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Abstract

In this thesis, we mathematically investigate generalizations and modifications of Boolean
models, as introduced in theoretical biology by Stuart Kauffman. A variable in a Boolean model
assumes only two values, zero and one. It develops in discrete time-steps, where its value at a
time-point is determined by the values of some of the other variables at the previous time-point
according to a Boolean update function. Kauffman, at first, studied large-scale Boolean models,
where the dependencies between variables as well as the update functions are chosen randomly.
These random Boolean models are generic models of genome-wide regulatory networks. They
can exhibit ordered and robust as well as chaotic and perturbation-prone dynamics. Kauffman
hypothesized that regulatory networks in living organisms operate at the boundary between
both dynamic regimes, which is called the critical boundary.

First, we relax the biologically implausible binary discretization and study random models
whose variables take values in discrete, finite sets. The critical boundary of these models is
determined analytically. It is an inverse proportionality between the average number of regula-
tors per variable and a parameter measuring the heterogeneity of the update functions. If these
update functions are unbiased, i.e. assume each value with equal probability, the heterogeneity
is minimal in the Boolean case; it does, however, not necessarily increase with the mean number
of discrete states per variable. By biasing the update functions the heterogeneity can be made
arbitrarily small, allowing for increasing numbers of regulators per variable along the critical
boundary. We conclude by investigating the synchronization of ensembles of random models,
which may, for instance, represent cells in an experimental sample.

Second, we study Boolean models that are derived from networks of signed interactions,
such as gene regulatory networks, in which a genetic interaction can typically be classified
as either activating or inhibiting. The update function of a variable is defined as a logical
combination of the variable’s activating and inhibiting regulators. In particular, we focus on
large-scale Boolean models derived from networks with randomly chosen signed interactions. In
these models, we find multiple, intricately shaped critical boundaries. The computation of these
boundaries requires us to first study the fraction of variables being one. We can analytically
characterize the asymptotic dynamics of this quantity, which in numeric investigations exhibits
a rich dynamical behavior including period-doublings leading to chaos. Our results fit in nicely
with Kauffman’s hypothesis.

Third, a Boolean modeling approach within a systems biology project is presented, which
led to novel insights into the regulatory mechanisms underlying brain formation during embry-
onic development. We use this example to outline a possible extension of Boolean models to
continuous dynamical systems.
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Zusammenfassung

In dieser Dissertation werden Erweiterungen und Modifikationen von Booleschen Modellen,
wie sie ursprünglich von Stuart Kauffman in der theoretischen Biologie eingeführt wurden,
mathematisch untersucht. Eine Variable in einem Booleschen Modell kann nur zwei mögliche
Zustände annehmen, Null und Eins. Sie entwickelt sich in diskreten Zeitschritten, wobei ihr
Wert zu einem Zeitpunkt durch die Zustände einiger der anderen Variablen zum vorhergehenden
Zeitpunkt gemäß einer Booleschen Update-Funktion bestimmt wird. Kauffman untersuchte
zunächst grosse Boolesche Modelle, in denen die Abhängigkeitsstruktur der Variablen sowie die
Update-Funktionen zufällig bestimmt werden. Diese Booleschen Zufallsmodelle sind generische
Modelle genomweiter Regulationsnetzwerke. Sie können sowohl geordnetes, robustes als auch
chaotisches, störungsanfälliges Verhalten zeigen. Kauffman stellte die Hypothese auf, dass re-
gulatorische Netzwerke in lebenden Organismen an der Grenze der beiden dynamischen Regime
operieren, die als kritische Grenze bezeichnet wird.

Zunächst geben wir die biologisch unplausible binäre Diskretisierung auf und untersuchen
Zufallsmodelle, deren Variablen Werte aus endlichen, diskreten Mengen annehmen. Die kriti-
sche Grenze dieser Modelle wird analytisch bestimmt. Sie ist eine inverse Proportionalität zwi-
schen der mittleren Anzahl der Regulatoren einer Variable und einem Heterogenitätsparameter
der Update-Funktionen. Wenn diese Update-Funktionen unverzerrt sind, d.h. jeden Wert mit
gleicher Wahrscheinlichkeit annehmen, ist die Heterogenität im Booleschen Fall minimal, nimmt
jedoch nicht notwendigerweise mit der mittleren Anzahl der möglichen Zustände einer Variable
zu. Durch eine entsprechende Verzerrung der Booleschen Funktionen lässt sich die Heterogeni-
tät beliebig verkleinern, was eine wachsende Anzahl an Regulatoren pro Variable entlang der
kritischen Grenze erlaubt. Abschließend untersuchen wir die Synchronisation in Ensembles von
Zufallsmodellen, die beispielsweise Zellen in einer experimentellen Probe repräsentieren.

Zum zweiten studieren wir Boolesche Modelle, die von Netzwerken mit gefärbten Kan-
ten abgeleitet werden, wie beispielsweise Genregulationsnetzwerken, in denen genetische In-
teraktionen typischerweise als aktivierend oder inhibierend klassifiziert werden können. Die
Update-Funktion einer Variable wird als eine logische Kombination der aktivierenden und in-
hibierenden Regulatoren dieser Variable definiert. Wir konzentrieren uns vor allem auf große
Boolesche Moḋelle, die von Netzwerken mit zufällig gewählten, gefärbten Kanten abgeleitet
wurden. In diesen Modellen finden sich mehrere, nicht-trivial geformte kritische Grenzen. Um
sie berechnen zu können, müssen wir zunächst den Anteil der Variablen mit Wert Eins verste-
hen. Wir charakterisieren das asymptotische Verhalten dieser Größe analytisch; in numerischen
Untersuchungen zeigt sie ein reichhaltiges dynamisches Verhalten wie Periodenverdopplungen
hin zum Chaos. Unsere Ergebnisse lassen sich gut mit Kauffman’s Hypothese in Einklang
bringen.

Zum dritten stellen wir einen Booleschen Modellierungsansatz innerhalb eines Systembiolo-
gie Projektes vor, der neue Erkenntnisse über die regulatorischen Grundlagen der Gehirnent-
wicklung in Embryonen brachte. Anhand dieses Beispiels wird eine mögliche Erweiterung von
Booleschen Modellen hin zu kontinuierlichen dynamischen Systemen beschrieben.
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Glossary of

general

biological terms

anterior

in direction of the head

caudal

towards the spinal cord

dorsal

towards the back

ectopic

expressed in an abnormal place

endogenous

expressed in a normal, unmanipulated

fashion as in a wild-type individual

explant

Here, explant means an isolated part of

tissue from an animal harvested in a ster-

ile manner. Cells are kept in their natural

environment in the hope to mimic the in

vivo situation as closely as possible.

gain-of-function experiment

In a gain-of-function experiment, the

translation of a target gene is amplified,

either by adding additional copies of that

gene on the DNA or by increasing its tran-

scription rate.

gastrulation

an early phase in embryonic development,

during which the morphology of the em-

bryo changes and the three germ layers are

formed

in situ hybridization

an experimental technique that allows lo-

calization of a specific DNA or RNA se-

quence in parts of a tissue (in situ). If the

tissue is small enough, the sequence can

be localized in the entire tissue in a whole

mount in situ hybridization.

in vitro

in a controlled environment such as a test

tube or Petri dish

in vivo

in the living organism

loss-of-function experiment

In a loss-of-function experiment, a target

gene is deactivated either by deletion of

that gene from the DNA or by inactiva-

tion of the protein.

otic vesicle

the precursor of the membranous

labyrinth of the internal ear

posterior

in direction of the tail

rostral

towards the forebrain

secreted factor/protein

Secreted factors are proteins that are se-

creted from the expressing cells and able

to diffuse through the intercellular matrix.

somite

Somites are a segmented structure in the

vertebrate embryo next to the neural tube.

Their periodic formation provides a nat-

ural time-measure for early embryonic

stages. In the mouse embryo, for in-

stance, about one somite is formed every

two hours.

ventral

towards the front
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absolutely continuous invariant measure,

21
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absolutely continuous invariant probabil-

ity measure, 21
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Boolean model, 40
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conjunctive normal form, 31
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deoxyribonucleic acid, 31

DNF

disjunctive normal form, 31

i.s.L.

in the sense of Lyapunov, 14

IsO

isthmic organizer, 35

KN

Kauffman network, 43

KNGL

Kauffman network with generic logic, 86

KNMB

Kauffman network with magnetization
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MHB

mid-hindbrain boundary, 35

miRNA

micro RNA, 33
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multistate Kauffman network, 53

MM

multistate model, 51

mRNA

messenger RNA, 33
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Introduction

If the Lord Almighty had consulted me

before embarking upon Creation,

I should have recommended something simpler.

Alfonso X, King of Castile and Leon

A surprising result from the Human Genome Project is, without doubt, that the

human genome consists of considerably less genes than previously assumed. While first

estimates placed the size of the human genome at around 105 � 106 genes, we now

know that it consists of around 20000. Even more surprisingly, lower organisms, such

as plants, often turn out to possess considerably larger genomes. To put it bluntly,

this leads to the question of how the 20000 human genes can contain the blueprint for

something as complex as the human brain, when the 40000 rice genes encode no more

than little grains.

We now know that it is not the number of genes that is responsible for the complexity

of an organism, but its ability to specifically and accurately control the expression of

genes. As the expression of a gene is tightly regulated by the products of other genes,

a cell’s gene expression profile is the emergent property of a complex system of genetic
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1. INTRODUCTION

interactions. Hence, after the giant task of decoding entire genomes, we now face

the even bigger challenge of unraveling the regulatory interdependencies between the

discovered genes.

This challenge is what Stuart Kauffman’s book “Origins of Order: Self-Organiza-

tion and Selection in Evolution” [Kauffman, 1993] is all about. Kauffman tackles this

daunting task in the spirit of mathematical modeling. In doing so, he heeds Einstein’s

advice that “a model should be as simple as possible, but no simpler; as complicated

as necessary, but no more.” The Boolean models of gene regulation that he puts for-

ward are, arguably, one of the simplest kinds of models for complex dynamic systems.

In a Boolean model of a gene regulatory network, genes are described by binary vari-

ables taking only discrete values 0 or 1. They develop in discrete time-steps. At each

time-point, the value of a variable is determined by a so-called update rule that de-

terministically depends upon the values of some of the other variables, the so-called

inputs, at the previous time-point. The average number of inputs per variable is called

the (mean) connectivity of the Boolean model. Update rules are often expressed in

terms of Boolean operators, such as NOT, AND and OR, which gives the name to these

models.

In his seminal paper, Kauffman [1969] proposed large-scale random Boolean models

— later called Kauffman networks — as generic models of gene regulatory networks.

Here, the inputs as well as the update rule of a variable are chosen randomly. Kauffman

argues that “proto-organisms probably were randomly aggregated nets of chemical

reactions.” By investigating random Boolean models he wishes to test “the hypothesis

that contemporary organisms are also randomly constructed molecular automata.”

Despite their simplicity, Boolean models and Kauffman networks already capture

salient features of complex dynamic systems and, thus, allow to study their properties

within a well-defined, accessible environment. For these reasons, they are popular tools

in theoretical biology and especially within the newly emerging field of systems biology.

In theoretical biology, Kauffman networks are discussed under the slogan “Living

at the edge of chaos.” We will explain in the course of this thesis that, depending on

their connectivity, Kauffman networks exhibit three characteristic dynamical behaviors,

which we term frozen (ordered), critical and chaotic. For low connectivities, they

are in the frozen or ordered phase. Here, their dynamics are dominated by short-

periodic oscillations and are robust against external perturbations. As the number
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of inputs increases, Kauffman networks undergo a phase transition and switch into

the chaotic phase. Their time-courses no longer show a clear oscillatory behavior and

they are highly sensitive to perturbations. The boundary between the frozen and

chaotic phase is called the critical boundary or critical connectivity. Kauffman [1993]

argues that properties from the frozen as well as the chaotic phase, viz robustness and

adaptability, are important for the evolution of living organisms, and that, consequently,

their regulatory networks need to be poised at criticality, i.e. “at the edge of chaos.”

Interestingly, the (mean) connectivities of gene regulatory networks found in lower

organisms are all around two, which, as we will see, is precisely the critical connectivity

of the random Boolean models introduced by Kauffman.

Besides the study of Kauffman networks, many small- and medium-scale Boolean

models of specific biological processes have been manually curated. Such models have

been an integrative part of many systems biology research projects over the last years

[Saez-Rodriguez et al., 2007, 2009; Samaga et al., 2009; Schlatter et al., 2009; Wittmann

et al., 2009a]. They were used to analyze biological processes with the main goal of

generating hypothesis and predictions, e.g. about possible regulatory interactions.

Overview of this thesis

Considering the simplicity of Boolean models, it stands to reason to extend and modify

them in the hope to bring them closer to biological reality and to further enhance their

explanatory power. In this thesis, we study such extensions and modifications.

They are motivated from a biological point of view, by a desire to remedy certain

inadequacies of Boolean models as models of gene regulatory networks. They are in-

vestigated from a biomathematical point of view, e.g. by analyzing dynamical systems

which describe interesting quantities of modified Kauffman networks. As is typically

the case in the theory of Kauffman networks, these quantities will be obtained in mean-

field approximations and will describe generic properties in ensembles of networks. In

this thesis, we will only briefly touch these deep relations between Kauffman networks

and concepts from statistical physics. Instead, we will focus on mathematically ana-

lyzing the dynamical behavior of the mean-field quantities. Finally, the usefulness of a

possible extension of Boolean models to continuous dynamical systems is demonstrated

in a systems biology application.
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1. INTRODUCTION

Chapter 2 contains necessary prerequisites from graph theory, dynamic systems

theory and Boolean algebra. It also provides a short introduction into the molecular

basis of gene regulation and sets the stage for our biological application in chapter 6.

Explanations of frequently used basic biological terms can also be found in the glossary

on page xix. Chapter 3 then introduces Boolean models and Kauffman networks. It

also provides some background information from statistical physics.

In chapter 4, we generalize Boolean Kauffman networks by softening the hard

binary discretization and allowing variables to assume values in general discrete, fi-

nite sets. These multistate Kauffman networks are generic models of gene regulatory

networks, in which genes are known to assume more than two functionally different

expression levels. We analytically determine the critical connectivity that separates

the biologically unfavorable frozen and chaotic phases (Theorem 4.1). This connectiv-

ity is inversely proportional to a parameter which measures the heterogeneity of the

update rules. If these update rules are unbiased, i.e. assume each value equiproba-

bly, the critical connectivity decreases when we leave the Boolean case and allow for

multiple states, albeit it does not necessarily depend on the mean number of discrete

states per variable. This decrease might lead to biologically unrealistic situations; we

are, however, able to demonstrate that the critical connectivity can be re-increased by

sufficiently biasing the update rules. The theory of Boolean Kauffman networks is ob-

tained as a special case of our more general statements. We conclude by investigating

the synchronization behavior of multistate Kauffman networks. All analytic results are

further corroborated by network simulations.

In chapter 5 we formally introduce qualitative models of gene regulatory networks

as directed graphs with signed edges according to whether a genetic interaction is acti-

vating or inhibiting. Qualitative models are what we typically obtain from experiments.

They contain less information than a Boolean model, whose update rules also precisely

specify the interplay of the various regulators of a gene. We propose to systemati-

cally convert qualitative into Boolean models via so-called generic logics, which allow

combination of activating and inhibiting influences into an update rule.

We investigate Kauffman networks whose update rules are generated by generic

logics. Similar to the bias for update rules from chapter 4, we introduce a bias towards

activating edges. We begin by studying the truth-content of Kauffman networks with

generic logics, which is an approximation of the fraction of ones (more precisely, of the
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fraction of variables being one). The asymptotic behavior of this quantity is shown to

be essentially independent of the initial conditions, and its attractor is characterized

(Theorems 5.1, 5.2 and 5.3). We continue with numeric analyses of the truth-content.

Especially for small (biologically implausible) fractions of activating edges, the truth-

content exhibits a rich dynamical behavior including period-doublings leading to chaos

as the connectivity of the network grows. In the biologically plausible case of larger

fractions of activating edges and small connectivities, the truth-content has stable sta-

tionary dynamics. We define truth-stable Kauffman networks with generic logics as

networks whose truth-contents exhibit non-chaotic dynamics.

Our results about the truth-content of Kauffman networks with generic logics allow

us to derive a criterion for phase transitions in these networks (Theorems 5.5 and 5.6).

In numeric analyses we find multiple, intricately shaped critical boundaries, which fit

nicely into the theory of “Living at the edge of chaos.” Simulations further strengthen

the significance of our analytic results.

In chapter 6 we conclude with a systems biology application. We use this applica-

tion to outline a possible extension of Boolean models to continuous dynamical systems.

The biological process we study is an aspect of brain formation during embryonic devel-

opment viz differentiation of mid- and hindbrain. The differentiation of these two brain

regions is mediated inter alia by molecular signals emitted from the so-called isthmic

organizer, in particular, by Fgf8 and Wnt1 proteins. The isthmic organizer is charac-

terized by a well-defined pattern of locally restricted gene expression domains around

the boundary between prospective mid- and hindbrain, the mid-hindbrain boundary.

This pattern is established and maintained by a gene regulatory network that is not

yet understood in full detail.

In a first step, we set up a Boolean model of this regulatory network. To this

end, we show that a Boolean analysis of the characteristic spatial gene expression pat-

terns at the murine mid-hindbrain boundary reveals key regulatory interactions. Our

analysis employs techniques from computational logic for the minimization of Boolean

functions. In particular, we predict a maintaining rather than inducing effect of Fgf8

on Wnt1 expression, an issue that remained unclear from published data. We provide

experimental evidence that Fgf8, in fact, only maintains but does not induce Wnt1
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1. INTRODUCTION

expression around the murine mid-hindbrain boundary.1 In combination with previ-

ously validated interactions, this finding allows us to construct a Boolean model of the

regulatory network at the mid-hindbrain boundary.

We then outline a possible way of transforming Boolean models into continuous

dynamical systems with switch-like interactions and briefly discuss the dynamical be-

havior of these systems, in particular, with respect to fixed points. We apply the

transformation to our Boolean model of the mid-hindbrain boundary. Simulations of

the resulting continuous system show that it is, indeed, competent to reproduce impor-

tant biological phenomena, such as refinements and sharpenings of expression patterns,

that could not have been captured by the Boolean model.

Main scientific contributions

Here, the main contributions of this thesis are summarized and the respective ma-

nuscripts by the author are referenced. Some of these works laid the foundation for

collaborations; manuscripts having arisen therefrom are also cited.

Chapter 4

• A general class of multistate Kauffman networks is introduced, and a criterion

for phase transitions is derived [Wittmann et al., 2010].

• A dynamical system is presented and analyzed that models ensembles of networks

as well as Kauffman networks with fuzzy logics [Wittmann and Theis, 2010a]. It

allows, for instance, to investigate the synchronization behavior of these ensem-

bles.

Chapter 5

• The concept of generic logics as a way to link qualitative and Boolean models is

introduced and studied [Wittmann and Theis, 2010b].

1Collaboration with Nilima Prakash (Institute of Developmental Genetics, Helmholtz Zentrum

München)
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• The class of Kauffman networks with generic logics is introduced and investigated

for critical phenomena. To the best of our knowledge, it is the first class of KNs

exhibiting multiple critical connectivities [Wittmann and Theis, 2010b].

Chapter 6

• A method for the analysis of spatial expression patterns is presented [Wittmann

et al., 2009a]. Applied to the gene expression profile at the mid-hindbrain bound-

ary several genetic interactions are predicted. Unknown interactions have been

experimentally validated.

• The first mathematical model of gene regulation at the mid-hindbrain boundary

is presented [Wittmann et al., 2009a]. It is further analyzed by Ansorg et al.

[2010] and Breindl et al. [2010].

• A possible transformation of Boolean models into continuous dynamical systems

is outlined [Wittmann et al., 2009b], which is also available in our MATLAB

modeling toolbox ODEfy [Krumsiek et al., 2010].
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2

Prerequisites

Was man nicht weiß, das eben brauchte man,

Und was man weiß, kann man nicht brauchen.

Faust, Johann Wolfgang von Goethe

According to Eykhoff [1974], a mathematical model is “a representation of the

essential aspects of an existing system (or a system to be constructed) which presents

knowledge of that system in usable form.” Mathematical models may take many forms.

It is probably one of Newton’s chief merits to have developed the language of differential

equations and dynamical systems for the statement of his laws of motion and gravity. In

many fields of science, including biomathematics, mathematical models are ever since

formulated in this language. Over the last decade, however, a new language has been

established, that of graphs and complex networks. It proved particularly suitable to

describe all kinds of complex systems, ranging from the Internet to biological systems,

such as gene regulation [Albert and Barabási, 2002].

In this thesis, we speak both languages and are now going to introduce the necessary

concepts and techniques from each (sections 2.1 and 2.2). We will also need some
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2. PREREQUISITES

vocabulary from Boolean algebra (section 2.3). After these mathematical prerequisites,

we familiarize the reader with the basic principles of gene expression and its regulation

as well as with our biological application from chapter 6 (section 2.4).

2.1 Prerequisites from graph theory

The study of networks has gained importance in all fields of science which require the

analysis of complex relational data. It dates back to the year 1736 when Leonard Euler

published his famous paper “Seven Bridges of Königsberg.” The mathematical descrip-

tion of vertices and edges introduced by Euler in this publication was the foundation of

graph theory, the branch of mathematics that became the framework of complex net-

works theory. For this reason, we now introduce the basics of this field of mathematics,

for details we refer the reader to the “Modern Graph Theory” by Bollobás [1998].

Definition 2.1 (graph). An undirected (directed) graph G is an ordered pair of disjoint
sets pV,Eq such that V � H and E is a set of unordered (ordered) pairs of elements of
V . The elements of V are the nodes of G, the elements of E are called edges.

The numbers of elements in V and E are called the order and size of G; they are

denoted by N and M , respectively. A node is usually referred to by its order i in the

set V . In an undirected graph, two nodes i, i1 P V are called adjacent (neighbors) if

pi, i1q P E. In this case, the edge pi, i1q is said to be incident in nodes i and i1, or to

join the two nodes; the two nodes i and i1 are called the end-nodes of edge pi, i1q. In a

directed graph, a node i is called predecessor or input of a node i1 and, conversely, i1 is

called successor or target of i if piÑ i1q P E.

For some node i in an undirected graph we let Npiq denote the set of its neighbors;

in the case of a directed graph, Npiq will denote the set of predecessors of i. In the latter

case, we inductively define the tuple of the t-th generation predecessors of i, Ntpiq :�
pNpi1q | i1 P Nt�1piqq, t � 1, 2, . . ., where N0piq � piq. (Clearly, N1piq � Npiq.) Finally,

we let Pretpiq � pNτ piq | τ � 0, 1, . . . , tq, t � 0, 1, . . ., denote the tuple of predecessors

of i up to the t-th generation.

In an undirected graph, the degree (connectivity) Ki of a node i is the number

of incident edges. In the directed case, one distinguishes between the in-degree and

out-degree of i, which are, of course, defined as the number of inputs and targets of i,

respectively. In this thesis, we use the terms degree and connectivity also for directed
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2.1 Prerequisites from graph theory

graphs and, by convention, refer to the in-degree. A basic topological characterization

of a graph G is given by its degree distribution P pKq, defined as the probability that

a node chosen uniformly at random has degree K or, equivalently, as the fraction of

nodes in the graph having degree K. In directed graphs we work with the (in-)degree

distribution Pin pKq.
A signature of a graph G � pV,Eq is a mapping σ : E Ñ t�,�u. A graph together

with a signature is called signed graph. In addition to the purely topological information

about interactions in a network provided by an (unsigned) graph, a signed graph also

specifies the type of the interactions. For each signature σ of G we denote the inverted

signature by  σ, i.e. for each edge e P E

 σ peq �
" � if σ peq � �
� if σ peq � � .

Random graphs

Starting with the pioneering work of Erdös and Rényi [1959], a new line of research

began, focusing on average properties of families of graphs. The central object of study

in this subfield of graph theory is a random graph. Most generally, we can define

a random graph as a probability space whose elements are graphs. The probability

measure is often defined via a random process which yields graphs as realizations.

Such a random process is also called generative model . In here, we focus on random

graphs with a fixed number of nodes.

An important example for random graphs is the Erdös-Rényi graph, which we

present in its version for directed graphs.

Example 2.1 (Erdös-Rényi graph). For 0 ¤ m ¤ 1, let Gpm,Nq be the probability
space of all 2N

2
(directed) graphs on N nodes, where the probability of a graph with

M edges is mM p1 � mqN2�M . Gpm,Nq is called Erdös-Rényi graph. An equivalent
definition is given by the following generative model, which yields graphs on N nodes:
A graph on N nodes is constructed by including each of the N2 possible (directed)
edges independently with probability m.

Now, suppose we are given some random graph G, and consider the following random

experiment. Pick a realization of G and choose one of its nodes uniformly at random,

we call it i. The distribution of the random variable Ki is called the degree distribution

11



2. PREREQUISITES

of G. If G � Gpm,Nq is an Erdös-Rényi graph, the degree distribution is the binomial

distribution

P pKi � Kq �
�
N

K



mKp1�mqN�K ,

as each of the N nodes is independently chosen to be an input of i with probability

m. In the limit of large N , where mN � M constant, this can be approximated by a

Poisson distribution

P pKi � Kq � MKe�M

K!
.

In the undirected case, it is a non-trivial task to define a random graph with a given

degree distribution. In the directed case, however, this is easy.

Example 2.2 (configuration model). Let Pin pKq, K � 1, 2, . . . ,Kmax, Kmax ¤ N , be
a distribution. We let G pPinq denote the space of all graphs on N nodes whose in-
degrees are bounded by Kmax. We turn G pPinq into a probability space by defining a
generative model that yields realizations in G pPinq: For each node i pick its in-degree
Ki randomly according to Pin and choose its Ki inputs randomly from among the N
nodes with equal probability. This generative model is called configuration model .

Often, random graphs are studied in the thermodynamic limit of large N . Here, we

have the following important lemma, which we generalize from Hilhorst and Nijmeijer

[1987].

Lemma 2.1. Let Kmax ¥ 1. There exists a sequence ptN qN¥Kmax
such that tN Ñ 8

as N Ñ 8 satisfying the following: For N ¥ Kmax let G be a realization of a random
graph G pPinq on N nodes, where Pin as in Example 2.2. Then, the probability that for
some node i of G equals occur among the Pretpiq for 0 ¤ t ¤ tN is on the order of
OpNαq with α   0. In other words, the probability for the subgraph on Pretpiq to be
acyclic as an undirected graph approaches 1 as N grows.

Proof. Let N ¥ Kmax. The following holds for a realization of a random graph G pPinq
on N nodes and some randomly chosen node i: The size of Pretpiq is bounded by

|Pretpiq| ¤
$&
% 1�Kmax � . . .�Kt

max �
Kt�1

max � 1
Kmax � 1

, Kmax ¡ 1

t , Kmax � 1 .

The probability that equals occur among the Pretpiq is bounded by

1�
|Pretpiq|¹
k�1

�
1� k

N



� 1

2
N�1|Pretpiq| p|Pretpiq| � 1q � O

�
N�2|Pretpiq|�4

�
.
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2.2 Prerequisites from dynamical systems theory

This is of order OpNαq with α   0 if we keep t restricted to 1 ¤ t ¤ tN , where

tN �

$'&
'%

β
logpNq

2 log pKmaxq , with β   1 , if Kmax ¡ 1

Nβ , with β   1
2
, if Kmax � 1 .

One commonly refers to this lemma by claiming that “in the thermodynamic limit

we may assume inputs to be independent.” We will explain this statement in Remark

4.4.

In the following, unless specified otherwise, a graph will always be directed, and a

random graph will always be given by the configuration model from Example 2.2.

2.2 Prerequisites from dynamical systems theory

For the general introduction to dynamical systems in sections 2.2.1–2.2.3 we follow

the book by Guckenheimer and Holmes [1990]. For an account of dynamical systems

as biomathematical models we refer the reader to the textbooks about mathematical

biology by Murray [2002] and De Vries et al. [2006].

2.2.1 General notions from dynamical systems theory

Let us straightaway give the most important definition.

Definition 2.2 (dynamical system). A dynamical system is a tuple pT,X,Φq consisting
of a monoid T , a set X, and a function Φ : T � X Ñ X satisfying Φp0, xq � x and
Φ pt2,Φ pt1, xqq � Φ pt1 � t2, xq. The function Φ is called the evolution function of the
dynamical system. The set X is called state-space.

2.2.1.1 Orbits and invariant sets

Fixing x P X, the function Φx : T Ñ X, t ÞÑ Φpt, xq is called flow through x and its

graph γpxq :� tΦxptq | t P T u is called orbit or trajectory of x. A subset U � X of the

state-space is called invariant if for all x P U it holds γpxq � U .

Let us now discuss several types of orbits. A point x P X is called fixed point or

equilibrium if Φpt, xq � x for all t P T . In this case, the orbit of x is a singleton,

γpxq � txu. An orbit γpxq of x is called periodic if there exists τ P T such that
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Φpt, xq � Φpt � τ, xq for all t P T . The smallest such τ is called the period of γpxq.
Each point in γpxq is called τ -periodic point .

Often, T represents time and one chooses T � N0,Z,R�0 or R. If T � Z or T � R
one distinguishes between positive and negative invariant sets. A set U � X is positive

(negative) invariant, if for all x P U and t ¥ 0 (t ¤ 0) it holds Φpt, xq P U .

Of particular interest is the asymptotic behavior of a dynamical system in the limit

of large times. We now introduce several notions to characterize this behavior. For

this, we let X be a metric space with metric d. This metric then induces a distance

function for points x P X and sets U � X

distpx, Uq � inf
x1PU

dpx, x1q .

2.2.1.2 Types of stability

We begin with the central concepts of Lyapunov and orbital stability . An orbit γpxq is

called stable in the sense of Lyapunov (i.s.L.) if for all ε ¡ 0 there is δ ¡ 0 such that

d
�
x, x1

�   δ ùñ d
�
Φpt, xq,Φpt, x1q�   ε for all t ¥ 0 .

Otherwise, γpxq is called unstable i.s.L. If γpxq is stable and, moreover, there is δ0 ¡ 0

such that

d
�
x, x1

�   δ0 ùñ lim
tÑ8

d
�
Φpt, xq,Φpt, x1q� � 0 ,

then γpxq is called asymptotically stable i.s.L. The orbit γpxq is called neutrally stable

if it is stable but not asymptotically stable.

If γpxq is a stable orbit i.s.L. the two orbits γpxq and γpx1q remain “synchronized”

provided x and x1 are sufficiently close in the sense of the above definition. Orbital

stability is a weaker concept of stability that relaxes the requirement of synchrony. An

invariant set U � X is called orbitally stable if for all ε ¡ 0 there exists δ ¡ 0 such that

distpx, Uq   δ ùñ dist pΦpt, xq, Uq   ε for all t ¥ 0 .

Otherwise, U is called orbitally unstable. If U is orbitally stable and, moreover, there

is δ0 ¡ 0 such that

distpx, Uq   δ0 ùñ lim
tÑ8

dist pΦpt, xq, Uq � 0

then U is called orbitally asymptotically stable.

In this thesis, unless specified otherwise, we always work with the concept of Lya-

punov stability.
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2.2.1.3 ω-limit points and attractors

Another important concept for the characterization of a system’s long-time behavior

are ω-limit points. A point x is called an ω-limit point of some x0 P X if there is a

sequence of times ptqqq¥0 such that tq Ñ 8 and Φ ptq, x0q Ñ x as q Ñ 8. If T � Z or

T � R we can also define α-limit points as limits of sequences Φ ptq, x0q where tq Ñ �8.

The sets ω px0q and α px0q of all ω-limit points and α-limit points of x0 are called the

ω-limit set and α-limit set of x0.

A more global description of the asymptotic dynamics can be given in terms of the

attractors of a dynamical system. We call a closed, invariant set A � X attracting , if

there is some neighborhood U � A of A such that Φpt, xq P U for t ¥ 0 and Φpt, xq Ñ A

as tÑ 8, for all x P U . A repelling set is defined analogously, replacing t by �t. The

attractors of a dynamical system are its “minimal” or “irreducible” attracting sets. We

follow Guckenheimer and Holmes [1990] and make

Definition 2.3 (attractor, preliminary1). An attractor is an attracting set A � X that
contains a dense orbit.

We already got to know important examples of attracting and repelling sets.

Remark 2.1. Any asymptotically stable fixed point or periodic orbit is an attractor.
Any unstable fixed point or periodic orbit is a repelling set.

2.2.1.4 Types of dynamical systems

We now list several types of dynamical systems. In a real, time-continuous dynamical

system we have T � R, X � Rn. Moreover, we require that for all x P X the flow

Φx : T Ñ X, t ÞÑ Φpt, xq through x and for all t P T the function Φt : X Ñ X,

x ÞÑ Φpt, xq are continuous. The set of functions tΦtut is a group with identity Φ0 and

inverse Φ�1
t � Φ�t.

Each system of autonomous first order differential equations

9x � ϕpxq , x P Rn ,

with a vector field ϕ : Rn Ñ Rn induces a time-continuous dynamical system if the

pertaining initial value problems

9x � ϕpxq
xp0q � x0

(2.1)

1In section 2.2.3.1 we will somewhat relax this definition.
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have globally unique solutions for all x0 P X. According to the theorem by Picard-

Lindelöf, see e.g. Coddington and Levinson [1972], this is, in particular, the case if ϕ

is globally Lipschitz-continuous. The evolution function Φ of the dynamical system is

given by the fundamental solution of (2.1). The fixed points of the dynamical system

are the zeros of the vector field ϕ.

The discrete models of gene regulation presented in this thesis give rise to dynamical

systems where X is some finite discrete set and T � N0. We will study mean-field

quantities of these models, which are described by dynamical systems with X � Rn

and T � N0. The first kind of dynamical systems will be introduced in chapter 3. In

the remainder of this section, let us speak about dynamical systems with X � Rn and

T � N0 or T � Z.

2.2.2 Discrete dynamical systems

Let X � Rn and T � N0 or T � Z. We consider time-discrete dynamical systems

defined by a Cl-map Ψ : Rn Ñ Rn. If T � Z we require Ψ to be a diffeomorphism.

The evolution function of the dynamical system is given by Φpt, xq � Ψtpxq. If T � Z,

we define Ψt � �
Ψ�1

��t for t   0. In other words, an orbit γ pxp0qq of this dynamical

system is given by the iteration

xpt� 1q � Ψ pxptqq . (2.2)

2.2.2.1 Linear discrete dynamical systems

Let us begin with the simple case of linear Ψ. Then xpfq � 0 is a fixed point of system

(2.2).

Proposition 2.1 (stability criteria). We have the following stability criteria for xpfq.

• If |λ|   1 for all eigenvalues λ of Ψ, then xpfq is asymptotically stable.

• If |λ| ¤ 1 and λ semisimple if |λ| � 1 for all eigenvalues λ of Ψ, then xpfq is
stable.

