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ABSTRACT We present a novel, correct-by-construction control approach for disturbed, nonlinear systems
with continuous state feedback under state and input constraints. For the first time, we jointly synthesize a
feedforward and feedback controller by solving a single non-convex, continuously differentiable approxima-
tion of the original synthesis problem, which we combine with a trust-region approach in an iterative manner
to obtain non-conservative results. We ensure the formal correctness of our algorithm through reachability
analysis and show that its computational complexity is polynomial in the state dimension for each trust-region
iteration. In contrast to previous work, we also avoid the introduction of several algorithm parameters that
require expert knowledge to tune, making the proposed synthesis approach easier to use for non-experts while
guaranteeing state and input constraint satisfaction. Numerical benchmarks demonstrate the applicability of
our novel synthesis approach.

INDEX TERMS Correct-by-construction controller synthesis, optimization, reachability analysis, trust
regions.

I. INTRODUCTION
Many newly developed autonomous systems are safety-
critical, such as automated vehicles or robots acting in human
environments. As these autonomous systems become more
capable, their increased complexity makes it virtually impos-
sible to manually design controllers that always ensure their
safety.

A wide range of safety-critical tasks for these autonomous
systems can be classified as reach-avoid problems: An agent
tries to steer a system to a given target while ensuring
constraints on both the input and the state of the sys-
tem. Human-robot collaboration for pick-and-place tasks or
package delivery using drones can be interpreted as such
reach-avoid problems. While these tasks have been suc-
cessfully solved, their operational safety often cannot be
guaranteed, which is especially problematic for safety-critical
applications.

A. RELATED WORK
To solve these challenging problems while guaranteeing
safety, many different approaches – surveyed subsequently –
exist.
a) Hamilton-Jacobi equations: Hamilton-Jacobi equations
provide a flexible way for computing reachable sets of sys-
tems with input and state constraints [1]. A reachable set
contains all system states that are reachable within a given
time frame for a given initial set and input set. Although ap-
proaches using the Hamilton-Jacobi equations generally scale
exponentially with the number of states, they are rather popu-
lar since they naturally compute optimal controllers for differ-
ential games [2] – this is rather difficult to realize with other
methods that only solve optimal control problems without
any opponent. While these approaches synthesize controllers
for systems described by ordinary differential equations, the
method from [3] can synthesize robust and optimal feedback
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controllers for systems given by nonlinear partial differential
equations. In summary, all approaches using Hamilton-Jacobi
equations suffer from the curse of dimensionality, induced by
the inherent complexity required to solve them.
b) Model abstractions: Another popular branch of research
for controller synthesis uses model abstractions. Especially
popular among these are symbolic model abstractions, which
essentially abstract hybrid, i.e., mixed discrete and continuous
dynamics, to a purely discrete system [4], [5], [6], [7], [8],
[9], [10], [11], [12]. This makes it possible to directly use the
synthesis approaches developed by the computer science com-
munity for purely discrete systems. While earlier work was
often only applicable to certain system classes [9], [13], [14],
quantized input or states [15], [16], or required certain stabil-
ity assumptions [17], [18], more recent approaches apply to a
broader range of system classes and even consider complex
task specifications formalized by temporal logic [19], [20],
[21], [22], [23], [24]. The abstraction to discrete systems leads
to an exponential worst-case complexity in the number of state
variables and consequently often requires a prohibitively large
amount of memory for higher-dimensional systems. Thus,
there has recently been an increased focus on abstraction tech-
niques that do not require state space discretization. However,
these techniques either use mixed-integer linear programming
(MILP), whose worst-case complexity is exponential in the
number of integer variables [25], mainly focus on linear sys-
tems [26], or use specific system properties to more efficiently
compute abstractions [27].
c) Control Lyapunov and control barrier functions: A pos-
sible way to circumvent the exponential complexity of
abstraction-based approaches is to synthesize controllers
based on Lyapunov-like functions. However, this only trans-
lates the controller synthesis problem to a synthesis problem
of the required Lyapunov-like functions, which is often not
much easier to solve. Mainly two techniques have been
proposed so far: Control Lyapunov functions (CLFs) [28]
and control barrier functions (CBFs) [29]. Recent methods
combine both techniques [30], [31], [32], [33], where CBFs
encode constraints to ensure safety and CLFs guarantee the
stability of the system. Since, by construction, both can be
included in the optimization problem computing the optimal
controller, they allow one to synthesize stable controllers ad-
hering to both input and state constraints. To derive these
barrier functions, however, all mentioned works restrict the
class of nonlinear dynamics in most cases to control-affine
systems.

In contrast to formulating CBFs and CLFs manually, the
works in [34], [35] solve reach-avoid problems for nonlinear
systems by computing linear-quadratic regulators (LQRs)
along candidate trajectories, where the region of attraction
along these trajectories is estimated using automatically
computed Lyapunov functions. While these approaches apply
to general nonlinear dynamics, they only provide probabilistic
guarantees. The work in [36] uses a similar approach as
in [34] for piecewise affine (PWA) systems instead of
nonlinear systems. However, the authors use mixed-integer

programming, which has exponential worst-case complexity
in the system dimension.
d) Model predictive control: Model predictive control
(MPC) has been used extensively in industry for the past
decades [37], [38] due to its ability to easily handle input and
state constraints. Since early variants of MPC were not able
to consider disturbances, tube-based MPC was introduced,
which essentially keeps the system within a tube around a
reference trajectory [39], [40], [41], [42], [43]. In contrast
to, e.g., abstraction-based methods, which compute their
controllers offline and then simply choose an appropriate
controller online, implicit MPC computes the control inputs
online. To combat potentially long online computation
times due to repeated optimization, explicit MPC aims to
solve the optimization problem offline directly [44], [45];
however, its computation often becomes exponential in the
number of continuous state variables due to the necessity
of state space partitioning when explicitly solving more
complex optimization problems. That said, recent advances
in convex optimization theory enable real-time applications
of robust MPC for selected classes of systems, such as linear
systems [46], [47].
e) Reachability analysis: Reachability analysis has gained
attention as an efficient tool for verification tasks [48]. In [49],
the authors combine reachability analysis and nonlinear op-
timization to directly synthesize a feedback controller for
linear time-invariant systems. Since this approach requires
the recomputation of the reachable set in each optimiza-
tion iteration, the work in [50] computes an approximation
of the reachable set, which is directly parameterized in the
control parameters to be computed. Thus, it is possible to
quickly and efficiently synthesize a linear, piecewise constant
controller for general, input-constrained nonlinear systems
by a single linear program. Due to the nature of piecewise
constant controllers, however, performance degrades with de-
creasing sampling frequency or when disturbances dominate.
To remedy this shortcoming, the authors of [51] combine the
feedforward control computation from [50] and the feedback
optimization from [49], enabling controller synthesis that is
provably correct while respecting input and state constraints
at the cost of computing the reachable set in each optimization
iteration. In [52], the authors propose a generalization of this
combined controller synthesis to realize polynomial feedfor-
ward controllers.

B. CONTRIBUTIONS
To circumvent the recomputation of reachable sets during
each optimization iteration, we propose an algorithm which –
for the first time – combines the synthesis of a piecewise con-
stant, polynomial, state-dependent feedforward controller and
a continuous state feedback controller. This combined synthe-
sis avoids the introduction of additional algorithm parameters
as in previous works, which need to be tuned by experts.
To that end, we combine approximations for the undisturbed
feedforward reachable set and the disturbance tube, which
enlarges the undisturbed feedforward reachable set, to
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formulate a single non-convex, continuously differentiable
optimization problem for the combined synthesis. To en-
sure the accuracy of this approximated optimization problem,
we restrict its domain using trust regions, i.e., areas of the
control parameters for which we trust the accuracy of the
aforementioned approximations. The trust regions are itera-
tively updated, and we employ overapproximative reachability
analysis in each iteration to guarantee formal correctness.
Because these overapproximative reachable sets are avail-
able after each iteration, we only approximate the relative
difference to these known, tight sets. As a result, we are
robust against approximation errors because they do not
accumulate over the iterations. In summary, our approach
is fully automated and only requires the user to provide
the number of controllers and the polynomial order of the
feedforward controllers in the initial state (e.g., linear or
quadratic).

II. PRELIMINARIES
We first introduce necessary notation and define the class
of systems considered in this article as well as the concept
of reachable sets. We then briefly describe all required set
representations.

A. NOTATION
We denote with R, R≥0, R+, N, N+, S, and S++ the sets of
real numbers, non-negative real numbers, positive real num-
bers, natural numbers, positive natural numbers, symmetric
matrices, and the cone of positive-definite matrices. The iden-
tity matrix of dimension n is denoted by In, and we define 1n

and 1n×m as the n-dimensional all-ones vector and the n-by-
m-dimensional all-ones matrix, respectively. For two vectors
w ∈ R

n and v ∈ R
n, we introduce the multi-index notation

wv =∏n
i=1 w

vi
i . We use diag(v) ∈ R

n×n to construct a matrix
with v ∈ R

n as its diagonal elements. Given a matrix M ∈
R

m1×m2 , M(:) ∈ R
m1m2 is the vector that results from stack-

ing all columns of M. Further, for a function x : R≥0 �→ R
n

and time t ∈ R≥0, we define ẋ(t ) = dx(t )
dt . We denote sets by

upper-case calligraphic letters. The Minkowski sum of two
sets A ⊆ R

n and B ⊆ R
n is defined as A⊕ B = {a+ b | a ∈

A, b ∈ B}. Finally, we use O(·) for the Landau notation of the
asymptotic computational complexity.

