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Abstract

This dissertation first reviews parametric convex conic optimization problems
with respect to stability (continuity) properties. Afterwards, the general problem
formulation gets modified using the robust counterpart approach of Ben-Tal and
Nemirovski [4] to account for uncertainty in the parameters. This is done by
introducing an uncertainty set for the parameters and performing a worst-case
optimization. After analyzing the robust program as well with respect to stability,
it is shown that robustification with an ellipsoidal uncertainty set leads to a unique
and continuous optimal solution in many cases and the costs associated with such
a benefit are qualified.

In the second part of the dissertation the robust counterpart approach is
applied to the portfolio optimization problem of Markowitz [56] whose solution
is known to be rather dependent on the input parameters. Hence, the main
task in practice is to determine parameter estimates and to create appropriate
uncertainty sets, especially around the vector of expected asset returns which cru-
cially influences the outcome of the portfolio optimization problem. We illustrate
different definitions of ellipsoidal uncertainty sets for the return vector and the
consequences of the according robust optimization problems. Finally, consistency
of parameters, uncertainty sets and of the resulting classical and robust portfolio
estimates is investigated as well.
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Zusammenfassung

In dieser Dissertation werden zunächst parametrische konvexe Kegeloptimierungs-
probleme hinsichtlich ihrer Stabilitäts- bzw. Stetigkeitseigenschaften betrachtet.
Anschließend wird die allgemeine Formulierung anhand des „robust counterpart“
Ansatzes von Ben-Tal und Nemirovski [4] modifiziert, um Parameterunsicherheit
explizit berücksichtigen zu können. Dies wird dadurch erreicht, dass an Stelle
eines konkreten Parameters eine Unsicherheitsmenge eingeführt wird und über
den schlechtesten Fall optimiert wird. Nach der Analyse des robusten Opti-
mierungsproblems hinsichtlich seiner Stetigkeitseigenschaften wird gezeigt, dass
in vielen Fällen die Robustifizierung unter Verwendung einer elliptischen Un-
sicherheitsmenge zu einer eindeutigen und stetigen Lösung des Optimierungsprob-
lems führt. Die auftretenden Kosten, die mit einem solchen Ansatz verbunden
sind, werden ebenfalls untersucht und qualifiziert.

Im zweiten Teil der Dissertation wird dieser „robust counterpart“ Ansatz auf
das Portfoliooptimierungsproblem von Markowitz [56] angewandt, von welchem
bekannt ist, dass die Lösung sehr stark von den Inputparametern abhängt. Das
Hauptproblem bei praktischen Fragestellungen ist demnach die Bestimmung von
adäquaten Parametern und die Definition von geeigneten Unsicherheitsmengen,
insbesondere für den Vektor der erwarteten Assetrenditen, welche das Resultat
der Portfoliooptimierung maßgeblich beeinflussen. Es werden verschiedene el-
liptische Unsicherheitsmengen für den Renditevektor und die Konsequenzen der
zugehörigen robusten Optimierungsprobleme dargestellt. Abschließend wird noch
die Eigenschaft der Konsistenz für Parameterschätzer, Unsicherheitsmengen und
die daraus resultierenden klassischen bzw. robusten Portfolios untersucht.
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Chapter 1

Introduction

In most optimization programs in practical applications parameters are included
that describe some objects that enter the general problem formulation. These
parameters can e.g. represent values like length, volume, etc. in engineering ap-
plications, or they can describe characteristics of a financial market in asset man-
agement. In any case, those parameters affect the outcome of the optimization
problem, and they need to be determined beforehand. They can either be mea-
sured (like lengths) or they have to be approximated or estimated from a sample
containing similar data, as for example estimating the average asset returns from
a historical data sample. Both methods can lead to inexact values implying that
the optimization parameters are uncertain. The optimization problem can thus
be solved by using a particular estimate for the parameter. It then is desirable
that the optimal solution does not change too much if the parameter is modified
a little, yielding stability of the optimization problem.

Besides using robust estimators as input parameters, there exist various ap-
proaches taking the uncertainty about the parameters explicitly into account
when modelling the problem. This can for example be done by reformulating the
optimization problem as a stochastic program. A different access to incorporat-
ing parameter uncertainty is given by the robust counterpart approach which was
introduced in 1998 by Ben-Tal and Nemirovski [4]. Their idea basically is a worst-
case approach as the optimal solution is determined such that it minimizes the
worst possible outcome when all parameters lying within a so-called uncertainty
set are considered. This robust counterpart approach is extensively studied in
this dissertation, both from a theoretical point of view and when applied to a
portfolio optimization problem from asset management.

As already mentioned, in the original parametric optimization, the unknown
or uncertain parameter influences the solution of the optimization problem, and
furthermore, some estimate is needed for being able to solve the problem in the
first place. Similarly, in the robust counterpart approach, the uncertainty set
describing possible parameter values crucially affects the solution of the opti-
mization problem. And to reformulate and thus solve the robust formulation,

1



2 CHAPTER 1. INTRODUCTION

an explicit (and furthermore also manageable) definition of a practically relevant
uncertainty set is needed. Hence, coming up with such an uncertainty set is not
a trivial task.

1.1 Thesis organization

This dissertation is organized as follows. In Chapter 2 we introduce the gen-
eral setting and the parametric convex conic optimization problem (GCPu) that
represents the foundation throughout all the investigations. After setting the no-
tation we review existing continuity results for optimization problems and make
use of them to obtain stability statements for our particular problem in the conic
context. The main part there will be to determine conditions under which the
set of solutions of the optimization problem is a singleton and furthermore con-
tinuous in the parameter u. Results about the feasibility set, the optimal value
function and the set of ε-optimal solutions are given as well.

In Chapter 3 we present the robust counterpart approach and investigate the
resulting robust problem as well with respect to stability. We will show that the
modified objective function and the robust constraints are again continuous and
convex. This enables us to apply the results from Chapter 2 and thus yields that
robustification of a problem maintains the same stability characteristics as the
original one.

The robust counterpart approach has gained a lot of interest since its first
introduction, and by now there exists a variety of suggestions how to choose the
needed uncertainty set. Ben-Tal and Nemirovski themselves propose to use an
ellipsoid or an intersection of ellipsoids, many others favor interval uncertainty.
Even though the approach is applied with different uncertainty sets in the litera-
ture, so far no one has investigated if and what influence the particular shape of
the uncertainty set can have on the optimal solution and its stability, respectively.
In Section 3.3 we study the two main shapes of interval and ellipsoidal uncer-
tainty, and we find that under certain (rather general) conditions an ellipsoidal
uncertainty set leads to a unique optimal solution which then is continuous with
respect to the parameter u.

We furthermore examine the costs of robustification, measured in an increase
of the optimal objective value compared to the value of the original problem. Ben-
Tal and Nemirovski have proved in [4] for linear programs that the increase is
linear in the size of the uncertainty set. We show the same result, but generalized
to the convex conic setting.

After the theoretical investigations of the original and the robust program in
Chapters 2 and 3, the rest of the dissertation is devoted to application thereof to
portfolio optimization, a problem from finance. The aim is to find the optimal
allocation for investing into a finite number of available assets. The parameters
needed in the optimization problem are therefore the vector of expected returns
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of the underlying assets and their covariance matrix.
In Chapter 4 we first summarize some distributional aspects which are needed

to model the underlying market, and we also present different estimators for the
uncertain parameters. We then introduce the classical portfolio optimization
problem and illustrate why robustification is desirable in this application.

The robust version of the portfolio optimization problem is given thereafter
in Chapter 5. As the robust problem can only be solved if the uncertainty set is
explicitly specified, we discuss different possibilities for creating uncertainty sets
in practice. We will find that the natural choice of using a confidence ellipsoid as
an uncertainty set leads to the rather surprising result that the efficient frontier
obtained from the robust portfolio optimization problem coincides with a part of
the efficient frontier from the classical problem. This fact seems to be unknown
so far.

To get more insight into the asymptotic characteristics of the parameter esti-
mates, the uncertainty sets and the resulting optimal portfolios, we investigate in
Chapter 6 all these figures with respect to consistency, the property of an estimate
converging to the true value if the number of data used to obtain the estimator
tends to infinity. We find that when using consistent parameter estimates in the
optimization problem, both the resulting classical and robust optimal portfolios
are consistent estimates for the portfolio that would be obtained when using the
original – but unknown – market parameters.

Finally, Chapter 7 introduces concepts to determine parameter estimates and
uncertainty sets based on the usual uncertainty of the parameters but additionally
including external knowledge. The Bayes model (see e.g. Meucci [57]) is a quite
well-known approach where a certain prior assumption is made (e.g. by some
expert) and is then combined with information from a data sample to obtain the
final estimate. A different model is given by the Black-Litterman approach [15]
which gained interest in the finance community in the last years. There, rather
arbitrary expert forecasts about the performance of the individual assets can be
combined with an assumed market distribution.

1.2 Related literature

The risk evolving from using possibly incorrect parameter values in the optimiza-
tion is often denoted by estimation risk in the literature as usually the value
that is finally used is just an estimate (mostly based on a data sample) for the
unknown true parameter.

There are various approaches to account for estimation risk especially in port-
folio optimization. Early consideration of estimation risk can for example be
found in Jobson and Korkie [44] and Best and Grauer [13]. For improvement of
the results many papers propose to use parameter estimators other than the clas-
sical maximum likelihood as these seem to be more robust and thus reduce the
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influence of estimation risk on the optimal portfolios. Jobson and Korkie [45] and
also Efron and Morris [25] use Stein-type estimator, and others like e.g. Jorion [47]
suggest Bayesian estimators which combine a traditional parameter estimate with
external prior information. Robust estimators in general are considered in Perret-
Gentil and Victoria-Feser [64].

A different approach towards robustification of the optimization problem and
its solution was investigated by Lauprête, Samarov and Welsch [51]. Instead of the
traditional procedure to separate the two steps of estimating the parameters and
solving the optimization problem, they merged them and optimized the resulting
portfolio estimate based on robust estimation routines for the parameters. A
similar appraoch is taken also by Mori [62] using Stein-type estimators.

A further concept – rather well-known by now but not widely used due to
potential patent conflicts – to incorporate estimation risk is resampling which
was developed by Michaud [60] and is based on ideas of Jorion [48]. In that
approach, distributional assumptions on the parameters are used to resample
(i.e. draw random samples according to a given distribution) the optimization
parameters, solve the optimization problem each time and finally average the
respective optimal solutions. This yields a more averaged solution which – if
resampled often enough – should not contain much estimation risk any more.
The approach has also been criticized, see Scherer [75], but nevertheless it is
rather easy to understand and can serve as a competitive comparison to other
robustification results, see e.g. Schöttle and Werner [77].

Different types of optimization that also address the problem of estimation
risk are stochastic programming and chance-constrained optimization which in-
corporate distributional assumptions and uncertainty about parameters into the
optimization problem in terms of probabilistic constraint formulations. We will
not pursue such an approach in this dissertation.

Finally, as already described above, there is the robust counterpart approach
which was introduced by Ben-Tal and Nemirovski in 1998, see e.g. [4], and also
independently by El-Ghaoui, Oustry and Lebret [26]. In this approach, an en-
tire set of possible parameter realizations is used for the optimization, but no
assumptions about the distribution of the unknown parameters is needed – as is
the case for many other robustification approaches.

As it is well known in finance that the portfolio optimization problem strongly
depends on the input parameters – especially the estimate for the vector of ex-
pected returns – the need for robustification is evident. Thus, by now, there
are quite a few papers applying this robust counterpart in various ways to solve
optimization problems in finance.

To name a few, Ben-Tal, Nemirovski and Margalit [6] use the robust approach
to model and solve multi-period portfolio optimization with transaction costs.
Goldfarb and Iyengar [33] apply the robust counterpart approach on a factor
model for asset returns. The robustification technique is also exploited by Lutgens
and Sturm [54] who extend it to optimizing portfolios including options. Tütüncü
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and Koenig [79] consider the problem of finding robust asset allocations by solving
the robust problem using a saddle-point algorithm, and Lobo [52] presents how
the robust portfolio optimization problem using different uncertainty sets can be
cast as a second order cone program (SOCP). Robust portfolio optimization is
not only applicable in the mean-variance framework, but also when using different
risk measures instead of the variance, e.g. the Value-at-Risk (VaR), as shown in
El-Ghaoui, Oks and Oustry [27].

Recenctly published, the comprehensive book of Cornuejols and Tütüncü [22]
contains both various aspects of optimization (including stochastic and robust
optimization) and extensive applications in different fields of finance. It also
includes many references relating to financial optimization. Further references
can be found in the books of Meucci [57] and Scherer [76].
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Part I

Theory of convex conic
optimization and the robust

counterpart approach
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Chapter 2

The general convex conic
optimization problem

2.1 Conic optimization
Before stating the generic convex conic optimization problem in the next section,
we want to give a short introduction to conic optimization in general and present
all necessary definitions, notational conventions and some useful statements. We
will mostly follow the book of Boyd and Vandenberghe [19].

Definition 2.1.

(i) A set K ⊂ Rm is called a cone if

∀x ∈ K, ∀λ ∈ R, λ ≥ 0 ⇒ λx ∈ K.

(ii) A set K ⊂ Rm is a convex cone, if it is convex and a cone.

(iii) A cone K ⊂ Rm is called a proper cone or ordering cone if it closed and
convex, has non-empty interior and is pointed, meaning that

x ∈ K,−x ∈ K ⇒ x = 0.

Definition 2.2. Let K ⊂ Rm be an ordering cone. Then K defines a partial
ordering on Rm by

x ≥K y ⇔ x− y ∈ K.

The cone K defining this relation is called the positive cone in Rm. Analogously
we use the expression negative cone and the corresponding notation x ≤K y.
The associated strict partial odering is defined by

x >K y ⇔ x− y ∈ intK.

9
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Note that according to the previous definition the following notations can be
used equivalently:

x ≤K 0 ⇔ x ∈ −K
x <K 0 ⇔ x ∈ int(−K)

x ≥K 0 ⇔ x ∈ K
x >K 0 ⇔ x ∈ int(K).

We will prefer the notation on the left side to express the close relation to the
classical partial ordering on Rm, as for a general understanding one can imagine
K to represent Rm

+ , the non-negative orthant. In some cases though it might be
more convenient to also use the notation on the right – for example in transitions
from single points in K to entire ε-neighborhoods lying in K.

Some of the most common cones are presented in the following examples.

Example 2.3. As already mentioned, the easiest cone is K = R+, the set of
non-negative real numbers. There, the partial ordering “ ≤K” corresponds to the
usual ordering “ ≤”.

This interpretation can be generalized to arbitrary dimensions. When K =
Rm

+ , i.e. the cone is described by the non-negative orthant, the associated partial
ordering is the standard inequality “ ≤” between vectors:

x, y ∈ Rm, x ≤ y ⇔ xi ≤ yi ∀i = 1, . . . ,m.

Example 2.4. The Lorentz cone or second order cone (sometimes also called
“ice-cream cone”) is defined by

Lm :=

x ∈ Rm | xm ≥

√√√√m−1∑
i=1

x2
i

 .

• For m = 1, we have L1 = R+.

• For m = 2, we get

L2 :=
{
x ∈ R2 | x2 ≥ |x1|

}
which is illustrated in Figure 2.1. It holds for example that the point(
−1
1

)
∈ L2, or, using the equivalent notation,

(
−1
1

)
≥L2 0.

• For m = 3, we get

L3 := {x ∈ R3 | x2
3 ≥ x2

1 + x2
2, x3 ≥ 0}.

The three dimensional Lorentz cone L3 is illustrated in Figure 2.2. which
nicely motivates the name “ice-cream cone”.
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Figure 2.2: Illustration of the Lorentz cone L3.

Example 2.5. The space of symmetric m×m matrices is denoted by

Sm = {A ∈ Rm×m | A = AT}.

The cone of symmetric positive semidefinite matrices describes a subset thereof
and is defined by

Sm
+ := {A ∈ Rm×m | A = AT , A positive semidefinite}.

The partial ordering “≥Sm
+
” or simply “�” (“≤Sm

+
” or simply “�”) gives the charac-

terization of matrices being positive (negative) semidefinite, i.e. for a symmetric
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m×m matrix we have the following equivalent notations for A ∈ Sm:

A ∈ Sm
+ ⇔ A ≥Sm

+
0

⇔ A � 0

⇔ A is positive semidefinite.

Analogous we define positive (negative) definiteness of a matrix A by A � 0
(A ≺ 0). Similarly, the relation A � B (A ≺ B) between two m ×m matrices
means that the difference matrix B−A is positive semidefinite (positive definite).

We will also need the notion of the dual cone.

Definition 2.6. The dual cone to the cone K ⊂ Rm is given by

K∗ := {y ∈ Rm | yTx ≥ 0 ∀x ∈ K}.

Remark 2.7. In a more general formulation, we use the inner product associated
with the respective space to form the dual cone. In the definition above we were
within the space Rm, i.e. the standard inner product is given by 〈x, y〉 = xTy.
In the space of symmetric matrices, Sm, the standard inner product is given by
〈A,B〉 = tr(ATB) = tr(AB). Hence, the dual cone to the cone of symmetric
positive definite matrices is defined as

(Sm
+ )∗ = {B ∈ Sm | tr(BA) ≥ 0 ∀A ∈ Sm

+ }.

Note that this formula can also be derived by rewriting a matrix A ∈ Sm as a
vector a ∈ Rm2 (e.g. by stacking the columns underneath each other) and then
applying the definition of the dual cone for vectors as given in Definition 2.6.

The dual cone K∗ has some properties that are worth summarizing:

Proposition 2.8. Let K be a cone.

• K∗ is convex and closed.

• If K has non-empty interior, then K∗ is pointed.

• If the closure of K is pointed, then K∗ has non-empty interior.

• K∗∗ is the closure of the convex hull of K. This especially implies K∗∗ = K
if K is closed and convex, which holds e.g. for ordering cones.

Proof. See e.g. Boyd and Vandenberghe [19], page 53.

Remark 2.9. The cones from Examples 2.3, 2.4 and 2.5, i.e. The cones Rm
+ , Lm

and Sm
+ are self-dual, i.e. it holds K = K∗. We collect the respective proofs for

completeness.
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• For K = Rm
+ the dual cone is given by

(Rm
+ )∗ = {y ∈ Rm | yTx ≥ 0 ∀x ∈ Rm

+}
= {y ∈ Rm | yi ≥ 0, i = 1, . . . ,m}
= Rm

+ .

• For K = Lm the dual cone is given by

(Lm)∗ = {y ∈ Rm | yTx ≥ 0 ∀x ∈ Lm}.

We prove the equality (Lm)∗ = Lm by showing both inclusions. Let the
vector (xT , a)T = (x1, . . . , xm−1, a)

T be an arbitrary vector in the cone Lm,
i.e. it holds that

a ≥

√√√√m−1∑
i=1

x2
i = ‖x‖2.

– Let (yT , b)T ∈ Lm, i.e. b ≥ ‖y‖2. Then we get, using the Cauchy-
Schwarz inequality that

(xT , a)

(
y
b

)
= xTy + ab

≥ xTy + ‖x‖2 ‖y‖2

≥ xTy + |xTy|
≥ 0

and thus, as (xT , a)T ∈ Lm was arbitrary, (yT , b)T ∈ (Lm)∗.

– Let (yT , b)T ∈ (Lm)∗, i.e. xTy + ab ≥ 0 for all (xT , a)T ∈ Lm. Thus,
this especially holds for the vector (xT , a)T = (−yT , ‖y‖2)

T ∈ Lm, i.e.

(yT , b)

(
−y
‖y‖2

)
= −yTy + ‖y‖2b = ‖y‖2 (−‖y‖2 + b) ≥ 0

which implies, as ‖y‖2 ≥ 0, that b ≥ ‖y‖2, thus (yT , b)T ∈ Lm.

• For K = Sm
+ the dual cone is given by (see Remark 2.7)

(Sm
+ )∗ = {B ∈ Sm | tr(BA) ≥ 0 ∀A ∈ Sm

+ }.

We prove equality of (Sm
+ )∗ = Sm

+ again by showing both inclusions.

– Let B ∈ (Sm
+ )∗, i.e. B is symmetric and tr(BA) ≥ 0 for all A ∈ Sm

+ .
We need to show positive semidefiniteness of B. Let a ∈ Rm arbitrary.
Then the matrix A := aaT is positive semidefinite and thus in Sm

+ .
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Using rules for matrix calculations, summarized in Appendix C, we
obtain

aTBa = tr(aTBa) = tr(BaaT ) = tr(BA) ≥ 0

according to the assumption. As a ∈ Rm was arbitrary, this is an
equivalent statement to B being positive semidefinite and thus B ∈ Sm

+ .
– Let B ∈ Sm

+ , i.e. B is positive semidefinite and symmetric, and let
A ∈ Sm

+ be arbitrary. Recall that any symmetric positive semidefinite
matrix A can be decomposed as

A =
m∑

i=1

λiviv
T
i

with λi ≥ 0 being the eigenvalues and vi ∈ Rm the eigenvectors of A,
see e.g. [19], page 52. Thus, we get

tr(BA) = tr

(
m∑

i=1

λiBviv
T
i

)

=
m∑

i=1

λitr
(
Bviv

T
i

)
=

m∑
i=1

λitr
(
vT

i Bvi

)
=

m∑
i=1

λi

(
vT

i Bvi

)
≥ 0,

i.e. B ∈ (Sm
+ )∗. The last inequality holds since B is positive semidefi-

nite.

Subsequently, we will use the notion of the dual cone to give characterizations
for elements lying within a coneK ⊂ Rm or within the interior intK, respectively.

Lemma 2.10. Let K ⊂ Rm be a closed convex cone. Then it holds that

x ∈ K ⇔ λTx ≥ 0 ∀λ ∈ K∗.

Proof. The forward direction is obvious by the definition of the dual cone.
For the backward direction, we note that the dual cone of K∗ is given by

K∗∗ = {z ∈ Rm | λT z ≥ 0 ∀λ ∈ K∗}.

Thus, comparing K∗∗ with the right hand side of the equivalence statement, we
can conclude that x ∈ K∗∗. Furthermore, sinceK is closed, it holds thatK∗∗ = K
(Proposition 2.8), and thus x ∈ K.
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Lemma 2.11. Let K ⊂ Rm be a closed convex cone with int(K) 6= ∅. Then it
holds that

x ∈ int(K) ⇔ λTx > 0 ∀λ ∈ K∗\{0}.

Proof. To prove the forward direction, let x ∈ int(K) and note that we already
have

λTx ≥ 0 ∀λ ∈ K∗

from Lemma 2.10. It remains to show the strict inequality. Assume that there
exists λ̂ ∈ K∗, λ̂ 6= 0 with λ̂Tx = 0. Since x ∈ int(K), there exists an ε > 0 such
that an entire ε-neighborhood of x is still contained within the interior of K, i.e.

Vε(x) ⊂ int(K).

Considering the point

y := x− ε

2
· λ̂

‖λ̂‖2

∈ Vε(x),

i.e. especially y ∈ int(K), we have

λ̂Ty = λ̂Tx︸︷︷︸
=0

−ε
2
· λ̂T λ̂

‖λ̂‖2︸ ︷︷ ︸
=‖λ̂‖2>0

< 0

which is a contradiction to λ̂ being within the dual cone K∗. Thus, it must hold
that

λTx > 0 ∀λ ∈ K∗\{0}.
To prove the backward direction, we use the same argument as in Lemma 2.10

to obtain at least that x ∈ K. It remains to show that x lies in the interior.
Assume that x ∈ K, x /∈ int(K). Thus, as the complement of int(K) is closed,
there exists a sequence {xk}, xk → x with xk /∈ K. Using Lemma 2.10 we know
that there exist λk ∈ K∗\{0} with λT

k xk ≤ 0. Without loss of generality, let
‖λk‖2 = 1. These λk form a sequence on the compact set

S = {λ | λ ∈ K∗\{0}, ‖λ‖2 = 1}.

Thus, there exist accumulation points within S, and without loss of generality
(switch to a subsequence if necessary) we can assume that

λk → λ̂ ∈ S.

Hence, in the limit we get

λT
k xk → λ̂Tx ≤ 0
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which contradicts the prerequisite of λTx > 0 for all λ ∈ K∗\{0}. Thus, we have

λTxk > 0 ∀λ ∈ K∗\{0}.

Now we can use again the argument from Lemma 2.10 to conclude that all xk

must lie in K∗∗ = K which contradicts the assumption above. Hence, it must
hold that x ∈ int(K).

As we want to investigate convex conic optimization problems in a general
setting, we need to extend the notion of convexity of real-valued functions to
convexity in the conic sense.

Definition 2.12. Let K ⊂ Rm be a positive cone. A mapping g : Rl → Rm is
said to be K-convex if

g(αx+ (1− α)y) ≤K αg(x) + (1− α)g(y)

for all x, y ∈ Rl and all α, 0 ≤ α ≤ 1.
Analogously, strict K-convexity of g is given if

g(αx+ (1− α)y) <K αg(x) + (1− α)g(y)

for all x, y ∈ Rl and all α, 0 < α < 1.

Using the definition of the dual cone we can state the following result.

Proposition 2.13. Let K ⊂ Rm be a positive cone. A mapping g : Rl → Rm is
K-convex if and only if the real-valued function λTg : Rl → R is convex for all
λ ∈ K∗, i.e. for all elements of the dual cone of K.

Proof. For a proof see Bonnans and Shapiro [18], Section 2.3.5.

2.2 General convex conic optimization problem
This section describes the type of optimization problem that will be considered
throughout the rest of this dissertation. We will also use this introductary section
to explain the notation and give general definitions that will be used.

If not stated otherwise, we will always assume the following:

Assumption 2.14.

• The set X ⊂ Rn is non-empty, convex and compact.

• The parameter u ∈ U represents the vector of uncertain data.

• The set U ⊂ Rd is non-empty, convex and compact.
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• K ⊂ Rm is an ordering cone with int(K) 6= ∅.

• f : Rn × Rd → R is continuous both in x and u, and f is convex in u for
fixed x ∈ X and convex in x for fixed u ∈ U .

• g : Rn × Rd → Rm is continuous both in x and u, and g is K-convex in u
for fixed x ∈ X and K-convex in x for fixed u ∈ U .

In this context U is called uncertainty set and contains all possible realizations
of the (uncertain) parameter vector u. The assumption of U being compact is
not too restrictive since in practical problems uncertainty sets are mostly defined
in cases where a parameter cannot be measured or estimated exactly, but a
rough value is usually known. Thus, boundedness is assured, and closedness can
simply be assumed without loss of generality as uncertainty sets for a parameter
u are usually chosen to be some sphere (e.g. ellipse or polytope or an intersection
thereof) centered around a particular estimate of the unknown parameter.

Assuming (K-)convexity of f and g in the parameter u seems to be rather
natural, since if a point x is feasible for two different parameters u1 and u2, it
should also be feasible for the parameters in between. This does not have to be the
case for concave functions. Furthermore, in Chapter 3 when considering a robust
optimization problem, we will have to find a worst case parameter within the
uncertainty set, i.e. maximizing some function over the set. It is more intuitive
if the worst case parameter is attained at the boundary – which is the case when
maximizing a convex function – and not in the middle.

The set X represents the set of constraints that do not depend on the uncer-
tain parameter u. In practice it is usually described by a few inequalities (and
equalities), e.g. in portfolio theory we will often have

X = {x ∈ Rn | Ax ≤ b}.

And as unbounded solutions of an optimization problem are not really reasonable
in practice, requiring compactness for the set X does not really constitute a
restriction.

After having specified the assumptions, we can now define the general opti-
mization problem that will be the foundation for all investigations and applica-
tions in this dissertation.

Definition 2.15. Let Assumption 2.14 hold. The general convex optimization
problem depending on a given parameter u ∈ U will be referred to by (GCPu) and
is assumed to be stated as:

min
x∈X

f(x, u) (GCPu)

s.t. g(x, u) ≤K 0.
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As the general problem formulation depends on the particularly chosen pa-
rameter u ∈ U , the feasibility set, the optimal value function and the set of
optimal solutions will naturally be given in terms of u as well.

Definition 2.16.

(i) The feasible set mapping F : U → P(X) (with P(X) denoting the power
set of X, see e.g. Jänich [43]) is the mapping assigning to each parameter
u ∈ U the corresponding feasibility set of the problem (GCPu). For given
u ∈ U the feasibility set of (GCPu) will be denoted by

F(u) := {x ∈ X | g(x, u) ≤K 0}.

The set of points that are feasible for all u ∈ U will be denoted by

FU :=
⋂
u∈U

F(u).

(ii) The set of Slater points of (GCPu) will be denoted by FS(u) and is given
by

FS(u) := {x ∈ X | g(x, u) <K 0}

(iii) The extreme value function or optimal value function will be denoted by
f ∗ : U → R and is defined as

f ∗(u) := min{f(x, u) | x ∈ F(u)}.

(iv) The optimal set mapping F∗ : U → P(X) is the mapping assigning to each
parameter u ∈ U the set of all x that are optimal solutions to the program
(GCPu). The set of optimal solutions is thus defined as

F∗(u) := {x ∈ F(u) | f(x, u) ≤ f ∗(u)}.

(v) The ε-optimal set mapping is defined analogously through the set of ε-
optimal solutions for the respective parameter u ∈ U :

F∗
ε (u) := {x ∈ F(u) | f(x, u) ≤ f ∗(u) + ε}.

Note that such mappings as e.g. F and F∗ assigning a (possibly empty) subset
of X to each element u ∈ U will in the following be referred to as point-to-set
mappings, set-valued mappings or multi-valued mappings.

Subsequently, we furthermore make the general assumption that there exists
at least one point which is feasible for all possible parameter realizations within
the uncertainty set. This requirement is rather naturally fulfilled in most practical
problems.
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Assumption 2.17. FU 6= ∅.

Remark 2.18. Note that by making the assumption that FU 6= ∅, we especially
have a non-empty feasibility set of problem (GCPu) for any parameter u ∈ U .
Furthermore, the feasibility set F(u) is compact as an intersection of a compact
and a closed set. Non-emptiness and compactness of F(u) together with continu-
ity of f in x hence assure the existence of an optimal solution of (GCPu).

In Definition 2.16 we have defined a whole set of optimal solutions for a given
parameter u ∈ U . This set F∗(u) could in general be empty (which will not be
the case in our setting, as we minimize a continuous function over a compact
set), contain exactly one optimal solution x∗(u) or consist of finitely or infinitely
many optimal solutions. Having an entire set of solutions, it can be of interest to
select exactly one solution for each parameter. To mathematically deal with the
notion of a selection, we make the following definition.

Definition 2.19.

(i) A selection γ : U → X of a multi-valued mapping1 Γ is a mapping from the
set of parameter realizations U onto single elements of the image set Γ(u)
i.e. γ(u) ∈ Γ(u).

(ii) A selection ζ∗ : U → X of the optimal set mapping F∗ is therefore a
mapping assigning a single optimal solution ζ∗(u) = x∗(u) ∈ F∗(u) to each
parameter u ∈ U . A selection function within F∗

ε is defined analogously by
ζ∗ε .

After having presented the general problem setting and notation, we are now
interested in stability or robustness of the optimization problem and especially
its optimal solution(s). With robustness – or equivalently stability – of a solution
with respect to the (uncertain) parameter we basically mean that the optimal
solution of an optimization problem should not change very much if the parameter
u is only disturbed a little.

2.3 U-stability
In this section we want to present and discuss a notion of stability of an opti-
mization problem that reflects the desired properties for practical applications.
The main goal of practitioners can be described with the following statements
which also characterize a well-posed problem in the sense of Hadamard (nicely
summarized in Kirsch [49], originally introduced in Hadamard [36]):

1The mapping Γ : U → P(X) describes a general multi-valued mapping from the set of
parameters to a subset of X. This can e.g. represent the feasible set mapping F or the optimal
set mapping F∗.
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(i) Existence
There exists at least one solution of the problem.

(ii) Uniqueness
For each parameter choice u ∈ U there exists exactly one solution of the
considered problem.

(iii) Stability
When the parameter u is disturbed only slightly, the optimal solution should
also change only very little, i.e. the solution depends continuously on the
data.

In this section we want to discuss these statements for the generic convex program
(GCPu), and we will find that especially the last one, the stability of the solution
with respect to the parameter, only holds under certain regularity conditions.

Beforehand, note that investigating uniqueness of a solution is only meaningful
if the existence is already established. Similarly, if uniqueness is not yet assured,
there is no point in examining stability of the optimal solution. We can then only
discuss stability or continuity of the set of optimal solutions as a whole.

In our setting existence of a solution is assured since the objective function
f was assumed to be continuous and the feasibility set F(u) is non-empty (As-
sumption 2.17) and compact for all possible parameter choices u ∈ U . Thus,
F∗(u) 6= ∅ for all u ∈ U .

Uniqueness of a solution means that the optimal set is a singleton, i.e. F∗(u) =
{x∗(u)}. In this case we can then use the classical notion of continuity of a func-
tion x∗ : U ⊂ Rd → Rn. From optimization theory it is known that uniqueness
of the solution of our optimization problem (GCPu) can be guaranteed if the
objective function f(·, u) is strictly convex for each u ∈ U . Furthermore, we will
find in this section that in this case we will get stability of the solution – that is,
continuity with respect to the parameter – by requiring the existence of a Slater
point. Thus, these two additional facts would result in a so-called well-posed
problem fulfilling all the properties practitioners desire.

But, in general, we cannot assume that the optimization problem has a unique
solution. Therefore, we need to deal with entire sets, and thus a different notion
of continuity of sets is necessary which will be given by the Hausdorff continuity.

Recalling the three characteristics stated above, we thus want to find a single-
valued continuous mapping from the set of (uncertain) parameters into the set
of optimal solutions. We will call a program having this nice property to be
U-stable:

Definition 2.20. The problem (GCPû) is called U -stable if

(i) the set of optimal solutions contains exactly one element, F∗(û) = {x∗(û)},

(ii) the mapping x∗ is continuous at û.
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Extending this definition of stability of a particular problem to the entire
family of parametric programs leads to the following:

Definition 2.21. The family of problems (GCPu) is called U -stable if the indi-
vidual problem (GCPû) is U-stable for each û ∈ U , i.e. if it holds that

(i) the set of optimal solutions for each parameter contains exactly one element,
i.e. F∗(u) = {x∗(u)} for all u ∈ U ,

(ii) the mapping x∗ is continuous on U .

Remark 2.22. A U-stable problem will sometimes equivalently be referred to as
a well-posed problem.

In the following subsections we will investigate the question under which (ad-
ditional) requirements the optimization problem (GCPu) will be U -stable.

2.3.1 Review of existing results

Before starting with theoretical examinations, we need some more definitions for
multi-valued mappings which in our context will be the mappings from the param-
eter set into the sets of feasible and (ε-) optimal solutions, i.e. the functions F ,F∗

and F∗
ε . The following definitions are according to the book of Bank et al. [3] as

well as several results.
An ε-neighborhood (ε > 0) of a set S ⊂ Rn will be described by the expression

Vε(S) := {x ∈ Rn | d(x, S) = inf
y∈S

d(x, y) < ε}.

The distinction to an ε-neighborhood around a point u0 ∈ Rd is made clear in
the context, as the notation is analogously given by Vε(u0).

Definition 2.23. A point-to-set mapping Γ : U → P(Rn) is

(i) closed at a point û if for each pair of sequences {uk} ⊂ U and {xk} ⊂
Rn, k = 1, 2, . . . , with the properties uk → û, xk ∈ Γ(uk), xk → x̂, it
follows that x̂ ∈ Γ(û);

(ii) Hausdorff upper semicontinuous (short: H-usc) at a point û if for each
ε > 0 there exists a δ > 0 such that Γ(u) ⊂ Vε(Γ(û)) for all u ∈ Vδ(û);

(iii) Hausdorff lower semicontinuous (short: H-lsc) at a point û if for each ε > 0
there exists a δ > 0 such that Γ(û) ⊂ Vε(Γ(u)) for all u ∈ Vδ(û);

(iv) H-continuous at û if it is H-usc and H-lsc at û;

(v) strongly lower semicontinuous (short: strongly lsc) at a point û if for each
x ∈ Γ(û) there exists an ε > 0 and a δ > 0 such that Vε(x) ⊂ Γ(u) for all
u ∈ Vδ(û).
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This notion of Hausdorff continuity for sets matches the “classical” conti-
nuity for vectors in Rn. As we will use several results stated in the book of
Bank et al. [3], and many of them are expressed using a second type of continuity
for set-valued mappings, we need to give the according definitions as well.

Definition 2.24. A point-to-set mapping Γ : U → P(Rn) is

(i) Berge upper semicontinuous (short: B-usc) at a point û if for each open set
Ω containing Γ(û) there exists a δ = δ(Ω) > 0 such that Γ(u) ⊂ Ω for all
u ∈ Vδ(û);

(ii) Berge lower semicontinuous (short: B-lsc) at a point û if for each open set
Ω satisfying Ω∩Γ(û) 6= ∅ there exists a δ = δ(Ω) > 0 such that Γ(u)∩Ω 6= ∅
for all u ∈ Vδ(û);

(iii) B-continuous at û if it is B-usc and B-lsc at û;

Remark 2.25. The following implications hold, see Bank et al. [3], page 26:

• B-usc =⇒ H-usc,

• H-lsc =⇒ B-lsc,

• strongly lsc =⇒ B-lsc.

A rather useful result stating that the backward directions H-usc =⇒ B-usc
and B-lsc =⇒ H-lsc also hold if additionally some compactness conditions are
fulfilled is the following:

Lemma 2.26. Let Γ : U → P(X) be a multi-valued mapping and let û ∈ U .

(i) Γ is B-usc and thus as well H-usc at û if Γ is closed at û and X is compact.

(ii) Γ is B-usc at û if Γ is H-usc at û and Γ(û) is compact.

(iii) Γ is H-lsc at û if Γ is B-lsc at û and cl Γ(û) is compact.

Proof. See Bank et al. [3], Lemma 2.2.3.

Thus, Remark 2.25 together with Lemma 2.26 give equivalence of Hausdorff
and Berge continuity in case of dealing with compact sets. As we are interested in
stability investigations of the mappings F , F∗ and F∗

ε where the corresponding
sets are all compact, we can hence use the two continuity definitions equivalently.

Foreclosing some results, we will find that in case of the optimal solution being
unique, it is also continuous with respect to the parameter u. But in the more
general case of having an entire set of optimal solutions, not much can be proved
about stability. Therefore, we are as well interested in the possibility of choosing
or selecting one particular optimal point x∗(u) for each parameter u with the
property that this selection then is continuous. The link to such a continuous
selection function is established by Berge lower semicontinuity:
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• Bank et al. [3] prove in their Corollary 2.3.2.1 that in our setting there
exists a continuous selection function within a set-valued mapping if this
mapping is Berge lower semicontinuous.
This statement is basically Michael’s selection theorem. More details and
results about continuous selections under various settings can e.g. be found
in Repovš and Semenov [68].

• Theorem 0.44 in Repovš and Semenov [68] basically gives the other direction
of the selection theorem, i.e. if there exists a locally continuous selection
function, then the multi-valued mapping is Berge lower semicontinuous.

Thus, it suffices to prove Hausdorff lower semicontinuity of (ε-)optimal set mapp-
pings to assure at least the existence of a continuous selection function within
the general mapping.

For notational ease in some of the subsequent results or proofs, we make the
following definition.

Definition 2.27.

(i) The set of points satisfying the parametric constraints will be denoted with
G(u) and is defined as

G(u) := {x ∈ Rn | g(x, u) ∈ −K} = {x ∈ Rn | g(x, u) ≤K 0}.

(ii) The set of Slater points of G(u) for a parameter u ∈ U will be denoted by

GS(u) := {x ∈ Rn | g(x, u) ∈ int(−K)} = {x ∈ Rn | g(x, u) <K 0}.

Note that the only difference between G(u) and F(u) lies in the expression
x ∈ Rn compared to x ∈ X, thus, we can express the feasibility set and the set
of Slater points as

F(u) = G(u) ∩X,
FS(u) = GS(u) ∩X.

Furthermore, it obviously holds that

GS(u) ⊂ G(u).

A useful result linking the two sets GS(u) and G(u) is given in the next proposition.

Proposition 2.28. Let G(u) and GS(u) be as defined above and assume further
that GS(u) 6= ∅. Then it holds that

G(u) = clGS(u)

with clA denoting the closure of the set A.
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Proof. We will show equivalence of the two sets by showing that each side contains
the other.

• The one direction is straightforward: We have that GS(u) ⊂ G(u), and since
G(u) is closed, we get that

clGS(u) ⊂ clG(u) = G(u).

• Since by assumption GS(u) is non-empty, there exists a point x ∈ GS(u),
i.e. g(x, u) <K 0. Let y ∈ G(u) and define the point xλ := λx + (1 − λ)y
with λ ∈ (0, 1). Since g(·, u) is K-convex, it holds that

g(xλ, u) = g(λx+ (1− λ)y, u) ≤K λ g(x, u)︸ ︷︷ ︸
<K0

+(1− λ) g(y, u)︸ ︷︷ ︸
≤K0

<K 0.

Therefore, xλ ∈ GS(u) for all λ ∈ (0, 1) and thus in the limit λ→ 0 we get
y = x0 ∈ clGS(u), hence G(u) ⊂ clGS(u), which completes the proof.

Having all these definitions we want to study the characteristics of the different
sets and mappings we have defined in Section 2.2, always keeping in mind that
the main goal would be to define conditions such that the set of optimal solutions
is single-valued and continuous or that there exists at least a continuous selection
within the set. Since this might not be possible, we consider as well the set of
ε-optimal solutions with respect to finding some continuity results.

We first summarize and extend selected existing results from Bank et al. [3]
which we will use afterwards for proving the desired statements in our general
convex conic setting.

Theorem 2.29. Let the mapping F be closed at û. Then F∗ is closed at û if f ∗
is upper semicontinuous at û and f is lower semicontinuous on X × {û}.

Proof. See Bank et al. [3], Theorem 4.2.1 (3).

Corollary 2.30. Let F be closed at û, F(û) be non-empty, f be continuous,
and X be compact. Then f ∗ is lower semicontinuous at û; f ∗ is also upper
semicontinuous at û if and only if F∗ is B-usc at û.

Proof. See Bank et al. [3], Corollary 4.2.1.1.

Theorem 2.31.

(i) The optimal value function f ∗ is upper semicontinuous at û if F is B-lsc
at û and f is upper semicontinuous on F(û)× {û}.

(ii) The optimal value function f ∗ is lower semicontinuous at û if F is H-usc
at û, F(û) is compact and f is lower semicontinuous on F(û)× {û}.
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Proof. See Bank et al. [3], Theorem 4.2.2 (1) and (2).

Corollary 2.32. If the mapping F is B-lsc at û, then the following statements
are equivalent:

(i) f ∗ is continuous at û;

(ii) The mapping F̃∗
ε defined through

F̃∗
ε (u) := {x ∈ F(u) | f(x, u) < f ∗(u) + ε}

is B-lsc and H-lsc at û for each ε > 0.

Proof. See Bank et al. [3], Corollary 4.2.4.1. Hausdorff lower semicontinuity of
F̃∗

ε finally follows from Lemma 2.26, part (iii).

The following lemma is a more technical result which is needed to prove the
statement of Theorem 2.34 below.

Lemma 2.33. Let Γ1,Γ2,Γ3 be mappings from U into P(Rn) with the properties

(i) Γ1 is B-lsc at û,

(ii) Γ2 is strongly lsc at û,

(iii) Γ2(u) ⊂ Γ3(u) ∀u ∈ U .

Then Γ1 ∩ Γ3 is B-lsc at û if Γ1(û) ∩ Γ3(û) ⊂ cl(Γ1(û) ∩ Γ2(û)) holds.

Proof. See Bank et al. [3], Corollary 2.2.5.1.

Theorem 2.34. Let the mappings G and GS be as denoted above and let Γ : U →
P(Rn) be B-lsc at û. Additionally, let

(G ∩ Γ)(û) ⊂ cl(GS ∩ Γ)(û).

Then the mapping G ∩ Γ is B-lsc at û.

Proof. To prove the theorem, we apply Lemma 2.33 with appropriate assignments
of the mappings Γ1,Γ2 and Γ3.

• We choose Γ1 = Γ which then is B-lsc by assumption.

• Defining Γ2 = GS, it remains to show that GS is strongly lsc.

• With Γ3 = G, we obviously have Γ2(u) ⊂ Γ3(u) ∀u ∈ U . And we also have
– by assumption in the theorem – that Γ1(û) ∩ Γ3(û) ⊂ cl(Γ1(û) ∩ Γ2(û)).
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Therefore, for applying Lemma 2.33 and thus proving that Γ1 ∩ Γ3 = Γ ∩ G is
B-lsc at û, it suffices to show strong lower semicontinuity of GS:
Let x̂ ∈ GS(û), i.e. g(x̂, û) <K 0. Since g is continuous on X × U , there exist
ε > 0 and δ > 0 such that Vε(x̂) ⊂ GS(u) for all u ∈ Vδ(û). Thus, GS is strongly
lsc at û and the proof is complete.

Apart from the cited statements from the book of Bank et al. [3], the following
general result relating Hausdorff upper and lower semicontinuity for the singleton
mappings is rather useful.

Lemma 2.35. Let û ∈ U . If the mapping Γ is H-usc at û and the set Γ(û) is a
singleton, then Γ is also H-lsc (and hence B-lsc) at û.

Proof. Hausdorff upper semicontinuity guarantees that Γ(u) ⊂ Vε(Γ(û)),∀ε > 0,
i.e. since Γ(û) is a singleton, Γ(u) ∈ Vε(x(û)). Thus, for all y ∈ Γ(u), the distance
to the point x(û) is less than ε, d(y, x(û)) < ε. Therefore, x(û) ∈ Vε(y) for all
y ∈ Γ(u), i.e. x(û) ∈ Vε(Γ(u)).

2.3.2 Properties of the feasibility set mapping F
Naturally, the mapping F is the first one to start the investigations about conti-
nuity since this will be a crucial factor for the subsequent discussions of the other
mappings.

Proposition 2.36. The feasible set mapping F is closed and H-usc for all u ∈ U .

Proof. The set X is compact and the mapping F is closed since g is continuous
and K is a closed cone, thus, F is Hausdorff upper semicontinuous according to
Lemma 2.26 (i).

Lemma 2.37. If g(·, û) is strictly K-convex, then exactly one of the following is
true:

(i) The set F(û) contains only one element, i.e. F(û) = {x(û)}.

(ii) There exists a Slater point of F(û), i.e. FS = GS(û) ∩X 6= ∅.

Proof. If F(û) contains only one element, we are done. So assume there are at
least two elements within F(û), say x and y. Since F(û) is a convex set, the point
z := 0.5x + 0.5 y also lies in F(û), and with g(·, û) strictly K-convex it follows
that g(z, û) = g(0.5x+ 0.5 y, û) <K 0.5 g(x, û) + 0.5 g(y, û) ≤K 0 and thus z is a
Slater point of F(û).

The following proposition finally gives the first desired result, namely that
the feasibility set mapping is Hausdorff continuous in case a Slater point exists.
The proof relies on the extension of Theorem 3.1.5 in Bank et al. [3] to the conic
setting which was presented in Theorem 2.34.
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Proposition 2.38. If there exists a Slater point of F(û), then F is H-lsc and
hence H-continuous at û.

Proof. Let the mapping Γ be defined by Γ := X. Recall that using the definitions
of G(u) and GS(u), the set F(û) can be represented as F(û) = G(û) ∩ X and
the associated set of Slater points is then GS(û) ∩ X which is non-empty by
assumption. We now apply Theorem 2.34 according to which it is sufficient
to show that (G ∩ Γ)(û) ⊂ cl(GS ∩ Γ)(û), i.e. (G ∩ X)(û) ⊂ cl(GS ∩ X)(û).
Using the same argument as in Proposition 2.28 this statement can be verified
and thus Hausdorff lower semicontinuity is given by noting that (G ∩ X)(û) is
compact and applying Lemma 2.26, part (iii). Combining H-lsc with H-usc from
Proposition 2.36 completes the proof.

Proposition 2.39. If g(·, û) is strictly K-convex, then F is H-lsc at û.

Proof. From Lemma 2.37 we have that either the set F(û) contains only one
element or there exists a Slater point of F(û). In either case we are done by
combining the results of Lemma 2.35 and Proposition 2.36 or by applying Propo-
sition 2.38, respectively.

In the previous two propositions we have shown that requiring one additional
condition (either existence of a Slater point of F(û) or strict K-convexity of
g) suffices to guarantee Hausdorff lower semicontinuity of F . Together with
the result of Proposition 2.36 that the mapping F is already Hausdorff upper
semicontinuous under our general Assumptions 2.14, we have that F is Hausdorff
continuous at û.

Before investigating the other mappings, we shortly summarize all information
(including the trivial ones) about the mapping F :

• The set F(u) is compact and convex for all u ∈ U .

• The mapping F is closed for all u ∈ U .

• The mapping F is H-usc for all u ∈ U .

• Requiring additionally either existence of a Slater point of F(u) for u ∈ U or
strict K-convexity of g(., u), then F is also H-lsc, thus Hausdorff continuous
at u.

Having that under certain conditions the mapping F is continuous, we want to
study in the following subsections the implications on the mappings f ∗,F∗ and
F∗

ε .
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2.3.3 Properties of the optimal value function f ∗

For the optimal value function f ∗ we obtain the following result.

Proposition 2.40. Let F be Hausdorff continuous at û ∈ U . Then the extreme
value function f ∗ : U → R is continuous at û.

Proof. This proof consists of the two parts of showing lower and upper semicon-
tinuity of f ∗.
Since the mapping F is Hausdorff continuous at û by assumption, it is H-usc at
û. Furthermore, we have that the objective function f is continuous, i.e. it is es-
pecially lower semicontinuous. With these prerequisites and F(û) being compact
we can apply Theorem 2.31 (2) to deduce that f ∗ is lower semicontinuous at û.
To prove upper semicontinuity of f ∗, we use again the assumption that F is
H-continuous at û which implies that F is B-lsc at û. Together with the objec-
tive function f being upper semicontinuous we have the necessary conditions for
applying Theorem 2.31 (1) and readily get that f ∗ is upper semicontinuous and
therefore also continuous at û.

Combining the results from this Proposition 2.40 and Proposition 2.38 we
have that the existence of a Slater point for (GCPû) is a sufficient condition for
f ∗ being continuous in û.

As we are mainly interested in only continuity of the optimal value function
and hence have not explicitly considered any other features, we present a few
selected results regarding the optimal value function that might be useful. For
further insight we refer to Bank et al. [3] and especially Bonnans and Shapiro [18]
who have analyzed extensively the properties of the optimal value function and
the optimal set mapping in parametric optimization problems. They also study
the link between the primal and the dual problem under various conditions and
the consequences thereof for the set of optimal solutions of the dual program.

Proposition 2.41. Let both f ∈ C1(X × U ,R) and g ∈ C1(X × U ,Rm) and let
(GCPû) possess a Slater point. Then

(i) f ∗ is directionally differentiable at û in the direction d and

f ∗
′
(û; d) = inf

x∈F∗(û)
sup

λ∈Λ(û)

(∇uL(x, λ, û))Td

with L(x, λ, û) denoting the Lagrangian of (GCPû) and Λ(û) being the set
of Lagrange multipliers of (GCPû),

(ii) under the additional assumptions of F∗(û) = {x̂} and Λ(û) = {λ̂} being
singletons, we furthermore get that f ∗ is differentiable at û and

∇f ∗(û) = ∇uL(x̂, λ̂, û).
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Remark 2.42.

(i) Note that we have

∇uL(x, λ, û) = ∇uf(x, û) + λT∇ug(x, û)

with ∇ug(x, û) denoting the Jacobi matrix of g with respect to the variable
u.

(ii) We would straightforwardly obtain directional differentiability and local Lip-
schitz continuity of f ∗ if f ∗ was convex, see e.g. Rockafellar [70], Theo-
rem 23.4 and Theorem 10.4, respectively. But convexity of f ∗ is not gen-
erally given in our setting. Joint convexity2 of f(., .) and g(., .) for all
(x, u) ∈ X × U would yield convexity of the extreme value function f ∗ as
shown in the following. For ease of notation we first introduce the abbrevi-
ations

xα := αx1 + (1− α)x2,

uα := αu1 + (1− α)u2.

Consider

f ∗(uα) = f ∗(αu1 + (1− α)u2)

= inf
x1,x2∈X

g(xα,uα)≤K0

f
(
αx1 + (1− α)x2, αu1 + (1− α)u2

)
.

Using joint convexity of f yields that

f ∗(uα) ≤ inf
x1,x2∈X

g(xα,uα)≤K0

αf(x1, u1) + (1− α)f(x2, u2)

and as joint convexity of g implies that with the smaller feasibility set
{g(x1, u1) ≤K 0, g(x2, u2) ≤K 0} the function value at most increases, we
can furthermore continue with the above being

≤ inf
x1,x2∈X

g(x1,u1)≤K0
g(x2,u2)≤K0

αf(x1, u1) + (1− α)f(x2, u2)

2Joint convexity means that it holds for arbitrary x1, x2 ∈ X, u1, u2 ∈ U and α ∈ [0, 1] that

f(αx1 + (1− α)x2, αu1 + (1− α)u2) ≤ αf(x1, u1) + (1− α)f(x2, u2).
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which finally equals the weighted sum of the following two optimization prob-
lems, hence

= α inf
x1∈X

g(x1,u1)≤K0

f(x1, u1) + (1− α) inf
x2∈X

g(x2,u2)≤K0

f(x2, u2)

= αf ∗(u1) + (1− α)f ∗(u2).

