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Abstract

We consider CMC-trinoids in Euclidian three-space with properly embedded annular ends. Starting
with a holomorphic potential 7 and a special solution ¥ to the differential equation d¥ = ¥, we char-
acterize all solutions to this differential equation which produce CMC-trinoids with properly embedded
annular ends via the loop group method. Moreover, we give a classification of CMC-trinoids with properly
embedded annular ends with respect to their symmetry properties in terms of the monodromy matrices

of the solution ¥ associated with the trinoid ends.
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1 Introduction

Among the surfaces of constant mean curvature H # 0, CMC-surfaces for short, only a few subclasses
have been classified. The first ones have been the surfaces of revolution among the CMC-surfaces, the
Delaunay surfaces. They were found almost 200 years ago [7], and are still of interest, since every properly
embedded annular end of a CMC-surface is asymptotically a Delaunay surface [25].

More generally, CMC-immersions of round cylinders into R? are fairly well understood. The class of
CMC-tori has been investigated extensively using different mathematical techniques [31], [3], [23] and is
clearly so far the best investigated one among all CMC-immersions.

All the surface classes mentioned so far have an abelian fundamental group. The simplest non-abelian
groups are perhaps those which are free and have only two generators. Thus it seems to be particularly
important to understand the CMC-trinoids, i.e. CMC-immersions of the thrice-punctured Riemannian
sphere 73 into R3.

Among the CMC-trinoids 73 — R3 clearly the embeddings are of particular interest. It seems to
be difficult to classify this class of CMC-immersions. However, in a beautiful piece of work, Grofle-
Brauckmann, Kusner and Sullivan have classified the Alexandrov embedded CMC-surfaces 73 — R3
[21].

In [27] it was shown, however, that there are CMC-trinoids 73 — R3, which have properly embedded
annular ends but are not Alexandrov embedded. Further examples of such surfaces have been given in
[17] using the loop group method [15] for a certain class of starting potentials. Naturally, the class of
CMC-trinoids with properly embedded annular ends encompasses the class of the (globally) properly
embedded trinoids. In this sense, the investigation of CMC-trinoids with properly embedded annular
ends seems to be a natural next step for the understanding of all CMC-trinoids.

In [8] it is shown that all CMC-trinoids 73 — R? with properly embedded annular ends can be
obtained via the loop group method from the potentials of [17]. Based on this result, this thesis provides
a classification of all CMC-trinoids which can be obtained via the loop group method from the potentials
of [17], and thus in particular a classification of all CMC-trinoids with properly embedded annular ends,
in terms of the monodromy matrices associated with the trinoid ends.

We give all possible triples of monodromy matrices associated with the ends of a CMC-trinoid 73 — R?
which can be obtained from the potentials of [17]. Moreover, we investigate the possible symmetries of
a given CMC-trinoid with properly embedded annular ends under Euclidean motions in R3 and char-
acterize these symmetries in terms of the corresponding monodromy matrices. l.e., we state necessary
and sufficient conditions on the monodromy matrices of a given CMC-trinoid 73 — R?® with properly
embedded annular ends, such that the (image of the) given CMC-trinoid is invariant under a specific
Euclidean motion in R3.

In section 2 we review the loop group method from [15] for constructing CMC-immersions from
holomorphic potentials. A holomorphic potential 7 is a sl(2, C)-valued differential one-form, which is
defined on the universal cover M of a Riemann surface M. Furthermore, 71 involves a loop parameter
X and depends holomorphically on both z € M and A € C*. Given a holomorphic potential 7, the first
step of the loop group method consists in solving the differential equation d¥ = ¥y for a SL(2, C)-valued
mapping ¥ on M, satisfying some initial condition ¥(z,) = ¥(. ¥ also depends on A and the form of this
dependence is determined by the initial condition ¥(. Assuming that ¥y (and thus ¥) is defined for all A
from some r-circle C("), 0 < r < 1, one can proceed with the second step of the loop group method. This
involves (for each zy € M) an r-Iwasawa decomposition of the A-dependent loop ¥(z) : C(") — SL(2, C),
i.e. a (pointwise) factorization of ¥ into a loop F' on C' ("), which can be extended holomorphically to the
open annulus r < |\ < % and is unitary on the unit circle S, and a loop By on C"), which can be
extended holomorphically to the disc |A| < r, ¥ = FB,. The factor F produces in the third and final step
of the loop group method, by evaluating the so called Sym-Bobenko formula for A = 1, a CMC-immersion
¥ on M. 1) “descends” to a CMC-immersion ¢ on M if and only if the monodromy matrices M (5, \) of
¥ associated with the covering transformations 4 of M satisfy certain “closing conditions” (cf. theorem
2.11). In particular, all monodromy matrices M (5, A) of ¥ need to be unitary for A from S*.1

A change in the initial condition W, corresponds to modifying the solution ¥ by a dressing matrix
T = T()) to obtain a new solution ¥ = 7. This new solution ¥ produces a new CMC-immersion ¢ on M
via the loop group method. Since there is (in general) no obvious relation between corresponding factors
in the Iwasawa decompositions of ¥ and \i/, respectively, it is (in general) not possible to control the effect
of dressing the solution ¥ by T into a new solution ¥ on the level of the corresponding CMC-immersions

L Actually, the Sym-Bobenko formula produces a CMC-immersion vy on M for each A € St Throughout this thesis
however, if not stated otherwise, we consider the choice A = 1.



1 and z/; However, the change in the monodromy matrices is well understood: If the monodromy matrices
of ¥ are given by M (%, A), the monodromy matrices of U = T'U are given by M(ﬁ/, A) =TMF,\NT1L.
(Note that this only holds if the original CMC-immersion 1 associated with ¥ has an umbilic point [14].
However, for trinoids, this is always the case.) Based on this fact, one derives the following “recipe” for
the construction of CMC-immersions on a Riemann surface M:

1. Given a holomorphic potential 7, which is defined on the universal cover M of M, solve the differen-
tial equation d¥ = W7j for a solution ¥ with some initial value ¥(z,) = Wo. Denote the monodromy
matrices of U under the covering transformations 4 of M by M (7, A).

2. Determine a dressing matrix 7' = T()), such that the “dressed” monodromy matrices M (7, \) =
TM (5, \)T~1 satisfy the conditions of theorem 2.11. In particular, one needs to ensure that M(’y, A)
is unitary for A from S* and for all covering transformations 7. Then, the “dressed” solution U =TV
produces via the loop group method for A = 1 a CMC-immersion ¥ on M, which descends to a
CMC-immersion ¢ on M.

Section 2 is arranged as follows: In 2.1, we define the different loop groups which serve as domains
of definition for the factors occuring in the Iwasawa decomposition, which is presented in 2.2. Section
2.3 introduces holomorphic potentials, which form the initial data for the loop group method explicated
in 2.4. In 2.5, we introduce the monodromy matrices and cite from [11] our basic theorem 2.11 for the
construction of CMC-immersions on a (not necessarily simply connected) Riemann surface M. In 2.6, we
apply the loop group method and theorem 2.11 to explicitly construct the already mentioned Delaunay
surfaces, CMC-surfaces of revolution in R? parametrized by the punctured complex plane C* = C \ {0}.

In section 3, we apply the framework built up in section 2 to CMC-trinoids, i.e. to CMC-immersions
in R? parametrized by 73, the two-sphere S? = {z € R3; |z| = 1} with three points removed. As fit to
our purposes, we identify 73 via stereographic projection with the twice-punctured complex plane (or,
equivalently, the thrice-punctured extended complex plane C = CU {0}), M =C\{0,1} = @\ {0,1, 00},
and actually interpret a CMC-trinoid as a CMC-immersion ¢ : M — R3. The universal cover of M is
given by M = H, the upper half-plane in C.

The three points z; = j, j = 0,1, 00, removed from C are singularities of ¢ and thus induce three
(annular) ends of the surface ¢(M). While we allow arbitrary self-intersections of the surface away from
its ends, we require the ends to be properly embedded. More precisely, we require that on a sufficiently
small punctured neighborhood around each singularity the immersion ¢ is a proper CMC-embedding.
Therefore, according to [25], the ends asymptotically show the behaviour of (unduloidal) Delaunay sur-
faces. Based on this fact and following [17], we introduce a family of holomorphic potentials 7 on M,
which near each singularity z; take the form of a “perturbed” Delaunay potential 7);.

By [17], the corresponding holomorphic potential 7j = 7*1 on M, obtained from 7 via pullback by the
universal covering map 7, yields via the loop group method a CMC-trinoid with three properly embedded
annular ends at z;, j = 0,1, 00, showing the asymptotic behaviour of the respective Delaunay surface
produced by (the pullback of) 7; via the loop group method. More precisely (cf. theorem 3.14), for a given
solution ¥ to the differential equation d¥ = W7, there exists a dressing matrix T' = T'(\) generating a new
solution TV, which produces via the loop group method a CMC-trinoid with three properly embedded
annular ends. Note that it is claimed in [8] that all trinoids with properly embedded annular ends can
be constructed from our potentials.

The main features of section 3 are the following: First, we explicitly compute a “starting” solution
® to the differential equation d® = ®7. To achieve this, we use the well known fact that the given
differential equation can be retraced to a (scalar) hypergeometric differential equation, whose solutions
are well known and can be expressed in terms of hypergeometric functions. Moreover, we know by [17],
that near each singularity z; the differential equation dtﬁj = éjﬁj possesses a solution <i>j of a special
form, called an EDP-solution. ® is locally around z; related to <i>j by a gauge matrix Vy ;. Combining
these two facts, ® can be explicitly computed (cf. lemma 3.37). Moreover, the monodromy matrices
M (#, ) of the corresponding pullback ¥ = 7*® solving d¥ = U7 are determined.

The second feature of section 3 consists in the characterization of all possible dressing matrices T
rendering ¥ into a new solution TV to d¥ = W7, which produces a CMC-trinoid via the loop group
method. Asindicated before, this is achieved by ensuring that the dressed monodromy matrices M (F, ) =
TM (5, \)T~! satisfy the conditions of theorem 2.11. In this context, we restrict our considerations to
the three monodromy matrices M;(A) := M(;,A), j = 0,1,00, corresponding to the three covering
transformations 7;, j = 0,1, co, of M, which represent three simple loops in M, surrounding exactly once
the singularity z; (counter-clockwise) without enclosing the other two singularities, respectively. Since



¥, 3 = 0,1, 00, generate the group of covering transformations 4 of M (actually, even two of them do),
a matrix 7" dresses the starting solution ¥ into a new solution TV to d¥ = U7}, which produces a CMC-
trinoid via the loop group method, if and only if the three dressed monodromy matrices M ;i =TM jT_l
satisfy the conditions of theorem 2.11. Explicitly, TW produces a CMC-trinoid, if and only if the three
monodromy matrices M; are of the form

[t () o (3 3 )

with A\-dependent functions p;, pj, ¢; and g satisfying a number of conditions, which are summarized in
theorem 3.59.

Section 3 is organized as follows: In section 3.1, we introduce CMC-trinoids as CMC-immersions of
the twice-punctured complex plane M = C\ {0,1}. Section 3.2 presents the universal cover M = H of M
and defines the corresponding covering map 7 : M — M. In section 3.3, we study the monodromy action
of the fundamental group of M on M, which constitutes the basis for the definition of the monodromy
matrices later. Since the loop group method actually produces CMC-immersions into su(2) rather than
into R?, we need to identify su(2) and R®. This is done in section 3.4. Sections 3.5 and 3.6 are dedicated
to the definition of the trinoid potentials 7 (on M) and 7 (on M). Our starting solution ® to the
differential equation d® = ®n, along with the corresponding starting solution ¥ to d¥ = Wy, is explicitly
computed in sections 3.7 and 3.8. Finally, section 3.9 deals with the possible dressing matrices T' = T'(\)
transforming ¥ into a new solution TV, which gives a CMC-trinoid via the loop group method.

Section 4 opens the second part of this thesis: Having so far determined all solutions ¥ to the
differential equation d¥ = ¥p, which generate CMC-trinoids via the loop group method, it seems natural
to ask to what extent geometrical properties of a CMC-trinoid ¢ produced can be read off the respective
generating solution ¥. In particular, one can ask how symmetry properties of (the image ¢(M) of) a
given trinoid ¢ : M — R3 show in the corresponding generating solution W. In this thesis, we give a
comprehensive answer to this question in the case of CMC-trinoids with properly embedded annular ends.

Given a CMC-trinoid ¢ : M — R? with properly embedded annular ends, we define a symmetry of
¢ as an Euclidean motion 7, i.e. an orthogonal transformation followed by a translation on R3, which
preserves the image of ¢ in R3: T (¢(M)) = ¢(M). Denoting, as before, by 7 the universal covering
M — M, T also defines a symmetry of the CMC-immersion ¢ := o : M — R3, i.e. T(¢(M)) = 1 (M).

A priori, due to the Iwasawa decomposition of ¥ in the second step of the loop group method, it is
difficult to retrace any symmetry properties of ¢ (resp. ) back to the corresponding generating solution
U to the differential equation d¥ = Wrn. Though it is possible to reconstruct the extended frame F
from 1, which returns ¢ by insertion into the Sym-Bobenko formula for A = 1 [10], the subsequent
step of reconstructing ¥ from F' (i.e., of reversing the Iwasawa decomposition ¥ = F'B_ ) is highly non-
trivial. Nevertheless, we observe that the monodromy matrices M; of ¥ with respect to the covering
transformations 7; also occur as “monodromy matrices” of F':

F(%(2), \) = £M;F (2, \)k; (2),

where k; depends directly on 7;.

This observation forms the basis for our approach of retracing any symmetry properties of ¢ (resp.
1) to the level of the generating solution ¥: We translate the given symmetry properties of ¢ (resp. ¥)
to the level of the extended frame F' of ¢ (section 4) and deduce certain “symmetry restrictions” on the
“monodromy matrices” of F' (sections 5 to 9). In this way, we actually obtain “symmetry restrictions” on
the monodromy matrices of ¥, which in turn determines the solutions to the differential equation d¥ = ¥p
generating trinoids with properly embedded annular ends with the respective symmetry properties.

In detail, we proceed as follows: Let ¢ : M — R3 be a CMC-trinoid with properly embedded annular
ends, which is symmetric with respect to the Euclidean motion 7 . Denote by 1 the corresponding
CMC-immersion M — R3, which is also symmetric with respect to 7. Depending on whether 7T preserves
orientation or reverses orientation on R?, it can be shown (cf. theorem 4.9, based on results from [12]) that
there exist a pair of biholomorphic (resp. bi-antiholomorphic) mappings v : M — M and 7 : M — M
translating the symmetry 7 to M and M, respectively:

Top=q¢or, (1.0.1)
Toy=1o7. (1.0.2)

Moreover, v and 4 are linked by the relation 7 04 = yox. (Note that, in order to obtain this result, the
assumption that ¢ possesses properly embedded annular ends takes effect.) By the relations above, the



symmetry properties of ¢ (resp. 1) translate to the level of the associated extended frame as follows (cf.
theorem 4.17): If 7 preserves orientation, then

F(3(2),A) = M5(NF (2, Akt 5(2), (1.0.3)

where k7 5 depends on 4 and M5(\) denotes a A-dependent matrix, which is unitary on the unit circle,
A € S'. If T reverses orientation, then

F(3(2), A7) = My (VN F (2, Nkr 5 (2), (1.0.4)
where k1 5, as above, depends on 4 and Mj5(A) denotes a A-dependent matrix, which is unitary on the
unit circle, A\ € S'. In particular, in the case 7 = Z, the identity mapping on R?® and naturally a
symmetry of ¢ (resp. 1), we obtain the “monodromy relations” for F' given above, involving the covering
transformations 7;, j = 0,1, 0o, associated with 7 = 7 in the sense that Z o1 =1 0 7.

The biholomorphic (resp. bi-antiholomorphic) mapping v : M — M associated with the trinoid
symmetry 7 can be extended to a biholomorphic (resp. bi-antiholomorphic) mapping Yextd : ¢ - C,
which necessarily permutes the three points z; = j € {0, 1,00} according to a permutation o of the set
{0,1, 00}, i.e. Yextd(25) = 24(;)- In this way, however, yexta (and thus ) is completely determined by o and
can thus be explicitly computed. As there are six possibilities for o, we obtain twelve possibilities for -, six
biholomorphic ones and six bi-antiholomorphic ones. One easily infers that there are only twelve possible
trinoid symmetries 7, six orientation preserving ones and six orientation reversing ones. Moreover, these
can be explicitly determined as well (cf. theorem 4.31) and characterized by their respective permutation
behaviour concerning the trinoid ends: The six possible orientation preserving trinoid symmetries are the
identity mapping Z, the rotation R by the angle :i:%’r rotating the trinoid ends into each other, its inverse
R~ and the three rotations R; by the angle 7, each preserving the trinoid end at the singularity z; while
interchanging the other two. The six possible orientation reversing trinoid symmetries are the reflection
S in some plane, preserving each of the three trinoid ends, the three reflections S;, each preserving the
trinoid end at the singularity z; while interchanging the other two, the rotoreflection? & composed of R
and S, and its inverse S

Once given the twelve possibilities for v, one can compute the associated mappings 7 : M — M
from the relation w05 = v o 7. (Note that 4 is only determined uniquely up to left composition with
a covering transformation M — M.) Thus, we explicitly obtain for each possible trinoid symmetry 7
a biholomorphic (resp. bi-antiholomorphic) mapping 47 : M — M, which we put into relation with the
covering transformations 7; corresponding to the “monodromy matrices” of F'. This is done separately
for each symmetry type in sections 5 to 9. Generally speaking, the relations between 47 and the covering
transformations 7; translate by use of the “monodromy relations” and the “symmetry relations” of F'
given above into relations on the “monodromy matrices” ]\ij of F', involving the respective “symmetry
monodromy matrix” My, . The latter relations translate directly into further constraints on the mappings
Dj, q; occurring in Mj and thus, by theorem 3.59 into constraints on the generating solution ¥ to the
differential equation d¥ = W7, which produces the respective trinoid with properly embedded annular
ends, which is symmetric with respect to 7. The explicit results are given in theorems 5.9, 6.6, 7.5, 8.6
and 9.7, respectively.

In general, the further constraints on the mappings p;, ¢; occurring in Mj, which are obtained by
evaluating the deduced relations between the monodromy matrices Mj and the respective “symmetry
monodromy matrix” Ms.,, also introduce more parameters, namely the (A-dependent) entries of Mj, .
However, this additional freedom can be fixed by an appropriate “normalization” of the extended frame
F: First, observe that during the reconstruction of the extended frame F' from v, F' is “normalized”,
such that F(z,,A) =1 for all A € S! at an arbitrarily chosen base point z, € M. This normalization of
F corresponds to a A-dependent rotation and shift of the associated family ¢, of F', obtained from F' via
the loop group method. Now, choosing (if possible) for z, € M a fixed point of the biholomorphic (resp.
bi-antiholomorphic) mapping 57 : M — M associated with a considered trinoid symmetry 7, we infer
from the “symmetry relation” of F' given above that

My (V) = (kr5(2) 7", (L0.5)

i.e. we obtain a “symmetry monodromy matrix” M5, which is actually independent of A and explicitly
known (since k7 5(2:) is). Thus, the additional parameters mentioned above are fixed, and the cor-
responding additional constraints on the mappings p;, ¢; occurring in M; become by far more explicit.

2A rotoreflection defines a Euclidean motion, i.e. an isometry of R3 (cf. section 4.1), which is composed of an arbitrary
rotation R in R3 followed by a reflection S in R3, such that the reflection plane of S is orthogonal to the rotation axis of
R.



(Note that, however, such an “appropriate normalization” of F' is only possible, if the considered mapping
47 possesses any fixed point in M. Tt turns out that this is the case for all possible trinoid symmetries
except for the rotoreflections 7 = & and 7 = 1))

If the “appropriate normalization” of F' as described above is possible, we can explicitly translate a
given symmetry property of a trinoid ¢ : M — R3 with properly embedded annular ends (resp. of the
corresponding CMC-immersion ¢ : M — R?), into constraints on the mappings pj, gj occurring in the
monodromy matrices M ; of the generating solution W to the differential equation d¥ = W7. The explicit
results are given in theorems 5.13, 6.9, 7.8 and 8.9, respectively. Moreover, it turns out that the obtained
constraints on the mappings p;, ¢; are not only necessary but also sufficient for ¥ generating a trinoid
with properly embedded annular ends and the respective symmetry. This is proved in theorems 5.14,
6.10, 7.9 and 8.10, respectively.

Section 4 is organized as follows: First, we give the definition of a trinoid symmetry in section 4.1.
The procedure of recovering the extended frame F from the CMC-immersion 1 : M — R?® associated
with a trinoid ¢ : M — R? is studied in section 4.2. Actually, this is done in the generalized setting
of an arbitrary Riemann surface M with universal cover M and a pair of conformal CMC-immersions
¢: M —R3and ¢ : M — R3 linked via the universal covering T : M — M, 1 = ¢ om. Sections 4.3 and
4.4 explicate the translation of a given symmetry property of a trinoid ¢ with properly embedded annular
ends (resp. of the corresponding CMC-immersion ) to the level of the extended frame F of 4. Section
4.5 applies this translation to the symmetry 7 = Z and the covering transformations ¥;, j = 0,1, oo,
associated with the monodromy matrices of ¥ to obtain the “monodromy relations” for F' mentioned
earlier. Finally, section 4.6 provides the explicit forms of the biholomorphic (resp. bi-antiholomorphic)
mappings v : M — M asssociated with the possible trinoid symmetries, as well as the twelve possible
trinoid symmetries themselves.

Sections 5 to 9 translate the “symmetry relation” of the extended frame F' associated with a par-
ticular trinoid symmetry 7 of a trinoid ¢ with properly embedded annular ends into constraints on the
monodromy matrices J\ij of the solution ¥ to the differential equation d¥ = U7, which produces ¢ (or,
more precisely, the corresponding CMC-immersion ¢ which “descends” to ¢). Section 5 deals with the
symmetries R and R™!, section 6 treats the symmetries R;, j = 0,1, 0o, section 7 discusses S, section 8

studies the symmetries S;, j = 0, 1, 00, and section 9 is concerned with the symmetries Sand S

Throughout this thesis, we act on the assumption that the reader is familiar with the basic notions of
differential geometry. In particular, this involves: (parametrized) surfaces in R3, the mean curvature
of a surface, (differentiable) manifolds, differentiable mappings between manifolds, the differential of a
differential mapping, Riemannian manifolds. A comprehensive introduction to differential geometry can
be found in [6]. The following notions are of particular interest for our concerns:

A differentiable mapping f : M — R3 on a Riemannian manifold M is called an immersion, if the
corresponding differential at each point p € M, df : T,M — R3, is injective. An immersion f: M — R?
on a Riemannian manifold M is called an embedding, if it is a homeomorphism onto its image, i.e. if the
mapping f : M — f(M) is continuous and injective with a continuous inverse mapping f~! : f(M) — M.

Let M be a Riemannian manifold with differentiable structure {U,, 4 }. An immersion f: M — R3
on M is called a CMC-immersion (or a CMC-H-immersion), if, for each a, the mapping fowx, : U, — R3
is a (parametrized) surface of constant mean curvature H.

Furthermore, this thesis involves basic topological definitions and results, which have been assembled
in appendix A. For a detailed introduction to algebraic topology, the reader is referred to [20].
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2 QOutline of the loop group method

We begin by giving a brief review of the “loop group method” for the construction of constant mean
curvature surfaces from holomorphic potentials as presented in [15]. (This method is often also referred
to as the “DPW-method”.) This review will involve introducing the basic concepts (loop groups, Iwasawa
decomposition, holomorphic potentials) as well as giving an outline of the loop group method itself,
illustrated by the simple example of the already mentioned Delaunay surfaces.

2.1 Loop Groups
Let SL(2, C) denote the special linear group of complex 2 x 2 matrices and o : SL(2,C) — SL(2, C) denote

L0 ) For each r € (0,1], we define by

the conjugation by the Pauli matrix o3 = (O 1

A,SL(2,C), = {7y : C") — SL(2,C) smooth ; y(—X\) = a(y(\))} (2.1.1)

the (twisted) loop group of smooth maps from the r-cirle C(") = {\ € C;|\| = 7} into SL(2,C). The Lie
algebra A,sl(2,C), of A,.SL(2,C), is given by

Asl(2,C)y = {2 : O = §1(2,C) smooth ; z(—\) = osz(\)os}, (2.1.2)

where sl(2,C) denotes the Lie algebra of SL(2,C). The conditions v(—\) = o(y(\)) and z(—=X) =
o3x(N)os will be referred to as the twisting conditions for v € A,.SL(2,C), and x € A,sl(2,C),, respec-
tively. Note that the twisting condition for a smooth matrix function v : C") — SL(2,C) (resp. for a
smooth matrix function = : C") — sl(2,C)) is met if and only if the off-diagonal entries of 7 (resp. of x)
are odd functions, while the diagonal entries of « (resp. of ) are even functions of A € C("),

Furthermore, we denote by A;'SL(2, C), the subgroup of maps v € A,.SL(2,C), that extend holomor-
phically to the open disc I") = {\ € C;|\| < 7}, and - by abuse of notation - by A,SU(2), the subgroup
of maps v € A,.SL(2,C), that extend holomorphically to the open annulus A" = {\ € C;r < |\| < 1}
and take values in the special unitary group SU(2) on the unit circle S* = C(1),

In the case r = 1, we omit any subscripts “r”, simply denoting the groups A;SL(2,C),, A SL(2,C),,
A1SU(2), by ASL(2,C),, ATSL(2,C),, ASU(2),, respectively. We deal analogously with the correspond-
ing Lie algebras.

Remark 2.1. The topology introduced above for the loop groups and Lie algebras is a Frechet topology.
Sometimes it is preferable to work with Banach structures instead of with Frechet structures. In this case
one could require, e.g., that all matrix coefficients are contained in the Wiener algebra on the unit circle
(cf., e.g., [9]). For the purposes of this work the topology of the groups will play a minor role.

2.2 Iwasawa decomposition

It is known from [32] that the multiplication map A,SU(2), x ASL(2,C), — A,SL(2,C), is surjective,
that is, any v € A,.SL(2,C), may be written as

V= YuV+4s (2.2.1)

where v, € A, SU(2), and 74 € A}FSL(2,C),. The splitting (2.2.1) is called an r-Iwasawa decomposition
of v € ASL(2,C),, or, if r = 1, just Iwasawa decomposition of . By additionally requiring that v, (0)
is diagonal with positive real entries, the factors of the splitting (2.2.1) are uniquely determined. In this
case the multiplication map is a real-analytic diffeomorphism, and we will therefore speak of the unique
r-Iwasawa decomposition (resp. unique Iwasawa decomposition) of . For a proof of this, the reader is
referred to [32] and [30].

2.3 Holomorphic potentials

Next we will outline how one obtains from an immersion ) : M — R3 of constant mean curvature
H # 0 on a simply connected domain M C C an sl(2, C)-valued holomorphic differential one-form on M
involving a loop parameter A € C* = C\{0}, the so called holomorphic potential 7.

11



Let ¢ : M — R3 be a CMC-immersion. Consider the extended frame F : M — ASU(2), corresponding
to 1) as defined in [15].> According to [15], there exists By : M — ATSL(2,C), such that

U = F B, is holomorphic in both z € M and \ € C* (2.3.1)
U is called an holomorphic frame associated with ¢. The corresponding Maurer-Cartan form
i =Utdw (2.3.2)

is holomorphic in both z € M and X € C* as well and is called the holomorphic potential associated with
the immersion .

Remark 2.2. The extended frame F associated with 1 is not determined uniquely, but only up to the
choice of some initial value F(z,,)\) € ASU(2), for some z, € M. It is in particular always possible to
achieve F(z,,\) = I for a chosen base point z, € M by replacing a given frame Fy(z, \) by F(z,\) :=
FQ(Z*, )\)71F0(Z, )\)

In the following sections we recapitulate the procedure of constructing CMC-immersions ¢ : M — R3
of a Riemann surface M into R? from a given holomorphic potential 7, which is defined on the universal
cover M of the (not necessarily simply connected) Riemann surface M. In order to construct ¢, we
proceed as follows: First, we apply the loop group method to the holomorphic potential 7 to obtain a
CMC-immersion ) : M — R3 (cf. section 2.4). More precisely, the loop group method will produce a
whole family ) of CMC-immersions M — R3, parametrized by a loop parameter A € S'. Second, we
turn to the question under which circumstances 1y descends to a CMC-immersion ¢y : M — R3, at least
for a special choice of the loop parameter A\ (see section 2.5).

2.4 The loop group method

As indicated above, we can construct immersions of constant mean curvature H # 0 defined on the
universal cover M of a Riemann surface M from holomorphic potentials introduced in section 2.3 by
applying the “loop group method” presented in [15]. Carrying out this procedure involves the following
three steps:

1. Given a holomorphic potential 7, solve the differential equation

dv = . (2.4.1)
2. Perform (for each z € M) an r-Iwasawa decomposition

v =FB,. (2.4.2)

Note that, by construction, F involves the loop parameter A € C(") and can be holomorphically
extended (in \) to the annulus A" containing the 1-sphere S := C'(1).

3. Interpreting F as an element of ASU(2), and writing A\ = € for the loop parameter A € S*,
evaluate the Sym-Bobenko formula

1,0

F-Fly %FagFfl) (2.4.3)

for any Ao € S! to obtain a CMC-immersion v, defined on M.

Remark 2.3. For our purposes, that is for the construction of trinoids with properly embedded annular
ends from holomorphic potentials (cf. section 3), we can think of the starting potential 77 on M as the
pullback of some potential 1 defined on M = M /T, where T' denotes the fundamental group of M (cf.
[9]). Thus we ensure that 7 is an invariant holomorphic potential, i.e. invariant under the action of the
fundamental group T' on M. (Cf. section A.4 of appendix A for a detailed discussion of the mentioned
action of the fundamental group T of M on M 2

More precisely, we note that the choice of a holomorphic potential associated with a given CMC-
immersion 1) : M — R3 is not unique (cf. [15]). By theorem 3.2 of [9], it is possible to associate with 1)
an invariant holomorphic potential 77. The fact that we can thus assume w.l.o.g. that 7 is an invariant
holomorphic potential will be useful in the following section, when we address ourselves to the question,
whether a CMC-immersion M — R3 produced from 7 descends to a CMC-immersion M — R3.

3We review the procedure of constructing the extended frame F from a CMC-immersion v : M — R3 in section 4.4.
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By the theory of ordinary differential equations, the solution to (2.4.1) is uniquely determined as soon
as we prescribe an initial value condition
U(ze) = Ty (2.4.4)

for an arbitrary base point z, € M and some ¥y € A,SL(2,C), for some r € (0, 1]. Whereas any solution
U to (2.4.1) will be holomorphic in z € M, ¥ will only be holomorphic in A € C* if and only if ¥y is
holomorphic in A € C*.

Remark 2.4. In our discussions throughout this work we will deal with solutions to (2.4.1), whose initial
values at z, are not explicitly known and therefore might be not holomorphic in A € C*. In the case that a
solution ¥ to (2.4.1) is actually singular for certain values of A € C*, we can only proceed with the second
step of the loop group method, if ¥ is at least holomorphic (in A) on some circle C"), ro € (0,1]. (In
this case, resume the loop group method by performing an r-Iwasawa decomposition of ¥ with r = rg.)
Thus, when dealing with a solution ¥ to (2.4.1) at any time, we need to ensure that ¥ is holomorphic
(in A) on some circle C("0), 74 € (0,1].

Given a solution ¥ to (2.4.1) with initial value W(z,), it is easy to verify that (z) := oW (z,) 1 ¥(2)
also solves (2.4.1) and, moreover, meets the initial value condition (2.4.4). Consequently any solution
U to (2.4.1) can be modified (by a multiplication from the left independent of z) to meet a prescribed
initial condition. In particular, a solution singular for certain values of A € C*, can in such a way be
transformed into a new solution, which is holomorphic in A € C* or, at least, holomorphic in A € St (i.e.
holomorphic in A on an open neighborhood of S!). Solutions to (2.4.1), which are holomorphic in A € S!
are of special interest for this work (cf. theorem 2.11).

Definition 2.5. Let ¥ be a solution to (2.4.1). Then, the action of replacing ¥ by
U =10, (2.4.5)

where T denotes some z-independent loop in A,.SL(2,C),, is referred to as r-dressing or simply dressing
U by T.

By dressing a solution ¥ of (2.4.1), we obtain a new solution ¥ to (2.4.1), “only” changing the initial
condition. Such a change, however, has profound consequences in step two of the loop group method, as
there is no trivial relation between the frames F and F involved in the Iwasawa decompositions of ¥ and
U, respectively. This means, that dressing a solution ¥ to (2.4.1) will (in general) give rise to significant
changes in the CMC-immersion ¢ = 15, generated by step three of the loop group method. In fact, the
manipulation of the initial value ¥ given by (2.4.5) turns out to be crucial for our purposes, as it plays
the decisive role when it comes to deciding whether ¢ will descend to a CMC-immersion ¢ on M or not.
This issue will be discussed further in the following section.

Remark 2.6. We would like to remark, that in other places the dressing action of 7" on a solution to
(2.4.1) is sometimes only defined for T' € A;FSL(2,C),. This is motivated by the following considerations:
Let ¥ be a solution to (2.4.1) and T € A, SL(2,C), with Iwasawa decomposition 7" = T, T';. Denote by
U (resp. U) the new solution to (2.4.1) obtained from dressing ¥ by T (resp. by T only): ¥ = T'D,
¥ = T, 0. Moreover, let U= FB+ be the Iwasawa decomposition of ¥. Then, the Iwasawa decomposition
of U = T, 1 is obviously given by ¥ = FBJr with F = T, 1p ‘and B+ = B+ Thus, the extended frames
F and F involved in the Iwasawa decompositions of ¥ and U differ only by T, 1, which is unitary for
A€ St It is easy to verify, that, consequently, the families ¥ and 1/))\, A€ Sl, of CMC-immersions
M — R3 obtained from F' and F respectlvely, by the third step of the loop group method differ only by
a (A-dependent) rigid motion in R3 In this sense, dressmg W by T or only by T yields new solutions W
and U to (2.4.1), which induce “essentially the same” CMC-immersions via the loop group method.

We end this section with the following observation: Given a solution ¥ to the differential equation
(2.4.1) and a loop g € A,;FSL(2,C),, the mapping ¥ := Wg solves the equation

ab = b, (2.4.6)

where 7 is given by
0= 1f#g =g 'ig+g 'dg. (2.4.7)

Definition 2.7. Let ¥ be a solution to (2.4.1). Then, the action of replacing ¥ by

U = Uy, (2.4.8)
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where g denotes some z-independent loop in AFSL(2,C),, is referred to as r-gauging or simply gauging
U by g. The potential 7 associated with the holomorphic potential 7 by (2.4.7) is called the gauged
potential.

The use of the above observation consists in the relation between the unitary factors in the Iwasawa
decompositions of ¥ and ¥ = Wg, respectively, during the course of the loop group method: As g €
AFSL(2,C),, the r-Iwasawa decomposition of ¥ is given by

¥ = F(B.g), (2.4.9)

which means that the unitary factors in the Iwasawa decompositions of ¥ and U are actually the same.
Thus, ¥ and ¥ produce the same CMC-immersions via the loop group method. Consequently, this allows
for replacing a given holomorphic potential 77 by a corresponding gauged potential 7 without changing
the CMC-immersion produced by the loop group method.

2.5 Monodromy

Next we investigate under which circumstances a given immersion @ on the universal cover M of a
Riemann surface M will descend to an immersion ¢ defined on M. The answer to this question is
closely linked to the behaviour of the holomorphic frame ¥ associated with ¢ (cf. section 2.3) under the
covering transformations 4 corresponding to the elements [y] of the fundamental group T' of M.* This
transformation behaviour of ¥ is expressed by a z-independent matrix, the monodromy matriz M(~y, \).
We will briefly state the results pertinent to this article, for more details see section 2.4 of [17].

Lemma 2.8. Given a holomorphic potential 11 on M which is invariant under I in the sense of remark
2.3 and a class of loops [y] € T', any solution ¥ : M — A,SL(2,C), to (2.4.1) will transform under the
covering transformation 5 : z — [y] - z (cf. section A.4) according to

U(Y(2),\) = M(y,\)¥(z, A), (2.5.1)

where M (v, \) denotes some A,.SL(2,C), matriz depending on [7], but independent of z. M (v, \) is called
the monodromy matrix of ¥ with respect to [v].

Remark 2.9. We would like to add some comments concerning the premises of the above lemma.
Theorem A.14 of appendix A states how to construct the covering transformation z +— [v] - z from an
element [v] of the fundamental group of M at a base point x. This construction involves the choice of
a point y € M, which is mapped to x by the universal covering 7 : M — M. Thus, when speaking of
“the” covering transformation on M corresponding to an element [y] € I' (like in the above lemma), we
tacitly assume that the necessary choices have already been made: First of all, we assume that we have
chosen a base point € M, which allows for representing “the” fundamental group I of M by 71 (M, x)
and thus for working with loops v based at x. Moreover, we assume that we have chosen a point y € M,
such that 7(y) = . In this framework we can apply theorem A.14 to obtain the covering transformation

Fizm ]
Remark 2.10. Carrying out an r-Iwasawa decomposition of a solution ¥ to (2.4.1), we obtain
Vv =FB,, (2.5.2)
where F € A,SU(2), and By € A}SL(2,C),. Furthermore, the above lemma yields
F(3(2),A) = W(3(2), VBT (3(2), X) = M (v, \) ¥ (2, )BT (2, \) B (2, ) BI (3(2), A)
= M(v,\)F(2,\) By (2, \)B{'(%(2),)), (2.5.3)

where M (7, ) denotes the monodromy matrix of ¥ with respect to [y]. Thus, in case that M(y,\) €
A,.SU(2),, we obtain
F((2),A) = My, N (2 k(2,7 ), (2.5.4)

4Note that we assume throughout this work that M is path connected and that thus the fundamental groups of M at
any two points in M are isomorphic to each other (cf. lemma A.4). We will therefore w.l.o.g. speak of “the” fundamental
group of M, actually considering the fundamental group of M at an arbitrarily chosen point in M. Cf. section A.4 for more
details on the action of I" on M.
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where k(z,7,\) :== By(z,A\)B;"(5(2), ). Thereby, for fixed z € M, we have k € A}SL(2,C), and at the
same time k € A,.SU(2), (since F o, M and F are elements of A,.SU(2),). Thus, for fixed z € M, k
actually denotes a diagonal matrix in SU(2), which is independent of A:

F(3(2),\) = M(v,\)F(z, Nk(2,7). (2.5.5)

Under the above assumption, i.e. in the case M(y,A) € A,.SU(2),, we will sometimes speak of the
monodromy matrix M (y, A) of F' (with respect to [y]), expressing in this way that F((z), A) is linked to
F(z,A) by M(v,A) as in (2.5.5).

The basic theorem for all our considerations is obtained from theorem 2.7 of [11]:

Theorem 2.11. Let M be a Riemann surface with universal cover M and fundamental group T'. Let 7
be a holomorphic potential on M, which is invariant under T in the sense of remark 2.3. Furthermore,
let ¥ be a solution to (2.4.1) and let v : M — R? be the CMC-immersion obtained from U by the loop
group method for \g = 1. Then, 1 descends to a CMC-immersion ¢ on M = M/I‘ if and only if

1. M(v, ) is unitary for all [y] € T, A € S* and
2. M(y,A=1)==I for all [y] € T and
3. O\M(y,\)|x=1 =0 for all [y] € T.

Theorem 2.11 provides the key for “tuning” the loop group method, such that it will generate a CMC-
immersion ¢ = 11 on M that descends to an immersion ¢ on M: Given a solution ¥ to (2.4.1), dressing it
by T = T()\) € A,SL(2,C), will produce a new solution ¥ = TW. Denoting the monodromy matrices of
U by M(7y,)), [7] € T, the monodromy matrices of ¥ are then given by M (v, ) = T(A)M (7, \)(T'(\)) "2,
[v] € T. (Again, note that this relation only holds in the setting of CMC-immersions with an umbilic
point and thus in particular in the trinoid setting. [14])

Thus, to obtain a CMC-immersion ¢ : M — R? from a given potential 7, the strategy will be to find
an appropriate dressing matrix T that will modify a given solution ¥ with monodromy matrices M (7, A),
[v] € T, such that the monodromy matrices M (7, \) of ¥ = T'% will meet the conditions given in theorem
2.11.

In particular, if a given solution ¥ to (2.4.1) is singular for certain values of A € S, also its monodromy
matrices M (v, ), [y] € T, will not even be defined for these values of A. Thus, in this case, we need
to find a dressing matrix 7, which “removes” these singularities, such that U =TV is holomorphic in
Ae St

2.6 Delaunay surfaces

As pointed out in the introduction, for the study of CMC-immersions with properly embedded annular
ends Delaunay surfaces are of particular importance. These are CMC-surfaces of revolution around an
axis in R3, the Delaunay awis, and parametrized by the punctured complex plane C* := C\ {0}. For a
detailed discussion of Delaunay surfaces, we refer to [16]. Here, we only summarize some basic results,
which we will use in this work.

By section 3.2.1 of [16] all Delaunay surfaces (up to rigid motions) can be constructed from holomor-
phic potentials of the form

7= Ddz = (; )0() dz, (2.6.1)

where X(A) = sA™! +tA, X(A) = sA+tA~! and s,¢ € R with (s +¢)> = 7. The matrix D is called a
Delaunay matriz.

Remark 2.12. As for X and X, we have adopted the notation of [17]. Note that, while X ()\) yields
the usual complex conjugate of X (\) for A € S*, we interpret X for values of A € C*\ S! as the unique
holomorphic extension of the complex conjugate of X|g1 to C*. This motivates the definition of X above
for all A € C*. Moreover, for A € C*, X and X are linked via the formula

X0 = X(=). (2.6.2)

>l =
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Remark 2.13. The choice of s and t will determine the special shape of the produced Delaunay surface
(see [16] for details). We are especially interested in embedded Delaunay surfaces, which are also referred
to as unduloids. These correspond to s and t such that st > 0, i.e. either s,t > 0 or s,t < 0. However,
since the potentials Ddz and —Ddz are gauge equivalent (and thus produce the same surfaces, cf. section
2.4), all unduloids can be obtained from potentials of the form (2.6.1) with s,¢t >0, s +t = %

Given a potential 7 of the form (2.6.1), it is easy to verify that
U =P (2.6.3)

solves the differential equation (2.4.1). Around the point z = 0, ¥ picks up the Delaunay monodromy
matriz M (v, A):
U(Y(2), A) = M(v,A)¥(z, A), (2.6.4)

where 7 : z — 2z + 2mi denotes the covering transformation corresponding to the simply closed curve ~
in C*, which encloses the point z = 0, w.l.o.g. defined by 7 : [0,1] — C*, t — €?>™%. Note that 7 already
generates the fundamental group I' of C*. A simple computation yields

M (v, \) = e2™P, (2.6.5)

Via the loop group method, ¥ gives rise to a CMC-immersion i = 17 defined on the universal cover
of C\ {0}. Applying theorem 2.11, we prove that 1) descends to a CMC-surface ¢ on C* by showing that
the monodromy matrix M (7, \) = 2™ of U with respect to v meets the conditions of theorem 2.11.

We restrict to the unduloid case s,t > 0, s+t = % (cf. remark 2.13). Moreover, we assume s > t.
Despite those restrictions, it turns out that the case s = ¢ needs to be treated separately.

Let first s = ¢. In particular, since (s +¢)? = 1, this implies st > 0. In view of remark 2.13, we can
assume s,t > 0. Together, this implies s =t = i and thus X(\) = X(\) = i()\_l + A), which allows for
writing

1 1 L
D=1 (? (1)) = 1O+ X505, (2.6.6)
=, (1 -1 .
where S := v ACEEE Consequently, we derive that
. - - _[eT TN N
2miD _ & (A 4N\)os g—1 _ & [ €72 0 -1
e = Se%( EENS _S< 0 6,,21(/\_1+/\)>S . (2.6.7)

This shows that M(y,A) = e*™*P is unitary for all A € S* (as a product of unitary matrices), which
means that the first condition of theorem 2.11 is met. Moreover,

) ~ [Tt ~
P\, =S5 (60 6_0,”-) St =1, (2.6.8)
which proves that the second condition of theorem 2.11 is met. Finally, we have
) _fmi BTN (] )2 -
2miD _ 5 €2 (1 A ) ) 0 -1 _
(Oxe Ja=1=15 ( 0 —%ie%(’\_1+’\)(1 a2 B S =0, (2.6.9)

which means that also the third condition of theorem 2.11 is satisfied. Altogether, by theorem 2.11, ¥
induces in the case s =t a CMC-immersion ¢ on C*.
Let now s # ¢, i.e. s > t. We consider the function

p(N) =1/ XNX(N) (2.6.10)

from appendix B, which (in the present case s # t) is holomorphic and non-zero on a sufficiently small
neighborhood of S* in C* (cf. lemmaB.1 and remark B.2). In view of the relation

(B2 = XX = $2(1+ 2)\2)(1 4 EA‘Q), (2.6.11)

we infer that
() = espp (N p—(A), (2.6.12)
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where € € {1} and the mappings pu4 and p_, respectively, are well defined (recall s > t) by

t
I C IR L R Vs 2.6.1
(N =4/ 1+ A +2 A o 2>\ (2.6.13)
t , 142,
pe(A) =414 - 2::1+WA e (2.6.14)

Note that p is (at least) holomorphic and non-zero for A € {\ € C;|\| </}, while _ is (at least)
holomorphic and non-zero for A € {\ € C;|A| > \/g} In particular, both pu4 and pu_ are holomorphic

and non-zero on a sufficiently small neighborhood of S! in C*. Moreover, i, and u_, respectively, allow
for explicity defining the complex square roots

1t 312

e () =1+ igv 352 . =R (2.6.15)
1t,., 3t _

w_(N) =14 722 2—33;2A Y+, (2.6.16)

which (by analogous arguments) are also holomorphic and non-zero on a sufficiently small neighborhood
of S in C*.
In view of the considerations above, we set for y = espyp— with e € {£1} from now on

VD) = &5 y/is OV (V) (2.6.17)

where é = 1 if e = 1 and € = i if e = —1. Moreover, we define for the mappings AX(\) = s(1 4+ £\?) =
s(p(N)? and AT X(X) = s(1+ £A72) = s(u—(A))? the square roots

VAX (V) = Vg (A (2.6.18)
xlf@) = 6\/§u,()\). (2.6.19)

Altogether, the mappings /1), VAX and VA~1X defined as above are holomorphic and non-zero on
a sufficiently small neighborhood of S! in C*. Consequently, we infer that the expressions

\/3?7 v A\/‘;X (2.6.20)

are well defined and holomorphic on a sufficiently small neighborhood U of S! in C*. Therefore we can
proceed by writing for all A € U:

D= (}0( )0() = uRSa3S™ R, (2.6.21)
where
VAX
0 1 21
N _ 1 =X
R = 0 Voix | Sﬁ()\ 1 ) (2.6.22)
Vi

(Note that, since VAXVA~IX = \/sujey/su_ = u, we have det(R) = 1. Moreover, we obviously have
det(S) = 1.)
By (2.6.21) we infer that for all A € U

. . 2mip
e*mP = RSe*mirosSTIRTL = RS (e 0 e_gm> SR (2.6.23)
Since D is Hermitian for A € S*, 27D is skew-Hermitian for A € S'. This implies directly that
M(vy,\) = €2™P is unitary for A € S!, which means that the first condition of theorem 2.11 is met.
Moreover, using j(A = 1) = % from lemma B.3, we infer from (2.6.23) that
i eﬂ—i 0 _ —
Py = Bhashor (%) 7Ol s = -1 (2.6.24)
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which proves that the second condition of theorem 2.11 is met. Finally, using the fact that the matrices
R, R7', S and R™! are holomorphic at A = 1 together with (9xu()\))x=1 = 0 from lemma B.3, we have

i 627r72,u 0 _ _ 627Ti[_L 0 _ _
(02" P)r21 = {(%R)S( 0 e%ri,u) ST'R 1+R(3A5)< 0 emu) STIR™
2mip 2mwip
+ RSO, (e . BSW) SR~ RS (e . egm> S 1(0,8)S 'R

eQTriu 0 _ _ _
—RS( 0 6_2““)5 'R7Y(O\R)R 1]

A=1
_ | -1 —1p-1 QWiGQWi“aAM 0 —1p-1
_[ (O\R)R R(O\S)S™T'R +RS< 0 _omie-2ming, ST'R
+R(OAS)ST'R™' + (OWR)R™'],_, =0, (2.6.25)

which means that also the third condition of theorem 2.11 is satisfied. Altogether, by theorem 2.11, ¥
induces also in the case s > t a CMC-immersion ¢ on C*.
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3 Trinoids

We have introduced trinoids as CMC-immersions 73 — R? of the thrice-punctured two-sphere into R?.
Without loss of generality, we will assume that the three points removed are S = (0,0, —1)7, P = (1,0,0)7
and N = (0,0,1)7 in R3, i.e. 73 = S?\ {S, P, N}. However, during the course of this thesis it will be
sometimes convenient to consider alternative models for both the trinoid domain and the target space of
the trinoid. We therefore identify the thrice-punctured two-sphere with the complex plane C with the
two points 0 and 1 removed (or, equivalently, with the extended complex plane C:=Ccu {oo} with the
three points 0, 1 and co removed). The identifying map is a restriction of the well known stereographic
projection S? — C. We also identify the target space R3 of the trinoid with the matrix Lie algebra
‘ s —iz —ir —y
su2) =13 <—ix ty iz
the standard inner product on R? and defining an inner product on su(2) by < 4, B >:= —2trace(AB)
it is easy to verify that J is an isometry. Furthermore, J defines a Lie algebra homomorphism between
R3 equipped with the cross product and su(2) equipped with the Lie bracket [A, B] := AB — BA. These
alternative models of the trinoid domain and the target space of the trinoid are explained in detail in
sections 3.1 and 3.4, respectively.

In sections 3.2 and 3.3, we study the universal cover of the trinoid domain as well as the monodromy
action of its fundamental group on the universal cover. The reader who is not familiar with these notions
is referred to appendix A, where we give a basic introduction to the underlying topological concepts,
based on the book of Fulton [20].

In sections 3.5 to 3.9 we introduce the trinoid potential 1, which produces trinoids via the DPW-
method. Moreover, we explicitly compute a family of solutions to the differential equation (2.4.1), whose
members have unitary monodromy matrices with respect to the elements of the fundamental group of
M.

) i z,y,2 € R}. The identifying map R3 — su(2) is denoted by J. Using

3.1 Trinoids on the domain M = C\ {0, 1}

Trinoids are CMC-immersions of the thrice-punctured two-sphere 73 into R3. As stated earlier, we
can assume w.l.o.g. that the three points removed from the two-sphere are located at S = (0,0, —1)7,
P = (1,0,0)7 and N = (0,0,1)7 in R3. Thus a trinoid is originally defined as a CMC-immersion
T3 = S?\ {S,P,N} — R3. However, we find it more convenient to interpret a trinoid ¢ as a CMC-
immersion of the twice-punctured complex plane (or, equivalently, the thrice-punctured extended complex
plane), i.e. ¢ : M — R3, where

M =C\{0,1} =C\ {0,1,00}. (3.1.1)
This is possible by identifying 73 and M by the well known stereographic projection
A £ Y f 1
p:S*—=C, (z,y,2)T — {12 i or 2 # (3.1.2)
00 for z=1

that defines a diffeomorphism S? — C’, i.e. a differentiable bijection S? — C with differentiable inverse
mapping. As p(S) = 0, p(P) = 1 and p(N) = oo, p in particular allows to identify 73 = S\ {S, N, P}
and C\ {0,1,00} = M.

Thus, given a CMC-immersion ¢q : 73 — R3, the mapping ¢ := ¢ op~ ! defines a CMC-immersion of
M into R? parametrizing the same surface, (M) = ¢o(7T3).

From now on, we interpret trinoids as CMC-immersions M — R3. Furthermore, reparametrizing a
given trinoid ¢ : M — R3 (or, more precisely, the associated surface ¢(M)) if needed, we will assume
without loss of generality that ¢ is conformal, i.e. that the metric on ¢(M) induced by ¢ is given by
ds? = e¥(dz? + dy?) for some real valued function u : M — R. (In other words, we assume without loss
of generality that ¢(M) is parametrized in conformal coordinates, which is always possible; cf.; e.g., [1].)
With respect to these considerations, we give the following (adjusted) definitions:

Definition 3.1. Let M = C\ {0,1} and, for j =0,1,00, z; =j € C.
1. A conformal CMC-immersion ¢ : M — R? is called a trinoid (on M).

2. Let ¢ : M — R3 be a trinoid. A non-empty subset B; C ¢(M) is called an annular end of
¢ (at zj), if there exists a punctured neighborhood U; of z; in M, such that B; = ¢(U;) and
lim, .., ¢(z) = oo. Without loss of generality, if not stated otherwise, we will assume that Uj is

open in M and that U; U {z;} is simply connected in C.
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3. Let ¢ : M — R3 be a trinoid and Bj be an annular end of ¢ at z; with B; = ¢(U;) for an appropriate
punctured neighborhood U; of z; in M. Bj; is called a (properly) embedded annular end of ¢ (at
z;), if the mapping ¢|y, : U; — R? is a (proper) embedding.”

We complete this section by recording the following result:

Lemma 3.2. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with three embedded annular ends. Then,
M with the metric induced by ¢ is complete.

Remark 3.3. The proof of lemma 3.2 involves basic concepts and results of analysis and differential
geometry. We assume the reader is familiar with the notions of a (complete) metric space and the notion
of a (geodesically) complete Riemannian manifold.

Proof of lemma 3.2. By a well known result of differential geometry (“Hopf-Rinow”), it is enough to show
that M (interpreted as a Riemannian manifold) is geodesically complete, i.e. that at any point p € M
and for each unit vector v from the tangent plane T, M to M at p the geodesic v at p in the direction of
v, v(t) = exp(tv), is defined for all ¢t € R.

Let p € M and v € T,M with |v] = 1. By theorem 1 of section 4-7 and lemma 1 of section 4-6 of
[6], there exists € > 0 such that the curve v(t) = exp(tv) defines a geodesic in M for all t € I = (—¢,¢).
We extend the curve v : I — M to the maximal interval (sg,t9) € R such that v : (sg,t0) — M,
~(t) = exp(tv), defines a geodesic in M.

Consider a sequence t,, n € N, in (sg,tg) with lim,_,o t, = to. The corresponding sequence ~(t,),
n € N, in M possesses an accumulation point py in the compact superset C of M and thus a subsequence,
which converges to pg. Denoting this subsequence by abuse of notation again by ~v(¢,), n € N, we have

Jim (t,) = po (3.1.3)
Assume pg € M. Then, by theorem 1la of section 4-7 of [6], there exist €1, e > 0 such that at any point
g € M, which lies inside the sphere By, (pg) of radius €; around py, and for all w € T,M with |w| =1
the curve § : (—eg,e9) — M, 0(t) = exp(tw), defines a geodesic in M with §(0) = ¢. By (3.1.3) and
since lim,, oo t, = to, there exists ng € N such that v(t,,) € M N B, (po) and tg — tn, < €2. Thus,
the curve do : (—€2,€2) — M, do(t) = exp(two) with wyg = '(ts,) € Ty, )M defines a geodesic in
M. Moreover, do(0) = Y(tn,) and 0o(t) = v(t + tp,) for all t € (—ez,€2), i.e. dp extends the geodesic
v : (S0,t0) — M beyond ty to a geodesic defined on the interval (so,tn, + €2) D (S0, %0), & contradiction
to the assumption that (sg,tg) defines the maximal interval in R, where v is a geodesic. Thus it remains
to consider py € C \ M, ie. pg€{0,1,00}. Then, by (3.1.3) and by the fact that ¢ defines an embedding
on a small enough punctured neighborhood of py with lim,_,,, ¢(z) = oo, we infer that

lim ¢(y(tn)) = oo. (3.1.4)
n—oo
This implies lim,,—, oo d(¢(p), #(7(tn))) = 0o, where d denotes the metric on ¢(M). Consequently, denoting
by dps the induced metric on M, we obtain

o0 = lim d(¢(p), p(7(tn))) = lim dar(p,y(tn)) = lim t, = to, (3.1.5)
which implies that ~, v(t) = exp(tv), defines a geodesic on the interval (sg, 00).

Considering a sequence s,, n € N, in (sg,00) with lim,_ 8, = sg, we infer by the analogous
argument as above that so = —oo and conclude that v, v(t) = exp(tv), actually defines a geodesic in M
on the interval (—oo, 00) = R, which finishes the proof. O

3.2 The universal cover M of M

It is well known that the universal cover M of the twice-punctured complex plane M can be taken to be
the upper half plane R
M=H:={z=x+iy € C;z,y € R,y > 0}. (3.2.1)

5An embedding U — V is called proper, if inverse images of compact subsets of V are compact.
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The corresponding covering map® is given by

p(%;Zz—i—Z) — p(zgl;Zz—i—Z)

7 M— M, n(z):= , 3.2.2
(2) p(%;Zz—l—Z)—p(%;Zz—i—Z) ( )
where o denotes the Weierstrass function
1 1 1
o/ Zwg) = — —_— - = 2.
©(2; Zwy + Zws) =T E <(z —E w2) , (3.2.3)

0#wEZwi +Zwa

which is defined for z € C and wi,ws € C\ {0} with £ ¢ R. As a function of its first variable z, p is a
meromorphic function on C with second order poles at the points of the period lattice

Q = Zwi + Zws. (3.2.4)
More precisely, p is an elliptic (i.e. doubly-periodic) function with respect to © and thus satisfies
pz+w;Q) = p(z;,Q) forall ze C and all w € Q. (3.2.5)

Moreover, considering the defining equation (3.2.3), we obtain

p(—2; Zwy + Zws) = p(z; Zwy + Zwo), (3.2.6)
o(pz; Zpw, + Zuws) = p~2p(2; Zwy + Zws) for all € C\ {0} (3.2.7)
0(Z; Zin + Zivs) = p(z; Zwy + Zws). (3.2.8)

A detailed study of the function p can be found, e.g., in [24]. In the special case wy = 1 we additionally
have Z&y +7Z = Zwy + Z for all &, € C with w; — wy € Z and therefore

(2 Zain +Z) = p(z;Zwy + Z) for all @y € C with @ —w; € Z. (3.2.9)
The following lemma records some useful properties of the covering map  : M — M.

Lemma 3.4. The covering map 7 : M — M as given in (3.2.2) satisfies

m(z+1) = ﬂ(lz), (3.2.10)
w(—é) =1 n(2), (3.2.11)
m(—2) = 7(2). (3.2.12)

Remark 3.5. Note that for z € M also z + 1, —% and —z are elements of M. Therefore the left-hand
sides of the equations stated in the above lemma are well defined.

Proof of Lemma 3.4. We start with the proof of (3.2.10). Using equations (3.2.9) and (3.2.5) we obtain

1 1
o(5:2(z + 1)+ Z) = p(5: 22 + Z), (3.2.13)
1 1

p(%;Z(z +1)+2) = p(C + 122 +2) = p(5; 2 + 2), (3.2.14)

1 1
p(zg Z(z+1)+7) = m% 7z + 7) (3.2.15)

and thus
p(LZ(z+1) +Z) — p(EH 2 + 1)+ 2) o422+ Z) — p(3;Z2 + 7) 1
m(z+1) = T S = — —H = .

p(i;Z(z+1)+Z)fp( : i Z(z+ 1)+ 2Z) p(E;ZZ+Z)*p( : 32z +7) (7T(Z) |
3.2.16

p(L:2242)—p(ZH 22+2)
0(%Z2+2) —p(Z5Z2472)
This way we ensure that the boundaries of the single

6We have slightly modified the covering map M — M, z —

given in chapter I, §4 of [24] by

composing it with the Moebius transformation M — M, z +— zil'
sheets of our chosen tesselation of M are mapped by the covering map 7 onto the “cuts” in M = C extending from 0 (resp.
1) to —oo (resp. +00) along the negative (resp. positive) real axis.
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For the proof of (3.2.11) we apply (3.2.7), (3.2.5) and the identity of sets Z = —Z to obtain

1 1
p(52(=) +2) = 2p(55 2(-1) + L2) = 2p(5: L2 + D), (3.2.17)
1
—-+1 1 -1 1
(2T B(—2) 4 B) = P (1) + 22) = (T~ 122+ 2) = (P2 1 7),
(3.2.18)
—1 1 —1 1
o( 2Z ;Z(f;) +7Z) = zzp(7;Z(fl) +Zz) = zzp(f —1Z24+7Z) =z p( 1Lz + 7). (3.2.19)
This implies
LoD D) oAU +7)_ pl52a+7) - o35 2a 4 ) )
mT(——) = T = = X = T .
F pBE-H L) (-2 9EL D) -5l +2)
(3.2.20)
It remains to prove (3.2.12). Using equations (3.2.8) and (3.2.5) we obtain
( LE+ 1) = p( 1Lz + 1), (3.2.21)
1-— 1 — 1 1+
o 2 ; z ):p(TZ;Zz—&—Z):p(%—Z Zz+17) = p(TZ;Zz—FZ), (3.2.22)
( Zz +7Z)= p( Zz +7Z)= p( —zLz+17) = p( 12z + 7). (3.2.23)
Therefore,
L7247) - (552,224 2 L7472 2.7+ 7
m(—Z) = p(%’ Z+7) - gl ERLAs ) _plpilzt D) et D) o 2). (3.2.24)
p(3:22+Z) — p(5; 2z + Z) 0322 +2) — (3,22 + L)
O
As a direct consequence of the above lemma we obtain
(z4+2)= ! = m(2) (3.2.25)
™ oD 7(z), 2.
z —2z-—-1 1 1
1 n(CE T =12 - ) =1 —w(—2) = 7(z). 2.2
R = 1- a2 =1 - (-2 - D) =1 - n(-2) = 7(3) (32.26)
This shows that the two mappings
U:M— M, z+ z+2 (3.2.27)
5 - ~ z
S:M—M 3.2.28
’ 2z +1 ( )
satisfy
molU =m and (3.2.29)
molS =m, (3.2.30)

respectively. As, moreover, U and S are homeomorphisms of M (with inverse mappings Uiz 2z-2

and S71: 2 — i) U and S define two covering transformations on M. In fact, it turns out that the

whole automorphism group of 7 (cf. appendix A, definition A.7) is generated by U and S (cf. chapter
IV, 5 of [34]). Figure 3.1 below shows a tesselation of M with respect to the sheet F given by

~ 1 1 1 1
F={z=z+iye M;-1<z<1and |z+§| > B and |z—§| > 5} (3.2.31)
Figure 3.2 shows in more detail where in M the different parts of F are mapped by w. (This can be

validated by a direct computation.)
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iR

Figure 3.2: Correspondence between the main sheet F of M and M via 7|z

Remark 3.6. Naturally, the universal covering 7 defines a local homeomorphism M — M. Note that,
moreover, 7 is holomorphic on M (cf. chapter I, §4 of [24]), which implies that 7 actually defines a
conformal mapping M — M (cf. chapter VI, §1 of [4]). Consequently, to a given trinoid ¢ : M — R, i.e.
a CMC-immersion of M into R3, corresponds a CMC-immersion v := ¢ o 7 of M into R3. Furthermore,
1 is conformal if and only if ¢ is conformal. Le., to any conformal CMC-immersion M — R? corresponds
a conformal CMC-immersion M — R3.

Recall that, conversely, a given CMC-immersion 1 : M — R3 “descends” only to a CMC-immersion
¢ : M — R3 if certain conditions are met (cf. theorem 2.11). However, if this is the case, and if, in
addition, v is conformal, then ¢ will be conformal as well.

Altogether, we infer that the conformal CMC-immersions M — R? correspond via 7 to the “descend-
ing” conformal CMC-immersions M — R3. As stated earlier, we can without loss of generality restrict
our study of trinoids to the study of conformal CMC-immersions M — R3. Consequently, we will also
restrict ourselves to the study of conformal CMC-immersions M — R3. Thus, we will tacitly assume
from now on that any CMC-immersion ¥ : M — R3 produced by the loop group method has already
been reparametrized into a conformal CMC-immersion of M into R3.

3.3 The fundamental group I' of M and its monodromy action on M

In this section, we introduce the fundamental group I' of M = C \ {0,1,00}. (Recall that, as M is
path-connected, T is up to isomorphisms independent of the choice of a base point in M.) Moreover, we
explicitly construct the covering transformations on M corresponding to the generating elements of T'.
The underlying ideas are provided in appendix A.

We first consider the fundamental group of the trinoid domain 73 = S2 \ {S, P, N}. As 73 is path-
connected, its fundamental group is up to isomorphisms independent of the choice of a base point in 73.
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We choose the basepoint to be (%,0, f%) € 73. The fundamental group of 73 is then generated by the
equivalence classes of two loops s and vyp based at (%,07 —%), where s (resp. vp) surrounds exactly
once the point S (resp. P) without enclosing P and N (resp. S and N) at the same time. Thereby, we say
that a loop «y in T3 surrounds or encloses a given point in S2, if this point lies on the right hand side while
“walking along” the loop ~ from v(0) to (1) on the “outside” of S2. Note that any loop surrounding
exactly once the point N (and neither S nor P) is homotopic to the loop product 'y];l . 751.

By applying the stereographic projection p defined in (3.1.2) we can translate the generating elements
of the fundamental group of S?\ {S, P, N} into the corresponding generating elements of the fundamental
group of M = (@\{07 1,00}: The loop ~s (resp. vp) is mapped by p onto a loop vy (resp. v1) in M, which
is based at 5 = p((2,0,—2)) € M. Note that the stereographic projection “unfolds” the thrice-punctured
two sphere onto the twice-punctured complex plane, relating the “outside” of S? to the “lower side” of
C. Furthermore, p preserves orientation. Thus, as v (resp. vp) keeps the point S (resp. P) on its right
hand side when traced from ~5(0) to vs(1) (resp. from vp(0) to yp(1)) on the “outside” of S2, 4o (resp.
~1) keeps the point 0 = p(S) (resp. 1 = p(P)) on its right hand side as well when traced from 7,(0) to
Y0(1) (resp. from 71 (0) to 71 (1)) on the “lower side” of C. This means that - viewed “from underneath”
C - 7o (resp. 71) encloses the point 0 (resp. 1) clockwise in M. Consequently, taking the more familiar
point of view by looking at the extended complex plane C “from above”, vy (resp. 71) encloses the point
0 (resp. 1) counter-clockwise in M, keeping it on its left hand side while evolving from ~0(0) to (1)
(resp. from ~1(0) to v1(1)). From now on, we say that a loop v in M surrounds or encloses a given point
in C, if this point lies on the left hand side while “walking along” ~ from v(0) to v(1) on the “upper side”
of C. Naturally, as vg (resp. vp) encloses the point S (resp. P) in 73 exactly once without enclosing P
and N (resp. S and N) at the same time, 7o (resp. v1) encloses the point 0 (resp. 1) in M exactly once
without enclosing 1 = p(P) and oo = p(N) (resp. 0 = p(S) and co = p(N)) at the same time. Finally,
Yoo =1 1. Yo ! defines a loop (based at %) surrounding the point co exactly once without enclosing 0
and 1.

Altogether, the fundamental group I" of M is generated by the homotopy equivalence classes of g
and v1:

=< [y],[11] > - (3.3.1)

Next, by applying theorem A.14, we construct the covering transformations 7o, %1, Voo : M — M
corresponding to the loops g, 71 and 7, in M. Note that, as any loop homotopic to vy (resp. 1, resp.
Yoo) induces the same covering transformation 7y (resp. 71, resp. ¥« ), it is enough to define 7, 1 and
Yoo only “qualitatively” (as done above).

As T is based at the point x = % € M, we need to choose a point y € M, such that m(y) = x. Let

y =t (3.3.2)
Using equation (3.2.11), we observe that y satisfies

n(y) = w(—? —1—n(y) (3.3.3)

and thus m(y) = % =z, as desired. Now, following the procedure described in section A.4, we denote by
#;(y) the endpoint of the unique lift of the loop ; to a path in M starting at y. Keeping in mind that
the point 4;(y) will be the same for any loop homotopic to v;, and bringing in our detailed knowledge
about corresponding domains in M and M (i.e. domains homeomorphic with respect to 7), we can forgo
any further technical calculations and determine the values 4;(y) by just looking at the figures below:

As the loop 7o (as given in the figure 3.3) runs from ~(0) to (1), it takes course through the
subdomains Ty, Ty, Ty and Ty in M. Consequently, its lift starting at y takes course through the
corresponding subdomains in M, ending at another preimage of , namely at the point S ~L(y) (cf. figure
3.1). This implies 5o(y) = S~!(y). By use of theorem A.8, we conclude that actually 79 = S~! on M.
Analogously, by tracing the loops 71 (resp. 7o) in the figure 3.4 (resp. figure 3.5) above through T7, To,
Ty and Ty (vesp. Ts, Th, Tho, T7, Ts, Ty, Ty and T5) we obtain the corresponding lifts starting at y and
ending at U((y)) (resp. at U~1(S(y))). From this, we conclude as above that 4, = U and 7., = U~'S
on M.

Summarizing our previous considerations, the elements [yo], [y1] and [ys] in ' give rise to the following
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Figure 3.5: The 100p 7o on M and its (qualitative) lift on M connecting y and U~'S(y) =: oo (y)-

covering transformations g, 71 and 7, respectively:

z

~ :M_)M ~ = G—1 = — . .4

0 Lo =871) = (3:34)

M — M, A(2)=U(z) =242, (3.3.5)
e e e qa s —3z-2

Yoo : M — M, A(2)=U S(z)——2z+1. (3.3.6)

Note that, since [yo] and [y1] generate the fundamental group I' of M, we infer by theorem A.14 that
% and 4; generate the automorphism group Aut(M /M) of covering transformations M — M. More
precisely, we can state the following

Lemma 3.7.