B. DEFINITIONS
In this article, we synthesize controllers of a given system for
a set of initial states instead of a single initial state. Hence, we
first introduce the considered system class and then use it to
introduce the notion of reachable sets.

Definition 1 (System): We consider a system with dynamics
ẋ(t ) = f (x(t ), u(t ),w(t )) ∈ R

nx , where f is a twice contin-
uously differentiable function, x(t ) ∈ R

nx denotes the state
of the system at time t ∈ R≥0, u(t ) ∈ U denotes the con-
trollable input from the input set U ⊂ R

nu , and w(t ) ∈W
is the uncontrollable disturbance from the disturbance set

W ⊂ R
nw . Further, X (0) ⊂ R

nx denotes the set of initial
states, i.e., x(0) ∈ X (0). �

Definition 2 (Reachable Set): For a system as given in
Definition 1, we define the reachable set as

R(e)
x (t ) = {

x(t )
∣∣ ∀t̃ ∈ [0, t] :

ẋ
(
t̃
) = f

(
x
(
t̃
)
, u
(
t̃
)
,w
(
t̃
))
,

x(0) ∈ X (0), u
(
t̃
) ∈ U ,w (t̃) ∈W}

.

�
Since in general, computing the exact reachable set R(e)

x is
not possible [53], we use overapproximative reachable sets Rx

to ensure formal correctness and approximative reachable sets
R̃x for the iterative optimization of the controller. For easier
readability, we do not explicitly state the dependence of R(e)

x ,
Rx , or R̃x on the initial set X (0), input set U , and disturbance
set W .

We require different set representations. For convenience,
we first describe the concept of a generating function to gen-
erate a set. Then, we introduce zonotopes as a popular set
representation for reachability analysis and polynomial zono-
topes [54], [55] to represent non-convex sets. Subsequently,
we define ellipsoids, which are helpful due to their compact
representation size, and H-polytopes to intuitively represent
constraints. Lastly, we introduce support functions, which en-
able us to easily extend a set in a given direction.

Definition 3 (Set Generation): We define

{s (�)}� =
{
s(�)

∣∣ � ∈ [−1, 1]p×m} = S,
where s : [−1, 1]p×m �→ R

n is the generating function of S ⊂
R

n and � ∈ [−1, 1]p×m are the dependent factors of S . We
say that S is generated by s(�) over �. �

Definition 4 (Zonotope): A zonotope Z = 〈c,G〉Z with
center c ∈ R

n and generator matrix G ∈ R
n×m is given by

Z = {c+ Gν}ν,
where c+ Gν is its generating function with dependent fac-
tors ν ∈ [−1, 1]m. �

Definition 5 (Polynomial Zonotope): Let c ∈ R
n be the

starting point, G = [g(1), . . . , g(m)
] ∈ R

n×m the genera-
tor matrix with generators g(i) ∈ R

n for i ∈ {1, . . .,m}, and
E = [e(1), . . . , e(m)

] ∈ N
d×m the exponent matrix of a

polynomial zonotope. Its generating function is defined as

h (ν) = c+
m∑

i=1

g(i)νe(i)
,

with dependent factors ν ∈ [−1, 1]d and where we used
multi-index notation defined in Section II-A, so that we can
construct a polynomial zonotope as PZ = {h(ν)}ν . �

Definition 6 (Ellipsoid): An ellipsoid E = 〈c,Q〉E with
center c ∈ R

n and shape matrix Q ∈ S
n×n
++ is defined by

E = {x ∈ Rn
∣∣ (x − c)T Q−1 (x − c) ≤ 1

}
.

�
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We only consider non-degenerate ellipsoids, i.e., Q−1 ex-
ists, in this article. For a given matrix M ∈ R

m×n, the linear
map of an ellipsoid is [56]

M 〈c,Q〉E =
〈
Mc,MQMT 〉

E .

Definition 7 (H-Polytope): An n-dimensional H-polytope
〈C, d〉H with the matrix C ∈ Rm×n and offset d ∈ Rm is given
by

H = {x ∈ R
n | Cx ≤ d}.

�
Definition 8 (Support Function): The support function of a

convex set M ⊆ R
n in direction l ∈ R

n is defined as

ρM(l ) = sup
x∈M

lT x.

�
We define the shorthand ρM(L) =[
ρM

(
l (1)
)
, . . . , ρM

(
l (o)
)]T

, where LT =[
l (1), . . . , l (o)

] ∈ Rn×o. In this article, sets will often
be parameterized, e.g., M(z) ⊆ R

n for z ∈ R
m. The corr-

esponding support function will append these arguments, i.e.,
the support function for M(z) is then given by ρM(l, z).
We are now ready to formulate the problem statement and
propose our solution concept.

III. PROBLEM STATEMENT AND SOLUTION CONCEPT
For the remainder of this article, we assume that the initial
set X (0) and disturbance set W are zonotopes. We make no
assumptions about the statistical nature of W but take W to
be centered at 0; the system dynamics can always absorb any
non-zero center.

We want to synthesize a controller u(t, x(t )) – dependent on
time t ∈ R≥0 and state x(t ) ∈ R

nx – that steers a set of initial
states X (0) ⊂ R

nx as close as possible to a target state xf ∈
R

nx within time tf ∈ R+ while bounded input constraints U ⊂
R

nu and (possibly unbounded) state constraints X ⊆ R
nx , both

given as H-polytopes, are to be respected, i.e.

min
u(·,x(·))

max
x(tf )
‖x (tf )− xf‖1 , (1a)

s.t. ∀t ∈ [0, tf ] : ẋ(t ) = f (x(t ), u(t, x(t )),w(t )) , (1b)

∀t ∈ [0, tf ] : u (t, x(t )) ∈ U , (1c)

∀t ∈ [0, tf ] : x(t ) ∈ X . (1d)

To obtain a tractable optimization problem, we parameter-
ize the controller for each time interval t ∈ τ (i) = [i, i + 1] tf

m ,
0 ≤ i ≤ m − 1, as in [51] so that

u(t, x,P,K ) = uff
(
x(0),P(i))

+ K (i) (x(t,P,K )− xff(t,P)) , (2)

where m ∈ N+ is the number of piecewise constant feed-
forward and feedback controller pairs, P(i) ∈ [−1, 1]nu×a are
the feedforward control parameters (a ∈ N+ is the num-
ber of feedforward control parameters per input dimension),

P = [P(0)T
, . . . , P(m−1)T ]T collects all m feedforward

parameter matrices, K (t ) = K (i) ∈ Rnu×nx for t ∈ τ (i) are the
feedback gain matrices, and xff (t,P) is defined as the solution
of

ẋff (t,P) = f
(
xff (t,P), uff

(
x(0),P(i)), 0

)
, (3)

for t ∈ τ (i) and x(0) = xff (0,P) ∈ X (0). We often omit in-
dices and time dependencies where clear from context for
readability, e.g., we write K instead of K (i). The feedforward
state xff can be interpreted as the state of the undisturbed
system and the proposed controller in (2) aims to follow the
feedforward state as closely as possible by bringing the devi-
ation vector �x(t,P,K ), implicitly defined by

x(t,P,K ) = xff (t,P)+�x(t,P,K ), (4)

as close to zero as possible, where x(t,P,K ) ∈ Rx (t,P,K ),
with Rx (t,P,K ) being an overapproximative, closed-loop
reachable set of the disturbed flow using the controller in
(2). We denote by Rxff (t,P) the feedforward reachable set
from the flow in (3) containing all xff (t,P) and construct
S�x (t,P,K ) to contain all state deviations �x(t,P,K ) as de-
fined in (4). When interpreting (4) in a set-based manner, we
accept some conservatism and replace the exact sum by the
Minkowski sum – neglecting dependencies between sets –
which yields

x(t,P,K ) ∈ Rx (t,P,K ) ⊆ Rxff (t,P)⊕ S�x (t,P,K ).

As shown later in Section VII, the added conservatism is neg-
ligible because both sets are only loosely coupled by the ini-
tial state. Let �u(t,P,K ) = K (t )�x(t,P,K ) ∈ S�u(t,P,K ),
where S�u(t,P,K ) denotes the set of input deviations. We can
then similarly write

u(t, x,P,K ) ∈ Su(t,P,K ) ⊆ Suff (t,P)⊕ S�u(t,P,K ),

where Su(t,P,K ) and Suff (t,P) contain all combined inputs
u(t, x,P,K ) and feedforward inputs uff

(
x(0),P(i)

)
for t ∈

τ (i), respectively. With these simplifications, (1) is relaxed to

P̂, K̂ = arg min
P,K

{
max

xff (tf ,P)
‖xff (tf,P)− xf‖1

+ max
�x(tf,P,K )

‖�x (tf,P,K )‖1
}
, (5a)

s.t. ∀t ∈ [0, tf ] : (3), (4), (5b)

∀t ∈ [0, tf ] : Suff (t,P)⊕ S�u(t,P,K ) ⊆ U , (5c)

∀t ∈ [0, tf ] : Rxff (t,P)⊕ S�x (t,P,K ) ⊆ X . (5d)

Even though (5) is now easier to solve than (1) due to the
aforementioned simplifications, it still requires reachable sets
to guarantee formal correctness. Since this is computation-
ally expensive, we instead solve an approximation of (5)
by finding approximations to all required sets, followed by
overapproximative reachability analysis to ensure constraint
satisfaction. We illustrate our solution concept with Exam-
ple 1 visualized in Fig. 1, where we omit the feedback
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FIGURE 1. Visualization of our approach for Example 1 over four iterations. Shown are input constraints (outer black diamond), the contour lines of the
controller cost J(P) (solid) and the approximated cost J̃(P) (dashed) for the current trust region (dashed black box), the current initial guess of the control
parameters P̄ (red circle), and the optimizer P̂ of the approximated optimization problem (red x).

controller and limit ourselves to a single feedforward con-
troller, i.e., m = 1, subject to input constraints for illustrative
purposes.

