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Introduction

This thesis deals with characterizations of spaces of discrete-time functions, with a
focus on Besov spaces on Z and their wavelet characterization.

It is a widely accepted fact that the success of wavelets in applications is based
on their ability to efficiently represent ‘realistic’ signals. This efficiency is twofold:
Computational efficiency is guaranteed by fast filter bank algorithms associated
to a wavelet basis, the so-called fast wavelet transform.
An equally important property of wavelets is their approximation-theoretic ef-
ficiency, that is, the ability of wavelets to capture salient features of a signal in a
few large coefficients.

This property of wavelets is best exemplified by means of piecewise polynomial
signals: Given a wavelet with sufficiently many vanishing moments, the nonzero
wavelet coefficients will be located at the jumps of the signal.

A more elaborate (and more powerful) description of wavelet approximation theory
can be formulated in terms of Besov spaces. Despite the fact that Besov spaces
were conceived some 25 years prior to wavelets, it is probably fair to say that Besov
space theory and wavelet approximation theory are identical; see Chapter 1 for an
explanation of this statement.

Hence, orthonormal wavelet bases provide a class of signal transforms that are easily
implemented, with fast algorithms and completely understood approximation the-
ory, and much use has been made of these features, both for theoretical and applied
purposes [5, 7, 15, 19, 24].

However, despite the fact that the computational and approximation-theoretic prop-
erties of wavelets are often used simultaneously, one should note that there is a,
somewhat subtle, gap separating the two: Strictly speaking, the computational
part only applies to discrete time signals and their decomposition by the fast
wavelet transform, whereas the latter are only applicable to continuous-time signals.

This gap has been acknowledged early on, but not much has been done since to
close it. In this thesis, we present a discrete-time version of wavelet approxima-
tion theory, that is specifically tuned to the fast wavelet transform. As one might
expect, it is again linked to a scale of Besov spaces, previously defined by Torres [31].
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To be more precise, let us define for α ∈ R, 0 < p, q < ∞, the coefficient spaces
ḃαp,q(R) as the collection of all complex-valued sequences t = (tj,l)j,l∈Z, satisfying

‖t‖ḃαp,q(R) := (
∑
j∈Z

(
∑
l∈Z

(2−j(α+1/2−1/p)|tj,l|)p)q/p)1/q <∞.

These norms are used to measure the decay of the expansion coefficients of a signal
f in a wavelet orthonormal basis. Such a basis is a system (ψj,l)j,l∈Z of functions
arising from a suitable ‘mother wavelet’ ψ ∈ L2(R) by translation and dilation,

ψj,l(x) = 2−j/2ψ(2−jx− l) .

A short survey of wavelet bases in L2(R) and their construction can be found in
Section 2.1.

Typically, wavelets fulfill additional desirable properties, besides generating an or-
thonormal basis, such as

• smoothness, i.e. ψ ∈ CM , for M ∈ N

• vanishing moments:
∫

R ψ(x)xidx = 0, for i = 0, . . . , K − 1.

• compact support.

It is known that if the wavelet family (ψj,l)j,l∈Z has the above properties with M
and K large enough, then a function f is in a Besov space Ḃα

p,q(R), if and only if

(〈f, ψj,l〉) is in the corresponding coefficient space ḃαp,q(R); see e.g. [17]. In addition,
we have the norm equivalence

‖f‖Ḃα
p,q(R) � ‖(〈f, ψj,l〉)‖ḃαp,q(R) .

Early on, these norm equivalences have been related to the nonlinear approximation
behavior of wavelet expansions and to wavelet applications: a decay of coefficients
like in ḃαp,q(R) is linked to the decay of the approximation error of wavelet expansions
by N > 0 terms (see [7] or Section 1.2.1 below).

These results are widely used in signal and image processing: A small list of ref-
erences that use the relationship between wavelets and Besov space to derive algo-
rithms for diverse problems such as denoising, compression, deconvolution or Radon
inversion, is [5, 10, 1, 2, 24, 13, 21].

In most applications however, the data under consideration are given discretely, and
are processed by the fast wavelet transform. This algorithm arises naturally from a
multiresolution analysis, which can be associated to most orthonormal wavelet
bases (in particular to all smooth wavelets with compact support, see [22]).

Thus, a discrete series (f(n))n∈Z is mapped to the family of (dj,l)j≥1,l∈Z of discrete
wavelet coefficients. Observe that by the Fischer-Riesz theorem, each coefficient dj,l
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is given by the scalar product of f with a suitable discrete-time wavelet hj,l.

This suggests to consider the space of (truncated) coefficient families, bαp,q(Z), for
α ∈ R, 0 < p, q <∞, as the collection of complex-valued sequences s = (sj,l)j≥1,l∈Z,
for which

‖s‖bαp,q(Z) := (
∑
j≥1

(
∑
l∈Z

(2−j(α+1/2−1/p)|sj,l|)p)q/p)1/q <∞.

This coefficient decay still reflects the non-linear approximation behavior of (f(n)).

It is therefore natural to ask whether the property (dj,l)j≥1,l∈Z ∈ bαp,q(Z) can be char-
acterized - in a similar satisfactory way as in the continuous case - from properties
of the filter bank or, equivalently, the discrete-time wavelet family (hj,l)j≥1,l∈Z and
of the sequence f .

Somewhat surprisingly, literature so far does not seem to provide a simple answer to
this question. Nonetheless, the norm equivalence in the continuous time-case is the
basis of heuristics which are applied to the discrete setting, where only the truncated
coefficient series are available.

The continuous theory has the following to offer: Let φ be the scaling function
associated to the multiresolution analysis, and define the continuous-time function
F =

∑
n∈Z f(n)τnφ, where τnφ denotes the translate of φ. Then the wavelet coeffi-

cients of F coincide with (dj,l)j≥1,l∈Z for j ≥ 1, and vanish for scales j ≤ 0. Hence,
assuming sufficient vanishing moments, smoothness and decay of the associated con-
tinuous time wavelets,

(dj,l)j≥1,l∈Z ∈ bαp,q(Z) ⇔ F ∈ Ḃα
p,q(R) .

However, F is not easily accessible. The problem is presented by the scaling function
φ: For many wavelet bases, and in particular for the compactly supported wavelets,
the scaling function is only known implicitly, as the result of a limit process.

Hence, membership of F in a Besov space is not easily checked, and the equivalence
is almost useless.

We have not been able to locate any result in literature dealing with this problem,
the continuous-time setting does not give a conclusive answer to our question.
Hence we arrive at the following (somewhat overstated) conclusion: An algorithm
using the cascade algorithm, but derived from heuristics using the Besov
space characteristics in continuous time, is not theoretically justified.

Summary

The main purpose of this thesis is to give criteria for (dj,l)j≥1,l∈Z ∈ bαp,q(Z), with
arguments that do not use any embedding into the continuous-time setting. In
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this way, we obtain that the discrete-time wavelets associated to a multiresolution
analysis are unconditional bases for a whole family of discrete-time signal spaces.
It may not be too surprising that the resulting spaces are again Besov spaces, the
discrete Besov spaces Bα

p,q(Z) introduced by Torres [31].
While this thesis strictly avoids any appeal to the continuous time theory, we will
adopt the proof strategy and techniques from the continuous setting, as presented
in the book of Frazier, Jawerth and Weiss [17] or, in a slightly more general context,
by Kyriazis [14].

Chapter 1 provides a short introduction to Besov spaces on R, and their various
characterizations, using moduli of smoothness (Section 1.1.1), Littlewood-Paley the-
ory (Section 1.1.2), ϕ-transforms (Section 1.1.3) or wavelets (Section 1.1.4). This is
on the one hand intended as an introduction, providing a first glimpse on techniques
that are used and adapted later on, and showing the versatility of Besov spaces. But
it is also a precursor of the discrete-time results we establish later on: Analogs to all
of these characterizations will be established in Chapter 3 for discrete-time signals.

In Section 1.2, we elaborate on our previously made statement that Besov space the-
ory and wavelet approximation theory can be considered as identical, by discussing
the relationship between Besov spaces and nonlinear wavelet approximation. With
most of the central notions and definitions established, we then describe the aims of
this thesis in somewhat greater detail (Section 1.3).

Chapter 2 is devoted to an introduction to wavelets. Even though the focus of
this work is on discrete-time wavelets, we start out with a short rundown of the
basic facts concerning wavelet orthonormal bases and multiresolution analysis in
continuous time. In particular, we explain the origin of the fast wavelet transform
from a continuous time multiresolution analysis (Section 2.1.1), and shortly discuss
additional desirable properties of wavelets in L2(R) such as vanishing moments,
smoothness and compact support (Section 2.1.2). We shortly comment on biorthog-
onal wavelets, as all of our results later on can be established without any additional
effort for the biorthogonal setting (Section 2.1.3).

We then turn attention to discrete-time wavelets. Discrete-time wavelet systems
arise as a byproduct of the fast wavelet transform (Section 2.2.1), but can be under-
stood as systems of oscillatory building blocks indexed by translation parameters
and (dyadic) scale parameters (Theorem 2.2.2). Of crucial importance for Chapter
3 will be additional properties of the wavelet system, such as vanishing moments,
support properties and – somewhat unexpectedly – regularity (Section 2.2.2). This
latter property has been introduced by Rioul [26]; it connects discrete-time wavelets
to continuous-time wavelets via large scale limits (Section 2.2.3).

Chapter 3 finally deals with the central purpose of this thesis, namely the charac-
terization of Besov spaces in discrete time. For the definition of these spaces, the
starting point is the so-called ϕ-transform characterization of Bα

p,q(Z), established by
Torres. Just as in the continuous case, this transform is in many ways quite similar
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to a wavelet transform, and this similarity allows a proof of the main result by study-
ing off-diagonal decay of certain infinite matrices. This decay behavior is derived
from suitable conditions regarding support, vanishing moments and smoothness of
the discrete-time wavelets as provided by Section 2.2.2.

Chapter 1 showed that the Besov spaces on R have quite a number of different, but
equivalent descriptions. Using our wavelet characterization, we can prove that the
same is valid for their counterparts on Z. We obtain further descriptions of these
spaces, which can be viewed as more ‘intrinsic’ in contrast to the Littlewood-Paley
type definition in [31], such as in terms of iterated differences and mean oscillation
properties (Section 3.4).

Mimicking the definition of moduli of smoothness for continuous-time functions, we
define for 1 < p < ∞, t ∈ R+, the r-th order modulus of smoothness of f in lp(Z)
by

ωrp(f, t) = sup
m∈Z,|m|<t

‖∆r
mf(·)‖p,

where ∆r
mf(n) is the difference operator ∆mf(n) = f(n+m)−f(n) iterated r times.

For α > 0, 1 < p, q <∞, r = bαc+ 1, we define the space Bα
q (lp(Z)) as the space of

sequences (f(n)), such that

‖f‖Bα
q (lp(Z)) := (

∑
j≥1

(2−jαωrp(f, 2
j))q)1/q <∞

We show that for α > 0, 1 < p, q <∞ the spaces Bα
q (lp(Z)) coincide with the Bα

p,q(Z)
with equivalent norms (Theorem 3.4.6).

Another characterization for the discrete-time Besov spaces we get in a straightfor-
ward manner is a description in terms of mean oscillation over intervals (Theorem
3.4.9).

For continuous-time Besov spaces, this type of characterization was given in [9]
and in [8]. [30] contains a description of discrete-time in terms of mean oscillation
properties of sequences for some special cases of the parameters α, p, q.
The results of Section 3.4 exhibit the usefulness of our wavelet characterization in
Theorem 3.3.8, and they emphasize the view of discrete-time Besov spaces as worthy
analogs of their continuous-time counterparts.

We also treat another scale of function spaces in this thesis: in Chapter 4, we
present a discrete-time wavelet characterization for the discrete-time Triebel-Lizorkin
Fα
p,q(Z) spaces analog to our result for Bα

p,q(Z). These spaces were already discussed
by Q. Sun in [29] in terms of smooth atomic decompositions. Theorem 4.2.6 provides
a new characterization of these spaces, not contained in Sun’s results.
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Preliminaries

This section is mainly thought to fix notation. It also provides a short review of
bases for Hilbert and Banach spaces, but this is kept short and is just meant to to
provide the language we use later on in this thesis.

For 1 ≤ p < ∞, the space Lp(R) is defined as the space of measurable functions f
on R, for which

‖f‖Lp(R) =

(∫
R
|f(t)|p

)1/p

<∞.

Equipped with the above norm, Lp(R) is a Banach space, provided that almost
everywhere agreeing functions are identified. For p = ∞, the integral above is
replaced by ess sup in the usual way.

`p(Z) denotes the corresponding p-summable sequence space.

The Fourier transform on L1(R) is defined by

f̂(ω) =

∫
R
f(t)e−iωtdt ,

and is extended to the Plancherel transform on L2(R). With the chosen normaliza-
tion, one has

‖f̂‖L2(R) =
1

2π
‖f‖L2(R).

S(R) denotes the Schwartz space of rapidly decreasing functions, and S ′(R)
its dual, the space of tempered distributions.

By 〈f, g〉, we denote the standard inner product in a Hilbert space, as well as the
pairing of a tempered distribution with a Schwartz function g.

The involution for a sequence reads as g∗(n) = g(−n), where g stands for complex
conjugation.

The convolution product of f ∈ S ′(R) with a Schwartz function h ∈ S(R) is
defined by

〈f ∗ h, g〉 = 〈f, h∗ ∗ g〉,

where for h, g ∈ S(R),

h ∗ g(·) =

∫
h(t)g(· − t)dt.

The convolution product of two sequences g, h is defined by

g ∗ h(n) =
∑
k

g(k)h(n− k).
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For a function f defined on R, the support of f is defined as supp f = {t : f(t) 6= 0}.
For a sequence g = (g(n))n∈Z, supp g will be the smallest interval containing those
n for which h(n) 6= 0.

For N ∈ N, the upsampling operator acting on a sequence g is defined by
↑N g(n) = g(N−1n), if N−1n ∈ Z and 0 otherwise;

the downsampling operator is defined by ↓N g(n) = g(N n).

To avoid cluttered notation, C denotes a constant which is allowed to change within
an argument. The notion A � B means that there exist constants C1, C2 > 0, such
that C1 A ≤ B ≤ C2 B.

Bases for Hilbert and Banach spaces

In this thesis, we frequently use different concepts of bases in Hilbert and Banach
spaces. We give some of the most elementary definitions and results, taken from [4].

Let in the following H be a separable Hilbert space and I a countable index set. We
assume I to be suitably numbered, thus introducing a summation order on I.

Definition 0.1. A family of vectors (en)n∈I ⊆ H is an orthonormal system
(ONS), if

〈en, em〉 = δn,m, for all n,m ∈ I,

where δn,m = 1 for n = m and 0 otherwise.

Definition 0.2. An ONS (en)n∈I ⊆ H is an orthonormal basis (ONB) if it is
complete in H:

H = span{en}. (0.0.1)

Equation (0.0.1) is equivalent to

‖f‖2
H =

∑
n∈I

|〈f, en〉|2 for all f ∈ H.

Definition 0.3. A family of vectors (fn)n∈I ⊆ H is a Riesz Basis for H, if there
exists an ONB (en)n∈I for H and a bounded invertible mapping T : H → H, such
that Ten = fn for all n ∈ I.

Associated to any Riesz basis is a dual family, which is also a Riesz Basis.
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Theorem 0.4. If (fn)n∈I is a Riesz Basis for H, there exists a unique family
(f̃n)n∈I ⊆ H, such that for every f ∈ H

f =
∑
n∈I

〈f, f̃n〉fn.

(f̃n) is also a Riesz basis and (fn), (f̃n) are biorthogonal, i.e.

〈fn, f̃m〉 = δn,m, for all n,m ∈ I.

In this sense, we call the families (fn), (f̃n) biorthogonal bases.

For a Riesz Basis (fn), there exist constants A,B > 0, such that for every f ∈ H,

A
∑
n

‖f‖2
H ≤

∑
n

|〈f, fn〉|2 ≤ B
∑
n

‖f‖2
H.

The constants therein are called Riesz bounds. Of course, any ONB is a Riesz
basis with Riesz bounds A = B = 1.

Let us now consider the more general situation in a Banach space B, where the
concept of orthogonality is not applicable anymore.

Definition 0.5. A family of vectors (en)n∈I ⊆ B is a Schauder basis if for each
f ∈ B, there exist unique coefficients (cn)n∈I , such that

f =
∑
n∈I

cnen (0.0.2)

with convergence in B.

The above definition depends on the order of summation: it can happen that the
sum is divergent for a certain permutation of summands. We thus introduce the
notion of unconditional convergence.

Definition 0.6. A Schauder Basis (en)n∈I ⊆ B is an unconditional basis, if
the series (0.0.2) converges unconditionally, i.e.

∑
n∈I cσ(n)eσ(n) converges for all

permutations σ of I. In this case, the limit is the same, regardless of the order of
summation.

The concept of an unconditional basis in a Banach space extends that of a Riesz
basis in a Hilbert space H. In fact, any Riesz basis for H is an unconditional basis
for H.



Chapter 1

Besov Spaces on R

As stated in the introduction, this thesis deals with characterizations of discrete-time
function spaces with a focus on discrete-time Besov spaces.

In this chapter, we give an overview of their continuous-time counterparts, the Besov
spaces on R. Roughly spoken, the Besov class can be viewed as a generalization of
classical smoothness spaces, such as Hölder or Sobolev spaces, to spaces of functions
and distributions possessing smoothness of order α ∈ R, measured in different Lp

spaces. A third parameter q allows finer distinctions.

In literature, a multitude of different but equivalent definitions of Besov spaces can
be found, their description depending on the devices which are used to measure
smoothness. In the first section, we recall some of these characterizations.

Furthermore, Besov spaces are related to nonlinear approximation behavior of wavelet
expansions. Simplistically, approximating a function which is contained in a Besov
space of order α by N terms of a wavelet series, the approximation error decreases
in O(N−α). This issue, which in fact could be regarded as another characterization
for certain Besov spaces, is described more precisely in Section 1.2 of this chapter.

In the next section, we switch from continuous to discrete time: In wavelet appli-
cations such as signal or image processing, the data under consideration are given
discretely. Passing such a discrete-time function through a wavelet filter bank, decay
properties of the arising coefficients still reflect nonlinear approximation properties
of the function, whereas the continuous-time theory, though serving as a basis of
heuristics, does not provide a satisfactory characterization of these signals via func-
tion spaces.

So, on the one hand, this chapter serves to motivate the study of discrete-time Besov
spaces and to specify the aims of this thesis in Section 1.3. On the other hand, it is
also meant as a short overview on continuous-time Besov spaces and a quick guided
tour through the multitude of their different descriptions, which are spread among
literature.

15



16 1.1 Besov Spaces on R and their Characterizations

1.1 Besov Spaces on R and their Characteriza-

tions

There is no unique way to define Besov spaces. There is a large variety of descrip-
tions, which are essentially equivalent to each other. This property of Besov spaces
can be the source of confusion, in particular as notations and normalizations tend to
vary between different sources, but it also reflects their status as an important class
of function spaces, located at the intersection of various mathematical subdisciplines.

The characterizations given here can be grouped roughly into two categories. The
first class of approaches characterizes functions and distributions by their smooth-
ness in terms of derivatives or differences, whereas the other way to measure smooth-
ness presented here uses Fourier analytical devices.

To clarify these notions, we start by recalling a class of well-known smoothness
spaces, the class of Sobolev spaces in L2(R). We will introduce two types of spaces:
the homogeneous and the inhomogeneous spaces.

Definition 1.1.1. Let k ∈ N. The homogeneous Sobolev space Ẇ k
2 (R) is

defined as the space of tempered distributions f on R, for which the (distributional)
derivative of order k, Dkf , is in L2(R).

For f ∈ S ′(R), |f |Ẇk
2 (R) := ‖Dkf‖L2(R) defines a semi-norm on Ẇ k

2 (R).

Note that these semi-norms are not norms in general: |f |Ẇ 2
k (R) = 0 for f a polyno-

mial of order less than k. They become norms for tempered distributions modulo
polynomials. We will also encounter this situation in the Besov case later on, so this
remark should just serve as a first warning to the reader.

Definition 1.1.2. Let k ∈ N. The inhomogeneous Sobolev space W k
2 (R) is

defined as the space of tempered distributions on R having all their (weak) derivatives
up to order k in L2(R).

Equipped with the norm ‖f‖Wk
2 (R) :=

∑
i≤k ‖Dif‖L2(R), W

k
2 (R) is a Hilbert space.

In the introduction to this chapter, we claimed that one could regard Besov spaces
as certain generalizations of classical function spaces such as the Sobolev spaces.
A first attempt in this direction could be to ask for spaces W α

2 (R), where α is
nonintegral. H.Triebel [33] describes this as ‘filling the gaps’ betweeen the spaces
L2(R) =: W 0

2 (R), W 1
2 (R), W 2

2 (R), . . . .

A first ‘filling’ can be obtained via differences, inspired by the definition of Hölder
spaces:
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Let Bα
2 (R), 0 < α < 1, be the collection of f ∈ S ′(R), such that

‖f‖Bα
2 (R) := ‖f‖L2(R) +

(∫
R×R

(
|f(x)− f(y)|
|x− y|α

)2
dxdy

|x− y|

)1/2

<∞.

Clearly, this can be easily extended to larger values of α, using differences on the
derivatives or working with higher order differences.

One could also consider to replace the L2(R)-norms by Lp(R)-norms where p 6= 2.
This will lead to the definition of Besov spaces via iterated differences in Lp(R),
decaying in Lq(R) in a certain way towards small differences. This will be the topic
of Subsection 1.1.1. The Slobodeckij spaces Bα

2 (R) above will coincide with the
spaces Bα

2 (L2(R)) in these terms.

For a second way to fill the gaps, let us go back to the Sobolev spaces W k
2 (R), k ∈ N.

Using the fact that differentiation corresponds to pointwise multiplication with the
argument on the Fourier side, it is easy to see that they admit a characterization in
Fourier analytical terms. Their norm is equivalent to

‖f‖Wk
2 (R) � ‖(1 + |ω|2)k/2f̂(ω)‖L2(R).

Replacing the integer exponent by a more general α ∈ R+ leads to

‖f‖Wα
2 (R) := ‖(1 + |ω|2)α/2f̂(ω)‖L2(R),

and in fact, we have Wα
2 (R) = Bα

2 (R): the two filling procedures lead to the same
spaces. Also the homogeneous Sobolev space semi-norms can be described by the
decay of the Fourier transform:

|f |Ẇk
2 (R) � ‖|ω|kf̂(ω)‖L2(R).

Again, in both cases, one could think of generalizing these spaces to some Lp(R),
yielding the so called Liouville or Bessel potential spaces, see [33].

A more general approach uses Littlewood-Paley theory. Littlewood and Paley ob-
tained a characterization of Lp(T), 1 < p < ∞ in terms of trigonometric series.
Furthermore, they showed that the p-norm is equivalent to a certain norm on the
Fourier coefficients. The 2π-periodic functions in Lp are thereby fully characterized
by the behavior of their Fourier expansions.

So, the basic idea is to characterize function spaces by certain sets of functions which
‘span’ these spaces and moreover, give rise to an equivalent description in terms of
the associated ‘expansion coefficients’.

The precise formulation requires a number of technical assumptions:
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Let ϕ ∈ S(R), satisfying

supp ϕ̂ ⊆ {ω : π/4 < |ω| < π}, (1.1.1)

for some C, ε > 0, |ϕ̂(ω)| > C on {ω : π/4 + ε < |ω| < π − ε}. (1.1.2)

Further, let ϕ be such that for (ϕν)ν∈Z = (2−νϕ(2−ν ·))ν∈Z, we have∑
ν∈Z

|ϕ̂ν(ω)|2 = 1 for ω ∈ R \ {0}. (1.1.3)

As the (ϕ̂ν) form a partition of unity (1.1.3), and as |ω|2k � 2−2νk on supp ϕν , this
yields for the Sobolev semi-norm

|f |2
Ẇk

2 (R)
= ‖Dkf‖2

L2(R) �
∫

R
|ω|2k|f̂(ω)|2dω

=
∑
ν∈Z

∫
R
|ω|2k|f̂(ω)|2|ϕ̂ν(ω)|2dω

�
∑
ν∈Z

2−2νk

∫
R
|f̂(ω)|2|ϕ̂ν(ω)|2dω

=
∑
ν∈Z

(2−νk‖f ∗ ϕν‖L2(R))
2. (1.1.4)

The underlying idea is that any L2(R)-function can be decomposed as

f =
∑
ν∈Z

f ∗ ϕν ∗ ϕ∗ν , (1.1.5)

where ϕ∗ν(x) = ϕν(−x). (1.1.5) is called the Calderón reproducing formula.

