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Abstract

Subject of this work is the analysis of numerical methods for the solution of optimal
control problems governed by elliptic partial differential equations. Such problems arise,
if one does not only want to simulate technical or physical processes but also wants
to optimize them with the help of one or more influence variables. In many practical
applications these influence variables, so called controls, cannot be chosen arbitrarily, but
have to fulfill certain inequality constraints. The numerical treatment of such control
constrained optimal control problems requires a discretization of the underlying infinite
dimensional function spaces. To guarantee the quality of the numerical solution one has to
estimate and to quantify the resulting approximation errors. In this thesis a priori error
estimates for finite element discretizations are proved in case of corners or edges in the
underlying domain and nonsmooth coefficients in the partial differential equation. These
facts influence the regularity properties of the solution and require adapted meshes to get
optimal convergence rates. Isotropic and anisotropic refinement strategies are given and
error estimates in polygonal and prismatic domains are proved. The theoretical results
are confirmed by numerical tests.

Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Untersuchung numerischer Methoden zur
Lösung von Optimalsteuerproblemen mit elliptischen partiellen Differentialgleichungen als
Nebenbedingung. Solche Aufgabenstellungen treten auf, wenn technische oder physikali-
sche Prozesse nicht nur simuliert, sondern mit Hilfe einer oder mehrerer Einflussgrößen
auch optimiert werden sollen. In vielen praktischen Anwendungen können diese Einfluss-
größen, sogenannte Steuerungen, nicht beliebig gewählt werden, sondern unterliegen Unglei-
chungsbeschränkungen. Die rechentechnische Behandlung solcher steuerungsbeschränkter
Optimalsteuerprobleme erfordert eine Diskretisierung der zugrundeliegenden unendlich
dimensionalen Funktionenräume. Um die Qualität der numerischen Approximation sicher-
zustellen, müssen die durch die Diskretisierung entstehenden Abweichungen abgeschätzt
und quantifiziert werden. In dieser Dissertation werden a priori Fehlerabschätzungen
für Finite-Element-Diskretisierungen bewiesen, wenn das zugrundeliegende Rechengebiet
Ecken oder Kanten aufweist oder die Zustandsgleichung nicht glatte Koeffizienten hat.
Diese Umstände beeinflussen die Regularitätseigenschaften der Lösung und erfordern
angepasste Netze um optimale Konvergenzraten zu erhalten. Es werden isotrope und
anisotrope Verfeinerungsstrategien angegeben und Fehlerabschätzungen in polygonalen
und prismatischen Gebieten bewiesen. Die theoretischen Resultate werden jeweils durch
numerische Tests bestätigt.
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CHAPTER 1

Introduction

1.1 Motivation

The modelling and numerical simulation of complex systems play an important role in
many industrial, medical and economical applications. Very often, such systems can
mathematically be described by partial differential equations (PDEs). Here, one can think
for example of heat flow in materials or human tissues, aerodynamic properties of airplanes
or determination of option prices in finance. In the last decades the development of efficient
numerical methods to solve PDEs gave people together with the rising computing power
the opportunity to simulate complex systems. Today this is done very successfully in
many areas. But in most applications mathematical modelling and numerical simulation
are only the first steps. People are rather interested in optimization or optimal control of
the simulated processes. Examples are optimal control of the hydration of concrete [4],
optimal control of glass cooling [73] or optimal placement of a probe in cancer therapy
[2]. In optimal control problems the optimization variable is typically split in two parts,
namely in a control variable and in a state variable, which is influenced by the control
variable. In our case control and state are coupled by a partial differential equation such
that a given control determines a unique state by the solution of this PDE. The aim is
to find a control such that the state minimizes a certain quantity. Here, one can think
for example of the temperature in a furnace that has to be controlled such that the hot
melt of glass inside is cooled as close as possible along an optimal temperature curve to
avoid cracks or to affect the optical quality of the resulting product. Since one cannot
adjust the temperature in a furnace arbitrarily, one has some constraints on the control.
In practise, often constraints on the state or the gradient of the state occur, e. g., the glass
temperature should not exceed a certain level and must not be cooled too fast. In this
thesis we consider only problems with control constraints. Additional difficulties occur
if one has to deal with nonconvex geometries, e.g., in the modelling of a new concrete
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1 Introduction

wall on a bottom plate [4], or with nonsmooth coefficients in the underlying PDE as it
can happen, e.g., when modelling the heat distribution in a solid that consists of different
materials.

Such optimal control problems can abstractly be written as

min
y∈Y,u∈U

J(y, u) subject to e(y, u) = 0, u ∈ C, (1.1)

where Y and U are Banach spaces, y is the state variable and u the control variable. The
term e(y, u) = 0 denotes a PDE and the set C is a closed convex subset of U . In general
one is not able to give an analytical solution of problem (1.1) and has to rely on numerical
methods. In order to obtain stable and accurate numerical results one has to explore and
utilize the specific mathematical structure behind and develop intelligent discretization
strategies. A main ingredient in the analysis are error estimates. They make it possible to
find reasonable discretizations and to validate numerical results. This thesis contributes
to this topic and gives a priori error estimates for control constrained linear-quadratic
optimal control problems governed by elliptic PDEs when additional singularities occur
caused by corners or edges in the domain or by only piecewise smooth coefficients in the
state equation.

1.2 State equation

We discretize the optimal control problem by a finite element method. Since the finite
element error in the state equation plays an important role in the error analysis of the
optimal control problem, we first concentrate on elliptic boundary value problems in
nonsmooth domains or with only piecewise smooth coefficients. Before one can start with
the error analysis one has to figure out the regularity properties of the solution. The
literature on this topic is vast, such that is impossible to give an exhaustive overview here.
Let us mention at least the fundamental paper of Kondrat’ev [77] and the monographs
of Grisvard [62, 63], Kufner and Sändig [80] and Dauge [45]. Furthermore the books of
Nazarov and Plamenvsky [99] and Kozlov, Maz’ya and Rossmann [78, 79] summarize the
research of the authors in this field over many years. It turns out that the solution of
such problems can be characterized by a so called singularity exponent λ. In detail, it is
contained in the Sobolev-Slobodetski space Hs(Ω) with s < 1 + λ provided the right-hand
side is smooth enough. Consequently, one can expect for a finite element method with
polynomial shape functions of order k on quasiuniform meshes only a reduced convergence
order in H1(Ω) or L2(Ω), namely convergence rates of λ or 2λ in the discretization
parameter h. The optimal order can only be reached if the solution is contained in
Hk+1(Ω).

To improve the convergence properties under reduced regularity researchers started to
develop specially adapted methods. Oganesyan and Rukhovec [103], Raugel [110] and
Babuška, Kellog and Pitkäranta [22] investigated a priori local mesh grading techniques in
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1.2 State equation

the two dimensional case and got the same rates in L2(Ω) and H1(Ω) as in the regular
case. We are also interested in estimates of the pointwise error. Many results on this
topic were published in the 1970’s, see, e.g., [58, 98, 117, 118, 122]. Scott proved in [122]
a convergence rate of h2 |lnh| for an elliptic equation and Neumann boundary conditions.
This result is valid if the solution is in W 2,∞(Ω) and if the mesh is quasi-uniform. Frehse
and Rannacher considered in [58] the Dirichlet problem for a more general elliptic operator
in domains Ω with ∂Ω ∈ C2,α and for a discretization with quasi-uniform meshes. For
solutions in W 2,∞(Ω) they got the convergence rate h2 |lnh|, for a right-hand side from
L∞(Ω) they proved the approximation order h2 |lnh|2. Since we like to consider domains
with corners, the boundary is not in C2,α and the state is in general not in W 2,∞(Ω). So
these results are not applicable. In [117] Schatz and Wahlbin derived pointwise estimates
for the Poisson equation in domains with corners. In [118] they specified a refinement rule
for the mesh that allows to prove a convergence rate of h2−ε using piecewise linear ansatz
functions. The drawback of this result is the fact, that the error constant is not separated
from a norm of the right-hand side of the boundary value problem. Especially it is not
clear, what regularity has to be assumed for the right-hand side, since Schatz and Wahlbin
only demand a “smooth” right-hand side. We would like to emphasize that in the case
of optimal control the right-hand side is the unknown control and therefore one cannot
assume arbitrary smoothness.

For L2− and H1-error estimates Apel and Heinrich [8], Apel, Sändig and Whiteman [16]
and Lubuma and Nicaise [86] extended the mesh grading idea to the three-dimensional
case. They used piecewise linear approximations on isotropic meshes, i.e., the aspect ratio
of the finite elements was bounded. But it was observed that this technique leads to
overrefinement near edges. In order to avoid this overrefinement, anisotropic meshes in the
neighborhood of the edges were used in [7, 10, 6, 12, 13]. Anisotropic finite elements are
more general than shape-regular elements; they are characterized by three size parameters
hi,T , i = 1, 2, 3, which may have different asymptotics. The anisotropic mesh grading is
described by a relationship between the size parameters of each element and its distance
from an edge. By estimating the approximation error of the standard nodal interpolation
operator and using the projection property of the finite element method, it is shown in
[7, 10] that the finite element solution using a linear ansatz space converges like O(h)
in H1(Ω) to the solution as long as the right-hand side is in Lp(Ω), p > 2. Here, h is
as usual the maximum diameter of all elements. The main drawback of this estimate
is, that the case p = 2 cannot be treated in this way and an L2-estimate of the finite
element error cannot be obtained. The reason for this can be found in fact that by the
use of the standard Lagrangian (nodal) interpolant the local interpolation error does not
converge in H1(T ) with order 1 in h, if T is an anisotropic element and the solution
is only in H2(Ω), see [7]. As remedy Apel introduced in [6] suitable Scott-Zhang type
quasi-interpolants. The disadvantage of these modified operators is that they preserve
Dirichlet boundary conditions on parts of the boundary only and that the analysis is made
for meshes with certain structure only. Nevertheless, this allowed to prove second order
convergence in L2(Ω) on appropriately graded meshes for a mixed boundary value problem
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1 Introduction

in a prismatic domain with reentrant edge, where the part with the Dirichlet conditions
was chosen such that one of these modified Scott-Zhang operators could preserve them.
One main ingredient of the proof was also the description of the regularity of the solution
in certain weighted Sobolev spaces. A non-conforming approximation for the Poisson
equation with pure Dirichlet boundary conditions in a prismatic domain with reentrant
edge was considered in [12]. The authors proved second order convergence in L2(Ω) for
a finite element approximation in the lower order Crouzeix-Raviart finite element space
on appropriately graded anisotropic meshes. These results were extended in [13] to the
Stokes problem.

Beyond the described a priori local mesh grading technique there exists a couple of other
methods to treat singularities. Let us mention here at least the singular function method.
The basic idea is to augment the ansatz space by certain functions that describe the
occurring singularities. For a detailed description we refer to [29, 54, 123] and for the
three-dimensional case also to [27, 87]. A similar approach is propagated in [23, 31] where
the singular part of the solution is calculated explicitly.

1.3 Optimal control problems

Let us come back to the optimal control problem. The a priori error analysis for optimal
control problems started with the papers of Falk [57] and Gevici [60]. They followed
the classical approach of discretizing both, state and control, with piecewise polynomial
finite elements. Particularly, they investigated the case of elliptic state equations and
pure control constraints and considered piecewise constant approximations of the control.
Malanowski discussed in [88] piecewise constant and piecewise linear approximations in
space for a parabolic problem. In the last years optimal control of PDEs became popular
again and researchers restarted to investigate numerical schemes for such problems. Arada,
Casas and Tröltzsch [20] and Casas, Mateos and Tröltzsch [38] considered semilinear
equations with piecewise constant approximations of the control and got a convergence
rate of 1 in the discretization parameter h in L2(Ω). Rösch investigated in [111] an abstract
optimal control problem and proved under certain assumptions a convergence rate of
3/2 in L2(Ω) for piecewise linear approximations of the control. Casas and Tröltzsch
considered in [39] also piecewise linear approximations of the control and proved first order
convergence for several elliptic problems in general situations. This result was improved
to superlinear convergence in a paper by Casas [36]. Arada, Casas and Tröltzsch proved
in [20] also L∞-error estimates. They got a convergence rate of 1 in 2D and of 1/2 in 3D.
Meyer and Rösch gave pointwise error estimates for piecewise linear approximations in
[96] and proved first order convergence. All the mentioned papers assume quasi-uniform
meshes and sufficiently smooth solutions.

A different approach is proposed by Hinze [71]. In his variational discretization concept
the space of admissible controls is not discretized. Instead, the first order optimality
condition and the discretization of the state and the adjoint state are utilized to derive an
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1.3 Optimal control problems

approximate control. It was proved that the discretization error of the control is bounded
by finite element errors, such that this error behaves for piecewise linear approximations of
state and adjoint state like O(h2) and O(h2 |lnh|) in the L2- and the L∞-norm, respectively,
where full regularity of the state and the adjoint state was assumed. The same L2-estimate
was proved in [19] under reduced regularity assumptions for appropriately graded, isotropic
meshes.

Another discretization concept was introduced by Meyer and Rösch [95]. The space of
admissible controls is discretized by piecewise constant functions. The final approximation
is computed in a post-processing step that consists of a projection of the scaled approximate
adjoint state in the set of admissible controls. The authors proved second order convergence
for plane, convex domains under the assumption of full regularity in state and adjoint state.
Apel, Rösch and Winkler proved in [15] the same result for non-convex plane domains
with the use of local mesh grading. The article of Apel and Winkler [19] extended the
results to general three-dimensional domains, where state and adjoint state may not admit
the full regularity. They counteracted the impact of singularities, which are caused by
reentrant corners and edges, by isotropic, graded meshes and proved a convergence rate of
2. In order to avoid overrefinement near edges Winkler considered in [127] an anisotropic
discretization for a linear-quadratic optimal control problem with a special type of mixed
boundary conditions in the state equation and proved also second order convergence. This
result was proved for meshes with grading parameter µ < min{λ, 5/9 + λ/3}, where λ is
the singularity exponent mentioned above. A detailed definition of these quantities can be
found in Chapter 2. This is a stronger condition than actually necessary to get optimal
convergence for the state equation itself, where µ < λ is enough, see [6]. In [40] Chen
considered a mixed formulation of the elliptic state equation and derived superconvergence
results for the postprocessing approach for Raviart-Thomas finite element discretizations
on rectangular domains.

Rösch and Vexler applied in [112] the post-processing technique to a linear-quadratic
optimal control problem with the Stokes equations as state equations. They achieved
second order convergence provided that no singularities occur such that the velocity field is
in H2(Ω) ∩W 1,∞(Ω). Therefore they restricted theirselves to polygonal, convex domains
Ω ⊂ Rd, d = 2, 3, and assume in the case d = 3 that the edge openings of the domain Ω
are smaller than 2π/3. Casas et al. considered in [37] locally constrained optimal control
problems with the steady-state Navier-Stokes equations in smooth domains. We should
also mention that several articles were published for the optimal control of the Stokes and
Navier-Stokes equation without control constraints, see e.g. [30, 50, 67, 68].

Although this thesis concentrates on the control-constrained case let us also mention a
couple of papers that are devoted to the a priori error analysis of problems with constraints
on the state [41, 51, 52, 53, 72, 93, 94] or the gradient of the state [49, 65, 105]. Beyond
the a priori analysis in the last years several researchers contributed to the a posteriori
analysis of optimal control problems. We point to the papers [59, 69, 70, 83, 85, 125] for
the control-constrained case and [28, 66, 74] for problems with state constraints.
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1 Introduction

1.4 Outline

The outline of the thesis is as follows. In Chapter 2 we repeat some basic facts from
functional analysis, define the function spaces we need in our analysis and give correspond-
ing embedding results. Furthermore, we introduce the graded meshes that are used for
domains with singular corners or edges.

Chapter 3 is devoted to interpolation. Particularly we treat nonsmooth functions on
anisotropic finite elements. We extend results for a quasi-interpolation operator from [6]
such that also pure Dirichlet and pure Neumann problems can be treated. The specific
difficulty with the Dirichlet problem is that the relevant quasi-interpolation operator Eh
defined in [6] does not preserve the boundary conditions on the whole boundary but only
on a part of it. To solve this problem we define a modification of this operator and estimate
the additionally occurring error term. The Neumann problem was not satisfactorily treated
in [6] since its solution has to be described in other weighted Sobolev spaces than the
Dirichlet and the mixed problems. The reason is that in case of Neumann conditions on
both faces joining the “singular edge” the solution may not vanish along the edge. In
view of this, the proof of the global interpolation error estimate in [6, Theorem 14] is
wrong for the Neumann case. To overcome this problem we prove local estimates in the
corresponding weighted Sobolev spaces. This builds up the basis for the estimate of the
global error.

Chapter 4 contains a couple of finite element error estimates for boundary value problems
that serve as state equation for optimal control problems in Chapter 5. In the first section
of Chapter 4 we prove an L∞-error estimate for scalar elliptic problems with Hölder
continuous right-hand sides in domains with reentrant corner on graded meshes. The
novelty of this result is the fact that the error constant in this estimate is separated from
the norm of the right-hand side of the boundary value problem, see Theorem 4.4. Therefore
this result is applicable in the context of optimal control, where the right-hand side is
the unknown control such that one cannot assume arbitrary smoothness as it is done e.g.
in [118]. Section 4.2 utilizes the results of Chapter 3 to prove global interpolation error
estimates in L2(Ω) for an elliptic equation with pure Dirichlet or Neumann boundary
conditions. This gives us straightforwardly an estimate of the corresponding finite element
errors. Let us also mention, that we prove in this section the boundedness of rβ∇y for
β > 1− λ, where r is the distance to the edge and y the solution of the boundary value
problem, see Lemma 4.20. This is an improvement of the condition β > 4/3 − λ as
proved in [127] and allows in contrast to that thesis to keep the same grading condition
for boundary value problem and optimal control problem. In Section 4.3 problems with
discontinuous diffusion coefficients are considered and finite element error estimates are
given. Section 4.4 treats the Stokes equations with Dirichlet boundary conditions. We
first prove error estimates under some reasonable assumptions. Afterwards we show that
these assumptions are fulfilled for the Stokes problem in a two-dimensional domain with
reentrant corner and a three-dimensional domain with reentrant edge. In the first case
we consider several commonly used conforming element pairs as well as the lower order
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1.4 Outline

Crouzeix-Raviart element, both on isotropic graded meshes. For the three-dimensional
setting we investigate a discretization on anisotropic graded meshes with Crouzeix-Raviart
elements and prove in addition to [13] also error estimates in L2(Ω).

In Chapter 5 we turn to optimal control problems. First, we define in Section 5.1 a
general linear-quadratic optimal control problem and prove L2-error estimates for all three
variables under certain assumptions on the discretization for both, the variational discrete
approach introduced in [71] and the post-processing approach introduced in [95]. For the
post-processing approach this general formulation is new. To the best of the author’s
knowledge this is the first time that also non-conforming discretizations are allowed.

We begin the consideration of particular examples in Section 5.2 with problems with
scalar elliptic state equation. We prove that in polygonal domains the approximation
error in the L∞-norm behaves like O(h2 |lnh|3/2). Notice that this estimate is new for the
postprocessing approach even in the case of convex domains. For the variational discrete
approach there is an estimate in [71] which depends on the finite element error of the
adjoint equation in L∞(Ω). As example the suboptimal rates of h2−d/2 in space dimension
d are pointed out as well as the optimal rate of h2| log h| for solutions in W 2,∞(Ω). But
improved estimates for domains with obtuse angles are not considered in that paper.
Next, we check the assumptions of Section 5.1 for optimal control problems in prismatic
domains and discretizations on anisotropic finite element meshes. In this way, we extend
the L2-error estimates of [127] to the case of pure Dirichlet and pure Neumann boundary
conditions. A challenge in case of Neumann boundary conditions are the different regularity
properties compared to the Dirichlet case. This requires some significant changes in the
proofs of [127]. We further weaken the mesh grading condition given in that thesis to
µ < λ, what is the same as one has to demand to get optimal convergence in the state and
adjoint state equation. We have to pay with slightly more regularity in the desired state,
which has to be Hölder continuous and not only bounded. As a byproduct we can also
weaken the grading condition for isotropic refinement given in [19]. We finish Section 5.2
with error estimates for an optimal control problem with a state equation with nonsmooth
coefficients.

We continue in Section 5.3 with an example where a linear-quadratic functional has to
be minimized with respect to the Stokes equations. We consider a nonconvex prismatic
domain which is discretized by an anisotropic graded mesh and approximate the velocity
in the Crouzeix-Raviart finite element space. For the check of the assumptions of Section
5.1 we do not only have to deal with the more complicate structure of the Stokes equations
but also with missing regularity in edge direction. In contrast to the Poisson equation, we
do not have additional regularity of the solution and its derivatives in edge direction in
Lp(Ω) for general p. In the case of the Stokes equations such results are only available
for p = 2, see [13]. This fact prevents a componentwise application of the arguments
which were used in case of the Poisson equation and makes new ideas necessary. Our last
example concerns a two-dimensional setting, where the domain has a reentrant corner. We
prove that our general assumptions are satisfied for a couple of element pairs as long as

7



1 Introduction

one uses a mesh that is tailored to the corner singularity. All the results in Chapter 5 are
illustrated by numerical examples.

In the last chapter we conclude our results and give an outlook on future work.
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CHAPTER 2

Preliminaries

2.1 Basic facts from functional analysis

In this section we recall some basics from functional analysis. Details can be found in any
book on linear functional analysis, e.g., [1, 126].

Definition 2.1. Let X be a real vector space.

(1) A mapping ‖ ·‖ : X → R is called norm on X, if for x, y ∈ X and α ∈ R the conditions

(i) ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0,

(ii) ‖αx‖ = |α|‖x‖,
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖
hold.

(2) The pair (X, ‖ · ‖) is called normed space.

(3) A normed space is called complete, if any Cauchy sequence (xn) has a limit, i.e., if
limm,n→∞ ‖xm − xn‖ = 0 implies the existence of x ∈ X with limn→∞ ‖xn − x‖ = 0.

(4) A normed space, that is complete, is called Banach space.

Definition 2.2. Let H be a real vector space.

(1) A mapping (·, ·) : H → R is called inner product on H, if for x, y, z ∈ H and α ∈ R
the conditions

(i) (x, y) = (y, x),

(ii) (αx, y) = α(x, y),

(iii) (x+ y, z) = (x, z) + (y, z),

9



2 Preliminaries

(iv) (x, x) ≥ 0 and (x, x) = 0⇔ x = 0

are satisfied.

(2) The pair (H, (·, ·)) is called Pre-Hilbert space.

(3) A Pre-Hilbert space is called Hilbert space, if it is complete under its associated norm
‖x‖ :=

√
(x, x).

Theorem 2.3. In a Pre-Hilbert space H the Cauchy-Schwarz inequality

|(x, y)| ≤ ‖x‖ ‖y‖ ∀x, y ∈ H

holds.

Definition 2.4. Let X, Y be normed real vector spaces with norms ‖ · ‖X , ‖ · ‖Y . A
mapping A : X → Y is called linear operator if it satisfies

A(λx1 + µx2) = λAx1 + µAx2 ∀x1, x2 ∈ X, λ, µ ∈ R.

The space of all linear operators A : X → Y that are bounded in the sense that

‖A‖X→Y := sup
‖x‖X=1

‖Ax‖Y <∞

is denoted by L(X,Y ).

Definition 2.5. Let X be a Banach space. The space X∗ := L(X,R) of linear functionals
on X is called dual space of X. We use the notation

〈x∗, x〉X∗,X := x∗(x).

The term 〈·, ·〉X∗,X is called dual pairing of X∗ and X.

Definition 2.6. Let X, Y be Banach spaces and A ∈ L(X,Y ). Then the operator
A∗ ∈ L(Y ∗, X∗) defined by

〈A∗y∗, x〉X∗,X = 〈y∗, Ax〉Y ∗,Y ∀y∗ ∈ Y ∗, x ∈ X

is called dual operator of A.

Definition 2.7. Let X and Y be two normed spaces. X is said to be embedded into
Y , written X ↪→ Y , if there is a constant c such that for all x ∈ X possibly after
modification on a set of measure zero x ∈ Y and ‖x‖Y ≤ c‖x‖X , i.e., the embedding
operator T : x ∈ X 7→ x ∈ Y is bounded.

X is said to be compactly embedded into Y , written X
c
↪→ Y , if X ↪→ Y and every sequence

(xn) which is bounded in X has a subsequence which converges in Y , i.e. the embedding
operator T : x ∈ X 7→ x ∈ Y is compact.

10



2.2 Function spaces

2.2 Function spaces

This section covers function spaces which are needed to classify solutions of boundary
value problems and optimal control problems. Beyond the Lebesgue spaces Lp(G) and the

classical Sobolev spaces W k,p(G) we shall need some weighted spaces V k,p
β (G) and W k,p

β (G),
which are tailored to the smoothness properties of solutions of boundary value problems
in nonconvex domains G or with discontinuous coefficients. Moreover, we introduce the
space of Hölder continuous functions C0,σ(Ḡ).

Throughout this section let G ⊂ Rd, d = 2, 3, be an open, bounded domain with Lipschitz
boundary ∂G. The closure of the domain G is denoted by Ḡ. Further, we denote by D′(G)
the space of distributions.

Definition 2.8. We define for p ∈ [1,∞) the Lebesgue space Lp(Ω) by

Lp(G) :=

{
v : G→ R Lebesgue measurable : ‖v‖Lp(G) :=

(∫
G
|u(x)|p

)1/p

<∞

}
.

Moreover, we define

L∞(G) :=
{
v : G→ R Lebesgue measurable : ‖v‖L∞(G) := ess supx∈G |u(x)| <∞

}
.

Definition 2.9. We define for k ∈ N, p ∈ [1,∞) the classical Sobolev spaces W k,p(G) by

W k,p(G) :=

v ∈ D′(G), ‖v‖Wk,p(G) :=

∑
|α|≤k

∫
G
|Dαv|p

1/p

<∞


Furthermore, we introduce the seminorm

|v|Wk,p(G) :=

∑
|α|=k

∫
G
|Dαv|p

1/p

.

We also use the abbreviation Hk(G) := W k,2(G) and define W 0,p(G) := Lp(G). Finally,
we define

W k,∞(G) :=

{
v ∈ D′(G), ‖v‖Wk,∞(G) := max

|α|≤k
‖Dαv‖L∞(G) <∞

}
.

Definition 2.10. With polar/cylindrical coordinates x1 = r cosϕ, x2 = r sinϕ, we define
for k ∈ N0, p ∈ [1,∞) and β ∈ R the weighted Sobolev spaces

V k,p
β (G) :=

v ∈ D′(G) : ‖v‖
V k,pβ (G)

:=

∑
|α|≤k

∫
G
|rβ−k+|α|Dαv|p

1/p

<∞

 ,

W k,p
β (G) :=

v ∈ D′(G) : ‖v‖
Wk,p
β (G)

:=

∑
|α|≤k

∫
G
|rβDαv|p

1/p

<∞

 .

11
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The corresponding seminorms are defined as

|v|
V k,pβ (G)

:=

∑
|α|=k

∫
G
|rβ−k+|α|Dαv|p

1/p

and |v|
Wk,p
β (G)

:=

∑
|α|=k

∫
G
|rβDαv|p

1/p

.

Moreover, we introduce

V k,∞
β (G) :=

{
v ∈ D′(G) : ‖v‖

V k,∞β (G)
:= max
|α|≤k

‖rβ−k+|α|Dαv‖L∞(G) <∞
}
,

W k,∞
β (G) :=

{
v ∈ D′(G) : ‖v‖

Wk,∞
β (G)

:= max
|α|≤k

‖rβDαv‖L∞(G) <∞
}
.

Definition 2.11. We define the function spaces

C(G) := {v : G→ R : v continuous}

and
C(Ḡ) := {v ∈ C(G) : v has a continuous extension to Ḡ}.

The space C(Ḡ) is a Banach space with the norm

‖v‖C(Ḡ) := sup
x∈Ḡ
|v(x)|.

Let 0 < σ ≤ 1. The space of Hölder continuous functions is defined as

C0,σ(Ḡ) := {v ∈ C(Ḡ) : v σ-Hölder continuous for |α| = k}.

The space C0,σ(Ḡ) is a Banach space with the norm

‖v‖C0,σ(Ḡ) := ‖v‖C(Ḡ) + sup
x,y∈Ḡ, x 6=y

|v(x)− v(y)|
|x− y|σ

.

We set C0,0(Ḡ) := C(Ḡ).

Definition 2.12. Let G be partitioned in disjoint, nonempty and open subdomains Gi,
i = 1, . . . , n. We define for k ∈ N0 and p ∈ [1,∞) the spaces

Wk,p(G) :=

n∏
i=1

W k,p(Gi),

i.e., v ∈ Wk,p(G) if and only if vi := v|Gi ∈W k,p(Gi) for all i = 1, . . . , n. The corresponding
norm is defined as

‖v‖Wk,p(G) :=

(
n∑
i=1

‖vi‖pWk,p(Gi)

)1/p

.

12
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Analogically, the corresponding seminorm is defined as

|v|Wk,p(G) :=

(
n∑
i=1

|vi|pWk,p(Gi)

)1/p

.

Furthermore, we define

Wk,∞(G) := {v ∈ D′(G) : vi ∈W k,∞(Gi)}

with the norm and seminorm, respectively,

‖v‖Wk,∞(G) := max
i=1,...,n

‖vi‖Wk,∞(Gi), |v|Wk,∞(G) := max
i=1,...,n

|vi|Wk,∞(Gi).

We introduce for k ∈ N0, p ∈ [1,∞) and β ∈ R the weighted spaces

Vk,pβ (G) :=

n∏
i=1

V k,p
β (Gi),

with the norm and seminorm, respectively,

‖v‖Vk,pβ (G)
:=

(
n∑
i=1

‖vi‖p
V k,pβ (Gi)

)1/p

, |v|Vk,pβ (G)
:=

(
n∑
i=1

|vi|p
V k,pβ (Gi)

)1/p

.

Moreover, we introduce

Vk,∞β (G) := {v ∈ D′(G) : vi ∈ V k,∞
β (Gi)}

and the norm and seminorm, respectively,

‖v‖Vk,∞β (G)
:= max

i=1,...,n
‖vi‖V k,∞β (Gi)

, |v|Vk,∞β (G)
:= max

i=1,...,n
|vi|V k,∞β (Gi)

.

We define the spaces

C0,σ(Ḡ) :=
{
v : G→ R : vi ∈ C0,σ(Ḡi)

}
with the norm

‖v‖C0,σ(Ḡ) := max
i=1,...,n

‖v‖C0,σ(Ḡi)
.

We recall the Sobolev Embedding Theorem.

Theorem 2.13. Let k ∈ N0 and 1 ≤ p <∞.

(1) For q ≥ 1, l ∈ N0 and k ≥ l with k − d/p ≥ l− d/q one has the continuous embedding

W k,p(G) ↪→W l,q(G).

The embedding is compact if k > l and k − d/p > l − d/q.

13
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(2) For 0 < σ < 1 and k − d/p ≥ σ one has the continuous embedding

W k,p(G) ↪→ C0,σ(Ḡ).

The embedding is compact if 0 ≤ σ ≤ 1 and k − d/p > σ.

The following trace theorem is proved for instance in [128, Theorem 8.7]

Theorem 2.14. For 1/2 < s ≤ 1 there exists a linear and continuous trace operator

T0 : Hs(G)→ Hs−1/2(∂G),

i.e., the inequality

‖T0v‖Hs−1/2(∂G) ≤ c‖v‖Hs(G) for v ∈ Hs(G)

holds.

The following lemma is well known, see e.g. [14]. It concerns embedding results for the
spaces V 2,2

β (G) and V 2,∞
β (G), respectively.

Lemma 2.15. The embeddings

V 2,2
β (G) ↪→ V 2,2

γ (G) for β < γ, (2.1)

V 2,∞
γ (G) ↪→ L∞(G) for γ ≤ 2 (2.2)

hold.

Proof. Since β < γ the embedding (2.1) follows directly from the definition of the spaces.
For u ∈ V 2,∞

γ (G) one has rγ−2u ∈ L∞(G). From the fact that γ ≤ 2 one obtains u ∈ L∞(G)
what proves (2.2).

The following two lemmas concerning the spaces W k,p
β (G) were originally published in [17].

The first one entails an embedding result whereas in the second one a norm equivalence
is proved, that will be useful in the forthcoming derivation of a local interpolation error
estimate (comp. Chapter 3).

Lemma 2.16. For p ∈ (1,∞), β > 1− 2/p and k ≥ 0 one has the compact embedding

W k+1,p
β (G)

c
↪→W k,p

β (G). (2.3)

For p ∈ (1,∞), k ≥ 1 and β ∈ (1− 2/p, 1] the continuous embeddings

W k,p
β (G) ↪→W k−1,p

β−1 (G) ↪→W k−1,p(G) ↪→ Lp(G) ↪→ L1(G) (2.4)

are valid.
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Proof. From Lemma 1.8 in [113] one has W 1,p
β (G) ↪→ V 1,p

β (G) for β > 1− 2/p. Lemma 1.2

in [113] yields V 1,p
β (G)

c
↪→W 0,p

β−1(G). Since W 0,p
β−1(G) ↪→W 0,p

β (G) this shows the embedding

W 1,p
β (G)

c
↪→ W 0,p

β (G). Applying this embedding to derivatives, one can conclude (2.3).

The embedding W k,p
β (G) ↪→ W k−1,p

β−1 (G) follows from Theorem 1.3 in [113]. The other
embeddings in (2.4) can be concluded directly since β ≤ 1 and p > 1.

Lemma 2.17. For p > 1, β ∈ (1 − 2/p, 1] and a function v ∈ W k+1,p
β (G) one has the

norm equivalence

‖v‖
Wk+1,p
β (G)

∼ |v|
Wk+1,p
β (G)

+
∑
|α|≤k

∣∣∣∣∫
G
Dαv

∣∣∣∣ .
Proof. The following proof is based on an idea of [97, Chap. 4, §5]. Since one has for
p > 1 and β ∈ (1− 2/p, 1] the embedding W 1,p

β (G) ↪→ L1(G) (see (2.4)), the inequality

‖v‖
Wk+1,p
β (G)

≥ c

|v|
Wk+1,p
β (G)

+
∑
|α|≤k

∣∣∣∣∫
G
Dαv

∣∣∣∣


holds. In order to show the other direction,

‖v‖
Wk+1,p
β (G)

≤ c

|v|
Wk+1,p
β (G)

+
∑
|α|≤k

∣∣∣∣∫
G
Dαv

∣∣∣∣
 , (2.5)

we use a proof by contradiction. If inequality (2.5) was not valid, then there would be a

sequence (vn) with vn ∈W k+1,p
β (G) such that

‖vn‖Wk+1,p
β (G)

= 1, (2.6)

|vn|Wk+1,p
β (G)

+
∑
|α|≤k

∣∣∣∣∫
G
Dαvn

∣∣∣∣ ≤ 1

n
. (2.7)

Since (vn) is a bounded sequence in W k+1,p
β (G) and W k+1,p

β (G)
c
↪→ W k,p

β (G) (see (2.3))

there is a convergent subsequence (vnl) ∈W
k,p
β (G). In the following we suppress the index

l and write (vn) for this subsequence. Because of the completeness of W k,p
β (G) there is a

function v ∈W k,p
β (G), such that

‖v − vn‖Wk,p
β (G)

n→∞−→ 0. (2.8)

With (2.7) one can conclude |vn|Wk+1,p
β (G)

≤ 1/n, what results in

|vn|Wk+1,p
β (G)

n→∞−→ 0. (2.9)
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In the following we show that (vn) is a Cauchy sequence in W k+1,p
β (G). For a fixed and

arbitrary small ε > 0 and numbers n,m large enough one obtains with (2.8) and (2.9)

‖vn − vm‖p
Wk+1,p
β (G)

= ‖vn − vm‖p
Wk,p
β (G)

+ |vn − vm|p
Wk+1,p
β (G)

≤ ε

3
+ C|vn|p

Wk+1,p
β (G)

+ C|vm|p
Wk+1,p
β (G)

≤ ε

3
+
ε

3
+
ε

3
= ε.

Since W k+1,p
β (G) is complete, there is a function v∗ ∈W k+1,p

β (G) with

‖vn − v∗‖Wk+1,p
β (G)

n→∞−→ 0

and one arrives with (2.6) at

‖v∗‖
Wk+1,p
β (G)

= 1. (2.10)

Furthermore one can conclude from (2.7)

|v∗|
Wk+1,p
β (G)

+
∑
|α|≤k

∣∣∣∣∫
G
Dαv∗

∣∣∣∣ = 0, (2.11)

in particular |v∗|
Wk+1,p
β (G)

= 0, which means that Dαv∗ = 0 ∀α : |α| = k+ 1, that is v∗ is

a polynomial over G with degree at most k. Since v∗ also fulfills (2.11), it follows directly
v∗ = 0. This is a contradiction to (2.10), what proves (2.5).

2.3 Graded triangulations

In this section we introduce triangulations where the element sizes depend on the distance
of the element to a corner or an edge. All triangulations Th = {T} of Ω, that we consider,
are admissible in Ciarlet’s sense [42], i.e.,

• Ω̄ =
⋃
T∈Th T̄

• For two arbitrary elements T1, T2 ∈ Th with T1 6= T2 one has T1 ∩ T2 = ∅.
• Any face of any element T1 ∈ Th is either a subset of the boundary ∂Ω or a face of

another element T2 ∈ Th.

2.3.1 Two-dimensional domain

Let us first consider a two-dimensional, bounded and polygonal domain Ω. We assume
that Ω has only one corner with interior angle ω > ω0 located at the origin. The critical
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Figure 2.1: Graded mesh with µ = 0.4 (left) and quasi-uniform mesh (µ = 1.0)

angle ω0 depends on the problem under consideration, e.g. for the Poisson problem and
L2-error estimates it is ω0 = π, for the corresponding L∞-error estimates one has ω0 = π/2.
For details on this, we refer to Chapter 4. With a global mesh parameter h, a grading
parameter µ ∈ (0, 1] and the distance rT of a triangle T to the corner,

rT := inf
(x1,x2)∈T

√
x2

1 + x2
2,

we assume that the element size hT := diamT satisfies

c1h
1/µ ≤ hT ≤ c2h

1/µ for rT = 0

c1hr
1−µ
T ≤ hT ≤ c2hr

1−µ
T for rT > 0.

(2.12)

Notice, that the number of elements of such a triangulation is of order h−2, see e.g. [16].
In Figure 2.1 one can see such isotropic graded meshes for different values of µ.

2.3.2 Three-dimensional domain

We consider a prismatic domain Ω = G×Z, where G ⊂ R2 is a bounded polygonal domain
and Z := (0, z0) ⊂ R is an interval. It is assumed that the cross-section G has only one
corner with interior angle ω > π at the origin. For the construction of a mesh in Ω, we
first introduce a graded triangulation {τ} in the two-dimensional domain G according to
(2.12). This means the element size hτ := diamτ satisfies

c1h
1/µ ≤ hτ ≤ c2h

1/µ for rτ = 0

c1hr
1−µ
τ ≤ hτ ≤ c2hr

1−µ
τ for rτ > 0.

where rτ is the distance to the corner,

rτ := inf
(x1,x2)∈τ

√
x2

1 + x2
2,
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Figure 2.2: Anisotropic graded mesh with µ = 0.4 (left) and uniform mesh (µ = 1.0)

µ the grading parameter and h the global mesh parameter. From this graded two-
dimensional mesh a three-dimensional mesh of pentahedra is built by extruding the
triangles τ in x3-direction with uniform mesh size h. In order to generate an anisotropic
graded tetrahedral mesh, each of these pentahedra is divided into tetrahedra. We can
characterize the elements T of such a mesh by the three mesh sizes hT,1, hT,2 and hT,3,
where hT,i is the length of the projection of T on the xi-axis, i = 1, 2, 3. In detail, with rT
being the distance of the element T to the edge,

rT := inf
x∈T

√
x2

1 + x2
2,

the element sizes satisfy

c1h
1/µ ≤ hT,i ≤ c2h

1/µ for rT = 0,

c1hr
1−µ
T ≤ hT,i ≤ c2hr

1−µ
T for rT > 0,

c1h ≤ hT,3 ≤ c2h,

(2.13)

for i = 1, 2. The number of elements is of order h−3 and therefore asymptotically not
increasing in comparison with a quasi-uniform mesh. Figure 2.2 shows such anisotropic
graded tetrahedral meshes for µ = 0.4 and µ = 1.0.
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CHAPTER 3

Interpolation of nonsmooth functions

3.1 Suitable interpolation operators

In this chapter we consider estimates of the approximation error for a quasi-interpolant
on anisotropic finite element meshes in prismatic domains. Such estimates are main
ingredients of the error analysis for a finite element discretization.

Let us discuss shortly why the use of quasi-interpolation operators gains some advantage
for anisotropic, three-dimensional finite elements. If one takes the standard Lagrangian
(nodal) interpolation operator, which uses nodal values of the function for the definition of
the interpolant, one can benefit from the very useful property, that Dirichlet boundary
conditions are preserved by this operator. However, it was shown in [7] for an anisotropic,
three-dimensional finite element T , that the local interpolation error estimate

|u− Ihu|W 1,p(T ) ≤ c
3∑
i=1

hi,T

∣∣∣∣ ∂u∂xi
∣∣∣∣
W 1,p(T )

(3.1)

and even its simplified version |u− Ihu|W 1,p(T ) ≤ cmaxi hi,T |u|W 2,p(T ) is valid under the
condition p > 2 only. The main drawback of this result is, that it allows an estimate of the
finite element error in H1(Ω) only for a right-hand side in Lp(Ω), p > 2. The consequence is,
that one cannot achieve an L2(Ω)-error estimate via the Aubin-Nitsche method. A way out
is the use of quasi-interpolation operators as for example introduced in [44, 120]. The basic
idea is to replace nodal values by suitable averaged values. Apel investiged in [6] several
quasi-interpolation operators for anisotropic elements. It turned out that the classical
operators introduced in [44, 120] are not uniformly W 1,p-stable in the aspect ratio and do
not satisfy an estimate like (3.1) (with T replaced by a patch ST on the right hand side).
As a remedy he introduced three modifications of the Scott-Zhang interpolant for which
such estimates hold. As the original ones these modified operators have the disadvantage
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that they preserve Dirichlet boundary conditions on parts of the boundary only. In the
following we introduce another modification tailored to pure Dirichlet problems. This
interpolant is closely related to the operator Eh introduced by Apel in [6]. Although some
of our proofs are applications or simple extensions of derivations in that paper, the estimate
of an occurring additional error term requires new ideas for the proof. Furthermore we
prove local estimates for the operator Eh in the space W k,p

β (Ω) such that the results can
also be used for the derivation of global error estimates for the Neumann problem. The
following results were originally published in [17].

3.2 Tensor product meshes

Let Ω be a prismatic domain, i.e. Ω = G×Z ⊂ R3, where G ⊂ R2 is a bounded polygonal
domain and Z := (0, z0) ⊂ R is an interval. The different parts of the boundary are
denoted by

ΓB := {x ∈ ∂Ω : x3 = 0 or x3 = z0} and ΓM := ∂Ω\ΓB.

The crosssection G is assumed to have only one corner with interior angle ω > π at the
origin; thus Ω has only one “singular edge” which is part of the x3-axis. For a triangulation
of Ω we do not demand the elements to be shape-regular. In contrast we are interested in
anisotropic elements. According to [9], we consider the four reference elements

T̂1 := {(x̂1, x̂2, x̂3) ∈ R3 : 0 < x̂1 < 1, 0 < x̂2 < 1− x̂1, 0 < x̂3 < 1− x̂1 − x̂2},
T̂2 := {(x̂1, x̂2, x̂3) ∈ R3 : 0 < x̂1 < 1, 0 < x̂2 < 1− x̂1, x̂1 < x̂3 < 1},
T̂3 := {(x̂1, x̂2, x̂3) ∈ R3 : 0 < x̂1 < 1, 0 < x̂2 < x̂1, 0 < x̂3 < x̂1 − x̂2},
T̂4 := {(x̂1, x̂2, x̂3) ∈ R3 : 0 < x̂1 < 1, 0 < x̂2 < x̂1, 1− x̂1 < x̂3 < 1}.