Aut(M/M) = <40, > = {7:M — M;7 biholomorphic,m o4 =7} (3.3.7)
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Proof. As indicated before, the identity Aut(M /M) =< 39,41 > is a direct consequence of (3.3.1) and
theorem A.14. Moreover, in view of definition A.7 and using the fact that 4y and 47 define biholomorphic
mappings M — M, we infer that Aut(M /M) = {% : M — M;# biholomorphic, 704 = 7}, which finishes
the proof. O

Considering, again, a solution ¥ to the differential equation (2.4.1) as in section 2.5 and denoting the
monodromy matrices of ¥ with respect to [y;], 7 = 0, 1,00, by M;(X) := M(v;,A), j = 0,1, 00, we have
by (2.5.1)

U (Y0(2), A) = Mo(A\)¥(2, ) (3.3.8)
\11(5/1(2)7)‘) = Ml()‘)\ll(za)‘) (3'3'9)
As Ay 041 0 Y is the identity mapping on M, we have furthermore
(2, A) = W((0 0 51 0 Foe)(2), A) = Mo(\) M (\) Mac ()W (2, N), (3.3.11)
which implies
Mo(MN) My (MM (N) =1 (3.3.12)

3.4 The su(2) model of R?

After the study of the trinoid domain in the previous sections we now have a closer look at the target space
of a trinoid, R3. Using the loop group method, we obtain for any g € S' a CMC-immersion defined on
the universal cover M of the trinoid domain M by evaluating the Sym-Bobenko formula (2.4.3) at A = Ao.
However, we observe that for a given extended frame F' € ASU(2), the corresponding CMC-immersion

1.0

SymBob(F)x=x, = ~ 5 (5

F-F FosF~ - 4.1
o +2 o3F ") a=xo (3.4.1)

actually defines a mapping M — su(2) from M into the matrix Lie Algebra

@ =5 (55 )i o) (3.4.2)

T +y —z

which is the Lie algebra of the matrix group SU(2). To obtain a mapping M — R? (as desired), we have
to identify su(2) with the 3-dimensional Euclidean space R3. The corresponding identifying map is given
by

x
1 —iz —ix —y
LT3 -
J :R® — su(2), gZ/ =5 <—z’x—|—y is ) . (3.4.3)
Denoting by “x” the cross product on R3 and by “[-,-]” the Lie bracket on su(2), we have for any two

elements 71, 79 of R3 the identity
J(T’l X 7’2) = [J’I"l, J’I"Q]. (344)

Due to this equation, .J defines an isomorphism between the Lie Algebra R?® equipped with the cross
product and the Lie Algebra su(2) equipped with the Lie bracket. Keeping this in mind, we can now
state

1.0

—F-F F F7 ) a=x, =J 3.4.5
where ¢ denotes the desired CMC-immersion M — R3.
The automorphism group of the Lie Algebra R3 (equipped with the cross product) is given by the
group SO(3) of all orthogonal 3 x 3-matrices with determinant +1 (cf. [10], section A.3). The isomorphism
J provides a one-to-one correspondence between SO(3) and the automorphism group Aut(su(2)) of su(2):

SymBob(F) |)\:>\0 =

Aut(su(2)) = JSO(3)J 1, (3.4.6)

i.e. any automorphism U € SO(3) of R? induces an automorphism J o U o J~! of su(2) and vice versa.
Moreover, as any automorphism of su(2) can be realized by conjugation with a unitary matrix P € SU(2)
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of determinant 1, which is uniquely determined up to sign (again, c.f. [10], section A.3), we can write for
X esu(2)
(JoUoJ HX)=PXP ! (3.4.7)

Similarly, given an automorphism V € O(3) \ SO(3) of R? along with the corresponding automorphism
J oV olJ ! of su(2), there exists a unitary matrix P € SU(2) of determinant 1, which is uniquely
determined up to sign, such that for X € su(2)

(JoVoJ HX)=-PXP L (3.4.8)

This is a consequence of the following: Consider the automorphism T =

OO =

0
1 0 | €0(3)\S0(3) of
0

R3, which induces the automorphism J o T o J~! of su(2) given by

(JoToJ HX)=— (8 OZ.) X (()i ?) =Y. (3.4.9)

As V o T e SO(3), there exists P € SU(2), such that (JoV oT o J ') (X) = PXP~! for X € su(2).

Setting P := p (_OZ ?) € SU(2), this implies

(JoVo J )Y)=(JoVoToJ )X)=PXP !=—-PYpP, (3.4.10)

for all Y € su(2), which proves (3.4.8).

3.5 The trinoid potential

In this section, we introduce a class of potentials, which will produce trinoids with properly embedded
annular ends via the loop group method. Following [17], we define these potentials on the trinoid domain
M = C\ {0,1,00} = M/T (rather than on the universal cover M = H of M). From each such potential
7 we can obtain a holomorphic potential i on M by carrying out the pullback construction induced by
the covering 7 : M — M, ie.

7= 7. (3.5.1)

In view of 2.3, 7 is invariant under the action of the fundamental group I' on M and thus allows for the
application of theorem 2.11.
While keeping in mind the necessity of the pullback construction to obtain the “true” trinoid potential
7 (for use with the loop group method), we restrict our considerations from now on to the correspond-
ing potential 7 on M. Accordingly, instead of solving equation (2.4.1), we turn to the corresponding
differential equation on M:
dd = o). (3.5.2)

Note that any solution ® to (3.5.2) naturally induces the pullback solution ¥ = 7*® to (2.4.1), as
d¥ =d(7*®) = 7*(dP) = (7*P)(n*n) = V7. (3.5.3)

Remark 3.8. The potential n we consider comes along with three singularities at 29 = 0, 21 = 1 and
Zoo = 00. These singularities carry over to the solution to the differential equation (3.5.2). Thus, there
exists no holomorphic solution to (3.5.2), which is well defined globally on M. (Suppose there exists such
a solution ®. Tracing it along a closed curve v : [0,1] — M, which is based at x = v(0) = (1) and
surrounds one of the singularities of ®, one obtains on return to z a different value ®(y(1)) # ®(y(0)) -
a well known result of complex analysis. But, as 7(0) = (1), this means that ® is multiply defined at x,
a contradiction.)

Consequently, in order to obtain a well defined holomorphic solution ® to (3.5.2), we need to restrict to
a simply connected subdomain of M. To this end we introduce certain “cuts”, i.e. half-lines, which we
exclude from the domain. More precisely, we cut M along the real axis from 0 to —oo and from 1 to 4oc.
Thus, instead of M, we consider the simply connected domain

D=C\{zxeRjz<0 or z>1}. (3.5.4)

On D, a holomorphic solution to equation (3.5.2) is well defined.
To a given solution ® to (3.5.2) on D corresponds a solution ¥ to equation (2.4.1) via the pullback
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construction: ¥ = 7*®. By this construction, ¥ will be at first defined on a subset Fy of M, which is
homeomorphic (via 7) to D. However, by continuing ® holomorphically “across the cuts” in M, we can
accordingly (again, via 7) continue ¥ beyond Fj in M. (Each time we cross one of the cuts in M, we
think of entering a “new copy” of D and thus circumvent the problem of ® not being well defined.) By

these means, we obtain a holomorphic solution ¥ to equation (2.4.1), which is defined globally on M.

We now explicitly introduce the potential 1, which we will use throughout this work. As mentioned
earlier, 1 comes along with three singularities at z9 = 0, 27 = 1 and 2o = o00. These singularities
will carry over to the solution to the differential equation (3.5.2) as well as to the induced immersion ¢
parametrizing the surface and thus will generate the three trinoid ends. Following section 3.1 of [17], we
may restrict to the case where 7 is off-diagonal, that is of the form

n= (T(£ 3 ”(ZO’ A)> dz, (3.5.5)

where, for now, v and 7 denote some holomorphic functions in z € M = C \ {#0, 21, 200 } Which also
depend on A € C*.

We would like to construct trinoids with properly embedded annular ends. According to [25], these
ends asymptotically show the behaviour of unduloidal Delaunay surfaces, which have been studied in
section 2.6. Therefore, we further assume that the potential  near each singularity z; adopts some of
the properties of the corresponding (unduloidal) Delaunay potential

1
D;dz (3.5.6)
Z—Zj
involving the off-diagonal Delaunay matrix
_ (0 X
D, ()Q ‘ > 7 (3.5.7)
where
Xj :Sj/\_1 —l—tj/\, Yj:Sj)\+tj/\_l7 (358)
11 1
S5 € [Z, 5), s;j+t; = 5 (3.5.9)

Remark 3.9. Note that the Delaunay potential given above defines the translation of the Delaunay
potential given in section 2.6 (defined on the universal cover of C\ {z;}) to the space C\ {z;} itself.
Therefore, this alternate version of the Delaunay potential relates to the potential n, which is defined on
M, not on M.

Remark 3.10. When dealing with the singularity z., = 0o, we introduce the coordinate transformation
u = % and consider the potential n(u, A) near the singularity u., = 0 and, accordingly, the (unduloidal)
Delaunay potential

1
~D,.du (3.5.10)
U

involving the off-diagonal Delaunay matrix D, given in (3.5.7).

Remark 3.11. In general, unduloidal Delaunay surfaces are obtained via the loop groop method from
a holomorphic potential of the form (3.5.6) with parameters s;,t; > 0 satisfying s; +t; = % (cf. remarks
2.13 and 3.9). However, it turns out that (for each j € {0,1,00}) our potential 7 introduced in (3.5.5)
is gauge equivalent to a “perturbed” Delaunay potential of the form (3.5.6) with parameters s;,t; > 0
satisfying s; +t; = % and the further restriction s; > t; (cf. remark 3.31). Consequently, following
[17], all CMC-surfaces with properly embedded annular ends which can be obtained from holomorphic
potentials of the form (3.5.5) show the asymptotic behaviour of unduloidal Delaunay surfaces generated

from holomorphic potentials of the form (3.5.6) with

1
s5,t; >0, sj+t; = 5 85 = tj, (3.5.11)
or, equivalently,
11 1

Therefore, we consider right away only Delaunay potentials associated with parameters s;, ¢; satisfying
(3.5.12), i.e. in particular s; > t;.
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First of all, as the singularities of Delaunay potentials are regular, we require all singularities z; of n
to be regular singularities. More precisely, they will be regular singular points of a second order scalar
ODE associated with the differential equation (3.5.2) in the sense of the following straightforward lemma.

Lemma 3.12. Every solution ® of the differential equation (3.5.2) can be written in the form

V1
_ 7w N
P = <y > , (3.5.13)

. Y2

where Y1,y is a fundamental system of the differential equation

I/l

Yy’ — ;y’ —vry = 0. (3.5.14)

We require that zg, 21, 200 are regular singular points of (3.5.14), i.e. we require that equation (3.5.14)
is of Fuchsian type (cf., e.g., chapter 7 of [2]) with three singular points. In general, a Fuchsian equation
can have a singularity which, however, does not show up in the solutions. Such a singularity is called
apparent singularity. In our case we do not want any apparent singularities, since otherwise we would
have fewer than three properly embedded annular ends. From [2] and sections 3.3 and 3.5 of [17] we
obtain that the three ends at 0, 1 and co are non-apparent regular singular points if and only if

v(z,\) = ATl (z — 1) 70 (3.5.15)
_ yao ar [b0(A) 0N c(d) | a(})
T(z,A) = =Az%(2 — 1) 2 + G-1) + . + 1| (3.5.16)
for some integers ag, a1, ao and some even functions by, b1, b, cg, ¢1 in A € C* satisfying
ag + a1 + s = 2, (3517)
bo(/\) + bl(/\) +0- Co(>\) +1- Cl(/\) = boo(/\), (3518)
C()()\) + Cl()\) =0. (3519)

The potential 7 is defined on M. Therefore, its pullback 7 to the universal cover M is invariant under
the covering transformations g, 41 and 9, which correspond to surrounding the singularities zy, 21 and
Zoo, Tespectively, in M. According to section 3.3, the pulled back solution ¥ := 7*® to (2.4.1) picks
up a monodromy matrix M;(\) under the covering transformation 4;. Following [17], these monodromy
matrices can also be computed directly on M: “Cutting” M = C \ {0,1, 00} along the real axis from 0
to —oo and from 1 to +o00, we obtain a simply connected subdomain

D=C\{zeR;z<0 or z>1} (3.5.20)

of M, on which we can globally solve the differential equation (3.5.2) (cf. remark 3.8). However, in order
to extend a given solution ® to (3.5.2), which is defined on D, to M, one has to “cross the cuts”, which
results in a change of the starting solution. More precisely, one observes the following: When extending a
starting solution ® to (3.5.2), which is defined on a neighborhood of the point z = % in D, holomorphically
along the loop 7y; based at x, which encloses the singularity z;, one obtains “on return” to x another
solution @y, which differs from ® by a z-independent matrix. This change in ® when surrounding
zj corresponds exactly to the change in ¥ = 7*® under the covering tranformation 4; induced by [v;],
i.e. the matrix representing the change in ® when surrounding z; coincides with the monodromy matrix
M; () picked up by ¥ under 7;. So, according to

T(F;(2), ) = M;(A)T(z,\) (3.5.21)

we write

D(z,7;,\) = M;(N)®(2, \), (3.5.22)

where ®(z,7;,A) denotes the value ®new (2, A) of the modified solution @, obtained by extending ®
holomorphically along the loop ;. In view of (3.5.22), we will sometimes refer to the monodromy matrix
M;(\) of ¥ with respect to [v;] also as monodromy matrix of ® with respect to the loop ~y; in M.

By use of lemma 3.12, one can explicitly compute up to conjugation the monodromy matrices of
a solution ® to (3.5.2) by studying the behaviour of (i.e. the change in) the fundamental systems of
the differential equation (3.5.14) when surrounding the singularities zp, 21 and z. In particular, the
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eigenvalues of the monodromy matrices are known. This is done in section 3.4 of [17], and we refer there
for more details.

One should expect that the monodromy matrix M; of ® (and ¥) corresponding to the singularity z;
is somehow related to the monodromy matrix of the Delaunay surface which is the asymptotic shape of
the end of the trinoid we aim for at z; . It is therefore natural to assume that M; is conjugate to the
monodromy matrix of the corresponding Delaunay surface (and thus possesses the same eigenvalues).
Actually, one can prove that this is necessarily the case [8]. Referring to section 3.6 of [17], this is
equivalent to requiring for each j € {0,1, 00}

bi(A) = %(1 —a;)® — 3, (3.5.23)

— 1
1=/ X;X; = \/4 +wi(A=AT12, w; = st (3.5.24)

and =, are the eigenvalues of D;. The relation between p; and w; in (3.5.24) is proved, along with
other useful properties of u;, in appendix B.

where

Remark 3.13. If s; # t;, p1; defines by lemma B.1 a holomorphic function of A on the cut plane C*\ W1 ;,
where

Wi, = {A € C RO = 0 and S(V) € (—oc, —\/‘Z] U [—\/ZE, \/5 U [\/f +oo)) (3.5.25)

Moreover, p; is well defined and continuous on the slightly larger set C* '\ Wl, j, where

- t. .
Wi =W\ {Fi | =, & 2y, (3.5.26)
Sj tj

In particular, ;1; defines a continuous and holomorphic mapping on (a sufficiently small open neighborhood
of) the unit circle S* in C*. If s; = t; = %, ; defines by lemma B.1 a holomorphic function of A € C*.
In any case, the mapping ,u? can be holomorphically extended to C*:

(15 0)? = XG0T ) = 1+ wsh— A7) (3.5.27)

Consequently, also the functions b; defined in (3.5.23) are holomorphic for A € C*.

By the choice of Dy, D1, Do and some integers ag, a1, aoo satisfying (3.5.17) the functions b; and
¢; are given by equations (3.5.23), (3.5.18) and (3.5.19) explicitly, whereby 7 is determined completely.
While we can assume w.l.0.g. ag = 0, a3 = 0 and as, = 2 (we carry this out explicitly in section 3.6),
the choice of the D; will determine whether the associated potential n will give rise to a “descending”
CMC-immersion v in the sense of theorem 2.11. In order to ensure this, we further need to require for
Ae st
cos(m(o — 11 — poe))cos(m(tto — i1 + fisc))

0<
sin(2mpg) sin(2mp )

<1. (3.5.28)

Equation (3.5.28) will be referred to as the unitarizability condition, as it is equivalent with the existence
of a solution ¥ to (2.4.1), which has unitary monodromy matrices at the singularities at zg, 21, and zx.
In other words, (3.5.28) holds if and only if any solution of (2.4.1) can be “dressed” (cf. section 2.4) into
a new solution with unitary monodromy matrices.

Altogether, by [17], theorem 5.4.1 and corollary 5.4.2, and [26], theorems 3.5 and 5.9, we have in fact

Theorem 3.14. Let Dy, Dy, Do, be Delaunay matrices satisfying (3.5.28) for all X € S*. Let n be of
the form (3.5.5) associated with the given Delaunay matrices. Assume that n satisfies equations (3.5.15)
to (3.5.19) and (3.5.23). Then, n yields for A = 1 a trinoid with properly embedded annular ends after
some appropriate r-dressing.

Remark 3.15. Actually, theorem 5.4.1 and corollary 5.4.2 of [17] only ensure that the potential 1 yields
for A = 1 a trinoid with embedded annular ends after some appropriate r-dressing. However, by theorems
3.5 and 5.9 of [26], embeddedness of the annular ends implies proper embeddedness.
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Remark 3.16. We note that the unitarizability condition (3.5.28) does not hold (on S') if at least two

of the three Delaunay matrices Dy, D1, D, are associated with parameters s;, ¢; satisfying s; = t; = %:

Suppose s; = t; = i for at least two j € {0,1,00}. The corresponding mappings p; then satisfy
. 1.
wi(i) = i(z —14)=0. (3.5.29)

Now, consider the expression

cos(m(po — p1 — oo ))cos(m(po — p1 + fioo))
sin(2m ) sin(2mwpq)

(3.5.30)

from (3.5.28). Since p;(i) = 0 for at least two j € {0,1,00}, the numerator of (3.5.30) simplifies
into cos?(mpuy(i)), where k € {0,1,00} denotes the index for which not necessarily s, = t; = & holds.

Nevertheless, we have
/1 1

where we have used that wy, € (0, 5] (cf. lemma B.4). This implies cos?(mu(i)) € (0,1], i.e. the
numerator of (3.5.30) takes a positive real value at A = 4. In contrast, since p;(z) = 0 for at least two
j € {0,1, 00}, the denominator of (3.5.30) equals 0 at A = i. Consequently, (3.5.28) does not hold at
A =i.

Altogether, we record for ther following considerations that in order to construct a (conformal) CMC-
immersion M — R3 on M = C\ {0,1}, we need to start with a potential n of the form (3.5.5), such
that s; # t; for at least two j € {0,1, 00}, where s;, t; denote the parameters of the Delaunay matrices
Dy, D1, Do, associated with 7. Otherwise, the unitarizability condition (3.5.28) is not satisfiable for all
A € S'. Re-indexing” the Delaunay matrices Dy, Dy, D if necessary, we assume from now on without
loss of generality that

So 75 to, S1 75 tl. (3532)

Definition 3.17. Let M = C\ {0,1}, M = H and 7 : M — M be the universal covering defined in
(3.2.2). Let Dy, D; and Do, be Delaunay matrices with eigenvalues +pg, +u1 and +pe, respectively,
which satisfy (3.5.28) for all A € S'. A potential n of the form

0= <T(2 3 ”(ZO’ M) dz, (3.5.33)

where
v(z,\) = A"temm0(z — 1)7 0 (3.5.34)
7(2,A) = —Az%(z — 1) {boz(j) + (:1_@1))2 + COS) + ?9; (3.5.35)

for some integers ag, a1, a~ and some even functions by, b1, bso, Co, c1 of A € C* satisfyin
05 y Woo 05 y» Yooy CO» Yy

ag + a1 + aoo = 2, 3.5.36

b = 10— a)” i,
bo(A) + b1(A) + c1(A) = boo (M),
co(A) +c1(A\) =0

3.5.37

3.5.38

)
)
)
3.5.39)

(
(
(
(

will be called a trinoid potential (on M ). Note that such potentials are holomorphic for z € M and for
A e Cr
Given a trinoid potential 7 on M, we obtain a potential 7 on M by the pullback construction induced
by m,
7=mn"n, (3.5.40)

which is holomorphic for z € M and for A € C* and will be called a trinoid potential (on M ).

7Actually, re-indexing the Delaunay matrices Do, D1, Doo corresponds to replacing the potential by v*n, where
denotes some Moebius transformation on C.
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Remark 3.18. It is claimed in [8] that all trinoids with properly embedded annular ends can be con-
structed via the loop group method from potentials of the form (3.5.33) (or, more precisely, of the form
(3.5.40)).

Starting with a trinoid potential  and the associated pullback potential 7, any solution ¥ to (2.4.1),
by theorem 3.14, can be dressed by some appropriately chosen matrix 7= T'(\) into a solution U =T0,
which in turn will produce a trinoid with properly embedded annular ends, defined on M. The same
matrix T tranforms the corresponding solution ® to the equation (3.5.2) into another solution d=To.
If U (resp. ®) picks up the monodromy matrix M;(A) around the singularity z;, U (resp. <i>) has the
monodromy matrix M;(A) = T(A\)M;(A\)(T(N\))~" at z; (cf. section 2.5). These monodromy matrices
necessarily satisfy the conditions of theorem 2.11. In particular, they are unitary on S'. Thus, in order
to find a solution W yielding a trinoid with properly embedded annular ends on M in the sense of theorem
2.11, we will perform the following two steps:

1. We compute a solution ® to (3.5.2) with monodromy matrices M; at z;, j = 0,1, 00 (see sections
3.7 and 3.8). Note that ¥ = 7*® defines a solution to (2.4.1) and possesses the same monodromy
matrices as .

2. We determine all possible dressing matrices T" such that the “dressed monodromy matrices” Mj =
T(XN)M;(N)(T(N) ™! satisfy the conditions of theorem 2.11. Then, the corresponding new solution
U = TV to 2.4.1 produces via the loop group method a (conformal) CMC-immersion M — R3,
which, by theorem 2.11, descends to a (conformal) CMC-immersion M — R3.

Remark 3.19. Note that, since the elements [yo], [y1] € I' corresponding to the monopdromy matrices
My and M, respectively, generate the fundamental group I, it is enough to verify the three conditions
of theorem 2.11 only for My and M.

Remark 3.20. Starting with a trinoid potential 7, the associated pullback potential 77 and a solution ¥
to the differential equation (2.4.1), we compute all possible dressing matrices T yielding a new solution
¥ =TV to (2.4.1), which produces (via the loop group method) a CMC-immersion ¢ on M that, by
theorem 2.11, descends to a CMC-immersion ¢ on M. These possible dressing matrices in particular
encompass those dressing matrices, which actually induce trinoids with properly embedded annular ends.

3.6 The standardized trinoid potential

Recall the trinoid potential 7 as introduced in section 3.5:

n= <T(£ 3 ”(ZO’ ’\)> d. (3.6.1)

As stated before, the choice of three off-diagonal Delaunay matrices Dy, D1, D, with eigenvalues 4y,
+11, oo, respectively, together with the choice of three integers ag, a1, oo satisfying ag + a1 + aoo = 2
will determine the potential 7 completely. The functions v and 7 are given by

v(z,\) = Alzm0(z — 1), (3.6.2)
_\ao a [00A) | bi(A) () aly)
T(z,A) = =Az% (2 — 1) 2 + G172 + . + i (3.6.3)
where by, b1, bso, Co, ¢1 are obtained from
=t V22 -
bj(\) = 4(1 —a;)® —p; forj=0,1,00, (3.6.4)
bo(A) +b1(A) + 0 co(A) + 1+ c1(A) = boo (), (3.6.5)
co(A) +e1(A) = 0. (3.6.6)

The purpose of this section is to show that - for a fixed choice of Delaunay matrices Dy, D1, D, - the
different trinoid potentials corresponding to different possible choices of integers ag, a1, oo are gauge-
equivalent, i.e. related by certain gauge transformations (cf. section 2.4), and therefore will produce the
same surface via the DPW-method. This implies that we can assume w.l.o.g. ag =0, a1 = 0, a, = 2.
The corresponding trinoid potential will be called the standardized trinoid potential.
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Theorem 3.21. Let Dy, D1, Do be Delaunay matrices with eigenvalues £, 1, £lteo, respectively.
Let ag, a1, a0 be some integers satisfying ag + a1 + aso = 2 and n denote the trinoid potential determined
by po, 41, oo and ag, a1, ase aS above. Furthermore, let g = 0, a1 =0, Goo = 2 and 7} denote the trinoid
potential corresponding to po, 41, oo and Gg,01,000- Then we have

n##l =1, (3.6.7)

where | = gog1hoh1 and

ag a1
=% 0 (z— 1) % 0 1 0 10
frnd a frng aq 5 h = 5 h = a . 3.6.8
% ( 0 Zé}) o ( 0 (z— 1)2> ’ (a;zA 1) ' (2(2131) 1 (36.8)

Remark 3.22. Note that gy, g1, hg and h; are well defined only on a simply connected subdomain of
M, e.g. on the cut domain D introduced in remark 3.8. Keeping this in mind, the following proof of the
above theorem at first only holds for z € D, i.e. we prove n#l = 7 for all z € D. However, by continuity
arguments, we can afterwards extend this result to M and thus obtain, as claimed, n#l = 7 for all z € M.

Proof of theorem 3.21. Abbreviating

b()()\) + bl(/\) + C()()\) + Cl()\)

= A) = 3.6.9
Q Q(Zﬂ ) 22 (Z — 1)2 P 2 —1 ( )
for the moment and recalling the gauge equation
n#g =g~ 'ng + g 'dg, (3.6.10)
we have
—%0z-t Az 1)@
n#(gogrhoh1) = (n#go)#(g1hoh1) = Az 1)mQ a0 1 dz#(g1hohi)
—20,-l @z —1)7t AL
— 2 2
= < -\Q %)271 + %(2 _ 1)71 dz#(hohl)
ai —1 —1 —
-%(z-1) A 0 At
_ 2 dedth, = . dz, (3.6.11
(-AQH%H&—Ag oot ) E#=(Lg o )4 B
where
A apa a? a a? a
Q=0 ot - 5t e e
22(z—1) 4z 2z 4(z — 1) 2(z—1)
_ 2 _ 2 _1
_ 4by —af +2a¢ | 4by —ai +2a1 1 — 30001 (3.6.12)
422 4(z —1)2 z(z—1)
As 1
1(417] - a? + 20,j) = bj (3613)
and (using ag + a1 + G = 2)
1 1 1 1 1 1
c1 — 5(10&1 =be —bg — b1 — 5&0&1 e —1+M3+H€ —,ugo — 5(1004—5(&0-1-&1)4—10%0
1 1 .
— Z(Gg + a? + 2apa;) = ~1 i+l — g =bo — by — by =¢1, (3.6.14)
we infer that R R R R
~ b b1 é bo b1 —& é1
-2 ) — 3.6.15
@ z2+(z—1)2+z(z—1) z2Jr(z—1)2Jr z +z—1 ( )
and thus, as claimed, n#l = 7. O

In view of theorem (3.21), we will from now on restrict our study without loss of generality to trinoid
potentials with ag = a1 = 0 and a, = 2, explicitly introduced in the following definition.
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Definition 3.23. Let M = C\ {0,1}, M = H and 7 : M — M be the universal covering defined in
(3.2.2). Let Dy, D1 and Do, be Delaunay matrices with eigenvalues £, +u1 and £peo, respectively,
which satisfy (3.5.28) for all A € S*. A potential 1 of the form

0= ( 0 V(Z’A>> dz, (3.6.16)

7(2,\) 0
where
v(z,A) =" (3.6.17)
- bo(A) bl()\) Co()\> C1 ()\)
7(z,\) = =\ [ 2 + Go1p2 + - + po— (3.6.18)
for some even functions by, b1, boo, o, ¢1 of A € C* satisfying
1
bi(\) = 1 15, (3.6.19)
bo(A) + b1 (A) + c1(A) = boo(N), (3.6.20)
CQ()\) + 01()\> =0 (3.6.21)

will be called a standardized trinoid potential (on M ). Note that such potentials are holomorphic for
z € M and for A € C*.
Given a standardized trinoid potential 1 on M, we obtain a potential 7 on M by the pullback
construction induced by ,
n=mx*n, (3.6.22)

which is holomorphic for z € M and for A € C* and will be called a standardized trinoid potential (on
3.7 The Fuchsian ODE

We consider a standardized trinoid potential 7 of the form (3.6.16). In order to solve (3.5.2) we take a
closer look at the Fuchsian differential equation (3.5.14), which reads more explicitly as

bo by co c1
" — = =0. 3.7.1
y+<22+(zl)2+z+zl Y ( )

The corresponding indicial equations around the singularities zg = 0, z; = 1 and z,, = oo are given by
w(w — 1) + b, for j = 0,1, 00, respectively (cf. section 7.2 of [2]), and possess the roots

1 1

ik =5 (1 tvi- 4”J’) =5 (1£2u) for j=0,1, (3.7.2)
1 1

Took = 5 (—1 +/1- 4bj) =5 (=1£2u), (3.7.3)

where we have simplified by using (3.6.19).

Remark 3.24. In view of remark 3.13, p; defines a holomorphic mapping for A € C* \ W, ;, where

(A eCHR(\) =0 and I(\) € (—oo7—\/%} U [—\/z \/?] UL/ +o0)} i sy # 1
Q) if Sj = tj
(3.7.4)

Consequently, the functions r; 4+, j = 0,1, 00, depend holomorphically on A € C* \ Wy ;. From now on,
we restrict our considerations to the domain C* \ W7, where

1j =

W1 = Wl,O @] W171 @] Wl,oo- (375)

On C* \ W7, all the mappings p; and r; + are holomorphic in .
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Defining r; := r; + and substituting
y=2"(z—1)"w, (3.7.6)
equation (3.7.1) translates into the hypergeometric differential equation

" _7+(1+a+6)z ’ af

w” + E— w +z(z—1)w:0’ (3.7.7)
where

a=7o4+7r 4+ Too+ = % + o + 1+ foo, (3.7.8)

B=ro++T14+ + oo~ = % + po + p1 — poo, (3.7.9)

vy=14rg4 —1r0— =1+ 2p0. (3.7.10)

The theory of hypergeometric functions requires a special discussion for the cases where v or a4 35—y
are integers. In view of equations (3.7.8), (3.7.9) and (3.7.10), these cases can be avoided by excluding
all values of A € C* from our considerations, for which either pg(\) or u1(A) is a half-integer. We denote
the subset of A € C*, for which either po(A) or pi(A) is a half-integer, by Ws:

1 1
Wo={AeC"pu(N) € §Z or pu1(A) € §Z} (3.7.11)

In particular, by lemma B.3, we have 1 € W5. Standard analysis of the functions g and pq yields that
Wy forms a discrete subset of C*, which does not possess any accumulation points on S'. Taking into
account remark 3.24, we restrict our further calculations to the A-domain C*\ (W3 U Ws), i.e. in what
follows we will only use A € C*\ (W U Ws).

Assuming v ¢ Z and a + 3 — v ¢ 7Z, which is the case for all A € C*\ (W; U Ws), there are the
following natural fundamental systems w;1,w;o of (3.7.7) at z;, 7 = 0,1 (cf. chapter 8 of [2]):

Wwo1 = F(aaﬂa’y; Z); (3712)
wor =2 TFla—v+1,8—7+1,2—7;2), (3.7.13)
wiy = Fa,f,a+—vy+1;1-2), (3.7.14)
wis =1-2)""PF(y=B,y—a,y—a—-F+1;1-2). (3.7.15)

where F' denotes the hypergeometric series

0o ala+1)--- Oé+n—1)ﬁ(ﬁ—|-l)-~- ﬁ+n_1 o
F(a,ﬁﬁ;Z):z:;) (a+]) §(7+1)~~(v+n1)( )H‘ (3.7.16)

Remark 3.25. Recall that we are interested in finding a solution ® to the differential equation (3.5.2).
In particular, we want to study the monodromy matrices associated with ®. In view of remark 3.19 it
suffices to restrict our considerations to the monodromy matrices corresponding to the singularities zy = 0
and z; = 1, since they generate the monodromy group. Consequently, our discussion of a solution ® to
(3.5.2) can be restricted to the analysis of its behaviour near zy and z;. It therefore suffices to consider
in this work only fundamental systems to the equation (3.7.7) defined near zy and z;, respectively.

By definition of the hypergeometric series, the solutions woi, woa (resp. w11, wiz) to (3.7.7) given in
(3.7.12) and (3.7.13) (resp. (3.7.14) and (3.7.15)) are, at first, defined (with respect to z) on the open
disc of radius 1 around zy = 0 (resp. z; = 1). However, by [2], wo; and wgs (resp. w1 and wiz) can
be extended holomorphically to the single cut complex plane C\ {z € R;z > 1} (resp. to the single cut
complex plane C\ {z € R;z < 0}). Consequently, all w; are well defined on the double cut complex
plane D = C\{z € R;z < 0 or x > 1}. Moreover, according to [2], p. 235, the following relations hold
on D:

Wop1 = m?}wu + /@%wlg, (3.7.17)
Wp2 = n??wu + I{?%wlg, (3718)
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where

o1 _ LTy —a=0)

ki1 = T(y— )Ty —5)’ (3.7.19)
o1 _ I'(Ml(a+p5-19)

K12 = F(a)F(ﬂ) ’ (3720)
02 __ F(,y - — ﬁ)F(Q B '7) (3721)

"MIT A a1 -p)

02_ DletpB-—7I(2-7)
2T Py DI(B -7 +1)’ (8722)

and I' denotes the Gamma function I'(z) = [~ e~ t*~!dt.

Remark 3.26. The Gamma function I is originally defined on the complex half plane {\ € C;R()\) > 0}.
However, I" can be holomorphically extended to the complex plane C excluding the non-positive integers
Zy . Throughout this work, we interpret I' as being defined on C \ Zy. In order to ensure that the
connection coefficients n%, 1,7 € {0, 1}, are well defined and holomorphic on their domain of definition,
we eliminate any A € C* from our considerations, for which the argument of any of the Gamma functions
occurring in the KJ% takes values in Z; . Denoting the set of these A-values by W3, we restrict our study
to the A-domain C* \ (W7 U Wo U Ws). As Wy before, W3 is also a discrete subset of C*, which does not
possess any accumulation points on S'. All Ad-dependent functions introduced up to this point, including
the mappings x5, 7,7 € {0,1}, are holomorpic for A € C* \ (W, U Wy U W3).

From (3.7.12) to (3.7.15) together with (3.7.6) we obtain fundamental systems y;1,y;2 around z;
solving the Fuchsian equation (3.7.1):

yor = 27°(1 — 2)" F(a, B,7; 2), (3.7.23)
Yoo = 20TV (1 - 2)"Fla—y+1,8—7+1,2—7;2), (3.7.24)
yi1=2"(1—=2)"Flo, B, + 08 -7+ 1;1 = 2), (3.7.25)
Yo =201 — 2) PRy = By —a,y—a— B4+ 1;1—2). (3.7.26)

Note that relations (3.7.17) and (3.7.18) relating the fundamental system wqz, wps to wii,wia are
equivalent to the relations

Yor = K1Y11 + KISY12, (3.7.27)

Yo2 = K1Y11 + KI3Y12, (3.7.28)

for the fundamental systems yo1, yo2 and y11, y12-
Like the solutions w;, to (3.7.7), the solutions y;j to (3.7.1) are well defined and holomorphic (with
respect to z € M) on the double cut complex plane D = C\{z € R;z <0 or z > 1}.

3.8 Solving d® = &n

The following considerations involve logarithms and square roots of the complex variable z. It is well
known, that these functions are singular at z = 0 and can thus be defined holomorphically only for values
of z from the complex plane cut from z = 0 to co along an arbitrary half-line. For our purposes, it is
convenient to consider both the complex plane cut from 0 to co along the negative real axis,

Coo=C\{r€R; 2 <0} ={z=re¥ cC;r e R",p € (—,7)}, (3.8.1)
and the complex plane cut from 0 to co along the positive real axis,
Coo=C\{z€R; x>0} ={z=re? cC;r e R",p € (0,27)}. (3.8.2)

We denote the holomorphic natural logarithm on Csg by In and the holomorphic square root on Csg
by Vv By contrast, we denote the holomorphic natural logarithm on C.g by In* and the holomorphic
square root on C.g by N The definition below lists the explicit mappings, which we use throughout
this work, involving the real natural logarithm Ing : RT — R.
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Definition 3.27. The holomorphic logarithm In on Cs is defined by
In:Csp— Cso, zr—1In(z) =Ing(r)+ip, (3.8.3)
where z = re’? with 7 € RT and ¢ € (—m, ). The holomorphic square root v/~ on Cs is defined by
V 1Cs0 = Cso, 20z =2, (3.8.4)
The holomorphic logarithm In* on C.q is defined by
In*: Ccop — Crp, 2z In*(2) =1ng(r) + iy, (3.8.5)
where 2z = re!? with r € Rt and ¢ € (0,27). The holomorphic square root ¢/ on C<g is defined by
i/ 1Cc0—Cp, 2+ iz = ez (2), (3.8.6)
Lemma 3.28. Let z = re'? € C.o, with r € RT and ¢ € (0,27). Then, we have

V7 =iv=% (3.8.7)

Proof. Since z = re’? € C.o with r € RT and ¢ € (0,27), we infer that —z = —re’¥ = re!(¥=™) € Cy,.
Using this, the claim is a direct consequence of the above definition:

7z = e 0" (3) = e3nr(n)+ip) — pdin | o3 (n(+ile—m) — jedln(re'™™) _odIn(=2) — /77 (3.8.8)
O

With these preparations made, we resume our study of the differential equation
d® = o). (3.8.9)

Recalling the result of section 3.6, by setting ap = a1 = 0 and a, = 2 and choosing three off-diagonal
Delaunay matrices Dy, D1, Do with eigenvalues +pug, +p1, *lieo, respectively, we consider w.l.o.g. the
standardized trinoid potential

_ 0 v(z, \)
n= <T(Z, N 0 ) dz, (3.8.10)
where
v(z,\) =74 (3.8.11)
B bo(A) bi(A) c(A) | al)
T(z,A) = =\ [ 2 + G172 + . + 1| (3.8.12)
and by, by, bss, cg, c1 are obtained from
1
bi(\) = i u? for j = 0,1, 00, (3.8.13)
bo()\) + by (/\) +0- Co()\) +1- Cl(/\) = boo(/\); (3814)
co(A) +c1(A) =0. (3.8.15)

In order to solve the differential equation (3.8.9) we want to understand its solutions near the singularities
of 1. For this it will turn out to be helpful to use special forms of the potential and the solutions. We
consider, for j = 0,1, the gauged potential (cf. section 2.4)

= ViV + Vi idVy (3.8.16)

where

Vio= vz VX 0 , (3.8.17)
. VX,

—1
i1 —z-v/AXy 0
Vii= _ . 3.8.18
+,1 (;\ 1 ) . ) )\X1> ( )




Remark 3.29. The gauge matrix V ;, j = 0,1, is given in section 5.2 of [17] as

—1
Vi, = ( VETE VMG 0 ) (3.8.19)
7%./2’72&‘ '\/)\Xj ,/zfzj 'w/AXj

where the square roots involving z, i.e. /z — z; and /z — z; 1, are not explicitly defined until we choose
a half-line £; in C, extending from z; to oo, and restrict the mentioned square roots to C\ £;. For our
purposes, it is convenient to think of V4 ¢ as being defined (in z) on C\ {z € R;z < 0} and of Vi ; as
being defined (in z) on C\ {x € R;x > 1}. Thus, we interpret the undetermined square roots \/z — z;
and /z—z; * of [17] as \/z — 2o and /z — Zo - in the sense of definition 3.27 in the case j = 0, but
as /z —z1 and /z — zl_l in the sense of definition 3.27 in the case j = 1. Thus, we obtain equation
(3.8.17) and, in view of lemma 3.28, equation (3.8.18), where - now - the occurring square roots involving
z are defined according to definition 3.27.

Remark 3.30. Recall that the A-dependent functions X; and X ; are defined by X;(\) = s;A71+¢;\ and
X;i(A) =s;A+ t]-)\_l, respectively with positive real parameters s;, ¢; satisfying s; > t; and s; +¢; = L

2
Moreover, we assume for j = 0,1 that s; # ¢;, i.e. s; > t; (cf. remark 3.16).

We note that under this assumption the square roots \/)\Xj and \/)\Xj 1, j =0,1, occurring in V
and V4 ;1 are holomorphic at A = 0. (See section 5.2 of [17] for details.) Therefore, the matrices V4 ¢ and
V4 1 are elements of the loop group ASL(2,C), for some r € (0,1], thus ensuring that the potential 7);
defined in equation (3.8.16) actually defines a gauged version of the starting potential 7.

Remark 3.31. By section 5.2 of [17], the gauged potentials 7j;, j = 0,1, defined in (3.8.16) are perturbed
versions of the corresponding (unduloidal) Delaunay potentials Z%Zijdz defined in (3.5.6), where the

off-diagonal Delaunay matrices D; given in (3.5.7) involve parameters s; and ¢; which in particular satisfy
Sj Z tj.

We note without proof, that there exists also for j = oo a matrix V o, € AFSL(2,C), which gauges the
potential n(u, \) (obtained from the starting potential 7(z, \) by applying the coordinate transformation
u =1, cf. remark 3.10) into a perturbed version of the (unduloidal) Delaunay potential LD, du, where
the Delaunay matrix Dy, is given in (3.5.7) and involves parameters so, and t, which in particular
satisfy Soo > foo-

By sections 4.2 and 4.3 of [17], there exists for the gauged potential 7; an EDP-representation® @j,

which is holomorphic (in z) on a cut disc D} around z; and satisfies d@j = @;ﬁ] there. We will call i)j
an EDP-solution for short. R
ot === py (3.8.20)

where P; = 1+ (2 —z;)Pj1+ (2 —2;)>Pj2+... is holomorphic at z = z;, P(z = z;) = [ and P; is uniquely
determined by these properties and the fact that (3.8.20) solves (3.8.9) (cf. [5]). The cut discs D, where

the respective solution <i>;‘ is defined, are given by
Di={z€C;lz| < i} \ {z € Rz <0}, (3.8.21)
Di={z€C;lz—1] < e\ {z eRyz < 1}, (3.8.22)

where € and €} denote sufficiently small positive real numbers. . . .
For our concerns, it will be more convenient to work with the following local solutions ®; to d®; = ®,7;

around z;, slightly modifying @;‘ in the case j = 1:

Py = Do . py. (3.8.23)
$) =201 p (3.8.24)
We prove the following lemma:

Lemma 3.32. The mappings do and &1 as defined above solve

dd; = d;7; (3.8.25)

8The expression EDP-representation is an abbreviation for exponential-Delaunay-powerseries-representation.
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holomorphically on a cut disc Dy around zg = 0 and on a cut disc Dy around zy = 1, respectively, where

Do={z€C;|z| <e} \{zxreRz <0}, (3.8.26)
Di={z€C;lz—-1 <ea}\{zreRz>1} (3.8.27)

for sufficiently small €; > 0.

Proof. We start with the case j = 0. For some ¢y > 0, Py is defined (and holomorphic) on {z € C;|z| <
€o}. By definition of the complex natural logarithm, e(2)Do i holomorphic on C* \ {z € R;z < 0}.
Together, <i>0 is holomorphic on Dy. Moreover, as <i>0 = @3, it is clear that <i>0 solves (3.8.25) on Dy.

We turn to the case j = 1. Similar as before, P; is defined (and holomorphic) on {z € C; |z —1| < €}
for some €; > 0, while e™*=#)P1 i holomorphic on C*\ {z € R;z > 1}. Thus, ®; is holomorphic on D;.
Moreover, since

i f C with &
In(1—2)—In(z— 1) = 4 707 forz € Cwith §(z) <0 (3.8.28)
—im  for z € C with J(z) >0
we infer that for z € C* \ R
eln(l—z)Dle—ln(z—l)Dl _ e(ln(l—z)—ln(z—l))Dl _ ea(z)iﬂ'D1’ (3829)
where a(z) = +1 if 3(2) < 0 and «a(z) = —1 if §(z) > 0. Thus, for z € D; N (C* \ R), we obtain
itD1 &*  ;
(ijl _ ea(Z)iTrDleln(zfl)D1P1 — € ) ID(I)lA lf%(z) <0 (3830)
ey if §(z) >0

Consequently, using the fact that % solves d®% = ®%7); on D}, we have for z € D; with $(z) < 0 that
dd; = ™P1ddt = ¢ ™P1drh, = iy (3.8.31)
and, analogously, for z € Dy with $(z) > 0 that
Add, = e D140t = TP DT, = By (3.8.32)

Together, ®; solves (3.8.25) for z € D; N (C* \ R). By continuity, ®; solves (3.8.25) for z € Dy, which
finishes the proof. O

By do and &, we have found two local solutions to equation (3.8.25) on a cut disc Dy around zg = 0
and on a cut disc Dy around z; = 1, respectively. From these, we obtain local solutions ®;, j = 0,1, to
the original differential equation (3.8.9) by setting

Dy = DoV § =PV L, (3.8.33)
O = V1 =DV (3.8.34)
Remark 3.33. By definition, V4 ¢ (resp. V4 1) is holomorphic (in 2) on C\ {z € R;z < 0} (resp. on

C\{z € Rjz > 1}). Moreover, ®; is holomorphic (in z) on D;. Consequently, also ®; is holomorphic (in
z) on D;.

The following lemma provides the monodromy matrix of ®; with respect to the loop ; in M around
z;, which is close enough to z;, such that v; only encloses the singularity z;. W.l.o.g., we set

1 .
Yo(t) = 56”, —m<t<m, (3.8.35)
1.
1) =1+ =", 0<t<2m. 3.8.36
2

Remark 3.34. Note that the loops 79 and 7; as defined above pass through the point % € M, as
presumed in our considerations of the monodromy matrices of ®; in section 3.5.

Lemma 3.35. With vy and 1 defined by (3.8.35) and (3.8.36), respectively, the solutions ®; to (3.8.9)
given in (3.8.33) and (3.8.34) satisfy

Dj(z,75,A) = M7 (N)®;(z, ), (3.8.37)

where ‘
M (\) = —e2™Pi, (3.8.38)



Remark 3.36. Note that in (3.5.22) the monodromy matrix of a solution ® to (3.8.9) with respect to
the loop v; in M around z; is denoted by M;(A). To avoid inconsistency with our notation, we thus
denote the monodromy matrix of the solution ®; to (3.8.9) with respect to the loop «; in M around z;
by M (A).)

J

Proof of lemma 3.35. As stated before, extending the solution ®; to (3.8.9), which is defined on the cut
domain D; around the singularity z; of 7, holomorphically along a closed loop v;, which encloses z;, across
the cut results in a change of the starting solution. This change is expressed in form of the monodromy
matrix M7 (A) of ®; with respect to the loop 7; (cf. (3.5.22)):

(I)j(Zanv)‘) = M]*()‘)(I)](Zv)‘) (3839)

In order to compute the monodromy matrix M7 (), we investigate the behaviour of ®;|, near the
cut in Dj, once approaching the cut from below and once from above. We start with the case j = 0.
Since the cut in Dy is given by (—€p,0] € R and yo(t) = e’ with t € (—m, ), M (A) represents the
transition from lim;—, . ®o(70(t)) to lims—,r Po(y0(¢)). Thus, consider the following relations.

First, we have

llm eln(’yt)(f,))D() — e(lnR(%)—‘rﬂ'i)Do — eQﬂ'iDoe(lnR(%)—ﬂ'i)Do — eQTriDg . hm eln(’yo(t))DO. (3.8.40)

t—m t——m

Furthermore, as

lim 'YO(t)il _ tlim etiin(de) _ x3(na(3)+mi) _ w3 (ng(d)—mi)

t—m —T
it +
= (1) Jim PG = (21)- Tm Voe(®), (3841)
we infer that
lim V75(y0(8), A) = (=1) - lim VZ5(70(t), ). (3.8.42)
Finally, since Py is holomorphic (in z) around zg, we have
lim Py(0(t), A) = 1lim_Po(70(t), A).- (3.8.43)

Altogether, we conclude that

lim ©o(70(t), A) = lim (eln(%(t))D“PO(Vo(t)’)\)VJr_,l(Vo(t%)\)) = —¢?mibo - lim Do(10(t),A)  (3.8.44)

t—m

and, consequently, ,
MS()\) _ —627”D0. (3845)

We turn to the case j = 1. Since the cut in Dy is given by [1,1+ €) € R and 7 (t) = 1 + e’
with ¢t € (0,27), M (\) represents the transition from lim; .o @1(71(t)) to limsor ®1(71(¢)). Since

In(1 — v (¢)) = In(—3e?) = In(2e®=™) = Ing (%) + i(t — 1), we have

thgl eln(l—’)’l(t))Dl _ e(lnm(%)-&-wi)Dl — eZTriDle(lIl]R(%)—ﬂ'i)Dl — eZ‘n’iD1 . }H% eln(l_’h(t))Dl. (3846)

Moreover, as

+1 +1
I = @) = tim [y/—Leit] = tim [/ Reit—m
tigIﬂ' ( N 71( )) B tiglw _56 B tiglﬂ' 56

— lim et GEe’T™) _ o (Inr(§)+mi) _ gEwi E L (Ine(F) i)
t—27
1 i(t—m +1
= (=1) - lim F3 G — () -thr%( 1- vl(t)) . (3.847)
we infer that
Jim VL (5),0) = (1) lim VL (91(8), M), (3.8.48)

Finally, as P; is holomorphic (in z) around z;, we have

tlirg Pi(n(t),A) = }irr(l) Py (y1(t), A). (3.8.49)
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Altogether, we conclude that
Jim (31 (1), A) = lim (eln<1—%<t>>f’1pl(71 (), VL (b), )\)) = 2P lim @y (11 (1), M) (3.8.50)
and, consequently, _
M;(\) = —e?miPr, (3.8.51)
O
By lemma 3.12, ®; may be described in terms of an appropriate fundamental system solving (3.5.14)

around z;, which itself may be expressed in terms of the fundamental system y;1,¥;2 given in equations
(3.7.23) to (3.7.26). That is, we may write for j =0, 1

;Y51 1+85;
B, — (; A +ﬁfyj2> (3.8.52)
' Jesy ) -O.
JZJJ1U iYj2 §jyj1 + €jYj2

where o, f3;, 0;, €; denote z-independent functions of A. It turns out that, by evaluating in (3.8.33)
(resp. in (3.8.34)) the properties of both P; and the fundamental system y;1,y;2 at z;, especially the
holomorphicity on a cut disc around z;, the connection coefficients o;, 3;, 65, €; can be computed
explicitly:

Lemma 3.37. Let j € {0,1}. The connection coefficients a;, B;, 05, €; occuring in (3.8.52) are given by

¢
a; =B = (i) ——L—, 3.8.53
==Y g (3853)
|
0; =¢; = (i)’ . 3.8.54
J €j (7’) 2\/)\7)9 ( )
Proof. The proof of this lemma is quite technical and therefore postponed until appendix C. O

Recall that yo1, Yoz, Y11, Y12 may be extended holomorphically (in z) to D, the complex plane excluding
two “cuts” from 0 to —oo and from 1 to +oo, as introduced in (3.5.20). By (3.8.52), also ®; and &,
can be extended holomorphically (in z) to D. Denoting the extensions again by ®; and ®;, respectively,
we obtain two solutions to (3.8.9) - now defined globally for z from the simply connected, “double-cut”
complex plane D - which will only differ by a matrix A = A(\), which is independent of z. That is, we
have

Dy = A(N)D;. (3.8.55)
The matrix A can be explicitly computed:
Lemma 3.38. o1 Lo
VM1 K ATR 1
A=—i RoS [ L 12> STIRTL, 3.8.56
s (o o) s (3550
% L (1 AT
where R; = . S andS—ﬁ(/\ 1 >
NI

Proof. First, using equations (3.8.52), (3.7.27) and (3.7.28), we have

01 .01 Y11
@0:(‘;0 50) (“55 ”"53) y o Y (3.8.57)
0 €0 K11 Ri2 12 999

v

o v
B, = (511 51) (.y”z y“) . (3.8.58)

<

€
1 o Y12

-1
_aa-1_ (@0 Bo) (Kl K3 (a1 B
A — @0@1 — (60 60) (,‘{;(1)% H?% (;1 61 . (3.8.59)

aj B\ _ () & -% O (A0
(f%’ 6j)_2 /\Xj<“f f1>—\/§\//TjRJS<O 1)7 (3.8.60)
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This yields

Since, moreover,




and, consequently,

B;

€j

)1 NN (3 ?) SR,

o
d;

we end up with

(3.8.61)

V4T A7 0N /&Y KON /XN 0N g Vi g0V ATIROLN 1
A=—i RS< )(11 5 STIR' = —iY—ReS [, L& 12) s7'Ry
NN YA VAU 7 N C '
(3.8.62)
O
Moreover, we have the following result:
Lemma 3.39. The matriz A defined in (3.8.56) satisfies
det(A) = 1. (3.8.63)
In particular,
RO1ROZ — 01,02 _%. (3.8.64)

Proof. Since @y and ®; take values in A,.SL(2,C),, the identity det(A) = 1 follows directly from (3.8.55).
Moreover, as det(R;) = det(R; ") = det(S) = det(S~') = 1, we obtain in view of (3.8.56)

Vi kO AT H1
1 =det(A) = det(—1i < 1 12)) = 22 (k01692 — kO1K92),
(A) ( N AkO2 K02 ) MO( 111712 12K11)

which also proves the relation (3.8.64).

(3.8.65)

O

Taking into account (3.8.55), we are now able to explicitly compute the monodromy matrices of @ at
zo and 21, as well as the monodromy matrices of ®1 at zp and z;. Since &y and ®; are linked by (3.8.55),

it suffices to consider the solution ® = .

Theorem 3.40. The solution

® =Dy = AD,
to the differential equation (3.8.9) satisfies
O(z,7;,A) = M;(MN) (2, N),
where
10 a2
Mo(A) = —e2miDo — [COS(QT(/J,Q) (0 1) + isin(2mug) (XO %) )1 ,
Ko

Mi(\) = —Ae™P1A=1 = — [cos(27r,ul) <(1) ?) +isin(2mpy)A <X1 %1> A-1
M1

M*

Proof. By (3.8.37), we know that ®;(z,v;,A) = M;

using (3.8.55),

(AN)®;(2,A), where M (\) = _2miD;

(I)(Za707>\) = (I)O(Z7’707 A) = Mék()\)q)o(z7>\) = MS(A)‘I)(Z?A)a
D(z,71,A) = A®1(2,m,A) = AMT (A AT AD (2, A) = AMF (M)A D(2,N).

This proves

_ 27TiD0

Mo(A) = My (M) = —e

Mi(\) = AM; (N A7 = —Ae?™ D171

Finally, referring to (2.6.23) (note that by assumption s; > ¢; for j =0, 1), we have
—1p-1

s

eQ‘n’iuj

0

0

e—2mﬁ/l,j

e27riDj _ RJS <
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(3.8.66)

(3.8.67)

(3.8.68)

(3.8.69)

. Consequently,

(3.8.70)
(3.8.71)

(3.8.72)
(3.8.73)

(3.8.74)



Using e*2™1 = cos(2mu,) & isin(27p;), the above equation yields
0o X
e*™ i = cos(2m ;)1 + isin(?wuj)RjSagSfle_l = cos(2mp;)I + isin(2mp;) (XJ ’8 > . (3.8.75)

i
Altogether, this finishes the proof. O

Remark 3.41. In view of remark 3.26 and the definitions of ®q, ®; and A, our solution & = &5 = AP, to
the differential equation (3.8.9) is (at least) well defined and holomorphic in A for A € C*\ (W, UWLUWS3).
The same holds for the monodromy matrices My and M; of .

Recalling the structure of the sets Wi, Wy and W3 (in particular the fact that none of these sets
possesses any accumulation points on the unit circle S1), we note that the set C* \ (W3 U Wy U W3)
contains for at least some r € (0,1) an open annulus containing the r-circle c, (More precisely, any
r € (0,1) “close enough” to 1 will do.)

3.9 Simultaneous unitarization of the monodromy matrices

In the previous section, we have determined a solution ® to (3.8.9), given explicitly by

aoy61+ﬂoy62
_ & _ In(z)D 1 [ T2 agyor + Boyoz
(D = (I)O = eIl(Z) 0P0V+)0 == <5Uy(,)1+509(/)2 5 + > 5 (391)
e 0Yo1 T €0Y02

where the fundamental system yo1, Yoz is given by (3.7.23) and (3.7.24) and the connection coefficients
@, Bo, o, €o are defined in (3.8.53) and (3.8.54). @ is defined (in z) on the double cut complex plane
D C M and thus induces by remark 3.8 a solution ¥ = ® o 7 to the differential equation

Av = 3, (3.9.2)

which is defined for z € M.

By surrounding the singularities zy and z; in M, and thus “crossing the cuts”, which have been
excluded from the z-domain of definition of ®, ® picks up the monodromy matrices My(\) and Mj(N),
respectively, which we have explicitly computed in theorem 3.40:

: 10 0 e
Mo(A\) = —e2™P0 — _ | cos(2mpug) <0 1> +isin(2muo) | %5 ISJ , (3.9.3)
Ho

A 0o =
Mi(\) = —Ae>™iDi A=t — _ [cos(?mzl) <(1) (1)> +isin(2mu) A <X a > A (3.9.4)

H1 0

As explained earlier, My(A) and M;(A) are also the monodromy matrices of ¥ with respect to the
covering transformations ¢ and 71, respectively, which correspond to the loops v and 7, in M enclosing
the singularities zg and z1, respectively:

U(5;(2),\) = M;(A)T(z,\) j=0,1. (3.9.5)

By remark 3.41, ® (and thus ¥) is well defined and holomorphic in A for A € C*\ (W, U W U W3).
Recalling the definitions of the sets Wy, Ws and W3, respectively, we observe that C*\ (W7 U Wy U W3)
contains (a sufficiently small open neighborhood of) an r-circle C") for some 0 < r < 1, which is close
enough to 1. (Since, as mentioned earlier, 1 € Wa, the unit circle St is not contained in C*\ (W7 U
W5 U W3).) This implies that ® and ¥ are in particular holomorphic (in A) on (a sufficiently small open
neighborhood of) an r-circle C("). Thus, carrying out an r-Iwasawa decomposition in the second step of
the loop group method, ¥ produces by evaluating the associated extended frame (which is holomorphic
for A in the annulus A(T)) at A =1 a CMC-immersion ) : M — R3. Referring to theorem 2.11, 4 yields a
CMC-immersion ¢ : M — R? if and only if the monodromy matrices of ¥ meet the conditions of theorem
2.11, or, by remark 3.19 equivalently, if and only if the “generating” monodromy matrices My and M,
of U meet the conditions of theorem 2.11. However, in general, this is not the case: While My is unitary
for A € S, M; is in general not unitary for A € S* (cf. appendix D).

Therefore, in the following, we modify ¥ to obtain another solution U to the differential equation
(3.9.2) with (generating) monodromy matrices M; (j = 0,1), which actually meet the conditions of
theorem 2.11. More precisely, we modify ¥ by an appropriate A-dependent dressing matrix 7' = T'(\),
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such that the monodromy matrices M = TM;T~! of the dressed solution U =TV satisfy the conditions
of theorem 2.11. (Note that the existence of such a matrix T is provided by theorem 3.14.)

Note that, by section 2.2 of [17], any CMC-immersion ) : M — R3 can be obtained from a solution ¥
to the differential equation (3.9.2), which is holomorphic in A € C* (cf. section 2.2 of [17]) and thus comes
along with monodromy matrices, which are holomorphic in A € C* as well. Therefore, we additionally
assume that the monodromy matrices Mj = TMJ-T’1 (j = 0,1) of the dressed solution U = T are
holomorphic in A € C*.

Altogether, our next goal will be to compute explicitly a dressing matrix 7' = T'(\), such that the
monodromy matrices Mj = TM;T~! (j = 0,1) of the dressed solution U = TV are holomorphic in
A € C* and satisfy the conditions of theorem 2.11, i.e. such that for j = 0,1

M;()) is holomorphic in A € C*, (3.9.6)
M;()) is unitary for all A € S*, (3.9.7)
Mj(A=1)=+I and (3.9.8)
OAM;(A)|a=1 = 0. (3.9.9)

Remark 3.42. Among the conditions (3.9.6) to (3.9.9), satisfying the condition (3.9.7) poses the main
difficulty. This is emphasized by the name of the current section.

Remark 3.43. Our starting solution ¥ to the differential equation (3.9.2), as well as the corresponding
monodromy matrices M; are holomorphic in A on the domain C* \ (W3 U W, U W3). In order to obtain
via dressing by T from ¥ a new solution U = T with monodromy matrices Mj = TMjT_l7 which are
holomorphic in A € C*, T necessarily needs to “cancel” the existing singularities from the monodromy
matrices M; of W. Consequently, it is not only possible but even probable, that T itself possesses
singularities in C* and thus will not be well defined on the whole (punctured) A-plane C*.

In the following, we will compute the dressing matrix T purely formally. In particular, we will for
now ignore the A-domain of definition of 7', postponing this issue to remark 3.57.

Let ® be as in (3.9.1), ¥ = ® o w and the (common) monodromy matrices M; (j = 0,1) of ® and ¥
given by (3.9.3) and (3.9.4). We want to determine a dressing matrix 7' = T'(A), such that the monodromy
matrices M; = TM;T~! (j = 0,1) of the dressed solution ¥ = T'¥ satisfy the conditions (3.9.6) to (3.9.9).

X
First, we compute the general form of M ;1 Observing that any conjugate of the matrix (Xj T)j ) by a
I

pj
X q; —DPj
monodromy matrices M; are in view of (3.8.68) and (3.8.69) of the general form

A-dependent matrix will be of the form ( " > for some A-dependent functions p;, g;, 75, the dressed

M; =TM;T ' = — {cos(%mj) (1 0> + isin(2mp;) (pj i ﬂ , (3.9.10)
0 1 Qj _pj
where
" 0 X
(po 0 ) =T "™ |17, (3.9.11)
qo —Po /Tg 0
, 0 »
<p1 ! ) =TA(x ™ |AT'T (3.9.12)
q1 —Dp1 ;711 0

Since det(M;) = 1 and conjugating a matrix does not affect its determinant, we moreover infer that the
functions p;, g;, r; satisfy
P+ aqry = 1. (3.9.13)

Remark 3.44. In order to ensure that the monodromy matrices Mj, j = 0,1 of the form (3.9.10) are
elements of the twisted loop group A,.SU(2), we furthermore require for j = 0,1 that

p; is an even function of A,
g; is an odd function of A, (3.9.14)

r; is an odd function of A.
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In view of (3.9.10), we reformulate the conditions (3.9.6) to (3.9.9) in terms of the functions p;, ¢; and
r; occurring in the dressed monodromy matrices M;. The condition (3.9.6) translates into the following
constraints on the functions p;, ¢; and r; (j =0,1):
sin(2mp;)p; is holomorphic for A € C*,
sin(2mp;)g; is holomorphic for A € C*, (3.9.15)
sin(27mp;)r; is holomorphic for A € C*.

(Writing cos(2my;) in its power series representation,

cos(2mp;) = 3 — kw
(2mp;) kZ:O( D T (3.9.16)

we see that cos(2mpu;) only involves even powers of y1;. Since, by remark 3.13, u? is defined as a holomor-
phic function on C*, cos(2m ;) is holomorphic for A € C*.)

In order to express (3.9.7) in a different way, we note that a matrix U is in SU(2) if and only if U is
of the form U = < v Z) with uii + v0 = 1. Applying this to (3.9.10), we see that M;()) is in SU(2)

for all A € S! if and only if the functions p;, ¢; and r; (j = 0,1) satisfy (in addition to already existing
conditions)

pj(A\) =p;(\) forall A € St

. (3.9.17)
ri(A) =¢;(A) forall A e S,

where S! denotes the unit sphere S! excluding the discrete subset of values of A € S, for which
sin(2mp(A)) = 0. (In particular, the functions p;, ¢; and r; are necessarily well defined on S'. Note
that at A € S*\ S this is not necessarily the case: here, pj, ¢; and 7; might possess simple poles, which
cancel with the (simple) zeros of sin(2mpu;())).)

Remark 3.45. In view of (3.9.15), the functions p;, ¢; and r;, and thus also the functions p; and gj
defined by

) (3.9.18)

7;(\) = qj(=), (3.9.19)

pi(A\) ==p;j

> =

>l =

respectively, are at least holomorphic on the (common) subdomain of C*, where (for all j € {0,1,00})
5 (A) is holomorphic and sin(2mp; (X)) # 0, i.e. on C*\ (W7 U Wy), where Wi is given in (3.7.5) and

Wy = {\ € C*;sin(2mp;(N)) = 0}. (3.9.20)

(As stated earlier, the mappings p;, 7 = 0,1, 00, are holomorphic on C* \ W; and thus in particular on
C*\ (W1 UWy). Moreover, the sets W7 and W are “symmetric” with respect to the unit cirlce S* in the
sense that (for k = 1,4) A € Wy, if and only if % € Wy. This ensures that, together with the functions
pj, ¢; and r;, also the functions pj and @; are well defined (and holomorphic) on C*\ (W; U Wy).)

Note for later use (cf. remark 3.57) that, as W, before, Wy does not possess any accumulation points
on the unit circle S*. Consequently, the set C* \ (W1 U Wj) contains for at least some r € (0,1) an open
annulus containing the r-circle C'("). (More precisely, any r € (0,1) “close enough” to 1 will do.)

Combining the result above with (3.9.17), we conclude that p; and p; (resp. r; and g;) define holo-
morphic functions on C* \ (W U W,), which coincide on S*:

pi(A) =p;(A) = pj(%) =D;(A), (3.9.21)

) =G (). (3.9.22)

Consequently, p; and p; (resp. ; and gj;) coincide everywhere on C*\ (W; U Wy), i.e. we can actually
replace (3.9.17) by

(3.9.23)



Finally, by two simple calculations based on the relations p;(A = 1) = 1 and (Oap;)(A = 1) = 0
from lemma B.3, the conditions (3.9.8) and (3.9.9) translate into the following further constraints on the
functions p;, ¢; and r; (j =0, 1):

Dj,qj,r; take finite values in C for A =1, (3.9.24)

Pj,qj,7; are holomorphic (in A) at A = 1. (3.9.25)

In the following, we focus on (3.9.7), the first condition of theorem 2.11. Thus, our next goal will be

to compute explicitly a dressing matrix T = T'()\), such that ¥ = TW has unitary monodromy matrices

My and M for all A € S1. In view of our considerations above, we see that Mj (j = 0,1) is unitary and
of determinant 1 on S* if an only if it is of the form

N = — {cos@wj) (é (1)> +isin(2mu;) (pj % )] (3.9.26)

a; —Pj

with A-dependent functions p;, p; (defined in (3.9.18)), g; and §; (defined in (3.9.19)) satisfying

p? +¢;g;=1 and p; =p; (3.9.27)
and
_ 0 Xo
(ZO i ) =T <x *6) =, (3.9.28)
0 0 m
_ 0 Xy
<p1 o ) =TA( ™ |AT L (3.9.29)
q1 P1 H 0

Remark 3.46. We can assume that g, ¢1 # 0 on S': If, by accident, some T should give g; = 0 for some
Jj, it is easy to show that we can modify T by multiplying from the left by a unitary matrix U = U(\)
such that 7' = UT will yield gy, 1 # 0 on S!, while unitarity of the dressed monodromy matrices on S*
will be maintained. That is, if simultaneously unitarizing My, M is possible at all, it is also possible in a
way such that gg,q; #Z 0. Note that modifying 7' by U will result (only) in a rotation and/or translation
of the generated CMC-surface M — R3.

Remark 3.47. Note that (3.9.26) holds also for j = oo, as the monodromy matrix M is a unitary
conjugate of the Delaunay monodromy matrix —e?"*P>=. Note that, however, in the special case that
Soo = teo = %, we have p1j(A) = L (A + A71), i.e. p; defines (in contrast to the general case so # too) an
odd function of A. Thus in the case Soc = too = %, the condition that the monodromy matrix Moo is an
element of the twisted loop group A,SU(2), is equivalent to requiring

p; is an odd function of A, (3.9.30)
g; is an even function of A, o

replacing the relations (3.9.14), which apply for j = 0,1 and for j = co in the case that s # two.
Remark 3.48. As a consequence of equation (3.3.12), the unitarized monodromy matrices Mj satisfy
Mo(W)Mi (N Moo (X) = TMo(NT T My (AT T Moo (\)T ™ = TMy(A) My (N Mo (M)T™' =1, (3.9.31)
ie. R X A
Mo(MN)Mi(MN)My(N) =L (3.9.32)

Rewriting this as My = MflMgl, M, = MglMo_ol or My = Mo_olel, respectively, and applying
(3.9.26), we obtain the following three pairs of scalar equations, where each pair is equivalent to (3.9.32).
The first pair of equations reads

COS(27 oo ) + 48N (27 oo ) Poo = — €0O8(27 ) cos(2m ) + ¢ cos(2mpo) sin(27 ) p1
+ isin(2mpg) cos(2mur )po + sin(2mwpo) sin(2wp ) (pop1 + qoG1),
1 SIN(27 oo ) goo = 1 cOS(27po) sin(27 1) g1 + ¢ sin(27pg) cos(27p1 ) qo
+ sin(2m p1o) sin(27p1 ) (Poq1 — p1go)-

(3.9.33)

(3.9.34)
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The second pair of equations reads

cos(2mpy) + isin(2mp1 )p1 = — cos(27 oo ) COS(27ag) 4 1 coS(27 oo ) SIN(27 120 ) Po

+ i sin(27 oo ) €08(27 ig) Poo + SIN(27 oo ) SIN(27140) (PooP0 + 90000 )s (3.9.35)
isin(2mp)qr = i cos(2mpeo ) SIn(27 o) go + 4 Sin(27 o ) cos(27140) oo @950
+ 8in(2 oo ) SIN(27 10) (Poo @0 — Pooo)-
The third pair of equations reads
cos(2mpg) + i sin(2mpo)po = — cos(2mpy) cos(2m oo ) + 1 cos(27 ) SIN(27 oo ) Poo (39,37
+ isin(27p1) cos(27 oo )p1 + SIN(27 /1) SIN(27 oo ) (P1Ps0 + ¢1T00)
isin(27p0)qo = 1 cos(2mpy ) Sin(27 fhoo ) qoo + 18I0 (27 111 ) cOS(27 fhoo ) @1 (39.38)

+ sin(27 1) Sin(27 ftoo ) (D100 — Pocql)-

Equations (3.9.26) to (3.9.29) give necessary and sufficient conditions for T' to unitarize both My
and M;. More precisely, T will render My and M; unitary on S' if and only if there exist functions
D0, 90, P1,q1 depending on A such that the equations (3.9.27), (3.9.28) and (3.9.29) hold. In this case the
unitarized monodromy matrices M ; are given by (3.9.26). In the following, we will discuss the unitarizing
conditions (3.9.28) and (3.9.29) in more detail.