(iii) The optimal solution set F∗(û) is a singleton if e.g. the objective function
f is strictly convex in x. There also exist conditions (some strict con-
straint qualifications) implying uniqueness of the Langrange multiplier λ̂,
see e.g. Proposition 4.47 in Bonnans and Shapiro [18].

Proof of Proposition 2.41.

(i) To show directional differentiability at û, we consider the parametrization
û+ td→ û with t ↓ 0, i.e. ϕ(t) = f ∗(û+ td). As there exists a Slater point
for (GCPû), i.e. for t = 0, we can apply Theorem 13 from [35] which gives
existence of the onesided derivative ϕ′+(0) and also provides the following
explicit formula:

ϕ
′

+(0) = inf
x∈F∗(û)

sup
λ∈Λ(û)

∂

∂t
L(x, λ, û+ td)

∣∣∣
t=0
.

Expanding the gradient ∂
∂t
L(x, λ, û + td) according to the chain rule, we

obtain

ϕ
′

+(0) = f ∗
′
(û; d) = inf

x∈F∗(û)
sup

λ∈Λ(û)

(∇uL(x, λ, û))Td

and the result is proved.

(ii) If both the optimal solution x̂ and the Langrange multiplier λ̂ are unique,
the formula in part (i) reduces to

f ∗
′
(û; d) = (∇uL(x̂, λ̂, û))Td

which is linear in d and thus f ∗ is (Hadamard) differentiable according to
Definition A.8.

Further explicit results regarding differentiability of the optimal value function
in specialized cases can e.g. be found in Bonnans, Shapiro [18], Chapter 4.3. The
following example illustrates that convexity of f ∗ is not a necessary condition for
f ∗ being directionally differentiable.
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Example 2.43. Consider the problem

min
x∈[−1,1]

ux

for u ∈ [−1, 1]. All the general prerequisites are fulfilled. We especially have
f(x, u) = ux linear (thus convex) in u for fixed x, and in x for fixed u. Note that
f(x, u) is not jointly convex in (x, u). The optimal solution F∗(u) is given by

F∗(u) =


{1} if u < 0

[−1, 1] if u = 0

{−1} if u > 0

and the extreme value function can for all cases be expressed as

f ∗(u) = −|u|.

It can be observed both in the formulas above and in Figures 2.3(a) and 2.3(b)
that the optimal solution set F∗(u) is not a singleton for u = 0 and that f ∗
is continuous for all u ∈ [−1, 1]. It is not differentiable at u = 0, but it is
directionally differentiable for all u ∈ [−1, 1].
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Figure 2.3: Illustration of the optimal solution F∗ and the extreme value function
f ∗ in Example 2.43.

A further result stating pointwise Lipschitz continuity of the extreme value
function is the following.

Proposition 2.44. Suppose that f ∈ C1(X×U ,R) and g ∈ C1(X×U ,R), and let
(GCPû) possess a Slater point. Then, the optimal value function f ∗ is pointwise
Lipschitz continuous in û.
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Proof. For pointwise Lipschitz continuity of f ∗ in û we need to show (Defini-
tion A.1) that there exists a neighborhood V around û and a constant L =
L(û) > 0 such that

‖f ∗(u)− f ∗(û)‖
‖u− û‖

≤ L ∀u ∈ V.

Since f ∗ is directionally differentiable at û (see Proposition 2.41, part (i)) and X
is finite dimensional, we can use that (see Proposition A.11 and Definition A.10)

f ∗(û+ h) = f ∗(û) + f ∗
′
(û;h) + o(‖h‖).

With Vε̃(û) denoting a neighborhood around û, consider the compact neighbor-
hood Vε(û) with 0 < ε < ε̃ and let h := u − û with u ∈ Vε(û), i.e. h ∈ Rd with
‖h‖ ≤ ε. Then we have

‖f ∗(u)− f ∗(û)‖
‖u− û‖

=
‖f ∗(û+ h)− f ∗(û)‖

‖h‖

=
‖f ∗′(û, h) + o(‖h‖)‖

‖h‖

≤ ‖f ∗′(û, h)‖
‖h‖

+
o(‖h‖)
‖h‖

=

∥∥∥∥f ∗′ (û, h

‖h‖

)∥∥∥∥+
o(‖h‖)
‖h‖

(as f ∗
′
is positively homogeneous in h, Lemma A.7)

≤ sup
h∈Rd

‖h‖≤ε

∥∥∥∥f ∗′ (û, h

‖h‖

)∥∥∥∥+
o(‖h‖)
‖h‖

.

Since f ∗′ is continuous in h (obvious from the representation in Proposition 2.41
(i)), the supremum over the compact set {h ∈ Rd | ‖h‖ ≤ ε} is attained. Thus,
the first expression is finite and bounded from above by L1 > 0. Furthermore,
the second expression tends to zero for h → 0 and hence is bounded by L2 > 0
for all h ∈ Vε(0) = {h ∈ Rd | ‖h‖ ≤ ε} with ε sufficiently small. Therefore, we
finally get

‖f ∗(u)− f ∗(û)‖
‖u− û‖

≤ L1 + L2 =: L

which proves pointwise Lipschitz continuity of f ∗ in û.

2.3.4 Properties of the optimal set mapping F∗

Next we consider the optimal set mapping F∗. First, we prove the special case of
having a unique solution, which – together with existence of a Slater point – then
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assures U -stability of the program. Afterwards, we illustrate in small examples
that both these assumptions cannot be weakened to achieve Hausdorff continuity
of the optimal set mapping. In a more general setting without having a unique
solution, only Hausdorff upper semicontinuity can be shown.

Theorem 2.45 (U-stability). Consider the program (GCPû) and

(i) let the mapping F be Hausdorff continuous at û ∈ U ,

(ii) assume that the program has a unique solution for û.

Then, the optimal set mapping F∗ is H-continuous at û, i.e. (GCPû) is U-stable.

Recall that the assumption of the program having only one single solution for
the parameter û can for example be guaranteed if the objective function f(x, û)
is strictly convex in x for û ∈ U .

Proof. Having closedness of F and continuity of f ∗ (Proposition 2.40), applying
Corollary 2.30 gives Berge and thus Hausdorff upper semicontinuity of F∗ at û.
Applying Lemma 2.35 concludes the proof.

Corollary 2.46. Let F be continuous at u for all u ∈ U and let F∗(u) be a
singleton for all u ∈ U . Then the optimal mapping F∗ is Hausdorff continuous
on U , i.e. the family (GCPu) is U-stable.

Proof. Follows directly from Theorem 2.45.

Theorem 2.45, or Corollary 2.46 respectively, assures the desired result of
having a single-valued continuous optimal solution. But there are two relatively
strong requirements: the strict convexity of the objective function – or respec-
tively, it is enough to assume uniqueness of the optimal solution – and the Haus-
dorff continuity of the feasible set mapping F . In the following small examples we
want to illustrate that both conditions of Theorem 2.45 (i.e. Hausdorff continuity
of F and a unique solution) are necessary, neglecting or weakening only one of
them does not suffice to give the desired result in general.

Example 2.47. In this simple example we demonstrate that only convexity (and
not strict convexity which would yield a unique solution) of the objective function
is not sufficient to assure continuity in the solution.

Consider the program

min
x∈[−1,1]

ux

Let U be the compact interval [−1, 1]. In this case the set of feasible points is
the same for each u ∈ U , F(u) = {x ∈ R | − 1 ≤ x ≤ 1} and therefore F is
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continuous (since constant). The objective function is linear, thus convex, but the
optimal solution is

F∗(u) =


1 if u < 0

[−1, 1] if u = 0

−1 if u > 0

and thus neither H- nor B-continuous.
Figure 2.4 illustrates the set of feasible points and the associated optimal so-

lution for each u ∈ U = [−1, 1] of the above program.

)(uF
u

x

1

-1

1

-1

)(u*
F

Figure 2.4: Illustration of the feasibility set and the associated optimal solution
in Example 2.47.

Example 2.48. This second example demonstrates the necessity of the second
crucial requirement of F being continuous. Consider the program

min
x∈[−1,1]

(x− 1)2

s.t. ux ≤ 0.

again with U = [−1, 1]. In this program, the objective function is independent of
the parameter u and it is strictly convex. The set of feasible points is given by

F(u) =


[0, 1] if u < 0

[−1, 1] if u = 0

[−1, 0] if u > 0

and therefore not continuous. And as well, the optimal solution

F∗(u) =


1 if u < 0

1 if u = 0

0 if u > 0
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is not continuous in u. Note that for the particular parameter u = 0, no Slater
point can be found. This already leads to the conjecture that continuity might not
be achieved in that point – which is the case as shown by the explicit results.

Figure 2.5 illustrates the set of feasible points and the associated optimal so-
lution for each u ∈ U = [−1, 1] of the above program.
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Figure 2.5: Illustration of the feasibility set and the associated optimal solution
in Example 2.48.

After having examined the special case of F∗ being Hausdorff continuous if
F∗(u) is a singleton, we explore the general optimal set mapping F∗ with respect
to continuity results.

Proposition 2.49. Let F be Hausdorff continuous at û ∈ U . Then, the optimal
set mapping F∗ is closed at û.

Proof. Follows directly from Theorem 2.29 since continuity of F at û implies
continuity of f ∗ at û.

Proposition 2.50. Let F be Hausdorff continuous at û ∈ U . Then, the optimal
set mapping F∗ is Hausdorff upper semicontinuous at û.

Proof. Having closedness of F and continuity of f ∗ (Proposition 2.40), applying
Corollary 2.30 gives Berge and thus Hausdorff upper semicontinuity of F∗ at
û.

Thus, in the general case of possibly having an entire set of optimal solutions,
we can only guarantee Hausdorff upper semicontinuity, even in rather simple op-
timization problems, as seen in Example 2.47 where F was constant and f(x, u)
was linear both in x and u. To achieve H-continuity of F∗ (i.e. Hausdorff lower
semicontinuity), some rather strong conditions on (GCPu) are required, see Bon-
nans and Shapiro [16].
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2.3.5 Properties of the ε-optimal set mapping F∗
ε

So far we have established the main results concerning continuity of the feasibility
set mapping, the extreme value function and the mapping onto the set of optimal
solutions. As only Hausdorff upper semicontinuity could be achieved for the
optimal set mapping, we now investigate the mapping onto the set of ε-optimal
solutions with respect to continuity. We will find that the mapping F∗

ε possesses
the property of being Hausdorff lower semicontinuous which at least assures the
existence of as continuous selection function, see page 23. Closedness additionally
yields Hausdorff upper semicontinuity, thus Hausdorff continuity. These results
are summarized and proved in the following proposition.

Proposition 2.51. Let F be Hausdorff continuous at û ∈ U . Then the ε-optimal
set mapping F∗

ε is H-continuous at û for all ε > 0.

Before being able to prove this proposition, we need to cite a further result
from Bank et al. [3]:

Lemma 2.52. Let the mapping Γ1 : U → P(X) be B-lsc at û and Γ2 : U → P(X)
be strongly lsc at û. Then, the mappings

(Γ1 ∩ Γ2)(u) := Γ1(u) ∩ Γ2(u)

and

cl(Γ1 ∩ Γ2)(u) := cl(Γ1(u) ∩ Γ2(u))

are B-lsc at û.

Proof. See Bank et al. [3], Lemma 2.2.5.

Proof of Proposition 2.51. For proving that the mapping F∗
ε is H-continuous, we

need to show Hausdorff upper and lower semicontinuity.

• For Hausdorff upper semicontinuity it suffices to prove closedness of the
mapping F∗

ε according to Lemma 2.26 (i). Let {uk} ⊂ U be a sequence
with uk → û, and let xk ∈ F∗

ε (uk), xk → x̂. Since the mapping F is closed
at û, x̂ ∈ F(û). Having xk ∈ F∗

ε (uk) gives f(xk, uk)− f ∗(uk) ≤ ε and since
both f and f ∗ are continuous, we get f(x̂, û)−f ∗(û) ≤ ε. Thus, x̂ ∈ F∗

ε (û).

• To prove Hausdorff lower semicontinuity we use F̃∗
ε = F̃∗

ε ∩ Rn with

F̃∗
ε = {x ∈ F(u) | f(x, u) < f ∗(u) + ε}

being B-lsc at û (Propositions 2.40 and Corollary 2.32) and the mapping Γ
with Γ(u) = Rn being strongly lower semicontinuous. Thus, Lemma 2.52
yields B-lsc of F∗

ε = cl(F̃∗
ε ∩ Rn) at û. H-lsc follows from compactness of

F∗
ε (û) and Lemma 2.26 (iii).
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2.3.6 Illustrative example

In the following example we will investigate a simple 2-dimensional optimization
problem with a linear objective function and without any parametric constraints.
In this case it is possible to explicitly calculate the optimal solution and also
present some formulas for ε-optimal solutions.

Consider the following program3:

min
x∈X

− xTu (P)

with X = {x ∈ R2 | x ≥ 0, xT111 = 1}, thus compact, and u ∈ U . The
notation “111” stands for the appropriately sized vector consisting of 1 in each
component. Before digging into detailed analysis of the program, we want to
summarize some immediate statements about this particular problem and its
characteristics concerning stability:

• If the two components of a parameter realization û are equal, i.e. w.l.o.g.
û = û1 ·111, the set of optimal solutions for this particular û is not a singleton,
but the entire feasibility set, i.e. F∗(û) = F(û) = X, since

min
x∈X

−xT û = min
x∈X

−û1(x
T111︸︷︷︸
=1

) = min
x∈X

−û1 = −û1.

Thus, it is doubtable that the optimal set mapping is continuous at such
an û = û1 · 111 ∈ U .

• Since there are no constraints depending on u, the feasible set mapping F
is constant and thus H-continuous on U . Hence, we know that there exist
at least continuous selection functions within the set of ε-optimal solutions
F∗

ε , see page 23.

• From F being H-continuous on U , we can further deduce that the extrem
value function f ∗ is continuous, thus the optimal value will not change much
even though the optimal solution (i.e. F∗(u)) itself can be quite different if
the parameter u is disturbed only slightly.

In this simple example we can explicitly state the extreme value function f ∗(u)
and the optimal set mappings F∗(u) and F∗

ε :

• The extreme value function for any u ∈ U is given by

f ∗(u) = min
x∈X

−xTu = −max{u1, u2}.

3This problem is rather well-known in asset management as it represents maximizing the
portfolio return. This and related problems will be introduced and studied in Chapters 4 to 7.
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• The associated optimal set mapping F∗ is given by

F∗(u) = {x ∈ X | − xTu = f ∗(u)}

=



{(
1

0

)}
if u1 > u2{

λ

(
1

0

)
+ (1− λ)

(
0

1

)
| 0 ≤ λ ≤ 1

}
= X if u1 = u2{(

0

1

)}
if u1 < u2

which is obviously neither B- nor H-lsc at any u with u1 = u2, confirming our
previously stated expectation. Furthermore, it is impossible to find a continuous
selection function ζ∗ : U → X, u → x∗(u) within the mapping F∗. Moreover,
as already anticipated in the theoretical considerations above, the extreme value
function f ∗ is continuous at all u ∈ U .

Figure 2.6 illustrates the optimal solution (represented here by the first com-
ponent, the second is then determined as well by the constraint xT111 = 1) for all
possible parameter vectors u ∈ U . In view of extending this example later on
where we will investigate the influence of different shapes of the uncertainty set
U , we plot F∗(u) on the basis of U once chosen as a square and once as a circle.
It can be nicely observed that F∗ is discontinuous at the line of parameters u
with u1 = u2.

Figure 2.6: Illustration of the optimal solution for parameters u ∈ U , using two
different shapes of U .

After having confirmed the expectations for f ∗ and F∗, we now examine
explicitly the ε-optimal set mapping.
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• The ε-optimal set mapping for ε > 0 is given in terms of

F∗
ε (u) = {x ∈ X | −xTu ≤ f ∗(u) + ε}

=



{(
λ

1− λ

)
| max

(
0; 1− ε

u1−u2

)
≤ λ ≤ 1

}
if u1 > u2{(

λ

1− λ

)
| 0 ≤ λ ≤ 1

}
if u1 = u2{(

λ

1− λ

)
| 0 ≤ λ ≤ max

(
ε

u2−u1
; 1
)}

if u1 < u2.

Even though it was impossible to define a continuous selection function consist-
ing only of truly optimal solutions, we can find one within the set of ε-optimal
solutions, since the ε-optimal set mapping F∗

ε allows an entire range of feasible
points in the cases where u1 6= u2. A working definition of a continuous selection
function for feasible u ∈ U is e.g. given by

ζ∗ε (u) :=

(
λ

1− λ

)
with λ :=


1− 1

2
ε

|u2−u1| if u2 − u1 < −ε
1
2

if −ε < u2 − u1 < ε
1
2

ε
|u2−u1| if u2 − u1 > ε.

This definition of a selection function only depends on the difference between u1

and u2 and its relation to ε. Figure 2.7 illustrates the range of possible portfolio
allocations (characterized here by the relative weight in the first asset) for ε = 0.1.
The black line denotes the truly optimal solutions (i.e. solutions that lie within
the optimal set mapping F∗(u)) which flip from (0, 1)T to (1, 0)T at the point
where the difference u2 − u1 becomes zero. The blue line indicates the relaxed
bound on the components of x if ε-optimal solutions suffice, thus a whole range
is possible in this case. The red line shows the above choice of selection function
lying within the region of ε-optimal solutions.
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Figure 2.7: Continuous selection function within F∗
ε .
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2.3.7 Summary

To round off this section about U -stability, we want to collect the main results:
We first of all found that the feasible set mapping F is always Hausdorff upper
continuous in our general setting. Hausdorff continuity (thus basically H-lsc) can
be guaranteed if additionally the constraint qualification that a Slater point exists
is satisfied. These results lay the foundation for the analysis of the (ε-)optimal
set mappings and the extreme value function.

Assuming Hausdorff continuity of the feasible set mapping F , Corollary 2.46
then assures (H-)continuity of the optimal solution in the case that there is only
one unique optimal solution for each parameter u ∈ U . As in the general multi-
valued case the mapping F∗ is not necessarily continuous, we extend the scope of
the study to the ε-optimal set mapping F∗

ε . Both these mappings can be proved
to be Hausdorff lower semicontinuous which – according to page 23 – is sufficient
for the existence of a continuous selection function. Closedness of F∗

ε furthermore
yields H-usc and thus Hausdorff continuity of F∗

ε .
Moreover, Hausdorff continuity of F suffices to show continuity of the optimal
value function f ∗.

Remark 2.53. Regarding local Lipschitz continuity of f ∗ and F∗, the following
selected results give more insights into necessary and sufficient conditions. For
more details and results, we refer e.g. to Bonnans and Shapiro [16, 17, 18] who
have extensively studied optimization problems with respect to Lipschitz continu-
ity.

• Under the condition that F is independent of u and thus constant, we have
the subsequent statements. Recall that strict convexity of f in x and hence
uniqueness of the optimal solution was sufficient for F∗ being continuous
(see Theorem 2.45), but it is not sufficient for F∗ being locally Lipschitz
continuous. A counterexample is given in Bonnans and Shapiro [16], Ex-
ample 6.1.

• In the more general situation of F being dependent on u, there exist con-
ditions that (together with existence of a Slater point) guarantee local Lip-
schitz continuity of F∗ at û (see Bonnans, Cominetti and Shapiro [17],
Theorem 3.1).

• In the special case of u representing canonical perturbations, i.e. f(x, u) =
f(x)+xTu and g(x, u) = g(x)+u, Dontchev [24] gives conditions such that
the optimal solution is locally Lipschitz continuous.

Finally, Figure 2.8 graphically illustrates all the results and implications we
have established in this section.
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min
x∈X

f(x, u)

s.t. g(x, u) ≤K 0
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Figure 2.8: Illustration of the continuity results of Section 2.3.
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Chapter 3

The (local) robust counterpart
approach

In this chapter we present and discuss the so-called robust counterpart approach
as introduced in 1998 by Ben-Tal and Nemirovski and discussed in various pa-
pers, see for example [4, 5, 6, 7, 8, 9]. The same approach was independently
presented by El-Ghaoui, Oustry and Lebret [26]. It relies on the basic idea to
use not only a particular point estimate instead of the uncertain parameter to
solve the optimization problem, but to consider an entire set of possible param-
eter realizations, an uncertainty set. The robust counterpart approach is a worst
case approach, as the optimization problem is now solved under the constraint
that any point within the uncertainty set could be chosen, i.e. especially the one
leading to the worst performance.

Since such a robustification (usually) changes the type of the optimization to a
more difficult class1, see e.g. [8], there are cases where the robust problem cannot
be solved anymore with standard techniques. Hence, tractable approximations to
the robust formulation have to be found, see e.g. Ben-Tal and Nemirovski [4, 8]
and Bertsimas and Sim [12]. Ben-Tal, Boyd and Nemirovski extended the idea
of the robust counterpart in [10] to additional treatment of data realizations
lying outside the considered uncertainty set. The recent paper “Selected topics
in robust convex optimization” of Ben-Tal and Nemirovski [11] nicely overviews
the robust counterpart approach including the extended idea and tractability. It
furthermore contains a comprehensive list of references to literature on robust
optimization.

In this Chapter we first introduce the necessary definitions and notation and
present the local robust counterpart approach. Afterwards, we investigate the
continuity characteristics of the robust optimization program analogously to Sec-
tion 2.3. Furthermore, we examine under which limitations this approach works

1Roughly speaking, it holds that a linear program (LP) becomes a second-order cone program
(SOCP), a SOCP becomes a semidefinite program (SDP) and an SDP results in a problem that
is usually not solvable in polynomial time, see [4].

43
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and what consequences result thereof.
To our knowledge there do not exist any explicit stability investigations of the

robust counterpart program. We study the respective continuity characteristics
in Section 3.2. Foreclosing some results, it can be stated that none of the nice
continuity properties are lost when modifying the original problem to its robust
counterpart. Thus, we again obtain Hausdorff upper semicontinuity of the opti-
mal set mapping in case there exists a Slater point for the robust program. And
furthermore, it still holds that if the solution is unique, the optimal set mapping
is continuous.

Additionally, it holds that the robust solution converges to the solution of the
original problem if the uncertainty set shrinks to a single point, i.e. it then merely
is a point estimate of the unknown parameter. Such a behavior is both desired
and intuitively expected.

As far as we are aware of, there are no studies about the influence of the partic-
ular shape of the chosen uncertainty set on the optimal solution. We investigate
in Section 3.3 how the shape affects the optimization result. An example illus-
trates that interval or box uncertainty does not guarantee any advantage with
respect to continuity or uniqueness of the optimal solution, whereas it can be
shown that under rather general assumptions an ellipsoidal uncertainty set yields
a particular structure of the set of optimal solutions. An important consequence
thereof is that in most practical cases (e.g. in virtually all portfolio optimization
problems in asset management) the optimal solution is unique and thus contin-
uous. Hence, this illustrates that robustification using an ellipsoidal uncertainty
set can achieve U -stability of the problem.

Since such a benefit of having a unique and continuous optimal solution cannot
be obtained for free, we investigate in Section 3.4 the costs associated with this
approach, where costs are represented by an increase of the optimal objective
value. Naturally, the solution of the robust counterpart problem crucially depends
on the size of the chosen uncertainty set. It is shown in Section 3.4 that the
increase in objective value is linear in the size δ of the uncertainty set for small δ.
The same result was given by Ben-Tal and Nemirovski in [4], but only for linear
optimization problems and under different conditions. We prove this statement
for our generalized convex conic optimization problem.

The question in practical applications is how to define the particular uncer-
tainty set for the problem at hand. Choosing it too large might result in an
empty feasibility set or yields an optimal solution which is too conservative to be
of practical use. On the other hand, defining the uncertainty set too small does
not account for the possible variations of the unknown parameter we intended to
capture.

In the existing literature about application of the robust counterpart approach
there are many approaches to define uncertainty sets, most of them being inter-
val or box uncertainty sets or ellipsoids – or mixtures of both. Ben-Tal and
Nemirovski [4, 5] and Ben-Tal, El-Ghaoui and Nemirovski [6] propose ellipsoids
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or intersections of ellipsoids as uncertainty sets, which are used as well in Lut-
gens [55]. On the other hand, Tütüncü and Koenig [79] and also El-Ghaoui, Oks
and Oustry [27] use intervals to characterize uncertainty, and Goldfarb and Iyen-
gar [33] use both intervals and ellipsoids to define uncertainty sets around the
parameters of their factor model used to describe the asset return distribution.
We address the problem of the shape of the uncertainty set in Section 3.3 from
a theoretical point of view, and in Chapter 5 we discuss explicit definitions of
uncertainty sets for the portfolio optimization problem from asset management.

3.1 General definitions

This section contains the introduction of the idea of the robust counterpart ap-
proach according to Ben-Tal and Nemirovski [4, 8] and the associated definitions.
We furthermore extend their concept to a localized version.

Definition 3.1. A point x ∈ X is called worst-case-U -robust if and only if
x ∈ FU , i.e. if

g(x, u) ≤K 0 for all u ∈ U .

This Definition 3.1 is a definition of worst-case-robustness of feasible points
of (GCPu), meaning that a candidate solution x is worst-case-U -robust if it is a
feasible point for all u ∈ U , i.e. no matter which possible parameter realization
is considered.

Definition 3.2. The robust counterpart to the family (GCPu), u ∈ U is given
by the semi-infinite program

min
x∈X

max
u∈U

f(x, u) (RC)

s.t. g(x, u) ≤K 0 ∀u ∈ U .

Note that as we have assumed FU to be non-empty (Assumption 2.17), this
guarantees that the feasibility set of the robust counterpart program is non-empty
as well.

Remark 3.3. The optimization problem (RC) can equivalently be expressed as

min
x∈FU

max
u∈U

f(x, u).

For applying the classical saddle point theory to this problem we would need lin-
earity of f in u (or more generally, concavity in u) which is not assumed in our
setting. In their paper “Robust asset allocation”, Tütüncü and Koenig [79] make
use of a saddle point approach for solving a robust counterpart problem in finance.
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Remark 3.4. When solving the generic convex program (GCPu), it is a well
known fact that we can without loss of generality2 assume the objective function
to be independent of the uncertain parameter u and linear in x. This will –
whenever the assumption is convenient – be denoted by f(x, u) = l(x). Such
a simplifying assumption can as well be made without loss of generality when
dealing with the robust counterpart program. For a more detailed discussion see
Appendix F.

We will make use of this simplification for the robust program when proving
Theorem 3.37.

For actual programming we need to deal with the expression “for all parame-
ters u ∈ U ”. If the uncertainty set U is a finite set, we can simply replace the one
constraint by finitely many constraints for each single parameter u ∈ U . Ana-
logously, if the uncertainty set has a finite number of vertices – e.g. when using
the convex hull of some points (finitely many) as an uncertainty set – it suffices
to consider the contraint function only at these vertices. But if U is not finite,
we are in the field of semi-infinite programming (SIP). In our practical problems
the semi-infinite constraint can be reformulated by determining and inserting
the worst case parameter of the uncertainty set. If such a transformation to a
classical convex optimization problem is not possible, the solution of the semi-
infinite program is usually approximated iteratively by solving the problem with
increasing but finitely many constraints. For more details and literature about
semi-infinite programming, we refer to the books of Goberna and López [32] and
Reemtsen and Rückmann [67].

In our setting, to apply the robust counterpart approach we need to have a
precise definition of the uncertainty set U in the actual application. To create a
particular uncertainty set around a point estimate, there are two further necessary
characteristics – the size and the shape.

The question of the shape of the uncertainty set is examined in Subsection 3.3,
where we will consider the robust counterpart using the two most intuitive shapes,
interval or box uncertainty and ellipsoidal uncertainty.

To address the problem of the size we define a local robust counterpart where
the constraint gets relaxed in that it does not have to hold for all u ∈ U but only
for those u within a smaller region around a certain parameter choice û. Thus
this smaller uncertainty set represents some kind of local robustness. The effect
of diminishing the uncertainty set will be investigated in Subsection 3.4.

Before defining explicitly the local robust counterpart program (which is noth-
ing else than the robust counterpart as given in Definition 3.2 using a smaller
uncertainty set), we introduce the notion of a local uncertainty set.

Notation 3.5. If not explicitely stated otherwise, the uncertainty set U is sup-
posed to be “centered” at u0, i.e. we can write U = u0 + U ′ with U ′ such that

2We can always introduce an additional variable to be minimized and move the objective
function to the set of constraints.
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0 ∈ U ′. An advantage of this representation of U is that the size of the uncer-
tainty part U ′ is now scalable. Since we will introduce local robustness in the
following, we define a smaller uncertainty set around some point û ∈ U and with
suitably chosen size δ ≥ 0 by

Uδ(û) = û+ δU ′ ∩ U

with δU ′ = {δv | v ∈ U ′}. Figure 3.1 illustrates the relation of U and Uδ(û)
and the introduced notational convention. Figure 3.1(a) shows the case where
û + δU ′ ⊂ intU and Figure 3.1(b) describes the case where an intersection of
û + δU ′ with U is needed to restrict possible parameter realization to the given
larger set U .

10u
1u

2u

20u 0u û

U

)ˆ(uδU

(a) Uδ(û) within intU

10u
1u

2u

20u 0u

U
)ˆ(uδU

û

(b) Uδ(û) as intersection with U

Figure 3.1: Illustration of U and Uδ(û) in the two-dimensional case with an
ellipsoidal shape.

Remark 3.6. As we have assumed the large uncertainty set U to be non-empty,
convex and compact (Assumption 2.14), the local uncertainty set Uδ(û) is obvi-
ously non-empty, convex and compact as well.

For an easier characterization of “suitably chosen” midpoint û and size δ we
make the following definition:

Definition 3.7. We call a pair (û, δ) admissible if and only if û ∈ U and δ ∈ R+

such that û+ δU ′ ⊂ U , i.e. the intersection with U is not necessary.

Figure 3.1(a) illustrates the case of (û, δ) being admissible. In the case of
(û, δ) being admissible the local uncertainty set maintains its originally chosen
shape, e.g. an ellipse, and does not include any artificially introduced vertices.

In the following, if not explicitly stated otherwise, the considered pairs (û, δ)
are admissible.
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Having all the necessary definitions and notation, we can state the appropriate
optimization problem. The associated program to actually find a locally worst-
case U -robust solution will be called local robust counterpart (LRC) and is defined
as follows.

Definition 3.8. Let û ∈ U and δ ≥ 0. Then the local robust counterpart (LRCû,δ)
to the program (GCPû) is

min
x∈FUδ(û)

max
u∈Uδ(û)

f(x, u) = min
x∈X

max
u∈Uδ(û)

f(x, u) (LRCû,δ)

g(x, u) ≤K 0 ∀u ∈ Uδ(û).

Note that this is the same as Definition 3.2 except for the smaller (i.e. local)
uncertainty set. The difference hence is that in the program (LRCû,δ) the ro-
bustifying condition has to be fulfilled only for some of the possible parameter
realizations u, but not for all u ∈ U . According to Definition 3.1 the optimal so-
lution of the local robust counterpart program (LRC) is worst-case-Uδ(û)-robust.

Remark 3.9. For easier distinction of the original program (GCPu) and the
associated local robust counterpart program (LRCû,δ), we will use u as the general
variable in the program (GCPu), and for the program (LRCû,δ) we will investigate
continuity properties in the variable û, representing the (moving) center of the
local uncertainty set.

We have already seen in Section 2.3 that the existence of a Slater point is
crucial in all the theoretical investigations, hence we need to define the notion of
a Slater point for the local robust counterpart program (LRCû,δ).

Definition 3.10. A point xS ∈ X is a Slater point for the local robust counterpart
(LRCû,δ), if

g(xS, u) <K 0 ∀u ∈ Uδ(û).

Recall that the notation g(xS, u) <K 0 means g(xS, u) ∈ int(−K). The
subsequent proposition gives an equivalence statement of xS being a Slater point
for the program (LRCû,δ).

Proposition 3.11. A point xS ∈ X is a Slater point for the local robust coun-
terpart (LRCû,δ) if and only if there exists an ε > 0 such that

Vε

(
g(xS, u)

)
⊂ int(−K) ∀u ∈ Uδ(û).

Proof. The backward direction is obvious. The forward direction is proved by
contradiction. Assume that for all ε > 0 there exists a ũ(ε) ∈ Uδ(û) such that

Vε

(
g
(
xS, ũ(ε)

))
6⊂ int(−K).
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Thus there exists a point y(ε) ∈ Vε(g(x
S, ũ(ε))) with y(ε) /∈ int(−K). Consider a

sequence {εk} with εk → 0 and the associated sequences {ũk} ⊂ Uδ(û) and {yk}
with yk ∈ Vεk

(g(xS, ũk)) and yk /∈ int(−K). Since Uδ(û) is compact, we have
without loss of generality ũk → ū ∈ Uδ(û). Furthermore, the sequence {yk} is a
Cauchy sequence, since

‖yk − yk+1‖ ≤ ‖yk − g(xS, ũk)‖︸ ︷︷ ︸
<εk

+ ‖g(xS, ũk)− g(xS, ū)‖︸ ︷︷ ︸
→0

+ ‖g(xS, ū)− g(xS, ũk+1)‖︸ ︷︷ ︸
→0

+ ‖g(xS, ũk+1)− yk+1‖︸ ︷︷ ︸
<εk+1

which tends to 0 for k →∞. Hence, the sequence {yk} possesses a limit point ȳ
with ȳ /∈ int(−K) as the complement of int(−K) is a closed set and yk /∈ int(−K).

Thus, we have

‖ȳ − g(xS, ū)‖ ≤ ‖ȳ − yk‖︸ ︷︷ ︸
→0

+ ‖yk − g(xS, ũk)‖︸ ︷︷ ︸
≤εk

+ ‖g(xS, ũk)− g(xS, ū)‖︸ ︷︷ ︸
→0

.

In the limit εk → 0, the right hand side tends to zero and thus, we eventually get

g(xS, ū) = ȳ /∈ int(−K).

Since ū ∈ Uδ(û), this is a contradiction to xS ∈ X being a Slater point for
(LRCû,δ), i.e. g(xS, u) ∈ int(−K) for all u ∈ Uδ(û).

In the next proposition we want to relate the existence of Slater points for
the two associated programs – the original program (GCPû) and the local robust
counterpart program (LRCû,δ).

Proposition 3.12. Let program (GCPû) possess a Slater point. Then there
exists a δ > 0 such that there exists a Slater point for the local robust counterpart
problem (LRCû,δ).

Proof. Let xS ∈ X denote the Slater point for (GCPû). Then there exists an
ε > 0 such that Vε(g(x

S, û)) ⊂ int(−K). Because of g being continuous in u,
there exists a δ̃ > 0 such that

V ε
2
(g(xS, u)) ⊂ int(−K) for all u with ‖u− û‖ ≤ δ̃,

i.e. for all u ∈ Vδ̃(û), a δ̃-neighborhood around the point û. Since δ̃ > 0, there
exists a δ with δ > 0 such that Uδ(û) ⊂ Vδ̃(û) and hence xS is a Slater point for
(LRCû,δ) according to Proposition 3.11.
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Remark 3.13. If there exist Slater points for (GCPu) for all u ∈ U , we also have
Slater points for each program (LRCû,δ(û)) for sufficiently small δ(û) according to
Proposition 3.12. As the notation δ(û) already indicates, it could be necessary to
choose a different size of the local uncertainty set when slighty changing the center
point û. But, using Proposition 3.15 below we will be able to show that there exists
one global sizing constant δglob such that the “same” local uncertainty set can be
moved around and we still have a Slater point for each program (LRCû,δglob

).

The subsequent result is in analogy to Bliman and Prieur [14].

Proposition 3.14. Assume that there exists a Slater point for each instance of
(GCPu), i.e. assume

∀u ∈ U ∃ xS(u) : g
(
xS(u), u

)
∈ int(−K).

Then there exists an α > 0 such that for all u ∈ U there is an x̄(u) with

Vα

(
g
(
x̄(u), u

))
⊂ int(−K).

Note that the above expression Vα

(
g
(
x̄(u), u

))
can equivalently be written as

Vα

(
g
(
x̄(u), u

))
= g
(
x̄(u), u

)
+ αV1(0)

with V1(0) denoting a 1-neighborhood around the origin, i.e. some “normed neigh-
borhood”, similar to the unit ball.

Proof. Define

Zk := {u ∈ U | ∃x ∈ X : V 1
k

(
g(x, u)

)
⊂ int(−K)}.

Thus, with this definition we have to show that there exists k̂ such that Zk = U
for all k ≥ k̂. With 1

∞ := 0 it is obvious that the limit Z∞ = U since we assumed
the existence of a Slater point for each instance of (GCPu). Furthermore, for k
sufficiently large we also have that Zk 6= ∅.

We will proof the existence of a k̂ such that Zk = U for all k ≥ k̂ by contra-
diction. Assume that for all k, the set Zk is not equal to U . Then there exists a
sequence {uk} ∈ U \ Zk. Since U is compact, this sequence has an accumulation
point in U , say ū, and without loss of generality ū = lim

k→∞
uk. By assumption,

problem (GCPū) has a Slater point, i.e. there exists xS(ū) such that

g(xS(ū), ū) ∈ int(−K).

Thus, there exists an ε > 0 such that

Vε

(
g
(
xS(ū), ū

))
⊂ int(−K).
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Since g is continuous in ū, it holds that for each β > 0 there exists a γ > 0 with

‖g(xS(ū), ū)− g(xS(ū), u)‖ < β for all u with ‖ū− u‖ < γ.

Thus, especially for β =
ε

2
there exists a γ > 0 with

‖g(xS(ū), ū)− g(xS(ū), u)‖ < ε

2
for all u with ‖ū− u‖ < γ.

For sufficiently large k, we have ‖ū− uk‖ < γ, thus

‖g(xS(ū), ū)− g(xS(ū), uk)‖ <
ε

2

which then implies

V ε
2

(
g
(
xS(ū), uk

))
⊂ int(−K) for all uk with k large.

Choosing k̄ such that both ‖uk̄ − ū‖ < γ and
1

k̄
<
ε

2
, we can conclude that

V 1
k̄

(
g
(
xS(ū), uk̄

))
⊂ int(−K).

But this in turn implies that uk̄ ∈ Zk̄ which contradicts the assumption. Thus,
there exists k̂ such that Zk = U for all k ≥ k̂, and hence we have the existence of
an α > 0 such that for all u ∈ U there exists an x̄(u) with

Vα

(
g
(
x̄(u), u

))
⊂ int(−K).

It is worth stressing that the sizing constant α in Proposition 3.14 does not
depend on the parameter u which enables us to prove the next statement.

Proposition 3.15. Assume the existence of a Slater point for (GCPu) for all
u ∈ U , and let g be globally Lipschitz continuous in u. Then there exists a global
size δglob > 0 such that the local robust counterpart program (LRCû,δglob

) for any
û ∈ int(U) possesses again a Slater point.

Proof. Having the existence of a Slater point for (GCPu) for all u ∈ U , Proposi-
tion 3.14 gives the existence of an α > 0 such that for all û ∈ int(U) there exists
xS(û) with Vα(g(xS(û), û)) ⊂ int(−K). Using global Lipschitz continuity of g at
û, we have for all û ∈ int(U)

Vα
2
(g(xS(û), u)) ⊂ int(−K) ∀u ∈ Vα/2

L

(û)

with L > 0 being the global Lipschitz constant of g.
Finally, defining δglob > 0 such that Uδglob

(û) ⊂ Vα/2
L

(û), the proof is complete.
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3.2 Stability of the LRC
After introducing the local robust counterpart and providing the necessary no-
tations, we now investigate the program (LRCû,δ) with respect to its continuity
characteristics – analogous to Section 2.3 where we have dealt with the program
(GCPu).

In contrast to the original problem (GCPu) we now have two parameters3

defining the local robust counterpart program (LRCû,δ): the center of the local
uncertainty set, û, and its size δ. Thus, we will denote the associated mappings
of the program (LRCû,δ) as follows:

Notation 3.16.

• The feasible set mapping FLRC : U × R+ → P(X) is determined by the
according feasibility sets for each parameter pair (û, δ),

FLRC(û, δ) := {x ∈ X | g(x, u) ≤K 0 ∀u ∈ Uδ(û)}.

• The set of Slater points of the program (LRCû,δ) is given by

FS
LRC(û, δ) := {x ∈ X | g(x, u) <K 0 ∀u ∈ Uδ(û)}.

• The objective function of the local robust counterpart program (LRCû,δ) is
denoted by fLRC : Rn × U × R+ → R and is defined by

fLRC(x, û, δ) := max
u∈Uδ(û)

f(x, u).

• The extreme value function or optimal value function f ∗LRC : U × R+ → R
is

f ∗LRC(û, δ) := min{fLRC(x, û, δ) | x ∈ FLRC(û, δ)}.

• The optimal set mapping F∗
LRC : U × R+ → P(X) is given by the sets of

optimal solutions,

F∗
LRC(û, δ) := {x ∈ FLRC(û, δ) | fLRC(x, û, δ) ≤ f ∗LRC(û, δ)}.

To be able to investigate the same stability characterizations as in Section 2.3,
we need to verify the necessary prerequisites of Assumption 2.14 to apply the
already proved results. Hence, it remains to show continuity and convexity of the
robust objective function and the new (semi-infinite) constraint.

3In the cases where we will deal additionally with different shapes of the uncertainty set, we
will explicitly point this out at the appropriate places.
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Lemma 3.17.

(i) The robustified objective function fLRC(x, û, δ) = max
u∈Uδ(û)

f(x, u) is continu-

ous in (x, û, δ).

(ii) Furthermore, fLRC(x, û, δ) is convex in x for fixed (û, δ), convex in û for
fixed (x, δ) and convex and monotonically increasing in δ for fixed (x, û).

(iii) If f(x, u) is strictly convex in x for all u ∈ U , then fLRC(x, û, δ) is again
strictly convex in x.

Proof.

(i) To show continuity of fLRC , define z := (x, û, δ), let v ∈ U and consider the
following parametric program:

max
v∈FP (z)

h(v, z) (Pz)

with h(v, z) = f(x, v) and FP (z) = Uδ(û). Note that

fLRC(z) = fLRC(x, û, δ) = max
u∈Uδ(û)

f(x, u) = max
v∈FP (z)

h(v, z) = f ∗P (z)

is the optimal value function f ∗P of the auxiliary problem (Pz). As we now
want to apply the already established result about continuity of the extreme
value function, Proposition 2.40, we note the following:

• The function h is continuous in z and v by definition. (Note that
convexity of the objective function is not needed to prove continuity
of the optimal value function.)

• The feasibility set of (Pz), FP (z) = Uδ(û) is compact by definition of
the local uncertainty set.

• Hausdorff continuity of the mapping FP : Rn × U × R+ → Rd follows
from the definition of FP (z) = Uδ(û) = û+ δU ′.

Thus, Proposition 2.40 is applicable and yields continuity of fLRC in z =
(x, û, δ).

(ii) For fixed (û, δ), the feasibility set FP (z) is constant and thus fLRC is convex
in x as the pointwise maximum of convex functions, see e.g. Rockafellar [70],
Theorem 5.5.

For fixed (x, δ), convexity of fLRC in û is shown using its definition and
convexity of f in u. Note that we can rewrite fLRC as

fLRC(x, û, δ) = max
u∈Uδ(û)

f(x, u)

= max
w∈Uδ(0)

f(x, û+ w).
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Thus we get

fLRC

(
x, αû1 + (1− α)û2, δ

)
=

= max
w∈Uδ(0)

f(x, αû1 + (1− α)û2 + w)

= max
w1,w2∈Uδ(0)

w1=w2

f
(
x, αû1 + (1− α)û2 + αw1 + (1− α)w2

)
≤ max

w1,w2∈Uδ(0)
w1=w2

αf(x, û1 + w1) + (1− α)f(x, û2 + w2)

≤ max
w1,w2∈Uδ(0)

αf(x, û1 + w1) + (1− α)f(x, û2 + w2)

≤ max
w1∈Uδ(0)

αf(x, û1 + w1) + max
w2∈Uδ(0)

αf(x, û2 + w2)

= αfLRC(x, û1, δ) + (1− α)fLRC(x, û2, δ).

Monotonicity of fLRC(x, û, δ) in δ for fixed (x, û) follows straightforwardly
from the definition since for a shrinking feasibility set the maximum value
can at most be equal or is decreasing otherwise. To prove convexity in δ, we
first note that for all 0 ≤ α ≤ 1 we can represent each w ∈ Uαδ1+(1−α)δ2(0)
as

w = αw1 + (1− α)w2 with w1 ∈ Uδ1(0), w2 ∈ Uδ2(0).

Thus,

fLRC

(
x, û, αδ1 + (1− α)δ2

)
=

= max
u∈Uαδ1+(1−α)δ2

(û)
f(x, u)

= max
w∈Uαδ1+(1−α)δ2

(0)
f(x, û+ w)

= max
w1∈Uδ1

(0)

w2∈Uδ2
(0)

f
(
x, αû+ (1− α)û+ αw1 + (1− α)w2

)
≤ max

w1∈Uδ1
(0)

w2∈Uδ2
(0)

αf(x, û+ w1) + (1− α)f(x, û+ w2)

≤ max
w1∈Uδ1

(0)
αf(x, û+ w1) + max

w2∈Uδ2
(0)

(1− α)f(x, û+ w2)

= αfLRC(x, û, δ1) + (1− α)fLRC(x, û, δ2).

(iii) Strict convexity of f(x, u) in x gives

f
(
αx+ (1− α)y, u

)
< αf(x, u) + (1− α)f(y, u)

for x, y ∈ X, x 6= y and 0 < α < 1 and fixed u. Hence, it holds as well that

f
(
αx+ (1− α)y, u

)
< max

v∈Uδ(û)
αf(x, v) + (1− α)f(y, v)
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and finally, as this inequality is valid for all u ∈ Uδ(û), we have

max
u∈Uδ(û)

f
(
αx+ (1− α)y, u

)
< max

v∈Uδ(û)
αf(x, v) + (1− α)f(y, v)

≤ max
v∈Uδ(û)

αf(x, v) + max
v∈Uδ(û)

(1− α)f(y, v).

Thus,

fLRC

(
αx+ (1− α)y, û, δ

)
< αfLRC(x, û, δ) + (1− α)fLRC(y, û, δ)

Thus, so far we have established continuity and convexity of the objective
function. Next we investigate properties of the robust constraint. As the for-
mulation “for all u ∈ Uδ(û)” is difficult to handle when it comes to continuity
and convexity, we first reformulate the original semi-infinite constraint to a sin-
gle real-valued constraint. This will greatly simplify the proofs of the needed
properties.

Lemma 3.18.

(i) Let

F1
LRC(û, δ) = {x ∈ X | g(x, u) ≤K 0 ∀u ∈ Uδ(û)}

and

F2
LRC(û, δ) = {x ∈ X | G(x, û, δ) ≤ 0}

with

G(x, û, δ) := max
u∈Uδ(û)
λ∈K∗

‖λ‖=1

λTg(x, u).

It then holds that F1
LRC(û, δ) = F2

LRC(û, δ).

(ii) A point xS ∈ X is a Slater point for the program (LRCû,δ) if and only if

G(xS, û, δ) < 0,

i.e.

FS
LRC(û, δ) = {x ∈ X | g(x, u) <K 0 ∀u ∈ Uδ(û)}

= {x ∈ X | G(x, û, δ) < 0}.
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Proof.

(i) To prove the forward direction, let x̂ ∈ F1
LRC(û, δ), i.e. it holds that

g(x̂, u) ≤K 0 for all u ∈ Uδ(û).

Using Lemma 2.10 gives

λTg(x̂, u) ≤ 0 ∀u ∈ Uδ(û),∀λ ∈ K∗.

Considering only a subset of K∗, the statement of course remains valid,
thus

λTg(x̂, u) ≤ 0 ∀u ∈ Uδ(û),∀λ ∈ K∗ with ‖λ‖ = 1

which implies

max
u∈Uδ(û)
λ∈K∗

‖λ‖=1

λTg(x̂, u) ≤ 0.

As this program is the definition of G(x, û, δ) from above, we have

G(x̂, û, δ) ≤ 0,

thus, x̂ ∈ F2
LRC(û, δ).

To prove the backward direction, let x̂ ∈ F2
LRC(û, δ). Thus, it holds that

max
u∈Uδ(û)
λ∈K∗

‖λ‖=1

λTg(x̂, u) ≤ 0

which implies

λTg(x̂, u) ≤ 0 ∀u ∈ Uδ(û),∀λ ∈ K∗ with ‖λ‖ = 1.

Incorporating the condition ‖λ‖ = 1 into the inequality yields

λT

‖λ‖
g(x̂, u) ≤ 0 ∀u ∈ Uδ(û),∀λ ∈ K∗,

and as the inequality furthermore remains unaffected by multiplication with
a strictly positive number, we obtain

‖λ‖ λT

‖λ‖
g(x̂, u) = λTg(x̂, u) ≤ 0 ∀u ∈ Uδ(û),∀λ ∈ K∗.

Lemma 2.10 thus gives that

g(x̂, u) ≤K 0 ∀u ∈ Uδ(û),

i.e. x̂ ∈ F1
LRC(û, δ).
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(ii) For the forward direction, let xS ∈ X be a Slater point for (LRCû,δ), i.e. it
holds that

g(xS, u) <K 0 ∀u ∈ Uδ(û).

From Lemma 2.11 we get the strict inequality

λTg(xS, u) < 0 ∀u ∈ Uδ(û),∀λ ∈ K∗\{0}.

We again reduce the scope of the statement to a subset of K∗ and obtain

λTg(xS, u) < 0 ∀u ∈ Uδ(û),∀λ ∈ K∗, ‖λ‖ = 1.

Since the set

{(λ, u) | λ ∈ K∗, ‖λ‖ = 1, u ∈ Uδ(û)} = {(λ, u) | λ ∈ K∗, ‖λ‖ = 1} × Uδ(û)

is compact (‖λ‖ = 1 yields compactness of λ and Uδ(û) is a compact set),
the maximum of the continuous function λTg(xS, u) is attained, i.e. the
above statement is equivalent to

max
u∈Uδ(û)
λ∈K∗

‖λ‖=1

λTg(xS, u) < 0,

thus G(xs, û, δ) < 0.

To prove the backward direction we proceed analogously to part (i), using
the strict inequality and excluding λ = 0. Thus we reach the point where
it holds

λTg(xS, u) < 0 ∀u ∈ Uδ(û),∀λ ∈ K∗\{0}

from where we straightforwardly get

g(xS, u) <K 0 ∀u ∈ Uδ(û).

applying Lemma 2.11.

Remark 3.19. Note that the statement in part (i) of Lemma 3.18 would remain
unchanged even if the feasibility set of the auxiliary optimization problem to define
the function G was relaxed to {(λ, u) | u ∈ Uδ(û), λ ∈ K∗}. The restriction
‖λ‖ = 1 was added for two reasons: one is to achieve compactness of the feasibility
set, which is needed both in part (ii) of the lemma and in the subsequent proof of
Lemma 3.20; the other one is to exclude the case λ = 0 which is necessary to deal
with the equivalence statement of a Slater point, part (ii) of the above lemma.
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The equivalence statement in Lemma 3.18, part (i) thus allows the reformu-
lation of the semi-infinite constraint in the local robust counterpart program into
a single real-valued constraint by interpretation as the optimal value function of
an optimization problem. Hence, the local robust counterpart is given by

min
x∈X

max
u∈Uδ(û)

f(x, u) (LRCû,δ)

G(x, û, δ) ≤ 0

with G(x, û, δ) defined by

G(x, û, δ) := max
u∈Uδ(û)
λ∈K∗

‖λ‖=1

λTg(x, u).

As we have already established continuity and convexity of the objective function
fLRC(û, δ) in Proposition 3.17, it remains to show continuity and convexity of the
new constraint G(x, û, δ) before being able to apply the results from Section 2.3
to the robust program.

Lemma 3.20. The function G : Rn×Rd×R+ → R as defined in Lemma 3.18 is

(i) (jointly) continuous in (x, û, δ),

(ii) convex in x for fixed (û, δ), convex in û for fixed (x, δ) and convex and
monotonically increasing in δ for fixed (x, û).

Proof. Consider the auxiliary optimization problem

min
u∈Uδ(û)
λ∈K∗

‖λ‖=1

− λTg(x, u) (Paux)

where λ and u are the variables and x, û and δ represent the parameters.

(i) We want to prove continuity of the optimal value function f ∗aux = G with
respect to the parameters using Proposition 2.40. Let z := (x, û, δ) ∈ Z :=
X × U × R+ denote an arbitrary choice of parameters. Thus, we need to
verify the prerequisites that the feasibility set Faux is H-continuous at z
and the objective function faux is continuous on Faux(r) × Z. Note that
convexity of faux and Faux is not required in this case.

• The feasibility set Faux(z) ⊂ Rm × Rd for the chosen point z is given
by

Faux(z) = Faux(x, û, δ) = {λ ∈ K∗ | ‖λ‖ = 1} × Uδ(û).

Hence, the mapping Faux is H-continuous at z due to the definition of
Uδ(û) = û+ δU ′. Note also that Faux(z) is a compact set for each z.
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• The objective function of the auxiliary problem with the variables
(λ, u) and for the parameter z = (x, û, δ) is given by

faux(λ, u, x, û, δ) = −λTg(x, u)

which is continuous for all (λ, u) ∈ Faux(x, û, δ).

Having these prerequisites we can use Proposition 2.40 to conclude conti-
nuity of f ∗aux = G in z = (x, û, δ).