For an illustration we refer to Figure 3.1. For elements with a face parallel to the x1 − x2-
plane we use T̂1 and T̂3, for elements without such a face T̂2 and T̂4 are considered.
Elements with exactly one vertex with r = 0 are mapped to T̂3 or T̂4, in all other cases
(zero or two vertices with r = 0) T̂1 and T̂2 are used In the following we refer to the
suitable reference element by T̂ . In order to be able to write down our proofs in a concise
way, we restrict ourselves first to tensor product meshes. According to [6] an affine finite
element is called tensor product element, when the transformation of a reference element
T̂ to the element T has the form x1

x2

x3

 =

 h1,T 0 0
0 h2,T 0
0 0 h3,T

 x̂1

x̂2

x̂3

+ bT ,

where bT ∈ R3. Note that the vertices of a tensor element are located in the corners of
a cuboid with edge lengths h1,T , h2,T and h3,T . We explain in Subsection 3.6, how the
results extend to a more general mesh type.
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3.2 Tensor product meshes
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Figure 3.1: Reference elements for anisotropic interpolation error estimates

In addition we demand that there is no rapid change in the element sizes, this means, that
the relation

hi,T ∼ hi,T ′ for all T ′ with T ∩ T ′ 6= ∅

holds for i = 1, 2, 3. Furthermore we define the set

MT := int
⋃
i∈IT

Ti,

where the set IT contains all indices i for which Ti ∩ T 6= ∅ and the projection of Ti on the
x1x2-plane is the same as the one of T . With ST we denote the smallest triangular prism
that contains MT . Notice that the height of ST is in the order of h3,T . We further define

ST̂ :=
{

(x̂1, x̂2, x̂3) ∈ R3 : 0 < x̂1 < 1, 0 < x̂2 < 1− x̂1, 0 < x̂3 < 1
}

as reference patch.
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3 Interpolation of nonsmooth functions

3.3 Quasi-Interpolation operators

We define the Scott-Zhang type interpolant Eh : W l,p(Ω)→ Vh by

(Ehu)(x) :=
∑
i∈I

aiϕi(x), (3.2)

which was originally introduced in [6]. It is l ≥ 2 for p = 1 and l > 2/p otherwise,
compare also the forthcoming Remark 3.1. The set I is the index set of all nodes, the
functions ϕi, i ∈ I, are nodal basis functions, i.e. ϕi(Xj) = δij for all i, j ∈ I, where
Xi = (Xi,1, Xi,2, Xi,3) ∈ R3 are the nodes of the finite element mesh. In order to specify
ai, we first introduce the subsets σi ⊂ Ω̄ by the following properties.

(P1) σi is one-dimensional and parallel to the x3-axis.

(P2) Xi ∈ σi
(P3) There exists an edge e of some element T such that the projection of e on the x3-axis

coincides with the projection of σi.

(P4) If the projections of any two points Xi and Xj on the x3-axis coincide then so do
the projections of σi and σj .

Note that the properties (P3) and (P4) make sense since we consider tensor product
meshes. Now ai is chosen as the value of the L2(σi)-projection of u in the space of linear
functions over σi ⊂ Ω at the node Xi,

ai := (Qσiu)(Xi)

with

Qσi : L2(σi)→ P1,σi

where P1,σi is the space of polynomials over σi with a degree of at most 1.

We denote by Φ0,i and Φ1,i the two one-dimensional linear nodal functions corresponding

to σi =
−→
XiXj , that means

Φ0,i(Xi,3) = 1, Φ0,i(Xj,3) = 0,

Φ1,i(Xi,3) = 0, Φ1,i(Xj,3) = 1.

Besides we define Ψ0,i and Ψ1,i as the two linear functions, that are biorthogonal to
{Φ0,i,Φ1,i}, ∫

σi

Φk,iΨl,i = δk,l (k, l = 0, 1). (3.3)

Notice that Φk,i depends only on Xi,3, what means that Φk,i = Φk,m if Xi,3 = Xm,3,
k = 0, 1. The same is valid for Ψk,i. With this setting we can write the interpolation
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3.3 Quasi-Interpolation operators

operator Eh as

Ehu(x) =
∑
i∈I

(Qσiu)(Xi)ϕi(x)

=
∑
i∈I

[
Φ0,i(Xi,3)

∫
σi

uΨ0,i ds+ Φ1,i(Xi,3)

∫
σi

uΨ1,i ds

]
ϕi(x)

=
∑
i∈I

[∫
σi

uΨ0,i ds

]
ϕi(x). (3.4)

Remark 3.1. Ehu is well-defined only for u ∈W l,p(Ω) with

l ≥ 2 for p = 1, l >
2

p
otherwise.

This guarantees u|σi ∈ L1(Ω). In the special case that u ∈W 2,2
1−π/ω+ε(Ω) the interpolant

Ehu is also well-defined since one has the embedding W 2,2
1−π/ω+ε(Ω) ↪→W

1+π/ω−ε,2
0 (Ω) (see

[113], Theorem 1.3) and 1 + π/ω − ε > 1.

The disadvantage of Eh is, that it preserves Dirichlet boundary conditions on ΓM only,
but not on ΓB. But this is necessary in order to derive an estimate for the finite element
error for pure Dirichlet problems. In order to be able to treat boundary value problems
with Dirichlet boundary conditions on the whole boundary ∂Ω, we introduce the operator
E0h as modification of Eh.

Let J be the index set, which includes the indices of all nodes not belonging to ΓB and

Vh := {vh ∈ H1(Ω) : vh|T ∈ P1 for all T ∈ Th},
V0h := {vh ∈ Vh : vh|∂Ω = 0}.

We define E0h : W 2,p(Ω)→ V0h as

(E0hu)(x) :=
∑
i∈J

(Qσiu)(Xi)ϕi(x). (3.5)

Since ϕi(x) = 0 for all x ∈ ΓB and i ∈ J , the operator E0h is preserving homogeneous
Dirichlet boundary conditions also on ΓB.

In the following we assume

h1,T ≤ h2,T ≤ h3,T (3.6)

without loss of generality.
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3 Interpolation of nonsmooth functions

3.4 Local estimates in classical Sobolev spaces

We first recall an approximation result from [6].

Theorem 3.2. Consider an element T of a tensor product mesh and assume that (3.6) is
fulfilled. Then the approximation error estimate

|u− Ehu|W 1,q(T ) ≤ c |T |1/q−1/p
∑
|α|=1

hαT |Dαu|W 1,p(ST ) (3.7)

holds for p ∈ [1,∞], q such that W 2,p(T ) ↪→W 1,q(T ) and u ∈W 2,p(ST ).

Proof. If one sets l = 2, m = 1 formula (3.7) is exactly formula (6.6) in Theorem 10 of
[6].

Our aim is now to estimate |u − E0hu|W 1,q(T ) for a function u ∈ W 2,p(T ), p ∈ [1,∞], q
such that W 2,p(T ) ↪→W 1,q(T ) and u|ΓB = 0. With the triangle inequality we get

|u− E0hu|W 1,q(T ) ≤ |u− Ehu|W 1,q(T ) + |Ehu− E0hu|W 1,q(T ). (3.8)

The first term on the right-hand side is treated in Theorem 3.2. It remains to find an
estimate for the second term. To this end, we first prove the following auxiliary result.

Lemma 3.3. Let T be an element with T ∩ΓB 6= ∅, I the index set of the nodes in T ∩ΓB
and u a function in W 2,p(ST ) with ST as defined in Section 3.2, p ∈ [1,∞] and with
u|ΓB = 0. Then for every i ∈ I and every linear function Φ̃1,i with Φ̃1,i|σi = Φ1,i and
Φ̃1,i|ΓB = 0 there exists ci ∈ R, such that∑

|α|≤2

hα
∥∥∥Dα

(
u− ciΦ̃1,i

)∥∥∥
Lp(ST )

≤ c
∑
|α|=2

hα‖Dαu‖Lp(ST ). (3.9)

Furthermore one has ∑
|α|≤1

hα|Dαu|W 1,p(ST ) ≤ c
∑
|α|=1

hα|Dαu|W 1,p(ST ). (3.10)

Proof. Let g be a continuous function with the properties of a norm, i.e.

g(t1, . . . , tn) ≥ 0 and g((t1, . . . , tn) = 0⇔ t1 = · · · = tn = 0,

g(λt1, . . . , λtn) = |λ|g((t1, . . . , tn),

g(t1 + τ1, . . . , tn + τn) ≤ g(t1, . . . , tn) + g(τ1, . . . , τn).

In Theorem 4.5.1 of [97] it is shown that for such functions and for linear functionals
l1, l2, . . . , lN that are bounded in W k,p(Ω) and do not vanish simultaneously on a polynomial
with degree less than k besides the zero polynomial, the inequality

‖u‖Wk,p(Ω) ≤ c
(
g(l1u, l2u, . . . , lNu) + |u|Wk,p(Ω)

)
(3.11)
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3.4 Local estimates in classical Sobolev spaces

is valid. Here N is the number of independent monomials of degree ≤ k − 1.

Now we prove (3.9) and (3.10) for the reference patch ST̂ . In our case there is N = 4,
what is the number of monomials of degree less than or equal to 1 in three dimensions. We
denote by êi (i = 1, 2, 3) the three edges of ST̂ in the x1x2-plane. Then we set liv :=

∫
êi
v,

i = 1, 2, 3 and l4v :=
∫
ST̂
v. For g we choose g(t1, t2, t3, t4) =

∑4
i=1 |ti|. Now we set ci such

that
∫
ST̂

(
û− ciΦ̂1,i

)
= 0 and we get

‖û− ciΦ̂1,i‖W 2,p(ST̂ ) ≤ c

 3∑
j=1

∣∣∣∣∣
∫
êj

(û− ciΦ̂1,i)

∣∣∣∣∣
+

∣∣∣∣∣
∫
ST̂

(
û− ciΦ̂1,i

)∣∣∣∣∣+ |û− ciΦ̂1,i|W 2,p(ST̂ )

)
.

Since Φ̂1,i is linear and Φ̂1,i|êj = 0 (j = 1, 2, 3) we end up with

‖û− ciΦ̂1,i‖W 2,p(ST̂ ) ≤ c |û|W 2,p(ST̂ ).

The transformation back to ST yields assertion (3.9).

In the case of (3.10) we have k = 1 and N = 1. We set l1v =
∫
ST̂∩{z=0} v ds. Since û

vanishes on ST̂ ∩ {z = 0} one has l1û = 0 and with (3.11) this yields

‖û‖W 1,p(ST̂ ) ≤ c |û|W 1,p(ST̂ ).

The transformation back to ST results in inequality (3.10).

With this result at hand, we are now able to give an estimate of the second term of the
right-hand side of inequality (3.8).

Theorem 3.4. Consider an element T of a tensor product mesh and assume that condition
(3.6) is fulfilled. Then the error estimate

|E0hu− Ehu|W 1,q(T ) ≤ c |T |1/q−1/p
∑
|α|=1

hα|Dαu|W 1,p(ST ) (3.12)

holds if p ∈ [1,∞], q is such that W 2,p(T ) ↪→W 1,q(T ), u ∈W 2,p(ST ) and u|T∩ΓB
= 0.

Proof. For an element T with T ∩ ΓB = ∅ one has E0hu − Ehu = 0 and (3.12) is valid.
For an element T with T ∩ ΓB 6= ∅ denote by BT the index set of nodes belonging to ΓB,
BT := {i : Xi ∈ T ∩ ΓB}. We treat the derivatives in the different directions separately.
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3 Interpolation of nonsmooth functions

For the estimate of the derivative in x3-direction it follows together with (3.4) and (3.3)

∥∥∥∥ ∂

∂x3
(Eh − E0h)u

∥∥∥∥
Lq(T )

=

∥∥∥∥∥∥
∑
i∈BT

(Qσiu)
∂

∂x3
ϕi

∥∥∥∥∥∥
Lq(T )

=

∥∥∥∥∥∥
∑
i∈BT

[∫
σi

uΨ0,i

]
∂

∂x3
ϕi

∥∥∥∥∥∥
Lq(T )

=

∥∥∥∥∥∥
∑
i∈BT

[∫
σi

(u− ciΦ1,i)Ψ0,i

]
∂

∂x3
ϕi

∥∥∥∥∥∥
Lq(T )

(3.13)

for arbitrary ci ∈ R. We use
‖Ψ0,i‖L∞(σi) ≤ c |σi|

−1

and the trace theorem W 2,p(ST ) ↪→ L1(σi), p ≥ 1 in the form

‖v‖L1(σi) ≤ c |σi||T |
−1/p

∑
|α|≤2

hα‖Dαv‖Lp(ST )

to get the estimate∣∣∣∣∫
σi

(u− ciΦ1,i)Ψ0,i ds

∣∣∣∣ ≤ ‖Ψ0,i‖L∞(σi)‖u− ciΦ1,i‖L1(σi)

≤ c |T |−1/p
∑
|α|≤2

hα‖Dα(u− ciΦ̃i,1)‖Lp(ST ),

where Φ̃i,1 is a linear function with Φ̃i,1|σi = Φi,1. With Lemma 3.3 we can conclude∣∣∣∣∫
σi

(u− ciΦ1,i)Ψ0,i ds

∣∣∣∣ ≤ c |T |−1/p
∑
|α|=2

hα‖Dαu‖Lp(ST ).

Taking into account that∥∥∥∥ ∂

∂x3
ϕi

∥∥∥∥
Lq(T )

≤ c |T |1/qh−1
3 for i ∈ B

we can continue from equation (3.13) with∥∥∥∥ ∂

∂x3
(Eh − E0h)u

∥∥∥∥
Lq(T )

≤ c
∑
i∈BT

(∣∣∣∣∫
σi

(u− ciΦ1,i)Ψ0,i

∣∣∣∣ ∥∥∥∥ ∂

∂x3
ϕi

∥∥∥∥
Lq(T )

)
≤ c |T |1/q−1/p h−1

3

∑
|α|=2

hα‖Dαu‖Lp(ST ).
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3.4 Local estimates in classical Sobolev spaces

With condition (3.6) we finally conclude∥∥∥∥ ∂

∂x3
(Eh − E0h)u

∥∥∥∥
Lq(T )

≤ c |T |1/q−1/p
∑
|α|=1

hα‖Dαu‖W 1,p(ST ). (3.14)

For the estimates concerning the derivatives in x2- and x1-direction we use a technique
developed in [6]. Let us discuss the case of the x2-derivative; the x1-derivative can be
proved by analogy.

First we consider the case that three nodes of T are contained in ΓB , that means |BT | = 3.
We denote these nodes with X0, X1 and X2, where the edge spanned by X0 and X1 is
parallel to the x1-axis and the one spanned by X0 and X2 parallel to the x2-axis. Then
one has

(E0hu− Ehu)|T =

2∑
i=0

aiϕi = (a0 − a2)ϕ0 + a2(ϕ0 + ϕ2) + a1ϕ1

where we have set ai :=
∫
σi
uΨ0,i.

Taking into account that T is a tensor product element, we can conclude

∂

∂x2
ϕ1 = 0 and

∂

∂x2
(ϕ0 + ϕ2) = 0.

This yields ∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

= |a0 − a2|
∥∥∥∥ ∂

∂x2
ϕ0

∥∥∥∥
Lq(T )

. (3.15)

Since {x3 : (x1, x2, x3) ∈ σ0} = {x3 : (x1, x2, x3) ∈ σ2} ,Ψ0,0 = Ψ0,2 and X0,1 = X2,1 we
get for the first factor

|a0 − a2| =
∣∣∣∣∫
σ0

u(X0,1, X0,2, z)Ψ0,0(z) dz −
∫
σ2

u(X0,1, X2,2, z)Ψ0,2(z) dz

∣∣∣∣
=

∣∣∣∣∣
∫
σ0

Ψ0,0(z)

∫ X2,2

X0,2

∂

∂x2
u(X0,1, y, z) dy dz

∣∣∣∣∣
≤ c ‖Ψ0,0‖L∞(σ0)

∣∣∣∣∣
∫
σ0

∫ X2,2

X0,2

∂

∂x2
u(X0,1, y, z) dy dz

∣∣∣∣∣
≤ ch−1

1 h−1
3

∑
|α|≤1

hα
∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
L1(ST )

.

In the last estimate we have used the trace theorem W 1,1(ST ) ↪→ L1(Ξ1) where Ξ1 is the
two-dimensional manifold spanned by σ0 and X0X2 in the form

‖u‖L1(Ξ1) ≤ |Ξ1||T |−1
∑
|α|≤1

hα‖Dαu‖L1(ST ).
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3 Interpolation of nonsmooth functions

With ∥∥∥∥ ∂

∂x2
ϕ0

∥∥∥∥
Lq(T )

≤ ch−1
2 |T |

1/q,

obtained by using the inverse inequality, it follows from (3.15) with the Hölder inequality∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

≤ c (h1h2h3)−1|T |1/q
∑
|α|≤1

hα
∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
L1(ST )

≤ c |T |1/q−1/p
∑
|α|≤1

hα
∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
Lp(ST )

.

The application of Lemma 3.3 yields∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

≤ c |T |1/q−1/p
∑
|α|=1

hα
∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
Lp(ST )

(3.16)

since ∂u
∂x2

= 0 on ΓB. Let us now consider the case where only two nodes X0, X1 of T are
contained in ΓB, what means |BT | = 2. One has

(E0hu− Ehu)|T = a0ϕ0 − a1ϕ1. (3.17)

We have to treat three different cases. First the case that the edge spanned by X0 and X1

is parallel to the x2-axis, then the case that it is parallel to the x1-axis and finally the
case that is nor parallel to the x1-axis nor to the x2-axis. We first consider the case that
the edge is parallel to the x2-axis. One can rewrite (3.17) by

(E0h − Ehu)|T = (a0 − a1)ϕ0 + a1(ϕ0 + ϕ1).

Now one can proceed exactly as in the case with three nodes in ΓB and obtain (3.16).

If the edge spanned by X0 and X1 is parallel to the x1-axis one has

∂

∂x2
ϕ0 =

∂

∂x2
ϕ1 = 0 (3.18)

and from (3.17) one can conclude∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

= 0. (3.19)

Consider now the case, where the edge spanned by X0 and X1 is neither parallel to the
x1-axis nor to the x2-axis. In the case that the remaining nodes X2, X3 of the tetrahedra
span an edge that is parallel to the x2-axis the nodal functions ϕ0 and ϕ1 do not depend
on x2 and equation (3.18) is valid. Equation (3.19) follows then with (3.17). If the edge
spanned by X2 and X3 is parallel to the x1-axis a more detailed analysis is necessary.
Therefore we rewrite (3.17) again by

(E0hu− Ehu)|T = (a0 − a1)ϕ0 + a1(ϕ0 + ϕ1).
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3.4 Local estimates in classical Sobolev spaces

A short computation shows that ϕ0 + ϕ1 = 1− x3 and, consequently,

∂

∂x2
(ϕ0 + ϕ1) = 0.

With Xi = (Xi,1, Xi,2, Xi,3), i = 0, 1 and Ψ0,0 = Ψ0,1 one can write

|a0 − a1| =
∣∣∣∣∫
σ0

u(X0,1, X0,2, z)Ψ0,0(z) dz −
∫
σ1

u(X1,1, X1,2, z)Ψ0,1(z) dz

∣∣∣∣
=

∣∣∣∣∫
σ0

[u(X0,1, X0,2, z)− u(X1,1, X1,2, z)] Ψ0,0(z) dz

∣∣∣∣ .
The triangle inequality yields

|a0 − a1| ≤
∣∣∣∣∫
σ0

[u(X0,1, X0,2, z)− u(X1,1, X0,2, z)] Ψ0,0(z) dz

∣∣∣∣
+

∣∣∣∣∫
σ0

[u(X1,1, X0,2, z)− u(X1,1, X1,2, z)] Ψ0,0(z) dz

∣∣∣∣
=

∣∣∣∣∣
∫
σ0

Ψ0,0(z)

∫ X0,1

X1,1

∂

∂x1
u(x,X0,2, z) dx dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
σ0

Ψ0,0(z)

∫ X0,2

X1,2

∂

∂x2
u(X1,1, y, z) dy dz

∣∣∣∣∣ .
Now one can proceed as in the case of three nodes in ΓB and arrives at

|a0 − a1| ≤ ch−1
1 h−1

3

∑
α≤1

hα

[∥∥∥∥Dα

(
∂u

∂x1

)∥∥∥∥
L1(ST )

+

∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
L1(ST )

]
.

Since ∥∥∥∥ ∂

∂x2
ϕ0

∥∥∥∥
Lq(T )

≤ ch−1
2 |T |

1/q and h1 ≤ h2,

it follows as in the case of three nodes in ΓB (comp. (3.16))∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

≤ c |T |1/q−1/p
∑
|α|=1

hα
∥∥∥∥Dα

(
∂u

∂x1

)∥∥∥∥
Lp(ST )

+

c |T |1/q−1/p
∑
|α|=1

hα
∥∥∥∥Dα

(
∂u

∂x2

)∥∥∥∥
Lp(ST )

.

It remains the case where only one node X0 of T is contained in ΓB. The difference of
E0h and Eh in T reduces to

(E0hu− Ehu)T = a0ϕ0.
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3 Interpolation of nonsmooth functions

Since T is a tensor product element one has ϕ0 = ϕ0(x3) and consequently∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

= |a0|1/q
∥∥∥∥ ∂

∂x2
ϕ0

∥∥∥∥
Lq(T )

= 0.

Summarizing all the cases we have shown∥∥∥∥ ∂

∂x2
(E0h − Eh)u

∥∥∥∥
Lq(T )

≤ c |T |1/q−1/p
∑
|α|=1

hα‖Dαu‖W 1,p(ST ). (3.20)

The proof for an estimate of the error in the x1-derivative is analogous to the x2-case and
one gets ∥∥∥∥ ∂

∂x1
(E0h − Eh)u

∥∥∥∥
Lq(T )

≤ c |T |1/q−1/p
∑
|α|=1

hα‖Dαu‖W 1,p(ST ). (3.21)

With (3.14), (3.20) and (3.21) the assertion is shown.

Theorem 3.5. Consider an element T of a tensor product mesh and assume that (3.6) is
fulfilled. Then the error estimate

|u− E0hu|W 1,q(T ) ≤ c |T |1/q−1/p
∑
|α|=1

hαT |Dαu|W 1,p(ST ) (3.22)

holds for p ∈ [1,∞], q such that W 2,p(T ) ↪→W 1,q(T ), u ∈W 2,p(ST ) and u|T∩ΓB
= 0.

Proof. Inequality (3.22) follows with the triangle inequality from (3.7) and (3.12).

3.5 Local estimates in weighted Sobolev spaces

In order to get a global estimate for the interpolation error, it is useful to have an estimate
where certain first derivatives of the interpolant are estimated against first derivatives
of the function u. This additional stability estimate is necessary since we also consider
functions u /∈ H2(T ) for elements T with rT = 0. Thus we prove the following estimate
for functions from weighted Sobolev spaces.

Lemma 3.6. Consider a tensor product element T and assume that h1,T ∼ h2,T ≤ ch3,T .
Let p, q ∈ [1,∞], 1 − 2/p < β < 2 − 2/p and β ≤ 1. Then one has for u ∈ W 1,p(ST ) ∩
V 2,p
β (ST ) and u|T∩ΓB

= 0 the estimate

|E0hu|W 1,q(T ) ≤ c |T |1/q−1/ph−β1,T

∑
|α|=1

hαT ‖Dαv‖
V 1,p
β (ST )

. (3.23)

For u ∈W 1,p(ST ) ∩W 2,p
β (ST ) the estimate

‖Ehu‖W 1,q(T ) ≤ c |T |1/q−1/ph−β1,T

∑
|α|=1

hαT ‖Dαv‖
W 1,p
β (ST )

. (3.24)

is valid.
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3.5 Local estimates in weighted Sobolev spaces

Proof. By the triangle inequality, Lemma 11 in [6] with m = 1 and (3.12) one has

|E0hu|W 1,q(T ) ≤ |Ehu|W 1,q(T ) + |E0hu− Ehu|W 1,q(T )

≤ c |T |1/q−1
∑
|α|≤1

hα|Dαu|W 1,1(ST ). (3.25)

The step from |α| ≤ 1 to |α| = 1 is analogous to the proof of Lemma 11 in [6]. One has
just to substitute (6.13) in that proof by (3.25), and (3.23) is shown.

The second inequality can be proved in the following way. Since β < 2 − 2/p one has
r−β ∈ Lp′(ST ) with 1/p′ = 1− 1/p and one can write for v ∈W 0,p

β (ST )

‖v‖L1(ST ) ≤ ‖r−β‖Lp′ (ST )‖r
βv‖Lp(ST ). (3.26)

Consider now two cylindrical sectors Z1, Z2 with radius c1h1,T and c2h1,T so that Z1 ⊂
ST ⊂ Z2. Since h1,T ∼ h2,T we can conclude(∫

Zi

r−βp
′
)1/p′

∼
(
h3,T

∫ cih1,T

0
r−βp

′+1

)1/p′

∼
(
h3,Th

2−βp′
1,T

)1/p′

∼
(
|ST | · h−βp

′

1,T

)1/p′

for i = 1, 2. This results in the inequality

‖r−β‖Lp′ (ST ) ≤ |ST |
1/p′h−β1,T . (3.27)

The two inequalities (3.26) and (3.27) yield the embedding W 2,p
β (ST ) ↪→W 2,1(ST )and it

follows u ∈W 2,1(ST ). Therefore one has from Theorem 10 in [6]

‖Ehu‖W 1,q(T ) ≤ c |T |1/q−1
∑
|α|≤1

hαT ‖Dαu‖W 1,1(ST ). (3.28)

Notice that the patch ST defined in [6] is a subset of ST as defined in Section 3.2. Now we
continue from (3.28) with

‖Ehu‖W 1,q(T ) ≤ c |T |1/q−1
∑
|α|≤1

∑
|t|≤1

hαT ‖Dα+tu‖L1(ST )

≤ c |T |1/q−1|ST |1−1/ph−β1,T

∑
|α|≤1

∑
|t|≤1

hαT ‖rβDα+tu‖Lp(ST )

∼ |T |1/q−1/ph−β1,T

∑
α≤1

hαT ‖Dαu‖
W 1,p
β (ST )

and the assertion (3.24) is shown.

In the following we prove an interpolation error estimate for functions in W 2,p
β (T ). This

result is necessary for estimating the finite element error of pure Neumann problems.
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3 Interpolation of nonsmooth functions

Theorem 3.7. Consider an element T of a tensor product mesh and assume that h1,T ∼
h2,T ≤ ch3,T is fulfilled. Then the error estimate

‖u− Ehu‖W 1,q(T ) ≤ c |T |1/q−1/ph−β1,T

∑
|α|=1

hαT ‖Dαu‖
W 1,p
β (ST )

(3.29)

holds for p ∈ [1,∞], β ∈ (1− 2/p, 1], q such that W 1,p
β (T ) ↪→ Lq(T ) and u ∈W 2,p

β (T ).

Proof. From the triangle inequality we have for an arbitrary function w ∈W 2,p
β (ST )

‖u− Ehu‖W 1,q(T ) ≤ ‖u− w‖W 1,q(T ) + ‖Eh(u− w)‖W 1,q(T ). (3.30)

For the first term in this inequality one can conclude with the embedding W 1,p
β (ST ) ↪→

Lq(ST )

‖u− w‖W 1,q(T ) ≤ ‖u− w‖W 1,q(ST )

≤ c |T |1/q
∑
|t|≤1

h−tT ‖D
t(û− ŵ)‖Lq(ST̂ )

≤ c |T |1/q
∑
|t|≤1

h−tT ‖D
t(û− ŵ)‖

W 1,p
β (ST̂ )

= c |T |1/q
∑
|t|≤1

∑
|α|≤1

h−tT ‖r
βDα+t(û− ŵ)‖Lp(ST̂ ). (3.31)

The application of (3.24) to u− w yields

‖Eh(u− w)‖W 1,q(T ) ≤ c |T |1/q−1/ph−β1,T

∑
|α|≤1

hαT ‖Dα(u− w)‖
W 1,p
β (ST )

≤ c |T |1/q
∑
|α|≤1

∑
|t|≤1

h−tT ‖r
βDα+t(û− ŵ)‖Lp(ST̂ ). (3.32)

With (3.30), (3.31) and (3.32) one obtains

‖u− Ehu‖W 1,q(T ) ≤ c |T |1/q
∑
|α|≤1

∑
|t|≤1

h−tT ‖r
βDα+t(û− ŵ)‖Lp(ST̂ )

= c |T |1/q
∑
|t|≤1

h−tT ‖D
t(û− ŵ)‖

W 1,p
β (ST̂ )

. (3.33)

Now we specify w as the function of P1(ST ), such that∫
ST̂

Dt(û− ŵ) = 0 ∀t : |t| ≤ 1,
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3.6 Extension to more general meshes

and together with Lemma 2.17 one can continue from (3.33) with

‖u− Ehu‖W 1,q(T ) ≤ c |T |1/q
∑
|t|≤1

h−tT |D
tû|

W 1,p
β (ST̂ )

= c |T |1/q
∑
|t|≤1

∑
|α|=1

h−tT ‖r
βDα+tû‖Lp(ST̂ )

≤ c |T |1/q−1/ph−β1,T

∑
|t|≤1

∑
|α|=1

hαT ‖rβDα+tu‖Lp(ST )

= c |T |1/q−1/ph−β1,T

∑
|α|=1

hαT ‖Dαu‖
W 1,p
β (ST )

and the assertion (3.29) is shown.

3.6 Extension to more general meshes

If we consider the special case h1 ∼ h2, we can extend our results to more general meshes.
Instead of tensor product elements we introduce as in [6] elements of tensor product type,
that are defined by the transformation x1

x2

x3

 =

(
BT 0
0 ±h3,T

) x̂1

x̂2

x̂3

+ bT =: B̂

 x̂1

x̂2

x̂3

+ bT ,

where bT ∈ R3 and BT ∈ R2×2 with

|detBT | ∼ h2
1,T , ‖BT ‖ ∼ h1,T , ‖B−1

T ‖ ∼ h
−1
1,T .

Additionally we introduce a coordinate system x̃1, x̃2, x̃3 via the transformation x1

x2

x3

 =

(
h−1

1,TBT 0

0 1

) x̃1

x̃2

x̃3

 =: B̃

 x̃1

x̃2

x̃3

 .

This transformation maps T and ST to T̃ and S̃T . Since x̃1

x̃2

x̃3

 = B̃−1B̂

 x̂1

x̂2

x̂3

+ B̃−1bT =

 h1,T 0 0
0 h1,T 0
0 0 h3,T

 x̂1

x̂2

x̂3

+ B̃−1bT ,

the mesh is a tensor product mesh in the coordinate system x̃1, x̃2, x̃3. With S̃T = ST̃ it
follows from

det B̃ ∼ 1, ‖B̃‖ ∼ 1, ‖B̃−1‖ ∼ 1

that our results extend to meshes of tensor product type.

Remark 3.8. The meshes defined in Subsection 2.3.2 are of tensor product type.
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CHAPTER 4

Finite element error estimates for boundary value problems

One main ingredient of approximation error estimates in optimal control of partial differ-
ential equations are finite element error estimates for the state equation itself. Therefore
we use this chapter to collect a couple of such results for several types of boundary value
problems.

4.1 Scalar elliptic equations in polygonal domains

In this subsection we consider the boundary value problem

Lsy = f in Ω, y = 0 on Γ = ∂Ω, (4.1)

over a bounded, polygonal domain Ω ⊂ R2. The operator Ls is defined as

Lsy := −∇ ·A(x)∇y + a1(x) · ∇y + a0(x)y

where A ∈ C∞(Ω̄,R2×2), a1 ∈ C∞(Ω̄,R2) and a0 ∈ C∞(Ω̄). Furthermore, the coefficients
are assumed to satisfy the conditions

m0|ξ|2 ≤ ξTA(x)ξ ∀(ξ, x) ∈ R2 × Ω̄, m0 > 0

and

a0(x)− 1

2
∇ · a1(x) ≥ 0 ∀x ∈ Ω

ensuring ellipticity and coercivity, respectively. Additionally, we require A to be symmetric.

The variational formulation of this problem is given as

Find y ∈ V0 : as(y, v) = (f, v)L2(Ω) ∀v ∈ V0 (4.2)
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4 Finite element error estimates for boundary value problems

with the bilinear form as : H1(Ω)×H1(Ω)→ R,

as(y, v) :=

∫
Ω
A∇y · ∇v + (a1 · ∇y)v + a0yv, (4.3)

and V0 := {v ∈ H1(Ω) : v|∂Ω = 0}. Notice, that existence and uniqueness of a solution of
(4.2) is guaranteed by the Lax-Milgram lemma.

The singularities that are introduced by corners of the domain show local behavior.
Therefore we reduce our considerations for simplicity to one corner with an interior angle
ω located at the origin. More general situations can be reduced to this case by introducing
suitable cut-off functions, see, e.g., [80].

4.1.1 Regularity

We consider the regularity properties of the solution of the boundary value problem
(4.1). A short summary of relevant facts concerning the regularity of this boundary value
problem is given in [15, Remark 1], which follows the outline by Sändig in [115]. In
order to characterize the regularity of the solution y one considers the Dirichlet boundary
value problem for the equation Ls,0y = f in Ω, where Ls,0 is the principal part of the
operator Ls with the coefficients evaluated at the corner point (here the origin). Then one
particular eigenvalue of an operator pencil, that is obtained by an integral transformation
of this modified problem, characterizes the regularity of y. It is worth mentioning, that
in consequence the regularity is not influenced by the lower order terms with coefficients
a0 and a1. In the following we denote the eigenvalue of interest by λ. In case of the
Dirichlet problem for the Laplace operator in a two-dimensional domain and interior angle
ω ∈ (π, 2π) at the reentrant corner, the eigenvalue λ is explicitly known, λ = π/ω. This
means λ ∈ (1/2, 1). The more general case of the operator Ls is treated in [104, Chap.
5]. The linear coordinate transformation y1 = x1 + d1x2, y2 = d2x2, with d1 = −a12/a22

and d2 =
√
a11a22 − a2

12/a22, where aij (i, j = 1, 2) denote the coefficients of A, maps
the differential operator Ls,0 to a multiple of the Laplace operator. Furthermore, the
neighborhood of the corner, a sector with opening ω, is transformed in a circular sector
with opening ω′. For ω ∈ (π, 2π) one has ω′ ∈ (π, 2π) and therefore one can conclude that
the quantity of interest, λ = π/ω′, is also in the general case contained in the interval
(1/2, 1). The following lemma specifies the regularity of the solution y.

Lemma 4.1. Let p and β be given real numbers with p ∈ (1,∞) and β > 2 − λ − 2/p,
where λ is the particular eigenvalue of the operator pencil associated with Ls as described
above. Moreover, let f be a function in V 0,p

β (Ω). Then the solution of the boundary value

problem (4.2) belongs to H1
0 (Ω) ∩ V 2,p

β (Ω). Moreover, the inequality

‖y‖
V 2,p
β (Ω)

≤ c‖f‖
V 0,p
β (Ω)

is valid.
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4.1 Scalar elliptic equations in polygonal domains

Proof. With Imλ− = −λ the assertion follows from Lemmata 1 and 2 of [115].

The case p = ∞ is not included in the previous lemma. We use results of Maz’ya et al.
[79, 90] to prove a regularity result in the space V 2,∞

γ (Ω).

Lemma 4.2. Let γ ≥ 2 − λ ≥ 0 and f ∈ C0,σ(Ω̄), σ ∈ (0, 1). Then the solution of the
boundary value problem (4.2) belongs to the space V 2,∞

γ (Ω), and the inequality

‖y‖
V 2,∞
γ (Ω)

≤ c‖f‖C0,σ(Ω̄)

is valid.

Proof. In [79], the weighted Hölder spaces N l,σ
β (Ω) are introduced with the norm

‖y‖
N l,σ
β (Ω)

= sup
x∈Ω

∑
|α|≤l

rβ−l−σ+|α||Dαy|+
∑
|α|=l

sup
x,x′∈Ω

∣∣(rβDαy
)

(x)−
(
rβDαy

)
(x′)

∣∣
|x− x′|σ

.

In section 8.7.1 of [79] it is shown that for −λ ≤ l + σ − β ≤ λ the regularity result

‖y‖
N l,σ
β (Ω)

≤ c‖f‖
N l−2,σ
β (Ω)

for the solution y of (4.2) holds. This means that in the case of l = 2 one can conclude for
γ := β − σ ≥ 2− λ

rγ−2+|α||Dαy| ≤ c‖f‖
N0,σ
γ+σ(Ω)

∀α : |α| ≤ 2,

and therefore
‖y‖

V 2,∞
γ (Ω)

≤ c‖f‖
N0,σ
β (Ω)

.

According to [90, section 5] the N l,σ
β (Ω)-norm is equivalent to

sup
x,x′∈Ω

2|x−x′|≤min{|x|,|x′|}

r(x)β
∑
|α|=l

|Dαy(x)−Dαy(x′)|
|x− x′|σ

+ sup
x∈Ω

r(x)β−l−σ|y(x)|.

If one sets l = 0, this implies with γ = β − σ ≥ 0 the embedding C0,σ(Ω̄) ↪→ N0,σ
β (Ω) and

the assertion is shown.

4.1.2 Finite element error estimates

Let us first introduce the finite element solution yh of the boundary value problem (4.2).
To this end, we set V0h as the space of all piecewise linear and globally continuous functions
in Ω, that vanish on the boundary ∂Ω,

V0h := {vh ∈ C(Ω̄) : vh|T ∈ P1 for all T ∈ Th and vh = 0 on ∂Ω}.
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4 Finite element error estimates for boundary value problems

Then the discretized problem reads as

Find yh ∈ V0h : as(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ V0h. (4.4)

The Lax-Milgram lemma is also applicable in the discrete case and therefore it exists a
unique solution yh of (4.4). We recall the well-known result for the finite element error in
the H1- and L2-Norm, see [22, 104, 109].

Theorem 4.3. Let y and yh be the solution of (4.2) and (4.4), respectively. On a mesh
of type (2.12) with grading parameter µ < λ the estimate

‖y − yh‖L2(Ω) + h‖y − yh‖H1(Ω) ≤ ch2|y|
V 2,2
β (Ω)

≤ ch2‖f‖L2(Ω)

is valid for β > 1− λ.

The remainder of this subsection is devoted to an L∞-estimate of the finite element error.
As already mentioned in Chapter 1 there were many results on this topic published in the
1970’s. But all of them are not suitable for our setting due to a restriction on quasi-uniform
meshes, strong regularity assumptions on the solution or the domain or missing exact
regularity assumptions on the right-hand side. Therefore we extend these results in the
following theorem. This was originally published in [14]. A mistake in [14, Lemma 2.13] is
corrected in [5].

Theorem 4.4. Let y be the solution of the boundary value problem (4.2) with a right-hand
side f ∈ C0,σ(Ω̄), σ ∈ (0, 1). The finite element error can be estimated by

‖y − yh‖L∞(Ω) ≤ ch2 |lnh|3/2 ‖f‖C0,σ(Ω̄)

on finite element meshes of type (2.12) with grading parameter µ < λ/2.

Remark 4.5. A comparison of Theorem 4.3 and Theorem 4.4 shows that in order to
achieve the proposed approximation rate in L∞(Ω) a stronger mesh grading is necessary
than in L2(Ω). A mesh is graded if µ < 1. This means that the condition µ < λ

2 yields a
graded mesh not only in the case of a reentrant corner but also for corners with interior
angle beyond a critical angle ω0 < π for which λ = 2. For the Laplace operator, where
the eigenvalue λ is explicitly known as λ = π/ω (comp. also the discussion in Subsection
4.1.1), one has ω0 = π/2. Consequently, already convex domains require mesh adaption.

The remainder of this section concerns the proof of Theorem 4.4. For the error analysis
we cover the domain Ω with sectors ΩRi . The sectors are centered in the corners of Ω
and if necessary also in other points on the boundary ∂Ω such that ∂Ω ⊂

⋃
Ω̄Ri . The

radii ri of ΩRi are chosen small enough such that there exist circles/sectors Ω̃Ri ⊂ Ω
and Ω̂Ri ⊂ Ω with the same center as ΩRi but with radii 1.25ri and 1.5ri. We define
Ω0 := Ω\

⋃
Ω̄Ri . The domains ΩRi are chosen such that Ω0 is an interior subset of Ω. In

Fig. 4.1 an example of such a partition is illustrated. The dotted and the dashed line in
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4.1 Scalar elliptic equations in polygonal domains

Ω0

ΩR

Ωj Ω1

Figure 4.1: Partition of Ω in domains ΩRi (left) and of ΩR in domains Ωj (right)

this figure show domains Ω̃Ri and Ω̂Ri , respectively. In the following we concentrate on
one corner i0 with an interior angle larger than the critical value ω0 and assume that it is
located at the origin. We further assume that the sector ΩRi0

is centered at this corner
and denote it by ΩR, i.e. we suppress the index i0. For the sake of simplicity we assume
without loss of generality that ri0 = 1. We split ΩR in subsets Ωj ,

ΩR =

I⋃
j=1

Ωj

where ΩI = {x : |x| ≤ dI} and Ωj = {x : dj+1 ≤ |x| ≤ dj} for j = 1, . . . , I − 1. We set the
radii dj to dj = 2−j (j = 1, . . . , I). The largest index I is chosen such that

dI = ch2/λ, (4.5)

which means I ∼ log 1
h . Further, we introduce the extended domains

Ω′j = Ωj−1 ∪ Ωj ∪ Ωj+1

with the obvious modification for j = 0 and j = I and in the same way, we define

Ω′′j = Ω′j−1 ∪ Ω′j ∪ Ω′j+1.

The subdomain meshsizes in Ωj , j = 1, . . . , I are denoted by

hj = max
T∈Ωj

hT .

See also Fig. 4.1 for an illustration. Notice that the elements in Ωj , j = 1, . . . , I − 1 are of
comparable mean size, but the elements of ΩI are not, see Lemma 4.6.
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4 Finite element error estimates for boundary value problems

In the following we prove a couple of lemmas that contain auxiliary results which we need
for the proof of Theorem 4.4. Our roadmap is a follows. First of all, we prove two results
concerning the subdomain meshsizes hj (Lemma 4.6 and 4.7). Later they will be useful
for applying a recursive argumentation. Another necessary tool will be the estimate of the
L∞-norm of functions from Vh in a subdomain against the H1-norm in the corresponding
extended subdomain (Lemma 4.9). Then we can go ahead with an estimate for the local
error ‖y− yh‖L∞(ΩJ ) subject to the L2- and H1-error in the extended domain Ω′J (Lemma
4.10). The H1-part can be estimated with respect to the L2-error in Ω′J (Lemma 4.12).
Finally Lemma 4.13 gives an upper bound for ‖ỹ− ỹh‖L2(Ω′J ), where ỹ = ηy with a suitable
cut-off function η. With this auxiliary results at hand the proof of Theorem 4.4 can be
completed.

Lemma 4.6. For the mesh introduced in (2.12) one has in Ωj, j = 1, . . . , I − 1 a family
of quasi-uniform meshes with local mesh parameter

2µ−1c1hd
1−µ
j ≤ hj ≤ c2hd

1−µ
j j = 0 . . . I − 1 (4.6)

with constants c1 and c2 from (2.12). For elements T ⊂ ΩI the element size hT satisfies

c1h
1/µ ≤ hT ≤ c2hd

1−µ
I (4.7)

with constants c1 and c2 from (2.12).

Proof. For T ⊂ Ωj (j 6= I) one has dj+1 ≤ rT ≤ dj and, therefore, c1hd
1−µ
j+1 ≤ hT ≤

c2hd
1−µ
j . Since dj+1 = 1

2dj assertion (4.6) follows. For an element T ⊂ ΩI one has

0 ≤ rT ≤ dI , and therefore according to (2.12) the inequality c1h
1/µ ≤ hT ≤ c2hd

1−µ
I is

valid, what is (4.7).

Lemma 4.7. For every fixed c0 < 1 and α > 0 there exists h0 < 1 such that

hjd
−1
j |lnh|

α ≤ c0

for h < h0 and j = 1, . . . , I.

Proof. With Lemma 4.6 it follows

hjd
−1
j |lnh|

α ≤ chd1−µ
j d−1

j |lnh|
α = chd−µj |lnh|

α

≤ chd−µI |lnh|
α ≤ ch

(
h1/µ−ε

)−µ
|lnh|α

≤ chεµ |lnh|α .

Since this last value tends to zero as h tends to zero the assertion follows.

We recall a lemma from [129, Corollary 2.1] and use it for the proof of a variant of Sobolev’s
inequality.
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Lemma 4.8. Let G ⊂ Rd be a bounded domain with Lipschitz boundary and t > 1. If
qs > d, λ = min{1, s− d/q}, then there exists a constant c such that

‖u‖C(Ḡ) ≤ c
(
|ln ε|1−1/d ‖u‖W d/t,t(G) + ελ‖u‖W s,q(G)

)
holds for any ε > 0 and any u ∈W d/t,t(G) ∩W s,q(G).

