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Chapter 1

Introduction

As image processing has become an active field of mathematical research,
the task of digital image inpainting has also been approached by mathemati-
cal methods in the last few years. The questions that we study in this work
emerged during the analysis of our image inpainting method Image Inpaint-
ing Based on Coherence Transport published in [BM07].

1.1 Inpainting

Image inpainting serves the purpose of touching-up damaged or unwanted
portions of a picture. In mathematical image processing images are consid-
ered as functions of type

w : Ω0 → R ,

defined on a typically rectangular image domain Ω0 = [a, b]× [c, d] ⊂ R2.
The value w(x) ∈ R often represents an intensity of light which is percep-
tible as a gray color.
From the mathematician’s point of view inpainting is a problem of data
interpolation. Apart from Ω0 we are given a subdomain Ω ⊂ Ω0 which
marks the damage or the portion which has to be touched-up. And, the
”good” part of the image, which is to be kept, is given as a function

u0 : Ω0\Ω→ R ,

defined on the data domain Ω0\Ω, while u0 is undefined on Ω. Now, the
task is to search for a function u : Ω → R, defined on the missing part Ω,
which interpolates the data u0.
Clearly, the interpolation problem, as stated above, might have many solu-
tions, but the very important side condition on an acceptable solution u is
that the completed image ū,

ū := u0 · 1Ω0\Ω + u · 1Ω ,

1
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(a) vandalized image (courtesy of [Tel04, figure 8.i]) (b) inpainting interstage 1

(c) inpainting interstage 2 (d) inpainted result

Figure 1.1: Scratch removal by inpainting; using the method of [BM07]

defined on the whole image domain Ω0, should look nice, i.e., u should
interpolate the data u0 in a visually plausible manner.

In order to achieve the latter goal, different approaches to the inpainting
problem have been made: for example, [CS02], [CKS02], [MM98], [Mas02],
and [Tsc05] have shown that variational principles and PDE methods are
fruitful here. But, the resulting PDEs in these works are typically non-linear
and of a high order (up to order 4); thus, the numerical algorithms are
iterative by nature and computationally expensive.

In the works cited above, the authors started with continuous models and
discretized them to obtain algorithms for digital image inpainting. In the
article [BM07], we approached the problem from the opposite direction:
our point of departure was the discrete inpainting problem. For discrete or
digital images the functions wh : Ω0,h → R are simply matrices and Ω0,h is
the set of matrix coordinates; the subscript h indicates discrete objects.
The simple idea behind the generic algorithm (see [BM07, section 2] and
chapter 6) is to fill the inpainting domain Ωh by traversing its pixels –
the points of Ωh – in a fixed order from the boundary inwards by using
weighted means of given or already calculated image values. Thus, the al-
gorithm implements a process with processing order given by the distance-
to-boundary map, which is the time of first arrival. See figure 1.1, which
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(a) vandalized image (b) inpainted

Figure 1.2: Scratch removal by inpainting; using Telea’s method

illustrates some stages of this process. Such a single-pass method was first
utilized by Telea (see [Tel04]). Owing to the simple structure of the algo-
rithm, his method performs extremely fast, but produces a blurry fill-in,
which, moreover, shows peculiar transport patterns (see figure 1.2).

Analytical results of [BM07]
In order to better understand the geometrical effects of the generic algo-
rithm, we put it in a continuous framework. By the high-resolution vani-
shing-viscosity limit (see [BM07, section 3]) we have shown that the generic
algorithm, for a special class of weights, is consistent with the transport
equation

〈c(x),∇u(x)〉 = 0 , x ∈ Ω\S ,
u|Ω0\Ω = u0 ,

(1.1)

a PDE of first order. Hereby, the vector field c depends on the weights used
to compute the weighted means. Moreover, the exceptional set S is the
skeleton of the distance-to-boundary map d(x) = dist(x, ∂Ω). The skeleton
S comprises the locations of ridges d; these are the points where the time of
the first arrival cannot be uniquely associated with a point on the boundary.
By equations (1.1), we can give the following rationale: imagine a restorer
doing brush strokes in the missing area Ω. Assuming on the one hand that
he only uses color given by the data u0 on ∂Ω and on the other that brush
strokes go along trajectories x(t) – of a vector field c – which constantly
carry a single color, we end up with the dynamical system

x′ = c(x) , x(0) = x0 ∈ ∂Ω ,
u′ = 0 , u(0) = u0(x0) ,

(1.2)

which describes exactly the characteristics of problem (1.1). Because we
paint from every boundary point into Ω, the characteristics, which are the
brush strokes, are supposed to meet somewhere; the locations where they
meet are contained in the exceptional set S of equation (1.1).
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Eventually, the continuous description was the key to improve the quality
(compared to [Tel04]) of the inpainting. Ideally, in order to obtain an aes-
thetic inpainting, the vector field c would need to reflect the full expertise
of our restorer, which, clearly, is impossible. But at least the vector field c
should be adapted to and hence depend on the image u. This consideration
aims for a quasi-linear model

〈c[u](x),∇u(x)〉 = 0 , x ∈ Ω\Σ ,
u|Ω0\Ω = u0 ,

(1.3)

within the continuous framework; for the discrete algorithm, that means
that the weights need to depend on u. For the improved algorithm, in
[BM07], the vector c[u](x) – and thus the weight – includes an estimation
of the tangent vector, which is tangent to the level line of u going through
x. This is because brush strokes are supposed to continue level lines of u0
which have been interrupted by Ω0.
By applying structure tensor analysis to the image we estimate approximate
tangent information or so-called coherence information. The structure tensor
S is a positive semi-definite 2× 2-matrix. Its set-up, basically, consists of
the following two steps:

v(y) =
∫

B(y)

k1(y, h) u(h) dh ,

S(x) =
∫

B(x)

k2(x, y) ∇v(y) · ∇v(y)T dy .

The approximate tangent, then, is the eigenvector of S w.r.t. the minimal
eigenvalue. The benefit and the robustness of this estimator have been re-
vealed in different works, e.g. [Wei98] and [AMS+06]. A precise descrip-
tion of the structure tensor and its analytical properties is given in chapter
6. Our new weight for the discrete algorithm, then, weights those pixels
that lie close to the approximate tangent much stronger; thus, the transport
effect is mainly along the approximate tangent.

Practical results of [BM07]
In [BM07], we gave a complete description of the novel algorithm and have
compared it to other methods. The inpainting result shown in figure 1.1 has
been computed by our improved method. The higher quality, compared to
Telea’s method, is clearly visible if one compares figures 1.1 and 1.2. For
Telea’s choice of the weight, the transport field c of the corresponding PDE
is exactly ∇d. But, the distance-to-boundary map d depends only on the
geometry of Ω and says nothing about the image.
By the structure tensor analysis, our method is computationally more ex-
pensive than Telea’s, but, compared to the other works cited above, we
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have shown that our method is considerably faster while our inpainting
results match their level of quality.

Questions left open in [BM07]
As the continuous framework of problems (1.1) and (1.3) has been the key
to the improvements, the theory behind these problems is missing. Conse-
quently, interesting questions concerning

• The existence of a solution,

• The uniqueness of the solution,

• The continuous dependence of the solution on the data and the coef-
ficients with respect to a customized topology,

come up. And, the challenges are: the general geometry which inpainting
domains can exhibit on the one hand, and the dependence of c[u] on u on
the other. The latter is a challenge, because, due to the structure tensor
analysis, the vector c[u](x) not only depends on the single value u(x) but
on a part u|B of the image, meaning the dependence on u is of a functional
type.

Contribution of this thesis
Looking at equations (1.1) and (1.3), it is clear that these models are not
restricted to inpainting or image processing. Thus, we study these equa-
tions independent of the particular construction of the coefficients within
the inpainting model, but dependent on general features such as continu-
ity, differentiability, etc.
The general framework is developed in chapters 3 and 4. As a consequence
of the general theory, we can positively answer the question of the well-
posedness of our inpainting model. Coming back to the inpainting model
in chapter 6, the corollaries 6.17, 6.18, and 6.19 yield the existence, unique-
ness and the continuous dependence.

1.2 Overview of the General Framework

PDEs of the first order, in their general form

H(x, u(x),∇u(x)) = 0 , x ∈ Ω ,
u|Γ = g , Γ ⊂ ∂Ω ,

(1.4)

have already been considered in literature. The standard approach to the
construction of a solution is the method of characteristics, e.g. see [Eva98],
[Joh82], [CH62], or [Zau89]. For equation (1.4) the characteristics are given
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by the system of ODEs

x′ = ∇pH(x, u, p) , x(0) = x0 ∈ Γ ,
u′ =

〈
∇pH(x, u, p), p

〉
, u(0) = g(x0) ,

p′ = −∇x H(x, u, p)− ∂uH(x, u, p) · p , p(0) = p0 .

And, the assumptions on the function H are such that the existence and
uniqueness theory for ODEs applies. For the solution of the PDE (1.4) of-
ten only local existence and uniqueness are guaranteed. This is, because
the projected characteristics or characteristic base curves – given by the x-
component – might cross, or parts of the domain can never be reached by
characteristic base curves; the reason often lies within the non-linearity of
the function H, w.r.t. the (u, p) component, and the geometry of the do-
main.
For our linear and quasi-linear cases we want to construct a unique global
solution of the problem. We feature the linear case first, because we can
concentrate on the domain of the PDE and, in particular, on the exceptional
sets.

1.2.1 The Linear Problem

The easiest scenario is a linear problem on the two-dimensional half-space
H2

+ := R+ ×R,

a(x, y) ∂xu(x, y) + b(x, y) ∂yu(x, y) = f (x, y) , in H2
+ ,

u(0, y) = u0(y) .

And, from now on, we allow for a source term f on the right hand side. In
the linear case, the characteristics are described completely by the reduced
system

x′ = a(x, y) , x(0, s) = 0 ,
y′ = b(x, y) , y(0, s) = s ,
u′ = f (x, y) , u(0, s) = u0(s) .

Assuming the coefficients to be C1, a sufficient condition on the transport
field c = (a, b)T, in order to obtain a unique local solution, is〈

c(0, y)
|c(0, y)| , e1

〉
≥ β , y ∈ R (1.5)

for some β > 0. The vector e1 = (1, 0)T is exactly the interior unit normal of
the initial manifold ∂H2

+, and this condition means that every characteristic
instantaneously leaves the initial manifold and evolves, at least for short
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time, into the interior of H2
+.

If condition (1.5) is satisfied, the coefficient a is positive; hence, the PDE is
equivalent to

∂xu(x, y) +
b(x, y)
a(x, y)

∂yu(x, y) =
f (x, y)
a(x, y)

.

Applying the method of characteristics to the latter PDE, the variable x can,
then, be identified with the time of the characteristics. From this point of
view, we can say that the map T : H2

+ → R, T(x, y) = x is a time function.
With respect to T, condition (1.5) rewrites as〈

c(0, y)
|c(0, y)| ,

∇T(0, y)
|∇T(0, y)|

〉
≥ β . (1.6)

Let us assume that for every s the solution of the IVP

y′ =
b(x, y)
a(x, y)

=: α(x, y) , y(0, s) = s

exists up to the time x0. Then, in order to extend the solution to x > x0, one
restarts the problem on the new initial manifold {(x0, y) : y ∈ R}, and re-
quires condition (1.6) to hold there as well. To be able to restart everywhere,
it is obvious to assume〈

c(x, y)
|c(x, y)| ,

∇T(x, y)
|∇T(x, y)|

〉
≥ β ∀ (x, y) . (1.7)

Now, let us attach a stop set Σ, by

Σ := {(x, y) ∈ H2
+ : T(x, y) = λ > 0} .

That is, instead of the whole H2
+, we want to solve on the restricted half-

plane H2
0,λ := ]0, λ[×R. Let the left boundary of H2

0,λ be the initial mani-
fold again. Moreover, we assume that condition (1.7) holds.
Because, on the one hand, condition (1.7) implies that characteristics evolve
rightwards and, on the other, that α is bounded on H2

0,λ, the y-characteristic
will exist up to the time x = λ and the value y(λ) is finite. Hence, every
point of Σ will be met by a characteristic, and we obtain a global solution
of the PDE on H2

0,λ.
From the viewpoint of dynamical systems, condition (1.7) says that the time
T is a Lyapunov function for the flow induced by the transport field, and Σ
is an attractor. Moreover, since the Lyapunov condition holds globally on
H2

+, Σ is a global attractor. More on the concept of Lyapunov functions and
its utilization can be found, e.g. in [Ama90] and [GJ09].

This interpretation is the key for generalization; we do not necessarily need
to identify the x-coordinate with the ”standard” time, i.e., T(x, y) = x is not
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(a) white: domain of the PDE Ω ⊂ H2
+ (b) contours of T, left boundary: T = 0, right boundary: T = λ

Figure 1.3: Example of T

the only possible time function. Let us consider once more the problem on
the half-plane. Assume that Σ is a non-selfintersecting curve going through
the interior of H2

+, and assume that the y-component of this curve takes all
values of R. Furthermore, assume that we are given a function T, defined
on H2

+, which satisfies

T(0, y) = 0 and T|Σ = λ ,

and which strictly increases from the y–axis towards Σ. See figure 1.3 for an
example. If, now, the transport field c satisfies condition (1.7) with respect
to this T, we can argue, as above, for the existence and uniqueness of a
global solution of the PDE.

Finally, in the case of a linear problem defined on a simply connected and
bounded domain Ω, we will assume that an exceptional curve Σ⊂⊂Ω and
a time function T : Ω → R are given. By the way, instead of calling it
Lyapunov function, we will always refer to T as time function; in chapter
3, we will see that the characteristics can be transformed such a way that
their time is given by the values of T, which motivates the name. Moreover,
we assume the set Σ to be the global maximum of T; for this reason we call
Σ stop set. By condition (1.7), then, Σ is the global attractor. Within this set-
up, it is then possible to construct the unique solution of the linear problem

〈c(x),∇u〉 = f (x) , in Ω\Σ ,
u|∂Ω = u0

(1.8)

by using the method of characteristics.
Which type of stop sets we can allow for and which conditions make a map
T a reasonable time function are discussed in beginning of chapter 3.
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In the following, we want to highlight two effects which show up if the
stop set Σ is contained in Ω and is not part of the boundary ∂Ω. For this
purpose, we consider the simplified example

∂xu(x, y) = 0 , in Ω := ]−1, 1[×R ,
u(−1, y) = gl(y) ,

u(1, y) = gr(y)
(1.9)

with data gl , gr ∈ C1(R) specified on opposite sides of Ω.

The need for stop sets
Solving problem (1.9) from the left boundary, the solution must be u(x, y) =
gl(y). But, solving from the right boundary, the solution must be u(x, y) =
gr(y). Thus, u can satisfy both boundary conditions if and only if gl ≡ gr.
In the case gl 6≡ gr ,we must take out a set Σ. Let Σ = {(h(y), y) : y ∈ R}
be given by a C1-function h with −1 < h < 1, then Ω\Σ consists of a left
and a right part

Ωl = {(x, y) ∈ R2 : −1 < x < h(y)} , Ωr = {(x, y) ∈ R2 : h(y) < x < 1} .

Analogously, the problem splits up into two sub-problems:

∂xu(x, y) = 0 , in Ωl −∂xu(x, y) = 0 , in Ωr ,
u(−1, y) = gl(y) , u(1, y) = gr(y) .

For the sake of completeness,

T(x, y) =

{
1+x

1+h(y) , in Ωl
1−x

1−h(y) , in Ωr

can be used as a time function. Then, condition (1.7) is satisfied with

c(x, y) =

{
e1 , in Ωl

−e1 , in Ωr
,

and Σ is globally attractive.
Now, on Ω\Σ, the solution u ∈ C1(Ω\Σ) is

u(x, y) = gl(y) · 1Ωl (x, y) + gr(y) · 1Ωr(x, y) , (1.10)

and we might view u as a generalized solution of (1.9) in the case gl 6≡ gr.
We observe that different choices of Σ are possible, and every choice leads
to another result. Hence, we must pre-establish Σ in order to make the
solution unique.
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gl(y) = (y2 − 1)2 · 1[−1,0[ + 1[0,∞[ ,
gr(y) = gl(−y) ,
h(y) = 1

2 sin (2πy)

Figure 1.4: Contours of solution (1.10)

Properly global solutions
Besides the fact that the PDE is not fulfilled on Σ, we see that, even if the
boundary data is as smooth as one desires, the solution will have jump
discontinuities at Σ. For illustration: figure 1.4 shows a realization of the
solution (1.10).

In order to define a global solution on the whole of Ω, we will have to
search for u in a function space whose elements are allowed to have jumps.
A suitable space is BV, which consists of the functions of bounded varia-
tion. Roughly, these are L1-functions whose derivatives are finite Radon
measures.
In the context of BV, we must rewrite the linear problem (1.8) as

〈c(x) , Du〉 = f (x) · L2 , in Ω\Σ ,
u|∂Ω = u0 ,

(1.11)

whereas Du denotes the BV-derivative measure and L2 the Lebesgue mea-
sure. Because the PDE is now measure-valued, the right hand side must
also be a measure. For our case, the right hand side is only allowed to be
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an absolutely continuous measure. Again, we assume the exceptional set Σ
to be given in advance together with some reasonable time function T and
we require c to satisfy condition (1.7). Working with BV we will see that the
solution can be defined globally, that should mean that u ∈ BV(Ω) and not
only u ∈ BV(Ω\Σ). Moreover, we can allow for boundary data u0 ∈ BV.

1.2.2 The Quasi-Linear Problem

The quasi-linear version of problem (1.11) is

〈c[u](x) , Du〉 = f [u](x) · L2 , in Ω\Σ ,
u|∂Ω = u0 .

(1.12)

Here, we allow the dependence of the transport field and the source term
on u to be of a functional type. That should mean that they depend not
only on the value u(x) but on the whole function, i.e., the coefficients of the
PDE are maps

f : F → G1 , u→ f [u] , f [ . ](x) : F → R , u→ f [u](x) ,

c : F → G2 , u→ c[u] , c[ . ](x) : F → R2 , u→ c[u](x) ,

with F , G1 and G2 being subsets of suitable function spaces defined on Ω.

The quasi-linear problem (1.12) will be approached by using the theory of
the linear problem. Fixing the functional argument of the coefficients by
some v ∈ F , we obtain the linear PDE

〈c[v](x) , Du〉 = f [v](x) · L2 , in Ω\Σ ,
u|∂Ω = u0 .

And, if the previous assumptions of the linear case hold true, the linear
theory, then, gives us a solution U[v] depending on v. Thus, we view a
solution u of the quasi-linear problem to be a fixed point u = U[u] of the
operator U.

In the first part of chapter 4, we will utilize the Schauder fixed point theorem to
establish the existence of a solution. In order to additionally get uniqueness
and continuous dependence on the data, we have to restrict the functional
dependence to be of Volterra-type. The latter should mean that, for fixed
x, the values f [v](x), c[v](x) only depend on v|{T<T(x)}. We will see in the
second part of chapter 4 that operator U[ . ]|Ω′ is contractive when restricted
to suitable subsets Ω′ ⊂ Ω. The contractiveness will be the key to the
uniqueness of the fixed point.

A very similar approach to solving such functional-differential problems on
the half space Hn

+ by utilizing fixed point theory, can be found in [Kam99].
This book, in which the author considers classical solutions for time depen-
dent non-linear PDEs with memory effect, was very inspiring.
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1.3 Outline

In chapter 2 we collect some results from measure theory and give a short
overview of the functions of bounded variation. All the functional ana-
lytical and fine properties of BV–functions, which we utilize later on, are
summarized there.
In chapter 3 we discuss the linear problem in detail. There, we establish the
existence (theorem 3.12) and uniqueness (theorem 3.16) of a global solution
in the space BV(Ω). Moreover, we show (theorem 3.17) that the solution
continuously depends on the boundary data as well as on the coefficients
of the PDE.
Chapter 4 deals with the quasi-linear problem by using fixed point theory.
For general functional dependence, theorem 4.11 establishes the existence
of a fixed point as a consequence of the Schauder fixed-point theorem. For
the restricted case of Volterra-type dependence, we obtain both uniqueness
(theorem 4.22) and continuous dependence (theorem 4.24) by a contraction
principle.
In chapter 5 we extend the concept of time functions introduced in chapter
3. As in chapter 3 we have restricted the PDE’s domain to a simply con-
nected domain and the stop set to a connected set with tree-like structure,
we now can, by the extended concept, allow for non-connected stop sets
(with forest-like structure) and n-connected domains.
Chapter 6 is about our inpainting model. In the first part we review the
discrete and continuous set-up of the model. In the second part we show
that the transport field of the inpainting equation satisfies all assumptions
of our quasi-linear theory. The question of well-posedness of our inpaint-
ing model will finally be answered by the quasi-linear theory.
Chapter 7 deals with the practical usage of different time functions or or-
ders. The order of pixels used in the algorithm is directly connected to the
concept of time functions. In our prior work [BM07] we always ordered the
pixels by their euclidean distance to the boundary. But, we have seen that
other time functions, which induce orders, are possible. Here, we highlight
on a few synthetic inpainting examples how this degree of freedom can be
utilized to obtain better inpaintings.



Chapter 2

Basics: Functions of Bounded
Variation

2.1 Measure Theory

Because for functions of bounded variation not only positive measures but
much more vector-valued measures play the important role, we collect here
appropriate definitions from measure theory. The reader can find more on
this topic in [AFP00, chapters 1 and 2], [Els05], or [EG92] .

For now let Ω be a non-empty set and A a σ-Algebra on Ω.

Definition 2.1. (σ-Additivity)
A set-function µ of type A → R ∪ {±∞} or A → Rd (d ∈ N) is called σ-
additive if

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An)

for every sequence (An)n∈N of pairwise disjoint sets An ∈ A.

Definition 2.2. (Positive and vector-valued measures)

a) (positive measure) A set-function µ : A → [0, ∞] is a positive measure on
(Ω,A) if µ is σ-additive and µ(∅) = 0.

b) (vector-valued measure) A set-function µ : A → Rd is a vector-valued mea-
sure on (Ω,A) if µ is σ-additive and µ(∅) = 0. In the case d = 1, µ is a
real-valued measure.

13



14 Chapter 2 Basics: Functions of Bounded Variation

c) (total variation measure) Let µ a vector-valued measure on (Ω,A), then

|µ|(A) := sup

{
∞

∑
n=1
|µ(An)| : (An)n∈N ,

∞⋃
n=1

An = A

with pairwise disjoint An ∈ A
}

defines a finite positive measure |µ| : A → [0, ∞[ called the total variation
measure of µ.

If µ is a real-valued measure, its positive- and its negative part are defined as
follows:

µ+ :=
|µ|+ µ

2
, µ− :=

|µ| − µ

2
.

By now and for the remainder of this section Ω denotes a locally compact
separable metric space. B(Ω) is the Borel-σ-Algebra on Ω, which is the
smallest σ-Algebra containing all open and closed subsets of Ω.

Definition 2.3. (Borel and Radon measures)

a) (Borel measure) A positive measure on (Ω,B(Ω)) is called a Borel measure.

b) (positive Radon measure) A Borel measure µ on (Ω,B(Ω)) with µ(K) < ∞
for every compact set K ⊂ Ω, is called a positive Radon measure.

c) (vector-valued Radon measure) A set-function µ : {A ∈ B(Ω) : A⊂⊂Ω} →
Rd is called a vector-valued Radon measure if it is a vector-valued measure on
(K,B(K)) for every compact set K ⊂ Ω.

The space of all vector-valued Radon measures is denoted by [Mloc(Ω)]d.

d) (finite Radon measure) If µ : B(Ω) → Rd is a vector-valued measure, then µ
is called a finite Radon measure.

The space of all finite Radon measures is denoted by [M(Ω)]d.

In the following, when talking about measures respectively Radon mea-
sures, we mean vector-valued measures respectively vector-valued Radon
measures, if not explicitly stated otherwise. Furthermore, we denote by Ld

the Lebesgue measure and byHk the k-dimensional Hausdorff measure on
Rd.

Later on, we will utilize integration w.r.t. vector-valued measures, so we
repeat briefly its definition whereas we presume the Lebesgue integral w.r.t.
positive measures for functions taking values in R := R∪ {±∞}.
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Definition 2.4. (Integrals)

a) If µ is a real-valued measure on Ω and u : Ω→ R is |µ|-measurable, then it is
|µ|-summable if

∫
Ω |u(x)| d|µ|(x) < ∞ and∫

Ω

u(x) dµ(x) =
∫
Ω

u(x) dµ+(x)−
∫
Ω

u(x) dµ−(x) .

b) If µ is a real-valued measure on Ω and u : Ω→ Rd, whereas every component
uk is |µ|-summable, then

∫
Ω

u(x) dµ(x) =

∫
Ω

u1(x) dµ(x), . . . ,
∫
Ω

ud(x) dµ(x)

 .

c) If µ is a vector-valued measure on Ω and u : Ω→ R is |µ|-summable, then

∫
Ω

u(x) dµ(x) =

∫
Ω

u(x) dµ1(x), . . . ,
∫
Ω

u(x) dµd(x)

 .

Moreover, we define two important operations on measures or integrals.

Definition 2.5. (Restriction)
Let µ be a positive or real- or vector-valued measure on (Ω,A) and R ∈ A. The
restriction of µ onto R is defined by

µ R(A) = µ(A ∩ R) , ∀ A ∈ A .

Definition 2.6. (Push-forward)
Let (Ω,A) and (Ω′,A′) be measure spaces and let ξ : Ω → Ω′ be such that
ξ−1(A′) ∈ A whenever A′ ∈ A′. For every positive or real- or vector-valued
measure on (Ω,A) we define the pushed-forward measure ξ]µ on (Ω′,A′) by

ξ]µ(A′) = µ
(

ξ−1(A′)
)

, ∀ A′ ∈ A′.

From this definition we obtain the change of variables rule: If u is a |ξ]µ|-
summable function defined on Ω′, then u ◦ ξ is |µ|-summable and∫

Ω′

u(y) dξ]µ(y) =
∫
Ω

u ◦ ξ(x) dµ(x) .

Finally, we state a generalization of product measure and product integra-
tion.
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Definition 2.7.
Let E1 ⊂ Rd1 and E2 ⊂ Rd2 be open sets. Let µ be a positive Radon measure
on (E1,B(E1)) and let x → νx be a function which assigns to each x ∈ E1 a
Rm-valued finite Radon measure νx on (E2,B(E2)).

The map x → νx is called µ-measurable if x → νx(B) is µ-measurable for every
B ∈ B(E2).

Proposition 2.8. ([AFP00, Proposition 2.26])
Let E1, E2, µ and νx as in definition 2.7.

a) If x → νx(A) is µ-measurable for every open A ⊂ E2 then x → νx is µ-
measurable.

b) For every bounded and Bµ(E1)×B(E2)-measurable function g the map

x →
∫
E2

g(x, y) dνx(y)

is µ-measurable.

This proposition suggests the definition of a generalized product.

Definition 2.9. (Generalized product)
Let E1, E2, µ and νx be as in definition 2.7 and assume that∫

E′1

|νx|(E2) dµ(x) < ∞ ∀ E′1 ⊂⊂ E1 , E′1 open.

We denote by µ⊗ νx the Rm-valued Radon measure on B(E1 × E2) defined by

µ⊗ νx(B) =
∫
E1

∫
E2

1B(x, y) dνx(y) dµ(x) ∀B ∈ B(K× E2) ,

whereas K ⊂ E1 is any compact set.

Furthermore, approximation by simple functions yields the integration for-
mula ∫

E1×E2

f (x, y) d(µ⊗ νx)(x, y) =
∫
E1

∫
E2

f (x, y) dνx(y) dµ(x)

for every bounded Borel function with supp f ⊂ E′1 × E2, E′1 ⊂⊂ E1.
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2.2 Functions of Bounded Variation

Now, we come to that function space which plays the star role. We follow
mainly the exposure of [AFP00]; the results can also be found partially in
[Zie89]. Throughout this section Ω, the domain of definition for our func-
tions, is required to be an open and bounded subset of Rd (d ∈ N) with
Lipschitz boundary.

We use the following notation:

• 〈a, b〉: euclidean scalar product of a, b ∈ Rd.

• |a|: absolute value if a ∈ R, euclidean norm if a ∈ Rd, spectral norm
if a ∈ Rd1×d2 .

• C(Ω)d = C(Ω, Rd), with

‖ϕ‖∞ = ‖ |ϕ| ‖∞ = sup
x∈Ω
|ϕ(x)|

if ϕ ∈ C(Ω)d is bounded.

• Lp(Ω)d = Lp(Ω, Rd), with

‖u‖Lp(Ω) = ‖ |u| ‖Lp(Ω)

if u ∈ Lp(Ω)d.

2.2.1 Definition and Characterization

Definition 2.10. (Functions of bounded variation)
Let u ∈ L1(Ω). u is said to be a function of bounded variation if its distribu-
tional derivative is representable by a finite Radon measure in Ω, i.e.,∫

Ω

u(x) ∂k ϕ(x) dx = −
∫
Ω

ϕ(x) dDku(x) ∀ϕ ∈ C1
c (Ω), k = 1, . . . , d

or equivalently∫
Ω

u(x) div ϕ(x) dx = −
∫
Ω

〈ϕ(x), dDu(x)〉 ∀ϕ ∈ C1
c (Ω)d

for some Rd-valued measure Du = (D1u, . . . , Ddu), Du ∈ [M(Ω)]d. The vector
space of all functions of bounded variation is denoted by BV(Ω).

The notion of variation for functions u ∈ L1
loc(Ω) is given by
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Definition 2.11. (Variation)
Let u ∈ L1

loc(Ω). The variation Var(u, Ω) of u in Ω is defined by

Var(u, Ω) := sup


∫
Ω

u(x) div ϕ(x) dx : ϕ ∈ C1
c (Ω)d , ‖ϕ‖∞ ≤ 1

 .

And the following proposition characterizes the space BV(Ω) by the varia-
tion, thereby explaining its naming.

Proposition 2.12. ([AFP00, Proposition 3.6])
Let u ∈ L1(Ω). Then u belongs to BV(Ω) if and only if Var(u, Ω) < ∞. For
u ∈ BV(Ω) the variation Var(u, Ω) coincides with the total variation |Du|(Ω)
of Du.

By means of the variation we obtain a generalized notion of perimeter.

Definition 2.13.
For a Ld-measurable set E ⊂ Ω the perimeter of E in Ω is defined by

P(E, Ω) := Var(1E, Ω) .

Note: by proposition 2.12 the subset E is a set of finite perimeter in Ω if and
only if 1E ∈ BV(Ω).

2.2.2 Topologies on the Space BV

Next we discuss diverse topologies on BV(Ω). The space BV(Ω), endowed
with the norm

‖u‖BV(Ω) := ‖u‖L1(Ω) + |Du|(Ω) ,

is a Banach space. But the norm-topology is too strong for most prob-
lems stated in BV(Ω): indeed continuously differentiable functions are not
dense in BV. For example consider

u : Ω := ]−1, 1[2 → R , u(x, y) =

{
0 , x < 0
1 , x ≥ 0

.

It is easy to verify that the derivative measure is Du = (1, 0)T · H1 {x = 0}
with variation |Du|(Ω) = 2. Hence, u is of bounded variation but is clearly
not a Sobolev-function, i.e., u ∈ BV(Ω)\W1,1(Ω).
For any v ∈W1,1(Ω) ⊂ BV(Ω) the BV-derivative measure is Dv = ∇v(x) ·
Ld whereas ∇v ∈ L1(Ω) is the W1,1-derivative of v. Thus, we have

‖v‖BV(Ω) = ‖v‖W1,1(Ω) .
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By the completeness of W1,1(Ω) the function u in the example above can
never be ‖ . ‖BV(Ω)-approximated by a sequence of continuously differen-
tiable functions.

Now, we introduce those two topologies that are most commonly used.
The first one is the weak* topology.

Definition 2.14. (Weak* convergence in BV)
Let u ∈ BV(Ω) and (un)n∈N be a sequence in BV(Ω). We say that un weakly*
converges in BV(Ω) to u if:

1. un tends to u in L1(Ω), and

2. Dun weakly* converges to Du in [M(Ω)]d , i.e.,

∫
Ω

ϕ(x) dDun(x)→
∫
Ω

ϕ(x) dDu(x) ∀ ϕ ∈ C0(Ω) .

Remark 2.15. (BV as a dual space)
It can be proved that BV(Ω) is the dual of a separable space, and that the conver-
gence of definition 2.14 corresponds to the weak* convergence in the usual sense.
For a construction see [AFP00, pp. 124, 125].

A simple criterion for weak* convergence is stated in the following propo-
sition.

Proposition 2.16. (Weak* convergence criterion) ([AFP00, Proposition 3.13])
Let u ∈ BV(Ω) and (un)n∈N be a sequence in BV(Ω). Then un weakly* con-
verges in BV(Ω) to u if and only if the sequence is ‖.‖BV(Ω)-bounded and con-
verges to u w.r.t. ‖.‖L1(Ω).

Proposition 2.17. (Compactness in BV)
Every ‖.‖BV(Ω)-bounded sequence admits a weakly* converging subsequence.

Proof.

See [AFP00, Theorem 3.23].



20 Chapter 2 Basics: Functions of Bounded Variation

The second topology is called the strict topology and is induced by the
metric

d(u, v) =
∫
Ω

|u(x)− v(x)| dx + ||Du|(Ω)− |Dv|(Ω)| .

Definition 2.18. (Strict convergence)
Let u ∈ BV(Ω) and (un)n∈N be a sequence in BV(Ω). We say that un strictly
converges in BV(Ω) to u if d(un, u)→ 0 as n→ ∞.

The next theorem characterizes BV(Ω) by the strict convergence.

Theorem 2.19. (Approximation by smooth functions) ([AFP00, Theorem 3.9])
Let u ∈ L1(Ω). Then, u ∈ BV(Ω) if and only if there exists a sequence (un)n∈N

in C∞(Ω) converging to u in L1(Ω) and satisfying

L := lim
n→∞

∫
Ω

|∇un(x)| dx < ∞ .

Moreover, the least constant L is |Du|(Ω).

In other words u ∈ L1(Ω) is an element of BV(Ω) if and only if there exists
a sequence (un)n∈N in C∞(Ω) which strictly converges to u.

Note that by proposition 2.16 strict convergence implies weak* conver-
gence. Moreover, a stronger result holds.

Proposition 2.20.
Let (un)n∈N be a sequence in BV(Ω) strictly converging to u ∈ BV(Ω) and
g : Sd−1 → R continuous. Then for every ϕ ∈ Cb(Ω) we have

lim
n→∞

∫
Ω

ϕ(x) · g
(

Dun

|Dun|
(x)
)

d|Dun|(x) =
∫
Ω

ϕ(x) · g
(

Du
|Du| (x)

)
d|Du|(x) ,

whereas Du
|Du| (x) denotes the density function of Du w.r.t. |Du|.

In particular, the sequence of measures µn = g
(

Dun
|Dun| (x)

)
· |Dun| weakly* con-

verges to µ = g
(

Du
|Du| (x)

)
· |Du| in Ω.

Proof.

This is a consequence of the Reshetnyak continuity theorem (see [AFP00,
Theorem 2.39]).
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2.2.3 Fine Properties of BV-Functions

In the sequel we will expose some fine properties of BV-functions. We be-
gin with regular approximations of f ∈ Lp

loc(Ω) through convolution with
mollifiers. A family of functions (ρε)ε>0 is called a family of mollifiers if
ρε(x) = ε−d · ρ(x/ε) where ρ ∈ C∞

c (Rd) with the properties:

ρ ≥ 0 , ρ(−x) = ρ(x) ,
∫

Rd

ρ(x) dx = 1 .

For f ∈ Lp
loc(Rd), 1 ≤ p < ∞, we have f ∗ ρε ∈ C∞(Rd) and

lim
ε→0+

‖ f ∗ ρε − f ‖Lp(A) = 0 ∀ A⊂⊂Rd .

Moreover, if f is continuous the convergence is uniform on compact sets.
In what follows (ρε)ε>0 denotes a generic family of mollifiers.

Definition 2.21. (Approximate limit)
Let u ∈ L1

loc(Ω). u has an approximate limit z at x ∈ Ω if

lim
r→0+

1
Ld(Br(x))

∫
Br(x)

|u(y)− z|dy = 0 .

The set Su of points where this property does not hold is called the approximate
discontinuity set. For any x ∈ Ω\Su the approximate limit z of u at x is uniquely
determined and denoted by ũ(x).

A representative u is called approximately continuous at x if x ∈ Ω\Su is a
Lebesgue point of u, i.e.,

u(x) = ũ(x) .

For every u ∈ L1
loc(Ω) the set Su is a Borel set and Ld(Su) = 0. Furthermore,

ũ : Ω\Su → R is a Borel-function that coincides Ld-a.e. in Ω\Su with u.
Moreover, the sequence u ∗ ρε converges pointwise to ũ on Ω\Su as ε→ 0+.

Definition 2.22. (Approximate jump points)
Let u ∈ L1

loc(Ω) and x ∈ Ω. We say that x is an approximate jump point of u
if there exist a, b ∈ R, a 6= b and n ∈ Sd−1 such that

lim
r→0+

1
Ld(B+

r (x, n))

∫
B+

r (x,n)

|u(y)− a| dy = 0

and
lim

r→0+

1
Ld(B−r (x, n))

∫
B−r (x,n)

|u(y)− b| dy = 0 ,
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where

B+
r (x, n) = {y ∈ Br(x) : 〈y− x, n〉 > 0} , B−r (x, n) = B+

r (x,−n) .

The triplet (a, b, n) up to a permutation of (a, b) and a change of sign of n is
uniquely determined and denoted by (u+(x), u−(x), nu(x)). The set of all ap-
proximate jump points is denoted by Ju.

For every u ∈ L1
loc(Ω) the set Ju is a Borel subset of Su and

u+ : Ju → R , u− : Ju → R , nu : Ju → Sd−1

are Borel functions. Moreover, for x ∈ Ju the sequence u ∗ ρε tends to
u+(x)+u−(x)

2 as ε→ 0+.

Analogous to approximate continuity one defines approximate differentia-
bility.

Definition 2.23. (Approximate differentiability)
Let u ∈ L1

loc(Ω) and x ∈ Ω\Su. We say that u is approximately differentiable
at x if there exist L ∈ Rd such that

lim
r→0+

1
Ld(Br(x))

∫
Br(x)

|u(y)− ũ(x)− 〈L, (y− x)〉 |
r

dy = 0 .

The approximate differential L is uniquely determined and denoted by∇u(x). The
set of approximate differentiability points is denoted by Du.

The set Du is a Borel set and ∇u : Du → Rd a Borel map.

In order to better understand the approximate jump set Ju we need the
notion ofHk-rectifiable sets.

Definition 2.24. (Rectifiable sets)
Let E ⊂ Rd be a Hk-measurable set. We say that E is countably k-rectifiable if
there exist countably many Lipschitz functions f j : Rk → Rd such that

E ⊂
∞⋃

j=0

f j(Rk) .

We say that E is countablyHk-rectifiable if furthermore

Hk

E\
∞⋃

j=0

f j(Rk)

 = 0 .

Finally, we say that E isHk-rectifiable if in additionHk(E) < ∞.
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For k = 0 countably k-rectifiable sets as well as countablyHk-rectifiable sets
correspond to finite or countable sets, while Hk-rectifiable sets correspond
to finite sets.

Theorem 2.25. (Traces on interior rectifiable sets)([AFP00, Theorem 3.77])
Let u ∈ BV(Ω) and let Γ ⊂ Ω be a countably Hd−1-rectifiable set oriented by
n : Γ→ Sd−1. Then forHd−1-a.e. x ∈ Γ there exist u+

Γ (x) and u+
Γ (x) such that

lim
r→0+

1
Ld(B+

r (x, n(x)))

∫
B+

r (x,n(x))

|u(y)− u+
Γ (x)| dy = 0

and
lim

r→0+

1
Ld(B−r (x, n(x)))

∫
B−r (x,n(x))

|u(y)− u−Γ (x)| dy = 0 .

Moreover, the restriction of the derivative measure onto Γ is

Du Γ = (u+
Γ (x)− u−Γ (x)) · n(x) · Hd−1 Γ .