(ii) To show convexity of G(., û, δ), we first note that since g(., u) is K-convex,
λTg(., u) is convex for any λ ∈ K∗, see Proposition 2.13. Then, G(., û, δ) is
convex as the pointwise maximum of convex functions, see e.g. Rockafellar
[70], Theorem 5.5.

Convexity of G(x, ., δ) follows using the same arguments.

Monotonicity of G(x, û, δ) in δ for fixed (x, û) follows straightforwardly from
the definition, using the same argument as in Lemma 3.17. Convexity of
G(x, û, δ) in δ is proved analogously to convexity of fLRC(x, û, δ) in δ:

G(x, û, αδ1 + (1− α)δ2) =

= max
u∈Uαδ1+(1−α)δ2

(û)

λ∈K∗

‖λ‖=1

λTg(x, u)

= max
w∈Uαδ1+(1−α)δ2

(0)

λ∈K∗

‖λ‖=1

λTg(x, û+ w)

= max
w1∈Uδ1

(0)

w2∈Uδ2
(0)

λ∈K∗

‖λ‖=1

λTg
(
x, αû+ (1− α)û+ αw1 + (1− α)w2

)

≤ max
w1∈Uδ1

(0)

w2∈Uδ2
(0)

λ∈K∗

‖λ‖=1

αλTg(x, û+ w1) + (1− α)λTg(x, û+ w2)

≤ max
w1∈Uδ1

(0)
λ∈K∗

‖λ‖=1

αλTg(x, û+ w1) + max
w2∈Uδ2

(0)
λ∈K∗

‖λ‖=1

(1− α)λTg(x, û+ w2)

= αG(x, û, δ1) + (1− α)G(x, û, δ2).

The results of Lemma 3.17 and Lemma 3.20 showed that the general re-
quirements for the convex conic optimization problem (GCPu) summarized in
Assumption 2.14 also hold for the local robust counterpart problem (LRCû,δ)
Thus, now that we especially have both continuity and convexity of the robust
objective and constraint, we can prove the same stability properties for the local



60 CHAPTER 3. ROBUST COUNTERPART

robust counterpart program as we did for the original convex problem applying
the already established results from Section 2.3.

Theorem 3.21. Consider the local robust counterpart problem (LRCû,δ) with the
associated feasible set mapping FLRC, the extreme value function f ∗LRC and the
optimal set mapping F∗

LRC. The following statements hold:

(i) The mapping FLRC is closed and Hausdorff upper semicontinuous for all
(û, δ) ∈ U × R+.

(ii) Let (LRCū,δ̄) possess a Slater point. Then the feasible set mapping FLRC is
Hausdorff continuous at (ū, δ̄).

(iii) Let FLRC be Hausdorff continuous at (ū, δ̄). Then the optimal value function
f ∗LRC is continuous at (ū, δ̄).

(iv) Let FLRC be Hausdorff continuous at (ū, δ̄). Then the optimal set mapping
F∗

LRC is closed at (ū, δ̄) and Hausdorff upper semicontinuous at (ū, δ̄).

(v) Let FLRC be Hausdorff continuous at (ū, δ̄) and let F∗
LRC(ū, δ̄) be a singleton.

Then the optimal set mapping F∗
LRC is Hausdorff continuous at (ū, δ̄).

Proof.

(i) The mapping FLRC is closed since the function G is continuous (see Lemma
3.20). Furthermore, closedness of FLRC together with X being compact
yields Hausdorff upper semicontinuity according to Lemma 2.26 (i).

(ii) Having closedness of FLRC at (ū, δ̄) and continuity and convexity of fLRC

and G (see Lemmas 3.17 and 3.20), the statement follows directly from
Proposition 2.38 together with the existence of a Slater point.

(iii) Continuity of both fLRC and FLRC at (ū, δ̄) and compactness of FLRC(ū, δ̄)
imply continuity of f ∗LRC(û, δ) according to Proposition 2.40.

(iv) Closedness of F∗
LRC follows from Theorem 2.29 together with part (iii).

Hausdorff upper semicontinuity follows directly from Proposition 2.50.

(v) Hausdorff continuity in the case of a unique solution is given according to
Theorem 2.45.

Theorem 3.21 shows that the program (LRCû,δ) itself possesses analogous
continuity characteristics as the original program (GCPu) with respect to the
uncertainty parameters û and δ. Hence, when robustifying the original problem
to the local robust counterpart, we do not lose any stability properties. This
means especially that the existence of Slater point for (LRCû,δ) – which is closely
linked to the existence of a Slater point for (GCPu) – suffices to assure Hausdorff
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continuity of the feasible set mapping which then also implies continuity of the
extreme value function and at least Hausdorff upper semicontinuity of the optimal
set mapping.

In the following, we are especially interested in the connection of the original
problem (GCPû) to the robust program (LRCû,δ), expressed in the limit point
δ̄ = 0, since this reduces the local robust counterpart program to the original
problem (GCPû). We expect that for δ → 0 the sequence of robust solutions
converges to an optimal solution of the original program. Or, more precisely –
since we do not have uniqueness of the optimal solution – we expect that the
sequence of sets of optimal solutions to the robust problem converges to a subset
of the set of optimal solutions of the original problem. This result is stated in
the following corollary.

Corollary 3.22. Let ū ∈ U be fixed and assume the existence of a Slater point
for the program (GCPū). Let x∗LRC(ū, δ) denote an optimal solution to the corre-
sponding local robust counterpart program (LRCū,δ). Then it holds:

(i) The optimal set mapping F∗
LRC is Hausdorff upper semicontinuous at δ̄ = 0,

i.e. every accumulation point of a sequence {x∗LRC(ū, δk)} with

x∗LRC(ū, δk) ∈ F∗
LRC(ū, δk)

and δk → 0 is in F∗
LRC(ū, 0) = F∗(ū).

(ii) If furthermore F∗
LRC(ū, 0) is a singleton, the mapping F∗

LRC is Hausdorff
continuous at δ̄ = 0, i.e. the limit of the sequence {x∗LRC(ū, δk)} exists and
the limit point is an optimal solution to (GCPū).

Proof. According to Proposition 3.12 the existence of a Slater point for (GCPū)
implies the existence of a Slater point for (LRCū,δk

) with δk sufficiently close to
δ̄ = 0. Thus, for small enough δk and especially for δ̄ = 0 we have the necessary
prerequisites for fLRC ,FLRC and f ∗LRC being (Hausdorff) continuous at δ̄ = 0.
Then, (i) and (ii) follow directly from part (iv) and (v) of Theorem 3.21.

In the following examples we want to illustrate the results of Corollary 3.22
and also its limitations. The first example shows Hausdorff upper semicontinuity,
i.e. that the sequence of robust optimal solutions tends to an optimal solution of
the original problem. In that particular example the feasibility sets of both prob-
lems coincide and are the constant interval [0, 1], hence the feasible set mappings
are Hausdorff continuous. Since the existence of a Slater point of the original
program is only necessary to assure Hausdorff continuity of F∗ and F∗

LRC , this
requirement can be dropped in cases where F∗ = F∗

LRC = constant.
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Example 3.23. Consider the optimization problem

min
x∈[0,1]

ux (P)

with U = [−1, 1] and the particular parameter ū = 0. The local uncertainty set
is hence Uδ(0) = [−δ, δ]. Similar to Example 2.43 the optimal set mapping of
problem (P ) is given by

F∗(u) =


{1} u < 0

[0, 1] u = 0

{0} u > 0.

The corresponding local robust counterpart to (P ) formulates to

min
x∈[0,1]

max
u∈Uδ(0)

ux = min
x∈[0,1]

δx

since maxu∈Uδ(0) ux = δx for x ≥ 0. Hence, the optimal set mapping of the
robust problem at the point ū = 0 is given by

F∗
LRC(0, δ) =

{
[0, 1] δ = 0

{0} δ > 0.

Thus, it holds that

F∗
LRC(0, δ) 3 x∗LRC(0, δ) → x∗(0) ∈ F∗

LRC(0, 0) = F∗(0),

i.e. F∗
LRC is Hausdorff upper semicontinuous at (0, 0).

This first example hence shows that Hausdorff continuity of the feasible set
mappings guarantees Hausdorff upper semicontinuity of the optimal set mapping
in δ = 0. We do not get Hausdorff lower semicontinuity, since the set of optimal
solutions of the original problem at ū = 0 is not a singleton. The second example
illustrates that Hausdorff upper semicontinuity of FLRC (in δ) does not suffice
to assure Hausdorff upper semicontinuity of F∗

LRC . Hence, the prerequisite of
having a Slater point is relevant for the results stated in Corollary 3.22.

Example 3.24. Consider the optimization problem

min
x∈[−1,1]

(x− 1)2 (P)

s.t. ux ≤ 0

with u ∈ U = [−1, 1]. Let the local uncertainty set be given by Uδ(û) = [û−δ, û+δ]
with δ > 0 and such that (û, δ) is admissible. As the objective function is inde-
pendent of the uncertain parameter u, robustification only affects the constraint,
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and the local robust counterpart to program (P) is thus described by

min
x∈[−1,1]

(x− 1)2 (LRC)

s.t. ûx+ δ|x| ≤ 0.

As already investigated in Example 2.48, the feasible set mapping and the optimal
set mapping are given by

F(u) =


[0, 1] if u < 0

[−1, 1] if u = 0

[−1, 0] if u > 0

and F∗(u) =


{1} if u < 0

{1} if u = 0

{0} if u > 0.

Note that the feasible set mapping F is only Hausdorff upper semicontinuous at
ū = 0, but not Hausdorff lower semicontinuous (there does not exist a Slater
point). For the robust problem (LRC), the respective mappings are

FLRC(û, δ) =


[0, 1] if û ≤ −δ
{0} if −δ < û < δ

[−1, 0] if û ≥ δ

and F∗
LRC(û, δ) =


{1} if û ≤ −δ
{0} if −δ < û < δ

{0} if û ≥ δ.

We again consider the particular point ū = 0 and let δ → 0. Then it holds that

{0} = F∗
LRC(0, δ) 9 F∗

LRC(0, 0) = {1} = F∗(0),

i.e. the sequence of robust optimal solutions does not converge to an optimal solu-
tion of the original problem. Figure 3.2 illustrates the set of feasible and optimal
solutions in both the original problem (Figure 3.2(a)) and the local robust coun-
terpart problem (Figure 3.2(b)).

u

x

1

-1

1

-1

)(uF

)(u*
F

(a) original problem

û

x

1

-1

1

-1

δ+

δ−

),ˆ(LRC δu*
F

),ˆ(LRC δuF

(b) robust problem

Figure 3.2: Illustration of the sets of feasible and optimal solutions of the original
and the robust program of Example 3.24.

At the end of this section, we again summarize in Figure 3.3 the stability
results in a diagram analogous to Figure 2.8.
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min
x∈X

max
u∈Uδ(û)

f(x, u)

s.t. g(x, u) ≤K 0 ∀u ∈ Uδ(û)
⇐⇒ min

x∈X
fLRC(x, û, δ)

s.t. G(x, û, δ) ≤ 0

���������)

fLRC(x, û, δ) continuous and convex
G(x, û, δ) continuous and convex

?

PPPPPPPPPq

FLRC closed
FLRC H-usc

FLRC Hausdorff continuous at (û, δ)

? ?

F∗
LRC H-usc at (û, δ) f ∗LRC cont. at (û, δ)

?

F∗
LRC H-cont. at (û, δ)

∃ Slater point

F∗
LRC singleton

Figure 3.3: Illustration of the continuity results for (LRCû,δ).



3.3. INFLUENCE OF THE SHAPE 65

3.3 Influence of the shape of the uncertainty set
In this section we investigate the influence a particular shape of the uncertainty
set can have on the continuity properties of the (set of) optimal solutions. We
will prove that in many practical applications using an uncertainty set with an
ellipsoidal shape leads to a certain structure in the set of optimal solutions and
rather often even to a unique solution, thus as well continuity. But first, we
illustrate by a very simple one-dimensional example that the the (local) robust
counterpart approach does not necessarily lead to a continuous solution in general.

Example 3.25. Consider the optimization problem of Example 3.24:

min
x∈[−1,1]

(x− 1)2 (P)

s.t. ux ≤ 0

with u ∈ U = [−1, 1]. Letting the local uncertainty set be described by Uδ(û) =
[û− δ, û+ δ] with δ > 0, the local robust counterpart reformulates to

min
x∈[−1,1]

(x− 1)2 (LRC)

s.t. ûx+ δ|x| ≤ 0.

In Example 2.48 we have already seen that both the feasible set mapping F and
the optimal set mapping F∗ of the original problem (P ) are not continuous is
u = 0. From Examle 3.24, we can recall the feasible set mapping FLRC and the
optimal set mapping F∗

LRC:

FLRC(û, δ) =


[0, 1] if û ≤ −δ
0 if −δ < û < δ

[−1, 0] if û ≥ δ

and

F∗
LRC(û, δ) =


1 if û ≤ −δ
0 if −δ < û < δ

0 if û ≥ δ

which are both still not continuous for all parameter values. Hence, the local
robust counterpart approach does not generally help to change the original program
to a U-stable one even though in this example it creates continuity at the point u =
0. But the discontinuity in the optimal set mapping is not eliminated completely,
the critical position is only relocated from u = 0 to the point û = −δ. For
illustration we again show in Figure 3.4 the sets of feasible and optimal solutions
for both the original and the robust problem.
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u

x

1

-1

1

-1

)(uF

)(u*
F

(a) original problem

û

x

1

-1

1

-1

δ+

δ−

),ˆ(LRC δu*
F

),ˆ(LRC δuF

(b) robust problem

Figure 3.4: Illustration of the sets of feasible and optimal solutions of the original
and the robust program of Example 3.25.

Thus, this small example already shows that the robust counterpart approach
cannot be used as a general method to make a program U -stable. It seems that
it stabilizes the solution locally around the particular parameter û, but not on
the whole uncertainty set U .

Despite the drawback illustrated in the small example, the (local) robust
counterpart approach is a very useful method. In this preceding example we could
not exploit all the possibilities of the approach because of the one-dimensionality
which reduces any uncertainty set around a given parameter û to an interval.
In the following we analyze the influence of different choices of the shape of the
uncertainty set U .

The first example illustrates in case of a linear function how the expression
“maxu∈Uδ(û)” can be reformulated for two explicitly given uncertainty sets and
thus leads to a tractable optimization problem. Afterwards we will deal with the
solution and stability considerations of the particular problem and its associated
robust counterparts using different shapes of uncertainty.

Example 3.26. In this example we consider the two most intuitive uncertainty
sets: interval or box uncertainty and ellipsoidal uncertainty. We choose for the
illustration the simple program

min
x∈X

− xTu

with X ⊂ {x ∈ Rn | x ≥ 0} being a non-empty, convex and compact set. The
corresponding local robust counterpart program is thus generally given by

min
x∈X

max
u∈Uδ(û)

−xTu.

First we use an interval or box uncertainty set Uδ,box(û) of size δ > 0 around
a given parameter û ∈ U . Here, each component ui of the parameter vector can
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vary independently within its interval around ûi. The set is then given by

Uδ,box(û) = {u ∈ U | u = û+ δw,w ∈ [−1, 1]n}.

The worst case solution of the robust counterpart program with such an uncer-
tainty set is obviously attained when the explicit parameter û− δ111 is used for the
optimization. Therefore, the local robust counterpart to the above program is then
given by:

min
x∈X

−xT (û− δ111)

= min
x∈X

−xT û+ δxT111

which is now rather easily solvable.
Second, we consider an ellipsoidal uncertainty set Uδ,ell(û) of size δ > 0 around

a given parameter û ∈ U . The matrix Σ describing the shape of the ellipsoid is
assumed to be symmetric and positive definite. Thus,

Uδ,ell(û) =
{
u ∈ U | (u− û)T Σ−1(u− û) ≤ δ2

}
=
{
u ∈ U | u = û+ δΣ

1
2w, ‖w‖ ≤ 1

}
.

The equivalence of these sets is shown in Appendix E. Using this particular
uncertainty set Uδ,ell(û), we can reformulate the program as follows:

min
x∈X

max
u∈Uδ,ell(û)

−xTu

= min
x∈X

max
‖w‖≤1

−xT û− δxT Σ
1
2w

= min
x∈X

(
−xT û+ δ max

‖w‖≤1
−xT Σ

1
2w

)

and since the negative scalar product of (Σ
1
2x) and w is largest for w∗ = − Σ

1
2x

‖Σ 1
2x‖

this gives

= min
x∈X

−xT û+ δ xT Σ
1
2

Σ
1
2x

‖Σ 1
2x‖

= min
x∈X

−xT û+ δ ‖Σ
1
2x‖.

In addition to the reformulation of the robust problem, the worst case parameter
can also be stated explicitly:

uwc = û− δ
Σx

‖Σ 1
2x‖

.
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After having seen the reformulation of the local robust counterpart program
given two explicit uncertainty sets, we now investigate the stability of these ro-
bustified programs. We have already analyzed the same problem in Section 2.3.6
and found that the optimal solution is discontinuous at the point where the com-
ponents of u are equal. In the following example we now apply the particular
shapes of a square and a circular4 uncertainty set and examine the effects thereof
on the stability of the robustified program.

Example 3.27. Consider the following optimization problem:

min
x∈X

− xTu (P)

with X = {x ∈ R2 | x ≥ 0, xT111 = 1} and u ∈ U ⊂ R2. Note that this particular
problem was already investigated in Section 2.3.6 and that it is a special case of
the n-dimensional program from the previous example. Recall from Section 2.3.6
the following established facts about (P):

• The extreme value function is continuous on U .

• The optimal set mapping is discontinuous at the points u with u1 = u2,
thus, there does not exist a continuous selection function within the set of
optimal solutions.

• The ε-optimal set mapping is Hausdorff lower semicontinuous and thus
there exists a continuous selection function within F∗

ε .

In this example we are interested in improving the result about the optimal set
mapping. We apply the local robust counterpart idea with different uncertainty
sets to examine the influence of the particular shape on the set of optimal solutions
in each case.

Before starting the calculations, we recall the used notation to avoid ambiguity.
We will consider the (large) uncertainty set U to be centered at u0, once assuming
the shape of a square and once the shape of a circle, representing the two cases
of interval and ellipsoidal uncertainty. The local robust counterpart will then be
formulated around the particular parameter û ∈ U where we assume the center û
and the size δ to be chosen in such a way that Uδ(û) ⊂ U . Furthermore, the local
uncertainty set is supposed to have the same shape as U . This general link of U
and Uδ(û) was already shown in Figure 3.1. The following Figure 3.5 illustrates
the two particular cases we want to investigate in this example.

The explicit formulations of these local uncertainty sets are given by

Uδ,box(û) =
{
u ∈ U | u = û+ δw,w ∈ [−1, 1]2

}
4The same qualitative results hold if a general ellipse is chosen instead of a circle, but for

simplicity of the explicit calculations we used the special case of Σ = I, the identity matrix.
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1u

2u

U

0u )ˆ(, uboxδU

û

2u

1u

0u

û

U

)ˆ(, uellδU

Figure 3.5: Illustration of the two uncertainty set Ubox and Uell.

and

Uδ,ell(û) = {u = û+ δw | ‖w‖2 ≤ 1}

and the general representation of the local robust counterpart program for this
example is the following:

min
x∈X

max
u∈Uδ(û)

− xTu (LRC)

with X = {x ∈ R2 | x ≥ 0, xT111 = 1}. This problem (LRC) will now be
reformulated according to the chosen shape of Uδ(û).

First, we consider the program together with interval uncertainty. In Exam-
ple 3.26 we have already seen that the (local) robust counterpart program in our
particular problem can be reformulated simply by inserting the worst case feasible
parameter choice. Thus, the final problem we have to solve in this case, is:

min
x∈X

− xT (û− δ111).

But this is exactly the same type of problem as (P ) itself, just with a different
parameter û − δ111 instead of u. Hence, we already know the solutions for the
extreme value function f ∗LRC(û, δ) and the set of optimal solutions F∗

LRC(û, δ)5:

• The extreme value function f ∗LRC(û, δ) with interval uncertainty is

f ∗LRC(û, δ) = min
x∈X

{−xT (û− δ111)}

= f ∗(û− δ111) with f ∗ as in Section 2.3.6 .

5Note that we are interested in continuity of the optimal set mapping F∗
LRC , since this was

not given in the original problem (P). As we could already determine a continuous selection
function within the ε-optimal set mapping in (P), there is no need for explicitly investigating
the ε-optimal set mapping F∗

ε,LRC(û, δ).
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• The associated optimal set mapping is analogously given by

F∗
LRC(û, δ) = F∗(û− δ111) with F∗ as in Section 2.3.6 .

Since in this case of square uncertainty we can simply use the results from Sec-
tion 2.3.6, we already know that the optimal set mapping F∗

LRC is not continuous.
The graphical illustration of the optimal solution (represented by the first compo-
nent x1, the second component is simply given by 1− x1) for various values of u
or û, respectively, thus is identical and shown again in Figure 3.6.

(a) optimal solution F∗(u) (b) optimal solution F∗
LRC(u)

Figure 3.6: Illustration of the optimal solutions F∗ and F∗
LRC in Example 3.27

using a box uncertainty set.

Figure 3.7(b) shows the selected view on the optimal solution along the diag-
onal, i.e. along the line where the sum of the two components is constant. The
graph shows the optimal weight in asset 1, plotted against the value of the respec-
tive first component of the vector u while it holds that u1 + u2 = 0.1 to represent
the diagonal in the above Figure 3.6.
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LRC(u)

Figure 3.7: Illustration of f ∗LRC and F∗
LRC along the diagonal using a box uncer-

tainty set.
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Note that the midpoint u1 = 0.05 denotes the vector with equal components,
i.e. u1 − u2 = 0, and to the sides the expression ∆u = |u1 − u2| increases.
Figure 3.7(a) illustrates the associated extreme value function given by f ∗LRC(u) =
min{−(u1 − δ),−(u2 − δ)}.

We next examine problem (LRC) using the circular uncertainty set Uδ,ell(û).
The robust counterpart reformulation in this case yields

min
x∈X

− xT û+ δ‖x‖

according to Example 3.26 with Σ = I.
Since we are working in the two dimensional space, it is possible to give explicit

solutions6 to the functions f ∗LRC(û, δ) and F∗
LRC(û, δ) we are interested in.

• The extreme value function f ∗LRC(û, δ) with circular uncertainty is given by

f ∗LRC(û, δ) =

=



−û1 + δ if û1 ≥ û2 + δ

−1
2
(û1 + û2) + 1

2

√
2δ2 − (û1 − û2)2 if û2 + δ > û1 > û2

−û1 + δ√
2

if û1 = û2

−1
2
(û1 + û2) + 1

2

√
2δ2 − (û1 − û2)2 if û1 < û2 < û1 + δ

−û2 + δ if û1 + δ ≤ û2.

• The associated optimal set mapping is

F∗
LRC(û, δ) =

=



(
1

0

)
if û1 ≥ û2 + δ min

{
1
2

+ |û1−û2|
2
√

2δ2−(û1−û2)2
; 1

}
max

{
1
2
− |û1−û2|

2
√

2δ2−(û1−û2)2
; 0

}
 if û2 + δ > û1 > û2

(
1/2

1/2

)
if û1 = û2 max

{
1
2
− |û1−û2|

2
√

2δ2−(û1−û2)2
; 0

}
min

{
1
2

+ |û1−û2|
2
√

2δ2−(û1−û2)2
; 1

}
 if û1 < û2 < û1 + δ

(
0

1

)
if û1 + δ ≤ û2.

6For the detailed calculations see Appendix G.
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Thus in this case, the set of optimal solutions F∗
LRC(û, δ) is a singleton for any

parameter choice û, and this piecewise defined function is continuous in û.
Figure 3.8(b) illustrates the optimal solution F∗

LRC(û, δ), represented again by
the first component. For comparison, we included as well the plot of the optimal
solution of the orginal problem (P ) in Figure 3.8(a), as already shown in Sec-
tion 2.3.6. It can nicely be seen that the line where in the previous example the
“jump” or discontinuity has occured is now smoothed. At this line, the optimal
solution is always (0.5, 0.5)T and this solution changes continuously to one of the
extremes (1, 0)T or (0, 1)T , respectively, as the difference between the components
of û increases.

(a) optimal solution F∗(u) (b) optimal solution F∗
LRC(u)

Figure 3.8: Illustration of the optimal solutions F∗ and F∗
LRC in Example 3.27

using an ellipsoidal uncertainty set.

In this case of robustification using a circular uncertainty set, we also show
in Figure 3.9 the results along the diagonal.
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Figure 3.9: Illustration of f ∗LRC and F∗
LRC along the diagonal using a circular

uncertainty set.

As can be observed from Figure 3.9(b), the optimal set mapping (again repre-
sented by the weight in asset 1) is now continuous in contrast to the robustification
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using a box uncertainty set as shown in Figure 3.7(b). The critical point at û in
the original problem is eliminated, but at the boundary of the uncertainty set,
i.e. at û ± δ, “corners” are introduced. Furthermore, the extreme value function
(Figure 3.9(a)) is also smoothed in the δ-neighborhood around the point û where
u1 = u2.

In the preceding examples we have seen that the robust counterpart in general
does not yet guarantee U -stability of the program – it depends on the chosen
shape of the uncertainty set U . Interval uncertainty only shifted the point with
the discontinuity, thus not improving the situation as a whole, but an ellipsoidal
uncertainty set seems promising.

In the following we now analyze and state more theoretically in which cases,
i.e. under which (special) conditions the robust counterpart leads to the desired
result of making a program U -stable.

Theorem 3.28 (Benefits of robustification). Consider program (GCPu) and
assume the objective function f to have the form f(x, u) = f0(x) + (Ax)Tu with
f0 : Rn → R being twice differentiable and convex and A ∈ Rd×n. Furthermore,
let the local uncertainty set Uδ(û) have ellipsoidal shape, i.e.

Uδ(û) = {u ∈ Rd | u = û+ δHw, ‖w‖ ≤ 1}

with H ∈ Rd×d symmetric and positive definite.
Then there exists an x∗ ∈ FUδ(û)

7 such that the following holds for the optimal
solution set F∗

LRC(û, δ) of the local robust counterpart:

(i) F∗
LRC(û, δ) = {x∗}, i.e. a singleton, or

(ii) F∗
LRC(û, δ) = {y∗ | y∗ = λx∗ + z, λ ∈ R, z ∈ ker(HA)} ∩ FUδ(û).

with ker(B) := {x ∈ Rn | Bx = 0}.

Remark 3.29.

(i) Note that in this case of H being positive definite, ker(HA) = ker(A). We
will nevertheless use the notation ker(HA) to indicate the dependence on
the particular form of the ellipsoidal uncertainty set.

(ii) Furthermore, the requirement of H being positive definite is not a restric-
tion, as the dimension d of the uncertain parameters can without loss of
generality be chosen such that H is positive definite – by possibly reducing
the uncertain vector to those components that really are exposed to uncer-
tainty.

7Recall that FUδ(û) =
⋂

u∈Uδ(û)

F(u).
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In the proof of Theorem 3.28 we will need the result of the following lemma.

Lemma 3.30. Let v ∈ Rd with ‖v‖ = 1, l ∈ Rd, l 6= 0 and let

lT [I − vvT ]l = 0.

Then it holds that the vector l must be a multiple of v, i.e. there exists a k ∈ R
such that l = k v.

Proof. First of all note that the matrix [I − vvT ] ∈ Rd×d is positive semidefinite,
since

wT [I − vvT ]w = ‖w‖2 − (vTw)T (vTw) = ‖w‖2 − ‖vTw‖2

Cauchy-Schwarz
≥ ‖w‖2 − ‖v‖2︸︷︷︸

=1

·‖w‖2 = 0

with w ∈ Rd being an arbitrary vector. It is not positive definite as the vector
l 6= 0 fulfills the equation lT [I − vvT ]l = 0. Hence, the matrix [I − vvT ] must
have a zero eigenvalue with v being the corresponding normed eigenvector, since
[I − vvT ]v = 0 = 0 · v. As the rank of the matrix is at least d − 1 (due to
subtraction of a dyadic product, a rank 1 matrix), we can conclude from the
dimension formula that the kernel of the matrix (i.e. the space of eigenvectors to
the eigenvalue 0) has the dimension 1.

Furthermore, as the vector l is an eigenvector to the eigenvalue zero as well8,
l must be a multiple of v, i.e. there exists a k > 0 such that l = k v.

Proof of Theorem 3.28. Applying the robust counterpart approach and using the
reformulation as in Example 3.26, the robust objective function is given by

fLRC(x, û, δ) = f0(x) + (Ax)T û+ δ‖HAx‖

which is again a convex function as ‖.‖ is convex. For later reference, we provide
the first two derivatives thereof with respect to the variable x:

f
′

LRC(x, û, δ) = f
′

0(x) + AT û+ δ
(HA)THAx

‖HAx‖
,

f
′′

LRC(x, û, δ) = f
′′

0 (x) + δ
1

‖HAx‖
(HA)T

[
I − HAx

‖HAx‖
(HAx)T

‖HAx‖

]
(HA).

Let x∗ ∈ F∗
LRC(û, δ). Note that F∗

LRC(û, δ) 6= ∅ since the feasibility set is non-
empty (see Assumption 2.17) and bounded. If x∗ is the only solution of the local
robust counterpart program, we are done. Otherwise, we consider two cases:

8Note that it holds lT [I − vvT ]l =
(
[I − vvT ]

1
2 l
)T (

[I − vvT ]
1
2 l
)

= 0, i.e. [I − vvT ]
1
2 l = 0

implying that l is an eigenvector to the eigenvalue zero for the matrix [I − vvT ]
1
2 , hence for

[I − vvT ].
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• All optimal solutions lie within ker(HA), i.e. F∗
LRC(û, δ) ⊂ ker(HA). Let

y∗ ∈ F∗
LRC(û, δ), y∗ 6= x∗. Then the representation of y∗ in (ii) trivially

holds for z := −λx∗ + y∗ ∈ ker(HA), λ ∈ R.

• There exists at least one optimal solution not lying within ker(HA). With-
out loss of generality, let x∗ ∈ F∗

LRC(û, δ), x∗ /∈ ker(HA). Let y∗ 6= x∗ be
an arbitrary further optimal solution (within ker(HA) or not) and define
h := y∗ − x∗. Since the set of optimal solutions of a convex problem is a
convex set (see e.g. Jahn [42], Theorem 2.14), all the points zα := x∗ + αh
for α ∈ [0, 1] are optimal solutions of (LRCû,δ) as well. Therefore, we have

f ∗LRC(û, δ) = fLRC(x∗, û, δ) = fLRC(zα, û, δ)

for all α ∈ [0, 1]. Taylor expansion of fLRC(zα, û, δ) at x∗ yields

fLRC(zα, û, δ) = fLRC(x∗, û, δ) + (f ′LRC(x∗, û, δ))T · αh

+
1

2
(αh)Tf ′′LRC(x∗, û, δ)(αh) + o(α2)

and thus

0 = (f ′LRC(x∗, û, δ))T · αh+
1

2
(αh)Tf ′′LRC(x∗, û, δ)(αh) + o(α2). (3.1)

Dividing Equation (3.1) by α > 0 and taking the limit α→ 0 gives

0 = (f ′LRC(x∗, û, δ))T h+ lim
α→0

1

2
αhTf ′′LRC(x∗, û, δ)h+ lim

α→0

o(α2)

α
= (f ′LRC(x∗, û, δ))T h.

Using this result in the above Equation (3.1), dividing the remaining terms
again by α and taking the limit thus yields

0 =
1

2
hTf ′′LRC(x∗, û, δ)h+ lim

α→0

o(α2)

α2

=
1

2
hTf ′′LRC(x∗, û, δ)h (3.2)

=
1

2
hT

(
f
′′

0 (x∗) +
δ

‖HAx∗‖
(HA)T

[
I − HAx∗

‖HAx∗‖
(HAx∗)T

‖HAx∗‖

]
(HA)

)
h.

(3.3)

Since both f0(x) and the norm function ‖.‖ are convex, the respective Hes-

sian matrices f ′′0 (x∗) and I − HAx∗

‖HAx∗‖
(HAx∗)T

‖HAx∗‖
are positive semidefinite.
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Thus it holds for all h ∈ Rn that

0 ≤ hTf
′′

0 (x∗)h and

0 ≤ δ

‖HAx∗‖
hT (HA)T

[
I − HAx∗

‖HAx∗‖
(HAx∗)T

‖HAx∗‖

]
(HA)h.

Hence, together with Equation (3.2) we conclude that it must hold

0 = hTf
′′

0 (x∗)h and (3.4)

0 =
δ

‖HAx∗‖
hT (HA)T

[
I − HAx∗

‖HAx∗‖
(HAx∗)T

‖HAx∗‖

]
(HA)h. (3.5)

Focusing on Equation (3.5), we again distinguish two cases:

1. h ∈ ker(HA). Then we are done as y∗ = x∗ + h.

2. h /∈ ker(HA), i.e. l := (HA)h 6= 0, l ∈ Rd. With v = HAx∗

‖HAx∗‖ , ‖v‖ = 1,
Equation (3.5) can be written in simplified form as lT [I − vvT ]l = 0.
Using Lemma 3.30 we can thus conclude that the vector l is a multiple
of v, i.e. there exists a k ∈ R such that

(HA)h = l = k v

= k
HAx∗

‖HAx∗‖

and thus

HAy∗ = HAx∗ +HAh

= HAx∗ +
k

‖HAx∗‖
HAx∗

=

(
k

‖HAx∗‖
+ 1

)
HAx∗

which yields

y∗ =

(
k

‖HAx∗‖
+ 1

)
︸ ︷︷ ︸

=:λ

x∗ + z, z ∈ ker(HA).

In any case, intersecting the solution set with FUδ(û) concludes the proof.
Note that Equation (3.4) additionally restricts the set of optimal solutions,

but as f0(x) was an arbitrary convex function, these conditions are not generally
expressable but depend on the particular function.
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Corollary 3.31. Let the assumptions of Theorem 3.28 hold. Furthermore, sup-
pose that the matrix A has full column rank n (i.e. especially implying d ≥ n).
Then the optimal solution F∗

LRC(û, δ) of the local robust counterpart is either
a singleton or contains only linearly dependent solutions, i.e. there exists an
x∗ ∈ FUδ(û) such that

F∗
LRC(û, δ) = {y∗ | y∗ = λ x∗, λ ∈ [λl, λu] ⊂ R} .

Proof. Given that rank(A) = n and H positive definite, thus non-singular, the
matrix product HA also has full rank n, i.e. ker(HA) = {0}. Using this fact and
the result of Theorem 3.28, we hence get

F∗
LRC(û, δ) = {y∗ | y∗ = λ x∗, λ ∈ R} ∩ FUδ(û).

Since X is a compact set, this equation is equivalent to restricting λ to a compact
interval of R, i.e.

F∗
LRC(û, δ) = {y∗ | y∗ = λ x∗, λ ∈ [λl, λu]} .

Corollary 3.32. Let the assumptions of Corollary 3.31 hold, and assume further
that X ⊂ {x ∈ Rn | aTx = b}. Then the optimal solution of the local robust
counterpart problem is unique.

Proof. Direct consequence of Corollary 3.31 since the constraint aTx = b excludes
multiples of x∗.

Remark 3.33. Corollary 3.32 hence gives that additionally imposing certain non-
parallel constraints (non-parallel to the vector x∗) yields a unique optimal solution
of the robust program. Furthermore, by Proposition 3.21, part (v), we know that
this unique solution is also stable, i.e. continuous in (û, δ) under the prerequisite
of a continuous feasibility set.

In portfolio optimization problems the set of constraints usually contains the
equation xT111 = 1 which defines the vector x to represent a portfolio. Hence, in
all the portfolio applications we will obtain a unique optimal solution of the robust
problem formulation when using an ellipsoidal uncertainty set.

Figure 3.10 illustrates the result of Corollary 3.31 and the further implication
of non-parallel constraints.

The result presented in Theorem 3.28 and in particular the consequences
thereof as stated in Corollary 3.32 will be applied in many situations in the
second part of this dissertation. Due to this result we will first of all create
only ellipsoidal uncertainty sets for the practical applications, and second, we
will be able to proof uniqueness of the optimal solution of the robust portfolio
optimization problem.
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Figure 3.10: Illustration of the benefits of robustification as described in Corol-
laries 3.31 and 3.32.

At the end of this section we want to summarize the bottom line of our re-
sults. We have seen that one of the most natural choices for the shape of the
local uncertainty set – an ellipsoid – leads to very promising results:
In the case of the objective function having the form as in Theorem 3.28 (and
many practical applications will fit into that scheme, since very often linear de-
pendence on the perturbations is assumed) we get a special structure for the
optimal solution set. If furthermore matrix A has full column rank n, i.e. each
component of x is perturbed independently, we know that all optimal solutions
are linearly dependent. Finally, the constraints describing the set X affect the
set of solutions. For example a single constraint of the form xT111 = 1 (a very com-
mon constraint in portfolio optimization problems in asset management) suffices
to exclude linear multiples of an optimal solution and thus, F∗

LRC is a singleton
which also implies continuity of the solution, hence stability of the problem in
case a Slater point exists.

Remark 3.34. A different approach – resulting in a similar objective as when
robustifying using the robust counterpart method – dealing with ill-posed (i.e. not
well-posed) problems is the Tikhonov regularization, see e.g. Kirsch [49]. There,
the regularizing expression “α‖x‖2” is added to the objective of the original prob-
lem and the approximating program

min
x∈X

f(x, u) + α‖x‖2 (Pα)

s.t. g(x, u) ≤K 0
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is solved iteratively for α → 0. As the term ‖x‖2 is a strictly convex function,
this guarantees uniqueness of the optimal solution of (Pα) and the sequence of
solutions x∗α for α→ 0 converges to an optimal solution of problem (GCPu).

3.4 Influence of the size of the uncertainty set
We have seen in the previous section that applying the robust counterpart with
an ellipsoidal uncertainty set is promising with respect to achieving U -stability
of the program – assuming that some prerequisites are fulfilled. The second
question, besides determining the shape of U , is the question of the size and how
much the robustification costs, meaning how much worse the optimal value f ∗ of
the original problem becomes by using the robust counterpart formulation. That
amount is likely to depend on the size of the uncertainty set and this interrelation
is the subject of our investigations.

The main result in this subsection will be Theorem 3.37 which states explicitly
how the size of the uncertainty set affects the optimal value f ∗LRC(û, δ): The
(asymptotic) costs of the robustification come at a linear rate in the size δ for δ →
0. This means that the increase in the optimal objective value when modifying
(GCPû) to (LRCû,δ) is linear in δ. Before being able to prove that statement, we
note the following intermediate results.

Lemma 3.35. Let K be an ordering cone. Then there exists a point c ∈ K such
that V1(c) ⊂ K.

Proof. Let z ∈ intK. There exists ε > 0 such that Vε(z) ⊂ K. This is equivalent
to

z + w̃ ≥K 0 ∀w̃, ‖w̃‖ ≤ ε

or, respectively, with c := 1
ε
z and w := 1

ε
w̃

c+ w ≥K 0 ∀w, ‖w‖ ≤ 1

which is the desired result.

Lemma 3.36. Let g(x, ·) be globally Lipschitz continuous with Lipschitz constant
L > 0. Let furthermore c ∈ K such that V1(c) ⊂ K and define

α := α(δ) = δ L diamU ′9.

Then for each x ∈ X satisfying

g(x, û) + αc ≤K 0

9Recall that U ′ is defined as being equal to U but shifted such that 0 ∈ U ′. Furthermore,
let diamU ′ = max

v1,v2∈U ′
‖v1 − v2‖.
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it also holds that

g(x, u) ≤K 0 ∀u ∈ Uδ(û) = û+ δU ′.

Proof. Since g(x, ·) is globally Lipschitz continuous with Lipschitz constant L > 0
it holds that

‖g(x, u)− g(x, û)‖ ≤ L‖u− û‖.

With u ∈ Uδ(û) we obtain the following chain of inequalities:

‖g(x, u)− g(x, û)‖ ≤ L‖u− û‖ ≤ L δ diamU ′ = α ∀u ∈ Uδ(û). (3.6)

The condition g(x, û) + αc ≤K 0 is equivalent to g(x, û) ≤K −αc. Furthermore,
as V1(c) ⊂ K,

c− 1

α
w ≥K 0 ∀w with ‖w‖ ≤ α.

This implies

g(x, û) + w ≤K −αc+ w = −α(c− 1

α
w) ≤K 0 ∀w with ‖w‖ ≤ α.

Because of inequality (3.6) the point w := g(x, u)− g(x, û) satisfies ‖w‖ ≤ α for
all u ∈ Uδ(û) and thus

g(x, û) + w = g(x, u) ≤K 0 ∀u ∈ Uδ(û).

Using these preliminary results, we can now state and prove the theorem
quantifying the costs associated with the advantage of obtaining a robust (and
possibly unique and continuous) solution.

Theorem 3.37 (Costs of robustification). Let f and g be globally Lipschitz
continuous in u. Assume the existence of a Slater point for the program (GCPû),
û ∈ U and consider the corresponding local robust counterpart (LRCû,δ). Then
there exists a k > 0 such that it holds for sufficiently small δ that

f ∗LRC(û, δ) ≤ f ∗(û) + kδ + o(δ).

Proof. Because of Remark 3.4 we assume without loss of generality that the
objective function is independent of u and linear in x, i.e. f(x, u) = l(x). Note
that when shifting the objective function into the set of constraints the properties
of convexity and the existence of a Slater point are maintained. Furthermore,
Lipschitz continuity of f and g also transfers to Lipschitz continuity of the new
constraint function (Proposition F.1). Hence, we can without loss of generality
prove the theorem for the local robust counterpart program in the following form:

min
x∈X

l(x) (LRCû,δ)

s.t. g(x, u) ≤K 0 ∀u ∈ Uδ(û).
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We now introduce the auxiliary problem

min
x∈X

l(x) (Paux)

s.t. g(x, û) + αc ≤K 0

with α := δ L diamU ′ ≥ 0 (see Lemma 3.36) and c ∈ K such that V1(c) ⊂ K.
Note that such a c ∈ K exists because of Lemma 3.35. For δ – and thus α –
sufficiently small, both programs (LRCû,δ) and (Paux) have non-empty feasibility
sets. Furthermore, Lemma 3.36 gives that each feasible point for (Paux) is as well
feasible for (LRCû,δ), i.e.

FPaux(αc) ⊂ FLRC(û, δ)

with FPaux(αc) denoting the feasible set of (Paux) for given α and c, and thus

f ∗LRC(û, δ) ≤ f ∗Paux
(αc) (3.7)

where analogously f ∗Paux
(αc) denotes the optimal value of (Paux). Note further

that f ∗Paux
(0) = f ∗(û), since in the case α = 0 the programs (GCPû) and (Paux)

coincide. As the existence of a Slater point for (GCPû) equivalently assures a
Slater point for (Paux) in the case of α = 0, all the requirements for Proposi-
tion A.12 and Corollary A.13 are fulfilled and we thus obtain the following:

(i) The optimal value function of (Paux), f ∗Paux
(αc), is Hadamard directionally

differentiable at 0 for all directions d.

(ii) The value of the directional derivative at the point 0 is finite, i.e.

f ∗
′

Paux
(0; d) <∞.

With the definition of the directional derivative (see Definition A.6), we get

f ∗
′

Paux
(0; d) = lim

t↓0

f ∗Paux
(0 + td)− f ∗Paux

(0)

t

for any direction d, and using finiteness especially for the direction c we have

f ∗
′

Paux
(0; c) = lim

t↓0

f ∗Paux
(0 + tc)− f ∗Paux

(0)

t
=: k <∞. (3.8)

Furthermore, it holds that

• the directional derivative is positively homogeneous in d, see Lemma A.7,
i.e.

f ∗
′

Paux
(0;αc) = αf ∗

′

Paux
(0; c)

(3.8)
= αk, (3.9)
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• as Hadamard directional differentiability implies Fréchet directional differ-
entiability, see Proposition A.11, f ∗Paux

(αc) can be expressed as

f ∗Paux
(αc) = f ∗Paux

(0) + f ∗
′

Paux
(0;αc) + o(‖αc‖)︸ ︷︷ ︸

=o(α)

. (3.10)

Combining all established results, we get

f ∗LRC(û, δ)
(3.7)

≤ f ∗Paux
(αc)

(3.10)
= f ∗Paux

(0) + f ∗
′

Paux
(0;αc) + o(α)

(3.9)
= f ∗(û) + αk + o(α)

and finally, using the fact that α is linear in δ we end up with the desired result

f ∗LRC(û, δ) ≤ f ∗(û) + k̃δ + o(δ)

for sufficiently small δ.

Thus, Theorem 3.37 allows to estimate and thus control the costs of a robus-
tification using the robust counterpart approach. The inequality in Theorem 3.37
can be reformulated and thus implies the following for δ tending to zero:

f ∗LRC(û, δ)− f ∗(û)

δ
→ k.

This expression on the left hand side will be referred to as relative performance
gap and is illustrated in the subsequent example.

Example 3.38. Consider the following quadratic optimization problem in the
n-dimensional case

min
x∈X

xT Σ̂x

with X = {x ∈ Rn | xT111 = 1} and Σ̂ ∈ Rn×n symmetric and positive definite. The
parameter Σ̂ is not known exactly, but contains some uncertainty, e.g. Σ̂ could
represent a covariance matrix which was estimated from a finite data sample. As
a simple local uncertainty set around the point Σ̂ we choose the set containing all
symmetric, positive semidefinite matrices Σ (recall that positive semidefiniteness
will be denoted by Σ � 0) that are “lying close” to Σ̂, where closeness is measured
using the trace norm. Thus, the set is described by

Uδ(Σ̂) =
{

Σ ∈ Rn×n | ‖Σ− Σ̂‖tr ≤ δ,Σ = ΣT ,Σ � 0
}
.
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To determine the explicit reformulation of the robust counterpart program, we
need to find the worst case parameter Σwc, i.e. the solution of

max
Σ∈Uδ(Σ̂)

xT Σx

or equivalently

max
Σ∈Sn

Σ�0

xT Σx

s.t. ‖Σ− Σ̂‖2
tr ≤ δ2.

Using the notation 〈A,B〉 = tr(AB) (see also Remark 2.7) to denote the in-
ner product of the space of symmetric n × n matrices, Sn, the problem can be
reformulated as

max
Σ∈Sn

Σ�0

〈Σ, xxT 〉

s.t. 〈Σ− Σ̂,Σ− Σ̂〉 ≤ δ2.

Introducing C := Σ− Σ̂, i.e. Σ = Σ̂ + C, we furthermore obtain

max
C∈Sn

C+Σ̂�0

〈Σ̂, xxT 〉+ 〈C, xxT 〉

s.t. 〈C,C〉 ≤ δ2.

As the expression 〈Σ̂, xxT 〉 is independent of the variable C, it suffices to maxi-
mize 〈C, xxT 〉. We furthermore solve a relaxed optimization problem by neglecting
the constraint C+Σ̂ � 0 for a moment. The inner product 〈C, xxT 〉 is maximized
if the arguments are multiples, hence the optimal solution is given by

C∗ = δ
xxT

‖xxT‖tr
= δ

xxT

‖x‖2
2

by using that

‖xxT‖tr =
√

tr(xxTxxT ) =
√

tr(xTxxTx) =
√

(xTx)2 = ‖x‖2.

Thus, the worst case matrix Σwc is finally given by

Σwc = Σ̂ + δ
xxT

‖x‖2

which is a symmetric and positive semidefinite matrix, i.e. the previously neglected
condition is fulfilled as well. With this result the robust counterpart program can
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be reformulated to

min
x∈X

max
Σ∈Uδ(Σ̂)

xT Σx

= min
x∈X

xT

(
Σ̂ + δ

xxT

‖x‖2

)
x

= min
x∈X

xT Σ̂x+
δ

‖x‖2
xTxxTx︸ ︷︷ ︸
=(‖x‖2)2

= min
x∈X

xT Σ̂x+ δ‖x‖2

= min
x∈X

xT (Σ̂ + δI)x.

with I the n× n identity matrix.
Solving both the original and the robust program for various values of δ yields

the illustration of the relative performance gap as shown in Figure 3.11. The
value of k = limδ→0

f∗LRC(Σ̂,δ)−f∗(Σ̂)

δ
is approximately 0.75 in this example.
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Figure 3.11: Illustration of the relative performance gap.

Remark 3.39. Using the o(δ) notation, the inequality in Theorem 3.37 implies

lim
δ→0

∣∣∣∣f ∗LRC(û, δ)− f ∗(û)− kδ

δ

∣∣∣∣ ≤ lim
δ→0

o(δ)

δ
= 0

or equivalently ∣∣∣∣f ∗LRC(û, δ)− f ∗(û)− kδ

δ

∣∣∣∣ ≤ l ∀δ ∈ Vε(0),
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i.e. for δ sufficiently small. This gives

‖f ∗LRC(û, δ)− f ∗(û)‖ ≤ (k + l)δ ∀δ ∈ Vε(0).

Thus Theorem 3.37 implies pointwise Lipschitz continuity of the extreme value
function in δ = 0.

The above result of Theorem 3.37 applies to our general convex optimization
problem, but it has one rather strong requirement: the existence of a Slater point.
Ben-Tal and Nemirovksi [4] proved the same result for linear problems. Their
result is derived without the assumption of a Slater point, but under (similar)
technical constraints.

At the end of this chapter we want to shortly summarize the main results.
First of all, we have proved that all the stability properties are maintained when
the original problem (GCPu) is changed to the (local) robust counterpart pro-
gram. We then have found (see Theorem 3.28 and Corollary 3.31) that using an
ellipsoidal uncertainty set in the robust counterpart approach reduces the set of
optimal solutions to (mainly) linearly dependent ones. Having further constraints
in the optimization problem often leads to a single optimal solution in practical
applications which is then also continuous according to Theorem 3.21, part (iv).
Thus, applying the robust counterpart with an ellipsoidal uncertainty set yields
the desired properties of a unique and continuous optimal solution. Finally, we
have seen (see Theorem 3.37) that for small δ the increase in the optimal objective
value compared to the non-robust solution – i.e. the costs of robustification – is
linear in the size δ. Hence, using a rather small uncertainty set for robustification
already gives the benefit of a unique and continuous solution while still keeping
the costs controllable.
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Part II

Application of robust optimization
in asset management
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Chapter 4

Traditional portfolio optimization

4.1 Introduction

In the second part of this dissertation we want to apply the robust counterpart
approach to a famous optimization problem in finance: the Markowitz portfolio
optimization problem, introduced by Markowitz in 1952, see [56]. Before eventu-
ally formulating and solving the optimization problem, we describe the underlying
financial market and illustrate the necessity of robustification.

We consider a financial market that consists of n risky assets. In our examples
the market is given by the five assets Lehman Euro Aggregate, DJ Stoxx 50, DJ
Stoxx Small Caps Europe, MSCI Japan and MSCI Emerging Markets. The first
index is a bond index whereas the other four are stock indices which usually
are a lot riskier (i.e. much more volatile) than bonds. This setting represent an
asset universe that can e.g. be used for strategical asset allocation where different
markets are assumed to be represented by selected indices capturing the main
characteristics of the respective economy. To get an idea about the individual
assets, Figure 4.1 illustrates the performance of the different asset classes over
the time period from July 2001 to December 2005, where for easier comparability
all assets were scaled to start at a value of 1 at the beginning of the underlying
time period.

The difference in the general behavior of stocks and bonds can nicely be
seen in the historical performance since the Lehman Euro resembles a slightly
upward sloping line in contrast to the rather heavily moving stocks. As can also
be observed, at the beginning of the considered time period there was a bear
market, resulting in a negative performance of the stocks. Later on, the situation
changes to a bull market with quite attractive gains in stock investments. The
figure furthermore shows that the stock indices tend to behave similarly which
indicates a (high) positive correlation.

The characteristics of the market are described in terms of the expected re-
turns of the individiual assets, their risk measured by the standard deviation

89
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Figure 4.1: Historical performance of the asset classes (07/2001 - 12/2005).

(volatility), and finally the correlation between the assets. The assets’ volatilities
and the correlation are captured together in the covariance matrix. The vector
of expected returns (denoted by µ) and the covariance matrix (denoted by Σ) are
thus the parameters that eventually enter the portfolio optimization problem. To
obtain particular parameter values for the optimization, estimators need to be
calculated. Mostly the maximum likelihood estimators (MLEs) based on a his-
torical sample are used. In the following, we illustrate that the MLEs can attain
a rather wide spectrum of different estimated values when calculated based on
changing data samples.

Having the historical data sample as shown above, we move through time and
always use a year’s time (i.e. the directly preceding 52 data points) to calculate
the maximum likelihood estimators for the individual expected asset returns and
volatilites. To point out the extremes, Tables 4.1 and 4.2 contain the annualized1

mean and volatility and the correlation matrix for selected time periods during
the bear market and the bull market, represented by the weeks from 13.04.02 to
05.04.03 and from 03.07.04 to 25.06.05, respectively.