The map f 7→ (f ∗ ϕν)ν∈Z can be understood as a decomposition of f into signal
components f ∗ϕν whose Fourier transforms are localized in dyadically spaced ‘fre-
quency bands’. The smoothness of f is then related to the decay of the L2-norms of
the different components. On the one hand, this definition reflects the well-known
characterization of global smoothness via the Fourier transform, but the use of a
smooth partition of unity in Fourier domain, resulting in a rapidly decaying window
ϕ, allows to measure smoothness of a function locally.

One can now consider this decay in other norms than L2, which will lead to another
equivalent definition of Besov and related spaces. We describe this more detailed
in Subsection 1.1.2. Of course, the meaning of (1.1.5) has then to be handled with
great care. For general f ∈ S ′(R), the expansion will converge (in the weak-∗-sense)
only ‘modulo polynomials’. This issue is also a topic of Subsection 1.1.2.
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The next Subsection, 1.1.3, deals with the ϕ-transform characterization of Besov
Spaces. By discretizing Calderón’s formula, Frazier and Jawerth [15], [16] obtained
that for any f in a Besov space,

f =
∑
ν,k∈Z

〈f, ϕν,k〉ϕν,k, (1.1.6)

where for k ∈ Z, ϕν,k(x) = 2−ν/2ϕ(2−νx − k). Moreover, the membership of
f in a Besov space is fully characterized by the membership of the coefficients
(〈f, ϕν,k〉)ν,k∈Z in a sequence space.

This decomposition for distributions in the discrete-time Besov space is similar to an
expansion into an orthonormal wavelet basis, though non-orthogonal and with ‘basis
elements’ that are compactly supported in Fourier domain. In Subsection 1.1.4, we
shortly explain how to derive that L2(R)-orthonormal wavelet bases - satisfying
certain additional conditions - are unconditional bases for the Besov spaces as well.

Although we focus on the Littlewood-Paley description and the ϕ- and wavelet
transform characterizations derived from it, we start with the Besov space definition
based on iterated differences, which is frequently used in literature.

1.1.1 Moduli of Smoothness

In this subsection, we define Besov spaces as spaces of functions with a common
order of smoothness, which is measured via iterated differences. These spaces will
be denoted by Bα

q (Lp(R)) and Ḃα
q (Lp(R)), respectively. As this subsection is mainly

introductory, we restrict our discussion to spaces where α > 0, 1 < p, q < ∞ in
order to avoid special case treatment. For a more detailed discussion, we refer e.g.
to [25] or [34].

Let h ∈ R. For a function f defined on R, the (forward) difference operator of step
h is given by

∆hf(x) = f(x+ h)− f(x),

and for r ∈ N+, define the difference operator of order r, step h, inductively by

∆r
hf(x) = ∆h(∆

r−1
h f(x)).

Note that the r-th difference operator in explicit form is given by

∆r
hf(x) =

r∑
k=0

(
r

k

)
(−1)r−kf(x+ kh).

Definition 1.1.3. For 1 < p < ∞, t ∈ R+, the r-th order modulus of smooth-
ness of f in Lp(R) is defined by

ωrp(f, t) = sup
h∈R,|h|<t

‖∆r
hf(·)‖p.
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Let f, g be defined on R. Then, for each t ∈ R+,

ωrp(f + g, t) ≤ ωrp(f, t) + ωrp(g, t), (1.1.7)

and for f multiplied by a scalar α,

ωrp(αf, t) ≤ |α|ωrp(f, t). (1.1.8)

As ωrp(f, t) vanishes for polynomials of degree ≤ r− 1, ωrp(·, t) is a semi-norm on the
set of functions for which ωrp(f, t) <∞.

ωrp(f, t) is increasing for each p and r, furthermore, for M ∈ N,

ωrp(f,M · t) ≤M rωrp(f, t). (1.1.9)

So if ωrp(f, t) <∞ for some t > 0, it is finite for all t ∈ R+.

For f ∈ Lp(R), we have

ωrp(f, t) ≤ 2r‖f‖p. (1.1.10)

Therefore, functions in Lp(R) have finite moduli of smoothness, but note that con-
versely, functions with finite moduli of smoothness are not necessarily in Lp(R).

For f ∈ Lp(R), we have ωrp(f, t) → 0 monotonically as t → 0. Generally speaking,
the faster this convergence, the smoother f .

Note that the Lp-norm in the definition of ωrp(f, t) allows a rather wild behavior of
f , as long as the exceptional set has small measure. This property implies a certain
tolerance of Besov spaces Ḃα

q (Lp(R)) we define below, with respect to jumps.

Definition 1.1.4. For α > 0, 1 < p, q <∞, r = bαc+ 1, a function f defined on R
is said to be in the homogeneous Besov space Ḃα

q (Lp(R)), if

|f |Ḃα
q (lp(Z)) := (

∫ ∞

0

(t−αωrp(f, t))
q dt

t
)1/q <∞. (1.1.11)

The | · |Bα
q (Lp(R)) are semi-norms in general because of the polynomial cancellation

properties of the moduli of smoothness; they become norms modulo polynomials of
degree ≤ r − 1. Furthermore, the Ḃα

q (Lp(R))-seminorms are all equivalent modulo
polynomials using different moduli of smoothness r > α in the definition.

We define the corresponding inhomogeneous Besov spaces Bα
q (Lp(R)) by the norm

‖f‖Bα
q (Lp(R)) := ‖f‖Lp(R) + |f |Ḃα

q (Lp(R)).
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Using the monotonicity of ωrp(f, ·) and (1.1.9), the semi-norm can be discretized,
yielding an equivalent semi-norm

|f |Ḃα
q (Lp(R)) � (

∑
j∈Z

(2−jαωrp(f, 2
j))q)1/q. (1.1.12)

The above spaces Ḃα
q (Lp(R)) and Bα

q (Lp(R)), respectively, generalize the consider-
ations from the introduction to this section: choosing p = q = 2 and α = k ∈ N,
these spaces coincide with the homogeneous resp. inhomogeneous Sobolev spaces of
order k. For nonintegral α, we have Bα

2 (L2(R)) = Bα
2 (R), the Slobodeckij spaces

[33].

1.1.2 Littlewood-Paley Type Characterization

In this subsection, we give a Littlewood-Paley type definition of homogeneous and
inhomogeneous smoothness spaces Ḃα

p,q(R) and Bα
p,q(R), α ∈ R and 0 < p, q ≤ ∞.

These spaces will coincide with the Besov spaces Ḃα
q (Lp(R)) and their inhomoge-

neous analogs, respectively, which we defined in the last subsection via iterated
differences.

The principle behind this type of characterization of Besov spaces is to decompose
distributions into series of smooth components:

Let (ϕν)ν∈Z be a family of rapidly decreasing functions, satisfying (1.1.1)-(1.1.3).

Recall from above that for f ∈ L2(R) (see (1.1.5)):

f =
∑
ν∈Z

f ∗ ϕν ∗ ϕ∗ν ,

with convergence in L2(R) (Calderón formula) and

‖f‖2
L2(R) =

∑
ν∈Z

‖f ∗ ϕν‖2
L2(R). (1.1.13)

Thereby, L2(R)-functions are characterized by the size of the ‘smooth parts’ f ∗ϕν .
We want to generalize this type of result to other spaces (a first example was given
in the beginning of this chapter concerning Sobolev spaces). As a first step in
this direction, we will investigate the convergence of Calderón’s formula in spaces
different from L2(R).

For f ∈ S ′(R), Calderón’s formula does in general not converge in the distributional
sense. The sum over ν ≥ 1 may diverge, see the examples in [23] and [14].

However, it can be shown that the series∑
ν∈Z

Di(f ∗ ϕν ∗ ϕ∗ν) (1.1.14)
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converges for some i ∈ N.

This is in fact equivalent to the existence of a sequence of polynomials {Pk}k≥1 of
degree less than i, such that

g := lim
k→∞

(
k∑

ν=−∞

f ∗ ϕν ∗ ϕ∗ν + Pk),

in S ′(R).

Furthermore, the limit above differs from f by a polynomial, as supp (f̂ − ĝ) = 0.

Altogether, we have for f ∈ S ′(R)

f =
∑
ν∈Z

f ∗ ϕν ∗ ϕ∗ν , (1.1.15)

with convergence in S ′/P(R), the equivalence class of tempered distributions modulo
polynomials.

We now define smoothness spaces by generalizing (1.1.13).

Definition 1.1.5. For α ∈ R, 0 < p, q ≤ ∞, the space Ḃα
p,q(R) is the collection of

all f ∈ S ′/P(R) , such that

‖f‖Ḃα
p,q(R) := (

∑
ν∈Z

(2−να‖f ∗ ϕν‖Lp(R))
q)1/q <∞ .

This definition is independent of the choice of the family (ϕν)ν∈Z.

The Ḃα
p,q(R) spaces are Banach spaces for 1 ≤ p, q < ∞ and quasi-Banach spaces

otherwise.

The underlying concept of measuring smoothness as in (1.1.5) is quite different from
(1.1.12), but in fact, Ḃα

p,q(R) and Bα
q (Lp(R)) agree (modulo polynomials) at least

for α > 0, 1 < p, q < ∞, the range of parameters for which we defined the latter.
Especially we saw in (1.1.4) that Ḃk

2,2(R) = Ẇ k
2 (R) for k ∈ N. On account of this,

we will also call the Ḃα
p,q(R) spaces homogeneous Besov spaces, with a now extended

range of parameters.

One also can define inhomogeneous spaces Bα
p,q(R) by replacing the low frequency

parts in the Calderón formula by a single function:

Let Φ ∈ S(R), where supp Φ̂ ⊆] − π, π[ and for some C, ε > 0, |Φ̂(ω)| > C on
{ω : π + ε < |ω| < π + ε}.
Let (ϕν)ν∈Z again satisfy (1.1.1) and (1.1.2), such that

|Φ̂(ω)|2 +
∑
ν≤−1

|ϕ̂ν(ω)|2 = 1.
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We have now for f ∈ S ′(R)

f = f ∗ Φ ∗ Φ∗ +
∑
ν≤−1

f ∗ ϕν ∗ ϕ∗ν . (1.1.16)

Definition 1.1.6. For α ∈ R, 0 < p, q ≤ ∞, the space Bα
p,q(R) is the collection of

all f ∈ S ′(R), such that

‖f‖Bα
p,q(R) := ‖f ∗ Φ‖Lp(R) + (

∑
ν≤−1

(2−να‖f ∗ ϕν‖Lp(R))
q)1/q <∞ .

Again, these space agree with the Besov spaces from Subsection 1.1.1 for the pa-
rameters α, p, q, for which the latter is defined. Thereby, we will call the Bα

p,q(R)
spaces inhomogeneous Besov spaces as well.

The terms homogeneous and inhomogeneous originate from the behavior of both of
the spaces concerning dilation, as for the homogeneous Besov spaces Ḃα

p,q(R), l ∈ Z,

‖f(2l·)‖Ḃα
p,q(R) = C2l(α−1/p)‖f‖Ḃα

p,q(R),

whereas for the inhomogeneous spaces, this equality is generally not true [32].

1.1.3 ϕ-transform Characterization

In [15], Frazier and Jawerth introduced the so-called ϕ-transform, which can be
viewed as a a critically sampled version of (1.1.5). The function spaces which
are described by Littlewood-Paley expressions can also be characterized by the
ϕ-transform. More precisely, the ϕ-transform coefficients carry all the necessary
information to conclude the membership of a distribution in a Besov space. More-
over, the condition on the coefficients is just a size condition, which may simplify
applications such as the study of linear operators on the Ḃα

p,q(R) (and the Bα
p,q(R))

and related spaces. A more detailed descripition of these results can be found in
[15],[16] or [17].

Consider again a function ϕ ∈ S(R), satisfying (1.1.1), (1.1.2) and (1.1.3).

For ν, k ∈ Z let
ϕν,k(x) = 2−ν/2ϕ(2−νx− k).

Starting from the formula (1.1.5) and using techniques similar to Shannon sampling,
Frazier and Jawerth derived that for any f ∈ S ′(R)

f =
∑
ν∈Z

∑
k∈Z

〈f, ϕν,k〉ϕν,k, (1.1.17)
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with convergence in S ′/P(R), which is a discretization of 1.1.15.

Furthermore, the Besov space norms can be equivalently expressed in terms of the
coefficients.

Definition 1.1.7. For α ∈ R, 0 < p, q ≤ ∞, let the coefficient spaces ḃαp,q(R) be the
collection of all complex-valued sequences s = (sν,k)ν,k∈Z, satisfying

‖s‖ḃαp,q(R) := (
∑
ν∈Z

(
∑
k∈Z

(2−ν(α+1/2−1/p)|sν,k|)p)q/p)1/q <∞. (1.1.18)

Let the ϕ-transform Sϕ for f ∈ S ′(R) be defined by Sϕf = s = (sν,k)ν,k∈Z, where
sν,k = 〈f, ϕν,k〉, and for a complex-valued sequence t = (tν,k)ν,k∈Z define the inverse
ϕ-transform by Tϕ by Tϕt =

∑
ν,k tν,kϕν,k.

In [15], Frazier and Jawerth prove the following result:

Theorem 1.1.8. Let α ∈ R, 0 < p, q ≤ ∞.
Both of the operators Sϕ : Ḃα

p,q(R) → ḃαp,q(R) and Tϕ : ḃαp,q(R) → Ḃα
p,q(R) are bounded

with ‖f‖Ḃα
p,q(R) � ‖Sϕf‖ḃαp,q(R) and Tϕ ◦ Sϕ = idḂα

p,q(R).

In other words, under these maps, Ḃα
p,q(R) is a retract of ḃαp,q(R), and Ḃα

p,q(R) can

be identified with the closed subspace Sϕ(Ḃ
α
p,q(R)) of ḃαp,q(R).

Observe that the well-definedness and unconditional convergence of Tϕt =
∑

ν,k tν,kϕν,k,
which was not clear initially, follows from the theorem.

There is an analogous result concerning the inhomogeneous spaces, starting from
the identity (1.1.16).

Let again Φ ∈ S(R), with supp Φ̂ ⊆]− π, π[ and for some C, ε > 0, |Φ̂(ω)| > C on
{ω : π + ε < |ω| < π + ε} and let (ϕν)ν∈Z satisfy (1.1.1) and (1.1.2), such that

|Φ̂(ω)|2 +
∑
ν≤−1

|ϕ̂ν(ω)|2 = 1.

Write again ϕν,k(x) = 2−ν/2ϕ(2−νx− k) for ν, k ∈ Z and Φk(x) = Φ(x− k).

The ϕ-transform identity for f ∈ S ′(R) now reads as

f =
∑
k∈Z

〈f,Φk〉Φk +
∑
ν≤−1

∑
k∈Z

〈f, ϕν,k〉ϕν,k, (1.1.19)

converging in the weak-∗ sense.

The size of the coefficients reflects the smoothness of the distribution f just like in
the homogeneous case. An appropriate formulation of this size condition is given in
the next definition.
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Definition 1.1.9. For α ∈ R, 0 < p, q ≤ ∞, let the spaces bαp,q(R) be the collection
of all complex-valued sequences s = (sν,k)ν,k∈Z, satisfying

‖s‖bαp,q(R) := (
∑
ν≤0

(
∑
k∈Z

(2−ν(α+1/2−1/p)|sν,k|)p)q/p)1/q <∞. (1.1.20)

Let now the ϕ-transform for f ∈ S ′(R) be defined by the mapping on the coefficients
(sν,k)ν≤0,k∈Z, where sν,k = 〈f, ϕν,k〉 if ν ≤ −1 and s0,k = 〈f,Φk〉. Defining the inverse
ϕ-transform in the obvious way, we have, analogously to the homogeneous spaces,
that the Bα

p,q(R) spaces are retracts of bαp,q(R) and the coefficients satisfy

‖f‖Bα
p,q(R) � ‖(sν,k)‖bαp,q(R). (1.1.21)

These results can be used for the analysis of linear operators acting on the Besov
spaces.

Let f ∈ Ḃα
p,q(R). By Theorem 1.1.8, f =

∑
ν≥1,k∈Z sν,kϕν,k, where (sν,k) = (〈f, ϕν,k〉).

Applying a linear operator T leads to

Tf =
∑
ν,k

sν,kTϕν,k

=
∑
ν,k

sν,k(
∑
µ,l

〈Tϕν,k, ϕµ,l〉ϕµ,l)

=
∑
µ,l

(
∑
ν,k

〈Tϕν,k, ϕµ,l〉sν,k)ϕµ,l. (1.1.22)

Define the matrix A by A := (aµ,l,ν,k), where aµ,l,ν,k = 〈Tϕν,k, ϕµ,l〉.
Thus, using (1.1.22)

Tf =
∑
µ,l

(As)µ,lϕµ,l,

where (As)µ,l =
∑

ν,k aµ,l,ν,ksν,k.

By Theorem 1.1.8, if A is bounded on the sequence space,

‖Tf‖Ḃα
p,q(R) ≤ C‖As‖ḃαp,q(R) ≤ C‖s‖ḃαp,q(R) ≤ C‖f‖Ḃα

p,q(R), (1.1.23)

and thereby, this implies boundedness of T . Thus, the study of bounded linear
operators on the Besov space reduces to studying matrices on the ḃαp,q(R) spaces.

More formally, for a linear operator T on Ḃα
p,q(R), define

S∗ϕ(T ) = Sϕ ◦ T ◦ Tϕ
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and similarly, for A a bounded operator on ḃαp,q(R)

T ∗ϕ(A) = Tϕ ◦ A ◦ Sϕ.

As seen in (1.1.23), T ∗ϕ is bounded. The boundedness of S∗ϕ and the fact that
T ∗ϕ ◦ S∗ϕ(T ) = Tϕ ◦ Sϕ ◦ T ◦ Tϕ ◦ Sϕ = T imply that the space of bounded linear

operators on Ḃα
p,q(R) is a retract of the space of bounded linear operators on ḃαp,q(R):

the retract property is lifted to the operator level. This allows to study operators
on the Besov spaces by studying properties of certain matrices [17].

One condition for matrices to be bounded on the coefficient space is the so-called
‘almost diagonality property’. Roughly spoken, this condition describes how fast
the size of the entries aµ,l,ν,k decays away from the diagonal, where µ = ν, l = k. An
exact definition can be found again e.g. in [17]. We will deal with matrices of this
type in more detail when dealing with the discrete-time spaces, see Lemma 3.3.7:
the conditions on the sequences therein can be viewed as almost diagonal conditions.

An application of these results is the wavelet characterization of Besov spaces, which
will be the issue of the upcoming subsection.

1.1.4 Wavelet Characterization

The ϕ-transform we discussed in the last chapter allows a characterization of Besov
spaces by the decay of the associated coefficients. It is also possible to describe these
spaces by other transforms, especially by orthonormal wavelet transforms.

In many respects, a wavelet orthonormal basis is quite similar to the system of
functions associated to the ϕ-transform. Both systems arise by picking a suitable
function, which is dilated by powers of two and translated by integer multiples of
the dilation variable. Arbitrary functions in L2 can be expanded in both systems,
and additional properties of the ϕ-function (or the wavelet) guarantee that these
expansions remain valid for other function spaces.

A more detailed exposition of the results cited below can be found in [17, 14].
The techniques used to prove these results provide a blueprint for our treatment of
discrete-time wavelets in Chapter 3.

Let ψ be a wavelet function such that the family (ψj,l)j,l∈Z = (2−j/2ψ(2−jx − l))
constitutes an orthonormal basis for L2(R) (see Chapter 2 for a quick introduction
to this issue). Furthermore, let this wavelet system fulfill the additional conditions

i) ψ possesses zero moments of a certain order N > 0,

ii) ψ is regular of order N , e.g. ψ is N times continuously differentiable,

iii) ψ is localized in time, e.g. ψ has compact support.
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We discuss these properties in more detail in 2.1.2.

In contrast to the ϕ-functions, which are band-limited Schwartz-functions with all
of their moments vanishing, the ψ-functions are now localized in time rather than
frequency and usually possess only vanishing moments and regularity of a certain
finite degree.

Nevertheless, starting from Theorem 1.1.8, one can prove that the Besov spaces can
be described also by the wavelet transform, where the number N above has to be
chosen accordingly, depending on the order of smoothness α of the space. Note that
N describes the frequency localization of ψ (see Remark 2.1.9 below), which makes
the conditions on ψ in Theorem 1.1.10 intuitively plausible.

Let the wavelet transform Sψ for f ∈ S ′/P(R) be defined by Sψf = r = (rj,l)j,l∈Z,
where rj,l = 〈f, ψj,l〉 and the inverse transform Tψ accordingly by Tψv =

∑
j,l vj,lψj,l

for a complex-valued sequence v = (vj,l)j,l∈Z.

The proof of an an analog of Theorem 1.1.8 is based on estimates on how the
properties of ψ, quantified by the number N , influence the off-diagonal decay of
the matrix A = (〈ψj,l, ϕν,k〉) and to conclude boundedness of this matrix on the
coeffient space. Using the retract property we mentioned in the last section, the
following theorem can be established [17].

Theorem 1.1.10. Let α ∈ R, 0 < p, q <∞.
Provided that N > max{α, 1/min{1, p}−1−α}, both of the operators Sψ : Ḃα

p,q(R) →
ḃαp,q(R) and Tψ : ḃαp,q(R) → Ḃα

p,q(R) are bounded with ‖f‖Ḃα
p,q(R) � ‖Sψf‖ḃαp,q(R).

Furthermore, Tψ ◦ Sψ = idḂα
p,q(R) as well as Sψ ◦Tψ = idḃα

p,q(R).

In the orthonormal wavelet case, the wavelet system in fact inherits more than the
retract property of the ϕ-transform. Under the ψ-transform, Ḃα

p,q(R) is isomorphic

to the whole space ḃαp,q(R). In particular, observe that

f =
∑
j,l∈Z

〈f, ψj,l〉ψj,l (1.1.24)

converges unconditionally in Ḃα
p,q(R). Wavelet systems satisfying the sufficient

conditions in the theorem are therefore unconditional bases for a whole scale
of Besov spaces simultaneously.

Of course, there is a similar result for the inhomogeneous Besov spaces. These
results can be found in [17], [14] or, in a slightly different context, in [20].
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1.2 Nonlinear Wavelet Approximation and Besov

Spaces

The results we presented in Section 1.1.4 are related to the nonlinear approxima-
tion behavior of wavelet expansions and to wavelet applications in signal and image
processing, such as denoising and compression; let us mention Donoho and John-
stone’s Wavelet Shrinkage (see e.g. [5]) or [24] for compression.

As a motivating example, we consider the problem of approximating a function
f ∈ L2(R) by N > 0 terms of a wavelet series. The results we give in this section
are borrowed from [7].

Let again (ψj,l)j,l∈Z be an orthonormal wavelet basis for L2(R). The task is to
approximate f ∈ L2(R) by N wavelet coefficients, i.e. to pick an approximant from

ΣN = {g ∈ L2(R) : g =
∑

(j,l)∈Λ

cj,lψj,l, Λ ⊂ N, card(Λ) ≤ N}.

This is an nonlinear problem as the spaces ΣN are nonlinear: ΣN 6= ΣN+ΣN ⊂ Σ2N .

Define the approximation error by

σN(f) = inf
g∈ΣN

‖f − g‖L2(R).

Heuristically, one can conceive that the ‘smoother’ f , the faster this error decreases.
To quantify this, we ask: for which f ∈ L2(R) we have for a given α > 0

σN(f) ≤MN−α,

for some M > 0, or, slightly stronger, f ∈ Aα
p (L

2(R),ΣN), where

Aα
p (L

2(R),ΣN) := {f ∈ L2(R),

(
∞∑
N=1

(NασN(f))p
1

N

)1/p

<∞}.

Here the justification for describing the condition

∞∑
n=1

(NασN(f))p
1

N
<∞

as ‘σN(f) decays as N−α’ is provided by the observation that NασN(f) has to
converge to zero in order to guarantee finiteness of the sum. In fact, σN has to
decay slightly faster. The p parameter plays the role of a fine-tuning parameter,
similar to the role of q in the definition of Besov spaces.

The recipe to minimize ‖f − g‖L2(R) subject to g ∈ ΣN is to build the wavelet series
up by picking the N coefficients of the largest absolute values. So let (cn) be the
permutation of the sequence (〈f, ψj,l〉)j,l∈Z, such that |c1| ≥ |c2| ≥ |c3| ≥ . . . ≥ 0.
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Then, we have σN(f) = (
∑∞

j=N+1 c
2
j)

1/2. Estimating these coefficients and using that

`p embeds continuously into `2 for 0 < p < 2, one can show that f ∈ Aα
p (L

2(R),ΣN)
if and only if (〈f, ψj,l〉)j,l∈Z ∈ `p(Z× Z), where 0 < p < 2, α = 1/p− 1/2.