Now, we give a geometrical description of the derivative measure Du. The
Calderon-Zygmund theorem ([AFP00, Theorem 3.83]) tells us that every
u ∈ BV(Ω) is approximately differentiable at Ld-almost every point and
the approximate differential∇u from definition 2.23 is the density function
of the absolutely continuous part of the measure Du, i.e.,

Du = Dua + Dus , Dua = ∇u(x) · Ld ,

where the superscripts a, s denote the absolutely continuous and singular
part respectively.

The Federer-Vol’pert theorem ([AFP00, Theorem 3.78]) tells us furthermore
that the approximate discontinuity set Su is countablyHd−1-rectifiable and
that Hd−1(Su\Ju) = 0, i.e., almost every point of discontinuity is an ap-
proximate jump point. The singular part Dus is then decomposed further

Dus = Duj + Duc , Duj = Dus Ju = Du Ju ,

where the superscripts j, c denote the jump part and the so-called Cantor
part respectively. Definition 2.22 and theorem 2.25 then yield the geometry
of the jump part

Duj = (u+(x)− u−(x)) · nu(x) · Hd−1 Ju .

At this point we remark that for u ∈ BV(Ω) the implication

Hd−1(B) = 0 ⇒ |Du|(B) = 0 ∀ B ∈ B(Ω)

holds true (see [AFP00, Lemma 3.76]). Thus, the Cantor part Duc measures
non-trivially only sets with Hausdorff dimension in between d− 1 and d.

Finally, we characterize two function spaces which are contained in BV(Ω):
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a) u ∈ BV(Ω) belongs to the Sobolev space W1,1(Ω) if and only if

Du = ∇u(x) · Ld ,

i.e., its derivative is absolutely continuous.

b) u ∈ BV(Ω) belongs to the space of special BV-functions, denoted by
SBV(Ω), if and only if

Du = ∇u(x) · Ld + (u+(x)− u−(x)) · nu(x) · Hd−1 Ju ,

i.e., there is no Cantor part in Du.

For boundary value problems it is interesting to evaluate a function on the
boundary.

Theorem 2.26. (Boundary trace theorem) ([AFP00, Theorem 3.87])
Let Ω ⊂ Rd be an open set with bounded Lipschitz boundary and u ∈ BV(Ω).
Then, forHd−1-almost every x ∈ ∂Ω there exists the boundary trace value u|∂Ω(x)
such that

lim
r→0+

1
rd

∫
Ω∩Br(x)

|u(y)− u|∂Ω(x)| dy = 0 .

Moreover, the trace is integrable:

‖u|∂Ω‖L1(∂Ω,Hd−1) ≤ C · ‖u‖BV(Ω)

for some constant C depending only on Ω.

Unfortunately, the trace operator is not continuous w.r.t. the weak* topol-
ogy on BV(Ω), as the following example shows:

un : ]0, 1[→ R , un(x) =

{
nx , x ∈

]
0, 1

n

[
1 , x ∈

[ 1
n , 1
[ .

This sequence of BV(]0, 1[)-functions weakly* converges to u ≡ 1, but
un(0) = 0 does not tend to u(0) = 1.

But the trace operator is continuous w.r.t. the strict topology on BV(Ω).

Theorem 2.27. (Continuity of the trace operator) ([AFP00, Theorem 3.88])
Let Ω as in theorem 2.26. Then the trace operator

.|∂Ω : BV(Ω)→ L1(∂Ω,Hd−1) ,

whereas BV(Ω) is endowed with the strict topology, is continuous.

Finally, we state two properties that are quite useful when working with
BV-functions. The first one is a glueing property.
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Theorem 2.28. (Glueing)
Let u, v ∈ BV(Ω). Let E ⊂ Ω be an open set with bounded Lipschitz boundary
and ∂E be oriented by the outer unit normal n∂E. Let u+

∂E and v−∂E be givenHd−1-
a.e. on ∂E by theorem 2.25. Then,

w := u · 1Ω\E + v · 1E ∈ BV(Ω) ,

and the measure Dw is representable by

Dw = Du (Ω\E) + (u+
∂E − v−∂E) · n∂E · Hd−1 ∂E + Dv E .

Proof.

This is a consequence of [AFP00, Theorem 3.84], wherein the author con-
siders the more general situation where E is a subset of finite perimeter.

The second property considers the change of variables.

Theorem 2.29. ([AFP00, Theorem 3.16])
Let Ω1, Ω2 be open subsets of Rd, let f : Ω1 → Ω2 be a bijective and proper
Lipschitz map and u ∈ BV(Ω1). Then f]u = u ◦ f−1 belongs to BV(Ω2) and

|D( f]u)| ≤ Ld−1 f]|Du| ,

where L denotes the least Lipschitz constant of f .

2.2.4 BV-Functions of One Variable and BV-Sections

The problem considered later on is stated on a subset of R2. So for the
boundary data we are concerned with BV-functions of one variable. For
BV-functions of one variable much stronger results hold true and in partic-
ular there are so-called good representatives. Roughly speaking, a represen-
tative in the equivalence class of u is called a good representative, if it is
maximally continuous.

Theorem 2.30. (Good representatives) ([AFP00, Theorem 3.28])
Let I = ]a, b[ ⊂ R be an interval and u ∈ BV(I). Let A be the set of atoms of Du,
i.e., t ∈ A if and only if Du({t}) 6= 0. Then the following statements hold.

a) There exists a unique c ∈ R such that

ul(t) = c + Du(]a, t[) , ur(t) = c + Du(]a, t])

are good representatives of u, the left and the right continuous one. Any other
ū : I → R is a good representative of u if and only if

ū(t) ∈
{

λ · ul(t) + (1− λ) · ur(t) : λ ∈ [0, 1]
}
∀ t ∈ I .
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b) Any good representative ū is continuous in I\A and has a jump discontinuity
at every point of A.

c) Any good representative ū is differentiable at L1-a.e. point of I. The derivative
ū′ is the density of Du w.r.t. L1.

Note that the set A of atoms is at most countable and that u is essentially
bounded.

A simple operation on functions u : Ω ⊂ Rd → R to retrieve a function
of one variable is the so-called sectioning or slicing. Let Ω ⊂ Rd as in the
beginning of this section and ν ∈ Sd−1. We denote by Ων the projection of Ω
onto the hyperplane orthogonal to ν and define the corresponding domain
sections

Ωy,ν := {t ∈ R : y + tν ∈ Ω} with y ∈ Ων .

Accordingly, for any function u : Ω→ R its section is defined by

uy,ν : Ωy,ν → R , uy,ν(t) = u(y + tν) .

For a one-dimensional section of a C1(Ω)-function it is clear that it is a C1-
function of one variable, while for a one-dimensional section of a BV(Ω)-
function it is not obvious to obtain a BV-function of one variable. But
[AFP00, paragraph 3.11.] tells us:
If u ∈ BV(Ω) then for Ld−1-a.e. y ∈ Ων the section uy,ν is a BV-function of
one variable, i.e., uy,ν ∈ BV(Ωy,ν).

Furthermore, for the slicing in C1(Ω) the chain rule gives a correspondence
between∇u and u′y,ν. In the situation of BV-functions a similar result holds
true. We begin with the definition of the directional derivative.

Definition 2.31.
Let u ∈ L1

loc(Ω) and p ∈ Rd; we say that the distributional derivative of u along
p is a measure if there exists a finite Radon measure µ on Ω such that∫

Ω

u(x) · ∂p ϕ(x) dx = −
∫
Ω

ϕ(x) dµ(x) , ∀ϕ ∈ C1
c (Ω) .

The measure µ is uniquely determined and will be denoted by Dpu.

The next theorem establishes the relationship between Dνu and the deriva-
tive Duy,ν.

Theorem 2.32. ([AFP00, Theorem 3.107])
If u ∈ BV(Ω) and ν ∈ Sd−1, then

Dνu = Ld−1 Ων ⊗ Duy,ν
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where this is a generalized product measure according to definition 2.9, i.e.,∫
Ω

ϕ(x) dDνu(x) =
∫

Ων

∫
Ωy,ν

ϕy,ν(t) dDuy,ν(t) dy .

For the absolutely continuous part we have

Da
νu = Ld−1 Ων ⊗ Dauy,ν .

In addition, the precise representative u∗,

u∗(x) :=

{
ũ(x) , x ∈ Ω\Su
u+(x)+u−(x)

2 , x ∈ Ju
,

has a classical directional derivative along ν Ld-a.e. in Ω with

∂νu∗(y + tν) =
Dauy,ν

L1 (t) = 〈∇u(y + tν), ν〉

for L1-a.e. t ∈ Ωy,ν. Finally, the function (u∗)y,ν is a good representative in the
equivalence class of uy,ν.

Another situation where we are concerned with BV-functions of one vari-
able is when working with BV-functions on a C1-curve. We begin with the
case of an open C1-curve. The more general case of distributions on mani-
folds can be found, e.g., in [Hör90].

Definition 2.33. (Regular parametrization)
Let Γ ⊂ Rd be an open C1-curve. A parametrization γ : I → Γ of Γ, whereas
I ⊂ R is an open interval, is called regular, if γ ∈ C1(I, Γ) is surjective and
γ′(s) 6= 0 ∀s ∈ I.

Definition 2.34. (BV on open rectifiable C1-curves)
Let Γ ⊂ Rd be an open rectifiable C1-curve. A function u : Γ → R, u ∈
L1(Γ,H1), is a function of bounded variation if for every regular parametriza-
tion γ : I → Γ of Γ the distributional derivative of γ∗u := u ◦ γ is a finite Radon
measure: ∫

I

γ∗u(t) ϕ′(t) dt = −
∫
I

ϕ(t) dDγ∗u(t) ∀ ϕ ∈ C1
c (I) .

We have to check that ‖u‖BV(Γ) is independent of the choice of the para-
metrization. For ‖u‖L1(Γ,H1) this is clear

‖u‖L1(Γ,H1) =
∫
I

|γ∗u(t)| · |γ′(t)| dt .
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Since two regular parametrization differ only by a velocity transformation
– that is given γ1 : I1 → Γ and γ2 : I2 → Γ, there is a bijective s ∈ C1(I2, I1)
such that γ2(t) = γ1(s(t)) – we have with ϕ ∈ C1

c (I1)∫
I1

γ∗1u(h)ϕ′(h) dh =
∫
I2

γ∗1u(s(t))ϕ′(s(t))s′(t) dt =
∫
I2

γ∗2u(t)ψ′(t) dt

with new test functions ψ = ϕ ◦ s ∈ C1
c (I2). Taking the sup over ‖ψ‖∞ ≤ 1

on the right hand side first, and afterwards taking it over ‖ϕ‖∞ ≤ 1 on the
left hand side shows

Var(γ∗1u, I1) ≤ Var(γ∗2u, I2) .

Reversing the order of taking the suprema shows the inequality in the other
direction. Hence, we obtain the variation independent of the choice of the
parametrization

Var(u, Γ) = |Du|(Γ) .

Note: if γ : I → Γ is a regular parametrization with a bounded domain
I ⊂ R we can say that γ∗u is a BV-function of one variable, γ∗u ∈ BV(I).

Likewise, for the next chapter the case where Γ is a simple closed C1-curve
is important. Preparatory, we introduce periodic BV-functions. For that
purpose we look at an example first: let 0 < T < ∞ and consider the T-
periodic function u generated by

u0 :
[
−T

2
,

T
2

[
→ R , u0(x) =

{
0 , x ∈

[
− T

2 , 0
]

1 , x ∈
]
0, T

2

[ ,

i.e., u is recursively defined by

u(x) =


u0(x) , x ∈

[
− T

2 , T
2

[
u(x + T) , x < − T

2

u(x− T) , x ≥ T
2

.

Any restriction of u onto a half-open interval of length T can be used –
instead of u0 – as a generator to produce/reproduce u. When viewing u|I =
u0 on I =

]
− T

2 , T
2

[
as a BV(I)-function, the derivative measure D(u|I) will

detect one jump at x = 0 but will never detect the jumps of u at − T
2 or T

2
(which are the same point because of periodicity). This is because we test
D(u|I) versus C1

c (I)-functions: the support of such a test function does not
contain the boundary points of I, thus the test function cannot ”see” what
is going on there.
If we take instead, say, I =

]
− T

4 , 3T
4

[
, then D(u|I) will detect two jumps,

one at x = 0 and one at x = T
2 . For this choice of I nothing spectacular
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happens on the boundary of I, because the boundary points are points of
continuity of u. More formally, if we take ϕ ∈ C1

c (
]
− T

4 , 3T
4

[
), we have

3T
4∫

−T
4

u(t) ϕ′(t) dt =

T
2∫

−T
4

u(t) ϕ′(t) dt +

3T
4∫

T
2

u(t) ϕ′(t) dt

=

T
2∫

−T
4

u(t) ϕ′(t) dt +

−T
4∫

−T
2

u(t + T) ϕ′(t + T) dt

=

−T
4∫

−T
2

u(t) ϕ′(t + T) dt +

T
2∫

−T
4

u(t) ϕ′(t) dt =

T
2∫

−T
2

u(t) ψ′(t) dt

with a new test function ψ ∈ C1(
]
− T

2 , T
2

[
),

ψ(t) =

{
ϕ(t + T) , t ∈

]−T
2 , −T

4

[
ϕ(t) , t ∈

]−T
4 , T

2

[ ,

but ψ /∈ C1
c (
]
− T

2 , T
2

[
).

Summarizing, it is not enough to take some interval I of length T and re-
quiring u|I to belong to BV(I), since this depends on the choice of I. The
goal is to adapt the definition of BV in order to retrieve all the features of u
from some generator u|I independent of the choice of I.

Definition 2.35. (Periodic test functions)
Let 0 < T < ∞. We denote by

PT := {ϕ ∈ C1(R) : ϕ(t + T) = ϕ(t)}

the set of T-periodic test functions.
In the case that T = ∞, we set

P∞ := {ϕ ∈ C1
b(R) : lim

t→−∞
ϕ(t) = lim

t→+∞
ϕ(t) , lim

t→−∞
ϕ′(t) = lim

t→+∞
ϕ′(t)} .

Definition 2.36. (Periodic BV functions)
Let 0 < T < ∞. A function u : R → R is a T-periodic BV-function if for every
interval I of length T we have u ∈ L1(I) and∫

I

u(t) ϕ′(t) dt = −
∫
I

ϕ(t) dDu(t) ∀ ϕ ∈ PT .

with a finite Radon measure Du on I. The space of T-periodic BV-functions is
denoted by BVT.
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Note: if u ∈ C1 ∩ BVT, then with ϕ ≡ 1 ∈ PT and I = ]a, a + T[ we have

0 =
∫
I

u(t) · 0 dt = −
∫
I

1 · u′(t) dt = u(a)− u(a + T) ,

that means u ∈ PT. So the definition of BVT is a generalization of PT.

With definition 2.36 in mind we obtain for a T-periodic BV-function u

‖u‖L1 = ‖u|I‖L1(I) , |Du| = sup


∫
I

u(t) ϕ′(t) dt : ϕ ∈ PT, ‖ϕ‖∞ ≤ 1

 ,

where I is any interval of length T.

Finally, we define BV on simple closed C1-curves. Simple closed curves are
homeomorphic to a circle, thus, we view them as periodic structures.

Definition 2.37. (Regular periodic parametrization of simple closed C1-curves)
Let Γ ⊂ Rd be a simple closed C1-curve. A parametrization γ : R → Γ of Γ is
called regular, if

a) γ ∈ C1(R, Γ) is surjective and γ′(s) 6= 0 ∀s ∈ R,

b) γ is either T-periodic for some 0 < T < ∞, or – when T = ∞ – is injective .

Definition 2.38. (BV on a simple closed C1-curve)
Let Γ ⊂ Rd be a simple closed C1-curve. A function u : Γ → R, u ∈ L1(Γ,H1),
is a function of bounded variation if for every regular periodic parametrization
γ : R → Γ of Γ the distributional derivative of γ∗u := u ◦ γ is a finite Radon
measure: ∫

I

γ∗u(t) ϕ′(t) dt = −
∫
I

ϕ(t) dDγ∗u(t) ∀ ϕ ∈ PT ,

where T is the period of γ and I an interval of length T.

Note: we have γ∗u ∈ BVT in the case of a finite period T, while T is a
feature of γ but not of u. Because of parametrizing Γ periodically, we can
retrieve every other parametrization from a given one by a velocity trans-
formation plus a phase shift. Hence, the same argumentation, as already
used for BV on open rectifiable C1-curves, will show that the computation
of ‖u‖BV(Γ) does not depend on the choice of the parametrization.



Chapter 3

The Linear Problem

This chapter is concerned with the existence and uniqueness of global so-
lutions of boundary value problems for linear PDEs of the first order in
two-dimensional domains. We start out with a complete description of this
problem.

3.1 The Problem and its Requirements

In this section we will first collect all the requirements and then state the
full problem afterwards. We begin with the domain.

Requirement 3.1. (Domains)
Domains Ω ⊂ R2 are required to satisfy the following conditions:

1. Ω is open and bounded.

2. Ω is simply connected.

3. Ω has C1-boundary.

Because of 2. and 3. the boundary ∂Ω is a simple closed C1-curve. Through-
out this chapter we denote by γ : R→ ∂Ω a generic periodic parametriza-
tion of ∂Ω according to definition 2.37. Furthermore, by I = [a, b[ ⊂ R we
denote an interval such that γ|I is a generator of γ.

In the introduction we pointed out the need for a reasonable substitute for
time. Here we consider time functions whose range corresponds to a finite
time interval. That means that these time functions will incorporate a stop
set, on which they become maximal. Here we state the geometric properties
of allowed stop sets.

Requirement 3.2. (Stop sets)
Stop sets Σ are required to satisfy the following conditions:

31
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1. Σ is a closed subset of Ω.

2. Σ is either an isolated point, or a connected set with tree-like structure.

3. If Σ is not an isolated point, we assume that Σ is made of finitely many
rectifiable C1-arcs Σk:

Σ =
n⋃

k=1

Σk .

The collection {Σk}k=1,...,n is assumed to be minimal in the number n of arcs,
so Σ is decomposed by breaking it up at corners and branching points.

Furthermore, we require for each arc Σk that its relative interior Σ̊k has a
given orientation by a continuous unit normal nk : Σ̊k → S1.

Later on, we will need a concept of one-sided limits towards z ∈ Σ̊k.

Definition 3.3.

a) Let P(x) be the set of all possible projections of x ∈ Ω\Σ onto Σ, i.e.,

P(x) =
{

p ∈ Σ : |p− x| = min
z∈Σ
|z− x|

}
.

A point x ∈ Ω\Σ is said to be projectable onto a relatively open arc Σ̊k of Σ if
for every p ∈ P(x) we have p ∈ Σ̊k.

b) Let x ∈ Ω\Σ be projectable onto Σ̊k. Then, x is on the right hand side or
plus-side of Σ̊k if

x− p
|x− p| = +nk(p) ∀ p ∈ P(x) .

Analogously, x is on the left hand side or minus-side of Σ̊k if

x− p
|x− p| = −nk(p) ∀ p ∈ P(x) .

c) A sequence (xn)n∈N, xn ∈ Ω\Σ tends to z ∈ Σ̊k coming from the plus-side if
the sequence converges towards z and almost all elements xn are on the plus-
side according to b); in symbols:

xn → z+ .

Analogously, we define xn → z−, the limit from the minus-side.
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Note: not every point is projectable. Moreover, there might be projectable
points of which we cannot decide if they belong to the plus-side or to the
minus-side. But, locally, in a neighborhood of Σ, every projectable point
belongs either to the plus-side or the minus-side.

Next, we collect the properties of admissible time functions. We do this
in two steps. In the first collection of requirements we summarize suffi-
cient features which make time functions behave reasonably in between the
boundary and the stop set. In the second collection we add requirements
considering the behavior close to and on the stop set.

Requirement 3.4. (Reasonable time functions)
Time functions T : Ω→ R are defined on a domain Ω which satisfies requirement
3.1. We denote by

χT≥λ := {x ∈ Ω : T(x) ≥ λ}

upper level-sets of T.

A time function T is required to satisfy the following conditions:

1. T ∈ C(Ω), i.e., T extends continuously onto ∂Ω.

2. The boundary of Ω is the start level: T|∂Ω = 0.

3. T incorporates a stop set Σ in accordance with requirement 3.2, where the
following conditions are assumed to hold:

a) T(x) < 1⇔ x ∈ Ω\Σ.

b) T|Σ = 1, i.e., Σ is the maximal level of T.

4. T increases strictly from ∂Ω towards Σ: that means any upper level-set
χT≥λ is simply connected and

χT≥λ = χT>λ ∀ λ ∈ [0, 1[ .

5. For every λ ∈ [0, 1[ the set χT>λ satisfies requirement 3.1 (any proper upper
level-set is a future domain).

The field of interior unit normals to the λ-levels

χT=λ = ∂χT>λ , λ ∈ [0, 1[

of T is denoted by N : Ω\Σ → S1. N is required to be continuously
differentiable and extendable onto ∂Ω, i.e., N ∈ C1(Ω\Σ).

6.* T ∈ C2(Ω), with ∇T(x) = 0⇔ x ∈ Σ.



34 Chapter 3 The Linear Problem

Ad 6.*: in order to ease things in the passages that follow, we assume that
T ∈ C2(Ω) – i.e., T, ∇T as well as D2T are continuous with continuous
extensions onto ∂Ω – and ∇T(x) = 0 ⇔ x ∈ Σ. Because of these assump-
tions, we obtain a simple description of the field N on Ω\Σ:

N(x) :=
∇T(x)
|∇T(x)| .

Clearly, N is continuously differentiable and extendable onto ∂Ω.

In the case that Σ is not only an isolated point, we also need a good behavior
of the maps T and N at Σ.

Requirement 3.5. (Behavior of time functions at Σ)

1. Requirements on T:

Let y ∈ Σ and h ∈ S1 . Let p = p(y, h) be the best possible order for the
asymptotic

T(y + rh) = 1−O(rp) , r → 0+ .

We require that there is a bound q such that

sup
y∈Σ

sup
|h|=1

p(y, h) < q .

2. Requirements on N:

a) N has one-sided extensions onto the relatively open components Σ̊k and
those extensions are given by ±nk:

N+(y) := lim
x→y+

N(x) , N+(y) = −nk(y) ,

N−(y) := lim
x→y−

N(x) , N−(y) = nk(y)

for every y ∈ Σ̊k.

b) The derivative DN has one-sided extensions onto the relatively open
components Σ̊k, i.e.,

(DN)+(y) := lim
x→y+

DN(x) , (DN)−(y) := lim
x→y−

DN(x)

exist for every y ∈ Σ̊k.
c) |DN| ∈ L1(Ω), i.e., poles of |DN| at corner-, branching- and terminal

nodes of Σ are integrable. This feature is assumed to hold in the case that
Σ is an isolated point as well.

What remains are the assumptions on admissible transport fields. Those
are as follows.
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Requirement 3.6. (Transport fields)
Assuming that a domain Ω and a time function T with stop set Σ according to
the requirements stated above are already specified, we require transport fields c :
Ω\Σ→ R2 to satisfy:

1. c ∈ C1(Ω\Σ)2 and c features the following properties:

a) c and Dc are continuously extendable onto ∂Ω.

b) If Σ is not only an isolated point, then c and Dc have one-sided limits on
the relatively open C1-arcs Σ̊k of Σ:

c+(y) = lim
x→y+

c(x) and c−(y) = lim
x→y−

c(x) ,

(Dc)+(y) = lim
x→y+

Dc(x) and (Dc)−(y) = lim
x→y−

Dc(x) ,

for every y ∈ Σ̊k.

2. Unit speed and inward-pointing condition:

a) |c| = 1.

b) There is a lower bound β > 0 such that

β ≤ 〈c(x), N(x)〉 ≤ 1 ∀x ∈ Ω\Σ . (3.1)

c) Conditions a) and b) hold for the one-sided limits as well, i.e.,

|c+(y)| = |c−(y)| = 1

and

β ≤
〈
c+(y), N+(y)

〉
≤ 1 , β ≤

〈
c−(y), N−(y)

〉
≤ 1 ,

whenever y belongs to some Σ̊k.

3. Let zk, k ∈ {1, . . . , m} denote the terminal-, branching- and kink nodes of
Σ. For every ε > 0, such that each disk Bε(zk)⊂⊂Ω is compactly contained
in Ω, we define the set

Vε := Σ ∪
m⋃

k=1

Bε(zk) .

a) For every admissible ε > 0, there is a bound Mε such that

|Dc(x)| ≤ Mε , ∀ x ∈ Ω\Vε

b) |Dc| ∈ L1(Ω), poles of |Dc| at zk, k ∈ {1, . . . , n} are integrable.
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Now that we have collected all assumptions, we finally state the problem.

Problem 3.7. (Linear problem)
Let Ω be a domain, T : Ω → R be a time function with a stop set Σ, and c :
Ω\Σ → R2 be a transport field, all in accordance with the requirements stated
above.
Let furthermore f ∈ C1(Ω) and u0 ∈ BV(∂Ω).

We search for u ∈ BV(Ω), such that

〈c(x), Du〉 = f (x) · L2 in Ω\Σ , (3.2)
u|∂Ω = u0 . (3.3)

Motivation of the requirements on time functions and transport fields
At this point, we want to discuss the motivation of requirement 3.4 which
we have claimed to characterize reasonable time functions. In the introduc-
tion, we have already considered the problem

∂xu + α(x, y) · ∂yu = f (x, y) in H2
0,a ,

u(0, y) = u0(y) ,

for a C1-function u, where H2
0,a := {(x, y) ∈ R2 : 0 < x < a} with start set

{(x, y) ∈ R2 : x = 0} and stop set Σ = {(x, y) ∈ R2 : x = a}.

Let us use this problem again to motivate the requirements on time func-
tions. The derivation of the characteristic equations results in the following
initial value problem (IVP)

x′(t) = 1 , x(0) = 0 ,
y′(t) = α( x(t), y(t) ) , y(0) = s ,
u′(t) = f ( x(t), y(t) ) , u(0) = u0(s) .

For more background on the method of characteristics see e.g. [Eva98,
chapter 3].

The solution of the first equation is x(t) = t and so the variable x is typically
identified with the characteristic time. In other words, the map T(x, y) = x
is the ”natural” time function on H2

0,a.

Let us first check if this ”natural” time function fulfils requirement 3.4:
T is obviously continuous and we observe that the set {(x, y) ∈ R2 : x = 0},
where data is given, is the 0-level of T while Σ is the maximal level of T. In
order to have Σ as the 1-level, one can use T2(x, y) = x/a instead of T. For
λ ∈ [0, a[ any upper level-set of T

χT≥λ = H2
λ,a
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is simply connected and the condition

χT≥λ = χT>λ

is certainly satisfied. Hence, T increases strictly towards Σ in the sense of
requirement 3.4 part 4. Since T is in fact a function of one variable given
by h(x) = x, we can also argue by the monotonicity properties of h. By
the way, functions of one variable which are strictly increasing in the usual
sense satisfy the conditions in requirement 3.4 part 4. Finally, for part 5, the
left boundary {(x, y) ∈ R2 : x = λ} of any proper upper level-set χT>λ

has the same shape as the left boundary of χT>0 = H2
0,a. And the field of

interior unit normals is N(x, y) = e1, which is C1. This last feature is very
important, because it means that, when stopping at some time λ < a, the
restarted problem - on H2

0,a with boundary data u(λ, y) on {(x, y) ∈ R2 :
x = λ} - has exactly the same structure as the original one.

For the more general problem 3.7 we want to have virtually the same situa-
tion. So, it is quite obvious why we assume parts 1 to 3 of requirement 3.4.
Part 4 is more interesting: its first condition,

χT≥λ = χT>λ ,

makes sure that T is free of plateaus and that λ-levels of T are closed curves
without tentacles.
The second condition, that every upper level-set is required to be simply
connected, guarantees that there are no local maxima besides the set Σ and
furthermore, that there are no local minima or saddle nodes.
Note, if we allow for a saddle point x with time value T(x) = λ then, the
upper level-set χT>λ consists of two disjoint sets and so the problem will
split up into two subproblems for time T > λ with two parallel time lines
so to speak. This scenario will be considered later on in chapter 5.
Part 5 of requirement 3.4 guarantees an analogous self-reproduction feature
as the one we have in the half-space example above. In other words, every
upper level set of T shall be a ”future” domain.

In section 3.3 we will apply the method of characteristics in order to con-
struct a solution candidate. The characteristic IVP will then look like

y′ = c(y) , y(0) = γ(s) .

Requirement 3.6 part 2b) states that the specified time function T is a global
Lyapunov function for this dynamical system and the set Σ is an attractor.
This might seem unnatural, but it is not: considering the linear problem on
the half-plane again, the typical requirement (equation (1.7)) on the coeffi-
cients can be rephrased to ”the natural time function T(x, y) = x should be
a Lyapunov function".
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Remark: in many text books, e.g. [Ama90], a continuous function L : Ω →
R is called Lyapunov function for the solution ξ(t, x) of an IVP

y′ = c(y) , y(0) = x ∈ Ω ,

(or more generally a flow ξ) if the orbital derivative

L′(x) := lim inf
t→0+

L(ξ(t, x))− L(x)
t

≤ 0 ∀x ∈ Ω

exists for all x and is non-positive. If L is smooth, this requirement is equiv-
alent to

〈∇L(x), c(x)〉 ≤ 0 .

For our case, requirement 3.6 part 2b) means that L = −T is a Lyapunov
function.

Requirements 3.4, 3.5, and 3.6 in combination are such that the family of
characteristics gives us a customized coordinate system for problem 3.7.
This is the matter of next section.

3.2 A Customized Coordinate System

Throughout this section we denote by Ω a domain, by Σ a stop set, by T a
time function with the field of normals N and by c a transport field all in
accordance with the requirements 3.1, 3.2, 3.4, 3.5, and 3.6.

Lemma 3.8.

a) Let q be the bound from requirement 3.5 part 1 , let ϕ(t) := −t
1
q and let

T0(x) := 1 + ϕ(1− T(x)) . (3.4)

Then, the gradient ∇T0 of the transformed time function blows up at Σ and is
bounded below

|∇T0(x)| ≥ m0 > 0 ∀ x ∈ Ω\Σ ,

away from zero.

b) For every regular C1-curve x : [0, a[→ Ω\Σ (a = ∞ admissible) that satisfies
the following condition

0 < β ≤
〈

N(x(τ)),
x′(τ)
|x′(τ)|

〉
, ∀τ ∈ [0, a[ , (3.5)

the arc-length of x is uniformly bounded by

arclength(x) ≤ 1
β ·m0

. (3.6)



3.2 A Customized Coordinate System 39

Proof.

a) The function T0 is well-defined since 0 ≤ T ≤ 1 and its derivative is

∇T0(x) = ϕ′(1− T(x)) · (−∇T(x)) =: H(x) · ∇T(x)
|∇T(x)| ,

with
H(x) :=

1
q
(1− T(x))

1−q
q · |∇T(x)| > 0 .

Let y ∈ Σ, h ∈ S1 and r > 0. Then, by requirement 3.5 part 1 we have

1− T(y + rh) = C1rp , p = p(y, h) , C1 > 0 .

Because T ∈ C2(Ω) and ∇T|Σ = 0 we obtain

|∇T(y + rh)| = C2rp−1 ,

with the same p as before. Putting both results together yields

H(y + rh) = C3r
p(1−q)

q rp−1 = C3r
p−q

q .

Since, by requirement 3.5 part 1, q > p(y, h) holds uniformly, we obtain
a blow up

lim
r→0+

|∇T0(y + rh)| = lim
r→0+

H(y + rh) = ∞ ,

for any choice of y ∈ Σ, h ∈ S1.

We will show next that |∇T0| ≥ m0 > 0. Assume by contradiction that

inf
x∈Ω\Σ

H(x) = inf
x∈Ω\Σ

|∇T0(x)| = 0 .

and choose an open neighborhood U of Σ such that

H|U ≥ M ,

for some constant M > 0 which is possible because of the blow up. Then
the restriction onto the complement Ĥ : Ω\U → R, Ĥ = H|Ω\U , being
a continuous function, must take the minimum

min
x∈Ω\U

Ĥ(x) = 0

at some point x̂ ∈ Ω\U. But then, the definition of H implies

Ĥ(x̂) = H(x̂) = 0 ⇒ |∇T(x̂)| = 0 ,

which is a contradiction, since x̂ /∈ Σ. Thus, H = |∇T0| has a minimum
greater than zero:

m0 := min
x∈Ω\Σ

|∇T0(x)| > 0 .
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b) Using T0 we estimate the arc-length from above by

T0(x(t))− T0(x(0)) =
t∫

0

〈
∇T0(x(τ)), x′(τ)

〉
dτ

=
t∫

0

〈
N(x(τ)),

x′(τ)
|x′(τ)|

〉
· |∇T0(x(τ))| · |x′(τ)| dτ

≥ β

t∫
0

|∇T0(x(τ))| · |x′(τ)| dτ ≥ β ·m0

t∫
0

|x′(τ)| dτ .

Since 0 ≤ T0 ≤ 1, we end up with

t∫
0

|x′(τ)| dτ ≤ 1
β ·m0

, ∀t ∈ [0, a[ .

The limit t → a finally yields the uniform bound on the arc-length of
such curves x

arclength(x) ≤ 1
β ·m0

,

which depends only on β and information from T.

Because of its nice properties the transformed version T0 defined in lemma
3.8 part a) by equation (3.4) will be identified – instead of T – with the time
variable of the characteristics. Whenever we speak about T0 we mean this
transformed version of a given time function T.

Lemma 3.9.

a) The initial value problem

y′ = c(y) , y(0) = x ∈ Ω\Σ ,

has a unique maximally continued solution y : ]t−, t+[ → R2, with −∞ <
t− < 0 < t+ < ∞.

Every trajectory y connects the sets ∂Ω and Σ, i.e.,

lim
t→t−

y(t) ∈ ∂Ω , lim
t→t+

y(t) ∈ Σ .

For every point z ∈ Σ̊k in the relative interior of some C1-arc of Σ, there are
exactly two trajectories which hit z in the limit t→ t+, one for each side of Σ̊k.
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b) The transformed transport field c0

c0 :=
c

〈c,∇T0〉
(3.7)

features the properties:

• c0 is continuously extendable onto Σ by c0|Σ ≡ 0 .
• The solution y0 of

y′ = c0(y) , y(0) = x ∈ Ω\Σ ,

satisfies
T0(y0(t)) = t + T0(x) .

Proof.

a) Consider the system

y′ = c(y) , y(0) = x ∈ Ω\Σ , (3.8)

Because c is Lipschitz continuous by requirement 3.6 part 3a) there exists
a maximally continued, unique solution y with time domain ]t−, t+[ and
0 ∈ ]t−, t+[.

Because of the unit speed condition |c| = 1, y never stops inside Ω\Σ
and never blows up. The inward-pointing condition (requirement 3.6
part 2b) ) implies, by

d
dt

T0(y(t)) = 〈∇T0(y(t)), c(y(t))〉 ≥ m0 · β > 0 , (3.9)

that T0(y(t)) strictly increases at least by a rate of m0 · β.
Thus, y collapses at boundary of Ω\Σ and by (3.9) it follows:

• Going forward t→ t+: collapse at Σ after finite time t+ ,
• Going backward t→ t−: collapse at ∂Ω after finite time t−.

Because of unit speed the values t+ , t− are exactly the arc-lengths,
which are finite by lemma 3.8.

Assume now that z ∈ Σ̊k and consider the side where nk(z) points to.
According to definition 3.3 b) we call this side the ”plus-side” and the
opposite side the ”minus-side”. Since c and Dc both extend from the
plus-side onto Σ̊k by c+ and (Dc)+, the backward IVP

y′ = −c(y) , y(0) = z , with c(z) := c+(z) .

has a unique solution that starts at z ∈ Σ̊k and evolves away from Σ
into the plus-side. Hence, vice versa there is only one solution y of the
forward IVP (3.8) that comes from the plus-side, heads for z ∈ Σ̊k, and
hits z in the end. The same argumentation holds true for the minus-side.
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b) We consider again the forward IVP (3.8), the initial value x of which
satisfies T0(x) < 1 = max

z∈Ω
T0(z). For λ with T0(x) ≤ λ < 1, there is

a unique time τ(λ), when the solution y of (3.8) crosses the λ-level of
T0. This is because T0(y(t)) increases strictly by (3.9), so y crosses the
λ-level only once .
Then, viewing τ as a function of λ, the implicit function theorem applied
to

T0(y(τ)) = λ

yields the differentiability of τ w.r.t. λ and the derivative:

τ′(λ) =
1

〈∇T0(z), c(z)〉

∣∣∣∣
z=y(τ(λ))

.

Using again the inward-pointing condition and recalling that |∇T0| ≥
m0 > 0, we infer

0 < τ′ ≤ 1
m0 · β

.

Let λ0 := T0(x). Then, the function τ maps [λ0, 1[ to [0, t+[ with τ(λ0) =
0 and τ(1) = t+. Moreover, we have for τ′ in the limit:

λ→ 1 ⇒ τ(λ)→ t+ ⇒ y(τ(λ))→ z ∈ Σ
⇒ |∇T0(y(τ(λ)))| → ∞ ⇒ τ′(λ)→ 0 .

Using τ, we change now the independent variable

y0(λ) := y(τ(λ + λ0)) .

Then, y0 satisfies the initial condition y0(0) = x and has the derivative

y′0(λ) = y′(τ(λ + λ0)) · τ′(λ + λ0)

=
(

c(z) · 1
〈∇T0(z), c(z)〉

)∣∣∣∣
z=y(τ(λ+λ0))

=
c(z)

〈∇T0(z), c(z)〉

∣∣∣∣
z=y0(λ)

= c0(y0(λ)) .

Consequently, y0 is the unique solution of

y′ = c0(y) , y(0) = x ∈ Ω\Σ ,

and – by construction – satisfies

T0(y0(λ)) = T0(y(τ(λ + λ0))) = λ + λ0 = λ + T0(x).
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Because ∇T0 blows up at Σ while |c| = 1, in the limit we have

lim
y→z

c0(y) = 0 ∀z ∈ Σ ,

which yields the continuous extension of c0 onto Σ.

By lemma 3.9 part b) , we get the useful property that – when using c0 from
equation (3.7) instead of the original transport field c – the time variable
of a characteristic y0 is given by T0. We use this feature to introduce new
coordinates on Ω\Σ whose conception is similar to polar coordinates on a
disk. Whenever we speak about c0 we mean the transformed version of a
given transport field c according to equation (3.7).

Corollary 3.10. (Polar coordinates)
Let γ : R → ∂Ω, a periodic parametrization of ∂Ω in accordance with definition
2.37. Let I = [a, b[ ⊂ R be an interval such that γ|I is a generator for γ.

Then, the general solution ξ(t, s) of the forward IVP

y′ = c0(y) , y(0) = γ(s) ,

defines a diffeomorphism ξ : ]0, 1[× ]a, b[→ Ω\(Σ ∪ S) , where

S = {ξ(t, a) : t ∈ ]0, 1[} .

Let η(t, x) denote the general solution of the backward IVP

y′ = −c0(y) , y(0) = x ∈ Ω\(Σ ∪ S) .

Then, the inverse map ξ−1(x) = (t(x), s(x))T is given by

ξ−1(x) = ( T0(x) , γ−1(η(T0(x), x)) )T , x ∈ Ω\(Σ ∪ S) .

The relation between ξ and η is

ξ(t, s(x)) = η( T0(x)− t , x ) . (3.10)
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Proof.

ξ solves the forward IVP and we know from lemma 3.9 that any curve
ξ( . , s) is located in Ω\Σ and connects the sets ∂Ω and Σ. By this, it is
obvious that the set Ω\(Σ ∪ S) is simply connected and open in R2, and
that ξ maps ]0, 1[× ]a, b[ onto Ω\(Σ ∪ S).
Clearly, ξ is differentiable w.r.t. to time t. Since γ ∈ C1(]a, b[ , ∂Ω) and
c0 ∈ C1(Ω\Σ, R2), we obtain ∂sξ from the variational equation

∂t(∂sξ) = Dc0 ◦ ξ · ∂sξ , ∂sξ(0, s) = γ′(s) .

