and y 7→ −y, z 7→ −z, w 7→ −w, as necessary. In the latter case one also uses
the reflective symmetry Wr(x) = Wr(−x). Since the discrete symmetry (5.3.4)
maps q-twisted states to −q-twisted states, the stability properties of them agree.
Therefore, from now on we consider q ∈ N and thus focus only on q-twisted states,
where q is positive. In particular, we also exclude the synchronized state q = 0
from our analysis.

5.3.2 Mathematical Setting and Linearization

We want to analyze the stability and bifurcations of q-twisted states for (5.3.1) and
determine the existence and stability of possible bifurcating branches that occur as
system parameters are varied. To answer these kind of questions, eigenvalues of the
linearization of the right-hand side of (5.3.1) are of importance. The continuous
phase shift symmetry (5.3.2) of system (5.3.1) implies that if Θ(t, x) is a solution to
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the PDE (5.3.1), then so is Θ(t, x) + β with a constant β ∈ T, see [77]. Therefore,
the system has a neutrally stable direction, which yields a zero eigenvalue in the
linearization of the right-hand side of (5.3.1), see also Section 5.2.2. We can avoid
the zero eigenvalue by considering the evolution of phase differences Ψ(t, x) :=
Θ(t, x)−Θ(t, 0) which reduces the continuous phase shift symmetry (5.3.2). The
function Ψ(t, x) satisfies

∂

∂t
Ψ(t, x) =

∫
S
Wr(x− y) sin(Ψ(t, y)−Ψ(t, x)) dy −

∫
S
Wr(y) sin(Ψ(y)) dy

+ λ

[∫
S

∫
S
Wr(z + y − 2x) sin(Ψ(t, z) + Ψ(t, y)− 2Ψ(t, x)) dydz

−
∫
S

∫
S
Wr(z + y) sin(Ψ(t, z) + Ψ(t, y)) dydz

]
+ µ

[∫
S

∫
S

∫
S
Wr(z − y + w − x)

· sin(Ψ(t, z)−Ψ(t, y) + Ψ(t, w)−Ψ(t, x)) dwdydz

−
∫
S

∫
S

∫
S
Wr(z − y + w) sin(Ψ(t, z)−Ψ(t, y) + Ψ(t, w)) dwdydz

]
(5.3.5)

and Ψ(t, 0) = 0. We denote the right-hand side of this system by F (Ψ, p). In this
system, a q-twisted state is given by Ψq(x) = 2πqx for q ∈ N and it cannot be
perturbed along a constant function anymore, since the perturbed function would
then violate Ψ(t, 0) = 0. Moreover, since we are particularly interested in the
behavior of F in a neighborhood of a q-twisted state, we define

F q(v, p) := F (Ψq + v, p), F q : X × P → X, for q ∈ N.

Here, v can be seen as a perturbation of the q-twisted state. We consider pertur-
bations v in the space X := H1

0 := H1
0 (S,R), which is the function space whose

functions f : S → R and their weak derivatives are in L2(S,R) and which satisfy
the boundary condition f(0) = 0. Since H1(S,R) ⊂ C(S), these boundary condi-
tions can be imposed in the classical sense. That F q indeed maps into X is shown
as a special case in Appendix B.3. Together with the scalar product

f · g :=
∫
S
f(x)g(x) dx+

∫
S
Df(x)Dg(x) dx

the space X forms a Hilbert space. Moreover, the induced norm is given by

∥f∥H1
0
=
√
f · f =

√
∥f∥2L2 + ∥Df∥2L2 .
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Since every function η ∈ H1
0 can be written as

η(x) =
∞∑
k=1

ak sin(2πkx) + bk(1− cos(2πkx)),

the functions uk(x) = sin(2πkx) and wk(x) = 1 − cos(2πkx) for k ≥ 1 form a
Schauder basis of H1

0 , see also Lemma B.2.1 for a justification. It can be shown,
see Appendix B.3, that the Fréchet derivative of F q(v, p) with respect to v around 0
is given by a bounded linear operator F q

v (0, p) : X → X. An evaluation of F q
v (0, p)

on these basis elements yields

F q
v (0, p)[uk] = c1(q, k, p)uk,

F q
v (0, p)[wk] = c1(q, k, p)wk,

(5.3.6)

for k ∈ N and

c1(q, k, p) :=
1

4

(
Ŵr(q − k) + Ŵr(q + k)− 2Ŵr(q)− (4λ+ 2µ)Ŵr(q)

)
,

where we continue to use the convention Ŵr(−k) := Ŵr(k). The eigenvalues are
then given by ξk = c1(q, k, p), each with multiplicity 2. Note, that without higher-
order interactions, i.e., λ = µ = 0, this agrees with (5.2.10). Since F q

v (0, p) is
a multiplication operator on this basis, the spectrum is the closure of the set of
eigenvalues, i.e.,

σ(F q
v (0, p)) = cl({ξk, k ∈ N}).

When one of these spectral values passes through 0, we may expect a change of
stability of the q-twisted state. This is what we investigate in the next section.

5.4 Bifurcation Theory

Now, we analyze the bifurcation of twisted states upon varying the parameters
in P . In particular, we vary the parameters along a general one-dimensional curve
in the parameter space. For phase oscillator networks that arise as phase reduc-
tions from a physical system [10], we expect that a variation of a physical system
parameter gives rise to such a curve. Specifically, we assume from now on that

1. there is a smooth curve through the interior of the parameter space p : (−δ, δ) →
int(P), p(s) = (r(s), λ(s), µ(s)) with p(0) = p0 = (r0, λ0, µ0),

2. at s = 0 we have c1(q, ℓ, p(s)) = 0 for one ℓ ∈ N and for all s ∈ (−δ, δ) we
have c1(q, k, p(s)) /∈ (−ϵ, ϵ) for some ϵ > 0 and all k ̸= ℓ,
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3. c1(q, ℓ, p(s)) is an isolated eigenvalue, i.e., for all s ∈ (−δ, δ), the sequence
(c1(q, k, p(s)))k∈N does not have an accumulation point at ξℓ,

4. the zero eigenvalue passes through 0 with nonvanishing speed as s passes
through 0, i.e., d

ds
c1(q, ℓ, p(s)) ̸= 0 for s = 0.

Remark 5.4.1. Since limk→∞ c1(q, k, p) =
1
4
Ŵr(q)(−2− (4λ+ 2µ)) exists, it is the

only possible spectral value that is not an eigenvalue. Moreover, since it depends
continuously on all parameters, Assumption 3 only has to be checked at s = 0.
Furthermore, since c1(q, k, p) is uniformly (w.r.t. k) Lipschitz continuous in p,
Assumption 2 only has to be checked at s = 0.

From now on we use the notation V for an open neighborhood of p0 in P . By a
slight abuse of notation, this V might have to be shrunk from one statement to the
other, but always represents a small enough open neighborhood of p0. Similarly,
(−δ, δ), which represents an open neighborhood of 0 in R, might have to be shrunk
from statement to statement.

5.4.1 Lyapunov–Schmidt Reduction

At the bifurcation point s = 0, the nullspace of the linearization is given by

N := N (F q
v (0, p0)) = span{uℓ, wℓ}.

Further, we denote the range of the linearization by R = span{uk, wk : k ̸= ℓ}.
Following the notation from [97], we consider F q

v (0, p) as a map from X ×P to Z,
where X = Z = H1

0 . Even though X = Z, we use different notation for the
domain and target set to emphasize the distinction between them. These spaces
can be decomposed into

X = N ⊕X0 and Z = R⊕ Z0,

where X0 is a complement of N in X and Z0 is a complement of R in Z. We
choose Z0 = N and X0 = R. Moreover, the projection onto Z0 is defined by

Q : Z → Z0 along R.

To determine equilibria of (5.3.5), we need to find solutions to F q(v, p) = 0. By
performing a Lyapunov-Schmidt reduction we can reduce this infinite-dimensional
problem to a finite-dimensional problem, as the next theorem shows.

Theorem 5.4.2 ([97, Chapter I.2]). There is a neighborhood U1 × V1 ⊂ X ×
P of (0, p0) such that the full infinite-dimensional problem of finding equilibria
of (5.3.5), i.e., solving

F q(v, p) = 0
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in U1 × V1 is equivalent to solving

Φ(v, p) = 0,

where Φ: U2 × V2 → Z0 for (v, p) ∈ U2 × V2 ⊂ N × P. Here, Φ(0, p0) = 0 and Φ
is defined by

Φ(v, p) = QF q(v + ψ(v, p), p), (5.4.1)

where ψ : U2×V2 → X0 is a function satisfying ψ(0, p0) = 0. It is implicitly defined
to be the unique solution to the equation

(I −Q)F q(v + ψ(v, p), p) = 0 (5.4.2)

in a neighborhood of (0, p0).

The proof of this theorem relies on the implicit function theorem. For details
see [97, Chapter I.2] and for an introduction see [102].

We introduce a coordinate representation of the function Φ by considering the
basis of the dual space Z ′

0 of Z0, which is given by two functionals z∗1 , z
∗
2 that are

defined by

⟨z∗1 , uℓ⟩ = 1, ⟨z∗1 , wℓ⟩ = 0,

⟨z∗2 , uℓ⟩ = 0, ⟨z∗2 , wℓ⟩ = 1,

where ⟨·, ·⟩ denotes the dual pairing. Since, {uℓ, wℓ} is a basis of the finite-
dimensional space Z0, the functionals are uniquely defined by their actions on
these basis functions. Moreover, one can see that these functionals can also be
written as

⟨z∗1 , v⟩ = 2

∫
S
sin(2πℓx)v(x) dx,

⟨z∗2 , v⟩ = −2

∫
S
cos(2πℓx)v(x) dx.

Then, we define a function Φ̂ : U3 × (−δ, δ) → R2, where U3 ⊂ R2, (−δ, δ) ⊂ R are
sufficiently small neighborhoods around the origin, as

Φ̂

((
a
b

)
, s

)
:=

(
⟨z∗1 ,Φ(auℓ + bwℓ, p(s))⟩
⟨z∗2 ,Φ(auℓ + bwℓ, p(s))⟩

)
. (5.4.3)

Given (a0, b0)
⊤ in a neighborhood of (0, 0)⊤ and s ∈ (−δ, δ) such that Φ̂((a0, b0)

⊤, s) =
(0, 0)⊤ we then know that F (Ψq + a0uℓ + b0wℓ + ψ(a0uℓ + b0wℓ, p(s)), p(s)) = 0.
Therefore, this first argument of F represents an equilibrium. Conversely, due
to the equivalence in Theorem 5.4.2, every equilibrium in a neighborhood of the
bifurcation point can be found in that way.
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5.4.2 Problem Reduction Using Symmetry

While reducing the system to phase differences (5.3.5) has reduced the phase-
shift symmetry, the system still has the residual rotational symmetry (5.3.3). One
can expect that this symmetry is reflected in the bifurcation behavior. Indeed, the
Lyapunov–Schmidt reduction can be carried out such that it preserves symmetries;
cf. [77]. Here, we show explicitly that the reduced equation (5.4.3) retains the
rotational symmetry. This simplifies the system to a one-dimensional problem by
eliminating the symmetry.

Specifically, in phase differences, the rotational symmetry (5.3.3) acts as an
operator Bϕ : X → X for ϕ ∈ S given by

(Bϕf)(x) = f(x+ ϕ)− f(ϕ).

and the right-hand side F q is equivariant with respect to this operation. The
nullspace N is spanned by uℓ and wℓ, which can be obtained from each other by
shifting one function around the circle and adding a constant such that it satis-
fies the boundary conditions, i.e., by applying the operator Bϕ. For the reduced

equation determined by Φ̂, this corresponds to a rotation. Specifically, with

Aϕ =

(
cos(2πℓϕ) sin(2πℓϕ)
− sin(2πℓϕ) cos(2πℓϕ)

)
for a two-dimensional rotation matrix, we now show that Φ̂ is S-equivariant with
respect to the action given by Aϕ.

Proposition 5.4.3. In a neighborhood of the origin, Φ̂ satisfies

Φ̂

(
Aϕ

(
a
b

)
, s

)
= AϕΦ̂

((
a
b

)
, s

)
, (5.4.4)

for all ϕ.

Proof. A straight-forward calculation confirms that F q satisfies

F q(Bϕη, p) = BϕF
q(η, p) (5.4.5)

for all η ∈ X and all p ∈ P . Now, let us see how this property propagates to the
function ψ. By definition, ψ solves

(I −Q)F q(v + ψ(v, p), p) = 0

for all v ∈ U2 ⊂ N, p ∈ V2 ⊂ P . Let us choose v = Bϕu ∈ U2 for some u ∈ U2 and
note that Bϕ leaves N invariant and further commutes with Q. Then, on the one
hand

(I −Q)F q(Bϕu+ ψ(Bϕu, p), p) = 0. (5.4.6)
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On the other hand

0 = Bϕ0

= Bϕ(I −Q)F q(u+ ψ(u, p), p)

= (I −Q)BϕF
q(u+ ψ(u, p), p)

= (I −Q)F q(Bϕ[u+ ψ(u, p)], p)

= (I −Q)F q(Bϕu+Bϕψ(u, p), p), (5.4.7)

by the symmetry property (5.4.5). By comparing (5.4.6) and (5.4.7) one sees that

ψ(Bϕu, p) = Bϕψ(u, p) (5.4.8)

for all u ∈ U2 due to the uniqueness of ψ. Furthermore, the definition (5.4.1) of Φ
implies that for all v ∈ U2 ⊂ N

Φ(Bϕv, p) = QF q(Bϕv + ψ(Bϕv, p), p)

= QF q(Bϕv +Bϕψ(v, p), p)

= QF q(Bϕ[v + ψ(v, p)], p)

= QBϕF
q(v + ψ(v, p), p)

= BϕQF
q(v + ψ(v, p), p)

= BϕΦ(v, p), (5.4.9)

where we have used (5.4.8) and (5.4.5).
Since Φ: U2 × V2 → N , where U2 is a neighborhood of 0 in N and V2 is

neighborhood of p0 in P , for small enough |a| , |b|, we can write

Φ(auℓ + bwℓ, p) = cuℓ + dwℓ

for each fixed p ∈ V and some c, d ∈ R. Note that the coefficients a, b, c, d should
be considered as fixed parameters. In particular, there is no linear dependence
of c, d on a, b. Now, by applying Bϕ to both sides of the equation and using the
symmetry property (5.4.9), a straight-forward calculation confirms that

Φ([a cos(2πℓϕ) + b sin(2πℓϕ)]uℓ + [−a sin(2πℓϕ) + b cos(2πℓϕ)]wℓ, p)

= [c cos(2πℓϕ) + d sin(2πℓϕ)]uℓ + [−c sin(2πℓϕ) + d cos(2πℓϕ)]wℓ.

Using (5.4.3), this yields the result.

Next, we show that Φ̂ does not change the angle of a vector but only multiplies
its length by a (possibly negative) factor.

To achieve this, we first define the space of odd functions O:

O := {f ∈ X : f(x) = −f(−x)}.
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Lemma 5.4.4. Let p ∈ P and v ∈ O. Then F q(v, p) ∈ O.

This lemma follows by a calculation using linear substitutions of the integrating
variables that appear in the definition of F q and F .

Given this lemma, we can consider the restriction of F q to the space of odd
functions O:

F q,† : X† × P → Z†, F q,†(v, p) := F q(v, p),

where both X† = Z† = O. We use the symbol † whenever we are referring to a
function or a space that is reduced to O.

Under this restriction F q,† inherits smoothness from F and F q. Following the
notation from Section 5.4.1 we denoteN † := N (F q,†

v (0, p0)) = span{uℓ}. Moreover,
there are decompositions

X† = N † ⊕X†
0 and Z† = R† ⊕ Z†

0,

where R† is the range of F q,†
v (0, p0) and we choose X†

0 = R† and Z†
0 = N †. Addi-

tionally, we denote Q† for the restricted projection of Q from X† onto N †. Now we
can perform another Lyapunov-Schmidt reduction on the space of odd functions:

Lemma 5.4.5 ([97]). Solving the infinite-dimensional problem

F q,†(v, p) = 0

is equivalent to solving

Φ†(v, p) = 0,

where Φ† : U †×V → Z†
0 and (v, p) ∈ U †×V ⊂ N †×P. Here, Φ†(0, p0) = 0 and Φ†

is defined by

Φ†(v, p) := Q†F q,†(v + ψ†(v, p), p), (5.4.10)

where ψ† : U † × V → X†
0 is a unique function satisfying ψ†(0, p0) = 0. It is

implicitly defined to be the unique solution of the equation

(I −Q†)F q,†(v + ψ†(v, p), p) = 0 (5.4.11)

in a neighborhood of (0, p0).

This Lemma follows from [97]. We can use it to show the next lemma:
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Lemma 5.4.6. The function Φ̂ does not change the angle of a vector but only
multiplies its length by a (possibly negative) factor. To be precise, for all (a, b) in
a small neighborhood U of (0, 0) and s ∈ (−δ, δ),

Φ̂

((
a
b

)
, s

)
= ĥ((a, b)⊤, s)

(
a
b

)
, (5.4.12)

where ĥ : U × (−δ, δ) → R is a rotationally invariant function, i.e.

ĥ

(
Aϕ

(
a
b

)
, s

)
= ĥ

((
a
b

)
, s

)
for all ϕ.

Proof. First note, that due to Proposition 5.4.3, it suffices to show (5.4.12) for
b = 0. Therefore, it is left to show that Φ̂2((a, 0)

⊤, s) = 0. Since both ψ and ψ†

are uniquely defined, ψ† must be the restriction of ψ to the space O. In particular,

ψ(v, p) = ψ†(v, p) ∈ O,

whenever v ∈ O. This shows that ψ(auℓ, p) is an odd function. Now, we evaluate
Φ̂2((a, 0)

⊤, s):

Φ̂2((a, 0)
⊤, s) = ⟨z∗2 ,Φ(auℓ, p(s))⟩

= ⟨z∗2 , QF q(auℓ + ψ(auℓ, p(s)), p(s))⟩
= 0,

because auℓ + ψ(auℓ, p(s)) is odd and F q maps odd functions to odd functions,
see Lemma 5.4.4. Therefore, when b = 0 in (5.4.3) and a and s are in a small
neighborhood of the bifurcation point, we find that Φ̂2 = 0. Since Φ̂((0, 0)⊤, s) =
(0, 0)⊤, we can choose ĥ such that the claim of the lemma holds. Finally, by
Proposition 5.4.3 it follows that ĥ has to satisfy the rotational invariance condition.

Consequently, when looking for zeros of Φ̂((a, b)⊤, s), we can restrict ourselves
to b = 0, see Figure 5.5. Given a, s such that Φ̂((a, 0)⊤, s) = 0, all other zeros can
then be obtained by applying Aϕ to (a, 0)⊤. Therefore, we might as well study the
problem of finding zeros of

h(a, s) := Φ̂((a, 0)⊤, s) = Φ̂†(a, s) := ⟨z∗1 ,Φ†(auℓ, p(s))⟩.
This statement can also be reformulated without using coordinates (a, b): If v̂ ∈ O
is a solution of Φ†(v̂, p(s)) = 0 then all solutions ṽ of Φ(ṽ, p(s)) = 0 are of the form
ṽ = Bϕv̂ for some ϕ ∈ S. By Theorem 5.4.2, all solutions of F q(v, p(s)) = 0 are
then of the form v = ṽ + ψ(ṽ, p(s)) = Bϕv̂ + ψ(Bϕv̂, p(s)) = Bϕ(v̂ + ψ(v̂, p(s))).
Since v̂+ψ(v̂, p(s)) is an odd function, all solutions v of F q(v, p(s)) can be obtained
from an odd function via the transformation Bϕ. In the next section, we Taylor-
expand h to see which zeros it has in a neighborhood of the origin.
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Figure 5.5: Illustration of Lemma 5.4.6. For given s with |s| small enough, the
vectorfield Φ̂((a, b)⊤, s), depicted by yellow arrows, has a rotational symmetry.
Thus, when searching for zeros of Φ̂, we can restrict ourselves to zeros with b = 0
and a ≥ 0, as illustrated by the blue line. If, there is a zero, here indicated by
a green dot, somewhere on this blue line, then all other zeros can be obtained by
rotating the green dot around the origin. Here, â, b̂ are coordinates with 0 < a

â
=

b

b̂
≪ 1 such that (a, b) is in a small neighborhood of the origin.

5.4.3 Taylor Expansion around the Bifurcation Point

In order to determine the type of the bifurcation it is necessary to compute the
derivatives of h. Since F is smooth, as proven in Appendix B.3, the function ψ†, Φ†

and Φ̂†, which originate from the implicit function theorem or are concatenations
of smooth functions, are smooth as well. In order to derive expressions for the
derivative of h we first need to compute derivatives of F q,†. These derivatives are
given in the next lemma:

Lemma 5.4.7. The derivative of F q,†, evaluated on the basis functions satisfies

F q,†
v (0, p)[uk] = c1(q, k, p)uk. (5.4.13)

An evaluation of second derivatives of F q,† on the basis elements uk yields

F q,†
vv (0, p)[uk, uk] = c2(q, k, p)u2k. (5.4.14)

Further, second derivatives, evaluated on distinct basis functions, are given by

F q,†
vv (0, p)[um, uk] = c3(q,m, k, p)um−k + c4(q,m, k, p)um+k, (5.4.15)
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for all m, k ∈ N with m ̸= k. Here, we use the convention u−n = −un for n ∈ N.
Furthermore, we find

F q,†
vvv(0, p)[uk, uk, uk] = 3c5(q, k, p)uk + c6(q, k, p)u3k, (5.4.16)

for k ∈ N. Here, c1, . . . , c6 are coefficients that depend on q, k,m, p and the Fourier
coefficients Ŵr(k) of the coupling function. The full expressions for these coeffi-
cients can be found in Appendix B.1.

Proof. This lemma can be proven by inserting the basis functions into the repre-
sentation of the derivative of F , derived in Appendix B.3.

Now, we can use Lemma 5.4.7 to calculate derivatives of ψ† and Φ†. This
follows the lines of [97, Section I.6].

Lemma 5.4.8. The derivatives of ψ† satisfy

ψ†
v(0, p0)uℓ = 0, (5.4.17)

ψ†
vv(0, p0)[uℓ, uℓ] = − c2(q, ℓ, p0)

c1(q, 2ℓ, p0)
u2ℓ. (5.4.18)

Proof. Taking the derivative of (5.4.11) with respect to v yields

(I −Q†)F q,†
v (v + ψ†(v, p), p)[v1 + ψ†

v(v, p)v1] = 0 (5.4.19)

for all v1 ∈ N †. Now, we insert v = 0 and p = p0 into (5.4.19). Noting that
F q,†
v (0, p0)v1 = 0 and Q†F q,†

v (0, p0) = 0, we are left with F q,†
v (0, p)ψ†

v(0, p0)v1 = 0.
Since ψ† maps N † into X†

0 and F q,†
v (0, p) regarded as a map from X†

0 to R† is
bijective, we obtain (5.4.17). Differentiating (5.4.19) once more with respect to v
gives

(I −Q†)F q,†
vv (v + ψ†(v, p), p)[v1 + ψ†

v(v, p)v1, v2 + ψ†
v(v, p)v2]

+ (I −Q†)F q,†
v (v + ψ†(v, p), p)ψ†

vv(v, p)[v1, v2] = 0.

for all v1, v2 ∈ N †. Again, by inserting v = 0 and p = p0 into the previous equation
we obtain

(I −Q†)F q,†
vv (0, p0)[v1, v2] + F q,†

v (0, p0)ψ
†
vv(0, p0)[v1, v2] = 0 (5.4.20)

for all v1, v2 ∈ N †. Now, we compute ψ†
vv(0, p0)[uℓ, uℓ] by choosing v1 = v2 = uℓ

in (5.4.20) and using (5.4.14). We obtain

F q,†
v (0, p0)ψ

†
vv(0, p0)[uℓ, uℓ] = −c2(q, ℓ, p0)u2ℓ.

Therefore, by noting that ψ†
vv(0, p0)[uℓ, uℓ] ∈ X†

0, considering F
q,†
v (0, p0) : X

†
0 → R†

as an invertible map and using (5.4.13), we are left with (5.4.18).
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Now, we can use these derivatives to calculate the derivatives of Φ̂†:

Lemma 5.4.9. Φ̂† satisfies

Φ̂†(0, 0) = 0, Φ̂†
a(0, 0) = 0,

Φ̂†
aa(0, 0) = 0, Φ̂†

aaa(0, 0) = 6γ1,

where

γ1 :=
1

2

(
c5(q, ℓ, p0)−

c2(q, ℓ, p0)c3(q, 2ℓ, ℓ, p0)

c1(q, 2ℓ, p0)

)
. (5.4.21)

Proof. By differentiating (5.4.10) with respect to v we get

Φ†
v(v, p)v1 = Q†F q,†

v (v + ψ†(v, p), p)[v1 + ψ†
v(v, p)v1], (5.4.22)

Φ†
vv(v, p)[v1, v2] = Q†F q,†

vv (v + ψ†(v, p)[v1 + ψ†
v(v, p)v1, v2 + ψ†

v(v, p)v2]

+Q†F q,†
v (v + ψ†(v, p), p)ψ†

vv(v, p)[v1, v2],

Φ†
vvv(v, p)[v1, v2, v3] = Q†F q,†

vvv(v + ψ†(v, p), p)[v1 + ψ†
v(v, p)v1,

v2 + ψ†
v(v, p)v2, v3 + ψ†

v(v, p)v3]

+Q†F q,†
vv (v + ψ†(v, p), p)[v1 + ψ†

v(v, p)v1, ψ
†
vv(v, p)[v2, v3]]

+Q†F q,†
vv (v + ψ†(v, p), p)[v2 + ψ†

v(v, p)v2, ψ
†
vv(v, p)[v1, v3]]

+Q†F q,†
vv (v + ψ†(v, p), p)[v3 + ψ†

v(v, p)v3, ψ
†
vv(v, p)[v1, v2]]

+Q†F q,†
v (v + ψ†(v, p), p)ψ†

vvv(v, p)[v1, v2, v3]

for all v1, v2, v3 ∈ N †. Evaluating these derivatives at v = 0 and p = p0 and
using (5.4.17) yields

Φ†
v(0, p0)v1 = 0, (5.4.23a)

Φ†
vv(0, p0)[v1, v2] = Q†F q,†

vv (0, p0)[v1, v2], (5.4.23b)

Φ†
vvv(0, p0)[v1, v2, v3] = Q†F q,†

vvv(0, p0)[v1, v2, v3]

+Q†F q,†
vv (0, p0)[v1, ψ

†
vv(0, p0)[v2, v3]]

+Q†F q,†
vv (0, p0)[v2, ψ

†
vv(0, p0)[v1, v3]]

+Q†F q,†
vv (0, p0)[v3, ψ

†
vv(0, p0)[v1, v2]].