Example 1: Let the zonotope overapproximation [55, Prop.
5] of the final, closed-loop reachable set Rx (tf ,P) of a 1-
dimensional system be given by

Zx (tf,P) = 〈−p2 + 2p2
2 + 4p3

1,
[

3+ 10p1 p3
2, 1− p2

]〉
Z ,

where ūff (β,P) = p1 + p2β is the controller template (see
Section IV-A for details), β ∈ [−1, 1] denotes the dependent
factor of the initial set X (0), P = P(0) = [p1, p2], xf =
0, and U = [−1, 1] = {ũff ∈ R | AU ũff ≤ bU } with AU =
[1, −1]T and bU = [1, 1]T . Since ūff (β,P) is linear in β,
we have ∀t ∈ [0, tf ] : Suff (t,P) = Zuff (t,P) = 〈p1, p2〉Z (see
(16)). The controller cost (see Section VI-B for details) is

J (P) = ∣∣−p2 + 2p2
2 + 4p3

1

∣∣+ ∣∣3+ 10p1 p3
2

∣∣+ |1− p2|
+ 100 max (0, |p1| + |p2| − 1) .

Fig. 1 shows the contour lines of J (P).
For the first iteration, we start at P̄ = 0 and initially set the

trust-region radius γ ∈ (0, 1], which constrains the available
set of feedforward parameters (see Section IV-B for details),
to γ = 1

4 , i.e., Pγ (P̄) = [− 1
2 ,

1
2

]
(see (10)). Fig. 1(a) shows

the contour lines for our approximation J̃ (P) of J (P) in the
first iteration. Clearly, the approximation J̃ (P) is not very
accurate even though J (P̂) < J (P̄), and so we accept the step
but shrink the trust-region radius γ for the next iteration. After
another two accepted iterations (see Fig. 1(b) and (c)), we
eventually arrive at a local minimum of J (P) in the fourth
iteration (see Fig. 1(d)) and thus terminate the algorithm. �

Since we can only accurately approximate the controller
cost locally, we use the trust-region radius to restrict the do-
main of our approximation to a trust region, i.e., a bounded
region of our control parameters for which we trust the ap-
proximation to be accurate.

The remainder of this article is structured as follows:
We derive the set of feedforward inputs Suff (t,P) and the
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approximation for the feedforward reachable set Rxff (t,P)
in Section IV. Then, we compute approximations to the
state deviation set S�x (t,P,K ) and the input deviation set
S�u(t,P,K ) in Section V. In Section VI, we formulate an
approximation to (5) using findings from Sections IV and V,
show how we can control the accuracy of this approximation
using trust regions, and derive the computational complexity
of the proposed algorithm. Finally, we demonstrate the appli-
cability of our novel approach using numerical benchmarks in
Section VII.

IV. FEEDFORWARD REACHABLE SET
To compute an approximation of the feedforward reachable
set, we first introduce the parameterization of the feedforward
controller uff

(
x(0),P(i)

)
in Section IV-A. We then discuss the

feedforward reachable set computation using the parameter-
ized controller in Section IV-B.

A. CONTROLLER TEMPLATE
As defined in Section III, the feedforward controller is state-
dependent, i.e., we compute a feedforward control law for
each initial state x(0) ∈ X (0) = {c+ Gβ}β with center c ∈
R

nx , generator matrix G ∈ R
nx×l , and dependent factors β ∈

[−1, 1]l . For numerical purposes, it will be beneficial to
parameterize the initial set in its dependent factors β. Let
us define E = [e(1), . . . , e(a)

] ∈ N
l×a as a matrix of

exponents and P(i) = [ p(i,1), . . . , p(i,a)
] ∈ R

nu×a as the
matrix of feedforward parameters for 0 ≤ i ≤ m − 1. In [52],
the parameterization

ūff
(
β,P(i)) = cŪ + GŪ

(
a∑

k=1

p(i,k)βe(k)

)
, (6)

is proposed, where Ū = {cŪ + GŪα
}
α

is the input set
overapproximated by a parallelotope to achieve uniform
scaling: By comparing (6) with ū(α) = cŪ + GŪα,
we can parameterize α instead of the input directly.
Further, we have U ⊆ Ū ⊆ {ūff

(
β,P(i)

)}
β,P(i) since

[−1, 1]nu ⊆
{∑a

k=1 p(i,k)βe(k)
}
β,P(i)

, and therefore

∀β∈ [−1, 1]l : ūff
(
β,P(i)

)∈ U ⇒ P(i)∈ [−1, 1]nu×a, which
ensures uniform scaling of P(i), i.e., the absolute magnitude
of each element is less or equal to one. When U is a zonotope,
the parallelotope enclosure can be achieved through order
reduction [57]. A halfspace representation of U , as assumed
in this article, can be enclosed as follows:

Proposition 1 (H-Polytope to Parallelotope): Let M =
〈A, b〉H with A ∈ R

o×n and b ∈ R
o be a bounded polytope.

Then a parallelotope overapproximation of M is given by
Z = Q

1
2 〈c̃, diag(r̃)〉Z ⊕ {c}, where

c̃ = 1

2

(
ρM̃(I )+ ρM̃ (−I )

)
,

r̃ = 1

2

(
ρM̃(I )− ρM̃ (−I )

)
,

M̃ =
〈
AQ

1
2 , b− Ac

〉
H
,

and where 〈c,Q〉E with center c ∈ R
n and shape matrix Q ∈

S
n×n
++ is the maximum-volume ellipsoid inscribed into M [58,

Sec. 8.4.2].
Proof: We shift M by c so that 0 ∈M⊕ {−c} and use the

shape matrix Q to transform M into roughly a hypercube, i.e.,

M̃ = Q−
1
2 (M⊕ {−c}) =

〈
AQ

1
2 , b− Ac

〉
H
, since

Q−
1
2 (〈c,Q〉E ⊕ {−c})=〈0, In〉E . A parallelotope enclosing

M̃ is then given by Z̃=〈c̃, diag(r̃)〉Z ={z̃ ∈ R
n | ρM̃(−I )≤

z̃ ≤ ρM̃(I )} due to the definition of the support function,
where c̃ and r̃ are given as above. Applying the inverse trans-
form and shifting the result by c yields Z = Q

1
2 Z̃ ⊕ {c}which

concludes the proof. �
Since computing the maximum-volume ellipsoid of U can

be posed as a semi-definite programming (SDP) problem [58,
Sec. 8.4.2], Proposition 1 can be efficiently solved. The com-
puted overapproximation Ū is only required for the proper
scaling of P(i); the original input set U is used to verify input
constraint satisfaction.

If X (0) is given as a non-degenerate parallelotope, i.e., G−1

exists, the controller template for the state x(0) = c+ Gβ ∈
X (0) is given by

uff
(
x(0),P(i)) = ūff

(
G−1 (x(0)− c) ,P(i)) . (7)

If X (0) is a zonotope, the dependent factors β for a given x(0)
can be obtained by solving x(0) = c+ Gβ for ‖β‖∞ ≤ 1 us-
ing linear programming. The exact set of possible feedforward
inputs is given by

Suff (t,P) = {ūff
(
β,P(i))}

β
, t ∈ τ (i), 0 ≤ i ≤ m − 1. (8)

B. REACHABLE SET COMPUTATION
To efficiently solve (5), we approximate the feedforward
reachable set so that it is obtained by the evaluation of a
polynomial map without the need to recompute the reachable
set for every given P.

We can construct such a polynomial map using polynomial
zonotopes [55] and an extended system state as follows: Given
the extended state xext =

[
xT

ff , uT
ff

]T
, which is necessary to

retain the dependency of both the initial state as well as the
input on β, the extended initial set is

X (0)
ext

(
P(0)) =

{[
x(0) (β )

uff
(
x(0) (β ) ,P(0)

)
]}

β

,

where x(0)(β ) = c+ Gβ is the generating function of X (0).
Applying reachability analysis as described in [55] eventually
yields

R̂xff (t,P) = D(t,P)⊕ 〈cerr,Gerr〉Z , (9)

for t ∈ [0, tf ] and P ∈ P = [−1, 1]mnu×a, where D(t,P) is
the part of R̂xff (t,P) that retained its dependence on P and
〈cerr,Gerr〉Z is the zonotope bounding abstraction and reduc-
tion errors. However, the size of the error 〈cerr,Gerr〉Z depends
on the size of P as demonstrated next.

Example 2: Let us consider a controlled van-der-Pol
oscillator with the undisturbed dynamics f (x, u) =

VOLUME 2, 2023 315



GAßMANN AND ALTHOFF: POLYNOMIAL CONTROLLER SYNTHESIS OF NONLINEAR SYSTEMS WITH CONTINUOUS STATE FEEDBACK

FIGURE 2. Approximation of the tight overapproximative reachable set
Rxff

(tf, P) by R̂xff
(tf, P) = D(tf, P) ⊕ 〈cerr, Gerr〉Z for P ∈ 0.1 · P and for

P ∈ P = [−1, 1]mnu×a, evaluated at P̄ = 0.1 · 1mnu×a.