Next we discuss η, the solution of the backward IVP. From lemma 3.9 we
know the trajectory η( . , x) hits the boundary after time t = T0(x). Hence,
η(T0(x), x) is the unique point on the boundary that corresponds to x which
implies further

η(T0(x), x) = γ(s(x)) ⇒ s(x) = γ−1(η(T0(x), x)) .

Because ξ( . , s(x)) and η( . , x) both connect the points x and γ(s(x)) along
the same curve in opposite direction and have the same absolute velocity
|c0|, it follows that t(x) = T0(x) and furthermore the relation

ξ(t, s(x)) = η( T0(x)− t , x ) .

With t(x) and s(x) we have the inverse map ξ−1(x) = (t(x), s(x))T. The
differentiability properties of γ−1,T0 and c0 imply the differentiability of
ξ−1(x): we obtain Dxη from the variational equation for the backward IVP

d
dt

(Dxη) = −Dc0 ◦ η · Dxη , Dxη(0, x) = I .

Remark about the analogy to polar coordinates
Consider the parametrization Φ : ]0, 1[× ]−π, π[→ B1(0)\({0} ∪ S′) ,

Φ(r, ϕ) = (1− r) ·

 cos(ϕ)

− sin(ϕ)

 , S := {−r · e1 : r ∈ ]0, 1[} ,

of the open unit disk B1(0) punctured at its center 0 and slitted along S′

(negative x-axis). Note that the parametrization of the boundary by Φ(0, ϕ)
is clockwise and thus det DΦ(r, ϕ) = (1− r) > 0.

In comparison, we obtain the following correspondence between Φ and ξ:
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Φ ξ

Center: {0} Σ

Slit: S′ S

Radial variable: r t

Angular variable: ϕ s

In the following lemma, we collect diverse properties of the polar coordi-
nates introduced just now.

Lemma 3.11.
Let γ be a parametrization of the boundary ∂Ω and let ξ as in corollary 3.10.

Then,

a) if γ is clockwise, the jacobian Dξ = (∂tξ|∂sξ) of the diffeomorphism ξ has a
positive determinant and the estimate

0 < det Dξ ≤ |∂tξ||∂sξ| ≤
det Dξ

β
(3.11)

holds true.

If γ is counter-clockwise, the assertions hold for −det Dξ.

b) for each of the relatively open C1-arcs Σ̊k of Σ, we can find – w.r.t. the orienta-
tion nk – two subsets Jk,+ and Jk,− of I such that the maps ξ(1, s) with s ∈ Jk,+
and ξ(1, s) with s ∈ Jk,− are both regular C1-parametrizations of Σ̊k.

c) Dc0 ◦ ξ · ∂sξ is integrable over [0, 1[× [a, b[.

d) The inverse map ξ−1 is one-sided extendable onto the relatively open C1-arcs
Σ̊k of Σ.

Proof.

a) By lemma 3.9 part b), we have

T0(ξ(t, s)) = t , ∀s ∈ ]a, b[ .

That means, for a fixed t ∈ ]0, 1[, the function ξ(t, . ) : ]a, b[ → Ω
parametrizes the t-level of T0. This parametrization itself is clockwise
if the initial one ξ(0, s) = γ(s) is. In this case ∂sξ

⊥ points into the ex-
terior of χT0≥t, and using the field of normals N, which points into the
interior of χT0≥t, we decompose

∂sξ
⊥ = −N ◦ ξ · |∂sξ|
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into direction and magnitude. For the counter-clockwise case, the same
argumentation yields

∂sξ
⊥ = N ◦ ξ · |∂sξ| .

Since ∂tξ points in the same direction as the normed vector c ◦ ξ, we
decompose it similarly ∂tξ = c ◦ ξ · |∂tξ|. Using the identity

det Dξ = det(∂tξ|∂sξ) =
〈

∂tξ,−∂sξ
⊥
〉

we end up with

det Dξ = |∂tξ||∂sξ| 〈c, N〉 ◦ ξ , if γ clockwise
−det Dξ = |∂tξ||∂sξ| 〈c, N〉 ◦ ξ , if γ counter-clockwise .

Because ξ is a diffeomorphism, the determinant is, of course, never zero.
The inward-pointing condition (3.1) from requirement 3.6 part 2 on the
one hand implies the positiveness of ±det Dξ and on the other the rela-
tion

±det Dξ ≤ |∂tξ||∂sξ| ≤ ±
det Dξ

β
.

b) Proceeding as in the proof of lemma 3.9 part b), we solve the original
forward IVP

y′ = c(y) , y(0, s) = γ(s) ,

and obtain its solution y( . , s) : [0, t+(s)[ → Ω. Then, ξ is given by
ξ(λ, s) = y( τ(λ, s) , s), where τ is implicitly defined by

T0( y(τ, s) ) = λ , 0 ≤ λ < 1 ,

Hence, τ depends on s ∈ [a, b[ as well. Clearly, τ is periodic w.r.t. to s
and an element of C1([0, 1[× [a, b[), so the question is what happens in
the limit λ→ 1.

Since T0(ξ(1, s)) = 1 means ξ(1, s) ∈ Σ, the function s → ξ(1, s) must
somehow parametrize Σ. From lemma 3.9 part a) we know that if z ∈ Σ̊k
then there are only two trajectories which meet at z, one for each side of
Σ̊k. Let J consist of all s ∈ ]a, b[, such that ξ(1, s) is a terminal node of
one of the arcs Σ1, . . . , Σn.
Then, – corresponding to a single arc Σk – we choose Jk,+ to consist of all
elements of I\J such that the family of curves

ξ(λ, . ) :Jk,+ → χT0=λ , s→ ξ(λ, s)

– in the limit λ → 1 – reaches Σ̊k from the plus-side w.r.t. to the orien-
tation nk. Analogously, considering the minus-side, we choose Jk,−. For
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∂Ω

Σ

+

<
c+

− <

c−
N−

N+

n1

red: Σ and normals, green: one-sided
extensions of c, blue: boundary curve γ,
black: two characteristics

>

Σ

>

T0 = λ

n1

γ(J1,+)
ξ(λ, J1,+)

red: Σ and a normal, blue: boundary
curve γ, dashed blue: part γ(J1,+) of the
boundary, light blue: ξ(λ, . ), ξ(λ, J1,+)
part between the dots, black: for each
terminal node of Σ the first and last
characteristic

Figure 3.1: Decomposition of ξ(λ, . )

an illustration see figure 3.1, where Σ = Σ1 is oriented by n1 and γ is
clockwise.

In the following, we restrict the discussion to the case of Jk,+, since for
the proof of the other case the same steps are necessary. Depending on
where the slit S = {ξ(t, a) : t ∈ ]0, 1[} is located, the set Jk,+ is either an
open interval or the union of two open intervals.

For s ∈ Jk,+ we extend the right hand side of the forward IVP by c+,
then both limits

lim
t→t+(s)

y(t, s) = z(s) ∈ Σ̊k , lim
t→t+(s)

y′(t, s) = c+( z(s) ) ,

exist and the equation
T0( y(τ, s) ) = 1

has the unique solution τ(1, s) = t+(s). Since |∇T0| blows up at Σ (see
lemma 3.8 a)), we are not finished with the properties of ∂sτ. With the
estimates

|τ(1, s)− τ(1, p)|
≤ |τ(1, s)− τ(λ, s)|+ |τ(λ, s)− τ(λ, p)|+ |τ(λ, p)− τ(1, p)|
≤ |∂λτ(λ1, s)||1− λ|+ |τ(λ, s)− τ(λ, p)|+ |∂λτ(λ2, p)||1− λ|

≤ 2
m0 · β

|1− λ|+ |τ(λ, s)− τ(λ, p)|
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and

|τ(1, s)− τ(λ, p)| ≤ 1
m0 · β

|1− λ|+ |τ(λ, s)− τ(λ, p)| ,

whereas λ < λ1, λ2 < 1 stem from the mean value theorem, we have
the continuity of τ(1, s) = t+(s) as well as the continuous extension of
τ(λ, s) by τ(1, s). By this result, ξ(1, s) = y(τ(1, s), s) is continuous.

Next, we study the partial derivative ∂sτ and its limit limλ→1 ∂sτ(λ, s).
For 0 < λ < 1 we obtain ∂sτ by the implicit function theorem applied to

T0(y( τ(λ, s) , s)) = λ ,

the derivative ∂sτ:

0 = 〈∇T0, ∂ty〉 ∂sτ + 〈∇T0, ∂sy〉 ⇒ ∂sτ = −〈N, ∂sy〉
〈N, c〉 ,

(see also the proof of lemma 3.9 b)). Because c and N have continuous
one-sided extensions, we have

lim
λ→1

N( y(τ(λ, s), s) ) = N+(z(s)) , lim
λ→1

c( y(τ(λ, s), s) ) = c+( z(s) )

and thus, it suffices to look at ∂sy. The IVP for ∂sy gives us

∂sy(t, s) = γ′(s) +
t∫

0

Dc ◦ y(h, s) · ∂sy(h, s) dh .

By requirement 3.6 part 1a) Dc continuously extends as well as c, and
by 3.6 part 3a) we get |Dc ◦ y(h, s)| uniformly bounded when restricting
the domain of s to a ε-neighborhood Uε(σ) of say σ ∈ Jk,+ with ε small
enough:

|Dc ◦ y(h, s)| ≤ M , (h, s) ∈ [0, τ(1, s)]×Uε(σ) .

Gronwall’s lemma (see [Wal70]) yields the bound

|∂sy(t, s)| ≤ |γ′(s)|eMt ≤ |γ′(s)|eMτ(1,s) ,

which implies the existence of limλ→1 ∂sy( τ(λ, s) , s). Moreover, the
continuity of this limit w.r.t. s and the continuous extension of (λ, p)→
∂sy( τ(λ, p) , p) follow from the estimate below:

|∂sy( τ(1, s) , s)− ∂sy( τ(λ, p) , p)|
≤ |∂sy( τ(1, s) , s)− ∂sy( τ(λ, s) , s)|+ |∂sy( τ(λ, s) , s)− ∂sy( τ(λ, p) , p)|
≤ |∂t∂sy( τ∗ , s)||τ(1, s)− τ(λ, s)|+ |∂sy( τ(λ, s) , s)− ∂sy( τ(λ, p) , p)|
≤ M|γ′(s)|eMτ(1,s)|τ(1, s)− τ(λ, s)|+ |∂sy( τ(λ, s) , s)− ∂sy( τ(λ, p) , p)| .
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Consequently, ∂sτ(λ, s) has exactly the same continuity properties as
∂sy. Summarizing, we have for s ∈ Jk,+ that

∂sξ(λ, s) = ∂ty(τ(λ, s), s) · ∂sτ(λ, s) + ∂sy(τ(λ, s), s) (3.12)

extends continuously onto λ = 1 by ∂sξ(1, s).

Finally, for the regularity of ∂sξ(1, s), we have to argue that |∂sξ(1, s)| 6=
0. In part a), we have already used that ∂sξ = |∂sξ| · N⊥ and that

det(c|∂sξ) = |∂sξ|det(c|N⊥) = |∂sξ| 〈c, N〉 ≥ |∂sξ| · β .

With the representation of ∂sξ in equation (3.12) and ∂ty = c ◦ y, we
obtain

|∂sξ(λ, s)| 〈c, N〉 ◦ ξ(λ, s) = det(c ◦ y(τ(λ, s), s)|∂sy(τ(λ, s), s)) .

Hence, |∂sξ(λ, s)| becomes zero if and only if det(c ◦ y|∂sy) does.

Having the IVPs for y(t, s) and ∂sy(t, s) in mind, it is easy to check, that
the determinant det(c ◦ y|∂sy) satisfies the IVP

d
dt

det(c ◦ y|∂sy) = trace(Dc ◦ y) · det(c ◦ y|∂sy) ,

det(c ◦ y|∂sy)|t=0 = det(c ◦ γ(s)|γ′(s)) > 0 .

Thus, the determinant is given by

det(c ◦ y(t, s)|∂sy(t, s))

= exp

 t∫
0

trace(Dc) ◦ y(h, s) dh

 · det(c ◦ γ(s)|γ′(s)) ,

and cannot become zero within finite time:

det(c ◦ y(t, s)|∂sy(t, s)) 6= 0 and lim
t→t+(s)

det(c ◦ y(t, s)|∂sy(t, s)) 6= 0 .

Hence, |∂sξ(λ, s)| 6= 0 for λ ∈ [0, 1[ and in the limit λ → 1, we have
|∂sξ(1, s)| 6= 0, because det(c ◦ y(t, s)|∂sy(t, s)) does not become zero in
the limit t→ t+(s) = τ(1, s) since t+(s) is finite.

c) Recalling that ξ is the solution of the forward IVP

y′ = c0(y) , y(0) = γ(s) , c0 =
c

〈c,∇T0〉
,

the norm of ∂tξ is

|∂tξ| =
1

〈c,∇T0〉
◦ ξ .
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And again, we will use the formulas

∂sξ = ±N⊥ ◦ ξ · |∂sξ| and N =
∇T0

|∇T0|
.

By the chain rule, the derivative of c0 is

Dc0 =
1

〈c,∇T0〉

(
Dc− c

〈c,∇T0〉

(
∇TT

0 · Dc + cT · D2T0

))
.

Using the formulas above, we write the product Dc0 ◦ ξ · ∂sξ as

Dc0 ◦ ξ · ∂sξ = ±|∂sξ| · Dc0 ◦ ξ · N⊥ ◦ ξ = ±|∂tξ||∂sξ|·(
Dc · N⊥ − c

〈c, N〉

(
NT · Dc · N⊥ + cT · D2T0

|∇T0|
· N⊥

))
◦ ξ .

Next, we compute the derivative of N = ∇T0
|∇T0|

DN =
|∇T0|D2T0 −∇T0 · ∇TT

0
|∇T0| · D

2T0

|∇T0|2

= (I − N · NT) · D2T0

|∇T0|
= N⊥ · N⊥T · D2T0

|∇T0|
,

which helps to write the expression

cT · D2T0

|∇T0|
· N⊥ = N⊥T · DN · c

without D2T0 .

Finally, we estimate

|Dc0 ◦ ξ · ∂sξ|

≤ |∂tξ||∂sξ|
(
|Dc · N⊥|+ |c|

〈c, N〉

(
|NT · Dc · N⊥|+ |N⊥T · DN · c|

))
◦ ξ

≤ |∂tξ||∂sξ|
(
|Dc|+ 1

β
(|Dc|+ |DN|)

)
◦ ξ

≤ det Dξ

β

(
|Dc|+ 1

β
(|Dc|+ |DN|)

)
◦ ξ ,

whereas we have used equation (3.11) in the last step. The right hand
side of the last inequality is integrable over ]0, 1[ × [a, b[. This follows
from resubstituting ξ and the integrability requirements on Dc and DN
over Ω (see requirement 3.6 3.b) and 3.5 2.c)).



3.3 Existence of a Solution 51

Note: if we write ∂sξ(t, s) as

∂sξ(t, s) = γ′(s) +
t∫

0

Dc0 ◦ ξ(τ, s) · ∂sξ(τ, s) dτ

and go over to the limit t → 1 for s restricted to Jk,+, then the result
above shows that ∂sξ(1, s) is integrable over Jk,+, and dominated con-
vergence yields the rule

lim
t→1

∫
Jk,+

∂sξ(t, s) ds =
∫

Jk,+

∂sξ(1, s) ds . (3.13)

d) Let z ∈ Σ̊k. As argued above, for the plus-side there is a unique s ∈
Jk,+ with ξ(1, s) = z. By this we define s+(z), which extends the s(x)
component of ξ−1(x). Since t(x) = T0(x) is defined on Σ, we are done.

3.3 Existence of a Solution

The subject of this section is the proof of the following existence theorem.

Theorem 3.12. (Existence)
The linear problem 3.7 has a solution.

The proof of the theorem will result from the lemmata which are to follow.

In order to construct a candidate solution we apply the method of charac-
teristics. But first we scale the PDE (3.2) so that we can use the results of
the previous section. Let T0 be the transformed time function from equation
(3.4) . In the proof of lemma 3.9 we have seen that

0 <
1

〈c(x),∇T0(x)〉 ≤
1

m0 · β
, ∀ x ∈ Ω\Σ .

Thus, we can scale the original PDE (3.2) by that factor to get the equivalent
PDE

〈c0(x), Du〉 = f0(x) · L2 in Ω\Σ , (3.14)

with

f0(x) =
f (x)

〈c(x),∇T0(x)〉 and c0(x) =
c(x)

〈c(x),∇T0(x)〉 .

The latter is the transformed transport field as in equation (3.7).
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Then, for PDE (3.14) the characteristic equation is exactly the forward IVP
from corollary 3.10

y′ = c0(y) , y(0) = γ(s) ,

and the family of forward characteristics is ξ (from the same corollary).
Clearly, the solution η of the corresponding backward IVP is the family of
backward characteristics.

Let now v(t, s) := u ◦ ξ(t, s), then – at least formally – the partial derivative
of v w.r.t. t is given by

∂tv(t, s) = 〈∇u ◦ ξ(t, s), ∂tξ(t, s)〉 = 〈∇u, c0〉 ◦ ξ(t, s) = f0 ◦ ξ(t, s) ,

together with the initial condition

v(0, s) = u(ξ(0, s)) = u(γ(s)) = γ∗u0(s) .

Herein, γ∗ denotes the pull-back operation. Thus, by the fundamental the-
orem of calculus, we obtain

v(t, s) = γ∗u0(s) +
t∫

0

f0 ◦ ξ(τ, s) dτ . (3.15)

The function v represents our candidate solution u in characteristic vari-
ables (t, s). By using the inverse map ξ−1 from corollary 3.10 and the
relation (3.10) between ξ and η, we push v forward onto Ω\Σ to have
u = v ◦ ξ−1 in original variables x

u(x) = u0(η(T0(x), x)) +
T0(x)∫
0

f0 ◦ η(τ, x) dτ . (3.16)

For the analysis of the candidate solution, it is useful to decompose it addi-
tively:

v1(t, s) = γ∗u0(s) , v2(t, s) =
t∫

0

f0 ◦ ξ(τ, s) dτ ,

u1(x) = u0(η(T0(x), x)) , u2(x) =
T0(x)∫
0

f0 ◦ η(τ, x) dτ .

(3.17)

The next lemma shows that the so-constructed candidate belongs to the
space of functions which the problem 3.7 is stated for.
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Lemma 3.13. (Element of BV)
The candidate solution u from (3.16) with its decomposition u = u1 + u2 from
(3.17) has the properties:

a) u is an element of BV(Ω\Σ) ∩ L∞(Ω).

Its derivative measure is

Du = c⊥0 (x) · µ + ∇u2(x) · L2 with µ := ξ]

(
L1 ⊗ Dγ∗u0

)
,

and the total variation is bounded by

|Du|(Ω\Σ) ≤ MΩ\Σ :=
|Du0|
β ·m0

+
(
‖ f ‖∞

β
+
‖∇ f ‖∞

β2 ·m0

)
· L2(Ω)

+
‖ f ‖∞

β3 ·m2
0
·
(
‖Dc‖L1(Ω) + ‖DN‖L1(Ω)

)
.

The L∞(Ω)-norm is bounded by

‖u‖L∞(Ω) ≤ ‖u0‖L∞(∂Ω) +
‖ f ‖∞

β ·m0
.

b) u extends onto Σ, i.e., u is an element of BV(Ω) ∩ L∞(Ω).

In comparison to part a) the extension introduces – in the derivative Du – an
additional jump part for every C1-arc Σk of Σ :

Du = c⊥0 (x) · µ + ∇u2(x) · L2

+
n

∑
k=1

(u+
Σk

(x)− u−Σk
(x)) nk(x) · H1 Σk ,

where u−Σk
and u+

Σk
are the left and right interior BV-traces of u on Σk.

The bound on the total variation is added up by

|Du|(Ω) ≤ MΩ\Σ + 2 · ‖u‖L∞(Ω) · H1(Σ) .

Before going into the details of the proof, we summarize some facts con-
cerning the change of variables. If ϕ ∈ C1

c (Ω) or ϕ ∈ C1
c (Ω\Σ) is a test

function, we will denote by ψ(t, s) := ϕ ◦ ξ(t, s) the test function in char-
acteristic variables. By the chain rule we then obtain the derivative with
respect to (t, s)

∇t,sψ = DξT · ∇x ϕ ◦ ξ .
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By inversion we get

det Dξ ·

 ∂1ϕ

∂2ϕ

 ◦ ξ =

 ∂sξ2 −∂tξ2

−∂sξ1 ∂tξ1

 ·
 ∂tψ

∂sψ

 ,

det Dξ · ∇x ϕ ◦ ξ =
(
−∂sξ

⊥|∂tξ
⊥
)
· ∇t,sψ .

Let l = l(k) be the non-trivial permutation of {1, 2}, then we write for the
k-th component

det Dξ · ∂k ϕ ◦ ξ = (−1)l · (∂sξl ∂tψ− ∂tξl ∂sψ)

= (−1)l · ( ∂t(∂sξl · ψ)− ∂s(∂tξl · ψ) ) .
(3.18)

The last equality can easily be derived from the product rule.

Finally, we remark that ψ(t, s) is periodic w.r.t. the variable s, since ξ is
periodic w.r.t. s, i.e.,

ψ(t, a) = ψ(t, b) .

Proof. (of lemma 3.13)

First, we compute the derivative measure Du, which in both parts is the
same process. Let ϕ ∈ C1

c (Ω) be a test function. For the moment we restrict
the discussion to subsets Ωλ of Ω which are lower level-sets of T0, that is

Ωλ := Ω ∩ {x ∈ Ω : T0(x) ≤ λ} ,

for 0 < λ < 1. Note that Ω1 = Ω.

When later on we have ϕ ∈ C1
c (Ω\Σ) (respectively ϕ ∈ C1

c (Ω\Σ)2), as is
the case for part a), we will choose λ big enough such that supp ϕ ⊂ Ωλ.
For part b) we will pass to the limit λ→ 1 instead.

We separately compute the derivatives of u1 and u2 from the decomposition
(3.17). In order to get Dku1 we have – according to definition 2.10 – to look
at the following integral:

∫
Ωλ

u1(x) ∂k ϕ(x) dx =
b∫

a

λ∫
0

v1(t, s) ∂k ϕ ◦ ξ(t, s) det Dξ(t, s) dt ds

= (−1)l
b∫

a

λ∫
0

γ∗u0(s) ( ∂t(∂sξl · ψ)− ∂s(∂tξl · ψ) ) dt ds .
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By changing the order of integration and using the integration-by-parts for-
mula for functions of one variable, one obtains

= (−1)l
b∫

a

γ∗u0(s)
λ∫

0

∂t(∂sξl · ψ) dt ds− (−1)l
λ∫

0

b∫
a

γ∗u0(s) ∂s(∂tξl · ψ) ds dt

= (−1)l
b∫

a

γ∗u0(s) [∂sξl · ψ]λt=0 ds + (−1)l
λ∫

0

b∫
a

∂tξl · ψ dDγ∗u0(s) dt .

In the last step we used the fact that γ∗u0 is a periodic BV-function. Because
ϕ has compact support in Ω, we have furthermore

ψ(0, s) = ϕ ◦ ξ(0, s) = ϕ(γ(s)) = 0 ,

so the result reduces to

= (−1)l
b∫

a

v1(λ, s) ∂sξl(λ, s) · ψ(λ, s) ds + (−1)l
b∫

a

λ∫
0

∂tξl · ψ dt dDγ∗u0(s) .

For the vector-valued version we test with ϕ ∈ C1
c (Ω)2 and obtain∫

Ωλ

u1(x) div ϕ(x) dx =
∫

Ωλ

u1(x) ∂1ϕ1(x) dx +
∫

Ωλ

u1(x) ∂2ϕ2(x) dx

= −
b∫

a

−∂sξ2(λ, s) · ψ1(λ, s) v1(λ, s) ds −
b∫

a

λ∫
0

−∂tξ2 · ψ1 dt dDγ∗u0(s)

−
b∫

a

∂sξ1(λ, s) · ψ2(λ, s) v1(λ, s) ds −
b∫

a

λ∫
0

∂tξ1 · ψ2 dt dDγ∗u0(s)

= −
b∫

a

〈
ψ(λ, s), ∂sξ

⊥(λ, s)
〉

v1(λ, s) ds −
b∫

a

λ∫
0

〈
ψ, ∂tξ

⊥
〉

dt dDγ∗u0(s) .

By once more using the relations

∂tξ
⊥ = c⊥0 ◦ ξ , ∂sξ

⊥ = −N ◦ ξ · |∂sξ| ,

the last result can be written as

∫
Ωλ

u1(x) div ϕ(x) dx = −
b∫

a

〈ϕ,−N〉 ◦ ξ(λ, s) u1 ◦ ξ(λ, s) |∂sξ(λ, s)| ds

−
b∫

a

λ∫
0

〈
ϕ, c⊥0

〉
◦ ξ dt dDγ∗u0(s) .
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Herein, the first summand integrates w.r.t. the H1 measure along the λ-
level of T0. For the restriction of measures onto λ-levels of T0 we will use
the abbreviation

H1 λ := H1 {x ∈ Ω : T0(x) = λ} .

In the second integral we rechange variables by pushing-forward the prod-
uct measure L1⊗Dγ∗u0 with the diffeomorphism ξ (see definition 2.6). Let
µ denote the pushed-forward measure

µ := ξ](L1 ⊗ Dγ∗u0) ,

then we finally obtain∫
Ωλ

u1(x) div ϕ(x) dx = −
∫
Ω

〈ϕ(x),−N(x)〉 u1(x) dH1 λ(x)

−
∫

Ωλ

〈
ϕ(x), c⊥0 (x)

〉
dµ(x) .

For the derivative of u2 we perform the same steps as above with the inte-
gral

∫
Ωλ

u2(x) ∂k ϕ(x) dx = (−1)l
b∫

a

λ∫
0

v2(t, s) ( ∂t(∂sξl · ψ)− ∂s(∂tξl · ψ) ) dt ds .

After changing the order of integration we go on with integration by parts:

= (−1)l
b∫

a

λ∫
0

v2(t, s) ∂t(∂sξl · ψ) dt ds− (−1)l
λ∫

0

b∫
a

v2(t, s) ∂s(∂tξl · ψ) ds dt

= (−1)l
b∫

a

v2(λ, s) ∂sξl(λ, s) · ψ(λ, s)−
λ∫

0

∂tv2 ∂sξl · ψ dt

 ds

− (−1)l
λ∫

0

b∫
a

−∂sv2 ∂tξl · ψ ds dt

= (−1)l
b∫

a

v2(λ, s) ∂sξl(λ, s) · ψ(λ, s) ds

−
b∫

a

λ∫
0

(−1)l(∂sξl ∂tv2 − ∂tξl ∂sv2 ) · ψ dt ds .
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In the second equality we have used that

[v2 ∂tξl · ψ]bs=a = [u2 ◦ ξ ∂tξl · ϕ ◦ ξ]bs=a = 0 ,

which is a consequence of ξ(t, a) = ξ(t, b). Because of v2 = u2 ◦ ξ we can –
according to equation (3.18) – substitute the last integrand to get

= (−1)l
b∫

a

v2(λ, s) ∂sξl(λ, s) · ψ(λ, s) ds −
b∫

a

λ∫
0

det Dξ · ∂ku2 ◦ ξ · ψ dt ds .

By means of the last result and a rechange of variables, we end up with

∫
Ωλ

u2(x) div ϕ(x) dx = −
∫
Ω

〈ϕ(x),−N(x)〉 u2(x) dH1 λ(x)

−
∫

Ωλ

〈ϕ(x),∇u2(x)〉 dx ,

when testing with ϕ ∈ C1
c (Ω)2.

Adding the partial results for u1 and u2 gives us

∫
Ωλ

u(x) div ϕ(x) dx = −
∫
Ω

〈ϕ(x),−N(x)〉 u(x) dH1 λ(x)

−
∫

Ωλ

〈
ϕ(x), c⊥0 (x)

〉
dµ(x) −

∫
Ωλ

〈ϕ(x),∇u2(x)〉 dx .
(3.19)

Now, we are ready to turn to the proof of the assertions a) and b).

a) In this part we have Ω\Σ as the domain of u. If we test with ϕ ∈
C1

c (Ω\Σ)2, we can choose λ < 1 so big that equation (3.19) reduces to

∫
Ω

u(x) div ϕ(x) dx = −
∫
Ω

〈
ϕ(x) , c⊥0 (x) dµ(x) +∇u2(x) dx

〉
.

Thus, in this case the derivative measure is given by

Du = c⊥0 (x) · µ +∇u2(x) · L2 .

What remains to show is the boundedness of ‖u‖BV(Ω\Σ).
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For the total variation |Du|(Ω\Σ) we estimate both summands sepa-
rately, beginning with∣∣∣∣∣∣

∫
Ω

〈
ϕ(x), c⊥0 (x)

〉
dµ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫

a

1∫
0

〈
ϕ ◦ ξ, c⊥0 ◦ ξ

〉
dt dDγ∗u0(s)

∣∣∣∣∣∣
≤

b∫
a

1∫
0

|c0 ◦ ξ| dt d|Dγ∗u0|(s) · ‖ϕ‖∞

≤ 1
β ·m0

·
b∫

a

d|Dγ∗u0|(s) · ‖ϕ‖∞ =
|Du0|
β ·m0

· ‖ϕ‖∞ .

Clearly, the total variation of this summand is bounded by∣∣∣c⊥0 (x) · µ
∣∣∣ (Ω\Σ) ≤ |Du0|

β ·m0
,

which is the total variation of the boundary data times the bound on the
arc-lengths of characteristics (see lemma 3.8 b) ).

The total variation of the second summand is exactly the L1-norm of
∇u2:∫

Ω

|∇u2(x)| dx =
b∫

a

1∫
0

|∇u2 ◦ ξ · det Dξ| dt ds

=
b∫

a

1∫
0

∣∣∣ −∂sξ
⊥ ∂tv2 + ∂tξ

⊥ ∂sv2

∣∣∣ dt ds

≤
b∫

a

1∫
0

|∂sξ| |∂tv2| dt ds +
b∫

a

1∫
0

|∂tξ| |∂sv2| dt ds

This step is completed if the last two integrals are bounded. The partial
derivative of v2 w.r.t. t is

∂tv2 = f0 ◦ ξ =
f

〈c,∇T0〉
◦ ξ = f ◦ ξ · |∂tξ| .

Additionally, by using relation (3.11) from lemma 3.11 a), we obtain the
bound

b∫
a

1∫
0

|∂sξ| |∂tv2| dt ds =
b∫

a

1∫
0

|∂sξ| |∂tξ| | f ◦ ξ| dt ds

≤ 1
β

b∫
a

1∫
0

det Dξ | f ◦ ξ| dt ds =
1
β

∫
Ω

| f (x)| dx ≤ 1
β
· ‖ f ‖∞ · L2(Ω)
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on the first integral.

The second part is a bit lengthier. The partial derivative of v2 w.r.t. s is

∂sv2 =
t∫

0

〈∇ f0 ◦ ξ(τ, s), ∂sξ(τ, s)〉 dτ .

With this, we estimate the integrand by

|∂tξ| |∂sv2| ≤
1

β ·m0
·

1∫
0

|〈∇ f0 ◦ ξ(τ, s), ∂sξ(τ, s)〉| dτ .

Because the latter is independent of t, we obtain

b∫
a

1∫
0

|∂tξ| |∂sv2| dt ds ≤ 1
β ·m0

·
b∫

a

1∫
0

|〈∇ f0 ◦ ξ(τ, s), ∂sξ(τ, s)〉| dτ ds .

Now, the same argumentation that we used in the proof of lemma 3.11 c)
to show the integrability of Dc0 ◦ ξ · ∂sξ applies here for the integrability
of 〈∇ f0 ◦ ξ, ∂sξ〉: after expanding ∇ f0 we obtain

h :=
(

NT · Dc · N⊥ + N⊥T · DN · c
)

〈∇ f0 ◦ ξ, ∂sξ〉 = |∂tξ||∂sξ|
(
−
〈
∇ f , N⊥

〉
+

f
〈c, N〉 · h

)
◦ ξ .

Hence, there is the integrable upper bound

| 〈∇ f0 ◦ ξ, ∂sξ〉 | ≤
det Dξ

β

(
‖∇ f ‖∞ +

‖ f ‖∞

β ·m0
(|Dc|+ |DN|)

)
◦ ξ ,

which implies

b∫
a

1∫
0

|∂tξ| |∂sv2| dt ds ≤

‖∇ f ‖∞

β2m0
L2(Ω) +

‖ f ‖∞

β3m2
0

(
‖Dc‖L1(Ω) + ‖DN‖L1(Ω)

)
.

Putting together the partial results we firstly get a bound on the L1-norm
of ∇u2

‖∇u2(x)‖L1(Ω) ≤
1
β
· ‖ f ‖∞ · L2(Ω) +

‖∇ f ‖∞

β2m0
L2(Ω)

+
‖ f ‖∞

β3m2
0

(
‖Dc‖L1(Ω) + ‖DN‖L1(Ω)

)
,
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and secondly learn that the total variation |Du|(Ω\Σ) is bounded by
MΩ\Σ.

By equation (3.16) we have for the L∞-norm of u

‖u‖L∞(Ω) ≤ ‖u0‖L∞(∂Ω) + ‖T0‖∞‖ f0‖∞ ≤ ‖u0‖L∞(∂Ω) +
‖ f ‖∞

β ·m0
.

b) Now, we want to view u as a BV-function on the domain Ω. Thus, test
functions stem from C1

c (Ω)2, and thus, we have to study the limit λ→ 1
in equation (3.19). In part a) we already have bounds on the total vari-
ation of the components concerning c⊥0 (x) · µ and ∇u2(x) · L2, which
do not depend on λ. Hence, these bounds stay the same, and we can
concentrate on the remainder∫
Ω

〈ϕ(x),−N(x)〉 u(x) dH1 λ(x) =
b∫

a

〈
ψ(λ, s), ∂sξ

⊥(λ, s)
〉

v(λ, s) ds .

In lemma 3.11 b) we introduced a partition of the interval I,

I =
n⋃

k=1

(Jk,+ ∪ Jk,−) ∪ J ,

such that ξ(1, .)|Jk,+ and ξ(1, .)|Jk,− are both regular parametrizations of
Σ̊k (see figure 3.1), one for the plus-side and one for the minus-side of
Σ̊k. For s ∈ J, the characteristic ξ(λ, s) hits a singular node of Σ, i.e.,
terminal-, branching- or kink node, as λ tends to 1.
Let, as before, z1, . . . , zm denote the singular nodes of Σ, then we parti-
tion J into a collection Jz1 , . . . , Jzm by:

s ∈ Jzl :⇔ lim
λ→1

ξ(λ, s) = zl , J =
m⋃

l=1

Jzl .

By these partitions, we decompose the integral
b∫

a

〈
ψ(λ, s), ∂sξ

⊥(λ, s)
〉

v(λ, s) ds

=
m

∑
l=1

∫
Jzl

. . . ds +
n

∑
k=1

 ∫
Jk,+

. . . ds +
∫

Jk,−

. . . ds

 .

For Jzl -summands, we have the estimate∣∣∣∣∣∣∣
∫
Jzl

〈
ψ(λ, s), ∂sξ

⊥(λ, s)
〉

v(λ, s) ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

ξ(λ,Jzl )

(〈ϕ,−N〉 · u)(x) dH1(x)

∣∣∣∣∣∣∣
≤ ‖ϕ‖∞ · ‖u‖L∞(Ω) · H1( ξ(λ, Jzl ) ) .
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Because the curve-arc ξ(λ, Jzl ) degenerates to the single point zl (see
figure 3.1), the right hand side becomes zero in the limit

lim
λ→1
H1( ξ(λ, Jzl ) ) = 0 ,

and the contribution of those summands vanishes.

For the remaining summands we perform only those which go along
ξ(λ, Jk,+), since the same argumentation applies to the others which go
along ξ(λ, Jk,−). By lemma 3.11 b) we know that ξ(1, .) : Jk,+ → Σ̊k is a
regular parametrization and its tangent is given by the limit

∂sξ(1, s) = lim
λ→1

∂sξ(λ, s) s ∈ Jk,+ .

By requirement 3.5 part 2 the field of normals extends to Σ̊k that means

lim
λ→1
−N ◦ ξ(λ, s) = nk ◦ ξ(1, s) s ∈ Jk,+ .

Finally, we define the extension u onto Σ̊k by using the extension of
ξ−1(x) – more precisely its second component s(x) – from lemma 3.11
d). Let z ∈ Σ̊k, with corresponding s+(z) ∈ Jk,+, then we set

u+
k (z) := lim

λ→1
v(λ, s+(z)) = v(1, s+(z)) . (3.20)

Conversely, the following relation holds true

u+
k ◦ ξ(1, s) = lim

λ→1
u ◦ ξ(λ, s) = v(1, s) , s ∈ Jk,+ .

Now, we can turn to the limit. For abbreviation let

h(λ, s) := (〈ϕ,−N〉 · u) ◦ ξ(λ, s) ,

then∣∣∣∣∣∣∣
∫

ξ(λ,Jk,+)

(〈ϕ,−N〉 · u)(x) dH1(x)−
∫
Ω

(〈ϕ, nk〉 · u+
k )(x) dH1 Σk(x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Jk,+

h(λ, s) · |∂sξ(λ, s)| ds−
∫

Jk,+

h(1, s) · |∂sξ(1, s)| ds

∣∣∣∣∣∣∣
≤

∫
Jk,+

|h(1, s)− h(λ, s)| · |∂sξ(1, s)|+ ||∂sξ(1, s)| − |∂sξ(λ, s)|| · |h(λ, s)| ds

≤
∫

Jk,+

|h(1, s)− h(λ, s)| · |∂sξ(1, s)| ds

+ ‖h ◦ ξ−1‖L∞(Ω)

∫
Jk,+

||∂sξ(1, s)| − |∂sξ(λ, s)|| ds .
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By the extensions of N and u the product |h(1, s) − h(λ, s)| · |∂sξ(1, s)|
tends to zero for every s ∈ Jk,+. Furthermore, it has the integrable bound

|h(1, s)− h(λ, s)| · |∂sξ(1, s)| ≤ 2‖h ◦ ξ−1‖L∞(Ω) · |∂sξ(1, s)| ,

thus, by dominated convergence, the corresponding integral vanishes
in the limit. By same argumentation the second integral tends to zero,
too.

Summarizing, this means∫
ξ(λ,Jk,+)

(〈ϕ,−N〉 · u)(x) dH1(x)→
∫
Ω

(〈ϕ, nk〉 · u+
k )(x) dH1 Σk(x) ,

∫
ξ(λ,Jk,−)

(〈ϕ,−N〉 · u)(x) dH1(x)→
∫
Ω

(〈ϕ,−nk〉 · u−k )(x) dH1 Σk(x) ,

as λ→ 1, and together we obtain the jump part for Σk∫
ξ(λ,Jk,+)∪ξ(λ,Jk,−)

(〈ϕ,−N〉 · u)(x) dH1(x) →

∫
Ω

(u+
k (x)− u−k (x)) 〈ϕ, nk〉 (x) dH1 Σk(x) .

The bound on the total variation of the jump part is∣∣∣∣∣∣
∫
Ω

(u+
k (x)− u−k (x)) 〈ϕ, nk〉 (x) dH1 Σk(x)

∣∣∣∣∣∣ ≤ 2 · ‖u‖L∞(Ω) · H1(Σk) ,

whereas ‖ϕ‖∞ ≤ 1. What remains to show, is that the one-sided limits
u+

k , u−k defined above are – according to theorem 2.25 – in fact the BV-
traces u+

Σk
and u−Σk

of u on Σk. This is true, but we postpone this point to
lemma 3.15.

Clearly, the complete additional jump part is given by

n

∑
k=1

∫
Ω

(u+
k (x)− u−k (x)) 〈ϕ, nk〉 (x) dH1 Σk(x)

with the bound∣∣∣∣∣∣
n

∑
k=1

∫
Ω

(u+
k (x)− u−k (x)) 〈ϕ, nk〉 (x) dH1 Σk(x)

∣∣∣∣∣∣ ≤ 2‖u‖L∞(Ω) · H1(Σ) ,
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‖ϕ‖∞ ≤ 1, on its total variation. We have shown, that u is in fact an
element of BV(Ω) with ‖u‖BV(Ω) bounded by the given data, and its
derivative measure reads

Du =
n

∑
k=1

(u+
k (x)− u−k (x)) nk(x) · H1 Σk + c⊥0 (x) · µ + ∇u2(x) · L2 .