Lemma 3.49. The unitarizing conditions (3.9.28) and (3.9.29) hold if and only if

(A()S)O'g,(A()S)_l = (TRQS)O’g(TR()S)_l, (3939)
(A1S)03(A15)71 = (TAR1S)O'3(TAR1S)71, (3940)
where
VAX;
R, N 0 Sl<1 —A‘l) 0(1 0) A_l(l A—lpj)
Tl vt 1 e ) BT o)

(3.9.41)

Remark 3.50. In order to ensure that the (A-dependent) matrices A; are well defined, we have to
exclude any values of A € C* from our considerations, for which g;(A\) = 0. These values of A form a
discrete subset of C*, which does not possess any accumulation points on the unit circle S'. In order to
ensure that the matrices A; are holomorphic in A, we exclude for each A € C* with ¢;(\) = 0 the radial
cut from A to 0 (if || < 1) or from X to oo (if |A| > 1), respectively, from our considerations.

Denoting the union of all these cuts by W5, we note for later use (cf. remark 3.57) that the subset
C* \ W5 of C* by construction still contains for some r € (0,1) an open annulus containing the r-circle
C™). (More precisely, any r € (0,1) “close enough” to 1 will do.)

Proof of lemma 3.49. First, recalling (2.6.21), we have

0 X
(XJ AE;) == (RJS)O'g(RJS>_1 (3942)
145
Moreover, a straightforward computation yields
(pj % > = (A;8)03(A,;8) 71 (3.9.43)
4; —Pj
Inserting these two relations into (3.9.28) and (3.9.29), these equations read as
(Aos)Ug(Aos)_l = (TR()S)O'g(TR()S)_l, (3944)
(A1S)o3(A1S)™r = (TAR,S)o3(TAR,S)™ !, (3.9.45)
which proves the claim. O

01
10
Otherwise one would read (3.9.39) and (3.9.40) as equations between conjugates of o;. In this case,
however, the matrices L; defined in (3.9.48) below would take a more complicated form.

Remark 3.51. The decompositon oy = ( = So3S5~! is convenient for computational purposes.
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Lemma 3.52. Let A, B,C € GI(2,C). Then BAB™! = CAC~! if and only if there erists some L €
G1(2,C) satisfying C = BL and LA = AL.

Proof. First, let A, B,C € GI(2,C), such that BAB~! = CAC~!. Setting L := B~'C € GI(2,C), we
obviously have C' = BL. Moreover, using the assumption, LA = B~'CA = AB~'C = AL, which proves
one direction of the claim.

For the other direction, let A, B,C, L € G1(2,C), such that C = BL and LA = AL. Then, BAB™! =
CL'ALC~'=CL'LAC™!' =CAC™.. O

By the above lemmas 3.49 and 3.52, equations (3.9.39) and (3.9.40) are equivalent to

TRoS = AogSLo, (3.9.46)
TAR,S = A SL, (3.9.47)

for some matrices L; which commute with o3. This implies in particular that the matrices L; are diagonal.
Moreover, since the matrices T', R;, S, A; and A have determinant 1 (for T', this follows from the relation
U =TV), equations (3.9.46) and (3.9.47) imply det(L;) = 1 as well. Hence we obtain

Wi 0
L= (03 wj1> , (3.9.48)

where w; = w;(A\) denotes some A-dependent function.
With these preparations made, we can prove the following theorem.

Theorem 3.53. Let My and M be given by (3.9.3) and (3.9.4), respectively. Then, a matriz T unitarizes
My and M, simultaneously on S' if and only if it is of the form

1 <\/A1Xo [(wo +wg ) +polwo —wy )] A™VAXo [(wo — wy ) + polwo + Wo_l)]> 7

T=—"——"— —
2/ A 1 qo VAT Xog0(wo —wi ') AV AXogo(wo +wi )
(3.9.49)
for functions pg, qo, P1, g1, wo and wy of A, which satisfy
p? +¢;g;=1 and pj=p; for j=0,1, (3.9.50)
qoq1 +qoq1 cos(2mpg) cos(2mp ) + cos(27 oo )
_ 3.9.51
Pop1L+ 2 sin(2m ) sin(27m ) ’ ( )
02— —
wo = sV V=40 +q1 — poq1 JFPlQO, (3.9.52)
VS Vo + @+ pogr — p1go
. 01 /= —
wy = VA V=49 + q1 — poq1 +p1QO, (3.9.53)
VK9 Vo + @ — poqi + pigo
where 8,6 € {+1}, such that
55 — VHo Vo + a1+ Podi — P19ov/9o + ¢1 — Poqs + P1do (3.9.54)

NITY —2IAM/ A" Lo/ AT A/ K/ kY3

Moreover, if T is of the form (3.9.49), the unitarized monodromy matrices Mj = TMjT_1 are given by
(3.9.26).

Proof. As explicated earlier, a matrix 7 unitarizes My and M; simultaneously (for A € S!) if and only
if T satisfies the equations (3.9.39) and (3.9.40) for A-dependent functions pg, qo, p1 and ¢; satisfying
p? +¢;q; = 1 and p; = p;. Moreover, presuming 7' simultaneously unitarizes My and M, the unitarized

monodromy matrices ]\ij = TM;T~! are then of the form (3.9.26). Thus, it remains to prove, that T
satisfies (3.9.39) and (3.9.40) if and only if it is of the form (3.9.49).
As stated before, (3.9.39) and (3.9.40) are equivalent to the equations (3.9.46) and (3.9.47). We can
further transform these equations equivalently into
T = AoSLoS ™ Ry*, (3.9.55)
STIRGTAR,S = Ly STIAGTALSLy. (3.9.56)
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Thus, T satisfies (3.9.39) and (3.9.40) if and only if there exist A\-dependent functions p;, ¢; and w;, such
that (3.9.56) holds. (Of course, we still need to additionally ensure that the conditions given in (3.9.27)
are met.) Once we have found functions wj, p;, ¢; satisfying (3.9.56) and (3.9.27), we are able to compute
T from (3.9.55), that is

T 1 VATIXo [(wo +wg ) +po(wo —wg )] ATHWAKG [(wo —wp ) + polwo +wp )]
2\/lo/ A" qo A1 Xoqo(wo — wy ) AV AX0q0(wo +wy t) ’

(3.9.57)
as claimed.
To finish the proof, we now focus on equation (3.9.56), which reads more explicitly (cf. (3.8.56) for
the matrix A)

VAR A D i
02
VHO

02
AK11 K12

_ 1 <w01w1)\1(90 + q1 = poq1 + p1go) wo*lwfi)\fl(—% +q1 —poqa +P1(I0))
2/ A Tgo /A Tqr \ wow1(—qo + q1 + poqi — P1go) wowy A" (go + @1 + poqi — P1go)
(3.9.58)

Naturally, this matrix equation gives rise to four scalar equations. By taking into account (3.7.19) to
(3.7.22) and (3.9.27), these may be equivalently transformed into the following three equations. The
computations necessary to carry out this transformation involve the use of some identities for Gamma
functions, but are straight forward apart from that and given explicitly in appendix E. We end up with

_ <V k93 /=qo + 1 — Poq1 + P1do
w0—5

, 3.9.59
VY Vo + @+ poqi — pigo | :
Wy =6 K91 vV/=q0 + g1 — Poq1 + P1go (3.9.60)
VEDY Vo T @1 —poqi T pigo
N W@+ Ton _ cos(2mpo) cos(2mp) + cos(2mpso ) (3.9.61)
Pop1 2 sin(27p10) sin (2711 ) ’ -
where 4,6 € {£1}, such that
e Vo V90 + q1 + Pogi — P1gov/q0 + @1 — Pogi + P1go (3.9.62)

VHL —2iIA/ AL/ At/ K9/ K2

Thus, equation (3.9.56) holds if and only if the involved functions p;, ¢; and w; satisfy the three
equations above. (Again, note that we additionally assume all the time that the conditions given in
(3.9.27) are met.) Altogether, the claim is proved. O

Corollary 3.54. Let My and M be given by (3.9.3) and (3.9.4), respectively. Then, to find a matriz T,
which simultaneously unitarizes Mo and My on S*, one can proceed as follows:

1. Solve (3.9.51) for functions po,qo,p1,q1 satisfying (3.9.50).
2. Compute wy from (3.9.52).
3. Compute T from (3.9.49).

Remark 3.55. We would like to remark that equation (3.9.51) is solvable for functions pg, g, p1,¢1 in
A € S? satisfying (3.9.50) if and only if the eigenvalues u; of the Delaunay matrices D; inducing the
potential 7 as explicated in section 3.5 meet the unitarizability condition (3.5.28) for all A € S*. This is
proved in appendix F.

Remark 3.56. Given functions py, qo, p1, ¢1 satisfying (3.9.27) and (3.9.51), the corresponding functions
Poo and ¢oo (With p2 4+ ¢eofoc = 1) occurring in the monodromy matrix M, can be explicitly com-
puted from equations (3.9.33) and (3.9.34) representing the matrix identity MoM;M.,(\) = L. By a
straightforward computation, which is given in appendix G, we can prove the following statement: For
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Jj = 0,1,00, let p;,q; be the functions occurring in the unitary monodromy matrix Mj as in (3.9.26),
satisfying (3.9.27). In view of the identity (3.9.32), we have

Qo1 + Goq1 _ cos(2mpg) cos(2m 1) + cos(27fioo )
Po, 4o, P1,q1 solve popy + = - .
2 sin(27 o) sin(27py )

and Peo, oo are given by (3.9.33) and (3.9.34)

0G0 + G090 €OS(27 ) cOS(2T oo ) + cos(27 )
<~ ) s Mooy Yoo 1 oo = " -
P0; 405 Poc; Goo SOVE. PoPoo + 2 sin(27 o) Sin (27 oo ) (3.9.63)

and pp,q; are given by (3.9.35) and (3.9.36)

Joc + q1 cos(2mpuy ) cos(2m oo ) + cos(2m
<= D1,G1,Po01 G0 SOIVE P1Doo + T1900 T 4190 _ ( :“1) ( Moo) (2m110)
2 sin(2m 1) sin(27 oo )

and pg,qo are given by (3.9.37) and (3.9.38).

Remark 3.57. Returning to remark 3.43, we now turn to the question, for which values of A our
preceeding considerations are valid. First, recall from remark 3.41, that — for the time being — we have
restricted A to the domain C* \ (W7 U Wy U W3), where everything is holomorphic in A. Recapitulating
now what we have done in this section, we observe that, in order to keep all expressions well defined and
holomorphic in A, we need to exclude further points from the A-domain. Namely, this is necessary when
dealing with the functions p;, ¢; and g; occurring in the unitarized monodromy matrices M ; (excluding
the subsets W3 and Wy of C* from our considerations, cf. remark 3.45) and when introducing the matrices
A; (excluding the subset W5 of C*, cf. remark 3.50).
Consequently, our computations are valid for all A from the A-domain

C*\ (W1 U W U W5 UWy UWs). (3.9.64)

In particular, the matrix T is well defined and holomorphic for A € C* \ (W7 U Wy U W3 U Wy U Ws).

For our study, it is crucial to observe that the set C*\ (W7 UWy U W3 U W, U Ws) contains an r-circle
C™ for some r € (0,1). More precisely, C* \ (W; U W, U W3 U Wy U Ws) contains for each r € (0,1)
“close enough” to 1 an open annulus containing the r-circle C("). (Cf. remarks 3.41, 3.45 and 3.50 for
this.) Altogether, the matrix T is in particular well defined (and holomorphic) for A from some r-circle
C) and thus actually defines an 7-dressing matrix (as highly desired).

Remark 3.58. By a slight modification of the computations carried out in appendix E, one can prove

the following, generalized result, which does not require explicit knowledge of the connection coefficients
01 01 02 .19 02,
k11, K12, K11 and Kia:

Let My and M be given by (3.9.3) and (3.9.4), respectively. Then, a matrix T unitarizes My and M;

simultaneously on S* if and only if it is of the form

T— 1 (\/AlXO [(w0+w0_1)+p0(w0—w0_1)] AV AX, [(wowo_l)ero(woero_l)])
2/Io v/ Ao VAT Xog0(wo —wi ') A~ AXogo(wo + wi ) ’

(3.9.65)
for functions pg, qo, p1, q1, wo and wy of A, which satisfy
p; +4q;g; =1 and p; =pj, (3.9.66)
M1
- 4‘10611%"5(1)%"5(1)3 = (g0 + ¢1)* — (poq1 — P140)*, (3.9.67)
H1
—daoqr miRt = (00— 0)* = (Poas — P10, (3.9.68)
/02— —
wo = 6 Y112 V=00 + @ — pogr + P1go (3.9.69)

VEL Vao Far Fpogi —pigo

oy g\//fi(ﬁ vV—q0 + @1 — poqa +P1(I0’ (3.9.70)
\//‘57(1)% V% + a1 — poq1 + p1qo

where 6,0 € {£1}, such that

55 = Yo V40 + g1 +Poq1 — P1gov/qo0 + @1 — Pog1 + P1go

VH1 —2iIM/ A" Lo/ AL/ K9/ K (2
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Moreover, if T is of the form (3.9.65), the unitarized monodromy matrices Mj =TM;T —1 are given by
(3.9.26).

Inserting the connection coefficients k91, x93, x9% and 93 from (3.7.19) to (3.7.22) restores the state-
ment of theorem 3.53. (Actually, this is proved in lemma E.1.)

We can now state the following result:

Theorem 3.59. Let M = C\ {0,1}, M =H and 7 : M — M the universal covering map as defined in
(3.2.2). Letn be a standardized trinoid potential of the form (3.6.16) on M and 7} = w*n the corresponding
standardized trinoid potential on M. Moreover, let ® be the solution to the differential equation d® = Py
given in (3.9.1) and ¥ = 7*® the corresponding solution to the differential equation d¥ = V5. Then, to
find a dressing matriz T = T(X), which dresses the solution ¥ into a new solution \i/, which possesses
holomorphic monodromy matrices in A\ € C* and will produce a descending CMC-immersion M — R?
via the loop group method, one can proceed as follows:

1. Find \-dependent functions pg, qo,p1,q1 satisfying
(a) sin(2mp;)p; and sin(2mwp;)q; are holomorphic for X € C* (holomorphicity condition),
(b) pj is an even function of X, q; is an odd function of A (twisting condition),
(c) p? +¢;G; = 1 (determinant 1 condition),
(d) p; =D; (unitarity condition),

+ 201 +d0q1 _ cos(2mpg) cos(2mpu1)+cos(2mpioo)
2

ST CLTT IO (simultaneous unitarizability condition),

(e) pop1
(f) p;j and g; take finite values in C and are holomorphic at A =1 (closing condition) .

2. Compute wy from (3.9.52).
3. Compute T from (3.9.49).

Remark 3.60. Theorem 3.59 allows for the construction of a family of dressing matrices T = T'(\), which
dress a special starting solution ¥ to the differential equation d¥ = ¥y into new solutions U = TV,
which will (via the loop group method) produce a descending CMC-immersion M — R3 and thus a
trinoid ¢ : M — R? in the sense of definition 3.1. By theorem 3.14, the choice of an appropriate dressing
matrix T will ensure that the corresponding trinoid ¢ has properly embedded annular ends. In view of
remark 3.18, all trinoids with properly embedded annular ends can be obtained (by different choices of T').
Nevertheless, we conjecture that the given family of dressing matrices is even “larger” in the sense that,
for appropriate choices of T, even trinoids M — R? with “non-properly embedded” or “non-embedded”
ends can be produced. It is not clear how the corresponding surfaces in R3 would look like. In particular,
such trinoids would not necessarily show the asymptotic behaviour of Delaunay surfaces. For the rest of
this thesis, we restrict our considerations to trinoids with properly embedded annular ends.

Remark 3.61. Each dressing matrix T' = T'(\) provided by theorem 3.59 produces a solution V=TV
to the differential equation
dv = Up (3.9.72)

with monodromy matrices Mj, which are holomorphic in A € C*. However, ¥ itself is not necessarily
holomorphic (in A) on C*. Nevertheless, based on remarks 3.21 and 3.39 of [18], we have the following
result:

Assume T is as in theorem 3.59. Denote by U = TV the corresponding solution to (3.9.72), which has
holomorphic monodromy matrices in A € C* and generates via the loop group method a descending CMC-
immersion M — R3. Assume 7T is another dressing matrix provided by theorem 3.59, which produces a
solution ¥ = T'U to (3.9.72), which has holomorphic monodromy matrices in A € C*, generates via the
loop group method a descending CMC-immersion M — R3 and is holomorphic in A € C*. In particular,
both T and T simultaneously unitarize the monodromy matrices of the starting solution ¥. Thus, by
remarks 3.21~and 3.39 of [18], T and T only differ by an element U = U()\) of A,SU(2), (for an appropriate

€(0,1): T=UT.

Altogether, any dressed solution U =TV to (3.9.72) obtained by theorem 3.59 is related to another
solution U = TV to (3.9.72), which is holomorphic in A € C* by some U € A,SU(2),: ¥ = UW.
(Both U and ¥ have holomorphic monodromy matrices in A on C* and produce via the loop group
method descending CMC-immersions M — R3.) The additional dressing by U transforming ¥ into W
corresponds on the level of the associated CMC-immersions to a A-dependent rotation and/or translation
of the members of the related associated families.
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4 'Trinoid symmetries

So far, we have classified trinoids ¢ : M — R3 produced by the (standardized) trinoid potential 1 in terms
of functions pg, p1, o, q1 solving (3.9.51). In the following, we are going to refine this classification by
translating possible symmetry properties of the image of the trinoid ¢(M) into further constraints on the
functions pg, p1,qo, g1- From now on, we restrict our considerations to trinoids with properly embedded
annular ends.

As po,p1,q0,q1 appear in the monodromy matrices of the holomorphic frame ¥ associated with the
mapping ¥ := ¢gom : M — R3 (and thus, by remark 2.10, in the monodromy matrices of the extended
frame F' associated with 1), we translate any symmetry properties of ¢ into symmetry properties of v

and transfer these to the level of the extended frame F : M — ASU(2), afterwards.

Remark 4.1. Both the definitions and the results of the sections 4.1 and 4.2 are valid and thus formulated
in the generalized setting of an arbitrary Riemann surface M with universal cover M and a pair of

conformal CMC-immersions ¢ : M — R3 and ¢ : M — R? linked via the universal covering 7 : M — M,
Y = ¢ om. We return to the trinoid setting with M = C \ {0,1} and M = H in section 4.3.

4.1 Definitions

Let Iso(R?) denote the isometry group of R3, i.e. the group of all distance preserving affine isomorphisms
on R? with respect to the Euclidean metric

d:R* xR =R, d(z,y) = V(g — 1) + (y2 — 22)> + (42 — x2)2. (4.1.1)
The elements of Iso(R?), often referred to as Fuclidean motions on R3, are of the form
T:R® =R 20 T(x):=Arz+tr, (4.1.2)

where A7 denotes a (real) orthogonal 3 x 3-matrix, and t7 denotes a translation vector in R3. Thus,
any element of Iso(R?) is composed of an orthogonal transformation and a translation. Moreover, T €
Iso(R?) of the form (4.1.2) preserves orientation on R? if and only if the associated matrix Az satisfies
det(A7) = +1, i.e. if and only if A7 € SO(3). Accordingly, 7 € Iso(R?) of the form (4.1.2) reverses
orientation on R3 if and only if the associated matrix Az satisfies det(A7) = —1, i.e. if and only if
Ar € 0(3)\ SO(3).

Given a conformal CMC-immersion ¢ : M — R? of a Riemann surface M into R3, we define the
symmetry group of ¢(M) by

Sym(¢(M)) == {T € Tso(R?) | T(¢(M)) = $(M)}. (4.1.3)

For the corresponding conformal CMC-immersion ¢ := ¢ o7 : M — R3, where 7 denotes the universal
covering M — M, we define analogously

Sym(v(M)) == {T € Iso(R®) | T(¥(M)) = w(M)}. (4.1.4)
By construction, we have ¢)(M) = ¢(M) and therefore obviously Sym(¢(M)) = Sym (i (M)).

Definition 4.2. Let ¢ : M — R? be a conformal CMC-immersion of a Riemann surface M into R3. Let
7 : M — M be the universal covering of M and v := ¢ o . The mapping ¢ (or v) is called symmetric
with respect to some Euclidean motion 7 € Iso(R?) if and only if 7 € Sym(¢(M)) = Sym(y(M)), i.e. if
and only if

T(p(M)) = p(M) or, equivalently, T ((M)) = (M). (4.1.5)

In this case, 7 is called a symmetry of ¢ (or ).

4.2 The extended frame

Throughout this section, let ¢ be a conformal CMC-immersion M — R? of a Riemann surface M into R?,
and 1) := ¢ o 7 the corresponding conformal CMC-immersion M — R?, where M denotes the universal
cover of M and 7 : M — M the associated covering map.

In the following, we review the procedure of constructing the corresponding extended frame F' from
1 as presented in [10], slightly modifying it at the same time to make it fit our needs. As we will only
give an outline of the basic procedure, the reader is referred to the appendix of [10] for more details.
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Since the CMC-immersion ¢ : M — R3 is conformal, the metric on Q/J(M ) induced by v is given by
ds? = e*(dz? + dy?) for some real valued function u : M — R. More explicitly, we have

< Yu(,9), Ya(,y) > =< Uy (2, 9), by (2,y) >= "), (4.2.1)

< 7%(50,9)7%(%31) > =0, (422)

where < -, - > denotes the standard inner product of R3 and we interpret 1) as a mapping of two real
variables x and y, writing z € M as z = = + iy.? Defining

Y (z,y) X Py, y)

N(z,y , 4.2.3
N FRE TN (1:23)
we obtain an orthogonal matrix (depending on z = z + iy € M)
u(z.)
U= (e 2 to(z,y)e y(,9), N(z,y)) € SO(3) (4.2.4)

representing the natural orthonormal frame corresponding to 1. By possibly rotating the surface (. )
and shifting it afterwards, we can assume U(z,) = G(1) and (z,) = %63 for any preassigned z, € M =
H, where e3 = (0,0,1) € R? and

cos(t)  sin(t) 0 _
GA) =G\t =|sin(t) —cos(t) 0 | €S0O(3) forall A\ =e"c S (4.2.5)
0 0 -1

Remark 4.3. The normalization of ¢ given above is different from the one of [10], where U(z,) = I. The
reasons for our normalization will become apparent by the following: Instead of translating the moving
frame U of ¢ directly into an extended frame F : M — ASU(2), by the procedure given in [10], we will
consider the moving frame U of ¢ := G(1)v which satisfies U(z,) = I. By applying the method of [10],
we obtain F' which exactly produces the original immersion 1 via the Sym-Bobenko formula (rather than
some rotated and translated version of ¢ as in [10]).

For v as above and A € O(3), consider the (also conformal) CMC-immersion =AY : M — R3,
The corresponding orthonormal frame of v is represented by

~ i(w,y) a(z,y) ~

U= (e‘Tﬁx(a:,y),e_ 2 y(m,y),N(x,y)) € 80(3)7 (4.2.6)

where ~ ~
N(e.y) = Ya(2,y) X by(2,y)
| 1%(%?!) X wy(%y) ‘
The relation between U and U is stated in the following lemma.
Lemma 4.4. Let ¢ : M — R3 be a conformal CMC-immersion, A € O(3) and ¢ == A. Then the
corresponding orthogonal matrices U and U given in (4.2.4) and (4.2.6), respectively, satisfy
U= Au if A€SO0(3), (4.2.8)

10 0
U=AU[0 1 0 if A€ 0(3)\S0(3). (4.2.9)
00 —1

(4.2.7)

Proof. As indicated above, v is also a conformal CMC-immersion. More precisely, we have

'(Z)w = A%, @y = A% (4.2.10)
and thus €% = (¢, 1) = (1hg, 1bg) = ¥, which implies
i = u. (4.2.11)

Because of A € O(3), we have for any two vectors v,w € R? the relation (Av) x (Aw) = det(A)A(v x w)
and therefore

Y (A¢x) X (Awy) det(A)A(¢m X 2/’y) Pz X 1y
N = = =d — 7 _=d N. 4.2.12
() () |~ TaetA)A(Gs x ) ]~ CHAMAT S, 7 = et (42.12)
Altogether, the claim follows. O

91t is well known that the universal cover M of a Riemann surface M is (up to conformal transformatlons) given by
either M = C or M = C or M = H. In the case under consideration, we can interpret M as a subset of C.
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From now on, let A := G(1) € SO(3), where G(1) is defined by (4.2.5). Hence, we consider from now
on the conformal CMC-immersion ~ R
Y =G(1)Y: M — R3. (4.2.13)

For later use we note 1;( «) = — 55 H es. Considering the corresponding orthonormal frame U as given in

(4.2.6), we derive by the above lemma that & = G(1)U and thus U(z,) = I. For now, we consider U
instead of U and therefore find ourselves back in the setting of [10].

Interpreting U as an automorphism of R?, the mapping J o UoJ L where J: R — su(2) as in
(3.4.3), defines an automorphism of su(2). Furthermore (cf. equation (3.4.7)), there exists a (up to sign)
unique P € SU(2) such that

(JoUoJ 1) (X)=PXP™' forall X €su(2). (4.2.14)
Additionally, as Z;{(z*) = I, we have 15(2*) = 4+I. W.lLo.g., we assume 15(2*) = +I, thus defining P

uniquely. ~
Following A.4 of [10], P satisfies

1 1
515 _ [ —zus Qe 2 p—1p _ 1
P (Gl ) one (e

Introducing the loop parameter A € S, we define the mapping Py : M — ASU(2) into the (untwisted)
loop group ASU(2) = {g: S' — SU(2) smooth} by

vl

1
§€

\ Nl
(NS

Uz

H) . (4.2.15)

PN

g
Gl

SR —Lu,  AT2Qe = 1,5 Lz les
PUN(Py): = ( 12u sy 2 > . PyNP): = <_A24 e 21, ) (4.2.16)
4 Z

_562 Z'U/Z e —

and Py (z,) = I. After conjugating Py by G(A\)~!, where

G(A) = <,01 Mé) : (4.2.17)

we finally obtain B ~
Fy =G\ PG\ : M — ASU(2), (4.2.18)

with Fy(z,) =1 i i
By section A.7 of [10], the Sym-Bobenko formula (evaluated at A = 1) allows to recover ¢ from F)
up to an Euclidian motion:

P%(%FA s %F)\JgF)\_l)”A:l =G) ' IW)GA) + O(1), (4.2.19)
where A = ¢ and C = C (A) denotes a z-independent translation matrix in su(2).

Keeping in mind that FA(Z*) =1 for all A € S, by evaluating the left hand side of (4.2.19) at z = z,
we obtain —5t o5, Since P(2,) = —es as stated earlier and therefore J(l/)( «)) = %% o3, the right
hand side of (4.2.19) for z = z, reads as G(1)"'J(¢(2,))G(1) + C(1) = — 57103 + C(1). Comparing
both expressions for the left and for the right hand side, we obtain C(1) = 0. Therefore, the extended
frame F produces exactly the (su(2) version of) the original immersion v via the Sym-Bobenko formula
evaluated at A = 1:

1 0 - _ i = . I
=57 (50 B+ 5 FaosFy Dlher = GO THI()G() = (). (4.2.20)
To understand the last step in the equation above, note that we have
(JoGN) oJ H(X)=GWNXG\) ! for all X € su(2) (4.2.21)

and thus J() = (J 0 G(1))(®) = G(1)J(&)G(1) . ]

From now on, by abuse of the notation of [10], we denote the frame F) as constructed above by F to
match our notation of the previous sections. Altogether, starting with a (normalized) CMC-immersion
1, we have reversed the last step of the DPW-method by recovering the extended frame F' which exactly
produces 9 by evaluating the Sym-Bobenko formula at A = 1. This result is summarized in the following
theorem.
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Theorem 4.5. Let i) : M — R® be a conformal CMC-immersion and U, G(1) defined by (4.2.4),

(4.2.5), respectively. Moreover, let U(z,) = G(1) and ¥(2.) = 5res at some z. € M. Then, the natural
orthonormal moving frame of G(1)v translates by the procedure presented in [10] into an extended frame

F: M — ASU(2), satisfying

gp o P - ™ 4 L Foy )]s = () (4.2:22)

4.3 Trinoids with properly embedded annular ends

We return to the trinoid setting. Ie., let M = C\ {0,1}, M = H and 7w : M — M be the universal
covering as defined in (3.2.2). From now on, we will restrict our considerations to trinoids M — R3 with
properly embedded annular ends.

Hence, from now on, let ¢ : M — R? be a trinoid with properly embedded annular ends Bj, j = 0, 1, 0o,
at z; =j € C,j =0, 1, 0o, respectively (cf. 3.1). Moreover, assume ¢ is derived via the loop group method
from a standardized trinoid potential n (on M) of the form (3.6.16). Recall that 7 is determined by a
triple of Delaunay matrices Dy, D1 and Do, of the form

_ (0 X
%—@;o>’ (43.1)
where
X]' = Sj/\i1 —|—tj/\, 7]‘: Sj)\—th/\il, (432)
11 1
S5 € [Z, 5), s;j+t; = 5 (433)

As stated earlier, for each j € {0, 1,00}, the properly embedded annular end B; of ¢ asymptotically
shows the behaviour of the unduloidal Delaunay surface produced from the Delaunay potential z%szjdz.
We define the trinoid azis of ¢ (at z;) as the axis of revolution of the asymptotic Delaunay surface of the
properly embedded annular end B;. The trinoid axis of ¢ (at z;) is denoted by A; = C; 4+ Ruvj, involving
a base point C; € R3 and a unit direction vector v; € R3, pointing towards the trinoid end B;. Tt is well
known that the direction vectors of the trinoid axes are subject to the balancing formula'®

WoVo + W1V + WeeVso = 0, (4.3.4)

where, as before, w; = s;t;.
We note the following result:

Lemma 4.6. Let M = C\{0,1} and, for j =0,1,00, z; =j € C. Moreover, let ¢ : M — R3 be a trinoid
with properly embedded annular ends B; = ¢(U;) at z; for j = 0,1,00. Then, for some j € {0,1, 00},
there exists an open subset U; C U; in M, such that B; == ¢(U;) is a properly embedded annular end of
¢ at z; which satifies

B no(M\U;) =0. (4.3.5)

Proof. We assume without loss of generality that the punctured neighborhoods Uj; of z;, j = 0,1, 00, are
open in M and pairwise disjoint, i.e.

UoNUy =UyNUs = Uy NUs = 0. (4.3.6)

In addition, we assume without loss of generality that, for each j € {0,1, 0o}, the set U; U{z;} is simply
connected in C.

As before, denote for each j € {0,1, 0o} by v; the unit direction vector of the trinoid axis corresponding
to the trinoid end Bj; at z; (and pointing towards the end). The vectors vy, v; and v, are subject to the
balancing formula (4.3.4),

WoV + W1V + WeeUso = 0, (4.3.7)

10By chapter 7 of [29], the direction vectors vg, v1 and v of the trinoid axes satisfy the equation
movo + M1v1 + MeoVeo = 0,

for some real constants m; called the trinoid weights, which are associated with the corresponding asymptotic Delaunay
surfaces of the trinoid ends Bj, respectively. By section 5.4 of [19], these weights are up to a common factor « identical
with the parameters w; = s;t; of the respective Delaunay surfaces: m; = skw;. Consequently, the formula above can be
reformulated as (4.3.4).
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where w; > 0. This implies that there exists a plane in R3, which separates one of the v;’s, say v, from
the other two, say vy and v;. Consequently, after shrinking the ends if necessary, we have

B.NBy=0=B,NHB. (4.3.8)
Given the compact subset R
M:M\(U()UUlUUOO) (439)
of M, we consider the open set .
V.= ¢ 1B, \ ¢(M)) C M. (4.3.10)
We will prove that
V. CUy. (4.3.11)

To this end, let z € V,.. Assume z ¢ U,. In view of (4.3.9), we have z € M or z € Uy, or z € U;. Consider
the first case, z € M. Then, ¢(z) € ¢(M) and thus ¢(z) ¢ ¢(V;), which implies by (4.3.10) that z ¢ V;,
a contradiction. We turn to the second case, z € Uy. Then, ¢(z) € ¢(Uy) = By and thus by (4.3.8)
@(2) ¢ B,. This yields again ¢(z) ¢ ¢(V;.) and therefore z ¢ V., a contradiction. Analogous to the second
case, also the third case, z € U, is led to a contradiction. Altogether, we infer that necessarily z € U,,
which proves (4.3.11).

Since M is compact (in M), ¢(M) is compact and in particular bounded (in R3). Consequently,
since lim,_,, ¢(z) = oo by assumption, V,. contains a punctured neighborhood U, of z.. Without loss of
generality, we can assume that U, is open in M and that the set U, U {2} is simply connected in C. Set

B, = ¢(U,). (4.3.12)

As U, C U, and, by assumption, ¢ defines a proper embedding of U,., also ¢|Ur is a proper embedding.

We infer that B, defines a properly embedded annular end of ¢ at z,.
It remains to show A R
B.N¢p(M\U,)=0. (4.3.13)

For a start we observe by (4.3.6) and (4.3.9) that

M\U,=MUU,UU, U (U, \U,) (4.3.14)

and thus A . .
(M\U )=¢(M)U By UB UU\U,). (4.3.15)
ASBT=¢(U)C¢( V.) =B\ ¢ ( 1), we have B, N¢(M) = (). Moreover, B, = ¢(U. ) € ¢(Uy) = By and
thus, by (4.3.8), B,N By, = 0 = B, N B,. Finally, since ¢|y, is an embedding, we have B, N ¢( 7n\U ) 0.

Altogether, we obtain

B oM\ ) = (B, 0 6(ND) U (B, 1 Bi) U (B, 0 BY U (B, N (U T) =0, (43.16)
as claimed. O

4.4 The extended frame symmetry transformations

We are in the trinoid setting presented in section 4.3. Le., let M = C\ {0, 1}, M=Handr: M — M
be the universal covering as defined in (3.2.2). Moreover, let ¢ : M — R3 be a trinoid with properly
embedded annular ends and ¢ = ¢ o 7 the corresponding conformal CMC-immersion M — R3. Finally,
let F' denote the extended frame corresponding to ¢ in the sense of theorem 4.5.

We are interested in translating any symmetry properties of ¢ to the level of the extended frame F.
Thus, we assume that ¢ is symmetric with respect to 7 € Sym(¢(M)), i.e.

T(p(M)) = ¢(M). (4.4.1)

Recalling from section 4.1 that Sym(¢(M)) = Sym((M)), we infer that 7 is also a symmetry of the
conformal CMC-immersion 1, i.e.

T(P(M)) = p(M). (4.4.2)

In order to translate the symmetry property of v to the level of the extended frame F', we will trace
the symmetry property of ¢ through the process generating F' from 1, which has been presented in
section 4.2. Theorem 4.9, based on results of [12], associates with the given symmetry 7 of 1 a pair
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of bijections, v : M — M and 7 : M — M, and is crucial for our purposes. We make the necessary
preparations for this theorem in the following.

Let U and V denote open subsets of C. A function f : U — V is called biholomorphic, if f is
a holomorphic bijection with holomorphic inverse function. f is called bi-antiholomorphic, if f is an
antiholomorphic bijection with antiholomorphic inverse function. We define the following sets:

Aut(M) = {5 : M — M;# biholomorphic}, (4.4.3)
Aut*(M) = {7 : M — M:;# bi-antiholomorphic}, (4.4.4)
Aut(M) = {y: M — M;~ biholomorphic}, (4.4.5)
Aut*(M) = {v: M — M;~ bi-antiholomorphic}. (4.4.6)

Lemma 4.7. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as defined in
(3.2.2). Moreover, let ¢ : M — R3 be a trinoid with properly embedded annular ends and ¢ = ¢ o7 the
corresponding conformal CMC-immersion M — R3. Then, we have

{7 e Aut(M);mody =7} ={§ € Aut(M);¢p 05 = 1} (4.4.7)
Proof. First, let 4 € Aut(M) with m o4 = . Since ¢ = ¢ o 7, we infer that

Yoi=gomoq=gom=1, (4.4.8)

which already proves the relation “C”.

It remains to prove the relation “2”. To this end, let 7 € Aut(M) satisfying ¢ o 4 = 1. Since
¢ : M — R3? is a trinoid with properly embedded annular ends, there exists by lemma 4.6 for some
j € {0,1,00} a punctured neighborhood U; of z; in M, such that B; = ¢(U;) is a properly embedded
annular end of ¢ at z; satisfying B; N¢(M \ U;) = (). As stated in the proof of lemma 4.6, we can assume
without loss of generality that U; is open in M and that U; U {z;} is simply connected in C.

We consider the tesselation of M induced by the sheet F C M defined in (3.2.31) and the group
Aut(M /M) of covering transformations on M given in (3.3.7). Via the universal covering 7, U, cor-
responds to an open subset U of F. In paurticular7 the mapping 7T|07, : tildeU; — Uj is bijective.

Consequently, we have 1(U;) N Y(F N\ U;) =

Naturally, we have ’y(U ) C M. However by restrlctlng 4 to an approprlate open subset of U], the
resulting restricted map takes values in only one sheet F of our tesselation of M. Therefore, we assume
without loss of generality that 4 maps U into some sheet F, i.c. ol a, Uj — F.

Recalling that the group Aut(M /M ) acts transitively on the set of the sheets of our tesselation of M,
there exists 6 € Aut(M /M), such that §(F) = F. Considering the mapping § oy : M — M, we observe
by using m 0§ = m and ¢ o4 = 1 that

Ypodoj=gomodoy=c¢omoF=1o7=1. (4.4.9)
Let now z € U;. In this case, we have 5(z) € F and thus 6(3(z)) € F. By (4.4.9), we have
b(z) = Y(6(3(2)))- (4.4.10)

Since ¢(U;) Ny (F \ U;) = 0, this implies §(7(z)) € U;. However, since 1 = ¢ o 7 is injective on Uj, we
infer from (4.4.10) that actually 5( (2)) = =.
Altogether, we have proved bo 7|U = id. Since § and 7 are holomorphic on M, this relation carries

over to M: 6 0% = id. But this implies ¥ =6~ ! € Aut(M/M) and in particular o4 = 7, which finishes
the proof. O]

Based on theorem 2.7 of [12], we can state the following result:

Lemma 4.8. Let ¢ : M — R3? be a conformal CMC-immersion of a Riemann surface M into R3. Let
7 : M — M be the universal covering of M and v := ¢ o a conformal CMC-immersion of M into
R3. Finally, let ¢ - or, equivalently, 1 - be symmetric with respect to an orientation preserving (resp.
orientation reversing) Euclidean motion T € Sym(¢p(M)) = Sym((M)). Then, if M with the metric
induced by ¢ is complete, there exists a mapping 7 € Aut(M) (resp. 7 € Aut*(M)), such that

Toyp=1o07. (4.4.11)

The mapping 7 is unique up to composition from the left with an element of Aut(M/M).
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Proof. In the case of an orientation preserving Euclidean motion 7 this is proved in theorem 2.7 of [12].
The proof for orientation reversing 7 is completely analogous. O

With these preparations made we can now turn to the announced

Theorem 4.9. Let M = C\ {0,1} with universal cover M = H and covering map © : M — M as
defined in (3.2.2). Let Aut(M /M) denote the automorphism group of =. Moreover, let ¢ : M — R3
be a trinoid with properly embedded annular ends and v = ¢ o w the corresponding conformal CMC-
immersion M — R3. Finally, let ¢ - or, equivalently, b - be symmetric with respect to an orientation
preserving (resp. orientation reversing) Euclidean motion T € Sym(¢(M)) = Sym(sp(M)). Then there
exist v € Aut(M) and 5 € Aut(M) (resp. v € Aut*(M) and 5 € Aut*(M)) satisfying

Top=¢on, (4.4.12)
Toypy=1oA. (4.4.13)
While v is unique, 7 is unique up to composition from the left with an element of Aut(M/M). Further-

more, v and v are related by
Toy =r~om. (4.4.14)

Proof. First, recall that (by lemma 3.2) M with the metric induced by ¢ is complete. Thus, we can
apply lemma 4.8 to relate to the orientation preserving (resp. orientation reversing) Euclidean motion 7°
a mapping ¥ € Aut(M) (resp. ¥ € Aut™(M)) satisfying

T o =07 (4.4.15)

Moreover, 4 is unique up to composition from the left with an element of Aut(M /M).
Next, we prove the set identity

FAut(M/M)57~t = Aut(M/M). (4.4.16)
Let b € Aut(M /M). By lemma 4.7 we have v o 6 = 1. Consequently,
Q/Jo&oSofy_l:Toz/)ogoﬁ_lz’]-owo:y_lzlb, (4.4.17)

which, noting that 7705 04~ is biholomorphic (even if 7 is bi-antihlomorphic) and applying again lemma
4.7, shows 7 0 0 0 471 € Aut(M/M) and thus proves the inclusion YAut(M/M)5~1 C Aut(M/M).
Replacing 4 by 47! in (4.4.17), we obtain analogously 5~ 'Aut(M /M)y C Aut(M /M), or, equivalently,
Aut(M /M) C FAut(M/M)3~1. Altogether, (4.4.16) follows.

We identify M with M /Aut(M /M) by the mapping z — [w], where w € M with 7(w) = z. (Cf.
remark A.15 of appendix A.1l for more details.) Consider the mapping

v M- M, [w—y(w]) = [Fw)]. (4.4.18)

(Since [w] = {6(w); 6 € Aut(M/M)} and, by (4.4.16), F6(w))] = [6(F(w))] = [F(w)] for all § €
Aut(M /M) and appropriate 6 € Aut(M /M), v is well defined.) With the identification of M and
M /Aut(M /M) given above, we can write v as

viM— M, z—v(z):=7Fw)), (4.4.19)

where w € 7 1(2) and the definition of v is independent of the choice of w. By definition of 7, we have
on M
Yyom=moR. (4.4.20)

Moreover, since 7 is conformal, v is biholomorphic (resp. bi-antiholomorphic) if 4 is biholomorphic (resp.
bi-antiholomorphic).
Let now 2 € M and w € 7~ !(z). Then,

povy(z)=¢omoF(w)=voF(w)=Totp(w) =T opon(w) =T o ¢(z). (4.4.21)

This proves the relation
Togp=don, (4.4.22)

which means that we have constructed v with the claimed properties.
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It remains to prove the uniqueness of 4. This can be seen as follows: Assume 71,72 € Aut(M) (resp.
1,72 € Aut®(M)) both satisfy the claimed relations. Then, in particular ¢ oy =7 o ¢ = ¢ o 9, which
implies

poviory =0 (4.4.23)
Since ¢ is a trinoid with properly embedded annular ends there exists by lemma 4.6 an open subset U of
M, such that ¢|y is an embedding with

o(U) N (M \ U) = 0. (1.4.20)

This implies 43 05 *|y = id|. Asy3075 ! is biholomorphic (resp. bi-antiholomorphic) on M, this implies
that actually v o 72_1|M = id|ps and therefore v1 = 7s. O

By theorem 4.9, we can investigate the behaviour of 1) under the symmetry 7 by considering the
composition 1 o 4. In the following, we explain how this relation carries over to the corresponding
extended frame F' from theorem 4.5.

According to the previous section, we consider zz = G(1)¥ together with the associated orthogonal
matrix U = G(1)U given in (4.2.6). We would like to compute

Uoy=G(1)(e T yoq,e T th, 07, N o). (4.4.25)
For this, we need to collect some technical results.

Lemma 4.10. Interpreting 5 : M — M as a mapping (z,y) — (31(z + iy), 32(x + iy)) € R? of real
variables x and y, where 41 := R(¥) and F2 := I(7), we have

e (O 932\
e =e \/(81‘) Jr(ax). (4.4.26)

Proof. Because of T € Iso(R3) and 7 o1 = 1) 07, 7 forms an isometry of M. This implies

|

e'(da? +dy?) = €"7(d(51)* + d(32)?)

= (9:)/1 671 (3"71 8& 2 2 6’3/2 872 6’)’2 8’72 2
. uoy _ _ = _ s
¢ <(6m)d 26 dy By 2 Jy dy ox d 26 oy By oy dy dy

=" <<aazl)2 + (8312) ) (da? + dy?) .

T~he last step follows from the (anti-)holomorphicity of 4: We either have % = %—Zj, % = —% or
% = %72, % = 672 . Altogether, the claim follows. O
T Yy Y

Lemma 4.11. Decomposing the symmetry T € Sym(w(M)) into an orthogonal part Ar € O(3) and an
translational part t7 € R3,

T:R* =R 2— Arz + tr, (4.4.27)
the following equations hold:
. 1 02 02
= — )y — —— 4.4.2
1//3207 (%%_972871)AT(6ZJ¢$ ax"/)y ) ( 8)
Jxr Oy dxr O
. 1 M M
hy o = (%% - %%) Ar (%c —1/13, , (4.4.29)
oxr Oy Jxr Oy
Nody=ArN. (4.4.30)
Proof. Defining the differential matrix
Tz +iy) Gz +iy)
DA(z +iy) == [ 9= 0y 4.4.31
(e @”@+w>8;u+w> —
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and analogously the differential matrices Dy and D(v o 4), we derive from the relation 7 o) = ¢p 0o ¥
(provided by theorem 4.9)

(2 07,1, 07)DF = (D) 05) D7 = D(t 0 7) = D(T 0 %) = A7 D, (4.4.32)
whence
(Y2 07,y 07) = ArDyp(Dy) . (4.4.33)

Taking into account
1 2 _ M

N1 — 0, 0
(D'V) B (% 9%z 072 8’71) (—6%2 8;)/1y> (4434)

ox Oy ox Oy

T ox

we obtain (4.4.28) and (4.4.29).
Recalling A7 € O(3) and applying the same argument as in (4.2.12), we infer

(b 03) x (4,00 (Girve = G2wn) < (5w + G2un)

No#d= - —— =det(Ar)Ar (4.4.35)
| (2 07) % (1, 07) | ’(aw b — 8’)’2 ?/Jy) ( N Ly, + 671 1/@)
Continuing the calculation by using the (anti-)holomorphicity of 4 we obtain
S \2
((3) + (%)) wa )

Q

() + (3)) o xw)

where € € {£1} takes the value “+1” (resp. “—1”) in the case of holomorphic (resp. antiholomorphic)
4. As (by theorem 4.9) 4 is holomorphic for orientation preserving 7, i.e. in the case det(A7) = 1, and
antiholomorphic for orientation reversing 7, i.e. in the case det(.AT) = —1, we obtain (merging both
cases) edet( A7) = +1. Therefore N o4 = A7 N, which is (4.4.30). O

Combining the results of the two proceeding lemmas, we can write out how ¢ transforms under the
biholomorphic (resp. bi-antiholomorphic) mapping 4. We record this in the following theorem.

Theorem 4.12. Let ¢ : M — R? be a conformal CMC-immersion, which is symmetric with respect to
T :x— Arx+tr. Assume ) corresponds to a trinoid ¢ : M — R3 with properly embedded annular ends
via the universal covering m : M — M,y =¢om. Let be a biholomorphic (resp. bi-antiholomorphic)
mapping M — M associated with T by theorem 4.9. Furthermore, let ¥ = G(1)1, where G(1) is given by
(4.2.5). Then the orthogonal matriz U corresponding to ¢ as defined in (4.2.6) satisfies

Uoy=GM)Ar(G) ' UKT 5, (4.4.37)
where
A B 0
Krs=|-B A 0| ifT preserves orientation, (4.4.38)
0 0 1
A B 0
Krs=|B —A 0| ifT reverses orientation, (4.4.39)
0 0 1
and A, B : M — R are defined by
o ;
Ale +iy) = 5 (7 £ 1) 7 (4.4.40)
o 2, T \2
(B @+in) + (Z2@+i)
072 ;
B(x + iy) ar (@ 1 i) (4.4.41)
- 2 2
(all (x —Hy)) + (ai( ‘HE/))
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Proof. We distinguish two cases. If 7 preserves orientation, the associated mapping 4 of theorem 4.9 is
holomorphic. Otherwise, if 7 reverses orientation, 4 is antiholomorphic. Thus, setting

€= o(T) = +1 ?f T preserves o.rienta'tion (4.4.42)
—1 if 7 reverses orientation
we have % = 6%’ % = —e%. Applying this to equations (4.4.28) and (4.4.29) of the above lemma,
we obtain
. 1 01 02
= — ), — €e—— 4.4.43
o (8”1)2+(8"2)2A7(c9x © ) R
oz ox
- 1 8’3/2 8’?1 )
0F = Ar (D29, + D0y, ) . 4.4.44
ox ox

Altogether, taking into account (4.4.26), (4.4.30), (4.4.43) and (4.4.44), we obtain from (4.4.25):
Uod =G(1)(e”? Ar (Ah, — eBip,) ;e * A (Bt + €Aty) , AT N), (4.4.45)

where A, B are as in (4.4.40), (4.4.41), respectively. This transforms further into

A B 0
Uod =G(1)Ar(e 21hy, e 34p,, N) | —eB +eA 0] = G(1)ATUKT 5, (4.4.46)
0 0 1
with K7 5 as in (4.4.38), (4.4.39), respectively. As U = G(1)U, the claim follows. O

As a consequence, the conjugation matrix P corresponding to u by (4.2.14) transforms as follows:

Corollary 4.13. We retain the notation and the assumptions of theorem 4.12. The conjugation matriz
P realizing the orthogonal matriz U in the su(2) model transforms under 5 as

Pod=+G(1)ArG(1)" Pkt 5, (4.4.47)

where G(1), Ar, l%:r,:y € SU(2) are the corresponding conjugation matrices realizing G(1), A7, K1 5 € O(3),
respectively, in the su(2) model, and the remaining freedom in the sign is caused by the fact that we work
in su(2) and not in O(3).

Proof. As a first step, we interpret the O(3) matrices appearing in (4.4.37) in the su(2) model. To this
end, recall

0 0
gy=[o -1 o], (4.4.48)

0 0 -1

A B 0
Krs=[-B A 0] €80(3) if T preserves orientation, (4.4.49)

0 0 1

A B 0
Krs=[B —A 0] €0(3)\SO(3) if T reverses orientation. (4.4.50)

0 0 1

From (4.2.21) we already know

(JoG(1)o J H(X)=G(1)XG(1)™! for all X € su(2), (4.4.51)

where G(1) is given by (4.2.17). The corresponding equations for K7 5 read

(JoKrz0J H(X)= lAcTﬂXI%}}i for all X € su(2) if 7 preserves orientation, (4.4.52)
(JoKrz0J N)(X)= —IQ:T’:YX/;:}};Y for all X € su(2) if T reverses orientation, (4.4.53)
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where

~ (VATiB 0
Ty = 0 VAT iB

krs= (Wliﬁ -V A0+ iB) if 7 reverses orientation. (4.4.55)

The identities (4.4.52) and (4.4.53) are verified as follows: Using the fact that |A + iB|?> = (A +
iB)(A+iB) = (A+ iB)(A —iB) = 1 and thus |[A + iB| = 1, we conclude that |/A+iB|?> =
VA+iByvA+iB = 1. In view of this, equations (4.4.52) and (4.4.53) are obtained by a direct compu-
tation.!!

Concerning the orthogonal part Az of the symmetry 7, we know that J o A7 o J~! defines an

automorphism of su(2) which (recalling equations (3.4.7) and (3.4.8), respectively) is realized by

) if 7 preserves orientation, (4.4.54)

(JoAroJ 1) (X)=ArXAZ" for all X € su(2) if 7 preserves orientation, (4.4.56)
(JoAroJ M) (X)=—-ArXA;" for all X € su(2) if 7 reverses orientation, (4.4.57)

where A7 defines a T-dependent element of SU(2). Finally, we recall equation (4.2.14), which reads
(JolUUoJ V) (X)=PXP' forall X csu(2). (4.4.58)
Altogether, by theorem 4.12, we obtain for all X € su(2)
(J o (G)AT(G(1) " UKT5) 0 T )(X)

0G(1)) " ed o (Joltod o (JoKrs0J ) (X)
G(1)A7G(1) ' Pkr 5 Xkz . PT'G(1)AF'G(1)™!. (4.4.59)

(PoF)X(Pod)™ = (Jo@oF)oJ )(X) =
=(JoG(1)o ,]_1) o (.]OATOJ_l) o(J

Note that the two minus signs occuring in the case of an orientation reversing symmetry 7 cancel.
So far, we have seen that P o4 and G(1)A7G(1) "' Pkt 5 conjugate X € su(2) into the same element
of su(2). But since this is true for all X € su(2), we necessarily have

Poqy=+G(1)ArG(1)" Pkr 5, (4.4.60)
which proves the claim. O

Remark 4.14. We define the complex square root ,/~ occurring in IAcTﬂ (cf. (4.4.54) and (4.4.55)) on
the z-plane C* by

VG =C 2= re vz == re's, (4.4.61)

where we write z € C* in the form z = re? with » € R* and 6 € (-, 7, and /r defines the value of
the usual (real) square root of r. For future calculations, we state the following identities involving the
complex square root as defined above. Note that these identities are, as is well-known for complex square
roots in general, only determined up to sign. For all z, z1, z5 € C* we have

Vz1/ 72 = £/z1 22, (4.4.62)

VZ =1z, (4.4.63)

V2=l = +(Vz) L. (4.4.64)

In order to translate the transformation property of P under 7 stated in the proceeding corollary

into a corresponding relation for P, as introduced in the previous section, we need to make some further
preparations. We start by defining the differential form

¢:= P ldp. (4.4.65)

1 Note that the stated identity /A + iBv/A + iB = 1, which suffices to prove equations (4.4.52) and (4.4.53), is obtained
for any complex square root C* — C*. We explicitly define the complex square root Na used in this work in remark 4.14.
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In view of the corollary above, { transforms under 4 as

¢ =(Poy) td(Pod) = kL PT'G(1)AF'G(1) ' A(G(1) AT G(1) " Pk 5)
= k;}ﬁﬁ_l(dﬁfﬁ*ﬁ + pd]%frﬁ) = ];‘7_—71,?

Furthermore, taking into account equations (4.2.15) we have

Chr s+ kyldkr 5. (4.4.66)

1 —u 1 1
_ p-17 P—1D 15 _ —Zuz Qe 2 1'115 §€2H _
Performing the splitting
¢=Cr+ (I’,dz + Cz'fdé, (4.4.68)
where
o —4uz 0 ZUE 0
Cp = ( 0 leuz> dz + ( 0 —iuz) dz, (4.4.69)
;o 0 Qe %
G = (;egH 0 ) , (4.4.70)
0 lezH
¢ (_Qe; 7} ) , (4.4.71)
equation (4.4.66) implies
V¢ = kr5Ckr 5 + k75 kT 5dz + k7 5k 54z + krkdkr 5. (4.4.72)
At the same time we have
¢ =7 G+ 7 (Gd2) + 7(¢)dz) = 7k + (¢, 0 7)dV(2) + (¢ 0 F)dF(2). (4.4.73)

Comparing equations (4.4.72) and (4.4.73), we can state the following lemma:

Lemma 4.15. Let ¢ : M — R3 be q conformal CMC-immersion, which corresponds to a trinoid ¢ :

M — R3 with properly embedded annular ends via the universal covering m : M — M, ¢ = ¢ om.
Moreover, let ¢ = P7'dP = (, + Cpdz + ¢, dz as above, where P corresponds, as in (4.2.14), to the

orthogonal frame U associated with v, which is given in (4.2.6). Furthermore, let T denote a symmetry
of Y, T :R® - R3, T(x) = Arx + tr with Ar € O(3) and t1 € R3, and let 7 denote a biholomorphic

(resp. bi-antiholomorphic) mapping M — M associated with T by theorem 4.9.

1. If T preserves orientation, the following holds:

G =kl Cokr 5 + k7l dkr 5 (4.4.74)
(¢ 0 )0:7 = bz~ (kT 5 (4.4.75)
(G 0 9)0:7 = k7 =¢ kT 5 (4.4.76)
2. If T reverses orientation, the following holds:
3G = by Gobr 5 + ks dkr 5 (4.4.77)
(G 0 9)0:7 = k7= ¢ kT 5 (4.4.78)
(G 0707 = kz 5 kT 5. (4.4.79)

Proof. As stated before, the claims follow from comparing equations (4.4.72) and (4.4.73).

We start with the first case, i.e. let 7 preserve orientation. Therefore, by theorem 4.9, 7 is holomorphic,

and equation (4.4.73) reads as

FC=7"C+ (Czl> 04)0,7dz + (CI’?' 0 ¥)0:7dz. (4.4.80)
We observe that 4*( is of the form
* 0 * 0) ,_
(0 *> dz + (0 *> dz, (4.4.81)
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while (¢, ©4)9.7dz is of the form
0 =
(* 0> dz, (4.4.82)

(S 3) dz. (4.4.83)

As in the present case 1%7’:, is explicitly given by (4.4.54), it is now easy to verify that the summands of

and (¢, ©¥)9z7dZ is of the form

4*¢ occuring in equation (4.4.72) are of the following forms, respectively: k;}ﬁgkl%yﬁ +I%f;-71;/df6’]'ﬁ/ is of the
form (4.4.81), k7 (kT 5dz is of the form (4.4.82), and k7' (/kr 5dZ is of the form (4.4.83). Therefore,
comparing equation (4.4.72) to (4.4.73) proves the claim in the first case.

We turn to the second case, i.e. let 7 reverse orientation. We proceed as in the first case. However, note
that now, by theorem 4.9, 4 is antiholomorphic and thus equation (4.4.73) becomes

=G+ (G 0 9)0:7(2)dz + (¢ ©7)0:7d. (4.4.84)

In this case, 7"y is of the form (4.4.81), (() 0 §)9:7dz is of the form (4.4.83), and ({) 0 4)0.7dz is of
the form (4.4.82). In view of kT 5, now explicitly given by (4.4. 55) we 1nvest1gate the summands of 4*(
in (4.4.72) and observe that, exactly as in the first case, kT ,YCkkT 5+ IcT deT 5 is of the form (4.4.81),

kTﬁC;/)kT,de is of the form (4.4.82), and kTﬁCZ’,'k:Tﬁdz is of the form (4.4.83). Combining (4.4.72) and
(4.4.73) proves the claim in the second case. O

The technical result just established yields the following transformation property of Py under 5

Lemma 4.16. We retain the notations and the assumptions of the previous lemma. Furthermore let Py
be the mapping M — ASU(2) as defined in section 4.2. Then, the following statements hold:

1. If T is orientation preserving, Py transforms under 7 as:
Py o7 = Ms(\)Pykr 5, (4.4.85)
where 1217-7,3 is defined in (4.4.54) and Ms(\) is independent of z. Moreover, for A\ = 1, we have
M;(1) = +G(1)A7G(1)~? (4.4.86)

where, as before, G(1), A, € SU(2) are the corresponding conjugation matrices realizing G(1), Ar €
0(3), respectively, in the su(2)-model.

2. If T is orientation reversing, Py transforms under 5 as:
Py-1 05 = My(\) Prkr 5, (4.4.87)
where lAcT;Y is defined in (4.4.55) and M:y()\) is independent of z. Moreover, for A = 1, we have
M5(1) = +G(1)A7G(1)~? (4.4.88)

where, as before, G(1), Ar, € SU(2) are the corresponding conjugation matrices realizing G(1), Ar €
O(3), respectively, in the su(2)-model.

Proof. Define the differential form

(= Py NdPy. (4.4.89)
By taking into account equations (4.2.16), we can write
1 —20),— L 1 1 u
A7 ~ 1= _f —Fu;  ATQe™2 TUz sezHY\ ._
CA—P)\ (PA)ZdZ‘FP)\ (P)\)gdz— (éégH %Uz )dz—|— < )\241@6,% 2}1uz>dz' (4490)

Recalling the splitting ¢ = (x + (,dz + (;/dZ of ( = P~1dP, where (i, ¢, and () are given by equations
(4.4.69) to (4.4.71), an easy computation allows to relate ¢y to ¢:

/A0 Az 0 A3 0 Az 0 ~
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Applying 4 to this equation, we obtain

. . (A0 (A0 . Az 0 Az 0 =

ro=rat (M) W)Gen(y ) wea (0 M) aen () am
(4.4.92)

0 Az
Now we distinguish between the two cases of orientation preserving and orientation reversing 7: If 7
preserves orientation, 4 is holomorphic, and we obtain

, (AT 0 3 A"z 0
Cpo'y)(o )\_§>62'ydz+/\( 0 )\;)(

As a consequence of the previous lemma, this is equivalent to

FCr = A + AL (A02 0 ) (

poo (AT 0\ =
\3 Cpo'y)(o A1 0z7dz.

(4.4.93)

Sy T i (A0
= kr5Chkr 5 + kysdkr 5 + A kL ( )

1 (A0
+>‘k771’y<02 )\§>

where we have used that the occurring diagonal matrices commute. But this implies

A0 N o
G ( 02 Aé) kr5dz = k7L Gkr s + k7 dkr 5, (4.4.94)
(Prlr (P 1) = B 0Py 5 + b

= kG + b dbr s =576 = (PyoA) (R0 ), (4.4.95)

which means that Py o ~ and P)\if']'fy solve the same differential equation and therefore only differ by a
matrix My()) independent of z:

Py o7 = M5(\)Prkr 5, (4.4.96)
which is the equation claimed in the first case. For A = 1, we have Py_1 = P and thus obtain
Poq = Ms(1)Pkr 5. (4.4.97)

Comparing this to (4.4.47), we infer that M5 (1) = £G(1)A7G(1)~".
Let now 7 be orientation reversing. This implies that 4 is antiholomorphic and equation (4.4.92)

reads as

e (A0 (A0 s ATE 0 (A0 -

O =G+ AT ( 0 A;) (¢po) ( 0 /\_§> azvdz+A( o )@, oy )0Ade
(4.4.98)

Applying lemma 4.15 again, using the second part this time, we obtain

~ % 7— 7 - 2 _ )\_% 0 ~ ~ )\% 0 _
5°Cr = bl Gl + k. + A 1( ; A%) b Cr s ( ) Aé) a:
A_% O T —1x17 )\% O
+)\( 0 )\3) k7 Gkt 5 0 -3 dz. (4.4.99)

Recalling that k7 5 is, in the present case, given by (4.4.55), we verify by a direct computation the

identity 1 1
- Az 0 A7z 0,
kr 5 < 0 )\_;> = ( 0 )\5> kT 5. (4.4.100)

Consequently, we obtain

7*Cx = k7L Cokr 5 + k7L dkr 5 + ATk A0 ¢ AE 0 kot ~dz
A 7,575k A T 7.5 T\ g A=3)°P 0 A3 75



and similarly as before

I
>
N
—
>

LOkr s +hrhdirs =700 = (Pror03) M d(Py-10F). (4.4.102)
So by following verbatim the argument of the first case, we derive
Py-1 05 = My(\)Prkr 5, (4.4.103)
where M:, (M) is independent of z. Moreover, for A = 1, we have Py_1 = P, = P and thus obtain
Po# = M;(1)Pkr 5. (4.4.104)
Comparing this to (4.4.47), we infer that M5 (1) = +G(1)A7G (1)1 O

Finally, we state in theorem 4.17 the transformation behaviour of the extended frame F : M —
ASU(2), with respect to the biholomorphic (resp. bi-antiholomorphic) mapping ¥ : M — M associated
with the symmetry 7 of a given trinoid with properly embedded annular ends. In preparation of this,
we define the matrix k7 5 € SU(2), which is independent of A, by

VA+iB 0
kr 5= 4.4.105
T < 0 VAFIB) (44.105)

where A,B : M — R depend on 4 and are explicitly given by the equations (4.4.40) and (4.4.41).
Moreover, the occurring complex square roots are defined as in remark 4.14.

Theorem 4.17. Let 1) : M — R® be a conformal CMC-immersion, which is symmetric with respect to
T :2+— Arx+tr. Assume ) corresponds to a trinoid ¢ : M — R3 with properly embedded annular ends
via the universal covering m : M — M, 1 = ¢om. Let# denote a biholomorphic (resp. bi-antiholomorphic)
mapping M — M associated with T by theorem 4.9. Then the extended frame F : M — ASU(2),
corresponding to ¥ by theorem 4.5 transforms under v as follows.

1. If T preserves orientation, then
F(3(2),A) = My (V) F (2, Az 5(2), (4.4.106)

where kT 5 is given in (4.4.105) and M5(X\) denotes an element of ASU(2),, which is independent
of z. In particular, for A =1, we have

M:(1) = +A7, (4.4.107)
where A7 € SU(2) denotes the conjugation matriz realizing A € O(3) in the su(2)-model.

2. If T reverses orientation, then
F(3(), A7) = My (\F (7 Vkr 5 (2), (4.4.108)

where kT 5 is given in (4.4.105) and M5 (X\) denotes an element of ASU(2),, which is independent
of z. In particular, for A =1, we have

My (1) = +A7 (_01 é) 7 (4.4.100)

where A7 € SU(2) denotes the conjugation matriz realizing A € O(3) in the su(2)-model.

Proof. By construction of F, we have F' = G(\)~'PxG()\). There are two cases to consider. In the case
that 7 preserves orientation, we use the above lemma and obtain

F(3(2),A) = GO H((Pr o 9)(2))G(A) = G(A)
)GNF (2, NG Yz (2)G(N).  (4.4.110)
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As T is orientation preserving, we have by (4.2.17) and (4.4.54)

—13 VA+iB 0
G\ kr sG(N) = =kr5 4.4.111
( ) Ty ( ) < 0 \/m) T4 ( )
and by defining M5 (\) := G(A\) "' M5(N)G(N), we altogether obtain F(3(2),\) = M5(A\)F(z, Akt 5(2),
which proves (4.4.106). Clearly, M5 () is independent of z, and furthermore, as F'(¥ (z), A), F(z,)\) and

kr 5(z) are elements of ASU(2),, so is M5(A). Finally, for A = 1, we infer from (4.4.86) that
M;5(1) = G(1) M5 (1)G(1) = +G(1)'G(1)A7G(1)*G(1) = £ A7. (4.4.112)

The second case to consider is the case of orientation reversing 7. Using the above lemma, we obtain
analogously

F(3(2), A1) = GO T (Pa1 09)(2))GATY)
= G T My (N Pa(2)br s ()G = GO T M (NG F (2, NG ez 5(2)GAT)

— G(Y UL (NG ( L ( ) 20 (_01 é) (g) _01) GO Vb 4(2)GA).

(4.4.113)

This time we consider equations (4.2.17) and (4.4.55) to obtain

0 —1 _13 1 VA+1B 0
G\ TkrsG(AT) = =krs. 4.4.114
(1 0 > ( ) 775 ( ) ( 0 \/m T4 ( )
Moreover, we have
0 -1 0 1

(1 0 ) F(z,\) ( 1 0) F(z,\), (4.4.115)

and by defining M5(\) := GA™1)"*M5(\)G(N) < 0 1> we arrive at equation (4.4.108). Ms5(\) is

-1 0

independent of z and, as (’y(z) 1), F(z,\) and k7 5 are elements of ASU(2),, so is M5(\). Finally,
for A =1, we infer from (4.4.88) that

M5(1) = G(1)"*M5(1)G(1) (_01 é) =+G(1)'G(HATG(1) ' G(1) <_01 (1)> = +A7r (_01 (1)) :
(4.4.116)
O

As we are interested in explicitly computing the matrix k7 5, we state it in a more convenient form,
which involves more directly the mapping 4 associated with the symmetry 7 by theorem 4.9.

Lemma 4.18. Let ) : M — R3 be a conformal CMC-immersion, which corresponds to a trinoid ¢ : M —
R? with properly embedded annular ends via the universal covering @ : M — M, ¢ = ¢ o w. Moreover,
let T € Sym(y)(M)) be given by T : & +— Azx + tr. Furthermore, let 5 denote a biholomorphic (resp.
bi-antiholomorphic) mapping M — M associated with T by theorem 4.9. Then, the (A-independent)
matriz kr 5 defined in (4.4.105) satisfies

21 0
kr5 = 19271 5= if T preserves orientation, (4.4.117)
0 0231
85'} 0
19241 if T reverses orientation, (4.4.118)

where we write for ease of notation 0,7 (resp. 0z7) for g—z (resp. %)
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Proof. We know from (4.4.105) that

VAT iB 0
by~ = 4.4.119
7 ( 0 A+iB)’ ( )

where A and B are given in (4.4.40) and (4.4.41). Recalling ¥ = 71 + 92, we infer

O (z + iy) + 192 (2 + 4 9
A+iB = Criy) tigrlotiy) o (4.4.120)
o4 | 52 |

o+ zy)) +(Zerm)

Q|
8=

VI

As 8% = % + % and, moreover, % =0 (vesp. FL ) for holomorphic (resp. antiholomorphic) 7, i.e. in
the case of an orientation preserving (resp. reversmg) symmetry 7, we conclude that

A+iB= (‘L'Z if T preserves orientation, (4.4.121)
| 0:7 |
. 97 . . .
A+iB= 9.7 if T reverses orientation. (4.4.122)
27
By (4.4.119), the claim follows. O

As a special case of theorem 4.17 we formulate the following corollary, which states how the extended
frame F transforms under a covering transformation 4 on M. This result is obtained by setting 7 =7 :
R? — R?, o +— Z(x) = z in theorem 4.17 and interpreting 7 as a (biholomorphic) mapping linked to 7
by theorem 4.9. (As, by definition, m o4 = 7, we have obviously 7 o) =y = pom =¢pomoy=1o07.)

