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Zusammenfassung

Die Familie der austauschbaren Marshall-Olkin Verteilungen wird untersucht. Aus

analytischer Sicht werden Querverbindungen mit vollständig monotonen Zahlenfolgen

aufgezeigt. Aus wahrscheinlichkeitstheoretischer Sicht wird eine alternative Konstruk-

tion erweiterbarer Marshall-Olkin Verteilungen mittels Lévy Subordinatoren hergeleitet.

Dieses Resultat wird verwendet um effiziente Simulationsalgorithmen und ein Bewer-

tungsmodell für Portfolio-Kreditderivate zu entwickeln.
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Abstract

The family of exchangeable Marshall-Olkin distributions is investigated. From an ana-

lytical perspective, coherences with completely monotone sequences are revealed. From

the viewpoint of probability theory, an alternative construction of extendible Marshall-

Olkin distributions via Lévy subordinators is derived. This result is used to develop

efficient simulation algorithms and a pricing model for portfolio credit derivatives.
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1 Introduction

”In most sciences one generation tears down what another has built and what

one has established another undoes. In mathematics alone each generation

adds a new story to the old structure.”

Hermann Hankel, German mathematician.

The initial motivation for this thesis stems from the field of financial mathematics, or,

more precisely, from the subject of portfolio credit risk modeling. Considering a portfolio

of d companies, their unknown future lifetimes are denoted by τ1, . . . , τd. Since these

numbers are random, their treatment requires the tool box of probability theory, and

the core question is:

”what is an appropriate mathematical model for these lifetimes?”

As one can easily imagine, the word ”appropriate” heavily depends on the specific

application of the model. The application motivating this dissertation is the issue of

pricing so-called Collateralized Debt Obligations (CDOs). CDOs are financial contracts -

typically traded between globally active financial institutions - offering insurance against

company defaults to investors. The assesment of fair insurance premia for these contracts

requires a viable mathematical model for the default times τ1, . . . , τd. Let us suppose,

for a moment, that financial institutions use inappropriate models which systematically

underestimate the risks involved in CDOs. If new contracts are settled, the resulting

insurance premia are systematically too small. The consequence might be an excessive

growth of market volume of these contracts, spreading default risk all over the globe.

Such a scenario is dangerous for the stability of the global economy. In fact, many experts

in economic research argued that the mispricing of CDOs (and related contracts) played

the role of a fire accelerant in the recent credit crisis.

To avoid such a scenario it is important to find an appropriate mathematical setup for

τ1, . . . , τd. Specifically when pricing CDOs, there are two fundamental difficulties the
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model has to cope with: on the one hand, there is empirical evidence that company

defaults are far from occuring independently of each other. This necessitates the use of

a model which is based on a flexible multivariate distribution. On the other hand, the

number of firms in consideration is very large - a typical convention is d = 125. This

large dimensionality massively restricts the class of appropriate multivariate distribu-

tions, since a high level of mathematical viability must be guaranteed. The derivation of

closed formulas or efficient approximations for insurance premia requires ”simple” mod-

els, whereas an adequate treatment of the dependence structure between the default

times requires ”advanced” models. As often in applied mathematics, the appropriate

trade-off between ”simple” and ”advanced” is a delicate question.

The present thesis proposes to apply a popular model from the field of reliability the-

ory: the so-called Marshall-Olkin distribution, introduced in and named after the sem-

inal reference [Marshall, Olkin (1967)]. The idea behind this multivariate distribution

is an economy in which (joint) company defaults are triggered by exogenous shocks.

These shocks might be interpreted as economy crises affecting one, two, three or more

firms at a time. This interpretation renders the Marshall-Olkin distribution a rea-

sonable choice for a CDO pricing model. For instance, [Andersen, Sidenius (2005),

Burtschell et al. (2009)] propose the use of this approach in a simplistic special case,

and [Embrechts et al. (2003), Giesecke (2003), Lindskog, McNeil (2003)] apply it in a

more general form. However, the disadvantage of this choice is that the Marshall-Olkin

distribution in its original form is very inconvenient to work with in large dimensions. In

other words, non-trivial subclasses of this distribution are not simple enough to be of true

practical value in dimension d = 125. When applying it to CDO pricing, it is difficult to

efficiently compute the required insurance premia, and even a Monte Carlo simulation

of the model is expensive - not to say impossible - on a standard computer. One reason

for this drawback is that standard approximation techniques fail in the Marshall-Olkin

model. In other popular state-of-the-art CDO pricing models used in practice, such

as e.g. [Li (2000), Albrecher et al. (2007)], a useful method is to approximate the finite

portfolio size of d = 125 by an infinite portfolio size, i.e. to consider the limiting behavior

of the model as d → ∞. However, these approximations are based on a latent factor

representation which is not obvious in the Marshall-Olkin model, unless one considers a

very simplistic special case as [Andersen, Sidenius (2005), Burtschell et al. (2009)].

The main contribution of the present dissertation is to overcome this drawback and to

formalize the aforementioned limiting process d → ∞ for exchangeable Marshall-Olkin
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distributions. Put differently, we derive a latent factor representation for exchangeable

and extendible Marshall-Olkin distributions. In a first step a purely analytical point of

view is taken. If rearranged, a d-dimensional exchangeable Marshall-Olkin distribution

can be identified with an associated sequence (a0, . . . , ad−1)
′

of non-negative numbers.

The latter satisfies a monotonicity property that is linked to the dimension d - termed

d-monotonicity. Letting the dimension d tend to infinity then corresponds to the re-

spective infinite sequence {ak}k∈N0 being completely monotone - an analytical notion

well-studied in the academic literature for decades, see e.g. [Hausdorff (1921)]. If the

associated sequence (a0, . . . , ad−1)
′

is the initial part of an infinite completely mono-

tone sequence {ak}k∈N0 , it is formally possible to make sense of the limiting process

d→∞. In this case, the Marshall-Olkin distribution is called extendible. As a byprod-

uct, these analytical findings imply blatant similarities with well-known results in the

related context of Archimedean copulas.

A further highlight of this thesis is the construction of a probability space on which one

can explicitly work out the limiting process d→∞ for exchangeable Marshall-Olkin dis-

tributions. To this end, a result of [Gnedin, Pitman (2008)] is used to establish a one-to-

one correspondence between completely monotone sequences and Lévy subordinators-

i.e. non-decreasing stochastic processes with independent and stationary increments.

By virtue of the aforementioned analytical results, a composition argument manifests a

one-to-one correspondence between Lévy subordinators and extendible Marshall-Olkin

distributions. Indeed, a transformation of the path of a Lévy subordinator to the unit

interval [0, 1] is interpreted as the random choice of a distribution function on (0,∞).

Letting τ1, . . . , τd be drawn independently and identically distributed from this pre-

determined distribution function, it is shown that (τ1, . . . , τd)
′

has an exchangeable

Marshall-Olkin distribution. Its associated sequence (a0, . . . , ad−1)
′

is given in terms

of the parameters of the underlying Lévy subordinator. The resulting link between

Lévy subordinators, completely monotone sequences, and Marshall-Olkin distributions

is explored thoroughly and several specific examples are provided to illustrate the find-

ings.

The developed Bayesian two-step construction of Marshall-Olkin distributions via Lévy

subordinators is not only new and interesting, but also more convenient than the original

Marshall-Olkin model in large dimensions. Efficient Monte Carlo simulations are now

available, and approximation techniques based on an infinite portfolio size can now

be formalized. Consequently, the application of Marshall-Olkin distributions to the
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pricing of CDOs is now possible. Moreover, when using this approach for real-world

applications such as a calibration to CDO market quotes, it is simple enough to allow

for an efficient implementation on a standard computer. In particular, it does not rely

on time-consuming Monte-Carlo techniques when used for pricing.

Concerning the mathematical framework, the language of copula theory is used through-

out this dissertation. In particular, the Marshall-Olkin distribution is treated by means

of its so-called survival copula, which is more convenient to explore. The thesis is divided

into seven chapters, the first of which is the present introduction. Chapter 2 recalls the

required mathematical notions. Chapter 3 studies monotonicity properties of sequences

and their relation to the class of exchangeable Marshall-Olkin survival copulas. The two

main findings in this chapter are Theorems 3.4.1 (page 75) and 3.5.3 (page 78), which

reveal how d-monotone sequences occur naturally in the present context. Chapter 4

defines so-called Lévy-frailty copulas and discusses their properties. The main result of

this chapter is Theorem 4.2.2 (page 95), which provides a probabilistic construction.

The theoretical value of Lévy-frailty copulas is demonstrated in Chapters 5 and 6, both

of which may be viewed as applications of Theorem 4.2.2. Chapter 5 is concerned with

random number generation and Chapter 6 deals with portfolio credit risk modeling.

Finally, Chapter 7 overviews the findings.

The results in Chapter 2 are well-known, whereas the findings of Chapters 3 to 6

are the author’s original work. Most of the results have also already been published

in peer-refereed international journals, see [Mai, Scherer (2009a), Mai, Scherer (2009b),

Mai, Scherer (2009c), Mai, Scherer (2009d), Mai, Scherer (2010)]. This thesis is self-

contained in the sense that at least sketches of proofs are provided for those statements

in Chapter 2 on which subsequent results rely.
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2 Mathematical Background

”The dwarf sees farther than the giant, when he has the giant’s shoulder to

mount on.”

Samuel Taylor Coleridge, English poet, in The friend, 1828.

This chapter introduces mathematical notions which are used in the present dissertation.

Section 2.2 outlines the general idea of a copula. Section 2.3 continues by presenting

specific examples of copulas, which are important to understand the results of this

thesis. Section 2.4 introduces Lévy subordinators. These are stochastic processes that

are applied later on to construct a class of multivariate distributions, which will be

termed Lévy-frailty copulas. Finally, Section 2.5 is concerned with so-called moment

problems for distributions on the unit interval. The corresponding results are useful to

construct and sample several copulas.

2.1 Notations

Before we start, let us clarify some notations which are used throughout this disserta-

tion.

• Important sets: N denotes the natural numbers 1, 2, . . ., and N0 := {0} ∪ N.

R denotes the real numbers. Moreover, for d ∈ N, Rd denotes the set of all d-

dimensional column vectors with entries in R. For a vector ~v ∈ Rd, we denote

by ~v
′

its transpose. For some set A, we denote by B(A) the corresponding Borel

σ-algebra, which is generated by all open subsets of A. The cardinality of a set A

is denoted by |A|.

• Important distributions: Some frequently used probability distributions are

sometimes abbreviated. These comprise the exponential distribution with mean

1/λ > 0, which is denoted by Exp(λ), and the uniform distribution on the unit

13



interval [0, 1], abbreviated by U [0, 1]. Additionally, the Poisson distribution with

mean β > 0 is denoted by Poi(β). Abbreviations for other distributions are

introduced when they first appear. The symbol ∼ means ”distributed according

to”, e.g. E ∼ Exp(1) means that E is an exponential random variable with unit

mean.

• Functions: Univariate as well as d-dimensional distribution functions are denoted

by capital letters, mostly F,G. As an exception, a copula is denoted by the

letter C; its arguments are denoted by (u1, . . . , ud)
′ ∈ [0, 1]d. Moreover, the n-th

derivative of a real-valued function f is abbreviated by f (n).

• Probability spaces: A probability space is denoted by (Ω,F ,P), with σ-algebra

F and probability measure P. The corresponding expectation operator is denoted

by E. Random variables (or vectors) are mostly denoted by the Greek letter

τ (respectively (τ1, . . . , τd)
′
). As an exception, we write (U1, . . . , Ud)

′
for a d-

dimensional random vector with a copula as joint distribution function1. If two

random variables τ1, τ2 are equal in distribution, we write τ1
d= τ2. Similarly, d→ de-

notes convergence in distribution. Elements of the space Ω, usually denoted by ω,

are almost always omitted as arguments of random variables, i.e. instead of writ-

ing τ(ω), we simply write τ . Finally, the shortcut i.i.d. stands for ”independent

and identically distributed” and is used from time to time.

• Stochastic processes: A stochastic process X : Ω× [0,∞)→ R on a probability

space (Ω,F ,P) is denoted by X or by {Xt}t≥0. I.e. we omit the argument ω ∈ Ω,

and the ”time argument” t is written as a subindex, i.e. Xt instead of X(t). This

is in order to avoid confusion with deterministic functions f , whose arguments are

written in brackets, i.e. f(x).

2.2 Copulas

The law of a d-dimensional random vector (τ1, . . . , τd)
′
, defined on a probability space

(Ω,F ,P), is usually studied from its distribution function

F (t1, . . . , td) := P(τ1 ≤ t1, . . . , τd ≤ td), t1, . . . , td ∈ R.

1The letter U indicates that U1, . . . , Ud are uniformly distributed on the unit interval, see Definition
2.2.1 below.
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2.2 Copulas

For i = 1, . . . , d the univariate marginal law or margin Fi of the random variable τi can

be retrieved from F via

Fi(ti) := P(τi ≤ ti) = F (∞, . . . ,∞, ti,∞, . . . ,∞), ti ∈ R.

Using ∞ as an argument of F is a short-hand notation for taking the limits as the

arguments t1, . . . , ti−1, ti+1, . . . , td tend to infinity. It is important to mention that it

is not enough to know the margins F1, . . . , Fd in order to determine F . Additionally

it is required to know how the marginal laws are coupled. This is achieved by means

of a copula of (τ1, . . . , τd)
′
. Generally speaking, knowing the margins and a copula is

equivalent to knowing the distribution. It is now appropriate to give the definition of a

copula.

Definition 2.2.1 (Copula)

(a) A function C : [0, 1]d → [0, 1] is called a (d-dimensional) copula, if there is a

probability space (Ω,F ,P) supporting a random vector (U1, . . . , Ud)
′

such that

Ui ∼ U [0, 1] for all i = 1, . . . , d and

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1].

(b) On a probability space (Ω,F ,P) let (U1, . . . , Ud)
′

be a random vector on [0, 1]d

whose joint distribution function is a copula C : [0, 1]d → [0, 1]. For i = 2, . . . , d

and indices 1 ≤ j1 < . . . < ji ≤ d the notation Cj1,...,ji : [0, 1]i → [0, 1] is introduced

for the joint distribution function of the random vector (Uj1 , . . . , Uji)
′
. It is itself

a copula and called an i-margin of C.

For a random vector (U1, . . . , Ud)
′ ∈ [0, 1]d on the d-dimensional unit cube the values of

its distribution function on Rd \ [0, 1]d are completely determined by its values on [0, 1]d.

Thus, copulas are defined on [0, 1]d only. The two simplest examples of copulas are the

independence copula Π and the copula of complete comonotonicity (or upper-Fréchet-

Hoeffding bound) M , defined by

Π(u1, . . . , ud) :=
d∏
i=1

ui, M(u1, . . . , ud) := min{u1, . . . , ud}.

A random vector with joint distribution function Π is a vector of d independent random

variables which are uniformly distributed on the unit interval. In contrast, a random
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2.2.1 A Bivariate Example

vector (U1, . . . , Ud)
′

with joint distribution function M is equal in distribution to a

random vector (U, . . . , U)
′

where U ∼ U [0, 1], i.e. all components are identical almost

surely.

Univariate distribution functions can be characterized by analytical properties. It is

well-known that a function F : R → [0, 1] is the distribution function of a random

variable τ if and only if it is right-continuous, non-decreasing, limt→−∞ F (t) = 0, and

limt→∞ F (t) = 1, see e.g. [Billingsley (1995), Theorem 12.4, p. 176]. There is an analo-

gous characterization of multivariate distribution functions via analytical properties. In

particular, a (d-dimensional) copula is often defined as a d-increasing function subject

to some boundary conditions, see e.g. [Nelsen (1999), page 40]. However, this analytical

notion is not needed in the present thesis.

A copula is basically a multivariate distribution function with standardized margins.

The choice of the U [0, 1]-distribution is arbitrary to some degree. Sometimes it is more

natural to work with another marginal law. For example a multivariate extreme-value

distribution should have extreme-value margins as well, see e.g. the proof of Theorem

2.3.2 below. However, Sklar’s Theorem, see Theorem 2.2.3 below, shows that there is a

good reason for using the U [0, 1]-law. It shows that an arbitary multivariate distribution

can always be split into a copula and its margins. Sometimes such a splitting is quite

useful. For instance, to comprehend the dependence structure behind a multivariate

distribution it is often illuminating to get rid of the margins. This is exactly what a

copula does. Furthermore, in the theory of dependence modeling there is some useful

vocabulary which is based on the notion of a copula. Finally, in some applications a

separation of dependence structure and marginal laws leads to a complexity reduction,

since the one big problem of fitting a multivariate distribution to data can be split into

two smaller problems: (1) fitting the margins and (2) fitting a copula. For these reasons,

the language of copula theory is used throughout this thesis. Standard textbooks in this

field are [Joe (1997), Nelsen (1999), McNeil et al. (2005)].

2.2.1 A Bivariate Example

To get a feeling for copulas, this short section introduces a specific bivariate cop-

ula which is of fundamental interest during this thesis. It was first introduced in

[Cuadras, Augé (1981)].
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2.2 Copulas

Definition 2.2.2 (Bivariate Cuadras-Augé Copula)

For each α ∈ [0, 1] the function Cα : [0, 1]2 → [0, 1], defined by setting Cα(u1, u2) =

min{u1, u2} max{u1, u2}1−α, is called bivariate Cuadras-Augé copula.

Cα is a geometric mean of the independence copula Π and the comonotonicity copula M ,

since Cα = Π1−αMα. As this distribution occurs several times later on, it is discussed in

some detail subsequently. First of all, to see that Cα actually defines a copula, a bivariate

random vector with joint distribution function Cα is constructed, following an approach

of [Marshall, Olkin (1967)]. If α ∈ {0, 1}, then Cα ∈ {Π,M}, so it defines a copula. For

α ∈ (0, 1) let (Ω,F ,P) be a probability space on which three independent exponential

random variables E1, E2, E1,2 are defined. We assume E1, E2 ∼ Exp
(
(1 − α)/α

)
and

E1,2 ∼ Exp(1). Define the two random variables U1 and U2 by

U1 := exp
(
− 1
α

min
{
E1, E1,2

})
, U2 := exp

(
− 1
α

min
{
E2, E1,2

})
.

Then, it follows for 0 < u1, u2 < 1 that

P(U1 ≤ u1, U2 ≤ u2)

= P
(

min
{
E1, E1,2

}
≥ −α log(u1),min

{
E2, E1,2

}
≥ −α log(u2)

)
= P

(
E1 ≥ −α log(u1), E2 ≥ −α log(u2), E1,2 ≥ max

{
− α log(u1),−α log(u2)

})
= P

(
E1 ≥ −α log(u1)

)
P
(
E2 ≥ −α log(u2)

)
P
(
E1,2 ≥ −α log(min{u1, u2})

)
= u1−α

1 u1−α
2 min{u1, u2}α = Cα(u1, u2).

Furthermore for u ∈ (0, 1) and i = 1, 2 it holds that

P(Ui ≤ u) = P
(

min{Ei, E1,2} ≥ −α log(u)
)

= P
(
Ei ≥ −α log(u)

)
P
(
E1,2 ≥ −α log(u)

)
= u1−α uα = u.

Hence U1, U2 are both U [0, 1]-distributed and Cα is a copula. Figure 2.1 illustrates the

function Cα for different choices of α.

Unless α = 0, the probability measure induced by Cα is not absolutely continuous

with respect to the Lebesgue measure on [0, 1]2. In analytical terms this means that

Cα is not differentiable on the diagonal of the unit square. It can be shown, see e.g.

[Cuadras, Augé (1981)], that for B ∈ B
(
[0, 1]2

)
the random vector (U1, U2)

′
constructed
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2.2.1 A Bivariate Example
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Figure 2.1 Function plots of Cα(u1, u2) for α = 0 (upper left, independence case),
α = 0.2, α = 0.4, α = 0.6, α = 0.8, and α = 1 (lower right, case of complete
comonotonicity). One observes that the bend on the diagonal emerges with
increasing dependence parameter α.

above satisfies

P
(
(U1, U2)

′ ∈ B
)

=
∫∫

B
(1− α) max{u1, u2}−α d(u1, u2) +

∫
{u∈[0,1] | (u,u)∈B}

αu1−α du.

In particular it holds that

P(U1 = U2) =
∫ 1

0
αu1−α du =

α

2− α
. (2.1)

This distributional property is visualized in Figure 2.2 by means of scatterplots, that is

by generating n ∈ N i.i.d. samples of a random vector with joint distribution function

Cα and plotting all these n points into one coordinate system.

Concerning the parameter estimation for Cα, [Ocana, Ruiz-Rivas (1990)] show that
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2.2 Copulas

moment-type estimators are outperformed by a maximum likelihood estimator for α,

which is derived in [Ruiz-Rivas, Cuadras (1988)]. It is based on the notion of curved

exponential families as introduced in [Efron (1975)]. The maximum likelihood estimator

for α, based on n i.i.d. samples (U (1)
1 , U

(1)
2 )

′
, . . . , (U (n)

1 , U
(n)
2 )

′
from Cα, is given by

α̂ :=
T − n+

√
(n− T )2 + 4nc T

2T
, (2.2)

where

nc :=
∣∣∣{i ∈ {1, . . . , n} ∣∣∣U (i)

1 = U
(i)
2

}∣∣∣, T := −
n∑
i=1

log
(

max
{
U

(i)
1 , U

(i)
2

})
.
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Figure 2.2 Scatterplots of n = 500 samples of (U1, U2)
′ ∼ Cα with different choices of

the parameter α. With increasing α, i.e. increasing dependence, more points
are on the diagonal. It is also observed that α = 0 implies independence,
since no clusters are present, and α = 1 implies comonotonicity, since all
points are on the diagonal.
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2.2.2 Sklar’s Theorem and Survival Copulas

2.2.2 Sklar’s Theorem and Survival Copulas

At the heart of copula theory stands the seminal Theorem of Sklar.

Theorem 2.2.3 (Sklar (1959))

Let F be a d-dimensional distribution function with margins F1, . . . , Fd. Then there

exists a d-dimensional copula C such that for all (t1, . . . , td)
′ ∈ Rd it holds that

F (t1, . . . , td) = C
(
F1(t1), . . . , Fd(td)

)
. (2.3)

If F1, . . . , Fd are continuous, then C is unique. Conversely, if C is a d-dimensional

copula and F1, . . . , Fd are univariate distribution functions, then the function F defined

via (2.3) is a d-dimensional distribution function.

Proof

The original reference is [Sklar (1959)]. For a proof see also [Nelsen (1999), p. 18] or

[Schweizer, Sklar (1983)]. In the case of continuous margins, we provide a proof of the

survival analog of Sklar’s Theorem, see Theorem 2.2.5 below, which relies on the same

idea. �

Since we always deal with random vectors (τ1, . . . , τd)
′

having continuous margins, the

copula in Theorem 2.2.3 is unique, and we refer to it as the copula of (τ1, . . . , τd)
′
.

Sklar’s Theorem allows to conveniently construct multivariate distribution functions in

two steps. In a first step one may choose the univariate margins, and in a second step a

copula. Thus, having a repertoire of parametric models for the margins and the copula,

it is possible to fit a multivariate distribution to given data by first fitting the parameters

of the margins and subsequently the copula parameters. This is the main reason for the

popularity of copulas in statistical modeling. We exploit this idea in Chapter 6.

Example 2.2.4 (Gaussian Copula)

On a probability space (Ω,F ,P), let (τ1, . . . , τd)
′

be a normally distributed random

vector with joint distribution function

F (t1, . . . , td) :=
∫∫
×di=1(−∞,ti]

(2π)−
d
2 det

(
Σ
)− 1

2 exp
(
− 1

2
(~s− ~µ)

′
Σ−1 (~s− ~µ)

)
d~s,

for a symmetric, positive-definite matrix Σ and a mean vector ~µ = (µ1, . . . , µd)
′ ∈ Rd,

where ~s := (s1, . . . , sd)
′
; and det(Σ) is the determinant of Σ. Denoting by σ2

1, . . . , σ
2
d > 0
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2.2 Copulas

the diagonal entries of Σ, the marginal law Fi of τi is a normal distribution with mean µi
and variance σ2

i , i = 1, . . . , d. The copula C of (τ1, . . . , τd)
′

is called a Gaussian copula

and is given by

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
. (2.4)

The copula of a multivariate distribution F with strictly increasing continuous margins

F1, . . . , Fd is always implicitly given by (2.4), but sometimes this expression can be

computed explicitly. In the Gaussian case however, this is not possible due to the fact

that no closed-form antiderivatives of normal densities are known.

A d-dimensional copula C induces a probability measure dC on the unit cube [0, 1]d.

More clearly, if the random vector (U1, . . . , Ud)
′

on [0, 1]d is defined on a probability

space (Ω,F ,P) with distribution function C, then

dC(B) := P
(
(U1, . . . , Ud)

′ ∈ B
)
, B ∈ B

(
[0, 1]d

)
.

This probability measure, and also the copula C itself, is called absolutely continuous if

there exists a density function c : [0, 1]d → [0,∞) such that

C(u1, . . . , ud) =
∫ u1

0
. . .

∫ ud

0
c(s1, . . . , sd) dsd . . . ds1, u1, . . . , ud ∈ [0, 1].

For example, the Gaussian copula from Example 2.2.4 above is absolutely continuous.

If C is absolutely continuous, this means that P
(
(U1, . . . , Ud)

′ ∈ B
)

= 0 for every Borel

set B ∈ B
(
[0, 1]d

)
having zero (d-dimensional) Lebesgue measure. This dissertation

deals mostly with copulas that are not absolutely continuous. We consider copulas C

whose induced measure dC can be decomposed into dC = dCabs + dCsing, where dCabs

is absolutely continuous with respect to the Lebesgue measure, but dCsing is not. In

this case, C is said to have a singular component . One example of such a copula was

already presented in Subsection 2.2.1 above: the bivariate Cuadras-Augé copula assigns

positive mass to the diagonal of the unit square, a set with zero 2-dimensional Lebesgue

measure. A singular component often causes analytical difficulties when working with

the respective copula. Nevertheless, the results of the present dissertation show that

such distributions still can have interesting and useful properties.

Sometimes it is more convenient to describe the distribution of (τ1, . . . , τd)
′

by means of
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2.2.2 Sklar’s Theorem and Survival Copulas

its survival function instead of its distribution function. Especially when the components

τi are interpreted as lifetimes, this description is more intuitive. Letting (τ1, . . . , τd)
′

be

defined on a probability space (Ω,F ,P), its survival function is defined as

F̄ (t1, . . . , td) := P(τ1 > t1, . . . , τd > td), t1, . . . , td ∈ R.

For i = 1, . . . , d the univariate marginal survival function F̄i := 1 − Fi of τi can be

retrieved from F̄ via

F̄i(ti) = P(τi > ti) = F̄ (−∞, . . . ,−∞, ti,−∞, . . . ,−∞), ti ∈ R.

Using −∞ as arguments of F̄ is a short-hand notation for taking the limits as the

arguments t1, . . . , ti−1, ti+1, . . . , td tend to −∞. Analogously to Sklar’s Theorem 2.2.3

a d-dimensional survival function can be decomposed into a copula and its marginal

survival functions. We state this result for continuous margins only, since we only need

this case.

Theorem 2.2.5 (Survival Analog of Sklar’s Theorem)

Let F̄ be a d-dimensional survival function with continuous marginal survival func-

tions F̄1, . . . , F̄d. Then there exists a unique d-dimensional copula Ĉ such that for all

(t1, . . . , td)
′ ∈ Rd it holds that

F̄ (t1, . . . , td) = Ĉ
(
F̄1(t1), . . . , F̄d(td)

)
. (2.5)

Conversely, if Ĉ is a d-dimensional copula and F̄1, . . . , F̄d are univariate continuous

survival functions, then the function F̄ defined via (2.5) is a d-dimensional survival

function.

Proof

This well-known result is noted e.g. in [McNeil et al. (2005), p. 195-196]. Since the

statement is very important for the present thesis, we provide a detailed proof in the

sequel. For the univariate distribution functions Fi their generalized inverses F−1
i are

defined by

F−1
i : (0, 1)→ R, F−1

i (y) := inf{x ∈ R : Fi(x) ≥ y}.

The following properties of the generalized inverse are required for the proof:

(∗) Fi continuous ⇒ Fi ◦ F−1
i is the identity, see [McNeil et al. (2005), p.494, Propo-
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2.2 Copulas

sition A.3 (viii)]: we have to show that for all y ∈ (0, 1) it holds that

Fi
(

inf{x ∈ R : Fi(x) ≥ y}
)

= y.

However, ”≥” follows trivially, and ”>” would contradict the continuity of Fi.

(∗∗) Fi continuous ⇒ F−1
i strictly increasing, see [McNeil et al. (2005), p.494, Propo-

sition A.3 (ii)]: by monotonicity of Fi, also F−1
i is non-decreasing. Assume there

exist 0 < y1 < y2 < 1 such that F−1
i (y2) = F−1

i (y1). Then by (∗) we have that

y2 = Fi ◦ F−1
i (y2) = Fi ◦ F−1

i (y1) = y1,

which is a contradiction.

(∗ ∗ ∗) If τi ∼ Fi, then τi
d= F−1

i ◦ Fi(τi), see [McNeil et al. (2005), p.495, Proposition

A.4]: for each x ∈ R it is trivial that

F−1
i ◦ Fi(x) = inf{z ∈ R : Fi(z) ≥ Fi(x)} ≤ x.

Furthermore, if τi is defined on (Ω,F ,P) it holds that

P
(
F−1
i ◦ Fi(τi) < τi

)
= P

(
inf{z ∈ R : Fi(z) ≥ Fi(τi)} < τi

)
≤ P

( ⋃
n∈N

{
Fi(τi − 1/n) = Fi(τi)

})
≤
∑
n∈N

P
(
Fi(τi − 1/n) = Fi(τi)

)
=
∑
n∈N

P
({
ω ∈ Ω

∣∣P(τi ∈ (τi(ω)− 1/n, τi(ω)]
)

= 0
})

= 0.

This implies the claim.

Using (∗)−(∗∗∗) above we can now prove the theorem. On a probability space (Ω,F ,P)

let (τ1, . . . , τd)
′

have joint survival function F̄ and continuous univariate survival func-

tions F̄1, . . . , F̄d. Then, it follows for each i = 1, . . . , d and u ∈ (0, 1) that

P
(
F̄i(τi) ≥ u

)
= P

(
Fi(τi) ≤ 1− u

) (∗∗)
= P

(
F−1
i ◦ Fi(τi) ≤ F−1

i (1− u)
)

(∗∗∗)
= P

(
τi ≤ F−1

i (1− u)
)

= Fi ◦ F−1
i (1− u)

(∗)
= 1− u.
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2.2.2 Sklar’s Theorem and Survival Copulas

Hence, each F̄i(τi) is U [0, 1]-distributed. Denote by Ĉ the joint distribution function of(
F̄1(τ1), . . . , F̄d(τd)

)′
, which is hence a copula by definition. Moreover, we compute for

t1, . . . , td ∈ R that

Ĉ
(
F̄1(t1), . . . , F̄d(td)

)
= P

(
F̄i(τi) ≤ F̄i(ti) ∀ i = 1, . . . , d

)
= P

(
Fi(τi) ≥ Fi(ti) ∀ i = 1, . . . , d

)
= P

(
Fi(τi) ≥ Fi(ti) ∀ i = 1, . . . , d, τi ≥ ti ∀ i = 1, . . . , d

)
+ P

(
Fi(τi) ≥ Fi(ti) ∀ i = 1, . . . , d, ∃ j ∈ {1, . . . , d} : τj < tj

)
= P

(
τi ≥ ti ∀ i = 1, . . . , d

)
+ P

(
∃ j ∈ {1, . . . , d} : Fi(τi) ≥ Fi(ti) ∀ i 6= j, τj < tj , Fj(τj) = Fj(tj)

)
= P

(
τi ≥ ti ∀ i = 1, . . . , d

)
+ 0 = F̄ (t1, . . . , td).

The fourth equality in the above computation uses the fact that each Fi is non-decreasing,

the fifth equality holds true, since Fj(τj) is U [0, 1]-distributed and has thus no atoms,

and the last equality holds, since all Fi are continuous and hence P(τi = ti) = 0 for all

i. Uniqueness of the copula Ĉ is shown as follows: assume there is another copula C̃

satisfying (2.5). Let u1, . . . , ud ∈ [0, 1], then by continuity of the margins there exist

t1, . . . , td such that F̄i(ti) = ui for all i. Accordingly, it follows that

Ĉ(u1, . . . , ud) = Ĉ
(
F̄1(t1), . . . , F̄d(td)

)
= C̃

(
F̄1(t1), . . . , F̄d(td)

)
= C̃(u1, . . . , ud).

Thus C̃ = Ĉ and the first part of the theorem is established. Conversely, let Ĉ be a

given copula and F̄1, . . . , F̄d continuous univariate marginal survival functions. Consider

a probability space (Ω,F ,P), on which a random vector (U1, . . . , Ud)
′ ∼ Ĉ is defined.

Then, we define the random vector

(τ1, . . . , τd)
′

:=
(
F−1

1 (1− U1), . . . , F−1
d (1− Ud)

)′
.

For each i = 1, . . . , d and t ∈ R it holds almost surely that

τi > t ⇔ inf{x ∈ R : Fi(x) ≥ 1− Ui} > t ⇔ Fi(t) < 1− Ui.

Hence, it follows for t1, . . . , td ∈ R that

P
(
τi > ti ∀ i

)
= P

(
Ui < F̄i(ti) ∀ i

)
= Ĉ

(
F̄1(t1), . . . , F̄d(td)

)
,
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2.2 Copulas

establishing the claim. �

Due to uniqueness, the copula Ĉ in Theorem 2.2.5 is called the survival copula of the

random vector (τ1, . . . , τd)
′

with survival function F̄ . It is important to stress that the

survival copula Ĉ is a proper copula, i.e. a distribution function and not a survival

function. Knowing the copula of a random vector allows to compute its survival copula,

and vice versa. This computation is accomplished by the principle of inclusion and

exclusion given below. It is a standard result from probability calculus and shows how

to compute the probabilty of a union of events in terms of probabilities of intersections.

Lemma 2.2.6 (Principle of Inclusion and Exclusion)

Let (Ω,F ,P) be a probability space. With A1, . . . , An ∈ F it holds that

P
(
∪ni=1 Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<...<ik≤n
P
(
∩kj=1 Aij

)
.

Proof

See e.g. [Billingsley (1995), p. 24]. �

Given the copula C of a random vector (τ1, . . . , τd)
′

on a probability space (Ω,F ,P) with

continuous margins F1, . . . , Fd, its survival copula Ĉ is computed as follows: as in the

proof of Theorem 2.2.5 we introduce the notation F−1
i (t) := inf{x ∈ R |Fi(x) ≥ t}, t ∈

(0, 1), for the generalized inverse of Fi, i = 1, . . . , d. The continuity of the margins

implies that Fi ◦ F−1
i (t) = t for all t ∈ (0, 1) and i = 1, . . . , d, see (∗) in the proof of

Theorem 2.2.5. For u1, . . . , ud ∈ (0, 1) it follows that

Ĉ(u1, . . . , ud) = Ĉ
(
F̄1

(
F−1

1 (1− u1)
)
, . . . , F̄d

(
F−1
d (1− ud)

))
= P

(
τ1 > F−1

1 (1− u1), . . . , τd > F−1
d (1− ud)

)
= P

(
∩dk=1

{
τk > F−1

k (1− uk)
})

= 1− P
(
∪dk=1

{
τk ≤ F−1

k (1− uk)
})

= 1−
d∑

k=1

(−1)k+1
∑

1≤j1<...<jk≤d
P
(
∩ki=1

{
τji ≤ F−1

ji
(1− uji)

})
= 1 +

d∑
k=1

(−1)k
∑

1≤j1<...<jk≤d
Cj1,...,jk

(
Fj1
(
F−1
j1

(1− uj1)
)
, . . . , Fjk

(
F−1
jk

(1− ujk)
))
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2.2.3 Dependence Measures

= 1 +
d∑

k=1

(−1)k
∑

1≤j1<...<jk≤d
Cj1,...,jk

(
1− uj1 , . . . , 1− ujk

)
. (2.6)

In the above computation, the second and the fifth equality follow from Theorems 2.2.5

and 2.2.3, respectively. Interchanging the roles of Ĉ and C yields by a similar compu-

tation that

C(u1, . . . , ud) = 1 +
d∑

k=1

(−1)k
∑

1≤j1<...<jk≤d
Ĉj1,...,jk

(
1− uj1 , . . . , 1− ujk

)
.

An alternative view on the copula C and the survival copula Ĉ of a random vector

(τ1, . . . , τd)
′
with continuous margins F1, . . . , Fd can be extracted from the proofs of The-

orems 2.2.3 and 2.2.5: C is the distribution function of
(
F1(τ1), . . . , Fd(τd)

)′
and Ĉ is the

distribution function of
(
F̄1(τ1), . . . , F̄d(τd)

)′
. Finally, the copula C (and hence also the

survival copula Ĉ by the above computation) of a random vector (τ1, . . . , τd)
′

with con-

tinuous margins is invariant under strictly increasing transformations. More precisely,

for strictly increasing functions g1, . . . , gd : R→ R, the copula of
(
g1(τ1), . . . , gd(τd)

)′
is

again C, see [Embrechts et al. (2003), Theorem 2.6]. This fact is often used to transform

or standardize the marginal laws without changing the copula.

2.2.3 Dependence Measures

A bivariate copula can be visualized by a three-dimensional function plot. In two or

three dimensions it is still possible to visualize properties of a copula by means of a

two- or three-dimensional scatterplot. In larger dimensions, however, it is difficult to

visualize and understand the dependence structure of a given copula. In this regard,

it is convenient to know a probabilistic interpretation of the copula which accompa-

nies the analytical form and explains how the dependence structure emerges naturally.

In fact, we have not even defined a copula analytically in this thesis, but rather di-

rectly as a distribution function. Alternatively, properties of (high-dimensional) cop-

ulas can be quantified via certain dependence measures. Popular examples for mul-

tivariate dependence measures are d-dimensional extensions of the bivariate Spear-

man’s Rho, Kendall’s Tau, and Blomqvist’s Beta, see e.g. the references [Wolff (1980),

Schmid, Schmidt (2006), Schmid, Schmidt (2007a), Schmid, Schmidt (2007b)], or ex-

tremal dependence coefficients as considered e.g. in [Frahm (2006)]. We introduce some
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2.2 Copulas

of them in the sequel, since they are applied later on. The following notion is an intuitive

measure of ”extremal” dependence.

Definition 2.2.7 (Upper- and Lower-Tail Dependence)

For a bivariate copula C the coefficients of upper- and lower-tail dependence UTDC and

LTDC are defined as

UTDC := lim
u↑1

C(u, u)− 2u+ 1
1− u

, LTDC := lim
u↓0

C(u, u)
u

,

if the respective limit exists.

The intuition behind Definition 2.2.7 is that for a random vector (U1, U2)
′

on a proba-

bility space (Ω,F ,P), whose joint distribution function is the copula C, it holds that

UTDC = lim
u↑1

C(u, u)− 2u+ 1
1− u

= lim
u↑1

P(U1 ≤ u, U2 ≤ u)− P(U1 ≤ u)− P(U2 ≤ u) + 1
P(U2 > u)

L.2.2.6= lim
u↑1

P(U1 > u,U2 > u)
P(U2 > u)

= lim
u↑1

P(U1 > u |U2 > u).

Thus, the coefficient of upper-tail dependence equals the probability that U1 is large

given U2 is large. Similarly, LTDC equals the probability that U1 is small given U2

is small. Positive upper- or lower-tail dependence are desirable in stochastic models

that support extreme scenarios. A bivariate Gaussian copula is a popular example for

a distribution whose tail dependencies are both zero, see [McNeil et al. (2005), p. 211].

As a consequence, models based on normality assumptions are often critizised for their

lack of extreme scenarios.

Remark 2.2.8 (Tail Dependence for Arbitrary Vectors)

The notions of upper- and lower-tail dependence are more generally defined for arbitrary

bivariate random vectors (τ1, τ2)
′
with continuous, but not necessarily uniform, marginal

laws F1, F2. The definition in this more general case is the same as above, where the

copula C is the copula of the corresponding random vector. More clearly, the lower-tail

dependence coefficient of the bivariate random vector (τ1, τ2)
′
, defined on (Ω,F ,P), is

given by

lim
t↓0

P
(
τ1 ≤ F−1

1 (t)
∣∣ τ2 ≤ F−1

2 (t)
)

= lim
u↓0

C(u, u)
u

= LTDC ,
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2.2.3 Dependence Measures

provided existence of the limit. For the upper-tail dependence coefficient the corre-

sponding similar definition of UTDC applies.

Remark 2.2.9 (Tail Dependence of Survival Copula)

Existence provided, the upper-tail dependence coefficient of the survival copula Ĉ of a

random vector equals the lower-tail dependence coefficient of the respective copula, i.e.

UTDĈ = LTDC . This follows from the computation (2.6):

UTDĈ = lim
u↑1

Ĉ(u, u)− 2u+ 1
1− u

(2.6)
= lim

u↑1

1 + C(1− u, 1− u)− 2 (1− u)− 2u+ 1
1− u

= lim
u↓0

C(u, u)
u

= LTDC .

Similarly, LTDĈ = UTDC , existence provided.

Example 2.2.10 (Tail Dependence of Cuadras-Augé Copula)

In the case of a bivariate Cuadras-Augé copula Cα as introduced in Definition 2.2.2 one

may check, using the rule of L’Hospital, that UTDCα = α, since

UTDCα = lim
u↑1

Cα(u, u)− 2u+ 1
1− u

= lim
u↑1

u1+1−α − 2u+ 1
1− u

= lim
u↑1

(2− α)u1−α − 2
−1

= α.

In contrast, Cα has zero lower-tail dependence (unless α = 1):

LTDCα = lim
u↓0

u1+1−α

u
= lim

u↓0
u1−α = 1{α=1}.

Asymmetric tail dependence parameters, i.e. UTDCα 6= LTDCα , are sometimes desir-

able. For example if Cα is the survival copula of two companies’ bankruptcy times,

then positive upper-tail dependence of Cα - correspondingly lower-tail dependence of

the bankruptcy times by Remark 2.2.9 - has an intuitive interpretation. It implies that

an early default of one firm is likely to coincide with an early default of the other firm

as well. In contrast, zero lower-tail dependence of Cα means that an extraordinary long

survival of one firm does not automatically induce a long life of the other.

One possible extension of the bivariate concept of tail dependence to dimensions d > 2

is introduced by [Frahm (2006)] and is presented below.
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Definition 2.2.11 (Upper- and Lower-Extremal Dependence Coefficient)

For a d-dimensional copula C : [0, 1]d → [0, 1] the upper- and lower-extremal dependence

coefficients UEDCC and LEDCC are defined by

UEDCC : = lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤dCj1,...,ji(u, . . . , u)
1− C(u, . . . , u)

,

LEDCC : = lim
u↓0

C(u1, . . . , ud)∑d
i=1(−1)i+1

∑
1≤j1<...<ji≤dCj1,...,ji(u, . . . , u)

,

if the corresponding limit exists.

Using the principle of inclusion and exclusion it is possible to understand the intuition

behind this definition. Letting (U1, . . . , Ud)
′

be defined on (Ω,F ,P) and have as joint

distribution function the copula C, it holds that

UEDCC = lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤dCj1,...,ji(u, . . . , u)
1− C(u, . . . , u)

= lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤d P(Uj1 ≤ u, . . . , Uji ≤ u)
1− P(U1 ≤ u, . . . , Ud ≤ u)

L.2.2.6= lim
u↑1

P(U1 > u, . . . , Ud > u)
P
(

max{U1, . . . , Ud} > u
)

= lim
u↑1

P
(

min{U1, . . . , Ud} > u
∣∣ max{U1, . . . , Ud} > u

)
.

Thus, the UEDC gives the probability that all components U1, . . . , Ud are large given at

least one of them is large. Similarly, the LEDC gives the probability that all components

are small given at least one is small. Let us point out that in the case d = 2 the

UEDC is not the same as the UTD, the difference being that one conditions on the

maximum of U1, U2 to be greater than u, instead of just conditioning on U2. There

are other versions of upper-extremal dependence coefficients which really extend the

bivariate UTD, compare e.g. [Li (2008)], however the UEDC as defined above seems

most adequate for our purpose. Concluding, the UTD as well as the UEDC are limits

of probabilities, hence they take values in [0, 1], and the closer they are to one, the more

likely are extreme events. Similar interpretations hold for LTD and LEDC.

The following multivariate dependence measure, which is a multivariate rank correlation

coefficient, is due to [Wolff (1980)].
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2.3.1 Extreme-Value Copulas

Definition 2.2.12 (Multivariate Spearman’s Rho)

For a given copula C : [0, 1]d → [0, 1] Spearman’s multivariate Rho is defined by

ρdC :=

∫
[0,1]d C(u1, . . . , ud) d(u1, . . . , ud)−

∫
[0,1]d Π(u1, . . . , ud) d(u1, . . . , ud)∫

[0,1]dM(u1, . . . , ud) d(u1, . . . , ud)−
∫

[0,1]d Π(u1, . . . , ud) d(u1, . . . , ud)
.

Solving the integrals over Π and M in the definition of ρdC , it follows that

ρdC =
d+ 1

2d − (d+ 1)

(
2d
∫

[0,1]d
C(u1, . . . , ud) d(u1, . . . , ud)− 1

)
,

see e.g. [Schmid, Schmidt (2006)]. The value ρdC can be interpreted as the normalized av-

erage distance between the copula C and the independence copula Π. The normalization

above makes sense, since it can be shown that any copula C satisfies C ≤M pointwise,

see e.g. [Embrechts et al. (2003), Theorem 2.3, p. 5]. The case d = 2 agrees with the

commonly used Pearson’s correlation coefficient, see [Nelsen (1999), p. 137]. Spear-

man’s Rho ρdC is a so-called concordance measure, see e.g. [Embrechts et al. (2003), p.

12] for further details.

2.3 Important Copula Families

Three types of copulas are introduced: extreme-value copulas, Marshall-Olkin survival

copulas and Archimedean copulas. All of them are important for later results.