Lemma 3.14. (Solution of the PDE)
The candidate solution u from (3.16) solves the PDE (3.2) of problem 3.7.

Proof.

By viewing u as an element of BV(Ω\Σ) we have for its derivative

Du = c⊥0 (x) · µ + ∇u2(x) · L2 ,

according to lemma 3.13. Furthermore, the equation

〈c0(x), Du〉 = 〈c0(x),∇u2(x)〉 · L2

follows from orthogonality, and the PDE is satisfied if 〈c0(x),∇u2(x)〉 L2

equals f0(x)L2.

Let us test the measure 〈c0(x),∇u2(x)〉 · L2 with ϕ ∈ C0(Ω), ‖ϕ‖∞ ≤ 1. By
changing variables we obtain – with ψ = ϕ ◦ ξ and v2 = u2 ◦ ξ –

∫
Ω

ϕ(x) 〈c0(x),∇u2(x)〉 dx =
b∫

a

1∫
0

ψ · 〈c0 ◦ ξ,∇u2 ◦ ξ · det Dξ〉 dt ds

=
b∫

a

1∫
0

ψ ·
〈

∂tξ,
(
−∂sξ

⊥∂tv2 + ∂tξ
⊥∂sv2

)〉
dt ds

=
b∫

a

1∫
0

ψ · ∂tv2 ·
〈

∂tξ,−∂sξ
⊥
〉

dt ds

=
b∫

a

1∫
0

ϕ ◦ ξ · f0 ◦ ξ · det Dξ dt ds =
∫
Ω

ϕ(x) f0(x) dx .

Here, we used the fact that ∂tv2 = f0 ◦ ξ (see equation (3.17)).
This shows that the total variation of the difference measure is

| 〈c0(x),∇u2(x)〉 · L2 − f0(x) · L2|(Ω) = 0 ,

and hence the measures are equal.
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In the next lemma we study the traces of the candidate u along level-lines
of T0.

Lemma 3.15. (Start / restart / stop)
Let u be the candidate solution from (3.16), then

a) (start): u satisfies the boundary condition (3.3), i.e.,

lim
r→0+

1
r2

∫
Ω∩Br(z)

|u0(z)− u(x)| dx = 0

for every Lebesgue point z ∈ ∂Ω of u0.

b) (restart): for every z ∈ Ω\Σ that corresponds to a Lebesgue point z′ of u0, that
means z′ = γ(s(z)) is a Lebesgue point of u0, we have

lim
r→0+

1
r2

∫
B>

r (z)

|u(z)− u(x)| dx = 0

and
lim

r→0+

1
r2

∫
B<

r (z)

|u(z)− u(x)| dx = 0 .

Here, B<
r (z) and B>

r (z) - for r small enough - denote the cut-off disks

B<
r (z) := {x ∈ Br(z) : T0(x) < T0(z)} ,

B>
r (z) := {x ∈ Br(z) : T0(x) > T0(z)} .

Let Γ := χT0=λ a λ-level of T0 for some 0 < λ < 1 and let Γ be oriented by
N|Γ. If z is restricted to z ∈ Γ, the result above means that the traces u+

Γ and
u−Γ are identical. There is no jump across Γ, and if z corresponds to a Lebesgue
point of u0, then it itself is a Lebesgue point of u.

Owing to the identity of both traces the restriction u|Γ is well-defined. More-
over, we have u|Γ ∈ BV(Γ).

c) (stop): for every z ∈ Σ̊k that corresponds to a Lebesgue point z′ of u0 w.r.t. the
plus-side of Σ̊k, that means z′ = γ(s+(z)) is a Lebesgue point of u0, we have

lim
r→0+

1
r2

∫
B+

r (z)

|u+
k (z)− u(x)| dx = 0 .

Here, u+
k (z) is defined by equation (3.20) and B+

r (z) - for r small enough - is
the cut-off disk centered at z, restricted to the plus-side.

Hence, the trace u+
Σk

is given by u+
k . Moreover, we have u+

k ∈ BV(Σ̊k).

The analogous result holds true w.r.t. the minus-side.



3.3 Existence of a Solution 65

Proof.

a) and b)
Let z ∈ Ω\Σ and let (τ, σ) be its characteristic coordinates, i.e., z =
ξ(τ, σ). Choose r > 0 sufficiently small, then

1
r2

∫
B>

r (z)

|u(z)− u(x)| dx =
1
r2

s+(r)∫
s−(r)

t+(r,s)∫
τ

|v(τ, σ)− v(t, s)|det Dξ dt ds .

Because any level-line of T0 is a regular C1-curve, the cut-off disk B>
r (z)

tends to a half disk, oriented along the tangent ∂sξ(τ, σ) of this curve,
and thus, the functions s−(r) and s+(r) are of the form

s−(r) = σ−O(r) s+(r) = σ +O(r) .

Since det Dξ(t, s) 6= 0, the same argument applies w.r.t. the t-variable,
i.e., the second basis vector is ∂tξ(τ, σ) and function t+(r, s) is of the
form

t+(r, s) = τ +O(r) .

By an Euler step applied to the variational equation for ∂sξ we obtain

∂sξ(t, s) = ∂sξ(τ, s) +O(t− τ)

and therefore

det Dξ(t, s) ≤ |∂tξ| · |∂sξ| =
|∂sξ(τ, s)|

β ·m0
+O(t− τ) ≤ C +O(t− τ) ,

for a suitable constant C. The difference is estimated by

|v(t, s)− v(τ, σ)| ≤|γ∗u0(s)− γ∗u0(σ)|+ |v2(t, s)− v2(τ, σ)| ,

with

|v2(t, s)− v2(τ, σ)| =

∣∣∣∣∣∣
t∫

0

f0 ◦ ξ(h, s) dh−
τ∫

0

f0 ◦ ξ(h, σ) dh

∣∣∣∣∣∣
≤

t∫
0

|∇ f0 ◦ ξ(h, s∗)| |∂sξ(h, s∗)| |s− σ| dh +

∣∣∣∣∣∣
t∫

τ

f0 ◦ ξ(h, σ) dh

∣∣∣∣∣∣ .

Because z /∈ Σ, we have for r that the cut-off disk B>
r (z) is contained

in some lower level-set Ωλ with λ < 1. Hence, t ≤ λ for the last two
integrals, and following bound exists:

M := ‖∇ f0‖L∞(Ωλ) · sup
(h,s∗)∈[0,λ]×[s−(r),s+(r)]

|∂sξ(h, s∗)| .



66 Chapter 3 The Linear Problem

In summary,

|v(t, s)− v(τ, σ)| ≤ |γ∗u0(s)− γ∗u0(σ)|+ t ·M|s− σ|+ ‖ f0‖∞|t− τ|
≤ |γ∗u0(s)− γ∗u0(σ)|+O(s− σ) +O(t− τ) .

Armed with the last result and the estimate of the determinant, we have

1
r2

∫
B>

r (z)

|u(z)− u(x)| dx

≤ 1
r2

s+(r)∫
s−(r)

t+(r)∫
τ

|γ∗u0(s)− γ∗u0(σ)| · C +O(s− σ) +O(t− τ) dt ds

≤ C′

r

s+(r)∫
s−(r)

|γ∗u0(s)− γ∗u0(σ)| ds +O(r) .

The latter expression tends, as r → 0, to zero for any Lebesgue-point σ
of γ∗u0, i.e., for any Lebesgue-point z′ = γ(σ) of u0.

If z ∈ ∂Ω, then Ω ∩ Br(z) = B>
r (z) and the argumentation above shows

that u satisfies the boundary condition as BV-trace.

If z ∈ Ω\Σ, we have got the assertion for the B>
r (z)-case. In the B<

r (z)-
case the one and only difference is that, after having changed variables,
we have to integrate the t-variable over the interval [t−(r, s), τ]. For the
remainder one must perform the same steps to get the assertion for the
B<

r (z).
Finally, the restriction u|Γ is defined, and when parametrizing Γ regu-
larly by ξλ(s) := ξ(λ, s), we have

ξ∗λu(s) = u ◦ ξ(λ, s) = v(λ, s) = γ∗u0(s) + v2(λ, s) s ∈ R .

Since v2(λ, s) is a periodic C1-function, while γ∗u0(s) is a periodic BV-
function, the sum ξ∗λu is a periodic BV-function, and consequently u|Γ ∈
BV(Γ).

c) In order to argue in the same way as in part a) and b) we cannot use
diffeomorphism ξ, because c0|Σ = 0 and thus det Dξ(1, s) = 0. But at
least ξ1(s) := ξ(1, s) with s ∈ Jk,+ is a regular parametrization of Σ̊k (see
lemma 3.11 b)), so we set up a local diffeomorphism by considering the
unscaled backward IVP

y′ = −c(y) , y(0, s) = ξ(1, s) , s ∈ Jk,+

with c extended onto Σ̊k by c+.
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Let τ(s) = τ(1, s), as in the previous section, denote the time when
y( . , s) reaches the boundary ∂Ω. In the proof of lemma 3.11 b) we
have seen that τ : Jk,+ → R is continuously differentiable. Since we
parametrize Σk by ξ1(s), and consider the backward characteristics with
changed velocity, we get the following correspondence

y(τ(s), s) = γ(s) .

Our candidate solution then, for t 6= 0, rewrites as

u ◦ y(t, s) = γ∗u0(s) +
τ(s)∫
t

f ◦ y(h, s) dh , s ∈ Jk,+ .

In the case t = 0, we have

u+
k ◦ ξ(1, s) = u+

k ◦ y(0, s) = lim
t→0

u ◦ y(t, s) , s ∈ Jk,+ ,

according to equation (3.20).

Let then z ∈ Σ̊k with z = ξ1(σ), σ ∈ Jk,+. For a small enough r, we
obtain

1
r2

∫
B+

r (z)

|u+
k (z)− u(x)| dx

=
1
r2

s+(r)∫
s−(r)

t(r,s)∫
0

|u+
k ◦ y(0, σ)− u ◦ y(t, s)||det Dy| dt ds

by changing variables.
Now, for a small enough r, the determinant |det Dy(t, s)| is approxi-
mately |det Dy(0, σ)| with

|det Dy(0, σ)| = |∂sξ1(σ)||c+(z)||
〈
c+(z), nk(z)

〉
| 6= 0

which is non-zero because of the requirement 3.6 part 2c). And, for the
functions s+(r), s−(r), and t(r, s) we have the same asymptotic, for r →
0, as in the previous part.

Let τ1 = min(τ(s), τ(σ)) and τ2 = max(τ(s), τ(σ)). If τ1 = τ(s), we set
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s1 = σ, and otherwise we set s1 = s. For the difference we estimate first∣∣∣∣∣∣
τ(σ)∫
0

f ◦ y(h, σ) dh−
τ(s)∫
t

f ◦ y(h, s) dh

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
τ(σ)∫
0

f ◦ y(h, σ) dh−
τ(s)∫
0

f ◦ y(h, s) dh

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
0

f ◦ y(h, s) dh

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
τ2∫

τ1

f ◦ y(h, s1) dh

∣∣∣∣∣∣+
∣∣∣∣∣∣

τ1∫
0

f ◦ y(h, σ)− f ◦ y(h, s) dh

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
0

f ◦ y(h, s) dh

∣∣∣∣∣∣
≤ ‖ f ‖∞ · |τ(σ)− τ(s)|+ ‖∇ f ‖∞ · ‖∂sy(., s∗)‖∞ · τ1 · |s− σ|+ ‖ f ‖∞t
≤ (‖ f ‖∞ · |∂sτ(s∗)|+ ‖∇ f ‖∞ · ‖∂sy(., s∗)‖∞ · τ1) · |s− σ|+ ‖ f ‖∞t .

Because τ(s) and τ(σ) are arc-lengths of characteristics, τ1 is – according
to lemma 3.8 – bounded by 1/(β ·m0). And, as highlighted in the proof
of lemma 3.11 b), when s is restricted to small neighborhood around
σ ∈ Jk,+, we also have uniform bounds on |∂sτ(s∗)| and ‖∂sy(., s∗)‖∞.
Taking this into account, we end up with∣∣∣∣∣∣

τ(σ)∫
0

f ◦ y(h, σ) dh−
τ(s)∫
t

f ◦ y(h, s) dh

∣∣∣∣∣∣ = O(s− σ) +O(t) ,

and consequently

|u+
k ◦ y(0, σ)− u ◦ y(t, s)| = |γ∗u0(σ)− γ∗u0(s)|+O(s− σ) +O(t) .

As in the previous part, we get then

1
r2

∫
B+

r (z)

|u+
k (z)− u(x)| dx ≤ C′

r

s+(r)∫
s−(r)

|γ∗u0(s)− γ∗u0(σ)| ds +O(r) ,

which tends to zero whenever z, by γ(σ) = γ(s+(z)), corresponds to a
Lebesgue point of u0.

By the ”old” representation

u+
k ◦ ξ(1, s) = γ∗u0(s) +

1∫
0

f0 ◦ ξ(τ, s) dτ , s ∈ Jk,+ ,

it is obvious that u+
k ◦ ξ(1, s), on the interval Jk,+, is a BV-function of one

variable and – since ξ(1, s) is regular – that u+
k ∈ BV(Σ̊k).
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Remark: part b) of lemma 3.15 is called ”restart” because having stopped
the characteristics at some intermediate λ-level Γ of T0, the restarted prob-
lem

〈c(x), Dw〉 = f (x) · L2 in χT0>λ ,
w|Γ = u|Γ .

is of the same type as problem 3.7. This is, because lemma 3.15 b) ensures
that u|Γ ∈ BV(Γ). Moreover, when applying the same method of construc-
tion, then w reproduces u by

w = u|χT0>λ
.

3.4 Uniqueness and Stability

As seen in the previous section, the linear problem 3.7 has a solution in
BV(Ω). In this section we carry on with the uniqueness of the solution and
its continuous dependence on the data.

Theorem 3.16. (Uniqueness and stability)
The solution of problem 3.7 is

a) unique and stable w.r.t. perturbations of the boundary data:

Let u and w be solutions of

〈c(x), Du〉 = f (x) · L2 u|∂Ω = u0 ,

〈c(x), Dw〉 = f (x) · L2 w|∂Ω = w0 ,

in Ω\Σ, then
‖u− w‖L∞(Ω) = ‖u0 − w0‖L∞(∂Ω) .

b) stable w.r.t. perturbations of the right hand side of PDE (3.2):

Let u and w be the solutions of

〈c(x), Du〉 = f (x) · L2 u|∂Ω = u0 ,

〈c(x), Dw〉 = g(x) · L2 w|∂Ω = u0 ,

in Ω\Σ, then

‖u− w‖L∞(Ω) ≤
‖ f − g‖∞

β ·m0
.
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Proof.

a) By theorem 3.12 we know that solutions u and w of

〈c(x), Du〉 = f (x) · L2 u|∂Ω = u0 ,

〈c(x), Dw〉 = f (x) · L2 w|∂Ω = w0

exist in Ω\Σ. By using the linearity of the PDE the difference u − w
clearly satisfies the homogeneous

〈c(x), D(u− w)〉 = 0 in Ω\Σ , u|∂Ω = (u0 − w0) .

We rename the functions u := u−w and u0 := u0−w0 and consider the
scaled problem

〈c0(x), Du〉 = 0 in Ω\Σ , u|∂Ω = u0

in order to reuse the diffeomorphism ξ.

In the following passage we prove that the latter problem has a unique
solution. Let ϕ ∈ C1

c (Ω\Σ). We set ψ = ϕ ◦ ξ and v = u ◦ ξ. Moreover,
let Ω̃ := Ω\(Σ ∪ S) as in lemma 3.10.

Next, we want to rewrite the PDE in characteristic variables. If we
change the variables first and compute the BV-derivative of v after-
wards, we obtain∫
Ω̃

u(x) ∂k ϕ(x) dx =
∫

ξ−1(Ω̃)

v(t, s) ∂k ϕ ◦ ξ(t, s) det Dξ(t, s) d(t, s)

= (−1)l
∫

ξ−1(Ω̃)

v(t, s) ( ∂t(∂sξl · ψ)− ∂s(∂tξl · ψ) ) d(t, s)

= (−1)l

− ∫
ξ−1(Ω̃)

∂sξl · ψ dDtv(t, s) +
∫

ξ−1(Ω̃)

∂tξl · ψ dDsv(t, s)


= −

∫
ξ−1(Ω̃)

ψ · (−1)l (∂sξl dDtv(t, s)− ∂tξl dDsv(t, s)) .

And, if we proceed the other way round, meaning we first compute the
BV-derivative of u and then pull back onto characteristic variables, we
obtain∫

Ω̃

u(x) ∂k ϕ(x) dx = −
∫
Ω̃

ϕ(x) dDku(x) = −
∫
Ω̃

ψ ◦ ξ−1(x) dDku(x)

= −
∫

ξ−1(Ω̃)

ψ(t, s) dξ−1
] Dku(t, s) .
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Since we have computed the same thing twice, we have

ξ−1
] Dku = (−1)l (∂sξl Dtv(t, s)− ∂tξl Dsv(t, s)) .

By using matrix-vector notation, it reads as

ξ−1
] Du = (−∂sξ

⊥|∂tξ
⊥)Dt,sv = det Dξ · Dξ−TDt,sv ,

and inversion yields the chain rule

Dt,sv =
1

det Dξ
· DξT · ξ−1

] Du . (3.21)

Remark about this chain rule: if Du = ∇u(x) · L2 is absolutely continu-
ous then

ξ−1
] Du = ∇u ◦ ξ · ξ−1

] (L2 Ω̃) = ∇u ◦ ξ · det Dξ · L2 ξ−1(Ω̃) .

So one gets back the well known chain rule by plugging the last equality
into equation (3.21).

From the established chain rule (3.21) we read off

det Dξ · Dtv =
〈

∂tξ, ξ−1
] Du

〉
=
〈

c0 ◦ ξ, ξ−1
] Du

〉
= ξ−1

] (〈c0, Du〉) = 0 ,

and hence the homogeneous PDE in characteristic variables conforms
with

Dtv = 0 .

Since v is a BV-function on ]0, 1[× ]a, b[ = ξ−1(Ω̃), there exist slices

vs(t) := v(t, s)

for almost every s ∈ ]a, b[ (see section 2.2.4). By theorem 2.32 such a
slice vs is itself a BV-function of one variable on ]0, 1[ and its derivative
relates to the partial derivative of v by

Dtv =
(
L1 ]a, b[

)
⊗ Dvs .

The PDE Dtv = 0 clearly implies that the derivative of every slice is zero
and therefore – by theorem 2.30 – the slice vs is equivalent to a constant

v(t, s) = α(s)

at most depending on s.
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Finally, α(s) is fixed by the boundary condition. Let z ∈ ∂Ω with z =
γ(σ). Proceeding as in the proof of lemma 3.15 a), we write down the
integral for the boundary trace as

1
r2

∫
Ω∩Br(x)

|u(y)− u0(z)| dy =
C′

r

s+(r)∫
s−(r)

|α(s)− γ∗u0(σ)| ds +O(r) .

Thus, in order to satisfy the boundary condition the only possible choice
is α(σ) = γ∗u0(σ) whenever σ ∈ ]a, b[ is a Lebesgue-point of γ∗u0.

In summary, the solution of the homogeneous problem is given by

v(t, s) = γ∗u0(s) ⇒ u(x) = u0(η(T0(x), x)) ,

which further implies

‖u‖L∞(Ω) = ‖u0‖L∞(∂Ω) .

Renaming u =: u−w and u0 =: u0−w0 again, we conclude the stability
equation

‖u− w‖L∞(Ω) = ‖u0 − w0‖L∞(∂Ω) ,

and obtain the uniqueness of the solution u in the case of w0 = u0.

b) Here again, we consider the scaled problems

〈c0(x), Du〉 = f0(x) · L2 u|∂Ω = u0 ,

〈c0(x), Dw〉 = g0(x) · L2 w|∂Ω = u0 .

By using the uniqueness result from part a), we can write down the
solutions as

u(x) = u0(η(T0(x), x)) +
T0(x)∫
0

f0 ◦ η(τ, x) dτ ,

w(x) = u0(η(T0(x), x)) +
T0(x)∫
0

g0 ◦ η(τ, x) dτ .

The difference of the solutions is easily estimated by

|u(x)− w(x)| ≤ ‖ f0 − g0‖∞ · T0(x) ≤ ‖ f − g‖∞ ·
1

β ·m0
,

and hence we obtain

‖u− w‖L∞(Ω) ≤
‖ f − g‖∞

β ·m0
.
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Having the uniqueness of the solution and the continuous dependence on
the right hand side as well as on the boundary data, the last theorem of this
chapter is about the continuous dependence of the solution on the transport
field.

Theorem 3.17. (Continuous Dependence)

Let (cn)n∈N be a sequence of transport fields and c be a transport field; all accord-
ing to requirement 3.6. Let ( fn)n∈N, fn ∈ C1(Ω) be a sequence of right hand
sides and f ∈ C1(Ω) be a right hand side. Then, consider the family of linear
problems

〈cn(x), Dun〉 = fn(x) · L2 un|∂Ω = u0 ,

〈c(x), Du〉 = f (x) · L2 u|∂Ω = u0 ,

on Ω\Σ, where the same time function T is used for all problems.

a) If both sequences (cn)n∈N, ( fn)n∈N converge uniformly to c, f respectively,
i.e.,

‖cn − c‖∞ → 0 , ‖ fn − f ‖∞ → 0 ,

and if the lower bound β > 0 from requirement 3.6 2b) holds uniformly

β ≤ 〈c(x), N(x)〉 and β ≤ 〈cn(x), N(x)〉 ∀n ∈N ,

and for every x ∈ Ω\Σ, then the sequence of solutions un tends to u in
L1(Ω)

‖un − u‖L1(Ω) → 0 as n→ ∞ .

b) If, in addition to the assumptions of a), the derivatives Dc, ∇ f , Dcn, ∇ fn
satisfy the following bounds

‖Dc‖L1(Ω) ≤ M1 and ‖Dcn‖L1(Ω) ≤ M1 ∀n ∈N ,

‖∇ f ‖∞ ≤ M2 and ‖∇ fn‖∞ ≤ M2 ∀n ∈N ,

then the sequence of solutions un converges weakly* to u:

un
∗
⇀ u in BV(Ω) , as n→ ∞ .
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Proof.

a) We use the scaled PDEs

〈c0,n(x), Dun〉 = f0,n(x) · L2 un|∂Ω = u0 ,

〈c0(x), Du〉 = f0(x) · L2 u|∂Ω = u0 ,

again, but now they are scaled differently: the first PDE is scaled with
1

〈cn,∇T0〉 , while the second one is scaled with 1
〈c,∇T0〉 .

By the uniform convergence of cn to c and of fn to f we infer the uniform
convergence of f0,n to f0 and of c0,n to c0.

In the following, ξn and ηn respectively denote the forward and back-
ward characteristics corresponding to the transport fields c0,n. Like-
wise, ξ and η denote the forward and the backward characteristics cor-
responding to c0. And, we write the solutions, decomposed additively,
according to equation (3.17):

un(x) = u0(ηn(T0(x), x)) +
T0(x)∫
0

f0,n ◦ ηn(τ, x) dτ = u1,n(x) + u2,n(x) ,

u(x) = u0(η(T0(x), x)) +
T0(x)∫
0

f0 ◦ η(τ, x) dτ = u1(x) + u2(x) .

We will show the L1-convergence of ui,n to ui , i ∈ {1, 2}, separately.
First, we need to estimate the difference of the backward characteristics.
Let z ∈ Ω\Σ and set λ := T0(z). The backward characteristics are given
by the IVPs

η′n = −c0,n(ηn) ηn(0, z) = z ,
η′ = −c0(η) η(0, z) = z .

The derivative of the difference ηn − η obviously satisfies

(ηn − η)′ = c0(η)− c0,n(ηn) , (ηn − η)(0, z) = 0 ,

hence, integration yields

(ηn − η)(t, z) =
t∫

0

c0(η(τ, z))− c0,n(ηn(τ, z)) dτ .



3.4 Uniqueness and Stability 75

The first estimate is then

|ηn − η|(t, z) ≤
t∫

0

|c0(η(τ, z))− c0(ηn(τ, z))| dτ

+
t∫

0

|c0(ηn(τ, z))− c0,n(ηn(τ, z))| dτ .

By requirement 3.6 3a) we have the bound |Dc(x)| ≤ Mε on Ω\Vε. Let
Ωλ = {x ∈ Ω : T0(x) ≤ λ} denote the lower level-set of T0 again, then
we derive a new bound |Dc0(x)| ≤ Mλ which has to hold only on Ωλ,
because all the points η(t, z), ηn(t, z) are located there when t varies in
between zero and λ = T0(z).

With this bound, the next estimate is

|ηn − η|(t, z) ≤
t∫

0

Mλ · |ηn − η|(τ, z) dτ + λ‖c0 − c0,n‖L∞(Ωλ) ,

and thus Gronwall’s lemma yields

|ηn − η|(t, z) ≤ λ · eλ·Mλ ·‖c0 − c0,n‖L∞(Ωλ)

=: Cλ · ‖c0 − c0,n‖L∞(Ωλ)
(3.22)

which holds for all z ∈ Ωλ and t ∈ [0, λ].

Now, we head for L1-convergence of u1,n to u1. Changing variables
yields

∫
Ω

|u1(z)− u1,n(z)| dz =
b∫

a

1∫
0

|γ∗u0(s)− u1,n ◦ ξ(t, s)| · det Dξ(t, s) dt ds

with integrable majorant 2 ‖u0‖L∞(∂Ω) det Dξ(t, s). So, we will obtain
the assertion by dominated convergence if u1,n ◦ ξ(t, s) converges point-
wise to γ∗u0(s) for almost every (t, s).

By the definition of u1,n we have

u1,n ◦ ξ(t, s) = u0(ηn(t, ξ(t, s))) = γ∗u0( γ−1(ηn(t, ξ(t, s))) ) .

In accordance with equation (3.10) the equality

ξ(τ, s) = η(t− τ, ξ(t, s))
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holds for t ≥ τ ≥ 0 and we can transfer the estimate (3.22):

|ξ(τ, s)− ηn(t− τ, ξ(t, s))| = |η(t− τ, ξ(t, s))− ηn(t− τ, ξ(t, s))|
≤ Ct · ‖c0 − c0,n‖L∞(Ωt) .

In particular, when setting τ = 0, we obtain

|γ(s)− ηn(t, ξ(t, s))| ≤ Ct · ‖c0 − c0,n‖L∞(Ωt) .

At this stage, we see that, for fixed (t, s) ∈ ]0, 1[ × ]a, b[, the sequence
ηn(t, ξ(t, s)) tends to γ(s) as n tends to infinity. Consequently, the se-
quence γ−1(ηn(t, ξ(t, s))) will tend to s since γ−1 is continuous.

Finally, γ∗u0 is a BV-function of one variable on the interval ]a, b[. By
theorem 2.30 there is a good representative and thus we can assume
that γ∗u0 is piecewise continuous with at most countably many jumps
in ]a, b[, and the left and right limits exist at every jump point. Hence,
for almost every s ∈ ]a, b[ and every t ∈ ]0, 1[ we can say that

|γ∗u0(s)− u1,n ◦ ξ(t, s)| → 0 as n→ ∞ .

So, we conclude by the dominated convergence theorem that

‖u1 − u1,n‖L1(Ω) → 0 as n→ ∞ .

For the remaining part, we have∫
Ω

|u2(x)− u2,n(x)| dx

≤
∫
Ω

1∫
0

| f0 ◦ η(τ, x)− f0,n ◦ ηn(τ, x)| · 1]0,T0(x)[(τ) dτ dx .

By the uniform convergence of fn to f , the family { fn, f } is bounded,
let’s say, by M. Using furthermore the uniformity of the angle condition
we obtain an integrable majorant

| f0 ◦ η − f0,n ◦ ηn| · 1]0,T0(x)[ ≤
∣∣∣∣ f
〈c,∇T0〉

◦ η

∣∣∣∣+ ∣∣∣∣ fn

〈cn,∇T0〉
◦ ηn

∣∣∣∣
≤ 2

β ·m0
M .

Clearly, the sequence f0,n also converges uniformly to f0. Hence, for
fixed τ ∈ ]0, 1[ and x ∈ Ω\Σ we have

| f0 ◦ η(τ, x)− f0,n ◦ ηn(τ, x)| · 1]0,T0(x)[(τ)→ 0 as n→ ∞ ,

and dominated convergence implies

‖u2 − u2,n‖L1(Ω) → 0 as n→ ∞ .
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b) Every un is a BV-function and by the additionally required bounds on
‖Dcn‖L1(Ω) and ‖∇ fn‖∞ the sequence of total variations |Dun|(Ω) is
bounded (see lemma 3.13). Together with part a), we have a sequence
of BV-functions un which is ‖.‖BV(Ω)-bounded and converges to u w.r.t.
‖.‖L1(Ω), so proposition 2.16 yields the assertion.

In this chapter, we have seen that the linear problem 3.7 has a unique solu-
tion in BV(Ω) and the solution continuously depends on the data. In other
words, problem 3.7 is well-posed in BV(Ω).
Certainly, one might ask what the point of using the space BV(Ω) is, be-
cause, if the boundary data u0 were C1, one could solve in C1(Ω\Σ). In
comparison to lemma 3.13 part a) the summand c⊥0 µ of the derivative Du
for C1 boundary data

∫
Ω

〈
ϕ(x), c⊥0 (x)

〉
dµ(x) =

b∫
a

1∫
0

〈
ϕ, c⊥0

〉
◦ ξ(t, s) dt dDγ∗u0(s)

=
b∫

a

1∫
0

〈
ϕ ◦ ξ(t, s), c⊥0 ◦ ξ(t, s) · γ∗u′0(s)

〉
dt ds

– by applying equation (3.18) to u1 ◦ ξ(t, s) = γ∗u0(s) – will reduce to

∫
Ω

〈
ϕ(x), c⊥0 (x)

〉
dµ(x) =

b∫
a

1∫
0

〈ϕ ◦ ξ(t, s),∇u1 ◦ ξ(t, s) · det Dξ(t, s)〉 dt ds

=
∫
Ω

〈ϕ(x),∇u1(x)〉 dx .

And, according to lemma 3.13 part a) we end up with

Du = ∇u1(x) · L2 +∇u2(x) · L2 = ∇u(x) · L2 ,

where the density function ∇u is now the classical derivative, as in the
C1(Ω\Σ)-theory.
The advantage of working in BV(Ω) is that, on the one hand, we have a
description of what happens to u on Σ, and on the other hand in BV(Ω)
it is easy to obtain compact subsets (w.r.t. the weak* topology). The latter
will be crucial in the next chapter.





Chapter 4

The Quasi-Linear Problem

In this chapter we turn to the quasi-linear problem (see equation (1.12))

〈c[u](x), Du〉 = f [u](x) · L2 in Ω\Σ ,
u|∂Ω = u0 .

For the quasi-linear case the transport field as well as the right hand side
functionally depend on the function u which we are looking for. That
means, for a fixed x ∈ Ω\Σ the coefficients of the PDE are functionals of
the form

f [ . ](x) : F → R , c[ . ](x) : F → R2 .

Herein, F denotes a suitable subset of a space of functions which are of
mapping type Ω → R. We will concretize the set F in the first section of
this chapter.

The first goal of this chapter is to prove the existence of a solution of the
quasi-linear problem. The plan for doing so is to interpret a solution u as a
fixed point of a certain map.
By fixing the functional argument of the coefficients by some v ∈ F , other
than u, we obtain the linear problem

〈c[v](x), Du〉 = f [v](x) · L2 in Ω\Σ ,
u|∂Ω = u0 .

If furthermore the transport field c[v] : Ω\Σ → R2 and the right hand
side f [v] : Ω → R satisfy the requirements of the linear problem 3.7, then
the theory discussed in chapter 3 will guarantee the existence of a unique
solution. And now, the solution, called U[v], depends on v.

Finally, if the solution U[v] belongs to F for every choice of v ∈ F , the
solution defines a self-mapping

U : F → F .

79
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Hence, solving the quasi-linear problem is equivalent to searching for a
fixed point u = U[u] of the map U.

In order to apply fixed point theory, we have to extend the list of require-
ments on the coefficients c and f by assumptions concerning the functional
argument v ∈ F . In the first section we will add requirements in order
to make the map U continuous. Then, Schauder’s fixed point theorem
will yield the existence of a fixed point. Unfortunately, Schauder’s theo-
rem only guarantees the existence but not the uniqueness. Therefor, in the
second section, we add further requirements which suffice to derive the
uniqueness, too.

4.1 The Fixed Point Formulation and its Requirements

As in the previous chapter, we start out with the requirements on the coef-
ficients of the PDE and state the problem afterwards.

The assumptions on transport fields then are:

Requirement 4.1. (Transport fields)
Let Ω be a domain and T a time function with stop set Σ all in accordance with
requirements 3.1, 3.2, 3.4, and 3.5.

Transport fields are maps of the form

c : L1(Ω)→ C1(Ω\Σ)2 , with c[ . ](x) : L1(Ω)→ R2 ,

and are required to satisfy:

1. For fixed v ∈ L1(Ω) the function c[v] ∈ C1(Ω\Σ)2 is a transport field
according to requirement 3.6.

2. Uniformity of the unit speed and angle condition:

a) |c[v](x)| = 1 for all x ∈ Ω\Σ and for all v ∈ L1(Ω).
b) There is a uniform lower bound β > 0 such that

β ≤ 〈c[v](x), N(x)〉 ≤ 1 ∀ x ∈ Ω\Σ and ∀ v ∈ L1(Ω) .

c) Both conditions hold for the one-sided limits of c[v] on the relatively open
C1-arcs Σ̊k of Σ.

3. Bounds and continuity:

a) The map Dxc : L1(Ω) → C(Ω\Σ)2×2 – the derivative of c[v] w.r.t. the
variable x – is L1-bounded by

‖Dxc[v]‖L1(Ω) < M1 ∀ v ∈ L1(Ω) .
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b) c is continuous in the following manner: if v ∈ L1(Ω) and (vn)n∈N

is a sequence in L1(Ω) with ‖v − vn‖L1(Ω) → 0, then the sequence of
images c[vn] converges uniformly to c[v],

‖c[v]− c[vn]‖∞ → 0 .

For the right hand side f , we assume:

Requirement 4.2. (Right hand sides)
Right hand sides are maps of the form

f : L1(Ω)→ C1(Ω) , with f [ . ](x) : L1(Ω)→ R ,

and are required to satisfy:

a) The map f is bounded by

‖ f [v]‖∞ ≤ M2 ∀ v ∈ L1(Ω) .

b) The map ∇x f : L1(Ω) → C(Ω)2 – the derivative of f [v] w.r.t. the variable x
– is bounded by

‖∇x f [v]‖∞ ≤ M3 ∀ v ∈ L1(Ω) .

c) f is continuous in the following manner: if v ∈ L1(Ω) and (vn)n∈N is a
sequence in L1(Ω) with ‖v− vn‖L1(Ω) → 0, then the sequence of images f [vn]
converges uniformly to f [v],

‖ f [v]− f [vn]‖∞ → 0 .

Finally, we define the subsets of BV(∂Ω), L1(Ω) and BV(Ω) with which we
will work later on.

Definition 4.3.
Let Ω be a domain and Σ a stop set according to requirements 3.1 and 3.2. Let M1,
M2, M3 be the bounds from the requirements stated above.

a) We denote by

B = B(∂Ω) := {v ∈ BV(∂Ω) : ‖v‖L∞(∂Ω) ≤ M4 , |Dv| ≤ M5}

the set of boundary functions.

b) Let M∗ ∈ R be given by

M∗ :=
(

M4 +
M2

β ·m0

)
· L2(Ω) . (4.1)

We set
F = F(Ω) := {v ∈ L1(Ω) : ‖v‖L1(Ω) ≤ M∗} .
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c) Let M∗∗ ∈ R be given by

M∗∗ := 2 ·
(

M4 +
M2

β ·m0

)
· H1(Σ) +

M5

β ·m0
+
(

M2

β
+

M3

β2 ·m0

)
· L2(Ω)

+
M2

β3 ·m2
0
·
(

M1 + ‖DN‖L1(Ω)

)
.

We set

X = X(Ω) := {v ∈ BV(Ω) : ‖v‖L1(Ω) ≤ M∗ , |Dv|(Ω) ≤ M∗∗} .

Now that we have collected all assumptions we state finally the problem.

Problem 4.4. (Quasi-linear problem)
Let Ω be a domain and T : Ω → R a time function with stop set Σ according
to the requirements 3.1, 3.2, 3.4, and 3.5 . Let furthermore the transport field c
and the right hand side f be in accordance with the requirements 4.1 and 4.2. Let
finally u0 ∈ B.

We are looking for u ∈ BV(Ω), such that

〈c[u](x), Du〉 = f [u](x) · L2 in Ω\Σ ,
u|∂Ω = u0 .

As pointed out in the beginning of this chapter, we are interested in a fixed
point formulation of problem 4.4. The next corollary will justify the change
of viewpoint.

Corollary 4.5.
Let all of the data Ω, Σ, T, c, f and u0 be as assumed in problem 4.4.

Then,

a) for fixed v ∈ L1(Ω), the problem

〈c[v](x), Du〉 = f [v](x) · L2 in Ω\Σ ,
u|∂Ω = u0 ,

with transport field c[v] and right hand side f [v], meets all the requirements of
the linear problem 3.7.

The unique solution of the latter problem, which we denote by U[v], defines a
map / operator

U : L1(Ω)→ BV(Ω) .

b) The solution operator U, after restriction to F or X, is a self-mapping

a) of type U : F→ F .
b) of type U : X→ X .
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Proof.

a) Let v ∈ L1(Ω) be arbitrary. Then, by requirement 4.1 part 1 the field c[v]
is a transport field according to requirement 3.6, while f [v] ∈ C1(Ω).
Thus, the requirements of the linear problem 3.7 are satisfied and the
theory in chapter 3 guarantees the existence of a unique solution U[v]
belonging to BV(Ω). In other words, the map U : L1(Ω) → BV(Ω) is
well-defined.

b) Let v ∈ L1(Ω) be arbitrary but fixed. With U[v] being the solution of
the linear problem, by lemma 3.13, we get the following estimate on the
L∞-norm

‖U[v]‖L∞(Ω) ≤ ‖u0‖L∞(∂Ω) +
‖ f [v]‖∞

β ·m0
,

and on the total variation of U[v] we get

|DU[v]|(Ω) ≤ 2 · ‖U[v]‖L∞(Ω) · H1(Σ) +
|Du0|
β ·m0

+
(
‖ f [v]‖∞

β
+
‖∇ f [v]‖∞

β2 ·m0

)
· L2(Ω)

+
‖ f [v]‖∞

β3 ·m2
0
·
(
‖Dc[v]‖L1(Ω) + ‖DN‖L1(Ω)

)
.

Plugging in the bounds M1, M2, M3 from requirements 4.1 and 4.2, and
the bounds M4, M5 on u0 ∈ B, it is easy to see that the upper bounds

‖U[v]‖L∞(Ω) ≤ M4 +
M2

β ·m0
,

and

‖U[v]‖L1(Ω) ≤ M∗ , |DU[v]|(Ω) ≤ M∗∗

hold independently of v. Summarizing, the operator U is in fact of type

U : L1(Ω)→ X ⊂ F .

Because of X ⊂ F ⊂ L1(Ω) we can restrict the domain of U to F or X,
and thus both maps

U : F→ F , U : X→ X

are well-defined self-mappings.
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Now, by corollary 4.5, we can exchange the quasi-linear problem for an
equivalent fixed point problem.

Problem 4.6. (Fixed point problem)
Let Ω be a domain and T : Ω → R a time function with stop set Σ according
to the requirements 3.1, 3.2, 3.4, and 3.5 . Let furthermore the transport field c
and the right hand side f be in accordance with requirements 4.1 and 4.2. And let
u0 ∈ B.

Let finally

U : X→ X , v→ U[v] ,

be the solution operator of

〈c[v](x), Du〉 = f [v](x) · L2 in Ω\Σ ,
u|∂Ω = u0 .