(5.4.23c)

By the definition of Φ† we get

Φ̂†(0, 0) = 0

By (5.4.23a) we get

Φ̂†
a(0, 0) = ⟨z∗1 ,Φv(0, p0)uℓ⟩ = 0.
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Using (5.4.23b) and (5.4.14), we obtain

Φ̂†
aa(0, 0) = ⟨z∗1 ,Φ†

vv(0, p0)[uℓ, uℓ]⟩ = ⟨z∗1 , Q†F q,†
vv (0, p0)[uℓ, uℓ]⟩ = ⟨z∗1 , 0⟩ = 0.

Using (5.4.23c), (5.4.16), (5.4.18) and (5.4.15) yields

Φ†
vvv(0, p0)[uℓ, uℓ, uℓ] = Q†F q,†

vvv(0, p0)[uℓ, uℓ, uℓ]

+ 3Q†F q,†
vv (0, p0)[uℓ, ψ

†
vv(0, p0)[uℓ, uℓ]]

= Q†F q,†
vvv(0, p0)[uℓ, uℓ, uℓ]

− 3c2(q, ℓ, p0)

c1(q, 2ℓ, p0)
Q†F q,†

vv (0, p0)[uℓ, u2ℓ]

= 3c5(q, ℓ, p0)uℓ −
3c2(q, ℓ, p0)c3(q, 2ℓ, ℓ, p0)

c1(q, 2ℓ, p0)
uℓ

Therefore, Φ̂†
aaa(0, 0) = 6γ1.

Now, we compute derivatives involving s.

Lemma 5.4.10. Φ̂† satisfies

Φ̂†
s(0, 0) = 0, Φ̂†

as(0, 0) = γ2,

where

γ2 :=
d

ds
c1(q, ℓ, p(s))

∣∣∣
s=0

. (5.4.24)

Proof. Since F q,†(0, p) = F (Ψq, p) = 0 for all p ∈ P , we have Φ̂†(0, s) = 0 for all
s ∈ (−δ, δ). In particular,

Φ̂s(0, 0) = 0.

To compute the mixed derivative, we first differentiate (5.4.11) with respect to p
to obtain

(I −Q†)F q,†
v (v + ψ†(v, p), p)ψp(v, p) + (I −Q†)F q,†

p (v + ψ†(v, p), p) = 0. (5.4.25)

Now, we insert v = 0, p = p0 to get

(I −Q†)F q,†
v (0, p0)ψ

†
p(0, p0) + (I −Q†)F q,†

p (0, p0) = 0.
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Again, because F q,†(0, p) = 0 for all p its derivative with respect to p, i.e., the sec-
ond part of the previous equation, is 0. Moreover, for v ∈ X†

0, (I−Q†)F q,†
v (0, p0)v =

0 is equivalent to v = 0 and therefore

ψ†
p(0, p0) = 0. (5.4.26)

Now, the mixed first derivatives can be computed by differentiating (5.4.22) with
respect to p as follows:

Φ†
vp(v, p)[v1, p1] = Q†F q,†

vv (v + ψ†(v, p), p)[v1 + ψ†
v(v, p)v1]ψ

†
p(v, p)p1

+Q†F q,†
vp (v + ψ†(v, p), p)[v1 + ψ†

v(v, p)v1, p1]

+Q†F q,†
v (v + ψ†(v, p), p)ψ†

vp(v, p)[v1, p1]

for all v1 ∈ N †, p1 ∈ R3. Evaluating that at v = 0, p = p0 yields

Φ†
vp(0, p0)[uℓ, p1] = Q†F q,†

vp (0, p0)[uℓ, p1]

= Dpc1(q, k, p)
∣∣∣
p=p0

p1uℓ.

Consequently,

Φ̂as(0, 0) = Dpc1(q, k, p)
∣∣∣
p=p0

p′(0)

=
d

ds
c1(q, ℓ, p(s))

∣∣∣
s=0

.

Now, we can put these lemmas together and formulate the concluding theorem
of this section:

Theorem 5.4.11. The Taylor-expansion of Φ̂†(a, s) = h(a, s) is

Φ̂†(a, s) =
[
γ1a

3 +O(a4)
]
+ s

[
γ2a+O(a2)

]
+O(s2)

= a(γ1a
2 + γ2s) +O(a4 + |s| a2 + s2) (5.4.27)

Here, γ1 and γ2 are defined as in (5.4.21) and (5.4.24), respectively.

Proof. Since F is smooth, this follows from Lemmas 5.4.9 and 5.4.10.

Here, (5.4.27) is the Taylor expansion of a pitchfork bifurcation. In fact, by
using the implicit function theorem, one can show that except for the trivial solu-
tion branch a = 0 there is another curve of equilibria in the neighborhood of the
trivial solution. This nontrivial solution branch can be parameterized by a twice
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continuously differentiable curve τ 7→ (s(τ), a(τ)) for τ ∈ (−ϵ, ϵ) and 0 < ϵ small
enough. In this case, s(0) = a(0) = 0 and the parameterization can be chosen
such that a′(0) = 1. Then, s′(0) = 0 and s′′(0) = −2γ1/γ2. Here, a prime denotes
differentiation with respect to τ . Given these derivatives, the nontrivial solution
curve exists for s ≤ 0 when γ2/γ1 > 0 and for s ≥ 0 when γ2/γ1 < 0. Moreover,
in a neighborhood of the bifurcation point, we can approximate

a ≈ aapp(s) :=

√
−γ2s
γ1

. (5.4.28)

Given parameters a0, s0 with h(a0, s0) = 0 we infer that all ã0, b̃0, s̃0 with
ã20 + b̃20 = a20 and s0 = s̃0 satisfy Φ̂((ã0, b̃0)

⊤, s̃0) = 0, due to the symmetry (5.4.4)
of Φ̂, see Figure 5.5.

5.4.4 Higher-Order Equilibria Approximations

In the last section, we clarified existence of solutions to Φ(v, p(s)) = 0. In this
section we explain how to use these solutions to derive formulas that can be used
to approximate the zeros of F q in H1

0 . Given v ∈ N that solves Φ(v, p(s)) = 0
we know that F (Ψq + v + ψ(v, p(s)), p(s)) = F q(v + ψ(v, p(s)), p(s)) = 0. For a
given p(s), a zero of F is therefore given by Z(v, s) := Ψq + v + ψ(v, p(s)). A
naive 0-th order approximation for this zero would be given by

Z(v, s) = Ψq +O(∥(v, s)∥).

However, since after neglecting the higher-order terms this approximation coincides
with the trivial zero of F , i.e., the q-twisted state, this approximation is not useful.

An approximation of first order can be derived by expanding Z(v, s) in terms
of v and s up to first derivatives. This yields

Z(v, s) = Ψq + v + ψv(0, p0)v + sψp(0, p0)p
′(0) +O(∥(v, s)∥2)

= Ψq + v +O(∥(v, s)∥2),

where we have used that ψv(0, p0) = 0 and ψp(0, p0) = 0. Neglecting the higher-
order terms, we denote

Z1(v, s) = Ψq + v (5.4.29)

for the first order approximation.
To get a more precise approximation, we assume that p : (−δ, δ) → P is a

smooth curve. Then, we expand up to second order:

Ψq + v + ψ(v, p(s)) = Ψq + v +
1

2
(v, p(s)− p(0))H

(
v

p(s)− p(0)

)
+O(∥(v, s)∥3),
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with

H =

(
ψvv(0, p0)[v, v] ψvp(0, p0)[v, p

′(0)]
ψvp(0, p0)[v, p

′(0)] ψpp(0, p0)[p
′(0), p′(0)] + ψp(0, p0)p

′′(0)

)
First, we take care of H22, which is the lower right entry of H. Note that
ψp(0, p0) = 0, as shown in (5.4.26). Next, differentiating (5.4.25) with respect
to p and evaluating at p = p0 and v = 0 yields

0 = (I −Q)F q
vv(0, p0)[ψp(0, p0)p

′(0), ψp(0, p0)p
′(0)] (5.4.30a)

+ (I −Q)F q
vp(0, p0)[ψp(0, p0)p

′(0), p′(0)] (5.4.30b)

+ (I −Q)F q
v (0, p0)ψpp(0, p0)[p

′(0), p′(0)] (5.4.30c)

+ (I −Q)F q
vp(0, p0)[ψp(0, p0)p

′(0), p′(0)] (5.4.30d)

+ (I −Q)F q
pp(0, p0)[p

′(0), p′(0)]. (5.4.30e)

Again, due to ψp(0, p0) = 0, we observe that the terms (5.4.30a), (5.4.30b) and (5.4.30d)
equal 0. Moreover, F q(0, p) = 0 for all p ∈ P . Therefore, F q

pp(0, p0) = 0, and
thus (5.4.30e) is 0 as well. As a consequence

0 = (I −Q)F q
v (0, p0)ψpp(0, p0)[p

′(0), p′(0)].

Since ψ maps intoX0 we conclude that ψpp(0, p0)[p
′(0), p′(0)] = 0 and thusH22 = 0.

Next, we look at the off-diagonal entries H21 = H12. To obtain an expression for
ψvp(0, p0) we differentiate (5.4.19) with respect to p, insert v = 0, p = p0 and
thereby obtain

0 = (I −Q)F q
vv(0, p0)[v1, ψp(0, p0)p

′(0)] (5.4.31a)

+ (I −Q)F q
vp(0, p0)[v1, p

′(0)] (5.4.31b)

+ (I −Q)F q
v (0, p0)ψvp(0, p0)[v1, p

′(0)], (5.4.31c)

for all v1 ∈ N . Since ψp(0, p0) = 0, as shown in (5.4.26), (5.4.31a) equals 0. More-
over, for all p ∈ P , Fv(0, p)v ∈ Z0 for all v ∈ N . Therefore, F q

vp(0, p)[v, p
′(0)] ∈ Z0,

too, and consequently (5.4.31b) is 0. Again, we conclude that ψvp(0, p0) = 0.
Therefore,

H =

(
ψvv(0, p0)[v, v] 0

0 0

)
and thus

Ψq + v + ψ(v, p(s)) = Ψq + v +
1

2
ψvv(0, p0)[v, v] +O(∥(v, s)∥3)
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for all v ∈ N and s ∈ (−δ, δ) in a neighborhood of (0, 0). We denote

Z2(v, s) = Ψq + v +
1

2
ψvv(0, p0)[v, v] (5.4.32)

for the second order expansion.
However, until now we have assumed that v solves Φ(v, p(s)) = 0. Since this

solution v depends on s, we denote it by v(s). Unfortunately, for given s these
solutions v(s) are not known exactly but they also have to be approximated by
a function that we call vapp. We derive vapp by first computing aapp(s) according
to (5.4.28). Then, Φ̂†(aapp(s), s) ≈ 0 and consequently Φ̂(Aϕ(a

app(s), 0)⊤, s) ≈ 0
for all ϕ, but for simplicity we keep ϕ = 0. Now, we define vapp(s) := aapp(s)uℓ and
because Φ̂ is the coordinate version of Φ, it follows that Φ(vapp(s), s) ≈ 0. Given
this function vapp(s), we use Zi(vapp(s), s) for i ∈ {1, 2} to approximate the real
equilibrium Z(v(s), s). Consequently, the total approximation error is given by∣∣Zi(vapp(s), s)− Z(v(s), s)

∣∣ ≤ ∣∣Zi(vapp(s), s)− Zi(v(s), s)
∣∣ (5.4.33a)

+
∣∣Zi(v(s), s)− Z(v(s), s)

∣∣ . (5.4.33b)

In the remaining part of this subsection, we determine the magnitude of the ap-
proximation error of both parts (5.4.33a) and (5.4.33b) in dependence of the
parameter s.

To obtain an estimate for the first part (5.4.33a), we reconsider the curve
(a(τ), s(τ)) that describes the nontrivial equilibria. Because a′(0) = 1, we can
reparameterize the curve such that locally a(τ) = τ . Then, we still have s(0) = 0,
s′(0) = 0 and s′′(0) = −2γ1/γ2. Due to a

′(τ) = 1 for all τ in a small neighborhood
of the origin and the symmetry of Φ̂ discussed in Lemma 5.4.6, we can infer
that s(−τ) = s(τ). Consequently, s(τ) has vanishing third derivative at τ = 0.
Since the curve is smooth that results in s(τ) = −γ1/γ2τ 2 + O(τ 4). Using this
representation, one can show that

|aapp(s(τ))− a(τ)| =

∣∣∣∣∣
√

−γ2s(τ)
γ1

− τ

∣∣∣∣∣ = O(τ 3) = O(s
3
2 ).

Since Zi(v, s) is Lipschitz-continuous in v and has non-vanishing derivative with
respect to v, that then results in

Zi(vapp(s), s)− Zi(v(s), s) = O(s
3
2 ).

To estimate the second part of the error (5.4.33b), it is important to note that
v(s) is dependent on s. In fact, due to the form of the pitchfork bifurcation, its
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dependence can be expressed as v(s) = O(s
1
2 ). Combining that with Zi(v, s) −

Z(v, s) = O(∥(v, s)∥i+1), as shown above, we find

Zi(v(s), s)− Z(v(s), s) = O(∥(v(s), s)∥i+1) = O(s
i+1
2 ).

Putting these two errors together, we conclude that the total approximation error
is given by

Zi(vapp(s), s)− Z(v(s), s) = O(smin( 3
2
, i+1

2
)). (5.4.34)

In particular, deriving a third order approximation Z3(v, s) or even higher-order
approximations is useless unless one can also improve the approximation in the
first step (5.4.33a). This, however, would require a more detailed Taylor-expansion
of Φ̂† than the one given in Theorem 5.4.11 and thus more derivatives of F q.

5.4.5 Linear Stability

Up to now, we have only determined the existence of equilibria of the PDE

∂

∂t
Ψ(t, x) = F (Ψ, p)(x).

We have seen that apart from the trivial solution, there exists a solution curve of
nontrivial solutions. In this section, we formally investigate the linear stability of
q-twisted states and bifurcating branches. A rigorous proof of nonlinear stability
is beyond the scope of this thesis.

Without loss of generality, we assume γ2 > 0. If γ2 < 0, reverse the parameter-
ization of p(s) by considering p(−s) instead. Moreover, since the stability depends
on the spectrum of the linearization, we denote

κ(s) := sup
k∈N
k ̸=ℓ

c1(q, k, p(s))

and assume κ(0) < 0 since otherwise neither the twisted state nor the bifurcating
equilibria can be stable. Note that κ(s) is continuous in s and thus κ(s) < 0
for all s in a neighborhood of 0. Consequently, we only have to investigate how
the critical zero eigenvalues at the bifurcation change, when perturbing (Ψq, p0) to
nearby equilibria.

Stability of the twisted state. Since γ2 = d
ds
c1(q, ℓ, p(s))

∣∣∣
s=0

is assumed to

be positive, c1(q, ℓ, p(s)) < 0 for all s < 0. Consequently, supk∈N c1(q, k, p(s)) < 0
for all s < 0, which means that the spectrum of F q

v (0, p(s)) is in the left half of
the complex plane. Therefore, Ψq is linearly stable. If, on the other hand s > 0,
F q
v (0, p(s)) has positive eigenvalues, from which we can conclude linear instability.
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Stability of the bifurcating branches in O. First, we study the stability of
the bifurcating equilibria only in the space of odd functions O. Considering the
bifurcation problem in this reduced space, there is only one critical eigenvalue with
multiplicity one that passes through 0 and a one-dimensional curve of bifurcating
equilibria. As explained at the end of Section 5.4.3, this curve corresponds to
τ 7→ (s(τ), a(τ)) for τ ∈ (−ϵ, ϵ) with s(0) = a(0) = 0 and a′(0) = 1. Further,
we denote v(τ) = a(τ)uℓ + ψ†(a(τ)uℓ, p(s(τ))) for the equilibrium of F q,† such
that F q,†(v(τ), p(s(τ))) = 0. The principle of exchange of stability [97, Section
I.7] can now be applied to study the linear stability of these bifurcating equilib-
ria. First, the critical zero eigenvalue gets perturbed to an eigenvalue ν(τ) of
F q,†
v (v(τ), p(s(τ))), see [97, Proposition I.7.2]. To be precise,

F q,†
v (v(τ), p(s(τ)))(uℓ + ω(τ)) = ν(τ)(uℓ + ω(τ)),

where ω(τ) ∈ O is a continuously differentiable curve, ν(0) = 0 and s ∈ (−δ, δ).
Moreover, ν(τ) is continuously differentiable and represents the perturbation of
the zero eigenvalue. Its derivative at τ = 0 can be computed using the formula

γ2s
′(0) = −ν ′(0),

see also formula (I.7.41) in [97]. However, due to s′(0) = 0 we obtain ν ′(0) = 0.
The second derivative satisfies

2γ2s
′′(0) = −ν ′′(0),

see formula (I.7.45) in [97]. Using s′′(0) = −2γ1/γ2 we find ν ′′(0) = 4γ1. Since
κ(s) < 0, the stability of the bifurcating branch in a neighborhood of the bifur-
cation point is then determined by the sign of the perturbed eigenvalue ν(τ). To
be precise, if γ1 < 0 then s′′(0) > 0 and thus bifurcating solutions exist whenever
s > 0 is close to 0. Since γ2 < 0, the q-twisted state has a positive eigenvalue and
is thus linearly unstable in that parameter region. The leading eigenvalue of the
bifurcating solution v(τ), however, is given by ν(τ) < 0. Therefore, the bifurcating
solutions are stable. In this case, the bifurcation is supercritical. If γ1 > 0, we
have s′′(0) < 0. Consequently, the bifurcating solutions exist for s < 0. Here,
the q-twisted state is linearly stable and the leading eigenvalue of the bifurcat-
ing branch is ν(τ) > 0. Thus, these bifurcating equilibria are unstable. Such a
bifurcation is called subcritical.

Stability of the bifurcating branches in H1
0 . Now, we consider the bifurca-

tion problem in H1
0 . First note, that since O ⊂ H1

0 , the equilibrium v(τ) is still an
equilibrium of F q when considered in H1

0 . Furthermore, by applying the symme-
try condition (5.4.5), one can retrieve every other equilibria in a neighborhood of
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the bifurcation point. Specifically, for all ϕ ∈ R, the functions Bϕ(v(τ)) are also
equilibria. This symmetry results in a two-dimensional surface of equilibria, that
is parameterized by ϕ and τ . Corresponding to this surface of equilibria, there are
two critical zero spectral values, that we need to track when perturbing the trivial
equilibria (0, p0) to bifurcating equilibria (v(τ), p(s(τ))) that lies on the surface.
Obviously, since O ⊂ H1

0 , (v(τ), p(s(τ))) inherits the eigenvalue ν(τ). Because
(v(τ), p(s(τ))) lies on a surface of equilibria, the other spectral value is given by 0.
Even though this zero spectral value prevents us from directly concluding linear
stability, our numerical simulations in the next section support the statement that
bifurcating equilibria are stable in H1

0 when they are stable in O for some specific
parameter choices.

Remark 5.4.12. The bifurcation analysis, that has been presented in this section,
is in principle also applicable to a much wider class of systems as just (5.3.5). In
particular, one can also add (d+ 1)-way interactions (5.6.3) as those described in
Section 5.6, i.e., quintuplet interactions, sextuplet interactions, ect. Then, one can
perform a similar bifurcation analysis going along the lines of Sections 5.4.1-5.4.3.
One expects to find a pitchfork bifurcation in the space of odd functions, since this
bifurcation generically occurs in systems with a trivial zero, that is given by the
twisted state, and symmetries (5.3.2), (5.3.3). Therefore, showing the presence of
a pitchfork bifurcation should not be seen as the first priority of the bifurcation
analysis. Instead, questions such as “When do bifurcating equilibria exist?”, “Are
they stable?”, “Is the bifurcation sub- or supercritical?” are more interesting. To
answer these kind of questions one needs to know the coefficients γ1 and γ2 that
appear in Theorem 5.4.11. Obtaining them ultimately comes down to calculating
the coefficients c1, . . . , c6 in the representation of the derivative of the right-hand
side, see Lemma 5.4.7. As illustrated in Appendix B.1, these calculations are al-
ready long for just pairwise interactions. Using symbolic differentiation software,
we could still evaluate the derivatives for the triplet and quadruplet interactions
in (5.3.5), but even that becomes a challenge for even higher-order interactions.
Finally, as we will see in the next section, we can already (un)stabilize twisted
states, influence the position (i.e., for which r it occurs) of the bifurcation and
change the type of the bifurcation from sub- to supercritical and vice versa. Since
all of that is already possible with just the pairwise, triplet and quadruplet inter-
actions, that are included in (5.3.1), we believe that no new local dynamical effects
appear when adding even higher-order interactions.

5.5 Applications

In this section, we take a few specific choices of the curve p(s) and evaluate the
bifurcation in more detail. We compute the ratio γ2/γ1 which determines if bi-
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furcating solutions exist for s > 0 or s < 0. Moreover, we approximate these
bifurcating solutions using the expansions in Section 5.4.4 and study their exis-
tence numerically as a cross-validation. In the first part of the section, we only
look at graph coupling. The second subsection additionally includes triplet inter-
actions and shows how they can influence the stability of twisted states. Finally,
in the last part of this section, we let λ ̸= 0 and µ ̸= 0 simultaneously, and explain
how the triplet and quadruplet interactions can be used to change the type of the
bifurcation from subcritial to supercritical or vice versa.

5.5.1 The Kuramoto Model on Nonlocal Graphs

The Attractive Kuramoto Model (Subcritical Bifurcation)

In this section we apply the bifurcation theory to the Kuramoto model on limits of
k-nearest neighbor graphs. Specifically, we consider no higher-order interactions,
i.e., λ = µ = 0 in (5.3.5). Instead, we only consider the coupling range r in the
continuum limit as a parameter. When r > 0 is very small, the eigenvalues around
a q-twisted state are all negative [177]. Then, upon increasing r, the eigenvalue
corresponding to k = 1 is the first one that passes through 0. We denote this
threshold by ra0(q) with a superscript a to indicate that we are working with the
attractive Kuramoto model. It is called attractive, since two oscillators that are
close attract each other. In our notation that means c1(q, k, (r, 0, 0)) < 0 for all
k ∈ N and r ∈ (0, ra0(q)) and c1(q, 1, (r

a
0(q), 0, 0)) = 0, see Figure 5.6 and [177].

To analyze this bifurcation we choose a curve p : (−δ, δ) → P with p(s) =
(ra0(q) + s, 0, 0). As explained in Section 5.4.3, finding equilibria of the Kuramoto
model on a graph around the q-twisted state in a neighborhood of the bifurca-
tion at ra0(q) is equivalent to finding solutions to the equation Φ̂†(a, s) = 0 in
a neighborhood of the origin. According to the results in the same section, for
given s0 ∈ (−δ, δ), an approximate solution is given by aapp and it exists when-
ever the quantity under the root in (5.4.28) is positive. As seen in Figure 5.7 and
shown in Appendix B.2.3, γ2/γ1 > 0. Moreover, since the first eigenvalue passes
through 0 from below, we have γ2 > 0, which then implies γ1 > 0. Therefore,
for r ∈ (ra0(q) − δ, ra0(q)) there exist further equilibria of (5.3.1) and (5.3.5) when
λ = µ = 0 around the q-twisted states. However, according to the principles
explained in Section 5.4.5, the q-twisted state is stable in that regime and the
bifurcating solutions are unstable.

To confirm the existence of the bifurcating solutions, we consider the sequence
of finite particle systems (5.2.1) whose continuum limit is given by (5.2.8), or
equivalently (5.3.1) with λ = µ = 0. In these systems, the coefficients ai are defined
by ai = 1 if min(|i| ,M − |i|) ≤ ⌊Mr⌋ and ai = 0 otherwise. The corresponding
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Figure 5.6: Eigenvalues c1(5, k, (r, 0, 0)) of a 5-twisted state. Until ra0(5) ≈ 0.06632
all eigenvalues are negative. At ra0(5), the eigenvalue c1(5, k, (r, 0, 0)) with k = 1
passes through 0. Shortly thereafter, the eigenvalue corresponding to k = 2 passes
through 0 as well. For 0.1170 ⪅ r ⪅ 0.1789 all eigenvalues are positive.

system of phase differences, defined by θi := ϕi − ϕ1, is given by

θ̇i =
1

M

M∑
j=1

ai−j sin(θj − θi)−
1

M

M∑
j=1

a1−j sin(θj). (5.5.1)

However, since the definition of ai involves rounding, r cannot be regarded as a
continuous bifurcation parameter. Therefore, we consider the system

θ̇i =
1

M

M∑
j=1

bi−j sin(θj − θi)−
1

M

M∑
j=1

b1−j sin(θj), (5.5.2)
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Figure 5.7: Bifurcation ratio γ2
γ1q

for the attractive Kuramoto model at r = ra0(q)

when the first (k = 1, independent of q) eigenvalue passes through 0. The value
of γ2

γ1q
seems to converge to ≈ 1.723.

in which the coefficients bi are defined as follows: Let k0 = ⌊rM⌋. Then,

bi :=


1 if min(|i| ,M − |i|) ≤ k0,

rM − k0 if min(|i| ,M − |i|) = k0 + 1,

0 otherwise.

Here, r can be considered as a continuous bifurcation parameter.
However, when simulating the finite particle system (5.5.2), it turns out that

the bifurcation does not occur at ra0(q) but at another value ra,M0 (q) which is
slightly different from ra0(q). In fact, numerical simulations show ra0(q) = ra,M0 (q)+
O(1/M). For example, for q = 5 we get ra0(5) ≈ 0.06632 whereas ra,10000 (5) ≈
0.06582. Consequently, when looking for bifurcating solutions of q-twisted state in
the finite particle system (5.5.2) one should search in a neighborhood of ra,M0 (q).
In particular, we fix s = s0 and look for bifurcating solutions for r = ra,M0 (q) + s0.
In order to get an approximation for a solution of Φ(v, p(s)) = 0, we calculate γ1
and γ2 according to (5.4.21) and (5.4.24) based on the value r = ra0(q). Then, we
calculate aapp(s0) according to (5.4.28) and proceed by along the steps explained
in Section 5.4.4 to get vapp. Next, we use a discrete analog of the first order
approximation Z1(vapp, s0) as the initial condition of a zero finding algorithm (e.g.,
a Newton-iteration), that we then apply to the right-hand side of (5.5.2). For one
specific parameter choice, the solution Ẑ of this zero-finding algorithm is depicted
in Figure 5.8.