The asset characteristics in the different market phases are additionally illus-
trated in Figure 4.2, where we have plottet the expected return and the standard
deviation (volatility) of the individual assets in a risk-return diagram. It can be
seen that the bond index, the Lehman Euro, remains rather unaffected by the
general market situation, since its expected return and its volatility are quite the
same in both a bear and a bull market. In the time period representing the bear
market, the stock indices are clustered in the lower right corner, expressing that
they have large negative expected returns and the tendency to higher risk. The

1Annualization has been done by multiplying average weekly returns by 52 and standard
deviation by

√
52. This simply scales the weekly setting to an annual point of view which is

used here only for reporting.
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return volatility correlation
Lehman Eur 6.5% 2.4% 1.00 -0.45 -0.18 -0.03 -0.06
Stoxx 50 -40.7% 17.6% -0.45 1.00 0.74 0.34 0.44
Stoxx SC -41.7% 16.6% -0.18 0.74 1.00 0.54 0.74
MSCI Japan -31.5% 20.1% -0.03 0.34 0.54 1.00 0.52
MSCI EM -21.4% 16.7% -0.06 0.44 0.74 0.52 1.00

Table 4.1: Annualized returns and volatilities and the correlation in a bear mar-
ket.

return volatility correlation
Lehman Eur 5.5% 2.7% 1.00 -0.25 -0.16 -0.09 -0.13
Stoxx 50 14.8% 9.5% -0.25 1.00 0.72 0.58 0.60
Stoxx SC 22.5% 8.6% -0.16 0.72 1.00 0.56 0.57
MSCI Japan 1.4% 11.5% -0.09 0.58 0.56 1.00 0.72
MSCI EM 22.4% 10.9% -0.13 0.60 0.57 0.72 1.00

Table 4.2: Annualized returns and volatilities and the correlation in a bull market.

upper left side of the diagram shows the high returns which can be expected in
a bull market.
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Figure 4.2: Asset characterization in bear and bull markets.

Tables 4.1 and 4.2 give an indication of the extreme parameter values that
can be obtained, but we are also interested in the changes in the estimators over
time. Figures 4.3 plots the maximum likelihood estimators for the return and the
volatility in case of the stock indices Stoxx SC (Figure 4.3(a)) and MSCI Emerging
Markets (Figure 4.3(b)). The other two stock indices showed similar plots for their
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estimators. Note that compared to the plot of the historical asset performance,
the estimators can only be calculated after the first year of data. It can nicely
be seen that the MLEs for the return undergo rather drastic changes over time,
a fact that suggests that the return vector is a rather uncertain parameter in the
optimization problem later on. The volatility estimators of the stock indices also
change over time, but not as heavily as the return estimates.
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(a) Stoxx SC

07.07.01 11.02.02 18.09.02 25.04.03 30.11.03 06.07.04 10.02.05 17.09.05

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

date

pa
ra

m
et

er
 e

st
im

at
es

MLE − return
MLE − volatility

(b) MSCI EM

Figure 4.3: Estimators for return and volatility of stock indices over time.

The historical performance in Figure 4.1 already indicated that the bond index
is a lot less riskier than the stocks, a fact that is also reflected in the stability of
the respective parameter estimates, shown in Figure 4.4. For better comparison
the axes are scaled analogous to the ones in Figure 4.3.
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Figure 4.4: Estimators for return and volatility of the bond index over time.

To model a financial market, we assume that the vector of asset returns fol-
lows a (multivariate) distribution. In many practical applications it is simply
assumed that the asset returns are normally distributed. This might be a good
approximation for some asset classes, e.g. for bond indices, but for for other types
of assets, normality of the respective return vectors is often violated and hence,
modeling a market by a normal distribution is not always sufficient, e.g. if fat
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tails need to be explicitly considered. The class of elliptically symmetric distri-
butions represents a more general framework and thus allows for more flexibility
in modeling returns. Section 4.2 below introduces elliptical distributions and
their properties.

Before, we want to test whether our particular data sample fits into the general
assumption that it follows an elliptical distribution. We consider the sample of
each asset and test the hypothesis that the data come from a normal distribution.
Using a χ2-goodness-of-fit test (see e.g. [80]), the hypothesis that the individual
data samples stem from a normal distribution can only be rejected for the Stoxx
SC index at the 5% level of significance.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

20

40

60

80

100

120

Weekly return

D
en

si
ty

 

 
returns
normal pdf

(a) Lehman Euro

−0.1 −0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

14

16

18

Weekly return

D
en

si
ty

 

 
returns
normal pdf

(b) Stoxx 50

−0.1 −0.05 0 0.05
0

5

10

15

20

25

Weekly return

D
en

si
ty

 

 
returns
normal pdf

(c) Stoxx SC

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0

2

4

6

8

10

12

14

16

18

Weekly return

D
en

si
ty

 

 
returns
normal pdf

(d) MSCI Japan

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0

2

4

6

8

10

12

14

16

18

Weekly return

D
en

si
ty

 

 
returns
normal pdf

(e) MSCI EM

Figure 4.5: Histograms of the asset returns.

Figure 4.5 shows histograms of the weekly returns together with the probabil-
ity density function fitted into the data. The histogram for the Stoxx SC index
(Figure 4.5(c)) seems rather normally distributed at first sight, but the outliers to
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the left probably led to the rejection of the hypothesis. More sophisticated ellip-
tical distribution (e.g. the normal inverse Gaussian (NIG) distribution) are then
needed to model such a behavior. Hence, summarizing it can be said that the
assumption of the returns following an elliptical distribution seems appropriate
for our data sample.

The Markowitz portfolio optimization problem is based on a mean-variance
setting which only used the mean and the variance to characterize (and optimize)
a portfolio. Thus, after having a distributional model for the financial market, we
need to define estimators for the first two moments of the assumed distribution
which are then used as input parameters in the portfolio optimization problem.
Besides the widely used maximum likelihood estimators, there exist other sta-
tistical estimators as well, especially for the mean of an elliptical distribution.
As the estimates themselves can vary quite a bit depending on the data sample
(see Figure 4.3), it might be interesting to use more robust parameter estima-
tors which e.g. omit outliers in the sample. We will present selected estimators
especially for the mean vector of an elliptical distribution in Section 4.3.

Section 4.4 reviews portfolio theory and defines efficient portfolios and the as-
sociated efficient frontier based on the underlying financial market. The efficient
portfolios are obtained by solving a parametric optimization problem with the
input parameters being the vector of expected asset returns and the covariance
matrix, hence the market characteristics. This (classical) portfolio optimization
problem will be shown to be convex and thus the theoretical results from the first
part of the dissertation are applicable (in the special case of the cone being the
standard cone). Since it can furthermore be proved that the optimal solution is
unique, Theorem 2.45 gives continuity of the solution of the classical portfolio
problem with respect to the parameters, a result that will be needed again in
Chapter 6. Despite having continuity, the optimal portfolio crucially depends
on the input parameters, see e.g. Jorion [48] or Best and Grauer [13], and es-
pecially on the assumed performance of the assets (i.e. the vector of expected
asset returns), see e.g. Chopra and Ziemba [21]. This effect can best be seen in
case of the maximum return portfolio, the portfolio which completely ignores the
associated risk and relies solely on the estimated asset performance.

Hence, having seen in Figure 4.3 that the parameter estimates (especially the
expected return) change heavily through time, and knowing that the optimization
result strongly depends on these estimates, it seems both necessary and natural
to seek for more stable solutions. In Chapter 5 we will apply the robust coun-
terpart approach to the classical portfolio optimization problem and investigate
the achievements obtained thereof. The main problem in practical applications
is the definition of appropriate uncertainty sets for solving the robust formula-
tion. We present and discuss two different approaches of creating ellipsoidal2

2Recall that we have shown in Theorem 3.28 that ellipsoidal uncertainty sets seem to be
more promising.
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uncertainty sets. The first approach is to consider a confidence ellipsoid for the
parameter estimates which is based on the distribution of the considered point
estimates, e.g. the maximum likelihood estimators. The second idea is to use
several statistical estimator to create an uncertainty set.

4.2 Elliptical distributions

In this section we introduce some fundamental characteristics of elliptical distri-
butions that can be used to model a financial market. We only collect the basic
definitions and properties, and refer to Fang, Kotz and Ng [29] and Fang and
Zhang [30] for further results and more details.

Definition 4.1. A random vector R ∈ Rn is said to have a spherical distribution
if

OR
d
= R

for every orthogonal matrix O ∈ Rn×n, and with “ d
=” denoting equality of distri-

butions.

The following theorem summarizes some useful equivalence properties for the
basic class of spherical distributions which will later be extended to the class of
elliptical distributions.

Theorem 4.2. Let R ∈ Rn be a random vector. Then, the following statements
are equivalent:

(i) OR
d
= R for every orthogonal matrix O ∈ Rn×n.

(ii) There exists a function φ : R → R, called the characteristic generator, such
that the characteristic function ψ of R has the form

ψ(t) = E
[
eitT R

]
= φ(tT t).

(iii) The vector R has a stochastic representation of the form

R
d
= Zu(n)

with the generating random variable Z ∈ R, Z ≥ 0 being independent of
u(n), a uniformly distributed random vector on the unit sphere in Rn.

Proof. See Fang, Kotz and Ng [29], Theorem 2.5.
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A spherically distributed random vector R does not necessarily have a prob-
ability density function (pdf). But in case a density function ϕR : Rn → R
exists, it must be of the form ϕR(x) = ξR(xTx) (analogous to φ(tT t)) for some
ξR : R+ → R+ which is called the density generator 3. Furthermore, we obtain
the following results.

Proposition 4.3. Let R d
= Zu(n) be spherically distributed. Then, R has a

density generator ξR : R → R if and only if the generating variate Z has a
probability density function ϕZ : R → R. Furthermore, the relationship between
these two functions is analytically given by

ϕZ(z) =
2π

n
2

Γ(n
2
)
· zn−1ξR(z2).

Additionally, if R possesses a probability density function, then all the marginal
densities exist as well.

Proof. See Fang, Kotz and Ng [29], Theorems 2.9 and 2.10.

Remark 4.4. Inverting the formula in the above proposition, we can equivalently
express the density generator of R in terms of the pdf of Z by

ξR(t) =
Γ(n

2
)

2π
n
2

· t−
n−1

2 ϕZ(
√
t).

Notation 4.5. To denote that the vector R ∈ Rn is spherically distributed with
the characteristic generator φ, we will write R ∼ Sn(φ). When dealing with a
density generator ξ, this will analogously be denoted by R ∼ Sn(ξ).

After having briefly introduced spherical distributions, we now extend the
concept to elliptically symmetric distributions. In the literature elliptically sym-
metric distributions are often called “elliptically contoured distributions”, as the
level curves of the density (e.g. in a contour plot) are ellipses. In the following we
will simply use the term elliptical distributions instead of elliptically symmetric
distributions or elliptically contoured distributions.

Definition 4.6. A random vector R ∈ Rn is said to be elliptically distributed
with the parameters µ ∈ Rn and Σ ∈ Rn×n if

R
d
= µ+ ATY, Y ∼ Sk(φ)

with A ∈ Rk×n such that ATA = Σ and rank(Σ) = k. To abbreviate R be-
ing elliptically distributed with the characteristic generator φ, we will write R ∼
En(µ,Σ, φ).

3Note that both in the book of Fang and Zhang [30] and in Fang, Kotz and Ng [29] the letter
to denote the probability density function and the density generator is the same. The generator
has the (scalar) argument xT x, and the pdf has the argument x, the function description
otherwise is the same – as can be seen from the equation ϕR(x) = ξR(xT x).
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Remark 4.7. Note that the spherical distribution equals the elliptical distribution
with µ = 0 and A = Σ = I.

Similar to the above Theorem 4.2 we get the following statements with respect
to elliptical distributions.

Theorem 4.8. Let R ∼ En(µ,Σ, φ) and let rank(Σ) = k. It holds:

(i) There exists a function φ : R → R such that the characteristic function ψ
of R has the form

ψ(t) = E
[
eitT R

]
= eitT µφ(tT Σt).

(ii) The vector R has a stochastic representation of the form

R
d
= µ+ ZATu(k)

with Z ≥ 0 being independent of u(k) and ATA = Σ.

Proof. See Fang, Kotz and Ng [29], page 32.

Remark 4.9. Any scalar function φ fulfilling a certain integrability condition (for
the exact condition, see [29] or [30]) can determine an elliptical distribution ([30],
Theorem 2.6.1). As φ is therefore not unique, we can without loss of generality
assume that φ is chosen such that

−2φ′(0) = 1 (4.1)

holds, see Fang and Zhang [30], page 67.

The next proposition summarizes several useful results about the moments,
marginals and combinations of elliptical distributions.

Proposition 4.10. Let R ∼ En(µ,Σ, φ) and E[Z2] < ∞ with Z as given in the
representation formula in Theorem 4.8, part (ii). Then, the following holds:

(i) The expected value and the covariance matrix of R are given by

E[R] = µ,

Cov[R] =
E[Z2]

rank(Σ)
· Σ = −2φ′(0)Σ = Σ.

where the last equality holds due to the normalization assumption in Equa-
tion 4.1 in the above remark.
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(ii) Any linear transformation of an elliptically distributed variable is again
elliptically distributed, more precisely:
Let R ∼ En(µ,Σ, φ), rank(Σ) = k, B ∈ Rm×n and b ∈ Rm. Then

BR + b ∼ Em(Bµ+ b, BΣBT , φ).

(iii) Any marginal distributions of an elliptically distributed variable are again
elliptical, more precisely: Let R ∼ En(µ,Σ, φ) and partition R, µ and Σ
into

R =

(
R1

R2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
with appropriate dimensions k and n−k such that R1 ∈ Rk and R2 ∈ Rn−k.
Then it holds that

R1 ∼ Ek(µ1,Σ11, φ),

R2 ∼ En−k(µ2,Σ22, φ).

(iv) The conditional distribution of an elliptically distributed variable is again
elliptical. Formally, this is stated as follows:
Let R d

= µ + ZATu(n) ∼ En(µ,Σ, φ) with Σ = ATA being positive definite.
Consider again the partitioning as given in part (iii). Then it holds that

(R1|R2 = x2) ∼ Ek(µ̃1, Σ̃1, φ̃)

with

µ̃1 = µ1 + Σ12Σ
−1
22 (x2 − µ2), (4.2)

Σ̃1 = Σ11 − Σ12Σ
−1
22 Σ21 (4.3)

and φ̃ appropriate (for details see [29], page 45).

(v) Let Rs ∼ En(µ,Σ, φ), s = 1, . . . , S independent and identically distributed.
Then it holds that

Y =
S∑

s=1

Rs ∼ En(Sµ,Σ, φS)

with φS =
∏S

s=1 φ.

Proof. See Fang, Kotz and Ng [29], Section 2.5 for the parts (i) to (iv), part (v)
follows from Theorem 4.1 in Hult and Lindskog [39].
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The moments of an elliptical distribution are needed in our application of
portfolio optimization when determining parameter estimates for the vector of
expected returns and the covariance matrix, the input parameters of the opti-
mization problem. Furthermore, the marginals being again elliptical guarantees
the proper modelling of the individual assets. Finally, explicitly having the dis-
tribution of a sum of independent and identically elliptically distributed variables
allows us to describe the distribution of selected parameter estimates. For ex-
ample, with the formula of part (v) it is known that the maximum likelihood
estimator for the mean follows again an elliptical distribution if the realizations
in the sample of historical data are elliptically distributed, and furthermore, the
moments are given as well. Hence, we can use this information to create a con-
fidence ellipsoid and use this as an uncertainty set for the vector of expected
returns. This will be done in more detail in Section 5.2.

Remark 4.11. As in the case of spherical distributions, an elliptically distributed
variable does not necessarily have a probability density function. If a density
exists, then it must hold that rank(Σ) = n. Furthermore, as the probability density
function of Y ∼ Sn(φ) is of the form ϕY (y) = ξY (yTy), the pdf of R = µ+ATY ∼
En(µ,Σ, φ) is of the form

ϕR(x) = |Σ|−
1
2 ξY

(
(x− µ)T Σ−1(x− µ)

)
,

see Fang, Kotz and Ng [29], page 46.

A sometimes useful result gives the following proposition which links the den-
sity function of the elliptically distributed random variable and the density of its
generating variate, similar to Proposition 4.3.

Proposition 4.12. Let R ∼ En(µ,Σ, φ) with Σ = ATA positive definite, and let
R possess a density function. Then R can be represented as R d

= µ + ZATu(n)

(Theorem 4.8). Assume furthermore that the cumulative density function (cdf)
of Z is absolutely continuous (hence, Z possesses a probability density function).
Then, the probability density function ϕR of R is given by

ϕR(x) =
√

det(Σ−1) · ξZ
(
(x− µ)T Σ−1(x− µ)

)
, x 6= µ

with

ξZ(t) :=
Γ
(

n
2

)
2π

n
2

· t−
n−1

2 · ϕZ(
√
t).

Proof. See Frahm [31], Corollary 4.

Using this just stated result about the explicit expression of the density func-
tion, it is rather straightforward to show symmetry with respect to the mean µ.
This fact is of importance in the subsequent sections, as we will be investigating
different estimators for µ which are only meaningful substitutes for the mean in
case of symmetric distributions.
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Proposition 4.13. Let R ∼ En(µ,Σ, φ) with Σ = ATA positive definite, let
R possess a density function and let Z (the generating variate of R) possess a
density function. Then the probability density function of R is symmetric with
respect to the mean vector µ = E[R].

Proof. From Proposition 4.12 we have that the probability density function can
be expressed as

ϕR(x) =
√

det(Σ−1) ·
Γ
(

n
2

)
2π

n
2

·
(
(x− µ)T Σ−1(x− µ)

)−n−1
2

· ϕZ(
√

(x− µ)T Σ−1(x− µ))

with ϕZ being the density of the generating variate Z. As it holds for all x ∈
Rn, x 6= 0 that

ϕR(µ− x) = ϕR(µ+ x)

=
√

det(Σ−1) ·
Γ
(

n
2

)
2π

n
2

·
(
xT Σ−1x

)−n−1
2 · ϕZ(

√
xT Σ−1x),

symmetry with respect to µ is proved.

To close the section about elliptical distribution, we use the multivariate stan-
dard normal distribution to explicitly state the various generators and all the
different introduced notations and calculations linking them.

Example 4.14. We start with a multivariate standard normally distributed ran-
dom variable. Let Y ∼ N (0, I), i.e. Y ∼ Sn(φ) for some characteristic generator
φ. From Theorem 4.2 we have that Y can be expressed as Y = Zu(n). Fur-
thermore, as the normal distribution is a continuous distribution, it holds that
P(Y = 0) = 0. With these two prerequisites Corollary 1 on page 57 in Fang and
Zhang [30] states that

Z
d
= ‖Y ‖.

As W := ‖Y ‖2 = Y TY ∈ R is known to follow a χ2
n-distribution with the pdf (see

e.g. [46], page 416)

ϕW (w) =
1

Γ
(

n
2

)
2

n
2

e−
w
2 w

n
2
−1,

the probability density function of Z is obtained by a transformation of the density
and calculates to

ϕZ(z) =
1

Γ
(

n
2

)
2

n
2

· 2e−
z2

2 zn−1 ∀z ∈ R+.
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Using the equation in Remark 4.4 which links the density generator ξY of Y to
the pdf ϕZ, ξY is given by:

ξY (t) =
Γ(n

2
)

2π
n
2

t−
n−1

2 · ϕZ(
√
t)

=
Γ(n

2
)

2π
n
2

t−
n−1

2

[
1

Γ
(

n
2

)
2

n
2

· 2e−
t
2 t

n−1
2

]
=

1

(2π)
n
2

· e−
t
2

using t := z2. Thus finally, the density of Y is given by

ϕY (y) = ξY (yTy) =
1

(2π)
n
2

· e−
yT y

2 ,

the well-known formula for the density of a standard normally distributed variable.
Additionally, we can determine the characteristic generator from the charac-

teristic function of Y ∼ N (0, I). The characteristic function of Y is given by
(see e.g. Fang and Zhang, Theorem 2.3.1)

ψY (y) = e−
1
2
yT y

and by recalling the relation ψY (y) = φ(yTy), the characteristic generator φ is

φ(t) = e−
t
2 .

Note that in this case of a standard normal distribution, the assumption −2φ′(0) =
1 is fulfilled, as φ′(0) = −1

2
.

Finally, we consider a multivariate normally distributed random variable R =
µ+ATY ∼ N (µ,Σ) with Σ = ATA a positive definite matrix. From Remark 4.11
we straightforwardly obtain the density function ϕR for R from the density gen-
erator ξY for Y by

ϕR(x) = |Σ|−
1
2 ξY

(
(x− µ)T Σ−1(x− µ)

)
= |Σ|−

1
2

1

(2π)
n
2

· e−
1
2

(
(x−µ)T Σ−1(x−µ)

)
.

This matches the formula in Definition D.1.

4.3 Parameter estimation
As already mentioned, parameter estimates representing the expectation and the
covariance matrix of the financial asset returns are needed as input for the portfo-
lio optimization problem. Since we assume that the asset returns are modeled ac-
cording to an elliptical distribution, we need estimators for the first two moments
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of an elliptically distributed random vector. The most widely used estimator for
the mean in practical applications is the maximum likelihood estimator(MLE)
or sample estimator. Other estimators are e.g. proposed by Jorion [47] who uses
a Bayesian estimators instead of the MLE, or by Jobson and Korkie [45] who
suggest Stein-type estimator for obtaining more stable results. More robust esti-
mators are e.g. introduced in Perret-Gentil and Victoria-Feser [64].

In this section we present and investigate selected statistical estimators for
the mean of elliptical distributions. As estimator for the covariance matrix we
will merely consider the maximum likelihood estimator. Furthermore, some main
characteristics of these estimators are summarized.

To be able to define the estimators properly, let a sample of length S of
i.i.d. random vectors following an elliptical distribution be given. This sample
will be denoted by R1, . . . , RS with Rs ∈ Rn, Rs ∼ En(µ,Σ, φ), s = 1, . . . , S,
and the characteristic generator φ being chosen such that −2φ′(0) = 1 holds,
see Remark 4.9. We will furthermore assume that for the elliptical distributions
under consideration a density function exists, thus we can equivalently write
Rs ∼ En(µ,Σ, ξ), s = 1, . . . , S with ξ being the according density generator.

The most widely used estimators for the mean µ and the covariance matrix
Σ are the sample estimators or the maximum likelihood estimators:

Definition 4.15. Let Rs ∼ En(µ,Σ, φ), s = 1, . . . , S i.i.d. The maximum likeli-
hood estimators for µ and Σ based on the sample of length S are given by

µ̂ML
S :=

1

S

S∑
s=1

Rs,

Σ̂ML
S :=

1

S

S∑
s=1

(Rs − µ̂ML
S )(Rs − µ̂ML

S )T .

As the sample estimator for the mean coincides with µ̂ML
S , and the sample

covariance is a constant multiple of Σ̂ML
S (with the constant S

S−1
), we will not

pursue the explicit investigation of the sample estimators any further.
In the particular setting that the random vectors of the sample are normally

distributed, the (joint) distribution of the maximum likelihood estimators µ̂ML
S

and Σ̂ML
S is analytically given as described in the following proposition.

Proposition 4.16. Let Rs ∼ N (µ,Σ), s = 1, . . . , S i.i.d. Then, the maximum
likelihood estimators µ̂ML

S and Σ̂ML
S are independent and distributed according to

µ̂ML
S ∼ N

(
µ,

1

S
Σ

)
, Σ̂ML

S ∼ W
(

1

S
Σ, S − 1

)
with W(C, ν) denoting the Wishart distribution with scale matrix C and ν degrees
of freedom, see Appendix D.3.
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Proof. See Press [65], Theorems 7.1.2, 7.1.4 and 7.1.5.

For general elliptical distributions we obtain the following distributional result
for the maximum likelihood estimator for the mean.

Proposition 4.17. Let Rs ∼ E(µ,Σ, φ), s = 1, . . . , S i.i.d. Then, the maximum
likelihood estimator µ̂ML

S has the following distribution:

µ̂ML
S ∼ En

(
µ,

1

S
Σ, φS

)
with φS =

∏S
i=1 φ.

Proof. Follows from Proposition 4.10, part (v).

Besides the maximum likelihood estimator there exist several other estimators
for the mean of an elliptical distribution. An also quite well-known estimator is
the median which represents an estimator based on empirical quantiles. As we
are working with symmetric elliptical distributions, the marginal distributions
are as well symmetric (see Proposition 4.10) and thus the median and the mean
of the marginals coincide. Hence, using the empirical median as an estimator for
the mean is meaningful. The same argument holds for the estimators presented
thereafter, as they are all symmetrically built.

Before defining the median estimator, we need to introduce the notation for a
(one-dimensional) ordered sample and the quantiles. Estimators based on quan-
tiles will always be defined componentwise, i.e. on the respective marginals.

Definition 4.18. The i-th component of each Rs, s = 1, . . . S represents a one-
dimensional random sample, and by R(1),i ≤ . . . . . . R(S),i we denote the associated
ordered sample. Then a point estimator for the theoretical α-quantile qα (0 < α <
1) of the according distribution is given by the sample quantile

Qqα,S,i := R(bαSc+1),i.

Having this definition of quantile estimators, the median estimator as the
50%-quantile is just a special case thereof:

Definition 4.19. The median estimator or sample median for µ based on a
sample of length S is defined componentwise by

µ̂ME
S,i := Qq0.5,S,i = R(bS

2
c+1),i.

Analogously, further quantile-based estimators can be defined. In our case of
symmetric distributions, an alternative to the median estimator is given generally
by a (symmetrically) weighted mixture of some of its quantiles. We will choose
in particular the average of the 25% and 75%-quartiles:
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Definition 4.20. The quartile estimator for µ based on a sample of length S is
defined componentwise by

µ̂QR
S,i :=

1

2
Qq0.75,S,i +

1

2
Qq0.25,S,i =

1

2
R(b0.25·Sc+1),i +

1

2
R(b0.75·Sc+1),i.

In the following we want to introduce two more estimators, originating in
robust statistics: the trimmed mean and the Huber estimator. The α-trimmed
mean estimator ignores the α percent smallest and largest values of the underlying
sample and calculates the classical mean or average of the remaining sample.

Definition 4.21. Let 0 < α < 1
2
. The α-trimmed mean estimator for µ based

on a sample of length S is defined componentwise by

µ̂TM
S,i :=

1

S − 2bαSc

S−bαSc∑
s=bαSc+1

R(s),i.

All the estimators introduced so far are defined on the basis of an ordered
sample. A general class of estimators is given by the so-called L-estimates,
estimators that can be expressed as linear combinations of an ordered sample
R(1),i ≤ . . . . . . ≤ R(S),i, i.e. as

S∑
s=1

csR(s),i

with appropriately chosen weights cs, see Huber [38] for a proper general defini-
tion.

As all the previously presented estimators for the mean, i.e. the maximum
likelihood estimator, the median, the quartile estimator and the trimmed mean
estimator, can be represented by such a linear combination, they can all be sub-
sumed within the class of L-estimates.

Remark 4.22. For the four L-estimates introduced in this section, the weights
cs in the linear combination to define the general L-estimate have to be chosen
as follows:

• Maximum likelihood estimator:

cs =
1

S
∀s = 1, . . . , S.

• Median:

cs =

{
1 for s = bS

2
c+ 1

0 otherwise.
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• Quartile estimator:

cs =

{
1
2

for s = b0.25 · Sc+ 1 and s = b0.75 · Sc+ 1

0 otherwise.

• α-trimmed mean estimator:

cs =

{
1

S−2bαSc for s = bαSc+ 1, . . . , S − bαSc
0 otherwise.

The last estimator we want to present in this section is the Huber estimator,
see e.g. Huber [37, 38]:

Definition 4.23. The Huber estimator µ̂HU
S based on a sample of length S is

defined componentwise by

µ̂HU
S,i := arg min

y∈R

S∑
s=1

ρ(Rs,i − y) with ρ(x) =

{
x2

2
if |x| ≤ k

k|x| − k2

2
if |x| > k

for some k > 0, see Huber [37].

Remark 4.24. Depending on the choice of the parameter k, the Huber estimator
does not necessarily have to be unique. Consider for example the case of a sample
with the two (one-dimensional) points R1 = 1 and R2 = −1 and let k = 1

2
. Then

the minimum is attained on the entire interval [−1
2
, 1

2
], i.e. the Huber estimator

is not unique. For k sufficiently large, e.g.

k ≥ 1

2
max

1≤s≤S−1
|R(s),i −R(s+1),i|,

i.e. k larger than half of the maximum distance of any two neighboring observa-
tions in the ordered sample, the Huber estimator is unique as it is attained on the
interval where the function ρ is strictly convex. For more details, see the diploma
thesis of Middelkamp [61], Remark 2.36.

Assumption 4.25. In the following we assume that the Huber estimator is
unique. In cases where k is not sufficiently large to assure uniqueness (e.g. if
a constant k is fixed independent of the sample), we define the right end of the
interval of optimal solutions to be the Huber estimator. Note that this particular
choice is analogous to the definition of a unique median in Definition 4.19.

Besides the class of L-estimates, there exists a further general classification
of estimates, the so-called M-estimates. Those are maximum likelihood type
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estimators minimizing some deviation measure ρ, i.e. for estimating a location
parameter they can be expressed as

arg min
z∈Rn

S∑
s=1

ρ(Rs,i − z).

From Definition 4.23 it is obvious that the Huber estimator falls within the class
of M -estimates, but also the maximum likelihood estimator and the median can
be expressed as a minimization problem with a suitable function ρ.

Remark 4.26. The maximum likelihood and the median estimator both belong
to the class of M-estimates:

• The MLE for µ can also be calculated by solving the following optimization
problem for each component:

µ̂ML
S,i = arg min

y∈Rn

S∑
s=1

(Rs,i − y)2 = arg min
y∈Rn

S∑
s=1

ρ(Rs,i − y)

with ρ(x) = x2.

• The median estimator can as well be obtained by solving the following opti-
mization problem for each component separately:

µ̂ME
S,i = arg min

y∈R

S∑
s=1

|Rs,i − y| = arg min
y∈R

S∑
s=1

ρ(Rs,i − y)

with ρ(x) = |x|.
Note that in case of an entire interval of optimal solutions, we again choose
the right end to be the median.

As we want to use these presented estimates to approximate the mean vector
µ in practical applications, we investigate if it theoretically matches the target pa-
rameter, i.e. we are interested in unbiased estimators. The following proposition
summarizes the results.

Proposition 4.27. Let Rs ∼ En(µ,Σ, φ), s = 1, . . . , S i.i.d. Then it holds:

(i) The estimators µ̂ML
S , µ̂ME

S , µ̂QR
S , µ̂TM

S and µ̂HU
S as defined above are unbi-

ased estimators for the vector µ.

(ii) In case of a normal distribution, the maximum likelihood estimator Σ̂ML
S

is a biased estimator for the covariance matrix Σ, but it is asymptotically
unbiased.
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Proof.

(i) Due to the symmetry of the marginal disributions of Rs, s = 1, . . . , S, the
first four estimators are unbiased as representatives of L-estimates according
to Rinne [69], page 474. Furthermore, in our setting the Huber estimator is
unbiased as well, as by Theorem 4 on page 364 in Goodall [34], M -estimates
of location are unbiased.

(ii) In case of a normally distributed sample, the maximum likelihood estima-
tor for the covariance follows a Wishart distribution (see e.g. Press [65],
Theorem 7.1.5):

Σ̂ML
S ∼ W

(
1

S
Σ, S − 1

)
.

The expectation of Σ̂ML
S is then given by (see Proposition D.6)

E[Σ̂ML
S ] =

S − 1

S
Σ,

hence, Σ̂ML
S is biased, but asymptotically unbiased.

Note that the sample covariance matrix Σ̂SA
S = S

S−1
Σ̂ML

S is unbiased.

4.4 Portfolio theory and the classical optimization
problem

In the preceding sections we have presented elliptical distributions that can be
used to model a financial market, and we have discussed several parameter esti-
mators that are used to determine the first two moments of an elliptically dis-
tributed random vector. In the following we introduce portfolios and their risk-
return characteristics, define the efficient frontier and finally state the classical
optimization problem which determines efficient portfolios. The foundation of
portfolio optimization was laid by H. Markowitz [56] in the 1950s when he intro-
duced the concept of mean-variance analysis. The basic idea is that the mean
and the variance are the only quantities to characterize the risk-return-profile of
a portfolio.

Consider a financial market of n risky assets and assume that the vector of
their returns, R ∈ Rn is distributed according to an elliptical distribution with
mean µ and covariance matrix Σ, i.e. the vector of expected asset returns is given
by

E[R] = µ
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and the covariance matrix describing the relation between the individual asset
returns is

Cov[R] = Σ.

Very often in practical applications, it is assumed that the returns follow a mul-
tivariate normal distribution, i.e.

R ∼ N (µ,Σ).

Based upon such a market, we want to determine optimal portfolios where “opti-
mal” is characterized only by the risk and the return of a portfolio, measured by
its expectation and variance. Thus, naturally, the resulting optimization problem
relies on the market parameters µ and Σ. Generally, we would like to use the
particular parameter values that will really represent the market in the (future)
period of our investment, e.g. if investing today for the time period of a month,
we would like to know the expected performance of each asset from now until
then to be in the advantageous position to make the optimal investment decision
today. But as those values are naturally unknown, estimates have to be used
instead.

Let the vector x = (x1, . . . , xn)T with xT111 = 1 denote the weights of a port-
folio, i.e. the proportional investments in the n risky assets. Let furthermore
R ∈ Rn describe the vector of asset returns in the considered period of time4.
The return of the portfolio x is then given by

R(x) = xTR.

The expected portfolio return is accordingly

µ(x) := E[R(x)] = xT E[R] = xTµ.

In the mean-variance framework the risk of a portfolio is measured by the variance
(or equivalently by the standard deviation), i.e. the risk of portfolio x is given by

σ2(x) := Cov[xTR] = xT Cov[R]x = xT Σx.

There exists quite a bit of literature mistrusting the use of the variance as an
appropriate risk measure and postulating other ones. Criticism mostly refers to
the equal handling of upside and downside deviations. Whereas upside deviations
(i.e. the resulting portfolio return is larger than expected) are welcome and do
not represent a risk in practice, downside deviations can imply rather severe losses

4The Markowitz setting represents a one-period investigation of a portfolio, i.e. no dynamics
or changing allocations over time are considered in this framework. Rather common time peri-
ods are e.g. weeks, months or years, and the calibration of the parameters for the optimization
is usually based on historical data with the same frequency.
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and consequences. A further drawback of the variance as a risk measure is that
many practitioners have other needs, meaning that controlling the variance (or the
standard deviation) is not sufficient to express the investor’s risk. Very common
in financial practice is to use the Value-at-Risk (VaR) or the Conditional Value-
at-Risk (CVaR) as comparison figure, or other closely related shortfall measures.
The VaR expresses the maximum loss an investor can encounter in a given period
of time and with prescribed probability. Shortfall measures are for example used
in applications where it is rather unimportant how much the final value deviates
from the expectation as long as it does not fall below a certain critical value. Such
a risk could be measured by the shortfall probability, the probability of being
below a given benchmark at the end of the period. Additionally, the average
loss in case of falling below the benchmark is an interesting quantity in practical
applications that might be wanted to be controlled. In case of describing the
benchmark by the VaR, this measure is called the CVaR.

For further discussions of various risk measures in financial practice and ap-
plications thereof, we refer to the literature. Properties of general risk measures
and their role in optimization are investigated by Rockafellar et al. in [73] and
[71], Rockafellar and Uryasev also study especially the VaR and the CVaR in [72].
Of interest when dealing with risk measures is the characteristic of a coherent
risk measure, a desired property introduced by Artzner et al. [2].

Despite all drawbacks and discussions, using the variance as a risk measure is
still very popular. And since in many applications a multivariate normal distri-
bution (or more generally an elliptically symmetric distribution) is assumed for
the return vectors, mean-variance analysis is appropriate, see [63].

Before finally introducing the portfolio optimization problem, we need to de-
fine the notion of an efficient portfolio and the efficient frontier.

Definition 4.28. Let x, y ∈ Rn with x 6= y denote two different portfolio alloca-
tions.

• Portfolio x is said to dominate portfolio y if it has a higher (or equal)
expected return and a smaller (or equal) risk, i.e. if

µ(x) ≥ µ(y) and σ2(x) ≤ σ2(y).

• Portfolio x is said to strictly dominate portfolio y, if at least one of the
inequalities is strict.

• A portfolio x is called efficient if there does not exist a portfolio y that
strictly dominates x.

Equivalently, it can be said that a portfolio is efficient if it yields the highest
expected return to a given risk level, or if it has the smallest variance to a fixed
level of expected return.
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Definition 4.29. The efficient frontier is described by the set{(
µ(x), σ(x)

)
| x efficient

}
,

i.e. the efficient frontier is is the curve in a risk-return diagram representing the
characteristics of all efficient portfolios.

Naturally, the aim is to find efficient portfolios. But, as can easily be observed
by the definition of an efficient portfolio, there are two competing objectives:
minimizing the risk of the portfolio (i.e. the variance or the standard deviation)
and maximizing the expected return. Thus, a trade-off between risk and return
has to be made.

Throughout the dissertation we will consider the portfolio optimization prob-
lem for determining optimal, i.e. efficient, portfolios in the following form:

Definition 4.30. The classical portfolio optimization problem is given by

min
x∈X

(1− λ)
√
xT Σx− λxTµ (Pλ)

with X ⊂ {x ∈ Rn | xT111 = 1} non-empty, convex and compact, and µ ∈ Rn and
Σ ∈ Rn×n,Σ � 0 describing the expected return and the covariance matrix of the
asset returns. The parameter λ ∈ [0, 1] expresses the relation (or the trade-off)
between risk and return of the portfolio. The optimal solution5 to (Pλ) for a given
trade-off parameter λ is denoted by x∗cl(λ).

Thus, for each value of trade-off parameter λ an efficient portfolio is deter-
mined by the program (Pλ), and by letting λ increase from zero to one, we
therefore trace the entire efficient frontier. The outmost portfolios represent two
prominent ones:

(i) For λ = 0 the optimization problem (Pλ) reduces to

min
x∈X

√
xT Σx

which finds the portfolio with the lowest risk while not incorporating any
information about expected returns. This particular portfolio is called the
minimum variance portfolio (MVP) and defines the left end of the efficient
frontier.

(ii) For λ = 1 program (Pλ) simplifies to

max
x∈X

xTµ.

In this case the objective is to maximize the expected return that can be
achieved by any feasible portfolio, omitting any risk considerations. This
portfolio denotes the right end of the efficient frontier and is called maximum
return portfolio (MRP). Note that this problem was already investigated
from a theoretical point of view in Section 2.3.6 and Example 3.27.

5For uniqueness of the optimal solution see Proposition 4.31 below.
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The feasibility setX is supposed to be non-empty, convex and compact containing
at least the condition that makes x ∈ X a portfolio, meaning that the sum of
of the components of x has to be 1, i.e. X ⊂ {x ∈ Rn | xT111 = 1}. The set
X possibly contains further constraints on the asset weights that do not depend
on the (uncertain) parameters µ and Σ. Common definitions of X in financial
applications are the following:

• X = {x ∈ Rn | xT111 = 1} with 111 denoting the vector consisting of 1 in each
component. This is the minimum set to make the variable x represent a
portfolio. Note that this feasibility set is not compact.

• In most applications shortselling is not allowed, i.e. the portfolio x must
not have any negative entries. Thus, a rather popular set of constraints on
x is given by the compact set X = {x ∈ Rn | xT111 = 1, x ≥ 0}.

• In practice there exist very often constraints limiting the investment in a
particular asset or in all assets (e.g. in no individual asset may be invested
more than 10%), or in a set of assets (e.g. the investment in equities may at
most be 30%). Such linear constraints can be summarized in a feasibility
set of the form X = {x ∈ Rn | xT111 = 1, Ax ≤ b} with A and b such that
X is non-empty, compact and convex. Note that x being non-negative can
also be incorporated into the linear inequalities.

The following proposition shows that the portfolio optimization problem (Pλ)
has a unique optimal solution for 0 ≤ λ < 1. According to Proposition 2.45
uniqueness thus implies continuity with respect to the parameters, a result that
will be needed again in Section 6.3 to prove consistency of the optimal portfolios.

Proposition 4.31. Let 0 ≤ λ < 1. Then program (Pλ) as given in Defini-
tion 4.30 has a unique optimal solution x∗(λ).

Proof. We first consider the case λ = 0. Problem (P0) thus reduces to

min
x∈X

√
xT Σx.

As
√
xT Σx ≥ 0 and the function h(z) = z2 is a strictly increasing function

for positive z, this program is equivalent to the problem with squared objective
function:

min
x∈X

xT Σx

which has a unique optimal solution x∗(0) since the objective function is strictly
convex (recall that the covariance matrix Σ is positive definite).

Let 0 < λ < 1. We want to show uniqueness of the optimal solution by
proving that the objective function is strictly convex over the set of feasible x,
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i.e. over X. Note that it always holds that X ⊂ {x ∈ Rn | xT111 = 1}. To show
strict convexity of the objective function on X, it suffices to analyze the term

h(x) :=
√
xT Σx = ‖Ax‖

with A = Σ
1
2 � 0. Since the feasibility set X is convex, it holds (see e.g. Boyd

and Vandenberghe [19], Section 3.1) that the function h is strictly convex on X
if and only if

h(y) > h(x) +∇h(x)T (y − x) ∀x, y ∈ X. (4.4)

Since h(x) = ‖Ax‖ and ‖Ax‖ > 0 for all x ∈ X, the gradient is given by

∇h(x) =
ATAx

‖Ax‖

as already calculated in Theorem 3.28. To prove Equation 4.4, we start with the
Cauchy-Schwarz inequality:

|xTy| ≤ ‖x‖ ‖y‖
which holds with equality if and only if y = k · x, see e.g. [74], Theorem 9.2.
Hence, in our setting with x, y ∈ X ⊂ {x ∈ Rn | xT111 = 1} and x 6= y the
Cauchy-Schwarz inequality is strict, i.e. it holds

|xTy| < ‖x‖ ‖y‖ ∀x, y ∈ X, x 6= y.

As A = Σ
1
2 is invertible, y = k · x is equivalent to Ay = k · Ax and we also have

the strict Cauchy-Schwarz inequality for the vectors Ax and Ay:

|(Ax)T (Ay)| < ‖Ax‖ ‖Ay‖ ∀x, y ∈ X, x 6= y.

Using that (Ax)T (Ay) ≤ |(Ax)T (Ay)| and ‖Ax‖ > 0 (as x 6= 0), it follows that

xTATAy

‖Ax‖
< ‖Ay‖

⇔ xTATA(y − x)

‖Ax‖
< ‖Ay‖ − xTATAx

‖Ax‖︸ ︷︷ ︸
=‖Ax‖

and hence finally gives

‖Ay‖ > ‖Ax‖+

(
ATAx

‖Ax‖

)T

(y − x) ∀x, y ∈ X, x 6= y.

Hence, for h(x) = ‖Ax‖ and x, y ∈ X arbitrary, the strict inequality (4.4) holds
and thus h(x) is strictly convex over X. Finally, minimizing a strictly convex
function over a compact set yields a unique solution x∗(λ).
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Remark 4.32. Alternatively, Theorem 3.28 could be used to show uniqueness
of the optimal solution of (Pλ) for 0 < λ < 1, as the objective function can be
interpreted as a robustified optimization problem: Consider the program

min
x∈X

−xT r (Paux)

with an ellipsoidal uncertainty set around the parameter µ described by

Uδ(µ) = {r ∈ Rn | (r − µ)T Σ−1(r − µ) ≤ δ2}

with δ := 1−λ
λ
, 0 < λ < 1. Hence, the according robust optimization problem

results in the following (for explicit reformulations see Example 3.26):

min
x∈X

−xTµ+ δ‖Σ
1
2x‖

= min
x∈X

1− λ

λ

√
xT Σx− xTµ

which, for λ > 0, is equivalent to

min
x∈X

(1− λ)
√
xT Σx− λxTµ,

the problem under consideration. As (Paux) fulfills the prerequisites of Theo-
rem 3.28 and especially the consequences thereafter, we can conclude that the
optimal solution of (Pλ) with 0 < λ < 1 is unique.

Note that uniqueness of the optimal solution also guarantees continuity of the
optimal solution with respect to the uncertain parameters µ and Σ (see Theo-
rem 2.45), since the feasibility set X is constant and thus Hausdorff continuous.

Remark 4.33. In case of λ = 1, problem (P1) simplifies to

min
x∈X

−xTµ

which does not guarantee a unique solution in its general form. In case of the
feasibility set X being described by

X = {x ∈ Rn | xT111 = 1, x ≥ 0},

a simple but rather common constraint set, the solution of the optimization prob-
lem is given by the portfolio investing 100% in the asset with the highest expected
return and nothing in any other asset. Hence, it then suffices to assume that
the maximum component of the vector µ is unique to assure uniqueness of the
optimal solution as well in case of λ = 1.
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It is rather well known (see e.g. Jorion [48] or Best and Grauer [13]) that
the two parameters µ and Σ have a very large influence on the optimal solution;
especially the vector of expected return determines the optimal allocation quite
heavily, and rather small changes in the returns can imply drastic changes in the
optimal portfolio. A very illustrative example for this fact is the following simple
example of the maximum return portfolio which we have studied several times
already.

Example 4.34. Consider a market that only consists of two risky assets, and we
want to determine the maximum return portfolio, i.e. we want to solve

max
x∈X

xTµ.

The set of constraints is supposed to be described by

X = {x ∈ Rn | xT111 = 1, x ≥ 0}.

Note that this is the same problem as in Section 2.3.6 and Example 3.27.
Now let us assume that a first parameter estimate for µ is given by the vector

µ̂A = (5%, 5.1%)T . As the maximum return portfolio does not account for any
risk, it simply chooses the asset with the highest expected return, thus, the optimal
solution in this case is given by x∗A = (0, 1)T . On the other hand, having a
parameter estimate of µ̂B = (5%, 4.9%)T – such a small change in estimators
can easily happen, for example by just having a few more historical observations
– the optimal solution turns out to be x∗B = (1, 0)T . Thus, a small change in the
parameter estimate (small enough to be considered simply as an estimation error)
can completely turn the portfolio allocation.

Note that the objective value in both cases is quite similar. As we know from
Proposition 2.40 or Section 2.3.6, the optimal objective value is continuous in the
(uncertain) data, hence the portfolio return is only marginally affected by minor
changes in the parameter. But as in this particular example the optimal solu-
tion (i.e. the portfolio allocation) is not continuous in the data, such an extreme
change can occur.

In all the subsequent examples and plots, we will restrict the feasible portfolios
to consisting of long-only positions, i.e. we assume the feasibility setX to be given
by

X = {x ∈ Rn | xT111 = 1, x ≥ 0}.

In the following we illustrate the influence of the parameters on the optimization
result in the extreme case of the maximum return portfolio over time, i.e. moving
along the time axis, calculating in every point the corresponding maximum like-
lihood estimators and solving the optimization problem for λ = 1. This results
in the following plot (Figure 4.6), showing the allocation of the maximum return
portfolio at each time point. As we have imposed the long-only constraint, the
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MRP always consists of only one asset – the one with the highest6 expected re-
turn. It can nicely be seen that in the period where the bear market data are
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Figure 4.6: Allocation of the MRP over time.

used to estimate the parameters (roughly the first half of the year 2003), the
bond index Lehman Euro has the highest expected return and thus forms the
maximum return portfolio. In other market phases one of the stock indices has
the best expected performance. Roughly in September 2004 there are several
alternating changes between two assets having the highest expected return. Such
a behavior is rather common and suggests that these assets approximately have
the same return and that robustification could prevent the alternations.

For the minimum variance portfolio (MVP) at the other end of the efficient
frontier, the situation is different. The MVP does not depend at all on the vector
of expected returns µ, but only on the covariance matrix Σ which influences the
result of the optimization problem not as significantly as the vector of expected
returns. Hence, the allocation of the minimum variance portfolio does not exhibit
such an extreme behavior as the maximum return portfolio, but is rather stable,
see Figure 4.7, as it is always invested to more than 80% in the bond index –
which is much less volatile than the stock indices. The remaining part of the
asset allocation of the MVP nevertheless exhibits a little variation over time.

To illustrate the changes for a portfolio somewhere in between, we choose
the maximum sharpe ratio portfolio (MSRP), i.e. the portfolio maximizing the
sharpe ratio SR, defined as

SR =
µ(x)− r0
σ(x)

6The probability of two or more assets having exactly the same highest return is almost
surely zero when estimating the parameters from a finite sample of realizations.
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Figure 4.7: Allocation of the MVP over time.

with µ(x) and σ(x) denoting the expected return and volatility of the portfolio x,
and r0 being the riskless interest rate which was set to 2% p.a. in the calculations
for simplicity. It is worth noting that the maximum sharpe ratio portfolio does
not correspond to a particular value of λ, but it can be placed very differently
on the efficient frontier. This is shown in Figure 4.8 which plots the value of
lambda yielding the maximum sharpe ratio portfolio at each point in time. From
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Figure 4.8: The values of λ corresponding to the MSRPs.

Figure 4.9 it can be observed that the MSRP has more changes in the allocation
than the minimum variance portfolio, but is not as extreme as the maximum
return portfolio. At the beginning of the time period, the maximum sharpe ratio
portfolio resembles the maximum return portfolio. Sometimes it is invested in
both the emerging market index and the bond index, but often it is even equal
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Figure 4.9: Allocation of the MSRP over time.

to the MRP, especially in the market phase where the bear market determined
the parameters and the best perfoming asset was the Lehman Euro.

So far we have fixed a particular portfolio and monitored its changes along
the time axis. Next we illustrate the changes in the portfolio allocation along
the efficient frontier and not over time. Hence, we pick a point in time (here we
arbitrarily choose the 01.11.2003) and calculate the corresponding maximum like-
lihood estimators which are summarized in Table 4.3. Instead of the covariance
matrix which is needed in the optimization problem, the individual volatilities of
the assets and their correlation matrix are stated for easier interpretation.

return volatility correlation matrix
Lehman Eur 9.2% 3.1% 1.00 -0.41 -0.36 -0.09 -0.21
Stoxx 50 5.9% 22.1% -0.41 1.00 0.80 0.29 0.60
Stoxx SC 27.0% 14.6% -0.36 0.80 1.00 0.50 0.70
MSCI Japan 19.0% 19.5% -0.09 0.29 0.50 1.00 0.57
MSCI EM 32.2% 13.9% -0.21 0.60 0.70 0.57 1.00

Table 4.3: Annualized (multiplied by 52 resp.
√

52) asset returns and volatilities
and the correlation on 01.11.2003.

Using the estimated parameters, the efficient portfolios are obtained by solving
the problem (Pλ) for 0 ≤ λ ≤ 1. The respective efficient frontiers (again plottet
with annualized values) and the associated changing portfolio allocations along
the efficient frontier are shown in Figure 4.10.

From the allocation picture it can be observed that the minimum variance
portfolio, determining the left end of the efficient frontier, consists to a very large
amount of the Lehman Euro, the only bond index in our asset universe. As the
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Figure 4.10: Illustration of the classical efficient frontier and the associated port-
folio allocations for the time point 01.11.2003.

bond has a substantially smaller volatility than all the stocks at this point of
time, this is not surprising. The more risky the portfolios get, i.e. moving along
the efficient frontier to the right, the smaller is the portion that is invested in
the bond index, as this asset does not yield as high returns as the more volatile
stock indices. The Lehman Euro and the Emerging Market Index had the best
Sharpe ratio (larger than 2) among the five assets, and hence the largest part of
the portfolio was invested in those two indices, smoothly adapted with increasing
risk tolerance. It can further be seen again in the figure that the maximum return
portfolio consists only of one asset – the Emerging Market Index in this case.

As the strong dependence of the Markowitz solution on the input data is
known (see e.g. [13], [21] or [48]), solutions for this drawback are sought for.
Besides using more robust parameter estimates in the optimization (see e.g. [25],
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[45] or [47]) or resampling the procedure for obtaining efficient frontiers (see
e.g. [48] or [60]), the robust counterpart approach as presented in its general form
in Chapter 3 can be applied to the traditional portfolio optimization problem (Pλ)
to explicitly account for uncertainty in the estimation.
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Chapter 5

Robust portfolio optimization

5.1 The robust portfolio optimization problem
In Section 4.4 we have introduced the portfolio optimization problem in its tradi-
tional form and we have illustrated the strong dependence of its optimal solution
on the input parameters µ and Σ. We now define the associated robust counter-
part formulation of the classical problem which we recall for completeness:

min
x∈X

(1− λ)
√
xT Σx− λxTµ (Pλ)

with X ⊂ {x ∈ Rn | xT111 = 1} non-empty, convex and compact, and µ ∈ Rn and
Σ ∈ Rn×n,Σ � 0 representing the expected return and the covariance matrix of
the asset returns.

As both the vector of expected asset returns µ and the covariance matrix
Σ are considered to be exposed to variability, the uncertain parameter u from
the general convex optimization program (GCPu) represents the pair (µ,Σ). In
practical problems, there is often only defined an uncertainty set for the vector of
expected returns, as the covariance matrix is not as volatile and furthermore does
not as crucially affect the optimal solution as the return estimate (see e.g. [21]).
Recall also Figure 4.3 for an illustration of this fact. In the general description
of the robust optimization problem, we will nevertheless consider the covariance
matrix as an uncertain parameter. Applying the robust counterpart approach
to the portfolio optimization problem (Pλ) results in the following robustified
program.

Definition 5.1. The general form of the robust counterpart to problem (Pλ) is
given by

min
x∈X

max
(r,C)∈U

(1− λ)
√
xTCx− λxT r (RPλ)

with U being the (joint) uncertainty set for the unknown parameters (µ,Σ). Anal-
ogous to the classical setting, the optimal solution of this robust problem will be
denoted by x∗rob(λ).
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The following proposition shows that – analogous to the classical portfolio
optimization problem – uniqueness of the robust optimal solution can be assured
for 0 ≤ λ < 1. The proof is based on the result of Lemma 3.17 that strict
convexity of the classical objective function transfers to the robust objective. As
in the classical case, uniqueness of the optimal solution implies continuity thereof
with respect to the parameters.