• Otherwise xpfq is unstable.
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2.2 Prerequisites from dynamical systems theory

To describe the dynamics of (2.2) one often writes Rn as the direct sum of the

so-called stable, unstable and center subspaces, Rn � Es ` Eu ` Ec, where

Es :� span t(generalized) eigenvectors λ of Ψ | |λ|   1u
Eu :� span t(generalized) eigenvectors λ of Ψ | |λ| ¡ 1u
Ec :� span t(generalized) eigenvectors λ of Ψ | |λ| � 1u .

Observe that, in general, the generalized eigenspaces of Ψ are invariant sets.

2.2.2.2 Non-linear discrete dynamical systems

Now, consider again the case of general Ψ and suppose xpfq is a fixed point of system

(2.2). We ask if we can describe the local behavior of system (2.2) around xpfq by the

linearized system

xpt� 1q � Jxptq (2.3)

with J � DΨ|xpfq . In mathematical terms, we ask if the two systems are locally

conjugate at xpfq, i.e. if there exists a homeomorphism h defined in a neighborhood U

of xpfq which maps orbits of system (2.2) locally on orbits of system (2.3)

h pΨpxqq � Jhpxq for all x P U .

In general, this is not the case. However, we have such a statement if the fixed point

xpfq is hyperbolic, i.e. if J has no eigenvalues on the unit circle.

Theorem 2.1 (Hartman-Grobman). If the fixed point xpfq is hyperbolic, the two sys-
tems (2.2) and (2.3) are locally conjugate at xpfq via a homeomorphism h, which pre-
serves the orientation of orbits.

As h preserves the orientation of orbits, the Hartman-Grobman theorem implies

Corollary 2.1. In the situation of Theorem 2.1, the type of stability of xpfq (with
respect to system (2.2)) is equal to the type of stability of ξpfq � 0 with respect to
system (2.3).

In the case of general xpfq, we have the following (weaker) stability criterion.
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Theorem 2.2 (linear stability analysis). If any eigenvalue of J � DΨ|xpfq has absolute
value larger than one, the fixed point xpfq of system (2.2) is unstable. If all eigenvalues
of J have absolute value smaller than one, the fixed point xpfq is asymptotically stable.
If the largest eigenvalue modulus is one, the stability of xpfq cannot be determined by
a linear analysis alone, but depends on higher-order terms. We also refer to such
equilibria as critical fixed points.

Remark 2.2. The study of a τ -periodic orbit γ
�
xppq

�
can be reduced to the analysis of

the fixed point xppq of the map Ψτ . This is to say, we simply define J as

J � DΨτ |xppq �
¹

xPγpxppqq
DΨ|x

in Theorem 2.2.

If T � Z (and Ψ is a Cl-diffeomorphism), one also has a (local) generalization of

the stable and unstable subspaces to non-linear systems. Let U be a sufficiently small

open neighborhood of the fixed point xpfq. We define the sets

Ws
loc

�
xpfq

	
�

!
x P U | Ψtpxq P U @ t ¥ 0 and lim

tÑ8
Ψtpxq � xpfq

)
Wu
loc

�
xpfq

	
�

"
x P U | Ψtpxq P U @ t ¤ 0 and lim

tÑ�8
Ψtpxq � xpfq

*
.

Theorem 2.3 (stable and unstable local manifolds). The two sets Ws
loc

�
xpfq

�
and

Wu
loc

�
xpfq

�
are Cl-manifolds as well as positive and negative invariant sets of system

(2.2). They are tangent to the stable and unstable subspaces Es and Eu of system (2.3)
at xpfq, respectively, and can be represented as graphs of functions

ws : U X Es Ñ Eu ` Ec and
wu : U X Eu Ñ Es ` Ec .

We call Ws
loc

�
xpfq

�
and Wu

loc

�
xpfq

�
the stable and unstable manifold of system (2.2)

at xpfq.

2.2.3 Statistical properties of discrete dynamical systems

There are two general approaches to the study of dynamical systems, we shall call them

the geometric and the statistical approach. The goal of the geometric approach, that we

have, so far, followed, is to (qualitatively) draw a phase portrait of the dynamical system
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Figure 2.1: Ad Example 2.3. Graph of the map Ψ. The origin is a repellent fixed point
and the ω-limit set of Lebesgue-almost all points.

under study. The statistical approach, which we are going to outline in the following,

looks for typical properties and behaviors of a system. The distinction between typical

and exceptional properties requires the use of a measure. In here, this measure will

always be the Lebesgue measure ν. We still consider the time-discrete dynamical system

from (2.2).

2.2.3.1 Metric attractors

Let us first re-think Definition 2.3 of an attractor. Collet and Eckman [1980], in adopt-

ing the statistical point of view, describe an attractor as “the set of points to which

most points evolve.” This is to say, an attractor should (at least partially) describe

the generic behavior of a dynamical system. The following example taken from Milnor

[1985] shows that Definition 2.3 is unable to meet this requirement.

Example 2.3. Consider the dynamical system T � N0, X � R and Φpt, xq � Ψtpxq with

Ψpxq �
#

4x
�
1� x2

�2
, if |x| ¤ 1

0 , everywhere else.

By inspection of the graph of Ψ (cf. Figure 2.1) one observes that orbits of Lebesgue-
almost all points from the real line ultimately end up in the origin. Exceptions are the
two unstable fixed points where the graph intersects with the diagonal. The origin,
however, is an unstable fixed point and no attractor according to Definition 2.3.
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From now on, we adopt the definition of attractor given by Milnor [1985]. This def-

inition is motivated by the idea that an attractor should represent the generic behavior

of a considerable portion of initial conditions. Let us make this a precise mathematical

notion. For an invariant set U � X, we let

BpUq :� tx P X | ωpxq � Uu

denote the basin of attraction of U . In other words, BpUq consists of all points that

asymptotically end up in U . An attracting set A is called globally attracting , if XzBpAq
has measure zero. We now make

Definition 2.4 (metric attractor, Milnor [1985]). A (metric) attractor (attractor in
the sense of Milnor) is a (forward) invariant set A satisfying the following.

• The basin of attraction BpAq has positive Lebesgue measure.

• If A1 is another (forward) invariant set, which is strictly contained in A, then
BpAqzBpA1q has positive measure.

If XzBpAq is a measure zero set, we call A a global attractor.

Note that an attractor with positive measure need not attract anything outside of

itself.

2.2.3.2 Invariant and natural measures

A central concept in the statistical description of dynamical systems is that of a measure

describing the long-time distribution of orbits. We call a Borel measure µ invariant for

Ψ if µ
�
Ψ�1pUq� � µpUq for every measurable subset U � X. An invariant measure µ

is a natural measure for Ψ if

µ � lim
tÑ8

1
t

t�1̧

τ�0

δΨτ pxq (2.4)

for all x in a set of positive Lebesgue measure, where δΨτ pxq denotes the Dirac mass on

Ψτ pxq. The limit in (2.4) means convergence of measures in the weak� sense.1

If system (2.2) has a periodic attractor, there exists a natural measure for Ψ, viz

equally weighted point masses on the points of the attractor. In this case, the measure
1A sequence of measures µt on X is said to converge weakly� to the measure µ if lim inftÑ8 µtpUq ¥

µpUq for all open subsets U � X.
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has no density. We shall be particularly interested in the converse case. According to

the Radon-Nikodym theorem, see e.g. Shilov and Gurevich [1966], a measure µ that is

absolutely continuous with respect to the Lebesgue measure ν,1 has a density ρ with

respect to ν, µpUq � ³
U ρdν. We write acim for an absolutely continuous (with respect

to ν) invariant measure and acip if the measure is, moreover, a probability measure.

2.2.3.3 Lyapunov exponents

In the geometric approach we introduced the local stability analysis of fixed and periodic

points, cf. Theorem 2.2. Lyapunov exponents generalize the idea of eigenvalues (of a

local linearization) to give averaged contraction and expansion rates along a general

orbit, i.e. an orbit which need not be a fixed or periodic point. At each point xptq of a

(forward) orbit pxptqqt¥0 these contraction and expansion rates are measured along n

orthogonal directions and given by the singular values of the Jacobian Jptq � DΨt|xp0q,
i.e. by the eigenvalues of

�
JptqJptqJ�1{2. The Lyapunov exponents at xp0q are defined

as the logarithms of the eigenvalues of the matrix

Λ :� lim
tÑ8

�
JptqJptqJ�1{p2tq

, (2.5)

provided this limit exists. Given an invariant measure µ for Ψ, the multiplicative ergodic

theorem, see e.g. Ruelle [1979], guarantees existence of this limit for µ-almost all xp0q
if DΨ is Hölder continuous.

2.2.4 Maps on the interval

We now describe discrete dynamical systems induced by maps on the interval from a

statistical point of view. Hence, we still consider the time-discrete dynamical system

from (2.2) but now in the special case where Ψ is an endomorphism of a real interval

I � rα, βs � R. For a comprehensive treatment of this topic, see the books by Collet

and Eckman [1980] as well as by De Melo and van Strien [1993] or the review by

Thunberg [2001]. In the following, we often refer to attractors, orbits, etc. of system

(2.2) as attractors, orbits, etc. of the map Ψ.

1This means that νpAq � 0 implies µpAq � 0.

21



2. PREREQUISITES

2.2.4.1 The logistic equation

A famous representative of this class of dynamical systems is the family of logistic

equations

Ψbpxq � bxp1� xq ,

0 ¤ b ¤ 4, I � r0, 1s. It is frequently referred to as an archetypal example of how

complex dynamical behavior can arise from simple nonlinear equations. The map was

introduced by the biologist Robert May [1976] as a discrete-time demographic model.

The xptq represent populations at years t � 0, 1, 2, . . .. In particular, xp0q represents the

initial population at year 0. The parameter b is a positive number, and represents a net

rate for reproduction and starvation. The logistic equation captures two effects: First,

reproduction with a rate proportional to the size of the current population when the

latter is small. Second, starvation with a rate proportional to the “carrying capacity”

of the environment less the current population when the latter is large.

Let us begin with the phenomenology of the logistic equation as discussed e.g. by

Thunberg [2001]. It is best visualized in the bifurcation diagram shown in upper Figures

2.2A and B. Here, the value of 0 ¤ b ¤ 4 is plotted against the attractor Ab of

xpt� 1q � Ψb pxptqq , (2.6)

which is obtained numerically, see figure caption for technical details. We observe what

has entered folklore by now as the period-doubling route to chaos. For 0 ¤ b   3 system

(2.6) has a stable fixed point as unique attractor, zero if b ¤ 1. For b � 3 this fixed

point becomes critical and bifurcates into a stable periodic attractor of length two.

This is called a pitchfork bifurcation or a period-doubling bifurcation. At b � 1 � ?6

a further period-doubling bifurcation occurs as the stable 2-periodic attractor becomes

critical and bifurcates into a 4-periodic attractor. This process is repeated leading to

2q-periodic attractors, q � 0, 1, 2, . . .. The sequence of parameter values pbqqq¥0 at

which the bifurcations occur accumulates at b8 � 3.57 with a geometric rate equal to

the Feigenbaum constant (� 4.669).

The parameter b8 is also called the on-set of chaos, which we, for now, informally

define as an irregular, aperiodic behavior where trajectories show a high sensitivity to

initial conditions. Beyond b8 we detect windows of periodicity, i.e. intervals rb10, b18s,
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Figure 2.2: The upper figures show the bifurcation diagram of the logistic equation
(2.6). The attractor Ab of (2.6) is plotted against (A) 0 ¤ b ¤ 4 and (B) 3 ¤ b ¤ 4.
The attractors were found by iterating (2.6) 106 times and plotting the subsequent 102

iterations. In the lower figures the corresponding Lyapunov exponents λb from (2.7) are
plotted against b. They were obtained by averaging over 103 iterations (after the burn-in).

where a τ -periodic attractor comes into being as b passes b10, and period-doubling bifur-

cations to τ � 2q-cycles occur as b reaches certain b1q. The sequence
�
b1q
�
q¥0

accumulates

again at some finite b18 with an asymptotic geometric rate equal to the Feigenbaum

constant. It can be shown [Thunberg, 2001] that there are countably infinitely many of

these intervals rb10, b18s and that they are dense in r0, 4s. Admittedly, this does not agree

with our visual impression from upper Figures 2.2A and B, as here it seems that for b

close to 4 no periodic orbits occur any more. This, however, is due to the fact that the

system was evaluated at values of b on a grid in r0, 4s. For higher resolutions periodic

windows would appear in every arbitrarily small interval. Still, although periodicity

is predominant in a topological sense, chaotic behavior occurs for a parameter set of

positive Lebesgue measure.

2.2.4.2 S-unimodal maps

So far, our description of the logistic equation was rather informal. In particular, we

took it for granted that there is only one attractor for each parameter value b. We also

did not describe the structure of the attractors other than the stable periodic orbits.

Let us now back up the above phenomenological description by rigorous mathematical

results. We will do so in a more general context. In fact, the behavior which we just
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delineated is not specific to the logistic equation, but the generic behavior of a large

class of maps, the so-called S-unimodal functions. In chapter 5 we will make use of this

theory, which we now outline in the remainder of this section.

Let I � rα, βs � R again be an interval. Before defining the class of S-unimodal

functions, let us introduce and discuss their crucial properties. A first important prop-

erty of an S-unimodal function Ψ is that its Schwarzian derivative

S Ψ � Ψ3

Ψ1
� 3

2

�
Ψ2

Ψ1


2

,

where defined, is negative. We recall that the Schwarzian derivative satisfies the fol-

lowing chain rule.

Proposition 2.2 (chain rule of the Schwarzian derivative). Let Θ,Ψ P C3pIq. Then

SpΘ �Ψqpxq � S Θ pΨpxqq �Ψ1pxq2 � S Ψpxq

for x P I.

The importance of a negative Schwarzian derivative for the dynamics of iterations

was realized by David Singer [1978], who proved

Theorem 2.4 (Singer [1978]). If γ is a stable periodic orbit of a function Ψ : I Ñ I

with negative Schwarzian derivative, then at least one local extremum of Ψ, i.e. a critical
point of Ψ or an endpoint of I, approaches γ under the iteration Ψ.

Before turning our attention to the intricate dynamics of S-unimodal functions, let

us take care of two rather uninteresting cases, that will nonetheless be needed below.

Lemma 2.2. 1. If a continuous function Ψ : I Ñ I with unique fixed point xpfq is
monotonously increasing on at least

�
α, xpfq

�
or at least

�
xpfq, β

�
, then xpfq is a

globally attracting fixed point.

2. If Ψ : I Ñ I is a monotonously decreasing C3 function with negative Schwarzian
derivative, then Ψ has a global attractor, which is either a fixed point or a 2-cycle.

Proof. We show the first claim in the case that Ψ is increasing on
�
α, xpfq

�
. Observe

that Ψpxq ¡ x for all x P �α, xpfq� and Ψpxq   x for all x P �xpfq, β�. The fixed point
attracts

�
α, xpfq

�
, as each trajectory starting in this interval is increasing and bounded

from above by xpfq and, thus, converges to what has to be xpfq. A trajectory starting
in

�
xpfq, β

�
either stays in this interval or travels into

�
α, xpfq

�
. The latter case has
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already been taken care of. In the first case, the trajectory is decreasing and bounded
from below by xpfq and, thus, converges to what has to be xpfq.

Now assume a situation as in the second claim. Observe that Ψ2 is monotonously
increasing. Hence, for x P I the sequences

�
Ψ2tpxq�

t¥0
and

�
Ψ2t�1pxq�

t¥0
are monoto-

nous as well as bounded and thus converge to xeven and xodd, respectively. Graphically,
the trajectory of x either spirals out and approaches a 2-cycle or spirals in and ap-
proaches a 2-cycle or a fixed point. In each case, the ω-limit set ωpxq �  

xeven, xodd
(

attracts all points between x and xeven and all points between Ψpxq and xodd. Thus, all
attractors of Ψ are either fixed points or periodic attractors of length 2. By Theorem
2.4 there can be at most two such attractors as each of them attracts either of the
endpoints of I. The attractor of α attracts all of rα,Ψpαqs. Since Ψpβq   Ψpαq both
endpoints are attracted by the same attractor.

The second crucial property of S-unimodal functions is that they possess exactly

one “hump.” This “hump” is a critical point usually assumed to be a maximum. It

needs to be non-degenerate, i.e. a critical point with non-vanishing second derivative.

Sometimes such a point is also called quadratic critical point.

Let us now formally define the class of S-unimodal functions.

Definition 2.5 (S-unimodal function). A function Ψ : I Ñ I is called S-unimodal if it
satisfies the following.

(S1) Ψ is a C3 function. The Schwarzian derivative S Ψ, where defined, is negative.

(S2) Ψ possesses a unique non-degenerate maximum xpcq P pα, βq, Ψ2
�
xpcq

� � 0, and
Ψ1pxq � 0 for all x � xpcq. Ψ is strictly increasing on

�
α, xpcq

�
and strictly

decreasing on
�
xpcq, β

�
.

(S3) Ψ
�
xpcq

� � β and Ψ2
�
xpcq

� � α.

As already mentioned, the crucial properties are (S1) and (S2). According to Theo-

rem 2.4 they imply that an S-unimodal function possesses at most three stable periodic

attractors. One commonly assumes some additional technical condition on the bound-

aries of I in order to guarantee uniqueness of the attractor. We choose (S3), which is

a popular choice (cf. e.g. Thunberg [2001]) but by no means the only possibility.

Remark 2.3. It can easily be seen that any quadratic function has negative Schwarzian
derivative. In particular, the maps Ψb from the logistic equation (2.6) are S-unimodal
functions.
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The following Theorem gives a characterization of the possible attractors of S-

unimodal maps.

Theorem 2.5 (Blokh and Lyubich [1991]). An S-unimodal function Ψ : I Ñ I has a
unqiue attractor A, such that ωpxq � A for Lebesgue-almost all x P I. The attractor A
is one of the following types:

1. an asymptotically stable periodic orbit,

2. a Cantor set of measure zero,

3. a finite union of intervals with a dense orbit.

In the first two cases, A is the Omega-limit set of the critical point, A � ω
�
xpcq

�
.

2.2.4.3 Formal definitions of chaos

We already described the “period-doubling route to chaos” of the logistic equation and

informally introduced chaos as irregular, aperiodic behavior where trajectories show

a high sensitivity to initial conditions. Unfortunately, there is no generally accepted

formal definition of chaos. One possibility is to define a dynamical system as chaotic

if it admits an acip. The following proposition (cf. e.g. Thunberg [2001], Theorem 9)

shows that, according to this criterion, chaotic behavior of S-unimodal functions can

only take place on interval attractors.

Proposition 2.3. Let Ψ : I Ñ I be an S-unimodal map. If Ψ has a periodic attrac-
tor, or a Cantor attractor, then Ψ admits a unique natural measure supported on the
attractor. If Ψ admits an acip µ, then µ is a natural measure and the attractor A of
Ψ is an interval attractor. In both cases, the natural measure describes the distribution
for almost all initial conditions.

Another way to define chaos is via Lyapunov exponents. As already explained, they

measure the rate of contraction or expansion along an orbit pxptqqt¥0 and are defined

as the logarithms of the eigenvalues of matrix Λ from (2.5), provided the defining limit

exists. For maps on the interval, this definition simplifies and the Lyapunov exponent

at xp0q is given by

λ pxp0qq � lim
tÑ8

1
t

t�1̧

τ�0

ln
��Ψ1 pxpτqq�� . (2.7)

With respect to the existence of λ pxp0qq and the dependence on xp0q we have the

following result.
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Proposition 2.4 (Keller [1990]). The Lyapunov exponent λ pxp0qq from (2.7) exists
for Lebesgue-almost all xp0q if Ψ is S-unimodal. In this case, λ � λ pxp0qq is identical
for almost all xp0q.

This allows us to define the dynamical system induced by Ψ as chaotic if λ is positive

(for almost all initial conditions).

We have given two possible formal definitions of chaos. Luckily, one can prove that

for S-unimodal maps they are equivalent.

Theorem 2.6 (Keller [1990]). Let Ψ : I Ñ I be an S-unimodal map. Then Ψ admits
an acip if and only if the Lyapunov exponent λ � λ pxp0qq from (2.7) is positive (for
Lebesgue-almost all xp0q P I). If λ is negative, then Ψ has a periodic attractor.

We now come back to the example of the logistic equation from the beginning of

this section for a visualization of these results. Lower Figures 2.2A and B show the

Lyapunov exponents λb of the logistic equation (2.6). We observe λb ¤ 0 in the periodic

windows and λb � 0 at each bifurcation value of b.

A further possible criterion for chaos is the sensitive dependence on initial conditions

defined by Guckenheimer [1979].

Definition 2.6 (sensitive dependence, Guckenheimer [1979]). A map Ψ exhibits a
sensitive dependence on initial conditions, if there is a set I � I of positive measure
and an ε ¡ 0 such that for any x P I and any neighborhood U of x, there is x1 P U and
a t0 ¥ 0 with d

�
Ψt0pxq,Ψt0px1q� ¡ ε.

For general (not necessarily S-unimodal) Ψ, it is often assumed that this kind of

sensitive dependence on initial conditions is equivalent to Ψ having positive Lyapunov

exponents. In Demir and Koçak [2001] two examples are given showing that this is, in

general, wrong. We may have sensitive dependence and negative Lyapunov exponents,

as well as positive Lyapunov exponents and no sensitive dependence. For S-unimodal

maps Ψ, however, the following result holds.

Theorem 2.7 (Guckenheimer [1979]). An S-unimodal map Ψ with a periodic attractor
does not have sensitive dependence on initial conditions. An S-unimodal map Ψ with
an interval attractor has sensitive dependence on initial conditions.
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Note that the interval attractor in the claim of Theorem 2.7 need not necessarily

support an acip. Thus, for an S-unimodal map, sensitive dependence on initial condi-

tions is a weaker requirement than having positive Lyapunov exponent or, equivalently,

admitting an acip.

2.2.4.4 Families of S-unimodal maps

We finally turn our attention to parametrized families of S-unimodal maps, such as the

family of logistic equations from (2.6). A natural question is how the three possible

attractor types from Theorem 2.5 are distributed over the parameter space. The fol-

lowing theorem shows that the second type (Cantor set) appears only for a measure

zero set of parameter values.

Theorem 2.8 (Avila et al. [2003]1). Let tΨbubPU , U � R, be an analytic family of S-
unimodal functions Ψb : I Ñ I. Then, for Lebesgue-almost all parameter values b P U
the map Ψb has either a periodic attractor or an interval attractor supporting an acip.

Remark 2.4. We conclude that in the situation of Theorem 2.8 there is, essentially, a
dichotomy: Either an S-unimodal map Ψb has a unique stable periodic attractor and no
sensitive dependence on initial conditions, or it has an interval attractor with positive
Lyapunov exponent supporting an acip and sensitive dependence on initial conditions.
We refer to the latter case as chaos.

2.3 Prerequisites from Boolean logic

The modern formalization of mathematical logic was founded by George Boole, a self-

educated English mathematician. He introduced his algebraic formalization of logic at

first in a minor publication, “The Mathematical Analysis of Logic”, which he extended

to his more substantial book “The Laws of Thought” [Boole, 1854]. For a modern

treatment of the topic, see e.g. the introduction by Givant and Halmos [2009]. Here, a

Boolean algebra is defined as follows.

Definition 2.7 (Boolean algebra). A Boolean algebra is a tuple pX,^,_, , 0, 1q con-
sisting of a set X, two binary operations ^ (AND, conjunction) and _ (OR, disjunc-
tion), a unary operation  (complement , negation), and two distinct elements 0 and 1,
such that the following hold for x, y, z P X.

1In Avila et al. [2003] this theorem is proven for the class of quasiquadratic mappings. As discussed

ibidem this class contains the S-unimodal functions.
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Associativity: x_ py _ zq � px_ yq _ z and x^ py ^ zq � px^ yq ^ z.

Commutativity: x_ y � y _ x and x^ y � y ^ x.

Absorption: x_ px^ yq � x and x^ px_ yq � x.

Distributivity: x^ py _ zq � px^ yq _ px^ zq.

Complements: x_ x � 1 and x^ x � 0.

In other words, a Boolean algebra is a complemented distributive lattice.

The two complement-axioms are sometimes also called “The law of the excluded

middle” and “The law of noncontradiction.” Together with “The law of identity” they

make up the classic Aristotelian laws of thought . The above irredundant axioms imply

Proposition 2.5 (laws from Boolean algebra). For elements x, y, z of a Boolean algebra
it holds:

second distributive law: x_ py ^ zq � px_ yq ^ px_ zq.

Idempotency: x^ x � x and x_ x � x.

Neutral elements: x^ 1 � x and x_ 0 � x.

Extremal elements: x^ 0 � 0 and x_ 1 � 1.

Involution:  p xq � x.

De Morgan’s Laws:  px^ yq �  x_ y and  px_ yq �  x^ y.

Duality:  0 � 1 and  1 � 0.

In any Boolean algebra the two binary operations ^ and _ are dual under the De
Morgan’s Laws.

Example 2.4. In this thesis, we typically work with the simplest Boolean algebra. It is
the generic set with two elements t0, 1u, and the operators ^, _ and  are defined as in
Table 2.1. We like to refer to the values 0 and 1 as “false” and “true” or “off” and “on.”
In biological applications we may interpret them, more meaningfully, as “inactive” and
“active”, or “not expressed” and “expressed.”

29



2. PREREQUISITES

Table 2.1: Truth-tables of the Boolean operators  (negation), ^ (conjunction), and _
(disjunction).

 x x � 0 x � 1 x^ y x � 0 x � 1 x_ y x � 0 x � 1

1 0 y � 0 0 0 y � 0 0 1

y � 1 0 1 y � 1 1 1

The set t0, 1u together with the operators ^, _, and  from Table 2.1 is probably

the best-known and most widely used, but by no means the only Boolean algebra. The

power set of any non-empty set, for instance, forms a Boolean algebra with “intersec-

tion” and “union” as the two binary operations ^ and _, respectively, and “comple-

ment” as the unary operator  . The 0-element is the empty set and the 1-element is

the set itself.

Propositional variables, Boolean functions, and their representations

Let X be the Boolean algebra from Example 2.4. We call a variable x taking values

in X a propositional variable. A literal is a propositional variable or its negation.

Disjunctive or conjunctive clauses are disjunctions or conjunctions of literals.

A K-variate Boolean function in the propositional variables x1, x2, . . . , xK is a func-

tion mapping from XK into X. We say f is monotonously increasing (decreasing) in

the k-th input, if

f px1, . . . , xk�1, 0, xk�1, . . . , xKq ¤ p¥qf px1, . . . , xk�1, 1, xk�1, . . . , xKq

for all x1, . . . , xk�1, xk�1, . . . , xK P X. The function f is called monotonous if it is

either monotonously increasing or decreasing in every input variable. Note that we

specifically exclude the cases where a function is both, monotonously increasing and

decreasing, in one of its inputs. This, however, is no severe restriction as the function

would be independent of such an input and we could simply cancel it out.

An input xk of a (not necessarily monotonous) Boolean function f is called canalyz-

ing if there exist ξi, ξo P X such that xk � ξi implies f px1, x2, . . . , xKq � ξo. This is to

say that the other inputs are relevant only if xk � ξi. A Boolean function f admitting

a canalyzing input is called canalyzing function [Harris et al., 2002].
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The simplest representation of a Boolean function f is its truth-table, a table with

two columns listing all 2K possible inputs and the corresponding output values of

f . It is often beneficial to rearrange the table, e.g. as a K-dimensional cube. A

particular clever way of visualizing truth-tables are Karnaugh-Veitch maps [Karnaugh,

1953; Veitch, 1952]; we will demonstrate their use and usefulness in chapter 6.

There is no unique way of expressing f as a propositional formula in its inputs

x1, x2, . . . , xK . The expression

f px1, . . . , xKq �
ª

pξ1,...,ξKqPXK |fpξ1,...,ξKq�1

�
�
�
� ©
k|ξk�1

xk

�
^

�
� ©
k|ξk�0

 xk

�

�
� (2.8)

is called the full disjunctive normal form of f . The outer disjunction runs over all true-

entries of the truth-table of f . In general, any representation of f as a disjunction of

conjunctive clauses is called disjunctive normal form (DNF). The dual representation

as a conjunction of disjunctive clauses is called conjunctive normal form (CNF). Here,

“dual” means duality under the De Morgan’s Laws.

2.4 Prerequisites from molecular biology

Before introducing Kauffman’s Boolean models of gene regulation in chapter 3, we

wish to briefly discuss their biological background (section 2.4.1); for details we refer

the reader to any textbook on molecular biology, e.g. the one by Lodish and Berk [2008].

The reader is also encouraged to consult the glossary on page xix as well as Figure 2.3

for a visualization of the following explanations. In section 2.4.2, we then introduce the

biological example that we will be discussing in chapter 6.

2.4.1 Gene expression and its regulation

All information required for the development and functioning of a living organism is

stored in its DNA, which can be thought of as a long sequence of letters. Almost all

cells of the organism contain a complete copy of its DNA. Genes are the functional

subunits of this DNA.
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Figure 2.3: Schematic visualization of the process of gene expression. The following reg-
ulatory mechanisms are shown: (a) A methylation prevents the transcription of a gene.
(b) An inhibiting transcription factor blocks the promotor of a gene and prevents the
RNA-polymerase from attaching. (c) An activating transcription factor recruits the RNA-
polymerase and promotes the transcription of a gene. (d) A miRNA binds to a comple-
mentary mRNA and prevents its translation into protein. (e) Protein-complex formation.
(f) Activation of protein by phosphorylation.
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2.4.1.1 Gene expression

In principle, the expression of a gene works as follows. The piece of DNA encoding

for the gene is copied in a process called transcription and an RNA transcript is as-

sembled by an enzyme called RNA-polymerase. In some cases, these RNAs are (after

some additional processing) already the final gene products. Examples for this are

ribosomal RNAs (rRNA), transfer RNAs (tRNA) or non-coding RNAs (ncRNA) such

as microRNAs (miRNA); we will discuss these RNA types in the course of this section.

When talking about genes, however, one typically refers to protein-coding genes.

Here, the RNA transcript is called messenger RNA (mRNA) and is used as a blueprint

for protein synthesis. This process is carried out by cell organelles called ribosoms.

These are macromolecules consisting inter alia of the already mentioned rRNAs. The

translation of mRNA into protein occurs according to specific rules, the so-called genetic

code, which are executed by the tRNAs mentioned above. After synthesis, proteins

often require other proteins for being functional. Either, they are active only as part

of a protein-complex , or they need to be activated by enzymes through modifications

such as phosphorylation.

We now address two questions:

1. Why does a cell need to control its gene expression?

2. What are the possible regulatory mechanisms controlling the expression of genes

and the functionality of their products?

2.4.1.2 The need for control

In order to reproduce, multi-cellular organisms need to regenerate an entire organism

from a single fertilized egg cell. During this process, the cells of an embryo need not

only divide and grow, but also need to become specified and must differentiate into

all cell types of the organism in a precise spatio-temporal order. This differentiation

of embryonic stem cells is possible only because cells can accurately and specifically

express genes which determine their cell-fates. We will study an aspect of this process

in vertebrates in chapter 6, cf. also section 2.4.2. Similarly, in the adult organism, gene

regulation guarantees and mediates the life-long supply of cells from adult stem cells.

The immune system in higher organisms relies on cells which are able to detect

potentially harmful antigens and subsequently re-arrange their gene expression enabling
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them to destroy pathogens. More generally, by adapting their gene expression cells and

whole organisms can react to all kinds of external influences, such as starvation, physical

exercise or exposure to sunlight and the ensuing DNA damage.

2.4.1.3 Regulatory mechanisms

Regulation takes place on every level of the process of gene expression described above.

The letters (a)–(f) in the following list of possible regulatory mechanisms indicate the

positions in Figure 2.3 where the respective mechanisms are visualized.

• First of all, the location of a gene on the DNA needs to be accessible to the RNA-

polymerase. This access can be hindered, for example, by epigenetic modifications

such as methylation of DNA (a).

• The RNA-polymerase initially binds to a region upstream of the actual coding

region of a gene called promotor . This recruitment and the subsequent tran-

scription of DNA can be hindered (b) as well as enhanced (c) by the binding

of so-called transcription factors to the promotor. These transcription factors

are proteins and as such products of other genes. This regulatory mechanism is

called transcriptional control and the entirety of all such regulatory dependencies

between genes is called the (transcriptional) gene regulatory network .

• The above-mentioned miRNAs regulate gene expression post-transcriptionally .

They bind to mRNA transcripts, promote their degradation and prevent their

translation into protein (d). In a broader sense, the interactions between miRNA

genes and other genes are also part of the gene regulatory network.

• Protein-complex formations (e) and modifications of proteins by other proteins,

such as phosphorylations (f), are called protein-protein-interactions and typi-

cally not considered part of the gene regulatory network. Still, protein-protein-

interactions are as essential for proper cell functioning as (post-)transcriptional

control.
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2.4.2 Gene regulation during neural development

In chapter 6, we will consider a small-scale example of a specific regulatory process in

order to illustrate further possible extensions of Boolean models. Let us now briefly

introduce this biological system.

During vertebrate development, the central nervous system arises from a precursor

tissue called neural plate. Shortly after gastrulation this neural plate is patterned along

the anterior-posterior axis into four regions, which continue to develop into forebrain,

midbrain, hindbrain and spinal cord . This patterning is determined by a well-defined

and locally restricted expression of genes as well as by the action of short- and long-

range signaling centers, also called secondary organizers [Echevarria et al., 2003]. These

secondary organizers are collections of cells emitting molecular signals which govern the

specification of adjacent brain regions.

The development of mid- and hindbrain, for example, is controlled by the activity

of such a secondary organizer. It is called the isthmic organizer (IsO) and located at

the boundary between the prospective mid- and hindbrain, the so-called mid-hindbrain

boundary (MHB). The two key molecular signals emanating from the IsO are secreted

Fgf8 and Wnt1 proteins.

Concomitantly with the patterning along the anterior-posterior axis, the neural

plate rolls up and forms the neural tube. Before embryonic day 9.0 (E9.0) we prefer to

talk about the neural plate, after this point in time we speak of the neural tube. The

neural tube is also patterned along the dorsal-ventral axis into four segments called

floor plate, basal plate, alar plate and roof plate. For a (highly schematic) visualization

of the three-dimensional patterning of the neural tube, see Figure 2.4A. The patterning

into the four plates is well understood and, for this reason, not treated in this thesis.

We only remark that a gene called Shh, which is expressed inter alia in the floor plate,

can be used as an indicator of the ventral direction. This will be of use in chapter 6

for the correct interpretation of Figure 6.3.

The IsO is characterized by the localized expression of several transcription and

secreted factors. In here, we focus on the following eight IsO genes: Otx2 , Gbx2 , Fgf8 ,

Wnt1 , the Engrailed genes En1 and En2 , which we subsume under the identifier En,

as well as the Pax genes Pax2 and Pax5 , which we subsume under the identifier Pax .