As `p(Z×Z) = ḃαp,p(Z) in this case, we can conclude that, assuming certain support,
zero moment and smoothness properties of the wavelet system,

f ∈ Aα
p (L

2(R),ΣN) ⇐⇒ f ∈ Ḃα
p,p(R).

Summing up, we have that for f ∈ L2(R), a decay of the approximation error like
O(N−α) corresponds to the membership of f in a Besov space.

1.2.1 Nonlinear Approximation of Discrete-Time Signals

In applications, data are usually given discretely. Usually, these data are fed straightly
into Mallat’s cascade algorithm (see Chapter 2), using the discrete filters arising from
a continuous-time multiresolution analysis:

This way, the discrete series is mapped to a family (dj,l)j≥1,l∈Z of discrete wavelet
coefficients, which can be interpreted as expansion coefficients of the signal with
respect to a discrete-time wavelet basis.

Considering the example of N -term approximation in this discrete case, say, of
f = (f(n)) ∈ `2(Z), one can derive a similar result as in the continuous case: the
discussion above is valid for any Hilbert space and not only for the L2(R) case we
considered.

So, roughly said, we have that the `2-approximation error decreases like O(N−α) for
(dj,l) ∈ `p(N× Z), 0 < p < 2, α = 1/p− 1/2.
This suggests using the space of truncated coefficient families bαp,q(Z), α ∈ R, 0 <
p, q <∞, as the collection of complex-valued sequences s = (sj,l)j≥1,l∈Z, for which

‖s‖bαp,q(Z) := (
∑
j≥1

(
∑
l∈Z

(2−j(α+1/2−1/p)|sj,l|)p)q/p)1/q <∞. (1.2.1)

Then the task arises to characterize (dj,l)j≥1,l∈Z ∈ ḃαp,q(Z) in a similar way as for the
continuous case from properties of the sequence f alone, and to study conditions on
the filter bank rather than on the underlying continuous-time wavelets.

As we already discussed in the introduction, from the continuous-time point of view,
the decay of (dj,l) as in (1.2.1) depends on the membership of F =

∑
n∈Z f(n)τnφ in

a Besov space Bα
p,q(R), which involves the scaling function φ associated to the filter

bank.

At this point, there seems to be a gap in the theory existing so far: except for
heuristics based on the continuous-time analogue, we could not find any literature
providing a direct description for discrete data with coefficients in bαp,q(Z) in terms
of membership in a space of sequences.
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This observation is relevant because any argument citing results for the continuous
time setting, but applying them to the coefficient computed in discrete time, implic-
itly uses the coefficient norm (1.2.1) on the wavelet coefficients. Existing theory does
not even provide criteria for consistency of these norms with respect to change of
wavelet basis.

1.3 Aims of This Thesis

We are now ready to formulate the main objectives of this thesis:

1. We want to characterize wavelet coefficient decay in a purely discrete-
time setting in a way that is as complete and satisfactory as the characteriza-
tion for continuous-time signals. This leads us to the study of Besov spaces
on the integers Bα

p,q(Z), whose definition was given by Torres in [31].

Especially, we study necessary and sufficient conditions on wavelet bases for
l2(Z) to constitute unconditional bases for these spaces.

2. The spaces Bα
p,q(Z) are defined via Littlewood-Paley-theory. Another aim for

us is to give further characterizations of these spaces such as in terms of
iterated differences and moduli of smoothness, analog to the continuous-time
setting as in Subsection 1.1.1. Here, the wavelet characterization will prove to
be particularly useful.

3. Moreover, we want to extend our results to other scales of discrete-time func-
tion spaces, such as Triebel-Lizorkin spaces Fα

p,q(Z).

Before we start with this program, the upcoming chapter deals with wavelet analysis
for `2(Z).



Chapter 2

Wavelet Analysis of
Discrete-Domain Signals

This chapter is concerned with wavelet bases in discrete time. The results below are
considered to be known, though the discrete-time point of view is treated less often
than the continuous-time case.

Anyway, before we are ready to treat the discrete-time theory, we will deal with the
continuous-time case in the first section of this chapter. We give a short compendium
of wavelet bases for L2(R) associated to multiresolution analysis, restricting ourselves
to some of the main notions and results.

There are two reasons for doing this: The first is that continuous-time wavelets
(at least those that arise from a multiresolution analysis) give rise to discrete-time
filter banks and associated wavelet systems in `2(Z). Moreover, desirable properties
of discrete-time wavelets, vanishing moments and smoothness can be understood
best by comparison to the continuous time setting, where they are natural and
well-understood.

We discuss the relations between wavelet functions and filter banks in Subsection
2.1.1 and shortly describe certain useful properties of wavelet systems such as van-
ishing moments and regularity (2.1.2). Subsection 2.1.3 gives a short glimpse on
biorthogonal wavelet bases for L2(R).
This first section will be kept short as it mainly serves to fix notation for the corre-
sponding discrete-time notions and results coming up in the following section. Thus,
for proofs and further results, we defer to the usual literature on wavelet theory such
as the books by Daubechies [12], Meyer [20], Wojtaszczyk [34] or Mallat[19].

In the next section, 2.2, we switch from continuous to discrete time: we give an
overview of wavelet systems in `2(Z) and their properties. The main sources for this
are the book by Cohen [3] and the articles by Rioul [27, 26, 28].

Of the various desirable properties of wavelets, the notion of regularity is probably

31
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the least intuitive in discrete time: smoothness conditions relying on small-scale
limits cannot be imposed on sequences. The notion of regularity as given by Rioul
in the two latter papers we mentioned above rather deals with large scale limits. As
this regularity condition will be crucial for the proofs in section 3.3, we discuss this
property in an extra subsection (2.2.2).

It is also the regularity property which connects the discrete to the continuous the-
ory: discrete time wavelet families possessing some order of regularity converge in
a certain sense to continuous-time wavelets of the same regularity. This will be the
issue of Subsection 2.2.3.

2.1 Wavelet Bases for L2(R)

In this section, we will recall a few facts on wavelet bases for L2(R) associated to
multiresolution analysis. We want to point out again that we will restrict our discus-
sion to elementary results and refer to the sources we mentioned in the introduction
to this chapter.

So, what is a wavelet?

Definition 2.1.1. A wavelet system for L2(R) is a family of functions (ψj,l)j,l∈Z
obtained from a single function ψ ∈ L2(R) by

ψj,l(x) = 2−j/2ψ(2−jx− l). (2.1.1)

A wavelet basis is a wavelet system that is an orthonormal basis for L2(R).

Do wavelet bases exist? The answer is yes - as a motivating example, we will treat
the most elementary wavelet system, the Haar wavelet system.

The Haar wavelet is the function

H(x) =


1 if 0 ≤ x < 1/2;
−1 if 1/2 ≤ x < 1;
0 otherwise.

(2.1.2)

We illustrate the concept of multiresolution analysis, which is presented later on in
this section, by showing that the family (Hj,l)j,l∈Z of dilated and translated versions
(see (2.1.1)) of the Haar wavelet is an orthonormal basis for L2(R).

The functions Hj,l are supported on the dyadic intervals Dj,l = [l2j, (l+1)2j[. With
this observation, it is obvious that the Haar system is orthonormal:

Consider two of the functions Hj,l, Hj′,l′ .
Either, we have j = j′ and l 6= l′. In this case, the supports of the functions
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are disjoint and thereby 〈Hj,l, Hj′,l′〉 = 0. Or, we have, assuming without loss of
generality j > j′, that the support of Hj,l is at least twice as long as the support of
Hj′,l′ . If the supports are not disjoint, the support of Hj′,l′ is contained in a constant
interval of Hj,l. Again, 〈Hj,l, Hj′,l′〉 = 0.

We want to show that (Hj,l) is an orthonormal basis, so what is left to prove is
totality, i.e. for any f ∈ L2(R), f =

∑
j∈Z
∑

l∈Z〈f,Hj,l〉Hj,l in the sense of L2(R):

We introduce the spaces Vj as the spaces of functions in L2(R) which are constant
on the dyadic intervals Dj,l, l ∈ Z. Due to the dyadic structure, the spaces are
nested, i.e. Vj+1 ⊂ Vj, and we have f(x) ∈ Vj if and only if f(2jx) ∈ V0.
Thereby, as the translates of the function φ = χ[0,1[, (φl)l∈Z = (φ(·− l))l∈Z obviously
form an orthonormal basis for the space V0, consisting of L2(R)-functions constant
on [l, l + 1[, the family (φj,l)l∈Z = (2−j/2φ(2−j · −l))l∈Z is an orthonormal basis for
Vj. The whole family (φj,l)j,l∈Z however is not an orthonormal basis for L2(R).
However, we can derive an orthonormal basis, which will be the Haar basis, from
these considerations.

For f ∈ L2(R), consider the orthogonal projection of f on Vj,

Pjf =
∑
l∈Z

〈f, φj,l〉φj,l =
∑
l∈Z

fDj,l
χDj,l

, (2.1.3)

where fDj,l
= 2−j

∫
x∈Dj ,l

f(x)dx. As this projection is the best approximation of

f from Vj, and as any function in L2(R) can be approximated arbitrarily well by
functions which are piecewise constant on dyadic intervals, we have
limj→−∞ ‖f − Pjf‖L2(R) = 0 as well as limj→−∞ Vj = L2(R).

Looking at the limit in the opposite direction, f ∈
⋂
j∈Z Vj implies that f is constant

on the positive as well as on the negative real line, which for an L2(R)-function
implies f ≡ 0 and also, limj→∞ ‖Pjf‖L2(R) = 0.

Using the above observations, one can write any L2(R) as f =
∑

j∈Z Pjf−Pj+1f and
we denote Pjf − Pj+1f by Qjf . As Pj and Pj+1 are orthogonal projections on the
spaces Vj and Vj+1, respectively, Qj is the orthogonal projection on Wj := Vj	Vj+1.
The spaces Wj, j ∈ Z, are mutually orthogonal and we can write

L2(R) =
⊕
j∈Z

Wj. (2.1.4)

It may appear that we have lost track of the initial problem, but the Haar wavelets
are coming into play again right now. It is easy to see that the family (Hl)l∈Z =
(H(· − l))l∈Z is an orthonormal basis for W0 and by dilation, (Hj,l)l∈Z is an ortho-
normal basis for Wj.

Therefore, we can write the projection Qj on the Wj spaces as

Qjf =
∑
l∈Z

〈f,Hj,l〉Hj,l, (2.1.5)
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and together with (2.1.4), this yields

f =
∑
j,l∈Z

〈f,Hj,l〉Hj,l, (2.1.6)

so the Haar system is an orthonormal basis for L2(R).

The spaces (Vj)j∈Z we considered in this discussion are a first example of a multires-
olution analysis, which we will now formally introduce.

Definition 2.1.2. A multiresolution analysis (MRA) is a sequence of closed
subspaces (Vj)j∈Z of L2(R), such that

Vj+1 ⊂ Vj, (2.1.7)

lim
j→∞

Vj =
∞⋂

j=−∞

Vj = {0}, (2.1.8)

lim
j→−∞

Vj =
∞⋃

j=−∞

Vj = L2(R), (2.1.9)

f(x) ∈ Vj if and only if f(2jx) ∈ V0, (2.1.10)

there is φ(x) ∈ V0, such that (φ(x− l))l∈Z is an orthonormal basis for V0. (2.1.11)

The function φ(x) is called the scaling function for (Vj).

By (2.1.10) and (2.1.11), the system

(φj,l)l∈Z = (2−j/2φ(2−j · −l)))l∈Z

is an orthonormal basis for Vj.

Define the spaces Wj by

Vj−1 = Vj ⊕Wj.

An L2 function ψ is called wavelet function associated to (Vj), if (ψ(· − l))l∈Z is
an orthonormal basis for W0.
In this case,

(ψj,l)l∈Z = (2−j/2ψ(2−j · −l)))l∈Z

is an orthonormal basis for Wj.
In addition, we have

L2(R) =
⊕
j∈Z

Wj
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and the system (ψj,l)j,l∈Z constitutes an orthonormal basis for L2(R).
Every MRA has an associated wavelet, see the next subsection.

There are at least two ways to get an MRA, yielding wavelet bases as a consequence.
As a first way, one could start by defining the spaces (Vj) and try to find a scaling
function φ, such that the translates form an orthonormal basis for V0. Here the
standard example is provided by the spline spaces (e.g. [19], Ex. 7.3),

Instead, one may also not that (2.1.10) and (2.1.11) imply that every MRA is
uniquely determined by its scaling function φ, since V0 is the closed span of translates
of φ, and Vj is obtained from V0 by dilation.

Most of the MRAs used nowadays are constructed this way, i.e., by picking a suitable
φ, a task which is however highly nontrivial.

For f ∈ L2(R), let Pjf , Qjf be the orthogonal projections on Vj and Wj, respec-
tively. In particular, we can write, analogously to (2.1.3) and (2.1.5),

Pjf =
∑
l∈Z

〈f, φj,l〉φj,l, (2.1.12)

Qjf =
∑
l∈Z

〈f, ψj,l〉ψj,l. (2.1.13)

Using the above projections, we can rewrite condition (2.1.8) as limj→∞ ‖Pjf‖L2(R) =
0. Condition (2.1.9) can be replaced by limj→−∞ ‖f − Pjf‖L2(R) = 0.

The projections on the spaces Vj can be interpreted as approximations of f at
different resolutions, whereas the partial wavelet series Qjf can be viewed as the
difference between two approximation levels.

Note that our notation is different from most sources in the wavelet literature: The
scale j corresponds to details of size 2j. Thus, the spaces decrease as j increases.
We made this change to avoid dealing with negative indices when considering discrete
expansions later on: for discrete functions, resolution is obviously limited, so in our
terms, there will be no scale smaller than 1 in this case.

We finish this subsection with two examples.

Example 2.1.3. : Haar MRA
As we already proved in the beginning of this paragraph, the spaces of functions in
L2(R) which are constant on the dyadic intervals Dj,l, l ∈ Z, are a multiresolution
analysis with scaling function φ = χ[0,1[. The corresponding wavelet basis is the
Haar wavelet basis.

Example 2.1.4. : Shannon MRA
As a kind of an opposite extreme to the Haar MRA, one can define an MRA as
the spaces of functions which are band-limited, i.e with their Fourier transform
supported on the intervals [−2−jπ, 2−jπ]. The associated scaling function is the sinc
function φ(x) = sinπx

πx
and we have ψ(x) = 2 sinc(2x)− sinc(x).
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The MRAs given above inherit different properties:

First, the Haar wavelet is compactly supported and thereby well-localized in time,
whereas the Shannon wavelet, being compactly supported in frequency, has poor
decay in time domain.
Second, the Haar wavelet is discontinuous, whereas the Shannon wavelet is C∞.

Third, the Haar wavelet has precisely one vanishing moment, whereas, at least
formally, all moments of the Shannon wavelet vanish.

There are certainly examples of MRAs between these extremes concerning localiza-
tion in time and frequency domain. The Daubechies family, starting with the Haar
MRA, can be seen as a family of MRAs that represent different compromises be-
tween the two extremes: For each N , the Daubechies construction yields a wavelet
of regularity order roughly N/5, with support in an interval of length 2N − 1, and
N vanishing moments. Thus, desirable properties (smoothness, vanishing moments)
have to be ‘payed for’ in terms of support size. This discussion is skipped until we
consider more in detail useful properties of wavelet systems in Subsection 2.1.2.

2.1.1 Wavelets and Filters

In the last subsection we described how to derive wavelet bases from multiresolution
analyses. We saw that the scaling function fully determines an MRA.

There is yet another way to characterize MRAs, by use of discrete time filters: the
multiresolution conditions yield a discretization we discuss in this subsection. We
will see that this fact also gives rise to a fast algorithm to compute the wavelet
transform.

The translates of a scaling function associated to a multiresolution analysis (Vj)
form an orthonormal basis of V0 (2.1.11), and as 2−1/2φ(x/2) ∈ V1 ⊂ V0 by (2.1.10),
(2.1.7), we obtain the scaling equation

2−1/2φ(x/2) =
∑
n∈Z

g(n)φ(x− n) (2.1.14)

with scaling coefficients g(n) = 〈2−1/2φ(x/2), φ(x− n)〉.
The scaling equation gives rise to a number of interesting equations fulfilled by the
scaling function and its Fourier transform:

In Fourier domain, the orthonormality condition becomes∑
l∈Z

|φ̂(ω + 2πl)|2 = 1 for almost all ω ∈ R. (2.1.15)

Using the Fourier transform of (2.1.14), we have
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2 = 2
∑
l∈Z

|φ̂(2ω + 2πl)|2 =
∑
l∈Z

|φ̂(ω + πl)|2|ĝ(ω + πl)|2

=
∑
l∈Z

|φ̂(ω + 2πl)|2|ĝ(ω)|2 +
∑
l∈Z

|φ̂(ω + π + 2πl)|2|ĝ(ω + π)|2,

which finally yields
|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (a.e.). (2.1.16)

Furthermore, say for ĝ continuous, we have

ĝ(0) =
√

2 and thereby ĝ(π) = 0, (2.1.17)

so we can regard ĝ as a low pass filter, as frequencies around ω = π are attenuated
and those near ω = 0 are kept by applying this function.

Conditions (2.1.16) and (2.1.17) are necessary conditions on the filter (g(n)), such
that the function φ in (2.1.14) is a scaling function of an MRA. In a sense, they
contain a recipe for constructing φ from (g(n)):

Iterating (2.1.14) yields

φ̂(ω) =
n∏
k=1

ĝ(2−kω)φ̂(2−nω). (2.1.18)

Hence we may start by taking a 2π-periodic ĝ, satisfying (2.1.16) and (2.1.17), and
considering

φ̂(ω) =
∞∏
k=1

ĝ(2−kω). (2.1.19)

This construction has been successfully employed for constructing scaling functions.
Note however that without additional assumptions on g, the above product will not
necessarily converge to a scaling function associated to an MRA (see [3]).

We will return to this discussion when we deal with discrete-time MRAs in Section
2.2; there we will impose additional conditions on the filter (referred to as ‘discrete-
time regularity’) which will ensure convergence of the scheme (2.1.19) to a (then
also regular) scaling function, see especially Section 2.2.3.

Also, the wavelet functions are related to discrete time filters. For a wavelet function
ψ, necessarily 2−1/2ψ(x/2) ∈ W1 ⊂ V0, yielding the wavelet equation

2−1/2ψ(x/2) =
∑
n∈Z

h(n)φ(x− n) (2.1.20)

with coefficients h(n) = 〈2−1/2ψ(x/2), φ(x− n)〉.
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Similar computations to the above give that these coefficients satisfy

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 (a.e.), (2.1.21)

and

ĥ(0) = 0 and ĥ(π) =
√

2, (2.1.22)

(in the case where this pointwise statement makes sense) such that ĥ can be viewed
as a discrete-time high pass filter.

The condition that the spaces W0 and V0 are orthogonal to each other can be ex-
pressed in terms of the filters by

ĥ(ω)ĝ(ω) + ĥ(ω + π)ĝ(ω + π) = 0. (2.1.23)

It can be proven ([3, 18, 20]) that if φ is a scaling function associated to a multires-
olution analysis (Vj) with corresponding g, then, the special choice

h(n) = (−1)1−ng(1− n) (2.1.24)

or, equivalently,
ĥ(ω) = ĝ(ω + π)e−iω, (2.1.25)

in (2.1.20) gives a wavelet, whose translates are an orthonormal basis of W0.

A filter pair (g, h) satisfying (2.1.16), (2.1.21) and (2.1.23) will be called perfect
reconstruction (PR) filter pair. This name comes from the fact that the rela-
tion between wavelets and filters admits a fast algorithm for the wavelet transform.
Before we discuss this algorithm in more detail, we revisit our examples:

Example 2.1.5. : Haar filters
For the multiresolution analysis with scaling function φ = χ[0,1[, the corresponding
low pass filter reads g(n) = 2−1/2 for n = 0, 1 and 0 otherwise.
By (2.1.24), h(0) = −g(1) = −2−1/2 and h(1) = g(0) = 2−1/2.

Example 2.1.6. : Shannon filters
Considering the Shannon multiresolution approximation with scaling function φ̂ =
χ[−π,π], the filters are given by ĝ = 21/2χ[−π/2,π/2] and ĥ = 21/2 − ĝ.

So far, MRAs have served mainly as a tool for the convenient construction of wavelet
bases. Here the scaling and wavelet equation appeared as byproducts of the inclusion
properties of an MRA. We have already seen, however, that the scaling equation
may also serve as the starting point for the construction of an MRA, via (2.1.19).
Similarly, the scaling and the wavelet equation will also serve as the source of the
chief algorithmic contribution, the fast wavelet transform. This algorithm allows
to compute coarse scale wavelet coefficients of a signal by repeated application of
discrete convolution and subsampling steps.
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Let aj = (aj(l))l∈Z = (〈f, φj,l〉)l∈Z. We will call the sequence aj the approximation
coefficients at scale j ∈ Z.
Let dj = (dj(l))l∈Z = (〈f, ψj,l〉)l∈Z be the wavelet coefficients, which will also be
called the detail coefficients, at scale j.

Proposition 2.1.7. [Mallat]

The coefficients can be recursively computed by the filtering

aj+1(l) = (aj ∗ g∗)(2l) =
∑
k∈Z

aj(k)g
∗(2l − k), (2.1.26)

dj+1(l) = (aj ∗ h∗)(2l) =
∑
k∈Z

aj(k)h
∗(2l − k). (2.1.27)

The reconstruction of a filtering step is done by

aj(l) =
∑
k∈Z

aj+1(k)g(l − 2k) +
∑
k∈Z

dj+1(k)h(l − 2k) = (↑2 aj+1) ∗ g + (↑2 dj+1) ∗ h,

(2.1.28)
the sum of coefficients on a coarser scale, upsampled and convolved with the filters
g, h.

Proof Remember that φj+1,l ∈ Vj+1 ⊂ Vj. Expanding φj+1,l in the orthonormal
basis (φj,k)k∈Z of Vj yields

φj+1,l =
∑
k∈Z

〈φj+1,l, φj,k〉φj,k. (2.1.29)

Computing the inner products 〈φj+1,l, φj,k〉 gives

φj+1,l =
∑
k∈Z

〈2−1/2φ(·/2), φ(· − k + 2l)〉φj,k

=
∑
k∈Z

g(k − 2l)φj,k.

Employing the inner product on both sides of (2.1.29) thereby yields

aj+1,l =
∑
k∈Z

aj,kg(k − 2l) = (aj ∗ g∗)(2l),

which is (2.1.26).

(2.1.27) follows from analogous computations.
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For the reconstruction step, reconsider the fact that Vj = Vj+1 ⊕Wj+1. Thereby,
φj,l ∈ Vj can be expanded in the union of (φj,k)k∈Z and (ψj,k)k∈Z, which is an
orthonormal basis for Vj:

φj,l =
∑
k∈Z

〈φj,l, φj+1,k〉φj+1,k +
∑
k∈Z

〈φj,l, ψj+1,k〉ψj+1,k. (2.1.30)

The above considerations give

φj,l =
∑
k∈Z

g(l − 2k)φj+1,k +
∑
k∈Z

h(l − 2k)ψj+1,k. (2.1.31)

Taking the inner product on both sides,

aj,l =
∑
k∈Z

aj,kg(l − 2k) +
∑
k∈Z

dj+1h(l − 2k).

Iterating (2.1.26), (2.1.27), the fast wavelet transform computes the map (a0,l)l∈Z 7→
(dj,l)j>0,l∈Z via the cascade

a0 → a1 → a2 → . . . → aj−1 → aj
↘ ↘ ↘ ↘ ↘

d1 d2 dj−1 dj

(2.1.32)

where each horizontal arrow represents the same filtering and subsampling step
aj+1 =↓2 (aj ∗ g∗), and similarly, dj+1 =↓2 (aj ∗ h∗).

2.1.2 Properties of Wavelet Bases

In the preceding subsection, we dealt in a general way with wavelet bases and their
connection to multiresolution analysis and discrete-time filters.
The above-cited results concerning characterizations of Besov spaces via wavelet
coefficients (1.1.4) rely on additional properties, that is to say vanishing moments,
smoothness and compact support, which we now attend to.

The first property we deal with is the notion of vanishing moments.

Definition 2.1.8. ψ has vanishing moments of order N ∈ N if∫
tkψ(t)dt = 0 for 0 ≤ k ≤ N − 1.