As a last numerical experiment, we study how good the first- and second-order
approximations Zi(vapp(s), s) with i = 1, 2 are as s → 0. To this end, we let s
be in a discrete set of values S, for which bifurcating equilibria exist. Here, we
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Figure 5.8: Bifurcating solution around a q-twisted state in the system (5.5.2).
Part (a) shows Ẑ−Ψq (red line), which when added to Ψq results in the nontrivial
solution Ẑ, its first order approximation Z1(vapp, s0) − Ψq (blue) and its second
order approximation Z2(vapp, s0) − Ψq (green). Here, vapp = aappu1 such that
Φ(vapp, p(s0)) ≈ 0 up to higher-order terms. If this was exact, as explained in
Section 5.4.4, we would have F (Z(v, s0), p(s0)) = 0. Here, we denote Ẑ for an
equilibrium of the system (5.5.2) for r = ra,M0 (q) + s0. Moreover, part (b) depicts
the first order error Ẑ − Z1(vapp, s0) (blue line) and the second order error Ẑ −
Z2(vapp, s0) (green line). Parameter values: M = 1000, s0 = −10−4, q = 5. That
results in γ1 ≈ 9.494 · 10−3, γ2 ≈ 8.400 · 10−2, aapp = 2.974 · 10−2.

choose S as S = −10−5.5+j/12 with j = 0, . . . , 30. Then, for each s ∈ S, we
calculate the bifurcating equilibria Ẑ(s) of (5.5.2) for r = ra,M(q) + s by a zero
finding algorithm as before. Moreover, for each s ∈ S, we calculate the first
and second order approximations Zi(vapp(s), s) with i = 1, 2 as before. Finally,
to compare the approximations with the true bifurcating equilibria, we compute∥∥∥Ẑ(s)− Zi(vapp(s), s)

∥∥∥ and analyze its dependence on s. As one can see in Fig-

ure 5.9, the set S is split into three main regions. For large |s|, specifically for
s ⪅ −3 · 10−4 nonlinear effects take place. Then, for intermediate values of |s|,
specifically for −3 · 10−4 ⪅ s ⪅ −10−5, the approximation error seems to depend

algebraically on s, such that
∥∥∥Ẑ(s)− Zi(vapp(s), s)

∥∥∥ = O(sαi). An estimate from

Figure 5.9 gives α1 ≈ 0.92 and α2 ≈ 1.38, which is only slightly worse than the an-
alytical prediction αi = min(3

2
, i+1

2
) from (5.4.34). Finally, we believe that for even

smaller values of |s|, numerical inaccuracies terminate the algebraic convergence.
While the simulations depicted in Figure 5.8 and Figure 5.9 are based on the

system (5.5.2), in which r is a continuous bifurcation parameter, similar results
hold for the system (5.5.1). Here, however, we could not choose M arbitrarily.
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Figure 5.9: Approximation error
∥∥∥Ẑ(s)− Zi(vapp(s), s)

∥∥∥ for i = 1, 2 and s ∈ S =

−10−5.5+j/12 with j = 0, . . . , 30. Here, Ẑ(s) is a bifurcating equilibria of (5.5.2)
for r = ra,M(q) + s. Moreover, the norm is given by ∥·∥ = ∥·∥L2 . The rate
of convergence depicted by the triangles is approximately 1.15/1.25 ≈ 0.92 for
i = 1 and 1.73/1.25 ≈ 1.38 for i = 2. Parameter values: q = 5, M = 5000,
ra,M0 (q) ≈ 0.06622, γ1 ≈ 9.494 · 10−3, γ2 ≈ 8.400 · 10−2.

Instead, we were particularly successful finding bifurcating solutions when ra,M0 (q)
is close to an integer multiple of 1/M .

The Repulsive Kuramoto Model (Supercritical Bifurcation)

Now we consider a variant of (5.3.5) with λ = µ = 0, in which we reverse the sign
of the right-hand side. In particular, we look at

∂

∂t
Ψ(t, x) = −

∫
S
Wr(x− y) sin(Ψ(t, y)−Ψ(t, x)) dy +

∫
S
Wr(y) sin(Ψ(y)) dy.

(5.5.3)

Its finite-dimensional analog of (5.5.2) is then given by

θ̇k =
−1

M

M∑
j=1

bk−j sin(θj − θk) +
1

M

M∑
j=1

b1−j sin(θj). (5.5.4)

Here, two oscillators that are close to each other, repel each other. Therefore, we
call this model the repulsive Kuramoto model, see also [71].
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Because the systems (5.5.3) and (5.3.5) with λ = µ = 0 are only different by
a factor of −1 on the right-hand side, they share the same equilibria. Yet, they
are not identical, since the stability of these equilibria depends on the eigenvalues
of the linearization of the right-hand side and they are nonidentical. In fact, the
spectrum of the linearization of the right-hand side of (5.5.3) can be obtained
from multiplying the spectrum of (5.3.5) by −1. Similarly, the eigenvalues of the
system (5.5.4) can be obtained by multiplying the eigenvalues from (5.5.2) by −1.
Therefore, the eigenvalues of the linearization of the right-hand side around a q-
twisted state are −c1(q, k, (r, 0, 0)). Consequently, the q-twisted state is linearly
stable if c1(q, k, (r, 0, 0)) > 0 for all k ∈ N.

As seen in Figure 5.6, for q = 5 there is an interval r ∈ (0.117, 0.1789) in
which all these conditions are satisfied. Moreover, in a neighborhood of the lower
boundary of this interval, maxk−c1(5, k, (r, 0, 0)) = −mink c1(5, k, (r, 0, 0)) is at-
tained for k = 11. In general, it was shown in [71] that for all q ∈ N with
q > 1 there is an interval in which a q-twisted state is linearly stable in the re-
pulsive Kuramoto model. In particular, the authors showed that stability holds if
1.1787 ⪅ 2qr ⪅ 1.7829, which agrees with our observation in Figure 5.6. For q = 1
there is no bifurcation in the repulsive Kuramoto model.

To analyze the bifurcation, we denote rr0(q) for the smallest value of r until
which there is a positive eigenvalue of the q-twisted state in the repulsive Kuramoto
model. For example rr0(5) ≈ 0.11787. We then choose the parameter curve p(s) =
(rr0(q) + s, 0, 0) and select k for which mink c1(q, k, (r

r
0(q), 0, 0)) is attained. For

example, for q = 5, we have k = 11, but in general the critical eigenvalue depends
on q, see Figure 5.10(a). A numerical evaluation of (5.4.21) and (5.4.24) for q ≤ 60
shows γ1, γ2 > 0, see also Figure 5.10(b). Therefore, bifurcating solutions exist
when s < 0, or equivalently r < rr0(5). Since the 5-twisted state is unstable in that
regime, these bifurcating solutions are linearly stable.

To validate that numerically, we first choose M large enough and then de-
termine rr,M0 (5), which is the bifurcation point in the M -particle system with
limM→∞ rr,M0 (5) → rr0(5). Next, we choose s < 0 with small enough |s|. To nu-
merically confirm that bifurcating equilibria in the repulsive Kuramoto model are
stable and that trajectories with initial conditions, which are close to the 5-twisted
state, converge to these bifurcating equilibria, we simulate the system (5.5.4). We
choose three different random initial conditions, that are close to the 5-twisted
state. In particular, these random initial conditions are obtained by adding cen-
tered random modulations with amplitude 3 · 10−2 to the 5-twisted state. Each
of these random modulations is depicted by a different color in Figure 5.11. We
simulate the system (5.5.4) until the trajectories reach an equilibrium. We ob-
serve, see Figure 5.11, that all resulting equilibria lie in a neighborhood of the
5-twisted state. Therefore, we represent the equilibria by modulations of the 5-
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Figure 5.10: Bifurcation in the repulsive Kuramoto model at r = rr0(q). Part (a)
shows how the critical eigenvalue, i.e., the value of k for which mink c1(q, k, (r, 0, 0))
is attained, depends on q. For example, for q = 5 we have k − 2q = 1 so the
minimum is attained for k = 11. Part (b) depicts the bifurcation ratio γ2

γ1q
at

r = rr0(q), which is the bifurcation when the q-twisted state first becomes stable
upon increasing r. For q = 1, there is no bifurcation in the repulsive Kuramoto
model and the data points that are approximately at (2, 6248) and (3, 1045) are
omitted in this plot.

twisted state. These modulations G are depicted in the figure with the color that
matches the color of the respective initial perturbation of the 5-twisted state. The
modulations are sinusoidal functions with an amplitude of 0.12575 ≈ 0.04π, which
is close to the prediction aapp = 0.0394π by (5.4.28), and 11 periods, caused by
u11 and w11 spanning the unstable direction of the 5-twisted state. Furthermore,
the modulations can be obtained from each other by applying the operator Bϕ.

5.5.2 Stabilization via Higher-Order Interactions

In this section, we keep r0 ∈ (0, 1
2
) and µ0 = 0 constant and vary λ. When

considering the eigenvalues c1(q, k, (r0, λ, 0)) we note that d
dλ
c1(q, k, (r0, λ, 0)) is

independent of λ and k. We denote this quantity by h(q, r0). Note that it is given
by

h(q, r0) = −Ŵr0(q) = − 2

πq
sin(2πqr0).
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Figure 5.11: Simulation of the system (5.5.4) with three different initial conditions.
The initial conditions are given by random modulations of the 5-twisted state.
These modulations G are centered at 0 and all have an amplitude of 3 · 10−2.
They are displayed in the figure by different colors. For each of these three initial
conditions, we simulate system (5.5.4) until each of the trajectories reaches an
equilibrium. The resulting equilibria are represented in the figure as modulations
of the 5-twisted state and their color matches the color of the respective initial
condition. Parameter values: M = 1000, s = −10−5, rr,M0 (5) ≈ 0.11654, rr0(5) =
0.11704, r = rr,M0 (q) + s, γ1 ≈ 1.38 · 10−3, γ2 ≈ 2.12.

Therefore, whenever this quantity is nonzero, one can use higher-order interac-
tions to stabilize or destabilize q-twisted states on the continuum limit of k-nearest
neighbor graphs, as derived in Section 5.2.1, by adding them to the right-hand side
of (5.2.8). To explain this, suppose for example, thatm := maxk c1(q, k, (r0, 0, 0)) >
0. In this case the q-twisted state is unstable in the model (5.3.5) with λ = µ = 0.
Due to the linearity of c1(q, k, (r0, λ, 0)) with respect to λ, we can then write

c1(q, k, (r0, λ, 0)) = c1(q, k, (r0, 0, 0)) + λh(q, r0).

Then, the maximal eigenvalue of the linearization around a q-twisted state for
parameters r0, λ is given by m + λh(q, r0). Consequently, if a q-twisted state is
unstable for λ = 0, i.e., m > 0, one can stabilize it by choosing λ < −m

h(q,r0)
if

h(q, r0) > 0 and λ > −m
h(q,r0)

if h(q, r0) < 0. In the nongeneric case h(q, r0) = 0, a

(de)stabilization is not possible.

It can be shown (see Theorem B.2.3) that for all q and large enough r the
largest eigenvalue m = maxk c1(q, k, (r, 0, 0)) is attained for k = q. In particular,
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Figure 5.12: Maximal eigenvalue of a 8-twisted state for in the system (5.3.5)
in dependence of r0 and λ. Red colors represent an unstable 8-twisted state,
whereas the 8-twisted state is stable in regions where the color is green. The
bigger the magnitude of the maximal eigenvalue, the darker the color. The black
line depicts the value of r⋆(8). For all r0 > r⋆(8) the bifurcation boundary can be
calculated from (5.5.6). The blue curve indicates a subcritical bifurcation whereas
supercritical bifurcations are yellow. Part (b) is a more detailed view of one region
in part (a). Note also that the bifurcation at λ = 0 and r0 ≈ 0.0414 is subcritical,
as shown in Section 5.5.1.

a sufficient condition that the largest eigenvalue m is attained for k = q is

2

πq
≤ 2r − 1

π
sin(2πr), (5.5.5)

which is proven in Appendix B.2. Since the right-hand side of (5.5.5) is mono-
tonically increasing in r, there is a threshold r̃(q) such that (5.5.5) holds for all
r > r̃(q). Moreover, due to the continuity of the right-hand side and the con-
vergence of the left-hand side to 0 as q → ∞, this threshold converges to 0 as
q → ∞. However, since (5.5.5) is only a sufficient condition, the largest eigenvalue
might already be attained by k = q for r < r̃(q). We denote r⋆(q) for the smallest
value of r ∈ (0, 1

2
) such that for all r ≥ r⋆(q), the largest eigenvalue is attained for

q = k. We then have the inequality 0 ≤ r⋆(q) ≤ r̃(q) ≤ 1
2
. Consequently, when
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r0 ∈ (r⋆(q), 1
2
] and Ŵr0(q) ̸= 0 there is a bifurcation when λ = λ0, with

λ0 = − m

h(q, r0)
=
Ŵr0(2q) + Ŵr0(0)− 2Ŵr0(q)

4Ŵr0(q)
. (5.5.6)

Remark 5.5.1. Note that we need limk→∞ c1(q, k, (r0, λ0, 0)) = −(1
2
+λ0)Ŵr0(q) ̸= 0

in order to ensure that an isolated eigenvalue is passing through 0 at the bifurcation
point. When r0 > r⋆(q) this is equivalent to λ0 ̸= −1

2
, since we assumed Ŵr0(q) ̸=

0. However, since Ŵr0(2q) + Ŵr0(0) > 0, it is guaranteed by (5.5.6) that λ0 ̸= −1
2
.

To determine whether a bifurcation is subcritical or supercritical, we note that
bifurcating equilibria in subcritical bifurcations are unstable, whereas they are sta-
ble in supercritical bifurcations. As explained in Section 5.4.5, bifurcating equi-
libria are linearly stable if and only if q-twisted states are linearly unstable in the
parameter region. Thus, by analyzing if bifurcating equilibria exist for s < 0 or
s > 0 and combining this information with the stability of the twisted state in the
same parameter region, we can determine if the bifurcation is sub- or supercritical.
Due to the approximation (5.4.28) and the explanations in the paragraph above it,
bifurcating equilibria exist when the sign of s and γ2/γ1 is opposite. For these s,
we then determine the linear stability of the q-twisted states by looking at the
eigenvalues. Finally, the stability of the bifurcating equilibria can be obtained by
inverting the stability of the twisted states. The resulting type of the bifurcation
is depicted in Figure 5.12.

5.5.3 Changing the Type of the Bifurcation

Here, we fix r and consider 4λ+2µ as the bifurcation parameter. Then, we vary λ
and see how this variation affects the type of the bifurcation. Assuming (5.5.5),
the largest eigenvalue is attained for k = q and the bifurcation takes place at

4λ+ 2µ =
Ŵr(0) + Ŵr(2q)− 2Ŵr(q)

Ŵr(q)
=: H(q, r).

It is easy to see that (5.5.5) is satisfied if 2 ≤ 2πqr− sin(2πqr), which is equivalent
to qr ≥ υ0 ≈ 0.4065, where υ0 solves 2 = 2πυ0 − sin(2πυ0). Assuming that, we
consider the curve

pt(s) = (rt(s), λt(s), µt(s))⊤ = (r0, 4s− 2t+H(q, r0)/4, 2s+ 4t)⊤,

which is parameterized by s and t ∈ R is an additional parameter. Note that
4λt(0) + 2µt(0) = H(q, r) for all t ∈ R. Therefore, there is a bifurcation at s = 0
for all t ∈ R. We calculate

γt2 =
d

ds
c1(q, q, p)

∣∣∣
s=0

= −5Ŵr(q),
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which is independent of t. Moreover,

c5(q, q, p
t(0)) = c5(q, q, p

0(0))− 1

2
tŴr(q),

c2(q, q, p
t(0)) = c2(q, q, p

0(0))− 1

2
t(−Ŵr(0) + Ŵr(2q)),

c3(q, 2q, q, p
t(0)) = c3(q, 2q, q, p

0(0)),

c1(q, 2q, p
t(0)) = c1(q, 2q, p

0(0)),

which leads to

γt1 =
1

2

(
c5(q, q, p

t(0))− c2(q, q, p
t(0))c3(q, 2q, q, p

t(0))

c1(q, 2q, pt(0))

)
= γ01 −

1

4
tŴr(q) +

c3(q, 2q, q, p
0(0))

4c1(q, 2q, p0(0))
t(−Ŵr(0) + Ŵr(2q))

= γ01 + tX(q, r),

with

X(q, r) = −1

4
Ŵr(q) +

c3(q, 2q, q, p
0(0))

4c1(q, 2q, p0(0))
(−Ŵr(0) + Ŵr(2q)).

It can be shown (see Appendix B.1) that

X(q, r) =
1

q
ι(qr), (5.5.7)

for a function ι : R≥0 → R, see Figure 5.13. Moreover, based on the explicit
expression of ι that is given in the appendix, we infer ι(υ) = υ +O(1) as υ → ∞.

To conclude, γt2 is independent of t and whenever γt2 ̸= 0 there is a bifurcation
at s = 0. Furthermore, if additionally X(q, r) ̸= 0, γt1 can take any value in R by
suitably choosing t. Consequently, the ratio γt2/γ

t
1 can also take arbitrary values in

R \ {0}. Since the sign of that ratio determines the type (sub- or supercritical) of
the bifurcation, the parameter t can be used to influence the type of the bifurcation.
As can be rigorously shown, ι(υ) > 0 for all υ ≥ υ0, see Figure 5.13. Therefore, a
sufficient condition to have X(q, r) > 0 is given by qr ≥ υ0.

The possibility of changing the bifurcation type by adjusting the strengths
of various higher-order interactions to the continuum limit of k-nearest neighbor
graphs extends previous results [160, 104]. In particular, [160] contains a global
bifurcation analysis for a coupling composed of a pairwise and two higher-order in-
teraction terms. The authors found that by suitably choosing the strengths of the
higher-order interactions one can influence the type of the pitchfork bifurcation,
in which a certain state changes its stability. Moreover, in [104] it is shown in the
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Figure 5.13: The function ι(υ) and the value of υ0 ≈ 0.4065.

context of bifurcations from trivial branches in network dynamics, that modifica-
tions of the original network model can generically induce changes between sub-
and super-critical bifurcations. The main idea in [104] is to first formally study
normal forms for suitable macroscopic observables and then monitor the effect of
network model changes in the concrete bifurcation coefficients in the normal form.
Hence, the results presented here concretely and rigorously prove that higher-order
interactions can trigger the effect between sub- and supercritical bifurcations, even
for nontrivial branches of twisted states.

5.6 Other Higher-Order Nonlocal Couplings

In this section, we discuss other possible generalizations of the pairwise interac-
tions (5.2.8) to higher-order interactions. Instead of focusing on the system of
phase differences, we consider the original system that describes the absolute po-
sition Θ(t, x) of the oscillators. The name “nearest neighbor” coupling for the
graph interactions (5.2.1) originates from supposing that the individual oscillators
i = 1, . . . ,M are equidistantly placed on the unit circle in ascending order. In a
k-nearest neighbor graph, each oscillator is connected to all of its k-predecessors
and k-successors on the circle. If one fixes r = k/M and sendsM → ∞, a nonlocal
coupling in the continuum limit emerges. One can imagine two oscillators x, y ∈ S
in the continuum limit to be coupled if Wr(x− y) = 1. The parameter r specifies
how far the two oscillators can be spaced apart such that they are still considered
neighbors.
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Now, let us consider the higher-order coupling

∂

∂t
Θ(t, x) =

∫
S

∫
S
Wr(z + y − 2x) sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) dydz, (5.6.1)

which is characterized by the coupling kernel Wr(z + y − 2x). While this is a
straight-forward generalization of the pairwise continuum limit of k-nearest neigh-
bor coupling (5.2.8) to higher-order interactions, the terminology “nearest neigh-
bor” has to be used more carefully. Strictly speaking, three oscillators z, y, x ∈ S
do not need to neighbor each other for them to be coupled, which is the case
when Wr(z + y − 2x) = 1. For example, when z = y = 1

2
and x = 0, we have

z + y − 2x = 0 ∈ S. Therefore, these three oscillators are coupled for every r > 0,
even though z and x are relatively far apart. Similar arguments also hold for the
4-way interaction in (5.3.1). One can further generalize (5.6.1) by replacing the
coupling function and the interaction function to

∂

∂t
Θ(t, x) =

∫
S

∫
S
Wr(m1z +m2y +m3x)

· sin(n1Θ(t, z) + n2Θ(t, y) + n3Θ(t, x)) dydz,

(5.6.2)

or even to the (d+ 1)-way coupling

∂

∂t
Θ(t, x) =

∫
Sd
Wr

(
d∑
i=1

miyi +md+1x

)

· sin

(
d∑
i=1

niΘ(t, yi) + nd+1Θ(t, x)

)
dy

(5.6.3)

for coefficients mi, ni ∈ Z\{0}. Note, however, that q-twisted states are in general
not invariant under the evolution of (5.6.3). They are guaranteed to be invariant
if ni = mi for i = 1, . . . , d + 1. To see that one first inserts Θq(x) into (5.6.3)
and then conducts a linear transformation y1 7→ ŷ1 = 1

m1
(
∑d

i=1miyi +md+1x) in
the integral. After this transformation the integrand is independent of x, which
confirms the invariance of twisted states. However, when for example d = 1 and
m1 = m2 = n1 = −n2 = 1, twisted states are no longer invariant, as one can see
by the same transformation. For special cases—as those considered above—the
system is symmetric: If

∑d+1
i=1 ni = 0 then we have a phase shift symmetry (5.3.2)

and if
∑d+1

i=1 mi = 0 then we have a rotational symmetry of the ring (5.3.3)

If one wants to derive higher-order continuum limits that overcome the issue of
the nearest neighbor terminology in higher-order networks, one can consider other
generalizations of (5.2.8). For example, three oscillators z, y, x ∈ S in the 3-way
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coupling

∂

∂t
Θ(t, x) =

∫
S

∫
S
Wr(z − x)Wr(y − x)

· sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) dydz

(5.6.4)

are coupled if z is close to x and additionally y is close to x. As a result, all
three oscillators z, y and x need to be close enough to each other for them to be
coupled. Such a coupling topology is more reminiscent of higher-order network
topologies derived in phase reduction. In particular, if one applies (4.5.4a) to k-
nearest neighbor graphs, sets α = 0 and derives a continuum limit as M → ∞
with k = ⌊rM⌋ for fixed r, then one part, i.e., one summand, of this continuum
limit agrees with (5.6.4). Another possible higher-order generalization of (5.2.8)
is given by

∂

∂t
Θ(t, x) =

∫
S

∫
S
Wr(z − x)Wr(y − x)Wr(z − y)

· sin(Θ(t, z) + Θ(t, y)− 2Θ(t, x)) dydz.

(5.6.5)

This coupling additionally introduces a symmetry between x, y and z. In fact, if
x, y, z are coupled, then any permutation of them is also coupled. Note that the
prefactors 1, 1,−2 of Θ(t, z),Θ(t, y) and Θ(t, x) in (5.6.4) and (5.6.5) can also be
generalized to arbitrary coefficients n1, n2, n3 ∈ Z \ {0}. However, they must add
up to zero, i.e., n1 + n2 + n3 = 0. Such “diffusive” coupling terms guarantees the
invariance of q-twisted states and can correspond, for example, to a normal form
symmetry in a phase reductions [10].

Of course, we can also study the stability of q-twisted states in the mod-
els (5.6.3), (5.6.4) and (5.6.5). Calculating the eigenvalues of the linearization of
the right-hand sides of those systems around a q-twisted state yields the following:

Whenever d > 1, the eigenvalues of the linearization of the right-hand side
of (5.6.3) with ni = mi, i = 1, . . . , d + 1 are given by λ0 = 0 with multiplicity 1
and λk = 1

2
md+1Ŵr(q) if k ̸= 0. This eigenvalue has multiplicity ∞. In the

system (5.6.4), the eigenvalues are λ0 = 0, again with multiplicity 1 and

λk =
1

4
Ŵr(q)

[
Ŵr(q + k) + Ŵr(q − k)− 2Ŵr(q)

]
(5.6.6)

if k ̸= 0, each with multiplicity 2. Finally, for the system (5.6.5), the eigenvalues
around a q-twisted state are given by λ0 = 0 (multiplicity 1) and

λk =
1

16

∑
ℓ∈Z

Ŵr(ℓ)
[
Ŵr(−k + ℓ− q)Ŵr(ℓ+ q) + Ŵr(−k + ℓ+ q)Ŵr(ℓ− q)
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+ Ŵr(ℓ− q)Ŵr(k + q + ℓ) + Ŵr(ℓ+ q)Ŵr(k − q + ℓ)

− 4Ŵr(ℓ− q)Ŵr(ℓ+ q)
]

if k ̸= 0. Again, the multiplicity of these eigenvalues is 2. For all these systems,
the eigenfunctions are given by sin(2πkx) and cos(2πkx).

In Section 5.5.2 we showed that adding higher-order interactions of the form (5.6.1)
to the pairwise coupling (5.2.8) can stabilize q-twisted states, when the strength
of the higher-order interactions is adjusted suitably. A numerical analysis shows
that the systems (5.6.3), (5.6.4) and (5.6.5) can also stabilize q-twisted states when
added to the pairwise coupling (5.2.8). However, we chose two different instances
of higher-order interactions of the form (5.6.3) for a couple of reasons. First, the
formulas for 3-way and 4-way coupling are simple, since they only include the
evaluation of Wr once. In contrast, the 3-way coupling (5.6.5) involves three eval-
uations of Wr and a generalization to 4-way coupling would involve even more
evaluations. Second, it is easier to compute eigenvalues of the linearization of
the right-hand side of (5.6.3) around a twisted state than it is to compute them
for (5.6.4) and (5.6.5). Third and most importantly, the eigenvalues of the lin-
earization of (5.6.3) around a twisted state are independent of k. Therefore, when
adding higher-order interactions of the form (5.6.3) to the pairwise system (5.2.8),
the maximal eigenvalue is still attained for the same k when varying the strength
of the higher-order coupling.

One possible way to make the triplet interactions (5.6.4) analytically tractable
is to replace the functionWr(x) from (5.2.5) by a function G(x) everywhere, which
consists only of finitely many Fourier modes, e.g.,

GA(x) = 1 + A cos(2πx),

where A ∈ R is a parameter. Then, the eigenvalues of the linearization of (5.6.4)
around a 1-twisted state would be given by

λk =


0 if k = 0,
1
4
A(2− 2A) if k = 1,

−1
4
A2 if k = 2,

−1
2
A2 if k ≥ 3.