Our analysis is based on these gene’s equilibrium expression pattern at E10.5, which
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Figure 2.4: (A) Patterning of the neural tube (highly schematic) along the anterior-
posterior axis into forebrain, midbrain, hindbrain, and spinal cord as well as along the
dorsal-ventral axis into floor plate, basal plate, alar plate, and roof plate. (B) Dorsal close-
up view of the MHB region in the anterior neural tube of an E10.5 mouse embryo, anterior
to the left. Colored regions indicate the equilibrium expression domains of the (groups of)
IsO genes Otx2 , Gbx2 , Fgf8 , Wnt1 , En, and Pax . Abbreviations: Mes, mesencephalon
(midbrain); MHB, mid-hindbrain boundary; Met, metencephalon (hindbrain).

is displayed schematically in Figure 2.4B. This expression pattern was derived from

various in situ hybridization experiments, for a review see e.g. Wurst and Bally-Cuif

[2001], in particular, Figure 1c therein.

The initial expression of Otx2 and Gbx2 in the anterior and posterior neural plate,

respectively, defines the position of the prospective fore-/midbrain (Otx2 +/Gbx2 –) and

hindbrain/spinal cord (Otx2 –/Gbx2 +), respectively [Acampora et al., 1997; Wassar-

man et al., 1997]. The position of the MHB is set at the expression interface of these

two transcription factors [Broccoli et al., 1999; Li et al., 2005; Millet et al., 1999]. Sub-

sequently, expression of Wnt1 at the rostral border of the MHB in the caudal midbrain,

and of Fgf8 at the caudal border of the MHB in the rostral hindbrain is initiated in-

dependently of a requirement of Otx2 and Gbx2 for this process [Li and Joyner, 2001;

Martinez-Barbera et al., 2001]. Fgf8 plays a pivotal role in IsO patterning activity [Chi

et al., 2003; Lee et al., 1997], and Wnt1 regulates midbrain development and is required

for the maintenance of the MHB [McMahon et al., 1990; Thomas and Capecchi, 1990].

The Engrailed genes En1 and En2 are both expressed across the boundary [Davis

et al., 1988], yet their expression domains are not fully equivalent. They have been
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shown to be targets of Wnt1 in the midbrain [Danielian and McMahon, 1996] and to

regulate the expression of Fgf8 [Gemel et al., 1999]. Similarly to Engrailed, Pax5 is

also expressed across the boundary [Rowitch and McMahon, 1995], whereas expression

of Pax2 is restricted to the caudal part of the isthmic organizer [Bouchard et al., 2000].

Analysis of Pax2 -deficient embryos [Ye et al., 2001] has suggested an essential role of

Pax2 for the induction of Fgf8 . In short, it has been demonstrated that by E10.5 these

genes have become interdependent and form the core module of a regulatory network

that guarantees the stable maintenance of their specific expression patterns [Wurst and

Bally-Cuif, 2001].

Although a great deal of experimental effort has been made, this regulatory network

is not yet understood in full detail. In chapter 6, we show that a data-based inference

of Boolean models yields new insights into gene regulation at the MHB and can be

used to design validation experiments.
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Boolean models and Kauffman

networks

To be, Or not to be.

Hamlet, William Shakespeare

This thesis is about models of gene regulatory networks. However, we do not at-

tempt to model all the different levels of control, which we described in section 2.4.1.3,

in mechanistic detail. Rather, we consider an abstraction and simplification thereof. In

the models we introduce in this chapter, we normally do not distinguish between DNA,

RNAs and proteins. Rather, variables may represent any biological entity. Their states

are not described by concentrations or actual molecule numbers, but by two abstract

categories whose interpretation may vary between different variables. We, therefore,

like to speak of generic categories, such as “true” and “false”, “on” and “off”, or “is”

and “is not.” Thus, the models describe the complex system of gene regulation in terms

of classic Shakespearean choices. These choices are not based on any kinetic or bio-

physical laws. Instead the state of a variable is determined by an abstract combination
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of inputs from some of the other variables.

3.1 Boolean models

In this section, we introduce Boolean models of gene regulation. We will do so from

a network perspective. So, let G � pV,Eq denote a (directed) graph of order N with

nodes V � t1, 2, . . . , Nu and edges pi1 Ñ iq P E � V � V . The predecessors (inputs)

of a node i are denoted by i1   i2   � � �   iKi , where Ki is the node’s in-degree. We

straightaway make

Definition 3.1 (Boolean model). A Boolean model (BM) is a tuple pG, fq consisting
of a graph G and a vector of Boolean functions f � pfiqNi�1, fi : t0, 1uKi Ñ t0, 1u. The
Boolean function fi is called update rule or update function of node i and the vector of
update rules f (as a function from t0, 1uN Ñ t0, 1uN ) is called transfer function of the
Boolean model.

Remark 3.1. Each BM pG, fq gives rise to a time-discrete dynamical system as follows:
To each node i we associate a time-dependent discrete variable xiptq P t0, 1u, xptq �
pxiptqqNi�1. The evolution of xptq is determined by the iteration

xpt� 1q � f pxptqq , t � 0, 1, 2, . . . ,

where the i-th component is given by

xipt� 1q � fi

�
xi1ptq, xi2ptq, . . . , xiKi ptq

	
. (3.1)

In this thesis, we only consider the above synchronous updating, for different update
policies, see e.g. Chavez et al. [2005], Fauré et al. [2006] and Greil et al. [2007].

In the following, we will refer to trajectories of the dynamical system from Remark

3.1 as trajectories of the BM pG, fq.
The state-space of the dynamical system from Remark 3.1 is the discrete, finite set

X � t0, 1uN . We turn it into a metric space by defining the Hamming distance d of

x � pxiqNi�1 P X and x1 � px1iqNi�1 P X as

d
�
x,x1

� � 1
N

Ņ

i�1

�
1� δxi,x1i

	
,

where δxi,x1i is the Kronecker symbol. As measure we simply use the counting mea-

sure. Due to the finite state-space we can then easily characterize the ω-limit sets and

attractors.
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Proposition 3.1. Consider the dynamical system defined in Remark 3.1. The ω-limit
set of each point is either a fixed point or a periodic orbit. The same is true for the
attractors of the dynamical system.

Dynamical systems induced by BMs are, arguably, the simplest kind of dynami-

cal systems one can think of. They are time-discrete and, in addition, restrict their

variables to the smallest non-trivial set of values t0, 1u. Still, they exhibit interesting

dynamics as we shall see in the course of this thesis.

The update rules of BMs are often specified in terms of logical expressions. The

inputs of an update rule fi : t0, 1uKi Ñ t0, 1u are then thought of as propositional

variables assuming values in the two-element Boolean algebra from Example 2.4, and

the update rule is stated using the operators ^, _ and  from this structure, cf. Table

2.1. In a biological application, these propositional formulas often allow for the inter-

pretation of an update rule as the (logical) combination of activating and inhibiting

regulatory interactions.

3.2 Boolean models of regulatory networks

As already mentioned, the update rules of BMs do obviously not reflect any kinetic or

biophysical laws. So, why can one expect the dynamical systems induced by BMs to be

acceptable models of the intricate regulatory mechanisms explained in section 2.4.1.3?

To answer this question it helps to take a look at the reasons for the complexity of gene

regulation.

One reason are cooperative effects between transcription factors. Cooperativity

exists, if a bound transcription factor protein increases (positive cooperativity) or de-

creases (negative cooperativity) the affinity of the promotor for further proteins. The

same mechanisms are found in the allosteric regulation of enzymes, i.e. the regula-

tion of an enzyme’s activity by binding an (activating or inhibiting) effector molecule.

The standard kinetic that describes these cooperative biochemical reactions is the Hill

kinetic [Hill, 1910]. If x denotes the (unit-normalized) concentration of some activat-

ing transcription factor, the activity h of the target promotor can be modeled ceteris

paribus as

hpc, xq � xc

xc � θc , (3.2)
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Figure 3.1: Promotor activity hpc, xq from (3.2) in terms of transcription factor con-
centration x given by a Hill kinetic with various degrees of cooperativity c and threshold
θ � 0.5. The black curve shows the step-function idealization.

where c is a measure of the degree of cooperativity and θ is the threshold for half-

maximal activation. Figure 3.1 shows the promotor activity h for various degrees of

cooperativity c.

The dependence of hpc, xq on x is switch-like with a “switch” at x � θ. In general,

we call a continuously differentiable, parametrized function hpc, q : r0, 1s Ñ r0, 1s
switch-like if

• hpc, q is sigmoidal for large enough c, i.e. hpc, q is convex upward on an interval

p0, θcs and concave upward on an interval rθc, 1q, and the sequence θc converges,

θc Ñ θ8 P p0, 1q;

• hpc, q converges point-wise against the Heaviside step-function hp8, q with step

at x � θ8,

hp8, xq �
$&
%

0 if x   θ8

0.5 if x � θ8

1 if x ¡ θ8 .

Indeed, for increasing c the function hpc, xq from (3.2) approaches the Heaviside

step-function hp8, xq with step at x � θ, cf. the black curve in Figure 3.1. This
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step-function now takes only two values on r0, 1sz tθu, which we can identify with the

Boolean algebra t0, 1u. Thus, we may see BMs as idealizations of networks of switch-

like interactions [Theis et al., 2010]. Whether or not this approximation is justified,

more precisely, whether or not the degree of cooperativity is high enough to justify this

approximation, has to be decided anew in each modeling application.

3.3 Kauffman networks

Let us now introduce the random “Kauffman-versions” of BMs.

Definition 3.2 (Kauffman network). A Kauffman network (KN) is a probability space
whose elements are BMs.

To turn spaces of BMs into probability spaces, one defines generative models yielding

BMs as realizations. Common to all these BMs is that they are based on a graph G.

In here, this graph will always be a random graph G pPinq defined by the configuration

model from Example 2.2. In order to specify our generative models it, thus, remains

to define how the update rules of the BM are realized.

Let us now present the KN originally introduced by Kauffman and a generalization

thereof. The standard Kauffman network (SKN) with parameters N (order) and K

(connectivity) is given by the following random process:

(K1) Create a realization of the random graph G pPinq with Pin � δK .

(K2) For each node i, i � 1, 2, . . . , N , define the update rule fi by filling the entries of

the pertaining truth-table with 0 and 1 with equal probabilities.

A generalization hereof is the Kauffman network with magnetization bias (KNMB).

Here, we have an additional parameter u (the so-called magnetization bias1) and replace

step (K2) from above by

(K2’) For each node i, i � 1, 2, . . . , N , define the update rule fi by filling the entries of

the pertaining truth-table with 0 and 1 with probabilities u and 1�u, respectively.

In Kauffman [1969] the SKN is introduced. The generalization to KNsMB is due to

Bastolla and Parisi [1996]. Also different degree distributions of the random graph have

been investigated [Aldana, 2003; Fox and Hill, 2001].
1The term magnetization bias originates in an analogy between KNs and networks of atomic spins,

which are very small magnets.
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3.4 Order parameters and phase transitions of Kauffman

networks

When studying KNs, we are not interested in the properties of a particular realization,

but we rather search for generic properties in the ensemble of all realizations of a KN.

Kauffman [1969], for instance, addresses the following questions.

It is a fundamental question whether metabolic stability and epigenesis re-
quire the genetic regulatory circuits to be precisely constructed. Has a fortu-
nate evolutionary history selected only nets of highly ordered circuits which
alone insure metabolic stability; or are stability and epigenesis, even in nets
of randomly interconnected regulatory circuits, to be expected as the probable
consequence of as yet unknown mathematical laws? Are living things more
akin to precisely programmed automata selected by evolution, or to randomly
assembled automata whose characteristic behavior reflects their unorderly
construction, no matter how evolution selected the surviving forms?

Kauffman himself could show by computational experiments that KNs with low con-

nectivities exhibit surprisingly ordered structures and are able to give insights into

biological phenomena such as cell replication or lineage differentiation. With increas-

ing connectivities this order seems to disappear.

Soon the close relation between KNs and the concept of a phase transition from

statistical physics was realized. Originally, this concept denotes the transitions between

two or more different physical phases of one medium, like ice, water and gas [Kadanoff,

2000]. At the point of phase transition certain properties of this medium change, mostly

in a discontinuous fashion, in response to a change of some external condition, such as

temperature or pressure. A liquid, for instance, may become gas when heated to the

boiling point, leading to a sharp increase in its volume. Phase transitions are typically

detected by monitoring an order parameter . For phase transitions from solid to liquid

or from liquid to gas, for example, this order parameter is the density of the medium.

In a number of studies by Derrida and Pomeau [1986], Derrida and Stauffer [1986]

as well as Flyvbjerg [1988], Kauffman’s experimental observations were explained by

creating an analogy between KNs and physical media undergoing phase transitions. In

KNs, the external condition is the connectivity. Several order parameters have been

proposed [Derrida and Pomeau, 1986; Flyvbjerg, 1988; Luque and Solé, 1997, 2000],
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all yielding the same phase transition criterion. The Hamming distance between two

initially differing time-courses is, arguably, the most intuitive. The definition of this

order parameter is motivated by the hallmark of chaos: a sensitivity to small pertur-

bations. This suggests to detect phase transitions by monitoring how the (Hamming)

distance between two nearby configurations evolves over time, i.e. whether it increases

or decreases.

We do not review any theoretical details at this point, as we will study a more

general version of KNs than KNsMB in chapter 4. In the course of this chapter, we will

obtain the theory of SKNs and KNsMB as corollaries to more general statements. In

particular, we will see that the order parameter has stationary dynamics, i.e. a globally

attracting fixed point, and we will determine the critical connectivity at which the

phase transition occurs. Below this connectivity the globally attracting equilibrium of

the Hamming distance is zero, above the critical connectivity it is strictly positive.

We say a KN is in the frozen or ordered phase if the Hamming distance has a

stationary value of zero, otherwise the KN is said to be in the chaotic phase. KNs at

the point of phase transition are called critical . Some authors prefer the term regime

over phase. It has been shown that the ordered phase is characterized by small stable

attractors, whereas in the chaotic phase long-periodic orbits frequently occur [Aldana

et al., 2003]. A more intuitive characterization of these two phases can be given in terms

of “damage spreading” (percolation). Assume that a realization of a KN is damaged

in one node, i.e. the state of this node is flipped. In the chaotic regime the Hamming

distance will increase, i.e. this damage will spread through the network, whereas in the

ordered regime the Hamming distance will vanish, i.e. the network is able to “repair”

this damage over time.

To visualize this, we generate realizations of SKNs with connectivities K � 1, K �
2, and K � 3, simulate each twice with initial conditions differing by a (normalized)

Hamming distance of 0.1, and plot the resulting time-courses in Figure 3.2. We will see

in chapter 4 (Remark 4.5) that SKNs with these connectivities are frozen, critical and

chaotic. Below the two time-courses their Hamming distance is shown. In the frozen

networks this Hamming distance decreases to its equilibrium zero, in the critical and

chaotic networks it eventually fluctuates around strictly positive values. In the critical

network this value is comparable to the initial distance, whereas in the chaotic network

the Hamming distance increases from its initial value.
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Figure 3.2: Realizations of SKNs with N � 102 nodes and connectivities K � 1, K � 2,
and K � 3 are generated. They fall into the frozen, critical and chaotic phase, cf. Remark
4.5. Each realization is simulated twice for 50 time-steps with initial conditions differing
by a (normalized) Hamming distance of 0.1. The resulting time-courses are visualized by
representing 0 and 1 as black and white boxes, respectively. Below the two time-courses
their Hamming distance is plotted.
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3.4 Order parameters and phase transitions of Kauffman networks

The study of KNs has found its way into popular science by the slogan “Living at

the edge of chaos.” Kauffman [1993] hypothesized that regulatory networks in living

organisms operate in the frozen regime but close to (at the edge of) the chaotic regime,

i.e. near a phase transition. The first part of this hypothesis is well supported by

other authors who all claim that robustness is a crucial property of biological systems

[Kitano, 2004]. The second part can only be understood in the light of evolution. For

natural selection to work, small changes, such as mutations, need to have an effect.

Kauffman argues that fully robust networks, which are completely insensitive to small

perturbations, do not have the ability to evolve over time by natural selection. Hence,

evolvable living organisms operate near a chaotic regime. A nice corroboration of

Kauffman’s hypothesis is the finding that the (average) connectivity of gene regulatory

networks in lower organisms is, indeed, around the critical connectivity of SKNs, see

Balleza et al. [2008] and references therein.
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4

Multistate Kauffman networks

They fashioned a tomb for thee, O holy and high one

The Cretans, always liars, evil beasts, idle bellies!

But thou art not dead: thou livest and abidest forever,

For in thee we live and move and have our being.

Cretica, Epimenides

The above poem by the Cretan philosopher Epimenides of Knossos is the first

version of what is known in logic as the liar’s paradox . This paradox arises when

one interprets Epimenides’ statement that all Cretans are liars as a self-referential

statement. Epimenides, after all, was a Cretan himself. Today, the liar’s paradox

exists in many forms; in its most simplistic one it headlines the essay “This title is

false” by Isalan and Morrison [2009], which they published last year in Nature.

They argue that it is self-reference what makes all the difference in genetic regula-

tion. Typical descriptions of regulatory interactions, such as “This gene represses it-

self.” or “Gene A activates gene B. Gene B inhibits gene A.”, are, indeed, self-referential.

Isalan and Morrison continue to explain that in gene regulation these seemingly para-

doxical situations are resolved either in time or space, leading to temporal oscillations
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or spatial patterns. In fact, temporal oscillations are found e.g. during cell cycle or

in the circadian rhythm, and Alan Turing [1990]1 showed that even from small self-

referential motifs such as “Gene A activates gene B. Gene B inhibits gene A.” complex

spatial patterns may emerge.

There is a third possibility how a self-referential situation can be resolved: By intro-

ducing additional truth-values besides the classic “false” and “true”, such as “partially

true.” In a biological context, these truth-values could be interpreted as “medium con-

centration” or “weakly active.” The solution of a self-referential regulation would then

be homeostasis.

4.1 Motivation and outline

Aesthetic philosophy aside, in many down-to-earth modeling efforts the discretization

of continuous biological quantities into binary “on”–“off” categories was found to be

insufficient. In fact, it has been demonstrated that genes may well have more than two

functionally different expression levels [Setty et al., 2003]. To alleviate this issue, in

some modeling applications the Boolean “on”–“off” categories are extended to multiple

discrete states, leading to multistate models [Fauré et al., 2009; Sánchez and Thieffry,

2001; Thomas, 1991].

Studies of KNs with multiple states, let us call them multistate Kauffman networks,

are scarce [Solé et al., 2000] and restricted to the biologically implausible case where

all nodes have the same number of discrete states. In this chapter, which follows

Wittmann et al. [2010] as well as Wittmann and Theis [2010a], we investigate a more

general class of multistate KNs with respect to critical phenomena. In particular,

contrary to previous studies, the number of discrete states is not fixed for all nodes

but follows a distribution. We formally introduce the Hamming distance between two

trajectories as an order parameter and show that a transition between a frozen and

a chaotic regime takes place in multistate KNs of this class. The critical boundary is

analytically determined as a relation between the mean connectivity and a parameter

describing the heterogeneity of the update rules, cf. Theorem 4.1.

We study two distributions of update rules in more detail. First, we analyze mul-

tistate KNs with unbiased update rules, which generalize the (Boolean) SKNs. We

1Reprint of Turing’s original publication
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find that allowing nodes to assume multiple states lowers the critical connectivity as

compared to the Boolean case, the limit being a biologically implausible connectivity of

1, cf. Remark 4.5. Interestingly however, the critical connectivity does not necessarily

decrease with the mean number of states per node. Second, we study multistate KNs

with biased update rules, which generalize the (Boolean) KNsMB. In section 4.3.4.2, we

show that the critical connectivity can be made arbitrarily large by biasing the update

rules towards one of the discrete states. In the case of (Boolean) KNsMB, this simply

means choosing the magnetization bias either sufficiently large or small. In particular,

we can poise multistate KNs with biologically plausible connectivities at criticality (at

the edge of chaos). Our analytic results are backed up by simulations.

Subsequently, we extend the analysis of the Hamming distance (between two trajec-

tories) by looking at ensembles of trajectories. This can be motivated from a biological

point of view, as in molecular biology experimental data are often average concentra-

tions in cell cultures, which can be thought of as ensembles of trajectories of a multistate

model. A dynamical system describing the synchronization behavior of such ensem-

bles is introduced and analyzed. In a low-dimensional example the analytic results are

validated by simulations.

4.2 Multistate models and multistate Kauffman networks

Let us now formally introduce our first generalization of BMs and KNs. In this chapter,

G � pV,Eq again denotes a (directed) graph of order N with nodes V � t1, 2, . . . , Nu
and edges pi1 Ñ iq P E � V � V . The predecessors (inputs) of a node i are denoted by

i1   i2   � � �   iKi , where Ki is the node’s in-degree.

4.2.1 Multistate models

Generalizing Definition 3.1 of BMs we make

Definition 4.1 (multistate model). A multistate model (MM) is a triple pG,S, fq which
consists of a graph G, a vector S � pSiqNi�1 of numbers of states defining the ranges
Σi :� t0, 1, . . . , Si � 1u of nodes i � 1, 2, . . . , N , and a vector of discrete functions
f � pfiqNi�1, fi :

±Ki
k�1 Σik Ñ Σi. The discrete function fi is called update rule or update

function of node i and the vector of update rules f (as a function from
±N
i�1 Σi Ñ±N

i�1 Σi) is called transfer function of the MM.
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Remark 4.1. A BM is the special case of a MM where all Si � 2. Conversely, we can
still express an update rule fi of a MM using the Boolean operators ^ and _ from Table
2.1. We do so, by relating the truth-values of the equations “fipxi1 , xi2 , . . . , xiKi q � s”,
s P Σi, to the truth-values of the equations “xik � ξk”, k � 1, 2, . . .Ki, ξk P Σik :

fi

�
xi1 , xi2 , . . . , xiKi

	
� s ðñ

ª
pξ1,ξ2,...,ξKiq|fipξ1,ξ2,...,ξKiq�s

Ki©
k�1

pxik � ξkq

This is a generalization of the full DNF of a Boolean function from (2.8). The disjunc-
tion on the right-hand side runs over all input combinations of fi with output value
s. For each combination, the inner conjunction is true if and only if the combination
agrees with the values of the variables xik .

Similarly to BMs, MMs give rise to dynamical systems.

Remark 4.2. Each MM pG,S, fq gives rise to a time-discrete dynamical system as
follows: To each node i we associate a time-dependent discrete variable xiptq P Σi,
xptq � pxiptqqNi�1. The evolution of xptq is determined by the iteration

xpt� 1q � f pxptqq , t � 0, 1, 2, . . . ,

where the i-th component is given by

xipt� 1q � fi

�
xi1ptq, xi2ptq, . . . , xiKi ptq

	
. (4.1)

Again we only consider the above synchronous updating.

In the following, we will refer to trajectories of the dynamical system from Remark

4.2 as trajectories of the MM pG,S, fq.
The state-space of the dynamical system from Remark 4.2 is the discrete, finite set

X �±N
i�1 Σi. We proceed as in the Boolean case, i.e. we define the Hamming distance

d of x � pxiqNi�1 P X and x1 � px1iqNi�1 P X as

d
�
x,x1

� � 1
N

Ņ

i�1

�
1� δxi,x1i

	
,

and use the counting measure. Our results about the ω-limit sets and attractors of

BMs, cf. Proposition 3.1, generalize to the multistate case.

Proposition 4.1. Consider the dynamical system defined in Remark 4.2. The ω-limit
set of each point is either a fixed point or a periodic orbit. The same is true for the
attractors of this dynamical system.
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4.2 Multistate models and multistate Kauffman networks

4.2.2 Multistate Kauffman networks

We now define the random “Kauffman-version” of MMs.

Definition 4.2 (multistate Kauffman network). In general, a multistate Kauffman
network (MKN) is a probability space whose elements are MMs.

In this thesis, by MKN we always mean the following generative model for MMs on

N nodes. It is defined for

• an in-degree distribution Pin pKq, K � 1, 2, . . . ,Kmax,

• a distribution of numbers of states Pnos pSq, S � 2, 3, . . . , Smax, and

• distributions PSpsq, s � 0, 1, . . . , S � 1, of entries of update rules for all S �
2, 3, . . . , Smax.

Realizations are generated by

(M1) creating a realization of the random graph G pPinq,

(M2) for each node i, i � 1, 2, . . . , N , choosing its number of states Si randomly from

the probability distribution Pnos,

(M3) for each node i, i � 1, 2, . . . , N , choosing the values of fi randomly from the

probability distribution PSi .

Note that in (M3) the distribution PSi does not depend on the node i but only on its

number of states Si.

In the following, we consider, in particular, two examples for the distributions PS .

In section 4.3.3, we treat unbiased update rules sampled from the discrete uniform

distributions

PSpsq � 1
S
, s � 0, 1, . . . , S � 1 . (4.2)

In the special case of all Si � 2 and delta-distributed in-degree, the study of the

distribution from (4.2) yields the theory of SKNs.

In section 4.3.4, we then study biased update rules sampled from the distributions

PSpsq �
$&
%

u s � 0
1� u
S � 1

s � 1, 2, . . . , S � 1
(4.3)
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for some 0   u   1. If Si � 2, this simply means that the update function fi evaluates

to 0 with a certain probability 0   u   1 and to 1 with probability 1� u. Thus, if all

Si � 2 and the in-degree is delta-distributed, the study of the distribution from (4.3)

yields the theory of KNsMB.

4.2.3 Parameters of multistate Kauffman networks

Let K be a MKN. We conclude this section by defining and discussing some effective

parameters of K that will be needed in the following.

• We define the heterogeneity pS of the distributions PS , S � 2, 3, . . . , Smax, as

pS �
S�1̧

s�0

PSpsq p1� PSpsqq , (4.4)

• the heterogeneity p of K as

p �
Smax̧

S�2

Pnos pSq pS , (4.5)

• and the mean connectivity K of K as

K �
Kmax¸
K�1

Pin pKqK . (4.6)

Remark 4.3. From (M3) it follows that the probability for a generated update rule fi
to yield two different values for two different arguments depends only on PSi (where Si
is the number of states of node i) and is equal to the heterogeneity pSi of PSi .

Lemma 4.1. The heterogeneity pS becomes maximal if PS is the discrete uniform
distribution from (4.2). In this case, pS � pS � 1q{S.

Proof. The existence of a global maximum follows from the extreme value theorem.
Now assume that π1 � PS ps1q � π2 � PS ps2q. Then, for π � pπ1 � π2q {2 it holds that

2π p1� πq � π1 � π2 � pπ1 � π2q2
2

¡ π1 � π2 � pπ1 � π2q2
2

� pπ1 � π2q2
2

� π1p1� π1q � π2p1� π2q .
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4.3 Dynamic regimes of multistate Kauffman networks

Hence, the distribution

P 1Spsq �
#
PSpsq s R ts1, s2u
π s P ts1, s2u

yields a strictly larger value for pS . In case of uniform PS one computes

pS �
S�1̧

s�0

1
S

S � 1
S

� S � 1
S

.

It follows

Corollary 4.1. For any choice of PS, pS   1 and p   1.

4.3 Dynamic regimes of multistate Kauffman networks

Let again K be a MKN as defined in section 4.2.2. As outlined in section 3.4 one

detects phase transitions by monitoring the evolution of an order parameter, which, in

the context of KNs, is often the Hamming distance between two trajectories.

4.3.1 The Hamming distance of a Kauffman network

Before we can formally define our order parameter, we need to state a technical conse-

quence of (M3).

Lemma 4.2. Let d0 P r0, 1s and consider the following random experiment: Generate
a realization of K. Choose two configurations xp0q and x1p0q whose components differ,
xip0q � x1ip0q, with probability d0. Iterate the configurations one time-step yielding xp1q
and x1p1q, respectively. We define the random variable d as the Hamming distance
d pxp1q,x1p1qq. Then, it holds

E pdq �
Kmax¸
K�1

Pin pKq
Smax̧

S�2

Pnos pSq
��

1� p1� d0qK
	
pS

�
.

In particular, E pdq is independent of how the actual values in xp0q and x1p0q are chosen,
but depends only on the probability d0 for them to differ.
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Proof. Let us introduce identically distributed Bernoulli random variables di, i �
1, 2, . . . , N , defined as 1 if xip1q � x1ip1q and as 0 otherwise. It then holds d �
p1{Nq°N

i�1 di, and, consequently,

E pdq � 1
N

Ņ

i1�1

E pdi1q � E pdiq p�q

for any i.
Given Ki and Si, the conditional expectation E pdi | Ki, Siq is equal to the proba-

bility that

fi

�
xi1p0q, xi2p0q, . . . , xiKi p0q

	
� fi

�
x1i1p0q, x1i2p0q, . . . , x1iKi p0q

	
. p:q

According to Remark 4.3 the probability for p:q is equal to pSi given the two argu-
ments

�
xi1p0q, xi2p0q, . . . , xiKi p0q

	
and

�
x1i1p0q, x1i2p0q, . . . , x1iKi p0q

	
are not identical.

The events that inputs differ between both configurations, xikp0q � x1ikp0q, are inde-
pendent as in the configuration model the inputs ik of i are chosen randomly from V .
The probability for each of these events is d0. Thus, the probability for the arguments
to differ (in at least one component) is given by 1� p1� d0qKi . Hence, the probability
for p:q is equal to

�
1� p1� d0qKi

�
pSi .

Finally, recall that Ki and Si are chosen according to the distributions Pin pKq and
Pnos pSq. Thus, averaging over Ki and Si yields

E pdiq �
Kmax¸
K�1

Pin pKq
Smax̧

S�2

Pnos pSq
��

1� p1� d0qK
	
pS

�
,

and the claim follows from p�q.

Lemma 4.2 states that the expected Hamming distance between two configurations

evolves independently of the actual values in these configurations. In chapter 5, we

will introduce a new class of KNs for which this no longer holds: The evolution of

the Hamming distance will depend on the actual values in the configurations, more

precisely, on the fractions of 1’s and 0’s. For now, however, Lemma 4.2 allows us to

make

Definition 4.3 (Hamming distance of a MKN). The Hamming distance of K is a
sequence pdptqqt¥0 which is consistent in the sense of the following random experiment:
Pick a realization of K, create two configurations xp0q and x1p0q whose components
differ with probability dptq, and iterate them one time-step yielding configurations xp1q
and x1p1q. Then, dpt� 1q is the expected Hamming distance between xp1q and x1p1q.
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4.3 Dynamic regimes of multistate Kauffman networks

Remark 4.4. We, of course, want the Hamming distance of K to be a good approxima-
tion of the Hamming distance

1
N

Ņ

i�1

�
1� δxiptq,x1iptq

	

between two trajectories xptq and x1ptq of a specific realization of K. We will demon-
strate that this is, indeed, the case in large networks by simulations in section 4.3.5.
From a theoretical point of view, however, the above approximation is a priori not
justified. The issue is that in the proof of Lemma 4.2 it is crucial that we may as-
sume the inputs ik of a node i to be independent. At time-points t ¥ 1, however, this
assumption is obviously not valid as in a realization of K the inputs of i might have
common predecessors. The reason why we still obtain good approximations in large
networks, is given by Lemma 2.1. Here, it was shown that in the thermodynamic limit
of large N the probability for common predecessors vanishes.

4.3.2 Analysis of the Hamming distance and detection of a phase

transition

The Hamming distance of K naturally depends on the initial distance dp0q. In the

following, we take care of this issue by proving that the asymptotic behavior of dptq is

identical for almost all initial conditions. For this we use that, as shown in Lemma 4.2,

the Hamming distance pdptqqt¥0 of K obeys the iteration

dpt� 1q � D pdptqq

:�
Kmax¸
K�1

Pin pKq
Smax̧

S�2

Pnos pSq
��

1� p1� dptqqK
	
pS

�
. (4.7)

Lemma 4.3. For the dynamical system (4.7) three possibilities exist.

1. It has a hyperbolic, globally attracting fixed point at d� � 0.

2. The fixed point d� is still globally attracting, but critical.

3. The fixed point d� is repelling and an additional fixed point d�� P p0, 1q exists
which attracts p0, 1s.

Proof. Clearly, Dp0q � 0, so d� is a fixed point. First, suppose that Pin p1q � 1. Then
Dpdq is linear with slope p   1 and (4.7) falls into category 1. Now, consider a general
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Figure 4.1: Ad proof of Lemma 4.3. Schematic plots of Dpdq from (4.7). The blue, green
and red curves show the three possible situations listed in Lemma 4.3.

Pin. The claim follows from the fact that for d ¡ 0 the function Dpdq is concave
and monotonously increasing. To prove this, it suffices to show these properties for�

1� p1� dqK
	
pS and K ¥ 2, which can easily be done by computing the first and

second derivatives, Kp1� dqK�1pS ¡ 0 and �KpK � 1qp1� dqK�2pS   0, respectively.
Also consult Figure 4.1 for a visualization of the three possible situations listed in the
claim.

If d� is attracting we expect trajectories of realizations of K to re-converge upon

perturbations, whereas if d� is repelling the trajectories will diverge. This motivates

Definition 4.4 (phases/regimes of MKNs). The phases (regimes) of K are defined as
follows.

1. If d� is hyperbolic and attracting, K is called frozen or ordered .

2. If d� is critical, K is called critical .

3. If d� is repelling, K is called chaotic.

Let us now derive a criterion for the phase transition in terms of parameters of K.

Theorem 4.1 (phase transition criterion). We have the following phase transition
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4.3 Dynamic regimes of multistate Kauffman networks

criterion in terms of the parameters p and K from (4.5) and (4.6).

pK

$'&
'%
  1 ordered regime
� 1 critical boundary
¡ 1 chaotic regime .

(4.8)

Proof. Linearizing D from (4.7) about d� yields

dD
dd

����
d�
�

Kmax¸
K�1

Pin pKq
Smax̧

S�2

Pnos pSqKpS

�
Kmax¸
K�1

Pin pKqKp � pK .

The claim follows from Theorem 2.2.

Corollary 4.2. MKNs with a mean connectivity K below (above) the critical connec-
tivity

K
crit � 1

p
(4.9)

are frozen (chaotic).

A nice intuitive interpretation of Theorem 4.1 is given in terms of “damage spread-

ing.” Assume that at time t the state of a realization of a MKN is damaged in one

node, i.e. the state of this node is flipped. On average, this node affects K other nodes

at the next time-step t � 1. The parameter p is the mean probability that a change

of input, indeed, leads to a change of output in an update rule. The product pK thus

gives the mean number of damaged (flipped) nodes at time t � 1. Inductively, we see

that in the case pK ¡ 1 damage will spread through the network, whereas in the case

pK   1 the network is able to “repair” damage over time.

We observe that the phase transition depends only on the first moments K and p.

Typically, K can be easily computed once the underlying network structure is known.

The computation of p is more involved, as we shall see in the following sections where

we compute this quantity for unbiased as well as biased update rules.
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4.3.3 Unbiased update rules

Let us first study the multistate counterpart of the SKN. This is to say, we consider

the completely unbiased situation where the PS are the discrete uniform distributions

from (4.2). From Lemma 4.1 we know that in this case

pS � S � 1
S

. (4.10)

Substituting (4.10) in (4.5) yields

p �
Smax̧

S�2

Pnos pSq S � 1
S

� 1�m , (4.11)

where

m �
Smax̧

S�2

Pnos pSq 1
S
.