This property ensures that ψ is orthogonal to polynomials of order N − 1. Consider
a function f which is k < N times continuously differentiable around x0 . Then, f
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can be expanded into a Taylor polynomial over an interval. As ψ cancels out this
polynomial, we have for those ψj,l, whose supports are contained in the neighborhood
around x0, that the absolute values of coefficients 〈f, ψj,l〉 decay for small scales.
Hence, local smoothness leads to a decay of coefficients, piecewise smooth functions
can be well approximated by a few number of wavelet coefficients.

If f has a singularity in x1, all the wavelets ψj,l which have x1 inside their support
will feel this singularity and may have a large coefficient. Hence, another desirable
property is to deal with wavelets with good decay properties, optimally with ones
of compact support.

A further desirable property analyzing smooth functions is to use wavelets which
also possess some regularity of a certain order. We say that a wavelet is regular of
order r > 0 if it is Hölder regular of order r.

Remark 2.1.9.

1. The above properties are not independent, for example, a wavelet with a cer-
tain decay and regularity will have a certain order of zero moments.

2. There is an alternative interpretation of smoothness and vanishing moment
properties for a wavelet ψ concerning the localization in Fourier domain:

Vanishing moments of order N describes the decay of ψ̂(ω) as ω → 0: |ψ̂(ω)| =
O(|ω|N), whereas smoothness of order r gives |ψ̂(ω)| = O(|ω|−r) as ω →
∞. These observations allow to read the conditions of Theorem 1.1.10 (and
also of Theorem 3.3.8) as ‘wavelets provide a reasonable approximation of
ϕ-functions’.

3. Note that the properties we discussed can usually be built into the wavelets
by designing suitable filters. Daubechies [6] constructed wavelets which have
vanishing moments of arbitrary order and are at the same time of minimal,
compact support.

By construction, the Daubechies wavelets with N ∈ N vanishing moments
have a support length of 2N − 1 and are for large N approximately regular of
order b0.2Nc. This will be of importance in the upcoming section (2.2), when
we deal with discrete-time wavelets: at least compact support and vanishing
moments carry over immediately to this setting. The connection between
filters with certain properties leading to regular wavelets gets more clear when
we deal with discrete-time multiresolution analysis.

We finish this subsection by looking again at our examples:

Example 2.1.10. : Properties of Haar Wavelets The Haar wavelet has com-
pact support, possesses one vanishing moment and is in fact the Daubechies wavelet
of order 1. It is not continuous and thereby non-regular.
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Example 2.1.11. : Properties of Shannon Wavelets The Shannon wavelet
is compactly supported in Fourier domain and thus has a poor decay in time. In
contrast to the Haar wavelet, it is C∞ and at least formally, all of its moments
vanish.

2.1.3 Biorthogonal Bases

The characterization of Besov spaces can be extended to biorthogonal wavelet sys-
tems, which is why we shortly discuss these systems here. For proofs of the results
cited below, as well as further details, we refer the reader to [12, 19].

A biorthogonal pair of wavelet bases is a pair of Riesz bases (ψj,l)j,l and (ψ̃j,l)j,l
arising in the usual manner from functions ψ, ψ̃, and fulfilling the biorthogonality
condition

〈ψj,l, ψ̃j,l〉 = δl,l′δj,j′ .

This relation, together with the Riesz base properties of the systems, immediately
entails the expansions

f =
∑
j,l

〈f, ψj,l〉ψ̃j,l =
∑
j,l

〈f, ψ̃j,l〉ψj,l .

Clearly, this concept generalizes wavelet orthonormal bases. It turns out that a
convenient method for the construction of such bases is provided by introducing
biorthogonality to multiresolution analysis: Instead of a single MRA, one constructs
a pair (Vj)j, (Ṽj)j of sequences of spaces, which have all properties of MRAs except
for (2.1.11), which is replaced by functions φ,φ̃ satisfying the requirements

(φ(· − l))l∈Z is a Riesz basis for V0

(φ̃(· − l))l∈Z is a Riesz basis for Ṽ0

〈φ(· − l), φ̃(· − l′)〉 = δl,l′ .

Defining Wj and W̃j as orthogonal complements, just as in the orthonormal wavelet
case, one can prove the existence of wavelets ψ, ψ̃ satisfying

(ψ(· − l))l∈Z is a Riesz basis for W0

(ψ̃(· − l))l∈Z is a Riesz basis for W̃0

〈ψ(· − l), ψ̃(· − l′)〉 = δl,l′ .

which entails that (ψ̃j,l)j,l, (ψj,l)j,l are biorthogonal wavelet bases.

The drawback of biorthogonality is that the Parseval relation

‖f‖2 =
∑
j,l

|〈f, ψj,l〉|2



2.1 Wavelet Bases for L2(R) 43

holding for orthonormal bases needs to be replaced by the norm equivalences

‖f‖2 �
∑
j,l

|〈f, ψj,l〉|2 �
∑
j,l

|〈f, ψ̃j,l〉|2 .

The chief advantage of biorthogonality is higher flexibility in the choice of wavelets:
For instance, one can choose symmetric wavelets (which is impossible in the orthog-
onal setting), or one can distribute desirable properties between ψ and ψ̃: ψ can be
chosen with a desired number of vanishing moments (but little regularity), and ψ̃
with a desired degree of smoothness.

The fast wavelet transform easily adapts to the biorthogonal setting; the only change
being that one now uses one filter pair g, h for the decomposition, and a different
pair g̃, h̃ for reconstruction.

Coefficients aj = (aj(l))l∈Z = (〈f, φ̃j,l〉)l∈Z on a certain scale j ∈ Z are used to
compute approximation coefficients aj+1 and detail coefficients dj+1 = (dj+1(l))l∈Z =
(〈f, ψ̃j+1,l〉)l∈Z on a coarser scale by convolution with discrete-time low and high pass
filters g̃, h̃ associated to φ̃, ψ̃, followed by subsampling:

aj+1(l) = (aj ∗ g̃)(2l) =
∑
k∈Z

aj(k)g̃(2l − k), (2.1.33)

dj+1(l) = (aj ∗ h̃)(2l) =
∑
k∈Z

aj(k)h̃(2l − k). (2.1.34)

The reconstruction of a filtering step is done by

aj(l) =
∑
k∈Z

aj+1(k)g(l − 2k) +
∑
k∈Z

dj+1(k)h(l − 2k), (2.1.35)

the sum of coefficients on a coarser scale, upsampled and convolved with filters g, h
dual to g̃, h̃.

Note that Besov spaces have a characterization in terms of biorthogonal wavelets as
well: Theorem 1.1.10 can be formulated using biorthogonal bases, where vanishing
moments and regularity conditions are imposed separately for the analyzing and
synthesizing wavelets, see e.g. [14].

In the discrete-time case we treat in this thesis, we will also give this generalized
result, see Theorem 3.3.8, which obviously includes the orthonormal case.
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2.2 Discrete-Time Wavelet Bases for `2(Z)

In this section, we will finally describe wavelet systems in `2(Z). These systems are
associated to the filterbank algorithms which we described in 2.1.1.

Recall that the fast wavelet transform computes the map (a0,l)l∈Z 7→ (dj,l)j>0,l∈Z via
the cascade (2.1.32).

The algorithm implements a unitary operator: (a0,l)l∈Z and (dj,l)j>0,l∈Z are the ex-
pansion coefficients of

F =
∑
l∈Z

a0,lφ(· − l) ∈ V0

in the ONBs (φ0,l)l∈Z and (ψj,l)j>0,l∈Z of V0.

Discrete time wavelet bases are obtained by viewing a0 ∈ `2(Z) as input to a unitary
transform Wd : `2(Z) → `2(N×Z). The output can then be interpreted as expansion
coefficients of a0 in the system hj,l = W−1

d (δj,l), the preimage of the Kronecker ONB
of `2(N×Z) under Wd. Hence (hj,l)j,l is an ONB of `2(Z). We intend to study bases
of this kind, with the aim of describing signals with good approximation behavior.

This perspective may seem unorthodox, but it is in fact closely related to the way
that wavelets are used on real-world data: We have repeatedly remarked that these
data are usually given discretely and that the standard procedure feeds the discrete
data (f(k))k directly into the wavelet filterbank. As a consequence, the filterbank
output consists of wavelet coefficients dj,l = 〈F, ψj,l〉, where F =

∑
l∈Z f(l)φ(· − l).

The problem with this procedure is that it uses the scaling function φ, which is
not known explicitly. Accordingly, the development of model assumptions on F ,
which could serve as a source of heuristics for signal processing algorithms, becomes
a rather difficult tasks.

As a matter of fact, quite often these signal models are available for f instead of F ,
say, f is obtained from a measuring device with certain noise characteristics, and
certain expected smoothness behaviour in the measured quantity. Having a fully
discrete time theory available should thus allow to describe and analyze wavelet-
based processing algorithms in a more transparent and direct way than via the
embedding into L2(R), which is obscured by the scaling function.

In the following, we will therefore discard any reference to the continuous-time
setting, and describe wavelet systems in discrete time, which arise from a pair g, h of
perfect reconstruction filters, and the associated cascade (or fast wavelet transform)
algorithm `2(Z) → `2(N × Z), as objects of independent interest. Our exposition
of discrete-time wavelets uses ideas and results from A. Cohen’s book [3] and O.
Rioul’s papers [27, 28, 26].
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2.2.1 The Discrete-Time Wavelet Transform

In this subsection, we will be concerned with the construction of operators analogous
to the cascade algorithm `2(Z) → `2(N × Z), but without a continuous time MRA
in the background. More precisely, we will consider pairs g, h of filters, and the
following objects constructed from g, h.

1. One-step decomposition operators a0 7→ (a1, d1) = (↓2 (a0 ∗ g∗), ↓2 (a0 ∗ h∗))
on `2(Z).

2. Full decomposition operators a0 7→ (dj)j≥1 obtained by cascading the one-step
decomposition. Of particular interest will be conditions on g, h making this
operator unitary.

3. Provided that the fast wavelet transform a0 7→ (dj)j≥1 is unitary, its output
can be understood as expansion coefficients of the input signal with respect
to an ONB of `2(Z). This will be the discrete-time wavelet ONB, and we are
looking for explicit descriptions of this basis.

One Step Decomposition

Clearly, a necessary condition for the fast wavelet transform to be unitary is that the
one-step decomposition is unitary. The following theorem gives a precise condition
for this.

Theorem 2.2.1. Given two sequences g, h ∈ `2(Z), consider the operator

S : `2(Z) → `2(Z)× `2(Z)

f 7→ (↓2 (f ∗ g∗), ↓2 (f ∗ h∗))

Then the following are equivalent:

(i) S is unitary.

(ii) The system (g(· − 2l))l∈Z ∪ (h(· − 2l))l∈Z is an ONB of `2(Z).

(iii) The Fourier transforms of g and h fulfill the perfect reconstruction (PR) con-
ditions (2.1.16), (2.1.21), (2.1.23), i.e., for almost every ω ∈ R

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2, (2.2.1)

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (2.2.2)

ĥ(ω)ĝ(ω) + ĥ(ω + π)ĝ(ω + π) = 0. (2.2.3)
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If the equivalent conditions are fulfilled, the inverse operator is given by

S∗ : (a, d) 7→ (↑2 a) ∗ g + (↑2 d) ∗ h .

Proof The equivalence of (i) and (ii) is obvious. For the implication (ii) ⇒ (iii)
assume that (g(· − 2l))l∈Z ∪ (h(· − 2l))l∈Z is an ONB. Then in particular

δ0,l = 〈g(· − 2l), g(·)〉

=

∫ 2π

0

ĝ(ω)e−iω2lĝ(ω)dω

=

∫ 2π

0

|ĝ(ω)|2e−iω2ldω

=

∫ π

0

e−iω2l
(
|ĝ(ω)|2 + |ĝ(ω + π)|2

)
dω .

Hence the integrable function

ω 7→ |ĝ(ω)|2 + |ĝ(ω + π)|2

on [0, π] has the same Fourier coefficients as the constant function ω 7→ 2, and the
Fourier uniqueness theorem implies

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (a.e.).

Similar calculations prove

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 (a.e.)

ĥ(ω)ĝ(ω) + ĥ(ω + π)ĝ(ω + π) = 0 (a.e.) ,

which are the (PR) conditions.

The converse is shown similarly.

Note however that for (ii) ⇒ (iii) we only needed that (g(·−2l))l∈Z∪(h(·−2l))l∈Z is
orthonormal. Somewhat remarkably, orthonormality of the system already implies
its completeness.

In (2.1.1), we already encountered the (PR) conditions: in the construction of
multiresolution analyses on L2(R), the perfect reconstruction property is a well-
known condition. In order to properly appreciate it, recall the convolution theorem:
(f ∗ g)∧ = f̂ · ĝ. Later on, we will choose filters h, g, such that ĥ(0) = 0. Then

(PR) entails that ĥ(π) =
√

2, and consequently ĝ(0) =
√

2 and ĝ(π) = 0, which are
exactly conditions (2.1.22) and (2.1.17).
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Thus, using filters from a (continuous-time) MRA, we immediately obtain a discrete-
time ONS.

Recall that the (PR) conditions in the continuous-time case were necessary condi-
tions for the filters to be related to an MRA by the scaling and wavelet equation.

We just proved that in the discrete-time case, these conditions are also sufficient to
yield an ONB, at least in the ‘one-step’ case above. In the next paragraph, we will
see that (at least for finite filters) this is also the case for the ‘full decomposition’,
leading to discrete-time orthonormal wavelet bases.

Orthonormal Wavelet Bases for `2(Z)

The discrete time wavelet transform is now obtained by iterating the one step de-
composition.

In the following theorem, the finite support condition can be replaced by the weaker
condition that ĝ is infinitely differentiable [3]. In any case, the conditions for the
existence of an orthonormal wavelet basis for `2(Z) are much less restrictive than
for the existence of an associated wavelet system in L2(R); see [3] for examples of
discrete-time wavelet systems that do not arise from an MRA in L2(R).

Theorem 2.2.2. Wavelet-ONB in `2(Z)
Let g, h ∈ `2(Z) be given with (PR). Assume in addition that g is finitely supported.
Given f ∈ `2(Z), define inductively

a0 = f , aj+1 =↓2 (aj ∗ g∗) , dj+1 =↓2 (aj ∗ h∗) .

(a) The discrete wavelet transform

Wd : f 7→ (dj(l))j≥1,l∈Z

is a unitary operator `2(Z) → `2(N× Z).

(b) The sequences dj and aj consist of expansion coefficients: dj(l) = 〈f, hj(·−2jl)〉
and aj(l) = 〈f, gj(· − 2jl)〉, with suitable hj, gj ∈ `2(Z) (for j ≥ 1).

(c) hj and gj can be computed recursively via

g0 = δ0

gj+1 = gj ∗ (↑2j g)

hj+1 = gj ∗ (↑2j h)

By construction, the operator Wd computes the coefficients of f with respect to the
discrete-time wavelet basis (hj,l) = (hj(· − 2jl))j∈N,l∈Z. This system is an ONB
of `2(Z).
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Proof We first prove (b) and (c) by induction:

Noting that a0 = f ∗ δ0, we find in the induction step

aj+1(k) = ↓2 (aj ∗ g∗)(l)
=

∑
n∈Z

aj(n)g∗(2l − n)

IH
=

∑
n∈Z

〈f, gj(· − 2jn)〉g∗(2l − n)

= 〈f,
∑
n∈Z

g∗(2l − n)gj(· − 2jn)〉 .

Now we can compute∑
n∈Z

g∗(2l − n)gj(m− 2jn) =
∑
n∈Z

gj(m− 2j(n+ 2l))g(n)

= gj+1(m− 2j+1l),

where gj+1 is given as

gj+1(m) =
∑
n∈Z

gj(m− 2jn)g(n)

=
∑
n∈Z

gj(m− n)(↑2j g∗)(n)

= (gj ∗ (↑2j g))(m) .

Replacing g by h in the calculations yield the formula for hj, and we have shown
(b) and (c).

Now Theorem 2.2.1 implies that the mapping

f 7→ (aj, dj, dj−1, dj−2, . . . , d1)

is unitary, and hence the family

(gj,l)l∈Z ∪ (hi,l)1≤i≤j,l∈Z

is an ONB of `2(Z), where gj,l = gj(· − 2jl). Since this holds for all j ≥ 1, we obtain
in particular that (hi,l)1≤i≤j,l∈Z is an ONS in `2(Z). Hence the only missing property
is totality.

For this purpose define analogously to (2.1.12)

Pjf :=
∑
l∈Z

〈f, gj,l〉gj,l ,
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which are the projections onto the orthogonal complement

((hi,l)1≤i≤j,l∈Z)⊥ .

Hence we need to prove Pjf → 0, for all f ∈ `2(Z). Since the space of finitely
supported sequences is dense in `2(Z), it is enough to prove Pjf → 0 for finite
sequences. For this purpose we need two auxiliary statements

• ‖ĝj‖1 → 0, as j →∞. (We refer to [3], pages 31-32.)

• |supp(gj)| ≤ |supp(g)| · 2j. This is easily proved inductively, using that

|supp(↑2j g)| = 2j|supp(g)| − 2j .

As a result,

‖Pj(δk)‖2
2 =

∑
m∈Z

|〈δk, gj(· − 2jm)〉|2

=
∑
m∈Z

|gj(k − 2jm)|2

≤ (|supp(g)|+ 1) ‖gj‖∞
≤ (|supp(g)|+ 1) ‖ĝj‖1 → 0 ,

as j →∞. This concludes the proof of totality, hence (a) is shown.

For simplicity, we will sometimes omit the translation parameters, and call the
sequence (hj)j≥1 ⊂ `2(Z) a wavelet system. The associated basis is then obtained
by shifting hj by integer multiples of 2j, just as in the theorem.

Remark 2.2.3.

1. The finiteness of the filters are only used for totality of the system. Hence any
pair g, h with properties (PR) yields an ONS in `2(Z).
Anyway, we will in the following always assume the filters to be finite.

2. Note that the filter bank properties of the DWT, i.e., g as low-pass and h as
high-pass filter, enter nowhere in the proof (in fact, we could as well exchange
the two). These are additional properties which we have to build into the
filters.

3. The family (Pj)j≥1 of projections defines a decreasing sequence Vj = Pj(`
2(Z))

of closed subspaces which share many properties of an MRA in L2(R). Indeed,
Vj ⊃ Vj+1 is clear by construction. limj→∞ Vj = {0} has been observed in the
proof of the previous theorem. We cannot expect an analog of (2.1.10), since
there is no meaningful definition of dilation on `2(Z). We do however have an
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analog of a scaling function, in the form of the family (gj)j>0: The projection
onto Vj is given by

Pjf =
∑
k∈Z

〈f, gj(· − 2jk)〉gj(· − 2jk) .

4. The theorem implies that the map f 7→ dj factors into a convolution with h∗j ,
followed by a subsampling of 2j. In particular, we can interpret the mapping

f 7→ (d1, d2, d3, . . .)

as a (subsampled) filter bank. By the convolution theorem, (f ∗ h∗j)∧ = f̂ · ĥj,
which shows that the coefficients dj capture the part of f supported in the

frequencies where |ĥj| is large.

Observe that on the Fourier transform side the recursion formulae read

ĝj+1(ω) = ĝ(2jω) · ĝj(ω) , ĥj+1(ω) = ĥ(2jω) · ĝj(ω) . (2.2.4)

We note the similarity to the formula (2.1.19), which further emphasizes the
analogy of the roles of the scaling function φ on the one hand, and of the gj
(j ∈ N) on the other. In (2.2.3) we will see that, under suitable regularity
conditions, this analogy in fact takes the form of a convergence statement:

2j/2gj(n)− φ(2−jn) → 0 .

This property (in somewhat sharper formulation) will be of crucial importance
for the study of decay of discrete-time wavelet coefficients.

5. Similar observations apply to the discrete time wavelets. Observe that the
elements of the wavelet basis are again indexed by a scale and a translation
parameter. Instead of the dilation operator, which does not work properly
on `2(Z), we now have recursively defined wavelets (hj)j of different scales.
The wavelet basis inherits the asymptotic behavior described in 4., i.e., under
suitable conditions on the filters, we may think of the discrete time wavelets
hj as approximate samples of a continuous time wavelet ψ.

6. The theorem holds for biorthogonal wavelet bases as well: as long as the filters
satisfy the corresponding perfect reconstruction conditions in the biorthogonal
case, one will obtain discrete-time biorthogonal wavelet bases along the
lines of 2.2.2. In the following chapter, our results will be formulated using
this generalization.
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Properties of Discrete-Time Wavelet Bases

As we did in the continuous case, we will describe useful properties of discrete-time
wavelet systems such as finite support, vanishing moments and regularity properties.

A byproduct of the proof of 2.2.2 is that |supp(gj)| ≤ |supp(g)| · 2j, and likewise for
hj, if the filter h is chosen according to (2.1.24). So, starting with filters of finite
length gives finitely supported discrete-time wavelets.

In continuous time theory, vanishing moments are necessary requirements to ensure
decay of wavelet coefficients of regular signals, essentially by killing Taylor polyno-
mials, see (2.1.2). In the discrete setting, we will encounter a similar effect. The
definition carries over in a rather straightforward way:

Definition 2.2.4. A wavelet system (hj)j∈N ⊂ `2(Z) has N vanishing moments
if

∀j ≥ 1, i = 0, . . . , N − 1 :
∑
n∈N

hj(n)ni = 0 ,

where the sum converges absolutely.

Again, a wavelet system having N vanishing moments kills polynomials of order
< N : If P is any such polynomial, j ∈ N and k ∈ Z, then∑

m∈Z

(hj,l)(m)P (m) = 0 , ∀(j, l) ∈ N× Z.

We observe that if the hj are finite sequences (which is the standard assumption),
their Fourier transforms are trigonometric polynomials, and having N vanishing
moments is equivalent to the property that the origin is a zero of order N of ĥj. The
following proposition shows that this property can be easily controlled by choosing
the right g, via the factorization (2.2.4):

Proposition 2.2.5. Let g, h be a perfect reconstruction pair of finite sequences,
with ĝ(0) =

√
2, and h chosen according to (2.1.24). Then ĝ(π) = 0, therefore

ĝ(ω) = (eiω + 1)Nm̃(ω) (2.2.5)

with 1 ≤ N ≤ |supp(g)|, and m̃ is a trigonometric polynomial. This implies that the
wavelet system (hj)j∈N constructed from g and h has N vanishing moments.

Proof Note that ĝ(0) =
√

2 and (PR) imply that ĝ(π) = 0. Then (2.2.5) is a

standard fact about polynomials. Plugging this into (2.1.25) yields that ĥ has a

zero of order N at 0. By (2.2.4), this zero is inherited by ĥj+1.

The notion of regularity is not straightforward for discrete-time sequences. Fur-
thermore, we will see that in a sense, this property links the discrete to the continuous-
time bases. We will therefore treat this property in an extra subsection.
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2.2.2 Regularity of Discrete-Time Wavelets

A continuous-time function is said to be regular if it is at least continuous, or even
has several continuous derivatives.

This notion of regularity does not seem to make sense in discrete time. Certainly,
smoothness conditions that rely on small-scale limits cannot be adapted to the
discrete time setting. Nonetheless, there is a useful (in view of later results, even
crucial) notion of regularity of a wavelet system, that has to do with large scale
limits.

The following notions are best understood by thinking of the sequence (gj)j≥1 as
discrete approximations of a continuous-time function, with each gj being defined
on the grid 2−jZ.

Regularity for discrete-time wavelets was studied by Rioul [26], mimicking Hölder-
type regularity conditions for discrete-time functions.
Recall that a continuous-time function ϕ(x) is Lipschitz regular of order α (ϕ ∈ Ċα),
0 < α ≤ 1, if for all x, h ∈ R

|ϕ(x+ h)− ϕ(x)| ≤ C|h|α.

A function ϕ(x) is said to be Hölder regular of order r = N+α (ϕ ∈ Ċr), 0 < α ≤ 1,
N ∈ N , if it is N times continuously differentiable and the N -th derivative is Lip-
schitz of order α.

Let again g = (g(n))0≤n≤L, L ∈ N , be a low pass filter of finite length and consider
(gj)j≥1, obtained by the scheme in Theorem 2.2.2:

gj = g∗ ∗ (↑2 g
∗) ∗ (↑4 g

∗) ∗ · · · ∗ (↑2j−1 g∗).

We will define regularity of the sequences gj = (gj(n))n∈Z mimicking Lipschitz regu-
larity. Note that the following definitions are the ones given in [26], the extra factors
2−j/2 in here arise from `2-normalization of gj.

Definition 2.2.6. (gj)j≥1 will be called regular of order α, 0 < α ≤ 1, if it
satisfies

|gj(n+ 1)− gj(n)| ≤ C2−j/2 · 2−jα,

where C is a constant independent of j and n.