Corollary 4.19. Let ) : M — R3 be a conformal CMC-immersion, which corresponds to a trinoid
¢ : M — R3 with properly embedded annular ends via the universal covering T : M — M,y =d¢om. Let
7 denote a covering transformation on M, i.e. a bitholomorphic mapping M — M associated by theorem
4.9 with the identity mapping T : R? — R3 (interpreted as a symmetry of ). Then the extended frame
F:M— ASU(2), corresponding to v by theorem 4.5 transforms under 7 as follows:

FE(E),N) = My (V) F (2, Vkz4(2), (4.4.123)

where k5 is given in (4.4.105) with T = I and Ms5(\) denotes an element of ASU(2),, which is
independent of z.

4.5 The extended frame monodromy relations

We apply corollary 4.19 to the covering transformations 7, j = 0,1, 0o, on M from section 3.3. Denoting
the corresponding matrices kz 5,, k7,5, and kz 5. in equation (4.4.123) of corollary 4.19 by ko, k1 and
koo, respectively, we obtain for j = 0,1, 00

F(35(2), A) = My, (N F (2, A)k; (2), (4.5.1)

where My, ()\) denotes an element of ASU(2),, which is independent of 2.
The matrices kj = kz 5, j = 0,1,00, are given in (4.4.105) with 7 = 7 and 7 = ;. We compute ko,
k1 and koo explicitly in the following. First, recall from (3.3.4), (3.3.5) and (3.3.6) that

z

4.5.2
0@ = (4.5.2)
N(z) =242, (4.5.3)
—3z2—2
Yool(2) = - 4.5.4
Bool2) = g (45.4)
Thus, we have
1 1

0% =", 011 =1, 02900 = ——, 4.5.5
T AT BT Yo T 1 1 22)2 (45.5)

and, consequently,

- 1 N - 1

(1—22)(1—23) (1+22)(1+22)
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Using lemma 4.18, we can easily compute ko, k1 and ko, from equation (4.4.117):

ko(z) = 10*% — | (4.5.7)

1-2z

ki(z) = ((1)(;) (4.5.8)

1422 0
koo (2) = 142z : (4.5.9)
0 5

Equation (4.5.1) states the transformation behaviour of F' under the covering transformation %; on
M. Recall that, at the same time, we have for our dressed solution ¥ = TV to equation (2.4.1) the
monodromy relation

U(5;(2),A) = MNP (2, \), (4.5.10)

where M;(\) denotes an element of ASU(2),, which is independent of z, and which is of the form (3.9.26).
As explicated in remark 2.10, this relation carries over to the extended frame F' corresponding to U

F(3,(2),A) = MV F (2, k(2. 7,). (4.5.11)

where k denotes a diagonal matrix in SU(2), which is independent of A. Like equation (4.5.1) before,
equation (4.5.11) states as well the transformation behaviour of F' under the covering transformation 4;
on M.

Thus, in the terminology of [14], both (;, Mj,) and (7, M ;) define symmetries of the extended frame

F. However, by theorem 2.1 of [14], this implies that M, and Mj differ at most by a sign:
M, (\) = a; M;(N), (4.5.12)
where «; € {£1}. Inserting this relation into equation (4.5.1), we obtain the following result:

Theorem 4.20. Let M = H and v : M — R3 be a conformal CMC-immersion, which corresponds to
a trinoid ¢ : M — R3 with properly embedded annular ends via the universal covering m : M — M,
Y =¢om. Let7;, j=0,1,00, denote the covering transformations on M from section 3.3. Then, the
extended frame F : M — ASU(2), corresponding to v by theorem 4.5 transforms under 7; as follows:

F(%(2),A) = aj M\ F (2, \k; (2), (4.5.13)

where o; € {#1}, the matrices M;(\) are of the form (3.9.26) and the matrices k;(z) are given by
equations (4.5.7) to (4.5.9).

4.6 Trinoid symmetries

In this section, we investigate in detail the possible symmetries of a trinoid with properly embedded
annular ends.

In the following, let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annular
ends, which is symmetric with respect to an Euclidean motion 7 € Sym(¢(M)), i.e.

T(p(M)) = ¢(M). (4.6.1)

By theorem 4.9, there exists a unique biholomorhic (resp. bi-antiholomorhic) mappingy =v(7) : M — M
satisfying 7 o ¢ = ¢ o . In fact, we observe that the correspondence between 7 and < is one-to-one:
For ecach T € Sym(¢(M)), which also satisfies Top=¢don (for the same ), we have necessarily
7~’|¢(M) = T |4(m) and thus T =T (on R3).

The following lemma explicitly lists all biholomorhic (resp. bi-antiholomorhic) mappings v : M — M.

Lemma 4.21. Let M = C\ {0,1} and Aut(M) = {y : M — M;~ biholomorphic}, Auwt*(M) = {v :
M — M;~ bi-antiholomorphic}. Then, the following holds:
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Aut(M) = {70 )5 V(1 00)» (0 50)s V(0 1)>Y(0 1 00)> V(0 o0 1) }» (4.6.2)
where
Yy M — M, ~y(z) =z, (4.6.3)
z
Vo)t M =M, v o)(2) = ——7, (4.6.4)
1
Y0 00t M = M, (0 00)(2) = -, (4.6.5)
Yoy M—M, o) =1-2 (4.6.6)
1
Y0 100y M= My 01 00)(2) = 7 (4.6.7)
z—1
Y0 0o 1)t M= M, Y0 0o 1)(2) = ——- (4.6.8)
2.
Aut™ (M) = {7 )71 00)s (0 00)s V(0 1):7(0 1 00)> V(0 o0 1) }5 (4.6.9)
where

Yy M =M, ((2) =2, (4.6.10)
" . z

’y(l 00) M — M; ’7(1 oo)(2> = 1 (4611)
* X 1

Y0 00yt M =M, Y0 0)(2) = <, (4.6.12)

Yoy M—M, 7{qy(z)=1-2 (4.6.13)
* " 1

No1oe): M =M o1 o0)(?) = 75 (4.6.14)
* " z—1

Nooo i M =M, Yo oo y(2) = —— (4.6.15)

Remark 4.22. The notation introduced in the lemma above for the different biholomorhic (resp. bi-
antiholomorhic) mappings v M — M is motivated by the way each 7 (extended to a biholomorhic or
bi-antiholomorhic mapping C— (C) permutes the set {0,1,00}. This is explained in more detail in the
following proof.

Proof of lemma 4.21. Let v € Aut(M) (resp. v € Aut*(M)). Since 7 defines a biholomorphic (resp.
bi-antiholomorphic) mapping M — M, it can be uniquely extended to a biholomorphic (resp. bi-
antiholomorphic) mapping Yextd : C — C such that

Yextd | = 7- (4.6.16)
Since 7extq 18 bijective, we necessarily have
Yextd ({0, 1,00}) = {0, 1, 00}, (4.6.17)
i.e. Yoxta permutes the set {0, 1,00} according to an appropriate permutation o of {0,1, co}:
Yextd (25) = Zo(j) (4.6.18)

for all z; = 5 € {0,1, 00}.
It is a well known result of complex analysis that vextq is of the form

az+b
cz+d

Yextd + 2 (4619)
with complex parameters a, b, ¢, d satisfying ad — be # 0 in the case that v (and thus 7exq) is biholomor-
phic, and of the form

azZ+b
cz+d

Yextd : 2 (4.6.20)
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with complex parameters a,b,c,d satisfying ad — bec # 0 in the case that v (and thus 7extq) is bi-
antiholomorphic. Evaluating the relation (4.6.18) for j = 0,1, 00 in (4.6.19) and (4.6.20) (of course, with
respect to o), the parameters a, b, ¢, d can be explicitly computed (up to a common complex scale, which
cancels in (4.6.19) and (4.6.20), respectively). In view of (4.6.16), we obtain the possible explicit forms of
¥ =, (resp. v = %) given in equations (4.6.3) to (4.6.8) and equations (4.6.10) to (4.6.15), respectively.

This proves the relations “C” in the two claimed identities above. The relations “2” are trivial. [J

Corresponding to the elements v € Aut(M) (resp. v € Aut*(M)), we define the following auxiliary
functions h : M — C\ {0}, which are holomorphic (resp. antiholomorphic) in M:

Definition 4.23.

h():M—>(C\{O}, h()(Z)Zl,
h(l Oo) M — (C\{O}, h(l Oo)(Z
h(o Oo) :M — (C\{O}, h(o oo)(z

(4.6.21)

—i(z —1), ( )

(4.6.23)

ho 1) M — C\{0}, he1)(2) = —i, (4.6.24)
(4.6.25)

(4.6.26)

):
) = —iz,
ho1 o) M —C\{0}, h@i1o)(z)=1-2,
ho oo 1) M — C\ {0}, h(o o 1)(2) =%

()M —=C\{0}, h{y(2) =1, (4.6.27)

(100) i M = C\{0}, Ay o) (2) = —i(z = 1), ( )

(0 00yt M = C\{0},  Rfy o) (2) = —iz, ( )

(01 M—=C\{0}, higqy(2) = —1, (4.6.30)

hio 1 00yt M = C\A{0}, Ay o)(2) =1-2%, ( )

ho oo 1)+ M = C\{0}, Dfp oo 1y(2) = ( )

Lemma 4.24. Let o be a permutation of the set {0,1,00}. Denote by v, (resp. v%) the element of
Aut(M) (resp. of Aut™(M)) corresponding to o as in lemma 4.21. Moreover, denote by h, (resp. h’) the

auzxiliary function corresponding to o as defined in definition 4.23. Then, for all z € M, the following
holds:

w

" 0. ha(2) = 0, Bushi(z) = 0. (4.6.33)

2. ) )
(@) = g B = 5y (1.6.34)
Proof. This is proved by direct computation. O

Lemma 4.25. Let n = n(z,A) be a standardized trinoid potential on M = C\ {0, 1,00} associated with
three off-diagonal Delaunay matrices Dy, D1, Do possessing the eigenvalues £u;(N), respectively,

n— (_AQ(EZ’A) AOI) dz, (4.6.35)

Q(z,\) (:I(Al))Q + COS) + ?ﬂ,

and the functions bj, ¢; satisfy equations (3.6.4), (3.6.5) and (3.6.6).

where
~ bo(N)
- 2

n (4.6.36)

z

1. Let o be a permutation of the set {0,1,00}. Denote by v := 7y, the element of Aut(M) corresponding
to o as in lemma 4.21. Moreover, denote by h := h, the auziliary function corresponding to o as
given in definition 4.23 and define W, : M — ATSL(2,C), by

h(z) 0
Wi(z,\) = (Aazh(z) (h(z))1> . (4.6.37)
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Then, we have

Tn=n#Wr = Q(v(2),A) = (h(2))'Q(z,N), (4.6.38)
where v*n denotes the transform of n under v and n#W denotes the gauged potential W;an+ +
Wi taw,.

2. Let o be a permutation of the set {0,1,00}. Denote by v := % the element of Aut* (M) correspond-
ing to o as in lemma 4.21. Moreover, denote by h := h. the auziliary function corresponding to o
as given in definition 4.23 and define W, : M — ATSL(2,C), by

_( Nh(z) 0
W+(z,)\)—(_>\azh(z) (h(z))_1>. (4.6.39)

Then, we have
Y (2, A) = n(z, A7) #W, — Q(v(2),A) = (h(z))élQ(Zv)‘il)a (4.6.40)

where v*n denotes the transform of n under v and n(z, \~1)#W, denotes the gauged potential
Wiz, D)Wy + Wdwy,.

Proof. We start with the proof of the first case. Using (4.6.34) from lemma 4.24, we have

*p — 0 At B 0 12
e (—AQ(V(Z),A) 0 )a”dz - (—)\th(fy(z)’/\) 0 )dz- (4.6.41)

Furthermore, using (4.6.33) from lemma 4.24, we compute

n#WL =W gWy + Wldwy

_(h7t 0 0 At h R Rt 0\ [(0:h 0 d
“\Wa.h n)\=xQzn) 0 ) \=xan mt) T \Noh n)\ 0 —n20.0)
—h=18,h A1h2 h=18,h 0 (0 ATp?
:<—Ah2Q—A(azh)2 hl@m) dZ*(A(ath —hlazh) dz_(-m?@ 0 )d’"' (4.6.42)

Together, this proves (4.6.38).
We now turn to the second case. Using again (4.6.34) from lemma 4.24, we have

= X A Dy (2)az = 0 AT g
e (—AQ(V(Z)J) 0 )a”( )Jdz = (—)\hQQ(fy(z),)\) 0 )d : (4.6.43)

Furthermore, using again (4.6.33) from lemma 4.24, we compute (A € S*)

Nz, N D#EWL = Wz, D)Wy + W dWy

(At 0 0 At h 0 (I ! d:zh 0 &z
ok b)) \AQ A D) 0 ) \-Nd:h A ADzh h 0 —h20:n)
B —h1o:h A~ 1ah 0 &
~ \=AR2Q(z, A1) — A(8:h)? 1ah h=1o:h) “*
A~Lh2
< ,\h2 51 0 >dz. (4.6.44)

Together, this proves (4.6.40). O

In view of the one-to-one correspondence explicated earlier, between possible orientation preserving
(resp. orientation reversing) symmetries of a given trinoid ¢ : M — R3 with properly embedded annular
ends on the one hand and biholomorphic (resp. bi-antiholomorphic) mappings v : M — M on the
other hand, it is a direct consequence of lemma 4.21 that a given trinoid ¢ : M — R? with properly
embedded annular ends allows for at most twelve symmetries, namely six orientation preserving ones and
six orientation reversing ones.

As seen before, a biholomorphic (resp. bi-antiholomorphic) mapping M — M is entirely characterized
by the way it (or, more precisely, its biholomorhic or bi-antiholomorhic extension ¢ — (@) permutes the
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set {0,1,00}. Recall that we write 7, (resp. %) for the unique biholomorphic (resp. bi-antiholomorphic)
mapping M — M, which permutes the set {0,1, 00} according to the permutation o.

In view of the discussed correspondence, we adopt this notation for the twelve possible symmetries 7°
of a given trinoid ¢ : M — R3 with properly embedded annular ends, writing 7 = 7, ¢ permutation of
{0,1, 00}, for the orientation preserving ones and 7 = 7%, ¢ permutation of {0, 1, 0o}, for the orientation
reversing ones.

In fact, denoting the twelve possible symmetries of a trinoid ¢ : M — R? with properly embedded
annular ends by 7, and 7., where o represents the six possible permutations of the set {0, 1,00}, can be
motivated more directly, as shown in the following lemma.

Lemma 4.26. Let M = C\ {0,1} and ¢ : M — R? be a trinoid with properly embedded annular ends
B; = ¢(U;), which is symmetric with respect to the Euclidean motion T € Sym(¢(M)). Moreover, let
~ denote the biholomorphic (resp. bi-antiholomorphic) mapping M — M associated with T by theorem
4.9 and characterized by the permutation o of the set {0,1,00}, i.e. v =5, T = T, in the case that T
preserves orientation and v = vi, T = T in the case that T reverses orientation. Then, the following
holds:

1. For each j € {0,1, 00}, there exists an open, non-empty punctured neighborhood Uj C U; of zj such
that
T(¢(Uj)) € By(j)- (4.6.45)

2. For each j € {0,1,00}, let A; C R3 denote the trinoid azis of ¢ at z; = j. Then,

T(A;) = Ag(j). (4.6.46)

Proof. We begin with the proof of the first claim. As before, denote by vexta the unique biholomorphic
(resp. bi-antiholomorphic) mapping C — C with Yexta|M = 7. Then, by definition of v = 7, (resp.
Y =4); Yextd Permutes the set {0,1,00} according to 7, i.e. Yextd(2;) = 2o(;) for all z; = j € {0,1, 00}.
Consequently, since v is continuous on M, there exists for each j € {0,1,00} an open, non-empty
punctured neighborhood U'j of z; in M, such that

Y(U;) C U,y (4.6.47)

W.l.o.g., we can assume Uj cU;.
Since, by theorem 4.9, v satisfies 7T o¢ = ¢ory (onAM), we conclude that, for each j € {0, 1, 00}, there
exists an open, non-empty punctured neighborhood U; C U; of z; such that

T(6(U))) = 6(4(U;)) € ¢(Uss)) = Bo(y): (4.6.48)

as claimed.

The second claim is a direct consequence of the first one: By (4.6.45), there exists for eachj € {0,1, 00}
an open, non-empty punctured ne1ghb0rhood U C Uj of zj, such that 7 maps B] = ¢(U;) (which forms a
“sub-end” of B;) to B,(;, i.e. 7 (B;) forms a “sub-end” of B, ;). Recalling that, for each j € {0, 1, 00}, the
properly embedded annular end B of ¢ asymptotically shows the behaviour of an unduloidal Delaunay
surface ¢;, we proceed as follows: Since T(Bj) C Bg(;), we infer that for each j € {0,1,00}, T(Ej)
(and thus also the “super-end” 7 (Bj)) asymptotically shows the behaviour of ¢, ;. Moreover, since
T is continuous, it necessarily maps the (images of the) corresponding Delaunay surfaces (as subsets of
R3) onto each other, i.e. 7(im(¢;)) = im(¢y(j)). Consequently, also the related revolution axes of the

Delaunay surfaces, i.e. the trinoid axes A;, j € {0, 1,00}, of ¢ are mapped by 7 onto each other:
TA)=A (4.6.49)

a(4)>
as claimed. O

Remark 4.27. Let M = C\ {0,1} and ¢ : M — R? be a trinoid with properly embedded annular ends
B; = ¢(U;), which is symmetric with respect to the Euclidean motion 7 € Sym(¢(M)). By lemma 4.26,
7 maps for each j € {0,1,00} at least some “outer part” ¢(U;) of the trinoid end B; = ¢(U;) to the
trinoid end By (jy. In this sense, 7 permutes the trinoid ends accordlng to the permutatlon .

In addition to the result above, we have the following:
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Lemma 4.28. Let M = C\ {0,1} and ¢ : M — R® be a trinoid with properly embedded annular ends
Bj = ¢(Uj;) and corresponding trinoid azes A; = C;+Ruv; C R3, involving a base point C; e R3 and a unit
direction vector v; € R3, pointing towards the trinoid end B;. Moreover, let ¢ be symmetric with respect
to the Euclidean motion T € Sym(¢(M)) associated with the permutation o of the set {0,1,00}, i.e.
T =171, (resp. T =T)) for orientation preserving (resp. orientation reversing) T. Denote by A € O(3)
(resp. by t € R?) the orthogonal part (resp. the translational part) of T, i.e. T(z) = Az +t (on R3).
Then, the following holds:

1. For all j €{0,1,00}, we have
.A’Uj = Vs (j)- (4.6.50)

2. Moreover, we can assume without loss of generality for all j € {0,1,00} that

T(Cj) = Coy).- (4.6.51)

Proof. The first claim is proved as follows: Let j € {0,1,00}. Since, by lemma 4.26, 7 (A;) = 7 (As(j)),
there exists for each A\ € R a real number pi,(jy = pio(jy(A) € R, such that

T(Cj + Mvj) = Co(j) + Ho() (N Vo(s)- (4.6.52)
In particular, for A = 0, we have
T(C5) = Co(j) + po(j)(0)vs(j)- (4.6.53)

Note that, as 7 defines a continuous bijection R?* — R3, 11 defines a continuous bijecton R — R. Moreover,
since 7 permutes the trinoid ends in the sense of lemma 4.26, it preserves the orientation of the also
permuted, corresponding axes: “outer” points on the axis A; (i.e. points on A; relatively “close” to the
end Bj) are mapped by 7 to “outer” points on the axis A,(;). In other words, ji(;) : R — R defines a
strictly increasing bijection.

In view of 7 (x) = Az +t (on R?), we obtain by substracting (4.6.53) from (4.6.52) that

AN = (Ho(j)(A) = Ho(5)(0)Vo(j)- (4.6.54)

As (4.6.54) holds for all A € R, and since v; # 0 # vy(;) and p; is strictly increasing, Av; necessarily
equals a positive multiple of v,(;y. Since v; and v, ;) are unit vectors in R3, and A is orthogonal, we
conclude that

o(j

Avj = Vs (5)> (4.6.55)

which finishes the proof of the first claim.

We now turn to the proof of the second claim, i.e. we show that we can always choose the base points
C; of the trinoid axes A;, such that (4.6.51) holds for all j € {0,1, c0}.

For a start, we infer from (4.6.54) and (4.6.55) that pi,(;)(A\) = pie(;)(0) + A and thus, by (4.6.52),

T(CJ + )\’Uj) = Cg(j) + (,Ltg(j)(O) + )\)”Ug(j). (4656)

Denote as before by ~ the biholomorphic (resp. bi-antiholomorphic) mapping M — M associated
with 7 by theorem 4.9, 7 o ¢ = ¢ 0. In view of lemma 4.21, we observe that either v2 = id (in case
that o € {( ), (1 00), (0 00), (0 1)}) or at least v5 =id (in case that o € {(0 1 o0), (0 oo 1)}) holds.

We consider the first case: 72 = id and o € {( ), (1 00),(0 00),(0 1)}. Combining the identities
T o¢=d¢oyand 4 =id yields T2|4p) = id and thus 72|g, = id. Consequently, we have for all z € R
that A%z + At +t = T%(z) = x, which directly implies (setting x = 0) At +¢ = 0 and thus A? = L. Tt
follows that A has only eigenvalues &1 and therefore induces an eigenspace decomposition of R? into U,
and U_. Note that At 4+t = 0 implies that t € U_.

The permutation o either keeps all three points 0, 1 and oo fixed or keeps one point fixed while
interchanging the other two. In the first case, we choose for each j € {0,1, 00} an arbitrary C; € A; as
base point of A;. By (4.6.56), we have

.AC]' +t= T(CJ) = Cj + u; (O)Uj. (4657)
As o(j) = j, we have Av; = v; and thus v; € U;. Moreover, writing C; = C’;'Jer_ with Cj‘ €eU4, C; €

U_ and recalling t € U_, comparison of the U, -parts of both sides in (4.6.57) yields C’;r = C’;r + 1, (0)v;
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and therefore 11,;(0) = 0, which by (4.6.57) implies 7(C;) = C; = C,(;). This finishes the proof for 7°
associated with o = ().

In the case that o keeps one point fixed (say, j), while interchanging the other two (say, k and 1), we
proceed as follows: Choose Cj € Aj, then by the arguments given above 7(C;) = C; = C,(;y. Moreover,
choose Cy, € Ay, and set Cy := T (Cy) € A;. It remains to show 7 (C;) = Ck. But this follows directly from
T2 =id: T(C)) = T?(C) = Ck. This finishes the proof for 7 associated with o € {(1 00), (0 00), (0 1)}.

It remains to consider the second case: 7® =id and o € {(0 1 o), (0 0o 1)}. Combining the identities
Togp = ¢ovyand v = id yields T6\¢(M) = id and thus 76|z, = id. Consequently, we have for all
r € R that A%z + A%t + A% + A3t + A%t + At +t = T5(x) = x, which directly implies (setting z = 0)
APt + A+ A3t 4+ A*t+ At+t = 0 and thus A% = 1. Tt follows that A% has only eigenvalues £1 and therefore
induces an eigenspace decomposition of R? into Uy and U_. Note that A%+ A*t+ A3t + A%t + At +t =0
implies that A%t + At +t € U_.

We consider w.l.o.g. only the permutation o = (0 1 o). (¢ = (0 co 1) is treated completely anal-
ogously.) Choose Cy € Ay and set C1 = T(Cy) € Ay, C := T(Cy) € As. It remains to show
T(Cs) = Cy, ie. T3(Cy) = Cy. Repeated application of (4.6.56) yields

A?’Cj + A%+ At +t = Tg(Cj) = Cj + (/J,j (0) + Mo(j)(o) + ,ug2(j)(0))’l}j. (4.6.58)

As 03(j) = j, we have A3v; = v; and thus v; € U;. Moreover, writing C; = C;L + C; with Cj+ e Uy,
C; € U- and recalling A%t + At +t € U_, comparison of the U, -parts of both sides in (4.6.58) yields
Cj‘ = Cf + (115(0) + po(5)(0) + p1o2(5y(0))v; and therefore (11;(0) + fio(;)(0) + py2(;)(0)) = 0, which by
(4.6.58) implies 72(C;) = C}, in particular 73(Cy) = Cp. This finishes the proof for 7 associated with
0=(0100) (and o = (0 o0 1)). O

Remark 4.29. Note that, by [28], in addition to (4.3.4) there holds another “balancing formula” involving
the torques of the trinoid axes A;, which implies (cf. [28]) that the three trinoid axes are coplanar in
R3 and either are all parallel or meet in a common point. In fact, this holds more generally for all
CMC-immersions with three annular ends which are asymptotic to (not necessarily unduloidal) Delaunay
surfaces. Recent communication with R. Kusner and N. Schmitt suggests that in the case of trinoids with
properly embedded (i.e. asymptotic unduloidal) annular ends parallel axes can not occur and thus the
three trinoid axes necessarily meet in one point. In view of this, one could assume w.l.o.g. Cy = C; = C
for the three base points for the trinoid axes Ag, A; and As. In this setting, the claims of lemma
4.28 are almost trivial. Moreover, the proof of theorem 4.31 simplifies significantly. However, mainly
to preserve the adaptability of lemma 4.28 and theorem 4.31 to possible future work (e.g., the study
of CMC-immersions with three not necessarily properly embedded annular ends), we retain the more
general (and more complicated) proofs here.

The following theorem now lists the twelve possible trinoid symmetries explicitly. Firstly, however we
introduce some more notions.

Definition 4.30. Let M = C\ {0,1} and ¢ : M — R? be a trinoid with properly embedded annular
ends B; = ¢(U;) and corresponding trinoid axes A; = Cj + Ru; C R3, 5 =0,1,00. Then:

1. The point C := %(CO + O + Cy) € R3 will be called the trinoid center.

2. Let C denote the trinoid center. Any plane in R containing the affine subspace C+Ruvg+Ruv; +Rvs,
is called a trinoid plane and will often be denoted by E. Moreover, denoting the (up to sign unique)
unit normal vector of a trinoid plane E by n, the line C+Rn is called a trinoid normal and will often
be denoted by A,. Finally, given a trinoid plane E with normal vector n, for each j € {0,1, 00}
the plane C; + Ruv; + Rn is called a trinoid normal plane (along the trinoid azis A;). This plane
will often be denoted by Ej.

Theorem 4.31. Let M = C\ {0,1} and ¢ : M — R? be a trinoid with properly embedded annular
ends Bj = ¢(U;) and corresponding trinoid azes A; = C; + Rv; C R3, j = 0,1,00. Denote by C the
trinoid center (Co+C1+4 Cs) € R3. Moreover, let T € Sym(¢(M)) and denote by o the permutation of

{0,1, 00} representing the transformation behaviour of the trinoid ends B; under T. Then, the following
holds:

1. If T preserves orientation, i.e. T = 1,, we have:
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(¢)
To =TI foro={(), (4.6.59)

where T denotes the identity mapping on R3.

(b)
To =Ro for o= (1 00), (4.6.60)

where Rg denotes the rotation on R3 by the angle m around the trinoid axis Ag.

(c)
7, =Ry for o= (0 c0), (4.6.61)

where Ry denotes the rotation on R? by the angle © around the trinoid axis Aj.

(d)
T, = Roo foro=(01), (4.6.62)

where R denotes the rotation on R? by the angle © around the trinoid azis As.
(e)
T, =R foro=(01 o0), (4.6.63)

where R denotes the rotation on R3 by the angle'? :I:%’r around the trinoid normal A, =

{C + An; X € R}, where n € 52 CR3 satisfies n L v; for all j € {0,1,00}. (Note that, in this
case, the vectors v;, j € {0,1,00}, span a plane in R3, whence n is uniquely determined up to
sign and we can speak of the trinoid normal A, of ¢.)

(f)
T, =R foro=(0o01), (4.6.64)

where R is given above.

2. If T reverses orientation, i.e. T =1, we have:

(a)

T =8 foro=(), (4.6.65)
where S denotes the reflection on R? in some trinoid plane E = C+(Rn)*, wheren € S C R3
satisfies n L v; for all j € {0,1,00}. (Moreover, E is uniquely determined by the relation
Togp=¢on.)

(b)

177 =8y foro=(1 c0), (4.6.66)
where Sy denotes the reflection on R> in some trinoid normal plane Ey = Cy + Rug + Rn,
where n € S? C R3 satisfiesn L v, for all j € {0,1,00}. (Moreover, Ey is uniquely determined
by the relation T o p = poy.)

(c)

77 =8 foro= (0 c0), (4.6.67)
where S1 denotes the reflection on R> in some trinoid normal plane E; = Ci + Ru; + Rn,
where n € S* C R? satisfiesn L v; for all j € {0,1,00}. (Moreover, E is uniquely determined
by the relation T o = poy.)

(d)

T =80 foro=(01), (4.6.68)
where Soo denotes the reflection on R? in some trinoid normal plane Es = Coo + Rvse + Rn,
wheren € S% C R3 satisfiesn L vj forall j € {0,1,00}. (Moreover, Eo is uniquely determined
by the relation T o p = po~.)

(e) )

T =8 foro=(01 c0), (4.6.69)
where S denotes the rotoreflection on R® composed of the rotation by the angle :I:%7r around the
trinoid normal A,, = {C'+n; X € R}, where n € S? C R3 satisfiesn L v; for all j € {0,1, 00},
and the reflection in the trinoid plane E = C + (Rn)t. (Note that, in this case, the vectors

v, j € {0,1,00}, span a plane in R®, whence n is uniquely determined up to sign and we can
speak of the trinoid normal A,, and the trinoid plane of ¢, respectively.)

12Note that the sign of the rotation angle is defined with respect to the orientation of the rotation axis. This is further
discussed in section 5.
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(f) .
Tr=8"" foro=(0001), (4.6.70)

where S is given above.

Proof. Let T € Sym(¢(M) and v : M — M be the bi-(anti)holomorphic mapping associated with 7 by
theorem 4.9 and explicitly given in lemma 4.21, satifying 7 o ¢ = ¢po~. Let o denote the permutation of
the set {0, 1,00} representing the transformation behaviour of the trinoid ends under 7. We start with
the case that 7 preserves orientation, i.e. 7 = 7.

If o = (), we infer by lemma 4.21 that v(z) = z. Thus, 7 o ¢ = ¢, which implies that 7|4y = id.
Consequently, 7 |gs = Z, where Z denotes the identity mapping on R3.

If 0 = (1 00), we infer by lemma 4.21 that v(z) = %7 and thus 4* = id. This implies 7% 0 ¢ = ¢, i.e.
T2|s(m) = id, and consequently 72|gs = id. Writing 7 explicitly as 7 (z) = Az + ¢ with A € SO(3) and
t € R3, we obtain A%z + At +t = z for all * € R? and therefore immediately (for x = 0) At+t = 0, which
yields A% = I. Since A € SO(3), this implies that either A = I or that A is a rotation by the angle 7
around some axis in R? containing 0 € R?. The case A = I yields ¢t = 0 and thus T = id, a contradiction
to the fact that, according to o, 7 swaps the trinoid ends By and B,,. Therefore, A is a rotation by
the angle 7 around some axis in R? containing 0 € R3. Since, by lemma 4.28, A preserves the direction
vector vy of the trinoid axis Ay, i.e Avyg = vg, A actually defines the rotation by the angle m around the
axis Rvg. Moreover, the same lemma allows for assuming without loss of generality that 7 keeps the base
point Cy of the trinoid axis Ay fixed, i.e. 7(Cy) = Cy. Consequently, we have t = Cy — ACy and thus

T(z) = Az + Co — ACy = A(z — Co) + Co, (4.6.71)

which means that 7 defines the rotation by the angle 7 around the rotation axis of A translated by Cj,
i.e. around the trinoid axis Ay = Cy + Rug. The cases ¢ = (0 00) and o = (0 1) are treated completely
analogously.

If o = (0 1 00), we infer by lemma 4.21 that v(z) = i and thus 42 = id. This implies 73 0 ¢ = ¢,
ie. ’T3|¢(M) = id, and consequently 73|gs = id. Writing 7 explicitly as 7 (z) = Az + t with A € SO(3)
and t € R®, we obtain A3z + A%t + At +t = x for all z € R® and therefore immediately (for z = 0)
A%t + At +t = 0, which yields A% = I. Since A € SO(3), this implies that either A = I or that A is
a rotation by the angle :I:%Tr around some axis in R?® containing 0 € R3. The case A = I yields t = 0
and thus T = id, a contradiction to the fact that, according to o, 7 doesn’t preserve the trinoid ends.
Therefore, A is a rotation by the angle +2F around some axis in R? containing 0 € R?.

Assume now that two of the direction vectors vy, v; and vs, of the trinoid axes are collinear, e.g.
vp = Fv1. Applying this together with the relation Av; = v,(;) from lemma 4.28 several times, we obtain
Voo = Avy = £ Avg = +v1 = vy and thus v = Avyg = Avse = g, 1.€. Vg = V1 = Vs, & contradiction to the
the balancing formula (4.3.4). (Similarly, the assumptions vy = +vs, and v1 = Fv., respectively, yield
contradictions.) Consequently, no two of the v;, j € {0,1,00}, are collinear. By (4.3.4), however, these
three vectors are coplanar and thus now necessarily span a plane E in R3. The normal vector n € S? of
FE is determined up to sign. As A preserves E and thus also the line Rn, A actually defines the rotation
by the angle :I:%’T around the axis Rn. Moreover, since (again by lemma 4.28) 7 permutes without loss
of generality the base points C}, j € {0,1, 00} of the trinoid axes according to o, i.e. 7(C;) = C,(;), we
conclude that

t=C1 — ACy =Cyp — ACy, = Cy — AC (4.6.72)

and thus 1
T(x) = Az + g(C’l —ACy)+Cop — AC1 +Cy — ACx) = A(x — C) + C, (4.6.73)

which means that 7 defines the rotation by the angle j:%” around the rotation axis of A translated by
C, i.e. around the trinoid normal A, = C + Rn.

If o = (0 0o 1), we observe that 7! corresponds to 0! = (0 1 c0) and is also a symmetry of ¢:
T Yp(M)) = ¢(M). Thus (as shown above), 7-! = R, where R denotes the rotation on R3 by the
angle :i:%7T around the axis A,, = C + Rn, where n denotes the (up to sign unique) normal vector of
the plane F spanned by the direction vectors vy, v1 and vy, of the trinoid axes. Consequently, we have
T=R1

We now turn to the case that 7 reverses orientation, i.e. T = 7.

If o = (), we infer by lemma 4.21 that v(z) = z and thus 42 = id. This implies 72 0 ¢ = ¢, i.e.
T2|4(ar) = id, and consequently 72|gs = id. Writing 7 explicitly as 7 (z) = Az +t with A € O(3)\ SO(3)
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and t € R?, we obtain A%z + At +t = x for all z € R? and therefore immediately (for z = 0) At +t = 0,
which implies A2 = I. Since A € O(3) \ SO(3), we have A := —A € SO(3) with A% = I. This implies
that either A =1 or that A is a rotation by the angle 7 around some axis in R?® containing 0 € R?. The
case A =1yields t =0 (set z = 0 in 7 (z) = —z +t) and thus 7 = —id, a contradiction to the fact that,
according to o, 7 preserves the trinoid ends. Therefore, A is a rotation by the angle m around some axis
in R3 containing 0 € R3. Since, by lemma 4.28, A preserves the direction vectors vj, 7 € {0,1,00} of the
trinoid axes, i.e. Av; = v;, we infer that AU]‘ = —v;. Thus, A defines the rotation by the angle 7 around
some axis Rn, where n € R3 satifiesn L v; for all j € {0,1,00}. (Since vy, v1 and ve, are coplanar by the
balancing formula (4.3.4), such an n exists.) It follows by a direct computation that A = —A defines the
reflection in the plane (Rn)* at 0 € R?. Finally, as 7 by lemma 4.21 without loss of generality preserves
the base points Cj, j € {0,1, 00}, of the trinoid axes, i.e. 7(C;) = C;, we conclude that ¢t = C; — AC;
for all j and obtain

T (z)=Az+ %(Co —ACy +C, — AC1 + O — ACx) = Az — C) + C. (4.6.74)

This means that 7 defines the reflection in the reflection plane of A translated by C, i.e. in the trinoid
plane £ = C + (Rn)*. Note that the symmetry relation 7 o ¢ = ¢ oy determines E completely.

If 0 = (1 00), we infer by lemma 4.21 that v(z) = %5 and thus 4 = id. This implies 7% 0 ¢ = ¢, i.e.
T2|4(ar) = id, and consequently 7?2|gs = id. Writing 7 explicitly as 7 (z) = Az +t with A € O(3)\ SO(3)
and t € R?, we obtain A%x + At +t = x for all z € R? and therefore immediately (for z = 0) At +t = 0,
which in turn yields A% = I. Since A € O(3) \ SO(3), we have A := —A € SO(3) with A?> = I. This
implies that either A = I or that A is a rotation by the angle 7 around some axis in R3 containing
0 € R®. The case A = I yields t = 0 (set © = 0 in 7 (z) = —z + ) and thus 7 = —id, a contradiction
to the fact that, according to o, 7 preserves the trinoid end By. Therefore, A is a rotation by the angle
7 around some axis in R? containing 0 € R3. Since, by lemma 4.28, A satisfies Avg = vg, we infer that
Avg = —vg. Thus, A defines the rotation by the angle 7 around some axis R71, where 7 € R? satifies
n L vg. It follows by a direct computation that A = —A defines the reflection in the plane spanned by vg
and n := vy x 7, where “x” denotes the usual cross product on R3. By definition, n L vg. Actually, we
necessarily have n L v; for all j € {0,1, 0o}, which can be seen as follows: In case that any two of vg, v1
and vy are collinear, all three are collinear by the balancing formula (4.3.4), whence n L vy implies that
n L v; for all j € {0,1,00}. Otherwise, i.e. in the case that no two of vy, v1 and v are collinear, these
three span a plane in R?. (Recall that they are coplanar by the balancing formula.) Since, by lemma
4.28, Avj = vy for all j, this plane is preserved under A, i.e. it is the reflection plane of A itself or,
otherwise, orthogonal to the reflection plane of A. In the first case, we infer that Ax = «x for all points z
of the reflection plane, in particular Avy = vy, which together with the relation Av; = v5(1) = v yields
V1 = Uso, & contradiction to the assumption that no two of the v;’s are collinear. Thus we are necessarily
in the second case, i.e. the plane spanned by vy, v; and vs is orthogonal to the reflection plane of A
(spanned by vy and n). Since vy is contained in both planes, we conclude that n is orthogonal to the
plane spanned by vy, v1 and ve, i.e. n L v; for all j € {0,1, c0}.

Altogether, A defines the reflection in the plane spanned by vy and n, where n L v; for all j € {0, 1, oo}
As T by lemma 4.28 preserves the base point Cy of the trinoid axis Ag, i.e. 7(Cp) = Cp, we conclude
that t = Cy — ACy for all j and obtain

T(z) = A(z — Cy) + Co. (4.6.75)

This means that 7 defines the reflection in the reflection plane of A translated by Cy, i.e. in the trinoid
normal plane Fy = Cy + Rug + Rn along the trinoid axis Ap. Note that, by the symmetry relation
T o¢ = ¢or, Ey and thus (up to sign) also n are determined completely. The cases 0 = (0 o) and
o = (0 1) are treated analogously.

If o = (0 1 00), we infer by lemma 4.21 that v(z) = 1i2 and thus v = id. This implies 7%0¢ = ¢, i.e.
T°|4(ar) = id, and consequently T|gs = id. Writing 7 explicitly as 7 (z) = Az +t with A € O(3)\ SO(3)
and t € R3, we obtain A%z + A%t + A*t + A3t + A%t + At +t = x for all z € R? and therefore immediately
(for z = 0) A%t + A*t + A3t + A%t + At +t = 0, which in turn yields A% = I. Since A € O(3) \ SO(3),
we have A := —A € SO(3) with AS = I. There are four possible cases:

1. A defines the identity mapping on R3, or

2. A defines a rotation by the angle 7 around some axis containing 0 € R3, or

2

3. A defines a rotation by the angle F5° around some axis containing 0 € R3, or
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4. A defines a rotation by the angle F% around some axis containing 0 € R3 .

We lead each of the first three possible cases to a contradiction, using repeatedly the relation Av; = v,(;)
from lemma 4.28, i.e. here
Avg =v; Av] = Vs  AVs = 1p. (4.6.76)

First, assume that A = I, i.e. A = —L. Then, —vg = Avg = v1 = —Av; = —vs = Avss = g, which
yields vy = 0, a contradiction. Second, assume that A defines a rotation by the angle m around some axis
containing 0 € R?. In particular, A2 = I and thus also A2 = I. Then, vy = A%vg = vse = A%v0g = v1, i.€.
Vg = U1 = Vo, & contradiction to the balancing formula (4.3.4). Third, assume that A defines a rotation
by the angle ¥%" around some axis containing 0 € R3. In particular, we have A3 =T and thus A3 = —I.
This yields —vg = A3vg = vy, i.e. v9 = 0, another contradiction.

As we have lead each of the first three cases to a contradiction, we are necessarily in the fourth case,
i.e. A defines a rotation by the angle F% around some axis containing 0 € R3. By a direct computation,
this implies that A = —A defines a rotoreflection on R? composed of a rotation by the angle :t%’r around
some axis Rn containing 0 € R? and the reflection in the plane (Rn)> .

Assume now that two of the direction vectors vy, v1 and ve, of the trinoid axes are collinear, e.g.
vp = Fv1. Applying this together with the relation Av; = v,(;) from lemma 4.28 several times, we obtain
Voo = Avy = £Avg = £v1 = vg and thus v; = Avg = Avse = g, 1.€. Vg = V] = Vo, a contradiction to
the the balancing formula (4.3.4). (Similarly, the assumptions vg = v and vy = +v., respectively,
yield contradictions.)

Consequently, no two of the v;, j € {0,1, 00} are collinear, which implies that these vectors (which
are coplanar by (4.3.4)) actually span a plane in R3. Note that this plane is preserved by A and thus
necessarily coincides with the plane (Rn)* introduced above, i.e. (Rn)+ = Rvg + Rv; + Rus,. Therefore,
n satifies n L v; for all j € {0,1,00} and is determined up to sign. As 7 by lemma 4.28 without loss of
generality permutes the base points C;, j € {0,1, 00}, of the trinoid axes, i.e. T(C};) = C,(;), we conclude
that t = Cy(;) — ACj for all j and obtain

1
T(2) = Az + 2 (C1 = ACo + Coo = AC1 + Co = ACx) = Al = C) + C. (4.6.77)

This means that 7 defines the rotoreflection on R3 composed of the rotation by the angle :I:%’r around
the trinoid normal A,, = C + Rn and the reflection in the trinoid plane E = C + (Rn)=.

If o = (0 0o 1), we observe that 7! corresponds to 0= = (0 1 0o) and is also a symmetry of ¢:
T‘l((?(M)) = ¢(M). Thus (as shown above), 7~ = § with S as given above. Consequently, we have
T=85"1 O

Theorem 4.31 explicitly lists the twelve Euclidean motions on R?, which qualify as possible symmetries
of the given trinoid ¢ : M — R® with properly embedded annular ends. In the case that ¢ is actually
symmetric with respect to one of these, say 7', lemma 4.21 provides the associated biholomorphic (resp.
bi-antiholomorphic) mapping v : M — M, which allows for translating the symmetry property to the
level of the trinoid domain M: 7 o¢ = ¢o~. This enables us, based on the results of section 4.4, to study
in detail the impact of the possible symmetries of ¢ on the monodromy matrices of the extended frame
F associated with the conformal CMC-immersion ¢ := ¢ o7 : M — R3, where 7 : M — M denotes the
universal covering defined in (3.2.2). This is done in the sections 5 to 9.
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5 Rotational symmetry with respect to the trinoid normal

5.1 Definition

In this section we discuss trinoids ¢ : M — R3 with properly embedded annular ends on M = (C\{O, 1,00}
which are symmetric in the sense of definition 4.2 with respect to the rotation R by the angle :I:%Tr around
the trinoid normal A4,, = {C + An; A € R}, where C denotes the trinoid center, and n denotes a normal
vector of the trinoid plane E. (Recall from theorem 4.31 that, in the case that a trinoid ¢ : M — R3
with properly embedded annular ends is symmetric with respect to the given Euclidean motion R, there
exists a unique trinoid plane and a unique trinoid normal of ¢, which enables us to speak of the trinoid
plane and the trinoid normal of ¢, respectively.) R is uniquely determined by additionally prescribing
that R permutes the trinoid ends according to the permutation o = (0 1 oo) of the set {0,1,00}. Since
we have

R(S(M)) = o(M) > R (o(M)) = 6(M), (5.1.1)

it is clear that a given trinoid ¢ : M — R3 with properly embedded annular ends is symmetric with respect
to R, if and only if it is symmetric with respect R ™!, defining the rotation around the trinoid normal A,
by the inverse angle :F%”, permuting the trinoid ends according to the permutation o~! = (0 co 1).

Remark 5.1. Note that, in order to define (the sign of) the angle of rotation for R, one first needs
to determine an orientation of the axis of rotation of R itself. Depending on which choice we make

for the orientation of the axis of rotation of R, the angle of rotation of R will be either —i—%’r or —%’T.
Accordingly, the angls of rotation of R~! will be either —%’r or —|—2§. However, for our purposes it

suffices to characterize R (resp. R™!) by the property that it permutes the trinoid ends according to the
permutation o = (0 1 o) (resp. o1 = (0 oo 1)).

Definition 5.2. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annular ends.
Let M =H and ¢ = ¢ o : M — R? the conformal CMC-immersion associated with ¢ via the universal
covering m : M — M given in (3.2.2). Let A, = {C + An; A € R}, where C denotes the trinoid center
and n a normal vector of the trinoid plane F, be the trinoid normal. Then, if ¢ (or, equivalently, 1) is
symmetric with respect to the rotation R by the angle j:%7r around A,,, which permutes the trinoid ends
according to the permutation o = (0 1 co) of the set {0, 1, 00},

R(H(M)) = (M), R(P(M)) = (M), (5.1.2)
or, equivalently, if ¢ (or, equivalently, 1) is symmetric with respect to the inverse rotation R =1,
R™H(M)) = (M), R™H((M)) = (M), (5.1.3)

¢ (or @) is called rotationally symmetric with respect to the trinoid normal.

We are now going to apply the results of the previous sections in order to translate the rotational
symmetry of ¢ into further constraints on the functions pg, p1,qo, q1. Recall that pg,p1,qo, g1 occur in
the monodromy matrices of the extended frame F' of the conformal CMC-immersion ¢ = ¢or : M — R3
associated with ¢ via the universal covering m : M — M. So the question we now actually turn to
is: Which monodromy matrices are possible for rotationally symmetric trinoids with properly embedded
annular ends?

5.2 Implications of rotational symmetry with respect to the trinoid normal
The following result is an immediate consequence of definition 5.2:

Lemma 5.3. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annu-
lar ends produced from a trinoid potential n as in theorem 3.14. Denote by Dy, D1, Dy the corre-
sponding Delaunay matrices with eigenvalues ‘g, 11, e, respectively, where, for j € {0,1,00},
Wi = \/ij = \/% +w;j(A— A71)2 and w; = s;t; as in section 3.5. Then, if ¢ is rotationally symmet-

ric with respect to the trinoid normal, we have

1
W= o = p = floo = \/4 +w(A—A71)2, (5.2.1)

where
W= Wy = W] = Wee- (5.2.2)
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Proof. By definition 5.2, the ends of a trinoid with properly embedded annular ends, which is rotationally
symmetric with respect to the trinoid normal, are rotated by the corresponding symmetry R (resp. R 1)
into each other according to the permutation ¢ = (0 1 00) (resp. 0~! = (0 co 1)). This means that the
asymptotic Delaunay surfaces associated with the ends are rotated into each other as well. Hence, these
Delaunay surfaces only differ by a rigid motion on R3. In particular, this implies that the corresponding
Delaunay matrices D;, j = 0,1, 00, (see section 3.5 for more details) all possess the same eigenvalues.
This yields po = 1 = pioo and allows for defining p := po = 1 = fieo. Using lemma B.6, we infer that

Wp = W1 = W, Whence w given in (5.2.2) is well defined. Consequently, p = \/% + w(A — A71)2 holds,
which finishes the proof. O

Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and ¢ the
associated conformal CMC-immersion on M = H, ¢ = ¢ o1 : M — R3, where 7 denotes the universal
covering M — M given in (3.2.2). Suppose ¢ (or, equivalently, 1) is rotationally symmetric with respect
to the trinoid normal, and denote the corresponding symmetry by R. Since R preserves orientation on
R3, we obtain by theorem 4.9 a pair of biholomorphic mappings, Y : M — M and Az : M — M
satisfying

Ro¢=¢onr, (5.2.3)
R o) =1 oA, (5.2.4)
TOAR = YR OT. (5.2.5)

Analogously, we obtain for R~! a pair of biholomorphic mappings, yg-1 : M — M and -1 : M — M
satisfying

R_l Od): d)O’YR*l) (526)
R oy =¢oir, (5.2.7)
T OYR-1 = Yr-1 OT. (5.2.8)

The mappings vr and yr-1 are uniquely determined and explicitly given by lemma 4.21:

1
yr(2) = e (5.2.9)
z—1

R-1(2) = ——. (5.2.10)

The mappings Y& and yz-1 are uniquely determined up to composition from the left with an element
of the automorphism group Aut(M /M) of w. The following lemma explicitly states a pair of valid choices
for 4r and Ag-1:

Lemma 5.4. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as given in (3.2.2).
Let yg : M — M and yr-1 : M — M be given by (5.2.9) and (5.2.10), respectively. Then, the following
holds:

1. The mapping Ar : M — ]\2/,

- —z—1

Ir(2) = g (5.2.11)

is biholomorphic and satisfies
TOYR =7YROT, (5.2.12)
Roy =1or. (5.2.13)

2. The mapping yr-1 : M — M,

1

Am-1(z) = ———— 2.14
R (2) = ——, (5:2.14)

is biholomorphic and satisfies
TOAR-1 =YR-10T, (5.2.15)
R Vo) =1podp-1. (5.2.16)
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Proof. We start with proving the first claim. Clearly, z defines a Moebius transformation and thus a
biholomorphic mapping M — M. Moreover, by applying the relations (3.2.10) and (3.2.11) of lemma
3.4, we obtain for all z € M

Wo&R(z):ﬂ'(_z_1>:7r(—1—1>:7r(11): 1 = mom(2), (5.2.17)

z z

ie. ToAr = yr o w. Finally,
Rophp=Rogpomr=¢oyronm =pomoyr =P 0yR, (5.2.18)

ie. Roy =1y oyg.

Now we turn to the second claim. Clearly, ¥z -1 defines a Moebius transformation and thus a biholo-
morphic mapping M — M. Moreover, by applying the relations (3.2.11) and (3.2.10) of lemma 3.4, we
obtain for all z € M

ToAr-1(z) =m (—zl— 1) =l-m(z+1)=1- % = %z_l = yr-1 07(z), (5.2.19)

i.e. moAr-1 = yr-1 o 7. Finally,
Rlop=R logpor=¢poyg-10m=cdpomoig-1 =10~g-1, (5.2.20)
ie. R71oyp =1podp. O

Remark 5.5. Note that, since 4z 0 yr-1 = Jgr-1 0 g = id for the mappings 4g and z-: defined in
(5.2.11) and (5.2.14), respectively, we have

R-1 =R (5.2.21)

By the above lemma, we have explicitly determined mappings 4z and yz-1 corresponding to the
trinoid symmetries R and R !, respectively, in the sense of theorem 4.9. Thus, we can apply theorem
4.17 to obtain

Theorem 5.6. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends
and v the associated conformal CMC-immersion of M=H, ¢ =¢on: M — R3, where = denotes
the universal covering M — M as defined in (3.2.2). Let ¢ be rotationally symmetric with respect to
the trinoid normal. Denote by R and R~ the corresponding symmetries permuting the trinoid ends
according to the permutations o = (0 1 c0) and o~* = (0 oo 1), respectively. Moreover, denote by yr and
by Ar-1 the biholomorphic mappings M — M associated with R and R™1, respectively, as in theorem
4.9 and explicitly given in lemma 5.4. Then, the following holds:

1. The extended frame F : M — ASU(2), corresponding to ¢ by theorem 4.5 transforms under 4r as
F(Yr(2),A) = Mr(MN)F (2, \)kr 5 (2), (5.2.22)
where

kR (2) = (5.2.23)

(an)

0
and Mg denotes an element of ASU(2),, which is independent of z.
2. The extended frame F : M — ASU(2), corresponding to ¢ by theorem 4.5 transforms under 4z -1

F(ir-1(2).) = M-t (N F (2. Vg1 4, (2), (5:2.24)

where
z4+1 0

[Z+1
0 z4+1

and Mpr-1 denotes an element of ASU(2),, which is independent of z.

kR_lﬁnfl (Z) = (5225)
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Proof. We start with the proof of the first part. Let 7(z) = jr(z) = === for all 2 € M = H. (For
convenience we omit the index R throughout this proof.) As R preserves orientation on R3, we apply
the first part of theorem 4.17 to obtain

F(3(2),0) = My (W F (2 Akr,s (2), (5.2.26)

where F : M — ASU(2), denotes the extended frame corresponding to ¢ by theorem 4.5 and M5 denotes
an element of ASU(2),, which is independent of z. kg 5(z) is given by equation (4.4.117) from lemma
4.18. By computing

- 1
0.7(z) = = (5.2.27)
we infer that 8.4(2) T
.7 (z z z
== 5.2.28
| 0.9(2) | 22 z ( )
and thus obtain from (4.4.117)
z
0
kr5(z) = \/: _ (5.2.29)
0 /2

As ¥ = 4r, we denote My by Mp. This finishes the proof of equation (5.2.22).
To prove the second part of the theorem, we define ¥(z2) = yr-1(2) = —zl—l on M = H. Everything
is then done analogously. We have

1

0.9(2) = —— 5.2.30
i) = (5:2.30)
and thus 8.4(2) | 2 )
(2 z+1 zZ+
= = . 5.2.31
|0.9(2) | (#+1)2  z+1 ( )
Formula (4.4.117) from lemma 4.18 then yields
z+1 O
kr-14(2) = = , (5.2.32)
0 zZ+1
z+1
and by setting Mg -1 () := M5(\), the first part of theorem 4.17 implies (5.2.24). O

Remark 5.7. The monodromy matrices Mz and Mpr-1 of F under the biholomorphic mappings 4z and
Ar-1 are linked as follows: As -1 = :yf,_zl, we have

F(z,A) = F((hr 0 4r-1)(2), A) = Mr(NF(r-1(2), VER 57 (TR -1(2)) (5.2.33)
and thus
Mr-1(NF (2, Nkr-15,_,(2) = F(ir-1(2), ) = (Mr(A\)) 7' F (2, \)(kr 52 (Fr-1(2)) 7 (5.2.34)
A direct computation yields kr-1 5__, (2) = £((kr,5% (Fr-1(2))) ", which implies
Mp-1(X) = £((Mg(X) ™" (5.2.35)
5.3 Monodromy matrices of trinoids with properly embedded annular ends,

which are rotationally symmetric with respect to the trinoid normal

Using the results of the previous section we are now able to describe the (unitary) monodromy matrices
Mo, Ml, M, associated with a trinoid with properly embedded annular ends, which is rotationally sym-
metrlc with respect to the trinoid normal. As a start, recall from section 3.3 the covering transformations

vj, J =0,1,00, on M generating the monodromy matrices M]7 =0,1,00:
(2) = — (5.3.1)
"}/0 z 9 T 1 .O.
F1(2) =2+2 (5.3.2)
- —3z—-2
Yoo (2) = 5 1 (5.3.3)
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Lemma 5.8. Let M = H and Y0, Y15 Yoo M — M be given as above.
1. Forqg : M — ]\Zfﬂyg(z) = =2=L the following identities hold:

z

ROV =T1°FR;, ROV =Yoo ©TRs; TR © Yoo = Y0 O IR~ (5.3.4)
2. For Ag—1 : M — M,Ag-1(z) = ﬁ, the following identities hold:
Yo oyR-1 =FR-1°71, V1 OYR-1 =FVR-1 0o Yoo O VR-1 = YR-1 ©Y0- (5.3.5)

Proof. We start with the first part, i.e. Yz (2) = %’1 The claim is proved by straightforward computa-
tion: For z € M we have

Ar ©Yo(z) =‘m< : ) _21 =% <_Z_1> =4 o gr(2) (5.3.6)

—2z4+1 z z
z+3 —2z—1
~ ~ = ~ 2 = — = ~OO = ~ y 53.7
o (0) =i e+ ) =~ = () =10 dm(2) (537
- - - -3z -2 z+1 e ! .
AR ©Foo(2) = R (22_|_1> T 3,19 Yo ( > ) =00 YR (2). (5.3.8)
Now considering the second part of the lemma, we have 4z -1(2) = % Observe that this mapping is

the inverse function of 4z given in the first part. So the identities (5.3.5) follow directly from the first
part by applying the automorphism 4z -1 from both the left hand side and the right hand side to the
identities (5.3.4). O

The above lemma is needed to prove the following theorem, which states further necessary conditions
on the monodromy matrices of the extended frame F' associated with a trinoid with properly embedded
annular ends, which is rotationally symmetric with respect to the trinoid normal.

Theorem 5.9. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends
and 1 the associated conformal CMC-immersion on M = H, ¢ = ¢pon : M — R3, where 7= denotes
the universal covering M — M as defined in (3.2.2). Let ¢ be rotationally symmetric with respect to the
trinoid normal. Denote by R and R~ the corresponding symmetries permuting the trinoid ends according
to the permutations ¢ = (0 1 00) and o~ = (0 oo 1), respectively. Furthermore, let F : M — ASU(2), be
the extended frame associated with ¥ by theorem 4.5. Denote by My, My, My € ASU(2,C), the unitary
monodromy matrices

- 10 - P; G
O RS I
associated with F' as in (4.5.13) by
F(35(2),A) = g M\ F (2, ki (2), j = 0,1, 00, (5.3.10)

where a; € {£1} and 7; denote the covering transformations on M from section 3.3. Finally, let g,
Ar-1 be the biholomorphic mappings M — M associated with R and R™1L, respectively, as in theorem 4.9
and explicitly given in lemma 5.4, and let Mg (\), Mp-1(\) be the corresponding monodromy matrices
of F' as given in equations (5.2.22) and (5.2.24). In view of remark 5.7, we set

Mg(\) = £(Mp-1 (X))~ = (_a;; 22) . (5.3.11)
Then, the monodromy matrices satisfy
Mi(\) = Mg (N My(\) Mg (M) 71, (5.3.12)
Moo (N) = Mg (A)My(N) Mg (M), (5.3.13)
Mo(N) = Mg (N Moo (\)Mp (X)L (5.3.14)

In terms of the functions p; and q; occurring in M;, equations (5.3.12) to (5.3.14) read as
P1 = ar@RPo + GRbR G + arbRT — brbrpo, (5.3.15)
T N T—2__
@1 = —2agbrpo + ar"q0 — br g0, (5.3.16)
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Poc = ARARP1 + GRbRG1 + arbRT — brORP1, (5.3.17)

— —2
Goo = —2aRbRp1 + TR — bR 1, (5.3.18)
Po = ARARPoo + AROR oo + ARDRToe — DRORPoo, (5.3.19)
— —2
G0 = —20RbRPos + TR Goo — bR Goo- (5.3.20)

Proof. Consider the biholomorphic mapping 4z : M — M given in (5.2.11): jz(z) = ==L Applying
(the first part of) theorem 5.6 we obtain

F(’?R(Z), )\) = MR(/\)F(Z, )\)kRﬁR (Z), (5.3.21)

kR,’yR(Z) = ( z) . (5322)

Combining this with the monodromy equations (5.3.10), and applying the identities (5.3.4) from the
above lemma, we compute:

where

=T
<o

Mg (A)Mo(A)F (2, Ako(2)kR s (F0(2)) = aoMR (A F (G0 (2), kR 57 (F0(2)) = a0 F (3w ©Fo(2), A)
= aoF (71 04r(2), A) = a1a0Mi (N F (3r(2), N k1 (F= (2))
= OélaoMl()\)MR()\) (Z, )\)kR77yR (Z)k‘l (:)/R(Z)) (5323)

Analogously, we obtain

M)V (N F (2, Mk (2)kR 7 (1(2)) = oo Moo (N MR (A F(2, Nk o (Ve (G (), (5.3.24)
M, 1) Moo (N F (2, Moo ()R 5 (oo (2)) = @000 Mo (N) M (N F (2, Mk e (2o (3 (2)). (5.3.25)

As

ko(z)kRﬂn(%(Z))Z( = ’ ) % \/07 :i( \;2)
_ (\0[ }) (}) ?):iknm»z)klwn(z)), (5.3.26)

where changes in sign may occur due to the power rules for complex numbers, equation (5.3.23) implies

(an}

Mz (N Mo(X) = €My (A) Mz (\) (5.3.27)
with € € {£ajap}, and therefore
Mi(\) = eMp (X\) Mo(A\) Mg (X)L (5.3.28)

Taking into account equation (5.3.9), we compare the upper left and the lower right entries of Ml()\)
and €Mz (A\)Mo(\) Mz (A\)~t. This yields

— cos(2mp) —isin(2mp)p; =
— ecos(2mu) — iesin(2mp) [anﬁpo + arbrqo + arbrGo — bR%po} , (5.3.29)

— cos(2mp) + isin(2mp)p; =
— ecos(2mu) + iesin(2mp) [aﬂﬁpo + arbrqo + arbro — bR%po} . (5.3.30)
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Adding up these equations, we obtain
—2cos(2mp) = —2ecos(2mp), (5.3.31)
which, as cos(2mu) doesn’t vanish identically, implies € = 1 and thus as claimed
Mi(\) = Mg (N)Mo(N) Mg (M)~ (5.3.32)
Moreover, this equation translates equivalently into the scalar equations (omitting redundant ones)
p1 = ar@rpo + arbRrYo + arbrqo — brbrpo, (5.3.33)
q1 = —2aRbrpo + TR >q0 — RQ(T& (5.3.34)

Similar to the argument given above, we have

10 0 0
k ko = ~ _ z+2 _ z+42
s = (5 §) (Ve = -
= 142=2=1
VEoo) [Yree= o 0 i
=+ : = tkr 5z (2)ks (R (2))  (5.3.35)
0 /2 0 L2 =21
# T42—=—1
and
—3z-2
142z 0 221 0
b (2Whmoe (Too(2) = | VP2
0 1+22 0 5
2z+1
35+2 Iz 1275 0
3242 0 \/; 0 1-2=2=1 -
==+ — | =% - — | = thrax ()R (7R (2)),
0 3542 0 \/2 0 1_g=i-1
3z+2 z 1_g9—2-1

(5.3.36)

which leads by (5.3.24) and (5.3.25) to Mg(A)Mi(A) = o Ma(A\)Mr (M) and Mg (\)Me(A) =
Ftapaoo Mo(N) Mg (M), respectively. From this we obtain

Moo (N) = ooy Mg (V)M (AN Mg (X)), (5.3.37)

Mo(\) = tapaeo Mr (N Mao (\) Mz (X)L (5.3.38)

Replacing in the argument above (Ml,Mo) by (Moo,Ml) and by (MO,MOO), respectively, we obtain
+asa; = tagas = 1, which yields

Moo (A) = Mr(A) My (X)) Mg (N) ™, (5.3.39)
Mo(A) = Mr(A) Moo(A) Mr(\) ", (5.3.40)
and in scalar form

Poo = ARARP1 + ARbRA1 + aRDRTT — brbrP1, (5.3.41)

— —2
oo = —2aRbrp1 + aR°q1 — br 1, (5.3.42)
Po = ARARPo + ARVR Yoo + ARDRTss — bRORDoo (5.3.43)

— —2
Q0 = —2aRbRPoc + AR Goo — DR Too- (5.3.44)
This finishes the proof. O
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5.4 Normalized trinoids with properly embedded annular ends, which are
rotationally symmetric with respect to the trinoid normal

Let ¢ : M — R3 be a trinoid with properly embedded annular ends, which is rotationally symmetric with
respect to the trinoid normal, and let ) = ¢ o m be the associated CMC-immersion M — R3. Denote by
R and R~ the corresponding symmetries of ¢ (and %), i.e. the rotations by the angles :I:%“ around the
trinoid normal.

We specialize the results of section 5.3 to the case that the extended frame F : M — ASU(2),
associated with 1 as in section 4.2 is “normalized” at

14 -
2 = %\@ e M, (5.4.1)
ie.,
F(z,\) =1, (5.4.2)

for all A € S'. The special choice of z, results in more explicit requirements on the functions po, p1, g0, 1
occuring in the monodromy matrices of F.

Recall from section 4.2, that the normalization F'(z., A) = I of the extended frame F' at some point
z, € M, or, more precisely, the underlying normalization of the (conformal) CMC-immersion 1,

1

w(z*) = ﬁe&

U(ze) = G(1), (5.4.3)
where U € SO(3) represents the natural orthonormal frame corresponding to v, and G(1) is given in
(4.2.5), corresponds to rotating and shifting the (image of the) trinoid in R®, such that the conditions
(5.4.3) are met. It turns out (cf. corollary 5.12), that the choice of z, as in (5.4.1) corresponds to arranging
the (image of the) trinoid in R?, such that the trinoid plane of ¢ is parallel to the z-y-plane in R?, and
that the rotation axis of R (and of R™1) is the z-axis in R3.

A trinoid ¢ : M — R3 with properly embedded annular ends, which is rotationally symmetric with
respect to the trinoid normal and, in addition, is “well positioned” in R? in the sense that the associated
conformal CMC-immersion ¢ : M — M meets the normalization conditions (5.4.3), is called a normalized
trinoid with properly embedded annular ends, which is rotationally symmetric with respect to the trinoid
normal.

We now formulate a more explicit version of theorem 5.6:

Theorem 5.10. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends
and v the associated conformal CMC-immersion on M=H, ¢ =¢om: M — R where 7 denotes
the universal covering M — M as defined in (3.2.2). Assume that 1 has been normalized at z,. given in
(5.4.1), such that ¥(z.) = 5-re3 and F(z.,\) = I, where F : M — ASU(2), denotes the extended frame
corresponding to 1 by theorem 4.5. Moreover, let ¢ be rotationally symmetric with respect to the trinoid
normal. Denote by R and R~ the corresponding symmetries permuting the trinoid ends according to
the permutations o = (0 1 00) and 0= = (0 oo 1), respectively. Moreover, denote by g and by Vg1
the biholomorphic mappings M — M associated with R and R, respectively, as in theorem 4.9 and

explicitly given in (5.2.11) and (5.2.14), respectively:
—z—1 1

r(2) = po Ar-1(z) = —~ -1 (5.4.4)
Then, the following holds:
1. The extended frame F transforms under yr as
F(r(2),A) = Mr(WF(z, ) [ V2 (5.4.5)

where B
Mr(\) = <6 ’ _%) . (5.4.6)

In particular, My is actually independent of .
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2. The extended frame F transforms under 4z-1 as

z+1 O
F(Ag-1(2),\) = Mg-1(N)F(z,\) (Z)H — | (5.4.7)
z+1

where

Mp () = (6_3 (l) . (5.4.8)
In particular, Mp -1 is actually independent of \.

Proof. In view of theorem 5.6, we only have to prove equations (5.4.6) and (5.4.8).
In the first case, a direct computation shows g (z.) = %ﬁl = z,. Furthermore, by assumption,

F(z,,\) = L. Keeping this in mind, we evaluate equation (5.4.5) at z = z, to obtain

fus
3

0 e

= (e ) = Fr(2),A) = Mr\)E(z,\) | V> ) Mr (M1 (e

N
where we have explicitly computed the occurring complex square roots according to remark 4.14. This
yields (5.4.6).

In the second case, we have by a direct computation 4z -1(2x) = _21_1 = z, as well as, by assumption,
F(z,A\) = 1. Evaluating equation (5.4.7) at z = z,, we infer that

ot ©

) . (5.4.9)

- jﬁ 0 es 0
I=F(z:,A) = F(Ar-1(24), ) = Mr-1(A)F (24, \) * =Mp-1(M1 i |
0 Zetl 0 e 3
Ze+1
(5.4.10)
and thus (5.4.8). O

Remark 5.11. In the previous sections, we started with a trinoid ¢ : M — R® with properly embedded
annular ends, which admits the rotational symmetry R around the trinoid normal. Note that in this
general case, the extended frame F'(z,\) associated with the conformal CMC-immersion ¢ = ¢ om
produces by the Sym-Bobenko formula an associated family 1 : M — R3, X\ € $1, of CMC-immersions,
which are invariant under some Euclidean motion R, respectively, induced by the monodromy matrix
Mg (M) of F under the biholomorphic mapping 4z associated with R = Ry=1. (Note that, since for
A # 1 the conditions of theorem 2.11 are in general not met, 1, will for A # 1 in general not descend to
a CMC-immersion ¢y : M — R3. However, ¥, will be symmetric with respect to Ry.) Note that it is
not clear, a priori, whether R is a rotation (in R?).