Proposition 5.2. Let the robust portfolio optimization problem (RPλ) be given
with X ⊂ {x ∈ Rn | xT111 = 1}. Assume furthermore an ellipsoidal uncertainty
set for (µ,Σ), i.e. consider the problem

min
x∈X

max
(r,C)∈U(µ,Σ)

(1− λ)
√
xTCx− λxT r.

Then the optimal solution x∗rob(λ) is unique for 0 ≤ λ < 1.

Proof. In the proof of Proposition 4.31 we have shown that for 0 ≤ λ < 1 the
objective function of the classical portfolio optimization problem is strictly convex
over the feasibility set X. Lemma 3.17, part (iii) hence gives strict convexity of
the robust objective function, and hence x∗rob(λ) is unique for 0 ≤ λ < 1.

Remark 5.3. In case of λ = 1, the optimal solution x∗rob(1) is unique according
to Corollary 3.32 if an ellipsoidal uncertainty set for µ (note that Σ is not needed
for determining the maximum return portfolio) with full rank is employed.

Notation 5.4. In case of an uncertainty set only for the return, the formal defi-
nition of a joint uncertainty set for both µ and Σ centered at the point estimates
(µ̂, Σ̂) reduces to

U(µ̂, Σ̂) = U(µ̂)× {Σ̂}.

For ease of notation we will often neglect the part belonging to Σ̂ and simply use
the shorter expression U(µ̂) while plugging in Σ̂ directly into the formula. Note
that compared to Chapter 3 we also omitted the subscript δ, as we are not par-
ticularly interested in properties referring to the size of the respective uncertainty
sets. We will only include the size explicitly where appropriate.

For reformulating the robust optimization problem, an explicit uncertainty
set has to be specified which represents the practical needs and is simple enough
so that the resulting optimization problem can eventually be solved.

In the literature the robust counterpart is applied to the portfolio optimiza-
tion problem with different uncertainty sets. Goldfarb and Iyengar [33] use the
robust counterpart to model robust asset returns with a factor model and assume
interval uncertainty for the mean and ellipsoidal uncertainty for the matrix of the
factor loadings. Tütüncü and Koenig [79] prefer interval uncertainty sets where
the endpoints could be determined from extreme values of e.g. historical data.
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In the approach to finding the worst-case Value-at-Risk of El-Ghaoui, Oks and
Oustry [27], they consider both a polytope uncertainty set and the case where the
components of the mean and the covariance are supposed to lie componentwise
within given bounds. Ben-Tal, Nemirovski and Margalit [6] illustrate multi-period
portfolio optimization using an ellipsoidal uncertainty set and Lobo [52] inves-
tigates box and ellipsoidal uncertainty sets for the mean and the entries of the
covariance matrix. Ellipsoidal uncertainty based on a confidence ellipsoid is as
well used by Lutgens [55] to solve differently formulated portfolio optimization
problems in the mean-variance framework.

We will in the following sections study explicit uncertainty sets for solving
the robust formulation of the Markowitz portfolio optimization problem. As
we have already seen (see Theorem 3.28) that an ellipsoidal uncertainty set is
more promising than a polyhedral one, we will in the following always create
uncertainty sets with ellipsoidal shape. Section 5.2 analyzes the idea of using a
confidence ellipsoid around a point estimate to define an appropriate uncertainty
set. We illustrate that such an approach can be used to create an uncertainty
set only for µ or to define a joint uncertainty set for (µ,Σ). Section 5.3 makes
use of different statistical estimators as presented in Section 4.3 to determine a
practical uncertainty set for the vector of expected returns.

The optimal solution of the classical portfolio optimization problem (Pλ) for a
given trade-off value λ will be denoted by x∗cl(λ) and the robust optimal solution
is analogously given by x∗rob(λ). Note that here we have implicitly made the
assumption of the optimal solutions being unique for each λ ∈ [0, 1]. As this was
proved in the classical setting for λ ∈ [0, 1) in Proposition 4.31, the assumption
reduces to the following:

Assumption 5.5. Let the classical maximum return portfolio be unique, i.e. the
set of optimal solutions to problem (P1) is a singleton.

As we will only consider non-degenerate matrices to define ellipsoidal un-
certainty sets in this chapter, the robust optimal solution x∗rob(λ) is unique for
λ ∈ [0, 1] according to Proposition 5.2 and Remark 5.3.

5.2 Confidence ellipsoid around the MLE

Defining an uncertainty set via the classical confidence ellipsoid around a point
estimate is a rather intuitive and natural method coming from the field of stochas-
tics. The center is given by the respective point estimate, the shape is described
by an according covariance matrix (since for an elliptical distribution the covari-
ance matrix determines the shape of the level curves around the peak, i.e. the
mean), and the size of the uncertainty set is determined by the desired level of
confidence.
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In the following subsections we distiniguish the cases of creating a confidence
ellipsoid around the maximum likelihood estimator for the mean vector µ only
and a confidence ellipsoid jointly for µ and Σ.

5.2.1 Confidence ellipsoid for µ

To form an uncertainty set around the mean vector µ – or, more precisely, around
an estimate µ̂ for the mean vector since the true market parameter is unknown
– we need the distribution thereof. The distribution of the maximum likelihood
estimator µ̂ML based on an i.i.d. sample Rs ∼ E(µ̂, Σ̂, φ), s = 1, . . . , S is given
by, see Proposition 4.17,

µ̂ML ∼ En

(
µ̂,

1

S
Σ̂, φS

)
with φS =

∏S
i=1 φ. As for elliptical distributions knowledge of the first two

moments suffices for the definition of the confidence ellipsoid, we can thus create
a confidence ellipsoid for the MLE centered at the point estimate µ̂ and using Σ̂
to describe the shape:

U(µ̂) = {µ ∈ Rn | (µ− E[µ̂ML])T
(
Cov[µ̂ML]

)−1
(µ− E[µ̂ML]) ≤ δ2}

= {µ ∈ Rn | (µ− µ̂)T

(
1

S
Σ̂

)−1

(µ− µ̂) ≤ δ2}

=

{
µ ∈ Rn | (µ− µ̂)T Σ̂−1(µ− µ̂) ≤ δ2

S

}
(5.1)

where the size δ2 is determined by the desired confidence. It is known (see
e.g. Anderson [1], Theorem 3.3.3) that in case of R ∼ N (µ̂, Σ̂) the expression
(R − µ̂)T Σ̂−1(R − µ̂) follows a χ2 distribution with n degrees of freedom. Thus,
the size δ2 can be obtained by an appropriate α-quantile, i.e. δ2 such that α =
χ2

n(δ2), with α ∈ (0, 1) representing the confidence. Figure 5.1 illustrates in a
two-dimensional example uncertainty sets originating in confidence ellipoids for
different values of the confidence level α.

Remark 5.6. Note that from this figure we could also deduce that the Lehman
Euro bond index has a smaller volatility than the Stoxx 50 as the respective axis
of the ellipse is shorter. Furthermore, as the ellipse is almost parallel to the
coordinate axes, the correlation between the two assets is not too high.

Using the uncertainty set from Equation (5.1), the worst case parameter µwc

is obtained by solving

max
µ∈U(µ̂)

(1− λ)
√
xT Σ̂x− λ(xTµ) (5.2)

⇔ min
µ∈U(µ̂)

λxTµ (5.3)
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Figure 5.1: Confidence ellipsoids for two assets.

and is thus given by (see Example 3.26)

µwc = µ̂− δ√
S

1√
xT Σ̂x

Σ̂x. (5.4)

Incorporating this µwc, the robust counterpart problem becomes

min
x∈X

max
µ∈U(µ̂)

(1− λ)
√
xT Σ̂x− λ(xTµ)

= min
x∈X

(1− λ)
√
xT Σ̂x− λ(xT µ̂) + λ

δ√
S

√
xT Σ̂x

= min
x∈X

(
1− λ+ λ

δ√
S

)√
xT Σ̂x− λ(xT µ̂). (RPλ,conf)

In this particular – but nonetheless well-known and often used – setting, a rather
surprising result can be found: the robust efficient frontier equals the classical
efficient frontier, except that it is “shortened” with respect to the risk axis, i.e. it
does not reach portfolios with as high risk as the maximum return portfolio in the
classical framework. This result is illustrated in Figure 5.2 and stated formally
in the following Proposition 5.7.

Proposition 5.7. Consider the portfolio optimization problem (Pλ) and let the
uncertainty set for the parameter vector µ be given by a confidence ellipsoid
around the MLE as described in Formula (5.1). Then for each θ ∈ [0, 1] there

exists a λ ∈
[
0, 1

1+ δ√
S

]
, λ = λ(θ) = θ

1+θ δ√
S

, such that the optimal solution x∗rob(θ)

of the corresponding local robust counterpart problem equals the optimal solution
x∗cl(λ) of the original problem.
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Figure 5.2: Illustration of the result of Proposition 5.7 that the robust efficient
frontier is a shortened classical efficient frontier.

Proof. To prove that the classical and the robust efficient frontier coincide for
the entire length of the robust efficient frontier, we show that the optimization
problems to find the explicit points are equivalent.

To distinguish the two optimization problems with respect to the parameters
tracing the efficient frontiers, we will use the parameter λ for the classical problem
and θ for the robust one. Thus, we need to compare the following two problems:

min
x∈X

(1− λ)
√
xT Σ̂x− λ(xT µ̂) (Pλ)

and

min
x∈X

(
1− θ + θ

δ√
S

)√
xT Σ̂x− θ(xT µ̂). (RPθ,conf)

As we want to find the tracing parameter for the classical optimal portfolio that
corresponds to a given robust one, we fix the parameter θ. Defining

λ :=
θ

1 + θ δ√
S

the classical problem

min
x∈X

(1− λ)
√
xT Σ̂x− λ(xT µ̂)
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reformulates to

= min
x∈X

(
1− θ

1 + θ δ√
S

)√
xT Σ̂x− θ

1 + θ δ√
S

(xT µ̂)

= min
x∈X

1

1 + θ δ√
S

(
(1− θ + θ

δ√
S

)
√
xT Σ̂x− θ(xT µ̂)

)
which is equivalent to the robust formulation as the fraction 1

1+θ δ√
S

is just a

constant.

Remark 5.8.

(i) Considering the special point θ = 0, i.e. the (robust) minimum variance
portfolio, we see that the corresponding λ is also zero. Both programs reduce
to

min
x∈X

√
xT Σ̂x.

As the minimum variance portfolio does not depend on the uncertain para-
meter µ and as we did not explicitly consider uncertainty of the covariance
matrix, the coincidence of the classical and the robust minimum variance
portfolio was expected.

(ii) The result of Proposition 5.7 relies on the fact that the distribution (espe-
cially the second moment) of the maximum likelihood estimator µ̂ is again
given in terms of Σ̂, i.e. the matrices for measuring the portfolio risk and
for describing the shape of the uncertainty set are the same. When apply-
ing the robust counterpart approach, we additionally obtain the expression
λδ
√
xT Σ̂x which can be interpreted as estimation risk and works as some

kind of regularization. In Section 5.3 we will see an example where the
matrix determining the uncertainty set is different from Σ̂ and hence, the
objective function cannot as nicely be combined.

The additional expression penalizes the investment in assets with large vo-
latility, i.e. increases the influence of the risk of a portfolio compared to the
expected return. Hence, such a robustification implies a shift of the trade-off
between risk and return towards the less risky portfolios. This is illustrated
in Figure 5.3 below.

(iii) Furthermore, the result holds as well if the risk of a portfolio is measured
by the variance instead of the standard deviation, i.e. if the portfolio opti-
mization problem is given in the form

min
x∈X

(1− λ)xT Σ̂x− λ(xT µ̂).
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Proposition 5.7 has the following impact for a particular investor: Let an
investor have a certain risk aversion parameter λ which determines his personal
trade-off between risk and return. By robustification of the portfolio optimiza-
tion problem with a confidence ellipsoid, the investor changes his position on the
efficient frontier – he becomes more conservative, i.e. risk averse, and hence his
optimal robust portfolio moves towards the minimum variance portfolio. This
phenomenon is illustrated in Figure 5.3, where Figure 5.3(a) demonstrates the
respective positions on the efficient frontier and Figure 5.3(b) shows the opti-
mal portfolio allocation corresponding to the particular trade-off or risk aversion
parameter λ. As the robust optimal portfolio is a little closer to the MVP, the
investment in the more secure bond index is slightly higher. For easier com-
parison with the portfolio allocations along the entire efficient frontier, we recall
Figure 4.10 here, shown again in Figure 5.4.
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Figure 5.3: Implications of Proposition 5.7 for a particular investor.
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Figure 5.4: Portfolio allocations along the classical efficient frontier.
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5.2.2 Joint confidence ellipsoid for µ and Σ

The naturally upcoming question is if this result of the robust efficient frontier
being a shortened classical efficient frontier can be extended to the case of a
joint uncertainty set for the mean vector and the covariance matrix. Before
being able to prove this conjecture, we need to define a joint confidence ellipsoid
around a point estimate for the pair (µ,Σ). To be able to create a confidence
ellipsoid, we need to determine the distribution (more precisely, the first two
moments in case of an elliptical distribution) of the point estimate (µ̂, Σ̂). As for a
normally distributed sample1 the distribution of the (pair of) maximum likelihood
estimators (µ̂ML, Σ̂ML) is explicitly given, we consider in this subsection a sample
R1, . . . , RS with Rs ∼ N (µ̂, Σ̂) i.i.d.

Based on such a sample, the maximum likelihood estimators µ̂ML and Σ̂ML

are independent and have the following distributions, see Proposition 4.16:

µ̂ML ∼ N
(
µ̂,

1

S
Σ̂

)
,

Σ̂ML ∼ W
(

1

S
Σ̂, S − 1

)
with W(C, ν) denoting the Wishart distribution with scale matrix C and ν de-
grees of freedom. For the definition and details about the Wishart distribution,
see Appendix D.3. In Section 4.3 we have seen that the MLE for the covariance
is a biased estimator whereas the sample estimator Σ̂SA = S

S−1
Σ̂ML is unbiased.

Apart from the factor S
S−1

, the sample and the maximum likelihood estimators
for the covariance matrix are equal and for the mean vector they are identical
anyway. As unbiasedness will greatly simplify the notation of the following calcu-
lations (by not having to explicitly carry through the multiplicative factor and its
transformations) and hence improve readability, we will use the sample estima-
tors instead of the MLEs. Thus, we start with having the following distribution
of the independent sample estimators:

µ̂SA ∼ N
(
µ̂,

1

S
Σ̂

)
,

Σ̂SA ∼ W
(

1

S − 1
Σ̂, S − 1

)
.

The moments of the Wishart distribution are given in Proposition D.6. To de-
scribe the covariance matrix of a matrix-valued random variable A ∈ Rn×n, the
matrix A is transformed into an n2-dimensional vector by stacking the columns of
A successively underneath each other (see also Appendix C). Such a reformulated

1We assume that the result holds for general elliptical distributions, but we performed the
explicit calculations only in case of a normal distribution.
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vector will be denoted by vec(A). Using this vector notation for a Wishart dis-
tributed random matrix, there exists a closed form expression for the covariance,
see e.g. Meucci [57], page 85. Summarizing the moments of µ̂SA and vec(Σ̂SA),
we hence get

E[µ̂SA] = µ̂,

Cov[µ̂SA] =
1

S
Σ̂,

E[vec(Σ̂SA)] = (S − 1) · 1

S − 1
vec(Σ̂) = vec(Σ̂),

Cov[vec(Σ̂SA)] = (S − 1)(In2 +Knn)

(
1

S − 1
Σ̂⊗ 1

S − 1
Σ̂

)
=

1

S − 1
(In2 +Knn)(Σ̂⊗ Σ̂)

with Knn denoting the commutation matrix and ⊗ representing the Kronecker
product2. Note that the matrix Cov[vec(Σ̂SA)] is not invertible (as the entire
columns of Σ̂SA are stacked underneath each other, all the off-diagonal elements
appear twice in the vector and hence the covariance thereof must contain equal
lines), but it is symmetric and positive semidefinite, i.e. a matrix decomposition
Cov[vec(Σ̂SA)] = MM can be found.

Proposition 5.9. Let Σ̂ ∈ Sn
+.

(i) The matrix (In2 +Knn)(Σ̂⊗ Σ̂) is symmetric.

(ii) Let M := 1√
2(S−1)

(In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 ). Then it holds that

MM =
1

S − 1
(In2 +Knn)(Σ̂⊗ Σ̂) = Cov[vec(Σ̂SA)].

Proof. In this proof we will need many of the properties and calculations for the
Kronecker product which are summarized in Lemma C.7.

2In Appendix C the definitions thereof and some useful rules for calculation are summarized.
Nevertheless, for better readability we shortly recall the according definitions here:
The commutation matrix Knk is implicitly defined via the equation

vec(A) = Knk vec(AT )

for A ∈ Rn×k and the Kronecker product for two arbitrary matrices A ∈ Rn×k and B ∈ Rp×q

is given by the np× kq matrix

A⊗B =

A11B · · · A1kB
...

. . .
...

An1B · · · AnkB

 .
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(i) As In2 , Knn and Σ̂⊗ Σ̂ are all symmetric themselves and it holds that

(In2 +Knn)(Σ̂⊗ Σ̂) = In2(Σ̂⊗ Σ̂) +Knn(Σ̂⊗ Σ̂)

= (Σ̂⊗ Σ̂) +Knn(Σ̂⊗ Σ̂)

it suffices to show that Knn(Σ̂⊗ Σ̂) is symmetric. Furthermore, as

[Knn(Σ̂⊗ Σ̂)]T = (Σ̂⊗ Σ̂)TKT
nn = (Σ̂⊗ Σ̂)Knn

we hence need to prove that

Knn(Σ̂⊗ Σ̂) = (Σ̂⊗ Σ̂)Knn.

This is done if and only if

vec(A)TKnn(Σ̂⊗ Σ̂) vec(B) = vec(A)T (Σ̂⊗ Σ̂)Knn vec(B)

is satisfied for arbitrary matrices A,B ∈ Rn×n. Then, equality holds espe-
cially for matrices with a single entry of 1 and zeros otherwise, i.e. picking
out individual entries of the matrix products in the middle.

Let A,B ∈ Rn×n be arbitrary. We then get

vec(A)TKnn(Σ̂⊗ Σ̂) vec(B) =
[
KT

nn vec(A)
]T

(Σ̂⊗ Σ̂) vec(B)

(C.4)
=
[
vec(AT )

]T
(Σ̂⊗ Σ̂) vec(B)

(C.11)
=

[
vec(AT )

]T
vec(Σ̂BΣ̂)

(C.12)
= tr(AΣ̂BΣ̂)

and

vec(A)T (Σ̂⊗ Σ̂)Knn vec(B)
(C.4)
= vec(A)T (Σ̂⊗ Σ̂) vec(BT )

(C.11)
= vec(A)T vec(Σ̂BT Σ̂)

(C.12)
= tr(AT Σ̂BT Σ̂)

= tr
(
[AT Σ̂BT Σ̂]T

)
= tr(Σ̂BΣ̂A)

(C.1)
= tr(AΣ̂BΣ̂),

hence equality, and thus the matrix (In2 +Knn)(Σ̂⊗ Σ̂) is symmetric.
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(ii) Let M := 1√
2(S−1)

(In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 ). Exploiting symmetry of the ma-

trices (In2 +Knn)(Σ̂⊗ Σ̂) and (In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 ), it then holds that

MM =
1

2(S − 1)
(In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 ) · (In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 )

=
1

2(S − 1)
(In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 ) · (Σ̂

1
2 ⊗ Σ̂

1
2 )(In2 +Knn)

(C.6)
=

1

2(S − 1)
(In2 +Knn)(Σ̂⊗ Σ̂)(In2 +Knn)

=
1

2(S − 1)
(Σ̂⊗ Σ̂)(In2 +Knn)(In2 +Knn)

=
1

2(S − 1)
(Σ̂⊗ Σ̂)(In2 + 2Knn + K2

nn︸︷︷︸
(C.5)
= In2

)

=
1

S − 1
(Σ̂⊗ Σ̂)(In2 +Knn)

=
1

S − 1
(In2 +Knn)(Σ̂⊗ Σ̂) = Cov[vec(Σ̂SA)].

Having established the necessary prerequisites, we can create an ellipsoidal
uncertainty set jointly for the mean vector and the covariance matrix. We first
combine the two variables into one large vector by using the vector notation for
the matrix Σ̂SA, i.e. the uncertain variable under consideration is expressed by

vSA =

(
µ̂SA

vec(Σ̂SA)

)
∈ Rn+n2

.

As the matrix Cov[vec(Σ̂SA)] is not invertible, we cannot use formula (5.1) as in
the previous section to define the uncertainty set. But in Example 3.26 we have
already seen that there is a different formulation for an ellipse which does not
involve the inverse of the covariance matrix of vec(Σ̂SA):

Uδ(v̂) = {v ∈ Rn+n2 | v = v̂ + δV
1
2 z, ‖z‖ ≤ 1} (5.5)

with

v̂ = E[vSA] = E

[(
µ̂SA

Σ̂SA

)]
=

(
µ̂

Σ̂

)
(5.6)

describing the center of the uncertainty set, and V denoting the covariance matrix
of vSA which determines the shape of the ellipsoid. By exploiting knowledge about
the distribution of vSA, the above formulation of a joint confidence ellipsoid can
be simplified. Especially independence of the two estimators µ̂SA and Σ̂SA and
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the explicit formulas for their individual covariance matrices are of use and allow
a blockwise representation of the joint covariance V as

V =

(
1
S
Σ̂ 0
0 Q

)
with

Q = Cov(vec(Σ̂SA)) =
1

S − 1
(In2 +Knn)(Σ̂⊗ Σ̂).

Analogous to the vector v being a composition of the vector µ and the matrix Σ,
the auxiliary vector z is formed. Hence, we separate z into

z =

(
z1

vec(Z)

)
with z1 ∈ Rn and Z ∈ Sn, i.e. Z being a symmetric n× n matrix. Note that we
can assume Z to be symmetric, as the uncertainty set around Σ is a subset of the
space of symmetric and positive semidefinite matrices, otherwise the elements in
Uδ(v̂) cannot represent covariance matrices.

Based on these preliminary considerations the above uncertainty set Uδ(v̂)
can be rewritten in a more manageable form. This result is summarized in the
following proposition.

Proposition 5.10. Consider a joint uncertainty set for the pair (µ,Σ) (combined
in a vector v) based on a confidence ellipsoid as given in Equation (5.5). This
uncertainty set can be equivalently expressed as

Uδ(µ̂, Σ̂) = {(µ,Σ) ∈ Rn × Sn
+ | S(µ− µ̂)T Σ̂−1(µ− µ̂)+

S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ δ2}.

Proof. According to Proposition 5.9 and the structure of V , the matrix V
1
2 is

given by

V
1
2 =

(
1√
S
Σ̂

1
2 0

0 1√
2(S−1)

(In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 )

)
.

Using the decomposition of z ∈ Rn+n2 into the two parts

z =

(
z1

vec(Z)

)
,

the equation

v = v̂ + δV
1
2 z
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can be expressed as(
µ

vec(Σ)

)
=

(
µ̂

vec(Σ̂)

)
+ δ ·

(
1√
S
Σ̂

1
2 z1

1√
2(S−1)

(In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 ) vec(Z)

)
.

Thus, these are two equations that are coupled by the constraint

‖z‖2
2 = ‖z1‖2

2 + ‖ vec(Z)‖2
2

(C.2)
= ‖z1‖2

2 + ‖Z‖2
tr ≤ 1.

Considering the upper equation, we can perform the same reformulations as in
Example 3.26 and obtain

µ = µ̂+ δ
1√
S

Σ̂
1
2 z1

⇔ (µ− µ̂)T Σ̂−1(µ− µ̂) =
δ2

S
‖z1‖2

2

⇔ ‖z1‖2
2 =

S

δ2
(µ− µ̂)T Σ̂−1(µ− µ̂).

The lower equation is given by

vec(Σ) = vec(Σ̂) +
δ√

2(S − 1)
(In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 ) vec(Z),

or equivalently,

vec(Σ− Σ̂) =
δ√

2(S − 1)
(In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 ) vec(Z). (5.7)

Having such a matrix (or vector) equality of the form A = B, it then also holds
that ATCA = BTCB for an arbitrary, suitably sized matrix C. Using this
formulation with

C = Σ̂−1 ⊗ Σ̂−1

we obtain for the left hand side of Equation (5.7):(
vec(Σ− Σ̂)

)T
(Σ̂−1 ⊗ Σ̂−1) vec(Σ− Σ̂)

(C.13)
=

(
vec(Σ− Σ̂)

)T
(In ⊗ Σ̂−1)(Σ̂−1 ⊗ In) vec(Σ− Σ̂)

(C.8),(C.11)
=

[
vec
(
Σ̂−1(Σ− Σ̂)In

)]T · [vec
(
In(Σ− Σ̂)Σ̂−1

)]
(C.12)
= tr

([
Σ̂−1(Σ− Σ̂)

]T · [(Σ− Σ̂)Σ̂−1
])

= tr
(
(Σ− Σ̂)Σ̂−1(Σ− Σ̂)Σ̂−1

)
= tr

(
(Σ− Σ̂)Σ̂− 1

2 Σ̂− 1
2 (Σ− Σ̂)Σ̂− 1

2 Σ̂− 1
2

)
= tr

(
Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2 Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2

)
= ‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr.
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The analogous multiplications for the right hand side of Equation (5.7) can be
simplified as follows using symmetry of (In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 ):

δ√
2(S − 1)

vec(Z)T (Σ̂
1
2 ⊗ Σ̂

1
2 )(In2 +Knn) · (Σ̂−1 ⊗ Σ̂−1)

· δ√
2(S − 1)

(In2 +Knn)(Σ̂
1
2 ⊗ Σ̂

1
2 ) vec(Z)

(C.6)
=

δ2

2(S − 1)
vec(Z)T (In2 +Knn)(Σ̂

1
2 ⊗ Σ̂

1
2 )

· (Σ̂− 1
2 ⊗ Σ̂− 1

2 )(In2 +Knn) vec(Z)

(C.6)
=

δ2

2(S − 1)
vec(Z)T (In2 +Knn) (In ⊗ In)︸ ︷︷ ︸

In2

(In2 +Knn) vec(Z)

(C.4)
=

δ2

2(S − 1)
vec(Z)T (In2 +Knn)

(
vec(Z) + vec(ZT )

)
(C.4)
=

δ2

2(S − 1)
vec(Z)T

(
vec(Z) + vec(ZT ) + vec(ZT ) + vec(Z)

)
=

δ2

2(S − 1)
vec(Z)T 4 vec(Z)

=
2δ2

S − 1

[
vec(Z)T vec(Z)

]
(C.12)
=

2δ2

S − 1
· tr(ZTZ)

=
2δ2

S − 1
‖Z‖2

tr.

Setting both sides equal yields

‖Z‖2
tr =

S − 1

2δ2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr.

Finally, using the coupling relation, we obtain

1 ≥ ‖z1‖2
2 + ‖Z‖2

tr

=
S

δ2
(µ− µ̂)T Σ̂−1(µ− µ̂) +

S − 1

2δ2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr,

or equivalently

S(µ− µ̂)T Σ̂−1(µ− µ̂) +
S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ δ2

which proves the statement.
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Having this particular uncertainty set Uδ(µ̂, Σ̂), we now need to determine the
worst case parameters thereof and use them to reformulate the robust optimiza-
tion problem. We will find that as in the above case of having a confidence ellip-
soid around the return vector only, the robust program reveals the same structure
of the objective function as the classical problem, namely f(x) = a

√
xT Σ̂x+bxT µ̂

with some factors a and b. Thus, an analogous proof as for Proposition 5.7 is
applicable to show that also in this case of a joint confidence ellipsoid for (µ,Σ),
the robust efficient frontier coincides with a part of the classical efficient frontier.
The just verbally described calculations and proofs will be carried out explicitly
in the subsequent propositions.

Proposition 5.11. Let the joint uncertainty set for the parameters (µ,Σ) be
given by a confidence ellipsoid around the MLEs (µ̂, Σ̂) as described in Propo-
sition 5.10. Then, the robust counterpart program to the portfolio optimization
problem (Pλ) can be reformulated to

min
x∈X

max
(µ,Σ)∈Uδ(µ̂,Σ̂)

(1− λ)
√
xT Σx− λxTµ

= min
x∈X

max
κ∈[0,1]

(1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ√
S

√xT Σ̂x− λxT µ̂.

Proof. We first note that we can split up the joint uncertainty set

Uδ(µ̂, Σ̂) =

{
S(µ− µ̂)T Σ̂−1(µ− µ̂) +

S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ δ2

}
into two separate ones with the respective sizes summing up to δ2 again:

U(µ̂) = U√κδ(µ̂) = {µ ∈ Rn | S(µ− µ̂)T Σ̂−1(µ− µ̂) ≤ κδ2},

U(Σ̂) = U√1−κδ(Σ̂) =

{
Σ ∈ Sn

+ |
S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ (1− κ)δ2

}
with the additionally introduced variable κ ∈ [0, 1]. With these definitions, the
problem to determine the worst case parameters can be devided into several
smaller optimization problems as follows:

max
(µ,Σ)∈Uδ(µ̂,Σ̂)

(1− λ)
√
xT Σx− λxTµ

is equivalent to

max
κ∈[0,1]

max
Σ∈U(Σ̂)

max
µ∈U(µ̂)

(1− λ)
√
xT Σx− λxTµ.

Note that for λ = 0 or λ = 1, the maximization over µ or Σ, respectively, is
omitted. Hence, these two special cases are contained within the following general
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calculations, and when solving the respective inner optimization problems over µ
and Σ, we can without loss of generality assume that λ > 0 resp. λ < 1.

Now we solve two of the nested optimization problems successively, starting
with the innermost one.

(i) Consider the optimization problem (which is only necessary in case λ > 0)

max
µ∈U(µ̂)

(1− λ)
√
xT Σx− λxTµ. (Paux,µ)

From Example 3.26 we obtain that the optimal parameter µ∗ is given by

µ∗ = µ̂− δ

√
κ

S

1√
xT Σ̂x

Σ̂x.

(ii) Next we want to solve the optimization problem

max
Σ∈U(Σ̂)

(1− λ)
√
xT Σx− λxTµ∗.

which can equivalenty be formulated as

max
Σ∈Sn

+

(1− λ)
√
xT Σx− λxTµ∗

s.t.
S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ (1− κ)δ2.

Inserting the explicit expression for µ∗ gives

max
Σ∈Sn

+

(1− λ)
√
xT Σx− λxT µ̂+ λδ

√
κ

S

√
xT Σ̂x (Paux,Σ)

s.t.
S − 1

2
‖Σ̂− 1

2 (Σ− Σ̂)Σ̂− 1
2‖2

tr ≤ (1− κ)δ2.

Abbreviating the expressions in the objective that are independent of the
variable Σ by h(x, κ), i.e. h(x, κ) = −λxT µ̂+λδ

√
κS−1

√
xT Σ̂x, and defining

Σ̃ := Σ− Σ̂, the problem (Paux,Σ) is equivalent to

max
Σ̃∈Sn

+

(1− λ)

√
xT Σ̂x+ xT Σ̃x+ h(x, κ) (Paux,Σ-1)

s.t.
S − 1

2
‖Σ̂− 1

2 Σ̃Σ̂− 1
2‖2

tr ≤ (1− κ)δ2.

Defining further Σ̄ := Σ̂− 1
2 Σ̃Σ̂− 1

2 the program changes to

max
Σ̄∈Sn

+

(1− λ)

√
xT Σ̂x+ xT Σ̂

1
2 Σ̄Σ̂

1
2x+ h(x, κ) (Paux,Σ-2)

s.t. ‖Σ̄‖2
tr ≤

2

S − 1
(1− κ)δ2.
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Obviously, as the square root function is monotonically increasing, the
objective function of this problem (Paux,Σ-2) is maximized if and only if
xT Σ̂

1
2 Σ̄Σ̂

1
2x is maximized. Thus, we let y := Σ̂

1
2x and solve the auxiliary

problem

max
Σ̄∈Sn

+

yT Σ̄y (Paux,Σ-3)

s.t. ‖Σ̄‖2
tr ≤

2

S − 1
(1− κ)δ2.

We proceed analogous to Example 3.38 and obtain that the optimal parame-
ter Σ̄∗ for this auxiliary problem (and hence also for the problem (Paux,Σ-2))
is given by

Σ̄∗ = δ

√
2

S − 1
(1− κ)

y

‖y‖
· y

T

‖y‖
.

Setting z := δ
√

2
S−1

(1− κ) for ease of readability and incorporating the
optimal solution Σ̄∗ into program (Paux,Σ-2), this simplifies to

max
Σ̄∈Sn

+

‖Σ̄‖2tr≤z2

(1− λ)

√
xT Σ̂x+ yT Σ̄y + h(x, κ)

= (1− λ)

√
xT Σ̂x+ zyT

y

‖y‖
· y

T

‖y‖
y + h(x, κ)

= (1− λ)

√
xT Σ̂x+ z‖y‖2 + h(x, κ)

= (1− λ)

√
(1 + z)xT Σ̂x+ h(x, κ)

where for the last equality it is used that

‖y‖2 = yTy = xT Σ̂
1
2 Σ̂

1
2x = xT Σ̂x.

The proposition is finally proved by plugging back in all the definitions made
along the way of the various calculations, i.e.

min
x∈X

max
(µ,Σ)∈Uδ(µ̂,Σ̂)

(1− λ)
√
xT Σx− λxTµ
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reformulates to

min
x∈X

max
κ∈[0,1]

(1− λ)

√
(1 + z)xT Σ̂x+ h(x, κ)

= min
x∈X

max
κ∈[0,1]

(1− λ)

√√√√(1 + δ

√
2

S − 1
(1− κ)

)
xT Σ̂x

− λxT µ̂+ λδ

√
κ

S

√
xT Σ̂x

= min
x∈X

max
κ∈[0,1]

(1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ

S

√xT Σ̂x− λxT µ̂,

which is the desired result.

Notation 5.12. For notational convenience we introduce the abbreviation

K(λ) := max
κ∈[0,1]

(1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ

S

 . (5.8)

Remark 5.13. Note that it is not necessary for the subsequent Proposition 5.16
to explicitly calculate the maximizing κ. We only need that we obtain a unique κ
for each fixed parameter λ of the robust optimization problem. This can e.g. be
assured by strict concavity in κ.

Lemma 5.14. Let λ ∈ [0, 1] and let κ∗(λ) denote the optimal solution of

max
κ∈[0,1]

(1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ

S
.

Then, κ∗(λ) is unique for each λ ∈ [0, 1].

Proof. Let λ ∈ [0, 1] be arbitrary, but fixed. The (one-dimensional) optimization
problem under consideration is described by

max
κ∈[0,1]

f(κ)

with

f(κ) = (1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ

S
.

We now distinguish the three cases of λ = 0, λ = 1 and 0 < λ < 1.
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(i) Let λ = 0. Thus, the optimization problem reduces to

max
κ∈[0,1]

√
1 + δ

√
2

S − 1
(1− κ)

which is obviously maximized for κ∗ = 0, i.e. we obtain a unique solution.
The optimal objective value is hence given by

K(0) = f(κ∗) =

√
1 + δ

√
2

S − 1
.

(ii) Let λ = 1. Then f(κ) is given by

f(κ) =
δ√
S
·
√
κ

which is uniquely maximized over κ ∈ [0, 1] for κ∗ = 1. The expression
K(1) is thus given by

K(1) =
δ√
S
.

(iii) Let 0 < λ < 1. For κ ∈ (0, 1) the first derivative of f(κ) becomes

f
′
(κ) = (1− λ) · 1

2

√
1 + δ

√
2

S−1
(1− κ)

· −δ
S − 1

· 1√
2

S−1
(1− κ)

+
λδ√
S
· 1

2
√
κ

= − (1− λ) · δ

2(S − 1)︸ ︷︷ ︸
=:c1>0

· 1√
1 + δ

√
2

S−1
(1− κ)

√
2

S−1
(1− κ)

+
λδ

2
√
S︸ ︷︷ ︸

=:c2>0

· 1√
κ

= −c1

(
1 + δ

√
2

S − 1
(1− κ)

)− 1
2 (

2

S − 1
(1− κ)

)− 1
2

+ c2
1√
κ
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and thus we get for the second derivative

f
′′
(κ) = −c1

1

2

(
1 + δ

√
2

S − 1
(1− κ)

)− 3
2

︸ ︷︷ ︸
>0

· δ

2(1− κ)︸ ︷︷ ︸
>0

+

(
1 + δ

√
2

S − 1
(1− κ)

)− 1
2

︸ ︷︷ ︸
>0

·
(

2

S − 1
(1− κ)

)− 3
2

︸ ︷︷ ︸
>0

· 1

S − 1


− c2

2κ
3
2

< 0.

Thus, f(κ) is a strictly concave function on (0, 1) and for its derivatives at
the boundaries κ→ 0 and κ→ 1 it holds

f
′
(κ) → +∞ for κ→ 0,

f
′
(κ) → −∞ for κ→ 1.

Hence, f(κ) has a unique optimal solution in (0, 1).

Altogether, we have that for each fixed λ we obtain a unique optimal κ∗(λ).

Before continuing, we analyze the function K(λ) as introduced in Equa-
tion (5.8) some more.

Proposition 5.15. Let K(λ) with λ ∈ [0, 1] be given as in Equation (5.8). Then
it holds:

(i) The function K : [0, 1] → R+ is convex and continuous.

(ii) For δ ≤
√
S, K is monotonically decreasing, and for δ >

√
S, K possesses

a minimum in (0, 1).

Proof. Recall that K(λ) with λ ∈ [0, 1] is given by

K(λ) = max
κ∈[0,1]

(1− λ)

√
1 + δ

√
2

S − 1
(1− κ) + λδ

√
κ

S


with the optimal solution κ∗(λ) being unique for each λ ∈ [0, 1], see Lemma 5.14.

(i) The function K(λ) is convex as the maximum of linear functions. Further-
more it is continuous according to Proposition 2.40.
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(ii) According to Proposition 2.41, part (ii), the derivative of K(λ) in case of a
unique solution κ∗(λ) is given by

K
′
(λ) = −

√
1 + δ

√
2

S − 1

(
1− κ∗(λ)

)
+ δ

√
κ∗(λ)

S
.

As for λ = 0 and λ = 1, the optimal solutions are κ∗(0) = 0 and κ∗(1) = 1,
respectively, (see Lemma 5.14), the according derivatives of K(λ) are given
by

K
′
(0) = −

√
1 + δ

√
2

S − 1
,

K
′
(1) = −1 +

δ√
S
.

If it holds that δ ≤
√
S, both derivatives are negative (if δ =

√
S, then

K
′
(1) = 0) and together with convexity of K(λ) we obtain that K(λ) is

monotonically descreasing. In case of δ >
√
S, the derivative of K at λ = 1

is positive, hence, the minimum is attained in the open interval (0, 1).

Figure 5.5 illustrates the optimal solution κ∗(λ) (obtained by numerical opti-
mization) and the function K(λ) for the two cases δ ≤

√
S and δ >

√
S.
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S

Figure 5.5: Illustration of κ∗(λ) and K(λ).

After having an explicit reformulation of the robust counterpart of the port-
folio optimization problem when using a joint uncertainty set for (µ,Σ), we can
show the same statement as in the case of an uncertainty set only around the
return vector µ: the robust efficient frontier equals the classical efficient frontier,
but is shortened.
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Proposition 5.16. Consider the portfolio optimization problem (Pλ) and let the
joint uncertainty set for the parameters (µ,Σ) be given by a confidence ellipsoid
around the MLEs as described in Proposition 5.10. Then for each θ ∈ [0, 1] there

exists a λ ∈
[
0, 1

1+ δ√
S

]
, λ = λ(θ) = θ

θ+K(θ)
, such that the optimal solution x∗rob(θ)

of the corresponding local robust counterpart problem (see Proposition 5.11) equals
the optimal solution x∗cl(λ) of the original problem.

Proof. We proceed as in the proof of Proposition 5.7 by showing equivalence of
the respective optimization problems. Recall the two optimization problems:

min
x∈X

(1− λ)
√
xT Σ̂x− λ(xT µ̂) (Pλ)

and

min
x∈X

max
κ∈[0,1]

(1− θ)

√
1 + δ

√
2

S − 1
(1− κ) + θδ

√
κ√
S

√xT Σ̂x− θxT µ̂.

(RPθ,conf)

with θ being the tracing parameter in the robust program, analogous to the proof
of Proposition 5.7.

To determine the parameter λ of the classical problem corresponding to a
given tracing parameter θ of the robust program, we fix θ. For ease of notation
and clarity of the proof, we again use the abbreviation

K(θ) := (1− θ)

√
1 + δ

√
2

S − 1
(1− κ∗(θ)) + θδ

√
κ∗(θ)√
S

,

which is just a constant for fixed θ. With

λ = λ(θ) :=
θ

θ +K(θ)

the classical problem reformulates to

min
x∈X

(1− λ)
√
xT Σ̂x− λ(xT µ̂)

= min
x∈X

(
1− θ

θ +K(θ)

)√
xT Σ̂x− θ

θ +K(θ)
(xT µ̂)

= min
x∈X

1

θ +K(θ)

(
K(θ)

√
xT Σ̂x− θ(xT µ̂)

)
which is equivalent to the robust formulation as 1

θ+K(θ)
is merely a constant for

fixed θ.
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Finally, it remains to determine the maximum value for λ. For θ > 0 we have

λ(θ) =
θ

θ +K(θ)
=

(
1 +

K(θ)

θ

)−1

with the derivative

λ
′
(θ) = −

(
1 +

K(θ)

θ

)−2

︸ ︷︷ ︸
>0

· θK
′
(θ)−K(θ)

θ2
.

This derivative is positive if and only if

θK
′
(θ)−K(θ) < 0

where K ′
(θ) is given explicitly in Proposition 5.15. To prove this inequality, note

that since
√

2
S−1

(1− κ∗(θ)) ≥ 0 it holds that

0 <

√
1 + δ

√
2

S − 1
(1− κ∗(θ)). (5.9)

Adding

θK
′
(θ) = −θ

√
1 + δ

√
2

S − 1

(
1− κ∗(θ)

)
+ δθ

√
κ∗(θ)

S

to both sides of inequality (5.9) yields

θK
′
(θ) <

√
1 + δ

√
2

S − 1
(1− κ∗(θ))

− θ

√
1 + δ

√
2

S − 1

(
1− κ∗(θ)

)
+ δθ

√
κ∗(θ)

S

= (1− θ)

√
1 + δ

√
2

S − 1
(1− κ∗(θ)) + δθ

√
κ∗(θ)

S

= K(θ).

Thus, the derivative λ′(θ) is always positive, i.e. λ(θ) is a monotonically increasing
function in θ and thus reaches is maximum value at θ = 1. We can recall from
Lemma 5.14 that κ∗(1) = 1, hence K(1) simplifies to

K(1) = δ

√
κ∗(1)

S
=

δ√
S

which finally yields

λmax =
1

1 +K(1)
=

1

1 + δ√
S

.
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Note that even though an uncertainty set around Σ̂ is incorporated, the min-
imum variance portfolio itself does not change. This holds since the robust opti-
mization problem for λ = 0 reduces to

min
x∈X

√
1 + δ

√
2

S − 1
·
√
xT Σ̂x.

Consideration of uncertainty of the covariance matrix is reflected in the multi-

plicative factor
√

1 + δ
√

2
S−1

. Since this factor is larger than 1, we expect a

higher volatility (i.e. objective value) of the minimum variance portfolio in the
robust setting. This increase in the risk of the MVP can be interpreted as esti-
mation risk. This fact is not illustrated in the figures, since for comparison with
the classical efficient frontier, the point estimates µ̂ and Σ̂ are used for plotting
the robust efficient frontier as well. The robust return and covariance are merely
necessary to determine the robust portfolio allocations.

Comparing the classical efficient frontier with the two robust frontiers ob-
tained using confidence ellipsoids around µ̂ and (µ̂, Σ̂), respectively, we observe
the following:

• The minimum variance portfolio is the same in all three cases.

• Both robust efficient frontiers coincide with the classical efficient frontier,
up to the trade-off parameter λ = 1

1+ δ√
S

of the classical frontier. Note that

for both trade-off parameters θµ = 1 and θµ,Σ = 1 at the right end of the
two robust efficient frontiers the same maximum value for λ is attained:

(i) When robustifying only the return parameter µ, the mapping from the
(robust) trade-off parameter θµ to the (classical) trade-off parameter
λ is given by (see Proposition 5.7)

λ(θµ) =
θµ

1 + θµ
δ√
S

and hence λ(1) = 1
1+ δ√

S

.

(ii) In case of robustifying jointly (µ,Σ), the mapping from θµ,Σ to λ (see
Proposition 5.16) is described by

λ(θµ,Σ) =
θµ,Σ

θµ,Σ +K(θµ,Σ)

and since K(1) = δ√
S

(Lemma 5.14), we obtain λ(1) = 1
1+ δ√

S

as well.
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• Between the left and the right end point, the two robust efficient frontiers
map the trade-off parameter differently. This will be investigated more
closely in the following.

• In case of robustification around µ only, the size δ of the uncertainty set
reflects the probability of the parameter lying within the ellipse, i.e. the
confidence. When having a joint uncertainty set for µ and Σ, the size
δ does not correspond to the same confidence as before, i.e. it has to be
interpreted differently with respect to representing probabilities. In the
following, we compare uncertainty sets having the same value of δ.

As before, we consider an investor having a particular trade-off parameter λ. Us-
ing confidence ellipsoids around µ̂ and (µ̂, Σ̂), respectively, we obtain the situation
shown in Figure 5.6.
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Figure 5.6: Implications of Propositions 5.7, 5.16 for a particular investor.

The fact that the portfolio obtained by robustification of µ and Σ is always
left of the portfolio obtained by robustification of the parameter µ only is hardly
recognizable in the figure, but will be proved in the following proposition.

Proposition 5.17. Let a trade-off parameter θ ∈ [0, 1] be given. Furthermore,
let λ1(θ) = θ

1+θ δ√
S

denote the corresponding robust trade-off parameter in the

setting of Proposition 5.7 with an uncertainty set of size δ for µ only, and let
λ2(θ) = θ

θ+K(θ)
be the robust trade-off parameter in the setting of Proposition 5.16

with a joint uncertainty set of the same size δ. Then it holds that λ2(θ) ≤ λ1(θ).

Proof. First recall that since the robust optimal portfolios in both settings are
lying on the classical efficient frontier, it suffices to relate the respective positions
which are expressed in terms of the trade-off parameters λ1(θ) and λ2(θ).
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Given a certain risk aversion (i.e. trade-off parameter) θ, Propositions 5.7 and
5.16 state the explicit formulas for determining the new position on the classical
efficient frontier when a robust portfolio optimization is performed:

λ1(θ) =
θ

1 + θ δ√
S

λ2(θ) =
θ

θ +K(θ)

with K(θ) as given in Equation (5.8).
To prove that λ2(θ) ≤ λ1(θ) for all θ ∈ [0, 1], it suffices to compare the

denominators and hence show that

θ +K(θ) ≥ 1 + θ
δ√
S
,

or equivalently that

H(θ) := θ +K(θ)− 1− θ
δ√
S
≥ 0, ∀θ ∈ [0, 1].

Using result from Lemma 5.14, we already know the following about the function
H(θ):

H(0) = K(0)− 1 =

√
1 + δ

√
2

S − 1
− 1 > 0

H(1) = K(1)− δ√
S

= 0.

Furthermore, H(θ) is convex (recall that K(θ) is convex according to Proposi-
tion 5.15). For the derivative of H(θ), we obtain that

H
′
(θ) = 1 +K

′
(θ)− δ√

S

= 1−

√
1 + δ

√
2

S − 1

(
1− κ∗(θ)

)
+ δ

√
κ∗(θ)

S
− δ√

S

= 1−

√
1 + δ

√
2

S − 1

(
1− κ∗(θ)

)
︸ ︷︷ ︸

<0

+
δ√
S

(√
κ∗(θ)− 1

)︸ ︷︷ ︸
<0

< 0.

Thus, H(θ) is monotonically decreasing and convex on [0, 1] with H(0) > 0 and
H(1) = 0 and hence does not possess a minimum on (0, 1). Therefore, H(θ) ≥ 0
for all θ ∈ [0, 1] which gives the desired result of λ2(θ) ≤ λ1(θ).
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Figure 5.7: Difference between the positions of the robust portfolios.

Figure 5.7 illustrates the difference λ2(θ)−λ1(θ) between the positions of the
robust portfolios on the efficient frontier.

To conclude this section we shortly summarize the results. We have defined
uncertainty sets via confidence ellipsoids, first only for the uncertain vector µ and
then as well for the pair of uncertain parameters (µ,Σ). In both cases we found
that the robust efficient frontier coincides with the classical efficient frontier up
to some risk level, and we furthermore showed that robustifying both parameters
leads to a more conservative portfolio allocation than robustification of µ only.
This nice structural result that the robust and the classical efficient frontier are
the same leads to the conclusion that the classical efficient frontier itself already
consists of robust portfolio allocations. The proofs of these statements rely on
the fact that the confidence ellipsoids are formed using the same matrix structure
that is used to measure the portfolio’s risk.

5.3 Combination of various statistical estimators
A completely different approach to create an uncertainty set for the return vector
µ is to make use of several statistical estimators for the parameter. It is not
clear in case of general elliptical distributions, why for example the maximum
likelihood estimator should be preferred to any of the other estimators presented
in Section 4.3. Thus, we want to take them equally into account and create an
ellipsoidal uncertainty set such that all considered estimators are lying within.
Let the set M denote the set of different estimates for the parameter µ, i.e.

M := {µ̂ML, µ̂ME, µ̂QR, µ̂TM , µ̂HU}.

The first intuitive idea to create an uncertainty set containing the points in M
would be to use the convex hull and define

U = conv
(
µ̂ML, µ̂ME, µ̂QR, µ̂TM , µ̂HU

)
.
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Knowing that ellipsoidal uncertainty sets are more promising than polyhedral
ones (Theorem 3.28), we therefore create an ellipsoid containing the estimates
instead of using the convex hull. Thus, we consider the following uncertainty set:

Uest = {µ | (µ− µ̄)T Σ̄−1(µ− µ̄) ≤ δ̄2}

with µ̄ =
1

|M |
∑
m∈M

m

Σ̄ = diag(σ̄2
11, . . . , σ̄

2
nn) where σ̄2

ii =
1

|M | − 1

∑
m∈M

(mi − µ̄i)
2

δ̄2 = max
m∈M

(m− µ̄)T Σ̄−1(m− µ̄).

The following Figure 5.8 illustrates such an uncertainty set in the case of the two
assets bond and stock. As the shape matrix Σ̄ is given by a diagonal matrix,
it is obvious that the axes of the ellipse are parallel to the coordinate axes.
Furthermore, the lower (resp. higher) volatility of the bond (resp. stock) market
is reflected by the shape of the ellipse, i.e. by the lengths of its axes.
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Figure 5.8: Illustration of the uncertainty set created by using different statistical
estimators.

As this uncertainty set Uest naturally has the same structure as the confi-
dence ellipsoid (just with different midpoint and shape matrix), the worst case
parameter µwc can be deduced by analogous calculations and is given by

µwc = µ̄− δ̄
1√
xT Σ̄x

Σ̄x. (5.10)
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Thus, the robust optimization problem reformulates to

min
x∈X

max
µ∈Uest

(1− λ)
√
xT Σ̂x− λxTµ

= min
x∈X

(1− λ)
√
xT Σ̂x− λxT µ̄+ δ̄λ

√
xT Σ̄x.

Compared to the classical problem the additional expression δ̄λ
√
xT Σ̄x can be

interpreted as a penalty term. As the matrix Σ̄ contains the variances of the
different estimators for each asset, the robust optimization problem penalizes
investment in assets where the considered statistical estimators yield rather dif-
ferent values, i.e. lie further apart from each other.

Remark 5.18. Note that for this uncertainty set, experts’ opinions about point
estimates for the return vector could easily be incorporated by treating them like
additional estimators.

Remark 5.19. The uncertainty set Uest can become more sophisticated by addi-
tionally allowing the ellipsoid to be rotated, i.e. it does not necessarily lie parallel
to the coordinate axes anymore. To find the smallest rotated ellipsoid containing
all the estimators, an additional optimization problem has to be solved.

A further alternative to create an uncertainty set containing a prescribed num-
ber of given points is to solve the optimization problem for a minimum volume
ellipsoid. This results in a semidefinite program (SDP). Note that this problem
has only a non-degenerate solution if the number of (independent) point estimates
exceeds the number of assets. In case there are not sufficiently many estimators
for the return vector, additional constraints have to be artificially introduced, like
e.g. the length of each axis of the ellipsoid has to be strictly positive.

For a presentation and comparison of these alternative approaches see the
diploma thesis of Middelkamp [61].

In the following the effect of robustification using such an uncertainty set
for the return vector is illustrated. To compare with the results presented in
Section 4.4, we again consider the market at the time point 01.11.2003 and we
restrict the feasibility set to be given by

X = {x ∈ Rn | xT111 = 1, x ≥ 0}.

The robust efficient frontier is plotted using the robust allocations and the max-
imum likelihood estimators to calculate the respective risk and return charac-
teristics. (This means the expected portfolio return is plotted, not the expected
robust portfolio return which is expressed in the optimization problem; the robust
formulation was only needed to determine the weights.) Figure 5.9 shows both
the classical and the robust efficient frontier, and in Figure 5.10 the associated
allocations are plotted.
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Figure 5.9: Classical and robust efficient frontier on 01.11.2003.
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Figure 5.10: Classical and robust efficient portfolios on 01.11.2003.