Lemma 4.9. For every vh ∈ Vh and every J ∈ {1, . . . , I} the estimates

‖vh‖L∞(ΩJ ) ≤ c |lnhJ |1/2 ‖vh‖H1(Ω′J ) ∀J ∈ {1, . . . , I} (4.8)

‖vh‖L∞(Ω) ≤ c |lnh|1/2 ‖vh‖H1(Ω) (4.9)

are valid.

Proof. The following proof is adapted from the proof of [129, Theorem 3.4]. The modifica-
tion is necessary in order to obtain constants independent of the domains ΩJ . Moreover,
the union of all triangles T with T̄ ∩ ΩJ 6= ∅ is in general a proper superset of ΩJ . By
using the coordinate transformation x 7→ dJ x̂ we map ΩJ for all J = 1, . . . , I − 1 to the
same domain Ω̂. Then we apply Lemma 4.8 with s = 1, t = d = 2, q = ∞, and ε = hJ
for vh ∈ Vh and use Poincaré type inequalities on Ω̂ where we employ that v̂h satisfies
Dirichlet boundary conditions on part of ∂Ω̂. So we conclude with the help of standard
scaling arguments

‖vh‖L∞(ΩJ ) = ‖v̂h‖L∞(Ω̂)

≤ c
(
|lnhJ |1/2 ‖v̂h‖H1(Ω̂) + hJ‖v̂h‖W 1,∞(Ω̂)

)
≤ c

(
|lnhJ |1/2

∥∥∥∇̂v̂h∥∥∥
L2(Ω̂)

+ hJ‖∇̂v̂h‖L∞(Ω̂)

)
≤ c

(
|lnhJ |1/2 ‖∇vh‖L2(ΩJ ) + hJdJ‖∇vh‖L∞(ΩJ )

)
.

The application of the inverse inequality

hJ‖∇vh‖L∞(ΩJ ) ≤ ‖∇vh‖L2(Ω′J )

as well as the fact dJ ≤ 1 yield the assertion (4.8). The proof is the same for J = I, only
the reference domain Ω̂ is another one. Recalling that hT ≥ ch1/µ for any T , and therefore
|lnhT | ≤ c |lnh| we obtain (4.9) without the need of the scaling argument.

Lemma 4.10. For y ∈ V 2,2
β (ΩJ) ∩ V 2,∞

γ (ΩJ) with β = 1− λ+ δ, γ = 2− λ, µ = λ
2 − δ

′,
δ, δ′ > 0 the estimates

‖y − yh‖L∞(ΩJ ) ≤ c
(
h2 |lnh| |y|

V 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
for J < I − 2, (4.10)

‖y − yh‖L∞(ΩJ ) ≤ c
(
|lnh|1/2 h2‖y‖

V 2,∞
γ (Ω′J )

+ |lnh|1/2 ‖y − yh‖H1(Ω′J )

)
for J ≥ I − 2 (4.11)

are valid.
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4 Finite element error estimates for boundary value problems

Proof. Let us first consider the case J < I − 2, where one is away from the corner. We
use the estimate

‖y − yh‖L∞(ΩJ ) ≤ c
(
|lnh| min

χ∈Vh
‖y − χ‖L∞(Ω′J ) + d−1

J ‖y − yh‖L2(Ω′J )

)
. (4.12)

This result follows from Theorem 5.1 in [116] as shown in the proof of Corollary 5.1 of
that paper, where the authors have already inserted an interpolation error estimate. If
one chooses l = 0, N = 2, p = 0, and q = 2 in that corollary, inequality (4.12) follows
from writing y− yh as y− χ− yh + χ. For an application of this result to the domains ΩJ

we refer also to [43, Example 10.1]. If one assumes for the Lagrange interpolant Ih that
yh − Ihy admits its maximum in Ω′J in x0 ∈ T̄∗ ⊂ Ω′′J , one can conclude

‖y − Ihy‖L∞(Ω′J ) = ‖y − Ihy‖L∞(T∗)

≤ ch2
T∗ |y|W 2,∞(T∗)

≤ ch2
J |y|W 2,∞(Ω′′J )

∼ h2d2−2µ
J |y|W 2,∞(Ω′′J )

∼ h2d2−2µ−γ
J |y|

V 2,∞
γ (Ω′′J )

.

Since 2− 2µ− γ = λ− 2(λ2 − δ
′) = 2δ′ > 0 this yields

‖y − Ihy‖L∞(Ω′J ) ≤ ch2|y|
V 2,∞
γ (Ω′′J )

.

Then the assertion (4.10) follows from inequality (3.31).

Let us now consider the case of J = I, I − 1, I − 2. With the triangle inequality it follows

‖y − yh‖L∞(ΩJ ) ≤ ‖y‖L∞(ΩJ ) + ‖yh‖L∞(ΩJ ). (4.13)

We estimate the two terms separately. From the embedding (2.2) one can conclude

‖y‖L∞(ΩJ ) ≤ cd
2−γ
I ‖y‖

V 2,∞
γ (ΩJ )

= cdλI ‖y‖V 2,∞
γ (ΩJ )

= ch2‖y‖
V 2,∞
γ (ΩJ )

(4.14)

where we used equation (4.5) in the last step. In order to estimate the second term of
(4.13) we use Lemma 4.9 and get the inequality

‖yh‖L∞(ΩJ ) ≤ c |lnhJ |1/2 ‖yh‖H1(Ω′J ) ≤ c |lnh|1/2 ‖yh‖H1(Ω′J ). (4.15)

where we have used hJ ≤ chd1−µ
I = ch1+2/λ(1−µ) ≤ ch2/λ in the last step. We use again

the triangle inequality to estimate

‖yh‖H1(Ω′J ) ≤ ‖y‖H1(Ω′J ) + ‖y − yh‖H1(Ω′J ). (4.16)
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4.1 Scalar elliptic equations in polygonal domains

In order to estimate the first part of the right-hand side of this inequality we continue
with α = γ − 1 = 1− λ

‖y‖H1(Ω′J ) ∼
∥∥r−αrα∇y∥∥

L2(Ω′J )
+
∥∥r1−αrα−1y

∥∥
L2(Ω′J )

≤
∥∥r−α∥∥

L2(Ω′J )
‖rα∇y‖L∞(Ω′J ) +

∥∥r1−α∥∥
L2(Ω′J )

∥∥rα−1y
∥∥
L∞(Ω′J )

≤ cd1−α
I ‖y‖

V 1,∞
α (Ω′J )

≤ cdλI ‖y‖V 2,∞
α+1 (Ω′J )

≤ ch2‖y‖
V 2,∞
γ (Ω′J )

,

since dI = ch2/λ, see (4.5). With this estimate one has from (4.15) and (4.16)

‖yh‖L∞(ΩJ ) ≤ c
(
|lnh|1/2 h2‖y‖

V 2,∞
γ (Ω′J )

+ |lnh|1/2 ‖y − yh‖H1(Ω′J )

)
which yields together with (4.13) and (4.14) the desired result (4.11).

Lemma 4.11. The estimate

‖y − yh‖H1(ΩJ ) ≤ c
(
‖y − Ihy‖H1(Ω′J ) + d−1

J ‖y − Ihy‖L2(Ω′J ) + d−1
J ‖y − yh‖L2(Ω′J )

)
is valid for J = 1, . . . , I.

Proof. The assertion follows from Lemma 7.2 of [117] by setting D1 = ΩJ , D = Ω′J , and
p = 0 in that lemma. It follows from Lemma 4.6 and the explanations in Example 4 of
section 9 in [117] that the result is applicable with our finite element space. Notice that
the proof is only given for L = −∆. For an extension to general elliptic operators the
proof has to be modified at two points, where the bilinear form explicitly steps in. After
equation (7.7) in that proof one has to substitute the estimate of ‖vh‖21,D1

by

‖vh‖21,D1
≤ ‖ωvh‖21,D

≤ cas
(
vh, ω

2vh
)

+ c

∫
Ω

(∇ · (A∇w)ω)ωvh + vh (2A∇ω · ∇(ωvh)) +

∫
D\D1

v2
hωa1 · ∇ω.

Notice, that in [117] A is the bilinear form while in our setting as is the bilinear form and A
the coefficient matrix in the operator L. Since A ∈W 1,∞(Ω,R2,2) and ‖a1 ·∇ω‖L∞(Ω) ≤ C
it follows that

‖ωvh‖21,D1
≤ Ch‖vh‖21,D + C‖vh‖0,D\D1

‖ωvh‖21,D1

and therefore equation (7.8) in [117]. The second point is after expression (7.10), where
the equation for (ωvh, ϕ) has to be substituted by

(ωvh, ϕ) = as(ωvh, ψ) = as(vh, ωψ) +

∫
D
vh (ψ∇ · (A∇ω) + 2A∇ω · ∇ψ + ψa1 · ∇ω) .

Again it follows from the fact A ∈ W 1,∞(Ω,R2,2) and ‖a1 · ∇ω‖L∞(Ω) ≤ C that the
argumentation can be completed as for the Laplace operator.
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4 Finite element error estimates for boundary value problems

Lemma 4.12. For y ∈ V 2,2
β (ΩJ) ∩ V 2,∞

γ (ΩJ), β = 1− λ+ δ, γ = 2− λ, and µ = λ
2 − δ

′,
δ, δ′ > 0, the estimates

‖y − yh‖H1(ΩJ ) ≤ c
(
hd1−µ−β

J |y|
V 2,2
β (Ω′′J )

+ h1+2δ′/λd2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

+

d−1
J ‖y − yh‖L2(Ω′J )

)
for J < I − 2 (4.17)

‖y − yh‖H1(ΩJ ) ≤ c
(
h2‖y‖

V 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
for J ≥ I − 2 (4.18)

are valid.

Proof. From Lemma 4.11 we have

‖y − yh‖H1(ΩJ ) ≤ c
(
‖y − Ihy‖H1(Ω′J ) + d−1

J ‖y − Ihy‖L2(Ω′J ) + d−1
J ‖y − yh‖L2(Ω′J )

)
≤ c

(
‖y − Ihy‖H1(Ω′J ) + ‖y − Ihy‖L∞(Ω′J ) + d−1

J ‖y − yh‖L2(Ω′J )

)
, (4.19)

where we have used ‖y− Ihy‖L2(Ω′J ) ≤ c|Ω′J |1/2‖y− Ihy‖L∞(Ω′J ) and |Ω′J | ∼ d2
J . In the case

J = 0, . . . , I − 3 one has y ∈ H2(Ω′′J) and it follows for T ∈ Ω′J,h

‖y − Ihy‖H1(T ) ≤ chJ |y|H2(T ) ≤ chJr
−β
T ‖r

β∇2y‖L2(T )

≤ chd1−µ−β
J |y|

V 2,2
β (T )

,

where we used rT ∼ dJ for T ∈ Ω′J,h and hJ = hd1−µ
J . This yields

‖y − Ihy‖H1(Ω′J ) ≤ hd
1−µ−β
J |y|

V 2,2
β (Ω′′J )

. (4.20)

Like in the proof of Lemma 4.10 the second term on the right-hand side of inequality
(4.19) can be estimated by

‖y − Ihy‖L∞(Ω′J ) ∼ h2d2−2µ−γ
J |y|

V 2,∞
γ (Ω′′J )

≤ chd−µJ · hd
2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

≤ ch1+2δ′/λd2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

since hd−µJ ≤ hd−µI = chh−
2
λ

(λ
2
−δ′) = ch2δ′/λ. This last estimate yields together with

estimate (4.20) and inequality (4.19) assertion (4.17).

In the case J = I, I − 1, I − 2 we distinguish again between elements with rT = 0 and
rT > 0. For elements T with rT = 0 we write

‖y − Ihy‖H1(T ) ≤ ‖y‖H1(T ) + ‖Ihy‖H1(T ). (4.21)
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For the first term one has, like in the proof of Lemma 4.10 after (4.16),

‖y‖H1(T ) ≤ ch2‖y‖
V 2,∞
γ (T )

.

In order to estimate the second term, we conclude with the inverse inequality, the estimate
‖Ihy‖L∞(ΩJ ) ≤ ‖y‖L∞(ΩJ ) and the embedding (2.2)

‖Ihy‖H1(T ) ≤ ch−1
J ‖Ihy‖L2(T ) ≤ c‖y‖L∞(T )

≤ ch2−γ
T ‖y‖

V 2,∞
γ (T )

≤ ch2‖y‖
V 2,∞
γ (T )

(4.22)

since hT ∼ h1/µ and 2− γ = λ > 2µ. The inequalities (4.21)–(4.22) yield

‖y − Ihy‖H1(T ) ≤ ch2‖y‖
V 2,∞
γ (T )

.

For elements T with rT > 0 and T ∩ ΩJ 6= ∅ we can write

‖y − Ihy‖H1(T ) ≤ chT |y|H2(T ) ≤ h|y|V 2,2
1−µ(T )

which yields  ∑
T :rT>0∧T∩ΩJ 6=∅

‖y − Ihy‖2H1(T )

1/2

≤ ch|y|
V 2,2

1−µ(Ω′J )
.

With the Hölder inequality one can conclude

|y|
V 2,2

1−µ(Ω′J )
=

(∫
Ω′J

r2(1−µ)|D2y|2
)1/2

=

(∫
Ω′J

r2λ−2µ−2r2(2−λ)|D2y|2
)1/2

≤ |y|
V 2,∞

2−λ (Ω′J )

(∫
Ω′J

r2λ−2µ−2

)1/2

= cdλ−µI |y|
V 2,∞

2−λ (Ω′J )
≤ ch|y|

V 2,∞
2−λ (Ω′J )

.

Sticking everything together yields

‖y − Ihy‖H1(ΩJ ) ≤ ch2|y|
V 2,∞
γ (Ω′J )

. (4.23)

It remains to estimate the second term in (4.19) in the case J = I, I − 1, I − 2. We assume
that the maximum of y − Ihy in Ω′J is attained in T̄∗ ⊂ Ω̄′′J . It follows

‖y − Ihy‖L∞(Ω′J ) ≤ ‖y − Ihy‖L∞(T∗) ≤ c‖y‖L∞(T∗).

and with the same argumentation as in the lines before inequality (4.14) one can conclude

‖y − Ihy‖L∞(Ω′J ) ≤ ch2‖y‖
V 2,∞
γ (Ω′′J )

.

This estimate yields together with (4.19) and (4.23) the desired inequality
(4.18).
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4 Finite element error estimates for boundary value problems

We define the function

ỹ = ηy (4.24)

where η = η(r) is a smooth cut-off function with η ≡ 1 in Ω̃R and η ≡ 0 in Ω\Ω̂R. The
function ỹ can be seen as solution of a mixed boundary value problem with right-hand side
Lỹ and Dirichlet conditions on ∂ΩR ∩ ∂Ω and Neumann conditions on ∂ΩR\(∂ΩR ∩ ∂Ω).
The Ritz projection of ỹ is denoted by ỹh, i.e.,

a(ỹ − ỹh, χ) = 0 ∀χ ∈ Vh. (4.25)

Notice that Lemmas 4.10 – 4.12 are also valid for ỹ and ỹh since we used only Galerkin
orthogonality and interpolation error estimates in the proofs.

Lemma 4.13. Under the conditions of Lemma 4.12 and 2δ′ > δ the inequality

d−1
J ‖y − yh‖L2(Ω′J ) ≤ ch2 |lnh|

(
(‖y‖

V 2,2
β (Ω)

+ ‖y‖
V 2,∞
γ (Ω)

)
is valid for J = 1, . . . , I.

Proof. For this proof we introduce the abbreviation ẽ := ỹ − ỹh with ỹ and ỹh from (4.24)
and (4.25), respecitvely. One has the equality

‖ẽ‖L2(ΩR) = sup
ϕ∈C∞0 (ΩR)

‖ϕ‖L2(ΩR)=1

(ẽ, ϕ). (4.26)

For every such function ϕ we consider the boundary value problem

Lv = −∇ ·A(x)∇v − a1(x) · ∇v + a0(x)v = (|x|+ dI)
−1ϕ in ΩR,

v = 0 on ∂ΩR ∩ ∂Ω,

(A∇v) · n = 0 on ∂ΩR\(∂ΩR ∩ ∂Ω),

with its weak formulation

as,ΩR(w, v) = ((|x|+ dI)
−1ϕ,w)ΩR ∀w ∈ {w ∈ H1(ΩR) : w = 0 on ∂ΩR ∩ ∂Ω}.

Then one can conclude

((|x|+ dI)
−1ẽ, ϕ)ΩR = (ẽ, (|x|+ dI)

−1ϕ)ΩR = as,ΩR(ẽ, v) = as,ΩR(ẽ, v − Ihv)

≤ c
∑
J

‖ẽ‖H1(ΩJ )‖v − Ihv‖H1(ΩJ ). (4.27)

We distinguish the two cases J ≤ I − 3 and J = I, I − 1, I − 2 and begin with J ≤ I − 3.
Notice, that v ∈ H2(Ω′J) since no singularities occur at corners where Dirichlet and
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4.1 Scalar elliptic equations in polygonal domains

Neumann boundary intersect as long as the interior angle is smaller or equal to π/2, see
[25]. It follows from standard interpolation theory

‖v − Ihv‖2H1(ΩJ ) ≤
∑

T∈ΩJ,h

‖v − Ihv‖2H1(T ) ≤ c
∑

T∈ΩJ,h

h2
J |v|2H2(T ) ≤ ch

2
J |v|2H2(Ω′J ). (4.28)

To estimate the H2-norm on the right-hand side we introduce a smooth cut-off function

ηJ with ηJ ≡ 1 in Ω′J , ηJ ≡ 0 in Ω\Ω′′J and ‖DαηJ‖L∞(Ω′′J ) ≤ cd
−|α|
J . It follows

‖v‖H2(Ω′J ) ≤ ‖ηJv‖H2(Ω)

≤ c‖ − ∇ ·A(x)∇(ηJv) + a1(x)∇(ηJv) + a0(x)ηJv‖L2(Ω′′J )

≤ c‖ηJ(−∇ ·A(x)∇v + a1(x)∇v + a0(x)v)‖L2(Ω′′J )

+ c‖∇v ·A(x)∇ηJ + v∇ · (A(x)∇ηJ) +∇ηJA(x)∇v + a1(x)v∇ηJ‖L2(Ω′′J )

≤ c‖(|x|+ dI)
−1ϕ‖L2(Ω′′J ) + cd−1

J ‖∇v‖L2(Ω′′J ) + cd−2
J ‖v‖L2(Ω′′J ) (4.29)

where the constants c depend on ‖A‖W 1,∞(ΩR), ‖a1‖L∞(ΩR) and ‖a0‖L∞(ΩR) but not on J .
Since v admits Dirichlet boundary conditions on parts of ∂Ω′′J we can apply the Poincaré
inequality and get

‖v‖L2(Ω′′J ) ≤ cdJ‖∇v‖L2(Ω′′J ).

Taking ‖ϕ‖L2(ΩR) = 1 into account we can continue from estimate (4.29) with

‖v‖H2(Ω′J ) ≤ cd−1
J + cd−1

J ‖∇v‖L2(Ω′′J ). (4.30)

This yields together with inequality (4.28)

‖v − Ihv‖H1(ΩJ ) ≤ chJd−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)
.

With this estimate we apply Lemma 4.12 to the terms of the sum (4.27) and conclude
for J ≤ I − 3

‖ẽ‖H1(ΩJ )‖v − Ihv‖H1(ΩJ ) ≤ hJd−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)
‖ẽ‖H1(ΩJ )

≤ chJd−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)(
hd1−β−µ

J |y|
V 2,2
β (Ω′′J )

+h1+2δ′/λd2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

+
∥∥d−1

J ẽ
∥∥
L2(Ω′J )

)
≤ ch2

(
1 + ‖∇v‖L2(Ω′′J )

)(
d1−β−2µ
J |y|

V 2,2
β (Ω′′J )

+

h2δ′/λd2−γ−2µ
J |y|

V 2,∞
γ (Ω′′J )

)
+ chJd

−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)∥∥d−1
J ẽ
∥∥
L2(Ω′J )

≤ ch2
(

1 + ‖∇v‖L2(Ω′′J )

)(
|y|

V 2,2
β (Ω′′J )

+ h2δ′/λ|y|
V 2,∞
γ (Ω′′J )

)
+ chJd

−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)∥∥d−1
J ẽ
∥∥
L2(Ω′J )

,

(4.31)
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4 Finite element error estimates for boundary value problems

since 1− β − 2µ = 2δ′ − δ > 0 and 2− γ − 2µ = λ− 2µ = δ′ > 0.

Let us now consider the case of J = I, I − 1, I − 2. We introduce the domains

ΩJ,h = {T : T ∩ ΩJ 6= ∅}.

For T ∈ ΩJ,h one gets from [16, Proof of Theorem 3.2] the estimate

‖v − Ihv‖H1(T ) ≤ ch
1−β
J |v|

V 2,2
β (T )

.

Summing up over all elements yields

‖v − Ihv‖H1(ΩJ ) ≤ ‖v − Ihv‖H1(ΩJ,h) ≤ ch
1−β
J |v|

V 2,2
β (ΩJ,h)

≤ ch1−β
J |v|

V 2,2
β (Ω′J )

. (4.32)

With a similiar argumentation as in the derivation of (4.29) and an a priori estimate for
boundary value problems in domains with conical points (see [77]) it follows

|v|
V 2,2
β (Ω′J )

≤ c‖(|x|+ dI)
−1ϕ‖

V 0,2
β (Ω′′J )

+ cd−1
J ‖∇v‖V 0,2

β (Ω′′J )
+ cd−2

J ‖v‖V 0,2
β (Ω′′J )

≤ cdβ−1
J ‖ϕ‖L2(Ω′′J ) + cd−1+β

J ‖∇v‖L2(Ω′′J ) + cd−2+β
J ‖v‖L2(Ω′′J )

≤ cdβ−1
J + cdβ−1

J ‖∇v‖L2(Ω′′J )

where we used the Poincaré inequality in the last step. This yields together with (4.32)
and the same argumentation as above

‖v − Ihv‖H1(ΩJ ) ≤ c
(
hJd

−1
J

)1−β (
1 + ‖∇v‖L2(Ω′′J )

)
.

We apply again Lemma 4.12 to the terms of the sum (4.27) and arrive at

‖ẽ‖H1(ΩJ )‖v − Ihv‖H1(ΩJ ) ≤ c
(
hJd

−1
J

)1−β (
1 + ‖∇v‖L2(Ω′′J )

)
‖ẽ‖H1(ΩJ )

≤ c
[(
hJd

−1
J

)1−β (
1 + ‖∇v‖L2(Ω′′J )

)
h2‖y‖

V 2,∞
γ (Ω′′J )

+
(
hJd

−1
J

)1−β (
1 + ‖∇v‖L2(Ω′′J )

)∥∥d−1
J ẽ
∥∥
L2(Ω′J )

]
.

In the following we use the estimate

‖∇v‖L2(Ω) ≤ c |lnh| (4.33)

which is shown at the end of this proof. With this estimate and the application of Lemma
4.7 one has for J = I, I − 1, I − 2

‖ẽ‖H1(ΩJ )‖v − Ihv‖H1(ΩJ ) ≤ ch2‖y‖
V 2,∞
γ (Ω′′J )

+
(
hJd

−1
J |lnh|

1/(1−β)
)1−β ∥∥d−1

J ẽ
∥∥
L2(Ω′J )

.

(4.34)
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4.1 Scalar elliptic equations in polygonal domains

It follows from (4.26) and (4.27) with (4.31) and (4.34)

‖(|x|+ dI)
−1ẽ‖L2(ΩR) ≤ c

I∑
J=1

‖ẽ‖H1(ΩJ )‖v − Ihv‖H1(ΩJ )

≤ ch2
I−3∑
J=1

(
1 + ‖∇v‖L2(Ω′′J )

)(
|y|

V 2,2
β (Ω′′J )

+ h2δ′/λ|y|
V 2,∞
γ (Ω′′J )

)
+ c

I−3∑
J=1

hJd
−1
J

(
1 + ‖∇v‖L2(Ω′′J )

)
‖d−1

J ẽ‖L2(Ω′J )

+ c
I∑

J=I−2

(
h2‖y‖

V 2,∞
γ (Ω′′J )

+
(
hJd

−1
J |lnh|

1/(1−β)
)1−β

‖d−1
J ẽ‖

)
.

The application of the Cauchy-Schwarz inequality yields with
(∑I−3

J=1 1
)1/2

∼ |lnh|1/2

‖(|x|+ dI)
−1ẽ‖L2(ΩR) ≤ ch2 |lnh|1/2

(I−3∑
J=1

|y|2
V 2,2
β (Ω′′J )

)1/2

+

(
I−3∑
J=1

h4δ′/λ|y|2
V 2,∞
γ (Ω′′J )

)1/2


+ ch2

(
I−3∑
J=1

‖∇v‖2L2(Ω′′J )

)1/2

·(I−3∑
J=1

|y|2
V 2,2
β (Ω′′J )

)1/2

+

(
I−3∑
J=1

h4δ′/λ|y|2
V 2,∞
γ (Ω′′J )

)1/2


+ c |lnh|1/2
(
I−3∑
J=1

(
hJd

−1
J |lnh|

)2 ‖d−1
J ẽ‖2L2(Ω′J )

)1/2

+ ch2‖y‖2
V 2,∞
γ (Ω)

+

(
I∑

J=I−2

(
hJd

−1
J |lnh|

1/(1−β)
)2(1−β)

‖d−1
J ẽ‖2L2(Ω′J )

)1/2

.

With Lemma 4.7 it follows for an arbitrary, but fixed c0 < 1 and h small enough together
with estimate (4.33)

‖(|x|+ dI)
−1ẽ‖L2(ΩR) ≤ ch2 |lnh|

(
‖y‖

V 2,2
β (Ω)

+ h2δ′/λ |lnh|1/2 ‖y‖
V 2,∞
γ (Ω)

)
+ ch2‖y‖2

V 2,∞
γ (Ω)

+ c0‖(|x|+ dI)
−1ẽ‖L2(ΩR)

Since h2δ′/λ |lnh|1/2 < c for h small one gets

‖(|x|+ dI)
−1ẽ‖L2(ΩR) ≤ ch2 |lnh|

(
‖y‖

V 2,2
β (Ω)

+ ‖y‖
V 2,∞
γ (Ω)

)
+ c0‖(|x|+ dI)

−1ẽ‖L2(ΩR)
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and therefore

‖(|x|+ dI)
−1ẽ‖L2(ΩR) ≤ ch2 |lnh|

(
‖y‖2

V 2,2
β (Ω)

+ ‖y‖2
V 2,∞
γ (Ω)

)
what proves the assertion.

It remains to prove (4.33). We do this with an idea already used in [3]. We introduce the
abbreviation σ(r) := r + dI . It follows

‖v‖2H1(ΩR) ≤ caΩR(v, v) = c(σ−1ϕ, v) = c(ϕ, σ−1v)

≤ c‖ϕ‖L2(ΩR)‖σ−1v‖L2(ΩR) = c‖σ−1v‖L2(ΩR). (4.35)

In the next step we show

‖σ−1v‖L2(ΩR) ≤ c |lnh| ‖v‖H1(ΩR) (4.36)

which yiels together with (4.35) the estimate (4.33). We define

ψ(r) :=
dI

r + dI
+ ln(r + dI).

Then one has
d

dr
(ψ(r)− ψ(0)) =

r

σ2(r)
.

With this definition and partial integration one can conclude

‖σ−1v‖2L2(ΩR) =

∫ ω

0

∫ R

0
σ−2v2r dr dϕ =

∫ ω

0

∫ R

0
v2 d

dr
[ψ(r)− ψ(0)] dr dϕ

=

∫ ω

0

[
(ψ(r)− ψ(0)) v2

]R
0

dϕ−
∫ ω

0

∫ R

0
(ψ(r)− ψ(0)) 2v∂rv dr dϕ. (4.37)

We estimate the last two terms separately. It follows∫ ω

0

[
(ψ(r)− ψ(0)) v2

]R
0

dϕ =

∫ ω

0

(
ln(R+ dI)− ln dI +

dI
R+ dI

− 1

)
v2(R,ϕ) dϕ

≤
∫ ω

0
(ln(R+ dI)− ln dI) v

2(R,ϕ) dϕ

≤ (c+ |ln dI |)
∫ ω

0
v2(R,ϕ) dϕ ≤ (c+ |ln dI |) ‖v‖2L2(∂ΩR).

With help of a trace theorem [34, Theorem 1.6.6] we can continue for h small enough∫ ω

0

[
(ψ(r)− ψ(0)) v2

]R
0

dϕ ≤ (c+ |ln dI |) ‖v‖L2(ΩR)‖v‖H1(ΩR)

≤ (c+ |ln dI |) ‖σ‖L∞(ΩR)‖σ−1v‖L2(ΩR)‖v‖H1(ΩR)

≤ c |lnh| ‖σ−1v‖L2(ΩR)‖v‖H1(ΩR). (4.38)
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where we have used dI ∼ h2/λ in the last step. In order to prove an estimate for the second
term of the right-hand side of (4.37) we first prove the auxiliary result∣∣∣∣ψ(r)− ψ(0)

r

∣∣∣∣ ≤ c

σ
|lnh| . (4.39)

We distinguish the cases r ≥ dI and r < dI and begin with r ≥ dI . It is

|ψ(0)| = |1 + ln dI | ≤ c |ln dI | = c |lnh| , (4.40)

|ψ(R)| =
∣∣∣∣ dI
R+ dI

+ ln(R+ dI)

∣∣∣∣ ≤ c |lnR| (4.41)

and therefore

|ψ(r)− ψ(0)| ≤ 2 max
0≤s≤R

ψ(s) = c |lnh| .

Since r−1 ≤ c σ−1 inequality (4.39) follows. For the case r < dI we use the mean value
theorem and conclude∣∣∣∣ψ(r)− ψ(0)

r

∣∣∣∣ ≤ max
0≤s≤dI

∣∣ψ′(s)∣∣ = max
0≤s≤dI

∣∣∣∣ s

σ(s)2

∣∣∣∣ .
As the last function is monotonically increasing in [0, dI ] one can estimate∣∣∣∣ψ(r)− ψ(0)

r

∣∣∣∣ ≤ ∣∣∣∣ dI
σ(dI)2

∣∣∣∣ =
1

4dI
≤ c

σ

and inequality (4.39) follows. With the help of this estimate one can conclude for the
second term of the right-hand side in equation (4.37)∫ ω

0

∫ R

0
(ψ(r)− ψ(0)) 2v∂rv dr dϕ ≤ c |lnh|

∫ ω

0

∫ R

0
σ−1rv∂rv dr dϕ

≤ c |lnh| ‖σ−1v‖L2(ΩR)‖v‖H1(ΩR).

This yields together with (4.38) and (4.37) the estimate (4.36) and the assertion (4.33)
follows.

Remark 4.14. If one denotes by hJ ′ the element size in Ω′J and by hJ ′′ the element size
in Ω′′J one has

hJ ∼
1

2
hJ ′ ∼

1

4
hJ ′′ .

Therefore in Lemmata 4.12 and 4.13 one can substitute ΩJ by Ω′J and Ω′J by Ω′′J .

Now we are able to prove Theorem 4.4.
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4 Finite element error estimates for boundary value problems

Proof of Theorem 4.4. First we assume that y − yh admits its maximum at a point x0

which is contained in ΩR. For all other domains ΩRi the argumentation is the same. We
can estimate

‖y − yh‖L∞(ΩR) = ‖ỹ − yh‖L∞(ΩR)

≤ ‖ỹ − ỹh‖L∞(ΩR) + ‖ỹh − yh‖L∞(ΩR). (4.42)

Since
a(ỹh − yh, χ) = 0 ∀χ ∈ Vh|Ω̃R

we can write for the second term of the right-hand side of the last inequality with
Theorem 3.1 of [117] and the triangle inequality

‖ỹh − yh‖L∞(ΩR) ≤ c |lnh|1/2 ‖ỹh − yh‖L2(Ω̃R)

≤ c |lnh|1/2
(
‖ỹ − ỹh‖L2(Ω̃R) + ‖y − yh‖L2(Ω̃R)

)
.

In Theorem 3.1 of [117] there is the factor h−ε written instead of |lnh|1/2. At the beginning

of Section 3 of that paper it is mentioned that one can replace h−ε by |lnh|1/2 as long as
one can prove the Sobolev inequality with this factor as we did in Lemma 4.9, compare
also the corresponding proof in [117, p. 95]. It follows from Theorem 4.3

‖ỹ − ỹh‖L2(Ω̃R) + ‖y − yh‖L2(Ω̃R) ≤ ch
2‖f‖L2(Ω)

such that
‖ỹh − yh‖L∞(ΩR) ≤ ch2 |lnh|1/2 ‖f‖L2(Ω).

It remains estimate the first term of (4.42). From Lemma 4.10 we have together with
Lemmas 4.12 and 4.13 for J = I, I − 1, I − 2 the estimate

‖y − yh‖L∞(ΩJ ) ≤ ch2 |lnh|3/2
(
‖y‖

V 2,2
β (Ω)

+ ‖y‖
V 2,∞
γ (Ω)

)
.

For ΩJ , J 6= I, I − 1, I − 2 we conclude from Lemmas 4.10 and 4.13 the estimate

‖y − yh‖L∞(ΩJ ) ≤ ch2 |lnh|
(
‖y‖

V 2,2
β (Ω)

+ ‖y‖
V 2,∞
γ (Ω)

)
.

The last two inequalities yield together with the a priori estimates of Lemmata 4.1 and
4.2 and the embedding C0,σ(Ω̄) ↪→ L2(Ω).

‖y − yh‖L∞(ΩR) ≤ ch2 |lnh|3/2 ‖f‖C0,σ(Ω̄).

For the case x0 ∈ Ω0 we can conclude from [116, Theorem 5.1]

‖y − yh‖L∞(Ω0) ≤ c |lnh| ‖y − Ihy‖L∞(Ω) + ‖y − yh‖L2(Ω)

≤ ch2 |lnh| ‖f‖C0,σ(Ω̄)

where we have used an interpolation estimate

‖y − Ihy‖L∞(Ω) ≤ ch2‖y‖
V 2,∞
γ (Ω)

as it is shown in the proof of Lemma 4.10, the a priori estimate of Lemma 4.2, Theorem
4.3 and the embedding C0,σ(Ω̄) ↪→ L2(Ω).
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4.2 Scalar elliptic equations in prismatic domains

4.2 Scalar elliptic equations in prismatic domains

In this section we consider the boundary value problem

Ly = f in Ω, By = 0 on Γ = ∂Ω. (4.43)

We analyze two different cases, namely pure Dirichlet boundary conditions, i.e.,

L = −∆, B = Id, (4.44)

with variational formulation

Find y ∈ V0 : aD(y, v) = (f, v)L2(Ω) ∀v ∈ V0 (4.45)

where the bilinear form aD : H1(Ω)×H1(Ω)→ R is defined as

aD(y, v) =

∫
Ω
∇y · ∇v,

and pure Neumann boundary conditions, i.e.,

L = −∆ + Id, B =
∂

∂n
. (4.46)

with variational formulation

Find y ∈ H1(Ω) : aN (y, v) = (f, v)L2(Ω) ∀v ∈ H1(Ω) (4.47)

where the bilinear form aN : H1(Ω)×H1(Ω)→ R is defined as

aN (y, v) =

∫
Ω
∇y · ∇v +

∫
Ω
y · v.

Here, Ω = G × Z ⊂ R3 is a domain with boundary ∂Ω, where G ⊂ R2 is a bounded
polygonal domain and Z := (0, z0) ⊂ R is an interval. It is assumed that the cross-section
G has only one corner with interior angle ω > π at the origin; thus Ω has only one “singular
edge” which is part of the x3-axis. Situation with more than one critical edge can be
reduced to this case by a localization argument, see, e.g., [80].

The results of this section are published in [17] and [18].

4.2.1 Regularity

There are many publications about the regularity of solutions of elliptic boundary value
problems in domains with edges, especially for the Dirichlet case. Let us first concentrate
on this case. The crucial idea of the investigation of the Dirichlet problem in a prismatic
domain is to reduce it by a real Fourier transformation to a plane problem. Indeed, one
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4 Finite element error estimates for boundary value problems

can show that the regularity of the solution y of (4.45) is determined by a plane Dirichlet
problem in a cone, which is of the same type as the one described in Section 4.1, [80, III.7].
This allows to formulate the following regularity result. Notice, that the result is actually
the same as in Lemma 4.1 for the two-dimensional setting. We only have substituted the
eigenvalue λ of by π/ω since we consider only the Laplace operator.

Lemma 4.15. Let p and β be given real numbers with p ∈ (1,∞) and β > 2− π/ω− 2/p.
Moreover, let f be a function in V 0,p

β (Ω). Then the solution of the boundary value problem

(4.45) belongs to H1
0 (Ω) ∩ V 2,p

β (Ω). Moreover, the inequality

‖y‖
V 2,p
β (Ω)

≤ c‖f‖
V 0,p
β (Ω)

is valid.

Proof. With Imλ− = −π/ω the assertion follows from Lemmata 4 and 5 of [115].

The drawback of describing the solution in the V k,p
β (Ω)-spaces is, that the space H1(Ω)

does not belong to the scale of these weighted Sobolev spaces. Particularly, a solution of
the Neumann problem may not be included in H1(Ω)∩ V 1,2

0 (Ω), think e.g. of the function
u ≡ 1. This is the reason why problem (4.47) is not included in the paper [16], where
the authors demand u ∈ H1(Ω) ∩ V 1,2

0 (Ω). A way out is the description of the solution of

(4.47) in the spaces W k,p
β (Ω).

In contrast to the Dirichlet case there are not too many publications on regularity results
concerning Neumann problems in domains with edges. Therefore we give a short overview
of the literature concerning this topic and start with the book of Grisvard [63], where
estimates on the solution of the Neumann problem for the Laplace equation and the
Lamé system in Sobolev and Sobolev-Slobodeckĭı spaces with p = 2 and without weight
are given. Dauge [47] proved regularity results for linear elliptic Neumann problems in
Lp Sobolev spaces without weight. Maz’ya and Roßmann obtained regularity results
in weighted Sobolev spaces in a cone for general p. Their result about the Neumann
problem in a dihedron requires additional regularity on the solution, which cannot be
guaranteed in our case. Zaionchkovskii and Solonnikov [130], Roßmann [114] and Nazarov
and Plamenevskĭı [99] proved solvability theorems and regularity results for the Neumann
problem in weighted Sobolev spaces for p = 2. With the results of Zaionchkovskii and
Solonnikov [130] we obtain the following theorem.

Lemma 4.16. Let u be the solution of (4.47). If f ∈W 0,2
β (Ω) with β > 1− π/ω, then u

is contained in the space W 2,2
β (Ω) and satisfies the inequality

‖y‖
W 2,2
β (Ω)

≤ c‖f‖
W 0,2
β (Ω)

.

Proof. We first consider problem (4.47) in a dihedron Dω = {x = (x′, x3) : x′ ∈ K,x3 ∈ R}
where K denotes an angle of the form {x′ = (x1, x2) ∈ R2 : 0 < r < ∞, 0 < ϕ < ω} in
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polar coordinates r, ϕ. Setting k = 0 in Theorem 5.2 of [130] we can conclude

|y|
W 2,2
β (Dω)

+ ‖y‖W 1,2(Dω) ≤ c‖f‖W 0,2
β (Dω)

. (4.48)

Since β > 0 estimate (4.48) keeps valid if one substitutes the left-hand side of the
inequality by ‖y‖

W 2,2
β (Dω)

. Problem (4.47) can be locally transformed near an edge point

by a diffeomorphism into a boundary value problem in the dihedron Dω. By the use of a
partion of unity method one can fit together the local results to obtain the result for the
domain Ω. Details on this technique can be found e.g. in the book of Kufner and Sändig
[80, Section 8].

Up to know it is not reflected in the regularity results that there is some “additional
smoothness” along the edge for the solution of both, the Dirichlet and the Neumann
problem. In order to exploit this feature, we follow the explanations of Grisvard in [64]
and split the solution of (4.45) and (4.47), respectively, in a singular part ys and a regular
part yr. In detail, this means that the solution y can be written for f ∈ Lp(Ω), 2 ≤ p <∞
as

y = ys + yr, (4.49)

where yr ∈W 2,p(Ω) and

ys = ξ(r)γ(r, x3)rλΘ(ϕ) with λ =
π

ω
.

Here ξ(r) is a smooth cut-off function and Θ(ϕ) = sinλϕ for the Dirichlet boundary
conditions and Θ(ϕ) = cosλϕ for the Neumann boundary conditions. The coefficient
function γ can be written as a convolution integral,

γ(r, x3) =
1

π

∫
R

r

r2 + s2
q(x3 − s) ds

where the smoothness of the function q can be characterized in Besov spaces depending
on λ. This decomposition allows to formulate the following lemma.

Lemma 4.17. Let y be the solution of (4.45) or (4.47) for a right-hand side f ∈ Lp(Ω),
2 ≤ p <∞. For the singular part ys the inequalities

‖rβ∂ijys‖Lp(Ω) + ‖∂3iys‖Lp(Ω) + ‖∂33ys‖Lp(Ω) ≤ c‖f‖Lp(Ω), i, j = 1, 2 (4.50)

‖rβ−1∂iys‖Lp(Ω) + ‖r−1∂3ys‖Lp(Ω) ≤ c‖f‖Lp(Ω), i = 1, 2 (4.51)

‖rβ−2ys‖Lp(Ω) ≤ c‖f‖Lp(Ω) (4.52)

are valid for

β > 2− 2

p
− λ if 1− 2

p
< λ ≤ 2− 2

p
and

β = 0 if λ > 2− 2

p
.
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For the regular part yr the estimate

‖yr‖W 2,p(Ω) ≤ c‖f‖Lp(Ω) (4.53)

holds.

Proof. In [9, Section 2.1] the assertions (4.50)–(4.52) are proved for the Dirichlet problem.

In order to get the estimates for the Neumann problem one just has to replace sin
(
jπϕ
ω

)
by cos

(
jπϕ
ω

)
in that proof. Expression (4.53) follows from [64, Theorem 6.6].

Corollary 4.18. Let y be the solution of (4.45) and (4.47) respectively. Then one has

∂y

∂x3
∈ H1(Ω) and

∥∥∥∥ ∂y∂x3

∥∥∥∥
H1(Ω)

≤ c‖f‖L2(Ω).

Proof. Since y ∈ H1(Ω) and ur ∈ H2(Ω) with ‖yr‖H2(Ω) ≤ c‖f‖L2(Ω) the assertion follows
from (4.49) and (4.50).

Remark 4.19. For the Dirichlet problem the inequalities (4.50)–(4.52) are also valid for
the regular part yr (see [80]). This is not the case for the Neumann problem since the
regular part needs not to vanish at the edge.

The solution y of the boundary value problem (4.45) or (4.47) is not contained in the
space W 1,∞(Ω). Instead, one has rβ∇y ∈ L∞(Ω) with a suitable weight β. A reasonable
attempt to determine an appropriate value for the weight β is the use of Sobolev embedding
theorems and Lemma 4.17. Let us quickly recapitulate the argumentation from [127] for
the Dirichlet case.

For a right-hand side f ∈ Lp(Ω), p > 3 one has according to (4.51), (4.52) and Remark
4.19

rβ∇y ∈W 1,p(Ω) for β > 2− 2

p
− λ.

The embedding W 1,p(Ω) ↪→ L∞(Ω) yields

rβ∇y ∈ L∞(Ω) for β > 2− 2

3
− λ =

4

3
− λ.

It turns out that these estimates based on embeddings theorems and regularity results
for finite p are not sharp enough. The informal consideration y ∼ rλ and consequently
∇y ∼ rλ−1 suggests, that one can expect, that a weight β > 1− λ is already large enough.
In fact, the following lemma shows, that this is true for both, Neumann and Dirichlet
boundary conditions. To this end a more involved proof is necessary that uses regularity
results in weighted Hölder spaces given by Maz’ya and Rossmann in [91].
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Lemma 4.20. Let y be the solution of (4.45) or (4.47) with a right-hand side f ∈ C0,σ(Ω̄),
σ ∈ (0, 1). Then the estimates

‖rβ∇y‖L∞(Ω) ≤ c‖f‖C0,σ(Ω̄), β > 1− λ (4.54)

‖∂3y‖L∞(Ω) ≤ c‖f‖C0,σ(Ω̄) (4.55)

hold true.