In the special case considered in this section, i.e. in the case that the CMC-immersion i as well as
the extended frame F associated with a given trinoid ¢ : M — R? with properly embedded annular ends,
which admits the rotational symmetry R around the trinoid normal, have been normalized in the sense
of (5.4.3) and (5.4.2), we observe that the monodromy matrix Mg (A) of F' under the biholomorphic
mapping g associated with R is actually independent of A. Thus, each element of the associated family
Px, X € ST, of ¥ = Py—1 generated by F via the Sym-Bobenko formula, admits the same rotational
symmetry R in R3. (However, still, 1, will for A # 1 in general not descend to a CMC-immersion
¢ M — R3)

Corollary 5.12. We retain the notation and the assumptions of theorem 5.10. The axis of rotation of
the symmetries R and R~ of the normalized trinoid ¢ is the z-axis in R3. The trinoid plane of ¢ is
parallel to the x-y-plane in R3.

Proof. Applying (the first part of) theorem 4.17, we know that the monodromy matrices Mgz (\) and
Mg -1(X) explicitly given in theorem 5.10 satisfy at A =1

Mg(1) = +Ag, (5.4.11)
Mp-1(1) = £Ag, (5.4.12)

88



where Ag € SU(2) (resp. Agx—1 € SU(2)) denotes the conjugation matrix realizing the orthogonal part
Ax of the symmetry R (resp. the orthogonal part Az -1 of the symmetry R~1) in the su(2)-model. In
view of equations (5.4.6) and (5.4.8), this yields

Ap = + (63 _oﬂ) : (5.4.13)
0 e 3
Apr =+ (6_03 603) . (5.4.14)

Recalling that A and Ag (resp. Ag-1 and Ag-1) are linked via the Lie Algebra isomorphism J : R? —
su(2) defined in (3.4.3) as in (3.4.7), i.e

(JoAr o JTH)(X) = Ap X AL} for all X € su(2), (5.4.15)
(JoAr-10J (X)) = AR_lXA;zl,l for all X € su(2), (5.4.16)
we obtain by a direct computation that
_1 3 1 V3 g
2 2 2 2
Ar=|-¥3 1 o], Ar=|8 _1 o (5.4.17)
0 0 1 0 0 1

Thus, Az and Ag -1 define rotations (in R?) by the angles j:Q’T around the z-axis in R3 Reg Conse-
quently, the symmetries R and R~ of the normalized trinoid (;5 are rotations by the angles j:— around
an axis in R3, which is parallel to the z-axis. In particular, the trinoid plane of ¢, which is orthogonal to
this axis of rotation7 is parallel to the z-y-plane in R3. As the point 1(z.) € R® with z, given in (5.4.1)
satisfies

Rt (2)) = (R (2)) = ¥(20), (5.4.18)

RM(W(24) = P(r-1(24)) = ¥(2.), (5.4.19)

it lies on the common axis of rotation of R and R~!. Since by assumption we have 1(z,) = ﬁeg” we
infer that the axis of rotation of R and R~ is actually the z-axis in R3. O

Applying theorems 5.9 and 5.10, we obtain the following result:

Theorem 5.13. Let M = C\ {0,1}, ¢ : M — R® be a trinoid with properly embedded annular ends
and ) the associated conformal CMC-immersion on M=H, ¢ =¢om: M — R where = denotes
the universal covering M — M as defined in (3.2.2). Assume that ¢ has been normalzzed at z. given in
(5.4.1), such that ¥(z.) = 5-re3 and F(z.,\) = I, where F : M — ASU(2), denotes the extended frame
corresponding to 1 by theorem 4.5. Let ¢ be rotationally symmetric with respect to the trinoid normal.
Then, the unitary monodromy matrices My, My, Mo € ASU(2,C), associated with F as in (5.3.10) are
of the form

My = — cos(2mp)I — % cos(mp) (COSC(:#) —cocso(wu)> , (5.4.20)
M, = — cos(2mp)I — % cos(mp) (COSQ(:ZE —Cos(frou)> , (5.4.21)

Moo = — cos(2mp)I — % cos(mu) (Coigg)) B cosw(fZ)) ; (5.4.22)

where (o s an odd function in A and a solution to
Coo = 4sin®(mp) — 1. (5.4.23)

Proof. As before, we denote the symmetries of ¢ by R and R~! and by jr, 4r-1 the biholomorphic
mappings M — M associated with R and R, respectively, as in theorem 4.9 and explicitly given in
lemma 5.4. Moreover, let Mz (\), Mz-1(\) be the corresponding monodromy matrices of F' as introduced
in equations (5.2.22) and (5.2.24). In view of theorem 5.10, we have

Mg(\) = (Mg (\)! = (_“;; Zz) (5.4.24)
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where ‘
ag =e% and bg =0. (5.4.25)

Moreover, by theorem 5.9, we obtain the following relations between the unitary monodromy matrices
M; of the extended frame F:

Mi(X) = Mr(N)Mo(\) Mr(X) ™", (5.4.26)
Moo (A) = Mr(A) M (X)) Mg (N) ", (5.4.27)
Mo(X) = MRr(A\)Meo(\)Mr (M), (5.4.28)

which translate into the following scalar equations involving the functions p; and g; occurring in M 5 (cf.
(3.9.26)):

2mi _2
Poo =P1=P0s €3 (oo =¢q1 =6€

5 0. (5.4.29)

Thus, in the case of a normalized trinoid, which is rotationally symmetric with respect to the trinoid
normal, we obtain the following equivalent reformulations of (3.9.50) and (3.9.51), characterizing the
monodromy matrices M;:

po="Po and p§+ qodo = 1, (5.4.30)
— 2
qoqo  cos*(2mp) + cos(2mp
Pi— - ol . 3 Gmi) (5.4.31)
2 sin”(2mp)
Here, the second equation follows in view of qoq1 + Goq1 = 2qoqo cos %’f = —qoQo.

We derive directly from (5.4.30) that
090 = 1 — pp- (5.4.32)

Inserting this into the second equation, we obtain

3 5, 1 cos?(2mu) + cos(2mp)
e Z = , 5.4.33
2p0 2 sin? (2mp) ( )

or, equivalently,

Pt = 1 n cos(?wéz)(cos@ﬂu) +1) 1 N COSQ(’]TM') 2—sin2(7w) _ c0’522(7ru) . (5.4.30)
3 6 sin” () cos? () 3 3sin”(mu) 3sin”(mu)

This in turn implies
cos®(rp)  4sin®(mp) — 1

qq =1 - (5.4.35)

3sin?(mp)  3sin®(mp)

Next, recall that the monodromy matrices Mj satisfy (3.9.32), i.e. MyM; M, = I, which reads in scalar
form as (3.9.33) and (3.9.34). Inserting the previous results together with the identity u = po = 41 = fioo
from lemma 5.3 into (3.9.33), we obtain

q0 3
cos(2m )+ sin(2mp)po = — cos?(2mp)+2i cos(2mp) sin(27m)po+sin2(27m)(p(2)—%—H’gqoqfo), (5.4.36)

which in view of (5.4.31) and (5.4.35) transforms into

cos(2mp) 4 i sin(2mp)po = — cos?(2mp) + 2i cos (27 ) sin(27 ) po

9;
+ cos?(2mp) + cos(2mu) + —ZCOSQ(WM)(ZI sin?(rp) — 1), (5.4.37)

V3
or, equivalently,
2
sin(2mp)po(1 — 2 cos(2mp)) = —=cos?(mp)(4sin®(mu) — 1). (5.4.38)

V3

Since sin(27wp) = 2sin(mu) cos(mp) and cos(2wp) = 1 — 2sin®(7p), this implies

_ 26032(7"#) . cos(mp)
o= \/§Sin(2ﬂ'/_},) N \/§Sin(7w)’ (5.4.39)
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determining py completely. By a direct computation, we check that (3.9.34) yields no further conditions.

Altogether, we conclude that the functions p; and ¢; occurring in the unitary monodromy matrices
M ; of the extended frame F' of a normalized trinoid, which is rotationally symmetric with respect to the
trinoid normal satisfy

cos(mp)
=Pl =Poo = ———"—, 5.4.40
Po=p1=Pp /3 sin (71) ( )
2mi _2mi C()
=es =€ 3 ¢o=—F77""7, 5.4.41
% @ T = S sin(en) ( )
where (y is obtained by solving o
CoCo = 4sin®(mp) — 1. (5.4.42)
Moreover, in view of remark 3.44, go and thus also (y are necessarily odd functions in A. R
Applying our results to (3.9.26), we obtain the claimed forms for the monodromy matrices M;. O

Theorem 5.13 describes the (unitary) monodromy matrices associated with the extended frame F' :
M — ASU(2), of a trinoid ¢ : M — R? with properly embedded annular ends, which is rotationally
symmetrlc with respect to the trinoid normal, and which has been normalized such that F(z,) =1 and
P(ze) = 2H e3, where z, € M is given in (5.4. 1) and 1 denotes the conformal CMC-immersion M — R3
corresponding to ¢. It turns out that, in this setting, we can also prove the converse result: A trinoid
¢ with properly embedded annular ends and with extended frame F satisfying F(z,) = I at 2z, € M
from (5.4.1) and corresponding monodromy matrices of the form given in theorem 5.13 is necessarily
rotationally symmetric with respect to the trinoid normal. This result is formulated in the following
theorem.

Theorem 5.14. Let 5 be a (standardized) trinoid potential associated with three off-diagonal Delaunay
matrices Dy, D1, Ds possessing the same eigenvalues +u. Denote by ¢ : M — R3 a trinoid with
properly embedded annular ends on M = C\ {0,1} generated by 1 via the loop group method. Moreover,
let F: M — ASU(2), be the extended frame associated with the mapping ¥ = ¢ o w by theorem 4.5.
Furthermore, let F(z.) = 1 at 2. € M as given in (5.4.1). Assume the unitary monodromy matrices
My, My, Mo € ASU(2,C), associated with F are given by

My = — cos(2mp)I — % cos(mp) (COSC(:#) —cocso(wu)> , (5.4.43)
M, = — cos(2mp)I — % cos(mp) (COSQ(:ZE —Cos(frou)> , (5.4.44)

. 2 2mi ——
My = —cos(2mp)l — i cos(mu) (COESZW) € G ) ; (5.4.45)

V3
where (o s an odd function in A and a solution to
CoCo = 4sin®(mp) — 1. (5.4.46)
Then, ¢ s rotationally symmetric with respect to the trinoid normal.

Proof. Since the underlying Delaunay matrices Dy, D1, D of the standardized trinoid potential i possess
the same eigenvalues +p, we can write 7 explicitly as (cf. section 3.6)

0 At
n= SAQ(2) 0 dz, (5.4.47)
where )
1 1 1 -1 22 —z+1
AN=bN|5+——+-+——| = — 4.4
Qe =0 |5+ | m S (5.4.48)
and b(A ) — (u(X))?. Considering the biholomorphic mapping v = yg : M — M defined by z —
v(2) = = and the function h : M — C\ {0}, z — h(z) = 1 — 2z, we compute
(iz)Q— 1Z+1 1—142+41—2z+ 22
Q=) M) = VAN T3y = (7~ D) g = (h(2))'Q(z,A).  (54.49)
1—2z 1—z
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Recalling from lemma 4.21 that g corresponds to the permutation o = (0 1 co) of the set {0, 1, 00},
we apply lemma 4.25 to infer that 7 transforms under vz as

v'n = n#Ws, (5.4.50)
where
Wy = Wo(z2) = (-Aha(jh)(z) (h(zo))—1> . (5.4.51)

Applying the pullback construction with respect to the covering mapping « : M — M to (5.4.50), we
obtain

(V) = 7 (EWL) = THW, (5.4.52)

where 7) = 7*7 denotes the pullback potential of the trinoid potential 7 (cf. section 2.3) and W+ =W,om.
Moreover, recall that the biholomorphic mapping v = 4% : M — M, z+— Z—l from lemma 5.4 satisfies
~vom =7 o4. Thus, the left hand side of (5.4.52) can be transformed as follows:

“0 =7 (Lagoen )10 = (Gaweney o )0ene

B 0 A1 0N () = 3° 0 A o] 2oy - 2o
- (—AQ«mm(zm 0 )d“f NE =75 K—)\Q(w(z),)\) 0 )d ( ﬂ () = 3.
(5.4.53)
Altogether, (5.4.52) yields R
v = n#W . (5.4.54)

Considering the extended frame F' associated with the trinoid ¢, we obtain a solution ¥ = F B, to
the differential equation d¥ = ¥7j. Note that W possesses the same (unitary) monodromy matrices as F’
at the singularities of the potential 1, namely My, M, and M.

Naturally, the mapping *¥ = ¥ o 4 defines a solution to the differential equation d(3*¥) =
(W) (5*7), which in view of (5.4.54) reads as

A(5°W) = (5" W) (#W). (5.4.55)
Since this differential equation is also solved by the mapping \IIW+, ie.
d(WWy) = (IW,) (#W,), (5.4.56)
the mappings *¥ and \IIW+ only differ by a A-dependent matrix p = p(A):
7 = pUW,. (5.4.57)

Now applying the relation (5.3.4), o 49 = 41 o 7, involving the covering transformations 5, and ¥,
on M as given in section 3.3, we compute

My (N)pN (2, VWi (2, 0) = Mo (W) (T (2,0)) = M (V) W(3(2), A) = W((F1 0 7)(2), A)

= U((7050)(2): A) = 7 ¥ (F0(2), A) = p(A) ¥ (Fo(2), YW (Fo(2), A) = p(A) Mo(A) ¥ (2, A)‘%(%(Z()» :\1)' )
5.4.58

As W+ defines the pullback of the mapping W, which is holomorphic on M (vyith respect to '7{)’ W+ is
holomorphic on M and therefore does not pick up any monodromy under 7y, i.e. Wy (0(2), \) = Wi(z, A).
Thus, we conclude that R R

NG (N)p(A) = p(0) Mo (A). (5.4.59)
Analogously, applying % 0 Yo, = ¥ © ¥ from (5.3.4), we have

Mo(\)p(A) ¥ (2, W (2, 3) = Mo(N) (5 (2, A)) = Mo(N)¥(5(=2), A) = ¥ ((o 0 7)(2), )
= U((7090)(2), ) = 7 ¥(Foo (2), A) = (N ¥ (Foo (2), VW (oo (2), A)

oo (2), )
= p(\) Moo (N) ¥ (2, )W, (F0(2), A).  (5.4.60)
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Using the holomorphicity of W, on M, we know that W, (Yo (2), \) = W, (2, \), which yields

Mo(A)p(A) = p(A) Moo (X). (5.4.61)
We set
p(A) = (i((ig Z((i))) , (5.4.62)

where a, b, ¢ and d define complex valued functions of A satisfying a(\)d(A) — b(A)e(A) = 1. Then, by
comparing the upper left entries of M;(\)p(A) and p(A)Mo(A) (vesp. of Mo(A)p(A) and p(A) Moo (N)), we
obtain ¢(A\)e’ Gy = b(A\)¢o (resp. ¢(N)Go = b(A)e’

3 CQ). Combining these two equations yields b(\) =
¢(A) = 0. Comparing now the upper right entries of M;(A)p(A) and p(A)Mo(N) (resp. of Mo(A)p(A) and
p(A)Mao(N)), we obtain €5 d(\) = a(\) (resp. d(\) = e~ 5 a())). Together with a(A\)d(\) — 0 = 1, we
conclude that a(A) = (d(A))~! = +e% and thus

p(N) = + (e Om-> : (5.4.63)
0 e =

in particular p(A) € ASU(2),. Thus, (pFp~Y)(pBL W) defines an Iwasawa-decomposition of pUW,
(pointwise for all z € M) with pFp~! € ASU(2),, pBLW, € ATSL(2,C), and (pFp~1)(z.) = L
Therefore, we can write

(Fod)(Byod) =7V = pUW, = (pFp~")(pBy W,). (5.4.64)

This implies that, using the loop group method, 4*¥ produces on the one hand the trinoid J(¢ o 4) =
SymBob(F o «)[x=1 and on the other hand the rotated trinoid p.J(¢/)p~! = SymBob(pFp~1)|x=1. Con-
sequently, these two surfaces coincide, i.e.

J(Woy)(M) = (pJ (¥)p~")(M). (5.4.65)

Using the identity pJ(¢)p~t = J o A o, where

Ar = | —

Ol\?‘&k\wﬂ
OM}H“%&

0
ol (5.4.66)
1

from the proof of corollary 5.12, we switch into the R? model and obtain 104 = Ag 0. As ﬁ(M) =M,
this yields ) )
V(M) = Ar(y(M)). (5.4.67)

This means that 1 (and thus also ¢) is symmetric with respect to the Euclidean motion Ag € Iso(R?)
defining the rotation by the angle :I:%’r around the z-axis in R3. Thus, ¢ is necessarily rotationally
symmetric with respect to the trinoid normal. (In view of theorem 4.31, which lists all possible trinoid
symmetries, only the rotation by the angle i%’r around the trinoid normal shows the behaviour of Ag.
Thus, we infer that the z-axis in R? coincides with the trinoid normal, and that ¢ is rotationally symmetric
with respect to the trinoid normal, coinciding with the z-axis in R3.) O

5.5 Solving (y(y = 4sin*(mu) — 1

In order to describe the solutions (y to (5.4.42), we investigate the right hand side of (5.4.42). To this
end, recall from lemma 5.3, that

B\ = \/i Fw(h— A1), (5.5.1)

where w = sptg = s1t1 = Socteo and s;,t; denote the parameters occurring in the Delaunay matrices D;
defined in (3.5.7).

Until now, we have treated u as a holomorphic function of A in the domain C*\ Wy (cf. remark 3.24).
For the following considerations, we extend p to C* by explicitly defining the occurring complex square
root on C*. (Of course, this breaks the holomorphicity of . However, by our definition of the square
root below, the restriction of p to C* \ Wy will still be holomorphic.)
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We define the complex square root on the A-plane C* in analogy to the complex square root on the
z-plane C* given in remark 4.14 by

VG =C A= re? s VX = re't, (5.5.2)

where we write A € C* in the form A = re?® with r € R* and 6 € (-, 7], and /7 defines the value of the
usual (real) square root of r. In particular, /~ maps the negative real axis onto the positive imaginary
axis. With this definition, we interpret p from now on as being defined for A € C*.

The following lemma states the roots of the expression 4 sin®(7u()\)) — 1.

Lemma 5.15.
1
4sin?(rp(N)—1=0 <= (u(\)? = (6+k)2 fork €Z <= X €Iy :={£\, £\, '} for k € Z, (5.5.3)

where, for k € Z,

A = \/22) {dk + \/M} (5.5.4)

and 1 L
= (= 2~ 1ow. 0.
dy; (6+k) 4+w (5.5.5)
Furthermore,
Mo, =Mt €iRT for k =0, (5.5.6)
Mo, A\t €RY fork € Z)\ {0}. (5.5.7)

Proof. We start the proof with the following observation:

Asin2(mp(N) — 1= 0 = (2sin(mu(N) — )(2sin(ru(A) +1) = 0 <= sin(ﬂu(/\)):j:%

— p\) = j:(% +k)forkeZ — (u\)?*= (% + k) forkeZ. (5.5.8)

This already proves the first part of (5.5.3). Furthermore, as pu(\) = \/i + w(A — A71)2, we have for all
k € Z and all A € C*

1 1 _ 1
(M()\))2=(6+k)2 = tu(-A 1)2:(6+k)2
1 1
A U’)‘4+(_(6+k)2+1—2w))\2+w20
1 1 5 1 1 , 1 5 ,
A=y 5o [(gHR)? =g H2wE[((G+k)? = +20)? —dw?). (5.5.9)

Defining dj, as in (5.5.5) and for all k € Z

1 /
Ak71 = —Ak,g = \/211} |:dk + di - 4U)2:| (5510)

1 /

>\k,2 = 7)\]@ 4 = % |:dk - di - 4w2:| (5511)
(5.5.12)

we obtain 1
(p(N)? = (6 +k)? = A€ {1, M2 A3, Akal (5.5.13)

Next we show for all k& € Z that

>\k,17 )\k,g € iRT and )\k,g, /\k,4 ciR™ for k=0 (5514)
)\k,la )\k’g € R" and )\kyg, >\k,4 e R™ for k 75 0 (5515)
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We first look at the case k = 0. We have df —4w? = (=2 +2w)? — 4w? = g7 — Sw, whence, as w € (0, ]
by lemma B.6 of appendix B, we infer that

d% — 4w* > 0. (5.5.16)

As a consequence, \/d2 — 4w? lies on the positive real axis. Moreover, we have d3 > d3 — 4w? > 0 and
thus |do| > \/dZ — 4w?. Because of w € (0, 1z] we have do < 0, which implies —do = |do| > \/dj — 4w?.

Altogether, we obtain
doi\/d%—élw?§d0+\/d%—4w2<d0—d0:0 (5517)
1 Ryt .
\/Qw[do +4/d} —4w?] = Z\/2w [—do F \/d3 — 4w?] € iRT, (5.5.18)

which proves (5.5.14).
Now we turn to the case k # 0. Here, (% + k)% — % > 0, and hence, using w > 0,

and conclude that

1 1
d? — 4uw? = (G+ k)% — Y 2w)? — 4w? > (2w)? — 4w? = 0. (5.5.19)

This implies that \/d? — 4w? lies on the positive real axis. Furthermore, as a consequence of (%Jrk)Q f% >

0 and w > 0, we have dj > 0. Hence,
d +1/d3 — 4w? > 0. (5.5.20)

Moreover, as a consequence of di > di — 4w? > 0, we obtain dj, = |dx| > \/di — 4w? > 0 and thus

dk:t\/d%lewQdef\/dzf4w2>dk7dk:0. (5521)
1 2 2 +
goldi & \/d} — 4w?] € RY, (5.5.22)

We infer that

which proves (5.5.15).
Finally, observing that

1 / 1 / 1 7
)\0’1>\0’4 = _iQ\/QQU [do + d% - 411)2}\/211) [do - dg - 411)2] = % d(2) - (d% - 4w2) = 1, (5523)

we obtain
Xo2=—Ao1> o3 =—Ao1, Aoa=Agq. (5.5.24)
Hence, as by definition A\g = Ag,1, we have
{20,1, 20,2, Ao,3, Aoa} = {FAo, £ ', (5.5.25)
where in view of (5.5.24)
Ao, =Nyt €iRT, (5.5.26)

which proves (5.5.6).
Analogously, for k£ # 0, we compute

1 1 1
Ak 1k2 = \/m[dk +\/d2 - 4w2]\/2w[dk — B~ dw?) = o Jd (- dw?) =1, (5.5.2)

which implies (for & # 0)

Me2 = Aol Aks = —Ak1, Aka = —Ag) (5.5.28)
In view of A\ = A\g,1 we infer
{1y Moz, Mgy Aeat = {0, £A 1} for k # 0, (5.5.29)
where, using (5.5.28),
Ay At € RT for k #£0, (5.5.30)

which proves (5.5.7).
Combining the relations (5.5.8) and (5.5.13) with the equations (5.5.25) and (5.5.29), the (second part
of the) claimed relation (5.5.3) follows. O
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Next, we state the following theorem.

Theorem 5.16. For all A € C* the following holds:

) s T A A At At
4si A))—1=4 Cr(l—-—)1+—)1 - —)1+ — 5.5.31
sl () = 1= 4 T €l = 0+ 50 - 500+ 50 (5531)
where
—Nw fork=0
Ci = { MW, fork=-1 (5.5.32)
L keZ\{-1,0
solte jorkez){-L0)
and Ay is given in (5.5.4).
Proof. The proof of this theorem is quite technical and therefore given in the appendix H. O
We now return to equation (5.4.42):
CoCo = 4sin®(mp) — 1. (5.5.33)
By theorem 5.16, we have
4sin® (mp(N)) 2 H Ci( 1+A)(1 Al)(1+A1) (5.5.34)
T —)(1-—— —_— 5.
a e k( Ak Ak Ak

where C} defines a positive real number for all k € Z. Thus, in order to solve (5.5.33) for (p, we need to
split the infinite product given in (5.5.34), i.e. we need to distribute the factors of this product among (o
and (y. In view of the defining relation

— 1
G(A) = CO(i) (5.5.35)
defining (y and the relations (5.5.6) and (5.5.7) from lemma 5.15, we observe that we necessarily have
GEXN) =0 < G(h ) =G(FN"Y) =0, (5.5.36)
GOEAN) =0 < G(£X) = Co(FAo) =0 (5.5.37)
and, for all k € Z \ {0},
GEM) =0 <= Q% ) =GN =0, (5.5.38)
QOEN) =0 <= Co(EM) = Co(£M) =0. (5.5.39)

Thus, when distributing the factors of the infinite product given in (5.5.34) among (y and (g, we need to
respect the following relations:

A AL —
(1+ )\—) contributes to {, <= (1F T) contributes to (p, (5.5.40)
0 0
At A
(1+ T) contributes to § <= (1F 3 ~—) contributes to (o (5.5.41)
0 0
and, for all k € Z\ {0},
A . AL . —
1+ /\—) contributes to ( <<= (1&+ )\—) contributes to (o, (5.5.42)
k k
A1 A
(1+ /\—) contributes to {;, <<= (1% /\—) contributes to (p. (5.5.43)
k k
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Consequently, for each k € Z, {y necessarily contains exactly two of the four factors (1 — %), (1+ %),

(1- A)\—:) and (14 A}\—;I) in one of the following four possible combinations:

o contains p( )(/\) =1-—)1+—) (5.5.44)
Ak Ak
)\71 )\71
or (o contains p( )(/\) =1-—)1+—=—) (5.5.45)
Ak Ak
3) (1-2)(1-27) fork=0
or (o contains p;”’ (A) := {(1 B /\%)(1 N )\,kl) for k € 7.\ {0} (5.5.46)
@ 1+ 2)1+3)  fork=0
or (o contains p;’ (\) := {(1 N )\—);)(1 B /\7;1) for k € .\ {0} (5.5.47)

So far, we have investigated the question how the A-dependent factors of the infinite product given
n (5.5.34) can be distributed among (, and (y in order to solve (5.5.33). Also the constant factors
472 and Cy, k € 7Z, occurring in the representation (5.5.34) of the expression 4sin?(7u()\)) — 1 as an
infinite product, need to be distributed among ¢y and (y. Since 472 and C} (for all k € Z) are positive
real numbers, these factors are (in order to be in line with the definition of (y) necessarily distributed
“equally” among (y and (y in the sense that the respective square roots, i.e. 27 and (for all k € Z) \/C,
contribute to both ¢y and (.

Altogether, we set the following “basic” form of (y:

Co(A) = 2 ( 11 \/CTgp,(:k)()\)> , (5.5.48)

k=—oc0
where, for all k € Z, v, € {1,2,3,4}.

Remark 5.17. Note that, in general, {y can still be modified by any A-dependent function g satisfying
gg = 1. In particular, g(\) = X is a valid choice, producing

Co(A _2m< T Ve ) (5.5.49)

k=—o0

Since we are interested in a function (g solving (5.5.33), which is odd in A, we keep this possibility in
mind for later use: If {y of the form (5.5.48) solves (5.5.33) and is even in A, the function A\{p is odd in A
while it as well solves (5.5.33).

The following observation is crucial for our further considerations: The infinite product

2 H Cr(1 42 21— A—1)(1 + A—1) (5.5.50)
he oo )\k Ak Ak

occurring in (5.5.34) is well defined for all A € C*, since this is the case for the expression 4 sin?(m()\))—1.
(Writing sin(7()\)) in its power series representation, we observe that sin®(mu()\)) involves only even
powers of u(\). Since, by remark 3.13, u? is defined as a holomorphic function on C*, sin®(7u()\)) and
thus also 4sin?(7u()\)) — 1 are holomorphic and well defined for A € C*.) When splitting (5.5.50) in two
infinite products representing ¢y and (y, we still need to ensure that these two products are well defined
on C*, i.e. that they take finite values for all A\ € C*. This leads to the notion of (normal) convergence
of an infinite product (cf., e.g. [33], chapter 1).

Definition 5.18. 1. Let v € Ny and (ay,)n>, be a sequence of complex numbers. Then, the sequence
H G = (H an> (5.5.51)
n=v n=v m>v

is called an infinite product. ], ay is said to be convergent if and only if a,, = 0 for only finitely
many n > v, i.e. a, # 0 for all n > ng, and if the limit

lim [] an (5.5.52)



exists. In this case, the value of []>7 a, is defined to be

l
=Gy Auy1- Apo—1 llir& H Q- (5.5.53)

n=ngo
A finite product, which does not converge, is called divergent.

2. Let X be a locally-compact metric space X, e.g. a subset of C. Let v € Ny and (fn)n>» be a
sequence of continuous functions X — C. Moreover, define for all n > v the continuous function
gn : X — C by g, = fn — 1. Then, the sequence of functions

m>v

is called an infinite product (of functions). [[,—, fn is called normally convergent (on X ), if the
series ) 7 g, converges normally on X, i.e., if, for any compact subset K of X, > |gn|x < 00,
where |g, |k = sup,cx|gn(2)|- A finite product, which is not normally convergent on X, is called
divergent on X.

Remark 5.19. The notions of convergence of an infinite product and of normal convergence of an infinite
product of functions given in definition 5.18 are transferred to infinite products of the form [] 2 G,

n=—oo

and infinite products of functions of the form [] 2 f,, respectively, as follows: For complex numbers
an, N € 7, the infinite product

ﬁ an (5.5.55)

is said to be convergent, if and only if the infinite products [[°”,a, and [[,1__an == [ a0
converge. Otherwise, it is called divergent. For continuous functions f, : X — C, n € Z, on a locally-
compact metric space X, the infinite product of functions

ﬁ fn (5.5.56)

n=—oo

is called normally convergent (on X), if and only if the infinite products [[ -, f» and H;iioo fn =
[1,-, f—» are normally convergent (on X). Otherwise, it is called divergent (on X).

We note the following useful result:

Lemma 5.20. Let v € Ny and (a,)n>, be a sequence of real numbers a, > 0. Assume the series
S (a, — 1) converges to some limit a € R. Then, the infinite product [[°~_ a, converges.

n=v

Proof. Since a,, # 0 for all n > v, it is enough to show that the limit lim;_, H;:V a, exists. To this
end, consider for all [ > v the estimate

l l
0< [T an <[] et = eXnmlenmt), (5.5.57)

a direct consequence of the relation z < e*~! for all z € R. (5.5.57) implies

l—oo l—o0

l
0< lim [ an < lim eXnv(@n=b) = 2 e R, (5.5.58)

which proves the claim. O

Let now (o be of the form (5.5.48). In the following, we study the question, if, or, more precisely, for

which “configurations” of the factors pé"’“)()\), (o is well defined, i.e. normally convergent, on C*. As a

start, we have the following result:

Lemma 5.21. For all k € Z, let A\, and Cy, be given by (5.5.4) and (5.5.32), respectively. Moreover, let

the A-dependent functions pfcy)()\), v € {1,2,3,4} be defined by (5.5.44), (5.5.45), (5.5.46) and (5.5.47),
respectively. Then, we have:
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1. The infinite product [[ro_ /Ck converges.

2. The infinite product [ p,(gl) 18 mormally convergent on C*.
3. The infinite product [ p( ) s normally convergent on C*.
4. The infinite product o _ OOp( ) s divergent on C*.

5. The infinite product [[re p,(f) 1s divergent on C*.
Proof. This is proved in appendix I. O
We return to (o of the form (5.5.48), i.e

(H Cepl (N ) (5.5.59)

k=—o0

where, for all k € Z, v € {1,2,3,4}. We want to ensure that (p is well defined and thus normally
convergent on C*. Moreover, (y is meant to be an odd function of A or an even function of A (cf. remark
5.17).

Applying basic results concerning infinite products (cf., e.g., [33], chapter 1), the above lemma 5.21
immediately allows for the following conclusions:

1. (o is divergent (on C*) if and only if vy, € {3,4} for infinitely many k € Z. Consequently, presuming
o is well defined and thus normally convergent on C*, we infer that v € {3,4} for at most finitely
many k € Z and therefore (naturally) vy, € {1,2} for infinitely many k € Z.

2. By equations (5.5.44) to (5.5.47), we observe that, for all k € Z, pg) and pgf) define even functions

(3) (4

of A, while p;”’ and pk) define functions of A, which are neither even nor odd (in A). Thus, any

infinite product involving only factors of the form p,(;) and/or p,(f)

product of factors of the form pf’) and/or pgf) will be neither even nor odd in A\. Consequently, for

Co of the form (5.5.48) with vy, € {1,2} for infinitely many k € Z and vy, € {3,4} for at most finitely
)

will be even in A, while any finite

many k € Z, we infer that (p is even or odd in A if and only if all factors p;*’ occurring in ¢, are

of the form p,(cl) or of the form p,(f). (Actually, the case that (o is odd in A does not occur.)

We summarize our considerations above in the following lemma:

Lemma 5.22. Let {y be of the form

Co(N) =2 ( ﬁ @pf’”@)) : (5.5.60)

k=—o00

where, for all k € Z, v, € {1,2,3,4}, Cy, is given in (5.5.32), and the functions pku’“)()\) are defined by
(depending on vy ) (5.5.44), (5.5.45), (5.5.46) or (5.5.47), respectively. Then, the following holds:

Co is well defined for all X € C* and an even or an odd function of X, if and only if v, € {1,2} for all
k € Z. Actually, if vi, € {1,2} for all k € Z, (o is well defined for all X € C* and an even function of \.

In view of lemma 5.22 and remark 5.17, we can give the following basic form of a solution (y to
equation (5.5.33), which is well defined for all A\ € C* and an odd function in A:

Co(A _2m< I VT ) (5.5.61)

k=—oc0

where, for all k € Z, v, € {1,2}, C is given in (5.5.32), and the functions pk”"')()\) are defined by
(depending on 1) (5.5.44) or (5.5.45), respectively.

By remark 5.17, {y can still be modified by any A-dependent function g, which, in order to preserve
the properties of y, necessarily satisfies g(—\) = g(\) and gg = 1. Since g might possess singularities in
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C*, after modifying (o of the form (5.5.61) by g, the new solution g{y might not be well defined on C*.
However, this is not necessary: returning to theorem 3.59, we only want to achieve

sin(2mu)qo is holomorphic for A € C*, (5.5.62)
qo takes a finite value in C at A = 1 and is holomorphic at A =1, (5.5.63)

which in view of (cf. section 5.4)

Go

= — 5.5.64
o V3 sin(mp) ( )
translates into
cos(mp)(p is holomorphic for A € C*, (5.5.65)
Co takes a finite value in C at A =1 and is holomorphic at A = 1. (5.5.66)
Altogether, the general form of a solution (y to equation (5.5.33) is given by:
Go(N) = 2mAg(N) ( 11 \/ckpif%)) 7 (5.5.67)
k=—o00

such that ¢, satisfies (5.5.65) and (5.5.66), the function g satisfies
9(=A) = g(N), (5.5.68)
99 =1, (5.5.69)

and where, for all k € Z, v, € {1,2}, Cy is given in (5.5.32), and the functions pl(:’“)()\) are defined by
(depending on ) (5.5.44) or (5.5.45), respectively.

In following, we translate the conditions (5.5.65) and (5.5.66) into further constraints on the function
g, which will lead to a general form of g. We observe the following: In order to satisfy (5.5.65), equation
(5.5.67) implies that g may only have singularities at values of A € C*, where cos(mwu(A)) = 0. Moreover,
to fulfill (5.5.66), the value A = 1 is excluded from this, i.e. g needs to be well defined at A = 1 (although
(1) = § and thus cos(mu(1)) = 0). Since by (5.5.68) g(—1) = g(1), g is also necessarily well defined at

A = —1. The zeros of the expression cos(mu(A)) are given in the following lemma.
Lemma 5.23.
1
cos(mu(N\)) =0 <= (u(\)? = (5 +4)2 forj €7 = N J; = {:I:/\j,:I:)\j_l} forjez, (5.5.70)
where, for j € 7,
1
Aj = \/Qw |:dj +4/dF — 4w? (5.5.71)
and
1, 1
Furthermore, we have for all j € Z
A, A7 eRT (5.5.73)
Proof. We start the proof with the following observation:
1 1
cos(mp(N) =0 <= u(A) = 3 +jforjeZ < (u(\)?*= (5 +4)? for j € Z. (5.5.74)

This already proves the first part of (5.5.70). Furthermore, as pu(A) = \/i + w(A — A71)2, we have for
all j € Z and all A € C*

1. 1 _ 1
(M()\))2:(§+J)2 = Z-ﬁ-w()\—)\ 1)22(54—/{)2
1 1
= WX+ (—(5+0)+ ;20N +w=0

1|1 1 1 1
= A=+, — [(Z+j)2-=+2w+ 242 = 2 4 2w)? — 4w?|. 5.
A o (2—1-3) 4—|—w \/((2+3) 4+ w) w‘| (5.5.75)
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Defining d; as in (5.5.72) and for all j € Z

. 1 > 2
A1 = A \/2w dy + 2 - 4u?] (5.5.76)

1
Ao : = % — 22— 4w2} (5.5.77)
(5.5.78)
we obtain )
(n(N)?* = (5 +73)? = Ae{N1, A2 N3, Ajalt (5.5.79)
Next we show for all j € Z that

/\j,1, /\j72 e Rt and )\j73, )\j74 cR™. (5580)

Since, for all j € Z, (% +7)% - % > 0, and hence, using w > 0,

2 2 Lo 1 2 2 2 2

dj —4w” = ((5 +7)° - 1 +2w)? — 4w* > (2w)* — 4w =0. (5.5.81)

This implies that , /d? 4w? lies on the non-negative real axis. Furthermore, as a consequence of (5 +
§)? — i > 0 and w > 0, we have d; > 0. Hence,

dj + \/d2 — 4w? > 0. (5.5.82)

Moreover, as a consequence of d? > d? — 4w? > 0, we obtain d; = |d;| > , /d3 — 4w? > 0 and thus

dj:i:,/d?—4w2Zdj—,/d§—4w2>dj—dj:O. (5583)
1
\/m[dj +4/d? — 4w?] € RT, (5.5.84)
which proves (5.5.80).

Finally, observing that for all j € Z

1 I 1 IS a— 1
)\j,lAj,Q = \/211] [d] + d? - 411)2]\/2“} [dj — d2 4w2] % d? - (d? - 411)2) = 1, (5585)

we obtain

Ly
2

We infer that

o=\t

3,17

N3 = =Nt Aja =X (5.5.86)
In view of A; = A; 1 we infer that for all j € Z
(N A2 Aas Ajat = {A, A7) (5.5.87)

where, using (5.5.86), for all j € Z
A, ATh e R (5.5.88)

]’j

which proves (5.5.73).
Combining the relations (5.5.74) and (5.5.79) with the equation (5.5.87), the (second part of the)
claimed relation (5.5.70) follows. O

By lemma 5.23, the set of zeros of the expression cos(mu(A)) (in C*) is given by

U 7= U{En, £ (5.5.89)

JEZ JEZ

Observing that, for all j € Z, A\; = A_1_; and thus

Ty =Tami, (5.5.90)

101



and that, furthermore, J; contains £1 if and only if j = 0 (actually, Jop = {£1}), we conclude that
{Ae C"\ {£1};co8(mu(N) =0} =T := U Jj = U{:t)\j,:l:)\j_l}. (5.5.91)
JEN jEN
As indicated before, J = {A € C*\ {£1};cos(mpu(N)) = 0} defines the set of A-values in C*, where
the function g may be singular. More precisely, since each A € J is a simple root of cos(mu) (proved by
direct computation), g may at most have a simple pole at A € J.
For each j € N, there are four points in C*, at which g may have simple poles: +\; and i)\;l7 where
Aj is given by (5.5.71). In view of (5.5.68), we immediately infer that all poles of g come in pairs, i.e.
Aj is a (simple) pole of g <= —); is a (simple) pole of g, (5.5.92)
)\j_l is a (simple) pole of g <= 7)\].—1 is a (simple) pole of g. (5.5.93)
Assume now that, for some j € N, g possesses a pair of simple poles at +);. Thus, written in product
representation, g contains the factor (1 — %)_1(1 + %)_1. By (5.5.69), g consequently contains the

inverse factor (1 — £)(1 4+ ). In particular, g(+\;) = 0. Since, by definition, g(A) = g(\ 1), this
J J

implies directly (using A\; € R), that g(:l:)\ij_l) = g(£A; ") = 0, which means that g also contains the

factor (1 — A/\;)(l + ’\/\—_Jl) Altogether we conclude that, if, for some j € N, g possesses a pair of simple

1
j
poles at £\, then g contains in its product representation the factor

gin(A) = (5.5.94)

Analogously, we infer that, if, for some j € N, g possesses a pair of simple poles at :I:)\]71, then g contains
in its product representation the factor

(5.5.95)

gi2(A) = 5

(Obviously, for each j € N, g can only possess a pair of simple poles at £\; or at :I:)\;1, since the
respective other pair will automatically become a pair of zeros of g.) We note that the factors g;; and
gj2 are even in A and satisfy the relation (5.5.69). Thus, they are valid components of g.

So far, theoretically, g may contain an infinite product of factors of the form (5.5.94) and/or an infinite
product of factors of the form (5.5.95). To prove that this is actually possible, we show that the following
holds:

Lemma 5.24. The infinite products (of functions)
[To52) and ] g2, (5.5.96)
JEN jJEN
where, for all j € N, g;1 is given in (5.5.94) and g;2 is given in (5.5.95), are normally convergent on
C*\Ujen{£A} and C* \UjeN{i)\gl}, respectively.
Proof. This is proved in appendix I. O
Finally, we observe that g can be completed by an additional factor, which is well defined and non-zero
for all A € C* and even in A. By definition of g and equation (5.5.69), this factor can be written in the

form

e (5.5.97)

where h denotes a real valued even function of .
Altogether, we conclude that the function g can be written in the general form

g =TT 952N | | T] 952 (5.5.98)

JENL JjENy

where h denotes a real valued even function of A, the functions g;1 and g;2 are for all j € N given
in (5.5.94) and (5.5.95), respectively, and Ny, Ny denote subsets of the natural numbers N satisfying
N; NNy = (). In the case Ny = () or N5 = ), the corresponding product over j is set to be 1.

We summarize our results:
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Theorem 5.25. The general solution (o to the equation

CoCo = 4sin®(mp) — 1 (5.5.99)
satisfying
Co is an odd function of A, (5.5.100)
cos(mu)Co is holomorphic for A € C*, (5.5.101)
Co takes a finite value in C at A =1 and is holomorphic at A =1 (5.5.102)

18 of the form

o) =2mxe™ [ T 9500 ) | TT 952 (H @p;”k>(A>>, (5.5.103)

JEN; JEN, k=—o0
where h denotes a real valued even function of A € C*, the functions g;1 and gj 2 are for all j € N given

by

(=3 + )
9i1(A) = (- 0+2) (5.5.104)
1-2)+5)
9]',2(/\) = (1 _ A}\—jl)(l n A};l) (5.5.105)

with \; given in (5.5.71), Ny, Ny denote subsets of the natural numbers N satisfying Ny NNy = 0, and
where, moreover, vy € {1,2} for all k € Z, Cy is for all k € Z given in (5.5.32), and the functions

pg’k)()\) are defined by (depending on vy )
A A

P ) =(- Tk)(l + Tk)’ (5.5.106)
P () =(1- %)(1 + %) (5.5.107)

with Ay given in (5.5.4). (In the case Ny =0 or N = (), the corresponding product over j is set to be 1.)

Remark 5.26. It is suspected (based on computer experiments) that the special solution {p to (5.5.99)
associated with A(A) =0, Ny =Ny =@ and v, = 1 for k < 0, v, = 2 for k > 0, i.e.

Co(n —2m< IT ve )(ﬁ Cw,i”(A))
k=—o0 k=0
—1 2 00 -2
=27\ ( II veea- %)) <H VCr(1 — AA%)> . (5.5.108)
k=—o00 k=0

corresponds to the triple of unitarized monodromy matrices Mj, j = 0,1, 00, associated with a (com-
pletely) properly embedded trinoid M — R3. Other solutions o to (5.5.99), which differ from (y given
in (5.5.108) only “on finitely many positions” in the sense that the corresponding subsets Nl, N, of N are
finite and 7, # vy only for finitely many & € Z, seem to induce trinoids with finitely many “bubbles” (in
the sense of [27]) but still with properly embedded annular ends. This seems to be perfectly consistent
with the following observation: While (o given in (5.5.108) induces a dressing matrix 7" which determines
a solution ¥ = T'F to the differential equation d¥ = W7 (cf. section 3.9), (o induces a dressing matrix T
which determines another solution ¥ = T'U to the same differential equation with unitary monodromy
matrices M , j =0,1,00, which differ from the unitary monodromy matrices M]7 7 =0,1,00 of o only
by conjugation with a matrix S, which is given as a finite product of conjugation matrices which “bring
n” the factors g;1(\) for j € Nl and g;2()\) for j € Ny, respectively, and replace for k € Z with 7, # vy,
the factors p( )()\) by p,(f)()\) (and vice versa). The single conjugation matrices contributing to S seem
to play the role of simple factor dressing matrices in the sense of [26]. Consequently, the solutions 0
and ¥ = S¥ would be related by a finite product of simple factors, which, by [26], would imply that 7
produces a trinoid with properly embedded annular ends.
According to these considerations, solutions to (5.5.99), which differ from (o given in (5.5.108) “on
infinitely many positions”, would produce trinoids which do not possess properly embedded annular ends
(but are still rotationally symmetric with respect to the trinoid normal).

103



6 Rotational symmetry with respect to a trinoid axis

6.1 Definition

The second possible trinoid symmetry type we are going to study encompasses the symmetries with
respect to the rotations Rg, R1 and R, by the angle m around the trinoid axes Agp, A; and A,
respectively. Recall that, by theorem 4.31, R, R1 and R preserve orientation on R3 and permute the
trinoid ends according to the permutations (1 00), (0 co) and (0 1) of the set {0, 1, 00}, respectively.

Definition 6.1. Let M = (C\{O 1} and ¢ : M — R? be a trinoid with properly embedded annular ends.
Let M =H and ¢ = ¢ o : M — R? the conformal CMC-immersion associated with ¢ via the universal
covering 7 : M — M given in (3.2.2). Then, if ¢ (or, equivalently, 1) is symmetric with respect to the
rotation R; by the angle 7w around the trinoid axis A,

Ri(¢(M)) = ¢(M), Ri((M)) = (M), (6.1.1)
@ (or ) is called rotationally symmetric with respect to the trinoid axis Aj.

In analogy to the previous section, we translate the symmetry property (6.1.1) into further constraints
on the monodromy matrices associated with the extended frame F of .

6.2 Implications of rotational symmetry with respect to a trinoid axis
As a direct consequence of definition 6.1, we state the following lemma:

Lemma 6.2. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annu-
lar ends produced from a trinoid potential n as in theorem 3.14. Denote by Dy, D1, Dy the corre-
sponding Delaunay matrices with eigenvalues ‘g, 11, e, respectively, where, for j € {0,1,00},
i = \/ij = \/% +w;j(A—A71)2 and w; = s;t; as in section 3.5. Moreover, denote by By, B1 and
By, the trinoid ends and by Ay, A1 and Ay, the trinoid axes. Then, the following holds:

1. If ¢ is rotationally symmetric with respect to the trinoid axis Ay, we have

11 = fhoo- (6.2.1)
2. If ¢ is rotationally symmetric with respect to the trinoid axis Ay, we have

1o = fhoo- (6.2.2)
3. If ¢ is rotationally symmetric with respect to the trinoid axis Ao, we have

Lo = 41 (6.2.3)

Proof. We carry out the proof for the first case, i.e. suppose ¢ is rotationally symmetric with respect
to the trinoid axis Ag. By theorem 4.31, the corresponding symmetry R preserves the trinoid end By,
while it rotates the trinoid ends B; and B, into each other. This means that the asymptotic Delaunay
surfaces associated with the ends at By and B, are rotated into each other as well. Hence, these Delaunay
surfaces only differ by a rigid motion on R3. In particular, this implies that the corresponding Delaunay
matrices D; and D, possess the same eigenvalues, i.e. (1 = fioo-

The other two cases are proved analogously. O

Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1 the
associated conformal CMC-immersion on M = H, ¢y =¢om : M — R3, where 7 denotes the universal
covering M — M given in (3.2.2). Suppose ¢ (or, equivalently, ¢) is rotationally symmetric with respect
to the trinoid axis A;, and denote the corresponding symmetry by R;. Since R; preserves orientation
on R3, we obtain by theorem 4.9 a pair of biholomorphic mappings, vz, : M — M and g, : M — M
satisfying

Riop=¢or,, (6.2.4)
Riop =1oqgr,, (6.2.5)
TOoAR, =R, OT. (6.2.6)
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The mappings yg,, | = 0,1, 00, are uniquely determined and explicitly given by lemma 4.21:

z

TRy (2) = P (6.2.7)
TR, (2) = % (6.2.8)
TR (2) =1—2. (6.2.9)

The mappings y%,, { = 0, 1, 00, are uniquely determined up to composition from the left with elements
of the automorphism group Aut(M /M) of w. The following lemma explicitly states valid choices for 4g,,
l=0,1,00:

Lemma 6.3. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as given in (3.2.2).
Let yg, : M — M, 1 =0,1,00, be given by (6.2.7), (6.2.8) and (6.2.9), respectively. Then, the following
holds:

1. The mapping YR, : M — M,

FRo(2) = ;:_12, (6.2.10)

is biholomorphic and satisfies
TOYR, = TVRo O T, (6.2.11)
Rooh =1 oqr,. (6.2.12)

2. The mapping YR, : M — M,
YR, (2) = %;11 (6.2.13)

is biholomorphic and satisfies
TOYR, = VR, O, (6.2.14)
Rioth =1 oAig,. (6.2.15)

3. The mapping yr_, : M — M,
R (2) = f%, (6.2.16)

s biholomorphic and satisfies
TOVRa = TRoo O, (6.2.17)
Reoot) = oigr__. (6.2.18)

Proof. Direct computations show that yg,, | =
over, by applying the relations (3.2.10) and (3.2

woano(Z)ﬂ(_zi_f) :W(_l_ Zil) - W(—lzl)

0,1, 00 define biholomorphic mappings M — M. More-
.11) of lemma 3.4, we obtain for all z € M

+1
1 1 7(2)
= = = = 6.2.19
T—r(z+1)  1- 4~ w(z)-1 TRy 07(2); (62.19)
—z—1 z 1
~ = = —]_ =
™o AR, (2) 7T(224—1) W( +22—|—1> 7T( z )
2z+1
1 1 1 1
= = = = = 3 6.2.20
TA (B T oa(2 1) 1oa( D a@ ok 0220
1
moAr (2)=m (—) =1-m(z) =yr, o7(z), (6.2.21)
z
ie. moAr, =yr, om for [ =0,1,00. Consequently,
Riop=Rjopom =¢poyg,om=¢omojr, = oiR,, (6.2.22)
ie. Rioyp =1oAqg, for [ =0,1, co. O
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By the above lemma, we have explicitly determined mappings yz,, [ = 0,1, 0o, corresponding to the
trinoid symmetries Ry, [ = 0, 1, 0o, respectively, in the sense of theorem 4.9. Thus, we can apply theorem
4.17 to obtain

Theorem 6.4. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends
and 1 the associated conformal CMC-immersion on M = H, ¢ = ¢on : M — R3, where 7 denotes
the universal covering M — M as defined in (3.2.2). Let ¢ be rotationally symmetric with respect to
the trinoid azis A;. Denote the corresponding symmetry by R; and by yr, the biholomorphic mapping
M — M associated with R; as in theorem 4.9 and explicitly defined in lemma 6.3. Then, the extended
frame F : M — ASU(2), corresponding to ¢ by theorem 4.5 transforms under 4g, as

>

F(r(2),

where Mg, (\) denotes an element of ASU(2),, which is independent of z, and

) = Mg, (M) F(z, )\)thA{{zl (2), (6.2.23)

z+1 0

kRo Az, (2) = z+1 o in the case | = 0, (6.2.24)
0 z+1
2z+1 O

kRy vz, (2) = 2z+1 o in the case l =1, (6.2.25)
0 2z+1
Z 0

kRor (2) = \{]: \F in the case | = oo. (6.2.26)

Proof. As R, preserves orientation, we apply the first part of theorem 4.17 to obtain
F(yr,(2), ) = MR, (M) F (2, \)kR, 5z, (2), (6.2.27)

where F : M — ASU(2), denotes the extended frame corresponding to ¢ by theorem 4.5 and Mg, :=

M5y, denotes an element of ASU(2),, which is independent of z. Moreover, kR, ~7, 18 given by equation

(4.4.117) from lemma 4.18. Recalling from lemma 6.3 that z,(z) = %’12, YR, (2) = 357 L and z__(2) =

f%, we compute

- 1
DR, (2) = EEEL (6.2.28)
1
7 T 9,112 2.2
9:9r, (2) 2412 (6.2.29)
- 1
0:9r (%) = 3 (6.2.30)
which implies
2 _
0:Aro(2) _ |z+1P _ Z+ 17 62.31)
| 0.9r,(2) | (z+1)2  z+1
0%, (2)  2z+1]2 2241
) 6.2.32
| 5z7721 ()] (2z+1)2  2z4+1 ( )
Re(2) _ 2P _Z
- - 6.2.33
| 3z772x(2) | 22z ( )

Hence, we obtain from (4.4.117) the claimed explicit forms for kR, ~#,» I = 0,1,00. This finishes the
proof. O

6.3 Monodromy matrices of trinoids with properly embedded annular ends,
which are rotationally symmetric with respect to a trinoid axis

We now study the (unitary) monodromy matrices My, My, M. associated with a trinoid with properly
embedded annular ends with rotational symmetry with respect to the trinoid axis A;. Our considerations
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are based on the relations between the b1h010morph1c mappings yr, associated with the symmetries R;
and the covering transformations 7; on M generating the monodromy matrices M Recall the latter

ones from section 3.3:

z —3z—2
~ = —— ~ = 2 ~OO = —
Yo(2) = 7 M) =242 Guel(2) = 57
The corresponding inverse functions are given by
-1 o ~—1 ~—1 z+2
= =z-2, = :
) = ) =2 —2 AR =

The relations mentioned above are stated in the following lemma.
Lemma 6.5. Let M = H and Y0515 Yoo - M — M be given as above.

1. For Ag, : M — ]\;[,'?RD (2) = the following identities hold:

z+1 7

ARo ©F0 = A1 0 A ©FRes AR © V1 = Foo © FRos TR © Foo = A1 © YRy -

2. For g, : M — M, g, (z) = the following identities hold:

2z+1 ’

ARy 070 = Foo ©R1s AR OF1 = Aoe 00 L 0ARYs ARy © Voo = 0 © VR, -

3. Forqg.. : M — M,3r_(z) = =L, the following identities hold:

AR 90 =1 0 ARwr AR ©F1 =700 TRocs  FRoo ©Foo =T ©F1 0 AR -

Proof. For z € M we have by direct computation

—(z+2)—2_—z—4_—3 —==2 -2

Ro 0 M(2) = (z+2)+1 243 2=2=2 1] = oo ©1R0 (2),
z4+1
—3z—2
- -2 z —z—2
~ ~ 2z+1 ~ ~
ARy © Voo (2) = —75 = = +2 =% 09R,(2),
o 1 z+1 z+1
S —3z2=1_9
~ ~ —2z+1 2z+1 ~ ~
AR, 00(2) = s =2 1= — 57— = Y0 0 YR, (2),
' 2 2§+1+1 2222—‘,-1 +1 '
_ =3z— 2_1 . 1 —z—1
- ~ 2211 —z = 2211 -
Ry © Foo(2) = 32—2 = = —_1 =0 0 YR, (2),
! 25222 +1 4243 2554 +1 !
5 5 1 2z —1 1 N -
TR 0F0(2) = ——5—=——— =——+2=T0r.(2),
—2z+1
1 _1
YRo ©F1(2) = 2= 2li1 =70 © YR (2)-
4

The remaining identities follow from the ones above by use of 59 0 4; 0 J5 = id on M:
< ~ _ = =1 x—1(\ _ ~—1 = c—1/\ _~—1 -1~
YRo ©Y0(2) = R0 © Voo ©T1 (2) =91 0ARe 0V (2) =1 0T ° YR, (2),
’?721 © :)/1(2) = :YRI 0’7071 © :Y;ol(z) = :y;ol O;?Rl © :ygol(z) = ’?;ol O’?(;l O;)(/Rl (2),
and

ARe © Voo (2) = ARo 091 1 0 %5 1 (2) =5 0 AR 070 1 (2) =0

In view of this, we are able to prove the following theorem:
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Theorem 6.6. Let M = C\{0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and v
the associated conformal CMC-immersion on M =H, P = gom: M — R3, where 7 denotes the universal
covering M — M as defined in (3.2.2). Let ¢ be rotationally symmetric with respect to the trinoid axis
A;. Denote the corresponding symmetry by R;. Furthermore, let F @ M — ASU(2), be the extended
frame associated with ¢ by theorem 4.5. Denote by Moy, My, My € ASU(2,C), the unitary monodromy
matrices

M; = — {cos(%r,uj) (é (1)> + isin(2mp;) (2; _q;j)] (6.3.15)
associated with F' as in (4.5.13) by
F(3;(2),\) = a; M;(\)F (2, Nkj(2), j=0,1,00, (6.3.16)

where a; € {£1} and 7, denote the covering transformations on M from section 3.3. Finally, let 3 YR, be

the biholomorphic mapping M — M associated with R; as in theorem 4.9 and explicitly given in lemma
6.3, and

Mp, () = 9B PR (6.3.17)
le aRl

the corresponding monodromy matriz of F satisfying (6.2.23).

1. In the case l =0, the monodromy matrices satisfy

M, (A)Mi(A) = Moo(\) M, (), (6.3.18)

Mpy(\) Ma(N) = Mi(X) Mz, (N, (6.3.19)

My (AN Mo(A) = (M1 (A) ™ (Moo (X)) ™" M, (). (6.3.20)

In terms of the functions p; and q; occurring in Mj, equations (6.3.18) to (6.3.20) are equivalent
to

aReP1 + bRQ1 = ARoPoc — DRy Too; (6.3.21)

_b'Ropl + a'Rho = bRopoo + aquoo; (6322)

AR Poc Ry o0 = aR,P1 — bR, 1, (6.3.23)

—bRroPoc + ARyGoo = bReP1 + ARG (6.3.24)

2. In the case | = 1, the monodromy matrices satisfy

Mg, (\)Mo(N) = Moo (A) M, (N), (6.3.26)

M, (WL (V) = (Voo (0) ™ (Mo(A)) ™ M, (A). (6.3.27)

In terms of the functions p; and q; occurring in Mj, equations (6.3.25) to (6.3.27) are equivalent
to

AR, Poo + bR, Goo = ar,Po — bR, G0, (6.3.28)

—bR, P + AR, Gc = bR, Po + TR 0, (6.3.29)

aRlpo + leqO = aRlpOC - Eq}; (6.3.30)

7b721p0 + anl% - lepoo + AR G0 (6331)

3. In the case | = oo, the monodromy matrices satisfy

Mg (N Mo(X) = My (M) Mg (N, (6.3.32)

Mg (\)Mi(N) = Mo(\) Mg (), (6.3.33)

M. (NN (A) = (Vo(A) ™ (V1 ()~ M (A). (6.3.34)
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In terms of the functions p; and g; occurring in Mj, equations (6.3.32) to (6.3.34) are equivalent

to
aRr..po +br,.q = ar. p1 — br. 1, (6.3.35)
—br..po +ar. Qo = br..p1 + AR 1, (6.3.36)
aRr..p1+br.q1 = ar, .po — br. 0, (6.3.37)
—br..p1 +ar. @ = br.Po + AR _Qo- (6.3.38)

Proof. We start with the case [ = 0, i.e. with a trinoid with properly embedded annular ends, that is
symmetric with respect to the rotation Rg by the angle 7 around the trinoid axis Ag. Combining (6.2.23)
from theorem 6.4, equation (6.3.16) and the identities (6.3.3) from the above lemma, we obtain

Mgy (A)0roo Moo (M) F (2, koo (2)kRy 52, (Foo (2) = Mry (M) F (oo (2), N kR 5, (oo (2))
= F(YRo © Voo (2), A) = F(71 0 R, (2), A)
= a1 My (\)F (R, (2), N1 (TR (2)) = a1 My (A) My, (A F (2, NkRg 5, (2)k1 (R, (2))  (6.3.39)
and
Mgy (\)or My (M) F (2, Nk (2)kRo 5, (71(2)) = Mry (A F (71(2), MR s, (71(2))
= F(R, ©71(2), A) = F(Fo0 © YR, (2), A)
= Qoo Moo (N F (TR0 (2), Moo (TR (2)) = e Moo (A) MRy (A F (2, ARy i, (2)koo (TR0 (2)). (6.3.40)

Computing (due to the occurring complex roots up to sign)

2+§ O
k1(2)kRo fm, (71(2)) = . .
0 zZ+3
z+3
zZ—2
=1 g — 0
=+ |V = = kR 3r, (2)koo(TRe(2))  (6.3.41)
0 Z+1 142272 0
z+1 0 z—2
142255
and
—3z— 2+1
142z 0 St 0
Koo (2)kRo 5y (oo () = | V152 . A —
0 s 2zi1 L
142z 0 —5z-2
2z+1 +1
zZ+1 0
= H - = ikRo,:YRO (z)kl (’?Ro (Z)), (6342)
0 =
we conclude that
Mz, (A My (N) = ta1000e Moo (A) Mz, (), (6.3.43)
Mz, (N Mao(N) = £asoon My(A) Mz, (). (6.3.44)
This can be reformulated as
Mi(\) = 01000 Mry, (A) ™ Moo (A) Mz, (N, (6.3.45)
Moo (N) = £asoo Mg, (A) " My(N) Mz, (). (6.3.46)

Comparing the upper left entries as well as the lower right entries of both sides in each of these equations,
we obtain

— cos(2mpy) — isin(2mp )p1

= to10s [— co8(2T oo ) — 1 SIN(2T loo ) (ARG TRY Poo — ARy DRG0 — TRgOR, oo — bnoapoo)} , (6.3.47)
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— cos(2mp1) + isin(2mp)pr
=toi0s [— c08(27 oo ) + 1 SI0(27 oo ) (ARy TRy Poo — AR DRoGoo — GRgOR,To0 — bnoapoo)] (6.3.48)

and

— €o8(2T oo ) — 1 SIN(27 oo ) Poo
= tas 0 [— cos(2mpy) — isin(27mpu1 ) (AR, TReP1 — ARGORL Q1 — TRGORGTT — bRoﬁpl)} , (6.3.49)

— €co8(2T oo ) + 4 SIN(27 fhoo ) Poo
=ta,0 [— cos(2mpy) + isin(27mu1 ) (AR, GRyP1 — ARGOR, 1 — ARG ORG T — bRO%pl)} , (6.3.50)

respectively. By summing up the first two equations (and recalling that p., = p1), we conclude that the
factor +aa, necessarily equals +1. Analogously, by summing up the other two equations, we deduce
as well +aa; = +1. Therefore,

My (NN () = Moo (N M, (M), (6.3.51)

My (WMo (A) = N3 (\) M, (A). (6.3.52)

as claimed.
What remains to prove is (6.3.20). But this equation follows in view of (3.9.32) directly from equations
(6.3.19) and (6.3.18):
Mz, (\)Mo(A) = Mg, (A) (Moo (A) ™ (M (V)
= (M1 (X))~ MR, (\)(Mi(A) ™" = (Mi(X) 7 (Moo (A) ' Mp, (V). (6.3.53)

As equation (6.3.20) is implied by equations (6.3.18) and (6.3.19), these three equations are equivalent
to the scalar reformulations of the equations (6.3.18) and (6.3.19), which read

—cos(2mpuy)ar, — isin(2muy)(aryp1 + broq1) = — €08(2Tfioo ) AR, — 1 8IN(27 hoo ) (AR, Poo — DR To0)s
(6.3.54)

—cos(2mp1 )br, — 18in(2mp1) (AR, Gr — broP1) = — COS(2T oo ) bRy — ©SIN(27 oo ) (BRoPoo + TRy Go0),
(6.3.55)

and

—COS(2T floo ) ARy — 1SN (27 oo ) (AR Poo + DRy Goo) = — €OS(2T 1 )aRr, — i8in(27 1) (ar,P1 — bR, G1),
(6.3.56)

— €08(2T oo )by — 18IN(2T oo ) (AR Too — DRy Do) = — cOS(2m 1 )R, — i sin(2mp1) (bryP1 + TRLGL),
(6.3.57)

respectively. A straightforward simplification of these equations yields the claimed ones and finishes the
proof of the first case, [ = 0.

The cases I = 1 and | = oo are proved completely analogously by simply shifting labels. The only
remaining identities, which still need to be checked, are

koo (2)kRy Ar, (oo (2)) = £hr, 5, (2)k0 (YR, (2)), (6.3.58)
ko(2)kry 5r, (F0(2)) = £hr, 5r, (2)koo (TR, (2)), (6.3.59)
ko(2)kR o ar o, (Y0(2)) = £hR oo Ar ., (2)F1 (TR (2)), (6.3.60)
kL(2)kR o im. (1(2)) = Ehr o ae . (DDo(iR. (2)). (6.3.61)
This is done by direct computations:
—— 253224 —F—
142z 0 PE ceray 0 4743 0
- 2 1
koo(z)k'Rl,’ynl (’Yoo(z)) — 1422 — 2=F1 T S _ 4z+3 —
0 T 0 =5 i 0 o
250+l
2l = 0
==+ OZ 7 ot | = Fhradw, (2)ko(Tr, (2)), (6.3.62)
2z+1 0 1—oz2=1
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1-2z 0
_ —5 0 p——— 10
Fo(2)kmy m, (o)) = | V172 , o | (o 1)
0 1-22 0 22 +1
1-2z 2+l
P 0 2 0
= 142521 5
-4 2z+1 ) 2211 _ = ith%al (2)koo (AR, (2)), (6.3.63)
0 27+1 142527
2241 0 25
255

1-27 0 7ﬁ 0

Bo(Mhpoim. o)) = (V2 )| V=
0 T=2: \) =2
—2z+1

= kR dn. (D)F1 (YR (2)), (6.3.64)

Il
(an)
=T
IS
Q‘ o
ISEENT]

zZ42 0
~ _ z42
k1(2)kR o 5r. (T1(2)) = =
0 z+2

—
+
Rulto
o

-
+
N

n

— thr an. (Dko(Tro (). (6.3.65)

IIN]

( -
= :l: z —
0 \ﬁ 142
: 0 o
0

6.4 Normalized trinoids with properly embedded annular ends, which are
rotationally symmetric with respect to a trinoid axis

Let [ € {0,1,00} and ¢ : M — R? be a trinoid with properly embedded annular ends, which is rotationally
symmetric with respect to the trinoid axis A;. Moreover, let 1) = ¢ o7 be the associated CMC-immersion

M — R3. Denote by Ry the corresponding symmetry of ¢ (and ), i.e. the rotation by the angle 7
around the trinoid axis A;. 3
We review the results of section 6.3 in the special case that the extended frame F': M — ASU(2),

associated with 1 as in section 4.2 is “normalized” at z,; € M, which we choose depending on [ as
follows:

Zeg=—1+ie M, (6.4.1)
141 -

1= 2“ e N, (6.4.2)

Zaoo =1 € M. (6.4.3)

The “normalization” of F' is realized in form of the presumption that
F(ze,A) =1 (6.4.4)

for all A € S'. More precisely (cf. section 4.2), the normalization F(z,;,A) =1 of F is a consequence of
normalizing the (conformal) CMC-immersion 1, such that

Uen) = spres Ulzar) =G(1), (6.45)

where U € SO(3) represents the natural orthonormal frame corresponding to ), and G(1) is given in
(4.2.5). Recall from section 4.2, that this normalization of ¥ corresponds to rotating and shifting the
(image of the) trinoid in R3, such that the conditions (6.4.5) are met. It turns out (cf. corollary 6.8), that
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the choice of z,; as above (for a trinoid ¢ with properly embedded annular ends, which is rotationally
symmetric with respect to the trinoid axis A;) corresponds to arranging the (image of the) trinoid in R3,
such that the rotation axis of R; is the z-axis in R3.

A trinoid ¢ : M — R3? with properly embedded annular ends, which is rotationally symmetric with
respect to the trinoid axis A; and, in addition, is “well positioned” in R? in the sense that the associated
conformal CMC-immersion ¢ : M — M meets the normalization conditions (6.4.5), is called a normalized
trinoid with properly embedded annular ends, which is rotationally symmetric with respect to the trinoid
axis A;.

We now formulate a more explicit version of theorem 6.4:

Theorem 6.7. Let M = C\ {0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and
¥ the associated conformal CMC-immersion on M=H, ¢ = ¢onr : M — R3, where = denotes the
universal covering M — M as defined in (3.2.2). Letl € {0,1,00} and ¢ be rotationally symmetric with
respect to the trinoid azis A;. Moreover, let, according to l, z.; be given in (6.4.1), (6.4.2) or (6.4.3),

-1+
2 b

Zeo=—1414, 2.1 = Zs .00 = 1, (6.4.6)

and assume that ¢ has been normalized at z.;, such that ¥(z.;) = ﬁeg and F(z.;,A) = I, where

F:M— ASU(2), denotes the extended frame corresponding to 1 by theorem 4.5. Denote by R, the
corresponding symmetry of ¢ and by Ar, the biholomorphic mapping M — M associated with R; as in
theorem 4.9 and, according to 1, explicitly given in (6.2.10), (6.2.13) or (6.2.16):

—z—2 —z—1 1
g — S - - ~ = ——. .4.
Tro(2) =~ () = oy Ra(e) = (6.4.7)
Then, the extended frame F transforms under 4r, as
F(:)/Rl (Z)7 )‘) = Mg, (/\)F(Zv )‘)kRL,’ﬁzl (Z) (648)

where kg, 7, (2) is, according to I, given in (6.2.24), (6.2.25) or (6.2.26) and

—1

Mz, (\) = (é 0.) . (6.4.9)

In particular, Mg, is actually independent of A.