[
x2,

(
1− x2

1

)
x2 − x1 + u

]T
, X (0) =

{[
0.5β1
0.3β2

]}
β

, tf = 0.5 s,

ūff
(
β,P(i)

) = 5
(
p(i,1)β1 + p(i,2)β2

)
with i ∈ {1, . . . , 5},

P(i) = [p(i,1), p(i,2)
] ∈ [−1, 1]1×2, and E = I2. We

compute R̂xff (tf ,P) as described above. Fig. 2 visualizes the
reachable sets R̂xff (tf ,P)|P=P̄ for P̄ = 0.1 · 1mnu×a, computed
for both P ∈ 0.1 · P and P ∈ P , and compares them to the
overapproximative reachable set Rxff (tf , P̄), which needs to
be recomputed for each P̄. Evidently, choosing P from a
larger set affects the accuracy of the parameterized reachable
set. For both set sizes, however, we notice that D(tf , P̄)
approximates Rxff (tf , P̄) reasonably well, even if 〈cerr,Gerr〉Z
is much larger for P ∈ P . �

Thus, we avoid a large input set by computing R̂xff (t,P)
only for P ∈ Pγ (P̄) where

Pγ
(
P̄
) = {P̄ + 2γM

∣∣ M ∈ [−1, 1]mnu×a} , (10)

and the trust-region radius γ ∈ (0, 1] is reduced until the ap-
proximation is accurate enough. We include the factor 2 in
(10) so that ∀P̄ ∈ P : P ⊆ P1(P̄). Because we compute over-
approximative reachability analysis after each trust-region
iteration to formally verify constraint satisfaction, we have
Rxff (t, P̄) at the previously computed feedforward control
parameters P̄ available (see Section VI-B for details). There-
fore, we approximate the effect of the deviation from P̄ by
defining the exact sum⊕e of polynomial zonotopes [55, Prop.
10] preserving dependencies and only considering deviations
from Rxff (t, P̄), where we approximate the relative change
using R̂xff (t,P), i.e., we define an approximation to the pa-
rameterized reachable set by

R̃xff (t,P) = Rxff

(
t, P̄

)⊕e R̂xff (t,P)⊕e
(−R̂xff

(
t, P̄

))
= Rxff

(
t, P̄

)⊕e D(t,P)⊕e
(−D (t, P̄

))
, (11)

for P ∈ Pγ (P̄) and where the last equality follows from
R̂xff (t,P)⊕e

(− R̂xff

(
t, P̄

) ) = D (t,P)⊕e
(−D (t, P̄

))
(see (9)).

V. DISTURBANCE SET COMPUTATION
To solve (5), we also require approximations to the state de-
viation set S�x (t,P,K ) and input deviation set S�u(t,P,K ),
which we derive in Section V-A. In Section V-B, we then
briefly describe a parameterization of the gain matrices K (i)

for 0 ≤ i ≤ m− 1 using linear-quadratic regulator (LQR)
control from [51, Sec. IV.B.] to reduce the number of opti-
mization variables.

A. REACHABLE SET COMPUTATION
For now, we assume that all gain matrices K (t, z) = K (i)(z)
for t ∈ τ (i) with 0 ≤ i ≤ m− 1 are parameterized in two ma-
trices Q and R as well as the feedforward parameters P,

collected in the vector z =
[
PT

(:), QT
(:), RT

(:)

]T
, where Q

and R as well as the parameterization itself will be introduced
in Section V-B.

To compute an approximation of the disturbance tube, we
find an approximate flow equation for the state deviation
�x by a first-order Taylor expansion of �x around x = xff ,
u = uff, and w = 0, i.e.

�ẋ = ẋ − ẋff = f (x, u,w)− f (xff , uff , 0)

≈ (A(t,P)+ B(t,P)K (t, z))�x +V (t,P)w, (12)

with

A(t,P) = ∂ f (x, u,w)

∂x

∣∣∣∣ x = x̄(t,P)
u = ū(t,P)
w = 0

, (13)

B(t,P) = ∂ f (x, u,w)

∂u

∣∣∣∣ x = x̄(t,P)
u = ū(t,P)
w = 0

, (14)

V (t,P) = ∂ f (x, u,w)

∂w

∣∣∣∣ x = x̄(t,P)
u = ū(t,P)
w = 0

, (15)

where x̄(t,P) = 1
2

(
c̃xff

(
t,P

)+ c̃xff

(
t̄,P

))
and ū(t,P) =

cuff

( 1
2

(
t + t̄

)
,P
)

are kept constant for t ∈ [t, t̄] =
[k, k + 1]δ with δ = tf

mq and 0 ≤ k ≤ mq − 1, so that
we obtain mq linear time-invariant (LTI) systems for
q ∈ N+. Here, we use the centers of the zonotope
overapproximations [55, Prop. 5]

Zuff (t,P) = 〈
cuff (t,P) ,Guff (t,P)

〉
Z , (16)

Z̃xff (t,P) = 〈
c̃xff (t,P), G̃xff (t,P)

〉
Z , (17)

of Suff (t,P) and R̃xff (t,P) from (8) and (11) as an approx-
imation of their geometric centers since the starting point
of a polynomial zonotope (see Definition 5) is not a good
approximation of its geometric center due to its polynomial
dependent factors. Furthermore, we require both zonotope
overapproximations in Section VI-A since zonotopes make
an efficient evaluation of their support function possible [59].
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We remark here that we do not assume the same linearized
dynamics for the complete time horizon [0, tf ] but rather com-
pute a new linearization for each time interval t ∈ [k, k + 1]δ.
A similar approach which uses (12) to approximate the de-
viation vector �x for robustification of an optimal control
problem is described in [60]. In general, approximation errors
– caused by the first-order Taylor series and linearization –
remain small due to the corrective actions of the controller so
that the deviation from the feedforward solution stays small;
that said, the linearized flow can become inaccurate for large
disturbance sets W . However, since we are not dependent on
an exact approximation, approximation errors do not affect the
soundness of our approach.

The reachable set Z̃�x (t, z) of the approximated flow (12)
with Z̃�x (0, z) = {0} can be efficiently computed using zono-
topes, as only Minkowski sums and linear maps are required,
under which zonotopes are closed. Since the representation
size of Z̃�x (t, z) can become quite large (due to computing
many Minkowski sums), we can avoid its explicit compu-
tation by replacing all set constraints in (5) with support
functions evaluated in the normal directions given by the
H-representations of the polytopic input and polytopic state
constraints (see Section VI-A for details; also [61]). As we use
overapproximative reachability analysis for each trust-region
iteration (see Section VI-B and Algorithm 1), the extended
reachable set at z = z̄ is available (see Section VI-B for de-
tails) and hence the unknown support function ρ�x (l, t, z) of
the zonotope overapproximation Z�x (t, z) ⊇ S�x (t, z) in the
direction l ∈ R

nx can be efficiently computed at z = z̄. We
first define a rough approximation of this unknown support
function as

ρ̃
(E )
�x (l, t, z) = ρ�x (l, t, z̄)

ρ
(E )
�x (l, t, z̄)

ρ
(E )
�x (l, t, z),

ρ
(E )
�x (l, t, z) =

√
lT Q�x (t, z)l + ε,

where ε � 1 is used to achieve differentiability and we scale
ρ̃

(E )
�x so that ρ̃ (E )

�x (l, t, z̄) = ρ�x (l, t, z̄). Further, E�x (t, z) =
〈0,Q�x (t, z)〉E is obtained by computing the reachable set of
the linearized flow (12) using the ellipsoid EW = 〈0,QW 〉E ⊇
W for QW ∈ S

nw×nw++ (see, e.g., [62]). For t + δ ≤ tf , we thus
have [63]

E�x (t + δ, z) = eĀ(t,z)δE�x (t, z)

⊕
∫ δ

0
eĀ(t,z)φV (t,P)EW dφ, (18)

with Ā(t, z) = A(t,P)+ B(t,P)K (t, z) and where E�x (0, z)
= {0}. We approximate the Minkowski sum of two ellipsoids
required in (18) as the sum of their shape matrices. The ap-
proximation to the unknown support function ρ�x (l, t, z) can
then be defined as

ρ̃�x (l, t, z) = ρ�x (l, t, z̄)+ ρ̃ (E )
�x (l, t, z)− ρ̃ (E )

�x (l, t, z̄) ,
(19)

so that we only approximate the unknown difference
ρ�x (l, t, z)− ρ�x (l, t, z̄) by ρ̃ (E )

�x (l, t, z)− ρ̃ (E )
�x (l, t, z̄) since

ρ̃�x (l, t, z̄) = ρ�x (l, t, z̄) holds for z = z̄, which follows by
substitution of z̄ into (19). Furthermore, we have

E�u(t, z) = K (t, z)E�x (t, z),

since u(t, x, z) = uff
(
x(0),P(i)

)+ K (t, z)�x(t, z) for t ∈ τ (i)

with 0 ≤ i ≤ m − 1, from which ρ̃�u(l, t, z) can be derived
analogously to ρ̃�x (l, t, z). Next, we introduce the feedback
matrix parameterization.

B. FEEDBACK MATRIX PARAMETERIZATION
Directly optimizing over all gain matrices K (i) for 0 ≤ i ≤
m− 1 as in (5) requires mnunx optimization variables since
K (i) ∈ R

nu×nx . Therefore, we introduce a parameterization of
the feedback matrices using LQR control [51, Sec. IV.B] to
reduce the number of optimization variables.