2.3.1 Extreme-Value Copulas

The notion of an extreme-value copula is interesting for the present thesis, since we

study a particular class of copulas, which satisfies the extreme-value property.

Definition 2.3.1 (Extreme-Value Copula)

A copula C : [0, 1]d → [0, 1] is called extreme-value copula if it satisfies the extreme-value

property C(ut1, . . . , u
t
d) = C(u1, . . . , ud)t for all t > 0, u1, . . . , ud ∈ [0, 1].

Specific examples of extreme-value copulas include the independence copula Π, the

upper-Fréchet-Hoeffding bound M , as well as Marshall-Olkin survival copulas as dis-

cussed in Subsection 2.3.2 below. Such copulas occur in multivariate extreme-value the-
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2.3 Important Copula Families

ory as possible limit copulas. More precisely, let F be a multivariate distribution function

with continuous margins F1, . . . , Fd. Consider a probability space (Ω,F ,P) supporting

i.i.d. random vectors {(τ (n)
1 , . . . , τ

(n)
d )

′}n∈N with distribution function F . For each n ∈ N
one considers the vector of componentwise maxima (M1:n, . . . ,Md:n)

′
, where Mk:n :=

max{τ (1)
k , . . . , τ

(n)
k }, k = 1, . . . , d. If there exist sequences {a1:n}n∈N, . . . , {ad:n}n∈N,

{b1:n}n∈N, . . . , {bd:n}n∈N and a random vector (τ1, . . . , τd)
′

such that

(M1:n − a1:n

b1:n
, . . . ,

Md:n − ad:n

bd:n

)′
d−→ (τ1, . . . , τd)

′
, as n→∞, (2.7)

then the copula of the limit random vector (τ1, . . . , τd)
′

must be of extreme-value kind.

A proof of this fact can be found e.g. in [Joe (1997), p. 172-174]. Conversely, given an

extreme-value copula C, it may occur as the copula of a limit random vector as in (2.7):

consider i.i.d. random vectors {(U (n)
1 , . . . , U

(n)
d )

′}n∈N with joint distribution function C

on a probability space (Ω,F ,P). For each n ∈ N denote by Mk:n := max{U (1)
k , . . . , U

(n)
k }

the componentwise maxima, for k = 1, . . . .d. Choosing ak:n ≡ 1 and bk:n = 1/n for all

k ∈ 1, . . . , d and n ∈ N, it is observed for t1, . . . , td ≥ 0 that

P
(M1:n − 1

1/n
≤ −t1, . . . ,

Md:n − 1
1/n

≤ −td
)

= P
(
U

(1)
1 ≤ − t1

n
+ 1, . . . , U (1)

d ≤ − td
n

+ 1
)n

= C
(
− t1
n

+ 1, . . . ,− td
n

+ 1
)n

= C
((
− t1
n

+ 1
)n
, . . . ,

(
− td
n

+ 1
)n) n→∞−→ C

(
e−t1 , . . . , e−td

)
.

The third equality in the computation above requires the extreme-value property of C.

Notice that the entries exp(−tk), k = 1, . . . , d, of C in the limit constitute univariate

extreme-value distribution functions of the Weibull kind as tk ranges in [0,∞), see

[Joe (1997), p. 170]. Hence, C occurs as a possible limit copula in (2.7).

From an analytical perspective, each extreme-value copula admits a so-called Pickands

representation. This characterizes an extreme-value copula by a measure on the d-

dimensional unit simplex subject to certain boundary conditions.

Theorem 2.3.2 (De Haan, Resnick (1977), Pickands (1981))

C(u1, . . . , ud) is an extreme-value copula if and only if there exists a (positive) finite

measure δ on the d-dimensional unit simplex

Sd :=
{

(u1, . . . , ud)
′ ∈ [0, 1]d

∣∣u1 + . . .+ ud = 1
}
,
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2.3.1 Extreme-Value Copulas

subject to the conditions
∫
Sd
uj δ(du1, . . . , dud) = 1, j = 1, . . . , d, such that

C(u1, . . . , ud) =
( d∏
i=1

ui

)P( log u1∑d
k=1

log uk
,...,

log ud∑d
k=1

log uk

)
,

where P , called Pickands dependence function, is defined on Sd and given by

P (w1, . . . , wd) =
∫
Sd

max{u1w1, . . . , udwd} δ(du1, . . . , dud).

Proof

This theorem is named after [Pickands (1981)], even though it is in turn based on

[De Haan, Resnick (1977)]. Since the proof is important for our purpose but requires

much effort, we do not skip it but only sketch the basic idea. This proof sketch can be

found in the Appendix. �

Theorem 2.3.2 can be used to derive expressions for tail dependence parameters of gen-

eral extreme-value copulas based on the measure δ, see [Li (2009)]. Moreover, Theorem

2.3.2 is useful to construct parametric families of extreme-value copulas. It is noted in

[Joe (1997), p. 175] that for statistical applications ”a goal is to find finite-dimensional

parametric subfamiles that cover well the entire [infinite-dimensional] family [of extreme-

value distributions]”. The present dissertation deals with one specific parametric sub-

family, called Marshall-Olkin survival copulas, see Subsection 2.3.2 below.

Example 2.3.3 (Pickands Dependence Function of Cuadras-Augé Copulas)

Consider the bivariate copula Cα from Definition 2.2.2. The extreme-value property is

easily verified to hold for Cα, so in regard of Theorem 2.3.2 it is natural to ask what

the measure δ and the corresponding dependence function P look like. It is derived in

[Falk et al. (2004), Example 4.3.2, p. 124] that δ is a discrete measure, whose mass is

concentrated on three points. More precisely, it is determined by

δ
({

(1, 0)
′})

= δ
({

(0, 1)
′})

= 1− α, δ
({

(1/2, 1/2)
′})

= 2α.

One verifies that the boundary conditions are valid, i.e.∫
S2

u1 δ(du1, du2) =
∫
S2

u2 δ(du1, du2) = (1− α) · 1 + 2α · 1
2

= 1.
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2.3 Important Copula Families

Moreover, the Pickands dependence function P is computed to have the form

P (w1, w2) =
∫
S2

max{u1w1, u2w2} δ(du1, du2)

= (1− α)w1 + (1− α)w2 + 2α
1
2

max{w1, w2}

= max{w1, w2}+ (1− α) min{w1, w2}.

Indeed, one may check that for u1, u2 ∈ (0, 1)

P
( log u1

log(u1 u2)
,

log u2

log(u1 u2)

)
=

log
(

min{u1, u2}
)

log(u1 u2)
+ (1− α)

log
(

max{u1, u2}
)

log(u1 u2)
.

Hence, it is verified that

(u1 u2)
P

(
log u1

log(u1 u2)
,

log u2
log(u1 u2)

)
= elog

(
min{u1,u2}

)
+log

(
max{u1,u2}1−α

)
= Cα(u1, u2).

Since the Pickands dependence function P (w1, w2) is defined only for nonnegative w1, w2

with w1 + w2 = 1, one may alternatively parameterize it by w ∈ [0, 1] setting P̃ (w) :=

P (w, 1 − w). The function P̃ can then easily be visualized for different choices of α ∈
[0, 1], see Figure 2.3. The fact that P̃ is not differentiable in w = 1/2 for α > 0 indicates

that Cα has a singular component in this case, see [Joe (1997), Theorem 6.5, p. 176].

2.3.2 Marshall-Olkin Survival Copulas

It is a well-known fact that a random variable τ with support (0,∞), defined on (Ω,F ,P),

is exponentially distributed if and only if for all s, t > 0 it holds that

P(τ > s+ t | τ > t) = P(τ > s), (2.8)

see e.g. [Billingsley (1995), p. 190]. In other words, the so-called lack of memory prop-

erty (2.8) characterizes the exponential distribution. In fact, it is precisely this property

which renders the exponential law one of the most popular and most tractable probability

distributions. For instance it is noted in [David, Nagaraja (1970), p. 121] that ”the ex-

ponential [distribution] occupies as commanding a position in life testing as does the nor-

mal [distribution] elsewhere in parametric theory.” The article [Marshall, Olkin (1967)]

is concerned with a multivariate analog of the lack of memory property. In general-
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Figure 2.3 For α = 0, 0.2, 0.4, 0.6, 0.8, 1, the Pickands dependence function P̃ (w) =
max{w, 1−w}+ (1−α) min{w, 1−w} of a bivariate Cuadras-Augé copula
is illustrated.

ization of (2.8), they consider a probability space (Ω,F ,P) on which a random vector

(τ1, . . . , τd)
′

with support (0,∞)d is defined, which satisfies the following property: for

all s1, . . . , sd, t ≥ 0 it holds that

P
(
τ1 > s1 + t, . . . , τd > sd + t

∣∣ τ1 > t, . . . , τd > t
)

= P
(
τ1 > s1, . . . , τd > sd

)
. (2.9)

Interpreting τ1, . . . , τd as lifetimes, (2.9) intuitively means that the residual lifetimes are

independent of age. Similar as in the univariate case, [Marshall, Olkin (1967)] show that

there is precisely one parametric family of multivariate distributions satisfying the lack of

memory property. More clearly, (2.9) has to be read iteratively as follows: in dimension

d = 1 we already know that (2.9) implies that τ1 is exponential. In dimension d = 2

one therefore postulates that τ1, τ2 both are exponential and (2.9) holds. It is shown

in [Marshall, Olkin (1967), Lemma 2.2] that this implies the existence of parameters
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2.3 Important Copula Families

λ{1}, λ{2}, λ{1,2} ≥ 0, with λ{k} + λ{1,2} > 0, k = 1, 2, such that for t1, t2 ≥ 0 one has

F̄ (t1, t2) := P(τ1 > t1, τ2 > t2) = exp
(
− λ{1} t1 − λ{2} t2 − λ{1,2} max{t1, t2}

)
.

This distribution is called the bivariate Marshall-Olkin distribution. Inductively, in

dimension d ≥ 2 one can show that if all (d− 1)-dimensional subvectors of (τ1, . . . , τd)
′

have a Marshall-Olkin distribution, and if (2.9) is satisfied, then it follows that there

exist parameters λI ≥ 0, ∅ 6= I ⊂ {1, . . . , d}, with
∑

I:k∈I λI > 0, k = 1, . . . , d, such that

for all t1, . . . , td ≥ 0 one has

F̄ (t1, . . . , td) := P(τ1 > t1, . . . , τd > td) = exp
(
−

∑
∅6=I⊂{1,...,d}

λI max
i∈I
{ti}

)
, (2.10)

see [Marshall, Olkin (1967), p. 39]. This distribution is called (d-dimensional) Marshall-

Olkin distribution. Other multivariate exponential distributions are proposed in the lit-

erature, see e.g. [Gumbel (1960)], which do not share the lack of memory property. In

fact, plugging exponential marginal laws into an arbitrary copula yields a multivariate

distribution by virtue of Sklar’s Theorem, which one might call ”exponential”. However,

the previous motivation by means of the lack of memory property suggests that not ev-

ery distribution with exponential margins deserves the name ”multivariate exponential

distribution”. From this perspective, the Marshall-Olkin exponential distribution is the

”right” multivariate exponential distribution. For a nice treatment of the characteriza-

tion of the Marshall-Olkin distribution by the lack of memory property, the interested

reader is referred to the exposé [Galambos, Kotz (1978), p. 103-132].

So far, the Marshall-Olkin distribution is only introduced analytically. It is also shown

in [Marshall, Olkin (1967)] how to construct such a distribution. The intuition is a

system of initially fully functional components which are affected by exogenous shocks

destroying them. The random vector of extinction times of the components exhibits

the Marshall-Olkin distribution. A shock can hit one or more components at the same

time, rendering these extinction times dependent. In particular, when a shock hits e.g.

five components at a time, then all these five extinction times have the same value, i.e.

the distribution has a singular component. This property together with the intuitive

interpretation makes this kind of distributions interesting in financial applications such

as risk management and credit risk modeling, see for instance [Embrechts et al. (2003),

Giesecke (2003), Lindskog, McNeil (2003)]- and Chapter 6 of the present thesis.
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2.3.2 Marshall-Olkin Survival Copulas

In order to outline the construction of [Marshall, Olkin (1967)] we consider a probability

space (Ω,F ,P). For each non-empty subset ∅ 6= I ⊂ {1, . . . , d} let EI be an exponential

random variable with mean 1/λI > 0, and assume that all these 2d−1 random variables

are independent. Some λI are allowed to be zero, in which case we mean that EI ≡ ∞
with probability one. However, we must guarantee that

∑
I:k∈I λI > 0 for all k =

1, . . . , d. This means that for each k = 1, . . . , d there is at least one subset I ⊂ {1, . . . , d}
containing k such that λI is strictly positive. In this case, the following random variables

are well-defined in (0,∞):

τk := min
{
EI
∣∣ I ⊂ {1, . . . , d}, k ∈ I}, k = 1, . . . , d. (2.11)

The random vector
(
τ1, . . . , τd

)′
has the Marshall-Olkin distribution given by (2.10),

which can be seen from the following computation with t1, . . . , td ≥ 0:

F̄ (t1, . . . , td) := P(τ1 > t1, . . . , τd > td) = P
(
EI > max

i∈I
{ti} ∀ ∅ 6= I ⊂ {1, . . . , d}

)
=

∏
∅6=I⊂{1,...,d}

e
−λI max

i∈I
{ti}

= exp
(
−

∑
∅6=I⊂{1,...,d}

λI max
i∈I
{ti}

)
.

For each k = 1, . . . , d the distribution of τk is exponential with parameter Ok :=∑
I:k∈I λI > 0. This follows from the fact that the minimum of independent exponen-

tial random variables is again exponentially distributed, and the parameters are simply

added up, see also the proof of Lemma 2.3.4 below. Intuitively, the random variable EI
is interpreted as the arrival time of an exogenous shock affecting those components of

(τ1, . . . , τd)
′

which are indexed by a number in I. Accordingly, the k-th component is

destroyed when hit by the first shock EI with k ∈ I, motivating the definition (2.11).

The survival copula Ĉ of this random vector is computed in [Li (2008), Proposition 1].

For our purpose however, a slightly different expression is more appropriate, which can

be deduced directly from (2.10), see also [Joe (1997), p. 192].

Lemma 2.3.4 (Survival Copula of the Marshall-Olkin Distribution)

The survival copula Ĉ of the random vector (τ1, . . . , τd)
′

as defined in (2.11) is given by

Ĉ(u1, . . . , ud) =
∏

∅6=I⊂{1,...,d}

min
k∈I

{
u
λI
Ok
k

}
, u1, . . . , ud ∈ [0, 1].
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Proof

In a first step one verifies that the marginal laws are exponential: for the k-th marginal

survival function F̄k of τk, it holds that

F̄k(t) = P(τk > t) = P
(
EI > t ∀ I ⊂ {1, . . . , d} : k ∈ I

)
= exp(−Ok t), t ≥ 0.

Hence, it follows from (2.10) that

F̄ (t1, . . . , td) =
∏

∅6=I⊂{1,...,d}

min
k∈I

{
F̄k(tk)

λI
Ok

}
, t1, . . . , td ≥ 0.

By an application of Theorem 2.2.5 the claim is thus established. �

Marshall-Olkin survival copulas are the main source of interest during this dissertation.

Their analytical form is further studied in Chapter 3. The probabilistic intuition behind

Marshall-Olkin distributions is revisited in Chapter 4 from an alternative perspective.

2.3.3 Archimedean Copulas

A function ϕ : [0,∞) → [0, 1] is called a possible Archimedean generator if it satisfies

ϕ(0) = 1, limx→∞ ϕ(x) = 0, and if ϕ is strictly decreasing on
[
0, inf{x ≥ 0 : ϕ(x) =

0}
)
.2 A copula C : [0, 1]d → [0, 1] is called Archimedean if it admits the functional

form

C(u1, . . . , ud) = ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
, (2.12)

with a possible Archimedean generator ϕ. For ϕ and its inverse ϕ−1 : (0, 1] → [0,∞)

the conventions ϕ(∞) := 0 and ϕ−1(0) := inf{x ≥ 0 : ϕ(x) = 0} are applied. One

immediately recognizes that an Archimedean copula is invariant under permutations of

its arguments.

A function ϕ has to be a possible Archimedean generator in order for equation (2.12)

to possibly define a copula. However, for a given possible Archimedean generator ϕ

the function C from equation (2.12) is not always a proper copula. A necessary and

2[McNeil, Nešlehová (2009)] call such a function an Archimedean generator, but in regard of Theorems
2.3.8 and 2.3.9 below this terminology is unintuitive. Therefore, we add the word possible to indicate
that not all these functions are related to an Archimedean copula.
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2.3.3 Archimedean Copulas

sufficient condition on ϕ is derived in [McNeil, Nešlehová (2009)] and uses the following

definition.

Definition 2.3.5 (d-Monotone Function)

For d ≥ 2, a function ϕ : [0,∞)→ R is called d-monotone if it is differentiable on (0,∞)

up to the order d− 2, if the derivatives satisfy

(−1)k ϕ(k)(x) ≥ 0, k = 0, 1, . . . , d− 2, ∀x > 0,

if further (−1)d−2 ϕ(d−2) is non-increasing and convex on (0,∞), and if ϕ is continuous

at zero3.

A function ϕ : [0,∞)→ R is 2-monotone if and only if it is non-negative, non-increasing,

convex and continuous at zero. Moreover, for d ≥ 3, d-monotonicity implies (d − 1)-

monotonicity. Of particular interest are functions that are d-monotone for all d ≥ 2, see

the following definition.

Definition 2.3.6 (Completely Monotone Function)

A function ϕ : [0,∞)→ R is called completely monotone, if it is continuous at zero, has

derivatives of all orders on (0,∞) and

(−1)k ϕ(k)(x) ≥ 0, k ∈ N0, ∀x > 0,

i.e. if ϕ is d-monotone for all d ≥ 2.

Completely monotone functions arise naturally in probability theory as Laplace trans-

forms of non-negative random variables, see Theorem 2.3.7 below.

Theorem 2.3.7 (Bernstein (1929))

A function ϕ : [0,∞) → R is completely monotone with ϕ(0) = 1 if and only if there

exists a probability space (Ω,F ,P) supporting a non-negative random variable W ∈
[0,∞) with ϕ(x) = E[exp(−xW )], x ≥ 0, i.e. ϕ is the Laplace transform of W .

Proof

Originally in [Bernstein (1929)]. See also [Feller (1966), Theorem 1, p. 439]. �

In the setup of Theorem 2.3.7 above, P(W = 0) > 0 implies that ϕ(x) ≥ P(W = 0) > 0

for all x ≥ 0. In order for ϕ to define a possible Archimedean generator one has to have
3Continuity on (0,∞) is implied by the other conditions anyway.
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2.3 Important Copula Families

limx→∞ ϕ(x) = 0, i.e. P(W = 0) = 0. Also let us stress that W ∈ [0,∞), so in particular

W = ∞ is not allowed in Theorem 2.3.7. This assumption would introduce a point of

discontinuity of ϕ at zero.

Using Definitions 2.3.5 and 2.3.6, the following two theorems are the cornerstone of the

theory on Archimedean copulas.

Theorem 2.3.8 (Kimberling (1974))

Let ϕ be a possible Archimedean generator. Then equation (2.12) defines a copula for

all d ≥ 2 if and only if ϕ is completely monotone.

Proof

Originally in [Kimberling (1974)]. It also follows from the more general Theorem 2.3.9,

a proof of which can be found in [McNeil, Nešlehová (2009), Theorem 2]. �

Whereas Theorem 2.3.8 considers all dimensions d ≥ 2 simultaneously, the following

result keeps d ≥ 2 fixed, which leads to a more general statement.

Theorem 2.3.9 (McNeil, Nešlehová (2009))

Let ϕ be a possible Archimedean generator. Then equation (2.12) defines a copula if

and only if ϕ is d-monotone.

Proof

See [McNeil, Nešlehová (2009), Theorem 2]. �

In our opinion, there are three major reasons why Archimedean copulas enjoy great

popularity in many applications - in particular in large dimensions d� 2.

• The first reason is their great level of flexibility. The distributional properties

of two Archimedean copulas with different generators can be quite unequal. For

example, some bivariate Archimedean copulas exhibit upper-tail dependence but

no lower-tail dependence, whereas other bivariate Archimedean copulas have both.

Moreover, since they are parameterized by a function, there are infinitely many

degrees of freedom when specifying an Archimedean copula - at least in theory.

• The second reason is their convenient parametric form (2.12), which is analytically

tractable whenever its generator ϕ is nice. In particular, distributional properties

of an Archimedean copula often correspond to analytical properties of its generator

ϕ, which are sometimes easier to explore. This is a striking argument, since
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2.3.3 Archimedean Copulas

for general high-dimensional copulas a nice analytical representation is not often

available. For example, the Marshall-Olkin survival copula from Lemma 2.3.4 has

a quite complicated form. The Gaussian copula from Example 2.2.4 does not even

have a closed-form expression.

• The third reason is that many Archimedean copulas allow for efficient sampling

routines in each dimension d ≥ 2, as will be outlined briefly. For a given completely

monotone possible Archimedean generator ϕ one may construct a random vector

with copula given by (2.12) as follows.

Theorem 2.3.10 (Marshall, Olkin (1988))

Let (Ω,F ,P) be a probability space on which a positive random variable W > 0

with Laplace transform ϕ and, independently, i.i.d. random variables E1, . . . , Ed

with E1 ∼ Exp(1) are defined. Then, the survival copula of the random vector

(τ1, . . . , τd)
′
, defined by τk := Ek/W for each k = 1, . . . , d, is given by equation

(2.12). Moreover, the survival function F̄k of τk equals ϕ, for k = 1, . . . , d. In

mathematical terms, with C given by (2.12), it holds that

P
(E1

W
> t1, . . . ,

Ed
W

> td

)
= C

(
ϕ(t1), . . . , ϕ(td)

)
, t1, . . . , td ≥ 0.

Proof

This is due to [Marshall, Olkin (1988)] and the proof works as follows. For positive

t1, . . . , td > 0 it holds that

P(τ1 > t1, . . . , τd > td) = P(E1 > t1W, . . . , Ed > tdW )

= E
[ d∏
i=1

P(Ei > tiW |W )
]

= E
[ d∏
i=1

e−tiW
]

= E
[
e−W

∑d
i=1 ti

]
= ϕ

( d∑
i=1

ti

)
.

For each k = 1, . . . , d the random variable τk has survival function ϕ since

P(τk > t) = P(Ek > tW ) = E
[
P(Ek > tW |W )

]
= E[e−tW ] = ϕ(t), t > 0.

Thus, Theorem 2.2.5 implies that the survival copula Ĉ of (τ1, . . . , τd)
′

is given by

Ĉ(u1, . . . , ud) = ϕ
( d∑
i=1

ϕ−1(ui)
)
.

This establishes the claim. �
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2.3 Important Copula Families

The major application of this probabilistic construction is that it shows how to

simulate random vectors which have an Archimedean copula with generator ϕ

as joint distribution function. Using Theorem 2.3.10, this is possible whenever

the random variable W with Laplace transform ϕ can be simulated. To generate

a random vector (U1, . . . , Ud)
′

with joint distribution function C from equation

(2.12) one needs to simulate the random vector (τ1, . . . , τd)
′

from Theorem 2.3.10

and set Ui := ϕ(τi), i = 1, . . . , d. Note that one has to be able to evaluate the

Laplace transform ϕ. The computational efficiency of this sampling routine grows

linearly in the dimension d, since it requires one to only simulate d exponential

random variables and once the random variable W . For a list of specific examples

of sampling algorithms we refer to [Hofert (2007)].

A list of d-monotone Archimedean generators can be found in [Nelsen (1999)], or in

[Charpentier, Segers (2009)]. We present two examples in the sequel to illustrate the

previous statements.

Example 2.3.11 (Clayton Copula)

For θ > 0 the function ϕ(x) = (1 + x)−1/θ, x ≥ 0, is completely monotone. To see this

using Theorem 2.3.7, consider a random variable W which is Γ(1, 1/θ)-distributed, i.e.

its density is given by

fW (x) = 1{x>0}
1

Γ(1/θ)
x

1
θ
−1 e−x, Γ(x) =

∫ ∞
0

e−t tx−1 dt.

Then the Laplace transform of W is given by E[exp(−xW )] = ϕ(x), x ≥ 0, see

[Feller (1966), p. 503]. One easily observes that ϕ−1(y) = (1/y)θ − 1, y ∈ [0, 1]. The

resulting one-parametric family of Archimedean copulas is called the Clayton family,

named after [Clayton (1978)], and has the form

C(u1, . . . , ud) =
(

1− d+
d∑
i=1

u−θi

)− 1
θ
.

Using the sampling strategy from Theorem 2.3.10, scatterplots from a two- and three-

dimensional Clayton copula with parameter θ = 2 are presented in Figure 2.4.

Example 2.3.12 (Proper d-Monotone Generator)

In [McNeil, Nešlehová (2009)] one can find examples of d-monotone functions which are

not completely monotone, i.e. which are not Laplace transforms of a positive random

variable. It is carried out that an Archimedean generator ϕ is d-monotone if and only if

41



●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

● ●●
●

●
●
●
●

●● ●
●●

●

●
●

●

●●
● ●

●

●●●●●

●

●
●
●●●

Figure 2.4 Scatterplots of 1000 samples from a Clayton copula in two and three di-
mensions, respectively. The parameter used is θ = 2.

there exists a probability space (Ω,F ,P) supporting a positive random variable W > 0

such that ϕ(x) = E
[

max{1 − x/W, 0}d−1
]
, x ≥ 0. This probabilistic interpretation of

d-monotone functions is due to [Williamson (1956)]. For example, ϕ(x) = max{1 −
x, 0} is 2-monotone, but not d-monotone for d ≥ 3. To generate random vectors from

the corresponding two-dimensional Archimedean copula requires one to use a different

probabilistic construction than that of Theorem 2.3.10. Since this approach is not

applied in this thesis, the interested reader is referred to [McNeil, Nešlehová (2009)].

2.4 Lévy Subordinators

Lévy processes are continuous-time analoges of discrete-time random walks. The in-

crements of a Lévy process are stationary and do not depend on the past, not even

on the current value of the process. Stochastic processes of this type are used as

building blocks for probabilistic models in many applications, e.g. in financial engi-

neering. Prominent examples of Lévy processes are the Brownian motion and the Pois-

son process. If a Lévy process has almost surely non-decreasing paths, it is called a
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2.4 Lévy Subordinators

Lévy subordinator. For further background on Lévy processes we refer the reader to

the standard textbooks [Bertoin (1996), Bertoin (1999), Sato (1999), Schoutens (2003),

Applebaum (2004), Cont, Tankov (2004)].

Definition 2.4.1 (Classical Lévy Subordinator)

A [0,∞)-valued stochastic process Λ = {Λt}t≥0 on a probability space (Ω,F ,P) is a

classical Lévy subordinator if it is a non-decreasing Lévy process, i.e. Λ0 = 0 holds

P-almost surely, Λ has càdlàg paths4, and the following conditions are satisfied:

(1) Λ is stochastically continuous, i.e.

∀t ≥ 0, ∀ε > 0 it holds that lim
h↓0

P
(
|Λt+h − Λt| ≥ ε

)
= 0.

(2) Λ has independent increments, i.e. for all t0 ≤ t1 ≤ . . . ≤ tn the random variables

Λt0 ,Λt1 − Λt0 , . . . ,Λtn − Λtn−1 are stochastically independent.

(3) Λ has stationary increments, i.e. the law of Λt+h − Λt is independent of t ≥ 0 for

each h ≥ 0, i.e. Λt+h − Λt
d= Λh.

(4) t 7→ Λt is almost surely non-decreasing.

It is important to note that condition (1) in the definition above does not imply that

Λ has continuous paths. It basically means that the jump times of paths of Λ are not

allowed to be deterministic. The simplest example of a classical Lévy subordinator is

a (homogeneous) Poisson process N = {Nt}t≥0. It can be constructed as follows: on

a probability space (Ω,F ,P) let {Ei}i∈N be a sequence of i.i.d. random variables with

E1 ∼ Exp(β) for a parameter β > 0. Then, N is defined via

Nt :=
∞∑
n=1

1{E1+...+En≤t}, t ≥ 0. (2.13)

Thus, a path of N starts at N0 = 0, remains there until time E1, and then jumps to

one. It remains in state one until time E1 + E2 and then jumps to two, and so on.

Thus, the state space of N is N0. The fact that N has i.i.d. increments is heavily

related to the (lack of memory property of the) exponential distribution of the random

variables {Ei}i∈N. Their parameter β is called the intensity of the Poisson process N .

The nomenclature is justified by the fact that Nt is Poi(β t)-distributed for all t > 0.
4This means that P-almost surely limu↑t Λu exists ∀ t > 0, and limu↓t Λu = Λt ∀ t ≥ 0.
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For the purpose of this work it is convenient to extend Definition 2.4.1 to include the

(absorbing) state infinity as possible value for Λt, t > 0.

Definition 2.4.2 (Lévy Subordinator)

A [0,∞) ∪ {∞}-valued stochastic process Λ = {Λt}t≥0 is called Lévy subordinator if

it is defined for t ≥ 0 by Λt := Λ̃t +∞ · 1{Nt≥1}, where Λ̃ = {Λ̃t}t≥0 is a classical

([0,∞)-valued) Lévy subordinator and N = {Nt}t≥0 is an independent Poisson process.

The intensity of the Poisson process N is called the killing rate of Λ. As a convention,

it is allowed to be zero in which case we mean that Λ = Λ̃.

In the literature, e.g. in [Applebaum (2004), Bertoin (1996)], a process Λ according to

Definition 2.4.2 is sometimes called killed subordinator5. This emphasizes the intuitive

interpretation that the process is ”killed” when it jumps to infinity, since it remains

in this state due to the non-decreasing paths. Adding the state ∞, sometimes called

cemetery state, leads to a compactification of the state space [0,∞). Such an analytical

technique is sometimes useful to include ”marginal cases” in derivations; in fact, this

will later be the case, compare e.g. Theorem 2.5.8. Due to such technical reasons, for

the rest of this dissertation by the term ”Lévy subordinator” we always refer to the

extended Definition 2.4.2, i.e. we actually mean a killed subordinator.

Lévy processes are most easily treated by means of their characteristic function. Due

to positiveness in case of a Lévy subordinator, i.e. a non-decreasing Lévy process, it is

even more convenient to consider the (existing) Laplace transform. The analytical form

of it is nowadays known as the Lévy-Khinchin representation, see Theorem 2.4.3 below.

It relies on the fact that for each t > 0 the distribution of Λt, Λ being a classical Lévy

subordinator, is infinitely divisible. More precisely, Definition 2.4.1 implies for all n ∈ N
and t > 0 that

Λt = Λ t
n

+
(
Λ 2 t

n
− Λ t

n

)
+ . . .+

(
Λn t

n
− Λ (n−1) t

n

) d= Λ(1)
t
n

+ Λ(2)
t
n

+ . . .+ Λ(n)
t
n

,

where Λ(i), for i ∈ N, are independent copies of Λ. I.e. the random variable Λt can be

represented in distribution as the sum of n i.i.d. random variables for each n, a dis-

tributional property called ”infinite divisibility”, see [Sato (1999)] for further details.

Conversely, given an arbitrary infinitely divisible distribution on [0,∞), there exists a

5But not always. We use the terminology of [Bertoin (1999), Gnedin, Pitman (2005)] who omit the
term ”killed”.
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2.4 Lévy Subordinators

classical Lévy subordinator Λ such that Λ1 is distributed according to it. This correspon-

dence allows to transfer results about infinitely divisible distributions to Lévy processes.

For instance, Theorem 2.4.3 below characterizes a Lévy subordinator by means of a

constant µ ≥ 0 and a measure ν on (0,∞].

Theorem 2.4.3 (Lévy (1934), Khinchin (1937))

The Laplace transforms of a Lévy subordinator Λ on a probability space (Ω,F ,P) admit

the functional form

E[e−xΛt ] = e−tΨ(x), x ≥ 0, t ≥ 0, (2.14)

where the function Ψ : [0,∞) → [0,∞) is called the Laplace exponent of Λ. Moreover,

there is a unique non-negative drift µ ≥ 0 and a unique positive measure ν on (0,∞],

called the Lévy measure of Λ, such that

Ψ(x) = µx+
∫

(0,∞]
(1− e−t x) ν(dt), x ≥ 0. (2.15)

The Lévy measure ν satisfies the conditions∫
(0,1]

t ν(dt) <∞, ν
(
(ε,∞]

)
<∞, for all ε > 0. (2.16)

Conversely, given a drift µ ≥ 0 and a measure ν on (0,∞] satisfying (2.16), there exists

a Lévy subordinator with drift µ and Lévy measure ν. Thus, the distributional proper-

ties of a Lévy subordinator are completely characterized by its so-called characteristics

(µ, ν).

Remark 2.4.4 (Mass at Infinity)

The right hand side of equation (2.15) is a short hand notation for

Ψ(x) = µx+
∫

(0,∞)
(1− e−x t) ν(dt) + 1{x>0} ν({∞}), x ≥ 0. (2.17)

It is justified by using the conventions 0 · ∞ = 0 and exp(−∞) = 0, which imply that

Ψ(0) = 0 even though one might have ν({∞}) > 0. Positive mass of ν at infinity intro-

duces a discontinuity of Ψ at zero. However, Ψ is smooth on (0,∞). It is a so-called

Bernstein function, i.e. Ψ is infinitely often differentiable on (0,∞) and the first deriva-

tive Ψ(1) is completely monotone, see e.g. [Applebaum (2004), Theorem 1.3.23(2), p.

45



52]. The number ν({∞}) ∈ [0,∞) is precisely the killing rate. Hence, in case of a clas-

sical Lévy subordinator it holds that ν({∞}) = 0 and thus the last term 1{x>0} ν({∞})
in (2.17) vanishes.

Proof (of Theorem 2.4.3)

Originally due to [Lévy (1934), Khinchin (1937), Khinchin (1938)]. Since this represen-

tation is essential for the present dissertation, at least a sketch of the proof is provided

in the Appendix. �

Example 2.4.5 (Characteristics of a Poisson Process)

On a probability space (Ω,F ,P), consider a homogeneous Poisson process N = {Nt}t≥0

with intensity β > 0, as defined in (2.13). Then for each t > 0 the random variable Nt

is Poi(β t)-distributed, i.e. the Laplace transform of Nt is computed as

E
[
e−xNt

]
=
∞∑
k=0

e−x k
(β t)k

k!
e−β t = e−t β (1−e−x), x ≥ 0.

Thus, the Laplace exponent of N is Ψ(x) = β
(
1 − exp(−x)

)
, x ≥ 0. Obviously, N

has zero drift µ = 0, and the Lévy measure ν is a one-point mass. More precisely,

ν(B) = β 1{1∈B}, for B ∈ B
(
(0,∞]

)
.

Intuitively, for any Borel set B ∈ B
(
(0,∞]

)
the value ν(B) is equal to the expected

number of jumps of Λ within one unit of time whose size is in B, i.e.

ν(B) = E
[∣∣∣{t ∈ (0, 1] : Λt − lim

u↑t
Λu ∈ B

}∣∣∣], (2.18)

see e.g. [Cont, Tankov (2004), Definition 3.4, p. 76]. Hence, ν bears the information

about size and frequency of the jumps of Λ. Finally, new Lévy subordinators can be

constructed from known ones by the idea of subordination: given two independent Lévy

subordinators Λ(1) and Λ(2), it holds that

Λ = {Λt}t≥0, Λt := Λ(2)

Λ
(1)
t

, t ≥ 0,

is again a Lévy subordinator, see e.g. [Bertoin (1999), Proposition 8.6]. One can even

compute its characteristics, a result which is due to [Huff (1969)]. The original idea of

subordination of a process is due to [Bochner (1955)]. Moreover, it is an easy exercise to

check that the sum of two independent Lévy subordinators is again a Lévy subordinator.
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2.4 Lévy Subordinators

Thus, it is theoretically possible to construct a huge repertoire of parametric families of

Lévy subordinators from known ones.

2.4.1 Examples

Four of the most popular Lévy subordinators are introduced in the sequel. For a list

of more infinitely divisible distributions on the positive half-axis see e.g. [Sato (1999),

Remark 8.12, p. 46] and the references therein.

2.4.1.1 Compound Poisson Subordinators With Drift

Consider a probability space (Ω,F ,P) on which {Ji}i∈N are i.i.d. positive random vari-

ables and N = {Nt}t≥0 is an independent Poisson process with intensity β > 0. With a

non-negative drift µ ≥ 0 defining

Λt := µ t+
Nt∑
i=1

Ji, t ≥ 0,

it follows from [Cont, Tankov (2004), Proposition 3.3, p. 71] that Λ = {Λt}t≥0 is a

Lévy subordinator, called a compound Poisson subordinator (with drift). Furthermore

it follows from [Cont, Tankov (2004), Proposition 3.5, p. 75] that the Lévy measure ν

of Λ has the special form

ν(B) = β P(J1 ∈ B), B ∈ B
(
(0,∞)

)
.

This implies that the Laplace exponent Ψ of Λ is given by

Ψ(x) = µx+ β E
[(

1− e−x J1
)]
, x ≥ 0. (2.19)

Intuitively, Λ grows linearly with constant drift µ, it jumps whenever the Poisson process

N jumps, and the i-th jump has random jump size Ji. Thus, in a bounded time interval

[s, t], for 0 ≤ s < t, compound Poisson subordinators (with drift) almost surely exhibit

only finitely many jumps. More precisely, the number of jumps of Λ in [s, t] is Poi
(
β (t−

s)
)
-distributed. A typical path of such a stochastic process is illustrated in Figure 2.5.

It is worth mentioning that a Lévy subordinator is of compound Poisson type (possibly

with drift) if and only if it has almost surely finitely many jumps on any bounded time
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2.4.1 Examples
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Figure 2.5 Simulated paths of a compound Poisson process with drift and Exp(η)-

distributed jump sizes. In the left graph the jump intensity is β = 1, the
drift µ = 0.2, and η = 2. Parameters in the right graph are (µ, η, β) =
(0.2, 4, 8). Both paths are simulated up to time T = 10.

interval. Compound Poisson subordinators are thus said to be finite activity processes.

Analytically, a Lévy subordinator with Lévy measure ν is of compound Poisson type if

and only if there is an ε > 0 such that ν
(
(0, ε)

)
< ∞. This follows more or less from

(2.16) and (2.18).

2.4.1.2 Gamma Subordinator

Following [Schoutens (2003), p. 52], a Lévy subordinator Λ is called Gamma subordi-

nator , if it has zero drift and its Lévy measure ν, parameterized by (β, η) ∈ (0,∞)2,

is absolutely continuous with respect to the Lebesgue measure on (0,∞) and has the

special form

ν(dt) = β e−η t
1
t

1{t>0} dt.

It is easy to check that the measure ν defined in this way satisfies (2.16) and hence

defines a Lévy subordinator. It is possible to compute the Laplace exponent Ψ in closed

form. Following [Tricomi (1951)], for continuous functions f : (0,∞)→ R with existing
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2.4 Lévy Subordinators

limits limt↓0 f(t) ∈ R and limt→∞ f(t) ∈ R the so-called Frullani Theorem states that∫
(0,∞)

(
f(a t)− f(b t)

) 1
t
dt =

(
lim
t↓0

f(t)− lim
t→∞

f(t)
)

log
( b
a

)
.

In particular, the function f(t) := exp(−t) is admissible in this formula and with a := η

and b := η + x one may deduce

Ψ(x) =
∫

(0,∞)

(
1− e−x t

)
β e−η t

1
t
dt = β log

(
1 +

x

η

)
.

Therefore, the Lévy-Khinchin representation implies that the random variable Λt has

Laplace transform

E[e−xΛt ] = e
−t β log

(
1+x

η

)
=
(

1 +
x

η

)−β t
, x > 0, t > 0.

This is known to be the Laplace transform of a Gamma distribution, which explains the

nomenclature of the process Λ. More precisely, for t > 0 the density fΛt of Λt is given

by

fΛt(x) =
ηβ t

Γ(β t)
xβ t−1 e−η x 1{x>0}, Γ(x) =

∫ ∞
0

e−s sx−1 ds,

and we denote this Gamma distribution by Γ(β t, η) in the sequel. Note that for each

ε > 0 it holds that ν
(
(0, ε)

)
= ∞, meaning that a Gamma subordinator jumps almost

surely infinitely often in a finite time interval. Lévy subordinators with this property

are thus said to exhibit infinite activity . A typical path of a Gamma subordinator is

illustrated in Figure 2.6. Due to the infinite activity, simulating a path of {Λt}t∈[0,T ]

is impossible without discretization bias. The simulation is accomplished by defining a

grid 0 < T/n < 2T/n < . . . < (n−1)T/n < T and accumulating i.i.d. random variables

which are Γ(β T/n, η)-distributed.

2.4.1.3 Inverse Gaussian Subordinator

Following [Schoutens (2003), p. 53], a Lévy subordinator Λ is called Inverse Gaussian

subordinator , if it has zero drift and its Lévy measure ν, parameterized by (β, η) ∈
(0,∞)2, is absolutely continuous with respect to the Lebesgue measure on (0,∞) and
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Figure 2.6 Simulated paths of a Gamma subordinator. Parameters used are (η, β) =
(2, 4.725) (left) and (η, β) = (1, 2) (right). Both paths are simulated up to
time T = 10 using n = 1000 grid points.

has the form

ν(dt) =
1√
2π

β

t
3
2

e−
1
2
η2 t 1{t>0} dt.

For each t > 0 the density fΛt of the random variable Λt is known to be

fΛt(x) =
β t√
2π

eη β t
1

x
3
2

e−
1
2

(
β2 t2 1

x
+η2 x

)
1{x>0},

see [Applebaum (2004), p. 51]. The distribution given by this density is called Inverse

Gaussian distribution with parameters (β t, η), denoted by IG(β t, η). The Laplace

exponent of Λ is given by6

Ψ(x) = β
(√

2x+ η2 − η
)
, x ≥ 0. (2.20)

The name ”Inverse Gaussian” stems from the fact that Λ may be constructed as

Λt := inf
{
s > 0 : η s+Xs = β t

}
,

6See [Applebaum (2004), p. 51].
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2.4 Lévy Subordinators

where X = {Xt}t≥0 is a standard Brownian motion on a probability space (Ω,F ,P),

see [Applebaum (2004), p. 51]. Thus, Λt can be interpreted as the first hitting-time

of the level β t of a Brownian motion with drift. The resulting relation to the normal

distribution justifies the naming. Moreover, [Shuster (1968)] shows how to express the

distribution function of Λt in terms of the standard normal distribution function Φ: for

all t > 0, x ≥ 0 it holds that

P(Λt ≤ x) = Φ
(
η
√
x− β t√

x

)
+ e2β t η Φ

(
− η
√
x− β t√

x

)
, Φ(x) =

∫ x

−∞

1√
2π

e−
s2

2 ds.

Like the Gamma subordinator, an Inverse Gaussian subordinator exhibits infinite ac-

tivity, since ν
(
(0, ε)

)
= ∞ for each ε > 0. Figure 2.7 illustrates typical paths of such a

process. The sampling is done similar as in the case of a Gamma subordinator.
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Figure 2.7 Simulated paths of an Inverse Gaussian subordinator. The parameters are
(η, β) = (2, 4.725) (left) and (η, β) = (1, 2) (right). Both paths are simu-
lated up to time T = 10 using n = 1000 grid points.

2.4.1.4 Stable Subordinator

A Lévy subordinator Λ is called an α-stable subordinator with parameter α ∈ (0, 1), if

it has zero drift µ = 0 and its Lévy measure ν is absolutely continuous with respect to
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2.4.1 Examples

the Lebesgue measure and is defined via

ν(dt) =
α

Γ(1− α)
1

t1+α
1{t>0} dt.

One immediately checks that ν
(
(0, ε)

)
= ∞ for ε > 0. Hence, Λ is another infinite

activity process. It can be verified by an application of Fubini’s theorem, see e.g.

[Applebaum (2004), p. 69], that the Laplace exponent of Λ is given by Ψ(x) = xα, x ≥ 0.

The distribution of Λt, t > 0, is called an α-stable distribution. We denote Λt ∼
S
(
α, 1,

(
cos(π α/2) t)

) 1
α , 0; 1

)
, using the notation7 of [Hofert (2007)]. The density fΛt of

Λt is not known in closed form, but [Nolan (1997)] uses Fourier inversion techniques to

compute a numerically convenient form, which is given by

fΛt(x) = t−
1
α fΛ1

(
t−

1
α x
)
,

where

fΛ1(x) = 1{x>0}
α
(
x
γ

) 1
α−1

γ π (1− α)

∫ π
2

−π
2

gα(u) e−
(
x
γ

) α
α−1

gα(u)
du,

gα(u) =
(

cos
(π α

2

)) 1
α−1

(
cosu

sin
(
α
(
π
2 + u

))) α
α−1 cos

(
π
2 α+ (α− 1)u

)
cosu

,

γ =
(

cos
(π α

2

)) 1
α
. (2.21)

An α-stable subordinator has a heavy-tailed distribution. For instance, it is shown in

[Wolfe (1975)] that

E[Λβt ] =

 t
β
α Γ

(
1− βα

)
Γ(1−β) , β ∈ (0, α)

∞ , β ≥ α
, t > 0.

In particular, such distributions are standard examples for random variables without

first moment. This property together with the convenient functional form of the Laplace

exponent make this process interesting in many applications. Notice in particular that

Ψ(1) = 1, independently of α, an important property for later results. Typical paths

of an α-stable subordinator are illustrated in Figure 2.8. The sampling is again accom-

plished by accumulating n i.i.d. S
(
α, 1,

(
cos(π α/2)T/n)

) 1
α , 0; 1

)
-distributed random

variables.
7Although appearing a little awkward, this notation is standard in the literature on stable distributions.

52
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Figure 2.8 Simulated paths of an α-stable subordinator with α = 0.5 (left) and α = 0.8
(right). Both paths are simulated up to time T = 10 using n = 1000 grid
points.