Remark 4.5. For any Pnos, m is bounded, 0   m ¤ 1{2, where the upper bound is exact
iff Pnos pSq � δS,2, i.e. in the Boolean case. For the critical connectivity from (4.9)
together with (4.11)

K
crit � 1

1�m
, (4.12)

this implies 1   K
crit ¤ 2 and K

crit � 2 (only) in the Boolean case. Moreover, Kcrit

lowers down to 1 as m becomes small. Hence, in the non-Boolean case the critical
connectivity of unbiased MKNs is strictly smaller than in the Boolean case.

We visualize this result in two examples.

Examples

We compute m in two special cases of Pnos.

• First, a delta distribution

Pnos pSq � δS,S , S � 2, 3, . . . , Smax , (4.13)

for a fixed number of states S per node. In this case, m � 1{S, and from (4.12)

we obtain the criticality condition

K
crit � S

S � 1
, (4.14)

which was already found in Solé et al. [2000]. In the Boolean case, S � 2, we

recover the critical connectivity 2 of the SKN. For an increasing (fixed) number

of states S the critical connectivity approaches 1.
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• Second, a discrete uniform distribution

Pnos pSq � 1
Smax � 1

, S � 2, 3, . . . , Smax .

In this case,

m �
Smax̧

S�2

1
Smax � 1

1
S
� HSmax � 1

Smax � 1
,

where HSmax is the Smax-th harmonic number, and from (4.12) we obtain the

criticality condition

K
crit � Smax � 1

Smax �HSmax

. (4.15)

It holds that Kcrit Ñ 1 as Smax Ñ 8. A better idea of this convergence is given

by the well-known approximation

HSmax � ln pSmaxq � γEuler � OpS�1
maxq ,

where γEuler is the Euler-Mascheroni constant, γEuler � 0.5772.

The critical connectivities from (4.14) and (4.15) are plotted in Figure 4.2. We

observe that in both examples a growing (fixed) number of states S or a growing upper

bound Smax, respectively, lower the critical connectivity down to 1. At this point,

we also refer the reader to section 4.5, where we discuss an example showing that, in

general, the critical connectivity does not decrease with the mean of the distribution

Pnos.

4.3.4 Biased update rules

In the SKN each Booelan update function is drawn randomly from the ensemble of all

Boolean functions with equal probability. In subsequent studies, however, it is often

assumed that each function evaluates to 0 with a certain probability 0   u   1 and to 1

with probability 1�u. (In here, such KNs are called KNsMB.) Biologically speaking, it

is assumed that a gene is expressed with probability u. A natural generalization hereof

to the multistate case is the distribution

PSpsq �
$&
%

u s � 0
1� u
S � 1

s � 1, 2, . . . , S � 1
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Figure 4.2: The case of unbiased update rules. Critical connectivities K
crit �

S
�

from

(4.14) (blue “�”) and K
crit
pSmaxq from (4.15) (green “�”).

from (4.3) for some 0   u   1. In the Boolean case, it turned out that, even for

connectivities above the critical connectivity of the SKN, a KNMB can be kept in the

frozen regime by choosing u sufficiently large or small [Bastolla and Parisi, 1996]. Is

this still true for MKNs?

To answer this question, let us assume that each PS is given by (4.3) for some

0   u   1. Then (4.4) becomes

puS � 2up1� uq � p1� uq2S � 2
S � 1

,

and substituting this in (4.5) gives

pu �
Smax̧

S�2

Pnos pSq
�
2up1� uq � p1� uq2S � 2

S � 1

�

� 2up1� uq � p1� uq2 p1�m�1q , (4.16)

where

m�1 �
Smax̧

S�2

Pnos pSq 1
S � 1

.

We observe that 0   m�1 ¤ 1, where the upper bound is exact iff Pnos pSq � δS,2, i.e. in

the Boolean case.
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4.3 Dynamic regimes of multistate Kauffman networks

Substituting (4.16) in (4.8) gives rise to a quadratic equation in u:

K
�
2up1� uq � p1� uq2 p1�m�1q

�$&%
  1 ordered regime
� 1 critical boundary
¡ 1 chaotic regime

(4.17)

In section 4.3.4.1 this criterion is solved for ucrit, the results are summarized in section

4.3.4.2.

4.3.4.1 Computation of critical magnetization biases

Criterion (4.17) is equivalent to

�K p1�m�1qu2 � 2Km�1u�K p1�m�1q � 1

$&
%
  0 ordered regime
� 0 critical boundary
¡ 0 chaotic regime .

(4.18)

The discriminant of this quadratic equation is given by

D � 4K
�
K � p1�m�1q

�
and

D

$&
%
  0 if K   1�m�1

� 0 if K � 1�m�1

¡ 0 if K ¡ 1�m�1 .

From (4.18) it follows that for K   1 � m�1 the MKN is always frozen. To see this,

note that �K p1�m�1q   0. For K ¥ 1�m�1 the quadratic equation from (4.18) has

two (possibly coinciding) solutions

ucrit
1
2

�
K,m�1

� � 1
m�1 � 1

�
m�1 	

c
1� m�1 � 1

K

�
.

First, observe that for m�1 ¡ 0, ucrit
2   1 is always a valid solution. Moreover, we have

ucrit
1 ¡ 0 ðñ

c
1� m�1 � 1

K
  m�1 ðñ K   1

1�m�1
,

where in the case m�1 � 1, “K   8” is true for any K. Since for m�1   1 it holds that

1
1�m�1

¡ 1�m�1 ,

there is always a range for K, in which (4.18) has two distinct solutions in p0, 1q. Once

more considering that in (4.18) �K p1�m�1q   0, we obtain in this case

�K p1�m�1qu2 � 2Km�1u�K p1�m�1q � 1

$&
%
  0 , u   ucrit

1 or u ¡ ucrit
2

� 0 , u � ucrit
1 or u � ucrit

2

¡ 0 , ucrit
1   u   ucrit

2 .
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4.3.4.2 The critical boundary in the case of biased update rules

Summing up, we have the following phase transitions:

(a) For K   1�m�1 the MKN is always frozen.

(b) For K � 1�m�1 the MKN is critical if and only if

u � ucritp1�m�1,m�1q � m�1

m�1 � 1
, (4.19)

otherwise it is frozen.

(c) In the Boolean case, i.e. m�1 � 1, and for K ¡ 1�m�1 � 2 the critical

boundary is described by

ucrit
1
2

�
K, 1

� � 1
2

�
1	

c
1� 2

K

�
P p0, 1q . (4.20)

For

ucrit
1

�
K, 1

�   u   ucrit
2

�
K, 1

�
the MKN is chaotic, otherwise it is frozen. This agrees with previous results

about Boolean KNs [Bastolla and Parisi, 1996].

(d) For m�1   1 and 1{p1�m�1q ¡ K ¡ 1�m�1 the critical boundary is described

by

ucrit
1
2

�
K,m�1

� � 1
m�1 � 1

�
m�1 	

c
1� m�1 � 1

K

�
P p0, 1q . (4.21)

For

ucrit
1

�
K,m�1

�   u   ucrit
2

�
K,m�1

�
the MKN is chaotic, otherwise it is frozen. For K � 1{p1�m�1q, ucrit

1 � 0 is not

a valid solution for u anymore, as we require u P p0, 1q.

(e) For m�1   1 and K ¥ 1{p1�m�1q the critical boundary is described by

ucrit
�
K,m�1

� � 1
m�1 � 1

�
m�1 �

c
1� m�1 � 1

K

�
P p0, 1q , (4.22)

for larger values of u the MKN is frozen, otherwise it is chaotic.
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4.3 Dynamic regimes of multistate Kauffman networks

We chose to solve the criticality condition (4.17) for ucrit (and not Kcrit), as from

this presentation we easily see that for any values of K and m�1 a MKN is kept in

its frozen regime by choosing a sufficiently large u. Thus, our motivating question can

be answered in the affirmative: Biasing update rules towards one of the discrete states

indeed increases the critical connectivity, from a theoretical point of view, even beyond

any bound.

In the Boolean case, the critical weights ucrit
1{2 from (4.20) are, of course, symmetric

about 1{2, cf. case (c) in the above classification. In MKNs there still is a range of

connectivities where we can freeze a network by choosing either sufficiently large or

sufficiently small weights, cf. case (d). For higher connectivities, however, the option

of choosing small weights ceases to exist, cf. case (e). Intuitively speaking, even if we

set the weight to zero, the heterogeneity among the remaining states would still be

too large. Mathematically, this is reflected in the solution ucrit
1 from (4.21) becoming

negative.

Now, suppose Pnos is a delta-distribution with a fixed number of states S. Then,

the upper bound K � 1 � m�1 of case (a) in the above classification is precisely the

critical connectivity Kcrit of the unbiased MKN from (4.12). Furthermore, in case (b)

the critical value ucrit from (4.19) is equal to 1{S. In agreement with Lemma 4.1, we

see that, if the connectivity of a MKN with biased update rules is below the critical

connectivity K
crit (of the unbiased MKN), this MKN will always be frozen, as the

heterogeneity is already maximal in the unbiased situation. If its connectivity is equal

to Kcrit, it is critical if and only if the bias u is chosen in such a way that the resulting

PS is uniform. (The MKN then, of course, becomes unbiased.) Above Kcrit, we can

freeze any MKN by choosing a sufficiently heavy bias. For a visualization of the above

classification and discussion, see Figure 4.3A.

4.3.5 Network simulations

To further visualize our results, we choose six realizations of frozen, critical and chaotic

MKNs, cf. Figure 4.3B–K. Each network has N � 100 nodes and each node has S � 3

states, i.e. m�1 � 1{2. We consider two delta-distributed degrees at K � 2 (shown in B–

F) and K � 4 (shown in G–K). For each connectivity we generate a frozen, critical and

chaotic network by sampling the update rules from distribution (4.3). For the frozen

networks we set u � 0.95, for the critical networks we set u � ucritp2, 1{2q � 0.8604
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4. MULTISTATE KAUFFMAN NETWORKS

and ucritp4, 1{2q � 2{3 from (4.22), respectively, and for the chaotic networks we set

u � 1{3. Observe that the latter choice leads to the unbiased distribution from (4.2).

Blue, green and red markers in subfigure A show the position of these values of u in

the K-u-plane. The blue markers lie above the critical boundary in the frozen regime,

both green markers are located on the critical boundary, and the red markers are in

midst the chaotic regime.

Subfigures B and G show Dpdq from (4.7) for both connectivities, K � 2 as well

as K � 4, and the three respective values of u. For the frozen networks (blue curves)

d� � 0 is the only fixed point and it is globally attracting. The fixed point d� becomes

critical in the critical networks (green curves), and in the chaotic networks (red curves)

an additional fixed point d�� exists, which is now the global attractor. The additional

fixed points lie at d�� � 0.498 in B and at d�� � 0.661 in G.

For each of the six networks, two initial configurations xp0q and x1p0q with Hamming

distance dp0q � 0.1 are chosen and each is iterated for 50 time-steps. Plots of the

simulated Hamming distance

dptq �
Ņ

i�1

�
1� δxiptq,x1iptq

	

between the two trajectories xptq and x1ptq for the six networks are shown in subfigures

C (K � 2) and H (K � 4). In the frozen networks (blue curves) the Hamming

distance quickly reaches its stationary value 0 indicating that both trajectories have

re-converged. If we discard the first 20 time-steps, the Hamming distances fluctuate

around 0.501 in the chaotic network with connectivity 2 and around 0.663 in the chaotic

network with connectivity 4, cf. the red curves and the dashed mean-lines in subfigures

C and H, respectively. These means agree well with the values of the “mean-field

attractors” d�� � 0.498 and d�� � 0.661, respectively. This is a nice corroboration of

our analytical studies.

Subfigures D–F and I–K show the time-course xiptq, i � 1, 2, . . . , 25, t � 1, 2, . . . 50,

for the frozen, critical and chaotic networks with K � 2 and K � 4. The three

states of a node are represented as black, grey and white boxes. In D and I, both

frozen networks quickly reach an equilibrium. While the critical networks in E and J

exhibit clear short-periodic oscillations after approximately 10 time-steps, no pattern

or periodicity is discernible in the chaotic networks in F and K. We know, of course,
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4.4 Ensembles of trajectories

that ultimately also the chaotic networks will fall into a periodic orbit due to the finite

size of the state-space, cf. Proposition 4.1. Note that subfigures C–F as well as H–K

all have the same X-axis, namely time running from 1 to 50 as indicated in F and K.

4.4 Ensembles of trajectories

The Hamming distance looks at the similarity of two trajectories. More generally, we

could ask how a whole ensemble of trajectories behaves. A biological motivation for this

question is that in molecular biology experimental data are often average concentrations

in cell cultures. Mathematically, such a cell culture can be modeled as an ensemble of

trajectories of the same MM.

4.4.1 A dynamical system modeling ensembles of trajectories

Let pG,S, fq be a MM. In order to describe ensembles of trajectories of pG,S, fq and

relative frequencies therein, we consider time-courses of distributions over the Σi, i �
1, 2, . . . , N .

Remark 4.6. The MM pG,S, fq gives rise to a time-discrete dynamical system as follows.
To each node i we associate a time-dependent variable

x̃iptq �

�
�����

x̃0
i ptq
x̃1
i ptq
...

x̃Si�1
i ptq

�
���� ,

¸
sPΣi

x̃si ptq � 1 ,

describing distributions over Σi. We let x̃ptq � px̃iptqqNi�1. The evolution of x̃ptq is
governed by the iteration x̃pt�1q � f̃ px̃ptqq, t � 0, 1, 2, . . ., where f̃ is defined such that

x̃si pt� 1q �
¸

pξ1,ξ2,...,ξKiq|fipξ1,ξ2,...,ξKiq�s

Ki¹
k�1

x̃ξkik ptq , (4.23)

s P Σi, i � 1, 2, . . . , N .

We call trajectories of the dynamical system from Remark 4.6 f̃ -trajectories of

pG,S, fq, in order to tell them apart from trajectories of the dynamical system from

Remark 4.2.
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Network simulations, cf. section 4.3.5.
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Remark 4.7. The right-hand side of (4.23) is the probability for fi to yield value s

given that its inputs ik are independent and assume values ξk P Σik with probabil-
ities given by x̃ξkik ptq. Now, suppose the MM pG,S, fq is given as a realization of a
MKN with large N . Then, in the N -dependent time-domain r0, tN s from Lemma
2.1, in which we may assume the inputs of a node to be independent, the dynamical
system from Remark 4.6 describes the evolution of probability distributions over the
ranges Σi of the nodes i � 1, 2, . . . , N . More precisely, if at time t we choose values
xiptq P Σi according to the distributions x̃iptq, then x̃ipt� 1q contains the probabilities
for xipt � 1q � fi

�
xi1ptq, xi2ptq, . . . , xiKi ptq

	
to be equal to the s P Σi. For this rea-

son, f̃ -trajectories can be approximated by relative frequencies in large ensembles of
trajectories of pG,S, fq.

A node i is called deterministic at time t, if x̃si ptq � 1 for some s P Σi. If all

nodes are deterministic at t, we call the state x̃ptq deterministic. Let Ξ denote the

canonical bijection between the states x of the dynamical system from Remark 4.2 and

the deterministic states x̃ of the dynamical system from Remark 4.6. This is to say

that component-wise Ξ maps xi P Σi on the probability distribution

x̃si �
"

1 , if s � xi
0 , otherwise

, s P Σi ,

over Σi.

Proposition 4.2. The function f̃ maps deterministic states onto deterministic states,
and the diagram ±N

i�1 Σi
Ξ //

f

��

Ξ
�±N

i�1 Σi

	
f̃

��±N
i�1 Σi

Ξ // Ξ
�±N

i�1 Σi

	

commutes. So f is compatible with f̃ .

Proof. We fix x � pxiqNi�1 P
±N
i�1 Σi and let x̃ � px̃iqNi�1 be its image under Ξ. The

function f̃ maps a component x̃i on the distribution

�
�� ¸
pξ1,ξ2,...,ξKiq|fipξ1,ξ2,...,ξKiq�s

Ki¹
k�1

x̃ξkik

�
�
sPΣi

.
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The only non-zero contribution to the sum over the pξ1, ξ2, . . . , ξKiq is the combination
ξk � xik , k � 1, 2, . . . ,Ki, which is included if and only if s � fi

�
xi1 , xi2 , . . . , xiKi

	
. In

this case,
±Ki
k�1 x̃

ξk
ik
� 1. Hence, x̃i is mapped by f̃ onto the distribution pỹsqsPΣi ,

ỹs �
#

1 , if s � fi

�
xi1 , xi2 , . . . , xiKi

	
0 , otherwise

, s P Σi .

We, thus, see that the image of x̃ under f̃ is deterministic and given by the image of
f pxq under Ξ.

4.4.2 A generalized Hamming distance

Let K be a MKN. To avoid drowning the main ideas in too cumbersome formulae, we

restrict ourselves to the special case of a MKN with Pnos � δS . We begin by stating

some technical preliminaries, which will be needed in the following. Let `pζ, zq denote

the probability that ζ fields, which are randomly filled with numbers 0, 1, . . . , S � 1

according to PS , contain exactly z different elements. For a vector pκζqSζ�1, we simply

write ` ppκζq, zq instead of `
�±S

ζ�1 ζ
κζ , z

	
. Concise formulas for the `pζ, zq are difficult

to compute, and one has to resort to exhaustive enumeration. We can, however, prove

the following relations.

Lemma 4.4. 1. For any S and PS we have `p1, 1q ¡ `p2, 2q ¡ � � � ¡ ` pS, Sq.

2. For S � 3 and any P3 we have ` p2, 2q ¤ ` p3, 2q.

3. For any S and PS we have ` p1, 1q ¥ ` p2, 1q ¥ � � � ¥ ` pS, 1q with equalities if and
only if PS is a degenerate delta-distribution.

Proof. Claims 1 and 3 are obvious. To prove statement 2, we let πs :� P3psq, s P
t0, 1, 2u, and compute

` p2, 2q � 2 rπ0π1 � π0π2 � π1π2s as well as

`p3, 2q � 3
�
π2

0π1 � π2
0π2 � π2

1π0 � π2
1π2 � π2

2π0 � π2
2π1

�
.

After substituting π2 � 1� π0 � π1, the equation `p2, 2q � `p3, 2q has solutions

π
p 1

2q
0 pπ1q � �1� 10π1 � 9π2

1 	 p3π1 � 1q
a

1� 10π1 � 9π2
1

2 p9π1 � 1q .

On the unit interval, the solutions πp1{2q0 pπ1q are real for 0 ¤ π1   1{9, π1 � 1{3, and
π1 � 1. For 0   π1   1{9, πp1q0 pπ1q   0 and π

p2q
0 pπ1q ¡ 1 are invalid solutions (they
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need to be probabilities!). Hence, `p2, 2q � `p3, 2q has four distinct solutions pπ0, π1, π2q
in r0, 1s3: p0, 0, 1q, p1, 0, 0q, p1{3, 1{3, 1{3q, and p0, 1, 0q. One easily computes that, for
instance, `p2, 2q � 1{2   3{4 � `p3, 2q if pπ0, π1, π2q � p1{2, 1{2, 0q. This proves
`p2, 2q ¤ `p3, 2q on r0, 1s3 with equality at the four distinct solutions from above.

According to Definition 4.3, the Hamming distance pdptqqt¥0 of K is a sequence of

probabilities that for some random realization a node i has two different values in two

different trajectories. Now, if we are given a large ensemble of trajectories we can again

ask how likely it is that i has at least two different values in the whole ensemble. Since

we are dealing with multistate KNs we may even ask how likely it is that i assumes

exactly z different values in the ensemble, where z � 1, 2, . . . , S. For this reason, we

now study the average number of non-zero entries in f̃ -trajectories x̃ptq. We begin by

stating the counterpart of Lemma 4.2.

Lemma 4.5. Let
�
Zζp0q�S

ζ�1
,
°S
ζ�1 Z

ζp0q � 1, be a distribution. Consider the fol-
lowing random experiment: Generate a realization of K. Choose a configuration x̃p0q
in a way such that the probability for a distribution x̃ip0q to have (exactly) ζ non-zero
entries is given by Zζp0q, ζ � 1, 2, . . . , S. Iterate x̃p0q one time-step under f̃ yielding
configuration x̃p1q. Then, the probability Zzp1q that for a randomly chosen node i the
distribution x̃ip1q has (exactly) z non-zero entries, z � 1, 2, . . . , S, is given by

Zzp1q �
Kmax¸
K�1

Pin pKq
¸

κ1�...�κS�K

�
K

κ1, . . . , κS


 S¹
ζ�1

�
Zζp0q

	κζ � ` ppκζq , zq .
In particular, Zzp1q is independent of how the actual values in x̃p0q are chosen but
depends only on the probabilities Zζp0q for the distributions x̃ip0q to have ζ non-zero
entries, ζ � 1, 2, . . . , S.

Proof. Consider a realization of K and a randomly chosen node i. We describe its
inputs by a vector pκ1, κ2, . . . , κSq indicating the number of inputs with 1, 2, . . . , S non-
zero entries in x̃p0q. Clearly, κ1 � κ2 � . . .� κS � Ki. Recall that in the configuration
model the inputs ik of i are chosen randomly from V . Hence, the probability for the
configuration pκζqSζ�1 is given by

�
Ki

κ1, . . . , κS


 S¹
ζ�1

�
Zζp0q

	κζ
.

The number of different tuples pξ1, ξ2, . . . , ξKiq satisfying
±Ki
k�1 x̃

ξk
ik
p0q � 0 in (4.23) is±S

ζ�1 ζ
κζ . The x̃

fipξ1,ξ2,...,ξKiq
i p1q belonging to these tuples are the different non-zero
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entries of x̃ip1q. The probability that their number is equal to z is ` ppκζq , zq. Averaging
over Ki yields the claim.

Instead of the Hamming distance pdptqqt¥0 of K we can, therefore, also study a se-

quence Zptq � pZzptqqSz�1 P RS which is consistent in the sense of Lemma 4.5, i.e. gov-

erned by the iteration

Zpt� 1q � C pZptqq , (4.24)

where the z-th component Cz pZptqq of the right-hand side is given by

Kmax¸
K�1

Pin pKq
¸

κ1�...�κS�K

�
K

κ1, . . . , κS


 S¹
ζ�1

�
Zζptq

	κζ � ` ppκζq , zq , (4.25)

z � 1, 2, . . . , S.

Remark 4.8. Once more, we argue that, for large N , Lemma 2.1 allows us to assume
the inputs of a node to be independent in a realization of K. We can, thus, approximate
Zzptq by the fraction of nodes with z non-zero entries in a f̃ -trajectory x̃ptq of a specific
realization of K. By Remark 4.7, we can also approximate Zzptq by the fraction of nodes
with z different states in a large (Ω " S) ensemble of trajectories xqptq, q � 1, 2, . . . ,Ω,
of a specific realization of K,

Zzptq � 1
N
�#

!
i | pxqi ptqqΩq�1 has z different components.

)
, (4.26)

z � 1, 2, . . . , S. We will use this approximation in section 4.4.4.

4.4.3 Synchronization in ensembles of trajectories

Especially when conducting transcriptome-wide measurements, e.g. by microarrays, we

want the single cells in our experimental sample to act synchronously, as only then the

experimentally observed average concentrations are representative of the single cells.

Intuitively, one would expect that for frozen MKNs, an ensemble of trajectories of a

realization converges, whereas for chaotic MKNs it diverges. Let us first check, if this

can also be analytically seen from system (4.24).

To this end, we investigate the fixed point Z� � p1, 0, . . . , 0q of (4.24). It corresponds

to an ensemble of identical trajectories. (That Z� is, indeed, a fixed point can be

easily seen; note Cz pZ�q � `p1, zq.) We now show that the stability properties of Z�

change precisely at the critical boundary of K. The distributions Zptq live on the affine

hyperplane of RS defined by
°S
z�1 Z

zptq � 1. In order to take derivatives, we choose as
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a global chart the projection on the first S� 1 coordinates. We remark that the choice

of charts, in general, does affect the Jacobian, but not its eigenvalues, as a change of

charts merely means a change of basis in the tangent space. Hence, this choice is not

crucial for stability analyses.

Let us now compute the Jacobian J � DC|Z� of C at Z�. First, consider the case

of fixed K. In global coordinates we can write:

Cz
�
Z1, . . . , ZS�1

� � ¸
κ1�...�κS�K

�
K

κ1, . . . , κS


 S�1¹
ζ�1

�
Zζ

	κζ ��1�
S�1̧

ζ�1

Zζ

�

κS

` ppκζq , zq

Differentiating with respect to Zs yields

BCz
BZs �

¸
κ1�...�κS�K

�
K

κ1, . . . , κS



` ppκζq , zq �

¹
ζ�s,S

�
Zζ

	κζ ���pZsqκs κS
�
�1�

S�1̧

ζ�1

Zζ

�

κS�1

� κs pZsqκs�1

�
�1�

S�1̧

ζ�1

Zζ

�

κS
�
� ,

where, formally, 0 � 0�1 � 0. The evaluation of this term at Z� is

BCz
BZs

����
Z�
� K � ` ps, zq �K � ` pS, zq .

To see this, note that the only non-zero contributions to the sum over the pκ1, . . . , κSq
are the combinations pK, 0, . . . , 0, 0q and pK � 1, 0, . . . , 0, 1q if s � 1, and the combi-

nations κ1 � K � 1, . . . , κs � 1, . . . , κS � 0 and κ1 � K � 1, . . . , κs � 0, . . . , κS � 1 if

s � 1.

For general Pin it follows

BCz
BZs

����
Z�
�

Kmax¸
K�1

Pin pKqK r` ps, zq � ` pS, zqs � K r` ps, zq � ` pS, zqs ,

and we obtain

J �K �

�
����
�
����

` p1, 1q ` p2, 1q � � � ` pS � 1, 1q
0 ` p2, 2q � � � ` pS � 1, 2q
...

...
. . .

...
0 0 � � � ` pS � 1, S � 1q

�
����

�
����

` pS, 1q ` pS, 1q � � � ` pS, 1q
` pS, 2q ` pS, 2q � � � ` pS, 2q

...
...

. . .
...

` pS, S � 1q ` pS, S � 1q � � � ` pS, S � 1q

�
���
�
���� . (4.27)
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Lemma 4.6. The eigenvalues of J are K � ` ps, sq, s � 2, 3, . . . , S.

Proof. According to (4.27), we write J � K pJ1 � J2q with pS�1q�pS�1q matrices J1

and J2. J2 consists of identical columns a. We extend J1 to an S � S upper triangular
matrix J 11 by an S-th row p0, 0, . . . , `pS, Sqq and column p`pS, 1q, `pS, 2q, . . . , `pS, SqqJ ��
aJ, `pS, Sq�J. Let s P t2, 3, . . . , Su and vs �

�
vζs

	S
ζ�1

be an eigenvector to the eigen-

value `ps, sq of J 11. As J 11 is a left-stochastic matrix, it follows from `ps, sqvs � J 11vs

that `ps, sq°S
ζ�1 v

ζ
s �

°S
ζ�1 v

ζ
s . Thus,

°S
ζ�1 v

ζ
s � 0, since `ps, sq   1. As J2 consists of

identical columns a this implies J2

�
vζs

	S�1

ζ�1
� �vSs a. It follows

pJ1 � J2q
�
vζs

	S�1

ζ�1
� pJ1 | aq

�
vζs

	S
ζ�1

� vSs a� J2

�
vζs

	S�1

ζ�1

� `ps, sq
�
vζs

	S�1

ζ�1
� vSs a� vSs a

� `ps, sq
�
vζs

	S�1

ζ�1
,

which shows that K`ps, sq is an eigenvalue of J .

From Lemma 4.4.1 it follows that the largest eigenvalue is K � ` p2, 2q. Further note

that ` p2, 2q � °S�1
s�0 PSpsq p1� PSpsqq � pS � p. The phase transition criterion from

Theorem 4.1 together with Theorem 2.2, thus, implies

Theorem 4.2. The dynamic regimes of MKNs from Definition 4.4 have the following
characteristics.

frozen regime: Z� is a hyperbolic and asymptotically stable fixed point.

critical boundary: The fixed point Z� is critical.

chaotic regime: The fixed point Z� is unstable.

Thus, our intuition about synchronization in ensembles of trajectories agrees with

the behavior of system (4.24). Whereas for frozen MKNs we may expect ensembles to

synchronize over time, this will not be the case for chaotic MKNs. In other words, we

have derived a further characterization of the dynamic regimes from Definition 4.4. We

remark that the dynamical system from (4.24) can also be used to study the behavior

of KNs with an extension of Boolean logic called fuzzy logic [Wittmann and Theis,

2010a].
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4.4 Ensembles of trajectories

4.4.4 Example and simulations

We finish by detailing the behavior of the distributions Zptq in a specific example, more

precisely, in the case S � 3. The distribution P3 will be assumed to be non-degenerate,

i.e. P3psq � 1 for all s P t0, 1, 2u. We work again in the projection of (4.24) on the first

two coordinates. Hence, we are dealing with the planar system

�
Z1pt� 1q
Z2pt� 1q



�

�
C1

�
Z1ptq, Z2ptq�

C2
�
Z1ptq, Z2ptq�



. (4.28)

Lemma 4.7. There exist functions Z2
1

�
Z1

�
and Z2

2

�
Z1

�
around Z�, which satisfy

C1
�
Z1, Z2

1

�
Z1

�� � Z1 and C2
�
Z1, Z2

2

�
Z1

�� � Z2, respectively. Moreover,

dZ2
1

dZ1
p1q � �K r` p1, 1q � ` p3, 1qs � 1

K r` p2, 1q � ` p3, 1qs and (4.29)

dZ2
2

dZ1
p1q � � �K` p3, 2q

K r` p2, 2q � ` p3, 2qs � 1
. (4.30)

Proof. From (4.27) we read off

B �C1
�
Z1, Z2

�� Z1
�

BZ2

�����
Z�

� K r` p2, 1q � ` p3, 1qs and

B �C2
�
Z1, Z2

�� Z2
�

BZ2

�����
Z�

� K r` p2, 2q � ` p3, 2qs � 1 .

By Lemma 4.4.3 and 4.4.2 these derivatives do not vanish. (Recall that we assumed P3

to be non-degenerate.) The claim follows from the implicit function theorem.

Lemma 4.8. It holds dZ2
2{dZ1 p1q   0. Moreover, the dynamic regimes of MKNs from

Definition 4.4 have the following characteristics:

frozen regime:
dZ2

1

dZ1
p1q ¡ �1 ,

dZ2
2

dZ1
p1q ¡ �1 .

critical boundary:
dZ2

1

dZ1
p1q � �1 ,

dZ2
2

dZ1
p1q � �1 .

chaotic regime:
dZ2

1

dZ1
p1q   �1 ,

dZ2
2

dZ1
p1q   �1 .
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Proof. Lemma 4.4.2 implies dZ2
2{dZ1 p1q   0. To determine the relation between

nominator and denominator in (4.29) and (4.30) we compute

K r` p1, 1q � ` p3, 1qs � 1�K r` p2, 1q � ` p3, 1qs
� K r` p1, 1q � ` p3, 1q � ` p2, 1q � ` p3, 1qs � 1

� K r1� ` p2, 1qs � 1

� K` p2, 2q � 1

and

�K` p3, 2q �K r` p2, 2q � ` p3, 2qs � 1

� K r�` p3, 2q � ` p2, 2q � ` p3, 2qs � 1

� 1�K` p2, 2q

Recall that `p2, 2q � p as well as the phase transition criterion from Theorem 4.1. To
obtain the claim, consider that according to Lemma 4.4.3 and 4.4.2 the denominators
in (4.29) and (4.30) are positive and negative, respectively.

Let us now visualize this for Pin pKq � δK,2. Here, the Cz from (4.25), z � 1, 2, are

quadratic functions, and we can easily solve for

Z2
1

�
Z1

� � �α5 � α2Z
1 �

c
pα5 � α2Z1q2 � 4α3

�
α6 � Z1 � α4Z1 � α1 pZ1q2

	
2α3

(4.31)

and

Z2
2

�
Z1

� � 1� α11 � α8Z
1 �

c
p�1� α11 � α8Z1q2 � 4α9

�
α12 � α10Z1 � α7 pZ1q2

	
2α9

(4.32)

with coefficients αi from Table 4.1. Figures 4.4A–C show Z2
1

�
Z1

�
and Z2

2

�
Z1

�
from

(4.31) and (4.32), respectively, for the three distributions

P
paq
3 p0q � 3

4
, P

paq
3 p1q � 1

8
, P

paq
3 p2q � 1

8
,

P
pbq
3 p0q � 2

3
, P

pbq
3 p1q � 1

6
, P

pbq
3 p2q � 1

6
and

P
pcq
3 p0q � 1

2
, P

pcq
3 p1q � 1

4
, P

pcq
3 p2q � 1

4
.

(4.33)
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Table 4.1: Coefficients αi for Equations (4.31) and (4.32)

α1 � `p1, 1q � 2`p3, 1q � `p9, 1q α2 � 2`p2, 1q � 2`p3, 1q � 2`p6, 1q � 2`p9, 1q

α3 � `p4, 1q � 2`p6, 1q � `p9, 1q α4 � 2`p3, 1q � 2`p9, 1q

α5 � 2`p6, 1q � 2`p9, 1q α6 � `p9, 1q

α7 � `p1, 2q � 2`p3, 2q � `p9, 2q α8 � 2`p2, 2q � 2`p3, 2q � 2`p6, 2q � 2`p9, 2q

α9 � `p4, 2q � 2`p6, 2q � `p9, 2q α10 � 2`p3, 2q � 2`p9, 2q

α11 � 2`p6, 2q � 2`p9, 2q α12 � `p9, 2q

One easily computes ppaqK � 13{32�2 � 26{32, ppbqK � 1{2�2 � 1, and ppcqK � 2{3�2 �
4{3. Thus, according to Theorem 4.1, MKNs with Pin pKq � δK,2, Pnos pSq � δS,3, and

distributions P3 as in (4.33) fall into the frozen, critical and chaotic regime. While

in the frozen and critical regime (cf. Figures 4.4A and B) Z� is the only fixed point,

an additional (stable) fixed point Z�� emerges in the chaotic regime, cf. Figure 4.4C.

(Intersections of Z2
1 pZ1q and Z2

2 pZ1q are, of course, fixed points of system (4.28).) Also

compare Figures 4.4A–C to Lemma 4.8.

We now further investigate these situations by simulations. For each choice of P3

from (4.33) (and Pin pKq � δK,2, Pnos pSq � δS,3) a realization of the MKN is generated.

Figures 4.4D–F show the approximation of Zptq from (4.26) obtained in ensembles of

trajectories of these realizations, see figure caption for technical details. We detect a

nice agreement between the coordinates of the (attracting) fixed points in A–C and the

equilibrium distributions in D–F. (Refer to the figure caption for numerical details.)