While strictly speaking these eigenvalues are dependent on k, they are a lot easier
to handle as there are only finitely many — in this case three or four if one includes
k = 0 — distinct eigenvalues. Consequently, when adding (5.6.4) with Wr(x) re-
placed by GA(x) to a pairwise coupling, one can determine the maximal eigenvalue
by a case distinction between k = 0, 1, 2 and k ≥ 3, that depends on the parame-
ters A and the higher-order coupling strength. Even though this approach would
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lead to analytical results about the stability of the 1-twisted state, it also comes
with a few drawbacks. First, the analysis by a case distinction can become very
tedious. Second, when replacingWr(x) by GA(x), the continuum limit (5.2.8) does
not originate from a k-nearest neighbor topology anymore and thus does not agree
with the continuum limit originally analyzed in [177]. Third, the function GA(x)
can only be used to study the 1-twisted state. For other winding numbers q ≥ 2,
the eigenvalues (5.6.6) of the triplet interaction (5.6.4) would all be zero. In this
regard, the dynamics induced by the coupling functionWr(x) is a lot richer, which
ultimately breaks down to the fact that it has infinitely many nonzero Fourier
modes. All in all, this is another reason why we focused on triplet and quadruplet
interactions of the form (5.6.3).

5.7 Summary

In this chapter, we considered the continuum limit of a Kuramoto model on k-
nearest neighbor graphs and extended it to include higher-order interactions. We
analyzed the stability of q-twisted states and performed a rigorous Lyapunov–
Schmidt reduction to find bifurcating equilibria. We saw that the bifurcation at
which the twisted states lose their stability is a pitchfork bifurcation. Moreover,
we determined leading coefficients in the Taylor expansion to classify the bifurca-
tion as sub- or supercritical. This considers and extends previous works from two
perspectives. Firstly, we added a bifurcation analysis to previous works [177, 71],
which have analyzed stability of twisted state in the attractive and repulsive Ku-
ramoto model on k-nearest neighbor graphs. In particular, the problem of finding
and classifying bifurcating solutions was left open in [177]. Secondly, the authors
of [160] considered a higher-order all-to-all Kuramoto model whose right-hand side
consists of a pairwise part and two higher-order interaction parts, thus resembling
our model (5.3.5). In this model they analyzed the stability of the splay state
and the bifurcation at which it loses its stability. While there is always a pitch-
fork bifurcation, they found that when varying the strengths of the higher-order
couplings, as we did in Section 5.5.3, one can influence if the bifurcation is sub-
or supercritical. In that regard, we have extended their results to the continuum
limit of k-nearest neighbor networks and thereby shown that the phenomenon that
one can change the type of a bifurcation with suitable higher-order interactions
generically occurs in a wider class of higher-order networks.



Chapter 6

Community Integration
Algorithms (CIAs) for the
Simulation of Large Network
Dynamical Systems

This chapter is based on two publications [37, 36] which are both joint work with
Mechthild Thalhammer and Christian Kuehn. In particular, the technical parts
are taken from the publication [37] of which I am the main author.

Data Availability This chapter is accompanied by software. In particular, the
code that we use for our numerical simulations is publicly available on a GitHub
repository [32] that can be accessed via
https://github.com/tobiasboehle/Community-Integration-Algorithms-CIAs.

6.1 Introduction and Background

Caused by the ability of network dynamical systems to model many real-world
processes, the level of research activity in this field has lately seen a dramatic
increase [176, 13, 146]. Since many real-world systems are complicated processes,
so must be the network dynamical system, to describe them accurately. In partic-
ular, network dynamical systems can show complicated dynamical behavior, even
if their governing equations are relatively simple. This makes intuitive predictions
hard and as a result numerical simulations are of increasing importance. In many
network dynamical systems, each node adjusts its own behavior according to an
average of the inputs it receives from its neighbors. From a computational view-
point, this can efficiently be evaluated if the interactions are very sparse because
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then there are just a few function evaluations and the complexity scales linearly
with the number of nodes. However, for all-to-all coupled networks, the averaging
step consists of the evaluation of large sums and is therefore very costly. In fact, a
direct approach yields that the computational complexity scales at least quadrat-
ically with the number of nodes. This situation gets much worse for temporal
networks [87], adaptive networks [81], multilayer networks [30], and higher-order
interactions beyond graphs [15]. To overcome this problem, one might hope that
there is a low-dimensional number of averaged order parameters (or observables),
which are similar or even identical inputs for each node at each time step.

In this chapter, we develop general community integration algorithms (CIAs)
for the efficient simulation of a wide range of network dynamical systems. We
show that these CIAs work for very general networks with community structure,
that they are robust with regard to real data sets, that the general method yields
linear computational complexity with respect to the dimensions of the systems in
each time step, and that the steps naturally extend to higher-order dynamics.

The concept of computing global observables, that can be used as a common
input for all—or at least many—nodes, has already appeared in the context of
Fast Multipole Methods (FMMs), see [151, 79]. These FMMs can be used to
accelerate simulations of particles coupled by a Coulomb (or gravitational) force.
Given some charged (or weighted) particles contained in a specified region, one
first computes global observables and then uses them to derive an approximation
of the joint Coulomb (or gravitational) potential. This approximation can then
efficiently be evaluated at many test positions at the same time. Similarly to
our methods, this procedure is faster than computing the individual contributions
of each particle to every test position. However, due to the singularity of the
Coulomb (and gravitational) force at the origin, the approximation only converges
for points that have some minimum distance to the specified region. We will
develop similar methods, but in contrast to FMMs, the approximation used in our
method converges inside the specified region.

Moreover, the concept of Random Batch Methods (RBM) [90] accelerates the
time integration of dynamical systems on networks by choosing communities. In
contrast to our CIAs, the network structure in RBM is assumed to be all-to-all.
Furthermore, the time efficiency benefits from choosing communities as small as
possible, whereas CIAs profit from large communities.

The remaining parts are organized as follows. In Section 6.2, we illustrate the
main idea of our CIAs and introduce the considered classes of network dynami-
cal systems. In Section 6.3, we detail and exemplify the key steps of community
integration algorithms (CIAs) at a general example from our model class. Then,
in Section 6.4 we list possible extensions of several CIA steps. Combining these
extensions further enlarges the model class, to which our CIAs can be applied. In
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Section 6.5, we present the advantages of our approach and confirm the substantial
gain in efficiency by a series of numerical experiments for widely-used models and
real-world networks. This includes Kuramoto systems arising in the description of
synchronization, extended Kuramoto-type models involving higher-order interac-
tions and Cucker–Smale systems modeling collective motion in real-world animal
networks. Moreover, we illustrate that the approximation of the coupling function
does not impede the accuracy solutions obtained by CIAs. Finally, Section 6.6 con-
tains a brief summary. Supplementary calculations and illustrations are collected
in Appendix C, which contains a detailed mathematical setup for all the examples
and more numerical experiments confirming the accuracy of our methods.

6.2 Main Idea of CIAs and Model Class

Most real-world networks are neither extremely sparse nor extremely dense but
rather contain many heterogeneous structures [134]. Therefore, using brute-force
network simulations quickly encounters computational barriers. In this chapter,
we are going to combine several mathematical ideas to simulate many large-scale
network dynamics models efficiently. Here, we start with a non-technical presen-
tation of our approach, which is split into two pre-simulation steps (P1),(P2),
that only have to be done once, and two evaluation steps (E1),(E2), that have to
be performed in each time step. The first step (P1) is to find communities, i.e.,
densely connected sub-networks, in the heterogeneous network, that describes all
present interactions. The second step (P2) is to approximate the coupling function
between nodes in a suitable function system, e.g., by using Fourier methods. This
step helps us to identify possible observables, that later become relevant. The order
of (P1) and (P2) can be reversed or parallelized. For each community, we utilize
the similarity of nodes to calculate local observables that can then act as a common
input for each node. This significantly reduces the information processing in step
(E1) and reduces quadratic or worse polynomial scaling complexity to just linear
cost with respect to the number of nodes. Since our networks are assumed to be
heterogeneous, we must also account in step (E2) for the very sparsely connected
nodes, which is possible by direct computation. Our approach yields significant
reductions of the required memory capacities and the overall costs measured by
the total numbers of function evaluations.

Simulations utilizing these four steps can be of importance in many sciences
ranging from physics, chemistry, biology and medicine to social sciences [14, 146].
Illustrative examples for continuous-time dynamical systems on networks include
Desai–Zwanzig systems [61] describing the motion of interactive particles under
the influence of external confining potentials, Kuramoto models [107], tracking the
evolution of phase oscillators, Cucker–Smale systems [57] describing the movements
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and flocking behavior of birds, coupled van-der-Pol/FitzHugh–Nagumo models
frequently used in neuroscience [38], and Hegselmann-Krause models for opinion
formation [86]. Instead of studying classical versions of these models using all-to-
all coupling, we study several of these models on general networks that possess
community structure. Even though the network models originate from different
disciplines, most of them can be described by one single general network model,
which we focus on here. The model class is given by

ẋk = fk(xk) +
1

M

M∑
l=1

akl g(xl, xk), , xk(0) given, (6.2.1)

where k ∈ {1, . . . ,M}, t ∈ [0, T ] and g is a smooth interaction function. This
system is based on an underlying network that has M nodes and is represented
by an M × M -dimensional adjacency matrix A with entries akl. For the sake
of simplicity, we first restrict ourselves to an undirected and unweighted graph
such that A is additionally symmetric and akl ∈ {0, 1}. Later, in Section 6.4
we loosen this restriction. Further, xk(t) denotes the state of node k at time t,
the functions fk describe the intrinsic dynamics of the k-th node and g(xl, xk)
is a general coupling function that describes the interaction that node l has on
node k, if they are coupled. Finally, T > 0 denotes a final time until which
we want to integrate the system (6.2.1). While the range of xk and thus also
the domain of fk and g is generally part of an abstract space X , we typically
have X ∈ {R,Rd,R/(2πZ), . . . }. By grouping the states of the nodes into one
common vector x = (x1, . . . , xM) and introducing an M -dimensional function H
with components

Hk(x) = fk(xk) +
1

M

M∑
l=1

akl g(xl, xk), k ∈ {1, . . . ,M}, (6.2.2a)

the initial value problem from (6.2.1) can also be written as

ẋ = H(x). (6.2.2b)

Even though this is a very general formulation, many typical network models have
special structure. For example, in many models, the coupling function g is of the
form g(x̃, x̂) = h(x̃− x̂). Table C.1, that can be found in the appendix, shows that
many real-world systems fit into this framework. We remark that this includes
all-to-all coupling in the case of a complete graph. This special case will be an
automatically included sub-problem in our implementation of CIAs since the cou-
pling within each community closely resembles an all-to-all coupling. Although
the network systems that we have mentioned above are described by continuous-
time dynamical systems and specifically by nonlinear ordinary differential equa-
tions, completely analogous considerations for CIAs hold for discrete-time network
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dynamical systems. In fact, when numerically integrating a continuous-time dy-
namical system that is given by a system of ODEs, one first time-discretizes this
ODE system. Our CIAs efficiently evaluate large sums that appear in the resulting
discrete-time system. But one can also apply our CIAs to network models that are
naturally posed in discrete time. We also cover the Bornholdt–Rohlf discrete-time
network model for self-organized criticality [39] to illustrate this point.

6.3 Community Integration Algorithms

To numerically integrate the system (6.2.2) one first discretizes the time interval
[0, T ] into many small steps 0 = t0 < t1 < · · · < tΩ = T and then employs an
iterative time stepping scheme [28], e.g., a Runge–Kutta or multistep method.
Independent of the method, each time iteration step needs at least one evaluation
of the right-hand side H. Therefore, it is of key importance for a fast numerical
integration to implement the evaluation of H efficiently. However, when one looks
at the specific structure of H, one notices that each of its components consist of
a large sum. In total there are O(M2) operations (summations and evaluations
of the coupling function g) necessary to evaluate H(x) for a given x only a single
time. This quadratic dependence on M severely restricts the number of nodes
that a network can possess such that numerical simulations are tractable. For
higher-order systems, see Appendix C.1.7, the situation even worsens.

Our new community integration algorithms are applicable to a wide range of
dynamical systems on networks that consist of densely connected subnetworks or
communities with sparse connections across the communities. These CIAs achieve
to evaluate the right-hand side H in (6.2.2) and require only O(M) operations
in each time step. It consists of four main steps. The first two are done before
the simulation and only need to be done once, whereas the other two have to be
processed for each time step, see Figure 6.1. These steps are:

(P1) Application of an effective community detection algorithm and transforma-
tion of the adjacency matrix to block form by a permutation of nodes.

(P2) Identification of a suitable representation or high-order approximation, re-
spectively, of the coupling function g.

(E1) Exploiting community structure by computing local observables for each
community to avoid summations common among similar nodes.

(E2) Treatment of the remaining sparse parts of the network as well as small
remaining heterogeneity within communities based on direct summations.
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CIA Pre-simulation Steps

CIA Evaluation Steps

Community Detection

⇒

High-Order Approximation

⇒

Community Structure Exploitation Sparse Summation

Figure 6.1: Flowchart that illustrates the steps of our community integration al-
gorithm.

In the following we illustrate these steps via the example of phase oscillator
systems

ϕ̇k = fk(ϕk) +
1

M

M∑
l=1

akl h(ϕl − ϕk). (6.3.1)

Here, ϕk ∈ T := R/(2πZ) and the network is given by the adjacency matrix
A = (akl)k,l=1,...,M that can seen in Figure 6.2. To follow the steps below, one can
also think of a more concrete example such as the Kuramoto model. In the classical
Kuramoto model (1.1.1), we have fk(ϕk) = ωk ∈ R, akl ≡ 1 and h(ψ) = sin(ψ),
cf. [107]. We discuss the Kuramoto model in more detail in Appendix C.1.4.

6.3.1 CIA Pre-simulation Steps

Community Detection (P1): A key feature of our CIA is that it exploits
the community structure of the underlying network. A community structure is
present if the associated adjacency matrix is in block structure. However, when
looking at the adjacency matrix that is depicted in Figure 6.2, there is at first
no block structure evident. The community structure only becomes evident after
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-1

+1

A PAP⊤ = B D S⇒ = +

}
λ1︸ ︷︷ ︸

λ1

}
λ2︸ ︷︷ ︸

λ2
. . .

. . .

Figure 6.2: Community detection step (P1). Rearranging the rows and columns
of the adjacency matrix A yields a matrix B that has apparent block structure.
Moreover, B can be split into a part D that has exact block structure and a
sparsity S that absorbs the deviation of B from exact block structure. A blue dot
depicts a +1 entry in the matrix whereas a red dot represents a −1 entry.

permuting the nodes such that each community consists of nodes whose labels are
consecutive integers. This permutation results in a matrix B = PAP⊤, where P
is a permutation matrix that is induced by a permutation κ : {1, . . . ,M} →
{1, . . . ,M}.

In many real-world scenarios the matrix B does not have exact block structure
but there may still be missing links inside a community and additional links across
two communities. In any case, we assume, that the matrix B has an evident block
structure and can thus be split into a dense matrix D, that has the exact block
structure, and a sparse matrix S, such that B = D + S. Here, D only consists
of entries in {0, 1} whereas S is a sparse matrix with entries in {−1, 0, 1}. A +1
entry in S denotes that there is an additional edge connecting two communities
whereas a −1 entry represents a missing edge in a community.

The aim of step (P1) is to detect communities such that the permuted adjacency
matrix B has approximate block structure and can be decomposed into a dense
matrix D and a sparse matrix S, as seen in Figure 6.2. This can be achieved as
follows: First, one employs an algorithm to detect communities in the underlying
network. In general, such an algorithm takes the adjacency matrix A as an input
and outputs a partition of the node set into communities. There are many effective
algorithms that can detect communities in the underlying graph, of which we
particularly recommend one that is based on the optimization of a Hamiltonian
[147, 148], see also Appendix C.1.1. For a general network, the major part of
these algorithms have the computational complexity O(M2). For a comparison of
different algorithms see [36]. Second, one defines a permutation κ that permutes
the nodes of the network such that nodes that are in the same community have
consecutive labels. Then the resulting adjacency matrix B = PAP⊤, where P
is the permutation matrix induced by the permutation κ, has an apparent block
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structure as seen in Figure 6.2. Finally, one defines a matrix D that has blocks of
ones on the diagonal whose sizes correspond to the sizes of the communities. The
remaining sparse part can be obtained by calculating S = B −D.

It is not necessary to store the full matrix D but only the sizes of the commu-
nities that we denote by λ1, λ2, . . . , λΛ if there are a total of Λ communities. For
numerical reasons it is sometimes better to allow nodes to belong to no community
instead of letting them be part of a community that consists of very few or even
only one node. Further, S can be stored in a sparse format, so the total memory
requirement is O(M).

By using PAP⊤ = B = D+S, where P is the permutation matrix induced by
the permutation κ, and θk(t) := ϕκ(k)(t), we can write (6.3.1) as

ϕ̇κ(k) = fκ(k)(ϕκ(k)) +
1

M

M∑
l=1

aκ(k)κ(l) h(ϕκ(l) − θκ(k))

and so

θ̇k = fκ(k)(θk) +
1

M

M∑
l=1

bkl h(θl − θk)

= fκ(k)(θk) +
1

M

M∑
l=1

skl h(θl − θk)︸ ︷︷ ︸
=:Hsparse

k (θ)

+
1

M

M∑
l=1

dkl h(θl − θk)︸ ︷︷ ︸
=:Hdense

k (θ)

.

Thus, when evaluating the right-hand side, we only need to compute

θ̇k = Hsparse
k (θ) +Hdense

k (θ). (6.3.2)

Since dkl = 1 if 1 ≤ k, l ≤ λ1 and dkl = 0 if 1 ≤ k ≤ λ1 and l > λ1 we obtain

Hdense
k (θ) =

1

M

λ1∑
l=1

h(θl − θk)

for 1 ≤ k ≤ λ1, making it effectively an all-to-all coupling within that community.
Similar representations of Hdense

k (θ) apply when k > λ1.

High-Order Approximation (P2): This pre-simulation step is about the ex-
pansion of the coupling function h. Since the domain is 2π-periodic it makes sense
to identify Fourier coefficients am, bm, for m ∈ N with

h(θ) =
∞∑
m=0

(
am cos(mθ) + bm sin(mθ)

)
.
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Equivalently, one can also consider a Fourier expansion based on a complex Fourier
series, see Appendices C.1.2 and C.1.4. Alternatively, yet not suitable here, an
expansion in terms of polynomials is possible, see Appendix C.1.3. In any case
for numerical reasons we terminate the series at a finite m and only deal with the
approximation

h(θ) ≈
p∑

m=0

(
am cos(mθ) + bm sin(mθ)

)
, (6.3.3)

for some p ∈ N. The magnitude of accuracy of this approximation is determined
by the smoothness of h. If h is ξ ≥ 2 times continuously differentiable the decay
of the Fourier coefficients is |am| = O(m−ξ) and |bm| = O(m−ξ). Thus, the
approximation satisfies the error bound∣∣∣∣∣h(θ)−

p∑
m=0

(
am cos(mθ) + bm sin(mθ)

)∣∣∣∣∣ ≤ c
1

pξ−1
,

for a constant c. We will see in Section 6.5.2 and Appendix C.2 that this error in
the approximation of the right-hand side also implies an error of the solution to
the differential equation (6.3.1). Next, we show that approximating the coupling
function makes it easier to identify good local observables.

6.3.2 CIA Evaluation Steps

Based on the preparation done in the CIA pre-simulation steps, the right-hand side
of the initial value problem (6.3.1) or equivalently (6.3.2) can now be evaluated
using just O(M) operations. This evaluation is structured into two main steps:

Community Structure Exploitation (E1): This step aims to computeHdense(θ),
which, as shown previously, can be written as

Hdense
k (θ) =

1

M

λ1∑
l=1

h(θl − θk),

if k is a node belonging to the first community, i.e., 1 ≤ k ≤ λ1 and similar
representation are possible when k is not in the first community. Combining
this with the Fourier approximation (6.3.3) from step (P2) and by using addition
theorems for sin and cos, we obtain

Hdense
k (θ) ≈ 1

M

λ1∑
l=1

p∑
m=0

(
am cos(m(θl − θk)) + bm sin(m(θl − θk))

)



6.3. COMMUNITY INTEGRATION ALGORITHMS 135

=

p∑
m=0

1

M

λ1∑
l=1

(
am sin(mθl) sin(mθk) + am cos(mθl) cos(mθk)

+ bm sin(mθl) cos(mθk)− bm cos(mθl) sin(mθk)
)
, (6.3.4)

for 1 ≤ k ≤ λ1. Even though it first seems a lot messier, we have separated terms
involving θl and terms with θk. Since we sum over l and the terms involving θl
remain the same for each k, we can precompute quantities

qcosm :=
1

M

λ1∑
l=1

cos(mθl) and qsinm :=
1

M

λ1∑
l=1

sin(mθl), (6.3.5)

for m = 0, . . . , p. In particular, (6.3.5) are precisely the local observables, which
are felt as an input by all nodes within one community. They allow us to conclude

Hdense
k (θ) ≈

p∑
m=0

(
amq

sin
m sin(mθk) + amq

cos
m cos(mθk)

+ bmq
sin
m cos(mθk)− bmq

cos
m sin(mθk)

)
(6.3.6)

for 1 ≤ k ≤ λ1. It is important to note that the computational complexity in this
representation of Hdense

k (θ) in independent of the total number of oscillators M .
In summary, the procedure in this step is as follows:

1. Precompute the quantities (6.3.5) for each m = 0, . . . , p and similar quanti-
ties for other communities.

2. Use the precomputed quantities to obtain a high-order approximation of
Hdense(θ) according to formula (6.3.6) and equivalent formulas for other com-
munities.

The computational complexity of Step 1 is O(λ1p) for the first community and con-
sequently

∑Λ
σ=1O(λσp) = O(Mp) for the whole step. The same applies to Step 2.

In particular, the computational complexity does not depend on the number of
communities.

Sparse Summation (E2): In this step, first Hsparse(θ) is evaluated and then
combined with the results from the previous step to obtain the final right-hand
side of (6.3.2). Recall that Hsparse

k (θ) is given by

Hsparse
k (θ) = fκ(k)(θk) +

1

M

M∑
l=1

skl h(θl − θk). (6.3.7)
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Since the matrix S with entries skl is sparse with at most O(M) non-zero entries, it
is evident that even a straightforward summation of Hsparse(θ) requires only O(M)
operations. This is exactly what this step is supposed to do. Finally, in this step
we compute Hdense(θ) +Hsparse(θ), which gives the right-hand side of (6.3.2). All
of these computations can be done with a complexity of O(M).

Finally, we mention that the high-order approximation step (P2) is the only
step that introduces small inaccuracies in our algorithm. There are no inaccuracies
induced by the community detection step (P1). In fact, if one also replaces h by
its high-order approximation (6.3.3) to evaluate the sparse part (6.3.7), the com-
munity detection step (P1) does not introduce any inaccuracies. Instead, results
of the community detection step (P1) only affect the computation time of the CIA
evaluation steps. The sparser the matrix S, the faster these steps will be.

6.4 Extendability to Other Network Models

6.4.1 Extending the High-Order Approximation Step (P2)

While the previous subsection only illustrate the CIA steps for one particular
model (6.3.1), it is straightforward to see that it is applicable to many more network
models. Our main argument to support this claim is that by using a Fourier or
polynomial expansion of the coupling function g or h, the parts containing θl and
those comprising θk or xl and xk, when dealing with a model that does not have
a circular domain, respectively, can always be separated, as done in (6.3.4). This
allows the precomputation of quantities that do not depend on k but still appear
in each component of the right-hand side. These quantities consist of large sums
whose single precomputation prevents unnecessary sums in the evaluation of each
component of the right-hand side. Even when the coupling function g is not of the
form g(x̃, x̂) = h(x̃ − x̂), a two dimensional Fourier or polynomial expansion of g
in terms of x̃ and x̂ is possible. For example, one can expand g as

g(x̃, x̂) =
∑
α∈Z

∑
β∈Z

cα,βe
πi
L
αx̃e

πi
L
βx̂

≈
p∑

α=−p

p∑
β=−p

cα,βe
πi
L
αx̃e

πi
L
βx̂,

where cα,β are complex Fourier coefficients. Then, if the right-hand side of the

network model consists of a sum of the form 1
M

∑M
l=1 g(xl, xk), one can apply a

CIA evaluation step which approximates this sum as

1

M

M∑
l=1

g(xl, xk) ≈
1

M

M∑
l=1

p∑
α=−p

p∑
β=−p

cα,βe
πi
L
αxle

πi
L
βxk
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=

p∑
α=−p

p∑
β=−p

cα,βe
πi
L
βxk

(
1

M

M∑
l=1

e
πi
L
αxl

)
︸ ︷︷ ︸

=:rα

.

Now, if one precomputes the quantities rα for α = −p, . . . , p, this formulation
allows a fast evaluation. Instead of considering a complex Fourier expansion one
can also work with real expansions, see Appendix C.1.2, or polynomial expansions,
see Appendix C.1.3. While a Fourier expansion is suitable for any kind of periodic
domain, the choice between a Fourier and a polynomial expansion relies on the
structure of the coupling function. If the coupling function is already an ordinary
or trigonometric polynomial the choice is simple, see for example Appendix C.1.5.
If that is not the case both methods generally make sense. An approximation of
the coupling function g then has to be chosen in a way that the approximation
accurately resembles g at the points where it is evaluated. If, for example, all the
particles xk stay in a subset of the domain, it is only necessary to approximate
the coupling function there. Furthermore, the coupling function does not always
need to be approximated by either a Fourier series or a polynomial. Rather,
parts or components of g that resemble a polynomial structure can be treated
with a polynomial expansion while other parts and components might be better
approximated by a Fourier series, see for example Appendix C.1.6. This further
enlarges the class of network systems that can be integrated using out CIA method.
Moreover, we want to highlight that our method is also applicable to higher-order
interactions in which the coupling function g depends on more than two arguments,
see Appendix C.1.7.

6.4.2 Extending the Community Structure Exploitation Step
(E1)

The Community Structure Exploitation step (E1) as we have described it in Sec-
tion 6.3 assumes that the nodes in each community are all-to-all coupled. However,
there are cases for which the right-hand side of

ẋk =
1

M

M∑
l=1

akl g(xl, xk) (6.4.1)

can be efficiently evaluated in step (E1) even though the graph represented by the
adjacency matrix A = (akl)k,l=1,...,M does not represent an all-to-all coupling or a
very dense coupling. Examples include rank one matrices and nearest neighbor
networks. Below, we briefly explain how an efficient evaluation on these networks
is possible. For the sake of simplicity we assume that g is of the form g(x, y) =
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h(x − y) and h consists of only one complex harmonic, i.e., h(x) = eix. The
general case can then be obtained by approximating g with more Fourier modes
treating each harmonic individually and then recombining them by summation, as
explained in Section 6.4.1.