In order to extend this definition to regularity of higher orders, consider the difference
operator D applied to the sequences (gj(n)),

Dgj(n) := (gj(n)− gj(n− 1))/2−j.

For N ∈ N, let the sequence of N -th order differences DNgj be the sequence ob-
tained by applying D N times to (gj(n)).
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The difference operator can be seen as a discrete derivation operator, with a nor-
malization reflecting the assumption that gj is an approximation on the grid 2−jZ.

Definition 2.2.7. (gj)j≥1 will be called regular of order r = N + α, 0 < α ≤ 1,
N ∈ N, if it satisfies

|DNgj(n+ 1)−DNgj(n)| ≤ C2−j/2 · 2−jα,

where C is a constant independent of j and n.

Note that regularity of (gj)j≥1 implies regularity of the family of wavelet sequences
(hj)j≥1 if they are associated to (gj) by (2.1.24).

2.2.3 Connection to Wavelet Bases for L2(R)

In [26], definitions 2.2.6 and 2.2.7 are conceived to relate discrete-time to continuous-
time wavelet transforms and their properties.

Let in the following g, h be a pair of PR filters, satisfying the requirements for
Theorem 2.2.2.

Rioul [26] defines convergence of (gj) - given by Theorem 2.2.2 - for j → ∞ to a
continuous-time limit function φ(x) and then relates properties of φ to regularity
properties of the discrete-time functions gj.

Definition 2.2.1 The sequences (gj) converge for j → ∞ pointwise to a limit
function φ(x) if, for any sequence of integers nj satisfying

|nj2−j − x| ≤ C2−j, (2.2.6)

for C a constant not depending on j, we have

φ(x) = lim
j→∞

2j/2gj(nj).

Moreover, the convergence is uniform, if

sup
x
|φ(x)− 2j/2gj(nj)| → 0, as j →∞.

Here we require (2.2.6) with a constant independent of x.

The above definition gives flexibility in the way interpolation of the sequences (gj(n))
can be done. In particular, convergence using stepwise interpolation by nj = b2jxc,
linear interpolation or even interpolation by smoother functions such as splines are
all implied by this definition.
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Filters with (PR) do not necessarily give rise to a scaling function and thereby
a wavelet basis in L2(R), but additional requirements need to be met to ensure
convergence in the construction of a continuous-time scaling function φ. Moreover,
in the study of smoothness properties of this scaling functions, conditions were
needed that allowed to predict the smoothness of φ just from the initial discrete-
time filter g. These techniques rely on the speed of convergence of the scheme (gj).

Rioul derives necessary and sufficient conditions for uniform convergence (gj) to a
limit function, which then is continuous:

Theorem 2.2.8. [26] The collection of sequences (gj) converges uniformly (in the
sense of 2.2.1) to a limit function φ(x) if and only if∑

n

g(n) =
√

2, (2.2.7)

∑
n

(−1)ng(n) = 0 and (2.2.8)

max
n

2j/2|gj(n+ 1)− gj(n)| → 0 as j →∞. (2.2.9)

In addition, one can characterize limit functions possessing stronger regularity prop-
erties by the behavior of the (gj).

Theorem 2.2.9. [26]

• If g satisfies (2.2.7),(2.2.8) and, for j ≥ 1, gj is regular of order α for some
0 < α ≤ 1, then (gj)j will converge uniformly to a α-regular limit function ϕ.

• If the sequence of the N-th order differences DNgj converges uniformly in the
sense of (2.2.1), then ϕ is N times continuously differentiable. Furthermore,
for k = 0, . . . , N , Dkgj converges uniformly to the k-th order derivative of ϕ.

• If (2.2.7) is valid and
∑

n(−1)nnig(n) = 0 for i = 0, . . . , N and, for j ≥ 1,
(gj) is regular of order r = N +α for some 0 < α ≤ 1, then the limit function
ϕ ∈ Ċr, r = N + α and moreover, the continuous-time wavelet function ψ
associated to ϕ by (2.1.20) possesses the same regularity.

There is also a converse result: discrete-time finitely supported wavelet families
arising from filters associated to analog scaling functions and wavelets by (2.1.14)
and (2.1.20), which are Hölder regular of a certain order N +α, N ∈ N0, 0 < α ≤ 1,
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possess the same order of discrete-time regularity, as long as the scaling function φ
meets another condition which Rioul calls stability [26]: φ is said to be stable if∑

n∈N

φ(n)einω 6= 0 for all ω ∈ R.

All of these observations cover in particular the Daubechies families.
The Daubechies orthonormal continuous-time scaling functions and wavelets of length
L = 4 are regular of order α ≈ 0.55, and, as the stability condition is easily checked,
so are the discrete-time wavelets arising from the associated filters. Daubechies fil-
ters of length L = 6 give discrete-time regularity of order r ≈ 1.08, and with further
increasing filter length, regularity increases as well, for large L, the regularity is
about 0.1L (see [26]).

To sum it up, the discrete-time notion of regularity is consistent with regularity for
continuous-time functions. The regularity property will also be crucial in the next
chapter.
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Chapter 3

Discrete-Time Besov Spaces and
their Characterizations

In Chapter 1, we introduced Besov spaces of continuous-time functions and discussed
different characterizations of these spaces, as via iterated differences, Littlewood-
Paley theory and in terms of the decay of wavelet coefficients.

In this chapter, we deal with analogous function spaces on the integers. In [31],
R.H. Torres introduces discrete-time Besov spaces Bα

p,q(Z), α ∈ R, 0 < p, q <∞, by
adapting a Littlewood-Paley type characterization for the continuous-time (homoge-
neous) Besov spaces Ḃα

p,q(R). Roughly said, Bα
p,q(Z) are spaces of sequences, obtained

by integer sampling of band-limited distributions in corresponding continuous-time
Besov spaces. This will be the topic of Section 3.1.

Our main result will be that these spaces admit a characterization in terms of
coefficients from discrete-time wavelet bases as described in the previous chapter:

A sequence will be in a space Bα
p,q(Z) if and only if the corresponding coefficients

are in a normed space bαp,q(Z), describing the decay of coefficients. Note that these
bαp,q(Z)-norms are just the truncated norms defined by (1.2.1) which arose in the
context of nonlinear approximation in Section 1.2.1.
Therefore, our result gives the answer to the question we posed in this section: a
sequence can be approximated with a certain order if and only if it is a member in
a discrete-time Besov space.

This result has been previously published in [11].

In [31], Torres also develops a discrete-time ϕ-transform decomposition (see Section
3.2) for Bα

p,q(Z), which will be the starting point for our considerations.

We derive our characterization of Besov spaces on Z in terms of discrete-time wavelet
systems in Section 3.3: Just as in the continuous case, the ϕ-transform is in many
ways quite similar to a wavelet transform, and this similarity allows a proof of the
main result by studying off-diagonal decay of certain infinite matrices. This decay

57
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behavior is derived under suitable conditions regarding support, vanishing moments
and smoothness of the discrete-time wavelets.

This wavelet characterization allows to obtain further descriptions of the discrete-
time spaces as in Section 3.4, which can be viewed as more ‘intrinsic’ in contrast to
the Littlewood-Paley type definition. In particular, they do not rely on the choice
of auxiliary functions.

Subsection 3.4.1 contains the results on discrete-time Besov spaces in terms of
discrete-time moduli of smoothness (compare to the analog continuous-time spaces
in 1.1.1); another equivalent characterization in terms of oscillation over intervals is
given in 3.4.2.

3.1 Littlewood-Paley Type Definition of Bα
p,q(Z)

The following definition of Besov spaces on Z is the one employed in [31], except for
a change of notation that is convenient for our purposes.
For additional background information on the corresponding spaces on R, see Chap-
ter 1 or e.g. [16, 17, 14, 23].

First, we need analoga of Schwartz functions and tempered distributions in terms
of sequences.

We refer to [31] for basic facts concerning distributions on Z.

Definition 3.1.1. A complex-valued sequence η = (η(n))n∈Z satisfying

sup
n∈Z

|η(n)|(1 + |n|)m <∞ (3.1.1)

for every m > 0, will be called rapidly decreasing.
A sequence f = (f(n))n∈Z will be called (tempered) distribution on Z if

inf{m ∈ N : sup
n∈Z

|f(n)|(1 + |n|)−m <∞} <∞.

We will denote the spaces of rapidly decreasing sequences by S(Z): it is topologized
by the sup-norms in (3.1.1). S ′(Z) denotes the space of distributions on Z, which
is indeed the dual space of S(Z). In order to be consistent with the usual inner
product notation, 〈f, η〉 =

∑
n f(n)η(n) will stand for the pairing of a distribution f

and the rapidly decreasing sequence η. The Fourier transform of f ∈ S(Z) is given

by f̂(ω) =
∑

k∈Z f(k)e−ikω, extended to S ′(Z) in the usual way.

A justification for this can be found again in [31].

We next define the notion of a phi-function, which is the basis for the Littlewood-
Paley definition of discrete-time Besov spaces.



3.2 ϕ-transform Decomposition of Bα
p,q(Z) 59

Definition 3.1.2. A phi-function is a function ϕc ∈ S(R) satisfying

supp ϕ̂c ⊆ {ω : π/4 < |ω| < π}, (3.1.2)

for some C, ε > 0,

|ϕ̂c(ω)| > C on {ω : π/4 + ε < |ω| < π − ε}, (3.1.3)

ϕ̂c ≡ 1 in a small neighborhood of {−π/2, π/2}, (3.1.4)∑
ν∈Z

|ϕ̂cν(ω)|2 = 1 for ω ∈ R \ {0}. (3.1.5)

For ν ∈ Z, set ϕcν(x) = 2−ν+2ϕc(2−ν+2x). The superscript c serves as a reminder

that ϕc is a continuous-time function. Note that our notation differs from [31]: here,
small scales correspond to small ν. We use dilation by the factor 2−ν+2 instead of
the more intuitive 2−ν in order to obtain a unified notation later on; this has the
slightly awkward consequence that ϕc equals ϕc2.
We will now obtain a family of rapidly decreasing sequences by sampling the func-
tions (ϕν)ν≥1. Set ϕν := ϕcν |Z for ν > 1 and ϕ1 := ((χ[−π,π]ϕ̂

c
1)
∨)|Z, where the

different definition for ϕ1 is due to technical considerations, see [31].
Let P(Z) denote the set of polynomials on R, sampled at the integers.

Definition 3.1.3. Let a phi-function ϕc ∈ S(R) be given. For α ∈ R, 0 < p, q <∞,
the discrete-time Besov space Bα

p,q(Z) is the collection of all f ∈ S ′/P(Z) (distribu-
tions on Z modulo polynomials P(Z)), such that

‖f‖Bα
p,q(Z) := (

∑
ν≥1

(2−να‖f ∗ ϕν‖lp(Z))
q)1/q <∞ .

This definition is independent of the choice of ϕc. For a distribution f ∈ S ′(Z), we

have ‖f‖Bα
p,q(Z) = 0 if and only if f ∗ ϕν = 0 for all ν ≥ 1. By the conditions on

ϕ, this is equivalent to supp f̂ = {0}, or equivalently, to f ∈ P(Z). This is why
the Besov spaces are defined as spaces of equivalence classes modulo polynomials:
‖ · ‖Bα

p,q(Z) becomes a norm for 1 ≤ p, q <∞ and a quasi-norm in general.
In analogy to the continuous-time case, we have a Calderón type formula for f ∈
S ′(Z):

f =
∑
ν≥1

f ∗ ϕν ∗ ϕ∗ν , (3.1.6)

with unconditional convergence in S ′/P(Z) [31].

3.2 ϕ-transform Decomposition of Bα
p,q(Z)

A ϕ-transform theorem for Bα
p,q(Z) was derived in [31]. It can be understood as

a critically sampled version of (3.1.6). We thus have at hand a decomposition for
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sequences in the discrete-time Besov space similar to an expansion into an ortho-
normal basis, though non-orthogonal and with ‘basis elements’ that are compactly
supported in Fourier domain. Theorem 3.2.1 provides a norm equivalence that can
be read as a critically sampled version of Definition 3.1.3, and which yields the char-
acterization of Bα

p,q(Z) in terms of the membership of ϕ-transform coefficients in the
space bαp,q(Z) we defined in (1.2.1).

Consider again a phi-function ϕc ∈ S(R), and for ν, k ∈ Z let

ϕcν,k(x) = 2(−ν+2)/2ϕc(2−ν+2x− k).

For k ∈ Z, define ϕν,k = ϕcν,k|Z for ν > 1 and ϕ1,k = τkϕ1.
In [31], starting from the formula (3.1.6) and following the lines of Frazier and
Jawerth [15], it is derived that for any f ∈ S ′(Z)

f =
∑
ν≥1

∑
k∈Z

〈f, ϕν,k〉ϕν,k, (3.2.1)

with convergence in S ′/P(Z). It is also well-known that condition (iv) of Definition
3.1.2 alone guarantees that for f ∈ `2(Z) the decomposition (3.2.1) converges in the
norm.
Let the ϕ-transform Sϕ for f ∈ S ′(Z) be defined by Sϕf = s = (sν,k)ν≥1,k∈Z, where
sν,k = 〈f, ϕν,k〉, and for a complex-valued sequence t = (tν,k)ν≥1,k∈Z define the inverse
ϕ-transform by Tϕ by Tϕt =

∑
ν,k tν,kϕν,k. The convergence of the sum is guaranteed

by the following result.

Theorem 3.2.1. [[31]] Let α ∈ R, 0 < p, q <∞.
Both of the operators Sϕ : Bα

p,q(Z) → bαp,q(Z) and Tϕ : bαp,q(Z) → Bα
p,q(Z) are bounded

with ‖f‖Bα
p,q(Z) � ‖Sϕf‖bαp,q(Z) and Tϕ ◦ Sϕ = idBα

p,q(Z).

In other words, under these maps, Bα
p,q(Z) is a retract of bαp,q(Z), and Bα

p,q(Z) can be
identified with the closed subspace Sϕ(B

α
p,q(Z)) of bαp,q(Z).

We next give a more precise statement concerning the convergence of the ϕ-transform
decomposition, if we know a sequence to belong to a Besov space. Let for K ∈ N

SK(Z) := {η ∈ S(Z) :
∑

η(n)nm = 0, N 3 m ≤ K}

and S∞(Z) := {η ∈ S(Z) :
∑
η(n)nm = 0 for all m ∈ N}, S−1(Z) := S(Z).

Note that the dual space of SK(Z) can be identified with S ′/PK(Z), the space
of equivalence classes of distributions modulo polynomials of degree ≤ K, where
(S−1(Z))′ ∼ S ′(Z) and also (S∞(Z))′ ∼ S ′/P(Z) ([17, 14]).
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Lemma 3.2.2. Let (ϕν,k)ν≥1,k∈Z be the family of rapidly decreasing sequences defined
in Section 3.2.
Any f ∈ Bα

p,q(Z) can be written as

f =
∑
ν≥1

∑
k∈Z

〈f, ϕν,k〉ϕν,k

in the sense of (SK(Z))′, K = max{[α− 1/p],−1}, and for any η ∈ SK(Z), we set

〈f, η〉 :=
∑
ν,k

〈f, ϕν,k〉〈ϕν,k, η〉.

Proof First, notice that for η ∈ S(Z), absolute convergence of the ϕ-transform
decomposition holds in a pointwise sense, compare to [14]. Now, let η ∈ SK . Lemma
3.3.2 below (see Remark 3.3.3) allows the estimate |〈ϕν,k, η〉| ≤ C2−ν(K+1+1/2)(1 +
|k|)−M for M > 0. For f ∈ Bα

p,q(Z), (〈f, ϕν,k〉)ν≥1,k∈Z ∈ bαp,q(Z) by Theorem 3.2.1

and particularly for any coefficient |〈f, ϕν,k〉| ≤ C2ν(α−1/p+1/2).
Hence,
∞∑

ν=N+1

∑
k

|〈f, ϕν,k〉||〈ϕν,k, η〉| ≤ C
∑∞

ν=N+1

∑
k 2ν(α−1/p+1/2)2−ν(K+1+1/2)(1 + |k|)−M

≤ C
∑∞

ν=N+1

∑
k 2−ν(K−α+1/p+1),

which ensures convergence for K = max{[α− 1/p],−1} as

lim
N→∞

∑
n∈Z

f(n)(η(n)−
N∑
ν=1

〈η, ϕν,k〉ϕν,k(n)) = 0.

Remark 3.2.3.

1. For continuous-time functions, we decided between homogeneous and inho-
mogeneous spaces. In the discrete-time case, we defined a single scale of the
spaces, starting from homogeneous Besov spaces. As Torres [31] notes, in dis-
crete time, the notion of inhomogeneous spaces makes no sense: we cut off high
frequencies and the discrete-time Besov norm controls the large scale behavior
of the sequence. Controlling this large scale behavior as in 1.1.6 in fact results
in a norm equivalent to ‖ · ‖`p(Z).

2. There is a sampling theorem in [31]: it is shown that for 1 < p < ∞, the
spaces Bα

p,q(Z) correspond exactly to the spaces of samples of functions in

Ḃα
p,q(R) ∩ Eπ, where Eπ is the set of tempered distributions whose Fourier

transforms are supported on [−π, π].
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3.3 Wavelet Characterization of Bα
p,q(Z)

In this section, we present the central result of this thesis. The results of this section
have been published in [11].

We consider biorthogonal families (hj)j≥1 and (h̃j)j≥1 in `2(Z), and associated sys-
tems (hj,l) = (hj(· − 2jl)), h̃j,l = (h̃j(· − 2jl)). We assume that all involved hj, h̃j
have finite supports. Thus it is possible to define for f ∈ S ′(Z) the operator
Shf = (〈f, hj,l〉)j≥1,l∈Z, and Sh̃ likewise. Moreover, for all finitely supported coef-
ficient sequences d = (dj,l)j≥1,l∈Z, define

Thd =
∑
j,l

dj,lhj,l . (3.3.1)

Again, let Th̃ be defined in an analogous way. Our aim is the characterization of
f ∈ Bα

p,q(Z) by use of the operators Th and Sh̃.

In the following we want to provide criteria on (hj)j≥1, (h̃j)j≥1 to ensure analogs of
3.2.1, with Th, Sh̃ replacing Tϕ, Sϕ. Our main result will be Theorem 3.3.8 below,
which may be viewed as analogy to 3.2.1, but also to the wavelet characterization
of Ḃα

p,q(R).

In the proof we exploit the strong similarities of the biorthogonal wavelet and ϕ-
transforms: both are based on building blocks indexed by dyadic scales 2j, which
are shifted along the grid 2jZ.

But our result is not included in the ϕ-transform result: Recall that the ϕ-transform
sequences ϕν,k arise by sampling band-limited Schwartz functions with infinitely
many vanishing moments. By contrast, the wavelet systems need only have finitely
many vanishing moments, and only a finite degree of smoothness. In addition, we
assume a control over the supports of the initial sequences (hj)j≥1 and (h̃j)j≥1 that
can not be obtained by sampling bandlimited functions.

This setup covers the discrete-time biorthogonal wavelet bases as described in Sec-
tion 2.2, but it could also be applied to even more general systems, e.g. arising from
cascade algorithms where the analysis filter changes at each scale in a controlled
way.
In any case, the ϕ-transform will be the starting point for our considerations. The
blueprint for the general proof strategy is provided by the continuous time the-
ory, as contained e.g. in [17] or [14]. However the arguments need to be adapted
to properties of discrete-time wavelet families. The key to the proof is the study
of the off-diagonal behavior of the transition matrices A = (〈hj,l, ϕν,k〉)j,l,ν,k and
Ã = (〈ϕν,k, h̃j,l〉)ν,k,j,l, and to conclude boundedness of certain associated operators
acting on bαp,q(Z). For this purpose, we study how properties of hj,l influence the size
of |〈hj,l, ϕν,k〉|.
First, we employ an inequality that will be used repeatedly:
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Lemma 3.3.1. Let α ≤ 1 and M ≥ N + 1. Then,∑
k∈Z

(1 + α|k|)−M(1 + |k|)N ≤ Cα−(N+1).

Proof∑
k∈Z

(1 + α|k|)−M(1 + |k|)N = α−M
∑
k∈Z

(α−1 + |k|)−M(1 + |k|)N

≤ α−M
∑
k∈Z

(α−1 + |k|)N−M

= α−M(αM−N + 2
∑
k≥1

(α−1 + k)N−M)

≤ α−M(αM−N + 2

∫ ∞

0

(α−1 + x)N−Mdx)

= α−N + 2α−M
∫ ∞

α−1

xN−Mdx

= α−N + 2α−MαM−N−1

≤ Cα−(N+1)

Lemma 3.3.2. Let (hj)j≥1, (ϕν)ν≥1 be discrete-time families satisfying the following
conditions:
There are N ≥ 1 and M > 0 such that∑

n∈Z

nihj(n) = 0 for i = 0, . . . , N − 1, (3.3.2)

|hj(n)| ≤ C2−j/2(1 + 2−j|n|)−(M+N+2) for n ∈ Z. (3.3.3)

Further, assume that for each ν ≥ 1, n ∈ Z there is a polynomial pν,n of degree ≤ N,
and a function Φν : Z× Z → R+ such that

i) |ϕν(n− k)− pν,n(k)| ≤ C2−ν/22−νN(1 + |k|)NΦν(n, k),

ii) Φν(n, k) ≤ C, (3.3.4)

iii) Φν(n, k) ≤ C(1 + 2−ν |n|)−M for |k| < |n|
2
,

with C independent of n, ν, k.
Then, for j ≤ ν

|(hj ∗ ϕν)(n)| ≤ C ′2(j−ν)(N+1/2)(1 + 2−ν |n|)−M , (3.3.5)
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where C ′ is a constant independent of ν, n, k.

Proof This can be verified analogously to the second part of the proof of Lemma
3.3 in [15]. We give this proof for the sake of completeness:

Let j ≤ ν.

|(hj ∗ ϕν)(n)| = |
∑
k∈Z

hj(k)ϕν(n− k)|

(3.3.2)
= |

∑
k∈Z

hj(k)(ϕν(n− k)− pν,n(k))|

(3.3.4 i)

≤ C
∑
k∈Z

|hj(k)|2−ν/22−νN(1 + |k|)NΦν(n, k)

= C

( ∑
|k|< |n|

2

|hj(k)|2−ν/22−νN(1 + |k|)NΦν(n, k)

+
∑
|k|≥ |n|

2

|hj(k)|2−ν/22−νN(1 + |k|)NΦν(n, k)

)
=: C(I + II)

Using (3.3.4 iii), the first sum can be estimated by

I ≤ C2−(j+ν)/22−νN(1 + 2−ν |n|)−M
∑

|k|<|n|/2

(1 + 2−j|n|)−(M+N+2)(1 + |k|)N

≤ C2−(j+ν)/22−νN2j(N+1)(1 + 2−ν |n|)−M

= C2(j−ν)(N+1/2)(1 + 2−ν |n|)−M ,

where in the second inequality we used Lemma 3.3.1 with α = 2−j.

From (3.3.4 ii), we get for the second sum

II ≤ C2−(j+ν)/22−νN
∑

|k|≥|n|/2

(1 + 2−j|n|)−(M+N+2)(1 + |k|)N

≤ C2−(j+ν)/22−νN(1 + 2−j−1|n|)−M
∑

|k|>|n|/2

(1 + 2−j|n|)−(N+2)(1 + |k|)N

≤ C2−(j+ν)/22−νN2j(N+1)(1 + 2−ν |n|)−M

= C2(j−ν)(N+1/2)(1 + 2−ν |n|)−M ,

again, we made use of Lemma 3.3.1.
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Remark 3.3.3. As a consequence of Lemma 3.3.2, we obtain for η ∈ SK(Z) and
(ϕν)ν≥1 satisfying the requirements of the Lemma that there is M > 0 such that

|(η ∗ ϕν)(n)| ≤ C2−ν(K+1+1/2)(1 + 2−ν |n|)−M . (3.3.6)

We will need a discrete-time analogon to Taylor’s formula. For f = (f(n))n∈Z,
consider the forward and backward difference operators ∆f(n) = f(n + 1) − f(n)
and ∇f(n) = f(n− 1)− f(n).

Lemma 3.3.4. Let f = (f(n))n∈Z, k ∈ Z, N ∈ N.
i) For k ≥ 0, k ≥ N

f(n− k) =
N−1∑
i=0

(
k

i

)
∇if(n) +

k−N−1∑
m=0

(
k − 1−m

N − 1

)
∇Nf(n−m) +∇Nf(n− k +N).

ii) For k < 0, k ≤ −N

f(n−k) =
N−1∑
i=0

(
−k
i

)
∆if(n)+

−k−N−1∑
m=0

(
−k − 1−m

N − 1

)
∆Nf(n+m)+∆Nf(n−k−N).