4.5 Discussion

When basing dynamical systems on MMs one needs to make a fundamental decision

about how update rules act on variables. Either an update rule absolutely determines

the value of a variable at the next time-step, or it determines the change of the variable

relative to its previous state, i.e. whether the variable is assigned the next higher or

the next lower state. KNs with multiple states using the latter update policy are called

random-walk networks. Analyses of these networks revealed a phase transition between

a chaotic and an ordered regime similar to the SKN [Ballesteros and Luque, 2005;

Luque and Ballesteros, 2004]. In the chaotic regime, variables follow random-walk like

trajectories, which gives the name to these networks. In here, we did not consider
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Figure 4.4: The situation of delta-distributed S and K at S � 3 and K � 2. (A)–(C)
show Z2

1

�
Z1

�
(blue) and Z2

2

�
Z1

�
(red) from (4.31) and (4.32), respectively, for (A) P paq

3 ,
(B) P pbq

3 , and (C) P pcq
3 from (4.33). The coordinates of the fixed points are Z� � p1, 0q and

in (C) Z�� � p0.0226, 0.2747q. (D)–(F) show approximations of Zptq � pZzptqq
3
z�1 accord-

ing to (4.26). Realizations of MKNs with N � 104 nodes, Pin pKq � δK,2, Pnos pSq � δS,3,
and P3 as in (A)–(C) were generated, and approximations were calculated in ensembles of
Ω � 103 trajectories. Color legend: Z1ptq: blue, Z2ptq: red, Z3ptq: green. The equilibrium
distributions are (D) Zp50q � p0.9993, 0.0007, 0q, (E) Zp80q � p0.9838, 0.0162, 0q, and (F)
Zp10q � p0.0234, 0.2783, 0.6983q.
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4.5 Discussion

random-walk networks but KNs with multiple states using the first update policy; we

referred to them as MKNs.

Previous studies of MKNs by Solé et al. [2000] are restricted to the biologically

implausible case in which all nodes have the same number of states. In agreement

with our more general results, it has been shown that in the case of unbiased update

rules an increasing number of states decreases the critical connectivity down to 1. It is

tempting to assume that this stays true (at least in a qualitative sense) when replacing

the (fixed) number of states by the mean of a non-degenerate distribution. However,

our results demonstrate that, in general, this is wrong. From the critical connectivity

in (4.12) we see that the crucial parameter is not the mean number of states, but the

mean m of the reciprocal number of states.

Generally speaking, the mean of a strictly positive, non-constant random variable

S and the mean of 1{S are related by

E
�

1
S



¡ 1

E pSq ,

for a proof see e.g. Kendall et al. [1987]. Furthermore, we can easily come up with a

distribution

P pS � 2q � s� 1
s

and P
�
S � s2

� � 1{s
for s P N, such that EpSq Ñ 8 but E p1{Sq Ñ 1{2 as s Ñ 8. Setting Pnos � P , the

critical connectivity from (4.12) increases up to 2 as sÑ8, although the mean number

of states grows beyond any bound.

In this chapter, we investigated a general class of MKNs and demonstrated that they

exhibit a phase transition from frozen to chaotic behavior as the connectivity of the

network grows. To this end, we formally introduced the Hamming distance between

two configurations as an order parameter for MKNs and investigated its dynamical

behavior. The critical boundary between the frozen and chaotic phase was determined

analytically. In its most general representation (4.9) the critical connectivity is inversely

proportional to the heterogeneity p from (4.5) of the MKN. This parameter becomes

maximal if the update rules are unbiased, i.e. assume each value with equal probability,

cf. Lemma 4.1. It is minimal (zero), if the update rules are constant functions.

In particular, we saw that SKNs as introduced by Kauffman [1969] have a critical

connectivity of two, cf. Remark 4.5. Below this connectivity they exhibit stable dynam-

ics, whereas above this connectivity their dynamics are unstable and highly sensitive
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to perturbations. Bearing this in mind, let us recall the questions which Kauffman

[1969] set out to answer, cf. section 3.4. We have now seen that stable dynamics are,

indeed, to be expected in nets of randomly interconnected regulatory circuits, provided

they are sufficiently sparse. Stability does not require the circuits to be precisely con-

structed, but only places an upper bound on their connectivity. Kauffman [1993] called

this generic stability of sparsely connected KNs “order for free.” He argues that reg-

ulatory networks in living organisms benefit from this “order for free” as well as from

the variability of a nearby chaotic regime.

Our analysis of unbiased MKNs, however, showed that the region in which we get

“order for free” shrinks, when we leave the Boolean case and allow for multiple states,

cf. Remark 4.5. Yet, we also demonstrated that each MKN can be kept in the ordered

regime by putting a sufficiently heavy bias on one of the states, cf. section 4.3.4.2. From

a biological point of view, this may indicate that in real genetic networks the update

functions have a base level of activation and deviations thereof constitute well-defined

exceptions.

At this point, we caution that all our results and their interpretation apply to

Kauffman’s idealization of gene regulatory networks, their significance for the real bio-

logical systems should, as always, be treated with wariness. Still, there are promising

attempts, e.g. by Balleza et al. [2008] and Kauffman et al. [2003], to bridge the gap

between the theoretical concept of a KN and real genetic networks.

Finally, we took a look at ensembles of trajectories as an extension to the study

of the Hamming distance between two trajectories. We were able to characterize the

different regimes of MKNs in terms of the synchronization behavior of such ensem-

bles. In an example, we demonstrated that our analytic computations agree well with

simulation results.
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5

Kauffman networks with generic

logics

You want the truth?

You can’t handle the truth!

Jack Nicholson in “A Few Good Men”

The last decades witnessed a series of technological breakthroughs in the life-

sciences. We can now monitor the entire gene or protein profile of cells and study

epistatic relationships by gain- and loss-of-function experiments. Information about

whether or not a gene is expressed in a specific cell type or tissue is readily available, as

is information about activating and inhibiting regulatory interactions. Naturally, one

always wishes for more accurate and comprehensive data, but compared to what was

possible and available some twenty years ago the wealth of information is remarkable.

It more and more turns out that, at least from a modeler’s point of view, the integration

of available information into predictive models is as much a problem as is the possible

lack of further important information. In a way, we already have the truth, we just

cannot handle it.
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In less abstract terms, information about pairwise genetic interactions can typically

be obtained experimentally. The question how the various regulatory influences on a

gene interact in order to determine its expression, however, is combinatorially complex

and often intractable.

5.1 Motivation and outline

Theoretical biologists often distinguish between qualitative and Boolean models of gene

regulatory networks. Qualitative models are typically defined as directed signed graphs.

The nodes represent genes, the edges positive (activating) and negative (inhibiting)

regulatory interactions. Qualitative models may already yield valuable information,

e.g. about multistationarity or oscillations [Thomas, 1978]. However, in general they

do not allow for time-course simulations as the interplay of a gene’s regulators is not

specified. This additional information is provided in BMs. Here, each node is assigned

an update function, which defines the node’s value depending upon the values of the

node’s regulators at the previous time-point.

The information required for the setup of a qualitative model can be obtained

e.g. from gain- or loss-of-function experiments, or on a larger scale from bioinformatics

resources. The inference of Boolean update functions from biological data, however,

is not as straightforward. Therefore, heuristic modeling approaches for the automated

conversion of qualitative into Boolean models have been proposed. The standardized

qualitative dynamical systems approach, for instance, was successfully used to model T

helper cell differentiation [Mendoza and Xenarios, 2006]. Several reverse engineering

approaches also rely on such transformations [Bulashevska and Eils, 2005; Martin et al.,

2007]. In our modeling toolbox ODEfy [Krumsiek et al., 2010] a unifying framework

for all these transformations is established via so-called generic logics. These are tuples

of Boolean operators that allow to define a node’s update rule by linking its activators

and inhibitors according to a specific pattern. A complementary approach that cannot

be treated within the framework of generic logics are threshold update rules as used in

Li et al. [2004] or Rohlf and Bornholdt [2002].

In this chapter, which follows Wittmann and Theis [2010b], we study KNs generated

by generic logics. We formally introduce this class of KNs in section 5.2. Due to

their prominent role in the study of SKNs and KNsMB our main goal is to analyze
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phase transitions in these KNs. We already mentioned that a phase transition can be

understood as a change of the percolation behavior in realizations of a KN, and that in

SKNs or KNsMB this percolation is independent of the actual states of the associated

dynamical system, cf. Lemma 4.2. In this chapter, we will see that this is no longer

true for realizations of a KN with generic logics.

For this reason, we begin in section 5.3 by studying a quantity which we call the

truth-content of a KN. It is defined as the probability for a node to be true (one). In

large KNs the truth-content can be approximated by the fraction of ones in a trajectory

xptq of a realization. In KNsMB the truth-content has stationary dynamics with an

equilibrium given by the magnetization bias. For KNs with generic logics we are able

to prove that the dynamics of the truth-content are essentially dynamics of S-unimodal

functions as described in sections 2.2.4.1 and 2.2.4.2. In numeric analyses, this truth-

content, indeed, exhibits the characteristic, rich dynamical behaviors of these functions

including period-doublings leading to chaos. We prove that the truth-content of KNs

with generic logics possesses a unique attractor and characterize it, cf. Theorems 5.1,

5.2 and 5.3. This allows us to define truth-stable KNs as networks whose truth-contents

exhibit non-chaotic dynamics.

In section 5.4, we use the results from the previous section to derive a criterion

for phase transitions in KNs with generic logics, cf. Theorems 5.5 and 5.6. Section

5.5 concludes the mathematical part of this chapter by numerical analyses and further

confirms the validity of our results by simulations. Finally, in section 5.6, we discuss

our results with respect to their biological implications.

5.2 Qualitative models and Kauffman networks with ge-

neric logics

In this chapter, G � pV,Eq will again denote a (directed) graph of order N with nodes

V � t1, 2, . . . , Nu and edges pi1 Ñ iq P E � V �V . The predecessors (inputs) of a node

i are denoted by i1   i2   � � �   iKi , where Ki is the node’s in-degree.

Definition 5.1 (qualitative model). A qualitative model (QM) is a tuple pG, σq con-
sisting of a graph G and a signature σ : E Ñ t�,�u of G. We call an input ik of a
node i activating if σ pik Ñ iq � � and inhibiting if σ pik Ñ iq � �.
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5.2.1 Mappings between qualitative and Boolean models

Let us now fix the graph G and consider the set Q of all qualitative and the set B of all

Boolean models on G. Clearly, B is much larger than Q; more precisely, #pQq � 2
°N
i�1Ki

and #pBq � 2
°N
i�1 2Ki . We study possible mappings between Q and B. First, we note

that there is no canonical projection from B onto Q. This changes once we restrict B

to the set M of BMs with monotonous update functions.

Remark 5.1. We have a canonical projection

π : M � Q

pfiqNi�1 ÞÑ σ : E Ñ t�,�u

pik Ñ iq ÞÑ
#
� if fi mon. inc. in its k-th input
� if fi mon. dec. in its k-th input

i.e. we classify an input as activating (inhibiting) if the update rule monotonously
increases (decreases) in it.

Conversely, there is no canonical inclusion of Q in B. In this chapter, we propose

generic logics in order to define injective mappings from Q into B.

Definition 5.2 (generic logic). A generic logic g is a triple g � p`,b,aq P t^,_u3 of
Boolean operators from Table 2.1.

There are eight different generic logics; we enumerate them by reading the triple as

a binary number, where by convention ^ � 0 and _ � 1, cf. Table 5.1.

Remark 5.2. Let us consider a QM pG, σq from Q. Via a generic logic g � p`,b,aq we
can assign a node i of G the update function

fgi : t0, 1uKi Ñ t0, 1u�
xi1 , xi2 , . . . , xiKi

	
ÞÑ

� à
k|σpikÑiq��

xik

�
b
� á
k|σpikÑiq��

 xik
�

. (5.1)

Hence, for each generic logic g we can define a mapping

ιg : Q ÝÑ B

by assigning each node i an update function fgi according to (5.1).

Proposition 5.1. Each Boolean function of the form (5.1) is monotonous. Hence,
each generic logic g induces a mapping ιg : Q Ñ M. Each such ιg is, in general, not
onto, but injective and a right-inverse of π, π � ιg � 1Q.
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Table 5.1: Enumeration of all eight generic logics.

No ` b a No ` b a No ` b a No ` b a

0 ^ ^ ^ 2 ^ _ ^ 4 _ ^ ^ 6 _ _ ^

1 ^ ^ _ 3 ^ _ _ 5 _ ^ _ 7 _ _ _

Proof. The claim follows from the fact that a fgi as in (5.1) is monotonously increasing
(decreasing) in its k-th input, if ik is an activating (inhibiting) input of i. Note that
this implies, in particular, the injectivity of ιg as well as π � ιg � 1Q.

We have the following logical relations between update functions generated by the

different generic logics.

Proposition 5.2. We consider a node of a QM pG, σq P Q and the update rules fg from
(5.1) for g � 0, 1, . . . , 7. (For notational simplicity we drop the subscript i.) Then, for
propositional variables x1, . . . , xK P t0, 1u we have

f1 px1, . . . , xKq +3

$,RRRRRRRRRRRRR

RRRRRRRRRRRRR
f5 px1, . . . , xKq

%-RRRRRRRRRRRRR

RRRRRRRRRRRRR

f0 px1, . . . , xKq

2:lllllllllllll

lllllllllllll
+3

$,RRRRRRRRRRRRR

RRRRRRRRRRRRR
f2 px1, . . . , xKq +3

$,RRRRRRRRRRRRR

RRRRRRRRRRRRR
f3 px1, . . . , xKq +3 f7 px1, . . . , xKq .

f4 px1, . . . , xKq

8@yyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyy
+3 f6 px1, . . . , xKq

19lllllllllllll

lllllllllllll

(Arrows indicate logical implication, i.e. f0 px1, . . . , xKq implies f1 px1, . . . , xKq etc.)

De Morgan’s laws imply the following symmetry properties.

Proposition 5.3. Let pG, σq P Q. The update functions fgi and f ,gi of the BMs
ιg ppG, σqq and ιg ppG, σqq, respectively, exhibit the following symmetries:1

1. For pg, g1q P tp0, 7q , p1, 6q , p2, 5q , p3, 4qu we have

fgi px1, . . . , xKiq �  fg
1

i p x1, . . . , xKiq ;

2. for pg, g1q P tp0, 7q , p1, 3q , p2, 5q , p4, 6qu we have

fgi px1, . . . , xKiq �  f ,g
1

i px1, . . . , xKiq ,
1As defined in section 2.1,  σ denotes the inverted signature.
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where x1, . . . , xKi P t0, 1u are propositional variables.

Proposition 5.3.1 implies

Corollary 5.1. Let pG, σq be a QM and consider the BMs pG, fgq � ιg ppG, σqq, g �
0, 1, . . . , 7. For pg, g1q P tp0, 7q , p1, 6q , p2, 5q , p3, 4qu the dynamical systems xpt � 1q �
fg pxptqq and ypt � 1q � fg

1 pyptqq from Remark 3.1 are topologically conjugate via
component-wise negation on t0, 1uN .

5.2.2 Kauffman networks with generic logics

Let us now define the class of KNs which will be the subject of the following investi-

gations. We refer to them as Kauffman networks with generic logics (KNGL). Each

KNGL is specified by four parameters: the order N , the generic logic g, the connec-

tivity K and an activation bias a P r0, 1s. As we will always consider the limit of

large N we typically omit the parameter N and specify a KNGL by the tuple pg, a,Kq.
Realizations pG, fq of a KNGL pg, a,Kq (of order N) are constructed according to the

following random process.

(G1) Create a realization of the random graph G pPinq with Pin � δK .

(G2) Define a signature σ of G by setting σ pik Ñ iq � � with probability a and

σ pik Ñ iq � � with probability r � 1 � a for each edge ik Ñ i of G. We obtain

a qualitative model pG, σq.

(G3) Set pG, fq � ιg ppG, σqq.

In other words, G will always be a graph with fixed connectivity K for all nodes.

Different generative models for G remain to be investigated, see the outlook in section

7.2.2. Similarly to KNsMB, we introduce a bias a and classify an edge as activating or

inhibiting with probabilities a and r � 1� a, respectively.

Remark 5.3. Note that for K � 1, KNsGL are critical KNs where only “copy” and
“invert” are used as update rules. These KNs are well understood and we refer the
interested reader to Drossel [2005].

In the following, g P t0, 1, . . . , 7u always denotes the generic logic, 0 ¤ a ¤ 1 the

bias towards activations, and K P N the connectivity of a KNGL. We point out once

more that K is the fixed connectivity of a regular graph and cannot be interpreted as

a mean connectivity.
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5.3 The truth-content of a Kauffman network with generic logic

5.3 The truth-content of a Kauffman network with generic

logic

As explained above, we first turn our attention to a quantity we call the truth-content

of a KN. We introduce this concept for general KNs and only later restrict ourselves to

KNsGL. So, at first let K be a general KN.

Definition 5.3 (truth-content of a KN). The truth-content of K is a sequence pwptqqt¥0

which is consistent in the sense of the following random experiment: Pick a realization
of K, create a configuration xp0q whose components are 1 with probability wptq, and
iterate it one time-step yielding configuration xp1q. Then, wpt � 1q is the probability
for a component of xp1q to be 1.

Remark 5.4. Lemma 2.1 allows us to approximate the truth-content of K by the fraction
of ones

wptq � 1
N

Ņ

i�1

xiptq (5.2)

in a trajectory xptq of a specific realization of K provided N is sufficiently large. We
further illustrate this by simulations in section 5.5.3.

The truth-content of a KN with magnetization bias u exhibits a rather uninteresting

dynamical behavior.

Remark 5.5. In a KN with magnetization bias u we have wptq � u for all t ¡ 0.

The proof that KNs with canalyzing update rules are always frozen, cf. Kauffman

et al. [2004], also involves computing the truth-content. However, also for this par-

ticular choice of update rules wptq has stationary equilibrium dynamics. Let us now

see how wptq behaves in KNsGL and whether a more interesting dynamical behavior

can be observed. We let K � pg, a,Kq be a KNGL and denote its truth-content by

pwg,a,Kptqqt¥0. If no ambiguity exists, we simply write wgptq instead of wg,a,Kptq.
First, we take care of the issue that the truth-content wgptq of K depends on the

initial condition wgp0q. To this end, we prove that the asymptotic behavior of wgptq
is identical for almost all initial conditions. We consider this a result in its own right.

Moreover, it will allow us to derive a criterion for phase transitions in section 5.4.

We proceed as follows. In section 5.3.1 we describe the truth-content wgptq of K by

an iteration. Section 5.3.2 then lists some useful properties of the iteration functions.
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5. KAUFFMAN NETWORKS WITH GENERIC LOGICS

Together with the theory of S-unimodal maps as outlined in section 2.2.4.2, these pre-

considerations will allow the derivation of our main result in section 5.3.3. Finally,

section 5.3.4 establishes the concept of truth-stability.

5.3.1 Iterations for the truth-content

In this section, we derive functions Wg,a,K � Wg such that the truth-content wgptq of

K satisfies the iteration

wgpt� 1q �Wg pwgptqq . (5.3)

The following two corollaries implied by Proposition 5.3 will considerably simplify our

computations.

Corollary 5.2. The Wg,a,K from (5.3) exhibit the following symmetries.

1. For pg, g1q P tp0, 7q , p1, 6q , p2, 5q , p3, 4qu we have Wg,a,Kpwq � 1�Wg1,a,Kp1�wq.

2. For pg, g1q P tp0, 7q , p1, 3q , p2, 5q , p4, 6qu we have Wg,a,Kpwq � 1�Wg1,r,Kpwq.

Corollary 5.3. For pg, g1q P tp0, 7q , p1, 6q , p2, 5q , p3, 4qu the two dynamical systems
wgpt� 1q �Wg pwgptqq and wg1pt� 1q �Wg1

�
wg1ptq

�
are topologically conjugate via the

involution w ÞÑ 1� w.

Now, given wgptq, let us consider the random experiment from Definition 5.3 and

take a look at a prototypic node i. In xp0q each of the K inputs of i is 1 with probability

wgptq and 0 with probability 1�wgptq, as the configuration model chooses these inputs

randomly from V . According to (G2), the influence of an input on i is activating with

probability a and inhibiting with probability r. Hence, the probability for α inputs of

i to be activating and K � α inputs to be inhibiting is given by
�
K
α

�
aαrK�α. In this

situation and

• using g � 0, the probability for xip1q to be 1 is given by w0ptqαp1 � w0ptqqK�α
as the α activators need to be 1 and the K � α inhibitors need to be 0 in xp0q.
Summing over all possible activator-inhibitor-combinations yields

W0 pw0ptqq �
Ķ

α�0

�
K

α



aαrK�αw0ptqα p1� w0ptqqK�α

� paw0ptq � r p1� w0ptqqqK . (5.4)
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5.3 The truth-content of a Kauffman network with generic logic

• using g � 1, the probability for xip1q to be 1 is given by"
w1ptqα

�
1� w1ptqK�α

�
, if α   K

w1ptqK , if α � K ,

as the α activators need to be 1 and, if existing, at least one of the K�α inhibitors

needs to be 0 in xp0q. Summing over all possible activator-inhibitor-combinations

yields

W1 pw1ptqq �
K�1̧

α�0

�
K

α



aαrK�αw1ptqα

�
1� w1ptqK�α

�� aKw1ptqK

� paw1ptq � rqK �
�
1� aK�w1ptqK . (5.5)

• using g � 2, the probability for xip1q to be 1 is given by$&
%
p1� w2ptqqK , if α � 0
w2ptqα � p1� w2ptqqK�α � w2ptqα p1� w2ptqqK�α , if 0   α   K
w2ptqK , if α � K .

These are the probabilities that all activators are 1 or all inhibitors are 0 in xp0q.
If i has both, activators and inhibitors, we need to correct by the probability that

all activators are 1 and all inhibitors are 0. Summing over all possible activator-

inhibitor-combinations yields

W2 pw2ptqq � paw2ptq � rqK � pa� r p1� w2ptqqqK � paw2ptq � r p1� w2ptqqqK

� rK
�

1� p1� w2ptqqK
	
� aK �

1� w2ptqK
�
. (5.6)

The remaining Wg follow from Corollary 5.2.

W3,a,K pw3ptqq � 1�W1,r,K pw3ptqq (5.7)

W4,a,K pw4ptqq � 1�W3,a,K p1� w4ptqq (5.8)

W5,a,K pw5ptqq � 1�W2,a,K p1� w5ptqq (5.9)

W6,a,K pw6ptqq � 1�W1,a,K p1� w6ptqq (5.10)

W7,a,K pw7ptqq � 1�W0,a,K p1� w7ptqq (5.11)

The Wg, g � 0, 1, . . . , 7, are plotted in Figure 5.1.

In the remainder of this section we will study the time-discrete dynamical system

(5.3) with Wg from (5.4)–(5.11).
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Figure 5.1: Wg,a,Kpwq, g � 0, 1, . . . , 7, from (5.4)–(5.11) for a � 0, 0.25, 0.5, 0.75, 1 and
K � 1, 3, 10.
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5.3 The truth-content of a Kauffman network with generic logic

5.3.2 Properties of the iteration functions

Let us first collect some properties of the Wg, which will be needed below.

5.3.2.1 Lower and upper bounds

We begin by stating two results about lower and upper bounds of the Wg. First of all,

Proposition 5.2 implies

Proposition 5.4. For w P r0, 1s, 0 ¤ a ¤ 1, and K ¥ 1 we have the following ordering

W1,a,Kpwq oo oo
ee

eeLLLLLLLLLL
W5,a,Kpwq

ff

ffLLLLLLLLLL

W0,a,Kpwq
yy

yyssssssssss
oo oo

ee

eeKKKKKKKKKK
W2,a,Kpwq oo oo

ee

eeLLLLLLLLLL
W3,a,Kpwq oo oo W7,a,Kpwq .

W4,a,Kpwq
��

����������������������
oo oo W6,a,Kpwq

xx

xxrrrrrrrrrr

( oo oo edges indicate “less or equal”-relationships, i.e. W0,a,Kpwq ¤W1,a,Kpwq etc.)

For the sake of completeness let us also mention the following (possibly rather loose)

bounds.

Proposition 5.5. For w P r0, 1s, 0 ¤ a ¤ 1, and K ¥ 1 we have

1. minpa, rqK ¤W0,a,Kpwq ¤ maxpa, rqK .

2. minpa, rqK ¤W1,a,Kpwq ¤ maxpa, rq.

3. 0 ¤W2,a,Kpwq ¤ 1.

4. minpa, rq ¤W3,a,Kpwq ¤ 1�minpa, rqK .

5. minpa, rqK ¤W4,a,Kpwq ¤ maxpa, rq.

6. 0 ¤W5,a,Kpwq ¤ 1.

7. minpa, rq ¤W6,a,Kpwq ¤ 1�minpa, rqK .

8. 1�maxpa, rqK ¤W7,a,Kpwq ¤ 1�minpa, rqK .
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Proof. Claim 1 is obvious as W0pwq is monotonous. If a ¡ r (a   r), W0pwq increases
(decreases) from rK to aK . The lower bound in claim 2 follows from part 1 and
Proposition 5.4. For the upper bound we reason

W1,a,Kpwq ¤ awK � r � wK � pawqK

¤
#
wKpa� 1� aq � r � wKpa� rq � r ¤ r , if a ¤ r

rwK � a� wK � pawqK ¤ wKpr � 1� aq � a � a , if a ¡ r .

The remainder of the claim follows from Corollary 5.2.

5.3.2.2 Extreme and asymptotic cases

This section takes care of all extreme and asymptotic cases. Trivial computations show

Proposition 5.6. The following hold.

1. For g P t0, 1, 4, 5u we have Wgp0q � rK and Wgp1q � aK . For g P t2, 3, 6, 7u we
have Wgp0q � 1� aK and Wgp1q � 1� rK .

2. Let a � 1. For g P t0, 1, 2, 3u we have Wg,1,Kpwq � wK . For g P t4, 5, 6, 7u we
have Wg,1,Kpwq � 1� p1� wqK .

3. Let a � 0. For g P t0, 2, 4, 6u we have Wg,0,Kpwq � p1� wqK . For g P t1, 3, 5, 7u
we have Wg,0,Kpwq � 1� wK .

4. Let K � 1. For all g P t0, 1, . . . , 7u we have Wg,a,1pwq � aw � rp1� wq.

5. Let 0   w   1 and 0   a   1. For g P t0, 1, 2, 4u we have Wg,a,Kpwq Ñ 0 as
K Ñ8. For g P t3, 5, 6, 7u we have Wg,a,Kpwq Ñ 1 as K Ñ8.

Proposition 5.6 has an intuitive explanation:

• In 1. the decisive characteristic is the operator b that links the group of activators

and inhibitors. In the case b � ^, viz g � 0, 1, 4, 5, the only chance for a node to

be switched on if w � 0 (w � 1) is that all its inputs are inhibitors (activators).

Conversely, in the case b � _, viz g � 2, 3, 6, 7, the only chance for a node to be

switched on if w � 0 (w � 1) is that not all its inputs are activators (inhibitors).

• In 2. the decisive characteristic is the operator ` that links the activators. In the

case ` � ^, viz g � 0, 1, 2, 3, if the fraction of activators increases, the probability
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for a node to be switched on approaches the probability that all its inputs are

on. Conversely, in the case ` � _, viz g � 4, 5, 6, 7, if the fraction of activators

increases, the probability for a node to be switched on approaches the probability

that any of its inputs is on.

• In 3. the decisive characteristic is the operator a that links the inhibitors. In

the case a � ^, viz g � 0, 2, 4, 6, if the fraction of activators decreases, the

probability for a node to be switched on approaches the probability that all its

inputs are off. Conversely, in the case a � _, viz g � 1, 3, 5, 7, if the fraction of

activators decreases, the probability for a node to be switched on approaches the

probability that any of its inputs is off.

• In 5. the decisive characteristic is the number of _’s in g. First, note that, unless

a � 0 or a � 1, the number of both, activators and inhibitors, increases with K.

Now, if there are less than two _’s in g, viz g � 0, 1, 2, 4, all activators need to be

on and/or all inhibitors need to be off for a node to be switched on. Clearly, the

probability for this tends to zero as the connectivity increases unless w � 0 or

w � 1. Conversely, if there are more than one _’s in g, viz g � 3, 5, 6, 7, it suffices

that any activator is on and/or any inhibitor is off for a node to be switched on.

Clearly, the probability for this tends to one as the number of inputs increases

unless w � 0 or w � 1.

5.3.2.3 The general shape of the iteration functions

In between the extreme cases from Proposition 5.6 the shapes of the Wg are character-

ized by

Proposition 5.7. Let K ¥ 2 and 0   a   1.

1. W0 is convex on r0, 1s and increasing (decreasing) if a ¡ r (a   r).

2. W7 is concave on r0, 1s and increasing (decreasing) if a   r (a ¡ r).

3. W2 is convex on r0, 1s and has exactly one critical point wpcq2 , which is non-
degenerate and coincides with the global minimum.

4. W5 is concave on r0, 1s and has exactly one critical point wpcq5 , which is non-
degenerate and coincides with the global maximum.
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5. Let g P t1, 3, 4, 6u. Wg has at most one critical point wpcqg and at most one
inflection point wpiqg . If existing, wpcqg is non-degenerate. If no inflection point
exists, also no critical point can exist. In the case that both exist, wpiqg   w

pcq
g if

g P t1, 3u, and wpiqg ¡ w
pcq
g if g P t4, 6u.

6. We can subdivide r0, 1s into three intervals I1
1 �

�
0, wpiq1

�
, I2

1 �
�
w
piq
1 , w

pcq
1

�
,

I3
1 �

�
w
pcq
1 , 1

�
such that W1 is convex-increasing on I1

1 , concave-increasing on I2
1 ,

and concave-decreasing on I3
1 . If there is no critical (inflection) point in r0, 1s

then I3
1 � H (I2

1 � I3
1 � H).

7. We can subdivide r0, 1s into three intervals I1
3 �

�
0, wpiq3

�
, I2

3 �
�
w
piq
3 , w

pcq
3

�
,

I3
3 �

�
w
pcq
3 , 1

�
such that W3 is concave-decreasing on I1

3 , convex-decreasing on I2
3 ,

and convex-increasing on I3
3 . If there is no critical (inflection) point in r0, 1s then

I3
3 � H (I2

3 � I3
3 � H).

8. We can subdivide r0, 1s into three intervals I1
4 �

�
0, wpcq4

�
, I2

4 �
�
w
pcq
4 , w

piq
4

�
,

I3
4 �

�
w
piq
4 , 1

�
such that W4 is concave-increasing on I1

4 , concave-decreasing on
I2

4 , and convex-decreasing on I3
4 . If there is no critical (inflection) point in r0, 1s

then I1
4 � H (I1

4 � I2
4 � H).

9. We can subdivide r0, 1s into three intervals I1
6 �

�
0, wpcq6

�
, I2

6 �
�
w
pcq
6 , w

piq
6

�
,

I3
6 �

�
w
piq
6 , 1

�
such that W6 is convex-decreasing on I1

6 , convex-increasing on I2
6 ,

and concave-increasing on I3
6 . If there is no critical (inflection) point in r0, 1s

then I1
6 � H (I1

6 � I2
6 � H).

Proof. The case g � 0 is obvious. The characterization of the shape of W1 can be
obtained as follows: If K � 2 there is obviously at most one critical point and no
inflection point. In the case K ¥ 3 the zeros of the first and second derivatives of W1

are simple and given by

w
pcq
1 � r

v
pcq
1 � a

and w
piq
1 � r

v
piq
1 � a

,

where �
v
pcq
1

	K�1
� 1� aK

a
and

�
v
piq
1

	K�2
� 1� aK

a2
.

This implies that there is at most one critical and one inflection point of W1 in r0, 1s
as possible negative solutions for vpc{iq1 lead to values wpc{iq1   0. One easily verifies
that W 1

1p0q � KarK�1 ¡ 0 and W 2
1 p0q � KpK � 1qa2rK�2 ¡ 0. Now, suppose a
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critical point wpcq1 P p0, 1q exists. It follows that wpcq1 is a local maximum, which implies
W 2

1

�
w
pcq
1

	
  0. Thus, there has to be an inflection point 0   w

piq
1   w

pcq
1 . If there is no

critical point in p0, 1q the function W1 is increasing on r0, 1s and I3
1 � H. If, moreover,

there is no inflection point either, the function W1 is also convex on r0, 1s and I2
1 � H.

In the case g � 2 one can check that

W 2
2 pwq �KpK � 1q

�
a2 paw � rqK�2 � r2 pa� rp1� wqqK�2�

pa� rq2 paw � rp1� wqqK�2 � rKp1� wqK�2 � aKwK�2
�

is positive for 0   w   1. (We have a2paw � rqK�2 ¡ pa� rq2 paw � rp1� wqqK�2 for
a ¥ 0.5, and r2pa � rp1 � wqqK�2 ¡ pa � rq2 paw � rp1� wqqK�2 for a   0.5.) Hence,
W2 is convex on r0, 1s. The claim follows from W 1

2p0q � �Kr   0 and W 1
2p1q � Ka ¡ 0.

The shapes of W3,W4,W5,W6 and W7 can be obtained from Corollary 5.2.

Corollary 5.4. Let 0   a   1 and K ¥ 1. For each g P t0, 1, . . . , 7u, Wg has exactly
one fixed point.

Proof. For K � 1, see Proposition 5.6.4. For K ¥ 2 the claim follows from Propositions
5.6.1 and 5.7. A little work remains to be done in the case g � 1 (and g � 6) as functions
with a shape as W1 could have multiple fixed points. However, we can rule out this
possibility as W1 and W 1

1 are bounded from above by Hpwq � paw � rqK and H 1pwq,
respectively. The function H is convex and increasing and has fixed points 0   wh   1
and 1. The fixed point wh is attracting and H 1pwhq   1. Any fixed point of W1 lies
in the interval p0, whq, and, thus, the derivative of W1 in a fixed point wpfq1 satisfies
W 1

1

�
w
pfq
1

	
  H 1

�
w
pfq
1

	
  H 1 pwhq   1 as H is convex. Hence, W1 cannot have more

than one fixed point as in this case in at least one fixed point the derivative would have
to be greater than 1 (the diagonal would be crossed from below).

5.3.2.4 The limit of large connectivities

In this section, we investigate the limit of large K in more detail. This is of particular

importance to our numerical analyses in section 5.5, as here we will, of course, only be

able to portray the dynamic behavior up to some finite K. We begin by studying the

existence of critical points of Wg, g P t1, 3, 4, 6u. Recall that, in general, we can only

limit the number of critical points but not guarantee existence, cf. Proposition 5.7.5.

Proposition 5.8. Let g P t1, 3, 4, 6u and 0   a   1. For sufficiently large K, Wg

has a critical point wpcqg and an inflection point wpiqg in p0, 1q. For g P t1, 3u we have
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w
pc{iq
g Ñ 1 from below as K Ñ 8. For g P t4, 6u we have w

pc{iq
g Ñ 0 from above as

K Ñ8.

Proof. By virtue of Corollary 5.2 we can restrict ourselves to the case g � 1. In this case
the critical point wpcq1 and the inflection point wpiq1 were already computed in the proof
of Proposition 5.7. The radicand in the expression v

pcq
1 � K�1

a
p1� aKq {a is bounded

and for sufficiently large K greater than one. Hence, limKÑ8 v
pcq
1 � 1 from above. It

follows limKÑ8w
pcq
1 � 1 from below. Analogously one proves limKÑ8w

piq
1 � 1 from

below.

Now, let 0   a   1 and K be sufficiently large in the sense of Proposition 5.8.