Proof. In order to prove the assertion (4.54), we use the results from [91, Subsection 5.3].
From Theorem 5.1 and its proof in that paper, one has the a priori estimate

‖y‖
C2,σ
γ,δ (Ω)

≤ c‖f‖
C0,σ
γ,δ (Ω)

. (4.56)

In the case of our prismatic domain the norm in C l,σγ,δ(Ω) that is given in [91] reduces to

‖y‖
Cl,σγ,δ(Ω)

=
∑
|α|≤l

sup
x∈Ω

(ρ1(x)ρ2(x))γ−l−σ+|α|
(
r(x)

ρ(x)

)H(δ−l−σ+|α|)
|∂αy(x)|

+
2∑

k=1

∑
|α|=l−k1

sup
x1,x2∈Ω

ρk(x1)γ−δ
|∂αy(x1)− ∂αy(x2)|
|x1 − x2|k1+σ−δ (4.57)

+
∑
|α|=l

sup
|x1−x2|<r(x1)/2

ρ1(x1)γρ2(x1)γ
(
r(x1)

ρ(x1)

)δ |∂αy(x1)− ∂αy(x2)|
|x1 − x2|σ

.

The second term only appears in case of Neumann boundary conditions. Here, l is
nonnegative integer that serves as differentiability exponent, while 0 < σ < 1 is a Hölder
exponent. The weights γ and δ correspond to corner and edge singularities. The functions
ρ1(x) and ρ2(x) denote the distance of x to the corners, r(x) is the distance of x to the
edge and ρ(x) = min(ρ1(x), ρ2(x)). Further, k1 = [δ − σ] + 1, where [δ − σ] denotes the
greatest integer less or equal to δ − σ. The function H is defined as H(t) = t for Dirichlet
boundary conditions and as H(t) = max(t, 0) for Neumann boundary conditions. In the
prismatic domain no corner singularities occur such that we can choose γ = δ with the
conditions

2− λ+ σ < γ < 2 + σ (4.58)

and γ − σ 6= 1 (comp. [91, prior to Theorem 5.1]). Now we can reduce our considerations
concerning the norm in C2,σ

γ,δ (Ω) on the first term and |α| = 1. Taking γ = δ into account,
the relevant part is

M :=
∑
|α|=1

sup
x∈Ω

(ρ1(x)ρ2(x))γ−1−σ
(
r(x)

ρ(x)

)H(γ−1−σ)

|∂αy(x)|.
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4 Finite element error estimates for boundary value problems

Using inequality (4.58) it follows

γ − 1− σ > 2− λ− 1 = 1− λ > 0 (4.59)

since λ ∈
(

1
2 , 1
)
. Therefore H(γ−1−σ) = γ−1−σ in both cases, Dirichlet and Neumann

boundary condition. Now we introduce the domains Ω1 = {x ∈ Ω, ρ(x) = ρ1(x)} and
Ω2 = {x ∈ Ω, ρ(x) = ρ2(x)}. For every α with |α| = 1, one can write

sup
x∈Ω

(ρ1(x)ρ2(x))γ−1−σ
(
r(x)

ρ(x)

)γ−1−σ
|∂αy(x)|

≥ sup
x∈Ω1

(ρ1(x)ρ2(x))γ−1−σ
(
r(x)

ρ(x)

)γ−1−σ
|∂αy(x)|

= sup
x∈Ω1

ρ2(x)γ−σ−1r(x)γ−σ−1|∂αy(x)|

≥ c · sup
x∈Ω1

r(x)γ−σ−1|∂αy(x)| (4.60)

since ρ2(x) ≥ z0
2 for x ∈ Ω1. Analogously one has

sup
x∈Ω

(ρ1(x)ρ2(x))γ−1−σ
(
r(x)

ρ(x)

)γ−1−σ
|∂αy(x)| ≥ c · sup

x∈Ω2

r(x)γ−σ−1|∂αy(x)|. (4.61)

The estimates (4.60) and (4.61) yield

M ≥ ‖rγ−σ−1∇y‖L∞(Ω).

This entails for β := γ − σ − 1

‖rβ∇y‖L∞(Ω) ≤ c‖y‖C2,σ
γ,γ (Ω)

≤ c‖f‖
C0,σ
γ,γ (Ω)

, β > 1− λ, (4.62)

where we have used (4.56) and (4.59). In the following lines, we show

C0,σ(Ω̄) ↪→ C0,σ
γ,γ (Ω) for γ − σ ≥ 0. (4.63)

The first term in the norm definition (4.57) yields for l = 0

sup
x∈Ω

ρ1(x)γ−σρ2(x)γ−σ
(
r(x)

ρ(x)

)H(γ−σ)

|y(x)| ≤ c · sup
x∈Ω

r(x)γ−σ|y(x)|

with the same argumentation as above. The second term vanishes since l − k1 < 0. The
third term results in

sup
|x1−x2|<r(x1)/2

ρ1(x)γρ2(x)γ
(
r(x)

ρ(x)

)γ |y(x1)− y(x2)|
|x1 − x2|σ

≤

c · sup
|x1−x2|<r(x1)/2

r(x1)γ
|y(x1)− y(x2)|
|x1 − x2|σ

.
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4.2 Scalar elliptic equations in prismatic domains

With γ > γ−σ > 0 these two estimates yield (4.63). Therefore the assertion (4.54) follows
from (4.62). According to Lemma 4.17, one has ∂3y ∈ W 1,p(Ω). For p > 3 the Sobolev
embedding W 1,p(Ω) ↪→ L∞(Ω) is valid. Therefore we can conclude

‖∂3y‖L∞(Ω) ≤ c‖∂3y‖W 1,p(Ω) ≤ c‖f‖Lp(Ω) ≤ c‖f‖C0,σ(Ω̄)

what is exactly assertion (4.55).

4.2.2 Finite element error estimates

We recall the definition of the discrete spaces Vh and V0h,

V0h := {vh ∈ C(Ω̄) : vh|T ∈ P1 for all T ∈ Th and vh = 0 on ∂Ω},
Vh := {vh ∈ C(Ω̄) : vh|T ∈ P1 for all T ∈ Th},

for admissible triangulations Th, see page 16. The finite element approximation yh of the
solution of (4.45) is given as unique solution of the problem

Find yh ∈ V0h : aD(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ V0h. (4.64)

Analogously, we have for the Neumann problem (4.47)

Find yh ∈ Vh : aN (yh, vh) = (f, vh)L2(Ω) ∀vh ∈ Vh. (4.65)

Notice, that in both cases the Lax-Milgram lemma guarantees existence and uniqueness of
yh.

The following two theorems provide estimates of the global interpolation error for the
solutions of the boundary value problems (4.45) and (4.47) on anisotropic meshes.

Theorem 4.21. Let y be the solution of (4.45) and E0h the interpolation operator defined
in (3.5). Then the estimate

|y − E0hy|H1(Ω) ≤ ch‖f‖L2(Ω) (4.66)

holds if the mesh satisfies (2.13) with µ < π/ω.

Proof. The theorem can be proved along the lines of the proof of Theorem 14 of [6]. The
necessary prerequisites are provided here with Lemmata 4.15, 4.17, Remark 4.19 and
estimates (3.22) and (3.23) for p = q = 2. For the sake of completeness we sketch the
details here. For estimating the error we distinguish between elements near the edge M
and those away from M . Let us start with the elements T with T ∩M = ∅. For those one
knows that y ∈ H2(T ) and thus we can use estimate (3.22) for p = 2, i.e.,

|y − E0hy|H1(T ) ≤ c
∑
|α|=1

hαT |Dαu|H1(ST ). (4.67)
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4 Finite element error estimates for boundary value problems

Since
rT ≤ dist(ST ,M) + h1,T ∼ dist(ST ,M) + h[dist(ST ,M)]1−µ

it follows for h sufficiently small

rT ≤ c · dist(ST ,M).

With this we can continue from (4.67) and get

|y − E0hy|H1(T ) ≤ c

(
2∑
i=1

hi,T r
−β
T

∣∣∣∣ ∂y∂xi
∣∣∣∣
V 1,2
β (ST )

+ h3,T

∣∣∣∣ ∂y∂x3

∣∣∣∣
V 1,2

0 (ST )

)
(4.68)

for any β > 1− π/ω. Since µ < π/ω, the choice β = 1− µ is admissible and we obtain for
rT > 0 from (2.13) the relation

hi,T r
−β
T ∼ hr1−µ−β

T = h (i = 1, 2).

This yields together with (4.68)

|y − E0hy|H1(T ) ≤ ch

(
2∑
i=1

∣∣∣∣ ∂y∂xi
∣∣∣∣
V 1,2
β (ST )

+

∣∣∣∣ ∂y∂x3

∣∣∣∣
V 1,2

0 (ST )

)
. (4.69)

Consider now the elements T with T ∩M 6= ∅. With the triangle inequality and the
stability estimate (3.23) with p = 2 one gets for β ∈ (1− π/ω, 1)

|y − E0hy|H1(T ) ≤ |y|H1(T ) + |E0hy|H1(T )

≤ c

∑
|α|=1

‖Dαy‖L2(T ) + h−β1,T

∑
|α|=1

hαT ‖Dαy‖
V 1,2
β (ST )

 . (4.70)

Taking into account that r ≤ ch1,T in T and 1− β > 0 one obtains

∑
|α|=1

‖Dαy‖L2(T ) ≤ c

(
2∑
i=1

h1−β
1,T

∥∥∥∥ ∂y∂xi
∥∥∥∥
V 0,2
β−1(T )

+ h3,T

∥∥∥∥ ∂y∂x3

∥∥∥∥
V 0,2
−1 (T )

)

≤ ch

(
2∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥
V 1,2
β (T )

+

∥∥∥∥ ∂y∂x3

∥∥∥∥
V 1,2

0 (T )

)
. (4.71)

In the last step we have used that h1−β
1,T ∼ h(1−β)/µ = h for β = 1− µ and h3,T ∼ h (comp.

(2.13)). For the second term in (4.70) we get with rβ ≤ hβ1,T

h−β1,T

∑
|α|=1

hαT ‖Dαy‖
V 1,2
β (ST )

≤ c

(
2∑
i=1

h1−β
1,T

∥∥∥∥ ∂y∂xi
∥∥∥∥
V 1,2
β (ST )

+ h−β1,Th

∥∥∥∥ ∂y∂x3

∥∥∥∥
V 1,2
β (ST )

)

≤ ch

(
2∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥
V 1,2
β (ST )

+

∥∥∥∥ ∂y∂x3

∥∥∥∥
V 1,2

0 (ST )

)
. (4.72)
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4.2 Scalar elliptic equations in prismatic domains

Inserting (4.71) and (4.72) in (4.70) one can see that (4.69) is also valid for elements T
with T ∩M 6= ∅ with full norms instead of seminorms at the right-hand side. Summing
up over all elements one gets

|y − E0hy|H1(Ω) ≤ ch

(
2∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥
V 1,2
β (Ω)

+

∥∥∥∥ ∂y∂x3

∥∥∥∥
V 1,2

0 (Ω)

)

with β = 1 − µ ∈ (1 − π/ω, 1). Notice that this estimate is possible since only a finite
number (independent of h) of patches ST overlap. The application of Lemma 4.15 and
Lemma 4.17 for p = 2 proves in view of Remark 4.19 estimate (4.66).

In case of Neumann boundary conditions we cannot prove a global estimate of the
interpolation error in the same way as in Theorem 14 of [6] as we did it in the proof of
Theorem 4.21. The reason is, that the solution y admits a different regularity in this
case (comp. Lemma 4.15 and Lemma 4.16) and in particular does not vanish at the edge.
Instead, the results of Theorem 3.7 play a keyrole.

Theorem 4.22. Let y be the solution of (4.47) and Eh the interpolation operator defined
in (3.2). Then the estimate

‖y − Ehy‖H1(Ω) ≤ ch‖f‖L2(Ω) (4.73)

holds if the mesh satisfies (2.13) with µ < π/ω.

Proof. We use the estimates of the local error to get an estimate for the global error.
Therefore we distinguish between elements next to the edge M and elements away from
M . We begin with the elements T with T ∩M = ∅. Then y ∈ H2(T ) and from (3.7) it
follows with p = 2

‖y − Ehy‖H1(T ) ≤ c
∑
|α|=1

hαT ‖Dαy‖H1(ST )

≤ c

(
2∑
i=1

hi,T r
−β
T

∥∥∥∥ ∂y∂xi
∥∥∥∥
W 1,2
β (ST )

+ h3,T

∥∥∥∥ ∂y∂x3

∥∥∥∥
H1(ST )

)

for all β < 1−π/ω. For the last estimate we have used Lemma 4.17 and rT ≤ ch3,T . Since
µ < π/ω, the choice β = 1− µ is admissible and we obtain from (2.13) the relation

hi,T r
−β
T ∼ hr1−µ−β

T = h (i = 1, 2).

Combining this last estimates with the fact that h3,T ∼ h, one arrives at

‖y − Ehy‖H1(T ) ≤ c

(
h

2∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥
W 1,2
β (ST )

+ h

∥∥∥∥ ∂y∂x3

∥∥∥∥
H1(ST )

)
. (4.74)
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4 Finite element error estimates for boundary value problems

For an element T with T ∩M 6= ∅ we can estimate with Theorem 3.7 for p = q = 2 since
W 2,2
β (Ω) ↪→ H1(Ω) (see (2.4))

‖y − Ehy‖H1(T ) ≤ c
3∑
i=1

hi,Th
−β
1,T

∥∥∥∥ ∂y∂xi
∥∥∥∥
W 1,2
β (T )

≤ c

(
2∑
i=1

h(1−β)/µ

∥∥∥∥ ∂y∂xi
∥∥∥∥
W 1,2
β (T )

+ h3,T

∥∥∥∥ ∂y∂x3

∥∥∥∥
H1(T )

)
(4.75)

≤ c

(
2∑
i=1

h

∥∥∥∥ ∂y∂xi
∥∥∥∥
W 1,2
β (T )

+ h

∥∥∥∥ ∂y∂x3

∥∥∥∥
H1(T )

)
, (4.76)

where we have used the additional regularity of y in x3-direction (see Corollary 4.18),

rβ ≤ chβ1,T in (4.75) and β = 1− µ.

The estimates (4.74) and (4.76) yield together with the fact that the number of elements
in ST is bounded by a constant the inequality

‖y − Ehy‖2H1(Ω) =
∑
T∈Th

‖y − Ehy‖2H1(T ) ≤ ch
2

(
2∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥2

W 1,2
β (T )

+

∥∥∥∥ ∂y∂x3

∥∥∥∥2

H1(T )

)
.

Together with the regularity results from Lemma 4.16 and Corollary 4.18 this proves the
desired estimate (4.73).

With the global interpolation error estimates from Theorem 4.21 and 4.22 at hand, we
are able to prove the finite element error estimates in the following two theorems with
standard techniques.

Theorem 4.23. Let y be the solution of (4.45) and let yh be the finite element solution
defined by (4.64). Assume that the mesh fulfills condition (2.13) with µ < π/ω. Then the
finite element error can be estimated by

|y − yh|H1(Ω) ≤ ch‖f‖L2(Ω), (4.77)

‖y − yh‖L2(Ω) ≤ ch2‖f‖L2(Ω). (4.78)

Proof. Since V0h ⊂ V0 it follows from (4.45) and (4.64) that

a(y − yh, vh) = 0 for all vh ∈ V0h.

Since E0hy ∈ V0h we can conclude

‖∇(y − yh)‖2L2(Ω) ≤ c · a(y − yh, y − yh) = c · a(y − yh, y − E0hy)

≤ c‖∇(y − yh)‖L2(Ω) · ‖∇(y − E0hy)‖L2(Ω)
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4.3 Scalar elliptic equations with nonsmooth coefficients

what results with the interpolation error estimate (4.66) in

‖∇(y − yh)‖L2(Ω) ≤ c‖∇(y − E0hy)‖L2(Ω) ≤ ch‖f‖L2(Ω)

and (4.77) is shown. For the proof of (4.78) we use the Aubin-Nitsche trick: Let w ∈ V0

be the solution of

aD(v, w) = (y − yh, v) ∀v ∈ V0

and wh the corresponding finite element solution. In analogy to (4.77) one has

|w − wh|H1(Ω) ≤ ch‖y − yh‖L2(Ω).

Consequently, this yields

‖y − yh‖2L2(Ω) = aD(y − yh, w)

= aD(y − yh, w − wh)

≤ c|y − yh|H1(Ω)|w − wh|H1(Ω)

≤ ch2‖f‖L2(Ω)‖y − yh‖L2(Ω).

Division by ‖y − yh‖L2(Ω) yields assertion (4.78).

Remark 4.24. In the proof of Theorem 4.23 it was essential that E0hy ∈ V0h for y ∈ V0,
i.e., that the interpolation operator preserves homogeneous boundary conditions. This
was the reason for introducing E0h in Chapter 3.

Theorem 4.25. Let y be the solution of (4.47) and let yh be the finite element solution
defined by (4.65). Assume that the mesh fulfills condition (2.13) with µ < π/ω. Then the
finite element error can be estimated by

|y − yh|H1(Ω) ≤ ch‖f‖L2(Ω)

‖y − yh‖L2(Ω) ≤ ch2‖f‖L2(Ω).

Proof. The H1-estimate follows from inequality (4.73) like the assertion (4.77) in Theorem
4.23 from (4.66). The application of the Aubin-Nitsche trick yields again the L2-estimate.

4.3 Scalar elliptic equations with nonsmooth coefficients

In this section we consider the interface problem for the Laplacian. Such problems arise
from diffusive processes when different materials are involved and therefore the diffusion
coefficient varies and admits discontinuities. In this thesis we do not want to treat
interface problems in the most general setting but we rather want to show that the type
of singularities that occur there can be handled with similar techniques as singularities
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b

Ω1
Ω2

Ω3

ω1ω2

ω3

Figure 4.2: Example for subdomains Ωi in interface problem

caused by nonsmooth domains. The same type of mesh grading as for elliptic equations
in corner domains leads optimal convergence rates for the finite element error. Later in
Section 5.2.3 we will show that this extends to the corresponding optimal control problem.

We assume that the domain Ω can be partitioned in disjoint, open, polygonal Lipschitz
subdomains Ωi, i = 1, . . . , n, on which the diffusion coefficient k has the constant value ki.
Since the singular behaviour is a local phenomenon we restrict our considerations to one
corner located at the origin and assume that no singularities occur at the other corners.
The interior angle of the subdomains Ωi at this corner is denoted by ωi, see Figure 4.2 for
an example with n = 3. For n = 1 the state equation reduces to the Poisson equation.
This case is treated in [15]. With yi := y|Ωi , i = 1, . . . , n, the interface problem can be
written as

−ki∆yi = f in Ωi, i = 1, . . . , n,

yi(r, ωi) = yi+1(r, ωi) i = 1, . . . , n− 1,

ki
∂yi(r, ωi)

∂ϕ
= ki+1

∂yi+1(r, ωi)

∂ϕ
i = 1, . . . , n− 1,

y = 0 on ∂Ω.

(4.79)

The variational formulation reads as

Find y ∈ V0 : aI(y, v) = (f, v)L2(Ω) ∀v ∈ V0 (4.80)

with bilinear form aI : H1(Ω)×H1(Ω)→ R,

aI(y, v) :=

∫
Ω
k∇y · ∇v (4.81)

and V0 := {v ∈ H1(Ω) : v|∂Ω = 0}.
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4.3 Scalar elliptic equations with nonsmooth coefficients

4.3.1 Regularity

From the interface condition in (4.79) one can conclude

ki
∂yi
∂ni
|∂Ωi∩∂Ωj + kj

∂yj
∂nj
|∂Ωi∩∂Ωj = 0

for two adjacent subdomains Ωi, Ωj and outward normals to the interface ni, nj . Since
ki 6= kj the normal derivatives have a jump discontinuity across the interface. This means
y /∈ H3/2(Ω). Extensive studies on the regularity also for more general settings can
be found in [100, 106]. As in the case of elliptic equations with corner singularities we
describe the regularity of the solution of (4.80) in weighted Sobolev spaces. To this end,
we introduce the Sturm-Liouville eigenvalue problem,

−Φ′′i (ϕ) = λ2Φi(ϕ), ϕ ∈ (ωi−1, ωi), i = 1, . . . , n (4.82)

with the boundary and interface conditions

Φ1(0) = Φn(ω) = 0 (boundary conditions)

Φi(ωi) = Φi+1(ωi) i = 1, . . . , n− 1 (interface conditions)

kiΦ
′
i(ωi) = ki+1Φ′i+1(ωi) i = 1, . . . , n− 1. (interface conditions)

Lemma 4.26. Let λ be the smallest positive solution of (4.82), p ∈ (0,∞), β > 2−2/p−λ
and f ∈ V0,p

β (Ω). Then there exists a unique solution y ∈ V2,p
β (Ω) of (4.80) and the

inequality

‖y‖V2,p
β (Ω)

≤ c‖f‖V0,p
β (Ω)

holds.

Proof. The assertion follows from [100, Theorem 3.6] where it is proved in a more general
setting in a cone. In Example 2.29, p. 102 of that book is shown that λ has to solve the
eigenvalue problem (4.82).

Remark 4.27. According to [100, Theorem 2.27] the solution of (4.80) can be decomposed
into a regular part yr ∈ W2,p(Ω) and a singular part ys, i.e., y = ys + yr, as long as
f ∈ Lp(Ω). In Example 2.29 of that book the exact form of ys is given such that one can
conclude ys ∈ V2,p

β (Ω). This is also true for more general boundary conditions. Notice,

that as a consequence of the Hardy inequalities yr ∈ W2,p(Ω) implies yr ∈ V2,p
β (Ω), β ≥ 0

in case of homogeneous Dirichlet boundary conditions, see [100, Theorem 1.19].

Remark 4.28. For a numerical evaluation of λ for different ωi and ki we refer to Figure
2.3–2.5 in [100]. One realizes that λ < 1/2 is possible in contrast to the case of corner
singularities of elliptic problems (comp. Subsection 4.1.1).
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4 Finite element error estimates for boundary value problems

4.3.2 Finite element error estimates

We discretize the boundary value problem (4.80) by a finite element scheme. With an
admissible triangulation Th, see page 16, and

V0h = {vh ∈ C(Ω̄) : vh|T ∈ P1 for all T ∈ Th and vh = 0 on ∂Ω} (4.83)

the discretized problem is formulated as

Find yh ∈ V0h : aI(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ V0h. (4.84)

We assume that the underlying triangulation Th is aligned with the partition of Ω, i.e.,
the boundary ∂Ωi is made up of edges of triangles in Th.

There are many papers around concerning finite element error estimates for interface
problems. Let us mention here at least the early works of Babuška [21], Baker [24] and
King [76]. Different treatments of smooth interfaces were studied e.g. in [26] and [33].

Theorem 4.29. Let y and yh be the solution of (4.80) and (4.84), respectively. On a
mesh of type (2.12) with grading parameter µ < λ the estimate

‖y − yh‖L2(Ω) + h‖y − yh‖H1(Ω) ≤ ch2|y|V2,2
β (Ω)

≤ ch2‖f‖L2(Ω)

is valid for β > 1− λ.

Proof. According to Lemma 4.26 one has y ∈ V2,2
β (Ω) for β > 1− λ. An estimate of the

interpolation error for functions of V2,2
β (Ω) can be proved by standard arguments using the

piecewise linear Lagrange interpolant, see, e.g.,[22]. By Céa’s Lemma this yields directly
the H1-estimate. The L2-estimate follows by the Aubin-Nitsche method.

4.4 Stokes equations in nonsmooth domains

The aim of this section is to prove finite element error estimates for the Stokes equations
in nonsmooth domains. To this end we first consider a rather general situation and prove
error bounds under certain assumptions on the regularity of the solution and for discrete
approximation spaces that fulfill some reasonable conditions. In the subsections 4.4.2 and
4.4.3 we apply these results for particular domains and approximation spaces.

4.4.1 General situation

We consider the boundary value problem

−∆v +∇q = f in Ω,

∇ · v = 0 in Ω, (4.85)

v = 0 on Γ = ∂Ω.
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4.4 Stokes equations in nonsmooth domains

Here, Ω is a bounded subset of Rd, d = 2, 3 with boundary ∂Ω. These equations, also
known as Stokes equations, describe the flow of an incompressible and viscous fluid in
a d−dimensional body. We call v : Ω → Rd velocity field and q : Ω → R pressure. The
pressure is determined by (4.85) only up to an additive constant. Therefore one usually
considers a normalized solution, i.e. the condition∫

Ω
q = 0

is satisfied.

The variational formulation is given as the saddle point problem

Find (v, q) ∈ X ×M :

a(v, ϕ)+b(ϕ, q) = (f, ϕ) ∀ϕ ∈ X (4.86)

b(v, ψ) = 0 ∀ψ ∈M

with the bilinear forms a : X ×X → R and b : X ×M → R defined as

a(v, ϕ) :=
d∑
i=1

∫
Ω
∇vi · ∇ϕi and b(ϕ, q) := −

∫
Ω
q∇ · ϕ,

and the spaces

X =
{
v ∈ (H1(Ω))d : v|∂Ω = 0

}
and M =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Notice, that the problem (4.86) admits a unique solution (v, q) ∈ X ×M , see e.g. [61, Th.
I.5.1].

As we have seen for scalar elliptic equations, it is convenient to describe the regularity of the
solution in weighted Sobolev spaces as soon as one likes to include nonconvex domains Ω.
Since we may consider problems with corner- or edge-singularities, we introduce the general
weighted Sobolev spaces Hk

ω(Ω)d, k = 1, 2. The corresponding norm is defined as

‖v‖Hk
ω(Ω)d =

∑
|α|≤k

‖ωαDαv‖2L2(Ω)d

1/2

where ωα is a suitable positive weight depending on the concrete problem under consider-
ation. Later in our particular examples, this weight will be determined by the distance
to the singular points. In order to stay in a more general setting, we do not specify the
weights for the moment and state the following assumption.

Assumption FE1. For the solution of the Stokes problem one has for a sufficiently
smooth right-hand side f

(v, q) ∈ H2
ω1

(Ω)d ×H1
ω2

(Ω)

with suitable weights ω1 and ω2.
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4 Finite element error estimates for boundary value problems

Since we like to have a continuous velocity field, we formulate the next assumption.

Assumption FE2. The embedding H2
ω(Ω) ↪→ C(Ω̄) holds.

For the numerical solution of the saddle point problem (4.86) we choose a velocity approx-
imation space Xh and a pressure approximation space Mh each consisting of piecewise
polynomial functions, such that Mh ⊂M but not necessarily Xh ⊂ X. Additionally we
assume

Xh ⊂ {vh ∈ L2(Ω)d : vh|T ∈ H1(T )d ∀T ∈ Th}.

Since the velocity space X may not include the discrete velocity space Xh, we define the
approximate solution of (4.86) by using the weaker bilinear forms ah : Xh ×Xh → R and
bh : Xh ×Mh → R with

ah(vh, ϕh) :=
∑
T∈Th

d∑
i=1

∫
T
∇vh,i · ∇ϕh,i and bh(ϕh, ph) := −

∑
T∈Th

∫
T
ph∇ · ϕh. (4.87)

Here, the i-th component of the vectors vh and ϕh is denoted by vh,i and ϕh,i, respectively.
The bilinear form ah(·, ·) induces a broken H1(Ω)-norm by ‖ · ‖Xh := ah(·, ·)1/2. With this
definitions at hand we can formulate the finite element approximation by

Find (vh, qh) ∈ Xh ×Mh such that

ah(vh, ϕh) + bh(ϕh, qh) = (f, ϕh) ∀ϕh ∈ Xh (4.88)

bh(vh, ψh) = 0 ∀ψh ∈Mh. (4.89)

In the following we formulate a couple of assumptions that will together with Assumptions
FE1 and FE2 be sufficient to prove finite element error estimates.

Assumption FE3. There exist interpolation operators ivh : H2
ω(Ω)d ∩X → Xh ∩X and

iph : H1
ω(Ω) ∩M → Mh such that for the solution (v, q) ∈ X ×M of the Stokes problem

(4.86) the interpolation properties

(i) ‖v − ivhv‖Xh ≤ ch‖v‖H2
ω(Ω) ≤ ch‖f‖L2(Ω)d

(ii) ‖v − ivhv‖L∞(Ω) ≤ c‖f‖L2(Ω)d

(iii) ‖q − iphq‖L2(Ω) ≤ ch‖q‖H1
ω(Ω) ≤ ch‖f‖L2(Ω)d

hold.

Assumption FE4. There exists a p satisfying

p <∞ if d = 2,

p ≤ 6 if d = 3,
(4.90)

such that the inverse estimate

‖ϕh‖L∞(Ω) ≤ ch−1‖ϕh‖Lp(Ω) ∀ϕh ∈ Xh

is valid.
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4.4 Stokes equations in nonsmooth domains

Assumption FE5. A consistency error estimate holds for the space Xh,

|ah(v, ϕh) + bh(ϕh, q)− (f, ϕh)| ≤ ch‖ϕh‖Xh‖f‖L2(Ω) ∀(f, ϕh) ∈ L2(Ω)×Xh.

where (v, q) ∈ X ×M is the solution of the Stokes problem (4.86).

Assumption FE6. The pair (Xh,Mh) fulfills the uniform discrete inf-sup-condition, i.e.
there exists a positive constant β independent of h such that

inf
ψh∈Mh

sup
ϕh∈Xh

b(ϕh, ψh)

‖ϕh‖Xh‖ψh‖M
≥ β.

Theorem 4.30. Assume that Assumptions FE1 through FE6 hold. Let (v, q) be the
solution of (4.86) and let (vh, qh) be the finite element solution defined by (4.88)–(4.89).
Then the approximation error can be estimated by

‖q − qh‖L2(Ω) + ‖v − vh‖Xh ≤ ch‖f‖L2(Ω)d (4.91)

‖v − vh‖L2(Ω)d ≤ ch2‖f‖L2(Ω)d (4.92)

‖v − vh‖Lp(Ω)d ≤ ch‖f‖L2(Ω)d for p satisfying (4.90) (4.93)

‖v − vh‖L∞(Ω)d ≤ c‖f‖L2(Ω)d (4.94)

Proof. From [35, Proposition II.2.16] one has

‖v − vh‖Xh + ‖q − qh‖L2(Ω) ≤ c inf
ϕh∈Xh

‖v − ϕh‖Xh + c inf
µh∈Mh

‖q − µh‖L2(Ω)

+ c sup
ϕh∈Xh

|ah(v, ϕh) + bh(ϕh, q)− (f, vh)|
‖ϕh‖Xh

Then estimate (4.91) can be concluded from Assumptions FE3 and FE5.

In order to prove the L2-error estimate (4.92) we apply a non-conforming version of the
Aubin-Nitsche method. Therefore we consider for g ∈ L2(Ω)d the solution (ϕg, ψg) ∈
(H1

0 (Ω)d ∩H2
ω(Ω)d)× (L2(Ω) ∩H1

ω(Ω)) of the saddle-point problem

a(ϕ,ϕg)− b(ϕ,ψg) = (g, ϕ) ∀ϕ ∈ X
b(ϕg, ψ) = 0 ∀ψ ∈M. (4.95)

We introduce for (ϕ, q, v) ∈ X ×M ×X the abbreviations

d1,h(ϕ, q, v) := ah(ϕ, v) + bh(v, q)− (f, v),

d1,h(ϕ, q, v) := ah(v, ϕ)− bh(v, q)− (g, v).
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4 Finite element error estimates for boundary value problems

Then one has for ϕh ∈ Xh and ψh ∈Mh

ah(v − vh, ϕg − ϕh)− bh(v − vh, ψg − ψh) + bh(ϕg − ϕh, q − qh)

− d1,h(v, q, ϕg − ϕh)− d2,h(ϕg, ψg, v − vh)

= −ah(v − vh, ϕh) + bh(v − vh, ψh)− bh(ϕg − ϕh, qh)−
ah(v, ϕg) + ah(v, ϕh) + (f, ϕg − ϕh) + (g, v − vh)

= ah(vh, ϕh)− (f, ϕh)− ah(v, ϕg) + (f, ϕg)−
bh(ϕg − ϕh, qh)− bh(v − vh, ψh) + (g, v − vh)

= −bh(ϕh, qh) + bh(ϕg, q)− bh(ϕg − ϕh, qh) + bh(v − vh, ψh) + (g, v − vh)

= −bh(ϕg, qh)− bh(vh, ψh) + bh(v, ψh) + (g, v − vh)

= (g, v − vh)

In the last two steps we have used (4.95) and (4.89), respectively. Furthermore, one has
bh(v, ψh) = 0 since Mh ⊂M . Now we can continue with

‖v − vh‖L2(Ω)d = sup
06=g∈L2(Ω)d

(g, v − vh)

‖g‖L2(Ω)d

≤ sup
06=g∈L2(Ω)d

‖g‖−1
L2(Ω)d

(|ah(v − vh, ϕg − ϕh)|+ |bh(v − vh, ψg − ψh)|+

+ |bh(ϕg − ϕh, q − qh)|+ |d1,h(v, q, ϕg − ϕh)|+ |d2,h(ϕg, ψg, v − vh)|) .
(4.96)

We estimate these terms separately. For the first term we set ϕh = ivhϕg, where ivh is the
interpolation operator of Assumption FE3. This yields

|ah(v − vh, ϕg − ivhϕg)| ≤ c‖v − vh‖Xh‖ϕg − i
v
hϕg‖Xh

≤ ch2‖f‖L2(Ω)d‖g‖L2(Ω)d . (4.97)

To estimate the second term we set ψh = iphψg with the operator iph of Assumption FE3.
Then one has

|bh(v − vh, ψg − iphψg)| ≤ ‖v − vh‖Xh‖ψg − i
p
hψg‖L2(Ω)

≤ ch2‖f‖L2(Ω)d‖g‖L2(Ω)d . (4.98)

where we have used (4.91) and Assumption FE3 (ii). The third term can be estimated by

|bh(ϕg − ivhϕg, q − qh)| ≤ ‖ϕg − ivhϕg‖Xh‖q − qh‖L2(Ω)

≤ ch2‖f‖L2(Ω)d‖g‖L2(Ω)d (4.99)

where we used the properties of ivh given in Assumption FE3 and the L2-error estimate for
q in (4.91). Since ϕg − ivhϕg ∈ X there holds for the fourth term

d1,h(v, q, ϕg − ivhϕg) = ah(v, ϕg − ivhϕg) + bh(ϕg − ivhϕg, q)− (f, ϕg − ivhϕg) = 0. (4.100)
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Finally, the fifth term yields

|d2,h(ϕg, ψg, v − vh)| = |ah(ϕg, v − vh) + bh(v − vh, ψg)− (g, v − vh)|
≤ |ah(ϕg, v − ivhv) + bh(v − ivhv, ψg)− (g, v − ivhv)|

+ |ah(ϕg, i
v
hv − vh) + bh(ivhv − vh, ψg) + (g, ivhv − vh)|. (4.101)

Since v − ivhv ∈ X we can conclude like above

|ah(ϕg, v − ivhv) + bh(v − ivhv, ψg)− (g, v − ivhv)| = 0. (4.102)

The consistency error estimate of Assumption FE5 entails

|ah(ϕg, i
v
hv − vh) + bh(ivhv − vh, ψg) + (g, ivhv − vh)| ≤ ch‖ivhv − vh‖Xh‖g‖L2(Ω). (4.103)

With equations (4.102) and (4.103) we can continue from (4.101) with

|dh(ϕg, ψg, v − vh)| ≤ ch‖ivhv − vh‖Xh‖g‖L2(Ω)d

≤ ch(‖v − vh‖Xh + ‖v − ivhv‖Xh)‖g‖L2(Ω)d

≤ ch2‖f‖L2(Ω)d‖g‖L2(Ω)d

where we have used again (4.91) and Assumption FE3 (i). This last estimate implies
together with (4.96)–(4.100) the assertion (4.92).

Estimate (4.93) follows directly from inequality (4.91) by the embedding H1(Ω) ↪→ Lp(Ω)
for p satisfying (4.90).

In order to prove inequality (4.94), we can conclude from the triangle inequality and
Assumptions FE3 and FE4

‖v − vh‖L∞(Ω)d ≤ ‖v − ivhv‖L∞(Ω)d + ‖vh − ivhv‖L∞(Ω)d

≤ c‖f‖L2(Ω)d + ch−1‖vh − ivhv‖Lp(Ω)d

≤ c‖f‖L2(Ω)d + ch−1
(
‖v − vh‖Lp(Ω)d + ‖v − ivhv‖Lp(Ω)d

)
(4.104)

for a certain p satisfying (4.90). Since H1(Ω) ↪→ Lp(Ω) for such a p one can conclude from
Assumption FE3 (i)

‖v − ivhv‖Lp(Ω)d ≤ ch‖f‖L2(Ω)d .

With this estimate we can continue from (4.104) and get together with inequality (4.93)
the desired result (4.94).

4.4.2 Stokes equations in polygonal domains

We consider the Stokes system (4.85),

−∆v +∇q = f in Ω,

∇ · v = 0 in Ω, (4.105)

v = 0 on Γ = ∂Ω.
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4 Finite element error estimates for boundary value problems

Here, Ω is a bounded, polygonal subset of R2. Again, we restrict our considerations to
the case of only one reentrant corner in the domain located at the origin. More general
settings can be reduced to this situation by a localization argument.

4.4.2.1 Regularity

According to the results of [46] the vertex singularity of the solution (v, q) of (4.105) is
related to a pole λ of the inverse of an operator, which results from writing the Stokes system
in spherical coordinates centered at the vertex and applying an integral transformation.
It turns out that λ is the smallest positive solution of a certain eigenvalue problem. We
specify this in the following lemma.

Lemma 4.31. Assume that f ∈ Lp(Ω)2, 2 ≤ p <∞ and let λ > 0 be the smallest positive
solution of

sin(λω) = −λ sinω, (4.106)

where ω is the interior angle at the corner. Then the solution (v, q) ∈ X×M of the Stokes
problem (4.105) satisfies

v ∈ V 2,p
β (Ω)2 and q ∈ V 1,p

β (Ω) ∀β > 2− λ− 2

p

and the a priori estimate

‖v‖
V 2,p
β (Ω)2 + ‖q‖

V 1,p
β (Ω)

≤ c‖f‖Lp(Ω)2

holds.

Proof. The assertion follows from [79, Theorem 5.8.1]. If one sets α = ω and ξ = λω in
that theorem, one directly admits the desired regularity result.

Remark 4.32. The smallest positive solution λ of (4.106) satisfies

1

2
< λ <

π

ω
,

see e.g. [46].

Remark 4.33. In the setting of (4.105) the spaces V k,2
β (Ω) play the role of the general

spaces Hk
ω(Ω). With ω1α = ω2α = rβ−k+α Assumption FE1 is satisfied.
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4.4 Stokes equations in nonsmooth domains

4.4.2.2 Finite element error estimate

Now we concentrate on error estimates for the finite element approximation (vh, qh) as
introduced in (4.88)–(4.89) for the particular setting of this subsection. In order to
counteract the corner singularity at the origin, we discretize the domain Ω by a family of
graded triangulations as introduced in Subsection 2.3.1. We require the grading parameter
µ to satisfy µ < λ. With this grading parameter at hand, we are able to prove Assumption
FE2 for this situation.

Proof of Assumption FE2. Since µ < λ it is 1−µ > 1−λ and it follows from Lemma 4.31
with β = 1− µ that (v, q) ∈ V 2,2

1−µ(Ω)× V 2,1
1−µ(Ω). This means Assumption FE2 is satisfied

due to the embedding

V 2,2
1−µ(Ω) ↪→ V

2−(1−µ),2
0 (Ω) ↪→ H1+µ(Ω) ↪→ C(Ω̄). (4.107)

The first embedding is proved in [113, Lemma 1.2]. The second one follows directly
from the definition of the spaces. The last embedding is a conclusion from the Sobolev
embedding theorem.

In the following we give examples of pairs of spaces (Xh,Mh) that satisfy the Assumptions
FE3 through FE6.

Conforming elements We first concentrate on the case Xh ⊂ X and Mh ⊂ M . An
overview can be found e.g. in [61].

a) Bernardi-Raugel-Fortin element

Xh = {vh ∈ H1
0 (Ω)2 : vh|T ∈ P+

1 ∀T ∈ Th}
Mh = {qh ∈ L2

0(Ω) : qh|T ∈ P0 ∀T ∈ Th}

where P+
1 = P2

1 ⊕ span{n1λ2λ3, n2λ3λ1, n3λ1λ2}
b) (P2,P0)

c) Mini-element

Xh = {vh ∈ H1
0 (Ω)2 : vh|T ∈ P+

1 ∀T ∈ Th}
Mh = {qh ∈ C(Ω̄) ∩ L2

0(Ω) : qh|T ∈ P1 ∀T ∈ Th}

where P+
1 = [P2

1 ⊕ span{λ1λ2λ3}]2

d) Taylor-Hood element (Pk,Pk−1), k ≥ 2

We check Assumptions FE3 through FE6 for these cases and summarize the error estimate
in Lemma 4.34.

Proof of Assumption FE3. We use as interpolation operator ivh the standard Lagrange
interpolant Ih. This is possible due to the fact that piecewise linear and continuous
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functions are contained in the space Xh. Although the proof of (i) follows by standard
arguments, we sketch it here. We write

‖∇(v − Ihv)‖2L2(Ω) =
∑
T∈Th

‖∇(v − Ihv)‖2L2(T ).

In case of rT > 0 we can use the H2-regularity in T and conclude

‖∇(v − Ihv)‖2L2(T ) ≤ ch
2
T |v|2H2(T ) ≤ ch

2
T r
−2β
T |u|2

V 2,2
β (T )

.

With β = 1− µ one has from (2.12) the equality h2
T r
−2β
T = ch2r2−2µ

T r−2+2µ
T = ch2. This

yields

‖∇(v − Ihv)‖2L2(T ) ≤ ch
2|u|2

V 2,2
β (T )

.

For rT = 0 we use the triangle inequality to estimate

‖∇(v − Ihv)‖2L2(T ) ≤ c
(
‖∇v‖2L2(T ) + ‖∇(Ihv)‖2L2(T )

)
We estimate an the two terms separately. For the first term we get

‖∇v‖2L2(T ) = ‖r1−βrβ−1∇v‖2L2(T ) ≤ ch2(1−β)
T ‖rβ−1∇v‖2L2(T ) ≤ ch

2(1−β)
T ‖v‖2

V 2,2
β (T )

.

The second term can be estimated using a inverse inequality and the embedding
V 2,2
β (Ω) ↪→ L∞(Ω),

‖∇Ihv‖L2(T ) ≤ ch−1
T ‖Ihv‖L2(T )

≤ ch−1
T |T |

1/2‖Ihv‖L2(T̂ )

≤ ch−1
T |T |

1/2‖v‖L∞(T̂ )

≤ ch−1
T |T |

1/2‖v‖
V 2,2
β (T̂ )

≤ ch1−β
T ‖v‖

V 2,2
β (T )

.

According to (2.12) one can conclude for β = 1 − µ the equation h1−β
T = h

1−(1−µ)
µ

T = ch
and therefore

‖∇(v − Ihv)‖2L2(T ) ≤ ch
2|v|2

V 2,2
β (T )

in the case rT = 0. Summing up over all elements yields finally

‖∇(v − Ihv)‖L2(Ω) ≤ ch‖u‖2V 2,2
1−µ(Ω)

≤ ch‖f‖L2(Ω)

where we have used the a priori estimate of Lemma 4.31 with β = 1− µ > 1− λ. This
proves (i).
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For the proof of estimate (ii) we distinguish again between elements with rT = 0 and
rT > 0. In the case of rT = 0 we start with the triangle inequality and get

‖v − Ihv‖L∞(T ) ≤ ‖v‖L∞(T ) + ‖Ihv‖L∞(T ). (4.108)

For the first term of the right-hand side it follows

‖v‖L∞(T ) ≤ ‖v̂‖L∞(T̂ ) ≤ c‖v̂‖V 2,2
β (T̂ )

≤ h1−β
T ‖v‖

V 2,2
β (T )

.

Since ‖Ihv‖L∞(T ) ≤ ‖v‖L∞(T ) this estimate is also valid for the second term. With the
same argumentation as above inequality (4.108) yields with β = 1− µ for elements with
rT = 0

‖v − Ihv‖L∞(T ) ≤ ch‖v‖V 2,2
1−µ(T )

. (4.109)

For rT > 0 we use again the H2-regularity in T and conclude

‖v − Ihv‖L∞(T ) ≤ ch2
T |T |−1/2|v|H2(T ) = chT |v|H2(T )

≤ chr1−µ
T |v|H2(T ) ≤ ch|v|V 2,2

1−µ(T )
(4.110)

If one denotes by T ∗ the element where v− Ihv attaines its maximum, one can follow from
inequalities (4.109) and (4.110) together with the a priori estimate of Lemma 4.31

‖v − Ihv‖L∞(Ω) = ‖v − Ihv‖L∞(T ∗) ≤ ch‖v‖V 2,2
1−µ(T ∗) ≤ ch‖v‖V 2,2

1−µ(Ω)
≤ ch‖f‖L2(Ω).

This is assumption (ii).

For iph we choose the L2(Ω)-projection in the space of piecewise constant functions. Then
(iii) can be proved similarly to (i).