With m feedback matrices to be computed, it makes sense
to only consider those K (i) that asymptotically stabilize the m
LTI systems with system matrices A(t,P)+ B(t,P)K (i) and
input matrices V (t,P) as defined in (13) to (15) but which
are now assumed to be constant in time for t ∈ [t, t̄] = τ (i) =
[i, i + 1] tf

m . For any such system and matrices Q ∈ S
nx×nx++ and

R ∈ S
nu×nu++ , LQR control only generates feedback matrices

that result in an asymptotically stable system by design, as-
suming that all m LTI systems are controllable for all P. This
motivates the parameterization K (t, z) = K (i)(z) for t ∈ τ (i)

with z = [PT
(:), QT

(:), RT
(:)

]T
, so that optimization over K

in (5) can be replaced by optimization over z. We refer the
reader to the Appendix for a proof of the differentiability of
K with respect to z. If controllability cannot be assumed, one
can always directly optimize over K . Next, we introduce the
novel trust-region synthesis approach.

VI. COMBINED SYNTHESIS
We now propose our novel trust-region approach for the
combined synthesis problem. In Section VI-A, we construct
a continuously differentiable optimization problem as an
approximation to (5) using findings from Section IV and Sec-
tion V, and then describe the proposed iterative algorithm in
Section VI-B. In Section VI-C, we discuss the approximation
accuracy of the trust-region subproblem, followed by a short
description of the computational complexity of the algorithm
in Section VI-D.

A. TRUST-REGION SUBPROBLEM
Given the current control parameters P̄, Q̄, and R̄ – where ρuff

is the support function of Zuff from (16) and ρ̃�x , ρ̃�u are the
approximated support functions as described in Section V-A
– the solution of

ẑ, ŝ = arg min
z,s

J̃TR(z, s), (20a)

s.t. g̃U (z) ≤ sU , (20b)

g̃X (z) ≤ sX , (20c)
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P ∈ Pγ
(
P̄
) ∩ P, (20d)

Q ∈ {Q̄+ hQ (ηM )
}

M ∩Q, (20e)

R ∈ {R̄+ hR (ηN )
}

N ∩R, (20f)

s =
[
sT
U , sT

X
]T ≥ 0, (20g)

with

J̃TR(z, s) = ∥∥c̃xff (tf ,P)− xf
∥∥

1 +
∥∥G̃xff (tf ,P)(:)

∥∥
1

+ 1T
nx
ρ̃�x

(
Inx , tf , z

)+ σ ‖s‖1 , (21)

as well as

g̃U (z) = max
t∈[0,tf ]

(
ρuff (AU , t,P)+ ρ̃�u (AU , t, z)

)− bU , (22)

g̃X (z) = max
t∈[0,tf ]

(
ρ̃xff (AX , t,P)+ ρ̃�x (AX , t, z)

)− bX ,

(23)

and critical point (ẑ, ŝ) is an approximation of (5) as explained
subsequently:
� (20a) and (21): We replace Rxff (t,P) with Z̃xff (t,P) =〈

c̃xff (t,P), G̃xff (t,P)
〉
Z from (17) and construct (21) as

follows: We penalize deviations from xf (first term) and
the size of its generators (second term). Further, we pe-
nalize the size of the disturbance tube by penalizing its
support function values in the unit directions (third term)
and introduce σ ∈ R+, which is chosen large enough
(see, e.g., [64] for a discussion on the choice of σ )
such that achieving feasibility is always prioritized over
minimizing the objective value for s = 0 (fourth term).

� (20b): We have A ⊆ B ⇐⇒ ∀l ∈ R
n : ρA(l ) ≤ ρB(l )

for two convex sets A ⊆ R
n and B ⊆ R

n, or A ⊆
B ⇐⇒ ρA(CB ) ≤ dB if B = 〈CB, dB〉H is an H-
polytope. Thus, the set containment constraint in (5c)
is encoded by the support function values in normal
directions AT

U , where U = 〈AU , bU 〉H . Here, we use
ρM⊕N (l ) = ρM(l )+ ρN (l ) for two convex sets M ⊆
R

n and N ⊆ R
n [65, Prop. 2.3]. Further, we relax the

resulting input constraint g̃U (z) ≤ 0 by adding sU ≥ 0 to
the right-hand side, which ensures that a feasible solution
always exists, even if there is no feasible solution for
the original constraint with sU = 0. Finally, the maxi-
mization of the support functions over t in g̃U (z) can
be approximated by evaluating (22) over smaller time
intervals and forming a discrete maximum over all these
smaller time interval solutions: The input feedforward
support function ρuff for each time interval τ (i) with
0 ≤ i ≤ m − 1 can be directly computed (see (16) and
(8)). For ρ̃�u, we can replace the approximated support
function over a short time interval with the approximated
support function at a finite number of time points for a
large enough q.

� (20c): Analogous to input constraints (see (20b)).
� (20d): We enforce P ∈ Pγ (P̄) ∩ P using the trust-region

radius γ ∈ (0, 1] as defined in Section IV-B to construct

a trust region for the feedforward parameters, ensuring
that R̃xff (t,P) is accurate and P ∈ P = [−1, 1]mnu×a.

� (20e) and (20f): Let Q ⊂ S
nx×nx++ and R ⊂ S

nu×nu++ be
two bounded sets. We define two generating functions
hQ(M ) ∈ S

nx×nx , where hQ(0) = 0 with M being a
dependent factor matrix, and hR(N ) ∈ S

nu×nu , where
hR(0) = 0 with N being a dependent factor matrix.
Similarly to the trust-region radius γ , which limits the
domain of the feedforward parameters P, we introduce
the trust-region radius η ∈ (0, 1] to confine Q ∈ Q and
R ∈ R to smaller sets around Q̄ and R̄. Naturally, Q and
hQ as well as R and hR need to be chosen such that (20e)
and (20f) can be reformulated as smooth constraints in
Q and R only.

To avoid the semi-definite constraints (20e) and (20f), Q
and R can be chosen as diagonal matrices with positive en-
tries as done in this article or as strictly diagonally dominant
matrices with positive diagonal entries as a sufficient (but not
necessary) condition for positive semi-definiteness (follows
from the Gershgorin Circle Theorem [66, Th. 0]). Note that
the evaluation of (20b) and (20c) requires the implicit maxi-
mization over smaller time intervals – as discussed above – to
approximate the continuous maximization over t ∈ [0, tf ] in
(22) and (23). We choose not to reformulate these maximiza-
tion expressions and absolute values in (20a) with additional
auxiliary variables for easier readability. With these refor-
mulations, (20) is a non-convex, continuously differentiable
optimization problem.

B. TRUST-REGION ALGORITHM
We now propose our novel trust-region algorithm: In each
iteration, we solve the subproblem in (20), evaluate the newly
computed controller on a subsequently defined cost function
using overapproximative reachability analysis, and accept the
step only if the cost decreases. At the end of each iteration,
we tune γ and η so that future solutions to (20) also decrease
the cost. We describe the solution procedure in Algorithm 1,
where each step is explained in detail subsequently.
a) Initialization (l. 1–2): We use the approach from [50], [51]
to generate an initial guess P̄, initially set Q̄ = Inx and R̄ =
Inu (or any other user-defined initial guess) and start with the
complete range of P,Q, and R by setting γ = η = 1 (or any
other user-defined values).
b) Initial evaluation of solution (l. 3): At a critical point
(ẑ, ŝ) of (20), it can be shown (see proof of Theorem 1) that
‖ŝ‖1 = ‖max(0, g̃(ẑ))‖1, where g̃(z) = [ g̃U (z)T , g̃X (z)T

]T
collects (22) and (23) in a vector. Therefore, let J̃ (ẑ) =
J̃TR(ẑ,max(0, g̃(ẑ))).

However, since J̃ (ẑ) is only an approximated cost, we need
to evaluate it using overapproximative reachability analysis
to measure the actual cost of the controller. To preserve de-
pendencies between the combined state, feedforward state,
and feedforward input for a given initial state (similar to the
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Algorithm 1: Combined Synthesis.

1: P̄ (see [50], [51]), Q̄ = Inx , R̄ = Inu , γ = 1, η = 1

2: z̄T =
[
P̄T

(:), Q̄T
(:), R̄T

(:)

]
3: [J̄, R̄ext] = EVALSOL(z̄) � Section VI-B-b
4: for k = 1; k ≤ kmax; k = k + 1 do
5: R̃xff = REACHFF(P̄, γ , R̄ext ) � Section IV
6: ẑ = TRSUBPROBLEM(z̄, R̃xff , R̄ext, γ , η) � (20)
7: [Ĵ, R̂ext] = EVALSOL (ẑ) � Section VI-B-b
8: [γ , η] =
9: TUNEPARAMS (γ , η, z̄, ẑ,R̃xff , R̄ext, R̂ext )

� Theorem 1
10: if Ĵ < J̄ then
11: λ = TOL (Ĵ, J̄ ) � (25)
12: J̄ = Ĵ , z̄ = ẑ, R̄ext = R̂ext

13: if λ ≤ μ then � (25)
14: break
15: end if
16: end if
17: end for
18: return z̄, R̄ext

reachability computation in Section IV-B), we extend the sys-
tem state and compute the extended reachable set Rext (t, z)
based on the extended flow equation⎡

⎢⎣ ẋ

ẋff

u̇ff

⎤
⎥⎦ =

⎡
⎢⎣ f (x, uff + K (x − xff ) ,w)

f (xff , uff , 0)