2.5 Moment Problems and Completely Monotone

Sequences

Given a sequence of real numbers {ak}k∈N0 , moment problems deal with the question

whether there exists a random variable τ on a probability space (Ω,F ,P) such that

ak = E[τk] for all k ≥ 0. If the search is restricted to random variables τ on the

positive half-axis [0,∞), then one speaks of the Stieltjes moment problem, whereas the

Hamburger moment problem considers arbitrary τ ∈ R. In both cases it is possible that

two random variables τ1 and τ2, which are not equal in distribution, have the same

sequence of moments ak = E[τk1 ] = E[τk2 ], k ≥ 0; for an example see [Feller (1966), p.

227]. Thus, the moment problem may have more than one solution and conditions on

the sequence {ak}k∈N0 need to be derived that guarantee uniqueness. In contrast, if

one restricts one’s search to random variables τ on the compact set [0, 1], then one can

show that there exists at most one solution. This special case is called the Hausdorff

moment problem; or sometimes the little moment problem. Sequences of moments of

random variables on [0, 1] can be characterized by a specific property, called complete

monotonicity. These sequences are of fundamental interest during this dissertation.

Moreover, the similar concept of completely alternating sequences is related to Lévy
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2.5.1 Hausdorff’s Moment Problem

subordinators and also to moments of convex distribution functions. These notions and

coherences are carried out in this section.

2.5.1 Hausdorff’s Moment Problem

The Hausdorff moment problem characterizes distributions on the unit interval [0, 1] by

their moments. To state this theorem the following definition is needed. Standard

references on completely monotone sequences are e.g. [Widder (1946), Feller (1966),

Karlin (1968), Lorch, Newman (1983)]. The notation of [Gnedin, Pitman (2008)] is

adopted in the following.

Definition 2.5.1 (Difference Operator)

For a sequence {ak}k∈N0 of real numbers the difference operator ∇ is defined by ∇ak :=

ak − ak+1 for all k ∈ N0.

The difference operator ∇ is a linear operator in the sense that for sequences {ak}k∈N0 ,

{bk}k∈N0 and α ∈ R one has that

∇(αak + bk) = (αak + bk)− (αak+1 + bk+1)

= α (ak − ak+1) + (bk − bk+1) = α∇ak +∇bk.

In the sequel,∇ is often applied iteratively. For example we write∇2ak for the expression

∇(∇ak) = ∇(ak−ak+1) = ∇ak−∇ak+1 = ak− 2 ak+1 +ak+2. More generally, we write

∇jak when ∇ is applied j times to ak. Notice in particular that the expression ∇jak
involves the j + 1 numbers ak, . . . , ak+j . Moreover, it is convenient to introduce the

notation ∇0ak := ak.

The following lemma is included for the sake of completeness; it is easily seen to be

true by induction. Since it is extensively used later on without further reference, it is

recommended that the reader remembers the result of Lemma 2.5.2 like a definition of

the expression ∇jak.

Lemma 2.5.2 (Iterating the Difference Operator)

By iterating the difference operator it follows that

∇jak =
j∑
i=0

(−1)i
(
j

i

)
ak+i, k ∈ N0, j ∈ N0. (2.22)

54



2.5 Moment Problems and Completely Monotone Sequences

Proof

Statement (2.22) is proved by induction over j. For j = 0 the statement is clear. Now

the induction hypothesis (IH) is that (2.22) is true for j ∈ N0. Then,

j+1∑
i=0

(−1)i
(
j + 1
i

)
ak+i

= ak +
j∑
i=1

(−1)i
(
j + 1
i

)
ak+i + (−1)j+1 ak+j+1

(∗)
= ak +

j∑
i=1

(−1)i
(
j

i

)
ak+i +

j∑
i=1

(−1)i
(

j

i− 1

)
ak+i + (−1)j+1 ak+j+1

=
j∑
i=0

(−1)i
(
j

i

)
ak+i +

j−1∑
i=0

(−1)i+1

(
j

i

)
ak+i+1 + (−1)j+1

(
j

j

)
ak+j+1

=
j∑
i=0

(−1)i
(
j

i

)
ak+i −

j∑
i=0

(−1)i
(
j

i

)
ak+i+1

=
j∑
i=0

(−1)i
(
j

i

)
∇ak+i = ∇

j∑
i=0

(−1)i
(
j

i

)
ak+i

(IH)
= ∇∇jak = ∇j+1ak,

where we have used in (∗) that(
j + 1
i

)
=
(
j

i

)
+
(

j

i− 1

)
, 1 ≤ i ≤ j. �

Analogously to the concept of a completely monotone function, compare Definition 2.3.6,

the notion of a completely monotone sequence is introduced below.

Definition 2.5.3 (Completely Monotone Sequence)

The sequence {ak}k∈N0 is called completely monotone if ∇jak ≥ 0 for all k ∈ N0, and

for all j ∈ N0.

Now suppose τ : Ω → [0, 1] is a random variable on a probability space (Ω,F ,P).

Denoting its k-th moment by ak := E[τk] for all k ∈ N0, one easily verifies that

∇jak =
j∑
i=0

(
j

i

)
(−1)i E[τk+i] = E

[
τk

j∑
i=0

(
j

i

)
(−1)i τ i

]
= E

[
τk (1− τ)j

]
≥ 0.

Thus, the sequence of moments of τ is completely monotone. More challenging to derive

is the fact that the converse implication is also true. This is the content of the following
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2.5.1 Hausdorff’s Moment Problem

theorem.

Theorem 2.5.4 (Hausdorff (1921))

The sequence {ak}k∈N0 is completely monotone and a0 = 1 if and only if there exists

a probability space (Ω,F ,P) supporting a random variable τ : Ω → [0, 1] such that

ak = E[τk] for all k ∈ N0. Moreover, the random variable τ is uniquely determined in

distribution by its moments.

Proof

Originally in [Hausdorff (1921), Hausdorff (1923)]. See also [Feller (1966), p. 225] for

a proof. Note that the uniqueness of τ heavily relies on the boundedness of the in-

terval [0, 1] and follows from a classical result of Müntz and Szász, see [Müntz (1914),

Szász (1916)]. �

The idea of the proof of Theorem 2.5.4 is to define a discrete distribution on the grid

{i/d | i = 0, . . . , d} for each d from the given completely monotone sequence, and then

let d tend to infinity. One can prove that the limit distribution on [0, 1] has the given

sequence as moments. The construction of the discrete distributions uses a summation

identity which is required several times later on. We extract it from the proof as a

lemma for later reference.

Lemma 2.5.5 (Summation Identity)

Let (a0, . . . , ad−1)
′

be an arbitrary finite sequence. Then it holds that

a0 =
d−1∑
i=0

(
d− 1
i

)
∇d−1−iai.

Proof

Replacing k = i + j in the second equality and interchanging sums in the third one

computes

d−1∑
i=0

(
d− 1
i

)
∇d−1−iai =

d−1∑
i=0

(
d− 1
i

) d−1−i∑
j=0

(
d− 1− i

j

)
(−1)j ai+j

(k=i+j)
=

d−1∑
i=0

(
d− 1
i

) d−1∑
k=i

(
d− 1− i
k − i

)
(−1)k−i ak

=
d−1∑
k=0

(−1)k ak
k∑
i=0

(−1)i
(
d− 1
i

)(
d− 1− i
k − i

)
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2.5 Moment Problems and Completely Monotone Sequences

(∗)
=

d−1∑
k=0

(−1)k
(
d− 1
k

)
ak

k∑
i=0

(−1)i
(
k

i

)

=
d−1∑
k=0

(−1)k
(
d− 1
k

)
ak (1− 1)k = a0.

For equality (∗) one uses that(
d− 1
i

)(
d− 1− i
k − i

)
=
(
d− 1
k

)(
k

i

)
. �

Comparing Theorems 2.5.4 and 2.3.7, one observes a connection between completely

monotone functions and completely monotone sequences: for a given completely mono-

tone function ϕ with ϕ(0) = 1, the sequence {ϕ(k)}k∈N0 is completely monotone as well:

as ϕ is completely monotone, ϕ(x) = E[exp(−xW )] for some random variable W ≥ 0

on a probability space (Ω,F ,P) by Theorem 2.3.7. Hence ϕ(k) is the k-th moment of

the random variable exp(−W ) ∈ [0, 1]. Further similarities between both concepts are

studied in [Lorch, Newman (1983)] and in Section 3.6.

2.5.2 Moment Problem for Convex Distributions

A key reference for the results in this dissertation is the paper [Gnedin, Pitman (2008)].

In this reference a characterization of convex distribution functions on [0, 1] is derived

and a connection to the Lévy-Khinchin representation, compare Theorem 2.4.3, is ob-

served. This connection turns out to be useful to derive an alternative probabilistic

model for a subfamily of Marshall-Olkin distributions. The following definition is re-

quired.

Definition 2.5.6 (Completely Alternating Sequence)

A sequence {ck}k∈N0 is called completely alternating if ∇jck ≤ 0 for all k ∈ N0, and for

all j ∈ N.

Note that ∇0ck = ck need not be ≤ 0. [Gnedin, Pitman (2008)] study the sequence of

moments of random variables on [0, 1] whose distribution functions are convex8. More

8We mean convex on [0, 1]. Of course, a distribution function cannot be convex on R.
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2.5.2 Moment Problem for Convex Distributions

clearly, the authors consider distribution functions F which satisfy F (0) = 0, F (1) = 1,

and are convex on [0, 1]. These can be written as

F (x) =
∫

(0,x)
f(t) dt+ 1{x=1}, x ∈ [0, 1], (2.23)

for some non-negative, non-decreasing function f . In particular, these distribution func-

tions are continuous on [0, 1) and have a possible jump at one. The following lemma

clarifies the relation between moments of convex distribution functions on [0, 1] and

completely alternating sequences.

Lemma 2.5.7 (Gnedin, Pitman (2008))

A sequence {ak}k∈N0 is the sequence of moments of a convex distribution function on

[0, 1] if and only if the sequence {ck}k∈N0 defined by c0 = 0, ck = k ak−1, k ≥ 1, is

completely alternating with c1 = 1.

Proof

See [Gnedin, Pitman (2008), Theorem 1.7]. The proof uses Theorem 2.5.4 and some

technical computations. �

The important result for our purpose is the following link between Lévy subordinators

and completely alternating sequences, which can be derived from Lemma 2.5.7.

Theorem 2.5.8 (Gnedin, Pitman (2008))

The sequence {ck}k∈N0 with c0 = 0 is completely alternating if and only if there exists a

probability space (Ω,F ,P) supporting a Lévy subordinator Λ with Laplace exponent Ψ

such that ck = Ψ(k) for all k ∈ N0. Moreover, Λ is uniquely determined in distribution

by this sequence.

Proof

See [Gnedin, Pitman (2008), Corollary 4.2]. Uniqueness follows from the classical result

of Müntz and Szász, see [Müntz (1914), Szász (1916)]. Since this result is very important

for the remaining work and it is interesting to recognize the connection between Lévy

subordinators and convex distributions on [0, 1], the proof is given in the sequel. We

start by proving sufficiency. If Λt ≡ 0, the statement is clear, hence we may assume

that Λ is non-trivial. Theorem 2.4.3 shows that there is a drift µ ≥ 0 and a measure ν
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2.5 Moment Problems and Completely Monotone Sequences

on (0,∞] such that the Laplace exponent of Λ has the form

Ψ(x) = µx+
∫

(0,∞]
(1− e−t x) ν(dt) = µx+ x

∫
(0,∞]

∫
(0,t)

e−ux du ν(dt)

= µx+ x

∫
(0,∞]

∫
(0,∞)

1{u<t} e
−ux du ν(dt) = µx+ x

∫
(0,∞)

∫
(0,∞]

1{u<t} ν(dt) e−ux du

= µx+ x

∫
(0,∞)
ν
(
(u,∞]

)
e−ux du = µx+ x

∫
(0,1)
ν
(
(− log y,∞]

)
yx−1 dy. (2.24)

The fourth equality above relies on Tonelli’s theorem and the last equality uses the

substitution y = exp(−u). For x = 1 this implies that∫
(0,1)

ν
(
(− log y,∞]

)
/Ψ(1) dy = 1− µ/Ψ(1) ≤ 1. (2.25)

Division by Ψ(1) is possible since Λ is non-trivial, implying Ψ(1) > 0. Defining the

function F : [0, 1]→ [0, 1] by F (x) :=
∫ x

0 ν
(
(− log y,∞]

)
/Ψ(1) dy+ 1{x=1}, one observes

that F is a convex distribution function on [0, 1]. This can be seen from equation

(2.25) and the fact that y 7→ ν
(
(− log y,∞]

)
/Ψ(1) is non-decreasing (hence F is convex).

Moreover, equation (2.25) implies that the probability measure dF induced by F assigns

the mass µ/Ψ(1) to the right endpoint of the unit interval. Thus, the above computation

shows that for k ∈ N

Ψ(k) = Ψ(1)
(
k

µ

Ψ(1)
+ k

∫
(0,1)

yk−1 dF (y)
)

= Ψ(1) k
∫

(0,1]
yk−1 dF (y).

Using Lemma 2.5.7, it is shown that the sequence {Ψ(k)/Ψ(1)}k∈N0 is completely al-

ternating. However, this implies that the sequence {Ψ(k)}k∈N0 is also completely al-

ternating. Necessity is proved similarly: assume we are given a completely alternating

sequence {ck}k∈N0 which is not identically zero (in this case the statement is true set-

ting Λ ≡ 0). We first assume that c1 = 1. Lemma 2.5.7 implies that there is a convex

distribution function F whose moments satisfy

ck = k

∫
(0,1]

yk−1 dF (y), k ∈ N.

Recall that F is given as in equation (2.23), so there is a non-decreasing density f on

(0, 1) and the probability mass at 1 given by µ := 1 − limx↑1 F (x). Define a measure

ν on (0,∞] by ν
(
{∞}

)
:= limy↓0 f(y), ν

(
(y,∞]

)
:= f

(
exp(−y)

)
. First observe that ν

defined in this way actually gives a Lévy measure, i.e. it satisfies (2.16). To see this, an
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2.5.2 Moment Problem for Convex Distributions

application of Fubini’s Theorem shows∫
(0,1)

t ν(dt) =
∫

(0,1)

∫
(0,1)

1{u<t} du ν(dt) =
∫

(0,1)

∫
(0,1)

1{u<t} ν(dt) du

=
∫

(0,1)
ν
(
(u, 1)

)
du ≤

∫
(0,1)

ν
(
(u,∞]

)
du =

∫
(0,1)

f
(

exp(−u)
)
du

=
∫

(e−1,1)
f(y)

1
y
dy ≤

∫
(e−1,1)

f(y) e dy ≤ e <∞.

ν
(
(ε,∞]

)
= f

(
exp(−ε)

)
<∞, ε > 0.

Hence, there exists a Lévy subordinator Λ with Lévy measure ν and drift µ ≥ 0. The

computation (2.24) shows that the Laplace exponent Ψ of Λ is given by

Ψ(x) = µx+ x

∫
(0,1)

ν
(
(− log y,∞]

)
yx−1 dy

= µ 1x−1 x+ x

∫
(0,1)

f(y) yx−1 dy = x

∫
(0,1]

yx−1 dF (y).

Hence, for k ∈ N it holds that Ψ(k) = ck. Finally, if c1 6= 1, then c1 6= 0 because

otherwise {ck}k∈N0 was identically zero9. Hence, the sequence {c̃k}k∈N0 := {ck/c1}k∈N0

is well-defined and completely alternating with c̃0 = 0 and c̃1 = 1. The above proof

implies the existence of a Lévy subordinator Λ̃ with Laplace exponent Ψ̃ satisfying

c̃k = Ψ̃(k), k ∈ N0. Denote the characteristics of Λ̃ by (µ̃, ν̃). But then the function

Ψ := c1 Ψ̃ is also the Laplace exponent of a Lévy subordinator (with drift c1 µ̃ and Lévy

measure c1 ν̃), hence the claim is established. �

Example 2.5.9 (Single-Shock Subordinator)

If c0 = 0 and ck = α > 0 for all k ≥ 1, then {ck}k∈N0 is completely alternating and

the associated Lévy subordinator is determined by zero drift and a Lévy measure which

concentrates all mass at infinity. From a probabilistic point of view this means that the

Lévy subordinator is identically zero until it jumps to the absorbing state infinity. The

expected number of such jumps per unit of time is α. From an analytical point of view,

the Laplace exponent in this case is given by Ψ(x) = α1{x>0}, x ≥ 0.

9Since ∇c1 ≤ 0 and c1 = 0 imply c2 ≥ 0, and ∇2c0 ≤ 0 and c0 = c1 = 0 imply c2 ≤ 0, it follows that
c2 = 0. Then proceed iteratively.
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3 An Analytical Study of the Marshall-Olkin

Distribution

”Die Mathematik sieht vollständig ab von der actualen Bedeutung, die man

ihren Begriffen geben, von der actualen Gültigkeit, die man ihren Sätzen zu-

sprechen kann. Ihre indefinablen Begriffe sind willkürlich gewählte Denkob-

jecte, ihre Axiome willkürlich, jedoch widerspruchsfrei gewählte Beziehun-

gen zwischen diesen Objecten. Die Mathematik ist Wissenschaft des reinen

Denkens, gleich der formalen Logik.”

F. Hausdorff, German mathematician.

The goal of this chapter is to understand the functional form of the Marshall-Olkin

distribution in the exchangeable special case. To this end, the exchangeable subclass

of the Marshall-Olkin distribution is introduced in Section 3.1. After a motivation

in Section 3.2, d-monotone sequences are introduced in Section 3.3. Sections 3.4 and

3.5 propose to use these sequences to parameterize the exchangeable Marshall-Olkin

distribution. Finally, Section 3.6 reveals interesting analytical similarities between ex-

changeable Marshall-Olkin survival copulas and Archimedean copulas.

3.1 Exchangeable Marshall-Olkin Survival Copulas

A random vector (τ1, . . . , τd)
′

on a probability space (Ω,F ,P) is called exchangeable if

(τ1, . . . , τd)
′ d= (τπ(1), . . . , τπ(d))

′

holds for all permutations π on {1, . . . , d}. Alternatively, it is immediately clear that

(τ1, . . . , τd)
′

is exchangeable if and only if its survival function is invariant with respect
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to permutations of its arguments, i.e. for each permutation π on {1, . . . , d} one has

P(τ1 > t1, . . . , τd > td) = P(τ1 > tπ(1), . . . , τd > tπ(d)), t1, . . . , td ∈ R.

The following lemma clarifies which Marshall-Olkin distributions are exchangeable.

Lemma 3.1.1 (Exchangeable Marshall-Olkin distribution)

On a probability space (Ω,F ,P) let (τ1, . . . , τd)
′
be a random vector with Marshall-Olkin

distribution, i.e. with survival function (2.10) for parameters λI ≥ 0, ∅ 6= I ⊂ {1, . . . , d},
such that

∑
I:k∈I λI > 0, k = 1, . . . , d. Then (τ1, . . . , τd)

′
is exchangeable if and only if

the parameters satisfy the following condition:

|I| = |Ĩ| ⇒ λI = λĨ . (3.1)

Proof

First suppose that (3.1) is valid. Without loss of generality we may assume that (Ω,F ,P)

is the probability space from the original construction of [Marshall, Olkin (1967)], on

which (τ1, . . . , τd)
′

is constructed by (2.11). Rewriting this definition we observe that

τk := min
i=1,...,d

{
min

{
EI
∣∣ I ⊂ {1, . . . , d}, k ∈ I, |I| = i

}}
, k = 1, . . . , d.

For all i, k = 1, . . . , d there are precisely d− 1 choose i− 1 subsets I of {1, . . . , d} with i

elements containing k. By assumption their associated parameters λI are identical, and

in particular independent of k. It follows for {i, k} ⊂ {1, . . . , d} that the distribution of

min
{
EI
∣∣ I ⊂ {1, . . . , d}, k ∈ I, |I| = i

}
,

and therefore the distribution of τk, is independent of k. This implies that (τ1, . . . , τd)
′

is exchangeable.

Conversely, assume that (τ1, . . . , τd)
′

is exchangeable. This means that the survival

function (2.10) is invariant with respect to its arguments. In order to simplify notations,

we write F̄ (~t) instead of F̄ (t1, . . . , td), where ~t := (t1, . . . , td)
′
. Moreover, the i-th unit

vector in Rd is denoted by ~ei. We prove (3.1) by induction over the cardinality of subsets

of {1, . . . , d}. To begin with, we verify λ{1} = λ{2} = . . . = λ{d}: for each k = 2, . . . , d
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3.1 Exchangeable Marshall-Olkin Survival Copulas

exchangeability implies that

∑
∅6=I⊂{1,...,d}
I 6={1}

λI = − log F̄
( d∑
i=2

~ei

)
= − log F̄

( d∑
i=1
i 6=k

~ei

)
=

∑
∅6=I⊂{1,...,d}
I 6={k}

λI .

Subtracting the sum of all parameters on both sides, this in turn verifies λ{1} = λ{2} =

. . . = λ{d}. Now by induction hypothesis we assume that all parameters λI corresponding

to subsets I ⊂ {1, . . . , d} of cardinality |I| ≤ k are identical. We prove then that all

parameters λI corresponding to subsets I ⊂ {1, . . . , d} of cardinality |I| = k + 1 are

identical. To this end, let I0 be an arbitrary subset of {1, . . . , d} of cardinality |I0| = k+1.

Then

∑
∅6=I⊂{1,...,d}

I*I0

λI = − log F̄
( d∑

i=1

i/∈I0

~ei

)
= − log F̄

( d∑
i=k+2

~ei

)
=

∑
∅6=I⊂{1,...,d}
I*{1,...,k+1}

λI .

Subtracting the sum of all parameters on both sides, this implies

λI0 +
∑
∅6=I⊂I0
|I|≤k

λI = λ{1,...,k+1} +
∑

∅6=I⊂{1,...,k+1}
|I|≤k

λI .

Using the induction hypothesis, this verifies that λ{1,...,k+1} = λI0 . Since I0 was arbitrary

with cardinality k + 1, we may conjecture that all parameters λI with |I| = k + 1 are

identical. The claim is established. �

For the exchangeable subfamily of Marshall-Olkin distributions, Lemma 3.1.1 shows that

the sets {λI | |I| = k} are singletons for k = 1, . . . , d. This means that, instead of 2d − 1

parameters λI , ∅ 6= I ⊂ {1, . . . , d}, an exchangeable Marshall-Olkin distribution is pa-

rameterized by only d parameters λ1, . . . , λd ≥ 0, where λk := λ{1,...,k}, k = 1, . . . , d. It

is important to stress that the case λ1 = . . . = λd = 0 is excluded by the earlier assump-

tions on the λI ’s in order for construction (2.11) to make sense. Applying Lemma 2.3.4,

the survival copula Ĉ of the Marshall-Olkin distribution can be massively simplified in

the exchangeable case. This is the content of the following lemma.

Lemma 3.1.2 (Exchangeable Marshall-Olkin Survival Copula)

The survival copula of the random vector (τ1, . . . , τd)
′

in the exchangeable case, i.e. with

parameters (λ1, . . . , λd)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′}, where {λI | |I| = i} = {λi} for all
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i = 1, . . . , d, is given by

Ĉ(u1, . . . , ud) =
d∏

k=1

u

∑d−k
i=0 (d−ki )λi+1∑d−1
i=0 (d−1

i )λi+1

(k) , (3.2)

where u(1) ≤ . . . ≤ u(d) denotes the ordered list of u1, . . . , ud ∈ [0, 1].

Proof

The statement is obtained by applying Lemma 2.3.4 in the exchangeable special case:

it is observed in this case that Ok :=
∑

I:k∈I λI is independent of k, since

∑
I:k∈I

λI =
d−1∑
i=0

(
d− 1
i

)
λi+1 =: a0.

This is due to the fact that for each index k there are precisely d− 1 choose i subsets I

of {1, . . . , d} with i+ 1 elements containing k, i = 0, . . . , d− 1. Hence, an application of

Lemma 2.3.4 implies

Ĉ(u1, . . . , ud) =
d∏

k=1

∏
1≤i1<...<ik≤d

(
min

l=1,...,k
{uil}

)λk
a0

= u
λ1
a0

(d) u
λ1
a0

+
λ2
a0

(d−1) u
λ1
a0

+2
λ2
a0

λ3
a0

(d−2) · · · u
∑d−1
i=0 (d−1

i ) λi+1
a0

(1) =
d∏

k=1

u
1
a0

∑d−k
i=0 (d−ki )λi+1

(k) .

The second equation illustrates the required combinatorial observation: the k-th largest

element u(k) of u1, . . . , ud is once the minimum of a set with one element (namely of

{u(k)}), d− k times the minimum of a set with two elements (namely of {u(i), u(k)} for

i > k), d− k choose 2 times the minimum of a set with three elements, and so on. �

The parametric family of copulas of the form (3.2) is denoted by eMO (standing for ex-

changeable Marshall-Olkin) in the sequel. This class is the main source of interest during

this dissertation. For the sake of clarity, we explicitly define the class of exchangeable

Marshall-Olkin survival copulas by

eMO :=

{
d∏

k=1

u

∑d−k
i=0 (d−ki )λi+1∑d−1
i=0 (d−1

i )λi+1

(k)

∣∣∣∣∣ (0, . . . , 0)
′ 6= (λ1, . . . , λd)

′ ∈ [0,∞)d
}
.

Any C ∈ eMO is invariant under permutations of its arguments. This implies that for
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3.1 Exchangeable Marshall-Olkin Survival Copulas

2 ≤ i ≤ d, all i-margins of C are of the same structural kind, which corresponds to the

exchangeability of the distribution. In particular, 2-margins are bivariate Cuadras-Augé

copulas with parameter λ2/(λ1 + λ2), compare Definition 2.2.2. Hence, the class eMO

is a multivariate extension of bivariate Cuadras-Augé copulas. Figure 3.1 illustrates

scatterplots from trivariate eMO-copulas. It is observed in the left plot that the measure

dC induced by C assigns positive mass to the diagonal of the unit cube. More challenging

to recognize in the plots is that dC also assigns positive mass to the planes {u1 = u2},
{u1 = u3}, and {u2 = u3}.
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Figure 3.1 Scatterplots of 1000 samples from the copula C(u1, u2, u3) ∈ eMO,
corresponding to the parameters (λ1, λ2, λ3)

′
= (1.2, 1.5, 1)

′
(left) and

(λ1, λ2, λ3)
′

= (5, 0.1, 0.1)
′

(right). The parameters of the right plot are
chosen such that λ1 � max{λ2, λ3} which intuitively means that C ≈ Π.
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3.2 Motivation

Some of the computations in this chapter are quite technical. Therefore, this short

paragraph outlines where we are going and motivates the upcoming results. To this end,

consider a probability space (Ω,F ,P) supporting a random vector (τ1, . . . , τd)
′
, which

follows an exchangeable Marshall-Olkin distribution with parameters (λ1, . . . , λd)
′ ∈

[0,∞)d \ {(0, . . . , 0)
′}. Without loss of generality we let (Ω,F ,P) be the probability

space from the original construction (2.11) and recall that λk equals the intensity of

exogenous shocks affecting k-dimensional subvectors of (τ1, . . . , τd)
′
. Now consider a

(d − 1)-dimensional subvector, without loss of generality (τ1, . . . , τd−1)
′
. Rewriting the

definition (2.11) of the Marshall-Olkin distribution implies for k = 1, . . . , d− 1 that

τk = min
{
EI
∣∣ k ∈ I} = min

{
EI
∣∣ k ∈ I, d /∈ I} ∪ {EI ∣∣ {k, d} ⊂ I}

= min
{

min
{
EI
∣∣ k ∈ I, d /∈ I}, min

{
EI
∣∣ {k, d} ⊂ I}}.

The first minimum corresponds to the definition of a (d − 1)-dimensional exchange-

able Marshall-Olkin distribution with parameters (λ1, . . . , λd−1)
′
. However, the appear-

ance of the second minimum suggests that exogenous shocks affecting the last compo-

nent - which we now eliminated - have to be taken into account as well. More pre-

cisely, the components indexed by I ⊂ {1, . . . , d − 1} are affected by EI and EI∪{d}.

Since min{EI , EI∪{d}} ∼ Exp(λ|I| + λ|I|+1), this observation implies that all (d −
1)-dimensional subvectors of (τ1, . . . , τd)

′
follow a (d − 1)-dimensional exchangeable

Marshall-Olkin distribution corresponding to the parameters (λ1+λ2, λ2+λ3, . . . , λd−1+

λd)
′ ∈ [0,∞)d−1 \ {(0, . . . , 0)

′}. Consequently, one can compute the parameters of the

(d− 1)-dimensional subvectors from λ1, . . . , λd via the following geometric scheme:

λ1 + λ2 λ2 + λ3 λ3 + λ4 λd−1 + λd

↑ ↖ ↑ ↖ ↑ ↖ . . . ↖ ↑ ↖
λ1 λ2 λ3 λd−1 λd

One can now proceed iteratively and compute the following triangular scheme, the

k-th row of which corresponds to the parameters of all k-dimensional subvectors of

(τ1, . . . , τd)
′
:
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3.2 Motivation

∑d
i=1

(
d−1
i−1

)
λi

∑d−1
i=1

(
d−2
i−1

)
λi

∑d
i=2

(
d−2
i−2

)
λi

...
. . .

λ1+2λ2+λ3 λ2+2λ3+λ4 λ3+2λ4+λ5 . . . λd−2+2λd−1+λd

λ1 + λ2 λ2 + λ3 λ3 + λ4 . . . λd−2 + λd−1 λd−1 + λd

λ1 λ2 λ3 . . . λd−2 λd−1 λd

In particular, the value at the tip of the triangle1 corresponds to the exponential rate

of the random variables τ1, . . . , τd. This triangular scheme of non-negative numbers

determines the distribution of (τ1, . . . , τd)
′
, since already the bottom row does that.

However, instead of computing the triangle from the bottom row we can alternatively

start from the left column and compute the whole triangular scheme from it. Hence,

the distribution of (τ1, . . . , τd)
′

is alternatively determined by the first column. More

clearly, denoting the elements of the left column by

a0 :=
d∑
i=1

(
d− 1
i− 1

)
λi, a1 :=

d−1∑
i=1

(
d− 2
i− 1

)
λi, . . . , ad−2 := λ1 + λ2, ad−1 := λ1,

one can compute the same triangular scheme proceeding from the left as follows:

a0

↘
a1 → a0 − a1 = ∇a0

↘ ↘
a2 → a1 − a2 = ∇a1 → ∇a0 −∇a1 = ∇2a0

↘ ↘ ↘
...

...
...

. . .

This chapter formalizes the idea outlined above and proposes to treat exchangeable

Marshall-Olkin distributions via the parameters (a0, . . . , ad−1)
′

instead of the original
1This value was denoted by a0 in the proof of Lemma 3.1.2 above.
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parameters (λ1, . . . , λd)
′
. The benefit of this reparameterization is twofold: on the

one hand, the new parameters (a0, . . . , ad−1)
′

satisfy an interesting analytical property

called d-monotonicity. This allows to derive results on eMO-copulas that resemble

Theorems 2.3.8 and 2.3.9 on Archimedean copulas. On the other hand, it helps to study

the extendibility of Marshall-Olkin distributions: we are particularly interested in such

sequences (a0, . . . , ad−1)
′

that are not only d-monotone, but which actually stem from a

completely monotone sequence. The notion of complete monotonicity gives rise to a very

useful link to Lévy subordinators. It is used to derive an alternative probabilistic model

for extendible Marshall-Olkin distributions, which is quite convenient for applications,

see the following Chapters 4, 5 and 6.

To avoid confusion, let us notice that the above motivation was given in terms of the

exchangeable Marshall-Olkin distribution - without using copulas. For the remainder

of this dissertation we prefer considering eMO-copulas as defined in Section 3.1 above.

However, this reformulation is no loss of generality but rather a matter of convenience.

The use of copulas has the effect that all numbers in the above triangular schemes

are divided by a0 =
∑d

i=1

(
d−1
i−1

)
λi, which corresponds to the normalization to uniform

marginals.

3.3 d-Monotone Sequences

For this dissertation it is convenient to consider a generalization of completely monotone

sequences: the notion of d-monotonicity for finite sequences. Finite sequences of length

d will be identified with vectors in Rd. Intuitively, (a0, . . . , ad−1)
′ ∈ Rd is defined to

be d-monotone if ∇j−1ak ≥ 0, whenever this expression is well-defined. Recall that the

difference operator ∇ was introduced in Definition 2.5.1 and the expression ∇j−1ak =∑j−1
i=0

(
j−1
i

)
(−1)i ak+i involves the numbers ak, . . . , ak+j−1, which are not defined when

j + k > d.

Definition 3.3.1 (d-Monotone Sequence)

A finite sequence (a0, . . . , ad−1)
′ ∈ Rd is called d-monotone if it satisfies

∇j−1ak ≥ 0, k = 0, 1, . . . , d− 1, j = 1, 2, . . . , d− k. (3.3)
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3.3 d-Monotone Sequences

For later use the following notation is introduced:

Md :=
{

(a0, . . . , ad−1)
′ ∈ Rd

∣∣∣ a0 = 1, (a0, . . . , ad−1)
′

is d-monotone
}
.

The sequence of the first d members of a completely monotone sequence is in particular

d-monotone. In this regard, the concept of d-monotonicity is more general than that

of complete monotonicity. Given (a0, . . . , ad−1)
′ ∈ Rd, the following triangular scheme

shows the indices j and k for which the expression ∇j−1ak is well-defined:

∇j−1ak j = 1 j = 2 . . . j = d− 1 j = d

k = d− 1 ∇0ad−1 n.a. . . . n.a. n.a.

k = d− 2 ∇0ad−2 ∇1ad−2 . . . n.a. n.a.
...

...
...

. . .
...

...

k = 1 ∇0a1 ∇1a1 . . . ∇d−2a1 n.a.

k = 0 ∇0a0 ∇1a0 . . . ∇d−2a0 ∇d−1a0

Lemma 3.3.2 below states that condition (3.3) is partially redundant, i.e. d-monotonicity

can equivalently be defined using fewer conditions. More precisely, it claims that if the

terms on the diagonal of the above triangular scheme are all non-negative, then all

terms below the diagonal are non-negative as well, i.e. the sequence (a0, . . . , ad−1)
′

is

d-monotone. For example, in the case d = 2 this statement is translated into

a1 ≥ 0 and a0 − a1 ≥ 0 ⇒ a0 ≥ 0,

which is obvious. A recursive argument is used to establish the general statement.

Lemma 3.3.2 (Alternative Characterization of d-Monotonicity)

The sequence (a0, . . . , ad−1)
′ ∈ Rd is d-monotone if and only if

∇d−1−kak ≥ 0, k = 0, 1, . . . , d− 1.

Proof

Necessity is clear. For sufficiency, assume that all elements on the diagonal of the

triangular scheme above are non-negative, i.e. ∇d−1−kak ≥ 0, k = 0, 1, . . . , d − 1. We

first show that this implies that all elements on the subdiagonal are non-negative as

well, i.e. we show ∇d−2−kak ≥ 0, k = 0, 1, . . . , d− 2. To this end, let k ∈ {0, . . . , d− 2}
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and observe that

∇d−2−kak = ∇d−1−(k+1)ak+1 +∇d−1−kak.

Since both terms on the right hand side are non-negative by assumption, the elements on

the subdiagonal are non-negative as well. We can now proceed iteratively by considering

the ”subsubdiagonal”, the ”subsubsubdiagonal” and so on. This establishes the claim.�

To prove that d-monotonicity is more general than complete monotonicity, a simple

example for a 3-monotone sequence which is not a subsequence of a completely monotone

sequence is provided.

Example 3.3.3 (Proper d-Monotone Sequence)

Consider the sequence (a0, a1, a2)
′

:= (1, 1/2, ε)
′

with 0 ≤ ε < 1/4. Then by Lemma

3.3.2 it holds that (1, 1/2, ε)
′ ∈M3, since

∇2a0 = 1− 2
1
2

+ ε ≥ 0, ∇1a1 =
1
2
− ε ≥ 0, ∇0a2 = ε ≥ 0.

However, there exists no (infinite) completely monotone sequence {bk}k∈N0 such that

(b0, b1, b2)
′

= (1, 1/2, ε)
′
. If there was such a sequence, then by Theorem 2.5.4 there was

a probability space (Ω,F ,P) supporting a random variable τ with values in [0, 1] such

that bk = E[τk]. But Jensen’s inequality would then imply that

1
4
> ε = b2 = E[τ2] ≥ E[τ ]2 = b21 =

1
4
,

which is a contradiction. Hence, the finite sequence (1, 1/2, ε)
′

is a proper 3-monotone

sequence in the sense that it cannot be extended to a completely monotone sequence.

It is obvious that every element (1, a1)
′
ofM2 can be extended to a completely monotone

sequence, e.g. by the sequence {ak1}k∈N0 , which equals the sequence of moments of a

constant random variable. However, Example 3.3.3 above shows that for d ≥ 3 this is

no longer true in general. It follows from2 [Dette, Studden (1997), Theorem 1.4.3, p. 20]

that a sequence (a0, a1, . . . , ad−1)
′

can be extended to a completely monotone sequence

{ak}k∈N0 if and only if the so-called Hankel determinants Ĥ1, Ȟ1, Ĥ2, Ȟ2, . . . , Ĥd−1, Ȟd−1

2This result is originally derived in the monograph [Karlin, Shapley (1953)].
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3.3 d-Monotone Sequences

are all non-negative, where for all l ∈ N with 2 l ≤ d − 1 and for all k ∈ N0 with

2 k + 1 ≤ d− 1 one has

Ĥ2 l := det


a0 . . . al
...

...

al . . . a2 l

 , Ȟ2 l := det


∇a1 . . . ∇al

...
...

∇al . . . ∇a2 l−1

 ,

Ĥ2 k+1 := det


a1 . . . ak+1

...
...

ak+1 . . . a2 k+1

 , Ȟ2 k+1 := det


∇a0 . . . ∇ak

...
...

∇ak . . . ∇a2 k

 .

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subsequence of c.m. sequence
proper 3−monotone sequence

Figure 3.2 Illustration of all (1, a1, a2)
′ ∈M3 (a1 on the x-axis and a2 on the y-axis).

The set is subdivided into sequences that can be obtained as moments of a
random variable and proper 3-monotone sequences. Computing the areas
in the plot one may conclude that the share of sequences inM3, which can
be extended to a completely monotone sequence, in all of M3 is 2/3.
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For example, a sequence (1, a1, a2)
′

is extendible to a completely monotone sequence if

and only if 1 ≥ a1 ≥ a2 ≥ a2
1. Figure 3.2 illustrates the set M3 and the subset of M3

which consists of all proper 3-monotone sequences.

In the sequel, it is shown how d-monotone sequences can be constructed. This is useful

to derive a convenient parametric form of exchangeable Marshall-Olkin survival copulas.

It was already mentioned that d-monotone sequences arise naturally as the sequences

of moments of a random variable on [0, 1]. However, Example 3.3.3 shows that not

every d-monotone sequence can be obtained by this approach. Therefore, the following

lemma establishes a construction method which generates all members of Md from d

non-negative numbers λ1, . . . , λd ≥ 0 with at least one being positive.

Lemma 3.3.4 (Construction From Non-Negative Numbers)

Define the mapping ϕ̂d : [0,∞)d \ {(0, . . . , 0)
′} → [0,∞)d by

ϕ̂d(λ1, . . . , λd)k :=
∑d−k−1

i=0

(
d−k−1

i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

, k = 0, . . . , d− 1.

Then it holds that ϕ̂d
(
[0,∞)d \ {(0, . . . , 0)

′}
)

=Md.

Proof

We first prove that ϕ̂d
(
[0,∞)d \ {(0, . . . , 0)

′}
)
⊂Md. For given (λ1, . . . , λd)

′ ∈ [0,∞)d \
{(0, . . . , 0)

′} define ak := ϕ̂d(λ1, . . . , λd)k for k = 0, . . . , d−1. By Lemma 3.3.2 it suffices

to prove that ∇d−1−kak ≥ 0 for k = 0, . . . , d − 1. Denote by c :=
∑d−1

i=0

(
d−1
i

)
λi+1 > 0

the positive denominator of the ak, then

∇d−1−kak =
d−1−k∑
i=0

(
d− 1− k

i

)
(−1)i ak+i

=
1
c

d−1−k∑
i=0

(
d− 1− k

i

)
(−1)i

d−(k+i)−1∑
j=0

(
d− (k + i)− 1

j

)
λj+1

=
1
c

d−1−k∑
j=0

λj+1

d−k−j−1∑
i=0

(−1)i
(
d− 1− k

i

)(
d− (k + i)− 1

j

)
︸ ︷︷ ︸

=
(d−1−k)!

(d−k−j−i−1)! j! i!

=
1
c

d−1−k∑
j=0

λj+1

d−k−j−1∑
i=0

(−1)i
(d− 1− k)! (d− k − j − 1)!

(d− k − j − i− 1)! j! i! (d− k − j − 1)!
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3.3 d-Monotone Sequences

=
1
c

d−1−k∑
j=0

λj+1

(
d− 1− k

j

) d−k−j−1∑
i=0

(−1)i
(
d− k − j − 1

i

)
︸ ︷︷ ︸

=(1−1)d−k−j−1=1{j=d−k−1}

=
1
c
λd−k ≥ 0.

Thus, (a0, . . . , ad−1)
′ ∈Md.

Now we prove the reverse inclusion ϕ̂d
(
[0,∞)d \ {(0, . . . , 0)

′}
)
⊃ Md. Consider a se-

quence (a0, . . . , ad−1)
′ ∈ Md. Define the numbers λk := ∇k−1ad−k for k = 1, . . . , d. By

d-monotonicity it follows that (λ1, . . . , λd)
′ ∈ [0,∞)d. The condition a0 = 1 implies that

(λ1, . . . , λd)
′ 6= (0, . . . , 0)

′
, since this would imply that (a0, . . . , ad−1)

′
= (0, . . . , 0)

′
/∈

Md. This choice of λk is such that the denominator in the definition of ϕ̂d(λ1, . . . , λd)

equals one, which is shown in the sequel. Using in the following order: the definition

of λi+1, a change of the order of summation, the symmetry of the binomial coefficient,

and the summation identity from Lemma 2.5.5, it holds that

c : =
d−1∑
i=0

(
d− 1
i

)
λi+1 =

d−1∑
i=0

(
d− 1
i

)
∇iad−1−i

=
d−1∑
i=0

(
d− 1

d− 1− i

)
∇d−1−iai

=
d−1∑
i=0

(
d− 1
i

)
∇d−1−iai = a0 = 1.

Hence, the denominator c equals one and left to show is that the numerator satisfies

d−k−1∑
i=0

(
d− k − 1

i

)
∇iad−i−1︸ ︷︷ ︸

=λi+1

= ak, k = 0, . . . , d− 1.

To this end, define d mappings

fk(a0, . . . , ad−1) := ak −
d−k−1∑
i=0

(
d− k − 1

i

)
∇iad−i−1, k = 0, . . . , d− 1.

Then each fk is linear and it suffices to show that fk ≡ 0 for all k = 0, . . . , d − 1.

Considering the standard basis in Rd, it is enough to verify that fk(e
(l)
0 , . . . , e

(l)
d−1) = 0
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for all l = 1, . . . , d where e(l)
j = 1{l−1=j}. First, we observe that

∇ie(l)
d−i−1 =

i∑
j=0

(
i

j

)
(−1)j e(l)

d−i−1+j =
i∑

j=0

(
i

j

)
(−1)j 1{j=l+i−d}

=
(

i

l + i− d

)
(−1)l+i−d 1{i+l≥d}.

It follows that

fk(e
(l)
0 , . . . , e

(l)
d−1) = e

(l)
k −

d−k−1∑
i=0

(
d− k − 1

i

)(
i

l + i− d

)
(−1)l+i−d 1{i+l≥d}

= 1{l−1=k} −
d−k−1∑
i=d−l

(−1)l+i−d
(
d− k − 1

i

)(
i

l + i− d

)
(ν=d−i)

= 1{l=k+1} −
l∑

ν=k+1

(−1)l−ν
(
d− k − 1
d− ν

)(
d− ν
l − ν

)
(∗)
= 1{l=k+1} − (−1)−l+k+1

(
d− (k + 1)

d− l

) l−(k+1)∑
ν=0

(−1)ν
(
l − (k + 1)

ν

)
= 1{l=k+1} − (−1)l+k+1

(
d− (k + 1)

d− l

)
(1− 1)l−(k+1) = 0.

Equality (∗) uses the fact that(
d− k − 1
d− ν

)(
d− ν
l − ν

)
=
(
d− k − 1
d− l

)(
l − k − 1
ν − k − 1

)
.

The claim is established. �

Remark 3.3.5 (Surjectivity of ϕ̂d)

It is important that ϕ̂d is surjective. More precisely, the proof of Lemma 3.3.4 shows

that each element (a0, . . . , ad−1)
′ ∈ Md can be represented as the image under ϕ̂d of

the vector (∇0ad−1,∇1ad−2, . . . ,∇d−1a0)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′}. This surjectivity

property is used in the proof of Theorem 3.4.1 below.

3.4 Reparameterization

The preceding findings on d-monotone sequences are used to derive a more convenient

parameterization of the class eMO. This is the first major theorem of the present thesis.
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3.4 Reparameterization

Recall from Lemma 3.1.2 that each copula C ∈ eMO is parameterized by d non-negative

numbers (λ1, . . . , λd)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′} and explicitly given by

C(u1, . . . , ud) =
d−1∏
k=0

u

∑d−k−1
i=0 (d−k−1

i )λi+1∑d−1
i=0 (d−1

i )λi+1

(k+1) , (3.4)

where u(1) ≤ u(2) ≤ . . . ≤ u(d) denotes the ordered list of u1, . . . , ud ∈ [0, 1].

Theorem 3.4.1 (Alternative Representation of the Class eMO)

The family eMO can alternatively be written as

eMO =
{ d∏
k=1

u
ak−1

(k)

∣∣∣ (a0, . . . , ad−1)
′ ∈Md

}
.

Moreover, the original parameters (λ1, . . . , λd)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′} and the new

parameters (a0, . . . , ad−1)
′ ∈Md are related via

ak = ϕ̂d(λ1, . . . , λd)k =
∑d−k−1

i=0

(
d−k−1

i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

, k = 0, . . . , d− 1,

λk = c∇k−1ad−k, k = 1, . . . , d,

where c > 0 is an arbitrary positive constant.