Proof of Assumption FE4. For ϕh ∈ Xh one has

‖ϕh‖L∞(T ) = ‖ϕ̂h‖L∞(T̂ ) ≤ c‖ϕ̂h‖Lp(T̂ ) = c|T |−1/p‖ϕh‖Lp(T ).

We choose the smallest element size hT = h1/µ and p ≥ 2
µ . This yields

‖ϕh‖L∞(T ) ≤ ch
− 2
µp ‖ϕh‖Lp(T ) ≤ ch−1‖ϕh‖Lp(T ),

what proves the assertion.

Proof of Assumption FE5. Since the discretizations a)–d) are all conforming the
consistency error estimate is trivially satisfied.

Proof of Assumption FE6. For the proof of the inf-sup-condition for the above element
pairs we refer to [61].

Lemma 4.34. The finite element solution of (4.105) satisfies the estimates of Theorem
4.30 for the element pairs described in a)–d) on finite element meshes of type (2.12) with
grading parameter µ < λ.
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Nonconforming element In this paragraph we investigate a discretization Xh of the
velocity space X with Xh 6⊂ X, namely the Crouzeix-Raviart finite element space,

Xh :=

{
vh ∈ L2(Ω)2 : vh|T ∈ (P1)2 ∀T,

∫
E

[vh]E = 0 ∀E
}

(4.111)

where E denotes an edge of an element and [vh]E means the jump of vh on the edge E,

[vh(x)]E :=

{
lim
α→0

(vh(x+ αnE)− vh(x− αnE)) for an interior edge E,

vh(x) for a boundary edge E.

Here nE is the outer normal of E. For the approximation of the pressure we use piecewise
constant functions, this means

Mh :=

{
qh ∈ L2(Ω) : qh|T ∈ P0 ∀T,

∫
Ω
qh = 0

}
. (4.112)

Since Assumptions FE1 and FE2 are checked in Subsection 4.4.2.1 and at the beginning
of this subsection it remains to check the Assumptions FE3 through FE6.

Proof of Assumptions FE3–FE4. The proofs of these Assumptions are exactly the same
as for the conforming elements a)–d).

Proof of Assumption FE5. In the following we choose µ > 1/2. According to Remark
4.32 there exist values for µ with 1/2 < µ < λ. For the proof of the consistency error
estimate we follow the ideas of [32, III.1], where the assertion is proved for quasi-uniform
meshes and the Poisson equation in convex domains. For ϕh ∈ Xh we can compute

|ah(v, ϕh) + bh(ϕh, q)− (f, ϕh)| =

∣∣∣∣∣∑
T

(∫
T
∇ · v∇ϕh dx−

∫
T
q∇ · ϕh dx−

∫
T
fϕh dx

)∣∣∣∣∣
=

∣∣∣∣∣∑
T

(∫
∂T
∂nv · ϕh ds−

∫
T

∆vϕh dx+

∫
T
∇q · ϕh dx

+

∫
∂T
qϕh · n ds−

∫
T
fϕh dx

)∣∣∣∣
≤

∣∣∣∣∣∑
T

∫
∂T
∂nv · ϕh ds

∣∣∣∣∣+

∣∣∣∣∣∑
T

∫
∂T
qϕh · n ds

∣∣∣∣∣ . (4.113)

In the last step we have used −∆v +∇q = f in H−1(Ω) and the triangle inequality. We
estimate the two terms in (4.113) separately. In the first term every inner edge occurs
two times, but with different signs of the normal derivatives. Therefore the value is not
changing, if one adds the constant ϕh(E) := 1/|E|

∫
E ϕh dx on every edge E. This yields
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4.4 Stokes equations in nonsmooth domains

with the Lagrange interpolant Ih∑
T

∫
∂T
∂nv · ϕh ds =

∑
T

∑
E∈∂T

∫
E
∂nv ·

(
ϕh − ϕh(E)

)
ds

=
∑
T

∑
E∈∂T

∫
E
∂n(v − Ihv) ·

(
ϕh − ϕh(E)

)
ds.

In the last step we utilized the fact that
∫
E

(
ϕh − ϕh(E)

)
ds = 0 and that ∂nIhv is

constant. With the Cauchy-Schwarz inequality we end up with∑
T

∫
∂T
∂nv · ϕh ds ≤

∑
T

∑
E∈∂T

‖∇(v − Ihv)‖L2(E)2‖ϕh − ϕh(E)‖L2(E)2 . (4.114)

For estimating the right-hand side of (4.114) we distinguish elements at the corner and
those far from the corner. Let us first consider elements T with rT > 0. Since v ∈ H2(T )
we can conclude with the embedding H1(Ω) ↪→ L2(∂Ω) (comp. Theorem 2.14) and the
Bramble-Hilbert-Lemma

‖∇(v̂ − Î v̂)‖2
L2(∂T̂ )2 ≤ c‖v̂ − Î v̂‖2H2(T̂ )2 ≤ c|v̂|2H2(T̂ )2 .

Transformation on T yields

‖∇(v − Ihv)‖2L2(E)2 ≤ chT |v|2H2(T )2 .

With the same argumentation one can conclude

‖ϕh − ϕh(E)‖2L2(E)2 ≤ chT |ϕh|2H1(T )2 . (4.115)

These two estimates yield with (2.12)

‖∇(v − Ihv)‖2L2(E)2‖ϕh − ϕh(E)‖2L2(E)2 ≤ ch2r2−2µ
T |v|2H2(T )2 |ϕh|2H1(T )2

≤ ch2|v|2
V 2,2

1−µ(T )2 |ϕh|2H1(T )2 . (4.116)

Now we consider elements T with rT = 0. The embedding Hµ(Ω) ↪→ L2(∂Ω) for µ > 1/2
(comp. Theorem 2.14) results in

‖∇(v − Ihv)‖L2(E)2 ≤ ch−1
T · |E|

1/2‖∇(v − Iv)‖L2(Ê)2 ≤ ch−1/2
T ‖v − Iv‖H1+µ(T̂ )2 .

The embedding V 2,2
1−µ(Ω) ↪→ H1+µ(Ω) (comp. (4.107)) and the boundedness of the nodal

interpolation operator I result in

‖∇(v − Ihv)‖L2(E)2 ≤ ch−1/2
T ‖v‖

V 2,2
1−µ(T̂ )2 ≤ ch

µ−1/2
T ‖v‖

V 2,2
1−µ(T )2 .
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Like above one has

‖ϕh − ϕh(E)‖2L2(E)2 ≤ chT |ϕh|2H1(T )2 , (4.117)

such that we can conclude for elements T with rT = 0 with (2.12)

‖∇(v − Ihv)‖L2(E)2‖ϕh − ϕh(E)‖L2(E)2 ≤ ch‖v‖V 2,2
1−µ(T )2 |ϕh|H1(T )2 . (4.118)

Summing up over all elements we get from (4.114), (4.116) and (4.118) the estimate∣∣∣∣∣∑
T

∫
∂T
∂nv · ϕh ds

∣∣∣∣∣ ≤ ch‖v‖V 2,2
1−µ(Ω)2‖ϕh‖Xh (4.119)

for the first term of the right-hand side of (4.113). For the second term of (4.113) we
proceed very similar. With the L2-projection Qh in the space of piecewise constant
functions,

Qhq(x) =
1

|T |

∫
T
q dx for x ∈ T,

we can write with the same argumentation as above∣∣∣∣∣∑
T

∫
∂T
qϕh · n ds

∣∣∣∣∣ ≤∑
T

∑
E∈∂T

‖q −Qhq‖L2(E)‖ϕh − ϕh(E)‖L2(E)2 . (4.120)

For elements T with rT > 0 the embedding H1(Ω) ↪→ L2(∂Ω) (comp. Theorem 2.14)
yields together with the Bramble-Hilbert-Lemma and (2.12)

‖q −Qhq‖2L2(E) ≤ chT |q|
2
H1(T )

Taking (4.115) and (2.12) into account it follows

‖q −Qhq‖L2(E)‖ϕh − ϕh(E)‖L2(E)2 ≤ ch2r2−2µ
T |q|2H1(T )‖ϕh‖

2
H1(T )2

≤ ch|q|2
V 1,2

1−µ(T )
‖ϕh‖2H1(T )2 . (4.121)

For elements T with rT = 0 we use the embedding Hµ(Ω) ↪→ L2(∂Ω) and the boundedness
of Qh to conclude

‖q −Qhq‖L2(E) ≤ c|E|1/2‖q̂ − Q̂q̂‖L2(Ê) ≤ ch
1/2
T ‖q̂‖Hµ(T̂ )

The embedding V 1,2
1−µ(Ω) ↪→ Hµ(Ω) (comp. (4.107)) yields

‖q −Qhq‖L2(E) ≤ ch
1/2
T ‖q̂‖V 1,2

1−µ(T̂ )
≤ hµ−1/2

T ‖q‖
V 1,2

1−µ(T )

Together with (4.117) and (2.12) we end up with

‖q −Qhq‖L2(E)‖ϕh − ϕh(E)‖L2(E)2 ≤ chµT ‖q‖V 1,2
1−µ(T )

‖ϕh‖H1(T )2

= ch‖q‖
V 1,2

1−µ(T )
‖ϕh‖H1(T )2 . (4.122)
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If one sums up over all elements one obtains with the estimates (4.120) – (4.122)∣∣∣∣∣∑
T

∫
∂T
qϕh · n ds

∣∣∣∣∣ ≤ ch‖q‖V 1,2
1−µ(Ω)

‖ϕh‖Xh . (4.123)

The estimates (4.113), (4.119) and (4.123) prove together with the regularity results in
Lemma 4.31 the assertion.

Proof of Assumption FE6. For an anisotropic discretization on prismatic domains
this assertion is shown in [13, Lemma 3.1]. The same standard arguments apply in our
twodimensional setting on isotropic graded meshes. For the sake of completeness we repeat
them here. First of all, we introduce the Crouzeix-Raviart interpolant Πcr : X → Xh

which is defined elementwise by∫
E
v =

∫
E

Πcrv ∀E ∈ ∂T, ∀T ∈ Th.

Since Πcrv is linear on every element T and ∂(Πcrv)
∂nT

is constant on every edge of an element
T it follows by Green’s formula

|Πcrv|2H1(T ) =

∫
∂T

∂(Πcrv)

∂nT
·Πcrv ds =

∫
∂T

∂(Πcrv)

∂nT
· v ds =

∫
T
∇(Πcrv)∇v dx.

The application of the Cauchy-Schwarz inequality and division by |Πcrv|H1(T ) yield the
stability estimate

|Πcrv|H1(T ) ≤ |v|H1(T ). (4.124)

We consider an arbitrary but fixed ψh ∈Mh. According to [61, Corollary I.2.4] there exists
ϕ ∈ X, satisfying

∇ · ϕ = ψh, |ϕ|H1(Ω) ≤ c‖ψh‖L2(Ω). (4.125)

With the stability estimate (4.124) and Green’s formula one can conclude∫
T
∇ · ϕdx =

∑
E∈∂T

∫
E
ϕ · n ds =

∑
E∈∂T

∫
E

Πcrϕ · n ds =

∫
T
∇ ·Πcrϕdx.

This equation results in

bh(Πcrϕ,ψh) = −
∑
T

∫
T
ψh∇ ·Πcrϕdx = −

∑
T

∫
T
ψh∇ · ϕdx = ‖ψh‖2L2(Ω), (4.126)

where we have utilized the fact that ψh|T is constant and the properties (4.125) of ψh.
Furthermore, we obtain by combination of (4.124) and (4.125) the estimate

‖Πcrϕ‖Xh ≤ c|ϕ|H1(Ω) ≤ c‖ψh‖L2(Ω).
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This last inequality yields together with (4.126)

sup
ϕh∈Xh

bh(ϕh, ψh)

‖ϕh‖Xh‖ψh‖L2(Ω)
≥ bh(Πcrϕ,ψh)

‖Πcrϕ‖Xh‖ψh‖L2(Ω)
≥ c.

This proves the assertion since ψh was chosen arbitrarily.

We checked all the assumptions such that we can summarize our result in the following
lemma.

Lemma 4.35. The finite element solution of (4.105) satisfies the estimates of Theorem
4.30 for the element pair (Xh,Mh) defined in (4.111) and (4.112) on finite element meshes
of type (2.12) with grading parameter 1/2 < µ < λ.

4.4.3 Stokes equations in prismatic domains

In this subsection we consider again the boundary value problem (4.85)

−∆v +∇q = f in Ω,

∇ · v = 0 in Ω, (4.127)

v = 0 on Γ = ∂Ω,

but now in a prismatic domain as defined for the boundary value problem (4.43), i.e.
Ω = G×Z ⊂ R3 with a bounded polygonal domain G ⊂ R2 and a interval Z := (0, z0) ⊂ R.
Again, we assume that G has only one corner with interior angle ω > π at the origin.

4.4.3.1 Regularity

In the following lemma we prove the regularity in the same weighted spaces as we did
for the scalar elliptic Dirichlet problem (comp. Lemma 4.15). Furthermore one can also
observe some extra regularity in edge direction. Notice, that in contrast to Lemma 4.17
the results for the regularity in edge direction of solutions of the Stokes equations cover
only the case p = 2.

Lemma 4.36. Assume that f ∈ Lp(Ω)3, 1 < p <∞ and let λ > 0 be the smallest positive
solution of

sin(λω) = −λ sinω (4.128)

where ω is the interior angle at the edge. Then the solution (v, q) ∈ X ×M of the Stokes
problem (4.127) satisfies

v ∈ V 2,p
β (Ω)3 and q ∈ V 1,p

β (Ω) ∀β > 2− λ− 2

p
(4.129)
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and the a priori estimate

‖v‖
V 2,p
β (Ω)3 + ‖q‖

V 1,p
β (Ω)

≤ c‖f‖Lp(Ω) (4.130)

holds. Further one has for f ∈ L2(Ω)3

∂3v ∈ V 1,2
0 (Ω)3 and ∂3q ∈ L2(Ω) (4.131)

with the corresponding a priori estimate

‖∂3v‖V 1,2
0 (Ω)3 + ‖∂3q‖L2(Ω) ≤ c‖f‖L2(Ω). (4.132)

Proof. The assertions (4.129) and (4.130) follow from Theorem 6.1 of [89]. In our case for
the vertex eigenvalues λq the inequality Reλq ≥ 1 holds [101]. This means we can choose
βq = 0 in Theorem 6.1 of [89]. So setting m = 2 in this theorem yields (4.129) and (4.130).
The extra regularity in edge direction stated in (4.131) and (4.132) is proved in Theorem
2.1 of [13].

Remark 4.37. The leading singularity of u3 can be characterized by rπ/ω [13]. On the
other hand the smallest positive solution λ of (4.128) satisfies

1

2
< λ <

π

ω
,

see e.g. [46], such that the global regularity is dominated by rλ.

Remark 4.38. In the setting of (4.127) the spaces V k,2
β (Ω) play the role of the general

spaces Hk
ω(Ω). With ω1α = ω2α = rβ−k+α Assumption FE1 is satisfied.

4.4.3.2 Finite element error estimate

In order to get an optimal rate of convergence for the finite element error, we counteract the
edge singularity which results from the reentrant edge in the domain Ω by an anisotropic
graded mesh. In detail, we use meshes as introduced in Subsection 2.3.2 with grading
parameter 1/2 < µ < λ. Due to Remark 4.37 such a µ exists. We approximate the velocity
by Crouzeix-Raviart elements,

Xh :=

{
vh ∈ L2(Ω)3 : vh|T ∈ (P1)3 ∀T,

∫
F

[vh]F = 0 ∀F
}

(4.133)

where F denotes a face of an element and [vh]F means the jump of vh on the face F ,

[vh(x)]F :=

{
lim
α→0

(vh(x+ αnF )− vh(x− αnF )) for an interior face F,

vh(x) for a boundary face F.
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4 Finite element error estimates for boundary value problems

Here nF is the outer normal of F . For the approximation of the pressure we use piecewise
constant functions, this means

Mh :=

{
qh ∈ L2(Ω) : qh|T ∈ P0 ∀T,

∫
Ω
qh = 0

}
. (4.134)

For the proof of the finite element error estimates we check the assumptions stated in
Subsection 4.4.1. Since Assumption FE1 is already proved in the foregoing paragraph, we
continue with Assumptions FE2 through FE6.

Proof of Assumption FE2. This proof is very similar to the one for the two dimensional
case. Since µ < λ it is 1− µ > 1− λ and we can choose β = 1− µ in Lemma 4.36. This
yields (v, q) ∈ V 2,2

1−µ(Ω)×V 2,1
1−µ(Ω). Then the assumption is a consequence of the embedding

V 2,2
1−µ(Ω) ↪→ V

2−(1−µ),2
0 (Ω) ↪→W 1+µ,2(Ω) ↪→ C(Ω̄). (4.135)

The first embedding follows from [113, Lemma 1.2]. The second one can be concluded
directly from the definition of the spaces. The last embedding is a conclusion from the
Sobolev embedding theorem and the fact that µ > 1/2 and therefore 1 + µ− 3

2 > 0.

Proof of Assumption FE3. As interpolant in the velocity space we choose ivh := E0h

with E0h defined in (3.5). Notice that we do not use the Crouzeix-Raviart interpolant
although we use Crouzeix-Raviart elements for the velocity and although the estimates
in Assumption FE3 could be fulfilled by this interpolant. The reason for this is that
the Crouzeix-Raviart interpolant maps to Xh but not to X ∩ Xh as demanded in this
assumption. The proof of estimate (i) is the same as the one for Theorem 4.21. One just
has to repeat the arguments there componentwise and to plugin the regularity results
from Lemma 4.36. In order to prove (ii) we write

E0hv(x) =
∑
i∈I

[
1

|σi|

∫
σi

v

]
ϕi(x).

Since v is according to Assumption FE2 a continuous function, we can conclude

‖E0hv‖L∞(Ω) = sup
i∈I

∣∣∣∣ 1

|σi|

∫
σi

v

∣∣∣∣ ≤ ‖v‖L∞(Ω̄). (4.136)

The embedding V 2,2
1−µ(Ω) ↪→ L∞(Ω), see (4.135), yields together with Lemma 4.36

‖v‖L∞(Ω̄) ≤ c‖v‖V 2,2
1−µ(Ω)

≤ ‖f‖L2(Ω). (4.137)

Now we can conclude with the triangle inequality and the estimates (4.136) and (4.137)

‖v − E0hv‖L∞(Ω) ≤ ‖v‖L∞(Ω) + ‖E0hv‖L∞(Ω) ≤ ‖f‖L2(Ω)
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and (ii) is proved. For the proof of (iii) we set iph := Qh with Qh being the L2(Ω)-projection
in the space of piecewise constant functions, i.e.

Qhq(x) :=
1

|T |

∫
T
q(x) dx for x ∈ T.

The assertion is shown in the proof of Lemma 3.2 in [13]. Notice, that Mh in that proof is
the interpolant Qh in our setting. For the sake of completeness, we sketch the details here.
We write the error elementwise,

‖q −Qhq‖2L2(Ω) =
∑
T∈Th

‖q −Qhq‖2L2(T ). (4.138)

For elements T with rT > 0, one has according to [12, (3.5), (3.6)]

‖q −Qhq‖L2(T ) ≤ c
3∑
i=1

hi,T ‖∂iq‖L2(T ).

This can be continued by

‖q −Qhq‖L2(T ) ≤ c
3∑
i=1

hi,T ‖∂iq‖L2(T )

≤ c

(
2∑
i=1

hi,T r
µ−1
T ‖∂iq‖V 0,2

1−µ(T )
+ h3,T ‖∂3q‖L2(T )

)

≤ c

(
h

2∑
i=1

‖∂iq‖V 0,2
1−µ(T )

+ h‖∂3q‖L2(T )

)
, (4.139)

where we have used the regularity results of Lemma 4.36 and the definition of the mesh
sizes (2.13). For elements T with rT = 0 we use the fact that Qh is bounded and therefore

‖q −Qhq‖L2(T ) ≤ c‖q‖L2(T ) ≤ ‖rµ‖L∞(T )‖r−µq‖L2(T )

≤ hµ1,T ‖r
−µq‖L2(T ) ≤ ch‖q‖V 1,2

1−µ(T )
. (4.140)

The estimates (4.138)–(4.140) yield together with Lemma 4.36

‖q −Qhq‖L2(Ω) ≤ ch
(
‖q‖

V 1,2
1−µ(Ω)

+ ‖∂3q‖L2(Ω)

)
≤ ch‖f‖L2(Ω).

and Assumption FE3 (iii) is proved.

Proof of Assumption FE4. For an arbitrary ϕh ∈ Xh one has

‖ϕh‖L∞(T ) = ‖ϕ̂h‖L∞(T̂ ) ≤ c‖ϕ̂h‖Lp(T̂ ) ≤ c|T |
−1/p‖ϕh‖Lp(T ).
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We choose the minimal element size according to (2.13) and arrive at

‖ϕh‖L∞(Ω) ≤ ch−2/(µp)h−1/p‖ϕh‖Lp(Ω).

In order to achieve − 2
µp −

1
p ≥ −1 one has to demand p ≥ 2

µ + 1. This condition is no

contradiction to p ≤ 6 as long as µ ≥ 2
5 . But this can be satisfied since µ > 1/2. Therefore

it exists p ∈
[

2
µ + 1, 6

]
such that

‖ϕh‖L∞(Ω) ≤ ch−1‖ϕh‖Lp(Ω).

what is the inequality of Assumption FE4.

Proof of Assumptions FE5 and FE6. The consistency error estimate and the discrete
inf-sup-condition are proved in [13].

We checked Assumptions FE1 through FE6 such that we can summarize our result in the
following lemma.

Lemma 4.39. . The finite element solution of (4.127) satisfies the estimates of Theorem
4.30 for the element pair (Xh,Mh) defined in (4.133) and (4.134) on finite element meshes
of type (2.13) with grading parameter 1/2 < µ < λ.
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CHAPTER 5

Error estimates for PDE-constrained Optimal Control
Problems

5.1 Analysis for general linear-quadratic optimal control
problems

We consider the general linear-quadratic control-constrained optimal control problem

min
(y,u)∈Y×U

J(y, u) :=
1

2
‖y − yd‖2Z +

ν

2
‖u‖2U ,

subject to y = Su, u ∈ Uad,

(5.1)

where Z, U = U∗ are Hilbert spaces and Y is a Banach space with Y ↪→ Z ↪→ Y ∗. We
introduce a Banach space X ↪→ Z and demand yd ∈ X. The operator S : U → Y ⊂ U is
a linear, bounded control-to-state solution operator. We assume ν to be a fixed positive
number and Uad ⊂ U nonempty, convex and closed.

Remark 5.1. Later we will choose for S the solution operators of the boundary value
problems introduced in Chapter 4. Depending on the problem one can set, e.g., U = Z =
L2(Ω), Y = H1(Ω) and X = C0,σ(Ω̄).

Remark 5.2. Problem (5.1) is equivalent to the reduced problem

min
u∈Uad

Ĵ(u) (5.2)

with

Ĵ(u) := J(Su, u) =
1

2
‖Su− yd‖2Z +

ν

2
‖u‖2U .
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5.1.1 Existence and uniqueness of a solution

Definition 5.3. A state-control pair (ȳ, ū) ∈ Y ×Uad is called optimal for (5.1), if ȳ = Sū
and

J(ȳ, ū) ≤ J(y, u) ∀(y, u) ∈ Y × Uad, y = Su.

Theorem 5.4. The optimal control problem (5.1) has a unique optimal solution (ȳ, ū).
Furthermore, for S∗ : Y ∗ → U being the adjoint of S, the optimality conditions

ȳ = Sū, (5.3)

p̄ = S∗(Sū− yd) (5.4)

ū ∈ Uad, (νū+ p̄, u− ū)U ≥ 0 ∀u ∈ Uad (5.5)

hold. These conditions are necessary and sufficient.

Proof. For the proof we consider the reduced form (5.2). The objective functional Ĵ is
strictly convex and radially unbounded, i.e., Ĵ(u)→∞ as ‖u‖ → ∞, u ∈ Uad. Since Uad

is convex and closed, we can apply Theorem 1.3 of [84] and get existence and uniqueness
of an optimal solution. The optimality conditions follow from the same theorem by
differentiation of Ĵ . The strict convexity implies that the necessary condition is also
sufficient.

Remark 5.5. In the following we refer to (5.3) as state equation, to (5.4) as adjoint
equation and to (5.5) as variational inequality.

Lemma 5.6. Let ΠUad : U → Uad be the projection on Uad, i.e.,

ΠUad(u) ∈ Uad, ‖ΠUad(u)− u‖U = min
v∈Uad

‖v − u‖U ∀u ∈ U.

Then the projection formula

ū = ΠUad

(
−1

ν
p̄

)
(5.6)

is equivalent to the variational inequality in Theorem 5.4.

Proof. The assertion is motivated in [88]. A detailed proof is given, e.g., in [73]. The
assertion follows from Lemma 1.11 in that book by setting γ = 1/ν.

5.1.2 Discretization concepts

5.1.2.1 Variational discrete approach

In [71] Hinze introduced a discretization concept for the optimal control problem (5.2)
which is alone based on the discretization of the state space. The control space is
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not discretized. We introduce the linear, bounded control-to-discretized state operator
Sh : U → Yh ⊂ U , where Yh is a finite dimensional subspace equipped with the norm of Y .
S∗h : Y ∗ → Yh denotes the adjoint of Sh. Then the discrete optimal control ūsh is defined
via the variational inequality

(νūsh + S∗h(Shū
s
h − yd), u− ūsh)U ≥ 0 ∀u ∈ Uad. (5.7)

This variational inequality is actually the necessary and sufficient optimality condition of

min
u∈Uad

Jh(u),

Jh(u) :=
1

2
‖Shu− yd‖2Z +

ν

2
‖u‖2U ,

(5.8)

compare also Theorem 5.4. In order to be able to prove an error estimate the following
assumptions are sufficient.

Assumption VAR1. The operators Sh and S∗h are bounded, i.e., the inequalities

‖Sh‖U→U ≤ c and ‖S∗h‖U∗→U∗ ≤ c

are valid with a constant c independent of h.

Assumption VAR2. The estimates

‖(S − Sh)u‖U ≤ ch2‖u‖U ∀u ∈ U,
‖(S∗ − S∗h)z‖U ≤ ch2‖z‖Z ∀z ∈ Z

hold true.

We introduce the optimal discrete state ȳsh := Shū
s
h and optimal adjoint state p̄sh :=

S∗h(Shū
s
h − yd) and formlate the error estimates in the following theorem.

Theorem 5.7. Let Assumptions VAR1 and VAR2 hold. Then the estimates

‖ū− ūsh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) , (5.9)

‖ȳ − ȳsh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) , (5.10)

‖p̄− p̄sh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) (5.11)

hold with a constant c independent of h.

Proof. The first estimate is proved in [71]. We recall the arguments here since we have
reformulated the assumptions. We use ū as test function in (5.7) and ūsh as test function
in (5.5) and add both inequalities. This yields

(ν(ū− ūsh) + S∗(Sū− yd)− S∗h(Shū
s
h − yd), ūsh − ū)U ≥ 0.
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One can continue with

ν‖ū− ūsh‖2U ≤ (S∗Sū− S∗hShūsh − (S∗ − S∗h)yd, ū
s
h − ū)U

= ((S∗S − S∗hSh)ū+ S∗h(Shū− Shūsh)− (S∗ − S∗h)yd, ū
s
h − ū)U

= ((S∗S − S∗hSh)ū− (S∗ − S∗h)yd, ū
s
h − ū)U − ‖Shū− Shūsh‖2U

≤ (S∗(Sū− Shū) + (S∗ − S∗h)Shū− (S∗ − S∗h)yd, ū
s
h − ū)U .

The Cauchy-Schwarz inequality and the triangle inequality yield after division by ‖ū−ūsh‖U
the estimate

ν‖ū− ūsh‖U ≤ ‖S∗‖U→U‖(S − Sh)ū‖U + ‖(S∗ − S∗h)(Shū)‖U + ‖(S∗ − S∗h)yd‖U .

The application of Assumptions VAR1 and VAR2 results together with the boundedness
of S∗ in the first assertion.

For the proof of the second assertion we write

‖ȳ − ȳsh‖U = ‖Sū− Shūsh‖U
≤ ‖Sū− Shū‖U + ‖Sh(ū− ūsh)‖U .

Inequality (5.10) follows then from Assumptions VAR1 and VAR2 and (5.9).

For the third assertion we can conclude similarly to above

‖p̄h − p̄sh‖U = ‖S∗(Su− yd)− S∗h(Shu
s
h − yd)‖U

= ‖S∗(Sū− Shū) + (S∗ − S∗h)Shū+ S∗hSh(ū− ūsh)− (S∗ − S∗h)yd‖U .

With the triangle inequality the assertion (5.10) follows from the boundedness of S∗,
Assumptions VAR1 and VAR2 and (5.9).

Remark 5.8. In [71] a numerical algorithm for the solution of problem (5.8) is given. It
is pointed out that for every step of the iteration one has to compute the boundary of the
active set exactly. This boundary is not aligned with the mesh and therefore requires the
computation and management of additional grid points. Especially in three dimensions and
for higher order elements this introduces technical difficulties for the implementation. For
this reason we concentrate in this thesis on numerical examples concerning the following
postprocessing approach.

5.1.2.2 Postprocessing approach

In this subsection, we consider the reduced problem (5.2). We choose

U = Z = L2(Ω)d, Y = H1
0 (Ω)d or Y = H1(Ω)d,

where d ∈ {1, 2, 3} depending on the problem under consideration. As space of admissible
controls we use

Uad := {u ∈ U : ua ≤ u ≤ ub a.e.},
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where ua ≤ ub are constant vectors from Rd. Then the restriction on the set of continuous
functions of the projection in the admissible set reads for a function f as

(ΠUadf) (x) := max(ua,min(ub, f(x)).

We assume the existence of a triangulation Th = {T} of Ω, that is admissible in Ciarlet’s
sense (comp. page 16). The operators Sh : U → Yh and S∗h : Y ∗ → Yh are finite element
approximations of S and S∗, respectively and Yh is a suitable finite element space. We
introduce the discrete control space Uh,

Uh =
{
uh ∈ U : uh|T ∈ (P0)d for all T ∈ Th

}
and Uad

h = Uh ∩ Uad.

Then the discretized optimal control problem reads as

Jh(ūh) = min
uh∈Uad

h

Jh(uh),

Jh(uh) :=
1

2
‖Shuh − yd‖2L2(Ω) +

ν

2
‖uh‖2L2(Ω).

(5.12)

As in the continuous case, this is a strictly convex and radially unbounded optimal control
problem. Consequently, (5.12) admits a unique solution ūh, that satisfies the necessary
and sufficient optimality conditions

ȳh = Shūh,

p̄h = S∗h(ȳh − yd),
(νūh + p̄h, uh − ūh)U ≥ 0 ∀uh ∈ Uad

h . (5.13)

For later use, we introduce the affine operators Pu = S∗(Su−yd) and Phu = S∗h(Shu−yd),
that maps a given control u to the adjoint state p = Pu and the approximate adjoint state
ph = Phu, respectively.

Now we follow an idea, that goes back to Meyer and Rösch [95], namely to compute an
approximate control in a postprocessing step. The control ũh is constructed as projection
of the approximate adjoint state in the set of admissible controls,

ũh = ΠUad

(
−1

ν
p̄h

)
. (5.14)

In the following we would like to formulate rather general assumptions, that allow to prove
discretization error estimates for the optimal control problem (5.12). To this end, we first
define two projection operators.

Definition 5.9. For continuous functions f we define the projection Rh in the space P0

of piecewise constant functions by

(Rhf)(x) := f(ST ) if x ∈ T (5.15)
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where ST denotes the centroid of the element T .

The operator Qh projects L2-functions g in the space P0 of piecewise constant functions,

(Qhg)(x) :=
1

|T |

∫
T
g(x) dx for x ∈ T. (5.16)

Both operators are defined componentwise for vector valued functions.

In the following we formulate four general assumptions, that allow to prove that the
approximate solution ūh is asymptotically closer (in the L2-sense) to the interpolant Rhū
than to the optimal control ū. This was originally discovered by Meyer and Rösch [95]
for an optimal control problem governed by the Poisson equation. Such a fact is often
referred to as supercloseness. Based on this result, we show that the approximate control
ũh, which is constructed according to (5.14) converges in L2(Ω) to the optimal control ū
with order 2. Due to the fact that ū was originally approximated by piecewise constant
functions, this is a superconvergence result.

Assumption PP1. The discrete solution operators Sh and S∗h are bounded,

‖Sh‖U→H1
h(Ω)d ≤ c, ‖S∗h‖U→H1

h(Ω)d ≤ c,

‖Sh‖U→L∞(Ω)d ≤ c, ‖S∗h‖U→L∞(Ω)d ≤ c,

with constants c independent of h and space

H1
h(Ω)d :=

{
v : Ω→ Rd :

∑
T∈T h

‖v‖2H1(T )d <∞

}
.

Notice that Assumption PP1 implies

‖Sh‖U→U ≤ c and ‖S∗h‖U→U ≤ c

by the embedding L∞(Ω) ↪→ U .

Assumption PP2. The finite element error estimates

‖(S − Sh)u‖U ≤ ch2‖u‖U ∀u ∈ U,
‖(S∗ − S∗h)z‖U ≤ ch2‖z‖Z ∀z ∈ Z

hold.

Assumption PP3. The optimal control ū and the corresponding adjoint state p̄ satisfy
the inequality

‖Qhp̄−Rhp̄‖U ≤ ch2 (‖ū‖X + ‖yd‖X) .

for a space X ↪→ U . In particular, p̄ is continuous, such that Rhp̄ is well defined.
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Assumption PP4. The optimal control ū is contained in X and for all functions ϕh ∈ Xh

the inequality

(Qhū−Rhū, ϕh)U ≤ ch2‖ϕh‖L∞(Ω)d (‖ū‖X + ‖yd‖X)

holds. In particular, ū is continuous, such that Rhū is well defined.

First, we recall a property of Qh that is proved in [19].

Lemma 5.10. For f, g ∈ H1(T ) the inequality

(f −Qhf, g)L2(T ) ≤ ch2
T |f |H1(T )|g|H1(T )

is valid.

Now we can prove the following properties of the operator Rh.

Lemma 5.11. Assume that the Assumptions PP1 and PP4 hold. Then the estimates

‖Shū− ShRhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (5.17)

‖Phū− PhRhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (5.18)

are valid.

Proof. The following proof is similar to the one given by Apel and Winkler in [19] in the
special case of optimal control of the Poisson equation and a discretization with linear
finite elements. A proof under assumptions like PP1 and PP4 for the optimal control of
the Stokes equation is given in [102]. First of all, we write

‖Shū− ShRhū‖2U = (Shū− ShRhū, Shū− ShRhū)U

= (Sh(ū−Rhū), (Shū− yd)− (ShRhū− yd))U
= (ū−Rhū, Phū− PhRhū)U

= (ū−Qhū, Phū− PhRhū)U + (Qhū−Rhū, Phū− PhRhū)U . (5.19)

We estimate these two terms separately. From Lemma 5.10, one can conclude∑
T∈Th

(ū−Qhū, Phū− PhRhū)L2(T )d ≤ c
∑
T∈Th

h2
T |ū|H1(T )d |Phū− PhRhū|H1(T )d

≤ ch2|ū|H1(Ω)d

∑
T∈Th

|Phū− PhRhū|2H1(T )d

1/2

.

(5.20)
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Since one can write∑
T∈Th

|Phū− PhRhū|2H1(T )d ≤ ‖S
∗
h(Shū− ShRhū)‖2H1

h(Ω)d

≤ ‖S∗h‖2U→H1
h(Ω)d‖Shū− ShRhū‖

2
U

it follows with Assumption PP1 and (5.20)

(ū−Qhū, Phū− PhRhū)U ≤ ch2|ū|H1(Ω)d‖Shū− ShRhū‖U . (5.21)

According to Lemma 5.6 and the projection formula (5.6) the domain Ω splits in two parts,
the inactive part I, where ū = − 1

ν p̄ and the active part Ω\I, where ū is constant. Since
|ū|H1(Ω\I)d = 0 one has

|ū|H1(Ω)d ≤ c‖p̄‖H1(Ω)d ≤ c‖S∗‖U→H1(Ω)d‖Sū− yd‖U ≤ c (‖ū‖X + ‖yd‖X) (5.22)

where we have used the boundedness of S∗ and S and the embedding X ↪→ U . So we get
from (5.21) and (5.22) the estimate

(ū−Qhū, Phū− PhRhū)U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖Shū− ShRhū‖U . (5.23)

In order to estimate the second term of equation (5.19), we utilize Assumption PP4 and
get

(Qhū−Rhū, Phū− PhRhū)U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖Phū− PhRhū‖L∞(Ω)d

≤ ch2 (‖ū‖X + ‖yd‖X) ‖S∗h‖U→L∞(Ω)d‖Shū− ShRhū‖U
≤ ch2 (‖ū‖X + ‖yd‖X) ‖Shū− ShRhū‖U (5.24)

by applying Assumption PP1 in the last step. Estimates (5.23) and (5.24) yield together
with (5.19) the assertion (5.17). For the proof of the second assertion of this Lemma we
write

‖Phū− PhRhū‖U = ‖S∗hShū− S∗hShRhū‖U ≤ ‖S∗h‖U→U‖Shū− ShRhū‖U .

The application of Assumption PP1 and inequality (5.17) yields assertion (5.18).

Lemma 5.12. The inequality

ν‖Rhū− ūh‖2U ≤ (Rhp̄− p̄h, ūh −Rhū)U (5.25)

holds.

Proof. This lemma was originally proved in [95] and is based on a combination of the
variational inequalities (5.5) and (5.13). For the sake of completeness we sketch the proof
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here which is also given in [15]. From the variational inequality (5.5) we have pointwise
a.e.

(νū(x) + p̄(x)) · (u(x)− ū(x)) ≥ 0, ∀u ∈ Uad.

We apply this formula for the center of gravity ST of any triangle T and u = ūh. This is
possible due to the continuity of ū, p̄ and ūh at these points. We arrive at

(p̄(ST ) + νū(ST )) · (ūh(ST )− ū(ST )) ≥ 0 ∀T.

Due to the definition of Rh this is equivalent to

(Rhp̄(ST ) + νRhū(ST )) · (ūh(ST )−Rhū(ST )) ≥ 0 ∀T.

Integration over T and summing up over all T yield

(Rhp̄+ νRhū, ūh −Rhū)U ≥ 0.

Moreover, one can test the optimality condition (5.13) for ūh with the function Rhū and
obtains

(p̄h + νūh, Rhū− ūh)U ≥ 0.

Adding the two last inequalities results in

(Rhp̄− p̄h + ν(Rhū− ūh), ūh −Rhū)U ≥ 0

which is equivalent to formula (5.25).

Now we are able to prove the following supercloseness result.

Theorem 5.13. Assume that Assumptions PP1–PP4 hold. Then the inequality

‖ūh −Rhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X)

is valid.

Proof. The following proof is similar to the one of Theorem 4.21 of [127] which is given
in the context of optimal control of the Poisson equation. We give the details here to
illustrate the validity under the Assumptions PP1 – PP4. From Lemma 5.12 we have

ν‖ūh −Rhū‖2U ≤ (Rhp̄− p̄h, ūh −Rhū)U

= (Rhp̄− p̄, ūh −Rhū)U + (p̄− PhRhū, ūh −Rhū)U

+ (PhRhū− p̄h, ūh −Rhū)U . (5.26)

We estimate these three terms separately. For the first term, we use that Qh is an
L2-projection and get

(Rhp̄− p̄, ūh −Rhū)U = (Rhp̄−Qhp̄, ūh −Rhū)U + (Qhp̄− p̄, ūh −Rhū)U

= (Rhp̄−Qhp̄, ūh −Rhū)U .
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The Cauchy-Schwarz inequality yields together with Assumption PP3

(Rhp̄− p̄, ūh −Rhū)U ≤ ‖Rhp̄−Qhp̄‖U‖ūh −Rhū‖U
≤ ch2 (‖ū‖X + ‖yd‖X) ‖ūh −Rhū‖U . (5.27)

For the second term we apply again the Cauchy-Schwarz inequality and use p̄ = Pū, so
that we arrive at

(p̄− PhRhū, ūh −Rhū)U ≤ ‖Pū− PhRhū‖U‖ūh −Rhū‖U .

With Assumptions PP1 and PP2, Lemma 5.11 and the embedding X ↪→ U , one can
conclude

‖Pū− PhRhū‖U ≤ ‖S∗h‖U→U‖Sū− Shū‖U + ‖S∗yd − S∗hyd‖U + ‖Phū− PhRhū‖U
≤ ch2 (‖ū‖X + ‖yd‖X) ,

and therefore

(p̄− PhRhū, uh −Rhū)U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖ūh −Rhū‖U . (5.28)

The third term can simply be omitted since

(PhRhū− p̄h, ūh −Rhū)U = (PhRhū− Phūh, ūh −Rhū)U

= (Sh(Rhū− ūh), Sh(ūh −Rhū))U

≤ 0. (5.29)

Thus, one can conclude from the estimates (5.26)–(5.29)

ν‖ūh −Rhū‖2U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖uh −Rhū‖U

what yields the assertion.

In the following theorem, we formulate the main result of this subsection.

Theorem 5.14. Assume that the Assumptions PP1–PP4 hold. Then the estimates

‖ȳ − ȳh‖U ≤ ch2 (‖ū‖X + ‖yd‖X) , (5.30)

‖p̄− p̄h‖U ≤ ch2 (‖ū‖X + ‖yd‖X) , (5.31)

‖ū− ũh‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (5.32)

are valid with a positive constant c independent of h.

Proof. In order to prove the first assertion we apply the triangle inequality and get

‖ȳ − ȳh‖U = ‖Sū− Shūh‖U
≤ ‖Su− Shu‖U + ‖Shū− ShRhū‖U + ‖Sh(Rhū− ūh)‖U .
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The first term is a finite element error and is estimated in the first inequality of Assumption
PP2. For the second term an upper bound is given in Lemma 5.11. For the third term
we use the supercloseness result of Theorem 5.13 and the boundedness of Sh given in
Assumption PP1. These three estimates yield assertion (5.30). In a similar way one can
prove inequality (5.31). By using the Lipschitz continuity of the projection operator, we
get

‖ū− ũh‖U =

∥∥∥∥ΠUad

(
−1

ν
p̄

)
−ΠUad

(
−1

ν
p̄h

)∥∥∥∥
U

≤ 1

ν
‖p̄− p̄h‖U

and inequality (5.32) is a direct consequence of estimate (5.31).

5.2 Scalar elliptic state equation

We consider the linear–quadratic optimal control problem (5.2),

Ĵ (ū) = min
u∈Uad

Ĵ(u)

Ĵ(u) :=
1

2
‖Su− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

(5.33)

where the operator S associates the state y = Su to the control u as the weak solution
of a boundary value problem with right-hand side u in a polygonal domain (4.1), in a
polyhedral domain (4.43) or with discontinuous coefficients (4.79). The desired state yd is
assumed to be Hölder continuous, i.e. yd ∈ C0,σ(Ω̄), σ ∈ (0, 1). Furthermore, the set of
admissible controls is

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. in Ω}.

Moreover we introduce the adjoint problem

L∗p = y − yd in Ω, B∗p = 0 on Γ

where the operator L∗ depends on the state equation,

L∗p :=


−∇ ·A(x)∇p− a1(x) · ∇p+ a0(x)p for state equation (4.1),

−∆p for state equation (4.44),

−∆p+ p for state equation (4.46).

The operator B∗ is given as

B∗p =

{
p for state equations (4.1) and (4.44),
∂p
∂n for state equation (4.46).

For the state equation (4.79) we have with L∗i = L∗|Ωi and pi = p|Ωi

L∗i pi = −ki∆pi, i = 1, . . . , n,
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and for the operator B∗

B∗p = p + interface conditions, comp. (4.79).

As defined in the previous section S∗ is the solution operator of the adjoint problem, that
means

p = S∗(y − yd).

and P the affine operator that maps an control u to the corresponding adjoint state p, i.e.,

p = S∗(Su− yd) = Pu.

Remark 5.15. In the setting of Section 5.1 we have Z = U = L2(Ω). Existence and
uniqueness of a solution follow from Theorem 5.4. Lemma 5.6 is valid where the projection
operator ΠUad is given as

(ΠUadf) (x) = max(ua,min(ub, f(x))

for a continuous function f .

In the following subsections we treat each of the scalar elliptic state equations mentioned
above. For the state equations (4.79) and (4.43) with (4.44) and (4.46) we will check the
assumptions of Theorems 5.7 and 5.14 to derive L2-error estimates. For the state equation
(4.1) L2-error estimates were already proved in [15, 71, 95]. The proofs of our assumptions
here would be very similar to the proofs given in [15] so that we do not repeat them.
Instead, we derive in the following subsection L∞-error estimates for that case.