Proof. In view of theorem 6.4, we only have to prove the equation (6.4.9). To this end, we compute

- —(=1+14) -2

x0) = 73 TN 3 T A0 6.4.10
——
VR (261) = S = #0 6.4.11
’YR1( ,1) 2_12_:,_1 1 ,1 ( )
1
TR (Zr,00) = =2 = Zio0s (6.4.12)
which shows that we have for all [ € {0, 1, 00}

AR (Zx1) = 2l (6.4.13)

Furthermore, F(z.,;, A) = I. Thus, evaluating equation (6.4.8) at z = z,; yields

I= F(Z*,la )\) = F(’S’Rz (Z*,l)’ )‘) = MRL(A)F(Z*,h )‘)kRzﬁfz, (2*,1), (6'4'14)

Mg, (X) = (kRmkl (z*,l)) - (6.4.15)

In view of remark 4.14 (for our definition of the complex square root) and equations (6.2.24), (6.2.25)
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and (6.2.26), we have

E*}Jrz;Jr} 0 ~i 0
. — —T+i)+ —
kRo vz, (74,0) . —n (0 l) , (6.4.16)
(—1+0)+1
e 0 _—
—Z i
kR v,y (2e1) = =t | = ) (6.4.17)
' 2=1=iy1 0
! R
70 ~i 0
k'Roo»'Y?”Ql (Z*,OO) = — == ( 0 Z> 9 (6418)
0 =L
ie.
-1 0
kRi vz, (240) = ( 0 Z> (6.4.19)
for all I € {0,1,00}. Altogether, (6.4.9) follows. O

Corollary 6.8. We retain the notation and the assumptions of theorem 6.7. The rotation axis of the
symmetry R, of the normalized trinoid ¢ is the z-axis in R3.

Proof. Applying (the first part of) theorem 4.17, we know that the monodromy matrix Mg, (A) explicitly
given in theorem 6.7 satisfies at A =1
Mg,(1) = £Ag,, (6.4.20)

where Ag, € SU(2) denotes the conjugation matrix realizing the orthogonal part Ag, of the symmetry
R in the su(2)-model. In view of equation (6.4.9), this yields

—1

Ag, =+ (é O.) . (6.4.21)

Recalling that Ag, and Ag, are linked via the Lie Algebra isomorphism J : R3 — su(2) defined in (3.4.3)
as in (3.4.7), i.e.
(JoAg, 0 J ) (X) = Ag, X A% for all X € su(2), (6.4.22)

we obtain by a direct computation that

-1 0 0
A, =0 =1 0]. (6.4.23)
0 0 1

Thus, Ag, defines the rotation (in R?®) by the angles m around the z-axis in R3, Res. Consequently, the
symmetry R; of the normalized trinoid ¢ is a rotation by the angle m around an axis in R®, which is
parallel to the z-axis. As the point ¥(z.;) € R?® (with z,; given in (6.4.1), (6.4.2) or (6.4.3) according to
1) satisfies

Ri(¥(260)) = V(TR (240)) = ¥(240), (6.4.24)
it lies on the rotation axis of R;. Since by assumption we have 1(z, ;) = %63, we infer that the rotation
axis of R; is actually the z-axis in R3. O

Applying the theorems 6.6 and 6.7, we obtain the following result:

Theorem 6.9. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1
the associated conformal CMC-immersion on M =H, ¢ = por : M — R3, where  denotes the universal
covering M — M as defined in (3.2.2). Letl € {0,1,00} and ¢ be rotationally symmetric with respect to
the trinoid axis A;. Moreover, let, according to l, z.; be given in (6.4.1), (6.4.2) or (6.4.3), and assume
that ¢ has been normalized at z, 1, such that ¥(z.;) = ﬁeg and F(z.1,\) =1, where F : M — ASU(2),
denotes the extended frame corresponding to i by theorem 4.5.
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1. In the case | = 0, the unitary monodromy matrices Mj € ASU(2,C),, 7 = 0,1, 00, associated with
F as in (6.3.16) are of the form

Ny = — cos(2m o)1 — 2avi cos(mpo) <COS(¢2g71%) B Cos(ig;m» , (6.4.25)
A . (acos(muy) &

My = —cos(2mpuy )1 — i ( a 1 Y COS1(7T/1,1)> ’ (6.4.26)
. [ acos(mur) —(1

Moo = — cos(2mp)I — i < S —acos(lﬂ,ul)> ’ (6.4.27)

where a € {1} and (1 is an odd function in A and a solution to
11 = sin?(2mp1) — cos?(muo). (6.4.28)

2. In the case | = 1, the unitary monodromy matrices Mj € ASU(2,C),, 7 = 0,1, 00, associated with
F as in (6.3.16) are of the form

My = — cos(2m i )T — i <a CO_S(CZLOO) o c;sc(o;uoo)> ) (6.4.29)
M, = — cos(2m 1 )1 — 2cvi cos(muy ) (COSSZC:OMOO) _ CO;éngouoo)> , (6.4.30)
Moo = — cos(2mpoo )l — i (O‘ COZ(;T““) . C(f;(OWOO)> , (6.4.31)

where a € {£1} and (s is an odd function in A and a solution to
Cooloo = SIN? (27 oo ) — cOS* (i), (6.4.32)

8. In the case | = oo, the unitary monodromy matrices Mj € ASU(2,C),, j = 0,1, 00, associated with
F as in (6.3.16) are of the form

N . (acos(mpg) Go
Mo = —cos(2mpuo)l — 4 < Go ’ —a coso(ﬂ'uo)) ’ (6.4.33)
S lacos(nuo)  —Go
My = —cos(2mpo)l — i ( —&, 0 704 COS(OMO)) , (6.4.34)
Moo = — cos(2m 100 )T — 20vi cos(Tptso ) <COS(Z_2£MO) _ CO—SEgSTMO)) , (6.4.35)

where o € {1} and (o is an odd function in A and a solution to
CoCo = sin?(2mpg) — cos? (T ptoo )- (6.4.36)

Proof. We prove the case | = co. As before, we denote the symmetry of ¢ by R; = R and by 4z_ the
biholomorphic mapping M — M associated with Ro as in theorem 4.9 and explicitly given in lemma
6.3. Moreover, let Mgz__(A) be the corresponding monodromy matrix of F' as introduced in equation
(6.2.23). In view of theorem 6.7, we have

Mg (\) = ( R bR°°> (6.4.37)
—br, aR.
where
AR =1 and bRoo =0. (6.4.38)

_ Moreover, by theorem 6.6, we obtain the following relations between the unitary monodromy matrices
M; of the extended frame F:

Mg (\)Mo(A) = My(\) Mz, (N), (6.4.39)
Mz (\)Mi(X) = Mo(A\) Mz (V) (6.4.40)
Mg, (N Moo (A) = (Mo(X) " (M1 (A) ™ M., (V), (6.4.41)



which translate into the following scalar equations involving the functions p; and g; occurring in M 5 (cf.
(3.9.26)):

P1=Dpo, 1= —Qo. (6.4.42)

Thus, in the case of a normalized trinoid, which is rotationally symmetric with respect to the trinoid

axis Ao, we obtain the following equivalent reformulations of (3.9.50) and (3.9.51), characterizing the
monodromy matrices M; (recall from lemma 6.2 that pp = pq):

po =0 and pj+ qogo = 1, (6.4.43)
_ cos?(2mpug) + cos(2m oo
78 — o = =21k 2) (2mptoc) (6.4.44)
sin” (27 o)
Here, the second equation follows in view of qoq1 + Goq1 = —2q0q0-

We derive directly from (6.4.43) that
9% = 1 — - (6.4.45)

Inserting this into the second equation, we obtain

5 €os%(2mpg) + cos(2mpng) + sin?(2mpo) 1+ cos(2mpeo)  cos?(mhog) (6.4.46)
Po = 2sin?(2mpg) o 2sin®(2mpe)  sin®(2mpg) o

This in turn implies
sin?(27mpu0) — cos? (T hoo )

do=1—p2= 6.4.47
4040 Po s (Zga) ( )
So far, we conclude that
— py = o Thoo) (6.4.48)
p1=Pro= sin(27mpg)’ o

Co
— =) = —>— 6.4.49
@ = 4o sin(2mpg)’ ( )

where a € {£1} and (p is an odd function in A satisfying
CoCo = sin?(2mpg) — cos? (T ptoo )- (6.4.50)

(Recall that, by remark 3.44, go and thus also {y are necessarily odd functions in \.)

Next, recall that the monodromy matrices Mj satisfy (3.9.32), i.e. MoM; My, = I, which reads in
scalar form as (3.9.33) and (3.9.34). Inserting the previous results together with the identity po = u1
from lemma 6.2 into (3.9.33), we obtain

c08(27 oo ) + 1 ST (27 oo ) Poe = — 08> (27 p10) + 2i cos (27 g ) sin(27 ) po + sin? (270 ) (Ps — qodo)
= —cos?(2mpu0) + 20vi cos(27 o) COS(Thioo ) 4 €08 (Thioo) — sin? (27 o) + cos? (Thoo)  (6.4.51)

which in view of cos(27 s ) = 2 cos?(Tjieo) — 1 transforms into

SIN(27 oo ) Poo = 2c0 cO8(27 1) cOS(T oo ), (6.4.52)
ie. 5
Doo = aCOS( mHo) (6.4.53)
SIn(7ftoo)
Similarly, (3.9.34) reads as
i 8IN(27 oo ) oo = —20Cp COS(T fhoo ) (6.4.54)
which implies
- Co
o = Ql——. 6.4.55
¢ o Sin(7 oo ) ( )

Applying our results to (3.9.26), we obtain the claimed forms for the monodromy matrices Mj.

The cases | = 0 and | = 1 are proved analogously (by shifting indices) by using the equivalent
reformulations (3.9.37), (3.9.38) and (3.9.35), (3.9.36), respectively, of (3.9.33), (3.9.34), and the according
reformulation of (3.9.51) as given in remark 3.56. O
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Theorem 6.9 describes the (unitary) monodromy matrices associated with the extended frame F' :
M — ASU(2), of a trinoid ¢ : M — R? with properly embedded annular ends, which is rotationally
symmetric with respect to the trinoid axis A; for some [ € {0,1, 00}, and which has been normalized
such that F(z,;) = I and 9(2.;) = €3, where z,; € M is given, ac~cording to I, in (6.4.1), (6.4.2)
or (6.4.3), respectively, and 1) denotes the conformal CMC-immersion M — R3 corresponding to ¢. It
turns out that, in this setting, we can also prove the converse result: A trinoid ¢ with properly embedded
annular ends and with extended frame F satisfying (for some [ € {0,1,00}) F(z.;) = I at z.; € M
from, according to [, (6.4.1), (6.4.2) or (6.4.3), respectively, and corresponding monodromy matrices of
the form given in theorem 6.9 is necessarily rotationally symmetric with respect to the trinoid axis A;.
This result is formulated in the following theorem.

Theorem 6.10. Let i) be a (standardized) trinoid potential associated with three off-diagonal Delaunay
matrices Dy, D1, Do with eigenvalues +pug, +u1 and oo, respectively. Denote by ¢ : M — R? q
trinoid with properly embedded annular ends on M = C\ {0, 1} generated by n via the loop group method.
Moreover, let F : M — ASU(2), be the extended frame associated with the mapping 1 = ¢pom by theorem

4.5.
1. Let g1 = floo, 25,0 € M given in (6.4.1) and F(z.0) = 1. Assume the unitary monodromy matrices
My, My, Mo € ASU(2,C), associated with F are given by

My = — cos(2m o) — 20vi cos(mpg) (COS(ZZTM) _ co;(ig;wl)> , (6.4.56)
L facos(n) G

My = —cos@mun )L =i ( G 1 —o cosl(ﬂm)) ’ (6.4.57)
N . acos(muy) -G

Moo = = cos(2mp)L — < —C1 1 —« cos(lﬂu1)> 7 (6.4.58)

where a € {1} and (1 is an odd function in A and a solution to
11 = sin?(2mp1) — cos?(mpo)- (6.4.59)
Then, ¢ is rotationally symmetric with respect to the trinoid axis Ag.

2. Let jig = foos 2«1 € M given in (6.4.2) and F(z.1) = L. Assume the unitary monodromy matrices
My, My, M € ASU(2,C), associated with F are given by

My = — cos(2mpieo)T — i (0‘ CO_S(CZ‘OO) . COS%;MOOQ , (6.4.60)
M, = — cos(2mu1 )T — 2cvi cos(mpy ) <COS(1.2£ZL°°) —cog(igjrouoo)) , (6.4.61)
Moo = — cos(2mpoo )L — i (0‘ COSC(C:”“) . ccﬁrm)) , (6.4.62)

where a € {£1} and (s is an odd function in X and a solution to
CooCoo = SIN? (2 phoo ) — cOS* (). (6.4.63)
Then, ¢ is rotationally symmetric with respect to the trinoid azis A;.

3. Let o = i1, Ze.00 € M given in (6.4.3) and F(z.00) = 1. Assume the unitary monodromy matrices
My, My, Mo € ASU(2,C), associated with F' are given by

n . (acos(mpg) Co
Mo = —cos(2mpuo)l — 4 ( Go ’ e cos?(ﬂﬂo)) ’ (6.4.64)
N . [ cos(migp) —Co
My = —cos(2mpo)l — i ( —&, 0 _a COS(OMO)) , (6.4.65)
Moo = — cos(2m 100 )T — 2000 cos(Tptso ) (COS(Z.ZWO) _ CO—SZ;OT,UOD , (6.4.66)

where a € {£1} and (o is an odd function in A and a solution to
CoCo = sin?(2mpg) — cos? (T ptoo )- (6.4.67)

Then, ¢ is rotationally symmetric with respect to the trinoid axis Ao .

116



Proof. We start by considering the special form of the potential 7 in each of the three cases. We associate
the first, second, third case with [ = 0, =1, [ = 0o, respectively, and denote the corresponding potential

by 70, 1M1, Moo, respectively.
In the first case (I = 0) we have p; = po and thus (cf. section 3.6)

- 0 A g (6.4.68)
=\ AQo(z)) 0 ) -
where
~ bo(N) b1 (N) bo(A)  bo(N)
Qo(z ) = 22 +(z—1)2+ z z—1
~ bo(M)(z — 1)2+b1(\)22 —bo(N)z(z — 1) oM (1 = 2) + bi(\)z?2 (6.4.69)
B 22(z —1)2 N 22(z —1)2 o
and b;(A) i — (15(X))? for j = 0, 1. Considering the biholomorphic mapping Yz, : M — M defined by

z

2 = YRo(2) := Z7 and the function hg : M — C\ {0}, z — ho(2) = —i(z — 1), we compute

bo(AN)(1 — =2 b1(\) 515z —z 1(\)22
Qo(7r, (2), \) = el zzz‘;)f (1)1“‘) :bO(A)(lzg JE0NZ g ) Qo(=, 0. (6.4.70)
G leg — =-12

Recalling from lemma 4.21 that g, corresponds to the permutation o = (1 co0) of the set {0, 1,00}, we
apply lemma 4.25 to infer that 7y transforms under vz, as

YRoTo = Mo# W 0, (6.4.71)
where ho(2)
_ _ 11¢4 0
Wio=Wio(z, M) = (—)x@zho(z) (ho(z))l) . (6.4.72)
Analogously, in the second case (I = 1) we have g = jis and thus (cf. section 3.6)
0 A1
m= (AQl(Z’A) . >dz, (6.4.73)
where
_bo(A)  bi(A)  bi(A) ()
@u(zA) = 22 +(z—1)2+ z z—1
~ bo(N) (2 — D2 +b(\)22 —bi(N)z(z — 1) ~ bo(N) (2 — )2 +b(\)z (6.4.74)
B 22(z —1)2 N 22(z—1)2 o

(1 (N))? for j = 0,1. Considering the biholomorphic mapping yg, : M — M defined by

z 3R, (2): _%and the function hy : M — C\ {0}, z — hy(z) = —iz, we compute
bo(N)(£ =12 +bi(A) L bo(N)(2 — 1)% + by (A
Qulom, () = PG WEZ DR g (piguen. (0a75)

Recalling from lemma 4.21 that yg, corresponds to the permutation ¢ = (0 c0) of the set {0, 1,00}, we
apply lemma 4.25 to infer that n; transforms under YR as

YR, = m#FW 41, (6.4.76)
where (&)
_ _ 1(# 0
Wer=Weale) = (L5500 i) (6.4.77)

Finally, in the third case (I = co) we have po = g1 and thus (cf. section 3.6)

—1
Moo = (—)\Qi(z,)\) AO )dz, (6.4.78)
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where

Quley) = W)y WOL o) 0l) G- P W) 20l - (g

b;j(A) = 1 — (1o(X))? for j = 0,00 and co(A) = 2by(A) — boo(A). Considering the biholomorphic mapping
YR, : M — M defined by z — yr__(z) := 1 — z and the function ho, : M — C\ {0}, 2 — hoo(2) = —1,
we compute

—Z 2 —ZzZ 2 C —Z)\—%
Que (21, ) = POCEZAET ZAOE I = () Qe ). (6450

Recalling from lemma 4.21 that yg_, corresponds to the permutation o = (0 1) of the set {0, 1,00}, we
apply lemma 4.25 to infer that 7., transforms under YR, as

VR Too = Moo H W 005 (6.4.81)
where ha(2)
oo(z 0
W = W) = (—Aazhoo@) (hoo<z>>—1) | (6.482)

Altogether, we have for all [ € {0,1, 00} the relation
YR, = MHFEW 1. (6.4.83)

Applying the pullback construction with respect to the covering mapping @ : M — M to (6.4.83), we
obtain

(YR, m) = T (AW ) = AW, (6.4.84)

where 7; = 7*n; denotes the pullback potential of the trinoid potential 7; (cf. section 2.3) and V~V+J =
Wy 1 om. Moreover, recall that the biholomorphic mappings yr, : M — M,

—z—=2 —z—-1 1
ﬁa TRy 7 TRoo + 22— —C (6485)

TRo #2177 Tt 1 p

from lemma 6.3 satisfy yg, o m = 7 o 4g,. Thus, the left hand side of (6.4.84) can be transformed as
follows:

o =7 [ (Lo o) dmt2)]
= (Dt enen 0 )30 = (L rasayn o )i

i (oo o ) 4] =3 ) = T (6450)

Altogether, (6.4.84) yields }
YR, = MHW 1. (6.4.87)
Considering the extended frame F' associated with the trinoid ¢, we obtain (for I € {0,1,00}) a
solution ¥; = F'B, ; to the differential equation d¥; = ¥;7;. Note that ¥; possesses the same (unitary)
monodromy matrices as F' at the singularities of the potential 7;, namely My, My and M.
Naturally, the mapping 7%,¥; = ¥, o yg, defines a solution to the differential equation d(:ﬁzl U)) =
(Y%, Y1) (Y%,7), which in view of (6.4.87) reads as

d(3%, 1) = (3=, YO (HW 1) (6.4.88)
Since this differential equation is also solved by the mapping \I/lW_A'_J, ie.
AW W) = (WWy ) (AW ), (6.4.89)
the mappings 75, ¥; and \IIZW+7Z only differ by a A\-dependent matrix p; = p;(A):

'%kzl\:[ll = Pl\PlW+,lo (6490)
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Consider the case [ = 0. Applying the relation yr, 091 = Joo ©JR, from (6.3.3), involving the covering
transformations 4; and 4., on M as given in section 3.3, we compute

po(N) M1 (N)Wo (2, YWy 0(F1(2), A) = po(A) o (71 (2), VW 0(F1(2), A) = Po(71(2),A)
= Wo((Fry © 71)(2), A) = Wo((Foo © Ro ) (2), A) = Moo (A ) (i o(2), )
= Moo (N) 370y Wo (2, N)) = Moo (M)po(A) o2, )W 0(2,A).  (6.4.91)
As W+ o defines the pullback of the mapping W, o, which is holomorphic on M (with respect to z), WJDO

is holomorphic on M and therefore does not pick up any monodromy under 7, i.e. W+ 0(F1(2),A) =
W, 0(z,A). Thus, we conclude that

PO()‘)Ml()‘) = Moo()‘)pO()‘)' (6.4.92)

Analogously, applying A, © Yoo = 71 © Y&, from (6.3.3), we have

PO (A) Moo (W) o (2 M)W 0 (e (), A) = p0(A) ¥ (e (2), W0 (e (2), A) = 70" ¥o(Fox (2): )
= Wo((Fry © Foc) (), A) = To((F1 0 R, ) (2), A) = M (\)¥o (R, (2), A)
= Mi(N) (TR, Wo(2,A)) = Mi(A)po(M)Wo(z, VW o(2, 1) (6.4.93)

Using the holomorphicity of Wy o on M, we know that Wy o(1(2),\) = W, o(2, \), which yields

po(N) Moo (N) = Mi(N)po(N). (6.4.94)
We set
po(A) = (28)) 2283) : (6.4.95)

where ag, by, co and do define complex valued functions of A satisfying ag(A)do(A) — bo(A)co(A) = 1.
Comparing the upper left entries of po(A)M1(A) and Moo (A)po(N), we obtain

bo(A\)¢1 = —co(A) G (6.4.96)

Then, by comparing the upper right entries of po(A)Mi(N) and Moo (N)po(N) (resp. of po(A)Maso(N) and
Mi(X)po())), we infer that

ao(N)C1 — bo(N)acos(2mpy) = bo(N)acos(2mpu1) — do(N) (1, (6.4.97)
—ap(N\)¢1 — bo(N)arcos(2mpr) = bo(N)a cos(2mpr) + do(N) (1, (6.4.98)

which (by summing up these two equations) directly implies bg(A) = 0 and thus, by (6.4.96), co(A) = 0.
inserting this into (6.4.97), we infer that ag(A) = —do(A), which together with the relation ag(A)do(A) —
bo(A)eo(A) = 1 implies ag(A) = —do(A) = ti. Therefore, we have

po(\) = % <5 0.> 7 (6.4.99)
in particular po(A) € ASU(2),.

Carrying out exactly the same computations as above for the cases j = 1 and j = oo (only shifting
indices appropriately), we obtain

—1

pi(N) = £ (8 O.) , (6.4.100)
1 0
poo(N) = £ ( ) . (6.4.101)
0 —i
Consequently we have for all | € {0, 1 oo} in particular p;(\) € ASU(2),. Thus, (g Fp; ") (0B W)
defines an Iwasawa-decomposition of pl\IJlWJrll (pointwise for all z € M ) with p Fp, e ASU(2),,
pBy Wy € ATSL(2,C), and (pFp; ) (2.,) = 1. Therefore, we can write

(F o AR,)(By104R,) = 7k, Vi = Ui W1 = (0 Fp; ) (0B Wi ). (6.4.102)
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This implies that, using the loop group method, 7%, ¥; produces on the one hand the trinoid J (YoARr,) =

SymBob(F o vz, )|x=1 and on the other hand the rotated trinoid p;J(¢))p; ' = SymBob(p Fp; *)|r=1.
Consequently, these two surfaces coincide, i.e.

J(W o gr, ) (M) = (piJ (¥)p; 1)(M). (6.4.103)

Using the identity le(z/J)pfl = JoAg, o1, where

-1 0 0
Ar,=| 0 -1 0], (6.4.104)
0 0 1

from the proof of corollary 6.8, we switch into the R? model and obtain oz, = Ag,0t. As YR, (M) =M,
this yields ) )
Y(M) = Ag, (Y(M)). (6.4.105)

This means that ¢ (and thus also ¢) is symmetric with respect to the Euclidean motion A, € Iso(R?)
defining the rotation by the angle 7 around the z-axis in R3. Thus, ¢ is necessarily rotationally symmetric
with respect to the trinoid axis A;. (In view of theorem 4.31, which lists all possible trinoid symmetries,
only the rotation by the angle m around the trinoid axis A; shows the behaviour of Ag,. In particular,
AR, is associated with the biholomorphic mapping g, : M — M keeping the trinoid end corresponding
to the singularity z; fixed. Thus, we infer that the z-axis in R3 coincides with the trinoid axis 4;, and
that ¢ is rotationally symmetric with respect to the trinoid axis A;, coinciding with the z-axis in R3.) O
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7 Reflectional symmetry with respect to the trinoid plane

7.1 Definition

In this section we turn to trinoids with properly embedded annular ends with another symmetry prop-
erty, namely trinoids with properly embedded annular ends which are symmetric with respect to the
(orientation reversing) reflection § in some trinoid plane E. In particular, S “permutes” the trinoid ends
By, B; and B, according to the permutation (). Recall that, though there exist a priori possibly several
trinoid planes of ¢, E is uniquely determined by the symmetry S. Throughout this section, we will - by
a slight abuse of notation - speak of the trinoid plane E, which is the plane of reflection of the trinoid
symmetry S, simply as of the trinoid plane of ¢.

Definition 7.1. Let M = (C\{O 1} and ¢ : M — R? be a trinoid with properly embedded annular ends.
Let M =H and ¢ = ¢p o : M — R? the conformal CMC-immersion associated with ¢ via the universal
covering 7 : M — M given in (3.2.2). Then, if ¢ (or, equivalently, 1) is symmetric with respect to the
reflection S in the trinoid plane E,

S(6(M)) = $(M), (71.1)

¢ (or v) is called reflectionally symmetric with respect to the trinoid plane.

Like in the case of trinoids with other symmetries, we are interested in translating the symmetry
property (7.1.1) into further constraints on the monodromy matrices associated with the extended frame
F of 4.

7.2 Implications of reflectional symmetry with respect to the trinoid plane

Let M = C\{0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1 the associated
conformal CMC-immersion on M = H, ¢ = ¢ ow : M — R®, where 7 denotes the universal covering
M — M given in (3.2.2). Let ¢ (or, equivalently, ¥) be reflectionally symmetric with respect to the
trinoid plane E and let S denote the corresponding symmetry. Since S reverses orientation on R?, we
obtain by theorem 4.9 a pair of bi-antiholomorphic mappings, vs : M — M and 75 : M — M satisfying

So¢p=dons, (7.2.1)
So=1oAs, (7.2.2)
TOYR, =YS O . (7.2.3)

The mapping vs can be explicitly computed, as done in lemma 4.21:
vs(z) = Z. (7.2.4)

The mapping 7s is uniquely determined up to composition from the left with an element of the automor-
phism group Aut(M /M) of w. The following lemma explicitly states a valid choice for 7s:

Lemma 7.2. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as given in (3.2.2).
Let vs : M — M be given by (7.2.4). Then, the mapping

As: M — M,3s(z) = % (7.2.5)

18 bi-antiholomorphic and satisfies
7ods =0, (7.2.6)
So) =1oAs. (7.2.7)

Proof. Define 45 as in (7.2.5). Obviously, 7s is a bi-antiholomorphic function. By applying the relations
(3.2.12) of lemma 3.4, we obtain for all z € M

moqs(2) = m(=2) = m(2) = vs 0 7(2). (7.2.8)

and, consequently,
Sop=8Sodpor=¢goysom=¢omoqs =1 0As. (7.2.9)
O
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By the above lemma, we have explicitly determined a mapping s corresponding to the trinoid
symmetry S in the sense of theorem 4.9. Thus, we can apply theorem 4.17 to obtain

Theorem 7.3. Let M = C\ {0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and
Y the associated conformal CMC-immersion on M = H, ¢ = ¢oxm : M — R3, where m denotes the
universal covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect to the
trinoid plane E. Denote the corresponding symmetry by S and by s the bi-antiholomorphic mapping
M — M associated with S as in theorem 4.9 and explicitly defined in lemma 7.2, As(z) = —z. Then the
extended frame F : M — ASU(2), corresponding to v by theorem 4.5 transforms under 4s(z) as

F(3s(2), A1) = Ms(\)F (2, Nks 55 (2), (7.2.10)

where

ksss(2) = (‘OZ Q) (7.2.11)

7

and Ms(X\) denotes an element of ASU(2),, which is independent of z.

Proof. We proceed as in the proof of theorem 5.6. As S € O(3) \ SO(3) reverses orientation on R?, we
apply the second part of theorem 4.17 to obtain

F(3s(2), A7) = Ms(M)F (2, Mks 5 (2), (7.2.12)

where F : M — ASU(2), denotes the extended frame corresponding to 1) by theorem 4.5 and Mg :=
M5, (X) denotes an element of ASU(2),,, which is independent of z. ks 54 (2) is given by equation (4.4.118)
from lemma 4.18. By computing

0:9(2) = —1 (7.2.13)
we infer that 8.5(2)
zV\2

R 7.2.14

EEe] (7214

and thus obtain from (4.4.118) (in view of our definition of the complex square root on the z-plane given
in remark 4.14)

7

ksas(2) = (_OZ Q) : (7.2.15)
O

7.3 Monodromy matrices of trinoids with properly embedded annular ends,
which are reflectionally symmetric with respect to the trinoid plane

We now study the (unitary) monodromy matrices Mo, Ml, M, associated with a trinoid with properly
embedded annular ends with reflectional symmetry in the trinoid plane E. Our considerations are based
on the relations between the bi-antiholomorphic mapping s associated with the symmetry S and the
covering transformations 7; on M generating the monodromy matrices M Recall the latter ones from
section 3.3:

z z—2
0! =— 7 = 2. 7.3.1
Yo(2) = — 1 n(2) =5 =3 I=(x) =2+ (7.3.1)
The corresponding inverse functions are given by
1 z 1 —32 +2 __
= — _ =z—2. 7.3.2

The relations mentioned above are stated in the following lemma.

Lemma 7.4. Let M = H and 39,31, Yoo : M — M be given as above. For As : M — M,As(z) = —Z%, the
following identities hold:

Fsod0 =9 ©Fs, AsoM =1 ©Fs, F50Feo =71 0700 7s- (7.3.3)
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Proof. For z € M we have by direct computation

.
e =0 0 s (), (7.3.4)
~—1

Jso(z) =—2—-2=9; o9s(2), (7.3.5)

FsoFo(z) =

and thus ys o0 yp = '7(;1 oqs and ys oy, = '7;1 07s. Using this and recalling 79 o 41 © Yo, = id on M, we
obtain

Fs 0 Foo(2) = s 047 %5 (2) = F1 070 0 As(2) (7.3.6)
for all z € M, which proves the remaining identity. O

In view of this, we are able to prove the following theorem:

Theorem 7.5. Let M = C\{0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1)
the associated conformal CMC-immersion on M = H, 1 = ¢or : M — R3, where m denotes the universal
covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect to the trinoid plane
E. Denote the corresponding symmetry by S. Furthermore, let F' M — ASU(2), be the extended frame

associated with 1 by theorem 4.5. Denote by Moy, My, My € ASU(2,C), the unitary monodromy matrices

My = — {cos(%uj) ((1) (1)> +isin(2m;) (Pj T )] (7.3.7)

a; —Pj
associated with F' as in (4.5.13) by
F(3;(2),A) = g M\ F (2, )k (2), j = 0,1, 00, (7:3.8)

where a; € {£1} and 7; denote the covering transformations on M from section 3.3. Finally, let s
be the bi-antiholomorphic mapping M — M associated with S as in theorem 4.9 and explicitly given in
lemma 7.2, and

L Cbi bg
Ms(\) = (—bs as) (7.3.9)
the corresponding transformation matriz of F satisfying (7.2.10). Then, the monodromy matrices satisfy
Ms(N)Mo(X) = (Mo(A™) "' Ms(N), (7.3.10)
Ms(N)Mi(\) = (My (A1) " Ms(N), (7.3.11)
Ms(A) Moo (N) = My (A™H)Mo(A")Ms(N). (7.3.12)

In terms of the functions p; and q; occurring in M;, equations (7.3.10) to (7.3.12) are equivalent to

asp;(\) +bsq;(\) = asp; (A7) — bsqj (A1), (7.3.13)
agqj()\) — bspjo\) = bspj(/\il) + @(b‘()\_l), (7.3.14)
for j € {0,1}.
Proof. We start with the following observation, which is implied by (7.3.8):
F2,) = F(3; 037 (2), A) = o, M0 P37 (2), Vs (377 (2)) (7.3.15)
and thus we have
F(71(2),A) = a; M ()T F (2, \) (k; (35771 (2)) 7 (7.3.16)
Additionally, by equation (7.2.10) from theorem 7.3,
F(is(2), A7) = Ms(\)F (2, Mks 55 (2), (7.3.17)
where
—i 0
ksgs(2) = (0 Z) : (7.3.18)
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Combining these results with the identities (7.3.3) from the above lemma, we obtain for j € {0,1}:
~ oem— v~ (-t 0 VRS -
MO VPG (') = Ms P, 3,k 50 (3 (2)
= F(3s 0%(2), A7) = F(3; 0 3s(2), A1) = ag My (A1) T F(3s(2), A1) (ks (357 (s (2))))

= oy M; () T M (N F (2, ) ((f ?) (k37 Gs(2)) L (7.3.19)

Computing
- [1-2z
——(—1 0 /172, 0
kO(Z)< ' -)Z -
o 0 iR
i % 0
1-2 =7 - 0 ~—1(x -1
- | = (3 D) w6 s (7320)
’ Wi
and
—(—1 O - 0 -1 0 U _
5@ (o =0 D)= ) merasem . (7.3.21)
we conclude for j € {0,1} that
Ms()IG() = (VG (1)~ M), (7.3.22)

What remains to prove is (7.3.11). We show that this equation is a direct consequence of equations
(7.3.10) and (7.3.12), which can be equivalently formulated as

Ms(MM;(A) = M;(A")Ms(N), j=0,1. (7.3.23)
Together with the identity (3.9.32) we obtain

S

= = = 1 N N
Ms(A)Moe(A) = Ms(NM(A) - Mo(X) = My(A™)Mo(A™H)Ms (), (7.3.24)
as claimed.
As equation (7.3.12) is implied by equations (7.3.10) and (7.3.11), these three equations are equivalent
to the scalar reformulations of the equations (7.3.10) and (7.3.11), which are obtained as follows: First
recall that the monodromy matrices M;(X) are of the form

M) = — {cos(zmj) <(1) ?) + isin(2mu;) (’;;85 _(I;J((Ai)ﬂ (7.3.25)

i p; +q;g; =1 and p; =pj, (7.3.26)
which implies that

() = = [eostzmg) () = dsinezms) (207 BT (73.27)

" M) = — [cos(%wj) <é (1)) — isin(2mp;) (zj&; _q;%(?;)ﬂ . (7.3.28)

The scalar equations associated with (7.3.10) and (7.3.11), respectively, are then (omitting redundant
ones) given by (5 € {0,1})

—cos(2mpy)as + i sin(27p;) (asp; () + bsq;(N)) = — cos(2mp;)as + isin(2mp;)(asp; (A7) = bsg; (A1),

(7.3.29)

— cos(2mpy)bs + isin(2mps;)(asg; (\) — bsps (A)) = — cos(2mp; )bs + i sin(2mp;)(bspy (A1) + a5, (A ).
(7.3.30)
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These equations simplify to (5 € {0,1})

aspj(A) +bsq;(A) = asp; (A7) — bsqj (A1), (7.3.31)
asq;(A) = bspj(A) = bsp; (A1) +asq; (A7), (7.3.32)
which finishes the proof. O

7.4 Normalized trinoids with properly embedded annular ends, which are
reflectionally symmetric with respect to the trinoid plane

Let ¢ : M — R? be a trinoid with properly embedded annular ends, which is reflectionally symmetric
with respect to the trinoid plane. Moreover, let 1 = ¢ o m be the associated conformal CMC-immersion
M — R3. Denote by S the corresponding symmetry of ¢ (and 1), i.e. the reflection in the trinoid plane.

Normalizing the extended frame F : M — ASU(2), associated with 1 as in section 4.2, such that
F(zw,A) =Tat

we can formulate a more explicit version of theorem 7.3 (see below). The normalization F(z., A) =1 of
F is a consequence of normalizing the (conformal) CMC-immersion ¢, such that

1

w(z**) = ﬁe&

U(ze) = G(1), (7.4.2)
where U € SO(3) represents the natural orthonormal frame corresponding to v, and G(1) is given in
(4.2.5). Recall from section 4.2, that this normalization of ¥ corresponds to rotating and shifting the
(image of the) trinoid in R3, such that the conditions (7.4.2) are met. It turns out (cf. corollary 7.7), that
the choice of z,. as above (for a trinoid ¢ with properly embedded annular ends, which is reflectionally
symmetric with respect to the trinoid plane) corresponds to arranging the (image of the) trinoid in R3,
such that the trinoid plane is the y-z-plane in R3.

A trinoid ¢ : M — R? with properly embedded annular ends, which is reflectionally symmetric with
respect to the trinoid plane and, in addition, is “well positioned” in R? in the sense that the associated
conformal CMC-immersion ¢ : M — M meets the normalization conditions (7.4.2), is called a normalized
trinoid with properly embedded annular ends, which is reflectionally symmetric with respect to the trinoid
plane.

We now formulate a more explicit version of theorem 7.3:

Theorem 7.6. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and
Y the associated conformal CMC-immersion on M = H, ¢ = ¢ponm : M — R3, where m denotes the
universal covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect to the
trinoid plane. Moreover, let z.. be given in (7.4.1),

Zew =1, (7.4.3)

and assume that v has been normalized at z., such that ¥(z.;) = smes and F(z.,A) = 1, where

F:M — ASU(2), denotes the extended frame corresponding to ¢ by theorem 4.5. Denote by S the
corresponding symmetry of ¢ and by s the bi-antiholomorphic mapping M — M associated with S as
in theorem 4.9 and explicitly given in (7.2.5):

Fs(2) = —=. (7.4.4)

Then, the extended frame F transforms under 4s as

7

Flis) A7) = MsOFG (). (7.45)

e Ms()) = (é 0‘) . (7.4.6)

In particular, Ms is actually independent of .
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Proof. In view of theorem 7.3, we only have to prove equation (7.4.6). Note that 4s(z.) = —Zx = 2.
Furthermore, F(z,,\) = I for all A € S*. Keeping this in mind, we evaluate equation (7.4.5) at z = z, to
obtain

= F(z,A7Y) = F(3s(2), A1) = Ms(\NF (o, V) (6 _Oz) — Ms(OVI (Oi ?) (7.4.7)

and equation (7.4.6) follows. O

Corollary 7.7. We retain the notation and the assumptions of theorem 7.6. The reflection plane of the
symmetry S of the normalized trinoid ¢, i.e. the trinoid plane, is the y-z-plane in R3.

Proof. Applying (the second part of) theorem 4.17, we know that the monodromy matrix Mg(\) explicitly
given in theorem 7.6 satisfies at A =1

Ms(1) = £As (_01 (1)) : (7.4.8)

where As € SU(2) denotes the conjugation matrix realizing the orthogonal part Ag of the symmetry S
in the su(2)-model. In view of equation (7.4.6), this yields

As =+ (‘3 8) . (7.4.9)

Recalling that As and Ag are linked via the Lie Algebra isomorphism J : R? — su(2) defined in (3.4.3)
as in (3.4.8), i.e.
(JoAsoJ 1) (X)=—-AsXAS" for all X € su(2), (7.4.10)

we obtain by a direct computation that
-1

0
As = 0 1
0 o0

(7.4.11)

= o O

Thus, As defines the reflection (in R3) in the y-z-plane in R3. Consequently, the symmetry S of the
normalized trinoid ¢ is a reflection in some plane in R, which is parallel to the y-z-plane. Since the
point ¥(2.,) € R? (with 2., given in (7.4.1)) satisfies

S(W(24x)) = (5 (24x)) = P(20x), (7.4.12)
it lies in the reflection plane of S. Since by assumption we have (2, ) = ﬁeg, we infer that the reflection
plane of § (i.e. the trinoid plane) is actually the y-z-plane in R3. O

Applying the theorems 7.5 and 7.6, we obtain the following result:

Theorem 7.8. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends
and 1 the associated conformal CMC-immersion on M = H, ¢ = ¢pon : M — R3, where 7 denotes
the universal covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect
to the trinoid plane. Moreover, let z.. be given in (7.4.1) and assume that i has been normalized at
Zax, SUch that Y(z.) = ﬁe;j and F(zes, \) = 1, where F' : M — ASU(2), denotes the extended frame
corresponding to i by theorem 4.5.

Then, the unitary monodromy matrices Mj € ASU(2,C),, j = 0,1, 00, associated with F as in (7.3.8)
satisfy equations (7.3.10) to (7.3.12) from theorem 7.5. In terms of the functions p; and q; occurring in

M;, these equations are equivalent to

pi(A) =p;(A71), (7.4.13)
3;(A) = —q; (A1), (7.4.14)

for j € {0,1}.
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Proof. As before, we denote the symmetry of ¢ by S and by As the bi-antiholomorphic mapping M — M
associated with S as in theorem 4.9 and explicitly given in lemma 7.2. Moreover, let Ms(\) be the
corresponding monodromy matrix of F' as introduced in equation (7.2.10). Keeping in mind that by

theorem 7.6 b
o as S o 7 0

the given identities follow directly from theorem 7.5. O

Theorem 7.8 describes the (unitary) monodromy matrices associated with the extended frame F :
M — ASU(2), of a trinoid ¢ : M — R® with properly embedded annular ends, which is reflectionally
symmetric with respect to the trinoid plane, and which has been normalized such that F(z..) = I and
Y(24x) = ﬁeg, where 2,, € M is given in (7.4.1) and v denotes the conformal CMC-immersion M — R3
corresponding to ¢. It turns out that, in this setting, we can also prove the converse result: A trinoid
¢ with properly embedded annular ends and with extended frame F satisfying F(z,) = T at 24, € M
from (7.4.1) and corresponding monodromy matrices of the form given in theorem 7.8 is necessarily
reflectionally symmetric with respect to the trinoid plane. This result is formulated in the following
theorem.

Theorem 7.9. Let n be a (standardized) trinoid potential associated with three off-diagonal Delaunay
matrices Dy, Dy, Do with eigenvalues %o, £y and Fps, respectively. Denote by ¢ : M — R3 a
trinoid with properly embedded annular ends on M = C\ {0, 1} generated by n via the loop group method.
Moreover, let F : M — ASU(2), be the extended frame associated with the mapping ¢ = ¢ o w by
theorem, 4.5, satisfying F(z..) =1 at z,, € M given in (7.4.1). Assume the unitary monodromy matrices

Mj € ASU(2,C),, j = 0,1, 00, associated with F are of the form

Mj = —cos(2mp;)I — isin(2mp;) <§j8\\§ _q;jj(?))\)> ; (7.4.16)

with functions p; and q; satisfying (3.9.51) and (3.9.50) and, additionally, for j € {0,1},

pi(A\) =p;(A7h), (7.4.17)
3;(A) = —q; (A7), (7.4.18)

Then, ¢ is reflectionally symmetric with respect to the trinoid plane.

Proof. Consider the standardized trinoid potential (cf. section 3.6)

-1
n— (—AQ(EM) A )dz, (7.4.19)
where
12 2 _ _

Q(z,\) = boz(j )4 (:1_(?)2 + 009) + zlgi = bWz 1) J;féA_)zl)Q OWe =7y )

and by, b1, bso, Co, 1 are obtained from
bj(\) = i — 3 for j=0,1,00, (7.4.21)
bo(A) +b1(A) +0-co(A) +1-c1(N) = b (N), (7.4.22)
co(\) +c1(A) = 0. (7.4.23)

Then, for the bi-antiholomorphic mapping vs : M — M, z +— vs(z) = z and the function h : M — C\{0},
2+ ho(z) = 1, we compute for \ € S*

Qs (2), ) = ST -
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where we used the fact that for A € St the identities
bj(A~1) =b;(A) for j =0,1,00 and (7.4.25)
co(A71) = co(N) (7.4.26)

hold. Recalling from lemma 4.21 that s corresponds to the permutation o = () of the set {0,1, 00}, we
apply lemma 4.25 to infer that n transforms under vs as

Y51(2, A) = n(z, A=) #W,, (7.4.27)
where
Wi =Wi(zA) = <_)\ha(jh)(z) (h(zo))_1> . (7.4.28)

Applying the pullback construction with respect to the covering mapping 7 : M — M to (7.4.27), we
obtain

T (V50(2, ) = 1 (2, A D#WL) = (2, A D#W, (7.4.29)

where 7 = m*n denotes the pullback potential of the trinoid potential (cf. section 2.3) and W+ =Wyom.
Moreover, recall that the bi-antiholomorphic mapping 75 : M — M, z — —Z, from lemma 7.2 satisfies
vs om = moAs. Thus, the left hand side of (7.4.29) can be transformed as follows:

* * % 0 )\71
™ (7577) =7 [(_AQ(’YS(ZL)\) 0 ) d’YS(Z):|
0 AL A
= d(ysom)(z) = - d(movs)(z
(cxasemma o )10somE = (Ligurasoey o )dreiso
- 0 A1 e
=35 | (gt o ) 46| =35 m =53 (7430)
Altogether, (7.4.29) yields R
Fai(z,N) = (s A AW (7.4.31)
Considering the extended frame F' associated with the trinoid ¢, we obtain a solution ¥ = F B, to
the differential equation d¥ = W7). Note that ¥ possesses the same (unitary) monodromy matrices as F
at the singularities of the potential 7, namely MO7 My and Mo

Naturally, the mapping Y5V = W o 45 defines a bOluthD to the differential equation d(5%¥) =
(¥5¥)(¥%7), which in view of (7.4.31) reads as

d(75P(2, 7)) = (75 (2, \) (7(z, A"D#W ). (7.4.32)

Since this differential equation is also solved by the mapping ¥(z, A=1)W, i.e.

Ad(U(z, A" W) = (W(z, AW ) (7(z, A" #W,), (7.4.33)

the mappings 75¥(z, A) and ¥(z, A1), only differ by a A-dependent matrix p = p(\):

FEW (2, \) = p¥(z, A" DV, (7.4.34)
Applying (for j = 0,1) the relation 45 04, = :yj_l 0 4s from (7.3.3), involving the covering transfor-
mations 7;, j = 0,1, on M as given in section 3.3, we compute

PNM AT (2, AW (F5(2), A) = p(A) (55 (2), AW (3(2), A) = 70 (35(2), A)
= U((¥s 0 %)(2), ) V(371 0As)(2),A) = (M; (V) 1\11(73( )s /\)
= (M;(\) 7 (352 (2,0) = (M; (V) p(\) (2, ATDWo(2,4), (7.4.35)

where we have made use of the identity

(57 (2), ) = (M;(N) 1 0(z,N), (7.4.36)

(=, A) = U337 (2)),N) = M (0T (E; (), ). (7.4.37)



_As W+ defines the pullback of the mapping W, which is antiholomorphic on M (with respect to z),
W, is antiholomorphic on M and therefore does not pick up any monodromy under o, i.e. W4 (50(2), A) =
Wi (z,A). Thus, we conclude that

pNM; (A1) = (M) p(N). (7.4.38)
Setting
p(\) = (i&; 28))) , (7.4.39)

where a, b, ¢ and d define complex valued functions of A satisfying a(A)d(A\) —b(A)e(N) = 1, and comparing
the upper left entries (resp. the upper right entries) of p(A)M;(A=1) and (M;(\))~!p()), we obtain

a(A)p;(A~1) +b(N)g;(A™1) = a(M)p; () + c(AN)g; (V), (7.4.40)
a(N)g; (A1) = b(N)p; (A=) = b(\)p; (A) + d(N)g; (N).- (7.4.41)
In view of (3.9.50), (7.4.17) and (7.4.18), these equations simplify into
~b(N)g; (V) = e(A)g; (V), (7.4.42)
—(a(X) +d(N)g; () = 26(A)p; (A). (7.4.43)

Since in general (i.e. for all A in ST excluding a finite subset of S1) p;, g; # 0, we can solve for ¢(\) and
b(\), respectively:
— 1
c(A) = =b(N)g;(N)g;(A) (7.4.44)
1 RN —
b(A) = =5 (@A) + d(\)g; (M) (p; (V) (7.4.45)

This yields (using (3.9.50) again)

L= a(M)d(A) = bA)e(A) = a(N)d(A) + i(a(/\) +d(N)?a;(N)a; (M) (p; (V) 72

= (NN +  (0(N)-+dN))(ps(0) 2 = 3 (@) () = §(alN) +d(N)) (05 (1) 7~ § (a(X) —d(N))*
(7.4.46)
or, equivalently,
(s () (4 -+ (a(Y) — dN))?) = () + AV (7447

Assume now that, in general, 4 + (a(\) — d(\))? # 0 (i.e. 4+ (a(X) — d(N))? = 0 for at most finitely
many A € S'). We infer that

(Po(N)* = (p1(V)* = 5 (7.4.48)

for all but (at most) finitely many A € S* and thus

Po(A) = ap1(}) (7.4.49)
for some o € {£1} and all but (at most) finitely many A € S*. Consequently, by (7.4.45), this implies
q0(A) =aq(A), @A) =aq(}) (7.4.50)

and thus

po( () + LRI LN _ 312 440030 (R]) = (7.4.51)

for all but (at most) finitely many A € S*, which clearly is a contradiction to equation (3.9.51). Therefore,
we conclude that 4 + (a(\) —d()\))? = 0 for all A € St and (by (7.4.47)) (a(\) +d()\))? = 0 for all A € S*.
Together, these relations yield a(\) = —d(\) = +i and (by (7.4.45) and (7.4.44)) b(\) = ¢(\) = 0. Thus,

p(\) = + <é 0.) : (7.4.52)



in particular p(\) € ASU(2); NA*SL(2,C),.
Consequently, (pF(z, \=1)p™1)(pB1 (2, \"1)W, (2, \)) defines an Iwasawa-decomposition of

PO (2, \"D)W (2, ) (7.4.53)
(pointwise for all z € M) with pF(z, A\=1)p~! € ASU(2),, pBy(z, \—1)W,(z,A) € ATSL(2,C), and

pF(24s, \=1)p~! = 1. Therefore, we can write

F(3s(2), N By (s (2), A) = 5% (2, A) = p(N) ¥ (2, AW (2, 0)
= (POVFE X (0) ) (N B (5 AT (2, A). (7.4.54)
Thus, ¥5¥ produces (by the loop group method) on the one hand the trinoid SymBob(F(§s(z), A))|a=1

and on the other hand the trinoid SymBob(p(A)F(z, A=1)(p(X))~1)|x=1. Consequently, these two surfaces
coincide, and, using the straightforward identities

SymBob(F(z, A71))|a=1 = —SymBob(F(z, A))|x=1 (7.4.55)

and

>

0 1 0 -1
= <_1 O> X <1 0 ) for all X € su(2), (7.4.56)

we compute

J(¢ 04s) = SymBob(F(7s(2), ))[a=1 = SymBob(p(A) F (2, A=1)(p(X)) 1) r=1

= p(A)SymBob(F (2, A1) [x=1(p(A) ™" = =p(A)SymBob(F (2, 1)) [x=1(p(A)) ™" = =p(X)J (¢) (p(
——o (& o) (V) e == (7 §) e ( ) (7457
Using the identity
- <? é) X (OZ. _OZ) = (JoAsoJ 1) (X) for all X € su(2), (7.4.58)
where
-1 .0 0
As=[0 1 0]. (7.4.59)
0 0 1

from the proof of corollary 7.7, we switch into the R? model and obtain ¢ oqs = As o). As 3s(M) = M,
this yields ) )
Y(M) = As(p(M)). (7.4.60)

This means that ¢ (and thus also ¢) is symmetric with respect to the Euclidean motion As € Iso(R?)
defining the reflection in the y-z-plane in R3. Thus, ¢ is necessarily reflectionally symmetric with respect
to the trinoid plane. (In view of theorem 4.31, which lists all possible trinoid symmetries, only the
reflection in the trinoid plane shows the behav1our of As. In particular, Ag is associated with the bi-
antiholomorphic mapping 7s : M — M keeping all three trinoid ends fixed. Thus, we infer that the
y-z-plane in R3 coincides with the trinoid plane, and that ¢ is reflectionally symmetric with respect to
the trinoid plane, coinciding with the y-z-plane in R3.) O
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8 Reflectional symmetry with respect to a trinoid normal plane

8.1 Definition

In this section, we consider the possible trinoid symmetries with respect to the (orientation reversing)
reflections Sy, S1 and S, in R? that fix one axis of the trinoid while interchanging the other two, i.e.
with respect to the reflections in some trinoid normal planes FEy, F; and E., along the trinoid axes Ay,
A; and A, respectively. More precisely (cf. theorem 4.31), we denote by Sp, S1 and Sy the orientation
reversing Euclidean motions in R® which permute the trioid ends according to the permutations (1 0o),
(0 00) and (0 1) of the set {0,1, 00}, respectively.

Recall that, though there exist a priori possibly several trinoid normal planes of ¢ along each trinoid
axis Aj, the trinoid normal planes E; we consider are uniquely determined by the respective symmetry
S;. Throughout this section, we will - by a slight abuse of notation - speak of the trinoid normal plane
E;, which is the plane of reflection of the trinoid symmetry S;, simply as of the trinoid normal plane of
¢ (along the trinoid axis A;).

Definition 8.1. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annular ends.
Let M =H and ¢ = ¢ o : M — R? the conformal CMC-immersion associated with ¢ via the universal
covering 7 : M — M given in (3.2.2). Then, if ¢ (or, equivalently, v) is symmetric with respect to the
reflection &; in the trinoid normal plane Ej, i.e. if

Si(¢(M)) = $(M), S((M)) = (M), (8.1.1)
¢ is called reflectionally symmetric with respect to the trinoid normal plane Ej.

Again, we are interested in translating the symmetry property (8.1.1) into constraints on the mon-
odromy matrices associated with the extended frame F' of .

8.2 Implications of reflectional symmetry with respect to a trinoid normal
plane

As a direct consequence of definition 8.1, we state the following lemma:

Lemma 8.2. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annu-
lar ends produced from a trinoid potential n as in theorem 3.14. Denote by Dy, D1, Dy the corre-
sponding Delaunay matrices with eigenvalues ‘g, 11, e, respectively, where, for j € {0,1,00},
pi = \/ij = \/i +wj(A—A"1)2 and w; = s;t; as in section 3.5. Moreover, denote by By, B1 and
By the trinoid ends and by Ey, E1 and E the trinoid normal planes (along the trinoid axes). Then,
the following holds:

1. If ¢ is reflectionally symmetric with respect to the trinoid normal plane Ey, we have

H1 = fhoo- (8.2.1)
2. If ¢ is reflectionally symmetric with respect to the trinoid normal plane E71, we have

1o = fhoo- (8.2.2)
3. If ¢ is reflectionally symmetric with respect to the trinoid normal plane Eo,, we have

Proof. We carry out the proof for the first case, i.e. suppose ¢ is reflectionally symmetric with respect to
the trinoid normal plane Ey. By theorem 4.31, the corresponding symmetry Sy preserves the trinoid end
By, while it maps the trinoid ends B; and B, onto each other. This means that the asymptotic Delaunay
surfaces associated with the ends at B; and B., are mapped onto each other as well. Hence, these
Delaunay surfaces only differ by a rigid motion on R3. In particular, this implies that the corresponding
Delaunay matrices D, and Do, possess the same eigenvalues, i.e. 41 = fioo-

The other two cases are proved analogously. O

131



Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and ¢ the
associated conformal CMC-immersion on M = H, Y =¢om: M — R3, where 7 denotes the universal
covering M — M given in (3.2.2). Suppose ¢ (or, equivalently, 1) is reflectionally symmetric with
respect to the trinoid normal plane Ej, and denote the corresponding symmetry by S;. Since S; reverses
orientation on R3, we obtain by theorem 4.9 a pair of biholomorphic mappings, vs, : M — M and
s, : M — M satisfying

Sl o ¢ = ¢ ° S, (824)
Siop=1oAqs, (8.2.5)
ToAqs, =1s, OT. (8.2.6)

The mappings vs,, | = 0,1, 0o, are uniquely determined and explicitly given by lemma 4.21:

150(2) = 2 f T (8.2.7)
vs,(2) = %, (8.2.8)
V5. (7)) =1—2Z. (8.2.9)

The mappings ¥s,, | = 0,1, 0o, are uniquely determined up to composition from the left with elements
of the automorphism group Aut(M /M) of w. The following lemma explicitly states valid choices for 7,
l=0,1,00:

Lemma 8.3. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as given in (3.2.2).
Let s, : M — M, 1=0,1,00, be given by (8.2.7), (8.2.8) and (8.2.9), respectively. Then, the following
holds:

1. The mapping s, : M — M,

Fs0(2) = —— (8.2.10)
s bi-antiholomorphic and satisfies
T oSy =Sy O, (8.2.11)
Sooth =1 o0As,. (8.2.12)
2. The mapping vs, : M — M,
Js,(2) = —z—1, (8.2.13)
is bi-antiholomorphic and satisfies
TOods, =78 O, (8.2.14)
S10Y=1o0qg,. (8.2.15)
3. The mapping s, : M — M,
- 1
5. (2) = 2 (8.2.16)
is bi-antiholomorphic and satisfies
TOYSe = VS0 O (8.2.17)
Swoth =1oFs,. (8.2.18)

Proof. Direct computations show that 7s,, [ = 0,1,00 define bi-antiholomorphic mappings M — ]\Z{ .
Moreover, by applying the relations (3.2.10), (3.2.11) and (3.2.12) of lemma 3.4, we obtain for all z € M

”O%o(z):”<—;—1) :ﬂ(zj—l) :W(l_z}ﬂ) :W(_ll)

= = =1s, om(z), (8.2.19)




mods,(z)=m(-z—-1)=7(z+1) =

= s, o 7(2), (8.2.20)

m%m(z):w(;) :77(_1> =1—7(2) = s, om(2), (8.2.21)
ie. moqs, =7, 0om for [ =0,1,00. Consequently,

Sjoth =8 0opom=cdonqs om=c¢pomois = oAs, (8.2.22)
ie. Sjoyp =1y oAs, for i =0,1,00. O

By the above lemma, we have explicitly determined mappings vs,, { = 0, 1, 0o, corresponding to the
trinoid symmetries S;, [ = 0, 1, 0o, respectively, in the sense of theorem 4.9. Thus, we can apply theorem
4.17 to obtain

Theorem 8.4. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and
Y the associated conformal CMC-immersion on M = H, ¥ = ¢on : M — R3, where = denotes the
untversal covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect to the
trinoid normal plane E;. Denote the corresponding symmetry by S; and by vs, the bi-antiholomorphic
mapping M — M associated with S; as in theorem 4.9 and explicitly defined in lemma 8.3. Then, the
extended frame F : M — ASU(2), corresponding to 1) by theorem 4.5 transforms under s, as

F(3s,(2), A7) = Ms,(MF (2, Mks, 55, (2), (8.2.23)

where Ms,(X\) denotes an element of ASU(2),, which is independent of z, and

—z—1
£\ === 0
kso 5, (2) = S in the case 1 =0, (8.2.24)

0 =
ks, 5s, (2) = <BZ ?) in the case [ =1, (8.2.25)
JZE 0
ks qs. (2) = * in the case | = oo. (8.2.26)

e
Proof. As S; reverses orientation, we apply the second part of theorem 4.17 to obtain

F(’?‘Sz (Z), )‘_1) = MSz ()\)F(z7 )\)ksl,ygl (Z), (8.2.27)

where F : M — ASU(2), denotes the extended frame corresponding to 1 by theorem 4.5 and Ms, := M
denotes an element of ASU(2),, which is independent of z. Moreover, ks, 3, is given by equation (4.4.118)

from lemma 4.18. Recalling from lemma 8.3 that Js,(z) = —2, g, (2) = =2 — 1 and jr__(z) = %, we
compute
DAy (2) = —— (8.2.28)
z Z) = = ) 2.
150 (z41)2
9:7s, (2) = —1, (8.2.29)
- -1
0:75.(2) = —5 - (8.2.30)

This implies

o 4112 —z-1
62’2/80 (Z) — _| ’i—"_ | — _Z , (8231)
| 9278, (2) | (z+1)?2  z+1
098 (2) _ (8.2.32)
| 975, (2) |
075 2 -
Vowl(2) __| iz' _ (8.2.33)
| 0275 (2) | z z
and hence we obtain from (4.4.118) the claimed explicit forms for ks, [ € {0, 1, 00}. O
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8.3 Monodromy matrices of trinoids with properly embedded annular ends,
which are reflectionally symmetric with respect to a trinoid normal plane

We now study the (unitary) monodromy matrices My, Mh M, associated with a trinoid with properly
embedded annular ends and with reflectional symmetry with respect to one of the trinoid normal planes.
Our considerations are based on the relations between the bi-antiholomorphic mappings vs, associated
with the symmetries &; and the covering transformations ¥; on M generating the monodromy matrices

Mj. Recall the latter ones from section 3.3:

z —3z—2
~ = — ~ = 2 ~OO = .
’VO(Z) _22_|_17 ’yl(z) z+2, v (Z) 22+ 1
The corresponding inverse functions are given by
<1 z A1 A1 z+2
= — = — 2 = —\
Ble) = g AR =22 AR () = S

The relations mentioned above are stated in the following lemma.

Lemma 8.5. Let M = H and o, %1, oo : M — M be given as above.

1. ForAs, : M — M,4s,(z) = —2—, the following identities hold:

—Z—-1’

Y50 0 %0 =5 ' 0 Ases VS O = Vo' ©ASes  ASe © Voo = V1 ' © s

2. Fords, : M — M,As,(2) = —z — 1, the following identities hold:

A5 090 = A 051, Asi o1 = A1 0 s, As: © Ao = Ao - 0 sy -

3. Fords. :M — M,3s._(z) = L, the following identities hold:
A0 070 = A1 0AS0er Voo ©F1 = A0 ©FSus  FSm0 © Foo = Voo © Vs

Proof. This is proved by direct computation: Let z € M , then

- - T z = -1 =
(0] zZ) = — = = — = O 2;7
,Y'SO 70( ) 7_224_1 _ 1 7 _ 1 2_22_1 + 1 ’YO ’YSO< )
> z Z 2
,?S o;}'/l(z) e Z+2 g Z+2 e 727,1 + :;)'/_10;}1/5 (Z)’
0 -z-2-1 -z-3 2-2=-3 '~ 0
—3z—2 _ _
= —-3zZ—-2 z
~ ~ 2zZ+1 ~—1 =
Vs © Voo (2) = 3212 = == —2=791 °9s,(2),
0 2§+1—1 zZ4+1 —z-1 K
Ss 0 F0(z) = — z 71:—2+22—1:—2—1+2:&,10%(2)
! —2z+1 -2z +1 2Z2+2-3 o e
As,01(2) = —(2+2) —1=-2-3=-2—-1-2=7;"07s,(2),
- 5o (2) 3Z2+2 1 3z4+2-2z—-1 —-z-1 1 )
O OOZ = — —_ = — = — = (e} Z,
Vs 07 211 2z + 1 9z 241 0 7S
- - —2z+1 1 o
Fs. 00(2) = ——— =2 - 2=4 " 045 (2),
1 1
7300071(Z)=2+2=2%+1—7o ° s, (2),
N N 2z +1 i4+2
Vom0 ¥o0(2) = =5 = 5T 3 = Voo © 5w (2)-

In view of this, we are able to prove the following theorem:
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Theorem 8.6. Let M = C\ {0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and
¥ the associated conformal CMC-immersion on M = H, ¢ = ¢om : M — R?, where m denotes the
universal covering M — M as defined in (3.2.2). Let ¢ be reflectionally symmetric with respect to the
trinoid normal plane E;. Denote the corresponding symmetry by S;. Furthermore, let F : M — ASU(2),
be the extended frame associated with ¢ by theorem 4.5. Denote by My, My, My € ASU(2,C), the unitary
monodromy matrices

- 10 . Pi @G
M; =— |:COS(27T,UJ‘) (0 1> + isin(2mp;) (qj —}]7]‘)] (8.3.15)
associated with F' as in (4.5.13) by
F(%(2),\) = a; Mj(\)F(z,\k;(2), 7 =0,1,00, (8.3.16)

where a; € {£1} and 7, denote the covering transformations on M from section 3.5. Finally, let 8,5
be the bi-antiholomorphic mapping M — M associated with S; as in theorem 4.9 and explicitly given in
lemma 8.3, and

a b
Mg, (A) = ( E)SS a‘i) (8.3.17)
l l

the corresponding monodromy matriz of F satisfying (8.2.23).

1. In the case l =0, the monodromy matrices satisfy

Msy(\)Mo(\) = (Mo(A™1)) " Ms, (\), (8.3.18)
Ms,(NMi(A) = (Moo (A1) ™ M, (A), (8.3.19)
M, (N Moo(N) = (M (A1) "2 M, (N). (8.3.20)
In terms of the functions p; and q; occurring in Mj, equations (8.3.18) to (8.3.20) are equivalent
to
as,Po(A) + bs,qo(A) = as,po(A~ 1) - E%(Afl)v (8.3.21)
as,00(N) = bs,po(N) = bs,o(A 1) + a5,00(N ), (5322)
a5,p1(A) + bs, @1 () = a5,Poc(A ") = bsygoo (A1), (8.3.23)
aSOql()\) - bSopl ()‘) = bSopoo()‘ ) + aSoQoo()‘ 1)' (8324)
2. In the case l = 1, the monodromy matrices satisfy
Mg, (N Mo(A) = (Moo (A1) " Mg, (N), (8.3.25)
Ms, (VM (A) = (My(A™1) ™ M, (A), (8.3.26)
Ms, (N Moo (A) = (Mo(A™1)) ™" Ms, (A). (8.3.27)

In terms of the functions p; and q; occurring in M;, equations (8.3.25) to (8.3.27) are equivalent

to
as,p0(A) + bs, @0(N) = a5, Poc(A™") = bs, goc (A1), (8.3.28)
as, Go(N) = bs, Po(A) = bs, Poc( A1) + 5,400 (A1), (8.3.29)
as,;p1(A) + bs,q1(X) = as, p1 ()\_1) —bs,q1(A 1), (8.3.30)
as,q1(N) = bs,p1(\) = bs,p1 (A7) + a5, 1 (A1). (8.3.31)

8. In the case | = 0o, the monodromy matrices satisfy

Ms_ (N Mo(A) = (Mi(A™) "' Ms_ (M), (8.3.32)
Ms. (NMi(\) = (Mo(A™1) " Ms_ (N), (8.3.33)
Ms_ (A Mso(N) = (Mac(A™1) ™ Ms_(N) (8.3.34)



In terms of the functions p; and g; occurring in Mj, equations (8.3.32) to (8.3.34) are equivalent

to
as..po(N) +bs.a0(N) = aspr(A7H) = bs (A1), (8.3.35)
as..qo(A) = bs..po(N) = bs.pr (A7) +asa (A1), (8.3.36)
a5, Poo(N) + s doo(N) = a5 Poc(A 1) = bs dsc (A1), (8.3.37)
a5 Goc(A) = bs.Poo(A) = bs. Poo(AT1) + Ts g (A1), (8.3.38)

Proof. Like in the proof of theorem 7.5, we make use of the following fact, a direct consequence of (8.3.16):
F(; 1 (2),A) = a; M () F (2, M) (k; (3771 (2)) (8.3.39)

We consider the proof of the first case: | = 0. Combining (8.2.23) from theorem 8.4, equations (8.3.16)
and (8.3.39) and the identities (8.3.3) from the above lemma, we obtain

M, (N ao o (N F (2, V(2 ks, zs, (F0(2)) = M, N FGo(2): My 2, (F0(2)
— P, (50()): A1) = F(35 By (2)), A1) = ao(Mo(A™)) ™ F (s, (2), A1) (ko35 (s (2)))) "
= ao(Mo(A™1) ™ Mg, (N (2 Mk, iz, (2) (ko (35 (sa (2))) ™", (8.3.40)
M, (N My (N F (2, V1 (2) ks msy (31 (2)) = Moy (N E G (2); My m, (31 (2))
= F(As, (1)), A7) = FI2 50 (2)): A1) = oo (Moo (A1) ™ F(isy (), A1) (koo (et (isy (2))))
= Ao (Mo (A1)~ Mg, (VF (2 My 35, (2) (ko (T2 (s (20))) ™", (8:3.41)

and

My (N too Moo N F (2, N (2 35, (oo (2)) = Msy (N F (o (2): Wk sy (oo (2))
— F(3s, (e (2): A1) = FG (s (D), A7) = aa (B (A1) F(Fis, (2), A ) (B (s (2))))
= an (M (A1) ™ Mis, (N Tz M ks s, (2) (k1 (3 (s, (D)) 7L (8.3.42)

We continue by computing (due to the occurring complex roots up to sign)

1-2z 0 *ﬁ*ll 0
~ 1-2z =27+
ko(2)ks, 4s, (F0(2)) = - o

=
0 —22+1
1+l

(1-22) (= =527 1) —
-4 \/(122)(2;1“) 0 ( ) 0 )

(129D | — i1
0 \/(1 22)(— 22;1+1) —Z+1
(\/(21)(z12z)(21) 0 )
_ (24+1)(22—1-22)(2—1)
(—z2—1)(z—1-22)(z—1)
0 (z+1)(22—1-22)(2—1) 0
1-2-=2
=5 o == U
== ——— | = ko5, (2) (ko (o (s,(2)))) ", (8.3.43)
0 —z—1 0 1722i1
zZ+1 1_22i1
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k1(2)kso 4s, (11(2)) =

—z=3
zZ+3 0
—z—3
0 zZ+3
(—z—1)(z43—2z2—4)(2+3) 0
_ (z41)(2+3—22—4)(2+3)
0 (—2—1)(2+3—27-4)(243)
(z4+1)(z+3—22—4)(2+3)
142252
_L[VE 0 e !
0 —2=1 1+2 55
z+1 0 1+2;i?
and

= £y 55, (2) (koo (G (50 (2)))) 71 (8.3.44)

1422
— ~ 142z
koo(z)k&)ﬁso (Yoo (2)) = (

0 ) - 0
142z
0 1122

—3z-2 ¢
0 _ 2z+1
—3z—2
5o+
(1422)(3242—22—1)(2z+1)
-+ (142z)(—3z—242z+1)(22+1)
0

0
(1422)(32+2—22—1)(2z2+1)
(142z)(—32—242z+1)(22+1)
—z—1
-+ zZ+1

—z—1
Z+1
Combining these results with the equations above, we obtain

= +ksy 5, (2) (k1 (37 (s, (2))))

(8.3.45)
Ms, (AN Mo(\) = Bo(Mo(A™1)) ™ Mis, (M), (8.3.46)
Ms,(\)Mi(N) = Bragaee (Moo (A1) ™1 M, (), (8.3.47)
Mg, (\) Moo () = Bocroar (My (A1) "1 Mg, (N). (8.3.48)
with 8o, 01, 8o € {£1}. This can be reformulated as
(Mo(A™1)) ™1 = o M, (N Mo(A)(Ms, (A) 7, (8.3.49)
(Moe(A1)) ™! = Brarase M, (N ML (A) (M, ()7, (8.3.50)
(VA1) ™! = Buoarocar Mis, (\) Moo (M) (M, (V) . (8.3.51)
Comparing the upper left entries as well as the lower right entries of both sides in each of these equations,
we obtain
— cos(2mpo) + isin(2mpo)po(A ) =
o [ cos(2mpo) + i sin(2mpo) (as, T, p0(N) + s b,

qo(N) + as,bs,90(A) = bsybs,po(N))
— cos(2mpg) — i sin(2mpo)po(A 1) =

} . (8.3.52)

o [~ cos(2mpuo) — i sin(2mpo) (as, T, po(N) + Ty,

do(N) + as,bs,40(N) — bsybs,po(N))
— €OS(2T oo ) + 18I0 (27 oo )P0 (A1) =
Braras [f cos(2mpy) + isin(2m s ) (as,@s,p1 ()

} . (8.3.53)

— €o8(2T oo ) — 1 SIN(27 oo ) Poo (A 1)

+a5,b5,q1 () + as,bs,q1(N) — bs,bs,p1(N))
Braras [— cos(2mpy) — isin(2mpq ) (as,as,p1 (N)

} . (8.3.54)

+ @5y bs,q1(A) + as,bsyq1(N) — bsybsyP1(A))
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— cos(2mpuy) + isin(2mpg)pr (A7H) =

Boo Qoo 1 [_ cos(2T oo ) + iSin(QWﬂOO)(aSoEpoo(/\) + Ebsoqoo(/\) + GSOEQW(A) - bSoEpoc M)
(8.3.56)

— cos(2mpy) — isin(2mpy)pr(ATH) =
ﬁooaooal |:_ COS(27T,U/OO) - len(Qﬂ—//foo)(aSoﬁpoo(/\) + EbSOQOo(A) + aSgEQoo<>\) - ngEpoo()\)ﬂ )
(8.3.57)

respectively. By summing up the first two equations, we conclude that (y necessarily equals +1. Analo-
gously, by summing up the next two (resp. the last two) equations and recalling that g = p1, we deduce
Bra1as, = 41 (resp. Bocoo1 = +1). Therefore,

Ms,(N)Mo(X) = (Mo(A™)) ™ Ms, (N), (8.3.58)
Ms,(\Mi(N) = (Moo (A1) "' Ms, (N), (8.3.59)
Ms,(\) Moo (N) = (My (A1) ™" Ms, (M), (8.3.60)

as claimed. Note that in view of (3.9.32) equation (8.3.20) is implied by equations (8.3.18) and (8.3.19).
Thus, all three equations are equivalent to the scalar reformulations of the equations (8.3.18) and (8.3.19),
which read

— cos(2mpg)as, + isin(2muo)(as,po(N) + bs,qo(N))
= —cos(2mug)as, + isin(27ru0)(agopo()\_1) —bs,q0(A"1)), (8.3.61)

— cos(2mpio)bs, + isin(27 o) (as,q0(A) — bs,po(A))
= — cos(2mpio)bs, + i sin(27mpo) (bs,po(A 1) 4+ Gsgqo( A1) (8.3.62)

and

— cos(2mpy)as, + isin(2mp ) (as,p1(X) + bs,q1(N))
= — c08(2M oo ) A5, + 1 SIN(27 oo ) (A5, Poo (A1) — bsy@oo (A1),  (8.3.63)

— cos(2mpia)bs, + isin(2myin) (as,a1 () — bsypr (V)
= — c08(2M oo )bs, + 1 SIN(27 oo ) (bsy Poo (A1) 4 G5y goo (A1),  (8.3.64)

respectively. A straightforward simplification of these equations yields the claimed ones and finishes the
proof for [ = 0.
The claims in the cases [ = 1 and [ = oo are proved analogously. O

8.4 Normalized trinoids with properly embedded annular ends, which are
refletionally symmetric with respect to a trinoid normal plane

Let [ € {0,1,00} and ¢ : M — R3 be a trinoid with properly embedded annular ends, which is reflection-
ally symmetric with respect to the trinoid normal plane E;. Moreover, let ¥ = ¢ o m be the associated
CMC-immersion M — R3. Denote by Sy the corresponding symmetry of ¢ (and 1), i.e. the reflection in
the trinoid normal plane FEj.