In the cases g P t1, 4, 5u, we denote the maximum of Wg by mg,a,K � Wg

�
w
pcq
g

	
. In

the cases g P t2, 3, 6u, we denote the minimum of Wg by mg,a,K � Wg

�
w
pcq
g

	
. Let

Mg,a � limKÑ8mg,a,K .

Proposition 5.9. We have

1. for g P t1, 3u: limaÑ0Mg,a � 1 and limaÑ1Mg,a � 0.

2. for g � 2 and 0   a   1: M2,a � 0.

3. for g P t4, 6u: limaÑ0Mg,a � 0 and limaÑ1Mg,a � 1.

4. for g � 5 and 0   a   1: M5,a � 1.

Proof. By virtue of Corollary 5.2 we can restrict ourselves to g P t1, 2u. We take
care of the case g � 2 first. Let 0   w   1. We know from Proposition 5.7.3 that
W2pwq ¥ m2,a,K and from Proposition 5.6.5 that W2pwq Ñ 0 as K Ñ 8. This implies
M2,a � 0. If g � 1, we compute mg,a,K (using e.g. wpcqg from the proof of Proposition
5.7) and validate the claim numerically.

We denote the range of Wg by

Rg,a,K :�
�
min
r0,1s

pWgpwqq ,max
r0,1s

pWgpwqq
�
.

Proposition 5.10. Let 0   a   1. We have

1. for g � 0: R0,a,K Ñ t0u as K Ñ8.

2. for g P t1, 4u: Rg,a,K Ñ r0,Mg,as as K Ñ8.
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3. for g P t2, 5u: Rg,a,K Ñ r0, 1s as K Ñ8.

4. for g P t3, 6u: Rg,a,K Ñ rMg,a, 1s as K Ñ8.

5. for g � 7: R7,a,K Ñ t1u as K Ñ8.

Proof. If g P t0, 7u, one boundary of Rg,a,K is given by Wgp0q and the other one by
Wgp1q. In the case g � 0 (g � 7) these converge to 0 (1), cf. Proposition 5.6.1. Now,
consider g P t1, 2, . . . , 6u. Note that for large enough K in each of these cases one
boundary of Rg,a,K is given by either Wgp0q or Wgp1q and the other one by mg,a,K .
The first converges to either 0 or 1 as K Ñ 8 (cf. Proposition 5.6.1) the latter to
Mg,a.

The following remark summarizes our results.

Remark 5.6. In the cases g P t0, 7u we have W0 Ñ 0 and W7 Ñ 1 as K Ñ 8 with
respect to the maximum norm, which, of course, implies point-wise convergence. For
g P t1, 4u (g P t3, 6u) the convergence Wg Ñ 0 p1q is only point-wise. In fact, Wg

converges to zero (one) by pushing its bump towards either boundary of r0, 1s. In other
words, the range Rg,a,K does not degenerate in the limit of large K but converges to
a non-trivial interval of length Mg,a (1 �Mg,a). Similarly, in the case g � 2 (g � 5)
the convergence Wg Ñ 0 p1q is also only point-wise. The graph of W2, for instance, is
“pushed towards the path p0, 1q Ñ p0, 0q Ñ p1, 0q Ñ p1, 1q.” We can somewhat sloppily
describe the shape of Wg for large K as follows, see also Figure 5.2.

1. W0 is an essentially flat line approaching 0 as K Ñ8.

2. W1 is an essentially flat line approaching 0 as K Ñ 8 except for a narrow peak
at the right end of r0, 1s. Its height decreases as a Ñ 1 and increases as a Ñ 0.
The peak does not intersect with the diagonal.

3. W2 has an almost rectangular shape and “interpolates” the points p0, 1q, p0, 0q,
p1, 0q and p1, 1q.

4. W3 is an essentially flat line approaching 1 as K Ñ 8 except for a narrow peak
at the right end of r0, 1s. Its height decreases as aÑ 0 and increases as aÑ 1.

5. W4 is an essentially flat line approaching 0 as K Ñ 8 except for a narrow peak
at the left end of r0, 1s. Its height decreases as aÑ 0 and increases as aÑ 1.

6. W5 has an almost rectangular shape and “interpolates” the points p0, 0q, p0, 1q,
p1, 1q and p1, 0q.
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7. W6 is an essentially flat line approaching 1 as K Ñ 8 except for a narrow peak
at the left end of r0, 1s. Its height decreases as a Ñ 1 and increases as a Ñ 0.
The peak does not intersect with the diagonal.

8. W7 is an essentially flat line approaching 1 as K Ñ8.

5.3.3 Attractors of the truth-content and their basins of attraction

In this section, we use the technical prerequisites developed and outlined in sections

2.2.4 and 5.3.2 to describe the dynamics of (5.3). In particular, we prove the existence

of a unique attractor and characterize it. We take care of the cases a P t0, 1u, K � 1,

and K Ñ8 first.

Theorem 5.1. The discrete dynamical system (5.3) exhibits the following asymptotic
behavior.

1. Let K ¥ 2. For g P t0, 1, 2, 3u and sufficiently large a, (5.3) has a unique asymp-
totically stable fixed point wpfqg in a neighborhood of 0 and wpfqg Ñ 0 as aÑ 1. If
a � 1 there is an additional unstable fixed point at 1.

For g P t4, 5, 6, 7u and sufficiently large a, (5.3) has a unique asymptotically stable
fixed point wpfqg in a neighborhood of 1 and w

pfq
g Ñ 1 as aÑ 1. If a � 1 there is

an additional unstable fixed point at 0.

2. Let K ¥ 2. For all g P t0, 1, . . . , 7u and sufficiently small a, (5.3) has a unique
asymptotically stable periodic orbit of length 2 which approaches the cycle 0, 1 as
aÑ 0.

3. If K � 1 and 0   a   1, (5.3) has a unique asymptotically stable fixed point
w
pfq
g � 0.5 for all g P t0, 1, . . . , 7u.

4. If K � 1 and a � 1 each point is a neutrally stable fixed point.

5. If K � 1 and a � 0 every orbit tw, 1� wu is neutrally stable.

6. Let 0   a   1. For g P t0, 1u and sufficiently large K, (5.3) has a unique
asymptotically stable fixed point wpfqg near 0 and wpfqg Ñ 0 as K Ñ8.

For g � 3 and t ¡ 0 we have limaÑ0 limKÑ8w3,a,Kptq � 1. For g � 4 and t ¡ 0
we have limaÑ0 limKÑ8w4,a,Kptq � 0.

For g P t6, 7u and sufficiently large K, (5.3) has a unique asymptotically stable
fixed point wpfqg near 1 and wpfqg Ñ 1 as K Ñ8.
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Figure 5.2: Wg,a,Kpwq, g � 0, 1, . . . , 7, from (5.4)–(5.11) for large K.
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All asymptotically stable fixed points or periodic orbits are global attractors.

Proof. Claims 1 and 2 are obvious from Proposition 5.6.2 and 5.6.3 if a � 1 or a � 0,
respectively. Since the existence of asymptotically stable periodic orbits is an open
property and since Wg,a,K depends analytically on a, this extends to neighborhoods
of a � 1 and a � 0, respectively. Claims 3–5 follow from Proposition 5.6.4. Claim 6
follows from Remark 5.6.

Now, let K ¥ 2. We begin by proving

Lemma 5.1. Let K ¥ 2. For g P t0, 7u we have SWg,a,K   0 (where defined) if
a � 0.5, and SWg,a,K � 0 (where defined) if a � 0.5. For g P t1, 2, . . . , 6u we have
SWg   0 (where defined).

Proof. By the chain rule from Proposition 2.2 and the symmetry properties from Corol-
lary 5.2 it suffices to consider g P t0, 1, 2u. If K � 2, Wg is a quadratic polynomial
unless g � 0 and a � 0.5 in which case Wg is constant. Thus, the Schwarzian derivative
is negative or zero, respectively. Now suppose K ¥ 3. The case g � 0 follows from

W 1
0pwqW3

0 pwq �
3
2
W 2

0 pwq2 � �
1
2
K2pK � 1qpa� rq4 paw � rp1� wqq2K�4 pK � 1q .

If g P t1, 2u we have

W 1
gpwqW3

g pwq �
3
2
W 2
g pwq2 �

3
2
K2pK � 1q2

�
K � 2

p3{2qpK � 1qHpw, 1qHpw, 3q �Hpw, 2q
2

�
, p�q

where

Hpw,αq �

$''''''&
''''''%

�
aK � 1

�
wK�α � aαpaw � rqK�α , if g � 1

aαpaw � rqK�α � p�1qαrα pa� rp1� wqqK�α�
pa� rqα paw � rp1� wqqK�α�
p�1qαrKp1� wqK�α � aKwK�α , if g � 2 ,

α � 1, 2, 3. We denote the summands in the above expressions of the Hpw,αq by
vqpw,αq, q � 1, 2 if g � 1 and q � 1, 2, 3, 4, 5 if g � 2.

As p3{2qK2pK � 1q2 ¡ 0, we only need to take care of the bracketed expression
in p�q. If Hpw, 1qHpw, 3q ¤ 0 it immediately follows that p�q   0. Otherwise, the
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bracketed expression in p�q is strictly smaller than Hpw, 1qHpw, 3q � Hpw, 2q2. This
can be further simplified to

Hpw, 1qHpw, 3q �Hpw, 2q2 �¸
q,q1

�
vqpw, 1qvq1pw, 3q � vqpw, 2qvq1pw, 2q

� �
¸
q�q1

�
vqpw, 1qvq1pw, 3q � vqpw, 2qvq1pw, 2q

�
, p:q

as vqpw, 1qvqpw, 3q� vqpw, 2q2 � 0 for q � 1, 2 if g � 1 and q � 1, 2, 3, 4, 5 if g � 2. One
now proves the claim by showing that the expression in p:q is non-positive. In the case
g � 1, one can, for instance, compute

p:q � �
aK � 1

�
wK�1a3paw � rqK�3 � �

aK � 1
�
wK�3apaw � rqK�1�

2
�
aK � 1

�
wK�2a2paw � rqK�2

�a �aK � 1
�
wK�3paw � rqK�3

�
a2w2 � paw � rq2 � 2awpaw � rq�

�a �aK � 1
�
wK�3paw � rqK�3r2 ¤ 0 .

Now, suppose g P t0, 7u. The simple forms of W0 and W7 allow us to analytically

describe (or, at least, narrow down) the asymptotic behavior of (5.3).

Theorem 5.2. Let K ¥ 2, 0 ¤ a ¤ 1, and g P t0, 7u. Iteration (5.3) has a unique
global periodic attractor A. For a ¥ 0.5 the attractor A is an asymptotically stable
fixed point. In particular, A �  

0.5K
(

if a � 0.5. For each 0   a   0.5 there exists
K0 � K0paq such that for any K ¡ K0 the attractor A is an asymptotically stable fixed
point. Otherwise it is either an asymptotically stable fixed point or periodic orbit of
length 2.

Proof. By virtue of Corollary 5.3 we restrict ourselves to g � 0. Let us first consider
the case a ¥ 0.5. Here, W0 is monotonously increasing, and the claim follows from
Lemma 2.2.1. If a � 0.5, we have W0pwq � 0.5K .

Now, let 0   a   0.5. Here, W0 is monotonously decreasing, and the claim follows
from Lemma 2.2.2 together with Lemma 5.1. To show existence of K0paq we reason as
follows. It holds

�
W 2

0

�2 pwq � pKpa� rqq2 pr � pa� rqW0pwqqK�2 pK � 1q pr � pa� rqwqK�2 pa� rq
rr � pa� rqpK � 1qW0pwqs .
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The sign of this derivative is determined by r� pa� rqpK � 1qW0pwq. As a function of
W0pwq, this expression has a unique zero at

W0pwq � � r

pa� rqpK � 1q . p�q

For sufficiently large K ¡ K0paq we have W0pwq ¤ rK   �r{ppa�rqpK�1qq and p�q is
not satisfied for any 0 ¤ w ¤ 1. Thus, W 2

0 is concave on r0, 1s. Moreover, note that W0

is decreasing, and, consequently, W 2
0 is increasing. Hence W 2

0 has exactly one stable
fixed point.

The case a � 0 was already taken care of in Theorem 5.1.2.

Let us now consider the remaining cases g P t1, 2, . . . , 6u. Due to the more compli-

cated expressions of Wg we can only obtain weaker results than in Theorem 5.2.

Theorem 5.3. Let K ¥ 2, 0 ¤ a ¤ 1, and g P t1, 2, . . . , 6u. The iteration (5.3) has a
unique global attractor, which is one of the following types:

1. an asymptotically stable periodic orbit,

2. a Cantor set of measure zero,

3. a finite union of intervals with a dense orbit.

Proof. By virtue of Corollary 5.3 we restrict ourselves to g P t1, 4, 5u. Recall the shape
of these Wg as described in Proposition 5.7. We already remarked that they have
exactly one fixed point, cf. Corollary 5.4. We denote the maximizing argument of Wg

by wmax
g , i.e. wmax

g � w
pcq
g is the critical point or wmax

g is a boundary point of r0, 1s.
Case (a): If the maximum Wmax

g �Wg

�
wmax
g

�
of Wg lies below or on the diagonal,

i.e. Wmax
g ¤ wmax

g , the iteration has a unique stable fixed point with full basin of
attraction. This follows from Lemma 2.2.1 as Wg is increasing above the diagonal. The
two shapes of Wg for which this occurs are shown schematically in Figures 5.3A, B.

The delicate point is what happens if the maximum is located above the diagonal,
i.e. Wmax

g ¡ wmax
g . The three shapes of Wg for which this occurs are shown schemati-

cally in Figures 5.3C–E. We subdivide r0, 1s into three intervals I1 �
�
0,Wg

�
Wmax
g

��
,

I2 �
�
Wg

�
Wmax
g

�
,Wmax

g

�
, and I3 �

�
Wmax
g , 1

�
. Trajectories of points in I1 ulti-

mately land in I2; points in I3 are mapped into I1 and thus later into I2. Moreover,
Wg pI2q � I2. Hence, we can restrict Wg to I2.1

1I2 is the so-called dynamical core of Wg.
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Figure 5.3: Ad proof of Theorem 5.3. Schematic plots of Wg. For the sake of presentation
the subscript g has been dropped.

Case (b): First, suppose that Wg

�
Wmax
g

� ¥ wmax
g . The two shapes of Wg for which

this occurs are shown schematically in Figures 5.3C, D. By Lemmas 2.2.2 and 5.1 the
restriction Wg|I2 has a global periodic attractor of length 1 or 2.

Case (c): Now suppose that Wg

�
Wmax
g

�   wmax
g . The shape of Wg for which this

occurs is shown schematically in Figure 5.3E. In this case wmax
g � w

pcq
g is a critical point

and the restriction Wg|I2 is S-unimodal, cf. Lemma 5.1. The statement follows from
Theorem 2.5.

Remark 5.7. According to Theorems 5.1, 5.2 and 5.3, the dynamical system (5.3) has
a unique attractor for all KNsGL pg, a,Kq unless pa,Kq � p0, 1q or pa,Kq � p1, 1q. We
denote this attractor by Lg,a,K and formally set Lg,a,1 � r0, 1s if a � 0 or a � 1. The
above-mentioned theorems also show that the basin of attraction Bg,a,K of Lg,a,K has
full Lebesgue measure in r0, 1s. Again, we formally set Bg,a,1 � r0, 1s if a � 0 or a � 1.
As usual, we drop the subscripts a and K if no ambiguity exists.

5.3.4 Truth-stability

Building on our results from the last section, we now define a property of KNsGL which

we call truth-stability. We begin by taking a look at the Lyapunov exponent (cf. section

2.2.3.3) of the truth-content of a KNGL.
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Proposition 5.11. Let g P t0, 1, . . . , 7u, 0 ¤ a ¤ 1, and K ¥ 1. For Lebesgue-almost
all wgp0q P r0, 1s the Lyapunov exponent

λg � λg,a,K � lim
tÑ8

1
t

t�1̧

τ�0

ln
��W 1

g pwgpτqq
�� , (5.12)

exists.1 In this case, it is identical for almost all wgp0q P r0, 1s. Moreover,

1. λg ¡ 0 ðñ Wg admits an acip.

2. λg   0 ùñ Lg is a periodic attractor.

Proof. By virtue of Corollary 5.2.1 we restrict ourselves to g P t0, 1, 4, 5u. If K � 1 and
a P t0, 1u we have λg,a,1 � 0, and the dynamical system (5.3) possesses neutrally stable
orbits, cf. Theorem 5.1.4 and 5.1.5. Now, let pa,Kq � p0, 1q and pa,Kq � p1, 1q. If Lg
is a periodic attractor, λg exists for all wgp0q P Bg, more precisely,

λg � 1
|Lg|

¸
wPLg

ln
��W 1

g pwq
�� .

As Lg is stable it follows that λg ¤ 0. It is also evident that a periodic attractor Lg
cannot support an acip.

Thus, it remains to prove the claims for g P t1, 4, 5u, if the shape of Wg is as
described in case (c) from the proof of Theorem 5.3, (cf. Figure 5.3E), as in all other
cases Lg is a periodic attractor. By the reasoning from the proof of Theorem 5.3 we
see that in this case all trajectories are trajectories of S-unimodal functions, possibly
after discarding finitely many iteration-steps. The claims follow from Proposition 2.4
and Theorem 2.6.

With respect to sensitive dependence on initial conditions (cf. Definition 2.6) of the

truth-content we have the following result.

Proposition 5.12. Let g P t0, 1, . . . , 7u, 0 ¤ a ¤ 1, and K ¥ 1. If the map Wg has
a periodic attractor, it does not have sensitive dependence on initial conditions. In the
case it has an interval attractor, it has sensitive dependence on initial conditions.

Proof. We denote the euclidean distance by ‘dist’ and the δ-neighborhood of some
point w by Bδ pwq. First, suppose Wg has a (global) periodic attractor as well as
sensitive dependence on initial conditions. Then, there exist ε ¡ 0 and a point

1Here, we include the possibility that λg � �8.
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wp0q P Bg such that for any neighborhood U of wp0q there is w P U and t ¥ 0 with
dist

�
W t
gpwp0qq,W t

gpwq
� ¡ ε. Let wppq be a periodic point of Wg. As wppq is stable

there is δ ¡ 0 such that dist
�
W t
gpw1q,W t

gpw2q
�   ε for all w1, w2 P Bδ

�
wppq

�
and all

t ¥ 0. As wp0q P Bg there is t0 such that W t0
g pwp0qq P Bδ

�
wppq

�
. From the conti-

nuity of Wg it follows that there is δ0 ¡ 0 such that for all w P Bδ0pwp0qq we have
dist

�
W t
gpwp0qq,W t

gpwq
�   ε for 0 ¤ t ¤ t0 and W t0

g pwq P Bδ

�
wppq

�
. This implies

dist
�
W t
gpwp0qq,W t

gpwq
�   ε for all w P Bδ0pwp0qq and all t ¥ 0 — a contradiction to the

sensitive dependence on initial conditions.
In the proof of Theorem 5.3 we saw that, if Wg has an interval attractor, it has

to be as shown in Figure 5.3E, as otherwise a periodic attractor would exist. We also
saw that in this case the non-transient dynamics of Wg are dynamics of an S-unimodal
function. The claim follows from Theorem 2.7.

Now, recall that in parametrized families of S-unimodal functions there is a di-

chotomy except for a measure zero set of parameters, cf. Remark 2.4. The following

Theorem shows that this implies also a dichotomy for KNsGL.

Theorem 5.4. Let g P t0, 1, . . . , 7u. Except for a measure zero set of parameters pa,Kq
the dynamical system (5.3) has either a global periodic attractor and no sensitive de-
pendence on initial conditions or an interval attractor with positive Lyapunov exponent
supporting an acip and sensitive dependence on initial conditions.

Proof. Again, we denote neighborhoods of points by B� p�q. As the Lebesgue measure is
countably additive, it suffices to prove the theorem for fixed K. Let A denote the set of
parameters a such that (5.3) has neither a periodic attractor nor an interval attractor
supporting an acip. We show that A is a Lebesgue measure zero set, νpAq � 0. To
this end, suppose that the converse is true. Then Lebesgue’s density theorem, see
e.g. Wheeden and Zygmund [1977], implies the existence of a point a0 P A such that
ν pBε pa0q XAq ¡ 0 for all ε ¡ 0. Since a0 P A the shape of Wg,a0,K has to be as shown
in Figure 5.3E as otherwise Wg,a0,K would have a periodic attractor, cf. the reasoning
in the proof of Theorem 5.3. Wg,a,K depends analytically on a, and, consequently,
there exists an interval AI � Bε0 pa0q containing a0 such that Wg,a,K has a shape as
shown in Figure 5.3E for all a P AI . Hence, the non-transient dynamics of the family
pWg,a,KqaPAI are the dynamics of S-unimodal functions, cf. case (c) in the proof of
Theorem 5.3. Theorem 2.8 implies ν

�
AXAI

� � 0 which is a contradiction. The claim
follows from Propositions 5.11 and 5.12.

Theorem 5.4 motivates
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Definition 5.4 (truth-stable). A KNGL pg, a,Kq is called truth-stable if Lg,a,K is a
periodic attractor.

In truth-stable networks the truth-content wgptq has non-chaotic dynamics. Theo-

rems 5.1 and 5.2 imply

Corollary 5.5. We have the following sufficient conditions for the truth-stability of a
KNGL pg, a,Kq.

1. K � 1 and 0   a   1.

2. K ¥ 2 and a sufficiently small or sufficiently large.

3. g P t0, 7u, pa,Kq � p0, 1q, and pa,Kq � p1, 1q.

The truth-stability in the remaining cases is investigated numerically in section 5.5.

5.4 Dynamic regimes of Kauffman networks with generic

logics

In truth-stable KNsGL the truth-content wgptq is a stable quantity, i.e. upon pertur-

bations this quantity will converge back to its unique attractor. In realizations we,

therefore, expect the fraction of ones in a trajectory to re-converge upon perturbations.

This, however, does not necessarily imply that also the trajectory itself will re-converge

(in the Boolean state-space). This property is exactly what distinguishes frozen from

chaotic KNs. In frozen KNs flips of single bits will not propagate through the network

but will be eradicated over time. For this reason, we will also call frozen (chaotic)

KNsGL bit-stable (bit-unstable) in the following.

Let us now investigate how truth-stable KNsGL behave with respect to possible

phase transitions. In this section, we analytically determine their critical boundary

using again the Hamming distance between two trajectories as an order parameter.

Throughout this section, K � pg, a,Kq will always be a truth-stable KNGL with truth-

content pwgptqqt¥0.
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5.4.1 The Hamming distance of a Kauffman network with generic

logic

We use again the Hamming distance between two trajectories as an order parameter to

detect phase transitions in KNsGL. In chapter 4 we saw that in KNsMB the behavior

of this Hamming distance is controlled by the mean connectivity K as well as by the

heterogeneity p of the KN, cf. Theorem 4.1. According to Remark 4.3, the heterogeneity

is the probability for a generated update rule fi to yield two different values for two

different arguments. In KNsMB this probability depends only on the magnetization

bias. In KNsGL, however, it depends also on whether the inputs are 0 or 1: Suppose,

for instance, that an update rule was generated using g � 0�̂p^,^,^q and that one

of its inputs is flipped. Now, this will only have an effect on the output if all further

inputs are 1 in the case they are activators and 0 in the case they are inhibitors. This

explains why we went to such great lengths to understand the truth-content of KNsGL

in the previous section. We modify Definition 4.3 accordingly and obtain

Definition 5.5 (order parameter for KNsGL). The Hamming distance of K is a se-
quence pdg,a,Kptqqt¥0 which is consistent in the sense of the following random experi-
ment: Pick a realization of K. Create two configurations xp0q and x1p0q whose com-
ponents differ with probability dg,a,Kptq and whose identical components are 1 with
probability wgptq. Iterate xp0q and x1p0q one time-step yielding configurations xp1q
and x1p1q. Then, dg,a,Kpt � 1q is the expected Hamming distance between xp1q and
x1p1q. If no ambiguity exists, we simply write dgptq instead of dg,a,Kptq.

Remark 5.8. Two clarifications are in order.

1. As argued in Remark 4.4, Lemma 2.1 allows us to approximate the Hamming
distance of K by the Hamming distance

1
N

Ņ

i�1

�
1� δxiptq,x1iptq

	

between two trajectories xptq and x1ptq of a specific realization of K provided N

is sufficiently large. We will demonstrate this by simulations in section 5.5.3.

2. Apart from the initial distance dg,a,Kp0q, the Hamming distance also depends
on the initial truth-content wg,a,Kp0q of K. This seems a problem, as in 1. the
initial fractions of ones in the trajectories xptq and x1ptq might differ. However,
we know from Remark 5.7 that the asymptotic behavior of wgptq is (almost)
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independent of the initial condition. Moreover, we will investigate the evolution
of small perturbations and may therefore assume the fractions of ones in xptq and
x1ptq to be almost identical, even from the beginning on.

5.4.2 Iterations for the Hamming distance

We now derive functions Dg,a,K � Dg such that the Hamming distance pdgptqqt¥0 of K

satisfies the iteration dgpt�1q � Dg pdgptq, wgptqq. Given dgptq and wgptq, let us consider

the random experiment from Definition 5.5. We proceed as in the proof of Lemma

4.2. Let the random variable d be defined as the Hamming distance d pxp1q,x1p1qq
and the identically distributed Bernoulli random variables di, i � 1, 2, . . . , N , as 1 if

xip1q � x1ip1q and as 0 otherwise. It then holds d � p1{Nq°N
i�1 di, and, consequently,

dgpt� 1q � E pdq � 1
N

Ņ

i1�1

E pdi1q � E pdiq (5.13)

for any i.

Fixing some node i with Ki � K inputs, the mean E pdiq is equal to the probability

for

fgi pxi1p0q, xi2p0q, . . . , xiK p0qq � fgi
�
x1i1p0q, x1i2p0q, . . . , x1iK p0q

�
with fgi from (5.1). The edges ik Ñ i are independently classified as activating and

inhibiting with probabilities a and r, respectively, the inputs are independently chosen

to differ, xikp0q � x1ikp0q, with probability dgptq, and the identical inputs are 1 with

probability wgptq. In this situation, the probability that k of the K inputs differ is

equal to
�
K
k

�
dgptqk p1� dgptqqK�k, and we let

ppkqg pwgptqq � p
pkq
g,a,K pwgptqq (5.14)

be the probability that the update rule fgi non-trivially depends on these k inputs. We

may, thus, write

E pdiq �
Ķ

k�0

�
K

k



dgptqk p1� dgptqqK�k ppkqg pwgptqq ,

where, formally, pp0qg pwgptqq � 0. Hence, according to (5.13) the Hamming distance

pdgptqqt¥0 of K obeys the iteration

dgpt� 1q � Dg pdgptq, wgptqq �
Ķ

k�0

�
K

k



dgptqk p1� dgptqqK�k ppkqg pwgptqq .
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The tricky part is the computation of the p
pkq
g pwq, especially for k ¡ 1. Here,

however, we can make use of the following corollary implied by Proposition 5.3.

Corollary 5.6. The ppkqg,a,Kpwq from (5.14) satisfy the following symmetry properties.

1. For pg, g1q P tp0, 7q , p1, 6q , p2, 5q , p3, 4qu we have ppkqg,a,Kpwq � p
pkq
g1,a,Kp1� wq.

2. For pg, g1q P tp0, 7q , p1, 3q , p2, 5q , p4, 6qu we have ppkqg,a,Kpwq � p
pkq
g1,r,Kpwq.

Moreover, we will soon see that for our purposes it suffices to know p
p1q
g pwq.

5.4.3 Analysis of the Hamming distance and detection of a phase

transition

Let us now consider the iteration�
wgpt� 1q
dgpt� 1q



�

�
Wg pwgptqq

Dg pdgptq, wgptqq


. (5.15)

As pp0qg pwgq � 0 independently of wg, the set tpwg, dgq | dg � d� � 0u is an invariant

set of (5.15). This is intuitive, as the realizations of KNs give rise to fully deterministic

dynamical systems, and trajectories that agree at some point in time will also agree

at all future time-points. The first component wgptq of (5.15) is independent of the

second, and its behavior was analyzed in section 5.3. It was shown that it possesses a

unique attractor Lg,a,K , which in the case of a truth-stable network is a stable periodic

orbit.

Recall that we distinguished the dynamic regimes of MKNs according to the stability

of the fixed point d� of iteration (4.7). In the case of KNsGL, we distinguish between

frozen and chaotic regimes by looking at the stability of the orbit D� � Lg,a,K � td�u.
If D� is asymptotically stable, we expect trajectories of realizations of the KNGL to

re-converge upon small perturbations, whereas if D� is unstable they will diverge. This

motivates

Definition 5.6 (phases/regimes of KNsGL). We say that the KNGL pg, a,Kq is fro-
zen/critical/chaotic if the orbit D� is asymptotically stable/critical/unstable.

We now determine the stability of D�. First of all, we observe that the Jacobian of

(5.15) in pwg, d�q is triangular with eigenvalues W 1
g pwgq and pB{BdqDg pd,wq|pd�,wgq �

Kpg pwgq, where pg pwgq :� p
p1q
g pwgq.
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Interestingly, it suffices to consider the dependencies pg pwq of update rules on single

inputs. Let us now compute them. We consider a prototypic update function fgi from

(5.1) with Ki � K inputs, K� 1 of which are fixed, w.l.o.g. xi2 , xi3 , . . . , xiK , and study

its dependence on xi1 . The edges ik Ñ i are independently classified as activating and

inhibiting with probabilities a and r, respectively; the K�1 identical inputs are 1 with

probability w and 0 with probability 1� w.

The probability for α of the K�1 fixed inputs of fgi to be activating and K�1�α
inputs to be inhibiting is given by

�
K�1
α

�
aαrK�1�α. In this situation and

• using g � 0, the probability for f0
i to depend on xi1 is given by wα p1� wqK�1�α,

as already one inactive activator or one active inhibitor will determine the value of

f0
i irrespective of xi1 . Summing over all possible activator-inhibitor-combinations

of the K � 1 fixed inputs yields

p0 pwq � paw � rp1� wqqK�1 . (5.16)

• using g � 1, the probability for f1
i to depend on xi1 is given by

wα
�
1� wK�1�α

�
, if i1 is activating and α   K � 1

wK�1 , if i1 is activating and α � K � 1
wK�1 , if i1 is inhibiting.

In the case that i1 is activating, all other activators need to be 1, and, if existing,

at least one of the inhibitors needs to be 0 for the value of f1
i to depend on xi1 . In

the case that i1 is inhibiting, f1
i will depend on xi1 , if all activators and inhibitors

are 1. Summing over all possible activator-inhibitor-combinations of the K inputs

yields

p1 pwq � a
�paw � rqK�1 � �

1� aK�1
�
wK�1

�� rwK�1 . (5.17)

• using g � 2, the probability for f2
i to depend on xi1 is given by

wα
�

1� p1� wqK�1�α
	
, if i1 is activating and α   K � 1

wK�1 , if i1 is activating and α � K � 1
p1� wqK�1 , if i1 is inhibiting and α � 0
p1� wαq p1� wqK�1�α , if i1 is inhibiting and α ¡ 0 .

In the case that i1 is activating, all other activators need to be 1, and, if existing,

at least one of the inhibitors needs to be 1 for the value of f2
i to depend on xi1 . In
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the case that i1 is inhibiting, f2
i will depend on xi1 , if all inhibitors are 0 and, if

existing, at least one activator is 0. Summing over all possible activator-inhibitor-

combinations of the K inputs yields

p2 pwq � a
�
paw � rqK�1 � paw � rp1� wqqK�1 � pawqK�1

�
�

r
�
pa� rp1� wqqK�1 � paw � rp1� wqqK�1 � prp1� wqqK�1

�
.

(5.18)

Using Corollary 5.6

p3,a,K pwq � p1,r,K pwq (5.19)

p4,a,K pwq � p3,a,K p1� wq (5.20)

p5,a,K pwq � p2,a,K p1� wq (5.21)

p6,a,K pwq � p1,a,K p1� wq (5.22)

p7,a,K pwq � p0,a,K p1� wq . (5.23)

Recall that the Jacobian of (5.15) in pwg, d�q has eigenvalues W 1
g pwgq and Kpg pwgq.

In our stability analysis of D� we proceed by showing

Lemma 5.2. For all w P p0, 1q we have Kpg pwq ¥
��W 1

g pwq
�� with equality iff a � 0 or

a � 1.

Proof. By virtue of Corollaries 5.2 and 5.6 we can restrict ourselves to g P t0, 1, 2u. If
g � 0 we compute

Kp0 pwq �
��W 1

0 pwq
�� � K paw � r p1� wqqK�1 p1� |a� r|q ¥ 0

with equality iff a � 0 or a � 1.
In the case g � 1, we have

Kp1 pwq �
��W 1

1 pwq
�� # � 2KrwK�1 , if W 1

1 pwq ¥ 0
¥ KwK�1

�
a� 2aK

�
, if W 1

1 pwq   0

+
¥ 0

with equality iff a � 0 or a � 1. (Note that a � 0 implies W 1
1 pwq ¤ 0, while a � 1

implies W 1
1 pwq ¥ 0.)

Finally, for g � 2 it holds

Kp2 pwq �
��W 1

2 pwq
�� �$&

%
2Kr

�
pa� rp1� wqqK�1 � paw � rp1� wqqK�1 � prp1� wqqK�1

�
, W 1

2 pwq ¥ 0

2Ka
�
paw � rqK�1 � paw � rp1� wqqK�1 � pawqK�1

�
, W 1

2 pwq   0 .

111



5. KAUFFMAN NETWORKS WITH GENERIC LOGICS

If a P p0, 1q, these expressions are positive as pa� rp1� wqqK�1 ¡ paw � rp1� wqqK�1

(in the case W 1
2 pwq ¥ 0) and paw�rqK�1 ¡ paw � rp1� wqqK�1 (in the case W 1

2 pwq  
0).

Thus, the maximal eigenvalue of the Jacobian of (5.15) in pwg, d�q is Kpg pwgq.
Theorem 2.2 together with Remark 2.2 yields

Theorem 5.5 (phase transition criterion). The dynamic regimes of a KNGL pg, a,Kq
are determined by

Λg � Λg,a,K �
¹

wPLg,a,K

Kpg,a,K pwq (5.24)

via

Λg

$'&
'%
  1 frozen regime, bit-stability
� 1 critical boundary
¡ 1 chaotic regime, bit-unstability.

Again, we can interpret Λg from (5.24) in terms of “damage spreading.” It is the

mean number of flipped nodes triggered by the flip of a single node after one circulation

of the truth-content.

In the extreme and asymptotic cases from Theorem 5.1 we have

Theorem 5.6. The following hold.

1. Let 1   K and g P t0, 1, . . . , 7u. For either a sufficiently close to 0 or sufficiently
close to 1 the KNGL pg, a,Kq is bit-stable.

2. For K � 1, any 0 ¤ a ¤ 1 and any g P t0, 1, . . . , 7u the KNGL pg, a,Kq is critical.
(See also Remark 5.3.)

3. For g P t0, 1, 6, 7u, any 0   a   1 and sufficiently large K, the KNGL pg, a,Kq is
bit-stable.

Proof. We show claim 1 exemplarily for g � 0 and sufficiently small a. Let a � 0. From
Theorem 5.1.2 we know that L0,0,K � t0, 1u. Moreover, p0,0,Kpwq � p1�wqK�1. Thus,

Λ0,0,K �
�
K1K�1

� � �K0K�1
� � 0 .