Note that when defining an uncertainty set based on estimators, we obtain a
rather different efficient frontier in the robust case and not – as in the previous
section when using a confidence ellipsoid – the same as the classical one. Since
the robust efficient frontier is a little shorter than the classical one, the remaining
part at the right of the weight plot in the robust case is empty. It can also be seen
that the robust portfolios are more diversified since they are invested in four of
the five assets for the most part of the efficient frontier. The classical portfolios
have an investment of roughly 10% in the Stoxx small caps, and the remaining
90% are moved from the most secure bond index to the riskier emerging market.
In the robust allocations the emerging market never even reaches a portion of
20%.
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Also for this type of robustificaton, we can analyze the influence on the opti-
mal portfolio of a particular investor. Analogous to before we plot in Figure 5.11
the changed position on the robust efficient frontier and the according optimal
allocation in comparison to the classical one. Analogous to the case of using con-
fidence ellipsoids as uncertainty sets, the investor chooses are more conservative
portfolio when performing a robust optimization. This general fact is observable
in all considered robustifications, independent of the particular specification of
the employed uncertainty set. In Chapter 7 we will investigate approaches com-
bining market and expert information to obtain uncertainty sets, and in those
cases we will also find that robustification leads to portfolios lying closer towards
the minimum variance portfolio.
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(b) corresponding allocations

Figure 5.11: Implications of robust optimization for a particular investor.

Similar to the illustrations in Section 4.4 we not only want to investigate the
portfolio allocations along the efficient frontier for a fixed point in time, but also
the behavior of selected individual portfolios over time. Particular portfolios are
naturally both ends of the efficient frontier, i.e. the minimum variance portfolio
(MVP) and the maximum return portfolio (MRP). We additionally include the
maximum sharpe ratio portfolio (MSRP) in the presentation.

First of all it is worth noting that the classical and the robust minimum
variance portfolios are identical for each point in time. This is obvious as the
MVP is independent of the estimator for the return or an uncertainty set thereof,
and because we did not impose any explicit uncertainty about the covariance
matrix.

Naturally, robustification (around the vector of expected returns) is having
the largest effect on the maximum return portfolio. In Figure 5.12 it can be seen
that the classical and the robust maximum return portfolios differ substantially,
except in the market phase where both approaches are fully invested in the bond
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index, i.e. the classical MRP acts as conservatively as the robust MRP. Usually
the robust maximum return portfolio is not as extreme as the classical MRP
which consists only of the asset with the highest expected return. The robust
approach is more defensely and diversifies the investment. Only in cases where
there is a large distance between the highest and the second highest return – large
enough such that even if an uncertainty set is put around the highest component,
the second highest is still not contained within – the robust MRP consists of
only one asset as well. Figure 5.12(a) illustrates again the weights of the classical
MRP for easier comparison, and in plot 5.12(b) the allocation of the robust MRP
over time is graphed.
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(a) classical MRP
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(b) robust MRP

Figure 5.12: Classical and the robust MRP allocations over time.

Analogously we can compare a portfolio somewhere between the MVP and
the MRP, the maximum sharpe ratio portfolio. Figure 5.13 shows again both
the classical and the robust portfolios. They are rather similar most of the time,
except at the beginning where the classical allocation changes its proportional
investment in the emerging market rather often. Such an alternating behavior
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suggests approximately equal performance of the two assets. In these cases where
estimation errors can have a large effect on the optimal solution, the robust
allocation is much smoother than the classical one.
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(a) classical MSRP
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Figure 5.13: Classical and the robust MSRP allocations over time.

Additional to merely comparing the portfolio weights over time, we also ana-
lyze the out-of-sample performance of the selected portfolios – illustrated only in
case of the maximum return portfolio as there the difference between the classical
and the robust allocation is the largest. For the maximum sharpe ratio the effects
are similar to those occuring in case of the MRP, but milder.

Figure 5.14 shows the cumulated out-of-sample performance based on the
historical data set. This means, at each point in time, the last 52 data points were
used to calculate the parameters µ̂ and Σ̂ or the uncertainty set, upon which the
optimal allocations were deduced. These classical and robust portfolios were held
for one period (i.e. one week) and the actually achieved returns were calculated
using the current asset returns for this period.

It can be observed that in cases of bear markets the robust MRP acts a lot
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Figure 5.14: Out-of-sample performance of the classical and the robust MRP.

more conservative than the classical one – as already discussed above. As it is
only invested in the bond at the beginning, it steadily makes the bond’s small
return and does not suffer the losses of the stock indices. The classical MRP is
in some parts invested in the emerging market index and thus also takes those
losses. In case of a bull market – towards the end of the time period – the classical
MRP can participate more in the substantial gains of individual assets as it is
always invested fully in the best one; best with respect to the previous year’s
time, but if this asset still performs highest in the following period, the classical
MRP has exactly that return as well. The robust MRP hardly ever invests only
in one asset, hence it usually does not participate with the full amount in the
best asset’s performance. Nevertheless, as the classical MRP loses almost 20% at
the beginning and again around April 2004, the robust maximum return portfolio
has a larger cumulative return throughout most of the time.

Furthermore, Table 5.1 summarizes the annualized in-sample and out-of-
sample average characteristics for the minimum variance portfolio (whose alloca-
tion is identical in the classical and the robust setting), the maximum sharpe ratio
portfolio and the maximum return portfolio. The displayed values are rounded to
one digit which might lead to presumingly identical values even if there are dif-
ferences. This happens for example in case of the MVP where the in-sample and
out-of-sample Sharpe ratios seem to be the same even though the volatilities are
different. The in-sample Sharpe ratio is actually 1.74 whereas the out-of-sample
Sharpe ratio is 1.69.

It can be observed that both the classical and the robust portfolio mostly
promise “better” figures in-sample than they can achieve out-of-sample, i.e. they
expect higher returns and lower volatility in-sample than are actually realized
out-of-sample. The exception here in this historical sample is the minimum vari-
ance portfolio which meets its expectation rather well. However, the discrepancy
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in-sample out-of-sample
classical robust classical robust

return 6.5% 6.5% 6.5% 6.5%
MVP volatility 2.4% 2.4% 2.7% 2.7%

Sharpe ratio 1.7 1.7 1.7 1.7
return 11.9% 11.0% 10.5% 10.0%

MSP volatility 4.6% 3.3% 7.0% 4.5%
Sharpe ratio 2.6 2.5 1.2 1.8
return 22.0% 19.5% 16.9% 17.2%

MRP volatility 11.5% 8.0% 13.4% 9.1%
Sharpe ratio 1.9 1.9 1.1 1.7

Table 5.1: Averaged annualized in-sample and out-of-sample characteristics.

between the in-sample and out-of-sample numbers is smaller in case of the robust
portfolio, as can be compared best by the values of the respective Sharpe ratios,
hence the robust portfolios seem to be more trustworthy with respect to their
expected characterizations.

To quantify the necessary allocation changes over time for a fixed portfolio,
we determine and plot the turnover of the classical and the robust maximum
return portfolio. The turnover is calculated along the time axis as the cumulated
sum of the (absolute) weight changes from one time point to the next, i.e. as the
sum of

turnovert =
1

2
‖x∗t (λ)− x∗t−1(λ)‖1

where x∗t (λ) denotes the optimal portfolio at time t to the parameter λ. The
factor 1

2
is included as a normalization such that completely selling and afterwards

buying the entire portfolio results in a turnover of 1. Note that for the classical
maximum return portfolio the turnover at each point in time is either zero or
one, as either the same asset yields the highest return and thus the portfolio does
not change, or else the entire investment in the previously best asset is sold and
a new asset is bought. This fact can also be seen in Figure 5.15, as the curve
for the turnover of the classical portfolio is a step function. In case of the robust
portfolio, the turnover changes more smoothly, since the robust MRP is mostly
not invested in merely one asset and hence smaller amounts of individual assets
are modified.

Generally, Figure 5.15 expresses that over time a lot less allocation changes are
needed in the robust MRP compared to the classical MRP. This is a desirable fact,
as the turnover can be a measure for transaction costs. Figure 5.16 illustrates the
out-of-sample performance including transaction costs that were approximated
using the turnover. The cost factor for a complete turnover of the portfolio was
set to 2%, representing a situation where no fixed transaction costs apply and the
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Figure 5.15: Turnover of the classical and the robust MRP.

same variable cost is assumed for all assets both for buying and selling. Hence, the
change in allocation at each point in time multiplied by the cost factor measures
the losses in the overall performance. This is reflected in Figure 5.16 where
both the classical and the robust portfolio have a lower cumulated performance
compared to the results without transaction costs shown in Figure 5.14. But as
the turnover of the robust MRP is significantly smaller than the turnover of the
classical MRP, the respective costs are more limited which results in a smaller
performance reduction compared to the classical case. Hence, the advantage of
the robust approach is even more evident.
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Figure 5.16: Out-of-sample performance of the classical and the robust MRP
including approximate transaction costs.

A further analysis concerns the size of the uncertainty set which represents
the conservativeness of the robustification. Figure 5.17 illustrates the size δ over
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time. The value of δ is mostly around 3 but changes depending on the reliability
of the parameter estimates on the underlying data sample.
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Figure 5.17: Illustration of the size of the uncertainty set over time.

Summarizing the numerical results based on a historical data sample, it can be
said that robustification can really lead to an added value in asset management,
as it creates more stable portfolios that seem to meet their expectations rather
well under normal market conditions.



Chapter 6

Consistency

In Chapters 4 and 5 we have discussed classical and robust portfolio optimization
in a practical setting where the necessary parameter estimates are calculated
from a finite sample of available historical data. Based on such a finite sample
of size S, we have introduced point estimators for the mean vector µ and the
covariance matrix Σ of an elliptical distribution. We have furthermore already
shown that all the parameter estimators for µ are unbiased. But unbiasedness of
the parameter estimates does not yield unbiasedness of the portfolio estimates as
the mapping from the set of parameters to optimal portfolios is highly nonlinear.

The intuitive expectation is that the point estimators become more reliable
when more data are available for the calculation, i.e. when the sample size S
increases. Analogously, we suspect that a larger reliability of the point estimates
is reflected in smaller uncertainty sets. Finally, since the optimal solutions of the
traditional and the robust portfolio optimization problems based on parameter
estimators can be interpreted as estimators for the true portfolio which would be
obtained when solving the problem with the original (unknown) market param-
eters µ and Σ, we furthermore expect that these portfolio estimates are closer to
the true portfolio for a larger sample.

In this chapter we thus investigate the behavior of the different estimates
(point estimates, uncertainty sets and portfolio estimates) in the case of the
sample size S tending to infinity. We will show that all the parameter estimates
have the nice property of being consistent, expressing that more data lead to more
reliable estimators, i.e. for S → ∞, the estimators tend to the true parameter.
In mathematical terms, consistency is defined as follows:

Definition 6.1. Let Qp,S denote a point estimator for the parameter p based on
a sample of size S. The estimator Qp,S is called

• weakly consistent or simply consistent, if

lim
S→∞

P(|Qp,S − p| > ε) = 0,

i.e. if Qp,S converges in probability to p, denoted by Qp,S
P→ p,

159
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• strongly consistent, if
P( lim

S→∞
Qp,S = p) = 1,

i.e. if Qp,S converges almost surely to p, denoted by Qp,S
a.s.→ p.

After summarizing consistency results of the parameter estimates presented
in Section 4.3 we extend the concept to uncertainty sets and finally portfolios and
investigate these with respect to consistency in Section 6.3. We will show that
both the traditional and the robust portfolio estimates are consistent estimates for
the true portfolio. The proofs for consistency of the portfolio estimates rely on the
fact that the optimal solution of the respective portfolio optimization problem
is unique (see Propositions 4.31 and 5.2). This then guarantees continuity of
the solution with respect to the parameters according to Theorem 2.45, and a
continuous function finally inherits consistency from its arguments.

Throughout this chapter we will assume the same framework as in the previous
chapter, i.e. we assume a market of n risky assets whose return vector R ∈ Rn

follows an elliptical distribution of the form R ∼ E(µ,Σ, ξ). Furthermore, a
sample of size S of historical return realizations is supposed to be given and the
estimators described in Section 4.3 are considered.

6.1 Consistency of parameter estimates
We first need to establish consistency of the parameter estimators presented in
Section 4.3. A property closely related to consistency is asymptotic normality
which is defined as follows.

Definition 6.2. Let Qp,S denote a point estimator for the parameter p based on
a sample of size S. The estimator Qp,S is said to be asymptotically normally
distributed with asymptotic covariance matrix K (independent of S), if there is a
random variable Z ∼ N (0, K) such that

√
S
(
Qp,S − p

) d→ Z for S →∞

with “ d→” denoting convergence in distribution.

Before proving asymptotic normality for some of the estimators, we want
to state an important property shared by all the L-estimates from above: they
depend continuously on the sample R1, . . . , RS.

Proposition 6.3. In the considered framework, all of the L-estimates defined in
Section 4.3 are continuous mappings from (Rn)S → Rn.

Proof. For each component i = 1, . . . , n, the mapping from the original sample
(R1,i, . . . , RS,i) =: (y1, . . . , yS) to the ordered sample (y(1), . . . , y(S)) is continuous
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as it is continuous in each entry. Further, each quantile is continuous in the
ordered sample as it is merely a projection onto one element, and finally, each
L-estimate is continuous as a linear combination of individual quantiles.

In the following proposition we show asymptotic normality which – together
with unbiasedness – implies the desired property of being consistent estimators
for the mean vector µ.

Proposition 6.4. In the considered framework, all the estimators µ̂ML
S , µ̂ME

S ,
µ̂QR

S , µ̂TM
S and µ̂HU

S for the mean vector µ are asymptotically normally distributed.

Proof.

• Due to the existence of continuous marginal densities, each finite collection
of quantiles asymptotically follows a multivariate normal distribution, see
Shorack and Wellner [78], Example 1 on page 639. Thus, both the median
and the quartile estimator are asymptotically normally distributed.

• The trimmed mean is asymptotically normal by Theorem 3.2 on page 60 in
Huber [38], as all marginal distributions have continuous densities.

• According to Huber [37], Section 4, the maximum likelihood estimator is
asymptotically normal.

• Following Huber [38], Theorem 2.4, page 50, asymptotic normality is given
for the Huber estimator as the marginal densities are sufficiently smooth in
our framework.

Based on asymptotic normality, it is easy to derive consistency of the estima-
tors.

Theorem 6.5. In the given setting it holds that µ̂ML
S , µ̂ME

S , µ̂QR
S , µ̂TM

S and µ̂HU
S

are consistent estimators for µ. Further, Σ̂ML
S is a consistent estimator for Σ.

Proof. From asymptotic normality, convergence in distribution to µ is straight-
forward as the estimators are unbiased (the covariance matrix of Z divided by√
S tends to zero for S → ∞). Furthermore, since the limit µ is a constant,

we also obtain convergence in probability, i.e. consistency, see e.g. Jacod and
Protter [41], Theorem 18.3. Thus, it only remains to show consistency of the
maximum likelihood estimator for Σ. This follows immediately by Rinne [69],
page 454.

For our selected estimators, it is even possible to show strong consistency.
The following proposition summarizes those results.

Proposition 6.6. In the given setting, the estimators µ̂ML
S , µ̂ME

S , µ̂QR
S , µ̂TM

S

and µ̂HU
S are strongly consistent estimators for µ. Further, Σ̂ML

S is a strongly
consistent estimator for Σ.
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Proof. Corollary 2.2 of Chapter 3 in Huber [38] gives strong consistency of M -
estimates, if the limit point is unique – which is the case for elliptical distributions.
Hence, the mean, the median and the Huber estimator are strongly consistent
estimators for µ in our setting. Furthermore, Σ̂ML

S is a maximum likelihood type
estimator for Σ and thus falls into that category as well.

For the L-estimators µ̂QR
S and µ̂TM

S we obtain strong consistency by Theo-
rem 3.1 of Chapter 3 and Proposition 6.1 of Chapter 2 in Huber [38].

Table 6.1 collects the properties of the presented parameter estimates.

unbiased asymp. asympt. consistent strongly
unbiased normal consistent

Mean yes yes yes yes yes
Median yes yes yes yes yes
Quartile yes yes yes yes yes
Trimmed yes yes yes yes yes
Huber yes yes yes yes yes
MLE for Σ no yes — yes yes

Table 6.1: Properties of the selected estimators.

6.2 Consistency of uncertainty sets
In Section 6.3 we want to apply the concept of consistency to portfolio estimators,
both in the classical and the robust portfolio optimization setting. As in the
robust problem not only point estimates are needed, but entire sets containing
possible parameter realizations come into play, we need to introduce the notion
of consistency for uncertainty sets by considering them to be set-valued random
variables.

Definition 6.7. An uncertainty set US is called

• weakly consistent or simply consistent for the pair of parameters (µ,Σ) if

Hd

(
US, {(µ,Σ)}

)
→ 0 in probability for S →∞,

• strongly consistent for the pair of parameters (µ,Σ) if

Hd

(
US, {(µ,Σ)}

)
→ 0 almost surely for S →∞,

with Hd(A,B) denoting the Hausdorff distance between the sets A and B as de-
fined in Appendix B.
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The property of consistency of an uncertainty set naturally depends on the
particular definition in the practical application. In Chapter 5 we have presented
two uncertainty sets: the first one was defined by a confidence ellipsoid, i.e. the
distribution (the first two moments, respectively) of the uncertain parameter was
needed; the second one was built as the smallest ellipsoid containing a number of
(statistical) point estimates for the parameter of interest. Before showing in the
subsequent propositions that these two types of uncertainty sets are consistent,
we shortly recall their definitions, written here in the more general form as a joint
uncertainty set for (µ,Σ) even though we only explicitly account for uncertainty
of µ. The dependence on S of the uncertainty set and the parameter estimates
therein is pointed out by the subscript S.

• The distribution of µ is supposed to be given by µ ∼ E(µ̂S,
1
S
Σ̂S, φ) with

µ̂S and Σ̂S being (strongly) consistent estimators for µ and Σ, respectively.
The uncertainty set defined as a confidence ellipsoid is thus given by

US,conf(µ̂S, Σ̂S) = {(r, C) | (r − µ̂S)T
( 1

S
Σ̂S

)−1
(r − µ̂S) ≤ δ2, C = Σ̂S}

= {r | (r − µ̂S)T Σ̂−1
S (r − µ̂S) ≤ δ2

S
} × {Σ̂S}. (6.1)

• A different approach to defining an uncertainty set is by considering a set
M of finitely many (strongly) consistent estimators for the parameter µ.
Furthermore, let Σ̂S be a (strongly) consistent estimator for Σ. The un-
certainty set for µ is then described by the smallest ellipsoid containing all
points of M , thus we obtain

US,M = {(r, C) | (r − µ̄S)T Σ̄−1
S (µ− µ̄S) ≤ δ2

S, C = Σ̂S} (6.2)

with

µ̄S =
1

|M |
∑
m∈M

m

Σ̄S = diag(σ̄2
S,11, . . . , σ̄

2
S,nn) where σ̄2

S,ii =
1

|M | − 1

∑
m∈M

(mi − µ̄S,i)
2

δ2
S = max

m∈M
(m− µ̄S)T Σ̄−1

S (m− µ̄S).

In the following propositions we will show consistency of the two general types
of uncertainty sets just described. We omit the explicit analysis of the joint
confidence ellipsoid for µ and Σ since the focus is on uncertainty sets for the
return vector only.
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Proposition 6.8. Let µ̂S and Σ̂S be (strongly) consistent estimators for µ and Σ,
respectively. Then, the uncertainty set US,conf(µ̂S, Σ̂S) as given in Equation (6.1)
is (strongly) consistent for (µ,Σ).

Proof. To prove (strong) consistency, we need to show that the Hausdorff distance
between the uncertainty set US := US,conf(µ̂S, Σ̂S) and the singleton set {(µ,Σ)}
tends to zero. Using the definition of the Hausdorff distance (see Definition B.1)
and noting that the excess of US over {(µ,Σ)} is always greater than the excess
of {(µ,Σ)} over US, we obtain

Hd

(
US, {(µ,Σ)}

)
= max{ed

(
US, {(µ,Σ)}

)
, ed

(
{(µ,Σ)},US

)
}

= ed

(
US, {(µ,Σ)}

)
= sup

(r,C)∈US

d
(
(r, C), (µ,Σ)

)
(C.3)
= sup

(r,C)∈US

‖r − µ‖2 + ‖C − Σ‖tr

C=Σ̂S= sup
(r,C)∈US

‖r − µ‖2 + ‖Σ̂S − Σ‖tr

≤ sup
(r,C)∈US

‖r − µ̂S‖2 + ‖µ̂S − µ‖2︸ ︷︷ ︸
→0

+ ‖Σ̂S − Σ‖tr︸ ︷︷ ︸
→0

.

The expressions ‖µ̂S−µ‖2 and ‖Σ̂S−Σ‖tr tend to zero due to (strong) consistency
of the respective estimators. It remains to show that ‖r − µ̂S‖2 → 0, i.e. r →
µ̂S for S → ∞. Recall that an equivalent formulation of US is given by (see
Example 3.26)

US = {r | r = µ̂S +
δ√
S

Σ̂
1
2
Sz, ‖z‖2 ≤ 1} × {Σ̂S}.

To prove that US eventually reduces to a single point, it suffices to show that
δ√
S
· Σ̂

1
2
S → 0 which holds if Σ̂

1
2
S or equivalently Σ̂S is bounded, since δ√

S
→ 0 for

S →∞. As the maximum likelihood estimator Σ̂S is given by (see Definition 4.15)

Σ̂S =
1

S

S∑
s=1

(Rs − µ̂S)(Rs − µ̂S)T ,

it is naturally bounded for sufficiently large S. Thus, it holds that r → µ̂S and
finally

Hd

(
US,M , {(µ,Σ)}

)
→ 0,

i.e. (strong) consistency of US for (µ,Σ) is proved.
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Proposition 6.9. Let M be a set of finitely many (strongly) consistent estimators
for µ, and let Σ̂S be a (strongly) consistent estimator for Σ. Then, the uncertainty
set US,M as given in Equation (6.2) is (strongly) consistent for (µ,Σ).

Proof. First note that since M contains only (strongly) consistent estimators for
µ, this also implies that µ̄S as the mean over the elements in M is a (strongly)
consistent estimator for µ. We now proceed as in the proof of Proposition 6.8:

Hd

(
US,M , {(µ,Σ)}

)
= ed

(
US,M , {(µ,Σ)}

)
= sup

(r,C)∈US,M

d
(
(r, C), (µ,Σ)

)
(C.3)
= sup

(r,C)∈US,M

‖r − µ‖2 + ‖Σ̂S − Σ‖tr

≤ sup
(r,C)∈US,M

‖r − µ̄S‖2 + ‖µ̄S − µ‖2︸ ︷︷ ︸
→0

+ ‖Σ̂S − Σ‖tr︸ ︷︷ ︸
→0

where convergence is meant either in probability or almost surely, depending on
the prerequisites. It thus remains to show that r → µ̄S for S → ∞. We again
use the equivalent formulation of US,M which is given by

US,M = {r | r = µ̄S + δS Σ̄
1
2
S z, ‖z‖2 ≤ 1} × {Σ̂S}.

To prove that US,M eventually reduces to a single point, it suffices to show that Σ̄S

tends to the zero matrix and δS is bounded, thus δS · Σ̄S → 0 and hence, r → µ̄S.
Convergence of the diagonal entries σ̄S,ii to zero follows directly from consistency
of the individual estimators since convergence (almost surely or in probability)
of parameters transfers to continuous functions thereof, see e.g. Jacod and Prot-
ter [41], Theorem 17.5. For the sizing variable δS it holds that

δ2
S = max

m∈M
(m− µ̄S)T Σ̄−1

S (m− µ̄S)

= max
m∈M

n∑
i=1

(mi − µ̄S,i)
2 · 1

σ̄2
S,ii

= max
m∈M

n∑
i=1

(mi − µ̄S,i)
2

1
|M |−1

∑
l∈M(li − µ̄S,i)2

= max
m∈M

(|M | − 1)
n∑

i=1

(mi − µ̄S,i)
2

(mi − µ̄S,i)2 +
∑

l∈M,l 6=m(li − µ̄S,i)2︸ ︷︷ ︸
≤1

≤ (|M | − 1)n <∞.

Thus, altogether, we have δS · Σ̄S → 0 and hence r → µ̄S which finally yields

Hd

(
US,M , {(µ,Σ)}

)
→ 0,

i.e. (strong) consistency of US,M for (µ,Σ).
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After having established consistency of the uncertainty sets under considera-
tion, we extend the concept of consistency to portfolio estimates in the following
section.

6.3 Consistency of portfolio estimates
In this section we investigate classical and robust portfolios, i.e. the solutions of
the respective optimization problems, with respect to the property consistency.
This is done by interpreting an optimal portfolio obtained as solution of the port-
folio optimization problem based on parameter estimates µ̂ and Σ̂ as estimates
for the true optimal portfolio, the solution of the problem with the original pa-
rameters µ and Σ.

To set and clarify the notation, we recall the traditional and the robust port-
folio optimization problem. For exclusion of any degenerate cases and to assure
existence and uniqueness of the optimal solution, we make the following two
assumptions which are not very strong restrictions in practice.

Assumption 6.10. Let the set of feasible portfolios be described by a non-empty,
convex and compact set X such that

X ⊂ {x ∈ Rn | xT111 = 1}.

Assumption 6.11. Throughout the section we assume that both the classical and
the robust portfolio optimization problem possesses a unique solution for λ = 1.

Recall that for both the classical and the robust portfolio optimization prob-
lem, we have shown uniqueness of the optimal solution for λ < 1 in Proposi-
tions 4.31 and 5.2.

The classical portfolio optimization problem based on the true – but unknown
– parameters µ and Σ is described by

min
x∈X

(1− λ)
√
xT Σx− λxTµ. (Pλ,µ,Σ)

The optimal solution for a particular trade-off level λ ∈ [0, 1] will be denoted
by x∗(λ) := x∗(λ, µ,Σ) = x∗cl(λ, µ,Σ). Solving this optimization problem us-
ing estimators µ̂S and Σ̂S instead of µ and Σ, the solution will be denoted by
x∗cl(λ, µ̂S, Σ̂S) where the subscript S at the parameters expresses their depen-
dence on the sample size. With the subscript “cl” we distinguish more clearly
this classical or traditional portfolio from the robust one below.

Next we recall the robust optimization problem, described in terms of an
uncertainty set U .

min
x∈X

max
(r,C)∈U

(1− λ)
√
xTCx− λxT r. (RPλ,U)
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Also in this case we consider the problem (RPλ,US
) where parameter estimates are

used to determine the uncertainty set US. Again, the subscript S in the notation
US represents the (indirect) dependence of the uncertainty set on the sample of
size S, from which the parameters describing US are calculated. The optimal
solution of the robust problem will accordingly be denoted by x∗rob(λ,US).

Both of these portfolio estimates x∗cl(λ, µ̂S, Σ̂S) and x∗rob(λ,US) can be inter-
preted as estimators for the true optimal portfolio x∗(λ) = x∗(λ, µ,Σ) and we
want to show consistency thereof in the following.

Theorem 6.12. Let 0 ≤ λ ≤ 1. Then the classical optimal portfolio x∗cl(λ, µ̂S, Σ̂S)
is a (strongly) consistent estimator for the true portfolio x∗(λ) if the parameter
estimators µ̂S and Σ̂S are (strongly) consistent estimators for µ and Σ.

Proof. Due to uniqueness of the optimal solution, continuity of x∗cl(λ, µ̂S, Σ̂S)
for all parameters (µ̂S, Σ̂S) is given by Theorem 2.45 as X is constant and thus
Hausdorff continuous. Furthermore, according to Jacod and Protter [41], Theo-
rem 17.5, the proof concludes as convergence (in probability or almost surely) of
random variables transfers to continuous functions thereof.

Next, we show that the robust portfolio estimator calculated using an uncer-
tainty set which depends on the sample size S tends (in probability or almost
surely) to the portfolio obtained when solving the classical problem using the
true market parameters. This is intuitively expected since when considering an
uncertainty set described by parameters that become more and more exact, the
uncertainty set gets smaller and smaller and finally shrinks to a point only – the
true parameters.

Theorem 6.13. Let 0 ≤ λ ≤ 1 and let US be a (strongly) consistent uncertainty
set for (µ,Σ). Then the robust portfolio estimator x∗rob(λ,US) is a (strongly)
consistent estimator for the true optimal portfolio x∗(λ).

Proof. The proof will follow analogous lines as the proof for the consistency of the
classical portfolio, see Theorem 6.12. Hence, we need continuity of the optimal
solution with respect to US, then the proof concludes again by the transfer of
consistency of US to a continuous function thereof, see Jacod and Protter [41],
Theorem 17.5.

As we have assumed uniqueness of the optimal solution x∗rob(λ,U), it suffices
to show continuity of the robust objective function in U (U arbitrary) to obtain
continuity of x∗rob(λ,U) according to Theorem 2.45.

Thus, we first show that the mapping frob : Rn × [0, 1]× U → R with

frob(x, λ,U) := max
(r,C)∈U

(1− λ)
√
xTCx− λxT r

is continuous in U for all x ∈ X and λ ∈ [0, 1]. For notational convenience we
introduce the classical objective function as

fcl(x, λ, r, C) := (1− λ)
√
xTCx− λ(xT r).
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Thus, the robust objective frob can also be expressed as

frob(x, λ,U) := max
(r,C)∈U

fcl(x, λ, r, C).

Now, let a sequence of uncertainty sets {Un} with Un → U be given, where the
convergence is to be understood in the Hausdorff sense, i.e. lim

n→∞
Hd(Un,U) = 0.

We show
lim

n→∞
frob(x, λ,Un) = frob(x, λ,U)

by showing both inequalities.

(i) Let (r∗, C∗) be a maximizing element in U i.e. (r∗, C∗) maximizes fcl for x
and λ, formally written as

fcl(x, λ, r
∗, C∗) = max

(r,C)∈U
fcl(x, λ, r, C) = frob(x, λ,U).

Due to convergence of Un to U there exist pairs (rn, Cn) ∈ Un with
(rn, Cn) → (r∗, C∗). Furthermore, using continuity of fcl(x, λ, r, C) with
respect to (r, C), we get

frob(x, λ,U) = fcl(x, λ, r
∗, C∗)

= lim
n→∞

fcl(x, λ, rn, Cn)

≤ lim
n→∞

max
(r,C)∈Un

fcl(x, λ, r, C)

= lim
n→∞

frob(x, λ,Un).

(ii) Let (r∗n, C
∗
n) ∈ Un be the maximizing elements for Un, i.e.

fcl(x, λ, r
∗
n, C

∗
n) = max

(r,C)∈Un

fcl(x, λ, r, C) = frob(x, λ,Un).

Due to Hausdorff convergence of Un to U there exist (rn, Cn) ∈ U with
||rn − r∗n||2 → 0 and ||Cn − C∗

n||tr → 0. Then any accumulation point
(r∗, C∗) ∈ U is also an accumulation point for the sequence {(r∗n, C∗

n)}.
Without loss of generality we assume that this accumulation point is unique.
Then we get

lim
n→∞

frob(x, λ,Un) = lim
n→∞

fcl(x, λ, r
∗
n, C

∗
n)

= fcl(x, λ, r
∗, C∗)

≤ max
(r,C)∈U

fcl(x, λ, r, C)

= frob(x, λ,U).
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Hence, we now have established

lim
n→∞

frob(x, λ,Un) = frob(x, λ,U),

i.e. continuity of frob with respect to U .
Continuity of the objective function frob (in x and U) together with a constant

feasibility set X and a unique solution yields continuity x∗rob(λ,US) in US by
Theorem 2.45.
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Chapter 7

Portfolio optimization under
uncertainty and prior knowledge

As discussed in Chapters 4 and 5 we need point estimates for the unknown market
parameters µ and Σ to be able to solve the classical portfolio optimization or an
uncertainty set for the robust optimization. In most applications, simply the
maximum likelihood estimators based on a historical data sample are used to
replace the true parameters in the classical optimization, but there are a number
of different statistical estimators which could be used instead, see Section 4.3.

In financial practice it is often wanted to take individual opinions about the
future performance of some assets into account, e.g. a stock index manager could
have a rather precise idea about the development of that particular index – which
could be different from the expectation obtained by using the historical data as
a reference. Hence, concepts combining both external knowledge and estimates
based on a data sample like the Bayesian model and the Black-Litterman ap-
proach (Black and Litterman [15]) gained more and more interest in recent years.

In this chapter we recall in great detail the two approaches to obtain point
estimates for the classical portfolio optimization problem. Furthermore, their
applicability for determining uncertainty sets for the robust portfolio optimization
problem is studied. Besides considering the Bayes model with a continuous prior
which was already done by Meucci in [57], we also present possibilities to define
an uncertainty set in the Bayes model with a discrete prior and in the Black-
Litterman framework.

Furthermore, in Sections 7.3 and 7.4 we analyze if or under which conditions
one of the models can be seen as a special case of the other and we compare the
estimates and uncertainty sets obtained thereof.

In the Bayesian approach (see e.g. Meucci [57]) in Section 7.1 a prior distri-
butional assumption about the parameters to be estimated is made, e.g. by some
expert. Then, this prior is conditioned on the available data sample to obtain
the final estimates.

The Black-Litterman approach (Black and Litterman [15]) illustrated in Sec-

171
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tion 7.2 works somehow differently as it uses the data sample to describe the
prior distribution and then incorporates explicit investor forecasts on individual
asset performances to determine the combined estimate.

7.1 Bayesian approach

Before applying the Bayesian approach in the particular portfolio optimization
framework where estimates for the two unknown parameters µ and Σ need to
be determined, we give a description of the general methodology. Subsuming
all considered parameters into a general one, denoted by θ (i.e. in our case, θ
represents µ and Σ), the procedure to determine Bayesian estimates and / or an
uncertainty set is given as follows:

1. We make some prior assumption about the distribution of the unknown pa-
rameters, i.e. we assume θ to have a density function described by ϕprior(θ).

2. We obtain additional market information in form of a sample X=X1, ...,XS

which was drawn according to a given distribution depending on the (yet
unknown) parameter θ. The joint density function of the sample X is thus
denoted by ϕ(X | θ).

3. The posterior distribution finally gives the distribution of the parameters
after consideration of the additional market information – which is what
we are eventually looking for. According to the Bayes rule, the posterior
density calculates to

ϕpost(θ | X) =
ϕ(X, θ)

ϕ(X)

=
ϕ(X | θ)ϕprior(θ)∫
ϕ(X | β)ϕprior(β)dβ

= γϕ(X | θ)ϕprior(θ)

with γ a suitable normalizing constant, i.e.

γ :=

(∫
ϕ(X | θ)ϕprior(θ)dθ

)−1

.

Generally, a point estimate θ̂ for θ can be obtained by minimizing the expected
loss, i.e. by solving

min
θ̂

E[‖θ − θ̂‖2
2].
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Equivalently expressed, we solve

min
θ̂

E[‖θ − θ̂‖2
2]

= min
θ̂

E[θT θ − 2θT θ̂ + θ̂T θ̂]

= min
θ̂

E[θT θ]− 2E[θ]T θ̂ + θ̂T θ̂

which is a quadratic function in θ̂. From setting the derivative equal to zero, we
get

−2E[θ] + 2θ̂
!
= 0

⇒ θ̂ = E[θ]. (7.1)

From the posterior distribution given above, we can obtain both the Bayesian
point estimate and an uncertainty set. The point estimate in the Bayesian ap-
proach is thus given by

θ̂ := E[θ | X]

and an uncertainty set can be created by using the first two moments of the
posterior distribution of θ | X to form a confidence ellipsoid.

Remark 7.1. Instead of using the point estimate coming from minimizing the
expected loss, we could also use the maximum likelihood estimator obtained from
the posterior distribution.

7.1.1 Bayesian approach with a continuous prior

After having a general description of the Bayesian approach, we now perform the
individual steps in more detail using a particular prior. These results can also be
found in Meucci [57], but we will nevertheless state the explicit calculations for
completeness. We assume that (µ,Σ) follows a normal inverse Wishart (NIW)
distribution, see Appendix D.3. This is the most natural distribution if we want to
assume variability both for the vector of expected returns and for the covariance
matrix. Often, a distributional assumption (mostly the normal distribution) is
only made for the return vector while the covariance matrix is assumed to be fix.
We will encounter such a framework below when discussing the Black-Litterman
approach.

In the following calculations to obtain the Bayesian point estimates, γj, j ∈ N
are supposed to denote normalizing constants subsuming all leftover non-relevant
expressions (like e.g. (2π)−

n
2 ) and chosen appropriately such that the respective

function represents a probability density.
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1. Prior assumption
The prior assumption about the distribution of the parameters is the fol-
lowing:

(µ,Σ) ∼ NIW(µ0, d0,Σ0, ν0)

with the joint density (see Formula D.2)

ϕprior(µ,Σ) = ϕNIW(µ,Σ)

= γ1|Σ−1|
ν0+n+2

2 exp

{
−1

2
[d0(µ− µ0)

T Σ−1(µ− µ0) + tr(ν0Σ0 · Σ−1)]

}
.

2. Market information
The market information is collected within the sample realizations x1, . . .,xS

with Xi | µ,Σ ∼ N (µ,Σ), i = 1, . . . , S i.i.d. Thus, we can calculate the
joint probability density function ϕM of the entire sample as follows:

ϕM(x1, . . . , xS | µ,Σ) =
S∏

s=1

ϕ(xs | µ,Σ)

=
S∏

s=1

1

(2π)
n
2

|Σ|−
1
2 exp

{
−1

2
(xs − µ)T Σ−1(xs − µ)

}

=

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2

S∑
s=1

(xs − µ)T Σ−1(xs − µ)

}
.

With µ̂ and Σ̂ denoting the maximum likelihood estimators of the sample
of realizations x1, . . . , xS, i.e.

µ̂ =
1

S

T∑
s=1

xs,

Σ̂ =
1

S

T∑
s=1

(xs − µ̂)(xs − µ̂)T ,

we can refomulate the sum in the exponential function as
S∑

s=1

(xs − µ)T Σ−1(xs − µ) =

=
S∑

s=1

(
xT

s Σ−1xs − 2xsΣ
−1µ+ µT Σ−1µ

)
= S

[
µT Σ−1µ− 2µ̂T Σ−1µ

]
+

S∑
s=1

xT
s Σ−1xs
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= S
[
(µ̂− µ)T Σ−1(µ̂− µ)

]
− S µ̂T Σ−1µ̂︸ ︷︷ ︸

=tr(Sµ̂µ̂T Σ−1)

+
S∑

s=1

xT
s Σ−1xs︸ ︷︷ ︸

=tr
(∑S

s=1 xsxT
s Σ−1

)
= S(µ̂− µ)T Σ−1(µ̂− µ) + tr

([
S∑

s=1

xsx
T
s − Sµ̂µ̂T

]
Σ−1

)

= S(µ̂− µ)T Σ−1(µ̂− µ) + tr

(
S∑

s=1

(xs − µ̂)(xs − µ̂)T Σ−1

)
= S(µ̂− µ)T Σ−1(µ̂− µ) + tr

(
SΣ̂Σ−1

)
and thus, we finally obtain the probability density function of the distribu-
tion of the sample:

ϕM(x1, . . . , xS | µ,Σ) = (7.2)

=

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2
[S(µ̂− µ)T Σ−1(µ̂− µ) + tr(SΣ̂Σ−1)]

}
.

3. Posterior distribution
We can now calculate the posterior density of the parameters (µ,Σ) condi-
tioned on the additional market information:

ϕpost(µ,Σ | x1, . . . , xS) = γ2ϕM(x1, . . . , xS | µ,Σ)ϕprior(µ,Σ)

= γ2

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2
[S(µ̂− µ)T Σ−1(µ̂− µ) + tr(SΣ̂Σ−1)]

}
· γ1 |Σ−1|

ν0+n+2
2 exp

{
−1

2
[d0(µ− µ0)

T Σ−1(µ− µ0) + tr(ν0Σ0 · Σ−1)]

}
= γ3 |Σ|−

(ν0+S)+n+2
2 exp

{
−1

2
tr
(
(SΣ̂ + ν0Σ0) · Σ−1

)}
· exp

{
−1

2
[S(µ̂− µ)T Σ−1(µ̂− µ) + d0(µ− µ0)

T Σ−1(µ− µ0)]

}
(∗)
= γ3 |Σ|−

(ν0+S)+n+2
2

· exp

{
−1

2

[
(d0 + S)

(
µ− Sµ̂+ d0µ0

d0 + S

)T

Σ−1

(
µ− Sµ̂+ d0µ0

d0 + S

)
+

+ tr
([
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ̂− µ0)(µ̂− µ0)

T

]
Σ−1

)]}
= γ3|Σ|−

ν1+n+2
2 exp

{
−1

2

[
d1(µ− µ1)

T Σ−1(µ− µ1) + tr(ν1Σ1Σ
−1)
]}
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with the parameters

ν1 = ν0 + S,

d1 = d0 + S,

µ1 =
d0µ0 + Sµ̂

d0 + S
,

Σ1 =
1

ν0 + S

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
=

S

ν0 + S
Σ̂ +

ν0

ν0 + S
Σ0 +

d0S

(d0 + S)(ν0 + S)
(µ0 − µ̂)(µ0 − µ̂)T .

Equation (*) holds since

(d0 + S)

(
µ− Sµ̂+ d0µ0

d0 + S

)T

Σ−1

(
µ− Sµ̂+ d0µ0

d0 + S

)
+

d0S

d0 + S
(µ̂− µ0)

T Σ−1(µ̂− µ0)

=
1

d0 + S

[(
(d0 + S)µ− Sµ̂− d0µ0

)T
Σ−1

(
(d0 + S)µ− Sµ̂− d0µ0

)
+ d0S(µ̂− µ0)

T Σ−1(µ̂− µ0)
]

=
1

d0 + S

[(
(d0 + S)(µ− µ̂) + d0(µ̂− µ0)

)T
Σ−1

(
(d0 + S)(µ− µ0)

+ S(µ0 − µ̂)
)

+ d0S(µ̂− µ0)
T Σ−1(µ̂− µ0)

]
= (d0 + S) (µ− µ̂)Σ−1(µ− µ0) + S(µ− µ̂)Σ−1(µ0 − µ̂)

+ d0(µ̂− µ0)Σ
−1(µ− µ0) + d0S(µ̂− µ0)

T Σ−1(µ0 − µ̂)

+ d0S(µ̂− µ0)
T Σ−1(µ̂− µ0)

= (d0 + S)(µ− µ̂)Σ−1(µ− µ0) + S(µ− µ̂)Σ−1(µ0 − µ̂)

+ d0(µ̂− µ0)Σ
−1(µ− µ0)

= d0

(
(µ− µ̂)Σ−1(µ− µ0) + (µ̂− µ0)Σ

−1(µ− µ0)
)

+ S
(
(µ− µ̂)Σ−1(µ0 − µ̂) + (µ̂− µ0)Σ

−1(µ− µ0)
)

= d0(µ− µ0)Σ
−1(µ− µ0) + S(µ− µ̂)Σ−1(µ− µ̂).

Hence, it holds that

µ,Σ | x1, . . . , xS ∼ NIW(µ1, d1,Σ1, ν1). (7.3)

From this posterior we can now either determine point estimates for the classical
portfolio optimization or we can create an appropriate uncertainty set to use in
the robust problem.
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Bayesian point estimates – continuous prior

To obtain point estimates for µ and Σ, the respective marginal distributions of
µ | x1, . . . , xS and Σ | x1, . . . , xS are needed.

In Proposition D.15 it is shown that the marginal distribution of µ conditioned
on the sample is given by a Student-t distribution:

µ | x1, . . . , xS ∼ St

(
µ1,

ν1

ν1 − n+ 1
· Σ1

d1

, ν1 − n+ 1

)
. (7.4)

Thus, the Bayesian point estimate (see Equation (7.1)) for the return vector is
given by

µ̂B = E[µ | x1, . . . , xS] = µ1

=
d0

d0 + S
µ0 +

S

d0 + S
µ̂, (7.5)

i.e. the final estimate is a convex combination of the prior and the market, the
weights of each part are determined by the sample size S and the prior parameter
d0 which can as well be interpreted as a sample size where the prior return
assumption is calculated from. Thus, the more data there are in the historical
sample (i.e. the larger S is), the more influence the MLE of the data becomes in
the final estimate compared to the prior assumption – and vice versa. Having no
data at all (S = 0), the final return estimate is obviously simply the prior. For
the sample size tending to infinity, the prior is less and less important and the
posterior estimate equals the average of the data.

The marginal distribution of Σ conditioned on the sample is already explicitly
given when having a normal inverse Wishart distribution:

Σ | x1, . . . , xS ∼ IW(ν1Σ1, ν1 + n+ 1).

Thus, the Bayesian point estimate for the covariance matrix is given by

Σ̂B = E[Σ | x1, . . . , xS]

=
ν1Σ1

ν1 + n+ 1− 2n− 2
=

ν1

ν1 − n− 1
Σ1

=
1

ν0 + S − n− 1

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
(7.6)

Remark 7.2 (Consistency of the Bayes point estimates). This Bayesian
point estimates can – like any other statistical estimator – be investigated with
respect to consistency, the asymptotic behavior for S → ∞. In the limit, the
estimates µ̂B and Σ̂B reduce to

µ̂B = µ̂ and Σ̂B = Σ̂,

and since µ̂ and Σ̂ as the maximum likelihood estimators on a sample of size S
are consistent, the Bayes estimates are consistent as well.
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Remark 7.3. As the Bayes point estimate for the return vector is given as a
convex combination of the prior and the market mean, we can influence selective
assets individually by setting the prior µ0 equal to µ̂ for the components we do
not wish to change or for which we do not have a prior assumption. Expressing
“partial priors” is hence possible, and only the chosen assets are influenced by
different prior values. In other words, making a prior assumption only for one
asset does not affect the final return point estimate for the other assets.

Bayesian uncertainty set – continuous prior

To create an uncertainty set for the robust portfolio optimization via Bayesian
parameter estimation, we also continue from the posterior distribution of µ,Σ |
x1, . . . , xS as given in Equation (7.3). Instead of considering the expected values of
the respective marginal distributions as point estimates, we use the distributional
information to define an appropriate uncertainty set.

Recall the posterior distribution obtained when assuming a normal inverse
Wishart distribution as prior:

µ,Σ | x1, . . . , xS ∼ NIW(µ1, d1,Σ1, ν1).

Since in this Bayesian approach both µ and Σ are exposed to uncertainty, i.e. are
given in distributional terms, we now have different possibilities to perform a
robust portfolio optimization, as analyzed in Meucci [57]:

(a) Only the return vector µ is assumed to be uncertain, the covariance matrix is
supposed to be given by the Bayesian point estimate1 Σ̂B, meaning that we
do not explicitly account for uncertainty for the covariance. We thus create
an uncertainty set only for the vector of expected returns. Hence, we need
the marginal posterior distribution of µ | x1, . . . , xS, i.e. the unconditional
posterior (unconditional with respect to Σ) which is given by a Student-t
distribution as described in Equation (7.4):

µ | x1, . . . , xS ∼ St

(
µ1,

ν1

ν1 − n+ 1
· Σ1

d1

, ν1 − n+ 1

)
.

The (most natural) uncertainty set can now be formed by the confidence
ellipsoid centered at the expectation, shaped by the covariance matrix and
the size chosen according to the desired confidence, i.e.

UB =
{
µ ∈ Rn | (µ−mB)T (CB)−1(µ−mB) ≤ δ2

}
(7.7)

1Note that when letting ν0 = ∞ and Σ0 = Σ̂ in the prior assumption, the Bayesian posterior
simplifies to µ ∼ N

(
µ1,

Σ̂
d1

)
and Σ̂B = Σ̂.
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or, respectively, expressed as a joint uncertainty set for both µ and Σ,

UB =
{
µ ∈ Rn | (µ−mB)T (CB)−1(µ−mB) ≤ δ2

}
× {Σ̂B}

with

mB = E[µ | x1, . . . , xS] = µ1 =
d0

d0 + S
µ0 +

S

d0 + S
µ̂, (7.8)

CB = Cov[µ | x1, . . . , xS] =
ν1

ν1 − n− 1
· Σ1

d1

. (7.9)

Note that the midpoint of the ellipsoidal uncertainty set coincides with the
point estimate µ̂B as given in Equation (7.5). This is not surprising due to
the unimodal and ellipsoidal structure of the Student-t distribution.

(b) A situation in practical problems which can e.g. occur when only the mini-
mum variance portfolio is of interest, is that the return vector is assumed to
be known and only the covariance matrix Σ is exposed to uncertainty. From
the posterior distribution (see Equation (7.3)) we obtain that the marginal
distribution of Σ | x1, . . . , xS is given by an inverse Wishart distribution:

Σ | x1, . . . , xS ∼ IW(ν1Σ1, ν1 + n+ 1).

As there exist closed form expressions (see e.g. Meucci [57], page 85) for
the moments of a Wishart distribution, an uncertainty set can be formed
by the respective confidence ellipsoid, see e.g. Meucci [57], Section 7.2, and
selective parts of the calculations in Propositions 5.10 and 5.11.

(c) If both the return vector µ and the covariance matrix Σ are exposed to un-
certainty, the two variables can be interpreted as one variable by combining
them in the form

θ :=

(
µ | x1, . . . , xS

vec(Σ | x1, . . . , xS)

)
.

For this joint variable, the first two moments can as well be calculated and
an uncertainty set as given in Equation (5.5) in Section 5.2 can be defined.
We have shown extensive calculations in Propositions 5.10 and 5.11 how to
rewrite such a joint uncertainty set for the return vector and the covariance
matrix and how to solve for the worst case parameters. For further analysis,
see also Meucci [57], Section 7.2.

Remark 7.4 (Consistency of the Bayes uncertainty set). Considering a
Bayesian uncertainty set for the return vector µ as in Equation (7.7), we naturally
want to study if this is a consistent uncertainty set, recall Definition 6.7. We have
already seen that the Bayesian parameter estimates µ̂B and Σ̂B are consistent,
hence also mB = µ̂B and S · CB = S

d0+S
Σ̂B. We thus have the same structure
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as in the definition of an uncertainty set by a confidence ellipsoid: a consistent
estimator as midpoint, and the shape is given by 1

S
times a consistent matrix

estimate. Proceeding as in Proposition 6.8 hence gives consistency of the Bayesian
uncertainty set.

Example 7.5. This example illustrates the robust portfolio optimization if the
Bayesian approach is used to define the uncertainty set for the return vector. As
prior assumption we use the following parameters:

• ν0 = S and d0 = S, reflecting that the prior assumptions µ0 and Σ0 could
come from a different sample of the same size.

• The vector µ0 is given by the median of the underlying data, i.e. a different
statistical estimator for the mean of an elliptical distribution is used.

• To determine the covariance prior Σ0 we reduce the correlation between the
individual assets to represent the assumption of more independency. The
covariance matrix is then obtained by multiplication with the volatilities of
the assets which are simply calculated from the data.

Table 7.1 summarizes the (annualized) prior values for the time point 01.11.2003,
the same time as in the investigations in Chapters 4 and 5. For comparison we
also recall the market parameters at that time.

Prior return volatility correlation matrix
Lehman Eur 10.2% 3.1% 1.00 0 0 0 0
Stoxx 50 11.9% 22.1% 0 1.00 0.20 0.20 0.20
Stoxx SC 32.5% 14.6% 0 0.20 1.00 0.20 0.20
MSCI Japan 27.5% 19.5% 0 0.20 0.20 1.00 0.20
MSCI EM 47.3% 13.9% 0 0.20 0.20 0.20 1.00
Market return volatility correlation matrix
Lehman Eur 9.2% 3.1% 1.00 -0.41 -0.36 -0.09 -0.21
Stoxx 50 5.9% 22.1% -0.41 1.00 0.80 0.29 0.60
Stoxx SC 27.0% 14.6% -0.36 0.80 1.00 0.50 0.70
MSCI Japan 19.0% 19.5% -0.09 0.29 0.50 1.00 0.57
MSCI EM 32.2% 13.9% -0.21 0.60 0.70 0.57 1.00

Table 7.1: Annualized Bayesian prior assumptions and market characteristics on
01.11.2003.

Calculating the midpoint and the shape matrix according to the above formu-
las and using a 60% confidence to determine the size, the uncertainty set can
be created. Figure 7.1 shows the projection of the ellipsoid onto the two assets
Lehman Euro and Stoxx 50.
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Figure 7.1: Bayes uncertainty set.

Using this uncertainty set, the optimal robust portfolio and the corresponding
efficient frontier can be calculated. Figure 7.2 plots the Bayesian efficient frontier
together with the classical one for comparison, and in Figure 7.3 the associated
portfolio allocations are shown.
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Figure 7.2: Classical and Bayesian efficient frontier on 01.11.2003.

In this sample, the Bayesian and the classical efficient frontier are very sim-
ilar. From the weight plots it can be seen that the optimal portfolios are slightly
different, but the resulting differences in the risk and return characteristics are not
large enough to be observable in the graph. Analogous to the robustification used
in Section 5.3, the Bayesian approach leads here to a shorter efficient frontier.
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Figure 7.3: Classical and Bayesian efficient portfolios on 01.11.2003.