We review the results of section 8.3 in the special case that the extended frame F : M — ASU(2),
associated with v as in section 4.2 is “normalized” at z, € M , which we choose independent of [ as
follows:

“14+iv3 -
2 = %[ e M. (8.4.1)
The “normalization” of F' is realized in form of the presumption that
F(ze,N) =1 (8.4.2)
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for all A € S1. More precisely (cf. section 4.2), the normalization F(z.,A\) = I of F' is a consequence of
normalizing the (conformal) CMC-immersion 1, such that

Loy, Uz =00, (8.4.3)

V(z) = 57

where U € SO(3) represents the natural orthonormal frame corresponding to v, and G(1) is given in
(4.2.5). Recall from section 4.2, that this normalization of 1) corresponds to rotating and shifting the
(image of the) trinoid in R3, such that the conditions (8.4.3) are met. It turns out (cf. corollary 8.8), that
the choice of z, as above (for a trinoid ¢ with properly embedded annular ends, which is reflectionally
symmetric with respect to the trinoid normal plane E;) corresponds to arranging the (image of the)
trinoid in R?, such that the reflection plane E; of S; contains the z-axis in R3.

A trinoid ¢ : M — R? with properly embedded annular ends, which is reflectionally symmetric with
respect to the trinoid normal plane E; and, in addition, is “well positioned” in R? in the sense that the
associated conformal CMC-immersion ) : M — M meets the normalization conditions (8.4.3), is called a
normalized trinoid with properly embedded annular ends, which is reflectionally symmetric with respect
to the trinoid normal plane Ej.

We now formulate a more explicit version of theorem 8.4:

Theorem 8.7. Let M = C\{0,1}, ¢ : M — 1@3 be a trinoid with properly embedded annular ends and v
the associated conformal CMC-immersion on M =H, ¢ = ¢pom : M — R3, where 1 denotes the universal
covering M — M as defined in (3.2.2). Let 1 € {0,1,00} and ¢ be reflectionally symmetric with respect

to the trinoid normal plane E;. Moreover, let z, be given in (8.4.1)

144 -

*

(8.4.4)

and assume that 1 has been normalized at z., such that 1(z,) = skes and F(z,,\) =1, where F : M —

ASU(2), denotes the extended frame corresponding to ¢ by theorem 4.5. Denote by §; the corresponding
symmetry of ¢ and by s, the bi-antiholomorphic mapping M — M associated with S; as in theorem 4.9

and, according to 1, explicitly given in (8.2.10), (8.2.13) or (8.2.16):

. z - i - 1
Fs,(2) = — 7 s () =—2—-1, As_(2)= > (8.4.5)
Then, the extended frame F' transforms under s, as
F(3s,(2), A\71) = Ms, (N F (2, ks, 5, (2) (8.4.6)

where ks, 3, (2) is, according to I, given in (8.2.24), (8.2.25) or (8.2.26) and
e % 0
Ms, () = ( ) , (8.4.7)
Ms, (A) = (é 0.> ; (8.4.8)

Ms, (A) = (606 6_0?) : (8.4.9)

In particular, the matrices Ms,, | = 0,1, 00, are actually independent of .

Proof. In view of theorem 8.4, we only have to prove the equations (8.4.7), (8.4.8) and (8.4.9). To this
end, we compute

—1—14v/3

~ * = —— *9 8.4.10

Vo (%) 52 " ( )

Vs, (24) = *%ﬁ —1= 2z, (8.4.11)
2

Voo (22) = ————= = 2, (8.4.12)
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which shows that we have for all [ € {0,1, 00}
s (22) = 2s. (8.4.13)
Furthermore, F(z,, A) = I. Thus, evaluating equation (8.4.6) at z = z, yields
L= F(z0, A1) = F(35,(2:), A1) = M, (A F (22, sy 43, (24), (8.4.14)

- Ms,(\) = (ksmgl (2 )) - (8.4.15)

In view of remark 4.14 (for our definition of the complex square root) and equations (8.2.24), (8.2.25)
and (8.2.26), we have

[ 1-iv/3-2 0 2-2i/3 0 mi

i — es 0

Ko, (2:) = | V T170V3+2 _ = 1 B u ), (84.16)
0 [ 1—iv3-2 0 2-2iV3 0 e s

—1-iv/3+2 1

- 0
ks, (24) = ( 0 Z) : (8.4.17)
1-iv3 0 242iV3 _mi
ksans, (ze) = [ V —171V3 = 1 0 - <e ’ 9) . (8.4.18)
h 0 13 0 2+2iV/3 0 €%
—1-iv3 1
In view of equation (8.4.15), the claimed identities (8.4.7), (8.4.8) and (8.4.9) follow. O

Corollary 8.8. We retain the notation and the assumptions of theorem 8.7. The reflection plane of the
symmetry S; of the normalized trinoid ¢ contains the z-axis in R3.

Proof. Applying (the second part of) theorem 4.17, we know that the monodromy Mg, (A) explicitly given
in theorem 8.7 satisfies at A =1

Ms, (1) = £45, (_01 (1)) , (8.4.19)

where Ags, € SU(2) denotes the conjugation matrix realizing the orthogonal part Ag, of the symmetry S
in the su(2)-model. In view of the equations (8.4.7), (8.4.8) and (8.4.9), this yields

0 —e %
As, =% (e? 0 ) , (8.4.20)
0 —i
As, =+ <—i 0 ) , (8.4.21)
0 —e%
As ==+ i . 8.4.22
Seo (e‘ﬁ 0 ) ( )

Recalling that As, and Ag, are linked via the Lie Algebra isomorphism .J : R? — su(2) defined in (3.4.3)
as in (3.4.8), i.e.
(JoAs, 0 J M) (X) = —As XA for all X € su(2), (8.4.23)

we obtain by a direct computation that

1 V3
2 2
As, = 1 of, (8.4.24)
0 0 1
1.0 0
As;=10 1 0], (8.4.25)
0 0 1
1 _V3
2 2
As.= |- -1 of. (8.4.26)
0o 0 1



Thus, for all [ € {0,1, 0}, As, defines a reflection (in R?), whose reflection plane contains the z-axis in
R3, Res. Consequently, for all I € {0, 1,00}, the symmetry S; of the normalized trinoid ¢ is a reflection
in some plane in R3, which is parallel to the z-axis. As the point 1(z,) € R? (with z, given in (8.4.1))
satisfies

Si(1h(24)) = V(s (24)) = P(24), (8.4.27)
it lies in the reflection plane of S;. Since by assumption we have 1(z,) = ﬁeg, we infer that the reflection
plane of S; actually contains the z-axis in R3. O

Applying the theorems 8.6 and 8.7, we obtain the following result:

Theorem 8.9. Let M = C\ {0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and
Y the associated conformal CMC-immersion on M = H, ¢ = o : M — R3, where m denotes the
unwersal covering M — M as defined in (3.2.2). Letl € {0,1,00} and ¢ be reflectionally symmetric
with respect to the trinoid normal plane E;. Moreover, let z, be given in (8.4.1) and assume that ¢ has
been normalized at z,, such that ¥(z.) = Fzes and F(z.,\) =1, where F : M — ASU(2), denotes the
extended frame corresponding to v by theorem 4.5.

1. In the case | = 0, the unitary monodromy matrices Mj € ASU(2,C),, 7 = 0,1, 00, associated with
F as in (8.3.16) satisfy equations (8.3.18) to (8.3.20) from theorem 8.6. In terms of the functions
pj and q; occurring in M;, these equations are equivalent to

po(A) = po(A71), (8.4.28)
w0(\) =eF (A0, (8.4.29)
P1(A) = poe(A7), (8.4.30)

(A) ( )

8.4.31

2. In the case | =1, the unitary monodromy matrices Mj € ASU(2,C),, 7 = 0,1, 00, associated with
F as in (8.3.16) satisfy equations (8.3.25) to (8.3.27) from theorem 8.6. In terms of the functions
p; and q; occurring in M;, these equations are equivalent to

Po(N) = P (A7), (8.4.32)
q0(A) = —Gsc (A7), (8.4.33)
pi(A) =pi(A7Y), (8.4.34)
@A) =-q(A7) (8.4.35)

3. In the case | = oo, the unitary monodromy matrices ]\ij € ASU(2,C),, j =0, 1,00, associated with
F as in (8.3.16) satisfy equations (8.3.32) to (8.3.34) from theorem 8.6. In terms of the functions
p; and q; occurring in M, these equations are equivalent to

po(A) =pr(A7h), (8.4.36)
Go(\) = e T (A7), (8.4.37)
poo(>‘) = poo(>\71)a (8438)
foo(N) = e~ F g (AT) (8.4.39)
Proof. Keeping in mind that by theorem 8.7

as, bs, 6_% 0
Ms, (M) = = 22 )= =i |, 8.4.40
s = (8 o) (7 %) (8.4.40)

_ as, bgl ) 0

e = (%5t (i 0), s

as bs e%i 0
Ms_(A) = = > )= =i | 8.4.42
so= (= )0 %) (8.4.42)
the claimed identities follow directly from theorem 8.6. O
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Theorem 8.9 describes the (unitary) monodromy matrices associated with the extended frame F' :
M — ASU(2), of a trinoid ¢ : M — R3 with properly embedded annular ends, which is reflectionally
symmetric with respect to the trinoid normal plane E; for some [ € {0,1,00}, and which has been
normalized such that F(z,) =1 and ¢(2,) = 55e3, where z, € M is given in (8.4.1) and 9 denotes the
conformal CMC-immersion M — R3 corresponding to ¢. It turns out that, in this setting, we can also
prove the converse result: A trinoid ¢ with properly embedded annular ends and with extended frame F’
satisfying F'(z.) =1 at z, € M from (8.4.1) and corresponding monodromy matrices of the form given
in theorem 8.9 is necessarily reflectionally symmetric with respect to the trinoid normal plane F;. This
result is formulated in the following theorem.

Theorem 8.10. Let i be a (standardized) trinoid potential associated with three off-diagonal Delaunay
matrices Dy, D1, Do with eigenvalues +pug, +u1 and Fpeo, respectively. Denote by ¢ : M — R? a
trinoid with properly embedded annular ends on M = C\ {0, 1} generated by n via the loop group method.
Moreover, let F : M — ASU(2), be the extended frame associated with the mapping 1» = ¢pom by theorem
4.5, satisfying F(z,) =1 at z, € M given in (8.4.1).

1. Let py = poo- Assume the unitary monodromy matrices Mj € ASU(2,C),, j = 0,1, 00, associated
with F' are of the form

M; = — cos(2m ;)1 — i sin(2mp;) (2;8; q;)j(?))\)) , (8.4.43)

with functions p; and q; satisfying (3.9.51) and (3.9.50) and, additionally,

= po(A~ )

L
= 3

8.4.44

8.4.45
8.4.46

8.4.47

Po(A

(
(A
(
(

/—\
,_A
~—

)
)
A)
)

~—~ ~~ ~~
—_ — D

a(\) = * ()\*1).
Then, ¢ is reflectionally symmetric with respect to the trinoid normal plane Ey.
2. Let py = fioo- Assume the unitary monodromy matrices Mj € ASU(2,C),, j = 0,1, 00, associated
with F' are of the form

M; = — cos(2m ;)1 — i sin(2mp;) (2;8; q;)j(?))\)) , (8.4.48)

with functions p; and q; satisfying (3.9.51) and (3.9.50) and, additionally,

Po(A) = pos(A7H), (8.4.49)
q(A) = 7‘100( -1, (8.4.50)
pi(A) =m(A7), (8.4.51)
a(\) = —qa(\1). (8.4.52)

Then, ¢ is reflectionally symmetric with respect to the trinoid normal plane E1.

8. Let po = py. Assume the unitary monodromy matrices Mj € ASU(2,C),, j = 0,1, 00, associated
with F are of the form

M = — cos(2m ;)] — i sin(2mp;) <§j8§ —q;)fz\;)) : (8.4.53)

with functions p; and q; satisfying (3.9.51) and (3.9.50) and, additionally,

po(N) =pi(A71), (8.4.54)
QN =e T (A7), (8.4.55)
Poo(N) = Poc(A71), (8.4.56)
Goo(N) = €~ T g (A7), (8.4.57)

Then, ¢ is reflectionally symmetric with respect to the trinoid normal plane Eo
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Proof. We start by considering the special form of the potential 7 in each of the three cases. We associate
the first, second, third case with [ = 0, =1, [ = 0o, respectively, and denote the corresponding potential

by 70, 1M1, Moo, respectively.
In the first case (I = 0) we have p; = po and thus (cf. section 3.6)

o — (/\Q(?(Z,A) A;) d, (8.4.58)
where
otz ) = ) 2 )
bW (z —1)? +Z SES—)Z;? bo(Nz(z —1) _ boW(;(ZZE ;NA)Z? (8.4.59)

and b;(\) = i— ;(A)? for j = 0,1. Considering the bi-antiholomorphic mapping s, : M — M defined
by z = vs,(2) := =5 and the function hg : M — C\ {0}, z — ho(z) = —i(Z — 1), we compute

bo(N(=4) + bi(N) Ee bo(A)(1 = 2) + b (V)22 _
Qulasy (), 3) = il I ot R AT 1)) Qe a )
G-D2 z-1)
(8.4.60)
where we used the fact that for A € S the identity
bj(A71) =b;(A) for j=0,1,00 (8.4.61)

holds. Recalling from lemma 4.21 that s, corresponds to the permutation o = (1 0o) of the set {0, 1, oo},
we apply lemma 4.25 to infer that ny transforms under ~s, as

Vs,M0(2, A) = no (2, \™1)# W, o, (8.4.62)
where hol2)
_ _ 11¢4 0
W+,0 = W+’()(Z, )\) = ()\azho(Z) (ho(Z))l) . (8463)
Analogously, in the second case (I = 1) we have pg = po, and thus (cf. section 3.6)
0 A1
m = ()\Q1(Z, N0 ) dz, (8.4.64)
where
_bo(N) | bi(A) () bi(A)
@z ) = 22 +(z—1)2+ z z—1
_ bo(A)(z — 1)2 + b1 (N)22 —by(N)z(z — 1) _ bo(N)(z —1)2 + b1 (\)z (8.4.65)
22(z —1)2 22(z —1)2 o

(\))? for j = 0,1. Considering the bi-antiholomorphic mapping vs, : M — M defined

and bj(\) =+ — (u;
by z + s, (z) := £ and the function hy : M — C\ {0}, z — hi(z) = —iZz, we compute
oW UZE + b (VL bWz - )2+ bi(N)z _
e = 8 )(zgc"il)z YV ()N, (3.4.66)

where we have again used the identity (8.4.61). Recalling from lemma 4.21 that ~s, corresponds to the
permutation o = (0 0o) of the set {0,1, 00}, we apply lemma 4.25 to infer that n; transforms under ~s,
as

Y85, (2,A) = m (2, A #W, 1, (8.4.67)
where
Wi =Wia(zA) = <_)\}é;z<}jl)(z) (hl(g))_1> . (8.4.68)
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Finally, in the third case (I = 0o) we have po = g1 and thus (cf. section 3.6)

-1
e (—AQ:O)(z,A) A0 >dzv (8.4.69)

where

C C z — 2 Z2 — C Z\Z —
Qo2 ) = boz(;\) + (2170_(1))2 " oi/\) 7 ZOE/\i _ BN (z—1) 4;2(??2()\_) 7 0(M)z( 1)’ (8.4.70)

bj(A) = 1 — (ro(N))? for j = 0,00 and cy(A) = 2bg(A) — boo(A). Considering the bi-antiholomorphic
mapping vs,, : M — M defined by z — ~vs_(2) := 1 — Z and the function ho : M — C\ {0},
z — heo(z) = —i, we compute

_ Bo(N)z2 4+ bo(N) (2 — 1)2 — co(A) (1 — 2)(=2)

Qoo (V5. (2), N) EEHGE = (hoo(2))* Qoo (2, A1), (8.4.71)

where we have used (8.4.61) together with the identity

co(A"1) = co(N) forall A € St. (8.4.72)

Recalling from lemma 4.21 that vs__ corresponds to the permutation o = (0 1) of the set {0,1, 00}, we
apply lemma 4.25 to infer that 7. transforms under vs_ as

Y500 (25 A) = Moo (2, A1 H#W oo, (8.4.73)
where
Wi = Waoelod) = (L5520 oy (347

Altogether, we have for all [ € {0,1, 00} the relation
Y5, m (2, A) = m(z, A\"H)H#W L i(2, A). (8.4.75)

Applying the pullback construction with respect to the covering mapping 7 : M — M to (8.4.75), we
obtain

T (v m (2 N) = 7 (2, A EW L) = (2, A D#W L, (8.4.76)
where 7; = 7*1n; denotes the pullback potential of the trinoid potential 7; (cf. section 2.3) and V~V+J =
W, ; om. Moreover, recall that the bi-antiholomorphic mappings vs, : M — M,

z
-1’

| =

Sy 1 2 — s, 12— —Z2—1, As_ i1z (8.4.77)

from lemma 8.3 satisfy s, om = w0 4s,. Thus, the left hand side of (8.4.76) can be transformed as
follows:

T (vsm) =7 [(AQz(V?sl(Z), N A;) dys, (z)]
- (—AQm&Oo DA 0 ) (s om)(z) = <—/\Ql((7r o5e )3 0 ) d(m 07s,)(2)

-1
56 | (Caaiuenny o ) 4] =3 rm =35 479
Altogether, (8.4.76) yields
V5,72, A) = (2, A #W . (8.4.79)
Considering the extended frame F associated with the trinoid ¢, we obtain (for I € {0,1,00}) a
solution ¥; = F B, ; to the differential equation d¥; = ¥;7;. Note that ¥; possesses the same (unitary)
monodromy matrices as F' at the singularities of the potential 7;, namely MO, M, and M.

Naturally, the mapping 75 ¥; = ¥; o 45, defines a solution to the differential equation d(73 ¥;) =
(95, %1)(75,7), which in view of (8.4.79) reads as

d(75,Wi(2, ) = (35, 1(2, \) (7 (2, A DF W) (8.4.80)
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Since this differential equation is also solved by the mapping WW+J, ie.
AW (2, A Wag) = (W (2, AW 0) (7 (2, A D#W o), (8.4.81)
the mappings 75 ¥(z,A) and U(z, \"1)W,; only differ by a A-dependent matrix p; = p;(\):
35, Y1(zA) = p (2, AWy (8.4.82)

Consider the case I = 0. Applying the relation ys, 0% = Yo oAs, from (8.3.3), involving the covering
transformation 49 on M as given in section 3.3, we compute

Po(A) Mo(A=1) W (2, A" Wt 0(30(2), A) = po(M)Wo(F0(2), A 1)W+ 0(0(2),A) = 75," Yo (Y0(2), A)
= Wo((Fso ©70)(2), A) = Wo((Fp ' ©F5,)(2)s ) = (Mo(A) ™" o (T, (2), A)
= (Mo(N) ™" (35, Wo(2, ) = (Mo(N) " po(A)Wo (2, A" D)W (2, ), (8.4.83)

where we have made use of the identity
Wo (3 1 (2),A) = (Mo(A) ™ Wo(z, A), (8.4.84)
which is a direct consequence of the relation
Wo(z,A) = Lo(Fo(Fp 1 (2)), A) = Mo(A)Wo(Fg ' (), V). (8.4.85)

As W+,0 defines the pullback of the mapping W, o, which is antiholomorphic on M (with respect
to z), Wy o is antiholomorphic on M and therefore does not pick up any monodromy under g, i.e.
Wi o(F0(2), ) = W4 o(2,A). Thus, we conclude that

Po(N)Mo(A=1) = (Mo(A) o (N). (8.4.86)
Analogously, applying 7s, 0 1 = Y2} ©Js, from (8.3.3), we have
po(NMIAH) W0 (2, AWy 0(F1(2), A) = po(MN)Wo(F1(2), AWy 0(F1(2), A) = 15, Wo(F1(2), M)
) 1

= Wo((3s, © 71)(2), A) = Wo((Fc' 0 4s0)(2), A) = (Moo(N)) ™" Wg (vso( )sA)
= (Moo (M) 1 (35, Wo(2, M) = (Moe (X)) po(\) Wo(2, A" D)W (2, A). - (8.4.87)

Using the anti-holomorphicity of W, o on M, we know that W, o(31(2), \) = Wy o(z, \), which yields

P II (A1) = (Vo (V) po (). (3.4.58)
Setting
ao(A) bo(A))
) = ) 8.4.89
pO( ) (CO(A) do()\) ( )
where ag, by, ¢o and dy define complex valued functions of A satisfying ag(A)do(N) — bo(N)co(A) = 1, and
comparing the upper left entries (resp. the upper right entries) of po(A)Mo(A~1) and (My(X)) ™ ( ) we
obtain

ao()\)po()\il) + bo()\)qO()\il) = ao()\)po()\) + Co()\)qO(A), (8490)
ao(Ngo(A™") = bo(MN)po(A~1) = bo(A)po(A) + do(N)go (V). (8.4.91)

In view of (3.9.50) and the assumption, these equations simplify into
bo(N)e™ % go(A) = co(M)go(N), (8.4.92)
(ao(N)e — do(A)qo(A) = 2bo(N)po(A). (8.4.93)

_ Similarly, comparing the upper left entries (resp. the upper right entries) of po()\)Ml()ﬁl) and
(Moo (M) Lpo(N), we infer (by using p; = 0o ) that

ag(A)p1 (A7) +bo(AN) g1 (A1) = ag(A)Poo(A) + co(A)goo(N), (8.4.94)
ao(A)gi(A™1) = bo(M)p1 (A1) = bo(M)pas (A) + do( (8.4.95)

>
Nl
[}
8

>
Nz
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In view of (3.9.50) and the assumption, these equations simplify into

bo(\)e™F goo (V) = co(N) e (M), (8.4.96)
(ao(\)e — do(A))goe(N) = 2b0(N)poc(N).- (8.4.97)
Together, we have for j = 0, co:
bo(Ne™ 5 q;(A) = co(N)g; (N, (8.4.98)
(a0(N)e ™ = do(N))g; () = 2bo(A)p; (V). (8.4.99)

Since in general (i.e. for all A in S* excluding a finite subset of S') p;,q; # 0, we can solve for co(\) and
bo(A), respectively:

co(N) = e S b (N (NG (V) (8.4.100)

pii — -1

bo(A) = %(6Tao(/\) +do(A)g; (M) (pi(N) (8.4.101)

This yields (using (3.9.50) again)

p P

L= ag(A)do(A)—bo(A)co(N) = GO(/\)dO(/\)—Z(Jj(A)qj()\)(pj()\))_2(€Ta0()\)—dO(A))(GO()\)—e_TdO(A))

= a0\ )do(N) — 3 (s () (¥ a0(A) — e~ F do(N))? + 3(e¥ ao(N) — ¥ do ()’

1 pii pii

= — (0, (0) (W ap(N) — e do(N)” + Z(efao(x) +e 5 do(N)?,  (8.4.102)

or, equivalently,

pii

(p;(N)2(4 = (% ag(\) + e~ 5 do(N))2) = —(e"5 ag(A) — e~ do(N))2. (8.4.103)

Assume now that, in general, 4 — (epT“ao()\) + e_pT“clo()\))2 #0 (e 4— (e%iao()\) +e 5 dy(N)2 =0
for at most finitely many \ € S'). We infer that
("5 ap(A) — e~ % do(\))?

(Po(N)? = (pes(N))* = a0 Lo F P (8.4.104)
— (€75 ag e~ 6 dy

for all but (at most) finitely many A € S* and thus

Po(A) = apec(A) (8.4.105)

for some o € {£1} and all but (at most) finitely many A € S*. Consequently, by (8.4.101), this implies

20(A) = ago(A),  q(A) = agoo(N) (8.4.106)

and thus

qO(A)QDO ()‘) + QO(/\)qoo(/\)
2

Po(A)psc(A) + = a((Po(N)* + a0 (Na (V) = @ (8.4.107)

for all but (at most) finitely many A € S, which in view of remark 3.56 clearly is a contradiction to
equation (3.9.51). Therefore, we conclude that 4 — (e ap(\) + e 5 do(\)? = 0 for all A € S' and
(by (8.4.103)) (6%@(](}\) —e % dg(N\)? = 0 for all X € S*. Together, these relations yield ag(\) =

pii

e~ 5 dy(\) = e~ % and (by (8.4.101) and (8.4.100)) bo(\) = co(\) = 0. Thus,
e~ 0
po(N) = + ( ) , (8.4.108)
e 6

in particular po(\) € ASU(2), N ATSL(2,C),.
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We proceed analogously in the cases [ = 1 and [ = oo: Applying the relations s, o % = 7! o Vs,
and s, 041 = ;' 04s, from (8.3.4), we deduce in the case | = 1 the identities

pr(N Mo (A1) = (Moo (X)) 1 (V) (8.4.109)
pr(NM (A1) = (My(N) ' pr(N), (8.4.110)

which (analogously as above) in view of (3.9.50) and the assumption translate into
(

~bi(Ngi(N) = a1 (A)m, (8.4.111)
(—a1(A) = di(N)q1 () = 2b1(N)p1(N), (8.4.112)
—b1(N)gso(A) = ( )g00(N), (8.4.113)
(—a1(A) = di(A)ge () = 251 (\)poc(A), (8.4.114)
where a1, by, ¢; and d; define the complex valued functions of A satisfying a1 (A)dy(A) — bi(A)er(A) =1
and occurring in
p1(\) = (2((:\\)) 2183) . (8.4.115)
Applying the argument as in the case | = 0 (basically only adjusting indices) we conclude that
p(\) = + (8 _OZ) : (8.4.116)

in particular p;(\) € ASU(2), N ATSL(2,C),.
Applying the relations 4s_ o jo = 7y1_1 09s.. and Ys_ © Yoo = ' © V5., from (8.3.5), we deduce in
the case | = oo the identities

poc(NMo(A1) = (M (V)" poc (M), (8.4.117)
poe(NMoe (A1) = (Moo (A) ™ oo (N), (8.4.118)

which (analogously as above) in view of (3.9.50) and the assumption translate into

i

boo(N)e goo(N) = Coo ()\)m, (8.4.119)
(Ase(N)e™ = doo(N)goo(A) = 2boe (M)poc(N), (8.4.120)
boo )\)e%iql()\): N (), (8.4.121)
(Ao (N)e™ % = doo(N)q1(A) = 2bos (N1 (N), (8.4.122)

where o0, boo, Coo and doo define the A-dependent, complex valued functions satisfying aee(A)doo (A) —
boo(A)¢oo(A) = 1 and occurring in

Poo(N) = (Z:&; ZZ‘;&%) . (8.4.123)

Applying the same argument as in the case I = 0 (basically only adjusting indices) we conclude that
e’ 0
poo(A) = £ ( _m> : (8.4.124)
6

in particular po(\) € ASU(2), N ATSL(2,C),.
Altogether, for all [ € {0,1, 00}, we have p; € ASU(2), N ATSL(2,C),. Consequently,

(N pr ) (B a5 AW (2, ) (8.4.125)
defines an Twasawa-decomposition of p;W;(z, \=1)W ;(z, A) (pointwise for all z € M) with

o F(z, A" N)pt € ASU2),, mByi(z, \-1)W, 4(2,\) € ATSL(2,C), (8.4.126)
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and p;F(z., \=1)p; ! = L. Therefore, we can write

F(3s5,(2), N By 1(3s,(2), A) = 75,9 (2,A) = pr(N) Wi (2, A1) Wi (2, )

= (PN F (2, A7) (V) (V) By (2, A" W (2, 1)),

(8.4.127)

Thus, 45, ¥; produces (by the loop group method) on the one hand the trinoid SymBob(F(7s, (2), A))[x=1
and on the other hand the trinoid SymBob(p;(A)F (2, A=1)(pi(A))71)|x=1. Consequently, these two sur-

faces coincide, and, using the straightforward identities

SymBob(F(z,A71))|a=1 = —SymBob(F(z, A))| =1

= 0 1 0 -1
X = (1 0) X <1 0 ) for all X € su(2),

and

we compute

J(¥ 0 As,) = SymBob(F(3s,(2), A))[a=1 = SymBob(pi(A) F (2, A=) (1) 1) la=1
= p(N)SymBob(F (2, A1) [x=1(m(N) ™' = (A)SymBob

G
pl<A>m<pl<A>>1pz<A>(0 o) (1 o) o

‘We obtain

in the case [ =0,

in the case [ =1 and

in the case | = c©
Using the identities

= ( 0. eG) X _66> — (Jo As, 0 J7H)(X) for all X € su(2),

= (JoAs, o JTH(X) for all X € su(2),

~ 76 e 6 0
where

5% 0

'A‘S() = @ —% 01
0 0 1
-1 0 0

ASI = O 1 O )
0 0 1

ASOO = — 5 -3 01,

0 0 1
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pii pii
- ( OLM 606 )X( _Opu- et > = (JoAs,_ oJ 1) (X) for all X € su(2),
—e

(8.4.128)

(8.4.129)

(8.4.130)

(8.4.131)

(8.4.132)

(8.4.133)

(8.4.134)

(8.4.135)

(8.4.136)

(8.4.137)

(8.4.138)

(8.4.139)



from the proof of corollary 8.8, we switch into the R® model and obtain 1o¥s, = As,0t. AsFs, (M) = M,
this yields in each case (I € {0,1,00})

W) = As, ($(T)). (8.4.140)

This means that, for a given I € {0,1,00}, ¢ (and thus also ¢) is symmetric with respect to the
Euclidean motion As, € Iso(R?) defining a reflection in R3. In view of theorem 4.31, which lists all
possible trinoid symmetries, we observe that only the reflection in the trinoid normal plane F; shows the
behaviour of the reflection As, (concerning the permutation of the trinoid ends), which can be read off
the associated bi-antiholomorphic mapping 7s, : M — M, or, more precisely, its permutation behaviour
of the trinoid singularities. Thus, ¢ is necessarily reflectionally symmetric with respect to the trinoid
normal plane Ej, as claimed. O
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9 Rotoreflectional symmetry with respect to the trinoid normal

9.1 Definition

Finally, in this section we discuss trinoids ¢ : M — R? with properly embedded annular ends on M =
C \ {0,1,00} which are symmetric in the sense of definition 4.2 with respect to the rotoreflection S
composed of the rotation R by the angle £2F around the trinoid normal (as studied in section 5) and
the reflection S in the trinoid plane (as studied in section 7), S = SoR. Recall that, in the case that
a trinoid ¢ : M — R?® with properly embedded annular ends is symmetric with respect to the given
Euclidean motion S, there exists a unique trinoid plane and a unique trinoid normal of ¢, which enables
us to speak of the trinoid plane and the trinoid normal of ¢, respectively.)

S reverses orientation and permutes the trinoid ends according to the permutation (0 1 co) of the set
{0,1, 00}. Moreover, since we have

S(M) =p(M) = S p(M)) = p(M), (9.1.1)

we note right away that a given trinoid ¢ : M — R3 with properly embedded annular ends is symmetric
with respect to S if and only if it is symmetrlc with respect to S =R 108! =80R™!, defining
the rotoreflection composed of the rotation R~' by the angle T2~ 5 around the trinoid normal (as studied
in section 5) and the reflection S in the trinoid plane (as studied in section 7). (Note the fact that

S 1=8and R"1 oS =80R 1) &' reverses orientation and permutes the trinoid ends according to
the permutation (0 oo 1) of the set {0, 1, 00}.

Definition 9.1. Let M = C\{0,1} and ¢ : M — R3 be a trinoid with properly embedded annular ends.
Let M = H and ) =¢om: M — R3 the conformal CMC-immersion associated with ¢ via the universal
covering 7 : M — M given in (3.2.2). Let A, = {C 4 An; A € R}, where C' denotes the trinoid center
and n a normal vector of the trinoid plane F, be the trinoid normal. Then, if ¢ (or, equivalently, 1) is
symmetric with respect to the rotoreflection S, composed of the rotation R by the angle iQ’T around

the trinoid normal and the reflection S in the trinoid plane, S=8o R, and permuting the tr1n01d ends
according to the permutation o = (0 1 co) of the set {0, 1, 00},

S(d(M)) = ¢(M), SH(M)) = (M), (9-1.2)

or, equivalently, if ¢ (or, equivalently, ¢) is symmetric with respect to the inverse rotoreflection S -1

STHB(M) = (M), ST (w(M) = (M), (9.1.3)
¢ (or @) is called rotoreflectionally symmetric with respect to the trinoid normal.

Again, we are interested in translating this symmetry property into further constraints on the mon-
odromy matrices associated with the extended frame F' of 1.

9.2 Implications of rotoreflectional symmetry with respect to the trinoid
normal

The following result is an immediate consequence of definition 9.1:

Lemma 9.2. Let M = C\ {0,1} and ¢ : M — R3 be a trinoid with properly embedded annu-
lar ends produced from a trinoid potential n as in theorem 3.14. Denote by Dy, D1, Dy the corre-
sponding Delaunay matrices with eigenvalues +pg, 41, e, respectively, where, for j € {0,1,00},
= \/ij = \/i +w;(A—A"12 and w; = s;t; as in section 3.5. Then, if ¢ is rotoreflectionally
symmetric with respect to the trinoid normal, we have

1
W= o = 1 = fhoo = \/4—&—111(%—)\1)27 (9.2.1)

where
W= Wy = W] = Wee- (9.2.2)
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Proof. By definition 9.1, the ends of a trinoid with properly embedded annular ends, which is rotore-
flectionally symmetrlc Wlth respect to the trinoid normal, are mapped by the correspondmg symmetry
S (resp. S71) into each other according to the permutation o = (0 1 00) (resp. o~ ' = (0 oo 1)). This
means that the asymptotic Delaunay surfaces associated with the ends are mapped onto each other as
well. Hence, these Delaunay surfaces only differ by a rigid motion on R®. In particular, this implies
that the corresponding Delaunay matrices D;, j = 0,1, 00, (see section 3.5 for more details) all possess
the same eigenvalues. This yields pp = 1 = peo and allows for defining p = pp = 1 = poo- Using
lemma B.6, we infer that wg = w1 = we, whence w given in (9.2.2) is well defined. Consequently,

= \/i + w(A — A71)2 holds. This finishes the proof. O

Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1 the
associated conformal CMC-immersion on M = H, Y =¢om: M — R3, where 7 denotes the universal
covering M — M given in (3.2.2). Suppose ¢ (or, equivalently, 1) is rotoreflectionally symmetric with
respect to the trinoid normal, and denote the corresponding symmetry by S. Since S reverses orientation
on R3, we obtain by theorem 4.9 a pair of bi-antiholomorphic mappings, Vg M — M and g : M— M
satisfying

Sop=dong, (9.2.3)
Sop =1 o7s, (9.2.4)
TOAqg ="gOT. (9.2.5)

Analogously, we obtain for S~! a pair of bi-antiholomorphic mappings, Yé-1: M — M and Yg_, : M —
M satisfying

Slogp=¢ors, (9.2.6)
Stoy=voFe,, (9.2.7)
7To*y$ 1 =Yg-10T. (9.2.8)

The mappings vg and ys_, are uniquely determined and explicitly given by lemma 4.21:

1
1-2
z-1

—.

V5(2) = (9.2.9)

Ye-1(2) = (9.2.10)

The mappings 7¢ and J¢_, are uniquely determined up to composition from the left with an element
of the automorphism group Aut(M /M) of w. The following lemma explicitly states a pair of valid choices
for ¥¢ and y¢_.:

Lemma 9.3. Let M = C\ {0,1}, M =H and 7 : M — M be the universal covering as given in (3.2.2).
Let v : M — M and vg_, : M — M be given by (9.2.9) and (9.2.10), respectively. Then, the following
holds:

1. The mapping s : M — M,

Ys(z) = ZJZ_F L (9.2.11)

is bi-antiholomorphic and satisfies
ToAg ="7g0T, (9.2.12)
Sop =107, (9.2.13)

2. The mapping Yg_1 : M — M,

Jg-1(2) = i T (9.2.14)

is bi-antiholomorphic and satisfies
TOqg_1 = Vg-1 O, (9.2.15)
Stop=1poqs,. (9.2.16)



Proof. We start with proving the first claim. A direct computation shows that ¢ is a bi-antiholomorphic

mapping M — M. Moreover, by applying the relations (3.2.10), (3.2.11) and (3.2.12) of lemma 3.4, we
obtain for all z € M

Togg(z) =7 ('zi > = <1+i> = w(li) = 1_73(_2) = 117r(z) =g om(z), (9.2.17)

i.e. mo7yg¢ = vgom Consequently,
Soi/}:Sod)OW:gzﬁO’yéOW:(bOWO’?S:¢O’~YS*, (9.2.18)
ie. 301/):1&0’73.
Now we turn to the second claim. A direct computation shows that ¥s_, is a bi-antiholomorphic

mapping M — M.~Moreover, by applying the relations (3.2.10), (3.2.11) and (3.2.12) of lemma 3.4, we
obtain for all z € M

moyga(z) =7 (zi 1) =l-7n(l-2)=1- F(iz) =1- ﬂ(lz) = W(jz;l =vg-10m(z), (9.2.19)
i.e. modg_1 =741 om. Consequently,

Sloyp=8logor=goys,om=¢omoFs =1 oFs 1, (9.2.20)

ie. S7loy =1hoFe .. O

Remark 9.4. Note that, since 5 0 ys_1 = J¢-1 0 ¢ = id for the mappings 7¢ and J¢_, defined in
(9.2.11) and (9.2.14), respectively, we have

Fgr =A5 (9.2.21)

By the above lemma, we have explicitly determined mappings ¥g and J¢_, corresponding to the

trinoid symmetries S and ST, respectively, in the sense of theorem 4.9. Thus, we can apply theorem
4.17 to obtain

Theorem 9.5. Let M = C\ {0,1}, ¢ : M — R3 be a trinoid with properly embedded annular ends and 1
the associated conformal CMC-immersion on M =H, ¢ = porw : M — R3, where  denotes the universal
covering M — M as defined in (3.2.2). Let ¢ be rotoreflectionally symmetric with respect to the trinoid
normal. Denote by S and 871 the corresponding symmetries permuting the trinoid ends according to the
permutations o = (0 1 00) and o~' = (0 oo 1), respectively. Moreover, denote by 7 and by Ys_., the
bi-antiholomorphic mappings M — M associated with S and S_l, respectively, as in theorem 4.9 and

explicitly given in lemma 9.3. Then, the following holds:

1. The extended frame F : M — ASU(2), corresponding to v by theorem 4.5 transforms under y¢ as

F(is(2), A71) = Mg\ F (2, Nkg 5 (), (9.2.22)

where

S35

ke (z)—<\/; 0 ) (9.2.23)

b

2
z

and Mg(X) denotes an element of ASU(2),, which is independent of z.

2. The extended frame F : M — ASU(2), corresponding to ¢ by theorem 4.5 transforms under 5g_,

as
F(3g-1(2), A1) = Mg_s (N F(z, Nkg-1 5., (2), (9.2.24)
where
= 0
k15, ,(2) = (Z)_ — | (9.2.25)
z—1

and Mg_, denotes an element of ASU(2),, which is independent of z.
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Proof. We start with the proof of the first part. Let (z) = 75(z) = £ for all z € M = H. (For
convenience we omit the index S throughout this proof.) As S reverses orientation on R3, we apply the

second part of theorem 4.17 to obtain

F(3(2), A7) = My (VN F (=, Vs 1 (2), (9.2.26)
where F : M — ASU(2), denotes the extended frame corresponding to ¢ by theorem 4.5 and M5 denotes
an element of ASU(2),, which is independent of z. kg -(2) is given by equation (4.4.118) from lemma
4.18. By computing

- 1
we infer that 8.4(2) 2 ‘2
z V(% z 4
- _ =_Z 9.2.28
oA 2z (9:2:28)

and thus obtain from (4.4.118)
—Z 0
ks s(2) = (\/O E \/7> . (9.2.29)

As ¥ = 74, we denote M5 by Mg. This finishes the proof of equation (9.2.22).

To prove the second part of the theorem, we define ¥(2) = 4. (2) = % on M = H. Everything is

then done analogously. We have

0:3(2) = G (9.2.30)

and thus
0:9(z)  |z—-17 z-1

|0:4(2) | (-1 z2-1
Formula (4.4.118) from lemma 4.18 then yields

kg1~ (2) = Vi 0 (9.2.32)

Y

(9.2.31)

0 /im
and by setting M¢_, () := My()), the second part of theorem 4.17 implies (9.2.24). O

9.3 Monodromy matrices of trinoids with properly embedded annular ends,
which are rotoreflectionally symmetric with respect to the trinoid normal

With the results of the previous section we are now able to describe the (unitary) monodromy matrices
M, Ml, M, associated with a trinoid with properly embedded annular ends, which is rotoreflectionally
symmetric with respect to the trinoid normal. As a start, recall from section 3.3 the covering transfor-
mations ;, j = 0,1,00, on M generating the monodromy matrices ]\ij, 7 = 0,1, 00, respectively:

z —3z2—-2
q =— 7 = 2, Fool2) = ——. 3.1
B0(2) = s W) =242 Tl = s (93.1)
The corresponding inverse functions are given by
~—1 z ~—1 ~—1 z+ 2
= D um—— = —_ 2, 00 - . 9.3.2
Yo (B)=g -7 N (B)=2 Too (2) = =53 (9.3.2)

Lemma 9.6. Let M = H and Y0, Y15 Yoo - M — M be given as above. Then, for the bi-antiholomorphic

mapping g : M — M,’yg(z) = Z£L the following identities hold:

z

F50%0 =41 s AsoM =F1°5007g Tg©0Teo =70 © s (9-3.3)
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Proof. The claim is proved by straightforward computation: For z € M we have

S —g +1 2—25+1 z+1 o
Vg0 90(z) = 2 = = 2 o9 (9.3.4)
72z+1
o Z+3 —z-3 _ [ zZ+1 5 2Ll o
Tsonl) =g =y =n (___2> =% (_QZH +1> = 1050 0 75(2) (9.3.5)
—3z—2 —_ _ zZ+1
+1 _3z+2-2z2-1 +
~ ~ 2z+1 z ~— ~
750700(3): 395 — - = 53+1 Yo OFYS’(Z) (936)
S 32+2 22 41
O

The above lemma is needed to prove the following theorem, which states further necessary conditions
on the monodromy matrices of the extended frame F' associated with a trinoid with properly embedded
annular ends, which is rotoreflectionally symmetric with respect to the trinoid normal.

Theorem 9.7. Let M = C\ {0,1}, ¢ : M — R? be a trinoid with properly embedded annular ends and
1 the associated conformal CMC-immersion on M = H, Y =¢om : M — R3, where © denotes the
universal covering M — M as defined in (3.2.2). Let ¢ be rotoreﬂectwnally symmetric with respect to
the trinoid normal. Denote by S the corresponding symmetry permuting the trinoid ends according to the
permutation o = (0 1 oo). Furthermore, let I : M — ASU(2), be the extended frame associated with 1
by theorem 4.5. Denote by Mo, Ml, My € ASU(2,C), the unitary monodromy matrices

N = — {cos@wj) <é ?) +isin(2my;) (Pj T )] (9.3.7)

4 —Dj

associated with F' as in (4.5.13) by

F(7j(2),A) = ay M;(\) F (2, Nkj(2),  j=0,1,00, (9.3.8)

where a; € {£1} and 7, denote the covermg transformations on M from section 3.3. Finally, let 3 Vs

be the bi-antiholomorphic mapping M — M associated with S as in theorem 4.9 and explicitly given in
lemma 9.3, and let Mg(\) be the corresponding monodromy matriz of F as given in equation (9.2.22).
We set

Ms(\) = +(Ms_,(\) ™" = (_“l«; ZZ) . (9.3.9)

Then, the monodromy matrices satisfy

Mg(NMo(A) = (Mi(A™1) ' Mg(N), (9.3.10)
Mg\ Moo(N) = (Mo(A™1)) ™' Ms(N), (9-3.11)
Mg\ (N) = (M (A1) (Wo(A™1) Mg(N). (9.3.12)

In terms of the functions p; and g; occurring in Mj, equations (9.3.10) to (9.3.12) are equivalent to

agpo(N) +bgao(N) = agp1(A™") —bgqr(A~1), (9.3.13)
agqo(A) —bgpo(A) = bgpi (A1) +agai (A1), (9.3.14)
a5Poc(N) + bgq0e () = agpo(A™") = bggo(A1), (9.3.15)
44000 (A) = bgPoo(A) = bgpo(A™") +agqo(A~1). (9.3.16)

Proof. Like in the proof of theorem 7.5, we make use of the following fact, a direct consequence of (9.3.8):

F(3;1(2), ) = a My (0) 7 F (2, 0) (k5 (377 (2))) 7 (9.3.17)

Consider the bi-antiholomorphic mapping 7¢ : M — M given in (9.2.11): Fs(z) = ===1  Applying
theorem 9.5, we obtain
F(35(2), A1) = Mg\ F (2, Nkg 5 (2), (9.3.18)
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(9.3.19)

where
ks:,s(z) = (
9.3.17) and applying the identities (9.3.3)

Combining this with the monodromy equations (9.3.8) and

from the above lemma, we deduce

Mg(N)aoMo(N)F (2, Nko(2)kg 56 (G0(2)) =
= F(3:(0(2)), A1) = ( "35(2)), A1) = aa (M (
_Ozl(Ml 1 a
- (Yoo (2))

Mg\ Gioe (2): Mk 5,

= ag(Mo(A™1) T F(Fg(2): A1) (ko (B (3is(2))) ™

55 (To0(2)) =
(9.3.21)

Ms(N)arse Moo (N F (2, Moo (2)k g
= F(35(3(2)),A7") = F(%‘( 5(2)), A7) =
= ag(Mo(A™1) T Mg (N F (2, Nk 5 (2) (ko3 ' (75 (2))) 7

We continue by computing (due to the occurring complex roots up to sign)

(1-22) = ‘=
(1 22)1 2z 0 ::I:(

0

and

; )
=4
—3z—2
3242
L, B8242-22-2 172;;;12
_ Z E 0
= 4+ 2% 0 -4 <\/—z 0 ) 172;;«112
,3242-25-2 0 -z 1-22tL
0 —Z&zﬁ% \/i 0 1_23;:32
3z+2 3z+2
=tk 5, (2)(ko(35 ' (Fs(2))) 7" (9.3.23)
Combining these results with the equations above, we obtain
Mg(\)Mo(A) = Bo(Mi (A1) ™" Mg (N), (9.3.24)
Ms(N) Moo (N) = B1(Mo(A™1)) ™' Mg (V) (9.3.25)
with 8o, 81 € {£1}. This can be reformulated as
(M (A1)~ = BoMg(A) Mo (N) (Mg(N) ™, (9.3.26)
(Mo(A™1)) ™" = B1Mg(A) Moo (N) (Mg(N) ™" (9.3.27)



Comparing the upper left entries as well as the lower right entries of both sides in each of these
equations, we obtain

— cos(2mpy) + isin(2mpuy)pr (A7) =

Bo [— cos(2mpo) + isin(2mpo) (agagpo(A) + agbgqo(N) + agbgqo(A) — bg@po(A))} ; (9.3.28)

— cos(2mpuy) — isin(2mpr)pr (A7) =
Bo [— cos(2mpug) — i sin(2m o) (agagpo(N) + agbgqo(N) + agbsqo(N) — bg@po(A))} ; (9.3.29)

— cos(2mpug) + i sin(2mpo)po(A L) =

&5} {_ COS(ZW/"OO) + iSin(QWMw)(GSTSPM(A) + TSbSQOo(/\) + aS‘bS‘QOo(/\) - bS‘bS‘poo(/\))] ) (9330)

— cos(2mpug) — i sin(2mpo)po(A ) =
B [— COS(2 g ) — 1 SI0(27 100 ) (0,55 P00 (N) + T3b o0 (V) + a5h g0 (A) — bsgpwm)} . (9.3.31)
respectively. By summing up the first two equations and recalling 1 = g, we conclude that Gy necessarily

equals +1. Analogously, by summing up the other two equations and recalling that pg = s, we deduce
(1 = +1. Therefore,

Mg(\)Mo(A) = (My(A™1) " Mg(N), (9.3.32)
Mg(\) Moo (A) = (Mo(A™1)) " Mg (N), (9.3.33)

proving (9.3.10) and (9.3.11). Finally, we compute in view of (3.9.32)

Mg(\)Mi(X) = Mg(N)(Mo(X) " (Moo (A) =1 = Mi(A™1) Mo(A™ 1) Mg (), (9-3.34)

proving (9.3.12). Since by use of (3.9.32) equation (9.3.12) is implied by equations (9.3.10) and (9.3.11),
all three equations are equivalent to the scalar reformulations of the equations (9.3.10) and (9.3.11), which
read

— cos(2mpg)ag + isin(2mpo)(agpo(A) + bgqo(N))
= —cos(2mp1)ag + isin(2mp ) (agpr (A1) —beqi (A1),  (9.3.35)

— cos(2mpo)bg + isin(2mpg) (agqo(X) — bgpo(N))
= —cos(2mu1)bg + isin(2mpu1) (bepr (A1) +aggr (A1) (9.3.36)

and

— €08(2T oo )ag + 1 SIN(2T oo ) (@ gPoo (A) + b gGoo(N))
= —cos(2mpg)ag + isin(2mpuo)(agpo(A ") — bago(A~1)), (9.3.37)

— €o8(27 oo )bg + 1 8IN(27 oo ) (A gGoe (A) — bgPoo(N))
= —cos(2mpo)bg + i sin(2mpuo) (bapo(A 1) + @gqo (A1), (9.3.38)

respectively. A straightforward simplification of these equations (using again pg = 1 = pieo) yields the
claimed ones and finishes the proof. O

Remark 9.8. Since the bi-antiholomorphic mapping 7 : M — M, z — Fg(2) = 2%1 does not possess
any fixed points in M = H, there exists — unlike in the preceding sections dealing with the other possible
trinoid symmetries — no similar choice for a special “basepoint” for the extended frame of a given trinoid
with properly embedded annular ends, which is rotoreflectionally symmetric with respect to the trinoid
normal, which would lead to more explicit constraints on the functions p;, ¢; occurring in the monodromy
matrices associated with such a trinoid. Consequently, there will be no further section dealing with
“normalized” trinoids with properly embedded annular ends, which are rotoreflectionally symmetric with
respect to the trinoid normal.
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A Appendix: Basic Topology

The main goal of this appendix is to explicate the relation between the fundamental group 71 (X, z) of a
(path-connected) topological space X and the automorphism group Aut(Y/X) of the universal covering
m:Y — X of X. We briefly review some basic topology in section A.1, before introducing the concepts of
the fundamental group and the automorphism group in sections A.2 and A.3, respectively. Both concepts
are then related to each other in section A.4.

Throughout this appendix, we follow the book of Fulton (]20]), to which we refer the reader for more
details.

A.1 Topological spaces, continuous mappings and paths

A topological space is a set X together with a collection M of subsets of X with the following properties:
M contains the empty set and X itself, as well as any union and any finite intersection of elements of
M. M is called a topology (on X) and its elements are called open sets (in X). A subset N of X is called
a neighborhood of a point x in X if it includes an open set M containing x.

A topological space X is called Hausdorff (space) if any two different points in X can be seperated
by two disjoint open sets, one containing one of the points, the other one containing the other.

A mapping f: X — Y between two topological spaces X and Y is called continuous if the preimage
under f of any open set in Y is open in X. Obviously, the composition g o f of two continuous mappings
f:X —>Y and g:y — Z is again continuous. An equivalent characterization of a continuous mapping,
which it is often more convenient to work with, is the following: A mapping f : X — Y between
two topological spaces X and Y is continuous if and only if there exists for every x € X and every
neighborhood U’ of f(z) in Y a neighborhood U of z in X, such that f(U) C U’.

A continuous mapping v : [0,1] — X defines a path from v(0) to v(1) (in X). A path v: [0,1] — X
with 4(0) = (1) is called a loop (based at v(0)). If v : [0,1] — X satifies v(t) = z for some fixed
z € X and for all ¢ € [0,1], we speak of a constant loop (based at x), which we often denote by e,.
Moreover, for a path 7 : [0,1] — X we denote by y~! the inverse path which traverses v “backwards”
from (1) to v(0). Strictly speaking, we define y~=! : [0,1] — X by v~ 1(t) := (1 — t). Finally, given
two paths y1,72 : [0,1] — X satisfying 71(1) = +2(0), it is appropriate to define by 71 - ¥2 : [0,1] — X,
(v1-72)(t) = 71(2t) for t € [0, ] and (71 -72)(t) = 72(2t—1) for ¢ € [$, 1] the product path y; > traversing
first 1 from 71 (0) to v1(1) and 2 from v2(0) = 71(1) to v2(1) afterwards, both with twice the original
“speed”.

A.2 The fundamental group

For two paths ¥1,72 : [0,1] — X in a topological space X with common endpoints ;(0) = 72(0) and
71 (1) = 742(1) a continuous mapping H : [0,1] x [0,1] — X satisfying H(t,0) = v1(¢) for all t € [0, 1],
H(t,1) = v(t) for all t € [0,1], H(0,s) = 71(0) = 72(0) for all s € [0,1] and H(1,s) = v1(1) = 72(1) for
all s € [0,1] is called a homotopy from 1 to v2 (with fixed endpoints). If such a homotopy exists, v; and
o are called homotopic.

Lemma A.1. Let X be a topological space and xz,2’ € X. The homotopy relation on {v : [0,1] —
X path;v(0) = z,~v(1) = 2’} given by

Y1~ Y2 1 <= 71 and 2 are homotopic (A.2.1)

is an equivalence relation.

Proof. For any path v : [0,1] — X with v(0) = x and (1) = 2’, the mapping H : [0,1] x [0,1] — X,
H(t,s) := ~(t) defines a homotopy from ~ to v itself, which proves the reflexivity of ~. Suppose now
1 ~ g for two paths v1,72 : [0,1] — X from z to ’. Then there exists a homotopy H : [0,1] x[0,1] — X
from 4, to 2. By defining H : [0,1] x [0,1] — X, H(t,s) := H(t,1 — s) we obtain a homotopy from
Y2 to v1. Thus we have 75 ~ 71, which proves the symmetry of the relation ~. Finally, let v ~ 72
and 72 ~ 3 for paths v1,72,7vs from z to 2’ and let Hy : [0,1] x [0,1] — X and Hs : [0,1] x [0,1] — X
denote the homotopies from 7, to 72 and from 75 to 3, respectively. Then H : [0,1] x [0,1] — X,
H(t,s):= H(t,2s) for s € [0, 1] and H(t,s) := H(t,2s — 1) for s € [%,1] defines a homotopy from 7; to
~3, which means ; ~ 3 and proves the transitivity of the relation. Altogether, ~ defines an equivalence
relation on {v: [0,1] — X path;y(0) = z,v(1) = 2'}. O
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Definition A.2. Let X be a topological space and « € X. Furthermore, denote for any loop v based at
x by [7y] the equivalence class of v with respect to the homotopy relation on the set of all loops based at
2. Then, the set

m1 (X, x) := {[7]; v loop based at x} (A.2.2)

is called the fundamental group of X with base point x.
The use of the term “group” for the fundamental group is justified by the following result:

Lemma A.3. Let X be a topological space and x € X. The group operation of the fundamental group
m1 (X, x) is given by
(] - [re] = [ -7l (A.2.3)

where 1 - o denotes the path product of the loops v1 and ~ys.
Proof. This is explicated in detail in section 12a of [20]. O

A topological space X is called connected if it cannot be written as a union of two disjoint non-empty
open sets (in X). Furthermore, X is called path-connected if any two points « and =’ in X can be joined
by a path v : [0,1] — X with y(0) = 2 and (1) = 2’. As we will need them soon, we give some more
definitions concerning the ‘connectedness” of a topological space: A topological space X is called locally
path-connected if any neighborhood of any point x in X contains a path-connected neighborhood of zx.
Furthermore, a path-connected topological space X is called simply connected if its fundamental group is
trivial, i.e. if any loop based at a point x in X is homotopic to the constant loop based at x. X is called
semilocally simply connected if any point x in X possesses a neighborhood N, such that all loops in N
are homotopic to a constant loop.

In the case of a path-connected topological space X, we have the following result:

Lemma A.4. Let X be a path-connected topological space and x,x’ € X. Then, the fundamental groups
of X with base points x and x’, respectively, are isomorphic via

m(X,z2) - m(X,2'), [y]— [0 -~v-d)], (A.2.4)
where & denotes a path from x to x'.
Proof. Also this proof can be found in section 12a of [20]. O

As a consequence of the above lemma, it is convenient to speak of “the fundamental group” of a
path-connected topological space X without specifying a basepoint in X.

A.3 The automorphism group

A bijective mapping f : X — Y between topological spaces X and Y, such that f and its inverse
function f~! are continuous, is called a homeomorphism. If such a mapping exists, X and Y are called
homeomorphic.

Definition A.5. Let X and Y be topological spaces. A continuous mapping 7 : ¥ — X is called a
covering of X, if there exists for any point in X a neighborhood N, such that the preimage 7=1(INV) of
N can be written as a (possibly infinite) disjoint union of open sets M; in Y with the property that the
restriction of 7 to any of the M; defines a homeomorphism M; — N. In this case Y is called the covering
space of X (with regard to m). The neighborhood N involved is called evenly covered by w. if m: Y — X
is a covering of X and Y is simply connected, 7 is called the universal covering of X and Y is called the
universal cover of X.

We state the following result concerning the uniqueness and existence of the universal cover of a
connected and locally path-connected topological space.

Theorem A.6. (Corollary 13.6 and Theorem 13.20 of [20]) Let X be a connected and locally path-
connected topological space. The universal covering m : Y — X of X, if it exists, is uniquely determined
(up to an isomorphic change of the covering space). Furthermore, a universal covering does exist if and
only if X is semilocally simply connected.

Now we are set to define the so-called automorphism group associated with a covering of a topological
space X.
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Definition A.7. Given a topological space X and a covering 7 : Y — X, the set
Aut(Y/X) :={6:Y — Y;& homeomorphism, 7 o5 = 7} (A.3.1)

is called the automorphism group of w. (The group operation is given by the composition of functions.)
The elements of Aut(Y/X) are called covering transformations.

We end this section by recording another useful result:

Theorem A.8. (Propostion 11.38 of [20]) Let X be a topological space and 7 : Y — X a covering. If Y
is connected, the automorphism group Aut(Y/X) of m acts properly discontinuously on'Y, i.e. any point y
in'Y possesses a neighborhood N in'Y , such that 61 (N)N&a(N) = 0 for any two covering transformations
01,09 € Aut(Y/X) with 01 7& 3.

A.4 The monodromy action of the fundamental group

We are now interested in relating the fundamental group 71 (X, z) of a (connected, locally path-connected
and semilocally simply connected) topological space X to the automorphism group Aut(Y/X) of the
universal covering 7 : ¥ — X of X. More precisely, we want to associate with any homotopy class
[v] € m1 (X, z) a corresponding covering transformation on Y denoted by z — [y] - z.

We start by collecting some results from [20]:

Theorem A.9. (Proposition 11.6 of [20]) Let X be a topological space and m :' Y — X a covering.
Furthermore, let v : [0,1] — X be a path and y a point in' Y with w(y) = v(0). Then there exists a unique
path 4 :[0,1] = Y, such that m o5 = and ¥(0) = y. 7 is called the (path) lift of ~.

Theorem A.10. (Proposition 11.8 of [20]) Let X be a topological space and w :' Y — X a covering.
Moreover, let vy : [0,1] — X be a path with lift 7 : [0,1] — Y. Suppose H : [0,1] x [0, 1] — X is a homotopy
from ~ to another path in X. Then, there exists a unique continuous mapping H : [0,1] x [0,1] — Y,

such that mo H = H and H(t,0) = 5(t) for all t € [0,1]. H is called the (homotopy) lift of H.

For a path v : [0,1] — X in a topological space X with covering 7 : Y — X we introduce the following
notation: If y is a point in Y with 7(y) = «(0), the endpoint of the (unique) lift of v starting at y is
denoted by ¥y * 7.

Given [y] € m1(X,x) and a point z in Y, we construct a point [y] - z as follows: First, we fix y € Y,
such that 7(y) = x and choose a path § in Y connecting y and 2. (As Y is simply connected and thus
path-connected, such a § does always exist.) Next, we consider the path product v - (7 0) in X. By
theorem A.9, this path can be (uniquely) lifted to a path in Y starting at y and ending at y* (- (w0 )).
We define the desired point [y] - z to be this endpoint, i.e. we set

[v] -z :=y* (v- (7w 0d)). (A4.1)

Note that replacing 7 by any other loop v € [y] will not change the right hand side in the above definition,
ie.y*(y-(mod)) =y (v (mwod)). The reason for this is that for the construction of y x (y- (70 d)) —
as far as =y is concerned — only the endpoint of the lift of 7 is important. But, by theorem A.10, the lifts
of the homotopic loops v and + are homotopic paths in Y and thus have the same endpoint.

In order to obtain for fixed y € Y and [y] € m1 (X, x) a well defined mapping z — [y] - z, we need to
show in addition that the point y * (v - (7 0 §)) as defined above is actually independent of the choice of
the path § connecting y and z. This is proved over the course of the next three lemmas.

Given a topological space X, a covering 7 : Y — X and a loop 74 : [0,1] — Y based at y € Y, the
composition 7 o 4 defines a loop in X based at x = 7(y). In fact, the following holds:

Lemma A.11. (cf. proposition 13.1 of [20]) Let m: Y — X be a covering of a topological space X with
m(y) = x. Then w induces a group homomorphism

re i m(Yyy) = m(X,2), 5] m(5]) 1= [0 4] (A42)
between the fundamental groups w1 (Y,y) and 71 (X, x). Furthermore, . is injective.

Proof. First we show that the mapping 7, is well defined. To this end, let [#1] = [J2], i.e. 1 ~ 72 for two
loops 71,72 based at 3. Denoting by H : [0,1] x [0,1] — Y the homotopy from 7; to 72, we prove that
H := 7o H defines a homotopy from o % to 049: As m and H are continuous, H defines a continuous
mapping [0,1] x [0,1] — X. Furthermore, we have H(t,0) = (w0 47)(¢t) and H(¢,1) = (w0 42)(¢) for all
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t € ]0,1], as well as H(0,s) = 7(31(0)) = 7(32(0)) and H(1,s) = 7(1(1)) = 7(52(1)) for all s € [0,1].
This proves (7 o 41) ~ (7o 42) and thus m.([¥1]) = m([32]), i-e. m« is well defined. Next, we prove
that 7, defines a group homomorphism: The neutral elements (with respect to the corresponding group
operations) of the fundamental groups involved are given by the equivalence classes of the constant loops
€, based at y and e, based at z, respectively. For these, we have m.([e,]) = [7 o ¢)] = [er(y)] = lez]-
Furthermore, for [31] and [35] in m (Y, ), we have m (5] - [fa]) = mo([31 - 2]) = 70 (3 - 7)) =
[(mod1) - (moAa)] = [mo] - [mode] = m([F1]) - m«([F2]). Together, this proves that m, defines a group
homomorphism. It remains to show that . is injective. To this end, let [§] € m1 (Y, y) with 7.([7]) = [ex],
where ¢, denotes the constant loop based at x € X. We need to prove [§] = [¢,], where ¢, denotes the
constant loop based at y € Y. By assumption, we have (7 05) ~ ¢,. Denote the corresponding homotopy
by H and consider the (by lemma A.10) unique homotopy lift H, which in turn defines a homotopy from
4 (the unique lift of 704 based at y) to €, (the unique lift of e, based at y). But this implies ¥ ~ €, and
therefore [§] = [¢,], which proves the claim and completes the proof of the lemma. O

The mapping 7, provides us with some useful results concerning paths in the covering space Y of a
topological space X:

Lemma A.12. Let X be a (connected, locally path-connected and semilocally simply connected) topological
space and 7 : Y — X the universal covering of X.

1. Let vy be a loop based at x € X and v the lift of v starting at y € Y. Then:

Fends aty < [y] € m(m(Y,9)). (A.4.3)

2. Let x,2' € X and v1,72 be two paths in X from x to x'. Furthermore, let y € Y and 41,72 be the
unique lifts of 1,72, respectively, to paths in Y starting at y. Noting that o - 71—1 defines a loop
based at x, the following holds:

1,72 have the same endpoint <= [y2 -7 '] € (w1 (Y, y)). (A.4.4)

Proof. We start with the proof of (A.4.3). There are two directions to show. On the one hand, if ¥
ends at y, we have [§] € m1(Y,y) and thus [7] = [7 0] = 7 ([7]) € 7mx(7m1(Y,y)). On the other hand, if
[v] € 7 (m1(Y,y)), there exists a loop 4" based at y satisfying [1 03] = [y] = m([¥']) = [7 o4/]. This
implies the existence of a homotopy H from 7 o4 to m o4/, which can be lifted to a homotopy H from ot
to a lift of m o4’ starting at y, which, by the uniqueness property of path lifts, has to be 4 itself. Thus,
4 is homotopic to 4’ and therefore necessarily a loop based at y, i.e ending at y. Altogether, we have
proved relation (A.4.3).
Applying (A.4.3) to ¥ =2 -y; ', the claimed relation (A.4.4) reduces to

41,42 have the same endpoint <= 4 ends at y, (A.4.5)

where 4 now denotes the (unique) lift of v, - 4, * starting at y. We proof (A.4.5) in two steps. First,
suppose 41 and 42 have the same endpoint, say y’. In this case, the (unique) lift 5 of v2 - 71 ! starting
at y is given by the path product of the lift of v5 starting at y (i.e. 42) and the lift of v ! starting at
y (i.e. 371). So, # = A2 - 47, which means that 4 ends at y. This proves the first direction of (A.4.5).
Now, suppose that the (unique) lift 4 of 5 - v, ! starting at y also ends there. Furthermore, denote the
endpoint of 42 by 3. Note that 4 can be written as the path product of the lift of v starting at y (i.e.
72) and the lift of vy ! starting at 3’ and (by assumption) ending at y. Consequently, the inverse path
of this second lift is a lift of v, starting at y (and ending at y’). Actually, by the uniqueness property of
path lifts, this has to be 47, which in turn necessarily has to end at y’. Thus, 4; and 42 have the same
endpoint, which proves the second direction of (A.4.5) and finishes the proof of the lemma. O

Finally, we can prove the following result.