Proof

At first, the inclusion ”⊂” is investigated: Let C(u1, . . . , ud) denote the exchangeable

Marshall-Olkin survival copula from equation (3.4), corresponding to the parameters

(λ1, . . . , λd)
′ ∈ [0,∞)d \{(0, . . . , 0)

′}. It follows immediately from Lemma 3.3.4 that the

exponents in (3.4) form a d-monotone sequence starting from one.

To prove the converse inclusion ”⊃”, let (a0, . . . , ad−1)
′ ∈Md and consider the function

C(u1, . . . , ud) =
∏d
i=1 u

ai−1

(i) . Then, define λk := ∇k−1ad−k for k ∈ {1, . . . , d}. By d-

monotonicity it follows that λ1, . . . , λd are non-negative. Since a0 = 1, it is also easily

seen that at least one λk > 0 is strictly positive. Moreover, the proof of Lemma 3.3.4

implies that

ak = ϕ̂d(λ1, . . . , λd)k =
∑d−k−1

i=0

(
d−k−1

i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

, k = 0, . . . , d− 1.

Hence, by definition the Marshall-Olkin distribution corresponding to the parameters
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λ1, . . . , λd has survival copula C(u1, . . . , ud), which establishes the claim. Obviously,

the introduction of an arbitrary constant c > 0 does not affect the above computation.

Finally, the claimed relations between the original and the new parameters are immediate

from the proof of Lemma 3.3.4. �

Remark 3.4.2 (The Constant c in Theorem 3.4.1)

We know from Lemma 3.3.4 that ϕ̂d is surjective. It is not injective however, since

the parameters c (λ1, . . . , λd)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′} are mapped onto the same ele-

ment of Md, independently of the choice of c > 0. Recall the definition (2.11) of the

random vector (τ1, . . . , τd)
′

in the original Marshall-Olkin model associated with these

parameters. Then the random variables τ1, . . . , τd are exponentially distributed with

parameter c
∑d−1

i=0

(
d−1
i

)
λi+1. In contrast, c has no effect on the dependence structure,

i.e. on the survival copula. Conversely, for a given element (a0, . . . , ad−1)
′ ∈ Md, the

choice λk := c∇k−1ad−k, k = 1, . . . , d, implies that τ1, . . . , τd are Exp(c)-distributed. A

canonical choice is c = 1, as in the proof of Lemma 3.3.4.

Up to this point we have reparameterized a copula from the class eMO by a sequence

(a0, . . . , ad−1)
′ ∈Md. This is useful, since the functional form

∏d
k=1 u

ak−1

(k) is convenient

to derive further properties of the copula. Moreover, we will show in the next section

that one can derive analytical results that are quite similar to Theorems 2.3.8 and 2.3.9

on Archimedean copulas.

3.5 A Characterization Theorem

We have seen in the previous section that for each finite sequence (a0, . . . , ad−1)
′ ∈Md

the function C(u1, . . . , ud) =
∏d
k=1 u

ak−1

(k) is in eMO. In particular the property of d-

monotonicity of the sequence (a0, . . . , ad−1)
′

is sufficient to define a proper copula. In

the present section we show that this property is also necessary, i.e. copulas in the class

eMO are characterized by sequences inMd. As a corollary, we are then able to state an

alternative version of Theorem 2.5.4. An alternative proof of sufficiency is also given,

which allows as a byproduct to determine the Pickands representation for copulas of the

family eMO, extending Example 2.3.3 to the multivariate case. Theorem 3.5.3 is the

second major result of the present dissertation. Two technical lemmata are required for

its proof.
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3.5 A Characterization Theorem

Lemma 3.5.1 (Technical Lemma 1)

For j ∈ N and i ∈ {0, 1, . . . , j − 1} the following equality holds:

j

j∑
l=i+1

(−1)l
(
j

l

)
= (i+ 1) (−1)i+1

(
j

i+ 1

)
.

Proof

Fix j ∈ N. The claim is easily verified for i = j − 1. Now we assume by induction

hypothesis (IH) that the statement holds for i ∈ {1, . . . , j − 1}. It is then shown that

this implies that the equality also holds for i− 1.

j

j∑
l=i

(−1)l
(
j

l

)
= j

j∑
l=i+1

(−1)l
(
j

l

)
+ j (−1)i

(
j

i

)
(IH)
= (i+ 1) (−1)i+1

(
j

i+ 1

)
+ j (−1)i

(
j

i

)
= (−1)i

((j
i

)
j − (i+ 1)

(
j

i+ 1

))
(∗)
= (−1)i j

(
j − 1
i− 1

)
= (−1)i i

(
j

i

)
.

For (∗) it is used that(
j

i

)
=
(
j − 1
i− 1

)
+
(
j − 1
i

)
, (i+ 1)

(
j

i+ 1

)
= j

(
j − 1
i

)
.

Thus, the claim is verified by a backward induction over i. �

Lemma 3.5.2 (Technical Lemma 2)

For an arbitrary sequence (a0, . . . , ad−1)
′

of non-negative real numbers (not necessarily

d-monotone), w1, . . . , wd ∈ R, and d ∈ N it holds that3

d∑
i=1

ad−iw(i) =
d−1∑
j=0

( ∑
1≤i0<...<ij≤d

max{wi0 , . . . , wij}
)
∇jad−1−j .

Proof

For d = 1 the claim is easily verified. Now assume the claim holds for d ≥ 1. It is shown

that the claim then also holds for d+ 1. So we consider sequences (a0, . . . , ad)
′ ∈ Rd+1,

and (w1, . . . , wd+1)
′ ∈ Rd+1. Firstly, without loss of generality assume wd+1 = w(d+1)

3As before, w(1) ≤ . . . ≤ w(d) denotes the ordered list of the numbers w1, . . . , wd ∈ R.
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(obviously, the claimed statement does not depend on the order of the wi, so re-indexing

is possible). Using the induction hypothesis (IH) on the sequences (a1, . . . , ad)
′

and

(w1, . . . , wd)
′
, one obtains

d+1∑
i=1

ad+1−iw(i) =
d∑
i=1

ad−i+1w(i) + a0wd+1

(IH)
=

d−1∑
j=0

( ∑
1≤i0<...<ij≤d

max{wi0 , . . . , wij}
)
∇jad−j + a0wd+1.

Note that the first equality in the computation above uses the assumption wd+1 = w(d+1),

which implies that the ordered list of the d numbers w1, . . . , wd equals the d smallest

numbers in the ordered list of the d+ 1 numbers w1, . . . , wd+1. Next it is observed that∑
1≤i0<...<ij≤d

max{wi0 , . . . , wij} =
∑

1≤i0<...<ij≤d+1

max{wi0 , . . . , wij}

−
∑

1≤i0<...<ij≤d+1

at least one il=d+1

max{wi0 , . . . , wij}.

Thus, establishing the claim is equivalent to showing

(∇da0)wd+1
!= a0wd+1 −

d−1∑
j=0

( ∑
1≤i0<...<ij≤d+1

at least one il=d+1

max{wi0 , . . . , wij}
)
∇jad−j

= a0wd+1 − wd+1

d−1∑
j=0

(
d

j

)
∇jad−j . (3.5)

However, using the summation identity from Lemma 2.5.5, changing the order of sum-

mation, and using symmetry of the binomial coefficient, it follows that

a0 =
d∑
j=0

(
d

j

)
∇d−jaj =

d∑
j=0

(
d

d− j

)
∇jad−j =

d∑
j=0

(
d

j

)
∇jad−j .

The validity of equation (3.5) and thus the claim is now immediate. �

Theorem 3.5.3 (Characterization of the Class eMO)

Let d ≥ 2 be fixed. The function C(u1, . . . , ud) =
∏d
k=1 u

ak−1

(k) is a copula if and only if

(a0, . . . , ad−1)
′ ∈Md.
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3.5 A Characterization Theorem

Proof

We prove Theorem 3.5.3 using Lemmata 3.5.1 and 3.5.2 above. We start by proving

necessity. By the uniform marginals property of a copula one has C(u, 1, . . . , 1) = u for

all u ∈ [0, 1]. This implies ua0 = u for all u ∈ [0, 1]. Hence, a0 = 1. Now let (U1, . . . , Ud)
′

be a random vector with distribution function C(u1, . . . , ud) on a probability space

(Ω,F ,P). We define the sequence c0 := 0, ck :=
∑k−1

i=0 ai, k = 1, . . . , d. Equivalently

to condition (3.3), it will be shown that cj > 0 and (1/cj)∇j−1ak ≥ 0 for all k =

0, 1, . . . , d − 1, j = 1, . . . , d − k. To this end, the first step is to show that cj > 0 for

all j = 1, . . . , d − 1 in order to guarantee that 1/cj is well-defined: for k = 1, . . . , d − 1

L’Hospital’s rule implies that

ak = lim
u↑1

1−
(
ua0+...+ak + (1− ua0+...+ak−1)

)
1− u

= lim
u↑1

1−
(
P(U1 ≤ u, . . . , Uk+1 ≤ u) + P(max{U1, . . . , Uk} > u)

)
1− u

= lim
u↑1

P(U1 ≤ u, . . . , Uk ≤ u, Uk+1 > u)
P(Uk+1 > u)

≥ 0.

This proves non-negativity of the ak and thus shows that cj ≥ c1 = a0 = 1 > 0 for

all j = 1, . . . , d. Therefore, 1/cj is well-defined and we can proceed to prove that

(1/cj)∇j−1ak ≥ 0 for all k = 0, 1, . . . , d− 1, j = 1, . . . , d− k:

1
cj
∇j−1ak

L.2.5.2= − 1
cj

j−1∑
i=0

ai+k (−1)i+1

(
j − 1
i

)
= − 1

j cj

j−1∑
i=0

ai+k (−1)i+1

(
j

i+ 1

)
(i+ 1)

L.3.5.1= − 1
cj

j−1∑
i=0

ai+k

j∑
l=i+1

(−1)l
(
j

l

)
= − 1

cj

j∑
l=1

(−1)l
(
j

l

) l−1∑
i=0

ai+k

= − 1
cj

j∑
l=1

(−1)l
(
j

l

)
(cl+k − ck)

= − 1
cj

j∑
l=1

(−1)l
(
j

l

)
cl+k +

1
cj

( j∑
l=1

(−1)l
(
j

l

))
ck

= lim
u↑1

∑j
l=1(−1)l

(
j
l

)
cl+k u

cl+k−1

−cj ucj−1 − lim
u↑1

−ck uck−1

−cj ucj−1

(∗)
= lim

u↑1

1 +
∑j

l=1(−1)l
(
j
l

)
ucl+k

1− ucj
− lim

u↑1

1− uck
1− ucj

= lim
u↑1

1 +
∑j

l=1(−1)l
∑

1≤m1<...<ml≤j u
cl+k

1− ucj
− lim

u↑1

1− uck
1− ucj

.
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In (∗) above the rule of L’Hospital is used. Furthermore, for i ≥ 2 it holds that

uci = u
∑i−1
s=0 as =

i∏
s=1

uas−1 = C(u, . . . , u︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
d−i

) =: C [i](u, . . . , u),

and by the principle of inclusion and exclusion, compare Lemma 2.2.6, with the sets

Al := {U1 ≤ u, . . . , Uk ≤ u} ∩ {Uk+l ≤ u}, l = 1, . . . , j,

one obtains

P
(
{max{U1, . . . , Uk} > u} ∪ {Uk+1 > u, . . . , Uk+j > u}

)
= 1− P

(
∪jl=1 Al

)
= 1 +

j∑
l=1

(−1)l
∑

1≤m1<...<ml≤j
P
(
∩lz=1 Amz

)

= 1 +
j∑
l=1

(−1)l
∑

1≤m1<...<ml≤j
C [l+k](u, . . . , u) = 1 +

j∑
l=1

(−1)l
∑

1≤m1<...<ml≤j
ucl+k .

Thus, it is concluded that

1
cj
∇j−1ak = lim

u↑1

1 +
∑j

l=1(−1)l
∑

1≤m1<···<ml≤j u
cl+k

1− ucj
− lim

u↑1

1− uck
1− ucj

= lim
u↑1

(P
(
{max{U1, . . . , Uk} > u} ∪ {Uk+1 > u, . . . , Uk+j > u}

)
P
(

max{U1, . . . , Uj} > u
)

−
P
(

max{U1, . . . , Uk} > u
)

P
(

max{U1, . . . , Uj} > u
))

= lim
u↑1

(P
(
{U1 ≤ u, . . . , Uk ≤ u} ∩ {Uk+1 > u, . . . , Uk+j > u}

)
P
(

max{U1, . . . , Uj} > u
) )

. (3.6)

The computation proves non-negativity of (1/cj)∇j−1ak, since probabilities are non-

negative, which carries over to the limit. Concluding, it is proved that it is necessary

for (a0, . . . , ad−1)
′

to satisfy condition (3.3). Hence, it is d-monotone.

Now we turn to a new proof of sufficiency. For this, first observe that a0 = 1 and

d-monotonicity imply that

a0 = 1, ∇d−1−jaj ≥ 0, j = 0, . . . , d− 1. (3.7)
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3.5 A Characterization Theorem

For j = 0, . . . , d− 1 define p(d−1)
j :=

(
d−1
j

)
∇d−1−jaj . By (3.7) it follows that p(d−1)

j ≥ 0

for all j = 0, . . . , d − 1. Furthermore, using the summation identity of Lemma 2.5.5, it

follows that the p(d−1)
j sum up to a0 = 1. Therefore, changing the order of summation

and using the symmetry of the binomial coefficient, it is verified that

1 =
d−1∑
j=0

p
(d−1)
d−1−j =

d−1∑
j=0

(
d− 1

d− 1− j

)
∇jad−1−j =

d−1∑
j=0

(
d− 1
j

)
∇jad−1−j

is a convex combination of one (note in particular that all summands are non-negative).

For j = 0, . . . , d− 1, on the d-dimensional unit simplex Sd we define the function

Pj(w1, . . . , wd) :=
∑

1≤i0<...<ij≤d

(
d− 1
j

)−1

max{wi0 , . . . , wij}.

It is observed that Pj is a Pickands dependence function corresponding to the measure

δ(j), which is defined by

δ(j)

({ 1
j + 1

(~ei0 + . . .+ ~eij )
})

:=
j + 1(
d−1
j

) , 1 ≤ i0 < . . . < ij ≤ d,

δ(j) zero else, where ~el = (0, . . . , 0, 1, 0 . . . , 0)
′

denotes the l-th unit vector in Rd. This

can be seen from∫
Sd

max{w1 u1, . . . , wd ud} δ(j)(du1, . . . , dud)

=
∑

1≤i0<...<ij≤d

j + 1(
d−1
j

) max
{ wi0
j + 1

, . . . ,
wij
j + 1

}
= Pj(w1, . . . , wd).

Note in particular for all k = 1, . . . , d that∫
Sd

uk δ
(j)(du1, . . . , dud) =

∑
1≤i0<...<ij≤d

at least one il=k

j + 1(
d−1
j

) 1
j + 1

= 1.

By [Falk et al. (2004), p. 123], Pickands dependence functions are stable under convex

combinations. Hence, the function

P (w1, . . . , wd) :=
d−1∑
j=0

(
d− 1
j

)
∇jad−1−j Pj(w1, . . . , wd)
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defines again a Pickands dependence function. Finally, it is shown in Lemma 3.5.2 that

P (w1, . . . , wd) =
∑d

i=1 ad−iw(i). Therefore the Pickands Representation Theorem 2.3.2

shows that the function

( d∏
i=1

ui

)P( log u1∑d
l=1

log ul
,...,

log ud∑d
l=1

log ul

)
= exp

(
P
( log u1∑d

l=1 log ul
, . . . ,

log ud∑d
l=1 log ul

) d∑
l=1

log ul

)

= exp
( d∑
i=1

ad−i
log u(d−i+1)∑d

l=1 log ul

d∑
l=1

log ul
)

= exp
( d∑
i=1

ai−1 log u(i)

)
=

d∏
i=1

u
ai−1

(i)

is a copula. Thus, the claim is established. �

The following example illustrates Theorem 3.5.3 by writing out the condition of d-

monotonicity on the sequence of parameters for the low-dimensional cases d ∈ {2, 3, 4}.

Example 3.5.4 (Low-Dimensional Cases)

(a) In the bivariate case, Theorem 3.5.3 corresponds to

min{u1, u2} max{u1, u2}a1 is a copula ⇔ 0 ≤ a1 ≤ 1.

This family coincides with the well-known bivariate Cuadras-Augé family, see

[Cuadras, Augé (1981)] and Definition 2.2.2.

(b) In the trivariate case, using Lemma 3.3.2 and Theorem 3.5.3 implies

u(1) u
a1

(2) u
a2

(3) is a copula ⇔ 0 ≤ a2 ≤ a1, 2 a1 ≤ 1 + a2.

(c) In the case n = 4, using Lemma 3.3.2 and Theorem 3.5.3 implies

u(1) u
a1

(2) u
a2

(3) u
a3

(4) is a copula ⇔ 0 ≤ a3 ≤ a2, 2 a2 ≤ a1 + a3,

1− 3 a1 + 3 a2 − a3 ≥ 0.

Remark 3.5.5 (Alternative Version of Theorem 3.5.3)

Theorem 3.5.3 can be reformulated in terms of the survival function of the exchangeable

Marshall-Olkin distribution. Denoting by t(1) ≤ . . . ≤ t(d) the ordered list of the numbers

82



3.5 A Characterization Theorem

t1, . . . , td ≥ 0, the function

(t1, . . . , td) 7→ F̄ (t1, . . . , td) := exp
(
−

d∑
k=1

t(d+1−k) ak−1

)
(3.8)

is a (d-dimensional) survival function on [0,∞)d if and only if (a0, . . . , ad−1)
′

is d-

monotone and a0 > 0. In this case, (3.8) defines an exchangeable Marshall-Olkin

distribution. To prove this, one rewrites

F̄ (t1, . . . , td) = C
(
e−a0 t1 , . . . , e−a0 td

)
, with C(u1, . . . , ud) =

d∏
k=1

u
ak−1/a0

(k) ,

and applies Theorem 3.5.3 together with the survival analog of Sklar’s Theorem 2.2.5.

Finally, Theorem 3.5.3 allows to formulate an alternative version of Theorem 2.5.4 by

means of copulas, which deserves to be stated as a corollary.

Corollary 3.5.6 (Hausdorff’s Theorem for Copulas)

The following statements are equivalent.

(a) The sequence {ak}k∈N0 is completely monotone with a0 = 1.

(b) There exists a probability space (Ω,F ,P) supporting a random variable τ : Ω →
[0, 1] such that ak = E[τk] for all k ∈ N0.

(c) The function C(u1, . . . , ud) =
∏d
k=1 u

ak−1

(k) is a copula for all d ≥ 2.

Proof

The first equivalence is the classical result of [Hausdorff (1921), Hausdorff (1923)], which

was already stated in Theorem 2.5.4. For the second equivalence it is enough to observe

that a sequence {ak}k∈N0 is completely monotone if and only if the finite sequence

(a0, . . . , ad−1)
′

is d-monotone for every d ≥ 2. Thus, Theorem 3.5.3 establishes the

claim. �

Remark 3.5.7 (Sufficiency of Complete Monotonicity)

In total, three different proofs of the sufficiency statement ”(a) ⇒ (c)” in Corollary

3.5.6 are provided in this dissertation. The first proof uses the reparameterization of

exchangeable Marshall-Olkin survival copulas from Theorem 3.4.1. This proof is the

most direct one given, in the sense that it relies on basic algebra. A second proof is

carried out in Theorem 3.5.3 applying the Pickands representation, see Theorem 2.3.2,
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which itself is a ”deep result”. Finally, Chapter 4 below highlights that a completely

monotone sequence implicitly defines a Lévy subordinator, which can be used to con-

struct a random vector having the copula in concern as joint distribution function, see

Theorem 4.2.2. This third proof of sufficiency relies on Theorem 2.5.8, which itself uses

the original result of Hausdorff and the Lévy-Khinchin formula. Hence, it also relies on

”deep results”.

3.6 Analogy with Archimedean Copulas

In this section we outline some interesting analogies between Archimedean copulas,

compare Subsection 2.3.3, and copulas from the class eMO. Recall that an Archimedean

copula is parameterized by a function ϕ : [0,∞)→ [0, 1] with ϕ(0) = 1, limx→∞ ϕ(x) =

0, and has the analytical form ϕ
(
ϕ−1(u1) + . . . + ϕ−1(ud)

)
. On the contrary, a copula

from eMO is parameterized by a finite sequence (a0, . . . , ad−1)
′

with a0 = 1 and has

the functional form ua0

(1) · u
a1

(2) · · ·u
ad−1

(d) . Even though both copula families appear to

be very different regarding their distributional properties, they share many analytical

similarities.

The derivative of a function ϕ (in case of existence) is defined to be the function

ϕ(1)(x) := limh↓0
1
h

(
ϕ(x + h) − ϕ(x)

)
. An analogous concept for sequences is given

by the difference operator ∇. The ”derivative” of a sequence {ak}k∈N0 might be defined

as4 {−∇ak}k∈N0 = {ak+1 − ak}k∈N0 . In both concepts, the notion of complete mono-

tonicity means that a function, respectively a sequence, has derivatives of all orders,

which alternate in sign, i.e.

ϕ completely monotone ⇔ (−1)n ϕ(n)(x) ≥ 0, ∀n ∈ N0, x > 0,

{ak}k∈N0 completely monotone ⇔ ∇nak ≥ 0, ∀n ∈ N0, k ∈ N0.

Interestingly, the analytical notion of complete monotonicity has a probabilistic inter-

pretation in both cases. [Hausdorff (1921), Hausdorff (1923)] first discovered that a

sequence {ak}k∈N0 with a0 = 1 is completely monotone if and only if there exists a

probability space (Ω,F ,P) supporting a random variable τ on the unit interval such that

ak = E[τk] for all k ∈ N0, compare Theorem 2.5.4. On the other hand, [Bernstein (1929)]

4In the literature one often considers the difference operator ∆ := −∇, however we adopt the notation
of [Gnedin, Pitman (2008)] in order to avoid writing too many minus signs.
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3.6 Analogy with Archimedean Copulas

first observed that a function ϕ with ϕ(0) = 1 is completely monotone if and only if it

is the Laplace transform of a non-negative random variable, i.e. ϕ(x) = E[exp(−xW )]

for W ≥ 0 on some probability space (Ω,F ,P), compare Theorem 2.3.7. Regarding

copulas, [Kimberling (1974)] shows that completely monotone functions (which start at

one and tend to zero as their argument tends to infinity) can alternatively be character-

ized by Archimedean copulas, compare Theorem 2.3.8. In a similar spirit, the results in

this dissertation show that there is an analogous result which characterizes completely

monotone sequences by means of exchangeable Marshall-Olkin survival copulas, see

Corollary 3.5.6. Both statements give sufficient conditions for a function, respectively

a sequence, to define a proper copula in every dimension. However, for fixed dimension

d ≥ 2 the notion of complete monotonicity is not necessary to define a proper cop-

ula. [McNeil, Nešlehová (2009)] characterize Archimedean copulas in a fixed dimension

d ≥ 2, compare Theorem 2.3.9. For this purpose, the notion of a completely monotone

function is relaxed to the condition of d-monotonicity, which is a little more technical,

compare Definition 2.3.5. The analogous characterization for copulas from the class

eMO is established in Theorem 3.5.3 and uses the condition of d-monotonicity of a

(finite) sequence, which may also be viewed as a relaxation of complete monotonicity,

compare Definition 3.3.1. Notice that in both cases the somewhat technical definitions

of d-monotonicity may be justified by these ”copula characterization theorems”. Table

3.1 summarizes these analytical similarities between both copula families.

Finally, considering the subclasses of Archimedean copulas and of class eMO which are

given by completely monotone functions, respectively completely monotone sequences,

both families admit a similar probabilistic model. Having determined the positive ran-

dom variable W > 0 corresponding to a Laplace transform ϕ, it is demonstrated in

Theorem 2.3.10 that the random vector (τ1, . . . , τd)
′

:= (E1/W, . . . , Ed/W )
′

has the

Archimedean survival copula ϕ
(
ϕ−1(u1)+ . . .+ϕ−1(ud)

)
, where E1, . . . , Ed are indepen-

dent of W and i.i.d. Exp(1)-distributed. Similarly, in the next chapter we will show that

a completely monotone sequence {ak}k∈N0 implicitly defines a Lévy subordinator Λ with

Laplace exponent Ψ. It will be shown that the random vector of first passage times of Λ

across d i.i.d. Exp(1)-distributed random variables has survival copula ua0

(1) ·u
a1

(2) · · ·u
ad−1

(d) .

Thus, the common factor inducing dependence among the initially independent expo-

nential trigger variables is a non-negative random variable in the Archimedean case, and

a Lévy subordinator in the eMO case. The fact that Λ is a stochastic process instead of a

random variable induces the ordering which appears in the analytical form of the copula.
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Both probabilistic models provide efficient sampling routines in each dimension. This is

particularly useful in large dimensions, where sampling routines are usually hard to find.

On a theoretical level, completely monotone parameters correspond to extendibility of

the distribution, i.e. it is possible to view the respective d-dimensional random vector as

the d initial members of an exchangeable sequence of infinitely many random variables,

see also Remark 4.2.3 below, and [Aldous (1985)] for a detailed survey on this topic.

In particular, a seminal theorem of De Finetti implies the existence of a σ-field, condi-

tioned on which this sequence of random variables is i.i.d.. Indeed, in the Archimedean

setup of Theorem 2.3.10 the random variables τ1, . . . , τd are i.i.d. conditioned on the

value of W . From a Bayesian perspective, τ1, . . . , τd are i.i.d. exponentially distributed

with randomly drawn parameter W > 0. The analogous result in the eMO-case is the

content of the next chapter. For both families, a ”conditionally i.i.d.-interpretation” is

impossible in the case of proper d-monotone parameters.

86



3
.6

A
n

a
lo

g
y

w
ith

A
rch

im
ed

ean
C

op
u

las

Table 3.1 Comparison Archimedean copulas vs. copulas from eMO.

Archimedean copula Copula from eMO

analytical form ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
ua0

(1) u
a1

(2) · · ·u
ad−1

(d)

parameter function ϕ with ϕ(0) = 1,
and limx→∞ ϕ(x) = 0

sequence (a0, . . . , ad−1)
′

with a0 = 1

derivative operator −ϕ(1)(x) = lim
h↓0

1
h

(
ϕ(x)− ϕ(x+ h)

)
∇ak = ak − ak+1

completely monotone (−1)n ϕ(n)(x) ≥ 0, ∀n ∈ N0, x > 0 ∇nak ≥ 0, ∀n, k ∈ N0

⇔ ϕ Laplace transform of W ≥ 0 {ak} sequence of moments of τ ∈ [0, 1]

d-monotone (−1)n ϕ(n)(x) ≥ 0, for n = 1, 2, . . . , d − 2,
(−1)d−2 ϕ(d−2)(x) ↘ and convex

∇nak ≥ 0, ∀n ≤ d− 1, k ≤ d− 1− n

copula ⇔ ϕ d-monotone (a0, . . . , ad−1)
′
d-monotone

copula for all d ≥ 2 ⇔ ϕ completely monotone {ak}k∈N0 completely monotone
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4 Construction of Infinite Marshall-Olkin

Sequences

”Probability does not exist.”

B. De Finetti, Italian mathematician.

Given a completely monotone sequence {ak}k∈N0 , Corollary 3.5.6 in the previous chapter

provides us with an infinite family of exchangeable Marshall-Olkin distributions - one for

each dimension d ≥ 2. This result indicates the existence of a probability space (Ω,F ,P),

on which an infinite sequence of random variables is defined, such that every finite

subvector of length d has the exchangeable Marshall-Olkin distribution associated with

(a0, . . . , ad−1)
′
. However, the original construction of the Marshall-Olkin distribution

(2.11) does not provide such an infinite sequence. It is absolutely not clear how such

a probability space - respectively such an infinite Marshall-Olkin sequence - should be

constructed.

This chapter shows that a given completely monotone sequence can be associated

uniquely with a Lévy subordinator. The infinite sequence of first passage times of

this Lévy subordinator across an infinite sequence of i.i.d. exponential threshold lev-

els is shown to define an infinite Marshall-Olkin sequence, as desired. This alternative

model is of theoretical interest and advantageous in several ways, as shown later in this

thesis.

The chapter is organized as follows. Section 4.1 uses Theorem 2.5.8 to constitute a use-

ful connection between Lévy subordinators and random variables on [0, 1]. Section 4.2

defines the class of Lévy-frailty copulas as a subclass of eMO and provides an alternative

probabilistic construction. Section 4.3 presents concrete examples of Lévy-frailty cop-

ulas, and in Section 4.4 several distributional properties of the class eMO are derived,

partially making use of the new construction method.
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4.1 Analytical Preliminaries

The goal of this chapter is to establish a connection between Lévy subordinators and

the family eMO. As a first step, this section associates certain Lévy subordinators

with random variables on [0, 1]. To begin with, the following technical lemma consti-

tutes an intimate connection between completely alternating and completely monotone

sequences.

Lemma 4.1.1 (Completely Monotone vs. Alternating Sequences)

(a) Let {ak}k∈N0 be completely monotone. Then the sequence {ck}k∈N0 , defined by

c0 := 0, ck :=
∑k−1

i=0 ai, k ≥ 1, is completely alternating.

(b) Conversely, let {ck}k∈N0 be completely alternating with c0 = 0. Then the sequence

{ak}k∈N0 , defined by ak := −∇ck, k ≥ 0, is completely monotone.

Combining (a) and (b) yields a bijection{
{ak}k∈N0 completely monotone

}
1−1↔

{
{ck}k∈N0 completely alternating

∣∣∣ c0 = 0
}
.

Proof

Denote by Φ1,Φ2 the mappings from the described construction, i.e.

Φ1

(
{ak}k∈N0

)
= {ck}k∈N0 , where c0 = 0, ck =

k−1∑
i=0

ai, k ≥ 1,

Φ2

(
{ck}k∈N0

)
= {ak}k∈N0 , where ak = −∇ck, k ≥ 0.

First notice that both mappings are well-defined: for a completely monotone sequence

{ak}k∈N0 the image sequence {ck}k∈N0 := Φ1

(
{ak}k∈N0

)
is completely alternating with

c0 = 0, since ∇j ck = ∇j−1(ck − ck+1) = −∇j−1ak ≤ 0 for all j ∈ N. Conversely, for a

completely alternating sequence {ck}k∈N0 with c0 = 0 the image sequence {ak}k∈N0 :=

Φ2

(
{ck}k∈N0

)
is completely monotone, since ∇j ak = −∇j+1ck ≥ 0 for all j ∈ N0. It is

left to show that Φ1 ◦Φ2

(
{ck}k∈N0

)
= {ck}k∈N0 and Φ2 ◦Φ1

(
{ak}k∈N0

)
= {ak}k∈N0 . The

reader can easily convince herself that this is true. �
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4.1 Analytical Preliminaries

Heuristically speaking and using the notations from previous chapters, there is a bijec-

tion{
Λ Lévy subordinator

∣∣∣Ψ(1) = 1
}

1−1↔
{
{ck}k∈N0 completely alternating

∣∣∣ c0 = 0, c1 = 1
}

(by Theorem 2.5.8)

1−1↔
{
{ak}k∈N0 completely monotone

∣∣∣ a0 = 1
}

(by Lemma 4.1.1)

1−1↔
{
τ random variable on [0, 1]

}
(by Theorem 2.5.4).

More correctly, this mapping - denoted by H in the sequel - defines a bijection between

Lévy characteristics and distribution functions, i.e.

H :
{

(µ, ν)
∣∣∣µ ∈ [0, 1], ν measure on (0,∞] satisfying (2.16), µ+

∫
(0,∞]

(
1− e−t

)
ν(dt) = 1

}
1−1↔

{
F : [0, 1]→ [0, 1]

∣∣∣F non-decreasing and right-continuous, F (1) = 1
}
.

In order to simplify notations, we identify a distribution function F on [0, 1] with a

random variable τ , and the Lévy characteristics (µ, ν) with a Lévy subordinator Λ - both

being defined on a generic probability space (Ω,F ,P). The term ”generic” means that

we do not really work on the probability space (Ω,F ,P). Rather we are concerned with

statements in distribution, i.e. the only point in considering (Ω,F ,P) is that we want to

write E[τ ] or P(τ ∈ dt) rather than
∫

[0,1] t dF (t) or dF (t). Moreover, we write H(Λ) = τ ,

meaning actually H
(
(µ, ν)

)
= F , where τ ∼ F and (µ, ν) are the characteristics of Λ.

Keeping this terminology in mind, H can now be defined as follows.

Definition 4.1.2 (The Bijection H)

For a Lévy subordinator Λ with Laplace exponent Ψ satisfying Ψ(1) = 1, H(Λ) is the

unique random variable τ on [0, 1] satisfying E[τk] = Ψ(k+1)−Ψ(k), k ∈ N0. Conversely,

for a random variable τ on the unit interval, H−1(τ) is the unique Lévy subordinator

whose Laplace exponent Ψ satisfies Ψ(k + 1)−Ψ(k) = E[τk], k ∈ N0.

The explicit form of the bijection H is determined in the following lemma.

Lemma 4.1.3 (Explicit Form of H)

In the statements below we apply the conventions − log 0 :=∞ and exp(−∞) := 0.

(a) Let Λ be a Lévy subordinator whose Laplace exponent Ψ satisfies Ψ(1) = 1, and
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denote its drift by µ and its Lévy measure by ν. Then

P
(
H(Λ) ∈ B

)
= µ1{1∈B} +

∫
{− log b | b∈B\{1}}

(
1− e−t

)
ν(dt), B ∈ B

(
[0, 1]

)
. (4.1)

(b) Conversely, let τ be a random variable on the unit interval [0, 1], and denote the

drift of H−1(τ) by µ and its Lévy measure by ν. Then

µ = P(τ = 1), ν(dt) =
(
1− e−t

)−1 P(− log τ ∈ dt) on (0,∞]. (4.2)

In particular, the associated Laplace exponent Ψ satisfies Ψ(1) = 1.

Proof

(a) Denote by κ the measure defined by the right-hand side of (4.1) and verify that

κ
(
[0, 1]

)
= µ+

∫
(0,∞]

(
1− e−t

)
ν(dt) = Ψ(1) = 1,

hence κ actually defines a probability measure on [0, 1]. Furthermore, define a

measure ν̃ on [0, 1) by setting ν̃(B) := ν
(
{− log b | b ∈ B}

)
for B ∈ B

(
[0, 1)

)
. It

follows from the change-of-variable formula, see e.g. [Billingsley (1995), Theorem

16.13, p. 216], that∫
(0,∞]

f
(
e−t
)
ν(dt) =

∫
[0,1)

f(x) ν̃(dx), ∀ f : [0, 1)→ [0, 1]. (4.3)

In particular, this implies for y ∈ [0, 1) that

κ
(
[0, y]

)
=
∫

(0,∞]

(
1− e−t

)
1{t∈[− log y,∞]} ν(dt)

(4.3)
=
∫

[0,1)
(1− x) 1{− log x∈[− log y,∞]} ν̃(dx) =

∫
[0,y]

(1− x) ν̃(dx),

and hence κ(dy) = (1− y) ν̃(dy) on [0, 1). Consequently, this verifies∫
[0,1]

yk κ(dy) = µ+
∫

[0,1)
yk (1− y) ν̃(dy)

(4.3)
= µ+

∫
(0,∞]

e−k t
(
1− e−t

)
ν(dt) = Ψ(k + 1)−Ψ(k).

The claim is thus established by the definition of H(Λ).
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4.1 Analytical Preliminaries

(b) The first step is to check that the measure ν defined in (4.2) actually is a Lévy

measure, i.e. satisfies (2.16). With ε > 0 this can be seen as follows:

ν
(
(ε,∞]

)
= E

[ 1
1− τ

1{− log τ∈(ε,∞]}

]
= E

[ 1
1− τ

1{τ∈[0,e−ε)}

]
≤ 1

1− e−ε
<∞,∫

(0,1]
t ν(dt) =

∫
(0,1]

t
(
1− e−t

)−1 P(− log τ ∈ dt)

= E
[− log τ

1− τ
1{τ∈[e−1,1)}

] (∗)
≤ e <∞.

Equation (∗) holds, since using the series expansion log(1 + y) =
∑∞

k=1
(−1)k+1

k yk

implies for y ∈ [exp(−1), 1) that

∣∣∣ log y
1− y

∣∣∣ =
∣∣∣ log

(
1 + (−(1− y))

)
1− y

∣∣∣ =
∣∣∣ ∞∑
k=1

−1
k

(1− y)k−1
∣∣∣

≤
( ∞∑
k=0

(1− y)k
)

=
1
y
≤ e.

Denoting by Ψ the Laplace exponent corresponding to the characteristics (µ, ν)

defined in (4.2), it is finally verified for k ∈ N0 that

Ψ(k + 1)−Ψ(k) = µ+
∫

(0,∞]
e−k t

(
1− e−t

)
ν(dt)

= P(τ = 1) +
∫

(0,∞]
e−k t

(
1− e−t

) (
1− e−t

)−1 P(− log τ ∈ dt)

= E
[
τk 1{τ=1}

]
+ E

[
τk 1{τ<1}

]
= E[τk],

establishing the claim (in particular Ψ(1) = 1 follows). �

The following examples are special cases of Lemma 4.1.3, which the reader can imme-

diately verify on her own.

Example 4.1.4 (Distributions With Atoms)

If Λ is a Lévy subordinator with drift µ and Lévy measure ν such that its Laplace

exponent Ψ satisfies Ψ(1) = 1, it holds that P
(
H(Λ) = 1

)
= µ and P

(
H(Λ) = 0

)
=

ν({∞}). Moreover, for b ∈ (0, 1) it holds that

P
(
H(Λ) = b

)
= (1− b) ν

(
{− log b}

)
.
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In particular, discrete random variables correspond to discrete Lévy measures.

Example 4.1.5 (Absolutely Continuous Random Variables)

Let τ be an absolutely continuous random variable on [0, 1] with density fτ defined on

(0, 1). Then, H−1(τ) has zero drift µ = 0 and Lévy measure given by

ν(dt) = 1{t>0}
e−t

1− e−t
fτ
(
e−t
)
dt.

Conversely, let Λ be a Lévy subordinator with Ψ(1) = 1, zero drift µ = 0 and a Lévy

measure ν(dt) = fν(t) dt, which is absolutely continuous with respect to the Lebesgue

measure on (0,∞). Then, τ := H(Λ) is absolutely continuous with density given by

fτ (x) =
1− x
x

fν
(
− log x

)
, x ∈ (0, 1).

4.2 The Subclass of Lévy-Frailty Copulas

Next, the subclass of Lévy-frailty copulas is defined. On a high level, Lévy-frailty copulas

determine the subclass of eMO which allow for a probabilistic model in which the

components of the respective random vector are conditionally i.i.d., see Theorem 4.2.2

and Remark 4.2.3 below.

Definition 4.2.1 (Lévy-Frailty Copula)

For a given random variable τ on the unit interval denote the Laplace exponent of

H−1(τ) by Ψ. For d ≥ 2, we define the copula

CΨ(u1, . . . , ud) :=
d∏
i=1

u
E[τ i−1]
(i) =

d∏
i=1

u
Ψ(i)−Ψ(i−1)
(i) , (4.4)

where, as before, u(1) ≤ u(2) ≤ . . . ≤ u(d) denotes the ordered list of u1, . . . , ud ∈ [0, 1].

CΨ is called a Lévy-frailty copula.

Recall from Corollary 3.5.6 that CΨ defined by (4.4) actually defines a proper copula.

The subsequent theorem justifies the nomenclature ”Lévy-frailty copula”. The term

”Lévy” corresponds to the underlying Lévy subordinator. The term ”frailty” is chosen,

since Theorem 4.2.2 shows that the dependence structure of a Lévy-frailty copula is

induced by a latent factor, sometimes called a frailty, see e.g. [Oakes (1989)]. Theorem

4.2.2 may be considered a key result of this dissertation, since it opens the door to
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4.2 The Subclass of Lévy-Frailty Copulas

several applications. Firstly, it allows to derive more distributional properties of the

class eMO, some of which are difficult to prove directly. Secondly, it allows to derive

sampling strategies in large dimensions. Thirdly, it naturally implies a generalization

to hierarchical dependence structures which are still viable with regard to sampling

applications (Chapter 5). And last but not least, the construction below may be applied

to construct a multivariate default model, which is well-suited for the pricing of portfolio

credit derivatives (Chapter 6).

Theorem 4.2.2 (Construction of Lévy-Frailty Copulas)

Let τ be a random variable on [0, 1] and let Ψ denote the Laplace exponent of the Lévy

subordinator Λ := H−1(τ). A random vector (U1, . . . , Ud)
′

with joint distribution func-

tion CΨ can be constructed as follows. Let Λ be defined on a probability space (Ω,F ,P).

Independently of Λ, let E1, . . . , Ed be i.i.d. Exp(1)-distributed random variables. The

random vector (τ1, . . . , τd)
′
, defined by

τi := inf
{
t ≥ 0 : Λt ≥ Ei

}
, i = 1, . . . , d,

has survival copula CΨ and each τi is Exp(1)-distributed. It follows that the random

vector (U1, . . . , Ud)
′
, defined by Ui := exp ( − τi) for i = 1, . . . , d, has joint distribution

function CΨ.

Proof

According to Definition 2.4.2 of a (killed) Lévy subordinator we denote

Λt = Λ̃t +∞ · 1{Nt≥1}, t ≥ 0,

where Λ̃ is a classical (real-valued) Lévy subordinator and N is an independent Poisson

process. Referring to the Lévy-Khinchin representation, see Theorem 2.4.3, we split the

Laplace exponent Ψ of Λ into two parts via

Ψ(x) = µx+
∫

(0,∞)

(
1− e−t x

)
ν(dt) + ν({∞}) 1{x>0} =: Ψ̃(x) + ν({∞}) 1{x>0}, x ≥ 0,

where Ψ̃ denotes the Laplace exponent of Λ̃ and ν({∞}) is the intensity of the Poisson

process N . Recall that if ν({∞}) = 0 this is conveniently interpreted as Λ = Λ̃, i.e. ”N

never jumps”. For arbitrary t1, t2, . . . , td ∈ [0,∞) with ordered list t(1) ≤ . . . ≤ t(d) and
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t(0) := 0 it is verified that

d∑
i=1

(d+ 1− i)
(
Λ̃t(i) − Λ̃t(i−1)

)
=

d∑
i=1

(d+ 1− i) Λ̃t(i) −
d−1∑
i=0

(d− i) Λ̃t(i) =
d∑
i=1

Λ̃ti .

Λ̃ being a classical Lévy subordinator implies that the random vector of increments

(Λ̃t(d) − Λ̃t(d−1)
, . . . , Λ̃t(1)

− Λ̃t(0)
)
′

has independent components and the component Λ̃t(i)−Λ̃t(i−1)
has the same distribution

as Λ̃t(i)−t(i−1)
. Hence, one obtains

E
[
e−

∑d
i=1 Λ̃ti

]
=

d∏
i=1

E
[
e
−(d+1−i) Λ̃(t(i)−t(i−1))

]
=

d∏
i=1

exp
(
− (t(i) − t(i−1)) Ψ̃(d+ 1− i)

)
.

Furthermore, since N is a Poisson process with intensity ν({∞}), it follows with a

telescope argument that

P(Nt(d) = 0) = e−ν({∞}) t(d) =
d∏
i=1

exp
(
− (t(i) − t(i−1)) ν({∞})

)
.

From this, using conditional independence of events in the third equality (conditioned

on the σ-algebra σ(Λt : t ≥ 0)), and the convention exp(−∞) = 0 in the fourth, it is

straightforward to compute

F̄ (t1, . . . , td) := P
(
τ1 > t1, τ2 > t2, . . . , τd > td

)
= P

(
E1 > Λt1 , E2 > Λt2 , . . . , Ed > Λtd

)
= E

[
d∏
i=1

e−Λti

]
= E

[
1{Nt(d)=0} e

−
∑d
i=1 Λ̃ti

]
+ 0 = P(Nt(d) = 0) E

[
e−

∑d
i=1 Λ̃ti

]
=

d∏
i=1

exp
(
− (t(i) − t(i−1))

(
Ψ̃(d+ 1− i) + ν({∞})

))
=

d∏
i=1

exp
(
− (t(i) − t(i−1)) Ψ(d+ 1− i)

)
.

In the univariate case, one obtains by the same argument for i = 1, . . . , d and t ≥ 0 that

F̄i(t) := P
(
τi > t

)
= P

(
Ei > Λt

)
= e−tΨ(1) = e−t.
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4.2 The Subclass of Lévy-Frailty Copulas

Thus, the τi are Exp(1)-distributed. By the analog of Sklar’s Theorem for survival

copulas, see Theorem 2.2.5, there exists a unique copula Ĉ, which satisfies

F̄ (t1, . . . , td) = Ĉ
(
e−t1 , . . . , e−td

)
.

On the other hand, since t 7→ exp(−t) is decreasing, equation (4.4) in Definition 4.2.1

implies

CΨ

(
e−t1 , . . . , e−td

)
=

d∏
i=1

e−t(i)
(

Ψ(d+1−i)−Ψ(d−i)
)

=
d∏
i=1

e−t(i) Ψ(d+1−i)
d−1∏
i=1

et(i) Ψ(d−i)

=
d∏
i=1

e−t(i) Ψ(d+1−i)
d∏
i=1

et(i−1) Ψ(d+1−i) = F̄ (t1, . . . , td).

Thus, by uniqueness of Ĉ, it holds that Ĉ = CΨ. To finally see that the random vector(
exp(−τ1), . . . , exp(−τd)

)′
has joint distribution function CΨ it suffices to observe that

P
(
e−τ1 ≤ u1, . . . , e

−τd ≤ ud
)

= P
(
τ1 > − log(u1), . . . , τd > − log(ud)

)
= CΨ(u1, . . . , ud).