0

⎤
⎥⎦ ,

where its zonotope overapproximation is given by

Zext (t, z) =
〈⎡⎣ cx (t, z)

cxff (t,P)
cuff (t,P)

⎤
⎦ ,
⎡
⎣ Gx(t, z)

Gxff (t,P)
Guff (t,P)

⎤
⎦〉

Z

. (24)

With (24), we can define the actual control cost J (z), which
is given analogously to J̃ (z) but where sets (and correspond-
ing support functions) are replaced by their formally correct
versions contained in (24).
c) Feedforward reachable set computation (l. 5): If the max-
imum number of iterations kmax ∈ N+ is not yet reached, we
compute the parameterized, undisturbed feedforward reach-
able set for P ∈ Pγ (P̄), as described in Section IV, at the start
of each iteration.
d) Computation & evaluation of new candidate controller
(l. 6–7): As indicated in Sections IV and V, Rext (t, z̄) and
its zonotope overapproximation Zext (t, z̄) are required in (20)
to construct the feedforward approximation in (11) and the
support function approximation in (19), respectively. With
ẑ being a solution to (20), we then compute its cost J (ẑ),
which is used subsequently to determine if the current step is
accepted. If the extended, overapproximative reachable set for
the computation of J (ẑ) cannot be computed (see, e.g., Fig. 4),
we shrink both γ and η and restart the iteration (not shown in
Algorithm 1).

e) Parameter tuning (l. 9): Theorem 1 discusses the tuning of
the trust-region radii γ and η such that at a critical point (ẑ, ŝ)
of (20), the objective value J̃TR(ẑ, ŝ) approaches J (ẑ).
f) Step acceptance/rejection (l. 10–16): If J (ẑ) < J (z̄) for the
newly computed control parameters ẑ, the step is accepted.
Furthermore, we terminate the algorithm if either the abso-
lute or relative difference in the controller cost between two
accepted steps is small enough, i.e.

min

(
J (z̄)− J (ẑ) ,

J (z̄)− J (ẑ)

min (J (z̄) , J (ẑ))

)
≤ μ, (25)

with user-defined tolerance μ ∈ R+.

C. ACCURACY OF TRUST-REGION APPROXIMATION
Ideally, we want to minimize the controller cost J (z).
However, to avoid recomputation of the overapproximative
reachable set as much as possible, we instead solve the
approximated problem in (20). Thus, it is crucial that the
approximated objective value J̃TR(ẑ, ŝ) at a critical point (ẑ, ŝ)
of the trust-region problem (20) can approximate J (ẑ) “well
enough”. In this section, we show that the trust-region radii
γ and η can indeed be tuned such that J̃TR(ẑ, ŝ) approxi-
mates J (ẑ) arbitrarily closely; otherwise, the approximated
trust-region problem (20) potentially does not model the real
cost of the controller and thus optimizing over it becomes
meaningless.

For the derivation of this result, we define J̃�x (z), which
is given analogously to J̃ (z) but where we replace the
approximated feedforward reachable set R̃xff (t,P) and its
approximated support function ρ̃xff (l, t,P) with their overap-
proximative versions from (24). Intuitively, we remove any
error caused by approximating the feedforward reachable set
and thus J̃�x (z) is only inaccurate due to the approximated
support functions ρ̃�x and ρ̃�u. We are now ready to state the
main result of this section.

Theorem 1 (Accurate Trust-Region Subproblem): If we
adapt γ and η independently according to

γ ← min
(
1, v

(
max

(
eff,γ , e�,γ

))
γ
)
, (26)

η← min
(
1, v

(
e�,η

)
η
)
, (27)

with

eff,γ =
∣∣J̃ (ẑ)− J̃�x (ẑ)

∣∣ , (28)

e�,γ =
∣∣J̃�x

(
P̂, Q̄, R̄

)− J
(
P̂, Q̄, R̄

)∣∣ , (29)

e�,η =
∣∣∣J̃�x (ẑ)− J̃�x

(
P̂, Q̄, R̄

)
− (J (ẑ)− J

(
P̂, Q̄, R̄

)) ∣∣∣, (30)

where v : [0,∞) �→ R+ is an arbitrary, monotonically de-
creasing function with v(0) = c̄, v(ψ ) = 1, and ∀r ≥ ψ̄ :

v(r) = c, where 1
c > c̄ > 1 and 0 ≤ ψ < ψ̄ , then

∣∣J̃TR (ẑ, ŝ)− J (ẑ)
∣∣ ≤ ε,
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is achieved after a finite number of iterations for a critical
point (ẑ, ŝ) of (20) for ε > 0.

Proof: We show the claim by first proving that
∣∣J̃ (ẑ)−

J (ẑ)
∣∣ ≤ ε after following (26) and (27) for a finite number

of iterations and then verifying that J̃TR(ẑ, ŝ) = J̃ (ẑ).
It holds that∣∣J̃ (ẑ)− J (ẑ)

∣∣
=
∣∣∣J̃ (ẑ)− J̃�x (ẑ)+ J̃�x

(
P̂, Q̄, R̄

)− J
(
P̂, Q̄, R̄

)
+ J̃�x (ẑ)− J̃�x

(
P̂, Q̄, R̄

)− (J (ẑ)− J
(
P̂, Q̄, R̄

)) ∣∣∣
≤ eff,γ + e�,γ + e�,η, (31)

due to the triangle inequality and (28) to (30). From the
definition of J̃�x (ẑ) follows that limγ→0 eff,γ = 0 since
J̃�x (ẑ) is constructed using overapproximative feedforward
sets and limγ→0 R̃xff

(
t, P̂

) = Rxff

(
t, P̄

)
(see (11)). Similarly,

limγ→0 e�,γ = 0 holds since limγ→0 P̂ = P̄ and because
J̃�x (z̄) = J (z̄) by construction. Further, limη→0 e�,η = 0 fol-
lows from limη→0 J̃�x (ẑ) = J̃�x

(
P̂, Q̄, R̄

)
and limη→0 J (ẑ) =

J
(
P̂, Q̄, R̄

)
. By following (26) and (27), there is therefore

always a finite number of steps until eff,γ ≤ δ, e�,γ ≤ δ, and
e�,η ≤ δ, with δ > 0, from which

∣∣J̃ (ẑ)− J (ẑ)
∣∣ ≤ ε follows

from (31) and because δ is arbitrary.
Lastly, (20) is always regular at a critical point (ẑ, ŝ) (proof

omitted due to space considerations) and thus any critical
point necessarily fulfills the Karush-Kuhn-Tucker (KKT) con-
ditions. The relevant KKT conditions of (20) in s for this proof
are

σ1o − μ̂− λ̂ = 0, (32)

μ̂k (g̃k (ẑ)− ŝk ) = 0, 1 ≤ k ≤ o, (33)

λ̂k (−ŝk ) = 0, 0 ≤ k ≤ o, (34)

where μ̂ ∈ R
o
≥0 and λ̂ ∈ R

o
≥0 are the constraint multipliers at

the critical point of the collected constraints in (20b), (20c)
and (20g), respectively, and where g̃(ẑ) ∈ R

o. Let I = {i ∈
{1, . . ., o} | g̃i(ẑ) ≤ 0} and J = { j ∈ {1, . . ., o} | g̃ j (ẑ) > 0}.
Since μ̂k = 0 if g̃k (ẑ) < 0 due to (33) and (20g) for 1 ≤
k ≤ o, it follows that ∀i ∈ I : μ̂ig̃i(ẑ) = 0. Further, it holds

that ∀ j ∈ J : g̃ j (ẑ) > 0
(20b),(20c)⇒ ŝ j > 0

(34)⇒ λ̂ j = 0
(32)⇒ μ̂ j =

σ . Thus, it follows from (33) that

μ̂T g̃ (ẑ) =
∑
i∈I

μ̂ig̃i (ẑ)+
∑
j∈J

μ̂ j g̃ j (ẑ) =
∑
j∈J

σ
∣∣g̃ j (ẑ)

∣∣
= σ ‖max (0, g̃ (ẑ))‖1 = σ1T

o ŝ,

and therefore J̃ (ẑ) = J̃TR(ẑ, ŝ), concluding the proof. �
Tuning according to Theorem 1 requires one additional

overapproximative reachable set computation at P = P̂, Q =
Q̄, and R = R̄. Alternatively, one can set e�,γ = e�,η = e�
with e� =

∣∣J̃�x (ẑ)− J (ẑ)
∣∣ to avoid that computation at the

cost of possibly unnecessarily shrinking either γ or η (since
both are shrunk equally).