Since Λ0,a,K depends continuously on a, the claim for sufficiently small a follows. Claim
2 is obvious, but the limit of large K warrants a little attention. We know from
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Theorem 5.1.6 that for g P t0, 1u (g P t6, 7u) the attractor Lg,a,K becomes a fixed
point wpfqg approaching 0 (1) as K increases. Hence, for sufficiently large K we have
Λg,a,K � Kpg,a,K

�
w
pfq
g

	
. By virtue of Corollary 5.6 we restrict ourselves to g P t0, 1u.

In these cases it follows from (5.16) and (5.17) that Λg,a,K Ñ 0 as K increases. (Note
that pg,a,K

�
w
pfq
g

	
Ñ 0 exponentially.)

The behavior in between these extrema will be investigated numerically in the

following section.

Remark 5.9. Theorem 5.6.3 shows that for high connectivities KNs with generic logics
0, 1, 6 and 7 become frozen. This is somewhat counterintuitive, as from the theory
of MKNs we would expect a phase transition from order to chaos as the connectivity
increases, cf. Corollary 4.2.

5.5 Numeric results and network simulations

After the analytic investigations in the previous sections, we now present results from

numeric studies. We focus, in particular, on the behavior of KNsGL pg, a,Kq for

biologically reasonable values of a and K. Finally, we show that our analytic results

from the previous sections agree with simulations of realizations of KNsGL. As justified

in Corollary 5.1 we will restrict ourselves to g P t0, 1, 2, 3u throughout this section. For

aesthetic reasons, we allow K P R, K ¥ 1, in our numeric studies.

5.5.1 Biologically reasonable parameters

The transcriptional gene regulatory networks of lower organisms, such as E. coli or

yeast have been identified to a large extent [Keseler et al., 2008; Lee et al., 2002].

The average connectivity1 in these networks is typically small, K � 2 � 3, which,

interestingly, agrees well with the critical connectivity of SKNs. With few exceptions

all interactions in these networks could be classified as either activating or inhibiting.

(The exceptions are transcription factors whose regulatory function can be altered

by the binding of so-called co-factors.) One observes a clear bias towards activating

1We may, of course, always compute the average connectivity of some given graph. The question

is, however, whether this quantity is a meaningful characteristic. In scale-free networks [Albert and

Barabási, 2002], whose degrees are power-law distributed, this is, for instance, typically not the case.

We comment on this issue in section 7.2.2.
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interactions. In Alon [2006], a rough estimate of 60%� 80% activating interactions in

gene regulatory networks is given.

In higher organisms, our knowledge about epistatic relationships is hopelessly in-

complete, but available data also suggest a bias towards activations. Also, it has been

speculated that biological networks, in general, are sparse, i.e. the mean connectivity

is low [Leclerc, 2008]. We will consider a � 0.7 and K � 2 � 3 biologically reasonable

parameters.

5.5.2 Numerical investigation of truth- and bit-stability

For g P t1, 2, . . . , 6u, the dynamics of (5.3) are essentially dynamics of S-unimodal

functions. Thus, we may expect a transition to chaos of wgptq via period-doublings,

similar to the behavior of the logistic equation described in section 2.2.4.1.

5.5.2.1 A global view of the parameter space

In a first attempt to get a rough overview of the behavior of (5.3) we search for stable

periodic orbits of (5.3) for values of a and K on a fine grid in r0, 1s�r1, 30s. The results

are shown in Figure 5.4. Figure 5.4A nicely confirms our analytic results from Theorem

5.2 about KNs with generic logics 0 and 7. As expected, we detect period-doublings

with increasing K for g P t1, 2, 3u. In the case g � 1, we have period-doublings for

small values of a, cf. Figure 5.4B and the magnification in Figure 5.4E. In the cases

g � 2 and g � 3 we seem to have period-doublings for all values of a, cf. Figures 5.4C

and D.

Still, according to section 5.5.1 the values of a and K at which this mathematically

interesting behavior occurs are biologically not plausible. Instead, we observe that a

unique asymptotically stable fixed point exists for any generic logic and biologically

reasonable values of a and K.

Phase transitions are marked by green lines in Figure 5.4. Strikingly, we find that for

fixed a KNsGL possess several critical connectivities at which a phase transition occurs,

see, in particular, the magnification in Figure 5.4F. (Recall that KNsMB possess a single

critical connectivity for each magnetization bias u, cf. Corollary 4.2.) Qualitatively, the

phase transitions for g � 0 and g � 1 as well as for g � 2 and g � 3 are similar. Theorem

5.6 agrees well with our numerical findings. For each generic logic, KNs are critical if
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FE

DB

A C

1 2 4 8 16

Figure 5.4: Stable periodic orbits of (5.3) were detected for (A) g � 0, (B) g � 1, (C)
g � 2, (D) g � 3, and values of a and K on a fine grid in r0, 1s � r1, 30s. For g P t0, 1, 3u
periodic orbits could be reliably detected up to length 16, for g � 2 up to length 4. In the
a-K-plane the regions corresponding to different attractor-lengths are color-coded. Green
lines indicate phase transitions, i.e. points where Λg from (5.24) crosses 1. In any case, the
K � 1-line is a critical boundary where Λg crosses 1 from below as K grows. (E) and (F)
show magnifications of (B) and (D), respectively.
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K � 1 and become frozen as a Ñ 0 or a Ñ 1. In the cases g P t0, 1u, cf. Figures 5.4A

and B, KNsGL become frozen as K grows for any 0   a   1.

5.5.2.2 Dynamics for selected parameter values

We now select the most interesting values of a for each g P t0, 1, 2, 3u from both, a

mathematical as well as biological point of view, and analyze the behavior of (5.3) in

more detail.

Unbiased networks: Let us begin with the case a � 0.5, that corresponds to the

standard (unbiased) KNs. For g P t0, 1u, (5.3) has an asymptotically stable fixed

point which approaches zero as K Ñ8, cf. Figures 5.5A and B. This agrees with

Theorems 5.1.6 and 5.2. For g P t2, 3u, we observe a “period doubling route to

chaos” as described in section 2.2.4.1, cf. Figures 5.5C and D.

Biologically reasonable networks: The behavior in the biologically reasonable case

a � 0.7 does not differ qualitatively from the case a � 0.5, cf. Figure 5.6.

Networks with a bias towards inhibitions: The mathematically most interesting

behavior is observed for small a, cf. Figures 5.7 and 5.8. In Theorem 5.1.6 we

remarked that for g P t0, 1u the truth-content has stationary dynamics for suf-

ficiently large K with an equilibrium approaching zero. In agreement with this

theoretical result, we observe in Figure 5.7A that for g � 0 and a � 0.1 the stable

fixed point first bifurcates into a stable 2-cycle and ultimately becomes stable

again near zero. In the case g � 1 and a � 0.006 we also detect an attractive

fixed point near zero for large K, cf. Figure 5.7B. For smaller K, however, the

behavior for g � 1 is much more intricate than for g � 0. Here we observe a

“chaotic bubble” that opens with a sequence of period-doublings and closes with

a sequence of period-halvings, cf. the magnifications in Figures 5.7C and D.

The cases g � 2 (a � 0.01) and g � 3 (a � 0.1) are also interesting. The behavior

for small K is shown in Figures 5.8B and D. With growing K, KNs with generic

logic 2 exhibit period-doublings as described in section 2.2.4.1, and the diameter

of the attractor decreases. KNs with g � 3 have a stable fixed point or a stable

periodic attractor of length 2 for smaller K. As can be seen in Figures 5.8A and

C these behaviors change as K increases. In the case g � 2 the diameter of the
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attractor starts re-increasing up to 1. For g � 3 the change is even more abrupt

when for large K period-doublings set in.

The bifurcation diagrams for g � 3 and increasing a, cf. Figures 5.8C, 5.5D and 5.6D,

nicely confirm Theorem 5.1.6. Although w3ptq exhibits chaotic dynamics, for large

K the sequence becomes restricted to an interval with upper bound 1, whose length

decreases with a. Hence, for small a, we have essentially w3ptq � 1 despite the chaotic

dynamics.

5.5.3 Network simulations

We now further validate our results from section 5.3 by comparing the truth-contents of

KNsGL to the fractions of ones in trajectories of realizations. To this end, we generate

realizations of KNsGL with g � 0/a � 0.1, g � 1/a � 0.006, g � 2/a � 0.5 and

g � 3/a � 0.5. Figure 5.9 shows the attractors of the fraction of ones in trajectories

of these realizations (see figure caption for technical details). Comparing Figure 5.9 to

the bifurcation diagrams of the truth-content shown in Figures 5.7A, C, 5.5C, D we

observe an almost perfect agreement.

In a next step, we validate also the critical boundaries obtained by studying the

Hamming distance of KNsGL in section 5.4. To this end, realizations of KNsGL with

connectivities K � 1, 2, . . . , 30, and activation biases a � 0.001, 0.002, . . . , 0.999 are

generated for g � 0, 1, 2, 3. Two different configurations with (normalized) Hamming

distance 10�3 are each iterated and their Hamming distance after 50 time-steps is

plotted in Figure 5.10. Comparing the results to the critical boundaries shown in

Figure 5.4 we observe a good agreement in the cases g � 1 and g � 2. For g � 0 and

g � 3 there is a good agreement up to a connectivity of around 10, above the agreement

is rather poor.

A possible explanation for this is that the assumption of independent inputs is not

valid for high connectivities, cf. Lemma 2.1. However, we would not know why this is

critical only in the cases g � 0 and g � 3. Therefore, we deem another explanation

more likely. It is suggested by the fact that the agreement is worst for small a and large

K. Let us choose representatives for this region of the parameter space, say a � 0.1

and K � 20. Then for wg P Lg,0.1,20, g � 0, 1, 2, 3, we have w0 � 0.049, w1 � 0.181,

0.087   w2   0.218, and w3 � 0.932. Hence, while there is still variability in w1ptq
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A

DB

C

Figure 5.5: Bifurcation diagrams of (5.3) for (A) g � 0, (B) g � 1, (C) g � 2, (D)
g � 3, a � 0.5, and K � 1, 1.01, 1.02, . . . , 50. In each subfigure the upper part shows the
attractor Lg,0.5,K for increasing K. The attractor was found by iterating (5.3) 106 times
and plotting the subsequent 102 iterations. The lower part of each subfigure shows the
Lyapunov exponent λg,0.5,K from (5.12). It was obtained as the average over 103 iterations
(after the burn-in). Note that in (A) λ0,0.5,K � �8.
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A

DB

C

Figure 5.6: Bifurcation diagrams of (5.3) for (A) g � 0, (B) g � 1, (C) g � 2, (D)
g � 3, a � 0.7, and K � 1, 1.01, 1.02, . . . , 50. In each subfigure the upper part shows the
attractor Lg,0.7,K for increasing K. The lower part shows the Lyapunov exponent λg,0.7,K

from (5.12). Technicalities as in Figure 5.5.
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A B

D

C

Figure 5.7: Bifurcation diagrams of (5.3) for g P t0, 1u, small a, and K ¥ 1 in .01-steps.
In each subfigure the upper part shows the attractor Lg,a,K for increasing K. The lower
part shows the Lyapunov exponent λg,a,K from (5.12). (A) g � 0, a � 0.1, and K ¤ 50.
(B) g � 1, a � 0.006, and K ¤ 900. (C) Magnification of (B). (D) Magnification of (C).
Technicalities as in Figure 5.5.
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E
B

A

D

C

Figure 5.8: Bifurcation diagrams of (5.3) for g P t2, 3u, small a, and K ¥ 1 in .01-steps.
In each subfigure the upper part shows the attractor Lg,a,K for increasing K. The lower
part shows the Lyapunov exponent λg,a,K from (5.12). (A) g � 2, a � 0.01, and K ¤ 1000.
(B) Magnification of (A). (C) g � 3, a � 0.1, and K ¤ 300. (D) Magnification of (C).
Technicalities as in Figure 5.5.
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and w2ptq, the values of w0ptq and w3ptq are pushed towards 0 and 1, respectively. This

implies that trajectories of realizations of KNsGL with these parameters are almost

identical to p0, 0, . . . , 0q and p1, 1, . . . , 1q, respectively, and, thus, likely to coincide due

to finite size effects.

5.6 Discussion

Accepting Kauffman’s hypothesis about “Living at the edge of chaos”, cf. section 3.4,

which generic logic g from Table 5.1 is most reasonable from a biological point of view?

Let us take a look at Figure 5.4 and the region of biologically meaningful parameter

values a � 0.7 and K � 2 � 3. For g P t0, 1u KNsGL are frozen for these parameter

values but quite far away from a critical boundary. However, for g P t2, 3u a critical

boundary crosses right through this region of the a-K-plane. In particular, for g � 3

we find a “frozen headland” in midst of the chaotic regime stretching out to a � 0.7.

Also in the simulation results shown in Figure 5.10D we detect a rather big region of

critical networks around a � 0.7 and 2 ¤ K ¤ 3.

Interestingly, g � 3 (more precisely, its symmetric counterpart g � 4) has been

considered biologically meaningful by several authors. This case corresponds to the

standardized qualitative dynamical systems approach [Mendoza and Xenarios, 2006]. It

has also been successfully employed in the analysis of immunology microarray datasets

[Martin et al., 2007]. Biologically speaking, in all these studies it is assumed that a gene

is expressed if any of its activators and none of its inhibitors is active. In other words,

the regulating activators and inhibitors are assumed to be functionally equivalent or

acting in an additive fashion.

Starting point of our investigations in this chapter were what we called qualitative

and Boolean models of gene regulatory networks. A QM is the language of biology, it

is a graphical representation of biological knowledge. A BM on the other hand gives

rise to a dynamical system, which is something mathematicians like to talk about. We

then introduced the concept of generic logics and showed that they induce a mapping

from qualitative to Boolean models.

Since the study of BMs in theoretical biology originated in the study of KNs, we

deemed it appropriate to investigate KNs obtained by applying generic logics to QMs.

We began by studying the truth-content of these networks, i.e. the mean-field fraction of
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Figure 5.9: Realizations of KNsGL with N � 105 nodes and connectivities K �

1, 2, . . . , 30 were generated for (A) g � 0, a � 0.1, (B) g � 1, a � 0.006, (C) g � 2,
a � 0.5, and (D) g � 3, a � 0.5. After a burn-in of 1000 time-steps, the value of wgptq

was approximated according to (5.2) in 100 iterations and plotted.
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5. KAUFFMAN NETWORKS WITH GENERIC LOGICS

Figure 5.10: Realizations of KNsGL with N � 105 nodes, connectivities K � 1, 2, . . . , 30,
and fraction of activating edges a � 0.001, 0.002, . . . , 0.999 were generated for (A) g � 0,
(B) g � 1, (C) g � 2, and (D) g � 3. Two different configurations with (normalized)
Hamming distance 10�3 were each iterated, and the 10-logarithm of their Hamming dis-
tance after 50 time-steps was plotted.
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ones, and analytically characterized the attractor of this quantity. For parameter values

selected from both, a mathematical as well as a biological point of view, we numerically

computed the bifurcation diagrams of the truth-content. These investigations revealed

a rich dynamical behavior including period-doublings leading to chaos as the network

connectivity increases. In a next step, we defined a criterion for phase transitions. We

found that in contrast to KNsMB, KNsGL possess multiple, intricately shaped critical

boundaries. Simulations further strengthened the significance of our results.

Our findings are also interesting from a biological point of view. First of all, we

observed that with biologically reasonable fractions of activators a and network connec-

tivities K the truth-content has stationary dynamics for all generic logics. Oscillations

of the truth-content — biologically speaking, of the total gene expression — would

be economically disadvantageous for cells, especially in the case of large amplitudes,

as massive amounts of mRNA and protein would have to be assembled and degraded

during each cycle. Moreover, we found that KNs with the biologically plausible generic

logics g � 3 and g � 4 are near criticality for realistic fractions of activators a and

network connectivities K.
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6

Discrete and continuous models

of the mid-hindbrain boundary

Prediction is very difficult,

especially about the future.

Niels Bohr

There are many notions of what “systems biology” is. A popular one was con-

ceived of by Hiroaki Kitano [2002]. For him, systems biology is characterized by a

hypothesis-driven “research cycle” iterating between computational modeling and wet-

lab experiments. The overall goal of the computational modeling part is the generation

of predictions such as potential genetic interactions, which can then be experimentally

validated or falsified. Especially when available data are scarce and of qualitative na-

ture, BMs can be beneficially employed to this purpose, as we shall see in the course

of this chapter.

Using BMs to model specific biological processes, however, one quickly discovers

that not all biological phenomena can be equally well reproduced by these models.
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6. DISCRETE AND CONTINUOUS MODELS OF THE MHB

BMs are typically well suited to capture differentiation processes, where the common

modeling assumption is that attractors of the dynamical system induced by the BM

correspond to different cell types, lineages or tissues. This will also be our “working

hypothesis” in the following, when we model the differentiation of mid- and hindbrain.

BMs as defined herein are, however, less suitable to capture quantitative effects in a

precise temporal order due to the unrealistic time-discrete synchronous updating in the

associated dynamical systems. These effects fall into the realm of (time-)continuous

dynamical systems.

6.1 Motivation and outline

In this chapter, which follows Wittmann et al. [2009a] and Wittmann et al. [2009b],

we venture a glimpse at a possible way of transforming BMs into real time-continuous

dynamical systems. We review some results about fixed points in discrete and con-

tinuous dynamical systems based on the same BM. In general, however, the dynamics

of both systems may differ vastly, and any such transformation should primarily be

regarded as a heuristic modeling approach. We validate this approach in section 6.3

from a biological point of view, by applying it to a BM of a specific biological process

— differentiation of mid- and hindbrain during vertebrate development —, which we

already introduced in section 2.4.2. To be precise, the BM will be a model of the reg-

ulatory network between the IsO genes Otx2 , Gbx2 , Fgf8 , Wnt1 , En, and Pax . Its

key functionality will be the stable maintenance of these’s genes expression patterns

around the MHB at E10.5 as shown in Figure 2.4B.

We develop the BM in section 6.2. To this end, we describe a methodology for

the inference of regulatory interactions by systematic logical analyses of spatial gene

expression patterns. As our information about gene expression at the MHB is of purely

qualitative nature, it is only natural to base this analysis on BMs. For the determination

of the update rules our methodology employs techniques that were originally devised

to optimize logic circuits in order to facilitate their hardware implementation.

Applied to the wild-type gene expression pattern at the MHB (cf. Figure 2.4B) our

method predicts several genetic interactions, which well agree with published data. In

this context, an unclarified experimental issue is the reported ectopic induction of Wnt1

by Fgf8 in gain-of-function experiments performed in vitro and in vivo [Adams et al.,
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6.2 Inference of a Boolean model of the mid-hindbrain boundary

2000; Bally-Cuif and Wassef, 1994; Liu and Joyner, 2001; Liu et al., 1999]. As Fgf8

expression in the anterior neural plate initiates several hours after Wnt1 , and as Wnt1

is expressed in a very broad domain at the time most experimental manipulations took

place [Crossley and Martin, 1995; McMahon et al., 1992], the ectopic maintenance of

Wnt1 expression by Fgf8 might have been mis-interpreted as an ectopic activation. Our

analysis, indeed, predicts that Fgf8 and Wnt1 signaling are dependent on each other for

stable maintenance, but Fgf8 is not sufficient to ectopically induce Wnt1 expression.

We validate this prediction experimentally by performing a time-course analysis of

Wnt1 expression after implantation of Fgf8-coated beads into mouse anterior neural

plate/tube explants.1 Thus, our analysis clarifies epistatic relationships at the MHB,

especially between the two key patterning molecules Fgf8 and Wnt1. In a subsequent

step, the results of our analysis combined with published data allow construction of a

BM that is able to explain the stable maintenance of the characteristic gene expression

patterns at the MHB.

These expression patterns are the result of a refinement and sharpening of initially

blurred expression domains. A natural question is if our model is able to reproduce

this process in a correct spatio-temporal order. The coarse-grained state-space and

the unrealistic time-discrete synchronous updating of dynamical systems induced by

BMs, however, prevent us from addressing this question. As an outlook we, therefore,

present a possible way of transforming BMs into real time-continuous dynamical sys-

tems (section 6.3). We apply this transformation to our BM of the MHB. Simulations

of the resulting continuous system show that it is, indeed, competent to reproduce the

observed refinement and sharpening of expression domains under wild-type as well as

several loss-of-function conditions.

6.2 Inference of a Boolean model of the mid-hindbrain

boundary

In this section, we describe a way of inferring BMs from spatial gene expression patterns.

Our primary object is to obtain new biological insights into gene regulation at the MHB.

We will, therefore, extensively discuss the results of our Boolean modeling approach

1Collaboration with Nilima Prakash (Institute of Developmental Genetics, Helmholtz Zentrum

München)
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6. DISCRETE AND CONTINUOUS MODELS OF THE MHB

with respect to their biological plausibility and relevance. For this reason, this section

will be more biological in tone than the other parts of this thesis. The reader may,

however, skip this entire section. All one needs to know in order to be able to follow

the remainder of this chapter is the BM from (6.3). We begin by the necessary pre-

processing of available data.

6.2.1 Data pre-processing

We subdivide the expression patterns of the IsO genes Otx2 , Gbx2 , Fgf8 , Wnt1 , En,

and Pax at E10.5 into six compartments I-VI, cf. the dashed lines in Figures 6.1A and

6.1B. As is typically the case with Boolean analyses, this pre-processing of biological

data is to a certain extent artificial and an over-simplification of biological reality. It

is, however, necessary as it allows us to represent the expression patterns as Boolean

matrices (see Figure 6.1C), which constitute the data basis for our analysis.

The morphological entity of the MHB is located between compartments III and IV.

Other than that, this partitioning is based on the expression patterns of the IsO genes

and not on morphological properties. Compartments I-III correspond to the prospective

midbrain (Otx2 +/Gbx2 –) and IV-VI to the prospective hindbrain (Otx2 –/Gbx2 +).

The boundary compartments III and IV are characterized by the expression of Wnt1

and Fgf8 , respectively. We assume that the secreted Wnt1 and Fgf8 proteins are

still present in compartments II and V due to passive or active diffusion [Scholpp and

Brand, 2004; Strigini and Cohen, 2000], whereas compartments I and VI are devoid of

these secreted factors as they are farthest away from the MHB. So, all in all, the six

compartments are characterized as follows.

(I) Only Otx2 is expressed.

(II) Otx2 , En, and Pax are expressed. Secreted Wnt1 protein is present.

(III) Otx2 , En, Pax , and Wnt1 are expressed. Secreted Wnt1 and Fgf8 proteins are

present.

(IV) Gbx2 , En, Pax , and Fgf8 are expressed. Secreted Wnt1 and Fgf8 proteins are

present.

(V) Gbx2 , En, and Pax are expressed. Secreted Fgf8 protein is present.
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6.2 Inference of a Boolean model of the mid-hindbrain boundary

(VI) Only Gbx2 is expressed.

The crucial point is that this expression pattern is stably maintained by a regulatory

network between the IsO genes. In the following section we demonstrate that key

genetic interactions of this network can be obtained already by analyzing only this

spatial information.

6.2.2 The inverse problem

So far, information about genetic interactions at the MHB has been obtained mainly

from the analyses of gene expression patterns (by in situ hybridization) and epistatic

relationships between these genes in gain-of-function and loss-of-function mutant mice.

The task of elucidating gene regulation at the MHB, therefore, leads to the theoretical

challenge of inferring as much information as possible about the structure of multi-

cellular regulatory networks from their spatial expression patterns. To this end, we

now describe a methodology for the inference of regulatory interactions by systematic

logical analyses of spatial gene expression patterns.

These analyses are based on a Boolean model pG, fq. In case of the MHB example,

we set G equal to the fully connected directed graph (without self-loops) on six nodes,

which represent (in this order) the (groups of) genes Otx2 , Gbx2 , Fgf8 , Wnt1 , En,

and Pax . For the sake of clarity, we will use otx, gbx, fgf,wnt, en, and pax as node

indices. The left-hand table in Figure 6.1C shows a Boolean representation of these

gene’s expression patterns around the MHB. The right-hand table displays protein

expression also taking into account diffusion of secreted Fgf8 and Wnt1 protein into

regions adjacent to their mRNA expression domains. We denote the columns of the

left-hand table by xI ,xII ,xIII ,xIV ,xV ,xV I , and the columns of the right-hand table

by x1I ,x
1
II ,x

1
III ,x

1
IV ,x

1
V ,x

1
V I . We already remarked that the stable maintenance of

these patterns is a key function of the regulatory network between the IsO genes. In

mathematical terms, the conditions that need to be satisfied by the transfer function f

are

xj � f
�
x1j
�
, j � I, II, . . . , V I . (6.1)

Conditions (6.1) partially define the update rules fi, i � otx, gbx, fgf,wnt, en, pax.

Naturally, there are many ways of extending them to their full domain, which is why

we need to impose further constraints. This is best done in terms of the Boolean
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Figure 6.1: Equilibrium expression domains of Otx2 (blue), Gbx2 (red), Fgf8 (magenta),
Wnt1 (green), En (orange), and Pax (yellow) as well as diffusion of Fgf8 and Wnt1 (color
gradients) around the MHB at E10.5. (A) Dorsal close-up view of the MHB region in
the anterior neural tube of an E10.5 mouse embryo, anterior to the left. The expression
pattern of the IsO genes can be subdivided into the six compartments I-VI. (B) Schematic
representation of compartments I-VI. The MHB is located between compartments III and
IV. (C) Representation of compartments I-VI as Boolean matrices. The pi, jqth entry indi-
cates if species i is present (1) in compartment j or not (0). The left-hand matrix (labeled
“Expression”) represents the gene expression pattern. The right-hand matrix (labeled
“Diffusion”) displays protein expression also taking into account diffusion of secreted Fgf8
and Wnt1 protein. Abbreviations: Mes, mesencephalon (midbrain); MHB, mid-hindbrain
boundary; Met, metencephalon (hindbrain).
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expressions describing the update rules. A possible regularization would, for instance,

be the restriction to a certain class of Boolean functions such as canalyzing functions,1

or functions generated by one of the generic logics introduced in chapter 5. Which

regularization proves most effective has to be figured out anew in each application. In

the example of the MHB, a suitable choice was to extend the partially defined update

rules under the regularization that the resulting fi be minimal with respect to the

length of the shortest representing Boolean expression in DNF. This analysis is based

on the assumption that the thus obtained minimal BM reflects the core module of the

real network.

6.2.3 Minimization of Boolean functions

Standard ways of finding minimal Boolean expressions for (partially filled) truth-

tables are either Karnaugh-Veitch maps [Karnaugh, 1953; Veitch, 1952] or the Quine-

McCluskey algorithm [McCluskey and Bartee, 1962; Quine, 1952] — two functionally

equivalent approaches. Karnaugh-Veitch maps are a clever graphical representation of

truth-tables. They transform the problem of finding minimal Boolean expressions into

the problem of finding a maximal-size covering of either the true- or the false-entries.

For small functions (typically no more than five inputs) the latter problem can be eas-

ily solved by inspection. For larger functions the Quine-McCluskey algorithm can be

used instead, whose tabular form is less illustrative but easier to implement. However,

also the Quine-McCluskey algorithm has a limited range of applicability, as it tries to

solve a problem which has been shown to be NP-complete, cf. the Cook-Levine The-

orem about the Boolean satisfiability problem [Cook, 1971]. Therefore, in the case of

large systems, heuristic methods like the Espresso algorithm [Brayton, 1984; Rudell

and Sangiovanni-Vincentelli, 1987] may be more suitable.

Here we outline how minimal Boolean expressions for partially defined update rules

can be found by using Karnaugh-Veitch maps. Each of our Boolean update functions

fi, i � otx, gbx, fgf,wnt, en, pax, can be represented as a truth-table with 25 � 32 entries.

Conditions (6.1) allow to specify at most six entries in each truth-table. The remaining

entries are indetermined “don’t cares.” These truth-tables are now represented as

Karnaugh-Veitch maps, see Figure 6.2. Actually, these maps are three-dimensional
1A possible justification for this restriction is that in lower organisms most genes have one canalyzing

regulator [Harris et al., 2002].
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cubes but for better presentability the cube was sliced up and the two layers put next

to each other. Moreover, the green as well as the blue sides are identified, so each “slice”

is actually a torus. By inspection, we now determine a covering of the true-entries by

rectangular boxes of size 1, 2, 4, 8, 16 or 32 such that the following hold.

• No false-entry is contained in any of the boxes.

• All true-entries are contained in at least one box.

• The boxes have maximal size.

• The number of boxes is minimal.

Note that there may be multiple coverings satisfying these conditions. In Figure 6.2

all suitable coverings are shown. From each box in these coverings a conjunctive clause

is built, where variables appearing both, negated and non-negated within the box, are

omitted. These conjunctive clauses are linked by disjunction and give a minimal DNF

of the Boolean expression. We illustrate this using

ffgf : t0, 1u5 ÝÑ t0, 1u
pxotx, xgbx, xwnt, xen, xpaxq ÞÝÑ ffgf pxotx, xgbx, xwnt, xen, xpaxq

as a showcase. Two coverings satisfying the above conditions could be found, each

consisting of only one box, cf. the dashed and solid red boxes in Figure 6.2B. Let

us choose the first (dashed lines). Here the only variables that do not appear both,

negated as well as non-negated, are xotx (which appears only as  xotx) and xwnt (which

appears only as xwnt). Consequently, the conjunction term for this box is  xotx^xwnt.

Similarly, minimal expressions for the remaining update rules can be found from the

maps in Figure 6.2, and we obtain:

fotx pxgbx, xfgf, xwnt, xen, xpaxq �  xgbx

fgbx pxotx, xfgf, xwnt, xen, xpaxq �  xotx

ffgf pxotx, xgbx, xwnt, xen, xpaxq � xwnt ^
"

xgbx

 xotx

*

fwnt pxotx, xgbx, xfgf, xen, xpaxq � xfgf ^
"

xotx

 xgbx

*
fen pxotx, xgbx, xfgf, xwnt, xpaxq � xpax

fpax pxotx, xgbx, xfgf, xwnt, xenq � xen .

(6.2)

In the case of Fgf8 and Wnt1 two equally minimal expressions could be found, indicated

by the factors in curly brackets, one of which has to be included.
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NOT(Wnt1)Wnt1 NOT(Wnt1) Wnt1
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NOT(Pax)

for En       .C

Figure 6.2: Karnaugh-Veitch maps for the update rules of (A) Otx2 , (B) Fgf8 , and (C)
En. 0: false, 1: true, X: “don’t cares.” In each map the blue and green sides are identified.
Red boxes indicate the maximal coverings. Similar maps for Gbx2 , Wnt1 , and Pax can be
obtained by flipping Gbx2 and Otx2 in (A), Fgf8 and Wnt1 in (B), and En and Pax in
(C), respectively.
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6.2.4 Predictions and experimental validation

The minimal update rules from (6.2) show that, in addition to the mutual inhibition of

Otx2 and Gbx2 , these two transcription factors have antagonistic effects on Fgf8 and

Wnt1 expression. This agrees well with experimental results showing that opposing

interactions between Otx2 and Gbx2 are required for the positioning and refinement

of the MHB [Li and Joyner, 2001; Simeone, 2000]. Furthermore, a mutual positive

regulation between En and Pax was predicted which is well supported by experimental

results from Song et al. [2000], Liu and Joyner [2001] as well as Bouchard et al. [2005].

Finally, our analysis revealed that Fgf8 and Wnt1 require each other for their stable

maintenance, but are not sufficient to induce each other’s expression, as the respective

update rules contain at least one additional factor. The early loss of Fgf8 expression

in Wnt1�{� mutants by nine-somites [Lee et al., 1997] indeed suggests that Wnt1 is

directly required for the maintenance of Fgf8 expression [Prakash and Wurst, 2004].

We subsequently set out to validate also the prediction that Fgf8 is, in turn, necessary

for the maintenance but not sufficient for the induction of Wnt1 expression.

To find out if Fgf8 only maintains or de novo induces Wnt1 expression in vivo,

we performed a time-course analysis of Wnt1 expression after implantation of Fgf8-

coated beads into mouse anterior neural plate (E8.0-E8.5) or tube (E9.0-E9.5) explants,1

cf. Figure 6.3. In E8.0-E8.5 anterior neural plate explants (Figure 6.3A), Wnt1 expres-

sion retracted from its originally broad expression domain in the prospective midbrain

(control side of explant incubated for 6 h) and was confined to the dorsal side of the

midbrain and to the rostral border of the MHB in the control side of explants incu-

bated for 18 and 24 h. Fgf8-coated beads implanted within or close to the endogenous

Wnt1 expression domain in the midbrain (Otx2 +/Gbx2 – territory, not shown) main-

tained Wnt1 expression within but not outside of this domain over 24 h (compare with

contralateral control side of the explants). Notably, Fgf8-coated beads placed outside

the endogenous Wnt1 expression domain in the rostral hindbrain (Otx2 –/Gbx2 + ter-

ritory, not shown) or forebrain (Otx2 +/Gbx2 – territory) did not induce ectopic Wnt1

transcription at any time-point analyzed, as predicted by our logical analysis.

1Explant cultures of anterior neural plates/tubes (open-book preparations) from wild-type

(C57BL/6) mouse embryos were essentially prepared as reported by Echevarŕıa et al. [2001]. Bead

preparation is described in Prakash et al. [2006]. Explants were fixed in fresh 4% paraformaldehyde for

4 hours at 4 �C and whole mount in situ hybridization was carried out using standard procedures.
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When these experiments were performed with E9.0-E9.5 anterior neural tube ex-

plants incubated for 24 h (as in Liu et al. [1999] or Liu and Joyner [2001]) (Figure

6.3B), ectopic expression of Wnt1 was only observed around Fgf8-coated beads that

were implanted 24 h before close to the endogenous Wnt1 domain in the midbrain.

This result shows that the ectopic Wnt1 expression observed by Liu et al. [1999] or Liu

and Joyner [2001] is due to the maintenance but not de novo induction of Wnt1 tran-

scription by Fgf8. Therefore, it is in agreement with our predicted update rule (6.2)

for Wnt1 , which implies that Wnt1 expression requires Fgf8 for stable maintenance,

but that Fgf8 is not sufficient to induce Wnt1 ectopically.

6.2.5 A Boolean model of the mid-hindbrain boundary

Our minimal BM from (6.2) was derived solely from the wild-type expression patterns

shown in Figure 6.1. We now complement this by a careful literature mining for further

experimentally validated interactions. Thus, we extend the minimal BM to a literature-

based BM comprising Otx2 , Gbx2 , Fgf8 , Wnt1 , En, and Pax . The new update rules

read:

fotx pxgbx, xfgf, xwnt, xen, xpaxq �  xgbx

fgbx pxotx, xfgf, xwnt, xen, xpaxq �  xotx

ffgf pxotx, xgbx, xwnt, xen, xpaxq � xwnt ^ xgbx ^ xotx ^ xen ^ xpax

fwnt pxotx, xgbx, xfgf, xen, xpaxq � xfgf ^ xotx ^ xgbx

fen pxotx, xgbx, xfgf, xwnt, xpaxq � pxfgf _ xwntq ^ xpax

fpax pxotx, xgbx, xfgf, xwnt, xenq � xen .