Notice that the continuity of the exponential law allows one to replace ”≥” by ”>” in

the first equality. The claim is established. �

From a theoretical point of view it is remarkable that the same distribution CΨ can

be constructed using two quite different approaches: on the one hand via the original

model by [Marshall, Olkin (1967)], compare (2.11), on the other hand via Theorem

4.2.2 above. When investigating distributional properties, this allows to choose the

construction among both which is more convenient to work with. The probabilistic

construction idea of Theorem 4.2.2 is visualized in Figure 4.1.

Remark 4.2.3 (Exchangeability and Extendibility)

Apparently, the probabilistic construction of Theorem 4.2.2 is possible in any dimen-

sion d ≥ 2. For instance, if an infinite sequence E1, E2, . . . of i.i.d. exponential trigger

variables is considered instead of a finite sequence, then the respective infinite sequence

{τk}k∈N of first passage times can be defined. This sequence is exchangeable, meaning

that each finite subvector (τi1 , . . . , τid)
′

of length d ≥ 2 is exchangeable. A seminal theo-
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ττ1 =ττ2 =ττ3

Figure 4.1 Illustration of two realizations of the random vector (τ1, τ2, τ3)
′
according to

Theorem 4.2.2. The simulated Lévy subordinator is a Gamma subordinator
with parameters (β, η) = (1/ log 2, 1). The horizontal dotted lines indicate
the trigger variables E1, E2, E3. The vertical dotted lines indicate the first
passage times τ1, τ2, τ3.

rem of De Finetti1 states that every exchangeable sequence of random variables {τk}k∈N

on a probability space (Ω,F ,P) is conditionally i.i.d., i.e. there exists a σ-algebra G ⊂ F
such that

P(τ1 > t1, . . . , τd > td | G) =
d∏
i=1

P(τ1 > ti | G), d ≥ 2, t1, . . . , td ≥ 0.

Indeed, G can be identified as σ(Λt : t ≥ 0) in the Lévy-frailty construction, and the

conditional survival function is given by P(τ1 > t | G) = exp(−Λt), t ≥ 0. In general, a

d-dimensional random vector (τ1, . . . , τd)
′

with eMO-survival copula (not necessarily of

Lévy-frailty type) need not be extendible to an infinite exchangeable sequence. Postu-

lating that an extension (τ1, . . . , τd, τd+1)
′

of (τ1, . . . , τd)
′

has an eMO-survival copula is

equivalent to postulating that the parameters (a0, . . . , ad−1)
′ ∈ Md of the latter vector

can be extended to a sequence in Md+1. For an infinite extension, one has to find a

completely monotone sequence extending (a0, . . . , ad−1)
′
. As Example 3.3.3 shows, this

1The original reference is [De Finetti (1937)]. [Aldous (1985)] is one of the standard textbooks on the
subject and provides an extensive treatment of exchangeability.
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4.2 The Subclass of Lévy-Frailty Copulas

is not always possible. In this regard, Lévy-frailty copulas can be considered as precisely

the subclass of eMO-copulas which are extendible. To find useful ”extendibility-criteria”

is a difficult problem in general, see e.g. [Aldous (1985), Problems (1.11) and (1.12), p.

9-10].

Remark 4.2.4 (Bayesian Point of View)

The probabilistic construction of Theorem 4.2.2 can also be formulated as a Bayesian

two-step procedure: in a first step, a random path of the Lévy subordinator Λ is drawn,

defining the distribution function F : t 7→ 1− exp(Λt), t ≥ 0. Given this pre-determined

distribution function, the random variables τ1, . . . , τd are then drawn independently

from F in a second step. Interestingly, the jumps of the Lévy subordinator correspond

to atoms of the distribution defined by F . One effect of these atoms is the fact that

events such as {τ1 = τ2} have positive probabilities, corresponding to the singularities

of the Marshall-Olkin distribution.

As a first application of Theorem 4.2.2, a specific example of a Lévy-frailty copula is

now provided, which is well-known in the academic literature and serves to demonstrate

the usefulness of the alternative construction. Consider a probability space (Ω,F ,P) on

which d i.i.d. random variables E1, . . . , Ed with E1 ∼ Exp(1) are defined. Furthermore,

let N = {Nt}t≥0 be an independent Poisson process with intensity 1/α for α ∈ (0, 1).

Define a compound Poisson subordinator Λ by Λt := − log(1−α)Nt, t ≥ 0. The Laplace

exponent Ψ of Λ is given by (see (2.19) with µ = 0, β = 1/α and J1 ≡ − log(1− α))

Ψ(x) =
1− (1− α)x

α
, x ≥ 0.

In particular, Ψ(1) = 1. Moreover, for each k ∈ N it holds that Ψ(k) − Ψ(k − 1) =

(1−α)k−1. Notice that this implies H(Λ) ≡ 1−α. By Theorem 4.2.2 the random vector(
exp(−τ1), . . . , exp(−τd)

)′
, where

τi := inf
{
t ≥ 0 : − log(1− α)Nt ≥ Ei

}
, i = 1, . . . , d, (4.5)

has joint distribution function

Cα(u1, . . . , ud) :=
d∏
i=1

u
(1−α)i−1

(i) . (4.6)
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This one-parametric family of copulas is the exchangeable special case of a copula family

first introduced in [Cuadras, Augé (1981)], hence Cα is called an exchangeable Cuadras-

Augé copula. However, in the original reference [Cuadras, Augé (1981)] there is no

probabilistic interpretation given for the multivariate distribution (4.6). Now this gap

is filled. Furthermore, the probabilistic model allows to prove the following lemma,

which generalizes a bivariate result from [Cuadras, Augé (1981)] regarding the singular

component of the copula Cα. Lemma 4.2.5 is generalized to arbitrary eMO-copulas

in Theorem 4.4.5 below. In the proof of this more general result Lemma 4.2.5 will be

applied, so it is not redundant.

Lemma 4.2.5 (Singular Component of Cα)

Assume (U1, . . . , Ud)
′
is defined on a probability space (Ω,F ,P) and has joint distribution

function Cα from equation (4.6) for some α ∈ [0, 1]. Then it holds that

P
(
U1 = U2 = . . . = Ud

)
=

αd

1− (1− α)d
.

Proof

For α ∈ {0, 1} it holds that Cα ∈ {Π,M} and the statement is clear. For the case

α ∈ (0, 1), consider the vector (τ1, . . . , τd)
′

as defined in equation (4.5), and denote

J := − log(1−α) the jump size of the corresponding Lévy subordinator Λ. One uses in

the following order: the strict monotonicity of the exponential function; the construction

principle and the observation that different τi’s are identical if their corresponding Ei’s

are within the same interval
(
(l− 1) · J, l · J

]
; the disjoint union of events and the i.i.d.-

property of the Ei’s; the Exp(1)-distribution of E1; and some algebraic manipulations.

P
(
U1 = U2 = . . . = Ud

)
= P

(
exp(−τ1) = exp(−τ2) = . . . = exp(−τd)

)
= P

(
τ1 = τ2 = . . . = τd

)
= P

( ∞⋃
l=1

d⋂
m=1

{
(l − 1) J < Em ≤ l J

})
=
∞∑
l=1

P
(
(l − 1) J < E1 ≤ l J

)d =
∞∑
l=1

(∫ l J

(l−1) J
e−t dt

)d
= (eJ − 1)d

∞∑
l=1

(
e−d J

)l
= (eJ − 1)d

( 1
1− e−d J

− 1
)

=
(eJ − 1)d e−d J

1− e−d J
=

(
1− e−d J

)d
1− e−d J

.

Finally, using the equality J = − log(1− α) yields the claimed result. �
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4.3 Concrete Examples

4.3 Concrete Examples

In the following we give a list of concrete examples of Lévy-frailty copulas. Some of

them are studied in the literature from an alternative perspective. Others are included,

since they are applied in Chapter 6 in the context of financial modeling. Table 4.1 at

the end of this section provides a list of some underlying Lévy subordinators.

Example 4.3.1 (A Global Shock Copula)

Consider a random variable τ which is Bernoulli-distributed with success probability

α ∈ (0, 1). It follows that E[τk] = α + (1 − α) 1{k=0}. Denoting Λ := H−1(τ) it

follows from Example 4.1.4 that the drift of Λ is given by α and the Lévy measure ν

concentrates all mass at infinity, where ν
(
{∞}

)
= 1 − α. Its Laplace exponent is thus

given by Ψ(x) = αx+ (1− α) 1{x>0}, x ≥ 0, and the corresponding Lévy-frailty copula

is

CΨ(u1, . . . , ud) = u(1)

( d∏
i=2

u(i)

)α
.

This family of copulas appears in [Durante et al. (2007)] and in [Falk et al. (2004), Ex-

ample 4.3.2, p. 124]. However, in these references it is constructed differently. In the

Lévy-frailty construction, the Lévy subordinator grows linearly with constant drift α

until it jumps to infinity. Hence, this dependence structure may be used to model d

companies’ default times, where the firms are all affected by one global shock which elim-

inates them simultaneously. In such a simplistic model, no default clusters are observed

until all companies suddenly default at a time. This model - formulated in terms of the

original Marshall-Olkin model without Lévy subordinators - is applied in the context of

portfolio credit risk modeling in [Andersen, Sidenius (2005), Burtschell et al. (2009)].

Example 4.3.2 (Families obtained from Discrete Random Variables)

If τ is an arbitrary discrete random variable taking values in {xk}k∈N, xk ∈ (0, 1), with

corresponding probabilities {pk}k∈N, then by Example 4.1.4 the corresponding Lévy

subordinator H−1(τ) has zero drift and a discrete Lévy measure ν. More precisely, the

mass of ν is concentrated on the set {− log xk}k∈N with corresponding weights {pk/(1−
xk)}k∈N. This is a weighted sum of Poisson processes. If P(τ = 1) > 0, the Lévy

subordinator has an additional drift, and if P(τ = 0) > 0 it has an additional positive

killing rate.
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Example 4.3.3 (A Family based on Stable Subordinators)

Consider an α-stable subordinator Λ with Laplace exponent Ψ(x) = xα, x ≥ 0, for a

parameter α ∈ [0, 1]. Obviously Ψ(1) = 1, and the corresponding Lévy-frailty copula is

given by

CΨ(u1, . . . , ud) = u(1)

d∏
i=2

u
iα−(i−1)α

(i) .

Example 4.3.4 (A Family based on the Gamma Subordinator)

Let Λ̃ be a Gamma subordinator with parameters η > 0 and βη := 1/ log(1 + 1/η) > 0.

From Subsection 2.4.1 we know that its Laplace exponent Ψ̃ is given by

Ψ̃(x) =
log
(

1 + x
η

)
log
(

1 + 1
η

) , x ≥ 0,

and hence Ψ̃(1) = 1. Furthermore, denote by I = {It}t≥0 the trivial Lévy subordinator

It = t, t ≥ 0, with Laplace exponent ΨI(x) = x, x ≥ 0. For β ∈ (0, βη] we may define a

new Laplace exponent Ψ as a convex combination of ΨI and Ψ̃ via

Ψ(x) :=
(

1− β

βη

)
ΨI(x) +

β

βη
Ψ̃(x) =

(
1− β

βη

)
x+ β log

(
1 +

x

η

)
, x ≥ 0.

The corresponding Lévy subordinator is the sum of (1−β/βη) I and a Gamma subordina-

tor with parameters (β, η), i.e. a Gamma subordinator with additional drift. Moreover,

since Ψ is a convex combination of two Laplace exponents Ψ̃ and ΨI with fixpoint 1,

also Ψ(1) = 1. The corresponding Lévy-frailty copula has the form

CΨ(u1, . . . , ud) = u(1)

d∏
i=2

u
1−β log

(
1+ 1

η

)
+β log

(
1+ 1

η+i−1

)
(i) .

Notice that the two parameters β, η of this family of copulas are restricted by η > 0 and

0 < β ≤ 1/ log(1 + 1/η). This example is applied in Chapter 6, Section 6.5. See also

family (9) in Table 4.1.
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4.3 Concrete Examples

Example 4.3.5 (A Family based on the Inverse Gaussian Subordinator)

Following Subsection 2.4.1, let Λ̃ be an Inverse Gaussian subordinator with parameters

η > 0 and βη := 1/(
√

2 + η2 − η) > 0. Its Laplace exponent Ψ̃ is given by

Ψ̃(x) =

√
2x+ η2 − η√
2 + η2 − η

, x ≥ 0,

and hence Ψ̃(1) = 1. As in the previous example, denote by I = {It}t≥0 the trivial Lévy

subordinator with Laplace exponent ΨI(x) = x, x ≥ 0. Letting β ∈ (0, βη], we define a

new Laplace exponent Ψ as a convex combination of ΨI and Ψ̃ via

Ψ(x) :=
(

1− β

βη

)
ΨI(x) +

β

βη
Ψ̃(x) =

(
1− β

βη

)
x+ β

(√
2x+ η2 − η

)
, x ≥ 0.

The corresponding Lévy subordinator is the sum of (1−β/βη) I and an Inverse Gaussian

subordinator with parameters (β, η), i.e. an Inverse Gaussian subordinator with addi-

tional drift. Furthermore, since Ψ is a convex combination of two Laplace exponents Ψ̃

and ΨI with fixpoint 1, also Ψ(1) = 1. The corresponding Lévy-frailty copula has the

form

CΨ(u1, . . . , ud) = u(1)

d∏
i=2

u
1−β (
√

2+η2−η)+β
(√

2 i+η2−
√

2 (i−1)+η2
)

(i) .

Notice that the two parameters β, η of this family of copulas have to satisfy η > 0 and

0 < β ≤ 1/(
√

2 + η2 − η). This family of copulas is also applied in Chapter 6, Section

6.5. See also family (10) in Table 4.1.

Example 4.3.6 (A Family based on the Beta Distribution)

Consider a Beta-distributed random variable τ ∼ Beta(p, q) with p, q > 0, i.e. the

density of τ is given by

fτ (x) =
Γ(p+ q)
Γ(p) Γ(q)

xp−1 (1− x)q−11{x∈(0,1)}.

One obtains from Example 4.1.5 that H−1(τ) has zero drift and Lévy measure

ν(dt) =
Γ(p+ q)
Γ(p) Γ(q)

e−p t (1− e−t)q−2 1{t>0} dt.

In this case, according to [Gupta, Nadarajah (2004), p. 35], the sequence of moments of
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τ , which determines the corresponding Lévy-frailty copula, is given by

E[τk] =
Γ(p+ k) Γ(p+ q)
Γ(p) Γ(p+ q + k)

, k ∈ N0.

In the case q = 2 the Lévy subordinator H−1(τ) is a compound Poisson process. Its

jump intensity is 1 + p, the jump size distribution is an exponential distribution with

parameter p. See also family (4) in Table 4.1.

As a special case, the distribution Beta(α, 1− α), for α ∈ (0, 1), is the so-called gener-

alized arcsine law. A random variable τ ∼ Beta(α, 1− α) can be constructed as

τ := sup{s < 1 : ∃ t ≥ 0 such that Λt = s},

for an α-stable subordinator Λ, see [Bertoin (1999), Proposition 3.1, p. 23]. However,

H−1(τ) is not an α-stable subordinator. The case α = 1/2 is of particular interest, since

in this case the sequence of moments of τ is given by

ak := E[τk] =
1

22 k

(
2 k
k

)
, k ∈ N0,

and in a certain sense lies in the ”center” of the set of all completely monotone sequences,

see [Dette, Studden (1997), p. 303-306]. Furthermore, the (random) set{
1− e−y ∈ [0, 1]

∣∣∣∃ t ≥ 0 such that H−1(τ)t = y
}
,

which is a transformation of the range of the associated Lévy subordinator H−1(τ),

is identical in distribution with the set of zeros of a Brownian bridge on [0, 1], see

[Gnedin, Pitman (2005), p. 469].

Example 4.3.7 (Families obtained from non-negative Random Variables)

Consider a Gamma-distributed random variable τ̃ ∼ Γ(b, p) for b, p > 0, i.e. τ̃ is defined

via the density fτ̃ (y) = bp yp−1e−b y 1{y>0}/Γ(p). Choosing τ := exp(−τ̃), the sequence

of moments of τ is given by ak = bp/(b+k)p, k ∈ N0. The associated Lévy subordinator

H−1(τ) has zero drift and by a density transformation and Example 4.1.5 its Lévy

measure is given by

ν(dt) =
bp

Γ(p)
e−t b

1− e−t
tp−1 1{t>0} dt.
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4.3 Concrete Examples

H−1(τ) is of compound Poisson type for p > 1 and the jump intensity of this process in

the case b = 1 equals the value of the Riemann zeta function at p > 1. This can be seen

from the fact that

∞∑
k=1

1
kp

=
∞∑
k=0

1
(1 + k)p

=
∞∑
k=0

ak =
∞∑
k=0

Ψ(k + 1)−Ψ(k) = lim
n→∞

Ψ(n) = ν
(
(0,∞]

)
.

The last equality follows from the dominated convergence theorem. Recall that ν
(
(0,∞]

)
gives precisely the intensity of a compound Poisson process by virtue of (2.18). Moreover,

if b = p = 1, τ is uniformly distributed and the Laplace exponent of H−1(τ) interpolates

the harmonic series.

Generalizing the Gamma distribution to the case when τ := exp(−τ̃), where τ̃ is an

arbitrary absolutely continuous random variable on (0,∞) with density fτ̃ , H−1(τ) has

zero drift and its Lévy measure is given by ν(dt) = fτ̃ (t)/(1− exp(−t)) dt.
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Table 4.1 Some parametric families of Lévy subordinators with Ψ(1) = 1.

Ψ(x) = Parameter(s) Distribution of Λ
One-parametric families

(1) xα α ∈ (0, 1) Λt ∼ S
(
α, 1,

(
cos(π α/2) t)

) 1
α , 0; 1

)
(2) 1−(1−α)x

α α ∈ (0, 1) Λ = CPP (0, 1/α, δ− log(1−α))

(3) αx+ (1− α) 1{x>0} α ∈ (0, 1) P(Λt = α t) = e−(1−α) t = 1− P(Λt =∞)

(4) (1 + α) x
α+x α > 0 Λ = CPP (0, α+ 1, Exp(α))

(5) log
(

1 + x
α

)/
log
(

1 + 1
α

)
α > 0 Λt ∼ Γ

(
t
/

log
(

1 + 1
α

)
, α
)

(6)
(√

2x+ α2 − α
)/(√

2 + α2 − α
)

α > 0 Λt ∼ IG
(
t
/(√

2 + α2 − α
)
, α
)

Two-parametric families

(7)
(
1− β

(
1− e−η

))
x+ β

(
1− e−x η

)
η > 0, 0 < β ≤ 1/

(
1− e−η

)
Λ = CPP (1− β + β e−η, β, δη)

(8)
(

1− β
η+1

)
x+ β x

η+x η > 0, 0 < β ≤ η + 1 Λ = CPP (1− β
η+1 , β, Exp(η))

(9)
(

1− β log
(

1 + 1
η

))
x+ β log

(
1 + x

η

)
η > 0, 0 < β ≤ 1/ log

(
1 + 1

η

)
Λt =

(
1− β log

(
1 + 1

η

))
t+ Γ(β t, η)

(10)
(
1− β (

√
2 + η2 − η)

)
x+ β (

√
2x+ η2 − η) η > 0, 0 < β ≤ 1/(

√
2 + η2 − η) Λt =

(
1− β (

√
2 + η2 − η)

)
t+ IG(β t, η)

CPP (µ, β, F ) denotes a compound Poisson process with drift µ, intensity β, and jump distribution F . δx denotes Dirac measure at x.
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4.4 Distributional Properties of the Class eMO

4.4 Distributional Properties of the Class eMO

This section collects several distributional properties of eMO-copulas, such as the com-

putation of multivariate dependence measures. Some of them may directly be derived

from the proof of Theorem 3.5.3 as byproducts. Others however, have to be computed

separately. The reason for placing this section here, and not in the previous chapter, is

that the proof of the Technical Lemma 4.4.6 below relies on Lemma 4.2.5, which itself

is based on the construction with Lévy subordinators. Hence, all properties which rely

on this lemma (Theorem 4.4.5 and Corollary 4.4.7 below) could not have been derived

in the previous chapter.

To begin with, the proof of Theorem 3.5.3 allows to derive some properties of copulas

in the class eMO as byproducts. First of all, copulas of the form C(u1, . . . , ud) =∏d
i=1 u

ai−1

(i) are extreme-value copulas, i.e. C(ut1, . . . , u
t
d) = C(u1, . . . , ud)t for all t > 0,

compare Definition 2.3.1. The corresponding Pickands representation from Theorem

2.3.2 is given in Corollary 4.4.1 below. The associated measure δ on the d-dimensional

unit simplex Sd is a discrete measure.

Corollary 4.4.1 (Pickands Representation of the Class eMO)

Assume (a0, . . . , ad−1)
′ ∈ Md. The measure δ on the d-dimensional unit simplex

Sd corresponding to the Pickands dependence function of the extreme-value copula

C(u1, . . . , ud) = ua0

(1) · u
a1

(2) · · ·u
ad−1

(d) is given by

δ =
d−1∑
j=0

(
d− 1
j

)
∇jad−1−j δ

(j),

where for j ∈ {0, . . . , d− 1} the measure δ(j) is discrete and defined by

δ(j)

({ 1
j + 1

(~ei0 + . . .+ ~eij )
})

=
j + 1(
d−1
j

) , 1 ≤ i0 < . . . < ij ≤ d,

δ(j) zero else, and ~el = (0, . . . , 0, 1, 0, . . . , 0)
′

is the l-th unit vector in Rd. In particular,

the Pickands dependence function is given by P (w1, . . . , wd) =
∑n

i=1 ad−iw(i), where

w(1) ≤ w(2) ≤ . . . ≤ w(d) is the ordered list of the numbers w1, . . . , wd.

Proof

This representation is derived in the proof of sufficiency in Theorem 3.5.3. �
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Using the formulas in [Li (2009)], one may apply Corollary 4.4.1 to compute various

coefficients of tail dependence. Moreover, Corollary 4.4.1 extends [Falk et al. (2004),

Example 4.3.2], where the Pickands dependence function is derived for the case a1 =

. . . = ad−1 = α, which corresponds to family (3) in Table 4.1. Next, a probabilistic

interpretation of the parameters (a0, . . . , ad−1)
′

is given. In the bivariate case d = 2 an

eMO-copula u(1) u
a1

(2) boils down to a bivariate Cuadras-Augé copula with parameter

1 − a1. Thus, the coefficient of upper-tail dependence is 1 − a1 by Example 2.2.10. In

some sense the following corollary extends this result to larger dimensions.

Corollary 4.4.2 (Formula for ak)

A probabilistic interpretation of (a1, . . . , ad−1)
′

is available, namely

ak = lim
t↑1

P
(
U1 ≤ t, . . . , Uk ≤ t

∣∣Uk+1 > t
)

= 1− lim
t↑1

P
(

max{U1, . . . , Uk} > t
∣∣Uk+1 > t

)
, k = 1, . . . , d− 1,

where (U1, . . . , Ud)
′

is a random vector with joint distribution function C(u1, . . . , ud) =

ua0

(1) · u
a1

(2) · · ·u
ad−1

(d) on a probability space (Ω,F ,P).

Proof

The parameter ak = (1/a0)∇0ak is computed as byproduct of the proof of necessity in

Theorem 3.5.3, compare equation (3.6) with j = 1, page 80. �

Another direct consequence of the proof of Theorem 3.5.3 is a formula for the upper-

extremal dependence coefficient as introduced in Definition 2.2.11.

Corollary 4.4.3 (Upper-Extremal Dependence Coefficient)

Given the copula C(u1, . . . , ud) = ua0

(1) ua1

(2) · · ·u
ad−1

(d) , its upper-extremal dependence

coefficient is given by

UEDCC =
∇d−1a0

a0 + a1 + . . .+ ad−1
.

Proof

With cd := a0 + a1 + . . .+ ad−1 the expression (1/cd)∇d−1a0 is computed as byproduct

of the proof of necessity in Theorem 3.5.3, compare equation (3.6) with k = 0 and j = d,

page 80. �
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4.4 Distributional Properties of the Class eMO

It is further possible to compute the multivariate Spearman’s Rho, compare Definition

2.2.12, for the copula C(u1, . . . , ud) = ua0

(1) u
a1

(2) · · ·u
ad−1

(d) .

Theorem 4.4.4 (Spearman’s Multivariate Rho)

Suppose one is given the copula C(u1, . . . , ud) = ua0

(1) · u
a1

(2) · · ·u
ad−1

(d) . Spearman’s Multi-

variate Rho ρdC for C is given by

ρdC =
d+ 1

2d − (d+ 1)

(
2d−1 d!

( d∏
k=2

(
k +

k−1∑
i=0

ai

))−1

− 1
)
.

Proof

First recall that a0 = 1 by Theorem 3.5.3. For an arbitrary sequence (a1, . . . , ad−1)
′

of

non-negative numbers denote

I
(a1,...,ad−1)
d := d!

∫ 1

0
u1

∫ 1

u1

ua1
2

∫ 1

u2

ua2
3 . . .

∫ 1

ud−1

u
ad−1

d dud . . . du1.

Solving the innermost integral it is observed for d ≥ 3 that

I
(a1,...,ad−1)
d =

d!
1 + ad−1

∫ 1

0
u1

∫ 1

u1

ua1
2

∫ 1

u2

ua2
3 . . .

∫ 1

ud−2

u
ad−2

d−1

(
1− uad−1+1

d−1

)
dud−1 . . . du1

=
d

1 + ad−1

(
I

(a1,...,ad−2)
d−1 − I(a1,...,ad−3,ad−2+ad−1+1)

d−1

)
. (4.7)

Since it is easily verified that I(a1)
2 = 1/(a1 + 3), equation (4.7) implies a recursion for

I
(a1,...,ad−1)
d which is used to prove that

2 I(a1,...,ad−1)
d = d!

( d∏
k=2

(
k +

k−1∑
i=0

ai

))−1

. (4.8)

Equation (4.8) is easily verified in the case d = 2. The general formula is obtained by

induction over d. The first equality in the following computation uses the recursion

(4.7), the second equality the induction hypothesis (IH).

2 I(a1,...,ad)
d+1 =

d+ 1
1 + ad

(
2 I(a1,...,ad−1)

d − 2 I(a1,...,ad−2,ad−1+ad+1)
d

)
(IH)
=

d+ 1
1 + ad

( d∏
k=2

k

k +
∑k−1

i=0 ai
−
( d−1∏
k=2

k

k +
∑k−1

i=0 ai

) d

d+ 1 + ad +
∑d−1

i=0 ai

)
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=
d+ 1
1 + ad

( d−1∏
k=2

k

k +
∑k−1

i=0 ai

)( d

d+
∑d−1

i=0 ai
− d

d+ 1 + ad +
∑d−1

i=0 ai

)
=
d (d+ 1)
1 + ad

( d−1∏
k=2

k

k +
∑k−1

i=0 ai

) 1 + ad(
d+

∑d−1
i=0 ai

) (
d+ 1 +

∑d
i=0 ai

)
=

d+ 1

d+ 1 +
∑d

i=0 ai

d∏
k=2

k

k +
∑k−1

i=0 ai
=

d+1∏
k=2

k

k +
∑k−1

i=0 ai
.

Thus, (4.8) is established. Denoting by Pd the set of all d! permutations on {1, 2, . . . , d},
the invariance of C with respect to permutations of its arguments implies∫

[0,1]d
C(u1, . . . , ud) d(u1, . . . , ud) =

∑
π∈Pd

∫
{uπ(1)<...<uπ(d)}

C(u1, . . . , ud) d(u1, . . . , ud)

= d!
∫
{u1<...<ud}

C(u1, . . . , ud) d(u1, . . . , ud) = I
(a1,...,ad−1)
d .

Applying this observation to the definition of ρdC gives

ρdC =
d+ 1

2d − (d+ 1)

(
2d
∫

[0,1]d
C(u1, . . . , ud) d(u1, . . . , ud)− 1

)
=

d+ 1
2d − (d+ 1)

(
2d−1 2 I(a1,...,ad−1)

d − 1
)
.

The claim then follows from equation (4.8). �

A further distinctive property of Marshall-Olkin distributions is their singular compo-

nent. In particular, the probability that two or more components of a random vector,

whose joint distribution function is a copula in the class eMO, are identical is positive,

compare e.g. Lemma 4.2.5. It is possible to compute this probability explicitly in the

general case, which is carried out in Theorem 4.4.5 below. It is a generalization of

Lemma 4.2.5. Notice that the statement is remarkable not only because the probability

of a ”global shock” can be computed explicitly, but also because of the connection be-

tween the singular component and the upper-extremal dependence coefficient. It again

illustrates the usefulness of Lévy-frailty copulas, on which a part of the proof relies.
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4.4 Distributional Properties of the Class eMO

Theorem 4.4.5 (The Singular Component of the Class eMO)

Let (U1, . . . , Ud)
′
have joint distribution function C(u1, . . . , ud) = ua0

(1) ·u
a1

(2) · · ·u
ad−1

(d) from

the class eMO. Then it holds that

P(U1 = . . . = Ud) =
∇d−1a0∑d−1
i=0 ai

= UEDCC .

Proof

The second equality of the statement follows from Corollary 4.4.3. The first equal-

ity is easier to establish in the original Marshall-Olkin model, so we apply Theorem

3.4.1. Consider the copula ua0

(1) · u
a1

(2) · · ·u
ad−1

(d) for a sequence (a0, . . . , ad−1)
′ ∈ Md.

Using the reparameterization from Theorem 3.4.1, we consider the original param-

eters (λ1, . . . , λd)
′ ∈ [0,∞)d \ {(0, . . . , 0)

′} defined by λk := ∇k−1ad−k. Recall the

probability space (Ω,F ,P) from the original Marshall-Olkin construction. I.e. for each

∅ 6= I ⊂ {1, . . . , d} let EI ∼ Exp(λ|I|) (or EI ≡ ∞ if λ|I| = 0), and assume all these

2d − 1 random variables are independent. Further recall that the minimum of indepen-

dent exponentially distributed random variables is exponentially distributed, and the

parameter of the minimum equals the sum of the parameters. It follows from this fact

that

min
{
EI
∣∣ 1 ≤ |I| ≤ d− 1

}
∼ Exp

( d−1∑
l=1

(
d

l

)
λl

)
.

Denoting λ̃ :=
∑d−1

l=1

(
d
l

)
λl, it follows that the two random variables

E{1,...,d} and min
{
EI
∣∣ 1 ≤ |I| ≤ d− 1

}
are independent and exponentially distributed with means 1/λd and 1/λ̃, respectively.

Hence, using the original probabilistic model defining the Marshall-Olkin distribution,

compare (2.11), we know that C is the joint distribution function of the random vector

(U1, . . . , Ud)
′

defined by Ui := exp(−a0 τi), i = 1, . . . , d, where the τi are constructed

from the EI ’s as in (2.11), and a0 =
∑d−1

l=0

(
d−1
l

)
λl+1 = 1 (recall this from the proof of

Lemma 3.3.4). It follows that

P(U1 = . . . = Ud) = P
(
E{1,...,d} ≤ min

{
EI
∣∣ 1 ≤ |I| ≤ d− 1

})
=
∫ ∞

0

∫ ∞
x

λ̃ e−λ̃ y λd e
−λd x dy dx =

λd∑d
l=1

(
d
l

)
λl

=
∇d−1a0∑d

l=1

(
d
l

)
∇l−1ad−l

. (4.9)
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Finally, one can simplify the denominator in (4.9) by Lemma 4.4.6 below to obtain the

claimed statement. �

Lemma 4.4.6 (Technical Lemma 3)

For arbitrary numbers a0, a1, . . . , ad−1 it holds that

d∑
i=1

(
d

i

)
∇i−1ad−i =

d−1∑
i=0

ai.

Proof

We start with a re-summation.

d∑
i=1

(
d

i

)
∇i−1ad−i =

d−1∑
i=0

(
d

d− i

)
∇d−i−1ai

L.2.5.2=
d−1∑
i=0

(
d

d− i

) d−i−1∑
j=0

(
d− i− 1

j

)
(−1)j ai+j

=
d−1∑
j=0

(−1)j
d−j−1∑
i=0

(
d

d− i

)(
d− i− 1

j

)
ai+j

(k=i+j)
=

d−1∑
j=0

(−1)j
d−1∑
k=j

(
d

d− k + j

)(
d− k + j − 1

j

)
ak

=
d−1∑
k=0

ak

k∑
j=0

(−1)j
(

d

d− k + j

)(
d− k + j − 1

j

)
.

Denoting

κk :=
k∑
j=0

(−1)j
(

d

d− k + j

)(
d− k + j − 1

j

)
, k = 0, . . . , d− 1,

left to show is that κk = 1 for all k ∈ {0, . . . , d − 1}. To this end, we consider a

special sequence, namely ak := αk for α ∈ (0, 1). Let (U1, . . . , Ud)
′

be defined on a

probability space (Ω,F ,P) and be distributed according to the joint distribution function

C1−α(u1, . . . , ud) :=
∏d
i=1 u

αi−1

(i) ∈ eMO. Notice that C1−α is an exchangeable Cuadras-

Augé copula, see (4.6). Lemma 4.2.5 shows that in this case it holds that

P(U1 = . . . = Ud) =
(1− α)d

1− αd
=

(1− α)d−1

1−αd
1−α

=
∑d−1

i=0

(
d−1
i

)
(−1)i αi∑d−1

i=0 α
i

=
∇d−1a0∑d−1
i=0 α

i
.
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4.4 Distributional Properties of the Class eMO

Combining this with the general formula (4.9) we obtain in this special case that

∇d−1a0∑d−1
i=0 α

i κi
= P(U1 = . . . = Ud) =

∇d−1a0∑d−1
i=0 α

i
.

In particular, it follows for all α ∈ (0, 1) that

d−1∑
i=0

κi α
i =

d−1∑
i=0

αi.

The fundamental theorem of algebra now implies that κi = 1 for all i ∈ {0, 1, . . . , d−1}.
Thus, the proof is finished. �

As a corollary to Theorem 4.4.5 it is possible to compute a probability involving Lévy

subordinators which is not easy to obtain directly.

Corollary 4.4.7 (Application to Lévy Subordinators)

On a probability space (Ω,F ,P), let Λ be an arbitrary Lévy subordinator with Laplace

exponent Ψ, drift µ ≥ 0, and Lévy measure ν on (0,∞], excluding the degenerate case

Λt ≡ 0. Let d ≥ 2 and E1, . . . , Ed be i.i.d. with E1 ∼ Exp(1), independent of Λ. Then

it holds that

lim
t↓0

P
(

Λt > max{E1, . . . , Ed}
∣∣∣Λt > min{E1, . . . , Ed}

)
= P

(
lim
u↑t

Λu < E1, . . . , Ed ≤ Λt for some t ≥ 0
)

=
−1

Ψ(d)

d∑
i=0

(
d

i

)
(−1)i Ψ(i)

=

∫
(0,∞]

(
1− e−t

)d
ν(dt)

µd+
∫

(0,∞]

(
1− e−d t

)
ν(dt)

=
E
[
ν
(
[max{E1, . . . , Ed},∞]

)]
µd+ E

[
ν
(
[E1/d,∞]

)] .

Proof

Since Λ is not identically zero, Ψ(1) > 0, and we can rewrite

⋃
t≥0

{
lim
u↑t

Λu < E1, . . . , Ed ≤ Λt
}

=
⋃
t≥0

{
lim
u↑t

Λ u
Ψ(1)

< E1, . . . , Ed ≤ Λ t
Ψ(1)

}
.

Thus, the probability in concern agrees with

P
(

lim
u↑t

Λ̃u < E1, . . . , Ed ≤ Λ̃t for some t ≥ 0
)
,
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where Λ̃ = {Λ̃t}t≥0 = {Λt/Ψ(1)}t≥0 is a Lévy subordinator with Laplace exponent Ψ̃(.) =

Ψ(.)/Ψ(1) satisfying Ψ̃(1) = 1. Let (Ũ1, . . . , Ũd)
′

be defined on (Ω,F ,P) having the d-

dimensional Lévy-frailty copula CΨ̃ as joint distribution function. Theorem 4.4.5 with

parameters ak := Ψ̃(k + 1)− Ψ̃(k) for k = 0, 1, . . . , d− 1 proves that

P
(

lim
u↑t

Λu < E1, . . . , Ed ≤ Λt for some t ≥ 0
)

= P(Ũ1 = . . . = Ũd)

=
∇d−1a0∑d−1
i=0 ai

= UEDCCΨ̃
= lim

u↑1
P(Ũ(1) > u | Ũ(d) > u)

= lim
t↓0

P
(

Λt > max{E1, . . . , Ed}
∣∣∣Λt > min{E1, . . . , Ed}

)
.

Moreover, it is an easy exercise to compute that

∇d−1a0∑d−1
i=0 ai

=
−1

Ψ(d)

d∑
i=0

(
d

i

)
(−1)i Ψ(i).

Finally, the last two claimed equations are established. From the Lévy-Khinchin repre-

sentation we obtain

d∑
i=0

(
d

i

)
(−1)i+1 Ψ(i) =

d∑
i=0

(
d

i

)
(−1)i+1

(
µ i+

∫
(0,∞]

(
1− e−i t

)
ν(dt)

)
= µ

d∑
i=0

(
d

i

)
(−1)i+1 i+

∫
(0,∞]

d∑
i=0

(
d

i

)
(−1)i+1 −

d∑
i=0

(
d

i

)
(−1)i+1 e−i tν(dt)

= µ
d∑
i=0

(
d

i

)
(−1)i+1 i+

∫
(0,∞]

(−1) (1− 1)d +
(
1− e−t

)d
ν(dt)

= µ
d∑
i=0

(
d

i

)
(−1)i+1 i+

∫
(0,∞]

(
1− e−t

)d
ν(dt).

Moreover, we check that

d∑
i=0

(
d

i

)
(−1)i+1 i =

d∑
i=1

d!
i! (d− i)!

(−1)i+1 i =
d∑
i=1

(d− 1)! d
(i− 1)! (d− 1− (i− 1))!

(−1)i+1

= d

d∑
i=1

(
d− 1
i− 1

)
(−1)i+1 (j=i−1)

= d

d−1∑
j=0

(
d− 1
j

)
(−1)j = d (1− 1)d−1 = 0.

This yields the first equation. The second equation then follows from the following
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4.4 Distributional Properties of the Class eMO

observation:

1− e−d t = P(E1 ≤ d t) = P(E1/d ≤ t) = E
[
1{E1/d≤t}

]
,

which by Tonelli’s theorem implies that∫
(0,∞]

(
1− e−d t

)
ν(dt) = E

[ ∫
(0,∞]

1{E1/d≤t} ν(dt)
]

= E
[
ν([E1/d,∞])

]
.

Similarly,

(
1− e−t

)d = P(max{E1, . . . , Ed} ≤ t) = E
[
1{max{E1,...,Ed}≤t}

]
,

which implies (by exactly the same argument) that∫
(0,∞]

(
1− e−t

)d
ν(dt) = E

[
ν([max{E1, . . . , Ed},∞])

]
.

The claim is established. �

If one is willing to compute the probability of the event {limu↑t Λu < E1, . . . , Ed ≤
Λt for some t ≥ 0}, the explicit formula in terms of the Laplace exponent is numer-

ically challenging to evaluate for large d � 2. For this reason, the more convenient

integral representation is included in the statement of Corollary 4.4.7. Furthermore,

the last two equalities imply that the probability in concern decreases with increasing

drift µ. This is quite intuitive since larger drift implies that the range B := {y ∈
[0,∞) |Λt = y for some t ≥ 0} of Λ becomes ”larger”. Hence, it becomes more likely

that E1, . . . , Ed ∈ B, implying that they are not all identical. It is remarkable that

a probability involving the whole path of a Lévy subordinator (up to the maximum

of d independent exponential random variables) is the same as the limit for t ↓ 0 of

probabilities that only involve the path of the Lévy subordinator up to time t > 0.

Remark 4.4.8 (Link to Regenerative Composition Structures)

The Lévy-frailty construction is closely related to so-called regenerative composition

structures, as introduced in [Gnedin, Pitman (2005)]. More precisely, let us assume the

notation of Theorem 4.2.2 and apply the usual convention τ(1) ≤ . . . ≤ τ(d) for the or-

dered list of τ1, . . . , τd. Whereas the present thesis studies the distribution of (τ1, . . . , τd)
′
,

the reference [Gnedin, Pitman (2005)] studies the distribution of (P1, . . . , PKd)
′
, where
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Kd := |{τ1, . . . , τd}| denotes the number of different first passage times, and

P1 := max{j ∈ N | τ(j) = τ(1)},

P2 := max{j ∈ N | τ(P1+j) = τ(P1)},
...

PKd := max{j ∈ N | τ(PKd−1+j) = τ(PKd−1)}.

Notice that P1, . . . , PKd ∈ N and P1 + . . . + PKd = d, hence (P1, . . . , PKd)
′

defines a

so-called random partition of d, and vast literature can be found on the study of such

objects. For instance, it is shown in [Gnedin, Pitman (2005), Theorem 5.2] that

P(τ(1) = τ(m) < τ(m+1)) =

(
d
m

) ∑m
i=0

(
m
i

)
(−1)i+1 Ψ(d−m+ i)
Ψ(d)

, m = 1, . . . , d− 1,

(4.10)

P(τ(1) = τ(d)) =
∑d

i=0

(
d
i

)
(−1)i+1 Ψ(i)

Ψ(d)
.

The formulas in (4.10) extend a part of Corollary 4.4.7, which only considers the prob-

ability P(τ(1) = τ(d)). However, an alternative proof of these formulas - in fact even a

generalization to arbitrary eMO-copulas (not necessarily of Lévy-frailty kind) - can be

derived in a similar manner as in the proof of Theorem 4.4.5. Since these are of minor

importance, their derivation is left as an exercise for the interested reader.

116



5 Sampling Applications and Non-Exchangeable

Structures

”What happens if a big asteroid hits Earth? Judging from realistic simu-

lations involving a sledge hammer and a common laboratory frog, we can

assume it will be pretty bad.”

D. Barry, American writer and humorist.

Random number generation is crucial for many practical applications. If a probabilistic

model is used to describe reality, then it is often important to be able to generate a

huge number of scenarios of the model (on a standard PC). For the simulation of uni-

variate random variables there exist quite general simulation algorithms, see e.g. the

standard textbook [Devroye (1986)]. Often they are based on the transformation of a

simulated standard uniformly distributed random variable U ∼ U [0, 1]. Simulation al-

gorithms for the latter typically rely on algebraic derivations, for a prominent example

see [Matsumoto, Nishimura (1998)]. Having such algorithms at hand, the simulation of

independent random variables is possible. However, the simulation of random vectors

requires one to simulate possibly dependent random variables. More precisely, con-

sider a d-dimensional distribution function F with continuous margins F1, . . . , Fd and

copula C. To simulate a random vector with distribution function F , one may gener-

ate a random vector (U1, . . . , Ud)
′
, which has the copula C as joint distribution func-

tion, and then transform the components U1, . . . , Ud to the desired marginals, setting1

τi := F−1
i (Ui), i = 1, . . . , d. Simulating (U1, . . . , Ud)

′
with joint distribution function

C is referred to as sampling the copula C in the sequel. In the bivariate case, there

exist sampling algorithms for quite arbitrary copulas, see e.g. [Nelsen (1999), p. 36] and

the references therein. However, in larger dimensions, such general sampling strategies

become expensive and the efficient sampling of copulas depends on convenient proba-

bilistic constructions. E.g. Theorem 2.3.10 implies an efficient sampling algorithm for

some Archimedean copulas.
1F−1

i denotes the generalized inverse of Fi as in the proof of Theorem 2.2.5.
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The content of this chapter is to outline how the class of Lévy-frailty copulas, and in

particular Theorem 4.2.2, can be applied to sample Marshall-Olkin survival copulas in

large dimensions. Recall that the original probabilistic construction of the Marshall-

Olkin distribution requires one to evaluate a complicated function of 2d−1 independent

exponential random variables, see Subsection 2.3.2 or Algorithm 2 below. In large

dimensions d� 2 this approach is inefficient, not to say impossible, on a standard PC.

However, in one of the main results of this dissertation (Theorem 4.2.2) we have seen that

for a specific subclass (Lévy-frailty copulas) there is an alternative probabilistic model

available. This involves only d independent exponential threshold levels E1, . . . , Ed and

one path of an independent Lévy subordinator up to the first time the maximum E(d)

of the threshold levels is exceeded. Lemma 5.1.1 below shows that d 7→ E[E(d)] grows

like d 7→ log d, which is ”slow”. Consequently, the new sampling approach is efficient

also in large dimensions d� 2. A generic sampling algorithm for a Lévy-frailty copula

is given below.

Algorithm 1 (Generic Sampling Algorithm: Lévy-Frailty Copula)

To sample the copula CΨ(u1, . . . , ud) from Definition 4.2.1, the following steps may be

exercised.

(0) Input: a Laplace exponent Ψ satisfying Ψ(1) = 1.

(1) Generate E1, . . . , Ed i.i.d. with E1 ∼ Exp(1).

(2) Find the maximum E(d) := max{E1, . . . , Ed}.

(3) Independently of the random variables E1, . . . , Ed, simulate one path of a Lévy

subordinator Λ = {Λt}t∈[0,T ] with Laplace exponent Ψ, where T is chosen large

enough such that ΛT ≥ E(d).

(4) Determine the first passage times

τi := inf
{
t ≥ 0 : Λt ≥ Ei

}
, i = 1, . . . , d.

(5) Return (U1, . . . , Ud)
′
, where Ui := exp(−τi), i = 1, . . . , d.

For instance, in Section 5.1 Algorithm 1 is demonstrated exemplarily to efficiently sample

exchangeable Cuadras-Augé copulas, as given by (4.6).
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5.1 Sampling Exchangeable Cuadras-Augé Copulas

For some applications the symmetry of the Lévy-frailty copula CΨ in its arguments might

be too restrictive. The fact that CΨ(u1, . . . , ud) is invariant under permutations of its

arguments implies a degree of exchangeability of the corresponding random vector which

sometimes is not justified in applications. In particular, it follows for 2 ≤ k ≤ d that

all k-margins of CΨ(u1, . . . , ud) are given by CΨ(u1, . . . , uk), and hence are identical in

structure. To overcome this drawback, Section 5.2 aims at enlarging the class of Lévy-

frailty copulas to a family of copulas which allows for non-exchangeable dependence

structures as well, without losing the advantage of efficient sampling.