D. COMPUTATIONAL COMPLEXITY
Since the maximum number of iterations in Algorithm 1
is fixed, we only consider the computational complexity
in the state dimension for one iteration of Algorithm 1
in this section. As Section VII (see Tables 1 and 2) in-
dicates, the proposed algorithm typically terminates within
a small number of iterations; thus, limiting the number
of iterations to a reasonably small number often does not
impede performance in practice. In this section, we show
that the complexity of one iteration in Algorithm 1 is
at most O

(
n5

x + υ(ε)m
(
n6 + n4n2

z + qlξnωn2
z

))
where n =

max(nx, nu) and O(nω ) with ω ≥ 2 is the complexity of mul-
tiplying two n× n matrices.
a) Reachable set computations: The computation of reach-
able sets (l. 5 for the approximated feedforward reachable set;
l. 3 and 7 for the extended overapproximative reachable set)
has complexity O

(
n5

x

)
[67, Sec. 4.1.4].

b) Trust-region subproblem: The total number of function
evaluations υ(ε) with υ : R+ �→ N+ required to solve (20) is
polynomially dependent on the inverse of the requested solu-
tion accuracy ε > 0 if second-order methods are used [68].
Thus, we continue to derive the computational complexity
for one objective and constraint function evaluation of (20),
which is dominated by the computation of the Hessian matrix
for each element of the approximated disturbance tube shape
matrix Q�x (t, z) using (18). For its evaluation, we compute
the Hessian matrix of each element of K (i) for 0 ≤ i ≤ m − 1
in terms of z ∈ R

nz , where the complexity of one evaluation
is O

(
n6 + n4n2

z

)
; we omit the proof to keep the presenta-

tion compact. Further, we need to evaluate (18) mq times,
where one evaluation is dominated by the computation of the
Hessian matrix of each element of the integral, within which
the Hessian matrix computation for each matrix element of
eĀ(t,z)δ dominates with complexity O

(
ξnωn2

z

)
. Here, ξ ∈ N+

denotes the finite number of terms from the infinite series of
eĀ(t,z)δ to compute the matrix exponential accurately enough
and O

(
nωn2

z

)
is the complexity for each of the ξ terms, which

follows from the complexity of multiplying two matrices but
where each element multiplication is the outer product of
two nz-dimensional vectors. We compute the integral by solv-
ing the corresponding ordinary differential equation (ODE)
with complexity O

(
lξnωn2

z

)
, where l ∈ N+ collects the fixed

number of function evaluations per ODE step (e.g., four eval-
uations for the classical Runge-Kutta method) and the total
number of ODE steps required, which can be assumed to be
fixed if a solver with a fixed step size is used. Thus, evaluating
(18) mq times over υ(ε) optimization iterations yields the
complexity O

(
υ(ε)m

(
n6 + n4n2

z + qlξnωn2
z

))
.

VII. EXPERIMENTS
We demonstrate the applicability of the novel iterative
polynomial reachset optimal control (iPROC) approach by
comparing its performance against the reachset optimal con-
trol (ROC) algorithm from [51] (both implemented in MAT-
LAB) and the robustly complete control synthesis (ROCS)
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C++ toolbox1 [69], [70]. We first present a water tank bench-
mark [71] in more detail since it is easily extendable to an
arbitrary number of states to compare scalability. In Sec-
tion VII-B, we then shortly introduce other benchmarks from
previous work [51] and from the applied verification for con-
tinuous and hybrid systems (ARCH)2 competition.

We run all experiments on an Intel(R) Core(TM) i7-8650U
processor with 24 GB of RAM. We note that ROC uses
parallel computing to numerically approximate gradients and
Hessian matrices while iPROC computes them analytically
and thus does not use parallel computing. We use the inte-
rior point optimizer (IPOPT) [72], specifically the MATLAB
interface included in the OPTI toolbox3, for iPROC and
MATLAB’s fmincon for ROC. Throughout this section, we
assume σ = 1000, use a linear feedforward controller with
E = [0, Inx ], and set μ = 1× 10−2. Overapproximative
reachable sets are computed using the continuous reachability
analyzer (CORA) toolbox4 [73]. CORA does not consider
floating point errors for the reachable set computation. To
account for these, one could integrate interval arithmetic as
done in [74]. Our proposed algorithm will be implemented
in the next release of the automated reachset optimal control
(AROC) toolbox5 [75].

A. WATER TANKS
A system of n water tanks is given by (see [71] for details)

ẋ1 = u+ w − k
√

2gx1,

ẋi = k
(√

2gxi−1 −
√

2gxi

)
,

with 2 ≤ i ≤ n and where xk = hk
m ∈ R≥0 for 1 ≤ k ≤ n, hk

is the water level of the k-th tank, u = l
m3 /s
∈ R≥0 and l

is the inflow into the first tank, w = ν

m3 /s
∈ R and ν is the

uncontrollable inflow into the first tank, and k = 0.015 and
g= 9.81.

We set m = 2, n = 2, X (0) =
{

x̄(0)
∣∣∣ ∥∥x̄(0) − x(0)

∥∥∞ ≤ 1
}

,

x(0) = xf = 10 · 1n, U = 〈1, 1〉Z , W = 〈0, 0.02〉Z , tf = 120 s,
and the final state constraint is Xf = X (0). Fig. 3 compares
the performance of iPROC against ROC and ROCS, where all
approaches find feasible solutions for the initial set (also see
Table 2). Since the ROCS approach does not directly realize
reachable set minimization at a given final time to the best of
our knowledge, we manually tried to find the smallest goal re-
gion for which a controller for all initial states, here GROCS =〈
[10, 10]T , diag([0.03, 0.03])

〉
Z , exists. Both ROC and

ROCS fail to find a feasible solution if algorithm parameters
are set incorrectly.

Furthermore, Table 1 displays the computation times and
sizes of the final reachable set Rx (tf ) = 〈c(tf ),G(tf )〉Z (where

1[Online]. Available: https://git.uwaterloo.ca/hybrid-systems-lab/rocs/-
/tree/master/

2[Online]. Available: https://cps-vo.org/group/ARCH
3[Online]. Available: https://github.com/jonathancurrie/OPTI
4[Online]. Available: https://cora.in.tum.de/
5[Online]. Available: https://aroc.in.tum.de/

FIGURE 3. Comparison of our novel iPROC approach with ROC and ROCS
for the tank benchmark. The best achievable goal region for ROCS is
denoted by GROCS.

TABLE 1. Scalability comparison of iPROC, ROC, and ROCS for the tank
example using 2 to 8 tanks with m = 2 and no final state constraints.

appropriate), defined by

csize (Rx (tf )) =
∥∥∥[c (tf )− xf , G (tf )

]
(:)

∥∥∥
1
,

for up to 8 tanks. We omit final state constraints to avoid in-
feasibility for higher dimensions so that only input constraints
are active. Our novel approach scales better with an increasing
number of dimensions compared to both ROC and ROCS
while mostly producing smaller final reachable sets. Further,
Table 1 also displays the number of trust-region iterations
of Algorithm 1 of the novel iPROC approach for the tank
example, which indicates that the number of iterations does
not really grow with the number of state variables.

Additionally, Fig. 4 shows the solve progress of iPROC,
which demonstrates the accurate approximation of J (z) by
J̃ (z) as derived in Theorem 1.

B. BENCHMARKS FROM PREVIOUS WORK AND THE
ARCH COMPETITION
In this section, we first look at the car benchmark from [51],
where a left turn maneuver using a kinematic model is to
be performed under input and final state constraints. We also
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FIGURE 4. Visualization of the solver progress and the approximation
quality of the trust-region subproblem in (20) for the tank benchmark.
Values between J̃(z̄(i−1) ) and J̃(ẑ(i) ), 1 ≤ i ≤ 10 – where z̄(i−1) and ẑ(i) are
the initial and critical points of the subproblem in (20) – are linearly
interpolated (ẑ(0) = z̄(0)). For steps i = 2 and i = 7, there were negative
water values and thus no controller cost could be computed. The opaque
value at i = 9 denotes a rejected iteration.

TABLE 2. Collection of benchmarks.

synthesize controllers for a spacecraft approach from [76, Sec.
3.6], where a spacecraft attempts docking with another space-
craft under input, state, and final state constraints. To keep the
presentation compact, we only show computation times and
the sizes of the final, closed-loop reachable sets in Table 2 for
each benchmark. We were not able to find a controller steering
all states from the initial set into a reasonably small target state
for any of the following benchmarks using ROCS in less than
3 h and thus ROCS is omitted.
a) Kinematic car: We compute a left turn for the kinematic
car benchmark from [51], which includes input and final state
constraints. While both iPROC and ROC were able to find
a feasible solution, iPROC was able to find a smaller final
reachable set without manual tuning (see Table 2).
b) Space rendezvous: In this benchmark, a controller for the
rendezvous attempt of two spacecraft as described in [76, Sec.
3.6] is synthesized, where the first and last two states describe
the position and velocity of the controlled spacecraft in a
common orbital plane, respectively. This benchmark includes
input, state, and final state constraints, where the state con-
straints consist of the approaching spacecraft being required
to stay within a cone defining the line of sight and respecting
velocity constraints. We choose m = 5, tf = 200 s, an initial

set X (0) = 〈x(0), diag([2, 2, 0.1, 0.1])
〉
Z with x(0) =

[−95, −30, 0, 0]T , target state xf = [−1, 0, 0, 0]T ,
Xf = X (0) ⊕ {−x(0) + xf}, and W = 0.05U , where U and X
are given as in [76, Sec. 3.6], but we replace the velocity
constraints in X with their parallelotope underapproximation
for computational reasons. While both iPROC and ROC found
feasible solutions, iPROC again achieves a smaller final reach-
able set without the need for manual tuning (see Table 2).

VIII. CONCLUSION
We introduce a novel, formally verified, polynomial control
synthesis approach for disturbed nonlinear systems that si-
multaneously synthesizes a piecewise constant feedforward
controller and a continuous-time state feedback controller.
In contrast to existing work, we avoid the introduction of
algorithm parameters which require expert knowledge to tune.
We achieve this for the first time by combining the synthe-
sis for the feedforward and feedback controller into a single
optimization problem and using a trust-region approach to
iteratively ensure the accuracy of this optimization problem.
Additionally, we show that this optimization problem can
approximate the formally correct controller cost arbitrarily
closely, and furthermore prove the polynomial complexity of
our novel synthesis approach in the state dimension for each
trust-region iteration. Numerical examples indicate that our
novel approach achieves similar performance – or even out-
performs previous work – while not requiring manual tuning
of algorithm parameters, making it more easily applicable by
non-experts.