Rank One Coupling

Here, we consider the case that the adjacency matrix is given by an outer product
akl = αkβl for two vectors α, β ∈ RM , i.e., we focus on the system

ẋk =
1

M

M∑
l=1

αkβl e
i(xl−xk). (6.4.2)

This is the only case in which we do not require akl ∈ {0, 1}. Since the CIA
evaluation step (E1) as described in Section 6.3 is a special case of a rank one
coupling, i.e., when αk = βl = 1 for all k, l, this presents a generalization of (E1).
Based on (6.4.2), we immediately see that it makes sense to precompute

r =
1

M

M∑
l=1

βl e
ixl . (6.4.3)

Then, (6.4.2) simplifies to

ẋk = αkre
−ixk . (6.4.4)

Note that one can evaluate (6.4.3) and (6.4.4) for all k = 1, . . . ,M with a com-
plexity of O(M).

Nearest Neighbor Coupling

For a given M ∈ N and k ∈ N with k ≤M/2 one can define a k-nearest neighbor
graph on M nodes in terms of the adjacency matrix A = (akl) by setting akl = 1 if
min(|k − l| , M −|k − l|) ≤ k and akl = 0 otherwise, see Section 2.1. That means,
the system (6.4.1) can be written as

ẋk =
1

M

M∑
l=1

akle
i(xl−xk)

=
1

M

k+k∑
l=k−k

ei(xl−xk), (6.4.5)

where the particle index l ∈ {1, . . . ,M} in (6.4.5) has to be understood moduloM .
Note that this system agrees with the Kuramoto model with identical oscillators
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on nearest neighbor graphs (5.2.1), which we analyzed in Chapter 5 if one adds
the complex conjugate to the right-hand side. Since in general, this is not an
all-to-all coupling, the nearest neighbor coupling is again a generalization of (E1)
as described in Section 6.3. However, the procedure to efficiently evaluate (6.4.5)
will be different and especially not based on precomputations but on an iterative
method. In particular, given the representation (6.4.5) one obtains

ẋke
ixk =

1

M

k+k∑
l=k−k

eixl =: Fk(x).

With this notation,

Fk+1(x) = Fk(x)−
1

M
(eixk−k − eixk+k+1), (6.4.6)

which gives an iterative procedure to compute F . The steps to compute ẋk effi-
ciently are therefore given by

1. Compute F1(x) by the definition

F1(x) =
1

M

1+k∑
l=1−k

eixl .

2. Use formula (6.4.6) to iteratively compute F2(x), F3(x), . . . , FM(x).

3. Finally, compute ẋk = Fk(x)e
−ixk .

Note that the first step has a complexity of at most O(M). Further, each iteration
in the second step consists only of a finite number of operations O(1). SinceM−1
iterations are necessary, the second step is of total complexity O(M). Finally,
the third step is obviously of complexity O(M) as well. Therefore, (6.4.5) can be
computed for all k = 1, . . . ,M requiring a complexity of only O(M). Importantly,
this is independent of k and still holds when for example k = rM , where r ∈
(0, 1/2) is a factor that describes the coupling range. In this case the adjacency
matrix A has approximately 2rM2 non-zero entries, yet an efficient computation
in O(M) is possible. This procedure helps to simulate the system (5.2.1), that
we considered in Chapter 5, and can also be transferred to the systems (5.5.1)
and (5.5.2).

While the above calculations only consider pairwise coupling, one can also
derive similar procedures to efficiently evaluate higher-order coupling structure,
which is not all-to-all. In particular, one can consider a finite dimensional analog
of (5.6.1) with M oscillators, by replacing the integrals with sums. Then, a naive
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algorithm that evaluates the right-hand side of this system has a complexity of
O(M3). Using a generalized iterative procedure, this complexity can be reduced
to just O(M2), which is still worse than linear complexity, but much better than
the complexity of a naive algorithm.

6.4.3 Extending the Community Detection Step (P1)

Until now, we have assumed that the nodes of the graph, which is represented
by its adjacency matrix A, can be split into multiple communities. Grouping the
nodes according to the communities and permuting the labels of the nodes then
results in a matrix B, that has apparent blocks on the diagonal, see Figure 6.2.
Moreover, this matrix B can be split into B = D + S, where D is a matrix that
has exact blocks on the diagonal and S absorbs the deviation of B from the exact
block structure. There are many algorithms that can detect such communities
and thus transform the adjacency matrix A into a matrix B, that has apparent
block diagonal structure, and yield a matrixD with exact block diagonal structure.
However, this is not the only possible form of matrices D that allow an efficient
evaluation step (E1). In particular, the blocks in D can also be away from the
diagonal and they can also be rectangular instead of just quadratic, see for example
matrix B1 in Figure 6.3.

Furthermore, these blocks need not be filled entirely with ones. The only
requirement is that the part of the right-hand side which is associated with each
block can be computed with a complexity of O(M) as M becomes large. As we
have seen in Section 6.4.2, this is also the case if each block represents a rank-one
coupling or a nearest neighbor coupling, see for example matrices B2 and B3 in
Figure 6.3.

Finally, it is also possible that the adjacency matrix A is given by the sum
of a few matrices, say for example A = A1 + A2 + A3. Now, one can ask for
permutation matrices Pi, with i = 1, 2, 3 such that Bi = PiAiP

⊤
i have apparent

general block structure. Here, general block structure includes off-diagonal and
non-quadratic blocks as well as blocks, where the coupling structure is rank one
or k-nearest neighbor. If these permutation matrices exist, one can apply a CIA
to each summand of A individually and sum the results. Thus, CIAs can also
cope with adjacency matrices A that are as in Figure 6.3 or of similar type. For
synthetically generated adjacency matrices A in which this structure is already
evident, as in the example from Figure 6.3, our CIA steps work as well, but in
real-world networks this structure first needs to be detected. However, there exist
very few, if any, suitable algorithms, that can decompose A into its summands Ai
and find permutation matrices Pi such PiAiP

⊤
i has general block structure.
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A = A1 + A2 + A3

B1 = P1A1P
⊤
1 B2 = P2A2P

⊤
2 B3 = P3A3P

⊤
3

Figure 6.3: Illustration of the complicated structure that A can have, such that
CIAs are applicable. Blue dots in the representation of matrices Ai, Bi for i =
1, 2, 3 represent +1 entries and there is no dot if the matrix has a zero entry at the
respective position. Green dots in A3 and B3 illustrate a rank-one block matrix,
for which symbolically the value is 0.5 everywhere. Finally, the entries in the
matrix A can take many different values, as illustrated by different colors. Note,
that there are no sparse parts here, i.e., Bi = Di + Si with Si ≡ 0.

6.4.4 Simulation of Coupled Map Lattices

Lastly, we want to remark that the matrix A, that we use to denote the adjacency
matrix of a graph, can also be replaced by another matrix. For example one can
take a matrix representation of the graph Laplacian L = Id−D−1A, as introduced
in Section 3.2.2, instead of A. If the graph is regular, such that the degree matrixD
is given by a multiple of the identity matrix, one can regard −D−1A (up to a
constant) as the dense part and Id as the sparse part that are evaluated in the
CIA steps (E1) and (E2), respectively. For example, this is the case for all-to-all
graphs or k-nearest neighbor graphs but the concept can also be applied to graphs
that have general block structure. This allows for the efficient simulation of CMLs
on large networks.

6.5 Numerical Results

Based on numerical simulations for a variety of widely-used large-scale network
models we demonstrate that our CIAs are indeed efficient numerical algorithms.
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Moreover, our numerical simulations show that this efficiency does not come with
a significant expense of accuracy.

6.5.1 Efficiency of CIAs

In this section, we present the efficiency advantages of using a CIA in comparison
to a naive approach. Including synthetic and real-world networks and for pairwise
and higher-order coupling we provide numerical evidence for the robustness and
efficiency of our approach. The network models that we consider in this section
are

� a Cucker–Smale model [57] describing animal movement,

� a Kuramoto model [107] for phases of oscillators on the unit circle,

� a Desai–Zwanzig model [61] for interacting particles,

� and a Bornhold–Rholf model [39] for self-organized criticality.

We compare the models on a fixed computational architecture using a sequence of
synthetically generated networks that consist of four known communities as seen
in Figure 6.2. To integrate these systems, we used an explicit Euler scheme on
an equidistant discretization of [0, T ] with T = 20 and ∆t = 1/10. On the one
hand, as seen in Figure 6.4, the computation time for the naive approach depends
quadratically on M for all network models. Importantly, on the other hand, when
using a CIA, the computation time depends only linearly on M . Furthermore, the
memory requirements of a CIA are much lower as we can take advantage of sparsity
outside of communities, while just calculating and storing a few observable values
within each community, so simulations on much larger networks are possible. In
particular, for M ⪆ 104.5 storing the full matrix A ∈ RM×M exceeds memory
capacities on current standard desktops. In this case, naive algorithms are not
applicable; cf. Figure 6.4.

Next, we simulate the Cucker–Smale model on a real-world network that con-
tains data from real bird interactions [2, 153], see Figure 6.5(a)-(b). Based on
this network, we construct a sequence of networks with growing sizes such that
each network in the sequence still reflects the community structure of the original
network and the amount of edges deviating from this community structure grows
linearly in M . This helps us to study the effect of the network size on the compu-
tation time. Again, to integrate the Cucker–Smale model on these networks, we
use an explicit Euler scheme on an equidistant discretization of [0, T ] with T = 20
and ∆t = 0.1. As seen in Figure 6.5(c), the computation time of a naive approach
of evaluating the right-hand side scales with M2. The computational complexity
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Figure 6.4: Integration times for Cucker–Smale, Kuramoto, Desai–Zwanzig and
Bornholdt–Rholf systems on a sequence of synthetically generated graphs of the
form as shown in Figure 6.2. The computation of the Cucker–Smale model takes
the longest, since it has a two-dimensional phase space for each node. The compu-
tational complexities, derived from the slopes of the dashed triangles, correspond
to O(M1.86) for the naive Cucker–Smale model and O(M1.03) for the integration
of the Bornholdt–Rohlf using a CIA approach.

of a CIA approach is only O(M). This clearly shows that a CIA can be used to
simulate dynamics on real-world networks.

Finally, we want to demonstrate that the idea of a CIA can also be applied
to models that are beyond the general formulation (6.2.1). When considering
higher-order models, such as a higher-order Kuramoto model, the computational
complexity of a naive approach can be much worse than just O(M2). In particular,
for our tests, we consider the model

ϕ̇k =
1

M3

M∑
l,i,j=1

sin(ϕl − ϕi + ϕj − ϕk), k = 1, . . . ,M.

Here, a naive evaluation of the triple sum requires O(M3) evaluations of the sin
function. Computing this triple sum for every k = 1, . . . ,M yields a total com-
putational complexity for the evaluation of the right-hand side of O(M4). As this
quartic dependence on M for a naive approach severely limits the maximum sys-
tem size for which simulations can be conducted, an approach via CIAs is desired.
In fact, one can still pre-compute the observables (6.3.5) and then evaluate the
right-hand side based on these. This reduces the computational complexity to just
O(M), see Figure 6.6. For the details, see Appendix C.1.7.
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Figure 6.5: Simulation of the Cucker–Smale model on a real-world network from
bird interactions [2, 153]. Part (a) shows the adjacency matrix A of the network
in its original form. Part (b) shows the adjacency after permuting the nodes such
that a block structure is apparent. Part (c) shows the computation time of a
naive algorithm in comparison with our CIA approach. The dashed triangles yield
computational complexities of O(Mα) where α ≈ 2.05 for the naive algorithm and
α ≈ 1.06 for the CIA approach.

6.5.2 Accuracy of CIAs

Note that in general our CIAs approximate the right-hand side of a network dy-
namical system rather then evaluating it exactly as naive approaches. Therefore,
when integrating a dynamical system on a network a small error is introduced
in each time step of the integration. Since these errors can add up, one expects
that the resulting numerical solution obtained from a CIA differs from the solution
obtained by using a naive algorithm. In this section we numerically analyze the
difference between these two numerical solutions, to study the accuracy of CIAs.
As explained at the end of Section 6.3, the only step that introduces an error is the
high-order approximation step (P2) or more specifically, the approximation (6.3.3).
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Figure 6.6: Numerical integration of a higher-order Kuramoto system. A naive
implementation leads to quartic complexity O(M4) (blue), whereas the applica-
tion of a CIA based on a suitable reformulation and precomputations permits the
reduction to linear complexity O(M) (red). To be precise, out numerical experi-
ments revealed that the slope of the two graphs, which is calculated at the dashed
triangles and corresponds to a complexity of O(Mα), is given by α = 3.83 for the
naive algorithm and α = 0.82 for the CIA approach.

The higher the approximation order p in (6.3.3), the more accurate are the results
of this approximation. Thus, we compare two numerical solutions, one obtained
using a naive approach and the other one by employing a CIA. Specifically, we
study how their difference depends on the approximation order p. Here, we re-
strict our analysis to the phase oscillator model (6.3.1). An accuracy analysis for
the Cucker–Smale model can be found in Appendix C.2.

In our test scenario, we consider the model (6.3.1) on a synthetically created
network of M = 500 nodes. This network consists of four communities as seen
in Figure 6.2. Moreover, we omit intrinsic dynamics, i.e., fk ≡ 0. As we have
explained in Section 6.3.1, the rate of convergence when approximating the cou-
pling function h by a Fourier series, depends on the smoothness of h. Since the
smoothness of h is related to the rate of decay of its Fourier coefficients, we choose
a coupling function h as

h(θ) =
∞∑
m=1

bm sin(mθ), bm = m−ξ

and let ξ ∈ N be a variable. Next, we randomly choose the initial conditions
for all oscillators and simulate the system (6.3.1) using an explicit Euler scheme
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until T = 20 with a time step size of ∆t = 1/10. We use a naive approach to
create a reference solution that we denote by θrefk,t with k = 1, . . . ,M and t =
0,∆t, 2∆t, . . . , T .

Then, we use our CIA, that relies on an approximation of the coupling function
in step (P2) and simulate the same system. Again, we use an explicit Euler scheme
and the same time discretization until T = 20. This produces a second solution
that we denote by θCIA

k,t . Finally, we determine the error z by computing

z = max
k=1,...,M

max
t=0,∆t,2∆t,...,T

|θrefk,t − θCIA
k,t |.

The dependence of this error z on the approximation order p and the rate of decay ξ
of the coupling function can be seen in Figure 6.7. As expected, we observe that
the error z decreases upon increasing the approximation orders p. Moreover, the
rate of decay of the Fourier coefficients of the coupling function crucially influences
the integration error z. This does not come as a surprise, as for coupling functions
that only consist of finitely many nonzero Fourier modes, i.e., when the rate of
decay is the fastest, or CIAs, with p large enough, do not introduce an error at all.
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Figure 6.7: Integration error z independence of the approximation order p and the
smoothness of h.
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6.6 Summary

To summarize, we have developed a new method to integrate large-scale network
models with community structure. Unlike a naive approach, the computational
complexity of CIAs is always linear in the number of involved nodes M . We
achieve this reduction to linear complexity by organizing our CIAs into two pre-
simulation and two evaluation steps. The pre-simulation steps only need to be
performed once during an entire simulation and their results can even be reused
when simulating another network model on the same graph with the same coupling
function. These pre-simulation steps consist of the detection of a community
structure in the underlying network and an expansion of the coupling function to
identify local observables. Then, in each time step, one evaluates the right-hand
side of the network model using the two evaluation steps. In the first of which one
uses the expansion of the coupling function and exploits the community structure
by computing suitable observables. This helps to efficiently calculate the dense
interactions within all communities. Then, one takes care of a possibly not ideal
community structure by sparse summations. Importantly, both of these evaluation
steps can be performed with linear complexity O(M). This linear dependence
on M is much better than in a naive algorithm, where the complexity scales at
least quadratically in M .

As we have shown this approach is applicable to a wide variety of networks. In
particular, the underlying network does not need to have a community structure,
but its adjacency matrix can also have dense blocks off the diagonal, or it can
consist of parts where the coupling is nearest neighbor or rank one. Moreover,
the adjacency matrix of the network does not have to define the coupling in the
network model, but other graph related operators such as the graph Laplacian
can also determine the coupling between the nodes. Further, the approach works
independent of whether the coupling is pairwise or higher-order, and whether the
underlying network is synthetic or a real-world network, which leads to many
applications across all areas of science.



Chapter 7

Conclusion and Outlook

In this dissertation we have seen that network dynamical systems can exhibit a
variety of different dynamical effects with high complexity, even though the evo-
lution of the states of the nodes is governed by relatively simple equations. Apart
from pairwise interactions in networks, higher-order interactions arise naturally,
e.g., through phase reductions, and can crucially influence the behavior of a net-
work dynamical system. For example, they can affect the stability of twisted states
and those of equilibria that bifurcate from these twisted states, see Chapter 5. In
fact, equilibria that are unstable with just pairwise interactions can become sta-
ble when including higher-order interactions in the model. Moreover, higher-order
interactions are helpful when analyzing coupled oscillator networks through phase
reductions, as we saw in Chapter 4. In particular, by including them in the phase
reduction one can better approximate the stability of collective dynamics, such as
synchrony or splay states, in the full/unreduced system.

However, one has to be careful when incorporating higher-order interactions
to a pairwise coupled system, since they can also break the time invariance of
certain equilibria. For example, the synchronized manifold, that we considered in
Chapter 3 is always invariant with just pairwise coupling, but its invariance is lost
when considering general hypergraph coupling. Similarly, twisted states do not
remain invariant when adding general higher-order interactions to the right-hand
side of the governing equations, see Section 5.6.

From an engineering perspective, one might use higher-order interactions to
design a network dynamical system where given equilibria have desired properties.
Even when considering only higher-order interactions that retain the invariance of
these equilibria, they provide a lot more possibilities of designing such a system.
This allows to design systems with equilibria whose required properties are more
specific. For example, as we have seen in Section 5.5, one can suitably combine a
few different higher-order interactions to shape the stability of twisted states and
those of bifurcating equilibria. Realizing these higher-order interactions experi-
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mentally remains a challenge for future work.

Apart from answering a lot of questions, this dissertation has also raised many
questions and paved the way for future generalizations. For example, a topic
that we did not consider across all chapters is randomness in network dynamical
systems. Randomness can be included in a lot of different ways in these systems.
If, for example, one considers the phase oscillator system (2.2.2), one can make the
intrinsic frequencies random by sampling them from a probability distribution, as
in the classical Kuramoto model (1.1.1). Moreover, one can consider the model
on random graphs, e.g., on Erdös–Rényi or Barabási–Albert graphs, as introduced
in Chapter 2. Further, one can consider a system of stochastic ODEs by adding
random white noise to the right-hand side of any network dynamical system. When
considering other network models, which include more parameters, one can also
make them random.

Throughout this entire dissertation, we have assumed that the network is con-
stant in time. However, one can let the network itself evolve over time and thereby
make it adaptive. There are multiple ways of making a network adaptive. If, for
example, the network is given by a graph, one can choose the entries of the adja-
cency matrix of this graph as functions of time. This basically makes the network
dynamical system nonautonomous. As a more specific example, one can consider
the Kuramoto model on nearest neighbor graphs as in Chapter 5 and choose the
coupling range dependent on time. Another way to make the network adaptive
is to impose an evolution law for the network that can potentially depend on the
current state of the network dynamical system [73, 81, 17, 88]. Further generaliza-
tions and outlooks for future work that are specific to the models of each chapter
are listed below:

In Chapter 3 we considered CMLs and CHMs that are given by the combination
of an iterated unimodel map at each node and a graph or hypergraph Laplacian.
We expect that the generic nature of using a unimodal map at each node and a
generalization of the Laplacian should turn CHMs into an excellent universal model
class for many concrete physical phenomena. However, finding such a concrete
physical example, which is naturally modeled by a CHM, has to be done in future
work. Moreover, in this chapter we have only considered models on finite graphs
or hypergraphs. Since physical systems, that we want to model with CHMs, can
consist of thousands of nodes, it makes sense to study CHMs on large hypergraphs
or even on hypergraph limits.

In Chapter 4 we have derived second-order phase reduction for identical Stuart–
Landau oscillators with a deformed limit cycle. In principle, the analysis presented
in Section 4.3 can be extended to derive higher-order phase reductions beyond
second order in both the coupling strength and the parameter that describes the
deviation from the circular limit cycle. Such higher-order phase reductions would
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include interactions between quadruplets of phases and allow to describe the ap-
proximate phase dynamics beyond second order. The main obstacle that has to
be overcome is the algebraic complexity of these phase reductions. Already at
second order, the terms for triplet interactions become quite long and bring sym-
bolic computer algebra software, such as Mathematica, to their limits. While
we considered identical oscillators, real-world oscillators are rarely perfectly identi-
cal, motivating the question how heterogeneity affects the phase reduction. Here,
we assumed that the oscillators are identical and, in particular, that their in-
trinsic frequencies are the same. If they were dependent on the oscillator, the
first-order phase reduction would not change at all and one could just replace the
general intrinsic frequency by an oscillator specific one everywhere. A second-
order phase reduction could theoretically also be derived by adapting the methods
from Section 4.3. Practically, however, the terms of second order start to depend
nonlinearly on the intrinsic frequencies. Thus, already for circular limit cycles
and just a few oscillators, finding a general analytic solution for the PDEs from
Section 4.3 is challenging. Moreover, due to the higher complexity of the second-
order phase reduction, it is practically intractable. Extending this to oscillators
with non-circular limit cycles only worsens the problem. A possible approach to
overcome this problem is to assume that the intrinsic frequencies are sampled from
a probability distribution and consider a mean-field limit. We leave this for future
work.

In Chapter 5 we have conducted a bifurcation analysis for twisted states on
nearest neighbor graphs and higher-order extensions. While we have only consid-
ered the case where the coupling functionWr(x) is taken to model nearest neighbor
coupling, the analysis is also valid for other coupling functions. Thus, our work
poses a framework within which one can study the effect of the Fourier coefficients
of Wr(x) on the bifurcation. Another example to which our theory could be ap-
plied is generalized twisted states on a two-dimensional lattice whose stability has
been analyzed in [74]. Moreover, apart from the pairwise coupling we have only
considered 3-way and 4-way higher-order interactions, however one can certainly
add 5-way coupling, 6-way coupling, etc. and investigate how these interactions
influence the bifurcation. Then, one might expect to control even higher-order
derivatives at the bifurcation point.

Finally, in Chapter 6 we developed CIAs for the efficient numerical simulation
of network dynamical systems. Even though the CIAs presented in this chapter
are applicable to a wide range of network dynamical systems, there are a few
approaches to further generalize them. For example, we have only considered
polynomial and Fourier approximation methods (and a combination thereof) for
the coupling function. However, it is possible that there might be even more
functional approximation systems such that a separation of terms and thus a fast
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evaluation is possible. Moreover, our CIAs rely on many parameters, such as the
choice of the community detection algorithm which yields a decomposition of the
adjacency matrix into a dense matrix and a sparse matrix, the approximation order
and domain of the coupling function, and many more depending on the specific
network model. All of these parameters influence both computation time and
accuracy of our algorithms and have to be optimized under possible time/memory
constraints and accuracy requirements. For example, spending more time on the
community detection step might reveal a community structure that is more suitable
by saving more time in the subsequent evaluation of the right-hand side. However,
estimating the computation time of a community detection algorithm is difficult
and can also depend on the number of communities, which is sometimes only
known after they have been detected. To conclude, finding a good balance of
computation time allocation for different steps and finding a good estimation of
parameter values is nontrivial and developing a good estimation has to be done in
future research.

Putting everything together, dynamical systems on networks are extremely
diverse and their induced dynamical effects can depend on the smallest subtleties
in the specific model. In this dissertation, we have thoroughly analyzed both
local and global dynamics of special network dynamical systems by combining
theoretical methods with numerical simulations. Thereby, we have contributed to
the extensive challenge of understanding network dynamical systems.
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Lists of Symbols and
Abbreviations

List of Symbols

N set of natural numbers {1, 2, 3, . . . }
N0 N0 := N ∪ {0}
Z set of integers
R set of real numbers
C set of complex numbers
M number of nodes or particles in a finite graph

[M ] set of positive integers until M , i.e., {1, . . . ,M}
S S := R/Z or S := [0, 1]/(0 ∼ 1)

Usually used as the index space for oscillators in the continuum limit
T unit circle, defined by T := R/(2πZ)

Usually used as the phase space of an oscillator
TM T× · · · × T (M -times)
I unit interval [0, 1]
Θ phase of an oscillator in the network limit M → ∞
Ψ phase difference of two oscillators in the network limit M → ∞
SM symmetric group of M elements,

i.e., set of all permutations of [M ] (group order M !)
ZM cyclic group of M elements, defined by Z/(MZ) (group order M)
DM dihedral group of M elements (group order 2M , for M ≥ 3)
ek k-th unit vector in RM

1 (1, 1, . . . , 1)⊤ ∈ RM

IdM identity matrix in RM×M

JM JM := {1}M×M , the matrix in RM×M where all entries are ones
k coupling range in k-nearest neighbor graphs

152



153

List of Abbreviations

CIA Community Integration Algorithm
CHM Coupled Hypergraph Map
CML Coupled Map Lattice
NDS Network Dynamical Systems
ODE Ordinary Differential Equation
PDE Partial Differential Equation

PRMM Poincaré Return Map Multiplier
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gation on Hypergraphs”. In: Bulletin of Mathematical Biology 78.4 (2016),
pp. 713–735.
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Appendix A

Additional Calculations for the
Derivation of Phase Reductions

This chapter is based on the publication [20], which is joint work with Christian
Bick and Christian Kuehn. In particular, the technical parts are taken from this
publication of which I am the main author.

In this section, we exemplify the (2, 1)-phase reduction for arbitrary perturba-

tions g. In particular, we state the solution R
(1,1)
k of the PDE (4.3.12) when g is not

just given by sin but consists of more harmonics. We explain how higher-harmonics
in g influence the (2, 1)-phase reduction and how these additional harmonics affect
the stability of the synchronized orbit.