5.1 Sampling Exchangeable Cuadras-Augé Copulas

This section is concerned with the specific copula Cα(u1, . . . , ud) = u(1)

∏d
i=2 u

(1−α)i−1

(i) ,

for some prespecified parameter α ∈ [0, 1]. As mentioned before, this one-parametric

family of copulas coincides with the exchangeable special case of a distribution first

discussed in [Cuadras, Augé (1981)]. In the case d = 2, [Ocana, Ruiz-Rivas (1990)]

show how to sample a bivariate Cuadras-Augé copula.2 Extending their investigations,

we show how Cα can efficiently be sampled in arbitrary dimension d > 2. The effect of

the parameter α on the dependence structure is illustrated in Figure 5.1, using Algorithm

3 below.

Before Algorithm 3 is presented, an alternative simulation algorithm, which is based

on the original probabilistic model (2.11), is outlined. By virtue of Theorem 3.4.1,

Cα is from the class eMO with parameters λk := (1− α)d−k αk−1, k = 1, . . . , d. Hence

applying (2.11), a random vector (U1, . . . , Ud)
′

with joint distribution function Cα might

be simulated by the following algorithm.

Algorithm 2 (Sampling of Exchangeable Cuadras-Augé Copulas)

(0) The input for the algorithm is the dimension d ≥ 2 and the parameter α ∈ [0, 1].

If α = 0, U1, . . . , Ud are independent and therefore straightforward to simulate. If

α = 1, U1, . . . , Ud are completely comonotonic. Hence, one simulates U1 ∼ U [0, 1]

and sets U2 := . . . := Ud := U1. We proceed with the interesting cases α ∈ (0, 1).

(1) Compute λk := (1− α)d−k αk−1, k = 1, . . . , d.

2See also Subsection 2.2.1 for an alternative construction.
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Figure 5.1 Histograms for six simulations of a random vector (U1, . . . , Ud)
′

with joint
distribution function Cα(u1, . . . , ud), d = 10 000, using different α’s. The
j-th of the 100 bars in each plot counts the number of Ui’s falling into
the interval [(j − 1)/100, j/100), which is displayed using a log-scale with
base 10. It is observed that the clustering increases in α. For fixed α,
moving from the left to the right end of the scale, the number of clus-
ters decreases, whereas the size of clusters increases. This effect is ex-
plained by the fact that E[E(i) − E(i−1)] = 1/(d − i + 1), i = 2, . . . , d, see
[David, Nagaraja (1970), p. 18].

(2) For each k = 1, . . . , d, generate d choose k i.i.d. random variables EI ∼ Exp(λk),

I ⊂ {1, . . . , d} with |I| = k.

(3) Determine the minima

τk := min{EI | ∅ 6= I ⊂ {1, . . . , d}, k ∈ I}, k = 1, . . . , d.

(4) Return (U1, . . . , Ud)
′
, where Uk := exp(−τk) for k = 1, . . . , d.

It follows from Remark 3.4.2 that in the algorithm above τk ∼ Exp(1), k = 1 . . . , d, and

(τ1, . . . , τd)
′

has survival copula Cα. Consequently, the random vector (U1, . . . , Ud)
′
,

defined as a transformation of (τ1, . . . , τd)
′

in Step (4), has joint distribution function
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5.1 Sampling Exchangeable Cuadras-Augé Copulas
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Figure 5.2 The runtimes for the simulation of one random vector (U1, . . . , Ud)
′ ∼ C1/2

are illustrated in dimension d = 2, . . . , 20 using Algorithm 2, which is based
on the orignial probabilistic construction (2.11).

Cα. If the dimension d is large, then in particular Step (3) is very expensive. But

even Step (2) is expensive, since storage of the 2d − 1 samples EI might exceed the

computational resources, if d is large. This is verified by a brute force implementation

of Algorithm 2 in R, which was carried out for d = 2, . . . , 20. As expected, the algorithm

runtime increases exponentially in the dimension d. On a Lenovo ThinkPad X200 Model

7458WB6-U (Intel Core 2 Duo CPU) with 2.39 GHz and 4GB RAM already for d = 15,

the runtime for the simulation of one random vector is 56.63 seconds. For d = 20, it is

already 3172.34 seconds, see Figure 5.2. The simulation of random vectors in dimension

d > 100 is thus practically impossible using this approach. In comparison, the alternative

Algorithm 3 below, which is based on Theorem 4.2.2, takes only fractions of a second

on the same PC in dimensions d ≤ 20. It requires 0.01 seconds for d = 100 and 0.61

seconds for d = 10 000.

As outlined earlier, Cα is a Lévy-frailty copula corresponding to family (2) in Table

4.1, page 106. I.e. Cα may be constructed as the survival copula of the random vector

(τ1, . . . , τd)
′

of first passage times of a Lévy subordinator Λ across independent expo-

nential threshold levels E1, . . . , Ed. In particular, for the interesting cases α ∈ (0, 1), Λ
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is specified by Λt := J Nt, where J := − log(1 − α) > 0 and N = {Nt}t≥0 is a Poisson

process with intensity 1/α. Since a Poisson process can be sampled efficiently without

discretization bias, see e.g. [Cont, Tankov (2004), Algorithm 6.1, p. 174], the Lévy-frailty

construction may be used to derive the following unbiased sampling algorithm.

Algorithm 3 (Improved Sampling of Exchangeable Cuadras-Augé Copulas)

(0) The input for the algorithm is the dimension d ≥ 2 and the parameter α ∈ [0, 1].

If α = 0, U1, . . . , Ud are independent and therefore straightforward to simulate. If

α = 1, U1, . . . , Ud are completely comonotonic. Hence, one simulates U1 ∼ U [0, 1]

and sets U2 := . . . := Ud := U1. We proceed with the interesting cases α ∈ (0, 1).

(1) Specify the jump size of the process J N as J := − log(1− α).

(2) Generate E1, . . . , Ed i.i.d. with E1 ∼ Exp(1), and find the largest element E(d).

(3) Choose K ∈ N such that J K ≥ E(d), e.g. choose K as the smallest integer greater

than or equal to E(d)/J .

(4) Simulate a path of N up to time T , where T is chosen such that J NT ≥ E(d). For

this, generate K independent Exp(1/α)-distributed random variables Y1, . . . , YK

and compute the j-th jump time Tj of N as Tj = Y1 + . . .+ Yj , for j = 1, . . . ,K.

(5) Obtain a sample of (τ1, . . . , τd)
′

by setting

τi :=
K∑
j=1

1{(j−1) J<Ei≤j J} Tj , i = 1, . . . , d.

(6) Return (U1, . . . , Ud)
′
, where Ui := exp(−τi) for i = 1, . . . , d.

Choosing J as in Step (1) results in the desired copula Cα. Since the random variables

τi are constructed as first passage times of {J Nt}t≥0 above the levels Ei, one has to

generate the random variables Ei in Step (2) as well as a path of N up to time T , where

J NT ≥ E(d). In Step (3) the number of required jumps of N to cross all Ei is computed

and denoted by K. Therefore, one needs to generate a path of N up to its K-th jump

time. A sample path of N is completely determined by its jump times T1 ≤ T2 ≤ . . . ≤
TK . This simulation is accomplished in Step (4), where the construction idea (2.13) of a

Poisson process is used: the first jump time is exponentially distributed with the Poisson

intensity 1/α as parameter. The Lévy properties of N guarantee that the increment of
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5.1 Sampling Exchangeable Cuadras-Augé Copulas

the first to the second jump time is again an Exp(1/α)-distributed random variable,

and so on. Finally, defining the function f(s) := inf{t ≥ 0 : s ≤ J Nt} gives f(Ei) = τi.

It is clear that f(Ei) equals the j-th jump time of N when (j − 1) J < Ei ≤ j J , which

corresponds to Step (5).

The required computation time for sampling a d-dimensional copula with Algorithm 3

is discussed in the following. Steps (1) and (3) are computed in O(1). Finding the

maximum of d numbers in Step (2) has computational effort O(d), since one simply

has to consider all Ei and to compare each number with its predecessor. To estimate

the expected runtime of Step (4) one needs to know the expected value of K. For

this purpose, Lemma 5.1.1 below shows that E(d) has expected size in O(log d). Thus,

the expected value of K is in O(log d), which therefore equals the expected runtime

of Step (4). The next step requires the most computational resources, since for each

i = 1, . . . , d on average one has to sum up K numbers. Since K has expected size in

O(log d), Step (5) has expected complexity O(d log d). However, since only one term

in the sum differs from zero, a binary tree argument can be used for each i to find the

interval
(
(j − 1) · J, j · J

]
containing Ei and speed up the summation this way. Since a

bisection procedure for a set with K elements has computational efficiency O(logK), see

[Sedgewick (1988), p. 198 ff], one finally obtains computational efficiency O(d log log d)

for Step (5). Since the runtime of Algorithm 3 has the same complexity as its slowest

step, the complexity O(d log log d) is obtained as expected runtime for the algorithm.

Compared to the complexity O
(
2d
)

of Algorithm 2, this is a remarkable improvement.

Lemma 5.1.1 (Computational Efficiency)

It holds that E[E(d)] ∈ O(log d), i.e limd→∞ E[E(d)]/ log d = 1.

Proof

The distribution function of E(d) is given by
(
1− exp(−t)

)d 1{t>0}. Hence, the distribu-

tion function of E(d) − log d is given by F [d](t) :=
(
1 − exp(−t− log d)

)d 1{t>− log d}. It

follows that limd→∞ F
[d](t) = exp

(
− exp(−t)

)
, compare [David, Nagaraja (1970), Ex-

ercise 2.1.3, p. 22]. Therefore, independently considering for each d ∈ N the maximum

E(d) of d i.i.d. Exp(1)-distributed random variables, the sequence E(d)− log d converges

in distribution to a random variable τ with distribution function t 7→ exp
(
− exp(−t)

)
.

The mean of τ is easily verified to exist, hence

∣∣E[E(d)]− (log d+ E[τ ])
∣∣→ 0, d→∞.

This establishes the claim.
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Alternatively, one can easily show that E[E(d+1)] = E[E(d)] + 1/(d + 1). Thus, E[E(d)]

is the harmonic series which is known to grow as log d + γ, where γ = 0.5772 . . . is the

so-called Euler-Mascheroni constant, see e.g. [Rudin (1998), Exercise 9(a), p. 231]. In

fact, E[τ ] from above is just a representation for this constant. �

5.2 Hierarchical Lévy-Frailty Copulas

We now introduce a hierarchical dependence structure by generalizing the family of Lévy-

frailty copulas from Definition 4.2.1. Consider M ∈ N groups with dj ∈ N members in

group j. A random vector (τ1,1, . . . , τ1,d1 , τ2,1, . . . , τM,dM )
′ ∈ R

∑M
j=1 dj is constructed

such that:

1. Each τj,i is exponentially distributed with mean one.

2. For each group j ∈ {1, . . . ,M} the random subvector (τj,1, . . . , τj,dj )
′

has a Lévy-

frailty survival copula.

3. Two random variables from different groups are not necessarily independent. More

precisely, for j1 6= j2 and (i1, i2) ∈ {1, . . . , dj1}× {1, . . . , dj2} the bivariate random

vector (τj1,i1 , τj2,i2)
′

has a Cuadras-Augé survival copula.

The construction of such partitioned random vectors is motivated by applications. As

we have seen in the previous chapter, Lévy-frailty copulas rely on a model which is

exchangeable in the spirit of De Finetti’s theorem: all components are equally affected

by one common latent factor, a Lévy subordinator. However, in applications one often

faces situations, where it is more realistic to assume that there are multiple latent

factors. Considering for example a portfolio of d companies, it is natural to subdivide it

into groups according to industrial branches. Given this partition, it might be intuitive

to assume that the pharmaceutical branch is affected by different market factors than

the financial branch. Nevertheless, there might be a global factor which affects all

industrial branches, so the branches cannot be modeled independently of each other.

Such motivations have led researchers to derive hierarchical extensions of Archimedean

copulas, see e.g. [Joe (1997), McNeil (2008), Hering et al. (2010)]. On the contrary,

Lévy-frailty copulas have a natural non-exchangeable extension, since they are actually

defined as a subclass of (non-exchangeable) Marshall-Olkin survival copulas. However,
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5.2 Hierarchical Lévy-Frailty Copulas

the previous paragraph reveals that the original Marshall-Olkin construction is not well-

suited for simulations in large dimensions d� 2. To overcome this drawback, we rather

extend the idea of Theorem 4.2.2, which is based on Lévy subordinators. The definition

and respective sampling algorithm of this construction is carried out in Subsection 5.2.1

below. Subsection 5.2.2 finally shows that the constructed random vector is still of

Marshall-Olkin kind, even though no longer exchangeable.

5.2.1 Construction and Sampling Algorithm

To construct a random vector with the properties postulated above, we consider a proba-

bility space (Ω,F ,P) on which independent Lévy subordinators Λ(0),Λ(1), . . . ,Λ(M) with

corresponding Laplace exponents Ψ0,Ψ1, . . . ,ΨM are defined. All Laplace exponents

Ψ0, . . . ,ΨM are assumed to have 1 as a fixpoint. Moreover, let {Ej,i | j = 1, . . . ,M, i =

1, . . . , dj} be i.i.d. with Exp(1)-distribution, all being independent of the Lévy subordi-

nators. Finally, let a ∈ [0, 1] be an additional parameter. Then we define

τj,i := inf
{
t ≥ 0 : Λ(0)

a t + Λ(j)
(1−a) t ≥ Ej,i

}
, j = 1, . . . ,M, i = 1, . . . , dj . (5.1)

The main theoretical result about this random vector is Theorem 5.2.1 below.

Theorem 5.2.1 (Lévy-Frailty Copula with Hierarchical Structure)

The survival copula Ĉ of the random vector (τ1,1, . . . , τ1,d1 , τ2,1, . . . , τM,dM )
′

is given by

Ĉ(~u) = CΨ0(~u)a ·
( M∏
j=1

CΨj (uj,1, . . . , uj,dj )
)1−a

, (5.2)

where ~u = (u1,1, . . . , u1,d1 , . . . , uM,1, . . . , uM,dM )
′ ∈ [0, 1]d1+...+dM . Moreover, each com-

ponent τj,i is Exp(1)-distributed.

Proof

Let (t1,1, . . . , t1,d1 , . . . , tM,dM )
′ ∈ [0,∞)

∑M
j=1 dj . Then, using conditional independence in

the second equality, one obtains

P
(
τ1,1 > t1,1, . . . , τ1,d1 > t1,d1 , . . . , τM,dM > tM,dM

)
= P

(
Λ(0)
a t1,1

+ Λ(1)
(1−a) t1,1

< E1,1, . . . ,Λ
(0)
a t1,d1

+ Λ(1)
(1−a) t1,d1

< E1,d1 ,

. . . ,Λ(0)
a tM,dM

+ Λ(M)
(1−a) tM,dM

< EM,dM

)
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5.2.1 Construction and Sampling Algorithm

= E
[
e
−Λ

(0)
a t1,1

−Λ
(1)
(1−a) t1,1 · · · e

−Λ
(0)
a t1,d1

−Λ
(1)
(1−a) t1,d1 · · · e

−Λ
(0)
a tM,dM

−Λ
(M)
(1−a) tM,dM

]
= E

[
e
−
∑M
j=1

∑dj
i=1 Λ

(0)
a tj,i

] M∏
j=1

E
[
e
−
∑dj
i=1 Λ

(j)
(1−a) tj,i

]
.

In the proof of Theorem 4.2.2 it is shown that for arbitrary numbers t1, . . . , td ≥ 0

with order statistics 0 := t(0) ≤ t(1) ≤ t(2) ≤ . . . ≤ t(d) it follows for an arbitrary Lévy

subordinator Λ with Laplace exponent Ψ having 1 as a fixpoint that

E
[
e−

∑d
i=1 Λti

]
=

d∏
i=1

e−(t(i)−t(i−1)) Ψ(d+1−i) = CΨ(e−t1 , . . . , e−td). (5.3)

Since furthermore exp(a t) = exp(t)a and Lévy-frailty copulas are extreme-value copulas,

applying (5.3) to the previous computation implies

P
(
τ1,1 > t1,1, . . . , τ1,d1 > t1,d1 , . . . , τM,dM > tM,dM

)
=
(
CΨ0(e−t1,1 , . . . , e−t1,d1 , . . . , e−tM,dM )

)a ( M∏
j=1

CΨj (e
−tj,1 , . . . , e

−tj,dj )
)1−a

.

Hence, the claim is established by proving that each τj,i is Exp(1)-distributed. To this

end, observe for t ≥ 0 that

P
(
τj,i > t

)
= P

(
Λ(0)
a t + Λ(j)

(1−a) t ≤ Ej,i
)

= E
[
e
−Λ

(0)
a t−Λ

(j)
(1−a) t

]
= E

[
e−Λ

(0)
a t

]
E
[
e
−Λ

(j)
(1−a) t

]
= e−a tΨ0(1) e−(1−a) tΨj(1) = e−t.

The last equality follows from the fact that 1 is a fixpoint of all involved Laplace expo-

nents. �

For a specific group j ∈ {1, . . . ,M} the subvector (τj,1, . . . , τj,dj )
′

has the survival copula

CaΨ0+(1−a) Ψj (uj,1, . . . , uj,dj ), which is again a Lévy-frailty copula (corresponding to the

Lévy subordinator {Λ(0)
a t +Λ(j)

(1−a) t}t≥0 with Laplace exponent aΨ0 +(1−a) Ψj). Hence,

the copula in Theorem 5.2.1 may be considered as a hierarchical Lévy-frailty copula.

Corollary 5.2.2 (Bivariate Cuadras-Augé Coefficients)

Bivariate subpairs of (τ1,1, . . . , τ1,d1 , τ2,1, . . . , τM,dM )
′

have a Cuadras-Augé survival cop-

ula3 as dependence structure. The upper-tail dependence parameter α ∈ [0, 1] of the
3See Definition 2.2.2.
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5.2 Hierarchical Lévy-Frailty Copulas

corresponding bivariate Cuadras-Augé copula Cα is determined as follows4:

1. Inter sector: For a pair (τj1,i1 , τj2,i2)
′

taken from different groups j1 6= j2, it is

given by αinter := a
(
2−Ψ0(2)

)
.

2. Intra sector: For a pair (τj,i1 , τj,i2)
′

taken from the same group j, it is given by

αintraj := a
(
2−Ψ0(2)

)
+ (1− a)

(
2−Ψj(2)

)
= αinter + (1− a)

(
2−Ψj(2)

)
.

The intra sector dependence is always stronger than (or, in the special cases a = 1

or Ψj(2) = 2, equal to) the inter sector dependence. This is quite intuitive from the

construction, since components of the same group j are similarly affected by Λ(0) and

Λ(j); whereas components from different groups i 6= j are only dependent through Λ(0).

Proof

First consider a pair (τj1,i1 , τj2,i2)
′

from different groups j1 6= j2, w.l.o.g. j1 < j2. Its

survival copula C is obtained from the overall copula (5.2) by plugging in the special

vector ~u = (1, . . . , 1, uj1,i1 , 1, . . . , 1, uj2,i2 , 1, . . . , 1)
′
. It follows that

C(uj1,i1 , uj2,i2) = Ĉ(1, . . . , 1, uj1,i1 , 1, . . . , 1, uj2,i2 , 1, . . . , 1)

=
(

min{uj1,i1 , uj2,i2} max{uj1,i1 , uj2,i2}Ψ0(2)−1
)a
u1−a
j1,i1

u1−a
j2,i2

= min{uj1,i1 , uj2,i2} max{uj1,i1 , uj2,i2}a(Ψ0(2)−1)+1−a

= min{uj1,i1 , uj2,i2} max{uj1,i1 , uj2,i2}1−a (2−Ψ0(2))

= Ca (2−Ψ0(2))(uj1,i1 , uj2,i2).

This proves the first claim. The proof of the second claim works similarly: let now

(τj,i1 , τj,i2)
′

be a pair from the same group j, w.l.o.g. i1 < i2. Then its survival copula

C is given by

C(uj,i1 , uj,i2) = Ĉ(1, . . . , 1, uj,i1 , 1, . . . , 1, uj,i2 , 1, . . . , 1)

=
(

min{uj,i1 , uj,i2} max{uj,i1 , uj,i2}Ψ0(2)−1
)a

×
(

min{uj,i1 , uj,i2} max{uj,i1 , uj,i2}Ψj(2)−1
)1−a

= min{uj,i1 , uj,i2} max{uj,i1 , uj,i2}a (Ψ0(2)−1)+(1−a) (Ψj(2)−1)

= min{uj,i1 , uj,i2} max{uj,i1 , uj,i2}
1−
(
a (2−Ψ0(2))+(1−a)(2−Ψj(2))

)
= Ca (2−Ψ0(2))+(1−a)(2−Ψj(2))(uj,i1 , uj,i2).

4A random vector (τ1, τ2)
′

with survival copula Cα has lower-tail dependence parameter α, whereas
the copula Cα has upper-tail dependence α, compare Remark 2.2.9.
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5.2.1 Construction and Sampling Algorithm

The claim is established. �

Remark 5.2.3 (Deeper Hierarchical Structures)

Deeper hierarchical structures can similarly be constructed by introducing more Lévy

subordinators: instead of considering the convex combination of only two Laplace ex-

ponents, one may as well consider a convex combination of m > 2 Laplace exponents.

Since for the presentation of the general idea and most applications one hierarchy is

sufficient, the immediate extension to more levels is left to the reader.

Example 5.2.4 (Hierarchical Cuadras-Augé Copulas)

Suppose that all involved Lévy subordinators Λ(0),Λ(1), . . . ,Λ(M) are of compound Pois-

son type with zero drift and constant jump sizes J0, J1, . . . , JM > 0. This means

that Λ(l)
t = JlN

(l)
t , where N (l) = {N (l)

t }t≥0 are Poisson processes with intensities βl,

l = 0, . . . ,M . In order to have one as a fixpoint of the Laplace exponents Ψl(x) =

βl (1− exp(−xJl)), x ≥ 0, the jump intensities βl of the Poisson processes are forced to

be given by βl := 1/(1 − exp(−Jl)), l = 0, . . . ,M . Thus, this multivariate distribution

is fully determined by the parameter a ∈ [0, 1] and the jump sizes J0, J1, . . . , JM > 0.

The corresponding dependence coefficients 0 ≤ αinter ≤ αintraj ≤ 1, for j = 1, . . . ,M ,

are given as follows:

• αinter = a
(
1− exp(−J0)

)
.

• αintraj = αinter + (1− a)
(
1− exp(−Jj)

)
, for j = 1, . . . ,M .

Figure 5.3 illustrates this distribution by means of pairwise scatterplots in a nine-

dimensional example with three groups; Algorithm 4 below is used to sample the re-

spective copula. Note in particular that this distribution can be viewed as an extension

of exchangeable Cuadras-Augé copulas as investigated in Section 5.1.

An explicit sampling algorithm for the copula defined in (5.2), when all involved Lévy

subordinators are chosen as compound Poisson processes with drift, is presented below.

Recall that a compound Poisson process with drift is determined by its drift µ ≥ 0,

an intensity parameter β > 0, and a jump-size distribution function G on (0,∞). Its

Laplace exponent is given by Ψ(x) = µx + β (1 − E[exp(−xJ)]), x ≥ 0, where J is a

random variable with distribution function G. Since compound Poisson processes have

finitely many jumps on bounded intervals, the resulting sampling algorithm is unbiased.

Algorithm 4 is first presented and then discussed.
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5.2 Hierarchical Lévy-Frailty Copulas
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Figure 5.3 This figure illustrates 1 000 samples (by means of pairwise scatterplots) of
a nine-dimensional random vector as defined in Example 5.2.4. The compo-
nents are partitioned into M = 3 groups with dimensions d1 = d2 = d3 = 3.
The parameters are a = 0.2, J0 = 1.5, J1 = 0.4, J2 = 1.2, and J3 = 3. The
two numbers in each panel of the diagonal denote the subindices j, i of
τj,i. Above the diagonal, the panel in row l and column k illustrates the
scatterplot corresponding to the bivariate subvector with the indices which
are given in the diagonal in rows l and 9 − k + 1, respectively. The coef-
ficients αinter, αintra1 , αintra2 , αintra3 are given below the diagonal, depending
on whether the two corresponding random variables are in the same or in
different groups. The numbers in row l and column k correspond to the
samples in row k and column l. The upper value is the theoretical one,
whereas the lower one gives the empirical value for the specific panel based
on the 1 000 samples. For this estimation the maximum likelihood esti-
mator (2.2) is used. The figure illustrates the several levels of dependence
between and within groups.

Algorithm 4 (Sampling of Hierarchical Lévy-Frailty Copulas)

(0) Input: the number of groups M ∈ N, group sizes d1, . . . , dM ∈ N, a ∈ (0, 1)
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5.2.1 Construction and Sampling Algorithm

(a ∈ {0, 1} is trivial5), intensities β0, β1, . . . , βM > 0, and jump size distribution

functions G0, G1, . . . , GM , subject to the restrictions βl
(
1 − E

[
exp(−Jl)

])
≤ 1,

for l = 0, . . . ,M .

(1) Compute the drifts µl := 1− βl
(
1− E

[
exp(−Jl)

])
for l = 0, 1, . . . ,M .

(2) For k = 0, 1, 2, . . . and each l ∈ {0, 1, . . . ,M} define the following dynamic object.

Here, simExp(β) denotes a function which generates and returns an exponential

random variable (independent of the past) with mean 1/β; ∆(l)[.] denotes an array,

respectively list object.

FUNCTION ∆(l)(k)

IF
(
k == 0

)
THEN ∆(l)[k] := 0

ELSE DO

IF
(
∆(l)[k] is undefined

)
THEN ∆(l)[k] := ∆(l)[k − 1] + simExp(βl)

RETURN ∆(l)[k]

For k = 1, 2, . . . and each l = 0, 1, . . . ,M define the following dynamic object.

Jl[.] denotes an array, respectively list object, simJl() denotes a function which

generates and returns a sample from the distribution function Gl.

FUNCTION Jl(k)

IF
(
Jl[k] is undefined

)
THEN Jl[k] := simJl()

RETURN Jl[k]

(3) Generate {Ej,i | j = 1, . . . ,M, i = 1, . . . , dj} i.i.d. Exp(1)-distributed.

(4) For each group j = 1, . . . ,M generate a path of the process Λ̃(j), defined via

Λ̃(j)
t := Λ(0)

a t + Λ(j)
(1−a) t, as follows: jump times, jump sizes, and values of these

processes at the jump times determine the sample paths completely. Hence, it is

enough to store them in three lists:

(a) Determine Ej:(dj) := max{Ej,i | i = 1, . . . , dj}.

(b) Set up three lists ∆̃(j)[.], Λ̃(j)[.], and JS(j)[.] with the following contents:

5a = 0 corresponds to independent groups, and a = 1 corresponds to an ordinary (exchangeable)
Lévy-frailty copula.
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5.2 Hierarchical Lévy-Frailty Copulas

• ∆̃(j)[s] stores the s-th jump time of the process Λ̃(j).

• Λ̃(j)[s] stores the value of Λ̃(j) right after the s-th jump, i.e Λ̃(j)

∆̃(j)[s]
.

• JS(j)[s] stores the s-th jump size, i.e. Λ̃(j)

∆̃(j)[s]
− lim
t↗∆̃(j)[s]

Λ̃(j)
t .

Set the initializing entries for s = 0 to zero in all three lists.

(c) Initialize the following values.

• k = 1, where k counts the jumps of the process Λ(0).

• h = 1, where h counts the jumps of the process Λ(j).

• µ̃j = aµ0 + (1− a)µj , which is the drift of the process Λ̃(j).

(d) Run the following while-loop.

WHILE
(
Ej:(dj) > Λ̃(j)[k + h− 2]

)
DO

∆̃(j)[k + h− 1] := min{∆(0)(k)/a, ∆(j)(h)/(1− a)}

IF
(
∆(0)(k)/a < ∆(j)(h)/(1− a)

)
THEN

Λ̃(j)[k + h− 1] := Λ̃(j)[k + h− 2] + J0(k) + ∆̃(j)[k + h− 1] µ̃j

JS(j)[k + h− 1] := J0(k)

k := k + 1

ELSE DO

Λ̃(j)[k + h− 1] := Λ̃(j)[k + h− 2] + Jj(h) + ∆̃(j)[k + h− 1] µ̃j

JS(j)[k + h− 1] := Jj(h)

h := h+ 1

(5) For each j = 1, . . . ,M and each i = 1, . . . , dj determine the first passage time τj,i
of Λ̃(j) across Ej,i as follows:

(a) Find s such that Λ̃(j)[s− 1] < Ej,i ≤ Λ̃(j)[s].
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5.2.1 Construction and Sampling Algorithm

(b) Return the sample of τj,i by distinguishing the following cases:

IF
(
Λ̃(j)[s]− JS(j)[s] ≤ Ej,i

)
THEN RETURN τj,i := ∆̃(j)[s]

ELSE RETURN τj,i := ∆̃(j)[s− 1] +
(
Ej,i − Λ̃(j)[s− 1]

)
/µ̃j

(6) Return the standardized uniform marginals Uj,i := exp(−τj,i).

Algorithm 4 is briefly discussed in the sequel. First, in Step (0) the general setup for the

copula needs to be specified. This includes the sector segmentation and group dimen-

sions, which specify the overall dimension of the copula. The construction of equation

(5.1) is based on M + 1 Lévy subordinators; one for each group, and another one affect-

ing all components simultaneously. The Lévy subordinators are specified as compound

Poisson processes with drift, which implies that the jump size distributions and intensi-

ties fully specify their distributional properties. The drift of each Lévy subordinator in

Step (1) is chosen such that the technical requirement Ψl(1) = 1 holds for the Laplace

exponent Ψl of the Lévy subordinator Λ(l), l = 0, . . . ,M . Step (2) of Algorithm 4 pro-

vides functions which generate and store the jump times of all Lévy subordinators. It

is proposed to implement this step using dynamic lists that are recursively defined, and

created when first called. More precisely, when first called with argument k, the func-

tion ∆(l)(k) generates a new exponential random variable simExp(βl) (the time between

jump k−1 and jump k of Lévy subordinator l) and appends ∆(l)(k−1)+simExp(βl) at

position k of the dynamic list. If ∆(l)(k) was called before, the previously stored value

is returned. Similar dynamic objects are defined, i.e. Jl(k), to generate and store the

jump sizes of each Lévy subordinator. Step (3) generates the independent exponentially

distributed trigger variables of each component. For each sector j, Step (4) combines

the global Lévy subordinator Λ(0) with the sector Lévy subordinator Λ(j) to the new

sector Lévy subordinator Λ̃(j). In order to avoid unnecessary computations, this itera-

tive construction is stopped when the largest trigger in the respective sector is exceeded.

The sample path of Λ̃(j) is completely determined by its jump times, jump sizes, and

the systematic drift. In order to facilitate the computation of the τj,i we additionally

store the values of Λ̃(j) right after each jump. The while-loop in Step (4) (d) iteratively

adds jumps and drift of Λ(0) or Λ(j), depending on which new jump time comes next.

Finally, in Step (5) one first determines between which jump times each trigger Ej,i lies.

Then, one distinguishes whether or not the trigger is exceeded by Λ̃(j) through a jump

or by drift; in the latter case τj,i is adjusted accordingly.
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5.2 Hierarchical Lévy-Frailty Copulas

Regarding the speed of Algorithm 4, a similar argument as in the previous paragraph

guarantees that the expected complexity is in O(d log d), where d = d1 + . . . + dM .

In particular, the algorithm can be run in dimensions d � 2. It thus provides a new

possibility to simulate flexible hierarchical Marshall-Olkin structures in large dimen-

sions. Finally, since arbitrary Lévy subordinators can be approximated arbitrarily close

by compound Poisson subordinators, see e.g. [Damien et al. (1995)]6, Algorithm 4 also

provides an approximate sampling strategy for the general case of Theorem 5.2.1.

5.2.2 Hierarchical Marshall-Olkin Distribution

Let us briefly review what has been done so far: the general Marshall-Olkin distribution

was introduced in Chapter 2, Subsection 2.3.2. In Chapter 3 the subclass of exchangeable

Marshall-Olkin distributions was determined. And furthermore in Chapter 4 the ”sub-

subclass” of exchangeable and extendible Marshall-Olkin distributions was found. For

the latter, we could derive an alternative probabilistic model using Lévy subordinators.

The present chapter showed that this alternative construction is extremely convenient

for sampling in large dimensions. In particular, it was argued that it is superior to

the original model in this regard. Now starting from the convenient Lévy subordinator

representation of the ”subsubclass”, we constructed hierarchical Lévy-frailty copulas to

obtain a larger and more flexible family of copulas. A natural question is therefore: is

this hierarchical dependence structure again of Marshall-Olkin kind? This short para-

graph shows that this is indeed the case.

To verify this, we show that the random vector defined in (5.1) satisfies the lack of

memory property (2.9), which characterizes the Marshall-Olkin distribution.

Lemma 5.2.5 (Hierarchical Marshall-Olkin Distribution)

We consider the random vector (τ1,1, . . . , τ1,d1 , . . . , τM,dM )
′

defined in (5.1) on a proba-

bility space (Ω,F ,P). Denote the dimension of this random vector by d := d1 + . . .+dM .

Then this random vector has a (d-dimensional) Marshall-Olkin distribution. Put differ-

ently, its survival copula (5.2) is a Marshall-Olkin survival copula.

Proof

It is an easy exercise to check for arbitrary n ∈ N (with the convention CΨ(u) = u for

6An alternative approximate sampling strategy for general Lévy measures can also be found in
[Bondesson (1982)].
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5.2.2 Hierarchical Marshall-Olkin Distribution

n = 1), Laplace exponent Ψ with Ψ(1) = 1, and t1, . . . , tn, h ≥ 0 that

CΨ

(
e−t1−h, . . . , e−tn−h

)
= CΨ

(
e−t1 , . . . , e−tn

)
CΨ

(
e−h, . . . , e−h

)
.

This property obviously carries over to the survival copula (5.2). This implies for

t1,1, . . . , tM,dM , h ≥ 0 that

P
(
τ1,1 > t1,1 + h, . . . , τM,dM > tM,dM + h

)
= Ĉ

(
e−t1,1−h, . . . , e−tM,dM−h

)
= Ĉ

(
e−t1,1 , . . . , e−tM,dM

)
Ĉ
(
e−h, . . . , e−h

)
= P

(
τ1,1 > t1,1, . . . , τM,dM > tM,dM

)
P
(
τ1,1 > h, . . . , τM,dM > h

)
.

Put differently, this shows that the random vector (τ1,1, . . . , τ1,d1 , . . . , τM,dM )
′

satisfies

the multivariate lack of memory property (2.9). Since subvectors are identical in struc-

ture, it is clear that all subvectors also satisfy the multivariate lack of memory property.

Since [Marshall, Olkin (1967)] show that this property characterizes the Marshall-Olkin

distribution, the claim is thus established. �

Concluding, Lemma 5.2.5 shows that hierarchical (and therefore non-exchangeable)

Marshall-Olkin distributions can also be constructed using Lévy subordinators. Instead

of one latent Lévy subordinator, dependence is introduced by one global and several

group-specific Lévy subordinators. As outlined earlier, such latent factor representa-

tions are not only intuitive, they also provide efficient sampling routines. One open

question, and a subject of further research, is to determine precisely which Marshall-

Olkin distributions are obtained, i.e. what is the relation between the new parameters

given in terms of the Laplace exponents Ψ0, . . . ,ΨM and the original parameters of the

Marshall-Olkin distribution.
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6 The Lévy-Frailty Default Model

”The purpose of models is not to fit the data but to sharpen the questions.”

S. Karlin, April 1983.

This chapter shows how to use a multivariate distribution of Marshall-Olkin type for the

pricing of portfolio credit derivatives. More precisely, the vector of default times of d

defaultable firms is assumed to have a Lévy-frailty survival copula, see Definition 4.2.1.

An outline of the chapter is as follows. Section 6.1 introduces notions and products which

are related to portfolio credit risk. Section 6.2 gives an overview over existing portfolio

credit risk models and indicates how the present approach sets itself apart from these

references. Section 6.3 presents the modeling approach. Section 6.4 computes quantities

which are required for pricing applications, Section 6.5 presents a calibration to CDO

market quotes, and Section 6.6 compares the presented approach with existing portfolio

credit models.

6.1 Portfolio Credit Derivatives

A bond is a debt security which is traded on fixed income markets. It works like a loan:

the issuer of the bond is the borrower, the bond holder is the lender. As compensation

for granting a loan to the issuer, the bond holder receives periodic premium payments,

called coupons, which may be viewed as interest rate payments. One typically classifies

bonds by means of the creditworthiness of the issuer. For example, a government bond

such as a German Bundesschatzbrief is often considered to be default-free. In contrast,

corporate bonds (i.e. the issuer is a company) or government bonds of emerging markets

are considered to be subject to the possibility of credit default of the issuer. In this case,

the bond is said to be defaultable. A credit derivative is a financial contract with the

purpose to sell risks, arising from defaultable bonds and similar credit-risky assets, to

another party. The most important example is a Credit Default Swap (CDS), which is
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a financial contract between a protection buyer and a protection seller. The protection

buyer makes periodic premium payments - typically quarterly or semi-annually - to the

protection seller. In return, the latter is committed to pay a default compensation if a

pre-determined reference entity, e.g. a defaultable bond, defaults. In this regard, a CDS

is similar to a life insurance contract, replacing a person’s lifetime by the ”lifetime” of

a generic reference entity. Since the reference entity is typically a defaultable bond of a

single company, a CDS is called a single-name credit derivative.

Contracts which have a whole portfolio of credit-risky assets as underlying are called

portfolio credit derivatives or basket credit derivatives. Unlike single-name credit deriva-

tives, these financial contracts depend on the creditworthiness of a portfolio of d ∈
{2, 3, . . .} entities. From a mathematical point of view, such contracts are quite chal-

lenging to handle, since empirical data typically suggest that the companies in the

considered portfolio can not be treated independently. Based on default data published

by Standard & Poor’s1, Figure 6.1 illustrates observed company defaults in the last 28

years. One can clearly see that company defaults exhibit clusters in time, i.e. in some

years there are many defaults and in some years only a few or even none. This indicates

that default events are jointly triggered by economic factors and should not be treated

independently. Thus, a mathematical model for the default times of all d considered

reference entities is necessary that allows for flexible dependence structures.

Throughout this chapter we always consider a portfolio of d defaultable reference entities,

which – without loss of generality – we assume to be corresponding to d companies. In

the sequel, the random vector (τ1, . . . , τd)
′

is supposed to denote the default times of the

d firms, i.e. τk is the random lifetime of company k. Moreover, for k = 1, . . . , d we denote

by D(k) = {D(k)
t }t≥0 the default indicator process of firm k, i.e. D(k)

t := 1{τk≤t}, t ≥ 0.

A basket credit derivative is a financial contract whose payment streams depend on the

vector of default times corresponding to the reference portfolio. The payments may

additionally depend on the losses given default , i.e. the fraction of money bond holders

get back once a firm has defaulted. This fraction of the principal is usually referred to

as recovery rate. For simplicity, we always assume that the recovery rates of all consid-

ered bond issuers are constant and identical. On a portfolio level, this assumption can

sometimes be justified by an average argument. It allows to focus on a model for the

1”2008 Annual Global Corporate Default Study And Rating Transitions”, published by Standard &
Poor’s, April 2, 2009. Retrievable from
http://www2.standardandpoors.com/spf/pdf/fixedincome/corporate default study.pdf.
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Figure 6.1 The upper graph illustrates speculative grade defaults from 1981 to 2008,
i.e. defaults of companies that were rated BB or lower (according to Stan-
dard & Poor’s) before default. The lower graph illustrates defaults of com-
panies that were rated BBB or higher (according to Standard & Poor’s).

default times (and neglect recovery rates), which reduces the mathematical difficulties.

Typical examples for basket credit derivatives are Portfolio Credit Default Swaps (port-

folio CDS), Collateralized Debt Obligations (CDOs) and n-th-to-default swaps, which

are introduced in the sequel. All are bilateral contracts between an insurance buyer

and an insurance seller, and the payment streams depend on the default times corre-

sponding to the reference portfolio. Pricing of the aforementioned contracts corresponds

to determining the fair periodic premium payment, typically quoted in terms of a so-

called spread, such that the expected discounted premium payments are equal to the

expected discounted default payments. The idea of this approach is that, on average,

the cash flows of insurance seller and insurance buyer are identical, so none of both par-

ties makes a systematic gain. Formulated mathematically, we fix a payment schedule

T : t0 = 0 < t1 < . . . < tM = T and assume an identical and constant recovery rate

R ∈ [0, 1] for all d companies. Moreover, suppose we are given discount factors discti
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corresponding to the time points ti, i = 0, . . . ,M . The zero-recovery relative portfolio

loss process L = {Lt}t≥0 is defined by

Lt :=
1
d

d∑
k=1

1{τk≤t} =
1
d

d∑
k=1

D
(k)
t , t ≥ 0.

Thus, Lt takes values in the (finite) set {0, 1/d, 2/d, . . . , 1} and gives the share of de-

faulted firms in the portfolio up to time t. The remaining nominal of the portfolio at

time t is given by Nomt = 1−Lt. Now let us describe the three aforementioned basket

credit derivatives more detailed:

• Portfolio CDS: the insurance buyer makes periodic premium payments at the

pre-specified time points t0, . . . , tM and, in return, receives default compensations

from the insurance seller, resulting from losses in the underlying credit portfolio.

Usually, the premium payments are quoted in terms of a so-called portfolio CDS

spread , which is denoted by sCDS . Based on the overall portfolio losses (1 −
R)Lti up to time points ti, i = 0, . . . ,M , the expected discounted premium and

default legs (EDPLCDS and EDDLCDS) of the portfolio CDS are assumed to be

(approximately) given by

EDPLCDS = E

[
M∑
i=1

discti s
CDS ∆ti

(
Nomti +

Nomti−1 −Nomti

2

)]
,

EDDLCDS = E

[
M∑
i=1

discti (1−R) (Lti − Lti−1)

]
,

where ∆ti := ti − ti−1. Accrued interest is (approximately) considered in the

formula for EDPLCDS above by assuming companies to default at the midpoint

of two payment dates. The corresponding fair spread sCDS is obtained by equating

the expected discounted premium and default legs. It is given by

sCDS =
∑M

i=1 discti (1−R) (E[Lti ]− E[Lti−1 ])∑M
i=1 discti ∆ti

(
E[Nomti ] +

E[Nomti−1 ]−E[Nomti ]

2

) . (6.1)

• CDO: CDOs are constructed by partitioning the reference credit portfolio in so-

called tranches with different seniorities. A tranche of a CDO represents a certain

loss piece of the overall portfolio which is defined via its lower (l) and upper
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6.1 Portfolio Credit Derivatives

(u) attachment points. These attachment points define a partition of [0, 1] in the

following manner: 0 = l1 < u1 = l2 < u2 = l3 < . . . < uK−1 = lK < uK = 1, where

we index the tranches by the numbers j = 1, . . . ,K. E.g. tranche 1, called the

equity tranche, is the most subordinate loss piece, and thus bears the highest risk.

The market standard for the partition of the credit portfolio is defined by different

synthetic portfolios of the International Index Company, called iTraxx, and the

portfolio managed by Dow Jones, called DJ CDX. Table 6.1 lists their respective

tranches. The insurance seller, or investor in tranche j ∈ {1, . . . ,K}, receives

Table 6.1 The iTraxx and DJ CDX segmentation.

d = 125 companies iTraxx DJ CDX
Tranche j lj uj lj uj
Equity 1 0% 3% 0% 3%
Junior Mezzanine 2 3% 6% 3% 7%
Senior Mezzanine 3 6% 9% 7% 10%
Senior 4 9% 12% 10% 15%
Super Senior 5 12% 22% 15% 30%

6 22% 100% 30% 100%

periodic premium payments at the pre-specified time points ti, depending on the

remaining nominal of tranche j. In return, the insurance buyer is compensated for

losses affecting this tranche. For example, if 5% of the notional of the reference

portfolio happen to default, an investor in tranche 2 with attachment points l2 =

3%, u2 = 6% has to pay 2% of the notional to the insurance buyer. Let us note that

a portfolio CDS may be considered equivalent to a CDO when there is only a single

tranche with attachment points l1 = 0%, u1 = 100%. The annualized premium

payments are called tranche spreads and are denoted by sj , j ∈ {1, . . . ,K}, in the

sequel. In mathematical terms, the loss affecting tranche j of a CDO up to time

t is given by

Lt,j := min
{

max {0, (1−R)Lt − lj}, uj − lj
}
, j = 1, . . . ,K. (6.2)

The remaining nominal of tranche j is denoted by Nomt,j := uj − lj − Lt,j , j =

1, . . . ,K. The corresponding expected discounted premium and default legs for

tranches j = 2, . . . ,K of a CDO (EDPLj and EDDLj) are assumed to be given
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by

EDPLj = E

[
M∑
i=1

discti s
j ∆ti

(
Nomti,j +

Nomti−1,j −Nomti,j

2

)]
,

EDDLj = E

[
M∑
i=1

discti (Lti,j − Lti−1,j)

]
, (6.3)

where again ∆ti := ti − ti−1 and accrued interest is considered in the formula for

EDPLj by assuming defaults to occur at the midpoint of two payment dates. For

tranches 2, . . . ,K the corresponding fair spread is obtained by solving the equation

EDPLj = EDDLj for sj , hence

sj =
∑M

i=1 discti (E[Lti,j ]− E[Lti−1,j ])∑M
i=1 discti ∆ti

(
E[Nomti,j ] +

E[Nomti−1,j
]−E[Nomti,j ]

2

) , j = 2, . . . ,K.