APPENDIX
For matrices A ∈ R

o1×o2 and B ∈ R
c1×c2 , the Kronecker prod-

uct is denoted by A � B ∈ R
o1c1×o2c2 . Further, the Kronecker

sum for two square matrices C ∈ R
c×c and D ∈ R

d×d is de-
fined as C � D = C � Id + Ic � D.

For a controllable LTI system with system matrix A(P) ∈
R

nx×nx and input matrix B(P) ∈ R
nx×nu , both parameterized

in the feedforward parameters P, the optimal gain matrix is

K (z) = −R−1B(P)T X (z), (35)

where X (z) ∈ S
nx×nx++ is the positive definite solution to the

Riccati equation

F (z) = A(P)T X (z)+ X (z)A(P)

− X (z)B(P)R−1B(P)T X (z)+ Q

= 0, (36)

and where z =
[
PT

(:), QT
(:), RT

(:)

]T
. We are now ready to

state the main result of the appendix.
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Theorem 2 (Continuous differentiability): Let an nx-
dimensional, controllable LTI system with system matrix
A(P) and input matrix B(P), both k-times differentiable in
P ∈ [−1, 1]mnu×a for each matrix element, be given. Further,
denote with K and X the corresponding solution to (35)
and (36) using Q ∈ S

nx×nx++ and R ∈ Snu×nu++ , respectively. The
gain matrix K is then k-times differentiable with respect to

z =
[
PT

(:), QT
(:), RT

(:)

]T
.

Proof: For readability, we omit the arguments of functions
where convenient.

We first prove that X(:)(z) exists, is unique, and is k-times
differentiable with respect to z, which follows from the im-
plicit function theorem if

dF(:) (z)
dX(:) (z) is invertible for all z. The

first differential of F from (36) with respect to X is

dF = dX (A+ BK )+ (A+ BK )T dX,

which, after vectorization, yields
dF(:)
dX(:)
= AT

cl � AT
cl [77, Th.

18.1], where Acl = A+ BK . Since Acl only has eigenval-
ues with negative real part by design, all n2

x eigenvalues of
AT

cl � AT
cl also have negative real parts [78, Th. 13.16] and thus

(AT
cl � AT

cl )
−1 exists for all P.

The k-times differentiability of K then follows directly from
its definition in (35) since X is k-times differentiable and
R ∈ Snu×nu++ . �

REFERENCES
[1] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi

reachability: A brief overview and recent advances,” in Proc. IEEE
Conf. Decis. Control, 2017, pp. 2242–2253.

[2] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid
problems with time-varying dynamics, targets and constraints,” in Proc.
Conf. Hybrid Syst.: Comput. Control, 2015, pp. 11–20.

[3] D. Kalise, S. Kundu, and K. Kunisch, “Robust feedback control
of nonlinear PDEs by numerical approximation of high-dimensional
Hamilton–Jacobi–Isaacs equations,” SIAM J. Appl. Dynamical Syst.,
vol. 19, no. 2, pp. 1496–1524, 2020.

[4] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Berlin, Germany: Springer, 2009.

[5] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10,
pp. 2508–2516, 2008.

[6] G. Pola and P. Tabuada, “Symbolic models for nonlinear control sys-
tems: Alternating approximate bisimulations,” SIAM J. Control Optim.,
vol. 48, no. 2, pp. 719–733, 2009.

[7] G. Reissig, “Computing abstractions of nonlinear systems,” IEEE
Trans. Autom. Control, vol. 56, no. 11, pp. 2583–2598, 2011.

[8] G. Reissig and M. Rungger, “Symbolic optimal control,” IEEE Trans.
Autom. Control, vol. 64, no. 6, pp. 2224–2239, 2019.

[9] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[10] A. Girard, “Controller synthesis for safety and reachability via approx-
imate bisimulation,” Automatica, vol. 48, no. 5, pp. 947–953, 2012.

[11] A. Girard and S. Martin, “Motion planning for nonlinear systems using
hybridizations and robust controllers on simplices,” in Proc. IEEE Conf.
Decis. Control, 2008, pp. 239–244.

[12] Y. Bai and K. Mallik, “Accurate abstractions for controller synthesis
with non-uniform disturbances,” in Proc. Conf. Formal Eng. Methods,
2020, pp. 297–307.

[13] L. C. G. J. M. Habets, P. J. Collins, and J. H. V. Schuppen, “Reachability
and control synthesis for piecewise-affine hybrid systems on simplices,”
IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 938–948, 2006.

[14] C. Belta and L. C. G. J. M. Habets, “Controlling a class of nonlinear
systems on rectangles,” IEEE Trans. Autom. Control, vol. 51, no. 11,
pp. 1749–1759, 2006.

[15] D. Förstner, M. Jung, and J. Lunze, “A discrete-event model
of asynchronous quantised systems,” Automatica, vol. 38, no. 8,
pp. 1277–1286, 2002.

[16] A. Bicchi, A. Marigo, and B. Piccoli, “On the reachability of quan-
tized control systems,” IEEE Trans. Autom. Control, vol. 47, no. 4,
pp. 546–563, 2002.

[17] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Trans. Autom.
Control, vol. 55, no. 1, pp. 116–126, 2010.

[18] G. Pola, P. Pepe, M. D. D. Benedetto, and P. Tabuada, “Symbolic mod-
els for nonlinear time-delay systems using approximate bisimulations,”
Syst. Control Lett., vol. 59, no. 6, pp. 365–373, 2010.

[19] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans.
Autom. Control, vol. 57, no. 7, pp. 1804–1809, 2012.

[20] J. A. DeCastro and H. Kress-Gazit, “Synthesis of nonlinear continu-
ous controllers for verifiably correct high-level, reactive behaviors,” J.
Robot. Res., vol. 34, no. 3, pp. 378–394, 2015.

[21] J. Liu and N. Ozay, “Finite abstractions with robustness margins for
temporal logic-based control synthesis,” Nonlinear Anal.: Hybrid Syst.,
vol. 22, pp. 1–15, 2016.

[22] P. Nilsson and N. Ozay, “Incremental synthesis of switching protocols
via abstraction refinement,” in Proc. IEEE Conf. Decis. Control, 2014,
pp. 6246–6253.

[23] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations
for the synthesis of symbolic controllers,” IEEE Trans. Autom. Control,
vol. 62, no. 4, pp. 1781–1796, 2017.

[24] R. Majumdar, N. Ozay, and A. Schmuck, “On abstraction-based con-
troller design with output feedback,” in Proc. Conf. Hybrid Syst.:
Comput. Control, 2020, pp. 1–11.

[25] E. M. Wolff and R. M. Murray, “Optimal control of nonlinear systems
with temporal logic specifications,” in Proc. Int. Symp. Robot. Res.,
2016, pp. 21–37.

[26] I. Papusha, J. Fu, U. Topcu, and R. M. Murray, “Automata theory
meets approximate dynamic programming: Optimal control with tem-
poral logic constraints,” in Proc. IEEE Conf. Decis. Control, 2016,
pp. 434–440.

[27] T. Moor and J. Raisch, “Abstraction based supervisory controller syn-
thesis for high order monotone continuous systems,” in Modelling,
Analysis, and Design of Hybrid Systems. Berlin, Germany: Springer,
2002, pp. 247–265.

[28] E. Feron, P. Apkarian, and P. Gahinet, “Analysis and synthesis of robust
control systems via parameter-dependent Lyapunov functions,” IEEE
Trans. Autom. Control, vol. 41, no. 7, pp. 1041–1046, 1996.

[29] A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, “Control barrier functions: Theory and applications,” in Proc.
Eur. Control Conf., 2019, pp. 3420–3431.

[30] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Provably safe control of Lagrangian systems in obstacle-scattered en-
vironments,” in Proc. IEEE Conf. Decis. Control, 2020, pp. 2056–2061.

[31] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Proc. IEEE Conf. Decis. Control, 2014, pp. 6271–6278.

[32] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[33] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control Lyapunov–barrier function,” Automatica, vol. 66,
pp. 39–47, 2016.

[34] R. Tedrake, “LQR-trees: Feedback motion planning on sparse ran-
domized trees,” in Proc. Robot.: Sci. Syst., 2009.[Online]. Available:
https://roboticsproceedings.org/rss05/p3.html

[35] P. Reist and R. Tedrake, “Simulation-based LQR-trees with input
and state constraints,” in Proc. IEEE Conf. Robot. Automat., 2010,
pp. 5504–5510.

[36] S. Sadraddini and R. Tedrake, “Sampling-based polytopic trees for ap-
proximate optimal control of piecewise affine systems,” in Proc. IEEE
Conf. Robot. Automat., 2019, pp. 7690–7696.

[37] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Comput. Chem. Eng., vol. 23, no. 4-5, pp. 667–682, 1999.

VOLUME 2, 2023 323

https://roboticsproceedings.org/rss05/p3.html


GAßMANN AND ALTHOFF: POLYNOMIAL CONTROLLER SYNTHESIS OF NONLINEAR SYSTEMS WITH CONTINUOUS STATE FEEDBACK

[38] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Madison, WI, USA: Nob Hill Publishing, 2009.

[39] D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-
based robust nonlinear model predictive control,” J. Robust Nonlinear
Control, vol. 21, no. 11, pp. 1341–1353, 2011.

[40] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-
based MPC for tracking of constrained linear systems with additive
disturbances,” J. Process Control, vol. 20, no. 3, pp. 248–260, 2010.
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