Whenever g(ϕ) = sin(nϕ) for n ∈ N, the solution1 of the PDE (4.3.12) is given
by

R
(1,1)
k (ϕ) =

1

2M(m2 + (nω)2)

M∑
l=1

s1(ϕk, ϕl) (A.0.1)

with

s1(ϕk, ϕl) = nω
(
(n− 2) cos(nϕk − α)− cos(ϕk − (n+ 1)ϕl − α)

− (n− 3) cos((n+ 1)ϕk − ϕl − α)− cos(ϕk + (n− 1)ϕl − α)

− (n+ 2) cos(nϕk + α) + (n+ 3) cos((n− 1)ϕk + ϕl + α)
)

+m
(
(n− 2) sin(nϕk − α) + sin(ϕk − (n+ 1)ϕl − α)

− (n− 3) sin((n+ 1)ϕk − ϕl − α)− sin(ϕk + (n− 1)ϕl − α)

1This PDE can be solved with theMathematica code, which is available on GitHub, see [33].
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− (n+ 2) sin(nϕk + α) + (n+ 3) sin((n− 1)ϕk + ϕl + α)
)
.

Moreover, if g(ϕ) = cos(nϕ) for n ∈ N, the solution of (4.3.12) is given by (A.0.1)
as well, but then

s1(ϕk, ϕl) = nω
(
− (n− 2) sin(nϕk − α)− sin(ϕk − (n+ 1)ϕl − α)

+ (n− 3) sin((n+ 1)ϕk − ϕl − α) + sin(ϕk + (n− 1)ϕl − α)

+ (n+ 2) sin(nϕk + α)− (n+ 3) sin((n− 1)ϕk + ϕl + α)
)

+m
(
(n− 2) cos(nϕk − α)− cos(ϕk − (n+ 1)ϕl − α)

− (n− 3) cos((n+ 1)ϕk − ϕl − α)− cos(ϕk + (n− 1)ϕl − α)

− (n+ 2) cos(nϕk + α) + (n+ 3) cos((n− 1)ϕk + ϕl + α)
)

Now, a general sufficiently smooth function g can be constructed as a sum of
the basis functions cos(nϕ) and sin(nϕ) with n ∈ N. Due to the linearity of the
PDE (4.3.12) its solution for a general sufficiently smooth function g can therefore
be constructed using its solutions when g is a basis function.

To investigate how these higher harmonics influence the stability of the syn-
chronized orbit in a (2, 1)-phase-reduced system one first notes that the only part

in this phase reduction, that depends on R
(1,1)
k (ϕ) is P

(2,1)
k as defined in (4.3.15b).

In particular, if g is given by a general Fourier sum

g(ϕ) =
Ω∑
n=1

(an cos(nϕ) + bn sin(nϕ))

with real coefficients an, bn, the general form of P
(2,1)
k is

P
(2,1)
k (ϕ) = ∇RH

(−,0)
k (1, ϕ) ·

(
Ω∑
n=1

anR
(1,1)
cos(nϕ)(ϕ) + bnR

(1,1)
sin(nϕ)(ϕ)

)
+∇RH

(−,1)
k (1, ϕ) ·R(1,0)(ϕ),

whereR
(1,1)
cos(nϕ) = (R

(1,1)
cos(nϕ),1, . . . , R

(1,1)
cos(nϕ),M)⊤ andR

(1,1)
sin(nϕ) = (R

(1,1)
sin(nϕ),1, . . . , R

(1,1)
sin(nϕ),M)⊤

are the solutions (A.0.1) of (4.3.12) when g(ϕ) = cos(nϕ) and g(ϕ) = sin(nϕ),
respectively. In other words, one can say that whenever g consists of multiple
harmonics, these harmonics contribute to the right-hand side of the (2, 1)-phase

reduction, each by one summand ∇RH
(−,0)
k (1, ϕ) · R(1,1)

cos(nϕ)(ϕ) or ∇RH
(−,0)
k (1, ϕ) ·

R
(1,1)
sin(nϕ)(ϕ) with possible prefactors, only. Therefore, higher harmonics in g cause
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more summands in the linearization of the right-hand side at a synchronized state.
As explained in Section 4.4.1 this Jacobian is of the form h(γ) 1

M
(JM −MIdM),

when linearized at ϕ1 = · · · = ϕM = γ and each harmonic in g causes one summand
in h. A calculation shows that this summand for the harmonic sin(nϕ) is

2K2δ sin(α)2

m2 + (nω)2

(
nω cos(nγ) +m sin(nγ)

)
and

2K2δ sin(α)2

m2 + (nω)2

(
m cos(nγ)− nω sin(nγ)

)
if g(ϕ) = cos(nϕ). When integrating these summands over the synchronized orbit
γ ∈ T one sees that they vanish. Therefore, they do not contribute to the Floquet
exponent, which determines the stability of the synchronized orbit.



Appendix B

Supplementary Material for the
Analysis of Twisted States

The content of this chapter is based on the publication [22], which is joint work
together with Christian Bick and Christian Kuehn. In particular, the technical
parts are taken from the publication [22] of which I am the main author.

B.1 Abbreviations

Coefficients c1, . . . , c6 The coefficients c1, . . . , c6 that appear in the derivative
of F q in (5.4.13)-(5.4.16) are used to calculate γ1 and γ2, which are the main
parameters in the expansion (5.4.27). Given γ1 and γ2 one can determine when
bifurcating equilibria exist, their stability, ect. Using the convention Ŵr(−k) :=
Ŵr(k) and p = (r, λ, µ) ∈ P , the coefficients are given by

c1(q, k, p) =
1

4

(
Ŵr(q − k) + Ŵr(q + k)− 2Ŵr(q)− (4λ+ 2µ)Ŵr(q)

)
c2(q, k, p) =

1

8

(
− Ŵr(q − 2k) + 2Ŵr(q − k)− 2Ŵr(q + k)

+ Ŵr(q + 2k)− 2λŴr(q − k) + 2λŴr(q + k)
)

c3(q,m, k, p) =
1

8

(
− Ŵr(q −m) + Ŵr(q −m+ k) + Ŵr(q − k)

− Ŵr(q + k)− Ŵr(q +m− k) + Ŵr(q +m)
)

c4(q,m, k, p) =
1

8

(
− Ŵr(q −m− k) + Ŵr(q −m) + Ŵr(q − k)

− Ŵr(q + k)− Ŵr(q +m) + Ŵr(q +m+ k)
)

172
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c5(q, k, p) =
1

16

(
Ŵr(q − 2k)− 4Ŵr(q − k) + 6Ŵr(q)− 4Ŵr(q + k)

+ Ŵr(q + 2k) + 4λŴr(q − k) + 32λŴr(q) + 4λŴr(q + k)

+ 2µŴr(q − k) + 14µŴr(q) + 2µŴr(q + k)
)

c6(q, k, p) =
1

16

(
Ŵr(q − 3k)− 3Ŵr(q − 2k) + 3Ŵr(q − k)− 2Ŵr(q)

+ 3Ŵr(q + k)− 3Ŵr(q + 2k) + Ŵr(q + 3k)− 12λŴr(q − k)

− 16λŴr(q)− 12λŴr(q + k)− 2µŴr(q)
)

Note that c2 does not depend on µ, c3 does not depend on λ and µ and c3 satisfies
c3(q,m, k, p) = −c3(q, k,m, p). Moreover, c4 does not depend on λ and µ.

Note that these coefficients are chosen such that they fulfill the derivative
conditions (5.4.13)-(5.4.16). They can be derived by evaluating the first, second
and third derivatives of F (Ψ, p), that is given in Section B.3, at a q-twisted state.
As an example, we show the derivation of the first derivative condition (5.4.13)
when λ = µ = 0, see also [177] for a similar derivation. If λ ̸= 0 and µ ̸= 0,
the calculations only become longer but not more difficult. Therefore, we omit
these calculations. Moreover, we recommend to use symbolic integrating software
to compute higher-order derivatives of F .

By the calculation from Section B.3, the first derivative FΨ(Ψ
q, p) is given by

FΨ(Ψ
q, p)[η](x) =

∫
S
Wr(x− y)(η(y)− η(x)) cos(Ψq(y)−Ψq(x)) dy

−
∫
S
Wr(y)η(y) cos(Ψ

q(y)) dy.

We insert η = uk, use the Fourier series representation of Wr and evaluate each
integral separately to obtain∫

S
Wr(x− y)(sin(2πky)− sin(2πkx)) cos(Ψq(y)−Ψq(x)) dy

=

∫
S

(
1

2
Ŵr(0) +

∞∑
j=1

Ŵr(j) cos(2πj(x− y))

)
· (sin(2πky)− sin(2πkx)) cos(2πq(y − x)) dy

=
1

2
Ŵr(0)

∫
S
(sin(2πky)− sin(2πkx)) cos(2πq(y − x)) dy

+
∞∑
j=1

Ŵr(j)

∫
S
cos(2πj(x− y))(sin(2πky)− sin(2πkx)) cos(2πq(y − x)) dy
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Using trigonometric identities, we infer

2(sin(2πky)− sin(2πkx)) cos(2πq(y − x))

= − sin(2π(x(k + q) + y(−q))) + sin(2π(xq + y(k − q)))

− sin(2π(x(k − q) + yq)) + sin(2π(−qx+ y(k + q)))

Thus, integrating this quantity over y yields

1

2
Ŵr(0)

∫
S
(sin(2πky)− sin(2πkx)) cos(2πq(y − x)) dy

=

{
0 if k ̸= q
1
4
Ŵr(0) sin(2πkx) if k = q

.

(B.1.1)

Similarly, we obtain

4 cos(2πj(x− y))(sin(2πky)− sin(2πkx)) cos(2πq(y − x))

= − sin(2π(x(k − j + q) + y(j − q))) + sin(2π(x(−j + q) + y(k + j − q)))

− sin(2π(x(k + j + q) + y(−j − q))) + sin(2π(x(j + q) + y(k − j − q)))

− sin(2π(x(k − j − q) + y(j + q))) + sin(2π(x(−j − q) + y(k + j + q)))

− sin(2π(x(k + j − q) + y(−j + q))) + sin(2π(x(j − q) + y(k − j + q)))

and after integrating over y∫
S
cos(2πj(x− y))(sin(2πky)− sin(2πkx)) cos(2πq(y − x)) dy

=
1

4
sin(2πkx)



−1 if j − q = 0

1 if k + j − q = 0

−1 if − j − q = 0

1 if k − j − q = 0

−1 if j + q = 0

1 if k + j + q = 0

−1 if − j + q = 0

1 if k − j + q = 0

0 else

. (B.1.2)

Now, note that there is no j ∈ N such that the third, fifth and sixth case of
(B.1.2) occur. Moreover, when k ≥ q the second case cannot appear and when
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k ≤ q the fourth case cannot appear. Multiplying with Ŵr(j) and then summing
over j from 1 to ∞ yields

1

4
sin(2πkx)

(
− Ŵr(q) + Ŵr(k − q)− Ŵr(q) + Ŵr(k + q)

)
,

which is valid for all k, q ∈ N with k ̸= q using the convention Ŵr(−k) = Ŵr(k).
Combining it with (B.1.1) shows that∫

S
Wr(x− y)(sin(2πky)− sin(2πkx)) cos(Ψq(y)−Ψq(x)) dy (B.1.3)

=
1

4
sin(2πkx)

(
− Ŵr(q) + Ŵr(k − q)− Ŵr(q) + Ŵr(k + q)

)
(B.1.4)

for all q, k ∈ N. Finally, ∫
S
Wr(y)η(y) cos(Ψ

q(y)) dy = 0,

since this integral coincides with (B.1.3) evaluated at x = 0. Note that Wr(−y) =
Wr(y). Alltogether, this shows the derivation of the coefficient c1(q, k, p) when
λ = µ = 0 in the derivative condition (5.4.13).

Calculation of ι(υ) Suppose that Ŵr(k) is given by (5.2.7). Rewriting this
relation yields

Ŵr(k) =
2

πk
sin(2πkr) =

1

k
f(kr),

if k ̸= 0 and f : R → R is given by f(r) = 2
π
sin(2πr). Moreover, note that

Ŵr(0) = kŴ r
k
(0).

We use this to calculate:

H(q, r) =
Ŵr(0) + Ŵr(2q)− 2Ŵr(q)

Ŵr(q)
= u(qr),

where u : R → R is defined by

u(υ) =
4υ + 1

2
f(2υ)− 2f(υ)

f(υ)
.

Moreover,

c1(q, 2q, p
0(0)) =

1

4

(
1

−q
f(−qr) + 1

3q
f(3qr)− 2

q
f(qr)−H(q, r)

1

q
f(qr)

)
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=
1

q
g(qr),

with g : R → R,

g(υ) =
1

4

(
f(υ) +

1

3
f(3υ)− 2f(υ)− u(υ)f(υ)

)
.

Furthermore,

c3(q, 2q, q, p
0(0)) =

1

8

(
−1

q
f(qr) + 8r − 1

q
f(2qr) +

1

3q
f(3qr)

)
=

1

q
h(qr),

with h : R → R,

h(υ) =
1

8

(
−f(υ) + 8υ − f(2υ) +

1

3
f(3υ)

)
.

Finally, we can put everything together and calculate

X(q, r) = − 1

4q
f(qr) +

h(qr)

4g(qr)

(
−4r +

1

2q
f(2qr)

)
=

1

q
ι(qr),

with

ι(υ) = −1

4
f(υ) +

h(υ)

4g(υ)

(
−4υ +

1

2
f(2υ)

)
.

In conclusion, we have

ι(υ) =
1

8

(
− sin(2πυ) + 4πυ − sin(4πυ) +

1

3
sin(6πυ)

)(
−4υ +

1

π
sin(4πυ)

)
·
(
− sin(2πυ) +

1

3
sin(6πυ)− (2πυ +

1

2
sin(4πυ)− 2 sin(2πυ))

)−1

+
−1

2π
sin(2πυ)

B.2 Supplementary Calculations

B.2.1 Fourier Expansion in H1
0

Lemma B.2.1. The functions uk(x) = sin(2πkx) and wk(x) = 1− cos(2πkx) for
k ≥ 1 form a Schauder basis of H1

0 = H1
0 (S,R). Consequently, each η ∈ H1

0 can
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be written as an infinite sum

η =
∞∑
k=1

akuk + bkwk, (B.2.1)

that converges in H1
0 .

Proof. Let η ∈ H1
0 . Since for every η ∈ H1

0 , there is η̃ ∈ C(S) with η = η̃ almost
everywhere [67, Section 5.6, Theorem 4], we assume η to be continuous, without
loss of generality. Now, note that Dη ∈ L2 = L2(S,R). Due to the Fourier theory
in L2, Dη can be expanded as

Dη = α0 +
∞∑
k=1

αk cos(2πkx) + βk sin(2πkx),

where the convergence is in L2. Defining a series

SN(x) :=
N∑
k=1

ak sin(2πkx) + bk(1− cos(2πkx)),

with ak = αk/(2πk) and bk = βk/(2πk), one can see that the partial sums of Dη
agree with DSN up to α0. Thus, α0 +DSN → Dη in L2. Next, by [40, Theorem
8.2], we can integrate this weak derivative to obtain η as

η(x) = η(0) +

∫ x

0

Dη(x̃) dx̃. (B.2.2)

Parseval’s identity implies
∑
α2
k <∞ and

∑
β2
k <∞. Therefore, the partial sums

of Dη are bounded by

|α0 +DSN | ≤ |a0|+
∞∑
k=1

(α2
k + β2

k)

Consequently, we can invoke the dominated convergence theorem to integrate the
summands of Dη separately. Using that η(0) = 0, we then arrive at

η(x) = η(0) +

∫ x

0

lim
N→∞

DSN(x̃) dx̃

= lim
N→∞

∫ x

0

DSN(x̃) dx̃ = lim
N→∞

SN(x),

which is a Fourier series for η. Since this Fourier Series is unique and η ∈ H1
0 ⊂ L2,

the convergence takes place in L2. Moreover, evaluating (B.2.2) at x = 1, using
that η is periodic, i.e. η(0) = η(1) and applying the dominated convergence
theorem again yields that α0 = 0. Therefore, DSN → Dη in L2 and SN → η
in L2. Combining these two convergences shows SN → η in H1.
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B.2.2 Maximal Eigenvalue

Lemma B.2.2. For all k ∈ Z \ {0} and all r with 0 ≤ r ≤ 1
2
we have

Ŵr(1) ≥ Ŵr(k) (B.2.3)

Proof. Because Ŵr(k) = Ŵr(−k) this inequality only needs to be shown for k ∈
N, k ≥ 2. The derivative of Ŵr(k) with respect to r is given by

d

dr
Ŵr(k) = 4 cos(2πkr).

Since cos is decreasing in [0, π/2] we get d
dr
Ŵr(1) = 4 cos(2πr) ≥ 4 cos(2πrk) =

d
dr
Ŵr(k) for all r ∈ [0, 1

4k
]. Since Ŵ0(k) = 0, equation (B.2.3) follows for all r ∈

[0, 1
4k
]. On the one hand, since this holds in particular for r = 1

4k
and d

dr
Ŵr(1) ≥ 0

for all r ≤ 1
4
we have Ŵr(1) ≥ Ŵ 1

4k
(1) ≥ Ŵ 1

4k
(k) = 2

πk
for all r ∈ [ 1

4k
, 1
4
]. On the

other hand, Ŵr(k) ≤ 2
πk
. Therefore the inequality (B.2.3) extends to all r ∈ [0, 1

4
].

By a symmetry argument one can see that it even holds for all r ∈ [0, 1
2
].

Theorem B.2.3. If 2
πq

≤ 2r− 1
π
sin(2πr), the largest eigenvalue of the linearization

of (5.3.5) with λ = µ = 0 around a q-twisted state is attained for k = q, i.e.,
maxk c1(q, k, (r, 0, 0)) = c1(q, q, (r, 0, 0)).

Proof. Let k ∈ N, k ̸= q be fixed and r ∈ [0, 1
2
], q ∈ N such that the assumption

in the theorem is fulfilled. Then,

Ŵr(q + k)− Ŵr(2q) ≤
2

π

(
1

q + k
+

1

2q

)
≤ 4

πq

≤ 4r − 2

π
sin(2πr)

= Ŵr(0)− Ŵr(1).

since k − q ∈ Z \ {0}, we obtain by Lemma B.2.2

Ŵr(q + k)− Ŵr(2q) ≤ Ŵr(0)− Ŵr(k − q).

After rearranging this inequality and subtracting 2Ŵr(q) to both sides it reads as

Ŵr(2q) + Ŵr(0)− 2Ŵr(q) ≥ Ŵr(q + k) + Ŵr(k − q)− 2Ŵr(q).

This is equivalent to c1(q, q, (r, 0, 0)) ≥ c1(q, k, (r, 0, 0)) for all k ̸= q. Thus, the
proof is complete.
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B.2.3 γ Ratio in the Attractive Kuramoto Model

Here, we consider the bifurcation in the attractive Kuramoto model studied in
Section 5.5.1. We show that γ1/γ2 > 0 when the q-twisted state looses its stability.
To do this, we assume the following statements, which mainly follow from an
analysis in [177]:

� At r = r0 the first eigenvalue c1(q, 1, (r, 0, 0)) passes through 0 from below
when increasing r. Moreover, at the bifurcation the other eigenvalues are
negative, i.e., c1(q, ℓ, (r0, 0, 0)) < 0 for all ℓ ≥ 2.

� c1(q + 1, 1, (r0, 0, 0)) > 0.

From the first statement, it immediately follows that γ2 > 0. It remains to
show that γ1 > 0. In particular, using the abbreviations from Appendix B.1 and
p0 = (r0, 0, 0), it follows from these statements that

c1(q, 1, p0) =
1

4
(Ŵr0(q − 1)− 2Ŵr0(q) + Ŵr0(q + 1)) = 0 (B.2.4)

c1(q, 2, p0) =
1

4
(Ŵr0(q − 2)− 2Ŵr0(q) + Ŵr0(q + 2)) < 0 (B.2.5)

c1(q + 1, 1, p0) =
1

4
(Ŵr0(q)− 2Ŵr0(q + 1) + Ŵr0(q + 2)) > 0 (B.2.6)

Using (B.2.4) we then get

16c5(q, 1, p0) = Ŵr0(q − 2)− 4Ŵr0(q − 1) + 6Ŵr0(q)− 4Ŵr0(q + 1) + Ŵr0(q + 2)

= Ŵr0(q − 2)− 2Ŵr0(q) + Ŵr0(q + 2) =: q1.

Moreover, we note that

c2(q, 1, p0) = c3(q, 2, 1, p0)

= −Ŵr0(q − 2) + 2Ŵr0(q − 1)− 2Ŵr0(q + 1) + Ŵr0(q + 2) =: q2.

Then, we obtain

32γ1 = 16

(
c5(q, 1, p0)−

c2(q, 1, p0)c3(q, 2, 1, p0)

c1(q, 2, p0)

)
= q1 −

q22
q1

=
1

q1
(q1 + q2)(q1 − q2).
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By (B.2.5) we have q1 < 0. Furthermore, using (B.2.4) and (B.2.6) we obtain

q1 + q2 = 2(Ŵr0(q − 1)− Ŵr0(q)− Ŵr0(q + 1) + Ŵr0(q + 2))

= 2(Ŵr0(q)− 2Ŵr0(q + 1) + Ŵr0(q + 2))

> 0.

Consequently, q2 > 0. Thus, we conclude q1 < 0, q1 + q2 > 0 and q1 − q2 < 0 and
therefore γ1 > 0.

B.3 Differentiability of the Right-Hand Side

In this section we show that F is indeed Fréchet differentiable. We give the operator
that represents the Fréchet derivative but only show this without higher-order
interactions, i.e., when λ = µ = 0, since that does not complicate but only lengthen
the calculations.

We claim, that the n-th Fréchet derivative of F (Ψ, p) around a state Ψ̃ is given

by a n-linear operator AΨ̃ : (H1
0 )
n → H1

0 with

(AΨ̃[η1, . . . , ηn])(x)

=

∫
S
Wr(x− y)

n∏
i=1

(ηi(y)− ηi(x)) sin
[n](Ψ̃(y)− Ψ̃(x)) dy

−
∫
S
Wr(y)

n∏
i=1

ηi(y) sin
[n](Ψ̃(y)) dy

+ λ

[∫
S

∫
S
Wr(z + y − 2x)

n∏
i=1

(ηi(z) + ηi(y)− 2ηi(x))

· sin[n](Ψ̃(z) + Ψ̃(y)− 2Ψ̃(x)) dydz

−
∫
S

∫
S
Wr(z + y)

n∏
i=1

(ηi(z) + ηi(y)) sin
[n](Ψ̃(z) + Ψ̃(y)) dydz

]

+ µ

[∫
S

∫
S

∫
S
Wr(z − y + w − x)

n∏
i=1

(ηi(z)− ηi(y) + ηi(w)− ηi(x))

· sin[n](Ψ̃(z)− Ψ̃(y) + Ψ̃(w)− Ψ̃(x)) dwdydz

−
∫
S

∫
S

∫
S
Wr(z − y + w)

n∏
i=1

(ηi(z)− ηi(y) + ηi(w))

· sin[n](Ψ̃(z)− Ψ̃(y) + Ψ̃(w)) dwdydz
]
,
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where sin[n] denotes the n-th derivative of sin.
The main estimations needed to prove that this is indeed a n-linear operator

and the n-th Fréchet derivative of F are

|η(y)− η(x)|2 =
∣∣∣∣∫ y

x

∂η(z) dz

∣∣∣∣2 ≤ ∫
S
∂η(z)2 dz = ∥∂η∥2L2 , (B.3.1)

for the part without higher-order interactions and

|η(z) + η(y)− 2η(x)|2 ≤ 4 ∥∂η∥2L2 , (B.3.2)

|η(z)− η(y) + η(w)− η(x)|2 ≤ 4 ∥∂η∥2L2 (B.3.3)

for the parts involving higher-order interactions. Due to the similarity of the
main estimations (B.3.1),(B.3.2) and (B.3.3) regarding the parts with and without
higher-order interactions, respectively, we only consider parts without higher-order
interactions in the following. That means we only proof the boundedness of AΨ̃

and its derivative property for λ = µ = 0.

B.3.1 Boundedness of AΨ̃

First, we show that AΨ̃ is bounded. To do this, we denote

f(x) =

∫
S
Wr(x− y)

n∏
i=1

(ηi(y)− ηi(x)) sin
[n](Ψ̃(y)− Ψ̃(x)) dy

and

g(x) ≡
∫
S
Wr(y)

n∏
i=1

ηi(y) sin
[n](Ψ̃(y)) dy,

which is actually independent of x. It then follows that

(AΨ̃[η1, . . . , ηn])(x) = f(x)− g(x).

Using
∥∥sin[n]

∥∥
∞ ≤ 1 and ∥Wr∥∞ ≤ 1 we estimate

∥f∥2L2 =

∫
S

(∫
S
Wr(x− y)

n∏
i=1

(ηi(y)− ηi(x)) sin
[n](Ψ̃(y)− Ψ̃(x)) dy

)2

dx

≤
∫
S

∫
S

n∏
i=1

(ηi(y)− ηi(x))
2 dydx

=
n∏
i=1

∥∂ηi∥2L2 .
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Moreover, a similar estimation yields

∥g∥2L2 ≤
n∏
i=1

∥ηi∥2L2 .

Further, we calculate the derivative of f :

Dxf(x) = Dx

(∫ x+r

x−r

n∏
i=1

(ηi(y)− ηi(x)) sin
[n](Ψ̃(y)− Ψ̃(x)) dy

)

=
n∏
i=1

(ηi(x+ r)− ηi(x)) sin
[n](Ψ̃(x+ r)− Ψ̃(x))

−
n∏
i=1

(ηi(x− r)− ηi(x)) sin
[n](Ψ̃(x− r)− Ψ̃(x))

+

∫ x+r

x−r

n∑
j=1

n∏
i=1
i ̸=j

(ηi(y)− ηi(x))(−∂ηj(x)) sin[n](Ψ̃(y)− Ψ̃(x)) dy

+

∫ x+r

x−r

n∏
i=1

(ηi(y)− ηi(x)) sin
[n+1](Ψ̃(y)− Ψ̃(x))(−∂Ψ̃(x)) dy.

To simplify the notation, let us write

h1(x) =
n∏
i=1

(ηi(x+ r)− ηi(x)) sin
[n](Ψ̃(x+ r)− Ψ̃(x))

h2(x) = −
n∏
i=1

(ηi(x− r)− ηi(x)) sin
[n](Ψ̃(x− r)− Ψ̃(x))

and

uj(x) =

∫ x+r

x−r

n∏
i=1
i ̸=j

(ηi(y)− ηi(x))(−∂ηj(x)) sin[n](Ψ̃(y)− Ψ̃(x)) dy,

q(x) =

∫ x+r

x−r

n∏
i=1

(ηi(y)− ηi(x)) sin
[n+1](Ψ̃(y)− Ψ̃(x))(−∂Ψ̃(x)) dy

Then, Dx(A
Ψ̃[η1, . . . , ηn])(x) = Dxf(x) = h1(x) + h2(x) +

∑n
j=1 uj(x) + q(x). An

estimation shows that

∥h1∥2L2 =

∫
S

[
n∏
i=1

(ηi(x+ r)− ηi(x)) sin
[n](Ψ̃(x+ r)− Ψ̃(x))

]2
dx
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≤
∫
S

n∏
i=1

(ηi(x+ r)− ηi(x))
2 dx

≤
n∏
i=1

∥∂ηi∥2L2 .