(6.3)

The model is visualized in Figure 6.4. The figure caption contains primary research

references for all included interactions.

It can easily be checked that the transfer function f of the BM (6.3) satisfies con-

ditions (6.1), and is, thus, able to stably maintain the expression patterns of the IsO

genes at E10.5. As already mentioned, these patterns are the result of a refinement

and sharpening of initially blurred expression domains at E8.5, cf. Figure 6.5A. In the

following section, we ask if our model is able to reproduce also this process in a correct

spatio-temporal order.
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Figure 6.3: Wnt1 expression is maintained in the midbrain and at the MHB by Fgf8-
coated beads. (A) E8.0-E8.5 (4-6 somites) mouse anterior neural plate explants were in-
cubated for 6, 12, 18 and 24 hours (h) after implantation of Fgf8-coated beads (asterisks)
and prior to fixation and detection of Wnt1 (dark blue), Shh (red) and Foxg1 (a forebrain
marker; light blue) expression by whole mount in situ hybridization. High magnifications
of the boxed areas in the overviews are shown below. Repression of endogenous Wnt1
(red arrow) around an Fgf8-bead located in the presumptive rostral hindbrain close to the
MHB is apparent in the 24 h explant. (B) E9.0-E9.5 (20-25 somites) mouse anterior neural
tube explant incubated for 24 h after implantation of Fgf8-coated beads (asterisks) and
prior to fixation and detection of Wnt1 (dark blue) and Shh (red) expression. The ectopic
Wnt1 expression around the Fgf8-coated bead marked by a red asterisk might have been
maintained during the 24 h incubation period. Shh expression in the floor plate (open
arrow) or a white broken line indicate the position of the ventral midline of the neural
plate/tube in the explants. Beads were implanted unilaterally except for the 12 h explant.
The contralateral side served as control. The control side shows the Wnt1 expression pat-
tern under “normal” (unmanipulated) conditions, the Fgf8-treated side shows the changes
in Wnt1 expression after bead implantation. Ectopic Wnt1 expression around Fgf8-coated
beads is indicated by black arrows. Beads that did not induce ectopic Wnt1 expression
are indicated by black arrowheads. Abbreviations: Fb, forebrain; FP, floor plate; Hb,
hindbrain; Mb, midbrain; MHB, mid-hindbrain boundary; Ov, otic vesicle.
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Otx2 Gbx2 

Wnt1 Fgf8
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Pax
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Figure 6.4: Regulatory network at the MHB obtained from literature data. It includes
the following interactions: (1) The mutual repression of Otx2 and Gbx2 [Broccoli et al.,
1999; Millet et al., 1999]. (2) The positive regulation of Wnt1 and the negative regulation
of Fgf8 by Otx2 [Acampora et al., 1997; Broccoli et al., 1999; Rhinn et al., 1999]. (3) The
positive regulation of Fgf8 and the negative regulation of Wnt1 by Gbx2 [Liu and Joyner,
2001; Millet et al., 1999; Wassarman et al., 1997]. (4) The maintenance of Fgf8 by Wnt1
[Lee et al., 1997] and, vice versa, the maintenance of Wnt1 by Fgf8 as demonstrated herein
and by Chi et al. [2003]. (5) The synergy between Fgf8 and Wnt1 in the maintenance of
En [Crossley and Martin, 1995; Danielian and McMahon, 1996; Liu et al., 1999; McMahon
et al., 1992]. This synergy is modeled by a disjunction. (6) The mutual activation of En
and Pax [Bouchard et al., 2005; Liu and Joyner, 2001; Song et al., 2000]. (7) The induction
of Fgf8 by Pax [Favor et al., 1996; Ye et al., 2001]. (8) The positive regulation of Fgf8 by
En [Gemel et al., 1999].
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6.3 Boolean models and continuous dynamical systems: a

proof-of-principle

To answer the question posed at the end of the previous section, we now present a

possible way of transforming BMs into real time-continuous dynamical systems (section

6.3.1). In section 6.3.2 we apply the transformation to our BM from (6.3). Section 6.3.3

concludes with simulation results from the resulting continuous model of the MHB.

6.3.1 The general approach

Consider a BM pG, fq of a regulatory network, e.g. the one from (6.3). In Remark 3.1

we explained that this BM gives rise to a time-discrete dynamical system in a canonical

way. Does it also give rise to a continuous dynamical system on RN , which can still be

expected to be a meaningful model of the underlying regulatory network? To answer

this question, we recall where the BM “comes from.” In section 3.2 we saw that BMs are

idealizations of networks of switch-like interactions. Each of these interactions can, for

instance, be modeled by the sigmoidal Hill kinetic h from (3.2), which can be thought of

as the promotor activity function of a gene depending on the concentration of a single

activating transcription factor.

Now, let xi P r0, 1s, i � 1, 2, . . . , N , be real variables and choose a prototypic update

rule fi from f . We think of fi as a function on the vertices of the Ki-dimensional

hypercube r0, 1sKi and ask how a possible Ki-variate promotor activity function f i

defined on the entire cube r0, 1sKi (including its interior) could look like such that it

would be approximated by fi in a Boolean modeling attempt. A suitable candidate is

f i

�
xi1 , . . . , xiKi

	
�

¸
pξ1,...,ξKiqPt0,1uKi |fipξ1,...,ξKiq�1

Ki¹
k�1

rξkhi,k pci,k, xikq � p1� ξkq p1� hi,k pci,k, xikqqs , (6.4)

where hi,k pci,k, q : r0, 1s Ñ r0, 1s are parametrized switch-like functions as defined in

section 3.2 [Plahte et al., 1998; Wittmann et al., 2009b]. The function f i is the (unique)

multilinear interpolation of fi (as a function on the vertices of the hypercube r0, 1sKi)
coupled with the hi,k, cf. Figure 6.6.
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Figure 6.5: Time-courses of the IsO genes under wild-type and loss-of-function con-
ditions. (A) Expression pattern of the IsO genes at E8.5 (upper figure) and at E10.5
(lower figure). The initially blurred expression domains are refined and a sharp boundary
is established. (B), (C) Simulations of the continuous MHB model. Initial conditions
are chosen to resemble the expression pattern at E8.5, cf. upper Figure (A). Model sim-
ulations are shown at time-points t � 0, 8, 20, 50, 100, 125, and (only in (B)) 155. This
corresponds to a linear relationship between the model’s time-scale and the somitogene-
sis clock, where approximately 1 somite is formed per every 5 time-units. (B) Simulated
gene expression domains under wild-type conditions. The refinement and sharpening of
the expression domains is clearly visible. Finally, an expression pattern similar to lower
Figure (A) is established. (C) Simulation of a Wnt1�{� mutant. The expression of Fgf8 ,
En, and Pax is lost over time. In particular, the expression of Fgf8 and En agrees well
with the time-courses described in McMahon et al. [1992] and Lee et al. [1997], cf. Table
6.1. Abbreviations: Mes, mesencephalon (midbrain); MHB, mid-hindbrain boundary; Met,
metencephalon (hindbrain).
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Figure 6.6: (A) A two-variate Boolean function f , (B) its multilinear interpolation, and
(C) the corresponding function f px1, x2q from (6.4). The sigmoidal functions h1 and h2

were chosen to be Hill kinetics from (3.2) with degree of cooperativity c � 5 and thresholds
θ � 0.5.

According to our definition of switch-like functions, the functions hi,k approach

Heaviside step-functions hi,kp8, q with steps at θ8i,k as the ci,k grow. The function f i,

thus, converges against a function f
8
i which satisfies

f
8
i

�
xi1 , . . . , xiKi

	
� fi

�
xi1 ¡ θ8i,1, . . . , xiKi ¡ θ8i,Ki

	
unless one of the xik is located on its threshold θ8i,k, in which case f8i evaluates to 0.5.

Hence, except for the measure zero set of hyperplanes xik � θ8i,k the limiting function

f
8
i is a piecewise constant function whose values are fully determined by the Boolean

function fi.

We now define a function f i for each node i � 1, 2, . . . , N according to (6.4)

by choosing switch-like functions hi,k pci,k, q. We collect the f i into a function f :

r0, 1sN Ñ r0, 1sN . In analogy to the discrete dynamical system in xptq � pxiptqqNi�1 P
t0, 1uN from Remark 3.1 given by the difference equations

∆xiptq � fi

�
xi1ptq, xi2ptq, . . . , xiKi ptq

	
� xiptq , i � 1, 2, . . . , N , (6.5)

we define a continuous dynamical system in xptq � pxiptqqNi�1 P r0, 1sN via the differen-

tial equations

d
dt
xiptq � f i

�
xi1ptq, xi2ptq, . . . , xiKi ptq

	
� xiptq , i � 1, 2, . . . , N . (6.6)

The dynamics of (6.6) are best understood in the limit of all ci,k Ñ 8, in which

the differential equations (6.6) become piecewise linear differential equations. In theo-

retical biology, these equations were first studied by Glass and Kauffman [1973]. A
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mathematically rigorous treatment within the framework of differential inclusions can

be found in de Jong et al. [2004]. Fixed points of systems of piecewise linear differential

equations were investigated by El Snoussi and Thomas [1993] as well as by Mestl et al.

[1995]. In general, there are two classes of fixed points: regular fixed (steady) points

(RSP) and singular fixed (steady) points (SSP). In a SSP at least one variable xi lies

on a threshold, whereas in RSPs all variables are located beside their thresholds. RSPs

are always (asymptotically) stable and in 1-1-relation with fixed points of system (6.5).

SSPs may but need not be stable. They do not correspond to fixed points of system

(6.5). An algorithmic approach to detecting RSPs and SSPs in systems of piecewise

linear differential equations has been presented in de Jong and Page [2008].

Generalizations of the above results to the case of sufficiently large but finite ci,k

via the implicit function theorem exist. With respect to RSPs, the following statement

was proven in Wittmann et al. [2009b].

Proposition 6.1. Consider the two dynamical systems from (6.5) and (6.6), and sup-
pose the switch-like functions hi,k pci,k, q in the f i from (6.4) are given by Hill kinetics
from (3.2). Let xpfq P t0, 1uN be a fixed point of (6.5). Then, for sufficiently large
ci,k there exists an asymptotically stable fixed point xpfq pci,kq P r0, 1sN of (6.6) in a
neighborhood of xpfq and

lim
min ci,kÑ8

xpfq pci,kq � xpfq .

The case of SSPs is more involved and taken care of in Plahte et al. [1998]. In

general, it is difficult to give explicit lower bounds for the ci,k, such that the approx-

imation of sigmoidal functions by step-functions is valid from a dynamical point of

view. Even more critical is, of course, the transition from the time-discrete system

(6.5) to the time-continuous system (6.6). To see this, it suffices to recall the intricate

dynamical behavior of the (discrete time) logistic equation from section 2.2.4.1, and to

consider that according to the Poincaré-Bendixson theorem, see e.g. Guckenheimer and

Holmes [1990], any one-dimensional continuous dynamical system has either stationary

or periodic behavior. Nonetheless, small-scale [Omholt et al., 1998] as well as large-

scale [Wittmann et al., 2009b] examples exhibit evidence that biologically meaningful,

continuous models may arise from the above modeling approach. In the following, we

provide further such evidence.
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6.3.2 A continuous model of the mid-hindbrain boundary

In this section, we derive a continuous dynamical system from the BM in (6.3). The

model’s variables xipj, tq, i � otx, gbx, fgf,wnt, en, pax, depend on time and the now

continuous spatial variable j P r0, 1s, which is to say we model the neural tube as a

one-dimensional interval.

With Otx2 , Gbx2 , En, and Pax we do not differentiate between mRNA and protein.

In the case of Fgf8 and Wnt1 , however, we need to introduce two additional variables

x ext
fgf pj, tq and x ext

wntpj, tq in order to account for the diffusion of secreted Fgf8 and Wnt1

protein. They are governed by the reaction-diffusion equations

B
Btx

ext
i pj, tq � αixipj, tq � βix ext

i pj, tq � γi B
2

Bj2
x ext
i pj, tq , i � fgf,wnt , (6.7)

with translation rates αi, degradation rates βi, and diffusion rates γi, i � fgf,wnt. In

here, we use the parameter values from Wittmann et al. [2009a] and Ansorg et al.

[2010], αi � γi � 1 and βi � 0.8.

For i � otx, gbx, fgf,wnt, en, pax, we define functions f i according to (6.4) choosing

all hi,k equal to a Hill kinetic from (3.2) with degree of cooperativity c � 5 and threshold

θ � 0.1. The equations

B
Btxotxpj, tq � fotx

�
xgbxpj, tq, x ext

fgf pj, tq, x ext
wntpj, tq, xenpj, tq, xpaxpj, tq

	
� xotxpj, tq

B
Btxgbxpj, tq � fgbx

�
xotxpj, tq, x ext

fgf pj, tq, x ext
wntpj, tq, xenpj, tq, xpaxpj, tq

	
� xgbxpj, tq

B
Btxfgfpj, tq � f fgf

�
xotxpj, tq, xgbxpj, tq, x ext

wntpj, tq, xenpj, tq, xpaxpj, tq
�� xfgfpj, tq

B
Btxwntpj, tq � fwnt

�
xotxpj, tq, xgbxpj, tq, x ext

fgf pj, tq, xenpj, tq, xpaxpj, tq
	
� xwntpj, tq

B
Btxenpj, tq � fen

�
xotxpj, tq, xgbxpj, tq, x ext

fgf pj, tq, x ext
wntpj, tq, xpaxpj, tq

	
� xenpj, tq

B
Btxpaxpj, tq � fpax

�
xotxpj, tq, xgbxpj, tq, x ext

fgf pj, tq, x ext
wntpj, tq, xenpj, tq

	
� xpaxpj, tq

(6.8)

then describe the regulatory network at the MHB at a single spatial position j P r0, 1s.
Equations (6.7) together with (6.8) constitute a system of partial (PDE) and ordinary

(ODE) differential equations.

In the following simulations, initial conditions at t � 0 are chosen to mimic the fuzzy

expression patterns at E8.5, cf. upper Figure 6.5A. They are obtained by specifying
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the boundaries as well as the maximum of the expression profile of each gene and

interpolating these points by cubic splines. In detail, the points are:

Otx2 : xotxp0, 0q � 1, xotxp0.5, 0q � 0, xotxp1, 0q � 0

Gbx2 : xgbxp0, 0q � 0, xgbxp0.5, 0q � 0, xgbxp1, 0q � 1

Fgf8 : xfgfp0, 0q � 0, xfgfp0.45, 0q � 0, xfgfp0.625, 0q � 1, xfgfp0.8, 0q � 0, xfgfp1, 0q � 0

Fgf8: x ext
fgf p0, 0q � 0, x ext

fgf p0.45, 0q � 0, x ext
fgf p0.625, 0q � 1, x ext

fgf p0.8, 0q � 0, x ext
fgf p1, 0q � 0

Wnt1 : xwntp0, 0q � 0, xwntp0.2, 0q � 0, xwntp0.375, 0q � 1, xwntp0.55, 0q � 0, xwntp1, 0q � 0

Wnt1: x ext
wntp0, 0q � 0, x ext

wntp0.2, 0q � 0, x ext
wntp0.375, 0q � 1, x ext

wntp0.55, 0q � 0, x ext
wntp1, 0q � 0

En: xenp0, 0q � 0, xenp0.25, 0q � 0, xenp0.425, 0q � 1, xenp0.6, 0q � 0, xenp1, 0q � 0

Pax : xpaxp0, 0q � 0, xpaxp0.3, 0q � 0, xpaxp0.475, 0q � 1, xpaxp0.65, 0q � 0, xpaxp1, 0q � 0

For the simulation of a Wnt1�{� mutant, the above initial conditions are used, but

the initial values xwntpj, 0q and x ext
wntpj, 0q, j P r0, 1s, are set to zero. Also the promotor

activity function fwnt and the translation rate αwnt of Wnt1-protein are set to zero.

For the reaction-diffusion equations (6.7) homogenous Dirichlet boundary conditions

are chosen. In the following, we simply refer to this initial value boundary problem as

“continuous MHB model.”

6.3.3 Numeric solution

Let us conclude by showing simulations of the continuous MHB model. Equations (6.7)

together with (6.8) constitute a system of ODEs and PDEs. For the numeric integration

of this system we used the MATLAB solver pdepe, which implements the method of

lines, see e.g. Schiesser and Griffiths [2009]. In general, the method of lines reduces a

system of PDEs to a (much larger) system of ODEs, which is then solved using standard

ODE solvers. In our case, this standard solver was the stiff MATLAB solver ode15s.

On a one-dimensional interval I, the method of lines uses spatial difference operators

to approximate the spatial differential operators at grid points jq P I. For this spatial

discretization of Equations (6.7) we did not use an equidistant grid but one that is

condensed around j � 0.5 (MHB) in order to account for arising discontinuities in the

limit of large times. For each grid point jq and each variable we obtained an ODE (in
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Table 6.1: Time-course of Fgf8 and En expression at the MHB in Wnt1�{� mutants.

4 somites En and Fgf8 expression indistinguishable from wild-type

5-6 somites Reduction of the En domain in the midbrain by loss of anteriormost

En expression, Fgf8 expression indistinguishable from wild-type

7-9 somites En expression restricted to hindbrain, Fgf8 expression markedly reduced

14 somites En still expressed in hindbrain, Fgf8 expression completely abolished

23-25 somites En expression reduced to a small domain in the hindbrain

29 somites En expression completely abolished

time). The solutions of these ODEs give an approximate solution to the continuous

MHB model.

The blurred expression domains of the IsO genes at E8.5 as well as their sharp

expression domains and the clearly demarcated boundary at E10.5 are shown in upper

and lower Figure 6.5A, respectively. Simulations of the continuous MHB model show

that it is able to reproduce this development (see Figure 6.5B). Starting from initial

conditions chosen to resemble the expression domains at E8.5 the model establishes

the characteristic expression pattern at E10.5. This demonstrates that our continuous

MHB model — although not accounting for their initial induction — also explains the

refinement and sharpening of gene expression patterns at the MHB.

A further key feature of the IsO genes studied here is their tight and indispensable

interaction for the maintenance of their own expression and of the MHB, as revealed

by the analysis of loss-of-function mouse mutants for these genes [Wurst and Bally-

Cuif, 2001; Ye et al., 2001]. Simulations show that our continuous MHB model is able

to reproduce these experiments. We discuss Wnt1�{� mutants as a showcase. From

McMahon et al. [1992] together with Lee et al. [1997] a time-course of Fgf8 and En

expression in these mutants can be reconstructed; it is shown in Table 6.1. A simulation

demonstrates that the continuous MHB model is able to reproduce this phenotype

even in a correct spatio-temporal order (see Figure 6.5C). A comparison of the model

simulation with the time-course from Table 6.1 indicates a linear relationship between

the model’s time-scale and the somitogenesis clock, where approximately 1 somite is

formed per every 5 time-units.
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6.4 Discussion

We demonstrated that similar to temporal expression patterns, also spatial expression

patterns can be used to gain information about the structure of regulatory networks.

In particular, we showed that the characteristic expression patterns of key IsO genes

reveal a maintaining effect of Fgf8 on Wnt1 expression — a prediction we also validated

experimentally. The presented method allows to harness qualitative experimental re-

sults like snapshots of expression patterns for model construction in systems biology.

This is exemplified by our BM of gene regulation at the MHB.

Gene regulation is a highly non-linear process due to the cooperative binding ex-

hibited by many macromolecules such as DNA. Here, cooperativity means that the

macromolecule’s affinity for its ligand changes with the amount of ligand already bound.

Mathematically, gene regulatory networks can, therefore, be thought of as complex sys-

tems with switch-like interactions. Below a certain threshold a regulator has no or little

influence on its target, while above this threshold the effect of the regulator on its tar-

get saturates rapidly to a constant level. BMs and the dynamical system from Remark

3.1 idealize this “switching behavior” and completely ignore the transition between the

“low influence” and “saturated influence” states. This may be a severe simplification,

but has the advantage that no information about regulatory mechanisms and kinetic

parameters is needed.

If, in addition to a BM, this information is provided, a continuous dynamical system

of switch-like interactions, such as (6.6) with activation functions f i from (6.4), can be

set up. The dynamic behavior of this system, of course, greatly depends on the precise

nature of the additional mechanistic and kinetic information. For this reason, general

mathematical results about the relation between the discrete and possible continuous

dynamical systems based on the same BM are hard to obtain. They are, however,

available in the limit where switch-like interactions become Heaviside step-functions

and the continuous system becomes a system of piecewise linear differential equations.

The dynamics of these systems can be characterized in terms of the underlying BM

once the switching thresholds are fixed [de Jong et al., 2004].

Systems of piecewise linear differential equations are still simplistic idealizations

of gene regulatory mechanisms, and one would wish for systems incorporating realistic
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kinetics such as the Hill kinetic from (3.2). We used our BM of the MHB for a proof-of-

principle, that — given these realistic kinetics — one may, indeed, obtain a meaningful

continuous dynamical system from a BM, whose explanatory power is increased as

compared to the discrete dynamical system from Remark 3.1. Taken together, the

simulations of our continuous MHB model show that it captures certain salient features

of mid-hindbrain differentiation that could not have been analyzed with a BM alone.
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Conclusions and Outlook

Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

Winston Churchill

Arguably, there are two avenues of research in mathematical modeling of biological

systems, and in both Boolean models are frequently used. The first focuses on small-

and medium-scale models of specific biological processes. Such models are used to

analyze these processes, with the main goal of obtaining new biological insights. The

second direction is the study of generic properties, especially in the context of regulatory

networks. Kauffman’s contributions fall into this category. Predominantly done by

physicists, works in this direction often study mean-field quantities and properties of

ensembles of large-scale models.
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7.1 Boolean modeling in systems biology

The first line of research has gained particular importance in the newly emerging field

of systems biology. In systems biology, experimentalists and theoreticians make a

concerted effort to unravel the functionality of complex biological systems in a holistic

fashion [Kitano, 2002]. Especially in the context of gene regulation, Boolean models are

frequently employed by the theoreticians involved in a systems biology project [Saez-

Rodriguez et al., 2007, 2009; Samaga et al., 2009; Schlatter et al., 2009; Wittmann

et al., 2009a].

In this thesis, we discussed one such project. We presented a method to glean

information about genetic interactions from spatial gene expression profiles. The key

idea is to use available data to partially define the update rules of a Boolean model, and

to extend them under regularization constraints. In here, this constraint was minimality

of the resulting Boolean expressions. Using this method, we set up a Boolean model of

the gene regulatory network at the mid-hindbrain boundary. Along the way, a newly

predicted genetic interaction was experimentally validated.

7.1.1 Possible extensions of the model of the mid-hindbrain boundary

From a biological point of view, our model of the mid-hindbrain boundary can be

extended in several ways. Further investigations of the two key patterning molecules

Fgf8 and Wnt1, for instance, will require inclusion of known modulators of the Fgf8

signaling pathway such as the Fgf inhibitors Sprouty [Chambers et al., 2000; Minowada

et al., 1999], Sef [Fürthauer et al., 2002] or Mkp3 [Echevarria et al., 2005; Li et al., 2007].

In the present model these regulators at the signal transduction level are not considered.

Being widely coexpressed with Fgf8 , they are assumed to fine-tune Fgf8 expression

itself and the expression of Fgf8 target genes by negative feedback modulations. This

exquisite regulation of Fgf8 agrees well with results demonstrating a concentration-

dependent effect of Fgf8 signaling [Liu et al., 1999; Sato et al., 2001]. Inclusion of

these fine-tuning mechanisms will, therefore, require a detailed kinetic model of Fgf8

signaling at the mid-hindbrain boundary. To this end, existing kinetic models of the

Fgf pathway, e.g. the one by Yamada et al. [2004], could be adapted.

Fgf8 and Wnt1 , however, are not the only important regulators of mid-hindbrain

development. Further crucial genes, that we are considering for inclusion in our model,

150



7.2 Random Boolean models

are Lmx1b [Guo et al., 2007, 2008; Matsunaga et al., 2002] and Grg4 [Puelles et al.,

2004; Sugiyama et al., 2000]. They are of particular importance for possible extensions

of our model which aim at including related processes, such as the specification of cell

populations in the patterning field. The mid-hindbrain boundary not only controls

patterning of the mid- and rostral hindbrain, but also controls the location and size of

several neuronal populations [Brodski et al., 2003]. One could envision hybrid-models

integrating pattern formation and spatial differentiation with fate decisions of single

cells.

At some point, we will also have to abandon our simplifying assumptions with

respect to En1 and En2 as well as Pax2 and Pax5 , and consider a more refined picture

of Engrailed and Pax expression patterns and interactions. Such extensions will be

particularly interesting in spatially higher-dimensional models that take into account

the dorsal-ventral patterning of the neural plate/tube as well. A critical issue in these

higher-dimensional models is the topological alteration at around E9.0 when the neural

plate becomes the neural tube, as for non-symmetric initial conditions discontinuities

arise at the junction where the two edges of the neural plate fuse together. We are

planning on modeling this situation as a free moving boundary problem.

7.1.2 Inverse problems under sparsity constraints

From a theoretical point of view, predicting genetic interactions by solving inverse

problems under sparsity constraints seems a promising and interesting idea that merits

further research efforts. Especially for larger numbers of genes, however, additional

constraints might be beneficial. One could, for example, look for minimal canalyzing

update rules or minimal update rules generated by one of the generic logics. This will

require adaption of either the Quine-McCluskey algorithm or of one of the heuristic

minimizers. As always, the lack of suitable testing data sets is an issue, and probably

one will have to resort to synthetic toy data for performance evaluations.

7.2 Random Boolean models

As mentioned above, a major contribution to the second line of research is the work by

Stuart Kauffman. In his seminal paper, Kauffman [1969] proposes large-scale random

Boolean models — in here, we called them Kauffman networks — as generic models
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of gene regulatory networks. Kauffman [1993] hypothesized that regulatory networks

in evolvable, living organisms can only operate in a frozen regime but close to (at the

edge of) a chaotic regime.

We began by defining a general class of Kauffman networks. In particular, we

relaxed the binary Boolean classification and considered general discrete, finite sets.

The cardinalities of these sets followed a general distribution, as did the in-degrees

and the entries of the update rules. We investigated these Kauffman networks with

respect to critical phenomena. Our results are a generalization of the well-known case

of random Boolean models as introduced by Kauffman. We could also generalize the

finding by Bastolla and Parisi [1996] that any Kauffman network can be kept in its

frozen regime by sufficiently biasing the update rules.

We then introduced the concept of generic logics, which allows to build Boolean

models from networks of signed interactions by logically linking the activating and

inhibiting regulators of a node according to a specific pattern. The class of Kauffman

networks whose realizations are obtained using generic logics was studied. We, first,

analyzed the truth-content of these networks, which is a mean-field approximation of the

fraction of ones. Analytic and numeric investigations showed that this quantity exhibits

a rich dynamical behavior including period-doublings leading to chaos. In a next step,

we found that, surprisingly, Kauffman networks with generic logics possess multiple,

intricately shaped critical boundaries. In particular, for a biologically plausible generic

logic the region of biologically reasonable network parameters is enclosed by a critical

boundary. Hence, these parameters need not even be particularly fine-tuned in order

for the network to be near criticality but may vary over quite some range. This finding

fits in nicely with Kauffman’s hypothesis.

7.2.1 Structure matters

Update rules in the original Kauffman network are random functions without any struc-

tural properties, such as monotonicity or canalyzing inputs. The same is true for the

update rules of the multistate Kauffman networks studied herein. The regulators of a

gene, however, exert their regulatory influences by mechanistic processes, such as the

binding of transcription factors to promotor regions of the DNA, and these mechanistic

processes should give the activation function of a gene certain structural properties. A

simple abstraction hereof are qualitative models, in which biochemical mechanisms are
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reflected in the classification of interactions as either activating or inhibiting. We in-

vestigated Kauffman networks with structured update rules that are derived from such

qualitative models. Our results show that this additional structure greatly influences

the dynamics of these networks.

The reader might find it interesting to compare this discussion to Balleza et al.

[2008]. In this study, Boolean dynamics are implemented on the gene regulatory net-

works of S. cerevisiae, E. coli, and B. subtilis. The update rules are constructed as

(unstructured) random functions evaluating to 1 with a probability equal to the av-

erage fraction of expressed genes in hundreds of microarray experiments. While such

approaches certainly increase the biological plausibility and relevance of Kauffman net-

works as models of gene regulation, it might still be necessary to also take into account

structural information, e.g. about activating and inhibiting regulatory interactions.

7.2.2 Topology and dynamics

Another issue is that topological properties, such as degree distributions, also play a

pivotal role in the study of complex networks. For this reason, it is somewhat unsat-

isfactory that in standard Kauffman networks this degree distribution is taken to be a

simple delta distribution. In this thesis, we studied Kauffman networks with (unstruc-

tured update rules and) general degree distributions on finite supports similar to Fox

and Hill [2001] or Aldana [2003]. In agreement with these studies, we found, however,

that the phase transition of such Kauffman networks completely ignores all topological

properties but the mean connectivity.

We have first results demonstrating that this is not the case with Kauffman networks

generated by generic logics. If we base these Kauffman networks on an Erdös-Rényi

graph from Example 2.1, for instance, their in-degrees are Poisson distributed, cf. sec-

tion 2.1. We could already show that also in this case the truth-content is governed

by an iteration function with negative Schwarzian derivative. This awakens hopes that

we will be able to treat this case similarly to our proceeding inhere. In preliminary nu-

meric analyses the truth-content, indeed, appears to possess a unique attractor. These

analyses, however, also reveal that the critical boundaries in the case of an Erdös-Rényi

graph differ qualitatively from the ones shown in Figure 5.4.

A comprehensive discussion of Kauffman networks with generic logics on different

topologies is an interesting subject for future work. On the one hand, it would, of course,
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be intriguing to use real-world networks, such as the transcriptional gene regulatory

networks from E. coli or yeast [Keseler et al., 2008; Lee et al., 2002]. On the other

hand, for more systematic analyses, lattices and random graphs, such as the Erdös-

Rényi graph from Example 2.1, small-world networks generated according to Watts and

Strogatz [1998], or scale-free networks obtained via preferential attachment [Barabási

and Albert, 1999], might be better suited.

7.2.3 The state-space of Kauffman networks with generic logics

Furthermore, the structure of the Boolean state-space of Kauffman networks with

generic logics needs to be analyzed in detail. Similarly to Samuelsson and Troein

[2003], one could attempt to compute the average number and length of attractors in

these networks. For truth-stable networks, it will be particularly interesting to see how

the lengths of attractors (in the Boolean state-space) are related to the length of the

attractor of the truth-content. Intuitively, one would expect the former to be multiples

of the latter.
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Erdös-Rényi, 11

order of a, 10

random, 11

signed, 11

size of a, 10

Hamming distance

as a metric, 40, 52

as an order parameter, 45, 56, 107

heterogeneity, 54

Hill kinetic, 41

hindbrain, 35

Human Genome Project, 1

immune system, 33

input, 10

activating, 83

canalyzing, 30

inhibiting, 83

inverse problem, 131

isthmic organizer, 35

Karnaugh-Veitch map, 31, 133

Kauffman network, 43

bit-stable, 106

multistate, 53

standard, 43

truth-content of a, 87

truth-stable, 106

with generic logic, 86

with magnetization bias, 43

liar’s paradox, 49

literal, 30

logistic equation, 22

Lyapunov exponent, 21

magnetization bias, 43

manifold

stable, 18

unstable, 18

MATLAB, 145

ode15s, 145

ODEfy, 7, 82

pdepe, 145

measure

invariant, 20

natural, 20

method of lines, 145

mid-hindbrain boundary, 35

midbrain, 35

model

Boolean, 40

generative, 11

multistate, 51

qualitative, 83

multilinear interpolation, 140

negation, 28

neighbor, 10

neural plate, 35

neural tube, 35

node, 10

end-, 10

adjacent, 10

deterministic, 69

normal form

conjunctive, 31

disjunctive, 31

full disjunctive, 31

orbit, 13

156



INDEX

period of, 14

periodic, 13

order parameter, 44

phase, 44, 58, 109

chaotic, 45, 58

critical, 45, 58

frozen, 45, 58

ordered, 45, 58

phase transition, 44

in KNsGL, 109

in MKNs, 59

phosphorylation, 33

plate

alar, 35

basal, 35

floor, 35

roof, 35

point

α-limit, 15

ω-limit, 15

critical fixed, 18

fixed, 13

non-degenerate critical, 25

periodic, 14

quadratic critical, 25

regular fixed, 143

singular fixed, 143

predecessor, 10

prediction, 127

promotor, 34

propositional variable, 30

protein-complex, 33

protein-protein-interaction, 34

regime, 45, 58, 109

reverse engineering, 82

ribosom, 33

RNA

messenger, 33

micro, 33

non-coding, 33

polymerase, 33

ribosomal, 33

transcript, 33

transfer, 33

Schwarzian derivative, 24

secondary organizer, 35

self-referential, 49

sensitive dependence, 27

set

attracting, 15

globally attracting, 20

invariant, 13

negative invariant, 14

of α-limit points, 15

of ω-limit points, 15

positive invariant, 14

repelling, 15

signaling center, 35

signature, 11

inverted, 11

spinal cord, 35

stability

asymptotical, 14

criteria for, 16

in the sense of Lyapunov, 14

neutral, 14

orbital, 14

state-space, 13

stem cell

adult, 33

embryonic, 33

subspace

center, 17

stable, 17

unstable, 17

successor, 10

systems biology, 127

loop, 127

target, 10

theorem

about stable and unstable manifolds, 18

Cook-Levine, 133

Hartman-Grobman, 17

Singer, 24

thermodynamic limit, 12

trajectory, 13

157



INDEX

of a BM, 40

of a MM, 52

transcription, 33

factor, 34

translation, 33

truth-table, 31

update rule, 40, 51

biased, 61

threshold, 82

unbiased, 60

158



References

D. Acampora, V. Avantaggiato, F. Tuorto, and A. Sime-

one. Genetic control of brain morphogenesis through

Otx gene dosage requirement. Development, 124(18):3639–

3650, 1997. 36, 139

K. A. Adams, J. M. Maida, J. A. Golden, and R. D. Riddle.

The transcription factor Lmx1b maintains Wnt1 expres-

sion within the isthmic organizer. Development, 127(9):

1857–1867, 2000. 128

R. Albert and A. Barabási. Statistical mechanics of complex

networks. Rev Mod Phys, 74(1):47–97, 2002. 9, 113

M. Aldana. Boolean dynamics of networks with scale-free

topology. Physica D, 185(1):45–66, 2003. 43, 153

M. Aldana, S. Coppersmith, and L. P. Kadanoff. Boolean dy-

namics with random couplings. In Perspectives and Prob-

lems in Nonlinear Science: A Celebratory Volume in Honor

of Lawrence Sirovich, pages 23–89. Springer Verlag, 2003.

45

U. Alon. An Introduction to Systems Biology: Design Principles

of Biological Circuits. CRC Press, 2006. 114
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