5.2.1 Polygonal domain

In this subsection we consider the case of a linear-quadratic optimal control problem with
elliptic state equation in a polygonal domain (comp. (4.1)). As in Section 4.1 we can
restrict our considerations to the case of one corner with interior angle ω located at the
origin. The main focus in this subsection is on L∞-error estimates.

5.2.1.1 Regularity

Lemma 5.16. For the solution ū of the optimal control problem (5.33) with state equation
(4.1) and the associated state ȳ = Sū and adjoint state p̄ = Pū one has ū ∈ C0,σ(Ω̄), ȳ ∈
C0,σ(Ω̄) ∩ V 2,p

β (Ω) and p̄ ∈ C0,σ(Ω̄) ∩ V 2,p
β (Ω) for some σ ∈ (0, 1], for all p ∈ (1,∞) and

β > 2− λ− 2/p. The a priori estimates

‖ȳ‖C0,σ(Ω̄) + ‖ȳ‖
V 2,p
β (Ω)

≤ c‖ū‖L∞(Ω) ≤ c‖ū‖C0,σ(Ω̄), (5.34)

‖p̄‖C0,σ(Ω̄) + ‖p̄‖
V 2,p
β (Ω)

≤ c
(
‖ū‖C0,σ(Ω̄) + ‖ȳd‖C0,σ(Ω̄)

)
(5.35)

hold.
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Proof. This proof reuses ideas of [15, Remark 2]. From the definition of the optimal
control problem (5.33) one knows that ū ∈ L∞(Ω). This means Lemma 4.1 yields directly
ȳ ∈ V 2,p

β (Ω) and

‖ȳ‖
V 2,p
β (Ω)

≤ c‖ū‖
V 0,p
β (Ω)

≤ c‖ū‖L∞(Ω) (5.36)

for p ∈ (1,∞) and β > 2 − λ − 2/p. The last estimate is valid due to the embedding
L∞(Ω) ↪→ V 0,p

β (Ω), which can be concluded from the computation

‖u‖p
V 0,p
β (Ω)

=

∫
Ω
rpβ|u|p dx ≤ ‖u‖pL∞(Ω)

∫
Ω
rpβ dx.

The last integral is finite since pβ > (2− λ)p− 2 > −2.

Let us now prove the Hölder continuity of ȳ. Choose p′ ∈ (1, 2/(2− λ)). Then one has

2 − λ − 2/p′ < 0 and therefore one can choose β = 0 in Lemma 4.1. Since V 2,p′

0 (Ω) ↪→
W 2,p′(Ω) it follows y ∈W 2,p′(Ω). For 0 < σ < 2− 2/p′ this space is embedded in C0,σ(Ω̄),
see Theorem 2.13. This fact allows to conclude ȳ ∈ C0,σ(Ω̄). This assertion holds also for
p ≥ 2/(2− λ) because the right-hand side of the state equation is, of course, allowed to be
smoother without affecting the regularity of ȳ negatively. With the help of the a priori
estimates in Lemma 4.1 one can finally conclude

‖ȳ‖C0,σ(Ω̄) ≤ c‖ȳ‖W 2,p(Ω) ≤ c‖ȳ‖V 2,p
0 (Ω)

≤ c‖ū‖
V 0,p

0 (Ω)
= c‖ū‖Lp(Ω) ≤ c‖ū‖L∞(Ω). (5.37)

Together with the embedding C0,σ(Ω̄) ↪→ L∞(Ω) the estimates (5.36) and (5.37) yield the
assertion (5.34). Since yd ∈ C0,σ(Ω̄) and therefore y−yd ∈ C0,σ(Ω̄) the same argumentation
as above yields the stated regularity and a priori estimate (5.35) for p̄. From the projection
formula (5.6) one can finally conclude ū ∈ C0,σ(Ω̄).

5.2.1.2 Approximation error estimate in L∞(Ω)

We prove estimates of the pointwise error in all three variables on polygonal domains that
are discretized by isotropic graded triangular meshes. The state and adjoint state equation
are discretized by a finite element scheme as introduced in Subsection 4.1.2. This means,
the approximate state yh = Shu is the unique solution of

as(yh, vh) = (u, vh)L2(Ω) ∀vh ∈ V0h

with bilinear form as defined in (4.3) and

V0h =
{
v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th and vh = 0 on ∂Ω

}
.

Similarly, the approximated adjoint state ph = S∗h(y − yd) is the unique solution of

as(vh, ph) = (yh − yd, vh)L2(Ω) ∀vh ∈ Vh.
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In the case of µ > 1
2 the following lemma about the boundedness of Sh and S∗h was already

proved in [15]. Since in our setting here µ < λ/2 is required (comp. section 4.1.2), we
cannot fulfill this condition for λ ∈ [1/2, 1]. Therefore we give in the following a more
involved proof of [15, Lemma 3] without the condition µ > 1

2 . Notice, that we use in this
subsection again the splitting of Ω into subdomains Ωj with corresponding quantities dj
as introduced in Chapter 4 on page 39.

Lemma 5.17. Let Th be a graded mesh according to (2.12) with parameter µ < λ. The
norms of the discrete solution operators Sh and S∗h are bounded,

‖Sh‖L2(Ω)→L∞(Ω) ≤ c, ‖S∗h‖L2(Ω)→L∞(Ω) ≤ c,
‖Sh‖L2(Ω)→L2(Ω) ≤ c, ‖S∗h‖L2(Ω)→L2(Ω) ≤ c,
‖Sh‖L2(Ω)→H1

0 (Ω) ≤ c, ‖S∗h‖L2(Ω)→H1
0 (Ω) ≤ c,

‖Sh‖L∞(Ω)→L∞(Ω) ≤ c, ‖S∗h‖L∞(Ω)→L∞(Ω) ≤ c,

where c is independent of h.

For the proof of this lemma we use estimates of norms of a regularized Green function.
Before we formulate the proof of Lemma 5.17 we define this function and give some
estimates on that in the forthcoming lemma and corollary. The ideas of this technique are
taken from [108, Subsection 3.4.1]. We introduce the regularized Dirac function for an
arbitrary but fixed element T∗ as

δh :=

{
|T∗|−1sgn(e) in T∗,

0 elsewhere,
(5.38)

where we abbreviated the finite element error by e,

e := y − yh.

The regularized Green function gh is defined as a solution of

as

(
ϕ, gh

)
=
(
δh, ϕ

)
∀ϕ ∈ V, (5.39)

and its discrete counterpart ghh by

as

(
ϕh, g

h
h

)
=
(
δh, ϕh

)
∀ϕh ∈ V0h.

Lemma 5.18. The norms of the regularized Green function can be estimated by∥∥∥gh∥∥∥
L∞(Ω)

≤ c |lnh| (5.40)∥∥∥gh∥∥∥
H1(Ω)

≤ c |lnh|1/2 (5.41)∥∥∥gh∥∥∥
V 2,2
β (Ω)

≤ ch−1, (5.42)
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where β := 1− µ > 1− λ is the weight corresponding to the regularity in V 2,2
β (Ω), and the

grading parameter satisfies µ < λ.

Proof. Let g ∈ W 1,q
0 (Ω), 1 ≤ q < 2, be the Green function with respect to an arbitrary

point x+ ∈ Ω,

as(ϕ, g) = ϕ(x+) ∀ϕ ∈W 1,q′

0 (Ω) (5.43)

where q′ > 2 satisfies 1/q + 1/q′ = 1. The Green function satisfies the inequality

|g(x)| ≤ c (|ln |x− x+||+ 1) ∀x ∈ Ω.

In [55] it is proven that this estimate is valid on Lipschitz domains and that the constant
c is independent of x+. Let us fix q′ = 2 + ε. Since δh ∈ Lq

′
(Ω) it follows from Lemma 4.1

that gh ∈ V 2,q′

β (Ω) for β > 2− λ− 2/q′. Since λ > 1/2 one can find β < 1 satisfying this

condition and it follows from the embedding V 2,q′

β (Ω) ↪→ V 2−β,q′
0 (Ω) ↪→W 1,q′(Ω), see [113,

Lemma 1.2], that gh ∈W 1,q′

0 (Ω). Using (5.43), (5.39), and (5.38) we get∣∣∣gh (x+)
∣∣∣ =

∣∣∣as (gh, g)∣∣∣ =
∣∣∣(δh, g)∣∣∣ ≤ |T∗|−1

∫
T∗

|g| dx.

In the case dist(x+, T∗) > hT∗ we have |x− x+| ≥ hT∗ and estimate (5.40) is obtained via

|T∗|−1

∫
T∗

|g| dx ≤ max
x∈T∗
|g(x)| ≤ cmax

x∈T∗
(|ln |x− x+||+ 1) ≤ c |lnhT∗ | ≤ c |lnh| ,

since hT∗ ≥ ch1/µ. In the case dist(x+, T∗) ≤ hT∗ we calculate the integral by using polar
coordinates centered in x+,

|T∗|−1

∫
T∗

|g| dx ≤ c|T∗|−1

∫ 2hT∗

0
(− ln r)rdr = c|T∗|−1h2

T∗(c− lnhT∗) ≤ c |lnh|

as above.

For the proof of (5.41) we use the coercivity of the bilinear form and the definitions (5.39)
of gh and (5.38) of δh,

c
∥∥∥gh∥∥∥2

H1(Ω)
≤ as

(
gh, gh

)
=
(
δh, gh

)
≤
∥∥∥gh∥∥∥

L∞(Ω)
‖δh‖L1(Ω) ≤

∥∥∥gh∥∥∥
L∞(Ω)

.

With inequality (5.40) we conclude estimate (5.41).

The a priori estimate for the solution of the elliptic partial differential equation in Lemma
4.1 and the definition (5.38) of δh give∥∥∥gh∥∥∥

V 2,2
β (Ω)

≤ c
∥∥∥rβδh∥∥∥

L2(Ω)
≤ c|T∗|−1

∥∥∥rβ∥∥∥
L2(T∗)

.
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With r ≤ dJ , we can continue by

|T∗|−1
∥∥∥rβ∥∥∥

L2(T∗)
≤ c|T∗|−1/2dβJ = ch−1

since |T∗|1/2 = chT∗ = chd1−µ
J = chdβJ for J < I. In the other case, J = I, we calculate

the L2-norm and obtain

|T∗|−1
∥∥∥rβ∥∥∥

L2(T∗)
≤ c|T∗|−1hβ+1

T∗
≤ chβ−1

T∗
= ch−1

since hT∗ = ch1/µ = ch1/(1−β). Thus inequality (5.42) is proved.

Corollary 5.19. On meshes with grading parameter µ = 1− β < λ the error estimates∥∥∥gh − ghh∥∥∥
H1(Ω)

≤ c∥∥∥gh − ghh∥∥∥
L2(Ω)

≤ ch

hold.

Proof. Since the meshes are optimally graded, one has from Theorem 4.3∥∥∥gh − ghh∥∥∥
H1(Ω)

≤ ch
∥∥∥rβ∇2gh

∥∥∥
L2(Ω)

,∥∥∥gh − ghh∥∥∥
L2(Ω)

≤ ch2
∥∥∥rβ∇2gh

∥∥∥
L2(Ω)

.

With (5.42) we get the assertion.

Now we are able to prove Lemma 5.17.

Proof of Lemma 5.17. First we prove the boundedness of ‖Sh‖L2(Ω)→L∞(Ω). To this end,
we consider a function f ∈ L2(Ω) and an arbitrary but fixed finite element T∗. Then the
three inequalities

‖yh‖L∞(T∗) ≤ c|T∗|
−1‖yh‖L1(T∗),

‖yh‖L1(T∗) ≤ ‖y − yh‖L1(T∗) + ‖y‖L1(T∗),

‖y‖L1(T∗) ≤ |T∗|‖y‖L∞(T∗),

yield the estimate

‖yh‖L∞(T∗) ≤ c|T∗|
−1‖y − yh‖L1(T∗) + c‖y‖L∞(T∗). (5.44)

By the definition of δh and gh we get for the first term on the right-hand side of this
inequality the equation

|T∗|−1‖e‖L1(T∗) = (δh, e) = as

(
e, gh

)
.
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5.2 Scalar elliptic state equation

Using the Galerkin orthogonality and the fact that e− Ihe = y − Ihy yields

|T∗|−1‖e‖L1(T∗) = as

(
e, gh − ghh

)
= as

(
e− Ihe, gh − ghh

)
= as

(
y − Ihy, gh − ghh

)
.

With the Cauchy–Schwarz inequality we can continue

|T∗|−1‖e‖L1(T∗) ≤ c‖y − Ihy‖H1(Ω)

∥∥∥gh − ghh∥∥∥
H1(Ω)

. (5.45)

From finite element theory one knows that

‖y − Ihy‖H1(Ω) ≤ chκ‖f‖L2(Ω) (5.46)

with κ = min{λµ , 1}, i.e., κ = 1 for µ < λ, see [16]. Consequently, one can conclude from
(5.45) together with (5.46) and Corollary 5.19

|T∗|−1‖e‖L1(T∗) ≤ ch‖f‖L2(Ω).

This shows together with (5.44) and yh = Shf

‖Shf‖L∞(T∗) ≤ c‖f‖L2(Ω),

where we have used the boundedness of S as operator from L2(Ω) to L∞(Ω) (comp. [15,
Remark 2]) to estimate the second term of the right-hand side of inequality (5.44). The
boundedness of ‖Sh‖L2(Ω)→L2(Ω) and ‖Sh‖L∞(Ω)→L∞(Ω) follows then by the embedding
L∞(Ω) ↪→ L2(Ω). The boundedness of ‖Sh‖L2(Ω)→H1

0 (Ω) comes from the theory of weak
solutions. The estimates for S∗h follow by analogy.

Variational discrete approach First we consider the variational discrete approach
that has been introduced in Subsection 5.1.2.1. In the case of convex domains and quasi-
uniform triangulations, it is shown in [71] that a finite element discretization of S with
piecewise linear and globally continuous functions yields an approximation rate of 2 in
the L2-norm. These results extend to nonconvex domains with graded meshes (see [15,
Remark 5]). Therefore the following theorem is valid.

Theorem 5.20. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.1) and ūsh the solution of the corresponding variational discrete problem (5.8)
on a mesh of type (2.12) with grading parameter µ < λ. Then the estimate

‖ū− ūsh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
is valid.

With the L2-error estimate at hand, one is now able to prove an L∞-error estimate.
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Theorem 5.21. Let ūsh be the discrete control introduced in (5.7) and ȳsh = Shū
s
h and

p̄sh = Phū
s
h the associated state and adjoint state, respectively. On a family of meshes with

grading parameter µ < λ
2 the estimates

‖ū− ūsh‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.47)

‖ȳ − ȳsh‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.48)

‖p̄− p̄sh‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.49)

are valid.

Proof. The ideas of the proof are similar to that given in [71] for quasi-uniform meshes
and W 2,∞(Ω)-regular solutions of the underlying boundary value problem. First, we prove
assertion (5.49). One can conclude

‖p̄− p̄sh‖L∞(Ω) = ‖S∗(Sū− yd)− S∗h(Shū
s
h − yd)‖L∞(Ω)

≤ ‖(S∗ − S∗h)Sū‖L∞(Ω) + ‖(S∗ − S∗h)yd‖L∞(Ω)

+ ‖S∗hSū− S∗hShū‖L∞(Ω) + ‖S∗hShū− S∗hShūsh‖L∞(Ω). (5.50)

We estimate each of the four terms separately. By Theorem 4.4 it follows

‖(S∗ − S∗h)Sū‖L∞(Ω) ≤ ch2 |lnh|3/2 ‖Sū‖C0,σ(Ω̄) ≤ ch2 |lnh|3/2 ‖ū‖C0,σ(Ω̄) (5.51)

since ‖S‖C0,σ(Ω̄)→C0,σ(Ω̄) ≤ c. For the second term one can conclude from the same theorem

‖(S∗ − S∗h)Syd‖L∞(Ω) ≤ ch2 |lnh|3/2 ‖yd‖C0,σ(Ω̄). (5.52)

With the discrete Sobolev inequality (4.9) one has

‖S∗hSū− S∗hShū‖L∞(Ω) ≤ c |lnh|1/2 ‖S∗hSū− S∗hShū‖H1(Ω)

≤ c |lnh|1/2 ‖S∗h‖L2(Ω)→H1(Ω)‖Sū− Shū‖L2(Ω)

≤ c |lnh|1/2 h2‖ū‖L2(Ω), (5.53)

where we have used Theorem 4.3 in the last step. Utilizing again inequality (4.9), Lemma
5.17, and Theorem 5.20 it follows for the fourth term

‖S∗hShū− S∗hShūsh‖L∞(Ω) ≤ c |lnh|1/2 ‖S∗hShū− S∗hShūsh‖H1(Ω)

≤ c |lnh|1/2 ‖Shū− Shūsh‖L2(Ω)

≤ c |lnh|1/2 ‖ū− ūsh‖L2(Ω)

≤ c |lnh|1/2 h2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
. (5.54)
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5.2 Scalar elliptic state equation

The estimate (5.50) yields together with (5.51)–(5.54) the assertion (5.49). Since the
condition (5.7) is equivalent to the expression ūsh = ΠUad(− 1

ν p̄
s
h) (comp. (5.6)) one can

conclude

‖ū− ūsh‖L∞(Ω) ≤
1

ν
‖p̄− p̄sh‖L∞(Ω)

and inequality (5.47) follows directly from (5.49). To show inequality (5.48) we conclude

‖y − ȳsh‖L∞(Ω) ≤ ‖Sū− Shū‖L∞(Ω) + ‖Shū− Shūsh‖L∞(Ω)

≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

where we have used Theorem 4.4, Lemma 5.17, and inequality (5.47) in the last step.

Postprocessing approach The aim of this paragraph is to prove error estimates of the
same quality as in Theorem 5.21 but now for the postprocessing approach introduced in
Subsection 5.1.2.2.

The optimal control ū is obtained by the projection formula (5.6). This formula generates
kinks in the optimal control. However, we can classify the triangles T ∈ Th in two sets K1

and K2,

K1 :=
⋃

T∈Th: ū6∈V 2,2
2−2µ(T )

T, K2 :=
⋃

T∈Th: ū∈V 2,2
2−2µ(T )

T.

This means, K1 contains the elements that have a nonempty intersection with both the
active and the inactive set. Clearly, the number of triangles in K1 grows for decreasing h.
Nevertheless, the assumption

measK1 ≤ ch (5.55)

is fulfilled in many practical cases. Next, we recall a supercloseness result (comp. Theorem
5.13) and a auxiliary result (comp. Assumption PP4) from [15].

Theorem 5.22. Assume that Assumption (5.55) holds. Let ūh be the solution of (5.12)
with state equation (4.4) on a family of meshes with grading parameter µ < λ. Then the
estimate

‖ūh −Rhū‖L2(Ω) ≤ ch2
(
‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
holds true.

Proof. This theorem is proved in [15] under the assumption µ > 1
2 , which was used in the

proof of the boundedness of Sh only. The boundedness of Sh also in case of µ ≤ 1/2 is
guaranteed by Lemma 5.17.
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Lemma 5.23. On a mesh with grading parameter µ < λ the estimate

(vh, ū−Rhū)L2(Ω) ≤ ch2
(
‖vh‖L∞(Ω) + ‖vh‖H1

0 (Ω)

) (
‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
holds for all vh ∈ Vh, provided that Assumption (5.55) is fulfilled.

Proof. This lemma is proved in [15]. Notice that in that proof the condition µ ≥ 1/2 was
not necessary.

Next, we will apply the error estimates of subsection 4.1.2 to obtain L∞-error estimates
for the optimal control problem. Before, we will derive an auxiliary result. To this end,
we define another regularized Dirac function δhξ for a fixed point ξ ∈ T∗ with

(P1) (δhξ , vh) = vh(ξ) ∀vh ∈ V0h,

(P2) suppδhξ ⊂ T̄∗,

(P3) δhξ ∈ P1(T∗),

(P4) ‖δhξ ‖L2(T∗) = O(h−1
T∗

),

(P5) ‖δhξ ‖L∞(Ω) ≤ c|T∗|−1.

An example for a function with these properties is given in [121]. The regularized Green
function zh is defined as the solution of

as

(
v, zh

)
=
(
δhξ , v

)
∀v ∈ V. (5.56)

Moreover, we denote by zhh its discrete counterpart,

as

(
vh, z

h
h

)
=
(
δhξ , vh

)
∀vh ∈ V0h.

Subsequently, we need estimates of norms of the regularized Green function.

Lemma 5.24. The norms of the regularized Green function can be estimated by∥∥∥zh∥∥∥
L∞(Ω)

≤ c |lnh| (5.57)∥∥∥zh∥∥∥
H1(Ω)

≤ c |lnh|1/2 (5.58)∥∥∥zh∥∥∥
V 2,2

1−µ(Ω)
≤ ch−1, (5.59)

with grading parameter µ < λ in (2.12).

Proof. The proof of this lemma is very similar to that of Lemma 5.18. For the sake of
completeness we sketch it here. Let g ∈W 1,q

0 (Ω), 1 ≤ q < 2, be the Green function with
respect to an arbitrary point x+ ∈ Ω,

as(g, v) = v(x+) ∀v ∈W 1,q′

0 (Ω) (5.60)

104



5.2 Scalar elliptic state equation

where q′ > 2 and 1/q + 1/q′ = 1. According to [55] there is a constant c independent of
x+, such that

|g(x)| ≤ c(|ln |x− x+||+ 1).

With the same argumentation as for gh in Lemma 5.18 one can conclude zh ∈W 1,q′

0 (Ω),
q′ = 2 + ε. Using (5.60), (5.56), the Hölder inequality and property (P4) we get∣∣∣zh(x+)

∣∣∣ =
∣∣∣as (g, zh)∣∣∣ =

(
δhξ , g

)
≤
∥∥∥δhξ ∥∥∥

L2(T∗)
‖g‖L2(T∗) ≤ ch

−1
T∗
‖g‖L2(T∗). (5.61)

We estimate the L2-norm of g using polar coordinates centered in x+,

h−1
T∗
‖g‖L2(T∗) ≤ ch

−1
T∗

(∫ hT∗

0
(ln r)2rdr

)1/2

≤ ch−1
T∗

(
hT∗ |lnhT∗ |+ hT∗ |lnhT∗ |

1/2 + hT∗

)
≤ c |lnh| .

This yields from (5.61) the estimate (5.57).

For the proof of (5.58) we use the coercivity of the bilinear form, the definition (5.56),
and property (P4) of δh(a),∥∥∥zh∥∥∥2

H1(Ω)
≤ c · a

(
zh, zh

)
= c

(
δh, zh

)
≤ c

∥∥∥zh∥∥∥
L∞(Ω)

‖δh‖L1(Ω)

≤ c |T∗|1/2‖δh‖L2(T∗)

∥∥∥zh∥∥∥
L∞(Ω)

≤ c
∥∥∥zh∥∥∥

L∞(Ω)
.

With inequality (5.57) we conclude estimate (5.58).

The a priori estimate for the solution of the elliptic partial differential equation stated in
Lemma 4.1 and the property (P5) of δh(ξ) give∥∥∥zh∥∥∥

V 2,2
β (Ω)

≤ c
∥∥∥rβδh∥∥∥

L2(Ω)
≤ c|T∗|−1

∥∥∥rβ∥∥∥
L2(T∗)

.

In the case J < I it is r ≤ dJ and we can continue by

|T∗|−1
∥∥∥rβ∥∥∥

L2(T∗)
≤ c|T∗|−1/2dβJ = ch−1

since |T∗|1/2 = chT∗ = chd1−µ
J = chdβJ . In the other case, J = I, we calculate the L2-norm

and obtain

|T∗|−1
∥∥∥rβ∥∥∥

L2(T∗)
≤ c|T∗|−1hβ+1

T∗
≤ chβ−1

T∗
= ch−1

since hT∗ = ch1/µ = ch1/(1−β). Thus, (5.59) is proved.
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Lemma 5.25. The estimate∥∥∥zhh∥∥∥
L∞(Ω)

+
∥∥∥zhh∥∥∥

H1
0 (Ω)
≤ c |lnh|

holds on a finite element mesh of type (2.12) with µ < λ.

Proof. By the triangle inequality one can conclude∥∥∥zhh∥∥∥
L∞(Ω)

+
∥∥∥zhh∥∥∥

H1
0 (Ω)

≤
∥∥∥zh∥∥∥

L∞(Ω)
+
∥∥∥zh − zhh∥∥∥

L∞(Ω)
+ ‖zh‖H1

0 (Ω) +
∥∥∥zh − zhh∥∥∥

H1
0 (Ω)

. (5.62)

Since the meshes are optimally graded, we have from [16]∥∥∥zh − zhh∥∥∥
H1(Ω)

≤ ch
∣∣∣zh∣∣∣

V 2,2
β (Ω)

and with (5.59) ∥∥∥zh − zhh∥∥∥
H1(Ω)

≤ c. (5.63)

Furthermore, we have ∥∥∥zh − zhh∥∥∥
L∞(Ω)

≤ ch
∣∣∣zh∣∣∣

V 2,2
β (Ω)

and with (5.59) ∥∥∥zh − zhh∥∥∥
L∞(Ω)

≤ c. (5.64)

Now the assertion follows from (5.62) with (5.57), (5.58), (5.63), and (5.64).

The following lemma is an analogous estimate to (5.17) in L∞(Ω).

Lemma 5.26. The inequality

‖Shū− ShRhū‖L∞(Ω) ≤ ch2 |lnh|
(
‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
is satisfied provided that Assumption (5.55) is fulfilled.

Proof. Let ξ ∈ Ω be an arbitrary but fixed point. Using the definitions above, we find

|Shū(ξ)− ShRhū(ξ)| =
∣∣∣(δhξ , Shū− ShRhū)∣∣∣

=
∣∣∣a(Shū− ShRhū, zhh)∣∣∣

=
∣∣∣(zhh , ū−Rhū)∣∣∣ .
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Now, we can apply Lemma 5.23 and obtain

|Shū(ξ)− ShRhū(ξ)| ≤ ch2

(∥∥∥zhh∥∥∥
L∞(Ω)

+
∥∥∥zhh∥∥∥

H1
0 (Ω)

)(
‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
. (5.65)

The assertion follows from (5.65) and Lemma 5.25.

The following L∞-error estimates are new even in the case without corner singularities
and quasi-uniform meshes; see [95].

Theorem 5.27. Assume that Assumption (5.55) holds. Let ȳh be the associated state and
p̄h be the associated adjoint state to the solution ūh of (5.12) with state equation (4.4)
on meshes of type (2.12) with grading parameter µ < λ/2. Further, let ũh be the discrete
control constructed in (5.14). Then the estimates

‖ȳh − ȳ‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.66)

‖p̄h − p̄‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.67)

‖ū− ũh‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(5.68)

are valid.

Proof. We start with

‖ȳ − ȳh‖L∞(Ω) = ‖Sū− Shūh‖L∞(Ω)

≤ ‖Sū− Shū‖L∞(Ω) + ‖Shū− ShRhū‖L∞(Ω) + ‖ShRhū− Shūh‖L∞(Ω).

The first term was estimated in Theorem 4.4. Lemma 5.26 delivers an inequality for the
second term. Theorem 5.22 implies together with ‖Sh‖L2(Ω)→L∞(Ω) ≤ c, see Lemma 5.17,
the estimate of the third term. Consequently, we find with the embedding C0,σ(Ω̄) ↪→
L∞(Ω)

‖ȳ − ȳh‖L∞(Ω) ≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖L∞(Ω)

)
≤ ch2 |lnh|3/2

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

i.e., estimate (5.66). The second inequality can be obtained similarly,

‖p̄− p̄h‖L∞(Ω) = ‖S∗(ȳ − yd)− S∗h(ȳh − yd)‖L∞(Ω)

≤ ‖S∗(ȳ − yd)− S∗h(ȳ − yd)‖L∞(Ω) + ‖S∗h(ȳ − ȳh)‖L∞(Ω)

≤ ch2 |lnh|3/2 ‖ȳ − yd‖C0,σ(Ω̄) + ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
≤ ch2 |lnh|3/2

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,
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by means of Theorem 4.4, (5.66) and Lemma 5.17. To prove the third inequality we use
that the projection operator ΠUad is Lipschitz continuous with constant 1 from L∞(Ω) to
L∞(Ω). Therefore, we get

ν‖ū− ũh‖L∞(Ω) = ν

∥∥∥∥ΠUad

(
−1

ν
p̄

)
−ΠUad

(
−1

ν
p̄h

)∥∥∥∥
L∞(Ω)

≤ ‖p̄− p̄h‖L∞(Ω)

≤ ch2 |lnh|3/2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

where we used (5.68) in the last step. The superconvergence result is proved.

5.2.1.3 Numerical tests

We illustrate our theoretical findings for the fully discrete approach by some numerical
tests. Therefore we consider the optimal control problem (5.33) with the Poisson equation
as state equation and the first-order optimality system

−∆ȳ = ū+ f in Ω, ȳ = 0 on ∂Ω,

−∆p̄ = ȳ − yd in Ω, p = 0 on ∂Ω,

ū = ΠUad

(
−1

ν
p̄

)
.

The data yd and f are chosen such that the exact solution is given as

ȳ(r, ϕ) =
(
rλ − rα

)
sinλϕ,

p̄(r, ϕ) = ν
(
rλ − rβ

)
sinλϕ.

We set α = β = 5
2 and µ = 10−3. The problem is solved using the primal-dual active set

strategy. For details on this we refer to [81]. To evaluate the maximum norm of the error
we used not only grid points but also the nodes of a high order quadrature formula of
degree 19 implemented in the program package MooNMD [75]. In the following we study
the example in a convex and a nonconvex domain.

Example in a convex domain The domain Ω is defined as

Ω =

{
(r cosϕ, r sinϕ)T : 0 < r < 1, 0 < ϕ <

3

4
π

}
,

and therefore λ = 4
3 . Table 5.1 shows the computed errors ‖ū − ũh‖L∞(Ω) and the

estimated order of convergence (eoc) for quasi-uniform meshes and for graded meshes with
µ = 0.6 < λ

2 ; see Figure 5.1 for an illustration of these meshes. While a convergence rate
of about λ can be observed for µ = 1, the approximation order is slightly smaller than 2
on the graded meshes. So mesh grading improves the convergence rate for the L∞-error
also in the case of a corner with an interior angle between π

2 and π.
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5.2 Scalar elliptic state equation

Figure 5.1: Convex domain with a graded mesh with µ = 0.6 and a quasi-uniform mesh
(µ = 1).

Table 5.1: L∞-error of the computed control ũh in a convex domain.

µ = 0.6 µ = 1

ndof value eoc value eoc

51 3.02e−02 4.63e−02
176 1.19e−02 1.50 1.88e−02 1.45
651 4.12e−03 1.62 7.57e−03 1.39

2501 1.42e−03 1.58 3.02e−03 1.36
9801 4.22e−04 1.78 1.20e−03 1.35

38801 1.15e−04 1.89 4.79e−04 1.34
74482 6.11e−05 1.94 3.09e−04 1.34

154401 3.01e−05 1.95 1.90e−04 1.34

Example in a nonconvex domain As a second example we set Ω as

Ω =

{
(r cosϕ, r sinϕ)T : 0 < r < 1, 0 < ϕ <

3

2
π

}
.

This means λ = 2
3 . In Table 5.2 one can find the computed errors ‖ū−ũh‖L∞(Ω) on different

meshes with µ = 0.3 < λ
2 , µ = 0.6 < λ, and µ = 1.0. For meshes with grading parameter

µ < λ
2 one can see the predicted convergence rate slightly smaller than 2. Further one can

observe that a mesh grading parameter µ ∈
(
λ
2 , λ
)

yields only a suboptimal convergence

rate λ
µ = 10

9 for the L∞-error. Notice that such a mesh grading was enough to get the

optimal convergence of second order for the L2-error (see [15]). If no mesh grading is
performed (µ = 1), one can observe a convergence rate of about λ. In Figure 5.2 the
distribution of the L∞-error on a quasi-uniform and on an appropriately graded mesh is
shown. The mesh grading significantly reduces the error near the corner.

5.2.2 Prismatic domain

In this subsection we prove L2-error estimates on anisotropic meshes for the optimal
control problem (5.33) with the state equation (4.43) with Dirichlet (4.44) or Neumann
boundary conditions (4.46). The results of this subsection were originally published in
[18].
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Table 5.2: L∞(Ω)-error of the computed control ũh in a nonconvex domain.

µ = 0.3 µ = 0.6 µ = 1

ndof value eoc value eoc value eoc

125 1.63e−01 8.18e−02 2.19e−01
286 7.61e−01 1.20 3.77e−02 1.23 1.34e−01 0.78

1071 2.30e−02 1.81 1.73e−02 1.18 6.67e−02 1.06
4141 7.49e−03 1.66 7.99e−03 1.14 4.15e−02 0.70

16281 1.97e−03 1.95 3.70e−03 1.13 2.60e−02 0.68
25351 1.29e−03 1.92 2.88e−03 1.12 2.24e−02 0.68
39501 8.29e−04 1.98 2.25e−03 1.12 1.93e−02 0.68

100701 3.34e−04 1.95 1.33e−03 1.12 1.41e−02 0.67
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Figure 5.2: Error distribution on a quasi uniform (left) and a graded mesh with µ = 0.3.
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5.2.2.1 Regularity

Lemma 5.28. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.43) with Dirichlet (4.44) or Neumann boundary conditions (4.46) and ȳ = Sū
and p̄ = Pū the associated state and adjoint state. For both types of boundary conditions
one has ū ∈ C0,σ(Ω̄), ȳ ∈ C0,σ(Ω̄) and p̄ ∈ C0,σ(Ω̄) for some σ ∈ (0, λ), λ = π/ω. The
a priori estimates

‖ȳ‖C0,σ(Ω̄) ≤ c‖ū‖L∞(Ω) ≤ c‖ū‖C0,σ(Ω̄), (5.69)

‖p̄‖C0,σ(Ω̄) ≤ c
(
‖ū‖L∞(Ω) + ‖yd‖C0,σ(Ω̄)

)
(5.70)

are valid.

Proof. For 0 < γ < 2− 3
p − σ with p specified below the inclusion

V 2,p
γ (Ω) ↪→ V 2−γ,p

0 (Ω) ↪→W 2−γ,p(Ω) ↪→ C0,σ(Ω̄) (5.71)

is valid. For the first embedding we have used [113, Lemma 1.2]. The other inclusions
follow by the Sobolev embedding theorems and the fact that 2− γ − 3

p > σ. Taking the

decomposition ȳ = ȳr + ȳs into account one can conclude from Lemma 4.17 ȳr ∈W 2,p(Ω)
and ȳs ∈ V 2,p

γ (Ω) for γ > 2− 2
p − λ. In order to be able to find γ such that

2− 2

p
− λ < γ < 2− 3

p
− σ, (5.72)

we have to choose p such that 1
p < λ− σ. Since σ < λ, the condition p > 1

λ−σ guarantees
the existence of a weight γ satisfying (5.72). With such a weight γ we can write for

p > max
(

1
λ−σ ,

3
2−σ

)
and σ < λ

‖ȳ‖C0,σ(Ω̄) ≤ c
(
‖ȳs‖C0,σ(Ω̄) + ‖ȳr‖C0,σ(Ω̄)

)
≤ c

(
‖ȳs‖V 2,p

γ (Ω)
+ ‖ȳr‖W 2,p(Ω)

)
≤ c‖ū‖Lp(Ω) ≤ c‖ū‖L∞(Ω),

where we have used the embeddings (5.71) and W 2,p(Ω) ↪→ C0,σ(Ω̄) for p > 3
2−σ as well

as Lemma 4.17. This proves the first inequality in (5.69). With the same argumentation
for p̄ one gets

‖p̄‖C0,σ(Ω̄) ≤ c
(
‖ȳ − yd‖L∞(Ω)

)
≤ c

(
‖ȳ‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
where we have used the triangle inequality and the embedding C0,σ(Ω̄) ↪→ L∞(Ω) in the
last step. Together with the first inequality in (5.69) this proves the assertion (5.70).
Inequality (5.70) implies together with the projection formula (5.6) that ū ∈ C0,σ(Ω̄). The
embedding C0,σ(Ω̄) ↪→ L∞(Ω) yields finally the second inequality of (5.69).
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Corollary 5.29. Consider the optimal control problem (5.33) with state equation (4.43)
and Dirichlet boundary conditions (4.44) or Neumann boundary conditions (4.46). If
β > 1− λ then there holds for i = 1, 2 and σ ∈ (0, λ)

‖rβ∂ip̄‖L∞(Ω) ≤ c
(
‖ū‖L∞(Ω) + ‖yd‖C0,σ(Ω̄)

)
, (5.73)

‖∂3p̄‖L∞(Ω) ≤ c
(
‖ū‖L∞(Ω) + ‖yd‖C0,σ(Ω̄)

)
. (5.74)

Proof. From inequality (4.54) one has for some σ ∈ (0, 1) the estimate

‖rβ∂ip̄‖L∞(Ω) ≤ c‖ȳ − yd‖C0,σ(Ω̄) ≤ c
(
‖ȳ‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
where we have used the triangle inequality in the last step. Now the proof of assertion
(5.73) follows from inequality (5.69). If we use the estimates (4.55) and (5.69), we can
conclude

‖∂3p̄‖L∞(Ω) ≤ c‖ȳ − yd‖C0,σ(Ω̄) ≤ c
(
‖ȳ‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

where we have utilized the triangle inequality in the last step. The estimate (5.69) yields
then the assertion (5.74).

Lemma 5.30. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.43) with Dirichlet boundary conditions (4.44). For the associated state ȳ = Sū
and adjoint state p̄ = Sū one has ȳ ∈ V 2,p

β (Ω) and p̄ ∈ V 2,p
β (Ω) for β > 2 − π/ω − 2/p.

The a priori estimates

‖ȳ‖
V 2,p
β (Ω)

≤ c‖ū‖L∞(Ω), (5.75)

‖p̄‖
V 2,p
β (Ω)

≤ c
(
‖ū‖L∞(Ω) + ‖yd‖C0,σ(Ω̄)

)
(5.76)

hold.

Proof. Since ū ∈ L∞(Ω) and L∞(Ω) ↪→ Lp(Ω) for p ∈ (1,∞) it follows from lemma 4.15
that ȳ ∈ V 2,p

β (Ω) for β > 2− π/ω − 2/p. The estimate (5.75) follows from that Lemma
with the same argumentation as in Lemma 5.16 (comp. (5.36)). From Lemma 5.28,
yd ∈ C0,σ(Ω̄) and C0,σ(Ω̄) ↪→ L∞(Ω) one has ȳ−yd ∈ L∞(Ω) and the same argumentation
as for ȳ yields p̄ ∈ V 2,p

β (Ω) for β > 2− π/ω − 2/p. The estimate

‖p̄‖
V 2,p
β (Ω)

≤ c
(
‖ȳ‖

V 0,p
β (Ω)

+ ‖yd‖V 0,p
β (Ω)

)
≤ c

(
‖ȳ‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
follows with the embedding C0,σ(Ω̄) ↪→ V 0,p

β (Ω). Inequality (5.69) yields then the assertion
(5.76).
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Lemma 5.31. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.43) with Neumann boundary conditions (4.46). For the associated state ȳ = Sū
and adjoint state p̄ = Sū one has ȳ ∈W 2,2

β (Ω) and p̄ ∈W 2,2
β (Ω) for β > 1− π/ω. The a

priori estimates

‖ȳ‖
W 2,2
β (Ω)

≤ c‖ū‖L∞(Ω), (5.77)

‖p̄‖
W 2,2
β (Ω)

≤ c
(
‖ū‖L∞(Ω) + ‖yd‖C0,σ(Ω̄)

)
(5.78)

hold.

Proof. From the computation

‖u‖2
W 0,2
β (Ω)

=

∫
Ω
r2β|u|2 dx ≤ ‖u‖2L∞(Ω)

∫
Ω
r2β dx

and the fact that the last integral is finite due to 2β > 2 − 2π/ω > 0 one can conclude
the embedding L∞(Ω) ↪→W 0,2

β (Ω). With this embedding at hand we can apply Lemma

4.16 and get from ū ∈ L∞(Ω) the regularity ȳ ∈W 2,2
β (Ω) and the a priori estimate (5.77).

From Lemma 5.28 we know that ȳ ∈ C0,σ(Ω̄) for σ ∈ (0, λ) and therefore ȳ− yd ∈ C0,σ(Ω̄).
Since C0,σ(Ω̄) ↪→W 0,2

β (Ω) it follows again from Lemma 4.16 the inequality

‖p̄‖
W 2,2
β (Ω)

≤ c‖ȳ − yd‖W 0,2
β (Ω)

≤ c
(
‖ȳ − yd‖C0,σ(Ω̄)

)
.

Applying the triangle inequality and using estimate (5.69) yields the assertion (5.78).

5.2.2.2 Approximation error estimate in L2(Ω)

In this subsection we assume that the prismatic domain Ω is discretized by an anisotropic
graded tetrahedral mesh as described in (2.13). The state and adjoint state equation are
discretized by a finite element scheme as introduced in Subsection 4.2.2. This means, the
approximate state yh = Shu is the unique solution of{

aD(yh, vh) = (u, vh)L2(Ω) ∀vh ∈ V0h for state equation (4.45) ,

aN (yh, vh) = (u, vh)L2(Ω) ∀vh ∈ Vh for state equation (4.47)

with

V0h =
{
v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th and vh = 0 on ∂Ω

}
,

Vh =
{
v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th

}
.

Similarly, the approximated adjoint state ph = S∗h(y − yd) is the unique solution of{
aD(vh, ph) = (y − yd, vh)L2(Ω) ∀vh ∈ V0h for state equation (4.45) ,

aN (vh, ph) = (y − yd, vh)L2(Ω) ∀vh ∈ Vh for state equation (4.47) .
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As in the sections before, we denote by Phu = S∗h(Shu− yd) the affine operator that maps
a given control u to the corresponding approximate adjoint state ph.

Our aim is to prove that Theorem 5.7 and Theorem 5.14 hold in this situation. To this
end we check the Assumptions VAR1 and VAR2 and PP1–PP4 from subsection 5.1.2.
Notice, that we have in the notation of that subsection U = Z = L2(Ω), Y = H1

0 (Ω) in
case of Dirichlet conditions (4.44) and Y = H1(Ω) in case of a Neumann boundary (4.46).
Furthermore, we have X = C0,σ(Ω̄).

Since the boundedness of the operators Sh and S∗h play a role in both discretization
concepts, the variational discrete approach as well as the postprocessing result, we first
repeat the following lemma. Due to the fact that we do not operate on quasi-uniform
meshes the boundedness of the operator Sh is not obvious. The following lemma is proved
in [127, Subsection 3.6] by using Green function techniques.

Lemma 5.32. Let Th be an anisotropic, graded mesh of a prismatic domain with parameter
µ < λ according to (2.13). The norms of the discrete solution operators Sh and S∗h are
bounded,

‖Sh‖L2(Ω)→L∞(Ω) ≤ c, ‖S∗h‖L2(Ω)→L∞(Ω) ≤ c,
‖Sh‖L2(Ω)→L2(Ω) ≤ c, ‖S∗h‖L2(Ω)→L2(Ω) ≤ c,
‖Sh‖L2(Ω)→Y (Ω) ≤ c, ‖S∗h‖L2(Ω)→Y (Ω) ≤ c,

where c is independent of h.

Variational discrete approach Let us first consider the variational discrete approach
that has been introduced in Subsection 5.1.2.1.

Theorem 5.33. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.43) with Dirichlet (4.44) or Neumann boundary conditions (4.46) and ūsh the
solution of the corresponding variational discrete problem (5.8) on a mesh of type (2.13)
with grading parameter µ < λ. With the associated states ȳ = Sū, ȳsh = Shū

s
h and adjoint

states p̄ = Pū, p̄sh = Phū
s
h the estimates

‖ū− ūsh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
,

‖ȳ − ȳsh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
,

‖p̄− p̄sh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
hold with a constant c independent of h.

Proof. Lemma 5.32 proves Assumption VAR1, Theorem 4.23 and Theorem 4.25 prove
Assumption VAR2. Notice, that here Sh = S∗h. The application of Theorem 5.7 yields the
assertion of this theorem.
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Postprocessing approach Now we are interested in the postprocessing approach intro-
duced in Subsection 5.1.2.2. In detail, the approximate optimal control ūh is the solution of
(5.12) and the improved approximate optimal control ũh the projection of scaled discrete
adjoint state in the set of admissible controls. As Assumption PP1 is already proved
in Lemma 5.32 and the finite element error estimates of Assumption PP2 are shown in
Theorems 4.23 and 4.25 we continue with the proof of Assumptions PP3 and PP4. We
first concentrate on Assumption PP3. For that proof we give a number of auxiliary results
before the assumption can be shown in Lemma 5.39. Some of them were already stated
in [127] and we refer for proofs to this thesis. We give proofs here only in those cases
when changes are necessary due to the weaker mesh condition µ < λ in comparison with
µ < min{λ, λ3 + 5

9} in [127], or when the proof in [127] is restricted to an analogy argument
to a further result.