Finally, we again consider an investor with a given risk-aversion, expressed in
terms of a fixed value for λ, and illustrate in Figure 7.4 his modified position and
allocation when perfoming a robust portfolio optimization with an uncertainty set
created using the Bayesian approach. As already discussed in Chapter 5, applying
the robust counterpart approach generally leads to more conservative portfolios,
i.e. lying closer to the minimum variance portfolio.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.1

0.15

0.2

0.25

0.3

0.35

risk (p.a.)

re
tu

rn
 (

p.
a.

)

 

 

classical
Bayes
x* classical
x* Bayes

(a) positions on efficient frontiers

x* Bayes x* classic
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
ei

gh
ts

 

 

Lehman Euro
Stoxx 50
Stoxx SC
MSCI Japan
MSCI EM

(b) corresponding allocations

Figure 7.4: Implications of robust Bayes optimization for a particular investor.

To illustrate that the same Bayesian approach can also lead to rather different
portfolio allocations compared to the classical setting, we pick a second point in
time and perform the analogous calculations as in Example 7.5.
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Example 7.6. In this example we choose the 07.08.2004 and calculate the classi-
cal and the robust Bayesian efficient frontier and the associated optimal portfolios.
For creating the uncertainty set, we again use the median of the respective data
sample as prior for the return, and the covariance prior is obtained as above by us-
ing the current volatilities of the assets and the correlation matrix from Table 7.1
with the assumption of more independent assets.

Figures 7.5 and 7.6 illustrate the efficient frontiers and the corresponding
portfolio allocations.

0.02 0.04 0.06 0.08 0.1 0.12
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

risk (p.a.)

re
tu

rn
 (

p.
a.

)

 

 

classical
Bayes

Figure 7.5: Classical and Bayesian efficient frontier on 07.08.2004.
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Figure 7.6: Classical and Bayesian efficient portfolios on 07.08.2004.

As can be seen, the robust Bayesian approach suggests to invest in more di-
versified portfolios compared to the classical allocations. Hence, the Bayesian
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approach shows a similar effect as the robustification using an uncertainty set
defined through estimators, see Section 5.3.

The conjecture is that the different results in these two examples are coming
from the respective prior assumptions. In the first example the mean and the
median (which was chosen as prior) are more alike than in the second example.
This could explain the similarity to the robustification using a confidence ellip-
soid or the tendency to resemble the robust approach using different estimators,
respectively.

7.1.2 Bayesian approach with a discrete prior

In this section we want to investigate the Bayesian parameter estimation approach
as presented in the preceding Section 7.1.1, but in this case under the assumption
of a discrete prior distribution.

In particular, we will assume that N experts have published their (point)
estimates for the parameters µ and Σ. As we do not consider all experts to be
equally trustworthy, we assign probabilities p1, . . . , pN with

∑N
j=1 pj = 1 to their

forecasts. To avoid confusion with µ̂1 or Σ̂1 from the continuous section, we denote
the experts’ estimates by rj and Cj, respectively, j = 1, . . . , N . Mathematically,
we thus assume the following discrete prior distribution:

(µ,Σ) =


(r1, C1) with probability p1

...
(rN , CN) with probability pN

with
N∑

j=1

pj = 1.

In terms of a density function, this can be written as

ϕprior(µ,Σ) =
N∑

j=1

pj δrj
(µ) δCj

(Σ).

with δz0 denoting the density of the Dirac measure, i.e. the entire mass is con-
centrated at the point z0:∫

A

δz0(z)dz =

{
1 if z0 ∈ A
0 otherwise.

Thus, the (prior) point estimates which could be used in the classical portfolio
optimization are again calculated by minimizing the loss function and are hence
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given by

µ̂discrete = E[µ] =
N∑

j=1

pjrj,

Σ̂discrete = E[Σ] =
N∑

j=1

pjCj

according to Equation (7.1).

Remark 7.7. Instead of choosing as estimates the ones minimizing the expected
loss, we could as well use the maximum likelihood estimators, simply given by the
pair of parameters with the highest probability pj.

We now want to calculate Bayesian parameter estimates incorporating both
the prior distribution and the market information which is given in terms of a
data sample. Analogous to the continuous case, we distinguish the individual
steps in the calculations.

1. Prior distribution
As prior distribution we assume the discrete distribution from above, i.e.

ϕprior(µ,Σ) =
N∑

j=1

pj δrj
(µ) δCj

(Σ).

2. Market information
The market information is – as in the previous section – given by the density
function of the sample where it still holds that Xi | µ,Σ ∼ N (µ,Σ) i.i.d.,
i = 1, . . . , S, i.e. the sample is normally distributed with the unknown
parameters µ and Σ. Recall Formula (7.2):

ϕ(x1, . . . , xS | µ,Σ) =
S∏

s=1

ϕ(xs | µ,Σ)

=

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2
[S(µ̂− µ)T Σ−1(µ̂− µ) + tr(SΣ̂Σ−1)]

}
.

Defining for notational convenience

z(µ,Σ) := S(µ̂− µ)T Σ−1(µ̂− µ) + tr(SΣ̂Σ−1),

the joint density of the sample simplifies to

ϕ(x1, . . . , xS | µ,Σ) =

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2
z(µ,Σ)

}
.
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3. Posterior distribution
The posterior distribution of µ,Σ | x1, . . . , xS is calculated analogously to
the continuous case.

ϕpost(µ,Σ | x1, . . . , xS) = γϕ(x1, . . . , xS | µ,Σ)ϕprior(µ,Σ)

= γ

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp

{
−1

2
z(µ,Σ)

}
·

N∑
j=1

pj δrj
(µ) δCj

(Σ)

=
N∑

j=1

γ

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp{−1

2
z(µ,Σ)}pj︸ ︷︷ ︸

=:p̃j

δrj
(µ) δCj

(Σ)

=
N∑

j=1

p̃j δrj
(µ) δCj

(Σ)

where p̃j, j = 1, . . . , N (or γ respectively) are chosen appropriately such
that

∑N
j=1 p̃j = 1 again, i.e.

N∑
j=1

p̃j = 1

⇔
N∑

j=1

γ

(
1

(2π)
n
2

)S

|Σ|−
S
2 exp{−1

2
z(rj, Cj)}pj = 1

⇔ γ

(
1

(2π)
n
2

)S

|Σ|−
S
2

N∑
j=1

exp{−1

2
z(rj, Cj)}pj = 1,

hence

γ =
(2π)

nS
2 |Σ|S

2∑N
j=1 exp{−1

2
z(rj, Cj)}pj

.

Thus, we finally have

p̃j =
exp{−1

2
z(rj, Cj)}pj∑N

j=1 exp{−1
2
z(rj, Cj)}pj

.

From these calculations it can be seen that the posterior distribution is again a
discrete distribution, just the probabilities for the N outcomes are changed when
moving from the prior to the posterior. Hence, whenever assuming a discrete prior
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distribution, the posterior remains discrete and does not change to a continuous
distribution, even if a continuous distribution is imposed via the market condition.

Accordingly, the Bayesian point estimates for the parameters under the as-
sumption of a discrete prior distribution are given by

µ̂B,discrete = E[µ | x1, . . . , xS] =
N∑

j=1

p̃j rj,

Σ̂B,discrete = E[Σ | x1, . . . , xS] =
N∑

j=1

p̃j Cj.

Here, we could again choose as well the maximum likelihood estimators, i.e. the
pair with the largest posterior probability p̃j instead of the expectations which
represent the estimators minimizing the expected loss.

We now also want to define an uncertainty set only around the return vector µ
for the robust portfolio optimization based on the result of the Bayesian calcula-
tions. In analogy to the continuous Bayesian approach, a confidence uncertainty
set can be built. We have finitely many expert opinions, weighted with different
posterior probabilities p̃j. To obtain an uncertainty set to the confidence level α,
we first reorder the parameter pairs such that their associated probabilities are in
descending order, i.e. such that p̃(1) ≥ . . . ≥ p̃(N). Then we determine a number
l ∈ N, l ≤ N such that

l∑
j=1

p̃j ≥ α and
l−1∑
j=1

p̃j < α

and use the respective points r(1), . . . , r(l) to create an uncertainty set for the
return. This is naturally given by the convex hull of these points, i.e.

Udiscrete, conv = conv
({
r(1), . . . , r(l)

})
.

As we prefer using ellipsoids as uncertainty sets, we can approximate the confi-
dence set by any of the previously described methods from Section 5.3 to define
an ellipsoid containing a number of given points. The straightforward approach
is again to find the smallest ellipsoid centered at the expectation and shaped by
the covariance matrix based on the l points that are considered. Hence, we first
calculate the relative probabilities for those l vectors by

˜̃p(j) :=
p̃(j)∑l

k=1 p̃(k)

.

Then, the midpoint of the ellipsoid is determined by

mdisc = E[µ] =
l∑

j=1

˜̃p(j)r(j)
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and the shape matrix calculates to

Cdisc = Cov[µ] = E[µµT ]− E[µ]E[µ]T

=
l∑

j=1

˜̃p(j)r(j)r
T
(j) −

(
l∑

j=1

˜̃p(j)r(j)

)(
l∑

k=1

˜̃p(k)r(k)

)T

=
l∑

j=1

˜̃p(j)(1− ˜̃p(j))r(j)r
T
(j) −

l∑
j=1

l∑
k=1
k 6=j

˜̃p(j)
˜̃p(k)r(j)r

T
(k).

Note that for this shape matrix to be invertible it has to hold that l ≥ n. The
uncertainty set can then be described by

Udiscrete =
{
µ ∈ Rn | (µ−mdisc)

TC−1
disc(µ−mdisc) ≤ δ2

}
× {Σ̂B,discrete}

with the size of the ellipsoid chosen the smallest possible such that r(1), . . . , r(l)
are lying within, i.e.

δ2 = max
j=1,...,l

(r(j) −mdisc)
TC−1

disc(r(j) −mdisc).

Alternatively, we could determine the minimum volume ellipsoid containing the
desired points.

To round up this section, we also illustrate the discrete robust Bayesian ap-
proach in the same example as used before.

Example 7.8. For the discrete Bayesian approach several experts’ opinions are
necessary to form a prior assumption. In view of the definition of an uncertainty
set where we will need more estimates than assets, we start with the following 8
discrete prior values for the return:

• The five different point estmates as given in Section 4.3, i.e. MLE, median,
quartile estimator, Huber estimator and the trimmed mean.

• Additionally we use three long term estimators that are calculated based on
the entire historical data sample. They thus consider not only the last year’s
performance of the assets, but a longer average. Here we choose the mean,
the median and as a more robust estimator the trimmed mean as long term
estimators.

We assume furthermore that the experts do not have a particular opinion about
the covariance matrix, hence we use Cj = Σ̂ for j = 1, . . . , 8. The probabilities
assigned to the various discrete priors are supposed to be given by the vector p =
(20%, 20%, 10%, 10%, 10%, 10%, 10%, 10%)T . With this prior setting we obtain at
the time 01.11.2003 the following vector of posterior probabilities (rounded to %)
after taking the market into account:

p̃ = (40%, 17%, 3%, 15%, 19%, 1%, 3%, 2%)T .
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It was expected that the posterior probabilities of the long term estimators are
reduced since these estimates are rather different from the market represented by
the current data sample. To create an uncertainty set, we need to sort this vector
in descending order and take the first l such that

∑l
j=1 p̃j ≥ 60%. The first

(MLE) and the fifth (trimmed mean) estimators together already almost suffice,
but we nevertheless take the largest 6 out of the 8 estimators for assuring positive
definiteness of the needed shape matrix. Note that this corresponds to a confidence
of roughly 97%. Compared to the uncertainty set defined using the five different
estimators, we here exchange the quartile estimator with the long term median
and additionally use the long term trimmed mean.

With the respective estimators we hence determine the midpoint, the shape and
the size of the uncertainty set as given above. The result in shown in Figure 7.7.

0 0.05 0.1 0.15

0

0.05

0.1

0.15

0.2

return (p.a.) of Stoxx 50

re
tu

rn
 (

p.
a.

) 
of

 L
eh

m
an

 E
ur

o

 

 

U discrete Bayes
midpoint
MLE
median
quartile
Huber
trimmed
longterm MLE
longterm median
longterm trimmed

Figure 7.7: Discrete Bayes uncertainty set.

Analogous to the previous examples, we illustrate the discrete Bayesian ef-
ficient frontier compared to the classical one in Figure 7.8 and the according
optimal portfolio allocations in Figure 7.9.
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Figure 7.8: Classical and discrete Bayesian efficient frontier on 01.11.2003.
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Figure 7.9: Classical and discrete Bayesian efficient portfolios on 01.11.2003.

The tendency of the efficient frontier and especially the optimal allocations
show the similarity to the robust portfolio optimization from Section 5.3. This
was expected since (almost) the same points were used to create the uncertainty
sets for the return, only applying different methods.

To illustrate the effects of such a discrete Bayesian robustification, Figure 7.10
again shows the position on the efficient frontiers and the corresponding portfolio
allocations.
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Figure 7.10: Implications of discrete robust Bayes optimization for a particular
investor.
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7.2 Black-Litterman approach
A different approach combining market information and external knowledge is
the Black-Litterman model, see Black and Litterman [15], which is, to the best
of our knowledge, so far only used to obtain a point estimate for the return
vector for the classical portfolio optimization problem. We will illustrate that it
can naturally be used for the definition of an uncertainty set as well since the
distribution of the posterior estimate is known.

The market information is as in the Bayes model given by a sample of histori-
cal data. The external knowledge in the Bayes model was described in terms of a
distributional assumption about the parameters, in the Black-Litterman model it
is incorporated via individual opinions – the so-called “forecasts” – about selective
assets.

In the Black-Litterman setting, only the return vector µ is explicitly exposed
to uncertainty, the covariance matrix Σ is supposed to be known, i.e. estimated
by Σ̂ without uncertainty.

The prior assumption in this framework is given by the following distribution:

µ ∼ N (µ̂, τ Σ̂)

with µ̂ and Σ̂ being the maximum likelihood estimators based on the data realiza-
tions x1, . . . , xS and τ ∈ [0, 1] representing the confidence in this prior estimate.

Since the covariance matrix is supposed to be fixed, investor forecasts can
only be made for the uncertain vector µ. Those forecasts are not only a simple
point estimate but some absolute or relative opinions about the return vector,
mathematically expressed in the form

Q = Pµ+ ε

with Q ∈ Rm, P ∈ Rm×n, rank P = m, ε ∼ N (0,Ω) and Cov[ε, µ] = 0.
The vector Q contains the forecasted values, and the matrix P contains the
information about the assets that are affected by the respective forecasts. For
example, having three assets named A, B and C, and forecasting “A outperforms
B by 4%” and “C has a return of 6%”, Q and P would be given by

P =

(
1 −1 0
0 0 1

)
, and Q =

(
4%
6%

)
.

As the matrix Ω describes the variance of Q, it expresses the confidence about
the individual forecasts. Combining the forecast with the prior distribution of µ,
we thus obtain the conditional distribution of Q given µ as

Q | µ ∼ N (Pµ,Ω).

From Q | µ ∼ N (Pµ,Ω) and µ ∼ N (µ̂, τ Σ̂) we can calculate the marginal
distribution of Q, the joint distribution of µ and Q and finally the conditional
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distribution of µ given Q = q. These results are summarized in the subsequent
proposition.

Proposition 7.9. Let µ ∼ N (µ̂, τ Σ̂) and let Q = Pµ + ε with Q ∈ Rm, P ∈
Rm×n, rank P = m, ε ∼ N (0,Ω) and Cov[ε, µ] = 0. Then, the following
statements hold:

(i) The marginal distribution of Q is given by

Q ∼ Nm(Pµ̂, τ · P Σ̂P T + Ω).

(ii) The joint distribution of µ and Q is given by(
µ
Q

)
∼ Nn+m

((
µ̂
P µ̂

)
,

(
τ Σ̂ τ Σ̂P T

τP Σ̂ τ · P Σ̂P T + Ω

))
.

(iii) The conditional distribution µ | Q is given by

µ | Q = q ∼ Nn

(
µ̂+ τ Σ̂P T (τ · P Σ̂P T + Ω)−1(q − Pµ̂),

τ Σ̂− τ Σ̂P T (τ · P Σ̂P T + Ω)−1τP Σ̂
)
. (7.10)

Proof.

(i) Expressing µ ∼ N (µ̂, τ Σ̂) in the form µ = µ̂+ ν with ν ∼ N (0, τ Σ̂) and ν
independent from ε, we obtain

Q = Pµ+ ε = Pµ̂+ Pν + ε

which thus follows again a normal distribution, and the moments are

E[Q] = Pµ̂,

Cov[Q] = Cov[Pν + ε]

= P Cov[ν]P T + 2P Cov[νε] + Cov[ε]

= τP Σ̂P T + Ω.

(ii) The covariance between µ and Q can be calculated as

Cov[µ,Q] = E[(µ− E[µ])(Q− E[Q])T ]

= E[(µ− µ̂)(Q− Pµ̂)T ]

= E[((µ̂+ ν)− µ̂)((Pµ̂+ Pν + ε)− Pµ̂)T ]

= E[ν(Pν + ε)T ]

= E[ννTP T ] + E[νεT ]

= Cov[ν]P T + Cov[ν, ε]

= τ Σ̂P T .

Thus, the above joint distribution follows.
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(iii) This follows immediately from the conditioning formula for the normal dis-
tribution, given by Equation (D.1).

This conditional distribution µ | Q can be interpreted as the posterior distri-
bution of µ after incorporating additional information – here given in the form
of experts’ opinions. (Recall that in the Bayesian framework, the additional in-
formation came from the historical data and the prior assumption was e.g. given
by an expert.)

For actually determining point estimates or an uncertainty set in the Black-
Litterman setting, the matrix Ω expressing the confidence in the individual fore-
casts needs to be specified. It can be distinguished between the two cases of
dependent and independent forecasts.

• In the case of independent forecasts – which we will not pursue any further
– the matrix Ω is chosen as a diagonal matrix, describing a possibly different
confidence for each individual forecast, i.e.

Ω := diag(ω1, . . . , ωm).

• In the case of dependent forecasts, we assume the dependence structure ex-
pressed by the original covariance matrix, which naturally has to be modi-
fied by the transition matrix P to match the structure and the dimension
of the individual forecasts. By the scalar 1− τ a general confidence in the
forecasts is defined.

Ω := (1− τ)P Σ̂P T .

Recall that the prior assumption of the market is given by

µ ∼ N (µ̂, τ Σ̂).

Hence, τ represent a trade-off between the market and the forecasts, with
the limits τ = 0 expressing complete confidence in the market and τ = 1
neglecting the market and relying only on the forecasts. This is as well
reflected in Equation (7.10) where e.g. for τ = 0 the posterior distribution
is again reduced to the market assumption. Note that since Ω is included in
the formula through its inverse, a larger value of τ – hence smaller entries
in Ω – represents a larger influence of the forecasts in the final outcome.

Assumption 7.10. Throughout the rest of the chapter, we assume dependent
forecasts, i.e. the confidence matrix is given by

Ω = (1− τ)P Σ̂P T .

Note that using this assumption, the posterior distribution µ | Q simplifies to

µ | Q = q ∼ Nn

(
µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂
)
. (7.11)
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From the conditional or posterior distribution stated in Proposition 7.9 we
can – analogous to the Bayesian setting – either determine a point estimate2 for
µ to input into the classical optimization problem or use the distribution (resp.
the first two moments) to define an uncertainty set around µ for the robust
optimization problem.

7.2.1 Black-Litterman point estimates

As point estimates we get for µ the expectation of the distribution given in
Equation (7.11), and as no uncertainty was assumed for the covariance matrix,
we simply use the MLE there:

µ̂BL = E[µ|Q = q]

= µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂) (7.12)

Σ̂BL = Σ̂. (7.13)

Thus, the (posterior) Black-Litterman point estimate starts from the data esti-
mate and modifies the respective entries according to given forecasts.

Example 7.11. In a first example we assume that we only make absolute forecasts
and one forecast for each asset, i.e. we give an opinion in form of a vector q ∈ Rn,
and the matrix P is then given by the identity, P = I.

With these assumptions, Equation (7.12) simplifies to

µ̂BL = µ̂+ τ Σ̂(Σ̂)−1(q − µ̂)

= µ̂+ τ(q − µ̂)

= τq + (1− τ)µ̂,

i.e. a convex combination of the data mean µ̂ and the forecasted values q which
directly shows the influence of the parameter τ .

Let the MLE3 of a data sample with 5 assets be given by

µ̂ = (9.2%, 5.9%, 27.0%, 19.0%, 32.2%)T

and assume the forecasted (absolute) values to be

q = (6%, 10%, 17%, 11%, 15%)T .

With τ = 0.5, the posterior Black-Litterman forecast is given by averaging both
vectors, hence

µ̂BL = (7.6%, 8.0%, 22.0%, 15.0%, 23.6%)T .

2Note that Σ was already assumed to be estimated sufficiently accurate by Σ̂.
3Note that we present annualized values for comparability.
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Example 7.12. This second example illustrates that an individual view on only
one particular asset influences the point estimate for all the other assets as well.
We consider again

µ̂ = (9.2%, 5.9%, 27.0%, 19.0%, 32.2%)T

but this time the only forecast we make is that the second asset has an average
performance of 10%. Such a forecast is represented by

P = (0, 1, 0, 0, 0) and q = 10%.

The confidence in this forecast is again supposed to be expressed by the market
structure, thus in this particular case we have Ω = (1 − τ)Σ̂2,2. Using τ = 0.5,
the final estimate µ̂BL is calculated to

µ̂BL = (9.1%, 8.0%, 28.1%, 19.6%, 32.9%)T .

Thus, this simple example shows that a forecast on one asset influences all the
other components in the final estimate as well – in contrast to the Bayes model,
recall Remark 7.3.

Remark 7.13 (Consistency of the Black-Litterman point estimates).
The point estimate for Σ is simply given by Σ̂BL = Σ̂, the maximum likelihood
estimator of the underlying data sample, which is already known to be a consistent
estimator.

To investigate consistency of µ̂BL, we have to define τ sensibly in terms of
the sample size S. As a larger sample of historical data suggests more reliability
in the market assumption and should hence reflect an increasing influence of the
market compared to the forecasts, a natural definition is τ = 1

S
. Thus, for S

tending to infinity, we obtain for the Black-Litterman estimate

µ̂BL = µ̂+
1

S
Σ̂P T (P Σ̂P T )−1(q − Pµ̂) → µ̂,

hence it is a consistent estimator.

7.2.2 Black-Litterman uncertainty set

Besides determining Black-Litterman point estimates needed in the classical op-
timization problem, we can also create an uncertainty set for the parameter µ.
Such an uncertainty set taking into account both the market information and the
investor forecasts is described by the confidence ellipsoid characterized by the
first two moments of the posterior distribution given in Equation (7.10):

UBL =
{
µ ∈ Rn | (µ−mBL)T (CBL)−1(µ−mBL) ≤ δ2

}
(7.14)
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with

mBL = E[µ|Q = q]

= µ̂+ τ Σ̂P T (τ · P Σ̂P T + Ω)−1(q − Pµ̂), (7.15)

= µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

CBL = Cov[µ|Q = q]

= τ Σ̂− τ Σ̂P T (τ · P Σ̂P T + Ω)−1τP Σ̂ (7.16)

= τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂.

Remark 7.14 (Consistency of the Black-Litterman uncertainty set). We
have already seen that under the assumption τ = 1

S
the point estimate µ̂BL and

thus the midpoint of the confidence ellipsoid mBL = µ̂BL is consistent. The shape
of the uncertainty set is determined by

CBL = τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂

=
1

S

[
Σ̂− Σ̂P T (P Σ̂P T )−1 1

S
P Σ̂

]
.

From this formula it can be observed that for S →∞ it holds

CBL → 0.

Using – as in the proof of Proposition 6.8 – the equivalent formulation for an
ellipsoidal uncertainty set,

UBL = {µ ∈ Rn | µ = mBL + δ C
1
2
BLz, ‖z‖2 ≤ 1}

we straightforwardly obtain that UBL reduces to the single point µ̂ eventually, since
δ is fixed, i.e. bounded, and CBL → 0. Hence, UBL is a consistent uncertainty
set.

Example 7.15. We apply the Black-Litterman approach to create an uncertainty
set for the return with the following assumptions and forecasts:

• We let τ = 1
S

in the prior market model µ ∼ N (µ̂, τ Σ̂) to make it comparable
to the usual setting where the variance of the maximum likelihood estimator
of a normally distributed sample is scaled by the sample size. Note that
τ = 1 would imply the estimator’s variance to be of the same magnitude as
the individual return data.

• Similar to the Bayesian case, we use the median as external opinions, hence
we let P = I and define q to be the median. With these assumptions, the
formulas for the characteristics of the uncertainty set simplify to

mBL = µ̂+ τ(q − µ̂),

CBL = τ(1− τ)Σ̂.
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Figure 7.11: Black-Litterman uncertainty set.

The uncertainty set then looks as in Figure 7.11 at the time 01.11.2003.
The resulting plots of the efficient frontiers and the associated portfolio allo-

cations are shown in Figures 7.12 and 7.13. Figure 7.14 finally illustrates the
results for the particular investor.
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Figure 7.12: Classical and Black-Litterman efficient frontier on 01.11.2003.

Even though the efficient frontiers and the corresponding weights seem to be
identical, there are very slight differences, but too small to recognize in the graph-
ics. But the fact that the portfolios and the efficient frontiers are very similar
is not surprising, since for small τ the midpoint is roughly given by the MLE µ̂
and the shape matrix is approximately 1

S
Σ̂. This is the setting of determining an
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Figure 7.13: Classical and Black-Litterman efficient portfolios on 01.11.2003.
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Figure 7.14: Implications of robust Black-Litterman optimization for a particular
investor.

uncertainty set by a confidence ellipsoid around the MLE, as discussed in Sec-
tion 5.2.1. Note that in the more general Black-Litterman setting with P 6= I,
we obtain a similar qualitative statement. For τ close to zero, the midpoint is
approximately the MLE, and for the shape matrix it holds

CBL = τ
[
Σ̂− τ Σ̂P T (P Σ̂P T )−1P Σ̂

]
≈ τ Σ̂

since the expression τ Σ̂P T (P Σ̂P T )−1P Σ̂ becomes small and is hence neglectable.

In all the previous examples we have always applied only the respective
method for creating an uncertainty set and compared the robust results to the
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classical setting. The following example recalls the uncertainty sets and the
efficient frontiers for all the different robustifications and illustrates them simul-
taneously.

Example 7.16. As the basis we consider the classical portfolio optimization prob-
lem using the maximum likelihood estimators as point estimates. For the robust
portfolio optimization we recall the following approaches for creating an uncer-
tainty set for the return vector:

• Using different statistical estimators, see Section 5.3.

• The continuous Bayesian approach, see Section 7.1.1.

• The discrete Bayesian approach, see Section 7.1.2.

• The Black-Litterman approach, see Section 7.2.

As prior assumptions or expert opinions in the respective methods we use the
values presented in the corresponding examples.
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Figure 7.15: Comparison of the various uncertainty set.

The uncertainty sets (i.e. the projection onto 2 selected assets) are shown in
Figure 7.15. As discussed before, the uncertainty sets in the Bayesian and the
Black-Litterman approach resemble the confidence ellipsoid for the MLE which is
also reflected below in Figures 7.16 and 7.17 illustrating the efficient frontiers and
the portfolio allocations. The uncertainty sets in the case of various estimators
and in the discrete Bayes model are shaped differently and hence also result in a
modified efficient frontier and changed portfolio allocations.
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Figure 7.16: All investigated efficient frontiers on 01.11.2003.
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Figure 7.17: All investigated efficient portfolios on 01.11.2003.
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7.3 Comparison of point estimates – Bayes vs.
Black-Litterman

Both the Bayesian and the Black-Litterman approach are models that combine
information from experts and from a historical data set:

• In the Bayes model the expert describes the prior distribution of the pa-
rameters which then gets conditioned on the data.
In short: data = condition, experts = prior.

• The Black-Litterman model basically works vice versa: The prior is deter-
mined by the data sample, and afterwards different experts’ opinions alter
the final outcome.
In short: data = prior, experts = condition.

First of all, it is worth noting that none of the models contains the other one as
a special case. The Bayesian setting allows flexibility in modeling the covariance
matrix, i.e. the covariance is supposed to follow a certain distribution, whereas in
the Black-Litterman model the covariance matrix is fixed, thus no uncertainty is
assumed. On the other hand, the Black-Litterman model allows more possibilities
for incorporating experts’ opinions. Both absolute and relative forecasts can be
made on arbitrary assets. In the Bayes model however, external knowledge can
only enter the model through the prior assumption which basically represents the
case of making an absolute return forecast for each individual asset.

Both models can – as illustrated above – be applied in two different ways:

• Calculate point estimates for µ and Σ and perform a classical portfolio
optimization using these estimates.

• Calculate the (marginal) distribution of the uncertain parameter(s), create
the according uncertainty set and perform a robust portfolio optimization.

In this section we compare the point estimates for the classical optimization
problem that are obtained from the two models, and in Section 7.4 we try to
match the uncertainty sets for the robust portfolio optimization.

Besides comparing the general formulas given in the Bayes and the Black-
Litterman model, we consider explicitly the case where the market framework
in both models is the same and we hence obtain the same class of distribution
for the posterior distribution of µ. In the general cases as described above, we
have a Student-t distribution in the Bayes setting (see Equation (7.4)) and a
normal distribution in Black-Litterman (see Equation (7.10)). The Student-t
distribution stems from the prior in the Bayes model where variability in the
covariance estimator is allowed – as opposed to the Black-Litterman model where
the covariance matrix is assumed to be fixed. Thus, for obtaining the same class
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of distriubution for the (marginal) posterior distributions of µ, we make the
assumption

ν0 := ∞ (7.17)

in the Bayes model which basically reduces the prior assumption for the covari-
ance matrix to a point estimate with zero variance. The consequences of this
assumption are summarized in the following lemma.

Lemma 7.17. Let ν0 := ∞ in the Bayesian setting. Then, the prior assumption
can be rewritten as

µ ∼ N
(
µ0,

1

d0

Σ0

)
,

Σ = Σ0,

and the marginal posterior distribution of µ | xs, . . . , xS is given by

µ | x1, . . . , xS ∼ N
(

d0

d0 + S
µ0 +

S

d0 + S
µ̂,

1

d0 + S
Σ0

)
.

Proof. Recall the general formulation of the Bayes prior assumption:

(µ,Σ) ∼ NIW(µ0, d0,Σ0, ν0)

i.e.

µ | Σ ∼ N
(
µ0,

1

d0

Σ

)
Σ ∼ IW(ν0Σ0, ν0 + n+ 1).

With ν0 = ∞, the last expression implies

E[Σ] = Σ0,

Cov[Σ] = 0,

i.e. this simply represents Σ = Σ0. Thus, the prior assumption with ν0 = ∞ can
equivalently be described by

µ ∼ N
(
µ0,

1

d0

Σ0

)
,

Σ = Σ0.

Accordingly, as a Student-t distribution with infinitely many degrees of freedom is
equal to a normal distribution, the marginal posterior of µ | x1, . . . , xS simplifies
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as follows:

µ | x1, . . . , xS ∼ St

(
µ1,

1

d1

Σ1,∞
)

= N
(
µ1,

1

d1

Σ1

)
= N

(
d0

d0 + S
µ0 +

S

d0 + S
µ̂,

1

d0 + S
Σ0

)
Note that in the limit ν0 = ∞, it holds that Σ1 = Σ0.

We want to compare the Bayes and the Black-Litterman approach with re-
spect to both point estimates needed in the classical portfolio optimization and an
uncertainty set for the return which is used in the robust portfolio optimization
problem. As in both the classical and the robust portfolio optimization problem,
no uncertainty of the covariance matrix is explicitly accounted for, it is first of
all necessary to match the point estimates for Σ. Hence, as the Black-Litterman
model simply uses the maximum likelihood estimator Σ̂ as point estimate for Σ,
we have to limit the choices in the Bayes model further by defining

Σ0 := Σ̂.

Notation 7.18. As notational convention, we will call the Bayes framework with
the two definitions

• ν0 := ∞ and

• Σ0 := Σ̂

the restricted Bayes model.

7.3.1 Restricted Bayes vs. Black-Litterman

We first compare the point estimates for the vector of expected returns and
the covariance matrix obtained from the restricted Bayes model and the Black-
Litterman approach. Recalling the results from above, we have the following
formulas for the point estimates:

µ̂B = E[µ | x1, . . . , xS]

=
d0

d0 + S
µ0 +

S

d0 + S
µ̂,

Σ̂B = Σ̂,
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and

µ̂BL = E[µ | Q = q]

= µ̂+ τ Σ̂P T (τ · P Σ̂P T + Ω)−1(q − Pµ̂)

= µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

Σ̂BL = Σ̂.

As it holds that Σ̂B = Σ̂BL = Σ̂, it suffices to compare the point estimates for
the return vector. For testing coincidence of µ̂B and µ̂BL, we analyze if a given
Bayes prior can be expressed as a Black-Litterman forecast such that the resulting
estimates are the same, and vice versa. In the Bayes model, the free variables are
µ0 and d0, and in the Black-Litterman model, we can choose P , q and τ . Recall
that the matrix Ω was assumed to be given by Ω = (1− τ)P Σ̂P T .

We will find that when simply considering point estimates for the classical
portfolio optimization, each model can be expressed as a special case of the other
one by adequately defining the free parameters. These results are summarized in
the following two propositions.

Proposition 7.19. Let the restricted Bayes model be given, i.e. µ0 and d0 are
fixed. Then, there exist parameters P , q and τ such that the point estimates for
the classical portfolio optimization problem coincide in the restricted Bayes and
the Black-Litterman model. Hence, the restricted Bayes model is a special case
of the Black-Litterman model.

Proof. To show that an arbitrary choice of the priors µ0 and d0 in the restricted
Bayes model is contained as a special case in the Black-Litterman model, we
equate the formulas for the (posterior) point estimates and determine working
values for the free variables P , q and τ :

µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂)
!
=

d0

d0 + S
µ0 +

S

d0 + S
µ̂. (7.18)

Since this is one equation for three free variables, appropriate definitions for P ,
q and τ are possible. Restricting the choices for P to invertible matrices, further
equivalent reformulations can be performed:

⇔ µ̂+ τP−1(q − Pµ̂) =
d0

d0 + S
µ0 +

S

d0 + S
µ̂

⇔ (1− τ)µ̂+ τP−1q =
d0

d0 + S
µ0 +

S

d0 + S
µ̂

⇔ q =
1

τ
P

(
d0

d0 + S
µ0 +

[
S

d0 + S
− (1− τ)

]
µ̂

)
= P

[(
1− τ

d0

d0 + S

)
µ̂+ τ

d0

d0 + S
µ0

]
. (7.19)
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Thus, any definitions for an invertible matrix P , a vector q and a positive real
number τ fulfilling the above formula (7.19) can be used to express a given prior
assumption for µ0 and d0 in the Black-Litterman framework and obtain the same
point estimates for the classical portfolio optimization problem.

A canonical choice for P , q and τ satisfying the relationship in Equation (7.19)
is

P := I, q := µ0, τ :=
d0

d0 + S
.

These parameter choices seem rather intuitive: As in the Bayes prior a particu-
lar vector µ0 for the returns and nothing else is given, it is natural to express
this vector as an absolute forecast for each asset in the Black-Litterman model,
i.e. P = I and q = µ0. The scaling factor τ is finally adjusted such that the
formulas are equal.

Proposition 7.20. Let the Black-Litterman model be given, i.e. P , q and τ are
fixed. Then, the prior parameters µ0 and d0 in the restricted Bayes model can
be defined such that the point estimates in the given Black-Litterman and the re-
stricted Bayes model coincide. Thus, the Black-Litterman model is a special case
of the restricted Bayes model with respect to comparison of the point estimates.

Proof. We again compare the formulas for the (posterior) point estimates in both
models, see Equation (7.18) in the proof of the previous proposition. Letting
d0 > 0 be chosen arbitrarily and solving this equation for the prior vector µ0, we
obtain

µ0 =
d0 + S

d0

·
[
µ̂− S

d0 + S
µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂)

]
= µ̂+

d0 + S

d0

τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂).

Thus, defining the prior µ0 in such a way, i.e. any forecasts (absolute or relative)
are contained therein, we have incorporated arbitrary experts’ opinions into the
existing restricted Bayesian framework and achieve the same point estimate for
the posterior return as we would get in the Black-Litterman model itself. This
approach hence uses the sound statistical method of Bayes while not requiring to
come up with a particular point estimate for the entire return vector, as maybe
we do not have an opinion about some of the assets.

To summarize, when comparing the restricted Bayesian setting (i.e. without
variability in the covariance matrix) and the Black-Litterman approach with re-
spect to the final point estimates for the classical portfolio optimization problem,
we have seen that each model can be expressed as a special case of the other one.
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7.3.2 (General) Bayes vs. Black-Litterman

We now want to compare the point estimates determined by the general Bayesian
model (i.e. ν0 6= ∞) and the Black-Litterman approach. From the previous sec-
tions it is known that the posterior distributions of µ are different in the two
settings: in Bayes a Student-t distribution is obtained, and in Black-Litterman
µ | Q = q is normally distributed. Hence, the models cannot completely coincide
(in case of a finite number of degrees of freedom in the Student-t distribution),
but we can still test whether it is possible that the resulting point estimates are
the same.

Recalling the respective point estimates in both the Bayes (see Equations
(7.5) and (7.6)) and the Black-Litterman (Equations (7.12) and (7.13)) model,
we have

µ̂B = E[µ | x1, . . . , xS]

=
d0

d0 + S
µ0 +

S

d0 + S
µ̂,

Σ̂B = E[Σ | x1, . . . , xS]

=
1

ν0 + S − n− 1

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
and

µ̂BL = E[µ|Q = q]

= µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

Σ̂BL = Σ̂.

Since in the Black-Litterman model the covariance estimate is given by Σ̂ and
the Bayes model allows modification in the covariance, it can be stated that the
Bayes model cannot be contained in the Black-Litterman model as a special case.
Note that this would only be true in the particular case of Σ̂B = c · Σ̂, i.e. if the
Bayesian estimate for the covariance matrix a multiple of the matrix Σ̂ which is
determined by the data sample. We will not analyze this case explicitly, as it
basically reduces to the restricted Bayesian framework.

Vice versa, the following proposition shows that the Black-Litterman model
can be regarded as a special case of the (general) Bayes model by choosing the
prior parameters µ0 and Σ0 appropriately.

Proposition 7.21. Let the Black-Litterman model be given, i.e. P , q and τ are
fixed. Then, the prior parameters µ0, d0, ν0 and Σ0 in the (general) Bayes model
can be defined such that the point estimates in the Black-Litterman and the Bayes
model coincide, i.e.

µ̂B = µ̂BL and Σ̂B = Σ̂BL = Σ̂.
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Hence, the Black-Litterman model is a special case of the Bayes model with respect
to comparison of the point estimates.

Proof. Note that since the restricted Bayes model is a special case of the general
Bayes model, the choice of ν = ∞, Σ0 = Σ̂ and µ0 as in Proposition 7.20 trivially
gives the desired match of the point estimates. But also in case of ν 6= ∞,
appropriate parameter definitions are possible.

First, we set the equations for the return point estimates equal and solve for
the variable µ0 while d0 > 0 is arbitrary. This was already done in Proposi-
tion 7.20 and yields

µ0 = µ̂+
d0 + S

d0

τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂).

Second, letting ν0 > 0 be arbitrarily chosen and equating the formulas for the
covariance estimates gives, when solving for Σ0:

Σ0 =
ν0 − n− 1

ν0

Σ̂− d0S

ν0(d0 + S)
(µ0 − µ̂)(µ0 − µ̂)T .

Hence, defining the prior variables µ0 and Σ0 as stated, we achieve equality of
the point estimates µ̂B = µ̂BL and Σ̂B = Σ̂BL = Σ̂.

Thus, similar to the restricted Bayes model, we can use the statistical method
of the (general) Bayes framework and include relative forecasts by defining the
prior assumptions accordingly.

Altogether, we have found in this section that the general Bayes model con-
tains the Black-Litterman approach as a special case if the focus is on the classi-
cal portfolio optimization where point estimates for the parameters µ and Σ are
needed. As the Bayes model allows variability in the structure of the covariance
matrix and in the Black-Litterman model the covariance estimate is given by Σ̂,
it is hence not possible to define forecasts in the Black-Litterman approach such
that the Bayes model merely represents a special case.

7.4 Comparison of uncertainty sets – Bayes vs.
Black-Litterman

In this section we analyze if the parameters needed for the robust portfolio op-
timization can be matched in the models of Bayes and Black-Litterman. Hence,
it is necessary to compare the uncertainty set for the return vector (i.e. the mid-
point, the shape matrix and the size) and the point estimate for the covariance
matrix.

For ease of comparison, we summarize all the needed formulas from the pre-
vious sections where µ̂ and Σ̂ with the respective subscripts denote the point
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estimates and m and C the midpoint and the shape matrix defining the uncer-
tainty sets.

µ̂B = E[µ | x1, . . . , xS] =
d0

d0 + S
µ0 +

S

d0 + S
µ̂,

Σ̂B = E[Σ | x1, . . . , xS]

=
1

ν0 + S − n− 1

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
,

mB = E[µ | x1, . . . , xS] = µ̂B =
d0

d0 + S
µ0 +

S

d0 + S
µ̂,

CB = Cov[µ | x1, . . . , xS]

=
1

ν0 + S − n− 1
· 1

d0 + S

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
and

µ̂BL = E[µ|Q = q] = µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

Σ̂BL = Σ̂,

mBL = E[µ|Q = q] = µ̂BL = µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

CBL = Cov[µ|Q = q] = τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂.

Recall as well that in the restricted Bayes model, the estimators Σ̂B and CB

reduce to
Σ̂B = Σ̂ and CB =

1

d0 + S
Σ̂.

In mathematical terms, in Section 7.3 we compared and matched the expres-
sions

µ̂B
!
= µ̂BL and Σ̂B

!
= Σ̂BL

while in this section we want to match

UB
!
= UBL and Σ̂B

!
= Σ̂BL

which can equivalently be replaced by

mB
!
= mBL, CB

!
= CBL and Σ̂B

!
= Σ̂BL

since for elliptical distributions equal moments will result in the same uncertainty
set (with possibly different sizes δ though) when defined by confidence ellipsoids.

Analogous to the previous section, we first compare the easier setting of the
restricted Bayes model to the Black-Litterman framework before extending the
investigation to the general Bayesian approach.



7.4. COMPARISON OF UNCERTAINTY SETS 209

7.4.1 Restricted Bayes vs. Black-Litterman

Since in the restricted Bayes model the point estimate for Σ is given by Σ̂, i.e. it
coincides with the estimate in the Black-Litterman model, it suffices in this case
to compare the uncertainty set for the return. Furthermore, both posterior dis-
tributions are given in terms of a normal distribution which implies that the sizes
of the respective uncertainty sets are determined as quantiles of a χ2

n-distribution
to the appropriate confidence level. Hence, the uncertainty sets have the same
size and it remains to equate the formulas for the midpoint and the shape matrix.

Analogous to the investigations in the previous section, we distinguish the
two cases of trying to express the Bayes prior as Black-Litterman forecast and
vice versa.

Proposition 7.22. Let the restricted Bayes model be given, i.e. µ0 and d0 are
fixed. Then there exist parameters P , q and τ such that the uncertainty sets ob-
tained from the restricted Bayes model and the Black-Litterman approach are the
same. Hence, with respect to matching parameters for the robust portfolio opti-
mization problem, the restricted Bayes model is a special case of Black-Litterman.

Proof. Given the prior assumptions µ0 and d0, we want to determine P , q and τ
such that

µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂)
!
=

d0

d0 + S
µ0 +

S

d0 + S
µ̂

and

τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂
!
=

1

d0 + S
Σ̂

hold. Choosing again P as an invertible matrix, we already know from the cal-
culations in the proof of Proposition 7.19 that the first equation leads to

q = P

[(
1− τ

d0

d0 + S

)
µ̂+ τ

d0

d0 + S
µ0

]
.

The second equation simplifies to

τ Σ̂− τ 2Σ̂
!
=

1

d0 + S
Σ̂

which leads to the two solutions for τ :

τ =
1±

√
1− 4 1

d0+S

2
.

Note that both possible values are in [0, 1] since
√

1− 4 1
d0+S

≤ 1. With τ known,
the appropriate value for q can be determined by the above equation, hence
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it holds that any Bayes prior µ0, d0 can be represented as a Black-Litterman
forecast such that the resulting posterior distributions of the return vector are
the same.

Proposition 7.23. Let the Black-Litterman setting be given, i.e. the parameters
P , q and τ and assume that P is invertible. Then, the parameters µ0 and d0 in
the restricted Bayes model can be defined appropriately such that the uncertainty
sets coincide, i.e. the Black-Litterman approach is a special case of the restricted
Bayes model with respect to comparison of the uncertainty sets.

Proof. In case of P invertible, the formulas for the Black-Litterman estimates
simplify to

mBL = µ̂+ τP−1(q − Pµ̂) = (1− τ)µ̂+ τP−1q,

CBL = τ(1− τ)Σ̂.

Hence, from setting mBL = mB we obtain

µ0 =
d0 + S

d0

[(
1− τ − S

d0 + S

)
µ̂+ τP−1q

]
=
d0 + S

d0

[(
d0

d0 + S
− τ

)
µ̂+ τP−1q

]
=

(
1− τ

d0 + S

d0

)
µ̂+ τ

d0 + S

d0

P−1q.

Equating additionally CBL = CB finally yields

d0 =
1

τ(1− τ)
− S.

Therefore, the Black-Litterman model with an invertible matrix P can be ex-
pressed as a special case of the restricted Bayes model.

7.4.2 (General) Bayes vs. Black-Litterman

To compare the general Bayes model and the Black-Litterman approach with
respect to the parameters needed in the robust portfolio optimization, the uncer-
tainty set for the return vector and the point estimate for the covariance matrix
have to be investigated. In the Bayes model the posterior of µ is given by a
Student-t distribution whereas in the Black-Litterman setting the posterior is
described by a normal distribution. As both the normal and the Student-t distri-
bution are elliptical, the respective uncertainty sets are created using the first two
moments of the posterior distribution of µ. Hence, by equating the moments, it
could be achieved that the midpoint and the shape are the same, but the uncer-
tainty sets cannot be easily matched completely, as the quantiles to determine the
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sizes have to be obtained from either an F -distribution (in the Bayesian model
where µ | x1, . . . , xS ∼ St) or a χ2-distribution (in the Black-Litterman model
where µ | Q = q ∼ N ). Therefore, setting a particular confidence level results in
differently sized uncertainty sets, or vice versa, fixing the same size for the two
ellipsoids, they correspond to different levels of confidence.

Neglecting the size for a moment and investigating only the midpoint and
the shape of the uncertainty set and the point estimate for the covariance, the
following three equations have to hold:

mB = mBL, CB = CBL and Σ̂B = Σ̂BL,

i.e. we obtain the equations

(1)
d0

d0 + S
µ0 +

S

d0 + S
µ̂ = µ̂+ τ Σ̂P T (P Σ̂P T )−1(q − Pµ̂),

(2)
1

ν0 + S − n− 1
· 1

d0 + S

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
= τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂,

(3)
1

ν0 + S − n− 1

[
SΣ̂ + ν0Σ0 +

d0S

d0 + S
(µ0 − µ̂)(µ0 − µ̂)T

]
= Σ̂.

As in Section 7.3.2 when comparing the point estimates, we straightfor-
wardly have that the Bayes model (in general) cannot be expressed in the Black-
Litterman framework since in the Bayes model variability in the covariance is al-
lowed whereas in the Black-Litterman setting the covariance is given by Σ̂, i.e. for
arbitrarily chosen parameters in the Bayesian prior, Equation (3) does not hold.
Vice versa, we assume that the Black-Litterman model is given. From Equation
(1) the prior parameters µ0 can be determined. Defining furthermore Σ0 such
that Equation (3) is satisfied (by simply solving for Σ0, see Proposition 7.21),
Equation (3) can be plugged into (2) and thus yields

1

d0 + S
Σ̂ = τ Σ̂− τ Σ̂P T (P Σ̂P T )−1τP Σ̂.

Assuming additionally P to be an invertible matrix, the equation simplifies to
the restriction

1

d0 + S
Σ̂ = τ(1− τ)Σ̂

which gives d0 = 1
τ(1−τ)

− S.
These conclusions are summarized in the following proposition.

Proposition 7.24. Let the Black-Litterman model be given and assume P to be
invertible. Then, the prior parameters µ0, d0, ν0 and Σ0 in the (general) Bayes
model can be defined such that the midpoint and the shape of the uncertainty set
and the point estimate for the covariance coincide in the Black-Litterman and the
Bayes model.
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7.5 Summary of the comparisons
The following Table 7.2 summarizes the results in Sections 7.3 and 7.4, where the
notation “⊂” is supposed to be read as “can be expressed as a special case of”:

Comparison of point estimates
restricted Bayes ⊂ Black-Litterman
Black-Litterman ⊂ restricted Bayes

Bayes 6⊂ Black-Litterman
Black-Litterman ⊂ Bayes

Comparison of uncertainty sets
restricted Bayes ⊂ Black-Litterman

Black-Litterman with P invertible ⊂ restricted Bayes
Bayes 6⊂ Black-Litterman

Black-Litterman with P invertible ⊂ Bayes

Table 7.2: Summary of the relationships between the Bayes and the Black-
Litterman model.



Chapter 8

Summary and Outlook

This dissertation is organized in two parts. The first part consists of Chapters 2
and 3 and investigates theoretical aspects of a general convex conic optimization
problem and its associated local robust counterpart. As the main point of interest
was uniqueness and stability (i.e. continuity) of the optimal solution, the results
for the original problem were summarized and proved before analogous analyses
were performed for the robust problem. To the best of our knowledge, these
investigations for the robust counterpart have not been done so far. We found that
the same stability properties hold for the robust problem as for the original one.
Furthermore, we could show that in a rather general formulation of the original
problem where the uncertain parameter enters the objective function linearly, an
ellipsoidal uncertainty set is more promising as a polyhedral one, as it results in
a certain structure of the set of optimal solutions. If additionally a constraint
is imposed that does not allow multiples of the optimal solution, uniqueness of
x∗(u) is guaranteed, and hence continuity follows. With respect to the costs of
robustification, we were able to prove the result of Ben-Tal and Nemirovski [4]
for linear programs in our general conic setting, namely that the increase in the
optimal objective value depends linearly on the size of the respective uncertainty
set.

The second part of the dissertation contains Chapters 4 to 7 and illustrates
the application and the benefits of the robust counterpart to the well-known
portfolio optimization problem of Markowitz. As the uncertain parameters in
this problem are the vector of expected assets returns and the covariance matrix
thereof which are usually estimated from a sample of historical observations and
thus contain estimation errors, the application of the robust counterpart approach
seems promising.

To solve the associated robust program, we discussed two different ideas to
describe appropriate uncertainty sets. We first defined an uncertainty set using
a confidence ellipsoid which lead to the rather surprising result that the robust
efficient frontier is identical to the classical one, but shortened. Even though
confidence ellipsoids are rather natural choices for uncertainty sets, this result
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seems to have been unnoticed so far. Building an uncertainty set based on various
statistical estimators – which could all serve as point estimates equally likely –
for the mean of an elliptical distribution gives robust portfolios which illustrate
the effects of robustification quite nicely.

We furthermore investigated consistency of the input parameters and espe-
cially of the resulting optimal portfolios, i.e. we studied the case of having an
infinitely large sample of historical data. There, we could prove by using unique-
ness and hence continuity of the optimal solutions that both the classical and
the robust optimal portfolio are consistent estimators for the true (but unknown)
portfolio in case of consistent parameter estimates.

Finally, more sophisticated methods of obtaining suitable point estimates and
uncertainty sets were considered in the last chapter. The Bayesian and the Black-
Litterman approach are models including both information of an existing sample
and external input, either given in form of an assumed prior distribution or in
terms of explicit individual forecasts.

Summarizing, using the Bayesian or the Black-Litterman approach seems only
sensible if there is a strong belief in the prior assumption. Otherwise, the ap-
proach of using several statistical estimators seems rather promising as it exploits
the available data sample and creates more diversified portfolio allocations.

Besides the models of Bayes and Black-Litterman, there is a further approach
to include prior knowledge into the parameter determination which was intro-
duced by Qian and Gorman [66]. Their model basically extends the Black-
Litterman approach to additionally allowing variability in and forecasts for the
coavariance matrix. It starts with modelling the market itself according to a
normal distribution, i.e. X ∼ N (µ̂, Σ̂), and then describes forecasts analogously
to the Black-Litterman approach using a projection matrix P . It is worth noting
that in the Qian-Gorman model the prior assumption is based on the distribution
of the actual asset returns X, whereas both the Bayes and the Black-Litterman
model are working on the distribution of the expected returns µ. This fact leads
to a major drawback of the Qian-Gorman approach when using it for determin-
ing parameters for the optimization problems. Due to the framework being based
on the market returns X, only point estimates for the parameters µ and Σ can
be obtained from the posterior distribution of X. The posterior distribution of
µ (or the first two moments thereof) is not available, but would be needed to
create an uncertainty set. Hence, the Qian-Gorman approach can only be used
if the classical portfolio optimization problem is solved, but it does not yield an
uncertainty set which could be applied in the robust optimization.