We are looking for a fixed point u ∈ X of the map U, i.e.,

u = U[u] .

4.2 Existence of a Fixed Point

The goal of this section is to prove the existence of fixed points of the prob-
lem 4.6 and thereby the existence of solutions of the quasi-linear problem
4.4. The tool for achieving this objective is the Schauder fixed point theo-
rem.

Theorem 4.7. (Schauder)([Zei93], [Dei85])
Let X be a Banach space and letM ⊂ X be a non-empty, convex, and compact
subset. Let the map F : M → M be continuous. Then, F has a fixed point
x ∈ M:

x = F(x) .

The next step is to show that all the assumptions of the Schauder theorem
are satisfied in problem 4.6.

Lemma 4.8.
The set X, defined in Definition 4.3, is non-empty, convex and sequentially com-
pact w.r.t. the BV-weak* topology.
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Proof.

The set X, by its definition, is convex and obviously non-empty. Because
X is ‖.‖BV(Ω)-bounded, the sequential compactness is a consequence of
proposition 2.17.

Lemma 4.9.
The map U : X → X from corollary 4.5 b) is sequentially continuous w.r.t. the
BV-weak* topology.

Proof.

Let (vn)n∈N be a sequence in X which tends weakly* to v ∈ X w.r.t. the
BV-weak* topology. Then, we have in particular ‖v− vn‖L1(Ω) → 0.

We set

cn := c[vn] , c := c[v] ,
fn := f [vn] , f := f [v] ,
un := U[vn] , u := U[v] .

By requirements 4.1 and 4.2 we have ‖cn − c‖∞ → 0 and ‖ fn − f ‖∞ → 0,
while β in

β ≤ 〈c(x), N(x)〉 and β ≤ 〈cn(x), N(x)〉 ∀n ∈N

holds uniformly. Moreover, we have the following bounds

‖Dc‖L1(Ω) ≤ M1 and ‖Dcn‖L1(Ω) ≤ M1 ∀n ∈N ,

‖∇ f ‖∞ ≤ M3 and ‖∇ fn‖∞) ≤ M3 ∀n ∈N .

So, all the assumptions of theorem 3.17 a) and b) are satisfied, which tells
us that

U[vn] = un
∗
⇀ u = U[v] .

In order to apply Schauder’s theorem we use a result from [Bor02], which
characterizes the weak* convergence of sequences in a dual space X ′ in the
case that X is separable.
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Lemma 4.10.
Let (X , ‖.‖) be a separable normed space. Let σ = (σn)n∈N be a sequence with
‖σn‖ = 1 and X = span σ. Then,

a) the function

‖x′‖σ :=
∞

∑
n=1

2−n|x′(σn)| , x′ ∈ X ′ ,

defines a norm on the dual space X ′.

b) a ‖.‖-bounded sequence (x′k)k∈N in the dual space X ′ weakly* converges to-
wards x′ ∈ X ′ if and only if

‖x′k − x′‖σ → 0 as k→ ∞.

Proof.

Part a) is lemma 1 in [Bor02], while part b) is theorem 1 in [Bor02].

Theorem 4.11. (Existence)
The map U : X→ X from corollary 4.5 b) admits a fixed point u = U[u].

Hence, the quasi-linear problem 4.4 has a solution.

Proof.

In remark 2.15 we mentioned that BV(Ω) = X ′ is the dual of a separable
space X . Because X is separable, we can – according to lemma 4.10 a) – use
a new norm ‖.‖σ on BV(Ω).

Keeping lemma 4.10 b) in mind, by using ‖.‖σ, lemma 4.8 tells us that X

is non-empty, convex and ‖.‖σ-compact, while lemma 4.9 tells us that the
operator U : X→ X is ‖.‖σ-continuous.

Now, we have fulfilled all the assumptions of the Schauder fixed point the-
orem, which yields the existence of a fixed point u = U[u] of the map U.

Finally, every fixed point u ∈ X of U solves the quasi-linear problem. Since
U is the solution operator from corollary 4.5, we have

u|∂Ω = U[u]|∂Ω = u0 ,

and
f [u](x) = 〈c[u](x), DU[u]〉 = 〈c[u](x), Du〉 .
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4.3 Uniqueness and Stability under Volterra-Type De-
pendence

For the existence result of the previous section we did not make any restric-
tions on the type of the functional dependence. There the value of the right
hand side f [v](x) ∈ R at some point x ∈ Ω might depend on all values
{v(z) : z ∈ Ω} of the functional argument v ∈ L1(Ω). This type of depen-
dence is often called dependence of Fredholm-type. The name stems from the
subject of Fredholm integral equations where operators of the form

A : L1(]a, b[)→ L1(]a, b[) , A[v](t) =
b∫

a

k(t, τ, v(τ)) dτ ,

play the important role (see [Hac95]). Here, the value A[v](t) depends on
all values of v.

Another interesting case is the dependence of Volterra-type. This name stems
from the subject of Volterra integral equations where operators of the form

B : L1(]a, b[)→ L1(]a, b[) , B[v](t) =
t∫

a

k(t, τ, v(τ)) dτ ,

are considered (see [Hac95]). The special feature of this case is that the
value B[v](t) only depends on the values of v on the interval ]a, t[. More
formally, the operator B has the property

B[v](t) = B[ v · 1]a,t[ ](t) ,

with 1]a,t[ denoting the characteristic function of the set ]a, t[.
If we interpret the variable t as physical time and view v as time-dependent
description of some signal, then the operator B is a form of signal process-
ing, which produces a value B[v](t) by employing information about the
signal from the time period before t. Since t is often seen as time, another
way of saying ”the operator B has a functional dependence of Volterra-
type” is ”the operator B or signal filter B has a memory effect”.

In this section we will show the uniqueness of the fixed point of the opera-
tor U in the case that the functional dependence of the coefficients c and f
– and thus the functional dependence of U– is of Volterra-type. The notion
of time, necessary for the dependence of Volterra-type, is again induced by
the time function T.

4.3.1 PDE Coefficients with Volterra-Type Dependence and Ad-
ditional Requirements

Definition 4.12. (Dependence of Volterra-type)
Let Ω be a domain and T a time function according to requirements 3.1 and 3.4.
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Let F (Ω) and G(Ω) be function spaces defined on Ω and let f be an operator

f : F (Ω)→ G(Ω) , with f [ . ](x) : F (Ω)→ Rd , x ∈ Ω .

Let T(x) be the time of the point x ∈ Ω. Then, the set ΩT(x), defined as the
following lower level-set of T

ΩT(x) := {z ∈ Ω : T(z) < T(x)} ,

denotes the ”past” w.r.t. T(x).

We say that the functional dependence of f is of Volterra-type (w.r.t. time T) if the
equation

f [v](x) = f [ v · 1ΩT(x) ](x)

is valid.

An analogous definition for problems on the half-space can be found in
[Kam99].

Remark: the dependence of Volterra-type incorporates the following do-
main restriction feature. Let λ be in the range of T. Then, for x ∈ Ωλ and
v ∈ F (Ω), the inclusion ΩT(x) ⊂ Ωλ implies

f [v](x) = f [ v · 1ΩT(x) ](x) = f [ v · 1Ωλ
](x) .

Hence, the domain restriction (onto Ωλ )

f : F (Ωλ)→ G(Ωλ)

is well-defined.

Let T be a given time function. In what follows, for all dependences on a
time function, we mean the same time function T. Then, in this section, we
additionally require:

Requirement 4.13. (Transport fields)
Let c : L1(Ω)→ C1(Ω\Σ)2 be a transport field according to requirement 4.1.
c is furthermore required to satisfy:

a) the functional dependence of c is of Volterra-type.

b) the map c is Lipschitz in the following manner:

‖c[v]− c[w]‖∞ ≤ L1 · ‖v− w‖L1(Ω) .

c) the bound on |Dxc[v](x)|, from requirement 3.6 3a),

|Dxc[v](x)| ≤ Mε , ∀ x ∈ Ω\Vε

holds uniformly for all v ∈ L1(Ω).
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Requirement 4.14. (Right hand sides)
Let f : L1(Ω)→ C1(Ω) be a right hand side according to requirement 4.2.
f is furthermore required to satisfy:

a) the functional dependence of f is of Volterra-type.

b) the map f is Lipschitz in the following manner:

‖ f [v]− f [w]‖∞ ≤ L2 · ‖v− w‖L1(Ω) .

Lemma 4.15.
Consider the situation of problem 4.6. If, in addition, the functional dependence
of the coefficients c, f is of Volterra-type, then the functional dependence of the
solution operator U : X→ X is of Volterra-type.

Proof.

Let v ∈ X be arbitrary but fixed. Then, according to equation (3.16), U[v](x)
is given by

U[v](x) = u0(η[v](T0(x), x)) +
T0(x)∫
0

f0[v] ◦ η[v](τ, x) dτ ,

where the backward characteristic η[v](., x) is the solution of

y′ = −c0[v](y) , y(0) = x .

As in chapter 3, T0 denotes the transformed version of T according to equa-
tion (3.4), while c0 and f0 are given by:

c0[v](x) =
c[v](x)

〈c[v](x),∇T0(x)〉 , f0[v](x) =
f [v](x)

〈c[v](x),∇T0(x)〉 .

Clearly, c0 and f0 have the same Volterra-type dependence as c and f . Since
T0 has the same level-sets as T – only the names of level lines have changed
– we refer to T0. Let then

ΩT0(x) := {z ∈ Ω : T0(z) < T0(x)} .

For every t ∈ ]0, T0(x)[ we know that η[v](t, x) ∈ ΩT0(x). Hence, η[v]( . , x)
only depends on the restriction −c0[v]|ΩT0(x) which itself only depends on
v · 1ΩT0(x) . So, by the representation of U[v](x) above, it is obvious that

U[v](x) = U[ v · 1ΩT0(x) ](x)

holds true.
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Using the domain restriction feature, as discussed above, we define:

Definition 4.16.
Let λ be in the range of T. We denote by

Fλ = F(Ωλ) := {v|Ωλ
: v ∈ F} ,

and by
Xλ = X(Ωλ) := {v|Ωλ

: v ∈ X} ,

the domain-restricted versions of F and X from definition 4.3.

And finally, we consider the domain-restricted problem.

Problem 4.17. (Domain restricted fixed point problem)
Assume that all the requirements of problem 4.6 are satisfied and that c and f
satisfy the additional requirements stated above. Let furthermore λ be in the range
of T.

Let finally

U : Xλ → Xλ , v→ U[v] ,

be the solution operator of the domain-restricted problem

〈c[v](x), Du〉 = f [v](x) · L2 in Ωλ ,
u|∂Ω = u0 .

We are looking for a fixed point u ∈ Xλ of the map U, i.e.,

u = U[u] .

The question for existence has already been answered: by lemma 4.15 the
operator U : X → X is of Volterra-type. Hence, the domain-restricted ver-
sion U : Xλ → Xλ is well-defined and the argumentation which we have
used in the proof of lemma 4.15 shows that it solves the domain-restricted
linear problem. Moreover, every fixed point u of the original operator
U : X → X after restriction u|Ωλ

belongs to Xλ and is a fixed point of
U : Xλ → Xλ.

The next step is to prove the uniqueness of the fixed point of problem 4.17.

4.3.2 Uniqueness of the Fixed Point

In this section we will show that, for any choice of 0 < λ < 1, the operator
U : Xλ → Xλ is Lipschitz. Moreover, we will see that U : Xλ → Xλ is in fact
contractive for a suitable choice of λ. The latter feature will then imply the
uniqueness of the fixed point.
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For the estimation of the difference U[v1]−U[v2] we prepare by setting up
a PDE which is satisfied by the difference. For the purpose of abbreviation,
we set

c1 := c[v1] , c2 := c[v2] ,
f1 := f [v1] , f2 := f [v2] .

Let u1 and u2 respectively denote the solutions of the two linear problems

〈c1(x), Du〉 = f1(x) · L2 in Ωλ , u|∂Ω = u0,1 ,

and 〈c2(x), Du〉 = f2(x) · L2 in Ωλ , u|∂Ω = u0,2 .

As in the proof of lemma 4.15 we refer to the transformed time T0 instead
of T and denote by Ωλ the lower level-set of T0

Ωλ := {z ∈ Ω : T0(z) < λ} , λ ∈ ]0, 1[ .

For the first considerations we use different boundary data. When setting
u0,1 = u0,2 = u0 later on, we will obtain the relations

u1 = U[v1] , u2 = U[v2] . (4.2)

Let w denote the difference w := u1 − u2. After having subtracted the
problems from each other, the difference w must satisfy the linear problem

〈c1(x), Dw〉 = ( f1(x)− f2(x)) · L2 − 〈c1(x)− c2(x), Du2〉 in Ωλ ,
w|∂Ω = w0 ,

with boundary data w0 = u0,1 − u0,2.

By the same argumentation as in the proof of theorem 3.16 we see that w
is the unique solution of this PDE. But, in order to solve for w, we cannot
directly apply the method of construction from chapter 3, since the right
hand side is not an absolutely continuous measure.

Instead we approximate the right hand side by absolutely continuous mea-
sures. Since u2 ∈ BV(Ω), by theorem 2.19, there exists a sequence (u2,n)n∈N

of C∞(Ω)-functions which converges strictly to u2,n, i.e.,

‖u2 − u2,n‖L1(Ω) → 0 and ||Du2|(Ω)− |Du2,n|(Ω)| → 0 .

Moreover, we have Du2,n = ∇u2,n(x) · L2 and |Du2,n|(Ω) = ‖∇u2,n‖L1(Ω).

Using such a sequence we obtain an approximate problem

〈c1(x), Dw〉 = ( f1(x)− f2(x)− 〈c1(x)− c2(x),∇u2,n(x)〉) · L2 in Ωλ ,
w|∂Ω = w0 ,
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with a sequence of solutions wn which we can construct using the same
method as in chapter 3. Again, we scale by the factor 1

〈c1,∇T0〉 and set

c1,0 :=
c1

〈c1,∇T0〉
, f1,0 :=

f1

〈c1,∇T0〉
,

c0
2 :=

c2

〈c1,∇T0〉
, f 0

2 :=
f2

〈c1,∇T0〉
.

Note: if we were to be consistent, we would set f2,0 := f2
〈c2,∇T0〉 , which

differs from f 0
2 .

The family of forward characteristics ξ( . , s) is then given by the IVP

y′ = c1,0(y) , y(0) = γ(s) .

So, we obtain wn in characteristic variables by

wn ◦ ξ(t, s) = γ∗w0(s)+
t∫

0

( f1,0− f 0
2 −

〈
c1,0 − c0

2,∇u2,n
〉
) ◦ ξ(τ, s) dτ . (4.3)

The consideration of the sequence wn will not be of any use if wn does not
tend to w in an appropriate fashion. We will show the desired convergence
in lemma 4.19. But first, we rewrite wn ◦ ξ. Because the PDE for u1 has the
same transport field c1, we have for u1

u1 ◦ ξ(t, s) = γ∗u0,1 +
t∫

0

f1,0 ◦ ξ(τ, s) dτ ,

and by the fundamental theorem of calculus, we see

u2,n ◦ ξ(t, s)− u2,n ◦ γ(s) =
t∫

0

〈c1,0,∇u2,n〉 ◦ ξ(τ, s) dτ .

With w0 = u0,1 − u0,2 and the last two observations, we have

wn ◦ ξ(t, s) = u1 ◦ ξ(t, s)− u2,n ◦ ξ(t, s) + u2,n ◦ γ(s)− γ∗u0,2(s)

+
t∫

0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s) dτ .

Subtracting w = u1 − u2, finally, we end up with

(wn − w) ◦ ξ(t, s) = (u2 − u2,n) ◦ ξ(t, s) + (γ∗u2,n(s)− γ∗u0,2(s))

+
t∫

0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s) dτ .
(4.4)
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As a second step of preparation, we will show that requirement 4.13 c)
implies uniform bounds on the determinant of Dξ.

Lemma 4.18.
Let c : L1(Ω) → C1(Ω\Σ)2 be a transport field according to 4.13. For fixed
v ∈ L1(Ω), let ξ[v] : ]0, 1[× ]a, b[ → Ω\(S ∪ Σ) denote the diffeomorphism –
according to corollary 3.10 – given by the solution of the IVP

y′ = c0[v](y) y(0) = γ(s) .

Then, for 0 < λ < 1 there are bounds kλ and Kλ such that

0 < kλ ≤ det Dξ[v](t, s) ≤ Kλ ∀ (t, s) ∈ ]0, λ[× ]a, b[ .

The bounds kλ and Kλ depend only on λ, but not on v. Moreover, kλ decreases,
while Kλ increases monotonically with λ.

Proof.

The right hand side of the IVP is given by

c0[v] =
c[v]

〈c[v],∇T0〉
.

Because, by requirement 4.13 part c), there is the uniform bound

|Dxc[v](x)| ≤ Mε , ∀ x ∈ Ω\Vε , ∀ v ∈ L1(Ω)

on the derivative Dxc[v](x), a similar bound M0,ε will hold for Dxc0[v](x).

The diffeomorphism ξ[v] for every v maps the set ]0, λ[× ]a, b[ onto Ωλ. We
then choose ε so small that

Ωλ ⊂ Ω\Vε ,

and obtain a bound that only depends on λ:

|Dxc0[v](x)| ≤ M0,ε(λ) , ∀ x ∈ Ωλ , ∀ v ∈ L1(Ω) .

By lemma 3.11 a) we have

det Dξ[v] ≤ |∂tξ[v]| · |∂sξ[v]| ≤ |∂sξ[v]|
β ·m0

.

∂sξ[v] is the solution of

∂sξ[v]′ = Dxc0[v] ◦ ξ[v] · ∂sξ[v] y(0) = γ′(s) .
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Hence, for t ∈ [0, λ], we estimate

|∂sξ[v]|(t, s) ≤ ‖γ′‖∞ +
t∫

0

M0,ε(λ)|∂sξ[v]|(τ, s) dτ ,

and an application of Gronwall’s lemma yields

|∂sξ[v]|(t, s) ≤ ‖γ′‖∞ exp
(

λ ·M0,ε(λ)

)
.

This yields the upper bound Kλ

det Dξ[v](t, s) ≤
‖γ′‖∞ exp

(
λ ·M0,ε(λ)

)
β ·m0

=: Kλ

on ]0, λ[× ]a, b[.

For the lower bound we consider the inverse ξ[v]−1(x) = (T0(x), s[v](x)),
with

s[v](x) = γ−1(η[v](T0(x), x))

for x ∈ Ωλ. Here, η[v]( . , x) denotes the backward characteristics given as
the solution of

y′ = −c0[v](y) y(0) = x ∈ Ωλ .

The determinant of Dxξ[v]−1 is bounded by

det Dxξ[v]−1(x) ≤ |∇T0(x)| · |∇xs[v](x)|

and ∇xs[v](x)T =

(γ−1)′(η)T ·
(

∂tη[v](T0(x), x) · ∇T0(x)T + Dxη[v](t, x)|t=T0(x)

)
.

We estimate |Dxη[v](t, x)| in the same way as |∂sξ(t, s)| and, because x ∈
Ωλ, obtain

|Dxη[v](t, x)| ≤ exp
(

λ ·M0,ε(λ)

)
.

Finally, we see that

det Dxξ[v]−1(x) ≤
‖∇T0‖L∞(Ωλ)

mins∈[a,b] |γ′(s)| ·
(
‖∇T0‖L∞(Ωλ)

β ·m0
+ exp

(
λ ·M0,ε(λ)

))
,

for x ∈ Ωλ. We define 1/kλ to equal the right hand side of the last inequal-
ity. Then, we have

1
det Dξ[v](t, s)

= det
(
(Dξ[v](t, s))−1

)
= det Dxξ[v]−1(x)|x=ξ(t,s) ≤

1
kλ

,

for (t, s) ∈ ]0, λ[× ]a, b[, since in this case ξ(t, s) ∈ Ωλ.

Both bounds do not depend on the choice of v ∈ L1(Ω) and the monotonic-
ity properties of kλ and Kλ as functions of λ are obvious.
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In the next lemma we turn to the approximation of w by wn.

Lemma 4.19.
Let w and wn be as defined in the preparatory step above. Interpret the L1(Ωλ)-
functions w and wn as absolutely continuous measures w(x) · L2 and wn(x) · L2

on Ωλ. Then, the sequence of measures wn(x) · L2 weakly* converges to w(x) · L2:

wn(x) · L2 ∗
⇀ w(x) · L2 , as n→ ∞ .

Proof.

Let ϕ ∈ C0(Ωλ) be a test function. By changing variables it follows that

∫
Ωλ

(wn − w)(x) · ϕ(x) dx =
b∫

a

λ∫
0

((wn − w) · ϕ) ◦ ξ(t, s) · det Dξ(t, s) dt ds .

We use the representation of (wn − w) ◦ ξ according to equation (4.4) and
study the convergence of the three summands in equation (4.4) separately.
The first summand is estimated by∣∣∣∣∣∣

b∫
a

λ∫
0

((u2,n − u2) · ϕ) ◦ ξ(t, s) · det Dξ(t, s) dt ds

∣∣∣∣∣∣ ≤ ‖u2,n − u2‖L1(Ωλ)‖ϕ‖∞ ,

and the right hand side tends to zero, because the sequence u2,n strictly
tends to u2 in BV(Ω).

For the second summand we write∣∣∣∣∣∣
b∫

a

λ∫
0

(γ∗u2,n(s)− γ∗u0,2(s)) · ϕ ◦ ξ(t, s) · det Dξ(t, s) dt ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

(γ∗u2,n(s)− γ∗u0,2(s)) · |γ′(s)|
(∫ λ

0 ϕ ◦ ξ(t, s) · det Dξ(t, s) dt
|γ′(s)|

)
ds

∣∣∣∣∣∣ .

Let kλ and Kλ be the bounds on the determinant as in lemma 4.18. By the
definition of kλ, we have

kλ ≤ det Dξ(0, s) ≤ |γ
′(s)|

β ·m0
⇔ 1

|γ′(s)| ≤
1

β ·m0 · kλ
.

And consequently,

λ∫
0

ϕ ◦ ξ(t, s) · det Dξ(t, s) dt

|γ′(s)| ≤ λ · Kλ

β ·m0 · kλ
· ‖ϕ‖∞ .
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By the last result, we further estimate:

≤ λ · Kλ

β ·m0 · kλ
· ‖ϕ‖∞ ·

b∫
a

|γ∗(u2,n − u0,2)(s)| · |γ′(s)| ds

≤ λ · Kλ

β ·m0 · kλ
· ‖ϕ‖∞ ·

∫
∂Ω

| (u2,n − u2)|∂Ω(x) | dH1(x)

= λ · Kλ

β ·m0 · kλ
· ‖ϕ‖∞ · ‖(u2,n − u2)|∂Ω‖L1(∂Ω,H1) .

In the last factor we apply the trace operator for BV-functions

.|∂Ω : BV(Ω)→ L1(∂Ω,H1) , v→ v|∂Ω ,

which, by theorem 2.27, is continuous w.r.t. the strict topology on BV(Ω).
Hence, the factor ‖(u2,n − u2)|∂Ω‖L1(∂Ω,H1) also tends to zero as n tends to
infinity.

Let ψ(t, s) := ϕ ◦ ξ(t, s) · det Dξ(t, s). Then, by changing the order of inte-
gration, we get for the third summand

b∫
a

λ∫
0

t∫
0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s) dτ · ψ(t, s) dt ds

=
b∫

a

λ∫
0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s)

 λ∫
τ

ψ(t, s) dt

 dτ ds .

By the definition of ψ and since ξ is a diffeomorphism, there is a continuous
function h ∈ C(Ωλ) such that

h ◦ ξ(τ, s) = (det Dξ(τ, s))−1 ·

 λ∫
τ

ψ(t, s) dt

 .

With h, we rewrite the integral

b∫
a

λ∫
0

t∫
0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s) dτ · ψ(t, s) dt ds

=
b∫

a

λ∫
0

(
〈
c0

2,∇u2,n
〉
− f 0

2 ) ◦ ξ(τ, s) · h ◦ ξ(τ, s) · det Dξ(τ, s) dτ ds

=
∫

Ωλ

(
〈
c0

2,∇u2,n
〉
− f 0

2 )(x) · h(x) dx .
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Next, we use the fact that u2 solves the PDE〈
c0

2(x), Du2
〉

= f 2
0 (x) · L2

and formulate the last integral as

=
∫

Ωλ

〈
h(x) · c0

2(x),∇u2,n(x)
〉

dx−
∫

Ωλ

〈
h(x) · c0

2(x), dDu2(x)
〉

=
∫

Ωλ

〈ϕ̂(x),∇u2,n(x)〉 dx−
∫

Ωλ

〈ϕ̂(x), dDu2(x)〉 .

In the second equation we have set

ϕ̂(x) := h(x) · c0
2(x)

as a new test function which belongs to C(Ωλ)2.
Owing again to the strict convergence of u2,n to u2, we argue by proposition
2.20 that the last integral expression tends to zero as n→ ∞. Summarizing
the three steps above we obtain∫

Ωλ

(wn − w)(x) · ϕ(x) dx → 0 ∀ ϕ ∈ C0(Ωλ) ,

which means wn(x) · L2 ∗
⇀ w(x) · L2 on Ωλ.

Based on the properties of the sequence wn we will show that the operator
U is Lipschitz.

Lemma 4.20.
Let λ, h ≥ 0 be such that λ + h < 1. We set

Ωλ+h,λ = Ωλ+h\Ωλ = {z ∈ Ω : λ ≤ T0(z) < λ + h} .

Then, the difference w = u1 − u2 satisfies

‖w‖L1(Ωλ+h) ≤ (λ + h) · Cλ+h · ‖u0,1 − u0,2‖L1(∂Ω,H1)

+ Cλ+h · L2(Ω) ·
(
(λ + h) · ‖ f1 − f2‖L∞(Ωλ) + h · ‖ f1 − f2‖L∞(Ωλ+h)

)
+ Cλ+h ·M∗∗ ·

(
(λ + h) · ‖c1 − c2‖L∞(Ωλ) + h · ‖c1 − c2‖L∞(Ωλ+h)

)
.

Here, the factor

Cλ :=
Kλ

β ·m0 · kλ

is an increasing function of λ.
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Proof.

We use the approximation of w by wn again. Because of the weak* conver-
gence according to lemma 4.19 and because of the lower semi-continuity of
the total variation w.r.t. the weak* convergence (for the semi-continuity of
norms, e.g., see [AB94]), we have

‖w‖L1(Ωλ) =
∣∣w · L2∣∣ (Ωλ) ≤ lim inf

n→∞

∣∣wn · L2∣∣ (Ωλ) = lim inf
n→∞

‖wn‖L1(Ωλ) ,

and thus we can estimate ‖wn‖L1(Ωλ) instead. Using the representation of
wn by equation (4.3), we obtain

‖wn‖L1(Ωλ+h) =
b∫

a

λ+h∫
0

|wn| ◦ ξ(t, s) · det Dξ(t, s) dt ds

≤
b∫

a

λ+h∫
0

|γ∗(u0,1 − u0,2)(s)| · det Dξ(t, s) dt ds

+
b∫

a

λ+h∫
0

t∫
0

| f1,0 − f 0
2 | ◦ ξ(τ, s) dτ · det Dξ(t, s) dt ds

+
b∫

a

λ+h∫
0

t∫
0

|
〈
(c1,0 − c0

2),∇u2,n
〉
| ◦ ξ(τ, s) dτ · det Dξ(t, s) dt ds .

By arguing the same way as in the proof of lemma 4.19 for the first sum-
mand we get

b∫
a

λ+h∫
0

|γ∗(u0,1 − u0,2)(s)|·det Dξ(t, s) dt ds

≤ (λ + h) · Cλ+h · ‖u0,1 − u0,2‖L1(∂Ω,H1) .

For the last summand, let

g(τ, s, t) := |c1,0 − c0
2| ◦ ξ(τ, s) · |∇u2,n| ◦ ξ(τ, s) · det Dξ(t, s) .

Then, we estimate
b∫

a

λ+h∫
0

t∫
0

|
〈
(c1,0 − c0

2),∇u2,n
〉
| ◦ ξ(τ, s) dτ · det Dξ(t, s) dt ds

≤
b∫

a

λ+h∫
0

t∫
0

g(τ, s, t) dτ dt ds =
b∫

a

λ+h∫
0

 λ+h∫
τ

g(τ, s, t) dt

 dτ ds

≤
b∫

a

λ∫
0

 λ+h∫
0

g(τ, s, t) dt

 dτ ds +
b∫

a

λ+h∫
λ

 λ+h∫
λ

g(τ, s, t) dt

 dτ ds .
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For the inner integrals, we have

λ+h∫
τ

g(τ, s, t) dt = |c1,0 − c0
2| ◦ ξ(τ, s) · |∇u2,n| ◦ ξ(τ, s)

λ+h∫
τ

det Dξ(t, s) dt

≤ (|c1,0 − c0
2| · |∇u2,n|) ◦ ξ(τ, s) · (λ + h− τ) · Kλ+h

≤ (|c1,0 − c0
2| · |∇u2,n|) ◦ ξ(τ, s) · det Dξ(τ, s) · (λ + h− τ) · Kλ+h

kλ+h
.

In the next step we take away the scaling factor, which is in the transport
fields and the right hand sides of the PDE, by 1/ 〈c1,∇T0〉 ≤ 1/(m0 · β):

≤ (|c1 − c2| · |∇u2,n|) ◦ ξ(τ, s) · det Dξ(τ, s) · (λ + h− τ) · Kλ+h

β ·m0 · kλ+h

= (|c1 − c2| · |∇u2,n|) ◦ ξ(τ, s) · det Dξ(τ, s) · (λ + h− τ) · Cλ+h .

By the last result we infer on the one hand that

b∫
a

λ∫
0

λ+h∫
0

g(τ, s, t) dt dτ ds

≤ (λ + h) · Cλ+h

∫
Ωλ

|c1 − c2|(x) · |∇u2,n|(x) dx

≤ (λ + h) · Cλ+h‖c1 − c2‖L∞(Ωλ) · ‖∇u2,n‖L1(Ωλ) ,

and on the other hand that

b∫
a

λ+h∫
λ

λ+h∫
λ

g(τ, s, t) dt dτ ds ≤ h · Cλ+h

∫
Ωλ+h,λ

|c1 − c2|(x) · |∇u2,n|(x) dx

≤ h · Cλ+h‖c1 − c2‖L∞(Ωλ+h) · ‖∇u2,n‖L1(Ωλ+h) .

Finally, for the summand

b∫
a

λ+h∫
0

t∫
0

| f1,0 − f 0
2 | ◦ ξ(τ, s) dτ · det Dξ(t, s) dt ds ,

we need to perform the same steps with

g(τ, s, t) := | f1,0 − f 0
2 | ◦ ξ(τ, s) · 1Ωλ+h ◦ ξ(τ, s) · det Dξ(t, s) ,

and end up with the same estimates, but ‖c1 − c2‖L∞(Ωλ+h) has to be re-
placed by ‖ f1 − f2‖L∞(Ωλ+h) and ‖∇u2,n‖L1(Ωλ+h) has to be replaced by
L2(Ωλ+h).
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Summarizing the last considerations we have an estimate for ‖wn‖L1(Ωλ+h):

‖wn‖L1(Ωλ+h) ≤ (λ + h) Cλ+h · ‖u0,1 − u0,2‖L1(∂Ω,H1)

+ Cλ+h L2(Ωλ+h)
(
(λ + h) · ‖ f1 − f2‖L∞(Ωλ) + h · ‖ f1 − f2‖L∞(Ωλ+h)

)
+ Cλ+h ‖∇u2,n‖L1(Ωλ+h)

(
(λ + h) · ‖c1 − c2‖L∞(Ωλ) + h · ‖c1 − c2‖L∞(Ωλ+h)

)
.

Because u2,n is chosen according to theorem 2.19, we have

‖∇u2,n‖L1(Ωλ+h) → |Du2|(Ωλ+h) .

Hence, going over to the lim inf and plugging in the estimates

|Du2|(Ωλ+h) ≤ M∗∗ and L2(Ωλ+h) ≤ L2(Ω)

finally yields the assertion.

Because by lemma 4.18 we know that Kλ increases while kλ decreases with
λ, it is clear that Cλ increases with λ.

Corollary 4.21.
For any choice of 0 < λ < 1 the operator U : Xλ → Xλ is L1-Lipschitz

‖U[v1]−U[v2]‖L1(Ωλ) ≤ λ · κλ · ‖v1 − v2‖L1(Ωλ) .

Here, κλ is defined by

κλ := Cλ · (L2 · L2(Ω) + L1 ·M∗∗) ,

and is an increasing function of λ.

Proof.

Let v1, v2 ∈ Xλ. When we consider the operator U, we always use the
same boundary data u0 ∈ B. Hence, as mentioned in equation (4.2) of the
preparatory part at the beginning of this section, we have w = u1 − u2 =
U[v1]−U[v2], since u0,1 = u0,2 = u0. By using lemma 4.20 with h = 0 we
see that

‖U[v1]−U[v2]‖L1(Ωλ) ≤ λ · Cλ ·
(
L2(Ω) · ‖ f1 − f2‖L∞(Ωλ)

+ M∗∗ · ‖c1 − c2‖L∞(Ωλ)

)
.
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For the differences f1− f2 and c1− c2 we use the Volterra-type dependence
and the Lipschitz conditions, which we require. That is

‖ f1 − f2‖L∞(Ωλ) = ‖ f [v1]− f [v2]‖L∞(Ωλ) = ‖( f [v1]− f [v2])|Ωλ
‖∞

= ‖( f [v1 · 1Ωλ
]− f [v2 · 1Ωλ

])|Ωλ
‖∞

≤ ‖ f [v1 · 1Ωλ
]− f [v2 · 1Ωλ

]‖∞

≤ L2 · ‖v1 · 1Ωλ
− v2 · 1Ωλ

‖L1(Ω)

= L2 · ‖v1 − v2‖L1(Ωλ)

and analogously

‖c1 − c2‖L∞(Ωλ) ≤ L1 · ‖v1 − v2‖L1(Ωλ) .

Putting everything together, it follows that

‖U[v1]−U[v2]‖L1(Ωλ) ≤ λ · Cλ · (L2 · L2(Ω) + L1 ·M∗∗) · ‖v1 − v2‖L1(Ωλ)

≤ λ · κλ · ‖v1 − v2‖L1(Ωλ) .

Finally, κλ increases with λ, since Cλ does so, too.

Now that we have brought together all ingredients we are able to show the
uniqueness of the fixed point.

Theorem 4.22. (Uniqueness)
Consider the solution operator

U : X→ X

of the (non-restricted) original problem 4.6, where the transport field c : L1(Ω)→
C1(Ω\Σ)2 and the right hand side f : L1(Ω) → C1(Ω) additionally satisfy the
requirements 4.13 and 4.14.

Then, the map U has a unique fixed point u ∈ X, u = U[u].

Proof.

First, we show that, for any choice of 0 < λ < 1, the domain-restricted
operator U : Xλ → Xλ has a unique fixed point. In order to do so we
decompose Ωλ into finitely many stripes Ω(l+1)h,lh of ”thickness” h.

Let the step size h be such that

h <
1

κλ
,

and let

L =
⌊

λ

h

⌋
∈N
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be the number of steps. Then,

Ωλ =
L−1⋃
l=0

Ω(l+1)h,lh ∪Ωλ,Lh .

For the first step, consider the operator U : Xh → Xh on Ωh = Ωh,0. By
corollary 4.21 and the choice of h we have a contraction

‖U[v1]−U[v2]‖L1(Ωh) ≤ h · κh · ‖v1 − v2‖L1(Ωh) ≤ h · κλ · ‖v1 − v2‖L1(Ωh) .

If now u1 = U[u1] and u2 = U[u2] are two fixed points, we have, after
domain-restriction onto Ωh,

‖u1 − u2‖L1(Ωh) ≤ h · κλ · ‖u1 − u2‖L1(Ωh)

and consequently

0 ≤ (1− h · κλ)‖u1 − u2‖L1(Ωh) ≤ 0 .

Hence, all fixed points coincide on the stripe Ωh.

Next, we perform an inductive step. Assume that all fixed points coincide
on Ωlh, we show that they must also coincide on Ω(l+1)h = Ωlh+h. Let
u1 = U[u1] and u2 = U[u2] be two fixed points again. With w = u1 − u2,
by lemma 4.20 we know that

‖u1 − u2‖L1(Ω(l+1)h) ≤ C(l+1)h ·(
L2(Ω) ·

(
(l + 1)h · ‖ f [u1]− f [u2]‖L∞(Ωlh) + h · ‖ f [u1]− f [u2]‖L∞(Ω(l+1)h)

)
+ M∗∗ ·

(
(l + 1)h · ‖c[u1]− c[u2]‖L∞(Ωlh) + h · ‖c[u1]− c[u2]‖L∞(Ω(l+1)h)

))
.

Because u1 and u2 coincide on Ωlh, we have

‖ f [u1]− f [u2]‖L∞(Ωlh) = 0 and ‖c[u1]− c[u2]‖L∞(Ωlh) = 0 ,

and thus, the estimate reduces to

‖u1 − u2‖L1(Ω(l+1)h) ≤ C(l+1)h · h · (L2(Ω) · ‖ f [u1]− f [u2]‖L∞(Ω(l+1)h)

+ M∗∗ · ‖c[u1]− c[u2]‖L∞(Ω(l+1)h)) .

By using the Lipschitz conditions on c and f again we have

‖u1 − u2‖L1(Ω(l+1)h) ≤ hκ(l+1)k · ‖u1 − u2‖L1(Ω(l+1)h)

≤ hκλ · ‖u1 − u2‖L1(Ω(l+1)h) .
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More precisely, because we have assumed that u1 and u2 coincide on Ωlh,
the latter inequality in fact means

‖u1 − u2‖L1(Ω(l+1)h,lh) ≤ hκλ · ‖u1 − u2‖L1(Ω(l+1)h,lh) .

By the contractiveness, hκλ < 1, we see that ‖u1 − u2‖L1(Ω(l+1)h,lh) = 0 and
so the fixed points also coincide on the next stripe Ω(l+1)h,lh.

For the last stripe we have to adapt the step size to

ĥ = λ− Lh .

But, since ĥ ≤ h, the same argumentation applies.

As claimed before, the domain-restricted operator U : Xλ → Xλ has a
unique fixed point for any choice of 0 < λ < 1. Now the last step: as-
sume by contradiction that the non-restricted operator U : X → X has
two different fixed points, u1 and u2. Therefor, u1 and u2 must differ on
a subset W ⊂ Ω with L2(W) 6= 0. Because the stop set Σ has Lebesgue
measure zero, L2(Σ) = 0, we can choose 0 < λ < 1 so close to 1 that
L2(Ωλ ∩W) 6= 0. Thus, we have

‖u1 − u2‖L1(Ωλ) = ‖u1 − u2‖L1(Ωλ∩W) 6= 0 .

But, because u1|Ωλ
and u2|Ωλ

are fixed points of the domain-restricted op-
erator U : Xλ → Xλ, we also have

‖u1 − u2‖L1(Ωλ) = 0

by the previous uniqueness proof. A contradiction.

4.3.3 Continuous Dependence of the Fixed Point

In this section, we will show that the unique fixed point depends L1-con-
tinuously on the following data: the transport field, the right hand side,
and the boundary data. We consider two linear problems:

〈c[v](x), Du〉 = f [v](x) · L2 in Ω\Σ ,
u|∂Ω = u0 ,

and

〈c̃[ṽ](x), Dũ〉 = f̃ [ṽ](x) · L2 in Ω\Σ ,
ũ|∂Ω = ũ0 ,
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where we assume that for both problems the same domain Ω, the same
stop set Σ, and the same time function T (with transformed version T0) are
specified.

Moreover, we assume that c and c̃ both satisfy the requirements 4.1 and 4.13
with the same bounds, and that f and f̃ both satisfy the requirements 4.2
and 4.14 with the same bounds. Finally, we assume u0 ∈ B and ũ0 ∈ B. By
the latter assumptions we are sure that we obtain two solution operators

U : X→ X , v→ U[v] ,
Ũ : X→ X , ṽ→ Ũ[ṽ] ,

which respectively correspond to the two linear problems above and pos-
sess the same domain and range X, which depends on all those bounds.