(6.4)

For the equity tranche of a CDO it is market standard to assume a running spread

of 500 basis points, i.e. s1 := 0.05. Therefore, an upfront payment (quoted as a

percentage of the nominal of the first loss piece) is introduced to correct for this

artificial spread. This upfront payment, denoted by up in the sequel, satisfies the

relation

EDDL1 = up (u1 − l1)

+ E

[
M∑
i=1

discti 0.05 ∆ti

(
Nomti,1 +

Nomti−1,1 −Nomti,1

2

)]
, (6.5)

where EDDL1 is given as in (6.3) for j = 1. Accordingly, pricing of the equity

tranche of a CDO corresponds to determining the upfront payment up such that

equality (6.5) holds, i.e.

up =
1

u1 − l1

( M∑
i=1

discti (E[Lti,1]− E[Lti−1,1])

−
M∑
i=1

discti 0.05 ∆ti
(
E[Nomti,1] +

E[Nomti−1,1]− E[Nomti,1]
2

))
. (6.6)
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6.1 Portfolio Credit Derivatives

• n-th-to-default swap: The insurance buyer pays an annualized premium s(n)

to the insurance seller at the time points ti, i = 0, . . . ,M . As soon as n assets

of the underlying portfolio have defaulted, the contract ends. This means that

the insurance buyer stops further premium payments and the insurance seller is

committed to pay the insurance buyer the default compensation 1 − R, where

R ∈ [0, 1] denotes the recovery rate as mentioned earlier. If less than n assets

default up to maturity T of the contract, the contract also ends but no default

compensation is payed. The annualized premium s(n) is called n-th-to-default

spread. The expected discounted premium and default legs for an n-th-to-default

swap (EDPL(n) and EDDL(n)) are given by

EDPL(n) = E
[ M∑
i=1

discti s
(n) ∆ti 1{τ(n)>ti}

]
,

EDDL(n) = E
[ M∑
i=1

discti (1−R) 1{ti−1<τ(n)≤ti}

]
,

where again ∆ti := ti − ti−1 and τ(n) denotes the n-th default time, i.e. the n-

th smallest element of the set {τ1, . . . , τd}. Accordingly, the fair spread s(n) is

obtained by equating EDPL(n) and EDDL(n). Hence,

s(n) =

∑M
i=1 discti (1−R) P(ti−1 < τ(n) ≤ ti)∑M

i=1 discti ∆ti P(τ(n) > ti)
. (6.7)

Since we assume a constant recovery rate R ∈ [0, 1], one observes from equation (6.1)

that the pricing of a portfolio CDS requires one only to compute the expected value

E[Lt] of the relative portfolio loss process, which is easily accomplished in most multi-

variate default models. More complicated is the pricing of the tranche of a CDO, which

necessitates the computation of E[Lt,j ], the expectation of a non-trivial function of the

random variable Lt, compare (6.2) and formulas (6.4) and (6.6) above. Finally, for the

pricing of an n-th-to-default swap it is necessary to know the distribution of the n-th

default time τ(n), see equation (6.7), which is mathematically demanding in general.
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6.2 Literature Overview: Default Models

Considering financial contracts whose payment streams are functions of (τ1, . . . , τd)
′
,

one has to set up a mathematical model for this random vector of default times. On a

high level, every such model pursues two conflicting goals: on the one hand it has to

be realistic and flexible, and on the other hand it has to be mathematically viable. By

viability we mean analytical properties such as intuitive parameters and closed formulas,

but also an ease of implementation for practical applications of the model. It is often

the case that cutting back on realism allows to gain more viability, and conversely, more

flexible and realistic models are often difficult to handle. From a practical point of view,

the challenge is to build a model which can be implemented and is intuitive, but still

flexible and realistic enough to be of use.

Vast literature can be found on different modeling approaches for the vector of default

times (τ1, . . . , τd)
′
. The first model for the pricing of a defaultable bond is [Merton (1974)].

The standard Black-Scholes setup is considered and a company is defined to be defaulted

at time T if its asset value at that time, modeled as a lognormal random variable, is

less than or equal to a constant threshold level. This model is quite simplistic since

only a single time point T is considered, and a default at earlier times 0 ≤ t ≤ T is

not possible. In this regard, the model does not precisely model a default time τk,

but only its default indicator D(k)
T at time T . A more realistic model is proposed by

[Black, Cox (1976)], who define the default of a firm as the first hitting time of the

firm’s asset value, modeled by a (geometric) Brownian motion, below a constant liabil-

ity threshold level, which introduces a dynamic aspect to the model of [Merton (1974)].

Both models originated the class of so-called structural models, which are maybe the

most intuitive default models. Their idea is to define the default time τk as a time

point when the aggregated asset value of company k falls below the aggregated lia-

bilities of the same firm. In this regard, one has to define models for the evolution

of assets and liabilities of all d firms, and then the vector of default times is a func-

tion of these stochastic processes. Closed-form solutions for prices in such an approach

are difficult to obtain, unless one accepts several simplifying assumptions on the in-

volved stochastic processes. However, properties such as normality or continuity of the

Brownian motion in the model of [Black, Cox (1976)] imply unrealistic and inflexible

models. In particular, the continuity of the paths of Brownian motion, together with

a deterministic liability threshold level, imply that default times are predictable and
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that immediate defaults are impossible. The latter property is problematic if the model

is applied to the pricing of derivatives with short maturity. Therefore, extensions to

random threshold levels or to more sophisticated firm-value processes are studied e.g.

in [Zhou (2001), Giesecke (2004), Willemann (2007)].

In contrast to structural models, many recent approaches are of a reduced-form type.

This means that the vector of default times (τ1, . . . , τd)
′

is not defined as a function

of more or less observable asset and liability values of the firms. Rather, it is directly

defined via some multivariate distribution, whose choice is often justified by a good fit

to market data. Two lines of reduced-form modeling are carried out in the sequel to

demonstrate the most popular approaches: intensity-based approaches and factor-copula

models.

A classical intensity-based model, also called doubly-stochastic model , defines the default

time of firm k as

τk := inf
{
t ≥ 0 :

∫ t

0
λ(k)
s ds ≥ Ek

}
, (6.8)

where E1, . . . , Ed are i.i.d. with E1 ∼ Exp(1) and ~λ := (λ(1), . . . , λ(d))
′

is a vector of

non-negative stochastic processes λ(k) = {λ(k)
t }t≥0, which are possibly dependent. In

the univariate case such an approach is introduced by [Jarrow, Turnbull (1995)] and

essentially embossed by [Madan, Unal (1998), Lando (1998), Duffie, Singleton (1999)].

On a multivariate level doubly-stochastic approaches and extensions thereof are studied

e.g. in the references [Duffie, Gârleanu (2001), Das et al. (2007), Duffie et al. (2007),

Yu (2007)]. Conditioned on the σ-algebra σ(~λu : u ≥ 0), which is generated by the

path of ~λ, it holds that

P
(
τk > t

∣∣σ(~λu : u ≥ 0)
)

= e−
∫ t
0 λ

(k)
s ds, t ≥ 0. (6.9)

Equivalently, one may consider τk as the first jump time of an inhomogeneous Pois-

son process with intensity process λ(k), see [Lando (1998)]. The unconditional survival

function of τk is obtained from (6.9) by taking the expectation. The mathematical vi-

ability then depends on the fact whether a closed-form expression for the expectation

of the right-hand side is available or not. Classically, one chooses affine processes λ(k),

e.g. Cox-Ingersoll-Ross processes. The distribution of τk in an intensity-based approach

may be viewed as an extension of the exponential distribution in the following sense:
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the case when λ
(k)
t ≡ c > 0 agrees with an exponential distribution with parameter c.

However, evidence is found in [Das et al. (2007)] that doubly-stochastic models fail to

explain excess clustering as observed in the markets. Therefore, extensions have been

proposed to incorporate for example direct contagion effects, i.e. the collapse of one

firm directly increases the default intensities of the remaining firms, see e.g. [Yu (2007)].

However, the price one has to pay for incorporating such desirable features is limited

viability. For instance, the calibration of a doubly-stochastic multivariate default model

to market data usually requires time-consuming Monte Carlo techniques. This is due to

the fact that the resulting multivariate distribution of (τ1, . . . , τd)
′

is defined implicitly.

In particular, one usually does not know the copula of the default times, which is re-

quired for the derivation of closed-form expressions for prices. Moreover, computing the

unconditional distribution of τk, one obtains a formula which typically still depends on

parameters that affect the distributions of all other default times as well. In this case,

when calibrating the model, it is impossible to fit the univariate parameters in a first,

and the dependence parameters of the model in a second step. Generally speaking, it

is difficult to specify a priori the univariate stochastic processes λ(k), for k = 1, . . . , d,

and to equip them a posteriori with a dependence structure which does not change

their pre-determined univariate distributions, and which is easy to work with; see e.g.

[Bielecki et al. (2008)] for a discussion of this topic.

Such a drawback is overcome by copula-based approaches. The most popular model is

invented by [Vasicek (1987)] and put into a copula framework by [Li (2000)]. It can be

considered a multivariate analog of the structural model of [Merton (1974)] and defines

a ”risk factor” A(k) for company k by

A(k) :=
√
ρX(0) +

√
1− ρX(k), (6.10)

where ρ ∈ [0, 1] and X(0), X(1), . . . , X(d) are i.i.d. standard normally distributed random

variables. Denoting by Φ the distribution function of a standard normally distributed

random variable and by Gk a pre-specified continuous distribution function for the k-th

default time, τk is defined via τk := G−1
k (Φ(A(k))). The crucial point in this ansatz is the

fact that each A(k) is again standard normally distributed, independently of ρ. However,

A(1), . . . , A(d) are dependent since the common factor X(0) affects all d obligors. The

larger ρ is, the bigger is the dependence of all companies on the market factor X(0). This

tricky model construction allows to determine the marginal default probabilities (via the

Gk) in a first step, and the dependence parameter ρ in a second step. The model (6.10)
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implies that the random vector
(
A(1), . . . , A(d))

′
, and hence also the random vector of

default times (τ1, . . . , τd)
′
, has a Gaussian copula. This normality assumption is often

criticized, since it does not support extreme scenarios. In mathematical terms, this can

be seen from the fact that Gaussian copulas have zero tail dependence parameters. For

this reason, the same construction as in equation (6.10) has been applied with several

distributions other than the normal. One example is [Hull, White (2004)] who replace

the normal distribution by a Student t-distribution. Some other extensions are unified

in a generic modeling approach of [Albrecher et al. (2007)] using an arbitrary infinitely

divisible distribution. More precisely, an infinitely divisible distribution defines a Lévy

process X = {Xt}t∈[0,1], see [Sato (1999)] for further information. It is further assumed

that E[X1] = 0 and Var[X1] = 1. The risk factor of company k is then defined by

A(k) := X(0)
ρ +X

(k)
1−ρ, (6.11)

where X(0), X(1), . . . , X(d) are independent copies of X, and ρ ∈ [0, 1]. Especially

if X is a standard Brownian motion, then (6.11) is equivalent to (6.10). Different

models are obtained by choosing different specifications for the Lévy process X, and

all these models are called factor-copula models. [Moosbrucker (2006)] uses a Variance-

Gamma process, [Guégan, Houdain (2005), Kalemanova et al. (2007)] a Normal Inverse

Gaussian process, and [Baxter (2006)] the sum of a Brownian motion and a Variance-

Gamma process. One major drawback of these approaches is the fact that there is only

one common factor X(0)
ρ , conditioned on which the default times are independent: this

exchangeability assumption simplifies mathematical derivations, but is often not very

realistic. Nevertheless, the resulting ease of applicability is a striking argument in favor

of these models. If a large homogeneous portfolio assumption is justified (as it is often

the case for the pricing of CDOs), one can use the common factor X(0)
ρ to approximate

the portfolio loss distribution. Since this allows to calibrate factor-copula models to

CDO market data in seconds, they are commonly used in practice.

Last but not least, a modeling approach by [Schönbucher, Schubert (2001)] shares prop-

erties of intensity-based models and factor-copula models. The idea is to consider

a classical intensity-based approach as in equation (6.8), where the trigger variables

E1, . . . , Ed are assumed to be dependent to begin with. More precisely, the triggers

are equipped with a copula, often of Archimedean type. In the simplest form, when
~λ is a deterministic process, then the copula of (τ1, . . . , τd)

′
is precisely the specified

copula of the trigger variables E1, . . . , Ed. Hence, this approach is equivalent to speci-
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fying the distribution of (τ1, . . . , τd)
′

by its copula (via the copula of the triggers) and

its marginal distributions (via the deterministic intensities). The separation of depen-

dence structure and marginal distributions makes this approach well-suited for practical

implementations, see e.g. [Hofert, Scherer (2009)] for a specific Monte Carlo pricing al-

gorithm using nested Archimedean copulas. If the specified copula is of Archimedean

type with completely monotone generator, one may even derive efficient analytic approx-

imations for the portfolio loss as d → ∞ under a homogeneous portfolio assumption,

see [Schönbucher (2002)], an approach which is quickly implemented on a standard PC.

This approximation relies on Theorem 2.3.10, which reveals a common latent factor as

the source of dependence in such models. In this case the approximation is quite similar

to the one in factor-copula models. Therefore, the model of [Schönbucher (2002)] is often

said to belong to the class of factor-copula models, even though it is constructed differ-

ently. On a theoretical level, our approach below is similar, but the Archimedean copula

is replaced with a Lévy-frailty copula, see Subsection 6.6 below for a closer analysis.

Most aforementioned models have been invented for the pricing of CDO contracts, the

most liquid derivatives in the context of portfolio credit risk. As the underlying portfolio

of a typical CDO is quite large, most of these models rely on simplifying assumptions

to derive pricing formulas. For instance, a homogeneous portfolio structure and an in-

finite number of assets are convenient assumptions which may allow to approximate

the portfolio loss distribution via stochastic limit theorems. For instance, factor-copula

models of the form (6.11) are quickly implemented if a portfolio of infinitely many firms

is assumed. Among them, the standard market model is the Gaussian copula model,

see [Li (2000)]. In contrast to typical CDO portfolios, the standard basket size for an

n-th-to-default swap is usually rather small, e.g. in the ninth series of the iTraxx Eu-

rope, baskets of five names are considered. Thus, for the pricing of portfolio credit

derivatives depending on a small portfolio of underlying assets, assumptions such as a

homogeneous portfolio are critical and a large portfolio assumption is not justified at

all. Generally speaking, closed-form solutions of the portfolio loss distribution for an

inhomogeneous portfolio are difficult to obtain, but required for the valuation of port-

folio credit derivatives without time-consuming simulations. With regard to the pricing

of n-th-to-default swaps, existing literature mainly focuses on the factor-copula mod-

els. Again, the standard market model is the Gaussian copula model, see [Li (2000)].

[Joshi, Kainth (2004)] describe an efficient Monte Carlo sampling technique to apply the

Gaussian copula model to the pricing of n-th-to-default swaps and generalize this ap-
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proach to other elliptic copulas. They especially treat the problem of small default

probabilities by means of importance sampling for rare events. A method for the

valuation of an n-th-to-default swap without Monte Carlo simulation is presented in

[Hull, White (2004)]. By conditioning on a common market factor, conditional default

probabilities are calculated recursively in this framework. Afterwards, the conditional

probabilities are numerically integrated with respect to the market factor’s distribution.

This technique is applied to a Gaussian copula framework as well as using a t-copula.

Both papers [Joshi, Kainth (2004), Hull, White (2004)] present sensitivity analyses for

model prices with respect to input data such as correlations or idiosyncratic hazard

rates.

The model presented in the next section shares properties with all aforementioned

reduced-form approaches: its definition resembles an intensity-based model, however

we achieve a separation of dependence and margins similar to the factor-copula models.

We are going to construct the vector of default times (τ1, . . . , τd)
′
such that it has the sur-

vival function CΨ

(
Ḡ1(t1), . . . , Ḡd(td)

)
, where CΨ is an arbitrary Lévy-frailty copula, see

Definition 4.2.1. G1, . . . , Gd are given continuous and strictly increasing univariate dis-

tribution functions, with corresponding survival functions Ḡk = 1−Gk, for k = 1, . . . , d.

We will show that the arsenal of Lévy-frailty copulas, developed in Chapter 4, is well-

suited for efficient CDO pricing. Our approach inherits all convenient properties of a

copula-based approach, since it is quickly and easily calibrated to market data. This is

due to the separation of quite arbitrary marginal default probabilities (determined by

G1, . . . , Gd) and dependence parameters (given by Ψ). If a large homogeneous portfolio

assumption is justified, calibration to market data is achieved quickly on a standard

PC without the need for Monte Carlo simulations. Since the underlying dependence

structure is of Marshall-Olkin kind, joint defaults are possible under a homogeneous

portfolio assumption. None of the aforementioned models has this property. In fact,

for reasons of mathematical convenience other approaches often rely on the fact that

the probability of joint defaults is zero, see e.g. [Yu (2007)]. [Laurent, Gregory (2005),

p. 4] even claim that a ”conditional independence assumption between default times

precludes simultaneous defaults”; a statement which we are going to disprove by the

introduction of the Lévy-frailty default model. We think a model which supports joint

defaults is reasonable, since global economy shocks may affect several firms at the same

time. Of course, in practice it does not matter whether two default times are precisely

identical or whether they are just close, but from a didactic point of view we think it is
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appropriate to model joint defaults. Moreover, especially the recent credit crisis gives

rise to believe that it is important to use a modeling approach which allows for ”ar-

mageddon scenarios”. Under a homogeneous portfolio assumption (i.e. G1 = . . . = Gd),

this is reflected in our model by a positive probability that all d companies default at

the same time, see e.g. Theorem 4.4.5.

Finally, we do not want to conceal that the idea of using Marshall-Olkin distributions

for portfolio credit risk is already outlined in the references [Embrechts et al. (2003),

Lindskog, McNeil (2003), Giesecke (2003), Andersen, Sidenius (2005)] as well as

[Burtschell et al. (2009)]. However, these approaches are all based on the original

construction (2.11). In dimensions d � 2 - in particular for the pricing of CDOs

when typically one has d = 125 - this model is of limited practical use. In par-

ticular, the formulas derived in [Giesecke (2003)] are impossible to evaluate for large

d. Probably for this reason, [Giesecke (2003)] provides an examplary graph for d =

30, which is much smaller than the usual CDO portfolio size d = 125. The refer-

ences [Embrechts et al. (2003), Lindskog, McNeil (2003), Giesecke (2003)] indicate how

to simulate Marshall-Olkin distributions based on the construction (2.11). But it was al-

ready argued in the last chapter that even this algorithm is inefficient in large dimensions

d� 2. [Giesecke (2003), Lindskog, McNeil (2003)] propose to circumvent this problem

by restricting the general Marshall-Olkin distribution to hierarchical subclasses. More

clearly, it is assumed that almost all 2d − 1 original parameters λI are zero. For exam-

ple, the portfolio is subdivided into a small number of groups, and the only parameters

that are positive are those corresponding to this partition. Given this assumption, an

efficient simulation of the Marshall-Olkin distribution is possible. However, this model

only supports joint defaults of whole groups and is therefore quite simplistic. A more

elaborate model in the same spirit - in fact a generalization of such models - would be to

use hierarchical Lévy-frailty copulas as discussed in the previous chapter. However, the

pricing of CDO tranches using this approach still relies on time-consuming Monte Carlo

simulations. It is still unclear how to derive a convenient closed-form expression for re-

quired quantities. The references [Andersen, Sidenius (2005), Burtschell et al. (2009)]

restrict their analysis to the even more simplistic Marshall-Olkin model based on a single

”kill-all” shock, corresponding to the global shock copula of Example 4.3.1. Obviously,

extending this approach to general Lévy-frailty copulas is a major improvement. The

use of Lévy-frailty copulas allows to derive efficient approximations for the distribution

of the portfolio loss process {Lt}t≥0, see Section 6.4 below.
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6.3 Definition of the Model

Throughout we consider a probability space (Ω,F ,P). Since the model is fitted to

market prices later on, we assume from the very start that P is a given pricing measure,

i.e. we put ourselves in a risk-neutral setting. On this probability space let E1, . . . , Ed

be i.i.d. random variables with E1 ∼ Exp(1). Independent of them, let Λ = {Λt}t≥0

be a Lévy subordinator. The Laplace exponent Ψ of Λ is assumed to satisfy Ψ(1) = 1.

Furthermore, for each k = 1, . . . , d let hk : [0,∞)→ [0,∞) be a continuous and strictly

increasing function with hk(0) = 0 and limt→∞ hk(t) = ∞. The function hk is the

so-called cumulative hazard function of the distribution function

Gk(t) := 1− exp
(
− hk(t)

)
, t ≥ 0.

The vector of default times (τ1, . . . , τd)
′

is defined by

τk := inf
{
t ≥ 0 : Λhk(t) ≥ Ek

}
, k = 1, . . . , d. (6.12)

Equivalently, the default indicator process D =
(
D(1), . . . , D(d)

)′
is given by

D(k) = {D(k)
t }t≥0, D

(k)
t = 1{τk≤t} = 1{Λhk(t)≥Ek}, t ≥ 0, k = 1, . . . , d.

Comparing definition (6.12) to definition (6.8) of a classical intensity-based approach,

one observes that the integrated intensity process is replaced by a time-changed Lévy

subordinator. Since the Lévy subordinator is a jump process, joint defaults become

possible. This is impossible in classical doubly-stochastic frameworks, since the inte-

grated intensity process is continuous. Nevertheless, it is demonstrated below that the

presented model is quite different from intensity-based approaches and has rather to be

considered as a copula-based approach. In particular, it is shown in the sequel that the

survival function of (τ1, . . . , τd)
′

is CΨ

(
Ḡ1(t1), . . . , Ḡd(td)

)
- which is well-studied, for

instance in earlier chapters of this thesis.

Lemma 6.3.1 (Survival Function of the Default Times)

The joint survival function of (τ1, . . . , τd)
′

is given by

P
(
τ1 > t1, . . . , τd > td

)
= CΨ

(
Ḡ1(t1), . . . , Ḡd(td)

)
, t1, . . . , td > 0,

where CΨ denotes the Lévy-frailty copula corresponding to Λ.
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Proof

One easily verifies for all k = 1, . . . , d and t > 0 that

P
(
τk > t

)
= P

(
Λhk(t) < Ek

)
= E

[
P
(
Λhk(t) < Ek

∣∣Λhk(t)

)]
= E

[
e−Λhk(t)

]
= e−hk(t) Ψ(1) = e−hk(t) = Ḡk(t).

Thus, the marginal survival functions are given by Ḡ1, . . . , Ḡd. With u1, . . . , ud ∈ (0, 1)

the survival copula Ĉ of (τ1, . . . , τd)
′

is thus computed via

Ĉ(u1, . . . , ud) = P
(
τ1 > Ḡ−1

1 (u1), . . . , τd > Ḡ−1
d (ud)

)
= P

(
Λ
h1

(
Ḡ−1

1 (u1)
) < E1, . . . ,Λhd

(
Ḡ−1
d (ud)

) < Ed
)

= P
(
Λ− log(u1) < E1, . . . ,Λ− log(ud) < Ed

)
.

The last equality follows from the identity hk = − log(Ḡk), for k = 1, . . . , d. We know

from Theorem 4.2.2 that for all t1, . . . , td > 0 it holds that

CΨ

(
e−t1 , . . . , e−td

)
= P

(
Λt1 < E1, . . . ,Λtd < Ed

)
.

Hence, plugging tk := − log uk, for k = 1, . . . , d, into the last equation implies that the

unique survival copula Ĉ equals CΨ. �

It is observed that τk has distribution function Gk and the default indicator D(k)
t at

time t > 0 has a Bernoulli distribution with success probability Gk(t) for k = 1, . . . , d.

Moreover, the presented construction induces dependence to (almost) arbitrary marginal

default distributions G1, . . . , Gd. If for example λ(k) : [0,∞) → [0,∞), i = 1, . . . , d,

are (deterministic) non-negative functions with
∫∞

0 λ(k)(s) ds = ∞, one can define the

marginal distribution functions as Gk(t) = 1− exp(−
∫ t

0 λ
(k)(s) ds), t ≥ 0. Equivalently,

the cumulative hazard functions take the form hk(t) =
∫ t

0 λ
(k)(s) ds.

When a portfolio credit risk model is used in practice, it is often useful and intuitive to

consider bivariate pairs of default indicators, see [Lucas (1995)] for a motivation. In par-

ticular, classical factor-copula models as defined in (6.11) use a dependence parameter

ρ ∈ [0, 1], which equals the correlation of two firms’ risk factors at a fixed time point. In

the present model there is an inherent parameter, which plays the role of ρ. Recall that

each bivariate pair (τi, τj)
′
of default times has a bivariate Cuadras-Augé survival copula

with parameter αΨ := 2−Ψ(2) ∈ [0, 1], which follows from Lemma 6.3.1 above together
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with Definition 2.2.2. We know from previous chapters that αΨ = 0 implies indepen-

dence of the two default times, whereas αΨ = 1 implies complete comonotonicity. The

following lemma collects several properties related to the model-inherent dependence

parameter αΨ.

Lemma 6.3.2 (Properties of αΨ)

Recall for k = 1, . . . , d that D(k)
t = 1{τk≤t} = 1{Λhk(t)>Ek}, t ≥ 0.

(a) Denoting by (µ, ν) the characteristics of Λ, it holds that 0 ≤ αΨ ≤ 1 − µ ≤ 1.

Moreover, αΨ may be represented as

αΨ = 2−Ψ(2) =
∫

(0,∞]

(
1− e−t

)2
ν(dt).

(b) Consider a sequence of Lévy subordinators {Λ(k)}k∈N with Laplace exponents

{Ψk}k∈N satisfying Ψk(1) = 1. Denote by νk the Lévy measure of Λ(k).

(i) If for a positive null sequence {ak}k∈N it holds that νk
(
[ak,∞]

)
= 0 for all

k ∈ N, and if supk∈N
∫

(0,1) t νk(dt) <∞, then limk→∞ αΨk = 0.

(ii) If limk→∞ αΨk = 1, then for all u1, . . . , ud ∈ [0, 1] it holds that

lim
k→∞

CΨk(u1, . . . , ud) = min{u1, . . . , ud}.

(c) For i 6= j and t > 0 the correlation coefficient of D(i)
t and D

(j)
t , in the spirit of

[Lucas (1995)], is given by

Gi(t) +Gj(t)− 1 +
(

1−
(
Gi(t) ∧Gj(t)

))1−αΨ
(

1−
(
Gi(t) ∨Gj(t)

))√
Gi(t)−Gi(t)2

√
Gj(t)−Gj(t)2

− Gi(t)Gj(t)√
Gi(t)−Gi(t)2

√
Gj(t)−Gj(t)2

,

where for two real numbers x, y we denote x ∧ y := min{x, y} and x ∨ y :=

max{x, y}.

(d) Let i 6= j. Assume the existence of the limits G
′
k(0) := limt↓0Gk(t)/t = h

′
k(0) > 0

for k ∈ {i, j}. Moreover, assume the existence of an ε > 0 such that hi(t) ≤ hj(t)
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for all t ∈ [0, ε]. Then, it holds that

lim
t↓0

Corr
[
D

(i)
t , D

(j)
t

]
=

√
G
′
i(0)

G
′
j(0)

αΨ.

Proof

(a) The drift µ of Λ is completely determined by the Lévy measure ν via Ψ(1) = 1. It

is given by µ = 1−
∫

(0,∞]

(
1− exp(−t)

)
ν(dt). Hence,

αΨ = 2−Ψ(2) = 2− 2µ−
∫

(0,∞]
(1− e−2 t) ν(dt)

= 2− 2 +
∫

(0,∞]
2 (1− e−t) + (e−2 t − 1) ν(dt) =

∫
(0,∞]

(1− e−t)2 ν(dt).

From this it is obvious that αΨ is non-negative, and for the upper bound one

observes

αΨ =
∫

(0,∞]
(1− e−t)2 ν(dt) ≤

∫
(0,∞]

(1− e−t) ν(dt) = 1− µ.

(b) Denote by µk the drift of Λ(k).

(i) Since νk
(
[ak,∞]

)
= 0 it follows from part (a) that

αΨk =
∫

(0,ak)

(
1− e−t

)2
νk(dt) ≤

∫
(0,ak)

(
1− e−t

)
t νk(dt)

≤
(
1− e−ak

) ∫
(0,ak)

t νk(dt) ≤
(
1− e−ak

) ∫
(0,1)

t νk(dt).

The last inequality holds for almost all k, since {ak}k∈N is a null sequence.

By assumption, the remaining integral is bounded by a constant independent

of k, and the claim follows.

(ii) Each Ψk is a non-decreasing function, hence for i ≥ 2 it holds that

0 ≤ Ψk(i)−Ψk(i− 1) = µk +
∫

(0,∞]
e−(i−1) t

(
1− e−t

)
νk(dt)

≤ µk +
∫

(0,∞]
e−t
(
1− e−t

)
νk(dt) = Ψk(2)−Ψk(1) = 1− αΨk .
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6.3 Definition of the Model

From this it follows that all differences Ψk(i) − Ψk(i − 1) tend to zero as k

tends to infinity. From the definition of Lévy-frailty copulas (see Definition

4.2.1) the claim is now easily established.

(c) First of all, using the Lévy properties of Λ it is verified for positive numbers a, b > 0

and 0 < t1 ≤ t2 that

E
[
e−aΛt1−bΛt2

]
= E

[
e−(a+b) Λt1−b (Λt2−Λt1 )

]
= E

[
e−(a+b) Λt1

]
E
[
e−bΛt2−t1

]
= e−t1

(
Ψ(a+b)−Ψ(b)

)
−t2 Ψ(b). (6.13)

Obviously, D(k)
t is Bernoulli distributed for k ∈ {i, j} with success probability

Gk(t). Hence, it follows that Var(D(k)
t ) = Gk(t)−Gk(t)2. Moreover, by conditional

independence, one obtains

E
[
D

(i)
t D

(j)
t

]
= E

[
P
(
Ei ≤ Λhi(t)

∣∣σ(Λs : s > 0)
)

P
(
Ej ≤ Λhj(t)

∣∣σ(Λs : s > 0)
)]

= E
[
(1− e−Λhi(t)) (1− e−Λhj(t))

]
= 1− e−hi(t) − e−hj(t) + E

[
e
−Λhi(t)−Λhj(t)

]
= Gi(t) +Gj(t)− 1 + e−(hi(t)∧hj(t)) (Ψ(2)−1)−(hi(t)∨hj(t)).

In the last equality (6.13) is applied with a = b = 1. From these computations the

claim follows, since exp
(
−hk(t)

)
= 1−Gk(t) for k ∈ {i, j} and Ψ(2)−1 = 1−αΨ.

(d) Firstly, by the assumption on the existence and positivity of the limits G
′
k(0) for

k ∈ {i, j}, L’Hospital’s rule implies

lim
t↓0

√
Gi(t)−Gi(t)2

Gj(t)−Gj(t)2
=

√
G
′
i(0)

G
′
j(0)

, lim
t↓0

√
Gj(t)−Gj(t)2

Gi(t)−Gi(t)2
=

√
G
′
j(0)

G
′
i(0)

.

Using this and the second assumption hi ≤ hj near zero, one can again apply

L’Hospital’s rule to the result in part (c):

lim
t↓0

(
Gi(t)+Gj(t)−1+

(
1−
(
Gi(t)∧Gj(t)

))1−αΨ
(

1−
(
Gi(t)∨Gj(t)

))
−Gi(t)Gj(t)

√
Gi(t)−Gi(t)2

√
Gj(t)−Gj(t)2

)

= lim
t↓0

(
Gi(t)+Gj(t)−1+e

(
hi(t)∧hj(t)

(
1−Ψ(2)

)
−hi(t)∨hj(t)

)
−Gi(t)Gj(t)√

Gi(t)−Gi(t)2
√
Gj(t)−Gj(t)2

)
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= 2 lim
t↓0

G
′
i(t)+G

′
j(t)+e

(...)
(

(1−Ψ(2))h
′
i(t)−h

′
j(t)
)
−G′i(t)Gj(t)−G

′
j(t)Gi(t)√

Gi(t)−Gi(t)2

Gj(t)−Gj(t)2

(
G
′
j(t)−2G

′
j(t)Gj(t)

)
+

√
Gj(t)−Gj(t)2

Gi(t)−Gi(t)2

(
G
′
i(t)−2G

′
i(t)Gi(t)

)
= 2

G
′
i(0) +G

′
j(0) + (1−Ψ(2))h

′
i(0)− h′j(0)√

G
′
i(0)

G
′
j(0)

G
′
j(0) +

√
G
′
j(0)

G
′
i(0)

G
′
i(0)

=
G
′
i(0) + (1−Ψ(2))G

′
i(0)√

G
′
i(0)G′j(0)

=
G
′
i(0)

(
2−Ψ(2)

)√
G
′
i(0)G′j(0)

=

√
G
′
i(0)

G
′
j(0)

αΨ.

In the fourth equality we use for k ∈ {i, j} that

h
′
k(t) =

(
− log

(
1−Gk(t)

))′
=

G
′
k(t)

1−Gk(t)
⇒ h

′
k(0) = G

′
k(0).

Thus, the claim is established. �

The results of Lemma 6.3.2 are interpreted as follows. Part (a) implies that high de-

pendence (i.e. αΨ close to one) requires the Lévy subordinator to be of pure jump type.

The larger the drift µ ∈ [0, 1], the smaller the dependence parameter αΨ. However, it is

important to stress that this statement is not restrictive concerning the level of depen-

dence achievable in the model, since µ is implicitly defined via the condition Ψ(1) = 1.

Therefore, if the model parameters are fitted to market quotes and large dependence is

required, µ automatically becomes small. Part (b) (i) states that significant dependence

is typically induced by the possibility of large jumps, see also the following Example

6.3.3. Part (b) (ii) means that in the limiting case αΨ = 1 all d default times are

comonotonic. In analytic terms, αΨ = 1 forces the Laplace exponent of the Lévy sub-

ordinator to be given by Ψ(x) = 1{x>0}, x ≥ 0, which implies that CΨ = M equals

the upper-Fréchet-Hoeffding bound. Part (c) computes the correlation of two default

indicators. In particular, this correlation is a function of the margins Gi, Gj and the

dependence parameter αΨ. Part (d) shows that the model is able to allow for a positive

limit of default correlations at zero; a property which is important for the pricing of

correlation driven products with short maturity.

Example 6.3.3 (From Finite to Infinite Activity)

This example demonstrates part (b) (i) of Lemma 6.3.2. Let J > 0 be a fixed jump

size and define the Lévy subordinator as Λt := J Nt, t ≥ 0, where N = {Nt}t≥0 is a

Poisson process with intensity 1/
(
1 − exp(−J)

)
. It follows that the Lévy measure ν is

given by ν(B) = 1{J∈B}/
(
1 − exp(−J)

)
, for B ∈ B

(
(0,∞]

)
. The Laplace exponent Ψ
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6.3 Definition of the Model

in this case is given by Ψ(x) =
(
1 − exp(−xJ)

)
/
(
1 − exp(−J)

)
, x ≥ 0, and has 1 as

a fixpoint. By part (a) of Lemma 6.3.2 we have αΨ = 1 − exp(−J). Hence, αΨ tends

to zero as J tends to zero, which agrees with part (b) (i) of Lemma 6.3.2 (using that

supJ∈(0,1) J/
(
1 − exp(−J)

)
< ∞). However, it is interesting to see that the intensity

of the Poisson process N increases to infinity as J tends to zero. Thus, for large J the

model has few big jumps, and for small J the model has many small jumps. In the limit

as J goes to zero, the model tends to an infinite activity model with vanishing jump

sizes. Since αΨ tends to zero in this case, one may conclude that jump size affects the

dependence more than jump frequency.

Remark 6.3.4 (Link to Bernoulli Mixture Models)

The result on the correlation in part (c) of Lemma 6.3.2 can also be stated in terms of

the mixing variable Λ:

Corr
[
D

(i)
t , D

(j)
t

]
=

Cov
[
1− e−Λhi(t) , 1− e−Λhj(t)

]√
Var
[
D

(i)
t

]√
Var
[
D

(j)
t

] .

In the homogeneous case h1 = . . . = hd =: h, the covariance of the default indicators is

given by the variance of the mixing variable 1−exp(−Λh(t)). This result is in concordance

with a finding by [Frey, McNeil (2001)] in the context of so-called Bernoulli Mixture

Models.

Equivalently, denoting by ĈαΨ(u1, u2) := u1 + u2 − 1 +CαΨ(1− u1, 1− u2) the survival

copula of the Cuadras-Augé copula CαΨ with parameter αΨ, the correlation coefficient

may be written as

Corr
[
D

(i)
t , D

(j)
t

]
=

ĈαΨ(Gi(t), Gj(t))−Gi(t)Gj(t)√
Gi(t)−Gi(t)2

√
Gj(t)−Gj(t)2

.

Recall that for the bivariate Cuadras-Augé copula the probability mass on the diagonal

as well as the upper-tail dependence coefficient are known, see (2.1) and Example 2.2.10.

Thus, we may gather several different representations for the important correlation

measure αΨ, which are summarized as follows:

αΨ = 2−Ψ(2) =
∫ ∞

0
(1− e−t)2 ν(dt) (analytical formula)

= lim
u↓0

P
(
τ1 ≤ G−1

1 (u)
∣∣ τ2 ≤ G−1

2 (u)
)

(lower-tail dependence)
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=

√
G
′
1(0)

G
′
2(0)

lim
t↓0

Corr
[
D

(1)
t , D

(2)
t

]
(default correlation at zero)

=
2 P
(
G1(τ1) = G2(τ2)

)
1 + P

(
G1(τ1) = G2(τ2)

) . (from the singular component)

Notice that the third equality requires the assumptions from Lemma 6.3.2 (d) with

i = 1, j = 2, and the last equality follows from the fact that P
(
G1(τ1) = G2(τ2)

)
=

αΨ/(2− αΨ), compare (2.1).

Figure 6.2 shows a simulation of the model with d = 125 firms over a period of 20

years. In this example, h1(t) = . . . = hd(t) = 0.01 t =: h(t), corresponding to an

exponential distribution with mean 100 for all default times, and Λ is specified as a

0.8-stable subordinator, i.e. Ψ(x) = x0.8, x ≥ 0. The bars in the graph show the default

times that occur before time t = 20. The solid line illustrates the path of Λh(t).
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Figure 6.2 The plot shows one realization of dependent defaults in the presented model,
together with the path of the time-changed Lévy subordinator.

6.4 The Portfolio Loss Distribution

In this section we establish the mathematical quantities in the Lévy-frailty default model

which are required for the pricing of basket credit derivatives. As mentioned earlier,

these comprise the distribution of Lt (for the pricing of portfolio CDS and CDOs) and
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6.4 The Portfolio Loss Distribution

the distribution of the n-th largest default time τ(n) (for the pricing of n-th-to-default

contracts). The latter distribution is computed in Theorem 6.4.1 below. To handle the

distribution of Lt we proceed in two directions:

• We compute the exact (discrete) distribution of Lt in the general case (Theorem

6.4.1 (a)) and in the special case of a homogeneous portfolio, i.e. if G1 = . . . = Gd

(Theorem 6.4.1 (b)).

• In the special case of a homogeneous portfolio, we derive an approximate distribu-

tion for Lt, which is obtained when assuming an infinite portfolio size (Theorem

6.4.3). For pricing CDOs, this is necessary for practical implementations and can

be justified, since the portfolio size is large, typically d = 125.

The first result comprises the exact distribution of Lt and of τ(n) in the general and in

the homogeneous case.

Theorem 6.4.1 (The Portfolio Loss Distribution)

We introduce the superscript [i] to denote an i-margin of the copula CΨ, i.e. we write

C
[i]
Ψ (u1, . . . , ui), for i ≥ 2. Additionally, for i ∈ {0, 1} we define C [0]

Ψ ≡ 1 and C [1]
Ψ (u) = u.

(a) General Case: it holds for k = 1, . . . , d and t > 0 that

P
(
dLt = k

)
=

∑
1≤i1<...<ik≤d

{j1,...,jd−k,i1,...,ik}={1,...,d}

(
C

[d−k]
Ψ

(
Ḡj1(t), . . . , Ḡjd−k(t)

)

+
k∑
l=1

(−1)l
∑

1≤m1<...<ml≤k
C

[d−k+l]
Ψ

(
Ḡj1(t), . . . , Ḡjd−k(t), Ḡim1

(t), . . . , Ḡiml (t)
))
.

(6.14)

(b) Homogeneous Case: if a homogeneous portfolio is assumed, i.e. G1 = . . . =

Gd =: G, then (6.14) simplifies to

P
(
dLt = k

)
=
(
d

k

) k∑
l=0

(−1)l
(
k

l

)
Ḡ(t)Ψ(d+l−k).
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We obtain for each n = 1, . . . , d the distribution of the n-th default time τ(n), i.e.

P
(
τ(n) ≤ t

)
=

d∑
k=n

P
(
dLt = k

)
. (6.15)

Proof

(a) It can be shown by induction that for arbitrary numbers x1, . . . , xd ∈ R one has

d∏
i=1

(
1− e−xi

)
= 1 +

d∑
l=1

(−1)l
∑

1≤j1<...<jl≤d
e−

∑l
z=1 xjz . (6.16)

This induction is carried out as follows: for d = 1 the statement is valid. Now by

induction hypothesis (IH) the statement is assumed to hold for some d ≥ 1. Then

it follows that

d+1∏
i=1

(
1− e−xi

)
=
(
1− e−xd+1

) d∏
i=1

(
1− e−xi

)
(IH)
=
(

1 +
d∑
l=1

(−1)l
∑

1≤j1<...<jl≤d
e−

∑l
z=1 xjz

)
− e−xd+1

+
d∑
l=1

(−1)l+1
∑

1≤j1<...<jl≤d
e−xd+1−

∑l
z=1 xjz

= 1 −e−xd+1 −
d∑
i=1

e−xi︸ ︷︷ ︸
=
∑

1≤j1≤d+1(−1)1 e
−xj1

+
d∑
l=2

(−1)l
∑

1≤j1<...<jl≤d
e−

∑l
z=1 xjz

︸ ︷︷ ︸
=
∑d+1
l=2 (−1)l

∑
1≤j1<...<jl≤d+1

all ji 6=d+1

e−
∑l
z=1 xjz

+
d∑
l=1

(−1)l+1
∑

1≤j1<...<jl≤d
e−xd+1−

∑l
z=1 xjz

︸ ︷︷ ︸
=
∑d+1
l=2 (−1)l

∑
1≤j1<...<jl≤d+1

at least one ji=d+1

e−
∑l
z=1 xjz

= 1 +
d+1∑
l=1

(−1)l
∑

1≤j1<...<jl≤d+1

e−
∑l
z=1 xjz .

Hence, (6.16) is established. Using conditional independence (conditioned on the

information σ(Λt : t ≥ 0) about the whole path of the Lévy subordinator) in the
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last equation, one computes

P
( d∑
i=1

D
(i)
t = k

)
= P

( d∑
i=1

1{Ei≤Λhi(t)}
= k

)
= P

( ⋃
1≤i1<...<ik≤d

{j1,...,jd−k,i1,...,ik}={1,...,d}

∩kσ=1 ∩d−kγ=1

{
Eiσ ≤ Λhiσ (t) , Ejγ > Λhjγ (t)

})

=
∑

1≤i1<...<ik≤d
{j1,...,jd−k,i1,...,ik}={1,...,d}

P
(
Eiσ ≤ Λhiσ (t), σ = 1, . . . , k, Ejγ > Λhjγ (t), γ = 1, . . . , d− k

)

=
∑

1≤i1<...<ik≤d
{j1,...,jd−k,i1,...,ik}={1,...,d}

E
[( k∏

σ=1

(
1− e−Λhiσ (t)

))( d−k∏
γ=1

(
e
−Λhjγ (t)

))]
︸ ︷︷ ︸

=:(∗)

.

Making use of equation (6.16) we further expand the inner expectation as follows:

(∗) = E
[(

1 +
k∑
l=1

(−1)l
∑

1≤m1<...<ml≤k
e
−
∑l
z=1 Λhimz (t)

)
e
−
∑d−k
γ=1 Λhjγ (t)

]

= E
[
e
−
∑d−k
γ=1 Λhjγ (t)

]
+

k∑
l=1

(−1)l
∑

1≤m1<...<ml≤k
E
[
e
−
∑l
z=1 Λhimz (t)−

∑d−k
γ=1 Λhjγ (t)

]
.

This last term has the claimed copula representation, which can be seen from the

proof of Theorem 4.2.2. Hence, the proof is complete.

(b) Conditioned on σ(Λt : t > 0), dLt has a binomial distribution with d trials and

success probability 1− exp(−Λh(t)). Thus, one computes

P
( d∑
i=1

D
(i)
t = k

)
= E

[
P
( d∑
i=1

1{Ei≤Λh(t)} = k

∣∣∣∣Λh(t)

)]
= E

[(
d

k

)
(1− e−Λh(t))k (e−Λh(t))d−k

]
=
(
d

k

)
E
[
(1− e−Λh(t))k (e−Λh(t))d−k

]
.

The term inside the expectation may be expanded using the binomial formula as

(1− e−Λh(t))k (e−Λh(t))d−k =
k∑
l=0

(
k

l

)
(−1)l e−(l+d−k) Λh(t) ;

the claim then follows easily. �

159



0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.125

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.25

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.375

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.5

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.625

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.75

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.875

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

αα=0.99

Figure 6.3 Histograms for the distribution of L10 with portfolio size d = 11. The
marginal distribution G is chosen to be exponential with parameter 0.03,
resulting in G(10) ≈ 26%. The underlying Lévy-frailty copula is of ex-
changeable Cuadras-Augé type, i.e. Cα as defined in (4.6), for a param-
eter α ∈ [0, 1]. The parameter α is varied to illustrate several levels of
dependence.

In the case of a homogeneous portfolio, Figure 6.3 illustrates the effect of dependence

on the distribution of L10, and fixed default probability G(10) ≈ 26%. The stronger the

dependence among the default times, the more probability mass is assigned to events

with many defaults. Moreover, the event of no default becomes quite likely if strong

dependence is observed. Mathematically speaking: under independence, 10L10 has a
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6.4 The Portfolio Loss Distribution

binomial law with success probability 26%. Under extremal dependence, in 26% of the

cases all companies default, and in the other 74% of the cases, no company defaults.