A further aspect that could be worth investigating more closely is the size of
the uncertainty set. It is known that and how it influences the costs of robus-
tification. But the size also describes the level of conservativeness imposed on
the problem: Setting δ large, the optimal solution might be too conservative and
the costs will be unnecessarily high. On the other hand, δ small can first of all
lead to numerical difficulties and thus falsify the results, and secondly the robust
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counterpart approach might not be sufficiently effective in robustifying the solu-
tion. Hence it might be worth analyzing if there is something like an “optimal
size δ” describing the best trade-off between robustness and costs. This could be
generally expressed by

δopt = arg min
δ

E
[
‖x∗rob(µ̂, Σ̂, δ)− x∗cl(µ,Σ)‖2

]
where x∗rob(µ̂, Σ̂, δ) denotes the optimal solution to the robust program with an
uncertainty set specified by the parameters µ̂ and Σ̂ and the size δ, and x∗cl(µ,Σ)
describes the optimal solution obtained when using the original (unknown) pa-
rameters µ and Σ. Introducing the expression E[x∗rob(µ̂, Σ̂, δ)], we can reformu-
late1 the above to

δopt = arg min
δ

E
[
‖x∗rob(µ̂, Σ̂, δ)− x∗cl(µ,Σ)‖2

]
= arg min

δ
E
[
‖x∗rob(µ̂, Σ̂, δ)− E[x∗rob(µ̂, Σ̂, δ)]‖2

]
︸ ︷︷ ︸

estimation variance

+ ‖E[x∗rob(µ̂, Σ̂, δ)]− x∗cl(µ,Σ)‖2︸ ︷︷ ︸
bias

The first term, called estimation variance, expresses how much the robust solu-
tions deviate from their expected value. The larger δ, the smaller the estimation
variance will be. This holds since when choosing a large uncertainty set using
the first parameter estimate, the intersection of it with the uncertainty set using
a second parameter estimate will be quite large, and thus the corresponding op-
timal solutions of the robust counterpart program will not be very different – if
they are not even identical.

The second term, called bias, expresses how much the expected robust solution
differs from the classical solution calculated using the real parameters. It holds
that with increasing δ, the bias also increases. This can be explained by the fact
that the larger we choose δ, the more conservative the solution will be since more

1For readability and ease of notation, let x∗rob := x∗rob(µ̂, Σ̂, δ) and x∗cl = x∗cl(µ,Σ). Note that
the random variables are µ̂ and Σ̂, hence, with respect to the expectation, x∗cl is a constant.
Then it holds that

E
[
‖x∗rob − x∗cl‖2

]
= E

[(
x∗rob − x∗cl

)T (
x∗rob − x∗cl

)]
= E

[(
x∗rob −E[x∗rob] + E[x∗rob]− x∗cl

)T · (x∗rob −E[x∗rob] + E[x∗rob]− x∗cl

)]
= E

[
‖x∗rob −E[x∗rob]‖2

]
+ ‖E[x∗rob]− x∗cl‖2 + 2E

[
x∗rob −E[x∗rob]

]T︸ ︷︷ ︸
=0

·
(
E[x∗rob]− x∗cl

)
.
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possible parameter realizations have to be taken into account. Thus, the robust
solution will differ more from x∗cl(µ,Σ) for increasing size of the uncertainty set.

These opposing goals could be used to determine an optimal size δ, but at the
moment it is not yet clear if the optimal δ always is a strictly positive number, or
if the infimum is zero. A further problem is that the real market parameters are
still unknown, but enter the optimization problem to find δ. An approximation
could be obtained by simulations, but it would have to be analyzed if this falsifies
the results. Still, this seems to be an approach worth pursuing.



Appendix A

Convex analysis

In the first part of this appendix we summarize definitions of local and global
Lipschitz continuity and give a useful result linking some of them. Afterwards,
we give the definitions of different types of directional differentiability and some
useful properties thereof.

Definition A.1 (pointwise Lipschitz continuity). A function f : Rn → Rm is
called pointwise Lipschitz continuous in x if and only if there exists a neighborhood
V (x) around x and a constant L = L(x) > 0 such that

‖f(x)− f(y)‖ ≤ L · ‖x− y‖ ∀y ∈ V (x).

Definition A.2 (local Lipschitz continuity in a point). A function f : Rn →
Rm is locally Lipschitz continuous in x if and only if there exists a neighborhood
V (x) around x and a constant L = L(x) > 0 such that

‖f(a)− f(b)‖ ≤ L · ‖a− b‖ ∀a, b ∈ V (x).

Obviously we have that local Lipschitz continuity in x implies pointwise Lip-
schitz continuity in x. The other direction does not holds as shown by the coun-
terexample f(x) = x sin

(
1
x

)
, which is pointwise Lipschitz continuous for all x ∈ R

but not locally Lipschitz continuous in x = 0.

Definition A.3 (local Lipschitz continuity). A function f : Rn → Rm is
locally Lipschitz continuous if and only if f is locally Lipschitz continuous in x
for all x ∈ Rn.

Definition A.4 (global Lipschitz continuity). A function f : Rn → Rm is
globally Lipschitz continuous if and only if there exists a constant L > 0 such
that

‖f(x)− f(y)‖ ≤ L · ‖x− y‖ ∀x, y ∈ Rn.

Note that in the definition of global Lipschitz continuity the constant L must
be the same for all x and thus independent of any neighborhoods.
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Lemma A.5. If a function f : Rn → R is convex, then it is also locally Lipschitz
continuous.

Proof. For a proof see Rockafellar [70], p. 86, Theorem 10.4.

Obviously the same statement holds for concave functions.
At some places in this dissertation we need the notion of directional differen-

tiability and results based thereupon. The definitions and statements here can
be found e.g. in the book of Bonnans and Shapiro [18], Section 2.2.1.

We assume f : Rn → Rm to be an arbitrary mapping.

Definition A.6. The function f is said to be directionally differentiable at a
point x ∈ Rn in a direction d ∈ Rn if

f
′
(x; d) := lim

t↓0

f(x+ td)− f(x)

t
<∞.

If f is directionally differentiable at x in every direction d ∈ Rn, f is said to be
directionally differentiable at x.

Proposition A.7. If the directional derivative f
′
(x; d) exists, it is positively

homogeneous in d, i.e.

f
′
(x;αd) = αf

′
(x; d) ∀α ≥ 0.

Proof. See Bonnans and Shapiro [18], page 34.

The definition for Hadamard directional differentiability is an even stronger
concept:

Definition A.8. The function f is said to be Hadamard directionally differen-
tiable at a point x ∈ Rn if it is directionally differentiable in x (i.e. the directional
derivative f ′(x; d) exists for all directions d ∈ Rn) and it holds that

f
′
(x; d) = lim

t↓0
d̃→d

f(x+ td̃)− f(x)

t
.

If additionally f ′(x; d) is linear in d, f is said to be Hadamard differentiable at
x.

Note that the special case of d̃ = d reduces the Hadamard directional differ-
entiability to directional differentiability as given in Definition A.6.

Proposition A.9. If f is Hadamard directionally differentiable at x ∈ Rn, then
the directional derivative f ′(x; .) is continuous on Rn.

Proof. See Bonnans and Shapiro [18], Proposition 2.46.
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Another notion of directional differentiability is Fréchet directional differen-
tiability:

Definition A.10. The function f is said to be Fréchet directionally differentiable
at a point x ∈ Rn if it is directionally differentiable in x and it holds that

f(x+ d) = f(x) + f
′
(x; d) + o(‖d‖)

for any d ∈ Rn.

In finite dimensional spaces1, i.e. in Rn, these concepts of differentiability are
closely linked to one another:

Proposition A.11. The following statements hold:

(i) Hadamard directional differentiability implies Fréchet directional differen-
tiability.

(ii) Fréchet directional differentiability together with continuity of f ′(x; .) im-
plies Hadamard directional differentiability.

(iii) If f is locally Lipschitz continuous, then Hadamard and Fréchet directional
differentiability are equivalent.

Proof. See Bonnans and Shapiro [18], page 36.

A particular result involving directional derivatives and which we need in the
proof of Theorem 3.37 is the following:

Proposition A.12. Consider the following type of optimization problem:

min
x∈X

f(x) (P)

s.t. G(x) + u ≤K 0

with f being convex and G being K-convex in x. The problem with u = 0 (i.e. the
unperturbed problem) will be denoted by (P0), and its dual2 with (D0). Assume
furthermore that the feasibility set F∗

P (u) is non-empty for all u in a neighborhood
of û = 0 (equivalently assume the existence of a Slater point for (P0)), and that
the optimal value f ∗P (0) is finite.

1The definitions of directional differentiability in different senses are usually given in more
general terms where f is a mapping from one (linear) normed space to another. In our setting
it suffices to consider finite real spaces Rn and Rm.

2The dual problem is given by

max
v∈K∗

min
x∈X

f(x) + vT
(
G(x) + u

)
,

but note that we do not need the explicit formulation, we only need to refer to it.
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Then it holds that

(i) The set of optimal solutions F∗
D0

⊂ K∗ of the dual problem (D0) is non-
empty and bounded;

(ii) The optimal value function f ∗P (u) is continuous at u = 0;

(iii) The optimal value function f ∗P (u) is Hadamard directionally differentiable
at u = 0 and it holds that

f ∗
′

P (0; d) = max
v∈F∗D0

vTd

for all directions d.

Proof. See Bonnans and Shapiro [16], Theorem 4.2.

Corollary A.13. Let the prerequisites of Proposition A.12 hold. We then espe-
cially obtain that f ∗′P (0; d) is finite for all directions d.

Proof. Finiteness of f ∗′P (0; d) follows from the definition of Hadamard differentia-
bility of f ∗P (u) at u = 0 which in turn is given according to Proposition A.12,
part (iii).



Appendix B

Hausdorff distance

There are different possibilities to define distances. We will use the definition
that the distance between a point x and a set A is the distance beween x and
its projection onto A, i.e. the distance between x and the point within A which
is closest to x. Evidently, the distance between any point within the set and the
set itself is zero.

Definition B.1 (Hausdorff distance). Let X be a metric space with metric d,
A,B ⊂ X, A,B 6= ∅.

(i) The distance of a point x ∈ X to A is given by

d(x,A) := inf
a∈A

d(x, a).

(ii) The gap between A and B is defined as

Dd(A,B) := inf
a∈A

d(a,B).

(iii) The excess of A over B is defined as

ed(A,B) := sup
a∈A

d(a,B).

(iv) The Hausdorff distance is then defined as

Hd(A,B) := max{ed(A,B), ed(B,A)}.

Figure B.1 illustrates these definitions in the case of both intersecting and
disjoint sets.

Remark B.2.

• Note that the gap between the sets A and B is symmetric, i.e. Dd(A,B) =
Dd(B,A), in contrast to the excess, ed(A,B) 6= ed(B,A).
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A
B

BA

x
d(x,A)

gap(A,B)

gap(A,B) = 0

e(A,B)
e(B,A) = H(A,B)

e(A,B)
e(B,A) = H(A,B)

Figure B.1: Illustration of the Hausdorff distance and associated definitions.

• For A,B compact, the gap Dd(A,B) is equal to zero if the sets A and B
have nonempty intersection, otherwise Dd(A,B) > 0.

• For A,B compact, the excess ed(A,B) is equal to zero if A ⊆ B.

• For A,B compact, the Hausdorff distance Hd(A,B) is only equal to zero if
the two sets are identical, otherwise Hd(A,B) > 0.

Hausdorff lower and upper semicontinuity can be characterized as well using
the definition of the excess of one set over another.

Proposition B.3. Consider a set-valued mapping Γ : U → P(Rn) and let {uk} ⊂
U be a sequence with uk → û. Then the following statements hold:

• The mapping Γ is H-usc at û according to Definition 2.23 if and only if

ed(Γ(uk),Γ(û)) → 0 for uk → û.

• The mapping Γ is H-lsc at û according to Definition 2.23 if and only if

ed(Γ(û),Γ(uk)) → 0 for uk → û.
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Proof.

• For the forward direction, let Γ be H-usc at û. We thus get the following
implications:

∀ε > 0 ∃δ > 0 : Γ(uk) ⊂ V ε
2
(Γ(û)) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : d(v,Γ(û)) <
ε

2
∀v ∈ Γ(uk) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : sup
v∈Γ(uk)

d(v,Γ(û)) ≤ ε

2
∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : ed(Γ(uk),Γ(û)) < ε ∀uk ∈ Vδ(û)

⇒ ed(Γ(uk),Γ(û)) → 0 for uk → û.

The backward direction is proved by similar arguments, starting with

ed(Γ(uk),Γ(û)) → 0 for uk → û.

It then holds:

⇒ ∀ε > 0 ∃δ > 0 :

ed(Γ(uk),Γ(û)) = sup
v∈Γ(uk)

d(v,Γ(û)) < ε ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : d(v,Γ(û)) < ε ∀v ∈ Γ(uk) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : Γ(uk) ⊂ Vε(Γ(û)) ∀uk ∈ Vδ(û).

• To prove the forward direction, let Γ be H-lsc at û. Then we get the
following implications:

∀ε > 0 ∃δ > 0 : Γ(û) ⊂ V ε
2
(Γ(uk)) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : d(w,Γ(uk)) <
ε

2
∀w ∈ Γ(û) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : sup
w∈Γ(û)

d(w,Γ(uk)) ≤
ε

2
∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : ed(Γ(û),Γ(uk)) < ε ∀uk ∈ Vδ(û)

⇒ ed(Γ(û),Γ(uk)) → 0 for uk → û.

Backwards, let ed(Γ(û),Γ(uk)) → 0 for uk → û. Then we obtain the follow-
ing:

⇒ ∀ε > 0 ∃δ > 0 :

ed(Γ(û),Γ(uk)) = sup
w∈Γ(û)

d(w,Γ(uk)) < ε ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : d(w,Γ(uk)) < ε ∀w ∈ Γ(û) ∀uk ∈ Vδ(û)

⇒ ∀ε > 0 ∃δ > 0 : Γ(û) ⊂ Vε(Γ(uk)) ∀uk ∈ Vδ(û).
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Appendix C

Matrix analysis

In this short appendix, we summarize some useful facts and calculation rules for
the trace and the Kronecker product of matrices.

Definition C.1. The trace of an n×n matrix A = (aij) is defined to be the sum
of the diagonal entries of A, i.e.

tr(A) =
n∑

i=1

aii.

A rather useful property of the trace of a matrix product is that is remains
unaffected when the order of the matrices is changed cyclically:

Lemma C.2.

(i) Let A ∈ Rn×k and B ∈ Rk×n be arbitrary matrices. It holds that

tr(AB) = tr(BA).

(ii) Let A,B and C be suitably sized matrices such that the following matrix
products are possible. Then it holds that

tr(ABC) = tr(BCA) = tr(CAB). (C.1)

For a proof see e.g. Meyer [59], page 110.
As a consequence of this lemma, we also obtain the following chain of equalities

for x ∈ Rn and C ∈ Rn×n:

xTCx = tr(xTCx) = tr(CxxT ) = tr(xxTC).

Using the inner product on the space of symmetric matrices, an appropriate
norm can be defined.
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Definition C.3. Let A ∈ Sn, i.e. A is a symmetric n × n matrix. The (trace-)
norm of A, denoted by ‖A‖tr is defined by

‖A‖2
tr := 〈A,A〉 = tr(ATA) = tr(A2).

The link between the trace-norm for matrices and the Euclidean norm for
vectors is straightforward if a matrix A ∈ Sn is restructured and interpreted as a
vector in Rn2 by stacking the columns of A successively underneath each other.
A vector transformed in such a way is denoted by vec(A). For A ∈ Sn we then
obtain, using Equation (C.12) from below, that

‖A‖2
tr = tr(AA) = vec(AT )T vec(A) = ‖ vec(A)‖2

2. (C.2)

With help of the trace-norm, we can furthermore define the distance between
pairs that consist of a vector and a symmetric matrix, i.e. given by (a,A) with
a ∈ Rn and A ∈ Sn.

Definition C.4. Let pairs (a,A) and (b, B) with a, b ∈ Rn and A,B ∈ Sn be
given. The distance between (a,A) and (b, B) is then defined as

d
(
(a,A), (b, B)

)
:= ‖a− b‖2 + ‖A−B‖tr. (C.3)

Note that this formula would also be obtained if a pair (a,A) was interpreted

as a vector w ∈ Rn+n2 with w =

(
a

vec(A)

)
and the usual Euclidean distance

was applied.
The transformation of a matrix into a vector is not only useful when dealing

with norms, but as well for determining distributional properties of a random
matrix. In the general case of an arbitrary n × k matrix A, the resulting vector
vec(A) has nk components and is also obtained by stacking the columns of A suc-
cessively underneath each other. The relationship between vec(A) and vec(AT )
is described through the commutation matrix Knk which is uniquely defined by
the following equation:

vec(A) = Knk vec(AT ) ∀A ∈ Rn×k. (C.4)

For the commutation matrix Knk, we obtain the following results.

Lemma C.5.

(i) For a commutation matrix Knk it holds that

KT
nk = K−1

nk = Kkn.

(ii) In case of quadratic matrices this simplifies further to

KT
nn = K−1

nn = Knn. (C.5)
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Proof. See e.g. Meucci [57], Appendix A.6.

Definition C.6. The Kronecker product for two arbitrary matrices A ∈ Rn×k

and B ∈ Rp×q is given by the np× kq matrix

A⊗B =

A11B · · · A1kB
... . . . ...

An1B · · · AnkB

 .

For calculations including the Kronecker product and the vector notation of
matrices, the following results are useful.

Lemma C.7. Let A,B,C and D be suitably sized matrices such that the occurring
products exist.

• For the Kronecker product, the following calculation rules apply:

(A⊗B) · (C ⊗D) = (AC ⊗BD), (C.6)
(A⊗B)−1 = (A−1 ⊗B−1), (C.7)
(A⊗B)T = (AT ⊗BT ), (C.8)
A⊗ (B + C) = (A⊗B) + (A⊗ C), (C.9)
(A+B)⊗ C = (A⊗ C) + (B ⊗ C). (C.10)

• In combination with the trace or the vector notation vec(.), it holds:

vec(ABC) = (CT ⊗ A)vec(B), (C.11)
tr(AB) = vec(AT )T vec(B). (C.12)

• For E ∈ Rm×m and F ∈ Rn×n, we have:

(E ⊗ In)(Im ⊗ F ) = (E ⊗ F ) = (Im ⊗ F )(E ⊗ In). (C.13)

Proof. See Meucci [57], Appendix A.6 and Meyer [59], pages 380 and 598.
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Appendix D

Selected distributions

In this appendix we summarize some selected elliptical distributions and their
properties which are mainly applied in the Bayesian approach to determine pa-
rameter estimates in Chapter 7.

The probably most well-known and widely used representative of elliptical
distributions is the normal distribution. Further, we will shortly introduce the
Student-t distribution as well, which allows to model heavier tails than the normal
distribution and which tends to a normal distribution for an increasing number
of degrees of freedom.

Fang and Zhang [30] extend the analysis of elliptical distribution for random
vectors also to random matrices. A special elliptical matrix distribution is the
Wishart distribution which is used in asset management to discribe the distri-
bution of a covariance matrix. We will furthermore present the inverse Wishart
distribution and the normal inverse Wishart distribution, a combination of a nor-
mal and an inverse Wishart distribution which is used to model the joint behavior
of a pair consisting of a random vector and a random matrix, e.g. the mean vector
and the covariance matrix of asset returns.

D.1 Multivariate normal distribution

We will define the multivariate normal distribution straightforwardly through
its density function. Equivalently, it can be defined in terms of a suitable linear
transformation of a vector of (univariate) standard normally distributed variables.

Definition D.1. A random variable X ∈ Rn with mean vector µ and covari-
ance matrix Σ is said to be (multivariate) normally distributed, denoted by X ∼
N (µ,Σ), if the probability density function is given by

ϕN (x) =
1

(2π)
n
2

|Σ|−
1
2 exp

{
1

2
(x− µ)T Σ−1(x− µ)

}
.
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A rather useful result concerns the conditional distribution of a partitioned
multivariate normally distributed random variable. The proof of this proposition
can be found in various references, see e.g. Press [65], Theorem 3.5.1, or Fang
and Zhang [30], Theorem 2.3.5.

Proposition D.2. Let X ∼ N (µ,Σ) and partition X ∈ Rn, µ ∈ Rn and Σ ∈
Rn×n as follows – with appropriate dimensions k and n− k:

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, the conditioning formula for the normal distribution, i.e. the conditional
distribution of X1 given X2 = x2 is expressed by

(X1|X2 = x2) ∼ N (µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21). (D.1)

This conditioning formula for the normal distribution is more widely known
than the general formulation for arbitrary elliptical distributions as given in
Proposition 4.10, part (iv). This Equation (D.1) is needed in Chapter 7 to cal-
culate the Bayesian posterior distribution.

D.2 Student-t distribution
A further elliptical distribution is the Student-t distribution which in the one-
dimensional case is defined in terms of a normal and a χ2

r-distribution: Let Y ∈
R, Y ∼ N (0, 1) be independent from Z ∈ R, Z ∼ χ2

r, then X = Y√
Z
r

is Student-t

distributed with r degrees of freedom. For the multivariate case we will use the
following definition.

Definition D.3. A random variable X ∈ Rn is said to be (multivariate) Student-
t distributed with r degrees of freedom and parameters µ and Σ, denoted by X ∼
St(µ,Σ, r), if its density function has the form (see Meucci, Formula (2.188))

ϕSt(x) = (rπ)−
n
2
Γ
(

r+n
2

)
Γ
(

r
2

) |Σ|− 1
2 ·
(

1 +
1

r
(x− µ)T Σ−1(x− µ)

)− r+n
2

.

Besides the density function of the Student-t distribution, we will also need
the moments.

Proposition D.4. Let X ∼ St(µ,Σ, r). The moments of X are thus given by

E[X] = µ, and Cov[X] =
r

r − 2
· Σ.

Proof. See e.g. Press [65], page 128, or Meucci [57], page 79.
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Unlike the normal distribution, the Student-t distribution can be used to
model fat tails. As the number of degrees of freedom becomes large (r > 30)
the probability density function of the Student-t distribution with r degrees of
freedom resembles more and more the probability density function of the normal
distribution.

D.3 Wishart distribution and Wishart related dis-
tributions

The Wishart distribution is a distribution for symmetric and positive definite
matrices in Rn×n. It represents a generalization of the (one-dimensional) χ2

ν-
distribution, i.e. in the case of n = 1 the Wishart probability density function
also reduces to the pdf of a χ2

ν-disribution.

Definition D.5. Let Σ ∈ Rn×n be a symmetric and positive definite matrix. The
random variable Σ is said to be Wishart distributed with scale matrix C and ν
degrees of freedom, denoted by Σ ∼ W(C, ν), if the density function is given by
the formula

ϕW(Σ) =

 cW |Σ|
ν−n−1

2

|C|
ν
2

exp
(
−1

2
tr(C−1Σ)

)
if Σ � 0,Σ = ΣT ,

0 otherwise,

with

cW =

[
2

νn
2 π

n(n−1)
4

n∏
i=1

Γ

(
ν + 1− i

2

)]−1

being a normalizing constant and Γ denoting the Gamma function.

Proposition D.6. Let Σ ∼ W(C, ν). Then it holds

E[Σ] = ν · C,
Var[Σij] = ν ·

(
C2

ij + Cii · Cjj

)
,

Cov[Σij,Σkl] = ν · (Cik · Cjl + Cil · Cjk) .

Proof. See Press [65], Theorem 5.1.7.

Remark D.7. In asset management practice the case where Σ ∼ W( 1
ν
C, ν) is

rather common, as this represents the distribution of the empirical covariance
matrix estimator based on a sample of normally distributed random vectors. Then
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the above formulas become

E[Σ] = ν · 1

ν
C = C,

Var[Σij] =
1

ν

(
C2

ij + CiiCjj

)
,

Cov[Σij,Σkl] =
1

ν
(CikCjl + CilCjk) .

The following inverse Wishart distribution often occurs when the joint dis-
tribution of a vector and a matrix is needed. We will see explicit calculations
with this inverse Wishart distribution later on in the definition of the normal
inverse Wishart distribution. Additionally, these types of distributions will be
used extensively in Section 7.1 in the Bayesian approach to determine parameters
for the portfolio optimization problem.

Definition D.8. Let Σ ∈ Rn×n,Σ ∼ W(C, ν). Then Σ−1 follows an inverse
Wishart distribution with scale matrix C−1 and ν + n + 1 degrees of freedom.
This will be denoted by Σ−1 ∼ IW(C−1, ν + n+ 1).

For ease of notation, in the following proposition we will express the moments
and the density of the inverse Wishart distribution not in terms of the inverse
of a matrix, but simply in terms of a matrix itself, i.e. as U ∼ IW(V, k). As
the moments and the density of the inverse Wishart distribution, given in the
subsequent proposition, are only defined1 for k > 2n + 4, we make the next
assumption.

Assumption D.9. In the following, we will always assume that the number of
degrees of freedom in the inverse Wishart distribution is sufficiently large to meet
all technical requirements.

Remark D.10. Assumption D.9 is not a very strong assumption in practice.
It is known (see e.g. Press [65], Theorem 7.1.5) that the maximum likelihood
estimator for the covariance matrix based on a sample of size S follows a Wishart
distribution with S−1 degrees of freedom. Thus, for the moments and the density
of the inverse matrix to be defined, it is required that the number of degrees of
freedom of the inverse Wishart distribution, k = (S − 1) + n + 1 = S + n, is
larger than 2n + 4. Hence, a sample of size S with S > n + 4 suffices to assure
existence of the moments and the density of the inverse Wishart distribution.
Since it is anyway necessary to have a sample size of at least n to guarantee
positive definiteness of the covariance matrix, this assumption is usually fulfilled
in practice.

1To be precise, for the first moment it is sufficient to have k > 2n + 2, the second moment
requires k > 2n + 4, and the density function is already defined for k > 2n, see Press [65], page
110 and Theorem 5.2.2, respectively.
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Now we are ready to state the following proposition.

Proposition D.11. Let U be a symmetric and positive definite matrix, and let
U ∼ IW(V, k). The moments of the inverse Wishart distributed variable U are
given by

E[U ] =
V

k − 2n− 2
,

Var[Uii] =
2(Vii)

2

(k − 2n− 2)2(k − 2n− 4)
,

Var[Uij] =
ViiVjj + k−2n

k−2n−2
(Vij)

2

(k − 2n− 1)(k − 2n− 2)(k − 2n− 4)
,

Cov[Uij, Ukl] =
2

k−2n−2
VijVkl + VikVjl + VilVkj

(k − 2n− 1)(k − 2n− 2)(k − 2n− 4)
.

The density of the inverse Wishart distribution is given by

ϕIW(U) =

 cIW |V |
k−n−1

2

|U |
k
2

exp
(
−1

2
tr(U−1V )

)
if U � 0, U = UT ,

0 otherwise,

with

cIW =

[
2

(k−n−1)n
2 π

n(n−1)
4

n∏
i=1

Γ

(
k − n− i

2

)]−1

being an appropriate constant.

Proof. See Press [65], page 110 and Theorem 5.2.2.

Remark D.12. Vice versa, having U ∼ IW(C−1, k), we obtain that

Σ := U−1 ∼ W(C, k − n− 1).

After having defined a matrix distribution, we want to combine the normal and
the inverse Wishart distribution to describe the joint behavior of a vector and a
matrix. In the literature this is sometimes expressed in terms of a parameter pair
(µ,Σ) and sometimes in terms of (µ,Σ−1). This is merely notational convention
and does not affect the results obtained thereof. We will use (µ,Σ) to define
the normal inverse Wishart distribution and thus as well to perform any further
calculations.

Definition D.13. The pair (µ,Σ) is said to be distributed according to a nor-
mal inverse Wishart distribution with parameters µ0, d0,Σ0, and ν0, denoted by
(µ,Σ) ∼ NIW(µ0, d0,Σ0, ν0), if it holds that

µ | Σ ∼ N
(
µ0,

1

d0

Σ

)
and Σ ∼ IW(ν0Σ0, ν0 + n+ 1).
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From this definition the moments of µ | Σ and Σ are readily given by the
according propositions above. The joint density function of (µ,Σ) can straight-
forwardly be calculated by the Bayes rule and the individual density functions.

Proposition D.14 (Joint density function).
Let (µ,Σ) ∼ NIW(µ0, d0,Σ0, ν0). The joint density function is then given by

ϕNIW(µ,Σ) =

= γ |Σ−1|
ν0+n+2

2 exp

{
−1

2
[d0(µ− µ0)

T Σ−1(µ− µ0) + tr(ν0Σ0 · Σ−1)]

}
(D.2)

with γ = 1

(2π)
n
2
cIW |r0Σ0|

ν0
2 .

Proof. Follows directly from the Bayes rule for conditional distributions,

ϕNIW(µ,Σ) = ϕN (µ | Σ) ϕIW(Σ).

As mentioned above, from the definition of the normal inverse Wishart dis-
tribution, the moments of Σ are already given. The moments of µ itself, i.e. not
conditioned on the matrix Σ, are not available directly thereof, the marginal
distribution of µ is required beforehand.

Proposition D.15 (Marginal distribution of µ).
Let (µ,Σ) ∼ NIW(µ0, d0,Σ0, ν0). Then it holds that

µ ∼ St

(
µ0,

ν0

ν0 − n+ 1
· Σ0

d0

, ν0 − n+ 1

)
with the associated moments

E[µ] = µ0,

Cov[µ] =
ν0

ν0 − n− 1
· Σ0

d0

.

Proof. This proof will show the explicit calculations using the notation in terms
of (µ,Σ), closely following the calculations with (µ,Σ−1) which are given in
Meucci [57], Appendix www.7.5. The expressions α1, α2, α3 and α4 are sup-
posed to be normalizing constants such that the respective formulas represent
probability density functions.

With the definition

Σ2 := d0(µ− µ0)(µ− µ0)
T + ν0Σ0

the joint distribution of µ and Σ can be written as

ϕNIW(µ,Σ) =
1

(2π)
n
2

cIW |ν0Σ0|
ν0
2 |Σ−1|

ν0+n+2
2 exp

{
−1

2
tr(Σ2Σ

−1)

}
.
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Thus, the marginal distribution of µ is obtained by

ϕ(µ) =

∫
ϕNIW(µ,Σ) dΣ

= α1|ν0Σ0|
ν0
2

∫
|Σ|−

ν0+n+2
2 exp

{
−1

2
tr(Σ2Σ

−1)

}
dΣ

= α1|ν0Σ0|
ν0
2 |Σ2|−

ν0+1
2

1

c̃IW
·

·
∫
c̃IW |Σ2|

ν0+1
2 |Σ|−

ν0+n+2
2 exp

{
−1

2
tr(Σ2Σ

−1)

}
dΣ

where in the last equation we have completed the integrand to represent the
density of Σ with Σ ∼ IW(Σ2, ν0 +n+2). Thus, the entire integral is equal to 1.
Subsuming the constant 1

c̃IW
into the normalizing value α2, we continue with

ϕ(µ) = α2|ν0Σ0|
ν0
2 |Σ2|−

ν0+1
2

= α2|ν0Σ0|
ν0
2 |ν0Σ0 + d0(µ− µ0)(µ− µ0)

T |−
ν0+1

2

which can be reformulated using the equation

|A|
ν0
2 · |A+ vvT |−

ν0+1
2 = |A|−

1
2 (1 + vTA−1v)−

ν0+1
2 ,

see e.g. Meucci [57], Equation (T7.82) in Appendix www.7.5, and thus gives

ϕ(µ) = α2|ν0Σ0|−
1
2

(
1 + d0(µ− µ0)

T (ν0Σ0)
−1(µ− µ0)

)− ν0+1
2

= α2ν
−n

2
0 d

−n
2

0

1

d
−n

2
0

|Σ0|−
1
2

(
1 +

(
1

d0

)−1

ν−1
0 (µ− µ0)

T Σ−1
0 (µ− µ0)

)− ν0+1
2

= α3

∣∣∣∣Σ0

d0

∣∣∣∣− 1
2

(
1 +

1

ν0

(µ− µ0)
T

(
Σ0

d0

)−1

(µ− µ0)

)− ν0+1
2

.

Substituting z := ν0 − n+ 1, this can be transformed to

ϕ(µ) = α3

∣∣∣∣Σ0

d0

∣∣∣∣− 1
2

·
(
z + n− 1

z + n− 1
· z
z

)−n
2

·

(
1 +

1

z + n− 1
· z
z
· (µ− µ0)

T

(
Σ0

d0

)−1

(µ− µ0)

)− z+n
2

= α4

∣∣∣∣z + n− 1

z
· Σ0

d0

∣∣∣∣− 1
2

(
1 +

1

z
(µ− µ0)

T

(
z + n− 1

z
· Σ0

d0

)−1

(µ− µ0)

)− z+n
2

.
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Thus, comparing this last equation with the formula given in Definition D.3, this
is the density of the following Student-t distribution:

µ ∼ St

(
µ0,

z + n− 1

z
· Σ0

d0

, z

)
or equivalently, expressed again in terms of ν0

µ ∼ St

(
µ0,

ν0

ν0 − n+ 1
· Σ0

d0

, ν0 − n+ 1

)
which implies the first two moments

E[µ] = µ0,

Cov[µ] =
ν0 − n+ 1

(ν0 − n+ 1)− 2
· ν0

ν0 − n+ 1
· Σ0

d0

=
ν0

ν0 − n− 1
· Σ0

d0

.



Appendix E

Equivalent representations of an
ellipsoidal uncertainty set

We want to show in this short appendix that the representations for an ellipsoidal
uncertainty set used in Example 3.26 are in fact equivalent.

Lemma E.1. Let û ∈ U , δ > 0 and let the matrix Σ be symmetric and positive
definite. Then it holds that{

u ∈ U | (u− û)T Σ−1(u− û) ≤ δ2
}

=
{
u ∈ U | u = û+ δΣ

1
2w, ‖w‖ ≤ 1

}
.

Proof. We prove equivalence of these two sets by showing that each side is a
subset of the other one.

• Let u be such that (u − û)T Σ−1(u − û) ≤ δ2 holds. Since Σ is symmetric
and positive definite, there exists the square root matrix Σ

1
2 which is as

well symmetric and positive definite. We can thus make the equivalent
reformulations

(u− û)T Σ−1(u− û) ≤ δ2

⇔ (u− û)T Σ− 1
2 Σ− 1

2 (u− û) ≤ δ2

⇔
(
Σ− 1

2 (u− û)
)T (

Σ− 1
2 (u− û)

)
≤ δ2.

Defining w := 1
δ
Σ− 1

2 (u− û) yields

u = û+ δΣ
1
2w,

and the above inequality reduces to wTw = ‖w‖2 ≤ 1, thus equivalent to
‖w‖ ≤ 1.
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• Let u be such that u = û+ δΣ
1
2w holds with ‖w‖ ≤ 1. Then we get

(u− û)T Σ−1(u− û) = (δΣ
1
2w)T Σ−1(δΣ

1
2w)

= δ2(Σ
1
2w)T Σ−1(Σ

1
2w)

= δ2wTw

= δ2‖w‖2

≤ δ2.



Appendix F

Reformulation of (GCPu) and
(LRCû,δ)

In this appendix we want to show that we can assume without loss of generality
that the objective function is linear in x and independent of u and that this
assumption remains valid when applying the local robust counterpart approach.

Consider the following two programs

min
x∈X

f(x, u) (Pu)

s.t. g(x, u) ≤K 0

and

min
x̃∈X̃

l(x̃) (P̃u)

s.t. g̃(x̃, u) ≤K̃ 0

where

• X ⊆ Rn is non-empty, convex and compact,

• U ⊂ Rd is non-empty, convex and compact,

• z ∈ Z = [Zl, Zu] ⊂ R with

Zl = min
x∈X

min
u∈U

f(x, u)− 1 <∞

Zu = max
x∈X

max
u∈U

f(x, u) + 1 <∞,

• X̃ = X × Z is a compact set,

• x̃ = (x1, . . . , xn, z)
T ∈ X̃,

239
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• l : Rn+1 → R with l(x̃) = l(x1, . . . , xn, z) = z is linear and continuous in x̃,

• g̃ : Rn+1 × Rd → Rm+1 with

g̃(x̃, u) :=

(
g(x, u)

f(x, u)− z

)
is continuous both in x̃ and u,

• K̃ = K × R+ ⊂ Rm+1,

• the relation ≤K̃ is defined for a, b ∈ K̃ ⊂ Rm+1 as follows:

a ≤K̃ b ⇔

 a1
...
am

 ≤K

 b1
...
bm

 and am+1 ≤ bm+1.

Note that with this definition of the relation ≤K̃ , K-convexity of g(x, .) (resp.
g(., u)) and convexity of f(x, .) (resp. f(., u)) yield K̃-convexity of g̃(x, .) (resp.
g̃(., u)), hence convexity of the program is maintained. Furthermore, the property
of the existence of a Slater point remains as there exists a z ∈ Z = [Zl, Zu] such
that f(x, u) < z.

Before showing equivalence of the problems (Pu) and (P̃u), we prove that
Lipschitz continuity of the individual functions f and g also transfers to the
combined function g̃.

Proposition F.1. Let f and g be globally Lipschitz continuous in u. Then g̃ is
globally Lipschitz continuous in u as well.

Proof. Let f and g be globally Lipschitz continuous in u with Lipschitz constants
Lf and Lg, respectively, and let u1, u2 ∈ U . It then holds that

‖g̃(x̃, u1)− g̃(x̃, u2)‖2 =

∥∥∥∥( g(x, u1)− g(x, u2)(
f(x, u1)− z

)
−
(
f(x, u2)− z

) )∥∥∥∥2

= ‖g(x, u1)− g(x, u2)‖2 + ‖f(x, u1)− f(x, u2)‖2

≤ (Lg‖u1 − u2‖)2 + (Lf‖u1 − u2‖)2

= (L2
g + L2

f )︸ ︷︷ ︸
=:L2

‖u1 − u2‖2

and hence
‖g̃(x̃, u1)− g̃(x̃, u2)‖ ≤ L‖u1 − u2‖,

i.e. g̃ is globally Lipschitz continuous in u.
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Notation F.2. We will denote the feasibility sets of (Pu) and (P̃u) with FP (u)
and FP̃ (u), respectively, i.e.

FP (u) = {x ∈ X | g(x, u) ≤K 0},
FP̃ (u) = {x̃ ∈ X̃ | g̃(x̃, u) ≤K̃ 0}.

Futhermore, the optimal value functions will be denoted by f ∗P (u) and f ∗
P̃
(u),

respectively.

Proposition F.3. The programs (Pu) and (P̃u) as denoted above are equivalent
in the sense that for given u ∈ U each optimal (feasible) solution x∗ of (Pu)
with associated objective value f(x∗, u) can be expanded to an optimal (feasible)
solution x̃∗ =

(
x∗T , f(x∗, u)

)T of (P̃u). Conversely, for each optimal (feasible)
solution x̃∗ = (x∗1, . . . , x

∗
n, z

∗)T of (P̃u), the projection onto X, x∗, is an optimal
(feasible) solution of (Pu).

Proof. We will first consider the feasible points and afterwards deal with opti-
mality.

Let x∗ be feasible for (Pu). Then g(x∗, u) ≤K 0 and with z∗ := f(x∗, u) it
holds that g̃(x̃∗, u) ≤K̃ 0 for x̃∗ = (x∗T , z∗)T . Thus, the extended point x̃∗ is
feasible for (P̃u).
Conversely, let x̃∗ = (x∗T , z∗)T be feasible for (P̃u). Then g̃(x̃∗, u) ≤K̃ 0, which
especially implies g(x∗, u) ≤K 0, and thus x∗ as the projection of x̃∗ onto X is
feasible for (Pu).

To show optimality, we need to verify equality of the optimal values. Let
x∗P be an optimal solution of (Pu) with associated optimal objective value z∗P :=
f(x∗P , u). Thus we have that x̃∗P := (x∗P

T , z∗P )T is feasible for (P̃u) with objective
value l(x̃∗P ) = z∗P . Thus, we get

f ∗P (u) = min
x∈FP (u)

f(x, u)

= f(x∗P , u)

= z∗P
= l(x̃∗P )

≥ min
x̃∈FP̃ (u)

l(x̃) = f ∗
P̃
(u).

Conversely, let x̃∗
P̃

= (x∗
P̃

T , z∗
P̃
)T be an optimal solution of (P̃u) with associated

optimal objective value l(x̃∗
P̃
) = z∗

P̃
. We know that x∗

P̃
is then feasible for (Pu)
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and altogether we get

f ∗
P̃
(u) = min

x̃∈FP̃ (u)
l(x̃)

= l(x̃∗
P̃
)

= z∗
P̃

≥ f(x∗
P̃
, u)

≥ min
x∈FP (u)

f(x, u) = f ∗P (u).

Thus, we have f ∗P (u) = f ∗
P̃
(u) which then also implies from the above chains of

equations that x̃∗P as the expanded optimal solution of (Pu) must be optimal for
(P̃u) and analogously, x∗

P̃
as the reduced (i.e. projected onto X) optimal solution

of (P̃u) must be optimal for (Pu).

To illustrate that the simplifying assumption with respect to the objective
function can also be made without loss of generality in case of the robust coun-
terpart, we need to verify again that an optimal (feasible) solution of one program
formulation can be expanded or reduced, respectively, to an optimal (feasible) so-
lution of the other one. Thus, using the notation as introduced above, the two
robust program formulations are the following:

min
x∈X

max
u∈U

f(x, u) (R)

s.t. g(x, u) ≤K 0 ∀u ∈ U

and

min
x̃∈X̃

max
u∈U

l(x̃)

s.t. g̃(x̃, u) ≤K̃ 0 ∀u ∈ U

which is equivalent to

min
x̃∈X̃

l(x̃) (R̃)

s.t. g̃(x̃, u) ≤K̃ 0 ∀u ∈ U .

Notation F.4. We will denote the feasibility sets of (R) and (R̃) with FR and
FR̃, respectively, i.e.

FR = {x ∈ X | g(x, u) ≤K 0 ∀u ∈ U},
FR̃ = {x̃ ∈ X̃ | g̃(x̃, u) ≤K̃ 0 ∀u ∈ U}.

Accordingly, the optimal value functions will be denoted by f ∗R and f ∗
R̃
, respectively.
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Proposition F.5. The programs (R) and (R̃) as denoted above are equivalent in
the sense that each optimal (feasible) solution x∗ of (R) with associated objective
value maxu∈U f(x∗, u) can be expanded to an optimal (feasible) solution x̃∗ =(
x∗T ,maxu∈U f(x∗, u)

)T of (R̃). Conversely, for each optimal (feasible) solution
x̃∗ = (x∗1, . . . , x

∗
n, z

∗)T of (R̃), the projection onto X, x∗, is an optimal (feasible)
solution of (R).

Proof. We will again start with investigations on the feasibility.
Let x∗ be feasible for (R). Then g(x∗, u) ≤K 0 for all u ∈ U and with

z∗ := max
u∈U

f(x∗, u)

it holds that g̃(x̃∗, u) ≤K̃ 0 for all u ∈ U with x̃∗ = (x∗T , z∗)T . Thus, the extended
point x̃∗ is feasible for (R̃).
Conversely, let x̃∗ = (x∗T , z∗)T be feasible for (R̃). Then g̃(x̃∗, u) ≤K̃ 0 for all
u ∈ U , which especially implies g(x∗, u) ≤K 0 for all u ∈ U and thus x∗ as the
projection of x̃∗ onto X is feasible for (R).

Next we show equality of the optimal values. Let x∗R be an optimal solution
of (R) with associated optimal objective value

z∗R := max
u∈U

f(x∗R, u).

Thus, x̃∗R := (x∗R
T , z∗R)T is feasible for (R̃) with objective value l(x̃∗R) = z∗R and

we get

f ∗R = min
x∈FR

max
u∈U

f(x, u)

= max
u∈U

f(x∗R, u)

= z∗R
= l(x̃∗R)

≥ min
x̃∈FR̃

l(x̃) = f ∗
R̃
.

Conversely, let x̃∗
R̃

= (x∗
R̃

T , z∗
R̃
)T be an optimal solution of (R̃) with associated

optimal objective value l(x̃∗
R̃
) = z∗

R̃
. We know that x∗

R̃
is then feasible for (R)

and altogether we get

f ∗
R̃

= min
x̃∈FR̃

l(x̃)

= l(x̃∗
R̃
)

= z∗
R̃

≥ f(x∗
R̃
, u) ∀u ∈ U .
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Hence,

f ∗
R̃
≥ max

u∈U
f(x∗

R̃
, u)

≥ min
x∈FR

max
u∈U

f(x, u) = f ∗R.

Thus, we have f ∗R = f ∗
R̃

which then also implies from the above chains of equations
that x̃∗R as the expanded optimal solution of (R) must be optimal for (R̃) and
analogously, x∗

R̃
as the reduced (i.e. projected onto X) optimal solution of (R̃)

must be optimal for (R).

Remark F.6. As the maximum of convex functions is still convex, (K-)convexity
of f and g yields K̃-convexity of g̃ (both in x and u). Furthermore, analogous to
the original problem, the existence of a Slater point remains when modifying one
problem into the other one.



Appendix G

Detailed calculations to
Example 3.27

This appendix shows the calculations that were performed to find the explicit
formulas for the optimal solution and the associated optimal objective value in
Example 3.27. Recall the optimization program:

min
x∈X

− xTu (P)

with X = {x ∈ R2 | x ≥ 0, xT111 = 1} and u ∈ U .
Using the circular uncertainty set

Uδ,ell(û) = {u = û+ δw | ‖w‖2 ≤ 1}

the local robust counterpart problem is given by

min
x∈X

max
u∈Uδ,ell(û)

−xTu = min
x∈X

−xT û+ δ‖x‖. (LRC)

The Lagrangian function to this optimization problem is given for λ ∈ R by

L(x, λ) = −xT û+ δ‖x‖2 + λ(xT111− 1).

As only the 2-dimensional case is considered explicitly, we can express the
constraint xT111 = 1 in the form x = (z, 1− z)T . Incorporating this representation
into the equation

∂L

∂x
= −û+ δ

x

‖x‖
+ λ111

!
= 0

yields

−
(
û1

û2

)
+ δ

1√
z2 + (1− z)2

·
(

z
1− z

)
+ λ

(
1
1

)
!
= 0,
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i.e. the system of equations

−û1 +
δz√

z2 + (1− z)2
+ λ

!
= 0 (1)

−û2 +
δ(1− z)√
z2 + (1− z)2

+ λ
!
= 0. (2)

From equation (2) we have

λ = û2 −
δ(1− z)√
z2 + (1− z)2

which changes equation (1) to

−û1 +
δz√

z2 + (1− z)2
+ û2 −

δ(1− z)√
z2 + (1− z)2

!
= 0

or equivalently

δ(2z − 1)√
z2 + (1− z)2

= û1 − û2. (3)

Now we distinguish two cases:

• û1 = û2.
This results in the equation 2z − 1 = 0, or z = 1

2
, i.e. the optimal solution

in this case is the vector x = (1
2
, 1

2
)T . The optimal objective value then is

f ∗LRC(û, δ) = −xT û+ δ‖x‖

= −û1 + δ

√
1

2
.

• û1 6= û2.
Starting from Equation (3) we can do the following equivalent reformula-
tions:

δ2(4z2 − 4z + 1)

z2 + (1− z)2
= (û1 − û2)

2

⇔ δ2(4z2 − 4z + 1) = 2z2 (û1 − û2)
2︸ ︷︷ ︸

=:c

−2z(û1 − û2)
2 + (û1 − û2)

2

⇔ z2 · 2(2δ2 − c) + z · (−2)(2δ2 − c) + (δ2 − c) = 0
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which thus give the possible solutions

z =
2(2δ2 − c)±

√
4(2δ2 − c)2 − 4 · 2(2δ2 − c)(δ2 − c)

4(2δ2 − c)

=
1

2
±
√
c(2δ2 − c)

2(2δ2 − c)

=
1

2
±

√
c

2
√

2δ2 − c

=
1

2
± |û1 − û2|

2
√

2δ2 − (û1 − û2)2

where a solution only exists if the discriminant is non-negative, i.e.

2δ2 − (û1 − û2)
2 ≥ 0

or

δ ≥ |û1 − û2|√
2

.

Now that having a candidate solution, we finally need to determine the
bounds on δ such that 0 ≤ z ≤ 1 holds, i.e. that x = (z, 1− z)T represents
a feasible solution of the optimization problem. Because of the symmetry
of z and (1− z), it suffices to investigate the case

1

2
+

|û1 − û2|
2
√

2δ2 − (û1 − û2)2)
≤ 1

which can be simplified to

⇔ |û1 − û2|
2
√

2δ2 − (û1 − û2)2)
≤ 1

2

⇔ |û1 − û2| ≤
√

2δ2 − (û1 − û2)2)

⇒ 2(û1 − û2)
2 ≤ 2δ2

⇒ δ ≥ |û1 − û2|.

(Note that in this case also the condition δ ≥ |û1−û2|√
2

holds, i.e. the refor-
mulations above are admissible.)

In the case where δ < |û1 − û2|, the variable z reaches one of its bounds 0
or 1, and thus we again get one of the extreme solutions (1, 0)T or (0, 1)T .

Summarizing the previous calculations, we have the following result for the



248 APPENDIX G. EXAMPLE CALCULATIONS

optimal solution of the local robust counterpart program:

F∗
LRC(û, δ) =

=



(
1

0

)
if û1 ≥ û2 + δ min

{
1
2

+ |û1−û2|
2
√

2δ2−(û1−û2)2
; 1

}
max

{
1
2
− |û1−û2|

2
√

2δ2−(û1−û2)2
; 0

}
 if û2 + δ > û1 > û2

(
1/2

1/2

)
if û1 = û2 max

{
1
2
− |û1−û2|

2
√

2δ2−(û1−û2)2
; 0

}
min

{
1
2

+ |û1−û2|
2
√

2δ2−(û1−û2)2
; 1

}
 if û1 < û2 < û1 + δ

(
0

1

)
if û1 + δ ≤ û2.

Before calculating the corresponding optimal objective value, note that

‖x‖2 = z2 + (1− z)2

=
1

4
± |û1 − û2|

2
√

2δ2 − (û1 − û2)2
+

(û1 − û2)
2

4(2δ2 − (û1 − û2)2)

+
1

4
∓ |û1 − û2|

2
√

2δ2 − (û1 − û2)2
+

(û1 − û2)
2

4(2δ2 − (û1 − û2)2)

=
1

2
+

(û1 − û2)
2

2(2δ2 − (û1 − û2)2)

=
δ2

2δ2 − (û1 − û2)2

In the case where û1 > û2 and δ ≥ |û1 − û2| the optimal solution x is given
by

x =

 1
2

+ |û1−û2|
2
√

2δ2−(û1−û2)2

1
2
− |û1−û2|

2
√

2δ2−(û1−û2)2
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and thus the objective value calculates as

f ∗LRC(û, δ) =− 1

2
(û1 + û2)−

|û1 − û2|
2
√

2δ2 − (û1 − û2)2
(û1 − û2)

+ δ

√
δ2

2δ2 − (û1 − û2)2

= − 1

2
(û1 + û2)−

1

2

(û1 − û2)
2√

2δ2 − (û1 − û2)2)

+
δ2√

2δ2 − (û1 − û2)2

= − 1

2
(û1 + û2) +

2δ2 − (û1 − û2)
2

2
√

2δ2 − (û1 − û2)2

= − 1

2
(û1 + û2) +

1

2

√
2δ2 − (û1 − û2)2.

The case where û1 < û2 is done analogously, and the cases where it holds
that δ < |û1 − û2| result in extreme optimal solutions, i.e. in an optimal
objective value of

−û1 + δ or, respectively, − û2 + δ.
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Notation

X General constraint set for x
U ⊂ Rd General uncertainty set
Uδ(û) Uncertainty set centered at û and of size δ
f ∗ Optimal value function or extreme value function of the

original optimization problem
f ∗LRC Optimal value function of the local robust counterpart problem
F Feasibility set of the original problem
FLRC Feasibility set of the local robust counterpart problem
FS Set of Slater points of the original problem
FS

LRC Set of Slater points of the local robust counterpart problem
F∗ Set of optimal solutions of the original problem
F∗

LRC Set of optimal solutions of the local robust counterpart
problem

F∗
ε Set of ε-optimal solutions of the original problem

ζ Selection function
H-lsc Abbreviation for: Hausdorff lower semicontinuous
H-usc Abbreviation for: Hausdorff upper semicontinuous
B-lsc Abbreviation for: Berge lower semicontinuous
B-usc Abbreviation for: Berge upper semicontinuous
Γ A general multi-valued mapping
P(X) Power set of X
Vε(u), Vε(S) ε-neighborhood of a point u or a set S
o(αk) o-notation, defined as

f(α) ∈ o(αk) ⇔ limα→0
f(α)
αk = 0.

φ Characteristic generator of a spherical or elliptical distribution
ψ Characteristic function
ξ Density generator of a spherical or elliptical distribution
ϕ Density function of a (continuous) random variable
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x ∈ Rn In applications: vector of portfolio weights
x∗cl Optimal solution to the classical portfolio optimization problem
x∗rob Optimal solution to the robust portfolio optimization problem
µ ∈ Rn Vector of expected returns of the assets
Σ ∈ Rn×n Covariance matrix of the asset returns
µ̂, Σ̂ Estimators for µ and Σ, respectively
111 Vector of ones in the appropriate dimension

cl Closure of a set
pdf Abbreviation for: probability density function
cdf Abbreviation for: cumulated density function
MVP Abbreviation for: minimum variance portfolio
MRP Abbreviation for: maximum return portfolio

Zn
P→ Z Zn converges in probability to Z

Zn
a.s.→ Z Zn converges almost surely to Z

Zn
d→ Z Zn converges in distribution to Z