Lemma A.13. Let X be a (connected, locally path-connected and semilocally simply connected) topological
space and w :' Y — X the universal covering of X. Furthermore let [y] € m(X,z), x € X andy € Y with
w(y) = x. Then, given a point z € Y, for any two paths §1 and do connecting y and z in'Y we have

yx(y-(modr)) =yx* (v (mody)). (A.4.6)
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Proof. We need to show that the lifts of the paths - (m0d1) and 7 - (70 d2) have the same endpoints. By
making use of lemma A.12 and keeping in mind that Y is simply connected (and thus m1(Y,y) = {[e,]},
where €, denotes the constant loop based at y), this is equivalent to showing

[(v- (1 082)) - (v (m0681)) "] € {[ea]}. (A.4.7)

As 65 - 67" defines a loop based at y, which — as 71 (Y, y) = {[¢,]} — is homotopic to the constant loop €,
based at y, we have

[(v-(m0d)) - (v-(m0d1)) = [(y- (mod2)) - (mod) -y =y (mo(d2-67")) 7]
=0 (8207 -y =0 (o)) - T = bl [e] - = lea] € {lea]}, (A48)

where we made use of the fact that the path 7 - e, - v~ ! is homotopic to the constant path e, based at .

So the claim is proved. O

We now resume our considerations concerning the relation between the fundamental group m (X, x)
and the automorphism group Aut(Y/X) of the universal covering 7 : Y — X of X. As explicated earlier,
once we have chosen y € Y with 7(y) = x, any element [y] € 71 (X, x) allows for associating with any
point z € Y the point y * (7 - (w0 d)), which depends on y, z, [y] and a path § from y to z. However, by
lemma A.13, the choice of § will actually not affect the resulting point. Thus, keeping y € Y fixed, we
can relate to any [y] € m1(X,z) the mapping Y — Y, z — [7] -z := y x (v (7 0 9)), only depending on
[v]. More precisely, one can prove the following theorem:

Theorem A.14. (Corollary 13.15 of [20]) Let X be a connected, locally path-connected and semilocally
simply connected topological space and w:Y — X the universal covering of X. Then, for a fited y € Y
with 7(y) = x and any [7] € m1(X, z) the mappingY =Y, z— [y]- 2z :=yx*(vy-(wod)), where § denotes
an arbitrary path in'Y from y to z, defines a covering transformation on Y. Furthermore, the mapping

m(X,z) — Auwt(Y/X), [v]— (2 [7]-2), (A.4.9)

defines an isomorphism between the fundamental group m (X, x) and the automorphism group Aut(Y/X)
of w, i.e.
m (X, z) = Aut(Y/X). (A.4.10)

Remark A.15. Assuming the premises of theorem A.14, by evaluating the correspondence between
m1(X,z) and Aut(Y/X), it is easy to see that the automorphism group Aut(Y/X) of 7 acts transitively
on 7~ 1(z). Thus, 7 : Y — X, defines a so called G-covering, i.e. the space X can be identified with the
set Y/G of orbits under a given action of a group G on Y, whereby, in our case, G = Aut(Y/X). In
particular, this implies

X 2Y/Au(Y/X)2Y/m (X, x). (A.4.11)

In view of this, we think of Y as of the disjoint union of so called sheets F5, which are “indexed” by the
elements & of the automorphism group of Y:

vy= |J 7% (A.4.12)
FEAut(Y/X)

We define the “starting” sheet Fig by choosing a subset F of Y containing y, such that 7|z defines a
bijection F — X, and setting Fiq := F. All other sheets are then given by the images of Fiq under the
elements of Aut(Y/X),

Fs =6(F ) (A.4.13)

Furthermore, we note that each sheet F; can be identified bijectively with the covered space X via the
restriction of the universal covering 7 to the particular sheet, 7|z, : F5 — X. The decomposition of ¥’
into sheets as introduced above is referred to as a tesselation (of V).

The proof of theorem A.14 is based on the following lemma (cf. section 13b of [20]), which additionally
implies that the mapping m (X, 2) xY — Y, ([7],2) — [7] - z defines an action of the fundamental group
m (X, z) of X on Y. This action is called the monodromy action (of 71(X,x) on'Y ).

Lemma A.16. Let X be a connected, locally path-connected and semilocally simply connected topological
space and 7w : Y — X the universal covering of X. For fizedy in'Y and [y] € m1 (X, z) define the mapping
2z [v] -z asin (A.4.1).

161



1. Let 1], [y2] € m(X,x). Then for all z € Y we have
(Il b2D) -z =[nl- (2] - 2). (A.4.14)

2. Consider [e;] € m1 (X, z), where €, denotes the constant loop based at x in X. For all z € Y we
have
€] - 2 = = (A.4.15)

Proof. We start with the proof of equation (A.4.14). For [v],[y2] € m1(X,z) and z in Y we have by
definition

(][] -z=Un-7]) - z2=y*((71:72) - (m00)), (A.4.16)

where ¢ denotes a path in Y connecting y and z. As (71 - ¥2) - (7 0 ) is homotopic to v1 - (72 - (7 0 §)),
the corresponding lifts starting at y have the same endpoints, and hence we infer that

y*((1-72) - (m0d) =y* (11 (12 (709))), (A4.17)
which implies
(In]-el)-z=yx(n- (- (7ed))). (A.4.18)
On the other hand we have
[l (el 2) =y (- (m0d")) (A.4.19)

for an arbitrary path ¢’ in Y connecting y and [vs] - z. Choosing for ¢’ the lift of v, - (7 0 §) starting at
1, we obtain

y*x(y1-(mod))=yx(n-(12-(m0d)) (A.4.20)
and thus
Ml ([re]-2) =y (11 (y2- (709))). (A.4.21)

Altogether, equation (A.4.14) is proved.
Equation (A.4.15) can be proved by direct computation: With § again denoting a path in Y from y
to z we have
[ex]  z=y*(ez - (mod)) =yx(mod) =0(1) =z, (A.4.22)

where we made use of the fact that the paths €, - (w0 d) and 7 o § are homotopic and thus induce lifts
with the same endpoint. This finishes the proof of the lemma. O

Proof of theorem A.14. To prove the fact that the mapping z +— [vy] -z := y* (- (7 0J)) defines a covering
transformation on Y, we have to show that it is a continuous bijection with continuous inverse mapping
satisfying 7([y] - z) = 7(2z). We start with the proof of the bijection property: Using the preceding lemma
we observe that the mapping z — [y~1] - z associated with the homotopy class of the inverse path y~! of
~ defines the inverse mapping of the studied mapping z +— [v] - z:

=2
fam
i)
_
™
N—
I
fa
=,
>
L
=
N
I
>
2
_
w
I

€] 2 =2, (A.4.23)
M- =071 0D 2=h 2 =le] 2= 2 (A.4.24)

This already proves that z — [y] - z is a bijection. Next, we prove for [y] € 71(X, x) the continuity of the
mapping z — [v]-z. To this end, let z € Y and U’ be a neighborhood of 2’ := [y]-z in Y. We need to find
a neighborhood U of z which is mapped by u — [v]-u into U’. Let N be an evenly covered neighborhood
of m(z) = w(2') in X. As X is locally path-connected, we can assume that N is path-connected. Let
V and V' be the (disjoint) open sets in Y containing z and z’, respectively, which are mapped by =
homeomorphically onto N. Defining the open set W’ := U’ NV’ in Y, the path-connected neighborhood
N :=7(W’) of 7(z) in X and the open set W := VN7~'(N) in Y, the restricted mappings 7|w : W — N
and 7|y : W' — N are again homeomorphisms. Now, set U := W and let u € U. We need to prove
[v] -u € U’. To this end, choose a path ¢ in N from 7(z) to 7(u) and denote its lift connecting z and u
in U by ¢'. Then, we have

Mu=yx(y-(ro(5-5))), (A.4.25)

where ¢ denotes a path connecting y and z in Y. (Note that thus 5 -8 defines a path connecting y and
uw in Y.) This can be transformed into

W-u=yx(y-(rod)-(wod)) =yx((y-(r0d)- &) = (] -2) & = '+ 4, (A.4.26)
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which means that [y] - u is the endpoint of the lift of §’ to a path starting at 2z’ € W’. As ¢’ is a path
in N, which is homeomorphic to W’, this lift and in particular its endpoint [4] - u lie in W’. Therefore,
[v] -w € W C U’, which completes the proof of the continuity of the mapping z — [y] - z. Note that, as
the arguments involved hold for arbitrary homotopy classes in (X, z), in particular also for [y~1], we
have also already proved the continuity of the inverse mapping z + [y~!] - z. Finally, keeping in mind
that for any z in Y the path - (7 0 ) runs from z to 7(z) and thus the point y * (v - (7 o)) is in
7Y (7(2)), we have

T[] - 2) =7(y* (v (w09))) =n(2), (A.4.27)
which proves the last desired property. Altogether, the mapping z +— [y] -z := y % (7 - (w0 J)) defines a
covering transformation on Y.

It remains to prove that the mapping 71 (X, z) — Auwt(Y/X), [y] — (2 — [y] - 2) defines an isomor-
phism between 71 (X, z) and Aut(Y/X). The fact that it defines a homomorphism between the groups
involved is proved by the identity A.4.14, so we only need to show that the mapping is bijective. To this
end, let 5 : Y — Y be a covering transformation of 7. Denote &(y) by y’'. Choosing a path 4 in Y from
y to ¢ and defining 7o := 7 o 7, we have

ol y=y*(n-(moe)) =y* (0 &) =y*vw =1, (A.4.28)

where €, and €, denote the constant loops in Y (resp. X) based at y (resp. x). This means that the
mapping z — [Yo] -z also maps the point y to the point 3. By theorem A.8 this implies that the mappings
z +— [y)] -z and & coincide, i.e. 6(z) = [y] - z for all z in Y, which proves that the homomorphism
m(X,x) — Aut(Y/X) is surjective. To prove that it is also injective, suppose [y1] € m1(X,z) with
[v1] -z =z for all z in Y, in particular [y1] - y = y, which means

y=nl-y=yxn-(roe)) =y*(n-€)=yxn. (A.4.29)

But this implies that the lift 4; of v; to a path starting at y also ends there, which by lemma A.12
is equivalent to [y1] € m.(m(Y,y)). As Y is simply connected, we have m.(m(Y,y)) = {[e.]} and
therefore [y1] = [e;], which completes the proof of the injectivity. Altogether, the mapping 71 (X, z) —
Aut(Y/X), [y] — (2 — [7] - z) defines an isomorphism between the fundamental group 71 (X, z) and the
automorphism group Aut(Y/X) of 7. O

Remark A.17. In order to express the correspondence of the covering transformation z — [y] - z to the
loop 7y in M involved, we denote this transformation by 5. Note that we also use “3” to denote the lift
of the loop v in M to M. However, it should be clear from the particular context which notion we are
referring to when writing “3”.

The construction of the covering transformation 4 from a given element [v] of the fundamental group
m1 (X, x) involves the choice of a point y € Y with 7(y) = =. As this choice is not unique, we are interested
in the effect of replacing y by another point in Y, which is mapped by 7 onto z.

Corollary A.18. Let X be a connected, locally path-connected and semilocally simply connected topo-
logical space and ™ :' Y — X the universal covering of X. Let y € Y with n(y) = x and consider for
any [y] € m1 (X, z) the covering transformation 7 :Y — Y, 4(2) := [y] - z given by theorem A.14. Then,
replacing y € Y in the construction of the mapping ¥ by a point 6(y) € Y, where & denotes a covering
transformation on' Y, we obtain another covering transformation Ypew : 2 = [Y] ‘new 2 on Y, which is
related to v as follows:

Anew(2) = (607057 1)(2). (A.4.30)

Proof. By theorem A.14, there exists [o] € m1 (X, x), such that
g(z)=[o]-z:=yx*(o-(m00)), (A.4.31)

where ¢ denotes an arbitrary path in Y from y to z. Furthermore, denoting by & also the (unique) lift of
the loop o to a path in Y starting at y (cf. remark A.17), the path product 6! - § defines a path in Y’
starting at y *x 0 = 6(y) and ending at z. Putting these results together, we obtain

“(oy 07t (n0 )
o5 1)(2), (A.4.32)

Fnew(2) = [ mew 2 = (6(y)) * (v (10 (671 0))) = (y* o) * (v 07" (100)) =
=[o-v- o7 z=lo]- (- (07 2) =6(3(671(2))) = (G

which proves the claim. O

N <
Qe
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B Appendix: The function pu; = \/ijj

In this appendix we study the A-dependent function

=/ X; X (B.1)
as introduced in section 1 3.5 in more detail.
Recall that X; and X; are defined by
X;=s; 4+t X =8 +t071 (B.2)

for all A € C*. Moreover, the parameters s;, t; satisfy s; € [%, %) and s;+t; = % Using 5?+t? = %*ZSjtj
and setting
w; = Sjtj7 (B?))

we can rewrite pu; as

 ppp— 1 1
Hi = XJXJ\/5?+t3+51tj(>\2+)\2)\/4+U}J()\22+)\2)\/4+MJ(AA1)2, (B4)

as stated earlier in (3.5.24).

We now turn to the question for which A € C* the mapping p; is well defined. To this end, we first
need to define the complex square root involved in the definition of u; explicitly. Here, we distinguish
between the case that s; # t; and the case that s; = t; = 1.

In the case s; # t;, we will use the following holomorphic extension of the usual real square root to
the cut complex plane Csg = C\ {z € R;z < 0}:

vV iCoo—=C" A= ret s VX = \freit, (B.5)

where we write A € C* in the form A\ = re® with » € R and 6 € (—n,7), and /7 defines the value of
the positive real square root of r.
Naturally, for § = 0, we obtain the usual real square root R* — R*. Moreover, note that 4 €
Y

(=%, %) and thus ,/ actually maps Cs¢ to {z € C*;R(z) > 0}. We extend ,/~ continuously (but not
holomorphically) to C>¢ = Cso U {0} by setting

V0 := 0. (B.6)

In view of (B.5) and (B.6), the function 4, is in the case s; # t; defined and continuous for all A € C*,

for which the expression
1 _
) = + s = A7 (B.7)

takes values in C>o. Moreover, since x is holomorphic in A € C*, p; is holomorphic in A for all A € C*,
for which x; takes values in Csq (as a composition of holomorphic functions).
Let A € C*. Using w; = s;t; and % —2w; = s? + t?, we compute

1

, GG 2w -l 2 pae g
= = _ 5 7 J Y
2wj 2Sjtj

= Ae{ﬂ\/?ﬂ ‘;J} (B.8)
pi(A) =0 < Ae{ﬂ\f SJ} (B.9)

Moreover, writing A € C* as A\ = re?® with r € R* and 0 € [~7,7) and recalling s; > t;, standard
analysis of x;(X) yields

In particular, this implies

Xj()‘) €eCsg <= )€ Cc* \ Wl»j’ (B].O)
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where

Wi, = {z € C:R(z) = 0 and $(2) € (—o0, \/‘Z} U [\/g \/g] U [\/f +o0)) (B.A1)

1

16> We have

We now turn to the case s; =t; = i. Here, since w; = s;t; =

—_

Mo e TN CTeeT o

N

which allows for resolving the occurring complex square explicitly as:
1
= 1(wrxl). (B.13)

We will use this definition of u; in the special case that s; =t; = %. Obviously, in this case, p; defines
a continuous and holomorphic function in A € C*. We note that

piA) =0 <= Xe{£i}. (B.14)
Based on our considerations above, we obtain the following result:

Lemma B.1. Consider the mapping p1; given in (B.1).

1. In the case s; # t;, u; defines a continuous mapping
pi:C*\Wi; —C, (B.15)

where

~ t. -
Wiy = Wi\ {0y |2, +i, [} (B.16)
55 tj

and W1 ; is given in (B.11). Moreover, the restriction of p; to C*\ Wy ; is holomorphic.
2. In the case s; = t; = %, p; defines a continuous mapping
i C*— C. (B.17)
Moreover, p; is holomorphic in A € C*.

Remark B.2. Consider the case s; # t; in lemma B.1. Excluding the set W, ; (resp. Wi ;) from the
A-domain corresponds to “cutting” the punctured A-plane C* along the imaginary axis thrice: once from

. . S . ti . ti . S . . . . ti
—ioo to —i, /3%, once from —iy /L to z\/g and once from i, /3% to +ico. The finite endpoints +i4 /%,
J J J J J

+i, /% of the cuts are also removed in the case that we exclude W, ; from C*, while they are retained in
J

the case that we exclude Wl,j from C*. We would like to point out that this implies in particular that,

in the case s; # t;, the mapping p; is continuous and holomorphic on (a sufficiently small neighborhood

of) the unit circle S'. (This is of course also true for the mapping y; in the case s; = t; = 1.)

The following lemma summarizes some basic properties of the mappings X;, X; and ;.
Lemma B.3. Consider the mapping p; given in (B.1).

1. In the case s; #t; we have:

;(j = % for all X € C*\ Wy (B.18)
0= =K0=1)=, (B.19)
=)= 1, @A =1)=0. (B.20)
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2. In the case s; =t; = i, we have:

Xi K s

W 1= X, for all A € C*\ {%i} (B.21)
X,(A=1)=X;(A=1) = % (B.22)
=)= 1, @u)A=1)=0. (B.23)

Proof. Let first s; # t;. For A € C*\ W1 ; we have p;(X) # 0 and X;(\) # 0, which allows for writing

E:ijj: I Hj

= . (B.24)
nio Xy Xy X
Moreover, by direct computations we have
1 S
Xj()\zl):Sj—l—tj:§:Sj+tj:Xj(>\:1), (B25)
and
1 1
A =1) =7 +us(1-1)2 =2 (B.26)
2w;( A — A" (1 - 272
Orur = 1) = (2R A EZA) ) (B.27)

e

Let now s; = t; = ;. Then, we have for all A € C*\ {+i} the relation 1;(\) = X;(A) = X;(\) # 0,
which implies the first claim. The other claims follow by direct computations. O

Next, we turn to the parameter w; = s;t;:

Lemma B.4. Interpreting w; = s;t; = s;(3 — s;) as a function of s;,

wj [i, %) — R, (B.28)
has the following properties:
wi(l33) = 0, 75) (5.29)
wi(s) € (0,75) = 55 € (Gr3) wilsi) € (3go7e) <= % € (3:3) (5.30)
wj(s;) = = 5= %, wj(s;) = % = 5, = i (B.31)
Proof. Elementary analysis of w; : [1,1) = R, s; — s;(3 — s;). O

Based on lemma B.4 we study the behaviour of y; for A € S:
Lemma B.5. Let the mapping p; be given in (B.1).

1. In the case s; # t;, p; takes positive real values for A € S1. More precisely, we have

1 1
ni(Sh) =/ 7 —4wj, 5] (B.32)

2. In the case s; =t; = i, w; takes real values for X € S1. More precisely, we have

ps(81) =55 (B.33)
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Proof. Let first s; # t;. Writing A € S* as e? with 6 € (—m, 7], we compute

pi(A) = \/le +w;(e? —em9)2 = \/411 + w,;(2isin(9))? = \/411 — daw; sin*(0). (B.34)

Using w; < % from lemma B.4, we obtain i — 4w; sin?(6) > % — 4w; > 0. Consequently, we have

wi(A) >0 for all A € S1. Moreover, we infer that, for A € S*,

1 1 1
V1~ dwj < pj(A) < 12 (B.35)

Since we have (A = 1) = % and (A = i) = /1 — 4w;, we conclude by continuity arguments that

actually 1;(S') = [/ — 4w;, 3].
We now turn to the case s; =t; = i. Writing again A € St as ¥ with § € (—, 7], we obtain
1., : 1
() = 1(6’9 +e7) = 5 cos(), (B.36)
which directly implies —1 < i;(A) < & forall A € S*. Since (1) = 1, p;(—1) = —1 and p; is continuous
on S, we infer that p;(S') = [-1,1]. O

We close this appendix with the following lemma, dealing with the case pg = p1 = p1. (Note that, in
the framework of this thesis, this case only occurs for s; # t; for all j € {0,1, 00}.)

Lemma B.6. Let, for j = 0,1,00, pj = \/% +w;(A—A"1)2, where w; = s;t; for s; € (1,3) and
sj+t; = % (In particular, this implies s; # t;.) Then, the following holds:

1.
Ho = 1 = floo <= W) = W] = Wee <= 80 =81 = Seo (B.37)

2. Let p:=pg = 41 = fhoo, W =Wy = W] = Weo N S := Sg = S] = Son. Lhen
11

1
u satisfies (3.5.28) for all A € ' <= we (0,—] <= s¢€ [5, 5

T ). (B.38)

Proof. First, we give the proof of (B.37): Assume pg = f11 = jioo. This yields wo(A — A71)2% = wy (X —
A2 =we (A= A"H2 for all A € C*\ (W1,oNW1 1 NWy o) and thus wy = w) = we. As w; = sj(3—s;)
is injective for s; € [i, %), we infer that sg = s; = so. The other way round, assume sy = s; = So,. This
implies directly wg = w1 = weo and py = 1 = foo-

We now turn to the second claim. As

i] = e[ll
18 "=y

is a direct consequence of lemma B.4, it remains only to prove

w e (0, ) (B.39)

1

u satisfies (3.5.28) for all A € S «—= w € (0, E] (B.40)
In view of the assumption, the “unitarizability condition” (3.5.28) reads
2
o< )y (B.41)
sin” (2w p)
for all A € S*. This is equivalent to
1
0< ——<1 B.42
= 4sin®(mp) ~ ( )
for all A € S, which in turn holds if and only if
11
A -z B.43
b €[5 5] (.43

for all A € S1. (Recall that, by lemma B.5, i takes for A € S! only values in (0, %]) Since, again by lemma

B.5, 1;(S*) = [/3 — 4wj, 3], (B.43) holds for all A € S' if and only if /1 — 4w; > %, or, equivalently,

w < %8. In view of the general relation w € (0, %] from lemma B.4, this finishes the proof. O
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C Appendix: Proof of lemma 3.37

In this appendix, we give the proof of lemma 3.37, which explicitly states the connection coeflicients c;,
Bj, 0, €; relating (by lemma 3.12) the local solution ®; to (3.8.9) around z; to the fundamental system
Yj1,Y;2 (around z;) given in equations (3.7.23) to (3.7.26):

oy +B5y]
o [ oyt By C1
J 5jy;1+ij;2 ’ ( : )
TR Oyt €y
Lemma 3.37. The connection coefficients «;, 3;, d;, €; occuring in (C.1) are given by
X,
a; =—f; = (i) ——L—, C.2
== (P s (€2)
, 1
0; =¢€; = (i)? . C.3
J J () 2\/@ ( )
Proof. As earlier in this work (cf. (2.6.21)), we write
0 X; 1p-1
Dj = ()(] O]) = /LjRjSO’gS 1Rj y (04)
X
where R, = | V% 0 and S = %= LA (Note that (2.6.21) applies since we consider
! VA vz\ho1 ) 0
0 Vo)
only the cases j = 0,1 and since in these cases, by assumption, s; > ¢;.) From (C.4), we infer that
In(z)Dog RnS ln(z)p,oa;gs—lRfl RnS zHo 0 S_1R71 1 80,+ %8077 5
e = RypSe o = Ro 0 aho 0 =3 Eso, sos ) (C.5)
Ho ’ ’
where
So4 = 20 4 2THO g _ = M0 — zTHO, (C.6)

and, similarly,

6ln(lfz)Dl =R, Seln(lfz)p‘lo'g SflRl—l

X3
— )M 1 S —S81.—
= RS <(1 OZ) (1 —2)—;»1) STIR[ = 2 <X11’+ ot ) . (C7)

HSL_ S1,+
where
sia=01—2"+(1—2)7"", s1_-=(1—-2)" —(1—2z)"H. (C.8)
By equations (3.8.33) and (3.8.34), we have
—1
Py = (eln<Z>D0) DoV, g, (C.9)
-1
P = (elnﬂ*'z)Dl) OV, (C.10)
Thus, by our considerations above, we obtain
. _Xig. ;Y51 +B5v;
P — 1 i,Jr T Sj,— Ully y/ 2 a;Yj1 —+ /Bjij Vo .
K N € Py 9iYj1teiYio 5o ar +id
1wy o0 g+ ” jYj1 + €5Y;52

X

1 (= sty + Biye) — 2585 (Gy5 + €5Y52)

Y X, +.J
2 \x —3tsi—(oguin + Biyse) + 554 (0541 + €5yj2)

(C.11)
In particular, we obtain for the upper right and the lower right entry of P;
1 X;
Piaz = 5 (Vi g)ez | 54 (ajy51 + Bys2) — ;SL—((Sjyjl + €Y52)
J
1 X, X,
= S (V4j)22 <yj1(aj8j,+ - ﬁ%‘sa‘,—) +y52(Bsj,4 — Mj_%'sj,—)) , (C12)
j

2 J

168



1 X
Pjos = §(V+,j)22 <—M7$j,_(ajyj1 + Bjyj2) + 85,4+ (8951 + €jyj2)>
J

1 X; X,
=5 (Vij)22 (yﬂ(—lﬁ%sa@ + 8585,4) + yﬂ(—ﬁﬁjsmf + €j8j,+)> ,; (C13)
j j
where (V4 ;)22 denotes the lower right entry of V, ;.

Next, recall from (3.7.23) to (3.7.26) the fundamental systems y;1,y;j2 around z; (j = 0,1) solving
the Fuchsian equation (3.7.1):

yor = 2"°(1 — 2)"" F(a, 3,7; 2), (C.14)
Yoo =21 =) Fla—y+ 1,0 -7+ 1,2—7;2), (C.15)
yi=2"(1-2)"Fla,f,a+B-7+11-2), (C.16)
Yo =201 — 2)" PRy - By —a,y —a— B4+ 1;1 - 2). (C.17)

Observing that rg +1 —~ = % —poandry +vy—a—p= % — 1, we can rewrite these equations as

yor = 250y, (C.18)
Yoz = 22 M0y, (C.19)
yin = (1= 2)3 " hy, (C.20)
g2 = (1= 2)7Fhy (C.21)

with mappings h;, ﬁj, which are holomorphic around z;, given by

ho = (1—2)2 " F(a, 8,7; 2), (C.22)
ﬁo:(1—z)%""“F(a—'y—&—1,5—74—1,2—7;2)7 (C.23)
hq :z%ﬂ‘oF(a,ﬂ,a—l—ﬁ—'y—i—l;l—z), (C.24)
i~11:Z%Jr““F('yf/B,fyfa,fyfafﬂJrl;lfz). (C.25)

We proceed by inserting (C.18) to (C.21) into equations (C.12) and (C.13). First, we consider the case
j=0:

1 X
P12 = iz*% 2 X, {zéﬂ‘oho(z) <a0(z“° +z7H0) — ’u—s&)(z“o - z“°)>

3 (2) (e 4 ) = 2ot — ) ) |

Ho

BN { (aoho(z) - Xoéoho(z)) n (aoho<z> + 22h0ha(=) + faho(z) — X°eoﬁo<z>)
Ho Ho Ho

4 z7 200 <5oﬁo(z) + ii?eoﬁo(z)> } ., (C.26)

1 Xo
Pyoo = 52*% A X, {zéﬂ‘oho(z) <0a0(z“0 — ZTHO) 4 Go (20 + Zﬂo))
Ho

+ 23R (2) <—ifoﬁo(z”° —27H0) g2 + z_“o))}
0
= %\/ )\XO {z2HU <_AXOOKOhO<Z) + 60h0(z)> + <if§0[0h0(2’) + 6()]10(2) — %ﬁoﬁo(Z) + Goilo(z))

Ho

+ z72H0 <f:50izo(z) + eoho(z)> } . (C.27)
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As Py shall be holomorphic at z = 2y, also the matrix coefficient P ;2 shall be holomorphic at z = 2.
Since pg is not an integer except for some A from a discrete subset of C*, this is only possible if the
coefficients of 2240 and 2720 vanish. Furthermore Py(zp) = I and thus Py 12(20) = 0. Altogether, we

infer the following conditions for the coefficient P 12:

(50 = %Ozo, (C28)
0 =l (C29)
X ~ Xo =
aoho(0) + = d0ho(0) + Boho(0) — ~eoho(0) = 0. (C.30)
Ho Ho
Similarly, as Py 22 shall be holomorphic at z = zy and Py 22(20) = 1, we obtain:
Xo
60 = 70010, (Cgl)
Ho
Xo
€) = —Jﬁo, (032)
Ho
1 Xo X0, -~ .
3V AXo (anho(o) +d0ho(0) — ==Boho(0) + €0h0(0)> =1L (C.33)
Ho Ho
Since, by lemma B.3 given in appendix B, % = &2, conditions (C.31) and (C.32) are equivalent to
(C.28) and (C.29). Moreover, ho(0) = ho(0) = 1 (cf. (3.7.16)). Altogether, conditions (C.28) to (C.33)

are equivalent to

Ho
do = —
0 XO Qo,
_ _Ho
€0 = XO 607
20(0 + 250 = O,
1 Ho Ho
-V AXo | 2==—ag —2— =1.
B 0 ( X, Qo X()ﬂo)
By an easy computation, these equations yield
Xo
« —_ =
0 Bo 2107/ X
5 1
=€ .
0T T 9 AKX,
We turn to the case j = 1.
1. _1
P1712 = — 52(1 — Z) 2 /\X1
14 — Xl —
(=220 (2) (o (1 —2)" 4+ (1 —2)7") — 751((1 -2 = (1=-2)7")
1

= D) (A= 4 1= - La- o - -9 |

M1
= ;iM{(l — z)%M (alhl(z) - ijjdlhl(z)>
+ (Oélh1(2’) + %51}11(2) + Biha(z) — 2(1161;11(2)>

(1) (mfh(z) ¥ fjelﬁl(z)) } |
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(C.35)
(C.36)

(C.37)

(C.38)

(C.39)

(C.40)



1 1
P1’22:—§i(1—z)_§ )\Xl

A= arme (<Sla -0 - @m0 a9+ 0=

H1
+ (L= 2)2 " ha(2) (—iilﬁl((l —2)f = (=) M) +a(l=2)" +(1-2)7")

== ;i\/E{(l — z)%m <—X1a1h1(z) + 51h1(z)> (C41)

M1

+(&mm@+am@xwﬁmwe%wﬁ
M1 H1

+ (1 —z)72m <if1151h1(2) + 61ﬁ1(2)> } .

As P; shall be holomorphic at z = z1, also the matrix coefficients P; 12 and P; 22 shall be holomorphic
at z = 2. Since p; is not an integer except for some A from a discrete subset of C*, this is only possible
if the coefficients of (1 — 2)?* and (1 — z)~2*1 vanish. Furthermore P;(21) = I and thus P; 12(21) = 0,
P122(71) = 1. Altogether, we infer the following conditions for the coefficients P; 12 and Pj 22, whereby

we have already incorporated % =4 and hy(1) = hy(1) = 1:

X1

51 = %O&l, (042)
€1 = —%ﬁl, (043)
200 +2631 =0 (C.44)
Lo (2, — 2t — 1 (C.45)

2 X X1

This yields
X1
_ ; C.46
M A, (C.46)
1

S — € =i ) C.47
1 €1 ZQ\/W ( )
L]
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D Appendix: On the necessity of the unitarizing matrix T’

In section 3.9, we present a matrix 7' simultaneously unitarizing the monodromy matrices My(\) and
M;i(\) given in (3.9.3) and (3.9.4), respectively, for all A € S*. This is motivated by the claim, that
M;()) is in general not already unitary for A € S*. In this appendix, we prove the mentioned claim by
constructing a counterexample, in which actually M;j(\g) is not unitary for an appropriate Ao € S*.

We consider the matrix M;()). Assuming both sy and s; do not equal 1 and using equations (2.6.23)
and (3.8.56) as well as det(A) = 1 from lemma 3.39, we compute

My(X) = —Ae®™P1 A7}

s (0 ) st (U0, ) st () s
=" RS ST RT'R, S 2 ) STURT RS SR
s (ol o) smms (707 ) s (e Ty ’

g (TR e At e i)Y
= 0 0 )\K?%HO2( 2mipy 672772;“) 672772;“ 01 (1)% _ 627%“1%(1)%/%?% 0

1w [ A-C-B+A  2(A-C+B-14) 0.1)

T2 g %(AJFC—B—Z) A+C+B+A )’ '

where

A= AQN) = BT — e B, 02)
B = B()\) = k{1rJ5(e 21 — 2T, (D.3)
C=C(\)= n??ngg(ezm”l — 6727”7“). (D.4)

Now, an easy calculation shows that M is unitary for all A € S*, i.e. of the form ( v

1_]) for all A € S*
a
if and only if C(\) = —B(\) for all A € S, i.e. if and only if

— kRIS sin(2mpy) = K92K02 sin(27p) (D.5)

for all A € S'. (Note that u; as well as the connection coefficients HLJI are real valued on S*, as long as
they are defined at all, cf. lemma B.5 and equations (3.7.19) to (3.7.22).)
To explicitly construct a counterexample, in which Mj(\g) is not unitary for an appropriate Ao € S*,

we set 8 := 59 = 81 = S0 = %. By lemma B.6, we obtain p := g = p1 = fleo = \/% +w(A—A"1)2

with w = wy = w1 = Wee = 6%. Moreover, also by lemma B.6, pg, p1 and pe satisfy the unitarizability
condition (3.5.28) and therefore give rise to a trinoid potential 7. Thus, the given choice of sg, s1 and
Soo 18 valid for our considerations.

In view of equations (3.7.19) to (3.7.22) as well as equations (3.7.8) to (3.7.10), (D.5) reads under the
given presumptions as

L+ 2002 TO4200@0 o T(=20T(
L5 —wI(3+p) T +3u)I(5 +p)

— sin(27mp)

Consequently, M;()) is unitary for all A € St if and only if (D.6) holds for all A € St.
However, setting Ao := i € S*, we have p(\o) = 1 and thus obtain for the left hand side of (D.6):

CTO+3)0(=3) TO+90G) sPET(3)5GE)TG) _ 16 TG)T(=3)
DL -3 TA+Pra-3)  TEEPNEDTEEDTE) (C(1)2@(=1))

(D.7)
(Here, we have used the relation I'(z + 1) = 2I'(z), which holds for z in C excluding the non-positive
integers (cf. [33], chapter 2, 2.1). Similarly, we compute the right hand side of (D.6):

)F(%) P-x)rErErE o, ( 3) (D.8)
DTG TEDNHEDTET(G) (C(3)2(C(=7))* '

Comparing (D.7) and (D.8), we infer that (D.6) does not hold for A = A\, and thus that Mj()\o) is not
unitary.
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E Appendix: Amendments to the proof of theorem 3.53

In this appendix, we provide the outstanding computations excluded from the proof of theorem 3.53. L.e.,
we prove that the matrix equation (3.9.56), reading

Z.\/,ul K91 ATRDS
= 02
\/7

/\"‘«11 K12

(wo wid™Hgo + @1 —poqs + P1q0) Wy wi AN (—q0 + 1 — pocs +p1qO))
2«/>\ 1q0\//\ Tgy \ wowi(—qo + g1 + poqi — P1qo) wowy 'A7H(qo + @1 4 Pogi — P14o)

(E.1)
is equivalent to the scalar equations
02— -
wo = s VA3 V=00 + ¢1 — Poqy +p1qo7 (E.2)
VEYS Vo + @+ podi — pigo
0T
vy = §VFI V=9 + ¢ —poq i (E.3)
\//1(1’1 Vo + @1 — poq1 + p1go
2 2 2
popy + Q001 +qoq _ cos( 7ru9) cos( 7ru_1) + cos( 7woo)7 (F.4)
2 sin(27 o ) sin(27py )
where 6,0 € {£1}, such that
55— Yo V4 + @1 +pogi — p190v/q0 + @1 — poq1 + P1qo (E.5)

VHL —2iIM/ A" Lo/ AL/ K9/ Y2

Of course, this equivalence holds only for those A € S, for which all occurring terms are well defined.
In view of remark 3.43, we will tacitly assume this in the following. In particular, we will ignore the
cases, in which certain A\-dependent terms we divide by should vanish for certain isolated values of .
Throughout this section, we make use of the following relations, holding for j = 0, 1:

p? +¢;q; =1 and p; =pj. (E.6)
Moreover, we will use the following lemma:
Lemma E.1.

I
—4q0q1 %/‘0(1)%/‘0(1)3 = (g0 + q1)® — (Poq1 — P190)?

q1 + Qo 5(2 2 2
pop1 + Qo0 + 9N _ cos( W#Q)COS( 7T/L.1) + cos(27 oo )
2 sin(2m ) sin(27m )

T
= —4qq %ﬁ%ﬂ% = (g0 —q1)® — (Poq1 — p1g0)*. (E.7)

Proof. Recall equations (3.7.19) to (3.7.22)
o1 _ LTy —a=p)

_Tl(e+6-17)
P(y—a-pr2-1)

Al = Il—a)l1-5) ° (E-10)
_ Ma+pB-T2-9)

s = MNa—y+ 1B —v+1) (E.11)

as well as equations (3.7.8) to (3.7.10)

a:%+uo+u1+um, (E.12)
ﬁ=%+uo+u1—um, (E.13)
v =1+ 2p0. (E.14)
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The Gamma function I' satifies the well known relations (cf. [33], chapter 2, 2.1)

1 1 T 1
(G+A0G =2 = gy ¢ {z+wiwed) (E.15)
™
I'z)Il'(—z)= —— Z E.16
(=) = o 22 (E.16)
w4
I'(1 I'l—2)= Z. E.1
(+ara-2)= g2 o ¢ (B17)
Using these relations, we obtain
01,02 D'(1 4 240)1(=2p1) I'(2p1)0(1 — 2p0)
K11k12 = =71 1 1 1
D(3 4 10 = 1 = poo) (5 4 po = i1+ p1o0) T(5 = hio + p1 + poo)U(5 = o + p11 = pioc)
27 o —T
_ sin(2mpo) 2p1 sin(2mpr) _ _@COS(W(NO — 11 — o)) cos(m(po — p1 + fioo)) (E.18)
o o ey R o pressrrmies BN 0 Sin(2W0) sin (27 ) 7
and
01,.02 (1 + 2p0)T'(2p1) P(—=2p)T'(1 — 2p0)
Riak11 = 1 1 1 1
D(3 4 o + i1 4 p100)T(5 + o+ 11 = poo) TG = pi0 = i1 = oo )V (5 = 110 = 11 + fioo)
2w -
_ (2 p0) 2 () __#0 cos(mlyuo + 1 + poc)) cos(mlpao + 11 = ) gy 1)
o eI e e presirremmion B0 sin(2m o) sin(2mur)
This yields
i o cos(m(jto — 1 — pioe)) c08(m{ji0 — 1 + fioe)
—4 =4 E.20
Qa1 -K11k1z = A0 - 27TM0) (2] ; (E.20)
cos(m(po + p1 + poc)) cos(m(po + p1 — pioc))
—4 % =4 : E.21
QOql o 511512 qoq Sin(27 o) Sin (2 ey ( )

Moreover, in view of (E.6), we compute

(20 £ q1)* — (pog1 — P1a0)® = @3 (1 — p3) + i (1 — pg) + 2q0q1 (pop1 = 1)
(4001 + Toq

> +pop1 £1). (E.22)

= @nT + 419000 + 2q0q1 (pop1 £ 1) = 2qoq

Altogether, using equations (E.20), (E.21) and (E.22) and the fact that, in general, go, ¢1 # 0, the claimed
equivalence can be rewritten as

co8( (10 — fi1 — ioo)) COS(T (o — 11 + o)) _ oT1 + Tots
sin(27 o) sin(27pq ) 5
_ ) , _—
s popy + WO T 0 cos( ﬂug)cos( 7r,u.1) + €08 (27 oo )
2 sin(2m ) sin(27m )
cos(m(pto + pu1 + o)) cos(m(po + 1 — pioc)) _ G081 + Tt
sin(27 o) sin(27py ) 2

2

+ pop1 +1

= 2

+pop1 — 1. (E.23)

Finally, using the formulas cos(z) cos(y) = 1 (cos(z —y) + cos(z +y)) and cos(z £ y) = cos(z) cos(y) F
sin(z) sin(y), the following computations finish the proof:

cos(m (po — H1 — fio)) cO8(m(po — 1 + pioc)) | €o8(2mpico) + cos(2m(po — )

2 sin(27 o) sin(27py ) N sin(27 o) sin(27py ) -1
_ €o8(27 ptos) 4 co8(2mpug) cos(2 (p1) + sin(2mpo) sin(2m(p1) )
sin(27 o) sin(27py )
_ cos(27 oo ) + cos(27pg) cos(2m (p) (B.24)
sin(2mpg) sin(2mw 1) ’ ’
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cos(m(po + p1 + poc)) cos(m(po + p1 — o)) €08(2mftog) + cos(2 (po + 1))

2 sin(27 o) sin(27py ) 1= sin(27 o) sin(27py ) 1
_ €o8(2 100 ) + coS(27 o) cos(2m (1) — sin(2m o) sin(27 (1) +1
sin(27 o) sin(27pq )
_ cos(27 oo ) + cos(2mpg) cos(2m (p) . (B.25)
sin(2mpg) sin(2mpy)
O

With these preparations made, we can finally prove the claimed equivalence of the matrix equation
(E.1) on the one side and the three scalar equations (E.2), (E.3) and (E.4) on the other side. Since (E.1)
is equivalent to the four scalar equations

. \//Tl 01 1 —1
—iA Ki] = wy "w1(go + ¢1 — Pog1 +P19o), E.26
Vel = i ) (5:20)
VL o 1 —1 -1
—IA——=K{s = wy wy (—qo + g1 — pog1 + p19o), E.27
JH 12 NI o wi (—=qo+q1 —poq1 + p1go) ( )
VL g9 1
—iA Ki1 = wow1(—qo + g1 + Poq1 — P1qo), (E.28)
Vio 2/ A Lgo/ A ¢
1
Cia YL e (E.29)

—1
= wowy ~(go + g1 +Pog1 — P190);
NN e et )

it remains to show that

(E.26)

(E.2)
Eg;g (E.3) (E.30)
(E.29) (E.4)

As remarked before, we exclude values of A € S* from our considerations, for which any of the terms
involved in the following computations are not well defined.

Proof of “=7” in (E.30). Dividing equation (E.29) by equation (E.27), we obtain

L(IJ% — 21 + 41 +Ppoq1 —P19o
K3 " —q0+q1 —poqs + P10’

(E.31)

which implies

VT3 V=do + a1 — poqi + p1go
VEL Vao F a1 Fpogi —pigo

where ¢ € {£1}. Similarly, dividing equation (E.26) by equation (E.27) yields

w0:5

(E.32)

K9 o o+ a1 —Pogi +Pido
K ' —qo+q1 —poqi +p1go’

(E.33)

and thus

- 01 /— —
Wy = 5V K11 v/ —qo0 + q1 — poq1 +I71¢]07 (E.34)
V&9 Va0 + a1 — poqi +pigo

where § € {#1}. By multiplying (E.26) and (E.29), we infer that

H1 11
——xkl3 = 71— (g0 + @1)* — (poq1 — p190)?), (E.35)
Ho qdoq1

which, by lemma E.1, implies (E.4). As a further consequence of (E.35) we have

SVHEL S o1 [ 02 1
6(—2)ﬁ\/ﬁ11\/ﬁ12 = 2>\ﬂﬂ\/qo + q1 + poq1 — P1goV 90 + @1 — Poq1 + P1go,  (E.36)

where

 _ VHo V% + g1 +Poq1 — P1gov/qo0 + q1 — Poq1 + P1go

Vi —2iIA/ A" Lo/ AL/ K9/ K2
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Thus, using (E.35) once again, we infer that

K93/ K11 —qo + g1 — Poq1 + P19o

K95 \/fJO +q1 +Ppoq1 — P1gov/q0 + @1 — Poq1 + P1qo

— 55 W\/ k91 (—qo + @1 — Poq1 + P190)v/q0 + @1 + Pogi — P1dov/Go + 41 — Podr + P1o

wWowi1 = 55

K13 —4qoq1 bt £Y1 kY3
= —qo+q1—poq1 +Pi1go
=49 -e. (E.38)
—2IAVEL /A g0/ A Tkl
In view of (E.27), this implies wowy = Sdwowre, i.e.
66 =, (E.39)
which completes the proof. O

Proof of “=” in (E.30). By lemma E.1, we have the relations

I

—4(10(]1%/‘0%/‘5[1)3 = (g0 + @1)* — (Poqr — P1a0)>, (E.40)
[

*4110(]1%/‘6?%% = (g0 — ¢1)® — (Poq1 — P190)>. (E.41)

Using these together with the assumptions, we obtain by direct computation

\/ﬁ

w61w1(% +q¢1 —pog1 +p1go) = =35 \/—\/QO + 1 + Poq1 — P1aoV 90 + @1 — Pod1 + P10

_ Vo (g0 + g1 +Podi —P14go) (90 + @1 — éozoql +D1g0) (B40) )\\/ Mﬂm (F.42)

Vi —2iA/ A g0/ A L1 kY
1 -1 < “(1)%
wy wy (—qo + @1 — poq1 +p1go) = 55ﬂ\/QO +q1 + Poq1 — P19oVq0 + @1 — Poq1 + P1Go
K12V K11

Vo (g0 + @1 + pogr — p1go)(qo + @1 — Poqi + P14o)KY3 (B40) o )\\/ Wﬂ“m (E.43)
VH1 —2iIA/ A Lo/ A1 g1 k93K01

V/EEZEN (—q0 + @1 — poqi + P140)(—qo0 + @1 + Poq1 — P1go
wow1(—=qo + g1 + poq1 — prgo) = 66 T34 1 - — i 1_ )
K1g V% + g1 +Poq1 — P1gov/qo0 + @1 — Poq1 + P1go

_ V/Fo (=90 + @1 — poq1 + p1go)(—go + ¢1 + Pog1 — P1go) (BAD 5V VATV ATk (E.44)
vV Ho

NI —2iA/ A" Lgo/ A Lq1 k03

and

wowr (4o + a1 + Podi — Prdo) = 60=2\/do + 41 + Podr — Prdov/do + 41 — Podr + P1do
V k11

_ VHo (90 + @1 — poq1 + P190)(g0 + q1 + Poq1 — P190) (E.40) _9 )\\/ Wﬂ” 02 (F.45)

VI —2iA/ A" Lgo/ A Lqr kT
These relations imply equations (E.26) to (E.29). O
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F Appendix: Proof of remark 3.55

We prove the statement of remark 3.55:
Lemma F.1. Equation (3.9.51), i.e.

q1 + Go 2 2 2T oo
pop1 + QT +Goh _ cos(27pg) cos(2mp ) + cos(2mp )’ (F.1)

2 sin(2m ) sin(27m 1)

is solvable for functions po, qo,p1,q1 in X € St satisfying (3.9.50), i.e.
p;+qiG; =1 and p; =7;, (F.2)
if and only if the eigenvalues u; of the Delaunay matrices D; inducing the potential n meet the unitariz-

ability condition (3.5.28), i.e.

cos(m(po — p1 — oo))cos(m (o — 11 + foo))

0<
sin(2mpg) sin(2mpy )

<1, (F.3)

for all X € S*.

Proof. On the one hand, presume the eigenvalues ; of the Delaunay matrices D; meet the unitarizability
condition (F.3) for A € S'. Then, by theorem 3.14, there exists a matrix T simultaneously untarizing
the monodromy matrices My and M;. By theorem 3.53, T is of the form (3.9.49) involving functions
P0,q0,P1,q1 in X € St satisfying (F.2) and (F.1). Le., (F.1) is solvable.
On the other hand, suppose there exist functions pg, qo,p1,q1 in A € St satisfying (F.2) and solving
(F.1). Decomposing q; = u; + tv; with real valued functions u; and v;, we note that
p?:l—qj?jzl—u?—v?, (F.4)
Q07 +qoq1 1

2 = §(UOU1 + VU1 + i(’UoUl - UO’Ul) —+ ugui + vov1 — i(’l)oUl - UO’Ul)) = UgU1 + VoV1. (F5)

Using these relations and applying elementary estimates, we obtain

qoq1 + Goq1

B) | = |pop1 + wour + vou|

lpop1 +
Lo o 9 Loy 2 Lo 9
< |pop1| + |uous| + |vovr | < 5(170 +p1) + 5(“0 +uy) + 5(“0 +o1)=1. (F.6)
As, by assumption, po, qo, p1,q1 solve (F.1) for A € S*, we conclude that, for A\ € S*,

cos(2mpg) cos(2mpuy) + cos(27 oo )

-1<
sin(2m g ) sin(2mp )

<1 (F.7)

Recall now that, by remark 3.16, sqg # to and s; # t;. Thus, by lemma B.5 of appendix B, we have
0 < p; <4iforj=0,1andforal A\ € S and therefore sin(2rp)sin(2rpy) > 0 for all A € S
Consequently, (F.7) is equivalent to

—sin(2mpg) sin(2mpg) < cos(2mpg) cos(2mpur) + cos(2m oo ) < sin(2mpg) sin(2mpy ) (F.8)
and, by further transformations, equivalent to

0 < cos(2mup) cos(2mpy) + sin(2mpg) sin(2mpy ) + cos(2m oo ) < 28in(27pg) sin(27 ) (F.9)

and
0 < cos(2mpg — 27y ) + cos(2m oo ) < 28in(2mpg) sin(27py) (F.10)
and
1
0<; (ko = p1 + fioo)))

(cos(m(po = 1 = proo) + (po = p1 + proo)) + cos(m(po = p11 = proo) =
< sin(2mpg) sin(2mpq ). (F.11)
This yields, using the trigonometric identity % (cos(x + y) + cos(z — y)) = cos(z) cos(y),
0 < cos(m(po — 1 — foo)) cos(m(po — 11 + o)) < sin(2mpo) sin(2mpy). (F.12)
Since, as stated before, sin(2mpug) sin(27puy) > 0 for A € S*, we end up with

cos(m(j1o — i — pros))cos(m(po — i1 + pioe))
sin(2mpg) sin(2mp )

0<

<1. (F.13)

O
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G Appendix: Proof of remark 3.56

We prove the statement of remark 3.56:

Lemma G.1. For j =0,1,00, let p;,q; be the functions occurring in the unitary monodromy matriz Mj
as in (3.9.26), satisfying (3.9.27). The following holds:

71+ qo cos(2m cos(2m + cos(27
Do, o, D1, 1 solve popy + 9091 T+ qoqr _ ( Mf)) ( Nhl) (27 phoo)
2 sin(2mpg) sin(27p41)

and Doo, oo are given by (3.9.33) and (3.9.34)

o0 + 4o cos(2mpo) cos(2m oo ) + cos(2m
<= D0,90,Px0> 00 SOlE PoPos + 909 T 909> _ ( ,U'O) ( /~Loo) ( ,ul)
2 sin(2m o) Sin(27 oo ) (G.1)

and p1,q1 are given by (3.9.35) and (3.9.36)

+ cos(2 cos(2 + cos(2
— P1,41,Poos oo solve P1Poo + N1ec TN = ( 7r,U:1) ( WuOO) ( WMO)
2 sin(2m ) sin(27m oo )

and po,qo are given by (3.9.37) and (3.9.38).

Proof. Recall the identity (3.9.32), MyM; M., = I, which in view of remark 3.48 implies the relations
(3.9.33), (3.9.34), (3.9.35), (3.9.36) (3.9.37) and (3.9.38).
Using (3.9.33) and (3.9.34) (and (3.9.27)), we prove the implication

q1 + o cos(2mpg) cos(2mpy ) + cos(2m
Po,4q0,P1,491 solve PoP1 —+ qo% 9001 — ( /'LO) ( /Ll) ( ,Uoo)

2 sin(27 o) sin(27pq ) @2)
Joo + 40900 2 Py ITI 9 .
— o, oy Do Goe SOIVE popoo + 0020 T 000 _ cos( 7”"0)005( TH ) +cos(2mp1)
2 sin (27 o) sin(27 oo )

To this end, we compute

9090 + 090
— 5 )
= po[— cos(27 o) — cos(2mpo) cos(2mpy ) + i cos(2mpg) sin(2mpy )p1 + @ sin(2mug) cos(2m 1 )po

+ sin(2m o) sin(27 1 ) (pop1 + qogr))

. . Q. . .\, D, .
18In(27 oo ) (PoPoo + = po(isin(2m oo )Poo) + 50(1 SIn(27 oo ) G0 ) + 50(2 SIN(27 oo ) Goo )

+ (]2—0 [i cos(2m ) sin(27mu1 ) g1 + @ sin(2mpp) cos(2mp1 )qo — sin(2m o) sin(27 w1 ) (poqi — P190)]

+ q2—0[z cos(2mpg) sin(2mpg )qr + @ sin(2mpg) cos(2mp1 )qo + sin(2m o) sin(27 1 ) (Poqr — P19o))
= po (— cos(2Mfieo ) — €OS(27 o) cos(27pu1)) + popi (i cos(2mpug) sin(2m 1)) + pa (i sin(27pg) cos(2mpy )

+pgp1 (sin(2mp0) sin(27p11)) + pogod (sin(2mpeo) sin(2mpun))

qoq1

+ 3 (i cos(2mpo) sin(2mpy)) + oo (

isin(2mpg) cos(2mpy))
_ Pogoq1
2

n 7‘102‘11 (i cos(2mpo) sin(2mpy )) + % (i sin(2mpo) cos(2mpn))

(sin(2mpp) sin(2wpy)) + p1(120qo (sin(2mpo) sin(2mpy))

+ _ D1909 (

sin(27 o) sin(2mpy))

Podod1 . .
0 20 ! (sin(2mpo) sin(2mpy))

091 + 90q1
_ <p0p1+qqqq

2

9001 + qoq1
2

) (i cos(2m ) sin(2mpr)) + (p§ + qodo) (4 sin(2mpo) cos(2mpy))

*+ Po (popl + > (sin(2mpo) sin(2mp1)) + po (— cos(2mftee ) — cOS(27 g ) cos(2m 1))

) cos(2 .
= i (cos(2mup) cos(2mp1) + cos(2mpieo ) sin§277rrzs)) + isin(2mpg) cos(2mpuy ).
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This implies

9090 + Gogoo

DPoPoo + 2
cos(2mpg) sin(2mpg) cos(2mpy)
= 2 2 2Mlioo)) = - :
(cos(2mpio) cos(2mpir) + cos(2micc ) sin(2m o) Sin(27 poo ) Sin(27 oo )
_cos(2mpup) cos(27 oo ) 4 cOS(27 111 ) (G.4)
B sin(27 o) sin( 2w p;n fty) ’ ’
which proves the claimed implication.
Simply shifting indices, we prove completely analogously
0000 + G040 €0s(27p0) cos(27 oo ) + cos(27py)
D0, 405 Poos G SOLVE Popos + = . .
2 sin(27 o) sin (27 oo ) (G5)
T + TG00 €0s(2m11) cos(2m oo ) + cos(2m ’
=  P1,41,Pc05 90 solve P1Pso + N4 N4 = ( ,ul) ( ‘LL ) ( ILLO)
2 sin (271 ) Sin(27 oo )
by using (3.9.35) and (3.9.36), and, by using (3.9.37) and (3.9.38)
Too + 1100 cos(2 coS(27 oo ) + cos(2
D1t Do e SOIvE prpa - 110 T TG0 _ (27411 cos(2mios) (2mp0)
2 sin (27 ) Sin(27 oo ) (G.6)
qoq1 + Goq1 _ cos(2mpg) cos(2m ) + cos(27 oo ) '
= Po,q0,P1,q1 solve pop1 + = . . :
2 sin (27 o) sin(27py )
O

Altogether, the statement of the lemma follows.
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H Appendix: Proof of theorem 5.16

In this appendix, we give the proof of
Theorem 5.16. For all A € C* the following holds:

4sin?(mp(\) — 1 = 4n2 ﬁ Cl— a4+ 20 - A a4 A (H.1)
in® (7 —1=d4r - — —)(1 - = — )
: it g Ak Ak Ak Ak
where
—)\zw for k=0
Oy = { Mw for k = -1 (H.2)
_Xw _
ERET for ke Z\ {-1,0}
and, for k € Z,
_ |1 2 2
Ap = \/Qw [dﬁ ,/dk—4w} (H.3)
with ) )
—(Z 2 _ =
dii= (5 + k) = 7 +2w. (H.4)
Recall from lemma 5.3 that
1
u) =3+ wr oy, (1.5)

where w = 50ty = s1t1 = Sooteo and s;,t; denote the parameters occurring in the Delaunay matrices D;
defined in (3.5.7). (Note that remark 3.16 implies that w # )
The proof of theorem 5.16 is prepared in the following three lemmas.

Lemma H.1. For all k € Z let Tj, := {£X\;, £\, '} as in lemma 5.15. Then, for all A € C*\ Uycy Zi
the following holds:
—47?
4sin®(rp(N) — 1 = ; (H.6)
L(g = nO)T (g + uW)T(§ — pN)T(G + (V)

where T' denotes the Gamma function T'(z) = [~ e~ "t~ 1dLt.

Remark H.2. Writing sin(7y) in its power series representation, we observe that the expression sin® (7 )
only involves even powers of u. Since, by remark 3.13, y? defines a holomorphic function on C*, we
interpret sin®(mu) as a holomorphic function of A € C*.

Proof of lemma H.1. We use the following well known formula for the Gamma function:

I(1— 2)0(z) = Sm?m), 2 ¢ I (HL.7)
We consider the product of Gamma functions
DG — BT (g + BT = O +u(V), (115)

This product is well defined (and non-zero) for all A € C*, for which none of the occurring arguments
&4 pu(N), 2 £ pu(N) takes a non-positive integer value. Le., the product is well defined (and non-zero)
for all A € C*, such that u(A) # i(% + k) for all k € Z, or, equivalently due to lemma 5.15, such that
A ¢ Upez T Thus, using (H.7), we can compute for all A € C*\ |, ¢ Z:

| sin(r(} — p()) sin(m(d + p(1)))
1= (5 — M) (G + W)L = (5 + (M) u m
[sin(%) cos(—mu(N)) + cos(F) sin(—mu(N))][sin(%) cos(mu(A)) + cos(F ) sin(mu(N))]

sin®(Z) cos?(mpu(N)) — cos?(Z) sin®(mpu(N)) ~cos}(mp(N)) — 3sin®(mu(N)) _1- 4sin2(7r,u()\)).

w2 472 472

(H.9)
This implies the claim. O
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Lemma H.3. Let I' denote the Gamma function I'(z) = fooo e~ 't*"1dt and for all k € Z let I =
{£Xk, £X '} as in lemma 5.15. Moreover, let

. 1 for k e {-1,0}
Cr = (H.10)
k ﬁ fork € Z\ {—1,0}
Then, for all X € C* \ Uy Ir we have
1.
1 - ~ 1 2 2
méu@»mé+u@»‘l£0kk6+“ W] (H.11)
2.
1 _1 ~ 1 2 2
FQMMDHZ+MMD:k£LF%%6+M ~?]. (H.12)

Proof. We apply the following formula, which allows to represent I'(z) as an infinite product. For all
z € C, excepting the non-positive integers, we have (cf. [33], chapter 2, 2.2)

T(z) = % ﬁ 0+5r (H.13)

The expressions

L(§ — pO))T (5 + u(N) and T3 — u(M)E + () (H.14)

are well defined for all A € C*\ |J,,c; Zx. This has already been explained in the proof of the previous
lemma. Thus, applying (H.13), we obtain for all A € C* \ ¢z Zr

! A omid (k= p()) Kk + &+ )
esmmeyesaTsy I IRl | ST
=Ilkﬁé+m%4mmv,<ﬂw>
k=0

where Cj, is defined in (H.10).
In view of the formula (k # —1)

(—k — 1)2(1 + )5 = (k+1)2(~——)8 = (k+1)3k5 = (1+ —)3k? (H.16)

—k—1 E+1

we furthermore compute for all A € C*\ U, 5 Zx

| 5 5 (48 = w0+ & + (V)
Esoy ey R CRGUICR b 21+ 1)k

2 2 M (% + l)2 - (N(/\))Q _ 1 2 2 = (% + k)2 - (M()‘))Q
) (uu»]ll : h6 1) (”“”]kILA—k—U%1+_;4ﬁ

-2 1
(5 +K)?—(pN)* _ L[ ,
1+ Lk k;oock {(6 + k)= (u(N)*], (HI7)

where we have substituted k = —I — 1 and Cy, is defined in (H.10). O

Remark H.4. Note that the infinite product (H.13) represents the Gamma function I and thus takes
finite values in C on the complex plane excluding the non-positive integers. Consequently, also the
product of two (or, more generally, of finitely many) such infinite products of the form (H.13) is well
defined on the complex plane excluding the non-positive integers. This justifies the calculations involving
infinite products occurring in the proof above as well as in the proof of theorem 5.16 below.
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Lemma H.5. For all A € C* and all k € Z the following holds:

1 D0 -2 0 A0 (H.18)

§ R = (O = Ml - )1+ 5

<6
where A, is defined by (5.5.4) in lemma 5.15.

Proof. Recalling that p(A) = \/i + w(A — A71)2, this is proved by a direct computation. In view of
lemma 5.15 we have

1 1
Ao = \/Zw[do +y/d2 —4w? and A\j'= —\/Qw[do —\/dE — 4w?), (H.19)
_ 1 2 2 -1 _ 1 2 2
M=ol — ] and A = [ B ) k0, a0)

which in any case (k € Z) implies

d
Ao+ A2= Ek (H.21)

Hence, we compute for all A € C*

1
(6+I~:)2—(u(/\))2 = dp—20—wA-A"1)? = wAZ A 2) —w(AZHAT) = Mw(1+A = A2 2 =A 720 2)
A AL AL
= Apw(l = AN (1= NPAT) = w1 - )1+ )1 - 5) 1+ 5—), (H22)
Ak Ak Ak Ak
which proves the claim. O

Proof of theorem 5.16. In view of the lemmas H.1, H.3 and H.5, we obtain for all A € C*\| .5, Zk, where
Ty := {£Ag, £A; '}, that

2(r o —4n?
A ) = = S R s OWTE — T +u(>\))
s o A 1 ) ) A A1 AL
= —4rm kzl__[(><> Ch [(6 + k)7 — (u( ] =4 k_l__[m Ci(1 )\k)(l Tk)(l + )\—k) (H.23)
Here, Cy, is given in (H.10).
We infer that
L B A A1 A1
4sin®(rp(N) — 1 = 4x? k}i[m Cr(1 (1 + )\—k)(l -3 M Tk) (H.24)

for all A € C*\ U, ¢z Zx- But, naturally, this equation also holds for all A € | J; <y, Z, as both sides of the
equation are zero for A € J, ¢z Zr (cf. lemma 5.15). Altogether, the claim follows. O
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I Appendix: Proofs of lemma 5.21 and lemma 5.24

First, we give the proof of

Lemma 5.21. For all k € Z, let A;, and Cy be given by (5.5.4) and (5.5.32), respectively. Moreover, let

the A-dependent functions pl,(:)()\)7 v € {1,2,3,4} be defined by (5.5.44), (5.5.45), (5.5.46) and (5.5.47),
respectively. Then, we have:

1. The infinite product [[,-__ +/Cj converges.

2. The infinite product []po p,(;) is normally convergent on C*.
3. The infinite product [Jp— pgf) is normally convergent on C*.
4. The infinite product [[7e p,(f) is divergent on C*.

5. The infinite product []po pgl) is divergent on C*.

For the convenience of the reader, we recall the definitions of g, of C% and of the functions p,(:)()\),

v € {1,2,3,4}: For k € Z we have

e = %%w [dk + \/M] (L1)

where 1 1
dy := (6 +k)? — 12w (1.2)
Moreover, also for k € Z,
—)\ﬁw for k=0
Oy = )\iwz for k =—1 (L.3)
— M for ke Z\ {—1,0}

Finally, for k € Z,

PPN = (- )Tk)(l + )\7) -
—1 -1
P2 = (1 AA—k)(l + AAT) -
oy [0 203 fork =0
Wy JA+F2A+A) fork=0
P (A) = {(1 4 %)(1 _ /\)\7_]:) for k € Z \ {0} "

Proof of lemma 5.21. We start with the proof of the first claim: The infinite product []p- __ +/Cj con-

verges. Referring to remark 5.19, we prove that the infinite products [],~,+/Cr and T[]~ ; /C_j con-
verge. To this end, we apply lemma 5.20, i.e. we prove the convergence of the series Z,;“;O(\/Ck —1) and

> e (/CO_k — 1), respectively.

We will use the well known formula (“binomial theorem”)
= a
« — n, oa—"mn I.8
=3 (0 ) 1)
which is valid for x,y € C satisfying |§\ < 1 and a € C. Here, the generalized binomial coefficient is

defined by () <> B oy
g L (@) o@D (aon

n n!

for n € N. (1.9)
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Consider (for k € Z)

1 [ 1 1 1 1
- 2_ 249 z 2 _ 2 1 9w)2 — Aw?
Ak o (6+k) 4+ w+\/((6+k) 4:+ w) w]
1 1 2 2w 1 2 2w du?
R F T I G T B A S
5w |1 T 3k 9k2+k2+\/(+3k: oz T 72) k;21
1 1 2 2w 2 1 4w 4 4w 4 8w
A T A I I S Aw _Sw 10
2w | 3k 9k2+k2+\/ T s T e o T e s 91{4] (1.10)

By a direct computation one verifies that the expression

2 1+4w 4 +4w+ 4 8w (L11)
TRTRE T 3K2 T K2 27K ' O3KP  SIkY Ok* '
satisfles —1 < z < 1 for at least all k greater or equal some kg € N. Thus, we can apply (I.8) (with
r=xp, y=1and a= %) for all k£ > kg to obtain

1 1 2

_k\/L[H?)kJFO( )—1—1—5—74—(’)( )}_k\/w[1+3k+0(klz)}, (1.12)

where we have used the notation O(f) for a function Z — R of k € Z, which asymptotically (i.e. for
k — o0) behaves as the function f : Z — R, k — f(k). Again, we can apply (I.8) for all k¥ > k¢ (adjusting
ko if necessary), to continue our computation:

k 1 1
1+ — — I1
In particular, this shows that Ay is of the form O(k).
Based on (1.13), we compute (once more using (1.8))
Ne—k(1+ 1) k(1+ & +0(%)) — k(1 O
@—I:ﬂk (1‘~1‘k)6: (1+ 5 + 0 )2 ( +6k+ ( )):O(%L (1.14)
k(1+1)s k(14 g7 +O(%)) k

which means that +/Cj — 1 asymptotically behaves like k% The same holds for /C_j — 1. Consequently,

the series Y p- ((v/Cr — 1) and >_;—;(/C_x — 1) converge, which implies the first claim of lemma 5.21.
The remaining claims of lemma 5.21 are now proved quite easily: Since, by (1.13), Ay is of the form
O(k), we infer that A, ' is of the form O(l). Consequently, the series

o0

Z )\2’ Z /\2 Z /\27 Z (I.15)

converge normally on C*, while the series
P BN S
. D TS S e St L
)\ k A Ak Ay Pt Aok Aok A,
diverge on C*. By definition 5.18 (in conjunction with remark 5.19), we conclude that the infinite products

)\2

H M) H v H PP () H 1— (1.17)
k=—o00 k=—o00 k k=—o0 k=—o00

are normally convergent on C*, while the infinite products

1220, I 220 (L13)

k=—o00 k=—oc0

are divergent on C*. O
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Next, we prove

Lemma 5.24. The infinite products (of functions)

[Toi(0) and ] g5200), (1.19)

jEN jEN

where, for all j € N, g;1 is given in (5.5.94) and g; is given in (5.5.95), are normally convergent on
C*\ U en{#£A;} and C* \UjeN{:I:)\;l}7 respectively.

The expressions occurring in lemma 5.24 are given by

(1 - )\;1 )(1 + )\;vl)
gj1(A) = 3 —, (1.20)
o (1-2)(1+2)
1-)a+3)
9i2(A) = = = (1.21)
! (1 - /\>\j )(1 + )\,\j )
where
g \/21} {dj +\/d? — dw? (1.22)
with
1, 1
d; == (5 +7)° — it 2w. (1.23)

Proof of lemma 5.24. Analogously as in the proof of lemma 5.21 for Ay (given in (I.1)), one shows for ),

given in (1.22) that
j 1 1
= =1+ = —=))- 1.24
N = =+ 5+ 0() (124)

This shows in particular that A; is of the form O(j). Consequently, the series

A2 A2

SRR o WPy
DB v vand Dl (125)
j=1 "1 j=1 A7

)\—2 )\2

2o &

A : :
Z )\]2 — )2 = Z 1]_ )\—2] (126)

converge normally on C*\{J,;cn{=A;} and C* \UjeN{i/\j_1 }, respectively. By definition 5.18, we conclude
that the infinite products

- - A7 Oo Y ADY:
[Toan =11 [ = [To+=—"), (1.27)
j=1 j=1 ~ )T? j=1 - T?
= miof = -
H gj,2(>\) == H 1 )\j2 = H(l + #) (]:28)
j=1 j=1-" "X j=1 T

are normally convergent on C* \ ;cy{£A;} and C* \UjeN{:i:)\j_l}, respectively. O
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