Proof First, by direct calculation, if k ≥ 0

f(n− k) =
k∑
i=0

(
k

i

)
∇if(n)

and for k < 0

f(n− k) =
−k∑
i=0

(
−k
i

)
∆if(n).

In the literature, this type of expansion is sometimes referred to as Newton-Gregory
interpolation formula.
i) For N = k, we get

f(n− k) =
k∑
i=0

(
k

i

)
∇if(n) =

k−1∑
i=0

(
k

i

)
∇if(n) +∇Nf(n).
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N → N − 1:

f(n− k)

=
N−1∑
i=0

(
k

i

)
∇if(n) +

k−N−1∑
m=0

(
k − 1−m

N − 1

)
∇Nf(n−m) +∇Nf(n− k +N)

=
N−2∑
i=0

(
k

i

)
∇if(n) +

(
k

N − 1

)
∇N−1f(n) +

k−N−1∑
m=0

(
k − 1−m

N − 1

)(
∇N−1f(n−m− 1)−∇N−1f(n−m)

)
+∇Nf(n− k +N)

=
N−2∑
i=0

(
k

i

)
∇if(n) +

k−N∑
m=0

((
k −m

N − 1

)
−
(
k − 1−m

N − 1

))
∇N−1f(n−m)

+∇N−1f(n− k +N − 1)

=
N−2∑
i=0

(
k

i

)
∇if(n) +

k−N∑
m=0

(
k − 1−m

N − 2

)
∇N−1f(n−m) +∇N−1f(n− k +N − 1),

where in the last equation we used that for l,m ∈ N
(
m
l+1

)
+
(
m
l

)
=
(
m+1
l+1

)
.

The proof of ii) can be done in the same way.

These difference operators are related to the operator Dj defined in Section 2.2.2:

Lemma 3.3.5. The forward and backward difference operators ∆, ∇, defined above
satisfy for f = (f(n))n∈Z

i) ∆mf(n−m) = 2−jmDm
j f(n)

ii) ∇mf(n) = (−1)m2−jmDm
j f(n),

where m ∈ N and Dj the difference operator defined in section 2.2.2.

Proof i)
m = 1:

2−jDjf(n) = f(n)− f(n− 1) = ∆f(n− 1),

m→ m+ 1:

2−j(m+1)Dm+1
j f(n) = 2−j(m+1)2j(Dm

j f(n)−Dm
j f(n− 1))

= ∆mf(n−m)−∆mf(n−m− 1)

= ∆m+1f(n− (m+ 1)).
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ii)
m = 1:

−2−jDjf(n) = −f(n) + f(n− 1) = ∇f(n),

m→ m+ 1:

(−1)m+12−j(m+1)Dm+1
j f(n) = (−1)m+12−j(m+1)2j(Dm

j f(n)−Dm
j f(n− 1))

= (−1)m2−jm(Dm
j f(n− 1)−Dm

j f(n))

= ∇mf(n− 1)−∇mf(n)

= ∇m+1f(n).

For the following lemma, observe that assumptions concerning support size and
vanishing moments of (hj)j≥1 carry over to the larger system (hj,l)j≥1,l∈Z. Moreover,
for the case of discrete wavelet bases as constructed in Section 2.2, the support
properties are trivially fulfilled, and the vanishing moments are ensured by having
enough vanishing moments in the initial high-pass filter h, confer Proposition 2.2.5.

Lemma 3.3.6. For the discrete-time families (ϕν,k)ν≥1,k∈Z, the ϕ-transform as
defined in (3.2), and (hj,l)j≥1,l∈Z, satisfying

|supp hj,l| ≤ C2j, ‖hj,l‖∞ ≤ C2−j/2 (3.3.7)∑
n∈Z n

ihj,l(n) = 0 for i = 0, . . . , N1 − 1, (3.3.8)

(hj,l) regular of order N2 + ε in the sense of 2.2.7, 0 < ε ≤ 1, (3.3.9)

the following inequalities are valid:
There exist C > 0 ,M1,M2 ∈ N, such that

|〈hj,l, ϕν,k〉| ≤ C2(j−ν)(N1+1/2)

(
1 +

|2νk − 2jl|
2ν

)−M1

for j < ν, (3.3.10)

|〈hj,l, ϕν,k〉| ≤ C2(ν−j)(N2+1/2)

(
1 +

|2νk − 2jl|
2j

)−M2

for j ≥ ν. (3.3.11)

Proof We first show that for any j ≥ 1 and ν > 1, the sequences hj = (hj,0(n))n∈Z
and ϕν = (ϕν,0(n))n∈Z, satisfy the conditions in Lemma 3.3.2. Setting n = 2νk− 2jl
in (3.3.5) will give the first of the above inequalities.
Let j ≥ 1. By assumption (3.3.8), hj satisfies (3.3.2) with N = N1 and by assump-
tions (3.3.7), for n ∈ supp hj we have (1 + 2−j|n|) ≤ C, which gives

|hj(n)| ≤ C2−j/2(1 + 2−j|n|)−M for any M > 0.
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Choosing M1 > 0 and setting M = M1 +N1 + 2 gives (3.3.3).
For ν > 1, the sequence (ϕν,0(n))n∈Z arises by sampling from a continuous-time
function ϕcν,0 ∈ S(R), where ϕcν,0(x) = 2(−ν+2)/2ϕc(2−ν+2x). By definition, ϕc corre-
sponds to ϕc2, so we can rewrite the above equation for convenience:
ϕν,0(n− k) = 2−ν/2ϕc0(2

−ν(n− k)).
Let Px be the Taylor polynomial of ϕc0 of degree N1 − 1 in x ∈ R:

Px(·) =

N1−1∑
m=0

(ϕc0)
(m)(x)

m!
(· − x)m.

For y ∈ R, there is ξ between x and y, such that ϕc0(y) = Px(y) +
(ϕc

0)(N1)(ξ)

N1!
. Setting

pν,n(k) = 2−ν/2P2−νn(2
−ν(n−k)) and Φν(n, k) = sup{ (ϕc

0(ξ))(N1)

N1!
, ξ between x and y},

we have (3.3.4 i), and (3.3.4 ii) as ‖(ϕc0)(N1)‖∞ <∞.

Let |k| < |n|
2

. In this case, for ξ between 2−νn and 2−ν(n−k), |ξ| ≥ 2−ν min(|n|, |n−
k|) ≥ 2−ν |n|/2. Since ϕc0 ∈ S(R), we obtain (3.3.4 iii), as (ϕc0)

(N1)(ξ) ≤ C(1 +
2−ν−1|n|)−M1 ≤ C(1 + 2−ν |n|)−M1 .
In order to prove the second inequality, we make again use of Lemma 3.3.2, exchang-
ing the roles of ϕν and hj. We will therefore need to check that the system (ϕν)
fulfills the requirements imposed on (hj) in Lemma 3.3.2, and vice versa.

For ν ≥ 1, ϕν ∈ S(Z), which gives (3.3.3) for any N ∈ N. Since the moments of any
order of ϕν vanish (3.3.2) is valid. Hence it remains to check the condition (3.3.4)
with (hj) replacing (ϕν). Once this is achieved, Lemma 3.3.2 provides the estimate

|(h∗j ∗ ϕν)(n)| ≤ C2(ν−j)(N2+1/2)(1 + 2−j|n|)−M ,

and setting n = 2jl − 2νk will finish the proof.
As we chose the filters to be of finite length, supp h∗j is finite. By Lemma 3.3.4, for
n and n− k in supp h∗j , for k > 0

h∗j(n− k) =
k∑
i=0

(
k

i

)
∇ih∗j(n)

and for k < 0

h∗j(n− k) =
−k∑
i=0

(
−k
i

)
∆ih∗j(n).

For n outside the support of h∗j , one has to expand the upper series in the right resp.
the left endpoint of the supporting interval.
In the case k > 0, set

p1
j,n(k) =

N2−1∑
i=0

(
k

i

)
∇ih∗j(n)
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and for k < 0

p2
j,n(k) =

N2−1∑
i=0

(
−k
i

)
∆ih∗j(n).

Using Lemmata 3.3.4 and 3.3.5 gives for k ≥ N2

|h∗j(n− k)− p1
j,n(k)|

= |
k−N2−1∑
m=0

(
k − 1−m

N2 − 1

)
∇N2h∗j(n−m) +∇N2h∗j(n− k +N2)|

≤

(
k−N2−1∑
m=0

(
k − 1−m

N2 − 1

)
+

(
N2

N2

))
· sup
m∈{0,...,k−N2}

|∇N2h∗j(n−m)|

≤
(
k

N2

)
· sup
m∈{0,...,k}

|(−1)N22−jN2DN2
j h∗j(n−m)|

≤ C2−jN2(1 + |k|)N2 · sup
l∈{n−k,...,n}

|DN2h∗j(l)|.

The regularity condition on h∗j gives

sup
l∈{n−k,...,n}

|DN2h∗j(l)| ≤ C2−j/2

and due to the finite support of h∗j , for k < |n|/2,

sup
l∈{n−k,...,n}

|DN2h∗j(l)| ≤ C2−j/2(1 + 2−j|l|)−M

≤ C2−j/2(1 + 2−j−1|n|)−M

≤ C2−j/2(1 + 2−j|n|)−M

for any M > 0.
Likewise, for k < −N2,

|h∗j(n− k)− p2
j,n(k)| ≤ C(1 + |k|)N2 · sup

m∈{0,...,−k−N2}
|∆N2h∗j(n+m)|

≤ C2−jN2(1 + |k|)N2 sup
l∈{n,...,n−k}

|DN2h∗j(l)|.
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Lemma 3.3.7. Let α ∈ R, 0 < p, q < ∞ and let (ϕν,k)ν≥1,k∈Z be the family of
sequences defined in (3.2).
If (hj,l)j≥1,l∈Z satisfies the conditions of Lemma 3.3.6 with N1 > 1/(min(1, p))−1−α,
N2 > α, then the matrix A := (〈hj,l, ϕν,k〉)j,l,ν,k, defines a bounded operator on
bαp,q(Z), where As = (

∑
j≥1

∑
l∈Z〈hj,l, ϕν,k〉sj,l)ν,k for s ∈ bαp,q(Z).

Also, for (h̃j,l)j≥1,l∈Z, satisfying the conditions of Lemma 3.3.6, where now N1 >
α, N2 > 1/(min(1, p)) − 1 − α, the matrix Ã := (〈ϕν,k, h̃j,l〉)ν,k,j,l, where Ãs =
(
∑

ν≥1

∑
k∈Z〈ϕν,k, h̃j,l〉sν,k)j,l, is bounded on bαp,q(Z) as well.

Proof The proof is quite close to the continuous case treated in [15, 14]. We
reproduce it here for the sake of convenience.
First, we show boundedness of A:

‖As‖qbαp,q(Z) =
∑
ν≥1

[∑
k∈Z

(
2−ν(α−1/p+1/2)|

∑
j≥1

∑
l∈Z

〈hj,l, ϕν,k〉sj,l|
)p]q/p

≤
∑
ν≥1

[∑
k∈Z

(∑
j≥1

∑
l∈Z

2(j−ν)(α−1/p+1/2)|〈hj,l, ϕν,k〉|2−j(α−1/p+1/2)|sj,l|
)p]q/p

≤ C

{∑
ν≥1

[∑
k∈Z

(∑
j<ν

∑
l∈Z

2(j−ν)(α−1/p+1/2)|〈hj,l, ϕν,k〉|2−j(α−1/p+1/2)|sj,l|
)p]q/p

+
∑
ν≥1

[∑
k∈Z

(∑
j≥ν

∑
l∈Z

2(j−ν)(α−1/p+1/2)|〈hj,l, ϕν,k〉|2−j(α−1/p+1/2)|sj,l|
)p]q/p}

=: C

{
Iq + IIq

}

In the case 1 < p < ∞, we have from Lemma 3.3.6 and Minkowski’s inequality for
the first term

Iq ≤ C
∑
ν≥1

[∑
k∈Z

( ∑
j<ν,l∈Z

2(j−ν)(α−1/p+1/2+N1+1/2)

(
1 +

|2νk − 2jl|
2ν

)−M1

2−j(α−1/p+1/2)|sj,l|
)p]q/p

≤ C
∑
ν≥1

[∑
j<ν

2(j−ν)(α−1/p+1+N1)

(∑
k∈Z

(
∑
l∈Z

(
1 +

|2νk − 2jl|
2ν

)−M1

2−j(α−1/p+1/2)|sj,l|)p
)1/p]q/p
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By Hölder’s inequality, where 1/p+ 1/p′ = 1, the inner p-sum can be estimated by

[∑
k∈Z

(∑
l∈Z

(1 + |k − 2j−νl|)−M12−j(α−1/p+1/2)|sj,l|
)p]1/p

=

[∑
k∈Z

(∑
l∈Z

(1 + |k − 2j−νl|)−M1/p′(1 + |k − 2j−νl|)−M1/p2−j(α−1/p+1/2)|sj,l|
)p]1/p

≤
[∑
k∈Z

{(∑
l∈Z

(1 + |k − 2j−νl|)−M1

)1/p′

·

(∑
l∈Z

(1 + |k − 2j−νl|)−M12−jp(α−1/p+1/2)|sj,l|p
)1/p}p]1/p

≤ C2(ν−j)/p′
(∑

l∈Z

(2−j(α−1/p+1/2)|sj,l|)p
)1/p

,

where the last inequality follows from Lemma 3.3.1.

Inserting this estimate into Iq and using the condition on N1, we find

Iq ≤ C
∑
ν≥1

[∑
j<ν

2(j−ν)(α+N1)

(∑
l∈Z

(2−j(α−1/p+1/2)|sj,l|)p
)1/p]q/p

≤ C
∑
ν≥1

[∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
]q/p

.

Similarly, for the second term

IIq ≤ C
∑
ν≥1

[∑
k∈Z

(∑
j≥ν

∑
l∈Z

2(j−ν)(α−1/p−N2)

(
1 +

|2νk − 2jl|
2j

)−M2

2−j(α−1/p+1/2)|sj,l|
)p]q/p

≤ C
∑
ν≥1

[∑
j≥ν

2(j−ν)(α−1/p−N2)

(∑
k∈Z

(
∑
l∈Z

(
1 +

|2νk − 2jl|
2j

)−M2

2−j(α−1/p+1/2)|sj,l|)p
)1/p]q/p

≤ C
∑
ν≥1

[∑
j≥ν

2(j−ν)(α−N2)

(∑
l∈Z

(2−j(α−1/p+1/2)|sj,l|)p
)1/p]q/p

≤ C
∑
ν≥1

[∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
]q/p

.
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Now consider the case 0 < p ≤ 1:

Iq ≤ C
∑
ν≥1

[∑
k∈Z

( ∑
j<ν,l∈Z

2(j−ν)(α−1/p+1/2+N1+1/2)

(
1 +

|2νk − 2jl|
2ν

)−M1

2−j(α−1/p+1/2)|sj,l|
)p]q/p

≤ C
∑
ν≥1

[∑
k∈Z

∑
j<ν

∑
l∈Z

2p(j−ν)(α−1/p+N1+1)

(
1 +

|2νk − 2jl|
2ν

)−M1p

2−jp(α−1/p+1/2)|sj,l|p
]q/p

≤ C
∑
ν≥1

[∑
j<ν

∑
l∈Z

2p(j−ν)(α−1/p+N1+1)2−jp(α−1/p+1/2)|sj,l|p
]q/p

≤ C
∑
ν≥1

[∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
]q/p

.

Along the same lines, for the second term in case 0 < p ≤ 1

IIq ≤ C
∑
ν≥1

[∑
k∈Z

(∑
j≥ν

∑
l∈Z

2(j−ν)(α−1/p−N2)

(
1 +

|2νk − 2jl|
2j

)−M2

2−j(α−1/p+1/2)|sj,l|
)p]q/p

≤ C
∑
ν≥1

[∑
k∈Z

∑
j≥ν

∑
l∈Z

2p(j−ν)(α−1/p−N2)

(
1 +

|2νk − 2jl|
2j

)−M2p

2−jp(α−1/p+1/2)|sj,l|p
]q/p

≤ C
∑
ν≥1

[∑
j≥ν

∑
l∈Z

2p(j−ν)(α−1/p−N2)2(j−ν)2−jp(α−1/p+1/2)|sj,l|p
]q/p

= C
∑
ν≥1

[∑
j≥ν

∑
l∈Z

2p(j−ν)(α−N2)2−jp(α−1/p+1/2)|sj,l|p
]q/p

≤ C
∑
ν≥1

[∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
]q/p

.

Reversing the roles of j and ν in the above proof gives boundedness of Ã:

‖Ãs‖qbαp,q(Z) =
∑
j≥1

[∑
l∈Z

(
2−j(α−1/p+1/2)|

∑
ν≥1

∑
k∈Z

〈ϕν,k, h̃j,l〉sν,k|
)p]q/p

≤ C

{∑
j≥1

[∑
l∈Z

(∑
j≥ν

∑
k∈Z

2(ν−j)(α−1/p+1/2)|〈ϕν,k, h̃j,l〉|2−ν(α−1/p+1/2)|sν,k|
)p]q/p

+
∑
j≥1

[∑
l∈Z

(∑
j<ν

∑
k∈Z

2(ν−j)(α−1/p+1/2)|〈ϕν,k, h̃j,l〉|2−ν(α−1/p+1/2)|sν,k|
)p]q/p}

.

By Lemma 3.3.6, the size of |〈h̃j,l, ϕν,k〉| = |〈h̃j,l, ϕν,k〉| = |〈ϕν,k, h̃j,l〉| again can
be estimated by (3.3.10), (3.3.11) respectively, such that for 1 < p < ∞, we can
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estimate the first term in the above sum by

C
∑
j≥1

[∑
ν≤j

2(ν−j)(α+N2)

(∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
)1/p]q/p

,

and the second one by

C
∑
j≥1

[∑
ν>j

2(ν−j)(α−N1)

(∑
k∈Z

(2−ν(α−1/p+1/2)|sν,k|)p
)1/p]q/p

.

As in this case, we chose N1 > α, N2 > 1/(min(1, p))− 1−α, Ã is bounded and the
case 0 < p ≤ 1 follows using the same arguments as above.

We are now ready to state our main result: under appropriate support, moment
and regularity conditions on the biorthogonal wavelet families, the membership of
a distribution f = (f(n))n∈Z in a discrete-time Besov space is fully characterized
by the decay of coefficients (〈f, h̃j,l〉)j≥1,l∈Z. Moreover, the associated analysis and
synthesis operators are isomorphisms onto the full coefficient spaces bαp,q(Z), not just
onto certain closed subspaces.

Theorem 3.3.8. Let α ∈ R, 0 < p, q < ∞, N > α, Ñ > 1/(min{1, p}) − 1 − α.
Suppose that (hj,l), (h̃j,l), j ≥ 1, l ∈ Z, are biorthogonal wavelet bases for `2(Z),
satisfying

|supp hj|, |supp h̃j| ≤ C2j, (3.3.12)

‖hj‖∞ ≤ C2−j/2, ‖h̃j‖∞ ≤ C2−j/2 (3.3.13)∑
n∈Z n

ihj(n) = 0 for i = 0, . . . , Ñ − 1, (3.3.14)∑
n∈Z n

ih̃j(n) = 0 for i = 0, . . . , N − 1, (3.3.15)

(hj)j≥1 regular of order N + ε (in the sense of 2.2.7), 0 < ε ≤ 1, (3.3.16)

(h̃j)j≥1 regular of order Ñ + ε̃, 0 < ε̃ ≤ 1. (3.3.17)

Then the following statements hold:

(a) The analysis operator Sh̃ : Bα
p,q(Z) → bαp,q(Z) is well-defined and continuous.

(b) The synthesis operator extends uniquely to a bounded operator bαp,q(Z) → Bα
p,q(Z),

also denoted by Th. For arbitrary (dj,l)j≥1,l∈Z ∈ bαp,q(Z),

Th ((dj,l)j≥1,l∈Z) =
∑
j,l

dj,lhj,l , (3.3.18)

with unconditional convergence in the Besov space norm.
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(c) Th ◦Sh̃ = idBα
p,q(Z), and Sh̃ ◦Th = idbαp,q(Z). Thus, Bα

p,q(Z) can be identified with
bαp,q(Z) under the maps Sh̃ and Th.

(d) We have the norm equivalence ‖f‖Bα
p,q(Z) � ‖Sh̃f‖bαp,q(Z). Moreover, the wavelet

expansion

f =
∑
j,l

〈f, h̃j,l〉hj,l

holds with unconditional convergence in the Besov space norm.

Proof (Compare to [14, 17].) For part (a), let f ∈ Bα
p,q(Z), j ≥ 1, l ∈ Z and

K = max{[α− 1/p],−1}. Then K + 1 ≥ N , and thus

f =
∑
ν,k

〈f, ϕν,k〉ϕν,k

holds in (SK(Z))′, by Lemma 3.2.2. But h̃j,l ∈ SK(Z), and therefore

〈f, h̃j,l〉 =
∑
ν,k

〈f, ϕν,k〉〈ϕν,k, h̃j,l〉 = (Ã(〈f, ϕν,k〉))(j, l) .

Here we used the operator defined by the matrix Ã := (〈ϕν,k, h̃j,l〉)ν,k,j,l. In short,
Sh̃ = Ã◦Sϕ. By the support, size and moment conditions on (h̃j,l), (3.3.12),(3.3.13),(3.3.15),
Lemma 3.3.7 yields that Ã is bounded on bαp,q(Z), whereas Theorem 3.2.1 contributes
boundedness of Sϕ. This proves part (a).

For the operator Th, we consider the matrix A = (〈hj,l, ϕν,k〉)j,l,ν,k. Recall that
hj,l =

∑
ν,k〈hj,l, ϕν,k〉ϕν,k holds in l2(Z). Then for finitely supported sequences d,

Thd =
∑
j,l

dj,lhj,l

=
∑
j,l

dj,l
∑
ν,k

〈hj,l, ϕν,k〉ϕν,k

=
∑
ν,k

(∑
j,l

dj,l〈hj,l, ϕν,k〉

)
ϕν,k

= (Tϕ ◦ A)(d) .

By the assumptions on the system (hj)j≥1, the operator A is bounded on bαp,q(Z).
Hence on the finitely supported coefficient sequences - which are dense in bαp,q(Z)
- Th coincides with the bounded operator Tϕ ◦ A. But then Th has a bounded
extension to the whole space, and (3.3.18) in fact converges unconditionally for all
d ∈ bαp,q(Z): The net of restrictions of d to finite subsets of N × Z converges in the
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norm on bαp,q(Z). Then boundedness of Th implies that the net of finite partial sums
in (3.3.18) converges also, which is unconditional convergence.

For the proof of part (c), consider f ∈ Bα
p,q(Z). Parts (a) and (b) imply that

ThSh̃f =
∑

j,l〈f, h̃j,l〉hj,l with unconditional convergence in Bα
p,q(Z); therefore it

remains to prove that f is the limit of the expansion. For this purpose we first prove
that f =

∑
j,l〈f, h̃j,l〉hj,l holds in (SK(Z))′.

Hence let η ∈ SK . Then,

〈f, η〉 = 〈
∑
ν,k

〈f, ϕν,k〉ϕν,k, η〉 =
∑
ν,k

〈f, ϕν,k〉〈ϕν,k, η〉

=
∑
ν,k

∑
j,l

〈f, ϕν,k〉〈ϕν,k, h̃j,l〉〈hj,l, η〉

(∗)
=

∑
j,l

∑
ν,k

〈f, ϕν,k〉〈ϕν,k, h̃j,l〉〈hj,l, η〉

=
∑
j,l

〈f, h̃j,l〉〈hj,l, η〉

= 〈
∑
j,l

〈f, h̃j,l〉hj,l, η〉.

The order of summation in (∗) can be interchanged, because the series converges
absolutely:
(〈f, ϕν,k〉)ν,k ∈ bαp,q(Z) and the matrix Ã := (〈ϕν,k, h̃j,l〉)ν,k,j,l is bounded on bαp,q(Z)
by Lemma 3.3.7.
This yields

(
∑
ν,k

|〈f, ϕν,k〉||〈ϕν,k, h̃j,l〉|)j,l ∈ bαp,q(Z),

and in particular

∑
ν,k

|〈f, ϕν,k〉||〈ϕν,k, h̃j,l〉| ≤ C2j(α−1/p+1/2).