We view c̃ and f̃ as perturbed versions of c and f . In order to measure the
perturbation we introduce the following norm:

Definition 4.23.
For maps of type g : L1(Ω) → Cb(Ω\Σ)d or of type g : L1(Ω) → C(Ω)d,
d ∈N, we define the norm

‖g‖0 := sup
v∈L1(Ω)

‖g[v]‖∞ .

Theorem 4.24. (Continuous dependence)
Consider the two solution operators U and Ũ as described above. Let u and ũ be
fixed points of these operators, i.e.,

u = U[u] , ũ = Ũ[ũ] .

Then, for every ε > 0, one can find δ > 0 such that

‖u− ũ‖L1(Ω) ≤ ε ,

whenever(
‖u0 − ũ0‖L1(∂Ω,H1) + L2(Ω) · ‖ f − f̃ ‖0 + M∗∗ · ‖c− c̃‖0

)
≤ δ .

Proof.

Let v, ṽ ∈ X be arbitrary but fixed. Let

u1 := U[v] and u2 := Ũ[ṽ] .
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As before, we set up a PDE for the difference w := u1− u2 on the restricted
domain Ωλ, 0 < λ < 1:

〈c[v](x), Dw〉 = ( f [v]− f̃ [ṽ])(x) · L2 − 〈(c[v]− c̃[ṽ])(x), Du2〉 in Ωλ ,
w|∂Ω = u0 − ũ0 .

Again, we choose a sequence u2,n ∈ C∞(Ω) which strictly converges to
u2 in BV(Ω). And again, the sequence wn of solutions to the approximate
PDE, which has ∇u2,n(x) · L2 instead of Du2, converges weakly* to w.

In order to proceed as in lemma 4.20 we rewrite the right hand side of the
PDE to

〈c[v](x), Dwn〉 = (( f [v]− f [ṽ])− 〈c[v]− c[ṽ],∇u2,n〉) (x) · L2

+
(
( f [ṽ]− f̃ [ṽ])− 〈c[ṽ]− c̃[ṽ],∇u2,n〉

)
(x) · L2 .

For the first summand of the new right hand side we will apply the steps
from the proof of lemma 4.20. For the second summand we operate in a
simpler way. Let ξ = ξ[v] be the characteristics corresponding to the field
c[v]0 and let

g(x) =

∣∣( f [ṽ]− f̃ [ṽ])− 〈c[ṽ]− c̃[ṽ],∇u2,n〉
∣∣

〈c[v],∇T0〉
(x) .

As in the proof of lemma 4.20 we have to estimate

b∫
a

λ+h∫
0

t∫
0

g ◦ ξ(τ, s) dτ det Dξ(t, s) dt ds ≤ . . . .

After having changed the order of integration and having estimated the
determinant, we obtain

. . . ≤ (λ + h) · Kλ+h

kλ+h
·

b∫
a

λ+h∫
0

g ◦ ξ(τ, s) det Dξ(τ, s) dτ ds

≤(λ + h) · Cλ+h ·
∫

Ωλ+h

∣∣( f [ṽ]− f̃ [ṽ])− 〈c[ṽ]− c̃[ṽ],∇u2,n〉
∣∣ (x) dx

≤(λ + h) · Cλ+h

(
L2(Ω) · ‖ f [ṽ]− f̃ [ṽ]‖∞ + ‖∇u2,n‖L1(Ω) · ‖c[ṽ]− c̃[ṽ]‖∞

)
≤(λ + h) · Cλ+h

(
L2(Ω) · ‖ f − f̃ ‖0 + ‖∇u2,n‖L1(Ω) · ‖c− c̃‖0

)
.

Putting both estimates together and then going over to the lim inf, we end
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up with

‖w‖L1(Ωλ+h) ≤ (λ + h) · Cλ+h · ‖u0 − ũ0‖L1(∂Ω,H1)

+ Cλ+h · L2(Ω)
(
(λ + h) · ‖ f [v]− f [ṽ]‖L∞(Ωλ) + h · ‖ f [v]− f [ṽ]‖L∞(Ωλ+h)

)
+ Cλ+h ·M∗∗

(
(λ + h) · ‖c[v]− c[ṽ]‖L∞(Ωλ) + h · ‖c[v]− c[ṽ]‖L∞(Ωλ+h)

)
+ (λ + h) · Cλ+h

(
L2(Ω) · ‖ f − f̃ ‖0 + M∗∗ · ‖c− c̃‖0

)
.

Now we can show the continuous dependence in the domain-restricted
situation. Fix 0 < λ < 1, choose a step size 0 < h < 1/κλ and let

L =
⌊

λ

h

⌋
∈N

be the number of steps. Furthermore, let(
‖u0 − ũ0‖L1(∂Ω,H1) + L2(Ω) · ‖ f − f̃ ‖0 + M∗∗ · ‖c− c̃‖0

)
≤ δ ,

for some δ > 0. Let l ∈N0, l ≤ L. With the result above we estimate on the
set Ω(l+1)h:

‖w‖L1(Ω(l+1)h) ≤ λ · Cλ · δ

+ Cλ · L2(Ω) ·
(

λ · ‖ f [v]− f [ṽ]‖L∞(Ωlh) + h · ‖ f [v]− f [ṽ]‖L∞(Ω(l+1)h)

)
+ Cλ ·M∗∗ ·

(
λ · ‖c[v]− c[ṽ]‖L∞(Ωlh) + h · ‖c[v]− c[ṽ]‖L∞(Ω(l+1)h)

)
.

By using the Lipschitz condition on c and f and the definition of κλ from
corollary 4.21 we obtain

‖w‖L1(Ω(l+1)h) ≤ λCλ · δ + λκλ · ‖v− ṽ‖L1(Ωlh) + hκλ · ‖v− ṽ‖L1(Ω(l+1)h) .

Let δ̂ = λ · Cλ · δ. Now, we plug in the two fixed points u and ũ, i.e., we set
u1 = v = u and u2 = ṽ = ũ,

‖u− ũ‖L1(Ω(l+1)h) ≤ δ̂ + λ · κλ · ‖u− ũ‖L1(Ωlh) + h · κλ · ‖u− ũ‖L1(Ω(l+1)h) .

We define the error on the set Ωlh to be

el := ‖u− ũ‖L1(Ωlh) .

Then, by our choice of h, the last estimate yields the error recursion

0 ≤ (1− hκλ) · el+1 ≤ δ̂ + λ · κλ · el ,



4.3 Uniqueness and Stability under Volterra-Type Dependence 107

which leads to

el+1 ≤
l

∑
k=0

αk · δ̂

1− hκλ
with α :=

λ · κλ

1− hκλ
.

In summary, we get

‖u− ũ‖L1(Ωλ) ≤ eL+1 ≤
(

1− αL+1

1− α
· λ · Cλ

1− hκλ

)
· δ

and the continuous dependence is obvious.

Let ε > 0. For the full domain Ω we choose λ so close to 1 that

‖u− ũ‖L1(Ω\Ωλ) ≤
ε

2
.

In dependence of this λ we find h and L. What remains to do is to require

δ =
(

1− αL+1

1− α
· λ · Cλ

1− hκλ

)−1

· ε

2
,

then, we get
‖u− ũ‖L1(Ω) ≤ ε ,

whenever(
‖u0 − ũ0‖L1(∂Ω,H1) + L2(Ω) · ‖ f − f̃ ‖0 + M∗∗ · ‖c− c̃‖0

)
≤ δ .





Chapter 5

Extensions

In chapters 3 and 4 we restricted the discussion to simply connected do-
mains with time functions that have a connected tree-like stop set. In this
chapter we will weaken these requirements.

5.1 Extended Concept of Time Functions

We begin by weakening the requirements on time functions, while Ω is
assumed to be a domain according to requirement 3.1. Let us consider an
example: let T ∈ C2(Ω) be a function which is zero on the boundary and
positive in the interior of Ω. Here, we define Σ to equal the set of stationary
points

Σ := {x ∈ Ω : ∇T(x) = 0} .

For the sake of simplicity, we assume in this example that Σ consists of
exactly three points. Two of them are global maxima with the T-value equal
to 1, and the remaining one is a saddle point, with its T-value equal to 0.5.
The three important levels of T might look as in figure 5.1. Let us now
consider the linear problem with Ω, T, and Σ as set up above:

〈c(x), Du〉 = f (x) · L2 , in Ω\Σ ,
u|∂Ω = u0 .

Here, as in requirement 3.6, c is defined where N = ∇T/|∇T| is defined.
Moreover, c is at least as smooth and as extendable as N.
In the situation described above we use the saddle level as an intermediate
stop set and solve on the restricted domain Ω0.5 = {x ∈ Ω : 0 < T(x) <
0.5}. Note that on Ω0.5 the map T is a time function in accordance with
requirement 3.4. Let u1 denote the solution on Ω0.5.

109
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Ω

saddle

maxima

Figure 5.1: white: domain Ω, red: start level T = 0, green: saddle level
T = 0.5, blue: maximal level T = 1.

After having reached the saddle level, the remaining part Ω0.5,1 is a disjoint
union of two sets, a left one Ωl and right one Ωr:

Ω0.5,1 = {x ∈ Ω : 0.5 < T(x) < 1} = Ωl ∪Ωr .

According to this domain split we have two new boundaries ∂Ωl and ∂Ωr.
We will solve on the remainder by considering two restarted problems〈

c(x), Dul
〉

= f (x) · L2 , in Ωl\Σ ,

ul |∂Ωl = u1|∂Ωl ,

and

〈c(x), Dur〉 = f (x) · L2 , in Ωr\Σ ,
ur|∂Ωr = u1|∂Ωr .

Here, from the perspective of Ωl and Ωr, the traces u1|∂Ωl and u1|∂Ωr are
traces from the outside, since the already computed u1 is defined on Ω0.5.

If we are able to solve the two restarted problems, we can define a global
solution by

u = 1Ω0.5 u1 + 1Ωl ul + 1Ωr ur .

But some difficulties arise at the saddle level. First let us define the new
boundary data.

Consider figure 5.2. Let s1 ∈ [a, b] be such that ξ( . , s1) : [0, 0.5[ → Ω is the
left most characteristic, going bottom-up into the saddle. And, let s2 ∈ [a, b]
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s3

s4

s2

s1

Figure 5.2: light gray: domain of u1, green: saddle level T = 0.5, white: Ωl

and Ωr, black: left and right most characteristics hitting the saddle point.

be such that ξ( . , s2) : [0, 0.5[ → Ω is the left most characteristic, going top-
down into the saddle. Then,

ξ(0.5, . ) : ]s1, s2[→ Ω

parametrizes ∂Ωl\{z}, whereas z ∈ Ω denotes the saddle point. Analo-
gously, we choose s3 and s4 such that

ξ(0.5, . ) : ]s3, s4[→ Ω

parametrizes ∂Ωr\{z}. According to lemma 3.15 we obtain the new bound-
ary data by

on ∂Ωl\{z} : u ◦ ξ(0.5, s) , s ∈ ]s1, s2[ ,
on ∂Ωr\{z} : u ◦ ξ(0.5, s) , s ∈ ]s3, s4[ .

Now, that everything is set up for the restart, let us look at the possible
difficulties. As we can see in figure 5.2, the new domains might have a
corner at the saddle z. This is certainly the case if T looks like

T(x, y) =
1 + x2 − y2

2
, (x, y) ∈ Bε(z) , z = 0

in the neighborhood of the saddle z. This means that Ωl and Ωr are not
domains in accordance with requirements 3.1. Moreover, it is possible that
there are infinitely many backward characteristics that, let’s say, start in Ωr

and meet the saddle node z, as it was the case for the forward characteristics
on Ω0.5. See figure 5.2, where all characteristics ξ( . , s) for s ∈ [s2, s3] meet
z.
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As an example, we could use, on (Bε(0) ∩Ωr)\{0}, the transport field

c∗(x, y) = b
(

arctan
(y

x

))( x
y

)
+
(

1− b
(

arctan
(y

x

)))
∇T(x, y)

= b
(

arctan
(y

x

))( x
y

)
+
(

1− b
(

arctan
(y

x

)))( x
−y

)
c(x, y) =

c∗(x, y)
|c∗(x, y)|

with the following C1-blending function

b(t) = b0(t + π/4)− b0(t− π/4 + a) ,

b0(t) =



0 , t ≤ 0

2 t2

a2 , 0 < t ≤ a/2

− (2t−a)2−2t2

a2 , a/2 < t ≤ a

1 , a < t

,

a = 0.1 .

The graph of the blending function is shown in figure 5.3 . And, using polar

Figure 5.3: Graphs of the blending functions: Red: b, Green: 1− b.

coordinates (x, y) = r · (cos ϕ, sin ϕ) with (r, ϕ) ∈ ]0, ε[× [−π/2, π/2], it is
easy to check that

|c∗(x, y)| ≤ r

and that
〈c(x, y), N(x, y)〉 ≥ 1− 2b(ϕ) sin(ϕ)2 > 0.15 .
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Figure 5.4: Field plot of c.

So, c is an admissible transport field. For illustration the transport field c,
on (Bε(0) ∩Ωr)\{0}, is plotted in figure 5.4.

By construction, for ϕ ∈ [−π/4 + a, π/4− a], c is given by

c(x, y) =
(

x
y

)
.

And consequently, the backward characteristics, which solve the IVPs

η′ = −c(η) , η(0) ∈ Ωr ,

all end in the saddle point z = 0 if ϕ ∈ [−π/4 + a, π/4− a]. One the
other hand, all forward characteristics which start in Ωr must meet at that
maximum of T which is located in Ωr. Thus, there is a whole area A ⊂ Ωr

drawn by characteristics which all connect the saddle and the maximum
(see figure 5.5).

The problem, herein, is that the solution ur might suffer from non-unique-
ness. Consider the PDE with f ≡ 0. Then the partial solution u1 is given
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s3

s4

Figure 5.5: black: characteristic which carries the value u3, dashed black:
characteristic which carries the value u4, light blue: the area drawn by char-
acteristics which connect the saddle and the maximum in Ωr.

by

u1 ◦ ξ(t, s) = γ∗u0(s) ,

which implies that at the saddle z, coming from Ω0.5, the two function val-
ues

u3 := u1 ◦ ξ(0.5+, s3+) = γ∗u0(s3+)

and

u4 := u1 ◦ ξ(0.5+, s4−) = γ∗u0(s4−)

meet. If these two values are equal, we just set ur|A = u3 = u4. But in the
case of a jump, i.e.,

u3 6= u4 ,

the solution ur on Ωr cannot be uniquely defined on A, because any char-
acteristic through the set A could carry this jump (see figure 5.6). Another
possible way to define ur on A is to fan out the interval

[
u3, u4] of possible

values over all characteristics going through A.



5.1 Extended Concept of Time Functions 115

s3

s4

Figure 5.6: black area: area with ur = u3, dotted area: area with ur = u4,
magenta: an arbitrary characteristic which ”carries” the jump from u3 to
u4.

In order to resolve this difficulty we only allow for saddle points such that,
on the one hand, the subsets Ωl and Ωr are domains according to require-
ment 3.1, and on the other hand, the restricted field of normals

N : Ωl → S1 , N : Ωr → S1 ,

as well as the restricted transport field

c : Ωl → R2 , c : Ωr → R2

extend onto the boundaries ∂Ωl , ∂Ωr. Hence, the allowed saddle levels
look as illustrated in figures 5.7, 5.8, and 5.9 .

Figure 5.7: white: domain Ω, red: start level T = 0, green: saddle level,
blue: maximal level.
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Figure 5.8: white: domain Ω, red: start level T = 0, green + dashed green:
saddle level, green: restart lines (boundaries of Ωl and Ωr), dashed green:
stop set for u1, blue: maximal level.

Figure 5.9: white: domain Ω, red: start level T = 0, green + dashed green:
saddle level, green: restart lines, dashed green: stop set for u1, blue: maxi-
mal level.

Figure 5.8 shows a situation where the saddle level is not completely re-
started. Only the completely green parts, which are the boundaries of Ωl

and Ωr, are to be restarted, while the dashed green line is an effective stop
set of the partial solution u1. Figure 5.9 shows a similar case, which illus-
trates how we can model a ”triple saddle” and stay within the restriction
made above.

A situation which we cannot allow for is displayed in figure 5.10. There,
the intersection ∂Ωl ∩ ∂Ωr is a line segment and not just a single point. The
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ΩrΩl

Figure 5.10: light gray + white: domain Ω, red: start level T = 0, green:
saddle level, blue: maximal level.

difficulty, which arises here, is that the relative interior of this line segment
can never be reached by forward characteristics coming from Ω\(Ωl ∪Ωr).
Thus, on this line segment, we do not have data to supply the restarted
problems with. A second perspective of the same difficulty: the normal
field N does not (one-sided) extend, forward in time, onto ∂Ωl ∩ ∂Ωr, i.e.,

N : Ω\(Ωl ∪Ωr)→ S1

does not extend. And thus, considering the linear problem on Ω\(Ωl ∪Ωr),
the set ∂Ωl ∩ ∂Ωr is not a stop set in the sense of chapter 3, since part 2a) of
requirement 3.5 does not hold.
However, the extensions backwards in time exist, i.e.,

N : Ωl → S1 and N : Ωr → S1

have extensions onto ∂Ωl ∩ ∂Ωr.

Finally, we summarize how to proceed in the general case. Let Ω be a
domain according to 3.1. Then, let T : Ω → R+

0 be a continuous function
which strictly increases into the interior of Ω and has

• no minima,

• no plateaus,

• no saddle segments as in figure 5.10.

As in the previous chapters we assume T|∂Ω = 0. We define the set Σ by

Σ := {x ∈ Ω : x is a local maximum or a saddle point of T} .
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Σ need not be connected, but consists of n ∈N connected components Σk:

Σ =
n⋃

k=1

Σk .

Any component Σk plays the role of a stop set and is thus assumed to satisfy
requirement 3.2. Moreover, T is constant on each Σk:

T|Σk = ck = const.

Remark: if Σk is of the ”saddle set” type like the green dashed lines in
figures 5.8 and 5.9, then its relative interior Σ̊k is locally maximal, while
only its terminal nodes behave like saddle points. So, such terminal nodes
are also called saddle points. Moreover, such saddle sets might degenerate
to the case Σ̊k = ∅. The latter means that Σk = {zk} is an isolated saddle
point, as shown in the example of figure 5.7.
If Σk is a saddle set which contains more than one point and every point of
which behaves like a saddle point, then Σk will be a saddle segment as in
figure 5.10. However, this case has been excluded.

If Σk is a saddle set, then

χT=ck := {x ∈ Ω : T(x) = ck}

is the corresponding saddle level of T. It can happen that χT=ck is not con-
nected. If this is the case, we decompose χT=ck into its connected compo-
nents and discard that components which do not contain any Σj. Then, for
every Σj ⊂ χT=ck we have exactly one connected component Lj of χT=ck .
The reason for the non-connectedness is: χT=ck must contain at least Σk, but
can contain more than one of the Σj, since ck = cj is admissible. Moreover,
χT=ck can have some connected components which do not contain any Σj

(see figure 5.11). Each one of the defined Lj has a stop part Σj and, thus,
a necessary restart part Lj\Σ̊j. While all other connected components of
χT=ck do not have a stop part, and, thus, represent unnecessary restarts.
That is why we discard the latter. Now, we decompose the domain Ω into
m ∈N disjoint open components Ωi by cutting along the restart sets Lk\Σ̊k

(which conform to the fully green lines in figures 5.7, 5.8, and 5.9):

Ω\
n⋃

k=1

(
Lk\Σ̊k

)
=

m⋃
i=1

Ωi .

For each component Ωi the start and the stop ”times” are given by

Ti
− = min

x∈Ωi
T(x) and Ti

+ = max
x∈Ωi

T(x)
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Figure 5.11: white: domain Ω, red: boundary ∂Ω = level with T = 0 , green
+ dashed green: level with T = c1 > 0, magenta + dashed magenta: level
with T = c2 > c1, blue: maximal level with T = c3 > c2, dashed green:
first stop set, green: necessary restart set, dashed magenta: second stop set,
magenta right: necessary restart sets, magenta left: unnecessary restart set,
blue: last stop sets.

respectively. By these values, we define the start / restart sets

Γi
− = {x ∈ Ωi : T(x) = Ti

−} ,

and the stop / intermediate stop sets

Γi
+ = {x ∈ Ωi : T(x) = Ti

+} .

Any start set Γi
− is required to be a simple closed C1-curve.

For each component Ωi we assume that T : Ωi → R satisfies requirement
3.4 parts 1, 2, 3, 5, and 6* with Γi

− and Γi
+ instead of ∂Ω and Σ. A reason-

able replacement of the growth condition, in part 4 of requirement 3.4, is
implicitly satisfied by our decomposition of Ω. Every intermediate stop set
Γi

+ contains exactly one of the stop sets Σk. With respect to Σk we assume
that requirement 3.5 part 1 holds true. Part 2 of requirement 3.5 is assumed
to hold on all of Γi

+. Finally, for the transport field c restricted to Ωi, we
assume requirement 3.6 to be satisfied with Γi

− and Γi
+ instead of ∂Ω and

Σ.

That is all we have to assume so that we can apply the theory discussed in
chapter 3. In order to construct the global solution we proceed successively,
in ascending order of the intermediate stop times ck, from one component
of Ω to the next by stopping and restarting.
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Remark: a restart set Γi
− contains finitely many of the saddle points {zj}j.

The restart data, then, is a union of traces of previously computed par-
tial solutions. The traces, in turn, are defined on the connected C1-arcs of
Γi
−\
⋃

j{zj} and are BV-functions. Since the restart sets Γi
− are simple closed

C1-curves, the glued-together traces, by theorem 2.28, define a BV(Γi
−)-

function as restart data. Clearly, the restart data in general will have a
”new” jump per saddle point contained in Γi

−. Here, in particular, the BV-
framework proves useful to get well-defined restart data.

5.2 n-Connected Domains

The second extension concerns the connectivity of the domain. Let us start
with a simple example. Consider, as domain Ω, a circular ring centered
at the origin, Ω = BR+ρ(0)\BR−ρ(0), R > ρ > 0, together with the map
T : Ω→ [0, 1],

T(x) = 1− (|x| − R)2

ρ2 ,

as a time function. The level sets of T look as sketched in figure 5.12. In this

Figure 5.12: white: domain Ω, red: boundary ∂Ω = level set with T = 0 ,
black: level set with T = 5/9, blue: maximal level set, T = 1.

example our linear problem splits up into two for the two sub-domains Ω1

and Ω2

Ω1 = BR+ρ(0)\BR(0) , Γ1
− = ∂BR+ρ(0) , (5.1)

Ω2 = BR(0)\BR−ρ(0) , Γ2
− = ∂BR−ρ(0) , (5.2)

with corresponding start sets Γ1
−, Γ2

−. The common stop set is Σ = ∂BR(0).
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Here, the start sets are simple closed C1-curves while Σ is a stop set in the
sense of requirement 3.2. So, the linear theory gives us two partial solutions
u1 ∈ BV(Ω1) and u2 ∈ BV(Ω2), and finally we obtain the solution u ∈
BV(Ω),

u = 1Ω1 u1 + 1Ω2 u2 ,

by theorem 2.28, the glueing property of BV-functions. This idea of con-
struction also applies to other types of connectivity (see figure 5.13) and
can be combined with the extended concept of time function above (see
figure 5.14).

Figure 5.13: white: domain Ω, red: boundary ∂Ω = level T = 0 , blue:
maximal level set of T.

Figure 5.14: white: domain Ω, red: boundary ∂Ω = level T = 0 = start set,
green + dashed green: saddle set of T, green: restart set, dashed green: first
stop set, blue: maximal level set of T = second stop set.
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The only thing we have to assume in the case of an n-connected domain
Ω is that each of the n boundary curves, which ∂Ω is made of, is a simple
closed C1-curve.

So far, we have defined both extensions for the linear theory. In the quasi-
linear theory of chapter 4, we assumed that an admissible time function
with stop set is fixed in advance. Here, we also assume that a time function
of the extended concept is fixed once and for all. So, the decomposition
procedure for Ω, as described in section 5.1, can be performed in advance.
In order to apply the theory of chapter 4 to a quasi-linear problem now, we
just have to replace part 1 of the requirements 4.1 on transport fields by the
formulation: ”For fixed v ∈ L1(Ω), and for every component Ωi of Ω, the
function c[v], restricted onto Ωi, satisfies requirement 3.6 with Γi

− and Γi
+

instead of ∂Ω and Σ”.



Chapter 6

Image Inpainting Based on
Coherence Transport

The goal of this chapter is to obtain the well-posedness of the model behind
Inpainting Based on Coherence Transport (see [BM07]). First, we will review
this model and regularize it where necessary. In the second step, we will
attain its well-posedness by showing that it fits into the theory which we
developed in the previous chapters.

6.1 The Generic Algorithm and its Continuous For-
mulation

Our starting point is the discrete generic algorithm for gray tone images.
We assume that all gray tone images, seen as functions, take values in the
real interval [0, 1]. Here, we assume that gray tones are mapped onto [0, 1]
such that the natural order on the interval reflects the order of the shades
of gray by their brightness from black to white. Moreover, we will distin-
guish between discrete (digital) images defined on finite sets of pixels and
continuous (analog) images defined on open subsets of R2. The latter are
thought of as the high-resolution limit of the former. This distinction will
be indicated by using the index h for the discrete notions, while omitting
it for the corresponding continuous ones. Finally, we identify pixels with
their midpoints.

Notation:

a) Ω0,h is the image domain, the matrix of pixels for the final, restored im-
age uh : Ω0,h → [0, 1].

b) Ωh ⊂ Ω0,h is the inpainting domain whose values of uh have to be de-
termined.

123
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c) Ω0,h\Ωh is the data domain whose values of uh are given as uh|Ω0,h\Ωh
=

u0,h.

d) ∂Ωh ⊂ Ωh is the discrete boundary, i.e., the set of inpainting pixels that
have at least one neighbor in the data domain.

Continuous quantities are defined correspondingly. Finally, we define dis-
crete and continuous ε-neighborhoods by

Bε,h(x) := {y ∈ Ω0,h : |y− x| ≤ ε} , Bε(x) := {y ∈ Ω0 : |y− x| ≤ ε} .

Generic Algorithm: the basic idea is to fill the inpainting domain in a fixed
order, from its boundary inwards, by using weighted means of given or
already calculated image values.

We number the pixels of the inpainting domain according to the chosen
order, Ωh = {x1, x2, . . . , xN}, and call

B<
ε,h(xk) := Bε,h(xk)\{xk, . . . , xN} , k = 1, . . . , N,

the neighborhood of already inpainted pixels. Then, the algorithm reads as
follows:

uh|Ω0,h\Ωh
= u0,h ,

uh(xk) =

∑
y∈B<

ε,h(xk)
w(xk, y)u(y)

∑
y∈B<

ε,h(xk)
w(xk, y)

, k = 1, . . . , N.

(6.1)

Here, w(x, y) ≥ 0 are called the weights of the algorithm and we assume
that

∑
y∈B<

ε,h(x)
w(x, y) > 0 , x ∈ Ωh .

Order: in the generic algorithm, any order which orders the pixels from the
boundary inwards can be used. In the article [BM07] this degree of freedom
has been fixed by the distance-to-boundary order. That is, the euclidean
distance to the boundary d,

d(x) = dist(x, ∂Ω) , x ∈ Ω ,

or rather a discrete approximation dh,

dh(x) = disth(x, ∂Ωh) , x ∈ Ωh ,
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induces the order by

dh(xj) < dh(xk) ⇒ j < k .

In other words, the euclidean distance-to-boundary map d serves as time-
like function and this notion of time induces the order. Later on, we will
look at the problem from a continuous point of view by the high-resolution
limit h → 0. d will then play the role of time, if one uses the distance-to-
boundary order. Certainly, the distance-to-boundary map behaves time-
like, since it increases strictly into the interior of Ω, but the corresponding
field of normals N = ∇d is not smooth enough to apply the theory of
the previous chapters. A discussion of the difficulties, which appear when
using d, is postponed to section 6.4.

For the purpose of regularization we take the assumptions from the pre-
vious chapters: we require the continuous inpainting domain Ω to be a
domain and the order to be induced by a time function T : Ω → R with
stop set Σ. Then, for the discrete scenario, we mean by Th : Ωh → [0, 1]
the discretized time function, defined on the discretized inpainting domain
Ωh. The order of the pixels is, again, induced by the relation

Th(xj) < Th(xk) ⇒ j < k .

High-Resolution Limit: algorithm (6.1) can be thought of as a forward sub-
stitution of the equivalent system of linear equations

∑
y∈B<

ε,h(x)
(u(x)− u(y))w(x, y) = 0, x ∈ Ωh ,

uh|Ω0,h\Ωh
= u0,h .

Because of the definition of the neighborhoods B<
ε,h(x) the system is already

triangular with respect to the chosen order of pixels. Viewing the system of
equations as a discretization of a continuous integral equation we obtain,
at least formally, the high-resolution limit

1
πε2

∫
B<

ε (x)

(u(x)− u(y)) · w(x, y) dy = 0, x ∈ Ω ,

u|Ω0\Ω = u0 ,

(6.2)

as h → 0. The scale factor in front of the integral will turn out to be conve-
nient later on.

Because the order is induced by a time function, the sets B<
ε,h(x) are dis-

cretizations of the truncated disks

B<
ε (x) = {y ∈ Bε(x) : T(y) < T(x)} .
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Hereby, we extend the time function T onto the data domain by setting

T(x) = −dist(x, ∂Ω) , x ∈ Ω0\Ω .

Vanishing Viscosity Limit: the integral equation (6.2) combines directional
effects, due to the truncation of the disks and the anisotropic choice of
weights, with diffusion caused by the averaging. The amount of viscosity
is determined by the radius ε, and in order to distil the directional effects
we study the vanishing viscosity limit ε→ 0 for a particular class of weight
functions.

Theorem 6.1. (Vanishing viscosity limit)
Let T : Ω→ R be a time function with stop set Σ. Let u ∈ C1(Ω\Σ).

For weights of the form

w(x, y) =
1

|x− y| k
(

x, (x− y) · ε−1
)

with k : Ω\Σ× B1(0)→ R+
0 uniformly bounded, we have, as ε→ 0,

1
πε2

∫
B<

ε (x)

(u(x)− u(y)) · w(x, y) dy = 〈c∗(x),∇u(x)〉+O(ε) ,

for every x ∈ Ω\Σ.

For fixed x we express c∗(x) by using polar coordinates with respect to the field
of normals N(x). Let the matrix Q(x) :=

(
N(x)|N⊥(x)

)
and let e(ϕ) :=

(cos ϕ, sin ϕ)T. Then,

c∗(x) =
1
π

Q(x) ·
π/2∫
−π/2

k∗ (x, Q(x) · e(ϕ)) e(ϕ) dϕ

with k∗(x, η) :=
1∫

0

k(x, r η) r dr .

Proof.

Fix x ∈ Ω\Σ and define the semi-disk

Sε,N(x)(x) := {y ∈ Bε(x) : 〈N(x), (x− y)〉 ≥ 0} .

By construction the inner boundaries of Sε,N(x) and B<
ε (x) touch each other

tangentially in x, while B<
ε (x) becomes Sε,N(x) asymptotically as ε → 0.

Hence, the area of the symmetric difference of these two sets is of the order
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O(ε3). Since u is assumed to be continuously differentiable in x, we obtain
that

u(x)− u(y)
|x− y| =

〈
x− y
|x− y| ,∇u(x)

〉
+O(ε) , y ∈ Bε(x) ,

which implies, moreover, the boundedness of the expression. By using
these approximations, we obtain

1
πε2

∫
B<

ε (x)

(u(x)− u(y)) · w(x, y) dy

=
1

πε2

∫
Sε,N(x)(x)

u(x)− u(y)
|x− y| k

(
x, (x− y) · ε−1

)
dy +O(ε)

=
1

πε2

∫
Sε,N(x)(x)

〈
x− y
|x− y| ,∇u(x)

〉
k
(

x, (x− y) · ε−1
)

dy +O(ε)

=
1
π

∫
S1,N(x)(0)

〈
−y
| − y| ,∇u(x)

〉
k (x,−y) dy +O(ε)

=

〈
1
π

∫
S1,N(x)(0)

k (x,−y)
−y
| − y| dy,∇u(x)

〉
+O(ε) .

From the last equality, we read

c∗(x) =
1
π

∫
S1,N(x)(0)

k (x,−y)
−y
| − y| dy .

Now, we introduce polar coordinates on the semi-disk S1,N(x)(0) by

y = r ·Q(x) · e(ϕ) (r, ϕ) ∈ [0, 1]× [π/2, 3π/2] ,
−y = r ·Q(x) · e(ϕ) (r, ϕ) ∈ [0, 1]× [−π/2, π/2] ,

and get

c∗(x) =
1
π

π/2∫
−π/2

1∫
0

k (x, r ·Q(x) · e(ϕ)) Q(x) · e(ϕ) r dr dϕ

=
1
π

Q(x) ·
π/2∫
−π/2

 1∫
0

k (x, r ·Q(x) · e(ϕ)) r dr

 e(ϕ) dϕ

=
1
π

Q(x) ·
π/2∫
−π/2

k∗ (x, Q(x) · e(ϕ)) e(ϕ) dϕ .
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By theorem 6.1 the limiting linear inpainting equation then is

〈c∗(x),∇u(x)〉 = 0 , in Ω\Σ
u|∂Ω = u0|∂Ω .

We have seen in chapter 3, assuming that c(x) = c∗(x)/|c∗(x)| satisfies the
requirements 3.6, that we will get jump discontinuities at Σ, even if u0|∂Ω is
bounded and smooth. Thus, the second step of regularization is to go over
to the BV-formulation

〈c(x), Du〉 = 0 , in Ω\Σ
u|∂Ω = u0|∂Ω ,

(6.3)

which in turn allows for less regular boundary data. Here, in the continu-
ous inpainting scenario of equation (6.3) we assume that the given data u0
belongs to BV(Ω0\Ω) and that the BV-trace u0|∂Ω (”trace from outside Ω”)
belongs to BV(∂Ω).

In the following sections we will study weight functions which have the
form required in theorem 6.1. Therefor, in the next theorem we summa-
rize sufficient conditions on the kernel k such that the transport field of the
inpainting equation meets the assumptions of requirement 3.6.

Theorem 6.2.
Let T : Ω → R be a time function with stop set Σ. Let the kernel k : Ω\Σ ×
B1(0)→ R+

0 of theorem 6.1 satisfy:

a) uniform bounds:

0 < γ1 ≤ k(x, η) ≤ γ2 , ∀ (x, η) ∈ Ω\Σ× B1(0) ,

b) k is continuously differentiable with bounded derivative,

c) for every fixed η ∈ B1(0) the functions k( . , η), Dxk( . , η), and Dηk( . , η)
extend onto the boundary ∂Ω and have one-sided extensions onto the relatively
open components Σ̊k of Σ.

Then,

|c∗(x)| ≥ γ1

π
, x ∈ Ω\Σ ,

and the, hence well-defined, transport field c(x) = c∗(x)/|c∗(x)| satisfies the
requirements 3.6.
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Proof.

Let x ∈ Ω\Σ. By the representation of c∗(x) we have

〈c∗(x), N(x)〉 =

〈
1
π

Q(x) ·
π/2∫
−π/2

k∗ (x, Q(x) · e(ϕ)) e(ϕ) dϕ, N(x)

〉

=
1
π

π/2∫
−π/2

k∗ (x, Q(x) · e(ϕ)) cos(ϕ) dϕ .

The definition of k∗, and the lower bound on k yield the estimate

k∗(x, Q(x) · e(ϕ)) :=
1∫

0

k(x, r Q(x) · e(ϕ)) r dr ≥ γ1

2
.

Hence, we obtain

|c∗(x)| ≥ 〈c∗(x), N(x)〉 ≥ γ1

2π

π/2∫
−π/2

cos(ϕ) dϕ ≥ γ1

π
.

By the same argumentation each component w.r.t. the orthonormal basis
N(x), N(x)⊥ is bounded above by γ2/π, which implies

|c∗(x)| ≤
√

2γ2

π
.

Thus, we obtain the inward-pointing condition

〈c(x), N(x)〉 =
〈c∗(x), N(x)〉
|c∗(x)| ≥ γ1√

2γ2
=: β > 0 .

By the differentiability properties of the kernel k we have c∗ ∈ C1(Ω\Σ).
What remains is the extendability of the vector field and its derivative. By
definition, k∗ has already the same properties a), b), and c) as the kernel k.
With η(x, ϕ) = Q(x) · e(ϕ) we write

c∗(x) =
1
π

π/2∫
−π/2

k∗(x, η(x, ϕ))η(x, ϕ) dϕ .

Then, the derivative of c∗ is given by

Dxc∗(x) =
1
π

π/2∫
−π/2

ηDxk∗(x, η) + ηDηk∗(x, η)Dxη + k∗(x, η)Dxη dϕ .
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Moreover, by
Dxη = (DxQ)e = (DxQ)QTη ,

we get

Dxc∗(x) =
1
π

π/2∫
−π/2

ηDxk∗(x, η) + ηDηk∗(x, η)(DxQ)QTη

+ k∗(x, η)(DxQ)QTη dϕ .

(6.4)

Let now θ(x) ∈ [0, 2π[ be the angle of N(x) w.r.t. the standard basis e1, e2,
i.e., N(x) = e(θ(x)). We then use

e(ϕ) , ϕ ∈ [θ(x)− π/2, θ(x) + π/2]

in the integrals instead of

η(x, ϕ) = Q(x) · e(ϕ) , ϕ ∈ [−π/2, +π/2] .

Hence, on the one hand, we obtain

c∗(x) =
1
π

θ(x)+π/2∫
θ(x)−π/2

k∗(x, e(ϕ))e(ϕ) dϕ

and on the other

Dxc∗(x) =
1
π

θ(x)+π/2∫
θ(x)−π/2

eDxk∗(x, e) + eDηk∗(x, e)(DxQ)QTe

+ k∗(x, e)(DxQ)QTe dϕ .

By the extendability of the kernel k and its derivative according to c), to-
gether with their upper bounds, the extendability of c∗ and Dc∗ follows
from the above representations by dominated convergence. Now we have
shown parts 1 and 2 of requirement 3.6. For part 3 let us consider the rep-
resentation by equation (6.4) again. The matrix (DxQ)QTη writes out as

(DxQ)QTη = (DxQ)e(ϕ) = cos(ϕ)Dx N + sin(ϕ)Dx N⊥ ,

and thus, we obtain the following estimate of its norm:

|(DxQ)QTη| ≤
√

2|Dx N| .

Consequently, if M denotes the upper bound on the derivative of k, we get

|Dxc∗(x)| ≤ M +
√

2M|Dx N(x)|+
√

2γ2|Dx N(x)| .
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Hence, |Dxc∗| belongs to L1(Ω), since |Dx N| does. Moreover, there is a
uniform bound of |Dxc∗| on Ω\Vε as required in part 3a), since |Dx N| has
such a uniform bound on Ω\Vε.

Finally, we write the derivative of c = c∗/|c∗| as

Dxc(x) =
1

|c∗(x)|

(
I − c(x) · c(x)T

)
· Dxc∗(x) .

By the features of c∗ and Dxc∗, shown above, we infer that the transport
field c satisfies requirement 3.6.

In the situation of the last theorem our theory of the linear problem, accord-
ing to chapter 3, ensures the existence of a unique solution u ∈ BV(Ω) of
the linear inpainting equation (6.3).
Within the continuous model we always distinguish between the fill-in u,
which is defined on the inpainting domain Ω, and the completed image ū

ū = 1Ω0\Ω · u0 + 1Ω · u ,

which is defined on the full image domain Ω0.
By theorem 2.28 the completed image ū belongs to BV(Ω0) with derivative
measure

Dū = Du0 (Ω0\Ω) + Du Ω .

There are no jumps across ∂Ω.

6.2 Two Linear Models

In this section we present two linear models which we obtain from partic-
ular choices of the kernel k of theorem 6.1.