Before we recall the approximation properties of the operators Rh and Qh defined in (5.15)
and (5.16), we introduce the sets

Ks =
⋃

{T∈Th:rT=0}

T and Kr = Ω\K̄s. (5.79)

Notice, that according to (2.13) the number N of elements in Ks is O(h−1) and therefore
|Ks| ≤ cNh2/µ+1 = ch2/µ.

Lemma 5.34. [127, Lemma 3.24] Let Th be a conforming anisotropic triangulation
satisfying equation (2.13). Then there holds

∣∣∣∣∫
T

(f −Rhf) dx

∣∣∣∣ ≤

c|T |1/2

∑
|α|=2 h

α
T ‖Dαf‖L2(T ) for f ∈ H2(T )

c|T |
∑
|α|=1 h

α
T ‖Dαf‖L∞(T ) for f ∈W 1,∞(T )

c|T |‖f‖L∞(T ) for f ∈ L∞(T ).

Lemma 5.35. [127, Lemma 4.13] The inequality

‖Qhf −Rhf‖L2(T ) ≤ |T |1/2−1/p
∑
|α|=1

hαT ‖Dαf‖Lp(T )

holds for all f ∈W 1,p(T ) with p > 3.

Proof. By the definition of Qh and Rh one has∫
T

(Qhf −Rhf)2 dx =

∫
T

[
1

|T |

∫
T
f −Rhfdξ

]2

dx = |T |−1

[∫
T
f −Rhfdξ

]2

which leads to

‖Qhf −Rhf‖L2(T ) ≤ |T |−1/2

∣∣∣∣∫
T
f −Rhf dx

∣∣∣∣ . (5.80)
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For any ŵ ∈ P0(T̂ ) we can conclude∫
T

(f −Rhf) dx = |T |
∫
T̂

(f̂ − R̂f̂) dx = |T |
∫
T̂

(f̂ − ŵ)− R̂(f̂ − ŵ) dx

≤ c|T |‖f̂ − ŵ‖L∞(T̂ ) ≤ c|T |‖f̂ − ŵ‖W 1,p(T̂ )

where we have used the embedding W 1,p(T̂ ) ↪→ L∞(T̂ ) for p > 3. Now we can apply the
Deny-Lions lemma and get∫

T
(f −Rhf) dx ≤ c|T ||f̂ |W 1,p(T̂ ) ≤ c|T |

1−1/p
∑
|α|=1

hαT ‖Dαf‖Lp(T )

which, together with estimate (5.80), yields the assertion.

Corollary 5.36. [127, Corollary 4.16] Let the mesh be graded according to (2.13). Then
the estimate

‖Qhw −Rhw‖L2(Ks) ≤ ch
2
(
‖∂1w‖Lp(Ks) + ‖∂2w‖Lp(Ks) + ‖r−µ∂3w‖Lp(Ks)

)
holds for all w ∈W 1,p(Ks) with r−µ∂3w ∈ Lp(Ks) and p > 3, p ≥ 1

1−µ .

Corollary 5.37. Let the mesh be graded according to (2.13). Then the estimate

‖Qhw −Rhw‖L2(Kr) ≤ ch
2
(
|w|

V 2,2
2−2µ(Kr)

+ |∂3w|V 2,1
1−µ(Kr)

+ ‖∂33w‖L2(Kr)

)
holds for all w ∈ H2(Kr).

Proof. The proof is taken from [127, pages 48f. and 23]. From the definition of Qh one has

‖Qhw −Rhw‖2L2(Kr)
=
∑
T⊂Kr

‖Qhw −Rhw‖2L2(T )

=
∑
T⊂Kr

|T |−1

∣∣∣∣∫
T

(w −Rhw) dx

∣∣∣∣2
We apply Lemma 5.34 and get

‖Qhw −Rhw‖2L2(Kr)
≤
∑
T⊂Kr

|T |−1

c ∑
|α|=2

hαT |T |1/2‖Dαw‖L2(T )

2

≤ c
∑
T⊂Kr

∑
|α|=2

hαT ‖Dαw‖L2(T )

2

.
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Since rT > 0 for an element T ⊂ Kr it follows with (2.13)

‖Qhw −Rhw‖2L2(Kr)
≤ ch4

∑
T⊂Kr

r2−2µ
T

2∑
i=1

2∑
j=1

‖∂ijw‖L2(T )

+r1−µ
T

2∑
i=1

‖∂3iw‖L2(T ) + ‖∂33w‖L2(T )

]2

≤ ch4
(
|w|

V 2,2
2−2µ(Kr)

+ |∂3w|V 1,2
1−µ(Kr)

+ ‖∂33w‖L2(Kr)

)2
.

Extracting the root yields the assertion.

The following lemma includes a stronger result in comparison with [127, Corollary 4.16].

Corollary 5.38. Let the mesh be graded according to (2.13). Then the estimate

‖Qhw −Rhw‖L2(Ks) ≤ ch
2‖∇w‖L∞(Ks)

holds for all w ∈W 1,∞(Ks).

Proof. One can conclude from the Definition of Qh and Lemma 5.34

‖Qhw −Rhw‖2L2(Ks)
=
∑
T⊂Ks

∫
T

[
|T |−1

∫
T
w −Rhw dξ

]2

dx

=
∑
T⊂Ks

|T |−1

[∫
T
w −Rhw dξ

]2

≤ c
∑
T⊂Ks

|T |

∑
|α|=1

hαT ‖Dαw‖L∞(T )

2

.

If one takes into account that #Ks ≤ ch−1 it follows

‖Qhw −Rhw‖2L2(Ks)
≤ ch3+2/µ#Ks‖∇w‖2L∞(Ks)

≤ ch2+2/µ‖∇w‖2L∞(Ks)
.

Since µ ≤ 1 this yields the assertion.

Now we are able to prove Assumption PP3 in the following lemma.

Lemma 5.39. Let the mesh be graded according to (2.13) with µ < λ. Then the inequality

‖Qhp̄−Rhp̄‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
holds.
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Proof. We write

‖Rhp̄−Qhp̄‖2L2(Ω) = ‖Rhp̄−Qhp̄‖2L2(Ks)
+ ‖Rhp̄−Qhp̄‖2L2(Kr)

. (5.81)

with Ks and Kr as defined in (5.79). In the following we choose p such that p > 3
and p ≥ 1

1−µ . According to (4.49) we split p̄ in a singular part p̄s and a regular part

p̄r ∈ W 2,p(Ks) such that p̄ = p̄s + p̄r. For the singular part we get from (5.81) and the
Corollaries 5.36 and 5.37 the estimate

‖Rhp̄s −Qhp̄s‖L2(Ω) ≤ ch2
(
|p̄s|V 2,2

2−2µ(Kr)
+ |∂3p̄s|V 1,2

1−µ(Kr)
+ |∂33p̄s|V 0,2

0 (Kr)

+ ‖∂1p̄s‖Lp(Ks) + ‖∂2p̄s‖Lp(Ks) + ‖∂3p̄s‖V 0,p
−µ (Ks)

)
≤ ch2‖ȳ − yd‖Lp(Ω) (5.82)

where we have used the estimates (4.50)–(4.52) in the last step. Since W 2,p(Ω) ↪→ H2(Ω)
and W 2,p(Ω) ↪→W 1,∞(Ω) (comp. Theorem 2.13) it follows from (5.81) and the Corollaries
5.37 and 5.38

‖Rhp̄r −Qhp̄r‖L2(Ω)

≤ ch2
(
|p̄r|V 2,2

2−2µ(Kr)
+ |∂3p̄r|V 1,2

1−µ(Kr)
+ |∂33p̄r|V 0,2

0 (Kr)
+ ‖∇p̄r‖L∞(Ks)

)
≤ ch2‖ȳ − yd‖Lp(Ω) (5.83)

where we have used in the last step the a priori estimates of Lemma 4.15 and 4.16,
respectively, and the estimate (4.53). Since

‖Rhp̄−Qhp̄‖L2(Ω) ≤ ‖Rhp̄s −Qhp̄s‖L2(Ω) + ‖Rhp̄r −Qhp̄r‖L2(Ω)

one can conclude from (5.82) and (5.83)

‖Rhp̄−Qhp̄‖L2(Ω) ≤ ch2‖ȳ − yd‖Lp(Ω).

Finally it follows from the triangle inequality, the embedding C0,σ(Ω̄) ↪→ Lp(Ω) and
Lemma 5.28

‖Rhp̄−Qhp̄‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
what is the assertion of this lemma.

It remains the proof of Assumption PP4. The proof of this assumption uses the boundedness
of rβ∇p̄ for β > 1− λ stated in Corollary 5.29. In [127] this boundedness was only proven
for β > 4

3 − λ. Our improvement allows us to weaken the grading condition from
µ < min{λ, 5/9 + λ/3} as it is given in [127] to µ < λ. Notice, that the condition µ < λ
was also necessary to get optimal convergence of the finite element approximation of the
state equation (comp. Theorems 4.23 and 4.25 and also [6]).
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5.2 Scalar elliptic state equation

From the projection formula (5.6) one can see, that there may be elements where the
optimal control ū admits kinks. For such an element T one cannot assume that the
restriction ū|T is contained in V 2,2

β (T ). Consequently, a special treatment is necessary
during the error analysis. Therefore we split the domain Ω in two parts,

K1 :=
⋃

T∈Th:ū/∈V 2,2
β (T )

T, K2 :=
⋃

T∈Th:ū∈V 2,2
β (T )

T. (5.84)

Clearly, the number of elements in K1 grows for decreasing h. Nevertheless, it is quite
reasonable to assume that the boundary of the active set has finite two-dimensional
measure, i.e.

|K1| ≤ ch. (5.85)

Notice, that this is a weaker condition than #K1 ≤ ch−2 as it is required in [127]. For a
detailed discussion on this, we refer to [127, Lemma 4.7].

Lemma 5.40. Let Th be an anisotropic, graded mesh satisfying (2.13) with µ < λ. Let
ū be the solution of the optimal control problem (5.33) with the state equation (4.45) or
(4.47). Then the estimate

(Qhū−Rhū, vh)L2(Ω) ≤ ch
2‖vh‖L∞(Ω)

(
‖ū‖L∞(Ω) + ‖ȳd‖C0,σ(Ω̄)

)
holds for all vh ∈ Vh.

Proof. We follow the lines of the proof of Lemma 4.10 in [127]. Since the mesh grading
condition is weakened from µ < min{λ, 5

9 + λ
3} to µ < λ a detailed proof is given.

Furthermore, modifications are necessary to cover also the Neumann case. We split the
domain Ω into three parts, where ū has different regularity, K1,r = K1\K̄s, K2,r = K2\K̄s

and Ks. One has∫
Ω
vh(Qhū−Rhū) dx ≤

∑
T∈Th

‖vh‖L∞(T )

∫
T

(ū−Rhū) dx.

If we apply Lemma 5.34 on each sub-domain to the integral, we get∫
Ω
vh(Qhū−Rhū) dx ≤

∑
T⊂K2,r

‖vh‖L∞(T )|T |1/2
∑
|α|=2

hαT ‖Dαū‖L2(T )

+
∑

T⊂K1,r

‖vh‖L∞(T )|T |
∑
|α|=1

hαT ‖Dαū‖L∞(T ) (5.86)

+
∑
T⊂Ks

‖vh‖L∞(T )|T |‖ū‖L∞(T ).
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We estimate the three terms on the right-hand side separately using (2.13). For the first
term we have∑

T⊂K2,r

‖vh‖L∞(T )|T |1/2
∑
|α|=2

hαT ‖Dαū‖L2(T )

≤c‖vh‖L∞(K2,r)|K2,r|1/2
h2

2∑
i=1

2∑
j=1

‖r2−2µ∂ij ū‖L2(K2,r)

+ h2
2∑
i=1

‖r1−µ∂3iū‖L2(K2,r) + h2‖∂33ū‖L2(K2,r)

)
. (5.87)

The second term can be estimated by using (2.13),∑
T⊂K1,r

‖vh‖L∞(T )|T |
∑
|α|=1

hαT ‖Dαū‖L∞(T )

≤ ch‖vh‖L∞(Ω)

∑
T⊂K1,r

|T |

(
2∑
i=1

‖r1−µ∂iū‖L∞(T ) + ‖∂3ū‖L∞(T )

)

≤ ch‖vh‖L∞(Ω)|K1,r|

(
2∑
i=1

‖r1−µ∂iū‖L∞(K1,r) + ‖∂3ū‖L∞(K1,r)

)

≤ ch2‖vh‖L∞(Ω)

(
2∑
i=1

‖r1−µ∂iū‖L∞(K1,r) + ‖∂3ū‖L∞(K1,r)

)
. (5.88)

The last step is valid since |K1| ≤ ch (comp. (5.85)). The third term yields∑
T⊂Ks

‖vh‖L∞(T )|T |‖ū‖L∞(T ) ≤ |Ks|‖vh‖L∞(Ω)‖ū‖L∞(Ks)

≤ ch2‖vh‖L∞(Ω)‖ū‖L∞(Ks) (5.89)

since |Ks| ≤ ch2/µ ≤ ch2. We can further utilize the projection formula (5.6) and substitute
ū by − 1

ν p̄ in the above norms, because ū is either constant or equal to − 1
ν p̄. Then the

inequalities (5.87), (5.88) and (5.89) yield together with (5.86) the estimate∫
Ω
vh(Qhū−Rhū) dx ≤ c

ν
h2‖vh‖L∞(Ω)· 2∑

i=1

2∑
j=1

‖r2−2µ∂ij p̄‖L2(K2,r) +
2∑
i=1

‖r1−µ∂3ip̄‖L2(K2,r) + ‖∂33p̄‖L2(K2,r) (5.90)

+
2∑
i=1

‖r1−µ∂ip̄‖L∞(K1,r) + ‖∂3p̄‖L∞(K1,r) + ν‖ū‖L∞(Ks)

)
. (5.91)

120



5.2 Scalar elliptic state equation

In order to estimate the L2-norms in (5.90), we split p̄ according to (4.49) in a regular
and a singular part, p̄ = p̄r + p̄s. Then we apply Lemma 4.17 for p = 2 with β = 2− 2µ.
This is possible since µ < λ < 1 and therefore 2− 2µ > 2− λ− 1 = 1− λ. Notice that one
has for the regular part ‖rαp̄r‖H2(Ω) ≤ c‖p̄r‖H2(Ω) as long as α > 0. For the estimate of
the L∞-norms in (5.91), we apply Corollary 5.29. We end up with∫

Ω
vh(Qhū−Rhū) dx ≤

ch2‖vh‖L∞(Ω)

(
‖ȳ − yd‖L2(Ω) + ‖ȳ − yd‖C0,σ(Ω̄) + ‖ū‖L∞(Ω)

)
for a σ ∈ (0, 1). If we use the triangle inequality, the embedding C0,σ(Ω̄) ↪→ L∞(Ω) ↪→
L2(Ω) and estimate (5.69) the assertion is shown.

Now we are ready to summarize the results in the following theorem.

Theorem 5.41. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.45) or (4.47) and ūh the corresponding discrete solution of (5.12) on a mesh
of type (2.13) with µ < λ. Furthermore, let ȳ = Su, p̄ = Pū, ȳh = Shūh, p̄h = Phūh be
the associated states and adjoint states and ũh be the postprocessed control constructed by
(5.14). Then the estimates

‖ȳ − ȳh‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
‖p̄− p̄h‖L2(Ω) ≤ ch2

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
‖ū− ũh‖L2(Ω) ≤ ch2

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
hold true.

Proof. The assertion follows from Theorem 5.14. Assumption PP1 is proved in Lemma
5.32, Assumption PP2 in Theorem 4.23 and 4.25, respectively, Assumption PP3 in Lemma
5.39 and Assumption PP4 in Lemma 5.40.

Remark 5.42. Winkler proved in his thesis [127] second order convergence for a spe-
cial type of mixed boundary condition under the stronger mesh grading condition µ <
min{λ, 5/9 + λ/3}. For a discussion on the grading condition we refer to page 118 and
also [127, Remark 4.11].

Remark 5.43. Apel and Winkler proved in [19] the result of Theorem 5.14 for domains
with corner- and edge singularities and appropriately graded isotropic meshes. In detail,
the mesh was chosen such that the condition

hT ∼ h1/µ for rT = 0,

hT ∼ hr1−µ
T for rT > 0
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is satisfied, where hT denotes the diameter of the element T and rT its distance to the set
of singular points. The grading parameter µ had to fulfill the three conditions

µ <
1

2
+

1

2
λv, µ < λe, µ <

1

3
+

1

2
λe. (5.92)

Here λv and λe denote particular eigenvalues of certain operator pencils that correspond
to the corner- and edge singularities, respectively. As in the case of anisotropic refinement,
a weaker condition, namely

µ < min

{
1

2
+ λv, λe

}
(5.93)

is sufficient to get an optimal convergence rate for the boundary value problem [11]. Let
us quickly describe where the additional conditions µ < 1

3 + 1
2λe and µ < 1

2 + 1
2λv come

from in [19]. In that paper the boundedness for rβ∇p was proved for

β > max

{
4

3
− λe, 1− λv

}
(5.94)

by the use of Sobolev embedding theorems. In the proof of Lemma 4.5 in [19] one needed
the boundedness of r2−2µ∇p. This resulted in the condition 2− 2µ > max{4

3 −λe, 1−λv},
i.e. µ < min{1

3 + 1
2λe,

1
2 + 1

2λv}. With an analogous argumentation as in Lemma 4.20 and
Corollary 5.29 one can prove that rβ∇p is already bounded for

β > max {1− λe, 1− λv}

as long as the desired state is in C0,σ(Ω̄). This means a smaller weight than stated in (5.94)
is sufficient to compensate a possible edge singularity. Consequently, the condition in the
proof of Lemma 4.5 in [19] reduces to 2− 2µ > max{1− λe, 1− λv}, what is fulfilled by
values of µ that satisfy µ < min{1

2 + 1
2λe,

1
2 + 1

2λv}. Since λe ≤ 1 the condition µ < 1
2 + 1

2λe
is weaker than µ < λe. Therefore one gets second order convergence on isotropic graded
meshes already for a grading parameter µ satisfying

µ < min

{
1

2
+

1

2
λv, λe

}
what is of course a weaker condition than the original condition (5.92). Notice, that this
condition is still slightly stronger than condition (5.93).

5.2.2.3 Numerical tests

We illustrate the theoretical findings of this subsection by two numerical examples.
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5.2 Scalar elliptic state equation

Table 5.3: L2(Ω)-error of the computed control ũh, state ȳh and adjoint state p̄h for
Dirichlet boundary conditions on anisotropic graded meshes (µ = 0.4)

ndof ‖ū− ũh‖ eoc ‖ȳ − ȳh‖ eoc ‖p̄− p̄h‖ eoc

224 2.31e−01 1.31e−02 2.58e−04
2349 6.58e−02 1.60 3.72e−03 1.60 8.89e−05 1.36

21299 1.74e−02 1.81 1.08e−03 1.68 3.47e−05 1.28
74849 7.80e−03 1.91 5.19e−04 1.76 1.79e−05 1.59

180999 4.37e−03 1.96 2.99e−04 1.87 1.05e−05 1.81
357749 2.79e−03 1.97 1.94e−04 1.92 6.84e−06 1.88
623099 1.94e−03 1.98 1.35e−04 1.94 4.80e−06 1.91
995049 1.42e−03 1.98 9.98e−05 1.96 3.55e−06 1.94

Dirichlet boundary conditions We consider the optimal control problem (5.33) with
the state equation

−∆y = u+ f in Ω, y = 0 on ∂Ω.

The domain Ω is chosen as

Ω = {(r cosϕ, r sinϕ, z) ∈ R3 : 0 < r < 1, 0 < ϕ < ω0, 0 < z < 1}.

The functions f and yd are defined such that

ȳ(r, ϕ, z) = z(1− z)(rλ − rα) sinλϕ,

p̄(r, ϕ, z) = νz(1− z)(rλ − rα) sinλϕ,

ū(r, ϕ, z) = Π[−0.05,10.0]

(
−1

ν
p̄

)
is the exact solution of the optimal control problem. We set ω0 = 11

6 π, ν = 10−3 and
α = 5

2 . Furthermore, we have λ = π
ω = 6

11 .

In Table 5.3 one can find the values for the errors ‖ū − ũh‖L2(Ω), ‖ȳ − ȳh‖L2(Ω) and
‖p̄− p̄h‖L2(Ω) as well as the estimated rates of convergence for different numbers of degrees
of freedom on an anisotropic graded mesh with µ = 0.4. One can observe the predicted
convergence rate of 2 in all three variables. Table 5.4 shows the values for quasi-uniform
meshes (µ = 1). The convergence rates are significantly less than 2, but larger than the
rate of 2λ = 12/11 as expected from the theory. However this is an asymptotic result for
a region near the edge. Nevertheless, a comparison of both tables reveals a significant
improvement of the convergence rates on appropriately graded meshes.

Neumann boundary conditions As second example we consider the optimal control
problem (5.33) with the state equation

−∆y + y = u+ f in Ω,
∂y

∂n
= 0 on ∂Ω.
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Table 5.4: L2(Ω)-error of the computed control ũh, state ȳh and adjoint state p̄h for
Dirichlet boundary conditions on quasi-uniform meshes (µ = 1.0)

ndof ‖ū− ũh‖ eoc ‖ȳ − ȳh‖ eoc ‖p̄− p̄h‖ eoc

224 1.37e−01 6.28e−03 1.64e−04
2349 3.71e−02 1.67 1.96e−03 1.48 6.13e−05 1.26

21299 1.21e−02 1.52 7.97e−04 1.23 2.86e−05 1.04
74849 6.42e−03 1.52 4.76e−04 1.23 1.67e−05 1.29

180999 4.17e−03 1.47 3.31e−04 1.23 1.13e−05 1.34
357749 3.02e−03 1.42 2.52e−04 1.21 8.30e−06 1.34
623099 2.34e−03 1.38 2.02e−04 1.19 6.50e−06 1.32
995049 1.89e−03 1.37 1.68e−05 1.19 5.30e−06 1.32

We choose Ω, ω0, ν and α like above in the case of Dirichlet boundary conditions. The
functions f and yd are defined such that

ȳ(r, ϕ, z) =

(
2

3
z3 − z2

)
(rλ − rα) cosλϕ,

p̄(r, ϕ, z) = −ν
(

2

3
z3 − z2

)
(rλ − rα) cosλϕ,

ū(r, ϕ, z) = Π[−0.05,10.0]

(
−1

ν
p̄

)
is the exact solution of the optimal control problem.

Tables 5.5 and 5.6 show the values for the errors ‖ū − ũh‖L2(Ω), ‖ȳ − ȳh‖L2(Ω) and
‖p̄− p̄h‖L2(Ω) as well as the estimated rates of convergence for different numbers of degrees
of freedom for graded and quasi-uniform meshes, respectively. On the graded meshes
(µ = 0.4) one observes a convergence rate of 2 in all three variables as predicted by the
theory. On quasi-uniform meshes (µ = 1) the convergence rate in the control is about
2λ = 12/11 ≈ 1.09. The rates for state and adjoint state are slightly better but still
significantly smaller than two. This means that mesh grading yields also in this case a
markable improvement in the error reduction.

5.2.3 Nonsmooth coefficients

In this subsection we consider the optimal control problem (5.33) with state equation (4.79).

5.2.3.1 Regularity

As one could already observe for the boundary value problem the regularity properties
in the subdomains Ωi are similar to those of scalar elliptic equations in corner domains.
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Table 5.5: L2(Ω)-errors of the computed control ũh, state ȳh and adjoint state p̄h for
Neumann boundary conditions on anisotropic graded meshes (µ = 0.4)

ndof ‖u− ũh‖ eoc ‖y − ȳh‖ eoc ‖p− p̄h‖ eoc

576 3.86e−02 4.12e−03 3.62e−04
3751 1.19e−02 1.88 1.15e−03 2.04 9.33e−05 2.17

26901 3.34e−03 1.94 3.02−04 2.04 2.35e−05 2.10
87451 1.54e−03 1.98 1.36e−04 2.03 1.05e−05 2.05

203401 8.78e−04 1.99 7.70e−05 2.02 5.92e−06 2.04
392751 5.67e−04 1.99 4.94e−05 2.02 3.79e−06 2.03
673501 3.97e−04 1.98 3.44e−05 2.02 2.63e−06 2.03

1063651 2.94e−04 1.98 2.53e−05 2.02 1.94e−06 2.02

Table 5.6: L2(Ω)-errors of the computed control ũh, state ȳh and adjoint state p̄h for
Neumann boundary conditions on quasi-uniform meshes (µ = 1.0)

ndof ‖u− ũh‖ eoc ‖y − ȳh‖ eoc ‖p− p̄h‖ eoc

576 4.61e−02 5.28e−03 4.78e−04
3751 1.79e−02 1.52 1.82e−03 1.71 1.50e−04 1.86

26901 8.15e−03 1.20 7.50−04 1.35 5.26e−05 1.59
87451 5.27e−03 1.11 4.63e−04 1.23 2.99e−05 1.44

203401 3.88e−03 1.09 3.33e−04 1.18 2.04e−05 1.36
392751 3.06e−03 1.08 2.58e−04 1.16 1.53e−05 1.31
673501 2.52e−03 1.08 2.10e−04 1.14 1.22e−05 1.27

1063651 2.13e−03 1.08 1.77e−05 1.13 1.01e−05 1.25
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Only the computation of the singular exponent differs. We summarize the regularity in
the whole domain Ω in the following lemma.

Lemma 5.44. For the solution ū of the optimal control problem (5.33) with state equation
(4.79) and the associated state ȳ = Sū and adjoint state p̄ = Sū one has ū ∈ C0,σ(Ω̄), ȳ ∈
C0,σ(Ω̄) ∩ V2,p

β (Ω) and p̄ ∈ C0,σ(Ω̄) ∩ V2,p
β (Ω) for some σ ∈ (0, 1], for all p ∈ (1,∞) and

β > 2− λ− 2/p with λ according to (4.82). The a priori estimates

‖ȳ‖C0,σ(Ω̄) + ‖ȳ‖V2,p
β (Ω)

≤ c‖ū‖L∞(Ω) ≤ c‖ū‖C0,σ(Ω̄)

‖p̄‖C0,σ(Ω̄) + ‖p̄‖V2,p
β (Ω)

≤ c
(
‖ū‖C0,σ(Ω̄) + ‖ȳd‖C0,σ(Ω̄)

)
hold for all p ∈ (1,∞) and β > 2− λ− 2/p.

Proof. To prove the assertion one can apply the same argumentation in every subdomain
Ωi, i = 1, . . . , n, as in Lemma 5.16 using Lemma 4.26 instead of Lemma 4.1.

Corollary 5.45. For p < 2/(1− λ) the estimate

‖p̄‖W1,p(Ω) ≤ c
(
‖ū‖C0,σ(Ω̄) + ‖ȳd‖C0,σ(Ω̄)

)
holds. Furthermore, the inequality

‖p̄‖V1,∞
β (Ω)

≤ c
(
‖ū‖C0,σ(Ω̄) + ‖ȳd‖C0,σ(Ω̄)

)
is true for β > 1− λ.

Proof. For p < 2/(1− λ) one can choose β = 1 in Lemma 5.44 such that the embedding
V2,p
β (Ω) ↪→ V2−β,p(Ω) ↪→W1,p(Ω) yields the first assertion. For the second assertion we

refer to the proof of Corollary 1 in [15]. The same arguments can be applied in every
subdomain Ωi, i = 1, . . . , n, and the desired inequality follows directly.

5.2.3.2 Approximation error estimates in L2(Ω)

Let the domain Ω as introduced in Section 4.3 be discretized by an isotropic graded mesh
as described in (2.12). We assume again that the triangulation is aligned with the partition
of Ω (comp. Subsection 4.3.2). The approximate state yh = Shu is the unique solution of

aI(yh, vh) = (u, vh)L2(Ω) ∀vh ∈ V0h

with bilinear form aI from (4.81) and V0h defined in (4.83). The approximate adjoint state
ph = Sh(y − yd) is the unique solution of

aI(ph, vh) = (y − yd, vh)L2(Ω) ∀vh ∈ V0h.
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5.2 Scalar elliptic state equation

Again Ph is the affine operator that maps a given control u to the corresponding adjoint
state ph, Phu = S∗h(Shu− yd).
In the following we show that Assumptions VAR1 and VAR2 as well as PP1–PP4 hold
and therefore the error estimates of Theorems 5.7 and 5.14 are valid. Although the proofs
are similar to those in the sections above we use this example to illustrate how one can
profit from the general formulation in Section 5.1. The assumptions given there allow to
extend the results very easily to the case where the interface problem of the Laplacian
serves as state equation. The basis has been formed in Section 4.3 with the regularity
results and finite element error estimates for the state equation.

Since the regularity parameter λ can be smaller than 1/2 it is important to guarantee
the boundedness of Sh and S∗h also in this case. The proof of Lemma 5.17 works also for
discontinuous coefficients in the differential operator. This means this lemma holds true
also on meshes with µ < λ and Sh and S∗h being the solution operator for the discretized
interface problem. Consequently, Assumptions VAR1 and PP1 hold true.

Variational discrete approach We can directly formulate the error estimates for the
variational discrete approach introduced in Subsection 5.1.2.1.

Theorem 5.46. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.79) and ūsh the solution of the corresponding variational discrete problem (5.8)
on a mesh of type (2.12) with grading parameter µ < λ. With the associated states ȳ = Sū,
ȳsh = Shū

s
h and adjoint states p̄ = Pū, p̄sh = Phū

s
h the estimates

‖ū− ūsh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
,

‖ȳ − ȳsh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
,

‖p̄− p̄sh‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
hold with a constant c independent of h.

Proof. We have verified Assumption VAR1 above. The finite element error estimates of
Assumption VAR2 are proved in Theorem 4.29 taking into account that Sh = S∗h. Then
Theorem 5.7 yields the assertion.

Postprocessing approach For the postprocessing approach of Subsection 5.1.2.2 it
remains to check Assumptions PP3–PP4 since Assumption PP2 is already proved in
Theorem 4.29.

Indeed, the proofs of Assumptions PP3 and PP4 are very similar to the case treated in
Subsection 5.2.2. Nevertheless we sketch them here since one does not have to exploit
anisotropic features as in the case of edge singularities such that the proofs may become
clearer.
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5 Error estimates for PDE-constrained Optimal Control Problems

Before we state the next lemma, we should mention that Lemma 5.34 holds true in the
two-dimensional setting, too [15, Lemma 5]. Furthermore Lemma 5.35 holds already for
p > 2 since L∞(Ω) ↪→W 1,p(Ω) for space dimension two.

As in Subsection 5.2.2 we use the sets

Ks =
⋃

{T∈Th:rT=0}

T and Kr = Ω\K̄s.

Lemma 5.47. The estimate

‖Qhp̄−Rhp̄‖L2(Ω) ≤ ch2
(
‖ū‖L∞(Ω + ‖yd‖L∞(Ω)

)
is true on a mesh of type (2.12) with grading parameter µ < λ.

Proof. We split

‖Qhp̄+Rhp̄‖2L2(Ω) =
∑
T⊂Kr

‖Qhp̄+Rhp̄‖2L2(T ) +
∑
T⊂Ks

‖Qhp̄+Rhp̄‖2L2(T ). (5.95)

For T ∈ Kr we can write with the use of [15, Lemma 5]

‖Qhp̄+Rhp̄‖2L2(T ) =
1

|T |

∣∣∣∣∫
T

(p̄−Rhp̄) dx

∣∣∣∣2 ≤ ch4|p̄|2
V 2,2

2−2µ(T )
.

This means

‖Qhp̄+Rhp̄‖2L2(Kr)
≤ ch2

( ∑
T⊂Kr

|p̄|2
V 2,2

2−2µ(T )

)1/2

≤ ch2‖p̄‖V2,2
2−2µ(Ω)

. (5.96)

In the following we choose p > 2, p ≥ 1/(1− µ) and p < 2/(1− λ). This is possible since
λ > 0. Now we can apply Lemma 5.35 and get∑

T⊂Ks

‖Qhp̄−Rhp̄‖2L2(T ) ≤
∑
T⊂Ks

|T |1−2/ph2
T |p̄|2W 1,p(T )

≤ c
∑
T⊂Ks

h
4−4/p
T |p̄|2W 1,p(T )

≤ c

( ∑
T⊂Ks

h
(4−4/p) p−2

p

T

) p
p−2
( ∑
T⊂Ks

|p̄|p
W 1,p(T )

)2/p

where we have used the Hölder inequality in the last step. Since Ks contains only a finite
number of elements we can conclude from (2.12) and 1− 1/p ≥ µ

‖Qhp̄−Rhp̄‖2L2(Ks)
≤ ch

4−4/p
µ

(∑
T∈Ks

|p̄|p
W 1,p(T )

)2/p

≤ ch4|p̄|2W1,p(Ω).

This yields together with (5.95) and (5.96) and the a priori estimates of Lemma 5.44 and
Corollary 5.45 the assertion.
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5.2 Scalar elliptic state equation

As for the proof of Lemma 5.40 we split the domain Ω into two parts,

K1 :=
⋃

T∈Th:ū/∈V 2,2
2−2µ(T )

T, K2 :=
⋃

T∈Th:ū∈V 2,2
2−2µ(T )

T.

We assume again (comp. (5.85))

|K1| ≤ ch. (5.97)

Lemma 5.48. The estimate

(Qhū−Rhū, vh)L2(Ω) ≤ ch2‖vh‖L∞(Ω)

(
‖ū‖L∞(Ω + ‖yd‖L∞(Ω)

)
∀vh ∈ V0h

holds on a mesh of type (2.12) with grading parameter µ < λ.

Proof. We introduce the domains K1,r = K1\K̄s and K2,r = K2\K̄s and do the same
splitting as in the proof of Lemma 5.40, compare (5.86). With Lemma 5.34 and (2.12) one
can conclude∑

T⊂K2,r

‖vh‖L∞(T )

∫
T

(ū−Rhū) dx ≤ c
∑

T⊂K2,r

‖vh‖L∞(T )h
2
T |ū|H2(T )

≤ ch2‖vh‖L∞(Ω)

∑
T⊂K2,r

|ū|
V 2,2

2−2µ(T )
(5.98)

≤ ch2‖vh‖L∞(Ω)|K2,r|1/2|ū|V2,2
2−2µ(Ω)

. (5.99)

With the use of Lemma 5.34 and (5.97) it follows∑
T⊂K1,r

‖vh‖L∞(T )

∫
T

(ū−Rhū) dx ≤
∑

T⊂K1,r

‖vh‖L∞(T )|T |hT |ū|W 1,∞(T )

≤ ch2‖vh‖L∞(Ω)|r1−µū|W1,∞(Ω). (5.100)

Finally we estimate for the elements at the corner∑
T⊂Ks

‖vh‖L∞(T )

∫
T

(ū−Rhū) dx ≤ c
∑
T⊂Ks

|T |‖vh‖L∞(T )‖ū‖L∞(T )

≤ ch2‖vh‖L∞(Ω)‖ū‖L∞(Ω), (5.101)

where we have used the fact that Ks contains only a finite number of elements independent
of h. Since ū is constant on the active parts and equal to −p̄/ν on the inactive part, we
can substitute ū with p̄ in the seminorms in inequalities (5.99) and (5.100). The a priori
estimates in Lemma 5.44 and Corollary 5.45 yield then together with (5.99)–(5.101) and
the splitting (5.86) the assertion.

We summarize the results in the following theorem.
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5 Error estimates for PDE-constrained Optimal Control Problems

Theorem 5.49. Let ū be the solution of the optimal control problem (5.33) with the state
equation (4.79) and ūh the corresponding discrete solution of (5.12) on a mesh of type
(2.12) with µ < λ. Furthermore, let ȳ = Su, p̄ = Pū, ȳh = Shūh, p̄h = Shūh be the
associated states and adjoint states and ũh be the postprocessed control constructed by
(5.14). Then the estimates

‖ȳ − ȳh‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

‖p̄− p̄h‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

‖ū− ũh‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
hold true.

Proof. The assertion follows from Theorem 5.14. Assumption PP1 is verified on page 127,
Assumption PP2 in Theorem 4.29, Assumption PP3 in Lemma 5.47 and Assumption PP4
in Lemma 5.48.

5.2.3.3 Numerical test

We consider the optimal control problem (5.33) with the state equation (4.79),

−ki∆yi = ui + fi in Ωi, i = 1, 2, 3,

yi(r, ωi) = yi+1(r, ωi) i = 1, 2,

ki
∂yi(r, ωi)

∂ϕ
= ki+1

∂yi+1(r, ωi)

∂ϕ
i = 1, 2,

y = 0 on ∂Ω,

and set

Ωi =
{

(r cosϕ, r sinϕ) ∈ R2 : 0 < r < 1, (i− 1)
π

5
< ϕ < i

π

5

}
for i = 1, 2, 3,

k1 = k3 = 1, k2 = 50,

ω1 = ω2 = ω3 =
π

5
.

In [100, Example 2.29] it is shown that the smallest positive solution λ of (4.82) fulfills a
trigonometrical equation. We used this fact to compute λ in our case as λ ≈ 0.31569. The
data f and yd are chosen such that

ȳi =
1

ν
p̄i =

1

ki
(rλ − r5/2) sin

(
π

ωi
ϕ

)
,

ūi = Π[−0.3,10]

(
−1

ν
p̄i

)
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5.3 Stokes equations as state equation

Figure 5.3: Graded mesh with µ = 0.3 and quasi-uniform mesh (µ = 1).

Table 5.7: L2(Ω)-errors of the computed control ũh, state ȳh and adjoint state p̄h on graded
meshes (µ = 0.3)

ndof ‖u− ũh‖ eoc ‖y − ȳh‖ eoc ‖p− p̄h‖ eoc

126 1.85e−01 2.40e−02 2.39e−04
551 4.96e−02 1.78 6.38e−03 1.80 7.42e−05 1.58

2301 1.23e−02 1.95 1.63e−03 1.91 1.99e−05 1.84
6567 4.39e−03 1.97 5.85e−04 1.96 7.19e−06 1.94

23126 1.26e−03 1.98 1.68e−04 1.98 2.08e−06 1.97
93126 3.15e−04 1.99 4.21e−05 1.99 5.20e−07 1.99

373751 7.87e−05 1.99 1.05e−05 2.00 1.30e−07 1.99
1497501 1.96e−05 2.00 2.63e−06 2.00 3.25e−08 2.00

is the exact solution where ν = 10−3. On graded meshes with µ = 0.3 < λ one gets the
predicted convergence rate of 2 for the L2-error in control, state and adjoint state, see
Table 5.7. On quasi-uniform meshes (µ = 1) one observes a reduced convergence rate of
approximately 1 + λ, see Table 5.8. An example of the corresponding meshes is given in
Figure 5.3.

5.3 Stokes equations as state equation

In this section we consider the optimal control problem (5.1) with the Stokes equations as
state equations. The notation in Section 5.1 is motivated by the standard notation for the
case of a scalar elliptic state equation. In the Stokes equations there occur velocity and
pressure, such that the state in the optimal control problem has actually two components.
As we may distinguish between velocity and pressure we slightly change the notation
compared to Section 5.1. As in Section 4.4 about the finite element error analysis of the
Stokes equations we denote by v the velocity field and by q the pressure. The velocity
field v plays the role of the state y in Section 5.1. Consequently, we substitute yd by vd,
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5 Error estimates for PDE-constrained Optimal Control Problems

Table 5.8: L2(Ω)-errors of the computed control ũh, state ȳh and adjoint state p̄h on
quasi-uniform meshes (µ = 1.0)

ndof ‖u− ũh‖ eoc ‖y − ȳh‖ eoc ‖p− p̄h‖ eoc

126 5.28e−02 3.52e−02 8.79e−05
551 1.63e−02 1.59 1.42e−02 1.23 2.51e−05 1.70

2301 6.13e−03 1.37 5.71e−03 1.27 7.78e−06 1.64
6567 3.03e−03 1.34 2.90e−03 1.29 3.47e−06 1.54

23126 1.30e−03 1.35 1.28e−03 1.30 1.39e−06 1.45
93126 5.17e−04 1.32 5.13e−04 1.31 5.31e−07 1.38

373751 2.07e−04 1.32 2.06e−04 1.31 2.09e−07 1.34
1497501 8.28e−05 1.32 8.27e−05 1.31 8.32e−08 1.33

such that the optimal control problem (5.1) reads as

J (ū) = min
u∈Uad

J(u)

J(u) :=
1

2
‖Su− vd‖2L2(Ω)d +

ν

2
‖u‖2L2(Ω).

(5.102)

Here, S is the solution operator of the Stokes equations

−∆v −∇q = u in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω,

and maps the control u to the velocity v. As in the scalar elliptic case, we assume the
desired velocity field vd to be Hölder continuous, i.e. vd ∈ C0,σ(Ω̄)d, σ ∈ (0, 1). As for the
adjoint state the same notational problems occur as for the state, we introduce w and r as
adjoint velocity field and adjoint pressure, respectively. Then the adjoint problem reads
as, see, e.g., [112],

−∆w −∇r = v − vd in Ω,

∇ · w = 0 in Ω,

w = 0 on ∂Ω.

and its corresponding weak formulation

Find (w, r) ∈ X ×M :

a(ϕ,w)−b(ϕ, r) = (f, ϕ) ∀ϕ ∈ X
b(v, ψ) = 0 ∀ψ ∈M

with bilinear forms a and b as defined in Section 4.4. As in case of a scalar elliptic
state equation we denote by S∗ the solution operator of the adjoint problem, that means

132



5.3 Stokes equations as state equation

w = S∗(v − vd). We introduce also the affine operator P via w = S∗(Su − vd) = Pu.
Taking the modified notation into account the assertions of Theorem 5.4 and Lemma 5.6
can be reformulated like in the following lemma. Notice that in our case Z = U = L2(Ω)d.

Lemma 5.50. The optimal control problem (5.102) has a unique solution ū. The varia-
tional inequality

(w̄ + νū, u− ū)U ≥ 0 ∀u ∈ Uad (5.103)

is a necessary and sufficient condition for the optimality of ū. The projection formula

ū = ΠUad

(
−1

ν
w̄

)
is an equivalent formulation for condition (5.103). Here, w̄ = Pū is the corresponding
adjoint velocity.

5.3.1 Prismatic domain

In this subsection we derive L2-error estimates on anisotropic meshes for the optimal
control problem (5.102) with the state equation (4.127), i.e., we consider the Stokes
equations as state equation in the prismatic domain Ω = G × Z ⊂ R3 with a bounded
polygonal domain G ⊂ R2 and a interval Z := (0, z0) ⊂ R. We assume that G has only
one corner with interior angle ω > π at the origin. The following results are originally
published in [102].

5.3.1.1 Regularity

Lemma 5.51. Let ū be the solution of the optimal control problem (5.102) with the state
equation (4.127). For the associated velocity field v̄ = Sū and adjoint velocity field w̄ = Sū
one has ū ∈ C0,σ(Ω̄)3, v̄ ∈ C0,σ(Ω̄)3 and w̄ ∈ C0,σ(Ω̄)3 for some σ ∈ (0, 1/2). The a priori
estimates

‖v̄‖C0,σ(Ω̄)3 ≤ c‖ū‖L∞(Ω) ≤ c‖ū‖C0,σ(Ω̄)3 , (5.104)

‖w̄‖C0,σ(Ω̄)3 ≤ c
(
‖ū‖L∞(Ω)3 + ‖yd‖C0,σ(Ω̄)3

)
(5.105)

are valid.

Proof. For a value µ < λ it is 1−µ > 1−λ. From the fact that ū ∈ L2(Ω) this yields with
Lemma 4.36 that v̄ ∈ V 2,2

1−µ(Ω)3. Since λ > 1/2 (see Remark 4.37) one can always choose

a value for µ such that 1/2 < µ < λ. Then the embedding V 2,2
1−µ(Ω) ↪→ V

2−(1−µ),2
0 (Ω) ↪→

W 1+µ,2(Ω) ↪→ L∞(Ω) holds according to [113, Lemma 1.2], the Sobolev embedding theorem
and the fact that 1 + µ− 3/2 > 0. This yields v̄ ∈ L∞(Ω)3 and therefore v̄− vd ∈ L∞(Ω)3.