We noted in the proof of Lemma 3.3.6 that (hj) fulfills the requirements imposed
on the family (ϕν) in Lemma 3.3.2. Hence (3.3.3) implies

|〈hj,l, η〉| ≤ C2−j(K+1+1/2)(1 + |l|)−M ,

for M > 0, as η ∈ SK(Z).
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Overall, this gives∑
j,l

∑
ν,k

|〈f, ϕν,k〉〈ϕν,k, h̃j,l〉〈hj,l, η〉| ≤
∑
j,l

∑
ν,k

|〈f, ϕν,k〉||〈ϕν,k, h̃j,l〉||〈hj,l, η〉|

≤ C
∑
j,l

2j(α−1/p+1/2)2−j(K+1+1/2)(1 + |l|)−M

≤ C
∑
j

2−j(K+1−α+1/p) <∞.

Hence f =
∑

j≥1

∑
l∈Z〈f, h̃j,l〉hj,l in (SK(Z))′.

In order to prove ThSh̃f = f in the Besov norm, note that in particular ϕν,k ∈ SK(Z),
which, together with Theorem 3.2.1, leads to

‖f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉hj,l‖qBα
p,q(Z)

≤ C‖(〈f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉hj,l, ϕν,k〉)ν,k‖qbαp,q(Z)

= C‖(
∞∑

j=J+1

∑
l∈Z

〈f, h̃j,l〉〈hj,l, ϕν,k〉)ν,k‖qbαp,q(Z)

≤ C

{∑
ν≥1

[∑
k∈Z

( ∑
j>J,j<ν

∑
l∈Z

2−ν(α−1/p+1/2)|〈f, h̃j,l〉〈hj,l, ϕν,k〉|
)p]q/p

+
∑
ν≥1

[∑
k∈Z

( ∑
j>J,j≥ν

∑
l∈Z

2−ν(α−1/p+1/2)|〈f, h̃j,l〉〈hj,l, ϕν,k〉|
)p]q/p}

=: C

{
Iq + IIq

}
.

For 1 < p < ∞, we can proceed analogously to the proof of Lemma 3.3.7 and
estimate the first term by

Iq ≤ C
∑
ν≥1

[ ∑
j>J, j<ν

2(j−ν)(α+Ñ)

(∑
l∈Z

(2−j(α−1/p+1/2)|〈f, h̃j,l〉|)p
)1/p]q/p

,

and

IIq ≤ C
∑
ν≥1

[ ∑
j>J, j≥ν

2(j−ν)(α−N)

(∑
l∈Z

(2−j(α−1/p+1/2)|〈f, h̃j,l〉|)p
)1/p]q/p

.

This yields

lim
J→∞

‖f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉hj,l‖Bα
p,q(Z) = 0. (3.3.19)
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The case 0 < p ≤ 1 follows along the same lines, using the estimates established in
Lemma 3.3.7.

Furthermore, by the biorthogonality of hj,l, h̃j,l, any s = (si,m)i≥1,m∈Z ∈ bαp,q(Z)
can be written as

(si,m)i,m = (〈
∑
j,l

sj,lhj, l, h̃i,m〉)i,m ,

which gives Sh̃ ◦ Th = idbαp,q(Z).
Part (d) is immediate from (c).

Remark 3.3.9. Torres [31] characterizes the spaces Bα
p,q(Z) as spaces of sequences

obtained by sampling band-limited distributions in Ḃα
p,q(R).

Theorem 3.3.8 provides another relation between the Bα
p,q(Z) and the Ḃα

p,q(R) spaces
more in terms of multiresolution analysis.

Let F ∈ Ḃα
p,q(R), F =

∑
n∈Z anτnϕ, where ϕ a scaling function associated to a

multiresolution analysis (i.e. F ∈ V0 in MRA language).
Recalling that we have F ∈ Ḃα

p,q(R) if and only if the discrete wavelet coefficients
(dj,l)j≥1,l∈Z ∈ bαp,q(Z). By our theorem, this is in fact equivalent to (an)n∈Z to be in
Bα
p,q(Z).

3.4 ‘Intrinsic’ Characterizations of Bα
p,q(Z)

There are other, more ‘intrinsic’ possibilities to describe Besov spaces in discrete
time than using Littlewood-Paley theory. E.g. [30] contains a description in terms
of mean oscillation properties of sequences for some special cases of the parameters
α, p, q. Using our wavelet characterization result, it is easy to extend this kind of
description to the whole parameter family. This will be the issue of paragraph 3.4.2.

Before we give this result, however, we can give another characterization of the
discrete-time Besov spaces in terms of iterated differences. This result is a conse-
quence of Theorem 3.3.8.

3.4.1 Discrete-Time Moduli of Smoothness

Analogously to the continuous-time function spaces, the discrete-time Besov spaces
possess a description via differences. We adapt the notion modulus of smoothness
to functions given in discrete time, and show that for a certain range of parameters
α, p, q, the arising spaces coincide with the Bα

p,q(Z)-spaces defined via Littlewood-
Paley theory (3.1.3).

For the corresponding theory on R, see Chapter 1, or [25] or [34].
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Let m ∈ Z. For a sequence f = (f(n))n∈Z, define the (forward) difference operator
of step m by

∆mf(n) = f(n+m)− f(n),

and for r ∈ N+, define the difference operator of order r, step m, inductively by

∆r
mf(n) = ∆m(∆r−1

m f(n)).

Note that the r−th difference operator in explicit form is given by

∆r
mf(n) =

r∑
k=0

(
r

k

)
(−1)r−kf(n+ km).

Definition 3.4.1. For 1 < p < ∞, t ∈ R+, the r-th order modulus of smooth-
ness of f in lp(Z) is defined by

ωrp(f, t) = sup
m∈Z,|m|<t

‖∆r
mf(·)‖p.

The lp(Z)−moduli of smoothness share properties of their Lp(R)−analogs, see [25,
34]. In the following, we will list some of them which will be needed further on.

1. ωrp(f, t) is an increasing function of t.

2. For 1 ≤ s ≤ r and each t ∈ R+

ωrp(f, t) ≤ 2r−sωsp(f, t), (3.4.1)

and moreover, if f ∈ lp(Z)

ωrp(f, t) ≤ 2r‖f‖p. (3.4.2)

3. Let f, g be defined on Z. Then, for each t ∈ R+,

ωrp(f + g, t) ≤ ωrp(f, t) + ωrp(g, t), (3.4.3)

and for f multiplied by a scalar α,

ωrp(αf, t) ≤ |α|ωrp(f, t). (3.4.4)

As ωrp(f, t) vanishes for polynomials on Z of degree ≤ r − 1, ωrp(·, t) is a semi-
norm on the set of sequences for which ωrp(f, t) <∞ for all t ∈ R+.
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4. For M ∈ N,
ωrp(f,M · t) ≤M rωrp(f, t). (3.4.5)

So if ωrp(f, t) <∞ for some t > 0, it is finite for all t ∈ R+.

Definition 3.4.2. For α > 0, 1 < p, q <∞, r = bαc + 1, the sequence f is said to
be in Bα

q (lp(Z)) if

‖f‖Bα
q (lp(Z)) := (

∑
j≥1

(2−jαωrp(f, 2
j))q)1/q <∞. (3.4.6)

The ‖ · ‖Bα
q (lp(Z)) are semi-norms in general because of the polynomial cancellation

properties of the moduli of smoothness; they become norms modulo polynomials on
Z of degree ≤ r − 1. Furthermore, the Bα

q (lp(Z))-norms are all equivalent modulo
polynomials using different moduli of smoothness r > α in the definition.

Our aim is to show that the Bα
q (lp(Z))-spaces coincide with the discrete-time Besov

spaces, at least for the range of parameters given in Definition 3.4.2.

We start our preparations for this by considering an orthonormal discrete-time
wavelet basis for `2(Z), (hj,l)j≥1,l∈Z with associated scaling sequences (gj,l)j≥1,l∈Z,
satisfying

| supp gj,l|, | supphj,l| ≤ C2j, , (3.4.7)

‖gj,l‖∞ ≤ C2−j/2, ‖hj,l‖∞ ≤ C2−j/2 (3.4.8)

. (3.4.9)

In Remark 2.2.3, we noted that the family of projections (Pj)j≥1, Pjf =
∑

l∈Z〈f, gj,l〉gj,l
defines a decreasing sequence Vj = Pj(`

2(Z)) of closed subspaces which share many
properties of an MRA in L2(R). Let the spaces Wj be defined likewise, using the
projections Qjf =

∑
l∈Z〈f, hj,l〉hj,l.

Obviously, we have for Fj ∈ Vj, Fj =
∑

l∈Z aj,lgj,l,

‖Fj‖2
`2(Z) =

∑
l∈Z

|aj,l|2

and analogously for Gj ∈ Wj, Gj =
∑

l∈Z dj,lhj,l

‖Gj‖2
`2(Z) =

∑
l∈Z

|dj,l|2.

We will now investigate the behavior of the projections in spaces `p(Z), for p 6= 2.
The following Lemma relates the p-norm of functions in Vj, Wj to the p-norms of
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their coefficients. This type of result is sometimes called ‘p-stability’; for analogous
results in continuous time, see e.g [34], Section 8.1.

Lemma 3.4.3. Let 1 < p <∞, (gj,l), (hj,l) satisfying (3.4.7), (3.4.8).

Then, for Fj ∈ Vj, Fj =
∑

l∈Z aj,lgj,l, j ≥ 1,

‖Fj‖`p(Z) � 2−j/22j/p(
∑
l∈Z

|aj,l|p)1/p, (3.4.10)

as well as for Gj ∈ Wj, Gj =
∑

l∈Z dj,lhj,l, j ≥ 1,

‖Gj‖`p(Z) � 2−j/22j/p(
∑
l∈Z

|dj,l|p)1/p. (3.4.11)

Proof As (gj,l) satisfies (3.4.7), (3.4.8), we have especially for any M > 0 that

|gj,l(n)| ≤ C2−j/2(1 + 2−j|n− 2jl|)−M for any M > 0,

see the argument in the proof of Lemma 3.3.6. Using this together with Hölder’s
inequality gives for 1/p+ 1/p′ = 1

‖Fj‖p`p(Z) = ‖
∑
l∈Z

aj,lgj,l(·)‖p`p(Z)

≤
∑
n∈Z

(
∑
l∈Z

|aj,l||gj,l(n)|1/p|gj,l(n)|1/p′)p

≤ C ·
∑
n∈Z

(
∑
l∈Z

|aj,l|2−j/2p(1 + 2−j|n− 2jl|)−M/p2−j/2p
′
(1 + 2−j|n− 2jl|)−M/p′)p

≤ C ·
∑
n∈Z

∑
l∈Z

|aj,l|p2−j/2(1 + 2−j|n− 2jl|)−M(
∑
j∈Z

2−j/2(1 + 2−j|n− 2jl|)−M)p/p
′
.

With the help of Lemma 3.3.1, we know that∑
l∈Z

(1 + 2−j|n− 2jl|)−M ≤ C,

as well as ∑
n∈Z

(1 + 2−j|n− 2jl|)−M ≤ C · 2j,

such that
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‖Fj‖p`p(Z) ≤ C · 2−j/22j2−jp/2p′
∑
l∈Z

|aj,l|p = C · 2j2−jp/2
∑
l∈Z

|aj,l|p.

The converse inequality follows with the same arguments, see e.g. Proposition 8.1
in [34]. (3.4.11) follows immediately from the above discussion.

Let now (hj,l), (gj,l) satisfy

| supp gj,l|, | supphj,l| ≤ C2j, (3.4.12)

‖gj,l‖∞ ≤ C2−j/2, ‖hj,l‖∞ ≤ C2−j/2 (3.4.13)∑
n∈Z n

ihj,l(n) = 0 for i = 0, . . . , N − 1, (3.4.14)

(gj,l), (hj,l) regular of order N + ε, 0 < ε ≤ 1. (3.4.15)

Below, it will be useful to express Theorem 3.3.8 in terms of the projections Pj, Qj.
We obtain by Lemma 3.4.3 that for N > α, the following conditions are equivalent:

f ∈ Bα
p,q(Z) (3.4.16)

(〈f, hj,l〉)j≥1,l∈Z ∈ bαp,q(Z) (3.4.17)

(
∑

j≥1(2
−jα‖Qjf‖p)q)1/q <∞, (3.4.18)

(
∑

j≥1(2
−jα‖f − Pjf‖p)q)1/q <∞, (3.4.19)

where the equivalence of (3.4.18) and (3.4.19) easily follows from the fact that

‖f − Pjf‖p ≤
j∑
i=1

‖Qjf‖p

and by summing up the geometric series.

The next step towards our intended result is the following Lemma, which in literature
often is called an inequality of Bernstein-type:

Lemma 3.4.4. Let 1 < p < ∞, r ∈ N+ and let (gj,l)j≥1,l∈Z satisfy (3.4.12),
(3.4.13) and (3.4.15) with N ≥ r.

For Fi ∈ Vi, i ≥ 1, we have for any j ≥ 1

ωrp(Fi, 2
j) ≤ Cmin(2(j−i)r, 1)‖Fi‖p. (3.4.20)

Proof Let Fi ∈ Vi ∩ lp(Z). By Lemma 3.4.3, Fi =
∑

l∈Z ai,lgi,l with ‖Fi‖p �
2−i/2 · 2i/p‖(ai,l)l∈Z‖p.
In the case j > i, we have immediately ωrp(Fi, 2

j) ≤ 2r‖Fi‖p by (3.4.2), so we only
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treat the case j ≤ i.
Consider the r-th order difference operator of step 1:

‖∆r
1Fi(·)‖pp =

∑
n∈Z

|
∑
l∈Z

ai,l∆
r
1gi,l(n)|p

≤
∑
n∈Z

(
∑
l∈Z

|ai,l||∆r
1gi,l(n)|1/p|∆r

1gi,l(n)|1/p′)p,

where 1/p+ 1/p′ = 1.
AsN ≥ r, we have by the regularity assumption (3.4.15) that |∆r

1gi,l(n)| = 2−ir|Dr
i gi,l(n)| ≤

C2−ir2−i/2. Together with Hölder’s inequality, this gives

‖∆r
1Fi(·)‖pp ≤

∑
n∈Z

(
∑
l∈Z

|ai,l|p|∆r
1gi,l(n)|)(

∑
l∈Z

|∆r
1gi,l(n)|)p/p′

≤ C
∑
l∈Z

|ai,l|p2i · 2−i(r+1/2) · 2−i(r+1/2)(p/p′)

≤ C · 2−irp · 2i(1−p/2)
∑
l∈Z

|ai,l|p

≤ C · 2−irp‖Fi‖pp,

where the last inequality follows from Lemma 3.4.3.

This yields the result, as by (3.4.5) and (3.4.2)

ωrp(Fi, 2
j) ≤ C · 2jrωrp(Fi, 2) ≤ C · 2(j−i)r‖Fi‖p.

Next, we relate the size of coefficients at a given scale to the modulus of smoothness,
deriving an inequality of Jackson-type.

Lemma 3.4.5. Let 1 < p < ∞, r ∈ N+, and let (hj,l)j≥1,l∈Z be an orthonormal
wavelet basis for `2(Z), satisfying (3.4.12), (3.4.13) and (3.4.14) for some N ≥ r.
For any j ≥ 1,

‖(〈f, hj,l〉)l∈Z‖p ≤ C · 2j/22−j/pωrp(f, 2j). (3.4.21)

Proof Let Ch be the smallest integer such that |supp hj,l| ≤ Ch · 2j. Without loss
of generality, we assume h to be causal, i.e. supp hj = supp hj,0 ⊆ [0, Ch · 2j[.
Let N ∈ N, 0 < −k < N . Then (see 3.3.4),

f(n− k) =
N∑
i=0

(
N

i

)
∆if(n− k −N).
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Set

pn(k) =
N−1∑
i=0

(
N

i

)
∆if(n− k −N).

Write

〈f, hj,l〉 =
∑

n∈ supp hj,l

f(n)hj,l(n) =
∑

n∈ supp hj,l

f(n)h∗j(2
jl − n)

=
0∑

k=−Ch·2j+1

h∗j(k)f(2jl − k),

where h∗j(n) = hj(−n).

Due to the vanishing moment condition (3.4.14) on (hj,l),

|〈f, hj,l〉|p = |
0∑

k=−Ch·2j+1

h∗j(k)(f(2jl − k)− p2j l(k))|p

≤ (
0∑

k=−Ch·2j+1

|h∗j(k)|p
′
)p/p

′ ·
0∑

k=−Ch·2j+1

|∆Nf(2jl − k −N)|p,

where 1/p+ 1/p′ = 1.

By Lemma 3.4.3, ‖hj‖p′ � 2−j/22j/p
′

= 2j/22−j/p. Hence, summing over l, and
observing that each m ∈ Z is in the support of at most Ch shifts of hj, we obtain

(∑
l∈Z

|〈f, hj,l〉|p
)1/p

≤ C · 2j/22−j/p
∑

l∈Z

0∑
k=−Ch·2j+1

|∆Nf(2jl − k −N)|p
1/p

≤ C · 2j/22−j/p
(∑
m∈Z

|∆Nf(m)|p
)1/p

≤ C · 2j/22−j/pωNp (f, 2)

≤ C · 2j/22−j/pωrp(f, 2j) ,

where we used the monotonicity properties of ωrp, specifically (3.4.1), and N ≥ r.
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We will make use of both of the above inequalities in order to show the equivalence
of the semi-norm (3.4.6) and the Besov semi-norm.

Theorem 3.4.6. Let α > 0, 1 < p, q <∞.

The spaces Bα
q (lp(Z)) and Bα

p,q(Z) coincide (modulo polynomials) and moreover,

‖ · ‖Bα
q (lp(Z)) � ‖ · ‖Bα

p,q(Z). (3.4.22)

Proof (Compare to [34].) Let (Vj)j≥1 a N−regular multiresolution analysis with
N > α. Let Pjf be the orthogonal projection of f = (f(n))n∈Z onto Vj.
Then, f = f−Pjf+

∑
i≥j Pif−Pi+1f . As Pif−Pi+1f ∈ Vi and N ≥ r = bαc+1 we

can employ (3.4.20) which, together with (3.4.2) and the triangle inequality, gives

ωrp(f, 2
j) ≤ ωrp(f − Pjf, 2

j) +
∑
i≥j

ωrp(Pif − Pi+1f, 2
j)

≤ 2r‖f − Pjf‖p + C
∑
i≥j

2j−i‖Pif − Pi+1f‖p

≤ C
∑
i≥j

2j−i‖f − Pif‖p.

So, using Minkowski’s inequality and (3.4.19), we get

‖f‖Bα
q (lp(Z)) = (

∑
j≥1

(2−jαωrp(f, 2
j))q)1/q

≤ C(
∑
j≥1

(2−jα
∑
i≥j

2j−i‖f − Pif‖p)q)1/q

≤ C(
∑
j≥1

(2−jα‖f − Pjf‖p)q)1/q ≤ C‖f‖Bα
p,q(Z).

The converse inequality easily follows from (3.4.21):

‖f‖Bα
p,q(Z) ≤ C(

∑
j≥1

(
∑
l∈Z

(2−j(α+1/2−1/p)|〈f, hj,l〉|)p)q/p)1/q

≤ C(
∑
j≥1

(2−jαωrp(f, 2
j))q)1/q = C‖f‖Bα

q (lp(Z)).

Theorem 3.3.8 is a first example how the wavelet characterization can be employed
for further analysis of discrete-time Besov spaces. In particular, the finite support
of the wavelets has greatly facilitated the proof.

Another such characterization, also a direct consequence of Theorem 3.3.8, is given
in the next subsection.
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3.4.2 Mean Oscillation Characterization of Bα
p,q(Z)

In this section, we derive a description of the discrete-time Besov spaces in terms of
oscillations, similarly to the mean oscillation characterization of their continuous-
time counterparts, see [8, 9].

For the special case B
1/p
p,p (Z), 1 < p < ∞, R.H. Torres [30] showed that the corre-

sponding norm is equivalent to the Bp(Z)-norm, defined by

‖f‖Bp(Z) := (
∑
j≥1

∑
l∈Z

(
1

|Ij,l|
∑
n∈Ij,l

|f(n)− fIj,l
|)p)1/p, (3.4.23)

where Ij,l := [2jl, 2j(l + 4)] and fIj,l
the average of f on Ij,l.

This defines a semi-norm in general and a norm modulo constants.

Here, we extend this result to Besov spaces where α > 0, 1 < p, q < ∞, using
Theorem 3.3.8. We use a slightly different notation compared to the articles cited
above, in particular the Bp(Z)-spaces will correspond to MO

1/p
p,p (Z) defined below.

Definition 3.4.7. A family of intervals (Ij,l)j≥1,l∈Z is called a family of admissible
coverings if

1. Any of the intervals is of the form Ij,l = [2jl, 2jl + Lj[, where

2. for j →∞, 2−j · Lj → C, where C > 1.

For any j ≥ 1, the family Jj := (Ij,l)l∈Z is the family of enlarged dyadic intervals,
satisfying

⋃
l∈Z Ij,l ∩ Z = Z.

Let f = (f(n))n∈Z, I an arbitrary interval and m ∈ N0. By f
(m)
I (n), we denote the

(unique) polynomial on Z of degree smaller or equal to m, such that∑
n∈I

(f(n)− f
(m)
I (n))nk = 0 for k = 0, 1, . . . ,m. (3.4.24)

By definition, f
(m)
I is the best approximation of f on I by a polynomial of degree

m, measured in the l2(Z)-norm.
The mean oscillation norm is now defined by the norms of the residuals.

Definition 3.4.8. Let 1 < p, q < ∞, m ∈ N+ and let (Ij,l)j≥1,l∈Z be a family of
admissible coverings, where Jj = (Ij,l)l∈Z the covering of the line at scale j. Define
for f = (f(n))n∈Z

oscp,m(f, Jj) = (
∑
l∈Z

(
1

|Ij,l|
∑
n∈Ij,l

|f(n)− f
(m)
Ij,l

(n))|)p)1/p. (3.4.25)
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Let α > 0, m = bαc. A sequence f is in MOα
p,q(Z) if

‖f‖MOα
p,q(Z) := (

∑
j≥1

(2−j(α−1/p)oscp,m(f, Jj))
q)1/q <∞. (3.4.26)

The semi-norms in (3.4.26) are norms modulo discrete-time polynomials.

Using a different family of admissible coverings or a different m > bαc results in
equivalent norms, see Section 9 in [9].

Just like in the previous section, we use Theorem 3.3.8 to show that the Besov and
mean oscillation norms are in fact equivalent.

So, let in the following again (hj,l)j≥1,l∈Z be an orthogonal wavelet basis for `2(Z),
satisfying (3.4.12), (3.4.13), (3.4.14) and (3.4.15) for some N > α

Theorem 3.4.9. Let α > 0, 1 < p, q <∞.

The spaces MOα
p,q(Z) and Bα

p,q(Z) coincide (modulo polynomials) and moreover,

‖ · ‖MOα
p,q(Z) � ‖ · ‖Bα

p,q(Z). (3.4.27)

Proof First, let Ihj,l := supp hj,l.
Due to the moment condition (3.4.14) on hj,l and as N > m = bαc,

|〈f, hj,l〉| = |〈f − f
(m)

Ih
j,l

, hj,l〉|

≤ ‖hj,l‖∞
∑
n∈Ih

j,l

|f(n)− f
(m)

Ih
j,l

(n)|

≤ C2−j/2
∑
n∈Ih

j,l

|f(n)− f
(m)

Ih
j,l

(n)|

≤ C2j/2
1

|Ihj,l|
∑
n∈Ih

j,l

|f(n)− f
(m)

Ih
j,l

(n)|.

Using theorem 3.3.8,

‖f‖Bα
p,q(Z) ≤ C‖(〈f, hj,l〉)‖bαp,q(Z)

= C(
∑
j≥1

(
∑
l∈Z

(2−j(α+1/2−1/p)|〈f, hj,l〉|)p)q/p)1/q

≤ C(
∑
j≥1

(2−j(α−1/p)(
∑
l∈Z

(
1

|Ihj,l|
∑
n∈Ih

j,l

|f(n)− f
(m)

Ih
j,l

(n))|)p))q/p)1/q,
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where the last term is equivalent to the MOα
p,q(Z)-norm, as (Ihj,l)j,l is a family of

admissible coverings (eventually, the indexing has to be changed in order to be
conform with the first postulation of Definition 3.4.7, as the hj,l are not necessarily
causal).