Remark 6.4.2 (Pricing n-th-to-default Swaps)

In general, formula (6.15) from Theorem 6.4.1 can be plugged into the pricing formula

(6.7) for the spread of an n-th-to-default swap. Admittedly, the terms in (6.14) become

numerically intractable for large d, due to the numerous possibilities to choose k out

of d elements, resulting in accordingly many summands. However, standard underlying

baskets for n-th-to-default swaps consist of about d = 5 names, compare the iTraxx

Europe conventions for the ninth series. For such small basket sizes the sums in equation

(6.14) can be written out explicitly. The formulas are then evaluated on a standard

computer in seconds. Especially, if only the distribution of the first default time is to

be computed, the sum boils down to a single copula since for t > 0 one has

P
(
τ(1) > t

)
= P

(
τ1 > t, τ2 > t, . . . , τd > t

)
= CΨ

(
Ḡ1(t), . . . , Ḡd(t)

)
by Theorem 6.3.1.

For the pricing of basket credit derivatives with large basket sizes d ≥ 20, such as

CDOs, the formulas of Theorem 6.4.1 become useless from a practical point of view.

Formula (6.14) becomes inefficient to evaluate, not to say impossible. Even in the

homogeneous case the binomial coefficients become huge and the sum is alternating,

which causes inconvenient cancelation effects resulting in numerical imprecision. Thus,

for practical implementations one has to approximate the distribution of Lt efficiently.

In the homogeneous case, which we assume for the pricing of CDO contracts, this is

achieved in the following theorem.

Theorem 6.4.3 (Approximation for Large Homogeneous Portfolios)

Assume G1 = . . . = Gd =: G and consequently h1 = . . . = hd =: h. As the portfolio size

d tends to infinity, the following assertions can be made:

(a) Fix a time horizon T ∈ (0,∞). Then {Lt}t∈[0,T ] tends to {1−exp(−Λh(t))}t∈[0,T ] in

the Banach space L2(Ω× [0, T ],F ,P) of all square-integrable stochastic processes

X on [0, T ] with the norm

||X||L2 :=
(
E
[ ∫

(0,T )
X2
t dt
]) 1

2
.
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(b) supt≥0

∣∣∣Lt − (1− e−Λh(t)
)∣∣∣ tends to zero almost surely.

Proof

According to [Frey, McNeil (2001)], for fixed t ∈ [0, T ] the model is a Bernoulli Mixture

Model with mixing variable 1 − exp(−Λh(t)). From [McNeil et al. (2005), p. 357 ff] we

can already derive an almost sure convergence of Lt for fixed t ∈ [0, T ]. In contrast, the

claimed statements are uniform in t ∈ [0, T ] (respectively t ∈ [0,∞)) and are derived as

follows.

(a) To show L2-convergence, one computes E
[
Lt
]

= G(t) as well as (by a simple

computation)

E
[
Lt (1− e−Λh(t))

]
= E

[
(1− e−Λh(t))2

]
, E

[
L2
t

]
=
G(t)
d

+
d− 1
d

E
[
(1− e−Λh(t))2

]
.

From this, it follows that

E
[(
Lt − (1− e−Λh(t))

)2] = E
[
L2
t

]
− 2 E

[
Lt (1− e−Λh(t))

]
+ E

[
(1− e−Λh(t))2

]
=
G(t)
d

+
d− 1
d

E
[
(1− e−Λh(t))2

]
− E

[
(1− e−Λh(t))2

]
,

which tends to zero as d tends to infinity. Hence, for T > 0 it holds that

lim
d→∞

∫ T

0
E
[(
Lt − (1− e−Λh(t))

)2]
dt

= lim
d→∞

(
1
d

∫ T

0
G(t) dt− 1

d

∫ T

0
E
[
(1− e−Λh(t))2

]
dt

)
= 0.

Thus, {Lt}t∈[0,T ] tends to {1− exp(−Λh(t))}t∈[0,T ] in L2(Ω× [0, T ],F ,P).

(b) The second statement follows from the Gliwenko-Cantelli Theorem: conditioned

on the path of Λ, the function t 7→ Lt equals one realization of the empirical

distribution function of the distribution function t 7→ 1− exp(−Λh(t)). Hence,

P
(

lim
d→∞

sup
t≥0

∣∣∣Lt − (1− e−Λh(t)
)∣∣∣ = 0

)
= E

[
P
(

lim
d→∞

sup
t≥0

∣∣∣Lt − (1− e−Λh(t)
)∣∣∣ = 0

∣∣∣σ(Λs : s ≥ 0)
)]

= E[1] = 1,

where the second equality follows from the classical Gliwenko-Cantelli Theorem,

see e.g. [Loève (1977), p. 20]. �
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6.4 The Portfolio Loss Distribution

As a consequence, Theorem 6.4.3 justifies the following useful argument: provided d� 2

is large and the random variable Λh(t) is absolutely continuous with density fΛh(t)
for t >

0, the distribution of Lt may be approximated by the absolutely continuous distribution

with density f (∞)
t given by

f
(∞)
t (x) := fΛh(t)

(
− log(1− x)

) 1
1− x

, x ∈ (0, 1), (6.17)

which equals the density of the random variable 1− exp(−Λh(t)).
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Figure 6.4 Specifying the dependence structure via an Inverse Gaussian subordinator,
the approximate density (6.17) of the portfolio loss Lt ≈ 1 − exp(−Λh(t))
is illustrated. More precisely, the Laplace exponent is given by Ψ(x) =
(
√

2x+ η2− η)/(
√

2 + η2− η), x ≥ 0, for a parameter η > 0 (family (6) in
Table 4.1). Parameters used are h(t) = t log(1/0.75)/5 and t = 5, such that
E[Lt] = 25%, and η ∈ {10, 1, 0.1}. The dependence measure αΨ = 2−Ψ(2)
decreases in η.

The required distribution of Λh(t) is easy to handle if a convenient Lévy subordina-

tor is specified to implement the model. Of particular interest for a calibration of the

model to CDO market quotes are Lévy subordinators Λ, such that the density of Λt is

known in closed form for all t ≥ 0. If this is the case, then the required expectations

E[Lt,j ] =: E[g(Lt)] can be approximated by E
[
g
(
1 − exp(−Λh(t))

)]
and numerically be

computed within fractions of a second. Examples of such Lévy subordinators comprise
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the Gamma subordinator, the Inverse Gaussian subordinator and several compound

Poisson subordinators (all possibly with additional drifts). Laplace inversion techniques

allow to choose general Lévy subordinators, but the computation becomes more expen-

sive in that case. One such example is an α-stable subordinator. In some special cases

(e.g. compound Poisson processes with drift and constant or exponential jump sizes), the

expectations E[Lt,j ] can even be computed analytically and exact formulas are obtained.

In the case of an Inverse Gaussian subordinator, Figure 6.4 visualizes the density of the

approximated portfolio loss for three different levels of dependence.

6.5 Calibration to CDO Market Quotes

In the sequel we present a calibration of the model to CDO market quotes, using the

approximation for the portfolio loss from Theorem 6.4.3. The payment streams for the

calibration are in concordance with the iTraxx conventions, i.e. quarter-yearly premium

payments and attachment points [0%, 3%], [3%, 6%], [6%, 9%], [9%, 12%], and [12%, 22%]

for the tranches, compare Table 6.1. Further required input are discount factors, which

are obtained from risk-free par yields. Market quotes, to which the model is calibrated,

comprise the portfolio CDS spreads with maturities three and five years, the upfront

payment for the first tranche, and spreads for the remaining tranches; all tranche spreads

for contracts maturing in five years. One week of daily data is used from the seventh

series of iTraxx Europe, ranging from June 20, 2007, to June 26, 2007, and a calibration

is run for each of these days.

Due to the separation of dependence structure and marginal default probabilities, one

can proceed in two steps. At first, the marginal distribution G is calibrated, for which

a piecewise linear intensity is assumed. To be precise, we let

1−G(t) := e−
∫ t
0 λ(s) ds, λ(t) := λ3 min{t, 3}+ λ5 t1{t>3}, t ≥ 0, (6.18)

where λ3 and λ5 are positive intensity parameters which are calibrated to the portfolio

CDS spreads for a three- and a five-year contract, respectively. This calibration is done

via two succeeding bisection procedures. Secondly, λ3 and λ5 are fixed and the param-

eters of the Lévy subordinator, specifying the dependence, are calibrated to observed

market spreads of the tranches of the CDO. All implemented Lévy subordinators are

chosen such that they are parameterized by two parameters (η, β). To calibrate those,
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6.5 Calibration to CDO Market Quotes

a grid is defined for η. For each given η, the equality Ψ(1) = 1 defines an admissibil-

ity interval for β. On this interval, β is chosen such that the observed market upfront

payment is matched perfectly, if possible. This is done by a bisection procedure again.

This procedure is guaranteed to find at most one solution, as the upfront payment is

monotone in β. After completion of these steps, among the obtained parameter pairs

that perfectly explain the upfront payment, (η, β) is chosen to be the minimizer of the

sum of absolute deviations of market to model spreads over all tranches j ≥ 2. Using

the approximation of Theorem 6.4.3, the whole calibration requires only few seconds

on a Mac iBook G4 with 1.2 GHz for all implemented choices of Λ. The results of the

calibration are shown in Table 6.2.

We implement three different model specifications, i.e. three different Lévy subordina-

tors, respectively Lévy-frailty copulas. All of them are such that the dependence in the

model is parameterized by two parameters (η, β):

(i) EXP(η, β): in this specification we choose the Lévy subordinator according to

family (8) in Table 4.1. That is we let Λ be a compound Poisson subordinator

with drift and exponential jump sizes, i.e.

Λt := µ(η, β;EXP ) t+
Nt∑
i=1

Ji, N1 ∼ Poi(β), J1 ∼ Exp(η), t ≥ 0.

In order for the Laplace exponent Ψ of Λ to satisfy Ψ(1) = 1, the parameters have

to satisfy

η > 0, 0 < β ≤ η + 1, µ(η, β;EXP ) := 1− β

η + 1
.

It follows that αΨ = 2β/(η2 + 3 η+ 2). In particular, for each α ∈ (0, 1) there are

parameters (η, β) such that αΨ = α. This can be seen easily by choosing β = η+1

and exploring the resulting expression for αΨ as a function of η > 0.

(ii) Γ(η, β): in this specification we choose the Lévy subordinator according to family

(9) in Table 4.1. That is we let ΛΓ be a Gamma subordinator with parameters

(η, β) and set

Λt := µ(η, β; Γ) t+ ΛΓ
t , t ≥ 0.
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In order for the Laplace exponent Ψ of Λ to satisfy Ψ(1) = 1, the parameters have

to satisfy

η > 0, 0 < β ≤
(

log
(

1 +
1
η

))−1

, µ(η, β; Γ) := 1− β log
(

1 +
1
η

)
.

It follows that αΨ = β log
(
(η + 1)2/(η2 + 2 η)

)
. In particular, for each α ∈ (0, 1)

there are parameters (η, β) such that αΨ = α. This can be seen easily by choosing

β = 1/ log
(
1 + 1/η

)
and exploring the resulting expression for αΨ as a function of

η > 0.

(iii) IG(η, β): in this specification we choose the Lévy subordinator according to family

(10) in Table 4.1. That is we let ΛIG be an Inverse Gaussian subordinator with

parameters (η, β) and set

Λt := µ(η, β; IG) t+ ΛIGt , t ≥ 0.

In order for the Laplace exponent Ψ of Λ to satisfy Ψ(1) = 1, the parameters have

to satisfy

η > 0, 0 < β ≤
(√

2 + η2 − η
)−1

, µ(η, β; IG) := 1− β
(√

2 + η2 − η
)
.

It follows that αΨ = β (−η + 2
√

2 + η2 −
√

4 + η2). For each α ∈ (0, 2 −
√

2)

there are parameters (η, β) such that αΨ = α. This can be seen by choosing

β = 1/
(√

2 + η2 − η
)

and exploring the resulting expression for αΨ as a function

of η > 0. Even though a dependence coefficient αΨ > 2 −
√

2 ≈ 0.586 cannot be

obtained using this model specification, the achievable dependence structures are

flexible enough for our purpose.

Table 6.2 on page 168 contains the calibration results. It shows the three- and five-

year portfolio CDS spreads sCDS3y , sCDS5y used for the calibration, as well as the fit-

ted parameters λ3 and λ5 of the marginal distribution. These are independent of

the choice of Lévy subordinator and the market quotes are perfectly matched each

time. Concerning the dependence, Table 6.2 also shows the fitted dependence pa-

rameters (η, β) for each of the three implemented models, the corresponding upfront

payment (in percent), and the tranche spreads (in basis points). Moreover, the mar-

ket quotes for these quantities are reported, and the absolute deviation of model to

market spreads Ea (in basis points) and the implied dependence parameter αΨ (in
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6.5 Calibration to CDO Market Quotes

percent) are given in Table 6.2. It is observed that our criterion of minimizing the

sum of absolute errors results in the fact that the second tranche is also matched each

time. The reason for this phenomenon might be that the spread of this tranche is

much higher than those of tranches 3, 4, and 5. Furthermore, the large clipping from

tranche spread 2 to tranche spread 3, as observed in the market in the considered pe-

riod, causes most fitting problems. This decrease from tranche 2 to tranche 3 seems to

be hard to capture for other popular models as well, see e.g. the calibration results in

[Kalemanova et al. (2007), Albrecher et al. (2007), Hofert, Scherer (2009)]. The inverse

Gaussian subordinator copes best with this phenomenon among the three specifications

implemented. Overall, one might conclude that the calibration results are satisfying for

the considered period.

Figure 6.5 on page 169 illustrates the calibrated Laplace exponents and the correspond-

ing default probabilities for June 26, 2007. It is observed that the Laplace exponent

of the Inverse Gaussian subordinator grows slowest among the three specifications. In

probabilistic terms this corresponds to the fact that the corresponding joint default

probabilities pk := P(τ1 = . . . = τk) are highest for large k. Recall that by Theorem

4.4.5 pk equals the upper extremal dependence coefficient of an arbitrary k-margin of

the Lévy-frailty copula CΨ. Equivalently, they represent lower extremal dependence

coefficients of k-dimensional subvectors of the vector of default times, compare Remark

2.2.9. In other words, pk gives the probability that k firms collapse immediately, given

at least one firm collapses immediately. Consequently, for large k the number pk is

a measure of extremal dependence in the model, since it quantifies how strongly one

default is correlated with defaults of the other firms. Concluding, the Inverse Gaussian

subordinator implies the most extremal dependence among the three specifications, and

the compound Poisson process the fewest. Notice that Figure 6.5 does not precisely il-

lustrate pk, but monotonically transformed values f(pk), since pk are rapidly decreasing

and hence too difficult to visualize otherwise. The computation of the values pk for large

k is accomplished using the integral representation in Corollary 4.4.7.
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Table 6.2 Fitted portfolio CDS and CDO tranche spreads (5 years).

Model(η, β, λ3, λ5) sCDS3y sCDS5y up in % s2 in bp s3 in bp s4 in bp s5 in bp Ea in bp αΨ in %
Market 6-20-07 11.50 21.60 7.13 47.00 12.30 5.60 2.10
EXP(10.28, 2.48, 0.131%, 0.162%) 11.50 21.60 7.13 47.00 26.85 14.86 4.31 25.94 3.6
Γ(5.48, 1.57, 0.131%, 0.162%) 11.50 21.60 7.13 47.00 24.02 13.49 4.68 22.10 3.8
IG(2.59, 1.00, 0.131%, 0.162%) 11.50 21.60 7.13 47.00 22.13 12.37 4.66 19.07 3.9
Market 6-21-07 12.59 22.78 8.48 50.47 13.28 6.11 2.43
EXP(9.72, 2.42, 0.143%, 0.168%) 12.59 22.78 8.48 50.48 29.73 17.00 5.23 30.13 3.9
Γ(5.05, 1.48, 0.143%, 0.168%) 12.59 22.78 8.48 50.48 26.56 15.33 5.61 25.68 4.1
IG(2.44, 0.94, 0.143%, 0.168%) 12.59 22.78 8.48 50.28 24.40 14.03 5.58 22.37 4.3
Market 6-22-07 13.00 23.36 9.65 55.08 14.49 6.68 2.69
EXP(11.93, 2.93, 0.148%, 0.171%) 13.00 23.36 9.65 55.10 28.87 14.60 3.61 23.25 3.3
Γ(6.57, 1.97, 0.148%, 0.171%) 13.00 23.36 9.65 55.09 26.12 13.62 4.16 20.06 3.5
IG(2.88, 1.19, 0.148%, 0.171%) 13.00 23.36 9.65 55.07 24.30 12.78 4.34 17.57 3.7
Market 6-25-07 13.56 24.33 10.88 59.00 15.16 6.82 2.90
EXP(12.12, 3.03, 0.154%, 0.178%) 13.56 24.33 10.88 58.97 30.63 15.34 3.74 24.83 3.3
Γ(6.66, 2.03, 0.154%, 0.178%) 13.56 24.33 10.88 59.00 27.81 14.39 4.35 21.68 3.5
IG(2.92, 1.23, 0.154%, 0.178%) 13.56 24.33 10.88 58.96 25.73 13.40 4.47 18.71 3.6
Market 6-26-07 13.70 24.12 11.87 63.70 16.26 7.35 3.18
EXP(22.25, 5.87, 0.156%, 0.175%) 13.70 24.12 11.87 63.70 19.84 5.79 0.62 7.70 2.1
Γ(14.65, 5.48, 0.156%, 0.175%) 13.70 24.12 11.87 63.70 18.65 5.95 0.82 6.14 2.2
IG(4.64, 2.72, 0.156%, 0.175%) 13.70 24.12 11.87 63.70 17.96 6.05 0.99 5.18 2.4
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6.6 Comparison with Existing Models
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Figure 6.5 The left plot shows the calibrated Laplace exponents for the three imple-
mented models. The right plot illustrates the joint default probabilities
pk := P(τ1 = . . . = τk) for k = 2, . . . , 125. Since these are hard to distin-
guish by eye, the monotonically transformed values 1−exp

(
−(1015 pk)1/10

)
are plotted. This transformation is chosen such that one can clearly see the
differences for the three calibrated models, when k is large.

6.6 Comparison with Existing Models

This section embeds the presented Lévy-frailty default model into existing literature.

Our primary motivation was to construct a portfolio default model which can quickly

and efficiently be calibrated to observed CDO market quotes, and in our view is thus of

true practical relevance. Therefore, simplifying assumptions such as Lévy properties and

a large homogeneous portfolio assumption are essential for the performed calibration

in Section 6.5. Generally speaking, if one insists on very realistic assumptions such

as e.g. direct contagion effects and a heterogeneous portfolio, a calibration to market

data becomes expensive, or even impossible. Among the default models mentioned

earlier in Section 6.2, there are many approaches which rely on time-consuming Monte

Carlo techniques, when they are calibrated to market quotes. Even though some of

them may exhibit desirable properties from a theoretical perspective, we think that

comparing them to the presented Lévy-frailty approach is like comparing apples and

oranges. Rather, we focus on a closer comparison of our model with other approaches
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which allow for efficient calibrations as well: these are the factor-copula models and an

approach by [Schönbucher (2002)].

The standard model for the pricing of CDO contracts which is used in the market nowa-

days is the Gaussian factor-copula model by [Li (2000)]. More generally, the universal

framework by [Albrecher et al. (2007)] for most factor-copula models shares the same

advantage with regard to an efficient implementation: a large homogeneous portfolio as-

sumption allows to approximate the portfolio loss Lt via a random variable with known

density. This enables the practitioner to compute all required expectations of the form

E[g(Lt)] within fractions of a second. To set the present Lévy-frailty approach apart

from factor-copula models, the following points can be made:

• The dependence structure in the classical Gaussian factor-copula model, intro-

duced by [Li (2000)], is determined by a single parameter ρ ∈ [0, 1]. Models with

only one parameter are often not flexible enough to fit observed market data ap-

propriately. Notice that the implemented examples of Lévy-frailty models from

the previous paragraph are chosen two-parametric.

• The dependence structure of the default times (τ1, . . . , τd)
′

is often not very well

studied. Only in the original model by [Li (2000)] (as well as in the model by

[Hull, White (2004)]), the underlying copula is quite established in the academic

literature: it is the Gaussian copula (resp. the Student t-copula), which has several

drawbacks. For instance, the Gaussian copula has zero tail dependence parameters

and both families share an unrealistic level of symmetry. In the more general model

of [Albrecher et al. (2007)], the resulting copula of the default times is not satis-

factorily studied. For instance, distributional properties such as tail dependence

parameters or other multivariate dependence measures are not known in closed

form. The choice of a particular model is basically justified by a good fit to mar-

ket data. In contrast, the Lévy-frailty default model relies on the Marshall-Olkin

distribution, which is well-studied in the literature (and in the present thesis) and

has a number of desirable features (e.g. asymmetric tail dependence coefficients

and a singular component).

• Using the large homogeneous portfolio approximation for efficient pricing, the com-

mon latent factor in all previously studied factor-copula models is a single random

variable. More precisely, using the notation of equation (6.11), the common factor

is the random variable X(0)
ρ . Given X

(0)
ρ , the default indicator process {Dt}t≥0 is
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6.6 Comparison with Existing Models

known completely. Therefore, the approach is static in the sense that the time t

does not affect the latent variable. In contrast, the common factor in the Lévy-

frailty model is the path of a Lévy subordinator and the default indicator Dt

at time t depends on the complete path of this stochastic process until time t.

Even though the Lévy properties are restrictive to some extent, we think that this

modeling approach deserves to be considered more dynamic than factor-copula

models.

The model which is closest to ours is the approach of [Schönbucher (2002)] in the

Archimedean special case, when a large homogeneous portfolio assumption allows to

approximate the portfolio loss by a single random variable with known density. The

precise model is outlined below. The approximation of the portfolio loss relies on The-

orem 2.3.10, which derives a probabilistic construction of Archimedean copulas with

completely monotone generator. The marginal distributions can be chosen quite ar-

bitrarily, similar as in the present approach. On a high level, the difference in the

Lévy-frailty default model is that the underlying copula is not Archimedean but a Lévy-

frailty copula, which has different distributional properties. From this theoretical point

of view, comparing our approach to the model by [Schönbucher (2002)] boils down to

comparing properties of Archimedean copulas (with completely monotone generator)

and Lévy-frailty copulas. In this regard, the following points can be made:

• Lévy-frailty copulas have a singular component, compare Theorem 4.4.5. Trans-

lated into the language of default modeling this implies positive probabilities of

joint defaults. We think this is a major innovation, and might be an intuitive

and desirable feature of a default model. Archimedean copulas with completely

monotone generators do not share this property.

• As a subclass of Marshall-Olkin survival copulas, Lévy-frailty copulas can be in-

terpreted from an environmental shock point of view: firms in the portfolio are

affected by exogenous economy shocks, compare the original construction (2.11).

We think this interpretation is quite intuitive, which is also the reason why the

references [Giesecke (2003), Lindskog, McNeil (2003)] propose this model in the

same context. In contrast, the probabilistic construction of Archimedean copulas

in Theorem 2.3.10 in our opinion is not well-suited to give a similar intuitive in-

terpretation of default times. Additionally, Lévy-frailty copulas, as constructed in

Theorem 4.2.2, alternatively allow for an internal damage interpretation: a com-
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pany fails when the cumulated damage, modeled as a time-changed Lévy subordi-

nator, exceeds its exponential trigger variable. The construction of Archimedean

copulas can be written in a similar form, see (6.19) below, however this definition

appears much more artificial than in the Lévy-frailty case.

• In theory, the class of Archimedean copulas (with completely monotone generator)

is more flexible than the class of Lévy-frailty copulas, since it is parameterized

by Laplace transforms, which form an infinite-dimensional parameter space. In

practice however, all popular Archimedean copulas are parameterized by a single

parameter. A one-parametric dependence model might be too restrictive to fit

observed CDO market data.

To compare the calibration performance of both approaches, this section calibrates the

approach of [Schönbucher (2002)] to the CDO market data from the previous section.

To this end, the aforementioned special case of the model of [Schönbucher (2002)] is

outlined in more detail.

The model input consists of two components:

(1) A continuous and strictly increasing distribution function G on (0,∞) which has

precisely the same meaning as in the Lévy-frailty default model.

(2) A Laplace transform ϕ(x) = E[exp(−xW )], x ≥ 0, of a positive random variable

W . Notice that W plays the role of the Lévy subordinator Λ in our approach.

On a probability space (Ω,F ,P), the default times
(
τ1, . . . , τd

)′
are defined for k =

1, . . . , d via

τk := inf
{
t > 0 : W ϕ−1

(
1−G(t)

)
> Ek

}
= inf

{
t > 0 : 1−G(t) > ϕ

(Ek
W

)}
, (6.19)

where E1, . . . , Ed are i.i.d. with E1 ∼ Exp(1), independent of W . Notice in particular

that the random vector (U1, . . . , Ud)
′
, defined by setting Uk := ϕ(Ek/W ), has as joint

distribution function the Archimedean copula (2.12) with generator ϕ, see Theorem

2.3.10. More clearly,

P(τ1 > t1, . . . , τd > td) = C
(
1−G(t1), . . . , 1−G(td)

)
, t1, . . . , td ≥ 0,

where C is given by (2.12). A similar argument as in Theorem 6.4.3 furthermore es-

tablishes that the portfolio loss Lt := 1
d

∑d
k=1 1{τk≤t} converges uniformly in t > 0 to
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1 − exp
(
− W ϕ−1(1 − G(t))

)
, as the portfolio size d tends to infinity. E.g. if W is

absolutely continuous, then for large d the distribution of Lt can be approximated in

the same spirit as in (6.17) by the density

f
(∞)
t (x) := fW

( − log(1− x)
ϕ−1(1−G(t))

) 1
1− x

1
ϕ−1(1−G(t))

, x ∈ (0, 1),

where fW denotes the density of W . Having calibrated the deterministic function G to

portfolio CDS spreads in a first step, in a second step this density can be calibrated to

CDO market quotes in a similar fashion as our model is calibrated in the previous para-

graph. [Schönbucher (2002)] proposes to use an Archimedean copula of either Clayton-

(i.e. W is Γ(1, 1/θ)-distributed with θ > 0, see Example 2.3.11) or Gumbel-type (i.e. W

is 1/θ-stable distributed for θ ≥ 1, i.e. ϕ(x) = exp(−x1/θ)). These proposals are due to

the fact that these two Archimedean copulas are the most popular ones in the academic

literature. However, in the case of a Gumbel copula, the density of W is of a stable kind

and, in regard of the formulas (2.21), must be evaluated numerically, making this choice

less attractive for applications. We examine an implementation of the Clayton-model

(with parameter θ > 0), using the same data as in the previous chapter. The results are

shown in Table 6.3. More precisely, Table 6.3 provides the calibration results of three

different models:

• C1(θ, λ3, λ5): the marginal distribution is determined by G, which is parameter-

ized by λ3, λ5 > 0 and given as before by (6.18). The dependence is parameterized

by the Clayton parameter θ > 0, i.e. the default times are constructed as in (6.19)

with W ∼ Γ(1, 1/θ). This implies that the survival copula of the default times is

a Clayton copula.

• C2(θ, λ3, λ5): the marginal distribution is determined by G, which is parame-

terized by λ3, λ5 > 0 and given as before by (6.18). In contrast to the model

C1(θ, λ3, λ5), the default times now have a Clayton copula, instead of a Clayton

survival copula. This is achieved when replacing (6.19) with the similar construc-

tion

τk := inf
{
t > 0 : W ϕ−1

(
p(t)

)
< Ek

}
, k = 1, . . . , d. (6.20)

• IG(η, β, λ3, λ5): this is the same model as used before in Table 6.2. The results

are repeated here in order to be compared with the results of the two Archimedean
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models.

It is important to stress that the marginal distribution of the default times is identical

in all three models, only the dependence structure, i.e. the copula, differs. Recall that

an eMO-copula exhibits upper-tail dependence, which implies that the default times

exhibit lower-tail dependence. In our opinion this is a desirable property, since it means

that an early default of one firm is likely to coincide with a collapse of other firms

as well. Since the Clayton copula exhibits lower-tail dependence, but no upper-tail

dependence, the second model specification C2 is included. The subtle reformulation

(6.20) of (6.19) switches from the survival copula to the actual copula of the default

times, and accordingly switches upper- and lower-tail dependencies, see Remark 2.2.9.

The calibration strategy used is the same as in the previous section: after specifying the

marginal distribution via λ3 and λ5, the remaining dependence parameter θ is chosen

such that the market upfront payment is matched perfectly. The calibration results of

model C2 are better than those of model C1, which strengthens our intuition that lower-

tail dependence of the default times is a desirable feature. Summarizing, the absolute

error Ea is smallest in the two-parametric Lévy-frailty model.
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Table 6.3 Fitted portfolio CDS and CDO tranche spreads (5 years), comparison with Clayton model.

Model sCDS3y sCDS5y up in % s2 in bp s3 in bp s4 in bp s5 in bp Ea in bp
Market 6-20-07 11.50 21.60 7.13 47.00 12.30 5.60 2.10
C1(1.93, 0.131%, 0.162%) 11.50 21.60 7.13 88.90 15.84 2.81 0.17 50.25
C2(0.09, 0.131%, 0.162%) 11.50 21.60 7.13 81.42 18.42 4.91 0.6 42.83
IG(2.59, 1.00, 0.131%, 0.162%) 11.50 21.60 7.13 47.00 22.13 12.37 4.66 19.07
Market 6-21-07 12.59 22.78 8.48 50.47 13.28 6.11 2.43
C1(1.89, 0.143%, 0.168%) 12.59 22.78 8.48 98.41 18.45 3.42 0.21 58.01
C2(0.09, 0.143%, 0.168%) 12.59 22.78 8.48 90.13 20.96 5.71 0.7 49.47
IG(2.44, 0.94, 0.143%, 0.168%) 12.59 22.78 8.48 50.28 24.40 14.03 5.58 22.37
Market 6-22-07 13.00 23.36 9.65 55.08 14.49 6.68 2.69
C1(1.71, 0.148%, 0.171%) 13.00 23.36 9.65 96.04 16.42 2.74 0.15 49.37
C2(0.08, 0.148%, 0.171%) 13.00 23.36 9.65 88.34 19.1 4.79 0.53 41.92
IG(2.88, 1.19, 0.148%, 0.171%) 13.00 23.36 9.65 55.07 24.30 12.78 4.34 17.57
Market 6-25-07 13.56 24.33 10.88 59.00 15.16 6.82 2.90
C1(1.63, 0.154%, 0.178%) 13.56 24.33 10.88 101.82 17.46 2.91 0.16 51.82
C2(0.08, 0.154%, 0.178%) 13.56 24.33 10.88 93.85 20.16 5.04 0.55 44.01
IG(2.92, 1.23, 0.154%, 0.178%) 13.56 24.33 10.88 58.96 25.73 13.40 4.47 18.71
Market 6-26-07 13.70 24.12 11.87 63.70 16.26 7.35 3.18
C1(1.33, 0.156%, 0.175%) 13.70 24.12 11.87 82.87 10.41 1.22 0.07 34.27
C2(0.07, 0.156%, 0.175%) 13.70 24.12 11.87 77.13 12.92 2.53 0.11 24.65
IG(4.64, 2.72, 0.156%, 0.175%) 13.70 24.12 11.87 63.70 17.96 6.05 0.99 5.18
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7 Conclusion

”A conclusion is the place where you got tired of thinking.”

A. Bloch, American writer.

The results of this dissertation can be divided into two blocks: the first block (Chapters 3

and 4) contains purely theoretical results, which contribute to the theory of multivariate

distributions and the theory of Lévy subordinators. The second block (Chapters 5 and 6)

consists of practical applications based on the results of the first block. One application

is concerned with the simulation of random vectors with given dependence structure

(Chapter 5), the other contributes to portfolio credit risk modeling and pricing (Chapter

6).

The first block can be summarized as follows: the skeletal structure is constituted by the

three major findings Theorem 3.4.1 (page 75), Theorem 3.5.3 (page 78), and Theorem

4.2.2 (page 95). Theorem 3.4.1 establishes an alternative representation of exchangeable

Marshall-Olkin survival copulas (eMO-copulas). To this end, d-monotone sequences

are introduced and investigated. As a consequence of this result, the study of analyt-

ical properties of eMO-copulas is facilitated essentially. For instance, in the second

major result, Theorem 3.5.3, d-monotone sequences are characterized by eMO-copulas,

and vice versa. Direct consequences are an alternative version of Hausdorff’s Theo-

rem (Corollary 3.5.6) and interesting analytical analogies between the class eMO and

Archimedean copulas (Section 3.6). Last but not least, Theorem 4.2.2 shows how some

eMO-copulas, namely Lévy-frailty copulas, can be constructed using Lévy subordina-

tors. Having two alternative construction methods for the same distribution allows to

switch between both models whenever one is more convenient than the other. This idea

is applied in Section 4.4 to derive some probabilistic properties of eMO-copulas.

The second block consists of two applications of Theorem 4.2.2: Chapter 5 demonstrates

how to efficiently sample Lévy-frailty copulas and extensions thereof. It is pointed

out that in large dimensions d � 2 these techniques are necessary, since the original
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probabilistic construction of Marshall-Olkin distributions can only be used in small di-

mensions. Chapter 6 presents a financial application. Lévy-frailty copulas are used

to construct a multivariate default model which is well-suited for the pricing of CDO

tranches. The model is systematically embedded into existing literature on portfolio

credit derivative pricing models, and its distributional properties are investigated thor-

oughly.

Concluding, the family of Lévy-frailty copulas is defined, and explored from an analytic

and from a probabilistic viewpoint. As a subclass of Marshall-Olkin survival copulas,

the family is embedded into existing literature. In particular, relations to exchangeable

Cuadras-Augé copulas are pointed out. Moreover, Lévy-frailty copulas are demonstrated

to be of practical use by an application to portfolio credit risk modeling. Interestingly,

some purely mathematical results are obtained as byproducts. For instance, coherences

between different mathematical concepts such as Lévy subordinators, copulas, and com-

pletely monotone sequences are revealed.
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A Appendix

A.1 Proof sketch for Theorem 2.3.2

This proof sketch is based on [Resnick (1987), Proposition 5.11, p. 268 ff].

• First of all, the whole statement is translated into the language of multivariate

extreme-value distributions by transforming the margins of the copula from U [0, 1]

to a so-called Fréchet distribution. More clearly, one considers the function

G∗(t1, . . . , td) := C
(
e
− 1
t1 , . . . , e

− 1
td

)
, t1, . . . , td > 0.

The claim is then equivalent to the following statement:

G∗ is a distribution function with margins t 7→ exp(−1/t), t > 0, satisfying

G∗(t1, . . . , td) = G∗(t t1, . . . , t td)t for all t > 0, if and only if there exists a measure

δ satisfying the claimed boundary conditions and

G∗(t1, . . . , td) = exp
(
−
∫
Sd

max
1≤i≤d

{ui
ti

}
δ(du1, . . . , dud)

)
.

• The necessity of the statement is established as follows: by assumption it follows

easily that the functions Gn := G
1/n
∗ , n ∈ N, are distribution functions. Hence,

they induce probability measures dGn, n ∈ N. It is thus possible to define the

measures ζn := ndGn, n ∈ N. It can be shown that, with n → ∞, the measures

ζn converge vaguely1 to a unique limit measure ζ∗ on [0,∞]d \ {(0, . . . , 0)
′}. The

measure δ is finally defined via

δ(A) := ζ∗

({
~t ∈ [0,∞]d \ {(0, . . . , 0)

′}
∣∣∣ ||~t|| > 1, ||~t||−1~t ∈ A

})
, A ∈ B(Sd),

1For details see e.g. [Billingsley (1995), p. 371] or [Resnick (1987)].
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where ~t := (t1, . . . , td)
′

and ||~t|| denotes the Euclidean norm of ~t. It can be shown

that it has the claimed properties.

• To establish sufficiency, one proceeds the other way round: given δ, one first defines

a measure ζ∗ on [0,∞]d \ {(0, . . . , 0)
′} via

ζ∗(A) :=
∫∫

T (A)

1
r2
dr δ(du1, . . . , dud), A ∈ B

(
[0,∞]d \ {(0, . . . , 0)

′}
)
,

where T : [0,∞]d \ {(0, . . . , 0)
′} → (0,∞]× Sd denotes the polar coordinate trans-

formation ~t 7→ (||~t||,~t′/||~t||)′ . Considering the product measure dt × ζ∗ of the

Lebesque measure and ζ∗ on the space [0,∞)× [0,∞]d \ {(0, . . . , 0)
′}, there exists

a unique so-called Poisson random measure M with mean measure dt×ζ∗. Quickly

explained, M is a random variable with values in the space of all point measures

on [0,∞)× [0,∞]d \ {(0, . . . , 0)
′}, say

M(A) =
∑
k∈N

1{(tk,~j′k)′∈A}, A ∈ B
(
[0,∞)× [0,∞]d \ {(0, . . . , 0)

′}
)
,

where the random variables tk and the random vectors ~jk, k ∈ N, are subject to

certain properties which justify the term ”Poisson” in the notion ”Poisson random

measure”2, and whose distribution is uniquely determined by the mean measure

dt × ζ∗. Based upon this probabilistic object, G∗ is defined as the distribution

function of the random vector ~Y1, where

~Yt := max
{

(0, . . . , 0)
′
, sup
k:tk≤t

{~jk}
}
, t > 0.

Notice that the maximum and the supremum are taken componentwise and the

supremum might be (−∞, . . . ,−∞)
′
if the set {k : tk ≤ t} is empty, which explains

the occurence of (0, . . . , 0)
′

in the definition of ~Yt. Finally, one can prove that G∗
defined in this way has the claimed properties.

2For details see [Resnick (1987)].
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A.2 Proof sketch for Theorem 2.4.3

A.2 Proof sketch for Theorem 2.4.3

This proof sketch follows the lines of [Bertoin (1999), Theorem 1.2]: first of all, the

independence and stationarity of increments can be used to establish

E
[
e−xΛt+s

]
= E

[
e−xΛt

]
E
[
e−xΛs

]
, x, s, t ≥ 0,

which implies the existence of a function Ψ satisfying (2.14), see e.g. [Billingsley (1995),

A20, p. 540]. To relate this function to a measure, let x > 0 and E ∼ Exp(x) be

independent of Λ. One computes

Ψ(x) = lim
n→∞

n
(
1− e−Ψ(x)/n

)
= lim

n→∞
nE
[
1− e−xΛ 1

n

]
= lim

n→∞
nE
[
P(Λ 1

n
≥ E |Λ 1

n
)
]

= lim
n→∞

nP(Λ 1
n
≥ E) = lim

n→∞
nE
[
P(Λ 1

n
≥ E |E)

]
= x lim

n→∞

∫
[0,∞)

e−x t nP(Λ 1
n
≥ t) dt.

Defining ν̃n(dt) := nP(Λ 1
n
≥ t) dt, n ∈ N, the above computation can be used to show

that the measures ν̃n converge vaguely3 to a unique limit measure ν̃, as n → ∞. Since

the functions t 7→ fn(t) := nP(Λ 1
n
≥ t), n ∈ N, are non-increasing, ν̃ is necessarily of

the form

ν̃(A) = µ1{0∈A} +
∫
A\{0}

f(t) dt, A ∈ B
(
[0,∞)

)
,

with a non-increasing and right-continuous function f : (0,∞) → [0,∞) and µ ≥ 0.

This can be used to show that

Ψ(x)
x

= lim
n→∞

∫
(0,∞)

e−x t fn(t) dt = µ+
∫

(0,∞)
e−x t f(t) dt.

Defining ν via ν((t,∞]) := f(t) for all t ∈ (0,∞) (and ν({∞}) := limt→∞ f(t) =: f(∞)),

clearly ν
(
(ε,∞]

)
= f(ε) is finite for all ε > 0. The claimed representation of Ψ follows

from the last equation via integration by parts:∫
(0,∞)

f(t) x e−x t dt︸ ︷︷ ︸
=d
(

1−e−x t
)+
∫

(0,∞)

(
1− e−x t

)
df(t)︸ ︷︷ ︸

=−dν((0,t])

=−ν(dt)

=
[(

1− e−x t
)
f(t)

]t=∞
t=0

,

3See e.g. [Billingsley (1995), p. 371] or [Resnick (1987)].
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and hence for x > 0:

Ψ(x) = µx+
∫

(0,∞)
x e−x t f(t) dt (A.1)

= µx+
[(

1− e−x t
)
f(t)

]t=∞
t=0

+
∫

(0,∞)

(
1− e−x t

)
ν(dt)

= µx+ f(∞) +
∫

(0,∞)

(
1− e−x t

)
ν(dt)

(∗)
= µx+

∫
(0,∞]

(
1− e−x t

)
ν(dt).

In (∗) it is used that f(∞) = ν({∞}). Moreover,
∫

(0,1] t ν(dt) <∞, since

e−1

∫
(0,1]

t ν(dt) = −e−1

∫
(0,1]

t df(t) =
∫

(0,1]
e−1 f(t) dt− e−1 f(1) ≤ Ψ(1)− µ <∞,

where the inequality follows from (A.1) with x = 1, and the last equality follows from

integration by parts. Uniqueness of µ and ν follows from the uniqueness of the vague

limit measure ν̃.

The converse part of the theorem is proved in a similar manner as the sufficiency part

of Theorem 2.3.2: there is a canonical construction of Lévy subordinators based on

so-called Poisson random measures, which is sketched in the sequel. Since we have

already seen how to construct Poisson processes in (2.13) on page 43, it is clear from

Definition 2.4.2 that we may without loss of generality assume that ν({∞}) = 0. The

product dt × ν of the Lebesgue measure and the given measure ν is easily checked

to be σ-finite on [0,∞) × (0,∞), since ν
(
[ε,∞)

)
< ∞ for all ε > 0. Consequently,

[Resnick (1987), Proposition 3.6(i), p. 130] guarantees the existence of a probability

space (Ω,F ,P) supporting a Poisson random measure on [0,∞) × (0,∞) with mean

measure dt× ν, denoted by M . I.e. M is a random measure on [0,∞)× (0,∞) subject

to certain properties4. Based on M , the required Lévy subordinator Λ is defined by

Λt := µ t+
∫∫

[0,∞)×(0,∞)
1{s∈[0,t]} uM(ds, du), t ≥ 0.

Using well-known statements about the so-called Laplace functional of the Poisson ran-

dom measure, see [Resnick (1987), Proposition 3.6(ii), p. 130], the defining properties of

a Lévy subordinator are easily verified. The only point which requires a slightly more

careful guess is the fact that Λt is finite P-almost surely for t > 0. To this end, recall

that a random variable τ on [0,∞] is almost surely finite if its Laplace transform is

4For details see [Resnick (1987)].
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A.2 Proof sketch for Theorem 2.4.3

continuous at zero, see (the remark after) Theorem 2.3.7. Assumption (2.16) allows to

apply the dominated convergence theorem to establish

lim
x↓0

∫
(0,∞)

(
1− e−ux

)
ν(du) =

∫
(0,∞)

lim
x↓0

(
1− e−ux

)
ν(du) = 0,

which implies that

lim
x↓0

E
[
e−x (Λt−µ t)

]
= lim

x↓0
exp

(∫
(0,∞)

(
1− e−ux

)
ν(du)

)
= 1, t > 0.

The first equality again follows from [Resnick (1987), Proposition 3.6(ii), p. 130]. This

shows that the random variable Λt − µ t, and hence Λt, is P-almost surely finite and

therefore Λ is well-defined.
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erarchical Archimedean copulas with Lévy subordinators, Journal of Multivariate

Analysis 101:6 (2010) pp. 1428–1433.

[Hofert (2007)] M. Hofert, Sampling Archimedean copulas, Computational Statistics

and Data Analysis 52:12 (2008) pp. 5163–5174.

[Hofert, Scherer (2009)] M. Hofert and M. Scherer, CDO pricing with nested

Archimedean copulas, Quantitative Finance (in press) (2009).

[Huff (1969)] B.W. Huff, The strict subordination of a differential process, Sankhya:

The Indian Journal of Statistics, Series A 31:4 (1969) 403–412.

[Hull, White (2004)] J. Hull and A. White, Valuation of a CDO and an n-th to default

CDS without Monte Carlo simulation, Journal of Derivatives 12:2 (2004) 8–23.

[Jarrow, Turnbull (1995)] R.A. Jarrow and S. Turnbull, Pricing derivatives on financial

securities subject to credit risk, Journal of Finance 50:1 (1995) 53–85.

[Joe (1997)] H. Joe, Multivariate models and dependence concepts, Chapman and Hal-

l/CRC (1997).

[Joshi, Kainth (2004)] M.S. Joshi and D. Kainth, Rapid and accurate development of

prices and Greeks for n-th to default credit swaps in the Li model, Quantitative

Finance 4:3 (2004) pp. 266–275.

[Joshi, Stacey (2006)] M.S. Joshi and A.M. Stacey, Intensity Gamma: a new approach

to pricing portfolio credit derivatives, Risk 19:7 (2006) 78–83.

[Kalemanova et al. (2007)] A. Kalemanova, B. Schmid and R. Werner, The Normal In-

verse Gaussian distribution for synthetic CDO pricing, Journal of Derivatives 14:3

(2007) pp. 80–93.

193



Bibliography

[Karlin, Shapley (1953)] S. Karlin and L.S. Shapley, Geometry of moment spaces, Mem-

oirs of the American Mathematical Society 12 (1953).

[Karlin (1968)] S. Karlin, Total positivity, Stanford University Press (1968).

[Khinchin (1937)] A. Khinchin, Zur Theorie der unbeschränkt teilbaren Verteilungsge-

setze, Matematicheskii Sbornik 44:1 (1937) pp. 79–119.

[Khinchin (1938)] A. Khinchin, Limit laws for sums of independent random variables,

ONTI, Moscow-Leningrad (1938).

[Kimberling (1974)] C.H. Kimberling, A probabilistic interpretation of complete mono-

tonicity, Aequationes Mathematicae 10 (1974) pp. 152–164.

[Lando (1998)] D. Lando, On Cox processes and credit risky securities, Review of

Derivatives Research 2:2–3 (1998) pp. 99-120.

[Laurent, Gregory (2005)] J.-P. Laurent and J. Gregory, Basket default swaps, CDOs

and factor copulas, Journal of Risk 7:4 (2005).
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