133



5 Error estimates for PDE-constrained Optimal Control Problems

Applying Lemma 4.36 to the adjoint equation yields w̄ ∈ V 2,p
β (Ω)3 for all p > 1 and

β > 2− λ− 2/p. In the following we choose β such that

2− λ− 2

p
< β < 2− 3

p
− σ.

This is possible as long as λ > 1/p+ σ. Since σ < 1/2 and λ > 1/2 this can be guaranteed
for p large enough. With this setting the embedding

V 2,p
β (Ω) ↪→ V 2−β,p

0 (Ω) ↪→W 2−β,p(Ω) ↪→ C0,σ(Ω̄) (5.106)

holds, where we have utilized [113, Lemma 1.2] and Sobolev’s embedding theorem again.
It follows w̄ ∈ C0,σ(Ω̄)3. The projection formula (5.6) yields ū ∈ C0,σ(Ω̄)3. With the same
argumentation for the state equation one can conclude v̄ ∈ C0,σ(Ω̄)3. The estimate (5.104)
follows then from Lemma 4.36,

‖v̄‖C0,σ(Ω̄)3 ≤ c‖v̄‖V 2,p
β (Ω)3 ≤ c‖ū‖Lp(Ω)3 ≤ c‖ū‖L∞(Ω)3 ≤ c‖ū‖C0,σ(Ω̄)3

where we have chosen p large enough. For the proof of the inequality (5.105) we conclude
with the use of Lemma 4.36 and the embedding (5.106)

‖w̄‖C0,σ(Ω̄)3 ≤ c‖w̄‖V 2,p
β (Ω)3 ≤ c‖v̄ − vd‖Lp(Ω)3 ≤ c

(
‖v̄‖L∞(Ω)3 + ‖vd‖L∞(Ω)3

)
.

In the last step we have used the embedding L∞(Ω) ↪→ Lp(Ω) and the triangle inequality.
The embedding C0,σ(Ω̄) ↪→ L∞(Ω) and the application of estimate (5.104) yield finally
inequality (5.105).

In the proof of the foregoing lemma we have implicitly also shown the regularity of v̄ and
w̄ in weighted Sobolev spaces. We collect these results in the following corollary.

Corollary 5.52. Let ū be the solution of the optimal control problem (5.102) with the
state equation (4.127). For the associated velocity field v̄ = Sū and adjoint velocity field
w̄ = Sū one has v̄ ∈ V 2,p

β (Ω)3, w̄ ∈ V 2,p
β (Ω)3 for β > 2− λ− 2/p. The a priori estimates

‖v̄‖
V 2,p
β (Ω)3 ≤ c‖ū‖L∞(Ω)3 ≤ c‖ū‖C0,σ(Ω̄)3 , (5.107)

‖w̄‖
V 2,p
β (Ω)3 ≤ c

(
‖ū‖L∞(Ω)3 + ‖vd‖L∞(Ω)3

)
(5.108)

hold for some σ ∈ (0, 1/2).

Corollary 5.53. Let w̄ be the optimal adjoint velocity for the optimal control problem
(5.102) with the state equation (4.127). Then one has w̄ ∈W 1,p(Ω)3 and

‖w̄‖W 1,p(Ω)3 ≤ c
(
‖ū‖L∞(Ω)3 + ‖vd‖L∞(Ω)3

)
(5.109)

with p < 2
1−λ . Furthermore it is w̄ ∈ V 1,p

1−µ(Ω) and

‖w̄‖
V 1,p

1−µ(Ω)3 ≤ c
(
‖ū‖L∞(Ω)3 + ‖vd‖L∞(Ω)3

)
(5.110)

for all p > 1 and µ < λ+ 2
p .
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Proof. Since p < 2
1−λ it is 1 > 2 − λ − 2

p . Therefore we can choose β = 1 in Corollary

5.52. Since V 2,p
1 (Ω)3 ↪→ V 1,p

0 (Ω)3 ↪→W 1,p(Ω)3 the assertion (5.109) follows from inequality
(5.108). For the proof of (5.110) we set β = 2− µ in (5.108). This is possible due to the
fact that 2− µ > 2− λ− 2

p since µ < λ+ 2
p . The embedding V 2,p

2−µ(Ω) ↪→ V 1,p
1−µ(Ω) yields

the assertion.

Lemma 5.54. Let vd ∈ C0,σ(Ω̄), σ ∈ (0, 1/2), and γ > 1− λ. Then the inequality

‖rγ∇Pū‖L∞(Ω)3 ≤ c
(
‖ū‖C0,σ(Ω̄)3 + ‖vd‖C0,σ(Ω̄)3

)
is valid.

Proof. In order to prove the assertion we utilize Theorem 6.1 of [92]. We set l = 2 and
δ = β in that Theorem. This results in the condition 2−λ < δ− σ < 2, what is equivalent
to

1− λ < δ − σ − 1 < 1. (5.111)

Since v̄ − vd = Sū− vd ∈ C0,σ(Ω̄) (comp. Lemma 5.51) we can conclude Pu ∈ C2,σ
δ,δ (Ω)3

for δ satisfying (5.111). The definition of this weighted Hölder space is given on page 1013
of [92]. Taking this definition into account, one can conclude

rδ−1−σ∇Pū ∈ L∞(Ω)3.

If we set γ = δ − σ − 1, it finally follows

‖rγ∇Pū‖L∞(Ω)3 ≤ c‖v̄ − vd‖C0,σ(Ω)3 for γ > 1− λ.

The application of the triangle inequality and inequality (5.104) yield the assertion.

5.3.1.2 Approximation error estimate in L2(Ω)

As in Subsection 4.4.3 we consider an anisotropic triangulation of Ω following (2.13). The
state and adjoint state equation are discretized by a non-conforming finite element scheme,
namely the lower order Crouzeix-Raviart finite element space Xh,

Xh :=

{
vh ∈ L2(Ω)3 : vh|T ∈ (P1)3 ∀T,

∫
F

[vh]F = 0 ∀F
}

for the velocity and the space of piecewise constant functions Mh,

Mh :=

{
qh ∈ L2(Ω) : qh|T ∈ P0 ∀T,

∫
Ω
qh = 0

}
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for the pressure. The solution mappings Sh and Sph of the discretized state equation are
defined such that one has for all (ϕh, ψh) ∈ Xh ×Mh and u ∈ U

ah(Shu, ϕh) + bh(ϕh, S
p
hu) = (u, ϕh) and bh(Shu, ψh) = 0.

with ah, bh as in (4.87). Analogously, we introduce S∗h and Sp,∗h as solution mappings of
the discrete adjoint equation and the operator Ph such that Phu = S∗h(Shu− vd) = wh.

In the remainder of this subsection we will verify Assumptions VAR1 and VAR2 and
Assumptions PP1–PP4 and thus prove the error estimates stated in Theorem 5.7 and
Theorem 5.14, respectively. In a first step we check Assumptions VAR1 and PP1. To this
end we recall a discrete Poincaré inequality as it is proved in [82].

Lemma 5.55. [82, Corollary 5.4] The discrete Poincaré inequality

‖vh‖L2(Ω)d ≤ c‖vh‖Xh ∀vh ∈ Xh

holds.

With this lemma we can prove the boundedness of Sh and S∗h which is not obvious because
of the anisotropic discretization.

Lemma 5.56. The discrete solution operators Sh and S∗h are bounded,

‖Sh‖U→U ≤ c, ‖S∗h‖U→U ≤ c,
‖Sh‖U→Xh ≤ c, ‖S∗h‖U→Xh ≤ c,

‖Sh‖U→L∞(Ω)d ≤ c, ‖S∗h‖U→L∞(Ω)d ≤ c

with constants c independent of h.

Proof. We show this lemma for the operator Sh, the proofs for S∗h are analogous. The first
estimate follows with

‖Shu‖U ≤ ‖Su‖U + ‖Shu− Su‖U
from the boundedness of S as operator from U to U and inequality (4.92). The subtraction
of the equations (4.88) and (4.89) with vh = Shu yields

ah(Shu, ϕh) + bh(ϕh, qh)− bh(Shu, ψh) = (u, ϕh) ∀(ϕh, ψh) ∈ Xh ×Mh.

If one chooses (ϕh, ψh) = (Shu, qh) this implies

ah(Shu, Shu) = (u, Shu).

Therefore we can estimate

‖Shu‖2Xh = ah(Shu, Shu) = (u, Shu)

≤ c‖u‖U‖Shu‖U ≤ c‖u‖U‖Shu‖Xh ,
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where we have used the Cauchy-Schwarz inequality and the discrete Poincaré inequality
from Lemma 5.55. Division by ‖Shu‖Xh yields ‖Shu‖Xh ≤ c‖u‖U and the second estimate
is proved. The third estimate follows from the boundedness of S and inequality (4.94),

‖Shu‖L∞(Ω)d ≤ ‖Su− Shu‖L∞(Ω)d + ‖Su‖L∞(Ω)d ≤ c‖u‖U .

Variational discrete approach The discrete control ūsh is defined via (comp. (5.8))

Jh(ūsh) = min
u∈Uad

Jh(u),

Jh(u) :=
1

2
‖Shu− vd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω).

(5.112)

The boundedness of the operators Sh and S∗h is proved in Lemma 5.56 such that Assumption
VAR1 is guaranteed. Assumption VAR2 follows from the finite element error estimates in
Lemma 4.39. Therefore we can summarize the error estimates that are given in Theorem
5.7 in the following theorem.

Theorem 5.57. Let ū be the solution of the optimal control problem (5.102) with the state
equation (4.127) and ūsh the corresponding variational discrete solution of (5.112) on a
mesh of type (2.13) with µ < λ. Furthermore, let v̄ = Su, w̄ = Pū, v̄sh = Shū

s
h, w̄sh = Shū

s
h

be the associated velocity and adjoint velocity. Then the estimates

‖v̄ − v̄sh‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
,

‖w̄ − w̄sh‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
,

‖ū− ũsh‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
are valid with a positive constant c independent of h.

Postprocessing approach For this approach we consider the discretized optimal control
problem

Jh(ūh) = min
uh∈Uad

h

Jh(uh),

Jh(uh) :=
1

2
‖Shuh − vd‖2L2(Ω) +

ν

2
‖uh‖2L2(Ω)

(5.113)

and improve the approximation of ū by a postprocessing step (comp. (5.14)),

ũh = Π[ua,ub]

(
−1

ν
w̄h

)
. (5.114)
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The Assumption PP1 is already proved in Lemma 5.56, Assumption PP2 follows from
Lemma 4.39.

It remains to check Assumptions PP3 and PP4. The regularity of the adjoint state plays
a crucial role in that proofs. Since the regularity properties of each component of the
velocity field of the Stokes problem are similar to those of the solution of the Poisson
equation one can think of a componentwise consideration of the arguments in the proofs of
Lemma 5.39 and Lemma 5.40. The drawback is that the results concerning the regularity
of the solution along the edge in the space Lp(Ω) for general p (comp. Lemma 4.17) are
not available for the Stokes problem. There we have only results for p = 2 (comp. Lemma
4.36). For this reason the proofs has to be modified for the Stokes problem.

Lemma 5.58. Let the mesh be graded according to (2.13) with µ < λ. Then the inequality

‖Qhw̄ −Rhw̄‖L2(Ω)3 ≤ ch2
(
‖ū‖C0,σ(Ω̄)3 + ‖vd‖C0,σ(Ω̄)3

)
holds.

Proof. We write

‖Qhw̄ −Rhw̄‖2L2(Ω)3 = ‖Qhw̄ −Rhw̄‖2L2(Kr)3 + ‖Qhw̄ −Rhw̄‖2L2(Ks)3 (5.115)

with Kr and Ks as defined in (5.79). First we prove the estimate in Kr. Notice, that one
has w̄ ∈ H2(Kr)

3. We write for each component w̄k, k = 1, 2, 3, of w̄ = (w̄1, w̄2, w̄3)

‖Qhw̄k −Rhw̄k‖2L2(Kr)
=
∑
T⊂Kr

‖Qhw̄k −Rhw̄k‖2L2(T )

=
∑
T⊂Kr

|T |−1

∣∣∣∣∫
T

(w̄k −Rhw̄k) dx

∣∣∣∣2 .
Now we can apply Lemma 5.34 and get

‖Qhw̄k −Rhw̄k‖2L2(Kr)
≤

∑
T⊂Kr

|T |−1

c|T |1/2 ∑
|α|=2

hαT ‖Dαw̄k‖L2(T )

2

≤ c
∑
T⊂Kr

∑
|α|=2

hαT ‖Dαw̄k‖L2(T )

2

≤ c
∑
T⊂Kr

ch2

 2∑
i=1

2∑
j=1

‖r2−2µ∂ijw̄k‖L2(T )+

2∑
i=1

‖r1−µ∂3iw̄k‖L2(T ) + ‖∂33w̄k‖L2(T )

)]2

≤ ch4

(
|w̄k|2V 2,2

2−2µ(Kr)
+ |∂3w̄k|2V 1,2

1−µ(Kr)
+ |∂33w̄k|2V 0,2

0 (Kr)

)
.
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This yields

‖Qhw̄ −Rhw̄‖L2(Kr)3 ≤ ch2

(
|w̄|2

V 2,2
2−2µ(Kr)3 + |∂3w̄|2V 1,2

1−µ(Kr)3 + |∂33w̄|2V 0,2
0 (Kr)3

)1/2

.

With the a priori estimates of Lemma 4.36, the embedding C0,σ(Ω̄) ↪→ L2(Ω) and Lemma
5.51 one gets

‖Qhw̄ −Rhw̄‖L2(Kr)3 ≤ ch2‖v − vd‖L2(Ω) ≤ ch2
(
‖ū‖C0,σ(Ω̄)3 + ‖v̄d‖C0,σ(Ω̄)3

)
. (5.116)

We proceed with the estimate in the subdomain Ks. We choose p and γ such that

p > 3, p <
2

1− λ
, p <

2

γ
, γ < 1− µ and γ > 1− λ. (5.117)

Since λ > 1
2 one has 3 < 2

1−λ . Further it is 3 < 2
γ if γ < 2

3 . This can be fulfilled since
2
3 > 1− λ. Finally 1− λ < 1− µ due to the fact that µ < λ. Altogether this means, that
there are actually p and γ that satisfy the assumptions in (5.117). From Corollary 5.53 one
has w̄ ∈W 1,p(Ω)3. Now we can apply Lemma 5.35 on every component w̄k, k = 1, 2, 3, of
w̄ and conclude

‖Qhw̄k −Rhw̄k‖2L2(Ks)
=
∑
T⊂Ks

‖Qhw̄k −Rhw̄k‖2L2(T )

≤ c
∑
T∈Ks

|T |1−2/p

∑
|α|=1

hαT ‖Dαw̄k‖Lp(T )

2

≤ c
∑
|α|=1

∑
T∈Ks

|T |1−2/ph2α
T ‖Dαw̄k‖2Lp(T ).

Since h2α
T ≤ ch2 for all |α| = 1, one can continue with Lemma 5.54,

‖Qhw̄k −Rhw̄k‖2L2(Ks)
≤ ch2

∑
T∈Ks

|T |1−2/p‖r−γrγ∇w̄k‖2Lp(T )

≤ ch2‖rγ∇w̄k‖2L∞(Ω)

∑
T⊂Ks

|T |1−2/p‖r−γ‖2Lp(T ). (5.118)

In the following we prove that the inequality∑
T⊂Ks

|T |1−2/p‖r−γ‖2Lp(T ) ≤ ch
2
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is valid. To this end we apply the Hölder inequality and get

∑
T⊂Ks

|T |1−2/p‖r−γ‖2Lp(T ) ≤

[ ∑
T⊂Ks

(
|T |1−2/p

) p
p−2

] p−2
p
[ ∑
T⊂Ks

‖r−γ‖pLp(T )

] 2
p

≤ c

( ∑
T⊂Ks

|T |

) p−2
p
(∫ h1/µ

0
r−γpr dr

) 2
p

≤ c|Ks|
p−2
p

(
h

1
µ

(2−γp)
) 2
p

where we have used γ < 2
p (comp. (5.117)) in the last step. Because |Ks| ≤ ch2/µ one can

conclude ∑
T⊂Ks

|T |1−2/p‖r−γ‖2Lp(T ) ≤ ch
2
µ

(
p−2
p

+ 2−γp
p

)
= ch

2
µ

(1−γ) ≤ ch2

using the fact that µ < 1− γ. This estimate yields together with (5.118) the inequality

‖Qhw̄ −Rhw̄‖L2(Ks)3 ≤ ch2‖rγ∇w̄‖L∞(Ω)3

and with Lemma 5.54

‖Qhw̄ −Rhw̄‖L2(Ks)3 ≤ ch2
(
‖ū‖C0,σ(Ω̄)3 + ‖v̄d‖C0,σ(Ω̄)3

)
.

Together with estimate (5.116) and equality (5.115) this yields the assertion.

The following lemma proves Assumption PP4. Due to the weaker regularity results for
derivatives of the solution in edge direction, we need the slightly stronger condition

#K1 ≤ ch−2 (5.119)

in comparison to (5.85) for the set K1 defined in (5.84).

Lemma 5.59. Let Th be an anisotropic, graded mesh satisfying (2.13) with µ < λ. Let ū
be the solution of the optimal control problem (5.102). Then the estimate

(Qhū−Rhū, ϕh)L2(Ω) ≤ ch
2‖ϕh‖L∞(Ω)

(
‖ū‖L∞(Ω) + ‖vd‖C0,σ(Ω̄)

)
is valid for all ϕh ∈ Xh provided that the assumption (5.119) holds.

Proof. For the proof we refer to the proof of Lemma 5.40. If one substituted vh by ϕh in
the estimates (5.86) and (5.87), they are valid for every component of ū = (u1, u2, u3) and
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of ϕh = (ϕh,1, ϕh,2, ϕh,3). We only have to modify the estimate for K1,r since we do not
have an estimate of type (5.74) for ∂3w̄. Therefore we write∑
T⊂K1,r

‖ϕh,k‖L∞(T )|T |
∑
|α|=1

hαT ‖Dαūk‖L∞(T )

≤ c‖ϕh,k‖L∞(Ω)

∑
T⊂K1,r

|T |

(
hr1−µ

T

2∑
i=1

‖∂iūk‖L∞(T ) + h‖∂3ūk‖L∞(T )

)

≤ c‖ϕh,k‖L∞(Ω)h
4
∑

T⊂K1,r

r2−2µ
T

(
2∑
i=1

‖r1−µ∂iūk‖L∞(T ) + rµ−1‖r1−µ∂3ūk‖L∞(T )

)
≤ ch4#K1,r‖ϕh,k‖L∞(Ω)‖r1−µ∇ūk‖L∞(K1,r)

≤ ch2‖ϕh,k‖L∞(Ω)‖r1−µ∇ūk‖L∞(Ω).

where we utilized assumption (5.119) in the last step. Like in the proof of Lemma 5.40 we
end up with

(ϕh, Qhū−Rhū) ≤ c

ν
h2‖ϕh‖L∞(Ω)3 · 2∑

i=1

2∑
j=1

‖r2−2µ∂ijw̄‖L2(K2,r)3 +

2∑
i=1

‖r1−µ∂3iw̄‖L2(K2,r)3 + ‖∂33w̄‖L2(K2,r)3

+
2∑
i=1

‖r1−µ∂iw̄‖L∞(K1,r)3 + ‖∂3w̄‖L∞(K1,r)3 + ν‖ū‖L∞(Ks)3

)
.

Finally, the application of Lemma 4.36 and Corollary 5.54 yields the assertion.

The following theorem summarizes the discretization error estimates for the optimal control
problem (5.102).

Theorem 5.60. Let ū be the solution of the optimal control problem (5.102) with the
state equation (4.127) and ūh the corresponding discrete solution of (5.113) on a mesh
of type (2.13) with µ < λ. Furthermore, let v̄ = Su, w̄ = Pū, v̄h = Shūh, w̄h = Shūh be
the associated states and adjoint states and ũh be the postprocessed control constructed by
(5.114). Then the estimates

‖v̄ − v̄h‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
,

‖w̄ − w̄h‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
,

‖ū− ũh‖U ≤ ch2
(
‖ū‖C0,σ(Ω̄)d + ‖vd‖C0,σ(Ω̄)d

)
are valid with a positive constant c independent of h.
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Proof. The estimates follow from Theorem 5.14. Assumption PP1 is proved in Lemma
5.56, Assumption PP2 in Lemma 4.39, Assumption PP3 in Lemma 5.58 and Assumption
PP4 in Lemma 5.59.

5.3.1.3 Numerical test

We illustrate our theoretical findings by a numerical example. In order to be able to
construct an analytical solution we consider the slightly modified functional

J(v, u) :=
1

2
‖v − vd‖2L2(Ω)d +

ν

2
‖u‖L2(Ω)d +

∫
∂Ω

∂v

∂n
g ds,

and the state equation

−∆v +∇q = u+ f in Ω,

∇ · v = 0 in Ω,

v = g on ∂Ω.

The adjoint equation is given as

−∆w −∇r = v − vd in Ω,

∇ · w = 0 in Ω,

w = g on ∂Ω.

where the inhomogeneous boundary conditions are the result of the last integral term in
the functional J . The domain Ω is set as

Ω =

{
(r cosϕ, r sinϕ, x3) ∈ R3 : 0 < r < 1, 0 < ϕ <

3

2
π, 0 < x3 < 1

}
.

The functions f , g and vd are chosen such that

v̄ = w̄ =

 x3(x3 − 1)rλΦ1(ϕ)
x3(x3 − 1)rλΦ2(ϕ)

r2/3 sin 2
3ϕ

 , q̄ = −r̄ = x3(x3 − 1)rλ−1Φp(ϕ),

ū = Π[−2.0,0.1]

(
−1

ν
w̄

)
is the exact solution for the optimal control problem. Here, λ ≈ 0.5445 is the smallest
positive solution of the eigenvalue problem (4.128). The functions Φ1, Φ2 and Φp are given
as

Φ1(ϕ) =− sin(λϕ) cosω − λ sin(ϕ) cos(λ(ω − ϕ) + ϕ)

+ λ sin(ω − φ) cos(λϕ− ϕ) + sin(λ(ω − ϕ)),

Φ2(ϕ) =− sin(λϕ) sinω − λ sin(ϕ) sin(λ(ω − ϕ) + ϕ)

− λ sin(ω − ϕ) sin(λϕ− ϕ),

Φp(ϕ) = 2λ [sin((λ− 1)ϕ+ ω) + sin((λ− 1)ϕ− λω)] .
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Table 5.9: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on anisotropic graded meshes (µ = 0.4)

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

12225 8.21e−03 1.36e−02 1.36e−03
34251 4.61e−03 1.68 7.58e−03 1.71 7.63e−03 1.69

101400 2.45e−03 1.75 3.95e−03 1.80 3.97e−03 1.80
346275 1.16e−03 1.83 1.84e−03 1.87 1.84e−03 1.88
825600 6.69e−04 1.89 1.05e−03 1.92 1.06e−03 1.92

1618125 4.35e−04 1.92 6.80e−04 1.95 6.82e−04 1.95
2802600 3.06e−04 1.93 4.75e−04 1.96 4.77e−04 1.96
6662400 1.74e−04 1.95 2.69e−04 1.97 2.70e−04 1.97

Table 5.10: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on quasi-uniform meshes (µ = 1.0)

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

12225 8.99e−03 1.21e−02 1.21e−02
34251 5.38e−03 1.49 6.98e−03 1.60 7.04e−03 1.58

101400 3.26e−03 1.38 4.08e−03 1.49 4.11e−03 1.49
346275 1.90e−03 1.33 2.29e−03 1.41 2.31e−03 1.40
825600 1.31e−03 1.27 1.56e−03 1.33 1.57e−03 1.33

1618125 9.92e−04 1.24 1.17e−03 1.28 1.18e−03 1.28
2802600 7.94e−04 1.22 9.30e−04 1.25 9.41e−04 1.25
6662400 5.62e−04 1.20 6.55e−04 1.22 6.62e−04 1.22

This solution has the typical singular behavior near the edge (comp. [13]).

In Table 5.9 one can observe second order convergence in the post-processed control ũh
as well as in the approximated velocity v̄h and adjoint velocity w̄h for sufficiently graded
meshes (µ = 0.4 < 0.5445 = λ). This confirms our theoretical findings. On quasi-uniform
meshes the convergence rates are significantly smaller, see Table 5.10.

5.3.2 Polygonal domain

In this subsection we comment on the optimal control problem (5.102) with the state
equation (4.105).

5.3.2.1 Regularity

The regularity results are similar to those stated in the case of a three-dimensional prismatic
domain. Particularly Lemma 5.51, Corollary 5.52, Corollary 5.53 and Lemma 5.54 are
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also valid in this two-dimensional setting. Of course one has to substitute 3 by 2 where
necessary. These results were mainly a consequence of Lemma 4.36 and some embeddings
such that with Lemma 4.31 and the same embeddings the proofs work out also in the
two-dimensional case.

5.3.2.2 Approximation error estimate

As in Subsection 4.4.2 we distinguish between conforming and nonconforming discretization.

Conforming elements We consider the conforming element pairs described in Sub-
section 4.4.2.2. Since Xh ⊂ H1

0 (Ω)2 for these elements the Poincaré inequality stated in
Lemma 5.55 is trivially satisfied such that the boundedness of Sh can be proved as in
Lemma 5.56. This means the Assumptions VAR1 and PP1 hold.

From the finite element error estimate in Lemma 4.34 one can conclude that also Assump-
tion VAR2 holds. This means the error estimates for the variational discrete approach
given in Theorem 5.7 hold in this setting. Notice, that one has to substitute ȳ by v̄ and p̄
by w̄ again.

The Assumption PP2 for the postprocessing approach follows from Lemma 4.34. The
Assumptions PP3 and PP4 do actually not depend on the spaces Mh and Xh but only on
the regularity of the solution and the underlying mesh. The regularity of the components
of the solution of the Stokes equation is similar to that of the Poisson equation. This
means that the Assumptions PP3 and PP4 can be proved similar to Lemma 5.47 and
Lemma 5.48 by componentwise consideration. Consequently all Assumptions PP1–PP4 are
satisfied for the postprocessing approach such that Theorem 5.14 holds with substituting
ȳ by v̄ and p̄ by w̄.

Nonconforming element We can apply the same argumentation for an approximation
of the velocity in the lower order Crouzeix-Raviart finite element space (4.111) and of the
pressure in the space of piecewise constant functions (4.112). The only thing that has to
be guaranteed is the validity of the discrete Poincaré inequality as it is stated in Lemma
5.55. But this is proved in [124, Theorem II.2.3]. The corresponding finite element error
estimates for the state equation are given in Lemma 4.35. Consequently, the assertions of
Theorem 5.7 and Theorem 5.14 hold also for the nonconforming discretization.

5.3.2.3 Numerical tests

We consider the same optimal control problem as in Subsection 5.3.1.3, but now in the
two-dimensional domain

Ω =

{
(r cosϕ, r sinϕ) ∈ R2 : 0 < r < 1, 0 < ϕ <

3

2
π

}
.
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Table 5.11: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on graded meshes (µ = 0.4) with (P2,P0) element.

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

2362 3.01e−03 3.00e−03 3.05e−03
9722 8.04e−04 1.87 8.06e−04 1.86 8.18e−04 1.86

39442 2.09e−04 1.93 2.10e−04 1.92 2.13e−04 1.92
158882 5.32e−05 1.96 5.36e−05 1.96 5.44e−05 1.96
388877 2.20e−05 1.98 2.21e−05 1.97 2.25e−05 1.97
637762 1.35e−05 1.98 1.36e−05 1.98 1.38e−05 1.98

2555522 3.38e−06 1.99 3.41e−06 1.99 3.46e−06 1.99

Table 5.12: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on quasi-uniform meshes (µ = 1.0) with (P2,P0) element.

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

2362 3.25e−03 3.27e−03 3.28e−03
9722 1.16e−03 1.46 1.17e−03 1.45 1.18e−03 1.45

39442 4.16e−04 1.46 4.24e−04 1.45 4.26e−04 1.45
158882 1.52e−04 1.44 1.57e−04 1.43 1.58e−04 1.43
388877 8.08e−05 1.41 8.41e−05 1.39 8.48e−05 1.39
637762 5.73e−05 1.39 6.00e−05 1.36 6.06e−05 1.36

2555522 2,25e−05 1.35 2.40e−05 1.32 2.43e−05 1.32

The functions f , g and vd are chosen such that

v̄ = w̄ =

(
rλΦ1(ϕ)
rλΦ2(ϕ)

)
, q̄ = −r̄ = rλ−1Φp(ϕ), ū = Π[−1.0,0.1]

(
−1

ν
w̄

)
is the exact solution of the optimal control problem. The functions Φ1, Φ2 and Φp are
defined in Subsection 5.3.1.3 and λ ≈ 0.5445 is again the smallest positive solution of
(4.128).

In our first test we use the (P2,P0) element. In Table 5.11 one can find the results for
appropriately graded meshes (µ = 0.4 < λ). The predicted convergence rate of 2 can be
seen in all three variables. For quasi-uniform meshes the convergence rates are significantly
smaller than two, comp. Table 5.12.

The second test uses lower order Crouzeix-Raviart finite elements. From Tables 5.13 and
5.14 one realizes also second order convergence in all three variables on the graded meshes
(µ = 0.4 < λ) and a convergence rate of 2λ ≈ 1.09 on quasi-uniform meshes. This confirms
our theoretical findings.
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5 Error estimates for PDE-constrained Optimal Control Problems

Table 5.13: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on graded meshes (µ = 0.4) with Crouzeix-Raviart element

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

1930 6.83e−03 7.36e−03 7.47e−03
7860 1.84e−03 1.87 2.01e−03 1.85 2.04e−03 1.85

31720 4.80e−04 1.93 5.27e−04 1.92 5.34e−04 1.92
127440 1.23e−04 1.96 1.35e−04 1.96 1.37e−04 1.96
311625 5.08e−05 1.97 5.60e−05 1.97 5.67e−05 1.97
510880 3.11e−05 1.98 3.43e−05 1.98 3.48e−05 1.98

2045760 7.85e−06 1.99 8.65e−06 1.99 8.78e−06 1.99

Table 5.14: L2(Ω)-errors of the computed control ũh, velocity v̄h and adjoint velocity w̄h
on quasi-uniform mesh (µ = 1.0) with Crouzeix-Raviart element

ndof ‖u− ũh‖ eoc ‖v − v̄h‖ eoc ‖w − w̄h‖ eoc

1930 1.70e−02 1.90e−02 1.95e−02
7860 8.23e−03 1.03 9.24e−03 1.03 9.45e−03 1.03

31720 3.91e−03 1.07 4.39e−03 1.07 4.49e−03 1.07
127440 1.84e−03 1.08 2.07e−03 1.08 2.12e−03 1.08
311625 1.13e−03 1.09 1.27e−03 1.09 1.30e−03 1.09
510880 8.63e−04 1.09 9.74e−04 1.09 9.94e−04 1.09

2045760 4.05e−04 1.09 4.57e−04 1.09 4.67e−04 1.09
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CHAPTER 6

Conclusion and Outlook

In this thesis we considered PDE-constrained linear-quadratic optimal control problems
with pointwise constraints on the control. Our main focus was on problems where the
underlying domain had corners or edges that cause singularities in the solution. We used a
priori mesh grading techniques to counteract these singularities. For the derivation of error
estimates for approximations of such problems we had to deal with regularity issues, finite
element error analysis and optimal control theory. To validate our results numerically
we implemented the primal-dual active set strategy in C++ and coupled it with a finite
element library.

We started our considerations with finite element error estimates for scalar elliptic equations
and the Stokes equation. Here we first focussed on estimates of the pointwise error for scalar
elliptic equations in domains with corners. We proved a convergence rate of h2 |lnh|3/2 on
graded meshes for problems with Hölder continuous right-hand side. It turned out that
mesh grading is necessary also in convex domains with an interior angle larger than π/2.
The exact classification of the regularity of the right-hand side was new and made the
result applicable to optimal control problems. A prerequisite was the proof of a regularity
result in a weighted Sobolev space for such data. In a next step we considered elliptic
equations with pure Dirichlet and Neumann boundary conditions in prismatic domains
with reentrant edge. For the derivation of finite element error estimates on anisotropic
meshes we had to use quasi-interpolation operators. As such an operator has to preserve
the boundary conditions for the Dirichlet problem we introduced a modification of the
operator Eh defined in [6] and derived the corresponding local and global estimates. For
the Neumann problem we could use the operator Eh. But the solution of the Neumann
problem admits different regularity properties than the examples treated in [6] and we had
to adapt the proofs for that case. For the Stokes equations we went a slightly different
way. We first stated a couple of general assumptions that allowed to prove optimal error
estimates. Afterwards we verified these assumptions for problems in nonconvex domains
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6 Conclusion and Outlook

with reentrant corner or edge. In a two-dimensional setting we used isotropic graded
meshes and proved the assumptions for discretizations with several well-known conforming
element pairs as well as for a discretization of the velocity space with Crouzeix-Raviart
elements. The same non-conforming approximation was used in a prismatic domain with
reentrant edge and anisotropic graded mesh.

We did the error analysis for the optimal control problems for a general linear-quadratic
case first. We considered the variational discrete approach introduced by Hinze [71] and
the post-processing approach introduced by Meyer and Rösch [95]. For both approaches we
gave a couple of assumptions that were sufficient to prove second order convergence in L2(Ω)
in all three variables, i.e., control, state and adjoint state. We checked these assumptions
for scalar elliptic equations with pure Dirichlet or Neumann boundary conditions in a
prismatic domain with reentrant edge and showed that the estimates hold for piecewise
linear approximations of state and adjoint state on anisotropic graded meshes with the
same grading condition as necessary for optimal convergence in the state equation itself.
We got this result on the same graded meshes also for the Stokes equations as state equation
and an approximation in the Crouzeix-Raviart finite element space. The Stokes equations
as state equation were also treated for a optimal control problem in a two-dimensional
domain with reentrant corner. We checked the assumptions for a couple of element pairs
on an isotropic graded mesh. In such a domain we also considered an example with a
state equation that has nonsmooth coefficients. We showed that such a configuration also
fits in the general framework and proved the corresponding error estimates. The case
of pointwise error estimates for problems with scalar elliptic state equation were treated
separately. We could show that the convergence rates for the optimal control problem on
appropriately graded meshes are the same as for the boundary value problem. All the
results concerning the post-processing approach were confirmed by numerical tests.

Let us briefly discuss some possible extensions of our results. We have treated linear state
equations only. Here, one can think of a generalization to different types of nonlinear
equations. Of special interest might be an optimal control problem with the incompressible
Navier-Stokes equations as state equation in domains with edges and its discretization with
a nonconforming finite element method on anisotropic graded meshes. The boundary value
problem is investigated in [82], the extension to optimal control is an open question. We
restricted our considerations to the control constrained case. A natural extension would
be the treatment of pointwise constraints on the state. In recent years many publications
were devoted to the numerical analysis of such problems, see, e.g., [41, 51, 52, 53, 72, 93],
but all of them are restricted to convex domains. Although the analysis differs significantly
from the control constrained case a very important ingredient are L∞-error estimates.
Since the control is in L∞(Ω) but not necessarily in C0,σ(Ω) the estimates of Section 4.1
are not applicable. A generalization of these results to right-hand sides in L∞(Ω) is not
straightforward. As a third possible extension let us mention boundary control problems.
We considered only examples with distributed control. An interesting question is how
one can use mesh grading techniques for boundary control problems, especially in three
dimensions and on anisotropic meshes.
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APPENDIX A

Notation

symbols description pages

∼ a ∼ b⇔ ∃c1, c2 ∈ R : c1a ≤ b ≤ c2a

α, |α| multiindex α = (α1, α2, α3) ∈ N3
0 with |α| :=

∑3
i=1 αi

c generic constant independent of the mesh size h; it may have
a different value on each occurrence

C0,σ(Ω) space of Hölder continuous functions 12
∂i first order derivative w.r.t. the i-th variable
∂ij second order derivative w.r.t. the i-th and j-th variable

Dα differential operator Dα := ∂α1

∂x
α1
1

∂α2

∂x
α2
1

∂α3

∂x
α3
1

eoc estimated order of convergence
Eh, E0h modified Scott-Zhang interpolation operators 22, 23
hα multiindex notation; hα := hα1

1 hα2
2 hα3

3

Hk(Ω) Sobolev space 11
Ih Lagrangian (or nodal) interpolation operator
λ singularity exponent 36, 65,

72, 80
MT certain patch of elements 21

Ωj , Ω′j , Ω′′j subsets of Ω 39

ΠUad projection in the space of admissible controls 86
Pk space of continuous functions that are (piecewise) polyno-

mials of order at most k
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A Notation

symbols description pages

P , Ph (affine) operator that maps a given control to the corre-
sponding adjoint state and its discrete version

S solution operator of the state equation
S∗ adjoint operator of S

Sh, S
∗
h discretizations of S and S∗

ST certain patch of elements 21
Th admissible triangulation of Ω

T , T̄ , |T | finite element, its closure and its measure

T̂ reference element
Uad set of admissible controls

V k,p
β (Ω) weighted Sobolev space 11

W k,p
β (Ω) weighted Sobolev space 11

W k,p(Ω) classical Sobolev space 11
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APPENDIX B

The Software Package OPTPDE

All the numerical tests in this thesis were computed with the software package OPTPDE

implemented in C++ by the author. In this chapter we describe the structure of the software
and explain the implemented algorithms.

B.1 Structure of OPTPDE

The principle structure of OPTPDE is illustrated in Figure B.1. The package consists of three
parts, the finite element library, the interfaces and the optimization part. The innermost
part is the finite element library. The task of this library is to manage the meshes and
to assemble the stiffness and mass matrices. The interface provides particular methods
which makes a communication between optimization and finite element part possible. The
algorithm for computing the solution of the optimal control problem is situated in the
optimization part. The advantage of such a structure is the independency of finite element
and optimization part of the code. The optimization part communicates with the finite
element library through interfaces such that one could use different finite element libraries
and would just have to adapt the interface. The optimization code could keep untouched.

B.2 Optimization part

The main ingredient of the optimization part of OPTPDE is an implementation of the
primal-dual active set strategy to solve control-constrained optimal control problems. A
detailed analysis of this algorithm can be found in [81]. In the following we describe how
its implemented in our software package. We want to solve the optimality system which is
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B The Software Package OPTPDE

FE library

Interfaces

Optimization

Figure B.1: Structure of software package OPTPDE

given in Subsection 5.1.2.2,

ȳh = Shūh,

p̄h = S∗h(ȳh − yd),
(νūh + p̄h, uh − ūh)U ≥ 0 ∀uh ∈ Uad

h .

Let Th = {T1, . . . , Tn} be a triangulation of Ω. For a piecewise constant function uh ∈ Uh
we introduce three sets of elements, namely the active sets A+, A− and the inactive set I,

A− = {T ∈ Th : uh(x) = ua ∀x ∈ T},
A+ = {T ∈ Th : uh(x) = ub ∀x ∈ T},
I = {T ∈ Th : ua < uh(x) < ub ∀x ∈ T}.

(B.1)

Since uh is piecewise constant one has Ω = A− ∪ A+ ∪ I. The algorithm constructs a
sequence of sets of active and inactive elements. This sequence approximates the active
and inactive set of the continuous problem. The principal structure of the primal-dual
active set strategy is given in Algorithm B.1.

In line 2 of Algorithm B.1 one has to solve the optimality system of the unconstrained
optimal control problem

min
ukh∈Uh

1

2
‖Shukh − yd‖2L2(Ω) +

ν

2
‖ukh‖L2(Ω)

ukh = ua on A−k , ukh = ub on A+
k .

This represents the idea of the primal-dual active set strategy, namely the approximation
of a constrained optimal control problem by a sequence of unconstrained problems. For
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B.2 Optimization part

Algorithm B.1 Primal-dual active set strategy as implemented in OPTPDE

1: Initialization: k := 0, A−0 = ∅, A+
0 = ∅

2: Compute ukh, ykh and pkh from the system

ykh = Shu
k
h,

pkh = S∗h(ykh − yd),

ukh =


ua if x ∈ A−k ,
ub if x ∈ A+

k ,

− 1
ν p

k
h if x ∈ Ik.

3: Determine the new sets A−k+1, A+
k+1 and Ik+1 according to (B.1).

4: If A−k 6= A
−
k+1 or A+

k 6= A
+
k+1 then set k := k + 1 and go to step 2.

the solution of the system in line 2 of Algorithm B.1 we introduce

ukA =


ua if x ∈ A−k
0 if x ∈ I
ub if x ∈ A+

k

and ukI = ukh − ukA.

This allows to reformulate line 2 as

(νId + S∗hSh)ukI = −S∗h(Shu
k
A − yd)− νukA.

For the solution of this equation we use a simple preconditioned cg-algorithm as its
described in Algorithm B.2. In our case one has

B = νId + S∗hSh and b = −S∗h(Shu
k
A − yd)− νukA,

which means that in line 8 of Algorithm B.2 one has to solve two boundary value problems.
To deal with matrices and vectors efficiently we have integrated the sparse matrix class
library SparseLib++ [107]. For the solution of the occurring linear systems we offer direct
as well as iterative solvers. For the iterative solvers we use the iterative methods library
IML++ [56] which is tailored to SparseLib++. In our program one can choose between a
BiCGSTAB and a GMRES solver. As direct solver we have included UMFPACK [48] and
PARDISO [119]. During the solution process one has to solve the same linear system with
different right-hand sides several times. Here, one can profit from a direct solver since one
can reuse the factorization and therefore reduce computational costs significantly. For this
reason we used PARDISO in all our examples which is much less memory consuming than
UMFPACK. The discretization of a Stokes problem results in a saddle point problem of type(

A CT

C 0

)(
v
q

)
=

(
f
0

)
(B.2)
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B The Software Package OPTPDE

Algorithm B.2 A simple preconditioned cg-algorithm for the solution of Bu = b

1: Choose a start value u and a invertible preconditioner matrix M
2: r := b−Bu
3: g := M−1r
4: ε =

√
(r, g)

5: while
√

(r,M−1r)/ε > TOL do
6: z := M−1r
7: α := (r, z)
8: d := Bg
9: γ := (d, g)

10: u := u+ α
γ u

11: r := r − α
γ d

12: β := (r, z)
13: g := z + β

αg
14: end while

with matrices A and C and vectors v and q. To solve this system we have implemented a
simple preconditioned Uzawa algorithm. This means, the system

CA−1CT q = CA−1f,

which results from expressing v with help of the first row of (B.2) and then plugging it
in the second row, is solved for q by Algorithm B.2 (B := CA−1CT , b := CA−1f). By
adding the expression v := v − α/γ A−1CT g after line 11 in that algorithm one can get
v nearly without any additional effort since A−1CT g is already computed in line 8. The
linear systems with matrix A can be solved with all the solvers mentioned above. For the
numerical tests in Chapter 5 we used PARDISO and profited from the reuseable factorization
of A during the iteration.

B.3 Finite element library

We use MoonMD [75] as finite element library. This library offers many different element
types for a couple of equations. It returns mass and stiffness matrices in a format that is
compatible to the one used in the matrix library SparseLib++. For the computation of the
error norms ‖ȳ− ȳh‖L2(Ω) and ‖p̄− p̄h‖L2(Ω) we can directly use the routines implemented
in MoonMD with appropriate integration rules. This is not the case for the evaluation of the
error ‖ū− ũh‖L2(Ω). The reason is that the optimal control ū and its approximation ũh
admit kinks due the projection formulas (5.6) and (5.14) and that these kinks in general
do not fit the mesh. Thus triangles/tetrahedra T where ū is not smooth or ũh|T is not
linear request some special treatment. Therefore we implemented Algorithm B.3 for the
computation of ‖ū− ũh‖L2(Ω).
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B.3 Finite element library

Algorithm B.3 Computation of ‖ū− ũh‖L2(Ω)

1: ‖ū− ũh‖L2(Ω) = 0
2: for i = 0 . . . number of elements do
3: compute e1 := ‖ū− ũh‖L2(Ti) using a standard integration rule
4: if ū or ũh is not smooth on Ti then
5: for k = 0 . . .MAXLEVEL do
6: refine Ti or all its subelements into subelements τj
7: compute e2 :=

∑
j ‖ū− ũh‖2L2(τj)

via standard integration rule on every τj

8: if |e1 −
√
e2| < RELTOL · e1 then

9: e1 :=
√
e2

10: break
11: else
12: e1 :=

√
e2

13: end if
14: end for
15: end if
16: ‖ū− ũh‖L2(Ω) :=

√
‖ū− ũh‖2L2(Ω)

+ e2
1

17: end for
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[22] I. Babuška, R. B. Kellogg, and J. Pitkäranta. Direct and inverse error estimates for
finite elements with mesh refinements. Numer. Math., 33:447–471, 1979.
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