6.2.1 Transport Along Normals

The point of departure of the paper [BM07] was the article of Telea [Tel04],
in which the author suggested to perform the generic algorithm with the
weight

w(x, y) =
| 〈N(x), (x− y)〉 |

|x− y|2 . (6.5)

In view of theorem 6.1, the kernel k is

k(x, η) =
| 〈N(x), η〉 |
|η| .
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And, the vanishing viscosity limit results in a transport field c = c∗/|c∗|
equal to the normal,

c(x) = N(x) ,

(see [BM07] part b) of theorem 1). With c ≡ N the theory of chapter 3
applies, even though the kernel does not satisfy all of the assumptions of
theorem 6.2.

In practice there are many examples of inpainting domains where the dis-
tance-to-boundary map or a distance-to-boundary related time function (to
stay within requirement 3.4) induces a reasonable order to perform the
generic algorithm. But then, when using the weight (6.5), the realized trans-
port field N only or mainly depends on the geometry of the domain Ω and
is not or little adapted to the image.
The next choice of a weight function allows for the practical realization of
arbitrary transport fields. This advantage will be used later in section 6.3
in order to adapt the weight to the image.

6.2.2 Guided Transport

Let g ∈ C1(Ω\Σ, S1) be a normed vector field. We assume that g and its
derivative ∇g both extend one-sided onto Σ and ∂Ω, and that both ‖g‖∞
and ‖∇g‖∞ exist. Then, the one-parameter family of kernels

kµ(x, η) =
√

π

2
µ exp

(
−µ2

2

〈
g⊥(x), η

〉2
)

satisfies all assumptions of theorem 6.2 with the uniform bounds√
π

2
µ exp

(
−µ2

2

)
≤ kµ(x, η) ≤

√
π

2
µ , ∀ (x, η) ∈ Ω\Σ× B1(0) .

Hence, by the vanishing-viscosity limit every resulting field cµ is an admis-
sible transport field with

〈
cµ(x), N(x)

〉
≥

exp
(
− µ2

2

)
√

2
=: βµ , ∀ x ∈ Ω\Σ.

In [BM07] (theorem 2) we proved an asymptotic expansion of cµ(x), w.r.t.
µ→ ∞, which implies the following limit behavior

lim
µ→∞

cµ(x) =


g(x) , 〈g(x), N(x)〉 > 0
−g(x) , 〈g(x), N(x)〉 < 0
N(x) , 〈g(x), N(x)〉 = 0

.
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Figure 6.1: Deviation angle ∆µ: blue: µ = 5, green: µ = 10, red: µ = 100.

The change of sign happens, because cµ, by theorem 6.2 , always points
inwards. So, in the limit µ→ ∞, the transport field equals±g wherever±g
points inwards. Otherwise, it breaks down to N, a vector which naturally
points inwards.

For fixed µ > 0 we denote by θ(x) = ∠(g(x), N(x)) ∈ [0, π], cos θ(x) =
〈g(x), N(x)〉, the angle between g(x) and N(x). Theorem 2 of [BM07] states
furthermore that the deviation angle between g(x) and cµ(x) is of the form

∠(g(x), cµ(x)) = ∆µ ( θ(x) )

with a continuous function ∆µ : [0, π] → [0, π]. And ∆µ inherits its limit
behavior from cµ:

lim
µ→∞

∆µ ( θ(x) ) =


0 , θ(x) < π

2

π , θ(x) > π
2

π
2 , θ(x) = π

2

.

Figure 6.1 shows graphs of ∆µ for different values of µ. Here, we can see
that if µ > 0 is set to a large value, then cµ(x) approximates ±g(x) very
well (∆µ ≈ 0 or ∆µ ≈ π), when θ(x) is bounded away from π/2, and
continuously fades to N(x), when θ(x) comes close to π/2. Moreover, if
θ(x) = π/2 , respectively 〈g(x), N(x)〉 = 0, then cµ(x) = N(x) for every
µ > 0.
For fixed µ > 0 the transport along cµ is not, of course, a transport exactly
along ±g, but the transport is guided by ±g. For this reason the field g is
called guidance field.
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Non-normed Guidance Fields: in the case of a non-normed guidance field g
we can use g(x)/|g(x)| in the kernel kµ whenever |g(x)| 6= 0. Otherwise,
if |g(x)| = 0, we are in an undefined situation. But |g(x)| = 0 means a
special case of 〈g(x), N(x)〉 = 0, and so in this case, the transport vector
cµ(x) shall equal N(x). For this purpose we introduce a confidence factor
α̂ : Ω\Σ→ R+

0 ,
α̂(x) = α( q(x) ) ,

as a function of a quality measure q : Ω\Σ → R+
0 . In general, the quality

value q(x) ≥ 0 shall measure if the vector g(x) defines a direction. More-
over, q shall be as smooth as g. Here, q(x) = |g(x)|2 is a reasonable choice,
but others are possible (see the next section).

The function α : R+ → R+, which translates the quality- into the confi-
dence measure, is assumed to have the following properties:

• α ∈ C2(R+, R+) ,

• α is strictly increasing,

• α bounded by α ≤ 1,

• α′ bounded,

• lim
t→0+

α(t) = 0, lim
t→0+

α′(t) = 0, and lim
t→0+

α′′(t) exists.

For a concrete realization of α we will always refer to

α(t) = exp
(
−1

t

)
, (6.6)

because this choice of α experimentally proved to be good (see [BM07]).

Typically, a quality value q is judged relatively to some reference value δ >
0, i.e., q/δ is the interesting number. Here, we carry over the reference value
δ > 0 to αδ,

αδ(t) = α

(
t
δ

)
, δ > 0 . (6.7)

So, α determines the basic shape of the functions belonging to the family
{αδ}δ>0 .

The family of integral kernels with confidence factor is then given by

kµ(x, η) =
√

π

2
µ exp

(
−µ2

2
· α̂(x) ·

〈
g⊥(x)
|g(x)| , η

〉2)
.

If, now, the confidence measure α̂ becomes zero at some x, the kernel breaks
down to

kµ(x, η) =
√

π

2
µ ,
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and by theorem 6.1 we obtain cµ,∗(x) = (µ/
√

2π)N(x), i.e., cµ(x) = N(x)
as desired. While, if 0 < α̂(x) � 1, the value α̂(x) damps the effect of the
parameter µ. Thus, if µ � 0, but 0 < α̂(x) � 1, the guidance effect of
±g(x)/|g(x)| on cµ(x) is not that pronounced.

Guidance Tensor: for the analysis it is more appropriate to wrap the guidance
information in a guidance tensor G(x) ∈ R2×2. In this case the kernel kµ

looks like

kµ(x, η) =
√

π

2
µ exp

(
−µ2

2
ηT · G(x) · η

)
.

For a given guidance vector g(x) the guidance tensor is simply the matrix

G(x) =

{
α(q(x)) · g⊥(x)·g⊥(x)T

|g(x)|2 , q(x) > 0

0 , q(x) = 0
.

In order to stay within the assumptions of theorem 6.2 α is required to be-
have such that the singular case, q(x) = 0, is a continuously differentiable
extension of the regular case, q(x) > 0.

6.3 A Quasi-Linear Model

The quasi-linear model of this section is based on the idea of guided trans-
port. So far, for the linear variant of guided transport, the guidance infor-
mation had to be completely specified in advance, which, in general, is a
difficult task. Instead, we now calculate, on the fly, the desired guidance
information from the actually known image. This approach will effect the
guidance tensor to become a functional of the image function.

6.3.1 Guidance by Coherence Information

We start out by retrieving reasonable guidance information from the image.
The basic idea, that almost all geometry based inpainting models have in
common, is to try to close broken level lines of the damaged image. In or-
der to be able do so we have to analyze the image structure. More precisely,
we have to estimate the current course of a level line. That means, at every
point x ∈ Ω we estimate an approximate tangent vector to the level line
which the point x belongs to. A very robust estimator for coherence (=ap-
proximate tangent) information is the so-called structure tensor. In the next
step we introduce its concept for C1-functions, following [AMS+06]. Then,
later on, when we will have found the approximate tangent, for guidance,
we will plug it into the integral kernel of the guided transport model.
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Structure Tensor: let the image v : Ω0 → R be a C1-function. Roughly
speaking, an approximate tangent is a vector g(x) ∈ R2 which satisfies

〈∇v(y), g(x)〉 ≈ 0 , |g(x)| = 1,

in a neighborhood U(x) of the point x. More precisely, we reformulate this
characterization as a weighted least squares problem

g(x) = arg min
h∈R2,
|h|=1

∫
U(x)

K(x− y) 〈∇v(y), h〉2 dy ,

using a non-negative kernel K with
∫

U(x) K(x − y)dy = 1. The so-called
structure tensor S(x) ∈ R2×2, then, arises naturally from the equivalent
formulation

g(x) = arg min
|h|=1

hTS(x)h , S(x) =
∫

U(x)

K(x− y)∇v(y) · ∇v(y)Tdy .

By construction the structure tensor S(x) is a symmetric positive semi-
definite 2× 2-matrix. Hence, an instance of g(x) is a normed eigenvector
with respect to the minimal eigenvalue of S(x).

Note that g is not unique. If S 6= λ · I the coherence information we obtain
is an orientation ±g, which we refer to by its projector P0 = g · gT from the
unique spectral decomposition

S = λ0 P0 + λ1 P1 = λ0 g · gT + λ1 g⊥ · g⊥T ,
I = P0 + P1 ,

(6.8)

where
0 ≤ λ0 < λ1

denote the eigenvalues of S(x). In the case of S = λ · I, the projectors
P0, P1 are not uniquely defined and hence the orientations ±g , ±g⊥ are
meaningless. A reasonable quality measure should, of course, detect this
singular case. So, in order to measure the quality of the projectors or the
corresponding orientations we use the so-called coherence measure

q = (λ1 − λ0)2 ,

which becomes zero in the singular case S = λ · I.

Remarks on the structure tensor concept:

a) The above coherence orientation is exactly the tangent’s orientation, for
example, if the restriction

v|U(x)(y) = f (〈k, y〉) , f ∈ C1(R) , k 6= 0 ,



6.3 A Quasi-Linear Model 137

of v is a planar wave. On the one hand, with ∇v(y) = f ′(〈k, y〉)k, we
obtain

S(x) = λ1(x) · P1 = λ1(x) · k · kT

|k|2 ,

λ1(x) =
∫

U(x)

K(x− y) f ′(〈k, y〉)2 dy · |k|2 ,

and, hence, g(x) = ±k⊥/|k|. On the other hand, the level line through
x is orthogonal to the wave vector k, thus its orientation is ±k⊥/|k|.

b) If the integral kernel K, used for the set up of S, is a Dirac-kernel, then

S(x) = |∇v(x)|2∇v(x) · ∇v(x)T

|∇v(x)|2 .

In this case we have q(x) = |∇v(x)|4 and get g(x) = ±∇v(x)⊥/|∇v(x)|
if q(x) 6= 0.

c) If the given function v is not C1, one typically applies the above concept
to a smoothed version of v (see the next section).

Guidance Tensor: based on the coherence information, we set up the guid-
ance tensor by

G(x) =

{
α( q(x) ) · P1(x) , q(x) > 0
0 , q(x) = 0

. (6.9)

If q(x) > 0, the approximate tangent±g, which we want to use as guidance
vector, is defined. Therefor, the projector which has to be used in the guid-
ance tensor is exactly P1(x). In addition, the guidance tensor is controlled
by the quality of the coherence information.

Finally, solving the spectral decomposition of S (equations (6.8)) for the
projector P1, we can set G up directly, without calculating eigenvectors:

G(x) =


α( q(x) )√

q(x)
· (S(x)− λ0 I) , q(x) > 0

0 , q(x) = 0
. (6.10)

By the construction above, the guidance tensor G[v] is a functional of v,
since the structure tensor S[v] is, too. By plugging G[v] into the kernel of
guided transport, we obtain

kµ[v](x, η) =
√

π

2
µ exp

(
−µ2

2
ηT · G[v](x) · η

)
. (6.11)
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The vanishing viscosity limit of theorem 6.1 plus normalization yields the
corresponding transport field cµ[v], which now depends on the function /
image v.

The quasi-linear model, called Inpainting Based on Coherence Transport, is
given by 〈

cµ[ū](x), Du
〉

= 0 , in Ω\Σ ,
u|∂Ω = u0|∂Ω ,

ū = u0 · 1Ω0\Ω + u · 1Ω .
(6.12)

The transport, which inpaints the image, is now guided by coherence in-
formation.

6.3.2 Structure Tensor with Volterra-Type Dependence

The goal of this section is two-fold. On the one hand, the structure tensor
S[v](x) should have the functional dependence on v of Volterra-type w.r.t.
the time function T. The reasoning behind this is that we want to retrieve
coherence information, at some given point x ∈ Ω, only from the actually
known part of the image. On the other hand, we need continuity and/or
differentiability properties of S w.r.t. both arguments, x and v. In order to
achieve both we have to choose the kernels K, for setting up S, carefully.

Throughout this section we assume that the time function T belongs to
C1(Ω), and we extend the time function onto Ω0\Ω again by

T(x) = −dist(x, ∂Ω) , x ∈ Ω0\Ω .

The generic integral kernel K : R2 → R, which will be used later for the set
up of the structure tensor, is characterized by the following properties:

a) smoothness: K ∈ C∞(R2),

b) non-negativity: K ≥ 0,

c) unit mass:
∫

R2

K(y) dy = 1,

d) radial symmetry: ∂ϕK(r · e(ϕ)) ≡ 0,

e) r ∈]0, ∞[→ K(r · e(ϕ)) decreases strictly on its support.

For a concrete realization of K, we will always refer to

K(y) =
1

2π
exp

(
−|y|

2

2

)
,
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a Gaussian kernel.

In order to retrieve coherence information at different scales we will use a
family of kernels {Kt}t>0, generated by K,

Kt(y) =
1
t2 K

(y
t

)
, t > 0 .

This family inherits all properties of K.
A sound introduction to scale space theory would go beyond the scope
of this text. For dealing with the latter subject the reader is referred to
[AGLM93]. For the purpose of scales in the context of the structure tensor
see [Wei98].

Let the function v of mapping type v : Ω0 → R. In order to get the depen-
dence on v of Volterra-type we restrict the structure tensor’s integral to the
set Ω(x), for fixed x ∈ Ω,

Ω(x) = {h ∈ Ω0 : T(h) < T(x)} , with 1Ω(x)(h) = H(T(x)− T(h)) .

Here H : R→ R,

H(t) :=

{
0 , t < 0
1 , 0 ≤ t

,

denotes the Heaviside function.

For the fixed choice of the parameter t = ρ the structure tensor is given by

S[v](x) =

∫
Ω0

Kρ(x− y) · 1Ω(x)(y) · ∇v(y) · ∇v(y)T dy∫
Ω0

Kρ(x− y) · 1Ω(x)(y) dy
. (6.13)

Two difficulties appear here: for the framework of chapter 4, we have to

1. assume, that S is C1 w.r.t. the variable x,

2. apply S to functions v belonging to L1(Ω0) or BV(Ω0) which, in turn,
makes it necessary to smooth v before plugging it into S.

By the way, in practice, the need for smoothing operations is often caused
by the given data being noisy.

To fight the first difficulty, we take a C1-approximation 1a
Ω(x) of 1Ω(x),

1a
Ω(h) = Ha(T(x)− T(h)) ,
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obtained by some C1-approximation Ha of the Heaviside function. Let H̃ ∈
C1(R), with

H̃(t) =


0 , t < 0
strictly increasing , 0 ≤ t < 1
1 , 1 ≤ t

.

Then, we use the family

Ha(t) = H̃
(

t
a

)
, a > 0

as C1-approximations Ha of the Heaviside function. For example, one could
use

H̃(t) =


0 , t < 0
2t2 , 0 ≤ t < 1

2

2t2 − (2t− 1)2 , 1
2 ≤ t < 1

1 , 1 ≤ t

.

And, to fight the second difficulty, we define the smoothing operator φt[v]
for functions v ∈ L1(Ω0),

φt[v](y) =
∫

Ω0

Kt(y− h) v(h) dh , y ∈ Ω0 .

For a fixed choice of a > 0 and σ > 0, we set

v̂(y) =
φσ[1a

Ω(x) · v](y)

φσ[1a
Ω(x)](y)

=

∫
Ω0

Kσ(y− h) · 1a
Ω(x)(h) · v(h) dh∫

Ω0

Kσ(y− h) · 1a
Ω(x)(h) dh

. (6.14)

By this construction, we make sure that v̂(y) is smooth but depends only
on the data v|Ω(x). Later on, v̂ together with 1a

Ω(x), instead of v and 1Ω(x),
will enter the set up of S according to equation (6.13).

The next lemma collects the features of expression (6.14) as a function of y
and x.

Lemma 6.3.

1. Let f1 : Ω0 ×Ω→ R be defined by

f1(y, x) := φσ[1a
Ω(x) · v](y) =

∫
Ω0

Kσ(y− h) · Ha(T(x)− T(h)) · v(h) dh .

Then, f1 has the properties:
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a) f1 is continuous and bounded: | f1(y, x)| ≤ ‖Kσ‖∞ · ‖v‖L1(Ω0).

b) f1 has a continuous and bounded y-derivative:

∇y f1(y, x) =
∫

Ω0

∇Kσ(y− h) · Ha(T(x)− T(h)) · v(h) dh

|∇y f1(y, x)| ≤ ‖∇Kσ‖∞ · ‖v‖L1(Ω0) .

c) f1 has a continuous and bounded x-derivative:

∇x f1(y, x) =
∫

Ω0

Kσ(y− h) · H′a(T(x)− T(h)) · ∇T(x) · v(h) dh

|∇x f1(y, x)| ≤ ‖Kσ‖∞ · ‖H′a‖∞ · ‖∇T‖∞ · ‖v‖L1(Ω0) .

d) f1 has a continuous and bounded mixed derivative:

∇x∇y f1(y, x) =∫
Ω0

∇Kσ(y− h) · H′a(T(x)− T(h)) · ∇T(x)T · v(h) dh

|∇x∇y f1(y, x)| ≤ ‖∇Kσ‖∞ · ‖H′a‖∞ · ‖∇T‖∞ · ‖v‖L1(Ω0) .

2. Let f2 : Ω0 ×Ω→ R be defined by

f2(y, x) := φσ[1a
Ω(x)](y) =

∫
Ω0

Kσ(y− h) · Ha(T(x)− T(h)) dh .

Then, f2 has the properties:

a) f2 has the same continuity and differentiability properties as f1.

b) f2 satisfies bounds analogous to f1. ‖v‖L1(Ω0) has just to be substituted
by ‖1Ω0‖L1(Ω0) = L2(Ω0).

c) For y ∈ Ω(x), f2 is bounded below by f2 > mσ, with

mσ = min
y∈Ω

∫
Ω0

Kσ(y− h) 1a
Ω(y)(h) dh .

3. Let

f3(y, x) :=
φσ[1a

Ω(x) · v](y)

φσ[1a
Ω(x)](y)

=
f1(y, x)
f2(y, x)

.

Then, f3 has the properties:

a) f3 is well-defined for x ∈ Ω and y ∈ Ω(x).
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b) f3 is continuous and bounded: | f3(y, x)| ≤ C1 · ‖v‖L1(Ω0).
c) f3 has a continuous and bounded y-derivative: |∇y f3(y, x)| ≤ C2 ·
‖v‖L1(Ω0).

d) f3 has a continuous and bounded mixed derivative: |∇x∇y f3(y, x)| ≤
C3 · ‖v‖L1(Ω0).

Proof.

1. These statements are true by construction.

2. The statements a) and b) follow from part 1 by setting v = 1Ω0 .
Ad c): if y ∈ Ω(x), then

f2(x, y) =
∫

Ω0

Kσ(y− h) 1a
Ω(x)(h) dh ≥ min

y∈χT=T(x)

∫
Ω0

Kσ(y− h) 1a
Ω(x)(h) dh.

The last inequality is true, because the biggest cut-offs happen, look-
ing at the shape of the kernel Kσ(y− .), when y belongs to the level
set χT=T(x). Consequently, with 1a

Ω(x)(h) = 1a
Ω(y)(h) in the case of

T(y) = T(x), we get

f2(x, y) ≥ min
y∈χT=T(x)

∫
Ω0

Kσ(y− h) 1a
Ω(y)(h) dh

≥ min
y∈Ω

∫
Ω0

Kσ(y− h) 1a
Ω(y)(h) dh = mσ.

3. The statements are consequences of parts 1 and 2 put together. By
2c), f3 is well-defined for x ∈ Ω and y ∈ Ω(x). f3 is continuously dif-
ferentiable as stated, since f1 and f2 are. After applying the quotient
rule, the bounds on f3 exist and are of the stated form, whereas the
constants Ci are combinations of the bounds on f2 and of the prefac-
tors, regarding the bounds on f1, in front of ‖v‖L1(Ω0).

The function f3( . , x), from lemma 6.3, equals v̂ from equation (6.14). By
plugging f3( . , x) and 1a

Ω(x) into equation (6.13) the structure tensor is

S(x) =

∫
Ω0

Kρ(x− y) · 1a
Ω(x)(y) · ∇y f3(y, x) · ∇y f3(y, x)T dy∫

Ω0

Kρ(x− y) · 1a
Ω(x)(y) dy

.

The next lemma collects the features of S as a function of x.
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Lemma 6.4.

1. Let f4 : Ω→ R2×2 be defined by

f4(x) :=
∫

Ω0

Kρ(x− y) · 1a
Ω(x)(y) · ∇y f3(y, x) · ∇y f3(y, x)T dy .

Then, f4 has the properties:

a) f4 is well-defined.

b) f4 is continuous and bounded: | f4(x)| ≤ C4‖v‖2
L1(Ω0)

.

c) f4 has a continuous and bounded derivative: |D f4(x)| ≤ C5‖v‖2
L1(Ω0)

.

2. Let f5 : Ω→ R2×2 be defined by

f5(x) :=
∫

Ω0

Kρ(x− y) · 1a
Ω(x)(y) dy .

Then, f5 has the properties:

a) f5 is continuous and bounded: | f5(x)| ≤ 1.

b) f5 has a continuous and bounded derivative:

|∇ f4(x)| ≤ ‖∇Kρ‖∞ · L2(Ω0) .

c) f5 is bounded below: f5(x) ≥ mρ > 0.

3. Let S : Ω→ R2×2 be defined by

S(x) :=
f4(x)
f5(x)

.

a) S is continuous and bounded: |S(x)| ≤ C6‖v‖2
L1(Ω0)

.

b) S has a continuous and bounded derivative:|DS(x)| ≤ C7‖v‖2
L1(Ω0)

.

Proof.

1. f4 is well-defined, because the domain of integration is restricted to
the set Ω(x), where∇y f3(y, x) is defined according to part 3 of lemma
6.3. By the construction of f4 and lemma 6.3 f4 is continuously differ-
entiable. The bound on | f4(x)|, obtained by

| f4(x)| ≤
∫

Ω0

Kρ(x− y) dy · ‖∇y f3( . , x)‖2
L∞(Ω(x)) ≤ C2

2 · ‖v‖2
L1(Ω0)

,
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is a consequence of part 3c) of lemma 6.3. So, C4 = C2
2 .

Let h ∈ ∂B1(0) be arbitrary but fixed. Then, the product f4(x) · h
belongs to ∈ R2 with

f4(x) · h =
∫

Ω0

Kρ(x− y) · 1a
Ω(x)(y) · ∇y f3(y, x) ·

〈
∇y f3(y, x), h

〉
dy .

Consequently, the derivative D( f4(x) · h) = D f4(x) · h ∈ R2×2 is
given by

D( f4(x) · h) =
∫

Ω0

1a
Ω(x)(y) ·

〈
∇y f3(y, x), h

〉
· ∇y f3(y, x) · ∇Kρ(x− y)T

+ Kρ(x− y) · H′a(T(x)− T(y)) ·
〈
∇y f3(y, x), h

〉
· ∇y f3(y, x) · ∇T(x)T

+ Kρ(x− y) · 1a
Ω(x)(y) · ∇y f3(y, x) · hT · ∇x∇y f3(y, x)

+ Kρ(x− y) · 1a
Ω(x)(y) ·

〈
∇y f3(y, x), h

〉
· ∇x∇y f3(y, x) dy .

We then estimate

|D( f4(x) · h)| ≤ ‖∇Kρ‖∞ · ‖∇y f3(., x)‖2
L∞(Ω(x)) · L

2(Ω) · |h|

+ ‖H′a‖∞ · ‖∇T‖∞ · ‖∇y f3(., x)‖2
L∞(Ω(x)) · |h|

+ 2 · ‖∇y f3(., x)‖L∞(Ω(x)) · ‖∇x∇y f3(., x)‖L∞(Ω(x)) · |h| .

Using the results of part 3 of lemma 6.3 again and the fact that |h| = 1,
we obtain the stated bound

|D( f4(x) · h)| ≤ ‖∇Kρ‖∞ · L2(Ω) · C2
2 · ‖v‖2

L1(Ω0)

+ ‖H′a‖∞ · ‖∇T‖∞ · C2
2 · ‖v‖2

L1(Ω0)
+ 2 · C2 · C3 · ‖v‖2

L1(Ω0)

=: C5‖v‖2
L1(Ω0)

.

The final step is:

|D f4(x)| = max
|h|=1
|D( f4(x) · h)| ≤ C5‖v‖2

L1(Ω0)
.

2. Considering f2, defined in lemma 6.3, with the parameter σ replaced
by ρ, we get

f5(x) = f2(x, x)|σ:=ρ .

So, the statements are direct consequences of part 2 of lemma 6.3.

3. By the definition of S the results of parts 1 and 2 put together yield
the statements of part 3.
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In the next step we consider the structure tensor

S : L1(Ω0)→ C(Ω)2×2

as functional of v ∈ L1(Ω0) and deduce continuity properties.

Lemma 6.5.

1. Let f1 be as in lemma 6.3,

f1 : L1(Ω0)→ C(Ω0 ×Ω) ,

f1[v](y, x) =
∫

Ω0

Kσ(y− h) · Ha(T(x)− T(h)) · v(h) dh ,

but now regarded as a functional. In the same way we regard the y-derivative
∇y f1[v] as a functional.

∇y f1 : L1(Ω0)→ C(Ω0 ×Ω)2 ,

∇y f1[v](y, x) =
∫

Ω0

∇Kσ(y− h) · Ha(T(x)− T(h)) · v(h) dh .

Then, we have:

a) f1 is a bounded linear functional.

b) ∇y f1 is a bounded linear functional.

2. Let f3 be as in lemma 6.3,

f3 : L1(Ω0)→ C(Ω(x)×Ω) ,

f3[v](y, x) :=
f1[v](y, x)

f2(y, x)
,

but now regarded as a functional. In the same way we regard the y-derivative
∇y f3[v] as a functional.

∇y f3 : L1(Ω0)→ C(Ω(x)×Ω)2 ,

∇y f3[v](y, x) :=
f2(y, x) · ∇y f1[v](y, x)− f1[v](y, x) · ∇y f2(y, x)

f2(y, x)2 .

Then, we have:

a) f3 is a bounded linear functional.

b) ∇y f3 is a bounded linear functional.
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Proof.

The functionals are linear w.r.t. v by construction. The bounds, in the con-
text of linear operators, are exactly the prefactors of the bounds in lemma
6.3 parts 1 and 3.

Lemma 6.6.

1. Consider the map B : L1(Ω0)× L1(Ω0)→ C(Ω)2×2

B[v, w](x) =
1

f5(x)

∫
Ω0

Kρ(x− y) · 1a
Ω(x)(y) · ∇y f3[v](y, x) · ∇y f3[w](y, x)T dy ,

with f5 as defined as in lemma 6.4. Then, B is bilinear and continuous w.r.t.
v and w, i.e.,

‖B[v, w]‖∞ ≤ C8‖v‖L1(Ω0) · ‖w‖L1(Ω0) .

2. The structure tensor is given by

S : L1(Ω0)→ C(Ω)2×2 , S[v] = B[v, v] .

S is Lipschitz-continuous w.r.t. v,

‖S[v]− S[w]‖∞ ≤ 2 · C8 ·max
{
‖v‖L1(Ω0), ‖w‖L1(Ω0)

}
· ‖v− w‖L1(Ω0) .

Proof.

1. Since∇y f3[v] is linear according to lemma 6.5 2.b) the product∇y f3[v] ·
∇y f3[w] is bilinear. Hence B is bilinear. For the continuity we have

|B[v, w](x)| ≤ ‖∇y f3[v]( . , x)‖L∞(Ω(x)) · ‖∇y f3[w]( . , x)‖L∞(Ω(x))

≤ C8‖v‖L1(Ω0) · ‖w‖L1(Ω0) .

2. From part 1 follows

|S[v](x)− S[w](x)| ≤ |B[v, v− w](x)|+ |B[v− w, w](x)|

≤ 2 · C8 ·max
{
‖v‖L1(Ω0), ‖w‖L1(Ω0)

}
· ‖v− w‖L1(Ω0) ,

which is the stated assertion.
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Our set-up of the structure tensor depends on the three positive parameters
ρ, σ and a. The last lemma of this section is about the continuity of Sρ,σ,a
w.r.t. these parameters. Here, we explicitly indicate the dependence on the
parameters by the subscript. Equation (6.15) gives an overview where the
parameters enter the set-up of Sρ,σ,a.

σ, a −→ f σ,a
1

σ, a −→ f σ,a
2

 −→ f σ,a
3

ρ, a

 −→ f ρ,σ,a
4

ρ, a −→ f ρ,a
5


−→ Sρ,σ,a (6.15)

Lemma 6.7.
Let p = (ρ, σ, a) ∈ (R+)3 and let {pn}n∈N, pn = (ρn, σn, an) ∈ (R+)3 be a se-
quence which tends to p. Then, the sequence Spn [v] of tensor fields tends uniformly
to Sp[v], i.e.,

‖Spn [v]− Sp[v]‖∞ → 0 , as n → ∞ .

Proof.

Consider f σ,a
1 as defined in lemma 6.3,

f σ,a
1 (y, x) =

∫
Ω0

Kσ(y− h) · Ha(T(x)− T(h)) · v(h) dh .

First we show that the weight functions on Ω0 ×Ω0 and Ω×Ω0 converge
uniformly. By the assumed form

Kσ(y) =
1
σ2 K

( y
σ

)
, Ha(t) = H̃

(
t
a

)
,

and the assumed differentiability features of K and H̃ using the mean value
theorem we obtain the estimates

|Kσn(y− h)− Kσ(y− h)| = |∂σKσ∗(y− h)| · |σn − σ|

≤
(

2
σ3
∗

K
(

y− h
σ∗

)
+

1
σ4
∗

∣∣∣∣∇K
(

y− h
σ∗

)∣∣∣∣ |y− h|
)
· |σn − σ|

≤
(

2
min{σ, σn}3 ‖K‖∞ +

1
min{σ, σn}4 ‖∇K‖∞ diam Ω0

)
· |σn − σ|

=: Cσn · |σn − σ| ,
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and

|Han(T(x)− T(h))− Ha(T(x)− T(h))| = |∂aHa∗(T(x)− T(h))| · |an − a|

≤
(

1
a∗

∣∣∣∣H̃′ (T(x)− T(h)
a∗

)∣∣∣∣ |T(x)− T(h)|
)
· |an − a|

≤
(

1
min{a, an}

‖H̃′‖∞2‖T‖L∞(Ω0)

)
· |an − a|

=: Can · |an − a| ,

with real-valued bounded sequences Cσn and Can . Consequently, we get

| f σn,an
1 (y, x)− f σ,a

1 (y, x)|

≤
∫

Ω0

|Kσn(y− h)− Kσ(y− h)| · Han(T(x)− T(h)) · |v(h)| dh

+
∫

Ω0

Kσ(y− h) · |Han(T(x)− T(h))− Ha(T(x)− T(h))| · |v(h)| dh

≤ ‖v‖L1(Ω0) · Cσn · |σn − σ|+ ‖K‖∞ · ‖v‖L1(Ω0) · Can · |an − a| ,

which shows the uniform convergence of f σn,an
1 to f σ,a

1 . The same argumen-
tation applies to f σn,an

2 , ∇y f σn,an
1 and ∇y f σn,an

2 .

Let f σ,a
3 be defined as in lemma 6.3. Then the y-derivative is given by

∇y f σ,a
3 =

1
f σ,a
2
∇y f σ,a

1 −
f σ,a
1

( f σ,a
2 )2∇y f σ,a

2 .

Clearly, the sequence∇y f σn,an
3 converges uniformly to∇y f σ,a

3 on its domain
as a combination of uniformly converging sequences.

Finally, let

Sp =
f ρ,σ,a
4

f ρ,a
5

and Spn =
f ρn,σn,an
4

f ρn,an
5

according to lemma 6.4. By applying the same argumentation as above we
obtain the statement.

6.3.3 Properties of the Transport Field

In this section we prepare for the existence, uniqueness, and stability results
regarding the model of Inpainting Based on Coherence Transport. So far, we
have discussed the features of the structure tensor. Now, the features of
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the transport field are the objective. The transport field is obtained by the
following set-up chain:

S −−−−−−−→
Eq. (6.10)

G −−−−−−−→
Eq. (6.11)

k VV-Limit−−−−−−−→
Theo. 6.1

c .

Here, we will show that the analytic properties of S are carried over to c
along this chain.

Guidance Tensor: first, we rewrite G in an equivalent form, which is more
appropriate for the analysis we are about to do. Consider the symmetric
matrix S in its component-by-component description

S =

 S0 S1

S1 S2

 .

The characteristic polynomial of S is given by

pS(z) = z2 − (S0 + S2)z + (S0S2 − S2
1) .

Now, let q denote the discriminant of pS

q = (S0 − S2)2 + 4S2
1 ,

by which we can spell out the eigenvalues of S as

λ0 =
1
2
(S0 + S2 −

√
q) , λ1 =

1
2
(S0 + S2 +

√
q) .

Consequently, the discriminant of pS is exactly the quality (coherence) mea-
sure

q = (λ1 − λ0)2 .

According to equation (6.10), in the regular case q > 0, the guidance tensor
is given by

G =
α(q)
√

q
(S− λ0 I) =

α(q)
√

q

 S0−S2+
√

q
2 S1

S1
S2−S0+

√
q

2

 .

For the purpose of abbreviation we define the symmetric matrix

S̃ =

 −S2 S1

S1 −S0

 ,
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which has the same continuity and differentiability features as S. Moreover,
we set

αk : R+ → R+ , αk(t) =
α(t)

2
(√

t
)k , k ∈ {0, 1} . (6.16)

Then, G rewrites as

G =
α(q)
2
√

q
(S + S̃) +

α(q)
2

I = α1(q) · (S + S̃) + α0(q)I .

Lemma 6.8.
The functions αk, k ∈ {0, 1}, defined in equation (6.16), satisfy:

a) lim
t→0+

αk(t) = 0 and lim
t→0+

α′k(t) = 0.

b) αk and α′k are both bounded.

Proof.

For α0 the statements are clearly true, since it inherits these features directly
from α. For α1, we get

α1(t) =
α(t)
2
√

t
, α′1(t) =

α′(t)
2
√

t
− α(t)

4(
√

t)2
.

By applying L’Hospital’s rule the equalities lim
t→0+

α1(t) = 0 and lim
t→0+

α′1(t) =

0 are a consequence of the limit behavior of α and its first and second
derivative. Finally, since α and α′ are bounded, in addition we get:

lim
t→∞

α1(t) = 0 , lim
t→∞

α′1(t) = 0 .

The latter implies the boundedness of α1 and α′1.

The following lemma summarizes the effects on the tensor G as a function
of x.

Lemma 6.9.
The guidance tensor, as a function of x, G : Ω→ R2×2

G(x) =

{
α1(q(x)) · (S(x) + S̃(x)) + α0(q(x))I , q(x) > 0
0 , q(x) = 0

,

is continuous and bounded with a continuous and bounded derivative

|G(x)| ≤ p1( ‖v‖L1(Ω0) ) , |DG(x)| ≤ p2( ‖v‖L1(Ω0) ) .

Here, p1 and p2 are polynomials with positive coefficients and with degrees deg p1
= 2, deg p2 = 6.
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Proof.

Let the sets Ω1 and Ω2 be defined by

Ω1 := {x ∈ Ω : q(x) > 0} , Ω2 := {x ∈ Ω : q(x) = 0} .

By the continuity of q, the set Ω1 is open. Hence, by lemma 6.8 and lemma
6.4 the function

G(x) =

{
α1(q(x)) · (S(x) + S̃(x)) + α0(q(x))I , x ∈ Ω1

0 , x ∈ Ω2 ,

is continuously differentiable on Ω1 and on the open components of Ω2

with the derivative

DG =

{
α1(q) · (DS + DS̃) + (α′1(q) · (S + S̃) + α′0(q)I)Dq , x ∈ Ω1

0 , x ∈ Ω2 .

G and DG, in addition, both extend continuously onto ∂Ω2. This is a con-
sequence of lemma 6.8, in particular, of the limit behavior of αk and α′k,
k ∈ {0, 1}, as t→ 0+.

By lemma 6.4, G and DG inherit their bounds from S. On the one hand, we
get

|G(x)| ≤ 2C6‖α1‖∞‖v‖2
L1(Ω0)

+ ‖α0‖∞ =: p1( ‖v‖L1(Ω0) ) ,

and on the other,

|DG(x)| ≤ 32C2
6C7‖α′1‖∞‖v‖6

L1(Ω0)
+ 16C6C7‖α′0‖∞‖v‖4

L1(Ω0)

+ 2C7‖α1‖∞‖v‖2
L1(Ω0)

=: p2( ‖v‖L1(Ω0) ) .

The latter inequality uses the fact that

Dq = 2(S0 − S2)(DS0 − DS2) + 8S1DS1 , |Dq| ≤ 16C6C7‖v‖4
L1(Ω0)

.

By the last two lemmas the distinction of cases in the definition of G is
unnecessary: we get

G[v](x) = α1(q[v](x)) · (S[v](x) + S̃[v](x)) + α0(q[v](x))I ∀ x ∈ Ω

with αk as functions of mapping type R+
0 → R+

0 .
Now, we study the properties of the tensor G as a functional of v ∈ L1(Ω0).



152 Chapter 6 Image Inpainting Based on Coherence Transport

Lemma 6.10.
The guidance tensor, as a functional of v,

G : L1(Ω0)→ C(Ω)2×2 , v→ G[v] ,

is Lipschitz-continuous with

‖G[v]− G[w]‖∞ ≤ p3( ‖v, w‖ )‖v− w‖L1(Ω0) .

Here, p3 is a polynomial of degree deg p3 = 5 with positive coefficients and

‖v, w‖ := max
{
‖v‖L1(Ω0), ‖w‖L1(Ω0)

}
.

Proof.

Let DSq denote the derivative of q w.r.t. the components of S,

DSq(S) = ( 2(S0 − S2) , −2(S0 − S2) , 8S1) .

By the mean value theorem we have for some t ∈]0, 1[

|q[v](x)− q[w](x)| ≤ |DSq(h)| · |S[v](x)− S[w](x)|
with h = (1 − t)S[v](x) + tS[w](x). By the bounds on S[v] and S[w] we
obtain the estimate

|DSq(h)| ≤ 16C6‖v, w‖2 .

Writing the difference as

G[v]− G[w] = (α1(q[v])− α1(q[w])) · (S + S̃)[v]

+ ((S + S̃)[v]− (S + S̃)[w]) · α1(q[w])
+ (α0(q[v])− α0(q[w])) · I ,

we once more apply the mean value theorem to the functions αk and obtain

|G[v](x)− G[w](x)| = ‖α′1‖∞ · 2C6‖v‖2
L1(Ω0)

· |q[v](x)− q[w](x)|
+ ‖α1‖∞ · 2|S[v](x)− S[w](x)|
+ ‖α′0‖∞ · |q[v](x)− q[w](x)|

using the bounds on S. Now, we use the estimate on |q[v](x) − q[w](x)|
and get

|G[v](x)− G[w](x)| ≤ (‖α′1‖∞ · 32C2
6‖v, w‖4 + ‖α1‖∞ · 2

+ ‖α′0‖∞ · 16C6‖v, w‖2) · |S[v](x)− S[w](x)| .