In order to prove the converse inequality, note that for any polynomial p of degree
less or equal to m and a given interval I (see [8], proof of Theorem 1)

1

|I|
∑
n∈I

|f(n)− f
(m)
I (n)| ≤ C

1

|I|
∑
n∈I

|f(n)− p(n)|. (3.4.28)

Let (Ij,l) be a family of admissible coverings. Define pm(n) :=
∑m

i=0 ∆if(n−(m+1)).
As f(n)− pm(n) = ∆m+1f(n− (m+ 1)) and by (3.4.28),

1

|Ij,l|
∑
n∈Ij,l

|f(n)− f
(m)
Ij,l

(n))| ≤ C
1

|Ij,l|
∑
n∈Ij,l

|f(n)− pm(n)|

≤ C
1

|Ij,l|
∑
n∈Ij,l

|∆m+1f(n− (m+ 1))|,

which gives

‖f‖MOα
p,q(Z) ≤ C(

∑
j≥1

(2−j(α−1/p)(
∑
l∈Z

(
1

|Ij,l|
∑
n∈Ij,l

|∆m+1f(n− (m+ 1))|)p))q/p)1/q

≤ C(
∑
j≥1

(2−j(α−1/p)2−j/p(
∑
n∈Ij,l

|∆m+1f(n−m+ 1)|p)1/p)q)1/q

≤ C(
∑
j≥1

(2−jαωm+1
p (f, 2j))q)1/q

≤ C‖f‖Bα
p,q(Z),

using (3.4.22) as r = m+ 1 by definition.

Remark 3.4.10.

The usage of enlarged dyadic intervals in the definition of theMOα
p,q-spaces is crucial.

Consider the usual non-overlapping dyadic interval family (I∗j,l)j≥1,l∈Z, where I∗j,l =
[2jl, 2j(l + 1)[ . This family is not admissible in terms of our definition.

Define the spaces B∗
p(Z), 1 < p < ∞ as the collection of sequences (modulo con-

stants) for which

‖f‖B∗
p(Z) := (

∑
j≥1

∑
l∈Z

(
1

|I∗j,l|
∑
n∈I∗j,l

|f(n)− fI∗j,l
|)p)1/p

is finite.
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Let (f(n))n∈Z be the sequence defined by f(n) = 0 for n < 0 and f(n) = 1, n ≥ 0.
Obviously, f ∈ B∗

p(Z), as the B∗
p(Z)-norm will not feel the ‘discontinuity’ at 0,

whereas the Bp(Z)-norm (using admissible families) will:

Consider the interval family (Ij,l)j≥1,l∈Z, Ij,l = [2jl, 2j(l + 2)[ , which is admissible.

‖f‖Bp(Z) = ‖f‖
MO

1/p
p,p (Z)

= (
∑
j≥1

∑
l∈Z

(
1

|Ij,l|
∑
n∈Ij,l

|f(n)− fIj,l
|)p)1/p

= (
∑
j≥1

(2−(j+1)(2j+1 · 1

2
))p)1/p = (

∑
j≥1

2−p)1/p,

which gives f 6∈ Bp(Z).

This also indicates that the regularity condition is crucial for the wavelet character-
ization of the spaces MOα

p,q(Z) and thus for Bα
p,q(Z):

Consider the discrete-time Haar filters (2.1.5).

The discrete-time Haar wavelet bases and scaling sequences read as

Gj(n) =

{
2−j/2 for n = 0, . . . , 2j − 1;
0 otherwise

(3.4.29)

and

Hj(n) =


−2−j/2 for n = 0, . . . , 2j−1 − 1;
2−j/2 for n = 2j−1, . . . , 2j − 1;
0 otherwise

(3.4.30)

with the usual translation Gj,l = Gj(· − 2jl), Hj,l = Hj(· − 2jl).

The discrete-time Haar system (Hj,l)j≥1,l∈Z is an orthonormal basis for `2(Z), pos-
sessing one vanishing moment but not being regular in the sense of (2.2.7). It is
easy to show that due to the moment condition, for f ∈ Bp(Z),

‖(〈f,Hj,l〉)‖b1/p
p,p (Z)

≤ C‖f‖Bp(Z).

But the converse inequality cannot be obtained.

In fact, one can adapt the above arguments to show that ‖(〈f,Hj,l〉)‖b1/p
p,p (Z)

is equiv-

alent to the B∗
p(Z)-norm, which is not the same as Bp(Z).

In a sense, the required overlap of admissible intervals is related to the support
size, and thus to the regularity of the discrete time wavelets (recall the correlation
between support size and regularity for the Daubechies family.)



Chapter 4

Discrete-Time Triebel-Lizorkin
Spaces

For the reader familiar with function spaces, it will not be surprising that the
wavelet-based treatment of discrete-time Besov spaces can be extended to discrete-
time versions of Triebel-Lizorkin spaces.

These spaces of sequences were studied by Q. Sun in [29], more in terms of smooth
atomic decompositions. With our notions at hand, we can give a description in
terms of discrete-time bases.

In the first section, we give the definition of the Triebel-Lizorkin spaces in discrete
time and their ϕ-transform characterization.

In Subsection 4.2, we establish a result analogous to Theorem 3.3.8 for this type of
spaces. The techniques used will be mostly the same as for the Besov spaces.

For background information concerning Triebel-Lizorkin spaces in continuous time,
we refer to the usual literature as e.g. [32], [17] or [16].

4.1 Definition and ϕ-transform Decomposition

Let ϕc a phi-function (see 3.1.2) and set ϕcν(x) = 2−ν+2ϕc(2−ν+2x) for ν ∈ Z.
Consider again the family (ϕν)ν≥1, obtained by ϕν := ϕcν |Z for ν > 1 and ϕ1 :=
((χ[−π,π]ϕ̂

c
1)
∨)|Z. Recall that for f ∈ S ′(Z), we have f =

∑
ν≥1 f ∗ ϕν ∗ ϕ∗ν with

unconditional convergence in S ′/P(Z) (3.1.6).

Definition 4.1.1. For α ∈ R, 0 < p, q <∞, the discrete-time Triebel-Lizorkin
space Fα

p,q(Z) is the collection of all f ∈ S ′/P(Z), such that

‖f‖Fα
p,q(Z) := ‖(

∑
ν≥1

(2−να|f ∗ ϕν |)q)1/q‖p <∞.

This definition is independent of the choice of ϕc [29].

89
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Definition 4.1.2. Let the space of (truncated) coefficient families fαp,q(Z), for α ∈ R,
0 < p, q < ∞, be the collection of complex-valued sequences s = (sj,l)j≥1,l∈Z, for
which

‖s‖fα
p,q(Z) := ‖(

∑
j≥1

∑
l∈Z

(2−jα|sj,l|χ̃j,l)q)1/q‖p <∞,

where χ̃j,l(n) =

{
2−j/2, if 2jl ≤ n < 2j(l + 1);
0, otherwise.

We note that the definition of fαp,q(Z) is similar to that of bαp,q(Z), but uses a differ-
ent summation order (first over scales, then over positions) and the characteristic
functions χ̃j,l. Hence the coefficient space bαp,q(Z) is somewhat easier to handle by
comparison.

In [29], Q. Sun relates the above spaces via the ϕ−transform, similarly to the result
for the discrete-time Besov and bαp,q spaces in section 3.2.

For ν, k ∈ Z let again

ϕcν,k(x) = 2(−ν+2)/2ϕc(2−ν+2x− k),

and for k ∈ Z, define ϕν,k = ϕcν,k|Z for ν > 1 and ϕ1,k = τkϕ1.

Recall that for any f ∈ S ′(Z) (3.2.1)

f =
∑
ν≥1

∑
k∈Z

〈f, ϕν,k〉ϕν,k, (4.1.1)

with convergence in S ′/P(Z).

Let the ϕ-transform Sϕ for f ∈ S ′(Z) be defined by Sϕf = s = (sν,k)ν≥1,k∈Z, where
sν,k = 〈f, ϕν,k〉, and for a complex-valued sequence t = (tν,k)ν≥1,k∈Z define the inverse
ϕ-transform by Tϕ by Tϕt =

∑
ν,k tν,kϕν,k. The convergence of the sum is justified

by the following result.

Theorem 4.1.3. ([29]) Let α ∈ R, 0 < p, q <∞.
Both of the operators Sϕ : Fα

p,q(Z) → fαp,q(Z) and Tϕ : fαp,q(Z) → Fα
p,q(Z) are bounded

with ‖f‖Fα
p,q(Z) � ‖Sϕf‖fα

p,q(Z) and Tϕ ◦ Sϕ = idBα
p,q(Z).

Remark 4.1.4. Considering the special choice α = 0, 1 < p <∞, q = 2,

‖f‖F 0
p,2(Z) = ‖(

∑
ν≥1

(|f ∗ ϕν |)2)1/2‖p,

one can see that this is exactly the Littlewood-Paley type definition of the `p(Z)-
norm (see again [29]).

Thus, our result in the upcoming section includes the discrete-time wavelet charac-
terization of the spaces `p(Z), 1 < p <∞.
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4.2 Wavelet Characterization of Discrete-Time Triebel-

Lizorkin Spaces

For our wavelet description of the spaces Fα
p,q(Z), we need an additional tool, and

certain inequalities related to it.

This will be the issue of the next definition and the Lemmata 4.2.2, 4.2.3 and 4.2.4.

Definition 4.2.1. Let f = (f(n))n∈Z.

Define the Hardy-Littlewood maximal operator on Z by

Mf(k) := sup
a≤k<b, a,b∈Z

1

b− a

∑
a≤n<b

|f(n)|. (4.2.1)

The next Lemma is taken from [29] and can be viewed as a discrete-time version of
the Fefferman-Stein maximal inequality :

Lemma 4.2.2. Let 1 < p, q <∞. For any family of sequences (fi)i∈Z

‖(
∑
i∈Z

|Mfi|q)1/q‖p ≤ C‖(
∑
i∈Z

|fi|q)1/q‖p. (4.2.2)

A similar result holds for 0 < p, q ≤ 1.

In this case, replacing the maximal operator M by Mr, 0 < r < min(p, q), in Lemma
(4.2.2), defined by

Mrf(k) := ( sup
a≤k<b, a,b∈Z

1

b− a

∑
a≤n<b

|f(n)|r)1/r, (4.2.3)

yields

Lemma 4.2.3.
‖(
∑
i∈Z

|Mrfi|q)1/q‖p ≤ C‖(
∑
i∈Z

|fi|q)1/q‖p. (4.2.4)

We will also need the following inequalities:

The first one can be found in [14] and is easily adapted to the discrete case.
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Lemma 4.2.4. Let (sj,l)j≥1,l∈Z ⊂ C. Fix ν, j ≥ 1, k ∈ Z and 2νk ≤ n ≤ 2ν(k + 1).
For M1 > 1∑

l∈Z

|sj,l|(1 +
|2νk − 2jl|

2ν
)−M1 ≤ C 2(ν−j)M(

∑
l∈Z

|sj,l|χj,l)(n), if j < ν,(4.2.5)

∑
l∈Z

|sj,l|(1 +
|2νk − 2jl|

2j
)−M1 ≤ C M(

∑
l∈Z

|sj,l|χj,l)(n), if j ≥ ν. (4.2.6)

Let 0 < r < 1, M2 > 1/r. Then,∑
l∈Z

|sj,l|(1 +
|2νk − 2jl|

2ν
)−M2 ≤ C 2

ν−j
r Mr(

∑
l∈Z

|sj,l|χj,l)(n), if j < ν, (4.2.7)

∑
l∈Z

|sj,l|(1 +
|2νk − 2jl|

2j
)−M2 ≤ C Mr(

∑
l∈Z

|sj,l|χj,l)(n), if j ≥ ν. (4.2.8)

With these results at hand, we are able to establish a similar boundedness result as
in Lemma 3.3.7:

Lemma 4.2.5. Let α ∈ R, 0 < p, q < ∞ and let (ϕν,k)ν≥1,k∈Z be the ϕ−transform
family.
If (hj,l)j≥1,l∈Z satisfies the conditions of Lemma 3.3.6 with N1 > 1/(min(1, p, q)) −
1 − α, N2 > α, then the matrix A := (〈hj,l, ϕν,k〉)j,l,ν,k, defines a bounded operator
on fαp,q(Z), where As = (

∑
j≥1

∑
l∈Z〈hj,l, ϕν,k〉sj,l)ν,k for s ∈ fαp,q(Z).

Also, for (h̃j,l)j≥1,l∈Z, satisfying the conditions of Lemma 3.3.6, where now N1 >
α, N2 > 1/(min(1, p, q)) − 1 − α, the matrix Ã := (〈ϕν,k, h̃j,l〉)ν,k,j,l, where Ãs =
(
∑

ν≥1

∑
k∈Z〈ϕν,k, h̃j,l〉sν,k)j,l, is bounded on fαp,q(Z) as well.

Proof

‖As‖fα
p,q

= ‖(
∑
ν≥1

∑
k∈Z

(2−να|
∑
j≥1

∑
l∈Z

〈hj,l, ϕν,k〉sj,l|χ̃ν,k)q)1/q‖p

≤ ‖(
∑
ν≥1

∑
k∈Z

(2−να
∑
j≥1

∑
l∈Z

|〈hj,l, ϕν,k〉||sj,l|χ̃ν,k)q)1/q‖p

≤ C

{
‖(
∑
ν≥1

∑
k∈Z

(2−να
∑
j<ν

∑
l∈Z

|〈hj,l, ϕν,k〉||sj,l|χ̃ν,k)q)1/q‖p

+ ‖(
∑
ν≥1

∑
k∈Z

(2−να
∑
j≥ν

∑
l∈Z

|〈hj,l, ϕν,k〉||sj,l|χ̃ν,k)q)1/q‖p
}

=: C

{
I + II

}
.
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Consider the case 1 < p, q <∞.
Using Lemma 3.3.6 and (4.2.6), we can estimate the first term by

I ≤ C ‖(
∑
ν≥1

∑
k∈Z

(
∑
j<ν

2(j−ν)(N1+1/2)
∑
l∈Z

(1 +
|2νk − 2jl|

2ν
)−M1|sj,l|2−ναχ̃ν,k)q)1/q‖p

≤ C ‖((
∑
ν≥1

∑
k∈Z

(
∑
j<ν

2(j−ν)(N1+1/2−1)2−ναM(
∑
l∈Z

|sj,l|χj,l)(n)χ̃ν,k(n))q)1/q)n∈Z‖p

= C ‖((
∑
ν≥1

(
∑
j<ν

2(j−ν)(N1+1/2−1+α+1/2)M(
∑
l∈Z

2−jα|sj,l|χ̃j,l)(n))q)1/q)n∈Z‖p

≤ C ‖(
∑
ν≥1

(M(
∑
k∈Z

2−να|sν,k|χ̃ν,k))q)1/q‖p,

where we sum up a geometric series the in last inequality, asN1 > −α by assumption.
The inequality in Lemma 4.2.2 yields

I ≤ C ‖(
∑
ν≥1

(
∑
k∈Z

2−να|sν,k|χ̃ν,k)q)1/q‖p ≤ C ‖s‖fα
p,q(Z). (4.2.9)

Along the same lines, we can estimate the second term by

II ≤ C ‖(
∑
ν≥1

∑
k∈Z

(
∑
j≥ν

2(j−ν)(N1+1/2)
∑
l∈Z

(1 +
|2νk − 2jl|

2j
)−M2|sj,l|2−ναχ̃ν,k)q)1/q‖p

≤ C ‖((
∑
ν≥1

(
∑
j≥ν

2(ν−j)(N2+1/2−α−1/2)M(
∑
l∈Z

2−jα|sj,l|χ̃j,l)(n))q)1/q)n∈Z‖p

≤ C ‖s‖fα
p,q(Z),

as we assumed N2 > α.

Now to the case 0 < p, q ≤ 1. Let 0 < r < min(p, q). By Lemmata 3.3.6, 4.2.3 and
(4.2.8)

I ≤ C ‖(
∑
ν≥1

∑
k∈Z

(
∑
j<ν

2(j−ν)(N1−1/r+α+1)Mr(
∑
l∈Z

2−jα|sj,l|χ̃j,l))q)1/q‖p

≤ C ‖s‖fα
p,q(Z),

as N1 > 1/r − 1− α by assumption.

The other term can be treated analogously.

Once we established the above result, we immediately get an analogon to Theorem
3.3.8:

Let (hj,l), (h̃j,l), j ≥ 1, l ∈ Z, are biorthogonal wavelet bases for `2(Z). Recall the
operators Sh, Th: for f ∈ S ′(Z), let Shf = (〈f, hj,l〉)j≥1,l∈Z. For finitely supported
coefficient sequences d = (dj,l)j≥1,l∈Z, define

Thd =
∑
j,l

dj,lhj,l. (4.2.10)
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Let Sh̃ and Th̃ be defined likewise.

Theorem 4.2.6. Let α ∈ R, 0 < p, q < ∞, N > α, Ñ > 1/(min{1, p, q})− 1− α.
Suppose that (hj,l), (h̃j,l), j ≥ 1, l ∈ Z, are biorthogonal wavelet bases for `2(Z),
satisfying

|supp hj|, |supp h̃j| ≤ C2j,

‖hj‖∞ ≤ C2−j/2, ‖h̃j‖∞ ≤ C2−j/2,∑
n∈Z n

ihj(n) = 0 for i = 0, . . . , Ñ − 1,∑
n∈Z n

ih̃j(n) = 0 for i = 0, . . . , N − 1,

(hj)j≥1 regular of order N + ε (in the sense of 2.2.7), 0 < ε ≤ 1,

(h̃j)j≥1 regular of order Ñ + ε̃, 0 < ε̃ ≤ 1.

Then the following statements hold:

(a) The analysis operator Sh̃ : Fα
p,q(Z) → fαp,q(Z) is well-defined and continuous.

(b) The synthesis operator extends uniquely to a bounded operator fαp,q(Z) →
Fα
p,q(Z), also denoted by Th. For arbitrary (dj,l)j≥1,l∈Z ∈ fαp,q(Z),

Th ((dj,l)j≥1,l∈Z) =
∑
j,l

dj,lhj,l , (4.2.11)

with unconditional convergence in the Triebel-Lizorkin space norm.

(c) Th ◦ Sh̃ = idFα
p,q(Z), and Sh̃ ◦ Th = idfα

p,q(Z). Thus, Fα
p,q(Z) can be identified with

fαp,q(Z) under the maps Sh̃ and Th.

(d) We have the norm equivalence ‖f‖Fα
p,q(Z) � ‖Sh̃f‖fα

p,q(Z). Moreover, the wavelet
expansion

f =
∑
j,l

〈f, h̃j,l〉hj,l

holds with unconditional convergence in the Triebel-Lizorkin space norm.

Proof The structure of the proof is the same as for Theorem 3.3.8.

As Lemma 3.2.2 immediately carries over to the discrete-time Triebel-Lizorkin spaces,
we have that for f ∈ Fα

p,q(Z), j ≥ 1, l ∈ Z and K = max{[α− 1/p],−1},

f =
∑
ν,k

〈f, ϕν,k〉ϕν,k

holds in (SK(Z))′. We have again Th = Tϕ ◦A and Sh = Ã ◦ Sϕ, hence boundedness
of A and Ã (as provided by Lemma 4.2.5) yields (a), and the first part of (b).
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For unconditional convergence, we note by applying the dominated convergence
theorem, it can be shown that every (dj,l) ∈ fαp,q(Z) is the limit of the net of its
finite restrictions. This and boundedness of Th yields unconditional convergence of
(4.2.11).

Again, we have (Th ◦ Sh)f = f ∈ (SK(Z))′ and also in the norm. In analogy to
(3.3.19), the tail

∑∞
j=J+1

∑
l∈Z〈f, h̃j,l〉hj,l converges again strongly to 0 as J →∞:

‖f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉hj,l‖Fα
p,q(Z)

≤ C‖(〈f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉〈hj,l, ϕν,k〉)ν,k‖fα
p,q(Z)

= C‖(
∞∑

j=J+1

∑
l∈Z

〈f, h̃j,l〉〈hj,l, ϕν,k〉)ν,k‖fα
p,q(Z)

≤ C

{
‖(
∑
ν≥1

∑
k∈Z

(2−να
∑

j>J,j<ν

∑
l∈Z

|〈f, h̃j,l〉〈hj,l, ϕν,k〉|χ̃ν,k)q)1/q‖p

+ ‖(
∑
ν≥1

∑
k∈Z

(2−να
∑

j>J,j≥ν

∑
l∈Z

|〈f, h̃j,l〉〈hj,l, ϕν,k〉|χ̃ν,k)q)1/q‖p
}

=: C

{
I + II

}
Let 1 < p < ∞. We can use the proof of Lemma 4.2.5 to estimate the truncated
series.

For the first term,

I ≤ C‖(
∑
ν≥1

(
∑

j>J,j<ν

2(j−ν)(Ñ+α)M(
∑
l∈Z

2−jα|〈f, h̃j,l〉|χ̃j,l))q)1/q‖p,

and
II ≤ C‖(

∑
ν≥1

(
∑

j>J,j≥ν

2(ν−j)(N−α)M(
∑
l∈Z

2−jα|〈f, h̃j,l〉|χ̃j,l))q)1/q‖p

Summing up geometric series and applying Lemma 4.2.2 yields

I ≤ C ‖(
∑
ν>J

(M(
∑
k∈Z

2−να|〈f, h̃ν,k〉|χ̃ν,k))q)1/q‖p

≤ C ‖(
∑
ν>J

(
∑
k∈Z

2−να|〈f, h̃ν,k〉|χ̃ν,k)q)1/q‖p

= C ‖(〈f, h̃ν,k〉)χν>J‖fα
p,q(Z),
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where χν>J is the characteristic function of {(ν, k) : ν > J}. This shows that I → 0
for J → ∞. The same arguments apply to II and the case p ≤ 1 follows in the
same fashion from the according estimates established in Lemma 4.2.5.

This yields

lim
J→∞

‖f −
J∑
j=1

∑
l∈Z

〈f, h̃j,l〉hj,l‖Fα
p,q(Z) = 0.

Again, biorthogonality of hj,l, h̃j,l gives Sh̃ ◦ Th = idbαp,q(Z) and part (d) is immediate
from the above.



Discussion And Outlook

We finish this thesis with a discussion of our results and an outlook on possible
further work.

The central result in this thesis is the study of necessary and sufficient conditions
on wavelet bases for l2(Z) to constitute unconditional bases for discrete-time Besov
spaces Bα

p,q(Z) in Theorem 3.3.8.

Thus, the heuristics from continuous-time theory are substantiated by our result:
Discrete-time wavelet coefficient decay can be characterized in terms of membership
in a suitable sequence space.

More precisely, the arising coefficients are in bαp,q(Z), if and only if the sequence is
in the space Bα

p,q(Z).

The results of Chapter 3 have provided a variety of new characterizations of Besov
spaces in discrete time, showing that these spaces are worthwhile objects of study.
Several possible ways of exploiting these characterizations suggest themselves, some
of them inspired by existing results for the continuous domain. Specifically, we
mention (roughly in the order of importance) the following list of problems:

• Extending the results to higher dimensions: In particular for applications in
image processing, a two-dimensional result would be desirable. For the con-
tinuous domain case, extensions of the wavelet characterization to arbitrary
dimensions have been obtained, and we expect that analogous results should
hold for Zd. However, a proof of such a result will have to deal with even
more involved notation. Also, the precise choice of a Littlewood-Paley type
characterization of Besov spaces in higher dimension can be expected to have
a strong influence, perhaps not on the spaces it characterizes, but on the effort
necessary to prove characterizations in terms of wavelet systems obtained from
tensor products of one-dimensional wavelets and scaling functions.

• Developing discrete time heuristics for signal processing algorithms: An obvi-
ous task in further work is to throw light on applications such as compression
or denoising from a fully discrete-time viewpoint, which our result provides.
For the sake of concreteness, let us only mention denoising. The results of
Donoho and Johnstone rely on the embedding in the continuous time setting.
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It should be possible to derive analogues of these results which rely on Theorem
3.3.8 instead, without assuming a ‘true’ underlying continuous-time function.

• Extending the characterization to operators: The study of continuity proper-
ties of suitable operators with respect to various Besov norms is a natural
application of the wavelet characterization (see e.g. [17], Chapter 8). The
operators could be discrete-time Calderón-Zygmund operators, or non-linear
operators describing histogram equalization.

• Studying further relations between discrete time and continuous time Besov
spaces: In [30], Torres proves a sampling theorem for Besov spaces showing
that a Besov function in discrete time can be understood as restriction of a
bandlimited Besov function in continuous time. This gives rise to an embed-
ding of discrete time into continuous time Besov space via the sinc function.

On the other hand, we have the often cited embedding of discrete time Besov
space into its continuous time analog via the scaling function of an MRA with
suitable smoothness and vanishing moment properties, which are not fulfilled
by the sinc function. Thus there exist two fundamentally different embeddings.

A description of the continuous time theory as asymptotic case of the discrete
time theory (in a suitable sense) could close this gap, and provide additional
insight into the discrete and continuous-time spaces. Note that also the rela-
tion between discrete-time and continuous-time wavelet systems via large scale
limits, as described in Section 2.2.3, seems to indicate such a connection.

These results could also shed additional light on the relationship between al-
gorithm heuristics derived from discrete time and continuous time Besov space
theory, respectively.
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