Similarly, we obtain ∥h2∥2L2 ≤
∏n

i=1 ∥∂ηi∥
2
L2 . Moreover,

∥uj∥2L2 =

∫
S

∫ x+r

x−r

n∏
i=1
i ̸=j

(ηi(y)− ηi(x))(−∂ηj(x)) sin[n](Ψ̃(y)− Ψ̃(x)) dy


2

dx

≤
∫
S

∫
S

n∏
i=1
i ̸=j

∥∂ηi∥2L2 (∂ηj(x))
2 dy dx

=
n∏
i=1

∥∂ηi∥2L2

and

∥q∥2L2 =

∫
S

(∫ x+r

x−r

n∏
i=1

(ηi(y)− ηi(x)) sin
[n+1](Ψ̃(y)− Ψ̃(x))(−∂Ψ̃(x)) dy

)2

dx

≤
∫
S

∫
S

n∏
i=1

∥∂ηi∥2L2 (∂Ψ̃(x))2 dy dx

≤
n∏
i=1

∥∂ηi∥2L2

∥∥∥∂Ψ̃∥∥∥2
L2
.

All together, we obtain∥∥∥AΨ̃[η1, . . . , ηn]
∥∥∥2
H1

=
∥∥∥AΨ̃[η1, . . . , ηn]

∥∥∥2
L2

+
∥∥∥Dx(A

Ψ̃[η1, . . . , ηn])
∥∥∥2
L2

= ∥f − g∥2L2 +

∥∥∥∥∥h1 + h2 +
n∑
j=1

uj + q

∥∥∥∥∥
2

L2

≤ 2 ∥f∥2L2 + 2 ∥g∥2L2

+ (n+ 3)

(
∥h1∥2L2 + ∥h2∥2L2 +

n∑
j=1

∥uj∥2L2 + ∥q∥2L2

)
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≤ 2
n∏
i=1

∥∂ηi∥2L2 + 2
n∏
i=1

∥ηi∥2L2

+ (n+ 3)

(
(n+ 2)

n∏
i=1

∥∂ηi∥2L2 +
n∏
i=1

∥∂ηi∥2L2

∥∥∥∂Ψ̃∥∥∥2
L2

)

≤ 4
n∏
i=1

∥ηi∥2H1

+ (n+ 3)

(
(n+ 2)

n∏
i=1

∥ηi∥2H1 +
n∏
i=1

∥ηi∥2H1

∥∥∥Ψ̃∥∥∥2
H1

)

≤ c

n∏
i=1

∥ηi∥2H1 ,

where c is a constant that can be chosen as

c = 4 + (n+ 3)

(
n+ 2 +

∥∥∥Ψ̃∥∥∥2
H1

)
.

Even though some estimations are far from being tight, this proves thatAΨ̃[η1, . . . , ηn]
is a bounded n-linear operator.

B.3.2 Derivative Property

To inductively show thatAΨ̃[η1, . . . , ηn] is the n-th Fréchet derivative of F around Ψ̃
we need to confirm that

lim
∥ηn∥H1→0

1

∥ηn∥H1

∥∥∥AΨ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn]
∥∥∥
H1

= 0.

(B.3.4)

To achieve that, we first rewrite

AΨ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn]

=

∫
S
Wr(x− y)

n−1∏
i=1

(ηi(y)− ηi(x)) sin
[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x)) dy

−
∫
S
Wr(y)

n−1∏
i=1

ηi(y) sin
[n−1](Ψ̃(y) + ηn(y)) dy

−
∫
S
Wr(x− y)

n−1∏
i=1

(ηi(y)− ηi(x)) sin
[n−1](Ψ̃(y)− Ψ̃(x)) dy
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+

∫
S
Wr(y)

n−1∏
i=1

ηi(y) sin
[n−1](Ψ̃(y)) dy

−
∫
S
Wr(x− y)

n∏
i=1

(ηi(y)− ηi(x)) sin
[n](Ψ̃(y)− Ψ̃(x)) dy

+

∫
S
Wr(y)

n∏
i=1

ηi(y) sin
[n](Ψ̃(y)) dy

=

∫
S
Wr(x− y)

n−1∏
i=1

(ηi(y)− ηi(x))

·
[
sin[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))− sin[n−1](Ψ̃(y)− Ψ̃(x))

−(ηn(y)− ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

]
dy

(B.3.5)

−
∫
S
Wr(y)

n−1∏
i=1

ηi(y)

[
sin[n−1](Ψ̃(y) + ηn(y))

− sin[n−1](Ψ̃(y))− ηn(y) sin
[n](Ψ̃(y))

]
dy

(B.3.6)

Now, we introduce the notation g1(x) for (B.3.5) and g2(x) for (B.3.6) such that
we recover

AΨ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn] = g1(x) + g2(x).

Note that by Taylor’s Theorem we have

f(x0 + a) = f(x0) + af ′(x0) +
f ′′(ξ)

2
a2

for each twice continuously differentiable function f and some ξ ∈ (x0, x0 + a) if
a > 0 and ξ ∈ (x− 0− a, x0) if a < 0. By applying this theorem to f = sin[n−1] it
follows that

| sin[n−1](x0 + a)− sin[n−1](x0)− a sin[n](x0)| ≤
a2

2
. (B.3.7)

Using this inequality we can estimate

∥g1∥2L2 =

∫
S

{∫
S
Wr(x− y)

n−1∏
i=1

(ηi(y)− ηi(x))

·
[
sin[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))− sin[n−1](Ψ̃(y)− Ψ̃(x))
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− (ηn(y)− ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

]
dy

}2

dx

≤
n−1∏
i=1

∥∂ηi∥2L2

∫
S

(∫
S

1

2
(ηn(y)− ηn(x))

2 dy

)2

dx

=
1

4

n−1∏
i=1

∥∂ηi∥2L2 ∥∂ηn∥4L2 .

Furthermore, also by using (B.3.7), we obtain

∥g2∥2L2 =

∫
S

{∫
S
Wr(y)

n−1∏
i=1

ηi(y)
[
sin[n−1](Ψ̃(y) + ηn(y))

− sin[n−1](Ψ̃(y))− ηn(y) sin
[n](Ψ̃(y))

]
dy

}2

dx

≤
n−1∏
i=1

∥ηi∥2L2

∫
S

{∫
S

1

2
|ηn(y)|2 dy

}2

dx

=
1

4

n−1∏
i=1

∥ηi∥2L2 ∥ηn∥4L2 .

Now, we calculate the derivative

Dx(A
Ψ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn])

= Dxg1(x)

= Dx

(∫ x+r

x−r

n−1∏
i=1

(ηi(y)− ηi(x))
[
sin[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))

− sin[n−1](Ψ̃(y)− Ψ̃(x))− (ηn(y)− ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

]
dy
)

=
n−1∏
i=1

(ηi(x+ r)− ηi(x))
[
− sin[n−1](Ψ̃(x+ r)− Ψ̃(x))

+ sin[n−1](Ψ̃(x+ r)− Ψ̃(x) + ηn(x+ r)− ηn(x))

− (ηn(x+ r)− ηn(x)) sin
[n](Ψ̃(x+ r)− Ψ̃(x))

] (B.3.8)

−
n−1∏
i=1

(ηi(x− r)− ηi(x))
[
− sin[n−1](Ψ̃(x− r)− Ψ̃(x))

+ sin[n−1](Ψ̃(x− r)− Ψ̃(x) + ηn(x− r)− ηn(x))

− (ηn(x− r)− ηn(x)) sin
[n](Ψ̃(x− r)− Ψ̃(x))

] (B.3.9)
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+
n−1∑
j=1

∫ x+r

x−r

n−1∏
i=1
i ̸=j

(ηi(y)− ηi(x))(−∂ηj(x))

·
[
sin[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))− sin[n−1](Ψ̃(y)− Ψ̃(x))

− (ηn(y)− ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

]
dy

(B.3.10)

+

∫ x+r

x−r

n−1∏
i=1

(ηi(y)− ηi(x))

·
[
sin[n](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))(−∂Ψ̃(x)− ∂ηn(x))

− sin[n](Ψ̃(y)− Ψ̃(x))(−∂Ψ̃(x))

+ (∂ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

− (ηn(y)− ηn(x)) sin
[n+1](Ψ̃(y)− Ψ̃(x))(−∂Ψ̃(x))

]
dy.

(B.3.11)

We use the abbreviations u1(x) for the summand (B.3.8), u2(x) for the sum-
mand (B.3.9), uj3(x) for the j-th summand in (B.3.10) and u4(x) for the sum-

mand (B.3.11) such thatDx(A
Ψ̃+ηn [η1, . . . , ηn−1]−AΨ̃[η1, . . . , ηn−1]−AΨ̃[η1, . . . , ηn]) =

u1(x) + u2(x) +
∑

j u
j
3(x) + u4(x). Further, we split u4 into u4,1(x) + u4,2(x) as

u4,1(x) =

∫ x+r

x−r

n−1∏
i=1

(ηi(y)− ηi(x))(−∂Ψ̃(x))
[
sin[n](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))

− sin[n](Ψ̃(y)− Ψ̃(x))− (ηn(y)− ηn(x)) sin
[n+1](Ψ̃(y)− Ψ̃(x))

]
dy

u4,2(x) =

∫ x+r

x−r

n−1∏
i=1

(ηi(y)− ηi(x))(−∂ηn(x))
[
sin[n](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))

− sin[n](Ψ̃(y)− Ψ̃(x))
]
dy

Then, again by using Taylor’s theorem, we can estimate

∥u1∥2L2 ≤
n−1∏
i=1

∥∂ηi∥2L2

∫
S

(
sin[n−1](Ψ̃(x+ r)− Ψ̃(x) + ηn(x+ r)− ηn(x))

− sin[n−1](Ψ̃(x+ r)− Ψ̃(x))

− (ηn(x+ r)− ηn(x)) sin
[n](Ψ̃(x+ r)− Ψ̃(x))

)2
dx

≤
n−1∏
i=1

∥∂ηi∥2L2

∫
S

(
1

2
(ηn(x+ r)− ηn(x))

2

)2

dx
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≤ 1

4

n−1∏
i=1

∥∂ηi∥2L2 ∥∂ηn∥4L2 .

Similarly, ∥u2∥2L2 ≤ 1
4

∏n−1
i=1 ∥∂ηi∥2L2 ∥∂ηn∥4L2 . Moreover,

∥∥uj3∥∥2L2 ≤
n−1∏
i=1
i ̸=j

∥∂ηi∥2L2

∫
S

∫
S
(∂ηj(x))

2
[
sin[n−1](Ψ̃(y)− Ψ̃(x) + ηn(y)− ηn(x))

− sin[n−1](Ψ̃(y)− Ψ̃(x))− (ηn(y)− ηn(x)) sin
[n](Ψ̃(y)− Ψ̃(x))

]2
dydx

≤
n−1∏
i=1
i ̸=j

∥∂ηi∥2L2

∫
S

∫
S
(∂ηj(x))

2

[
1

2
(ηn(y)− ηn(x))

2

]2
dydx

≤ 1

4

n−1∏
i=1
i ̸=j

(∥∂ηi∥2L2) ∥∂ηn∥4L2 ∥∂ηj∥2L2

=
1

4

n−1∏
i=1

(∥∂ηi∥2L2) ∥∂ηn∥4L2

and

∥u4,1∥2L2 ≤
n−1∏
i=1

∥∂ηi∥2L2

∫
S

∫
S

(
(−∂Ψ̃(x))

1

2
(ηn(y)− ηn(x))

2

)2

dydx

≤ 1

4

n−1∏
i=1

∥∂ηi∥2L2 ∥∂ηn∥4L2

∥∥∥∂Ψ̃∥∥∥2
L2
,

∥u4,2∥2L2 ≤
n−1∏
i=1

∥∂ηi∥2L2

∫
S

∫
S
[(−∂ηn(x))(ηn(y)− ηn(x))]

2 dydx

≤
n−1∏
i=1

∥∂ηi∥2L2 ∥∂ηn∥4L2

Finally, we can combine the estimations to obtain∥∥∥AΨ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn]
∥∥∥2
H1

≤
∥∥∥AΨ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn]

∥∥∥2
L2

+
∥∥∥Dx(A

Ψ̃+ηn [η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn−1]− AΨ̃[η1, . . . , ηn])
∥∥∥2
L2
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≤ ∥g1 + g2∥2L2 +

∥∥∥∥∥u1 + u2 +
n−1∑
j=1

uj3 + u4,1 + u4,2

∥∥∥∥∥
2

L2

≤ 2(∥g1∥2L2 + ∥g2∥2L2)

+ (n+ 3)

(
∥u1∥2L2 + ∥u2∥2L2 +

n−1∑
j=1

∥∥uj3∥∥2L2 + ∥u4,1∥2L2 + ∥u4,2∥2L2

)

≤
n−1∏
i=1

∥ηi∥2H1 ∥ηn∥4H1

+ (n+ 3)

(
n+ 6

4

n−1∏
i=1

∥ηi∥2H1 ∥ηn∥4H1 +
1

4

n−1∏
i=1

∥ηi∥2H1 ∥ηn∥4H1

∥∥∥Ψ̃∥∥∥
H1

)
≤ c ∥ηn∥4H1 ,

where c is a constant that can be chosen to be

c =
n−1∏
i=1

∥ηi∥2H1

(
1 + (n+ 3)

(
n+ 6

4
+

1

4

∥∥∥Ψ̃∥∥∥
H1

))
This confirms (B.3.4) and therefore concludes this section.



Appendix C

Additional Illustrations of
Community Integration
Algorithms

This chapter is based on two publications [37, 36] which are both joint work with
Mechthild Thalhammer and Christian Kuehn. In particular, the technical parts
are taken from the publication [37] of which I am the main author. The comparison
of community detection algorithms is based on [36] of which I am the main author.

C.1 Network Models

In this section we describe the pre-simulation steps (P1)-(P2) and the CIA Eval-
uation steps (E1)-(E2) in technical detail for several different network models. In
a general network model of the form

ẋk = fk(xk) +
1

M

M∑
l=1

akl g(xl, xk), k = 1, . . . ,M (C.1.1)

the steps (P2) and (E1) are quite abstract and general. When considering a specific
network model, the function g is often not just an abstract function but one that
exhibits more structure that can be exploited in those two steps. The steps (P1)
and (E2), however, do not depend on the specific network model. Even though
we have only described (E2) in Section 6.3 for a specific example this step is
exactly the same for all other network models. Therefore, we shortly describe the
community detection process (P1) in Subsection C.1.1 such that we have covered
the steps (P1) and (E2), which are mostly independent of the particular network
model. In the following subsections we then do not further touch upon these steps
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but only describe (P2) and (E1) for specific network models. In particular, our fast
CIAs work on block matrices with dense or fully occupied blocks. We shall explain
below, why for illustration purposes, we may assume to illustrate the computation
in the easiest case of just one full block. Hence, we assume for the subsections
following Subsection C.1.1 that A is a full matrix with A = (akl)k,l=1,...,M and
akl = 1 for all k, l. Table C.1 lists several examples of coupling functions of a wide
variety of network models from different applications that are of the form (C.1.1);
in fact, there are many more application examples having a form identical or very
similar to (C.1.1) such as continuous Hopfield-type neural network models or the
Hegselmann–Krause model for opinion formation.

Network State Coupling Functions
Model Space (X )
(DZ) R fk(x) = f(x) = −∇V (x)

h(ξ) = ξ
(K) T = R/(2πZ) fk(x) = ωk

h(ξ) = sin(ξ)
(CS) R2d fk(x) = (v, 0)⊤, x = (s, v)

h(ξ) = K (α2 + ∥ŝ∥22)−β (0, v̂)⊤, ξ = (ŝ, v̂)
(V)/(FN) R2 fk(x) = f(x1, x2) = (x2 − 1

3
x31 + x1,− ε x1)

⊤

h(ξ) = ξ

Table C.1: Desai–Zwanzig (DZ), Kuramoto (K), Cucker–Smale (CS), Van-der-
Pol (V) as well as FitzHugh–Nagumo (FN) systems are relevant examples for
continuous-time dynamical systems that can be cast into the form (6.2.1) with
coupling functions g(x, y) = h(x− y).

C.1.1 Community Detection (P1)

In general, our CIAs can quickly evaluate the right-hand side of (C.1.1), when
the interaction matrix A = (akl)k,l=1,...,M ∈ {0, 1}M×M is fully occupied by ones
and so all nodes of the underlying graph form one large community. But CIAs
can also quickly evaluate the right-hand side if the adjacency matrix has block
structure such that the underlying graph is partitioned into smaller communities,
within which each node is connected to every other node. Obviously, the adjacency
matrices of most networks consist not only of blocks fully occupied by ones, but
there may be a zero-entry of A at a position (k, l) that is in a larger block of
ones. In other words, there is not always an all-to-all coupling inside communities
but two nodes k, l belonging to the same community might be uncoupled (missing
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intra-population links). Similarly, there may be a one-entry of A at (k, l) while
nodes k and l do not belong to the same block in adjacency matrix A, meaning that
two nodes k and l can be coupled even though they do not belong to the same
community (additional inter-population links). Our CIA nevertheless assumes
that A has block structure, calculates the right-hand side of (C.1.1) using this
assumption in step (E1), and corrects this calculation by individually adding or
subtracting g(xl, xk) depending on whether (k, l) is an additional inter-population
link or a missing intra-population link of the graph in step (E2).

In synthetically created benchmark graphs, the communities of the graph, or
the block structure of the associated adjacency matrix, respectively, is already
known from the construction. However, when dealing with real-world networks,
communities first have to be found.

CIAs can quickly evaluate the right-hand side for blocks in A but the evalua-
tion of many summands g(xl, xk) is very costly. The aim of a community detection
algorithm is to partition the graph into communities such that there are as few
missing intra-population links and additional inter-population links as possible. In
other words, the matrix S defined in Section 6.3 (see also Figure 6.2) has to be as
sparse as possible. It can be seen as a feature of a community detection algorithm
to achieve exactly that. However, not all community detection algorithms pursue
to optimize on that feature [154]. Apart from existing comparisons of commu-
nity detection algorithms for numerical simulations from [129, 60, 182], we ana-
lyze and compare different community detection algorithms with respect to that
feature [36]. In particular, the tested algorithms are greedy modularity [54]
from the Python package networkx [84] and the algorithms louvain [29],
rber pots [147, 148], rb pots [113, 148], significance communities [171],
walktrap [145] from the Python package cdlib [152].

To compare these algorithms, we create a test scenario with synthetically cre-
ated networks as follows: First, we consider a block matrix D that consists of four
communities and a total of M = 100 nodes, as can be seen in Figure 6.2. Then,
we choose a parameter p̂ ∈ [0, .5] and create a random matrix S = (skl)k,l=1,...,M

by choosing independent sample parameters skl = 1 with probability p̂ and skl = 0
else, for k, l = 1, . . . ,M . Then, we define skl := skl if the nodes k, l belong to
different communities and skl := −skl if k and l belong to the same community,
see also matrix S in Figure 6.2. Then, we define the matrix B := D + S, such
that B has an apparent block structure, see Figure C.1. Next, we create a random
permutation κ : [M ] → [M ] and define an adjacency matrix A as A := P⊤BP ,
where P is the permutation matrix induced by the permutation κ. This is the ad-
jacency matrix that we feed into all community detection algorithms. The output
of these algorithms will be a decomposition of the node set into communities. We
then order the nodes such that consecutive nodes are in the same community and
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Figure C.1: Illustration of matrices B for different parameters of p̂. Here, p̂ =
.05, 0.2, 0.3 from left to right.

nodes, which are in bigger communities, come first. This ordering corresponds to a
permutation matrix P̃ , such that B̃ := P̃AP̃⊤ has apparent block structure. The
better the performance of the community detection algorithm, the more apparent
this block structure should be. Then, we split this matrix B̃ into two matrices D̃
and S̃ such that B̃ = D̃ + S̃ and D̃ reflects the community structure found by
the algorithm. As explained above, the matrix S̃ should be as sparse as possible.
We measure this sparsity by the counting the number of non-zero entries of S̃. In
particular, as we have created the graph from matrices S and D, we calculate

r :=
M∑

k,l=1

|s̃kl| −
M∑

k,l=1

|skl| ,

which measures how much worse the output of the community detection algorithm
is in comparison with the community structure from which the matrix A has been
created. The lower this value the better the community detection algorithm suits
our purposes. Apart from testing these algorithms only for M = 100 nodes, we
also apply them to synthetically created test graph with more nodes, but the same
community structure. The results can be seen in Figure C.2.

As one can see, the algorithms rber pots and louvain perform very well
when both p̂ and M are varied. Moreover, we also took record of the computation
time the algorithms take to find the communities, see Figure C.3.

While the computation time of all algorithms scales quadratically in M , the
algorithms rber pots, rb pots and significance communities are among
the fastest.

Our tests showed that rber pots detects communities in a way such that
the matrix S has the fewest non-zero entries. Moreover, this algorithm is one of
the fastest ones. Consequently, it is best suitable for our applications. Knowing
the theory behind this algorithm, it is no surprise that it performs well, since it
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Figure C.2: Quantity r for different community detection algorithms and different
values of p̂. The number of particles is M = 100 in part (a), M = 400 in part (b)
and M = 1600 in part (c).
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Figure C.3: Computation time of the community detection algorithms. Part (a)
shows the dependence on p̂ for M = 400 and part (b) depicts the dependence on
the system size M for p̂ = 0.2.
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is specifically optimized to reward existing intra-population links, punish missing
intra-population links, reward missing inter-population links and punish existing
inter-population links [148]. This results in a Hamiltonian

H({σ}) = −
∑
k ̸=l

(akl − γpkl)δ(σk, σl),

that the algorithm tries to minimize [148]. Here, akl are the entries of the adjacency
matrix of the graph and pkl is the probability that a link between node k and l
exists. This probability is normalized such that

∑
k ̸=l pkl = 2M . It can be chosen

as pkl = pkpl/(2M), where p denotes the degree distribution of the network, or one
can just take pkl = |E|/((M − 1)M), where |E| is the total amount of edges in the
network. Further, σk is an index of the community to which node k belongs such
that δ(σk, σl) = 1 if nodes k and l belong to the same community and δ(σk, σl) = 0
otherwise. Finally, there is a parameter γ that determines the ratio of how much
a missing intra-population link should be punished in comparison with the reward
of a non-existing inter-population link. In the standard case γ = 1, a missing
intra-population link or an additional inter-population link negatively effects the
Hamiltonian by the same amount as an existing intra-population link or a missing
inter-population link positively effects it. Since we need to evaluate the coupling
function g(xl, xk) for each missing intra-population link and each existing inter-
population link exactly once, γ = 1 is reasonable for our application.

Finally, we want to remark that all tested community detection algorithms
do not take into account that the numerical evaluation of the right-hand side
of (6.3.6) takes some time, too. Since this evaluation time scales with the number of
communities it is sometimes better to have fewer but larger communities, especially
if the order p of the expansion is high. The optimal community structure thus
depends on the specific network model including its parameters such as the order p
of the expansion and the dimension of the model.

C.1.2 General Network Model - Fourier Expansion

Having established a community structure, here, we focus on just one community.
For the sake of a clear notation, we take (akl)k,l=1,...,M = (1)k,l=1,...,M , i.e., we
consider the network model

ẋk =
1

M

M∑
l=1

g(xl, xk), k = 1, . . . ,M. (C.1.2)

A naive computation of the right-hand side of (C.1.2) for all k = 1, . . . ,M re-
quiresM2 evaluations of g and thus the required time scales quadratically withM .
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Our aim is to reduce that to linear complexity. For simplicity we first assume that
the coupling function g takes two inputs xl and xk from a one-dimensional space,
e.g., the real line R or the circle T and maps into R.

Complex Fourier Series A general Fourier expansion of g is then of the form

g(x, y) =
∑
α∈Z

∑
β∈Z

cα,βe
πi
L
αxe

πi
L
βy (C.1.3)

≈
p∑

α=−p

p∑
β=−p

cα,βe
πi
L
αxe

πi
L
βy, (C.1.4)

where cα,β are the Fourier coefficients of g, L > 0 sets the size of the area [−L,L]×
[−L,L] on which the Fourier expansion is valid and p ∈ N is an indicator for the
approximation order. Inserting this representation into (C.1.2), we get

ẋk =
1

M

M∑
l=1

g(xl, xk)

≈ 1

M

M∑
l=1

p∑
α=−p

p∑
β=−p

cα,βe
πi
L
αxle

πi
L
βxk

=

p∑
α=−p

p∑
β=−p

cα,βe
πi
L
βxk

(
1

M

M∑
l=1

e
πi
L
αxl

)
︸ ︷︷ ︸

=:rα

.

Therefore, if one precomputes certain well-chosen observables, namely the so-called
generalized order parameters

rα =
1

M

M∑
l=1

e
πi
L
αxl , (C.1.5)

for all α = −p, . . . , p, the computation of the right-hand side reduces to

ẋk ≈
p∑

α=−p

p∑
β=−p

cα,β rα e
πi
L
βxk . (C.1.6)

Now, note that the precomputation complexity of the generalized order parame-
ters (C.1.5) scales linearly in M and so does the computation of (C.1.6), since it
has to be computed for all k = 1, . . . ,M . The total complexity thus has come
down to O(M). The constant in front of theM can be further improved by noting
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that cα,β = c−α,−β in (C.1.4), where c̄ denotes the complex conjugate of c. This
has to hold to guarantee that g is a real function. Similarly, rα = r−α in (C.1.5).
Using these relations, the computation time can be further reduced by a constant
factor, even if it still scales linearly with M . However, since these improvements
would make the notation more elaborate and thus worsen the readability, we do
not mention them further below.

There still remains the question about how to choose L and p in the Fourier
approximation. Unfortunately, there is no general answer to this question, but in
specific cases the range of x is restricted to a region [−L,L] anyway, so then L
can be chosen such that the Fourier approximation is valid on the whole domain,
see for example Section C.1.4 and C.1.7. Furthermore, in some cases, the coupling
function is already a finite Fourier series, so (C.1.4) is exact for small p ∈ N from
which a choice of p can be made. In general, L should be chosen large enough
such that xk(t) ∈ [−L,L] for all k and all t in the simulation time range. This can
either numerically be tested or ensured by theoretical results that guarantee the
boundedness of xk(t).