And finally, lemma 6.6 yields

|G[v](x)− G[w](x)| ≤ (‖α′1‖∞ · 64C2
6C8‖v, w‖5 + ‖α1‖∞ · 4C8‖v, w‖

+ ‖α′0‖∞ · 32C6C8‖v, w‖3) · ‖v− w‖L1(Ω0)

= p3(‖v, w‖) · ‖v− w‖L1(Ω0) .
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The set-up of the guidance tensor depends on four positive parameters: δ,
and ρ, σ, a. The latter three are parameters of Sρ,σ,a , while δ is a parameter
of the confidence measure αδ (see equation (6.7)). With αδ and definition
(6.16) we set

αδ
k(t) :=

αδ(t)
2(
√

t)k
=

1
(
√

δ)k
αk

(
t
δ

)
.

With p = (δ, p̂) = (δ, ρ, σ, a) the guidance tensor is

Gp[v](x) = αδ
1(q p̂[v](x)) · (Sp̂[v](x) + S̃p̂[v](x)) + αδ

0(q p̂[v](x))I .

Lemma 6.11.
Let p = (δ, ρ, σ, a) ∈ (R+)4 and let {pn}n∈N, pn = (δn, ρn, σn, an) ∈ (R+)4,
be a sequence which tends to p. Then, the sequence Gpn [v] of tensor fields tends
uniformly to Gp[v], i.e.,

‖Gpn [v]− Gp[v]‖∞ → 0 , as n → ∞ .

Proof.

By lemma 6.7 we know that Sp̂n [v] and q p̂n [v] uniformly tend to Sp̂[v] and
q p̂[v]. The remainder follows by an application of the mean value theorem
to αδ

k w.r.t. δ.

Finally, we discuss the transport field c. Again, we do this within two steps.
Firstly, we regard c as a function of x.

Lemma 6.12.
For arbitrary but fixed v ∈ L1(Ω0) consider the transport kernel

k(x, η) =
√

π

2
µ exp

(
−µ2

2
ηTG[v](x)η

)
, x ∈ Ω , η ∈ B1(0) .

Then, the vanishing viscosity limit yields a transport field c,

c : Ω→ R2 x → c(x)

that satisfies requirements 3.6.
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Proof.

The only thing left to show at this point is that the transport kernel satisfies
the assumptions a), b), and c) of theorem 6.2. Since, by equation (6.9), G
either equals zero or is a scalar multiple of a projector G = α̂P1, we get

min
η∈B1(0)

ηTG[v](x)η = 0 max
η∈B1(0)

ηTG[v](x)η = α̂ ≤ 1 .

Hence, k is uniformly bounded above and below, away from zero,

0 <

√
π

2
µe−

µ2
2 ≤ k ≤

√
π

2
µ ,

and assumption a) is satisfied.

k is differentiable with partial derivatives

Dxk(x, η) = −
√

π

2
µ3

2
exp

(
−µ2

2
ηTG[v](x)η

)
ηTDG[v](x)η ,

Dηk(x, η) = −
√

π

2
µ3 exp

(
−µ2

2
ηTG[v](x)η

)
G[v](x)η ,

which are uniformly bounded by

|Dxk(x, η)| ≤
√

π

2
µ3

2
· p2(‖v‖L1(Ω0)) ,

|Dηk(x, η)| ≤
√

π

2
µ3 · p1(‖v‖L1(Ω0)) ,

where p1 and p2 stem from lemma 6.9. This is assumption b).

For arbitrary but fixed η, the functions k( . , η), Dxk( . , η), and Dηk( . , η) are
continuous on Ω, which implies assumption c).

Theorem 6.2 yields the following bounds in particular:

1. inward-pointing condition (see requirement 3.6 part 2):

〈c(x), N(x)〉 ≥
exp

(
− µ2

2

)
√

2
=: β > 0 , ∀ x ∈ Ω\Σ.

2. bound on the derivative (see requirement 3.6 part 3):

|Dc(x)| ≤
√

2π

µe−
µ2
2

(√
π

2
µ3

2
· p2(‖v‖L1(Ω0))

+
√

2
√

π

2
µ3 · p1(‖v‖L1(Ω0))|DN(x)|+

√
2
√

π

2
|DN(x)|

)
.
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For the bound on ‖Dc‖L1(Ω) we just have to plug in ‖DN‖L1(Ω) in the
last estimate, while for the bound on ‖Dc‖L∞(Ω\Vε) we just have to
plug in ‖DN‖L∞(Ω\Vε).

Secondly, we regard c as functional of v.

Lemma 6.13.
Consider the transport kernel as functional of v:

k[v](x, η) =
√

π

2
µ exp

(
−µ2

2
ηTG[v](x)η

)
, x ∈ Ω , η ∈ B1(0) .

Then, the transport field c,

c : L1(Ω0)→ C(Ω\Σ)2 , v → c[v] ,

obtained by the vanishing viscosity, is Lipschitz-continuous.

Proof.

By the mean value theorem we get

|k[v](x, η)− k[w](x, η)| ≤
√

π

2
µ3

2
exp

(
−µ2

2
h
)
|ηT(G[v](x)− G[w](x))η|

≤
√

π

2
µ3

2
|G[v](x)− G[w](x)| ,

for some h ≥ 0. Hence, for k∗ and c∗ we obtain – both defined in theorem
6.1 –

|k∗[v](x, η)− k∗[w](x, η)| ≤
√

π

2
µ3

4
|G[v](x)− G[w](x)|

and

|c∗[v](x)− c∗[w](x)| ≤ 1
π

π/2∫
−π/2

∣∣∣(k∗[v](x, η)− k∗[w](x, η))|η=Q(x)e(ϕ)

∣∣∣ dϕ

≤
√

π

2
µ3

4
|G[v](x)− G[w](x)| .

Moreover, theorem 6.2 tells us that

1√
2π

µe−
µ2
2 ≤ |c∗[v](x)| ≤ 1√

π
µ .



156 Chapter 6 Image Inpainting Based on Coherence Transport

Consequently, the transport field c[v](x) = c∗[v](x)/|c∗[v](x)| satisfies

|c[v](x)− c[w](x)| ≤ L · |G[v](x)− G[w](x)| ,

for some constant L which only depends on the parameter µ.

Finally, lemma 6.10 yields

‖c[v]− c[w]‖∞ ≤ L · p3( ‖v, w‖ ) · ‖v− w‖L1(Ω0) .

The set-up of the transport field depends on five positive parameters: µ,
and δ, ρ, σ, a. The latter four are parameters of Gδ,ρ,σ,a, while µ is a pa-
rameter of the guided transport kernel kµ. The next lemma is about the
continuity of cµ,δ,ρ,σ,a w.r.t. these parameters.

Lemma 6.14.
Let p = (µ, δ, ρ, σ, a) ∈ (R+)5 and let {pn}n∈N, pn = (µn, δn, ρn, σn, an) ∈
(R+)5, be a sequence which tends to p. Then, the sequence cpn [v] of vector fields
tends uniformly to cp[v], i.e.,

‖cpn [v]− cp[v]‖∞ → 0 , as n → ∞ .

Proof.

We set p̂ = (δ, ρ, σ, a) and p̂n = (δn, ρn, σn, an). By lemma 6.11 we know that
Gp̂n [v] tends uniformly to Gp̂[v]. The remainder follows by an application
of the mean value theorem to kµ w.r.t. µ and the dominated convergence
theorem.

6.3.4 Existence, Uniqueness and Continuous Dependence

In this section we conclude the existence and uniqueness of the solution
to the model of Inpainting Based on Coherence Transport and its continuous
dependence by using the theory of chapter 4. But a last step of preparation
is necessary. So far, we have the transport field c,

c : L1(Ω0)→ C(Ω\Σ)2 , v → c[v] ,

as a functional of v, whereas v is defined on the full domain Ω0, but in-
painting only has to be done in Ω ⊂ Ω0. Now, given some guessed fill-in
v ∈ L1(Ω) defined on Ω, we use the corresponding completed image

u0 · 1Ω0\Ω + v · 1Ω ,
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which is then defined on the full domain Ω0, and set

c[u0, v] := c[u0 · 1Ω0\Ω + v · 1Ω] .

Assuming u0 ∈ L1(Ω0\Ω) we obtain a well-defined transport field c[u0, . ]
as a functional of v ∈ L1(Ω)

c[u0, . ] : L1(Ω)→ C(Ω\Σ)2 , v → c[u0, v] ,

while the data u0 becomes a parameter of this map. With this definition,
equation (6.12) rewrites as

〈c[u0, u](x), Du〉 = 0 , in Ω\Σ ,
u|∂Ω = u0|∂Ω .

(6.17)

In order to apply the fixed point concept of chapter 4 we need to concretize
the subsets of function spaces for our solution operator according to defi-
nition 4.3. We adapt the latter to:

Definition 6.15.

a) The set of boundary functions / data is

B(∂Ω) := {v ∈ BV(∂Ω) : ‖v‖L∞(∂Ω) ≤ M4 , |Dv| ≤ M5} .

b) Let M∗ ∈ R be given by

M∗ := M4 · L2(Ω) .

The set of L1-fill-in-functions on Ω is

F = F(Ω) := {v ∈ L1(Ω) : ‖v‖L1(Ω) ≤ M∗} .

c) Let M∗∗ ∈ R be given by

M∗∗ := 2 ·M4 · H1(Σ) +
M5

β ·m0
.

The set of BV-fill-in-functions on Ω is

X = X(Ω) := {v ∈ BV(Ω) : ‖v‖L1(Ω) ≤ M∗ , |Dv|(Ω) ≤ M∗∗} .

d) The set of data functions on the data domain Ω0\Ω is

B(Ω0\Ω) := {v ∈ BV(Ω0\Ω) : ‖v‖L1(Ω0\Ω) ≤ M6 , v|∂Ω ∈ B(∂Ω)} .
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The right hand side of the inpainting model is identical with zero, hence the
constants M2 and M3, assumed in requirements 4.2, equal zero. In turn, the
constants M∗ and M∗∗ of definition 4.3 reduce to those of definition 6.15.

Lemma 6.16.
Let u0 ∈ B(Ω0\Ω) and let p = (a, σ, ρ, δ, µ) ∈ (R+)5 be a fixed choice of the
parameters concerning the set-up of the transport field. Consider now the transport
field with functional domain F(Ω)

cp[u0, . ] : F(Ω)→ C(Ω\Σ)2 , v → c[u0, v] .

Then, cp[u0, . ] satisfies requirements 4.1 and 4.13.

Moreover, the solution operator according to corollary 4.5 is a well-defined self-
mapping

a) of type U : F→ F .

b) of type U : X→ X .

Proof.

The largest part is already proven by lemmas 6.12 and 6.13. What remains
to show is the uniformity of the constants w.r.t. v. For arbitrary v ∈ F(Ω)
the completed image

v̄ = u0 · 1Ω0\Ω + v · 1Ω

belongs to L1(Ω0) with ‖v̄‖L1(Ω0) ≤ M6 + M∗, while cp[u0, v] = cp[v̄].
Hence, the bounds on Dxcp[u0, v](x), according to lemma 6.12, hold uni-
formly w.r.t. v, and the local Lipschitz-constant of cp[u0, .], according to
lemma 6.13, is now a global one.

In chapter 4 we assumed, for the sake of simplicity, that the functional do-
main of the transport field and that of the right hand side both equal L1(Ω).
But, in fact, it is enough if the intersection of these two functional domain
contains the interesting subset F(Ω). So, the solution operator is a well-
defined self-mapping of the stated types and the argumentation is exactly
that of corollary 4.5.

Corollary 6.17. (Existence and uniqueness)
Let Ω ⊂ Ω0 be a domain and T ∈ C2(Ω) be a time function with stop set Σ in
accordance with chapter 5. Let p = (a, σ, ρ, δ, µ) ∈ (R+)5 be a fixed choice of
the parameters concerning the set-up of the transport field. Let u0 ∈ B(Ω0\Ω).
Then, the model of Inpainting Based on Coherence Transport, i.e., equations
(6.17), has a unique solution.
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Proof.

By lemma 6.16 we are in the framework of chapter 4. The statement here is
a consequence of theorem 4.11 and theorem 4.22.

Corollary 6.18. (Continuous dependence on the data image)
Let Ω ⊂ Ω0 be a domain and T ∈ C2(Ω) be a time function with stop set Σ in
accordance with chapter 5. Let p = (a, σ, ρ, δ, µ) ∈ (R+)5 be a fixed choice of the
parameters concerning the set-up of the transport field. Let u0 ∈ B(Ω0\Ω). Let
{u0,n}n∈N be a sequence with u0,n ∈ B(Ω0\Ω) that tends to u0 w.r.t. the strict
topology on BV(Ω0\Ω). Moreover, let u and un be the unique solutions of〈

cp[u0, u](x), Du
〉

= 0 , in Ω\Σ ,
u|∂Ω = u0|∂Ω ,

and 〈
cp[u0,n, un](x), Dun

〉
= 0 , in Ω\Σ ,

un|∂Ω = u0,n|∂Ω ,

respectively.

Then,

‖un − u‖L1(Ω) → 0 , as n→ ∞ .

Proof.

This continuity result is a consequence of theorem 4.24. The transport fields
cp[u0, .] and cp[u0,n, .], n ∈ N, are all of the same class, i.e., they satisfy the
same inward-pointing condition, the same bounds on their x-derivative
and the same Lipschitz-constant (see lemmas 6.12 and 6.13). These com-
mon constants are the basic ingredients for theorem 4.24. Let ε > 0. By the
latter theorem, we can find δ > 0 such that

‖un − u‖L1(Ω) ≤ ε .

whenever(
‖(u0 − u0,n)|∂Ω‖L1(∂Ω,H1) + M∗∗ · ‖cp[u0, .]− cp[u0,n, .]‖0

)
≤ δ .

And, reviewing the proof of theorem 4.24, δ only depends on ε and the
common constants.

Because of the assumed strict convergence of u0,n to u0, on the one hand,
we have

‖u0,n − u0‖L1(Ω0\Ω) → 0 , as n→ ∞ ,
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because this is part of the strict topology (see definition 2.18). On the other
hand, we have

‖(u0 − u0,n)|∂Ω‖L1(∂Ω,H1) → 0 , as n→ ∞ ,

because of the continuity of the trace operator w.r.t. the strict topology (see
theorem 2.27).

Let L1 denote the common Lipschitz constant of the transport fields. For
v ∈ F(Ω) consider the completed images

v̄ = u0 · 1Ω0\Ω + v · 1Ω ,

v̄n = u0,n · 1Ω0\Ω + v · 1Ω .

Then, we get

‖cp[u0,n, v]− cp[u0, v]‖∞ = ‖cp[v̄n]− cp[v̄]‖∞

≤ L1‖v̄n − v̄‖L1(Ω) = L1‖u0,n − u0‖L1(Ω0\Ω) ,

which yields

‖cp[u0, . ]− cp[u0,n, . ]‖0 ≤ L1‖u0 − u0,n‖L1(Ω0\Ω) → 0 , as n→ ∞ .

If m ∈ N is chosen big enough, then for all n ≥ m the ε-δ-condition above
is certainly satisfied.

Corollary 6.19. (Continuous dependence on the parameters)
Let Ω ⊂ Ω0 be a domain and T ∈ C2(Ω) be a time function with stop set Σ
in accordance with chapter 5. Let u0 ∈ B(Ω0\Ω) be a fixed choice of the data
function. Let p = (a, σ, ρ, δ, µ) ∈ (R+)5. Let {pn}n∈N be a sequence with
pn ∈ (R+)5 that tends to p. Moreover, let u and un be the unique solutions of〈

cp[u0, u](x), Du
〉

= 0 , in Ω\Σ ,
u|∂Ω = u0|∂Ω ,

and 〈
cpn [u0, un](x), Dun

〉
= 0 , in Ω\Σ ,

un|∂Ω = u0|∂Ω ,

respectively.

Then,

‖un − u‖L1(Ω) → 0 , as n→ ∞ .
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Proof.

Let v ∈ F(Ω) with the completed image

v̄ = u0 · 1Ω0\Ω + v · 1Ω .

Reviewing lemma 6.7 (the parameter-continuity of the structure tensor),
one can see that the pre-factors, which depend on ‖v̄‖L1(Ω), are now uni-
form. This feature transfers over to the guidance tensor (lemma 6.11) and
to the transport field (lemma 6.14). Hence, we have the uniform conver-
gence

‖cpn [u0, . ]− cp[u0, . ]‖0 → 0 , as n→ ∞ .

For fixed n ∈ N the bounds (that are the inward-pointing condition, the
bounds on the x-derivative, and the Lipschitz-constant – according to the
requirements 4.1 and 4.13) of a single cpn [u0, . ] all depend on the set of pa-
rameters pn. Thus, we have sequences, made of those bounds, which corre-
spond to the sequence cpn [u0, .] . The former sequences are itself bounded.
From this feature we obtain the required common bounds, i.e., if m ∈ N

is big enough, the transport fields cpn [u0, . ], for n ≥ m are all of the same
class.

Now, the assertion follows from theorem 4.24. The remaining argumenta-
tion is the same as in the previous corollary.

Remark: in corollaries 6.18 and 6.19 the sequence un, in fact, converges BV-
weakly* to u due to proposition 2.16.

6.4 Distance-To-Boundary Map as Time

At this point, we want discuss the difficulties of our theory, which arise,
when the euclidean distance-to-boundary map induces the order, or rather
when it is used as time.

In the situation of theorem 6.1 the vanishing viscosity limit applies at every
point x ∈ Ω where N(x), the normal to the time-level of x, is uniquely de-
termined. Consequently, the resulting transport field c, and thus the PDE,
is defined on Ω\Σ. Here, the exceptional set of the PDE-domain is exactly
the stop set Σ.

Now, let us see what the exceptional set is in the case of d(x) = dist(x, ∂Ω).
This function is the unique viscosity solution of the Dirichlet problem for
the eikonal equation

|∇d| = 1 in Ω ,
d|∂Ω = 0 .
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Figure 6.2: Distance-to-boundary map of an ellipse, red: boundary of Ω,
blue: different level lines, dashed green: skeleton.

The corresponding field of normals is given by

N(x) = ∇d(x) .

The subset, where N does not exist, is the skeleton S of the domain Ω. There
are at least four different equivalent definitions of the skeleton (a.k.a. me-
dial axis) (see [Kim04]). Here, we choose S as the set of singularities (loca-
tions of ridges) of the map d. That is, S is the smallest closed set such that
d ∈ C1(Ω\S). For illustration: figures 6.2 and 6.3 show different level lines
and the skeleton of the distance-to-boundary map in the case of an ellipse
and in the case of a rectangle.
Now, when using d, the vanishing viscosity limit applies at every point
x ∈ Ω\S , and the exceptional set of the PDE-domain is the skeleton S .

The set S has the desired shape: if the boundary ∂Ω is a sufficiently regular
curve, it can be shown that d ∈ C2(Ω\S) and that S is a connected set with
tree-like structure consisting of finitely many C1-arcs (see [CCM97]).
But even if the domain Ω is of a simple shape, the skeleton S is not a stop
set in the sense of requirement 3.4 part 3, since

d|S 6= const.

The fact that S is not a stop set causes some difficulties. Stop sets Σ, as in the
previous chapters, feature the property that there is no transport across Σ.
Here, when using d, we define Σ to be that subset of S where no transport
across takes place.
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Figure 6.3: Distance-to-boundary map of a rectangle, red: boundary of Ω,
blue: different level lines, dashed green: skeleton.

But now Σ depends on the choice of the transport field. In the case of
transport along normals, the transport field is given by

c = N = ∇d .

The skeleton S then, is exactly the set where the characteristics of c = N
intersect for the first time. Hence, transport across S is impossible here,
and we have Σ = S . But, in the case of guided transport, together with
d as time, we have shown in [BM07] theorem 3 that parts of the skeleton
become transparent. This means, that there are parts of the skeleton, where
transport across happens, so Σ 6= S .
The only part of S which always belongs to the stop set Σ, independent of
c, is the subset Smax which consists of the local maxima of d. Summarizing
the observations we obtain

Smax ⊆ Σ(c) ⊆ S ,

while Σ(c) varies with the transport field c.

The basic difficulties are

• If x ∈ S , the level set

{z ∈ Ω : d(z) = d(x)} ,

typically has a kink at x. If now c is such that the point x is transpar-
ent, the boundary of the remaining

{z ∈ Ω : d(z) > d(x)} ,

inpainting domain is not C1.
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• Typically, c is as smooth as N = ∇d. Hence, c is not differentiable at
any point of S .

• If x ∈ S is a transparent triple (or n-fold) point of the skeleton, i.e.,
three (or n) arcs of the skeleton meet there, then x often happens to
be a saddle node of d, and the saddle level has a kink at x. Here, ad-
ditionally, the saddle point difficulties discussed in chapter 5 appear.

• For the quasi-linear theory of chapter 4 it is crucial that the stop set
Σ is independent of all admissible c. There, c[v] varies with v, but
we have several uniformity requirements, in particular, T and Σ both
have to be fixed.
But, here, Σ(c) ⊂ S moves with c and thus with v.

Work-around
If Ω has a simple shape, for example if Ω is a rectangle, we suggest the
following work-around:

1. Choose the inpainting domain a bit bigger, i.e., take Ωδ := Ω + Bδ(0),
0 < δ� 1.

2. Extend the distance-to-boundary map by zero, i.e.,

d̂ : Ω0 → R , d̂(x) = 1Ω(x) · d(x) .

3. Take a smoothed version of d̂ as time T. Let K be a smoothing kernel
as in section 6.3.2, but with supp K = B1(0), and set

T : Ωδ → R , T(x) = Kδ ∗ d̂(x) .

Figure 6.4 shows the effect for a rectangular Ω. In this example the part
Smax, which belongs to the stop set independently of the transport field c,
is the central line segment of S (see also figure 6.3). Comparing figure 6.4
(a) and (b) we can see that the stop set of T (the maxima of T) is a slightly
shortened version of Smax, while the problematic parts of S , because they
have been be smoothed, have vanished. The latter effect can be understood
in the way that those parts of S , which might become transparent depend-
ing on the concrete c, are now made transparent for every choice of c.
Finally, in this example, Ωδ and T, together with Σ, satisfy the require-
ments of chapter 3, and we can solve the problem with the changed data
uδ

0 = u0|Ω0\Ωδ .

Remark: this work-around is not general enough; in the case of d̂ having a
saddle node the corresponding saddle node of T might not be admissible
in view chapter 5. If it works, the question of what happens in the limit
δ→ 0 arises. Unfortunately, we must leave this question open.
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(a) contours of d̂

(b) contours of T

Figure 6.4: Work-around for a rectangular Ω
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Chapter 7

Experiments on Different
Orders

In this chapter, we will report on a few computational experiments con-
cerning the utilization of the ”new” parameter time respectively order. The
generic algorithm of section 6.1 depends on a prescribed order, which or-
ders the pixels from the boundary inwards. In all previous experiments
(see [BM07]) the pixels were ordered by their euclidean distance to bound-
ary. For all types of domains the approximate distance-to-boundary map is
easy to generate by the fast marching method (see [Set99] and [Kim04]), but
it is not always the best choice if one wants to get a nice looking inpainting
result. Here, we present three other ways of setting up a discrete time-like
map. We show a few examples where they yield better inpaintings than the
distance-to-boundary order.

The generic algorithm is performed in its coherence transport version. That
is, the weight function w has the form as assumed in theorem 6.1 with the
kernel k given by equation (6.11). The execution of the coherence transport
algorithm, then, depends on the choice of four parameters:

• ε, the averaging radius,

• µ, the guidance strength,

• σ and ρ, the scale parameters of the smoothing operations in the struc-
ture tensor.

The remaining two parameters of the structure and guidance tensor are
fixed to a = 1 and δ = 1. Finally, the algorithm is supplied with the data
image u0 and a sorted list of the pixels which are to be inpainted. Any item
of this list has the form

[i j Th(i, j)] ,

167
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(a) damaged image, white Ωh (b) inpainted image (c) inpainted image with contours of dh

Figure 7.1: Broken diagonal

(a) damaged image, white Ωh (b) inpainted image (c) inpainted image with contours of dh

Figure 7.2: Two broken diagonals

whereas (i, j) are the pixel coordinates and Th(i, j) is the time value of the
pixel. The list is sorted in ascending order of the Th(i, j)-values.

We consider four examples, where distance-to-boundary ordering is not
favorable:

1. Example: The broken diagonal.
Figure 7.1 (a) shows a damaged image with the damaged area painted
white. The desired inpainting result would be the restored diagonal. But
the algorithm performed with distance-to-boundary ordering and the set
of parameters

[ε, µ, σ, ρ] = [3, 50, 0.5, 5]

yields the result shown in 7.1 (b), where the diagonal is not restored. The
diagonal is only partly continued correctly. In figure 7.1 (c), the result is
overlayed with the contours of the distance-to-boundary map dh, and it
shows that the undesired effect is due to the ”wrong” location of the stop
set.
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(a) damaged image, white Ωh

(b) inpainted image

(c) inpainted image with contours of dh

Figure 7.3: Broken junction

2. Example: Two broken diagonals.
The second example, figure 7.2, has the same Ωh and is performed with
the same parameters as the first example. We emphasize here that the ap-
pearance of an undesired effect depends on how the edge that needs to be
continued is located in relation to the inpainting domain. Here the bottom-



170 Chapter 7 Experiments on Different Orders

(a) damaged image (b) inpainted image (c) inpainted image with contours of dh

Figure 7.4: Stripe pattern

left-to-top-right diagonal is continued as desired, while the continuation of
the top-left-to-bottom-right diagonal suffers from a badly located stop set.
3. Example: The broken junction.
Figure 7.3 (a) shows a damaged cross junction. A cross junction would, in
any case, geometrically be the simplest object for completion. The algo-
rithm performed with the parameters

[ε, µ, σ, ρ] = [5, 100, 0.5, 10]

yields the result shown in figure 7.3 (b) while in figure 7.3 (c) the result is
overlayed with the contours of dh. Here, the stop set, which is the central
arc of the skeleton, has the wrong location again. The bar coming from the
right hand side can never reach its counterpart.
4. Example: The stripe pattern.
Figure 7.4 (a) shows a damaged stripe pattern. The algorithm performed
with the set of parameters

[ε, µ, σ, ρ] = [5, 100, 0.5, 10]

yields the result shown in figure 7.4 (b). In figure 7.4 (c) the result is over-
layed with the contours of the distance-to-boundary map. The difficulty,
here, is that the tangent of the edges is orthogonal to the lower left and the
upper right segment of ∂Ωh. And thus, as explained in section 6.2.2, the
transport vector c switches to the normal N.

Let us see if we can do better.

7.1 Order by Harmonic Interpolation

In examples 1, 2, and 3, the wrong location of the stop set caused problems.
Now, we describe the construction of a discrete time function Th for which
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we can prescribe the location of the stop set arcs and the exact time when
these arcs are reached.

Because the boundary is the start set, the discrete time function Th must
equal zero on ∂Ωh. In addition, we take at least one or more discrete curves
Γk

h, k ∈ {1, . . . , n} , which are contained in Ωh and belong to the stop set
Σh. Moreover, for every Γk

h we specify a time value tk > 0 when this curve
has to be reached. The remainder of Th then, is calculated by harmonic
interpolation. That is, we solve the discrete Laplace equation

∆hTh = 0 in Ωh\
n⋃

k=1

Γk
h ,

Th = 0 on ∂Ωh ,

Th = tk on Γk
h , k = 1, . . . , n .

Hereby, the discretization ∆h of the Laplacian is due to the five-point-stencil

∆h =


1

1 −4 1

1

 ,

with

∆hTh(i, j) = Th(i− 1, j) + Th(i, j− 1)− 4Th(i, j) + Th(i, j + 1) + Th(i + 1, j) .

Since harmonic interpolation provides a minimum and maximum princi-
ple, this construction of Th can be imagined as the setting up a tent roof
over the domain Ωh where Γk

h are the locations of the tent poles, and every
tent pole of Γk

h has the length tk.
Unfortunately, not every choice of curves Γk

h, with time values tk, results in
a valid time-like function. In the case of a single curve Γh the resulting Th
must be time-like because of the minimum and maximum principle. Fig-
ure 7.5 shows an example. If there are two or more curves Γk

h, the question
whether the resulting Th is time-like or not depends on the location of the
curves in relation to each other and the differences of their prescribed val-
ues tk . Figure 7.6 shows an example with three curves Γ1

h, Γ2
h and Γ3

h with

t1 = t2 = 250 > t3 = 50 .

Here, all points of Γ3
h are local minima of Th.

But, if we keep the geometry of Ωh, Γ1
h, Γ2

h and Γ3
h, and change the pre-

scribed times to
t1 = t2 = 250 > t3 = 249 ,
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(a) white: Ωh , red: Γ1
h with t1 = 127 (b) contour plot of Th

Figure 7.5: Single Γh yields a valid Th

(a) white: Ωh , red: Γ1
h and Γ2

h with t1 = t2 = 250,

blue: Γ3
h with t3 = 50

(b) contour plot of Th

Figure 7.6: Non-valid Th

then Th does not have any minima (see figure 7.7). So, the resulting Th is
admissible. Generally speaking, if we have two or more curves Γk

h, with
different prescribed time values tk, and if the values tk are chosen unfavor-
ably, then the resulting Th might possess local minima on some of the Γk

h.
Remark: the suggested construction only works for the discrete case, since
the corresponding high-resolution limit, as h → 0, results in an ill-posed
problem.

Let us review example 1. Figure 7.8 shows the broken diagonal again. In
Figure 7.8 (a) we have the damaged image with the single curve Γ1

h, t1 =
127 shown in red. Figure 7.8 (b) and Figure 7.8 (c) show the inpainted result,
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(a) white: Ωh , red: Γ1
h and Γ2

h with t1 = t2 = 250,

blue: Γ3
h with t3 = 249

(b) contour plot of Th

Figure 7.7: Valid Th

(a) damaged image, white Ωh , red Γ1
h (b) inpainted image (c) inpainted image with contours of Th

Figure 7.8: Broken diagonal

the latter is overlayed with the contours of Th. The set of parameters is the
same as before. Now, the inpainting method is able to close the broken
diagonal because the stop set Σh has a good location.
If we think of Σh as the initial scratch, which has been dilated to Ωh over the
time Th, then the backward filling-in process, if Σh is well located, makes
the matching opposite sides come together. Clearly, if we deliberately place
Γ1

h = Σh badly, then the method must fail (see figure 7.9).

Ad example 2: in Figure 7.10 (a) we have the damaged image with the
single curve Γ1

h, t1 = 127 shown in red. Figure 7.10 (b) and Figure 7.10 (c)
show the inpainted result, the latter is overlayed with the contours of Th.
The set of parameters is the same as before. Again, the good location of Σh
makes for a good result.

In the same way we are able to restore the cross junction of example 3 (see
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(a) damaged image, white Ωh , red Γ1
h (b) inpainted image (c) inpainted image with contours of Th

Figure 7.9: Broken diagonal

(a) damaged image, white Ωh , red Γ1
h (b) inpainted image (c) inpainted image with contours of Th

Figure 7.10: Two broken diagonals

figure 7.11). Here, Γ1
h is a single point placed at the center of the cross

junction. The set of parameters is the same as before. Which of the bars
is closed in the end depends on the coherence strength. The brighter bar
has the higher contrast w.r.t. the black background and is thus of stronger
coherence. This is the reason why this bar is closed.

7.2 Order by Modified Distance to Boundary

The special difficulty of example 4 is that the guidance vector, i.e., the de-
sired transport vector, does not point inwards on parts of the boundary. To
combat this we suggest a modification of the distance-map set-up.

The euclidean distance-to-boundary map d is the viscosity solution of

|∇d| = 1 in Ω , d|∂Ω = 0 .

We modify the distance-map set-up by searching for the euclidean distance
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(a) damaged image, white Ωh , red Γ1
h

(b) inpainted image

(c) inpainted image with contours of Th

Figure 7.11: Broken junction

d∗ to a subset Γ of the boundary ∂Ω, i.e.,

|∇d∗| = 1 in Ω , d∗|Γ = 0 .

We classify the points which shall not belong to Γ. Assume x ∈ ∂Ω satisfies
d∗(x) = 0, then the boundary normal is given by N(x) = ∇d∗(x). Now, if
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(a) damaged image, white Ωh ,

red active boundary Γ

(b) inpainted image (c) inpainted image with contours of d∗,h

Figure 7.12: Stripe pattern

we have at x
N⊥T · G · N⊥ = α 〈g, N〉2 = 0 ,

whereas G is the guidance tensor, α the confidence measure and g the guid-
ance vector, then either there is no guidance (α = 0) or the guidance vector
does not point inwards. Such a boundary point shall not belong to Γ. In
fact, we use the stronger condition

0 ≤ N⊥T · G · N⊥ ≤ γ

with a threshold parameter 0 < γ ≤ 1. Complementarily, the set of active
boundary points Γ is given by

Γ = {x ∈ ∂Ω : N⊥T · G · N⊥ > γ} .

Clearly, the new parameter γ must be chosen such that Γ is not empty.
We have applied this idea to the stripe pattern of example 4. The result
is shown in figure 7.12. Our standard parameters [ε, µ, σ, ρ] have the same
values as before, while the additional parameter is set to γ = 0.1. The
discrete approximation d∗,h was computed using the fast marching method.
The overlayed contour plot of d∗,h in figure 7.12 (c) shows that the inward-
pointing condition holds everywhere on the domain Ωh.

7.3 Order by Distance to Skeleton

The third approach to obtaining an order is to use the distance to a pre-
scribed stop part of the skeleton. Let S k, k ∈ {1, . . . , n} be curves in the
image domain Ω0. The curves S k will later belong to the skeleton S . Let,
then, T∗ be the viscosity solution of

|∇T∗| = 1 in Ω0 ,

T∗ = 0 on S k , k ∈ {1, . . . , n} ,
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(a) damaged image, white Ωh , red S1
h (b) inpainted image (c) inpainted image with contours of Th

Figure 7.13: Broken diagonal

and let
T∗,max = max

x∈Ω
T∗(x) .

The desired time-like function is defined by

T(x) = T∗,max − T∗(x) , x ∈ Ω .

Warning: as in the case of harmonic interpolation (see section 7.1) one must
check if T is admissible, i.e., if T is free of local minima.

Figure 7.13 shows the result for example 1. The red curve in figure 7.13 (a)
defines S1

h (discrete). The set of parameters is the same as before. The dis-
crete approximation T∗,h was computed using the fast marching method.
The inpainted result here is the same as in figure 7.8 (b), but the order
has changed in comparison to 7.8 (c). If there is only one curve S1

h which
is completely contained in Ω, then order-by-harmonic-interpolation (with
Γ1

h = S1
h ) and order-by-distance-to-skeleton will yield very similar results.

If there are two or more curves, then order-by-harmonic-interpolation al-
lows for different stop times, while order-by-distance-to-skeleton has ex-
actly one stop time on all of those curves. In contrast to order-by-distance-
to-skeleton the order-by-harmonic-interpolation method requires Th|∂Ωh =
0.
Moreover, since T∗ is defined on Ω0, we can place S k outside of the in-
painting domain Ω. We use this possibility to restore the stripe pattern of
example 4. The result is shown in figure 7.14. The parameters are the same
as before. It is obvious from the level lines of Th (see 7.14 (c)) that the guid-
ance vector always points inwards. Thus, we get the desired result again
here.

Remark: The construction here, as well as that of section 7.2 produces time-
like functions whereas not the whole boundary belongs to the start set.
Moreover, it is possible that parts of the boundary belong to the stop set.
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(a) damaged image, white Ωh , red S1
h (b) inpainted image (c) inpainted image with contours of Th

Figure 7.14: Stripe pattern

Thus, the functions are not time functions in the sense of chapter 3. In
practice both approaches work fine.

7.4 Order by Distance to Boundary and Natural Im-
ages

In the previous sections we considered synthetic images, because their im-
age geometry is easy to understand. Thus, we were able to prescribe orders
which are adapted to the image or rather to an expected result. When we
face natural inpainting problems, as shown in figures 7.15 (a) and 7.16 (a),
it is not as easy to prescribe an adapted order. This is because

• the geometry of the image is harder to understand,

• the damaged region is complicated.

Moreover, if the damaged region Ω consists of many connected compo-
nents, we have to prescribe orders or time functions for every single com-
ponent. This can be time consuming.

In contrast, the distance-to-boundary map can be computed fast and eas-
ily for every type of inpainting domain. And, inpainting with distance-
to-boundary order often produces results of high quality when applied to
natural inpainting problems (see figures 7.15 (b) and 7.16 (b)).

Bearing in mind the shape of the damage and its location in relation to the
image geometry, generally, one will obtain good results, if the damage is
such that level lines have been broken by scratches (By scratches we mean
rather thin and lengthy damages). This is because, if the damage is of this
type, the skeleton of Ω, being a simplified version of the scratch, is well
placed.
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(a) vandalized image (b) inpainted: [ε, µ, σ, ρ] = [5, 25, 1.4, 4]

Figure 7.15: Scratch removal

(a) original image (courtesy of [BSCB00, figure 6]) (b) inpainted: [ε, µ, σ, ρ] = [4, 25, 2, 3]

Figure 7.16: Removal of superimposed text

The images shown in figures 7.15 (a) and 7.16 (a), like many other natu-
ral inpainting problems, have this type of damage. Thus, our inpainting
method using distance-to-boundary order is able to produce results pleas-
ing to the eye.





Miscellaneous Symbols and
Notations

Sets

N natural numbers

N0 N0 := N∪ {0}

R real numbers

R extended real numbers R := R∪ {±∞}

B(Ω) Borel-σ-Algebra on Ω p. 14

Su approximate discontinuity set of u p. 21

Ju approximate jump set of u p. 21

Rd and Rd1×d2

|a| euclidean norm if a ∈ Rd, or spectral norm if a ∈
Rd1×d2

〈x, y〉 euclidean scalar product of x, y ∈ Rd

a⊥ a = (a1, a2) ∈ R2, a⊥ := (−a2, a1)

Bε(x) Bε(x) := {y ∈ Rd : |y− x| < ε}

Sd−1 Sd−1 := {y ∈ Rd : |y| = 1} = ∂B1(0)

Measures and measure spaces

Ld Lebesgue measure on Rd p. 14

Hk k-dimensional Hausdorff measure (on Rd) p. 14

[Mloc(Ω)]m Rm-valued Radon measures on Ω p. 14

[M(Ω)]m finite Rm-valued Radon measures on Ω p. 14
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µ A measure restriction : (µ A)(B) := µ(A ∩ B) p. 15

ξ]µ push-forward of µ by ξ p. 15

µ⊗ νx generalized product measure p. 16
ν

µ
Randon-Nikodym density of ν w.r.t. µ

Functions and function spaces

1E characteristic function of the set E

C(Ω) real continuous functions

Cc(Ω) functions of C(Ω) with compact support

C0(Ω) closure of Cc(Ω) w.r.t. the sup-norm

Cb(Ω) bounded functions of C(Ω)

Ck(Ω) k-times continuously differentiable functions

Ck(Ω)d Ck(Ω)d := Ck(Ω, Rd)

Lp(Ω) p-integrable functions

Lp
loc(Ω) locally p-integrable functions

Wk,p(Ω) k-times weakly differentiable Sobolev functions with
derivatives in Lp(Ω)

BV(Ω) functions of bounded variation p. 17

SBV(Ω) special BV-functions

BVT periodic BV-functions p. 29

PT periodic test functions p. 29

F F ⊂ L1, domain of solution operator U p. 81

X X ⊂ BV, domain of solution operator U p. 81

B boundary data p. 81

Functions of bounded variation: u ∈ BV(Ω)

Var(u, Ω) variation of u in Ω p. 18

P(E, Ω) perimeter of E in Ω p. 18

Du derivative measure

Dua absolutely continuous part of Du
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Dus singular part of Du

Duj jump part of Du

Duc Cantor part of Du

u±Γ interior traces of u on both sides of Γ p. 23

u|∂Ω boundary trace of u p. 24

Special identifiers throughout chapters 3, 4, 5, and 6

Ω Ω ⊂ R2, domain p. 31

Σ stop set p. 31

T time function p. 33

T0 transformed time function p. 38

N field of normals p. 33

c transport field p. 35

c0 transformed transport field p. 41

f right hand side p. 36

f0 transformed right hand side p. 51

u0 (boundary) data p. 36

U solution operator p. 82
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