To summarize, the important steps are as follows:

(P1) Before starting the simulation, determine Fourier-coefficients cα,β, such that
the coupling function g can be represented as or well approximated by a
finite series

g(x, y) ≈
p∑

α=−p

p∑
β=−p

cα,βe
πi
L
αxe

πi
L
βy.

(E1) In each time step, precompute generalized order parameters

rα =
1

M

M∑
l=1

e
πi
L
αxl ,

for α = −p, . . . , p and calculate the right-hand side of (C.1.2) based on the
formula

ẋk ≈
p∑

α=−p

p∑
β=−p

cα,β rα e
πi
L
βxk .

Real Fourier Series Alternatively from the approach using complex approxi-
mations, we can also start with an approximation involving sin and cos. Then, we
first have to determine Fourier coefficients c11α,β, c

12
α,β, c

21
α,β, c

22
α,β such that
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g(x, y) ≈
p∑

α=0

p∑
β=0

(
c11α,β cos

(π
L
αx
)
cos
(π
L
βy
)
+ c12α,β cos

(π
L
αx
)
sin
(π
L
βy
)
(C.1.7a)

+ c21α,β sin
(π
L
αx
)
cos
(π
L
βy
)
+ c22α,β sin

(π
L
αx
)
sin
(π
L
βy
))

.

(C.1.7b)

Using this representation, the right-hand side of (C.1.2) reads as

ẋk =
1

M

M∑
l=1

g(xl, xk)

≈ 1

M

M∑
l=1

p∑
α=0

p∑
β=0

[
c11α,β cos

(π
L
αxl

)
cos
(π
L
βxk

)
+ c12α,β cos

(π
L
αxl

)
sin
(π
L
βxk

)
+ c21α,β sin

(π
L
αxl

)
cos
(π
L
βxk

)
+ c22α,β sin

(π
L
αxl

)
sin
(π
L
βxk

)]

=

p∑
α=0

p∑
β=0

[
c11α,β

(
1

M

M∑
l=1

cos
(π
L
αxl

))
cos
(π
L
βxk

)
+ c12α,β

(
1

M

M∑
l=1

cos
(π
L
αxl

))
sin
(π
L
βxk

)
+ c21α,β

(
1

M

M∑
l=1

sin
(π
L
αxl

))
cos
(π
L
βxk

)
+ c22α,β

(
1

M

M∑
l=1

sin
(π
L
αxl

))
sin
(π
L
βxk

)]
.

Therefore, in each time step, we need to precompute

rcosα :=
1

M

M∑
l=1

cos
(π
L
αxl

)
and rsinα :=

1

M

M∑
l=1

sin
(π
L
αxl

)
(C.1.8)
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for all α = 0, . . . , p. Having done that, the right-hand side of (C.1.2) can be
rewritten as

ẋk ≈
p∑

α=0

p∑
β=0

[
c11α,βr

cos
α cos

(π
L
βxk

)
+ c12α,βr

cos
α sin

(π
L
βxk

)
+ c21α,βr

sin
α cos

(π
L
βxk

)
+ c22α,βr

sin
α sin

(π
L
βxk

)]
.

To summarize, the important steps when using a real expansion are

(P1) Before starting the simulation, determine Fourier-coefficients c11α,β, c
12
α,β, c

21
α,β, c

22
α,β,

such that the coupling function g can be represented as or well approximated
by a finite series

g(x, y) ≈
p∑

α=0

p∑
β=0

(
c11α,β cos

(π
L
αx
)
cos
(π
L
βy
)

+ c12α,β cos
(π
L
αx
)
sin
(π
L
βy
)

+ c21α,β sin
(π
L
αx
)
cos
(π
L
βy
)

+ c22α,β sin
(π
L
αx
)
sin
(π
L
βy
))

.

(E1) In each time step, precompute

rcosα :=
1

M

M∑
l=1

cos
(π
L
αxl

)
and rsinα :=

1

M

M∑
l=1

sin
(π
L
αxl

)
for α, β = 0, . . . , p and calculate the right-hand side of (C.1.2) based on the
formula

ẋk ≈
p∑

α=0

p∑
β=0

[
c11α,βr

cos
α cos

(π
L
βxk

)
+ c12α,βr

cos
α sin

(π
L
βxk

)
+ c21α,βr

sin
α cos

(π
L
βxk

)
+ c22α,βr

sin
α sin

(π
L
βxk

)]
.

Difference based coupling function - Complex Fourier Series Even though
we have already reduced the complexity from being quadratic in M to being only
linear in M , the constant scales with p2. In many network models the coupling
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function g is of the special form g(x, y) = h(x − y), such that we are facing the
system

ẋk =
1

M

M∑
l=1

h(xl − xk), k = 1, . . . ,M. (C.1.9)

This helps to reduce the dependence on p2 to just p. Again, we assume that the
coupling function h has an Fourier approximation

h(x) =
∑
α∈Z

dαe
πi
L
αx ≈

p∑
α=−p

dαe
πi
L
αx, (C.1.10)

where dα are the Fourier coefficients, L > 0 indicates the size of the domain [−L,L]
in which the approximation is valid and p gives the approximation order. Then,
the right-hand side of (C.1.2) can be written as

ẋk =
1

M

M∑
l=1

h(xl − xk)

≈ 1

M

M∑
l=1

p∑
α=−p

dαe
πi
L
α(xl−xk)

=

p∑
α=−p

dα

(
1

M

M∑
l=1

e
πi
L
αxl

)
e−

πi
L
αxk (C.1.11)

=

p∑
α=−p

dαrαe
−πi

L
αxk , (C.1.12)

where rα are the generalized order parameters (C.1.5). While the general for-
mula (C.1.6) involves two sums with indices running from −p to p, the for-
mula (C.1.12), which relies on the assumption of a difference based coupling,
involves only one such sum.

Difference based coupling function - Real Fourier Series Again, instead
of expanding h in a complex Fourier series, one can also use a real Fourier series

h(x) = dcos0 +
∞∑
α=1

(
dsinα sin

(π
L
αx
)
+ dcosα cos

(π
L
αx
))

≈ dcos0 +

p∑
α=1

(
dsinα sin

(π
L
αx
)
+ dcosα cos

(π
L
αx
))

(C.1.13)
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Having precomputed the quantities rsinα and rcosα from (C.1.8), the right-hand side
of (C.1.9) is given by

ẋk =
1

M

M∑
l=1

h(xl − xk)

≈ 1

M

M∑
l=1

[
dcos0 +

p∑
α=1

(
dsinα sin

(π
L
α(xl − xk)

)
+ dcosα cos

(π
L
α(xl − xk)

))]

= dcos0 +
1

M

M∑
l=1

p∑
α=1

[
dsinα sin

(π
L
αxl

)
cos
(π
L
αxk

)
− dsinα cos

(π
L
αxl

)
sin
(π
L
αxk

)
+ dcosα sin

(π
L
αxl

)
sin
(π
L
αxk

)
+ dcosα cos

(π
L
αxl

)
cos
(π
L
αxk

)]

= dcos0 +

p∑
α=1

[
dsinα rsinα cos

(π
L
αxk

)
− dsinα rcosα sin

(π
L
αxk

)
+ dcosα rsinα sin

(π
L
αxk

)
+ dcosα rcosα cos

(π
L
αxk

)]
.

This last equation represents a the formula that one should use to compute the
right-hand side of (C.1.9) when preferring real Fourier approximations.

Extensions In the above calculations we assumed that g or h take inputs form a
one-dimensional space and map into a one-dimensional space. However, we want to
remark that this approach also works if the inputs xl and xk are higher-dimensional
objects, for example, when g : Rd × Rd → Rd. In this case, α and β have to be
thought of being multi-indices rather than integers. Quantities of the form e

πi
L
αx

have to be replaced with e
πi
L
⟨α,x⟩, where ⟨·, ·⟩ is a scalar product. Further, sums

over α, β = −p, . . . , p are then sums over α, β ∈ Z(p)d := {−p, . . . , p}d. Moreover,
the order parameter (C.1.5) or its real equivalents need to be precomputed for all
α ∈ Z(p)d.
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C.1.3 General Network Model - Polynomial Expansion

Again, we consider the general network model

ẋk =
1

M

M∑
l=1

g(xl, xk), k = 1, . . . ,M. (C.1.14)

Again, our goal is to reduce the computational complexity fromM2 to justM . We
assume for simplicity that g takes two inputs from a one-dimensional space such
as R or T and maps to R. However, it should be said that our approach works as
well when the inputs of g are from a higher-dimensional space.

Polynomial Approximation However, instead of approximating the coupling
function by a Fourier series, this time we approximate it by polynomials

g(x, y) =
∞∑
α=0

∞∑
β=0

cα,βx
αyβ ≈

p∑
α=0

p∑
β=0

cα,βx
αyβ. (C.1.15)

Here, cα,β are the coefficients of the approximation and p ∈ N indicates the ap-
proximation order. This approximation does not necessarily need to be a Taylor
approximation. Rather, it is often more useful to consider a polynomial approxima-
tion of g with respect to a L2 or a supremum norm on a domain [−L,L]× [−L,L].
For numerical reasons it sometimes make sense to replace x and y in (C.1.15) by
(x− x0) and (y − y0), respectively. Combining this approximation with (C.1.14),
we obtain

ẋk =
1

M

M∑
l=1

g(xl, xk)

≈ 1

M

M∑
l=1

p∑
α=0

p∑
β=0

cα,βx
α
l x

β
k

=

p∑
α=0

p∑
β=0

cα,β

(
1

M

M∑
l=1

xαl

)
︸ ︷︷ ︸

=:wα

xβk .

Therefore, if one precomputes the α-th moments

wα :=
1

M

M∑
l=1

xαl (C.1.16)
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for α = 0, . . . , p, the computation of the right-hand side reduces to

ẋk ≈
p∑

α=0

p∑
β=0

cα,βwαx
β
k . (C.1.17)

To summarize, the important steps are as follows:

(P1) Before starting the simulation, determine coefficients cα,β, such that the cou-
pling function g can be represented as or well approximated by a finite series

g(x, y) ≈
p∑

α=0

p∑
β=0

cα,βx
αyβ.

(E1) In each time step, precompute the moments

wα :=
1

M

M∑
l=1

xαl

for α = 0, . . . , p and calculate the right-hand side of (C.1.14) based on the
formula

ẋk ≈
p∑

α=0

p∑
β=0

cα,βwαx
β
k .

As one can see, the complexity of an evaluation of the right-hand side (C.1.17)
is only linear in M , since it has to be evaluated for each k = 1, . . . ,M . The
dependence of this complexity on p2 can be reduced in special cases, for example
if the coupling function g depends only on differences.

Difference based coupling function - Polynomial Approximation Even
though we have already reduces the complexity from being quadratic in M to
being only linear in M , the constant scales with p2. In many network models the
coupling function g is of the special form g(x, y) = h(x − y), such that we are
facing the system

ẋk =
1

M

M∑
l=1

h(xl − xk), k = 1, . . . ,M. (C.1.18)

Such a representation is helpful when one wants to further reduce the compu-
tational complexity. Now, we assume that the coupling function h can be well
approximated by a polynomial

h(x) =
∞∑
α=0

cαx
α ≈

p∑
α=0

cαx
α.
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Again, for numerical reasons it is sometimes better to replace x in the above
formula with (x − x0). However, for the sake of simplicity we do not incorpo-
rate this technical detail. Given this polynomial approximation and the α-th
moments (C.1.16), we can rewrite the right-hand side of (C.1.18) to

ẋk =
1

M

M∑
l=1

h(xl − xk)

≈ 1

M

M∑
l=1

p∑
α=0

cα(xl − xk)
α

=

p∑
α=0

cα
1

M

M∑
l=1

α∑
j=0

(
α
j

)
xjl (−xk)

α−j

=

p∑
α=0

cα

α∑
j=0

(
α
j

)(
1

M

M∑
l=1

xjl

)
(−xk)α−j

=

p∑
α=0

cα

α∑
j=0

(
α
j

)
wj (−xk)α−j. (C.1.19)

This representation further reduces the computational complexity.

C.1.4 Kuramoto Model

The classical Kuramoto model [107] is given by

θ̇k = ωk +
1

M

M∑
l=1

sin(θl(t)− θk(t)), k = 1, . . . ,M,

where θk : [0, T ] → T = R/(2πZ) is the phase and ωk the intrinsic frequency of
oscillator k. The coupling function g is hence given by g(x, y) = h(x − y) =
sin(x− y).

Classical Kuramoto model Following the difference based approach from Sec-
tion C.1.2, we choose L = π, p = 1 and write h as

h(x) = sin(x) =
−1

2i
e−ix +

1

2i
eix,

so d−1 = −1/(2i), d0 = 0 and d1 = 1/(2i) in (C.1.10) and this approximation is
exact. After calculating the order parameters

r−1 =
1

M

M∑
l=1

e−iθl ,
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r0 = 1,

r1 =
1

M

M∑
l=1

eiθl , (C.1.20)

the equation to evaluate the right-hand side (C.1.12) turns into

θ̇k = ωk +
−1

2i
r−1e

iθk +
1

2i
r1e

−iθk . (C.1.21)

However, since d−1 = d1 and r−1 = r1 we can further simplify:

θ̇k = ωk − Re
(
ir1e

−iθk
)

(C.1.22)

= ωk + Im(r1e
−iθk). (C.1.23)

One can also write r1 = |r1| eiψ for some ψ ∈ T. Then,

θ̇k = ωk + Im(r1e
−iθk)

= ωk + |r1| Im(ei(ψ−θk)) (C.1.24)

= ωk + |r1| sin(ψ − θk). (C.1.25)

Alternatively, one can also prefer to work with real numbers only. Then, one has
to precompute

rcos1 =
1

M

M∑
l=1

cos(θl), and rsin1 =
1

M

M∑
l=1

sin(θl). (C.1.26)

According to the derivation in Section C.1.2, for the right-hand side we obtain

θ̇k = ωk + rsin1 cos(xk)− rcos1 sin(xk). (C.1.27)

To summarize, the important steps are given by

(P1) In this step nothing has to be done, since the coupling function is already a
finite Fourier series.

(E1) In each simulation step, first calculate the complex order parameter (C.1.20)
and then evaluate the right-hand side by using either of the formulas (C.1.21),
(C.1.22), (C.1.23), (C.1.24), (C.1.25). Alternatively, calculate the real order-
parameters (C.1.26) and then evaluate the right-hand side using the for-
mula (C.1.27).
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Higher-Harmonics Kuramoto Model An easy generalization of the classical
Kuramoto model additionally includes higher harmonics in the coupling function.
The network model is then given by

θ̇k = ωk +
1

M

M∑
l=1

h(θl − θk),

with a coupling function h : T → R defined by

h(x) =

p∑
α=1

(dsinα sin(αx) + dcosα cos(αx)).

Obviously, this is already of the form (C.1.13) for L = π, so we can directly follow
this section. Having precomputed the quantities rcosα and rsinα from (C.1.8) for all
α = 0, . . . , p, the right-hand side for the higher-harmonics Kuramoto model can
be written as

θ̇k = ωk + dcos0 +

p∑
α=1

[
dsinα rsinα cos (αxk)− dsinα rcosα sin (αxk)

+ dcosα rsinα sin (αxk) + dcosα rcosα cos (αxk)
]
.

C.1.5 Desai–Zwanzig Model

The Desai–Zwanzig model [61] is given by the following set of equations:

ẋk = −∇V (xk) +
1

M

M∑
l=1

(xl − xk), (C.1.28)

where V : R → R is a potential and ∇V = d
dx
V (x). Following the difference based

procedures in Section C.1.3, the coupling function h is given by just h(x) = x.
Therefore, to match the notation in this section, p = 1, c0 = 0 and c1 = 1. After
having computed the first moment w1 from (C.1.16) and by using (C.1.19), we can
write the right-hand side as

ẋk = −∇V (xk) + (−xk + w1).

Even though this is an easy application of the theory from Section C.1.3 and could
have easily derived from (C.1.28) without the general theory from this section,
it helps to reduce the computational cost significantly and thereby lowers the
complexity from O(M2) to just O(M).
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C.1.6 Cucker–Smale Model

The continuous Cucker–Smale model [57] is given by the dynamical system

ṡk = vk (C.1.29a)

v̇k =
1

M

M∑
l=1

K

(σ2 + ∥sl − sk∥2)β
(vl − vk), (C.1.29b)

for k = 1, . . . ,M , where sk(t) represents the current position of the k-th bird, vk(t)
is its velocity and K, σ and β are coupling constants. Here, sk(t), vk(t) ∈ Rd, where
typically d = 1, 2, 3. Putting this into the form (C.1.1) with x = (s, v)⊤, fk(x) :=
(v, 0)⊤ would be functions mapping from R2d to R2d and similarly, g : R2d×R2d →
R2d, with g(x̂, x̃) = (gs(x̂, x̃), gv(x̂, x̃))

⊤. Here, the first d components of g are
given by gs(x̂, x̃) = 0 and the last d components of g are given by

gv (x̂, x̃) = η(∥ŝ− s̃∥2) (v̂ − ṽ), with η(y) =
K

(σ2 + y)β
.

If we directly applied the algorithm described in previous section C.1.2 or C.1.3,
the high dimension of the Cucker–Smale model would impact the performance of
these algorithms, since they do not account for the special structure of the model.
However, by exploiting this special structure, a more efficient algorithm can be
constructed. In particular, a more efficient algorithm has to take into account that
gs = 0, so there is no need to expand this part either in a Fourier or a polynomial
series. Furthermore, g(x̂, x̃) only depends on the difference x̂ − x̃, which should
be exploited. Moreover, gv(x̂, x̃) depends on v̂ − ṽ only linearly, so a polynomial
expansion up to a degree higher than 1 is unnecessary. Last but not least, the
fraction in the sum of (C.1.29b) is independent of the coordinate direction, which
makes it superfluous to expand this fraction for each coordinate direction.

Let us start developing a fast algorithm by denoting η̃(y) : Rd → R, with
η̃(y) := η(∥y∥2) and expanding this in a Fourier series

η̃(y) =
∑
α∈Zd

c̃αe
iπ
L
⟨α,y⟩ ≈

∑
α∈Z(p)d

c̃αe
iπ
L
⟨α,y⟩, (C.1.30)

where α ∈ Z(p)d ⊂ Zd is a multi-index, Z(p) = {−p, . . . , p}, c̃α are the Fourier
coefficients of η̃, L > 0 is a parameter that denotes the region [−L,L]d on which
the expansion is valid and ⟨α, x⟩ =

∑d
l=1 αlxl denotes the standard scalar product.

In this new notation the second component of the right-hand side of (C.1.29b)
reads as

v̇k =
1

M

M∑
l=1

η̃(sl(t)− sk(t)) (vl(t)− vk(t)).
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Inserting the approximation (C.1.30) into this formula yields

v̇k ≈
1

M

M∑
l=1

∑
α∈Z(p)d

c̃αe
iπ
L
⟨α,sl(t)−sk(t)⟩(vl(t)− vk(t))

=
∑

α∈Z(p)d
c̃αe

iπ
L
⟨α,−sk(t)⟩

(
1

M

M∑
l=1

e
iπ
L
⟨α,sl(t)⟩vl(t)−

1

M

M∑
l=1

e
iπ
L
⟨α,sl(t)⟩vk(t)

)
.

Therefore, if one precomputes

uα =
1

M

M∑
l=1

e
iπ
L
⟨α,sl⟩ ∈ R, (C.1.31a)

hα =
1

M

M∑
l=1

e
iπ
L
⟨α,sl⟩vl ∈ Rd (C.1.31b)

for each α ∈ Z(p)d, the right-hand side is finally given by

v̇k ≈
∑

α∈Z(p)d
c̃α e

iπ
L
⟨α,−sk(t)⟩ (hα − uαvk(t)) . (C.1.32)

To summarize, the important steps are given by

(P1) Before starting the simulation, determine Fourier-coefficients c̃α, such that
the function η̃ is well approximated by a finite series of the form (C.1.30).

(E1) In each time step, precompute the quantities (C.1.31) for all α ∈ Z(p)d and
calculate the right-hand side of (C.1.29b) by using the formula (C.1.32).

C.1.7 Higher-order Kuramoto Models

Higher-order Kuramoto models are generalizations from the classical Kuramoto
model. While in the classical Kuramoto model the particle interactions are pair-
wise, in higher-order Kuramoto models, interactions of triplets, quadruplets, etc.
determine the dynamics. We are going to show below that the CIA approach
naturally generalizes to higher-order coupling, and is even more powerful in this
case. The higher-order Kuramoto network model we use as an illustration for this
generalization is given by

θ̇k =
1

Md

∑
l∈[M ]d

sin

(
d∑
i=1

λiθli + λd+1θk

)
.
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Here, M is the number of oscillators, [M ] = {1, . . . ,M}, d + 1 is amount of
oscillators that interact with each other, θk(t) are the phases of oscillators k =
1, . . . ,M and λ1, . . . , λd+1 ∈ Z are integer valued coefficients that typically sum up
to 0, see also Section 5.6. In the classical Kuramoto model d = 1, λ1 = 1, λ2 = −1.
To make the presentation simple, we restrict ourselves to the model higher-order
model

θ̇k =
1

M3

M∑
l1,l2,l3=1

sin
(
λ1θl1 + λ2θl2 + λ3θl3 + λ4θk

)
. (C.1.33)

The computational complexity to naively evaluate the right-hand side of (C.1.33)
is O(M4) since there are three sums and they have to be evaluated for each k =
1, . . . ,M . The following calculation shows how to reduce this complexity:

θ̇k =
1

M3

M∑
l1,l2,l3=1

sin
(
λ1θl1 + λ2θl2 + λ3θl3 + λ4θk

)
= Im

(
1

M3

M∑
l1,l2,l3=1

ei(λ1θl1+λ2θl2+λ3θl3+λ4θk)

)

= Im

(
1

M3

M∑
l1,l2,l3=1

eiλ1θl1 eiλ2θl2 eiλ3θl3 eiλ4θk

)

= Im

((
1

M

M∑
j1=1

eiλ1θl1

)(
1

M

M∑
j2=1

eiλ2θl2

)(
1

M

M∑
j3=1

eiλ3θl3

)
eiλ4θk

)
= Im

(
rλ1 rλ2 rλ3 e

iλ4θk
)
. (C.1.34)

As in (C.1.5) with L = π, rα is the α-th order parameter

rα =
1

M

M∑
l=1

eiαθl .

As can easily be seen precomputing the order parameters rα for α = λ1, λ2, λ3
requires a O(M) function evaluations. Subsequently evaluating the right-hand
side according to the formula (C.1.34) takes another O(M) operations. Thus, in
summary the complexity of this algorithm is linear in M , which is a significant re-
duction from the naive algorithm that scales withM4. This shows the power of our
approach: as long as one can exploit dense coupling structure, even higher-order
(or polyadic, or hypergraph) interactions can be reduced from a high polynomial
computational complexity in M to linear complexity.
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Even though there exist formulas that give a fast evaluation of the right-hand
side only by using real numbers, deriving these formulas requires addition theorems
on sin(α1 + α2 + α3 + α4) and consequently these formulas tend to be very long,
which is why we recommend the complex formula (C.1.34).

C.1.8 Bornholdt–Rohlf Model

The Bornholdt–Rohlf model [39] on a static all-to-all network is a discrete-time
dynamical system with the iteration rule

fnk =
M∑
l=1

vnl + µvnk + σrnk , rnk ∼ N (0, 1),

vn+1
k = sgn[fnk ],

where n ∈ N is the discrete time, vnk is the state of the k-th node at time n,
σ ≥ 0 is a parameter for the noise and N (0, 1) denotes the standard normal
distribution. Here, one needs to observe that the decisive sum in the definition
of fk is independent of k. Therefore, this sum can be precomputed and then reused
for each calculation of fnk . In this way one can construct an algorithm whose
complexity is linear in M . This example aims to illustrate in a simple setting that
the neither the continuous-time assumption, nor the assumption about a particular
ordinary differential equation structure matter. What does matter for being able
to the CIA approach is that the computational bottleneck in a naive approach
arises due to summing at each node over all its inputs.

C.2 Accuracy of CIAs in a Cucker–Smale Model

Having studied the accuracy of CIAs in phase oscillator models in Section 6.5.2, we
now analyze an d = 2 dimensional Cucker–Smale model, that we have introduced
Appendix C.1.6.

We simulate the Cucker–Smale model, both directly with a naive approach
and with our CIA. We reuse the network from Section 6.5.2 consisting of four
communities with M = 500 nodes. As in the Section 6.5.2, we use an explicit
Euler scheme on an equidistant time grid 0,∆t, 2∆t, . . . , T with ∆t = 1/10 and
T = 20.

Again, we denote the exact reference solution by srefk,t and the solution obtained
by the CIA described in Appendix C.1.6 by sCIA

k,t . Note that this time sk,t ∈ R2,
which is why we need to take the norm instead of the absolute value in the definition
of the error:

z = max
k=1,...,M

max
t=0,∆t,2∆t,...,T

∥srefk,t − sCIA
k,t ∥.
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We consider two cases. First, the function η is given by the algebraic function

η(y) =
K

(σ2 + y)β
(C.2.1)

as in Appendix C.1.6 and second, the coupling function η is given by an exponential

η(y) = e−y/4. (C.2.2)

Recall from Appendix C.1.6 that pre-simulation step (P2) approximates the func-
tion η̃(y) := η(∥y∥2) on the domain y ∈ [−L,L]2, where we chose L = 10. More-
over, the initial conditions for s are randomly chosen in the square [−1

2
, 1
2
]2, while

each component of the initial velocity is normally distributed with mean 0 and
standard deviation 1/20. Figure C.4 shows the integration error z for the cou-
pling functions (C.2.1) and (C.2.2) for different orders of approximation p. As
one can see the rate with which the accuracy increases upon varying p is much
better for the exponential coupling function. This is because Fourier coefficients
of a Gaussian are decaying much faster than the ones of an algebraic function.

0 5 10 15 20
10

-10

10
-5

10
0

Approximation order p

z

Figure C.4: Integration error z independence of the approximation order p and
the coupling function η. The blue curve shows the integration error when choosing
the exponential coupling function (C.2.2). The red curve depicts the same error
when η is given by the standard algebraic function (C.2.1). The parameters are
given by K = 1, σ = 1, β = 0.2.

Lastly, we point out that the rate of convergence in the Cucker–Smale model
seems to be faster than the one for phase oscillator models. We believe that this
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is because we simulate the phase oscillator system near an unstable set whereas
the Cucker–Smale model exhibits flocking.
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